From 12c879f016271eeb149e7f7bfa59668388e54e91 Mon Sep 17 00:00:00 2001 From: "Radu C. Martin" Date: Fri, 30 Jul 2021 16:23:20 +0200 Subject: [PATCH] Removed old/unnecessary notebooks --- Notebooks/20_simulating_carnot_model.ipynb | 867 ----- Notebooks/32_gaussiandome_prbs.ipynb | 2879 --------------- Notebooks/33_gaussiandome_prbs_loaded.ipynb | 1487 -------- .../34_train_gp_from_existing_data.ipynb | 986 ----- .../35_gp_with_trieste_from_data-Copy1.ipynb | 2961 --------------- .../36_gp_with_trieste_from_data-Copy1.ipynb | 3197 ----------------- Notebooks/37_gp_with_new_data.ipynb | 2823 --------------- Notebooks/40_casadi_gaussiandome.ipynb | 1887 ---------- Notebooks/51_simulink_controller.ipynb | 304 -- Notebooks/52_mpc_server.ipynb | 105 - Notebooks/Performance_test_exps.png | Bin 344342 -> 0 bytes Notebooks/Trieste_GP_opt.ipynb | 236 -- Notebooks/prediction_20_steps.png | Bin 71409 -> 0 bytes 13 files changed, 17732 deletions(-) delete mode 100644 Notebooks/20_simulating_carnot_model.ipynb delete mode 100644 Notebooks/32_gaussiandome_prbs.ipynb delete mode 100644 Notebooks/33_gaussiandome_prbs_loaded.ipynb delete mode 100644 Notebooks/34_train_gp_from_existing_data.ipynb delete mode 100644 Notebooks/35_gp_with_trieste_from_data-Copy1.ipynb delete mode 100644 Notebooks/36_gp_with_trieste_from_data-Copy1.ipynb delete mode 100644 Notebooks/37_gp_with_new_data.ipynb delete mode 100644 Notebooks/40_casadi_gaussiandome.ipynb delete mode 100644 Notebooks/51_simulink_controller.ipynb delete mode 100644 Notebooks/52_mpc_server.ipynb delete mode 100644 Notebooks/Performance_test_exps.png delete mode 100644 Notebooks/Trieste_GP_opt.ipynb delete mode 100644 Notebooks/prediction_20_steps.png diff --git a/Notebooks/20_simulating_carnot_model.ipynb b/Notebooks/20_simulating_carnot_model.ipynb deleted file mode 100644 index b32297d..0000000 --- a/Notebooks/20_simulating_carnot_model.ipynb +++ /dev/null @@ -1,867 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import matlab.engine" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from shutil import copyfile" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/home/radu/Projects/Master-Project/Simulink\n" - ] - } - ], - "source": [ - "cd \"../Simulink\"" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "eng = matlab.engine.start_matlab()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eng.load_system(\"polydome\", background = True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which experimental set to simulate:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "exp_id = 'Exp1'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Copy the corresponding WDB to the model input location:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'../Data/input_WDB.mat'" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "copyfile(f\"../Data/Experimental_data_WDB/{exp_id}_WDB.mat\", \"../Data/input_WDB.mat\")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timetimestampzenithazimuthdnidhiOutsideTempTsky_radrelative_humidityprecipitationcloud_indexpressurewind_speedwind_directionaoiincidence_mainincidence_secondpoa_directpoa_diffuse
0020170601200078.691622290.4308197.25133759.90864422.016.050-99990.5963000-999978.691622-9999-99991.42191159.908644
130020170601200579.489651291.2795017.67211456.53708822.016.050-99990.5963000-999979.489651-9999-99991.39949456.537088
260020170601201080.282334292.1305038.42313953.49267422.016.050-99990.5963000-999980.282334-9999-99991.42176953.492674
390020170601201581.069332292.98412352.65724465.77023922.016.050-99990.5963000-999981.069332-9999-99998.17446765.770239
4120020170601202081.850261293.84065394.36440362.82917722.016.050-99990.5963000-999981.850261-9999-999913.37715762.829177
\n", - "
" - ], - "text/plain": [ - " time timestamp zenith azimuth dni dhi \\\n", - "0 0 201706012000 78.691622 290.430819 7.251337 59.908644 \n", - "1 300 201706012005 79.489651 291.279501 7.672114 56.537088 \n", - "2 600 201706012010 80.282334 292.130503 8.423139 53.492674 \n", - "3 900 201706012015 81.069332 292.984123 52.657244 65.770239 \n", - "4 1200 201706012020 81.850261 293.840653 94.364403 62.829177 \n", - "\n", - " OutsideTemp Tsky_rad relative_humidity precipitation cloud_index \\\n", - "0 22.0 16.0 50 -9999 0.5 \n", - "1 22.0 16.0 50 -9999 0.5 \n", - "2 22.0 16.0 50 -9999 0.5 \n", - "3 22.0 16.0 50 -9999 0.5 \n", - "4 22.0 16.0 50 -9999 0.5 \n", - "\n", - " pressure wind_speed wind_direction aoi incidence_main \\\n", - "0 96300 0 -9999 78.691622 -9999 \n", - "1 96300 0 -9999 79.489651 -9999 \n", - "2 96300 0 -9999 80.282334 -9999 \n", - "3 96300 0 -9999 81.069332 -9999 \n", - "4 96300 0 -9999 81.850261 -9999 \n", - "\n", - " incidence_second poa_direct poa_diffuse \n", - "0 -9999 1.421911 59.908644 \n", - "1 -9999 1.399494 56.537088 \n", - "2 -9999 1.421769 53.492674 \n", - "3 -9999 8.174467 65.770239 \n", - "4 -9999 13.377157 62.829177 " - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_wdb = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_WDB.pkl\")\n", - "df_wdb.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PowerSetpointOutsideTempSupplyTempInsideTempSolRad
timestamp
2017-06-01 20:00:00+02:004325.03448323.522.024.524.30000061.321333
2017-06-01 20:05:00+02:004287.00000023.522.015.524.28333357.926100
2017-06-01 20:10:00+02:004319.76666723.522.015.224.08333354.902033
2017-06-01 20:15:00+02:002893.34482823.522.014.923.93333373.860700
2017-06-01 20:20:00+02:0059.13793123.522.018.223.66666776.042533
\n", - "
" - ], - "text/plain": [ - " Power Setpoint OutsideTemp SupplyTemp \\\n", - "timestamp \n", - "2017-06-01 20:00:00+02:00 4325.034483 23.5 22.0 24.5 \n", - "2017-06-01 20:05:00+02:00 4287.000000 23.5 22.0 15.5 \n", - "2017-06-01 20:10:00+02:00 4319.766667 23.5 22.0 15.2 \n", - "2017-06-01 20:15:00+02:00 2893.344828 23.5 22.0 14.9 \n", - "2017-06-01 20:20:00+02:00 59.137931 23.5 22.0 18.2 \n", - "\n", - " InsideTemp SolRad \n", - "timestamp \n", - "2017-06-01 20:00:00+02:00 24.300000 61.321333 \n", - "2017-06-01 20:05:00+02:00 24.283333 57.926100 \n", - "2017-06-01 20:10:00+02:00 24.083333 54.902033 \n", - "2017-06-01 20:15:00+02:00 23.933333 73.860700 \n", - "2017-06-01 20:20:00+02:00 23.666667 76.042533 " - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_data.pkl\")\n", - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "Tsample = 300\n", - "eng.workspace['Tsample'] = Tsample" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Experiment runtime: 1200\n" - ] - } - ], - "source": [ - "runtime = df_wdb['time'].iloc[-1] - Tsample\n", - "runtime = 1200\n", - "print(f\"Experiment runtime: {runtime}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Simulink" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Set the CARNOT simulation initial temperature `t0`" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "eng.workspace['t0'] = float(df['InsideTemp'][0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Set the CARNOT simulation air exchange rate" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "day_air_exchange_rate = 2.5\n", - "night_air_exchange_rate = 2.5" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "air_exchange_rate = np.zeros((df_wdb.shape[0], 2))\n", - "air_exchange_rate[:, 0] = df_wdb['time']\n", - "air_exchange_rate[:, 1] = np.where(df['Power'] < 100, day_air_exchange_rate, night_air_exchange_rate)\n", - "eng.workspace['air_exchange_rate'] = matlab.double(air_exchange_rate.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Set the CARNOT simulation input heat power" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the original electric power consumption" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "power = np.array([df_wdb['time'], df['Power']]).T" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the heating power by passing through a heating/cooling COP" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "COP_heating = -5.0\n", - "COP_cooling = 5.0" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "COP = np.where(df['Setpoint'] > df['InsideTemp'], COP_heating, -1*COP_cooling)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "power[:, 1] = COP * power[:, 1]" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "eng.workspace['power'] = matlab.double(power.tolist())" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "eng.set_param('polydome', 'StopTime', str(runtime), nargout = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "ename": "MatlabExecutionError", - "evalue": "Error due to multiple causes.\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mMatlabExecutionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0meng\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mworkspace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'result'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0meng\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'polydome'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/usr/lib/python3.9/site-packages/matlab/engine/matlabengine.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mFutureResult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_stdout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_stderr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeval\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 70\u001b[0;31m return FutureResult(self._engine(), future, nargs, _stdout,\n\u001b[0m\u001b[1;32m 71\u001b[0m _stderr, feval=True).result()\n\u001b[1;32m 72\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/matlab/engine/futureresult.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpythonengine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetMessage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'TimeoutCannotBeNegative'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 67\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__future\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcancel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/matlab/engine/fevalfuture.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 80\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpythonengine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetMessage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'MatlabFunctionTimeout'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 82\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpythonengine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetFEvalResult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_future\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_nargout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_out\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_err\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 83\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_retrieved\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mMatlabExecutionError\u001b[0m: Error due to multiple causes.\n" - ] - } - ], - "source": [ - "eng.workspace['result'] = eng.sim('polydome')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Interpret the resulting data as a python dataframe" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dict_simulation = {}\n", - "dict_simulation['values'] = np.asarray(eng.eval('result.SimulatedTemp.Data')).reshape(-1)\n", - "dict_simulation['time'] = np.asarray(eng.eval('result.SimulatedTemp.Time')).reshape(-1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_simulation = pd.DataFrame(dict_simulation)\n", - "#df_simulation['time'] = df_simulation['time'].astype(int)\n", - "df_simulation.set_index('time', inplace = True, drop = True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_simulation['timestamp'] = df.index[0] + df_simulation.index.map(lambda x: pd.Timedelta(seconds = x))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_simulation = df_simulation.reset_index().set_index('timestamp')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize = (15, 5))\n", - "plt.plot(df_simulation.index, df_simulation['values'], label = 'Simulated Temperature')\n", - "plt.plot(df.index, df['InsideTemp'], '--',label = 'Inside Temperature')\n", - "plt.plot(df.index, df['OutsideTemp'], '-.', label = 'Outside Temperature')\n", - "plt.title('Temperatures')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize = (15, 5))\n", - "plt.plot(df.index, df['Setpoint'], label = 'HVAC Controller Setpoint Temperature')\n", - "plt.title('Temperatures')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Resample to 5/10/15 min by taking the mean when there are multiple points, and padding with zero order when data is missing" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_resampled_5 = df_simulation['values'].resample('5min').mean().pad()\n", - "df_resampled_10 = df_simulation['values'].resample('10min').mean().pad()\n", - "df_resampled_15 = df_simulation['values'].resample('15min').mean().pad()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "plt.figure(figsize = (15, 5))\n", - "plt.plot(df_simulation.index, df_simulation['values'], label = 'original')\n", - "plt.plot(df_resampled_5.index, df_resampled_5, label = 'resampled 5min')\n", - "plt.plot(df_resampled_10.index, df_resampled_10, label = 'resampled 10min')\n", - "plt.plot(df_resampled_15.index, df_resampled_15, label = 'resampled 15min')\n", - "plt.title('Resampling simulation data to different intervals')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Export the resampled data-set for further use" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_resampled_5.to_pickle(f\"../Data/CARNOT_output/{exp_id}_simulation_df.pkl\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df['Power'].plot(figsize = (20, 5))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Add the outputs to the experimental df and export the result: " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df['Heat'] = power[:, 1]\n", - "df['SimulatedTemp'] = df_resampled_5" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Quick sanity check \n", - "\n", - "NOTE: This assumption is only correct for for experiments 1 and 2, but is currently applied everywhere.\n", - "Keeping track of this only ensures that the GP can train on the same data that is fed to CARNOT" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "(np.where(np.sign(df['Setpoint'] - df['InsideTemp']) == 1, 1, -3) * df['Power']).equals(df['Heat'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df.to_pickle(f\"../Data/CARNOT_output/{exp_id}_full.pkl\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df['Heat'].plot(figsize = (25, 5))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - }, - "toc-autonumbering": false, - "toc-showmarkdowntxt": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Notebooks/32_gaussiandome_prbs.ipynb b/Notebooks/32_gaussiandome_prbs.ipynb deleted file mode 100644 index 6b03c12..0000000 --- a/Notebooks/32_gaussiandome_prbs.ipynb +++ /dev/null @@ -1,2879 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "from shutil import copyfile\n", - "import pickle" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Data manipulation" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plotting / Visualisation" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "plt.rcParams[\"figure.figsize\"] = (15, 6)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Gaussian Process Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import gpflow\n", - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from gpflow.utilities import print_summary" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "gpflow.config.set_default_summary_fmt(\"notebook\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "MATLAB engine" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import matlab.engine" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "eng = matlab.engine.start_matlab()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eng.load_system(\"../Simulink/polydome\", background = True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load weather data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sample time (in seconds) of the resulting Gaussian Process" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "Tsample = 15*60" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which experimental set to simulate:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "exp_id = 'Exp2'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Copy the corresponding WDB to the model input location:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'../Data/input_WDB.mat'" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "copyfile(f\"../Data/Experimental_data_WDB/{exp_id}_WDB.mat\", \"../Data/input_WDB.mat\")" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timetimestampzenithazimuthdnidhiOutsideTempTsky_radrelative_humidityprecipitationcloud_indexpressurewind_speedwind_directionaoiincidence_mainincidence_secondpoa_directpoa_diffuse
0020170610160037.637775244.184376778.389320153.01499824.018.050-99990.5963000-999937.637775-9999-9999616.396540153.014998
130020170610160538.415872245.558388779.663530151.02021724.018.050-99990.5963000-999938.415872-9999-9999610.883028151.020217
260020170610161039.202383246.896456776.559233150.27216524.018.050-99990.5963000-999939.202383-9999-9999601.769888150.272165
390020170610161539.996665248.200516767.177588151.34961524.018.050-99990.5963000-999939.996665-9999-9999587.720827151.349615
4120020170610162040.798119249.472420762.559533150.94997424.018.050-99990.5963000-999940.798119-9999-9999577.270157150.949974
\n", - "
" - ], - "text/plain": [ - " time timestamp zenith azimuth dni dhi \\\n", - "0 0 201706101600 37.637775 244.184376 778.389320 153.014998 \n", - "1 300 201706101605 38.415872 245.558388 779.663530 151.020217 \n", - "2 600 201706101610 39.202383 246.896456 776.559233 150.272165 \n", - "3 900 201706101615 39.996665 248.200516 767.177588 151.349615 \n", - "4 1200 201706101620 40.798119 249.472420 762.559533 150.949974 \n", - "\n", - " OutsideTemp Tsky_rad relative_humidity precipitation cloud_index \\\n", - "0 24.0 18.0 50 -9999 0.5 \n", - "1 24.0 18.0 50 -9999 0.5 \n", - "2 24.0 18.0 50 -9999 0.5 \n", - "3 24.0 18.0 50 -9999 0.5 \n", - "4 24.0 18.0 50 -9999 0.5 \n", - "\n", - " pressure wind_speed wind_direction aoi incidence_main \\\n", - "0 96300 0 -9999 37.637775 -9999 \n", - "1 96300 0 -9999 38.415872 -9999 \n", - "2 96300 0 -9999 39.202383 -9999 \n", - "3 96300 0 -9999 39.996665 -9999 \n", - "4 96300 0 -9999 40.798119 -9999 \n", - "\n", - " incidence_second poa_direct poa_diffuse \n", - "0 -9999 616.396540 153.014998 \n", - "1 -9999 610.883028 151.020217 \n", - "2 -9999 601.769888 150.272165 \n", - "3 -9999 587.720827 151.349615 \n", - "4 -9999 577.270157 150.949974 " - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_wdb = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_WDB.pkl\")\n", - "df_wdb.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PowerSetpointOutsideTempSupplyTempInsideTempSolRadtime_htime_mtime
timestamp
2017-06-10 16:00:00+02:005039.71839120.50000024.013.222.727778761.0157331600
2017-06-10 16:15:00+02:004563.97969321.16666724.013.422.650000729.0869331615900
2017-06-10 16:30:00+02:004560.34865921.50000024.013.422.622222699.06633316301800
2017-06-10 16:45:00+02:004535.04367821.50000024.013.422.622222664.05945616452700
2017-06-10 17:00:00+02:004565.32183921.50000024.013.422.483333630.5489331703600
\n", - "
" - ], - "text/plain": [ - " Power Setpoint OutsideTemp SupplyTemp \\\n", - "timestamp \n", - "2017-06-10 16:00:00+02:00 5039.718391 20.500000 24.0 13.2 \n", - "2017-06-10 16:15:00+02:00 4563.979693 21.166667 24.0 13.4 \n", - "2017-06-10 16:30:00+02:00 4560.348659 21.500000 24.0 13.4 \n", - "2017-06-10 16:45:00+02:00 4535.043678 21.500000 24.0 13.4 \n", - "2017-06-10 17:00:00+02:00 4565.321839 21.500000 24.0 13.4 \n", - "\n", - " InsideTemp SolRad time_h time_m time \n", - "timestamp \n", - "2017-06-10 16:00:00+02:00 22.727778 761.015733 16 0 0 \n", - "2017-06-10 16:15:00+02:00 22.650000 729.086933 16 15 900 \n", - "2017-06-10 16:30:00+02:00 22.622222 699.066333 16 30 1800 \n", - "2017-06-10 16:45:00+02:00 22.622222 664.059456 16 45 2700 \n", - "2017-06-10 17:00:00+02:00 22.483333 630.548933 17 0 3600 " - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_data.pkl\")\n", - "# Resample the experimental measurements\n", - "df = df.resample(f\"{Tsample}s\").mean()\n", - "df['time_h'] = df.index.hour\n", - "df['time_m'] = df.index.minute\n", - "\n", - "df.loc[:,'time'] = [0] + (df.index[1:] - df.index[:-1]).seconds.to_list()\n", - "df.loc[:, 'time'] = df.loc[:, 'time'].cumsum()\n", - "\n", - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "def load_weather_data(exp_id):\n", - " copyfile(f\"../Data/Experimental_data_WDB/{exp_id}_WDB.mat\", \"../Data/input_WDB.mat\")\n", - " df_wdb = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_WDB.pkl\")\n", - " \n", - " df = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_data.pkl\")\n", - " # Resample the experimental measurements\n", - " df = df.resample(f\"{Tsample}s\").mean()\n", - " \n", - " df['time_h'] = df.index.hour\n", - " df['time_m'] = df.index.minute\n", - " \n", - " df.loc[:,'time'] = [0] + (df.index[1:] - df.index[:-1]).seconds.to_list()\n", - " df.loc[:, 'time'] = df.loc[:, 'time'].cumsum()\n", - "\n", - " return df_wdb, df" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Experiment runtime: 136500\n" - ] - } - ], - "source": [ - "runtime = df_wdb['time'].iloc[-1]\n", - "print(f\"Experiment runtime: {runtime}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simulink" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Set the CARNOT simulation initial temperature `t0`" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "eng.workspace['t0'] = float(23)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Set the CARNOT simulation air exchange rate" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "np_air = np.zeros([df_wdb.shape[0], 2])\n", - "np_air[:, 0] = df_wdb['time']\n", - "np_air[:, 1] = 2.75" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "eng.workspace['air_exchange_rate'] = matlab.double(np_air.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Generate Heat Random Input Signal" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "Pel_max = 6300\n", - "COP_heating = 5.0\n", - "COP_cooling = 5.0" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "Define a function for generating random signals:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "def get_random_signal(nstep, a_range = (-1, 1), b_range = (2, 10), signal_type = 'analog'):\n", - "\n", - " a = np.random.rand(nstep) * (a_range[1]-a_range[0]) + a_range[0] # range for amplitude\n", - " b = np.random.rand(nstep) *(b_range[1]-b_range[0]) + b_range[0] # range for frequency\n", - " b = np.round(b)\n", - " b = b.astype(int)\n", - "\n", - " b[0] = 0\n", - "\n", - " for i in range(1,np.size(b)):\n", - " b[i] = b[i-1]+b[i]\n", - " \n", - " if signal_type == 'analog':\n", - " random_signal = np.zeros(nstep)\n", - " # Random Signal\n", - " i=0\n", - " random_signal = np.zeros(nstep)\n", - " while b[i]" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure() \n", - "plt.subplot(2,1,1)\n", - "plt.plot(random_signal, drawstyle='steps',label='Random Signal')\n", - "plt.legend()\n", - "plt.subplot(2,1,2)\n", - "plt.plot(prbs, drawstyle='steps', label='PRBS')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "power = np.array([df['time'], random_signal]).T" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "eng.workspace['power'] = matlab.double(power.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Set the simulation parameters and run it" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "eng.set_param('polydome', 'StopTime', str(runtime), nargout = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "eng.workspace['result'] = eng.sim('polydome')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Interpret the simulation results" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "def carnot_to_series(eng, start_timestamp):\n", - "\n", - " # Compile the simulation dict\n", - " dict_simulation = {}\n", - " dict_simulation['SimulatedTemp'] = np.asarray(eng.eval('result.SimulatedTemp.Data')).reshape(-1)\n", - " dict_simulation['time'] = np.asarray(eng.eval('result.SimulatedTemp.Time')).reshape(-1)\n", - " \n", - " # Create the dataframe from dict\n", - " df_simulation = pd.DataFrame(dict_simulation)\n", - " df_simulation.set_index('time', inplace = True, drop = True)\n", - " \n", - " # Define the timestamps and set it as index\n", - " df_simulation['timestamp'] = start_timestamp + df_simulation.index.map(lambda x: pd.Timedelta(seconds = x))\n", - " df_simulation = df_simulation.reset_index().set_index('timestamp')\n", - " \n", - " # Resample the dataframe to 5 min intervals\n", - " # Taking the mean when there are multiple points, padding with zero order when data is missing\n", - " df_simulation = df_simulation['SimulatedTemp'].resample(f'{Tsample}s').mean().pad()\n", - " \n", - " return df_simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "df_simulation = carnot_to_series(eng, df.index[0])" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "df.loc[:,'SimulatedTemp'] = df_simulation\n", - "df.loc[:,'SimulatedHeat'] = power[:, 1]" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAF1CAYAAAC9AVTpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACeLUlEQVR4nOzdd1yVZf/A8c/F3oIMFRDBvUUFcZYrtaVmmaaZtmzvehpPPdXT3uOxfmXLyoZmQzNza44UBcWJAycIgoJM2Vy/P+6jobI5cA7wfb9e58W5z72+5xY553tf1/W9lNYaIYQQQgghhBBNh42lAxBCCCGEEEIIUb8kERRCCCGEEEKIJkYSQSGEEEIIIYRoYiQRFEIIIYQQQogmRhJBIYQQQgghhGhiJBEUQgghhBBCiCZGEkEhhBBCCCGEaGIkERRCCNEgKaWySz1KlFK5pZanWjq+mlBKHVVKjbR0HEIIIRo/O0sHIIQQQtSE1trt3HOl1FHgDq31SstFVDGllJ3Wuqihn0MIIUTjIC2CQgghGhWllI1S6iml1CGlVKpSar5SqrlpXbBSSiulblVKxSulziil7lZKhSuldiql0pVSs0oda4ZSaqNS6n9KqQyl1D6l1IhS65sppb5QSiUppU4opV5WStletO97Sqk04AWlVDul1GpTXKeVUt8ppTxN238LBAG/m1o1/6WUGqqUSrjo/Z1vNVRKvaCUWqCUmquUygRmVBJTe6XUX6b3clopNa9O/zGEEEJYLUkEhRBCNDYPAuOBywF/4Azw0UXbRAAdgEnA+8C/gZFAN+BGpdTlF217GPABngd+OZdYAl8DRUB7oDcwCrijjH39gFcABbxmiqsL0Bp4AUBrPQ04DlyrtXbTWr9Zxfc7DlgAeALfVRLTS8BywAsIBP5XxXMIIYRoZCQRFEII0djcBfxba52gtc7HSLRuUEqVHg7xktY6T2u9HMgBftBap2itTwDrMRKoc1KA97XWhVrrecB+4GqlVAvgSuBhrXWO1joFeA+YXGrfRK31/7TWRVrrXK11nNZ6hdY6X2t9CngXI2GtjU1a69+01iWARyUxFQJtAH/T+99Qy3MLIYRooGSMoBBCiMamDfCrUqqk1GvFQItSy8mlnueWsexWavmE1lqXWj6G0aLXBrAHkpRS59bZAPGlti39HKWUH/AhMARwN21/pkrvqnylz1FZTP/CaBXcopQ6A7yjtf6ylucXQgjRAEkiKIQQorGJB27TWm+8eIVSKrgGxwtQSqlSyWAQsMh0nnzAp4ICLfqi5ddMr/XUWqcqpcYDsyrYPgdwKRW/LeBbwTkqjElrfRK403SswcBKpdQ6rXVcOfELIYRopKRrqBBCiMbmE+AVpVQbAKWUr1JqXC2O5wc8qJSyV0pNxBjbt0RrnYQx3u4dpZSHqUhNu4vGF17MHcgG0pVSAcATF61PBtqWWj4AOCmlrlZK2QPPAo7lHbyymJRSE5VSgabNz2AkkcVVuwxCCCEaE0kEhRBCNDYfYLTYLVdKZQGbMYq21FQkRmGZ0xgFX27QWqea1t0COAB7MRKrBUCrCo71ItAHyAD+AH65aP1rwLOm6qWPa60zgHuBz4ETGC2ECVSsopjCgUilVDbGNXpIa32kkuMJIYRohNSFwx6EEEIIcY5SagbG/ISDLR2LEEIIYU7SIiiEEEIIIYQQTYwkgkIIIYQQQgjRxEjXUCGEEEIIIYRoYupt+gillBOwDqPamR2wQGv9vFLqLeBaoAA4BNyqtU4vY/+jQBZGdbMirXVYPYUuhBBCCCGEEI1KvbUIKmNmW1etdbapBPYG4CHAA1ittS5SSr0BoLV+soz9jwJhWuvT9RKwEEIIIYQQQjRS9dYiaJqIN9u0aG96aK318lKbbQZuMMf5fHx8dHBwsDkOJYQQQgghhBANTnR09GmttW9Z6+otEQRQStkC0UB74COtdeRFm9wGzCtnd40xJ5QGPtVaz67oXMHBwURFRdU2ZCGEEEIIIYRokJRSx8pbV69VQ7XWxVrrUCAQ6KeU6n5unVLq30AR8F05uw/SWvcBrgTuU0pddvEGSqmZSqkopVTUqVOnzP8GhBBCCCGEEKIRsMj0EaZiMGuBMQBKqenANcBUXc6gRa11oulnCvAr0K+MbWZrrcO01mG+vmW2gAohhBBCCCFEk1dviaBSylcp5Wl67gyMBPYppcYATwJjtdZny9nXVSnlfu45MArYXS+BCyGEEEIIIUQjU59jBFsBX5vGCdoA87XWi5VScRhTSqwwCouyWWt9t1LKH/hca30V0AL41bTeDvhea720HmMXosbi085yIDmLoZ38sLVRlg5HCCGEEEKIeq0auhPoXcbr7cvZPhG4yvT8MNCrTgMUwkxyC4rZfCSVv/afYt2BUxw+nQPAU1d25u7L21k4OiGEEEIIIeq5aqgQjVVeYTFr9qWwaEciq/elkF9UgqOdDQPaeTNtQBs2xp3m3eUHGN7Zj44t3C0drhBCCCGEaOIkERSihvIKi4k8ksaimESW7TlJdn4RPm4OTApvzYguLYgIaY6TvS0A1/byZ/R763h0fgy/3jsIe1uL1GkSQgghhBACkERQiCrRWpOYkce2Y2eIPnaG7cfPsCcxk6ISjbujHWO6t2RcqD8D2npjV0aS5+PmyCvXdefuudv4aE0cD4/saIF3IYQQQgghhEESQSHKkF9UzJ7ETLYdO8O240byl5yZD4CTvQ09Az2587K2hLXxYlB7n/MtfxUZ070V40P9mbU6jpFdWtA9oFldvw0hhBBCCCHKJImgEKWcySngvZUH+HFrPAVFJQAEejkTEeJNnyBP+rZpTudW7jXu2vni2O5sOpzKo/Nj+P2BwTjaVZ5ACiGEEEIIYW6SCAoBFBWX8F3kcd5dcYDs/CIm9g1kaCdf+gR54efhZLbzNHOx5/Xre3LrV1t5f+VBnhzT2WzHFkIIIYQQoqokERRN3t9xp3nx973sT85iYDtvnr+2G51a1l1lz2Gd/Jgc3ppP/zrEuFB/Orf0qLNzCSGEEEIIURYpXSiarPi0s9z1bRRTPo/kbGERn9zcl+/uiKjTJPCcJ8d0xtZG8XN0Qp2fSwghhBBCiItJi6BocnLyi/h4bRyfrT+CrVI8MboTtw8OqVLBF3PxcnXg8o5+/L4jiaev7IKNjaq3cwshhBBCCCGJoGgytNb8FnOC1//cR3JmPuND/Xnqyi60bGa+MYDVMS7Un5WxyWw5mkb/tt4WiUEIIYQQQjRNkgiKJiGvsJiHf4xh6Z6T9AxsxsdT+9C3TXOLxjSySwtcHGxZGJMoiaAQQgghhKhXMkZQNHpncgqY+nkky/ae5JmrOvPbvYMsngQCODvYMqprC5bsSjo/VYUQQgghhBD1QRJB0ajFp53l+k/+ZteJDD6a0oeZl7WzqvF440IDyMgtZN2BU5YORQghhBBCNCGSCIpGa1dCBtd9/Dep2QXMvT2Cq3q0snRIlxjcwQcvF3sW7ki0dChCCCGEEKIJqbdEUCnlpJTaopTaoZTao5R60fR6c6XUCqXUQdNPr3L2H6OU2q+UilNKPVVfcYuGadmek0yavQlHOxt+vmcA/UIs3xW0LPa2NlzdsxUr9yaTk19k6XCEEEIIIUQTUZ8tgvnAcK11LyAUGKOU6g88BazSWncAVpmWL6CUsgU+Aq4EugI3KaW61lfgouHIyivkXwt2cNe30bTzdePXewfS3q/u5wWsjbG9AsgtLGZlbLKlQxFCCCGEEE1EvSWC2pBtWrQ3PTQwDvja9PrXwPgydu8HxGmtD2utC4AfTfsJcd6WI2lc+cF6FkQncN+wdvx8z0D8PCwzNUR1hLXxwr+ZEwtjpHuoEEIIIYSoH/U6RlApZauUigFSgBVa60ighdY6CcD006+MXQOA+FLLCabXLj7+TKVUlFIq6tQpKb7RVOQXFfPan7FMmr0JG6X46e4BPDG6Mw52DWMIrI2N4tpQf9YdOEVaToGlwxFCCGFhJSWaNftSyJYhA0KIOlSv35S11sVa61AgEOinlOpexV3LKvOoyzj+bK11mNY6zNfXtxaRiobkP7/t4dO/DjM5vDV/PjTEKqaGqK5xvQIoKtEs2ZVk6VCEEEJY2PsrD3DrnK2Mevcv1uxLsXQ4QohGyiJNJlrrdGAtMAZIVkq1AjD9LOsvXgLQutRyICD96ARHTufwU3Q8tw0K4bUJPXF1tLN0SDXSpZU77f3cWCTdQ4UQoklbujuJD1fHMaprC1wd7bh1zlYe/GE7p7PzLR2aEKKRqc+qob5KKU/Tc2dgJLAPWARMN202HVhYxu5bgQ5KqRCllAMw2bSfaOI+XHUQRztb7hnaztKh1IpSinG9/NlyNI34tLOWDkcIIYQFHEjO4tH5Owht7cmHN/Vm8YODeWRkR/7cncTId//i5+gEtL6kQ5QQQtRIfbYItgLWKKV2YiR2K7TWi4HXgSuUUgeBK0zLKKX8lVJLALTWRcD9wDIgFpivtd5Tj7ELKxSXksXCmBPcMrANvu6Olg6n1q7rE4CzvS13fhNFxtlCS4cjhBCiHmWcLWTmN1G4Otrxyc19cbK3xdHOlodGdmDJg0No5+vGYz/tYPFOGUIghDAP1VjvLIWFhemoqChLhyHq0AM/bGd1bDLrnxxOc1cHS4djFusPnuK2OVvpGejJt7f3w8WhYXZ1FUIIUXXFJZrb5mzl70On+XFm/zLHupeUaC57aw3tfN34+rZ+FohSCNEQKaWitdZhZa1rGGUVhbjI/pNZLN6ZyIxBwY0mCQQY0sGXDyb3ZvvxM9w9dxsFRSWWDkkIIUQde3v5fv46cIoXx3Yvt+CZjY3i2l7+bIg7TaqMFxRCmIEkgqJB+mDVAVwd7LhzSFtLh2J2V/VoxWsTerDuwCkemRdDcUnjbLUXQggBG+NO839rD3FTvyCmRARVuO24UH+KpcJ0g1NSoll/8BT5RcWWDqXR0VoTn3aWX7cn8Myvuxj13l9c9uYa3l2+X2ouVIH0OxMNzt7ETJbsOsmDIzrg6dJ4WgNLmxQeRGZuEa8sicXN0Y7Xr++BUmXNoiKEEKKhKi7RvLR4L4Fezjx/bddKt+/c0oNOLdxZGJPItAHBdR+gMIsF2xL414KdtPV15eVx3RnY3sfSIVVJxtlCXB1tsbO1rnajwuISNh1KZfHORNYdOM3JzDwA3B3t6NPGixKt+d+aOD5cHcfAdt5MCm/N6G4tcbK3tXDk1kcSQdHgvL/yAO5Odtw+OMTSodSpOy9rS0ZuIbPWxDGgnTfjewdYOiQhhBBm9FNUPPtOZjFrSu8qf0kdG+rPW8v2k3DmLIFeLnUcoTCHBdEJtGrmRFGxZsrnkYwP9eeZq7vg5+5k6dAukFdYTPSxM6w7eIr1B06zNymTCb0DeHdSqKVDo7hEE3k4ld93JrF0dxJnzhbi5mjH5Z18iQhpTnhwczq2cMfWxrhpfiI9lwVRCfwUHc9DP8YQ4OnMT3cPwN/T2cLvxLpIsRjRoOxKyODaWRt49IqOPDiig6XDqXNaa4a9vRZfd0d+unugpcMRQghhJtn5RQx9ay1tvF1YcPeAKvf6iE87y5A31/DkmM4NfuqkpuB46lkue2sNT4zuxO2DQ/h4TRyf/HUYR3sb/jWmMzdHBFm0x09KZh4rY1NYsfckmw6nkldYgr2tom8bL9yd7FmxN5nPbwljZNcWFomvsLiEX7ef4KM1cRxLPYuLgy0jurTgmp6tuLyjb6U3UEpKNH8dPMWD32+nlacTP909kGbO9vUUvXWoqFiMtAiKBqO4RPPSH3tp5mzPrYOCLR1OvVBKMblfEK//uY+4lCza+7lbOiQhhBBm8H9r4zidnc9nt/StViLQurkLvYM8WRhzQhLBBuDnbQkoBdf1DsDJ3pZHR3VifO8Anlu4m+d+201HPzci2nrXa0xHTuewZFcSK/YmExOfDkDr5s5MCmvNZR19iWjrjZujHQVFJYydtYFnft1FeHBzmrnUXwJVUFTCL9sS+GhtHPFpuXTz9+DDm3pzRZcWODtUvYunjY1iWCc/Pr2lL9O/3MLMb6L45vZ+ONpJN1GQYjGiAflywxG2HEnjuWu64u7UdO7m3NA3EHtbxQ9b4i0dihBCCDNIOHOWz9YfYVyoP72DvKq9/7he/uw7mcWB5Kw6iE6YS0mJ5pftCQxs531Bl8S2vm58OLk3ALtOZNRbPMmZeTzx0w6Gv7OWt5btp0RrHruiI8sevox1TwzjxXHdGdGlBW6ORjuRg50Nb0/sRWpOAS//sbdeYiwoKuH7yOMMe3stT/2yCy8XB76YHsbiBwYztpd/tZLA0ga28+Htib2IPJLGo/N3UCKF+ABpERQNxP6TWby1bD+jurbg+j5Na6ycj5sjo7q25JdtCTwxupMMdhZCiAburWX7UcC/xnSu0f5X9/Tnv4v3sigmkcdHdzJvcMJsth5NIz4tl0dGdrxknbebIz5ujvWSzJ8tKOLTvw4ze91hiks0dw5py62DgmnVrPLxct0DmnH35W35aM0hru7ZiqGd/OokxvyiYuZHJfB/a+JIzMijV2tPXh7fnaGdfM3WdXZcaAAnM/J47c99+Ddz4t9XV16gqbGTRFBYvYKiEh6ZF4OHsx2vTWia1TMn92vNH7uSWLbnJONCm1YiLIQQjcn242dYGJPI/cPaE1DDwhW+7o4Mau/Doh2JPDaqY5P8XGwIft6WgKuDLWO6tyxzfaeWbuxPzq6z82utWRCdwFvL9pOSlc/VPVvx5OjOBHlXr8jQA8M7sGxPMs/8sotlj1xm1l5ZeYXFzNsaz/+tPcTJzDz6BHny2vU9uayDT538Xs+8rC2J6bl8tv4IzV0duXNIiNVVRa1PTfediwbjg1UH2JuUyWsTeuLt5mjpcCxiUDsfWjd35octxy0dihBCiBrSWvPyH7H4uDlydy3H943t5c/xtLPnx3gJ65JbUMySXSe5skcrXBzKbnfp2MKdg8lZddJNMSuvkPu/384TC3YS4OXMz/cM4KMpfaqdBAI42dvy1g09OZlptKaZy/bjZxjz/jqeX7SH1s2dmXt7BD/fM5DLO5qvFfBiSin+c203xnRryRtL99H/tdW8tHgvexLrr4uuNZEWQWHVoo+d4f/WHuLGsECusFDFKmtgY6OYHB7EW8v2c/hUNm193SwdkhBCiGraEHea6GNneG1Cj/PjsGpqdPeW/Pu33SyMSazROENL0lpzMjOPvYmZxiPJeOTkF9PCw5GWHk60aOZESw8nOrV0r1J1SGuzbM9JsvOLuL5PYLnbdGrhztmCYhLO5NYoQStPbFIm9363jeNpZ3nqys7MHNIWG5vaJVa9g7y4fXAIn60/wjU9WtVqLsTC4hJmrY5j1po4Wno48c1t/RhSRy2AZbG1Ucya0ptV+1L4ZVsC32w6yhcbjtC5pTvTBrRhakSbeonDGkgi2ETkFRY3uD+iZwuKeGx+DK2aOfPcNdKPe2LfQN5dcYB5W+N5+qoulg5HCCFENf25+yQuDrZcZ4Z5YT2c7BneyY/FO5P4j+OP2Lj7wcAHjJWLHoD8i7oc2thB/3sgoE+tz10TeYXFbDqUyqp9yayOTSExI+/8uhAfV7r7N8PdyY7kzDwSM/LYHp9OWk4BAG6Odozq1oKxvfwZ1N4H+wbQle/nbQkEejkTEdK83G06tTQqge9PzjJbIjh/azzPLdxNM2d7vr8jwqwVSR+9ohO/70jiq7+P1jgRPHwqm0fmxbAjIYMJfQJ4YWw3PCxQANDO1obR3VoyultLzuQUsHhnIj9FJ/DvX3fT0sOJEV2aRuODJIJNwN9xp7nzmyimDQjmqStrNjDdEt5cup9jaWf54c7+TapKaHn8PJwY2cWPBdEJPDaqEw521v9BKIQQwlBSolmxN5mhnczXujU21J+le06ScHAHrUM6cr49JXkv5F3U1S0nBQ6tgjtXg1ewWc5fmaLiEv7YlcTvO5LYGHea3MJiXBxsGdzeh5mXtaV7QDM6t/Iot3U0r7CYrUfTWBSTyNI9J/ll2wmauzpwWQcf2vu50dbXjba+rgR7u1rVze6kjFw2xJ3mgeEdKmyJ69DCSAQPJGfVutdTSlYer/+5j1+2nWBgO28+mNwbX3fzDqdxdrBlSAcfVsQmU1Kiq93K+PuORJ5YsAMne1s+ntqHq3q0Mmt8NeXl6sC0AcFMCg/iyg/W8d/FexnU3seqfqfqSr0lgkqp1sA3QEugBJittf5AKTUPOFfyyhNI11qHlrH/USALKAaKypsYUVxo3YFT3PlNFErBJ38d4rIOPrVqzq8vB5Kz+HbzMW6OaEP/ep5fx5pN7hfEsj3JrNibzNU9reMPqBBCiMrFJKRzKiufUV3LLhxSbatf4QpHT8KCQrns+F0McvLmpXNDB+5cden2p+Pg8+Hw/WS4fTk4eZgnjjIUFZewMCaRWWviOHI6hwBPZ24MC2R4lxZEhDSv8hdsJ3tbhnTwZUgHX16+rjt/7T/Foh2JbD6cxm8xiee3Uwq8XR1wsLXBwc4Ge1vj4e3mQN82XvQLaU7v1l41nnqgun7dfgKtqbTKuZujHYFezuw7WfPKocmZeXzy1yG+jzxOUYnmweHteWhkR2xr2RW0PBFtvfkpOoH9yVl0aVX13yGtNa/8EUt7Pze+mB5OCw+nOomvNhzsbHhhbDemfbGFz9cf5v7hHSwdUp2rzxbBIuAxrfU2pZQ7EK2UWqG1nnRuA6XUO0BFozWHaa1P13WgjcWafSncNTeadr5ufD49jGlfRPLYTztY+tBl9TopaE28/EcsLg62PHLFpSWXm7LLOvgS4OnMj1uPSyIohBANyPI9ydiZJreutR0/wro3se8znXl33cP3W+N5c+k+xry/nnuGtuOeoe0uTbZ82sON38C3E2DFf+Da92sfx0WKikv4dfsJPloTx9HUs3Rt5cGn0/pyRZcWtR6j5mhny6huLRnVzUikc/KLOHI6h0Onsjl8KoeUrHwKi0soLC6hoMj4mZiexwerDqI12NsqegQ0Y3B7Hyb0CSTYx9Ucb/kSWmt+jk4gPNiLNt6Vn6NTC3cO1CARPJlhSgC3HKe4RDOhdwD3D29fpXPWxrmurluOpFUrETx8OoeTmXk8OKKDVSaB5wzp4MuYbi2ZtSaO6/oE1riyb0NRb4mg1joJSDI9z1JKxQIBwF4AZYwQvREYXl8xNWbL95zkvu+30amlO3Nvj8DTxYH3J4Uy4eO/eW7hbj68qbelQyzXmv0prDtwimev7kJzVwdLh2NVbG0UN4a15r2VBziWmlPnf/CFEEKYx/K9J+nf1rv2N2KPbzbGAAYPgavextbWhmn92zC6WwteXhzLB6sOsjDmBM9c1YUrura4sABH26EwaS4E9a9dDGXQWjP180gij6TRzd+D2dP6Xnp+M3J1tKN7QDO6BzSrcLuM3EK2HTtD5JE0th5NY9aaOD5cHUdESHMmhbfmyu6tzNpS+FvMCQ6dyuHOIW2rtH2nlu78deAUBUUlVR7ykZKZxxXv/kVuYTHX9wnkvmHtzVpspiKtm7sQ4OlM5JFUpg8MrvJ+f8cZ7TiD2lt/L69nr+nCmndSePWPWD6aapkxtfXFImMElVLBQG8gstTLQ4BkrfXBcnbTwHKllAY+1VrPrtsoG64/dyXxwA/b6RbQjG9u60czZ+NDp2egJw+N6MA7Kw4wooufVc5HV1hcwit/xBLi48otA4ItHY5VmhTemo/WxvHS4lg+u6WvzB8lhBBWLi7FaLWaUY0vzmU6cwx+nArNAo3WPbt/bpb6uTvx4U29mRgWyPML9zDz22h6Bjbj0Ss6XliOv/NVxs+ifIiPhJDLaheTyfK9yUQeSePfV3XhjiEhVvPZ1MzZnmGd/RjW2WiJTc7MY0F0AvOj4nl0/g6eX7iHkV1b0Lq5i1Gt1MORFh5OBHg641WNm9HZ+UW8uGgPP0Un0Ku1J9f28q/Sfp1aulNUojmamkNH05jByizfm0xWfhG/3jvQIhVjI0Kas+7gKbTWVf533hB3mgBPZ4Ka10/CWhuBXi7cN6w97644wNS40w1iSFVN1XsiqJRyA34GHtZaZ5ZadRPwQwW7DtJaJyql/IAVSql9Wut1Fx17JjATICgoyMyRNwyr9yVz/w/b6RXYjDm39bukEtM9Q9uxen8Kz/62m/Dg5vhbWZP395HHiUvJZva0vlIMpRwtmznxr9GdePmPWOZHxTMpvGn+rgshREOxfO9JgNoVBCnMgx8mQ0khTJkPLmVXoxzSwZflj1zGL9tP8MHKg8z4aithbbx4bFQnBrQr1Rrz1xuw6WN4/ECtxwuWlGjeXX6Atj6u3Doo2GqSwLK08HDivmHtuXdoOyKPpDF/azzr405zOjsffdF0fn7ujnT196BLK+PRtZUHIT6ul4y/23b8DI/MiyE+7Sz3D2vPQyM7VLmy6bnkb9/JrCongqtikwlq7kJoa88qbW9uEW2b88v2Exw6lU17v8pjLi7RbDqUypXdW1n170ZpMy9ry0/R8Ty/aA9LHhrSICrV1kS9JoJKKXuMJPA7rfUvpV63AyYAfcvbV2udaPqZopT6FegHrLtom9nAbICwsDDzz85p5bYcSeOeudvo2sqDr2/rV2alTTtbG96fFMqVH6zn8Z92MPf2iFr32zeXjLOFvLfyAAPbeTfpOQOr4rZBIayKTeG/v+9lQFufeusSIoQQovqW7UmmV2AzWjWrxc3XXT9Byl646UfwqbiIhZ2tDTeGtWZ8aADzouKZtfogN322mat6tOSlcd3xdnOEQQ+DZ9A/SWDGCWhWs55Ci3clsT85iw8mh2LXQL4wK6Xo39b7fEG6wuISTmfnczIjj+TMfOLTzhJ70pjncGPcaQqLja+VTvY2dGrhbiSG/h6cysrn47WHaOnhxI8zB9CvgukiytLW10gsD5zMgl6Vb3+2oIiNh1KZGhFksaSqX4hxzTYfTqtSIrgnMYPMvCIGNoBuoec42dvyn2u6cec3UXz991HuqGJX34amPquGKuALIFZr/e5Fq0cC+7TWCeXs6wrYmMYWugKjgP/WacANzN7ETG7/eisBns7MuTW8wukW2ni78p9ruvLUL7uYHxXP5H7W0aL04eqDZOQW8uzVXRvMHSNLsbFRvH1jL8a8t45H58cw764BdVYhTAghRM2dzMhjR3w6T4zuVPnG5dEatswG3y7QcUyVd3OwM8YPTuwbyBcbjvDByoNsObKOV67rwehuLaHvDGPDQ2vguxsg4m64/MlqtRAWFZfw/ooDdGrhzrU9q9Yd0hrZ29rQqplzmcl6QVEJcSnZxJomvo9NymTZnpP8uDUegOt6B/DiuJrNh+doZ0uIjyv7k6tWMGbDwdMUFJUw0oLz3AV7u+Dn7kjkkTRu7l/55OsbTOMDB7ZrWF0sR3bxY2gnXz5YeZAbw1tbZL7DulafLYKDgGnALqVUjOm1Z7TWS4DJXNQtVCnlD3yutb4KaAH8akoO7IDvtdZL6ytwa3csNYdbvtyCm6Md394RYdzpq8Sk8NbMXneY5XuTrSIRPHwqm6//PsqksNZ09a+7ktaNSYCnM/8d341H5u3g03WHuHdoe0uHJIQQ4iIrYpMBGFWbni4JW+HkTrj6XWOuhGpysrflvmHtGdmlBY/Oj+Gub6O5rncAL1zbzShe07InhE6FTR8ZLY9tBl16HltHuO7/jOeRn8KZozDmNX7dfoKrz3zLlLa52Pwyp/wg3FrAmNeM53+9aSS3Q580lpc+A9knod0I6D212u+vrjnY2dDV32gBvN70mtaak5l5ZOYWnZ8YvqY6tXRn94mKiub/Y1VsCu6OdoQHV6/l0ZyUUkS09WbLkdQqjRP8Oy6Vzi3dzT6vYV1TSvHgiA5M+Phvlu0+ycSw1pYOyezqs2roBqDM3xSt9YwyXksErjI9P0yVGsybnpTMPG7+IpLikhJ+nDmgymVuz/0nXrwjkeISbfHWpFmr43C0s+HRUTJdRHWMDw1g5d4U3ltxgMs7+tLNv+LqaUIIIerX8j0nCfFxpb2fW80P4t4SBtwPPSdVvm0FOrV057f7BjFrdRwfrYnj70OneeaqLlzT0x/bsR9C3+mw8kUj6byYfanvF+nH4dQ+CopK+GDVQf7rmkrLs/FwtoKTe5a66Zx6CHTJP8un9kHSDtj/J3S+Gpw9a/U+64NSytSCWPtjdWrhzpJdSZwtKMLFofyv5iUlmlX7Urisk6/F6yhEhDTn9x2JHEs9W+FUHHmFxWw9msbUiMpbDq1R79aeBDV3YdGOREkEhXU5k1PALV9uITW7gO/v7F+lftql9W/bnB+2HCc2KbPS8st1LerYGYZ28sPP3XrnlrFGSileHt+drUfTeGReDIvuH1zliXqFEELUrYzcQjYdSuX2wbWsoukZBKNfMUtM9rY2PHJFR0Z2acG/ft7JQz/G8MHKg9w3rD3jQntjN31R5QcxxTJ/8zESzuSibp2Nqs78iBM+vXB52i+QGAOzL4eY72HAvVU/ViPQsYU7WsPB5Gx6VVAAZueJDE5n5zOyixnmoqyl/m2NFsnII6kVJoLbjp0hv6ikQUwbURalFONC/floTRwpWXmN7ntqwxjRKy6Rmp3PTZ9t5vDpHGZPC6tR5aiI84N9U80cXfVk5RVyPO0sXVrVrmtFU+Xl6sBbE3txIDmb/yzcjb647JkQQgiLWLs/haISzahutegWGvs7HFlvvqBMegQ2448HBvPJzX1wtLflsZ92MPydv/hxy3EKikoq3T+vsJj/rT5I3zZeDO3oW/uA/EMhsB9s/RxKKj9/Y3Kua2ll4wRXxSZjo2BoR8sngu183fB2dSDycFqF2208dBpbG6MXWkM1LtSfEg1/7EyydChmJ4lgA3Qqy0gCj6bm8OX0cAZ3qNng25bNnGjj7ULkkYr/E9e1/SeNP3xdWsnYwJq6vKMvDw5vz/yoBD5dd9jS4QghhMCY783HzZHerWsx19tfb8D6t80XVCk2Noox3Vux5MHBfH5LGF4u9jz1yy4Gv7Ga/606SGp2fpn7aa35+u+jJGfm89iojuYr8NbvTkg7BIdXm+d4DURQcxec7G2MyqEVWBmbQlib5tWa37CuKKXoF9K80u+QG+NSCW3tiZtjw+2E2N7Pna6tPPgtJtHSoZhdw/1XaaJSMvO46bPNJKbn8eWM8FpXYIoIac7yvcmUlGiLTSMRm2RMJ9lZEsFaeXhkRw6dzuGNpfsI9nZlTPeWlg5JCCGarLzCYtbuS2FsaEDtPl9vXwE5p80XWBmUUozs2oIRXfxYf/A0X2w4wjsrDvC/NXFcFxrArYODcbC1YfPhNDYfTmXz4VRSsvIZ2M7bvJUgu46DZc/Als+h/UjzHdfK2dooOvi5V9gieCI9l9ikTJ6+snM9RlaxiJDm/Ln7JPFpZ2ldxkTxGbmF7ExI5/5hDb+Y3bhQf177cx9HT+dU2BW2oZFEsAE5mZHHlM82czIzjzm3hpulmT0ixJv5UQnsT86yWItc7MksPJzs8G/WuPpd1zcbG8U7E3tx4kwuj8yLIdBrgMXHfgohRFO1dv8pcgqKa1ctVGujSItn/RSpUEpxWUdfLuvoS1xKFl9tPMrP2xKYFxV/fhs/d8fz8+9d3bOVeQOwc4Q+02H9O0ZVUq9g8x7finVs4c76g6fKXb/aVH12hAWnjbjYue+hkUfSykwEIw+nUqJhUPuGNW1EWa7tZSSCi3Yk8uCIiufxbEika2gDcSw1h8mzN5Gcmcc3t/UzW1/riHODfS04TjA2KZMurTxk7kAzcLK35bNbwmju6sDtX2/lZEaepUNCa83a/Slc+78N3PrVFnILii0dkhBC1LnP1x8mwNOZITUcvkHKPvhfX0iINm9gVdTez51XruvB5qdH8MK1XXnluu6sfuxyIp8ZwYc39WZKRBDNnOtgXrWwW42pK6K+Mv+xrVinlm6kZOVzJqegzPUrY1MI9nahna/1tEZ1auGOp4s9W46U/R3y70OpONvb0juoFl2jrYS/pzP9QprzW8yJRlWLQRLBBiDycCrjP9pIem4h39weQZgZ544J9HIhwNPZYuMES0o0+09arjWyMfJ1d+SLGWFk5xVx+9dbyckvslgsuxIymPp5JDO+2kpqdj5rD5xi5rdR5BVKMiiEaLyijqYRdewMdw4Jwc62hl+1tn4OGfHgZdmy+54uDswYFMLUiDa09XWr+5u2zQJh8vcw+JG6PY+V6djCKBhzoIzuoTn5RWw6lMqILi2s6qa5jY0iPLj8cYIb4k4THtLc4lNdmMu4UH8On8phT2KmpUMxG+kaauXmR8Xz7193EdTchS9nhNPG2/x3gvq39WbN/pQqTQoKQH6W8fDwh4Kz8PuD0ONG6DgKMpNgxXOVH8O0fcLxw7yqP8Dd6V6gm3EHtCqD4vvNhNb9/tn+sifAtxMc32x8eFam9PYHlsGI/9Rokl5r1bmlB7Om9OH2r7cy8ZNNfHJzX4K8L+22UVdOpOfy5tJ9LIxJxMvFnuev7crUiDYsjDnBv37eycxvo5k9ra9MdSGEaJQ++esQXi723Bh+UZfOgrPw57+gZQ+IuMt4beH9UFRG7419S6DbBHBt+N3qqq3TlZaOoN51bmncEN+fnHVJr6/1B09TUFzCCCuYNuJiESHNWbE3mZMZebQsNcQnOTOPuJRsbgwLtGB05nVV91Y8v3APi3YkNpqhN5IIWqmSEs0by/bx6V+HGdLBh1lT+tRNFwyM7qE/b0vgYEr2+TtSZdIadi2A5c9Ci27GvD+6BE5EQ8jlxjZFucZyZUzbH046TS91COVm6gqRn1W1/c+mXbh9fvY/r1dl/3PbJ+2ELZ8Zk+g2srEIwzr78fn0MB7+MYar/7ee924MZWRtxqpUkdaa6V9uIeHMWe4b1o67Lm+Hh5PxuzsxrDVaw79+3sk9c6P5ZFpfHO0kGRRCNB4Hk7NYGZvCQyM6/DM5eFG+Mf7NwcX4LE0rVd05KQYKci49kGcQDHqwXmK2Svv+gNjFMP7jRnWjtjwtPBzxcLI7X0m9tJWxyXg42RFuxh5h5nJuKrLII6mMCw04//rfh4wCR2YtJmRhXq4ODO3ky6KYRJ4c0xlbCxVZNCdJBK1QbkExD/24neV7k7m5fxDPX9sN+5p2LamC/uf+Ex9OLT8RTN4DS56AYxvBvzcM+7fxuqMbPLj9n+2at71wuRLRWZ7cVvgee8PHGC+0Dq/W/pds3/kq41FVfWdAn1vAvnEWqhneuQV/PDiEe76L5o5vorh3aDsevaJjzbsqVcG24+nEpWTz5vU9L70bDtwY3ppirXn6l13cO3cbH9/cR5JBIUSj8em6wzjZ2zB9YDCUFMO2b2Dta3DLIvDrDOM/unCHuzdYJE6rl5kISTsg9wy4WF8CZG5KKTq1dL+ka2hhcQlr9qUwtJNfnX4XrKmu/h64O9rx3G+7+WLDEVp4ONHSw4ldJzLwcrGnayMb+jM2NICVsSlsOZLGgHYNd27Ec6zvN6qJSz9bwJTPN7MyNpnnr+3KS+O61/l//NbNnWnVzInNZfXx1hpWvgifDIGUWLj2A7hjFQT2Ncu5Y5OyaOvrZrkugnYORhJYUmJ02WmEWjd3YcHdA7mpX2s+XnuIaV9s4VRW2XNDmcMv2xJwsrfhyh7lT19xU78gXh7fnVX7Unhh0d46i0UIIepTUkYuC2NOMCmsNc2LUuDzEbD4YfBuD0q+clVL31vhno1NIgk8p2MLd/afzEJrzZmcAj5eG8eQN9aQmlPAVT3MXKHVTGxtFG/c0JMx3Vvi6eLA8dSzLNqRSEx8OqO6trTY1GR1ZWQXP1wcbFm044SlQzELaRG0IkkZudzyxRaOpZ3l46l9GNO9fv7TK6WICGnOhrjUS8cJbnwfNrwLoVNh1Mtm/4Mcm5RJnzYWriZVmAf/NxC6XQcjqjC+sQFysrfltQk96RPkxbO/7eaa/63noyl9zFp4CCC/qJjFO5MY3a0l7k4Vd2W+uX8bth5NY8XeZF6b0MOscQghhCV8ueEIJRrujPCD76+D9OMw4XPocUOT6N5oVramr6g5pyFha5MYN9ippTvfRRbxyLwYlu45SV5hCYPb+/DqhO4M72w900Zc7KoerS5JVPMKi3FsJEViSnNxsGNU1xb8sTOJ56/t1uBrHTS+f6EGKi4li+s//puTGXl8fWu/eksCz4lo683p7HwOny41TiF2sdEa2P16GPeR2ZPAjNxCTqTn0qVVBeMS64O9k1E4JnqOMY6jEZsY1ppf7x2Ek70tk2dv5osNR8xaBnnNvhQycguZ0Kdqg8N7BXpyOjuflEzLT3MhhBC1kZFbyPeRx7mmux+Bqx80etFMnAM9J0oSWBsrn4d5N8PRxt+F9lw3yj93n+S63gEse/gy5t4RYdVJYHmc7G2tqsKpOU2JaENmXhHvrjhg6VBqTRJBK7D9+Blu+GQTBcWaH+/qb5E+xxEh5+YTNHUPPXMMfrkTAvoaSWAd/Gfel2SU37WKqSPC74Czp2HvQktHUue6+nuw6P7BDO/sx0uL93L/99vJNtMUEz9vO4GfuyODqvg73M3f+LdvTKWYhRBN09zNx8gpKOY5p/lw4E+48g1oP8LSYTV8o14x6g/MuxlSD1k6mjrVt40XX90azqanR/DahJ50amnhG+WiTP1CmjMlIojP1h8m+phlpl8zl3pLBJVSrZVSa5RSsUqpPUqph0yvv6CUOqGUijE9yqz0oZQao5Tar5SKU0o9VV9x17X4tLNM+SySZs72/HzPALr5W6YcbYiPK77ujkSemxTUMwiu+K8xl4+9c52cM9aUCFrFQOK2w4wxHFtmWzqSetHM2Z5Pp/Xl6Ss7s3TPScbO2kBcyqWVyqojLaeANftSGN87oMrFaLqeTwQzanVuIYSwpLzCYr7aeJRn/aPw2fkphN8J/e60dFiNg7MnTJlnPP9hMuSmWzKaOqWUYlgnP5q7Olg6FFGJZ67qgn8zZx7/aSe5BQ13buT6bBEsAh7TWncB+gP3KaW6mta9p7UONT2WXLyjUsoW+Ai4EugK3FRq3wZt0Y5EcguL+fa2iDqZI7Cqzo0TjDmUhE49ZLQA9rsT3OuuO0JsUhZeLvb4uTvW2TmqzMbGaBVM2AqJMZaOpl4opbjr8nZ8d0cEmblFXPfx3+fLPdfE7zsSKSrRTOgTUPnGJu5O9rTxdpEWQSFEg7X1aBo3frqJkuxT3Jrxf9BuOIx53dJhNS7N28KkuZB2BH6aAcXm6cUiRE25Odrx1g09OXI6h7eW7bd0ODVWb8VitNZJQJLpeZZSKhao6jfGfkCc1vowgFLqR2Ac0ODLDS7bc5LQ1p51O9l3VjL8/SFkp5S/zeCH6d/WG489cyn57F5sH9xW55W69p3MpEsrD+vpQ97rJlj1X9j6mdEdtono39ab3+4byG1ztjL9yy28PqEn1/et/gSwv2xLoGsrj/OT4lZVN38Pdp9ouolgTn4Rfx04xRVdW1hlaXAhGpTEGNj8sVHxuiJtL4feNxvTO/x6N3QdB12uMeai/fPJys/TdRzxLYbzvz8iGXDgLQIdR3P75Buw9foF/Lr+U+hEmE/wYLjmPVh0P3wzFjwCwNUHxrxmrF//LhQXwFBTp7EVzxtTUFTEu92F27u3hP73GMu/P1R5NfGAPhdu37o/hN4ERQWw8L7K35O9M4x+1ZiKSzQ4A9v7cMuANnz19xFGd2tBRNuGN52ERf5SKaWCgd5AJDAIuF8pdQsQhdFqeOaiXQKA+FLLCUBEGcedCcwECAoKMn/gZpZw5iw7EzJ46srOdXeSpB0w5xoozIVmFXy5z8ukf9sglmsftre/j7A6TgKLSzT7k7OYGtGmTs9TLc6e0HMS7PgBrnipSZWsDvRy4ae7B3LP3Gge+2kHCWdyeXBE+yon6XEpWexIyODZq7tU+9zd/JuxZNdJMvMKz08831Ss2ZfCs7/t5kR6Ls9f25VbB4VYOiQhGja/LlCUB0k7K96uuen/mtZGT5DW/Yzl4gJj2aREQ27hpd2+NmYGcf8hW1qoMzzjeoyrxgTgGBpA1e9vixrpMw1yUmDbt0aS51Hqep8+YHzXOSd5d+VjCosLLty+oFTBvMTtkFfJTUqnUsN5EreDu79pQV/we1QmpeDqdyQJbOCeHNOZtftP8cSCnSx9eAguDg3rJpAyZ8XAKp1QKTfgL+AVrfUvSqkWwGlAAy8BrbTWt120z0RgtNb6DtPyNKCf1vqB8s4TFhamo6Ki6uptmMUXG47w0uK9rHl8KCE+Zu4WejbNSGSKi2DpkxBxD/i0r3AXrTWXv7WWvMJiFtw9sE5bKeNSshn57l+8PbEXN9Sg9anOJO8xppK44iUY9KClo6l3BUUlPP3LLn7elsD1fQJ5bUIPHKpQ/vnNpfv4dN1hNj09HD93p2qdc83+FG79ais/zuxP/wZ4N60mTmXl89/Fe/l9RyLt/dywVYrcwmLWPD4U20Y255K1O5Gey/bjZ7i6Ryvr6Z0gqi87BWzszHoDb2Pcaf61YCcn0nPLXH9d7wD+NaYTrZrVzTh6IUTDEHk4lUmzNzN9QBteHNfd0uFcQikVrbUOK2tdvaatSil74GfgO631LwBa6+RS6z8DFpexawLQutRyIFBJe7/1W7b7JJ1bups/CfzzSdj9CzwQZdytuvqdKu2mlOLz6WFM+nQTUz7fzIK7B9KyWfW+1FdV7PmKoVZWEatFN2gzCA6tapKJoIOdDW9P7ElQcxfeW3mAhDNn+b+b+1Y4cL2kRPPr9hNc1sGn2kkgXFg5tLEngiUlmp+i43nlj1jyCkt49IqO3HV5W1bFpnDvd9tYGZvM6G4tLR1mk7ErIYNb52zldHY++4Zl8fjoTnVynoPJWdz+dRTvTQqlr6XnTW2MtDbGjeVnwsx1xpjvWsjJL+K1P2OZu/k4bX1c+ea2fpd8Fro52uHvKQmgqKXcM8Z3tq7joXOZtRJFAxDR1ptbBwXz1cajXNcnkNDWnpYOqcrqLRFUxq3WL4BYrfW7pV5vZRo/CHAdsLuM3bcCHZRSIcAJYDIwpY5DrlOnsvLZeiyNB4d3MP/Bw+8EV1+wrX7VqY4t3Pn6tn5M+SySqZ9vZv5dA/B2M38xl9ikTOxsFO39rLBLxMQ54OJj6SgsRinFQyM7EOTtzJM/72LcRxv4/JbwcstYbz6cSlJGHs9cVf1uoQB+7k74uTs2+sqhfx86zatLYtl9IpN+Ic15bUIP2vkav/+jurYgwNOZL9YfkUSwnqzdbyTfXi4OXNOzFbPWxOHqaMc9Q9uZ/Vxr9qdwPO0sd8+NZvEDg2nhUTc32JospWD4c5CXXuskMPJwKk8s2En8mbPcPjiEJ0Z3avATRgsr5uAOJ3dBYLilIxG19K/RnenUwp2eAZap/l9T9VmZYBAwDRh+0VQRbyqldimldgLDgEcAlFL+SqklAFrrIuB+YBkQC8zXWu+px9jNbsXeZLSGK3uY8UtfQpRxZ9SnPVz2eI2nfegZ6MkX08NIOJPLLV9uITOv0Hwxmuw7mUU7Xzcc7azwA9bNz/gykX0Kdv5k6Wgs5rregcyb2Z+8whImfLyRFXuTL9kmMT2Xzzccwd3Rjiu61rzCbDd/D/Y20sqhB5KzuG3OVqZ8FsmZnELem9SLH+/sfz4JBLCzteHWQcFsOZrGroTGnRBbg5+i4rnj6yiCvV359d6BfDC5N9f28ueNpfv4dtNRs58vJj6d5q4O5OQXcde30eQXNdxS41YnJdb42WYAdLqyxocpLC7htT9jmfzZZpSCeTMH8Nw1XSUJFHXL1g7u3ihTjTQCzg62TO4XhE0DG95Rb4mg1nqD1lpprXuWnipCaz1Na93D9PrYc62DWutErfVVpfZforXuqLVup7V+pb7iritL95wk2NuFTi3M1DVy3xL4fCREfWmWw0W09ebTaX05kJzF7XO2mn2OlNikTOvrFnqx9e8YVcAqqrbayPUO8mLR/YMI8XVl5rdRfLw2jn0nM/lw1UGu/d8GBr6+mtX7Upg2oE2tvjB182/GwZRs8sooytBQpeUU8NTPOxnz/jq2Hk3jqSs7s+qxy7mud2CZHxSTwlvj5mjHFxsOWyDapkFrzf9WHeSJBTsZ0M6beXf1x8/DCVsbxbs39mJkFz+eW7iHX7YlmPW8McfTGdTeh3dv7EVMfDrP/bab+h6f3yjtXQQfD4DYskaUVN2J9FwmfbqJT/86zOTwIP58aAj9QppOsTBhYTY2xk38NPnbL+qf1Cq3gIzcQv6OO83o7i3NU5wgaSf8fAf494ZQ8/WYHdrJjw8m9yb62BlunbOFLDO1DKafLSApI48u1jCRfEVGPg+3LzNaCJuwVs2c+emugVzVoxVvLt3PmPfX8+6KA9jZKp4c05mVj17Ov8bUrvJtN38Piks0B5JrN6m9tfhzVxJXvPsXC6ITmD4wmHVPDOPuy9tVmCy7O9kzKbw1i3cmcTIjrx6jbRq01ry0OJZ3VhxgQu8AvpgejnupKrX2tjbMmtKHge28jepvu0+a5bwpmXkkZuQR2tqTMd1b8cDw9syPSmDu5mNmOX6TpbUx3U+LbtDhihofZsXeZK76YD0HkrP53029eW1CjwZX9U80AqtehE+GVF6lVAgzk0TQAlbvS6aoRDPGHGOBspLhh5uMojA3/VDj7qDluapHK96bFErU0TNM/TyStJyCyneqxN7zhWKsPBG0d4aWPYznO+cb17qJcnawZdZNvXlnYi9eva4HW54Zwa/3DuKeoe3MMs6zm7/Rp76hTyyfmp3Pfd9v457vttHK04nFDw7m+Wu74VVBsZ3SZgwMpkRrvq6D7olNmdaa1/7cx5cbj3DroGDeubFXmdVwnext+eyWMHoGNuPBH7eTfrb2f++2x6cDnC8e8MjIjozo7MeLv+8l8nBqrY/fZB1eC6kHYeADYFf9cewFRSW8tHgvd34TRaCXM4sfGMy1vfwr31GIutD5WijIhp3zLB2JaGLktld927uIlqu+4WOXAkKjFkJUOS2CV75hzGu3dxHs+wMmfGq8vu0bOLrxn+0St0NuGty21JgItQ6MCw3A3cmOe+ZuY+InfzP3johalcuOTTJafaw+ETwn6yT8/rAxD6N/7/K3G/ywMYeV1sZcRg51N/2GJSilajTRfFW0bu6Mu5Ndgy4Ys2RXEs/9tpvMvEIeH9WRuy5vV+0J4ls3d2F0t5Z8H3mcB4a3l5YJM9Ba89ay/cxed5hbBrThP9d0rbAnhqujHc9e3YXr/28Tmw6lcmWPVrU6//bj6djbqvPVcW1sFO9NDmX8Rxu597ttLHvkMnzqoCBXo7f1c3DxNqotVtOuhAyeWLCDfSezuGVAG565qouMBRSWFdgX/PvAls8g/A6jAJIQ9UBaBOtZQdpxArN20N/uIOr4Zji+qexHSZGxQ0aCsXxO2uELt0PDDV9Bq151Gvfwzi345rZ+pGTmc8P/beLI6ZzKdypHbFImPm6O+Lo3kC8/7i1h4leALv/f6/gmyDMlMQvvh3lTjTkcRZUopejayoPdJxpei2D0sTPcNHsz9363DX9PZxY/MIT7h3eodhJ4zh1DQsjILeTnaPOOU2uq3lt5kI/XHuKmfkG8cG23KnXH7xnoiauDLRviTtf6/DHxZ+jayuOCRMPDyZ73bgwlNaeANfua7hjkGkuPh/1LoM90sK96Bda8wmLeWLqP8R9vJC2ngM9uCeO/47pLEiisQ7874fR+OLLO0pGIJkRuN9ezVc2u5578EL6/JYKB7aowRcGAe43HOSNfMB4WENHWmx9m9mf6l1uY+MnffH1bv/Nd+qoqK6+Q1ftSCGtoc2l1HG08qiIowjS5sXy5qI5u/s34fssxikt0g5hUfU9iBu8sP8DqfSn4uDnw/LVdmda/DXY1TADP6RPkRa/Wnny58ShTI9o0uApk1uR/qw7y4aqDTOwbyCvju1f5Wtrb2tC/rTcba5kIFpdodiVkcEMZLek9Aprh4WTHtuPpTAxrXcbeolzniqKF3VblXaKPpfHEgp0cPpXDjWGB/PuqrjRzsa98RyHqS7cJsOzfsPUzaHu5paMRTYS0CNazpXtO4uViT7/ghlmRrHtAM+bfPQAHWxsmz97M1qNp1dp/9rrDpOUU8EBdzJ9oLfrcYkzfoRQU1LzltKnp5u9BXmEJh09lWzqUCp3MyOO+77dx9YcbiDqaxhOjO7HuX8O4dVBIrZNAMFpHbx8cwpHTOWw8VPsWqaZq9rpD5wvDvH59z2on1IPa+3A09SwJZ87WOIaDKVnkFBQTGuR5yTobG0VokBfbj5+p8fGbpMI82PY1dLwSPCtPoDPOFvLcb7u54ZNN5BeW8M1t/Xjzhl6SBArrY+9kfH/Y9wecOWrpaEQTIYlgPcovKmZ1bApXdG1hli+MltLO142f7hmIr5sj076IrHLXppTMPD5ff4SxvfzpEdiwJtyskcQYeL8nHFpt6UgahG4Bxhgqay4YE3k4lWv+t57VsSk8MLw9658czn3DzD+Wb2QXP2xtFJGHq3ejRRh+2HKcV5fs4+qerXjzhp41amEe3MHosfF3XM0LusQcTwcgtHXZPSD6BHmyPznLbBWZm4S9v8HZ1ErnXSsp0czfGs+wd9byXeQxpg8IZtkjl3FZR9/6iVOImgi/A+xdYN40uZEs6kXDzUYaoL8PpZKVX8SV3WtXfMAaBHg6M//uAbTzdePOb6JYtCOx0n3eX3WQopISHh/VqR4itALe7YzxhfNnwKkDlo7G6rXzdcPBzsYqC8Zorflq4xGmfh6Jh5M9i+4fxGOjOtHMuW5aFVwc7OjayoPoY9JaVF2LdybyzK+7GNrJl/duDK3xTbcOfm74ujvWapzg9uPpeLrYE+xdduGoPkFeaA074q3vd95qFZ6F1v2h7dByN9mVkMGE//ubf/28k7Y+rvz+wGBeGNsNN0cZDSOsnGdruOFLSN4Nv95tFJ8Tog5JIliP+od488nNfRjY3tvSoZiFj5sjP8zsT582Xjz04/YK58U6dCqbeVvjmRrRhqByvhQ1Oo7uxpQedg7w/Y2Qss/SEVk1e1sbOrd0t7oWwdyCYh6bv4MXf9/L0E6+/Hb/IDq0cK/z8/YJ8mRHQjpFxSV1fq7GYu3+FB6ZF0NYGy/+b2rfMqeIqCqlFIPaGeMES0pq9mUsJj6dXoGe5RaoCQ3yRCnYJt1Dqy7sNqNKdjnX9P/WHmLsRxtIOHOWdyb24qe7B1R7LLsQFtVxNIx5A7pfL9VDRZ2TRLAeOTvYMqZ7KxztGk8REQ8ne765rR/DOvnx7G+7eWf5/jK/uL61dD9OdjbcP7y9BaK0IM8gmPwD5J6BTwYZA8FlwthydfP3YE9iJtpK7oImZeRy/f/9za8xJ3hkZEdmTwvDw6l+xhb1aePF2YJi9idn1cv5GrqtR9O4e240Hfzc+Xx6OM4Otf87O6i9D6k5BTX6N8jOL+JASha9yxgfeI6Hkz0d/NwkEayq5D1QUlLul+PvI4/zxtJ9XNWjFaseG8r1fQOrVCVWCKsTMRO6jTee58h8o6LuSCIoas3J3pZPp/VlYt9A/rc6jkmzNxOf9k+BhW3Hz7B0z0nuurxd05wvq3U4PBANoVNg00cwKwx2zJMuH2Xo6t+MjNxCTqTnWjoU0s8WcMsXWziedpYvpofx0MgO9VrBs0+QMa5sm3QPrdSexAxum7MV/2bOfHN7P7N12R3U3hgnWJPqoTsT0tH6n4nky9MnyIvtx9Nr3OrYZOSkwuxhsPqlMlcv23OSZ38zugS/Pym0zrptC1Gv9i+F93tA/FZLRyIaKekwL8zC3taGtyb2YnAHH579bTdXfrCel8Z3Y3xoAK8v2YePmyO3Dw6xdJiW4+oDY/8HfWbAksfg15nGnJDDnjYGhP/xGPS4AdqPhMxEWPXff/a1d4bBjxiti43cuUm39yRmEuhluS7EeYXF3PlNFMdSzzLntvCqTfViZoFezvi6O7LteDrTBtT76RuME+m5zPhqK26Odnx7R4RZbzb5ezrT1seVjXGnuWNI22rtGxOfDlQtEfxxazyHT+fQ3s+thpHWk+IiWP8OOHsZLRYAix+Bwkpu3Pj3uXD71v2h1yQoKoDfH6z8vG2HQbfrYPzHZc6Zu/VoGg/+sJ0egZ58PLVPjefwFMLqtO4HPW8E345Ga/jCeyvfJ+Qy48bzue27XAudr4azabDsmcr3L7398meNSqZB/Wv/XoRVkkRQmNW40AD6tvHi0Xk7eGTeDn6IjGfL0TReGt8dVxmoD4F94Y7VsP3bf748lRTDsY3QZpCxXJhrLJ+TnQLH/obbl4NT4x7r0qWlBzbKSARHd2tpkRiKSzQP/xjD1qNn+N9NvS2SBIIxRq1PkKd0G6xAZl4ht361hbyCYhbcM5AAT2ezn2NQex9+3pZAQVFJtcYcbj+eToiPK54uDhVu16eNJ2D0nLD6RNDGFuIjL7wpFb8F8ivp7u7geuH2bi1MC/rCv3Xl8Qo2xlr3uOGSVftPZnH7nK0EeDrz1Yxws1fwFcKiXJrDte8bz899V6iMR4Dpien/l39vY7Eov2r7l95+3x/QZWx1oxYNSL39xVRKtQa+AVoCJcBsrfUHSqm3gGuBAuAQcKvWOr2M/Y8CWUAxUKS1Dqun0EU1BXq58MPM/nzy1yHeW3GAEB9XJofLhMnn2dhA3+n/LDt5wMO7/ln2bnfh8pF18O11sOA2uGke2DbeLzrODra09XVjzwnLVFHUWvPi73tYuuckz13TlWt7+VskjnP6tvFi2Z5kTmfnN81u1RUoKCrhnrnRHD6Vw9e39aNTy7op4DOovQ/fbj5GTHw6/UKqNv+r1pqY+HQGt6/8JkJbHzc8nOzYfvwMN1rjxPLJe2HFc3D1u+DVBqbMA9tS3S7vqcIXy9JKb2/neOHfumo6kZ7L9C+34GRvy9e39aO5a8VJtxANmo1t9f6/XLy9R6vq7e/RCp48+s+Y3JIS4/uLaFTq81+0CHhMa90F6A/cp5TqCqwAumutewIHgKcrOMYwrXWoJIHWz9ZGcd+w9ix75DLm3hEhXXVqI+QyuPodiFtpdNNo5Aa282b9wdMcS63/OZQ+XnuIbzYdY+Zlba2iK7OMEyyb1pqnf9nFxrhUXr++5/mxfHVhQFtvbFT1xgkmZuRxKiu/wkIx5/wzsXx6zYOsC1rDyhfgk8FwIhpS44zXba1j7F12fhG3z9lKTn4RX9/Wj9bNm0g1aiHq07kkMOpL+Ppao5VQNCr19u1ca52ktd5mep4FxAIBWuvlWusi02abgcD6iknUvXa+bnXSXavJ6TsD+t8Hkf9n/EFuxO4b1h5bG8UbS+t3uo01+1J4a9l+xof689SYzvV67vJ0D2iGva0iWrqHXuCDVQf5eVsCD43owA196/Yjo5mLPT0CPauVCP4zkbxnlba3yonl178DG96DXpPhgW3QfoSlIzqvpETzyLwYDiRn8dHUPnRp5WHpkIRo3Jw84dgG+P0hKXTXyFikmUYpFQz0BiIvWnUb8Gc5u2lguVIqWik1sw7DE8I6jXoJOo6B/MY9nUALDyfuurwtS3adJOpoWr2d9/cdiTR3deDNG3rVa3XQijjZ29LNvxnbj6VbOhSr8cu2BN5feZDr+wTy8MgO9XLOQe282R6fXuVELSb+DA52NnRuWbUExeomlt+70KjO2WMijPvIGKdkRd5dcYAVe5N59uquXNbR19LhCNH4dZ8AQ5+BHT8YN4hEo1HviaBSyg34GXhYa51Z6vV/Y3Qf/a6cXQdprfsAV2J0K72sjGPPVEpFKaWiTp06VQfRC2FBNrbGnISDHjKWMxIsG08dmnlZW1p4OPLSH7H1UlZfa03kkTT6t21eq0nI60KfIC92JKRTKBPLszMhnad+2UX/ts15bUKPepsjbnB7H4pLNFuOVO3GREx8Ot39Par8u2RVE8snbodf7oLAcBg7y+omtF60I5FZa+KYFNaaWwcFWzocIZqOy/8F3W+AVS8aPZOkZbBRqNdvPEope4wk8Dut9S+lXp8OXANM1eXMJK21TjT9TAF+BfqVsc1srXWY1jrM11fuEopG6NxA7dNx8GFviJ5j0XDqiouDHY+P6sSO+HR+35lY5+dLOJPLifRcIkK86/xc1dWnjSf5RSXsTaykMmMjl5qdz93fRuPr5shHU/rUa8Lep40XjnY2bIyrfGLnwuISdiZkENraq8rHt5qJ5TOT4IebjOluJn8P9k6WjeciOxPSeeKnHYQHe/HS+O4yWbwQ9Ukpo4dAyGXGNDBfjoGknZaOStRSvX2SKuMv9hdArNb63VKvjwGeBMZqrc+Ws6+rUsr93HNgFLC77qMWwkp5+MPgR6HjlcZy1kkotqLxRWZwfZ9Auvl78ObS/eQVFtfpuTYfNr7gR7S1ri5wYFQOBStpLbKQouISHvhhO6dzCvjk5r5413MFVSd7W/qFNK/SOMHYpEzyi0oIrUKhmNIsPrF8UQH8eJPR9fymH8HNzzJxlCMlM4+Z30Tj4+bI/93c1+pa7oVoEuydYNpCo7dA6kGYfTn88TjkWUm3dlFt9VmHfhAwDdillIoxvfYM8CHgCKww3d3brLW+WynlD3yutb4KaAH8alpvB3yvtV5aj7ELYV0cXIzJ6MHonjFvmvGHOLCCgrp+XWHg/cbzBlAG2sZG8e+ruzDls0i+3HiEe4e2r7NzRR5Jw8vFno5+dTMFQW20auZMq2ZObDuezq2DLB2NZbyxdB9/H0rl7Ym96BFombk0B7X34fU/97H+4CmGdCi7x8nZgiL+/etuXBxs6V/Nmwp1MrF8cSGse+vSbuSdrzYeuWdg2b+NyaeDB0Pvm405yFp2N8/5zeiZX3eTmVfIz/cMlKlUhLAkGxvoMw26XANrXjXmGhzxH2Pdqv+Ceyvod6exvPhRKMqr+Hj+vS/cPmgA9JxoVChd/Ejl8ZTeX1RbvSWCWusNQFn9OJaUs30icJXp+WGgV91FJ0QDN+RR4w/ykXXlb3Ou13VCNCy637jr79WmfuKroYHtfBjZpQUfrznEjWGt6+wLYOSRVPqFNLeaIjEX6xPk1WSnkFi0I5HP1h/hlgFt6rxCaEVu6hfEb9tPcNe30Xx3RwS9gy7s+llSonn4xxj2JGbw+fQw/Nyr163S7BPLaw1LnoDor8Aj8MKxfi17GD+LCoy/Ge2GG8vhd9T+vHVg38lMVsYm88jIjlIhVAhr4ewFV70FI18AB1fjtYSt4F2qiNfxTZUXuLMr9bfy+KZ/eiPokoq/0wAUZENQ/2qHLv7ReGemFqKpUAo6XWk8qsKpGdg7N5iupE9f1ZnR763j3RUHePW6HmY//on0XOLTcrl1oOXnDSxPnzZe/LEriZMZebRsZl3jturSvpOZPLlgJ2FtvHj26q4WjaWZsz3f3NaPGz7ZxK1ztjL/rgF0bPFPC/IbS/exfG8yz1/bleGdW1T7+GafWD7yEyMJHPQwXPFi2du4t4BHrH+UxSdrD+HqYMv0gdZ940qIJulcEggw/fcL1927qXrHKr29vXP1/j4VnDV6S4lqse6+YUII8/NpD3esMn5qbXQTtWLtfN24uX8bftxyvE4KpkSaxgf2b2t9hWLO6WMab9aUxgkWFpfw0A8xuDvZ8fHN9Vscpjx+Hk7MvT0CB1sbpn0RSXyaMaz9hy3H+XTdYW4Z0IYZA4NrdGwbG0XvIC+2mWOqkIMrYNkz0PkaGPF87Y9nQfFpZ/l9ZxJTIoLwdHGwdDhCCGt0cAV80AtO7bd0JA2O5T9ZhRD1TykjAVx4Hyz/t6WjqdQjIzvi6eLAC4v2UE5h4RqLPJxGM2d7Ore0vvGB53Tzb4aDnU2T6h769d9H2Z+cxUvju1e7m2VdCvJ24Zvb+5FbUMy0LyJZGHOC537bzeUdffnPNV1rVcmyT5AXB1KyyKztxPI7foAW3eC6T61+LHBlPl13CFuluGNIW0uHIoSwVr6dISgCnK2v4Ju1a9ifEEKImrOxAUd32PwxRH1l6Wgq1MzFnidGd2LL0TQW7TDvdBKbj6QSHmy94wMBHOxs6BHQrMm0CJ7MyOO9FQcY3tmPUV2r382yrnVu6cFXt/YjOTOfh36MoZ2vG7Om9MbOtnYfqX3aeKI1LN6RVLsAJ3xmVPZzNFPRGQtJycpjflQC1/cNoIWH9dwMEEJYGc/WMGkuuPkaw16KCiwdUYMhiaAQTdmoV6D9SFjyOOxaYNUTxN4Y1pruAR68uiSWnPwisxzzZEYex1LPVrvCoyX0bePF7hOZ5BfV7VQa1uClP/ZSVKJ54dpuVjtXXN82Xsy+pS9DOvjwxYww3J3sa33MAW29GdDWm+cX7WbTocrnLLxASTH88ZgxF6CNLbhab1fnqvpyw1GKikuYeVk7S4cihGgIiotg7vXw612Q17Tn3q0qSQSFaMps7eCGL40qgj/fDnMnwOmDlo6qTLY2ihfHdic5M59Za+LMcszII9Y/PvCcPkGeFBSXsPtE456vad2BU/yxM4n7h7UnyNu6B/4P6eDLt7dHEOhlnjjtbG345Oa+tPF25a5vo4hLqaTaXmkpsRDzAxxea5ZYLC0zr5DvNh/jyh6tCPFxrXwHIYSwtYO2l8OeX2FWOOycb9U3uK2BJIJCNHVOzeD2lTDmDUiIgo8HwIrnIT/b0pFdom8bLyb0CeCL9Uc4cjqn1sfbfDgNdye7BlGSPjy4OQ52NvywJd7SodSZ/KJinl+0hxAfV2Ze3jTHhDVzseerGeE42Nky/cutpGRVMgfXOS27w2Ox0GNi3QZYT77ddIys/CLuuVxaA4UQ1TDkMaMgnoc//HInfHUVnLT+6siWosxdeMFahIWF6aioKEuHIUTDkp0CK1+AmO+MiaUf3m2MJdw+12hxGP2Ksd2mjyB57z/7dZ8A7UfUS4gpmXkMf+cv+oU058sZ4bU61vC31xLi48oXtTxOfXl58V6+3HiEpQ9fdsHUBY3F/1Yd5J0VB/jmtn5c1rHsSdubip0J6Uz6dDPt/dyYd1d/XBwqmO2pMA/sHC+cK7AByyssZvAbq+nm34yvb+tn6XCEEA1RSQls/9b4TpOXAZ2vBkcPY9qcEf8xtln/DtjYwaCHjOUV/4GcSrrl+3a8cPvmbaHvDGP5+GarnNdQKRWttQ4ra520CAoh/uHmB+M/httXGH/czlUcPLXPmOj1nKSdRhe0w2th32L44SaI31IvIfp5OPHgiPas3pfC6n3JNT5OSmYeh0/nENEAxgeec++w9rg42PH2ssZXIvt46llmrYnj6p6tmnwSCNAz0JNZU3qzJzGDB3/YTlFxBdO8rHwePh9hjBNsBL6LPM7p7ALuGSqtgUKIGrKxgb7T4YFoCLsVErcb31kStv6zTeJ2SNrxz/LxyH++25T3uHj7lH3/LGfX/DuJpUiLoBCids6mGV9C87PgztXgGVTnpywoKmHMB+soKCph8QODazS/2O87Enngh+0svG8QvVp7mj/IOvLhqoO8u+IAv947kN5BXpYOx2we/nE7K/Yms+qxobRsJhUiz/l201GeW7iHcaH+vDOx16WVSfOz4d0u0HE0XP+5ZYI0k5ISzcdr43hnxQH6h3jz/Z0RVlssSAghGgppERRC1B2X5nDTPKNc8/eTjISwjjnY2fD2xF6kZOZz3/fbKm4tKcfmw6m4OdrRzd/6xweWdvvgELxdHXhj6T6zz6loKSUlmr8OnOLKHq0kCbzItAHBPDG6EwtjEnl4XgyFF/+u75oP+ZnQb6ZlAjSTjNxCZn4bxdvLDzC2lz9fzAiTJFAIIeqYJIJCiNrz7Qg3fg2n9sOC2+uli1qfIC9evq47G+NSefmP2GrvH3kkjbBgr1rP/VbfXB3teGB4ezYfTmP9wdOWDscsDqZkc+ZsIREhDaebbn26b1h7nrmqM4t3JvHgD9spKDIlg1rDls+gZU8IbBjjXMuyNzGTsbM2sHb/KV4c2433J4VWPCZSCCGEWchfWiGEebQbBle9CZs+hpxT4N6yzk95Y1hr9p/M4osNR+jSyp1J4VXrlno6O5+4lGyu7xNYxxHWjZsigvhs/RHeXLaPwe19sLFp2C0nDWkaD0uZeVk7bG1seGnxXoq+38asKb1xTNgMKXth7CyrLxSjteZUdj4nM/JIyyk4/ziZkcfcyGM0c7Zn3l0D6Num8XR3FkIIa9ekEsHCwkISEhLIy6tiOW4hqsHJyYnAwEDs7Ws/sXSDFX4H9JoCDi7GZK4Orsbk1nXo6Ss7cyA5i2d/2007XzfCgitvVdpyJA2gQUwkXxZHO1sevaIjj/20gyW7k7imp7+lQ6qVyMNpBHg607q5dc8baGm3Dw7Bzkbx/KI93DN3G7OdPsXOyRO6X2/p0IB/kr0TZ3I5kZ7LsdSzHDqVzaFTORw+lU1WXtEl+9jZKAa19+Htib3wdXe0QNRCCNF01VsiqJRqDXwDtARKgNla6w+UUs2BeUAwcBS4UWt9poz9xwAfALbA51rr16sbQ0JCAu7u7gQHB8vYA2FWWmtSU1NJSEggJCTE0uFYloPpy/wfj0L6cbh16T/VR+uAna0Ns27qw/iPN3L33GgW3j+YAE/ncrcvKdF8vv4w3q4OdA9oVmdx1bXxvQP4dN0h3ll+gNHdWmLfwLq4nqO1JvJIKpd1kEqhVTF9YDB2tooPf10HTovZ2WYqHZUj9T2yMiO3kJ0J6cQcTycmPp0jp3M4kZ5LftGFYxhbejjR1teVcaH+tPN1I8DTGW83B5q7OtLc1QEPJzv5PBZCCAupzxbBIuAxrfU2pZQ7EK2UWgHMAFZprV9XSj0FPAU8WXpHpZQt8BFwBZAAbFVKLdJa76Ua8vLyJAkUdUIphbe3N6dOnbJ0KNaj05WQlfxPEpibDs6edXKqZi72fHZLX6776G9mfhPFz/cMxMm+7JbIH7fGs+14Om9P7NVgkycAWxvFE6M7c+c3UXyx4Qh3N9CJtw+dyuF0dkGDmsbD0qZGtGFY4gFsdpRw34HeFLy1hvuGtWdSeGsc7equBT6/qJj3Vhxkxd6THDqVc/719n5udGnlwciuLQjwdMbf05kAT2eCvF1wc2xSHY+EEKJBqbe/0FrrJCDJ9DxLKRULBADjgKGmzb4G1nJRIgj0A+K01ocBlFI/mvarViJo2rcG0QtROfndukjp7mr7l8IvM40JXStqHRz2LHi0qtHp2vu58/7kUG7/Oor/LNzNmzf0umSbU1n5vP5nLP3bNuf6PgE1Oo81GdnFjyu7t+StZfvpFejJgHYNb4zdufGBESH1EPuBZZARb3RhBljyLyjMqXifVqHQ785/tg8Mg543QnERLH6o8nOGXH7h9l3GGlM95KTCyv9Uvv/F2/eeBq0j8E9eCx2u4M3+43h3xX7+s3APn6w9xJAOvrTzc6W9nxvtfd0J8HLG1gxjSE9m5HH33Ghi4tMZ2smX8aEB9A7yomfrZng4NeHu8EII0YBZ5FadUioY6A1EAi1MSSJa6ySllF8ZuwQA8aWWE4CIMo47E5gJEBRU93OZ1cQrr7zC999/j62tLTY2Nnz66adERERwxx138Oijj9K1a9danyM4OJioqCh8fHzK3ebVV1/lmWeeqdZx58yZQ1RUFLNmzTr/2ldffcUHH3wAwN69e+nUqRO2traMGTOG11+vdu/dOvf+++8zc+ZMXFxkLFK98m4HbQbAkb8q3m7wo8YX5qVPQVB/6HFDtU4zoksLHhjenv+tjqNvG69Lise88sdecguLeXl8j0aRuCulePOGnuz/aCMP/LCNxQ8MaXDTL0QeTqOFhyNtvOv4/6TW8Neb4NXmn0Tw6HrIy6h4P1Wqhe3oenAyTTeiS+DQmsrP697qwu1b9jSWi3Krtv/F27cbYRSGuWMV5KYxwN2b+W0HsDEuldnrD7NqXzLzogrO7+5kb8OIzi24uX8b+rdtXqPf+61H07hn7jZyC4r45OY+jOles5s1QgghrEu9TyivlHID/gJe0Vr/opRK11p7llp/RmvtddE+E4HRWus7TMvTgH5a6wfKO09ZE8rHxsbSpUsX872Zatq0aROPPvooa9euxdHRkdOnT1NQUIC/v3kLPVQlEXRzcyM7O7taxy0rEazueeua1hqtNTbltDrVJMaioiLs7Kp2z8TSv2ONQlEBfDseggbAiOeqvXtxiWb6l1vYcjSNX+4ZeH4c4IaDp7n5i0geHN6eR0d1MnPQlnUgOYvxH22kSysPfrizPw52DaPLq9aaiFdX0b+tNx/e1Nv8Jyg4C39/CGG3g5svZCaBqw/YNu4WrPSzBRw6lU1cSjZ7EjNZGJNIRm4h7f3cuDkiiAl9A6vUiqe1Zu7mY7z4+15aN3dh9rS+dGjhXg/vQAghhLlYzYTySil74GfgO631L6aXk5VSrUzrWwEpZeyaALQutRwIJNZlrHUhKSkJHx8fHB2Nymg+Pj7nk8ChQ4dyLnF1c3PjySefpG/fvowcOZItW7YwdOhQ2rZty6JFiwAjKbv//vvPH/uaa65h7dq1l5xz/Pjx9O3bl27dujF79mwAnnrqKXJzcwkNDWXq1KkAzJ07l379+hEaGspdd91FcbExD9xXX31Fx44dufzyy9m4cWOV3+tbb71FeHg4PXv25Pnnnwfg6NGjdO7cmTvuuIPu3bszdepUVq5cyaBBg+jQoQNbtmwB4IUXXmDatGkMHz6cDh068Nlnn1V63C5dunDvvffSp08f4uPjueeeewgLC6Nbt27nt/vwww9JTExk2LBhDBs27Py1PmfBggXMmDEDgBkzZvDoo48ybNgwnnzySQ4dOsSYMWPo27cvQ4YMYd++fVW+FqKa7Bxg2q81SgLBGDv3weRQvF0duHtuNOlnC8grLOa5hbtp4+3CvcPamzlgy+vYwp03ru9J9LEzvLqk+nMqWsrR1LOkZOXXzfjAY3/DR/1g7Wuw/w/jNY9WjT4JBPB0caBvm+ZMCg/iv+O6E/nMCN6e2AtXRzte+H0vEa+sYvqXW3h3+X5W7k0mJcuopK21JjE9l7X7U/hs3WHu/CaK5xbu4fKOvvx23yBJAoUQopGpz6qhCvgCiNVav1tq1SJgOvC66efCMnbfCnRQSoUAJ4DJwJTaxPPi73vYm5hZm0Ncoqu/B89f263c9aNGjeK///0vHTt2ZOTIkUyaNInLL7/8ku1ycnIYOnQob7zxBtdddx3PPvssK1asYO/evUyfPp2xY8dWOaYvv/yS5s2bk5ubS3h4ONdffz2vv/46s2bNIiYmBjBasebNm8fGjRuxt7fn3nvv5bvvvuOKK67g+eefJzo6mmbNmjFs2DB69678rv3y5cs5ePAgW7ZsQWvN2LFjWbduHUFBQcTFxfHTTz8xe/ZswsPD+f7779mwYQOLFi3i1Vdf5bfffgNg586dbN68mZycHHr37s3VV1/N7t27yz3u/v37+eqrr/j4448Bowtu8+bNKS4uZsSIEezcuZMHH3yQd999lzVr1lSpRfDAgQOsXLkSW1tbRowYwSeffEKHDh2IjIzk3nvvZfXq1VX+dxDVZGcqI39iG6x5BSbOAceqfwn1dnPko6l9mPTpJh6dv4PuAc04cjqHb2/vV24RmYbu2l7+bD+ezpcbj9A7yJNxodY/BjLycB2NDzx1AL6fbLT+3fontBlo3uM3ME72ttzQN5Ab+gayKyGDH7ceJ+roGdYfPEWJqVNQCw9HzuYXk5X/zxQPPm6OPDKyIw8Mb9/g56oUQghxqfocIzgImAbsUkrFmF57BiMBnK+Uuh04DkwEUEr5Y0wTcZXWukgpdT+wDGP6iC+11nvqMXazcHNzIzo6mvXr17NmzRomTZrE66+/fr4V6hwHBwfGjBkDQI8ePXB0dMTe3p4ePXpw9OjRap3zww8/5NdffwUgPj6egwcP4u194ZeuVatWER0dTXh4OAC5ubn4+fkRGRnJ0KFD8fU1yrpPmjSJAwcOVHrO5cuXs3z58vNJY3Z2NgcPHiQoKIiQkBB69OgBQLdu3RgxYgRKqUve27hx43B2dsbZ2Zlhw4axZcsWNmzYUO5x27RpQ//+/c/vP3/+fGbPnk1RURFJSUns3buXnj17VuvaTZw4EVtbW7Kzs/n777+ZOHHi+XX5+fnVOpaoodw0OLQafr4TJn9XrTkJ+wR58dw1XfnPwj2s3pfC2F7+DGnkUxQ8fVVndp1I56mfd+HuZMewTn5WPRYy8kgaPm6OtPN1Nd9Bz6bB9zcaLcu3/Aae1jle3FJ6BDajR6DxN/hsQRF7EjPZEZ/OnsRM3Bzt6NjCjQ4t3OnYwp3mrg4WjlYIIURdqs+qoRuA8r6RjChj+0TgqlLLS4Al5oqnopa7umRra8vQoUMZOnQoPXr04Ouvv74kEbS3tz//5c3GxuZ8V1IbGxuKioy7tXZ2dpSU/DNfU15e3iXnWrt2LStXrmTTpk24uLgwdOjQMrfTWjN9+nRee+21C17/7bffavQlUmvN008/zV133XXB60ePHj3/Xip6b3BpBU6lVIXHdXX954vkkSNHePvtt9m6dSteXl7MmDGjzPd98Xku3ubcMUtKSvD09DzfgirqUfuRMOYN+PMJWPI4jH4V7MufI/Bi0/q3YUd8Bn8dSOHZaxr/2E17Wxs+mtKHGz/dxG1zougd5MnDIztyWQcfq0sItdZEHk4lIqRmBUzKVFQA82+BzESYsViSwEq4ONgRHtyc8GCZukMIIZqihlFRoJHYv38/Bw8ePL8cExNDmzZtanSs4OBgYmJiKCkpIT4+/vz4utIyMjLw8vLCxcWFffv2sXnz5vPr7O3tKSwsBGDEiBEsWLCAlBRjeGZaWhrHjh0jIiKCtWvXkpqaSmFhIT/99FOVYhs9ejRffvnl+WI0J06cOH/sqlq4cCF5eXmkpqaydu1awsPDq3zczMxMXF1dadasGcnJyfz555/n17m7u5OVlXV+uUWLFsTGxlJSUnK+5fRiHh4ehISEnH//Wmt27NhRrfcjaiFiJgy4H6K+hI8iYN8SowJkFSileHtiTzY8ORw/94ZVTbOm/DycWP7I5bx6XQ9SMvOZ/uUWJvzf36zdn0JGbiE5+UXkFxVTXGIUVrKUhDO5JGbkmW98oNaw5DGjsue4WdC6n3mOK4QQQjRSMtNrPcrOzuaBBx4gPT0dOzs72rdvf76AS3UNGjTofDfL7t2706dPn0u2GTNmDJ988gk9e/akU6dOF3SdnDlzJj179qRPnz589913vPzyy4waNYqSkhLs7e356KOP6N+/Py+88AIDBgygVatW9OnT53wRmYqMGjWK2NhYBgwYABhdYufOnYutbdW79fXr14+rr76a48eP89xzz+Hv74+/v3+VjturVy969+5Nt27daNu2LYMGDbrgfV955ZW0atWKNWvW8Prrr3PNNdfQunVrunfvXm4l1e+++4577rmHl19+mcLCQiZPnkyvXpfOUyfqyOhXoMMo+PNf8ONNxvMxrxvTUlRCKdVoxwWWx8HOhikRQdzQN5AF0Ql8tCaOGV9tvWQ7GwUD2/lw52Vt673VcLO5xwdu+gi2fQNDHjfm7RNCCCFEhep9+oj6Yo3TR4iqeeGFF3Bzc+Pxxx+3dCjVJr9jday4ECI/hbWvQ3E+3PAVdLnGmBZg7avQdwYE9IWUfbD5o3/28+lotCpaWffI+lJQVMKfu5M4lZVPcYmmqERTVKzJzi9kYUwiKVn5dG7pzh1D2jK2l3+9TD/x+E87WL0vhah/jyy/EEncSth7Uf2wjldC56sgNx1WPAc9J0GbQUbX4ZxTcMMcKGf6GCGEEKKpqWj6CGkRFEI0HLb2MPB+Y6L5lS8YxWQACnLg4AroZBpWnJtmLAOUFBstRQU5MPQpi4RtaQ52NuVWEX1idGcW7Ujks3WHefynHby1bB/X9wlkTPeW9AhoVmethJFHUukX3Lz8JPDYJvjhJrBzBodSk837dDR+FhcY/8ZtBhkJ/lVvQ0mRJIFCCCFEFUmLoBBmJL9jVkhr+O0e2PED3PAldL/e0hFZJa016w6e5ssNR9gQd5riEo1/MydGdWvJ6G4t6RfSHFszTSGQmJ7LwNdX8/y1Xbl1UMilG5w5Cp8NBydPuGMluEgxEyGEEKImpEVQCNF0KQXXfmAkF7/dC57BENjX0lFZHaUUl3f05fKOvqSfLWBlbArL9pzkhy3HmfP3Udr6uvLYFZ24snvLWs8pF3mkgvGBeZnGHIAlRTBlviSBQgghRB2RPjRCiMbPzhEmzQW3FkaxmYwES0dk1TxdHLihbyCf3RLGtueu4IPJodjZKO77fhvXztrAmv0ptao4ujEulWbO9nRu6X7pylX/hdSDcOM34NO+Fu9CCCGEEBWRRFAI0TS4+sCUeVBw1piCQlSJq6Md40ID+POhy3hvUi8y8wq59aut3PjpJtYfPFXthHDu5mMsiE5gTLdyWhaHPwuTv4e2Q83zBoQQQghRJukaKoRoOvy6wP1bwaOVsVyUb7QWikrZ2iiu6x3I1T38mR8Vz4erDjLtiy10bOHGrYNCuK53QKXTdHz991GeX7SHkV38+O/4bheuPLoBAsLA2RM6jq67NyKEEEIIQFoE611CQgLjxo2jQ4cOtGvXjoceeoiCgoJK93v11Vcr3eaOO+5g7969l7w+Z84c7r///irFt2zZMkJDQwkNDcXNzY1OnToRGhrKLbfcUqX969ucOXNITEy0dBiiITmXBJ7cDe/3gOObLRtPA+NgZ8PN/duw/slhvD2xF3Y2Njz9yy76v7aKN5fuIz7tbJn7fb7+MM8v2sPobi34eGpfHO1KJY1FBfDTrbD83/X0LoQQQgghiWA90lozYcIExo8fz8GDBzlw4ADZ2dn8+9+Vf/mpSiL4+eef07Vr11rFOHr0aGJiYoiJiSEsLIzvvvuOmJgYvvnmm1odtzYqmsS+JolgUVFRbUMSjYGtvdECdW46gqJ8y8bTwDja2XJD30D+eHAw82b2JyKkOZ/8dYghb67h2v9t4OO1cRw5nQPAJ38d4uU/Yrm6RytmTelz6TyFtvYwYTaETrXAOxFCCCGaJukaWo9Wr16Nk5MTt956KwC2tra89957hISE8OKLLzJ//nyioqKYNWsWANdccw2PP/44S5cuJTc3l9DQULp168bs2bO58cYbSUhIoLi4mOeee45JkyYxdOhQ3n77bcLCwvjqq6947bXXaNWqFR07dsTR0ej+durUKe6++26OHz8OwPvvv8+gQYMqjX3u3Ll8+OGHFBQUEBERwccff4ytrS1ubm7cd999rFy5Ei8vL1599VX+9a9/cfz4cd5//33Gjh3LnDlz+PXXX8nPz+fIkSNMmTKF559/vtLjPvrooyxbtox33nmH1atX8/vvv5Obm8vAgQP59NNP+fnnn4mKimLq1Kk4OzuzadMmunTpQlRUFD4+PkRFRfH444+zdu1aXnjhBRITEzl69Cg+Pj588MEHNboOohHx7QQ3fW88LymGL66AZq3BpYxKlucEDYDQm4znvz8EHUZB56uNSpfLn638nB1HX7h9j4kQMgTS42HdW5Xvf/H24XdAq55G6+aW2ZXvf/H2Qx4DrzZw7G/Y8WP5+ykFvaZAUEQZqxQRbb2JaOtNwpmz/LEziT93n+TNpft5c+l+gr1dOJp6lrG9/Hn3xl7Y2ZZx/1EpaDes8viFEEIIYTZNOxH86urKt+k4GgY9+M/2oVOg91TISYX5F3WXvPWPCg+1Z88e+va9sGy9h4cHQUFBxMXFlbvf66+/zqxZs4iJiQHg559/xt/fnz/+MM6XkZFxwfZJSUk8//zzREdH06xZM4YNG0bv3r0BeOihh3jkkUcYPHgwx48fZ/To0cTGxlYYd2xsLPPmzWPjxo3Y29tz77338t1333HLLbeQk5PD0KFDeeONN7juuut49tlnWbFiBXv37mX69OmMHTsWgC1btrB7925cXFwIDw/n6quvxtXVtcLjdu/enf/+978AdO3alf/85z8ATJs2jcWLF3PDDTcwa9as88lvZaKjo9mwYQPOzs5MmTKl2tdBNGLFBRA8BPb8aiSF5XEsVeXywDJo3vaf/Q8sq/w83u0u3D6ov7Gcn1m1/S/evqvx/4ucU1Xb/+Ltw+8wljNOVLx/QTbs+hke3AZufuVuFujlwl2Xt+Ouy9uRmJ7L0t0nWbrnJIM7+PDi2O5lz0OYvAe2fwdDHjUK+gghhBCiXtRbIqiU+hK4BkjRWnc3vTYP6GTaxBNI11qHlrHvUSALKAaKypsU0dpprVHq0i9C5b1enh49evD444/z5JNPcs011zBkyJAL1kdGRjJ06FB8fX0BmDRpEgcOHABg5cqVF4wjzMzMJCsrC3f3Msq4m6xatYro6GjCw8MByM3Nxc/P+DLo4ODAmDFjzsfl6OiIvb09PXr04OjRo+ePccUVV+DtbbS0TJgwgQ0bNmBnZ1fucW1tbbn++n8m/l6zZg1vvvkmZ8+eJS0tjW7dunHttddW+ZoBjB07Fmdn5xpfB9GI2TvD6FeMR1U9tu+f564+8Pj+qu978fYtulVv/4u3bzesevtfvH3PicajPBkn4Oj6CpPAi/l7OnPb4BBuG1zGhPGlRX4KO+fD5U9U+dhCCCGEqL36bBGcA8wCzg8201pPOvdcKfUOkHHpbucN01qfNmtElbTgVbi9q3e19+/WrRs///zzBa9lZmYSHx9Pu3bt2LFjByUlJefX5eXllXmcjh07Eh0dzZIlS3j66acZNWrU+dayc8pLLEtKSti0adP5hKgqtNZMnz6d11577ZJ19vb2589lY2NzvguqjY3NBWPxLo5HKVXhcZ2cnLC1NYpJ5OXlce+99xIVFUXr1q154YUXyr02dnZ256/hxdu4urqef16T6yBEk9UsAHpNNp6f3A3e7cHeqfbHzT0Du34yklBnr9ofTwghhBBVVm/FYrTW64C0stYpI0u4EfihvuKxhBEjRnD27NnzhVeKi4t57LHHmDFjBi4uLgQHBxMTE0NJSQnx8fFs2bLl/L729vYUFhYCkJiYiIuLCzfffDOPP/4427Ztu+A8ERERrF27ltTUVAoLC/npp5/Orxs1atT5MYjA+e6mlcW9YMECUlJSAEhLS+PYsWPVeu8rVqwgLS2N3NxcfvvtNwYNGlTl455L6Hx8fMjOzmbBggXn17m7u5OVlXV+OTg4mOjoaIBLku7SanIdhGjysk4aYylXv2Se48V8D4VnIfxO8xxPCCGEEFVmLVVDhwDJWuuD5azXwHKlVLRSamY9xmVWSil+/fVXfvrpJzp06EDHjh1xcnI6XxF00KBBhISEnO/62adPn/P7zpw5k549ezJ16lR27dpFv379CA0N5ZVXXuHZZy8sUtGqVSteeOEFBgwYwMiRIy84zocffkhUVBQ9e/aka9eufPLJJ5XG3bVrV15++WVGjRpFz549ueKKK0hKSqrWex88eDDTpk0jNDSU66+/nrCwsCof19PTkzvvvJMePXowfvz4811JAWbMmMHdd99NaGgoubm5PP/88zz00EMMGTLkfItiWWpyHYRo8txbwtXvwqCHa3+skhLY+jm07m8UsBFCCCFEvVJa6/o7mVLBwOJzYwRLvf5/QJzW+p1y9vPXWicqpfyAFcADphbGi7ebCcwECAoK6ntx61JsbCxdunQxy3sRVTdnzpwLqqE2ZvI7JpqM4kI48he0G2FU/ayugyvhu+vh+i+gxw3mj08IIYQQKKWiy6uvYvEWQaWUHTABmFfeNlrrRNPPFOBXoF85283WWodprcPOFUoRQghRB9a+BnOvhzlXG5U/q2vrZ+DqB13Gmj82IYQQQlTK4okgMBLYp7VOKGulUspVKeV+7jkwCthdj/GJWpoxY0aTaA0UokkZ9ixc+wGkxMInQ+DPJyE3vWr7njlqTFfRdwbYOdRhkEIIIYQoT31OH/EDMBTwUUolAM9rrb8AJnNRkRillD/wudb6KqAF8Kup6qQd8L3Weml9xS2EEKIMNjZGItdlLKx+2ZgGYvfP0OkqUKZ7jJ2ugo6j4GwarPqvUXk0qD8cXGFsE3arRd+CEEII0ZTVWyKotb6pnNdnlPFaInCV6flhoJcZ46jWnH1CVFV9jrcVwmq4NIdr3oU+t8DyZ2H/n/+s8+kAjILCXNj3BwQPNl4PDId+M8HD3yIhCyGEEKJ+5xG0OCcnJ1JTU/H29pZkUJiV1prU1FScnMwwt5oQDZF/KMxYXPa6ZgHwxMELt/UPrYeghBBCCFGeJpUIBgYGkpCQwKlTpywdimiEnJycCAwMtHQYQgghhBBCVKpJJYL29vaEhIRYOgwhhBBCCCGEsChrqBoqhBBCCCGEEKIeSSIohBBCCCGEEE2MJIJCCCGEEEII0cSoxlryXil1Cjhm6TgaKB/gtKWDaMDk+tWeXMPak2tYO3L9ak+uYe3JNawduX61J9ewdqzh+rXRWvuWtaLRJoKi5pRSUVrrMEvH0VDJ9as9uYa1J9ewduT61Z5cw9qTa1g7cv1qT65h7Vj79ZOuoUIIIYQQQgjRxEgiKIQQQgghhBBNjCSCoiyzLR1AAyfXr/bkGtaeXMPaketXe3INa0+uYe3I9as9uYa1Y9XXT8YICiGEEEIIIUQTIy2CQgghhBBCCNHESCLYgCmlxiil9iul4pRST1207gHTuj1KqTfL2X+iaX2JUirsonVPm467Xyk1upz97zdto5VSPhetG6qUijEd/6/avte6YgXX8DvT+t1KqS+VUvam15VS6kPT/juVUn3M9Z7Nra6uoVLKWym1RimVrZSaVcH5Q5RSkUqpg0qpeUopB9PrDeIaWuv1K7U+XClVrJS6obbvta5Y6zVUSjVTSv2ulNphOv6t5nrP5mQF16/MzxKl1FTT/92dSqm/lVK9zPF+64K1XkPTuib9eVyNa9igP4/r8PpdoZSKVkrtMv0cXs7+5f0dbBDXD6z3GpZab/7PY621PBrgA7AFDgFtAQdgB9DVtG4YsBJwNC37lXOMLkAnYC0QVur1rqbjOQIhpvPYlrF/byAYOAr4lHrdE9gLBFV0fks/rOQaXgUo0+MH4J5Sr/9per0/EGnp62WBa+gKDAbuBmZVEMN8YLLp+ScN6Rpa8/UrFd9qYAlwg6WvV0O7hsAzwBum575AGuBg6WtmhdevvM+SgYCX6fmV1vh/uAFcQ0/k87iq17DBfh7X8fXrDfibnncHTpSzf4P9LLb2a1gqPrN/HkuLYMPVD4jTWh/WWhcAPwLjTOvuAV7XWucDaK1TyjqA1jpWa72/jFXjgB+11vla6yNAnOl8F++/XWt9tIz9pwC/aK2PV3R+K2AN13CJNgG2AIGl9v/GtGoz4KmUalXzt1pn6uwaaq1ztNYbgLzyTq6UUsBwYIHppa+B8abnDeEaWvP1A3gA+Bmw1v/DYN3XUAPupm3cMBLBouq9vTpn0etn2q7MzxKt9d9a6zOmxc388/fR2ljtNUQ+j6tzDRvy53FdXr/tWutE0+IewEkp5Vh6m0bwWQzWfQ2hjj6PJRFsuAKA+FLLCabXADoCQ0zNy38ppcLNeOyq6Ah4KaXWmprAb6nm+euL1VxDUxeUacDSmuxvQXV5DavCG0jXWp/7cl36/A3hGlrt9VNKBQDXYdyVtGZWew2BWRh3iBOBXcBDWuuSOoihNix9/arqdoxWBWtkzddQPo+rqYF+HtfX9bse2H4uISqloX8WgxVfw7r8PLYz9wFFvVFlvHauBKwd4IXRBB8OzFdKtTXd5artsavCDugLjACcgU1Kqc1a6wPVOEZ9sKZr+DGwTmu9vob7W0pdXsPanr8hXENrvn7vA09qrYuNG5VWy5qv4WggBuMubztghVJqvdY604znry1LX79KKaWGYSSCg+vzvNVgzddQPo+rryF+Htf59VNKdQPeAEZV8/wN4fqBdV/D96mjz2NpEWy4EoDWpZYDMe46n1v3i6kZfgtQAvgopb5SxoDxJbU4dlVjW2rqjnEaWAf0qsb+9cUqrqFS6nmM8UOP1mR/C6vLa1gVpzG6mZy7qXXx+a39Glrz9QsDflRKHQVuAD5WSo03wznNzZqv4a2lzh8HHAE6m+Gc5mTp61chpVRP4HNgnNY6ta7PV0PWfA3l87gaGvDncZ1eP6VUIPArcIvW+lAZmzT0z2Kw7mtYZ5/Hkgg2XFuBDsqoMOQATAYWmdb9hnEHGqVUR4xBr6e11rdqrUO11ldVcuxFwGSllKNSKgTogNFfvqoWYjSh2ymlXIAIILYa+9cXi19DpdQdGK0GN13UZWwRcIsy9AcytNZJNX6ndacur2GlTHfj1mD8YQSYjvH7Bw3jGlrt9dNah2itg7XWwRhjFu7VWv9W23PWAau9hsBxjJYYlFItMIoIHK7tOc3MotevIkqpIOAXYJoVtmCVZrXXEPk8rrIG/nlcZ9dPKeUJ/AE8rbXeWNY2jeCzGKz4Gtbp57G2gko98qjZA6MS0wGMKkf/LvW6AzAX2A1sA4aXs/91GHc58oFkYFmpdf82HXc/cGU5+z9o2r8I467F56XWPYFRqWw38LClr5UVX8Mi0zYxpsd/TK8r4CPTul2Uqj5lbY86voZHMQpsZJu26VrG/m0xkuw44Cf+qerVIK6htV6/i7aZg5VWDbXmawj4A8tNv3+7gZstfa2s9PqV+VmC0RJ4hn/+PkZZ+lo1tGtoWiefx1W7hg3687iurh/wLJBT6rrEUEbVTBr4Z7E1X8OLtpmDGT+PlemgQgghRKNk6k5zh9Z6ZanXZpheq/W4M6WUBjpoo/tnWevNdq7axiKEEEKcI11DhRBCCCGEEKKJkURQCCFEk6eU8ldK/ayUOqWUOqKUerDUun5KqU1KqXSlVJJSapZpDAlKqXWmzXYopbKVUpOqcK6jSqnHlVI7lVIZSql5Sikn07qhSqkEpdQzSqnTpm2nltp3rWks07nlGUqpDTWNRQghRNMliaAQQogmTSllA/wO7MCYt2kE8LBSarRpk2LgEcAHGGBafy+A1voy0za9tNZuWut5VTztjcAYIAToCcwota6l6VwBGAUDZiulOlV2wFrEIoQQogmSRFAIIURT8JupRS9dKZWOMVfYOeGAr9b6v1rrAq31YeAzjKpxaK2jtdabtdZFWuujwKfA5bWM50OtdaLWOg0jCQ29aP1zWut8rfVfGNXmbqzl+YQQQogLyITyQgghmoLxZRWLMS22AfxNCeI5tsB607YdgXcx5nJywfjsjK5lPCdLPT+LUWH0nDNa65xSy8cuWi+EEELUmrQICiGEaOrigSNaa89SD3f9z9xQ/wfsw6jG6QE8g1ESva54KaVcSy0H8c/EwjkYyeg5LeswDiGEEI2YJIJCCCGaui1AplLqSaWUs1LKVinVXSkVblrvDmQC2UqpzsA9F+2fjDH/kzm9qJRyUEoNAa7BmFMKjPmnJiilXJRS7YHb6yEWIYQQjZAkgkIIIZo0rXUxcC3GOL0jwGmMycybmTZ5HJgCZGGMHby4CMsLwNem8YfmGMt3EmMi9UTgO+BurfU+07r3gAKMhO9r0/q6jEUIIUQjJRPKCyGEEFZCKTUUmKu1DrRwKEIIIRo5aREUQgghhBBCiCZGEkEhhBBCCCGEaGKka6gQQgghhBBCNDHSIiiEEEIIIYQQTYwkgkIIIYQQQgjRxNhZOoC64uPjo4ODgy0dhhBCCCGEEEJYRHR09GmttW9Z6xptIhgcHExUVJSlwxBCCCGEEEIIi1BKHStvnXQNFUIIIYQQQogmRhJBIYQQQgghhGhiJBEUQgghhBBCiCam1mMElVJOwDrA0XS8BVrr55VSzYF5QDBwFLhRa33GtM/TwO1AMfCg1nqZ6fW+wBzAGVgCPKS11kopR+AboC+QCkzSWh+tbqyFhYUkJCSQl5dX4/cryufk5ERgYCD29vb1et7vI4+zMOZEvZ7TXMaFBjAlIsjSYQghhBBCiCbGHMVi8oHhWutspZQ9sEEp9ScwAViltX5dKfUU8BTwpFKqKzAZ6Ab4AyuVUh211sXA/wEzgc0YieAY4E+MpPGM1rq9Umoy8AYwqbqBJiQk4O7uTnBwMEqp2r5vUYrWmtTUVBISEggJCalwW3MnbpFH0gCICGlutmPWh71JmQCSCAohhBBCiHpX60RQa62BbNOivemhgXHAUNPrXwNrgSdNr/+otc4Hjiil4oB+SqmjgIfWehOAUuobYDxGIjgOeMF0rAXALKWUMp27yvLy8iQJrCNKKby9vTl16lSl2y6MOcHepEy6tvIwy7kjQpo3yJa1SZ9usnQIQgghhBCiiTLL9BFKKVsgGmgPfKS1jlRKtdBaJwForZOUUn6mzQMwWvzOSTC9Vmh6fvHr5/aJNx2rSCmVAXgDpy+KYyZGiyJBQWUnBZIE1p3qXNuurTyYd9eAOoxGCCGEEEIIUR6zFIvRWhdrrUOBQIzWve4VbF5WtqAreL2ifS6OY7bWOkxrHebrW+a8iRbn5uZ2wfKcOXO4//77a3SsmJgYlixZUua6tWvXcs0119TouBVZu3Ytf//9t9mPK4QQQgghhKg/Zq0aqrVOx+gCOgZIVkq1AjD9TDFtlgC0LrVbIJBoej2wjNcv2EcpZQc0A9LMGXtDVFEiWFckERRCCCGEEKLhq3UiqJTyVUp5mp47AyOBfcAiYLpps+nAQtPzRcBkpZSjUioE6ABsMXUjzVJK9VdGH8NbLtrn3LFuAFZXd3xgQ3Dq1Cmuv/56wsPDCQ8PZ+PGjQBs2bKFgQMH0rt3bwYOHMj+/fspKCjgP//5D/PmzSM0NJR58+aVe9wXXniB2267jaFDh9K2bVs+/PBDAI4ePUrnzp2ZPn06PXv25IYbbuDs2bMABAcHc/q00fM2KiqKoUOHcvToUT755BPee+89QkNDWb/+/9u7/2g7qzKx499nEgnpaBARNORHgzUqFxYTy5VgwSk/LImjGGyhRKqkmq4ARWVsrRqZNZnB4oLOWjgFBjVroAEqP1KQCY4wDIgMTicEY80IuRjJSBoCWRgJTTJToSZ5+sfZF06u5yb33nNOznvu+X7WOuu+Z+93v+8+z0rue5+z97vf77c5IpIkSZLaoRX3CE4Fbi73Cf4GsDIz/zwiVgMrI2IxsBk4DyAz10fESmAA2A1cWlYMBbiE1x4fcX95AdwI3FoWltlObdXRpvzht9cz8PzOZg+zj76jp7Ds7OP2u88vf/lL5syZ8+r77du38+EPfxiAyy67jM9+9rOceuqpbN68mXnz5vHUU0/xrne9i0cffZSJEyfy0EMP8aUvfYm7776bK664grVr13L99dcfsG8/+clP+N73vseuXbt45zvfySWXXALAhg0buPHGGznllFP45Cc/yQ033MDnPve5hseYNWsWF198Ma9//euH3UeSJElS9bVi1dAfA+9uUP4icOYwba4ErmxQvhb4tfsLM/NlSiLZ7SZPnsy6detefb9ixQrWrl0LwEMPPcTAwMCrdTt37mTXrl3s2LGDRYsW8fTTTxMR/OpXvxr1eT/4wQ8yadIkJk2axFFHHcULL7wAwIwZMzjllFMA+NjHPsa1115rkidJkiSNcy1ZNbQbHWjkrhP27t3L6tWrmTx58j7ln/70pzn99NO555572LRpE6eddtqojz1p0qRXtydMmMDu3buBX1/pc/D9xIkT2bt3L1B77IYkSZKk8aOli8WoOWedddY+0zwHRw537NjBtGm1J2msWLHi1fo3vOEN7Nq1q6lzbt68mdWra8+zu/322zn11FOB2jTQH/7whwDcfffdLT2nJEmSpM7q2RHBKrr22mu59NJLOeGEE9i9eze//du/zde//nU+//nPs2jRIq655hrOOOOMV/c//fTTueqqq5gzZw5Lly7l/PPPH/U5jz32WG6++WYuuugiZs+e/eq9g8uWLWPx4sV85StfYe7cua/uf/bZZ3PuueeyatUqrrvuOt73vvc1/8ElSRpnbluzmVXrnmv5cRfMmcYFcxs/K1mSRiPG4eKbAPT39+fgvXeDnnrqKY499tgO9ah6Nm3axIc+9CGefPLJlh1zJDE+/xu1Echef6C8cZDGn9H+8e8f9ePX+d9YzcDWnfRNndKyYw4ez+tGdfk7QFUTET/MzP5GdY4ISpLUIqvWPTfiP/4HttZWrvaPwPGr1Unb4BeIqi5/B6ibmAj2sFmzZrV0NFCSNPI//v2jXhqf/B2gbmEiKEmSJKll2nWP7Fg5Bbexnls1dLzeE1kFxlaSJEmDU2SrYGDrzkolpVXSUyOChx56KC+++CJHHHHErz0/T83JTF588UUOPfTQTndFOqCqfVM5HL/BlCR1q6osbOQU3OH1VCI4ffp0tmzZwrZt2zrdlXHp0EMPZfr06Z3uhnRAo7mZv1NcRECSJLVTTyWCr3vd6zjmmGM63Q1JFVCVbyqH4zeYkiSpnXruHkFJkiRJ6nUmgpIkSZLUY5qeGhoRM4BbgLcCe4HlmflfI+JNwJ3ALGAT8K8z86XSZimwGNgDfCYzHyjlJwIrgMnAfcBlmZkRMamc40TgReD8zNzUbN8lSZKkKqvaAmcuZDZ+tGJEcDfwHzPzWOBk4NKI6AO+CHw3M2cD3y3vKXULgeOA+cANETGhHOtrwBJgdnnNL+WLgZcy8+3AV4GrW9BvSZIkqdJ8FIPapekRwczcCmwt27si4ilgGrAAOK3sdjPwCPCFUn5HZr4CPBMRG4GTImITMCUzVwNExC3AOcD9pc0flGPdBVwfEZE+uE6SJEnjXFUWOHMhs/GlpfcIRsQs4N3AGuAtJUkcTBaPKrtNA56ta7allE0r20PL92mTmbuBHcARrey7JEmSJPWKlj0+IiJeD9wN/G5m7tzPA9sbVeR+yvfXZmgfllCbWsrMmc5dlqQqqtr9Lo14D4wkabxryYhgRLyOWhL4zcz8Vil+ISKmlvqpwM9L+RZgRl3z6cDzpXx6g/J92kTEROAwYPvQfmTm8szsz8z+I488shUfTZLUYlW636UR74GRJPWCVqwaGsCNwFOZeU1d1b3AIuCq8nNVXfltEXENcDS1RWEez8w9EbErIk6mNrX0QuC6IcdaDZwLPOz9gZLUvapyv0sj3gMjSeoFrZgaegrwceCJiFhXyr5ELQFcGRGLgc3AeQCZuT4iVgID1FYcvTQz95R2l/Da4yPuLy+oJZq3loVltlNbdVRSBTQ7zc8peJIkSQdfK1YN/Wsa38MHcOYwba4ErmxQvhY4vkH5y5REUlK1DE7z65s6ZdRtB6cHmghKkiQdXC1bLEZS7xrrND+n4EmSJHVGSx8fIUmSJEmqPhNBSZIkSeoxJoKSJEmS1GO8R/Ag+sNvr2fg+Wo9O8sVGyVJkqTe44hgD/OhyZIkSVJvckTwIFp29nGd7sI+XLFRkiRJ6k2OCEqSJElSjzERlCRJkqQe49RQSZIkSePWwNadY74lajwvrGgiKEmSJGlcWjBn2pjbDmytrfZvIihJkiRJXeSCuTPHnMiN94UVvUdQkiRJknqMiaAkSZIk9ZiWJIIRcVNE/Dwinqwre1NEPBgRT5efh9fVLY2IjRGxISLm1ZWfGBFPlLprIyJK+aSIuLOUr4mIWa3otyRJkiT1olaNCK4A5g8p+yLw3cycDXy3vCci+oCFwHGlzQ0RMaG0+RqwBJhdXoPHXAy8lJlvB74KXN2ifkuSJElSz2lJIpiZjwLbhxQvAG4u2zcD59SV35GZr2TmM8BG4KSImApMyczVmZnALUPaDB7rLuDMwdFCSZIkSdLotPMewbdk5laA8vOoUj4NeLZuvy2lbFrZHlq+T5vM3A3sAI4YesKIWBIRayNi7bZt21r4USRJkiRp/OjEYjGNRvJyP+X7a7NvQebyzOzPzP4jjzyyiS5KkiRJ0vjVzkTwhTLdk/Lz56V8CzCjbr/pwPOlfHqD8n3aRMRE4DB+fSqqJEmSJGkE2pkI3gssKtuLgFV15QvLSqDHUFsU5vEyfXRXRJxc7v+7cEibwWOdCzxc7iOUJEmSJI3SxFYcJCJuB04D3hwRW4BlwFXAyohYDGwGzgPIzPURsRIYAHYDl2bmnnKoS6itQDoZuL+8AG4Ebo2IjdRGAhe2ot+SJEmS1Itakghm5keHqTpzmP2vBK5sUL4WOL5B+cuURFKSJEmS1JxOLBYjSZIkSeogE0FJkiRJ6jEmgpIkSZLUY1pyj6AkSZJ6x21rNrNq3XOd7saoLZgzjQvmzux0N6RKcERQkiRJo7Jq3XMMbN3Z6W6MysDWnV2ZvErt4oigJEmSRq1v6hTuvOi9ne7GiJ3/jdWd7oJUKY4ISpIkSVKPMRGUJEmSpB5jIihJkiRJPcZEUJIkSZJ6jImgJEmSJPUYVw2VJElSTxjYurOtq4cObN1J39QpbTu+1EomgpIkSRr3FsyZ1vZz9E2dclDOI7WCiaAkSZLGvQvmzuSCuTM73Q2pMrrqHsGImB8RGyJiY0R8sdP9kSRJkqRu1DWJYERMAP4E+ADQB3w0Ivo62ytJkiRJ6j7dNDX0JGBjZv4MICLuABYAAx3tldSEkd60vmDONKezSJIkqWW6KRGcBjxb934LMLd+h4hYAiwBmDnTP5pVbSO9mXxg604AE0FJkiS1TDclgtGgLPd5k7kcWA7Q39+fDfaXKmOkN623c5lrSZIk9aauuUeQ2gjgjLr304HnO9QXSZIkSepa3ZQI/gCYHRHHRMQhwELg3g73SZIkSZK6TtdMDc3M3RHxKeABYAJwU2au73C3JEmSJKnrdE0iCJCZ9wH3dbofkiSpPW5bs5lV657rdDeaNrB1J31Tp3S6G5I0rG6aGipJksa5Veuee3W15G7WN3XKiFeHlqRO6KoRQUmSNP71TZ3CnRe9t9PdkKRxzRFBSZIkSeoxJoKSJEmS1GNMBCVJkiSpx5gISpIkSVKPMRGUJEmSpB5jIihJkiRJPcZEUJIkSZJ6jImgJEmSJPUYE0FJkiRJ6jEmgpIkSZLUY0wEJUmSJKnHNJUIRsR5EbE+IvZGRP+QuqURsTEiNkTEvLryEyPiiVJ3bUREKZ8UEXeW8jURMauuzaKIeLq8FjXTZ0mSJEnqdc2OCD4J/Evg0frCiOgDFgLHAfOBGyJiQqn+GrAEmF1e80v5YuClzHw78FXg6nKsNwHLgLnAScCyiDi8yX5LkiRJUs9qKhHMzKcyc0ODqgXAHZn5SmY+A2wEToqIqcCUzFydmQncApxT1+bmsn0XcGYZLZwHPJiZ2zPzJeBBXkseJUmSJEmj1K57BKcBz9a931LKppXtoeX7tMnM3cAO4Ij9HEuSJEmSNAYTD7RDRDwEvLVB1eWZuWq4Zg3Kcj/lY22z70kjllCbdsrMmTOH6ZrUfQa27uT8b6zudDcaGti6k76pUzrdDUmSJI3CARPBzHz/GI67BZhR93468Hwpn96gvL7NloiYCBwGbC/lpw1p88gwfV0OLAfo7+9vmCxK3WbBnGoPgPdNnVL5PkqSJGlfB0wEx+he4LaIuAY4mtqiMI9n5p6I2BURJwNrgAuB6+raLAJWA+cCD2dmRsQDwFfqFog5C1japn5LlXPB3JlcMNcRbkmSJLVOU4lgRHyEWiJ3JPCdiFiXmfMyc31ErAQGgN3ApZm5pzS7BFgBTAbuLy+AG4FbI2IjtZHAhQCZuT0ivgz8oOx3RWZub6bfkiRJktTLmkoEM/Me4J5h6q4ErmxQvhY4vkH5y8B5wxzrJuCmZvoqSZIkSapp19RQSZIktVhVFg9zoTCp+5kISpIkdYEqLczlQmFS9zMRlCRJ6gIuHiYdfCMdhe87egrLzj7uIPSodUwEJUmSJGmI8T7qbSIoSZIkSUOM91H43+h0ByRJkiRJB5cjgpLUA25bs5lV657rdDcAVxuUJKkKHBGUpB6wat1zDGzd2eluAK42KElSFTgiKEk9om/qFO686L2d7oYkqYuNZBVNZ350BxNBSZIkSQc00tkczvzoDiaCkiRJkg5ovK+i2Wu8R1CSJEmSeoyJoCRJkiT1GBNBSZIkSeoxTSWCEfFHEfGTiPhxRNwTEW+sq1saERsjYkNEzKsrPzEinih110ZElPJJEXFnKV8TEbPq2iyKiKfLa1EzfZYkSZKkXtfsiOCDwPGZeQLwU2ApQET0AQuB44D5wA0RMaG0+RqwBJhdXvNL+WLgpcx8O/BV4OpyrDcBy4C5wEnAsog4vMl+S5IkSVLPaioRzMy/zMzd5e1jwPSyvQC4IzNfycxngI3ASRExFZiSmaszM4FbgHPq2txctu8CziyjhfOABzNze2a+RC35HEweJUmSJEmj1Mp7BD8J3F+2pwHP1tVtKWXTyvbQ8n3alORyB3DEfo71ayJiSUSsjYi127Zta+rDSJIkSdJ4dcDnCEbEQ8BbG1Rdnpmryj6XA7uBbw42a7B/7qd8rG32LcxcDiwH6O/vb7iPJEk6sNvWbGbVuucO+nkHtu6kb+qUg35eSeo1B0wEM/P9+6svi7d8CDizTPeE2qjdjLrdpgPPl/LpDcrr22yJiInAYcD2Un7akDaPHKjfkiSN1cDWnZz/jdVjajdekphV657ryOfpmzqFBXMaTvyRJLXQARPB/YmI+cAXgH+emf+3rupe4LaIuAY4mtqiMI9n5p6I2BURJwNrgAuB6+raLAJWA+cCD2dmRsQDwFfqFog5i7IojSRJrdZMEjLekpi+qVO486L3drobkqQ2aCoRBK4HJgEPlqdAPJaZF2fm+ohYCQxQmzJ6aWbuKW0uAVYAk6ndUzh4X+GNwK0RsZHaSOBCgMzcHhFfBn5Q9rsiM7c32W9Jkhq6YO5MLpg7s9PdkCSprZpKBMujHoaruxK4skH5WuD4BuUvA+cNc6ybgJvG3lNJkiRJ0qBWrhoqSZIkSeoCJoKSJEmS1GNMBCVJkiSpxzS7WIwkqU3G+giD4Y41Xh5rIEmSmmciKEkV1OpHEIy3xxpIkqTmmAhKUgX5CANJGv9GMvPDGR1qFxNBSZIk6SAb6SwNZ3SoXUwEJUmSpIPMmR/qNFcNlSRJkqQe44hgj2vlqoSjOadz3SVJkqTOMRHsYZ2ab+5cd9XzywhJkqSDz0Swhzk3XZ3mlxGSJEmdYSIoqWP8MkKSJKkzmkoEI+LLwAJgL/Bz4N9m5vOlbimwGNgDfCYzHyjlJwIrgMnAfcBlmZkRMQm4BTgReBE4PzM3lTaLgN8rp/3PmXlzM/2WJKkKOjE1eqScQi1J41uzq4b+UWaekJlzgD8Hfh8gIvqAhcBxwHzghoiYUNp8DVgCzC6v+aV8MfBSZr4d+CpwdTnWm4BlwFzgJGBZRBzeZL8lSeqoBXOmVTrRcgq1JI1vTY0IZubOure/CWTZXgDckZmvAM9ExEbgpIjYBEzJzNUAEXELcA5wf2nzB6X9XcD1ERHAPODBzNxe2jxILXm8vZm+S5LUSU6NliR1UtP3CEbElcCFwA7g9FI8DXisbrctpexXZXto+WCbZwEyc3dE7ACOqC9v0EaSJEmSNEoHnBoaEQ9FxJMNXgsAMvPyzJwBfBP41GCzBofK/ZSPtc3Qvi6JiLURsXbbtm37+1iSJEmS1LMOOCKYme8f4bFuA75D7X6+LcCMurrpwPOlfHqDcurabImIicBhwPZSftqQNo8M09flwHKA/v7+hsmiJEmSJPW6phaLiYjZdW8/DPykbN8LLIyISRFxDLVFYR7PzK3Arog4udz/dyGwqq7NorJ9LvBwZibwAHBWRBxeFok5q5RJkiRJksag2XsEr4qId1J7fMT/Bi4GyMz1EbESGAB2A5dm5p7S5hJee3zE/eUFcCNwa1lYZju1VUfJzO3lMRU/KPtdMbhwjCRJkiRp9KI26Db+RMQ2asmpRu/NwC863YkuZvyaZwybZwybY/yaZwybZwybY/yaZwybU4X4/ePMPLJRxbhNBDV2EbE2M/s73Y9uZfyaZwybZwybY/yaZwybZwybY/yaZwybU/X4NftAeUmSJElSlzERlCRJkqQeYyKoRpZ3ugNdzvg1zxg2zxg2x/g1zxg2zxg2x/g1zxg2p9Lx8x5BSZIkSeoxjghKkiRJUo8xEexiETE/IjZExMaI+OKQuk+XuvUR8V+GaX9eqd8bEf1D6paW426IiHnDtP9U2Scj4s1D6k6LiHXl+H/V7GdtlwrE8Jul/smIuCkiXlfKIyKuLe1/HBH/tFWfudXaFcOIOCIivhcRfx8R1+/n/MdExJqIeDoi7oyIQ0p5V8SwqvGrq39PROyJiHOb/aztUtUYRsRhEfHtiPjbcvxPtOozt1IF4tfwWhIR/6b83/1xRPxNRPxWKz5vO1Q1hqWup6/Ho4hhV1+P2xi/fxERP4yIJ8rPM4ZpP9zvwa6IH1Q3hnX1rb8eZ6avLnwBE4C/A94GHAL8LdBX6k4HHgImlfdHDXOMY4F3Ao8A/XXlfeV4k4BjynkmNGj/bmAWsAl4c135G4EBYOb+zt/pV0Vi+DtAlNftwCV15feX8pOBNZ2OVwdi+JvAqcDFwPX76cNKYGHZ/no3xbDK8avr38PAfcC5nY5Xt8UQ+BJwddk+EtgOHNLpmFUwfsNdS/4ZcHjZ/kAV/w93QQzfiNfjkcawa6/HbY7fu4Gjy/bxwHPDtO/aa3HVY1jXv5Zfjx0R7F4nARsz82eZ+f+AO4AFpe4S4KrMfAUgM3/e6ACZ+VRmbmhQtQC4IzNfycxngI3lfEPb/ygzNzVofwHwrczcvL/zV0AVYnhfFsDjwPS69reUqseAN0bE1LF/1LZpWwwz8x8y86+Bl4c7eUQEcAZwVym6GTinbHdDDKscP4BPA3cDVf0/DNWOYQJvKPu8nloiuHt0H6/tOhq/sl/Da0lm/k1mvlTePsZrvx+rprIxxOvxaGLYzdfjdsbvR5n5fHm7Hjg0IibV7zMOrsVQ7RhCm67HJoLdaxrwbN37LaUM4B3A+8rw8l9FxHtaeOyReAdweEQ8UobALxzl+Q+WysSwTEH5OPAXY2nfQe2M4UgcAfyfzBz847r+/N0Qw8rGLyKmAR+h9q1klVU2hsD11L4hfh54ArgsM/e2oQ/N6HT8RmoxtVGFKqpyDL0ej1KXXo8PVvz+FfCjwYSoTrdfi6HCMWzn9Xhiqw+ogyYalA0uATsROJzaEPx7gJUR8bbyLVezxx6JicCJwJnAZGB1RDyWmT8dxTEOhirF8Abg0cz8/hjbd0o7Y9js+bshhlWO3x8DX8jMPbUvKiuryjGcB6yj9i3vPwEejIjvZ+bOFp6/WZ2O3wFFxOnUEsFTD+Z5R6HKMfR6PHrdeD1ue/wi4jjgauCsUZ6/G+IH1Y7hH9Om67Ejgt1rCzCj7v10at86D9Z9qwzDPw7sBd4cEf8tajeM39fEsUfat78o0zF+ATwK/NYo2h8slYhhRCyjdv/QfxhL+w5rZwxH4hfUppkMfqk19PxVj2GV49cP3BERm4BzgRsi4pwWnLPVqhzDT9SdfyPwDPCuFpyzlTodv/2KiBOAPwUWZOaL7T7fGFU5hl6PR6GLr8dtjV9ETAfuAS7MzL9rsEu3X4uh2jFs2/XYRLB7/QCYHbUVhg4BFgL3lro/o/YNNBHxDmo3vf4iMz+RmXMy83cOcOx7gYURMSkijgFmU5svP1KrqA2hT4yIfwTMBZ4aRfuDpeMxjIh/R23U4KNDpozdC1wYNScDOzJz65g/afu0M4YHVL6N+x61X4wAi6j9+4PuiGFl45eZx2TmrMycRe2ehX+fmX/W7DnboLIxBDZTG4khIt5CbRGBnzV7zhbraPz2JyJmAt8CPl7BEax6lY0hXo9HrMuvx22LX0S8EfgOsDQz/2ejfcbBtRgqHMO2Xo+zAiv1+Brbi9pKTD+ltsrR5XXlhwD/HXgS+F/AGcO0/wi1bzleAV4AHqiru7wcdwPwgWHaf6a0303tW4s/rav7T9RWKnsS+N1Ox6rCMdxd9llXXr9fygP4k1L3BHWrT1Xt1eYYbqK2wMbfl336GrR/G7UkeyPwP3htVa+uiGFV4zdknxVUdNXQKscQOBr4y/Lv70ngY52OVUXj1/BaQm0k8CVe+/24ttOx6rYYljqvxyOLYVdfj9sVP+D3gH+oi8s6GqyaSZdfi6scwyH7rKCF1+MoB5UkSZIk9QinhkqSJElSjzERlCRJkqQeYyIoSZIkST3GRFCSJEmSeoyJoCRJkiT1GBNBSZIkSeoxJoKSJEmS1GNMBCVJkiSpx/x/btCpyCBcXl4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure() \n", - "plt.subplot(2,1,1)\n", - "plt.plot(df['SimulatedTemp'], label = 'Simulated Temperature')\n", - "plt.plot(df['OutsideTemp'], '-.', label = 'Outside Temperature')\n", - "plt.title('Temperatures')\n", - "plt.legend()\n", - "plt.subplot(2,1,2)\n", - "plt.plot(df['SimulatedHeat'], drawstyle = 'steps', label = 'Heat Input')\n", - "plt.title('Heat Input')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Export the resampled data-set for further use" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "df_simulation.to_pickle(f\"../Data/CARNOT_output/{exp_id}_prbs_simulation_df.pkl\")" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "def simulate_carnot(df_wdb, df, power_signal):\n", - " \n", - " try:\n", - " power = np.array([df['time'], power_signal]).T\n", - " except:\n", - " import pdb; pdb.set_trace()\n", - " pass\n", - " runtime = df_wdb['time'].iloc[-1]\n", - " \n", - " eng.workspace['power'] = matlab.double(power.tolist())\n", - " eng.set_param('polydome', 'StopTime', str(runtime), nargout = 0)\n", - " eng.workspace['result'] = eng.sim('polydome')\n", - " df_simulation = carnot_to_series(eng, df.index[0])\n", - " \n", - " return df_simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "train_exps = ['Exp1', 'Exp3', 'Exp5', 'Exp6']\n", - "test_exps = ['Exp2', 'Exp4', 'Exp7']" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "t_cols = ['time_h', 'time_m']\n", - "w_cols = ['SolRad', 'OutsideTemp']\n", - "u_cols = ['SimulatedHeat']\n", - "y_cols = ['SimulatedTemp']" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "t_lags = 3\n", - "w_lags = 1\n", - "u_lags = 1\n", - "y_lags = 3" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "dict_cols = {\n", - " 't': (t_lags, t_cols),\n", - " 'w': (w_lags, w_cols),\n", - " 'u': (u_lags, u_cols),\n", - " 'y': (y_lags, y_cols)\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "dfs_train = []\n", - "dfs_test = []\n", - "\n", - "for exp in train_exps:\n", - " df_wdb, df = load_weather_data(exp)\n", - "\n", - " len_signal = len(df)\n", - " rnd_power = get_random_signal(\n", - " len_signal,\n", - " a_range = (- COP_cooling * Pel_max, COP_heating * Pel_max),\n", - " signal_type = 'analog'\n", - " )\n", - "\n", - " df_sim = simulate_carnot(df_wdb, df, rnd_power)\n", - " df.loc[:, 'SimulatedHeat'] = rnd_power\n", - " df.loc[:, 'SimulatedTemp'] = df_sim\n", - " \n", - " dfs_train.append(df)\n", - "\n", - "for exp in test_exps:\n", - " df_wdb, df = load_weather_data(exp)\n", - "\n", - " len_signal = len(df)\n", - " rnd_power = get_random_signal(\n", - " len_signal,\n", - " a_range = (- COP_cooling * Pel_max, COP_heating * Pel_max),\n", - " signal_type = 'analog'\n", - " )\n", - "\n", - " df_sim = simulate_carnot(df_wdb, df, rnd_power)\n", - " df.loc[:, 'SimulatedHeat'] = rnd_power\n", - " df.loc[:, 'SimulatedTemp'] = df_sim\n", - " \n", - " dfs_test.append(df)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "pickle.dump(dict_cols, open(Path(\"dict_cols.pkl\"), 'wb'))\n", - "pickle.dump(dfs_train, open(Path(\"dfs_train.pkl\"), 'wb'))\n", - "pickle.dump(dfs_test, open(Path(\"dfs_test.pkl\"), 'wb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAGKCAYAAACIDjkQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACHH0lEQVR4nOzdZXRc1/X38e8ZMbNkybIlM8qMsZM4zA1zw2lKSduU6Wn7b9M2bQpp0rSJG2ZumDl2zMwoWWQxM8x5XkhyncQgGNbvs5aW5ZkLWxpJd/Y95+xtrLWIiIiIiIiIdzm8HYCIiIiIiIgoORMREREREfEJSs5ERERERER8gJIzERERERERH6DkTERERERExAcEe/JkycnJNjs725OnFBERERER8Rlr1qypsNamHOo5jyZn2dnZrF692pOnFBERERER8RnGmH2He07TGkVERERERHyAkjMREREREREfoORMRERERETEB3h0zZmIiIiIiPROe3s7hYWFtLS0eDsU6Yfw8HAyMzMJCQnp9T5KzkREREREfFBhYSExMTFkZ2djjPF2ONIH1loqKyspLCxkxIgRvd5P0xpFRERERHxQS0sLSUlJSsz8kDGGpKSkPo96KjkTEREREfFRSsz8V39eOyVnIiIiIiIiPkDJmYiIiIiIHNbvf/97Jk2axJQpU5g2bRorVqzgxhtvZOvWrS45fnZ2NhUVFUfc5g9/+EOfj/vwww9z88038/vf/55p06Yxbdo0goKCDnx+11139Tdkt1FBEBEREREROaRly5bx2muvsXbtWsLCwqioqKCtrY3777/fo3H84Q9/4Oc//3m/9v3FL37BL37xCwCio6NZv369CyNzLY2ciYiIiIjIIe3fv5/k5GTCwsIASE5OJiMjg0WLFrF69WqgK+H5yU9+wsyZMzn55JNZuXIlixYtYuTIkbzyyivA/0axepx99tl89NFHXzrfeeedx8yZM5k0aRKLFy8G4Kc//SnNzc1MmzaNK6+8EoDHH3+cOXPmMG3aNL7+9a/T2dkJwEMPPcTYsWM5/vjjWbp06WG/rs7OTn70ox8xe/ZspkyZwn333QfARx99xPHHH88ll1zC2LFj+elPf8oTTzzBnDlzyMnJYc+ePQBce+21fOMb3+DYY49l7NixvPbaawP5Nh+gkTMRERERER/3f69uYWtxnUuPOTEjll+fM+mI25x66qn89re/ZezYsZx88slceumlHH/88Z/bprGxkUWLFvGnP/2J888/n1/+8pe8++67bN26lWuuuYavfOUrvY7pwQcfJDExkebmZmbPns2FF17I7bffzj//+c8DI17btm3jmWeeYenSpYSEhPCtb32LJ554glNOOYVf//rXrFmzhri4OE444QSmT59+yPM88MADxMXFsWrVKlpbW1mwYAGnnnoqABs2bGDbtm0kJiYycuRIbrzxRlauXMk//vEP7r77bu68804A8vLy+Pjjj9mzZw8nnHACu3fvJjw8vNdf66EoORMROYrP9lSQGhPG6NQYb4ciIiLiUdHR0axZs4ZPP/2UDz/8kEsvvZTbb7/9c9uEhoZy+umnA5CTk0NYWBghISHk5OSQl5fXp/Pddddd/Pe//wWgoKCAXbt2kZSU9Llt3n//fdasWcPs2bMBaG5uJjU1lRUrVrBo0SJSUlIAuPTSS9m5c+chz/POO++wceNGnn/+eQBqa2vZtWsXoaGhzJ49m/T0dABGjRp1IGnLycnhww8/PHCMSy65BIfDwZgxYxg5ciTbt29n2rRpffp6v0jJmYjIETS1dXDjI6uZPzKJB66d7e1wRERkkDraCJc7BQUFsWjRIhYtWkROTg6PPPLI554PCQk5UDbe4XAcmALpcDjo6OgAIDg4GKfTeWCfQ/X/+uijj3jvvfdYtmwZkZGRLFq06JDbWWu55ppr+OMf//i5x1966aVel6+31nL33Xdz2mmnfSmGnviP9PXAl0vlu6LtwVHXnBljhhljPjTGbDPGbDHGfLf78WnGmOXGmPXGmNXGmDkDjkZExMe8u7WUprZONhTWYK31djgiIiIetWPHDnbt2nXg/+vXrycrK6vPx8nOzmb9+vU4nU4KCgpYuXLll7apra0lISGByMhItm/fzvLlyw88FxISQnt7OwAnnXQSzz//PGVlZQBUVVWxb98+5s6dy0cffURlZSXt7e0899xzh43ntNNO49///veBY+7cuZPGxsY+fU3PPfccTqeTPXv2sHfvXsaNG9en/Q+lNyNnHcAPrLVrjTExwBpjzLvAn4H/s9a+aYw5s/v/iwYckYiID3l5fTEAFQ1tFNU0k5kQ6eWIREREPKehoYFbbrmFmpoagoODGT16NIsXL+aiiy7q03EWLFjAiBEjyMnJYfLkycyYMeNL25x++unce++9TJkyhXHjxjFv3rwDz910001MmTKFGTNm8MQTT3Dbbbdx6qmn4nQ6CQkJ4Z577mHevHn85je/Yf78+aSnpzNjxowDhUK+6MYbbyQvL48ZM2ZgrSUlJYWXXnqpT1/TuHHjOP744yktLeXee+8d8HozANPXO8HGmJeBfwI/BB601j5jjLkcOMdae8WR9p01a5btqeoiIuLrqhrbmPP795g7MpGluyu554oZnDUl3dthiYjIILFt2zYmTJjg7TDkEK699lrOPvvsoyaph3oNjTFrrLWzDrV9n0rpG2OygenACuB7wB3GmALgL8DPDrPPTd3THleXl5f35XQiIl71+sZiOpyWn54+gdBgBxsKa7wdkoiIiASwXhcEMcZEAy8A37PW1hljbgNutda+YIy5BHgAOPmL+1lrFwOLoWvkzDVhi4i438vrixmXFkNOZhwT02NZX1Dj7ZBERETEBzz88MNuOW6vRs6MMSF0JWZPWGtf7H74GqDn8+cAFQQRkYBRUNXE6n3VnDs9A4Bpw+LZXFRLp1P3mERExHNUjMp/9ee16021RkPXqNg2a+3fDnqqGOjpQHcisOuL+4qI+KtXNnQVAvnK1K7kbOqwOJraOtld1uDNsEREZBAJDw+nsrJSCZofstZSWVnZ5yIhvZnWuAC4CthkjFnf/djPga8B/zDGBAMtwE19OrOIiI+y1vLSuiLmZCceqM44NTMegA0FNYwbombUIiLifpmZmRQWFqK6Df4pPDyczMzMPu1z1OTMWrsEOFxHtZl9OpuIiB/Yur+OXWUN3Hbe5AOPZSdFERsezPrCGi6ZPcyL0YmIyGAREhLCiBEjvB2GeFCfqjWKiAwGL68vJthhOCvnf2XzHQ7D1GHxbFBREBEREXETJWciIgfpdFpeWV/MonEpJESFfu65KZlxbC+pp6X90A0tRURERAZCyZmIyEFW5FZSUtfCudOGfum5qZnxdDotW4rrvBCZiIiIBDolZyIi3VraO/nTWzuICQ/m5AlpX3p+2rB4AE1tFBEREbdQciYiQleFxp+/uIkNBTXccdFUIkKDvrRNamw46XHhbCis8XyAIiIig1Rja4e3Q/AYJWciIsDiT/by4roivn/KWE6fPOSw203NVFEQERERT1mxt5Kc37zNefcs5dnVBTS3Bfa6byVnIjLofbi9jNvf2s5ZOenccuLoI247ZVgceZVN1DS1eSg6ERGRwevuD3YTHxlKQ2sHP35+I3P+8B6/eWULeRWN3g7NLZScicigtrusnu88tY6J6bHccfEUjDlcW8cu07qbUW8srPVAdCIiIoPXxsIaluyu4KbjRvLurcfxzE3zOGFcKk+uyOfK+1d4Ozy3UHImIoNWfUs7Nz6ymrAQB4uvnkVkaPBR95mcGYcxKgoiIiLibv/6cA+x4cFcOXc4xhjmjkzirsun8/1Tx1JU00x9S7u3Q3Q5JWciMmg9u7qQvMom7r58BkPjI3q1T2x4CKNSolUURERExI12lzXw9tYSrp6fTUx4yOee67lm769t8UZobqXkTEQGJafT8vjyfUwfHs/8UUl92ndqZjzrC2qx1ropOhERkcHt3o/3EBbs4LoF2V96LiM+HIDimmYPR+V+Ss5EZFBauqeC3IpGrp6f1ed9pw6Lo6KhleIAvGMnIiLibUU1zby0rojLZg8nKTrsS8+nx3WNnBXXBN51WMmZiAxKjy7bR1JUKGfmpPd535yhcQBsKVJREBEREVf7zyd7AfjacSMP+XxqTBgOA/trNXImIuL3imqaeX9bKZfOHkZY8JebTR/NkLiu6RQVDSqnLyIi4kqVDa08vSqfc6cNPex68OAgB2mx4Ro5ExEJBE8s3wfAFXOH92v/hMhQAKoaW10Wk4iIiMDDn+XR2uHkm4sOPWrWIyM+QiNnIiL+rrWjk2dWFXDi+DQyEyL7dYzwkCCiQoOobNTImYiIiKt0dhfrOmVCGqNTY464bXpcuAqCiIj4uzc3lVDZ2NavQiAHS4wOpUrJmYiIiMtsKa6luqmds6YcfT1418hZS8BVTlZyJiKDyqPL8hiRHMXC0ckDOk5iVJiSMxERERdasrsCgGNGHf0anR4XTmuHM+CuxUrORGTQ2FxUy9r8Gr46LwuHwwzoWElRGjkTERFxpaW7Kxg/JIaUmC+Xz/+ijABtRK3kTEQGjceX7yMiJIiLZmYO+FiJSs5ERERcpqW9k1V51Szo5cyWjO5eZ0UBtu5MyZmIDApldS38d10R500fSlxEyICPlxQVSmVjW8DNdRcREfGG1XnVtHU4e73sID2+q63NfiVnIiL+598f76HDafnm8aNccrzEqFDaOpw0tnW65HgiIiKD2ZLdFYQEGeaMSOzV9klRoYQGOzStUUTE35TVtfDkinwumD6U4Un9K5//RQlR3b3O1IhaRERkwJbsLmf68ASiwoJ7tb0xhoy4cIqVnImI+Jd7P95Lh9Ny84mjXXbMpO7krFKNqEVERAakqrGNLcV1fa6knB4XEXC9zpSciUhAK6tr4YkV+7hg+lCykqJcdtzEnpEzFQUREREZkGV7KrGWXhcD6ZEeH641ZyIi/sQdo2YASVFdZX6VnImIiAzMkt0VRIcFMzUzrk/7ZcRFUFrfSqczcIpzKTkTkYDlrlEzgMRojZyJiIi4wtLdFcwbmURwUN9Sk4z4CDqdlrL6wFl3puRMRAKWu0bNAKJCgwgNdig5ExERGYD8yibyq5pYODqpz/v2lNMPpHVnSs5EJCCV1XeNmp3vhlEz6KoS1dPrTERERPpn6Z4KABaOSenzvj2NqItrNHImIuLT7usZNTvB9aNmPRIiQzVyJiIiMgBLdlcwJDacUSl9v5F6oBF1rUbORER8Vll9C48v7xo1y052/ahZj6RojZyJiIj0l9Np+Wx3BQtGJ2OM6fP+seEhxIQFa+RMRMSXeWLUDLrK6Vepz5mIiEi/bN1fR3VTOwvH9H29WY/0+HCtORMR8VU9a83Om+beUTPoTs4aNHImIiLSH0t2d603WzCqb/3NDpYeF8H+Wo2ciYj4pMUf76W903KLGyo0flFSVCiNbZ20tHe6/VwiIiKBZsXeSkalRJEaG97vY2TEh2vNmYiILyqrb+FxD42aASR2N6KubtLomYiISF84nZY1+6qZnZ04oONkxEVQ0dAWMDdKlZyJSMDw5KgZdE1rBKjU1EYREZE+2VPeQF1LBzOyEgZ0nPT4rnL6JQEytVHJmYgEhPL6Vo+OmkFXtUZA5fRFRET6aPW+agBmDTA5y4jrbkQdIFMblZyJSEBY/Mke2jqc3OyhUTPo6nMGSs5ERET6anVeNUlRoYwY4A3VnpGz/QFSTv+oyZkxZpgx5kNjzDZjzBZjzHcPeu4WY8yO7sf/7N5QRUQOray+hceW7+O86UMH/Ee+L5J6pjUqORMREemTNfuqmJGV0K/+ZgdL7xk5C5By+sG92KYD+IG1dq0xJgZYY4x5F0gDzgWmWGtbjTGp7gxURORw/vTmDjqdlu+cOMaj542LCCHIYdTrTEREpA/K61vJq2zisjnDB3ys8JAgkqJCKQ6QNWdHTc6stfuB/d2f1xtjtgFDga8Bt1trW7ufK3NnoCIih7JmXxUvrC3km4tGeWytWQ+Hw5AQGaJpjSIiIn2wNt816816pAdQOf0+rTkzxmQD04EVwFjgWGPMCmPMx8aY2W6IT0TksDqdll+9vIX0uHBuPsFza80OlhgVquRMRESkD9bsqyY0yMHkoXEuOV56XMTgWXPWwxgTDbwAfM9aW0fXqFsCMA/4EfCsOcSkUWPMTcaY1caY1eXl5S4KW0QEnlyZz5biOn5x1gSiwnozS9v1lJyJiIj0zeq8KnIy4wgPCXLJ8YbGRwTMmrNeJWfGmBC6ErMnrLUvdj9cCLxou6wEnEDyF/e11i621s6y1s5KSUlxVdwiMshVNbbxl7d3cMyoJM7KSfdaHElRYSoIIiIi0kst7Z1sLqpz2ZRG6CoKUt/aQX1Lu8uO6S29qdZogAeAbdbavx301EvAid3bjAVCgQo3xCgi8iV3vL2dxtYO/u8rkwZc6WkgEqK05kxERKS3NhXV0tbpHHDz6YMdKKcfAEVBejNytgC4CjjRGLO+++NM4EFgpDFmM/A0cI211roxVhERADYU1PD0qgKuPSabMWkxXo0lMSqMmqZ2OjqdXo1DRETEH6zO6yoGMtOFyVlGAJXT7021xiXA4W5Lf9W14YiIHJm1ll+/soXk6DC+e7JnS+cfSk+vs+qmdlJiwrwcjYiIiG9bs6+aEclRJEe77pqZ0T1yVhwARUH6VK1RRMTblu+tYn1BDd87eQwx4SHeDofE7uRMUxtFRESOzFrL2vxql46aAaTGhOEwBEQ5fSVnIuJXHliyl6SoUC6ckentUID/jZxVqhG1iIjIEe2taKSqsc3lyVlwkIPhiZF8vLOcTqd/r7JSciYifmNPeQPvbSvjq/OyXFZ+d6ASo7unNTb6f4UoERERd1qT59rm0we79ZSxbCys5aGluS4/ticpORMRv/HgklxCgx1cNT/L26Ec8L9pjRo5ExEROZLV+6qIiwhhVEq0y4/9lakZnDwhlb+8s4O8ikaXH99TlJyJiF+oamzjhbWFXDB9qEsXEQ9UQmTPtEatORMRETmSNfu61ps5HK5vgWOM4bbzcghxOPjpixtx+un0RiVnIuIXnli+j5Z2J9cvHOHtUD4nJMhBbHiwCoKIiIgcQXVjG3vKG12+3uxgQ+LC+cVZE1i+t4qnVuW77TzupORMRHxea0cnjyzbx/FjUxjr5b5mh5IUHaaRMxERkSNYs8/1/c0O5dLZw1gwOok/vrHdL/ueKTkTEZ/3yvpiKhpa+dqxI70dyiElRoVS1aDkTERE5HBW7asiJMgwbVi8W89jjOH2C6bQ6bT84r+bsNa/pjcqORMRn2at5YEluYwfEsOC0UneDueQEqNCNa1RRETkCFblVpEzNM4j1ZaHJUbyo9PG8eGOcv710R63n8+VlJyJiE9bsruC7SX13LBwBMa4fgGxKyRFhWpao4iIyGG0tHeyqaiW2dmJHjvntcdkc960DO54ewf3f7rXY+cdqGBvByAiciRPrsgnOTqUr0zL8HYoh5UYFUp1UxvWWp9NIEVERLxlQ0EN7Z3Wo8mZw2H4y8VTaet0ctvr2wgNdnD1/GyPnb+/lJyJiM9qbO3gg+1lXDZ7GGHBvtF0+lASo0LpdFrqmjuIiwzxdjgiIiI+ZbWHioF8UXCQg39cNp22jrX86uUthAY5uGzOcI/G0Fea1igiPuv97WW0djg5a4rvjpoBJEX39DpTI2oREZEvWplbxZjUaBKiQj1+7pAgB/dcOZ3jx6bws/9u4oU1hR6PoS+UnImIz3ptQzGpMWHM8vCdtr7qaUStoiAiIiKf1+m0rN1XzSwPTmn8orDgIO67aibHjEriR89v4NUNxV6L5WiUnImIT6pvaeejneWcmZOOw+Hb67iSosIAVBRERETkC3aU1FPf2sGcEd690RoeEsR/rp7FrKxEvvfMet7aXOLVeA5HyZmI+KT3t5XR1uHk7Cnp3g7lqBKjNXImIiJyKKvyqgCYleW9kbMekaHBPHjdbKZkxnHLU2v5YHupt0P6EiVnIuKTXtu4nyGx4cwY7ttTGqGrlD4oORMREfmiVXlVDIkNJzMhwtuhABAdFszD181h/JBYvvH4Wj7ZWe7tkD5HyZmI+Jy6lnY+8ZMpjdA1VSIyNIjKBiVnIiIiPay1rMqrYvaIRJ9qNRMXEcKj189hZHIUNz22ms92V3g7pAOUnImIz3lvayltnU7O8oMpjT16ep2JiIhIl8LqZkrrWpmd7XuzYBKiQnn8xrkMT4zkmodW8uJa36jiqORMRHzO6xv3kxEXzvRh8d4OpdeSokJVEEREROQgvrTe7FCSo8N47uvHMCsrke8/u4G/v7sTa61XY1JyJiI+pba5nU92+c+Uxh4JUaFUqc+ZiIjIAavyqokJD2bckBhvh3JYcZEhPHL9HC6amck/3t/F95/dQGtHp9fiCfbamUVEDuHdraW0d1q/mtIIXdMad5bUezsMERERn7E6r4qZWQkE+fjN1tBgB3dcNIURyVHc8fYOiqqbWXz1TOIjPd80WyNnIuJTXt9YzND4CKb50ZRG+N+0RqfTu9MhREREfEF1Yxu7yhqY7cXm031hjOHbJ4zm7suns76ghssWL6eiwfMzYpSciYjPqG1qZ8nuCs6aku5TVZ16Y9yQWFo7nOws0+iZiIjI6n3VAH6TnPU4Z2oGD1w7i7zKRi5bvJzSuhaPnl/JmYj4jH9/vIf2TstXpmZ4O5Q+mz8qCYDPdld6ORIRERHvW51XRWiQgymZcd4Opc+OHZPCI9fNYX9NM5fct4zC6iaPnVvJmYj4hG376/jPp3u5eGYmk4f63x/yofERDE+MZNleJWciIiKr8qrIyYwjPCTI26H0y9yRSTx+41yqG9u49L7l5FU0euS8Ss6+YHdZPVuL67wdhsig0um0/OzFTcRFhPDzMyd4O5x+O2ZUEiv2VtKpdWciIjKItbR3sqmolllZvtffrC+mD0/gya/No6mtg8v/s5zmNvdXcVRydpCW9k6ueXAV1zy0krYOp7fDERk0nlixj/UFNfy/syeQEOX5ykiuMn9UEnUtHbrBIyIig9rW/XW0d1qmD/fv5Axg8tA4/nXlTPbXtvDcmgK3n8+nkzNrLQ8uyeXl9UUeOd9jy/ZRVNNMeX0rr20s9sg5RQa7ktoW/vzWDo4dk8x504Z6O5wBmT+ya93Zsr0VXo5ERETEe9bl1wAwfXi8V+NwlXkjE5mZlcB9H++lvdO9Azg+m5x1dDr58fMb+e1rW/nJCxspq3dvpZTa5nb++eFujh2TzJjUaB5Ykuv1DuEig8FvXtlCe6eT286b7HcVGr8oNTacUSlRLNujdWciIjJ4rS+oIT0unLTYcG+H4hLGGL55/CiKapp5feN+t57LJ5Oz5rZObnpsDc+tKeSr84bT3mn514d73HrOf3+0h7qWdn52xgSuWzCCLcV1rMytcus5RQa7d7eW8taWEr5z0hiykqK8HY5LzB+VxMrcKrffWRMREfFV6/KrA2bUrMeJ41MZmxbNvz/a49YBHJ9Lzqob27ji/uV8tKOM286bzG3n5XDRjEyeXJFPcU2zW865v7aZh5bmct60oUzMiOWCGUNJiAzhgSW5bjmfiEBTWwe/fnkz49JiuOm4kd4Ox2Xmj0ymsa1rIbSIiMhgU9HQSmF1M9OGxXs7FJdyOAzfOH4UO0rr+XBHmfvO47Yj98P+2mYuuvczthTX8a8rZ/LVeVkA3HLSaCyWuz/Y7Zbz/v3dnVgL3z9lLADhIUFcOTeLd7eVkl/pub4GIoPJvz7cQ3FtC7edP5mQIJ/6UzQg80Z2NdvU1EYRERmM1h9Yb+b/xUC+6JypGQyNj+DfH7lvRp/PvCNqaO3guodWUVbXymPXz+H0yUMOPJeZEMkVc4bz3OoC9lW6tsfAztJ6nl9TyFXzsxiWGHng8avmZxHsMDz0mUbPRFxtX2Ujiz/Zy3nTMpidnejtcFwqKTqM8UNiWK5+ZyIiMgitK6gmyGGYnOF/PUuPJiTIwY3HjmBVXjWr8tyz/MknkrNOp+W7T61jV1kD91w5g7ndFc8O9u0TRhPkMPzjvV0uPfef39pBVGgw3z5h9OceT4sN5+wpGTy7qoC6lnaXnlNksPvda1sJCTL8zI97mh3JvJFJrMqrorXD/f1QREREfMn6ghompMcQEeqfzaeP5tLZw0iIDOFeN42e+URy9sc3tvH+9jJ+fc5EjhubcshtUmPDueaYbP67vohdpfUuOe9nuyt4b1sp31g0isRD9Fa6fsEIGts6eXaV+3saiAwWH+4o471tZdxy0piAqeL0RceMSqKl3cmGAq07ExGRwaPTadlQUBtw680OFhkazLXHjOD97WXsKHFNTnIwrydnT6/M5/4luVwzP4ur52cfcdtvHD+KyJAg/v7ezgGft6y+he89s57spEiuW3Do8+ZkxjEnO5GHP8uj06my+iID1dbh5LevbmVkchTXLxjh7XDcZu6IJIzRujMRERlc9pQ30NDawbRhgbfe7GBXz88iMjSIB91QPNCrydlneyr45UubOW5sCv/v7IlH3T4xKpQbFo7gjU0lbCnu/x3pjk4ntzy5jrqWdv791ZlEhgYfdtvrF46gsLqZd7eW9vt8ItLlwaW55FY08qtzJhIa7PV7Q24TFxnCpIxYPtujZtQiIjJ4rA+w5tOHkxAVykkT0vhgR5nLy+p77d1RbXM733piLdnJUfzziukE97Ja29XHZAPw2e7+35H+yzs7WZFbxR/Oz2FCeuwRtz1lYhrhIQ63LfoTCVSNrR3UNLUd+Nhb3sDd7+/i5AmpLBqX6u3w3O6YUcmsy6+hpV3rzkREZHBYV1BNbHgwIwKkd+mRHDcmmfL6Vra7eGrj4YeMuhljhgGPAkMAJ7DYWvuPg57/IXAHkGKt7fVt4qW7K6hpaue+r84kNjyk1wEnRYUSHuKgtK6l1/sc7O0tJdz78R6umDucC2ZkHnX7IIdhVEo0u8oa+nW+QFXR0Mov/7uZ0yancf70o38fZXD5bE8FV96/gi/eTAoNdvRqlDwQzB+ZxOJP9rJ2XzXHjE72djgiIiJuty6/hmnDE3A4jLdDcbtjx3TVyfh0V/lRB3v64qjJGdAB/MBau9YYEwOsMca8a63d2p24nQLk9/XES3ZXEB0WzIysvs1JNcYwJDackn4kZ3kVjfzw2Q1MyYzjV314gzg6NZrVedV9Pl+g2l1Wz3UPr6KgqpmKhlYlZ/Iljy3bR3xECN85acznHp86LJ6sQXA3DWD2iESCHIaleyqUnImISMBrbO1gZ2k9p04acvSNA8CQuHDGpkXzyc4KbjpulMuOe9TkzFq7H9jf/Xm9MWYbMBTYCvwd+DHwcl9PvHR3BfNGJvar+WxabHifR846nZZvPbGWoCDDPVfMIDyk9+U9x6RG8/L6YhpbO4gK600+G7g+21PBNx5bQ2iwg0XjUvhsTyWtHZ2EBQdmuVTpu8qGVt7bVsrV87O5LoCLfhxNdFgwx4xK4rFl+7hqXjZD4gKzMqWIiAjAxsJanBamB3Clxi86bkwKjy7fR3Nbp8taB/QpMzLGZAPTgRXGmK8ARdbaDUfZ5yZjzGpjzOry8nIACqqa2FfZxMJ+3k0eEtf3kbP8qia27q/jB6eO+1yz6d4YnRoNdFWgGcyeX1PI1Q+sJC02nP9+awGXzR5GW4eTzUUqFy7/8991RbR3Wi6dPczboXjd786dTHun5ScvbHT5gmERERFfsr6gBiCgy+h/0bFjU2jrcLLShbUpep2cGWOigReA79E11fEXwK+Otp+1drG1dpa1dlZKStfczCW7u5amLRzTz+QsNpzSutY+vdnJq2wEYGJ6TJ/PNzq1a5/dg3TdWafTcsfb2/nhcxuYNzKJ5795DMMSI5mZlQigKZ9ygLWWZ1YVMG1YPGPT+v67Fmiyk6P4+Znj+XhnOU+tPHS/xPL6VpbuVlVHERHxb+vyq8lOiiThEL2DA9Wc7ERCgx18srPcZcfsVXJmjAmhKzF7wlr7IjAKGAFsMMbkAZnAWmNMryaZLtldQVpsGKNSovsVdGpsOG0dTmqa2nu9T15FV3LWn/UuWUmRBDvMoCwKUtvczg2PrOKeD/dw+ZxhPHTdbOIiugq4pMSEkZUUyep9Ss6ky/qCGnaVNXDJLI2a9bhybhYLRydz2+tbya9s+txzq/OqOPOuT7ny/hU88lmedwIUEREZIGst6wpqmD48sPubfVFEaBBzRyTy6S4PJmfGGAM8AGyz1v4NwFq7yVqbaq3NttZmA4XADGttydGO53RaPttdwcLRKXQduu+GxHat3ejL1Ma8ikZiwoJJ6kc2HxLkIDs5atCNnO0qree8e5aydHcFvz9/Mn+8YMqX1gjOzEpg7b5qTdkSAJ5dXUBESBDnTE33dig+w+Ew/OmiKQQZww+f34DTabHW8uiyPC5bvJyo0CCOHZPMb17dwmsbi70droiISJ8V17ZQXt86qKY09jh2TDI7Sxsoqe1fJfkv6s3I2QLgKuBEY8z67o8z+3vCrfvrqG5qZ+GYpP4egiFxYUDfkrPcyiayk6P6nRCOSY1mzyBKzt7aXMJ59yylvqWDJ782jyvnZh1yu1lZiVQ2tpHbPTIpg1dTWwevbtjPmTnpxPShPcZgMDQ+gl+dM5GVuVX8++M9/PC5jfzq5S0cPzaFl29eyH+unsWsrARufWY9S3ZpiqOIiPiXwdJ8+lB6Sup/4qLRs6MmZ9baJdZaY62dYq2d1v3xxhe2ye5tj7Oe9WYLRvW/tHRa98hZaR8y1LyKRrKT+1/Ce3RqNHmVjbR2BH5D2SdX5PONx9cwOi2GV29ZwOzsxMNuOyu7a/haUxvl9Y37aWjtUCGQw7hoZiYnT0jjjrd38MLaQr570hj+c/Us4iJCCA8J4v6rZzMyOZqvP7aaTYUqsiMiIv5jXX41ocEOxg9xXb8vfzF+SAwpMWF86qKbq32vYz9AS3dXMDYtmtTY/peVTo3pTs7qWnu1fVuHk8LqJrKT+lal8WCjU6NxWsiraDr6xn7sudUF/Py/mzhxfCrP3DSP9LiII24/OiWa2PBg1qgoyKD37OoCRiZHMTt7cM037y1jDH+8IIdTJ6Zx/9WzuPWUsZ9r0hkXGcKjN8whPjKUax9aOeirw4qIiP/YVFTLxPRYQoM9nlp4nTGGY8cks2RXOU7nwJf5ePQ7aC2szK1i4eiUAR0nNNhBUlRor6c1FlY34bSQPYDmtz3l9HeV1ff7GL7u5fVF/PiFjRw7Jpl/Xdm7XnAOh2FmVgKr97muhKj4nz3lDazKq+biWcP6PXV4MEiJCWPx1bM4eWLaIZ9Piw3nsRvmYIGz7vqU29/cTm0fCh+JiIh4mtNp2VJcR87QOG+H4jXHjUmhuqmdzcUDn/ni0eSssa2D1g7ngNab9ehLI+qeMvoDmdY4KiUaYwK3nP6bm/bz/Wc3MHdEIouvmtWnJt2zshPZU95IdWObGyMUX/bs6gKCHIYLZwz1dih+b2RKNC9/ewFnTE7nvk/2sPDPH3DPh7tpauvwdmgiIiJfsq+qiYbWDiYPHXxTGnv0tAdzxdRGjyZnDa0dBDsMc0YMPDkbEhfe66ooud1TEUcMIDkLDwliWEJkQJbTf29rKbc8tY5pw+J54JrZfe5wPjOraxrbGq07G5TaO528sKaIE8alDGi6svzPsMRI/n7pNN787rHMHZHIHW/v4Pg7PuL+T/cqSRMREZ+yqahrtGjyIB45S44OY1JGrEv6nXk2OWvpYMbwBKLDggd8rD6NnFU0EhMeTELkwCrIjQ7Aio3L9lTyrSfWMikjloeum01UP16bqZnxBDuMioIMUu9tLaWioZXLZg/3digBZ/yQWO6/ZjbPf2M+o1KiuO31bSy4/QPufn8Xtc2a7igiIt63uaiW0CAHY9NivB2KVx03NoU1+6ppaB3YTVSPJmfN7Z0sGN3/Ko0HGxIbTmVjG20dzqNum1fZyIgBlNHvMSY1mr0VjXR0Hv2c/mBrcR03Pbqa4UmRPHzdHGL7Wf48IjSISUPjWKN1Z4PSkyvzSY8LZ9G4ga0llcOblZ3I0zfN54Vvzmf68AT++u5OFtz+AX99Z0ev/gaKiIi4y+aiWsanx3ypF+5gc+yYZDqcljc27h/QcTz+XXTFejOAtNiuXmdl9UcfPcurbBxQMZAeo1KjaetwUlDdPOBjeVtBVRPXPLSS6PBgHr1+Dgn9aM59sNlZCWworB0UrQbkf/Irm/h0VwWXzh5G8CD/o+wJM7MSefDa2bz+nYUcPy6Fuz/YzeX/WU5ZH3o+ioiIuIq1ls1FtYN6SmOPuSOSmJWVwP+9umVANSo8+m7KYQxTMuNdcqy0uJ5y+kd+U9LW4aSounlAxUB6jOmu2OjvRUEqGlq56oEVtHU4eeT6OWTEH7lcfm/Myk6grcPJ5qI6F0Qo/uKpVfk4DOpt5mGTMuK454oZ3H35dLYW13HOP5ewNl/TikVExLMKqpqpa+lgcoaSsyCH4Z9XdFU7/9YTa/q9RtyjyVl0WLDLhjyHdBceKKk9cq+z/KqeMvr973HWY1QAlNNvaO3g+odXUVLXwoPXznLZ/OCZWV2NqjW1cfBo63Dy3OoCThyfetR+eOIe50zN4MVvHUNosIPL7lvOM6vyvR2SiIgMIj3FQAZzGf2DDYkL5x+XTWdXWQO//O9mrO173zOPJmfpca6r5HYgOTvKyNk+F5TR7xEbHkJabJjfjpxZa/nx8xvYUlzHPy+fcSChcoWUmDCykiJZrWbUg8a7W0upaGjjirkqBOJNE9JjeeXbC5k7MpGfvLCJv72zw9shiYjIILGpqJaQIMPYIdHeDsVnLByTzPdOGsuL64p4elVBn/f3aHLmyq7h8ZEhhAY7jrrWIreiKzkb4YI1ZwBjUmP8Njl7ZUMxb2wq4funjD1sE9yBmJmVwJp91f26SyD+56mV+QyNj+D4saneDmXQS4gK5aFrZ3PB9KH888PdbHFBE0wREZGj2VJcy9i0GMKC+9aGKdDdcuJojhubwq9f2cLmor5dk/12Bb8xhrTYsKOOnOVVNhIXETLgghc9esrp+1sCUlrXwq9e3sL04fF8/biRbjnHrKxEKhvbDiTEErjyKhpZsrurEEiQY2BVUMU1goMc/PqcSSREhvKrl7fgdPrX3ygREfEv1lo2FdVqvdkhOByGOy+dRlJUKN94fA0FVU2939eNcbndkNijN6LOq2hyyXqzHqNTo2ls62R/Lxtg+wJrLT99YSOtHZ389eKpbquq19MZPhAbdcvnPbUqnyCHUSEQHxMXGcJPzhjPmn3VvLC20NvhiIhIACuqaaamqZ3JmUrODiUxKpT7rppJXXM7F/z7s17PavHr5Kw3jahzKxpdst6sx+gDRUH8JwF5bnUhH+4o58enjWdkivvmBKfEdLU3qGg4cpEW8W9tHU6eX13ISeNTSYt13TpScY2LZmQyY3g8t7+5XY2qRUTEbXqm603OiPVyJL5rSmY8z3/zGIIdhkvvW85nuyuOuo9fJ2dDYsMpqWs57BTD1o5OimubXdLjrMdoPyunX1jdxG9f28rcEYlce0y2W8+VFNWdnNW3ufU84l1vbymhslGFQHyVw2H47bmTqW5qU3EQERFxm81FdQQ5DBPSlZwdydi0GF781jEMjY/gmodW8sqG4iNu79fJWVpsOC3tTupaDt1HoKCqCWthhAtHzpKiQkmIDGG3H5TTdzotP3lhI9Za/nLxVBxuXhsUGuwgPjKE8gb/mfIpfddTCOTYMSneDkUOY/LQOL46L4vHlu9TcRAREXGLTUW1jEmNJjxExUCOJj0ugme/Pp/pwxL4zlPrjritfydnR2lEnVvRtfguy4VrzowxjE6N9ouRs+fWFLB0dyU/P2sCwxJd9z04kuToMI2cBbDcikY+21PJ5XNUCMTX/eCUcSoOIiIibmGtZXNRLZPV36zX4iJDePSGOZwxecgRt/Pr5Ox/jagPnZzl9ZTRd+HIGcDo1Bh2+XjFxurGNm5/czuzsxO4Yo7npp8lR4dqzVkAe2plPsEOwyWzVAjE1x1cHOSdraXeDkdERAJISV0LlY1taj7dR+EhQfzzihlH3CYwkrPDjJzlVTYSHxlCfKRryuj3GJ0aTU1TO+U+nITc8c4O6lo6+O25kzHGcyMcKTHhPv19kf5r7ejk+TWFnDwhjVQVAvELF87IJDzEwYrcSm+HIiIiAWRTYXcxkKFab9ZXR5t55NfJWWpsVwGKwzWizqtsdGkxkB5zshMB+GhHucuP7QobCmp4amU+18zP9vgizeToUCrqlZwForc2l1ClQiB+JchhmJge2+cGmCIiIkeyubgOh0HFQNzAr5Oz8JAg4iNDDj9y5uIeZz0mD40lMyGCNzftd/mxB6rTafl/L28mOTqMW08Z4/HzJ0eH0djWSVPboYu0iP96amU+wxMjWTg62duhSB/kDI1jS3EdnVp3JiIiLrK5qJZRKdFEhgZ7O5SA49fJGfQ0ov7ySE1Le3cZfRevN4OuoiBn5qSzZHeFz/URenpVPhsLa/nlWROICQ/x+PkP9DpTUZCAsqe8geV7q7hszjC3V/0U15o8NI6mtk5yK3y/iJGIiPiHzUW1Wm/mJn6fnB2uEXW+G8roH+yMyUNo77S8v813FtpXNbbx57d2MG9kIl+ZmuGVGFKiu5IzrTsLLE+t6CoEctHMTG+HIn2Uk9l18dxcVOflSNxjfUENDa0aqRcR8ZSyuhbK6luZpOTMLfw+OetpRP1FPZUa3bHmDGDasHgy4sJ5Y1OJW47fH39+azuNrZ4vAnKw5O7kTBUbA0dLeyfPry3k1ElppMaoEIi/GZ0STXiIg00Btu7MWsvf393Jefcs5cfPb/B2OCIig8aW4q6bfZMztN7MHfw+OUuLDaOioZWOTufnHs+rdG9yZozh9MnpfLKrnPoW709tLKtv4dnVBVw1P4uxaTFei+PAtEYlZwHjrc0l1DS1c8WcLG+HIv0QHORgQnpsQCVn7Z1Ofvz8Rv7x/i6ykyJ5Y1MJ6/KrvR2WiMigsKe8a5r8GC++3wxk/p+cxYVj7Zen0eVWNJEQGUJcpPvWXZ2ZM4S2DicfbC9z2zl667UN+3FauNLLlfSSorvaFpSrYmPAeHJlPllJkRwzKsnboUg/5QyNY2txXUA0o25o7eCGR1bz3JpCvnPSGF77zrEkR4dy+5vbfbr3pIhIoMitaCQuIoQEN77HHsz8Pjk7VCNqp9Oydl81I1Oi3XruGcMTSI0J400fmNr48voiJqbHMjrVu3cxQoIcxEeGaOQsQOwua2BlbhWXzxmuQiB+bPLQOBpaO8jtnlHgr8rqWrj0vmUs3V3Bny7M4funjCU6LJjvnjSGFblVfLjD+zfKREQCXW5FIyOSo7y2hCbQ+X1yltadnB1cFOT5tYXsKK3n6vnunYblcBjOmDyED3eU0ejFBem5FY1sKKzlvOneKQLyRSnRYarWGCA+6n6ze+403/jZkv7pqajlz/3Omts6ufrBleRWNHL/NbO4dPb/ZglcNmc42UmR/OnNHWoZICLiZrkVjYx0U8E9CYDkbEjc50fOGlo7uOPtHUwfHu+RioVn5KTT2uH0akPql9cXYQyc46UKjV+UHB2mao0BYl1BDUPjI0iPi/B2KDIAY1KjCQt2sKnQP5Mzay2/fGkzO0rr+deVMzhhXOrnng8JcvCj08azo7SeF9cWeilKEZHA19TWwf7aFrdVQ5cASM4SI0MJCTKUdq9x+vdHuymvb+VXZ0/0yHDr7OxEkqNDeWOzdxpSW2t5eX0xc0ck+swb6OSYME1rDBDr82uYPjze22HIAPl7UZCnVxXwwtpCvnvSGBZ9ITHrcWbOEKYOi+dv7+6kpb3TwxGKiAwOeRVNAG5fOjSY+X1y5nAYUmPCKa1toaCqif98msv504cyfXiCR84f5DCcNmkIH24vo7nN828INhXVklvRyHnThnr83IfTNa1RyZm/K61roaim2WO/S+JeOUPj2OKHRUE2Ftbw65e3cNzYFL5z4pjDbmeM4aenj2d/bQuPfJbnuQBFRAaR3O5WVRo5cx+/T86gq5x+SV0Lt7+1HYeBH58+zqPnPzMnnaa2Tj7e6fmpjS+tKyY0yMEZk9M9fu7DSY4JpbGtk6Y2NYb1Z+vyawA0chYgcrqLguT5UVGQmqY2vvn4WlJiwrjz0mlHLUozf1QSJ4xL4Z4Pd1Pb7P0WJyIigWZvdxn97ORIL0cSuAIiORsSF876ghpe37ifbxw/yuPT++aOSCQhMoQ3Nnl2amOn0/LqxmIWjUtxa8uAvjrQiFpFQfzauoJqQoMcTFKTyYAwubsoiL9MbXQ6Ld97Zj1l9S3cc+UMEqNCe7Xft04YTV1LB0t2Vbg5QhGRwSe3opH0uHAiQ4O9HUrACojkLC02nKa2TtLjwvn6caM8fv7gIAeLxqWybG+lR/vsLNtTSXl9K+dN950pjfC/RtQqCuLf1uXXMDEjlrDgIG+HIi4wJi2a0GCH31RsfG5NAR/tKOdXZ09k2rD4Xu83bVg8kaFBLNur5ExExNX2dpfRF/cJiOQsvbti409OH09EqHfeSE7NjKO8vpXSOs8lJC+tLyI6LJgTxx96gby3pHSPnKkRtf/q6HSysVDFQAJJSJCDCUNi/GLkrL3TyT8/3M3UzDi+Oq9vLVFCghzMzk5k2Z5KN0UnIjI4WWvZW96g5MzNAiI5O396Jn84P8cjpfMPJyczHvDclKGW9k7e2lzC6ZOHEB7iWyMbB6Y1auTMb20vqael3aliIAFm8tA4thT5flGQl9cXU1DVzC0njulX1d35o5LYU95I2UH9L0VEZGCqm9qpa+lQcuZmAZGcpcSEccXc4UddLO5OE9NjcRjYVFjjkfN9sL2MhtYOn6rS2CMpumttiJIz/7WuoAaA6X2YTia+L2doHPWtHeyravJ2KIfV6bTc8+FuJqbHctKE/s0KmD8yCYBlezV6JiLiKrkVXcVARqmMvlsFRHLmCyJCgxibFsNGD42cvb+tjMSoUOaPSvLI+foiJMhBQmSIpjX6sXX51SRHh5GZ4Bu988Q1/KEoyGsbi8mtaOQ7J43ud6/KSRmxxIQFs3xvlYujExEZvPaWq4y+Jxw1OTPGDDPGfGiM2WaM2WKM+W7343cYY7YbYzYaY/5rjIl3e7Q+LmdoHJsKaz1SFKS4ppkRyVEEeXG08EiSo9WI2p+ty69hxvB4jzRyF88ZmxZDaJCDLT6anDmdlrs/2M24tBhOnTik38cJDnIwZ0QiyzVyJiLiMrkVjQQ7jG7cullvRs46gB9YaycA84BvG2MmAu8Ck621U4CdwM/cF6Z/mJIZR2VjG8W17l/nUFrfwpDYcLefp79SYsKoaFApfX9U3dhGbkWj1psFoNBgB+PTfbcoyJubS9hd1sDNJ44e8DT1+aOSyK1opMQDf49FRAaDveWNDE+KJDhIE+/c6ajfXWvtfmvt2u7P64FtwFBr7TvW2p4uw8uBTPeF6R8OFAUpdP8bn7K6VlJjw9x+nv5Kjg4btNMaC6qaKK5p9nYY/ba+Z72ZKjUGpMlD49hc5JkR/r7oGjXbxciUKM7MSR/w8eYdWHemkvoiIq6QW9HISE1pdLs+pb7GmGxgOrDiC09dD7x5mH1uMsasNsasLi8v71eQ/mL8kBiCHYZNRTVuPU9DawcNrR2k+fDI2WCc1mit5ZHP8jj5bx9zzt1L2Fve4O2Q+mVdfjUO0zUSLIFndnYCdS0dLN3tW1P+3ttWyvaSem4+YbRLpmtPTI8lLiJEJfVFRFzA6bTkVqrHmSf0OjkzxkQDLwDfs9bWHfT4L+ia+vjEofaz1i621s6y1s5KSUkZaLw+LTykuyiIm0fOSrvLQ6f58MhZSkwYTW2dNLZ2HH3jAFDR0Mr1D6/i169sYW73HfurHljpl1Oq1hXUMH5ILJGhwd4ORdzgjMnppMSEcd8ne7wdygHWdq01y0qKdFlLFIfDMHdEoio2ioi4QHFtM20dTkYkq1Kju/UqOTPGhNCVmD1hrX3xoMevAc4GrrS+NkfGS6ZkxrHJzVOGDiRnMb48cjZ4yul/uKOM0+/8hM/2VPLbcyfxyHWzefi6OdQ2t3PVAyuoafKftXdOp2V9vppPB7LwkCCuW5DNp7sq2FLsG2vPyhta2VRUy1fnZrl0LcP8UUkUVDVTWO27rQNERPxBbkVXpcaRKRo5c7feVGs0wAPANmvt3w56/HTgJ8BXrLW68nXLyYyjpqmdwmr3rTkqq+tKeNLifDg5iwn8RtS1Te387MWNXPfQKpKjw3j1loVcPT8bYww5mXEsvnom+yqbuP7hVTS1+ccI4p7yBupbO1QMJMBdOTeLqNAgFn+y19uhALCzpGsK8KShsS49bk+rEU1tFBEZmAPJmaY1ul1vblEuAK4CTjTGrO/+OBP4JxADvNv92L3uDNRfTBkaD+DWqY3/m9bou8lZSnRXclZe7z+jRr1lreXVDcWc9LePeXZ1IV8/biQvfXsBY9NiPrfdMaOSuevyaawvqOFbT6ylvdPppYh7b11+DaBiIIEuLiKEK+YO57WN+ynwgYbUO0rrARj3hd+hgRqbGkNiVKimNoqIDNDe8kaiQoNIifHdJTWBojfVGpdYa421doq1dlr3xxvW2tHW2mEHPfYNTwTs68YOiSY0yOHWUtWlda1EhQYRHea7a4J6fnnLA2zkrLC6ayTslqfWkR4XzsvfXsDPzpxAeEjQIbc/fXI6fzg/h492lPPMqgIPR9t36wqqiYsIYUSS7owFuusXjsAADyzJ9XYo7CypJykqlKRo1170HQ7DvJGJLN9T6XPVKUVE/EluRSMjUqLU/9QD1KjAxcKCgxg3JMatFRtL61p8etQMIDGqe81ZgJTTt9by9Mp8Tv37J6zIreL/nT2Rl769gMlDj17R8LI5w8mIC/eLhrjrutebDbTHlPi+9LgIzp02lGdWFVDd6N0R7h2l9V8aeXaV+SOTKK5tId8HRghFRPzV3ooGFQPxECVnbpCTGcfGQvcVBSmta/HpHmcAIUEOEqNCA2LNWWVDKzc9toafvriJacPieefW47hh4Yg+lfuemZ3Imn3Vboxy4MrqW9hRWs9MrTcbNG46biTN7Z08tnyf12JwOi27SusZN8RNydmoZEDrzkRE+qu1o5PC6maV0fcQJWduMGVoHPUtHeyrdM+d2tL6Fob4+MgZdFVs9PdG1B/uKOO0Oz/l4x3l/PKsCTx+w1wyEyL7fJxZWQnsr22hyIebU7++cT/Wwhk5Q7wdinjIuCExnDg+lYc/y6OlvdMrMRTVNNPY1um2kbNRKVGkxIRp3ZmISD/lVzZhrYqBeIqSMzfI6W7eu9EN686stZTWtfr8tEbw/0bUf393J9c9tIqkqFBevnkBNx47st/T/WZmdY1Grc6rcmWILvXy+mImpscyOtU9b5LFN339uJFUNbbx3GrvrInc2VMMZIh7pssYYzh2dDLvbi3128bwIiLetFdl9D1KyZkbjE2LITTYwWY3JGe1ze20dThJ9YPkLCUmjIoG/6zWuLmolrs+2MV50zJ4+eYFTEgfWInv8UNiiAoN8tmpjfsqG1lfUMNXprmmAbD4jzkjEpmZlcBtr2/jv+sKPX7+nkqNY9w0cgbww9PGERbs4FtPrKW5zTsjhCIi/qqnjH62Rs48QsmZG4QEOZiQHsvGwhqXH7vkQBl9315zBl0jZ/44rdFay29f3UpiZCi/PW/yYSsx9kVwkIPpwxNYneebydmrG4oBOGeqkrPBxhjDfVfNZOqweG59ZgO/e20rHR5s+7CzpJ6MuHBiw0Pcdo6M+AjuvGw6O0rr+dXLm912HhGRQJRb3khydJhb/07L/yg5c5MpQ+PYXFSH0+naoiClPQ2o/WDkLDk6jOb2Thpb/aMBc4/XN+1nZV4VPzxtnEv/EM3MSmB7SR0NPvb9sNby8vpi5mQnMjQ+wtvhiBckR4fxxI1zuWZ+Fg8syeXqB1dS5aEKjjtKGxjrpmIgBzt+bAq3nDCa59YU8qyXpnCKiPij3IpGrTfzICVnbpKTGUdDawe5lY0uPW5PA2p/KAjS0+vMn9adtbR38sc3tjMhPZZLZg1z6bFnZSfgtLAu37dGz7aX1LOrrIFzNKVxUAsJcvB/507mzxdNYXVeNefcvYQtxe7r1wjQ0elkT1mDy5tPH853Tx7LgtFJ/L+XNrNtf51Hziki4u/2VjSqUqMHKTlzkyndRUE2Fbr2zU1Zd3LmDx3ak6O7ep3509TG/3yyl6KaZn59zsQ+lcrvjenDE3AYfG5q48vriwl2GM7KSfd2KOIDLpk1jGe/MZ9Op+XCf3/Gy+uL3HauvMom2jqdbqvU+EVBDsOdl04nLiKEbz2xlvqWdo+cV0TEX3U6LRUNrQyJ8/1BgUCh5MxNRqdEExMezNLdFS49bmldK/GRIS5ZB+Vu/jZyVlLbwr8+2sMZk4cwb2SSy48fHRbM+CGxPlUUxOm0vLqhmIVjkg80DheZNiyeV25ZQM7QOL779Hr+8MY2t6xD+1+lRs9VCE2JCePuy6eTX9XET1/Y5LZ+lCIigaDnJlZchNabeYqSMzcJDnJwyoQ03tlaSrsL39SU1LWQFuMfdy9SoruSs3I/qdj4p7e202ktPz9zgtvOMSs7gXX51R4tuHAka/OrKapp5lxNaZQvSI0J54kb53HVvCwWf7KX6x5eRU2Ta3+Xd5TUYwyMTnVPGf3DmTsyiR+eOo7XN+3nkc/yPHpuERF/UtfctU4+VsmZxyg5c6MzctKpbW5n2R7XNT8tq2sh1Q8qNQIkRoViDFT4wbTGdfnV/HddEV87dgTDEvveZLq3ZmYl0NjWyfaSeredoy9eXl9MWLCDUyaq8bR8WWiwg9+dN5k/XZjDir1VnPPPJS5dq7WztJ7spCivzAT4+nEjOWl8Kr9/Y5vPrQMVEfEVdd0jZ7HhwV6OZPBQcuZGx45JJjosmDc27XfZMUvrWv2iGAh0jR4mRoZS7gfTGv/6zk6So0P51qLRbj3PrOxEAJ+Y2tje6eT1Tfs5eWIa0WH6oyuHd+ns4Tz99Xm0dTi54F+f8drGYpccd0dpPWPTPDtq1sPhMPz1kqmkxoRz85PrqPZQdUoREX9S16xpjZ6m5MyNwkOCOGlCKm9vKXHJNLZOp6W8odUvyuj3SI4O8/mRs9V5VSzZXcHXjxtFlJuTlKHxEaTHhbPaB5KzpbsrqGps41z1NpNemDE8gVdvXsjEjFhufnIdt7+5nc4BtAppae8kr6LRY5UaDyU+MpR/XTmD8vpWvv/sepe3PhER8Xe13cmZpjV6jpIzNztjcjrVTe0s31s14GNVNrbS6bR+0YC6R3JMqM8XBPnH+7tIigrlynnDPXK+mVkJrMkb+M/DQD23ppDY8GCOH5fi7VDET6TGhvPU1+Zxxdzh3PvxHq57eBW1Tf2reLinvAGnxSM9zo5k6rB4fnn2BD7cUc6/P97j1VhERHzNgWmNSs48RsmZmy0al0JkaBBvbB741MbS2q4kJ9WPRs5SosN8elrjmn3VfLqrgpuOG0lkqGem9s3KSqC4toXimmaPnO9QthTX8sam/VwxN4uwYN+v/Cm+IzTYwR/Oz+EP5+ewbE8Fly5e1q9G8wcqNXpx5KzHVfOyOHtKOn99Z4f6n3lRp9Oyq7Se1zYW09CPnykRcb0DBUG05sxjlJy5WXhIECeOT+XtzSUDmgIE/2tA7U/TGtPiwimtbaW1o9PboRzSP97fRWJUKFfNz/LYOXvWnXlzauOf3tpBbHgI3zx+lNdiEP92xdzh/OfqWewsrecHz27o85TAHSUNhAQZsn2gsakxht+fl0N4SBD3f5rr7XAGlR0l9fzxzW1ctngZU37zNqf8/RNufnIdv355i7dDExG6Rs4cBqI8dANblJx5xFk56VQ2trEid2BVG0vru5IzfykIAjBzeAJtnU42urgZtyusy6/mk53lHh01Axg/JIbI0CCvTW1curuCT3aWc/MJo4mL1DQF6b9F41L5+ZkTeGtLCXd9sKtP++4srWdkcjQhQb5xGYqLDOHimZm8sqGIsu4bYeJeLe2dXPXACh5ckktzWycXzszkrxdP5er5WbywttCllY5FpH9qm9uJjQjB4TDeDmXQ8I2rYoBbNC6ViJAg3txUMqDjlNa1YgwkR/tPs+A5IxIxBpb74EX2wKjZPM+NmkFXFcvpw+O9MnLmdFpuf3M7GXHhHh0tlMB1w8IRXDgjkzvf28VbfZi+vaOk3uvrzb7ougUj6HBaHlu+z9uhDAovrC2krL6Vh6+bw8s3L+S3507mwpmZ/OyMCQxLjOAXL23y2VkXIoNFXXM7seG6ketJSs48ICI0iBPGp/DmAKc2ltW1kBwdRrCP3GnujfjIUCYMiWXZXt9KztYX1PDRjnJuPHaE2ys0HsrMrES27a9jb3mDR8/7xub9bCqq5funjvNKbykJPMYYfn/+ZKYNi+f7z25ge8nR12zVt7RTVNPMOC+V0T+c7OQoTp6QxuPL99HSrqTAnTo6ndz78R6mDovnmFFJn3suIjSI3507mb3ljfznk71eilBEAOpaOoiN0JRGT/Kfd/l+7sycdCoaWlk9gKlsJXUtflWpsce8kUms2VftU3dA//HeTuIjQ7h6frZXzn/xzEziI0O59qFVlHuo1UBbh5M73t7BuLQYzp8+1CPnlMEhPCSIxVfNJCY8mBsfWU3VUXqG7Srruikx1geKgXzRDQtHUN3Uzotri7wdSkB7beN+Cqqa+faiURjz5elSi8alclZOOnd/sJt9lY1eiFBEQCNn3qDkzENOGJdKWLBjQA2pS+taSYvxn/VmPeaNTKS1w8mGAt9Yd7aztJ4Pd5Rz48IRXmu+PCwxkgeumUVZfQs3PLKKpjb3VyZ7elU++yqb+MkZ4wjS3HFxsdTYcBZfNYuy+la+9cQa2o/Q23FnSXelRh+b1ggwd0Qik4fG8uDSXPU9cxOn0/Kvj3YzNi2akyekHXa7X50zkZAgB//v5S1Y++XXwlpLdWMbW4preW9rKU+uyGfJrgrqW/rX3kFEvqy2uV0NqD1M45QeEhUWzAnjUnlzcwm/PmdSvxZWltW1MH14vOuDc7MD6872VjJnRKK3w+GFtYUEOwyXzfFMX7PDmT48gbsvn8HXH1vNzU+uY/FVM902ZbW2qZ273t/FnBGJnDAu1S3nEJk6LJ4/XZjDrc9s4LevbuV3500+5HY7SusJD3EwLCHSwxEenTGGGxaO4NZnNvDxrnL9vrjBe9tK2VnawJ2XTjvitTAtNpwfnjqW37y6ldc37WfG8ARW76tm7b5q1uyrZndZA82HmH5qTFeLhunDEzh2TDJnTB5yyNE5EU9q73TS0WmJCPWvJQV1LRo58zQlZx505pR03tpSwie7ylnUxwt+W4eTysY2vxw561l3tnxvJd85aYxXY+l0Wl5aV8TxY1NIjvb+FNFTJqbx23Mn88uXNvP/Xt7MH87PcembiP21zTy8NI8nV+TT2NbB4qvH602KuNX50zPZtr+exZ/sZUJ6LFfM/fxNkBfXFvLkinxmZiX4bPWvs3IyuP3N7Ty4JFfJmYtZa7nnoz0MS4zg7CnpR93+qvnZvLC2iO88tY6egcyIkCCmDYvn8jnDyYgPJyM+gvS4cJKjw8itaGRtfjVr82t4bWMxT63M53fnTfZ44SeRgxVWN3Hl/SvIiIvgqZvmeTucPqlr1pozT9N324NOnzSEtNgwFn+yt8/JWU8jZ39ccwZd686eWLGP1o5OrzY9XranktK6Vn51dqbXYviir87LorimmX99tIfQIAffPXksiVEDq8i5pbiWBz7N5ZUNxTit5YycdL5+3EimZMa7JmiRI/jJ6ePZXlLPr17ezOjUaOaMSKSj08kf39zOA0tymTsikbsun+7tMA8rNNjB1fOzuePtHWwvqWP8kFhvhxQwPttTyYaCGn5//uRezRQIchj+eslU/vPJXiZlxDIzK5EJ6TGH3XdYYiTHjU0Bum7G3fDIKn736lamZsbp7594RUFVE5ctXk5RTTP7KpsormkmIz7C22H1SluHk+b2To2ceZjWnHlQaLCDGxaO4LM9lWzqY9+vklr/a0B9MF9Zd/bi2kJiwoM5aYJv3Q3/0Wnj+Oq84TyybB8Lbv+A37yyhYKqpj4do7Wjk5fWFXHhvz/jrLuW8NaWEq6an8XHPzqBe66YoTcm4jFBDsPdl01nWGIk33x8DZuLarnmoZU8sCSXa4/J5vEb5/rEyPWRXDl3OBEhQTygptQudc+Hu0mNCePCGb2/QTY2LYY7Lp7KtQtGkJMZ1+vp30EOw98vmUZydCjfemIttU1aiyaelVfRyKX3LaOhtePADam3Ng+srZIn1XWv31RPVM9ScuZhl88ZTkxYMPd9sqdP+/U0RU3105Gzg9edeUtjawdvbSnh7CkZPldG3hjDbefl8O6tx3HWlHSeWLGPRX/5iO8+vY6VuVVHLEywp7yB29/czvw/fsD3nllPZUMrvzhzAst+ehK/PmcSwxJ9b12PBL64yBD+c/Us2jqcnH33ElblVXPHRVP4zVcm+Uzj6SOJjwzl/BlDeXVjMY2t7i/YMxisy6/msz2VfO3YkR77G5wQFco9V86gtK6FHzy3XkVexGP2ljdw6eJlNLd38uTX5vKVqRmMHxLDm33oB+ltdc1dyZlGzjxL0xo9LCY8hCvmDec/n+wlv7KJ4Um9e+Nc2p2cDfHTkTNfWHf29pYSmto6uWCG75aRH5MWw18unsoPTh3Lg0tyeXJFPi+vLyYjLpyzp2bwlakZTEiPZV1+Ne9uLeXdbaXsLW/EYeDkCWlcNT+LBaOSfXYtjwwuo1Oj+eeVM7j7/V388uyJTBsW7+2Q+uTcqRk8uSKfD7aXcc7UDG+H4/f++s5OEiJDuHyuZ4sxTR+ewM/PnMD/vbqVxZ/u5RvHj/Lo+WXwya9s4tLFy3E6LU/dNO/A1OgzJqdz5/s7KatvIdUPagjUtXTdmNKaM8/Sd9sLrl8wggeX5HL/kr389txDVzP7otL6VkKCDAmRA1uL5E3eXnf24toihiVGMCsrwePn7qv0uAh+cdZEvnfyWN7bVsor64t5cEkuiz/ZS3iIg5Z2J8EOw/xRSVwzP5vTJg1hSJzv/6GXwef4sSkc370GyN/Myk4kNSaM1zYWKzkboCW7Kliyu4JfnjXBKy1Mrj0mm9V51dzx9g6mD4tn7siko+8k0k93fbCLhpYOXrl5AWMO6ud4Rs4Q/v7eTt7eUuoXRWo0cuYdSs68IC02nPOnD+XZ1QV8r5fFH0rruu6y+POIyLyRiTy4NJcNBbUeL6lfUtvC0j0VfOfEMX5VrTAqLJhzpw3l3GlDqW5s483NJWwprmXeyCSOH5eiP5gibhTkMJyZk86TK/NpaO3wWl9Ef+d0Wv701naGxkfwVS+9ITXGcPuFOWzbX8cNj6zm75dO45SJh++xJtJflQ2tvLKhmEtmZX4uMQMYkxrNqJQo3ty03y+Ss9ru5Ex9zjzL9yf+B6ibjhtJS7uTR5fl9Wr70roWv11v1mPuiCSvrTt7aX0R1sL50313SuPRJESFcsXc4fz+/BzOmZqhxEzEA86ekk5bh5P3t5V6OxS/9cbm/WwqquXWU8Z6db1vTHgIj984l5EpUXzt0dX8/d2dWoMmLvf0qgLaOpxcMz/7S88ZYzhjcjorcquoamzzfHB91FMQJFbJmUcpOfOS0akxnDwhlUc+y6O57ctNNL+otK7VL3ucHSwuMoSJ6bEs2+PZ5Mxay4trC5mZlUB2cpRHzy0i/m3G8ASGxIbz2kb/WcTvS9o7nfz1nZ2MS4vxiZtjGfERPPv1+Vw4I5N/vL+Lmx5bQ32LqjiKa7R3Onls2T6OHZP8pVGzHqdPHkKn0/LuVt+v2ljX3L3mTDeDPUrJmRd9/fhRVDe189yagqNuW1rXEhBriuaNTGJtfjUt7UdPSF1lS3EdO0sbfLoQiIj4Jkf31MaPd5TrTXw/PLu6gNyKRn502jiCfGRafnhIEH+5eAq/OWciH+4o49x7lrJ0d4VG0WTA3t5SQkldC9cek33YbSZlxDI8MZI3/aCkfl1LOyFBhvAQpQuepO+2F83KSmD68HgeWpqHtYe/KDS1dVDf0uH30xqhKznr6ndW47Fzvri2iNAgB2fnaEG/iPTdWVPSaet08u5WTW3si+a2Tv7x3i5mZSX4XG9JYwzXLhjBEzfOpb6lgyvvX8GJf/2I+z7eQ2VDq7fDEz/18NI8spIiOWHc4X/eu6Y2DmHp7ooDa7p8VW1zO3ERIX61Vj8QKDnzImMMl88eTm5FIxuO0JS6rK7rQuHv0xoB5mT39Dur8tg5P9lVzsIxyWqiKCL9Mn1YPBlx4byuqY198uDSXMrqW/npGeN99s3dvJFJfPrjE/j7pVNJiQnjj909I7/5+Bru+XA372wpYW95Ax2dTm+HKj5uc1Etq/dVc/X87KMWbzt98hDaO63Pr2Wta27XlEYvUOkpLzs9Zwi/fHkzL60rOmwPoJ4eZ2l+2uPsYD3rzpbvreS7eKbf2f6aZo4dk+yRc4lI4HE4DGdNSefhz/IO3EmWI6traefej/dw8oRUZmV7tjpvX4WHBHH+9EzOn57JztJ6nlyRz9tbSj437Sw0yMHckYn8/MwJTEiP9WK04qse/iyPyNAgLp6VedRtp2bGkx4XzpubS7hgxtG395a6lg5i9PfO4zRy5mWx4SGcND6V1zYWH/bO3Ke7KjAGRqUGRjELT647q29pp7Gt02+bd4uIbzhrSgbtnVZTG3vplfXF1Ld0cMuJnrkJ5ypj02L4zVcmsexnJ7HpN6fy0rcX8JeLp3Ldgmw2F9Vy1l2f8quXN1PT5PuV9sRzKhpaeWV9MRfOyOzVSJPDYTh98hA+3llOQ2uHByLsn66RM43jeJqSMx9w7rQMKhraWHqIKobNbZ08vmIfp0xIIz0uwgvRuZ4n1531jDoGQjEVEfGeqZlxDI2P4PWNxd4OxS88s6qACemxTMmM83Yo/RYTHsK0YfFcNDOTn505gQ9/uIivzsvi8eX7OOEvH/HEin10qoiIAE+vzKet08k1x/S+d9kZk7vadHy0o8yNkQ1MXXO7yuh7wVGTM2PMMGPMh8aYbcaYLcaY73Y/nmiMedcYs6v73wT3hxuYFo1LJSY8mJfXFX3puRfXFVLT1M4NC0d4ITL38OS6s5LarvV6GjkTkYEwxnD2lHQ+3VVBbZNvL+L3ts1FtWwqquWy2cN8dq1Zf8RHhvLbcyfz+neOZUxaDL/472ZufWa9qjwOcm0dTh5b3lU+f3TqocvnH8rMrARCggybi+rcGN3A1LVoGrc39GbkrAP4gbV2AjAP+LYxZiLwU+B9a+0Y4P3u/0s/hIcEcebkdN7eUvK5nmdOp+XBJblMHhrLnBG+PWe/Lw5ed+ZuJRo5ExEXOWtKOh1Oy1tbVBjkSJ5dXUBosIPzpgVm+5IJ6bE8c9M8fnDKWF7ZUMxtr287YsVlCWyPLsujtK6Vrx07sk/7BTkMwxIiya9qdFNkA2Otpa65QwVBvOCoyZm1dr+1dm335/XANmAocC7wSPdmjwDnuSnGQeHc6Rk0tnXy3kGVez7eVc6e8kZuXDgyoO4+gufWnZXUNgOBUUxFRLwrZ2gcY9OiuefDPR7t1ehPWto7+e+6Is6cPCSgK+QaY7j5xNFctyCbB5fmct8ne70dknhBTVMbd3+wm2PHJHPc2JQ+7z88KZJ9lU1uiGzgWjuctHU6iY3QmjNP69OaM2NMNjAdWAGkWWv3Q1cCB/hWExM/M3dEEkNiw3l5/f+mNj7waS5psWGcmZPuxcjcw1PrzkrqWoiPDCE8JMit5xGRwGeM4TdfmUR+VRP//miPt8PxSW9u3k99SweXzh7u7VDczhjD/ztrIudMzeD2N7fz/JpCb4ckHnbX+7upb2nnF2dN6Nf+WYmR5Fc2+eTIa08PNo2ceV6vkzNjTDTwAvA9a22vJ8gaY24yxqw2xqwuLy/vT4yDQpDDcM7UdD7aUU51YxvbS+pYsruCq+dnExoceHVbPLXurKS2VevNRMRljhmVzFemZvDvj/eQV+Gb05G86emVBWQnRTJvZOBMxT8Sh8Pwl4unsHB0Mj95YSMfbFc1z8Eir6KRx5bnccmsYYwf0r/2CsOToqhv7aDaB9ex1nUnZ1pz5nm9etdvjAmhKzF7wlr7YvfDpcaY9O7n04FDlpux1i621s6y1s5KSen7kO9gcu60oXQ4La9v2s+DS3IJD3Fw5dzAvPvoqXVnpXUtWm8mIi71y7MmEBrk4NevbPHJO97esre8gRW5VVwSYIVAjiYsOIh7r5rJhPQYvvH4Wr75+BpeXFuocvsB7k9vbSckyMH3Tx3b72NkJUYCsK/S92701LV0j5wpOfO43lRrNMADwDZr7d8OeuoV4Jruz68BXnZ9eIPLpIxYRqdG8/jyfbzU3S8jPjLU22G5zfyRSaxx87qz/bUtGjkTEZdKjQ3n+6eM5eOd5by9peToOwwSz64uJMhhuMiHm+q6S3RYMA9fN4dLZmWyZl813392AzNve4/LFi/jseX7fLqXlfTdqrwq3txcwjeOH0VqTP/fY2QldSVn+VW+t+6srrnrZ1Z9zjyvNyNnC4CrgBONMeu7P84EbgdOMcbsAk7p/r8MgDGG86ZlsL2knrYOJ9cHUPn8Q5k3Mom2Difr3bTurL3TSWVjq4qBiIjLXT0/iwnpsfz21a006o037Z1Onl9TyInjU0kdpH9zk6PDuO28HJb/7CRe+vYCvnH8SCob2vh/L21m/h/e5/9e3UKupsL6PafTctvr20iLDePGYwf2Pm3YgZEz30vODqw508iZx/WmWuMSa62x1k6x1k7r/njDWltprT3JWjum+1/3N60aBM7tLj184vhURqVEezka95o9omfdmXumNpbVt2KtyuiLiOsFBzm47bxJFNe2cNcHu7wdjtd9sL2MioZWLps9zNuheJ3DYZg2LJ4fnTaed249jhe/dQwnTkg90Lz62odW8uGOMvVH81OvbixmQ0ENPzx1HJGhAxtVCg8JYkhsOHk+PK1Ra848T2OVPmZYYiR3Xz6dacPivR2K28VFhDApw33rzkpq1eNMRNxnZlYil8zK5IFPczlv2lAmpPevKEAgeG51IWmxYRzfj3LigcwYw4zhCcwYnsAvzprAkyvyeWJFPtc9tIoRyVFcPT+Li2ZmEqOKeH6hoKqJ/3t1K5MyYrnARdN3hyd1VWz0NT0FQWI0rdHj9B33QedMzfB2CB4zb0QSjy7fR0t7p8vL3Zf2NKAepFNsRMT9fnrGBD7cUc53nlrHq7csHJRtO5xOy4q9lXxlWgbBQYFXXdhVUmPC+d7JY/nWotG8uXk/D3+Wx/+9upW/vL2Ds6dkkBB15DXmxsApE9OYMTzBQxHLwRpbO/jao6tp73Ry1+XTCXK4puhNVmIkH+30vWrmdS0dhIc4CAsefH/TvE3JmXjVvJFJ3L8kl/UFNcwbmeTSY++vVXImIu6VGBXKXy+eytUPruQPb2zjt+dO9nZIHrenvIH61o5BMePDFUKDHZw7bSjnThvKxsIaHv4sj9c37aet03nE/Tqdlvs+3sPXjh3JraeMHZQ3ArzF6bTc+sx6dpbW89B1c1y67CQ7OYryNYU0tXUMeJqkK9U2tavHmZf4zk+BDEoHrztzdXJWWtdCaLCD+Ej9cRER9zlubAo3LhzB/UtyOW5MCidPTPN2SB61rruo0/Th8V6Nwx9NyYznb5dM69W2Da0d/P71rdz3yV4+2F7G3y6ZRk5mnHsDFADufG8n72wt5ZdnTXD51N3hif+r2NjffmnuUNfSrvVmXqL5B+JV7lx3VtJdRn8w9dsREe/40enjmJgey49f2EhZ95TqwWJ9QQ0x4cGMTA7sIlbeFh0WzB8vmMLD182mvqWD8/61lL++s+NA4QZxj9c2FnPXB7u5eGYmN7ihinZPOX1fq9hY19KuSo1eouRMvG7eiCTW5te4vN9ZiRpQi4iHhAUHcdfl02lq6+AHz20YVJX41ufXMDUzHoeL1uDIkS0al8rb3zuOc6dmcPcHu5nz+/f4wbMbWJ1XpaboLra5qJYfPreBmVkJ3Hb+ZLfc7M1KjALwuaIgdc0d6nHmJUrOxOt6+p2tza926XFL1IBaRDxodGo0vzp7Ep/uquD+JXu9HY5HNLd1sqO0XuvNPCwuMoS/XTqNV29eyPnTM3lr834uuncZp/79E17dUOzt8AJCWX0LX3t0NYmRodz71ZluK4wRFxlCXEQI+6p8q5x+bbNGzrxFyZl43dyRiQQ7DJ/srHDZMa21GjkTEY+7fM4wTp80hNvf3M4Lawq9HY7bbSqqpdNplZx5SU5mHH+8IIeVvziZP12Yg8MYfvDshgMNhKV/Wto7+fpja6hpauc/18wiJSbMrefLSor0yWmNWnPmHUrOxOtiwkOYnZ3Ih9vLXHbMmqZ22jqcpGnkTEQ8yBjD3y6dyvxRSfzw+Q08syrf2yG51fqCrhkP01QMxKuiwoK5dPZw/nTRFNo6nbyzpcTbIfktay0//+8m1uXX8LdLpjIpw/1FV4YnRpJf5TvJmbWWumZVa/QWJWfiE04cn8qO0nqKappdcrwS9TgTES+JDA3mgWtmc9yYFH7ywiYeW77P2yG5zfqCGjITIkiOdu/IgvTO1Mw4hiVG8NrG/d4OxW/959O9vLi2iO+dPIYzctI9cs6spEiKqpvpOEo7BU9pbOvEaSE2QmvOvEHJmfiEE8Z3lab9aIdrRs8OJGea1igiXhAeEsTiq2dy8oRU/t9Lm3lwSa63Q3KLDQW1mtLoQ4wxnD0lgyW7K6hqbPN2OH7nw+1l/PHN7ZyZM4TvnDjGY+fNSoyiw2kprvGNSq8902I1cuYdSs7EJ4xKiSYzIYIPt5e75HgltUrORMS7woKD+NeVMzltUhq/fW0rd763M6CqOJbVt1BU06zkzMecPSWdTqflrc2a2tgX20vq+M5T65gwJJa/XDzVo9VHh/eU0/eRoiB13cmZ1px5h5Iz8QnGGE4Yl8rS3RUuKalfUtuCMZDq5kW8IiJHEhrs4J9XzOCCGUO5871dfP3xNdQHSF+q9fk1gJpP+5qJ6bGMTInitY2q2thbRTXNXPPgSiLDgrj/mllEhnp2Op+v9TrrSc5UrdE7lJyJzzhxfCrN7Z2szK0a8LFK61pIigojJEg/4iLiXSFBDv568VR+dfZEPthexrn3LGV3WYO3wxqw9QU1BDuMRwomSO/1TG1cvreSsnrfmCbny2qa2rjmwZU0tXXyyPVzyIiP8HgMaTHhhAU72FfpIyNnLR2ApjV6i965is+YNzKJsGAHH7pg3VlXGX2NmomIbzDGcP3CETxx41xqm9o5756lvO3nFfXWF9QwIT2W8BD39H+S/jtnSjpOC29u8u+fMXdrae/khkdWk1/ZxH+unsX4IbFeicPhMAxP9J1y+gfWnKkgiFcoOROfEREaxPxRSXy0Y+DrzroaUHv+7peIyJHMG5nEa99ZyKjUaL7+2BrueHs7nX64Dq3TadlYqGIgvmpMWgzjh8SoIfURdHQ6ueWpdazNr+bOy6Yxb2SSV+PJSvKdcvp1KgjiVUrOxKecMC6V3IpGcisGNrSvkTMR8VXpcRE8c9M8Lps9jHs+3MP1D6+itsm/1qHtKW+gobVDyZkPO2dqBqv3VVPsohY1geZ3r23l3a2l/PrsiZzpoZL5RzI8MYr8qias9f7NmrrudbEx4Ro58wYlZ+JTThiXCjCghtQt7Z3UNLWrx5mI+KzwkCBuv3AKfzg/h8/2VHDOP5ewbX+dt8PqtZ5iIGo+7bvOntKVcLyunmdf8tbm/TyybB83LBzBtQtGeDscoGvkrKmtk/KGVm+HQl1zB9FhwQRr3b5X6LsuPmV4UiSjUqIGtO6stLvHWZqSMxHxcVfMHc7TN82ntaOTC/71md9MQ1tXUENseDAjkqK8HYocRlZSFFMy41S18QuKa5r5yQubmJIZx09OH+/tcA7oKaef7wPrzmqb24nVqJnXKDkTn3PCuFRW7K2iqa2jX/urx5mI+JOZWQm8estCJmXE8t2n1/HxTtf0e3Sn9QU1TB0W79FeUNJ3Z09JZ0Nhrc9UAfS2Tqfl1mfW09Hp5K7LphMa7Dtvg7MSfaecfl1Lu8roe5Hv/FSKdDthfCptnU6W7q7s1/4l3SNn6UrORMRPpMaE88j1cxibFsMtT64lb4Drbt2pqa2DHSV1TNd6M5931pQMAF7fpKmNAP/6cDcrcqv47bmTyU72rVHfzIRIHAb2+UBRkLpmJWfepORMfM7s7ESiQoP6PbWxZ+RM0xpFxJ9EhQXzn6tn4XAYbnpsNQ2t/Zs94G6bCmtxWq038wdD4yMYmRLFpsJab4fidWv2VXPn+7s4d1oGF8wY6u1wviQ02EF6XAT5PjDKWdfSoUqNXqTkTHxOaLCDhWOS+XB7Gc5+lJguqWshKjSIGP1hERE/MywxknuumMGe8kZ+8Oz6fv0NdLcNhTUATM2M92oc0jujUqLZU+7/Tc8Hoq6lne8+vY70uHB+d95kjPHN6bhZSZE+NHKmNWfeouRMfNLpk4ewv7aFlXlVfd63tK6FNE1pFBE/tWB0Mj8/cwJvbynl7g92ezucL9lUVMfQ+AiSotWuxB+MTIkir6LJL/vpuUJlQytXP7CS/bUt3HX5dJ8eEcpKivSJgiB1ze0+/X0KdErOxCedPimd6LBgnltd2Od999e2aL2ZiPi16xdkc8H0ofz9vZ28s6XE2+F8zuaiWiYPjfV2GNJLo1Kiaet0Uljt/Tf9npZf2cRF9y5j2/46/nXlDGYMT/B2SEc0PDGKysa2A33GvKHTaalv7SBOa868RsmZ+KSI0CDOnpLOG5v293ndRWlti9abiYhfM8bwhwtymJIZx63PrGdXab23QwKgvqWd3IpGJmfEeTsU6aVRKV2FL/aWe38tkydtLqrlgn9/RlVjG0/cOJfTJg3xdkhHNaN7Hac3e9M1tHS951JBEO9RciY+6+JZmTS3d/JGH/5IOZ2WsvpWNaAWEb8XHhLEfVfNJCI0mK89upraJu/dTe+xtbirUfbkTCVn/mJkcjTAoFp39snOci69bxlhwQ5e+OZ8ZmUnejukXpkzIpFJGbH859O9Xltv2jNqpz5n3qPkTHzWjOEJjEyJ4rk1Bb3ep6KxlQ6nVY8zEQkI6XER3PvVGRTVNPOdp9d5fd3QpqKuqn8aOfMfCVGhJEaFsmcQjJy1dzq5872dXPfwKoYnRfHit45hdGqMt8PqNWMMNx03kr3ljby/vX8Vqweqtrk7OdPImdcoOROfZYzhopmZrMqrJreXPX9Ka1sBldEXkcAxKzuR//vKZD7eWc4db+/waixbiutIiw0jJUbFQPzJqJSogB8521Vaz4X//ow739vFOVPSeebr8/zyvcBZOekMjY/gP5/s9cr567qTM6058x4lZ+LTLpyRicPA870cPdtf2wyoAbWIBJYr5g7nirnDuffjPbyyodhrcWwuqiVnqEbN/M3I5Gj2Bmhy5nRa7v90L2fdvYSCqib+feUM7rzMt6syHklwkIPrF45gZV4V6/KrPX7+/01r9M/vXyBQciY+LS02nOPGpvDCmqJeTecpretqQK01ZyISaH5zziRmZyfw4+c3eGUUpKmtgz3lDUzSlEa/Myo1ioqGNp9Yt+hKrR2d3PDIKm57fRvHjUnhnVuP54ycdG+HNWCXzR5GbHgwi70welbX3FMQRGvOvEXJmfi8i2cOo6SuhSW7K4667baSeiJDg9R/R0QCTmiwg3uumIHTwsNL8zx+/m3763BamKyRM78zKqW7KEhF4IyeOZ2WHzy7gQ93lPPbcyfxn6tnBsx026iwYL46L4u3tpSwr9KzawW15sz7lJyJzzt5YirxkSE8t/rIUxudTst7W0tZNC6FIIfxUHQiIp6TGhvO2Tnp/HddEY19bDMyUJuLuio1alqj/xnZnZwFSjl9ay2/fW0rr23cz8/OGM/V87MxJrCu+9cek02Iw8H9n+Z69Lx1Le04DESHauTMW5Scic8LCw7i3KkZvLO19IhTMtYX1lBW38qpE32/l4mISH9dOW84Da0dvLzes2vPNhXVkhwdSlpsYIxODCbDEiIICTIBUxTkXx/t4eHP8rhx4QhuOm6kt8Nxi9TYcM6bnsFzawqoamzz2HnrmtuJCQ/BoZvcXqPkTPzCxbOG0dbh5JUNRYfd5u0tJQQ7DCeMT/VgZCIinjVjeALjh8TwxIp9WNv70vp92fZQNhfVMikjLuBGKAaD4CAHWUlRAVEU5JlV+dzx9g7Om5bBz8+cENA/j187diQt7U4eXZbnsXNWN7VrvZmXKTkTvzApI5aJ6bE8sSL/kG8wrLW8s6WU+aOSVP5VRAKaMYYr52WxpbiODYW1vdpnS3Etk379Njc+sppNvdznYC3tnewqa9CURj/WVU7fv6c1frqrnJ+9uInjxqbw54umBvzozpi0GE6ekMb9n+ZSVNPskXPuKW9gRHfjcvEOJWfiF4wxXHNMFttL6lmRW/Wl53eXNZBb0cipkzSlUUQC33nTMogMDeLx5fuOuq21lt+9tpUgh2FlbiXn/HMJ1z+8ivUFNb0+3/aSejqdlslDYwcQtXjTyJRo9lU20tHp9HYo/dLa0cn/e2kzI5Kj+PeVMwgNHhxvYX99zkSc1vKzFzcNePT7aDo6newqa2D8EP9p3B2IBsdPtgSEc6cNJT4y5JBVyt7eUgLAqRPTPByViIjnxYSHcN70oby6ofio5dHf2VrK8r1V/Pi0cSz56Yn88NSxrM2v5rx7lvK1R1fT1Hb0wiKbi7pG21RG33+NSommvdNSUO2ZERhXe/SzfeRVNvGrcyYRFTZ4pt0NS4zkJ6eP55Od5Ty3ptCt58qrbKKtw8nYNCVn3qTkTPxGeEgQl88ZzjtbSyisbvrcc+9sLWXasHjS1N9MRAaJK+YMp7XDyfNrD/+Gra3DyR/f2MaY1GgunzOc2PAQbj5xDEt+0pWkvb+tlJseXUNLe+cRz7W5qJb4yBAyEyJc/WWIh4xMiQJgT5n/rTurbGjlrvd3ccK4FI4fm+LtcDzuqnlZzBmRyO9e20pJbYvbzrOztB5AI2dedtTkzBjzoDGmzBiz+aDHphljlhtj1htjVhtj5rg3TJEuX52XhTGGxw6aylNc08zGwlpO05RGERlEJg+NY9qw+CMWBnl0WR55lU384qwJBAf975IfHRbMzSeO4Y6LprJkdwU3P7mW9iNMd9tcXMtkFQPxa6O61xHt9cNeZ399dyfN7Z384qyJ3g7FKxwOw58vnEJ7p5Nf/Nd90xu3l9TjMDA6VWvOvKk3I2cPA6d/4bE/A/9nrZ0G/Kr7/yJuNzQ+glMnpvH0ygKa27ru9L7TM6VxkqY0isjg8tV5Wewtb2TZ3sovPVfV2MY/3t/F8WNTWDTu0FVsL5yZye/OncR728q49Zn1dDq//KavrcPJjpJ6Jmm9mV+LiwwhOTqUPWX+VRRk2/46nl6Zz1XzswZ10pCdHMWPThvP+9vLeGn94StXD8SOkjqyk6MIDwlyy/Gld46anFlrPwG+WIHBAj1/peMAzzZbkUHt2mOyqW1u5+XuP07vbC1ldGo0o1IG7x9tERmczp6STlxECA8tzaOt4/MjX3e+t5Omtk5+edaEIx7jqvnZ/OyM8by2cT8/fWEjzi8kaDtL62nvtKrUGABGpkT71ciZtZbbXt9KbEQI3z1pjLfD8bprj8lmZlYCv3llK2V1rp/euLO0gXFab+Z1/V1z9j3gDmNMAfAX4GeH29AYc1P31MfV5eXl/TydyP/MGZHIhPRYHv4sj+rGNlbkVnGaRs1EZBAKDwniirnDeXdrKTNve5fvP7ue97aWsrmolidW5HPFnOGM6cWbra8fP4rvnDSG59YU8uMXNn5uDVpPMZDJKgbi90alRPtVOf33tpWxdHclt548lvjIUG+H43VBDsOfL5pCS3snNz66mvqWIxcD6ovmtk7yKhsZp/VmXtff5OybwK3W2mHArcADh9vQWrvYWjvLWjsrJWXwLeIU1zPGcN0x2Wwvqef3b2yj02k5daLWm4nI4PTDU8fxwDWzOHXiEN7bWsqNj67m7LuXEBkaxK2njO31cW49eQzfOWkMz68p5Px/fUZuRdeb+M3FtcSEBTM8MdJdX4J4yKiUKKoa26hubPN2KEfV0t7J71/fypjUaK6cO9zb4fiMUSnR/OvKGWwtruP6h1f1qtpqb+wqq8daFQPxBf1Nzq4BXuz+/DlABUHEo74yLYOEyBCeX1PIkNhwpmTqjq6IDE5BDsNJE9L46yVTWf3LU3j4utlcMXc4f7pwColRvR9tMMbw/VPG8tC1s9lf28zZd33KqxuK2VRUx6ShsQHf8Hcw6Jn+7+tTG621/PzFTeRVNvHrcyZ9rpiNwEkT0rjzsmms2VfN1x87erXV3the0lWpUWX0va+/P+3FwPHdn58I7HJNOCK901NWH7oKgaiCmIgIhAY7WDQulT+cn8OZOen9OsYJ41N54zvHMm5IDLc8tY6NhTWa0hgg/ldO37enNt73yV5eXFfED08dy8Ixyd4OxyedPSWDP104hU93VXDzk+uOWG21N3aW1BMe4iArKcpFEUp/9aaU/lPAMmCcMabQGHMD8DXgr8aYDcAfgJvcG6bIl109P5tJGbFcMmuYt0MREQkoGfERPPP1+Xz9uJFYC/NGJnk7JHGBzIRIQoMc7PHhkbP3tpbyp7e2c87UDL59wmhvh+PTLp41rLvaainff3bDl4r59MWO0nrGpMYQpBFyrztqi3Vr7eWHeWqmi2MR6ZMhceG8/p1jvR2GiEhACgly8LMzJ/DNRaNUjCFABDkM2cmRPjtytqOknu8+vY6coXHccdEUzYrphavmZ9PQ2smf3trOtGHx3LBwRL+Os72knuPGqDaEL9AkXhERETksJWaBZZSPltOvbGjlhkdWERUWzOKrZqnXVh984/iRnDQ+lT+/tZ3dZX1/basa2yivb1UxEB+h5ExERERkkBiZEkV+ZdOA1yi5Ununk289sZay+lYWXz2LIXHh3g7Jrxhj+OMFOUSEBvGD5zbQ0cfXdkd3MRCV0fcNSs5EREREBolRKdF0OC37Kpu8HcoBf35rOytyq7j9ghymDYv3djh+KTU2nN+dO5kNBTXc98nePu27o6QOUBl9X6HkTERERGSQmJgRC8DqvCovR9LljU37+c+nuVw1L4sLZmR6Oxy/ds7UDM6aks6d7+1ka3Fdr/fbUdpAfGQIKTFhboxOekvJmYiIiMggMS4thsyECN7dWurtUNhd1sCPntvAtGHx/PLsCd4OJyD87tzJxEWE8v1n19PW0bvpjTtK6hiXFqMCLD5CyZmIiIjIIGGM4dSJQ/h0dwWNrR1ei6OxtYNvPL6G8JAg/v3VGYQFqwCIKyRGhfLHC3LYXlLP397dedTtrbXsLG3QlEYfouRMREREZBA5dVIabR1OPtlZ7pXzW2v5yQsb2VvewN2XTyc9LsIrcQSqUyamcdnsYdz78R7u//TI68+KapppaO1grJIzn6HkTERERGQQmZWVQGJUKG9vKfHK+f/z6V5e27ifH542jmNGJ3slhkD3u/Mmc8bkIdz2+jYeXpp72O16KjVq5Mx3KDkTERERGUSCgxycND6V97eXebyk/qsbivnDG9s5Kyedbx4/yqPnHkxCghzcdfl0TpuUxm9e3cpjy/IOud327uRsbJqSM1+h5ExERERkkDl10hDqWzpYsddzVRtX7K3kB89uYHZ2An+9ZKoKULhZSJCDuy+fwckT0vh/L2/hyRX5X9pmZ2k9Q+MjiAkP8UKEcihKzkREREQGmWPHJBMREsQ7Wz0ztXFXaT1fe3Q1wxIj+M/VswgPUQEQTwgNdnDPldM5cXwqP//vJm5/czu1ze0Hnt9RUq/m0z5GyZmIiIjIIBMeEsRxY5N5Z0sp1lq3nqu0roVrH1pFWEgQD183h/jIULeeTz4vLDiIf105gwtnZHLvx3s4/o4PWfzJHhpaO9hT3qDkzMcoORMREREZhE6dOISSuhY2FdW67Rwt7Z1c99AqqpvaeOja2QxLjHTbueTwwkOC+OslU3ntloVMyYznD29s57g/f0h7p2Wc1pv5FCVnIiIiIoPQieNTCXIY3tnivobUq/Kq2Lq/jj9ekMPkoXFuO4/0zuShcTx6/Rye/NpchiVEEOQwTB0W7+2w5CDB3g5ARERERDwvISqUOdmJvLO1hB+eNs4t59hSXAfA8WNT3HJ86Z9jRiXz0rcXUNnYRnJ0mLfDkYNo5ExERERkkDp1Uho7SxvIrWh0y/G3FtcxND5C68x8kDFGiZkPUnImIiIiMkidMjENgHfc1JB66/46JqTHuuXYIoFIyZmIiIjIIJWZEMmkjFjedkNy1tzWyd7yBiZmKDkT6S0lZyIiIiKD2Jk56azNr2FveYNLj7u9pA6nhUlKzkR6TcmZiIiIyCB28cxMgh2Gp1bmu/S4W/d3FQOZqGmNIr2m5ExERERkEEuNDeeUiWk8v6aQlvZOlx13S3EdseHBZCZEuOyYIoFOyZmIiIjIIHfl3Cyqm9p5a7Pr1p5tLa5jYkYsxhiXHVMk0Ck5ExERERnkjhmVRHZSJE+s2OeS43U6LdtL6piYrsbTIn2h5ExERERkkHM4DFfMHc6qvGp2ltYP+Hi5FQ20tDtVqVGkj5SciYiIiAgXzRxGaJCDJ1cMvDDIluKuYiCq1CjSN0rORERERITEqFDOyBnCC2sLaW4bWGGQrfvrCA1yMCol2kXRiQwOSs5EREREBOgqDFLf0sGrG4sHdJytxXWMSYsmNFhvNUX6Qr8xIiIiIgLA7OwExqRG88QApjZaa9laXKcpjSL9oORMRERERAAwxnDl3OFsKKhhc1Ftv45RVt9KZWObmk+L9IOSMxERERE54PwZmYSHOHh0WV6/9t9S3JXUTcxQGX2RvlJyJiIiIiIHxEWEcNns4by4tojC6qY+77+1u1LjhPQYV4cmEvCUnImIiIjI53z9+JE4jOHfH+3p875b99eRlRRJTHiIGyITCWxKzkRERETkc9LjIrh4VibPri6guKa5T/tuKa7TejORflJyJiIiIiJf8s1Fo7AW7vu496Nn9S3t7KtsUqVGkX5SciYiIiIiX5KZEMlFMzN5alUBpXUtvdpne0k9ABOVnIn0i5IzERERETmkby0aTafTct/He3u1fU8xkInpqtQo0h9KzkRERETkkIYnRXL+9KE8sWIfZfVHHz3bUlxLUlQoabFhHohOJPAoORMRERGRw/r2CaNp73Ry/6e5R912c1EdEzNiMcZ4IDKRwHPU5MwY86AxpswYs/kLj99ijNlhjNlijPmz+0IUEREREW8ZkRzFudOG8tiyfVQ2tB52u91lDWzdX8cxo5I9GJ1IYOnNyNnDwOkHP2CMOQE4F5hirZ0E/MX1oYmIiIiIL/j2CaNobu/kseX7DrvNM6vyCXYYLpqZ6cHIRALLUZMza+0nQNUXHv4mcLu1trV7mzI3xCYiIiIiPmB0agwnjEvh8eX7aGnv/NLzrR2dvLC2iJMnpJESo/VmIv3V3zVnY4FjjTErjDEfG2NmH25DY8xNxpjVxpjV5eXl/TydiIiIiHjTDQtHUtHQxisbir/03LtbS6lqbOOyOcO8EJlI4OhvchYMJADzgB8Bz5rDrPy01i621s6y1s5KSUnp5+lERERExJsWjE5iXFoMDy7JxVr7ueeeXlnA0PgIjh2j93oiA9Hf5KwQeNF2WQk4Aa3+FBEREQlQxhiuX5jN9pJ6lu2pPPB4fmUTS3ZXcMmsYQQ5VKVRZCD6m5y9BJwIYIwZC4QCFS6KSURERER80LnThpIUFcoDS/5XVv+Z1fk4DFwyW4VARAaqN6X0nwKWAeOMMYXGmBuAB4GR3eX1nwausV8c3xYRERGRgBIeEsSV87J4f3sZe8sbaO908uzqQhaNSyU9LsLb4Yn4veCjbWCtvfwwT33VxbGIiIiIiI+7al4W9360h4eW5rFwTDLl9a1cNluFQERc4ajJmYiIiIhIj5SYML4yLYPn1xSyvaSO1JgwThyf6u2wRAJCf9eciYiIiMggdf2CETS3d7Iqr5qLZ2USHKS3lCKuoN8kEREREemTiRmxHDMqCYBLZw33cjQigUPTGkVERESkz247bzJbiusYnhTp7VBEAoaSMxERERHps5Ep0YxMifZ2GCIBRdMaRUREREREfICSMxERERERER+g5ExERERERMQHKDkTERERERHxAUrOREREREREfICSMxERERERER+g5ExERERERMQHKDkTERERERHxAUrOREREREREfICSMxERERERER+g5ExERERERMQHKDkTERERERHxAUrOREREREREfICx1nruZMbUAzs8dkL/lgxUeDsI6bc4oNbbQUi/6fXzb3r9/J+ugf5Nv4P+Ta+f+42z1sYc6olgDweyw1o7y8Pn9EvGmNX6XvkvY8xia+1N3o5D+kevn3/T6+f/dA30b/od9G96/dzPGLP6cM9pWqOIe7zq7QBkQPT6+Te9fiLepd9B/6bXz4uUnIm4gbVWf9j8mF4//6bXT8S79Dvo3/T6eZenk7PFHj6fP9P3SkREBitdA0UkkB32b5xHC4KIiIiIiIjIoWlao8hRGGNON8bsMMbsNsb89KDHb+l+fIsx5s993DfRGPOuMWZX978JnvhaBiNjzIPGmDJjzOaDHrvDGLPdGLPRGPNfY0z8YfbV6+dlh3n9phljlhtj1htjVhtj5hxmX71+IgOka6B/0zXQ/yg584BD/XD39gdbvxjeZYwJAu4BzgAmApcbYyYaY04AzgWmWGsnAX/p7b7dT/8UeN9aOwZ4v/v/4h4PA6d/4bF3gcnW2inATuBnX9xJr5/PeJgvv35/Bv7PWjsN+FX3/z9Hr5/v0DXQf+kaGBAeRtdAv6LkzM2O8MN91B9s/WL4hDnAbmvtXmttG/A0XRekbwK3W2tbAay1ZX3Yl+5/H+n+/BHgPPd9CYObtfYToOoLj71jre3o/u9yIPMQu+r18wGHev0AC8R2fx4HFB9iV71+PkDXQL+na6Cf0zXQ/yg5c7/D/XD35gdbvxjeNxQoOOj/hd2PjQWONcasMMZ8bIyZDWCMyTDGvHGUfQHSrLX7Abr/TXXj1yBHdj3wJuj18yPfA+4wxhTQdcf+Z6DXz0fpGujfdA0MfLoG+hglZ+53uB/uQ/5g6xfD55hDPGbpauCeAMwDfgQ8a4wx1tpia+2ZR9lXfIQx5hdAB/AEgF4/v/FN4FZr7TDgVuAB0Ovno3QN9G+6BgYwXQN9k5Iz9+vTD7d+MXxOITDsoP9n0jWFqhB40XZZCTiB5F7uC1BqjEkH6P73UFNCxI2MMdcAZwNX2kOXrdXr57uuAV7s/vw5ukZYvkivn2/QNdC/6RoYoHQN9F1KztzvcD/cvfnB1i+G960CxhhjRhhjQoHLgFeAl4ATAYwxY4FQoKKX+9L97zXdn18DvOzOL0I+zxhzOvAT4CvW2qbDbKbXz3cVA8d3f34isOsQ2+j18w26Bvo3XQMDkK6BPs5aqw83ftA19L8XGEHXH68NwCTgDuCn3dv8FPhzb/ftfu6o++vDZa/hmXRVM9oD/KL7sVDgcWAzsBY4sfvxDOCNI+3b/XgSXYvYd3X/m+jtrzNQP4CngP1AO11v9m4AdtM1XWp998e9ev188+Mwr99CYE3338QVwEy9fr75oWug/3/oGujfH7oG+t+HmlB7gDHmTOBOIAh40Fr7e2NMEvAsMBzIBy621lYZYzKA+233tI5D7dv9+CH39+gXJiIichS6BoqI9J6SMxERERERER+gNWciIiIiIiI+QMmZiIiIiIiID1ByJiIiIiIi4gOUnLmRMeZ0Y8wOY8xuY8xPux+7wxiz3Riz0RjzX2NM/GH2zTbGbPZowCIiIi5ymGvg77qvf+uNMe90FwA51L66BorIoKTkzE2MMUHAPcAZwETgcmPMROBdYLK1dgpd5Ul/5r0oRUREXO8I18A7rLVTrLXTgNeAX3kvShER36PkzH3mALuttXuttW3A08C51tp3rLUd3dssp6up5hEZY641xvzzoP+/ZoxZ1P15gzHm98aYDcaY5caYNJd/JSIiIn1zuGtg3UHbRAFHLRmta6CIDCZKztxnKF0N/noUdj92sOuBNwd4nihgubV2KvAJ8LUBHk9ERGSgDnsN7E6mCoArGfjIma6BIhJQlJy5jznEYwfuEBpjfgF0AE8M8DxtdE0NAVgDZA/weCIiIgN12GugtfYX1tphdF3/bh7geXQNFJGAouTMfQqBYQf9PxMoBjDGXAOcDVxpu7uAG2Me6l4g/cYhjtXB51+r8IM+b7f/6yTeCQS7KH4REZH+Ouw18CBPAheCroEiIj30R8x9VgFjjDEjgCLgMuAKY8zpwE+A4621TT0bW2uvO8Kx8oBvGWMcdE0LmeO2qEVERAbucNfAMdbaXd3bfAXYDroGioj0UHLmJtbaDmPMzcDbQBDwoLV2izHmZSAMeNcYA11z5b9xiEMEA63dny8FcoFNwGZgrbvjFxER6a8jXANfMMaMA5zAPuBQ1z/QNVBEBinzv9kA4kuMMefSNe3xEm/HIiIi4km6BorIYKWRMx9kjPktcC5wrZdDERER8ShdA0VkMNPImYiIiIiIiA9QtUYREREREREfoOTMQ4wxw4wxHxpjthljthhjvtv9eKIx5l1jzK7ufxO6H0/q3r7BGPPPg44T011uuOejwhhzp5e+LBERERERcRFNa/QQY0w6kG6tXWuMiaGrWeZ5dM2pr7LW3m6M+SmQYK39iTEmCpgOTAYmW2sP2ajTGLMGuNVa+4knvg4REREREXEPjZx5iLV2v7V2bffn9cA2uvq1nAs80r3ZI3QlbFhrG621S4CWwx3TGDMGSAU+dV/kIiIiIiLiCUrOvMAYk03XqNgKIM1aux+6Eji6kq3euhx4xmr4U0RERETE7yk58zBjTDTwAvA9a23dAA93GfDUwKMSERERERFvU3LmQcaYELoSsyestS92P1zavR6tZ11aWS+PNRUIttaucUuwIiIiIiLiUUrOPMQYY4AHgG3W2r8d9NQrwDXdn18DvNzLQ16ORs1ERERERAKGqjV6iDFmIV2FOzYBzu6Hf07XurNngeFAPnCxtbaqe588IBYIBWqAU621W7uf2wucaa3d7rmvQkRERERE3EXJmYiIiIiIiA/QtEYREREREREfoORMRERERETEByg5ExERERER8QFKzkRERERERHyAkjMREREREREfoORMRES8zhgTb4z5VvfnGcaY5914rmnGmDPddXwREZH+UnImIiK+IB74FoC1tthae5EbzzUNUHImIiI+R33ORETE64wxTwPnAjuAXcAEa+1kY8y1wHlAEDAZ+CsQClwFtAJnWmurjDGjgHuAFKAJ+Jq1drsx5mLg10AnUAucDOwGIoAi4I9ALnBn92PNwHXW2h19OPdHwHpgDhALXG+tXen675KIiAQ6jZyJiIgv+Cmwx1o7DfjRF56bDFxBV/Lze6DJWjsdWAZc3b3NYuAWa+1M4IfAv7of/xVwmrV2KvAVa21b92PPWGunWWufAbYDx3Uf81fAH/p4boAoa+0xdI3+PTig74SIiAxawd4OQERE5Cg+tNbWA/XGmFrg1e7HNwFTjDHRwDHAc8aYnn3Cuv9dCjxsjHkWePEwx48DHjHGjAEsENLbcx+03VMA1tpPjDGxxph4a21N/75cEREZrJSciYiIr2s96HPnQf930nUdcwA13aNun2Ot/YYxZi5wFrDeGPOlbYDf0ZWEnW+MyQY+6sO5D5zqi6c+/JcjIiJyaJrWKCIivqAeiOnPjtbaOiC3e30ZpsvU7s9HWWtXWGt/BVQAww5xrji61p8BXNu/8Lm0+3wLgVprbW0/jyMiIoOYkjMREfE6a20lsNQYsxm4ox+HuBK4wRizAdhCV3ERgDuMMZu6j/sJsAH4EJhojFlvjLkU+DPwR2PMUrqKf/RHtTHmM+Be4IZ+HkNERAY5VWsUEREZgO5qjT+01q72diwiIuLfNHImIiIiIiLiAzRyJiIiIiIi4gM0ciYiIiIiIuIDlJyJiIiIiIj4ACVnIiIiIiIiPkDJmYiIiPz/9utYAAAAAGCQv/U0dpRFAAzIGQAAwEDzkuimHgS3ZwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "dfs_train[0][['SimulatedTemp']].plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Trim and scale the input data" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.preprocessing import MinMaxScaler, RobustScaler\n", - "from sklearn.exceptions import NotFittedError" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "scaler = MinMaxScaler(feature_range = (-1, 1))\n", - "#scaler = RobustScaler()" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "def get_scaled_df(df, dict_cols, scaler):\n", - " \n", - " t_list = dict_cols['t'][1]\n", - " w_list = dict_cols['w'][1]\n", - " u_list = dict_cols['u'][1]\n", - " y_list = dict_cols['y'][1]\n", - " \n", - " df_local = df[t_list + w_list + u_list + y_list]\n", - " df_scaled = df_local.to_numpy()\n", - " \n", - " try:\n", - " df_scaled = scaler.transform(df_scaled)\n", - " except NotFittedError:\n", - " df_scaled = scaler.fit_transform(df_scaled)\n", - " \n", - " df_scaled = pd.DataFrame(df_scaled, index = df_local.index, columns = df_local.columns)\n", - " \n", - " return df_scaled" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "df_train = pd.concat(dfs_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "279119.2189692174" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(df_train.to_numpy())" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "df_train_sc = get_scaled_df(df_train, dict_cols, scaler)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4.58816888677789" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(df_train_sc.to_numpy())" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "dfs_train_sc = []\n", - "dfs_test_sc = []\n", - "for df in dfs_train:\n", - " df_sc = get_scaled_df(df, dict_cols, scaler)\n", - " dfs_train_sc.append(df_sc)\n", - " \n", - "for df in dfs_test:\n", - " df_sc = get_scaled_df(df, dict_cols, scaler)\n", - " dfs_test_sc.append(df_sc)" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/lib/python3.9/site-packages/pandas/plotting/_matplotlib/tools.py:400: MatplotlibDeprecationWarning: \n", - "The is_first_col function was deprecated in Matplotlib 3.4 and will be removed two minor releases later. Use ax.get_subplotspec().is_first_col() instead.\n", - " if ax.is_first_col():\n" - ] - }, - { - "data": { - "text/plain": [ - "array([[,\n", - " ],\n", - " [,\n", - " ],\n", - " [,\n", - " ]], dtype=object)" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAF1CAYAAABsypLcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABA6klEQVR4nO3de7wkdX3n/9cnXBQZBcaR4wTQ0YQY0UlEJ2rE3+YYouGiovmpi0sQVpOJm5CEzSQ6mqzRNdmMbjAao0nGG6goEsFAUKMEOXGNSmQIMLADAmZEZBy8cBvibeCzf1QdKc6cc7pPd3V11enX8/Hox+muS9e7vlWnv/2t+lZ1ZCaSJEmSpPH6sXEHkCRJkiTZOJMkSZKkVrBxJkmSJEktYONMkiRJklrAxpkkSZIktYCNM0mSJElqARtnkiRJktQCNs408SLiURGxKyL2anCZZ0bEnzS1PEmSmjSOulVaDmycaSJFxPaI+CWAzLw5M1dk5r3jziVJUldZt0rDs3EmSZIkSS1g40wTJyI+ADwK+Ieyy8WrIiIjYu9y/ExE/ElEfL4c/w8R8fCIODsi7oqIL0XEmsr7/XREXBwR34mI6yPiJX1GOSgiPh4Rd0fEZRHxE/WvrSRJo9eGurW8ZOCdEfHJchn/EhGPjIi3RsTtEXFdRBw5skKQamDjTBMnM08Gbgael5krgHPnmexE4GTgEOAngC8A7wNWAtuAPwaIiP2Bi4EPAQcDLwXeGRFP6CPKS4E3AAcBNwJ/OvhaSZI0Pi2qW18C/BGwCvh+uYwrytcfBd4y2BpKzbBxJs3vfZl5U2beCXwSuCkz/ykzdwN/B8weeXsusD0z35eZuzPzCuA84EV9LOP8zPzX8j3PBp5U/2pIktQaTdStH8vMLZn5PeBjwPcy8/3ltW8fqSxDaqW9xx1Aaqmdleffnef1ivL5o4GnRcQdlfF7Ax/oYxnfqDz/j8p7SpK0HDVRt/a7DKmVbJxpUmVN7/M14J8z89k1vZ8kSV1l3SoNyW6NmlQ7gcfW8D4XAT8VESdHxD7l4+ci4vE1vLckSV1i3SoNycaZJtWfAX9Udpnopw/7vDLzbuA5FBc530rRVfFNwINqyChJUpdYt0pDisy6zkBLkiRJkgblmTNJkiRJagEbZ9KIRMS15Y9gzn2cNO5skiR1kXWrlju7NUqSJElSC3jmTJIkSZJaoNHfOVu1alWuWbNm4Pnvuece9t9///oCjUgXcnYhI3Qjpxnr04Wck5Jxy5Yt38rMR9QUSQ0Yto6Fydm/R60LGaEbOc1Yny7knJSMi9axmdnY4ylPeUoO49JLLx1q/qZ0IWcXMmZ2I6cZ69OFnJOSEbg8G6wffIy/js2cnP171LqQMbMbOc1Yny7knJSMi9WxdmuUJEmSpBawcSZJkiRJLdDoNWfD2vr1Ozl148fHHYPtm44fd4RWWNPAttiwdvei29xtUei1LXqVYx3cFoUm/i96OfOYdvfXV3u1oZ71s6RgHdse1rHtMQl1rGfOJEmSJKkFbJxJkiRJUgvYOJMkSZKkFrBxJkmSJEktYONMkiRJklrAxpkkSWMWEXtFxL9FxEXl65URcXFE3FD+PWjcGSVJo2fjTJKk8ftdYFvl9Ubgksw8HLikfC1JWuZsnEmSNEYRcShwPPDuyuATgLPK52cBL2g4liRpDGycSZI0Xm8FXgXcVxk2lZk7AMq/B48hlySpYXuPO4AkSZMqIp4L3JaZWyJieoD51wPrAaamppiZmRkqz9R+sGHt7qHeY1i91mHXrl1Dr+eo1ZGxie3Qa3u3oZzbsL17bYsm/m/qKIM2lGUvvTKO+/MJRl+OPRtnEXEY8H7gkRRH9TZn5tsiYiXwEWANsB14SWbePrKkkiQtP0cBz4+I44AHAw+LiA8COyNidWbuiIjVwG3zzZyZm4HNAOvWrcvp6emhwrz97As4Y+t4j9tuP2l60fEzMzMMu56jVkfGUzd+vJ4wi9iwdvei27vXtmhCG7Z3r23RqxzrUMe2aENZ9tIrYxP/F72cecz+Iy3Hfro17gY2ZObjgacDvxURR+DFypIkDSUzX5OZh2bmGuBE4DOZ+avAhcAp5WSnABeMKaIkqUE9G2eZuSMzryif301xN6lD8GJlSZJGZRPw7Ii4AXh2+VqStMwt6RxsRKwBjgQuY87FyhEx78XKdfaHb0NfeLA//Cz7wxfasL3tD98c+8NrVDJzBpgpn38bOHqceSRJzeu7cRYRK4DzgNMz866I6Gu+OvvDt6EvPNgffpb94Qtt2N72h2+O/eElSdKo9HUr/YjYh6JhdnZmnl8O3llepMxiFytLkiRJknrr2TiL4hTZe4BtmfmWyigvVpYkSZKkmvTTz+ko4GRga0RcWQ57LcXFyedGxCuAm4EXjyShJEmSJE2Ano2zzPwcsNAFZl6sLEmSJEk16OuaM0mSJEnSaNk4kyRJkqQWsHEmSZIkSS1g40ySJEmSWsDGmSRJkiS1gI0zSZIkSWoBG2eSJEmS1AI2ziRJkiSpBWycSZIkSVIL7D3uAF20ZuPHFx2/Ye1uTu0xzbh1IWM/em2LJiyXspQkSdJ4eeZMkiRJklrAxpkkSZIktYCNM0mSJElqARtnkiRJktQCNs4kSZIkqQVsnEmSJElSC9g4kyRJkqQWsHEmSZIkSS1g40ySJEmSWsDGmSRJkiS1gI0zSZIkSWoBG2eSJEmS1AI2ziRJkiSpBfYedwBJqsuajR8f+TI2rN3NqQ0sR5IkTR7PnEmSNCYRcVhEXBoR2yLi2oj43XL4yoi4OCJuKP8eNO6skqTRs3EmSdL47AY2ZObjgacDvxURRwAbgUsy83DgkvK1JGmZs3EmSdKYZOaOzLyifH43sA04BDgBOKuc7CzgBWMJKElqVM/GWUS8NyJui4hrKsPsbiFJUo0iYg1wJHAZMJWZO6BowAEHjzGaJKkh/dwQ5Ezgr4D3V4bNdrfYFBEby9evrj+eJEnLX0SsAM4DTs/MuyKi3/nWA+sBpqammJmZGSrH1H7FTW/Gqdc67Nq1a+j1HLU6MjaxHXpt7zaUcxu2d69t0cT/TR1l0Iay7KVXxnF/PsHoy7Fn4ywzP1sezas6AZgun58FzGDjTJKkJYuIfSgaZmdn5vnl4J0RsTozd0TEauC2+ebNzM3AZoB169bl9PT0UFnefvYFnLF1vDdy3n7S9KLjZ2ZmGHY9R62OjE3cFXbD2t2Lbu9e26IJbdjevbZFr3KsQx3bog1l2UuvjG24W/KZx+w/0nIcdE96QHeLiFiwu0WdR/XacESvH13I2YWM0I2cZiy04aheG440t0EXjo6qEMUpsvcA2zLzLZVRFwKnAJvKvxeMIZ4kqWEjPzxW51G9NhzR60cTR1CG1YWM0I2cZiy04aheG440t8Goj+qpVkcBJwNbI+LKcthrKRpl50bEK4CbgRePJ54kqUmDfsPoq7uFJElaWGZ+DljoArOjm8wiSRq/QW+lP9vdAuxuIUmSJElD6+dW+h8GvgA8LiJuKbtYbAKeHRE3AM8uX0uSJEmSBtTP3RpfusAou1tIkiRJUk0G7dYoSZIkSapRu285Jqkz1tRwp8QNa3e34jdMJEmSxsEzZ5IkSZLUAjbOJEmSJKkFbJxJkiRJUgvYOJMkSZKkFrBxJkmSJEktYONMkiRJklrAxpkkSZIktYCNM0mSJElqARtnkiRJktQCNs4kSZIkqQVsnEmSJElSC9g4kyRJkqQWsHEmSZIkSS1g40ySJEmSWsDGmSRJkiS1gI0zSZIkSWoBG2eSJEmS1AI2ziRJkiSpBWycSZIkSVIL2DiTJEmSpBawcSZJkiRJLWDjTJIkSZJawMaZJEmSJLWAjTNJkiRJagEbZ5IkSZLUAkM1ziLimIi4PiJujIiNdYWSJGnSWcdK0uQZuHEWEXsB7wCOBY4AXhoRR9QVTJKkSWUdK0mTaZgzZ08FbszMr2TmD4BzgBPqiSVJ0kSzjpWkCRSZOdiMES8CjsnMXytfnww8LTNPmzPdemB9+fJxwPWDx2UV8K0h5m9KF3J2ISN0I6cZ69OFnJOS8dGZ+Yg6wmjpxlTHwuTs36PWhYzQjZxmrE8Xck5KxgXr2L2HeNOYZ9geLb3M3AxsHmI59y8w4vLMXFfHe41SF3J2ISN0I6cZ69OFnGZUQxqvY6Eb+44Z69OFnGasTxdymnG4bo23AIdVXh8K3DpcHEmShHWsJE2kYRpnXwIOj4jHRMS+wInAhfXEkiRpolnHStIEGrhbY2bujojTgE8BewHvzcxra0s2v9q6boxYF3J2ISN0I6cZ69OFnGbUyI2pjoVu7DtmrE8XcpqxPl3IOfEZB74hiCRJkiSpPkP9CLUkSZIkqR42ziRJkiSpBVrXOIuIF0fEtRFxX0QseJvKiDgmIq6PiBsjYmNl+MqIuDgibij/HjSinD2XExGPi4grK4+7IuL0ctzrI+LrlXHHjSNjOd32iNha5rh8qfOPOmNEHBYRl0bEtnLf+N3KuJGV40L7WGV8RMRfluOvjogn9ztvnfrIeVKZ7+qI+HxE/Gxl3LzbfgwZpyPizsp2fF2/8zaY8Q8q+a6JiHsjYmU5rqlyfG9E3BYR1ywwvhX7pNorrGMbzVhOZx07fzbr2OYyWsf2l7EddWxmtuoBPJ7ihzRngHULTLMXcBPwWGBf4CrgiHLcm4GN5fONwJtGlHNJyykzf4PiR+cAXg/8/ojLsq+MwHZg1bDrOKqMwGrgyeXzhwJfrmzvkZTjYvtYZZrjgE9S/B7R04HL+p234ZzPAA4qnx87m3OxbT+GjNPARYPM21TGOdM/D/hMk+VYLuc/AU8Grllg/Nj3SR/tfmAd23jGhT4fmijLfpaBdeywOa1ja8g4Z/qJrmNbd+YsM7dl5vU9JnsqcGNmfiUzfwCcA5xQjjsBOKt8fhbwgpEEXfpyjgZuysyvjijPfIYtiybKsucyMnNHZl5RPr8b2AYcMoIsVYvtY7NOAN6fhS8CB0bE6j7nbSxnZn4+M28vX36R4veSmjRMeTRVlktdzkuBD48gx6Iy87PAdxaZpA37pFrMOrZW1rGDs45tMOOI5h1lxomuY1vXOOvTIcDXKq9v4f4PkqnM3AHFBw5w8IgyLHU5J7LnjnZaeVr0vSPqGtJvxgQ+HRFbImL9APM3kRGAiFgDHAlcVhk8inJcbB/rNU0/89Zlqct6BcVRn1kLbfs69Zvx5yPiqoj4ZEQ8YYnzNpWRiHgIcAxwXmVwE+XYjzbsk+o+69h6M1rH7sk6tj7Wsc1pZJ8c+HfOhhER/wQ8cp5Rf5iZF/TzFvMMq/03ARbLucT32Rd4PvCayuC/Bt5IkfuNwBnAy8eU8ajMvDUiDgYujojryqMHtaixHFdQ/LOenpl3lYNrKcf5FjfPsBURkcA+mbl7gWlykeGLL7B478Mz88Yhc867rIh4FkXF8czK4JFu+yVkvIKiO9Ku8pqGvwcO73PeOixlOc8D/iUzq0fXmijHftS6T6qbrGMB61hodx37h8Bdc4ZlmWMN8O88sJFTnabJzzPr2HpYxy7BWBpnmflLQ77FLcBhldeHAreWz3dGxOrM3FGearxt0IUsljMilrKcY4ErMnNn5b1/9Dwi3gVcNK6MmXlr+fe2iPgYxenZz1JTWdaRMSL2oag0zs7M8yvvPVA5RsQzKfriPwG4l6Ibx+mZ+aVykvn2sZ080JHAZyLiB8D3gAcBuxeY91ZGo69lRcTPAO8Gjs3Mb88OX2TbN5qx8kWAzPxERLwzIlb1M29TGSv2OELfUDn2Y6H12HeB4VqGrGOtY5easVLHfhl4Q0R8kKLx9DHgNZl5R69yjIjtwK9l5j/1Efs3Ka5nmzXfZ9Kin2cR8VrgtcA+wI9FxG8C3y2n/WpmPoHhWcc2lLFi4uvYrnZr/BJweEQ8pjxidiJwYTnuQuCU8vkpQD9HCQexlOXs0Xe2/JCc9UJg3jvDDKlnxojYPyIeOvsceE4lSxNl2U/GAN4DbMvMt8wZt+RyjIiHUVQwbwdWUpx6fgPw/cpk8+1jcyucbwHXU1xAfSJwH/CqBea9kNHouayIeBRwPnByZn65Mnyxbd90xkeW25mIeCrFZ9O3+5m3qYxltgOAX6CynzZYjv24EHhZFJ4O3Fl2ZWpyn1T3Wcf2Z7nVsfsBvwj8AXAAxQ0PforiTMW+1FuO/Xwm/QOLfJ5RbPOVwHXAHwNfyMwV5aOOhllfOa1j68lYZrOOhVberfGFFC3T71OcqfhUOfzHgU9UpjuO4gjPTRRdNWaHPxy4BLih/LtyRDnnXc48OR9C8Q9wwJz5PwBsBa4uN+DqcWSkuLPMVeXj2qbLss+Mz6Q4PXw1cGX5OG7QcgTWAXcsMO7HgD8CvgrcQXHk8N8pumCsKXP8ZjntDPCZch/cCmwCrq3sn98AflDuy18BfmPOsv4A2EFxdOXl5Xv/5ABluMf/AvBK4JXl83cDt1fK7vJe234E27lXxtPKDFdRXFD9jMXmHUfG8vWpwDlz5muyHD9c7jM/pPicfMWccgzgHZV9ct1i6+dj8h5YxzaacbHPhybKss+Ms3XsvRR3xbuS++vYD1P0CPkacDPw1sp7TwO3VMr7PoozV7soDlQ+GPhguX3uoPgCO1VOPwO8rbKP/R+KA57fLJeZFL273kFRB3+nHP914E+A51b3T4rP5s9Vsv00cHE53/XASyrjzgTeSdFtchfwLxTdQt9KUVdeBxxZmX5nmesH5fq9j6LOso6tMWP5+lSsY4nyDaWJUZ45+3eKs2fnAF/M8k5LEfFyim4Sz6Ho/vF+4J7MPDnu7we/T2bujogZ4IOZ+e6IeDjwkXLaE8r3Op7iQ/4rFLdn/STwzMy8IiKOobhz1tHle76L4ujvUq85kyRpKGWddBHw4Cyuqa6OO4ui29b3KRpjf1QOn6aoAw8tX2+n0q0xIn6DohH1n8t5nwTckJl3zak/XwmcDjwbuIeie+U099e1f0/RQPo9YP8y53sy828rGU8tl/3M8uzKdcDrKBqNPwN8GviFzLw2Is4sc/0yxZf9TwCPoTj7djZFT5qjMvNZlfXaRdF99h6KM3qXzpaDVLeudmuUBpZF3+vZI4XvAr4ZERdGxBRwEvCWLG6HuoviAvMTI2Kh6zP/MiLupDiitwr47cpyPp6ZN2Xhnykqh/+vHP0S4H2ZeU1m3sMD+95LktSkVcC35jbMSjvK8Uv1Q4ozdz+Zmfdm5pasXPtU8RKKM3Jfy+ImEH82O6Ksl4+luCb8nsy8DfgLim5jC3kusD0z35eZu7P4mYDzgBdVpvlYmed7FNfVfS8z35+Z91IcaD1yznv+VSXfn1IcTJVGwsaZJlIWv/VzannE74kUXTzeWv6t/k7OVym6Vkwt8Fa/k5kHUByZO4jK75tExLER8cWI+E5E3EFxynu2gvtxHnjb1SZ/m0eSpKpvAasWOBC5uhy/VB8APgWcExG3RsSbo7jxyFyL1YePprjhx46IuKOsS/+WxX8S4NHA02anL+c5iQfe0bJ6g6/vzvN6xZz3nJvvxxdZvjQUG2eaeJl5HUUf9CdSXP/16MroR1H0t597p8a577GVoh/8O8oLRR9EcaTuzyn62B9I0XVi9narO3jgnX0eNfSKSJI0mC9QdD38lerAsovgsRTXq91DcY3frLm373/AdTKZ+cPMfENmHgE8g+KM1svmWfZi9eHXylyrMvPA8vGwXPyGH18D/rky/YFZ3CTkvy0yTy9z83m3W42MjTNNnIj46YjYEBGz/eQPo+ii8EWKi0H/e3nHnRXA/wI+skBXj7nOojia93yK/vkPoriIeHdEHEtxHdusc4FTI+KIKH5w8Y9rWj1JkpYkM++kuNbq7RFxTETsU15n/XcUN0b4AOWNQiJiZUQ8kuI6saqdFDdvAIrf/YqItRGxF8XNtX5IcdORuc4FficiDo3iR643VnLtoLgk4IyIeFhE/FhE/ERE/MIiq3MR8FMRcXK5HvtExM9FxOOXUCRz/VaZbyXFdekfGeK9pEXZONMkuht4GnBZRNxD0Si7BtgAvJeiEvosxY06vkflOrLFZOYPgL8E/kdm3g38DkWlczvwX6jcVjUzP0nRjfIzwI3lX0mSxiIz30zR8PhzisbUZRRnoY7OzO9T1I1XUdzR8dPs2UD5M+CPyq6Ev09xZu2j5XttA/6Z4u6Nc72LovvjVRQ/lnz+nPEvozjg+X8p6tOPUnS1XGg97qY4GHoixRmubwBvojhgOqgPUazzV8rHnwzxXtKivFujJEmSNI+5d6GURs0zZ5IkSZLUAjbOJEmSJKkF7NYoSZIkSS3gmTNJksYsIvaKiH+LiIvK1ysj4uKIuKH8e9C4M0qSRq/RM2erVq3KNWvWDDz/Pffcw/77719foBEwY326kLMLGaEbObuQEbqRs46MW7Zs+VZmPqKmSOohIn4PWAc8LDOfGxFvBr6TmZsiYiNwUGa+erH3WKiO7cI+OwqTut4wues+qesNk7vuXV3vRevYzGzs8ZSnPCWHcemllw41fxPMWJ8u5OxCxsxu5OxCxsxu5KwjI3B5Nlg/TPIDOJTiR35/EbioHHY9sLp8vhq4vtf7LFTHdmGfHYVJXe/MyV33SV3vzMld966u92J1rN0aJUkar7cCrwLuqwybyuIHeCn/HjyGXJKkhu097gCSJE2qiHgucFtmbomI6QHmXw+sB5iammJmZmaPaXbt2jXv8OVuUtcbJnfdJ3W9YXLXfTmut40zSZLG5yjg+RFxHPBg4GER8UFgZ0SszswdEbEauG2+mTNzM7AZYN26dTk9Pb3HNDMzM8w3fLmb1PWGyV33SV1vmNx1X47r3anG2dav38mpGz8+7hhs33T8uCNIkpaBzHwN8BqA8szZ72fmr0bE/wZOATaVfy8YV0aNx5ohvu9sWLu7lu9Lft+Rmuc1Z5Iktc8m4NkRcQPw7PK1JGmZ69SZM0mSlqvMnAFmyuffBo4eZx5JUvM8cyZJkiRJLWDjTJIkSZJawMaZJEmSJLWAjTNJkiRJagEbZ5IkSZLUAjbOJEmSJKkFbJxJkiRJUgvYOJMkSZKkFuj5I9QR8TjgI5VBjwVeBxwI/DrwzXL4azPzE3UHlCRJkqRJ0LNxlpnXA08CiIi9gK8DHwP+K/AXmfnnowwoSZIkSZNgqd0ajwZuysyvjiKMJEmSJE2qnmfO5jgR+HDl9WkR8TLgcmBDZt4+d4aIWA+sB5iammJmZmbAqDC1H2xYu3vg+euy2Drs2rVrqHVsQhcyQjdydiEjdCNnFzJCN3J2IaMkSdpT342ziNgXeD7wmnLQXwNvBLL8ewbw8rnzZeZmYDPAunXrcnp6euCwbz/7As7YutT2ZP22nzS94LiZmRmGWccmdCEjdCNnFzJCN3J2ISN0I2cXMkqSpD0tpVvjscAVmbkTIDN3Zua9mXkf8C7gqaMIKEmSJEmTYCmNs5dS6dIYEasr414IXFNXKEmSJEmaNH31EYyIhwDPBn6jMvjNEfEkim6N2+eMkyRJkiQtQV+Ns8z8D+Dhc4adPJJEkiRJkjSBlnorfUmSJEnSCNg4kyRJkqQWsHEmSZIkSS1g40ySJEmSWmD8v+gsSZIkzWPNxo/3Pe2Gtbs5dQnT92v7puNrf09pIZ45kyRJkqQWsHEmSZIkSS1g40ySJEmSWsDGmSRJkiS1gI0zSZIkSWoBG2eSJEmS1AI2ziRJkiSpBWycSZIkSVIL2DiTJEmSpBawcSZJkiRJLbB3PxNFxHbgbuBeYHdmrouIlcBHgDXAduAlmXn7aGJKkiRJ0vK2lDNnz8rMJ2XmuvL1RuCSzDwcuKR8LUmSJEkawDDdGk8AziqfnwW8YOg0kiRJkjSh+urWCCTw6YhI4G8zczMwlZk7ADJzR0QcPN+MEbEeWA8wNTXFzMzMwGGn9oMNa3cPPH9dFluHXbt2DbWOTehCRuhGzi5khG7k7EJG6EbOLmRUISIOA94PPBK4D9icmW/z0gFJmkz9Ns6OysxbywbYxRFxXb8LKBtymwHWrVuX09PTS09ZevvZF3DG1n4jj872k6YXHDczM8Mw69iELmSEbuTsQkboRs4uZIRu5OxCRv3IbmBDZl4REQ8FtkTExcCpFJcObIqIjRSXDrx6jDklSQ3oq6WTmbeWf2+LiI8BTwV2RsTq8qzZauC2EeaUJGnZKXugzPZCuTsitgGHUFw6MF1OdhYwg40zaSzWbPz4uCOwfdPx446ghvS85iwi9i+P5hER+wPPAa4BLgROKSc7BbhgVCElSVruImINcCRwGXMuHQDmvXRAkrS89HPmbAr4WETMTv+hzPzHiPgScG5EvAK4GXjx6GJKkrR8RcQK4Dzg9My8q6xz+5mv53Xdk3oNYtfXe5hr7Ou6Rr8N5beU9WjLvQlGode26Pr+PqjluN49G2eZ+RXgZ+cZ/m3g6FGEkiRpUkTEPhQNs7Mz8/xycF+XDvRzXfekXoPY9fU+dYiudBvW7q7lGv3FrrFvylLKoa71bqNe26Lr+/ugluN6D3MrfUmSNIQoTpG9B9iWmW+pjPLSAUmaQMvz8IIkSd1wFHAysDUiriyHvRbYhJcOSNLEsXEmSdKYZObngIUuMPPSAUmt4V0rm2G3RkmSJElqAc+cSZIkSWq9uWfvNqzdPdTNcwYx6rN3njmTJEmSpBawcSZJkiRJLWDjTJIkSZJawMaZJEmSJLWAjTNJkiRJagEbZ5IkSZLUAjbOJEmSJKkFbJxJkiRJUgv4I9SSJEnaw9wf/NX49NoW4/gxZo2GZ84kSZIkqQV6njmLiMOA9wOPBO4DNmfm2yLi9cCvA98sJ31tZn5iVEElSdLyV9fZmmHOJGzfdHwtGSRpqfrp1rgb2JCZV0TEQ4EtEXFxOe4vMvPPRxdPkiRJkiZDz8ZZZu4AdpTP746IbcAhow4mSZIkSZNkSTcEiYg1wJHAZcBRwGkR8TLgcoqza7fPM896YD3A1NQUMzMzA4ed2q/opjBui63Drl27hlrHJnQhI3QjZxcyQjdydiEjdCNnFzJKkqQ99d04i4gVwHnA6Zl5V0T8NfBGIMu/ZwAvnztfZm4GNgOsW7cup6enBw779rMv4Iyt47/B5PaTphccNzMzwzDr2IQuZIRu5OxCRuhGzi5khG7k7EJGSZK0p75aOhGxD0XD7OzMPB8gM3dWxr8LuGgkCSVJkhrkLeQljUvPW+lHRADvAbZl5lsqw1dXJnshcE398SRJkiRpMvRz5uwo4GRga0RcWQ57LfDSiHgSRbfG7cBvjCCfJHVKG464n3nM/uOOoI5qw/4rSZOsn7s1fg6IeUb5m2aSJEmSVJOe3RolSZIkSaNn40ySJEmSWsDGmSRJkiS1gI0zSZIkSWoBG2eSJEmS1AI2ziRJkiSpBfr5nTNJ6oQmfqNpw9rdnOpvQUmSpBHwzJkkSZIktYBnztRpTZwpWcyGtbuZHmsCSZIkLRc2zgawWIOgqS5P2zcdP/JlqD/jbiD2o4n90n1SkiRpODbOJNVi2Eaq13JJkqRJ5zVnkiRJktQCnjnrqGHOUtR1hsJubJIkSVJ9bJxpYKO+1spubpIkSZokdmuUJEmSpBYYqnEWEcdExPURcWNEbKwrlCRJk846VpImz8CNs4jYC3gHcCxwBPDSiDiirmCSJE0q61hJmkzDnDl7KnBjZn4lM38AnAOcUE8sSZImmnWsJE2gyMzBZox4EXBMZv5a+fpk4GmZedqc6dYD68uXjwOuHzwuq4BvDTF/E8xYny7k7EJG6EbOLmSEbuSsI+OjM/MRdYTR0tVcx3Zhnx2FSV1vmNx1n9T1hsld966u94J17DB3a4x5hu3R0svMzcDmIZZz/wIjLs/MdXW816iYsT5dyNmFjNCNnF3ICN3I2YWM6qm2OnZS94dJXW+Y3HWf1PWGyV335bjew3RrvAU4rPL6UODW4eJIkiSsYyVpIg3TOPsScHhEPCYi9gVOBC6sJ5YkSRPNOlaSJtDA3Rozc3dEnAZ8CtgLeG9mXltbsvnV0j1yxMxYny7k7EJG6EbOLmSEbuTsQkYtouY6dlL3h0ldb5jcdZ/U9YbJXfdlt94D3xBEkiRJklSfoX6EWpIkSZJUDxtnkiRJktQCrWqcRcSLI+LaiLgvIha8LWZEHBMR10fEjRGxsTJ8ZURcHBE3lH8PGlHOnsuJiMdFxJWVx10RcXo57vUR8fXKuOPGkbGcbntEbC1zXL7U+ZvIGRGHRcSlEbGt3D9+tzJuZGW50H5WGR8R8Zfl+Ksj4sn9zttgxpPKbFdHxOcj4mcr4+bd9mPKOR0Rd1a24+v6nbfBjH9QyXdNRNwbESvLcY2UZUS8NyJui4hrFhg/9n1S47WEz/7/Xn6eXhMRH46IBzedtW5LWPcDI+KjEXFdWa/8fNNZ67SU+joi9oqIf4uIi5rMOCrDfofommG+l3TdMN93OiczW/MAHk/xI5ozwLoFptkLuAl4LLAvcBVwRDnuzcDG8vlG4E0jyrmk5ZSZv0Hxg3MArwd+f8Rl2VdGYDuwath1HGVOYDXw5PL5Q4EvV7b5SMpysf2sMs1xwCcpfo/o6cBl/c7bYMZnAAeVz4+dzbjYth9TzmngokHmbSrjnOmfB3xmDGX5n4AnA9csMH6s+6SP8T/6/Ew9BPh3YL/y9bnAqePO3sS6l+POAn6tfL4vcOC4szex3uX43wM+NN/nbRcffe7vC36H6NKjz7p03jqg649hv+907dGqM2eZuS0zr+8x2VOBGzPzK5n5A+Ac4IRy3AkUH7qUf18wkqBLX87RwE2Z+dUR5ZnPsGXRmrLMzB2ZeUX5/G5gG8WXi1FabD+bdQLw/ix8ETgwIlb3OW8jGTPz85l5e/nyixS/ldS0YcqjNWU5x0uBD48gx6Iy87PAdxaZZNz7pMav38/uvYH9ImJv4CEsj99Q67nuEfEwioMc7wHIzB9k5h0N5RuVvrZ5RBwKHA+8u5lYjWjrd4hRGOZ7Sdd15ftOLVrVOOvTIcDXKq9v4f5/sqnM3AHFPyNw8IgyLHU5J7LnF7nTylOv712sC0IDGRP4dERsiYj1A8zfVE4AImINcCRwWWXwKMpysf2s1zT9zNtUxqpXUBxRm7XQtq9bvzl/PiKuiohPRsQTljhvUxmJiIcAxwDnVQY3VZa9jHuf1Pj1/EzNzK8Dfw7cDOwA7szMTzeacjT6qU8eC3wTeF/Zve/dEbF/kyFHoN969K3Aq4D7GsrVhDq+Q3TFMN9Lum7Y7zudMvDvnA0qIv4JeOQ8o/4wMy/o5y3mGVb77wEslnOJ77Mv8HzgNZXBfw28kSL3G4EzgJePKeNRmXlrRBwMXBwR15VH52tTY1muAC4FvpOZd5WDaynL8v3PBG7JzD+iv/1soWl6zhsRp1J0q3nm0pP2XP6eE0Y8i+LDqrq8kW/7JeS8gqLb764orhv8e+DwPuetw1KW8zzgXzKzegarqbLsZeB9Ut0x7GdqeRDrBOAxwB3A30XEr2bmB2sLOSI11Cd7U3QN/u3MvCwi3kbRHe5/1BRxJGrY5s8FbsvMLRExPc/4k4BTMvM5w+RcYNlncn/dOsj8S1n3fSPic/PVreV3iPOA0yvfIbpkmO8lXTfs951Oabxxlpm/NORb3AIcVnl9KPd3x9gZEaszc0d5Gve2QReyWM6IWMpyjgWuyMydlff+0fOIeBcw0IW5dWTMzFvLv7dFxMcoTh1/ljGXZUQ8k6Iv+ROAe4HrKP45356Zb6m8dy1lOY/F9jMiYqbMM980+y4273wiIoHDM/PGyrDXAz+Zmb86SMbK+xxDcQTpiMz89uzwRbZ93XrmrFaUmfmJiHhnRKzqZ96mMlbscSa8wbLsZaH1WPI+qfaq4bP/l4B/z8xvlvOcT3G9RusbZzWs+y0UDYXZMycfpWictVoN630U8PyIeCHwcGCfiPg+cDlFY+Vs4OxRZF+Ksm79YGb+qOvlEtf9rnL4o4D/W5l0f4rvEvcC74+Ib2bm/xnFOoxQP/VUU3Vm0/r9vvMzFN12j61+3+maLnZr/BJweEQ8pjwrdSJwYTnuQuCU8vkpQD9n4gaxlOXscW3KnP6/LwTmvfPakHpmjIj9I+Khs8+B51SyjK0sy2sCLgLeDqykOHV9D8V1e2+pzjzCslxsP5t1JfCyKDydomvQjj7nbSRjWUH9Tfnyhsrwxbb9OHI+MiKifP5Uis+mb/czb1MZy2wHAL9A5f+h4bLs5ULGu09q/Pr57L4ZeHpEPKT8vzua4jqcruu57pn5DeBrEfG4ctDRPPBLfBf1s96vAY4A9gM2AR8HDgTeAHy/kZSjMXfd/w0gM2/OzBWZuYLiJiAAH8jMB5XDu9Ywg/4+xxeqA7qu3+875wMnZ+aXx5CxPtmCu5LMPii+XN9C8UGxE/hUOfzHgU9UpjuO4m47N1F0h5wd/nDgEoovoZcAK0eUc97lzJPzIRRfMA+YM/8HgK3A1RQ71+pxZKToe39V+bi2LWUJrAPurOR8JsXp66spvlTsAo4rxyXw9XKf2Q38BfATwBcojqCdC+xbTnsq8Lk5y0+Ks1MAZwJ/Uj4/iKJP+m7uP3N3KPBK4BPlsO8BPyizbgX+f+Biihs23EJxVOcmiq4XDy+39V3Av1J0wfzcfDkqw15PcQRx9vVPV97/euAllf+FHeXy7irHX1TO826K6wuS+48a/vxi235E23mP/9myLF9ZPj+tzHEVxYW8z+j1/950xso+dM6c+RorS4oDPTuAH5b72CvmlGMA7yjXYSuVu942VY4+xvug//rpDeXn2jUUddKDxp29wXV/EsUZo6spulAfNO7sDa33OopurNPMuVsjc+rHss74zfI976aos+qqWy+iuO7v9vL5oeW4P+X+unUX8Ffl8D3qvspyfrJ8r3sp6uL/DXyOB37Xmf0OcR3FQdWrKLo33kzxXfNvuP/OpdMUn62vojgDuYPiJiOzn5/fAV5bWf7rKc6+fqQspyuAnx3htu5Vly5YB3T90ce6v7vcp64sH5ePO/PA6zruAD58zH0AD6No1J5F0S30oMq4+SqQC8t5nkDRSLuE4gvzARRHRE+Zb97K/PNVIA+naGw9hOKo298Bf1+Zb4byVszl6/0pLlb9r9x/TcO3gCeU48+hqMz2B55I0aDsu3HWx/tPA2spzjj9DEWF84Jy3Jry/fce97b14cOHDx/jeUxi3bpAnreW67ayzPAPwJ+V46YpDsq+DtgH+HWKxt+HymmfQNF4fGw5/espDpa9qJz+9yl+pmKfcW9vH919dLFbo5a5LK4/mj3S9S7gmxFxYURMLTDLmzLzrsy8luIo8KezuN3qnRTXWh05QIZvZ+Z5mfkfWdx6908purMt5LnA9sx8X2buzuK2vecBL4qIvSgqo9dl5j2ZeQ333/q36oqIuGP2wQOvg1jw/cu8M5m5NTPvy8yrKc6wLJZXkjRBJrhu/ZGyG++vA/89M79TZvhfFN3kZv0Q+NPM/CFF428V8LbMvLssi2spDoLO2pKZHy2nfwvwYIrfGJMG0vgNQaR+ZOY2iqNxRMRPU1yo/lbgU/NMvrPy/LvzvJ7vLk+LiuJ26X9Bccv02dvzPzQi9srMe+eZ5dHA08pG1ay9KboLPaJ8Xr0N7Hy/effknOeGIH28PxHxNIrrCJ5IcfOHB1EckZQkCZjYurXqERRn7baUlzlD0RVwr8o0365k+W75d+66r6i8/tHyM/O+iLiFolulNBDPnKn1MvM6im4RTxzyre6h+FAGiptQLDLtBuBxwNMyc/ZHS+H+27nmnOm/BvxzZh5YeazIzP9G0SViNw+809Cjlph9sfeHosvFhcBhmXkARR/6hbJKkibchNat36JoXD2h8n4HZHHjkEH9aPkR8WMsnzskakxsnKl1IuKnI2JDRBxavj6M4q6XXxzyra8CnhART4qIB1P0FV/IQyk+wO+IiJXAH88Zv5Oi7/2si4CfioiTI2Kf8vFzEfH48gjc+cDry7ujHcH9d5fq14LvX8n7ncz8Xnm3w/9SmfebFDcFeSySpIlk3Vqc2aLo0vkXUfwuJRFxSET8cv+ru4enRMSvRMTewOkU1+cNW6aaYDbO1EZ3A08DLouIeyg+5K6hOOI2sCxurfo/gX+iuAPV5xaZ/K0Utxz+Vrn8f5wz/m0Ufd5vj4i/LPutP4ei3/qtwDeAN1F0L4TiboQryuFnAu9bYvZe7/+bwP+MiLspLmQ+tzLvf1D06/+X8no2+8JL0uSxbi28GrgR+GJE3FXmftzisyzqAuA/U9wp8GTgV8rrz6SBRKY9niRJkqSlmL02PDN/ddxZtHx45kySJEmSWsDGmSRJkiS1gN0aJUmSJKkFPHMmSZIkSS3Q6I9Qr1q1KtesWTPQvPfccw/7779/vYEaYO5mmbtZ5m5Wk7m3bNnyrcx8RCMLUy2GqWOb1NX/vzpNehlM+vqDZQCTXQaL1bGNNs7WrFnD5ZdfPtC8MzMzTE9P1xuoAeZulrmbZe5mNZk7Ir7ayIJUm2Hq2CZ19f+vTpNeBpO+/mAZwGSXwWJ1rN0aJUmSJKkFbJxJkiRJUgvYOJMkSZKkFmj0mjNJo7Fm48fHstwNa3dzarns7ZuOH0uGthnltqiW92LcFlL3jetzvcrPEql5njmTJEmSpBawcSZJkiRJLWDjTJIkSZJawMaZJEmSJLWAjTNJkiRJaoGejbOIeHBE/GtEXBUR10bEG8rhKyPi4oi4ofx70OjjSpIkSdLy1M+t9L8P/GJm7oqIfYDPRcQngV8BLsnMTRGxEdgIvHqEWSVJktSQUd3Ov9+fBQFv56/J0/PMWRZ2lS/3KR8JnACcVQ4/C3jBKAJKkrRc2TtFklTV1zVnEbFXRFwJ3AZcnJmXAVOZuQOg/HvwyFJKkrQ8zfZO+VngScAxEfF0it4ol2Tm4cAl5WtJ0jLXT7dGMvNe4EkRcSDwsYh4Yr8LiIj1wHqAqakpZmZmBogJu3btGnjecTJ3syY194a1u+sLswRT+92/7C6V+yj3k1Fui2p5L6ZL22LSZWYCC/VOmS6HnwXM4KUDkrTs9dU4m5WZd0TEDHAMsDMiVmfmjohYTXFWbb55NgObAdatW5fT09MDBZ2ZmWHQecfJ3M2a1Nz99t2v24a1uzlja/Exsv2k6bFkGMQo95NRbotqeS+mS9tCRe8UYAvwk8A7MvOyiHhA75SIsHeKJE2AnrV8RDwC+GHZMNsP+CXgTcCFwCnApvLvBaMMKknSctSG3ilN6moPhzr1Uwbj6hHRhH57AcDy7Qng/4FlsJB+zpytBs4qj+z9GHBuZl4UEV8Azo2IVwA3Ay8eYU5Jkpa1cfZOaVJXezjUqZ8yGFePiCb02wsAlm9PAP8PLIOF9PzPyMyrgSPnGf5t4OhRhJIkaRLYO0WSVLWka85UWMrvfizltzyWwt/9kKRlwd4pkqQfsXEmSdKY2DtFklTV1++cSZIkSZJGy8aZJEmSJLWA3RolSZKkBSzlXgP9Wuo9CbzXwOTwzJkkSZIktYCNM0mSJElqARtnkiRJktQCNs4kSZIkqQVsnEmSJElSC9g4kyRJkqQWsHEmSZIkSS1g40ySJEmSWsDGmSRJkiS1gI0zSZIkSWoBG2eSJEmS1AI2ziRJkiSpBXo2ziLisIi4NCK2RcS1EfG75fCVEXFxRNxQ/j1o9HElSZIkaXnq58zZbmBDZj4eeDrwWxFxBLARuCQzDwcuKV9LkqQ+eQBUklS1d68JMnMHsKN8fndEbAMOAU4ApsvJzgJmgFePJKUkScvT7AHQKyLiocCWiLgYOJXiAOimiNhIcQDUOrYhazZ+fKTvv2Htbk4d8TIkdVPPxllVRKwBjgQuA6bKhhuZuSMiDl5gnvXAeoCpqSlmZmYGCrpr166B563bhrW7+552ar+lTd+vt599Qe3vWTW1X+9lrD3kgJFmGESb9pOlGDb3KPaxflT37y6V+yj3k1Fui34/T7q0LSadB0AlSVWRmf1NGLEC+GfgTzPz/Ii4IzMPrIy/PTMX7Xaxbt26vPzyywcKOjMzw/T09EDz1m0pR9Q2rN3NGVuX1AZuhX5yb990fENp+tem/WQphs096qO8C6nuJ23cHxYyyv1klNui38+TOrZFRGzJzHVDv5H6Vh4A/SzwRODmfurYOQdAn3LOOec0E3YIu3btYsWKFeOOsaitX79zpO8/tR/s/O5IF9FqS1n/NhwIHsX+sNR9oA3lULcufBaMyrOe9awF69i+Wg0RsQ9wHnB2Zp5fDt4ZEavLs2argdvqiStJ0mQpD4CeB5yemXdFRF/zZeZmYDMUB0C7cHCqCwfRRt3lsKsHbuuylPXfftL0aMP0YRT7w1L3gTaUQ9268FkwDv3crTGA9wDbMvMtlVEXAqeUz08BRtvPTpKkZWixA6DleA+AStKE6KfJfhRwMrA1Iq4sh70W2AScGxGvAG4GXjyShJIkLVN9HADdhAdANcHG1W1fGpd+7tb4OWCh/hVH1xtHkqSJ4gFQSdKPTG6HZ0mSxswDoJKkqn5+hFqSJEmSNGKeOdPA2tAPvEu3b5ckSZIW45kzSZIkSWoBG2eSJEmS1AJ2a5QkSa3Rhi7zkjQunjmTJEmSpBawcSZJkiRJLWDjTJIkSZJaoFPXnNkPXZIkSdJy5ZkzSZIkSWoBG2eSJEmS1AI2ziRJkiSpBTp1zZkkSZI0adpw34Xtm44fd4SJYONM0rLRb+W1Ye1uTm1BRSdJklRlt0ZJkiRJaoGejbOIeG9E3BYR11SGrYyIiyPihvLvQaONKUmSJEnLWz9nzs4EjpkzbCNwSWYeDlxSvpYkSUvgAVBJUlXPxllmfhb4zpzBJwBnlc/PAl5QbyxJkibCmXgAVJJUGvSGIFOZuQMgM3dExMELTRgR64H1AFNTU8zMzAy0wF27drFh7b0DzTtOU/sVNx/omq7knrs/7dq1a+B9bJyGzT2ubVXdT95+9gVjyVC1YW1/03Vl/56r39xd/B+YVJn52YhYM2fwCcB0+fwsYAZ4dXOpJEnjEpnZe6Ki4rgoM59Yvr4jMw+sjL89M3t2u1i3bl1efvnlAwWdmZnh1H+8Z6B5x2nD2t2csbV7N8XsSu65t3WdmZlhenp6PGGGMGzucd1ityv7yVzLPXcdtzuOiC2ZuW7oN1JPw9Sxcw6APuWcc84ZfeAh7dq1ixUrViw4fuvX72wwzXhM7Qc7vzvuFOMz6esP3SyDtYccUOv79fosWM6e9axnLVjHDvrtZGdErC7Pmq0Gbhs8niRJGkRmbgY2Q3EAtAsHp3odjJqEn7no6gGiukz6+kM3y2D7SdO1vl9XD6iP2qB7xYXAKcCm8u/4+zNJY1LHWSt/d0tShQdAJWlC9XMr/Q8DXwAeFxG3RMQrKBplz46IG4Bnl68lSdLwZg+AggdAJWmi9DxzlpkvXWDU0TVnkSRpopQHQKeBVRFxC/DHFAc8zy0Pht4MvHh8CSVJTepWZ1dJkpYRD4BKkqr6+RFqSZIkSdKI2TiTJEmSpBawW6MkSZKk1hvX77pW1fFboovxzJkkSZIktYBnziRJkiQtqu6zVv7G6/w8cyZJkiRJLWDjTJIkSZJawMaZJEmSJLWAjTNJkiRJagFvCCJJkoBmblPtTQAkaWGeOZMkSZKkFrBxJkmSJEktYONMkiRJklrAxpkkSZIktYA3BFGnzb143QvNJUmS1FVDnTmLiGMi4vqIuDEiNtYVSpKkSWcdK0mTZ+DGWUTsBbwDOBY4AnhpRBxRVzBJkiaVdawkTaZhzpw9FbgxM7+SmT8AzgFOqCeWJEkTzTpWkibQMI2zQ4CvVV7fUg6TJEnDsY6VpAkUmTnYjBEvBn45M3+tfH0y8NTM/O05060H1pcvHwdcP2DWVcC3Bpx3nMzdLHM3y9zNajL3ozPzEQ0tS3OMoY5tUlf//+o06WUw6esPlgFMdhksWMcOc7fGW4DDKq8PBW6dO1FmbgY2D7EcACLi8sxcN+z7NM3czTJ3s8zdrK7m1kAarWOb5H5sGUz6+oNlAJbBQobp1vgl4PCIeExE7AucCFxYTyxJkiaadawkTaCBz5xl5u6IOA34FLAX8N7MvLa2ZJIkTSjrWEmaTEP9CHVmfgL4RE1ZeulUt40KczfL3M0yd7O6mlsDaLiObZL7sWUw6esPlgFYBvMa+IYgkiRJkqT6DHPNmSRJkiSpJq1pnEXEiyPi2oi4LyIWvHNLRBwTEddHxI0RsbEyfGVEXBwRN5R/D2ood8/lRsTjIuLKyuOuiDi9HPf6iPh6ZdxxbcldTrc9IraW2S5f6vzjyB0Rh0XEpRGxrdynfrcyrtHyXmh/rYyPiPjLcvzVEfHkfucdc+6TyrxXR8TnI+JnK+Pm3Wdakns6Iu6sbP/X9TvvmHP/QSXzNRFxb0SsLMeNrbylfiylvoiIvSLi3yLioiYzjtqwdVdXDVMHLhfD1KfLQb91a0T8XFm3vajJfK2Uma14AI+n+I2WGWDdAtPsBdwEPBbYF7gKOKIc92ZgY/l8I/CmhnIvabnlOnyD4vcNAF4P/P4Yyruv3MB2YNWw691kbmA18OTy+UOBL1f2k8bKe7H9tTLNccAngQCeDlzW77xjzv0M4KDy+bGzuRfbZ1qSexq4aJB5x5l7zvTPAz4z7vL24aPfx1LqC+D3gA/N93/a5cewdVcXH8PUgcvlMWx92vVHv/VbOd1nKK6xfdG4c4/70ZozZ5m5LTN7/XjmU4EbM/MrmfkD4BzghHLcCcBZ5fOzgBeMJOielrrco4GbMvOrowzVh2HLq7XlnZk7MvOK8vndwDbgkIbyVS22v846AXh/Fr4IHBgRq/ucd2y5M/PzmXl7+fKLFL/BNG7DlFmry3uOlwIfbiSZVI++6ouIOBQ4Hnh3M7Ea1aW6qy7D1IHLRVfr07r0W7/9NnAecFuT4dqqNY2zPh0CfK3y+hbu/+CayswdUHzAAQc3lGmpyz2RPb9YnVaezn5vU90D6T93Ap+OiC0RsX6A+eu2pOVGxBrgSOCyyuCmynux/bXXNP3MOypLXfYrKI58zlponxm1fnP/fERcFRGfjIgnLHHeUeh72RHxEOAYikps1rjKW+pXv5/bbwVeBdzXUK4m1VF3dc0wdeByMWx92nU91z8iDgFeCPxNg7labahb6S9VRPwT8Mh5Rv1hZl7Qz1vMM2zkt5tcLPcS32df4PnAayqD/xp4I8V6vBE4A3j5YEn3WF4duY/KzFsj4mDg4oi4LjM/W0e+hdRY3isovsSenpl3lYNHVt7zRZhn2Nz9daFpxrKvl/pedkQ8i6IyeWZlcOP7zGyceYbNzX0FRZfiXVFcb/j3wOF9zjsqS1n284B/yczvVIaNq7ylHxn2czsingvclplbImK6xmiNGXHd1UXD1IHLxbD1adf1s/5vBV6dmfdGzDf55Gm0cZaZvzTkW9wCHFZ5fShwa/l8Z0Sszswd5Snx2k6NLpY7Ipay3GOBKzJzZ+W9f/Q8It4F1HYRdB25M/PW8u9tEfExilPUn6Xl5R0R+1BUbmdn5vmV9x5Zec9jsf211zT79jHvqPSTm4j4GYruR8dm5rdnhy+yz4xaz9zVLzqZ+YmIeGdErOpn3hFayrL3OPM+xvKWfqSGz+2jgOeXB00eDDwsIj6Ymb86osi1G2Xd1VHD1IHLxVD16TLQz/qvA84pG2argOMiYndm/n0jCVuoa90avwQcHhGPKc9CnQhcWI67EDilfH4K0M+ZuDosZbl7XCsyp2/1C4Frak23sJ65I2L/iHjo7HPgOZV8rS3vKP7D3wNsy8y3zBnXZHkvtr/OuhB4WXnHqqcDd5ZdXvqZd2y5I+JRwPnAyZn55crwxfaZNuR+ZLl/EBFPpfgM/HY/844zd5n3AOAXqOzzYy5vqV89P7cz8zWZeWhmrqH4H/hMlxpmfRiq7uqoYerA5WLg+nSZ6Ln+mfmYzFxT/u9/FPjNSW6YAa26W+MLKVrY3wd2Ap8qh/848InKdMdR3MHoJorukLPDHw5cAtxQ/l3ZUO55lztP7odQfAk8YM78HwC2AldT7LCr25Kb4u46V5WPa7tS3hRdArIs0yvLx3HjKO/59lfglcAry+cBvKMcv5XKnUoX2tcbKudeud8N3F4p38t77TMtyX1amesqiguvn9GF8i5fnwqcM2e+sZa3Dx/9PPr53J4z/TTL726NQ9VdXX0MUwcul8eg9elyefRTv1WmPRPv1kiUhSFJkiRJGqOudWuUJEmSpGXJxpkkSZIktYCNM0mSJElqARtnkiRJktQCNs4kSZIkqQVsnEmSJElSC9g4kyRJkqQWsHEmSZIkSS3w/wDBLeR0zV88eQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "dfs_train_sc[0].hist()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Gaussian Process Regression" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Compile training set" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "def data_to_gpr(df, dict_cols):\n", - " \n", - " t_list = dict_cols['t'][1]\n", - " w_list = dict_cols['w'][1]\n", - " u_list = dict_cols['u'][1]\n", - " y_list = dict_cols['y'][1]\n", - " \n", - " df_gpr = df[t_list + w_list + u_list + y_list].copy()\n", - " \n", - " for lags, names in dict_cols.values():\n", - " for name in names:\n", - " col_idx = df_gpr.columns.get_loc(name)\n", - " for lag in range(1, lags + 1):\n", - " df_gpr.insert(col_idx + lag, f\"{name}_{lag}\", df_gpr.loc[:, name].shift(lag))\n", - "\n", - " df_gpr.dropna(inplace = True)\n", - " \n", - " return df_gpr" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
time_htime_h_1time_h_2time_h_3time_mtime_m_1time_m_2time_m_3SolRadSolRad_1OutsideTempOutsideTemp_1SimulatedHeatSimulatedHeat_1SimulatedTempSimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-06-01 20:45:00+02:000.7391300.7391300.7391300.7391301.0000000.333333-0.333333-1.000000-0.970807-0.9259700.0588240.0588240.4380900.4380900.2480810.2335350.2143390.153839
2017-06-01 21:00:00+02:000.8260870.7391300.7391300.739130-1.0000001.0000000.333333-0.333333-0.980063-0.9708070.0196080.0588240.4380900.4380900.2168760.2480810.2335350.214339
2017-06-01 21:15:00+02:000.8260870.8260870.7391300.739130-0.333333-1.0000001.0000000.333333-0.989906-0.980063-0.0588240.019608-0.4700640.4380900.0627670.2168760.2480810.233535
2017-06-01 21:30:00+02:000.8260870.8260870.8260870.7391300.333333-0.333333-1.0000001.000000-0.991909-0.989906-0.058824-0.058824-0.470064-0.4700640.0910340.0627670.2168760.248081
2017-06-01 21:45:00+02:000.8260870.8260870.8260870.8260871.0000000.333333-0.333333-1.000000-0.992483-0.991909-0.058824-0.0588240.577419-0.4700640.2033060.0910340.0627670.216876
\n", - "
" - ], - "text/plain": [ - " time_h time_h_1 time_h_2 time_h_3 time_m \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.739130 0.739130 0.739130 0.739130 1.000000 \n", - "2017-06-01 21:00:00+02:00 0.826087 0.739130 0.739130 0.739130 -1.000000 \n", - "2017-06-01 21:15:00+02:00 0.826087 0.826087 0.739130 0.739130 -0.333333 \n", - "2017-06-01 21:30:00+02:00 0.826087 0.826087 0.826087 0.739130 0.333333 \n", - "2017-06-01 21:45:00+02:00 0.826087 0.826087 0.826087 0.826087 1.000000 \n", - "\n", - " time_m_1 time_m_2 time_m_3 SolRad SolRad_1 \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.333333 -0.333333 -1.000000 -0.970807 -0.925970 \n", - "2017-06-01 21:00:00+02:00 1.000000 0.333333 -0.333333 -0.980063 -0.970807 \n", - "2017-06-01 21:15:00+02:00 -1.000000 1.000000 0.333333 -0.989906 -0.980063 \n", - "2017-06-01 21:30:00+02:00 -0.333333 -1.000000 1.000000 -0.991909 -0.989906 \n", - "2017-06-01 21:45:00+02:00 0.333333 -0.333333 -1.000000 -0.992483 -0.991909 \n", - "\n", - " OutsideTemp OutsideTemp_1 SimulatedHeat \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.058824 0.058824 0.438090 \n", - "2017-06-01 21:00:00+02:00 0.019608 0.058824 0.438090 \n", - "2017-06-01 21:15:00+02:00 -0.058824 0.019608 -0.470064 \n", - "2017-06-01 21:30:00+02:00 -0.058824 -0.058824 -0.470064 \n", - "2017-06-01 21:45:00+02:00 -0.058824 -0.058824 0.577419 \n", - "\n", - " SimulatedHeat_1 SimulatedTemp SimulatedTemp_1 \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.438090 0.248081 0.233535 \n", - "2017-06-01 21:00:00+02:00 0.438090 0.216876 0.248081 \n", - "2017-06-01 21:15:00+02:00 0.438090 0.062767 0.216876 \n", - "2017-06-01 21:30:00+02:00 -0.470064 0.091034 0.062767 \n", - "2017-06-01 21:45:00+02:00 -0.470064 0.203306 0.091034 \n", - "\n", - " SimulatedTemp_2 SimulatedTemp_3 \n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.214339 0.153839 \n", - "2017-06-01 21:00:00+02:00 0.233535 0.214339 \n", - "2017-06-01 21:15:00+02:00 0.248081 0.233535 \n", - "2017-06-01 21:30:00+02:00 0.216876 0.248081 \n", - "2017-06-01 21:45:00+02:00 0.062767 0.216876 " - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dfs_gpr_train = []\n", - "for df_sc in dfs_train_sc:\n", - " dfs_gpr_train.append(data_to_gpr(df_sc, dict_cols))\n", - "df_gpr_train = pd.concat(dfs_gpr_train)\n", - "df_gpr_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1696122339350262.8" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(\n", - " df_gpr_train.to_numpy()\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "def get_timestamps(start_timestamp, time_delta, n_steps):\n", - "\n", - " # Define the timestamps and set it as index\n", - " timestamps = np.linspace(0, (n_steps-1)*time_delta, n_steps)\n", - " timestamps = start_timestamp + pd.Series(timestamps).map(lambda x: pd.Timedelta(seconds = x))\n", - " \n", - " return timestamps" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [], - "source": [ - "df_gpr_train.to_pickle(\"df_gpr_train.pkl\")" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/lib/python3.9/site-packages/pandas/plotting/_matplotlib/tools.py:400: MatplotlibDeprecationWarning: \n", - "The is_first_col function was deprecated in Matplotlib 3.4 and will be removed two minor releases later. Use ax.get_subplotspec().is_first_col() instead.\n", - " if ax.is_first_col():\n" - ] - }, - { - "data": { - "text/plain": [ - "array([[,\n", - " ,\n", - " ,\n", - " ],\n", - " [,\n", - " ,\n", - " ,\n", - " ],\n", - " [,\n", - " ,\n", - " ,\n", - " ],\n", - " [,\n", - " ,\n", - " ,\n", - " ],\n", - " [,\n", - " , ,\n", - " ]], dtype=object)" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAF1CAYAAAB76AIVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABU9klEQVR4nO3de9xcZX3u/89lONmAcgiEcJCgRDGUihLBYxurlQC2WAUKRSTd2KiVdndv+rNRqVIrFbvVWhVaUTF4gqaeSAHlVB4RCwqhQECJBIwQEhMBCSQiGPj+/rjvIStP5nxcM3O9X695PTNrrVnrO2vmeta611ERgZmZmZmZmZXTMwZdgJmZmZmZmdXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60lZik50jaIGlKH6e5SNKH+jU9s0Fwtsz6z7kz6z/nbnS40VYyklZKeh1ARNwbETtGxJODrsts2A1rtiT9g6RlkjZJOnPQ9Zi1YhhzJ2kPSRdKWi1pvaTvSzp80HWZNWsYcwcg6RpJv5D0iKRbJR0z6JrKxI02M7NyWwG8G7h00IWYjYkdgRuBQ4FdgQuASyXtONCqzEbf/wZmRMSzgAXAlyXNGHBNpeFGW4lI+hLwHOA/867sd0sKSdvk/hOSPiTpv3P//5S0m6Sv5K0SN0qaWRjfgZKulPSQpOWSjm+ylF0kXSrpUUk/kPS87n9as/4Z5mxFxAUR8W3g0TY+utnADGvuIuKeiPh4RKyJiCcj4jxgO+AF7c0Js/4Z1twBRMRtEbGp8hLYFti3pRkwwtxoK5GIOBm4F/jDiNgRWFxlsBOAk4G9gecB1wNfIG0N/DHwAQBJU4Erga8CewAnAudKOqiJUk4E/h7YhbSV/6z2P5XZ4DlbZv03KrmTdAip0bailfeZDcKw507SJZJ+DfwAmABuauZ948CNtuHzhYi4OyLWA98G7o6Iq/KWif8AXpyHewOwMiK+EBGbIuJm4OvAsU1M4xsR8cM8zq8Ah3T/Y5iVjrNl1n+lzp2kZwFfAv4+12g2Ckqbu4h4A7ATcBRweUQ81dInG2HbDLoAa9nawvPHqryuHHO/H3C4pIcL/bchLXwa+Xnh+a8K4zQbZc6WWf+VNneSngn8J3BDRHy4mfeYDYnS5g4gIn4DfFvS/5Z0d0Qsafa9o8yNtvKJLo3nPuC7EfEHXRqf2bBztsz6byhzJ2l74FvA/cDb+zFNsy4aytxVsQ3p8E3Dh0eW0VrguV0YzyXA8yWdLGnb/HippBd2Ydxmw2gos5XHvwPp//U2knZQH++3Y9ahocudpG2Br5H2OLzVh2fZEBrG3B0o6UhJz8zTeQvwu8B3uz2tYeVGW/l8GDgj74pu5pjhqiLiUeD1pJNNV5N2U38E2L4LNZoNo2HN1mdJK48nAu/Lz0/u0bTMum0Yc/cK0rk8rwcezlfY2yDp1T2YllkvDGPuBJwJrAN+Qbr8/5/k8+gMUES39qCamZmZmZlZt3lPm5mZmZmZWYm50TaGJN1RONyj+Dhp0LWZDbN2siXp1TXes6GftZsNK+fOrP+cu/7z4ZFmZmZmZmYl5j1tZmZmZmZmJVaK+7RNmzYtZs6cWbP/xo0bmTp1av8KaoFra09Za2tU19KlSx+IiN37WFLPOHe94dpa59xtVtbvCFxbu8pa2zjlDupnr6zfEbi2dg1rbXVzFxEDfxx66KFRzzXXXFO3/yC5tvaUtbZGdQE3RQky042Hc9cbrq11zl3z82KQXFt7ylrbOOUuGmSvrN9RhGtr17DWVi93pdjT1siy+9czf+Glbb9/5dlHd7EaK7uZHfxWFs0r51aZQXDurBXOXXc4d9YK5647nDtrRSe5g/az53PazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrsYaNNknnS1on6fZCt10lXSnprvx3l0K/90haIWm5pCN6VbjZKHPuzPrPuTMbDGfPrLFm9rQtAuZN6rYQuDoiZgFX59dImg2cAByU33OupCldq9ZsfCzCuTPrt0U4d2aDsAhnz6yuho22iLgWeGhS52OAC/LzC4A3FrpfFBGPR8RPgRXAYd0p1Wx8OHdm/efcmQ2Gs2fW2DZtvm96RKwBiIg1kvbI3fcGbigMtyp324qkBcACgOnTpzMxMVF7Ys+E0w/e1Gap1B13pzZs2NDT8XdiXGvr5LdS5nmGc/e0Mn9P41qbc+fcDdK41jbCuYM+Zs+5a8+41tbJbwXar63dRlstqtItqg0YEecB5wHMmTMn5s6dW3Okn/rKxXxsWfulrjyp9rg7NTExQb3aB2lca5u/8NK237to3tTSzrM6nLsSGdfanDvAuRuYca1tDHMHPciec9eeca2tk9xB+9lr9xe6VtKMvOVjBrAud18F7FsYbh9gdZvTGAkzO/hiV559dBcraU0ndcNgax9hzl2TnDvrIueuScOaOystZ68Jzt34aLfRtgQ4BTg7/7240P2rkj4O7AXMAn7YaZFmBjh3ZoPg3I04bywpLWdvhDl3rWvYaJN0ITAXmCZpFfABUoAWSzoVuBc4DiAi7pC0GPgRsAl4V0Q82aPazUaWc2fWf86d2WA4e2aNNWy0RcSJNXq9tsbwZwFndVJUt3nXsQ0b5865s/5z7pw7G4xhz55zZ/3QzH3azMzMzMzMbEDcaDMzMzMzMysxN9rMzMzMzMxKrNv3aRs5jY5TPv3gTR3fr8HMzMzMzKwW72kzMzMzMzMrMe9pM7PS8R5uMzMz65VO7xM3CG60mZmZmTeWDMAwrjia2WC40WZmZmZmNgDeWGLNcqOtxDrdAuegm7VuXHPnLf42SOOaO7NBcu6GixttVjpeeTQzMzMz28xXjzQzMzMzMysx72mznvAx2mb959yZ9Z9zZ9Z/45g772kzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrsZ412iTNk7Rc0gpJC3s1HTPbzLkz6z/nzqz/nDsbNz1ptEmaApwDHAnMBk6UNLsX0zKzxLkz6z/nzqz/nDsbR73a03YYsCIi7omIJ4CLgGN6NC0zS5w7s/5z7sz6z7mzsaOI6P5IpWOBeRHxtvz6ZODwiDitMMwCYEF++QJgeZ1RTgMe6Hqh3eHa2lPW2hrVtV9E7N6vYlrh3JWGa2udc7dZWb8jcG3tKmttI5273L3Z7JX1OwLX1q5hra1m7rbpUTGq0m2L1mFEnAec19TIpJsiYk43Cus219aestZW1rqa5NyVgGtrXVnrapJzVwKurXVlratJDXMHzWevzPPCtbVnFGvr1eGRq4B9C6/3AVb3aFojR9JzJG3Ix2ybNcu5a8DZsh5w7hpw7qwHnLsGnLvR06tG243ALEn7S9oOOAFY0qNpjQRJKyW9DiAi7o2IHSPiyUHXZUPFuatiVLIl6TRJN0l6XNKiQddjT3PuqhiF3EnaXtLnJf1M0qOS/kfSkYOuywDnrqpRyB2ApC9LWiPpEUk/kfS2QddUBj05PDIiNkk6DbgcmAKcHxF3dDDKpg4rGRDX1p6y1lbWuhpy7kqjV7WtBj4EHAE8s81xlHW+lbWuhpy70uhFbdsA9wG/B9wLHAUslnRwRKwccG3dUNa6GnLuSqNXtX0YODUiHpd0IDAh6X8iYmkJauuG9mqLCD8G/AC+BDwFPAZsAN5NOjZ7m9x/grSy9t+5/38CuwFfAR4hbXGaWRjfgcCVwEOkk26Pb6KGRcC5wLfzNL4P7Al8AvglcCfw4kHPKz/8aOUxitnK9S4a9Lz1w49aj1HMXWG8twFvHvQ89sOPyY9RzR3pAjJrmpn+qD96dnNta15EnEzaiveHEbEjsLjKYCcAJwN7A88Drge+AOwK/Bj4AICkqaSQfRXYAzgROFfSQU2UcjxwBumqNo/nadycX38N+Hh7n9BsMJwts/4b1dxJmg48H+hkj45ZT4xa7iSdK+lXpIbeGuCyZt43ytxoGx5fiIi7I2I9aQvG3RFxVURsAv4DeHEe7g3Ayoj4QkRsioibga8DxzYxjW9GxNKI+DXwTeDXEfHFSMdD/3thGmajxNky67+hyp2kbUl7JC6IiDub/pRm5TI0uYuIvwB2Al4NfIPUABxrpWy0STpO0h2SnpJU85KYkuZJWi5phaSFfaptV0lXSror/92lxnArJS2TdIukm7ow6bWF549VXkuaR9oVPTvPg/2AwyU9XHkAfwb8X0m3SXpJq9MovN6xlYIbfT+S5kpan+fRLZLe38r4OyHpfEnrJN1eo78kfTLX3mi+jYQxzl2zv/titjZIehL4c2CrCxMUfz/AH7Hl5ak7zlY9zt1wce6AkudO0jNIh549AZxWYxjnbog4d0DzuXtY0gZS7v5vjd+3JH0SeBPwR4XfUEfLu4h4MiKuI10d9J1VpjtWuStlow24nfTFX1trAKVLmJ5D+sc9GzhR0uw+1LYQuDoiZgFX59e1vCYiDonm7sXQ8l3OC/PgPaRd4ieSjmf+bkTsHBE7A3+a69yZdIPJf211Ou1o4fv5Xp5Hh0TEB/tRW7YImFen/5HArPzo23wbsFHNXcvZquE+4LukcwDWkn4bOwDPrDIPir+f66mygtkLzt1Qcu7qG2juJAn4PDCddC7bb6oM49wNH+euvvvI65Jszt4BwO5Unw+V39A3SIcxdvs3tA3pcM6njWPuStloi4gfR0Stu9ZXHAasiIh7IuIJ4CLgmN5XxzHABfn5BcAbuzTetcBzW3zPYcAK4Of59UXAVOD5kk5WOpzjj4HrgAMj4gZgZ0kzulRzw9oG8P00JSKuJZ1cW8sxwBcj6ed8G5gRzl072armEtL5LO8H7iYt1F5EWqhOngdP/36AXwA7dPr7kbSNpB1IV0qbImkHSZOvAOzcDRnnrqGB5o60IvVC0nlCj9UYxrkbMs5dQ5eQ1yWBl5Oytxup4VRtPhwDfDE/v58OfkOS9pB0gqQdJU2RdARpp8R/TRp07HJXykZbk/Ym/fOuWJW79dr0iFgDkP/uUWO4AK6QtFTSgibG+2HgDKXDGZs5Zhiqz4PdgdeTTjZdDZxC2pq0fWGYfsynZr+fl0u6VdK31dwJrv0yqN9X2Q1j7trJ1tYjjniUlK03kI6x/znwEeBBtp4Hk+fTI1WGadUZpENLFgJvyc/PaDBd5240OHcDyJ2k/YC3A4cAP1c6PHODpJMaTNe5Gw3OXVqXvBT4XVLutqf6fOjmvArSoZCrSFec/Cjw1xFxcZvTHJnc9eQ+bc2QdBXpMqCTva/KF1N1FFW6dWW3cL3aWhjNKyNitaQ9gCsl3Zlb3VXlz1z83B8t9Js7adgzcp3H5ddXAQfkLSKRtx4dnYe5FPhwRNxSHEWV6c+f9PpzwOcKr1fQ2u+lme/nZmC/iNgg6SjgW6TdxGXQs9/XII1p7lrOVuH1VaRDQiqvl0s6GzgiIt6W6z65St0qvGe+pKvJ86ndbEXEmcCZDQZz7krIuQOGMHcR8TOqz/vJnLsScu6ADnMHHJ3XNYvZO5it54Pye+bnYa5OL9vK3S9I90ZsZOxyN7BGW0S8rsNRrAL2Lbzeh7RnqWP1apO0VtKMiFiTd2OuqzGO1fnvOknfJO3Grdloa1Mz86Bn86mBhtONiEcKzy9TurzrtIh4oA/1NTKo+dZTzl1XOHe949xV59w5d73k3FXn3CVlzd7Y5W6YD4+8EZglaX9J25F24S7pw3SXkA45JP/damuNpKmSdqo8J+1irnr1mA41Mw+WAG9Vcg9pK8pdhcM8qh3q0ZfaJO0pSfn5YaTf44M9qKUdxfn2MmB95XCFMefcVZ8HpxYzBbwV+JKkk5r9/Uh6zqRcFh/P6aA25274OXfOXS85d9U5d8nk+fAB4O+qZO9vm/0NOXdAO7mLEtzhe/KDdPGMVaR7MqwFLs/d9wIuKwx3FPAT0gmS7+tTbbuRToC+K//ddXJtpJNAb82PO3pZW7V5ALwDeEd+LtLVde4GlgFz+vg9NqrttDx/bgVuAF7Rx9ouJN2s8Tf5t3ZqWebboB7OXVd/285d9dqcu63niXPXfD3OXXu1OXdbzxPnrrWaSpm9ccud8hsHatq0aTFz5sya/Tdu3MjUqVP7V1ALXFt7ylpbo7qWLl36QETs3seSesa56w3X1jrnbrOyfkfg2tpV1trGKXdQP3tl/Y7AtbVrWGurm7t+tTjrPQ499NCo55prrqnbf5BcW3vKWlujuoCbogSZ6cbDuesN19Y65675eTFIrq09Za1tnHIXDbJX1u8owrW1a1hrq5e7YT6nzczMzMzMbOQ1vHqkpH1JN8zbE3gKOC8i/kXSrsC/AzOBlcDxEfHL/J73kI7dfBL4q4i4vJMil92/nvkLL237/SvPPrqTyXdk5hjWDcNb+6J55diV7tx1xrnrP+fOuXPu+s+5c+6cu/7rtPZ2s9fMnrZNwOkR8ULgZcC7JM0m3eD16oiYRTpRciFA7ncCcBAwDzhX0pS2qjMbX86dWf85d2b959yZNaFhoy0i1kTEzfn5o8CPSXfsPga4IA92AfDG/PwY4KKIeDwifgqsIN07wsya5NyZ9Z9zZ9Z/zp1Zc1o6p03STODFwA+A6ZHvJ5D/7pEH2xu4r/C2VbmbmbXBuTPrP+fOrP+cO7Pamr7kv6Qdge8CZ0XENyQ9HBE7F/r/MiJ2kXQOcH1EfDl3/zzpvhJfnzS+BcACgOnTpx960UUX1Zz2uofWs/ax1j5Y0cF7P7v9NzewYcMGdtxxx5r9l92/vu1xd1p3o9rq6aRuaFx7J7U10knt+z97St26XvOa1yyNiDltT6BFzl11zl11zl13OHfVOXfVOXfd0e3c5X5NZc+5a49z15562auXu4YXIgGQtC3wdeArEfGN3HmtpBkRsUbSDGBd7r4K2Lfw9n2A1ZPHGRHnAecBzJkzJ+bOnVtz+p/6ysV8bFlTpVa18qTa4+7UxMQE9Wrv6MTWDutuVFs9ndQNjWvvpLZGOql90bypPaurVc5dbc5ddc5d55y72py76py7zvUid9B89py79jh37Wk3ew0Pj5Qk4PPAjyPi44VeS4BT8vNTgIsL3U+QtL2k/YFZwA9brsxsjDl3Zv3n3Jn1n3Nn1pxmNiu8EjgZWCbpltztvcDZwGJJpwL3AscBRMQdkhYDPyJdEehdEfFktws3G3HOnVn/OXdm/efcmTWhYaMtIq4DVKP3a2u85yzgrA7qMhtrzp1Z/zl3Zv3n3Jk1p6WrR5qZmZmZmVl/udFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJ9azRJmmepOWSVkha2KvpmNlmzp1Z/zl3Zv3n3Nm46UmjTdIU4BzgSGA2cKKk2b2Ylpklzp1Z/zl3Zv3n3Nk46tWetsOAFRFxT0Q8AVwEHNOjaZlZ4tyZ9Z9zZ9Z/zp2NnV412vYG7iu8XpW7mVnvOHdm/efcmfWfc2djZ5sejVdVusUWA0gLgAX55QZJy+uMbxrwQNvFfKTddzalo9rqaaHu7YCDgaWTunertkOB24HHm31DE7X3bL514jUfaVjXfv2qpQ3OXRd0oe6B/badu4Fw7rqgRt2zgIeAB6v0m7zcc+5aNOq5g5ayN265mwU8pI80la16nLs2NMhe7dxFRNcfwMuBywuv3wO8p4Px3dSLOrv0WbtaG/Aq4L+B9aSF1feBlzZ4z0zSP6tt8usJ4NfAk/lH8Q1gRgc1BXBAmefbqNfVZO3OXfens0W2ul1bL7JVhvk2KnU1WfvY5Q6YDywDfgX8HPhXYOcmx7ESeF0Xapm83Ks634D3Ahvyo7JcrLy+o5/zrWyPstbVZO0jmbsa2fqfJt/bk2zVGe69hTwNJFt1atsur0OvzJ9l7qC/20n1tfV769XhkTcCsyTtL2k74ARgSY+mNTIkPQu4BPgUsCtpV//f08IeroLTgP8BDgB2BD7apTKtvJy7OiS9StJ/S1ov6SFJ35f00hbHMSHp15I2SHpA0jckzehVzXmar5F0Ta57ZS+nZW0Zq9xJOh34CPD/Ac8GXkbaMnxl/vylEhH/GBE7RsSOwDuA6yuvI+KgQddnbRu53NXJ1vPLmi1Sg7Ks2doAvIXU+B0JPWm0RcQmUqPhcuDHwOKIuKMX0xoxzweIiAsj4smIeCwiroiI2yQ9Q9IZkn4maZ2kL0p6dqMRRsTDwLeAQyrdJP2ZpB9LelTSPZLeXnyPpP9P0hpJqyX9r65+QusZ5662bm8QyQupfm0Q2QicT1qQW8mMWe6eQcrNX0bEdyLiNxGxEjietHL5FkmLJH2o8gZJcyWtys+/BDwH+M+84ePdknaQ9GVJD0p6WNKNkqbn4SckvS0/nyLpo3ljyT3A0ZNqmyLp83nZdb+kD+UrDNYk6UBJV+aNOMslHV/ot0jSuZK+nWv9vqQ9JX1C0i8l3SnpxYXhV0p6j6Qf5f5fkLRD+7Pa6hm13OVlVK1sbccAsyXp2cOWrUgXp1kXEdeR9gCOhJ7dpy0iLouI50fE8yLirA5Hd15XiuqNbtb2E+BJSRdIOlLSLoV+8/PjNcBzSSuLn25Um6TdgDcBKwrd1wFvAJ4F/Bnwz5JeAum+J8DfAH9AOub5dR1+ppq19Wi8nSprXU1x7mrq2wYRYO9ubhCJiB9GxJeAe5r+tLWV9Tsta11NGaPcfQ/YgXTI/dMiYgPwbdJyo6aIOBm4F/jDvDX+n4BTSHsV9gV2I22xf6zK2/+ctNx6MTAHOLbKMJtIG1NeDLweeFutWiRNBa4EvgrsAZwInCupuIfgeOAM0rkxjwPXAzfn118DPj5ptCcBRwDPI/3POSN3L+t3Wta6mjJiuXsFtbN1I4PN1gXUztZW863P2apn0N9pPW3V1rNGWzdFRGlnfDdri4hHSOe0BfBZ4BeSluQtIycBH490edsNpOO3T5BU62IynwT+H+mctmnAXxamc2lE3B3Jd4ErgFfn3scDX4iI2yNiI3Bmtz5fUVm/07LWNQhlnhdt1NbtDSLU2SDyKga7QaSmsn6nZa1rEEo+L24EHsh7OSZbQ1rWtOo3pBXKA/IGlaV5WTjZ8cAnIuK+iHgI+HClR15Gzgb+OiI2RsQ64J9Jh8zV8gZgZUR8ISI2RcTNwNfZcoX1m7meXwPfBH4dEV+MiCeBfyetwBZ9ulDfWaSV1dJ+p2WtaxBKMC+mUTtb1zLYbB1JjWzVmG99y1Y9JfhOa2q3tqFotI2TiPhxRMyPiH2A3wb2Aj6R//6sMOjPSFf/nF5jVH8VEc8GfgfYBdin0iOvtN6Qd1s/DBzF5n8Ie7HlZXSL0zQbSt3eICJpPSXdIGLWQw8A02pkYwbtXantS6RD3C7Ke6D/SdK2VYart2zaD9gWWJMPA3sY+AxpK38t+wGHV4bP7zkJ2LMwzNrC88eqvN5x0jgn17dXnembFTlbW752tqooZaNN0nGS7pD0lKQ5dYabl4+VXSFpYZ9q2zUfp3tX/rtLjeFWSlom6RZJN7UzrYi4E1hEarytZsvLgD6HtLv6RcDVudu7q4zmdtKegGsk3SbpcNIWj48C0yNiZ+AyNl8+dw1pV3pxOm1p9P0oHY+9Ps+jWyS9v91ptVHb+flQuNtr9JekT+bab6vsLRllo567bm4QAf6EdFWqg4Cn58GkDSKPk272+t78++nLBhHnbrgMU+5I5w49TtrDXBzuZ6SVsleSNgL+VqF3cUUNJl2WPZ+78/cRMZt0iNgbgLdWKWcNcERlHrDlOZ735bqmAV8kreCuBE6u8/HuA74bETsXHjtGxDvrvKeeZwKfL3w/zyEttwHnrmxKmLvrydmalLurSZm6mnR+czFb/wFMLyzvOslWrfW+Srb+lNSwegD4x6h+oZHn5my+C7i5i9miSn2robnlHWnZ+7mRyF2U4NKXkx/AC4EXkC5dP6fGMFOAu0mHM20H3ArM7kNt/wQszM8XAh+pMdxKYFqL4z4QOB3YJ7/el3TJ/8+Sjh++C9iftAXia8BX8jx4NSmst5IOEZkA3pbHcRTwHeB+0kLuRtJJmb9HaqgdSbq07Ify8EeSrrQzm/TP4cu0cVnyZr4fYC5wyYB+Y78LvAS4vUb/o0jnaIh0BacfDDITfZonY5U70knsy0gLw78odH8+6bCSbah+O40/L8yDyjkCs4Htc5aOBf4w/36+BXwB+EH+e3ZhOrNayRbpcMqVDYZx7obsMWy5I20cXAvMI22Bn5l/97fmDPw5cCfpgj97AjcAqwrjvAFYUHj9GtI9oabk99wKzM/9Jti8LPsL4AnSyucewKOTsnlxflxB2iD9ZuBHkz7PfOC6/Hwn0oaTk/Pn2BZ4KfDC3H8RebmYX78NmCi8PgDYVPh+fpM/9/6kjaVLSSu3zl0JH2XMXSFb/0G6nP7M/Jv6eY1sPQ6sLry/3Wy9E/gR6YisXUjLxMnZeph05Nb2pI03b51U+8dJl9gX8Pu5to6zlV+vJC2r98mf43vAPzb6fnKtrycto19POmdQffyNdT13pdzTFmmLeL2bjwIcBqyIdEjTE8BFpK3avXYM6aRM8t83dnHcjwKHAz+QtJEUwNtJDbnzSbu6rwV+SronxgWkvWiVrfeL2XoeVOr9JGnvwLNIJ3AuBn5J2nry9GVyI+LbpL0P/5XH/V9tfpZBfT9NiYhrSf9gajkG+GIkNwA7q8eXdh+0Uc6d0pWsTpe0T369L+mY+BuAC4H/o3Tp6B1JC4N/j+rnFkBaKVsREfeQcvkEaYV2O9JC4hekLZq3khYU9wM7k07Mni9ptqTfAj7QZO3PULpS1rbppXZQ7cs/O3dDZthyF+kCB+8lHa3xCGmDxJPAmyLicdJy6lbSitYVpPNTij4MnKF02NTfkFY+v5bH9WPgu6SNhZPdRtq6/p95mpOXTW8lrewdSlq2nUGd309EPErK5wl5vD8nNUq3rzdDajiMdOTLBcClpIslAHyo5jv6yLnbWhlzV8jWHwF/R/qd3wg8WiNbGyeNot1sfZZ0GOWtpIuBfGNS/0/lcVxGOm/72aQN/EUvJl2tMSLiv0jLvVPoPFsVXyV95nvy40M0/n6W58+1Q/77GH28YXwvclfrnI1hsDdbHmq0itTg6bXpEbEGICLWSKp1XG8AV0gK4DPRxEmHEXE/6byXWj6YHwBIOha4L9JlYSXpZODwiJhbeM/eeZgLgY/kXe1XRsSHqSEizgbOLnQ6v1HtVTT7/bxc0q2kYP9NlOeSvdXq35t0GME4G9bcVTaI/F9JO5O2Gl5C2vu8gXT4xLVs/uf+l9S2C3keRMQTkr4NzIuIRyX9FWmDyK6krZWVDSKrSBdD+QRpZfMp0krlSU189t8Frim8foy08J1bZVjnbjSVKncR8Xng85WBJP0U+I9C7v5k0nj+ufIkIip7xIourDbxScuyPYGrIqJymfKTScu2TXnY9bmOt0e6zDd5eff07yciFpG28lfGv5ytbx1Q6Td/0uvPAZ8rvF7B5nWovUmNthsj4sOFZfGvJo3WuRsufc9dRHxe0scinboCgKRf5n6/Jm18r3T/KfBLSUvZvLxrOVs5Q/8nPyrOKTzfGbhiUvYmz4eNbHm11p+S9tJvdXpQi9mquHHyequkut9PRMzMh0d+PfdbDUydXM8AtZy7gTXaJF3F1se6A7wv/1NvOIoq3aJKt5bVq62F0bwyIlbnhdyVku7Mre5uamYe9Gw+NdDMdG8G9ouIDZKOIh1KNqvXhTVpUPOtp8Y1d61uEKmobBApvJ4r6TjSpYcrLiXtXSMizgHOkXQp8OFJK4/RzgaRiJig+nyvxrkroXHNXTfqK/DyrnecuxqjqNJt3HIH5c3e2OVuYI22iOj0cter2PLExH0onPTbiXq1SVoraUbe6jiDtKu42jhW57/rJH2TtBu322FqZh70bD410HC6Ubj0bERcpnSzxWkR0c5VkrptUPOtp5y7rnDuese5q865K3/uiutTzl0JOHddU9bs/T7plIPKrT22BZB0QEQcCaOXu1Ke09akG4FZ+TyU7UjHpS9p8J5uWEI6Tpf8d6utNZKmStqp8px03HzVq8d0qJl5sAR4a75KzcuA9ZXDXXqsYW2S9pSk/Pww0u/xwT7U1oxBzbeyc+56kDulq5htqPJo5vDJlmpz7oaSc1f+5d0a4G7nbqQ4d8lAsxcRMyPiqiq9/pJ0Q/GDSack3Am8pNJggxHMXZTgKj6TH8Afk1qgj5OupHN57r4XcFlhuKNI54ncTdrd3Y/adiOdq3JX/rvr5NpIV7K5NT/u6GVt1eYB6Yp278jPRTo2+W7S1XeqXiVpQLWdlufPraQLQryij7VdSFrI/ib/1k4ty3wb1MO56+pv27mrXptzt/U8ce6ar8e5a682527reeLctVZTKbM3brlTfmNdklaSTuR/knQZzjmSdiVdFWom6Uo2x0fEL/Pw78nFPUm6yfPl9cY/bdq0mDlzZs3+GzduZOrUMp07uJlra09Za2tU19KlSx+IiN37UYtzV5tra09ZaytT7nrNuesN19a6ccod1M9eWb8jcG3tGtba6uauydbiSibd+4ga900i3a+ocr+W/UktyCn1xn/ooYdGPddcc03d/oPk2tpT1toa1QXcFP3bSuPc1eDa2lPW2sqUu14/nLvecG2tG6fcRYPslfU7inBt7RrW2urlrpNz2mrdN+kY4KKIeDwifkq619dhHUzHzDZz7szMzMzGTLNXj6x276Na903am3TcaEXlvgNbkLQAWAAwffp0JiYmak583UPr+dRXmrk6a3UH7/3stt/byIYNG+rWPkiurXUlq8u5q6Fk39MWXFvrylrXuJm58NK6/U8/eBPz6wyz8uyqtzwzszqcO2tWs422re4FUWfYpu47kFdAzwOYM2dOzJ07t+YIP/WVi/nYsvbvTrDypNrj7tTExAT1ah8k19a6ktXl3NVQsu9pC66tdWWty8zMrCyaOjwyCveCACr3glib7x+BtryPxEje78Os35w7MzMzM4MmGm117gVR6z4SS4ATJG0vaX/Sncd/2O3CzUaZc2dmZmZmFc0c+zQd+Ga+N902wFcj4juSbgQWSzqVdHO74wAi4g5Ji4EfAZuAd0XEkz2p3mx0OXdmZmZmBjTRaIuIe4AXVen+IPDaGu85Czir4+rMxpRzZ2ZmZmYVnVzy38zMzMzMzHrMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzK7GGN9c2MzMzMzMrWnb/euYvvLSt9648++guVzP63GgzMzMbETPbXIEadl55tEEa1tx1WvfpB3epEGuKG21mZmY2UF55NDOrz+e0mZmZmZmZlZgbbWZmZmY2MJLOl7RO0u2FbrtKulLSXfnvLoV+75G0QtJySUcMpmqz/nKjzczMDK84mg3QImDepG4LgasjYhZwdX6NpNnACcBB+T3nSprSv1LNBsONNjMzs2QRXnE067uIuBZ4aFLnY4AL8vMLgDcWul8UEY9HxE+BFcBh/ajTbJDcaDMzM8MrjmYlMz0i1gDkv3vk7nsD9xWGW5W7mY00Xz3SzMysti1WHCUVVxxvKAxXc8VR0gJgAcD06dOZmJioObENGzbU7d/I6Qdvavu9jUx/Zv3xD7LuRrXV00ndzej0O+2VstbVBFXpFlUHbDJ7zl17nLv2tFubG21mZmata3rFMSLOA84DmDNnTsydO7fmSCcmJqjXv5F271XWjNMP3sTHltVebVh50ty2x91p3Y1qq6eTupvR6XfaK2Wtq2CtpBl5Y8kMYF3uvgrYtzDcPsDqaiNoNnvOXXucu/a0W5sbbWZmZrV1vOLYik5uEm02YpYApwBn578XF7p/VdLHgb2AWcAPO5mQc2fDwOe0mZmZ1VZZcYStVxxPkLS9pP3pwoqj2biSdCFwPfACSasknUpqrP2BpLuAP8iviYg7gMXAj4DvAO+KiCcHU7lZ/3hPm5mZGU+vOM4FpklaBXyAtKK4OK9E3gscB2nFUVJlxXETXnE0a1tEnFij12trDH8WcFbvKjIrHzfazMzM8IqjmZmVlw+PNDMzMzMzKzE32szMzMzMzErMh0eamZnZ2JrZ4VUDV559dJcqMRsfzl3rvKfNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErM57SZmZlZxzo9R8XMWufcjQ/vaTMzMzMzMysx72kzMzMza1OjPR2nH7yJ+TWGGccr4Jl1Qye5g+HMnve0mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiU2Fpf87+TGg8N4SVCzMnDuzMzMbNR0ekPzRfOmtvW+sWi0mZmZmZVNpyt/nWh3xdFsFAwye+1yo62Bcbx537DrJIheiJWDczd8nDszM7PecaOtxAa1+9VsnDl3ZmZmVjY9a7RJmgf8CzAF+FxEnN2raZXZIHe/Lrt/fd29EYPUaE+Jtce5S5y76py73nDuzPrPubNx05OrR0qaApwDHAnMBk6UNLsX0zKzxLkz6z/nzqz/nDsbR7265P9hwIqIuCcingAuAo7p0bTMLHHuzPrPuTPrP+fOxo4iovsjlY4F5kXE2/Lrk4HDI+K0wjALgAX55QuA5XVGOQ14oOuFdkeltl2B3YC7ejCNmcATwOoW39fOfNstv6/e99ENZf1OG9W1X0Ts3q9iWjGmuSsj19Y6526zsn5HAPsB21Gu5VxFK/OtX8u5irJ+pyOdu9y92ewN+juqtw7ZaW0z6Sxb9Uyurd/ZqmfQ32k99WqrmbtendOmKt22aB1GxHnAeU2NTLopIuZ0o7BOSXoV8E/AQcCTpAXYcRFxYw+nuQhYFRFnNDHsBPDliPhcO/NN0nzgbRHxqvw6gFkRsaIwzJnAARHxllbGPWk6NwHHAj8Fto2ITe2Oq5vK9Ftrw0jmTtJJwCkR8fpCt67U1kq2Whhn1domZ2sQyvKdTlbWupo0crmrspz7MfDXwL/2qrZ2l3OFbk3Pt0oWgT8FflToNRX4FZu/vyMj4nvNjLPB9Ab+nVZT1rqa1DB30Hz2+jUvamWr3jpkp7V1mq0Gw29RW7+z1Uptk/qdBswHDgYujIj5vaylyvTb+k57dXjkKmDfwut96E0Lv68kPQu4BPgUaavI3qTP9fgg6zLLhjp3kl4l6b8lrZf0kKTvS3ppRHyl2GAbYH0Tkt7WxfGFpAMmdTtT0pe7MO6ZefwNN8xJmiFpiaTV+T0zO53+mBnq3E1WYzn394zgci4i7o2IHSuP3PlFhW49Xam0jgxd7pytUmVrNfAh4PwB19GSXjXabgRmSdpf0nbACcCSHk2rn54PEBEXRsSTEfEY8EhE3CZpvqTrKgPmlZ+/kHSXpEcl/YOk50m6XtIjkhbnecPk9xbev8UKXe6+i6RLJP1C0i/z831yv7OAVwOflrQBeE7ufqCkK/OK8HJJxxfGt1teYXtE0g+B57U6UxqM/2hJ/5PHf1/eS1dxbf77sKQNkl7e6rRtC0Obu3FamJXQU8B3gDcPupAhNbS5q2Gr5VxEXBERtwG7lW05J+nT+W07dHM5J2l7SR+VdK+ktZL+TdIzc7+5klZJerekdZLWSHqjpKMk/STX8N7C6PaS9DVJ/57n082SXtTc12E1DGPuamar3jok8OJBZqveOh4wZZDZUtrQ2XK2IuIbEfEt4MFGw5ZJTxpt+VC304DLSbt+F0fEHR2MsqnDSvrgJ8CTki6QdKSkXahf2zzgUOBlwLvzsCeRtg79NnBiGzU8A/gC6dyC5wCPAZ8GiIj3Ad8DTstbNs6QNBW4EvgqsEee5rmSDsrjOwf4NTAD+F/50bQmxr8ReCuwM3A08E5JbyTNi9/Nw+yct7xc38q0e6Qsv7WWDXnuWlqYAcvLsKJYY2F2Xu5Xxg0iW32nEbE2Is4lrQQNinO32aDnRbXlXMVEleEHupyLiNPycmgvuruc+wjp/9IhwAGkDUnvL/TfE9ih0P2zwFtI8+LVwPslPTcPu5R0kYz/IG2U+irwLUnbNj1HemPQv7W2DWnu6mWrmkq2Pshgs1VvHW8Tg80W1M5WmX/f7dUWEX608ABeCCwi7ZrfRNqyM510bOx1heECeGXh9VLgbwuvPwZ8Ij/f4r2F9x+Qny8CPlSjnkOAXxZeT5DOm6m8/hPge5Pe8xngA6R7m/wGOLDQ7x+rfI5HgIcLj1+TjnmuO/4a9X4C+Of8fGYe/zaD/l79GOwDeBZpi9cFpEs471LoVy1bS/J7DiLtjbsaeC7wbNJx9KdUe2/h/Vtli3QC9ZuB3wJ2Ii0EvlV43+RsTQXuA/6MdH7wS0gnFh+U+18ELM7D/TZwf5XPccCk2s4sZKvR+OeSjsd/BvA7wFrgjblfy9nK0whg5qB/D34M9sGYLecm10M6X2oj8LxCv5cDP83P55JWdqfk1zvl9x4+aV68MT8/E7ih0O8ZwBrg1YP+rv3o78PZKle2SIdILhr076LZR68OjxxZEfHjiJgfEfuQVsT2IjVEqllbeP5Yldc70iJJvyXpM5J+JukR0hb1nZXuWVLNfsDhkh6uPEhbavYEdietqN1XGP5nVcbxkojYufIAijewrDd+JB0u6Zq892I98A7SVXPMnhYRjwCvIv1z/izwi7yXanqNt3wkIh6JtGX1duCKSJd+Xg98G3hxGzU8GBFfj4hfRcSjwFnA79V5yxuAlRHxhYjYFBE3A18Hjs15fDPw/ojYGBG3kxqkk908KTsLmxl/rnciIpZFxFORDl27sEG9Zk0Z0+Vc0e6kjTdLC+P7Tu5e8WBEPJmfP5b/1vvsT08/Ip4irbTv1aAOGzHOlrPVCTfaOhARd5K2YPx2h6PaSPoRAyBpzzrDnk66bO3hEfEsNh9iWLmS0uSrJ90HfLfY6Iq02/udwC9IW3qKJ/M+p8Xa640f0q7qJcC+EfFs4N/q1GpjbEwXZt4gYqU2psu5B0j/Rw4qjO/ZsfmCCu14evqSnsEQXDjDesvZcrZaVcpGm6TjJN0h6SlJNS+JKWlePs9jhaSFtYbrYl0HSjpD0rVK59NcSzrO9oYab7lU0i1Kl7ev51bgIEmHSNqBtLu3lp1IP/iHJe1KOlYf4M48D9aSDhOruIS04rdW0m2SDpP0UkkvzFsyvgGcmVdYZwOnNKh1skuA50s6WdK2+fFSSS+UNI+04rkQ+GtJh5EuA1txYP67LM+n99Mnks5XOsn19hr9JemT+bd1m6SX9Ku2QSlT7qoszLZROrercg+bZ9WobSXpnjx/nHPXk4VZ/m3/NWmBdXaNhdlTwI8Kv5++bBDJtV2dh3n35JEqnei9PmfOuRuwMuUuT+dASadL2kfSrnk59/+AXShkadJ7VkpaRjrU6gM1Rt3Jcq4yztdLWg7MIW3AqCguhz6d59Fdkt7UznIub63/LPDPkvbIn3FvSUfUex9wdZ3vZ46kjZJuIWV7B2qvO3SVc7e1QeSumK38el/SOWI3TBpu1/z0qrzcq3Xu25/k3H0QOKTDbFVUW4d8vqR/KsyHT9dYh/wy8LekC6dU/Q11kK1aDiCt465RukDJX5NOmbghj7vq8k7SNnleTSFdTGUHNXG15Vb0InelbLSRDnd6E5tPpt+K0tbvc0jnv8wGTsz/jHvpUVIj7UWkvQAvIv3jPb3G8G+JiEOiwb0YIuInpNBdRbqx4nV1Bv8E8EzS1oobyBdwIJ3bciJwMenwrF9K+iTppM1bgJtIWyO+TzoJdPv8vtNIeyV+TlpJ/kK9WqvU/ijwetKVm1bn8Xwk13gO8Fekc+DOIt2bZHHh7Y/nzzuNdA7OFa1Mu0OLSCf51nIkMCs/FgD/2oeaBm1guWtiYbYPcHVEzMqv315ndF8Cvplz140VxYq1wHML8+AIUuPsLyT9jgobLHK/dcD1wF+Sfm9d2yBSqPehiPi1Nm8QUa7tD0mNxpNrfD/fy/+bDomID+Z5U/mfsH1+3QuLcO4mK9vy7lHgcOAHpP/nLwK+SFrROrrO+15DWtb8fbWeHS7nvpO7f4o0D44CXpFXxj5ZWA79Jel3swuwvlBLO8u5vwVWADco7Xm/irRRp5rKutR88veT6y/6fq7peaT/Da+NiN80UUc3LMK5m2wQuXs6W5I2kn7bt7P1OmSlcfg60ga4eo3F10TEC4G/o7NsVfwLhXXInK15wLtI62q7kJZlleVQJVsPkA7p/zApN/V+Q61kq6b8/RyVP8N1wD8Afw68aVK2tlje5W5nkJb3C0nr9Y/lbt20iG7nrpkT3wb1IJ0QOadGv5cDlxdevwd4Tx9qWg7MyM9nAMtrDLcSmNbjWhrOA9IJoydWq78Etc0FLhng72smcHuNfgOZb2V4DCJ3pKtELSZdrGNj/vsZ0h61+aSbclZyF8A9hfdeB8zPz1eSTtD+XKH/+0gLlPtI/5xrXYhkr/zZN5Cu8vV2ChfzyJ/9J6QL8/wsd3sBcGd+z4PAf5H2NnyG9E/4kjz8Y8A/08KFSArjv5TUOHx6/LnfsaRDLh/N0/k0aeF1ee7/wVzXY8DLCuPcKne5li0ePfx9OXfVP3vfc9dETV7edaG2nOsrJ+euz78v5676Z3fuGtdTyuzlulaw+eJdI7+eWdY9bc3Ymy3PF1mVu/Xa9IhYA5D/7lFjuACukLRU0oIe1dLMPBjUfGp2ui+XdKukb2vzJWTLYFDzrex6Ml8i4v6IOD4i9o6Iqfnv2yNdbGQR8EQhdyJt7au891V5GEi5ew3p8IwFuf9ZETEtIvaNiC9HhCJiRe43PyLOyM9XR8TcSIcgPj8iPpOH3ZT7Xx8Rzydd0vjK3G05aS/yoojYLSJ+PyJuyfPkRxHxhkiHWv438JWIeFWh7qfrKHQ7MyLeUni9PCKOjojdJ42fiPhaROwXETvl6ZwGfI78/UTE+4F3Ap+PiMmHYW2Ru1zLFo9Wv8Muce6q8/LOy7tecu6qc+6SsmZvb9JG0UbTHJncdfX4zVZIuop8Qv0k74uIi5sZRZVuXbmwRb3aWhjNKyNidT5m90pJd0ZEzd3wbWpmHvRsPjXQzHRvBvaLiA2SjgK+RdpNXAaDmm895dx1hXPXO85djVFU6ebcDVfuHsK56yvnrmvKmr2a05T0HNLtfyqeRzqdaJmkmRFxb49ra0bL82xgjbaIeF2Ho1jFlles6drVYurVpnRBjxkRsUbSDNKx6dXGsTr/XSfpm8Bh1Dl2uk3NzIOezacGGk430mXeK88vk3SupGkR8UAf6mtkUPOtp5y7rhi63En6N9KhoU+TBPBlYFvnrrecu64YutxVXkTEmcWBvbzrD+eua8qavVXALwpHpzw9zdwo2+qKlEoXK/tVj+tqVsvzbJgPj7wRmCVpf0nbkS6EsaQP013C5gsKnEK68McWJE2VtFPlOekE6apXj+lQM/NgCfDWfJWalwHrK7vde6xhbZL2VF5zzBdSeAbpvJ0yGNR8KzvnbghzFxHvyId97ki62tZO+fn5OHfDwLkbwtwVB/Dybig5d0lZszd+uYsunWzXzQfwx6QW6OOkK7ZVTqzfC7isMNxRpAsD3E3a3d2P2nYjXc3nrvx318m1kS6Xemt+3NHL2qrNA9L9mt6Rn1euJnc3sIwaJ9wOqLbT8vy5lXQVo1f0sbYLgTXAb/Jv7dSyzLdBPZy7rv62nbvqtTl3W88T5675epy79mpz7raeJ85dazWVMnvjljvlNw7UtGnTYubMmTX7b9y4kalTp/avoBa4tvaUtbZGdS1duvSBiNi9jyX1jHPXG66tdc7dZmX9jsC1taustY1T7qB+9sr6HYFra9ew1lY3d/1qcdZ7HHrooVHPNddcU7f/ILm29pS1tkZ1ATdFCTLTjYdz1xuurXXOXfPzYpBcW3vKWts45S4aZK+s31GEa2vXsNZWL3cDuxCJWa/MXHhp2+9dNK+cW2XMys65s0508vsB/4bM2uHcDZdhvhCJmZmZmZnZyHOjzczMzMzMrMR8eKSZmZkNtWX3r2d+m4d6rTz76C5XYzYenLv+arinTdL5ktZJur3QbVdJV0q6K//dpdDvPZJWSFou6YheFW42ypw7MzMzM6to5vDIRcC8Sd0WAldHxCzSPSQWAkiaTbq53UH5PedKmtK1as3GxyKcOzMzMzOjicMjI+JaSTMndT4GmJufXwBMAH+bu18UEY8DP5W0AjgMuL5L9Y4VX9VnfDl3ZmZmZlbR7jlt0yNiDUBErJG0R+6+N+mO4xWrcretSFoALACYPn06ExMTNSe2YcOGuv0HqZe1nX7wpo7eP6zzbdn96zsa9+kHt//eMs8zupA7a2xcN5Z0+rnNzMysd7p9IRJV6RbVBoyI84DzAObMmRNz586tOdKJiQnq9R+kXtbW7smdFYvmTR3K+dbp5+5EmedZHU3nzhtLGhvXjSWdfu5OlHmemZmZlUG7jba1kmbkrf0zgHW5+ypg38Jw+wCrOylw2HnrtXVRx7nzxpLGvLGk/8o8z8zMzMqg3fu0LQFOyc9PAS4udD9B0vaS9gdmAT/srEQzy5w7MzMzszHUcE+bpAtJFz+YJmkV8AHgbGCxpFOBe4HjACLiDkmLgR8Bm4B3RcSTPardbGQ5d53xHm4zMzMbJc1cPfLEGr1eW2P4s4CzOinKusM3PRxezt3wcu7MzMys27p9IZKe6GQlCLwiNAiN9nScfvCmgZ5DY405d8PHuTMzMxtN7Z7TZmZmZmZmZn0wFHvazMzMzMxsNHR67vk4Hs3jRpuZmZmNLa88mtkw8OGRZmZmZmZmJeZGm5mZmZmZWYm50WZmZgZIOl/SOkm3F7rtKulKSXflv7sU+r1H0gpJyyUdMZiqzYafs2fWmBttZmZmySJg3qRuC4GrI2IWcHV+jaTZwAnAQfk950qa0r9SzUbKIpw9s7rcaDMzMwMi4lrgoUmdjwEuyM8vAN5Y6H5RRDweET8FVgCH9aNOs1Hj7Jk1NhZXj+z0ylD1+Ga1ZtU5dzYipkfEGoCIWCNpj9x9b+CGwnCrcretSFoALACYPn06ExMTNSe2YcOGuv0HqZe1nX7wpo7eP/2ZnY+jXY3mSVm/07LWVdC37JV5Xjh31Q1r7qD92sai0WZmZtZlqtItqg0YEecB5wHMmTMn5s6dW3OkExMT1Os/SL2srdONMKcfvImPLRvMKs3Kk+bW7V9vvg3ydgNl/q010PXslXleOHfVdZI76Cx7nd7mo93v1IdHmpmZ1bZW0gyA/Hdd7r4K2Lcw3D7A6j7XZjbKnD2zAu9pMzMzq20JcApwdv57caH7VyV9HNgLmAX8cCAVmo0mZ89qarSnbBRPo3CjzczMDJB0ITAXmCZpFfAB0grjYkmnAvcCxwFExB2SFgM/AjYB74qIJwdSuA3UOK48dpuzZ9aYG21WVS8vImFm1Tl3gxURJ9bo9doaw58FnNW7ioaLf7/WLmevfc7d+PA5bWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmq0eamZmZL11vNgDOnTXLe9rMzMzMzMxKzI02MzMzMzOzEnOjzczMzMzMrMTcaDMzMzMzMysxN9rMzMzMzMxKzI02MzMzMzOzEnOjzczMzMzMrMTcaDMzMzMzMysxN9rMzMzMzMxKbJtBF2BmZmbdMXPhpYMuwWzsOHfWD260mZmZlcSy+9cz3yuAZn3l3NkwcKPNzMzMbAh1sodn0bypXazEbHx0ume13ez5nDYzMzMzM7MS61mjTdI8ScslrZC0sFfTMbPNnDuz/nPuzPrPubNx05NGm6QpwDnAkcBs4ERJs3sxLTNLnDuz/nPuzPrPubNx1Ks9bYcBKyLinoh4ArgIOKZH0zKzxLkz6z/nzqz/nDsbO4qI7o9UOhaYFxFvy69PBg6PiNMKwywAFuSXLwCW1xnlNOCBrhfaHa6tPWWtrVFd+0XE7v0qphXOXWm4ttY5d5uV9TsC19austY20rnL3ZvNXlm/I3Bt7RrW2mrmrldXj1SVblu0DiPiPOC8pkYm3RQRc7pRWDsknQScEhGvr9Kvo9okLQJWRcQZHZRYa9xb1CZpPvC2iHhVt6fVqkF/p7WUta4mOXfNj3sRzl1plLWuJo1U7upxbe0pa21lratJDXMHzWevzPPCtbVnFGvr1eGRq4B9C6/3AVb3aFpdI+lVkv5b0npJD0n6vqSXRsRXqq04DqC+CUlv68J4niNpQ+ERkjYWXr+6G/W2Wdv2kj4v6WeSHpX0P5KOHFQ9Q8a56019I5+7XN+XJa2R9Iikn3TjM4+Jocyd2ZBz7mzs9GpP243ALEn7A/cDJwB/2qNpdYWkZwGXAO8EFgPbAa8GHh9kXb0QEfcCO1ZeSwrgRRGxYnBVPW0b4D7g94B7gaOAxZIOjoiVgyxsCDh3JVby3AF8GDg1Ih6XdCAwIel/ImLpoAsruaHLndkIcO5s7PRkT1tEbAJOAy4Hfgwsjog7OhhlU4eVdOj5ABFxYUQ8GRGPRcQVEXGbpPmSrqsMmLeQ/4Wku4DflvQPkp4n6fq8lXqxpO3ysFu8t/D+AyYXIGkXSZdI+oWkX+bn++R+Z5FWZj+dt8p/Onc/UNKVeQ/FcknHF0b5FUlLck0/BJ7XaCbkPV0flXSvpLWS/k3SM3O/uZJWSXq3pHV5q/wbJR2Vt8w/JOm9hXGdKelrkv497zW7WdKLcu+q32lEbIyIMyNiZUQ8FRGXAD8FDm1Ue5f047fWE86dc5eHbzl3+Tu4IyIqjeXIj4a1d4lzt1mZ54Vra09ZaytrXQ05d6Xh2trTXm0R4Ue6GMuzgAeBC0iXkN2l0G8+cF3hdQBL8nsOIu0VuBp4LvBs4Eekc3G2em/h/Qfk54uAD+XnuwFvBn4L2An4D+BbhfdNkM6NqbyeStor9WekPVQvIZ3YeFDufxFp78VU4LdJW6Ouq/LZi/V8In+2XXMN/wl8OPebC2wC3g9sC/w58Avgq3nYg4BfA8/Nw58J/AY4Ng//N6QG2LYtfC/T8zgPHPRvxI/uP5y7cuUOOBf4Va7tZmDHQf9G/PDDDz/88MOP6N3NtYdNRDwCvIq0svJZ4Bd5a/n0Gm/5SEQ8EmnLzu3AFZEuPbse+Dbw4jZqeDAivh4Rv4qIR4GzSIcJ1vIGYGVEfCEiNkXEzcDXgWOV7mHyZuD9kfZe3U5aMa5JkkgrhP8nIh7KNfwj6bCDit8AZ0XEb0grp9OAf4mIR/O8uAP4ncLwSyPia3n4jwM7AC9rZn5I2hb4CnBBRNzZzHtsuDh35cpdRPwFqSH4auAbjOBhqmZmZsPIjbaCiPhxRMyPiH1IW8j3Im0Br2Zt4fljVV7vSIsk/ZakzyhdhOMR4Fpg57wiWM1+wOGSHq48gJOAPYHd2Xx+WMXPGpSwO2lvw9LC+L6Tu1c8GBFP5ueP5b/1PvvT04+Ip0gnD+/VoA4kPQP4EvAE6RAIG1HOXXlyl4d/MiKuI53Y/85m3mNmZma9VcpGm6TjJN0h6SlJNS+JKWlePp9khaSF3awh79lZRFqJLE5z1/z0qnxOyy41RvEnkpYBH6Cw9V/SnnUmezrpPiKHR8SzgN+tvK1S1qTh7yPtbVhLOjzr7IjYMSLeSTp8ahOwr6RPSloBfJB0yFYtD5BW/g6KiJ3z49kR0fKKcHYA8IbK95MbYk9f4Smfq7Ne0i358f7cXcDnSYdGvjnvLegqSefn84Nur9Fflfkm6TZJL+l2DWXj3I137qrYhi6f0+bcba0MuaszzV1z3u6qlztJKyUty7+nm3pYT915MMjfTxO1NZu7XtTm3E3i3LVcUymzN265K2WjjbRC9CbSFu+qlLaCn0M6D2Y2cKKk2e1OUOnCAqdr8wUI9gVOBG6YNGjlR/E60vk09UL8GuAIYBtJh0jagXS+SS07kVbeHlZaSf3ApP5rSefvVFwGHAx8hnRo1ImSjpf0wrxV/hu53wuAPyKthG51IYaKvEX+s8A/S9oDQNLeko6oU3NV+fs5irTi917SvPww6XCr4jz9XkQckh8fzN3+FXgh8IcR8Ri9sQiYV6f/kcCs/FiQaxp1zt2Y5k7SHpJOkLSjpCl52icC/9VqDQ0swrmbrO+5a8FC4OqImEUTucu/p57cF6nJeTCQ308L30+15V0/LMK5m8y5a1JZszeOuStloy0fLlXrrvUVhwEr8vksT5DO8zimg8k+ChwO/EDSRtIKzu2krfBFxWlcALyx3kgj4iekLe1XAXcB19UZ/BPAM0lb3m8gHSJV9C+k82Z+KemTpB/pDcBrSYdgHUBaQds+D38aMJN0fsoi0orkFEkz6tTwt8AK4AalQ8WuIq18tuow4CHgYtI5PgcCJwNvqrfnTNJ+wNuBQ4Cfa/M9rE5qo4aaIuLaXF8txwBfjOQG0uFy9ebb0HPuxjd3pL2J7yQdRvlL4KPAX0fExW3UUHsizt1WBpS7Zh3D5nMyG+aux5qZB4P6/Qzq+2mKc7c1564lZc3e2OWuV/dp64e92fK8kVWklb+2RMT9wPE1ei/KD4DpEVE5bApJe0TEFitXEXFGbmRcoXQvps9ExLTCIF8uDDu/8Hw16UpxRZ8p9L+efIn0PO1jgeUR8bb8+mTSIV635OF/oXSo2Nn5HBUkvYI079YUxqvC81+TttA/fQnxQr8J0mFWldeb2HwIWaXbqwq1PQL8OiLeUqjt5kmjfbmkW0mHbv1NpIsqiMGr9vvaYr6NKedudHNX7+Ir/eLcVdfV3LVgekSsAYiINZU9wVUEW+auF5fabmYeDOr30+z3Uy13ZeDcVefcJWXN3tjlbmCNNklXkU7cn+x9TW7drbZiP/nck7bUq62F0bwyIlbnsF0p6c7c6u6mZuZBz+ZTA81M92Zgv4jYIOko4Fuk3cRlMKj51lPOXVc4d73j3NUYRZVuzp1z1y3OXY1RVOk2brmD8mZv7HI3sEZbRLyuw1GsAvYtvH76RPtO1atN6ca3M/LWjxnAuhrjWJ3/rpP0TdJu3G6HqZl50LP51MAq0v20tpqupOeQ7qlFfl15+luSXhQRt/ahvkYGNd96yrnrCueud5y76py78ueu7nQj3d6k8vwySedKmhYRD/Shvkacu+qcu6Ss2Ru73JXynLYm3QjMkrS/pO1I9zRa0ofpLgFOyc9PIZ07sgVJUyXtVHkOvJ50nk63NTMPlgBvVfIyYH1lt3uP3Uj6ff3d5Noi4t5IV8Y7ANgpP/990g/4tj7U1oxBzbeyc+6cu15y7qpz7sqfu7q1SdpTeUuJpMNIOX2wD7U1w7mrzrlLypq98ctdlOAO35MfwB+TViQeJ1257fLcfS/gssJwRwE/Ae4m7e7uR227ka7mc1f+u+vk2khXmrs1P+7oZW3V5gHwDuAd+blIV9e5G1gGzOnj99iottPy/LmVdGGHV/SxtgtJxw3/Jv/WTi3LfBvUw7nr6m/buatem3O39Txx7pqvx7lrrzbnbut54ty1VlMpszduuVN+40BNmzYtZs6cWbP/xo0bmTq13m2OBse1taestTWqa+nSpQ9ExO41Bxgizl1vuLbWjVPuzMzM2lGKq0fOnDmTm26qfV/AiYkJ5s6d27+CWuDa2lPW2hrVJeln/aumt5y73nBtrRun3JmZmbVjmM9pMzMzMzMzG3ml2NNm1c1ceGlH7180r3yHQZmVnXNnZmZmZeNGm5lZFy27fz3z22z4rTz76C5XY2ZmZqPAjbYR5pVHMzMzM7Ph53PazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxLbZtAFmJlZMnPhpR29f+XZR3epEjMzMysTN9qsKq88mpmZmZmVgw+PNDMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSa9hok3S+pHWSbi9021XSlZLuyn93KfR7j6QVkpZLOqJXhZuNMufOzMzMzCqa2dO2CJg3qdtC4OqImAVcnV8jaTZwAnBQfs+5kqZ0rVqz8bEI587MzMzMaKLRFhHXAg9N6nwMcEF+fgHwxkL3iyLi8Yj4KbACOKw7pZqND+fOzMzMzCraveT/9IhYAxARayTtkbvvDdxQGG5V7rYVSQuABQDTp09nYmKi5sQ2bNhQt/8g9bK20w/e1NH7pz+z83G0q9E8Ket3Wta6Mucuc+6qc+7MzMxGU7fv06Yq3aLagBFxHnAewJw5c2Lu3Lk1RzoxMUG9/oPUy9rmd3ivtNMP3sTHlg3mVnwrT5pbt3+9+TbIe8SV+bdWh3PXRc5dm9Mev9yZmZn1TbtXj1wraQZA/rsud18F7FsYbh9gdfvlmVmBc2dmZmY2htrdHLwEOAU4O/+9uND9q5I+DuwFzAJ+2GmRZgY4d9ZAo71lpx+8qeM9iWZmZtZ/DRttki4E5gLTJK0CPkBaaVws6VTgXuA4gIi4Q9Ji4EfAJuBdEfFkj2q3EvPKY2ecOzMzMzOraNhoi4gTa/R6bY3hzwLO6qSoUdLpeSI2npy7zjh3ZmZmNkraPafNzMzMzMzM+sCNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrMTfazMzMzMzMSqzd+7SNDV+63qz/nDszMzOzzbynzczMzMzMrMTcaDMzMzMzMysxN9rMzMzMzMxKzI02MzMzMzOzEnOjzczMzMzMrMTcaDMzMzMzMysxN9rMzMzMzMxKzI02MzMzMzOzEnOjzczMzMzMrMTcaDMzMzMzMyuxbQZdQD/MXHjpoEswGzvOnZmZmVl3DEWjbdn965nvFUBrUieNhUXzpnaxkuHm3FkrnDszM7Pe8eGRZmZmZmZmJdazRpukeZKWS1ohaWGvpmNmmzl3ZmZmZqOnJ402SVOAc4AjgdnAiZJm92JaZpY4d2ZmZmajqVd72g4DVkTEPRHxBHARcEyPpmVmiXNnZmZmNoJ61WjbG7iv8HpV7mZmvePcmZmZmY2gXl09UlW6xRYDSAuABfnlBknL64xvGvBAl2rrqr9ybW0pa22v+UjDuvbrVy1tcO5KwLW1bshzZ2Zm1nO9arStAvYtvN4HWF0cICLOA85rZmSSboqIOd0rr3tcW3vKWltZ62qSc1cCrq11Za3LzMysLHp1eOSNwCxJ+0vaDjgBWNKjaZlZ4tyZmZmZjaCe7GmLiE2STgMuB6YA50fEHb2Ylpklzp2ZmZnZaOrV4ZFExGXAZV0aXVOHcw2Ia2tPWWsra11Nce5KwbW1rqx1mZmZlYIiovFQZmZmZmZmNhC9OqfNzMzMzMzMuqCUjTZJx0m6Q9JTkmpeUUzSPEnLJa2QtLBPte0q6UpJd+W/u9QYbqWkZZJukXRTD+upOw+UfDL3v03SS3pVSxu1zZW0Ps+jWyS9v4+1nS9pnaTba/Qf2HwbFOeupXqcu/Zqc+7MzMzaUMpGG3A78Cbg2loDSJoCnAMcCcwGTpQ0uw+1LQSujohZwNX5dS2viYhDenUp6ybnwZHArPxYAPxrL2ppszaA7+V5dEhEfLAftWWLgHl1+g9kvg2Yc9cE564ji3DuzMzMWlbKRltE/Dgi6t30F+AwYEVE3BMRTwAXAcf0vjqOAS7Izy8A3tiHadbSzDw4BvhiJDcAO0uaUZLaBiYirgUeqjPIoObbwDh3TXPu2uTcmZmZtaeUjbYm7Q3cV3i9KnfrtekRsQYg/92jxnABXCFpqaQFPaqlmXkwqPnU7HRfLulWSd+WdFAf6mrWoOZb2Tl3zl0vOXdmZmZV9OyS/41IugrYs0qv90XExc2Mokq3rlwKs15tLYzmlRGxWtIewJWS7sxbmbupmXnQs/nUQDPTvRnYLyI2SDoK+BbpsKgyGNR86ynnriucu94ZydyZmZl1amCNtoh4XYejWAXsW3i9D7C6w3EC9WuTtFbSjIhYkw/bWVdjHKvz33WSvkk6bKnbK4/NzIOezacGGk43Ih4pPL9M0rmSpkXEA32or5FBzbeecu66wrnrnZHMnZmZWaeG+fDIG4FZkvaXtB1wArCkD9NdApySn58CbLV3QtJUSTtVngOvJ13koduamQdLgLfmq7K9DFhfOcysxxrWJmlPScrPDyP9Hh/sQ23NGNR8KzvnzrnrJefOzMysioHtaatH0h8DnwJ2By6VdEtEHCFpL+BzEXFURGySdBpwOTAFOD8i7uhDeWcDiyWdCtwLHJdrfro2YDrwzbxetA3w1Yj4TrcLqTUPJL0j9/834DLgKGAF8Cvgz7pdRwe1HQu8U9Im4DHghOjT3d4lXQjMBaZJWgV8ANi2UNtA5tsgOXfNce7a59yZmZm1R31aVpuZmZmZmVkbhvnwSDMzMzMzs5HnRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm60mZmZmZmZldj/D13KaOPIgO3BAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "df_gpr_train.hist()" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "df_input_train = df_gpr_train.drop(columns = dict_cols['u'][1] + dict_cols['y'][1])\n", - "df_output_train = df_gpr_train[dict_cols['y'][1]]" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
time_htime_h_1time_h_2time_h_3time_mtime_m_1time_m_2time_m_3SolRadSolRad_1OutsideTempOutsideTemp_1SimulatedHeat_1SimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-06-01 20:45:00+02:000.7391300.7391300.7391300.7391301.0000000.333333-0.333333-1.000000-0.970807-0.9259700.0588240.0588240.4380900.2335350.2143390.153839
2017-06-01 21:00:00+02:000.8260870.7391300.7391300.739130-1.0000001.0000000.333333-0.333333-0.980063-0.9708070.0196080.0588240.4380900.2480810.2335350.214339
2017-06-01 21:15:00+02:000.8260870.8260870.7391300.739130-0.333333-1.0000001.0000000.333333-0.989906-0.980063-0.0588240.0196080.4380900.2168760.2480810.233535
2017-06-01 21:30:00+02:000.8260870.8260870.8260870.7391300.333333-0.333333-1.0000001.000000-0.991909-0.989906-0.058824-0.058824-0.4700640.0627670.2168760.248081
2017-06-01 21:45:00+02:000.8260870.8260870.8260870.8260871.0000000.333333-0.333333-1.000000-0.992483-0.991909-0.058824-0.058824-0.4700640.0910340.0627670.216876
\n", - "
" - ], - "text/plain": [ - " time_h time_h_1 time_h_2 time_h_3 time_m \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.739130 0.739130 0.739130 0.739130 1.000000 \n", - "2017-06-01 21:00:00+02:00 0.826087 0.739130 0.739130 0.739130 -1.000000 \n", - "2017-06-01 21:15:00+02:00 0.826087 0.826087 0.739130 0.739130 -0.333333 \n", - "2017-06-01 21:30:00+02:00 0.826087 0.826087 0.826087 0.739130 0.333333 \n", - "2017-06-01 21:45:00+02:00 0.826087 0.826087 0.826087 0.826087 1.000000 \n", - "\n", - " time_m_1 time_m_2 time_m_3 SolRad SolRad_1 \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.333333 -0.333333 -1.000000 -0.970807 -0.925970 \n", - "2017-06-01 21:00:00+02:00 1.000000 0.333333 -0.333333 -0.980063 -0.970807 \n", - "2017-06-01 21:15:00+02:00 -1.000000 1.000000 0.333333 -0.989906 -0.980063 \n", - "2017-06-01 21:30:00+02:00 -0.333333 -1.000000 1.000000 -0.991909 -0.989906 \n", - "2017-06-01 21:45:00+02:00 0.333333 -0.333333 -1.000000 -0.992483 -0.991909 \n", - "\n", - " OutsideTemp OutsideTemp_1 SimulatedHeat_1 \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.058824 0.058824 0.438090 \n", - "2017-06-01 21:00:00+02:00 0.019608 0.058824 0.438090 \n", - "2017-06-01 21:15:00+02:00 -0.058824 0.019608 0.438090 \n", - "2017-06-01 21:30:00+02:00 -0.058824 -0.058824 -0.470064 \n", - "2017-06-01 21:45:00+02:00 -0.058824 -0.058824 -0.470064 \n", - "\n", - " SimulatedTemp_1 SimulatedTemp_2 SimulatedTemp_3 \n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.233535 0.214339 0.153839 \n", - "2017-06-01 21:00:00+02:00 0.248081 0.233535 0.214339 \n", - "2017-06-01 21:15:00+02:00 0.216876 0.248081 0.233535 \n", - "2017-06-01 21:30:00+02:00 0.062767 0.216876 0.248081 \n", - "2017-06-01 21:45:00+02:00 0.091034 0.062767 0.216876 " - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_input_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SimulatedTemp
timestamp
2017-06-01 20:45:00+02:000.248081
2017-06-01 21:00:00+02:000.216876
2017-06-01 21:15:00+02:000.062767
2017-06-01 21:30:00+02:000.091034
2017-06-01 21:45:00+02:000.203306
\n", - "
" - ], - "text/plain": [ - " SimulatedTemp\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.248081\n", - "2017-06-01 21:00:00+02:00 0.216876\n", - "2017-06-01 21:15:00+02:00 0.062767\n", - "2017-06-01 21:30:00+02:00 0.091034\n", - "2017-06-01 21:45:00+02:00 0.203306" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_output_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "np_input_train = df_input_train.to_numpy()\n", - "np_output_train = df_output_train.to_numpy().reshape(-1, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(864, 16)" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np_input_train.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define model and kernel" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "nb_dims = np_input_train.shape[1]\n", - "rational_dims = np.arange(0, (dict_cols['t'][0] + 1) * len(dict_cols['t'][1]), 1)\n", - "nb_rational_dims = len(rational_dims)\n", - "squared_dims = np.arange(nb_rational_dims, nb_dims, 1)\n", - "nb_squared_dims = len(squared_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "squared_l = [1] * nb_squared_dims\n", - "rational_l = [1] * nb_rational_dims" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "variance = tf.math.reduce_variance(np_input_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [], - "source": [ - "variance = 10" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [], - "source": [ - "k0 = gpflow.kernels.SquaredExponential(lengthscales = squared_l, active_dims = squared_dims, variance = variance)\n", - "k1 = gpflow.kernels.Constant()\n", - "k2 = gpflow.kernels.RationalQuadratic(lengthscales = rational_l, active_dims = rational_dims, variance = variance)\n", - "k3 = gpflow.kernels.Periodic(k2)" - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
Product.kernels[0].kernels[0].variance ParameterSoftplus True () float6410.0
Product.kernels[0].kernels[0].lengthscalesParameterSoftplus True (8,) float64[1., 1., 1....
Product.kernels[0].kernels[1].variance ParameterSoftplus True () float641.0
Product.kernels[1].variance ParameterSoftplus True () float6410.0
Product.kernels[1].lengthscales ParameterSoftplus True (8,) float64[1., 1., 1....
Product.kernels[1].alpha ParameterSoftplus True () float641.0
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "k = (k0 + k1) * k2\n", - "print_summary(k)" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].kernels[0].variance ParameterSoftplus True () float6410.0
GPR.kernel.kernels[0].kernels[0].lengthscalesParameterSoftplus True (8,) float64[1., 1., 1....
GPR.kernel.kernels[0].kernels[1].variance ParameterSoftplus True () float641.0
GPR.kernel.kernels[1].variance ParameterSoftplus True () float6410.0
GPR.kernel.kernels[1].lengthscales ParameterSoftplus True (8,) float64[1., 1., 1....
GPR.kernel.kernels[1].alpha ParameterSoftplus True () float641.0
GPR.likelihood.variance ParameterSoftplus + Shift True () float641.0
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "m = gpflow.models.GPR(\n", - " data = (np_input_train, np_output_train), \n", - " kernel = k,\n", - " mean_function = None\n", - " )\n", - "print_summary(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Train model" - ] - }, - { - "cell_type": "code", - "execution_count": 101, - "metadata": {}, - "outputs": [], - "source": [ - "opt = gpflow.optimizers.Scipy()" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": {}, - "outputs": [], - "source": [ - "from datetime import datetime" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished fitting in 0:00:16.041917\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].kernels[0].variance ParameterSoftplus True () float64680.0158754974991
GPR.kernel.kernels[0].kernels[0].lengthscalesParameterSoftplus True (8,) float64[3879.61410136, 3611.74772391, 2705.86685632...
GPR.kernel.kernels[0].kernels[1].variance ParameterSoftplus True () float640.0
GPR.kernel.kernels[1].variance ParameterSoftplus True () float642.5528463890805164
GPR.kernel.kernels[1].lengthscales ParameterSoftplus True (8,) float64[4756.27621398, 4614.06336408, 4742.18906451...
GPR.kernel.kernels[1].alpha ParameterSoftplus True () float642859.355412460411
GPR.likelihood.variance ParameterSoftplus + Shift True () float640.0019562304623461906
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "start_time = datetime.now()\n", - "opt.minimize(m.training_loss, m.trainable_variables)\n", - "print(f\"Finished fitting in {datetime.now() - start_time}\")\n", - "print_summary(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluate performance on training data" - ] - }, - { - "cell_type": "code", - "execution_count": 104, - "metadata": {}, - "outputs": [], - "source": [ - "nb_plts = len(dfs_gpr_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIoAAARuCAYAAAC8xNxhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iUVfbA8e+dkpn0npBGEnrovVfBhtiwiyi2teuu3V37rqv+VteyFuxYUCwIomBDBOm994QkpPeeTDLl/v6YEAFB2oRJ4HyeJw/kfe9773lnhpA5c++5SmuNEEIIIYQQQgghhBAGbwcghBBCCCGEEEIIIVoGSRQJIYQQQgghhBBCCEASRUIIIYQQQgghhBCikSSKhBBCCCGEEEIIIQQgiSIhhBBCCCGEEEII0UgSRUIIIYQQQgghhBACkESREEII0eIppZKUUlopZTqKtlOUUktOUlzDlFK7lVLVSqmLTsaY4ndKqbaNj73Rk209ENdJew0KIYQQwvMkUSSEEEJ4kFIqQynVoJSKOOj4hsZkT5KXQts/4VTd+JWhlHr4BLp8GnhNax2gtZ7toTBPC55Ipmit9zY+9k5Ptj2ZlFJPKqU+8WB/U5RSzv1e4/u+Yj3Q99tKqZ1KKZdSaooHwhVCCCFaJEkUCSGEEJ6XDly17xulVA/A13vh/EGI1joAd4yPK6XOOZaL95vZlAhsPZ4AjmZ21OnuZMz+OUUtb0yK7f+V64F+NwK3A+s80JcQQgjRYkmiSAghhPC8j4Fr9/v+OuCj/RsopYKVUh8ppYqUUplKqUeVUobGc0al1AtKqWKl1B7gvENc+55SKk8plaOU+tfxJBW01stxJ3q6N/Z7g1Jqu1KqTCn1o1Iqcb8xtVLqDqXUbmC3UioNaAd82zhjw6KUilVKzVFKlSqlUpVSN+93/ZNKqa+UUp8opSqBKUqphY2xL2vs41ulVLhSarpSqlIptXr/GVhKqVeUUlmN59YqpUYc1P8XjY9plVJqq1Kq/37nE5RSXzc+3iVKqdf2O3fY+z6YUuqCxr7LG+NP2e9chlLqfqXUJqVUhVLqc6WU9RB9pABTgSGN913eeHyaUupNpdQ8pVQNMEYpdZ5San3jPWcppZ7cr58DliQ2xvNPpdTSxsfgJ9U4s+1Y2jaev7bxdVmilHqs8d7GHeYxCW983iuVUquA9gedP+TzptwJyr8DVzQ+Dhsbj1/f+HxUKaX2KKVuOdzzcSyUUu0bX5t9G7+PVe5/Y6P3e0yeVUqtanz+vlFKhe27Xmv9utb6F8DmiXiEEEKIlkoSRUIIIYTnrQCClFIpyp3AuQI4eHnN/4Bg3MmWUbgTS9c3nrsZmAD0AfoDlx507YeAA+jQ2OYs4KZjCVC5DQO6AeuVu8bQ34GJQCSwGPjsoMsuAgYBXbXW7YG9wPmNMzbqG9tnA7GNMf9bKTV2v+svBL4CQoDpjceuBCYDcbgTDMuBD4AwYDvwxH7XrwZ6N577FPjyoETMBcCMxv7nAK813qsR+A7IBJIax5rReO5o7nvfY9ap8dxfG9vOw50o89mv2eXAOUAy0BOYcnA/WuvtwK38PvMlZL/TVwPPAIHAEqAG92sjBHfC8Db15/Wgrsb9OooCfID7j7WtUqor8AYwCYjB/TqN+5N+XsedPIkBbmj82t8hnzet9Q/Av4HPGx+HXo3tC3G//oMa43tpX3KnMb5ypdTwP4nnkLTWacBDwHSllB/u19k0rfXC/Zpd2xh/LO5/Y68e6zhCCCFEayeJIiGEEKJ57JtVdCawA8jZd2K/5NEjWusqrXUG8CLuhAm4kw0va62ztNalwLP7XRsNnAv8VWtdo7UuBF7CnXA5WsVAKfAu8HDjLIlbgGe11tu11g7cb+B7HzS75lmtdanWuu7gDpVSCcBw4CGttU1rvaGx/8n7NVuutZ6ttXbt18cHWus0rXUF8D2QprWe3xjDl7gTYQBorT/RWpdorR1a6xcBC9B5v/6XaK3nNdbh+RjYl3gYiPuN/wONj5lNa72vPtDR3Pc+VwBztdY/a63twAu4lxQO3a/Nq1rr3Mbn7VvcCZJj8Y3WemnjY2TTWi/UWm9u/H4T7kTVqD+5/gOt9a7Gx/eLI4x/uLaXAt9qrZdorRuAxwF9qA4aX8uXAI83PrZbcCcymxzF88ZB7ec2via01noR8BMwYr/zIfs9f4cyuDGZtO8rbb9r3wF2AytxJ7b+cdC1H2utt2ita4DHgMuVLAEUQghxmpFEkRBCCNE8PsY9Y2MKBy07AyJwz+DI3O9YJr/P2ogFsg46t08iYAby9r0RBt7CPSvkaEVorUO11ila630zJhKBV/brsxRQHDiTJIvDiwVKtdZVh7mnw11fsN/f6w7xfcC+b5RS9zUuSapojDEY92O5T/5+f68FrI1LrRKAzMZE0MGO5r73v8em50Jr7Wq8p/3bHhxDAMfmgMdIKTVIKfWrci+Zq8A9Eyni0Jce8/iHa3vA609rXQuUHKaPSMDE4V+vR/O8cVD7c5VSKxqXiZUD4/+s/SGsaEwm7ftqf9D5d3Avt/xf40y4/R18H+ZjHFsIIYRo9SRRJIQQQjQDrXUm7qLW44GvDzpdDNhxJyn2acvvs47ycCc39j+3TxZQjzvZs++NcJDWutsJhpwF3HLQG2xfrfWy/W/rT67PBcKUUoEHxZ2z3/d/dv2faqxr8xDu2Vahjcu1KnAndY4kC2irDl1A+2jue59c9nvOlFIK9/OUc4i2R3K4x+Lg45/iXkaXoLUOxl3b6Gju+UTkAfH7vlFK+QLhh2lbhHuJ1iFfr0fxvB1wv0opCzAT92yt6Mb28/DQPSulAoCXgfeAJ/evQdTo4Puw4/73KoQQQpw2JFEkhBBCNJ8bgTMal7E0aVwa9QXwjFIqsHGZ0738XsfoC+BupVS8UioUeHi/a/NwL8V5USkVpJQyNBbp/bPlSEdjKvCIUqobNBXMvuxoL9ZaZwHLgGeVUlalVE/c9z/9z688aoG4ExJFgEkp9TjuGjZHYxXu5MdzSin/xviGNZ47lvv+AjhPKTVWKWUG7sOdtDtUUulICoD4g+obHUog7plaNqXUQNyz1JrbV8D5SqmhjfE9xWESNY2v5a9xJ138GusbXbdfkyM9bwVAkmos5I57pp2lsb1DKXUu7hpcnvIKsFZrfRMwF/fzv79rlFJdG2sYPQ181XiPKKV8GmtiKcDc+DqS36WFEEKccuQ/NyGEEKKZNNZZWXOY03fhLlS8B3fR4k+B9xvPvQP8iHs77nX8cUbStbjfUG8DynC/sY85wVhnAc8DM5R7V7ItuGshHYurcBeLzgVmAU9orX8+kbj28yPuGka7cC8JsvHnS+GaNL7RPx938e+9uAtuX9F47qjvW2u9E7gGdyHy4sY+z2+s43OsFuDecS5fKfVnM1ZuB55WSlXhrhX0xXGMdUy01ltxvz5n4E6wVeEuMH3wMq197sS9bC0fmIa7SPQ+R3revmz8s0Qpta5x6eLduO+zDHdibM7+gyn3DmkjOLx9u8nt/zVAKXUh7kLjtza2uxfoq5SatN+1HzfeQz5gbYxln59wL4ccCrzd+PeRfxKHEEII0SoprY97FrgQQgghhDjFNS7XKgc6aq3TvRxOs1FKLQQ+0Vq/6+1YhBBCCG+SGUVCCCGEEOIASqnzG5eS+eOuF7QZyPBuVEIIIYQ4GSRRJIQQQgghDnYh7iWEuUBH4Eot09CFEEKI04IsPRNCCCGEEEIIIYQQgMwoEkIIIYQQQgghhBCNJFEkhBBCCCGEEEIIIQAweTuAPxMREaGTkpK8HYYQQgghhBBCCCHEKWPt2rXFWuvIQ53zSKJIKXUO8ApgBN7VWj93iDajgZcBM1CstR51pH6TkpJYs2aNJ0IUQgghhBBCCCGEEIBSKvNw5044UaSUMgKvA2cC2cBqpdQcrfW2/dqEAG8A52it9yqlok50XCGEEEIIIYQQQgjhWZ6oUTQQSNVa79FaNwAzcG+pur+rga+11nsBtNaFHhhXCCGEEEIIIYQQQniQJxJFcUDWft9nNx7bXycgVCm1UCm1Vil17eE6U0r9RSm1Rim1pqioyAPhCSGEEEIIIYQQQoij4YkaReoQx/QhxukHjAV8geVKqRVa611/uFDrt4G3Afr3739wP9jtdrKzs7HZbCccuBAnk9VqJT4+HrPZ7O1QhBBCCCGEEEKIQ/JEoigbSNjv+3gg9xBtirXWNUCNUuo3oBfwh0TREQfLziYwMJCkpCSUOlSOSoiWR2tNSUkJ2dnZJCcnezscIYQQQgghhBDikDyx9Gw10FEplayU8gGuBOYc1OYbYIRSyqSU8gMGAduPZzCbzUZ4eLgkiUSropQiPDxcZsIJIYQQQgghhGjRTnhGkdbaoZS6E/gRMALva623KqVubTw/VWu9XSn1A7AJcAHvaq23HO+YkiQSrZG8boUQQgghhBBCtHSemFGE1nqe1rqT1rq91vqZxmNTtdZT92vzH611V611d631y54Y11uUUkyePLnpe4fDQWRkJBMmTPBiVEcWEBBwxDZPPvkkL7zwwp+2mT17Ntu2bfNUWEIIIYQQQgghhGghPJIoOt34+/uzZcsW6urqAPj555+Jizt4o7eTw+FwnPQxJVEkhDgV1Tuc3g5BCCGEEEIIr5NE0XE699xzmTt3LgCfffYZV111VdO5mpoabrjhBgYMGECfPn345ptvAMjIyGDEiBH07duXvn37smzZMgDy8vIYOXIkvXv3pnv37ixevBg4cAbQV199xZQpUwCYMmUK9957L2PGjOGhhx4iLS2Nc845h379+jFixAh27NgBQHp6OkOGDGHAgAE89thjh72XZ555hs6dOzNu3Dh27tzZdPydd95hwIAB9OrVi0suuYTa2lqWLVvGnDlzeOCBB+jduzdpaWmHbCeEEK2J3eGkNH2Tt8MQQgghhBDC6zyx65nXPPXtVrblVnq0z66xQTxxfrcjtrvyyit5+umnmTBhAps2beKGG25oSvA888wznHHGGbz//vuUl5czcOBAxo0bR1RUFD///DNWq5Xdu3dz1VVXsWbNGj799FPOPvts/vGPf+B0Oo8q0bJr1y7mz5+P0Whk7NixTJ06lY4dO7Jy5Upuv/12FixYwD333MNtt93Gtddey+uvv37IftauXcuMGTNYv349DoeDvn370q9fPwAmTpzIzTffDMCjjz7Ke++9x1133cUFF1zAhAkTuPTSSwEICQk5ZDshhGgtalZ9QsxPd8NfFkFsb2+HI4QQQgghhNe06kSRN/Xs2ZOMjAw+++wzxo8ff8C5n376iTlz5jTV+rHZbOzdu5fY2FjuvPNONmzYgNFoZNeuXQAMGDCAG264AbvdzkUXXUTv3r2POP5ll12G0WikurqaZcuWcdlllzWdq6+vB2Dp0qXMnDkTgMmTJ/PQQw/9oZ/Fixdz8cUX4+fnB8AFF1zQdG7Lli08+uijlJeXU11dzdlnn33IWI62nRBCtEROpxPrqlfd3+RvkkSREEIIIYQ4rbXqRNHRzPxpThdccAH3338/CxcupKSkpOm41pqZM2fSuXPnA9o/+eSTREdHs3HjRlwuF1arFYCRI0fy22+/MXfuXCZPnswDDzzAtddee8AuWQdvq+7v7w+Ay+UiJCSEDRs2HDLGo9lp63BtpkyZwuzZs+nVqxfTpk1j4cKFJ9ROCCFagtKaBkJ8zRgM7p991Zu+I7g8FQBHwfbW/R+jEEIIIYQQJ0hqFJ2AG264gccff5wePXoccPzss8/mf//7H1prANavXw9ARUUFMTExGAwGPv74Y5xOd+HUzMxMoqKiuPnmm7nxxhtZt24dANHR0Wzfvh2Xy8WsWbMOGUNQUBDJycl8+eWXgDtJtXHjRgCGDRvGjBkzAJg+ffohrx85ciSzZs2irq6Oqqoqvv3226ZzVVVVxMTEYLfbD7g+MDCQqqqqI7YTQoiWZndBFUOe/YX3l6YD7p+Z5pX/oyEgHkd4Z3TRLi9HKIQQQgghhHdJougExMfHc8899/zh+GOPPYbdbqdnz5507969qZD07bffzocffsjgwYPZtWtX06yghQsX0rt3b/r06cPMmTOb+nzuueeYMGECZ5xxBjExMYeNY/r06bz33nv06tWLbt26NRXPfuWVV3j99dcZMGAAFRUVh7y2b9++XHHFFfTu3ZtLLrmEESNGNJ375z//yaBBgzjzzDPp0qVL0/Err7yS//znP/Tp04e0tLTDthNCiJbE5dL8fdZm6h0uPlu1F601VbuW4Je/mtr+t0J0dwzFO4/ckRBCCCGEEKcwtW/WS0vUv39/vWbNmgOObd++nZSUFC9FJMSJkdevEN7z+eq9PDRzM0Pbh7MsrYRv7hhG+19uxpq3Guc9mzCtfBPjon/D33PBx9/b4QohhBBCCNFslFJrtdb9D3VOZhQJIYQ45RVX1/PveTsYmBzGm9f0w2Iy8MtviwjI+ImaXjdg8QvCGNVYV654t3eDFUIIIYQQwoskUSSEEOKU98zc7dQ2OPj3xd0J9jVzVrc2JO9+H5fRimXYre5GkY1LZ4ulTpEQQgghhDh9SaJICCHEKW3J7mJmrc/htlHt6RAVCMAlHRXn6cXsirsIa3CUu2FYO7Qy4izY7sVohRBCCCGE8C5JFAkhhDhl2exOHp29maRwP24f06HpeO/szzAozfvO835vbPLBGZqMq0gKWgshhBBCiNOXJIqEEEKcst74NZWMklr+dVEPrGYjAHWVpQRu/YTNwWfwdbqJ0pqGpvY6ojNKlp4JIYQQQojTmCSKhBBCnJJ25FXyxsI0zu4WTWyIlZ35VWzJqaBi8VSM9mp8Rv4Vh0szZ0NO0zWGyM4Yy/aAo+FPehZCCCGEEOLUJYmi41BQUMDVV19Nu3bt6NevH0OGDGHWrFnNPu6aNWu4++67PdLX6NGj6dy5M7169WLYsGHs3Nnyllp4MsZp06Zx5513AjB16lQ++uijw7bNyMjg008/bfrek4+7EOLkSCuq5m/Tl9PPnME9MdvxXTOV8MWPkfDTzURueIOahFF06zeCbrFBzFz3e6LIGNUFpZ1QuseL0QshhBBCCOE9Jm8H0Nporbnooou47rrrmpIJmZmZzJkzp9nH7t+/P/379/dYf9OnT6d///68/fbbPPDAA3+4B6fTidFo9Nh4x6M5Yrz11lv/9Py+RNHVV18NeP5xF0I0H601H6/I5D/zNvOV4R90VpmwxH3OafLDHhBHTZuBuM58GoCJfeP553fb2FVQRafoQIjs7G5cvBOiunjpLoQQQgghWh6b3cnP2wroGB1Ap6hADAbl7ZBEM5EZRcdowYIF+Pj4HJBsSExM5K677gLcSYYRI0bQt29f+vbty7JlywBYuHAhEyZMaLrmzjvvZNq0aQA8/PDDdO3alZ49e3L//fcD8OWXX9K9e3d69erFyJEj/9DHqlWrGDp0KH369GHo0KFNs22mTZvGxIkTOeecc+jYsSMPPvjgEe9p5MiRpKamAhAQEMDjjz/OoEGDWL58Of/973/p3r073bt35+WXX2665qOPPqJnz5706tWLyZMnA1BUVMQll1zCgAEDGDBgAEuXLgVg0aJF9O7dm969e9OnTx+qqqrIy8tj5MiR9O7dm+7du7N48eLjjvGTTz5h4MCB9O7dm1tuuQWn0wnABx98QKdOnRg1alRTLABPPvkkL7zwAgCpqamMGzeOXr160bdvX9LS0nj44YdZvHgxvXv35qWXXjrgcS8tLeWiiy6iZ8+eDB48mE2bNjX1ecMNNzB69GjatWvHq6++esTHXQjhWfkVNq59fxWPf7OVB0N+pbPKJHfwE+y+aB7brtnEtuu2s/vSX8gZP43ghG4AXNg7FqNBMXNdtruTiI4AOAt2eOs2hBBCCCFaHK0193+5kbs+W885Ly+m19M/cd37q/jfL7tZsKOAshpZtn8qad0zir5/GPI3e7bPNj3g3OcOe3rr1q307dv3sOejoqL4+eefsVqt7N69m6uuuoo1a9Yctn1paSmzZs1ix44dKKUoLy8H4Omnn+bHH38kLi6u6dj+unTpwm+//YbJZGL+/Pn8/e9/Z+bMmQBs2LCB9evXY7FY6Ny5M3fddRcJCQmHjeHbb7+lR48eANTU1NC9e3eefvpp1q5dywcffMDKlSvRWjNo0CBGjRqFj48PzzzzDEuXLiUiIoLS0lIA7rnnHv72t78xfPhw9u7dy9lnn8327dt54YUXeP311xk2bBjV1dVYrVbefvttzj77bP7xj3/gdDqpra09bHx/FuP27dt5/vnnWbp0KWazmdtvv53p06dz5pln8sQTT7B27VqCg4MZM2YMffr0+UO/kyZN4uGHH+biiy/GZrPhcrl47rnneOGFF/juu+8Ad4JunyeeeII+ffowe/ZsFixYwLXXXsuGDRsA2LFjB7/++itVVVV07tyZ2267DbPZ/Kf3JYTwjG835vLo7C00OFz8a2w4V62aQVXbsbgG3Uqw0YCPyYDZuO9LoZT7E7CIAAujO0Uye30OD57dBaOPP86gBFxFO/DufEohhBBCiJbj1V9S+W5THnef0YHEcH/WZJSyKqOURbuKMOAiPtDIwkfOwWCQuSingtadKGoB7rjjDpYsWYKPjw+rV6/Gbrdz5513smHDBoxGI7t2/fnuOUFBQVitVm666SbOO++8ppkrw4YNY8qUKVx++eVMnDjxD9dVVFRw3XXXsXv3bpRS2O32pnNjx44lODgYgK5du5KZmXnIRNGkSZPw9fUlKSmJ//3vfwAYjUYuueQSAJYsWcLFF1+Mv78/ABMnTmTx4sUopbj00kuJiIgAICwsDID58+ezbdu2pv4rKyupqqpi2LBh3HvvvUyaNImJEycSHx/PgAEDuOGGG7Db7Vx00UX07t37kI/PkWL85ZdfWLt2LQMGDACgrq6OqKgoVq5cyejRo4mMjATgiiuu+MNzUVVVRU5ODhdffDEAVqv1kDHsb8mSJU0JuTPOOIOSkhIqKioAOO+887BYLFgsFqKioigoKCA+Pv6IfQohTswLP+7ktV9T6Z0QwguX9SLy57tQTjsN454hPtTviNdf0i+eX3YUsjS1mJGdInHJzmdCCCGEEE3mbsrjpfm7mNg3jtvHtKe0xk6XmECu7WHFf+sMArd9gr2hnq17FtKjQ7K3wxUe0LoTRX8y86e5dOvWrSlRAPD6669TXFzcVMPmpZdeIjo6mo0bN+JyuZqSDyaTCZfL1XSdzWZrOr5q1Sp++eUXZsyYwWuvvcaCBQuYOnUqK1euZO7cufTu3btp1so+jz32GGPGjGHWrFlkZGQwevTopnMWi6Xp70ajEYfDcch72Vf/Z39Wq7Wp5o/W+pDXaa2bPo3fn8vlYvny5fj6+h5w/OGHH+a8885j3rx5DB48mPnz5zNy5Eh+++035s6dy+TJk3nggQe49tprjyvG6667jmefffaANrNnzz5kjAffx7E61DX7xjnax10I4TkLdxby2q+pXNYvnmcn9qBi5xKCd39Nad+7CEs4uhpDZ3SJIshqYua6bEZ2ikRFdsKYuQRcTjDIvCIhhBBCnL42Z1dw35cb6JcYyr8v7k5mcQ3mvYuJ3zGdoIyfUNpBcXh/wovXUvDrs9iTp2I2yqyi1k6ewWN0xhlnYLPZePPNN5uO7b9sqqKigpiYGAwGAx9//HFTvZzExES2bdtGfX09FRUV/PLLLwBUV1dTUVHB+PHjefnll5sSQmlpaQwaNIinn36aiIgIsrKyDoijoqKCuLg4gKZaR542cuRIZs+eTW1tLTU1NcyaNYsRI0YwduxYvvjiC0pKSgCalp6dddZZvPbaa03X738vPXr04KGHHqJ///7s2LGDzMxMoqKiuPnmm7nxxhtZt27dccU4duxYvvrqKwoLC5tiyczMZNCgQSxcuJCSkhLsdjtffvnlH64NCgoiPj6e2bNnA1BfX09tbS2BgYFUVVUd9jGZPn064F6SFhERQVBQ0HHFLoQ4MYWVNu77YiNd2gTyz4u643Q68PvlYRr8Y/AZ88ARk8X7WM1Gzu8Vy49b86my2d07nzltUL63me9ACCGEEKLlKqy0cfNHawj3tzD1mn40FKaSNGM07b6fhH/uMoq738DOyxaSdeFXfOYaR7ecLylJW+/tsIUHSKLoGCmlmD17NosWLSI5OZmBAwdy3XXX8fzzzwNw++238+GHHzJ48GB27drVtGwrISGByy+/nJ49ezJp0qSmejlVVVVMmDCBnj17MmrUKF566SUAHnjgAXr06EH37t0ZOXIkvXr1OiCOBx98kEceeYRhw4Y1JaM8rW/fvkyZMoWBAwcyaNAgbrrpJvr06UO3bt34xz/+wahRo+jVqxf33nsvAK+++ipr1qyhZ8+edO3alalTpwLw8ssvNxXm9vX15dxzz2XhwoVNxa1nzpzJPffcc1wxdu3alX/961+cddZZ9OzZkzPPPJO8vDxiYmJ48sknGTJkCOPGjTtsXamPP/6YV199lZ49ezJ06FDy8/Pp2bMnJpOJXr16NT0f+zz55JNN9/jwww/z4YcfHlfcQogT43Jp/vbFBmoaHLx2dR+sZiPVy97Dt2QrlcOfICAw+Jj6O7d7DDa7iw1Z5ajIxplIRTubIXIhhBBCiJbPZndy88drqbTZeefa/kQGWlC//htTbQFZo19hx1WrKB32OKEJKXSPC2ZO2BSqlT8Bv/6Dapv9yAOIFk0dz/Kbk6V///764ELQ27dvJyUlxUsRCXFi5PUrhGe8/msq//lxJ89f0oMrBrSlqqwA36kDsYWl4HPDXHzMx7ZkLK+ijiHPLuCfF3Vncq8geD4J59inMI74a/PcgBBCCCFEC6W15q+fb+CbDbm8NbkfZ3drQ1XODgLeHUJxj5upG/Ukof5mAq2/b9zzyNeb8N34IY+rd8k9ayoxQ6486tndwjuUUmu11v0PdU5mFAkhhGhV1maW8t+fd3F+r1gu75+A06VxzH8GY0MV9Wf++5iTRADRgVasZgMZxTXgG4rTLwqXzCgSQgghxGlo+Z4SvtmQy9/GdeLsbm0A0Iv/izaY8R91D23D/Q5IEgH0iAthWv1oKoO7ELH0aYrKyrwRuvAQSRQJIYRoNSpq7dz92QZiQ6w8c3F3APJ2riJk28eUd7uWsOQ+x9WvwaBIDPN3J4oAV0QnWXomhBBCiNPSmwvTiAiwcMuodgBUFaQTuHMmVV2vxi887pDX9IwPxoWBJR0exKcmF5a8TIPDdci2ouWTRJEQQohWQWvNw19voqDSxv+u6kuQ1UxuXi4RP9yG0xKKcdw/TmiKc1KEHxkl7kSRiuiMsWQXtODl2UIIIYQQnrYlp4LFu4u5cXgy1sZZ2s4lrwBgHH74urKdogPxMRpYp1Iob38hERunUrRXPnRrrVploqgl11US4nDkdSvEiXln8R6+35LPg+d0pndCCAWl5YTMmYJPVRZF498lKCTyhPpPivAnq7QOp0tjiO6CoaEKqvI9FL0QQgghRMs3dVEagRYTkwa3BaCmJIegbZ9S2eVSAqKTD3udj8lAl5hAtuVVYhv9BCgDAb89hcsl74Fao1aXKLJarZSUlMibbtGqaK0pKSnBarV6OxQhWqXvNuXy73k7OK9HDDcNb0dZtQ3Ld3fhn7+K3DEvEd519AmPkRTuT4PTRW55HYbIzu6DRTtOuF8hhBBCiNYgo7iGeZvzmDQ4kaDGGkT2Jf9DuewYRtx7xOu7xwWzOaeC8JgkivrcRXDG99h3L2jusEUzMHk7gGMVHx9PdnY2RUVF3g5FiGNitVqJj4/3dhhCtDqr0ku59/ONDEgK5cXLe1Frd+L4+Ski98whf8DDhA26Eh/TiX/ukRTuD0BGSQ0JbdyJIlfRTgztx5xw30IIIYQQLd3bi/dgMhq4YVgSADXlRQRu+Yiq9ucTFNv5iNf3iAvm05V7ySm3ETDsThq2f4phxWvQeWwzRy48rdUlisxmM8nJh5/yJoQQ4tSRWljNzR+tIT7Ml3eude/eWbnkbWI3vkFJl0n4jrkPPx/P/FeWHNGYKCquYUSHRFyWYJyFO1rf1FshhBBCiGNUWGXjq7XZXNovnqgg9yqIhqVv4G+vQQ+/76j66BEXDMDmnAom9IyhKnYQ/nkrmi1m0Xzk918hhBAtUmGVjSkfrMJsVHx4/UACLCaK1n9HzJJHqUw4A9e5/yHYz8dj40UFWrCaDaQX14JSOMNl5zMhhBBCnB4+WJqBw+niLyPcO53VVZURuOk9qpLOJiix51H1sa+g9eacCpRS+LTpjLEqBxpqmjN00Qw8kihSSp2jlNqplEpVSj38J+0GKKWcSqlLPTGuEEKIU1Ntg4Mbp62hpLqB96cMID7Ul7ydq4j96VZsYSnUnP8OkcH+Hh3TYFAkhfuT2bjzGRGdMJTs8ugYQgghhBAtTaXNzifLMzm3RwxJjTOsG1a8g6m+Aufw+456V1kfk4GUmEA2Z1cAYG3TxX2iJLVZ4hbN54QTRUopI/A6cC7QFbhKKdX1MO2eB3480TGFEEKcuhxOF3d+up6tuRW8dnUfesaHkJeTSfTc63Fagim54CNioiKaZeykcH/SGxNFhqguGGuLoba0WcYSQgghhGgJpq/YS1W9g9tGtQfA1VCH/7q3qI4fRXD7gcfUV/e4YLbkVrh3O4vo5D5YvNvTIYtm5okZRQOBVK31Hq11AzADuPAQ7e4CZgKFHhhTCCHEKUhrzRNztrJgRyFPX9idsSnRFJdXEPLNFEz1ZeSPn0ZsQrtmGz8xwo+s0locThfGqMZPwWT5mRBCCCFOUTa7k/eWpDOiYwTdG2sM1W35FlNdMY5Bdxz1bKJ9esQFU2VzkFlaC2Ht0MqAo1B+l2ptPJEoigOy9vs+u/FYE6VUHHAxMNUD4wkhhDhFvbkojekr93Lb6PZcMziRqroGTN/dg1/RenLPeIXYLgMxGI7tF5ZjkRzuj92pyauwQaT7UzCXJIqEEEIIcYr6el0OxdX1TbOJANSGz7D7xxKUcuy7lfWI/72gNSYLzqC26GJZyt/aeCJRdKjf2PVB378MPKS1dh6xM6X+opRao5RaU1RU5IHwhBBCtAbfbMjh/37YyYW9Y3ngrM7Y7E5qF/yHkNRZFPS/n4gBl2IyNu8eDPvW5acX10BwW1wmK67CHc06phBCCCGEN7hcmncX76FXfDBD2ocD0FCWg2/WQuq7XY7BdOw7y3aKDsTHZGBzdjkAOrwDSpaetTqe+I07G0jY7/t4IPegNv2BGUqpDOBS4A2l1EWH6kxr/bbWur/Wun9kZKQHwhNCCNHSLUsr5v4vNzK4XRj/d2lPNFCy5muiV/8f5e0vxHfsQ1jNxmaPI7kxUZRRUgMGA86wjmiZUSSEEEKIU9DyPSXsKa5hyrCkpiVmDes+Q2kX5n6TjqtPs9FASptA94wiQEV2wlCWBi6Xx+IWzc8TiaLVQEelVLJSyge4EpizfwOtdbLWOklrnQR8BdyutZ7tgbGFEEK0crsKqrjl47Ukhfvz1jX9cTg12dtX0uaXu6mN7I39vFcJ8vU5KbFEBVrwNRvdM4oAIjtjkOnSQgghhDgFfbpyLyF+Zs7tHuM+oDXmLTOoazMAS3Sn4+63R3wwW3Mqcbk0hsjOGBw2qMz2UNTiZDjhRJHW2gHciXs3s+3AF1rrrUqpW5VSt55o/0IIIU5dBZU2pry/CqvZyPvXDaCmwUH+lkXEzJuC0xJM+YXTiAwLOWnxKKVIDPcjs6TW/X1EJ4xV2WCvO2kxCCGEEEI0t6Kqen7cms+lfeObZm3XZqzCUrYbZ8+rTqjvHnHBVNU7yCipwRDR0X1QPnhrVY590eEhaK3nAfMOOnbIwtVa6ymeGFMIIUTrVlxdz3Xvr6Kizs4H1w+grraSsBXPEbN1GvaAWArHv09cXNJJjys5wp+d+VUAmMIaxy/PaipuLYQQQgjR2n2xJguHS3PVoLZNx1zrpuMyWrH2mnhCffeICwHcBa3bddi3OchuDB3GnVC/4uRp3qqgQgghxCHkV9i44q3lZJTU8K+LuxNZsIykz8cSsfUDSrpeR8blv9Cm88Bj3pLVExLD/dlbWovD6YLQJPfBsoyTHocQQgghRHNwuTQzVu9lcLsw2kcGuI811OG7cxZ1HcZj8g89of47Rgc0FrSuAP8IXJYQnFLzsVXxyIwiIYQQ4mhlldYy6d2VlNTU85/xbRm27UnCdn+JLbg9aRO+wtphOO2DrBgNJz9JBJAc4YfDpcktt9E2NBEAXZZxyC0+hRBCCCFam8WpxWSV1vHg2V2ajtVu/paAhkroc80J9282GkiJCXIXtFYKZ1h7kJ3PWhVJFAkhhDhp9hRVM+ndldQ2OPnfGRaGL7kUc20Bhb3uoGLg34iNCMXf4t3/mpLC3TufpZfU0LZjNNpoxVmaLv9hCiGEEOKUMH1FJuH+PpzdrU3TMcPGT7H7x+LXabRHxugZF8ys9Tm4XBoiOmHY86tH+hUnhyw9E0IIcVLsyK/k8rdWUO9w8dbQCkYtuQalnaRdOBvXGY/TITbC60kigKQId6Ioo7jG/SlYcFsoy/RyVEIIIYQQJy6/wsYvOwq5tH88PiZ3OqC+NAvfrEXYul+BMhg9Mk6PuGCq6x2kl9RgiOyIsSYfbJUe6Vs0P0kUCSGEaHZbciq48u0VGBR82Hsng5bdSkNAPFmXfEt8t2G0CbZ6pR7RoUQFWvDzMZJRUuM+EJoI5ZIoEkIIIUTr9/nqLJwuzdUDfy9i3bBuBkq78Ok7yWPj9IgPBty/AxojO7sPlqR6rH/RvCRRJIQQolkVVtm4YdpqfE0GZnT4hR5r/0F17BAKLvuGxOROTVuythRKKRLD/d0zigBCkzCUZ4LW3g1MCCGEEOIEOF2az1fvZUTHCBIbl9qjNT5bZlAXMxBLdEePjdUxKgCLycCm7AqIcO98pot3eax/0bwkUSSEEKLZ2J0u7py+Hputji+jptFu+xuUdrqCiounkxgT7bWC1UeSFO5HRkktAMawRAwNVVBX5uWohBBCCCGO38KdheRW2A6YTVS9ZyWW8lQcPa/y6Fgmo4F+iaF8tmovCwv90MqIs1ASRa2FJIqEEEI0m2fn7WBVRilfJn5DfPa35Pd7AMeEV4iPCG4xS80OJSnCn6zSWhxOFyo02X2wLMOrMQkhhBBCnIjpK/cSGWhhXNfopmPOdZ/gMlrx7TXR4+O9fEVv2kX6c8MnG6mwxqNl57NWQxJFQgghmsU3G3J4f2k6tw0Mo2PeHEq7XIXv2IeICvL1dmhHlBzuj8OlySmvc9coAqlTJIQQQohWK7usll93FnJF/wTMRncaoKailIBds6jtMAGTX4jHx4wKsvL5X4YwqlMkq6vDKc3c4t4FTbR4kigSQgjhcTvyK3l45mYGJoVxR/hqDM56fIfeSrCf2duhHZXEcD8A0otrIMSdKHKVSqJICCGEEK3T56uzALhyYELTsfqV72K0V6OH3N5s4/pbTLxzbX/M0Z0JqcvirzPWUu9wNtt4wjMkUSSEEMKjKurs3PrxWgKtJl67ujc+Gz7EFt0P37a9vR3aUUuOcBd4zCypBWsQLmsYrtJ0L0clhBBCCHHsGhwuZqzOYnSnSOJD3R+G2epqCdzwDtVxwwlI7Nus45uMBkYOGYpF2Vm/eROT311FSXV9s44pTowkioQQQniMy6W574sNZJfV8cakvgQXrsanLBVXv+u9HdoxiQy04OdjdM8oAlwhiegymVEkhBBCiNbnp235FFXVc+2QpKZjtWtnYK4txD7ozpNSN9IQ6d757D+jfdmQVc6YFxby4bIMHE5Xs48tjp0kioQQQnjMR8szmL+9kEfPS6F/UhjOVe/h9AnGt/cl3g7tmCilSAz3J6PEnSjSoYmo8gzvBiWEEEIIcRw+Xp5JQpgvIztFAmB3OPBb8wZ1YSkEdj3r5AQR4U4UDQgo5ru7h9M9Lpgn5mzlvFeXsCytGACb3UmVzU5NvYPaBgc2u5N6h1PqGnmBydsBCCGEODUUV9fz4s+7GNExguuGJuGqLMCaOhdb7+vx8/HzdnjHLDnCj+15VQAYQhMx7JwLLicYjF6OTAghhBDi6OwqqGJleikPn9sFo8E9c6h68/eElu+m9OzX8DWdpN9r/MLcS/mLdtNpWCDTbxrEj1vz+ed327n6nZWM796GKwYkEOZv+cOlJqMiNsSXYN/WUevyVCCJIiGEEB7xfz/soK7ByRPnd0MpRd2aj/Bz2TEPutHboR2XpHB/ftpagMPpwhSWDC47VOZCSMKRLxZCCCGEaAE+WZGJj8nA5f3dv784XRqfVa/R4B+Lf9/LTmoszvAOULwLcM/ePqd7DKM7R/HWoj28uXAXPjtnc35sNT2Da7HWFmCqzcdck4c2+pDf/yEqel5FTKhv065tovnIIyyEEOKEbcgq54s12dw4PJkOUQHgcmFe/yG2uKGYo7t4O7zjkhTuj8OlyS6rg1D3zmeUS50iIYQQQrQONfUOvl6Xw4QeMYT5+wBQmboC/7wVVPe5GYvFenIDiuiEoTT1gENWs5Hbx7RnTv8tvGx8lbEF72PY9T228jzsAXFUtDsfe0A8Cb/dR9hXF5O5Yx1lNQ0nN+7TkCSKhBBCnBCXS/PEN1uICrRw19iOADTs+hlzVRb0v8HL0R2/pMadzzJKaiA0yX1QCloLIYQQopWYvSGH6noH1wxxf+Cltca44n84fYKwDDz5G40YIjpirC2CurIDjhcW5tNu++tUxQ7n07PWcLHfhwwofpxr6+5lQ89Hyb3kG7KHP4e1bAftvzob+09PkJFXhM3uPOn3cLqQRJEQQogT8tXabDZmV/DI+C4EWNwrmp2r3sfhG4G1x4Veju74JUW46yplFNdAcAJaGXCWpns5KiGEEEKII9Na8/HyTLrFBtEnIQSAypxdBKZ/T2W3yfgHhZ70mIxRnd1/Kf59VpHN7sSy7L8Y6yspGPwoAzvEMP3mgTx8bhf2FFXzl4/X8cnKLGw9JpN+5SLKOlxM1MY3iJ0+msJl00nNK6GspkEKXnuYJIqEEEIct4o6O8//sIP+iaFc1DsOAFdZFtb0n2joOQlMPl6O8PhFBljw9zGSUVILRjOuwDh0aYa3wxJCCCGEOKK1mWXsyK9i8uBElHIXsdbLX0crI8Yht3onqMadz3RjnSKA4r07Cds6jbJOlxPTeQAdogJICPXn1lHt+fX+0VzeP4GPlmcw/n+L+XhjDTmjXmDPhC9xmf1o++tdJE3rh3PeQ6RvXUVeRR31Dpll5AlSzFoIIcRxe+nnXZTWNvDhBQObfgmpXzUNq9ZemdLsSUopEsP9SS+uAUAHt4WyDO8GJYQQQghxFD5ekUmg1cQFvWMBqC7NJ2jH51R1nEhwVFvvBBWSiDaYcRbtwgRU1zsIWPIvMJioG/YwYZYD0xPhARaendiDW0a2442FqXy6ai+frd7LxD7xTDxvLlHFKwndOYOw7Z8QsfV9aiN6UNzpCnSPy4mKjMTHJPNijpc8ckIIIY7LzvwqPl6RydUD29I9LhiA+nobpo0fYUscgzE82csRnrjkCH8yS9yJIkITURV7vRuQEEIIIcQRFFfXM29zHpf2i8fPx518cax8B4PThh5yp/cCM5pwhiSji9wzisp3LiEkfS7FPW8hIi7xsJclRfjzf5f2apphNGt9Dle/v4bXs9qSPe519ly3ltwhT6FcTuKWPUqbDwdT8svL5BaX43C6TtbdnVIkUXSKqrLZvR2CEOIUprXmiTlbCLSauP8s93pzm91J2eJ3MNcWYhhwo5cj9IyO0QHsLa0lt7wOFZaMsaYA7HXeDksIIYQQ4rA+X52F3am5ZrA7+dJQb8N/04dUJ4wmqG0Pr8amwzugSlIpr6knbMlT2P2icA29C4vJeMRrE8L8eObiHix6cDSTByfyzYYcLp26nNk76jAPuY2yaxeQftEcbGEpxCx/iohpw8lfPI3C8hqpYXSMJFF0CqovTqd4+xLskj0VQjQDh9PFQzM3sWJPKfef1ZlQf5/GJNG7RC95jNr4kVhSzvF2mB5xSd94AD5cloExLMl9sFxmFQkhhBCiZXK6NJ+u3MuwDuG0jwwAoHbjbMx1Rdj73YzBoLwan4rshLE8ndp1M/ArXEdR/weIDAs/pj5ign158oJuLLhvNGd1bcNrv6Zy9iu/8fO2AmK7Dadh0mz2njcdpyWY+IV/I/CjsRSs+7aZ7ujUJImiU5D6+TESv72cotR1BxyvqLVLcS8hxAmpa3By6ydr+WJNNneP7cikQW2pa3BStvB1Yn57kOr40dgv/xSMp0YJvIQwP87tEcOnq/ZS65/gPliW6d2ghBBCCCEOY+HOQnLK65jcOJtIa43PundpCGxLYHfvf5BnjOyEctmJWvIYdaFd8Ol/DcbjTF4lhPnx6lV9+PbO4XSODuSJOVs5++XfSC+uJr7feVRd9zNZZ7yGwVFLzHeTqV37uYfv5tQliaKToLDKdlLHM+Suw+BqIPSnuymrrAZge14lI//zK1e+vYIGh8w0EkIcu/LaBia9u4JfdhTyz4u6c++ZnaizO6lY8DIxSx+jsu2ZNFz6EcFBgd4O1aNuHtGOKpuD2Rnu5JerNN3LEQkhhBBCHNrnq7OICLAwNiUagKqM9fjlr6a21/WYTN7/IE817nxmqq+gZNhjhAf6nnCfPeKD+fTmQXxw/QBcGm78cA3ZZXVEBfkRO/wayqYsoS68G6aF/0I76k94vNOBJIqa2Tu/7eGsl34jtbDq5AxYXYSpKoeauOH4lmzF8evz7MyvYvJ7K1EK1u8t55m525qa2+zOph19hBDicHLL67h06nK25FTy+tV9mTw4kdoGB1Xz/482K56mIulcHJdOIzwkyNuhelzvhBAGJIXy+qpKXCYrLtn5TAghhBAtUHF1PQt2FDKxbxxmo/utvl79Di6jFZ8Bk70cXaOIjgBUxY8mqPvZTbvmniilFGM6R/HxjQMBuOmj1VTZ7BgNijZhQahxT+JTtZfaZe96ZLxTnSSKmtnZ3dpgMhi49r1V5JY3fwFUnbseANPohyjrdBnhG17n3+98gtbw1a1DuXlEMh8uz+SbDTlU1NnJWzePuGkDaNjxY7PHJoRonXYVVHHJm8soqLDx4Q0DGd8jBpdLU/PTv4le9Tzl7S/Edcn7hAUFeDvUZnPTiHbkVNiossahSzM80mdNvYOck/D/ghBCCCFOD7PX5+BwaS7r566xWFtRTODOr6nqdDF+wZFejq6RbwhlE96j7MyXCbKaPd59Yrg/b1zdl7SiGv72+QacjUWsrV3OpC5uGJZlL+Kqq/T4uKcaSRQ1s7bhfnx4wwCqbA6ue38VOWW15FfYSC2sorre4fHxHNnr0CgsCb0pGPoEBTqUJxyv8sblXegQFcCD53RhYFIYD83cRMZPU0n6YQo+1Tm41n7o8ViEEK3fpuxyLn9rOQ6X5vNbhjCkvbvYYMXaL4lc8yJlHS+Bi98iNNDPy5E2r3Ep0SSF+7GzPgxVfuI1iqrrHeTuWoda/gYlVZIsEkIIIcSJ0VrzxZoseieE0DHaXQagfs3HGJw21ICbvRzdQVIuICq2bbN1P7RDBE+c35X52wt58aed7oNKYTjzSUy2EmoXvdJsY58qJFF0EiSE+fGvi7qTU1zOa+++h/7pUeJmnImaeZPHx9K563GGdaDUaeWur/fwiPM22qlc2m96kXqHE6NSPHxOZ+41fkmv9Y9S2WYwFR0n4pO+QLZ8FuI0Z3e6qNkvgb02s5RJ76wkwGJi5q1D6RrrXlZWW1FE4IJHqIvojuHC1wkJOPG15S2d0aC4cXgyW+vC0GWZoI9/i9VKm5387ctJ/u5SYlc+jWPh/1Hb4PkPDoQQQghx+tiUXcGugmou6++eTeRwOPDb+AG10QMISOrr5egOFOJnxmo2NusYkwcncvWgtryxMI1vNuQAYEkaSG378/Bd+yb2yoJmHb+1k0RRcyvLxL70Dcasu5ON1r/wbM2jRGz9AGWvw3/XLBwFOzw6nDF/I/VRPbn2/ZXsLa3l+snXUtJtChFbP6B408/sKSglecm9/IWZfOEczb3mf+A3YBIGRx323b94NBYhROtSveC/2Obch62+geVpJUx+bxXhAT58ccsQ2oa7ZwxprXHM+ztGWxn1418h+DRIEu1zSb94ik1tMDuqoa7suPqoqLVTtGM5yfOuxmUOpCLxHKLWvkTJxnk4nLLRgBBCCCGOz5drs7CYDJzfKxaA6q0/YqnMpKHfjRiOc1ex5uKpukRHGuPJ87sxMDmMB7/axMascgBMZz2OwWGjfsHzzR5DayaJoua27RvCFz+OpSKdii5XMrPzi/Syvc2jYS/gMphpWPW+58aqysdYnceH6aHszK9i6jX9GNUpCj3uSeqD2xG54F7azJlEaOos8vvdz97hz/PLrjI+zkvA6ROEc9t3notFCNGq1GSsJmTZM4RvnUbm9LuY8sFKYkN8+eKWIcSG/J4Mqtj8I0E7v6C87+2EtOvvxYhPPj8fEx06dwMgN/3Yk/zltQ0U71xK0tyrcVqCybzgS6rGv44ttDMx8+8iL3O3p0MWQgghxGnAZncyZ0Mu53ZvQ5DVjNYa09r3sPtG4tfrYm+H5zU+JgNTr+lHZKCFmz9aQ1FVPT7RXajpdhV+mz6ivjDN2yG2WJIoam69ryZ78nL2TlqM/eznOOvi67h5bA++2tnA9uARWLZ8DnbbCQ+jtWbRwp8BWGtP5P0pAxjTJQqAiNBQSs58BXNNHn4Fa8ga9TKG0Q9w31mdOadbG575MY3imNGYU38Apyx/EOJ0o50ODHPvw2ENZ0fCFXTeO4P7/eYx/caBRAVZm9rZairw++k+6oPb43fmI16M2HtGDnQnxxavXn1M1xVX11OyfTFJ8ybh8A0j84KvSEjuTFxUOEXj30G5nIR/fzMFpRXNEbYQQgghTmE/bs2n0ubgsv4JAFTn7sZ/7wJquk/Gx2I9wtWntjB/H965tj8lNQ28udCdGLKM+zsoI/Zf/uXl6FoujySKlFLnKKV2KqVSlVIPH+L8JKXUpsavZUqpXp4Yt1XwjyA2OYWO0YHEBPsSaDXz13EdGZcSxesVIzDWl1O76esTGqLKZueuz9azfuUCnBh47vZJjOh4YFX7iC7D2Xv2e6Sf/xX+AycRFWhFKcX/XdYTH6OBBWoARlsZzoxlJxSL+N3W3Ao2ZZd7Owwh/iC7rJbnf9jBM3O38czcbcx5/1l8izbyRditnJ92AQvMo7i54WPYOAOX6/daPLYfn8KnOpvac17CYvX34h14T3h8JwCy9+ygvLbhiO1rGxykFlZRseM3kn6YjMM3kswJX5KQ1BGr2YhSiph23ckd81/8ijZi+unvVNrszX0bQgghhDiFfLU2m7gQX4a0C3eXCVj1LigjpoHXezu0FiElJoiLesfx6apMiqvrMYfEUdv3Zvx3zqJu73pvh9cinXCiSCllBF4HzgW6Alcppboe1CwdGKW17gn8E3j7RMdtTQ5eE6qUYnC7cL6v7YgtMAnD2mnH3fem7HLOe3UJ32/J5/yIAlzhHYmMCP9DOx+TgeCeE4joMowwf5+m40FWM0Pbh/NhYQdcRgv2bd8edyzCbf3eMm6YtprzXl3CVW+v+MPudlKHRHiT3enilo/X8taiNKav3MsPKzcxOvtNlutuPJPVjcHtI+l628dUxw4j6tf7KdwwD601FbuWELzpfcq7TyE0ZZS3b8N7LIHYLWG0cRXw4bLD735md7rIKq0lraAay7aZJP1wLXa/NmSe/wVtkzscUMDRbDQQ1m8iRb1uI3zHJ1Su+IiS6nrqHc6TcUdCCCGEaMVyyutYklrMpf3iMRgURWVlBO6YQXW7cwmIbL6dxVqb28e0p97h4v0l6QBYR9+H0xIE85/ycmQtkydmFA0EUrXWe7TWDcAM4ML9G2itl2mt91X+XAHEe2DcVq1rTBAaAxmJl2LNXUlD3rZj7mN1RimXvLkMh9PF5zcPIqlhFzqmz2Hbh/j5EOxr/sPxUZ0j2VGqqYwZhmnX3BPazed0tjqjlMnvreTiN5axbm8ZVw9qS02De70wuN845pTXkbF5Cc7KfC9HK05Xry1IZWtuJW9M6se2p8/h+5T5BBob6H3Lu2x7+lw+vnEQbcKCcV7+CbbQTkR+fzMFWxdjmXcPdv8YrOfIf6YqNJFeAWW8/Msupi5KQ+/3M1NrTWGVjZ35VVSVFpGw4A4SFt6DLSyFved/Ttuk9ofc5cPfYoIzHqM6Zgixi/9OadpaduVXszO/itzyOipt9gNmdwkhhBBCAMxcm43WcGm/eGx2J85VH2Cqr8DZ3/M7bLdm7SMDGN8jho+WZ1JRa8fkH4pt4D347v2Vhr1rvB1ei+OJRFEckLXf99mNxw7nRuB7D4zbqqXEuLeZXhl8Di6DGfvqD465j2835mI2Gph3zwj6h9kw1hZhiDt8ouhwRndy1zLaGDAcU1UOztyNx9zH6UprzeLdRVz19goum7qcbbmVPHxuF5Y8dAbPXNSdLm0C+WRFJrnltezd+CvBn0+kw+zzcX3/kLdDF6ehzdkVvPZrKhf3ieOc7m2o3rmQgJ1fUt3vNnxjD5wIGhwSRt3lM3BaQomeeRHW8lRqz3oBa0CId4JvQXRoIp0tZZzXI4bnvt/B/V9uot7hpN7hJK2omoKKevyzfqPj12cSnPEDuf0eZNHwj4hLSP7TrWAjg/0pGz8VpyWIDrPPo/3s8whb+k/qt/9EVl4R2/Iq2VNUTVFVPTa7zDYSQgghTncul+artdkMbR9OQpgf+TmZRK19iaq4kQR2Gunt8FqcO8d0oLrewbRlGQD4Db0JpzkAx7I3vRtYC2TyQB+H2tvukB97KqXG4E4UDT9sZ0r9BfgLQNu2p+5UuVB/H9oEWVlfYuKyDuOxbv0cfc5TKB+/o+5jeVoJ/ZPCCPHzwbVtHQbAFN/vmGNpG+5Huwh/vqruwUhlwL5lDsa43sfcz+nE7nTx3aZc3v4tne15lUQFWnhsQleuHtgWXx/3G8EGh4vze8Xy/U/fY/j0edoXLsZujcAW3AFz9rEVwhXiRNnsTu79YgMRAT48eX43XPZ6zD88QENgAv7j/lBaDoCwNokUXvIZYZ9fRE3SOIJ7jj/JUbdMKjQJ4865/O/unnSICuDl+bvZU1TNA2d3JsjkIGbVs0Rsm0ZtcEemJT3Pu5sDKVi6kV4Jmfz74u50iw0+bN+xcYlkXjQL/x1f4Z+7jPCt7xO5+S20MlEb2YvquBFUJIwhP6InZh8TARYTQb5mgqx/nC0qhBBCiFPbyvRS9pbW8rczO1JcXU/wkn+inPXUjHuOQKPsW3WwlJggxqVE8cGydG4ckUyAbzC1Pa7CumEazop/YQyO8XaILYYnXj3ZQMJ+38cDuQc3Ukr1BN4FLtRalxyuM63121rr/lrr/pGRkYdrdkpIiQlke14Vxv7XY6yvoG7jrKO+tri6nt2F1Qxp565H5Mheh1ZGaNP9uGIZ1TmSnzKc2GIGYtg177j6OB1U1zt4d/EeRv3fr/zt8404nC7+79KeLH5oDDcOT0YpKKy0kZpfTtaG+Vy15xG+szxKQPEG8gY8wt7Jy6HvZIxVOVBd6O3bEaeRl+bvYndhNc9f0pNgPzM1i/6HpWwXDWc+h9Fy+MLUUck9yb9hNT4Xv4FSh/pc4PRjDEtGueyoqjzuGduRf13Una25lbwy41sSZ44nYts0FoVdxvCyx3lmnQ8JoX48eE5ncspqueC1pfx73nZqGw69w6TRoIhNTqF84H2kT/iSbdduIf2cTyjqeQtKO4la/wod5lxIyvS+tPn5LvSGz8nOymJPUbXMMhJCCCFOM1+uzSLQYmJM5ygqdywiNPVrinveQmhCF2+H1mLdMaYD5bV2pq9w15r0GXIbyuWgfvlpVUb5iDwxo2g10FEplQzkAFcCV+/fQCnVFvgamKy13uWBMU8JKTFBLN5dDMln0RCcjGHdNBgw6aiuXbHHnWsb0r6xcHXuehwRXTCbfY8rllGdIvlgaQYZEaNJ2fQcruI9GCLaHVdfpyK708XHyzN5ef4uKm0OBiWH8a+LuzO6UxQaKKqqp7K6DPPeJQRn/EBi5s+YbcU4zYF8EzqFp4pGMmfoubQP9QP7AHenueuh09levS9xelibWcrbv+3hqoFtGd05iuqCdPxXvEBN8jkE9JxwxOvjo/5YIP90pkITAXCUZrDXHkqv+BA+HpRFj3WPUVNp4XbH31ma150xXaK464yO9E4IAWDSwESe+2E7b/+2h7mb8vjnRd04o0v0H/q3mo10bhOIw+mipsGP2tBxVLYbTaHdhaGulIDs3wjM/pXA7N8ISZuNVgZKO19J+oAHCYloQ1SgFaNBknpCCCHEqay63sH3m/O5qE8cpZU1xC59lIaAeJzD/4bFdPil7qe7Pm1DGdExgncWp3Pd0CSske2pa3cWPhumwdiHwGz1dogtwgknirTWDqXUncCPgBF4X2u9VSl1a+P5qcDjQDjwRuMn0g6tdf8THbu1S4kJwuHS7C6sIbn3tfgveoqGvC34xBx5VtDytBICLCa6xwaB1hjzN+DsdPzLQga3C8diMvCjsz8pQP3WOfiO+utx93cqWZpazJNztrK7sJoRHSO4/6zO9Gp841dRa6dkz1rC1r9B5N5fMNqrcZr9qYofQ2XSOdjbjSWq3kLpuyuYv62AKcOSIaYXWhlwZa/FKIki0cxqGxzc98VG4kJ8+cd5KTTU12OYdTMahfG8570dXusUmgRAYeYOatt1IWbVM0Rs/YDyiP78Q/2V0LB4vh3Zjm5xBy4xC/Yz8+zEnkzsG8/fv97MDdPWMC4liov6xDGyU+Qflo+ZjAaCfQ1NmxC4XJrqBj+qIi6noMvFZNud+BZvJmT3TMK3f0xw+lwK+t3Prm7XEBMaQIifD0IIIYQ4Nf20NZ86u5OzukZjXf8+1rKd7D3rXeLCwrwdWot3x5gOXPn2Cj5fncV1Q5MwDrkd0/QLqV03A79BU7wdXovgiRlFaK3nAfMOOjZ1v7/fBEjZ9YPsK2i9Pa+SlP6TcS1+FvvKD/C56MUjXrtiTwkDkkIxGQ1QlonRVoaO63vcsVjNRoa0D2dOZi23R3TDsOM7OM0TRVmltTwzdzs/bM2nbZgf71zbn3EpUSilaHC4yCsqwW/Zf0je8i5OnwAqkidQmXQ2DW1HEBgYQLjVjL/FRHugV3ww01fu5bqhSShLAM6wTujstUiuXzS357/fQUZJLTP+Mhh/HyPls/9OaP5qys99k5CIJG+H1zoFx6OVAWveapK3f4Z/4VqKu99E3sBHuNfHh8Qw/6ZaZYcyICmMuXeP4J3Fe3h38R7mby/EZFAMahfGuJRoxqVEkxD2x3p1BoMiyLqvHpEvNruTqpBBVMT3pTRlErHLnyBu2WOE7fiM3KFPUdNhBHEhxzfLVAghhBAt25yNucSF+BJjKCN63X+pTDgDvx7ny6ziozAoOYwBSaG8tSiNqwa2xafDKOrDUzCumgoDrwMpt+CRGkXiOCVH+GM1G9x1igIjsXUYj3Xbl2Cv+9PrCittpBXVMLixPpEzdz0ApvjjTxQBjO4UyZ7iGsrbnoVP3hp0VcEJ9dda2exOXp6/i3H/XcSiXUU8cHZnfvrbSM7s6l4iUlhlI2/VLGKmjyJy81uUdbqcjKuXYJ/wCm0GXEin+Ehign3d2103unpQW3YXVrMms8x9IK4Pxrz1oGW7a9F8luwu5sPlmVw/LInB7cIpXfMVoRvforzHFIIHXuXt8FovoxlXYBxhuz7HWraDzDPeIG/w4wT4+dIhMuBPk0T7+JgM3DGmA2sePZOvbh3CjSOSKais56lvtzHi/35l3H8X8dS3W/l1R+Fh6xlZzUYiAy20jwygTcc+5Jz/OZlj38RYX0777y7D77vbqKiq8fTdCyGEEMLLSmsaWLK7mGEdwmmz8hmUy07x8KcJD7B4O7RWQSnFnWd0JLfCxqz12aAUroG3YinZTkPqIm+H1yJIosiLjAZF5zZBbM+rBMAw4HqMDRXorX9e1Hr5QfWJHFnr0AYzRHc7oXhGdY5y9+8zGIWmftvcE+qvNVqWVsz4Vxbz8vzdnNk1ml/uG8UdYzpgNRupqLWTvmc3lplTSPzpBlwmP9Iv+AoueJUOiW2JDrIeduvr83vFEmgxNRVNM8b3w1BXAhVZJ/P2xGmkrKaB+77cQIeoAB48uwuV2dsJ+emv1Eb1wW/C81KY+gQ54gdTF5ZC2gVzqGw3gaggC8kR/u5ZnsfAaFD0TwrjkXNTmH/vKBY9MJrHJnQlNsSXT1fu5fppq+n11E9c+fZyXv81lb0ltYfsJ8hqplObQHx7T2T3ZQso7HUHoamzsP/8FA0OlyduWQghhBAtgNOlmb4iE4dLc2FwGiFp31DU8zbC23aR3++OwciOEfSIC+b1X9Moqa7Ht++VOKxhOJe/4e3QWgRJFHlZ15hAtudXorXG2mEUDr9oXKm//uk1K/aUEmgxNW2xrHLX44joCqYTyyAnR/iTGO7HN3lh2IPawvZvT6g/b7E7j/1NUWlNA/d9sZGr31mJw6X5+MaBvHZ1X2JDfKmos5OWlYtt/jMkzhhDYNYC8vs/SNGk+ST0GkuY/5HrgPj5mJjYN455m/MprWlA7VsmmLPumGMV4ki01vx91mZKaxp4+YreKHsNPjOvQxvMOC/5AB+LFOk7UY4L3iR14o/YwzuSGOFHdJBnHtPEcH9uHJ7MRzcMZOMTZ/HJjYO4YXgylXUO/vPjTka/8Ct3TF/HxqzyP1yrlCIq0EqnhGjqRz1KSZdJRGx6i+KN89Aye1EIIYRo9Srq7OwqqOKHrfl0D7HTb+szNAQmUDPwzqaahuLoKKV4+Nwu5FfaGP/qYlZm1dDQewrWPT/hKEr1dnheJ4kiL0uJCaK81k5+pc095S28I7os/U+vWbGnhIHJYe71p1pjLNiIK6aXR+IZ3SmSZXtKqG9/Dj57l4Ct0iP9nkwFlTZyyuuO6o2R1pqZa7MZ++JCvtmQw+2j2/PT30YyomMkVTY7aTlF1C54kcRPhhC97iWqY4eTcfl8/Mc9SEJkyDHNHrh6UCINThdfrc2C6O5ogxlH9toTuVUhDumrtdl8vyWf+87qTEqbQBq++SuWsl1UnjeVwOhkb4d3SvAxG7GaDXSICvhDEWpPsZqNDO8YwSPnpjDvnhGseGQst4xqz2+7i7jw9aVc/tZyftlegMt14M86s9FAQpgf6pxnsYV2IvLneyjOl9mLQgghRGvlcmn2ltSyt6SW/AobCfnzmeH4Kz6VmeQM+zcx4VLA+ngM6xDBrNuH4u9j4qp3VjDddRbaYKJh2Zt/aNvgcFFls3shSu+QRJGX7StovS3XnZAxhrfD8CeJovwKG+nFNU3LzihLx1hfgfEEClnvb3TnKGx2F7tDR2BwNeDc85tH+j1pbJUE/3gPdXtWkl5cg+NPZhdV1zu4+aM13PflRpIj/Pnu7uE8eE4XzEYDmYWlVC16nbafDCFm9bPURfYm9aLvqL/kQ5I69iDwON4Ydm4TyICkUD5blYXL4IMzqhtaZhQJD8ssqeHJOVsZ3C6MyYMTKf3tLYJ2zaRs4H2E9pBd9jzFbDTQPjLgpG4/2ybYykPndGH5I2N59LwUsktrufHDNZz18m9szq74Q/uwkGDKxr+N0V6F9bs7qLY1nLRYhRBCCOE5NoeTijo7xroSIn+8lak+L+MMiCX1ormYOo07qvqI4tC6xQYz567hXNArlmd+K2Wxzwh8tsygprKUoqp69pbUsj23grS0XVRumA17V3o75JNCEkVe1qVNIEBTnSJjRDsMtcWHncmzorE+0b5C1o5sd6LBlOCZRNHgduH4mAx8X94Wl8mKI3WhR/o9aTKXErjjC9rNvRzTtq9JK6rBZnf+oVl2WS2XvrmMX3cW8diErnx161C6tAmirsFJ1raVtPlkDLHLn6A+uD17zv+K6stmkNRjGFFBVgwnsJPA1YPakl5c464zFdsXY/5GcEn9EOEZDqeLv32+AYNB8fBZHalY+D/CFz9OdcJoAs96RNate9iJ/Cw4EQEWEzeNaMeiB8fw8hW9qWtwcvU7K1idUfqHtlHte1M47CkCc36j5teX/zR5LoQQQoiWye7UBKXPpdPMcXQuW8R7Ptewd+IcGsK7eGz5++kswGLipSt683+X9OTVmnGY7NXs/eJBXL8+S8jsSXT4uB8pnw0i7oebYM173g73pJBEkZcFWs0khPmyPa/KfSCsnfvPw8wqWp5WQpDV1DQTyZm9DpfRApEpHonH18fIoOQwftldjj1uMIaM1lX13VWSBoAtrAttf72LkJX/Ia2w8oBpgmszS7no9aXklNcx7foB3Dg8GYNBUVJdT8mS92k76wIMDhsZ53xM+eVfE99rLDHBvsdcpPZQzu0eQ7CvmdnrczDG98XQUAUlsgZWeMZrv6aybm85T/WtpfO3FxC7/ElqYoegJr6D2WQ6cgeiVTEbDVzUJ44vbx1CZKCFye+tZPHuogPaGA2KoGE3UZF8LlGrnqdwxzIvRSuEEEKI4+Xz8yMk/nIbNb4xnFf/DDk9bkcZzcSF+OJjkrf0nqCU4vIBCTx757VsNHQlJftLIte9jC7LpDp+JLlDnmbvxd/A+a94O9STQl5VLUDKfjufEdpYP6T0MImiPSUMahfurk9EYyHryK5gOnJB5aM1unMUaUU1VLYZirl0F1Tmeazv5uYqTsNpCSb9/K8o7XQ50etfIX7+7ewtKCG7rJZPVmRy5dsr8PcxMev2YYzoGInLpckqLEV9ezfxv91PbXQ/cq/8iZj+5xEf5u/RH75Ws5EeccHsLKhqKmitc6ROkThxq9NL+OiXdUyL+ISJ66Zgqith77ipOK78Ev/QKG+HJ5pRbIgvn98yhOSIAG6ctoYft+YfcN7PYsY+/hXs/tGE/3AbNZV/nHkkhBBCiJbLsnk6FUnn8p/419itEzirWxs6RgcQehSb6ohj0yk6kIRbvuCjLlMZrj6kV/E/+UvVTexMvIqIlOFg9vV2iCeFJIpagJSYINJLaqhtcECYO1GkS/f8oV1OeR17S2ublp3hcmEq2ISO6ePReEZ3jgRgtaEnAI60hR7tvznpkjR0aDuSosPIH/UCeQP/QVD69yR/eynTfljOo7O30KVNEP++uAcu7S4Kl5G2jYjPzyds5wwKe91J9WVfkdg2sdlqj3SICiCtsBod0QmXyRdnttQpEiemut7BvE//xwLL/Yyq+ZGiHn+h4NrFxAy5gtCAE9sNUbQOkYEWZtw8mK6xQdw+fR2z1+cccD4iMpris1/HpzoHww8PeynKlkVrTaXNzt7iGoqrbN4ORwghhDi0+moM9lpqI3uzMLWM3m1DGNwu/KTWSTzdhEUncPkllzP/4fP4x/gU9hTVcP201dwxfd0h60KeimQtQguQEhOE1rAzv4o+bUNx+UWiS9I4+J/+ijR3faIh+xJFpWkY7NUeK2S9T7sIf+JDfZmVF8DZllCcqb9i6nOVR8doLoayPej4QfhbTHSIDiSz322kB7Un5pc7uK/oSv4SEIG/isS1KAyHJQSXJYiQ1FkAZJ79HiG9L2z2rSXbRwVQ0+Akr8pBZHRPlBS0Fifo1ZkLeKzhZUpDe5B51otEtO9LpEV+vJ9ugv3MfHLTIG7+cA1/+2IDNQ0OJg1KbDof2XUUZTsmE7p9OtT/FywBXozWc7TWx1R/q6beQXmdnZrCvQTu/pqo1K8x2UrhnnVgDW7GSIUQQojjUF0AQJEKIbusjltHtfdyQKcHq9n9bvzmke24elBbPlyewdu/7eGz1XvpEd/Dy9E1P3kn0QJ0baw3tD2vMVEUmnzIpWfL95QQ4mduKoDtylmPATDFe3ZGkVKK0Z0j+XpdDg2dh2HOXAxaQ0svhGu3YajMxhVxNQA+JgNxob78ZUc8BbaneDpuFV2CGnDVl2O0lWCpSMVYX0F9SAcKzvwfMUkpTT8QmlOHSPebs9TCaqLi+mJc+wE47WBs3gSVODX9sCUPn61fYDBruPRdEuM6SdHq01iAxcQH1w/gtk/W8ujsLQxtH0FyhD/grmlk7XEBaus0HHt+w5Qy3svRnjib3UlqYTVmowEfkwGL6fc/XS6wu1zYnS7sDo3d5cJRW4lf2jxCU78mNncZCk1deHdMdcXY1s3AOvQWb9+SEEIIcaDGRNHWSl+MBsX4HjFeDuj0428xcfvoDkwenIjdqb0dzkkhiaIWID7Ul0CLqalOkQprBxl/3JZ+xZ4SBiWHNe2048zbhDKYUZGdPR7TWV3b8MmKvaw39mJo9XfugssRHT0+jkeVZaDQGCM6AFDb4OAvH61lSWox9555BgGdryT7EJcF+5pJDPU9aTsYdYhyJ4p2F1YzIr4fatWbULgdYnqelPHFqaOg0sbDMzcxz7IEW8xQIuI9/7NAtD5Ws5F/T+zB0OcWMGdDLveM+/1nt1+H4bhMvjh2/XxKJIqcK94iIXUh9SEdqA/pSE1oB0qDO6DNfuCyYy3bjW/JFvyLN+NbvBlryVYMznrqA9tS2OceKjtNxDe6A5GfnYVh7TQY8peW/6GIEEKI00uVu/bg3D0uhneIIEzqEnlNoPX0+WBfEkUtgMGg6BIT2JQoMoS3Q22eAfa6pmJZWaW1ZJfVcdPw5KbrdME2HGEdMTfDTJQRHSMY0i6c53ZGMwew7/4Vc0tPFJW6dzwjrD0VdXZumLaa9XvLeOGyXlzaLx6b3dnU1KAUBtX450ne4joiwIdgXzOphdWoFPeyQVfOOgySKBLHwOXS3P/lRro7thFrzKOh72PeDkm0IDHBvgxMCuObjTncPbbD77PMTBbsCcMw7lng3QA9QWusy14Eh42gvb+gtKPpVIN/DCZbKQZnPQBOsz+28G6UpkymMvlcVNvBhPr70N5qxmBQ2Ppdj+WH+3BkrcbUdqC37kgIIYT4o8YZRVsqfXns7FgvByNOF5IoaiFSYoL4el0OLpfGEN647rQsE6K6AO7ZRACD24c3XWMs2o6z7dBmiUcpxePnd+W8V4spC4jGb8+v7k9aWzBncSpGoMQaz+S3V7C7sIrXr+7LuY3TM0/GsrKjoZSiY2NBa8K647KE4Mxei6H/FG+HJlqRD5ZlsHh3MT8mr8dV7I9Pj4u8HZJoYS7oHcs/Zm1ha24l3eN+r72jOp6J+af5UJIG4a24zkFJGsa6YrKHP0t5x8vwqczAUp6KtXw3PhV7cPhGUhfenbqIHthDkvExGckqq2N4hwgsB/1/YO19Oa75j2Ff+b4kioQQQrQorsp8XMpEnSmIs7pFezsccZqQXc9aiJSYIKrrHWSV1UJo46yh/XY+W76nhDB/HzpFuesTUVeGsToXFd2tWWO6amAiP9tSMGQsAZfzyBd5kas4DYc1lMs+3M6e4mrevW5AU5KopekQFUBqUTUohTOmN0hBa3EMduRX8vwPOzivcyAdi37G3uVC8PH3dliihRnfPQaTQfHtxtwDjvt0PhOAhp0/eyMsj7GnLwEgstsYEiJDCE7sgU65gLIBfyV79CuUDHsMQ6/LCE/qxpbcKm78aA03friGJ7/ditYH1RewBlGfcgmWnbPBdnrsZiKEEKJ1cFXlU6xDGNM5+rRa+iS8SxJFLURKU0HrSgg7MFGktWZF2oH1iSjcDoA5pnuzxnXvmZ1Ya+yJ2V6JK2d9s451wkrSyCKGvSW1fHj9QEZ1ivR2RIfVISqA0poGSmsaULF9MRVvdy81FOIIbHYnf52xgSCriX91SsPgqMXUb7K3wxItUKi/DyM7RTJnYy4u136JkfD2OIIS0anzvRecB7gyluL0DcfSpgvBfmaig6wkRfjTpU0Q3WKDaB8ZwLK0Eia+sYyHv95MqJ8Pl/WL57NVWfxr7vY/JIvMg27A4Kijbu1nXrojIYQQ4o9qSnPJdwUxpkvLfW8jTj2SKGohOkcHYlCwLa8K/MJwWUNwlrhr7vy4tYDcChtD9lt25szf4v5LM84oAggPsNBrxIUA7Fo5t1nHOlGO4jTW14Rx88h2DGoXfuQLvKh91O87n5kS+qG0E/I3ezkq0Rq8NH8XO/Kr+M+lvfDf9jn2kHYYE4d4OyzRQl3YO5a8ChtrMssOOO5odwbmvUvAUe+lyE6cMWsFjvhBfyg+rbXmm405jH1xEQ9+tYlgXzPvXdefb+4Yxv9d2pMpQ5N4b0k6L83ffcB1pvi+NET2wLhumnunTyGEEKIFsJfnUaRDGdo+wtuhiNOIJIpaCF8fI0kR/k0FrV0hSejSdH7ams9dn62jV0IIE/vGN7V35m/FZQmGoOYvaHbZ6L6kqUSqt82nweFq9vGOR31dNb51eZRa4rn7jBZedBvoEPl7oog4d0FrZ/Zab4YkWoGaegefLM/kwt6xjImqxidnOa5eV8kuTeKwxqVEYzUb+GZDzgHHTZ3PxOCow5mx3EuRnaCKHEyVezEkDTvwcJ2d26ev42+fbyTI18S71/Znzp3DGJsSjVLKXX9vQlcu7x/Pq7/sZuqitAOud/Wbgk/JduyZq07m3QghhBCH5VNXSI1POAlhft4ORZxGJFHUgqTEBDUlighrh61gN7dPX0e32GA+vnEgAZbfa4+rgq04IlJOyhtEs9GAof1oeji388niHc0+3vH46ufFAAwZMBBfn5ZRtPrPxIX44ms2uhNFQbE4/aNxSaJIHMHczXnUNDi5ZnAi9Ws+QSsDlr6TvB2WaMH8LSbO7NqGeZvzsDt/T/Sb2o1CG8zYd7XOOkWOjKUAmJN/TxSt21vG+FcW8/O2Av4+vgtz7hjOuK7Rv+/41shgUDw7sScTesbw3Pc7+Hh5RtM5a58rcJn9cax+/6TchxBCCPFnHA31BDgrCQiP83Yo4jQjiaIWpGtMENlldVTa7GS4orHW5NIr1p+PbhxI0P6Fy7TGWLwDoruetNja9h+PRdlZunAexdUta6lCRnENy1a7P/3t1r2Pl6M5OgaDol2kv7ugNeBq0xuV28JrQAmv+3JNFu0i/enfNhjj5hk0tB0FwfKLg/hzF/SKpazWzpLdxb8ftATQEDcQQ9ov3gvsBDjTl+EyB0B0D1wuzdRFaVw+dTlKwZe3DuEvI9v/XtPvEIwGxUtX9GZcShSPfbOVr9Zmu09YAqlPmYhl52x0XdlhrxdCCCFOhu1pezAoTVRsordDEacZSRS1ICkx7h3N/vfLbt7eojEpF9MuaXNgkgigIgtDQxXGNs1bn2h/xuRhuJSJ/q5NvPjTzpM27pForXnsmy20MxS4D7SirZ47RAWQVuhOFKn4vpjKUmW3HXFYaUXVrM4o4/L+Cbj2/IapKgejzCYSR2FUp0iCfc3MOWj3M9qPxadkO1TmHvrCFsyQtQx73ACK65xMmbaa577fwdnd2jD37hH0aRt6VH2YjQZeu7ovwztE8PDMTeSUuzcUMA28AYPDhm3tjOa8BSGEEOKItu9OBSApKdnLkYjTjSSKWpB9O5+9szgdU4Q74RFYnfXHhgXbADC2ad4dzw5gCcQR05fzAnbyxZpsSlrIrKI5G3NZvLuY8bG1OH3DwRrs7ZCOWofIAHLK66ipd2CK7+8+mLvBqzGJluuLNVkYDYqJfeNwrP0EpyUYU9fzvR2WaAV8TAbO7d6GH7fmU9fg/P14l7MAaNjZynY/qy3FXLITW8wgLpu6nJV7Snjm4u68dnUfgn2Pbdtgq9nI85f2RAMfLssAwBzfl/qonhjXfyhFrYUQQnhVZoa7ll5QRIKXIxGnG0kUtSBtgqzEBFvp0zaEv18z3n2wdM8f2jn27XgWlXISowOSR5FQtwt/VxVzN+ed3LEPoaLWzj+/20avhBDaGwtwhbbzdkjHpEPjzmd7imogppf7YMEWL0YkWiq708XMtTmM6RxFlLke867vcKRMBLPV26GJVuKC3rHUNjj5ZUdB0zEV3R2HXzSu3a2rTpEzYxkAL+wMJ6e8juk3DWLSoMQ/1CI6WnEhvozvEcNnK/dSZbMD4OrrLmrdkLnCY3ELIYQQx8Jmd1Je1LgZRWC0d4MRpx1JFLUgSinm3j2CL24ZQkB4HC6zH85DJIpc+VtxBMad9Nkz5o5jULi4JCyd2etzjnxBM3v+xx2U1dr598XdMZbtQYe1nmVn8HuiKLWoCvwjcFmCcJb88fkWYuHOIoqr67m8fzz2jV9hcNow95vs7bBEKzIoOZyoQAvfbNhvmZlSOJLHYM78DZwO7wV3jOzpS7Fj5ovcSP57eS/6J4WdcJ83DU+mqt7BF2vctYp8+1yO0+yPY6UUtRZCCOEdazPLCHOVur/xj/JuMOK0I4miFibM3wez0QBKoUOS0YdIHBgKt+GKPHmFrPdR8QNwmXwZ77+LdXvL2VtSe9Jj2Keuwcnnq7O4amAC3SJMGGvyUa2oPhFAYrg/RoNy73ymFK7DPN9CfLEmi4gAC2O6RKHXfYQ9vDOG+L7eDku0IkaD4vxesSzaWURFrb3puKHTOIz15Thb0a6LxVsXss7VnnvO6cGEnrEe6bNXQggDk8L4YGk6Dqersaj1pVh3fYOzuvjIHQghhBAetjS1mDaGcpzWUDD5eDsccZqRRFELpsOSUQfPKHI0YCxLRUWfvELWTUw+2BOG0qNmGZGU8fnqQ9RPOkl2F1bhdGmGd4hoWp5niuzgtXiOh4/JQGK4nztRBBDWDlUmiSJxoMIqGwt2FHJJvzgMOWvxKdiA7ncjHOcyG3H6uqBXLA1OFz9s/X3psE/HsWhlwL6zdSw/+3rFTtrU7KAysj+3jfLshwM3jkgmu6yOH7e6l+eZh9yCwVmPbeUHHh1HCCGEOBpL00po71sLAbLsTJx8kihqwQxhyRgqMsH1e/FRSnajXI6TuuPZAQbfjk99GT/5/oO9634ku6wWl+vkF/vckVcFQJc2QThL3EXeVFjrqlEE7oLW+xJFxvD2GCqywGk/wlWnL5dLs2R3Mf/6bhtrM0+Prau/XpeD06W5rF8C9mVv4PQJxKff1d4OS7RCPeODSQr344s12b//3PYLoyG6NyrtF+8GdxSWpRYz+9vZmJSLUWdeeNw1iQ5nXEo0ieF+vLvEnbA3x3SjLn44Puvfb1VL84QQQrR+FXV2NmeXE2+uREuiSHiBJIpaMEN4e5Sz4YCti135W93nvJQosnQeR/rF36ItQbxc/zjlP/2HtMJKbHbnkS/2oO35lfiajbQN88NV5E4U0cqWnoG7TlFmSS12pwsV3g6lnVC+19thtTgl1fW8tSiNM15cyDXvreTdJelcOnUZf5+1uWkZjdbavWTkFKK15os1WfRPDKWDtQrLrjnYe1wNlkBvhyZaIaUUN41ox9rMMl5dsLvpuG43Fp+C9VSU5KNb6C5faUXV3PrJWsb5p6GVAZ+kwR4fw2hQ3DAsmfV7y39PRA/6C+bqXOq2fOvx8YQQQojDWbmnBJeGcF2GkkSR8AJJFLVk+2bI7Lf8zJm/FW0wQXhHLwUFMZ36kn7Jd/zgGkT37f8let4NpGdn4zyJM4t25FXRuU0gBoPCVZKK0y+yVb557hAVgMOlySyp2e/5TvduUC2Ey6VZsaeEe2asZ8izC3j2+x1EBVp5+YrerHvsTG4YlsyMVXs548WFfLQ8g9Td2ylYNxftOnWSRWszy9hTVMPlAxKwrXgHXE4sQ2/1dliiFZs0qC2X9I3n5fm7+WFLPgDmLmeh0FRs+ZmdBVUUVdUf8ue5y6Upr20gs6SG7XmVZJXWUlFnPymzSl//NRWt4eKwTOyR3cEa1CzjXNovniCrifcaZxX5dpuAPTAetfKtZhlPCCGEOJRlaSVYzQprfTFKdjwTXmDydgDiT+xLHJSlA6MA0AVbcYZ2wOTFgmZ+PiZ6tUvgvwlPsiXvSx7I/oj2M8+j5pKPCEpu/gK7Wmt25FdyTvc2AKjSPThD22Fs9pE9r2nns8JqOiT+MTF4OkotrGLW+hxmr88lp7yOQKuJqwe15epBbekU/Xsy8K/jOjI4KZhf535OzLx/0864ASMuKtQ7BPe/3It34DlfrMnC38fIeSlhmF+bRkO7M7GEt74llqLlUErxzMXdSS2q5r4vNtAuchid4vvhtIYRu/xxSsp3U5wymcKAKEL9fAjz96He7qK8roEqmwPsNgKzfiW8eDM1MYPIihkCJh8CrSaCfc0EWc0YDJ5dEuZ0aX7dUchZXULxT92Avfd1Hu1/f/4WE5MGJ/LWojSySmtJCPOjoc8N+P/2NA05m/CJ69lsYwshhBD7LE0tZlRbH1ROPSooxtvhiNOQzChqyYJi0UYfnMVpTYcMRdtwRZ38Hc8OZjIauGpwIm/WjeXHAR+gXPVYvv/rSRm7sKqeslo7Xdq4P1E2lu2BsNa37AygfeTviSIConCZ/ZpqLp1OiqrqeXfxHib8bzHj/vsbby5Mo0NUAC9f0ZuVfx/Lkxd0o1N0IHUNTvIrbKSmp1Pzy38Y9cPZ/LvuKYZa0nlXX8gW3Q7fnx/GVlHk7Vs6YdX1Dr7blMeEnrGYd8zGWFeCccht3g5LnAKsZiNvXdMPP4uJmz9aQ7nNSfnEz6iN6kvU+lfpPGMIsb/+jZrM9ewuqCarqBy98wfifr2HlOl9SfzlFqI2vkbyD5NJ+aQ38fNvR22ZSU5ePjvyqyissnl0ltG6vWWU1dq5OLoIg9OGMXmYx/o+lOuGJGFQiveXumd3+g66HpfRin25zCoSQgjR/AorbewurGZMXOP/pbL0THiBzChqyQxGXMGJ6H0zTOrKMVXl4PBWIeuDjEuJJsBi4oeKKHr3uJmYlc/gKNyNKap5l8Vtz6sEICUmCOqrMNYW4mqF9YnA/el1bLDVnShSCh2ajC45PWYUuVyapWnFfLpyLz9vK8Dh0vSMD+bxCV2Z0CuGqEArADa7k4JKG5Wlhfim/UBw+lyic5agtIPqmKHkD3wYZ+fzGNSguP+Nz5ir/oFt7kNYrnrP48VuT6Y5G3KpbXByef84mHcH9tCOmDuM8XZY4hTRJtjK1Gv6cdXbK7jrs/W8fnVf9p79PubydMK3fkDori8I3T2T2oieWCozMDZU4rAEU5E8gfL251MX1Rf/vBUEZf5E4N75hKR/h1YmquJHUdjnHorb9CEy0EK4v88JzzCav70Ak0HR07kFAFMzJ4raBFs5v1csX6zO4q/jOhHsH0ZNyiX4bv8KZ80/MfqHNev4QgghTm/L0koAGBjRuMGNJIqEF3gkUaSUOgd4BTAC72qtnzvovGo8Px6oBaZordd5YuxTnQ5r93vNmsLtAJjadPdiRL+zmo2c070NP27J55+3XQYrn6Fh45eYzvx7s467I9+941nnNoFQug0AQ0SHZh2zObWPCiC1yL3zmQ5thyra7uWImldhlY0v12QzY/VeskrrCPUzc+2QJM7sGk1CmC9Ol6bK5qC8ugyqC/Hbu4jg9O+IylmK0g4aAhMo7nETFV2uwD8uhWh/Hywm98LDqI79+CD7Ym7a9RUVmy8luOd4L9/t8amos/Pfn3fRKyGEXuzEVLiJhnNehFac+BItT7/EUP55UTcemrmZ/y1I5YGzu1Aa0IXC0H9S0O9ewnZ+TkjaN1S2HUdF+wuojh2OMvsQZDUTYjFRE3wOeUljyXG68CtcT1Dmj4Tu/JwOcy6gMmEsBf3uozi6B5GBFiICLMcd5y/bCxnULgxL7krsoR0w+0d48FE4tBuHJzNrfQ6frdrLraPaYxp8K4Yt06lZNQ3/Mfc2+/hCCCFOX0tTiwn2NZNkKXcfkESR8IITThQppYzA68CZQDawWik1R2u9bb9m5wIdG78GAW82/imOQIUlozIXg9a4Cra61wpGe3/p2T4X9Y7jq7XZLCmyckbsIEzbvoZxjzTrG9odeZXEhfgS7GvGsTsVE2CMaJ0zisBdp2jGqixcLo0hvB1q9w/gcoKhdVRdcro0xqOcMfDu4j089/0OHC7N4HZh3H9WZ0Z3iqJ67WcELPkeY10pJlsxproSTPVlTdc1JYfaTcAc34dgPx/a+5r/MGPo6oFtuXvX+VwSvg7/H++jvv1QLP4hnrzdk+LFn3ZSWlPPtOsH4Fh0F8oSjE/fq7wdljgFXTGgLVtzK3lncToBFjM3DE8iKjCQ8jorJQG3UdzzFpSCIKuZBD8zQVZT07+7MH8ftNbUNDipChpCWfwACnvfTfjWD4jc/BYdZ4+nIvEcCvrdS118D+JDfY95ll9mSQ2phdVMGhCHafEq7F0uxNwcD8RBuscFM7xDBC/+tBMfo4Hrh/WgLnYwPuveh1H3HPLn87H8LBRCCCEORWvNsrQShrQLx1Cz031QilkLL/DEjKKBQKrWeg+AUmoGcCGwf6LoQuAj7d53d4VSKkQpFaO1zvPA+Kc0Y3h7sNdCdSHOvC3gE4ghOMHbYTUZ0j6cqEALs9fnMLrbJVh/fhB77ibMcb2abcwd+VV0aeMuauwsdieKmgp/t0IdogKoszvJragjPrw9uOxQkQ2hid4O7ahU1tmptNlJCPX70yUmby5M4/kfdnBW12geOrcL7SMDqKitp+GHR4nbNJWGgDgaAuKpD+1ETUwEDmsYDt9w6qL64BPfl2A/H9pZTX86xtiUKEKDAnjZ7x6eLPorld8/juXSV5vjtpvNxqxyPl6RyXVDkugeUI3e/R0N/W/F6OPv7dDEKeqxCV3Jr7Dx0vxdvLtkD1cPassNw5Lp2FgXzGIyHPbfnVKKAIuJAIuJmGCobfClIOhv7Oh2HRGb3yViy3sEZf5ISfcbyBr9NAnh/seULJq/vRCAEcGFGBsqcSY177Kz/b12dR/u/3IjT3+3jRV7Sni2942Ez7uZui3f4dvzQsC9NLbSZqeyzk5dg4tgXzNRQRas5taR6BdCCNGyZJbUklNex62j2uGqyEcZrShL8+z0KcSf8USiKA7I2u/7bP44W+hQbeKAPySKlFJ/Af4C0LZtWw+E18qF7bcTVuE2nBFdMLSg5SdGg+L8XrF8vDyThnPPx3f+I9g3ftVsiaIGh4vUwmrGpkQBoEvScPpHt+o30R32K2gdv//z3RoSRVpj/e4O6oK6sKfvzSRGBGA2/rFG/uu/pvKfH3dyQa9Y/nt5L0xGA0WlZfjMuY3IjO8pSZlM1ZhnMJnNmI0GjAaF1WDAZFTEmI1HXePEbDRwxYC2/G9BPbf0mkLslg+o6H4JwV1GefrOm4XTpfnH7M1EBli476xO2BY9gwWNz9C/eDs0cQozGw28fW1/NmaV8/Zve3jntz28vySdC3vH8ZeR7Q7YbfBI/HxMJEeYqAm0kB/4ACXdbiB67X+I2PIepfZaMsf9h8SIgKNOFs3fVkDHqAAC85YD4NPu5CWKQvx8eOfa/ry3JJ3nvt/BxNxQvvdtA6vepiDpbCrr7NjqG9zL7rIXEV28kcq2Z5LW5QqCAwOICrTiY5I9Q4QQQhy9pWnFAAztEIFeVIAOiMbYgt77idOHJ36DOdQr9+DtTo6mjfug1m9rrftrrftHRkaecHCtXliy+8/SPRiLtkN0yyhkvb+LesfR4HTxfboDW9uRmLfPAu25HW/2l1ZUjcOlm3Y8M5Sl4wxpvbOJwD2jCBp3Pts/UdQaVBfgu/0LYlc+TdiCB0jNK6OuwXlAk1d/2c1/ftzJRb3dSSKjQZGXk4H/pxcQlPED+UOewHrhSyRFBRMf6kd0kJWIAAvBfmb8LX8+g+hQrhyQgAI+C7iOhoAErN/fg8NW48Gbbj4fL89gS04lj5/flUCjA/P6aTS0PxsVmuTt0MRpoFdCCK9P6svC+8dw9cC2fLcpl7Ne+o3rP1jF8rQS9DH8XPe3mGgfGUBCfCxlo5+lsPddhO38jKCf7yejuPqodkWrqLOzOqOUMxIU4etfoz66L4Sc3A+QlFLcNKIdX946BAdGXq8ahV/2ElyLXybyh1vo+klv2n93CZEbX8NSsYe4ZY/SacYIDKveYXdOEXkVdTg9uAOcEEKIU9vq9FKigyy0i/BHV+WjpT6R8BJPJIqygf3XQsUDucfRRhxKcAJaGXGlL8bQUImhBdUn2qd7XBAdogL4cFkGrm6XYK7Kwp65slnG2pG/b8cz9yfcxrI97oLfrVh4gIVQPzNpRdUQGIM2WnG2lp3PinYAUJlwBmE7ZxA/71rSc3KpqHPv0vDy/F389+ddTOwTxz8v6k5FnZ3snWsI//RcLOWp5J77PqFj78Hf6rmqI7EhvpzRJYrPNpRQfdaLWCrSaVjw3JEv9LLCShsv/rSLER0jOK9HDNWrPsZoK8M05DZvhyZOM23D/Xjqwu4sf3gs957ZiU3ZFVz1zgoufH0p327MxeF0HXVfgVYzHaIDcYz6OwV97iFs1wyCf/obGUWVR0wWLdpVhMPl4pqSVzE0VFNz7isnemvHrU/bUObdPYLc9ldg02ZiVj+Lb8FaKpLGkzn2TbZds4Gdly9hz7nTaQhMIHb543T6fAR6+VSyC0u8FrcQQojWJausjnaNM29VdSEqIMrbIYnTlCcSRauBjkqpZKWUD3AlMOegNnOAa5XbYKBC6hMdJZMPrqB4d4FjwNhCdjzbn1KKv43rxI78Kr5r6IvLaMG+8YtmGWtHXhU+JgNJ4f5gq8RYV4xqxYWs9+kQFeCeUWQw4ApNQpekeTuko+IqdCeKysf9l+yRLxCQt4J231xMbvoOnvp2Ky/P381ZXaO5bkgi+TtX4/jl38TOvAilneRNnEWbARc37VjmSZMGJVJcXc8K1ZOqjhOxrnsHGlr2rKJ/zt1OvdPFPy/sTn1pFr6L/kl9zACM7UZ6OzRxmgr19+HusR1Z+vAZPHNxd6psDu76bD1jXlzItKXp1DY4jrqv2FA/HKMeoaDvvYTt/pLQn//KnsJK7H+SdPplWwFXWFeTkP8zhf3uxS/OuzNqg/3M/HfKGXzZZxrj7c8zvOE1Fqc8jrnHxcTHxNKxTSD+KePIuOAr9oz/jPqgJGJXPEnMJ6OoKpVfeYQQQhxZfoWNmBArAKqmAALbeDkicbo64USR1toB3An8CGwHvtBab1VK3aqUurWx2TxgD5AKvAPcfqLjnk50aDKqrnEHqBY4owhgfI82DEoO47kFOVQnjsVnxxxwHv2biKO1La+STtEBmIyGpmSKMbyDx8c52ZoSRTQ+32XpXo7o6LgKtuOyhJCQkAh9JpF+7seYawtI+Pp8Ni37kTuS83jGdzopXwyn46xziVr/CrVRfSi66nviUgY12w5BIztFEhfiy/SVmVgGTcHgqMOx88dmGcsTFu8u4tuNudwxugOJYVZcs25Huexw0ZvNuoOgEEfDajYyaVAi8+8dxdRr+hEZYOHJb7cx9LkFvPjTToqq6o+qn7gQXxwjHyS/3wOEpn5N+M/3sDuvnCqb/Q9t7U4XG3fu4jHDe9RG9sEw/K4WUSBaKcUVE8bz6A2XYjUbue/LjXy3KZdAqwmr2Uh0kJWUmGACU8aSfdFXpJ/zCeaaPJw///OYlu4JIYQ4/ThdmvxKGzHBVnDUY7CVY5Adz4SXeKTKotZ6nta6k9a6vdb6mcZjU7XWUxv/rrXWdzSe76G1XuOJcU8XKty9tMoZEAu+oV6O5tCUUjx+flcq6ux85xqKqa6IhrRFHh/HveOZuz6RvWg3AMbIUyFRFEhZrZ2S6npUeHsMZRngOvrlHV5TtANXRCeUwUB8qB8BXc7gi14fUNpgYqblKR7Iu4/wHdOxhXUhe8R/2Dl5LbYrZxKb0P6Yt8k+FkaD4qqBCSxNLSE7sDcOvyicm2Y223gnwmZ38tjsLbSL8OfW0e2oWvIWftmLqR79FJbojt4OT4gmRoPinO5t+Pr2YXx16xAGJIXx2q+pDHt+AY98vcm9fPYI4kJ8cQy/l/wBDxGaNou2311JTvouCiptByRSlqUW8XfnW1ipp+TMl4kKDmjOWzsmPiYDQ9tH8N3dIzizazT/nreDmz5aQ1lNAwAGgyIy0ELn6EBCepxNWfcpBG//lLI0+dVHCCHE4RVV1eN0aWKCfaG6AAAlM4qEl8h2HK2AoTFR5IpM8XIkf65bbDBXDmzLv3Yl4DD549z4pUf7L66up6iqni5t3PWJ/p+9uw6P6toaOPzbI5mJu4cYDgGCuxaKFlqgXqTU3d1pe+u9vfWvToGWKi0tVIDi7pYQLMTdPZmZ8/0xA6UUCRCYBNb7POdJcnSdyYacWbP32tZ8x/As35gGvY4zHFnQWu8fi7JWQ1kjH6qgaejykyCwzeFVqYWVPLO6jod93yIz/j5SLvqQxOu2kj36C1x7TqFVTCyBnqZzEt4V3Zph0Cm+3piBtc0lGA8sgpqTv5E9l+qsNu7+egsHCyp5/tI4rLl78Fj2HBWRg/HqKzOdicarW7QfH0/uxqL7BzKhSwQ/bM5g6JvLuOOrzeSXn7iHUYSvG5Y+95I28E1cC3bR8sfh1G6aTXJe+eGhaBnLv+Ri/SayujxESPOO5+KWTpm3q5H3r+3C9HHtWbk3n1FvrzjcMxTsH6D4urtgGvoEVrMvpkWPU2exnuCMorGqrrOSnF/BhuSCEw6XFEKIM5FVUgVg71FUZk8UIcWshZNIoqgJUI5izSqk8c14drQHhrXC4OLKamMvXPbOB0v9hiTUR1J2GQBtQ+09imz5+7B4hIGLW4Ndw1laBdsTRZtSi5rOzGcV+eiqi9AF2RNFB/LKuenLjYT7uvL61CEU97gfre1YIkMDaRXsib+H6ZRnMDsTQV5mLm4fzHeb0qHdZeis1VgSF5yz65+Mzabx0Hfb+DMhh+fGtqdXtDfqp1uxGUzoL31XhpyJJqF5oAcvje/AqkeGcMegFixMyGHEW8tZlJBzwuMifN1Q8Vezd/wfVPu3pdmy+/FfcBMHUtLISk9mTMZ/2W1sh9fguzHqG++jilKKyb2j+fH2PtRZbdwycyPlNf8cdu3u7U9J70dxz15PycazU79PNKyv16dy++xNjHt3Jd1eWESbp35n8OtLufz/1nLNx2sprqx1dohCiPNQVkk1wD96FEmiSDhL4336En8LaouGQh/R1dmRnJS/h4l7h7bis5Ku6GtLqd39Z4OdOzHLPuPZoR5FuqIDWM+D3kRg/4PQK9aPWWtSsPg47qmxJ4ocM57pgtpQUF7D1M83oJTii+u7E+HrRttQT6ID3PFswBnNTtW1PaMorqzjt9JoLO4hWHf+6LRYjqRpGk/+vJOftmby0PDWTOkTTfmiV3HN3UrlsNcw+0U4O0QhTkmgp4kHh7fmlzv7Eehp5sYvN/LYj9upqDl+rboIXzdCo1qTesm3ZHV/DM/URcR+PxTzj1MxanWs7/g83u7mc3gXpy8u3Jt3ru7CwYJKHv5+27/qEXn2nkaVfxxeK6ZTUV7qpChFfXy9PpXHftzB9vQSPM1GLmoTxP3DWvHk6LZc3yeaTSlFXPXR2noNtRRCiFPxd6LIDOXZ9pUy9Ew4iSSKmgK/WIqmrUa1G+fsSOplUu8osvx7UYwnddu+b7Dz7s4uI9DThL+HiTqLFWNxMppv05/x7JAb+8WSWVLNb2l6NJ0RWyOf+UxzJIqqfFtxw4yN5JRW88mUbkT5uwOc1RpE9dU71p9ofzfeXXqA4uhRGJP/gmrnvknTNI3/LEjkq3Wp3D6oObcNbE7JgQ14rXuT8pbj8Op2pVPjE+JMtA7x5Kc7+nDrwObM2ZDGqLdXsCml6Lj7e7sZaRXqg7XP3ewfNw+ryQffwq28armSwX37nMPIz1zv5v48PLw1C3Zk8+nKf05I4OJipHLIi7hUZFK95A0pbN1Ird6fz1M/7WRAq0CWPjiIWTf25JWJHbmhXww9Y/wZ3yWCR0e0YV9uOdd/voG1+wuorpPhhEKIhpFVXIXZqMPHzYhWloOGArcAZ4clLlCSKGoiPMLaNJmhKEa9jscv6civlh4Y9/9OeVlJg5x3d3bp4d5EVbnJGGqKmsRwvPoa0iaImAB3PlmZgs0nCltB4+5RZM1JxObiyf0LctiWXsz/rupMl8jGVWxdp7MXWc8pqebObVHorDXU7PrVafFU11l5+bfdfLwimQnxwYyPriFl/a+Y5t2GxdUf49g3nRabEA3FZNDz6Mg2fHNzbyxWjcs/XM0bfyYdt7aLXqfsvYva9CB1wgIe83yRtQETaebX9IYV3zwglhHtQ3jpt92sO1Dwj22+bQdS0nwsvls/oDizcX8QcCFKzq/gtlmbiQ5w591rOmNwDHm02TTSi6owFe+jxY8jGFcyi+ljWpFXVsPdc7awbE9evWf+s9k0SqrqJLkkxBmwWG1U1Fgoqqglu6SalIKKE/ZebUqySqsJ83ZFKYWtLAfNLQD0BmeHJS5Q0vKaCBdD08rpDWwVyMsRo3HJXkzq0k8IHnb3GQ1Bslht7MkpZ2qfaACsySsA0EX3a4hwGwWdTjGtXwxP/bST4thmeDfyoWda7m7yXWP4bVcOj41sw4i4xtk1dkibYBY9MJCn5/qSccCftN8+xzN0NO3DvM/J9TVNo7TKQs6BLeQs/5zeWbuY5pFPUFIOarf9wcamM1J+2Uy8POVTI3H+6BHjx+/39ufZeQm889c+libl8d8r4w8X7z+ah8mAt6cn3+THcOfg0HMcbcNQSvHa5R0Z9+4q7vx6C/Pv6keQl334nE6n0IZOh0/+RLfoKSzXzT6cjBDOVVJVxw0zNqBT8OmUbngd8bySVVqNrTSb5r9PwVCVS/DmN7nM/w+ChzzP/cutPPz9dp4e046WwR5U1FhJK6okvbCStKIqskuqKa2uo6SqjtKqOspqLBzqTBbsaSLUx5VgLxNBnmYCPU0Mbh1IiLcrHiYDri56J70aQjRONpvGhj0p+Nbm4lKRgbE8E2NFFl7lGWi+ETD6eWeHeMayiqsI8XYMuS7LRpP6RMKJJFEkzpqrJlzB6nc+pdem58lwdcPW90a8XU8vWXSwoIJai+3v+kSpq7GYfDGGtGvIkJ1uQpdw3vgzia3lPgyuWgea1mh7kqn8JFZWdaBblC839Y91djgnFOxl5sPJ3dk7cwxdD8yi+7t/cvWADtw1pAVuLmfnv8GK6jqWJ2VQtGkucRnf09G6kyjNQKY5GpeIzuR5RVPrHU2NVxTG4DZENos8K3EI4UyeZiNvXNGJoW2DeHzuDka/vYLHR7Vlcu+ofwxPzSqp4vNVB/lqXSpKKUZ2aJqJIrDf84eTujLu3VXcPnszX9/c63BBbp/QGAq63IH/hjco3L0Ev/YXOTlaYbHauPOrzaQVVjLrhp6Hh08DlNdYKC4qIvaPqRiq8zkw5nuMFVmErXqCIcuv4Pu2tzFpTz8e+G7bP86pU/bag6HeZkK8zLQO9sTL1Yin2YBOKQrKa8gqrkKVpBBwcBcxNbtpo1I4sDKUqk7D8Gw7BM0zFHeTHh83l9N+dhLifLE+uZBff5jBE2UvYFJ/9x7SlB6b0R39vlLofzt4Nd2/HQDZJdX0bm7/0FArz5FC1sKpJFEkzproQE+WDvmYmsW3MXjlo2RZKtEG3IWPm8spnysxyz7jWZsQLyxWG64Za6gK64mn7vz6NNbNxcC1PSNZsdyLi4yVUJEHHkHODuvfKgowVOWzxxrOyxM6nNPZzE6XUooWgyejOzCDR6L389hSNz5dmUy3KF/6tgigX4sA4sK90Z/mvZRW17E5pYg1+wvYvy+Jznk/cYXuLwJVCdkqiPlBt2CLv5Zu7VqBUY+bQYe3XuGi1zWKek5CnE0jO4TSNcqXh3/YzjPzdrEoMYfXL+9EUWUtHy0/wLytmWjA6A6h3Dwg9vDslk1Vq2BPXpnYkbu/3sJLC3bz9CV/f6hhHngftYnf4PrXU9jaDEKnl54jzjT91wRW7M3n1Ykd6Rnrf3i91aaRnl9C5OLbMBcmknLxp1QFdqIqsBMVIT0JW/MMLRPeYaHPImbGPkylf3uCvcy0D/OkQ4TPv2brq66zkl5UiWnXd/gUzMM1byuGGnv9LpvJRJFHC+JK1uK1dTFshRqvaCpCe1ESMRBdtwl4uprO5csiRKNwIK+cV37fzZJd6Sw2f0imCuZz49Vce3FvbF4RWFyDcCtOoPmPo7EeWI4+vunWebTaNHLKauyFrAFdeQ5a8Pn1gbhoWiRRJM6qqYPa81DOG1TtfJxRa6eTU1tO4ZBH8fM4tQee3dmlGHSK5kHuVOal4FWeRkWXm85S1M41uXc0j69wDOMqPNAoE0UbN66hG9C2Yw9aBHk6O5x600V0xeLVjPGmDbS67WYW7Mhm1b58Xvsjidf+SMLLbKB3c386R/rSOtiT5oEemIw6qmrqsFUW4uIZgJvJiALSiipJyi5jR0YJG5ILScouoa9uJ9fpF/GwfjNKr5Ee0I+98dfjHTeCiz1dG/U030KcbUFeZj6f2p1Z61J5cX4Cg15bSlWdFVejnut6RXFDv5gmWZfoeMZ2CmNzShGfrUpmaLsg+jg+JXb38KSg10P4L7qHku2/4N35UucGegH7YlUyX65J4ZYBsVzRrdk/tmUVVxK07HE805eS3u9lypoNObzNavYlbfDblMSMJmzV49y672bSIv5HabMxABRV1B4ecgiQW1ZNbmkNfjs+IWztdGq8YymNupjKoHiqAuOp9m2F0cWF4rJqfvrzD9wz1zKiZh+dD8zHL2kOeQU7MI5+AbNRkoriwlBYUcvbi/cya20KJoOOD1uup1laNst7fcSXSz1oVh3L9V2i0esUKqI31vk+WPcva9KJotyyaqw2jVAfM9hsqMo8lEfjLOsgLgySKBJn3X8mduWq/KeoznmN8ZvfJK+ugtyhzxHoZa53T4rdWWX2N+0GPZXnYX2iIwV7mWneuiPsh8rsvbhF9nJ2SP9QVl3HXyuW0w0YOWSQs8M5NUphbXspLhs+oGsgdB1j/6Qmv7yG1fsLWL4nj9X78lm3ax/xun101u2jp/EAHdiHu1ZBkc6PrbRiTU0sm2wt2anF4Gu0cLPXWsZ6/U5AbTp1Jj8K2txKTafJeIe2wMtskB5DQjgopZjUK4o+zf15Z/FeWgR5cF2vqNPqadoUPDqyDYsSc3huXgLz7+53uCaRZ49rqF33Bi6rXkfrNBZ1nvWObQrmbknn2V8SuLhdMA+PaHN4vc2mkVdeg3HVG/jtmUNu/N0UtbkGVxc9zfxcKaqoI7+8Bk2D0ujhVIT0IGrhDUQuuZMMSyVFra4gp7QGDfBxM5JeVEVljRW/hJmErZ1OSfRI0i56D7PJBTcXA0EuBtxMeox6HbYgT9pNu5IvVvfimr/24mfWMzvyO1psfZ9szwgCBt0mda3EeS+loILL3l9NcWUtV3aP5I5unoTOnEZ59MX0H34F/dLX8+5f+5jYJQJfdxdQeqyRfdGlrHB26Gckq6QawN6jqKoQZbOAlySKhPNIokicdUa9jo+m9GTM/+7GYnHjih3/R0FdOXsHvUSoj1u9ilzvzi6jW7R9Ri1dyiqsLl6Ywjuc7dCdZtzAnlj26UjYtYVuPSY5O5x/ePX3JJpXH8RidsPFr+nV1XHpOAG17h3qdv2CsfsUAPzcXOgR5Uun8lW8kPka5pokAGzoSDNE84e1L0l1/nRxySBe7WGwca19uzKCToeuooaK4G6kt38Yfftx+Hl7YjLIJ79CHE/zQA/euqqzs8M468xGPU+NacctMzcxc20K1/eNAcDFxYXinvfgs+gBSnf+jlfHUU6O9MLy565sHvxuO32a+/P21Z0PDzkurKglp6QKz4TZRGx6g6KWE8jp+gB+Hi6Eeds/3Arx1uNpNpBeVEWtxYbV7EvyiFlELbqZiOUPoquroKD99eSW1pBXZk8o+SZ9Q/jqJyiNHErxqA9oF+BzzCHbOp3Cy9WFuy9qyeDWQdzx1WZG7h3Lt96pxK94kizPMEK6XdokhnsLcTqq66zc8dVmLFYbv97Vn3ZhXpTOuRllrUU/4gWUUjw5pi2j/reC/y3ey7Nj7bMfq9j+GPbOh6IU8I1y8l2cnqziQ4kiVyhPs69shKMKxIVDEkXinPD3MPHx1B5M+KAOPDy4YvdsdHWVHBz4Ol7uroR6ux53ZreSqjoyiqu4LiQKi9WGOXMtlaE98DSdn59AA7SPDCTbEERhmn1K6cYyZGnDwUJmrk1hcUA+eLRutIW2T0SFxVPnHY1t54/QfQolVXXkp+wiaOUzhKQvpdqnJVndH6UqqAuWkE64eXgxxGRghF5HrdVGZa2V5OIsdBkbccvZhLLVUdHuSjwi4wlzc5EHeCHEP1zcLpj+LQN4c+EeLukURoBj6LV7j+uoXfsmxlWvo8WNkF5F58iqffnc+dUWOoR789HkbpiNesprLGQVV6HlJhKx9nk8M5ZTFt6fzP6vEOHnZu+1cAR3k4GWQR5kllRRVFGHZnQj5eJPafbXXYSteQZdXQV5ne5AQ+Gzby7hKx6mLGIgWcM/pMVxkkRH6xDhza939+O9Jfu4ee3tfKo9S6sFt7C42MRFQ0fK3xpxXnpxfiI7M0r5eHI3e5Jo/3q8dn9DaZfb8QppDdjrlV7TM5KZa1O4rlckLYI8MTYfBIBl/3IM3RrXB6z1lVVSBUCYtytkZttXytAz4USSKBLnTFy4N69O7MQ9czRM4T6M2/8JOksFaUPeo6zaQqCniUAP078efpKyHYWsQz2pLEjHq/QglR2mOOMWzimdf3OCszNZsCOLcfHhzg6H6jorj/6wnQhfV6Js6RA42NkhnR6lsLW7FJe175B+YDcu22YQs+NjNL2ZzF5PU9flBrzc3fA3Gf6VvHQDfNwAn1hskTFU1Y0HIMAk/5UKIY5NKcWzY9sz4q3lvPr7bl6d2AkAo4uZ4u534rPkMcqT/sKj7VAnR3r+25xaxE1fbiQ20J0vru+OTsHB/Aoqi3II3vwmfrtnYzN6kNnzaUo7TiE20Pe409TrdIoIXze8XOvIKKrCgonUi94nYvkDhGx8FV1tGVUBHYhYdh8Vob1JHfYx0QG+pzRhgpfZyGMj23Ln4BbMXhyE/4YpxK+6hWu3vs6o/j3pFetP80APSRqJ88Iv2zKZuTaFm/rHMKxdMFarDcOfj2FxDcB80SP/2Pe+oa34eWsmz/+ayIxpPSCwDVbXAKwHljXhRFE1rkY9Xq4GKM+xr5QeRcKJ5N2NOKfGxYeTkFnKPcvBP86PfvteRffnNFKGfkxuKdg0zd7l8gi7s0sBaBvihTVxEQAqpu85j/1c84tojWvuFp5acYCxncKcXufmg6X72Z9XwVfXtcbwfQ62JjwTg0vH8ag1bxE2ewA6aw1FLSdS1OdxgsKi8Khn0kenU7hLgkgIUQ/NAz2Y1jeG/1t+gKt7RNI50j6U2r3XVOrW/RfditdAEkVnVWJWKVM/W0+gh4n3rulCfnkt1VWV+O+aQbOtb9uHjLWdTG6X+/D0C6KFt7le9YC8zEbMgXoOFlRQU2cgfeB/sRncCdr+AQAVwd05ePFnBPl6n/bfDE+zkVtH9yG95Xd4fnsJr1Q9x9ifn6YYT7xdjXSJ9KFbtB9dIn1pE2JfJ8kj0ZQk51fw2I876BLpc7hmWOmGOfjmbKR42Jv4uPv8Y39/DxP3XNSSF+YnsiQpl8Gtg7BE9UefsgI0rUn2eM8uqSbUx1G/9VCiyFN6FAnnkXc54px7aHhrVuzN596DPfimzyvErnmMmN+v4+DwLygo98LP3eUf9V0Ss8rwcTMS7GWiNHUVVqMH5mbxzruBc0Qf0BxPKknNyGBjShHdo/2cGs8v2zPp3zKAPl4FAOiC2pzkiMZLhXSkJqQLtrpasvo+h1er/sS4uzg9GSeEOH/ddVFL5m7J4Jl5u/jp9r7odAqjyY2Sbnfivfxpyvcsx6PVAGeHeV5KLahk0qfrMBv1PDeuPTWl+fjtnk1UwgyMlTmUNhtCdo8n0AW3Jsrb9ZQTOi4GHbEB7qQUVlJZA5l9X8TiGoBrwS7SBr2Fq4cngZ5nPr19eMtOZI+dQcRPV7I86A02+o9joSWe1XkVLEnKO7yfQafw93AhwMN0+GvXKF+Gtg3G29VeF1Ip0CslxbGF01XXWbl99mYMesW713TBqNdRVV6Kx4rpVAV0wLPX1GMeN7l3NLPXpfLCrwn0axGALrY/ht1zoWAfBLQ8tzfRADJLquyFrAFbWTa4eKBzcXdyVOJCJokicc4Z9Dr+M74Dl72/incKe3Lf4HdptvQeYudfRfLIWeSUGIn0t0+RnFFcxe87s+gU4YNNA1PGWipDeuBpOvMHrsZO+TcHIM5cwOerkp2aKKqstZCcX8ElHcPQclejAAJbOy2eM6YUtVP+oLTGSqSnSR6UhRBnnYfJwOOj2nLvN1v5dmMaV/WwTwbg1ucGLBveRrfidZBEUYOzWG3c9fVmqutsvDfcg7gtz+G793t01mrKwvqRPuANqqMGEuJl/lctolNh0OuI8XcnraiS0ioLuV3vB0CvUzTzdWuQDyKUUgTHDSa76v/wX/08Q5JfYwhQ7duK/C6D2eraiz2WIKoryqiuKqSuqpzavHJqUyv4a2sdS+bpiA70pF2YD21CvTG7eeDWvA9BXq7SA0k4zXO/JJCYVcrnU7sT5uNKndVGxZI3CajIouKS/8NVf+zhny4GHU+MasuNX25k1toUrm8zCIC6fcswNsFEUVZxNf1aBgCgleWAuww7E84liSLhFPHNfJjcK4ov16YwsPVAtGEfE7noFmLmX8X+S3+h0tMFvU5x+6xN1Fk1nrmkHRWFmXiV7KOq/ZXODv/c8IsF4Irmtdy7M5v0okoifN2cEkpSdhmaBu3CvLCmJKIzuKLzbnoznh3J09UFT9eT7yeEEA1lXHwYs9el8OofSYyMC8XbzYjR7EFpt9vwWvE8lcnrcIvp6ewwzyvv/rWP4owkfg39geg/V2HTmyhufhn5cdOo9W9DgIeJSE/TKdUOOh6dThHp50ZGsb3INUC47/En6zjdawR1u5S05sOpy92LR+pivFIXE574KRHa/x3/wEM5sGLHkmD/scinAymD/4Nvy174uJ2/k4SIxunnrRl8vT6VWwc2Z3CbIKw2jaxdK4nY+j6lLcbh3frEyfOL2gbRv2UAby/ey+ReQ9E8wrAdWAa9bjxHd9AwLFYbuWXVh3sUUZYjhayF00miSDjNA8Nb89vObP5v2QFeHj8YhrxH9MIb8UucRZbbzXy2Mplt6SV8eF0XYgM9KNowHwAV08/JkZ8jPlFoKAb4l6GUYuaaFB4b1dYpoSRk2etEtQv1QtuQhM2/JTqZoUcIIU7JocLWl7yzkpd/381/LotDKYVrn5uxrH8Xbdmr2KK+l94dDWRTSiG/LFnJXLcX8aqwkNPlfgraXofyCMTfwwU/N5cG71GqlL3ItVFfjcWmHR7q1ZAMeh0xAe5Y/TpRHt2eourbSC8txDVtOcbKPGxGN2wGV2wGN8fiiqbToTQNzWYlvbCCHelFFKTs4o6ir4maO5aClldwsP+ThISGYzYeuweHEA1p+Z48Hvp+O92jfXnw4lbYbBoZ+7cTtmAKFrcgGPHSSXviKaWY0CWCFXvzScwuo2VUPwz7F4HNBk3oOTW3rAabxt91WsuzIaSjc4MSFzxJFAmn8TIbeXZse26fvZklSbkMbXsxZeH9CdryNh8zkNnrsrllQCwj4kIBUCmrsBrcMDfr4uTIzxGjGZtnOB6VqYxoP4av16dyx+DmWG1QWl2Ht6vxnH36l5BZiqfZQISvK7b8JGzRF0iyTgghGlj7MG+m9Y3hk5XJeJoNPDayDUZXL8q63oLn6pfZv3MV5siu+Lm5HHfGLXFyRRW1vD7nd2a7vICnQePA6O/QhbQj1N2Ej5vxrNekC/Yyn9Xzg31Ym7ebEW83I/i5URl2BXUWDZ0OdErZF8f3h+5WA6KBfkBhRS2v/TyalkkfMG3v93gl/0ZBz4fRdZtGsE/DDJcT4lhW78vnpi830jzQg48mdUOvU2SkJRPy87WAImfcHJoF1G/G3x4x9tIMGw4W0iZ2EPpd36LlJqBC4s7iHTSsrJJqAEJ97P9vqIpc8JIeRcK5mk6qVZyXRsaFMKRNEB+vOEB5TR3Z3R9DX1OMftVbdIzw5sGLWwFgtWmYM9ZSFdINs/nsP3w1FppfDFrBAS7rEk5ptYUPlx0gvaiKyoIMCtL3oWnaOYkjIauUdqFeqJoy9OWZ6IOc07NJCCHOB4+PasukXlF8tPwAj8/dYf8b1/dWLCZvYuZNxHXBvWTsXMm+nFIKK2qx2c7N//Xni4oaC+/PXczrlU/iY7SQMvorQlp1oUWQJ77n8cQFbi4GvN2MeJqNuJsMuLroMRn0GPU6DI7FeMQS7GXmtUn9aTXpLa43v8XGmmaErXoS9y+Hkpqwnqpaq7NvSZyH1h4o4IYZG4n2d2fWDT3wdXchMycH/5+uRV9dQOboLwmLbV/v84X5uBLh68r65EIMze1D1er2LTtb4Z8VWSVVAPahZ7UV6GrL0XkEOzkqcaGTRJFwKqUUz41tj03T+HRlMkXebfldN4Ap+t94oq8nJdUWACqLczAXJVEX0cfJEZ9jfrGoomSCPEwM9C/BY+N7xP48jrZfdSf6u2GU5GWe9RCsNo3dWWW0C/OC/D1A057xTAghnE2nU0wf1547Bjfn6/Vp3DNnC5rJm6Irfqa4+Ti8D8yjxbyxhH8znKpV/8ee1AxKquqcHXaTUFlr4a+1G5iy90589LWkXzKH0Nbd8TI3/BCw88Wg1kF88sC1LO/1CXdb7qa6MIPw70Yy/917eeXXHfyxK5vUgkpJWIoztuFgIdO+2EC4ryuzb+qJv4eJnMJivH+eirloDxnDPyK0XZ9TrhnWI9qP9cmFaN4R1HnHoCU3rURR9qEeRd6uUJ5jX+kpPYqEc8nQM+F0zfzcuG9oK176bTfJ+RXUVk/gYvMaWiW8TVbwf/F1c6EueZV95+i+zg32HNP5N0dXXUirHy5iRsU+APKr21HR6Q4Ct3+Itvx1tAlvntVPRw8WVFBVZ6VtqBfkbravbMozngkhRCOglOKh4W3wMht56bfdVNRYePuqzpSOfIuc4qfw2vszfru/Inz1k9jWv0h214eo6HUboT6u522PmIaQm7aPrksm46GqSB71NVGtup/ydPcXIpNRz2Oj27Gn68N8vHI4A/e9ysTSL9m+fgUPrLqNvVoE3q5Gukf7Et/Ml7hwLyL93LBWlWIwe+DlZsLTbGzQwt3i/LI5tYipn60nxMvMVzf2xNfNhYzCcjx+uQ2PrDWkD3mboPhRGE+jbliPGD9+3JLBgfwKIqL6Ydj9M9isoGsaw3czi6txc9HjZTZAriNRJD2KhJPJX07RKEzrF8PcLRnszi7j9kE9Kay4noAdH5EfdyN57p0xp6zCpjdjjuru7FDPKV1kL2x6Exa3INJaX8fN64NwdY3hue7tMdQU4pMwk5I+d+AT1uKsxZCQ+Xcha8uORPR6E8o3+qxdTwghLiS3DGyOl6uRx+fu4IYvN/LplG6ERoZTHHgTGZ2moGVuIXjzW4Stm05p1hqSh75JeFg4JkPTeAN0TtWU4z7nMkxaOWv6fkbvuD54Sk+iU9IqxJPHJ/ajuLIHaZt/oO2Kx/nd8ASrIm7mZ91QatNXUbZnN+W6Axh0B4lVOVTovckNGUBJyxFoLYbg4eWHl9l4xjW2LFZbgxcbF86xKaWQqZ9tIMDTxFc39cLsomdfRjaBy5/CO3kBWb2exq/XtaddSP1QnaL1yYVENR+IfvtMbJnb0EU0jbqm2aVVhHqb7R8ClEuiSDQOkigSjYJRr+PD67qyLrmA4e1DyMi6E9893xCy/j+kBMyiecZaKoO74H4B1ScCILInybfsp7LWhlLQ25LOZ6sOYjQobAMehr0/opa+hHb1J2ftE+bErFIMOkXLYA+0xUlY/VpgaCKf0AghRFNwdY9IPEwG7vtmKxM+WM3/TepGTIA7fu4uVPv2IT+yC+XrPyJk/YuYvx1B+kXv4de6r0xnfpSDW5cQXZfJp81eZGK/oTLc7Az4uLng3vtKsqP64LX4EQYcfI8BvGffaIRScxj7DG34s+Yi/KpTGZy+BN+MX6hbauCgRzwHw4dQFDkcnU8EHiYDpmMlADSNGouNGosVbzcX/N1dsFRXQkU2qiwHfVUBxshuhETEykyATVSd1ca7f+3j3SX7CPdxZea0HtRZbRRs+Z2YVU/gUp5Obud7cB90N24up/+2NCbAnQAPFzYkF3L16IH2a+9bgqmJJIoyi6uPmPFMhp6JxkESRaLRiA5wJzrAHYACLz9y4+8mbN10vPb/grkggeIeD1yQ3e393E0EeCg8zAZuH9yCWWtTmb02lenj2lMUdz2+2/6P0pS78I6OPyvXT8gqpUWQByaDHmt+ElpEz7NyHSGEuJBd0ikMP3cX7vxqM2PfXclbV8ZzUdtgzEY9EX7ulA66k4MhXYlYdDsx8yaS3eMxSrvfRqCXWWZHc0jcto5oYPjIsfaZwMQZMep1NGsWRfHlM0jb9jPGon1U+XegLqQjJs8AIlz0tDDqyS2tZv6+XAp3ryQ4ewldStfTs/xVSHqVzbYWzLf25DdrTzIJ+PvcWIhTyXTTJdFNtwdvlUGAvgR3rfIfMVhdvMga+g4BXS6RXnRNzL7ccu7/divb00sY3yWc+4a2orIwi+DVz+JzYB7VPi3YP+Z7/NoOPOOkrlKKHjF+rEsuBI946vxaQfIKGPRAA93N2ZVVUsWAloEA2EqzUDoDytXPyVGJC50kikSjFOJlJrndJAJ2fU748odQaBdcfaJDfN3//sQ4wMPE2Pgwvt+UzoMXt8Yw4AFsiV+hW/I82tTvz0oiLSGzlH4tA6CmHH1pGtagyQ1+DSGEENC3RQDz7uzHrbM2ccOMjdw3tBV3DWmBTqfwMhsxx/Uj3f8P/Bc/QOi65ynNXEVazycxBLcm0NN0QQ+zqrFYqcrcSYnel4jwSGeHc17xcTfh0XMiVXVWAoz6fw0H8zIbaRHkia1XLGU115BdUsX8xK2EZvxJVM6fPFU2m6eMs8nz7kCedyf8ShMJKN2JwVYDQKlrM1JcWvNLmRsptV6UGnwJCY8mPjaUbomvEL5gCnmZd+Iy9Cm8PS6wnuVNkM2mMWPNQV7+bTduLno+uLYL8c28sW6aRfP1L6CrqyKny/2UdL2DUH/vBvt/q0e0Hwt2ZJNRXIV/VH9cdnwFllowNO6el3VWG7llNYT62HsUWcty0LsFonQy7FI4lySKRKPkbjLg6eFOdveHiVxyFza9CVN0D2eH1Shc3zea7zel883GVG4e0JyCLrfjv/ZlSvesxKt1/wa9Vl5ZDbllNbQL9YL8JAD0wW0b9BpCCCH+1szPjR9u68Pjc3fw30V72JFRwptXdsLLUSg4JiKMrHGfUbH+I0LWv0TL7y+iNHoEOZ1uJzusMwEeJnzcjBdcD9xFCbnE2lKpk8kWzgqDXofnSeoF6XQKb1cj3q5GWocMoKKmDyVVT7Avew8e+37FO3k+AWlzqApoT3G7SVQEd8MS0QOzbxhhBh0ROsWW1CLmbs7gu4Qcag/YiPR6iufcZzB467vkpm8gfdzHhEdEXnDtu6nILK7ioe+3sWpfAUPaBPHSZR2oKS/E/Ydr8Ur7i4qQHmT2ewmvyDhaepoa9PfY3VGnaENyIaObD0K35VOs6ZvQR/dusGucDbllNWgahHo7kqBFB7F5N5OpyYXTSaJINFrBXmb2Nb+Eil1fYDN54eHq7uyQGoX2Yd70jPFjxuoUpvaJwbXf7dRt+xTDkufQWv7ZoJ9AJGb9XciavLX2lYFtGuz8Qggh/s1s1PPG5Z3oGO7NC/MTGffuKl6/vBNdo3xRShHm60ZJ/zvY02Isfjs+xz/hC7wP/kZ5WF9yO91BbmR/gr3NF1QNo+83pvCeLgND5EXODkU4uJsM9hnnfDpREdOeoqr7qaqtw9XFiLvJQLjLv3snDWkTzJA2wZRU1vHL9kzWHCjgsYM30b+uGc/nfU7JJwN51Odxxo+bQLswL9xcDKc8lbpoeJqm8dPWDJ7+eRdWm8ZL4zswvnM42Xs3E/L7jRjLM8js/Rw1XW4g0tftrAwjbBPihafZwLrkQi4d0Q8NhWX/0kafKMouqQL+ThTpCvagtRzhzJCEACRRJBoxs1GPj7uJ5FFf42E24CmfHh1226DmTP18A99tSuPanlEU9nwAv6WPUrbrNzw7jG6w6yQ4EkVtQ72wrExEr3dB+cY02PmFEEIcm1KKqX1jaBfmzV1fb2bCB6sZ1SGER0a0IcrfHW83I27R0eQHPE5Sp1vwTZxNwI6Pif3tGiqDupDV/THyo3oT4u2Kx3k+PXxOaTX79u7GzVSNLbS9s8MRx3A4aYRrvfb3djNyXa8orusVBUBqQS9+Xz+Evpvv54XiR9n11Uwq4wZSENwVa1hXTF4B+LubpF6XExRW1PLkTztYsCObblG+vHlFPAGeLuSt/5aIJfdjM7pzcMwc/NoMIOwsJq/1OkW3KF/WJxeAWwfqAtujDq4AHjtr12wImcXVAPZi1pWF6CvzsUrPSNEISK820agFe5nBaMbNTXoTHWlgq0C6RPrw7l/7qLFY8eg9jRqvKIxLn0ezWRvsOolZpYR5m/F1d8GWk4jVtznoz+83HEII0Zj0iPHjrwcGce/QlizZncfQN5fx/K8JFFfWYtTrCPV2pVVkGKrvPey5ahUZfV/EWJ5J8/mXE/TrVDL3bOFgfgXVdQ33t6Gx+XFzBi1VGgC6IBkefT6K9Hfn0pEj0W5exrbwq9DXlhK49X2i/5hK8887EDCjP7ULHgNrnbNDvaD8tTuH4W8tZ2FCDo+MaMM3t/TGy6SomP8UEQtvpdqvLelX/E5ExyHnpIdjjxh/9udVkF9eg9asJ4bsLWC1nPXrnonsEkeiyMcMeY4yD0HSe184nySKRKNm1OsI9DQ5PoUShyileODi1mSVVDNnfRouJhPV/R7FXJBI2YavG+w6CZmltAvzAk1Dn7UZLaRjg51bCCFE/bibDNw7tBXLHhrEhC4RfL4qmQGvLuGj5fupqLFg0OsI8TbTOiIQQ88b2XvVMrK7P4J71jpa/ngxXgvvJ/nAPlIKKqioadxvmk6Vpml8tymNIX4F9hXyBuu8FhQYRKtJ/+OxwHfpwxckXPwV2d0eps4tBO+t/4d19+/ODvGCUFZdx2M/7mDaFxvxd3fh5zv6Mal3FGmpB9B/fQWB296noM21lF05l+jo5rgYzs1bzh6OOkUbDxaij+qFrq4SchPOybVPV2ZJFe4uejxNBmyORBGBrZwblBCcYaJIKeWnlFqolNrr+Op7jH2aKaWWKKUSlVK7lFL3nMk1xYUnwMOEm3Ql/pc+zf3pEePHe0v2UV1nxbPrlVT7t8e84iUsNZUnP8FJVNdZ2Z9Xbq9PVHgAfVUBuqheDRC5EEKI0xHkZeblCR1ZcE9/Okf68p8Fu+nz8l+89sduckurMeh1BHuZaRUehK3vfey5agUF7a/HZ+8PtP52AG5LnyXtQBL7cssoqqhF0zRn39IZ25JWzIG8Cnp75mL1CAOzt7NDEmeZl6uRl8d3JLdGz5zcKDyHPULVFXOwmP2wbP/O2eGd9/7Ylc2wN5czZ0MqtwyIZc7NvXDVKqn4fTqRs/rinrWWzAGvYrz0f4T4e5/TwuMdwr0xG3WsTy7CENkTgLqDa8/Z9U9Hdkk1oT6uKKWw5e7GZjCDt8zcKJzvTNO7jwKLNU1rCSx2/Hw0C/CApmltgV7AHUqpdmd4XXEB0euUzG5xDEop7h/WityyGmatTUGn11N70XRcytOpXP7uGZ8/KbsMmwbtwrywpqwDQB8piSIhhHC2NiFezJjWgx9u603vWH/eX7qffq8s4aHvtpGUXYZBryPMx5XYqEgqB7/Anol/URI9koCdn9L6234ELriJwsSl7M4qJbesukknjL7bmI6rUU+zuoPYAmXY2YUiLtyb63pFMWtdCgcLKgjy8cTa9lKM+/+AmjJnh3deyimt5taZm7hl5iZ83Ix8c3Mvru4aSsXKD2k2sw/BW/5HaeRQ0q5ZQuDAm/BqoGnvT4WLQUfnZr6sP1gAPpFY3YOxpa4753GcisyS6sOFrLW8JKy+LaABJ6YR4nSdaSscB8xwfD8DuPToHTRNy9I0bbPj+zIgEQg/w+sKIYBesf70beHPh8v2U1lrwavdUCqih+G+/n/UlGSf0bkTDs945o01dQ02Fy+Z8UwIIRqRrlF+fDipK0seGMSV3Zvxy/ZMhr+1nCmfrWfl3nxc9Doi/d2IbNGOohHvknTlKvI63op71hqa/3o50T+MombDLFJyS7DZml6yqKrWyq/bMhkVF4ixaB8qWBJFF5IHhrXG182Fp3/ehc2mYex0OTpLNZaEX50d2nnFZtOYtTaFoW8sY0lSLg+PaM23t/QmJHMRobMHEb76Kap9WpJ82Ty0CZ8R1SIOo955iY4eMX4kZJZSVmPBEtYNfeYGp8VSH1nFVUfMeLZXhp2JRuNM/xUHa5qWBfaEEBB0op2VUtFAZ6Bxp3aFaELuH9aK/PJavlyTYl9x8fPoLNXULnzxjM6bkFmKh8lAhK8rKm09lrBu8gmHEEI0QtEB7jx/aRxrHr2IB4a1YldmKdd9uo5Rb69k7pZ0jHodsYEeNItpSfWAp0i6Zh3p/V5CWWtotvwBAn6+moMZGdRZbc6+lVPyZ0I2ZTUWrm1lQ1lr0Eui6ILi7Wbk0ZFt2JRSxA+b09FF9sLiEYZ1+/fODu28kVtazdUfr+XJn3bSIcKbP+4dwPW9o6le9CKRC29G0xlIufgzKq7+iagOA/B1P/sFq0+mR4wfNg02pRShi+yJoSQFynOdHdYx1Vlt5JXX2Gc8q61AX5qGkg9lRSNx0nd9SqlFSqmdx1jGncqFlFIewA/AvZqmlZ5gv5uVUhuVUhvz8vJO5RJCXJC6RvkxsFUg/7dsP+U1FtzD2lLWYTIeu2ZRmb7ztM+bkFVK21BPdDUlGAqSUI6x3kIIIRonX3cX7rqoJSsfGcwrEzpQZ7Vx3zfb6P/KEj5cth+rphHp70bL8CAM3adx4PLFpA94Hfes9YT9eBkpB5Ka1Oxo321MJ8LXlXhTFgAqSCobXGgmdImgS6QPL/+2m5IaK9b2E3BJWQoVBc4OrcnblFLImHdWsj29hFcmdGD2jT0J9jRR/tvTBG36L0UtJ5J77V+E9riMYG9XdLrGUSaic6QPBp1ifXIhBkdtTWsjHX6WU1qNpmHvUZS/FwBDUGsnRyWE3UkTRZqmDdU0Le4Yy89AjlIqFMDx9ZjpWqWUEXuSaLamaT+e5HofaZrWTdO0boGBgad+R0JcgO4b1oqiyjq+WJUMgGno49iMHmh/Pnla57PZNHZnldoLWadvRKFhjJb6REII0RSYjXqu7B7Jn/cO4POp3YkNdOfl33Zz8ZvLWbUvHxeDfZa0NqFeuPaYzMGRX2IszyJq7lgyEtdSVt34pxjPKK5i1f58JnaNQMtJtK8MlDdYFxqdTjF9XBxFlbW8+WcSLvGXo2wW6nbMdXZoTZamacxcc5CrPlqLq4ueuXf04crukVTXWqn85WECt75HYZtr0V32PpGBXudsRrP6cnMx0CHCm/XJhaiweDSdC5aUxlnQOrukGoBQH1fI32NfKf+PiUbiTP9lzwOmOL6fAvx89A7KXoX4UyBR07Q3z/B6QohjiG/mw9C2QXy0/ACl1XWYvAKp6P0A7qlLKN/52ymfL7WwkopaK+3CvLCkrEFTOgjvdhYiF0IIcbbodIrBbYL46qZe/HBbH9xc9Fz7yTpenJ9AjcWKTqfw9zARHD+cg+N+RFMGon+5nIKt8ykor3F2+Cf046Z0NM3eo8SWm4DVOwpc3J0dlnCCQ4WtZ65NIcPUgjq/lmg7ZPjZ6aius/Lgd9t56udd9G8ZyLw7+9EmxIuqmjqqfr4X/52fkh83DZdL/4e3m8nZ4R5Xj2g/tqeXUK0ZqAvuiEpb7+yQjinzUKLI24wlZzea0oNfcydHJYTdmSaKXgaGKaX2AsMcP6OUClNKLXDs0xeYBAxRSm11LKPO8LpCiKPcO7QVpdUWPll+AAD3frdR4xWNcfHT2Cyn9unwkYWsbanrsAS2B5NHg8cshBDi3Oga5cuvd/fjul6RfLwimXHvriIp2z47lJuLgfDWXUkdP49ar2ii/phG1drPSC2oxNoIi1xrmsb3m9PpHetPMz83VO5ubFLX44I2uXcUNg2W7y3A1n4iLhlroCTd2WE1KSkFFUz4YDU/bknnvqGt+GRyN7xdjZRUVFP94x34Jcwkv9OtuF3yKh5OmNHsVPSI8aPWamNrWjFaRHcMOdvAUuvssP4lu6QKsCeKtLwkrD7RYHB+nSch4AwTRZqmFWiadpGmaS0dXwsd6zM1TRvl+H6lpmlK07SOmqbFO5YFJz6zEOJUxYV7c0mnMD5cdoA9OWXojSZqBz+DqWgP5Ws/P6VzJWSWotcpWgaaMWRtQovocZaiFkIIca64uRh44dIOfDqlG3llNVzy7ko+W5mMzaZhNuqJim5O5mU/UB7en4iVj+K+6GH2Z+ZTVdu46hZtSy8hpaCSy7qEg6UWfdE+dFKf6ILWPNCDUG8zK/flYYq/HICabdKrqD4yi6t4fO4Ohr65jNTCSj6d0o17hrakrMbCwf274dsp+CZ9Q17X+/AY/SJupsadJALoFuWHUrDBUadIZ62B7O3ODutfMour8TQZ8DQbUfl70AJkxjPReDSuQaVCiDPyzCXt8DAbePC7bVisNjw6XUplaE/cVr5MeWlhvc+TkFVKi0APzIW70dVVYojufRajFkIIcS5d1DaY3+8dQP8WAUz/NYEpn68np7Qao15HTFgIBZfMIK/DLfgnzqTZ3EtJ27+zQYeinWniad7WTFz0Ooa3D4HC/SibBX1I+waKTjRFSin6tQhg1b4CrL6x1AbHo3b+4OywGrXskmqe/nkng15byncb07i6RyQL7xtI1yg/kg8eoO7Xh4mc3R/PtL/I7fUEXiOfwuxicHbY9eLtZqRtiBc/bsmgKrgLAHWNsE5Rdkk1Id5msNahLz4gM56JRkUSRUKcRwI8TDw/Lo7t6SV8tOIASqdDG/4i+upCrD/dTXVt/YagJWTaZzyzOv6o6mTGMyGEOK8Eepr4ZEo3Xrwsjg0HCxn+1nJ+35mFTqeICvKm9qLnODjsU4zlaTT/cTTlW34gtaAS2xkORausqSVz51KKyqpO63irTePX7ZkMah2It6sRchPsG4LkDdaFrn+rQEqq6tiRUQIdJuKSux0tb4+zw2p00goree6XXQx4bQlfrUtlQtcIFt43kHsuakllSR41vz9L1Kw++CfMoLjleFKvXYnP0AcxGfTODv2UPDWmHamFldz/Wy4WzwhsKY1v5rOskip7IevCZHvCW2Y8E42IJIqEOM+M7hjKqA4hvLVwL3tyynCP7k5R78fwPvALFb88Qu1Jpj4urKglu7SadmFe2FLXYXUPAe9m5yh6IYQQ54pSimt7RjH/7v4083Xj1lmbeei7bVTUWgn3ccU7fiz7L/uNGp/mRC2+DbfFj5FTVHLa17PaNCoWvUbzeeOx/fYI5acxu9r65EJyy2q4pFOY/ZzZCfYCsP4tTzsucX7o29wfgBV78nDpOBENRe3Wb50cVeNQY7Hyy7ZMJn26jgGvLeHLNSlc0jGU727tzQ29Q7HtX4Lt9yeImtWHoG3vUho5jOQrl6Af9y7RzVs3upnN6qN3c3+eGNWWPxNy2OPSFn3GBmeH9C+ZJdWEepkhPwkAJTOeiUakafQfFEKckunj4lh7YDkPfbeNH27rg8eQByksy8Z/x6fkeYTiO/QBDPpj/9FPPKKQtW7jeqwRPdErdS7DF0IIcQ41D/Tgx9v78L9Fe3l/6T7WJRfy3yvj6Rrli2vzNqR6/Yjf6hcJ2PkpFQU7qb3hN1xcTr3gan7iSoI2vkGdWwj+CTPI8onBMPhuzMb691T4ZXsmbi56LmobBICWm4jVNwaD0XzK8Yjzi7+HibhwL1bszeeui1pS26wPul0/wtAn4AJ9jtmTU8ac9WnM3ZJOUWUd4T6u3NQ/lqEhVYTnr8Bz4XQ8slajs1Rh07lQ1mwI+d3uwyemMzHuLqgm/rpd3zeanZklfLstjGeNC+0Fzr0jnB0WALUWG/nlNYT6mLHm7kYPIDWKRCPS9NLDQoiTCvAwMX1ce7Y5hqC5GPW4jX2VktgxBK55gYI1Xx53+MC29GIA2nuUoy9NQx8lw86EEOJ8Z9TreHB4a765pTc2TeOK/1vD6n35mI16WoT4UTXkBdL7v4p7zkbK1315yucvLirA5/fbqXMPJfe6vyiJGkHImunkb56HxWqr1znqrDZ+25HF0LbBuDlqpai8RAhse8rxiPNTvxaBbE4torzGgq7DRIzF+7FlbHV2WOdccWUtj3y/nYv/u5yZaw/SK9aftya2Z3bfbO5JvZse8wYTvvpJTMV7KWp1BQcv/oy91++gesIMYtr3xN/D1OSTRGDvNfmfyzpQHNAZgMwdS50az5FySqvRNMeMZ7lJWD3DZYZh0ahIokiI89ToDqGMjLMPQdubU4bZxYh+wkeUh/YhaPED5G1dgKb9M1lUWWvhi1UH6Rrli0/hVgD0kb2cEL0QQghn6B7tx4J7+hPl78Z9326lqKIWnU7RzM8Nt55TqQzqgufa16iuLKv3OWstNljwEC7l6RQNf5fwsHBqxn5AlX8coQtvJzNpfb1qH63cl09RZR1jHcPOqKtCV3wQXbDMeCbsBrQMwGLTWLu/AGPcpWg6I3XbL5zhZ5qm8dOWDC56Yxnfb07n+r7RfD+lHU/7LWbU0tFEL74NY3kWWd0fY/+Vy8iduhY1+nVCe1xK62YhBHuZ0emafoLoSGajnocmT6AKF1Yv+52y0xjyejZkl1YDEOrtCvlJ2PylN5FoXCRRJMR5SinF9HFxuJv0f8+C5u6O9YpZVPu2ImDBjeTt+ecMEB8vTya3rIbHR7XBenANNoMZQjs66Q6EEEI4g5fZyNtXdaawopZHfth++EMFPw8TNYOexliRTdWK9+p1Lk3TKFr3FT57f6Cgy90EtB8EQJC/H0XjvsRq8ib01ylkpSWf9Fy/bMvEy2ygf6sA+4r8PSjNhi5YehQJu67RvpiNOlbuywc3P2qjB2NI/Bm0MyvC3hSkFFQw+bP13PvNViL83Pjuhk7cWf0Rcd/2JnT9i9R6RJAy9CPypq3F9+KHaN42nmb+7vi5uzS5QtWnKtzfi8qATrSsSeD+b7edcVH+hpBZbC/oH+btgq5gLypQEkWicZFEkRDnsUBPE9PHxbEtvYT3l+4HwNvXn6orvsFq9sNv7rUUZ+wFILesmv9bvp+RcSF0jfJDS1uPNaQz6I3OvAUhhBBOEBfuzcPD2/BnQg5fr087vN67zSDKIofitek9Kotzj3t8RY2Fp37ayatz/sR3ySOUB3bBdehj6I/orRAWEU3OmBno6srwmzeJrLz8456vus7Kn7tyGBEX8veb2txE+9cg6VEk7EwGPT1j/Fm+Nw8AXavh6MsyoPCAkyM7ezRN4+PlB7j4v8vZklrMc2Pb89W0rrRYfg9+u2ZQGjOKAxN+p/Lan4nocwXhfh6nVBfsfOHRog9x+oMsT0jjqZ93/mvIa63F9q+e9mdTYlYZBp0iXFeIzlKFXmZuFI2MJIqEOM+N6RjKuPgw3lq0h9X77Q/hfiGRlE78BmWrw/TDZCorSvnvwr3UWmw8MqIN1FVhyN2OipT6REIIcaG6oV8M/VsGMP3XXezLtQ810+kUtiFPo6srp3bp68c8rqLGwtTP1/PNumSGJj5JTZ2VcVlTufWrbXyy4gD7cssBe8/X0FbdyRr6PubCBNx/uZWsomMPaVualEt5jYWxncIPr7PmJKDpjOAX28B3Lpqy/i0DOJBXQUZxFcYWAwGwHljm5KjODk3TePm33by4IJEBrQJZdP9Aru7ejNqf78UrZSG5/V+ASz8gJq4XQZ7mfyRqLzSGqF7oNStPdq5m9rpUbp65iYoaC5qmkVNazZ6cMnZllrIvt5zM4iqKK2upsZx4puAzsSgxh16x/rgW2z/IlRnPRGMjiSIhznOHCvlFB7hz99dbyS2zj4kOiI6jcMQHmAsTKZlzC99sSOG6XlFEB7hDxmaUzYIhqreToxdCCOEsOp3ijcs74eZi4O6vtx5+0+QV1ZHS1pfjtf1zynP+2VPjUJJoc0oxs1stp6tuDzs7P83Ant3ILK7ihfmJDH1zGXfM3kxWSRUGvY6ALpeQ1Wc6XqkLcf3ldnKKy/8Vy7xtmQR4uNAr1u/wOi0nAatfS+n5Kv6hf8tAAFbuzQP/Fljdg7EeWO7kqBqepmm89Ntu/m/5Aa7rFclHk7oS4OFC2e/T8d39NQVd78F/0O34ngezlzUEfWQPAK4KyeKFS+NYtiePiR+uZt2BQkoPbCJ8yT2ErH4Gty2fUJP4JznJiezJLGZ3dim5ZdX1LrpfH8n5FezLLWdo2yBsebvtKyVRJBoZSRQJcQFwNxl4/9oulNfUcc/XW7E6xmYHdB5NYc9HCE1bwG0uv3HXkBYAWFMdtYsiujsrZCGEEI1AkJeZVyZ0JCGrlNd+TwLsH0DohjwOSmH76z+H962osTDl8/XsTMnhp5i5dE/5iOIWl9F1zK08fUl7Fj8wiJWPDOaei1qyKDGHIa8v4/2l+9AphWf/W8nq+QQ+B+Zh+uV2co9IFpXXWFicmMvoDqEY9H8/uqq8JAiS+kTin1oFexDkaWLF3nxQCmtUP/QpK8+rOkWapvGfBYl8tPwAk3pF8fy4ODQNipZ/iP+mtyhufSWeI575x7+XC557ABafWGxp67iuVxRvXRlPSn45a2c9Q/Ofx+KVuhjfPd8StuYZYv6YTOvvBhD3eSuivhmGdcXb7E0+SFphJRU1ljMOZWFCNgBD2wVjy03CZvYD94AzPq8QDUn+9xDiAtEmxIvp4+JYc6CA/y221yVSSrEzdhrzrT14QH2Ftn8JALbUdVh8W4C7vzNDFkII0QgMaxfMpF5RfLIymeV77LVfPIOiKe04Dc+k7ylN2UplrYVJn66jInUbK32fp0Pmt+TH3Yga+y4uhr8fNyN83bhvWCsW3T+Qfi0DePX3JEa8Za+t4jrwXrJ7PIbP/p9x+eUO8koqAfubqhqLjUsOzXYGUFOGvjRVClmLf1FK0a9lAKv25WOzaRhiB6KvzIP8Pc4OrUFomsaL8xP5eEUyk3tHMX1cewDyN/xAwPInKIu8CPP4d3C5AOsQnYw1vDuGjA2k5JfT0lTCsuC3uFebySJbF77pNY+EyQkkXrOR/WO+J33A6+R1vBWb0Z3Q9S/S+qseeP5yI7lbfmNvdglVtac/LG1RQi5tQ72I8HWD/CSs/i0b8C6FaBgGZwcghDh3rujWjHUHCnnnr710j/alb/MAXv1jD9Vu9zDEdTo+C26hJGAhnukbsLYa6exwhRBCNBJPjG7L2gMF3DBjA62CPWkX6kWc3xVcbZiF9Y9nmFz7EPFZ3/Kk6Ws0zZuDI2bi1u5ivL3MxzxfMz83Pp7cjSVJuTw3bxeTP1vPsHbBXNtzGpqmEbrhZYrmKfLHvc8v27II93GlS6Tv3yfIs/du0gVLIWvxbwNaBvLj5gx2ZZbSIbY/YK9TpG/iw3s0TeOF+Yl8ujKZqX2ieeaSdtRYbBQkLCX0z9upCoxHXfEFZpPJ2aE2SrrInuh3fYPL+veI2Pou2Czs7vEfXkloR/LCTK4sNnBz/1hcg5thsfWl2gYlFitabiJ+SXPw2fsDPsnzqfVoRl7Xe/DvN+2UC4MXVtSyMaWQO4fYk0O6/L3Y2ow5G7crxBmRRJEQF5jnL23Pjoxi7p2zlRv7x7Irs5T/XdWZmoCZuHw5FNevL0NXXYiKkkLWQggh7MxGPZ9f352Za1JIyCrlr925fFdRS4Z+DI9nfs3TtnS6GPdRGjGEnCFvEBYWibvp5I+Zg1sH0ftefz5ZcYD/W36AhQk5tAvtxxNRt9N3//vkztVYsedyru4ZjU3T0OGotXJoxrNAmSlI/FvfFvZhPMv35tFhUHOsnuHYDqxA3/NmJ0f2b8WVtXiZjehOUmi6qtbKc7/sYs6GNKb2iebpMW3JK6nAuuYDQje9Qa1HBJYrvsbLw+scRd70GKN7ARC6/j9UBnYmbdD/MAW34IdBRl77I4mv1qeyMCGHx0a2YXyX8MO1nar9ulIU2YG9PR7FPfl3AnZ9TviyB8nUNPz633BKyaK/dudi02BY22CoyEdXXQhBTTuBKc5PkigS4gLj5mKvVzT23VW88vtuOoR7c0nHMHQ6Rd7IDwj4+ToAVGQvJ0cqhBCiMYnwdeOxUfahXpqmkVdWw46D7Sn5ZTGdrKlk9pyOpeuNxPq5ndLsSmajnjuHtOT6vjH8uCWDGasPcm1SP+43F3F38td8rt+LSTeVPam+uHr64O1qxCt7F3qDK8o3+izdrWjKAj1NtA31YsXePO4Y3MJep2j/QrDZQNd4Km/YSnNg3iNkdLuD8Fbdjpss2pJaxAPfbuNAfgW3D2rO7YOak75zBYFLH8W1MIHSyKFYRr2JX0DIOb6DJiawDZWxIyjzaUte5zsJ8fUkwMPe++rFyzpwVfdInvp5Jw98t42v16fy3Lj2tA/zxmzUE+rtSoiXmdLAq8lrewl+P08mdMUjpJl9Ceo+vt7JooUJ2YR4mYkL94KU1QDoJOEtGiFJFAlxAWoR5MlL4zvwxNydPDWm3eEHk4D40RQUPIdX8gJcZLy0EEKI41BKEeRl5qKO0eR4/0p2ZQ2BkW3wc3c57XO6mwxM6hXFdT0jWbWvgI9XBPLcfgN3GH8lYNND2LY+SVnEQEqjR2JK3YTJvxUGndRhEcfWv2UAn69KprLWgjl2ALqd30BeIgS3d3Zoh9Wu+xSffXPxSFtCxrg5hLXp9Y8ka63Fxjt/7eW9JfsI9XZl1g09ifWyUjPvAZolfInFLZi0YR/h0elS/DxkuNlJ6fSUXzaD0so6Wvi5/Su50yHCmx9v68P3m9J5+ffdXPLOSib3juaxUW0wGfQopfB2NeLt6kv+hC/Qfz2eiMV3kGryJqTjRSdNFlXXWVm+J58JXe29lbS8JHsfySY+JFKcn5TWiGcA6Natm7Zx40ZnhyHEeavOasN41IwYdVYbdVYbbi6SRxZCCHFyFqsNi0075Vod9bE7u5TckkrCy3bifXCB/YOMiiwArB2uQj/h/xr8muL8sGJvHpM+Xc/nU7szOKQa3uqAdfjL6Hvf5uzQ7DSNurfisRg80NcUo68tJfOS2YS1749ep9ibU8Z9325lZ0YpE7uGc8fAFhiSfiJkzXMYKvMoaD+Vmv6PERwYKLObnYI6qw2DTh0eVnY8JZV1vLEwiS/XpNA92pcPr+uK/1HJuKysdHznjMNYmUPK2O8Ia9PjhP8P/rU7h2lfbGTGtB4MbBWIZcHD6LbMRPd4JpwkHiHOBqXUJk3Tuh1rm7wTFOICdnSS6NC6Y60XQgghjsWg12E4Sx172oR40TrYk/Iaf0qa9yG38mlccrbglbaEwB4Tzs5FxXmhe7QfLgYdK/bmM7hNOyxekdj2L280iSJLyhqMJQexjX6XvIAeBPw4kbB5V5NpncGfZbG88kcSniYDb17eic6mdAJ/nIBH9lqq/NuTNfIz/Fv1JqAedcDEP9X3Gdfbzcj0cXF0j/bjwe+2Me69VXw6pTutQzwP7xMSEk76pV8R/P04mi2YRIrxR3wjWuPr5nLMYYQLE3LxMBnoFetnX5G3B5tfS3SSJBKNkLwbFEIIIYQQjZZSCk+zkQhfN9qGeRPSvj8MeRwV2snZoYlGzGzU0zPGjyVJudhsGrbo/ujTVoPt9Kc1b0h1m2ZjM7hi6ngZYdGtKLj8J2rMgQT+fA2LfvueXjF+fHJ5NAP3/ofoH0ZiLkoio99/KJu8kGZx/epVLF6cuUs6hfHtLb2ptdgY//4q/tqdc3ibUoqwqFZkXvIVymah2fxryUvfz+7sMnLLqrHa/h65Y7NpLErMYWCrQEyOzLrK3wMBrc75PQlRH5IoEkIIIYQQTYJSCg+TgSBPs7NDEU3AhC4RJOdX8PO2DAyxA9DXFEP2DmeHBXVVuCT9TE3LMWDyQClFSp0Pl1U+Tqo1kC9Nr/OGz/d0/HEIfklzKGg3lazJqwgcdBtB3u4nHTYlGlanZj78fGdfogPcuWHGRj5ZcYBD5Vv0OkVYi3jSRs3AUJVPq28HEPrXPZTs38Tu7FKyS6qps9rYmlZMXlkNg9sEUme1UVtZir4sA12QFLIWjZMkioQQQgghhBDnnbGdwogL9+L1P/ZQ26wvAJYDy5wcFdTs+hV9bRmGLtdisdp4888krvlkLXWuQeRO+AGLXwsCd3xEZWAnki//E+OYV2kWHo6LQd66OUuotyvf3dqb4e1CeGF+IvfM2UpuaTUALgYdIW37sW/CnxS2vQ6vlD9o+dMoon65kuqdv7I7s4Sv16eiUxDm7crurDJSk7YCoAuSQtaicZJi1kIIIYQQQojz0up9+VzzyToeG9mGG7ZMxObXHJfJ3zs1puovLsOQv5uMqet58PsdbDhYxMSuETw3tj3uJgPZeXlUpO3EPbYXQV7mY9a7Ec5hs2m87ZiJzkWv484hLZnWLxqTQU9pdR0ZRVXYKovxS5qD/67PcanIpNajGUmV7hh0EOXnBpqGvrYEU8kBuGMDBMrwM+EcJypmLYkiIYQQQgghxHnr+s/XszGliDVx83BL+gndoymgd06NH600C/7bjg3hU5icMhyDTscLl8Zxaefwf+xXa7FJD6JGLDm/ghfnJ7AoMZcofzeeGNWWYe2CASitslBQUUNFVTXeyb/huvsHktJzCfNxI9Dr0LBZhc4nAvcJ74LuLM0GIMRJyKxnQgghhBBCiAvSoyPbMvJ/y/m9oiUT68ohaxtEdHVKLGnLZhCp2Xh0f3v6tQng+UvjCPV2/dd+kiRq3GIC3PlkSneW78lj+q8J3DxzE/1aBHDrwOb0iPEj1s2D6jpXCr0m8n/lXfkkOZmPR3Sjwvvv+mphPmbcJUkkGilJFAkhhBBCCCHOW61DPLm8azPe2FLCRCPU7V+G8RwniqrrrLy7eC+XbJjFdl1L7r96NKM7hEph6iZuQKtAfrunP7PXpvDfRXu57tN1eJoNDGodxNC2QQxqHcTOjBJaB3sytF0QhwbzaICMKBSNmSSKhBBCCCGEEOe1+y9uxbxtmWQaIwlIXg4D7z9n17ZYbUz4YDVkbedBUxqFg16iY8ewc3Z9cXYZ9Tqm9o3hyu6RrNyXz6KEHBbvzuGXbZkYdAqrpnHHoBYopZC8oGgqJFEkhBBCCCGEOK8Fe5m5qX8Mi5a35pq0VWCtA73xnFx7XXIhuzJL+aXFDmyZLvj2uOqcXFecW64ueoa1C2ZYu2BsNo2t6cUsSshha1oxE7tGODs8IU6JJIqEEEIIIYQQ572bBzZn+tqOGKwLqUndgCmmzzm57vwdWXi5aLTN/5Oa5hfj6uZ3Tq4rnEenU3SJ9KVLpK+zQxHitEiVNCGEEEIIIcR5z8NkoPugsQDsWDGPkqq6s35Ni9XGHzuzuTU8GUN1AfrO1571awohxJmSRJEQQgghhBDignBp347s0LWh44GPKVjyPlnFlWiHKgyfBeuTCymoqOUSbRkWsz8urYedtWsJIURDkUSREEIIIYQQ4oJg1OuonjiLNbb2xK5/Gtd5t5CcmUOtxXZWrjd/Rxb+xjrCc5dR227COauLJIQQZ0ISRUIIIYQQQogLRre2LVjV8wNerbsSrwO/Ev7tSNISN1BW3bBD0aw2jT92ZXNjRAY6Wy0u7cc06PmFEOJsOaNEkVLKTym1UCm11/H1uNW6lFJ6pdQWpdSvZ3JNIYQQQgghhDhdSikeGdmOteFTmGp9Cq2mjJifLqF01WcUV9Q02HXWJReQX17LUPNObAZXDFG9GuzcQghxNp1pj6JHgcWaprUEFjt+Pp57gMQzvJ4QQgghhBBCnBG9TvHONV3Yom/PVJc3KA/uTviKh7EseISi8uoGucaCHVm4GvVEFa2jrllfMJga5LxCCHG2nWmiaBwww/H9DODSY+2klIoARgOfnOH1hBBCCCGEEOKMhfu48p/LOrA218B/g18iP+5GAnZ9jjbvLgrLqs7o3Fabxu87c5jY3IZL8X50LYY0UNRCCHH2nWmiKFjTtCwAx9eg4+z3FvAwcHaqxAkhhBBCCCHEKbqkUxjju4QzY20a29s/TE7X+/Hb8y26H2+goKTstM+7PrmQ/PIaxnvvAcDYamhDhSyEEGfdSRNFSqlFSqmdx1jG1ecCSqkxQK6maZvquf/NSqmNSqmNeXl59TlECCGEEEIIIU7Lc2PbE+HrxtPzdmHt/xBZvZ7GJ3k+Lt9NIr+o6LTOuWBHFmajjjYVG7B4hEFAqwaOWgghzp6TJoo0TRuqaVrcMZafgRylVCiA42vuMU7RFxirlDoIzAGGKKVmneB6H2ma1k3TtG6BgYGndVNCCCGEEEIIUR+eZiNvXRVPVkk1T8zdifvAu8gc8Coe6Usxf3Mlefmn9uG11abx285shrTyx5S2AlvMYFDqLEUvhBAN70yHns0Dpji+nwL8fPQOmqY9pmlahKZp0cBVwF+apl13htcVQgghhBBCiAbRJdKX6ePasyQpj1f/SMK33w1kDn0X95xNuM8ZT0Z6Cpqm1etcGw7ah51dHVGArqYEfcuLznL0QgjRsM40UfQyMEwptRcY5vgZpVSYUmrBmQYnhBBCCCGEEOfCtT2juGVALLPWpjJrbSqBva4hc8QnmIv2EPj1CNIT1lJnPXnJ1QU7sjAZdHSp24yGQt9i8DmIXgghGs4ZJYo0TSvQNO0iTdNaOr4WOtZnapo26hj7L9U0bcyZXFMIIYQQQgghzoZHRrRhVIcQ/vNbIosTcwjuNo70CT+DUoT/OI7c1bOoqrUe9/hDw84Gtw7CeHApluBO4OZ3Du9ACCHO3Jn2KBJCCCGEEEKI84JOp3jzing6N/Ph3m+2siOjhGZte5J31e9UBXYifPFdlM9/kpLy6mMev/FgIXllNYxt64ExaxM0H3KO70AIIc6cJIqEEEIIIYQQwsFs1PPx5G4Ee5m5ccZG0gqrCI+IpOrqHylscy2B295HfXM1RYX5/zr20LCzwcbdKM2KoZXUJxJCND2SKBJCCCGEEEKII/h7mPj8+u5YbBpTv1hPSVUdAd6emC57m6x+/8EzfTmuM0dSXV58+Jh9uWXM2ZDG8PYh6A8uwWZ0R0X0cN5NCCHEaZJEkRBCCCGEEEIcpXmgBx9N6kpqQSUPfLsNm03D3WTAf9BtZI6egal4H7U/34vNaqPOauO+b7bh5qLnydFt0R1YgiWyHxhcnH0bQghxyiRRJIQQQgghhBDH0DPWnydGt2VRYg4fLt8PgItBR2iX0RT3eACvvXMpXv057yzey46MEl4a34EgSyaGkoPoWsqwMyFE0ySJIiGEEEIIIYQ4jql9ohnTMZTX/0hi9T57XSKdTuE59BEqwvvhteRx/ly6lPFdwhkRF4p172IADC2HOjNsIYQ4bZIoEkIIIYQQQojjUErxyoSOxAZ6cNfXW8gqqQLAYDRSdckHlNjMvO/yNo8NbQaAdd9fWLyagV+sM8MWQojTJokiIYQQQgghhDgBd5OBD6/rSnWdlTtmb6bWYgPgrbUl3FN7GzFk4PLnY9jqajGkrMAWOxiUcnLUQghxeiRRJIQQQgghhBAn0SLIg1cndmJzajH/WZDIkqRcZq1NpW3fsRR3uxvv3d9QOe8BdLVlGKQ+kRCiCTM4OwAhhBBCCCGEaApGdwxlc2oMn65M5vtN6bQO9uSBi1uj50kqMtbiseNLNKVDFzvQ2aEKIcRpkx5FQgghhBBCCFFPj45sQ7coX2osVv57ZTxmox6j0QXb+E+wmP2whHYFV19nhymEEKdNehQJIYQQQgghRD0Z9Tpm3tCTnNJqogPcD6/3DIwk9+rf8HJ3xejE+IQQ4kxJokgIIYQQQgghToGri/4fSaJDAiNbo6SItRCiiZOhZ0IIIYQQQgjRACRJJIQ4H0iiSAghhBBCCCGEEEIAkigSQgghhBBCCCGEEA6SKBJCCCGEEEIIIYQQgCSKhBBCCCGEEEIIIYSDJIqEEEIIIYQQQgghBCCJIiGEEEIIIYQQQgjhIIkiIYQQQgghhBBCCAFIokgIIYQQQgghhBBCOEiiSAghhBBCCCGEEEIAoDRNc3YMx6WUygNSnB2HOKcCgHxnByGaBGkroj6knYj6kHYi6kvaiqgPaSeiPqSdiPo6W20lStO0wGNtaNSJInHhUUpt1DStm7PjEI2ftBVRH9JORH1IOxH1JW1F1Ie0E1Ef0k5EfTmjrcjQMyGEEEIIIYQQQggBSKJICCGEEEIIIYQQQjhIokg0Nh85OwDRZEhbEfUh7UTUh7QTUV/SVkR9SDsR9SHtRNTXOW8rUqNICCGEEEIIIYQQQgDSo0gIIYQQQgghhBBCOEiiSAghhBBCCCGEEEIAkigSZ0ApNUIplaSU2qeUevSobXc5tu1SSr16nOP9lFILlVJ7HV99HeuHKaU2KaV2OL4OOc7xMUqpdY7jv1FKuTjWK6XU2464tiulujT0vYv6a6ztxLFtkFJqq+P6yxryvsWpaQTt5E7HtTWlVMAR6691/D+yXSm1WinVqSHvW5y6RtxWvJVSvyiltjmuf31D3rc4NWexnfRw/N3Y6vhdX3ac4+UZpQlorO3EsU2eURqRRtBW5DmlCWjE7eTUn1E0TZNFllNeAD2wH4gFXIBtQDvHtsHAIsDk+DnoOOd4FXjU8f2jwCuO7zsDYY7v44CM4xz/LXCV4/sPgdsc348CfgMU0AtY5+zX60JdGnk78QESgMgTXV+WC6addAaigYNAwBHr+wC+ju9Hyv8n0lZO0FYeP+JcgUAh4OLs1+xCXM5yO3EDDI7vQ4HcQz8fdbw8ozTypZG3Ex/kGaXRLI2krchzSiNfGnk7OeVnFKe/oLI0zQXoDfxxxM+PAY85vv8WGFqPcyQBoY7vQ4GkY+yjgIJD/6iOWp9/xD+Yw/EA/wdcfazryCLt5Ih2cjvwgrNfI1mc306O2ucff1iP2ubLcZIHskhbccTyvuPYGGAfoHP2a3YhLuewncQAORz1sC7PKE1jaeTtRJ5RGtHi7LZy1D7ynNJIl8bcTk7nGUWGnonTFQ6kHfFzumMdQCugv6Mr7TKlVPfjnCNY07QsAMfXoGPsMwHYomlazVHr/YFiTdMsx7j+iWIT51ZjbietAF+l1FJlH2Yy+ZTuTDQkZ7eT+roBe08A4TyNua28C7QFMoEdwD2aptlO4XjRcM5qO1FK9VRK7cL+e771iL8xh8gzStPQmNuJPKM0Ls5uK/UlzynO1ZjbySk/oxhO4eRCHEkdY53m+GrAntHuBXQHvlVKxWqOdGa9L6BUe+AV4OJTvP6JtolzqzG3EwPQFbgIcAXWKKXWapq251SuLxqEs9tJfY4fjP0BrN/pHC8aTGNuK8OBrcAQoDmwUCm1QtO00lM8jzhzZ7WdaJq2DmivlGoLzFBK/aZpWnU9ry/PKI1HY24n8ozSuDi7rZw8QHlOaQwaczs55WcU6VEkTlc60OyInyOwZygPbftRs1sP2IAApdTnjgJcCxz75SilQgEcX3MPnUwpFQHMBSZrmrb/GNfPB3yUUoeSnUdf/3ixiXOrsbeT3zVNq9A0LR9YDnQ6w/sVp8fZ7eSElFIdgU+AcZqmFZzq8aJBNea2cv0R198HJANtTvEcomGc1XZyiKZpiUAF9ppWR5JnlKahsbcTeUZpPJzdVk5InlMajcbcTk75GUUSReJ0bQBaKvtsDS7AVcA8x7afsGcrUUq1wl7MK1/TtOs1TYvXNG2UY795wBTH91OAnx3H+ADzsY/pXHWsizuyr0uAiUcf7zjvZGXXCyg51IVPnHONuZ38jL0LqEEp5Qb0BBLP+I7F6XBqOzkRpVQk8CMwST7JbRQabVsBUrF/+o9SKhhoDRw4jfOIM3c220nMoTf2Sqko7L/ng0deXJ5RmozG3E7kGaVxcWpbORF5TmlUGm074XSeUbRGUPhJlqa5YJ+5Yw/26u5PHLHeBZgF7AQ2A0OOc7w/sBjY6/jq51j/JPYs6dYjln9VhsdeUX499mJc3/F3FXkFvOeIawfQzdmv1YW8NNZ24tj2EPZZRXYC9zr7tbqQl0bQTu7G/mmPBfunP5841n8CFB1x7EZnv1YX+tKI20oY8Kfj785O4Dpnv1YX8nIW28kkYJejfWwGLj3O8fKM0gSWxtpOHNvkGaURLY2grchzShNYGnE7OeVnFOU4UAghhBBCCCGEEEJc4GTomRBCCCGEEEIIIYQAJFEkhBBCCCGEEEIIIRwkUSSEEEIIIYQQQgghAEkUCSGEEEIIIYQQQggHSRQJIYQQQgghhBBCCEASRUIIIYQQQgghhBDCQRJFQgghhBBCCCGEEAKQRJEQQgghhBBCCCGEcJBEkRBCCCGEEEIIIYQAJFEkhBBCCCGEEEIIIRwkUSSEEEIIIYQQQgghAEkUCSGEEEIIIYQQQggHSRQJIYQQQgghhBBCCEASRUIIIYQQQgghhBDCQRJFQgghhBBCCCGEEAKQRJEQQgjR6CmlopVSmlLKUI99pyqlVp6juPoqpfYqpcqVUpeei2uKvymlIh2vvb4h922AuM5ZGxRCCCFEw5NEkRBCCNGAlFIHlVK1SqmAo9ZvdSR7op0U2pEJp3LHclAp9egZnHI68K6maR6apv3UQGFeEBoimaJpWqrjtbc25L7nklLqWaXUrAY831SllPWINn5oCTvD8wYopVYppQqUUsVKqTVKqb4NFbcQQgjRmEiiSAghhGh4ycDVh35QSnUAXJ0Xzr/4aJrmgT3Gp5VSI07l4CN6NkUBu04ngPr0jrrQnYveP+epNY6k2JFL5hmesxyYBgQCvsArwC/SjoUQQpyPJFEkhBBCNLyZwOQjfp4CfHnkDkopb6XUl0qpPKVUilLqSaWUzrFNr5R6XSmVr5Q6AIw+xrGfKqWylFIZSqkXTiepoGnaGuyJnjjHeacppRKVUkVKqT+UUlFHXFNTSt2hlNoL7FVK7Qdisb9ZLldKmZRSYUqpeUqpQqXUPqXUTUcc/6xS6nul1CylVCkwVSm11BH7asc5flFK+SulZiulSpVSG47sgaWU+p9SKs2xbZNSqv9R5//W8ZqWKaV2KaW6HbG9mVLqR8frXaCUeveIbce976MppcY6zl3siL/tEdsOKqUeVEptV0qVKKW+UUqZj3GOtsCHQG/HfRc71n+hlPpAKbVAKVUBDFZKjVZKbXHcc5pS6tkjzvOPIYmOeJ539HwpU0r9qRw9205lX8f2yY52WaCUespxb0OP85r4O37vpUqp9UDzo7Yf8/em7AnKx4ErHa/DNsf66x2/jzKl1AGl1C3H+32cCqVUc0fb7OL4OUzZ/40NOuI1eUkptd7x+/tZKeUHoGlataZpSZqm2QAFWLEnjPwaIjYhhBCiMZFEkRBCCNHw1gJeSqm2yp7AuRI4enjNO4A39mTLQOyJpesd224CxgCdgW7AxKOOnQFYgBaOfS4GbjyVAJVdX6A9sEXZaww9DozH3mtiBfD1UYddCvQE2mma1hxIBS5x9NioceyfDoQ5Yv6PUuqiI44fB3wP+ACzHeuuAiYB4dgTDGuAz7G/AU8Enjni+A1AvGPbV8B3RyVixgJzHOefB7zruFc98CuQAkQ7rjXHsa0+933oNWvl2HavY98F2BNlLkfsdgUwAogBOgJTjz6PpmmJwK383fPF54jN1wAvAp7ASqACe9vwwZ4wvE2duB7UNdjbURDgAjx4qvsqpdoB7wPXAqHY22n4Cc7zHlDt2HeaYznSMX9vmqb9DvwH+MbxOnRy7J+Lvf17OeL776HkjiO+YqVUvxPEc0yapu0HHgFmK6XcsLezLzRNW3rEbpMd8Ydh/zf29pHnUEptd9zrPOATTdNyTzUOIYQQorGTRJEQQghxdhzqVTQM2A1kHNpwRPLoMU3TyjRNOwi8gT1hAvZkw1uapqVpmlYIvHTEscHASOBeTdMqHG9U/4s94VJf+UAh8AnwqKZpi4FbgJc0TUvUNM2C/Q18/FG9a17SNK1Q07Sqo0+olGoG9AMecfS+2Oo4/6QjdlujadpPmqbZjjjH55qm7dc0rQT4DdivadoiRwzfYU+EAaBp2ixN0wo0TbNomvYGYAJaH3H+lZqmLXDU4ZkJHEo89MD+xv8hx2tWrWnaofpA9bnvQ64E5muatlDTtDrgdexDCvscsc/bmqZlOn5vv2BPkJyKnzVNW+V4jao1TVuqadoOx8/bsSeqBp7g+M81TdvjeH2/Pcn1j7fvROAXTdNWappWCzwNaMc6gaMtTwCedry2O7EnMg+rx++No/af72gTmqZpy4A/gf5HbPc54vd3LL0cyaRDy/4jjv0Y2Ausw57YeuKoY2dqmrZT07QK4CngCnVEbz1N0zpiT2Bdgz2RJ4QQQpx3ZFy1EEIIcXbMBJZj71ny5VHbArD34Eg5Yl0Kf/faCAPSjtp2SBRgBLKUUofW6Y7a/2QCHEmRI0UB/1NKvXHEOuWI6dD1T3SNMKBQ07Syo+LudsTPxzo+54jvq47xs8fhYJR6AHvPqTDsiQsv7K/lIdlHfF8JmB1DrZoBKce4Z6jffR8SduQ6TdNsSqk0/tnb5ugYTrWI8j9eI6VUT+Bl7MMDXbAnWb47wfFHX9/jeDueYN9/tD9N0yqVUgXHOUcg9ufJ47XX+vzeOGr/kdh7krXC3rbdgB0nuI+jrdU07UQ9jj7G3iPoZkdPuCMdfR9GR6yH26WmadXA147hcVs1Tdt2CrEJIYQQjZ70KBJCCCHOAk3TUrAXtR4F/HjU5nygDnuS4pBI/u51lIU9uXHktkPSgBrsyR4fx+KlaVr7Mww5DbjliHP6aJrmqmna6iNv6wTHZwJ+SinPo+LOOOLnEx1/Qo66No9g723l6xiuVYI9qXMyaUCkOnbh4frc9yGZHPE7U/ZMXTP+eY/1dbzX4uj1X2FPajTTNM0be22j+tzzmcgCIg79oJRyBfyPs28e9iFax2yv9fi9/eN+lVIm4AfsvbWCHfsvoIHuWSnlAbwFfAo8e6gG0RGOvo867P9ej8WIfeioEEIIcV6RRJEQQghx9twADHEMYznMMTTqW+BFpZSnY5jT/fxdx+hb4G6lVIRSyhd49Ihjs7APxXlDKeWllNI5ivSeaDhSfXwIPKaUag+HC2ZfXt+DNU1LA1YDLymlzEqpjtjvf/aJj6w3T+wJiTzAoJR6GnvPlPpYjz358bJSyt0R36GpzU/lvr8FRiulLlJKGYEHsCftjpVUOpkcIOKo+kbH4om9p1a1UqoH9iFPZ9v3wCVKqT6O+J7jOIkaR1v+EXvSxc1R32jKEbuc7PeWA0QrRyF3/u41lQdYHL2LLm64W+N/wCZN024E5mP//R/pOqVUO0cNo+nA95qmWZVSvZRS/ZRSLkopV6XUI0Aw9iFsQgghxHlFEkVCCCHEWeKos7LxOJvvwl6o+AD2WidfAZ85tn0M/AFsAzbz7x5Jk7G/oU4AirC/sQ89w1jnYp/ye46yz0q2E3stpFNxNfZi0ZnAXOAZTdMWnklcR/gDew2jPdiHBFVTz+F2jmTGJdiLf6diL7h9pWNbve9b07Qk4DrshcjzHee8xFHH51T9hX3GuWyl1PF6rADcDkxXSpVhrxX07Wlc65RomrYLe/ucgz3BVoa9wPTRw7QOuRP7sLVs4AvsRaIPOdnv7dAwugKl1GbH0MW7sd9nEfbE2LwjL+aYIa0/x3doNrkjl+5KqXHYC43f6tjvfqCLUuraI46d6biHbMDsiAXsyav3gALsPchGAaM1Tcs8QRxCCCFEk6Q07bR7gQshhBBCiPOcY7hWMdBS07RkJ4dz1iillgKzNE37xNmxCCGEEM4kPYqEEEIIIcQ/KKUucQwlc8deL2gHcNC5UQkhhBDiXJBEkRBCCCGEONo47EMIM4GWwFWadEMXQgghLggy9EwIIYQQQgghhBBCANKjSAghhBBCCCGEEEI4GJwdwIkEBARo0dHRzg5DCCGEEEIIIYQQ4ryxadOmfE3TAo+1rVEniqKjo9m48XizCgshhBBCCCGEEEKIU6WUSjneNhl6JoQQQgghhBBCCCEASRQJIYQQQgghhBBCCAdJFAkhhBBCCCGEEEIIoJHXKBJCCCGEEEIIIZytrq6O9PR0qqurnR2KEKfEbDYTERGB0Wis9zGSKBJCCCGEEEIIIU4gPT0dT09PoqOjUUo5Oxwh6kXTNAoKCkhPTycmJqbex8nQMyGEEEIIIYQQ4gSqq6vx9/eXJJFoUpRS+Pv7n3JPOEkUCSGEEEIIIYQQJyFJItEUnU67lUSREEIIIYQQQgghhAAkUSSEEEIIIYQQQjR6SikmTZp0+GeLxUJgYCBjxoxxYlQn5+HhcdJ9nn32WV5//fUT7vPTTz+RkJDQUGGJE2iQRJFS6jOlVK5Saudxtiul1NtKqX1Kqe1KqS4NcV0hhBCiKbDZNIoqap0dhhBCCCGaMHd3d3bu3ElVVRUACxcuJDw83CmxWCyWc35NSRSdOw3Vo+gLYMQJto8EWjqWm4EPGui6QgghRKOXn58D6z4Am9XZoQghhBCiCRs5ciTz588H4Ouvv+bqq68+vK2iooJp06bRvXt3OnfuzM8//wzAwYMH6d+/P126dKFLly6sXr0agKysLAYMGEB8fDxxcXGsWLEC+GcPoO+//56pU6cCMHXqVO6//34GDx7MI488wv79+xkxYgRdu3alf//+7N69G4Dk5GR69+5N9+7deeqpp457Ly+++CKtW7dm6NChJCUlHV7/8ccf0717dzp16sSECROorKxk9erVzJs3j4ceeoj4+Hj2799/zP1EwzA0xEk0TVuulIo+wS7jgC81TdOAtUopH6VUqKZpWQ1xfSGEEKIxWZyYg9mop2+LAGosVlz+fBSffXOhRU+I7OXs8IQQQghxBp77ZRcJmaUNes52YV48c0n7k+531VVXMX36dMaMGcP27duZNm3a4QTPiy++yJAhQ/jss88oLi6mR48eDB06lKCgIBYuXIjZbGbv3r1cffXVbNy4ka+++orhw4fzxBNPYLVa65Vo2bNnD4sWLUKv13PRRRfx4Ycf0rJlS9atW8ftt9/OX3/9xT333MNtt93G5MmTee+99455nk2bNjFnzhy2bNmCxWKhS5cudO3aFYDx48dz0003AfDkk0/y6aefctdddzF27FjGjBnDxIkTAfDx8TnmfuLMNUiiqB7CgbQjfk53rPtXokgpdTP2XkdERkaek+CEEEKIhrItrZhbZ20i1NuVZQ8NonDnIkL3zbVvLDwgiSIhhBBCnLaOHTty8OBBvv76a0aNGvWPbX/++Sfz5s07XOunurqa1NRUwsLCuPPOO9m6dSt6vZ49e/YA0L17d6ZNm0ZdXR2XXnop8fHxJ73+5Zdfjl6vp7y8nNWrV3P55Zcf3lZTUwPAqlWr+OGHHwCYNGkSjzzyyL/Os2LFCi677DLc3NwAGDt27OFtO3fu5Mknn6S4uJjy8nKGDx9+zFjqu584decqUXSs+di0Y+2oadpHwEcA3bp1O+Y+QgghRGNUWl3HnV9vxmrTSC2sZHNyNnFLHqXWsxnG8ky0/H0yi4QQQgjRxNWn58/ZNHbsWB588EGWLl1KQUHB4fWapvHDDz/QunXrf+z/7LPPEhwczLZt27DZbJjNZgAGDBjA8uXLmT9/PpMmTeKhhx5i8uTJ/5hOvbq6+h/ncnd3B8Bms+Hj48PWrVuPGWN9pmQ/3j5Tp07lp59+olOnTnzxxRcsXbr0jPYTp+5cPa+mA82O+DkCyDxH1xZCCCHOOk3TeOzHHWQWV/PeNfY5G0oWvoap5AD5g17G5t0MW8EBJ0cphBBCiKZu2rRpPP3003To0OEf64cPH84777yDveILbNmyBYCSkhJCQ0PR6XTMnDkTq9VeMzElJYWgoCBuuukmbrjhBjZv3gxAcHAwiYmJ2Gw25s6de8wYvLy8iImJ4bvvvgPsz0Hbtm0DoG/fvsyZMweA2bNnH/P4AQMGMHfuXKqqqigrK+OXX345vK2srIzQ0FDq6ur+cbynpydlZWUn3U+cuXOVKJoHTHbMftYLKJH6REIIIc4nX61PZf72LB68uDUjO4QyNKiMfllfUhx7CX4dR6L5xtqHngkhhBBCnIGIiAjuueeef61/6qmnqKuro2PHjsTFxR0uJH377bczY8YMevXqxZ49ew73Clq6dCnx8fF07tyZH3744fA5X375ZcaMGcOQIUMIDQ09bhyzZ8/m008/pVOnTrRv3/5w8ez//e9/vPfee3Tv3p2SkpJjHtulSxeuvPJK4uPjmTBhAv379z+87fnnn6dnz54MGzaMNm3aHF5/1VVX8dprr9G5c2f2799/3P3EmVOHso1ndBKlvgYGAQFADvAMYATQNO1DZe9T9i72mdEqges1Tdt4svN269ZN27jxpLsJIYQQTrU7u5Rx766iZ6w/X0ztTllVHfkfjiSwdBcZ1y2jbcvWWH99ALXjW3SPpkI9umMLIYQQovFITEykbdu2zg5DiNNyrParlNqkaVq3Y+3fULOeXX2S7RpwR0NcSwghhGhMyqrruGP2ZrxcjbxxeUeyS6uxbP2W5mUbecoylVb5Jtq2BJ1/LKqmFCoLwd3f2WELIYQQQghxTFJTUwghhDhNFTUWrv98AykFlbw+sRMllXWw9kMilj9AZUAnVnhdwsLEXACUfwv7QYX7nRixEEIIIYQQJyaJIiGEEOI0VNZauP6LDWxJK+bViR0JdqkmcMGNhK19lvKIgRRN+JphcWGs2Z9PWXUd+MXaD5Q6RUIIIYQQohGTRJEQQghxiqpqrdw4YyMbDxbyn8s60El3gNgfR+KVuoisnk+RM+pzQoLDGNYuhDqrxrI9eeATiaZ02AqkR5EQQgghhGi8JFEkhBBCnILqOis3z9zImgMFPD8ujt7Vy4mZNx5sVg6M+Q5b7ztoEeyJXqfoGuWLn7sLCxNywGDC5hmBrUB6FAkhhBBCiMarQYpZCyGEEBcCm03jnjlbWLkvn+fGtmdg5R+Er3iEyqCupA3/hNDQcLxdjYf31+sUF7UJ4o9d2dRZbSi/WJAeRUIIIYQQohGTHkVCCCFEPX2wbD9/7MrhvqGtGFryIxHLH6I8rB/ZY78mNjLyH0miQ4a1C6a02sL65ELwi0VXlOyEyIUQQgjR1OXk5HDNNdcQGxtL165d6d27N3Pnzj3r1924cSN33313g5xr0KBBtG7dmk6dOtG3b1+SkpIa5LwNqSFj/OKLL7jzzjsB+PDDD/nyyy+Pu+/Bgwf56quvDv/ckK/7qZJEkRBCCFEPy/fk8fqfSYzpEMIVFV8TtvY5SqJHUjhuBjGhAbgYjv0ntX/LQMxGHX/uykYfEIuuphgqC89t8EIIIYRo0jRN49JLL2XAgAEcOHCATZs2MWfOHNLT08/6tbt168bbb7/dYOebPXs227ZtY8qUKTz00EP/2m61WhvsWqfrbMR46623Mnny5ONuPzpR1NCv+6mQRJEQQghxEmmFldw9Zwutgz151n8RIZvfoKjlBErHfERkoC86nTrusa4uevq1CLTXKTo885n0KhJCCCFE/f3111+4uLhw6623Hl4XFRXFXXfdBdiTDP3796dLly506dKF1atXA7B06VLGjBlz+Jg777yTL774AoBHH32Udu3a0bFjRx588EEAvvvuO+Li4ujUqRMDBgz41znWr19Pnz596Ny5M3369Dnc2+aLL75g/PjxjBgxgpYtW/Lwww+f9J4GDBjAvn37APDw8ODpp5+mZ8+erFmzhjfffJO4uDji4uJ46623Dh/z5Zdf0rFjRzp16sSkSZMAyMvLY8KECXTv3p3u3buzatUqAJYtW0Z8fDzx8fF07tyZsrIysrKyGDBgAPHx8cTFxbFixYrTjnHWrFn06NGD+Ph4brnllsPJo88//5xWrVoxcODAw7EAPPvss7z++usA7Nu3j6FDh9KpUye6dOnC/v37efTRR1mxYgXx8fH897///cfrXlhYyKWXXkrHjh3p1asX27dvP3zOadOmMWjQIGJjYxsssSQ1ioQQQogTqK6zcuusTVhtGu+Pj8F35lWURF1M9eh3aObjXq9zDGsXxKLEHFIJIwqgcD9EdD2rcQshhBDiLPntUcje0bDnDOkAI18+7uZdu3bRpUuX424PCgpi4cKFmM1m9u7dy9VXX83GjRuPu39hYSFz585l9+7dKKUoLi4GYPr06fzxxx+Eh4cfXnekNm3asHz5cgwGA4sWLeLxxx/nhx9+AGDr1q1s2bIFk8lE69atueuuu2jWrNlxY/jll1/o0KEDABUVFcTFxTF9+nQ2bdrE559/zrp169A0jZ49ezJw4EBcXFx48cUXWbVqFQEBARQW2nto33PPPdx3333069eP1NRUhg8fTmJiIq+//jrvvfceffv2pby8HLPZzEcffcTw4cN54oknsFqtVFZWHje+E8WYmJjIK6+8wqpVqzAajdx+++3Mnj2bYcOG8cwzz7Bp0ya8vb0ZPHgwnTt3/td5r732Wh599FEuu+wyqqursdlsvPzyy7z++uv8+uuvgD1Bd8gzzzxD586d+emnn/jrr7+YPHkyW7duBWD37t0sWbKEsrIyWrduzW233YbR+O9yCKdCEkVCCCHEcWiaxpM/7WRXZimfTulGYOIn6OsqsAx8lNB6JokAWgR5ApBiCyAShVawX7r0CiGEEOK03XHHHaxcuRIXFxc2bNhAXV0dd955J1u3bkWv17Nnz54THu/l5YXZbObGG29k9OjRh3uu9O3bl6lTp3LFFVcwfvz4fx1XUlLClClT2Lt3L0op6urqDm+76KKL8Pb2BqBdu3akpKQcM1F07bXX4urqSnR0NO+88w4Aer2eCRMmALBy5Uouu+wy3N3tz1rjx49nxYoVKKWYOHEiAQEBAPj5+QGwaNEiEhISDp+/tLSUsrIy+vbty/3338+1117L+PHjiYiIoHv37kybNo26ujouvfRS4uPjj/n6nCzGxYsXs2nTJrp37w5AVVUVQUFBrFu3jkGDBhEYGAjAlVde+a/fRVlZGRkZGVx22WUAmM3mY8ZwpJUrVx5OyA0ZMoSCggJKSkoAGD16NCaTCZPJRFBQEDk5OURERJz0nCciiSIhhBDiOJbvzef7TencPaQFg2Lc0H76iIroYfjHnlpvoFBv+wNAZrmGzTMcreCAJIqEEEKIpuoEPX/Olvbt2x9OFAC899575Ofn061bNwD++9//EhwczLZt27DZbIeTDwaDAZvNdvi46urqw+vXr1/P4sWLmTNnDu+++y5//fUXH374IevWrWP+/PnEx8cf7rVyyFNPPcXgwYOZO3cuBw8eZNCgQYe3mUymw9/r9XosFssx72X27NmH4z7EbDaj1+sB+wd1x6JpGkr9e7i/zWZjzZo1uLq6/mP9o48+yujRo1mwYAG9evVi0aJFDBgwgOXLlzN//nwmTZrEQw89dMy6QfWJccqUKbz00kv/2Oenn346ZoxH38epOtYxh65T39f9VMhzqhBCCHEMNpvGy7/tppmfK3cOaUnlmk8x1BRD//tP+VyBniaUgqySajS/GCg80PABCyGEEOK8NWTIEKqrq/nggw8Orzty2FRJSQmhoaHodDpmzpx5uF5OVFQUCQkJ1NTUUFJSwuLFiwEoLy+npKSEUaNG8dZbbx1OCO3fv5+ePXsyffp0AgICSPt/9u46PK4y7eP495zRjGTinjRN3d2NCpTiDsWtwAKLLLCssQvvwrLswuKywOJOgRb3urtb2jTuNpNJxs/7x6SlQCmUJpnI/bkuLpozZ87zm0I7M/d5nvspLPxejvr6etLT0wEO9jpqaZMnT2bevHk0Njbidrv54IMPmDRpEtOnT+edd96huroa4ODSsxNOOIEnnnji4PMPfS2DBg3izjvvZOTIkezcuZP8/HySkpKYM2cOV111FevXr/9VGadPn87cuXOpqKg4mCU/P58xY8awcOFCqqur8fv9vPvuuz96bnR0NBkZGcybNw8Ar9dLY2Mjdrsdl8v1k78nr7/+OhBekpaQkEB0dPSvyv5LyIwiIYQQ4jA+3FTCjlInj14wFH3Ih7L2aRrTxmHtMf6or2XQqSTaTJTVeyCuB+qOD1shsRBCCCE6K0VRmDdvHrfeeiv/+te/SExMxGq18sADDwBw/fXXc/bZZ/Puu+8yderUg8u2MjMzOe+88xg8eDC9evU62C/H5XJx+umn4/F40DSNhx9+GIA77riDPXv2oGka06dPZ8iQISxatOhgjt///vdcdtll/Oc//2HatGmt8lqHDx/O5ZdfzujRowG4+uqrD+b+85//zJQpU9DpdAwbNoyXXnqJxx57jBtuuIHBgwcTCASYPHkyzzzzDI888ggLFixAp9PRv39/Zs2axVtvvcW///1vDAYDNpvtiNvVH0n//v259957OeGEEwiFQhgMBp588knGjh3L3Xffzbhx40hNTWX48OGH3SHt1Vdf5dprr+Wvf/0rBoOBd999l8GDB6PX6xkyZAiXX37593ob3X333VxxxRUMHjwYi8XCyy+//Kty/1LKr5n21FZGjhypHakBlxBCCNEavIEg0x9ahCPKwEc3TqRx5QvYvvwd7vPmYu1//K+65ulPLMVhMfJyn5UoX90Fd+6HqNiWDS6EEEKIVrFjxw769esX6RhC/CqH+/9XUZR1mqaNPNz5svRMCCGE+IHXVxZQVNvEH2b1RdECGFc+iidxCNZ+M371NVMcZsrqm1DicsIHavJaKK0QQgghhBAtRwpFQgghxCGcHj+Pf7uHiT0TmNQrkcaN72N05hOccAv8THPCI0l1RFFa74H4HuED0qdICCGEEEK0Q1IoEkIIIQ7x3OJ91Db6ufPEvmihEPrlD+ON6Yll8OnHdN0UhxmXJ0CDJbxdaah6b0vEFUIIIUQbac9tW4T4Kb/m/1spFAkhhBDNKpwenl+Sx6lD0hiU4cC9aT6m6h34x92CouqO6dqpjvA2tWWNCkFbGqFqmVEkhBBCdBRms5nq6mopFokORdM0qqurMZvNR/U82fVMCCGEaPboN3vwB0PcdnxvtGAAw+L78cb0wDrygmO+dkp0+A263OkhO667LD0TQgghOpCMjAyKioqorKyMdBQhjorZbCYjI+OoniOFIiGEEALYV9nAW2sKuWhMFtkJVhrWvImtdheuU57FpDMc8/VTHVEA4T5FcT1Qd396zNcUQgghRNswGAx079490jGEaBOy9EwIIYQAHvxyFya9ym+n9UIL+jEu+See+H7Yhp/TItdPijYBUFbfhBrfA7WxCjzOFrm2EEIIIYQQLUUKRUIIIbq8jYV1fLqljDmTcki0m2hY/SpG534Ck/90zL2JDjAbdMRZjZTWe1Djc8IHZfmZEEIIIYRoZ6RQJIQQokvTNI1/fraDeKuROZNzCPk8mJc9iCdpKLbBp7boWCnRZsrqPRAnhSIhhBBCCNE+tUihSFGUExVF2aUoSq6iKH84zOMORVE+UhRlk6Io2xRFuaIlxhVCCCGO1aLdlazcV8NN03thM+lxr3wBQ0MxweP+AorSomOlOszNPYqaexxIoUgIIYQQQrQzx1woUhRFBzwJzAL6A7MVRen/g9NuALZrmjYEOA54SFEU47GOLYQQQhyLYDDE/Z/uJCM2ihn9kigsq8K84j80pY3D2m9Gi4+X4jBT5vSA0UrQmkyoWgpFQgghhBCifWmJXc9GA7mapu0DUBTlLeB0YPsh52iAXVEUBbABNUCgBcYWQgghfrWXV+RTVl7KvSO96Bc/gK14CYamSvxnvdjis4kgPKOoxu3D4w+ij04DV1mLjyGEEEIIIcSxaIlCUTpQeMjPRcCYH5zzBPAhUALYgfM1TQsd7mKKolwDXAOQlZXVAvGEEEKIH6upqWXYN7PZZN4BW0FTVDwxvakZ+wfiek1qlTFTHFEAlDs9ZNiSob64VcYRQgghuoIKlwe3N0j3BGukowjRqbREoehwt1y1H/w8E9gITAN6AF8pirJE07Qf7QusadqzwLMAI0eO/OF1hBBCiBax6Y0/M1XbwZae12HtfRyexMGYbA7Smos5rSHVYQagtN5Dpj0ZSta32lhCCCFEZ/b51lJ+P3czwZDGvBsm0CvZHulIQnQaLdHMugjIPOTnDMIzhw51BfC+FpYL5AF9W2BsIYQQ4qhtWLeSiZVvscw2k/hT7iZh8Az6dEujR6KNKKOu1cZNaS4UlTs9qLZklMYqCAVbbTwhhBCis/H4g9w1byvXvbae7AQrUUYd1766DpfHH+loQnQaLVEoWgP0UhSle3OD6gsILzM7VAEwHUBRlGSgDyAdPIUQQrQ5j9cPn95Oo2Km++wHSYuJItpsQKe2fE+iH0qJ/m5GEbYkFC0E7qpWH1cIIYToDPZWNnDmU8t5dWU+10zOYe5143niwuHk1zRy2zubqG/0UeHyRDqmEB3eMReKNE0LADcCXwA7gHc0TdumKMp1iqJc13za34HxiqJsAb4B7tQ0TT4ZCyGEaHPfzH2KYcEtbO97C2npbdsLz2rSYzfrKav3gC05fLChvE0zCCGEEB3R2v01nPb4UsqdHl68fBR/OqkfRr3K2Jx4fnd8bxZtL2ThG/8m6u3zCFXJnAQhjkVL9ChC07RPgU9/cOyZQ35dApzQEmMJIYQQv9begmJG736IXGNvRpx1S0QypDrMlNY3HVIoqohIDiGEEKKj2FRYx+UvriE52szrc8aQ2txPsMkXpKSslLPcb3OR5TliimoB8Kx6DvPJ90cyshAdWkssPRNCCCHaPU3T2PXWH4nHCSc/hNFojEiOFEdUeEaRXWYUCSGEED9nR6mTS19YTazV8L0iUbWrifqvHiD71dGkrv0XSsogbjH/nQWMQN36nvQAFOIYSKFICCFEl7B06QJmuj9kU8pZ9BgyKWI5UqPN4R5F1qTwASkUCSGEEIeVW9HAxc+vwmLU8cbVY0l1RBEKaRQXF2J8+wJS1jxAQ9pEcs/6jIbz3uH6Ky5nfnACxqZygnnLIh1fiA6rRZaeCSGEEO1d/eo3CSk6es5+AEVp/cbVPyXFYaaywYtfZ0ZntKM0lBO5NEIIIUT7VFDdyEXPr0RRFF6/egyZcRa8gSAV25aQ/OV16JuqKZn4D/Sjr6S7zdy8KUUUqaPOxL3uv7hXvk5Sj8mRfhlCdEgyo0gIIUSnV93gxVq/m2pzN+wxiRHNkuowo2lQ4fKi2ZIIucoimkcIIYRobwLBEDe+uR5vIMTrV48hJ9GGPxCk7ttHyZh3NppqoPjs+cQfdx1J0VHf27l0zvSBfMNorLkfQ8AbwVchRMclhSIhhBCd3mdby+ilFGFMGxDpKKQ4zACU1TeBNRlc0sxaCCGEONRzS/LYXFTPvWcMpE+KnVBIo27BYyQvvwdn1nSqL/qK9H7jMOl1P3punNVIoP/ZWLUGwQy6/QABAABJREFUcpd/EIH0QnR8UigSQgjR6X2zcQ8ZShUx3QZHOsrBJpyl9R6wJ0mPIiGEEOIQuRUuHv5qN7MGpnDyoFQAqta+R8Kye6jvPgvOe5W0lBRU9acXbp9w6gXUEE3F8tfbKrYQnYoUioQQQnRq5U4P9QVbAFCT28GMougDM4o8qPYUFLfMKBJCCCEAgiGNO+ZuxmrS8X+nD0RRFCp3LiPhixtoShqK/uzncFhNP3sdmyWKwtSZDG9awcod+1s/uBCdjBSKhBBCdGqfbC6lt1IU/iGpX2TDANFReqIMOsrqPSi2ZFSfC3yNkY4lhBBCRNwLS/PYUFDH3acNINFuoqZoNzHzLiVgScR/7utYbfZffK0+M67ErPhZ8cnLaJrWiqmF6HykUCSEEKJT+3hzCWOsFWj6KIjpFuk4KIpCqsNMqdMDtuTwQZlVJIQQoovbV9nAg1/u4vj+yZzQP5mComIsc2ejhny4zn4TR2L6UV3PnDMOpzmN4fVf8+V2WeYtxNGQQpEQQohOq6i2kfUFdYyIKiWY0BfU9vG2l+IwU1Z/SKGoQQpFQgghuq5QSOP3czdjNui4fnIWNYv+S+rrUzA686k+5UXiswcd/UUVBf2Q85ig28p9by/k2cV78QdDLR9eiE6ofXxiFkIIIVrBJ5tLAUj15bWLZWcHfFcoSgofcJVFNpAQQggRQR9tLmFtfg1/77OP/h/MJH3Zn/BFd6P0zPdJHDT9V1/XPOx89IS4Om4z//h0J7MeXcLy3KoWTC5E5ySFIiGEEJ3WR5tLmJSuYGiqQpfSP9JxDkp1mCl3eghamwtFsvOZEEKILsrjD/Kvz3byju0/nLbzTjRFJf+E53HN/pjUAZNQlJ/e3eznqCn98SUM4Dy+4NkLB+INBLnw+VXc8MZ61uXXSO8iIX6CPtIBhBBCiNaQV+Vma7GTJ8e7oRqUpPZTKEpxRBEIaVSH7CQqKjSU8+s/BgshhBAd10vL92Ny7mO0aR2Vg6/DM/nPpMbYMOpbZk5D4Lg/YZl7EaNL3+SrW+/gmUV7+e+ifXyyuZTMuCjOGJrO6UPT6Zlka5HxhOgMZEaREEKITunjTSUoCkxyVIYPtKNCUWq0GYBSlx/NkoDmkh5FQgghup7qBi9PfpvLpWnFANjHXUlmQnSLFYkAogacjCvnZKJX/4dg9T5umdGbNX+ZwUPnDiE73sqTC3KZ8Z9FXPrCavKq3C02rhAdmRSKhBBCdEqfbCllVLc4rPW7CZljwJ4S6UgHpTiaC0X1HjRrMposPRNCCNEFPfbNHhr9QU6L3U/Qkog5pXeLj6EoCrqTHkBTDfDJbWihEDaTnrNHZPDqVWNY+cfp3HliXzbk1zLzkcU8/NVuPP5gi+cQoiORQpEQQohOx+nxs7PMxeTeCWjlOwgl9IVj6HHQ0g4Uisrqm8INraVQJIQQoovZW9nA66sKmD06E0f5GkJZ41vtvdqSkIlrwh+xFi7Cufat7z0WZzVyzogM3pgzhql9Enn0mz0c/59FfLVdNpoQXZf0KBJCCNHp7ChxAjAgNRp11Q60gedEONH3xVmMGHUqZU4v2JJRKndEOpIQQgjRpu7/dCdmg47fjYpCt7EIJfumVh3PPvE6mra9g3XBXXj7zcRriKbW1YS2dwExe96je1Ml/9Zb+EO2gS2Vfra8HsOLqbO58cShjOsRf0xNtYXoaKRQJIQQotPZ1lwoGhTtRvU6Ibn99CcCUFWFtBgzeVUNqCnJ4K6EUAhUmegrhBCi81udV8PXO8q5Y2YfYivXAKBmT2jVMXV6PYGTH8b88gwa5v0Onz2TtN3vYmgsI2CKxRvTA4O3njR/I+lGN4ZgJXlVK5nzv5uJ6zaQW2b0ZvwvLBhpmsbeygYW7a6i3OkhM85CtzgL2fFW0mLM6HW//v0+EAzh8gRQFQWHxfCrryPEkUihSAghRKezrcRJgs1EQuO+8IF21Mj6gBHd4vh2ZzlazyTUkB88dWCJi3QsIYQQotXN21iMzaTnqondCX7yCKrJgdoG79X27BE4h8whZuN/0RSVhvQplIz7G6HeJ2I0RaFpGpoGmgbq/kVkfnUDn6l/5W8V13HR87X0SLQya2AqJw5MYUBa9MGiUSAYYn91IzvLnCzLrWLx7iqK65oAMOgU/EHtYAZVAYNORacq6BQFVVXQqQqqoqBTOXgsFNIIaRAMaQQ1jYk9E7hhak98gRAAOlXBbtajqjLTSbQ8KRQJIYTodLaV1DMgLRqtYmV42/mkfpGO9CPjesTz3voiSoIOMiDcp0gKRUIIIbqAZblVjM2Jw2zQEchfTjBzLGobzaqNOvFvFMX0wZMxkeikbqRajIfdZU2LO5Hy5K+xf3g191c8zDnZ5/Ov0EU8tTCXJxbkkh4TxeAMB3lVbvZVuvEFwwUcm0nPhJ7xzJncnYH2JpIqVxCqzkOrzcPoKiDKU8luy3CWx55KubU/BoMKGviCIbyBEL5AiEAwhAYoKKgKNPqDfLiphLpGH787vg/6kBedu5Sa6H4k2Ext8vsmuhYpFAkhhOhUvIEguRUNTOubRKh8O1iT0bXDAszYnHCmzXWm7wpF7bCgJYQQQrSkwppG8qsbuWJ8NjRUoK/dS2jE5W02vsFsJWniFYctDh1KURRSMnKov+Rjqr68ixFbnuc1ywJKh5/DQttJfF1iZHuJk5xEK1P6JNI7yU7vZDu9km3U1tWirniCxG+fQQ00oSkqfmsaPnsWwfh0Rhd9y9j6T2iKH0hN3wup73EKQWPMEfP0jt/H/tUf4a5+gLH+Vej8DeSf/CbxI2dJ/yTR4qRQJIQQolPZXdZAIKQxIM2Btmw7JLbP4ktGrIXMuCiWl/k4CaChItKRhBBCiFa3ZE8VABN7JUD+NwCo2ePbNMPPFYkO5bBb8J7+L4q7TcO+6Xkytz3NJTzNmRnHUTv6TIJxOWiOZPTWWHQ6qF72MkmrH8DQWEZd91OoHn4TWkIvTCYzBp2KXqeQX1eNcft7xO18nfRlfyJ92Z/wWdPwxvbBE9cHb3R3VL8bfVMlek81hsZK/lS+Fp3RRZ3byjLbJMaYtpK8/G/U9J5MvMPWir9boiuSQpEQQohOZVtJPQADUqzoqncTGnFFhBP9tHE58Xy7Ndx4m4byyIYRQggh2sCy3CpSos30SLQRWL0MVR+Fmjok0rGOyKTXkTbiJOr6HU9BeR7mLa8Tt+tNshYuOHhOSGcmaLRjaKqkMXEopTOfwdF7Ij2iftxwOsGWhjflempGX0XZ/jVEFS/DVLMbc+1O4kuWhnsXAiHVQNAcTyAqgfrus6jvfgovlmTyyppSbs/aw40Vf6N+9fNoM26WWUWiRbVIoUhRlBOBRwEd8Lymaf88zDnHAY8ABqBK07QpLTG2EEIIcahtJU5sJj1ZaiVKoAldO9vx7FBjc+J5Z20hQasZxVmG7HkmhBCiMwuGNJbtrWJGv+RwYSN/GcH00ai69r97l6IoxFqNxOb0wZP5Nyon3o63dCtqXRGGhuLwP00VNHSbTtSw88i0mY9YvDHpdaTGWNCGTKam51hKnV6CIQ1CfgzuMoJGOyGjA35wjXMzwavpeXCtxumpY0lb8xD1Q88jJjGttX8LRBdyzIUiRVF0wJPA8UARsEZRlA81Tdt+yDkxwFPAiZqmFSiKknSs4wohhBCHs73USf/UaNTKHeED7XDHswPG9YgHFBoM8dhkRpEQQohObnuJk7pGPxN7JkBTLbrK7YSm/DHSsY6a2aAjLT4a4sejaRq+YAh/UCMQDJFqNqA7ip3IFEUh3mYixmKkqsFLpQv89szDnmsx6Yi1GPm/0wewen8Nf/ZcxMv+W+Hbv8P5T7fUyxOiRW5ejgZyNU3bp2maD3gLOP0H51wIvK9pWgGApmnSiEEIIUSLC4Y0dpQ66Z8WHW5kDZDYJ7KhjiDVEUV2vIWKkEOWngkhhOj0luRWAjChZwIUrEJBQ9d9QoRTHRtFUTDpddhMemIsxqMqEh1KpyokR5vpnWwnwW4k3mYkOdpEaoyZjNgoeqfY6JFoI85qxGTQcfP0XiyujWdz+gU4dryJa9+aFn5loitriUJROlB4yM9FzccO1RuIVRRloaIo6xRFufSnLqYoyjWKoqxVFGVtZWVlC8QTQgjRVeyvdtPoC9I/LZpg+TaCjiwwte8Gj+N6xLPfZ0NzyT0UIYQQndvSPVX0TbGTaDcR3L8UTWeE9BGRjtWuGPUqqY4o0mKiSIo2k2AzEWs1YtLrvnfeqUPSyEm0clfdSQTM8ei//ANoWoRSi86mJQpFhyuZ/vD/UD0wAjgZmAncpShK78NdTNO0ZzVNG6lp2sjExMQWiCeEEKKr2FYSbgw9IC2aUNl2tMT2u+zsgLE58ZQGHGgyo0gIIUQn1uQLsnZ/bXjZGaDtX04wdTgYoiKcrGPSqQo3T+/F5ipYkXMjUWVraVz3ZqRjiU6iJQpFRcChiygzgJLDnPO5pmluTdOqgMVA+25tL4QQ7ZDHH4x0hHZtW0k9Bp1Cev0GTLW7UbpPjHSknzUuJ55KzYHBWwsBX6TjCCGEEK1izf4afMEQE3slgLcBXfkmlG7jIx2rQztlcBo9k2z8vXAoTfED0S/+JwQDkY4lOoGWKBStAXopitJdURQjcAHw4Q/OmQ9MUhRFryiKBRgD7GiBsYUQosvwFm2mcfUrkY7Rrm0vcdI7yYZp4T34rSnoRl8d6Ug/KynaDLbk8A9uWXIthBCic1qWW4VRpzK6exwUrUEJBTp8f6JI06kKN03vxZ7KRtZmz8HozKdx/duRjiU6gWMuFGmaFgBuBL4gXPx5R9O0bYqiXKcoynXN5+wAPgc2A6uB5zVN23qsYwshRJey8D5iv7oVrb440knaJU3T2Fbi5KyojUSVr6dx/O87zHT2xNTwxNyAszTCSYQQQojWsWRPFcO7xWAx6vHv/hpNNUDG6EjH6vBOHpRKryQb9+zOxhPfH/2yhyAkM9DFsWmJGUVomvappmm9NU3roWnafc3HntE07ZlDzvm3pmn9NU0bqGnaIy0xrhBCdBkBH4b8JShoeDe/H+k07VKZ00O9u4kzap7HG9ML+5if3Deh3cnOzgGgoGB/ZIMIIYQQraCqwcv2UieTeiWCpqHumE8gewqYoyMdrcPTqQo3z+hFbqWbFRlXYqzbS+PGuZGOJTq4FikUCSGEaF1a4UpUvxtNNaJslULR4WwrdnKObjHxnny8U/6MqjdEOtIvNqB3eH+Hgvy8CCcRQgghWt7yvdUATOiZAMXr0TkL0Q06K8KpOo+TBqYyPCuGq1anUG7ujm7JgxAKRTqW6MCkUCSEEO3UuvwaKpweAPy7vkJT9XjH/BZT+Xq0Giko/NDOgnJu1c/FnTQc+5DTIx3nqMQnpQNQXV4Y4SRCCCFEy1u6pxJHlIFB6Q78W95DUw2ofU+OdKxOQ1UVXr96LGcPz+Je58mYandTvvqdSMcSHZgUioQQoh3aVebi7KdXMPXBhTy7eC/kfos/bTSm0ZcB4N0kU4p/KGnHS6QotWgz7kFRO9jbm96IW+fAW1eKPyh3AIUQQnQeHn+QBbsqGd8jHp0CyvZ5+LOPg6iYSEfrVKKMOv597hAmnzmHfVoa9Z//g5V7ZZMM8et0sE/SQgjRNTz+7R6sRh1jc+J57tMVGKu2UhA3DiW2G97UUajbZPnZ9zTWMKv+TTZGjcXWe3Kk0/wqQUsisaFaluZWRTqKEEII0WJeX1VApcvLxWO7QfE69K5i9LLsrNWcOyobJt9Gb/J5+cVn2F5ST1m9h5K6JsqbZ6oL8XOkUCSEEO1MbkUDn2wp5ZJx2fzv8lG8OMkFwE1r4vnTB1tg4FkYq7ajVeyIcNL2o3Hje9hpZFufGyMd5VeLik0jVVfPRxtLIh1FCCHaXIM3EOkIohU0eAM8tSCXCT3jmdAzAf/mA8vOTop0tE4t57jLabRlcaf6Kp73bsD84bVYP7icqLkXEspfGel4ogOQQpEQQrQzTy7IxazXcfWk7gD0dq0iYEliwLAJvLGqAFePU9AUFa/saHFQ3d411GlWMvqNiXSUX02NTiZd7+LzbWV4/LKtrRCi86p1+1jR3NwYoKy0CN+8m6FsawRTidbw4tI8qt0+bj+hD4RC4d3Ouk+VZWetTadHm/Y3YnQeMquXEVWxAZMzD1vxUoKrn4t0OtEBSKFICCHakf1VbuZvLOaiMVkk2EwQCqLbv5BQzlQuGpcNwIpyPb6M8ei2fwCaFtnA7USodAs7tG4MyYyJdJRfTbElExuqpdEX4OPNMqtICNE5BUMaV7+yltnPrWRXmZPifTuIffMU4na8RnD9q5GOJ1pQXaOPZxfv4/j+yQzLioXidehcxbLbWRuxDj+H1yZ9wyjPE3x9/OeUXrQAd/eZqPnL5POj+FlSKBJCiHbkqYW5GHQq10zOCR8o2YDOU4uu1wwGpkVjN+nDW8wOPBtD3V5CJZsiG7gdCAX8JDTmUufoR4zFGOk4v5oanYo+5GFW1HbeX19MVYM30pGEEKLFPbNoL+vya1EVmPfpxyS9cwo6by1+axpa+bZIxxMt6JlF+2jwBcKziaB5tzOjLDtrQ5eNz8ZsUFm+t5ruCVasvY9D11AKNfsiHU20c1IoEkKIdqKwxs3764uZPTqLpGgzAP5dX6KhoOs5Hb1OZUxOHCv2VmEadAaaqse/6d0Ip468LZvXYcZHUq9RkY5ybAadgze2N09q/2B0wfPkljkprW+KdCohhGgxW4vrefir3Zw8KJXbsvP4bf4tBPVRlJ3zIUrPaagV22WmQydR4fTw0vI8zhiaTp8Ue3jZ2fbmZWdmR6TjdRl2s4FZA1P5cFMJHn8QtfskAEJ5SyOcTLR3UigSQoh2oLLWyf/mf4WiwLVTcr57IPcbAilDwRoPwLgeCeyvbqTEF4Wv23HodnwAoa69nfqODcsA6D98YoSTHCN7CkXnfEJh+snconuXlI8vobayHKfHH+lkB7WnLEKIjsXjD3Lr2xuJsxr5c/fdXF96F3u0dJ7r/V/Sew5GnzoQtakaGioiHVW0gMe/zSUQ1LhlRq/wgeK16BpKZNlZBJw7IgOXJ8AX28ogoRdBSyLBfYsiHUu0c1IoEkKICNhb2cA3O8r5Zkc5Hy7bQOiFWdydfxmPJH2GSaeET2qsQV+2HnrOOPi8cTnhgtGKvdUog85B7yqGojWReAntgjcQxFO4Ab9iICq1b6TjHDNjlI36mU9wv3ot6XVr6PnBLGr2ricUagd32AtWYf7vWGisiXQSIUQH9K/Pd7GnooF/zUoladEfaEoczL9SHuLNbR6CIQ2SB4RPLJeG1h3drjIXb64u4ILRmXSLtwLg2Ti3ednZrAin63rG5sSTHhPF3HVFoCiEuk2QPkXiZ0mhqJX5AiGW51ZFOoYQoh35Zkc5sx5ZwlUvr+X+V+Yx7ItziXbuZkFoGCfXvoL+7dkUl5USzF2AooUw9Dnh4HP7ptiJtRhYvrcaY/+T0FAI7l0YuRcTYQt3VdIjmIfb0Rt0hkjHOWYZsVGkxERR3e8izvbdjRYKkvrFtVTW1kY6GsHdX2KszSWUtzjSUYQQHcyy3CpeWJbHZeO6MWL7A6h+N/5TnuDy4wZQUu/hi23lkBQuFEmfoo7tq+3lnP30cmIsBn47LTybqGbPSgxb3iSQM02WnUWAqiqcPSKDpblVlNQ1ocuZgs5dJn2KxBFJoaiVPfHtHi55YTW7ylwHjwWCXXuZiBBd2Tc7yvnNa+vpk2LnjRlePrX+ncSoEOunvU7SNfMomXAv9qLFJLwxE8+qFwiaYiBt+MHnq6rCuB7xrNxXjWaKJhjfm1DR2si9oAibv6GIgbp8rN2GRTpKi1AUhaRoMxeP6cbmUA7vd/srJmce+m/uweMPRjRbqHw7AIG85RHNIYToWHyBEL+fu5mcRCs3pu/Bnjsf1+ibcXQbxLS+SWTFWXhxWR5Y4wlakwmWSaGoIwqFNB75ejdzXllLTqKVD2+cSHK0mepNn+N4+0yCRge6E/8R6Zhd1rkjMtA0eH990SF9ipZEOJVoz6RQ1MqumNAdu1nP3z7ciqZpaKEQ9V//G5o/cAshuo5vd4aLRH1T7fx38C7GLZtDyJ5KzezPGD/5eAZkxBB33PUUnjEXNdCEtXgpwewpoNN/7zrjcuIprmuioKYR0oejlq7vktOHnR4/W3buJBYXhvShkY7TooZkOuiVZOOtqmyqBlxJ/PaXqN36VUQzqZXh9y2lQApFQohf7uPNJRTXNfGX6enEfHsnnri+WKfdDoBOVbhsfDZr82vZUlSPltQfZEZRh+Py+Ln2tXU88vUezh6ewTvXjiPVYaZ6xevEzr8YX3Q3vJd/hprQI9JRu6zMOAtjc+KYu64ILa4HQUsSwX0yQ1j8NCkUtbJYq5HbTujDyn01fLy5FNfaN4lf8Q8CK5+JdDQhRBv6dmc5170aLhK9cLKD1IW/x50yGteFn5CW3QdFCfclMht0pA86jvILvqC21zmo42/40bXG9UgAYPneanQZI9E1VkF9YZu+nvbg861l9A41T5tOGRzZMC1MURROG5LGpqJ68ofdgcfRk/ivb6G+JkJLmX1u1Lp8NKMNfeU28NRHJocQokPRNI1nF++jV5KNEbsfRt9USeDkx9AbzQfPOXdkBlajjheX5aGkDEBXvRuCgQimFkdjX2UDZzy5jG93VvC3U/vz4LmDMehUar59jPgvrqcpeTjByz7BnpAZ6ahd3jkjMtlf3cia/DrpUyR+lhSK2sCFo7PonxrNIx+vIerbv4YPduGlIkJ0Nav2VR8sEr16xWgs3/6ZkMFC8KznSUxM+tH5OlUhIysH5cyn0Xcb86PHeyRaSbKbwg2tM0aEDxava+2X0e7M31jMeGsJGgok9490nBZ36pA0ANYUNVEx4xEMjRVon98Zbvra1ip3oqDBkNkoWgitYFXbZxBCdDjLcqvZWebi9j4VOLa/jnPoHGw9vv++Fm02cO7ITD7aXILb0Qcl6IWavRFKLI7GtzvLOf2JZdQ2+nntqjFcMaE7/kCI+o/vIn7JX3Fmn4hyyfvYHPGRjiqAkwalYDaofLqlFF3OZOlTJI5ICkVtQKcq/N/pA7ik6TV0nhr8PWaiq9oBPnekowkhWlldo4+b39pIRmwUr145Bl3uZ1gKF9E4/g4cielHfG6MxXjY44oS7lO0fG81WlJ/NJ2JQGHXKj6XOz0s31vNRFsJodjuYLJHOlKLy06wMjwrhnfWFZLUdxyVw24kZvdcXBs/aPswzcullRGXoal6/HnL2j6DEKLDeXbJPhKsRqblPoDPnoVl5l8Pe95l47PxBzW+qU0MH5Cdz9o1jy/IY9/s4aqX15IVb+HDGycwrkc8TR4vje9dT9z6x6ntdxHG2a9isdgiHVc0sxj1jOwWx8p91dKnSPwsKRS1kT7aPi7Vf81rwRlU9b0QRQtByYZIxxJCtCJN0/jDe1uodnt5bPYw7PoAxq//gje2D9YJ1x3Ttcf3iKeqwUtutY9g0iAo6lozij7aVIKmQbZ/H1onW3Z2qAtGZ7Gv0s2WYifm6XfSFD8Q21d3oLXxjYZA2VZC+ihI6k8gaTDkS58iIcSR7SpzsXh3JTcN12Oo3YN/zA0YzIcvGnRPsGIz6dnqTUFTdNLQup3SNI1thTU89t8nef2rlRzfL5kXrxhFekwUTpcT/5sXEbPzLapG3IzlrMcwmw5/w0tEzticOHaWuag1Z0mfInFEUihqA8FgEP1ntxEwx/GUegH3bbQAEOpiMwCE6GreXlPI59vKuP2EPgxMd9C46BGMrgL8J9yPaji2D0/jm/sUrdhXDRnDUcs2dqmeDh9vLmVsqg5TQyFqauctFJ0yOBWbSc+bqwuItlppmn4f+qYqmta81qY5tPIdhBL6gKpD6zYeQ9lG8HvaNIMQomN5bsk+ogw6zorLA8Da+7gjnp/iMFPsChGM64lWJjOK2gtN09hWUs+/v9jJtIcWMf+ZP/H76rtYZb6RR+tvQvv2H+xf/xW6187Cnv81FZPuxXHS3ZgM+p+/uGhzY3PCywBX7a+VPkXiiKRQ1AZcy/9HVMVGmqbdw9UzhvHxXj8NlkyChWsiHU0I0Qp8gRCr86q556NtjO8Rz5xJOXir87GsehR3j5Ox9Zt+zGNkxllIj4lieW41+oyRqIEmqNrVAunbvyZfkK3F9ZyeWgOAmjokwolaj8Wo57ShaXy6pZT6Jj9x/abgSRqKfvXTEAq1WQ61cjskhftA6bMnoIR8aMVys0MIcXjlTg/zNxZz3sgMTMUrCEbFQ2KfIz4nJdpMmdMDSf1RKna0UVJxJMGQxnWvrePkx5byzKJ9DLbUcofpfWpSJ1M66g+E9BaSNj5O94/OJapyE+UznyZ+6o0YdPIVs70anBGD2aCycl+19CkSRyR/ilubuwr70vtoTBtH9MgLuWx8Nhajjr3GPqglXWupiBBdhW/+LdhencXv1df5Y04eeYWF+D67C7QQ+ln3tdg443vEszKvmlDacAC0LtIkf3NRHYGQxnBj805vKYMiG6iVzR6Vhccf4sONxaAohMbdgLE+D8/2T9omgLsKXWMlanPDcLXbWAAC+6RPkRDi8F5evp9ASOPKCdmo+csIdZsIzbt7/pTkaDPlTg9qykB0zgLwONsorfgp//xsB19sK+fm6b1Y86fp3G/8H6rOiPGsJ7FMu5262R+x97KNFEx9grJzPyZpzAXo1CP/dxaRZdSr0qdI/CJSKGptq59F9TegnfQgiqpi0KlkxlrYofZG11AKzpJIJxRCtCCtNh/LlleIDlZzqfo5g5ZcR48XB2HPnY971E2YErq32Fjje8ZT1+hnuzeBkMlBsLBrFJ/XF9QBkOnNJWhNAntyZAO1skEZDgakRfPm6kI0TcMy+Cz89gxY/kTbBKgIN7JWUwaEf7bE4U/ohyZ9ioQQh+H2BnhtZT4nDkihm1qJzlWMrvvEn31eisNEhcuL1jx7EZlVFFHvrC3kuSV5XDauG7ce3xvjtrexFC2hYdJfsCVm4YgykB4TRc/sbqRMuIjUvqNRpUjUIfy4T5EUisSPSaGotU3+Pa7z52HNGHjwUEZsFKv8OeEfusgMACG6Arc3wEevPAQavNrnKQqu2cm+U+dSNvL31Ay8AuvU37XoeBN6JmDSq1z1yjqqHQOgi8xS3FBQS3a8BWPVNrTkzj2b6IALRmWyvdTJluJ60OnxjbwWc8lKfAWt/x4SOtBU9sCXN0DLGoe+ZE2X6oslhPhl5m8swekJcPWkHEL7lwIcnLlwJCmOKIIhjRpbTwC0cmloHSmr82r48wdbmNQrgbtO6U/AWY7527toShlF9MQ5PzrfqFdRfmbGmGg/ftynaIn0KRI/0iKFIkVRTlQUZZeiKLmKovzhCOeNUhQlqCjKOS0xboeg0xPd5/tvjhmxUSx2paCpBgLSp0iITiG/2s3ZTy5leM0nFMaO5g+zT6B7agLdh88g+oQ7MZ/2IKrJ0qJjJtnNzL1uPNFmA2+VJKFUbMfd8OOp+v5gCK2TfADQNI31BXWMyrCiq96F2smXnR1w+rB0zAaVt9aEl9tZxlxG0GgnsPTxVh87VL6NkDkObN/N3NJ3n4jqd0PZ5lYfXwjRsXy4qZgeiVaGZ8UQ3LeEYFQcJPb92eelRJsBKNESCRltBKWhdUQU1jRy3WvryIy18MTs4eh1Kr5P/oDqd6Oc+iiKqot0RHGMvtenqPskdO5y6VMkfuSYC0WKouiAJ4FZQH9gtqIo/X/ivAeAL451zI4uI9ZCtUfFlzCgy/QUEaIzW7S7ktOeWEY351oylCrSp845eGdNURQsRj0WY+vs/jEow8FHv51ISr/x6Ahxx+Ovsmpf9cHHgyGNvPz97Cipp6i2EZfH36GLRkW1TVQ1eJkSX4MSCqCmdd5G1oeKNhs4eVAaH24swe0NoJgdeAddTNSejwjWFrTu4OU7CCb2+15/EbXbeAD8eUtbd2whRIdS7vSwKq+GU4ekoShKuD9R1oSf7U8E3xWKylxeQon9QGYUtblKl5erX15LIBjiqYuH4/P7KF/6EpZd79M45hbM6QMiHVG0gO/1KcqeAICWL30Hxfe1xIyi0UCupmn7NE3zAW8Bpx/mvN8C7wEVLTBmh5YRGwWAM34IurKNEApGNpAQ4ldbl1/DFS+uJtVh5p89NhE0xaDvf2qbZjAbdJx7Wviv3X6hXM5/diV/fH8z9Y1+atbPo/crw+j96jBsH86hfulz7Nm1hf1VbsqdHuqb/HgD4b+DgiENjz+Iy+Onxu2jqsH7vX9q3D4avAF8ge922wqFNJwePyV1TezbtZmCXRsIhlqvELW+oBaAYfrm4kjK4FYbq725YHQmDd4An2wuBcA08XoAvEufbL1BQyHUqh0oST+4/xOdSsDRDW2/9CkSQnzn482laBqcOiQNavPRuYrQ/YJlZwDJDhMAZfUeSB4Y3m2xA9/Y6Gi2Ftdz2hNLKa+u5qnhxSR/cwuxT/Un+eub8cb1xTrt9khHFC3oYJ8iS3dCUfEE8qRQJL6vJW5xpwOFh/xcBIw59ARFUdKBM4FpwKgjXUxRlGuAawCysrJaIF77kxEbXn5SYhtAov/lcLO+lIE/8ywhRHv09MK9xFiMzL28P5bHv8A/5BJ0BnPbB7GnELSnMyetBmd0d15Ytp+VW3P5WHc7npjeNCUOwla8jJi8jwHwRyXiie+PJ64fzrh++BzZqJ46DO4yDI1l6BvL0QWavjeEphpw2zKoje6GLzoLzZGJvmontoJviS9cgMmZh4ZC5ZR/Ej/l2lbZ+WR9fi0Wo45E925CBgtqXE6Lj9FejewWS88kG2+sLuC8UZnoYrNo7H0aps2v4Z36B0y22JYftL4gvMQs5cd3kUOZ49Hlfg6hEKjS8lAIAR9tKmFAWjQ9Em2E1s9DBdRf0MgaIMFqQq8qlDk96FIGoKx/EZzF4Mho3dCCDzeV8Pu5mzjJuJEHzI9jWO8mYHLgypyOJ2cmsUNOQonEZxvRag7tUzQ9cyxqgdz4Ed/XEoWiw30T+GH5/xHgTk3Tgj/X6EzTtGeBZwFGjhzZKW8jHJhRtEvfhyFAqGgtqhSKhOhwcisa+HpHBTdP74Vpx3uoQS/GkZdELE8obTiGsg38eXZ/ThmcSs3Ll2Dw1fHH6L8zNGcC/SfYsTfsx1qyDEvlJsw1O4jf+gJqyPejawXM8QQN1u8dU4MeDI0/nhQa0plwp46nesDl2IsWkbToTioDTcROuxm9rmULCOsL6hiSEYNSuolQ0kDULlSgUBSFi8dkcfdH21m8u5LJvRMxTLwJ3a4PcH55H4Yz/t2iO87c/9kOQjs/48/Aa3k21GA+fVPsjMyOA0DtPh7d1jcJVu5Cl9yvxcYVQnRMhTWNbCys4w+zwv2IgnlLwRyHmvjL/n5QVYXkaDPl9R6Ufs2fi8u3SaGoFYVCGg9+uYunFu7lzrjFXNf0LE3xA6iYcBfG7hOItkURq5eeRJ3RoX2KTsiegLr7E6gvkj9v4qCWKBQVAZmH/JwB/HDP95HAW81FogTgJEVRApqmzWuB8TucGIsBq1HHdk8CIXMcwcI1qCMvj3QsIcRR+t/SfZj0KpeM6wavvIY/cSCGtKERy6NmjEC36yNwV5NW/DVDAktYknUdXxUm8N78bahK+IPB2Jzj6dn3TGwmPVa9RmzjfqxNJYTMcYTsqSj2JPQG849mBGka+L0NaLWFqHX78VbmoU/MwdBjMjabnXiznoDvGurfvZLEZXdT5W/CMfMPGFqoWNTkC7Kj1MlNExLRr1tPcOwNLXLdjmT2mCyeX5rH/Z/tZGLPBAyZw3ENuoLYzc9RlTqchHEXtsg4mqbxxsoCfqPfA8DDmxRq14cby/75pH7MmZyDvrmvgXv3YqKlUCREl/fR5vDH/5MHpQKg5i8lmDXuqAr6ydEmypweSAr/nRIs24qu98yWDysA+OuHW3l95X6eT5nPjLp3cXU7Hv25L5Bui450NNHKvtenaOSBPkXLUQafF+Fkor1oiULRGqCXoijdgWLgAuB7n1Q1Tet+4NeKorwEfNxVi0QQviucEWuhqM5DMG04SrE0tBaio6l0eXlvfTHnjMgg3rUTpWIz/hMeiGgmXcZIABq3fkLsgr/SmDCYURf/H+v0BjYV1rF4TxVL9lTy7OJ9/LCNkEFnId6qEW+rIs7qJMFmIs5qJN5mJN5qJM5qQlVgU1E9GwoCbCy04fL0I9Zi4GJ3NZeMs2HS6zDpLTSd/zJ1c68jYfUD1ASbiDvl/35RI9Ofs7mojkBI4zh1E0oogL7fKcd8zY7GpNdxx8w+3PzWRuZtLOas4RkYTr4fd8UW4r75HdXJfYjPGXHM4xTXNeHyBjgxpYZgUyZrbzmbSpeXv3+8nfs+3YHVpOfC0TkEorMwbHwZ/9grMRgMLfAKhRAd1UebShmeFUNmnAXqCtA5C1HGHV1BP8VhZmepC6JiCNoz0MqkoXVr+Wp7OXNX7mFe4osMqVtM7aArsJ76b4xG+bu8qxibE8eDX+6m1j4Kh9FOMG8ZBikUiWbHXCjSNC2gKMqNhHcz0wEvaJq2TVGU65off+ZYx+iMMmKjKKptRBk8Et3ib8DrApP9qK5RXbiT2LTeqC28tEMI8fNeXZmPPxjiqond8a28G6NqxDA0wm+uaUPRUDB/eQeg0XTKE8Sbws1BR2bHMTI7jt8d35v6Jj/51W6qG3xUu33UuL0Hf13d3LR6X6WbGrePJv/3m+2rCvROtnPK4DQGpEWzeHclTyzI5ZlFezltSDrXTsmhd7Id5bxnqX3fTNy6x2iMy8Ay4dpjfnnrC+oAyKlZTDAqAV36sRdEOqJTB6fx3JJ9PPTlbk4alIrZHIXz7JcJvjQV2weX47ryG+yxScc0xo5SFwBJnn2EEvthUBVSHGYePn8obl+AP8/bgtWkY/qUv2D76Brqlj9HzJTrW+LlCSE6oNwKFztKndx9arjxvbZ/KQqg/sJG1gekREexcFclmqYRSuqHWiGFotZQ6fLyh/c286j9NQa7llA18W5ip93SKr0FRft1sE9Rfj3TM8ag5EufIvGdFtmvWdO0T4FPf3DssAUiTdMub4kxO7rMOAur82rQZY5EQYOSDdB98i+/QOlm4v83ifqp9+GYcmPrBRVC/EiTL8irK/Yzo18yPWL0BLe+i6/3SZgscZENZrITjO+DvnonVeP+QkL24beOd0QZGJwR84su2egLUN3go8btwxcM0S81Gpvpu7eOi8d2Y3+VmxeX5fHO2iI+2VLCl7dMISvegnL24zS+sA/j0n+jjbwIxWQ7ppe3vqCWXvFGLPnfEuhzGjq1a/ZNUFWFP83qx4XPr+KVFfu5ZnIPopMyqD71BWLfPRPf+3PwXzr3mGb47Cx1YiCA1bWP4ICTDh436lWevmgEl724mtve2cQTsycxMW089mX34x16NiZHcku8RCFEB/PhplJUBU4aHF52Fti3BJ05FvWHOyb+jBSHiUZfEJc3gCW+B2qB7MTU0jRN4873NpPk3c8J+m9xDbuO+Om38HN9ZEXnc2ifouOzJ6D79mtoqARbYqSjiXZApqJESEZsFC5vAFdc+ItcoGDNUT0/1FzxtS29n6aqghbPJ4T4aXPXF1Hb6OeayTl4N76NzluHfsRlkY4FQGjg2Ti7nYB96s0tcj2LUU9mnIUhmTGMyo77XpHogOwEK/ecPpCvb5uCTlG4+6NtaJqGyaBHd8Lf0DdV0rj06WPKoWkaGwpqOSs+H9XnQt//pJ9/Uic2vmcCx/VJ5Ilvc6lrDDcjj+s7kZrJ92IvXEjTV/cd0/V3lrmYGFuDEgqg+8GOZ1FGHf+7bCT906K56e1NPG//Dfjc7Hn9DuZtKGbx7kqK65rQmre1rnX7qHR5qW/y4/EHCf1w3aMQokPTNI2PN5UwNieeJHt4Zyw1fynBzHFHvSNicnT4+eX1HvT2ZBR/I/jcLZ65K3t9VQHf7qzgseTPCBms2GfcLkWiLurQPkW6A7sTFqyIbCjRbkihKEIO7HxW4DERiMmBo+xTFCpcS9DkQAn5CX76+4MfyIUQrSsY0vjfkn0MzYxhZIYNdcmD+BIHoes5NdLRANBPuQP/ua9hMhrbfOz0mChuPb433+6s4Kvt5QCYuo+nKXs65tWPE2qs/dXXLqxpoqrBx+TQGkI6M2qPaS0Vu8P6w6y+uLwBnlyQC4T738VMnEN973Owr3kcX9X+X33tHaVOJtgrw9dNHvCjx+1mAy9fMZohGQ6e2mbg+cCJDKyYz8vvvMulL6xmwj+/ZcDfvuDeB+6D//TB+vgAdC+fgvu9Gyn/4iHKti8nKAWjVrG9xMk5Ty/n5MeWyGcD0Sa2lTjZV+Xm1CFpAARq8tHVF3z3xfMopDrCn49L6z1gbZ7V4K5qsaxd3d7KBu79ZDsXZdXRq/obfCOvQ7EmRDqWiKDj+iSys8zFdroT0psJ5C2NdCTRTkihKEIyYi0AFNU2oaWPQC1Zf3QXKFlPKGs8rrG3Y9v3Ga7NH7VCSiHED321vZz91Y1cMzkH3/o3MTgL4Lg/tkiz5pagqgrxNlPExr9sfDZ9ku3c89F2Gn0BAHQz7kLnradp8WO/+robCmsBjR61SwhkTwGjpYUSd1x9U6I5Z3gGLy/Pp7CmEQC9XofxhL+hKSr+hf/+Vddt8gXJq3YzyFCMpuohvtdhz4u1Gnn3uvHsvncWF97+BN6oZF5JeYe3rx7F349P4TXHM/yl6V8UB2P5uLE/+ZV1WPd+Suqqv5PyzixqP/4bHq/vV79+8X0uj5//+2g7pzy+hPUFtWwrcVJc13TwcV8gFMF0ojP7aHMJelXhxAEpaJpG/arXgKPvTwSQ0jyjqMzpAVtzrzUpFLWIYEjjd29vxGzQcafpXYImB1FTbop0LBFh547MxGLU8fyKYoJpo0D6FIlmUiiKkAMziopqG1ETeqE2lEHA+8ue3FSLvnYvasYIbMfdgie2N+av/oCv0dmKiYUQvkCIh7/aTWZcFDP7xqMufRBf0hCMXXwZ1KEMOpV7zxxIcV0TT3wbnulizBhGY89TMK/7L0FX5a+67vr8WoYZizC7i1H7ye/3Ab87oTeKAo98vefgsaiELJoGXYRl21v4q/cf9TV3l7vQNMgK5BGM7QH6n5+dZo+JwzftHuy12+i37q9csOY8hrqXUjX6TtJvW4r35MeYo/8HfV1Pcb7jNXannUnC+kcJvHwGdRXFR51RfN+nW0qZ/tAiXlyex+zRWbx61RgA1u2vpbbBS/H6z/HMuxnqiyKcVHQ2JXVNvL2mkMm9E4m1Gqne+DFxqx+kqefJkDLoqK+XFB2+0VFe74EDM13cFS0Zucv6ekc5m4rqeWish+jCBfjH3gRmR6RjiQhzRBk4d0QGH20qoSl1DLqKreCpj3Qs0Q5IoShCHFEGbCY9RbVN6KJTwgcbfuEbYckGAJY3ZbOlrBHPiQ9hbCim6at7jyqDNxAkr8pNbkXDUT1PiK7q8W/3sKvcxT2nDSCw/vV2N5uovRiVHcfZwzN4bsm+g3+/6Gf8BTXQhGfhg7/qmusL6rggeisaCvo+s1oyboeW6oji0nHd+GBDEbkVroPHjcfdhqao+BYc/e/3zrLwTYc49160o2hEax95AU1p44je8SYBazI1F35B/Kw/Emu3cMm4bBbeMZX7zxpEkdfKCfvO5T79jZhK12B5cSrlWxfi+cEOe+LnaZrGw1/t5vrX15MUbeKD6ydw35mDGJ0dS7RBw7nqVcwvHEf6h+cTvfUV2PlJpCOLTsQfDPHbNzfgD4T4y8n9qM3fSuynv8ET1w/OeOZXvTeaDTpiLQZKnYcuPft1NxjE9z2/ZB/pMVFMKHiGQFQC5gm/iXQk0U5cMaE7gZDGFw054U2WClZFOpJoB1pk1zNx9BRFISM2iqLaJuh7oFBUDjGZP/mcukYfn20tQ1k8jwuAGxZqOBcuw2rU8ahtFtM2PM830ccTlTWMKIOOKKMOnaJQWu+hqLaJotrG7/27whWewaQq8MUtk+mVbG+DVy5Ex7S5qI6nFu7lnBEZTOsZi//Rh/AmD8XU78RIR2uX/nhSX77aXsZf52/l9avHYEzph7vvOURtfJH60dcTtKUS0jRCmgZauKGi2aDDpFd/1FSzyRdkR6mTiTFrCKQOx2CXnbUO9ZvjevLGqgL+89VunrpoBACG2EzcA2cTtfUN/DV3YIjr9ouvt6PURaLRh6mhiEDyUTRpVxR05zxP+ZbPsY++kISo7y8PNOpVZo/O4uzhGXy2tZSXl8dwWmE6T4ceJXPuWZSkn4gy5HxMfWYQa4tCr5N7WUcSDGnhP1+rCjh3RAb3nzUIvU4lGNKoWfUGC/R/Jb6sBk9ML0on/4uUZXehyIwi0YIe/HIX6/JrefSCoSQZPBjeu5iQzoT3nNeIsUX/6uumOKKaZxT1DB+QQtEx21hYx5r9tTwxth7zxmV4pt+H3miNdCzRTmQnWJneN5mHd2icoxoI5i1F3/uESMcSESaFoggKF4oav1uD7Sr7yXNfX5XP3R9uwx/UeM26g2pzFm/Mmcn+ajcr9lbz2N6LGaItI3vBb7nA9xcqif3RNfSqQlpMFBmxURzXJ5H0GAspDhN3zd/GKyvy+fsZA1vrpQrRoXkDQW5/dxOJNhN3ndIf77pXMbkK8Z/8oMwm+gkJNhN3nNiXu+Zt5e4Pt/G7E/pgmf4n2PUBunnXEojtjc7nwuBvQA004bNnUhPbB29cH0KJ/bDHp5BoM6EoCot2VxAfqia9cSf+0XdF+qW1O3FWI1dNyuGxb/awpaieQRnhpQTG426HrW/gW/AghrMf/8XX21HqZHp8NdSCPuXo3heMcRkkT7n6yOfoVU4fms7pQ9PZUjSQpxcNov/OJzitaBGxxZ/Q8GUcZT1ORxl0NoaM4dgsJqIMOtmV5xAef5Bb3trI59vK+M1xPfj9zD4oioLX76fhs/8jef1j5EcN4Lb6Odx36S2kxUahbX4arb5YppKLFvHNjnL+u2gfF47J4qQBiXhfOgtDQxG157xPfGrOMV07JdoU7lFkiEIz2qChEvnTf2yeW7IPu1nHjNLnCNhSMY898t/Touu5cmI2F+4opyK5P3H5yyIdR7QDUiiKoIxYC6v21aDZeobfABsOXyjSNI3/LtpH35Ro/nHGQPq/eTOhnKnEpzsYmO7glMFpwCD2rzPS7dNL+cb2L1ZOeomgLRV/SCMl2kxGbBTJ0WZ06vffaoMhjaW5VcxdV8QlY7thVgOojZVkZPUAVdfqvwdCdASPfr2H3eUNvHjFKBwGDf/Sh/AmD8PUZ2ako7VrF47OYmepk1dW5vPhphJuPb43Zwy7Gvv65zDX7CBksBM02tB0Rhx5n6Df+cbB5zYmDKJw0t/RdxvL3R9uZ3bMNvCAof/JEXxF7dfVk7rzyor9PPjlLl6+cjQAhrgs3ANmE7XtTfxT78AQl/Wz19E0jZ1lLs5PK4NaIPmXLz37NQZlOHjgoklUNYzm3dX7KF/3EaOcXzJt5ysYd71Iky4aZ9oE6rKnEMqZhjWpO9FRhh+9l3UlTo+fa15Zy8p9Ndx1Sn+umtgdAHeDk+B71xGf9wm1fWezte8fWfjWVgrrmkiPsxBypMuMItEiiuuauO3dTfRPjeavp/TH8+kfsRcvoWraf0joP/mYr5/iMLOlONwjRbMkQkOFFIqOQWFNI59tKeVvQxsw71iPd+a/0RvMkY4l2plxOfH0S43mW3dPLnDNB1+jbBzSxUmhKIIyYqNweQM41ViiUVB+okfR3ko3BTWN3HvGQAZFN0BjJUrGyB+d12348ZQa3iD5o4uZsuIKPBfNx5Gc/aPzNE3D2RTAVVmAbvsH/Ll2Adcr+WQ878QSCL8xhyb9HnX6n1v09QrREW0srOOZRXs5f2QmU/sk4Vz6LNGuIvwnPySziX6GTlW478xBXDgmi3s/3sFf52/j5cQTuWTGdUzoGY9Jr0NVw+f5/EH89WXoKndgrtlO/LYXyfrgDJbZTiDkOpNLsrcTaMxGn9g30i+rXYo2G7huSg/++dlOVufVMLp7HADGqbfDtjfxLXwIw1mP/ux1Sus91Df56aMWETJYUB0/X1xqCQk2E9dM6wfT+rGj9DoeXrGNph1f0r9pHZMKVpFW+Bksgca4/lTlnIK/72lYU/sQa/35Rtudicvj59L/rWZrcT2PXjCU04emA+CsKEL/7oXYKzdTNf4uHNNuZbw3CGxlfUEtY3PiUR3paPtl22NxbPzBEDe+sZ5AUOOpi4ajlG/FtuFZ6gZcStzEK1tkjORoM1UNPryBIHprgux6doxeWJaHqiicEfySkMGGafiFkY4k2iFFUbhqYnc+fq8Hs40BanYuJm6wtFfoyqRQFEEHdj4rrPfR35oArrLD3jH5dmc5ANP6JhEq+gIVUA9TKFIUhdRBUylX3yJx/oVEvXYqVRd8AI5MAkENv98P7irUfd8QvecD0kuXo2ghPLG9yTOmsSPUn3HDBxK7dx76vMWoSKFIdG1ub4Db391ESrSZP5/Sj9otX+BY8Be8aaNlNtFRGJDm4I05Y/h6RwX/+HQHd3+0jUS7ibOGp3PuiEx6JtnCJyb0JNS9B97ASVSPvIrKT+9jVN7LLIpahqncR3DE1VKcO4LLxmXzv6V5/PuLnbxz7TgURcEQ1w13/wuI2voGgam3o4/96T548F0j6zTvPoIJ/VDVtl+o1C81mn5njQPGsaPUyZubS9i9fR0ZVcu4wruJ9LX/grX/oimuH/4T7sbQt2t8kG3wBrj8xTVsLa7nyYuGM3NAuL+hq2wv5tdORe+pofLk/5Ew4ixUVSFWryMn0cr6/FoAFEdGeIl7KCgzhsWv9vi3uWwoqOOJC4eRHW+h8X9/JmhyYDnxHtQWmumX6gjPdqlwekm3JqLV7m+R63ZF9U1+3llTyHkD7dj3fox/0AWYTLZIxxLt1KlDUnns08HUaw6sX/+e2tTBxCamRTqWiBBZqh5BGbHh6XxFtU1o1mRCP9Gj6JsdFfRLjSYtJopA4Vo01QA/0TdCURRSBk6m+uy30XnrcLw6E9v/JhH/9AAynswi88WhpC+6DaOrgIqhv6XwwkW4rlzK/uOf53eNl7G15zUY+s5EV7oRgv7WeulCtHuNvgBXvLSGvCo3/zpnCMHd3+CYdwk+Rw7K+a9LweIoKYrC8f2T+fLWyTx7yQiGZMTw/JI8ZvxnEWc9tYwvt5WhaRqqqhBl1GGxO5hTcjJXWh7DnzIcNeTHMPisSL+Mdi3KqOO303qyZn8ti3Z/1/zVOPV2FC2Eb8ljP3uNHaUuQCPauRuOYsez1tIvNZrfzezLM7dexKqUC7lEvY+iy9ZQOvav6Hwu1K/+GumIbaLRF+DKF9ewsbCOx2cPO1gkclcVYHr9dFR/AzXnzSdp1Nnf+7I+PCuW9QV1aJoG0ekoWvCI/RCFOJKtxfU8tSCXM4elc8rgNBq3f4alaAmeCXdgtMe12DjJ0eFCUbnTg2JLRGmUZta/1purC3D7glwfuxo16ME4pmVmfYnOyaTXcfa4vlze9Dv07nJM716Iy1Uf6VgiQqRQFEEHZhSFG1onH/bDW32jn7X5tUzv29zwung9gaSBoDcd8dpJfSdQd+5cmhIH443ujjN7JhVDf0vJuHsoPGs+zjlriD35bjJ7DyXRbuLsERkk2Ey8uboQXeYolKAHyre2+GsWoiNo9AW48qU1rN1fwyPnD2VA0xoc8y/FG9OD0KXzMTqSIh2xwzLoVE4YkMLzl41kxR+n8aeT+lLt9nHNq+s446nlLNlTiaZp3PvxdqoafNxx4SloF71PxXVbIXN0pOO3exeMyiIjNooHv9wVLg4AhvhsmvqegXnza4TcNUd8/s4yF4NjvOg8tehSIl8oOtQlY7uxr9JNsRZP8gm/IzTsUnTVu6DxyK+po2vyBbnqpbWszQ//fTRrUCoA7ppSdK+dic5TS8M5b5PQe8yPnjuiWyw1bh/7qxvBkRE+6Cxuy/iik/AFQtz+7iZirUb+dmp/tKAf3dd/xefojnX8nBYdK6V5RlGZ04NiS0JprIZQqEXH6Ap8gRAvLstjfE4cyXvewp8yDCV1SKRjiXbu4rFZ7Db05SH7HURVbESbezUery/SsUQESKEoghxRBmwmPUW1TSjRKYftUbRoTyXBkMa0fkkQCqIv24iWNvwXXT++1xiUi95Bmf0aUWc9RszJfyPl+JvJHHwcidFmjPrv/vMb9SoXjsliwa4KimwDANAK17TMCxWiAznwpWx1Xg0Pnz+UCWzAMf8yvDE90S6ZjyVGtmZvKUl2M9dM7sE3v5vCA2cPotLp4ZL/reb0J5fx7roirp2cw5DMGBxWI0kpR14yJcKMepVbZvRma7GTz7d+d/PBMOlW1EAjTcufOeLzd5Q6OS4mfPdeTR7QqlmP1qlD0og263l1ZT6qqmDOGR9+oKjzvld5/EGueXUtK/Oqeei8IZw6JLwEoKm+Ct1rZ2J0FeE863Vieo077POHZ4V3QF2fX/tdoUgaWotf4YkFuewsc3H/mYOIsRhxr/gfpto9+Kffg/IzNy+PVmp0+EZqWb0HrIkoWgiaOndBuDV8uKmEcqeX2/rWYKjZjTJSZhOJnxdvM3HnrL48VdaPJT3vIDr/S5o+ugOfPxjpaKKNSaEoghRFISM2iqLaJlR7Snhq7Q/umHy7o5x4q5EhGTFQtQfV70af+eP+RD/FbjYQbTZgMeqbG8f+9HKZi8ZkoVMUXtwSIGhNJiiFItHFePxBrn5lDavyqnno3CFM8C4lZv7leGN6oV0yD0uMzCRqDXqdyvmjslhwx3HcfWp/Suo89E2xc/OMXpGO1iGdOSydHolWHvpqN8FQ86yitIE0ZR+Pad1zaD73YZ/n8QfZV9nAMFNp+EA7KxRFGXWcMyKTL7aVUenyQvoINFVPKH9FpKO1Cm8gyLWvrmNpbhX/PmcIZw4LF3pqaqrRXjsbY91e6s94hdh+x/3kNXol2bCb9KwrqIXocONrmVEkjtahS85m9E8m2FiHeem/aEobh3XQaS0+XnSUHrNBbS4UJYQPumX52dHwBoI8/NVu+qdGM7DsfUJGO/rBZ0c6luggLh7TjZHdYrlp7yhK+l9F7NaXqPv633ikWNSlSKEowsKFokawpaCEAtBYffCxQDDEwt2VHNcnCZ2qEChcCxy+kXVLSI42c+LAFN5ZV0QgdQRKJ75LK8QP1Tf5ueyF1SzfW82/zh7M5Kq3SPjsGpoSB6NdKkWitmDS67h8QneW/2Ea826YgEkvDXd/DZ2qcNsJfcitaGDehu+KAurkW9F7amha/fJhn5db0UBIgxwtn6Al4bsvaO3IRWOz8Ac13llbCEYLwaRBhApWRjpWi/MFQvzmtfUs2l3JP88axDkjMvAGgpRu+AzbC5OJqtpC3SnPETvoyE31VVVhaFZMeEaR2YFmsEK9FIrEL/fDJWcA7m/+jd5TjTLzvlbp16coCinRZsqc4RlF4UGlUHQ0Xl2RT3FdE3+dnoJh10f4B54HRmukY4kOQlUV/nn2YBp9Qe71zqa+x2kkrbof18d/xu2RZWhdhRSKIiwj1kJxbROarflLaMN3SwU2FNZR1+hner/wY8HCtYSMdojv2Wp5Lh+fjcsTYLuuN7q6PHBX//yThOjgSuqaOPeZ5awvqOWhswcyY/+/iV/+d5w5p6C7/EMsjsRIR+xSjHoVs0GKRMfixAEpDEiL5uGvd+MLhGeqmnIm4EkZiWHVUxAM/Og520vDO54lNu5FS2xf/YkO6JFoY0LPeN5YVUAwpKF0G4uuZAMEOs8H1wPbj3+7s4J7zxjI+aOyqK6qwP3u9aTOvwBNZ6Tq3A+IG37GL7reiG6x7Cp34fIG0KLTCcnSM3EUHvtmz8ElZzaTnuLtK7BtfA5333MwdxvRauMmR5ubZxQ1fz6WQtEvVt/o5/Fvc5ncO5ERdZ+jBr0YR8uyM3F0eibZuGl6Tz7dVsGSgfdR0/ciEjc9jf/dOTgbGiIdT7QBKRRFWEZsFC5vALeh+c6tq/zgY9/sqECvKkzqFX5MKVlHIGUotOJ2xSO6xZLqMLPUkxM+ULy21cYSoj3YWebkrKeWU1rn4Znz+3L8lt8Rs/VlaodeS9SFL2OOkjtwouNRVYXbZ/ahqLaJt9cWfvfAxFswuApp3Pjuj56zs9SFxQDmuj2Q3D4LRRCeEl9c18SCnRXouo0Lb75QtjnSsVpEIBji5rc28OX2cu45bQAXj+1G1YaPiH5hIrG736FqyPV4rlxEYv8pv/iaw7Ni0TTYVFgPjnQ0KRSJX+jLbWU8sSCXc0dkMC4njspF/yX1vdMJmuMwzry7VcdOdfxwRlFVq47XmTy1MBenx88fZvaBdS/hSx2J8hO7JQtxJNdO6UHfFDt//2w3/lkPUj7qTmL2zkN9/VzqqqV429lJoSjCDux8VhyMDh9o+K5Q9O3OcsbkxGE3G8DvwVC1HdJb7+4NhKf79kyysdCVhqboCBWsbtXxhIik5XurOPfpFYQ0jVenOJn49ZnYCr6levJ9OE57AINeH+mIQvxqx/VOZGS3WB7/Zg9NvnBfAXP/k/HF9ka3/DFo3hXtgJ1lTiYluFEDTejacaFoRv9kkuwmXluVD5ljAdDyl0c41S8TCmlHfPzRb/bw6ZYy/nJyPy4bn03dpk+I//AygqYYys/9hJjT7sPhiD6qMYdmxaAosC6/FsWRgSI9isQvsKfcxa1vb2RwhoNbpqTjnzuH1MV/wJ06Fudl32KIbd0NBpIdZiqcXrSoGDRFhcNs+CJ+rKi2kReX7+eMoekklC/BUJuLKk2sxa9k0Kn865zBVLq8PPJNLjEz76R02iNYy1Zjfu1kGmtKIh1RtCIpFEVYRqwFgHyvPXygeelZYU0ju8sbmNa3eYelsi0oocBRNbL+tXol2dleGSSY2J+Q9CkSndTbawq47IXV9LPW83Hyfxm6+GpQVKrOeoe4qTccsfG7EB2BoijcMbMPFS4vr6zYHz6oqgTG3YSpejuenV8ePFfTNHaUOplgD38ZU5Lb791ng05l9ugsFu2upMBnJ+joRjC/Y/QpqnB5Dy4F/KGdZU6eXriXs4alc/WkHJx567F/PAdPXF+8l35OSv/x6HVH/7Et2mygd5Kd9QXhQpHqroCA91hfiujE6hv9zHllLVFGHfdONBL/5iwcufOoGHkboQvfJT4prdUzpESb8QVD1DQG0CzxhGTp2S/y0Je7idI83KK9RuJHlxGwpaIfdGakY4kObHBGDHMm5/Dm6kIW7qokaeLllJ36KkZnPtrcKwn4O8/Sb/F9UiiKsAMzigpcGprRjuYKF4q+3Rn+sD69b3htdms3sj5UzyQbTf4g7sRhqCXrICQd7kXn4Q+G+Nv8rdz53mb+EvsNb3pvIqF0MZWj78Q7ZwmJg45HaYXmnEJEwpiceCb3TuTpRXtxefwAWIafj9+aCksfOXhehctLbaOfgfrmZUlJfSOQ9pebPToLVVF4fXU+WuZY1KJVP5oh1e4EvOi3vEFBZS3aD7IGQxp3vreF6CgDfzmlPw0V+UTNnU3IaEeb/RaO2LhjGnp4txjWF9QSsjd/wXfKXWBxeMGQxk1vbaCotolHh5Ux4JMz0TdVU3LqG8Sc+BccFlOb5EiJNgNQWu9BsySiNUih6Oesz6+lftPHLLD8gW47n6Ou19l4rlwIRkuko4kO7rbj+zAo3cHv526m3OkhZdgsaqc9gLVkBQ2f/S3S8UQrkUJRhDmiDNhMeopqmwjZktGaexR9s7OCnEQr2Qnh/iha8ToC1hSITm31TL2SbQAU2wei+hqganerjylEW6hx+7j0f6t5eUU+/81eyGUNz+NOn0DN5UtImPVHom22SEcUosXdfkJv6hr9vLIiP3xAb8Q/6jrMxcvxF20EYMXe8MYFmYH9BB3d2v3uOCkOM+Ny4lm6pwpdt7GojVVQsy/SsY5s30ISvr6VmKV/p9z5/Rk9Ly3fz6bCOv52an8sWiO6ty9A9TXQdO5bWBKyjnno4VmxuDwBSrX48AFZfiZ+wgOf72TR7gpe6LGY8Wt+i9fRnaqLviRt+CyM+rb72pDiCBeKyp0esCVKM+ufEQgEqX/jSl4w/huzxU7Jme8Rde7T2OJSIh1NdAJGvcpjs4fhD4a45e2NhDSIG38Z9QMuIWb9U9Stez/SEUUrkEJRhCmKQkZsFEW1TWBLwVdXypMLclm5t5ppfb7bjlup2kUosW3u8PZMDH9Z3qr0BkArlD5FouPLrXBx2hNLWVdQy8uj8plZ9hyuXmdivuQdEjJ7yywi0WkNzohhcu9EXlyWh8cfniEaNeZyggYrgWVPoGkazyzaS49EK7ENuWhJ7bc/0aH6p0Wzp6KBUOaY8IHCVZEN9HOaexAmbHsRz7ZPD87wKqxp5MEvdjG1TyITujvwv30Z5ppdOE99nujsYS0y9LCsWAC2upv7G9VLoUh8nz8Y4vMtpby6eDvvJTzL5MKnqetxBk0XfUxKZs82f488UCgqc3pQrFIoOhJN03jvhX8x1fstq9IvxXPVQtKGzJDdQ0WL6p5g5e+nD2R1Xg1PLshFURSiTv03TYlDsH/+WxpKdkQ6omhhUihqBzJio9haXM+aKgNlJfn8+4tdDM2K4YqJ3cMnhEKo1XtQEvq0SZ5Yq5F4q5F1zjhCphiChdKnSHRsFS4Pl72wBo8/xNyTYNK2v9GYOgbLuc9glA9Sogv4zZQeVDX4eHddeGmZEhWDd+BszLvmsXj9FnaWubhxUia62n2oyQMinPaX6Z1sxxcIsV/NJGRyENi/ItKRjqz5i64ntjcZi2+jrGg//kCQP8/biqLANeNSML53OfbChdRO/Sexg2e12NCZceFl7nu9MeEDTtn5TIQ1eAMUVDeyq6iK1Z+9xHzzPQx3L6F0zJ9Rzvov8bExEcmVaDOhKlBeHy4UqVIo+knPfraaE4qfYJ9lMMOveJi4aJkdLVrH2SMyOHNYOo98vZu1+2swmqMInfsKmmpA/+5lBJpckY4oWlCLFIoURTlRUZRdiqLkKoryh8M8fpGiKJub/1muKMqQlhi3s+ieYKXM6WGfx0qarp4Ft03hnWvHkR4T/mCHqyS8C01S2xSKINynKLfKTTB9JBStbbNxhWhpHn+QOa+so8bt48VTY+i/6Dr89gz0F76JzmiOdDwh2sTYnDiGZcXw7OK9BILhZsqmCTdAKEDZ10+QHhPFKekNKFoQNaVjzCjqmxLeBGJXuZtQxiiUwvbd0FprqCRksFI442lUfyMp397Ci8v2sXh3JdeOsDHkm4uxF35D5eT7iJ00p0XHNul1JNhMFLg0QuZYNJlRJJqV5G4mauHd9HhtNH9t/CcpRg/5M1/CNvVWYqxt04/ocPQ6lQSbidJ6D4otEcXvBl9jxPK0V++sKSRhxf9hVzykXPi07NYqWt3/nT6AzDgLN7+1kfomP9akbBpOeQZT7W78n/0x0vFECzrmQpGiKDrgSWAW0B+YrSjKDz9l5gFTNE0bDPwdePZYx+1Mbpjak7evGcv5U0dhDHnobv/BjiiVuwBQ27hQtKfchZoxEl3VTvA422xsIVpKKKRx2zub2FxUxxNnZNHnmytBUdEufBejPT7S8YRoM4qi8JspPSisaeKTLaUA6BJyKEudxvGNn3DDxDQMVc3TxpM6xoyinkk2VAV2lrlQs8ahq94NjTWRjvWTNHclmjWRpO5DKBl3N/aSpTQtfITpCfVct+c6zDW7KJ75PLFTrm+VZT5pMWZK6j1o0emE6mRGkYDA8qfo/e5UErb+j5XBPtxhuov9F68gafjJ2M2GSMcj1WGmzOkBa3MrhsaqyAZqZ77ZUc5HH7zJ2bqluEfegCWj/e5WKToPu9nAoxcMo6S+iacW5AIQM+hEXIMuw7z1TXCWRjihaCktMaNoNJCrado+TdN8wFvA6YeeoGnack3Tapt/XAlktMC4nUaMxciYnHh0BxpVN/cxOCBU2dxMOqF3m2XqlWTD6QngTByOggYl69tsbCFayn++2s0nW0r546y+TNj9AHp3Gd5zXsOc3DPS0YRoczP6JdMzycbTC/ce3HXrOf8s4pQGTlUWEyrbhqYzQnyPCCf9ZcwGHdkJVnaVOVG7jQ0fbMc99bSGSrAk4LAY0IZdyu64aVwfepOnPHeiBprYf+o7JI48A72udboCpDrMlNY1gSNdmlmLsF2f4InpxVPDPuSKxpsYN/MC+qfHYjG2j1kpydHmcDNra2L4QBdefhYKabg8fnyB8M3krcX13PrGSv5pfgGPvRvWGXdGOKHoSoZmxnDWsAxeWr6f0vomAKxTboJQEM/K5yOcTrSUlvg0kg4UHvJzUfOxn3IV8FkLjNv52JPD//5BoShYuYuQyfHdG2Ub6JkUntK/W9cbDYVgQfv98C3E4cxdV8QTC3K5YFQmV3SrwrxrHp5R12PtOSHS0YSICFVVuG5KD3aWuVi4q5KNhXW8UJRKmaUPprXPEirfRiiuF+giP5Pgl+qTbGd3eQOkDUdT9QTz23GfInfVwffxZEcUN7mvoFqNB2sC+07/gJT+EzDpW69nWlpMFCV1TSjR6SjSo0gASk0evqTBvLi5kdHZcZw5LL3VCpW/Rrd4C/urG2kyhpux09B1C0Xuin2Ub1/GnvwithTV8af3t3Cjbj7poVJ8M/+N3ty+d6oUnc+tx/dC0+DRr/cAoEvogbf7dPQbXoaA97DPqa934vf72jKmOAYt8W5wuPnR2mFPVJSphAtFP1n2VhTlGkVR1iqKsraysou9IdiaC0Wusu8fr9xNML4XtOGOEz2Two3wdtUrBON7o0lDa9GB7Ch18qf3tzC+Rzx/P30Aoc//TCAqEcvU2yIdTYiIOn1oGmkOM08v3MuTC3KJNhuImnwTxto96PIWQnLH6E90QJ8UO/ur3TRhIpg8BK2g/fYpUhorUWzhQtHXO8rZWa/jkwnvseesL0nJ7tfqszjSHFG4fUF81jRUTx343K06nmjn/E3oXMVs88RT1eDjzll9293un9P7JeMLhFhW2vx1pQvPKIp662x6fng6A14dRM+Xh/KXyt9xlTIfV68ziR44M9LxRBeUEWvh4rHdeGdtIbkVDQDox12HvqkS3+b3f3S+311L1PMTCMy9pq2jil+pJQpFRUDmIT9nACU/PElRlMHA88DpmqZV/9TFNE17VtO0kZqmjUxMbLsZNO2C7fAzitTqPW267AwgOdqE3aRnT3kDZIxELVkH2mHrf0K0K02+IDe9uQGHxcDjs4cR2jYfU+kaAlP+CCZ7pOMJEVEGncqcyTms3l/DV9vLuXxCdxwjzyNgSQ43su5ghaK+KXY0DfZUuFCyxqIr3QiBdni3MhRCaaxGtSWiaRrPLNpLdryFk0b2IiU+GkdU68/iSo0JN++v0Td/tpKG1l1bbT4AH+w3MXNAMiO6xUY40I+Nyo4j0W7iw9zmP9NdtVBUX4y+Lo+aPhdQMuqPfKuNwKhT8cT3R3fS/ZFOJ7qwG6b2wGLU89CX4X66+p7T8cf2gFVP/+h7o/eTP2F0FWDeNY9QZW4k4oqj1BKFojVAL0VRuiuKYgQuAD489ARFUbKA94FLNE3b3QJjdk5RsWg60/dnFDXVoWusQE1su0bWEG582iPJRm5FA7rUQahN1eFp80K0c/d9up09FQ3857whxJtB/eZufHF9MY+6LNLRhGgXzh+VSazFgMWo44rx2aA34h9xFQBKcsdoZH1An5RoINzQWpc1GiXogYptEU51GJ46FC0I1kRW7K1mc1E910zuQWpMFAm2ttlZKtUR3km1nOZG/rL8rGur2QfAnmASvz+xb4TDHJ5OVZg1MIUvdjsJGaxoXbRQdGCmpGHM1XwZez43NFzJ6qmvU3fxl1hiUyOcTnRl8TYTcybl8NnWMjYW1oGqoo26BmP5JoKHrEZxb/sC2/Y3cPefjaYa8C57InKhxS92zIUiTdMCwI3AF8AO4B1N07YpinKdoijXNZ/2VyAeeEpRlI2Kosh+64ejKGjWJEKuQ2YUVTWv+2zDHc8O6JVkI7eyASWuubFp84cKIdqrL7eV8drKAq6ZnMOkXok0LXsGgzMfTvg76NpHc04hIs1i1PPw+UP5z3lDibUaATBPvAHnlHsgZ2qE0x2drDgLZoPKrjIXJDZ/2W1+32xXDnzBtSby9KK9JNhMnDX8SO0cW156TLhQtD8QFz4gM4q6tEBV+I5+jz6D6JFoi3Can3bSoFS8gRCNhlhCropIx4mIQN4yQgYLxozBPL8kjwFp0Vw9Mefgn2khIumqSd2Jtxp54LOdaJqGccRFBI12/CueBiDgrsX46c14Y3sTdcbDePudhWnrm2jun1xgJNqJFulYp2nap5qm9dY0rYemafc1H3tG07Rnmn99taZpsZqmDW3+Z2RLjNsZabZktENmFGlV4al8bb30DMJ9iipdXlyWrPABKRSJdqzc6eHO9zYzMD2a20/og+auxrjsITzdpmLse0Kk4wnRrhzXJ4kTB6Yc/Fkx2bBNuRn0xgimOno6VaFXkp3d5S6I646mqO26UJTXFMWSPVVcOTEbs6H1GlcfTqLdhF5V2OeNRkORnc+6uJJ926jTrMwa1b6Xmx5YflYetHfdpWeFKwmmjeL11SUU1TZx54l9UdX21U9KdF02k57fTuvJin3VfLChmF21UNXzXIw7P6S8OA/Pp39C31hO8LQnUI1RGCfdhBrw4JXd0dq99rO1gQizJ3+vR1GwYld4u+KYbm0epVdy+A7THl8MmqJDq5b1pKJ9CoU0fvfORjz+EA+fNxRXo4f6T+9G9bvQnXhvpOMJ0SF01C8efVLs7Cxzgd5EyNGNYFU7XOHevHT7zW1N2Ex6LhrT9u/pOlUhOdpMsTOIZk0kVCdLz7qyhtLdFCqpTO7dvvuBHlh+tt9jIdQVdz3z1KOv3I4vbTRPLMhlQs94JvVKiHQqIb5n9pgsMuOi+N07m5j5yGLO2zAQQkH2PHMxtm1v0DDieizdxwCgSxmAp9tU9Oue/8nd0UT7IGsx2hnVnoKWv/zgz1rlboKxPdBHYNlMz8Rw49/dVT6GODKheh9te/9TiJ+3v8rN/328nWW51dx7XDTRqx7CvvsdjA3FNA6+DEvqwEhHFEK0or4pduauK6LG7cMR3xOq2uFNjeaZEPN2+7hoclabNK8+nFSHmeK6JrTodKiXQlFXVd/ox95YSE3cUAy69n/P+KRBqexbE03AlU9k/uREUOEaFDQ+dWZT4/Zx54ntb3c6IUx6He/9Zjxr99cePFa6eB4TKxeTq6WjDLuFQ7eTUSfciP6Ns/FueAuT9BBtt6RQ1M4o9hQUT224wqo3oVTvRkuKzBfd9NgoTHo1vOVhbHdZeibalUZfgCcX5PLc4jx664r5KmkuPVeGGz42pE+iavxdpIw+J8IphRCtrXdy+OPnzjIn4xJ6Qf5SCIVAbUdfgN1VaCjUYuPy8dkRi5EWExVuOJqVDpXtcOaVaBOfbtzPeVRhzG7fy84OGJUdxzZDHEZvTfv7s93KAvuXo1N0/HOzjZMHpTI4IybSkYQ4rCS7mZMGfddcPWD/I553crm76QYq39nBvBviiDKGpxwYe03HF98fZcVTMPJSkOJnu9R1/qbtKGzJ4X83VEDAi64uHyWxV0Si6FSFHok29lQ0oCT0RKnd96OtDoWIhM+3ljH9oUU8uWAvV+XU8oH573T37aJy2E2UXr4K5dIPSBs/G1Xf5e49CtHl9E1pnv1a5kJJ7IUSaGp3/XdCDRXUY2Nsz+SDu49FQmqMmbJ6D0p0BqqzSN7TI6DW7Tv4a03TqHR50UKhNs2wfN0GdIpGUrd+bTrur6VTFVLSMtERotHZtZafafkrKDT1xBky8vsT235jGyF+LX32eAI3bWbO7PPYXeHirvlbv3tQUdDGXo+xZie+XV9FLqQ4IikUtTcHC0XlUJOHogXRJ0Xujbxnko3cigbUuBxUrxMaayKWpT3YUlTP1uL67x3zBoIRStP1+AIh7vloG9e9to5Yi5H3Tgxwe9ntaCY7ros/I+HUe0jL7oPNJJMlhegqEu0mYi0GdpW7IL75xkp1+2poXVNZQmUous13OvuhNEcUvmCIxqgUFH8jeOoimqermb+xmOH3fsXnW0txNfkoXf4mjv8OIzj/xjbLsL/KTUNpeDaZEt+jzcY9Vr1zugOweuuuCCdpQwEfauk6vm7I4dJx2XSLt0Y6kRBHxWY2MKV3Ir+d2pO564p4Z03hwcdMw84nYEkmuOzxCCYURyKFovbG3lwocpXBwR3PIjOjCKBXko3iuiY89ubGm114+dkbqwo486llnPX0cr7ZEW44Xrf+fbRnJkFtfoTTdX7lTg+zn1vJi8v2c+WE7rw6sYphS+bgt6Xjv+wzYjNkFxAhuiJFUb5raH3g/bKd9SlyVpVQqziYOSDl509uRWnN22lXqc0NjOvb18yrzqyqwcvdH25D0+Ctjz+Hl08l7avfYHCXo+z9ts1yvL+hmGy1eXfduJw2G/dY5WRnA7BhR/sqAreq0k3ogl626vvz22k9I51GiF/t5hm9mdAznrvmb2VbSfMNd72RwMg5RBUuxrNvRWQDisOSQlF7Y2v+ENlQRrAi8oWinknhnc/yaV5z2gULRcGQxj0fbeNPH2xhYq8E+qbYufbVdSz6+HWiP74Gc9U2fCueiXTMTm3F3mpOfmwJO0qd/OvM/vzGtpC4j6/CG9cP7bJPsSZkRjqiECKC+iTb2V3mImRJImS0E2pHO595/EEUdxWG6CQsxsjOdkx1mAEoIy58oJ0t0evM/vbhNnxeL29nvs//mm5FX7WDssn345n8Z3QNpQd3xmtNoZDG++uLGOuoJ2S0gyW+1cdsKbrmG6n5hfk0+gIRTtM2dq/9EoARE08kxmKMcBohfj2dqvDoBcOIsRi46c0NePzh1RimCdfhtyTBF38M9x8T7YoUitobayIaCjRUEKrcRdCeAcbITTU9UCja6YlBU1S06vZ1l7a1uTx+rnp5zcFZLM9fOpLXrh7DBYn5jFlzM9VR3fF2n4Fu0+vga4x03E7HHwzx8Fe7ufh/q0gy+vlg2EbOWHIKiYv+SGPaOJTL5hMV07639hVCtL4+KdG4fUGK6z1o8T3RqtrPrIOvd5QTSz3JqRmRjnJwRtF+f3OhSHY+axOfby3jk82lPNFjJWMq5/Kx8UTO1D1O7KRricoeGT6pdFOr51ibX0tRbRODLNVosd07VgNZa/i9PjpYx5fbyiMcpvUFQxqV2xZRqKRyznEjIh1HiGOWYDPx4LlD2Fvp5p+f7QRAMdnxTbkLc/kGGte9FeGE4oekUNTe6PRolgRCrjKUqj2EEnpHNE63eCt6VWFXlY9QdAah6q4zo2jt/hrOfno5S/dUcd+ZA/nrqf3R61SUojXc4/4/KvSpzKz+HQsSLkLnrce/6Z1IR+5Udpe7OPOpZTz3zRaeTPyAD/1z6LPpfvy2NMpPegHD5fMx22IiHVMI0Q70aW5ovass3KdIaUeFog/X7SdGcZOSGvmZj7EWAya9yt4mK5qqR5OlZ62uvtHPXfO3MjpZY3LZyzR2m4b5jIfZWa/n/Q3FkDIYAK0NCkXvry/CYtSR5C/pUMvOAIiKRVNUelmaeGFZHlonb8Q+d20B/fzbCGaMwaTXRTqOEC1iUq9ELh+fzUvL97NkT7gxvXXUxXgSB2NYeA+atyHCCcWhpFDUDmm2ZDRnKWrNHpQILjsDMOpVusVbyK1ogNjuXWLp2e5yF1e/vJZznllBXaOfl68czUVjuuH2BijfvgzLO+cTsCTiuOYThvXtyXVLjLhj+sDq52QHmRYQDGk8u3gvpzy+lMoaF1+n/ZeZzrk0ZE6l/PzP0F31Ocmjz8ZokIbVQoiw3snh2a+7yl3oEnujuorB545wqnBfmi17wu+bqi3ysx8VRSE9JooSpx/NlkJIZhS1ur9/sp0at48Hk79C9bsxnHgvJ/RPYVhWDI9/swevwU7Q0Y1gSesWiryBIJ9sLuWkAQnonIWoHaiRNQCqDi0qnjHJQTYX1bNmf22kE7WaRl+AuV8uIE5pIHPItEjHEaJF/WFWX3okWrn93U3UNfpAVeHE+zG4y2hc+Eik44lDSKGoPbIlo5RuRPU3oiZGfivMXkl2cisaUOJ7oNR23kJRWb2HO97dxImPLGbVvmrumNmHr383hd6xCqULn4cXZpL8zkkEDTaCF8/HkZzF/WcNAhRWJ56DoXIroYJVkX4ZHZrL4+fyF1fzj093clyveD7Lfp20mlXUzfgP1oteIbnfeMwGubMmhPg+u9lAekxUc0Pr5qav1XsjGwr4cGMJsVpz405r5AtFAKkxZkrqm9Ci02VGUStbtLuSueuKuH2kgYzc12kcMBtD6gAUReG24/tQUu/hrdWFkDIIpWxzq2bZV+nG5Q0wKyOAEgqgxHewGUWAZk0k29xErMXA80s67+fRr7aXk9MU3kpclz0+wmmEaFlmg45Hzh9GdYOPu+ZvCx/rMZHGXqcRtfpxArWFP3MF0VakUNQOKfYUVHcFAGpS5AtFvVPs7K9202jrhuqpg8aaSEdqcfM3FnP8w4uYv7GEqyZ2Z/HvpzK7n4HA/N8S98wgUhfehs5TS/noP+G7egGWpPA2rUnRZnom2XijaQwhYzT+lf+N8CvpuCpcHs7/70qW763m/jMH8pD9DeLyPsY56S5iJ1yBQSd/XQkhflrfFDu7ypwQ3zwTtzryy88+2FDMiITmxrvtpVDkiKK0zgPR6ShOmVHUmh78Yhc5CVYubHgJVD3GGX85+NiEnvGM6R7HEwtyCSYPRle7DzzOVsuytzK8pKOXIfz5krgONqMIwJqArqmKi8d246sd5eRVualq8FJa3xTpZC1qQ0EdY3W7CEbFQ7zsdiY6n0EZDm6Z0YuPNpUwf2P4hoXhxL8DGr4v7o5oNvEd+ebVDqnRh2yfG+EeRQCnD00jpMHCyvDUfmryIhvoF2jwBvAHf757fl2jj9++uYGb39pIryQbX946mTtO6IN/wxs4XphIzJ73cXY/hdKz5+G9diVJs36PLfb72xuP7xHPsoImvINmY9z1Ebg6f5PFlpZX5ebsp5eTV+Xm+ctGckrda9g3v4hz+G+Inn57pOMJITqAPil29lW68Tm6o6FEvKH1nnIXW4rrmZ7VPAuynRSK0mKiKHd5wJGO6iqRnWZayfYSJ1uK67m+Vy2OfR/jHvEbDDFpBx9XFIXbTuhDpcvLN3XNnyvKt7Zanr0VbhQFUgMl4QMdrUcRhP8MuSu5ZFw3DKrK0wtzKa3zUOXyUe70RDpdi9lQWMdYwx6CGWM7VsNxIY7CdVN6MDwrhr/M20puhQtDfDZNI67FsnMuNTuXRDqeQApF7ZMtvAVoyBTTLj5Y9ki0MalXAq/tMYQPtPc+RZqG/oM51G746IinLdlTyYmPLOGzLaXcMbMPb18zluhAFd5XzyXp65vxxPam+pIF2M5/htRBU3FYjCiHecMe3yOeRl+Q3G7no4T8+Fa/2FqvrFPaVFjH2U8vx+0N8uqVoxhS+Br2Ff+ioc+52E+5L9LxhBAdRL/UaAIhjS0VzZsvVEa2UPT+hmJ0qsLIgzOKEiKa54A0hxlNA6cxGSXog8bW35a9K3p3XSEGHZxQ/AT+qESijrv1R+eM7h7HsKwY3i4K70LXmg2t91Y2kBEbha4+D81gAVtSq43VWlRbIkpjJUl2M7MGpvDpxnzSvphDj/mnU1u8l0qXN9IRj5k3EKSqJJ/UYClqt7GRjiNEq9HrVB69YBgmvY5L/reakromLNPuwG9NxfHebCrXf0QoJL1fI0kKRe1Rc6EoGN+r3dxJuGxcNhtc0eG7tNW5kY5zZA3lmHe+T9zXt+Cq/fHsHl8gxD8+3cEl/1uN1aTj5StGcWaGm5ov/onjhYlYi5dSOeFv6K78jMTsAT+75GlsTjyKAt9WROPNnoq6/kUI+lvr1XUawZDGKyv2M/u5lViMOl49M4G+X11M3NJ7cHefieWcp1BU6UckhPhljuuTSJRBx9x1heHlGhFeerYmr4bhWTHYArVoqgHMjojmOSA1JgqAKrX5RpQ0tG5xvkCIeRuKuSFlF9EVa2ma8Hv0UdGHPXdIRgxrqgwErUkEi1u3UNQj0YZWvY9QbE67+Xx5NBRrIqqvgbr6eo7vE8d/lEeIL/wCU+0ues4/FeeuxVQ3dOxi0bYSJwO13QDou42LcBohWldmnIWXrxxFgyfAJf9bRW3QjPfSz/BFZ5Hw4SXUfPUg/kAw0jG7LCkUtUf25inI7WDZ2QFT+yaRGOugSk0kVN3OZxQ1NzDVe2oIfvHX71WjC6obOfeZ5Ty7eB+/7V3H61kfMfKj40l7fTLJa/5FU/xAai9dSMKMWzGbjL9ouBiLkQFp0SzfW4V+zBz07jK0nZ+0ykvrLHaWOTnnmeX8df42hmfYeXPAavp9MJOoyi1UT/035ovfRDX8st9/IYSAcEPrUwan8uHGEgJxPVGqcyO6E2VpvYeMWAshdyWaJaHdfDFPc5gBKNbCs1hwSkPrlvbltjLimvZznfNRPLG9sI694ifP7Z1sx+0L0hQ3AFqpoXUopLGv0k2PRFt4Vnhc91YZp9U1z4IqL8ln4pY/coJuHQ8oV7HztI8Imhx0/3Q2TStfpNbti3DQX29DQR391Hw0RYXkAZGOI0SrG5Dm4PnLRlJU28QVL66GmEyCl3+GM+dkElbcS+PbV1Nb78Tp8eP2BvD4g7+ovYg4dlIoao+aC0W6dtDI+gCdqnDJ2G7s9ifSVB75BqFH1Lw0zpVzMjE736J2xwIAPtpUwsmPLSGvys0bQ7ZwW8H1JO14BV90N0on3kfplWvRX/kx8d36H3aJ2ZGM75HAhoI6fN2PJ2BLI7T53RZ/WZ2Bxx/kX5/v5JTHlpJf3cjj00w86/sDmWvvx50xGffVy4mfcg06ncwkEkIcvQtGZ+L2BdnqSUL1u8FVFpEcoZBGhctDcrQZraESrR0sIz/gwIyiPF9zoUh2PmtRwZDGp0tX84bpfnR6A+6zXkOnN/zk+X1Swv0fK6x90FXvAn/L99opdXpo8gfpmRCFWpePGt8BG1nDwXYMmd/eREzeJ6zp9TuebprOopoYck+bhzttPBlL7yT06R3UN3TMBtcbCmoZZiwiGJMDRkuk4wjRJsbkxPPEhcPZWuLkulfXYYiyETX7FapH34Fjz/tYnxuP+tIpBF87F88bl+J653pq9shO061NCkXtUUw3GmY8gDrs4kgn+Z7zRmZSqKS2+x5FWvVeNFWP7swn8NkysX51B09+tY3fvrmBnsk25o7ew/hd9+PKmkH5tdtQL3mP1Bk3kprV61dvvT6uRzy+YIh1hU7IGgcl61v4VXV8S/dUMfORxTy1cC+nD0nm4+HrOHnlbIwNxVTP+i+WS98hOjkr0jGFEB3Y8KxYeiXZmF9kDR+I0PKzarcPf1AjJdoE7sp2058IwGbSE23Wk9doQtOb0WTpWYsJhTQ27NjNHeV3Yld9lJz6OrHpR77p1yvZDsButTtKKAAV21s8196K8I5nfS1OlJAfpSM2soaDhSJL5QbKRv4ey3G30CvJxtx1RSQkJFN44ktUDpxD/LaX0Ob9hnp3x2twvbGwjn5qIZrMJhJdzPH9k3ng7MEsza1i2oOLeHxBLvWjbqHylJfwxPYCNAyNFZhrduDY9zExb51K1dKXCEofo1YjhaL2SFHQj5kD1vhIJ/meWKsRW1ovbMF66msqIx3nJ4Wqcwk5umGxx+Gc/k/Mdbl4Fz3MzAHJPNZ3B71W/4WGzOMwzH6V1OQkrCb9MY85KjsOvaqEl59ljkDnKpHdz5pVN3j53dsbufh/q1AVhVfPTODvNXeStuZ+3N2m4b1mGfFjLkD3M72ghBDi5yiKwvmjMvmyPPzlmwjtfHZgB6YURxSKuwqlHc0ogvDOZyX1XkK2VEJSKGoxtbVVpH98ESlKDTumPkdan1Go6pFnKEebDaQ5zKzxZAKglbb88rO9leFCUY6u+XNJRy0UxWYT0pspH3Yz1cNvJCfRxp9P7se+SjevrcqnT1os/hl/p3zkHcTkfkDww5txNnWcnkUVLg91tdUkBUrRpQ6KdBwh2tw5/8/efYdHWaUNHP6dKcmk9x56D703KQKKICBiwwoq9ra6FtS1fK6u7uqufe2KBcUKiqhIEaX33gkkENJ7T6ac748ZsgFDzUwmgee+rlxk3nLO884Z8s48c0rvRD6Y0oc20YG8+ds+Rvz7d+5YG8PcLq9gveFHqm9eQsWtqyiYtoaKmN5ELryP4tl/pbKy6SWFmwL5ZNZInWnPFk/r2rUXAL+tXOXlSE4gbz+4ulUHdhnDYtN53GWaw2NBP5H4x4OUJQxGXfUZFj/3dekN9DXRvVkoK5LzIN75HJG+0W3lN0Vaa75Zn8ao//zO3C3p3DmsFV/22MLgBZfgW7Cb/NGv43/dFwSEx3k7VCHEWWRSr0TyjZFUGfxw5OzxSgwZRa5EUbAvqjwXQ2AjTBQVVkBIggw9cxeHncDvriOy4gAvBD9O5wGjT7oYxhHtY4NYkR+EwzcYe7r7J7ROziklxM9McPkh54ammigKiCT7zr3k9v0rrSID8PMxMrxDNJf1SuS/S5LZmVFMfKgfQRdOJ7vXfYTvnoV17oOUVDSNOYs2HSykg3K2kSFWEkXi3DSyUwyf3NSPFdNH8shFHSmssPL47G3c+NFa0osqCAvwITImHtPUORR0m0bY1g+wfXIpFXUsYCTqRxJF4rS0aNsFgM1bNjbOJQu1xlCwH+VKFL37x34eKb0aTL602PRvyuIGYLtyJgGBQW6velCbCLakFVIc1gmtDOjD691eR1NxILeMa99fzYNfb6Z1VCDfXRbO3Sl3E73sCcpj+1ExbRnhA2+QXkRCCLcLD/BhdJc49jtisWV7J1GU6epRFO/vQNkqaobMNBZxIRYyiiogOBGKpUeRW+TsxvfwKp63Xk3HIZee1hd+HWKCSM4pwx7VBTI8kCjKLqNNVADk7UebLBDUdL+g8fG10DIiAH+f//UGf2JcJ8IDfHj4my1Y7Q78fUwEXPgEOd1uI2LHJ1TNe5Si8safLNp4qJAuJlcyT4aeiXNcbIiFO4a3YcH9Q3nlqh4cyi9n3OvLeP7nnZRX2/D18SV44kvkjnoV/6z1GD8eg64u93bYZxX5lCZOj2uljMDSVJbsyfZyMHUoyUDZKjBEtGFnRjGvL97LoB6dKRj1MgXtLqPispmEhoR6pOqBbSJwaFiTVoUjogP2tHNvnqJqm4PXF+1l9Ct/sPVwEc+Ma8t7zebT+cdx+BTuJ3/06/jdOIfA6BbeDlUIcRab3LcZe+2xVGXt9kr9WUWVGA2KCFXs3NDIEkXxoX4UlFtxBMVjKM0Eu83bITV9xekA7DG25ZIeCad1avuYIKrtDorDkjDk7HB7eyTnlNImKhBH/n4coS3B0HTf/ocH+PxpyoBQfx+endiFHRnFvL3EufJtgMWM39jnyO18I5Hb3sf603Syi8q8EfIp23SwkAH+GTh8QyAk0dvhCNEoKKWY2DOBRX8dxhW9E3nn9/1c+PIfbEkrxGhQRJ43laJLPsGnMJnyBc95O9yzStO9UwjvMPthD4yno28u//0tGe3FpYfrlOd8g2ALbcVD32wmxM/M0+M7E9r7MsrGvkFUpOfmferVPAxfk8E5/CyhJ4aMTV5dmrmhbThYwMWvLeXfC/YwsmM034+u4Mp11xC+7hVK24yj8vZV0otICNEgBraOIM+3OQEV6R5ZRepkMooqiQr0xVie69zQyBJFcSEWAArN0SjtgFLvrA53NqkqcPbM6tIp6ajeLqeiQ6yzl/Mh33YYbBVunYS9uNJKdkkVbaIDnYuRhDfRFc9OYnTnWMZ1i+O1xXvZk1UCQKDFjO+4f7mSRR/g9/W1pGVkNL73rjhXy9ucVkiS4SCO6M5wmqvvCnG2C/X34YXLuvHlrQPQGqZ+tJYDuc7kb1i3iyhPmoz/ureoTtvk3UDPIm75xKaUukgptVsptU8pNb2O/Uop9Zpr/xalVC931Cu8Q4e3pndgAetSC1i5P8/b4RzNtSLbzL0mth0u5tmJXQgL8MFiNpIY5tllRi1mI31ahrEiORdjQi8MFblQdMijdTYGVTY7L/y8i8vfWkFZlY33xgTwr6pnaD1/CsphI//SLwi8+iMCw2K9HaoQ4hxhMCgS2nXDgCZt//YGrz+ruJLYEItzxTNoVKuegbNHEUC2csUl8xTVW+oBZ3Ln/D6nP7dM2+hADAq22Jwrf2o3Dj/bn+P8INUm0h9DYQqGiCY6P9Ep+L8JnQmymHno683Y7A4Agvx88Bn/IocHP0fg4aVEzrqYg3s2U2WzU2m1U1RhJbe0ioyiCiqtdq/FvierhIpqK/HV+yG2i9fiEKKx6986gs+m9QdgyodryClxTlhvufh57JYw9A/3gsN7/5fPJvVOFCmljMCbwBggCbhaKZV0zGFjgHaun1uBt+pbr/AeQ0QboqxpRAf58toi76woczw6LxmHwYd/rChlXLc4LurSsOPwB7WJZFdmCYVhrjeKh8/u4Wdb04oY//oy3v49met7hPB9q9mMWjIJ/6wN5A1+Cn3nKsK7jz3pqi9CCOFuvXv1A2DVmoZffCGzuJLY4NqJosbVoyg+xJkoSnOEOzfIPEX1lpueQh4h9G4dc9rnWsxGWkYEsLokEm20uHVC6+Rs54pn7S1FKFsl6ixOFEUE+vL0hM5sTiviwVrJomCLmbBht3Nw/BeYqgpI/HY8WSu+IGP9T5Qs/wDHwmex/Hg3ucs/Jq/EO6snbTxYSHOVjdlegUlWPBPihFpFBvDh1L7klFRx04y1lFXZMASEY73gH/hmb6Z86ZveDvGs4I4eRf2AfVrr/VrramAWcMkxx1wCfKKdVgGhSqmmO5PeOc4Q0RpjRR53D45m1f58ViXnUVFtr7khe5Mtdx9pRBNo8eX/JjT8RIAD2ziHtq0ojUUbzDgOn50rnzkcmtcW7eXS/y6nsNzKR1P68GjZv4jc/TmFSddRdttaIi54AIvFz9uhCiHOURHNnd9Zpe3dws6M4gbtLZBZ5OpRVDP0rHH1KIoJ8QUguTrMuUF6FNWL1e7AVnSYct9oTGc4vLp9TBA7s8uxRyeh3ZkoyinFZFAkVDuH5hNzdvdWmdA9nodGd2DOpnTu/+p/ySJ/HxMJ3Udx+IqfqQ5MpPniu2j1y3UkLnuEqM1vEHRwEYlL7sc4+xYOpmdgb+AFWzYdKqCvn3OeK5nIWoiT69EslDev7cmOjGLumLkBq92BX88rqWg5EsvSf2DLS/F2iE2eOxJFCUDt8TVprm2ne4xoKlzLqg6NKCHU38wLv+xiX3YpqfnlXh/3XXhoF7ut0fx9YhciAn0bvP5uCSEE+pr4ZnMO9qgkHGfhymd2h+aRb7fwnwV7GNs1jl/vH8qgikVYDv5O6fl/J/TyVwmOkGFmQggv8w2kIrA5V6gFLP3tF/ZmlbI/p5SKas8mjEqrbJRW2VxDz3LRPoFgblxJc1+TkchAX1JLTTh8AnEUSY+i+li9P59IRz4+YWc+AXH72CBScsuwR3fFmL3NbXMcJueU0iLCH0P2DueG6E5uKbcxu+v8tkwf05G5m9O5b9YmrK5kkclooHnrDhRePZfUUe+y/+Kv2HXVCnbenMyBqZvI7PswIQfmEfPFhRzatpTy6oab5H3jwUKGBGWilQGijx2YIYSoy4iOMTw3sQt/7MlxDjl1aMwTXgYU1u//gqMRdGJoytyRKKprTMmxd7dTOcZ5oFK3KqXWKaXW5eTk1Ds44QGuRJF/8i9M62hl26FcdmUUU15lr1kS2Bt2ZxQRVH4QFdGGsV2902HNZDRw78i2LN6Vzdrqls4JrR1nzx+pKpude77YwNfr07hvZDtendyDEF2M8dfHqYrtTdB5t6NkAkYhRCOhL/8Qk9HEjXtuJ2Tze5RV2kjNL/Nob4HMIud9MDbYgqM0G+3fuIadHZEQaiG9qAIdlICWHkX18uuOTOJUPuFxZ76iZ4eYIBwacoM6YqgqgsJUt8SWnFPmXPEscxv2kBbgG+SWchu724e14fGxnZi3NYO7P99Atc35XkwpRVxUJFH9LiO+xyjad0giKTGcdnGhBI56hNQJ36C0nRazL6Vo0csUlVd7PNaiCit7s0vpbDyIPaxNo0ssC9GYTe7XnAcvbM+cTelM+2QdlQEJVA59DL+Dv1E05wEqK8q9HWKT5Y5EURrQrNbjRCD9DI4BQGv9rta6j9a6T1RU43xzdc6LaIPDN5ToTa9x945r2Gm5kUG/jCZu1TPkFldSVG5t8JBsdgf//GoxFmVlQJ8+DV5/bbcObcPd57dldnY0huoSdN4+r8bjDuWVVWTm5HLLJ+v5aWsmf7u4E/df0B6lFJU/PYaxqhjjhFfBYPR2qEIIUcO3eR+Wj/qW3+w9aL727zRfeCv2sgIOF1R4rM6aRFGIBV2Wg25kw86OSAz3Jzm7FB2cANKj6Ixprfl9+yHCVAnm0DPvUdQhNhCAvTgntCZ7V71js9odpOaV0SY6EJW1HX2ODWm6ZWhrnhyXxPztWVz63+V8vvogJZXO96j+PiYsZuNRcygG+ppI7DaczMkLKG5xAXGrn8X+w73kl3j2g+aWtEIA4iuTZdiZEGfg7hHt+MelXVm6N5er3llJSbebKO4+jbCtH6HfH0XhwYZf1OJs4I5E0VqgnVKqlVLKB5gM/HDMMT8AN7hWPxsAFGmtM9xQt/AGsx8Ft21g34QfODTsZVbEXMue6kgit71P9KbXSSssb/CVI95dup+KLOfE2oFxHRq07rr89cL2tO42FIB583/ycjSnb0d6MXM3H+bbFVtZ/dnT2F7pSeSb7em7/02en9CeaUOcvcqq9y7Gb/uXVPa/B1O8TL4ohGhcjAbFmD6d+HfYU7xsnErwwUW0nTOO0vxMCso801PgSM9a52TWuahGNpH1EQNaR5BeVEmpbwxKJrM+Y9sOF+Mocb2lDT7z3swtIgLwMRrYUBENgMMNiaJD+eVY7Zp24SYMBckYz8HVtG46rxWvTu6B1e7gsdlb6ffcIv761WbWpeTXebzJaKB5YgLVk2aQ3eMewnd9genr68nOq/t4d9h0sJBgVY5/+WEMsfJeSogzcU3/5rw/pQ8Hcsu49K1VpA94itzxn2AuyyD4k5HkL30fq01WQzsd9U4Uaa1twN3AfGAn8JXWertS6nal1O2uw34C9gP7gPeAO+tbr/CukJAw/Fr3o6j9ZVhGP809hsf4w28E0ev/Q0DqYg7ll+NooIkA92WX8MqCvYxLcH1DHNGmQeo9EaUUt10+hmrlS/aulbyxuHGtDlcXu0NTXFHNK79u59E3Pqbo63sYM38k/fe9zM7yIH6x9+Me0xwuXTOZ/F1L0dXlqLn3Yw1pjd/I6d4OXwgh6uTnY+Keke14texCvuv2NuayTBKWPUJ6YTlVHnjTmFnkvBfFhlhQZTmowMaZKBrWzhnX/upQDOW5YKvyckRN0687MolXBc4HwfFnXI7ZaKB1VABbc8EeEIMjp/6JouScMgCSTIdR2oE6R5MQl/RIYP5fhjL7zkFM7BnP/O2ZXP72Su76fEPN0trHigq2EDDmadIHP0vQwUUEfnkZ6emHPDJsdW1qASPCnBPfG2TFMyHO2PkdovnqtoFYHZor3lnJcmMfym78nfKY3oQv+itVH11C1qovKSwuabDPqU2ZyR2FaK1/wpkMqr3t7Vq/a+Aud9QlGgeT0UBCqB/RQb7kllYxoXsCt665njUx6TT77V72hfxIhm97EkI9P876+03p2LVmYvNKdL4vKvjMu367kzKaMcR3Y1jeIUb+uocuCSEM7xDt7bD+TGty132HLWUlRftWcWvlHv7iU4Xd4MPhZuPITZpKQGIPWgX5kn9gMYELHiRs1niqIrtgKU6h+rrvwWzx9lUIIcRxje0aR5uFe3h9nz8D+zxM/JpnKdn5OYfMN9AmKsCtc6tlFlcS6m/GYlTo8rxG26OoeYQ/LSP82VQUQC+A4sM1cxCKU/fr9izGRldDIRB05okigI6xQaxNKUDHdICc3fWOLTmnFIDm1gPODefwsCalFD2bh9GzeRhPjEvig6UHeH3xPpbtzeXxiztxRe/EP/0dCPA1YRx+J4cDo4lfeA8RX07gwIXvEdy8C5EBvkcNWztTheXVrEzO5fW2uZDKOd1GQrhDl4QQ5tw1mDs/W899szYxpF0kT034nLAt7xO88R0Cf7kV228hFLa5BHu3qwlvPxCjG/4vn43cMfRMnMPMRgNxIX7cN7ItdqOFF8OeQCtF8wW3UlhYWLPShCftySqhRYQ/lpIUHKEtwdB4XtYqoTetbMm0j/Lj8dnbKK1quBU0TpVjw6dEzruJ8O0zKK2oZGPUBNJGvk7+bZuIv+EDevUfRpeEEKKDLYR3H4v9thUUdZ2Cb+42KrpcjU/b4d6+BCGEOCGDQXHn8Lak5JUzP3gSJfHnEb/qGezZe8g+To+CM5VZVOUcdlZZiNJ2aKSJIoCh7aNYlu1aIVQmtD5tqXll7M4qYUCU6zVUj6Fn4Fz57HBhBdbw9hhyd9d75bPk7FKignyx5O1Em/wgrFW9yjtb+Lt6Gf503xA6xATx8DdbuPb91aTmlf3pWIvZSEy/Kzg8/guMlXm0+eYCzN/fTvLuLeSUVNW7V8LP2zKx2jW9fQ/j8A2FYFkUWoj6Sgj147s7B/P0+CQ2Hizk4tdXMMt0CcW3byJ7wueUJg4ndPeXRM0aQ+nnUykpyPJ2yI1S4/lELZq0mBA/LumRwFf7jOwZ/DKWgt0kLJ1ObonnV0Hbm11Ku+hAyEtuFMPOajMm9sZgq+SVEc7VZf758y7sDk1aVi5WW+NIGpWu/4pU4uht/4iUiXPof8e7JA65gaiYBEzGP/+J8AsKJWTSKxTesg7Lpa97IWIhhDh9E3rEkxDqxw+bM0kb9h8cRl+aLbmX3MIStw4nySyuIDbEAmWulVsb6WTWAEPbRZFiC3M+KJZE0elasMP54SIpoBRt9gff4HqV1yHGuSJZtqUFBmtZvdskOaeUNlEBOLK2YY9KalRfpDUGbaMDmXXrAJ67tAtb04oY8+pSZq05iD4mQWc2GojvNoK0a5eS2+UWQg78TNuvzsc492727dzEvuxSMooqKKqwnvYXpN9vOkzrqADCSvbgiOkMsnKsEG5hNCimDm7FwgeGMaJjNC/O383k99eSEjaQwGtmUHDndvL63E9w8o9Y3hlE7pqvPboialMkdwzhNjcNbkWVzcHXRR3J6v0goclzsG351qP/6apsdlLzymkfHYChMAVDI0sUEd8TgCS9jxsHteLTVamsnfsuce91pWrOX7wbG5Cbk41/+gqWqP58eccwLuuVWGdy6FhKKcIS2qKM5gaIUggh6s9sNDBtSCs2Hiok1RrM4SH/wj93K1Hr/0OBG5fArulR1AQSRQPbRJBjcMUnK5+dtl+3Z9EpLpiAqhwcQXH1/pDf3pUo2utw9SqpxzxFWmuSc8poExmAIXsH6hycyPpUGAyKa/u3YP79Q+meGMr077Zy66frySs9uqeh0aBo0aw5poueZf+1K8jrPJXQ5O9p//Vwmn/cB7850yj7/Q1Styxj58EsknNKSSsoJ6ekivLqur8YzCyqZPWBfCZ0i8WYswMVI20khLvFhlh467refDi1D+XVdq58ZyWPz96G0S+E8IufouC6X7EFxBL50zRKZ15PZVG2t0NuNCRRJNwmKT6Yga0j+GlrBhld76AytB2Rm94kr9RzvYoO5JZhd2i6BpWg7FWoxpYoCm+DwycIe9oGpg2I50X/Txmw8WEcRguB2z6lYs8Sr4VWUW3n44/fxYSdweOnkhRfv29ChRCisbusdyJ+ZiOLd2VT3mYM+R0mE7X5LSr2LnVL+dU2B3llVcf0KGq8Q88CfE10bhFLkQrCLomi05JbWsW61HwuSIpBl6S7ZchQQqgfAT5GNpTHAKDrMU9RXlk1RRVWuoRUYKjIPydXPDsd8aF+zJzWn8fHduL33TmMfuUPFu44ejiKUoqwAB/atGqNYcwL7L96KekD/4/ymD74Z28gftXTtP1+PB0/7EDiJwMJ/u5amP84uSs/Z/ehDDKKKqio/t8E+j9uSUdrmNSyGmWrwCgTWQvhMSM6xrDggaHcNqw132xIY8S/f2f2xsOEte6FumURef0eIujALxg+GEVl3iFvh9soSKJIuNXN57Uiq7iKHZml5HS7Hb/8nVTu/PVP3XjdZU+Wc6LGDmbnahGNbiJOgwFHXA/s+38n9KtLuMLxM+/ZxvKvDrOoDm6Ocd79aGtFg4flcGge+GoTnYp+p8I3irY9hjV4DEII0dCCLWYmdI/nxy0ZBPuZyBjwFNaAWMLW/sctc8hll1SiNa4eRa77UiNOFIFznqI0ezhV8sb4tCzemY1Dw4VJMajidFQ95ycCZ++WdjFBbMo34fCLwJ515j2KkrOd74+6GF3tKpMkn5TBoLhlaGu+v3swkYG+TPtkHZPfXcnq/XlHHaeUIjzAhzZt2hMw9C4qLnmPg1PWsvvqVRwc8SbZPe+jIqo75rJMInZ+SvPf7qHdjB74zbmZ7NVfszsti0P55Xy34TCd44NpVr3fWbAk84TwKH8fE4+O6cSP95xHiwh/HvhqM/d8sRG7MhEx9m8UXTUHY0Ue6pPxVOb/+cuTqqpKin79J+z51QvRNzxJFAm3GtExmhYR/ny7IQ1758uoDognfOObFJZbPVLfvqwSDAri7enODY2tRxFgiO+JT+F+fAuTSR/9Lnt6TOeDtbns6ft3fIr2U77oXw0e0z/n72LxtoOMMm/FnDRO5i0QQpwzrh3QnPJqO4t3ZhMaFkZ+p+sJTF9O8cHt9S47q9jZgzbG1aNIo8AvvN7letLQdlGk6wiq8g56O5QmZfWBfCIDfekcF4gqzcQQXL8Vz47oEBPEnqwSHBHt6rXyWXKOc2Lm5lZXEkISRaesU1ww3989mKfGJ5GcU8ZV767imvdWseZA/lHHKaUI8TMTF+JH2+hA2rfvSET/yZhHPU75hPfIvGYhe6btJnnctxR0uIqAjNW0WHQbbT/uid+XV3BB9kdcHbGPvF1L0coAUR29dMVCnFs6xQXz7e2DeGh0B37amsElby5nX3YJYR3Oo+LKrzCVZ6M+mUBlvnOeOK01+XtW4HhnOCEr/gHJi7x8BQ1DPh0KtzIYFDcOasmGg4XklGvyuk4jMHM1JftWeKS+PVmltIwIwFi4H22y1HtpWk8w9LyW4raXkH31L8T2v5InxiURG2zhxj8CyW09Eb81r2PNqP8HlFM1a81B3vl9P08kZePjqMDUeXyD1S2EEN7WLTGUrgkhzFx9kNggX8o6X4PDYMZn84x6r9SZUeRMFMWFWHCU5qD9wsFockfYHpMUF0yBKQqfsnRvh9KkpOSV0SYqAFWeh3LY3Pb+o31sELml1ZSHtK3XymebDhUQ4GMkoGA39uBE8At1S3znCl+TkRsHt2Lpw+fzxLgk9mSVcuU7Kxn/+jI+WHaAnDpWS1RKEeBrIjzAh/hQP1pFBtAxLpRmPUbgGPMiqVPXceCizyhscynWogzuM33HdXv/QuTW93GEtwWznxeuVIhzk8GguOv8tnx2c38KyqqZ8MZyftySTmC7wVRc8SWm0gzUJxMoObyHwtkPEvbFxZgq8ymYMAPG/NPb4TcISRQJt7u8TzOCfE18sioVe48bsPmGErLhTYor3d+raG92CW2jA9F5yThCWzXOnjHRHTFd+SFxrbtgMCiCLWY+vqkfVruDGzMmYjcFYP/hXnDU7wPKqaiy2Xnhl10MahPBlQGbcPgEQ8shHq9XCCEak2v6N2dXZgmb0oqIS2hGcauLCdvzDQWFBfUqN9OVKIoNtuAozUY34omsjzAYFH6RzQlwlOKoLPF2OE1GSm4ZrSIDoNiVYHNTj6Jh7aPwMRn47lAghqpCKD39iVUrrXZ+3pbJ6M6xqOztEC29ic6UxWzk5vOcCaOnxyeh0fz9xx0MeH4RUz5cw7fr08gt/XPSqDYfk4GoIF/axoYR13sstjEvcaV6icnhszhw0Wdk9XoA28i/N9AVCSFqG9Q2knn3DqFjbBB3f76Rsa8u5dpfFY/6PYmj8BAB7/UjbMv7FCVdR/Vtqwjrdam3Q24wjfBTtWjqAn1NXNW3GT9tzcBq8iMvaQohqb9SmLrVrfVU2eyk5JU7VwnJS26Uw86O8Pc5+hvldjFBfDS1L8llfrxinIIlYx1lK9/3eByLdmZTWG7l9iEtMO2bj73thWDy8Xi9QgjRmEzoHk+gr4mZq1Px9zFR1n0qxupi7Ju/rle5WcWVWMwGQvzMUJDilgmOG0Jss7YA7Nt75kOdziXFlVbyyqppGRkAJRnOjW6YowicS7b/87KuLMgNc27IPf02Wbwrm5JKG5O6R2LI34tB5r6pNz8fI1MHt+LHe4aw4P6h3D6sNfuyS/nr15vp8+xCxr++jH//upt1KfnYTtAz0WI2klNazaGCCi7p34m43mMxjZiOT6fRDXg1QojaYkMszLp1IPeOaEt0sC9hAT5kh/fmpajn+EP35FbTsxSe/zwBIY17KLm7SaJIeMSUQS0xKHhrSTLVvac5V/la919K3NirKCW3HLtD0y7aD0NRKoZGnCiqS8/mYbxzfW/eLe7PZlN3LL89Rf6G2R6t85v1acQGWxjsm4yhIk+GnQkhzkkBviYm9nROal1YXk1Am0FUhHcidPsnFFdUn3G5GUWVxAZbUHYrxtzdqNimsYpRu3bOuVF27dnp5UiahtTccgBaRgRAsXMOC3cOfb+0ZyL9+w0EYO3alad9/ncbDhMd5MvA4HyUw4aKlR5F7tQuJoiHRndk6cPnM/fu83jwwvb4mgy8+ds+Ln97Jb3+voC7Zm7gq7WHanoZ1jZ3czomg2Js1zgsZiMRgb4opbxwJUKII3xMBh64sAMzbuxX8/PEXbcQccsc1jo6cNW7q9ifU+rtMBuUJIqERzQL9+fGwa34en0amdZA8jtMJmzfbLLT9uNwuGcFtD1Zzi7ySX7FKHs1qokligCGtIvilat6cUvZrRwggfAfplLw87PY6zlPRl2yiytZsjubSb0S0Dvnoo2+qLaj3F6PEEI0Bdf0a0G1zcG3Gw4T4u9DYecb8MvbTlk95tTLKq4kJtgCuXtQDiuGuG5ujNhzQmNbApB+cJ93A2kiDuQ5J4puGekPxRloZYTAaLfWcdf4IZQrf3ZvXfunSZRPJL+smiW7s7mkRzzGnB3OjTHSo8gTDAZF18QQ7h7Rjm/uGMTGJy7kv9f24qIusaxLzefhb7cw4PlFDH/xN278aA3/N3c7n6xM4ftN6QxtH0VYgPToFqKx65oYwhe3DsBm11z17ir2ZZ87Q7QlUSQ85p4RbYkI8OH5n3dS3vsOQBOy8S2ySv787cqZ2JtdikFBC5Xp3BDe2i3lNrSLu8XxwKVDGVf2OIt9zids9YuUz7yOqvJit9Yze+NhHBou75WA2jUPW8th4Bvo1jqEEKKpSIoPplfzUGauTgXA2P0q7OYgLJtmUGWzn1GZmcWVxIVYIGubc0NT+YAeFI8DRXX+IUqrbN6OptFLyXUmilqEB6CL09GBMWAwurUOo9GAMaYTnc0Z3PHZetIKyk/pvHlb0rE5NBN7JqAztqKNvhDe9L5Ia4pC/M2M7RrHvy7vzqpHR/LLX4YwfUxHkuKDySyuYtaaQzz5/XYyiyu5tGfTGJYqhICOscHMunUAWsPkd1exO/PcSBZJokh4TJDFzMOjO7LhYCEr8v0paH8FEdtnULXjZyqqz+xNeG17s0poERGAudC19GsT7FF0xOR+zXn5mgHcUX4rb5qmELj/Z/T7F1KY5p5hAFprvlmfRu8WYbS2H8BYfAhjkgw7E0Kc267p34L9OWWs3J9HWFgYhe0vI+TAPA4fOoj9NHu/aq3JKqoiJsSCLX0z2miBiLYeitzNTD5UWyKJ0Xks25vr7WgavZS8MuJCLPj5GNHF6RDknvmJjmWM6UgXnwyq7Q6u/2ANGUUVJz1n9sbDdIgJIikuGEfWNhyRHRr9yntnI6UUHWODuX1YG/57bW9+vm8IO54ZzerHRvLjPecxrptnXjNCCM9oFxPEl7cNwGhQvPN7srfDaRCSKBIedXnvRLolhvDygj2kD/w/KiM602zxPWTv34Q+wyVfj9ibXUrb6EDsmdtx+IZ47I1aQxnTNY7PbxnA+45x3K2mYyg5TPBHw8ib/0+qqurXC2tzWhF7s0u5vHci9h1z0cqAoeNYN0UuhBBN07hucYQH+PDvX/dgVIqqHjdicFTjv/1zDuaXn9Z9Kr+smmq7g7hgC2Ruwx7VsUl9QDeFNaOZKZ9FO7O8HUqjl5JbRosIf+eD4nS3rXh2LGN0R8yVeXx6dVtySqq46p1VpBU452fclVnMofxyiiutNa/TlNwyNhwsZGLPBJRSqKzt0ETmyToXKKWICbbQJSFE5iQSoglqExXIt3cM4h+Tzo2/q5IoEh5lMCieGt+ZrOIqvt+eT+oF7+Mw+RH7043k5WSecbnVNgcpuWW0jwmEzK04YrrAWXDT7d0inG/vGMRWv36MqniBXYEDiFj5DxzvjqBg35rjfmipstnJTdtLzvyXqNj07Z/2f7P+EBazgYu7xqK3z8ae0B+awLLNQgjhSRazkUfHdGR9agFfrD1ISPMulMYNImLHDKqz9pBWcPIeHEdkFjsT+rHBvhiytzedYWcuKiSB1uYCFu/KPu3eVOealLxyWkUGAKBKMjB4KFGkopyTjPewZPPZtP4UlFdz1TurSF41l+bfjiNg/v0UL/+I5B0bOFxQxpfrDqEUXNIjHkqzMZTnYJQVz4QQwm0Sw/yxmN071LixkkSR8LjeLcKY2COej1emUuQbzcFR72IuzcAy5yaqq6rOqMyUvDJsDk27KH+MOTtQsU1jwtBT0ToqkO/uHESbNu0Ym3Ubd9sfoKowk9DPRlM080ayf36erBUzydq+lJyU7eQsfAXbuxcQ+X4folb+Hd95d0NlUU15lVY7P2xK56LOsQRlrcGUvxdDr+u8eIVCCNF4XN47kYGtI3jhp12UVtkoGPQYym6l7Zzx2HfOI6v41Hp0HlndKNFUhKEiD2N807ovqZBEIh055JVVsfFggbfDabSKKqzkl1U7VzyrKkVVl0Cwh3o0R3Vw/puzix7NQvnilgFUVVbi++vDmIpSCU75mcSlD9H26xHEvNWRgWvuZnr479izdlFwYKPz3BhZ8UwIIcTpk0SRaBDTx3TCZFC8vmgfvq0HcPi85wlMX0HZDw+SlldCQVn1aU0eemTFs86WHJStosm9IT+ZyEBfPrqxHwvuH0pwr0lcUP0vZtrOh30LiV79AjG/3knM1+OImjGIqGVPYbBVkNN/OoXjP8JgLce2/tOashbsyKK40sblvZthXf0BDt8QDF0mefHqhBCi8VBK8Y9JXamyO/i/udsJaN2ffRPnURXSkpYLpqEWP0d+ycl7Fh3pURRf5Zy7QDWxIT+GkERM9koiDOXM25JR7+HhZ6vUmhXPAqAkw7kx2EMTE4c0Q5v8sGfvAqBLQggz++ymBRk8UH0bz3T8kfXjfiVt6EscjLmA5raD3Fb2Ds2+GE7InOudZUiiSAghxBloOoPnRZMWG2LhqfFJPPLtVqZ/u5UXr7iW3IJdRG59j+A9symP6U1BbD8q4/sRmzQEi8VywvL2ZrlWPKt2TSbWxN6Qn6p2MUH849KuPDy6A7PW9uTBlHzM9grCrJlEWDOpyE9nk+rAy9ddRbNw53wJ1vVvoda8CwPvAIORb9anER9iYVCsA7V7LtZeN+Hj4+/lKxNCiMajVWQA941sx4vzd3NpjwQSwpqxf9y3xK94guhNr1GSu5m8ie8RERlz3DIyiyoxKAgudC1C0NQ+oIc4kx1jo3L4dUcWV/RpRrCfiYRQP5lPpZYDrhXPWkYEQPFu50ZPzZFoMGCPaAc5znoqSwtps+118qL6Uegzgh9XH2LWegPju/WlyNSDpY4r+OHqRALTlxNweBl+/gH4yjBzIYQQZ0ASRaLBXNW3OUaDgYe/2czdn2/kv5P/j7SYnvilrSAgaw2x6/4FQPmG89A3/YA6wVKze7NLaB7ujyl7NdpgRkV2aKjL8IpQfx9uH9YGhh29stvOjGI+++9yHv5mC5/e3A+T0YBx4B0Yvr0Rx55fSQ47j6V7c7jr/LY4Ns7E5LDi0/9mL12FEEI0XrcMac33mw7z1A/bmXffEKqsPmQOe5Hy6B7Er3gS88zxZF/+JdEJreo8P7OokuggC2Rtwx7SHKMlpIGvoJ6iOqGVkb8XPcaVjpYYV0yirNNEii1JhPiZvR1do5GS61ymvkWEP2SmOzd6aI4icM1TlLoMgMrfXya0Mg/jZZ/zWbsB7M0q4aMVKXy3IY1Kq4Nx3eLo0KkrumMXyqunYTDJwAEhhBBnRu4gokFd3juRN6/pxZa0Qm78ZAM+3S7D99JXKb5xKak3byOz7yP4py2jdOlbJyxnb1YpbaODcGRswR7ZEUw+DXQFjUunuGCendiVlfvzeHnhHgAMSeOxB8aRt/g1Jr21glB/Hyb3TYT1H1HdbPD/5jwQQghRw8dk4PlJ3cgoruTVhXuJDbHQMS4YvwE3c/jizzCXphH6xTgy92+rc1hWZnElMSEWVNY2dBObyBqA6I5kTl3J3u6PYMNEh23/ocPXQ1HzH/N2ZI1Kal4Z8SEW52SmJa5EkQdXXVXRHTGWpFOevoPgje9Q3PYSQtr2B/7X63jVoyP5x6VdeeQi5+TXSikCfE2YjfI2XwghxJmRO4hocGO6xvH+lL7szy1l8nurqKi2Ex1soUWzZsSMmU5Z8xEELH2Wysy9dZ5fbXNwILeM9tEBGDK3nrXDzk7V5b0Tmdy3GW/+lsyinVlog4m1kZOIyl7BwKAcvr9rMPG5KzEVpWLqJ72JhBDieHq3COP6AS34eGUKv+3KxmBQRAT6kthrNDmXfoPBVk7kVxPI3LXqT8mizKJKmgc6MOQnN9kFFvyiWmHtfzd/Dfk3N4R8SFGrsQRumYGtJMfboTUaB/LKaBHhXPGM4gy0JRQ8OJzbEO1M/hhm3wYOG2rUE38aChjq78M1/ZvXDEEXQggh6ksSRcIrhrWP4tOb+5NeWMFdn2/AancAoAwGTBNfQxvM6O/vQjv+PMF1qmvFsy6hlRgqcs+6iazPxNMTOtM5Ppj7v9zE3Z9v5M5dXanGzCut19As3B/rmg+w+0Vg6DTe26EKIUSj9tjYTnSKDea+WRs5mOccZqSUIqbTQHKv/AGHyY/o7y6neOdvR52XWVxJN58MFBpjXNP8AiPU34dOcUGM7hzL0iwLBzrfjcFRTeX6md4OrdFIyS1zTmQNOIrT0R7sTQSAa2i9JWcLJV2nEBTbzrP1CSGEEEiiSHhR35bhvDCpG2sO5PP8T7tqtvuGN6NsxLP4Zaym5I83/3Te3uxSAJJUKkCT/ebWnSxmI29d2xsNzNuawdQL+qC7Xo5l+1eQtQPzvvk4elx/zg7RE0KIU2UxG3nn+t4opbjts/VUVDu/sFBKEdu6K4VX/4g1II7A72+EKuf9qKzKRkmljXY6xVlIbBMceuailOLirnFoYA/NqYjphc/mz0BWQaOo3EpBuZVWka6eO8XpEOS5+YkACGuJNvpg9wnG5/zpnq1LCCGEcKlXokgpFa6UWqCU2uv6N6yOY5oppX5TSu1USm1XSt1XnzrF2WVizwRuHNySD5cf4PtNh2u2B/e/gbIWIwlc+hyVmXuOOmdPVglKQXyFa2haE35D7k7NI/z54pYBzLp1APeObIfvoDsw2CpwfD4ZtANzvxu9HaIQQjQJzcL9eXVyD3ZlFvP47K1HDTOLTmhF+ZiXMVYVUrHmYwBSXT2PEqv24fAJgtAWXonbXTrHBxMfYmHhjixsPa7Hp2AvVQdWeDssr0vJq7XiGUBJOirYwz2KjCYq+95J4fnP4xca5dm6hBBCCJf69iiaDizSWrcDFrkeH8sG/FVr3QkYANyllEqqZ73iLPLY2E70axXOI99uYXt6kXOjUs4haEYf+P5OcDhqjt+bXUrzcH8M2c6VZWhqK8t4UJeEEAa0jnA+iOtOdcIADEWp2FqNgLCWXo1NCCGakuEdorl/VHu+23iYT1elHrUvvMMQKuP6YlrzFthtfLn2ID5GAwlVyTiiO0MTX05eKcWopBiW7s3F0GUSdnMAjnUfezssr6tJFEUGgN2GKstBhSR4vF418kmC+l7j8XqEEEKII+qbKLoEOPLO4WNg4rEHaK0ztNYbXL+XADsBz99VRZNhNhp485pehPr5cPtn6yksrwbANyyR8uHPYMlYi33PrzXH78ksoV10ICpzKzqmac4D0VCMg+9y/tv/Fi9HIoQQTc/d57dlZMdonpm7g02HCo/apwbfi7nkEPlrv+KrdWlc0j0W37wdqLNkgYVRnWKosNpZlVZFZYdJ+O75HiqLvB2WVx3ILUMpaB7uD6VZKO3w6IpnR1jMRnxkqXshhBANqL53nRitdQY4E0JA9IkOVkq1BHoCq+tZrzjLRAX58tZ1vcgqquLx2dtqtgf1uxabXyS2dTMA2HCwgL3ZpZzX3A9DwX4M8d29FHHTYEyaQNVtqzB0HOPtUIQQoskxGBT/uaoHUUG+/G3OVuyO/w1B800aR3VoG6r+eIUKq43buxswWMvPmgUWBrSOINDXxC/bMjH1nYLBVknlhlneDsurUvPKiQ/xw2I2QkmGc2Owh+coEkIIIbzgpIkipdRCpdS2On4uOZ2KlFKBwLfAX7TWxSc47lal1Dql1LqcHFmO9VzSs3kYd57fhnlbM9h85Jtbkw+2btfgk/wrFGfwxuJ9hPqbuap5MQqNIe7seEPuSb5xnbwdghBCNFkhfmamj+nItsPFfL3u0P92GAxU97uTuPLd3Jp4iDb2FOf2mLNj3jwfk4EJPeKZvfEwh/06UhWRhGHjJ24pW1cUUpSy2S1lNaQDuWW0iDgykbVrXsUG6FEkhBBCNLSTJoq01qO01l3q+PkeyFJKxQG4/s2uqwyllBlnkmim1vq7k9T3rta6j9a6T1SUTNp3rpk2pDXhAT689Ovumm2+/aaitJ20395j8a5sbh7cCr+87c6dZ0kXfyGEEI3XhO7x9G0Zxovzd1NUYa3Z/qvpfHJ0CDeruTgytqCVAaLPnuT8X0a1w9dk4B8/78bRawo+OdtwHN5Y73Kt858k+OMRWLN2n/zgRiQlr8w5PxFAsfQoEkIIcfaq79CzH4Aprt+nAN8fe4BSSgEfADu11v+pZ33iLBfoa+LO4W1YujeXFcm5AKiINlQ1Ow/fLTMJthiYMrgl9oytOCxhECzTXQkhhPAspRRPje9Mfnk1ry1yrriptebdFYeZaxlPTM5y9PY5OMLbgdnPy9G6T3SQhTvPb8vCnVlsDh2Fw+hL5ZqP6leorRrjzu9R2obt58fcE2gDKCyvprDcSivXime2wkPOBTf8I7wcmRBCCOF+9U0UvQBcoJTaC1zgeoxSKl4p9ZPrmMHA9cAIpdQm18/YetYrzmLXDWhBXIiFF+fvrlmSOLvdZKLsmTzRKZtgixmduQVHTJcmv7KMEEKIpqFLQgiT+zbj4xUp7MsuYdm+XHZllhA+7A4cJn+M+fsg9uwYdlbbzee1IiHUj6cXpFPZfjy+O77l0N4tVFrtZ1SeY+9CjFWFWFsOxy9lIZU757s5Ys9IySsHjqx4ZoXts3Ek9JX3IUIIIc5K9UoUaa3ztNYjtdbtXP/mu7ana63Hun5fprVWWutuWuserp+fTlyyOJdZzEbuHdmOjQcLWbTTOZrx5bT2FOggxlT9AnYbxuydMj+REEKIBvXghR3w8zHyf3N38N7SA0QF+TKmXycqu10HcFbelyxmI4+O7ciuzBKWhF0JQMIXIyj9YTqZ2Vk4ak3wfSpsm7/CbgnDfM3nVIe0xDD/MWfipZFLyS0DoGWEP7YtX2MqOQyD7vVyVEIIIYRnyFqbolG6vHcirSIDeOnX3STnlDJnay47Y8YRkPIrHFyBsleelW/IhRBCNF4Rgb78ZVR7lu7N5Y89OUwd1BJfkxHfIfdSFdEJ1XaUt0P0iIu7xtGnRRhPrjFy6NqlFLadRMTW94j4cBCZv79HtdV2agVVlWLa9wv2TpeATwCOC57Fp3Af5cvf8ewFuMGB3DKUgmZhfuhlr2KN6Iixw2hvhyWEEEJ4hCSKRKNkNhq4/4L27Mos4aYZazEbDXQYezfKYcPxi2tOA5nIWgghRAO7YWAL2kYH4mc2cm3/5gAYw5qhb19+Vg49A+ccTU+MSyK3tIovd1Vjufy/pF0+j+rgFsT//hBVs6bisDtOWo595zwMtgrM3Z09kyydx1HRbCi+y/6FozT3hOfa7A7Kq08xIeUBqXllxIf4Yd6/EHPeLtR598mwMyGEEGctSRSJRmtc1zg6xQWTmlfO1f2aE9GyC9UJAzFkbUUbfSGyvbdDFEIIcY4xGw28f0MfPrm5H6H+PjXbLWajF6PyvO7NQrm0ZwIfLDtATkkVzboMxjrlZ3L6PkhQ8lyKF7540jLsW77BFhiPaj7QuUEpTGOex2AtpfzXv1NcaaWo3EpheTX5pVXkHtpD9ppvyP3hCcpnXIbhv/3Jm/d3ykuLPHy1f3Ygr5yWkf7Yl76MLTAeU7crGjwGIYQQoqGYvB2AEMdjMCieuLgTf/t+G7cNa+3c1mcqHF6JPaojJqPZuwEKIYQ4J7WMDPjfMunnkEcu6siCHVk8Pnsbn97cj9AAXxwXPU5JwV5CVj5PYVxXQrsdZ72S8nzMKYux9r0DDP/7ntIc34XyblMI2DKD4qJ0zOU5mCqyMZVnY3A45y7SykhVaFtslkgi1r6Edfsn5A14mMABU/D18am7PjfSWpOSW8YdbfLw2bcK6wXPgbwHEUIIcRaTHkWiURvUNpLFfx1OXIhzuWFTl4nY/SJRiX29HJkQQghxbokNsfDwRR1Yti+X2RsPA2AwGvCd9CZV4R0J+vE2SjJ2/+m8D5cdYOXcD1AOGz49rvzTfssFf6MqvBO+xSnYzYHkhPdlTezVzGvxMEuHfUn6nftw3LECyy0/k3/VXKyBiUQsfhD91mByV35OUWHBaU+qfTo+WHaAogorY4q+xO4birnPVI/VJYQQQjQG6sjy441Rnz599Lp167wdhmhkyvPS8A8KA59z79tcIYQQwpscDs3lb6/gQG4Zi/46nPAAZ4+esqxkfD8cgc0/GqYtxBIQAsCK5FyueW81s3z+TiRFTI99n9Fd4ujTMoxqm4PyajulVTayiytZf7CAdSkFZJdUHVWn0aDoFBdE7+Zh9G8dQe/moZh2zyVw2bP4FqfiMPpSGj8Ya7uxGDuOxRwSg9lowMdU/+9DF+7I4pZP1zGlXTVPHbwR2+C/Yr7giXqXK4QQQnibUmq91rpPnfskUSSEEEIIIU7V7swSxr2+lPHd4vnPVT1qthdunU/Id5Mpbj6KwpEvERIZx7SP11GVf4gfrLexotmtPFc6nh0ZxXWWGx7gw8A2EQxqE8HgNpGE+pvZeLCQ9akFrE8tYNOhQiqsdgA6xgYxoGUwQ3yT6VyylPCDC/ApTQPAZgmnOjARa1Ai9uBmOPwj0T4BYA50fsnkF4Ixqj3mkDgsPibMxqMTSg6Hxq412w4Xcc17q+gSrvkw5msC9v+E4f7tEBDpmSdWCCGEaECSKBJCCCGEEG7z71938/rifXx6cz+GtIuq2V6w8GXClj2Nw+DDgZgLeSClHw93ymfw/lfgng0Q0YaDeeXsziohwMeIv6+JAB8jAb4mYoMtGAzHX0nManewJa2Qlcl5rNyfx7qUAqpsDpSCTrFBjI3KZSCbibJmEFSZjl95Oj6laRjsVXWWZ/cJpjK0HdXh7XAY/TBYy1DWMgy2CnRFISW5aURSiIVqAKp7TcNnwr/d+jwKIYQQ3iKJIiGEEEII4TaVVjtjX12KzaGZ/5eh+Pk4V31zODRpezfhv/kj/Hd8hT8VOAxm7FGdMd/xu1tjqLLZ2XSwkJX781iZnMfGg4VU2x01+31NBqICfUgMhHh/O3F+dmIsNqIMJYRXpBJamkxY2X6Cyw5g0DZsRn/sJn9sJn9SSgykWYNI6tCBkKhECE4gss8kMHl+8mwhhBCiIUiiSAghhBBCuNWq/XlMfncVl/VK5F+Xd8NYqzfQ3M3pPPrFcl5N2s3AkoWYzrsbn+6XezSeSqud7elFZBRVklVcRXZxJZnFlWQVV5JdXEVmcSXl1fZTKkspePu63ozuHOvRmIUQQghvOVGiyNTQwQghhBBCiKZvQOsI7h3ZjtcW7aW40sprk3vi52PE4dC8+ds+IiMiGXjVpZRbHyIy0Nfj8VjMRnq3CD/ufq01pVU2ckurqai2U2G1U2V1/ms/ZtW0hDA/OseHeDpkIYQQolGSRJEQQgghhDgjD1zQnogAH56eu51r31/FB1P6siI5j12ZJbxyVQ/8fU34+zaOt5tKKYIsZoIsZm+HIoQQQjRqjePOLYQQQgghmqQpg1oSHeTLfV9u4rK3V4CGdtGBjO8e7+3QhBBCCHEGJFEkhBBCCCHqZUzXOCICfZn28VqKK23899peR81ZJIQQQoimQxJFQgghhBCi3vq1Cue7OwezfF8uF8kk0EIIIUSTJYkiIYQQQgjhFm2jA2kbHejtMIQQQghRDwZvByCEEEIIIYQQQgghGgdJFAkhhBBCCCGEEEIIQBJFQgghhBBCCCGEEMJFEkVCCCGEEEIIIYQQApBEkRBCCCGEEEIIIYRwkUSREEIIIYQQQgghhAAkUSSEEEIIIYQQQgghXCRRJIQQQgghhBBCCCEASRQJIYQQQgghhBBCCBeltfZ2DMellMoByoBcb8ciTkkk0lZNhbRV0yFt1XRIWzUN0k5Nh7RV0yFt1XRIWzUd0lZNQ1NupxZa66i6djTqRBGAUmqd1rqPt+MQJydt1XRIWzUd0lZNh7RV0yDt1HRIWzUd0lZNh7RV0yFt1TScre0kQ8+EEEIIIYQQQgghBCCJIiGEEEIIIYQQQgjh0hQSRe96OwBxyqStmg5pq6ZD2qrpkLZqGqSdmg5pq6ZD2qrpkLZqOqStmoazsp0a/RxFQgghhBBCCCGEEKJhNIUeRUIIIYQQQgghhBCiAbg1UaSUukgptVsptU8pNf2Yffe49m1XSv3rOOdf4drvUEr1OWZfN6XUStf+rUopSx3n3+2qWyulImttD1FKzVVKbXadf6O7rrmp8lRbKaWuVUptqvXjUEr1qOP8Vkqp1UqpvUqpL5VSPq7tSin1miuuLUqpXm6+9CalsbaTa99w17nblVK/u/Gym6RG0FbH+/t3rev/0hal1AqlVHc3XnaT1IjbSu5Vx/BgW5mVUh8r5/uJnUqpR49zvtyrTlFjbSvXPrlfuTSCdpJ71SlqxG0l96pjeLCtfJRSH7naarNSavhxzpd71SlqrG3l2te47lVaa7f8AEYgGWgN+ACbgSTXvvOBhYCv63H0ccroBHQAlgB9am03AVuA7q7HEYCxjvN7Ai2BFCCy1vbHgH+6fo8C8gEfd117U/vxZFsdc0xXYP9x9n0FTHb9/jZwh+v3scDPgAIGAKu9/XxJO9XZTqHADqD5ieo/V34aSVsd7+/fICDM9fuYc/n/VBNoK7lXNVBbAdcAs1y/+7vaomUd58u9qum3VShyv2pM7ST3qqbfVnKvari2ugv46Mi5wHrAUMf5cq9q+m0VSiO7V7mzR1E/YJ/Wer/WuhqYBVzi2ncH8ILWugpAa51dVwFa651a69117LoQ2KK13uw6Lk9rba/j/I1a65S6igaClFIKCMT5B812Wld3dvFkW9V2NfDFsRtd7TAC+Ma16WNgouv3S4BPtNMqIFQpFXfKV3Z2acztdA3wndb64InqP4d4ta1c59f5909rvUJrXeB6uApIPNnFnOUabVsh96pjebKtNBCglDIBfkA1UFz7ALlXnZbG3FZyv/ofr7aT63y5V52aRttWyL3qWJ5sqyRgUa1zC4FjR93IverUNea2anT3KncmihKAQ7Uep7m2AbQHhri6Wf2ulOp7mmW3B7RSar5SaoNS6uHTPP8NnNm/dGArcJ/W2nGaZZxNPNlWtV1F3R+UIoBCrfWRm0rt+k8U27mmMbdTeyBMKbVEKbVeKXVDPeo/G3i7rU7VzTi/WTqXNea2knvV0TzZVt8AZUAGcBB4SWudf8wxcq86dY25reR+9T/ebqdTJfeqxt1Wcq86mifbajNwiVLKpJRqBfQGmh1zjNyrTl1jbqtGd68yubEsVce2I0uqmYAwnF3e+gJfKaVaa61Pdck1E3Ce69xyYJFSar3WetEpnj8a2IQzg9cGWKCUWqq1/lP2/BzhybZyVqBUf6Bca73tNOs/0b5zTWNuJxPOP4AjcX4btVIptUprved06j+LeLutTuX883G++T7vTM4/izTmtpJ71dE82Vb9ADsQ7ypnqVJqodZ6/ynWL/eqozXmtpL71f94u51OHqDcq45ozG0l96qjebKtPsSZlFsHpAIr+HPvLblXnbrG3FaN7l7lzh5FaRydNUvEmWk+su87V7e3NYADiFTOCZ82KaV+OoWyf9da52qty4GfgNOZjOvGWvXvAw4AHU/j/LONJ9vqiMkc/9v0XJxdH48kKo+t/3ixnWsaezv9orUu01rnAn8A3U+xzrORt9vqhJRS3YD3gUu01nlnUsZZpDG3ldyrjubJtroG598wq6t793KO6SKO3KtOR2NvK7lfOXm7nU5I7lVHacxtJfeqo3msrbTWNq31/VrrHlrrS3DOY7P3mMPkXnXqGntbNap7lTsTRWuBdso5k7cPzjfKP7j2zcGZdUYp1R7n5FG5WusbXU/m2JOUPR/oppTydz2xw3BO9nSqDuLMzqGUisE5AdVpfcNxlvFkW6GUMgBX4Bz3+SeuzOxvwOWuTVOA712//wDcoJwGAEVa64wzuMazQWNup+9xds80KaX8gf7AztO/xLOGV9vqJOc2B74Drj9Hv0E/VqNtK+RedSxPttVBYITrXhOA8xvEXbUPkHvVaWnMbSX3q//xajudiNyr/qTRthVyrzqWx9rK9dk3wPX7BYBNa33UZ2C5V52WxtxWje9epd07k/hYYA/O2cQfr7XdB/gM2AZsAEYc5/xLcWbTqoAsYH6tfdcB211l/Os459/rOt+GMzv3vmt7PPArznG024Dr3HndTfHHw201HFh1kvpbA2uAfcDX/G+GeQW86YprK8dZUehc+Wms7eTa9xDOhO024C/efq68/dMI2up4f//eBwpwdhPfBKzz9nPl7Z9G3FZyr2qgtsI5AevXON9X7AAeOs75cq9q4m3l2if3q8bTTnKvavptJfeqhmurlsBunAmDhUCL45wv96om3laufY3qXqVcQQkhhBBCCCGEEEKIc5w7h54JIYQQQgghhBBCiCZMEkVCCCGEEEIIIYQQApBEkRBCCCGEEEIIIYRwkUSREEIIIYQQQgghhAAkUSSEEEIIIYQQQgghXCRRJIQQQgghhBBCCCEASRQJIYQQQgghhBBCCBdJFAkhhBBCCCGEEEIIQBJFQgghhBBCCCGEEMJFEkVCCCGEEEIIIYQQApBEkRBCCCGEEEIIIYRwkUSREEIIIYQQQgghhAAkUSSEEEIIIYQQQgghXCRRJIQQQgghhBBCCCEASRQJIYQQQgghhBBCCBdJFAkhhBCNnFKqpVJKK6VMp3DsVKXUsgaKa7BSaq9SqlQpNbEh6hT/o5Rq7nruje481g1xNdhrUAghhBDuJ4kiIYQQwo2UUilKqWqlVOQx2ze5kj0tvRRa7YRTqesnRSk1vR5FPgO8obUO1FrPcVOY5wR3JFO01gddz73dncc2JKXU00qpz9xY3lSllL3Wa/zIT7wbytZKqbJaZb7vjpiFEEKIxuak30wKIYQQ4rQdAK4GXgdQSnUF/Lwa0dFCtdY2pdRAYJFSapPW+pdTPVkpZdJa24AWwPYzCaBWGeI4lFLGxpbYaSJWaq3P81DZ3bXW+zxUthBCCNEoSI8iIYQQwv0+BW6o9XgK8EntA5RSIUqpT5RSOUqpVKXU35RSBtc+o1LqJaVUrlJqP3BxHed+oJTKUEodVko9eyZDirTWK3Emerq4yr1JKbVTKVWglJqvlGpRq06tlLpLKbUX2KuUSgZaA3NdvSt8lVLxSqkflFL5Sql9Sqlbap3/tFLqG6XUZ0qpYmCqUmqJK/YVrjLmKqUilFIzlVLFSqm1tXtgKaVeVUodcu1br5Qackz5X7me0xKl1HalVJ9a+5sppb5zPd95Sqk3au077nUfSyk1wVV2oSv+TrX2pSilHlRKbVFKFSmlvlRKWeoooxPwNjDQdd2Fru0zlFJvKaV+UkqVAecrpS5WSm10XfMhpdTTtco5akiiK56/K6WWu56DX5WrZ9vpHOvaf4PrdZmnlHrCdW2jjvOcRLjavVgptQZoc8z+OttNKXUR8Bhwlet52OzafqOrPUqUUvuVUrcdrz1Oh1Kqjeu12cv1OF45/48Nr/WcPK+UWuNqv++VUuHuqFsIIYRoSiRRJIQQQrjfKiBYKdVJORM4VwHHDq95HQjBmWwZhjOxdKNr3y3AOKAn0Ae4/JhzPwZsQFvXMRcC004nQOU0GOgMbFTOOYYeAyYBUcBS4ItjTpsI9AeStNZtgIPAeNeQpirX8WlAvCvmfyilRtY6/xLgGyAUmOnaNhm4HkjAmWBYCXwEhAM7gadqnb8W6OHa9znw9TGJmAnALFf5PwBvuK7VCPwIpAItXXXNcu07les+8py1d+37i+vYn3AmynxqHXYlcBHQCugGTD22HK31TuB2nD1fArXWobV2XwM8BwQBy4AynK+NUJwJwzvUieeDugbn6yga8AEePN1jlVJJwH+Ba4E4nK/ThBOU8yZQ6Tr2JtdPbXW2m6sX2z+AL13PQ3fX8dk4X//BrvhePpLcccVXqJQ67R5DWutk4BFgplLKH+frbIbWekmtw25wxR+P8//Ya8cU84dSKtOVdGx5ujEIIYQQTYEkioQQQgjPONKr6AJgF3D4yI5ayaNHtdYlWusU4N84EybgTDa8orU+pLXOB56vdW4MMAb4i9a6TGudDbyMM+FyqnKBfOB9YLrWehFwG/C81nqna0jYP4Aex/SueV5rna+1rji2QKVUM+A84BGtdaXWepOr/OtrHbZSaz1Ha+2oVcZHWutkrXUR8DOQrLVe6Irha5yJMAC01p9prfO01jat9b8BX6BDrfKXaa1/cg3X+hQ4knjoh/OD/0Ou56xSa31kfqBTue4jrgLmaa0XaK2twEs4hxQOqnXMa1rrdFe7zcWZIDkd32utl7ueo0qt9RKt9VbX4y04E1XDTnD+R1rrPa7n96uT1H+8Yy8H5mqtl2mtq4EnAV1XAa7X8mXAk67ndhvORGaNU2g3jjl+nus1obXWvwO/AkNq7Q+t1X51GeBKJh35Sa517nvAXmA1zsTW48ec+6nWepvWugx4ArhS/a+33jCcicaOQDrwozqFCeaFEEKIpkYSRUIIIYRnfIqzx8ZUjhl2BkTi7MGRWmtbKv/rtREPHDpm3xEtADOQceSDMPAOzl4hpypSax2mte6ktT7SY6IF8GqtMvMBxdE9SQ5xfPFAvta65DjXdLzzs2r9XlHH48AjD5RSf3UNSSpyxRiC87k8IrPW7+WAxfVBvhmQepw5kU7lumtfY01baK0drmuqfeyxMQRyeo56jpRS/ZVSvynnkLkinD2RIus+9bTrP96xR73+tNblQN5xyojCOefl8V6vp9JuHHP8GKXUKtcwsUJg7ImOr8MqVzLpyE+bY/a/h3O45euunnC1HXsd5iN1a63/0FpXa60Lgftw9hrrhBBCCHGWkUSREEII4QFa61Sck1qPBb47ZncuYMWZpDiiOf/rdZSBM7lRe98Rh4AqnMmeIx+Eg7XWnesZ8iHgtmM+YPtprVfUvqwTnJ8OhCulgo6J+3Ctxyc6/4Rc89o8grO3VZhruFYRzqTOyRwCmh+n98epXPcR6dRqM6WUwtlOh+s49mSO91wcu/1znMPommmtQ3DObXQq11wfGUDikQdKKT8g4jjH5uAcolXn6/UU2u2o61VK+QLf4uytFeM6/ifcdM1KqUDgFeAD4Ok65iA69jqsOP+/1kW7Ky4hhBCiMZFEkRBCCOE5NwMjXMNYariGRn0FPKeUCnINc3qA/81j9BVwr1IqUSkVBkyvdW4GzqE4/1ZKBSulDK5Jek80HOlUvA08qpTqDDUTZl9xqidrrQ8BK4DnlVIWpVQ3nNc/88RnnrIgnAmJHMCklHoS5xw2p2INzuTHC0qpAFd8g137Tue6vwIuVkqNVEqZgb/iTNrVlVQ6mSwg8Zj5jeoShLOnVqVSqh/OXmqe9g0wXik1yBXf/3GchIjrtfwdzqSLv2t+oym1DjlZu2UBLZVrInecPe18XcfblFJjcM7B5S6vAuu11tOAeTjbv7brlFJJrjmMngG+0VrblVKdlVI9lHOi+UCcQ0UP45xHSwghhDirSKJICCGE8BDXPCvrjrP7HpwTFe/HOWnx58CHrn3vAfOBzcAG/twj6QacH6h3AAU4P9jH1TPW2cA/gVnKuSrZNpxzIZ2Oq3HO4ZIOzAae0lovqE9ctczHOYfRHpxDgio58VC4Gq5kxnick38fxDnh9lWufad83Vrr3cB1OCciz3WVOd41j8/pWoxzxblMpdTxeqwA3Ak8o5QqwTlX0FdnUNdp0Vpvx/n6nIUzwVaCc4LpY4dpHXE3zmFrmcAMnJNEH3Gydvva9W+eUmqDa+jivTivswBnYuyH2pUp5wppQzi+I6vJ1f7pq5S6BOdE47e7jnsA6KWUurbWuZ+6riETsLhiAYgBvgSKcf6fbQmMc81VJYQQQpxVlNZn3AtcCCGEEEKc5Vw9aAqBdlrrA14Ox2OUUkuAz7TW73s7FiGEEMKbpEeREEIIIYQ4ilJqvGsoWQDO+YK2AinejUoIIYQQDUESRUIIIYQQ4liX4BxCmA60AyZr6YYuhBBCnBNk6JkQQgghhBBCCCGEAKRHkRBCCCGEEEIIIYRwkUSREEIIIYQQQgghhADA5I5ClFIXAa8CRuB9rfULxzmuL7AKuEpr/c3Jyo2MjNQtW7Z0R4hCCCGEEEIIIYQQAli/fn2u1jqqrn31ThQppYzAm8AFQBqwVin1g9Z6Rx3H/ROYf6plt2zZknXr1tU3RCGEEEIIIYQQQgjhopRKPd4+dww96wfs01rv11pXA7NwrpRxrHuAb4FsN9QphBBCCCGEEEIIIdzMHYmiBOBQrcdprm01lFIJwKXA2ycrTCl1q1JqnVJqXU5OjhvCE0IIIYQQQgghhBCnwh2JIlXHNn3M41eAR7TW9pMVprV+V2vdR2vdJyqqzuFyQgghhBBCCCGEEMID3DGZdRrQrNbjRCD9mGP6ALOUUgCRwFillE1rPccN9QshhBBCCCGEEB5jtVpJS0ujsrLS26EIcVosFguJiYmYzeZTPscdiaK1QDulVCvgMDAZuKb2AVrrVkd+V0rNAH6UJJEQQgghhBBCiKYgLS2NoKAgWrZsiasDhBCNntaavLw80tLSaNWq1clPcKn30DOttQ24G+dqZjuBr7TW25VStyulbq9v+UIIIYQQQgghhDdVVlYSEREhSSLRpCiliIiIOO2ecO7oUYTW+ifgp2O21TlxtdZ6qjvqFEIIIYQQQgghGookiURTdCavW3dMZi2EEEIIIYQQQggPUkpx/fXX1zy22WxERUUxbtw4L0Z1coGBgSc95umnn+all1464TFz5sxhx44d7gpLnIAkioQQQriNze7wdghCCCGEEGelgIAAtm3bRkVFBQALFiwgISHBK7HYbLYGr1MSRQ1HEkVCCCHOyIIdWezMKK55XLF5NtWfXwcOuxejEkIIIYQ4e40ZM4Z58+YB8MUXX3D11VfX7CsrK+Omm26ib9++9OzZk++//x6AlJQUhgwZQq9evejVqxcrVqwAICMjg6FDh9KjRw+6dOnC0qVLgaN7AH3zzTdMnToVgKlTp/LAAw9w/vnn88gjj5CcnMxFF11E7969GTJkCLt27QLgwIEDDBw4kL59+/LEE08c91qee+45OnTowKhRo9i9e3fN9vfee4++ffvSvXt3LrvsMsrLy1mxYgU//PADDz30ED169CA5ObnO44R7uGWOIiGEEOeWdSn53PLJOgwKbhjYkvuHJRAw/2FM5dnY9/yKseMYb4cohBBCCOER/zd3OzvSi09+4GlIig/mqfGdT3rc5MmTeeaZZxg3bhxbtmzhpptuqknwPPfcc4wYMYIPP/yQwsJC+vXrx6hRo4iOjmbBggVYLBb27t3L1Vdfzbp16/j8888ZPXo0jz/+OHa7/ZQSLXv27GHhwoUYjUZGjhzJ22+/Tbt27Vi9ejV33nknixcv5r777uOOO+7ghhtu4M0336yznPXr1zNr1iw2btyIzWajV69e9O7dG4BJkyZxyy23APC3v/2NDz74gHvuuYcJEyYwbtw4Lr/8cgBCQ0PrPE7UnySKhBBCnBa7Q/Pk99uJC7EwqlMMn6xMIWrja9yls3GYA7Gtfk8SRUIIIYQQHtCtWzdSUlL44osvGDt27FH7fv31V3744YeauX4qKys5ePAg8fHx3H333WzatAmj0ciePXsA6Nu3LzfddBNWq5WJEyfSo0ePk9Z/xRVXYDQaKS0tZcWKFVxxxRU1+6qqqgBYvnw53377LQDXX389jzzyyJ/KWbp0KZdeein+/v4ATJgwoWbftm3b+Nvf/kZhYSGlpaWMHj26zlhO9Thx+iRRJIQQ4rR8vjqVHRnFvHFNT8Z1i2dykoWWn3/PL/a+VAR3YOKBmZC/H8JbeztUIYQQQgi3O5WeP540YcIEHnzwQZYsWUJeXl7Ndq013377LR06dDjq+KeffpqYmBg2b96Mw+HAYrEAMHToUP744w/mzZvH9ddfz0MPPcQNN9xw1CpZxy6rHhAQAIDD4SA0NJRNmzbVGeOprLR1vGOmTp3KnDlz6N69OzNmzGDJkiX1Ok6cPpmjSAghxCnLK63ixfm7GdQmgou7xgHQaseb+KtqDvV8iBeyB6CVgapV73s5UiGEEEKIs9NNN93Ek08+SdeuXY/aPnr0aF5//XW01gBs3LgRgKKiIuLi4jAYDHz66afY7c75JFNTU4mOjuaWW27h5ptvZsOGDQDExMSwc+dOHA4Hs2fPrjOG4OBgWrVqxddffw04k1SbN28GYPDgwcyaNQuAmTNn1nn+0KFDmT17NhUVFZSUlDB37tyafSUlJcTFxWG1Wo86PygoiJKSkpMeJ+pPEkVCCCFO2Uu/7qa82s7/TeiMUgprzj78Nn9CZddruXjEULIIZ1/4cEybPwdrhbfDFUIIIYQ46yQmJnLffff9afsTTzyB1WqlW7dudOnSpWYi6TvvvJOPP/6YAQMGsGfPnppeQUuWLKFHjx707NmTb7/9tqbMF154gXHjxjFixAji4uKOG8fMmTP54IMP6N69O507d66ZPPvVV1/lzTffpG/fvhQVFdV5bq9evbjqqqvo0aMHl112GUOGDKnZ9/e//53+/ftzwQUX0LFjx5rtkydP5sUXX6Rnz54kJycf9zhRf+pItrEx6tOnj163bp23wxBCCAFsPlTIxP8u5+bBrfjbuCQAymdej+XAArhnI4aQOC74z+8M99nN47kPYR33OuY+N3g5aiGEEEKI+tu5cyedOnXydhhCnJG6Xr9KqfVa6z51HS89ioQQQpyUw6F58oftRAb6ct+odgBUHFiN/94fqOxzB4YQ57dNQ9tH8XFmIlXhHdBr3oNG/GWEEEIIIYQQ4s8kUSSEEOKkPl9zkM2HCnlsbEcCfU1kZ2ehf34UmyUCv+H31xw3rH0U1TbN/hZX4ZO9Bfsh6RUqhBBCCCFEUyKJIiGEECe0P6eU5+btZEi7SC7qHEvGmtmEzTgPv5xNVI38O8oSXHNsv1bhWMwG5jiG4DAHYFv1jhcjF0IIIYQQQpwuSRQJIYQ4Lqvdwf1fbsLXbOCJEbFUfXkz8T/fiM03nPQr5hHQ99qjjreYjfRvFcGC/eVYu1yJz67voSzXS9ELIYQQQgghTpckioQQQhzX64v2sjmtiFeGKlp/NYKQ/T+S3ft+Km5cRELSwDrPGdY+iv05ZeQn3YByVKO3ftPAUQshhBBCCCHOlCSKhBBC1Gl9aj5v/LaPy3slMHDPv9AoMifPJ2zsk4QHBx73vKHtowBYnB+BPSgRe+rKhgpZCCGEEEIIUU+SKBJCCPEnpVU2/vLlJhLC/HiiYzq+6WuoHvwQcR36YDae+NbRJiqAhFA/ft+dg27WD3VoTQNFLYQQQghx9srKyuKaa66hdevW9O7dm4EDBzJ79myP17tu3Truvfdet5Q1fPhwOnToQPfu3Rk8eDC7d+92S7nu5M4YZ8yYwd133w3A22+/zSeffHLcY1NSUvj8889rHrvzeT9dkigSQgjxJ3+fu4PDBRW8fEU3LEufwxrcgoABN57SuUophnWIYkVyHjTrh7E0HYrSPByxEEIIIcTZS2vNxIkTGTp0KPv372f9+vXMmjWLtDTPv8fq06cPr732mtvKmzlzJps3b2bKlCk89NBDf9pvt9vdVteZ8kSMt99+OzfccMNx9x+bKHL38346JFEkhBDiKAfzyvlq/SFuHNyKLkW/45uzDfuw6WDyOeUyhraLorTKxi5jR+cG6VUkhBBCCHHGFi9ejI+PD7fffnvNthYtWnDPPfcAziTDkCFD6NWrF7169WLFihUALFmyhHHjxtWcc/fddzNjxgwApk+fTlJSEt26dePBBx8E4Ouvv6ZLly50796doUOH/qmMNWvWMGjQIHr27MmgQYNqetvMmDGDSZMmcdFFF9GuXTsefvjhk17T0KFD2bdvHwCBgYE8+eST9O/fn5UrV/Kf//yHLl260KVLF1555ZWacz755BO6detG9+7duf766wHIycnhsssuo2/fvvTt25fly5cD8Pvvv9OjRw969OhBz549KSkpISMjg6FDh9KjRw+6dOnC0qVLzzjGzz77jH79+tGjRw9uu+22muTRRx99RPv27Rk2bFhNLABPP/00L730EgD79u1j1KhRdO/enV69epGcnMz06dNZunQpPXr04OWXXz7qec/Pz2fixIl069aNAQMGsGXLlpoyb7rpJoYPH07r1q3dllgyuaUUIYQQZ42PV6ZgVIpbBjfH8PF1VId3wNLzqtMqY1DbCEwGxS+5UXQ2+eE4uBpjl0keilgIIYQQogH9PB0yt7q3zNiuMOaF4+7evn07vXr1Ou7+6OhoFixYgMViYe/evVx99dWsW7fuuMfn5+cze/Zsdu3ahVKKwsJCAJ555hnmz59PQkJCzbbaOnbsyB9//IHJZGLhwoU89thjfPvttwBs2rSJjRs34uvrS4cOHbjnnnto1qzZcWOYO3cuXbt2BaCsrIwuXbrwzDPPsH79ej766CNWr16N1pr+/fszbNgwfHx8eO6551i+fDmRkZHk5+cDcN9993H//fdz3nnncfDgQUaPHs3OnTt56aWXePPNNxk8eDClpaVYLBbeffddRo8ezeOPP47dbqe8vPy48Z0oxp07d/LPf/6T5cuXYzabufPOO5k5cyYXXHABTz31FOvXryckJITzzz+fnj17/qnca6+9lunTp3PppZdSWVmJw+HghRde4KWXXuLHH38EnAm6I5566il69uzJnDlzWLx4MTfccAObNm0CYNeuXfz222+UlJTQoUMH7rjjDsxm8wmv62QkUSSEEKJGSaWVL9ce4uJucYTs+QafwmSqLvsUDMbTKifYYqZXizB+21fAX+J6wsHVHopYCCGEEOLcc9ddd7Fs2TJ8fHxYu3YtVquVu+++m02bNmE0GtmzZ88Jzw8ODsZisTBt2jQuvvjimp4rgwcPZurUqVx55ZVMmvTnL/mKioqYMmUKe/fuRSmF1Wqt2Tdy5EhCQkIASEpKIjU1tc5E0bXXXoufnx8tW7bk9ddfB8BoNHLZZZcBsGzZMi699FICAgIAmDRpEkuXLkUpxeWXX05kZCQA4eHhACxcuJAdO3bUlF9cXExJSQmDBw/mgQce4Nprr2XSpEkkJibSt29fbrrpJqxWKxMnTqRHjx51Pj8ni3HRokWsX7+evn37AlBRUUF0dDSrV69m+PDhREU5F3e56qqr/tQWJSUlHD58mEsvvRQAi8VSZwy1LVu2rCYhN2LECPLy8igqKgLg4osvxtfXF19fX6Kjo8nKyiIxMfGkZZ6IJIqEEOIco7XGocFoUH/a9/W6NEqrbNw0IB7TN9dQFd0D3y7jz6ieYe2jeHH+biqH9CZg/VtgrQCzX33DF0IIIYTwrhP0/PGUzp071yQKAN58801yc3Pp06cPAC+//DIxMTFs3rwZh8NRk3wwmUw4HI6a8yorK2u2r1mzhkWLFjFr1izeeOMNFi9ezNtvv83q1auZN28ePXr0qOm1csQTTzzB+eefz+zZs0lJSWH48OE1+3x9fWt+NxqN2Gy2Oq9l5syZNXEfYbFYMBqdX0xqres8T2uNUn9+/+pwOFi5ciV+fke/z5w+fToXX3wxP/30EwMGDGDhwoUMHTqUP/74g3nz5nH99dfz0EMP1Tlv0KnEOGXKFJ5//vmjjpkzZ06dMR57HaerrnOO1HOqz/vpkDmKhBDiHGN3aHJLq+rcPmNFCr1bhNHu0NeYS9NRo56Ek9zsjmdYe+c3Kb8UtUA5bJC+sV5xCyGEEEKcq0aMGEFlZSVvvfVWzbbaw6aKioqIi4vDYDDw6aef1syX06JFC3bs2EFVVRVFRUUsWrQIgNLSUoqKihg7diyvvPJKTUIoOTmZ/v3788wzzxAZGcmhQ4eOiqOoqIiEhASAmrmO3G3o0KHMmTOH8vJyysrKmD17NkOGDGHkyJF89dVX5OXlAdQMPbvwwgt54403as6vfS1du3blkUceoU+fPuzatYvU1FSio6O55ZZbuPnmm9mwYcMZxThy5Ei++eYbsrOza2JJTU2lf//+LFmyhLy8PKxWK19//fWfzg0ODiYxMZE5c+YAUFVVRXl5OUFBQZSUlBz3OZk5cybgHJIWGRlJcHDwGcV+KiRRJIQQ5xh7RRF5eblY7Y6jti/amcXB/HJu7heDz4pXqEwcjE/7kWdcT+f4YCb2iOe5LYEAVO5fWa+4hRBCCCHOVUop5syZw++//06rVq3o168fU6ZM4Z///CcAd955Jx9//DEDBgxgz549NcO2mjVrxpVXXkm3bt249tpra+bLKSkpYdy4cXTr1o1hw4bx8ssvA/DQQw/RtWtXunTpwtChQ+nevftRcTz88MM8+uijDB482GOrk/Xq1YupU6fSr18/+vfvz7Rp0+jZsyedO3fm8ccfZ9iwYXTv3p0HHngAgNdee41169bRrVs3kpKSePvttwF45ZVXaibm9vPzY8yYMSxZsqRmcutvv/2W++6774xiTEpK4tlnn+XCCy+kW7duXHDBBWRkZBAXF8fTTz/NwIEDGTVq1HHnlfr000957bXX6NatG4MGDSIzM5Nu3bphMpno3r17TXsc8fTTT9dc4/Tp0/n444/PKO5Tpc6k29OfClHqIuBVwAi8r7V+4Zj91wKPuB6WAndorTefrNw+ffroE03AJYQQ4vTZP72M6sIM8q6ZT2JEUM32ye+u5FB+BfP6bSX0jyepvmEePq3Pq1ddWms+WHaAkQvGcNjcgtjbvqNtdGB9L0E0QgVl1Xy/6TCZxVU8NLpDnUMbhRBCiKZq586ddOrUydthCHFG6nr9KqXWa6371HV8vecoUkoZgTeBC4A0YK1S6get9Y5ahx0AhmmtC5RSY4B3gf71rVsIIcQZKDyIX94e2DyLyiE3YTEb2Z5exKr9+Tx6QUsC1t1GZcIgLPVMEoHz269pQ1qTuX8gSQcWMfTNZbx0RXcu6hLnhgsR3mZ3aJbuzeHr9Wks2J5FtauXWkKYH9cPaOHl6IQQQgghxJlwx9CzfsA+rfV+rXU1MAu4pPYBWusVWusC18NVQP2m4BZCCHHGVGUhADHrXiQr1zm2+8NlKfj7GBlnX4i5PBs97GG31hnbeRjhFDM4ooTbP9vAk99vo9Lqme7KwvMcDs33mw4z/KXfmPrRWlbsy+Wa/s2Zd+95DG4bwb9+2UVOyZ/nwRJCCCGEEI2fOxJFCUDtGa7SXNuO52bg5+PtVErdqpRap5Ral5OT44bwhBBC1NAaVVlIWWxfzOVZWNa9RUpeGXM3p3Np10iiNr9FRVw//NoNd2+9zfoB8MZ5Vm4+rxWfrExl4pvL2Zdd94R9ovFavi+XCW8u475ZmwjyNfPmNb1Y9dhInp7Qmc7xITxzSRcqrXb+8dNOisqtZBdXejtkIYQQQghxGuo99AyoaxKCOic+UkqdjzNRdNzxDFrrd3EOTaNPnz71n0BJCCHE/1grUPZqdNsLKbJEErn5Lf7rGEG13cF1luX4lGVQPPY1/M5wpbPjiuqIwycIQ9oanphwDee1jeSvX29m3OvLeGxsJ67t1xyjUdZXaMwOF1bw6Hdb+WNPDgmhfrx8VXcu6Z6AodZcRJVWO8EWM5N7x7Fz7SIOVX9Gq7LN2EdOx9juzCdGF0IIIRqD4y3PLkRjdibzUrsjUZQGNKv1OBFIP/YgpVQ34H1gjNY6zw31CiGEOF0VzlHAAaFR7E98lOAvF9B6++t0iLqVNrvfpTy6J4EdR7m/XoMRR0IfOLQGgPM7RvPzfUP426eLMc27n9eW96T/+JsZ0C7+qMSDaBz255Ry3furKa608fjYTlw/sAUWsxGtNcWVVkoqbVTkpWFJ+Y2gtN94Km0pJt8SbMkGDEYTtjUfSKJICCFEk2axWMjLyyMiIkKSRaLJ0FqTl5eHxWI5rfPckShaC7RTSrUCDgOTgWtqH6CUag58B1yvtd7jhjqFEEKcCdf8RMovlIjmnUhrew0X7fmU0NAwfLLTKB31Av4e6tljaNYPtfRFqCwGSzC+5Zm8XvU4FtN+KF1M3ufvMj9sHG3H3kPrtkmyalYjsTOjmOs/WINDa2bdOoAuCSEAVNnsZO1ajWXvXMIPLcEv37mGhdU/huJWF7PRpzf3rwvl42bz6J6yAGzVYPLx4pUIIYQQZy4xMZG0tDRkehTR1FgsFhITT2+a6HonirTWNqXU3cB8wAh8qLXerpS63bX/beBJIAL4ryv7ajveMmxCCCE8yNWjCL8wQv19mBF4DTfxNYOzv6A8siuBncd6rGpD8/6gHXB4PQW+8QTMugxjVQHpk2ZTWlZK5fJ3uLBgFsycxZ6QQQQOuYOo7hdh8TF7LCZxYhsPFjD1o7X4mY18Nm0AbaMDASgqraTqt3/SbP3LoIyUxfQho+90ypqfj09cVwL9zAzxNTGgfAPv7W3Hf41z0KkrUG2Ge/eChBBCiDNkNptp1aqVt8MQokG4o0cRWuufgJ+O2fZ2rd+nAdPcUZcQQoh6qCh0/msJBWDRQTv+vldya/XHlPR/gBiz0XN1J/ZBo6hcN5PA1KUoeyUFl39DfIeBAFT2uZhte3ay/+c3OK9oHlHzriN3QSJ5PaYSOHAqwaGR0tW7Aa1MzmPax2uJCPRl5rT+NAv3R2tNVsYhAn68g+j0ZRS0nUTBsL8TEBJJsK+JWB/jUW301ITOXPSvg9hMZhy75+MjiSIhhBBCiEbPLYkiIYQQTUStHkWH8svZeriI84bcyr64S4lJOu46A+5hCcER2RG/nV9jtURSdOVsItv0+t9us5HunbvQvfPbrN2Xzlc/fUK/3G/pu+ZZrGv/RU7zizD0uhb/Dufjb/H1bKznoIyiCmx2TbDFTEZRBdM+XktcqB+f3dyPIIuZ7OJKqpKXErvgToxVRaQPe5HggTfS2nL8Hl8JoX7EREaws7obnfYtAJ5vuAsSQgghhBBnRBJFQgjhBck5pcQEWwj0df4ZLqm0YjIY8PPxYI8eqJmjCL9Qfl6TAcBlfVugdQuCTvCB3110x4up2lJO2WWziGiRdNzj+raNp++909madjtP/fQLbQ9+zYSUhYSk/kCpTzQ5SVeguk8mMLEzFk/2gjpXFKUR+sUUyiK6cij+Qm773YSvycA/Lu1CfmEh1SkLCdk/l6iDC6kOak7WhM+Jbdcb0ynMZ9UhNojFB7rTNf9DyD8A4dJtXwghhBCiMZNEkRBCNBC7Q7NwZxYfLD3AmpR8ru7XnOkXdSSnqAjfXT8QrvPh/L+CJ4dXVRSglRHlG8y8LVvplhhC2+ggqm0Oz9VZi2nk3ygd+DDhAafWI6hrYihdb53MwbwJvLtqD/kbfmBUxWKGbXwL06Y3KQ/rSE77iajOlxIU3w5fkySNzsj+JfhlrsM3ezOR2z/iex1MUfMLifjjY4IPLsRgr8TqH0Nul5th6MMkRkWdctGdYoP4emsX7vMF6+75mAfe7sELEUIIIYQQ9SWJIiGE8LBKq52v1h3iw2UHSMkrJyHUj5YRAWzduYMqw1e02PU55spc58F9r4egGI/FoisK0ZYQ0goq2JxWxKNjOgLgY/LMSmd/ohShp5gkqq15hD8PXdwD+5juLN17O39duoHQAz9xRdFquqx+AVa/QHlMb0onvkVgXAcPBH52c2TvAoMPj7b+ltIdC7gnbiftMn9GGy0UtL+SwtbjMbYcSFSwHwG+p/fWoUNsMKk6lrLAlpj3/AqSKBJCCCGEaNQkUSSEEB6itWb+9iye+2kHh/Ir6N4shH8M6Ux/0z6qlr9Bu9IlmDY5KGk2goLwTkRvfgMKUz2bKCrPR1tCmbfVOexsbNc4j9XlCUaDYniHaIZ3uIhft/dg6uyt+FWm87eWuxiZ9wV8fBHFl80kuN0gb4fapDhy9lDi35wvt5Uwue8V+Axtzc7KKgzKQFiQhcQAnzPurdUxNgiAlPBBdDr4HVSXg4+/O8MXQgghhBBuJIkiIYTwgN2ZJTzz43aW78ujfUwgr13RiV5Fi4hY+wh+eduwmoKYYR+Nuf8tjDpvABHl+2HzG1CQCs36eSwuXVkIfmHM25JB98QQmoU33Q/sF3aOpW/LcJ6eu53bNkUyIqo7r9qfJXDWRArHvk1o70neDrHJsGXtYmVxLIPaRPDsxC6YjAZsdn8MSmEw1G8oZGKYH4G+JtaZ+9LZ/jmO/X9g6HiRmyIXQgghhBDu1kBjDYQQ4txQbXPw3LwdjH1tKdsOF/PkuCQ+6p/J2AUjSfzjQZSjmsOD/0HK1HW8Yb6RLRXhJIb54xfV2llAQYpnA6wooNIYxNbDRVzcrWn1JqpLWIAPr07uydvX9WZHVRTD8h8n2dCakLk3UbDoFWz2hpl7qSnT1grMJYc4ZGjGG9f0qpmg2mQ01DtJBKCUon1MIL+WtcFh9se6+5d6lymEEEIIITxHehQJIYSbpBWUc9fnG9l8qJCr+zXn3hFtMK58lejVL1Ae1YO0kW9ibjuc8ABfEnyMDGpzmNX7850n+/jjCIiGghSPZvBVRRGHfWKBpjfs7EQu6hLLsPZRvL90P1f+/hgv8Bqjlz5FXuoKHEMeIrR1b8ynsELXuWjt+nX0w0GHrn0ID/DxSB0d44KZtyUDa+uhGPctAK09O2m7EEIIIYQ4Y/KuWQgh3GDxriwufm0Z+7NLefu6Xjw2ujWWn+4jevULFLa5hMrr5tK89xgSwvzx83HO9TKgdQSHCys4lF8OgA5tgfZ0j6LKAvYUGeneLJTEsKY77Kwufj5G7hnZjvkPXchv3V7kP7bL8T24lKiZo6iYcRk5O5ZilR5GR7HZHcz//Q8ABvf33LxOHWODKKqwUtpiBKaSNMjZ7bG6hBBCCCFE/UiiSAgh6sFqd/DPX3Zx04x1JIT6Mfee8+gbA4bPJhG25ytye9+P75UfEh4S/KdhPAPbRACwcn+ec0NYSyg86LlgHQ5UZRHJZT6M7RLruXq8LDrIwguX92TYtBe52PAWrzquxCdzA1FfjaN6xkSsZQXeDrHRmLX2EIHFyWgU5pj2HqunY2wwALuDBgBg3fWzx+oSQgghhBD1I4kiIYQ4Q1vSChn/+jLeWpLM1f2a883tA7Hk7SDw09H4ZW0gc9QbhIx9Er/jLCfeLjqQ8AAfVrkSRYawFhiK08Bu9UzAVUUoNMU6gIvO4kTREb1bhvP5vaP5JeIG+pT+hyUt7sHv8ApsH1+KtbzQ2+F5XUmllVcW7qFfYA6OkGZg9vNYXR1inCufbSkOxBqZhNq7wGN1CSGEEEKI+pFEkRBCnKbyahvPzdvBxDeXU1BezTvX9+bpCUkUr/qE6K8uxmCrJHvSt0QPuu6E8+IopRjQOpxVyXlorVFhLVHaAUVpngm8ohAA/5AoWkQEeKaORiYh1I9vbh/IwE4tmLp7IDMSnsaSsxXbJ5djqyj2dnhe9fbvyeSWVtPDPwcd2cGjdYX4m4kLsbAroxjdejjG9HXgkGGAQgghhBCNkSSKhBDiFGmt+W1XNqNf+YP3lh5gcr/m/Hr/UAY0C6Ds23uI/e1+yqN7UzhlEbFdhp7SilEDW0eQXlTJofwK59AzgMJUj8Sfl5sFQPuWiR4pv7EK8DXxznW9uWN4G57Z24r/hDyMJWsD1Z9ega2ixNvheUV6YQXvLz3Apd1j8C8+gCHKs4kicM5TtCuzBHN0B5S9Coo9lBAVQgghhBD1IokiIYQ4BRsOFjD53VXcOGMtJoOBj27sy93nxVO8/jvMn4whfOdMcnvcCTfMJiqm2SmXO6D1kXmKciGshXOjhya03rj7AAA92rfySPmNmcGgeOSijvz7iu68k9ONZ8z34Ze+hurPrqK87NxLFr2+eC8aeGRQIMpeiSHKc/MTHdEhNpjknFLs4W2cG/L2ebxOIYQQQghx+uqeOEMIIQQA+7JL+Ncvu/l1RxaRgT48fkELLvDZQuiq9wg6tBijrRyrJZKMMR8Q2WfSaS/B3jY6kMhAH1btz+eq3l3RBhOqwDM9inbsT2UU0Cw+3iPlNwWX9U6kRYQ/t31qoooqnjv8X6rfOY+c4c8S2v3i026/pmpFch4jO0YTW+V6rTVAj6JOcUFY7ZoUHUdbgLxkaDPC4/UKIYQQQojTI4kiIcRJHS6sYEd6MaM6RaPUyYdTnS0+W5XKUz9sx89s5P5R7ZgYlUHswqvxLTmIzRJBYdtLKW87Ht+2Q4gNCTij50YpRf/WEazan4dWBhzBiZCfgtHN15JfVk12Tpbzr75fmJtLb1r6tAxnzl2DmfaxL1Nygvl35WdE/XAdxZsvoGjks4QndjilYYNNVXGlldS8cq7s0wxyljs3RjZEjyLnhNbbiy20NgdA7j7p1iyEEEII0QhJokgIcVxF5Vb+u2QfH61Iodrm4OJucbx4eTf8fUzOyZfP0qSR3aF5bt5OPlx+gBEdo3nukiRMq98gcs6/sAbEcHjsx5jajyLY348In/qndAa2jmDelgxS88ppFtrCI3MULdiRSbAudT6whLq9/KamWbg/39wxkCfmBDFoUyfu8vuVOw99S+DHQ8nvOg17n5sJjW2Jr8ndKTvv25XhHGqXFBeMfdcelH8kBv9wj9fbOjIQk0GxK6uUceFtZOiZEEIIIUQjJYkiIcSfVFrtfLoylTd+20dxpZVJPRNpFu7Ha4v2kpxdyr8u7Ux45h/EJA3BHBTp7XDdqqzKxr1fbGTRrmxuHNySu/oGYfnmKgIPL6Wo1Vj0uFdJiIh2a51H5ilatT+P5mEtYfc8t5YP8PO2TC70q0LjhzJb3F5+UxRkMfPK5J5MGdSS5+ZF8UXqAJ4L+JKRm/4Lm9+iuPkoCrtNwS/pAoL9fL0drttsTy8CoHN8MCzdjSOiXYP07PExGWgbHcjuzBKIaAPpGxugViGEEEIIcbokUeRhv+3O5sNlB7hzeFsGtA4/a3tgiLOD1ppfd2Tx7LwdHMqvYFj7KKaP6UinuGAAusSH8OFXX2P48D4S1X4q9o3HfO1nXo7afTKKKrh5xjp2ZRbzzCWdGReZQdCMCRitpWQP/ychg6fha3b/n802UQFEBfmycn8ekxNaQHkuVJWCb6Bbyi+utLJ8Xy5/ibOjK0OQv0JH69k8jK9vH8j87a34+8+J/F/+JO4LXcH4jEWEpP5K9ZJmZPe8E7/+UwgKCPB2uPW2I72YyEAfogJ90Hl7IGlig9XdITaItQfyMfRvCzu/B1s1mHwarH4hhBBCCHFyMj2Ah5WWV7DrcAFXv7eKy99eyW+7stFaezssIf5kX3YpN3y4hts+XY+f2cinN/fj45v60SkuGJvdQUb6QXpv+huf8zixhgIW2Xvit3cu1vSt3g7dLTKKKrjynZUczC/nw6l9uThoLyFfXYY2+5F3zS9EDbvNI0kicM5TNKB1BCuT89ChLZ0bCw+6rfzFO7Ox2jXN/avR5/j8RMejlOKiLnEsuH8YN158Ps9WXknX4ld4L+YJKnwiif7jUXzf7k/20g8prajydrj1sj29mKT4EFR5LobKQozRHRus7o6xwaQXVVIR3AqlHR5b4U8IIYQQQpw5SRR52Hi1nBX+9/NRu2UU52dx44y1XPzaMuZtycDukISR8L7yahvPzdvBRa/8waZDhTw1Pomf7h3CkHZROBya7IIichf8h+gZgwnZN5ucbrdRdstq/h1wP+XKD9tvL3j7Euotu7iSa95bTUGZlU9v7kfn4mWEzb4Wa2ACldf/RFSbnh7vDdireSjZJVUU+rpWJHPjB+ift2UQE+xLCGUomZ/ohHxMBm46rxW/P3Q+U4e258W0zvTPfpiPWr5ItTmY6EX3Y3p7EJnLPqGgqARHE/s7Xm1zsDe7xDnsLGe3c2MDTGR9REfXhNYpOs65IT+5weoWQgghhBCnRhJFnhbaHFtoa84/9F/mO27nhxZfE1GezF2fb2Dkv5fw5dpDWO0Ob0cpzlHbDhcx7rVlvL/sAJf1SuS3B4dz4+BWmIwGCkqryFjxGaEfDiZ21d8pj+5FxtULCZ7wPC3iYxjYpR0f2S7Cb++PWNO3ePtSzlhOSRVXv7eKrOJKZtzYl2YH5xD50zQqI5KwTfmJ4OjmDRJHiwh/AA7pKOcGN01oXV5t4/c9OYzuHAuVhef8imenKsTfzGNjO7HwgWGM7hzHM7sT6Jf7BJ+1eBY7itiF9xD0Vnfyf3ic7IO7qbLZvR3yKdmbXYLVrkmKC4bcPc6NUR0arP4jK59trXDNbSYTWgshhBBCNDpuSRQppS5SSu1WSu1TSk2vY79SSr3m2r9FKdXLHfU2CS3Pw3rdHA5etZDCthPpkvsTn1bdx4bwx3mo6g3WzXmNq5//lNcW7Ca7uNLb0YpzhMOheX/pfib9dwXl1XZmTuvPPy/vRmSgL9U2B4c3L8b34wtIWHg3dp9g0sZ/Add9Q0K7HjWrQI3sFM271jFUGwOxLW6avYryy6q57v3VHC6s4KOpfWlz8CsiF/6FsvhBcMMcAkOjGiyWZmHORNGBcgsOsz/aTT2Kth0uptLqYHiHKFRFAcov1C3lniuaR/jz6uSeLLh/KKM6xfLEntb0LXiGj1r9m6LInkRsfouoD/tT/fHl5Oxe1eh7im5PLwacE1k7cnajzf4QnNBg9ceFWAi2mNiSp3D4RWDP2dtgdQshhBBCiFNT7wk3lFJG4E3gAiANWKuU+kFrvaPWYWOAdq6f/sBbrn/PCcEWM8Gd+lLepifp2X/DuHUWAekrGJ21lovNC8EGh5dF8NrvEznUYhKX9W3FBUmx+Llh2W0hjpVbWsWDX29mye4cLkiK4V+XdSMswDmZbEFRMfaF/0fC1vepDogj/fyXsfS+hoQA3z8NverbMhyHJZTFoZO4aN8nWA9vxpzQ3RuXdEYO5Zdz66frSckr48OpfelUspyg3x6lpPkozFd/isXPv0HjSXQlig4VVKBDW6LzU3HHX4DsEmcCOj7UD1VZhGqAZdDPRm2jg3jt6p7cO7Itry7axzNbNC+Zb+GmrndyleE3Yvd+TuAXF1HY4Sr0iCcIj0n0dsh12pFejL+PkZYRAeic3eiIdhgbcJEFpRQdY4PZlVmCDm+DzpOhZ0IIIYQQjY07ZmbtB+zTWu8HUErNAi4BaieKLgE+0c5ZnFcppUKVUnFa6ww31N9k+PuY8E9sRnXsXymruo/Mqmps2Xswpa3Bf/vnPFvwAWmH5/KfA5N43DSMIe1juKhrHMM7RBFsMXs7fHEW+GNPDg98tZniSit/v6Qz1w1ogVIKm91B9t61hM+/G0vBHvKSpmAf+RSxYeEYDHV/iDQbDQzvEM0L+0Zwgc9sbL/9E/N1nzfwFZ2Z2RvTeGLOdpSC927oQ3dTCv5zb6Uysgs+kz/Ct4GTRP/P3n2HR1VmDxz/3jt9kswkk95DSaGHDgKCUkQRGyKiWLB3/a1rW9dtdl3Xsuq69oYFwYYKigVQ6b2HEkjvddImU+7vj4moKyqQMkk4n+fJk8ybe+97riZh5sx5zwtgMeqICjGRW9mAFpqEUn2wTa5b5vQ3Xo60KCjuepAeRa3SOyqEf88ezE0n9+bJr/by9MYiXjGO45LBZ3CR+x2id76GL/tTyob/H0HjrsUagJ+l37KzsJY+sTZUVcFXvgcteWyHx9Av3sbba3NpHtgDU87yDp9fCCGEEEL8trZYehYP5P3kcX7L2NEec9ww6lXCgowkOIJJyRhC7MlXo1y+lPxTX8MRHsm/jM/xhel2+u97jnnvvMWof3zKrP+u4j/L9rE6uwJnkzvQtyC6mGaPjwc/28XFL68lzGrg4xvGcNHoFBRFocrZSMXnjxAzfxo6VzWFp79J8DmPExUe/qtJoh9M6hPFwXojeamXYNn3Ke6CLR10R8emtsnNze9s4v/e3UKf2BAW3zyOEeENmObPxmN2wOx3MVltAYsv0WElt7IBNSwFtToH2mCHxDKnC52qEKY0+Adk6VmbSI0O4ekLhvD5LScyPj2SZ9eUMXXnVF4f/Db1UUOIXPkP1OcnUL5nTafZ6dLn09hZVOvvT+RyojoL0UV1XH+iH8wankiT28fm+gjUumJw1XV4DEIIIYQQ4te1RUXR4V5J/u+z4iM5xn+golwFXAWQlNQxTWQDTacqhAWbCB1xJlX9TqVy24c4Nj7LtWXvcZ1Jw60Y2V7cm+/y0njR14stvp6Yw+IYmBDK7aekk+iw/u4LenH8OlBez83vbGJrfg0Xjkziz9P6YjHqaHJ7Kd/9LeHL7iasYjs1PU6jeepjxEbFHvEOXxPSotCpCh9ZzuIG4+toyx6GCztfVVFhdSMr9pTx9Df7KKpp4g+T07huQi80Vy3eF89DdTfSdPFCghxxAY0zyWFl7YFK1IE9wN0ADRUQFNGqa5Y5XUQEG1Fd1f4BaWbdptKiQ3jmgiHsKKzhocW7+evKcl6w38xfBp7FSfseIvztU6kafD2WSXdhsQa2uiivqoE6l8e/41l5S2+gDmxk/YOMGBvj0yL5MNfCaIDKbIgd2OFxCCGEEEKIw2uLRFE+kPiTxwlA4TEcA4Cmac8DzwMMGzasc7wN20EURcERbCJs1HlUDTyb8upytNyVWAvXkFG4kszKRSiaf2edClcEG7N68H1eL0aPPAGiMlDCe5MQGYZeJ5vZCb+PNhfwp/e3odepPDdnCFP7x+Lx+iguzMW07F4S9sz39yKa8hxhQ2diNx3dnwS71cCw5DAW72vkqkEXY17/LLicYApppzs6MpqmseZAJV/uLGHF3jL2lPgrFpLDrTx/wSD6GEso/e5V7Lvexlq1l7pz3yEkMfAvVBPDLHy0uRGPPdH/x7nqYOsTRXUuokLM0FjtH5CKonbRL87OG5eP5Nu9ZTz42W6uWhvNwIh/cX/4WwzY+BRNBz6nbOpTWFOGYTXqjjgZ25Z+bGRth/KV/sGItA6PA+DqE3vyj5ciwIR/5zNJFAkhhBBCdBptkShaB6QqitIDKADOBy74n2M+Bm5o6V80Eqg53voTHQ1FUXAEGXEExUH8uTQ2n02dy0NZfS2+oq0YSzZjLdvKsMKN2BrWo1v+DgCaotI45Cr00x8O8B2IQGtye7nv0528uTqXoclhPDErkyCTntwDezDuXEjklmdR3Q2UDboWxt1GbLjjmF+4TuoTzf2f7cI5YSyWdU9D3lroPbGN7+j3lVRUoektfL+vnJe/P8COwloMOoVhiSHcl1nDKN9GYqs3YPlgJ6rX3+DZq7dSO+Vf2PtN6fB4DyfRYcWnQakuhjjwJ4oShrXqmmVOF9E2MzRW+AfMUlHUnsalRjLmxggWbS3kxW8PMD3/QqYa+vNQ7YtEvn0KDZGDKEuaiC/1FMyJgwkNMnVYbDsLa9GpCqnRwfh2ZaGoehRHzw6b/6dG9wrHGtMbqsBXvq9ttmAVQgghhBBtotWJIk3TPIqi3AB8DuiAlzVN26EoyjUt338O+Aw4DdgHNABzWzvv8cRi1Pl3QAuJhJiJNHtOorHZS5Pby22fbGbH9k3cMRSG1X5JyMbn0cZdjxJ6fCzbE7+UW9HAdW9tYHtBLVef2JM5/c3o1r+Aaf/HOErWA+CMH0fthPuI7DEQo751L9Em9oni/s92sbQ2mQsUHb6D36Pr4ERR7TdPEb38Hqqw0cMXxQ36eOy9UsnQ52Mv/B5dsRNN0dMQOYjKjAtojh4IsZmYotMJt3WeZsNJDn8sBzzh/kRRdU6rr1nmdNE/zg5N1f4BqShqd6qqcGZmPGdmxrM5r5o3ViUwaUsqs/iCWfU7SNzwOMqGf+G2RlN9wm2Ejr2yQ+LaUVhDalQwZoMOd8lO1NAe6HSB2ShBURQuGd+Xgg/C0bK3kzAhIGEIIYQQQojDaIuKIjRN+wx/MuinY8/95GsNuL4t5hL+ZthGvYodAw+cN5wZFW7+b0cjH144gZB5J+Ba9SLmU/8R6DBFACzLKuXGtzeh4N/Na3jj99hevQrV56YpLJ3iobfhyjgTR2IG8W20k17PyGB6RgSxZK+TWdED4eDKNrnukWho9rDoq284a80/WOtLp8SYwuDgCvq792IsWI7bGkNNz2k0pZyM2msCVpuDUIOu0y7PTGxJFB10Koy2RkBVTqsqLbw+jYr6ZiJDTNBY5R+UHkUdKjMxlMzEUKqm9eHvi3pz4uZCpvfWc1vPXML3zCf0yz9SY7RgHzGn3WPZUVjL2N4R4G5Cl/Mtvn4z2n3O3zJtQCybPorHXrg7oHEIIYQQQoifa5NEkQgcs0HHsxcO4fSnvuOWJRW80/MUjFteh0l3gcES6PBEB8qrbOCGtzaR6LDy/EVDsVdtJ3jhtTSF96N84r+wxPfHYTG0uoLocCb2ieLVlQdxjxqJefMr4HGBvv2W1FQ3NPPqyoO8+f0+XvLeTZPOguvsV5jcPx23V6PW48PtasRoNBNiMeJoh3tuD9E2M0adSl5lIz57MkrlwVZdr6qhGa9Pa0kUVfsHzfZWxymOXliQkcdnZdI/3s4Dn+0iy5nGs7PeJu6Ti7AtvhmnxUHIgNPabf4yp4tSp4u+cTZ8+79Bddej9Duz3eY7EnqdSlBcGpH5S9iUW8XgJEliCiGEEEJ0Bl3j1ZP4TcnhQTw6cyBb8mt4TzcNXVMV7i3vBTos0YG8Po1b3/NvTf/8RUMJ95ZhWXABHkskzH6bpIyhRIaY2iVJBP4+RW6vxk5DfxSvCwo3tcs8AFX1zUx76jue+HIvd4YsZpCajeHMJxg3uB9mg54Qs4GIYBOx4aGEh5jb7Z7bg05ViA+zkFfZAGHJrV56VuZ0ARyqKNJMNlB1bRGqOAaKonDFuJ68ftlISmpdzHhhIxvHPI0rPIOgjy6jbt+qdpt7Z9GPjaw9Oz7GZ7Sh9Dix3eY7Ur0yMglT6nhrWfv9zRBCCCGEEEen67yCEr9pav9Yzhkcz4O7InCFpaGt+S9ox9Wmcce1l77LZu2BSv46vS9RpmbUt2eheppwnfc21g7Y8n1ochh2i4EPK/2bG3oPfNcu82iaxm0LtlDqbOKDs4OY4XyLhrSzsWYGdglNW0p0WMmrakB19ECtzQev55iv9dNEkdZYhSaNrDuFsakRLLphLDE2M5fOy+KLwU/jsUZhfu986vN3tMucO1t2POsbbUW3dzGe3qeA3tgucx0NU7R/17Xs3Vs4UF4f4GiEEEIIIQRIoqhbmTM6mUa3j40xMzGWbceT037vTovOY3dxLf/8fA+n9ItmRmY07nfnYqrag/OMFwlJGtAhMeh1KidnRPFBlot6e2987fSz99J3B/hyVyl3n9KLvmvuwGtxYDrzX+0yV6AkOSzkVjaghiWj+DxQW3DM1zqUKAr2J4qkkXXnkRRuZf41oxmWEsZNiwp5N+MpNNWA8e1zqMre0Obz7SisISHMgq10DbqmKvT9z2jzOY5JeG8A0vWl3Dp/M80eX4ADEkIIIYQQkijqRgYnhpIeHcITpYPxGm14Vj33+yeJLs3l8XLLO5uxWQw8cPYAXF/cS3Du11Sf9CChA6Z2aCx/mJxGqNXAJ9UpkLsafN42vf7mvGoeXrKbKX2jmVH7OqbK3binPYUuyNGm8wRaYpiV6gY39UEJ/oFWLD8rq/vp0rNqSRR1MnaLgdcuG8G0AbHcs6Ke/yb9E00D+7zTKF/9Nj5f21WF7iyspW+sDff2j/Hpzai9J7XZtVslNAlN1TM3w8vG3GoeXLwr0BEJIYQQQhz3JFHUjSiKwvkjEllT0Expr3Mx7f0UrbYw0GGJdvSvpXvYXezk4RkDcHjLMa1/Dmf6TELHXdXhsSQ6rCy45gT2WwZg8NSxbs2KNrt2TaObG97aSFSImfv75BCy/mnq+8/B0u/UNpujs0hq2fmsgCj/QFUrEkVOF1ajjiCT3r/rmex41umY9Dr+PXswl56Qwj+3GPhTxL9xOvoRseQaahb9ieZmd6vnqHd5OFBRT7/YEHRZn+LpORGM1jaIvg3oDPjsSfRUi5g7JoVXvj/IJ1vl3y0hhBBCiECSRFE3c/bgeIx6lXeUU8DnxbX6xUCHJNrJt3vLeH5FNrNHJDGxTzSuFU+gaF6sU+5GUZSAxBRjN3PtxRcDsOSzD/h0a1Grr6lpGrcv2EJxTRPPTrbi+OJGmqIGYZn+aKuv3RkltiSKDjSHoim61lUUOV3+aiKAphpUSRR1Sqqq8Nfpfbnr1Aw+2OdhdOEtfGs/g7BNz9L8+jkUZ2+jut6F23tsy7LeWpOLpsGE4Fx09cXoA7zb2S+E94bKbO46tQ9DkkK5Y8FW9pXWBToqIYQQQojjliSKuplQq5FT+8fwyk6FxpSJGDa95t+qXHQr+VUN3PT2JtKiQrjn9D5ozmKMm1+jqe956MJ7BDS2sLieuEMSmGjZz41vb+TSV9by3+X72ZJXjecwL3Q9Xh/arzReP1Bez6WvrOPzHSX86eRY+iy/Gk1vRTn/TVRTJ6mIaGM/JIpyq934QuLxVhw45muVOpuIDDaBpqE0SY+izkxRFK4e34tlf5zAWcN6cFn5bP7kuQJz/kpiXh9L0DP9qZ93MSVfPUPxvk1U1rlocv/+8s6cinoeW5rFpD7R9K1ejqYaUNNO6YA7OnJKeG/Uyv0YVXjmwiGYDDqum7eBhuZjb+QuhBCidTxeH1X1zeRVNhzzGxVCiK5LH+gARNubNTyRjzYXsiH6XMYd/BLPzk/QD+w+u0Id75rcXq55cwMer8ZzFw3FatTT9MWTmHxuTCfdFujwAFCSRjPywDLmnpDCsj1lLMsqAyDEpGdIchhDksIYlGgn3tRIcNZC3NZoiM3EGNETi0kPGrzwbTbPr8jGqFf567Q0Zu25FX1dAU0XfozVkRTgO2w/dosBu8VAbmUDWmgSSisritJjQqC53t8YWyqKOr1Eh5UHzh7AjSf35r/Lkzll7UBGaluY2LyXEXmric5eBN+Cx+ygPmYkVbEj8CWNQRfTD4vJhMmgYjboAH813p0Lt2FQVe47sx/KK5fjTh6HsZMlDNWI3uBppKzoIHpbPPee2Y8b3trE7Qu28tT5maiqvKclhBAdpc7lobimkcZmH4rXRVDhKtzxyRiSMgMdmhCiA0miqBsa3TOclHArz+TYGR0Ui3fTW5Io6iY0TeOeD7ezvaCWFy8eRo+IILS6UoybX6GpzwwsEb0CHSIAuh5jUXa8xz2jTdwzfQKlzibWZFeyKruCDQereOLLLE5V1/B3w6tEKrWHzqtXQyiwpLGhMRanK5zrE1KZcsJI4g6+gDVvOc4pjxHS64QA3lnHSGzZ+YywFJR9XxzzdcqcLsb2jvD3JwIwh7ZNgKLdxdot/O2MflRNTOWjzSfyrw357CisoadaxqyoXE407qFH2WbsBxfDKvDpTDQ5+lIf3o+KyP6oKWP5sjSEVdkVPHjOAGKa9kPNQbxjbwn0rf1Sy85n3o3zaIzMJN0Yws2D4OUte7nfZmb2iCSsRh02i4FgkzxtEUKI9tRQW4Vx1xIicj4nJO8bdO46PI40uGldoEMTQnQgecbVDSmKwnnDE3lkSRaVI88hcutz4CyGkJhAhyZa6a21uby3IZ+bTu7NpL7RALi+fQqTpwnThNsDHN2PlGR/MkfL+R4lojdRIWamD4pjct9oigsOYvvq3zjyvqDAks5fQu6npslLfGMWvdx7SHdmc5a6HYvBBSXAB/5r1g24hJATrgjcTXWgJIeV3cVO1F4pqPWl0Nxw1M2Hm9xeaps8/h5FTdX+Qako6nLCgoxcOqYHl47pwa6iWt5bn89LWxN5sHgYevVCJsc3M82ew2B9DvaanYTu/wjd7jfhW4jURnFm7MWclRmH59s30KGg63N6oG/pl6L6oulMxGz456GhW4BbzFCzzoonKwl9eA8awlJhwi0E28MDFqoQQnRr9eVEPJ+J6q7DbY6gpufp6JoqseV9DV436AyBjlAI0UEkUdRNnTs0gce+2MMHvhO5WnuG5k3vYDzxlkCHdVzw+TQUhTZtKO3yePlyZyl/+3gH49MiuXlSmv8b9RUYN7yEK+MszFFpbTZfq0Wk4rWE4zu4EsPQS/D5NEpqG/BteJ3ENQ+geF0Uj/gTlnE38o8QfwJE0zSa3D4amz3UeHxU1pWiVB1Eqc5Bh4fI0RcG+KY6TmKYlS93lkJosn+gOheiMo7qGuV1/t5kkSEmaGxpKt7JlhyJo9Mn1sZfpvflz9P6sDm/ms93FPP59mIW5/XGoEvl5IwLmDYtmsygatZ/9DRTnB8ytWo11W9/iq5yJ1rCKAzBkYG+jV8KjqT8qi1Uleahc9Wia/Z/aM5iNmzZTHhtMUPIIjLnc+pLN4vOKUAAAQAASURBVOG6eAEmkznQUQshRPdTvgfVXUfBmAeoTJ+NotMRe+ADlJwvoOogRKQGOkIhRAeRRFE3FRViZmJGFC/squLSmGGoW96CcTdDgHbDOp40lR2gFjMx0XGtuk69y8PyPWUs2V7M17tLqXN56BkRxJPnZ6Iq/ooR74qnsHoaMXSiaiIAFAVf4mjU3FXUNLip2ruSqO/uwVq2hbqYUVSc/CgxPfth0ut+coqCxajDYmwZC02GhOQA3UBgJTqsNHt9VJriiAD/zmdHmSgqc/40UVTtH5SKom5BVRWGJPl7fd05NYNdRU7e25DHB5sK+HxHCZEhJsqcZ3DbuMs4z7MIx/ZX0Lnr8I68MtCh/yp7eDTGkAg8Ph9en4ZX0/D6NOL6NXLl6+tx+Iy8PnYPSd/eTvVHt6Kf8W90OuldJIQQbaqmwP85ZQyJEcHYzAZUbYB/rHyPJIqEOI5IoqgbmzMqmS92lvBt8mQm7X8QrXATSvyQQIfV7ZnenUmoplJz6VLs9tCjPj+7rI5XVx5kwYZ8Gpq9OIKMnD4wlpPSo0ize6nb+y0NpTsxVewmdP8HuNKmY47p2/Y30kq6lBNQ93yCtvBykvd/jMcSQd5JT2LKnEWSzdymFVfdTdIPO5/5Iv2Joqqjb2h9KFEUbIYS6VHUXSmKQt84G3+N68cdUzP4YmcJ89flMSDeztVTh6IoI6gYdT3q3iVEDD8/0OH+KqNexaj/ZeInIczKf+YM5eKX13JfwVAeGnwdjk3PUhGehuPkm+TviBBCtCFPdR56QAuJJ9Rq9A9G+PvI+cr2oGZMC1xwQogOJYmibuzEtEjOGBTHH7c1sMFswrP+TUySKGpf7ibUyv2Y0WhadDNN572E2fj7v2aaprFqfwUvfXeAr7NKMagq0wfFMXNYApkJdqrzthP0zVWE5C8/dI7XaKMxchCWKX9vzzs6ZmqKv0+RPftTygdcScPoW4mOjDy0I5P4dYktiaLsBiuD9RaoPMDRvhwu++nSs5xq/6BUFHVrZoOOMwbFccagn1czRkXHQvTcAEXVemN6R3D3aX34xyc7STjhAm5J2Y/ju79R4ehBxOAzAh2eEEJ0GwUH92LXgvjrkoO8dGnLUmWzHW9QFFpZFlLHKcTxQxJF3dy9Z/Xn1IOVfO0Zwck7F8C0B0FvCnRY3VfVQRQ0GiMHEbrvQ0q/HY7xpOtR1cO/zHd5vHy0uZCXvzvA7mIn4UFGbjw5lTmjkogMNlFZWU7dojuI3v4qPoOVksE3444ZAtF9MYQlEmw2oOusuwDFZlI96V9Uh2cS3mMgkWZpgHik4kMtKArkVTXitSehVOVwtOm1HyqKwoON0FiFpupRjEFtH6wQHWDumBRyKxt4eeVBIk/+M5fWFRD22TVU2OMJ7zk00OEJIUS34Cw9SIMWzle7S/l+XzljekcAoIWnQvneAEcnhOhInfQVpmgrdouBx87L5D8vjWGy8Vs8uxej739WoMPqvir3A6Cc9gjOrx8m4vu/URY7mOi+Y352WHmdizdX5/Dm6hzK65pJiw7m4RkDODMzHqNOpdJZR8my1whf8wj6pgqqMmbjPeluIiLj0f1K0qnTURSCRs/FriqyPOQoGfUqsTYzeZUNEJbi71F0lMqcLhxBRgw6FRqr0cxh8v9BdFmKovCX0/tSWd/Mw1/nET7lX5y9/iJCFl5I9ZzFhMb2CHSIQgjRpXm8PvR1hTQHx5GgWbjv0118cuNY//POiDTUHR+Apkm/UyGOE1JBeBwY3SucvmOnU6Q5KP325UCH02m5PF48Xl/rLlLhTxSZY9LxnPkcHms0YZ9eQWFhHk1uL7uLa7l9wRZOeOhrnvhyLwPi7bxx+Qg+v+VEzhocT3VZAeWf3Yv9ucHELL+dZlsyJecvJmTmM0RGJ3SdJFELg06V5MQxSnRYya1sQAlLRqk+6H9ydhTKnC4ig/3Vg77GKjDb2yFKITqOqir8c+YgxqVGcOfScr4e9gy65jrM756Ls6ok0OEJIUSXtvZAJVFaOfboZO6YmsGuoloWbsgHQBeZhuqqhvrywAYphOgwkig6TvxhSl9WmE8mquRbSgtzAx1OwPl8Giv2lNHk9gJQXZyD+9Wz0N6d06rresv34bOEgyWMsIhoKqe9gL6xHN6by1+efpnTnljOx5sLOXdIAl/cciJPzh5M71CVwg2fUT//GqJeGkbU+sdoCu9P4fR5cNnnxGSM9leFiONKksNKXlUDalgyanMdNFYd1flldS5/fyLw73om/YlEN2DUqzw3ZygDEkK58WsPK4Y9hdGZh+7tWTTU1fzqeZqm0eT2UtPopqHZ04ERCyFE1/DN9hwcSh2xyamcPjCWwUmh/POLLOpdHpTINP9B5XsCG6QQosPI0rPjhFGvMvLsG9C/s4BPXr6X5Bn3MbFPdKDDCojqhmb+793NfJNVxnUTejE3YhdhS29B76pGU/XgbgSD5ZiurVXsB0fPQ4/dUZk8E3Qd11Y+xSPKOv4WFEJD/DhcoePRr/8IteB7okvWo/qa8ektVKXPonnIFdiT+hF3BE2wRfeV6LBSUuvCbUvGCFB1EKyOIz6/zOkiJaWlJ1FjFQRHtUeYQnS4IJOeVy4dzqz/rmLuNz4uCf0Dfy19GOfbF1N34Tv4VD0ut49mrw+X20uz14fb82NFnqJAj4gggjprfzchhOhgmqaxbccOAIxhSaAo/HlaX2b8ZyX/XZHNH4b7E0Va+R6UlDG/dSkhRDchz5KOIykZgymOmcBlxfNZ+FYhN/e6jT+dPZJo+7ElRbqiLXnVXDdvI6XOJtIcehJX/5VIltAY3h/XiBsI+vY+KNkBCcOO6fpK5X7oMR5N03hrbS4PfLoLjdFoI05jevAe7IUrsOcvw5D7GQCN4f2o6HcprsSxGHuOJSwsTKqHBOCvKAIoVqNJAn+foiPctVDTNMqcLqJ+qChqqkaJSm+fQIUIAEeQkY9vGMuHmwt4dWUIdzvn8mDBS2x55lxqg1KIcufjcOUT1ZSPz2SnKWowDVGZNEYOpjFyIAcroGdEMBaj7MIohBDbC2rR1ReCEbDHAzA0OYzTB8by/Ir9XDB8PNF6C96yPfLiUYjjhPyuH2dCL32XwiX3c9bmZxh54HL++Nj1jJ14JjOHJuDRNDxeDa9PIyHM0q16y2iaxpurc7j3k11Ehph485xIUpddj4MsNidcSPoF/ySouRy+vQ8KNx1boqi5Hl1dETXByVz/0lq+21fOmN7hPDxjIDE2M43uIbg851HS7MFXtgddcATW0GhCzXpJDolfSHT4E7gHvRH+RFHVwSM+1+ny4PL4Di09UxqrUMyy9Ex0Lxajjtkjkjh/eCKrs/vx3sdeZta8SnPdKvK0KLZoMeRoJxHldTKuZAexOUsA8BpCOHDqmxxgCD0jgzAbJFkkhDi+fb6jmHilwv/AFn9o/I6pGXyxo4R/fbmXB8J6osnSMyGOG5IoOs6YzWbCT/8bhT0nEf75DbxW/w8WLF1Gwc4wko21GOqL0TeW0XDCrQSNuzbQ4R6zmr2rqNWHEx7fE5Nex58/3Mbba/OYkB7J3/qWkPDFpYDC7aY/k9U0mo+sVrAk4rOEoxVsPuqtyAGozAbgwTVuNnmquO+s/lw4MulQwi1EpxICgAkcg9vkPkX3ldhSUZRdqzDWEo5WefCIfy7LnC4Af6LI50Vx1UqPItFtKYrC6F7heG56nH35t9KkC0JDR7hPw9jo4dEvsrixoIZJKXpuTq8lbdO9pHx+CdmnL+CAkk7PyCBMekkWCSGOX5/vKOYqRwOaU0GxxR0aT3RYmdIvmu/3VUCPNNTCjQGMUgjRkVpVxqAoikNRlKWKouxt+fyLVyKKoiQqivKNoii7FEXZoSjKza2ZU7SeSa8jYcCJ1M1dRlX6+Zyj/47Y4m/AWYw7KBavKRTT9w+juZyBDvXY1Jdje2sa8W+cQMPCG7nr5U94e20eV45N4ZHYZSQvuRhPUCz1Fy+l3/iZbMmvYXNeNSgKWuwgf0XRMXCV7AVgnzea968bw5xRyd2qKkt0rMhgE7F2M8v3lOGzJ6FV5RzxuYcSRcEmaGpp8GsJbYcoheg89DqV3slJ9E8IZ0BCKIOTwjgxPZIPrx/DH6eksTzPy4XLbSzs+2801UCPxXNQqvM4WN6A13d0uwoKIUR3kV1Wx97SOgaG1KEFRYLe9LPv94wIoqimES08FbUmF9xNAYpUCNGRWrve5U7gK03TUoGvWh7/Lw9wq6ZpfYBRwPWKovRt5byilRRFISoiHMuMp1k/J4uTlBc4j4dxzngT17R/o2+qomnlC4EO85j49nyBonmpSZyEPes97s+7hPfj5nF91UNErb4fZ8qpeOd+jj0+jRlDEwg26Xl95UEA1LghqOW7/Q2tj4KmaSxZ8T0AN547mfSYkLa+LXGcURSFc4bEs3xPGa7gBJSjWHpW+tOKoh92S5OKInGc0qkKN5ycyqc3jSMhzMqfltXx8YCnUT0N9Fh8IV5nKUU1R/c3XwghuosvdpYAkKirQvvJsrMfJDqs+DSoDkpBQTtUQS+E6N5amyg6E3it5evXgLP+9wBN04o0TdvY8rUT2AX88q+QCAirUc+o3pE8MmMgu4udvLk6F3vqaJoST8Sw9plfTZj4OvG7r96sJXis0dzsvZmxTY+zKXoGmTVfYt+/iPIRd2C64HWCQkIBCDbpmTEknk+2FlFe50KJz0TRvFC8/ajm/PfX+2gu2UOdIYLxA3q1w12J49E5QxLwabDH5UCtzQef94jO+9nSs7pS/6DlyHdME6I7SosO4f3rTqBfnI17VsP6E57DUF9EjyUXU1NVSW2TO9AhCiFEh/t8RzH9422Y6gt/1p/oBz8shc9TE/wD0qdIiONCaxNF0ZqmFYE/IQT85v7LiqKkAIOBNb9xzFWKoqxXFGV9WVlZK8MTR+rUAbHMHpHIc8v3s3JfOcqE29E3ltO4+uVfHNvs9lK06h0aqzvh/x+vG3X/1yzTMvl2fyW3nDOeAVc8R+Elayk8/wvCpt6FyfDz1lwXjU6h2evjnbW5EJvpHyzafMRTLtlezL+W7mFIcCXmmNS2uxdx3OsVGcyQpFCWlweh+NzgLDqi88qcLgw6BbvFgPvgSv9gXGb7BSpEF2E26HhuzlAMOpU71lnZN+FZzJW7SVh+KwWVDXi8vkCHKIQQHaa0tolNudVM6RON6ixADU38xTE/7MK61xMNgLdMEkVCHA9+N1GkKMqXiqJsP8zHmUczkaIowcBC4BZN02p/7ThN057XNG2YpmnDIiMjj2YK0Ur3nN6XHhFB/N/8zWzX96MqcjisfJLtOaWU1vrXI7s9XuoW3Un80mvwLPo/NK1zVRatWvYpOreT9+v688SsTGaPSMJi1JGQlEJ8xgh06i97BvWOCmZs7wjeXJ2LJzgOnyUCb8GRNevLrWjgD/M3MygxlBS1GCW8d1vfkjjOzRiawPoau//BEfYpKnO6iAw2oSgKWvZy3OEZEPybeXwhjhuJDitPnp9JTkUDD+1Pomj47dhzlhCy8y0KqmUJmhDi+PHDsrNTUy0o7gYUe8Ivjom2mTHoFA7UgjckAa0sq6PDFEIEwO8mijRNm6RpWv/DfHwElCiKEgvQ8rn0cNdQFMWAP0k0T9O099vyBkTbsRr1PHX+YKrq3cz4zypuLJiEpbGEt55/iLEPf8NXu0qoXXIvjq3P47IlE7J/EVX71gU6bABqGt3837ub2fbNfJrRc+s1V3Nm5pGvcLx4dDLFtU18sau0paH15iM6b9meUhqavTx5Vk90DeXoIiRRJNrW6QPjKFb97+JxhH2Kyupc/mVnHhf6gjX4Uk5svwCF6IImpEdx86RUvt5dypvKdOrixhC3+u80FWVRVd8c6PCEEKJDbMipItpmorep2j9g/+VzZ52qkBBmJa+yAV94KpTv7dgghRAB0dqlZx8Dl7R8fQnw0f8eoPi3fXoJ2KVp2r9aOZ9oZ/3j7Sy+ZRwvXjyMSy+8lHL7AO6yLSY90sy6t/5O+PrHqU6bie/yb/CYQjEsv48m95H1TWkve0qcnPrECj7eUsg5wdvRksfSKz76qK4xsU808aEW3lydgxo/GLU864gaWu8oqCXMaiCZliVB4dKfSLQtu8VAvz598aLgqThwROeUOVsSRfnrUT1NGHqPb+coheh6bjo5lQnpkbzw3UG+yvg7Pp2JxGU3UVRZg8sT2H/XhBCiI+RVNpASHoRSU+AfsP2yogggIcxCXlUDSmQqauU+6GQrCoQQba+1iaKHgMmKouwFJrc8RlGUOEVRPms5ZgxwEXCyoiibWz5Oa+W8oh31igxmUt9oJvWLIWTKnwhpLOSN4Ke4UzePT32j2Tz4Xiz2cBpG3ERI/nLKt3/dZnOX52VRW5Z/VOc8vnQP9c1eFl0YT0RTDvqMqUc9r05VmNIvmo25Vfhij7yh9Y6iGvrF2VF+2AHCIYki0fbOHtaDIi2copwjK/f+IVHk3rcMTVFRU8a2c4RCdD2qqvDErEziQy388fMyPku5C2v5NiLWPcbekjoq6lyBDlEIIdpVXlWDv1l1bctz78NUFIG/T1FuZQO6yHRUd/0R90wUQnRdrUoUaZpWoWnaRE3TUls+V7aMF2qadlrL199pmqZomjZQ07TMlo/PfvvKorMw9T0VV0Q/QvO/pjJ+Ik/Zb+Pat7awJrsC8wnX4A6KIWzVg5Q7m1o1j6ZplK9bgOPVE7G8OpH6siPrxVJa28QXO0uYNTyR9Fp/015d+inHFENGTAhNbh8FlnT/QOGm3zze7fWxp7iOfnE2tIp9aCjg6HFMcwvxW8alRlKiRtNYuv93j/X6NCrr/T2KtAMr8EQNBEto+wcpRBcUajXywXVjGJ7i4KYtiXxnm0bk1uewFqyksLqJA+X1NHukwbUQovtpcnspqXWRGGaFmgI0VQ/Bh6/IT3JYqW5w02BreZ4rO58J0e21tqJIdHeKgnb6E5QPvArzha/z5lVjiQs1M/fVdSw/UEftiD8QVLqB+m2f4DzGrYW9Xh+VX/6L8E+vwBWWitpcj+6tc2morfjdc+evz8Pr05g9Iglf1hI8jlRw9DymODJibADsrAvGZ43A8zsNrfeW1NHs9dE3zoavfB8+WzwYLMc0txC/Racq6B0p2JoKKXP+dpVDRb0LnwaxVh+Gog1oPcZ1UJRCdE1hQUZev2wEl41J4crSGRSocSR9cTmJX1+PfuvbZB/MprpB+hYJIbqXH5r3Jzos+Gry0YJjQdUd9tjElp3P8nX+pWk+2flMiG5PEkXid5lTRhA8/SGs1mAiQ0y8feUokhxWrnx9PffkZtIYnEzUukc5WFbH3hInVfXNR7wbmtvdjPP9mwn//h84e56GctkS6s5+FWPNAbS3L6CpseFXz/X6NN5em8eY3uH0CNHQ566E1CnHfJ9p0SEoCuwuqcMXk4nyOw2tdxb5N+/rF2dHq9iPdowJKiGORHyPDGKUKj7ZkP2bx/2QSOrdtAPF58bQa0IHRCdE16bXqfxlej/uPmsoc5v/yBLfCKxFq0lccSsZbw7F9PLJaKW7Ax2mEEK0mbxK/3PshDArWnU+mu3XN4FJakkUHWiy4TMG4yuThtZCdHeSKBJHxGz48R2GKJuZj28Yy62T0/hydyV/cZ6FpWo39n0f0uT2kV/VyO5iJ6W1Tb/a6Lqx2cv327PJenwaoTtep3zQdVgueB2zNRh730lUT3mCoKLVuBZchct9+Eql5XtKKahu5MKRyZC9DMXXjD7j1GO+R4tRR7LDSlaxE138YNSKLGj+9UTVjsIaLAYdPcKtqJX7UcJlxzPRfiIS/Usiv1u/6TcTsT8kimKr1qKpepTk0R0SnxDdwZxRKVx99mRuaLiSR/t9yN6zPqV46G0Ya7LxrHg80OEJIUSbyav6saJIqS341f5EgH95Wss5Pkcqmiw9E6Lbk0SROCZGvcqNE1NZfMs4DkRNYYcvGceKuzF99xC6xnI8Xo2SWhd7S+rYVVRLXmUD1Q3NVNU3s7fEyZuLPif2vdPIqF/Pne4rmLT1JB5cvIc9JU4AwkZeSOXoP2Hfv4jGT+8+bAxvrcklMsTE5L7RuHcvxme0QdKoVt1XekwIWcVOlPjBKJoPSn69ofWOwloyYkPQNVWhumrQRUiiSLSjsGQAvJUH+GpX6a8e9kOiKKxkNZ7YoWAM6pDwhOguzsqMJzMxlIWbitDHZ6KbcBvNqaej2/MZeKTBtRCie8ivbMCoU4kONqI4C1FDE3/1WLvVgM2sJ7eyAS0iFbVCKoqE6O4kUSRapVdkMO9ecwJrh/6Tdb4M0nY/S++3RhG1/A6M1f7Gux6vRnWDm7zKRnYU1vLJ289ywdZLCdM1kTv9XU6/9C7GpEbwxuqDTHl8BX98bwuaBvZJt1Hd/xJCN/+X+u2LfzZvQXUjX+8u5bxhCRgUUPctxdvzJNAZWnU/6TE2DlbU0xQ5AADtV/oU+Xwauwpr6Rdng8qWBsOy45loT2EpAAwKruZfS/fg8/mriv63uqiszoWNeqwV21B6nNjRUQrR5el1KndMzaCyvplle8qIDDFhzpyB2lyLtu+rQIcnhBBtIr+qkfgwC2pDOYrPjWJP+M3jk8Kt5FU1oEamoXMWQHN9B0UqhAgEfaADEF2fTqdy+snjyeo7hL+s+JY+B17jnL0LiN77NtXBvSiyZZITNJC9pj7Ydszj/7SPyA/uDzNfp2dKL3oCY1MjqKxv5rnl+3l+RTaxdjO3TknHMv1hXHkr0H/5Z7SMiSh6IwDvrs1FA84fnoS7cDOG+hKU9KmtvpeMmBB8GuxtsNHPGolWuJnDtfXLq2rA6fLQL84OFS1VR+GSKBLtKDgaTWfmtIRmntxZy4KN+QxLDqPR7SXJYSXE7E+SljldjDftRdF86HtPCGzMQnRRo3uFM7KHg/8s28/sEUmYe56EzxSKZ9v7GDNOC3R4QgjRanlVDSSEWaAm3z/wGz2KwL/8LKvEiW5kmn+gfC/EZbZvkEKIgJGKItEmHEFGHEFGZp5yMuZznuHikJd4yH0+m2qCiS/4jKl7/8qN28/jEu0jslNm0zRnEXFJPX9xjbtOzWDWsET+/fU+3t+Yj8lkwTPxPkzV+6j//r+Af1v6d9blMSEtkoRQM65vHkVT9ahpx97I+gfpMSEA7C5x4ovNhF9paL2j8IdG1ja0in1oig5Ck1s9vxC/SlHw2ROJ9ZUQH2rhla+2ots+n9jld1C6cwXOJjeNzV5WZ1cywbgLn84MCcMDHbUQXdYtk9Iodbp4e20u6I1406eh37MY3E2BDk0IIVotr7LBv5tZbUui6Dd6FIG/oXV+VSM+e8vz3Zq8do5QCBFIUlEk2oROVUiPCaGi3oVep/Cn88azoyCTQqDGqBDdeIDo6k0ooQk095pC78hgVFX5xXUUReHes/qTW9nAnQu3keiwMnzANBrWjcfy/SN4h5zPVzleSp0u7h+ZTO03T2Df/xkN4/+GNSii1feREh6ESa+yu9iJGj8YJfsrf2nt//R52VFYg05VSIsOwfv9PhR7IrqWaich2osWloK5eAuvBz1FQvl3mJa70RQ9ofveJ8/5GP84kMHu4lomRuzG6xiJqjcFOmQhuqz/rSoyDZyBsnUe2r6lKH2mBzo8IYQ4ZnUuD1UNbn+T6poC/6D913sUASQ4rDR7fJSpEUQD1Ba2e5xCiMCRiiLRZnSqQlSImYyYEH+Cp4eDgQmh9IqyE5ycSf2guTT0mExKeBB63a//6Bn1Ks/NGUpCmIWrXl9PTmUDytQHUNz1ZL1zJ098uYdYu5kR7MD23X3U9ToNy/ib2+we0qL9Da3VuJaG1sW/bGi9s7CW3pHBmA06lIr9aNKfSHQAJTIdY30hSQ07+NhwCtcYH2T77HU0Rg4i+ZsbSN/7PH85KZJQ516UntKfSIjW+qGq6J21uSg9TsRrduDeujDQYQkhRKvkVfp39U10WNBq8tH0FrCE/eY5SQ7/zme5TRY0nRGtRhJFQnRnkigSbU5RFBxBRlKjQ+gbZ6NHZBAxdjOhVgNJDitmw+G6/vyc3Wrg5UuHowHnPLuSEc8X8Jp7Eun5Cwmq3s1dY20ELbqSZnsPTDOeQ1Hb7kc5PSaE3cVOiOnvHyjd+YtjdvzQyFrTUKqyUWTHM9EBdBNuZ/9Zi9g9ew2V4/7Bktpktlfr+U/SP/nAO4bbDfM5P+sWAPS9JgQ0ViG6g9G9whnRw8Gzy/bT5FPxZUxHv+9zaG4IdGhCCHHMDiWKwqxoNfn4bHGg/LLS/6cOJYoqG/EFx+CTiiIhujVJFIl2pVMVgk16IkNMJP6k4e6RSIkI4sWLh9E3zsYZmXGEnfYXvCY7b8a9z+Ttd6B4GvHOfB2D1d6mMWfEhFBe56JCF4mmt+Ar2/Oz75c5XZQ6XfSNs0FdCaq7Hl24JIpEBzDbMSUPIzEimMvH9CAjJoR/fp7FM9/m82HKXynOvAVLxQ58xmCIzQx0tEJ0C7dMSqXU6eL1VQcxDDwH1d2Ab88XgQ5LCCGOWV5VIwCJDn+iCNtv73gGEBdqRlEgt7IBQuJk6ZkQ3Zz0KBKd2rAUB29cPvLQ4wbfXVi/vAOA2ukvYovv1+Zz/tDQOquknpGO3lD+80TRjsIagJYdz3b7B8N/3phbiPaSEGY99PX/TU7j6jc2kJkYynMXDcPtG0JeVD/CTRpWnfx5F6ItjO4ZzsSMKJ74ci/TbhlDjDUC77b3MfY/K9ChCSHEMcmrbCDIqCPMakCrLYBeJ//uOSa9jlibmbyqBrDFQtGWDohUCBEoUlEkuhTr6CuoT55IzajbsA2d2S5zHNr5rNgJkWmHSRT5dzzrG2dDK2tJFEWktUssQvyWKX2jef6iobw6dzgWow6b2UDMyHMxDT4v0KEJ0W0oisLfzuiHT9P4+ydZ+NKno9//ObjqAh2aEEIck/yqBhLCrCg+D0pdCWrobzey/kGCw0peZQOqLQ7VWQya1s6RCiECRRJFomvR6dHNeY+QKXe32xSRwSbCg4z+htaRaag1eT/rR7GzsJZEhwW7xYC3aDs+k+13d4oQoj0oisKUfjGEWn/ccc+gU9EdZkdBIcSxS3RYuWVSGl/sLGGLfSKqpwnfns8DHZYQQhyTvMpGEh0WqC1EQQNb/BGdl+SwklfZiGKPR/E0QFN1+wYqhAgYSRSJLsds0KG24wthRVH8Da1LnCiR6f5/QCv2Hfr+zqJa+sba/A9Kd+CL7PO7DQCFEEJ0bZeP7UFadDC3rDThsUbRuH4ebo830GEJIcRR0TSNvJaKImoL/IP2I08UFdc20WyN9g/UFrVTlG1Pk+onIY6KJIqEOIz0mBD2ljjxOVL9Ay3Lz+pcHg6U1/v7E2kaatkuiGr7PklCCCE6F4NO5YGzB5Bf6+Z7+zSCcr6ifsG1NDU1Bjo0IYQ4YlUNbhqavSQ6rFDTkig6gmbWgL8KCShTwv0Dzq7R0Nrl9uByS2JfiKMhiSIhDiMjJoSGZi95aiyaoqKVZQGwq8jfn6hfnA1q8lFdtehiJFEkhBDHg2EpDs4fnsjlOZPY3+c6Qne/i+e1s6mtLA10aEIIcUTyKv3tFBLDLFCb7x88iooigBxPqH+gi+x8pn5wJerCuYEOQ4guRRJFQhxGeox/admuMjc+exK+Mn9F0Y6Cn+x4VroTACWmf2CCFEII0eHumJqBzWLitorTKZ30FNaSDZhenUJV7s5AhyaEOAI1DW7e35hPQ7Pn0FiT23vcLE3Kq2pJFDmseKty8ZnsYAo5onMTW3ZezW4M9g90kaVnau4q9AeXS/NtIY6CJIqEOIy06GAUBbKKnf4dzcr3ArC9sJbwICPRNhO+4u3+g6P6BDBSIYQQHSksyMjdp/VhY241Sw0TqDx3AbrmGkLmTcVdtCPQ4QkhfkN2WR1nP/s9f5i/hYmPLeejzQU0VOThe2ESDZ/fG+jwOkRepX+5bKLDila+By289xGfGxliwqRXyal247NG4P2hx1Fn1lSLrq4I1VUD1TmBjkaILkMSRUIchtWoJ8lhJaukFjUyHbVyH2+tzuaDTQWM6hWOoij4infgtSWC2R7ocIUQQnSgc4bEM6qng4cX74akUdTOWQIoeD+7Q96xFqKT+n5fOWc98z3VjW4ePGcA4cFGHnjnayqfOQVr6Uasax7HXbg10GG2u7yqBsKsBoJNetSy3RCZccTnKopCksNKbmUDWkgs1HSBpWctb/YCULQlcHEI0cVIokiIX5ERE8LuYidaRCqK18V/PlrGiakRPDxjoP+A0p1okVJNJIQQxxtFUbjvrAE0ur3c/+kuHAnpNI+9HXPet7h2fhro8IQQ/+PN1Tlc/PJaYuxmPrp+DLNHJPHmeYksCX2YMF8FVzTfSqMajPeT27p9sjevssHfyLq+ArWhHF300T2XTXRY/VVJtnhwdoGlZ+VZh7705G8KYCBCdC2SKBLiV6TH2DhYXs8jG/xPGK7u4+GFi4cRbNKDpxld5V4UaWQthBDHpd5RwVwzvhcfbCpg5b5yrCdcRXNYb5Sl94CnOdDhCSEAj9fH3z7ewZ8/3M6JqREsvPYEEh1Waouzsb45HZu3Gue58wkdfCb3Nc3EXLiaxk3zAx12u8qvavT3Girb5R84yjc9kxxWf0PskFiULpAo8pXsQtMZ8YRnoBVtDnQ4QnQZrUoUKYriUBRlqaIoe1s+h/3GsTpFUTYpivJJa+YUoqNkxITg0+DdA2YALuzVhF7X8itTvgfF50EnjayFEOK4df1JvUkOt/LnD7fj0lS0yfdhrM6mceXzgQ5NiONeTaObua+u49WVB7libA9evGQ4IWYDtYX7ML85HZ2rmvpZC4jpP55Hzx2IacSlbPOl4PrsT/iaagMdfrvw+TQKqhpJcFigtCVRFHXkS88AEsIsOF0emq3RqI0V4G5qh0jbjq9sD76wnmjxQ1CLt3b7ijEh2kprK4ruBL7SNC0V+Krl8a+5GdjVyvmE6DCjeoYzpnc4D8+ZgM8ScWjnMwBKWhqWRktFkRBCHK/MBh3/OLM/2eX1PLcsG1OfqTQlnojx+0fQGioDHZ4Qx62D5fWc8+z3rNpfwcMzBvDn0/uiUxVqC7Iwv3UGqttJw/nvY+s9CvAvJ/3LGQNYk34noZ5yvnnxTny+7pdQKHE20ez1kRBmxVe6G58x2L+E7CgkOfw7n5UQ7h/o5FVFSnkWWkQaurhMdI0VUNsF+ioJ0Qm0NlF0JvBay9evAWcd7iBFURKAacCLrZxPiA7jCDIy74pRTOkXgxaRhlb+Y6LIW7wdTTXAUewUIYQQovsZnxbJ6QNjeWbZPrJK6tCd9iBqs5PGpfcHOjQhjkur9ldw1rPfU1HfzJtXjGTW8CQAavJ3YZl3Bqq7gcbzPySk5/CfnacoCpdfcD4bw6Yyruwd7n9jEV/tKiG3oqHbJI0O7XgWZvEniiLSQVGO6hpDk8MINulZuNfnH+jMiSJ3E2pNjn9jmvjB/jFZfibEEdG38vxoTdOKADRNK1IUJepXjnsCuB0IaeV8QgRGZCrqrkWHHmolO/GGp6HXGQIYlBBCiM7gL6f3Zc2BSi56aQ3vXTOaqAFzsGx+lYbhV2CNk00PhGhvmqax5kAlb67OYfH2YlLCrbx86XCSw4MAqM7bSdDbZ6L4PDTM/gBbyuDDXkdRFAZe+gSeJ4dw4r5HuXTX7WiomA0qvaOCSQkPItFhJanlI8ZuJsSkJ8ikx2rUoSgKXp9GVUMzlfX+D4NOoW+sHYtRh6ZpeHwaBl1g2sTmVTYA/obUatlutLSpR32N8GATN57cm/eWHORWE527QqdyP4rmQ4nKgOh+aIqKt2AT+oxpgY5MiE7vdxNFiqJ8CcQc5lt3H8kEiqKcDpRqmrZBUZQJR3D8VcBVAElJSUcyhRDtTheZDhtfg/pyCIpAKd2BljI20GEJIYToBKJsZt68fCSznl/FBS+sYcFFtxG1+wOUhVdQfOrTRPbMRKce3bv2Qojf52xys2BDPvPW5LKvtA6bWc+sYYlcMioRtamG3H0HUWvyiP7yBhQ0Gi74CFvSwN+8pt4ei2vC3Yz/+m6+j3uJb/reS7ZTx97SOrYX1LBkezGew1QYKQpYDDoa3d6ftcEx4iZJLWO4vYZBQVX0sDSReNJlRKf07fC/C3lV/kRRvKEetbEcjnLHsx/MHdODRWsToR481QWtrjxoN2UtO55FpIExCK8jFa1wS2BjEqKL+N3fa03TJv3a9xRFKVEUJbalmigWKD3MYWOAMxRFOQ0wAzZFUd7UNG3Or8z3PPA8wLBhw7pHnafo+iLS/Z/L94CioqsrwhczILAxCSGE6DTSY0J447KRXPDCai58J5u3Tn6ciG/+SPS8SVQMvBLdhDsIC/vVPT+EEEdpTXYFt7y7maKaJgYlhnLvtF5MrF5A5I5XMGwt/9mxbkukP0mUeGSbkASNu54yt4/Y7/7GDNdcGs99k7CEEQA0u73sK3VStnM5usL10NwInkbwNKF4mrBpTmxaLcHeWqyeakzNVaj4oBH/B+B+43UqRt6G+cQbsVktbfmf5TflVzUSbTNhrt7rHzjKRtY/MOpVbj1jGHVvmcnO2s3AcW0YZBvylWWhoKBEpAKgxQxEPfhtgKMSomtobQL4Y+AS4KGWzx/97wGapt0F3AXQUlH0x19LEgnRabX8A0NZFmj+NdmqNLIWQgjxEwMS7Lw8dzgXvbSGS1dH8+wFywn7/gEitvyH5n0fUT7hPiKGzwh0mEJ0aR6vj39/vY9/f72XJIeVNy4bTmrZUhyrrsRYV0Bt4slURgzEa7LhM9nxmezYeo8mNCrhyCdRFMJPupGyiAwcn11JyBtTKDvteTwhiei2v0vvve/T15l36HCfakDTmfHpzXhNdjzmcLzmNBrMYdRaIvGGpuAL7YE3LIX7P97G7PKnOGn1/TTs+5jiyf8iOm04ylH2CjoWeZUNJIZZobRlU5bIY18ae1J6FIWGCIry9hNT20SUzdxGUbZOUU0jM59bxQUjk7iqNAvFnojO4E/GqfGD0e14D5wlEBId4EiF6Nxamyh6CJivKMrlQC4wE0BRlDjgRU3TTmvl9YXoHOyJaHoLWtkeFG8zCkB030BHJYQQopMZnuLghYuHcfmr67n9s0JenfssxXvPJ/TrO4n49DKcvnpCRl4c6DCF6JIKqxu55Z3NrD1YyTmD47m5XwMRX55PUOkGGsP7UTTpCUL7TsSqU9CpSquSL6qqEDVoCpXhX2BdeBERH5yPgoaGQl38WCqG3wppU1FMNlS9DlVR0CkKqqqgVxVMqoK15eufxnHV6XbOfU7l8f4HOT3/caLfmUrTxPuxjL22Lf4T/ab8qkZG9HDgK90FxhBUW1yrrmeLTiYyr5SHl2Tx2HmD2ijK1lmTXUl+VSOPLMlium0LUfFp6Fq+p4vL9H9RtAVCpgQqRCG6hFYlijRNqwAmHma8EPhFkkjTtGXAstbMKURAqCo+R2+0sj3QXI9qDkMNiQ10VEIIITqhcamRPHbeIG58exMPLdnFfWedjLPnMnxvnk3Q0ttxJQ3HFCtNroU4Gpvzqrn0lbW4PT4eOWcA452LiHz/b3hNdoonPIp1xMXEWtu+qsWRkE79ZV9Q8dUjeI12tIEzsUUlEWs8tpdRw1IcjEuN5L6DJobPXUHop1diXX4fjLgYjEFtHP2PmtxeimoaSQyzoOXv9rdVaGUVk8WRSM+yfSzcmM+cUUkMTgr88todhTWY9Cp/mNSLqG/y+DB/IMPK6ugVGQwtbSM8BZvQp0miSIjfEpiW+0J0RRGpKBV7oGQHvsg+rf7HVQghRPc1fVAcV4/vyZurc3l3XS4hQVb0M1/Cp7fAgrn4XA2BDlGILmNTbhUXvbgGm9nAvEv6MyXrHqK//RP18WOomfst0eOvxNYOSaIfBIWEEnbG/USdejsxCT2xHmOS6Ac3T0yloq6ZxftdGCf9CdVdh2fbB20U7eF9v68cnwZDksNQyrJQolqfrFbtcdg9FUQHG7j7g+24vb42iLR1dhTWkhETwtUD9ZgUN7s9sZz19PcsyyoFsw1PaE9paC3EEZBEkRBHSI1KR63JQ1e6A2KOrBmiEEKI49ftp2QwLjWCez7cwea8aoyOBFynP4upYhcNn9wR6PC6lOyyOq54bR2b86oPjVUd2ERTnrzg6+425lZx0UtrcQQbeX5qEBmLzsSe/TFlw29DP+c9IqJiO6S/T2uXsv2Uv6oogv+u2I8nfiSesF74Nr7eJtf+NYu3FxNi1nNCDKiN5ajHuOPZTym2OBSfh4dOjWVnUS1Pf72vDSI9dpqmsaOwlr5xNijbA8B1M6cRG2rmzoXb8Po0tNhBqMXyd0OI3yOJIiGOkBKRhoKG4mlEHyONrIUQQvw2narw1PmDibKZuOaNDZQ5XQT1PxXn0OsJ3vY6dRvmBzrELuFAeT2zX1jNl7tKufzVdeRU1FOfswnbvNMwzJ8NvsBXMYj2sSGniotfWkt4sJF5Z0eQuugs9E1VFE1/i7Cpf8JiMgQ6xGN288RUyuuambcmDy1zDsaCNVC+t13mcnt9LN1ZwuQ+0RgrW7aMj0xv/YVbehydFOvh7MHxPPPNPrYX1LT+useosKaJmkY3fePsaGX++4zsMYBbJqVRXNvEd/vKUeMy0Tnzob4iYHEK0RVIokiII/XTf1CjJFEkhBDi94UFGfnvRUOpbmzm+nkb8Xh9BE39G43RQ7As+QNUZgc6xE7tYHk9s59fjcer8dycoXg1jf978XP0785G8XnQOQsgb02gwxTtYGNuFRe/tIbIEBPvXjkKx7K7AJWKC5YQO3gqel3Xfhnz06oi94BZaIoO1/r2qSpatb+CmkY3U/vHQNlu/2Ardjw75Id+nbWF/G16P8KDjfxh/mZcHm/rr30MdrQkqfrF2fCV7cYXFAWWUCb2iSLUamD++jx08Zn+g6WqSIjf1LX/wgrRkRy90GgpOW6Ddd1CCCGOD/3i7Pz9jH6sPVjJ9/srUA1GlJmvgKLg/eq+QIfXaeVU+CuJmr0+5l05kqn9Y/jvrL78pf5+tIZKame+h09vpnmLVGZ1N84mNze+tYnwYBNvXzmK4P2LsOZ/S8PYu4hOSuuQpWYd4YeqoifX1NLUYxL6re+A19Pm8yzeXozVqOPEtEh8pbvwGUMOVQO1yg/XqC3EbjXw0IyB7Cmp44kv96JpWuuvf5R2FNaiKtAnxoZWtgdfeBoAJr2OszLjWbqjhJpQ/67FnoLNHR6fEF2JJIqEOFIGMz57Ml57MpiCAx2NEEKILmTawDgUxd+UF8AckYI3aSwUbwtwZJ1TToW/kqjJ7WXeFSPJiLGh+Xz0XX83meo+bm6+jns22/H0nopu54fgdQc6ZNGGHvhsN0U1jTw+K5MIQxOmr+6mKWIAwWOvDnRobWpYioMpfaP57/Jsbs8ehK6hlF0r3sPn+3mSxevTaHJ7jyn54vVpLN1ZzEkZUZgNOrTS3WiRGW2zKUtQJJqqR6stAuCk9ChmDUvkv8v3s2hLIbVNHft7uaOwlp6RwVgMKmp5FspPVgOcNyyRZq+PD3c34LEn4ZNEkRC/qXUt+4U4zniHXAwo6AIdiBBCiC4l2KQnPTqETbnVh8aMsX3Qsr8ATzPojYELrhPw+TSaPF4am728szaHd7/ZQJyullsmpRNUvYfcWh3BWe/j2PshNSf8icGmc3lo8W4mZY7lzKYP8e1fhpo2OdC30a1omsZtC7byydZCfBqggU/TsBp1LLj2BNKiQ9pl3hV7ynh7bS5XndiToclhOD/8I8ENZbhnvomi634vXf4zZyir9lfw4cZoynY+T/7XL3DFmmhO7R/DqQNiyIgKoWbdPNTaAppDe+EL740S3hOrJQhHkBGd+tsJn3UHKymva+bU/jEAKGW7IWNa2wSv6tCCotFqCg49N/7z6X1Ysyef9Z++SKxlLkmxUUTb2m9Hup/aWVjDsBQHOItRm50QlXHoe33jbPSLszF/fR4XREtDayF+T/f7aytEO9KN+0OgQxBCCNFFDU4K5bNtxfh8GqqqQGQGis/j71P0kxc0xyPnpoVU71pO9cHNnO8+wPU6p/8bX/7PcennYpt0G1crCptyq7gvC0432fFumY9REkVt6p11eSzYkM/0QXHEh1pQFDA1V2PY8AJPf6LjqcsntfmctU1u7ly4lV6RQfxhchqNeZsI3vIS9QMuIrjHyDafrzPQqQpjUyMYmxpB/adzmLj+P3wW0czrq3KY/912Hje/yER+3odLU1Rc9l6U9r8U3ZA5hIfafzVhtGR7MSa9yknpUVBXhtpY0aZ/b7SQWHAWHnocYjbwbNI39N33PFXvvEzt8Js5MHQuiRH2du0rVVXfTGFNE/3ibFD+Q8PutJ8dc96wRP768Q7KemQQt2cRNFaDJbTdYhKiK5NEkRBH4ffetRFCCCF+zeDEMN5em8eBinp6RQb/uElC2e7jOlGkVezHvuhyDJqJahIpiD6Zpp6D8YbEARqK5gXNh2qwED1kOorqf7F5VmY8n+8ooaTHZGL2fAruRjBYAnsz3cTB8nru/WQnY3qH8+SsTH9iE6ibfy3BygK25mxgw+4PGZqR0qbzPvDpLoprm1h47QmYdND0ya14TWGYT/l7m87TWQWNnAvrnuah3ju4acQoHJ/dSlBTMQ955/CmewLDgis5NcbJ8JBKYspXEvvd3bg3PEHZgCtQh1+OwxH+s2SMz6exZHsxJ6ZFEmTSQ+Eu/zci2/DvjS0OSncdelhTXUF67jsU2IeSW9XI6LV/x7XzJUpH3EbIsPMJsbZPddGOwlrA3xOOsq/8gxE/39ntzMw47v90F1/WJHAx0HxgJca+p7VLPEJ0dZIoEkIIIYToAIOTQgHYmFPlTxSFp6KhoLRs43y8WvfNR4wA7ol+hivOPoUkhxWzQfe7b86cmBaJUafylf5ELnIvwJu1BF3/szsm6G7M4/Xxh/mb0asK/5w56FCSqDF3I0E736Ymdgx9CleT/f5saq7/DLs9rE3mXZZVyjvr8rhmfC8GJ4VRtfw/hJVswHnqvwkJdrTJHJ1eRG+a40ehW/00yc0P4bGEUzbjA67rPZr03aUs3FDAnfvL0TQYmjSNSwfnMb7kDWLWPoh38zNU9pmDZ+jlhMX2wGzQsTm/muLaJm7v/0NSuuVvTRtuyqLY42D/V4ceu1e/gK65lubp97KmKIL/LFvI35oW0PPrm2nY9gpFU54gsuegNq8u2lH4445n3qzdKMYQ1JCYnx0TajUyuV80/97r40JDMN6di0ASRUIcljSzFkIIIYToAL0igwkx6dmUV+0fMFrxhSbj/cm78cebrGInpVuXUqk6eOTqGfSJtRFk0h9RBW+QSc8JvcN5OT8erzUK75b3OiDi7u+55fvZmFvNvWf1J9beUqGlabDkLrzmMKxz5rGwx9/p7dpF8xuzqHXWtnrOvSVO7li4ldSoYG6ZlEr1/nXYV/yVhoRxhIy4qNXX70rUYZeib6qkPn4MtRd/TeyA8dgsRs4enMCbV4zk+ztO5rZT0imra+bGVSGcVHIL/0l7gYqoUURsfY6YV0bQ9PYlFGxbxkcb8zHoFCb2iQbw73hmsv24rX1bxGuLQ3XXQ1MtdXW1hG5+HmfCBBL7juaGiamMnTqLiXV/59mw2zHW5hD99hQqFz9AjbOhzWIA2FlUS5zdTFiQEa0sC19E2mEbdp83LJGyRsiLGIth/+fg87ZpHEJ0F5IoEkIIIYToAKqqkJkU+rOG1kSk//gu/3GmsdnLDfM2MFLdhbH3eHTHUGEwuW80BypdVKZMw7B/qb/niDhm2/JreOLLvUwfFMeZmfGHxus2vY+lcDVNY+/EEBTG1JlXczfXEV6+FmX+JXjdrmOe86tdJZz97Eq8Pnjy/MF46yqwfjAXjzkcZcZLbbM7VxeizzyfkvMXo5szn4joX25hHxdq4fqTerPsjxN4de5wMhNDeWRbEKOz5/J/0a+yLfECgvOXEb/wTGZvuZi/hn6OM287Fc4mfMU70SLS2/a/qa3l58RZRNPa19A3VeAafQt6nYpep3LVib24e1o/HinK5E9xL1KbcgpR6x/F+OokSvesa7MwdhTW0jfOBoBavgclIu2wx43tHUGs3cyi5qHoGyvwHFzZZjEI0Z1IokgIIYQQooMMTgwlq7iWepcHADUqA7VyH3g9AY6s4/3t4x34KvYSSRVBaROO6RqTWiollpnGo/ia8exY1IYRHl8amj3c8u4mIoJN3Hdm/0PjvuZGjN/8DZcjnaDRlwEQGmQkeuyl3O2+jJC8r2lefPdRz6dpGv9Ztp8rXl9PSoSVj28YQ2qkBW3hFegbSmg462UsYdFtdn9dhqIQnXECVtNv74SoqgoT0qN46dLhrLjtJK46sSffVwRxxp5TGe95lnnhN9HkhTn1r5Lw1gSCXxiFWrwZpQ2XnQGHqpNcZQewbXiW+ujh2DPG/+yQK8b15A+T05i/y8W/7HdSeMrz6BtKiXjnNKp3LW91CI3NXrLL6ugbZ4fGatT6UnS/0vdNpyrMGJLA84U98ShGmrZ+3Or5heiOJFEkhBBCCNFBBieH4dNga76/n4YSmY7ibYbqnABH1rE+3FTAu+vzuCO9DAClx7hjuk60zcygBDtv5Ufisafg2zq/LcM8bvh8Gre8s5kD5fX8c+Yg7FbDoe/Vr3gaozMXz6T7UXQ/jl82tgefGk7hW8tETNve9jcTP0LldS7+MH8LDy/ZzWkDYnnv6hOItZtxLrmX4PzlVE+4j9DU0W16j91ZosPKHVMzWHXnybx48TD6pcTx16LRnOu5n52z11A49n6aQxLB50U9xt+1X2XzJ4q075/AWF9I46ibMRymOvDGk3tz2ZgevL4qh/fqB1N96XLcIQkEf3gJzvzdrQphV3EtPq2lP1H+Rv9gVN9fPf6SE1JIS4pjuacfNZs/4NEluyitbWpVDEJ0N9LMWgghhBCig2QmhAKwKa+K0b3Cf9x9qGw3hPcKXGD4mxi35/bVPzhQXs/dH2xjWHIYE0xZeINj0Tl6HvP1JvWJ5l9f7qFuzFnYNzwFzhIIOQ4rUVrh4SW7+WJnCX85vS9jUyMOjddXFGBd8wT1KZMJ6jv5Z+fYLQYuH9uTZ78exTjjV9Ru/gDrkPMP/Qw1Nnspr3NR6nRR5nSxp8TJtoIathfUUFTjf1F+6+Q0rpvQi5omD1UbPyRuw5PUZMwidMyVHXfz3YhepzKpbzST+kZT5nRR1dBMWnQIWlo6da6rqXR7iAhp450BWyqKzAWraAzvR0j/Uw97mKIo/HlaH2oa3Tz+5V5Crf045/x3sbx2Csb559Nw2RdYQ6OOKYQfdzyz4Vn2IYrB+psJscgQEwuvPYG9i2cSv+ZPLFvxNS9825MZQxO48eTexIXK7olCSKJICCGEEKKDhAUZ6RkR9GOfokh/Hw2tdDdKxrTABQaUlZUQFRVzRI2kW+O+T3aiUxWeOj8T3Qvfo/Wc0KqeKZP7RfPY0j2sNo9lqvYEvr1LUYfMabuAu7m31+by3xXZXDQqmbljUg6NOxua8H3yRxSvC/2pDxz23LljU3jlu4HkaxHs+/g5Ll1ox6hX0asKDc0/bxKsKNAjIogRPRwMiLczOCmUWJuJvI2Lse9+j5iDn9EYMQDTmY+jdkDCsruLDDERGWIC/EmaELOBELPhd846BgYLPosDtbGS+hE3E2H49ZeXqqrw8IwB1DS6+evHO7DPymTC2a9hm38unncuxHXpR5jM1qMOYWdhDXaLgXibEd+eT3H3mITJ8PvJntQTZ6Gt/TMvjyrh374Tmb8un4Ub8rlgZBLXndSLqBDzUcciRHchiSIhhBBCiA6UmRTKij3laJqGYgrBFxKPVrobXSCDKtlBzHNjqDn7DUIHTW+3abbmV/PV7lJuOyWdOHcuNJShtXIpTHp0CAlhFt7LC2ayNQrf3i8lUXSEvttbzj0fbmd8WiR/nd4XpSVhV1PXgPb+VYQe+IyaMXdjjz58Y2Cb2cDC68dS/ulZnHjwZe4ZHUaZ4sDt9eEIMh5KVkQGm0iJCCLYpKfO5aGqKAfj5icI27sQY10+XqONqtSZGE6+E5slqCP/E4g24LMn4jaGEpx59u8eq9epPH3BYC59ZS1/fG8Lr84dQd8pT+JYfA21C6/DcP7LR50o3FFYS784G1ruanSN5Wj9zzyyE4MiaI4bQVjOF9x34z+4Znwvnv56H2+szuGddbmcOzSB2cOT6BdvP6p4hOgOJFEkhBBCCNGBBieF8f7GAvKrGkl0WNEi0/1LzwKpaAsKGqbvHsXXf1q7VXQ8+eVeQq0GLh6djLb1VRRA6XFiq66pKAqT+0bz1ppcmgeOx5j9Ffh8oEpVym/ZV+rk2nkb6BUZzNMXDD60ZKy61om68DLsOV9QMvJPOE7+429ep1dkMNq0q1GeeZE5wWsxnXjLL47RNI3qBjcHCrKwrX+G+Kx3ULzN1MWPo2TEnXjTTiPMZsNmbYeKF9HuPNP/Q6VLIe53GnD/wGzQ8fzFwzj3Pyu5dt4G3r/2dBh1J47VD1H9ZQahp9x5xHO7vT52Fzu5eFQy7u2vYNCZ0KefcuTBZ0zH+NXdUJlNgqMnD80YyFUn9uS1Dz8lZf29PLB2CGWOEZyWmcDMoQnEhx19xZMQXZH8CyqEEEII0YEGJ4YCsDG3CgAlMgO1Yq8/uREgvrK9AFjKtuDctbRd5vihmujKcT0JMRvwZq/AGxIPYSmtvvbkPtG4PD72Bo9A11QJRZtbfc3urM7l4ao3NmDS63jp0mGHliSVVVahe/cCbDlfUDz2XkIn//GwjYn/lxKZRnPMUNQtb4Om/eL7Rbn78H3yB5LfHItj1zyqe59N3pzvaZ69gNgxF5ISE/6zBtqia9HF9CEsIf2ozrGZDbx86XBMeh2XvbYO9+hbcPY+E/vqR6jd890RX2d/WR3NHh/94oLRZX2CO+UkMIUc8fnG/qcD0Lzdv/uZ16dhLN3CPeW3MVf/OfOMDzKv/kqMy+7l4kfe5PSnvuXxpVnsKqrF6/vlz7oQ3YUkioQQQgghOlBGTAhmg3qoT5EalYHiaYSa3IDF5KvYh9eWiDsoBsP3/0I7zIv91vppNRE+H2rO92gp41rVn+gHw3s4sJn1vF/jXyLl2ftVq6/ZXWmaxl3vb+NgeT1PXzCYhDArzR4fB3NzsMyfRXDBtxRN+CeOCTdg0h/FgshBszFU7MZXuOVnwxUHtxE972TCst6hKu1cci78DtM5z5DUux/hwaYOaaAu2pdBp2IxHv3i2YQwKy9eMowyp4tr522E0x/HHRyH+eOraXJWHtE1drY0sh6iO4C+rhBdvyNcdtZCCUuhObI/7PoEr0+jaNsyYj+chc9gY++5X5Fz8rOYEgZxjeFTvjLdxvNVV9BjxS288/Sfuf7RF/n7B5tYvb+CijoXTW7v784nRFchf5mFEEIIITqQXqcyMCGUTXnV/oHIlnfiy7ICFhMV+9Gi+lI/9FqsRatxHsU7+kfif6uJKNuN2liBrmfbbNVt0KmclBHFon1u3FED0PZJoujXzFuTy6Ithdw6JZ1RPcOpqHNRvHYhCW+dhLV0E8WT/k3EuMsx6o/uZYJx0Ax8qhH3xrcOjdVWFBO88AJ8qpGD532F/oynSOndhyCTdL8QfpmJoTx+XiYbc6u567Mcms54AUN9Me4Pb0Q7girLrfk1mPQqUflL0FQD+j6nHXUMWvo0DEXrKVv1FrGLLsBjCafs3A/o3W8oESNnUX/uPPZfvJ7C0X8nKHkwU4P38XfDazzX+Efu2DwZ3WtT+eapq1j87nOs37KNwupGSRqJLk8SRUIIIYQQHWxwUig7C2v8LyYiftz5LCB8PnRV2SjhvbCMugyP2YHaxlVFP6smArQDKwBQUtomUQRwSr8YKuqb2WQYjL5wHbicbXbt7mJ7QQ3/WLST8WmRXDWuJwcLilA/uo6kL67AHRRL3rmfETH6wiNabvYLVgfuXlPQ71wAXjeNDQ3o5s/B0FBC1Rmv0CN9oCwvE4d16oBY7jw1g0+2FnH7aiMFQ24lZP8n1Hz/0m+el1Xs5K21uZyUFokh6xOak8aBJfSo5zf2PwMFjZil1+EOjqN85ofEp6SiKApBJj2xdgupPXoSetINuGa8SskVm9k3Zy05E/9DafpFRIeYOKP5U87e9yeGfTCW5v9OomjlOxworaG2yX2M/1WECCxJ5wshhBBCdLAhSWH815vNjsJahiY78AVF4SvdFZgnZs5CFE8juoje6Kw2qgdfSeiqh3Ee3EBIj2GHPaW20c2aAxWszq4kr7KBBmcNuvpCrI3FBGkNRMQmk5GWzoCMDPJq3Yd2OvuhF443ewWKLQldWHKb3cYp/WI4Z3A8j29J5G2jB+3ACpSMaW12/a6uptHNdfM2Eh5s5JFzB1K8YzlxX1yHoaGE0sybcI/7I4lhNlT12JcC6gbPRrf3E5p3f0Hzlvexl6yjdMqzRPYZd2hHNSEO5+oTe6Jp8MSXe/hWzWRR6AhSlv2ZophhGGL7YtKrmPS6Q5VuTW4vN729CZtZz4MnaOjfzEUb94djmluJ7kdzRH+8Ph/V575LfFzSYY+zGvVYjS1/pcPTcfdIpaF5Jg3NHnIbGijKWk/RlqWMrPiIlG+uo2nNfVT1n4tzyEXEx8QeU2xCBEqrno8oiuIA3gVSgIPAeZqmVR3muFDgRaA/oAGXaZq2qjVzCyGEEEJ0VT80tN6UW8XQ5DB8EemBW3pWsc//Obw3AOYTrsG7/ln47nHq4l7D69Vw+3zsLnLy2ZZcqg5uw161jQFKNmeqB0hRS7BR//NrFvk/vMsUgpUwHjENYUjsX2ls9mLRK6i5K/GlTW3T29CpCv+cOYi/6b00bP0nW5YuYGTaaa1KfHQXmqZxx4KtFFY38uYVI2k8uJ7ETy7EY4nk4JkfEJFxAlHm1lf76NNPwWt2oC66EXtTBRXDbyV81AWSJBK/S1EUrp3Qi9MHxvL3RTuZtetSPjffReh7M2iOG0FjaG+qQ3vT7OhNSMoQnl12gKwSJ6/MHU5Q9n/QFBVD3+nHOjlNF39KvVdPbFjwEZ9m0KnYLSp2iwHsFnpET6Fh1Mm8tfpKNn85n8saFjN87f24t79I2exPiExMO7b4hAiA1r5xdSfwlaZpDymKcmfL4zsOc9yTwBJN085VFMUIyL6CQgghhDhuRdnMxIda+G5fOVeM64kSlYHyw45RHf2iumK///MPiaIQBzWD5mJb/2/27lxFdm4+NbuXkVS3lXvUfViUZjBAsz6ExogBuB3jKAqKxRMchxYSB2YbnpoiinKzqSzKxlCdzTnqcnTvjqemx+k4e00mqqkKtef4Nr8VVVX4+zlD2JMzlOiyldyxcCsPzRiI7jhMFpXUNmE26Agx6fluXzlLdhRz6+Q0olw5JHx2EV6Tg7IZ75OY0KPtGkrrDHj6zcC04QVqep9NyJS7j8v/9uLYJTr8Da6/2pXIHR/UMrPxPQbmbyM65wsUzd/3p8zWj+1lM5g9YjInpUXiXvIx7oTRGIMijnlemy0UWytj16kKIWYDV09IZ0uvG7hu3hhinNt40/Uowe/NovKiz3BESmWR6Bpamyg6E5jQ8vVrwDL+J1GkKIoNOBG4FEDTtGaguZXzCiGEEEJ0aecOTeDJr/ayt8RJalQGNNdBbSHY4zs0Dm/5PlS9BSXkxxcwxjE34Nn4PGkfnU4a4EWlODiVqqQLKI8bgi92MIbIXlhNBqx6HXad8otkQ49RGs1eH26vRmlZHoZ1/8Wx8w102f5tqEkZ2y73oygKvUdNR/fFXazauJEHLAbuOb1vu8zVmZXXufD3AtZ49PMsokNMTIxtJuGTC9AUHeVnv0tCcq82n9cw4XZK9FHYxl+P0XD0O2EJATCxTzRjel/Fw4tP5NpVOYSZNG4dbmCYkkXI2sdZYPoHVTXrKVx7HnFV+3CPvDrQIf/MoMQwFt8yjtves3HRTg9veh+k7pUZOC/+iOSYyECHJ8TvUlrTqFBRlGpN00J/8rhK07Sw/zkmE3ge2AkMAjYAN2ua9j81yoeOvwq4CiApKWloTk7OMccnhBBCCNFZVdY3M+ahrzltQCyPjXDCq9NgzvvQe2KHxuF5YybUFqC/fiUAbq+Pez/ZSdWatxkVXEpI2jh6DJ5AeHgkoVYDFoPumJYSub0+KsvLYMNLhNCA9bT72vhOfqJsDzwznPkxt/KXguGsuWvScdVI2bvrM5qW/YuGqCFsMw7ihu/NXD06lquzb8DQWEbBWQtIyBjRbsvy3F7fsTXEFuIwdhbWctf7W9mSX0OY1YDX1cB7A9eTuvdFVE8jGgrKrbshJCbQoR7WugMVfLvoVW6uuJfl2hC+yXyM80f1pG+sTZZlioBSFGWDpmmHbUb4u4kiRVG+BA73W3c38NoRJIqGAauBMZqmrVEU5UmgVtO0e34v8GHDhmnr16//vcOEEEIIIbqkvy/awRurcvj2hgHEPt8f7ZQHUEZf36ExeJ8cjBY9AP35r1NR5+L6tzayOruSuSekcMHIJCJDTNjMhjZLKnh9Gpqmtd1yp8PRNLz/6k9NWF+G7LmUP0/rwxXjelLn8uD1af6eIt2Y54Pr0G19F01RUX3NuNGBORSdu47caW8RN/DkQ02BhegKvD6NV1ce5Mkv93DnqX04e3A8JYUHsK36J2ZrENYzHwt0iL/J69PY88nj9Nn4d971nsSd7suJCw1ict9oTh8Yy5CkUFRVfidFx/qtRNHvLj3TNG3Sb1y4RFGUWE3TihRFiQVKD3NYPpCvadqalscL8PcyEkIIIYQ4rl0xridvrMrh+Q213GN24CvZ3bE7n3ndqNU5aP3OYWdhLVe+vp6yOhePzxrE2YMT2mVKf8+adn4XXVHw9TyJ0F0fMizxRl5flcPEFD3B654huGwjXLIQzK3tSNKJ1eTTGDGAT4f8l48WfcC1SfkM1OdT0f8yIvtNkCSR6HJ0qsLlY3tw2ZiUQ1U4KSm9qYn6Nzpj5/951qkKvU67hXKqmLXxKc40rme7L4Nla3vwyKp0SkL6cWLfRCb1iSLKZsag8/c7slsMmGUJpwiA1j4X+Ri4BHio5fNH/3uApmnFiqLkKYqSrmlaFjAR/zI0IYQQQojjWnyohTMz43lnbR53JKai7+idz6pyUDQvmxrCufA/K7FbDLx39WgGtezK1pXp0yahbHmDK+Jz2b5uGfGvLcboqQPAt+cL1IHnBjjC9qPU5KGF9+OdzRXsNw3BeMpVHDToiA+zEGTq0FSkEG3qf5dqdaUlpUa9SvDUv5LnyMCa/x39i9cxrHk+6KHOHcTH60fy1NoT0eKHM7lfLKN7hlNa68JsULFbDTisxvatxBTiJ1r7L8VDwHxFUS4HcoGZAIqixAEvapp2WstxNwLzWnY8ywbmtnJeIYQQQohu4ZrxPVm4MZ/d3jgGVH9NU7MHs7FjXsy7y/ZgAO5d1Uz/ZBvPXDiEqBBzh8zd3pSe49EUlVM238BUg8Za3QlEnv03Ej+ZjW/XZxi7a6JI01BrC6iNm8iG7VXceWoGAxLsuL0+Qsxd50W1EN2R2agncuT51AycQaHLg6u2HEvxOuwHlzAr+1Mu8H5NTlkc7y4dx30hk5k+bjhDksNoqnFRWusiLMhIZLBJqgJFu2vVsxBN0yrwVwj973ghcNpPHm8GDrv2TQghhBDieJYaHcLkvtEsORBGplZD/qbPiBo8DYuxfZcbFNU0suTTr5gLjB05kpumj+xeDYgtYbj6nIu7ppjXzRfwzx02VsT2x9drCvq9n4HXDbpumDipL0Pxuviq0EiY1cBFo5IxG3SyfEWITuKnv49aRBANCQmUZ5xGYc0/sB1cTPie97i9+F18TfP5bkl/vgybSvr42SRGR1BZ10xVfTN2i4HIEJP8Xot2042eDQghhBBCdE3XTujFO40jKbX0IvHzyylb9x4NzZ52m29DThWnP/UdVudBXAY7t541unsliVoo5zyHa/YCzjz9TBQF5q3JQ9/3NFRXDVruqkCH1z6q8wD4psTMFeN6ylIzIToxRVEIMulJDg8iJiqCmvSZHDh9PrvP+5aSzJsYaCnj/2ofZdzHY6h67wYo34OmQXWDm32lddQ0ugN9C6Kb6n7PCIQQQgghupghSWGk90hmtvsvNIT3J/HLa6n67mXqXe2TLHrsiywMOpXT4urRRaa2yxydgUmvIyLYREKYlUl9onl3XS7NyePRVCPunZ8FOrz2UeNPFFUborl4dHKAgxFCHKnwYBO9o4IxG1TctmTKh91K3kWr2TZpHjttYxlZvZgBH04i6qPZBOd9g+bzkVvRQGltU6BDF92QJIqEEEIIITqBmyelsr/OwAMRD1IXN5b4FbdR+/UTlDqb0DStzebRNI1tBTWc3CcKq/MgSnjvNrt2Z3bx6BSqGtx8utuJO2ks6t4l0Ib/XTuLpvKDAGQOGCA9iYToYswGHb0ig4kIMaKqgKJCyjiss17i45OX8qxyPpTuoMfnl5C6YCJhWe9QWuUkr7IBn6/7/T0TgSOJIiGEEEKITuCEXhFcekIKb22q4KvMJ6nuMY3YNfeiX3Qz+3NyqWuj6qK8ykacTR4yow3o6opQIo6PRNGY3uH0jAzi9dU56Pqchr76AJTvDXRYbe5gdhZOzcLpwzMCHYoQ4hioqkKs3UKfGBuJDgtBJn8fooxePRl84QPcmTiPm5qvJ88JCd/eTuo7Y9Ct+Q8HikoprG4kv6qBvMoGqTYSrSKLloUQQgghOok7T81g1f4K7vs8m76XPYt79YNEbHsBW85iSob+kcrBlxLrCG5VP6FtBTUADA6qAkA9ThJFiqJw0ahk/r5oJ9lTxpEKuHd9iiEyLdChtana4gMY1Sgyk8ICHYoQohVUVSHUaiTUasTl8VLd4EavU/jD1AEsy4rmglUnkdG0nut9HzFqzT9oWP8Eroh+GLVmFF8zqteFxxxO4aTHiOnRF1VVAn1LoguRiiIhhBBCiE7CbNDx5OxMapvcPPzFXgyn3Mv+GUtoCu9H/Mp7iHz7FEq2f9OqJQbbC2sw6BRSlEL/wHGy9Axg+qA4dKrCB/vBHdkfshYHOqQ2dbC8HmtjEUpoAooiLwqF6C5Meh3RNjMZMSEkhVuZPiiOly4ZzoyZF/PRoOe5wfIw3zRnsL+4ipJGBbc5Epe9F+bKXUS9dzqF25bh8foCfRuiC5GKIiGEEEKITiQjxsadUzP4xyc7WbStiNnDh1Ect4CKHR8Ru/pe4j+cSZn6HlEDJh7T9bcX1JAWHYKuaod/wNGzDaPv3CKCTZzQK5xFWwv5v8Gnol/5GNRXQFB4oENrEws35nOZUo4+YXygQxFCtANFUbBbDNgtBrw+jdToEE7KiMLtTWdvybk89vU+Vu2voKcWxB9PSWegpZzIj+cQ9/EsiuqeJHzEeZgNukDfhugCpKJICCGEEKKTmTsmhfFpkdz3yU4OlNeT4AgiauQsCmZ/RbMtmbDPrqayOPeor6tpGtsLaugfZ0cr34c3OA6MQe1wB53XGYPiyKtsJDv8RBTNhzfr80CH1CZ8Po3P1u8lTKkjOCol0OEIIdqZTlWwGHXYLQYigk2M7hXBW1eM5IWLh9Hs9XHdvI08ss7D7tMX0hgxgPil11C99FEqnL/dt6jZ46Om0U2Z00VBdSMHyuupbXJ30F2JzkISRUIIIYQQnYyiKDw6cyDBJj03vbMZl8eLxaijR0IczjNeQeeuw/TBXOobGo/quoU1TVQ1uOmfYEer2Id2HFUT/WBKvxiMOpX5BQ68QdF4sz4LdEhtYlV2BYqzAAAlNCnA0QghAkFRFCb3jebLP4znpompfL6jmJmv7+WxmEcoTzmdmLUPon9/LgcPZtPk9v7s3Ca3l7yKOgo2LqF++dMoi28nZOEFxL4xDuXt2Xg9bbOhgugaJFEkhBBCCNEJRYWYeeTcgewqquXRJVmHxiN6ZVJ+8mMElazH9dnduI+i78S2fH8j6/5xNtTK/cfNjmc/ZbcYGJ8eySfbivH0PgV99tfgcQU6rFZbsCGfVJO/QTn2xMAGI4QIKLNBxx8mp/HNHydwxqA4XllbzMSDc/g6/hqCc5YSN288Oz99hmW7S1h7oIIvthewbfFL2F8dT4/PZhO3+m+E7V2AoaEEd1AsITlLqV3xTKBvS3QgSRQJIYQQQnRSE/tEc9GoZF787gDf7i07NO4YOZvKAZfj2P4SFavn4TzCZQE7CmvQqQp97B7UpqrjZsez/zV9UBwltS6yw8ahuuvxHfgu0CG1irPJzeLtRZyS0PJzYE8IbEBCiE4hLtTCP2cO4tMbxzEoKZzL9p/IlMYH2OSKY8jmezDMO5tFL/6D3vNPZvjG2yiqaeLm5uu4NOItNl+wldILllJ33nvUJZ2MfeWD1BXvDfQtiQ4iiSIhhBBCiE7sT6f1oXdUMLfO30JlfTMAep2K+bT7qY8eTtQ3t1Gx8WOyimopc7rw/saOaNsLakiNCsZcewAAJTy1Q+6hs5nUJwqLQcc7FT3x6S24t38c6JBa5bNtRTS5fYwIq0dT9RASE+iQhBCdSN84G69fNoKPrh/DnRedQd4Z8/ku426GG3O41/AqNnsYXw58jE3TPiV9yuWsLFK5ef4W6lweYkOtqNOfQFN0KItuxiu7px0XJFEkhBBCCNGJWYw6njw/k+oGN3cs3Iqm+RNBVouFprNfxmOJIOWLy0h+9yRca15id14J9a5f9pLQNI1tBbX0i7Ojlbe8Kxx+fFYUWY16JvWNZtHOKly9T0W/+0Nw/3aD185swYZ8ekYGEeUrwxccB6rsaiSE+KVBiaFM7hvDucOSGTbjVgou+pb9Z35M46VfMe6MuZw/MoXrJvTm3atH4fFqzPjPSj7aXIA1MpnaE/9KUMH31K58MdC3ITqAJIqEEEIIITq5fnF2bp+aztKdJby19sfdzsJjkii+6Dvyxj+OpjOT8N1dpL81iubvn/3FNUqdLsrrXPSPt9Fctg9N0UFYckfeRqcyfWAslfXN7I6Zjs5VjXvXp4EO6Zg0ub2sO1jFtAGxUJOPJsvOhBBHwGzQkZLcg6SB40gMD8Kk/zHBPDgpjEU3jmVgfCg3v7OZBz/bRcjoy6mPOwHbir9TV5oTwMhFR5BEkRBCCCFEF3DZmB6MS43g74t28tHmgkPjiZF2gkfMIX/mYvZPe4+msHRCV/wFX3X+z87/oZH1gHg7vsJt+EKTQWfo0HvoTManRxJi1vNWaQqeoFi8m94KdEjHJK+yAYDeUcEoNXnSyFoIccQURcGgO3xKIDLExLwrRzJnVBL/XZHNPz7dhe/0J1A0L9on/4fH4z3seaJ7kESREEIIIUQXoKoKT50/mMxE/zu8Dy/ZjdenoSgKYUFGUmNsRA44icqJj6Kg0bTx3Z+dv72wBkWBtOAmzDnf4E09NUB30jmY9DpO6RfDkh1luPrNxHTwG3AWBzqso5ZT4U8UJYYaUeuKUEMlUSSEaBsGncq9Z/bnqhN78vqqHB5Z66Zm9J2E5H5F9cpXAx2eaEeSKBJCCCGE6CLCgoy8eflIZo9I4j/L9nPV6+t/tuOZzWwgKXUgTTFD0W9/F7QfG1tvL6ilZ0QQ6o4FKJoHZfCFgbiFTmX6oDicLg8bw6aiaF6aNr4d6JCOWk5LRVEPQw2K5kMNk0SREKLtKIrCXadmcPX4nryxOod/Vk+gLvYEwlb8mcrcnYEOT7QTSRQJIYQQQnQhRr3KA2f3594z+7FsTxnnPLuSgurGnx2jDZyFsTILd8GWQ2PbC2oYEGfDsGUeTVGDMcT26+jQO50TeoUTFWLi3tUemqKHoG5952fJta4gt6KeYJOeUHeJf0CWngkh2piiKNw5NYNrxvdi3roC/hVyK5rOiOWjK2lsaAh0eKIdSKJICCGEEKKLURSFi0an8MZlIyisbuSvH+342ffNmTPRVAPujfMAKHO6KK5tYkxwAabK3XgHXRCIsDsdg07lnzMHsbe0jg+ZgLFiN96CzYEO66jkVjaQ5LCi1LT0pApNCmxAQohuSVEU7piazrUTevHyVhff9/07lortNC75K15f10qwi98niSIhhBBCiC7qhN4RXDuhF1/uKmFDTtWhccXqoKnnFIy73gevhx2F/kbWw6s+xaczYR48M1AhdzonpkVy08mpPJDTB49ipHnDm4EO6ajkVDaQHG7FV53nH7DFBzYgIUS3pSgKt05Ow24x8LErk6p+l+DY+jyVm7vmrpHi10miSAghhBCiC5s7pgcRwUYe/Xw32k+WTSmDZqFvLKcpaynbC2ow0UxC/qc09j4NnTUsgBF3PjdNTGVQajKfe4ei2/EeeFyBDumIeH0a+ZWNJDms+Kpz8VnCwWgNdFhCiG5Mr1M5MS2S5XvKMUy9z7/T5hc301zd9TYDEL9OEkVCCCGEEF1YkEnP9Sf1ZnV2Jd/uLT80bu5zKl5TKL7N77C9oJbZtu3om2tRB88JYLSdk05VeGJWJkuNJ2NsrqF848c0ub14vL5Ah/abimubaPb6SAq3QnUePltCoEMSQhwHTs6IpLzORXaNj/rpz6NzO+HzuwIdlmhDkigSQgghhOjiLhiZRHyohUc/z/qxqkhvxJVxNub9izlQUMi56je4g+OxpJ0c2GA7qfBgExddeCklWigFXz5L9t5d7M6vYHtBDVnFTupcnkCH+As5FfUAJDuCUGrzIVQaWQsh2t/4tCgUBb7eXUp4z0zq0s5Bn/0V+Dp3cl0cuVYlihRFcSiKslRRlL0tnw9bx6woyv8pirJDUZTtiqK8rSiKuTXzCiGEEEKIH5n0Om6ZlMq2ghoWb/+x/F8/ZDaq18VU5wf0a9pIc//zQZX3CX/N0B5R5CedxaDmjfSdP4b+r/Qm/Y0hJC44larVb1Hm7FxL0vIq/bsNJTssqDV5KLLjmRCiAziCjAxODOWb3aUAWHuPQ3XVQHlWgCMTbaW1zxTuBL7SNC0V+Krl8c8oihIP3AQM0zStP6ADzm/lvEIIIYQQ4ifOGZJA76hg/vlFFh6vj1JnE//3rZ5sXww3GT5AQcMw9KJAh9npDZrzIM8lPMId7iv5KuZynMmTUXxeEr+5EZb+hbxyJ75OssNPTkUDelUh1tiI4mlEDZNEkRCiY5yUHsWW/BrKnC70PUYD4D24MsBRibbS2kTRmcBrLV+/Bpz1K8fpAYuiKHrAChS2cl4hhBBCCPETOlXhj1PSyC6r57YFW5n02HKW7iolP+kMdPhojB+DMbJHoMPs9PQmKxdceBnOvrO5/OBE5kXfSv65n1LR52Iitz6H/aOLOVhQiLsT9C/KqWwgIcyC3pkPgBKaFOCIhBDHi5MyogBYllUKYT3wWiPx5qwKcFSirbQ2URStaVoRQMvnqP89QNO0AuCfQC5QBNRomvbFr11QUZSrFEVZryjK+rKyslaGJ4QQQghx/DilXwyDEux8sKmAjFgbi28Zxwnn3IBXb8U3/MpAh9dl2CwGnjx/MCelR/L40j3sr3ThPe1RCsY8QEj+CuIWTKc4e1ugwyS3ooFEhxVq/Iki7NLMWgjRMfrF2Yi2mViWVQaKgi9hFGremkCHJdrI7yaKFEX5sqW30P9+nHkkE7T0LToT6AHEAUGKovzqdhuapj2vadowTdOGRUZGHul9CCGEEEIc9xRF4d+zh/DcnKG8c+UoekUGo3ckU3RtFtZBZwU6vC7FoFN59sKhDE4K46a3N5NdVk/w2Ks4MO1t9K4qYheeTXlRTkBjzK1sIDncCjV5/gG7VBQJITqGoiiclB7Fij1luL0+1JTR6Gtzobb7LB5yeby4PN5Os9y4I/1uokjTtEmapvU/zMdHQImiKLEALZ9LD3OJScABTdPKNE1zA+8DJ7TlTQghhBBCCL+kcCtT+8egqsqhsbiwEBRF+Y2zxOFYjDpeumQYSeFWrnlzA1X1zcQNmkjuGe+huusxf3Id9U3NAYmtpsFNTaObZEcQ3qpcNL0FrI6AxCKEOD6dlBGF0+Vh/cEqdMmjAPDlrA5wVG3D7fWxr7SOPcV1bC+oYfG2Ih5evIsvd5YEOrQO0dqlZx8Dl7R8fQnw0WGOyQVGKYpiVfzPUCYCu1o5rxBCCCGEOEI/TRqJoxNqNfLyJcNRgMteW4fL7SMpfQhlY/9GcMF31C97Am8A3m3OqawH/IlBrToPny0BJBkohOhAY3pHYNApfJNVCjED8ekteLpJn6LybV+Q8tpwIl8bAy9PwTB/Nr1W3k7l6jcCHVqHaG2i6CFgsqIoe4HJLY9RFCVOUZTPADRNWwMsADYC21rmfL6V8wohhBBCCNEhksKt/PeiYeRVNnDdWxvQAPuYK6npcSqRax6mdHfHvzDKqWgA8C89q85Dk/5EQogO9v/s3XV4VNfWwOHfHom7h3hwd3dKS5EadXe3W29v9Wtvb93be+tGaWlpi7S0pUBxKO5OIEbcPRnZ3x8zcIMHmGQSWO/z5CFzZO91ZoecZGXvdfw8TfRPCuWv7XlgNGNr1QeV3rJnFJXVWPjv3K3UTf8HJTVW1tbGgNmbrv6VTPDfzWWxpe4OsUmYTuVkrXUhjhlCh27PAsbVe/0s8Oyp9CWEEEIIIYS79EsK4aWJ3Xh46gaenbmFFy/sQtX4d7B8MYKQP+4kP3IeQUEhmI2n+nfYhkkvciSK4oJ9UGWZ6OhuTdKvEELUN7JDBC/8upWMoiqi4vpjWvYm1JaDp7+7Qzsh2aXVfLp4L9+vyuBa688kmLP5recHRPUcjzIayANKzQbaRbas6zpZTXMnE0IIIYQQooW7pHcsd45ozbcr0vlw4R6CQyMoHPMBHuXpmP54jO3Z5WzeV8rO3HJSCyqprLU2WizphVWE+Xnia6/AWF2AISSp0foSQoijGdXB8eDz+TvyMCUNQmk7OnO1m6M6MYUVtVz4wVK+WpbKhETNQ14zKEs8l7PPu4peCcF0iQmgU6sAksJ83R1qkzmlGUVCCCGEEEKcSR45pz2pBZW88sd2/tiSwyPndMXU8z7C176Nb84KagMSqQtIojYgkazYIUS3642fp+t/5E4rqiQh1AedswkFGGRGkRDCDZLCfEkK82X6un1cc2MfUAase5dhbj2yUforrbLg7WHEw+SaOS92u+bBHzZQXGXhxzsGkrTgXgzYsYz+FwHOGaJKKYwKjJw5deBkRpEQQgghhBANZDAo3r+qF69d0o28shqu+WwlD+WOYUvnR6mK6IWxroyglOm0WvE8raefR8H63ymrsbg8jvTCKhJCfLBmbXRsiOrq8j6EEKIhbhuWzNr0Er7dUII1rBM6vXHqtpXXWMjK3sfu3DIqXDRj85PFe1i4M5+nJ3SiVfFqAvf8QlGvewiJaeOS9lsqSRQJIYQQQghxAowGxaV94pj/8Aj+Oa4DG7IqmLCmB6/5PcKu82ey9dpNbLtyBbVBbYj/82aK1v9GabXrkkW1VhvZZTXEh/pgz96IzScc/CNd1r4QQpyIK/rGMaRNGC/9to2KiD6YsteAzbVLb2ssNvK3LqT95L7E/3olGRlp5JXXnFKba9OLeW32DsZ0jmRkmyACFvyTOv84PIf9A3WGP0VSEkVCCCGEEEKcBC+zkduGtWbRIyOZ2CuWySvS+e+CFGJCvGkV15rsC76nNqgt8X/eQvH6X1yWLMooqkZriA/xwZC7GVtEF5e0K4QQJ0MpxcsXd0UpxaSsaAyWKsjd5LL2bXZNVvpu4ubcgdU7FJ+8NbT5eRzlO5eRXlhFndV+wm2WVlm459u1hPl7cuOgBMzL38GreCclw57H3z/AZbG3VJIoEkIIIYQQ4hQE+ph5/dJuPDW+I39uzeGaT1dSUWclITaW7Au+pyakA/FzbqN0/Uxsdn3K/WU4n3iWGGTCVLhDlp0JIdwuNtiHf47ryLfZrQCw7F3mkna11mTkFRH1x60YrFWkjZ1EyvnTsRs9SJp1GabVn7Aju+zAgwTSCivJLq0mr7yGoso6SqssVNRaKa+xUFRZR25ZDXvyK7j727UUllXyXscd9Ph1HJFr3qAs4WyCelzgkrhbOilmLYQQQgghxClSSnHL0GRaR/hx37fruOD9JXx0bW96xMWQdsF3RM28mtg5t1McEk1o+0Gn1FdaYSUAiXofym7BKIWshRDNwJX94vhtU3v2ZYTju3spgYPuOuUlXDml1QTOewSf/A2knf0pse16UVlnJcX/V2LnP0Cr5c8QkPoH1WFdqPOPo84/nnL/OKxeodg8AsBgBKC4qo61qfmkpOymKGsPHey7eN9vDkHrc6kJbk/GiHfw7H4xAWajK96KFk8SRUIIIYQQQrjIyPYRTLt7MLd8tYqbvlzNnAeGkRATQ9r5k4n7dgRe85+lLvkPPE7hl5G0oip8PIwElGwDwNiqu6vCF0KIk7Z/Cdrat9szOG05mzNLCPDxwM/ThL+X+YSfVFZntcPf/yV410/k9noAn27nkVlcRXpRFXsKrOzwe4pe/gkMyZtDZPZqPKk7rI1yfCjFj1BtZTDFGJUGI2CEyuC+pHZ/mYr4UQT6eBAW6O2id6Llk0SREEIIIYQQLtQmwo/PbujLuHcW889pm/nkut4kxMRQ2O8hIhY+Tv76GYT3nXjS7acXVhEf4ihkbTd5YQht7cLohRDi5MUG+5DZaTgh25aw5Ye78Bl4Odkxg8gyeuLtYSTYx0ygtxmT8fhJo4x1c0n8+0VWeQ3ike1Dyfj7r4OW73qaDKwMOJ/JgRNBa4J1MVG2XCLtOQSrCoKoJIAKAinHbPagPDwR3/AELP4x1PnHYwlKIsjHTFt/TzxNMpOoPkkUCSGEEEII4WKtw/14+Jz2vPjbNmZuyOKCHjEEDLqJ2vWf4L/kX1R1HYePl9dJtZ1eVEVSmC/kbsIa1gkPg/yCI4RoPvpfcDsbsv6mV8k8fP/8DZvZj/LY4ZQmjSc7fjTZZi/8PE1EBnjh7XHk7181dTYq/niOHB3Mk9xD++hAJnT3p02EHwmhPsQG+xDm54FSiopaK3VWOxab/cC/NrvGatfY7BrtzC3ZjYoaowEPo4Egs4EQXw/MDUhYnYkkUSSEEEIIIUQjuGlIEr9vzubZmVsY2DqUCH8vCoY+RdivN5K//At8Rt55wm3a7Zr0oipGtAvDtGkLlo4Xuj5wIYQ4BcorkODrvuGNRdvYu+p3rvHZzLCcFQTtnYXN7E9p0nhK2lxEetxA2kYGYDAcXsfoi59ncKdtCyvaPcCsK8YeM6Hj52kCz6PHo52ZojP9kfcnQtJnQgghhBBCNAKjQfHapd2pqrPx1LTNaK0J6H4BlZF9CVr5BqWlxSfcZl55LbVWOx19yzDUlmKIlvpEQojmJybYm3vP6UrXEZdyc9G1XOn3JTvOnkRZ4hgC9/5C8m+XkzhlBAV5+w47d1lKAeFbvqBGedF5wr2nPOtHKSVJohMkiSIhhBBCCCEaiWMJWjv+3JrLzA1ZeJiNVI98DnN1PpbF72KvV2+jIfY/8aydfQ8A5hhJFAkhmh+jQRHs68GD57TnpYldWZNRxv9tjSBj+Btsu3otGcPfwqMsHdP8F6i12g6cV1JVxwvfzed84zIqOl6BX2CoG6/izCWJIiGEEEIIIRrRzUOS6RkfxLMzt5BdWk1wu8GUJo0jeP2HpKXvxWqzN7ittMIqAKKqdqGVASI6NVbYQgjhElf2i+fZ8zqxLKWQxbsKiAoLprbzZRR0uZmQHVMo3L4UcCwRe3LaZs6t/R0PrHgMusPNkZ+5JFEkhBBCCCFEIzIaFK9d0h2rTXP95yspr7FgHfk0BlsdwYueYW9eGZYGJovmbMslzM8Tv5JtWINag4dPI0cvhBCn7vpBiYzvFs2bc3aSkldBmwg/DCMfw+ITSfD8JyitqOGntfuYuymNmz3/ojx+NP4xHdwd9hlLEkVCCCGEEEI0sjYRfnx8XW9SC6q48ctVeEa0Jb/PgwTt+YWwuf9gT24pddZjJ4vyymv4a3seF/eOwZS3GR3ZpYmiF0KIU6OU4uWJXYkP8eHe79ZRUFFLaEgohYOfxbtwM4umvMYTP2/k7vAN+FmLsfa9TeoKuZEkioQQQgghhGgCg1qH8e6VPdiQUcJd365DD32InD6PEpwyjag/72RPbhE1FttRz/957T5sds0VXfwxlWeiors1YfRCCHFq/L3M/OfqXpRWW7h/yjpsdk1u3DjWGrsxLOM/jEsyc5NpNjXB7fDvONrd4Z7RJFEkhBBCCCFEEzm3SzQvTezKop35/OvXrVQPuJ+sAc8QmPo7rf64lZSsAjKKqqiuOzhhpLXmh1UZ9E0MJsm6FwBTK0kUCSFalo7RAbxwQReW7i7khi9WculHf/OC7Qb8DHW8VPM8fsVbqep1GyaT0d2hntFM7g5ACCGEEEKIM8nlfeMprrLw8u/b8TAZuHP47WSavIlZ8k8SZt9A5pBXKAlIwM/LRLi/J36eJtakFbOnoJI7RrTGkjUDM8iMIiFEi3RZ3zhWphbx45pMxnaJ4tnzRlA0bwfhGz/C6hmMT+8r3R3iGU8SRUIIIYQQQjSxO4a3prrOxjvzdrErr4JnJlyBNnoRs+Rx2k8dQUmbi8jrfjd7a1rj62nk2xXp+HoYGd81Gv3LJmw+ERj9Itx9GUIIcVJemtiVGwYl0rlVAEop8oc/Sk3aPCo7XUaoj5+7wzvjSaJICCGEEEIIN3jg7HZ0jA7g4akbuG3SGp4efw4Vlw0mfNPHhGz7hqBdP1GaPIG0Lvfy2+YiRneMxGw0oHI3YYvogizMEEK0VGajgS4xgQdeh4WEsuuqBUQFerkxKrGf1CgSQgghhBDCTc7tEsXMewYT5ufBQ1M3MH2PnawBT7P9imXkd7sD/4y/6DpzLI/rzzk70cyurEJMhTshuqu7QxdCCJdRShEX7EOAl9ndoQhOMVGklLpUKbVFKWVXSvU5xnHnKqV2KKV2K6UeP5U+hRBCCCGEOJ0kh/sx7a7BjO/Wio8W7uHfv22n2iOYvP5PsOOyJfzqMYZrTXMZv2AckSteRNktmFp1d3fYQgjhUt4eMk+yuTjVGUWbgYnAoqMdoJQyAh8AY4FOwJVKqU6n2K8QQgghhBCnDV9PE+9e0YNXLu7KxswSbvhiFdtzyijQ/txXdg0fd/qK6vDuhG35AgCDFLIWQgjRSE6pRpHWehs4pokdQz9gt9Z6j/PYKcAFwNZT6VsIIYQQQojTiVKKy/vGMyA5lAe+X8/DUzcSHeiFyaDo238IqYZh+Gf8RVDZNoJCWrs7XCGEEKeppqhRFANk1Hud6dwmhBBCCCGEOERCqC8/3D6Qh89pR355LWM6R9EnIYTYEB+qk0ZTN+ghMEipUSGEEI3juDOKlFJzgagj7HpSaz2jAX0cabqRPkZ/twG3AcTHxzegeSGEEEIIIU4vJqOBe0a1ZWKvWAK8HcVdg309CPA2Y7Mf9UdpIYQQ4pQdN1GktR59in1kAnH1XscCWcfo72PgY4A+ffrIXVAIIYQQQpyxWgV5H/TaaFAYDccs+yCEEEKckqaYs7oKaKuUSlJKeQBXADOboF8hhBBCCCGEEEIIcQJOKVGklLpIKZUJDARmKaVmO7e3Ukr9BqC1tgL3ALOBbcAPWustpxa2EEIIIYQQQgghhHC1U33q2TRg2hG2ZwHj6r3+DfjtVPoSQgghhBBCCCGEEI1LHpcghBBCCCGEEEIIIQBJFAkhhBBCCCGEEEIIJ0kUCSGEEEIIIYQQQghAEkVCCCGEEEIIIYQQwkkSRUIIIYQQQgghhBACkESREEIIIYQQQgghhHBSWmt3x3BUSql8oBIocHcsokHCkLFqKWSsWg4Zq5ZDxqplkHFqOWSsWg4Zq5ZDxqrlkLFqGVryOCVorcOPtKNZJ4oAlFKrtdZ93B2HOD4Zq5ZDxqrlkLFqOWSsWgYZp5ZDxqrlkLFqOWSsWg4Zq5bhdB0nWXomhBBCCCGEEEIIIQBJFAkhhBBCCCGEEEIIp5aQKPrY3QGIBpOxajlkrFoOGauWQ8aqZZBxajlkrFoOGauWQ8aq5ZCxahlOy3Fq9jWKhBBCCCGEEEIIIUTTaAkzioQQQgghhBBCCCFEE5BEkRBCCCGEEEIIIYQAXJwoUkqdq5TaoZTarZR6/JB99zr3bVFKvXqU819QSm1USq1XSv2plGpVb98TznZ3KKXGHOX8e5zHaKVUWL3tgUqpX5RSG5z93+iqa26pjjZWSqnvne//eqVUqlJq/VHOD1FKzVFK7XL+G+zcHqqUmq+UqlBKvX+M/pOUUiuc53+vlPJwbldKqXedcW1USvVy8aW3KM11nJz7Rjj736KUWujCy26RmsFYHe3739XO/0sblVLLlFLdXXjZLVIzHiu5Vx2iEcfqbKXUGqXUJue/o45yvtyrGqi5jpVzn9yvnJrBOMm9qoGa8VjJveoQjThW/eqdv0EpddFRzpd7VQM117Fy7mte9yqttUs+ACOQAiQDHsAGoJNz30hgLuDpfB1xlDYC6n1+H/Ch8/NOzvY8gSRnP8YjnN8TSARSgbB62/8JvOL8PBwoAjxcde0t7eNYY3XIcW8AzxyljVeBx52fP17v/fUFhgB3AO8fI4YfgCucn38I3On8fBzwO6CAAcAKd79fMk5HHKcgYCsQ73x9xP/TZ8pHMxmro33/GwQEOz8feyb/n2oBYyX3qqYbq55AK+fnXYB9Rzlf7lUtf6yCkPtVcxonuVe1/LGSe1XTjZUPYHJ+Hg3k7X99yPlyr2r5YxVEM7tXufKNHwjMrvf6CeCJem/I6BNs7wngv4e25Xw9Gxh4jHMP/Yb2BPAf53+SJGA3YHD3m++2QT/GWNXbpoAMoO1R2tgBRDs/jwZ2HLL/Bo7yi5Kz7YJ6/5kOxAN8BFx5pH7OtI9mPk53Af9y93vUXD7cPVaHHHfQ979D9gVzlB8Iz5SP5jxWcq9q+rGq10Yhzj9mHbJd7lUtf6zkftVMxumQY+Re1ULHSu5VbhurJCCXQ5IPcq86bcaq2d2rXLn0LMb5pu6X6dwG0A4Y6pxmtVAp1fdojSilXlRKZQBXA880oO2GeB/oCGQBm4D7tdb2Ezj/dNOQ93MokKu13nWUNiK11tkAzn8jTqD/UKBEa209Qv+nOtank+Y8Tu2AYKXUAue05etOoN3TkbvHqqFuxvGXpTNZcx4ruVcdrKnG6mJgnda69pDtcq9quOY8VnK/+h93j1NDyb2qeY+V3KsO1qhjpZTqr5TaguO9vqPe97n95F7VcM15rJrdvcrkwrbUEbbpev0E45jy1hf4QSmVrJ3ps4NO0PpJ4Eml1BPAPcCzx2m7IcYA64FRQGtgjlJqsda67ATaOJ005P28EvjODf2f6lifTprzOJmA3sBZgDewXCn1t9Z6ZyPF0ty5e6yOSyk1EscP30PcFUMz0ZzHSu5VB2v0sVJKdQZeAc45wf7lXnWw5jxWcr/6H3ePU0POl3uVQ3MeK7lXHaxRx0prvQLorJTqCHyllPpda13TwP7lXnWw5jxWze5e5coZRZlAXL3XsTgyzfv3/awdVgJ2IEwp9YWzYNNvR2jvWxxZ7uO13RA31ut/N7AX6HAC559ujvl+KqVMwETg+3rbDh2rXKVUtHPf/nWYDVUABDn7ObT/Ux3r00lzH6c/tNaVWusCYBHQ/QTaPt24e6yOSSnVDfgUuEBrXeiqdluo5jxWcq86WKOOlVIqFpgGXKe1TjlC/3KvarjmPlZyv3Jw9zgdk9yrDtKcx0ruVQdrkp8rtNbbgEocdaXqk3tVwzX3sWpW9ypXJopWAW2dlbw9gCuAmc5903FknVFKtcNRPKpAa32j1rqH1nqcc1/beu2dD2x3fj4TuEIp5amUSgLaAitPILZ0HNk5lFKRQHtgz4lf4mnjWGMFMBrYrrXO3L/h0LFyHn+98/PrgRkN7dw5k2w+cMkRzp8JXKccBgCl+6f3nYGa8zjNwLGc1KSU8gH6A9tO6OpOL24dq2NRSsUDPwPXnqF/QT9Usx0r5F51qEYbK6VUEDALR22CpUfqXO5VJ6Q5j5Xcr/7HreN0LHKvOkyzHSvkXnWoxhyrpP1JBaVUAo73OrV+53KvOiHNeaya371Ku7ZA1DhgJ45q4k/W2+4BfANsBtYCo45y/k/OYzYCvwAx9fY96Wx3BzD2KOffhyMbZ8WRnfvUub0V8CeO9YKbgWtced0t8eNoY+Xc9yWOdZXHOj8UmAfscv4bUm9fKo4nIFQ4x+NI1eSTcST7dgNT+d8T8RTwgTOuTUAfd79XMk6Hj5Nz3yM4qvNvBv7h7vfK3R/NYKyO9v3vU6AYxzTx9cBqd79X7v5oxmMl96omGivgKRx/7Vtf7+OwJ4wc7Xsgcq9qMWPl3Cf3q+YzTnKvavljJfeqphura4EtzjFaC1x4lPPlXtXCx8q5r1ndq5QzKCGEEEIIIYQQQghxhnPl0jMhhBBCCCGEEEII0YJJokgIIYQQQgghhBBCAJIoEkIIIYQQQgghhBBOkigSQgghhBBCCCGEEIAkioQQQgghhBBCCCGEkySKhBBCCCGEEEIIIQQgiSIhhBBCCCGEEEII4SSJIiGEEEIIIYQQQggBSKJICCGEEEIIIYQQQjhJokgIIYQQQgghhBBCAJIoEkIIIYQQQgghhBBOkigSQgghhBBCCCGEEIAkioQQQgghhBBCCCGEkySKhBBCCCGEEEIIIQQgiSIhhBBCCCGEEEII4SSJIiGEEKKZU0olKqW0UsrUgGNvUEotaaK4BiuldimlKpRSFzZFn+J/lFLxzvfe6MpjXRBXk30NCiGEEML1JFEkhBBCuJBSKlUpVaeUCjtk+3pnsifRTaHVTzhVOD9SlVKPn0KTzwPva639tNbTXRTmGcEVyRStdbrzvbe58timpJR6Tin1jQvbu0EpZav3Nb7/o5UL2jYqpf6llMpSSpUrpdYppYJcELYQQgjRrEiiSAghhHC9vcCV+18opboC3u4L5zBBWms/HDE+o5Q690ROrjezKQHYcjIBNGR21JmuKWb/nKaWO5Ni9T+yXNDu/wGDgIFAAHAtUOOCdoUQQohmRRJFQgghhOtNAq6r9/p64Ov6ByilApVSXyul8pVSaUqpp5RSBuc+o1LqdaVUgVJqDzD+COd+ppTKVkrtc85yOOGkgtZ6OY5ETxdnuzcppbYppYqVUrOVUgn1+tRKqbuVUruAXUqpFCAZ+MU5Y8NTKdVKKTVTKVWklNqtlLq13vnPKaV+VEp9o5QqA25QSi1wxr7M2cYvSqlQpdRkpVSZUmpV/RlYSql3lFIZzn1rlFJDD2n/B+d7Wq6U2qKU6lNvf5xS6mfn+12olHq/3r6jXvehlFLnO9succbfsd6+VKXUw0qpjUqpUqXU90opryO00RH4EBjovO4S5/YvlVL/VUr9ppSqBEYqpcY7Z66UOa/9uXrtHLQk0RnPC0qppc734E/lnNl2Isc691/n/LosVEo97by20Ud5T0Kd416mlFoJtD5k/xHHTTkSlP8ELne+Dxuc2290jke5UmqPUur2o43HiVBKtXZ+bfZyvm6lHP/HRtR7T15SSq10jt8MpVSIc18w8A/gVq11mnbYrLWWRJEQQojTjiSKhBBCCNf7GwhQSnVUjgTO5cChy2veAwJxJFuG40gs3ejcdyswAegJ9AEuOeTcrwAr0MZ5zDnALScSoHIYDHQG1ilHjaF/AhOBcGAx8N0hp10I9Ac6aa1bA+nAec4ZG7XO4zOBVs6Y/62UOqve+RcAPwJBwGTntitwzMyIwZFgWA58AYQA24Bn652/Cujh3PctMPWQRMz5wBRn+zOB953XagR+BdKARGdfU5z7GnLd+9+zds59/3Ae+xuORJlHvcMuA84FkoBuwA2HtqO13gbcwf9mvgTV230V8CLgDywBKnF8bQThSBjeqY5dD+oqHF9HEYAH8PCJHquU6gT8B7gaiMbxdRpzjHY+wDGzJhq4yflR3xHHTWv9B/Bv4Hvn+9DdeXwejq//AGd8b+1P7jjjK1FKDTlGPEektU4BHgMmK6V8cHydfam1XlDvsOuc8bfC8X/sXef2rs7XlyilcpRSO5VSd59oDEIIIURLIIkiIYQQonHsn1V0NrAd2Ld/R73k0RNa63KtdSrwBo6ECTiSDW9rrTO01kXAS/XOjQTGAv/QWldqrfOAt3AkXBqqACgCPgUe11rPA24HXtJab9NaW3H8At/jkNk1L2mti7TW1Yc2qJSKA4YAj2mta7TW653tX1vvsOVa6+laa3u9Nr7QWqdorUuB34EUrfVcZwxTcSTCANBaf6O1LtRaW7XWbwCeQPt67S/RWv/mrMMzCdifeOiH4xf/R5zvWY3Wen99oIZc936XA7O01nO01hbgdRxLCgfVO+ZdrXWWc9x+wZEgOREztNZLne9RjdZ6gdZ6k/P1RhyJquHHOP8LrfVO5/v7w3H6P9qxlwC/aK2XaK3rgGcAfaQGnF/LFwPPON/bzTgSmQc0YNw45PhZzq8JrbVeCPwJDK23P6je+B3JAGcyaf9HSr1zPwF2AStwJLaePOTcSc6ZQpXA08BlzmuMxZEwa4cjCXgJ8JxS6uxjxCGEEEK0SJIoEkIIIRrHJBwzNm7gkGVnQBiOGRxp9bal8b9ZG62AjEP27ZcAmIHs/b8IAx/hmBXSUGFa62CtdUet9f4ZEwnAO/XaLAIUB88kyeDoWgFFWuvyo1zT0c7Prfd59RFe++1/oZR6yLkkqdQZYyCO93K/nHqfVwFezqVWcUCaMxF0qIZcd/1rPDAWWmu785rqH3toDH6cmIPeI6VUf6XUfOVYMleKYyZS2JFPPeH+j3bsQV9/WusqoPAobYQDJo7+9dqQceOQ48cqpf52LhMrAcYd6/gj+NuZTNr/0fqQ/Z/gWG75nnMmXH2HXofZ2ff+xObzWutqZ9JuijM2IYQQ4rQiiSIhhBCiEWit03AUtR4H/HzI7gLAgiNJsV88/5t1lI0juVF/334ZQC2OZM/+X4QDtNadTzHkDOD2Q37B9tZaL6t/Wcc4PwsIUUr5HxL3vnqvj3X+MTnr2jyGY7ZVsHO5VimOpM7xZADx6sgFtBty3ftlUW/MlFIKxzjtO8Kxx3O09+LQ7d/iWEYXp7UOxFHbqCHXfCqyccygAUAp5Q2EHuXYfBxLso749dqAcTvoepVSnsBPOGZrRTqP/w0XXbNSyg94G/gMx4ygkEMOOfQ6LDj+v248UrxCCCHE6UgSRUIIIUTjuRkY5VzGcoBzadQPwItKKX/nMqcH+V8dox+A+5RSsc4iuo/XOzcbx1KcN5RSAUopg7NI77GWIzXEh8ATSqnOcKBg9qUNPVlrnQEsA15SSnkppbrhuP7Jxz6zwfxxJCTyAZNS6hkcNWwaYiWO5MfLSilfZ3yDnftO5Lp/AMYrpc5SSpmBh3Ak7Y6UVDqeXCD2kPpGR+KPY6ZWjVKqH45Zao3tR+A8pdQgZ3z/x1ESNc6v5Z9xJF18nPWNrq93yPHGLRdIVM5C7jhm2nk6j7cqpcbiqMHlKu8Aa7TWtwCzcIx/fdcopTo5axg9D/yotbY56xstBp5UjsLtHXEsRfzVhbEJIYQQzYIkioQQQohG4qyzsvoou+/FUah4D46ixd8Cnzv3fQLMBjYAazl8RtJ1OH6h3goU4/jFPvoUY50GvAJMUY6nkm3GUQvpRFyJo1h0FjANeFZrPedU4qpnNo4aRjtxLAmq4dhL4Q5wJjPOw1H8Ox1Hwe3LnfsafN1a6x3ANTgKkRc42zzPWcfnRP2F44lzOUqpgmMcdxfwvFKqHEetoB9Ooq8TorXeguPrcwqOBFs5jgLThy7T2u8eHMvWcoAvcRSJ3u944zbV+W+hUmqtc+nifTiusxhHYmxm/c6U4wlpQzm6/U+Tq//RVyl1AY5C43c4j3sQ6KWUurreuZOc15ADeDlj2e9KHDPKCnEkmZ521vcSQgghTitKa5lBK4QQQgghjsy5XKsEaKu13uvmcBqNUmoB8I3W+lN3xyKEEEK4k8woEkIIIYQQB1FKnedcSuaLo17QJiDVvVEJIYQQoilIokgIIYQQQhzqAhxLCLOAtsAVWqahCyGEEGcEWXomhBBCCCGEEEIIIQCZUSSEEEIIIYQQQgghnEzuDuBYwsLCdGJiorvDEEIIIYQQQgghhDhtrFmzpkBrHX6kfc06UZSYmMjq1Ud7qrAQQgghhBBCCCGEOFFKqbSj7ZOlZ0IIIYQQQgghhBACkESREEIIIYQQQgghhHCSRJEQQgghhBBCCCGEAJp5jSIhhBBCCCGEEMLdLBYLmZmZ1NTUuDsUIU6Il5cXsbGxmM3mBp8jiSIhhBBCCCGEEOIYMjMz8ff3JzExEaWUu8MRokG01hQWFpKZmUlSUlKDz5OlZ0IIIYQQQgghxDHU1NQQGhoqSSLRoiilCA0NPeGZcC5JFCmlPldK5SmlNh9lv1JKvauU2q2U2qiU6uWKfoUQQgghhBBCiKYgSSLREp3M162rZhR9CZx7jP1jgbbOj9uA/7qoXyGEEEIIIYQQQgjhIi5JFGmtFwFFxzjkAuBr7fA3EKSUinZF30IIIYQQQgghxOlOKcW111574LXVaiU8PJwJEya4Marj8/PzO+4xzz33HK+//voxj5k+fTpbt251VVjiGJqqRlEMkFHvdaZz22GUUrcppVYrpVbn5+c3SXBCCCFEQ1XUWqm12twdhhBCCCHOML6+vmzevJnq6moA5syZQ0zMEX+tbnRWq7XJ+5REUdNpqkTRkRbF6SMdqLX+WGvdR2vdJzw8vJHDEkIIIRquotZKakEllbWSKBJCCCFE0xs7diyzZs0C4LvvvuPKK688sK+yspKbbrqJvn370rNnT2bMmAFAamoqQ4cOpVevXvTq1Ytly5YBkJ2dzbBhw+jRowddunRh8eLFwMEzgH788UduuOEGAG644QYefPBBRo4cyWOPPUZKSgrnnnsuvXv3ZujQoWzfvh2AvXv3MnDgQPr27cvTTz991Gt58cUXad++PaNHj2bHjh0Htn/yySf07duX7t27c/HFF1NVVcWyZcuYOXMmjzzyCD169CAlJeWIxwnXMDVRP5lAXL3XsUBWE/UthBBCnLKKWitpOYXELfgHZpMJrp7k7pCEEEII4Qb/98sWtmaVubTNTq0CePa8zsc97oorruD5559nwoQJbNy4kZtuuulAgufFF19k1KhRfP7555SUlNCvXz9Gjx5NREQEc+bMwcvLi127dnHllVeyevVqvv32W8aMGcOTTz6JzWZrUKJl586dzJ07F6PRyFlnncWHH35I27ZtWbFiBXfddRd//fUX999/P3feeSfXXXcdH3zwwRHbWbNmDVOmTGHdunVYrVZ69epF7969AZg4cSK33norAE899RSfffYZ9957L+effz4TJkzgkksuASAoKOiIx4lT11SJopnAPUqpKUB/oFRrnd1EfQshhBCnpLLWSlp2Pgl/3oRf1jK0MkBtOXj6uzs0IYQQQpxBunXrRmpqKt999x3jxo07aN+ff/7JzJkzD9T6qampIT09nVatWnHPPfewfv16jEYjO3fuBKBv377cdNNNWCwWLrzwQnr06HHc/i+99FKMRiMVFRUsW7aMSy+99MC+2tpaAJYuXcpPP/0EwLXXXstjjz12WDuLFy/moosuwsfHB4Dzzz//wL7Nmzfz1FNPUVJSQkVFBWPGjDliLA09Tpw4lySKlFLfASOAMKVUJvAsYAbQWn8I/AaMA3YDVcCNruhXCCGEaGzVdTbSsnJJnH0DPrmrKWp/BSE7pmBJXY65/TnuDk8IIYQQTawhM38a0/nnn8/DDz/MggULKCwsPLBda81PP/1E+/btDzr+ueeeIzIykg0bNmC32/Hy8gJg2LBhLFq0iFmzZnHttdfyyCOPcN111x30OPWampqD2vL19QXAbrcTFBTE+vXrjxhjQx7JfrRjbrjhBqZPn0737t358ssvWbBgwSkdJ06cq556dqXWOlprbdZax2qtP9Naf+hMEuF82tndWuvWWuuuWuvVruhXCCGEaGzlJQUk/n4NPrlryBjxLsXDXkAbTNj2LnF3aEIIIYQ4A910000888wzdO3a9aDtY8aM4b333kNrRzngdevWAVBaWkp0dDQGg4FJkyZhszlqLaalpREREcGtt97KzTffzNq1awGIjIxk27Zt2O12pk2bdsQYAgICSEpKYurUqYAjSbVhwwYABg8ezJQpUwCYPHnyEc8fNmwY06ZNo7q6mvLycn755ZcD+8rLy4mOjsZisRx0vr+/P+Xl5cc9Tpy6pipmLYQQQrQ8NguBP16KV8Em0s/6L9ZOF5EUHU5dRHdU+nJ3RyeEEEKIM1BsbCz333//YduffvppLBYL3bp1o0uXLgcKSd9111189dVXDBgwgJ07dx6YFbRgwQJ69OhBz549+emnnw60+fLLLzNhwgRGjRpFdHT0UeOYPHkyn332Gd27d6dz584Hime/8847fPDBB/Tt25fS0tIjnturVy8uv/xyevTowcUXX8zQoUMP7HvhhRfo378/Z599Nh06dDiw/YorruC1116jZ8+epKSkHPU4cerU/mxjc9SnTx+9erVMPhJCCOEeBTuWE/bducyIfZgeFz1IfIgPSilqfnsKz9Ufop7IALO3u8MUQgghRCPbtm0bHTt2dHcYQpyUI339KqXWaK37HOl4mVEkhBBCHMXqVY7Hx76dEs30dfsOrKU3Jg1G2S3Y0le5MzwhhBBCCCFcThJFQgghxBFYbXby96ynDjO9evTkrbm7eP+vXQCYEweiUVj2LHZzlEIIIYQQQriWS556JoQQQpxu5m3PI9aSRlVwMq9e2gs7G3j9z50opbh7ZBssYZ1R6cvcHaYQQgghhBAuJYkiIYQQ4ggmr0jnVeM+vGOGYzQoXr+0O3ateW32DrzMRq5OGITHhq/BWgcmD3eHK4QQQgghhEvI0jMhhBDiEOmFVazdmUYUBZiiOgFgNCjeuLQ7Q9uG8d5fu1AJgzBYa7DtW+fmaIUQQgghhHAdSRQJIYQQh/huVTrtDPsAMEZ2OrDdZDRwYY8YSqospPn1AMC6d4k7QhRCCCGEEKJRSKJICCGEqKfOaueHVRlc0KrUsSHi4EeJ9k8OAWBpNliC20Ka1CkSQgghROPLzc3lqquuIjk5md69ezNw4ECmTZvW6P2uXr2a++67zyVtjRgxgvbt29O9e3cGDx7Mjh07XNKuK7kyxi+//JJ77rkHgA8//JCvv/76qMempqby7bffHnjtyvf9REmiSAghhKhn9pYcCivrGBFciN3kDUEJB+2PDfYhNtibFXuKsMUPwrRvBdhtbopWCCGEEGcCrTUXXnghw4YNY8+ePaxZs4YpU6aQmZnZ6H336dOHd99912XtTZ48mQ0bNnD99dfzyCOPHLbfZnP/z1WNEeMdd9zBddddd9T9hyaKXP2+nwhJFAkhhBD1fLsindhgb1rVpWIPbQ+Gw2+VA5JDWbG3EJUwGGNdOTpnoxsiFUIIIcSZ4q+//sLDw4M77rjjwLaEhATuvfdewJFkGDp0KL169aJXr14sW+aY8bxgwQImTJhw4Jx77rmHL7/8EoDHH3+cTp060a1bNx5++GEApk6dSpcuXejevTvDhg07rI2VK1cyaNAgevbsyaBBgw7Mtvnyyy+ZOHEi5557Lm3btuXRRx897jUNGzaM3bt3A+Dn58czzzxD//79Wb58OW+++SZdunShS5cuvP322wfO+frrr+nWrRvdu3fn2muvBSA/P5+LL76Yvn370rdvX5YuXQrAwoUL6dGjBz169KBnz56Ul5eTnZ3NsGHD6NGjB126dGHx4sUnHeM333xDv3796NGjB7fffvuB5NEXX3xBu3btGD58+IFYAJ577jlef/11AHbv3s3o0aPp3r07vXr1IiUlhccff5zFixfTo0cP3nrrrYPe96KiIi688EK6devGgAED2Lhx44E2b7rpJkaMGEFycrLLEkvy1DMhhBDCKSW/guV7CnlkTHsMq7djTx55xOP6J4Xw45pMMgN60BqoS1mKZ6ueTRusEEIIIdzj98chZ5Nr24zqCmNfPuruLVu20KtXr6Puj4iIYM6cOXh5ebFr1y6uvPJKVq9efdTji4qKmDZtGtu3b0cpRUlJCQDPP/88s2fPJiYm5sC2+jp06MCiRYswmUzMnTuXf/7zn/z0008ArF+/nnXr1uHp6Un79u259957iYuLO2oMv/zyC127dgWgsrKSLl268Pzzz7NmzRq++OILVqxYgdaa/v37M3z4cDw8PHjxxRdZunQpYWFhFBUVAXD//ffzwAMPMGTIENLT0xkzZgzbtm3j9ddf54MPPmDw4MFUVFTg5eXFxx9/zJgxY3jyySex2WxUVVUdNb5jxbht2zZeeeUVli5ditls5q677mLy5MmcffbZPPvss6xZs4bAwEBGjhxJz56H/4x49dVX8/jjj3PRRRdRU1OD3W7n5Zdf5vXXX+fXX38FHAm6/Z599ll69uzJ9OnT+euvv7juuutYv349ANu3b2f+/PmUl5fTvn177rzzTsxm8zGv63gkUSSEEEI4/bQmE5NBcVlnX4wLcw+rT7TfgORQAJbkeRIfkIBOWwpD72nKUIUQQghxBrv77rtZsmQJHh4erFq1CovFwj333MP69esxGo3s3LnzmOcHBATg5eXFLbfcwvjx4w/MXBk8eDA33HADl112GRMnTjzsvNLSUq6//np27dqFUgqLxXJg31lnnUVgYCAAnTp1Ii0t7YiJoquvvhpvb28SExN57733ADAajVx88cUALFmyhIsuughfX18AJk6cyOLFi1FKcckllxAWFgZASIijbuTcuXPZunXrgfbLysooLy9n8ODBPPjgg1x99dVMnDiR2NhY+vbty0033YTFYuHCCy+kR48eR3x/jhfjvHnzWLNmDX379gWgurqaiIgIVqxYwYgRIwgPDwfg8ssvP2wsysvL2bdvHxdddBEAXl5eR4yhviVLlhxIyI0aNYrCwkJKSx31NMePH4+npyeenp5ERESQm5tLbGzscds8FkkUCSGEEE5r0orp3CqA8Oq9ABijOh/xuLgQH2KCvPl7TyGXxw3EnDIbtAalmjJcIYQQQrjDMWb+NJbOnTsfSBQAfPDBBxQUFNCnTx8A3nrrLSIjI9mwYQN2u/1A8sFkMmG32w+cV1NTc2D7ypUrmTdvHlOmTOH999/nr7/+4sMPP2TFihXMmjWLHj16HJi1st/TTz/NyJEjmTZtGqmpqYwYMeLAPk9PzwOfG41GrFbrEa9l8uTJB+Lez8vLC6PRCDjqMR2J1hp1hJ+17HY7y5cvx9vb+6Dtjz/+OOPHj+e3335jwIABzJ07l2HDhrFo0SJmzZrFtddeyyOPPHLEukENifH666/npZdeOuiY6dOnHzHGQ6/jRB3pnP39NPR9PxFSo0gIIYQA7HbN1qwyusQEovO2OTaGdzjq8f2TQ1ixtwhD0mCMNcWQv72JIj2zWG12tmWX8cfmbKw2+/FPEEIIIU5Do0aNoqamhv/+978HttVfNlVaWkp0dDQGg4FJkyYdqJeTkJDA1q1bqa2tpbS0lHnz5gFQUVFBaWkp48aN4+233z6QEEpJSaF///48//zzhIWFkZGRcVAcpaWlxMTEAByodeRqw4YNY/r06VRVVVFZWcm0adMYOnQoZ511Fj/88AOFhYUAB5aenXPOObz//vsHzq9/LV27duWxxx6jT58+bN++nbS0NCIiIrj11lu5+eabWbt27UnFeNZZZ/Hjjz+Sl5d3IJa0tDT69+/PggULKCwsxGKxMHXq1MPODQgIIDY2lunTpwNQW1tLVVUV/v7+lJeXH/U9mTx5MuBYkhYWFkZAQMBJxd4QMqNICCGEANKKqiivtdI1JhBb7jYMHn4YAo8+bXdAcig/r93HPv/uJAHWtBWYjrJUTThU1FpZsCOPtMIqYoO9iQ/xISHUl2AfM7VWO9mlNWSVVJNVUs2uvArWp5ewaV8p1RbHD7tPjO3A7cNbu/kqhBBCiKanlGL69Ok88MADvPrqq4SHh+Pr68srr7wCwF133cXFF1/M1KlTGTly5IFlW3FxcVx22WV069aNtm3bHqiXU15ezgUXXEBNTQ1aa9566y0AHnnkEXbt2oXWmrPOOovu3buzcOHCA3E8+uijXH/99bz55puMGjWqUa61V69e3HDDDfTr1w+AW2655UDcTz75JMOHD8doNNKzZ0++/PJL3n33Xe6++266deuG1Wpl2LBhfPjhh7z99tvMnz8fo9FIp06dGDt2LFOmTOG1117DbDbj5+d3zMfVH0unTp3417/+xTnnnIPdbsdsNvPBBx8wYMAAnnvuOQYOHEh0dDS9evU64hPSJk2axO23384zzzyD2Wxm6tSpdOvWDZPJRPfu3bnhhhsOqm303HPPceONN9KtWzd8fHz46quvTiruhlInM+2pqfTp00cfqwCXEEII4SozN2Rx33fr+PXeIXT440qw1mK6fd5Rj88oqmLoq/N54fxOXLVwONYOF+B50XtNGHHLUFRZx9ytufyxJYcluwuosx4+K8jLbKDGcvB2D6OBTq0C6BEXRI+4IH5am8n6jBL+fGAYHkYDFbVWYoK8MRllcrQQQojGt23bNjp2lD8IiZbpSF+/Sqk1Wus+RzpeZhQJIYQQwOZ9pXgYDbSL9MdQsB17u7HHPD422JtWgV78vbeYy6N6Ysg6uanLp7Oluwu47evVVNbZiAny5pr+CQxpG0qorwc5ZbVkl1aTXVJDfkUtYX4etA73O1D/KTrQGw+TIwlUWWsl3N+Taz9bwb9nbeOu3r747VtMTUI3/Fr3c/NVCiGEEEKcXiRRJIQQQgCbMkvpEO2PR00hVBdC5LH/aqiUYkByKIt25UO/3piWvw11VeDh0zQBN3N/bM7hvu/WkRTmy+uXdqdLTAD5FbWUpG4kYP2fRNtq6WWrRdktgJ2KoOGUR47A38eTYF8PbHZNdmk1pdUWLHV1tCpYzkcRM0jYvpx2OzMBqAvtCPf+7d4LFUIIIYQ4zUiiSAghxBlPa83mrFImdGsF+Y5C1obITsc9r39yCD+v20d+QGditA1yNkF8/8YOt9n7YVUGj/+8kR5xQXxxQz/8vUxkFFWjNn5PmyWPY7DVoFFoowfa6Al2K2Fbv6TOL46ijleR2e5ybJ6B+GUtI2LPrwSk/YGptpQEg5kVqj2TA85lTKzjHMqyISDa3ZcshBDiDHC0p24J0ZydTLkhSRQJIYQ446UXVVFe4yhkrfOWoQDCj1+HYEByKADLaxK4BLBkrMJ8BiWKbHaN1W7H02Q8sO2TRXt48bdtDG0bxkfX9sagFHtyiwla8jxhW76gIqo/GaM+wOodDvt/2LZbCEidTei2b4ha9QoRa97EbvbBVFuKzexHWcI5lCaNoyJmKLPW5/PN3+kk9/chbOuXWHbOxdznWje9A0IIIc4UXl5eFBYWEhoaKski0WJorSksLMTLy+uEzpNEkRBCiDPepn2lAI4nnq3ZisEzCIN/1HHPiw/xITrQiwVZBi70a4XOXNPYoTYrFbVW0gur8DQb8PM0Mml5Ov9dmMI5nSJ5fGwH0ouq0GV5xP11F345KyjocjOFA58iMsgPo1IoAygcy/hKAyaS1mYC5sJdhOz4FmNtKaWJ51IRMwyjpzf+XibivMw8fm4Yc7bm8so6Ez96h2PbNU8SRUIIIRpdbGwsmZmZ5OfnuzsUIU6Il5cXsbFHf5LvkUiiSAghxBlv075SzEZFuyg/yN+OPbw9hgb8tVApRf+kEJbsLsSW1BPjGVbQ2nP6zSSWF1IWdxZfF3Xgw02a0R0juHtILIadfxCRNoeAtD8wWGvIGPEOuutltAn2xmg4/L318zQRHeBFSWA3iiLbY7FpAr3NJHqb8fM8+MeVh89pzyM/biQjuT/xaQvAbgOD8bA2hRBCCFcxm80kJSW5OwwhmoQkioQQ4jRis2sUYDjCL+Li6DbvK6V9lD+eRgP2/O3YO13Y4HMHJIcyfX0Wef5diNs1C6qKwCek8YJtLmpK8doxA7PZH/+sJTwOXOcfj6+1Lf7fLsNgrcZm9qc8bgT5Pe4hKKkn4f6ex2zSYFCE+HoQ4utxzOMm9orlk8V7mFbWgQdrfsW+bz2GuN4uvDghhBBCiDOXwd0BCCGEcA27XZOaX0ZNbbW7Q2lRtNZs3ldG15hAKM/BUFuCMer4haz3G9UxghBfD55b60iC6H1nyKyiPEfR708j/smw2rf4Iewe/MMT8CpNobjtpew99xu2XbOO3HP+S6v2fY6bJDoRRoNibJdovi1sg0Zh2TnHZW0LIYQQQpzpZEaREEKcBrTWZOQVETnjasxGDbfMdndILUZmseMR7J1bBR544pmKOH4h6/0i/L2Ycfdg7v/Khr1EsXrpHPq2Oeu0L3Rpz9mMAfgyxY+hfbrTfcglpFodT9UwGhSBPmYivM34ejbOjxpD24bxzrwAigI64pfyF5z1eKP0I4QQQghxpnHJjCKl1LlKqR1Kqd1KqcN+UlNKBSqlflFKbVBKbVFK3eiKfoUQ4kxWWFHLNZ+uYENGCZlFlQT+eT9+2csx5WwAu93d4bUYBxWyztnq2NiAJ57VFxfiwzd3jybbI47SlJU8NHUDNRabq0NtVtK3raRU+3D2gJ68cnE32kcF0D7Kn6RwXzpG+xMT5N1oSSKA7nFB+HuaWOfRG4/s1VBT2mh9CSGEEEKcSU45UaSUMgIfAGOBTsCVSqlD5+zfDWzVWncHRgBvKKWOXYBACCHEMT0zYwtLdhfw8aIUvBa+QNCeX6gK64qyVkN5trvDazE27SvFZFC0j/LHtm8dNp9w8As/4XZ8PEyEtRvIQM9Ufl6bybh3FvPTmkwsttMvaVdUWUfJ3vWkmZJ4akLnA7OnPEwG/DxNTTKbymw0MKB1KNPK2qO0DcvuhY3epxBCCCHEmcAVM4r6Abu11nu01nXAFOCCQ47RgL9y/OToBxQBVhf0LYQQZ6RZG7OZtSmbQG8zUTu/JXzjhxR2vI664U87Dija494AW5DN+0ppF+mPl8mAMW0JtvjBJ92WIa4PftYivr0sFg+TgYembmDUGwuYvCKNWqsNq81OjcVGWY2FwopaiirrKKuxUFVnpc5qR2vtwitrPM9M30QbnU50u954mNxX7nBY2zBml8VjNfli2zXXbXEIIYQQQpxOXDEnPAbIqPc6E+h/yDHvAzOBLMAfuFxrffr9iVUIIZpAQUUtT8/YTLfYQO6LS2Hk2s/ICBuGGv0isYZix0FFKZA01L2BtgCOQtalnNMpCgpTMFbmoJOGnXR7ZueTtwZ4pPL7/Rcwb1se783fzZPTNvPG7J0MbhPKwNZhdI7wxKdsD6Cxeodh9QoFgwmzSREd4E2gj9lFV+h6szZms37zJvw8q/FJ7uXWWIa0DceKifTAPsTvmQdaw2leG0oIIYQQorG5IlF0pJ/IDv2T6BhgPTAKaA3MUUot1lqXHdaYUrcBtwHEx8e7IDwhhDi9PDNjMxU1Vl4f14rW317KNpL4LPBx3gzxB+2LNnpgL9iN0d2BtgD7SqoprrLQJSYAa8pcTICpzYiTbzCyC9rggTVzNR5dLmR0p0hGtA9nxoodVC//hKDtW2m3PZ1kQzYm/vf3Eo3C6hVKXWASuX0eoShpCNGBXniZm9co7k9STgwrgHIwRHVxazyJoT7EBnuzlO4kly9EF+xChbdza0xCCCGEEC2dKxJFmUBcvdexOGYO1Xcj8LJ2zKnfrZTaC3QAVh7amNb6Y+BjgD59+rSMOfhCCNFEZm3M5rdNOTwypj2xOfMwWquYEv0YC/ZWYrNrTEYj9qBEdKEsPWuIzc5C1l1iArEvXYjVrxWmkOSTb9DkiTWiM+xbCzhmLKXnlzBm80P4lS+lNiCWLM82zLIMY2FJBJVWRQe/KgZE2GnjU0lg1mKSZ11GcduL2dvvn4RExhIZ4OWKSz1lWmuenLaJihort/WqhlXACTwdrjEopRjaNoxvN7TlWgWWnXPwkESREEIIIcQpcUVhgVVAW6VUkrNA9RU4lpnVlw6cBaCUigTaA/JbjBBCnID9szm6xwZy+7Bk1LaZ1AYm0affEIqrLKxMLQJABydLjaIG2rSvFKNB0THKD2P6UuwJQ0556ZJu1QtTznqw28gorCRkzj/wy1pKxvC32HnFMioumkTna17jnnsfpdeY6/jVczxX7h7FqJ0X8ULiF+R0v4fAlJm0mzoS69+fUlRe7ZqLPUULd+Yze0suD57TjuDyXViDEsHTz91hMbRtONtqQ6n0TUDv/svd4QghhBBCtHinnCjSWluBe4DZwDbgB631FqXUHUqpO5yHvQAMUkptAuYBj2mtC061byGEOJO8OWcnFTVWXru0O4bqYrwyl2Jtfx7ndInCy2zg9005AKiw1hiL94JdSsEdz+Z9ZbSN8MOreCfG6kIMrYefcpvG2D4YLJXk7t2Iz4JnCUqZQXbfJ1A9riAhzIdOrQJoE+FPcrgftw9vzdwHhzPltgEMah3KpNX5PFl2ITsu/IPqsC7ELHsSZj1ArdXmgqs9NYt3FeBlNnDT4CRU7hZ0RGd3hwTAoNahKAXbfftizlgK1lp3hySEEEII0aK55FElWuvftNbttNattdYvOrd9qLX+0Pl5ltb6HK11V611F631N67oVwghzhQlVXX8vDaTi3vH0C7Sn5otv6C0DVOXC/HxMDGyfQR/bMnBZtcYQ1ujbDVQnu3usJu1/YWsu8YEYtm9AABT8skXst7PGNcHAL8/HyFs86cUdL4J+6D7iA32IcDLjNFw8IwlpRQDkkP56No+PD62A/O25fH+JgOZE6aQ3/V2QrZ/R/HK793+RLS16cV0iwnCw16DsWQPhkj31ifaL8jHg26xQfxR2xmDtRpb2nJ3h+R2VXVWKmrl4bJCCCGEODnue6atEEKIBpuyKoMai53rByUCoLbNxOIfh2ec46lTY7tGk19ey5q0YthfY6coxU3Rtgx/bc+jsLKOQW1C0XsXYQ1MhCAXPEQhtA12D398c1dRkjSBypHPExPs06BT7xjemkfGtGfWpmw+WrwX68inqArvSfiCxyjI2HXqsZ2kGouNLfvK6JkQBPnbUdqOMbp5zCgCGNomjO/zE9DKhHX3fHeH06SyS6u59evVzNzgKA9ZWWslb/3v1C790M2RCSGEEKKlkkSREEI0c1abnUnL0xiYHEqHqAB0dTFe6YuwtJtwoJ7OqA4ReJgM/L45G0JbO04sdH+iqMbi+iVTVpudwopaSqssJz3LRmvNu/N2ERfizYQukZjSlznqE7mCwUBdm3Mpjx1B4Zh3iQs5sTo+d49sw0Nnt2Paun28MW8vJeM/BK3x+fUOKqtrXBPjCdqSVUqdzU6v+GB07hbHxmYyowhgaNswyuxeFAR1Q+05cxJFW7JKufCDpczZmsv9U9Yx6e80iv6eTMLv1xO66Enqcne6O0QhhBBCtECSKBJCiGZuztZc9pVUc+PgRABqt/6OslswdrngwDF+niaGtQ3nj8052P1aoY0e2JpBoqis2uKSZJHdrimpqiO1oJLtOeXk5OWTkVvAtuxyckprTriGz4Kd+WzILOXuEW0w523CUFeG0QX1ifazXfAh2RMmkRgRgsFw4sWx7z2rLfef1ZYf12TyyUYb+SNewTdvDdVz/oXN3vRL0NamlQDQKz4YW85m7CZvCE5s8jiOpmd8MD4eRtabe2DO3QhVRe4OqdHN35HHZR8ux6AU0+8ezMDkULb88i6x8++nKqInWpmwrPjM3WEKIYQQogUyuTsAIYQQx/bFslRig705q2MkAHrLDCy+UXgm9D/ouHFdo5i7LZf1WeV0C0x0/4wiux3vhf9HWecr8ErufgrNaHbnV1BbZ8M3ZwWx2ycTsPd3UIryuFGUJk9gV9xZ+PkHEBXohZfZeMz2tNa8M3cXMUHeTOwVi2XZT5gBY7LrEkXeZiOJYX6H1SM6Ef8Y3ZayGgtfLE2l7UVDGNv+ckLXvk9ewnAiu5/tslgbYm16MXEh3oT7e2LN2YI9vCMGw7Hf56bkYTIwMDmUaTntOBuNNWUhpq4XuTusRvPN32k8O3MLHaL8+fyGvngYDbwas5jYfZ8y39adzclvcXPAa3ht+Q597rMoj4YtfRRCCFfYvK+UP7fmYqv3UA2FYmzXKDq3CnRjZEKIhpJEkRBCNGNbskpZubeIJ8d1dCQdasvxTJtPTddrMBsOnhR6VsdIzEbF75uy6RaaDEV73RS1U0ka/mv+g704DXvi5JOaWQOQVVSG39pPSdj+DZ6le7CY/dkddzFmg4HYnD8JTP0du8mbsvizyeh1H76xXYjw98RkPPKk2SW7C1ifUcK/LuyCh8lA3Z5FWELaYvaPPJWrPYjBoPA4hSQROIpcPzmuI7tyK3hu5lbir3qSPjmrCZl9NyWtFhIUHu2iaI9Na83a9GIGJIeC1hjytmDvML5J+j4RQ9qG8eL2Vlj9fLHtnn9aJoqq62z8a9ZWJq9IZ2T7cN6+vAclVbWw7A1i175FccJYvrbdw/z5GSQOGM95tTOpWv8TPv2udXfoQojTnM2umbstl8+W7GXl3iKUAqP6333QpjVfLU9l6h0D6RAV4MZIhRANIYkiIYRoxr5cmoq32chlfeIAqN32B562WoxH+CU40NvMwNZhLNiRz+MdW2PYswDsdjC4aZVxSRoA/ql/UlaYTVB4qxNvoqqO8hmP0jFjChtUeyZZ7uDXmv7U7PAEwM9jAheGpDPB+De90ufQZu+vFLe7nD19HyIkKp5QXw9UvR9U988mig704tI+sWCtw7Tvb6xdr3TNNbuYyWjg/at6cv77S3lg+i4mjXuXdr9chOGXe6i99ns8zY1/G88qrSG3rJZe8cFQkYuhpgiimk99ov0u6BHD+3/tZhVd6LN3gbvDcbktWaXcP2U9u/MquG1YMrcPTyYvYzfRCx/CL2sZxW0vpnbcu3wc4MOd36zhwVVwdlgyhjWfgySKhBCNpM5q5/tV6XyyeC/pRVXEBHnz5LiOXNY3jkBvM+B4EuOGjFLu/W4t1322ku9vH0BS2InV7xNCNC2pUSSEEM1UYUUtMzZkcXHvGAJ9HD9s2bfMxOodhmfSoCOe0z7Sj7SiKlRoa5StBsqzmjLkg+hiR6LIYLdgXfftCZ+fXlTJd5++TseMKXxnOI+349/Ho/fVPDK+B1/e2Jc3Lu3O+O6xLLd14Mp9l9K/4nW+YywBO6eS/N0wbPP+zc70bPLKaw7U9Vm+p5DVacXcOaI1niYjZK3FYKlyaX0iVwvy8eDT6/tQVWvlkSWQ0/+fBKTPpWzRf0+6mPeJWJtWDDjqE5G7GQBDM0wUhfh68O+JXfm9ugPmsjT3z6hzEbtd8+niPVz0wTLKqi18dWNfru0fT/XyL0j+8Wy88zeQOeRlLOd9QFSwH2ajgfvOaovFBusiJuKVu5bajPXuvgwhxGnGbtfMWL+P0W8u5OkZWwj18+CDq3qx8JER3DosmUBvM1V1VvYWVLJv63I6LnuAadGTGFy7mDs/nc/qtCLKayzuvgwhxFHIjCIhhGimpqzKoM5q5/qBiQBYairw3DuHms6XYTpKfZj4EB/qrHZKfeIIBijaA4GxTRZzffbCvRiUkerwbvht+ZaaEf/Ay+P4tx2rzc7Xy9OY/uccpqi3SfXrRo8r32FCWAD+XuaDjr24t+PaSqstLNiex3erEvl472geNk1hwrq3Cdz4KXsTLiWnz62EtUrm7Tk7Cff35Lxu0VTWWjHsnI8XCmPS0EZ5D1ylXaQ/b17eg9snreFfwUN5KW4UocteoChxEKGtezdq32vTi/EyG+gQ7Y99+RbHX5giOjVqnydrTOco1nU4C1K+InXVLBLH3OPukI7JarOjAfNRlkmWVlm4d8o6Fu3M5+xOkTw5riOWkkyCpt2Gf+Z8KqIHkj3iDSLi2h1IJgN0jQkkKcyXz8oH0N/oiXXlZ3jGvddEVyVE46mx2I5bh040njqrnaLKOjbvK+XNOTvZml1Gx+gAvrixLyPahR+YwWu12dlXUo0lfQ0Ra98mIGMeNo8A/JSBtwwzsFQb2TKpM2WDrsV/1G1uviohxJFIokgIIZqh0moLXy9PZWjbMNpG+lNjsVGwbhax1mpMnS846nmxIY6itRlEEQzowhRU0rAmivpg9uI0CIilqtt1hM19gIJdi/HqPPKY59RYbNzy1WrW705ntu/bGE3+6Eu+oH2rYz89LNDbzAU9Y7igZwzpRd2Z/PdApq1fzEXVPzE25UvsKV+zwDQEQ/VQbu3ZnrzUrWijJ3G7/8Ia3hmzT4irL9/lxnSO4pEx7Xlt9g5Kom7mC/NmfGfeRuUtf+Hr33jFQdeml9AtNgiz0YA1ZzPaLxpjM36/7rx4LLmvhpK6chZRo+5s1r9UVuenUFBjIjEh8aAlkgCpBZXc9NUqMoqq+L/zOzO8bQjmdV8Qt/JllN1C1oDnsPS5haRg38PqcSmlOK97K977axclXc4ncNuP2Kv/hcFbisiKlstWXYp12v0w5mkIbe3ucM4IFbVWXp+9gwU78iisrKO8xnpgX1yIN29f3oPzu7c66P5cXWcjK3Ur4YufISDjL6yegeT0foSiLjdgN3njnbuW0o2zCEidTcyiR6iM74xvm8HuuDwhxDFIokgIIZoZm11z33frKKqs4x+j21FeYyFv+3LiFz2J1ScSj9ZHT/zEBTsSRSl1QXQ1emIr2O22b/SqJBUdlIBHt4nYFj6Daf0kdKcRh/1CvJ/VZuf+KetYsjufP1tNplVxDmnnTCEmLvmECmHHh/jwxLiO1Jzdjp25l/Hj1s1Eb/+SIcW/crbHQtiC48Opru+dp3ilTefukW1ICvPlsZ82cqf9dj6r+Rclsx6leMxbBHqb8fM0HfX9PRk1Fhtbs0q5eUiyY0PuFuwRnWm+qRcI9PGgLH4Y3dPm8MYfW3nyvK7uDumovH+4klaWWrKu+oOY6JgD2//eU8gd36xBAR9d05s4vY/wn27FN2clFa0GkT30ZcITOhLk43HUts/v3op35+1iYeB5XGSdStWa7/AZckcTXJUQrlFYUUteeS0dox2Fj6sXf4DfzmmQ2AcGNe/ZgqeDZSkFPPrjRvaVVHN2x0haBXkT5G3GqCDKto8uXbrTKtj/oPtzcWUdpRt/JXH+/QDk9HmU4i7XExISRns/R23BitAReCQP5uN5V/Lg5omw6B1JFAnRDEmiSAghmplX/tjOwp35vDSxK8lhvhSv/pGk+f/A6h1O2SWTCTWaj3pubLA3ABnFtdiCEtGFe5oq7MMYStKwtx9PQEAQxW0vJHDHD5QVFxAYEn7YsVprnpy2mdlbcvmi/Urapc0nu/9ThHcZhYfp5MrpeZmNdIsNolP0IIoG9CG96Fk8stdgsFZjsNWibLUou4XoAZef6qU2qXFdo+kaE8i93/nxQfb53LN9CvaaCgrbXkhm3HD8/f0I8fXApwHL/I5n875SLDZNr/ggsFkwFu7E3nb0qV9EI4vuNRZT+jRWLF/Ais6t6J8c6u6QDlddjKloFyYg4Nc7KLz8e0IDfPhhVQZPTt9EfIgPL0/sQuzWT4lc+yba6EnmsNexd7uKxGDvoy5X269NhB+dogP4MlUxLrwrxnVfwuDbwYWJRCEai9aaO79Zy5asUlY/dTYe1jK8V/8XAHvhbimy2oiq6qy88vt2vlqeRlKYLz/eMZDeCSEUV9ZRmLaFqEWP45fzNzVbW5Pf425y219EeKAf1bV1GBe/SuK6d6gO7Uzm2R8R2Kot7fw8HU9tdQr0MRPoY2ZUtyQmbRjNvekzqM3ZgWdUezdetRDiUJIoEkKIZuSnNZl8vGgP1w1M4JyOEdQseJP4VS9RFdGLrLGfkxCXcMzzvcxGIvw9SS+qQgcnoYrclCiqrcBQXYgOdsRr73U9hq2TsKyfAqPuPezwV2fv4PvVGTzQz5fhWz+mLH40nkPvw9fz1G9TJqOBiAAvwv1jqYiKwmbXWO0au12jlMLg73nKfTS1uBAfpt4xkNd/8+fzFbVclLqQxNRfsZn9KEs4m9zWF2FLHkm4vzcB3ic/y2jN/kLWCcFYcndgtlswRjXfGTr7mdo4ljiO89nOwz9u4I/7h7nka8mlsjcAUNr6AgJTZpA/9//4JOx2XvxtG4PbhPL4WYnELXmQoJQZlCaOJW/Yv4hslUCA19ETxYc6v0crXv59O/mjryZ2yePY0ldgTBjQWFckhMv8timHlalFAPy1PY/h2Z/jV1eG3ScMXZji5uhOXyn5Fdz85SrSiqq4aXASj4xpj4fJwN7cInxWvEvy+g/QJi9ye95PQNqfxC18kLo1b5Hf7TYC0ufin7mQoraXUn7WyySFhxy2LLa+uGBvHrGO4W7zLCxL38fzYqmjJkRzIgl5IYRoJtalF/PEtE0MTA7lwdFtULMeIHrVS5QkTSD3oh9IjE847iwCcCQRMoqqUGGtMZakgt3e+MEfqsTxxDNjSCIA/om9qQ7tgu/myVTVHvyUk48XpfDfBSlc1S+e66u+BG2n+qwXCfFzbQJHKYW/l5kgHw/C/DydyaOWlyTaz2w08MR53Ui65j2uDviaa+se5w89AJ+0eSTNvo7Yb0dSsfRjdmbmUVRZd1J9rE0vJj7EhzA/T8q2zXNsjOzswqtoJH4RWMI6cWnIbjKLq3nxt23ujugw1sy1ABgmvE5hx2sI3/ghG2d/zvB24Tw9Mpzk368iKGUG2X0fp+KCz0lObH1CSSKA87q3AuBXPQi70RPrpmkuv47TndaaValFPPbjRjZklLg7nDNCjcXGv3/bRocof8L9PZmzdgfeaz6kKmkMOnkUSKKoUWzeV8plHy6notbKd7cO4JnzOuHtYSR/2zKivz2byLVvUZY0lj1XLMB41pPsu3wOqed8jtU7jJhlT+ObtZzMIS9hnfAeCVFhx0wSAcQG+1BAIBtDx+Kz9XssZXlNdKVCiIaQRJEQQjQDuWU13D5pDZEBnrxzZQ8s818lZPu35HW7k8rzPyaxAT907RcX7E1mcTXG0NYoWw2UZzVy9EdQ7EgUEZwEgIfJQFXXa/Au2kbOtmVU1joKYk5bl8m/f9vO+G7R3N++hKDd0yjpdisR8TIFvaFGdojg13+M5LyJ1/C84U66lL/PByGPYzN5E7P0n7T+pj/WOc9TWlp6Qu1qrVmbXkLvhGBKc9MI+vs1amMHQ0THRroS17InDSekYC23Doji2xXpzNqYRV5ZDaVVzeNxzHrfOqyBCfgHR5DR/xnW6va8av6YpxK2kTztArwLN5M++kN8Rj1MTLDPQUs3GiomyJs+CcH8vLkES9xgDLtmg9aNcDWnH4vNzoz1+7jgg6Vc+uFyvl+dwcNTN2C12amstbI3u4DSogJ3h3la+mzJXvaVVPPMhE6M7xpNcsokjHVlqJGPYwhrjbF8H1iq3R3maWXFnkKu/PhvvMxGfrh9IAOcy3WL9+0mbOZVGGzVpJ77NTXnf0zrxGTC/DxpE+lPWO8LyLn0F1LGT2XvxF8JHHIrEYHeDerTy2wkzM+TuUGXYLDVUrvso8a8RCHECZJEkRBCuJnWmsd+2kh5jZWPr+2NdetvhK9+g5I2F2E4+zlign1PaOlQXIgP2aXV2IKdBYjd8NdXXZzq+CT4f0vlTD0ux27yJmjrt+wtqOTPrTk8+uNGBiaH8tKFXfBf+DQW73DMIx5yaUHmM4HBoLisTxwLHxnJfWd34vWsblxm/zebzplCZVQ/wte/D9Nup7q24UmSzOJq8str6R4TgGHWgyi7hdqxb7WYGjemtmeh7HVcEpZJXIgPT8/YQkpeJRnFVZTXuD9ZZMhehz26B5W1Vh6fvoMH1UMo7yDaLr4PZash9byphPS9lEDvE5tFdKgLerRiZ24F+dEjMZfuRRfsdNEVnH601mzJKuX12TsY9up87p+ynooaKy9c2IV3rujBrrwKPpizmdIF7xP79QB8Px/qnhmbp7G8shr+M38353SKZFCbMCa08+EGw2/sDRuJd3wvVGgbx4FFe90b6Gnkr+25XPf5SiICPJl6x0CSw/0AqKqqxHP6zSi7jZwLphDVewJRgV4HFa/28zSRHOFPdPdRxHXoi/8JznqMDfZmQ00UlYln47X+c+y1lS69NiHEyZNEkRBCuNmvG7NZsCOfh8e0J7hqL5Fz76UqrBt6wjuE+XudcHtxIT7YNeSYHMtO3FHPwVa0F7vZB3z+V0Q4IDCY0nYXE7JzCp4LXuDBKWtJCPXlw2t7U7Pue3zy1lE66J/4BzbfR683d15mI/ee1ZYPru7FrrxKHvzbh5RRH5Ez4GkCU3+n8s8Xsdga9ovt2nRHfaLelQvwT59LUf9HCIhpOTO9jImD0AYP4ta+yvvJKwitTuWjRbvRGtKLqqix2NwXXFURxrIMVKuePPjDenbmlvN/V44kb/yXFLe5iNSLfiG60xD8XFBXaVzXaIwGxS813QCwbP3tlNs8ndjtmvUZJbz8+3ZGvL6A8e8u4b8LU2gT4cdn1/dh7oPDuaBHK7pFefNY6FIuX34hrZY/izZ5YarIgpwN7r6E08rrf+6gzmbnn+McMxfb7Z1EgKriC9NljgNCWzv+LZLlZ6eqzmrn08V7uO3rNbSL9OeH2wfSKsgxG8hm19T+9k988tdTOPot4tt2w8t89Odd+niYTurBE7HB3mQWV6EG3YuppoiqVd+c9PUIIVyrmVV2FEKIM0tplYX/+2UL3WIDuaC9L/6TLsJu9KL8wi+IDAo8qTbjgn0ASK0LJsboia0wpem/2RenYQ9MwFBv9olSitqz/s2+Wittd33Cp4YVWEZ9QnlZKZFL/0VVWDf8+l/b1JGelsZ1jSbI28xtk9Zw73fr+OTam/Eq2kbYmrfIDm1P1MArjjtra116CdEelXRY9y+qwrvjP+LwIuTNmocv5SP+D8/VH9J980vM8YCstBAKfz8Hfc4LpBYqWof7Najul8tlrQNgRm4Es7fk8tT4jgxvH0GtNZSMiK7Eh/jgaTr6L2UnItTPk8Ftwvh2RwU3h3WGnbNh+AMuabulKq6sY9GufBbsyGfRznwKK+swGRSD2oRx5/DWnN0pkgBvM8WVdezZsxP/bd8Ts/077qzMYrVux/ex/+SK8ecQ+XFXLDvnYW7V092XdFrYvK+UqWsyuXVoMolhvtSUF+G77hM2BQzlu4wgHqqyEBjiTBRJnaKTZrdrftmYxet/7iCjqJrh7cJ5/6qeB80GKvr7W8I3f0lRt9sI7XtJo8USG+zD7C05eLU+l5qI7nis+g8MugUMrvn+J4Q4eZIoEkIIN3rp920UV1n48vpeeM68GY/yDLIvmkp0TOuTbjMuxPEXwYySGmxBie55QkxJOjro8Ce02Y1mrsq+gqH2QP7P9AW2uRdTGdUPc1UOJRM+Jtzj1JbZiP8Z1CaMKbcN4PrPV3LN56t4Y+Kz9CvZQ+S8f5AbkkxUh/5HPTclv4I/Nufwkve3mGpLKb/sJ0I8Wl7hb2P/29iZfDXmsjR8MhaRtuoXhu6bQt5CC7kj3yStsIrkMN+DllI0BWvmWkzA82vMXNI7lpuHOGp5eZqMtInwd3l/53dvxcNTN7AvcTiJ2z6CqiLwOfNm7tVYbLw+ewefL92LXUOIrwcDk0PpFR9Mj/hA/Eyg6yoo2LeH8oIthOz4jvCMv1DaTkWrwWQNfYUpafH8vH4fYwxBhIR3Qe+eByMedveltXh2u+b5X7YS4uPBPaPaYLdrqua9QkhdGYx5HMvUUmZvyeGyvnGOJ58VpCCphBNjt2sW7szntdk72JpdRsfoAL68sQvD24Uf+MOB1WanMG0TYX89TGVkb7zHvnBS9dEaKjbYG4tNk1dRh/+Ae/CaeSvs+B06Tmi0PoUQDSOJIiGEcJO/9xQyZVUGtw9LpnX6VLwz5pMz9CUiu4w8pRo90YHemAyKjKIqdEgyqqlrOWiNoSQVW9JwPlm0hw2ZJWQUVZFWVEVJlQWTQdHxgrvZ6zGB+Lm3E7z7Z0qTzyO4/dCmjfMM0CUmkB/vHMTNX67i5m82cn//57mz8hZCfrmBdJ/fiY6JP2xGzbxtudw/ZT3D1TpGMp+iPg8QktwyZ0z4epqID/Uhy5hIaUACRREX8fZPT/GPPT9hC21LQfe7yCyuJj7Up0njKti5gmodRbc2Cfz7oq6NXpPr3C5RvPHnDl7YGcfn2oZlx5+Ye17RqH02F+WlRWQVV5JZ7cG/f9tGSn4ll/aJZUynKGJNJQTtmErw6p8wz8/EYD/46YAW73Dyu91Jaccr8ItuS4yfJ091szJ3Rx7P/7KVL1uPwrzyv1BbDp6uT/CdSV6ZvZ2VqUW8enE3ArzMFKz/jdD1H1He6Sq69BpM/LwF/LIxy5EoCmkNhbvcHXKLsa+kmh9XZzJ1TQaZxdXEhXjzzhU9OK9bqwNJcrtdU1BZS2n6ZuLm3I42eVN30RcEe5/48vcTERvs+MNWZnEVvbtfhH3WPRjSl0uiSIhmQBJFQgjhBjUWG/+ctom4EG/uH90W40c3URXenaBht5/yX++MBkWrIG/Si6pQIckY98x3FFw1NNESm8oCDNZq/szx4sXF24gP8SEh1IfxXaOJD/FhQHIoHaMDyCoJY/eFswjd+iXG/rc2+Klu4sQkhfky894hPDN9M2/9vY/0qCd4tfxRIqZdSvqINwlu058QXw/sds3783fz1pwd3BG0kodsn1Hj2wafsx519yWckkBvM36eJrJKqkkO92Na0h3MSstm3KpXqAtsTWniGEqrLadcNLqhNu8rJXTfWlI9OvPfa3qdVF2PE+XnaeLLG/tx6Yd1FKkgPLbMOjMSRVrj+fU42hduw6hjuFe1I6LHYGIiSwn++3n8988Wih5EaeK52E2+2M0+2M2+WHwiIXkEIf6+tPE2HUjmBfl48ODZ7XhmxhY2tO5FX7sF+94lGDqMdfPFtlxTVqbz0cI9XDMgnkv7xFKWm0bQH3dTG9wO4/hXUEoxoVs0Hy3aQ2FFLUEhyZDyl7vDblZqLDa+Xp7KvuKDnwa3p6CSJbsL0BqGtAnjkTHtGdsl+sD3Ha01RZV1FOWkE7L6TdrsmILd5EPhhC+IiDp8VrCrxTqXymcWV9MnMQS7byT2ijwpoitEMyCJIiGEcIP/LEhhT34lX93UD4/8LZgKt2I7+9VjFos8EXEh3mQUV2Ns2wZlq4GyfRAU55K2j8v5xLOpKUZuHJzIs+d1PuJhiWG+lPjEUhD4KK3DfZsmtjOUn6eJNy/vwaA2YTw9fTMVxod5rfy/JE07n78jr2R5/G1szqtjw44UpgZPok/1Uiqi+lNz3geEeTftbJvGYDQo4kJ8CPKxcP2QRO5JuYNO/kUkLLiPlPN+JtvUBX9PU6MvQcsoquLBL+bypyrEe8DIE35C0KloH+XPR9f2Y95XPRibMo+amhq8vBp3toC7Ve5dhW/hNn619SfaB8azAfP2+bB9/2yhOyjtcAV+rdrhZTJiUAplAKNSeJgMR61fdVW/eL75O42n1tbxu8kL6655eEii6KQs3V3AU9M3M7RtGM+d1xmLxYJx2s0oaw2VF3xGqG8AABO6teI/C1L4fXMOV4e1QW38DmorwNPPzVfgfkt3F/DktE2kFlYR6G3+34MptSNRft+oNlzSO464kIO/l1fWWsnOy8d/7X9pveljlM1CYafrKev3DxLjGj9JBAfPKAJQfuHoitwm6VsIcWySKBJCiCZWWFHLRwtTOL97K4a3C6d65qsYDB549bzUZX3EBfswZ2su6sATYvY0WaJo05aNdAVikzvx1PhOxzw2yMeDIB+PJolLwCW9Y+kRF8S93/kwJDuBx03fclXuZKKz51JtP4f3/GbhU1tBdr8nsfa7k9jQ0+uXMH8vMwOTwxjZJZ4rNt3HgqAXSPjzJlIumEmetwdRgY2XOCmvsXDDFytpb3UsmQlqffQaUY1lYOtQ/h4wEb+VC3h70mTuu/mmJq/P1FRKqupY9MP7jNEmCke8Rq/ebUmrtWEv2oOpIgfi+hES4Esbb/MJL/0zGQ1c3T+BZ2duobLNALz3yOyWk7E7r5w7vllDcrgvH1zdC6NBUT7r/wjOWUX+Oe8Tntj1wLEdo/1pHe7LLxuyuGZIG8fGoj0Q3c1N0btfcWUd/5q1jZ/WZpIQ6sPkW/ozuE0Y4Hhq2b49WzGkLqKqbWs8TQYsNjtmo+PfnJIq2DCFhFUvY67OpyRpAvn9HiU4rgNJvh6Nvhx2Py+zkXB/TzKKnDOh/CJQxWlN0rcQ4tgkUSSEEE1s8op0aq127jurDVjr8Nj6I3Wtx+DlwuKycSE+FFbWUeWThA9AaYbL2j6WTZmlzF22kq4GeOyKsxu1CKY4OW0i/PjtvqGU11gorBzPtp1/kbTsnzxVMYnqgI6kjppCaOteTbYUq6l5mY08dE47xm7L5QW/p/lX8cPELH6M9DFfEORjdtmsvkPN2ZpLSn4lH/epRG9WKDf9gjvgrIuxrnoIv7Q5PDm9L8+e17nRrtld8spruOHT5XxdPZ+86JFcf1b3A/vs4d2w2rue8pK/fkmO79e7AvrTK3MBFKdBcNPMwjgdFFbUctOXq/E0Gfjs+r4EeJkpXPcLoWvfp6Tj1YQMuOag4x3Lz1rx7l+7KBwdRyhAUcoZmSiqqrMyZWUG78/fTVm1hbtGtOa+s9oe+H9ca7WRt+kvWv1xC6baEuzLn6Ok9YWkdb4OU0wP7JmriVr6LD7566gK70H6OZ/ik9yfZH8vt9yzY4O9ySzZP6MoAp25usljEEIcThJFQgjRhGqtNr5ensaI9uG0ifCnbvMveNQUYet5lUv72T/FPMMWTDsUuji90df8Z5VUc9NXq3janI/VIwwfv8BG7lGcLKUUAd4eBHh7UBs0jqzEAai9CzC0HU18aOBpXy8qKcyPa/on8OkSO5f3upfuW18lYM+vZHleSHJ448yiWpdegp+nibjqndhC2mByV/FjTz9sCUO4MGsTfVamsyylkBcv7MqQtmHHPbW8xoLFpgnxbb6zADOKqrjmsxW0K19BmKEM69DrDtpvMCg8XPDLcPtIfwK9zfxV15legHXXX5j63XjK7Z4JiivruOazleSW1fDdbQOIC/GhKG0LgX/cQ3VIJ7zOe/WICYuxXaN4Z94uFub7MRHQBbs5k/4UUVpl4evlqXy+dC/FVRb6J4Xw3Pmd6RgdcOCYqjorxcu+JmbRo9T5J5Ax4h0CU/8gKGU6ITunUBPUBq+S3Vi8w8kY9ga62xXEBnnjaXJfsjg22IeNmSUAKL9IqC4Euw0Mp1cCW4iW5vT+SVAIIZqZmeuzKKio5ZYhyQDY13+L1Tscj/Znu7SfOOe6/4xSK3a/SOwljT+j6KtlqZRU1TEiohqCExu9P+EaniYjSa3Ciew7kfiI4NM+SbTf/aPbEuht5rncIVSHdiF6+XNUlxVRUlV3/JNPwtr0YrrHBWLMWY89ukej9NFQqv04wuoymXZpOAq45rMVPPD9egrKa494fGWtlZScQsoWfYjph6uxluc3bcANlFtWw6UfLqekysILSVuxeQZiaj+mUfoyGBR9E0P4Ncsfq18r7LvnNko/p5viyjqu+nQFKfkVfHxdH3rFB1Oam4bf1EvRyoTl4i/x8jlysjY5zA+lILVcYfOLwl6Y0sTRu0d6YRUvztrK4Ff+4o05O+kVH8xPdw7k+9sHHkgS2e2agvIaKn5/npgFD1AV1ZfCK34htt/5WMe/ze5rV5E14BnsHgHkd7uD9KsXEzL4BuLD/NyaJALHjKKskmpsdu1YeqbtUFng1piEEDKjSIgWq7rOxvT1+7iwRwzeHvJXl5ZAa81nS/bSIcqfwW1CobIQzz1zqOl5Myaja5f5HJhRVFyFDoiF0kyXtn8kKfkVtA73w7cqEx3Tt9H7E651pn0f8fdyFHl9YdY25o14ivErriJq1StkD38Jfy+zS5dgVNVZ2Z5TzsMDAzFm5kBML5e1fTI8Oo6F2Y8QlbuANy69je9XZ/DT2kxmb8kh1NfDWQxXoRQMSQzgzqC/iVv/Ph6VWQBULHgTv/Necus1HMmk5Wnkldcw647eREyag6XTxRhNno3W34DkEOZuy6WyxzD89v4ONisY5UfroymqrONqZ5Lok+v6MLxdOBUl+XhOuQRjbSnFl04jLKb9Uc/3MBmICvBiX3E1OjgZTuNEkd2uWbgzn6+Xp7JgZz4GpRjfNZo7R7Q+aAbR/sfal2VsJ3zFvwlMm01RuyuwjXuDmCBHwi0iwItw/1jKIu4jr88dBHqbad2MZgXGBntjsWnyymuI9g13bKzMA/9I9wYmxBlO7mZCtEA5pTXc+vVqNu0rxWKzc93ARHeHJBpgWUoh23PKefWSbiilqF3/PZ52Cx59rjn+ySco1NcDb7PRUSAyMBaVs9HlfRxqT0ElHSN8MOzZh+5ySaP3J8SpumZgAp8t2cv7283073Qj4Vs+o6TtRAr9BhPh77rC1psyS7HZNYN8HDP7jLHuTRQRFEddWGciV79OxLr36KmtvORlRdvtlNUGUWIMpdgYSoEOoPPmNcSqAiojerNv2KuE7P4Z//WfYxl2H+bAaPdeRz02u+bHNZkMbxdO2+KFGKxVmHpe0ah97q9TtMOvL/1qp6Cz1qLi+jVqny3VkZJENVXlGL67HI/SVAov/Jbwdsd/72KCvMksrkJFtkbt+L0JIj82u127tCB8SVUdP6zO4Ju/00kvqiLc35P7RrXlqv7xRAb873uSxWanuLKO8rT1hK59j9Z7Z6GNnmT3fxLfEf8gxPvgRJBSikBvc7OsPRcb7PjDVmZxNdF+EY6NFXlujEgIAS5KFCmlzgXeAYzAp1rrl49wzAjgbcAMFGith7uibyHONBszS7jlq9VU1lrx9zSxLr2E6wa6OyrREJ8u3kOYnwfnd28FgNrwHXXhXfCI7nqcM0+cUoq4EG/Si6pQUXEYdv4OdjsYGmdZkdVmJ72wistb21HahgpNapR+hHAlT5ORO0e05ukZW5jX+1Ympv1BzJLHSY36nXA/T5c9+WdtegkAyXU70cqAinL9//kTZRn9AuUbpqMNpgMfAKbqQsKrcomuysNctZNUr0iuL7+ZPu0u4bberSGxA+rDGdTOfwPzha+7+Sr+Z9HOfHLKanju/E7Y1rwM/jGYEgY1ap+dogPw8zQxp6YDfVFYds7DQxJFh6mfJPr0uj4MaxdOZVU1esp1+OaupWDsx4R3a9jy69hgb1alFmPo3Ba1fhJUl4B3UKPGfywl1RaX1OzavK+Ur5enMmN9FrVWO/0SQ3hkTHvGdI46UHhda01ZjZXiihr0ngWEbv6CiIx52Mx+5He/k/IetxETG9/iitPHOpfKZxZX0TfeOYuosnkubxXiTHLKiSKllBH4ADgbyARWKaVmaq231jsmCPgPcK7WOl0pFXGq/QpxJpq1MZuHpq4n1NeTn+4axJt/7mR9RsmB/ZW1VrzMRnnSVDO0O6+c+TvyeWB0O7zMRuw5W/DI20jN6H83Wp9xwT5kFldh7BAPtlqoKgC/xvn2m1lcjdWu6eBV6NgQJE//ES3DpX3ieO+v3Xy3oZABg14g8c+bCFr3EWUhj7rsr+/r0otJCvPFK38jttB2mDx8XdLuqfBuN4qC8AEo5xIzx4ei1q6x2jU254eHSWH4ZStvzdtF26gAzu3SloqOl+Gz6Wssw+/HHBzn7ksB4PtVGYT6ejAqzoD5pwXU9b8HUyMlxvczGQ30TghmYUY1j0Z2h5R5cNYTjdpnS1NUWcdVn/zN3oLKA0miovwczDNuxz9zAQUjXiGs36UNbi822IdfNmZjD07GCI4nn8X0brT4j6lgF3Vbl8CwEy9ibrHZWZtWzIKd+czfnsf2nHK8zUYm9orluoEJBy0v01pTUFFHSXYKAdu+p9WuqXhU7MPqGUxu74eo7H4joWFRRPg0v9lCDRET5KypWFQNHZ2JIplRJITbuWJGUT9gt9Z6D4BSagpwAbC13jFXAT9rrdMBtNbyv1+IE1BjsfHW3J18tHAPvROC+eja3oT5edIzPpg/t+ZSXFmH2aiomv08HgF+GEc+5u6QxSE+X5qKh8nA1QPiAahZ/Q3eBhNePS9vtD7jQnz4e08hOjDG8WSY0oxGSxTtLagEIMHo/CugFLMWLYSX2cjtw1vzwq9b+btfX4ITxxKx7h0yulxOYGKbU25fa83a9BKGtQnFkL4ee+vRLoj61BkMioTQhiWs/nN1b6769G/um7KOybf0p9uox2D7j9TOfw3zxHcbOdLjK6ioZe62XG4cnIja8jNK2/Bo5GVn+/VLCuG12TuoGjqCgNXvuX2GS3NSP0n0yXV9GNo2jNydKwn+5SZMlTnkjXiVsGG3ndDMvdhgb2x2Tb5nLFEAhXvcliiyr/yYqJUfU9NxFF7hDfvjSHZpNS/O2sbCHfmU11oxGRS9E4J59rxOTOwVe1hyuqzGQtHejYQs/zdt0ucBUBEzhJy+T2BtN5aw4EAivVpmgmg/L7ORCH9PMourwNMfbfJCVeS6Oywhzniu+FNLDFD/cTqZzm31tQOClVILlFJrlFLXcRRKqduUUquVUqvz82XaoRB/7ylk7DuL+WjhHq7sF8+3t/YnzM9RnLNHXBAAy3bnUTf9fiLWvYth43dujFYcSVFlHT+tyWRizxjC/Dyx11bhseUHapNGg+/xH0l9suJCfKiss1HmEeXY0IgFrfc4E0Xhlhy0MkLAobcBIZqvq/rFE+bnwbR1+8ju90+U3YrvyveosdhOue3M4moKKmoZHFmHsSofQ0xPF0TctLw9jHx2fV9ig7y5+ctV/F3kR1XnK/HZ/C11BanuDo9pa/dhtWsu7xuH3vg9lrDOqMhOTdL3gGRHnaLtPn1Q2obeu6hJ+nWn0mrLcY85aCbR9X0Y1DqU3CVfE/79BJTNQt7F0wkddtsJ1/eJcS5TStORaBT2wt0ndQ2uoMsdyYy6TT816Pi16cWc//5S5m/PY3y3aD68phfrnjmbKbcN4Kr+8XiZDdRabdRZ7VTX2UjLSMcy40ESfjgb35yV5PW8j91XLaPisqlEDLqK5OgwAlp4kmi/2GBvMourQSm0Tzh2mVEkhNu5YkbRkb7D6yP00xs4C/AGliul/tZa7zzsRK0/Bj4G6NOnz6HtCHHGKK228PLv2/luZTrxIT5MvqU/g9scnFToFhuIUdmJWPAoIcWzsPhEYirPBq3BRbU1xKn7Yuleaq12bhriqNtTteIL/KoLsA28u1H7jXP+QJ1hDyMQ0CXpR/yG7Qp78isI9DbjWZ6BPSAGozz5R7Qg3h5GbhmazMu/b2fXgHgi2l1KyPZvyc2+h+j4tqfU9tr0YgD6eKQCYHTzE89OVoivB1/d1I+bv1rF9Z+v5KEBl3C3moJl/it4XPpft8Wlteb71Rn0ig8iWeVgyFlH3aj/a7L+u8YE4WU28GdZDH2NXthSl2PudH6T9d/kbFZqtv5BbZtRRAQeeUZa8SFJoqFtwymb+QRRa/9DZfQAqi/4lKiok1uyuL/wcUaZnT7+MeiCFJf81fukOJMZ5m3TYdSDxzz057WZPP7zJqICvJh8S3/aRfoDUGu1kb5jPYbs9WiDEZQBrQx4lu4lduOHGCyVFHW8hrIBDxMSHk2El8lltdOak9hgnwOlFLRfhCw9E6IZcMVP8plA/e/2sUDWEY4p0FpXApVKqUVAd+CwRJEQZzqtNTM3ZPHirG0UVNRy+7Bk/jG63REfXW2xWPjA9zP6Fs8nr9f9BIVEoOY+CdXF4BPihujFoYoq6/h8yV7Gd42mXaQ/9rpqPP9+h+pWA/BuM6xR+44LcfxAnVppopPZF12SSWOVuNxbUElSmC+UpKGDEhupFyEazzUDEvhwYQo/rd1Hu4H3EbTrJzyXvYUt9oNTqvu2Lr0Eb7ORqPItaIO5WRSyPllxIT7MuHsIz/+6lTf+Tic+cAznbf2enNR7CYvrgMnY9L+yr00vYXdeBa9c3JW6vz/A02DCo0fjLek9lIfJQK/4YP5OK8cW3QMyVjRZ326RMo/IX64hr9c/qDr3aXw8Dv5VQmvNEz9vYk9+JZ/d4EgS1eyYS8Da/1Dc8Wo8znuDMB/vk+6+VZDjyV/7iqvRIcmOGkXuUpGHRuGdv4Hq3N14Rx6+VNVm17w2ewcfLkxhQHII/7m694Hi10Xl1dQtepu4NW9gsB8+S6ssbhRFg54iOLEbSc3waWWuFBvszW+bsrHZNcovAl2S7u6QhDjjueKOvgpoq5RKUkp5AFcAMw85ZgYwVCllUkr5AP2BbS7oW4jTyrbsMi7/+G/un7KeqEAvZtw9hCfGdTwsSWS12cnILYRpt3OudT7v6cvwPecZPIJjHQeU7XND9OJIPlqYQrXFxgNnO2YlVK38CnNVLnrYo43e9/5EUUZxDfaAWHRJxnHOOHl7CypJDvPFUJoGwVLIWrQ8fp4mbh6cxIId+eQaIihufwXBO76nJOvUlrasyyihW2wghn1rsEZ0AbPX8U9qxrw9jLw0sSvvXdmTN2vOo9ZuxPTd5ayb9x15pdVo3bSTwX9YlYGPh5HxHQIwb5pMbdsJEBDdpDH0Swpha3YZddF9MOVuBEt1k/bfpIr2ABC+7l0KNs3DZj94vGesz+KPLTk8eE47hrYNB5sF9ccT1AUk4Hfh6/ieQpIIHE8q3F/PRoW1wVCU4phF7QaqMg9b2zEAWDb+fNh+rTWP/LiBDxemcHX/eCbd3J8QXw+sNjuZe3fgMfkCola9THnC2ey+ZA67LvuLXRfPYdfFf7L7ikVYLp9CQodezfKR9q4WG+yD1a7JLatB+UWgZEaREG53yokirbUVuAeYjSP584PWeotS6g6l1B3OY7YBfwAbgZXAp1rrzafatxCni9JqC8/N3MKE95awK7eclyd2Zfpdg+kaG3jYsSVVdWRsmE/Et6MJSpnBkoR7eKP2QrLLav5XF6Ysu4mvQBxJXnkNXy1P5YIeMbSJ8MduqXXMJorqg0/7UY3ev5+niWAfMxnFVRAY22g1iqrqrGSX1tAuWGGoKsAghaxFC3X94ET8vUxMXpFGaZ970QYjxiWvnXR7NRYbW7NK6RUXgDFnnfueztQIzuveikn3nccrQc9QVl1H32V3kfrWaP792fdMWZVOWkEl2aXVZBZXkVFURXFlHXb70X+ht9rsJxxDZa2VXzdmMaFbNOZN32OsK8c06M5TuayT0i8pBK1ht2cXlN0C+9Y2eQxNxV6Uit3kTV1AItHz7iUr639/gMgtq+GZGZvpFR/ErUOTAahc+hGexTuxnf0vzJ4+Lolhfz0bQ2hrDLWlUFXkknZPiKUaQ105pri+VEf0xGPHjMMO+WjRHn5eu49/jG7Lixd1xWw0UGe1k7d0EtHfnoV34Rb2jXgLddlXtOnSj7adetO2az/adu1Pmw7dCfXzPC2XmR1JrHOpfGZxtSNRVF0I9lOvESeEOHkuKSKhtf4N+O2QbR8e8vo14OR/2hLiNKS15o/NOTw7cwsFFbVc3T+Bh85pR5CPx2HH1lntZOcV4Lv03yRu+RKLXwxp4yYTFDMUdixhfUYJbdq0chwsM4qahf/MT8Fi09x/lmM2UeWqSfhXZFE37u0mqyEVF+JDRlEVhMVhyF7fKH2kFlQB0NHbUYvFEJLYKP0I0dgCvMzcNDiJd+bt4vweMQR0uIrQrV9TnvUQ/q3an3B7W7JKsdg0Q4IKMVgqIa5PI0TtPvGhPjx9/z1sSLuMvxZ/TN/Uj+mTcQcL0rqzSxlp5WUh3FyDv6GWmogepHW8Eo/Wwwn188TTZKCi1kp5jZWa3N147FtOaK8L8Q5q+JMZZ23MprLOxuV9YjDM+Ji6iO54xPdvxCs+sl7xwZiNivlVSXQHrGnLMSUObvI4moK9JA0VlEjOyLeJ+/l8AmffT8Fl3xHq58ljP22kzmbnjct6YDQobOX5eC15leq4YXh3Oc9lMeyvZ6NCnUu9ilLAN9Rl7TfI/hkvfhFYOl5IwMJnqcregU+04/vE/O15vPLHdiZ0iz7wM0CdxUbZH8/Tas3bVEb2oXjM+0QltHfLks3mZn+iKKOoin5+kShth6rCRntSqxDi+KTaqBBuklNaw9MzNjNnay6dWwXw2fV9jziDSGtNfkUtlVvnELPkCTzKMyjodAOVQ56kVWQYxv9n777D46iuBg7/7mzvq96be2+4gQsdbGrovRNCAoF8CQQSkpAQkpAOhBA6BAi9F9O7Dbhh4y4XSVbv0kpaabVtvj9WNjbuWNKqnPd5/EianXLGY2t2z5x7rlK4LEZWlDZx5qTR6EpDtXy7TZjobZXNHTy1uJQzp2STn+xADwexfHEngdRJOEYf12tx5CTYWVvpQxuWg9bRAMF2MHfPU91tirtmPCswdM1UKRVFoh/70ZFDeWdtNbe+upYnzvkRiRueRv/4z0TOffiAexV9tbUZgHH6JgC07GndHW7cGTTFlII0Atm/pLb2Ctq/vItpWxbgC5uoCVr4usNBWHmZ1foeBVteZSsZ3K+Opsoxih9klpBR+zHW5tjwPn/Ra0QvexXNsO9uao3+IPd8tJlhqU7Gd67A1LSZ4Cn3xWUiB6vJwMRsL5+UR7g2cTh66cDtU6Say8CbS9qIaVTP+BWZn/+aqoX38ID9ND4urOO3J4+J9asDAu/ehj3UhuGEP3frddnezyZhWKzvXsMWyJnebfvfL/6u+50zDVPuEfDJrYRXvQgZv2RzbRvXPb2CMRlu/nrmRJRSdIbCtL1xC8lf30fTiHOInvRPst27bwY+GGXtUFFERkpsYVutJIqEiCNJFAkRB88sKeX2N9cTjkb5xfxRXDG7YLdPlPydYWrLt5Cw8HekFr9Jp7uAkpNfwDPqcPIc31QdTczxxmaLMBjRHanoLRXxmwVEAHDPR5vR0fnx0bEnnm1Ln8LVWob/+O59w7wv2Yk23l1XHRt6BrFqs+SDm8Xp24rr2wBIjcSmCpZEkejPLEYDd547iVP+tYi/f97CHWMvIWn1g5RtvIasEVMOKFm0oqyJ7AQb9rqVRC1etKShPRh5fFlNBnKzMvGf9Aca/beiFKQraKxo4fPN9bzd0sKElo+Z0/om1weehDYIFRqoS5oKMy/AEO0kbckd+D6+C8/Re59BqjMc4QdPLKO6JcDT359B9OPvE7alYJ5wei+d7a5mDEnk/k+KCE2ZhmXzWxCNgjbw7sTKV4qedyhWkwHrYT/AV7GItKV3sDQUZkLWLI4Zk0YoEiVauQr76ifomHwF9owx3RpDVoIt1s/GkEaG0tDrN/f+e562rvudIwVbci7t6dMwb3gF35wbuOrxZVhMGg9cPBWb2UBnKET7Kz8jae1/aRxzCbZT/47NMvD7Dh0Ii9FAmjvWe4rhXckhv/QpEiKeJFEkRC/73+Kt3PLyGmYNS+JPp00gN2nX6o72YJj6Zj+mZfeR+9WdKD1C9SE30DnjGrKSvJi+lVSanOvl3o+30BGMYHZlglQUxVVpQzvPLS3j/Bm5ZCfYaW3vwPzFPwgkj8cx9oRejSU30U4ootNoSiMZwFfW7Ymiono/6W4rhqYtRM0uNHsvDwEQopuNSndz4/Ej+cOC9bx3/DmcZX6W9NcvpPx7z5E9dNx+J4u+2trMtIJEqFhGJGMy2iDoN+KwGHFYvnl7meW1c+zYdABCkZk0+X9KccU6misK+fUKN+uq4MYJI/nBnALa6lbiWvRHWocejit/9/2cdF3n5y+sYmlJE/86bzJTHI2o4vcJHHYjRqOlV85xd6YXJPHvj7awxTqOcYGnoGETpBz4cMU+raMZrbNl+4QFiU4LJUf/nY7HjuIhw58ItKfjf+94yvOPI23F3USsXqzH/Krbw8hOiL1vqmiNkObOQW/YEodE0bahZ2kAhEd9D/fHt/Cb/75CWZOTp74/kySHmVqfH/OC/yOh8FkaJv4Ax4l/xGqWj1+7k51gj1UUOboSRdLQWoi4GniPOoTow95fV8OvX1nDkSNT+O9l03dKEum6jq89xOaqRhoW/ZfUp44iY8kf8WccSsk5H2E/9mbyUhN3SRIBTMrxEonqrK7woTxZkiiKszs/2IhBU1xz5DBaO4IE3rkNS8tWInNu7PVhETldb6i3hhNjC3pg5rPien9sqEHNWqIpo+My9EOI7nbF7AIOHZLE7R/VseboJ9DCHWS+fAblm77eZaan3anydVDdEmB6phlj/QZU9sDqT/RdmAwaqW4rBaOnMOGoc3n2uuM5fmw6f367kBteWE3l3L8QsSZifuUqQoG23e7jzvc38erKSm44bgQnT8yk84v70TUTlplX9PLZ7GxGQSI5iTZuXekCILr1y7jG0yOat8a+enOB2PuWe5c0cGz7H3h3xG/pTJ1EQuGzFCy4AHvVYjrn3ILmSOj2ML5pfNyOnjgU1bil24+xT9uGnjliw6TME05DR5FZ8RY/OWYELquR0g3LsT17Nt7CZ6k/5Ce4TvqTJIn2IjvBRnlz+zfDzSRRJERcSaJIiF6yorSJa5/+inFZHu45f8pOQ80iUZ0tZZW0f/wP8p44lJxPfgrKwNbjHiJw1lMUDB+D27rnMuVJOd7tx1DuTOlRFEdfFjXw0lcVXDorH7tJI/DWr0j5+l58o8/DMeGUXo9nYrYXi1HjtSIdXWlEeyhRNCTZjqFuHXrq2G7fvxDxoGmKv589EU1T3LbMQOkpz0E0QuYrZ1K+cQXtwTCBUIRgOEo4Et1lWvgVpc0AzLSVofQoxtxe7qHSxxk0hcNi5N4LpvCzY0fw0ooKjrt/DVe2XompeQuL/n0193y4iWeXlvLB+hpWlDbx4KdbuOuDTZw8IYNLDsun09+MedVTdI48BeXOiOv5WE0GHr5kGhuCKTQrN53Fn8c1nh7RXBr72pUoeuDTIp5bVs75c8cx/LirqJ7/EOsv/pqSYx+ibtatOA69vEfCyPJ2JYoaO1DeHFQcJvCIttYQtSaAMdYGoEb3siQ6mjMtSzkiC1I+/gXDXzoee/0qauf+Cc8Jt2I27bv31mCWnWCjqjlA2OhAN1pl6JkQcSZpbSF6QXG9nyv+u4xUl5VHLp22U1k+QNNXL1PwznUYQq20ZRxG+Zw/Yxh+LBleG2bjvvO5SU4LuYlds4DkZ6KCrdDZChZXT52S2I1AKMIvX1pNbqKdKw7Lp/PNm0hZ8wgNYy7GdPLf4lJp47GbOHF8Bi+trOHXrnRoLu/WJwRN/iDN7SHGO1vQgq2QMb4b9y5EfGV6bdz+vXFc/8xKblucwk+O+x9j37+IrFfOpPSoewm684ga7URNdixWK8PTvvmd+9XWJsxGjbyOdbEFWbsfSjXYKaX48dHDmT8+nZVlPjbWDOH1tYWc2voCn3/gxIcCVYlXq+BUVcexDg8JHcPofC2HcKePhFAbpsN+FO/TAGBEmou7z5vC0qeGM77wM6y6PrCmN9+eKMrj7TXV3PH2Bk6ckMFN80ahdQ3H1HUnoawzYre7HurRZDUZSHZaKG/qQEvJjk2lHuoAk61Hjrc7elvN9mqiaDQ2HHKsOpTfRB4m47k5aJEgDWMuoW3mT8nJyjngRviDUXaCPdZ7qi1Ihj0FvbVWKhqEiCNJFAnRw6p8HVz66BIA/nv5dJKdO/dQ8DdW4X3v/wi6c6mYcwfWvKlkuixYjAf25GlyrpfFRY0wISu2oKUKUiRR1Jvu+XAzRfV+Hr54Coa3byRp/RPUj7sc0wl/xm0z73sHPeS8Gbm8tKKChoRUknzdW1FU1DXj2WhDOQBa+rhu3b8Q8XbqpCya/EHueHsDF27VuHHqfZy34RqGLDhnp/WiRhv+s5/BMeIIQpEo766rYXKOF1WxnLAnH2NvT9/dzwxLdTEsNXbPCh/zbwIPFPLL+qcB6DAnUm/Np8o8khxrALO/Amf1YgyhNjqzZmLJ6TvD+o4encbnw2eRXnQ397+1mB+cMDPeIXWbSNNWlNnJ2gaNnzy7gonZXv5+1sTtSSKIJf7Mxp5PimQn2Kho7kAN2zZRQyX0ZrP4HWbk+t/irSwubuTMEy4i/PkrtKdOpmr6LTizR5PnsQ6sZGEP2jaksKyxnXRnyjcNw4UQcSGJIiF6iK7rPLu0jD8sWE8kqvO/K2dsnzJ2m2hUJ7LgJrRQOy0n3Etu3oT9qiDanUk5Xl5dWUmDIYkkiM1ulTLi4E9E7JcN1S3c98kWTp+SxfSNf8e1/gnqJlyNdf7vccUxSQQwNS+BYalONnR4mK2XdOu+i7sSRVmdRbEFqaO7df9C9AWXzirgyFGp3Pziam5d1MCHWX/jhnE1JJhCaOF2tFA7Sev/i/bxHTDiCJ5bVkZpYzu/O2Us2hvLieYeFu9T6FeMZiuBC16iqGQNJA3H5EzCajKQb9SIRHVaIlGCoQiR9ibSkxPjHe4uDj38BCi6m2UL3yErO5eTJmTGO6RuoTduJezM5orHl5HksPDgxVOxxmk4VXaCjTUVPnBvezhW0fuJoszJlDW286e3NjBneDJnzpnEphErCUZ0MjxWkpzxa67eH21rUl7e1ME0Zxo0lcY5IiEGN0kUCdEDyhrb+cVLq1m4uZ6ZQxK54/QJ5H8rSQTQtPI1kja/StP0G0gbOumgjjk5N9YwcnWLkyNAGlr3okhU56YXV+OxmbjlMDvOhx+mcdT52E64Hedeekv1FqUU503PZd3bbuaEKrt12ubi+jaMmsLVUkjYk4vR6u6W/QrR1+QlOXjq+zN4ZmkZf3hzPZc05/L092eSYDcR1aHV5iBx4W/xFX7G3R90ckheAkdkhFBtVSCNrA+YMyEVZ8JRe18padf7al+gMieja2ZO8G7l/55diUJx4oRYD6VIVO+3w5CUr5TicBIN/iBv/Hg2Ka74JUKyEmy8u7aGqGt4bHiSr3f7FGn+WnRXGr94aTUKuOOMCSilSHRasBg1XH3g3t/fZHqtaAq21LWhOVPRK5bFOyQhBjUZ+ilEN3t2aSnH/fNTVpY1c/v3xvHUlTN3myRqb23E9cFNBBJGYj/6hoM+7pgMN2ajxuKGruoVSRT1mse/KOHrsmZ+c/IYbMsfADRsx9zcJ5JE25w+OYsalYIWDXVrg8jiej+5iXYMtevQU8Z0236F6Iu2JV1f/OFhtHWG+es7G0hxWUj3WPHMvpKwJYG6t+6gpqWTG48fiapYDoAhZ1qcIxe9ymQlnD6R+e6tTMz28uOnv+K5ZWU0tXVStG45RTU+fB2heEd5YHQdmktZ5nNxysRMRmfE96FAdoKdYCRKndZVUdZS3nsHD/pRIT+rm80s3FzPL04Yvb3BdrLTIkmi78hiNDAtP5EP1tegnKmo9gaIRuIdlhCDliSKhOhGH6yv4aYXVzMlz8s7/zeXC2fm7TR2fxtd1wm+fSum9ho65t+FxXLwDRjNRo2xmW6WV3QQtSURlURRr6jydfDXdwo5YmQKJw2zYV39PzpGfg9bcl68Q9tJgsNMRt5wAAL1W7ttv0V1foYnmjA0bUalyYxnYnAYme7i5nmjeH99LU8vifX9MlhdtEy8gmHNCzk3t4WZQ5IIly1F10yQLk3eBxuVOwNL7Soev2QCs4Yl8+sXllH66KUMf+Fosp+YRftH/2BTSSn1bZ3xDnX/dDRhCLVRHE7m6sN7cYjXHmzrZ1PeBlFbIpHmXkwUdU3b/tLGENPzEzl/em7vHXuAmz8unY01bdTpHpQehfaGeIckxKAliSIhuklJvZ+fPLuSsZluHr5k2vanSwD1bZ2UNbZTVNfGxppWipe/h3ft4/gmXIF3ePc1uhyS7KSssR3dlYney2XYg9Wji0roDEe57ZRxdC55BC3cjnH2j+Md1m7NnDwRgJVrVnfL/qJRnZIGP9MctbHpvzPlw7AYPC49LJ/Zw5L5/RvrtvfqeobjadOtXG99AwC9fBmR1HFgssYzVBEHxrxDUdEg5tpV3Hp4Am+6/sTEhgV8mXQaQWcmGUv+yNAnpqG9fh1t1ZvjHe4+ddQXA5CYNYyR6fGfKCNnW6KoqQPdldW7Q8/8dQCUBV387tSxu30gKL6beeNiQzSX1Xd1R2nrvgpoIcSBkUSREN2gPRjm6ieXoynFfRceslNzx+bmRjo/fxDrR78l8a0fkvXS98h79wqCrhwsx/6mW2fDyPJaqWkJoLsyZOhZL/B3hnl6SSnzxqWT6zFiXv4AHTlzMWdPindouzVhTKzip7BwXbfsr7olQCAUZayhaya1NJnxTAwemqb421kTMRs1fvLsSupaO7l3cROfuU8mvWwBwZpCDNUrIUv6Ew1KOTMA8C+8n7yXTqRAL+OelN9ybsVZPDnqP2w6/R2ah52Gd/MrmJ+/MDa0qw/7fOlXABw5s2/8e8707pAo8mT16nuerVtjSbMZ40fFfQjeQJPusTI518tH2wrEunGovBDiwEiiSIiDpOs6v3hpNYU1rdx93mRyEu3bXwuFI2iv/Iisz28had1j2Oq/RtdMtOQdi+/Ux7A5u/cNRqbXRlSHgD0d1SqJop72wvJyWgNhrphdQMeK5zD6a1Cz+mY1EYCyeQkYnESbyymsbj3o/W2rosgOFaEbrJA45KD3KUR/ku6x8sfTxvN1WTOn/2cR/mCYIaf8HF0Z0V+9Fi3UjiG3b3ywFr3MmULYOwTP5leIGqyUn/4qV3z/x8woSOSejzZjzZ5A5KS7qJ37B8wN6wlu/ijeEe9RMBxl7bpYJeqY0X3jgYDdbCTJYaa8qQPlyUK19k5FUTSq89birwE47yj5v90TThiXwdL6rj5PbXXxDUaIQUwSRUIcpMc+L+HVlZX89JgRHD4iZafXmhb/D3fJW1RP/TlrL93I5nM/o+p7z9My718kDTmk22PJ6HrC1mxMRutogFCg248hYqJRnUcXFTMpx8uUHC/al/fQmTgK68hj4x3aXilvDtlaA499XnLQ+yrqShQltm0mnDwKtPhMkyxEPJ04IYPTp2RR1tjBaZOyGDl8BO1jz8VSuQQAlS2NrAeryCFX0DzkZGrPWUD2qGnYzEb+euZEol0PmJKdZtIPu5CwLZno5/fGO9w9enVlBe7OKkJGJ1i98Q5nu+wEG+VN7Rg82WiBZgj6e/yYL6+oINBUBYA7KaPHjzcYzRuXTr3uif0gFUVCxI0kioQ4CEtLGvnDm+s5ZnQa1xw5bKfXmiqLSPrkFvxpU3EefQNjsjyMzfQwPM1FXpKjR8a0Z3ljfTBqSYotaK3q9mOImA831FLS0M4VswvoLHwfS8N6ojOvgW4cStgTDN5sxth9PL2klJdX7Ln5ZyS672EQRXVt2EwGrE3rQRpZi0Hsd6eM5Zojh3Lz/FEAmOb+BF1pRK0JUmk3iJlmXUPn9x4iJzsHQ9c9PzfJzi9PGM3CzfU8ubgUTFZCky/DWvwe0bpNcY54V9Gozn2fbGGUtQmVkNen7nFZCTYqmjrAnRVb0MN9iloCIf701gZGOQNEbUlgkNnNekJOop28zDQ6MaO31sQ7HCEGLUkUCfEd1bYE+NH/viIn0c4/zpm4U+InEAxheuNaiIYJnPRvnDbL9jeJPSnD0zVmP7JtulgZftZTHllUTIbHyvFj04gs+hdhexq2KefEO6x9Ut4cMqjn0CFJ/PyFVXyx5ZsZRaJRHV97iJJ6P+urWmgJ7H365uJ6P5MTgxja6zFk9I3hCELEg8tq4sbjR5HqjiXrLSlDaZn8I0ITLuhTH6xF79I0RZp710bmF8zIZc7wZP60YD2lDe1YD/0+Uc1McFHfqyp6d10NW+r8jLI2QULfmt0rO8FORXMHujsztqClZ2c+u+v9TTT4O5mRGkZ3pOx7A/GdzR+fSZ3upr1JHngKES+SKBLiOwiGo/zof1/RFghz34WH4LZ+81RJ13VaP7sPZ+UiGmffSlLOqF6Ly2Ex4rGZKA52lexKouig+TpChCLRnZatq2zh8y0NXHJYPr7NX2Iv+4Tg1O+D0RKnKPef8uaiBZq47+yR5CU5+METyyisbqWiuYP11S2U1rdiWPU0w587gvCCX6DvpcFqcb2fQ53VAGhSUSTETizzb0Md9/t4hyH6IKUUfz5jAgaluOGFr9EdqXSOPh3zmqehoyne4e3kmaWlZHutuDsrUd68eIezk+wEG53hKA3GrqRND1YUhSNRnvhiK2dMycYdaQJnWo8dS3wz/KyxtmeTf0KIPZNEkRDfwR8XrGfZ1ib+cuaEXaaJrS5aQ9Lnt9OacyTuWVf2emyZXhsbO5yxH1p6cbrYAarD30pRnX+nZNGji4qxmQzMH+HG9daPCTkysB36/ThGuf80bw4AnmANj146DZNB4+JHFrOlpgXnljcZ/tKx5Hz6MwyBJhJWPUTT5sW73U9NS4DSxnYmmrrexEmiSIidWE0GzEZ5myV2L9Nr49cnj2FJcSMPLyzGPOsatHAHgSWPxju0nWypa2NuthZrzJ7Q9xJFAGVhLwB6D77nqWntJBiJckheAvjrQCqKetTQFCft5iTCLdKjSIh4kXcwQhygl1eU89jnJVwxu4CTJ2bu9FpVbR3eBVcTNVoJn3Q3FpOx1+PL9FgpatGIml1EpaLo4LRUknbvCLyL/0pxfSxZVN/WyasrKzl1UibOz27D6tuC/4R7UDZvvKPdP57s2FdfOVaTgVtOHE16+0Yynp1P3gc/BGDr0fex5byFhG3JWN+7mWAovMtuXv+6El2H8aZyIo40cCT35lkIIUS/d9Yh2Rw/No0/vbWedxtS6MyehXHpgxDZ9XduPIQiUSqbA4yxN8cWePvW0LMsb2yW2fKWKFF7CtHmnqs+qfZ1ALGZDrW2WjSXVBT1NGdSJs5QA3WtnfEORYhBSRJFQhyAdZUt/OKl1UwvSNzetHSb6oYmXC9diLVxPQ3H3EVCWnzeUGV6bVT5OtBdmeg93NhxwGssQkVDpK24C/eSOymu9/P45yUEI1HO9q4nad3jNE68Cs+Yo+Md6f7rShTVV2yhurmDmXUv8pLpN7gijTyT9Us2nf4e2thTGZabRcvsX2GvXUHr4id22c2rKyuZkO3B5Sskmjqmt89CCCH6PaUU/zxnEpNyvFz/zEo2FlyEsa2S0NpX4h0aAJXNHUSiOkOMjbEFfayiKKuroqi8qYOou2ff81Q2x2aRzbJHUeF2lDO1x44lYjKzckmkhffWyntZIeJBEkVC7Kf2YJhrn/oKj83Ev8+fgsnwzX+f2uYW7K9cjqN6MRVH/pPEKafELc5Mr43m9hARZ4b0KDpYbbGSZ3/6dNKX/w3Hsnt5cnEpR+VqjF92Cx0JozAfdyuqPzWrdWWgKwOqZg257/+AzC9+gz97DnfkPcQvi8bhD+nkJNoxaAr3jAtpT52Ce+HttPkat+9iS10bqyt8nDo+FUPDRlSaNLIWQojvwm428sil08hPtnP+Jx7aHbmEF91LIBSJd2iUNrYDkEXX8B9PThyj2ZXTYiTBbqK8qR3cWageHHpW1VVRlGH0dR1cKop6WlJaNgals2jVxniHIsSgJIkiIfbTHxesp7jBz53nTCbF9U3T4sbWDsyvXo277EOq5vyRpJkX7pRE6m2Z3tgMK+3WNFSrJIoOir8OgPJj/kNzwUlkLf0jJwde5zfR+zF0+vDN/zdOhzPOQR4gzUDUlUnS+sdxl75P1fRfsfW4R7jiuKkkOSzc9sa67f2YTEYjgePuwBhoIPTBH7c3tn51ZSVKwfdyO1CRoMx4JoQQB8FrN/P45TNw263c3X4MtprlBJ88l5qtG4hE9zyhQE/b2hBLFCWGqolaPNAHh1hnJdgob+pAebJRrT2ZKArgMBtwBrsemjilR1FPU13JuKKtJdsTdUKI3iOJIiH2w0cbannyy1KunF3AoUOTti8PBEOo16/DW/wmVTN+hWf2VdjMhjhGGqsoAvAZk1H+2j7T66BfaqtFVwbycvOoOPouFlsO5Xem/5Jf/xG1039O0tAp8Y7wO4lmTCbozGHLyS/SMPEq0r12xmd7+f33xrGuqoUHPi3avm7C0On4Rp+Hd/WjVG1eSVsgxKsrKzhsaBJJbZsApKJICCEOUrrHypNXzuBFdTz3aBdgL/+MlMfn0vjGrTQ1N+91BsqeUtbYjtmoYfWXE+1j1UTbDEl2sqbCB+4stGAbBHw9cpyq5gAZXlvsfRVIRVFv6Brel6w38/Ti0jgHI8TgI4kiIfah0R/kxhdWMSrdxQ3Hj9y+XNd1Wj/5Fwkbn6N2yvU4j/wJDkvvN6/+tm2JolqVhNKj0FYT54j6r2hrDbo9GavZhNls4WLf1az0HI0vfz7GWdfGtXLsYIS/9yCF53xGOHMKBcmO7RVy88alc8L4dO76YBOba9uAWA8Nw7G/IWqy4/7gZj78agNbG9o5cmQqnZWr0TUjJI+I5+kIIcSAUJDs4NErDuVJ4xnM8f+FFY7ZpHx1F44HD6Xmrb9QvvoTqhtbaAmEeqXSaGtDOzkJNjRfWZ9rZL3NKRMzafAHWdPWNQNtDw25r/J1kOGxbh+SjkN6FPW4rr/juZk6Ty0pIxiO7mMDIUR36p+fcoToJbqu84uXVtHSEeKf50zCYvymWqihdB1JX95BS+4xWI75FS6rKY6RfiPNZUFTUB5JiC2QPkXfmd5Wi971RuW1lZUElYnGef+h7oQHSXJa4xzdd2cym3HZzAxLce6S3PzdKeOwmQzc9OIqol0fRFyJGTTN+jXO6i+Z/96R3GP+F4ep1QTLviaSOByM5nichhBCDDjjsjy899O5HDVjMmfUXsHVpttpNSSQvuSPZL94Cqn/Hob22Ik0vHU7Pl9zj8ZS2thOXqIdzVeKSsjv0WN9V0eMTCHVZWHB1q5egT3U0LrKF9ieKNJRYE/a90bi4HQN7zsyG+rbOnl7bXWcAxJicJFEkRB78fzyct5ZW8MNx49gdIZ7+/KOQBDbguvQDRbCJ/wDj73vfFA2GjTS3FaKgt7Ygh5s7jjg+WvBmUo4EuXZpWUcMSKF6UOSyPTa+lcD628xGjTykx0Yd1MRleKy8JuTxrB8axP/+WTL9uWuWVdQeNrbPK8fwxGG1Yx5/2Jc5R+hp47tzdCFEGLAc1lN/OG08Txz1UwKLeM5pPYWbi54kS1H3kfj6IvQIgFSl/4N60NzqFn1AeFI91da6LpOaWM7o92dqHAHhj4249k2RoPGGYdk8+bWrvtZS3m3HyMYjlLX1kmGx0a0rRbdngyG+FeQD3gWN7rRyhCbn7wkO09+sTXeEQkxqHRLokgpNU8pVaiU2qyUunkv601TSkWUUmd2x3GF6Ellje387rW1zChI5IrZQ7Yvj0Z1Wj/9N46aZTTM/T2J6X3vzVOm10ahv6vJcmtVfIPpx1RbLcqZyocbaqlt7eS86bk4LUbs5oH9BvH0KVmcOD6Dv75TyG2vryMS1bEYDRQb8vll4CKemfMepUf+C1/ecWiTzo0JGdu/AABd0klEQVR3uEIIMSDNHJLEW9fP4erDh/J8YZDzFqawZOQNhC77gJrTXwQg9aUz8L18Az5f9/bmaWoP0dYZZqS1Kbagjw49Azh7ag7VegI6Cr25+xNFta0BdB0yPFb01hp0hzSy7hVKodtTwF/HhTPyWFLSyIbqlnhHJcSgcdCJIqWUAfg3MB8YA5ynlBqzh/X+DLxzsMcUoqfFhpytBuBvZ03EoH1TPVJfuo7kxXfQkns0nhkXxivEvcrwWNnYYkQ3Won2UBn2gKfrqPY6lDOVp5aUkua2cNSowdGTQCnF3edN5tLD8nlkUTE/eGI5/s4w766rwWU1ctbMYWgTzqR6/iMYRhwb73CFEGLAspoM3Dx/FK/8aBZJTgs/+t9X/PLl1WgFcwhc+SlNYy4mac3DWB+eS2vx8m47bmljbMazfGNDbEEfThQVJDuYUpBKPQlEeiBRVOULAJDhtW2vNBa9Q3ekEG6p5rTJmViMGo9LVZEQvaY7KoqmA5t1XS/SdT0IPAOcupv1fgy8CNR2wzGF6FHPLStj4eZ6bj5hNDmJ9u3L/YEgjreuRzeYCc3/JxZT36wsyfLaqGzpJOrMQJdE0XcT8KEiQXwGL59srOOcqTm7Hao1UBk0xW9PGcvvThnLhxtqOOeBL3hnTTXzx6XjsZvJTrAzIs0Z7zCFEGJQGJ/t4bVrZ3Hj8SN5b10Nx/3zE4p84D7jTqpPex4V6cT63Dm0VW/Z9872w9YGPwAZ0a637X04UQRw7rQcyqOJtNR2fyKhsjk2NXumx7q90lj0EmcqkZZaqnydHDEyhZe/qqDK1xHvqIQYFLrjU08WULbDz+Vdy7ZTSmUBpwH37WtnSqmrlFLLlFLL6urquiE8IQ5MtS/A7W+sZ0ZBIhdM/+aNUTSq0/bpv3HULKV+9m0kpvfdN02ZXhvBcJSQIwNdmll/N/7Y759F1bEG5mdP65tTA/e0Sw7L56FLplJc58cfjPC9Sd/8eu/PfZqEEKK/MRk0rjlyGAuun43bZuKChxbzRVED6ROPo+OcF9AinRifOZsOX8NBH6usq6LI3VlF1JoAVvc+toiv+eMyqFXJBBvL9r3yAaruqihKd1u6Ko3Tuv0YYveUMw1zaxkJG5/jjJx2OkJhHltUQnswHO/QhBjwuiNRtLtPCt+es/NO4CZd1yP72pmu6w/ouj5V1/WpKSkyBlj0Ll3XueXl1YSiUf58xgS0HYac1ZauJ2XxHbTkHIVn5kV9+kNyhic2I1ebJRUlPYq+m7YaABYURThiRArZCfZ9bDBwHTUqjRd+eBi/PGEUM4fITC9CCBFPw1JdPH/1oeQm2rn8saUsWF2FJ3ccbac9jrmllOgz59MZaD+oY2xtaCfVZcHYWkbUnd1Nkfccm9mAIyUHd7AWX3uwW/dd5QvgshhxqQ5UOCAVRb1IG34MuqaR/ekNHPfxyayyXc3cZddSs3nl9plZhRA9ozsSReXAjo/as4FvlzBMBZ5RSpUAZwL3KqW+1w3HFqJbvbqykg821HLDcSPJT3ZsX97a0Ynr7diQs8C8f2Dt482MM702AHzGFLS2Koh2/4woA15brNx+U7udc6b13eqx3jI6w81Vc4fulDwVQggRH6kuK8/+4FAmZnu55qmveHpJKZ7RR+I77k4cVV/S+eKPCIf3+Xx2j0ob28lNtMemm/f2/UQRwJChI7GrTt5etqFb91vZ3EGG1wptXSMdpKKo94w5hU2XrGLjmR9SPuevlKYexejIBpJev4Sa2up4RyfEgNYdiaKlwHClVIFSygycC7y24wq6rhfoup6v63o+8ALwI13XX+mGYwvRbepaO/nt62uZnOvlslkF25dHojrtC/+Do3oJdbN+R3JGfvyC3E9ZXYmiWpWEigSh/eDL0AedrqFnHeYkjhgp1Y1CCCH6Fo/NxBNXzODwESn84qXV/OuDTXimn0fTzJtxb3oZ35u/JvAdh+iUNraTm2RHtVagPP0jUZSRMwyAhctXdut+q1sCpHu6GlkDOOU9QW/y2C3oySNoGnkOnfPv4peWW7C1V6G9fBWtHZ3xDk+IAeugE0W6roeBa4nNZrYeeE7X9bVKqauVUlcf7P6F6C23vraG9s4Ifz1zwk6znNWWrCPlyz/RknMU7pkX9YuKCq/dhNWkUR7xxha0dP8sIANdpLWGMBqHjBqC1WSIdzhCCCHELmxmAw9ePJXTJ2fx9/c2ctOLq7EfdSO+MReQtOLfdLzwQ9r8/gPaZyAUobolwFC3jtbZgsGTte+N+oBtCS1/3VbWVXbfNOqVzQEyPdbtQ9Kloqh3ZXptjEx3MSbTzcgMFz+66Hz+pl1OWs2nNLz5eyLdNATN1x6irVN6HwmxTbeMn9F1fQGw4FvLdtu4Wtf1S7vjmEJ0pwWrq1iwupobjx/JsFTX9uUtHZ243v0/dIOZjnl/J81iimOU+08pRabXxpZOb2yBrwIyJ8c1pv6mtrIUTXczf0L/eIMshBBicDIZNP5+9kSyE+3c/cEmqnwB7jrn79RZk0n56i78jxfRfMbjeFP3735W0dyBrsMIe2tsgbuf3Ae7ElrZhkZe/KqcMZljDnqXneEI9W2dZHhs3ww9c0iPongwaAqnxciEHC8dF97My49v5LQ1/6IkczL5h51xcDvXdYxPn0nQk0/k9Dt3emAsxGA1eOZ6FmIPmvxBfvPqGsZlublq7pDty4PhKP7P7sNZvZjaw35LSkbBXvbS92R5baxr98R+8ElF0YFqqqugES+Hj5AScyGEEH2bUoqfHjuCv501kS+LGjjvoSX4D7uJ6mPvxVa/Gvvjx9JY9NV+7au0IdYIO8/UHFvgzuyhqLuZMw1dGZiZFOCVFRWEIrH+jA1tnQTD361XY21LbGhTRldFka4MYE/stpDFdzNjaDKuM+5mjV5A8rs/ZsPalRTX+ylrbKfK10FLIHRA+/OvfhNH2cckrHmM5mXP90zQQvQzkigSg95tb6yjuT3EX86YiMkQ+y+h6zpVW1aRtuRPtGYfiXvmxf1iyNmOMjxWCltM6EYbkebSeIfTr4QjUaKtNUQdKTLsTAghRL9x5iHZ/Pfy6VT5Alzw0GK808+h7qxXUNEw3qdOhIp9J4tKG2OJonQaYwv6S6JIMxB1pjPB7afBH+STwjpqWwNUNgdo9H+3mdAqmzsAyPBaibbVotuTQJP3BX3BMRPyKT7yP4R0xZDnjyXjycPxvHwB5rd/Tudn90CoY/92pOsYFv6VoCuHjuRxeD68idaGb8/LJMTgI4kiMah9sL6Gl1dU8KMjhzEm0719eWVtPWlvXUnUaMM/7x84rP1jyNmOMr02atuCRNzZ6E2SKDoQXxY14tV9uJP7Sbm9EEII0WXWsGTuOX8KFc0dvLGqmrRRh9F68XvoShFe9t99br+1oR2byYAr2NW82dVPEkWA7s4iTa8nyWHmf4u3UtvgI+vTG9EW/h1dP/BeNtUtASD28E1vrUF3SH+ivuTkIw7l2VH38Hj4aHz2fEzttXi3vELKot8SXvHMfu3Dv/49rLUrCc68ns6T7kULtsHrPzmoWQOFGAgkUSQGrZZAiFteXsPINBfXHjls+/Kmtk4c7/wfFt8Wqo65l9TM/jXkbJtMrw1dh4A9E3xl8Q6nX1mwupJUmsnIyo13KEIIIcQBmzs8mZFpLh5eWIyu6ySm5xHJPxy1+X3YR8KktLGd3EQ7UV85UVsSmKy9FHU3cGehtVZwzOg0lm0qJ/vty0jc+CzJy++kpe7A3wtVNm9LFHXNeiYznvU5p584nz9FL+au5FupPu9dNl22hqAzi+jGt/e9sa6jffZXQo4M7NMuwps/kaYZP8dV8g7Ni//X88EL0YdJokgMWn9asJ7a1gB/OXMCZmPsv0JHMEJg0b/xFr1OzdQbSJpwbL8bcrZNpscGQKs1HU16FO23cCTKojVFmFUYo0ueHAohhOh/lFJcPjuf9VUtfFkUG0JmHHEchtZyqNuw121LG/3kJtnBV4neX4addVHeLFRrFXNzzTxsvAN39RdUH3IDSg8T/fL+A95fla8Dt9WIw2KEtlqUzHjW56S6rRw7Oo2311aT6bUyKsODPvx4jCWfQCiwx+3aOsO0FX6MrWoJgRnXoZljCVHXkT+hPe0QEj65hdbarb11GkL0OZIoEoPSV6VNPL2kjO/PGcLEHC8ArYEQdWs/If3LP9CSeyzGuT/Fbu6WiQHjItMbu+E1GtLQOur3f6z2ILekuBFDR9fMJk6Z2UQIIUT/dOqkLBIdZh5eWAyANuJYACIb393jNrqub68ooqWy/8x41sXgyUaLdHL0FxcxRdvMH2w30DT1elry5+Fe8ziBtuYD2l+VLxCrJopG0drr0FzyvqAvOn9GLo3+IO+srQHANGoeWriDaPHC3a7/9ppqxt36DqufvoVG5eWWkkn85e0NFNW1YTabCJ58LyoawvjGdfuswBNioJJEkRh0dF3nTwvWk+KycO2Rw2j0B9lU00p5aQkZ7/2AoCublvn/Itlli3eoByXTG4u/UnWVSUtV0X5ZsKaKLGPXlMCSKBJCCNFPWU0GLpiRywcbaiip94Mnm3DyaKIb39vjNnVtnQRCUXIT7ajWSlQ/qyjaltgyt2zlhWF38HDTJCJRnc4Z12IIttC55NED2l2Vr4MMrxWaS1CRICQO7YmoxUGaPSyZnEQbTy2OVQBpQ+YSNVoJFe46/Kw9GOa219dyckIph6q1LHCdxeraIPd/WsTljy0lGI7izR5F04yfYyv9GKq+7uWzEaJvkESRGHTeW1fD0pImvj+ngLKmDqpq63Euv49hL8/H0NlC9bwHyExLj3eYB81qMpDoMFMc6prGVWY+26dIVOftNTUckdX19MghiSIhhBD910Uz8zBqisc+L4ktGHYMxvIvobN1t+uXNsRmPMv3KLRAE5qnf1UUkXUIgdSJlBz3KHmHno5BU7y+qpKE4Yfiz5iJffn9REL7PwNaVXNXRVHNutiCtLE9FLg4GJqmOHdaLl8WNbKlrg1MNsK5czBsfneXiqD/fLyFSl+AW1xvErYmcu4Pb+WjG47goYunUtLQzpNfxpJNrukXABDcsB+9joQYgCRRJAaVcCTKHW9tIC/RzsxME4nL72bkM4eRseR2OhNGUHLSM6SPmNpv+xJ9W6bXysaAJ/aDNLTepyXFjdS3dTIzrWumC6koEkII0Y+luq2cPCGT55eV0RIIYRx5PCoagqJPdrt+aWMsUVRg9sUW9LOhZ3iyqDv3bUJ5czkkL5EjRqTwyooKNKUITL8Gk7+K9q+e3a9dBUIRGvxBMjxWItVrYwtTRvVg8OJgnDU1G6OmeHpx7MGoGnk8Rt9WqN+0fZ3Shnbu/7SIq4f7SK/9jPZDrsZocwFwxMgUZg9L5u4PN+FrD2H2pBFMmwSb9jxUU4iBTBJFYlB5anEpRfV+fj6ihjHPzyF9+V9pT53MlpNfpuTEp0kePRuL0RDvMLtNhsfG2lYnujIQbZZE0b68t64Gi1FjhKMDXRnAlhjvkIQQQoiDcvnsAvzBCM8tLYPcmUTNTkKFu//wu7WhHaUgXcUaYNPfhp4BTouRISkOzEaNMw/Jpqalk8821eEZfwIB73DMi+/Zr74zNS3bZjyzEq1ZS8STBxZnT4cvvqNUl5Xjxqbx4lflBEIRTCPnARDasGD7Ore9sQ6jprg68hRhixfbrB9sf00pxS9PGI2vI8S/PuxKLg0/HlPVV+Cv79VzEaIvkESRGDRqWwL88/2NXJ/4JSd8fQ1heyqbvvcmpfMewzJkJiPSXLitpniH2a2yvDbKW4JEnRnokijap60NfoamODF01KPbk0GTX5FCCCH6t3FZHqYXJPLoohLCGIjkH4625f3dJkvKGtvJcFsxt1XFFniyeznag5fgMGMyxO7fR41OxWMz8fzycoxGI53Tr8XSuIHAhj33adqmsjmWKMr02lC164imjunRuMXBO396Hk3tId5ZWw3eHELJo9E3vgPAR4W1vL++ht9O8OGt/Az/tB9jsnt32n5MppuzDsnmv1+UsLXBj2n0PBQ64b00gBdioJJPQWLQuOeDjVwZfIL/a7+btsxD2XLyS1hypjAs1Ul2gh2zceD9d8j0WmkNhAm7stClR9E+xWY3saK31qBLfyIhhBADxOWzCqho7uCDDbUYRhyPobUC6jbssl5pYzs5iXZoqYgtcGX0cqTdy2I0cOYh2byzpppqXwDH1HMJ2dPQF921z22rW2KzxWY4wNBUhEqTRFFfd9jQJHIT7fyva/iZPvw4TBVL6Gxr4rbX15GfaOPE+ocI2VKwz756t/v42XEjMWoaf357AypjEhF7CtHCd3rzNIToEwbeJ2MhdqO2sYmZK27kGuNrNI48j63zHiM3M53cJDtW08AZavZtGZ7YzGfttgyUzHq2TzUtAdI8VvDXgjMl3uEIIYQQ3eKY0am4LEY+LqxFG34MAJHdfPjd2thOXpKdqK+CqDUBzPbeDrXbXXxoHhFd53+Lt2I0WwkcchW28oV0bl221+22VxSFylB6BGP6uN4IVxwETVOcNz2XJcWNXP7YUu4pG4qKhnnwsYcorvdzx6QGHNVL6Jj5U0zW3Q8jTHNb+cHhQ1iwupplpc2Ehx6DsfgjiIR7+WyEiC9JFIlBYcPzv+cE7UsKx99I9dw/MyTNi2uADTPbnSEpDgCqVSpaayVEI3GOqO/a3rTSbUX561DSyFoIIcQAYTRoTC9I5MuiRvBkEU4eTXTTzsOvOoIR6lo7yU20o7dUorv6X3+i3clLcnD0qFSeWlxKIBTBfuiVREwuIp/+Y6/bVfsCeO0mrI1dlVcy41m/cO60HOYMT6amJcCC5mx8OMmr/4wLp+cwcdO/CDqzsR96+V73cdXcIaS5Ldz+5nqMI+ehdfrQyxb30hkI0TdIokgMeLquE6lZS7khB33WdQxJdWI3G+MdVq8Yne4mwW5ijd+N0iPQWhXvkPqs2pZOANLdFpS/Fs2VFueIhBBCiO4zc0gSxfV+qn0BGH4sxvLF0Nm6/fWi+jaAb4ae9cNG1nty2awCGvxB3lhVhcHuJTD5MmxbFhCsKdzjNlW+DtLdVsLVa9ANFkgc2osRi+8qwWHmiStm8OZ1c3j/hqOxjj6eE2xruKlgM7a6rwkcdgNGs3Wv+7CbjfzoiGGsLGum1DsdXTMS2vB2L52BEH2DJIrEgLe6wkdSuIaIO4ehKc4BPdTs2zRNcdiwZD6r67ohSkPrParumt0kyx5CRYIgPYqEEEIMIDOHJAGwuLgB48jjUdEQetHH21//dGNsZqfpBYmoliqUZ+Akig4bmsTwVCePLipG13Wsc36MbjAT+vSfe9ymsjlApteGXrOOSNJwMAyOh4wDjWHk8Rg6GrC981M6vUNxTr9wv7abnOsFoLBZEcqagdokDa3F4CKJIjHgvbWmmmxVR3LOsO2zYAwmc4Yls9bvif3gk0TRnlT5Yk0rs4xdT1dl6JkQQogBZEymG5fVyJdFDZAzg6jZRaTwmw+/H26oYWymmwy7QuuoR/PkxDHa7qWU4tJZ+aytbGHZ1iYMrlQ6xl2Abf0LhJt2/96ouiVAuseKVrcOXWY867eMI45FVxrGQBOds29CM+5f64lhqbEeRhtr2lAjjsfUsEEeuIpBZfB9ahaDiq7rfLy6mETVhj2lIN7hxMWsYclU6rGniDLz2Z5V+2IVRSlaS2yBQ5pZCyGEGDgMmmJGQSJfbGkAg4lI/uGoLR8C0OQPsnxrE0ePSoXWytgGA2joGcBpk7NwW408tqgEAMvc61F6lOBnd++ybiAUodEfpMDeiaGtGoM0su6/7ImEcmYRSB6Pa8qZ+7+Z2UhOoo2NNa2YRs0HICyzn4lBRBJFYkArrGkl3BhLjihvbpyjiY+cRDupSYm0aB6i8iRkj6pbAjgtRuydsdJ7nNKjSAghxMAyc0gSJQ3tVPk6MAyZg6G1HJrL+HhjLVEdjhqdBi0DM1FkNxs5b3oub6+tprK5A2NSPh2jTsO66gmibfU7rVvV9fBoBLH3TZo0su7XImf/j44LXkNpB9Z+YkSqi001bZA8nLAnj6gkisQgIokiMaC9tbqaHK0u9oM3L77BxNHsYcmURpKINklF0Z5U+2Il5vi7/r3I0DMhhBADzPY+RUWNaHmHAaBv/ZwP1teS7LQwIcuzQ6IoK15h9pgLZ+ah6zpPfLkVANPcn6KFOwgsunen9bYNR88OF8UWpMnQs/7M5vSQkJB4wNsNT3NRVN9GKKoTHXYcxtJPIdTRAxEK0fdIokgMaG+vqWZWkj/2wyCtKIJYoqg8mkSwYWu8Q+mzqlsCpLut0FaLrgxgO/A3FEIIIURfNjrDjXtbn6K0sUTNLkLFi/hkYx1HjUpB01RsxjMAd0Z8g+0BOYl2jh2TxtNLSgmEIpgyxtI+5HgsXz2EvsMMcFXNsYqixLYtRC1ecA28vwuxbyPSnIQiOlsb/JhGHY8WDkDJwniHJUSvkESRGLC21LVRWNPKNG9bbFrTQdxz5tChSVToyZjaKkDX4x1On7Stokhvq0W3J4Emvx6FEEIMLAZNMb0gKZYo0gxEsmfQuWURrYEwR42KDbmO+iqIWtxgccU52p5x2awCmttDPL+8HADD3J9i6PTR8cXD29f5sLAWl8WIs7mQaMpoUCpe4Yo4GpEW+z+wsaYNlT+HqMG600yBYv81twc5+74v+Os7G7YvC3T48W36Io5Rib2RT0JiwHp7TTUAQ0yNRN3Zg/qDv9duRvdkY44GoKMp3uH0OZGoTm1rJxkeK9G2GnTpTySEEGKAmjkkcXufIi3vUFytm0k1+JkzPBkA3VeJ7hp4w862mVGQyMQcLw9+WkQkqmPJn0kgezbmJf9GD7ZTUu/nrdVVXDgzB0PDBpD+RIPW0BQnSsHGmlYwWYkmFBBtKIp3WP1OayDEJY8sYUlJIw9+Wkxta4BIJELo2cvw/G8eNMmIh75o8H5yFgPeW2uqmJTjxeqvQB/Ew862ScoaBkB7XXGcI+l76ts6iUR10rqGng3m6jMhhBAD27Y+RV8WNWDInwXA+RmVOCzG2Aot5QOukfWOlFL88PAhlDa289aaqtiyw2/C2F5Lx+JHeeCzIowGjSvGG9CCbRgzJFE0WNnMBnIT7bGG1oBKyIemkrjG1N+0B8Nc/thS1la28JuTxhCKRnlsUQmtb/0OV0lXc/DKr+IbpNgtSRSJAamssZ01FS3MH5eO5isbtDOe7WjI0JEAbN60Ls6R9D3bZjfJ8FhR/jqUNLIWQggxQG3vU7SlkSLLCDp1E0fZN29/XbVUojwDt6II4Ngx6RQkO7j/kyJ0XccyfC6BzJkYP7+L15YXceYh2SS3bYmtnCqJosFseKqLTbWx/lVaUgFac4m0cdhPgVCEqx5fzvKtTdx17mQun13AvLHp1H7xNN5ld9Ey8ix0zUS0XBJFfZEkisSAtG3Y2QkjPWgd9WgJkigaOSr2RqeqZFOcI+l7qrtmN0l3W1D+OjSXDD0TQggxMBk0xYwhSXxZ3MCHm3ys1IcyrGNV7MVwEK29Dm2AJ4oMmuKquUNYXeHj8y0NsYWH/xxzRw2n6R9x1Zwh6DVrY8tTR8cvUBF3I9KcFNf7CUWiqIQCVKj9mxlyxR4Fw1GufeorFm6u5y9nTuTECbGG8FcOa+H33EuZcyLW0+8hkjKGaOWKOEcrdqdbEkVKqXlKqUKl1Gal1M27ef0CpdSqrj+fK6UmdsdxhdiTt9ZUMTbTTY4hdvNX3rw4RxR/VncKAWWhrVaGnn1b9baKIksQFekEh1QUCSGEGLhmDklia0M7Ty8pZYttPLb6NdDZBq2xoVgDeejZNqdNziLFZeG+T2KVQ8HcOazQR3C99Q3yvEYi1WuJuHPA6o5zpCKehnfNfFZS74eE/NhCGX62V/VtnVz40GLeX1/L7783jjMPyQagpbacCZ/9kFaDh6uC16OMZlTWZLTqr6VKqw866ESRUsoA/BuYD4wBzlNKjfnWasXA4bquTwB+DzxwsMcVYk/ag2G+Km3m6NFp0FwaWyhDz0Ap/NZM7B1V1LYE4h3NQdG7+WZS1RLAbNBI0JtjC2TomRBCiAFs5pBEALbU+TEVzELpEShfCi2VsRUGQaLIajJw2ax8PttUz5oKH08tKeOfodNIjtTRsfRJVO069NRvf6QRg83w1G9mPpNE0b6tqfBx6j2LWFXRzN3nTeaimXnouk711kJMz56NobOZtXPvY32LlTdXVWHImozW2QKN0iS8r+mOiqLpwGZd14t0XQ8CzwCn7riCruuf67q+baqlL4HsbjiuELtVXO8HYGSaC5q7uuhLoggAY0IOWaqeRVvqe+V4Ta3thCLRg95PJKrTGghRW1lK9RdP0/DiT6l7/XfUbPgCX3uQaPTgEkc1vgBpntiwM0CaWQshhBjQRqe78dhMAAw75Ch0pREuXgQtFbEV3IPjrfoFM/JwWoz868NNPLKwmGjBUQRSJ2P6/B9oTVvQZMazQW9YqhNt28xn2z5PSKJot17/upIz7/ucqK7zwtWHccrETDrDEaqXvEjK/47B3FpG88kPc/jcoxmW6uT+T4vQMybFNpbhZ31OdySKsoCyHX4u71q2J1cAb3XDcYXYrW2JooJkB9GmUnSDGWS6cwAcqQVka/V8urEXEkXtjXj+NZKWz+7/zrvQdZ3GretoevaHGO+dTuoD40l/52oSNjxN8ld3kvbMPOz3jKP5uR/SuuGj73ycKl+ADLcN/LWxBfLvRQghxACmaYrDhiaR7DQzYWgu4ZSx6Fu/GFQVRQAem4nzZ+Tyztoaals7ufqIYeiH/xxTazkqGkZLl0TRYGc1dc18VtsKJitRZwbRRmnjsCNd1/nnexv58dMrGJfp4bVrZzMuy4OvtZ3WV28i460r6HTnUXfBeyRMOAGtq0fY+qoWFvpS0A0WIpIo6nOM3bAPtZtlu328r5Q6kliiaPYed6bUVcBVALm5UgUiDlxxXSxRlJ9sR28uRXdlYdCkbzuAITGXRFpZtH4rwfAEzMYe/HupWYsWbCFh4e9oGX4U7qyRB7S5r6WF4ld+z9iiRwjqBhZFx7Akeh6Lo6NZG8jn/AkerskuxlL8Hp4tr6MVPgfXrYCEA+9HVd0SYGK2F9q2JYpk6JkQQoiB7bZTx+HrCGHQFNHcQzGsfBw9bSS62Yk2iPryXD6rgEcXFTMy3cWsYUko5hNImYC1bhXI0DMBDE9zxYaeAXpCAUiiaLtoVOe2N9bx2OclnHlINn84bRy6DuWbVpL43v/hqf2KhjGXYJj3B9Ldru3bnTopk7+9U8j9i8o5NGUMVEiiqK/pjk+J5UDODj9nA5XfXkkpNQF4CDhV1/WGPe1M1/UHdF2fquv61JQUGf4hDlxxvZ8MjxW72YjeVIouw862U11/F67OGhZu7uEZG+oLY191HcMb1xEKh/drsxpfgP/972Fa/jGNSUUP8L6ayb0TnmfDUQ+SeNyNzJ93EnNGZvDUmnaC487BceGTtF34Vqy/QvGnBxymrutU+wKke6zobbXoygC2xAPejxBCCNGfpLgsDEt1AmAsmIUWDkDhW+iuwVFNtE26x8qDF0/lznMmoZQCpYge/yc6RpwCySPiHZ7oA0akOSmp9xMMR1GJ+ahBOPSsrLF9l2WRqM7NL63isc9LuGJ2AX86bRwN9bW0vXoDWU8djaV5M1XH/gfn6f/Eu0OSCMBiNHDRzDwWbq4nkDIh1tA6evDtKkT36Y5E0VJguFKqQCllBs4FXttxBaVULvAScJGu6xu74ZhC7FFRvZ+CZAcAmq8U5c3ZxxaDiCfWc2CEpZk3vq7q0UNFawuJmhw0H/EHHFVf0vLZfXtdX9d1nltczGf/OI8LNv0UzWDgg2kPcNQvX+PGMw7n2iOHc/XhQ7n68KH88fTxKAX3f7oFk0HDkzueqD2ZcNFnBxxnc3uIznCUdLeVSEsVuj0ZpAJNCCHEIKLyDot9ba0cNMPOdnTEyFSGpX7zQdY+bDbqrMfA0B2DL0R/NyLNRTiqU1zvR0ssQGurglD/nhjmQIQX3o33pfOprPumdUUwHOW6Z1bw3LJyrjt6ONcenkfdx/8h9dFDSVrzKI0jz6b20kWkHXoeFqNht/sdnRGrXGz0jkULtklD6z7moD8N6boeBq4F3gHWA8/pur5WKXW1UurqrtV+AyQB9yqlViqllh3scYXYHV3XKapriyWKQh1o7XVo32Eo0oDliSXNjsro5L11NQRCkR47lF63kWjScNyHXkZb9uF4F/2Blsrd54lrWwJc9diX2N64mjPVh2wdfRUJP1vK0Seeg8W0680lw2PjzEOyeW5ZOTUtgdjTv7zZqJLPDnh6zSpf7Eaf7rFCw5ZYSbEQQggxmDhTCXuHAKDce2s1OnhYd/P+QwxO38x81vrNzGfbZlYeDDa+g6v8I1yvXklNUyvBcJQfPrmcN1dV8Yv5ozh/nB3zEyeTufAWAomjKD/nHeyn30NGZi6atrsuNTHpHisAZZau9hTSp6hP6ZbH5rquL9B1fYSu60N1Xf9D17L7dF2/r+v7K3VdT9B1fVLXn6ndcVwhvq2pPURLIBxLFPnKAVBeSRRt58pAVwZG2Zpp7Qzz2aYebGrdsBGVPAKj0UD0pLtBaRhev47Wjs6dprd/dWUF8//xAWcV/5qTDV/SNPvX5J79F+x2x153f/XhQwlHojz4aezpg2HIXAxtlQf8NKKm5ZtEkdawCT15+AGeqBBCCNH/RXMPBUDzDo4Zz4TYX0NSHGgKNu2YKBpEw89UcwkhRwau8o8wv3kdf39nPR9sqOW3J49hXnaQhGdOxtawhoqj7iZ84avkjJ6BzbzvRGuaO5Yo2kIWusFKpOKrnj4VcQBkfIUYUIrrY43mhqQ4oHlrbKH0KPqGwUjUlUl+xzoSrTrPLi3tlunrd9HZiqG1Ei019oTAnZ5P85zf4qj6gvZ3/8imTRvZVN3C9c+s4MZnlnKv6Z8cpy2l+fDbSTjmhliPgH3IS3Jw6qQs/re4lEZ/EJU/BwC9ZOEBhbqtoijTEkDraMCQIv0IhBBCDD7G/Njws8E49EyIvbGaDOQnOWINrbcnigZJQ+twEK2lguikC6k55AYSNr9E0pd/ZN7YdOa6q8l84WSMHfXUnPoMGbMvxuuw7PeukxxmjJqiui1CJG0cujS07lMkUSQGlKKuGc8Kkp3flIRKj6KdhCach6vqc94w/RLf5sWsrmimNRDq3oPUbwJApXwz05nnsMtpzTmKtBV3MuKp6STdN45T1/6EdxP/yozQUpqP+jPeI398QIf50RFD6QhFeHRRMSQPJ+JIJbzlwBpaV7cE0BQkB2L/XpQ0rhRCCDEIacOPJZQ8BnJmxjsUIfqc4WlONta2giMF3WQnOlhmPvOVodCxpAzFcMQNvGI6gasMb/BbdT95r52JrpmoPvM10scfuddhZrujaYpUl4XqlgAqcxJazSqI9lxbDHFgJFEkBpTiej9GTZGdYIvNeKYZwZUR77D6lsNvpuT4x/BoHTyt/Rr1/m1UNfh2Gg520Oq7ehHtkHQxGg1Ez3mKFyc/xu+jl/Epk5nsaSMnXErzsf/AO/fqPexsz4anuZg/Lp3HPi+hpTOMnjcHbeuB9Smq9nWQ4rJgbNzcFbMMPRNCCDEIudLo/P5nkDoq3pEI0eeMSHOxtaGdzkiUqDcfvbEk3iH1jm0JsYR8nltewU9bz2dzyrGkb36WoDObmrNeJ3P4pP0aDbA7aR4rNS0BDFlT0EJ+aNj8nfbTHty/2ZXF/pNEkRhQiuv95CbaMRk0os2lRF3ZoEkzwh2ZDRrhocdSdOb7vKEOZ3Lpo+S8cCK+xu7rV6TXFsaSdImxxpi6rrOspJFfvrqen31hZnnaWYy5+kmiV39Oy3Wb8c664jsf65ojh9EaCPPEF1sxDJmDwV9zQDeZKl+AdI+NaN1GdM0E0tNKCCHEIOW0yCxfQuzO8DQXkageG72QkD94ehR1DbErjiZz5/ubmDc+E8e5D1E29+/Unvky2XlDv3OSCCDdbaXaF4DMybEFlSsPeB+Rda8TeuuW7xyD2D1JFIkBpbjeH2tkDdBcii7DznahaYphqU7S09N5Z9iv+WHkBqxNhUQ//Vu3VRVF6zYS9RbQEdF4dmkpJ969kDPv+4JPN9Vx3VHDeP7qQxmR7iLJaSHBuf9jmXdnXJaHI0em8NBnRQRzZsWOX/zZfm9f0xIg3W0hWr+RiLdApsIVQgghhBA7GZHmBGIzn2kJ+WjNWw94pt3+SG8sQTdYuWFBNXazgd+dMo6MJC+26ReRk5FxUEkiiDW0rm3phOQRRI02wuXLD3wnK5/Gs+I+QlVrDyoWsTNJFIkBIxrVd0oUqeZSlCSK9ijFZeHc6Tm8FZpCYfpJeFc/gq9qS/fsvL6QWksus/78ITe9uJqorvPH08az+JdH89PjRmIydO+vnnOm5dLUHmJtIJmIM4NI0Sf7vW2VL0CGx4Zq2AzJw7o1LiGEEEII0f8VJDswaIo1FT5UYgEq3A5ttfEOq8dFm0posmSwvKyF3548lhRX7AFvstNywD2JdifNbaW1M4w/DNG0cVD5HRpad814HFry6EHHI74hiSIxYFS1BOgMRylIcUAogOavQUuQYUR7M3tYCikuC/cZzgeloX34u4OuKmrxt0NjES+VOchJsPHMVTN56/o5nD8jF7u5Z6p1JuZ4AFhV7iOaNwtt66L9esrj7wzTGgiT7jSiNRVLI2shhBBCCLELi9HAMaNTeWZJGW32rNjCQTD8LFRfxNf+BI4cmcKpk7p/RsR0TyzxVN0SG36m1aw+sIbWuo7WXAKAZd1zEAp0e4yDlSSKxIBRvH3GMwe0VACgpN/MXhk0xQnj0nm7VFE97vu4N79Gy+Yvv/P+vixq4Oq7nsdAhKGjD+GFHx7GzCFJB12Wui/pbispLgurKnwYhszF0F73TUPtvahuid1MhprqUdEQhhRJFAkhhBBCiF395JgRtHaGeWZL14PPgZ4o0nX0xhLK9FRuO3Vcj7yfT3NZgVgrCGP2IWjhjv16D79dazUq3EFk5MkYOn20r3qp22McrCRRJAaM4vo2AIYkO6F5a2yhNzeOEfUPZxySTSAU5UXrGYRsKZg++DV6NHrA+3l1ZQXnPfglQ7VKAOYdMafbh5jtiVKKCVkeVpX70ArmAuzX8LNqXyxRlKPHEosy45kQQgghhNid0RluTpyQwT1fdaKj0LsaPQ9Un369AZvezpARY8lJtPfIMdI83ySKyJgUW3ggw8+6hp0Zpl5K0J2Htvy/3Rzhtw7nD27//DDQSaJIDBhF9X7sZgNpbgs0l8YWSo+ifZqQ7eXIkSk8srSO+mk/w169lLaVLx/wfl5YXk5+koNfz+iaZa6Xh3FNyPaypa6NNns2EVcWkaJP97nNtl/0KYGufy9J0qNICCGEEELs3v8dM5yWkIEWUwrRxpL92iYa7X9NrzuCEZ58K/bQdcaUQ3rsOGnuWKKo2tcJycPRDVaoOYCm1F2JIpKGEp50MdbKLwnVFHZrjNGozueb6/nx0yuY+ccPuPP9A6h46sdkeh8xYGxrZK2UQm8uA2VAubp/LO1AdP0xI/jevxfxYvQIrkwYgeXj2wiNOxGT2bpf20eiOitKmzl1UiaGhk1EXJkYLK4ejnpnE3I86DqsqWxhSt5sDFvei/Up2kuZ7LahZ862YqK2JDR7Ym+FK4QQQggh+plhqS5OnZTFxnVJjK8rwrCP9Wt9beiBNtLS0nslvu7yrw83YW0tAzOYkof02HGcFiNOizFWUaQZ0B0p0FbL/g5yizYWozQjypODZepF6J/9idCSRzGdfMd+xxCN6lQ0d1BY3YqvI7TTa1W+Dp5fXs7WhnY8NhPnz8jlvOmDY8SKJIrEgFFc72d8VqypcbRpK7izMMhU5/tlUk6squjhz8s468RbSXv9Auo/vJPE427arxkNCqtbaesMMzU/ARZvhKTeH8I1IWtbQ+tmpg+Zi7bmWahdD2lj9rhNla+DBLsJQ+NmoknDpcRSCCGEEELs1fVHD2fZmlRG1K1lb49Um1tacTx1GuaWEkLXLsXkSOi1GA/GxppWHvi0iLuzAlAH9HDP1zS3JZYoAnAko7c37H+iqGELyp2DwWDE4E6jfejxmNc+C/N/B0bLLus3tHVSWN3KhupWNtbEvm6qacUf3HMD7ekFifzkmOHMH5eB1bSv1ODAIZ+ixYAQDEcpa2zn1ImxCiK9uRQ8gyPb2122VxX5RnLRkBNJ+vIO6hKHkTr9zH1uu3xrIwBTcxNQCzbB5At6OtxdJDktZHltsT5F8+cAEC3+FG0viaJqXydpbitawyaiI0/orVCFEEIIIUQ/lZ/soDBjGJ7aT6isbyQzedeK9LZACP2Nn+GoWQpAy6d3YZr/216O9MDpus6vXlmDw2LkiFQ/0fZUNHPP9CfaJt1j3V7ljyMJ2ur3e1vVWISe+E3Fkzb1Uoyb36Rj9avYJp9NIBTh48I6Xvu6giXFjdS3BQGwE2CudTOT3WaOy3OQ5nGQ5nXiNkbQwm1ona0Ygm2YCWL2pECwmobCFIyeNNIycnebhBpoJFEkBoTSxnaiOhSkOABQzaUw5Ij4BtXPbKsqenBhMWddew+GZ84g+Z0fUedMI2XMnL1uu2xrE6kuC9mGRlTIDykjeynqnU3IjjW0JmEKEWcGevmyvVYJVbd0MMwZRGtuQMmMZ0IIIYQQYj9MnTwF3nmYh1//hNmHzSIS0QlHo4BiekECnQvvIWPjs9RNuR6rbwuO5ffTedjVWDx9ewhacb2fJcWN/OrE0Vg2laF783v8mGkuK4uLYw+dlSMZvXbD/m2o66jmEsiZvn2RdcQxhJzZ+BY+zA3rhvHJxjraOsMkOszMzXcwV21kSutH5NR/hiESgBZif8oOIOBJF8L3/n0AG/RPkigSA0JxvR+AgmQndLaitVVDYn58g+qHtlUVPb+qkQvOfgrD4/NJePUiGp0LSMzdc2XOspImpuYnoBo2xRb0ciPrbSZke3lrTTXN7UEcqWNR1XtvhlftC3Citw4AFaeYhRBCCCFE/5KUHXsoWrRpLQ8Xmnd67aLkTdzmvx1f/nzsx/0KrWkL2gNvEfzwL1hO+0c8wt1vG2taAZhRkIRaWoKeN6vHj5nmsVLTEiAa1dHsydDRuH8btjeidbZA0lAgVg318cZ6yiJHcHHDkxxd91sucUJmSgSvFsC2dR2GcDshazLNI88hMHQeUbMLFQ2DHoZIGIxmMLvA6gGLC81kQfc3oLfVovy1mDrqSc0b1YN/G32HJIp6QSAUGVTjGeOhuL4NgIIkB3rZpyh0yJ4W56j6n+1VRZ8WcfGhR9F21jN4/ncCzufPxn/ZuzgSd20OXuXroKK5g8tnF0BdrLyW5PhVFAGsKvcxK2M8WsnHEO7cbXloZzhCfVuQoVp1bEFy7/dVEkIIIYQQ/VBCPgC/m2PnurGHYdQ02oNh1q9ezulf/ZmtpnxsJ/+bNKsZMkbTOuZcHKufIDDrx1hTC+Ib+14UVrehFAxLMqNaKtASez7WdLeVcFSnwR8kxZ6ECrVDsB32NeSta8YzPbGAjwtrufP9TXxd1swEz5GcYvmIkwwbiJqcRHEQNThpHnYagRGnYBk2F4/DSpJhP7uTpiQBg++BsvRu7Wm6TnVjKyX1fjrDe26SJQ5Ocb2fJIcZj91EqGghujLsVIYo9t/1x4ygqT3E41+UkJQziubTnsTYUY/hmfNimfZvWVbSBMDUvASidRuIWjzgTO3tsAEY19XQenWFD0PG+NgTgrrdT5H5+ZYGAIYZqtA1U4836hNCCCGEEAOEI5moyU62XsPYTA8uq5HElnWct/lnaCYLF7Rdz12fVqLrOgCmo24GpQh9+Mc4B753G2tayUu0Y/NXxB68dyXEelKaO9YSvKYlAI7k2ML2ffcp6qiNjWS46o1GLnt0KfWtndxx+nheuPF0Wn+wjM0XLqPywk/xXfQuoQtfxXXmPWRNmUey245pf5NEg5j8DfW0da+S+eyxRLZ+yaaaNmpbA9t/YYjuU1TnpyA51p+I0i8Ip46HXp6efaCYlONl7ogUHllYTCAUIXnkYTQd/TestSvpXPXSLusv39qEzWRgTKYbvW4TetLwvU5J35M8NhMFyQ6+LmuGtPGxhTVrdrvu619X4rYayQ6XE00oAJkhTwghhBBC7A+l0L35dNYXsbmqHvtnf2DYq6eiRQI0nfwYJx8+g6cWl3L3B5sBsCbl0jbxcpyFL9Bevvv3pn1BYU0rI9Jc0FQSW9AriaJY5X9NSwDsXYki/54TReurWrj5xVU8/OoHRHVFnTGdP58xno9uOIJzp+diNmpkJ9gYk+lmSIqTDI+NBIcZs1FSHwdC/rZ6WNDoQA+0MuT1M8hY+Cvq6urZXNsm1UXdrLi+K1EUCmCs+qpXxtMOZD86Yij1bUGeXxbr7JY44zyCCcNQi+6EbyU6l21tZFKOF5NBQ9UXouLUyHqbCdkeVlf4IGkoutFGuGrVLusEQhHeXVvD/HEZGJo2oycNi0OkQgghhBCi30rIx1j9NUNenE/q1/+mafgZbD7rfVLHzuGmeaM4Y0o2/3x/I098UQKA5YifETU6iLx/G83twfjGvhud4QjF9X5GprugqTi2sBcSRemeWEVRdUsA7Emxhe2771Pkaw9x+r2f8+rKSmYmtBB0ZPDydUdxzrTcnRJBKk4PrQcSSRT1sAcrC5jh+wOfJ59J4vonGPHC0Zg3vcWWWj/+zl2H8YgD19YZpra1k4IUB3rFcrRIJ8YCSRQdjBkFiUzO9XL/p0WEI1GUZiB66HWY69cS3PjB9vX8nWHWV7UyNT8BOprQ2uvQUuObKBqf5aHKF6DWHyKSPAqqd31q83FhbAaEk8enojUVo0kjayGEEEIIcQBUYgGm9hq0kJ/i4x+n6dh/MiQnG4vRgFKKO84Yz1GjUvn1q2u5+onl+HDhn/ojXCXv0PHxnWyprKU1EIr3aWy3pdZPJKozIs2F3lSCbrSCM63Hj5vitKAU1LR07nPo2aqKZjpCER64+BAmOZowJg+RpFAPkURRDzvzkGxmjsrjgvLTuNJ0B62am7z3v0/6JzdSXNtMk7/vZZP7m5KuGc+GJDsIFy8CQMs7NJ4h9XtKKX50xDDKmzp4Y1UVANYp5xJ2pBFdeOf29VaWNROJ6hySlwD18Z3xbJuJOV4AVpX5IH0cWs3aXaqgXl9VSbLTzMyEVlQ0hJYiiSIhhBBCCLH/tGlXUDP9Jjaf+T7OcfMYmuLEYvxmAiOTQeP+iw7hpnmj+KiwlqP/8QlvOU6jNWsOGUv+QO6Ts2n59D8UVTfQHox/AcG2Gc9GpruINpYQ9eSC1vPpAqNBI9lpoca3Q0XRHoaerSr3AbGZjrWmIkgc0uPxDVaSKOphaW4r9100lccum8ZG0wim1/+Kl53nklj4DPlvXURldRXVvsB32ndze5BoVPodFXUligqSnegliwgljQJ7Ypyj6v+OHpXK8FQn//l4S6yvltFCaOrVWMs+I1T+FRBrZK0UTMlLoKNyXWzDOCeKxma60RSs6mporQUaobVq++v+zjAfrK/hhPEZGJu2xBbKjGdCCCGEEOJAJA0lfNj/MSQ7gxTXrjPsQixZ9MMjhvL2T+YyNtPNTW8UcWn4Fyw7/HGCrlyyPv812U/Mpv6Lpymp9xMIxa89SWFNKyaDIj/JEetRlNB7s7Olu62xoWdWD7pm3GNF0ddlzQxJduBRHWgdDRiSh/ZajIONJIp6yREjU3n/p4fzw6NGcXPz97jdfD326qUMfe10mis2Utuy/8miaFRna4OfsvoWttS1xfUXSl+waFM9VpNGXoIZY+VS9LzD4h3SgKBpih8eMZTCmlY+3FALgO3QK4mY3YQ/+ScQ6080Ms1FpKONyNfPxkpUe2Es897YzUaGp7pYVd6MSu9qaL3D8LP319cQCEU5aUImev3G2ELpUSSEEEIIIQ5QlteG1WTY53oFyQ6e/v5M7jh9PBtr2rj4IwtPjLqP4nlPErankPvRtVgW/4tNNW2UNrTH5fPdxupWhiQ7MRsUqrkELTG/146d5rbGmlkrhW5LRPc37Ha9VeU+xmd7tvdQUom9l8wabCRR1IssRgM/O24kD18ylf/6Z3Kj7TaMgXqGvXYqrZsX7bXkUNd12oNhguEoRXWtmJf8h7GPjSLhk1+xpbKehrbOXjyTvqPRH+SVlRWcNjkba/1atJAfY8HseIc1YJw8MZMsr43/fNxVeWN1E5x0KdbNbxCs3cyK0mamp0awPHUqjqovCRx9O2j7vln2tPHZHlaX+9BTxwAQ3aGh9etfV5HutjI1L4FI3UaitiSpQBNCCCGEED1KKcW503N5+ydzmZjt5Y53Crm9MJ2ik16geegpZCz9E2lL/oSvPRiXYoDCmlZGpLugvQEt2NarSZg0tyWWKAKwJ6PvZuhZbUuA6pYAE7K90FgUWyhDz3qMJIriYPbwFP513mRebszjesdfCZs95C+4kOqiNbsdSlZY3cqJdy9kzG/eYcZtb7D5gYvIWPx7Koy5JK97jJyXTqa+eBVbG/wEw9E4nFH8PL2klM5wlMtn5RMqXgiAJhVF3cZk0Lhq7hCWbW1iaUls9gHL7GvQNRMN7/6NlGAZPyu9BmtjIdXzHsQ848o4RxwzMdtDgz9IRcBMxJNLtHo1EJsp4ZONtZw0IQNNU1C/iWiSDDsTQgghhBC9I8tr439XzuBXJ47ms431XPrE13w89nYaRl1I6qr/kLnoF0S7ZiDrrZmy2zrDlDd1MDLNGRt2Br06SiDdbaWpPRRLjjmSdzv07Ouu/kQTsz1EG7oSRb04PG6wkURRnMwbl8GfTh/Pm5UObnL8Ed1gIeO9a6hsaN6+TjSq89BnRZx8z0KqWwJcPdnGK7Y/MC/yMY9Zzuek4B+4NHgjweYqcl88gfef/AsPfrqFknp/n2iI1tNCkSiPf1HCnOHJDE9zoZcsIuzJB3dGvEMbUM6emkOSw8zdH2yiMxxBc6fTOfZsUra8yIvmW7Hp7VSf9gJp087AoPWNWQcmZHsBWF3uI5o6DmpiQ8/eWVtNKKJz8sRMAFTDJulPJIQQQgghepWmKa6cM4TXfjyLZKeFnz6/hmdSf0LtxGtJ2vAUOR9dSyTYSUl9O6FIzxcCbOpqZD0izRWXRFGaxwpA7baZz9p3HXq2qrwZg6YYmxlLFEXsKWBx9lqMg40kiuLonGm53DRvFK8W69zl/Am2hjW0vvErVlf4KG1o58KHF3P7m+uZlp/AI0dF+VnJVWRHyyg59iEO//7fWPqr47jqiqt57pBn2GIdxxVNdzLho0u5+757uf+jzRRWt9DSh6Zc7G4LVldR09LJ5bMKIBrFUL6YaK5UE3U3m9nADw4fwmeb6pn5xw/4w5vrqBn7fTQ9TJty0nDum2SMnR2r0OkjRmW4sJo07nh7A5u1fAxNRRBs5/VVleQm2pmQ7SFYX4KhowFD6sh4hyuEEEIIIQahUeluXvzhYcwensJf393If4znUzn9l3iL3yT70xsIhsKU1Memre9JO854tq3/D968Hj3mjtLdsURRTWsAzZ6020TR1+U+hqc6sZkN0FiELtVEPcrYHTtRSs0D7gIMwEO6rt/xrddV1+snAO3Apbquf9Udx+7vrj58CP7OMPd+rEg0HM9lW5/ksn9n8FF0MjazgeuPHsY5odfIeP8Ogq4sik94Ck/eBNK6/jMdNjSZsZkeKg55mYpVD3PIinuZE7ydkkUP8vLi+ajJF3LMlOGMSHNjNg6svOAji0oYkuzg8BEpUL8BQ6AJvWBWvMMakL4/ZwhjMjw8tWQrjy4q4cHPdMYZ/kDB0NH8q2BsvMPbhcVo4MGLp3L7G+u5c7WF+81R3v/kYxZt1vnhEUNRShFc/BAmpaHGfC/e4QohhBBCiEHKYTHy0MVTueH5r3l0UQlNk47jpqlhMpb9hbA1gaqZv6W43k9ekh2ToWc+zxVWt2E1aeQk2Ik2loAjFc1s75Fj7c62z7bVvgA4ktECzRAJgcEExPr1ripv5vgx6QCopmL0gsN7Lb7B6KATRUopA/Bv4FigHFiqlHpN1/V1O6w2Hxje9WcG8J+ur4OeUoobjh/JT44ZzoqiyTS9dir/7niQ+0Y/zuSh6UxZ8Ss8W9/FlzePyiP+SmZ6Bh6baad9eGwm7Oluysw/oGjMxbiK38K24mH+z/cY/mVPc8/i07k1/TyOHpvFaZOzyPDa4nS23eer0ia+LmvmtlPHommKUPFCTIAxXxJFPUEpxezhycwenkxta4Dnl5Xz5io3J83ou8O25gxP4a3rk/nwSwu8+0/e//gDovpRnDwxEz0UwLr6f3TkH4vdmxPvUIUQQgghxCBmNmrcec4kEh1mHvu8BN+IY/jz2AZS1z5M2JpM3eQfs7GmlXS3lSSnpduPv7GmlRFpLjRNEWksAW9+tx9jb7ZXFLUEwJ4UW9jeCK40AEob22luDzEhxwOhDgxtVUSkkXWP6o6KounAZl3XiwCUUs8ApwI7JopOBR7XdV0HvlRKeZVSGbquV3XD8QcEo0FjytB0Sk+4n7wX53N1zW8xFtdhbK+mcuattE26koIkxx6nXzQZNIakOPF1WGhynEHtsFPx1a3G+eXfuKnmaTY3fM7P372Mv7wzgoIkO6Mz3IzN8jA+y8PEbC8eu2m3++2rHllYjMtq5Iwp2QBEixcRdmRgjPPU7INBqsvKNUcO45oj+/6U8pqmOGbmNKIfO7k8t42svBGMTHPRvuxpHIFGgtO/H+8QhRBCCCGEQNMUt548hiSnmb+/u5EfZJ/GAwUNpC//KxFrAo2jL6SyOUBTe4jsBNsePxd+F4U1rbFRGoBqLoG83n347rYZsZq0WKIob1uiqGF7ouibRtbe7T2UDMlDezXGwaY7EkVZQNkOP5eza7XQ7tbJAiRRtAODpkgfOoGqQ39H1mc/J+jMpuikFzHnTWNYgm2/esB4bCY8NhPBcJQm91Qa0x8nWPQOuZ//hpf037I06RSeUKfyZXGQBWuqATAZFDceP5KTJmRiMWpYTQYclm4ZlbhPwXD0gIfEVfk6eGtNNZcdlh+LU9cxlH1BNOdQUH2nT47oIzSNaMoYhkSL+fHRsQoobdlDBD0F2EceHefghBBCCCGEiFFK8eOjhpPqsvDLl9dwrvdCns1oInPRLeiakaYR59ARjLC5to1Eh5lUlwXjHoaj+TpC6LqO127e6zEb/UHqWjsZmeaCcBDVUoFK7N3+P0op0txWqrc1s4adZj5bVdaM2ajFeiht6prxrJdjHGy6Ixuwu0/m3+62tT/rxFZU6irgKoDc3NyDi6wfspkNWKdfQrEjk47UCaSkpJPiOvDyQrNRI81tJcVpocZ+EpuzZpGy/J9MXfMw0/TXiGpmOtLyqLfksrg1iS/fTiRQNIkjZx8GVi+5ifYerzIKRaJsqm3FYjSQ5rbgsu77eLqu89iiEnRd59zpOdS0BPBXbWKIv5qQ9CcSe5I+Hm31c6DrBMpWYqtZTtsRt2HWBlbfLiGEEEII0f+dMy03VsX/1Fec0nEVryX5yf7s5yRsfI6qmbfSkTKRhrYgTe1BUpwWkp2W7UUFHcEIdaXr8Sy8HXvDWqI/+AjNmbzHY+3UyLp6FQodUkb0ynnuKM1tpcYXAHtXrP4dEkXlPsZkuDEZNKINRbEZuaSZdY/qjkRRObBjk49soPI7rAOArusPAA8ATJ06tWfbu/dRSS4rnaOOIcVmwnmQlT2apsjw2Eiwm6lw3ErjqPNxVC/F4tuCpXkLab4izgp8wtnmMJQAJRC0pVA37Uasc6/EYuy+ksZvq9m0nKFvX42v4ERKx12J1Z1Imtu6yzm3BEJ8vrmejwrr+GxjHZW+AHOGJ9PRGYGKFaR8fS8ApoLZPRar6N8MGeNRyx+G5q2ElzxI1GDFNu3ieIclhBBCCCHEbh05KpVnrprJFY8tY27tT/n36HXMLrufYa+eTNOw06medjNhRzo1LZ3UtwVJcVkIttVjWfQPstf9F10zoYU76Pj0Luwn/H6Px9kxURRe8hYGpaGGHNlbp7ldutvK1+XN4OgaUtY181kkqrOm0sdZh8RajkQatoDFi2ZP7PUYB5PuSBQtBYYrpQqACuBc4PxvrfMacG1X/6IZgE/6E+1dZjc3nLaaDAxNcdJkH0tz2ghaQxHCka48XDSE2beVVauWsXn9Ck7qXMHYz35JRfJIsscfjuqB4VyNbZ14P/0N5tYy0lbcRfLaR6mbcDUlYy6lOmCksLqVDTWtrK9qoaiujagONpOBiTkeLhhr5STtU1Jfug5b0waiBgutE6/AlTKq2+MUA4NKHw9AtGQR9g0v0THqdByOhDhHJYQQQgghxJ5NyPby3A9m8v0nlnPZqjFMzfg3t2e9x4jix/FueYWwLYWQI4OQI4OwNYG04jcxBFtpGnE27bNuImHhbdi+eojonB+juVJ3e4wN1a14bCZSXRbCm94jnDkVUxySMGluC9W+ALrVGxuO1JUo2lzbRnswwoRsb2zFxmKiCQXIuICeddCJIl3Xw0qpa4F3AAPwiK7ra5VSV3e9fh+wADgB2Ay0A5cd7HHFd5PgMJPgiI1TDUeidIajBEIRgp4xTM8cRXj4fK56YwkvGn5J6ttXU53yARkZWd0aQzAcpXXNAvIqP6dw0i2sMoxjzMZ/MXbZXzAv+w9rwodgwEW+5mKUO5HUIU7GmavJ6tyCrWkDpso6ANpTJlIx6480Dz2F9NRU6U8k9ix1NDoK/YPbMYQ7MMyQJtZCCCGEEKLvK0hx8sxVM3lkYTFPLS5lXtWRnFYwh2u8S/AEazC3V2Fu2oSjvYaOtCk0HfYrkoZOIdFiJHT0zahNr9L+yT9xnPSn3e5/Y3UrI9NcqLZaTDVfEz7iV718hjFpbiud4Si+ILitXpS/HgWxKiNgYo4HANVUjJ55SFxiHEy6pWOxrusLiCWDdlx23w7f68A13XEs0X2MBg2jQdupcXVekoPcBDs/euzHPK//Fvub19B83jN4HdZuOWZ5UzuvrSjllC9+SxnpnPTlSELoGLQfc7zne/yQFzgpvBpbpAVDNARtQBtEDRY6vcNpzT6CzsRRtGbNIZg0CqfFSLbDjNvaO823RT9ldhBJGIKxaQuBtClYc6fEOyIhhBBCCCH2S7LTwv8dO4LvTc7i4YXFvLyigpeLD9tlvXm56dwzcvL2BtemtFG0jzod24pHiMy9HoM7faf1dV2nsKaVUydlEt30LhpgHDWvN05pF+me2OfNmpZO3PYk9K5E0aryZpwWI0OSnRAJYWgpJzr+rLjEOJjIp2uxi1nDk9l4wkn8bsEWbi9/lJpP/kng2J8f1BSMuq7zs+e/5qWvKjjH8BHZphL+lfxrfn3IRCZmexme6qS1M0x927kURwFdR0UCGDp9aJEAQWc2aEaUAqtJw2s14bWbD3jGNDF46WnjoGkLkUOuiHcoQgghhBBCHBCTQWNEmovbTh3LOVNzeGtNFZpSWE0GrCaNal+A/36xlZtfWs1fzpiwvbm16cibURteJvDxP7Cf8ped9lndEqA1EGZkmotI4bvojnQMaePicXqkua3bYxpmT94+9GxVuY9xWe7Y+dQVo/QIWvLQuMQ4mEiiSOzWZbMK+Hnlpby+aj0nLvkrFRnTyJp49PZfOAfq9VVVvPRVBaeN9fK7ilfwu6dw8aXX4dlhuka7xUiSw0x7KEI0qhOO2ohEveg6WIwaNrMBi1HrkZ5JYuDTRhxPoLYQ++Qz4h2KEEIIIYQQ34nFaGBKXgKTc727fC5KdFj45/sbcVqM3HryGJRSmFKH0z7mLKxfP0bk8J9g8GRuX7+wuquRdYoVw0cfER59KoY4fdZK70oU1fgCKHsSelMJneEI66tauHxW1wxn9RsBUCkj4xLjYCLlGGKP/nD6BJ5Ju4GtegrJb19NZXnxd9pPfVsnt766htEZLn7ufh9roI6GWb/ZKUm0jdGg4e6qFkp2WkhzW0n3WElwmLGaDJIkEt+ZYcoFtF3+KcrUvY3ihRBCCCGE6G27+1x03dHDuGJ2AY99XsKd72/avtx85E2oaITOj/620/obuhJFo0Pr0YKtmOI07Awg1W0B4J211VSHHej+ejZUtRKK6NsbWYdrC2MrJw2PU5SDhySKxB6ZDBp3XzqXX5tvgs4WTC9eQm2j74D385tX19DWGeZnh3pJXX0fvvz5uIbN6oGIhdi7JMeuyUkhhBBCCCEGAqUUvzpxNGcdks1dH2zioc+KADAmD6Fj7DlYVz1BoKEUgNrWAA99VsTYTDfWrR+gaybUkCPiFrvFaGDuiBQ+2FDLyxs70f0NXPDQlwBMyI41so7WbyLiSAerO25xDhaSKBJ7leS08Jsrz+IO6/Wk+Vax4ZGrqWxq3+/t31xVxYLV1Vw4M4/JRf9BiwSpn/kLvHZTD0YtxO5JRZoQQgghhBjIlFL86fTxzB+Xzu1vrue5pWUAmI/8OaATfuNGwqEIP332a9o6w/zznEmoTe8Szj4ULK64xv745dNZ9dvjOHHmeEwqwskj7Jw9NZvshNiIAFW/kWjisLjGOFhIokjs04g0Fz/58Y18kHIRc9sW8Pi/fsMnG2v3uV1DWye/eXUNo9JdnJvVQOKGp2kYewnurFHygV0IIYQQQggheoDRoHHnuZOYMzyZm19axYLVVRiT8vHPvgVn8dt8+OQfWbi5nt+ePJYRliaMDYVoI4+Pd9gAuK0m8nNyAfjTvCz+cubE2GdHXcfQuBmSZdhZb5BEkdgvCQ4zky/5G5Wpc7kh+gj/fvRxfvTkctZU+GjrDBOORHdaPxyJ8ptX19ISCHHtkUPI+eJXhG3J1E/9qQz/EUIIIYQQQogeZDEauP+iQ5icm8D1z6zgk411OA6/juq0uRxecieXD2vlnGk5RDe+C4ChjySKALAnx776679Z5q9D6/ShpUoj694giSKx3xKdVjjjIULuPB62/4ui9V9x+r2fc+ura1la0sTGmla+2trEHW9tYPafP+LN1VVcNDOPSXWvY6/7murpt5CQmPydZ04TQgghhBBCCLF/7GYjj1w6jeGpLn7wxDI+2ljPZc2X41Nubmy5g1B7C5HCdwh78iGpDw3pciTFvrY3fLOsa8YzQ8qIOAQ0+BjjHYDoXzJSUyk/6VEyXjyFBeab+cB5Ejd9NY9311aTn+xgTUWs2fXU/ASuOXIoU5J10l+4A3/6dFpGnMZIqSYSQgghhBBCiF7hsZl4/IrpnH3fF1zx32UYNQuV8//FxA8vwv/yNdi3fkpk0kXQl1qDbKsoav+moihatzFW5ZIsiaLeIIkicUCUUmQMnUDxOR+RuOQfHFP4FIud7/O09WweaT2O86bncvToVFJdVgDSF/4CQ7CVisNuJ9Vtw2iQIjYhhBBCCCGE6C3JTgtPXDmDq59YztlTs5l0aD6+tp/iWfw3ALSR8+Ic4bfYuyqKdhh6FqktBKMNzZ0Vp6AGF0kUiQNmNGjk5ORTbPsTDWMvJX3JH7m47BHOs72OL3ISvvZTaHdOwVa/isQNT9Ew7gpIG0OyU6qJhBBCCCGEEKK3ZXltvP7j2dt/dh37C9rLFmGtW42WP3svW8aB2Y5usqO+NfQskjgMTZPCg94giSLxnVhNBoakOChWI9l6/GM4KheRtO5xEjc8RfLaRwk6c9CVImxLpmbK/5HjscpMZ0IIIYQQQgjRB2hGI9oFz9Huq8RpssY7nF3otiR0f/32psqqYRPRrGlxjWkwkUSR+M4sRgNDkp2UNPjxZ87CnzkLLdiKe+s7eLe8jqNyIWVH3IXDnYDbaop3uEIIIYQQQgghulgdbnC44x3Gbun2pG+GngXbMbSUo0+6IL5BDSKSKBIHxWzUGJLsoKTBT0cwStTsonn4mTQPPxP0KErTGO7texlqIYQQQgghhBB91I6JosYtKHSMqSPjG9MgIgP8xEEzGjQKkp0kOEzsNGRUaSQ5zViMhrjFJoQQQgghhBCif1GOZFRHIwB63cbYMpnxrNdIRZHoFgZNkZ1gJ9Oj0xII0dweIhCObJ/9TAghhBBCCCGE2B+aMwW9PVZRFK4txIhCJQ2Nc1SDhySKRLfSNIXXbsZrN6PrujSwFkIIIYQQQghxYOyJqFA7hDrQ6zcScedgNNniHdWgIUPPRI+RJJEQQgghhBBCiANmT4599dej6jehJw2LbzyDjCSKhBBCCCGEEEII0Xc4tiWK6jA0bQbpT9SrZOiZEEIIIYQQQggh+o5tFUVVX6OFAyAznvUqqSgSQgghhBBCCCFE32FPin0t/QIALUUqinqTJIqEEEIIIYQQQgjRdzhiiSK9K1EkQ896lySKhBBCCCGEEEII0XdYveiaEdVcStTiAUdKvCMaVCRRJIQQQgghhBBCiL5DKXRbIgCRxGEgM2r3KkkUCSGEEEIIIYQQok/Rt/UpkmFnvU4SRUIIIYQQQgghhOhbumY+U9LIutdJokgIIYQQQgghhBB9iyOWKDKmjoxzIIPPQSWKlFKJSqn3lFKbur4m7GadHKXUR0qp9UqptUqp6w/mmEIIIYQQQgghhBjYtK5EkQw9630HW1F0M/CBruvDgQ+6fv62MPAzXddHAzOBa5RSYw7yuEIIIYQQQgghhBigVNIwItYESMiPdyiDzsEmik4F/tv1/X+B7317BV3Xq3Rd/6rr+1ZgPZB1kMcVQgghhBBCCCHEQDXtSlq/vxQMpnhHMugcbKIoTdf1KoglhIDUva2slMoHJgOL97LOVUqpZUqpZXV1dQcZnhBCCCGEEEIIIfodgxGbJzHeUQxKxn2toJR6H0jfzUu3HMiBlFJO4EXgJ7qut+xpPV3XHwAeAJg6dap+IMcQQgghhBBCCCHEwGAxGuIdwqC0z0SRruvH7Ok1pVSNUipD1/UqpVQGULuH9UzEkkT/03X9pe8crRBCCCGEEEIIIYToMQc79Ow14JKu7y8BXv32CkopBTwMrNd1/R8HeTwhhBBCCCGEEEII0UMONlF0B3CsUmoTcGzXzyilMpVSC7rWmQVcBByllFrZ9eeEgzyuEEIIIYQQQgghhOhm+xx6tje6rjcAR+9meSVwQtf3CwF1MMcRQgghhBBCCCGEED3vYCuKhBBCCCGEEEIIIcQAIYkiIYQQQgghhBBCCAFIokgIIYQQQgghhBBCdJFEkRBCCCGEEEIIIYQAJFEkhBBCCCGEEEIIIbpIokgIIYQQQgghhBBCAKB0XY93DHuklKoD/EB9vGMR+yUZuVb9hVyr/kOuVf8h16p/kOvUf8i16j/kWvUfcq36D7lW/UN/vk55uq6n7O6FPp0oAlBKLdN1fWq84xD7Jteq/5Br1X/Iteo/5Fr1D3Kd+g+5Vv2HXKv+Q65V/yHXqn8YqNdJhp4JIYQQQgghhBBCCEASRUIIIYQQQgghhBCiS39IFD0Q7wDEfpNr1X/Iteo/5Fr1H3Kt+ge5Tv2HXKv+Q65V/yHXqv+Qa9U/DMjr1Od7FAkhhBBCCCGEEEKI3tEfKoqEEEIIIYQQQgghRC/o1kSRUmqeUqpQKbVZKXXzDsufVUqt7PpTopRauYftE5VS7ymlNnV9TehafsEO269USkWVUpN2s/21XcfWlVLJOyz3KKVeV0p9rZRaq5S6rDvPuz/qwWtlUkr9Vym1Wim1Xin1iz1sX6CUWty1/bNKKXPXcqWUursrrlVKqSk9cPr9Rl+9Tl2vHdF1/LVKqU+6+dT7nT5wrfb0+++Crv9Lq5RSnyulJnbzqfc7ffhayb3qW3rwWpmVUo92XauvlVJH7GF7uVftp756rbpek/tVlz5wneRetZ/68LWSe9W3dMO1Oqvr7zKqlJr6rdd+0bXfQqXU8XvYXu5V+6mvXquu1/rWvUrX9W75AxiALcAQwAx8DYzZzXp/B36zh338Bbi56/ubgT/vZp3xQNEetp8M5AMlQPIOy3+5bV9ACtAImLvr3Pvbn568VsD5wDNd39u7rkX+brZ/Dji36/v7gB92fX8C8BaggJnA4nj/fcl12u118gLrgNyun1Pj/fcl12qPv/8OAxK6vp8/mP9P9YNrJfeq3rtW1wCPdn2fCiwHtN1sL/eq/n+tvMj9qi9dJ7lX9f9rJfeq7r9Wo4GRwMfA1B2Wj+nanwUo6DqOYTfby72q/18rL33sXtWdFUXTgc26rhfpuh4EngFO3XEFpZQCzgae3sM+TgX+2/X9f4Hv7Wad8/a0va7rK3RdL9ndS4Cr6/hOYr/Qwns7mQGuJ6+VDjiUUkbABgSBlt3s+yjghd1sfyrwuB7zJeBVSmV8h3McCPrydTofeEnX9VIAXddrD/z0BpS4XivY8+8/Xdc/13W9qevHL4Hs/T+tAanPXivkXvVtPXmtxgAfwPbfX83At58Myr1q//XlayX3q2/E9Tp1vSb3qv3TZ68Vcq/6toO+Vrqur9d1vXA3L51K7AFUp67rxcDmruN9e99yr9o/ffla9bl7VXcmirKAsh1+Lu9atqM5QI2u65v2sI80XderALq+pu5mnXPY8y/EPbmHWPavElgNXK/revQA9zGQ9OS1egHwA1VAKfA3Xdcbv7VtEtCs6/q2m8qOx9+f2AaLvnydRgAJSqmPlVLLlVIXH9ipDTjxvlb76wpiT5YGs758reRetbOevFZfA6cqpYxKqQLgECDnW9vKvWr/9eVrJferb8T7Ou0vuVf17Wsl96qddce1Oph9y71q//Xla9Xn7lXGbtyX2s0y/Vs/77EaaL8OoNQMoF3X9TUHuOnxwEpiGbyhwHtKqc90Xd/lSe8g0ZPXajoQATKBBOAzpdT7uq4X7efx9ye2waIvXycjsTcWRxOrnPhCKfWlrusbv0MsA0G8r9W+A1TqSGJvvmd/hxgGkr58reRetbOevFaPEPugswzYCnzOrk/E5V61//rytZL71TfifZ32Se5V2/XlayX3qp315LXan33LvWr/9eVr1efuVd1ZUVTOztnobGKZZgC6SvFPB57dYdmjXQ2bFnQtqtlWDtf19dslV+fy3S7cZcRKuXRd1zcDxcCo77CfgaInr9X5wNu6roe6SuYWsWs5az2x0sdticodj7/X2AaZvn6d3tZ13a/rej3wKTDxoM62f4v3tdorpdQE4CHgVF3XGw7ozAaevnyt5F61sx67Vrquh3Vd/z9d1yfpun4qsd4A3356KPeq/dfXr5Xcr2LifZ32Su5VO+nL10ruVTvrjmv1nfbdRe5V+6+vX6s+da/qzkTRUmC4inXyNhNL6ry2w+vHABt0XS/ftkDX9cu6fkmd0LXoNeCSru8vAV7dtu7/t3P3rFFEURzGn2MTiJ0pBIsoAT+DNoIELEwnKFiotZXYpMrnSJfCXhBMpwi2IVgIxpdoqnRWYikExuIecVidhMXZzB33+cGwMHfvvsyf3bOcnbkRcQa4Q7mWcFqHlO4cEXGesgDVVP/G/2dmmdUhsBrFWcrCaZ/aT940TQO8Bm7/Zf428CDnXwW+/zptdg7VnNNz4FqetrwIXAE+/vM7Hq9BszpORCwDz4D7c/oP+qRqs8JaNWlmWUXEYmZERNwAjpqm+dB+cmvVVGrOynr126A5Hcda9Ydqs8JaNamPrLpsA3cjYiHKZYKXgd32HaxVU6k5q/pqVdPvSuJrwGfKKt8bE2NPgIcnzF+iLK72JW/PtcauAzsnzH9E6cYdUbpzW7n/AvCSch3tHnCvz/c9xm1WWVEWtXsKvKes3L7eMX+F8uE5yPsv5P4ANvN1vaO1mvw8brXmlGPrOXcPeDz0sRp6qyCrru+/LeAb5TTxt8CboY/V0FvFWVmrTi+rS8A+5UfYK+Bix3xr1cizyjHrVT05WavGn5W1qv+sbuWx/gF8BV60xjbycfeBmx3zrVUjzyrHqqpVkS9KkiRJkiRJc67PS88kSZIkSZI0YjaKJEmSJEmSBNgokiRJkiRJUrJRJEmSJEmSJMBGkSRJkiRJkpKNIkmSJEmSJAE2iiRJkiRJkpRsFEmSJEmSJAmAn7f0OiRepqSNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_train):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " plt.title(f\"Model Performance on training data: {train_exps[idx]}\")\n", - " plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Evaluate performance on test data" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [], - "source": [ - "dfs_gpr_test = []\n", - "for df_sc in dfs_test_sc:\n", - " dfs_gpr_test.append(data_to_gpr(df_sc, dict_cols))" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJAAAANSCAYAAAA6VzQYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3ib1fXA8e/VlizvFa84TuLsOHtAyIAQ9gh7NWxaoIyWXaBAKfygZa9CKXuXFTZlB7JIyN5x4izvPSRrS/f3hxyTvbDjODmf5/FjW+86ryTL0nnPPVdprRFCCCGEEEIIIYQQYmcMHR2AEEIIIYQQQgghhDiwSQJJCCGEEEIIIYQQQuySJJCEEEIIIYQQQgghxC5JAkkIIYQQQgghhBBC7JIkkIQQQgghhBBCCCHELkkCSQghhBBCCCGEEELskiSQhBBCiEOIUqqbUkorpUx7sO7FSqkZ+ymuMUqpNUopt1Jq8v44pmgbLc+nnh0dhxBCCCHalySQhBBCiAOUUmqDUiqglErZ5vZFLR/au3VQaFsmotwtXxuUUrf9hl3eCzyttXZqrT9qozAPCW2Z6Gt5HI9ui33tYN97nLzci31qpVTzFs9Dt1LqljbY78MtCU2XUmqVUurCtohXCCGE6Mza7B+4EEIIIdrFeuA84CkApdRAwN6hEW0tQWsdUkodBnynlFqktf7fnm6slDJprUNALrB8XwLYYh/i0DRIa722jffZDJwMFAIjgP8ppdZqrWe18XGEEEKITkMqkIQQQogD2+vAltUPFwGvbbmCUipeKfWaUqpaKbVRKXWnUsrQsszYUk1Ro5RaB5y4g21fVEqVK6VKlVL3KaWMexuk1no20QTQgJb9XqqUWqmUqldKfaWUyt3imFop9Uel1BpgjVKqCOgOfNpSQWJVSmUqpT5RStUppdYqpa7YYvt7lFLvK6XeUEo1ARcrpaa1xD6rZR+fKqWSlVJvKqWalFK/bFmxpZR6QilV3LJsvlJq7Db7f7flPnUppZYrpYZvsTxHKfVhy/1dq5R6eotlOz3vbSmlTmnZd0NL/H23WLZBKXWTUmqJUqpRKfVfpZRtB/voCzwHHNZy3g0tt1tbHvdNSqlKpdRzSil7y7IUpdRnLcetU0pNV0oZlFKvA123eBx2WMmjlLq55flSppS6dJtlJyqlFrbcr8VKqXu2WPxTy/eGlv0fppTqoZT6vuV+rGl5vBJ2dp/tDaXUF0qpR7b4/b9KqZdafr5YKTVTKfVUy/27Sik1cfO6Wuu7tdartNYRrfUcYDpwWFvEJYQQQnRWkkASQgghDmw/A3FKqb4tiZ1zgDe2WecpIJ5oEmY80YTTJS3LrgBOAoYAw4Ezt9n2VSAE9GxZ5xjg8r0JUEWNAfoDC1W0h9HtwOlAKtEP329vs9lkYBTQT2vdA9gEnNwyhM3fsn4JkNkS8/9t+QEfOBV4H0gA3my57VxgCpAF9ABmAy8DScBK4O4ttv8FGNyy7C3gvW0SNKcA77Ts/xPg6ZZzNQKfARuBbi3Heqdl2Z6c9+b7rFfLsj+1rPsF0cSNZYvVzgaOA/KAAuDibfejtV4JXAnMbrnvEloW/QPo1XKOPVvivKtl2Y1E79tUIL0lZq21nsLWj8M/dxD3ccBNwCQgH9h2uFsz0edfAtFk5VXq155W41q+J7TsfzaggAeIPs59gRzgni2O9y+l1L+2jWMPXQpMUUodpZS6gGgl0fVbLB8FrANSiD43PlRKJW27k5bE2wj2sUJOCCGEOFhIAkkIIYQ48G2uQpoErAJKNy/YIqn0F621S2u9AXiEaCIFokmIx7XWxVrrOqIf1jdvmw4cD/xJa92sta4CHiOaiNlTNUAd8AJwm9b6O+APwANa65UtQ8v+Dxi8TTXOA1rrOq21d9sdKqVygCOAW7XWPq31opb9T9litdla649aKkQ27+NlrXWR1roR+BIo0lp/2xLDe0QTZABord/QWtdqrUNa60cAK9B7i/3P0Fp/obUOE73/B7XcPpJosuPmlvvMp7Xe3H9oT857s3OAz7XW32itg8DDRIcmHr7FOk9qrctaHrdPiSaDdksppYgmDv/cch+7WmLZ/LgGgQwgV2sd1FpP11rrPdk30efTy1rrZVrrZrZI9gBoradprZe2PC5LiCbJxu9sZ1rrtS33gV9rXQ08uuX6WuurtdZX7yamBS3VVJu/jm3ZtoJocu1V4Angwpb7YrMqon8bQa31f4HVbFOh1+I5YDHw1W7iEEIIIQ5q0gNJCCGEOPC9TnT4Tx7bDF8jWj1hIVoRs9lGohUnEE12FG+zbLNcwAyUR3MOQPTi0pbr707KDvoP5QJPbDl8iGilSdYWx9/VMTKBum0+7G8kWkG12Y62r9ziZ+8Ofne2BqPUjUQrrTIBDcQRvS83q9jiZw9gU9HmzznAxp30XNqT894sc8vbtNYRpVQxvz5uO4ohcwfH3JFUwAHM3+JxVcDmoYkPEU38fN2y/Hmt9YN7uO9MYP4Wv291XkqpUcCDRIcyWogm5t7b2c6UUmnAk8BYIJbo869+D2PZbOgueiB9RrR6bPUWib7NSrdJnG1km/tYKfUQ0XM5ci+SbEIIIcRBSSqQhBBCiAOc1noj0WbaJwAfbrO4hmhFyZZVLl35tUqpnGjSY8tlmxUDfqJJoISWrzitdf/fGHIx8Ict9pmgtbZv04B4Vx/Gy4AkpVTsNnGXbvH7Pn+Yb+l3dCvRaprElmFfjUSTLLtTDHRVO55JbE/Oe7MytnjMWqqGctj6HPfUtvdFDdGEWf8t4ojXWjsBWirVbtRadyfaKPqGLYYH7u5+3dXzCaLDAT8BcrTW8USrdzbfrzva9wMttxdoreOA37Fnj8Oeup/o8MUMpdR52yzLUltk2IieS9nmX5RSfyNaoXeM1rqpDWMSQgghOiVJIAkhhBCdw2XAUS3Dhlq1DLF6F7hfKRXbMlzqBn7tk/QucJ1SKlsplQjctsW25cDXwCNKqbiWRso9lFI7HXK0h54D/qKU6g+tjbrP2tONtdbFwCzgAaWUTSlVQPT839z1lnsslmjfp2rApJS6i2gF0p6YSzSJ8qBSKqYlvjEty/bmvN8FTlRKTVRKmYn2JfITPe+9VQlkb+6fpLWOAP8BHmup8EEplbV5aJdS6iSlVM+W5EkTEG752ryv7rs41rtEm5b3U0o52LqvFETv2zqttU8pNRI4f4tl1UBkm/3HAm6ijbWzgJv38tx3Sik1jmgvsAtbvp5qOcZmaUT/Nswtj1Nfor2oUEr9pSX2SVrr2raKSQghhOjMJIEkhBBCdAItvX3m7WTxtUSbF68DZhCtAnmpZdl/iPZuWQwsYPsKpguJDjVaQXTo0PtE++P8llinEm3i/I6KzpK2jGglx944j2iT6jJgKnC31vqb3xLXFr4i2iOpkOiwJR97OGyvJWF3MtHG1JuINqM+p2XZHp+31no10Wqbp4hWDJ1MtHl1YB/O53uiDZ4rlFI1LbfdCqwFfm6J5Vt+7fGU3/K7m2ij8X9prae1LHsAuLOll9BNO4j7S+DxlmOubfm+pauBe5VSLqJNu9/dYlsP0YqgmS37Hw38DRhKtALsc7Z5fqro7HHP7eb8F7fM6rb563GlVBzR4Z7XaK1LW4avvQi8vEXV0ZyW+6KmJa4zt0gW/R/RiqQ1W+z39t3EIYQQQhzUlAznFkIIIYQQhxKl1MXA5VrrIzo6FiGEEKKzkAokIYQQQgghhBBCCLFLkkASQgghhBBCCCGEELskQ9iEEEIIIYQQQgghxC5JBZIQQgghhBBCCCGE2CVTRwewL1JSUnS3bt06OgwhhBBCCCGEEEKIg8b8+fNrtNapO1rWKRNI3bp1Y968nc1kLIQQQgghhBBCCCH2llJq486WyRA2IYQQQgghhBBCCLFLkkASQgghhBBCCCGEELvUrgkkpdRLSqkqpdSynSxXSqknlVJrlVJLlFJD2zMeIYQQQgghhBBCCLH32rsH0ivA08BrO1l+PJDf8jUKeLbluxBCCCGEEEIIcUALBoOUlJTg8/k6OhQh9orNZiM7Oxuz2bzH27RrAklr/ZNSqtsuVjkVeE1rrYGflVIJSqkMrXV5e8YlhBBCCCGEEEL8ViUlJcTGxtKtWzeUUh0djhB7RGtNbW0tJSUl5OXl7fF2Hd0DKQso3uL3kpbbtqOU+r1Sap5Sal51dfV+CU4IIYQQQgghhNgZn89HcnKyJI9Ep6KUIjk5ea8r5zo6gbSjvzK9oxW11s9rrYdrrYenpqa2c1hCCCGEEEIIIcTuSfJIdEb78rzt6ARSCZCzxe/ZQFkHxSKEEEIIIYQQQgghdqCjE0ifABe2zMY2GmiU/kdCCCGEEEIIIcSeUUoxZcqU1t9DoRCpqamcdNJJHRjV7jmdzt2uc8899/Dwww/vcp2PPvqIFStWtFVYYhfaNYGklHobmA30VkqVKKUuU0pdqZS6smWVL4B1wFrgP8DV7RmPEEIIIYQQ4rfzBsJUNPpYXeHCFwx3dDhCHNJiYmJYtmwZXq8XgG+++YasrB22Fm53oVBovx9TEkj7T7smkLTW52mtM7TWZq11ttb6Ra31c1rr51qWa631H7XWPbTWA7XW89ozHiGEEEIIIcS+2TJptLbKTbXLTyAUwRuQBJIQHe3444/n888/B+Dtt9/mvPPOa13W3NzMpZdeyogRIxgyZAgff/wxABs2bGDs2LEMHTqUoUOHMmvWLADKy8sZN24cgwcPZsCAAUyfPh3YumLo/fff5+KLLwbg4osv5oYbbuDII4/k1ltvpaioiOOOO45hw4YxduxYVq1aBcD69es57LDDGDFiBH/96193ei73338/vXv35uijj2b16tWtt//nP/9hxIgRDBo0iDPOOAOPx8OsWbP45JNPuPnmmxk8eDBFRUU7XE+0DVNHByCEEEIIIYQ4cDX5gpQ3+AiEIjtc3hwIkRhj2c9RCXHg+duny1lR1tSm++yXGcfdJ/ff7Xrnnnsu9957LyeddBJLlizh0ksvbU383H///Rx11FG89NJLNDQ0MHLkSI4++mjS0tL45ptvsNlsrFmzhvPOO4958+bx1ltvceyxx3LHHXcQDof3KAFTWFjIt99+i9FoZOLEiTz33HPk5+czZ84crr76ar7//nuuv/56rrrqKi688EKeeeaZHe5n/vz5vPPOOyxcuJBQKMTQoUMZNmwYAKeffjpXXHEFAHfeeScvvvgi1157LaeccgonnXQSZ555JgAJCQk7XE/8dpJAEkIIIYQQQmwnEtGUN/mocwd2uZ5UIAnR8QoKCtiwYQNvv/02J5xwwlbLvv76az755JPWXkI+n49NmzaRmZnJNddcw6JFizAajRQWFgIwYsQILr30UoLBIJMnT2bw4MG7Pf5ZZ52F0WjE7XYza9YszjrrrNZlfr8fgJkzZ/LBBx8AMGXKFG699dbt9jN9+nROO+00HA4HAKecckrrsmXLlnHnnXfS0NCA2+3m2GOP3WEse7qe2HuSQBJCCCGEEEJsxRMIUVzn3WnV0ZZ8wQjhiMZokKnMxaFtTyqF2tMpp5zCTTfdxLRp06itrW29XWvNBx98QO/evbda/5577iE9PZ3FixcTiUSw2WwAjBs3jp9++onPP/+cKVOmcPPNN3PhhRduNe27z+fbal8xMTEARCIREhISWLRo0Q5j3JOp43e2zsUXX8xHH33EoEGDeOWVV5g2bdpvWk/svY6ehU0IIYQQQghxgNBaU9nkY1118x4ljzbzBPZ/41whxNYuvfRS7rrrLgYOHLjV7cceeyxPPfUUWmsAFi5cCEBjYyMZGRkYDAZef/11wuFoNeHGjRtJS0vjiiuu4LLLLmPBggUApKens3LlSiKRCFOnTt1hDHFxceTl5fHee+8B0deUxYsXAzBmzBjeeecdAN58880dbj9u3DimTp2K1+vF5XLx6aefti5zuVxkZGQQDAa32j42NhaXy7Xb9cRvJwkkIYQQQgghBL5gmKJqN1VNflo+Z+4xGcYmRMfLzs7m+uuv3+72v/71rwSDQQoKChgwYEBrA+urr76aV199ldGjR1NYWNhaRTRt2jQGDx7MkCFD+OCDD1r3+eCDD3LSSSdx1FFHkZGRsdM43nzzTV588UUGDRpE//79W5t2P/HEEzzzzDOMGDGCxsbGHW47dOhQzjnnHAYPHswZZ5zB2LFjW5f9/e9/Z9SoUUyaNIk+ffq03n7uuefy0EMPMWTIEIqKina6nvjtlN7b/w4HgOHDh+t582TCNiGEEEIIIfZGjduPNxAmFNGEI5qIjn4PR/ReJ4225LSZyEuJabtAhegkVq5cSd++fTs6DCH2yY6ev0qp+Vrr4TtaX3ogCSGEEEIIcQjwBsKUN/h2v+I+kCFsQghx8JMhbEIIIYQQQhwCSht2PxX3vopEokPghBBCHLwkgSSEEEIIIcRBrtbtxxvY86bYWwpHNP7QjpNDKhwAHd2vR/ogCSHEQU2GsAkhhBBCCHEQC4YjVDTt3dA1rTWrK138WFjNjDU1GAyK58/qSZKrEFvtcuy1y7HVrsDasIbmzDFsOO41PIEQSTGWdjoLIYQQHU0SSEIIIYQQQhzEKhp9RPaw+Ki43sOPq6v5sbCaiiYfiUYvdyV8zXDX93R9p7p1vaA9FV9yfyImOzFlM1EhL56ADG4QQoiDmSSQhBBCCCGEOEi5/SEaPMFdrhOOaKatruLTJWUUVTdjUDAky8n/ZS9kbOlLmJtrWegYzXvNE5l05NGYswcTcqQBEFv8Pd2+uhhH5Xyas44gHNEYDWp/nJoQQoj9TC4TCCGEEEIIcRDSWlPW4N3p8nBE8+3KSq56cz6Pf7eGcERz+ZhufHJ0I28F/8RR6x7Cn9SLNZM/o+aU13g2fCpPFee1Jo8AmtNHoJUBZ/nP0d9lNjYh9rvKykrOP/98unfvzrBhwzjssMOYOnVqux933rx5XHfddW2yrwkTJtC7d28GDRrEmDFjWL16dZvsty21ZYyvvPIK11xzDQDPPfccr7322k7X3bBhA2+99Vbr7215v+8tqUASQgghhBDiIFTt9uMPbj12TYV8hEMBflxTywcLyih3BeiaEsudJ/RmvLOEzLl/IqZiLr74nmyY9CKurkeDUnQBTirI4ONFZZwyKJNuKTEARCyxeJMHEFMRTSB5A2HibOb9fapCHLK01kyePJmLLrqoNcmwceNGPvnkk3Y/9vDhwxk+fHib7e/NN99k+PDhPP/889x8883bnUM4HMZoNLbZ8fZFe8R45ZVX7nL55gTS+eefD7T9/b43pAJJCCGEEEKIg0wgFKGqyb/VbY71X9Pn1QEMemMA180Zz4/B8yi0XcS37tO5/Pth5H9yKpaGdZSOuZ81Z3yNK3cSqF+Ho509PAeH1cjLszZstd/mjNHYqxahQj6ZiU2I/ez777/HYrFslYTIzc3l2muvBaLJh7FjxzJ06FCGDh3KrFmzAJg2bRonnXRS6zbXXHMNr7zyCgC33XYb/fr1o6CggJtuugmA9957jwEDBjBo0CDGjRu33T7mzp3L4YcfzpAhQzj88MNbq3NeeeUVTj/9dI477jjy8/O55ZZbdntO48aNY+3atQA4nU7uuusuRo0axezZs3n00UcZMGAAAwYM4PHHH2/d5rXXXqOgoIBBgwYxZcoUAKqrqznjjDMYMWIEI0aMYObMmQD8+OOPDB48mMGDBzNkyBBcLhfl5eWMGzeOwYMHM2DAAKZPn77PMb7xxhuMHDmSwYMH84c//IFwOPq6+PLLL9OrVy/Gjx/fGgvAPffcw8MPPwzA2rVrOfrooxk0aBBDhw6lqKiI2267jenTpzN48GAee+yxre73uro6Jk+eTEFBAaNHj2bJkiWt+7z00kuZMGEC3bt358knn9zt/b4npAJJCCGEEEKITkJrTb0nSLXLj0GBw2oixmLEYTFhMf16bbi80YvW0Z9D4Qizlq7m3Hk3siaSzo/2oxmaE09OghWFBh1B6TBhSzz1vc4mYnHu8NixNjPnDM/hpZkbWFTcwOCcBACau4widenzOKoW4rEc1t53gRAHri9vg4qlbbvPLgPh+Ad3unj58uUMHTp0p8vT0tL45ptvsNlsrFmzhvPOO4958+btdP26ujqmTp3KqlWrUErR0NAAwL333stXX31FVlZW621b6tOnDz/99BMmk4lvv/2W22+/nQ8++ACARYsWsXDhQqxWK7179+baa68lJydnpzF8+umnDBw4EIDm5mYGDBjAvffey/z583n55ZeZM2cOWmtGjRrF+PHjsVgs3H///cycOZOUlBTq6uoAuP766/nzn//MEUccwaZNmzj22GNZuXIlDz/8MM888wxjxozB7XZjs9l4/vnnOfbYY7njjjsIh8N4PJ6dxrerGFeuXMk//vEPZs6cidls5uqrr+bNN99k0qRJ3H333cyfP5/4+HiOPPJIhgwZst1+L7jgAm677TZOO+00fD4fkUiEBx98kIcffpjPPvsMiCbuNrv77rsZMmQIH330Ed9//z0XXnghixYtAmDVqlX88MMPuFwuevfuzVVXXYXZ/NsqRCWBJIQQQgghxAFOa01dc4Bqt59gSLfe7gsGqGv52WIy4LAYMRsNNHlDBMMRvl9Vxbu/bOIe/z+JNTbz4+Evcnj/ESilqNmHOE4cmMlnS8p5edZ6Hjt7MAalaO4yEo0ipuJnmjMPwxcMYzN37DATIQ5Vf/zjH5kxYwYWi4VffvmFYDDINddcw6JFizAajRQWFu5y+7i4OGw2G5dffjknnnhia6XLmDFjuPjiizn77LM5/fTTt9uusbGRiy66iDVr1qCUIhj8tXn/xIkTiY+PB6Bfv35s3LhxhwmkCy64ALvdTrdu3XjqqacAMBqNnHHGGQDMmDGD0047jZiY6BDa008/nenTp6OU4swzzyQlJQWApKQkAL799ltWrFjRuv+mpiZcLhdjxozhhhtu4IILLuD0008nOzubESNGcOmllxIMBpk8eTKDBw/e4f2zuxi/++475s+fz4gRIwDwer2kpaUxZ84cJkyYQGpqKgDnnHPOdo+Fy+WitLSU0047DQCbzbbDGLY0Y8aM1kTdUUcdRW1tLY2NjQCceOKJWK1WrFYraWlpVFZWkp2dvdt97ookkIQQQgghhDhARSKaOk+AapefUFjvct1AKEIgFCEYjvDdyirenV9MtcvPHxLnc0JoLuUj/kL+gJG/KR6LycCU0bk88k0h01ZXc1SfNCLWeHzJ/YnZ3EjbH5IEkjg07aJSqL3079+/NYEA8Mwzz1BTU9PaI+exxx4jPT2dxYsXE4lEWpMSJpOJSOTXHmk+n6/19rlz5/Ldd9/xzjvv8PTTT/P999/z3HPPMWfOHD7//HMGDx7cWuWy2V//+leOPPJIpk6dyoYNG5gwYULrMqvV2vqz0WgkFNpxs/3N/YW2ZLPZWnsKab3j10CtNUptP/tjJBJh9uzZ2O32rW6/7bbbOPHEE/niiy8YPXo03377LePGjeOnn37i888/Z8qUKdx8881ceOGF+xTjRRddxAMPPLDVOh999NEOY9z2PPbWjrbZfJw9vd/3hvRAEkIIIYQQ4gDjD4WpbPKxqsJFeYNvt8mjzZaUNHDlG/N5ZtpakhwW/jEplZvD/6E5bRg1A3/fJrGN65VKz1Qnr/+8kUAo+gG0OWMUjqoFqLBf+iAJsR8dddRR+Hw+nn322dbbthx+1djYSEZGBgaDgddff721H09ubi4rVqzA7/fT2NjId999B4Db7aaxsZETTjiBxx9/vDVRVFRUxKhRo7j33ntJSUmhuLh4qzgaGxvJysoCaO2l1NbGjRvHRx99hMfjobm5malTpzJ27FgmTpzIu+++S21tLUDrELZjjjmGp59+unX7Lc9l4MCB3HrrrQwfPpxVq1axceNG0tLSuOKKK7jssstYsGDBPsU4ceJE3n//faqqqlpj2bhxI6NGjWLatGnU1tYSDAZ57733tts2Li6O7OxsPvroIwD8fj8ej4fY2FhcLtdO75M333wTiA5tS0lJIS4ubp9i3xOSQBJCCCGEEOIAEI5oat1+1la5KaxwU9XkJxzZs8RRKBzhtdkbuPOjZZiNBu45uT8PnTGQE9bfjyESpGT8Y2Bom6ogg1JcMqYbNW4/ny4pA6C5y2gMYT/26kV4g5JAEmJ/UUrx0Ucf8eOPP5KXl8fIkSO56KKL+Mc//gHA1Vdfzauvvsro0aMpLCxsHf6Vk5PD2WefTUFBARdccEFrPx6Xy8VJJ51EQUEB48eP57HHHgPg5ptvZuDAgQwYMIBx48YxaNCgreK45ZZb+Mtf/sKYMWNak1RtbejQoVx88cWMHDmSUaNGcfnllzNkyBD69+/PHXfcwfjx4xk0aBA33HADAE8++STz5s2joKCAfv368dxzzwHw+OOPtzYEt9vtHH/88UybNq21qfYHH3zA9ddfv08x9uvXj/vuu49jjjmGgoICJk2aRHl5ORkZGdxzzz0cdthhHH300TvtW/X666/z5JNPUlBQwOGHH05FRQUFBQWYTCYGDRrU+nhsds8997Se42233carr766T3HvKbUvZVIdbfjw4XpXjb+EEEIIIYToDLTWuPwhGpqDNPmC7Mtb8/JGLw9/vZrCSjeT+qXz+7HdsZmNJK56i+wZt1F6+N+p63dRm8f+t0+Xs7K8ieenDCdRuen3xiAqht1E9ZDr6JsRi8ko16rFwW/lypX07du3o8MQYp/s6PmrlJqvtR6+o/XlVV0IIYQQQoj9yBsIU+3ys76mmeVlTWys8dDo3bfk0ferqrj+nUWUNni59bg+XHdUPjazEbNrExlz/o4r8wjq+k75TfEaDYp4u5nEGDPJTgupsVbS463cclxvvMEw780vIWxLxJvYp7UPkkeqkIQQ4qAjTbSFEEIIIYRoR5GIpsEbxO0L4faH9nhY2s4YvTVY133DF2uaeaskje6Z3bhhUi/SYltm7NERsn+8ETBQOu5hUPt2zdhuMZIcYyHebsZg2L75a1qsjWP7d2FWUQ2XHZFHc8Zokla/gwoH8PitxNl+23TRQgghDiySQBJCCCGEEKIdaK2pbd6zGdQg2gNpU52HVRVNrCxvYlWFiyZfdCrsWJqZyFxOYBajWIZJRbgWuNYGAV863p+H4E0bhCd1CI7qhTgr5lA87hGCzsy9ilkpSHCYSY6xYrfsvmfSsNxEvlxWQb0nQFzGaFJWvIK9Zgkex6i9Oq4QndnOZgET4kC2L+2MJIEkhBBCCCFEG9JaU+8JUuXyEQzt+g36umo3c9bXsbK8idWVrtYZzBIcZganmZnAUoa6vqdf81xMhKg2Z/Jd7Hksip3A8OwY+oYLsVcvxlG9kPiN/2vdb1PXSTTkn7nVsQwG6JnmxGQwEIpECEc0oYgmHI5+NyhIcFgw7qDaaGcKshMAWFPpJqVLNGkUU/4zNV2Gy4dqcUiw2WzU1taSnJwsz3fRaWitqa2txWaz7dV2kkASQgghhBCijTR4AlQ2+Vunt98RrTXLy5p4b34xCzY1oIDcZAcT8pM5Iq6SEaGFZNTMxFE5D0MkSNDRhfoBl9DY4xS8KQVkKsXmuqJajmjdr9FXj71mCbb6Qurzz4yWE20hJ8mB1RStKjK20YxsA7LiMCjYUOtmZF5XfAn5xFTMoVpfgy8Y2aMqJiE6s+zsbEpKSqiuru7oUITYKzabjezs7L3apt0TSEqp44AnACPwgtb6wW2WxwNvAF1b4nlYa/1ye8clhBBCCCFEW9FaU1TdjDew8+bRWmt+2VDP+/OLWVnhIsFm4pphdk5JWE9q5QycpdMxF0U/hHqT+lLb/1Kauh6Np8uIPepjFLYl4s4ejzt7/HbLUmPbpyeRw2IiPy2WoupmAJozRpOw9kOIBPEEQpJAEgc9s9lMXl5eR4chxH7RrgkkpZQReAaYBJQAvyilPtFar9hitT8CK7TWJyulUoHVSqk3tdaB9oxNCCGEEEKItlLl8u80eRSOaGasqebHeYtIaFzBGbZNHJleSld/IebltQCEbEm4s8biyhqHO3scIUd6m8UWYzWSHmdts/1ta2B2PN+vrERrTXPGaJJXvo69Zhke50iS2+2oQggh9rf2rkAaCazVWq8DUEq9A5wKbJlA0kCsig4YdQJ1QKid4xJCCCGEEKJNeAIhql3+7W4PRzTLF87CufglzgnP5RrVCBbQ2oDfkI8750i8KQPxpA3FmzJwn2dL2xWTUdE1ydGuvVkGZcfz/vwSatx+zFv0QWrKHNZuxxRCCLH/tXcCKQso3uL3EmDbKRmeBj4ByoBY4Byt9XaDxpVSvwd+D9C1a9d2CVYIIYQQQoi9EYloSuq9bDmZTTgUoPTn98lc/RoX6BX4sFDcZSKBvFH4UgfhTe6HNtnbPTaloGuSA5Ox7RNTW9rcSHtTnYfU3DR88T2IqZhDTegqQuFIux9fCCHE/tHeCaQdXerYdiqKY4FFwFFAD+AbpdR0rXXTVhtp/TzwPMDw4cP3fr45IYQQQggh2lily4c/GL32qZqraZr5H3puepfB1FGu0vi5559xjr4YbUvEt59j6xJvI8ba/nPm9MmIxWxUrKtpZlhuEs0Zo0go+hQiYTzBMHGSQBJCiINCe/9HKQFytvg9m2il0ZYuAR7UWmtgrVJqPdAHmNvOsQkhhBBCCLHPmv0halzRtp11v7zLYYtvw0KIecbBLOx/FxnDTiHGaNru6ulvZTUbsJuNhCIabyBMOLL9EeLtZlKc7df3aKt4TEb6ZsRRWOkCoLnLaJJXvYWtbjnehBHt0rxbCCHE/tfeCaRfgHylVB5QCpwLnL/NOpuAicB0pVQ60BtY185xCSGEEEIIsc82D10LRzRfz5jJ1avvpNDQnRUjH6TPgGFktlHPoc3JIpvZiMNixG42YjBsve9gOIIvGMYbDOMLRAhFImQltv8QuS0NzIrnk0VlGAzRmdgAnGU/480eul/jEEII0X7aNYGktQ4ppa4BvgKMwEta6+VKqStblj8H/B14RSm1lOiQt1u11jXtGZcQQgghhBC/RXmTj4pGH098tYy/1dyOMpkJn/4yfRNydr/xDigFNrMRu8WIzWRo+b59smhHzEYDZqOB2A6s9BmUncCbczbR0BwkLqYL/rhuxFT8TH3gDx0WkxBCiLbV7oOitdZfAF9sc9tzW/xcBhzT3nEIIYQQQgjRFly+ID+srOLhb1bzp9BLDDRsYMPEFzDsJnmkFFhMBixGQ/R7y5fVZMBqMu6n6NtHQU48ABtqmynITqC5y2jiN3xBOBTCHwp3+vMTQgixHxJIQgghhBBCHCwCoQgPfrmKt+Zs4py4pVwc+ZKa/pfgyt3+eqhS4LSaiLObcVpNWEwHbzPpnqlO7GYja6pc0QRSxiiSCt/BVr8Kb8pwSSAJIcRBQBJIQgghhBBC7IG65gCXvfoLCzc1cEYPuK/mWbzJA6gYeXvrOpuTRvF2M3F2M8Y9GIJ2MDAZDQzIimNpaRO/G21o7YMUUz4bT+4QEhwdHKAQQojfTBJIQgghhBBC7Eat28+Ul+ZSWOHi+iO78ft116MiQTYd9QzaaEUpyIi3keCwHDJJo20NzErgrbkbsZmN1DuzCDhziKmcR00w3NGhCSGEaAMHbx2tEEIIIYQQbaC8wcuVb8xnZVkTNx3Tm/N9/yWm8hfKxvwfgfg8ANLirCQ7rYds8ghgUE48vmCEyiYfAN6UAdhql+MNhNFad3B0QgghfitJIAkhhBBCCLED4YhmfY2bO6Yu45cN9Vw1oQfHOFaTtvBJ6nqdTUPP0wBIcJhJi7V1cLQdryA7AYDCSjcGA3iTB2Bt2ojyN+ELRjo2OCGEEL+ZJJCEEEIIIYTYhicQorCyiSe+Xcv3q6u4YFRXTukaIGfa9fjje1B22L0A2C0GshLsHRztgaFbsoNYm4mlpY04rSZ8Kf0BsNWuxBMIdXB0QgghfitJIAkhhBBCCLGFWrefddXN/PeXEj5aVMpJAzP4ffIS8qeegCHko/ioZ9BmB0aDomtSDIZDeNjalpRSFGTHs6SkAafVhDc5mkCy1y7DE5A+SEII0dlJAklQ1xyQcelCCCGEEEBVk4+yBh9fL6/glVkbmNgzjntML5H7/dX4E3qy5rQv8SX3RSnomuzAYpK301sqyE5gVbkLs1ERcqQTtKdir12OTxppCyFEpyezsB3C/KEwJfVePP4wDosRm9nY0SEJIYQQQnSY8kYvNa4Ac9bX8vQPazkho5mHPffjKFlO9cDfUzn8FrTRAkB6nA2nVd5Kb2tQdjyhiKaouhmHxYQvuT+22uX4ghHCEX1INxkXQojOTi6ZHIK01lS5fKypdEeTRxW/EKws7OiwhBBCCCE6TEm9pzV59I//reLyhAU85foTluZSNkx6kYpRd7YmjxIcZlJjrR0c8YFpcyPtJSWNOG3RYWy2+jWosB+vVCEJIUSnJgmkQ4w3EKao2k1lox/layTrp5vo8dkZWL6+uaNDE0IIIcRBIhTuPDNuaa0prvNQ3xzk6xUVPPTFUh6LeZXbvQ/jS+rD2tP+hyt3Uuv60jR71zLibaQ4rdEEUksfJKVDWOtXSyNtIYTo5KTu9hDxv2XlrK9pZmx+KlqDs+RHsqbfgtlTRcCZjalmVUeHKIQQQoiDQCgcYVOdh+6pzo4OZbciEc2mOg9N3iDvzy/ho5+X837s0wwMLKGq4Coqh98EBnPr+vF2M1mJdmmavQvbNtKuSB4AgL1mOd6coR0cnRBCiN9CEkiHgLfnbuIvHy4FINMWYuz6x0la/Ta+hHyKTnmemPI5ZMy9Dzx14Ejq4GiFEEII0ZmVNnhp9of3W7+baAWRl4QYM7FWE0rt2THDEc3G2mZcvhAvTF/HgiVL+NL5CBnhcoonPEFDz9Na11UqWlmT7JRha3uiIDueH1ZX4Q2GiSTmEjY7sdcup1qGsAkhRKcmCaSD3Bs/b+TOj5YxrGsiydWzGf3V9SRSS1XBVVQN/TPaZCNeNwEQrlyJMW9MB0cshBBCiM6qrjlAkydITPnPeBPG4HTGtvsxvcEwjd4gjd4gJqMiwWEm0WHZbnIQrTXeYBi3L4TLH8IbCBMIRXj820Lq1s7li5hHiTGE2HDMGzRnHta6ndVsoGuSQyYb2QuDshPQGpaVNpIeZ8OX1Bdb7XKCIU0wHMFslC4aQgjRGUkC6SD22uwN3PXxckblJfFo5ndkVT1EUSSDn4a8QJ8RR2M0KLIS7MQ7BwEQqlghCSQhhBBC7BN/KEx5o5eENe+T89ONuLz3w/hr2v24nsCvVS2hsKbGFaDGFcBuMZDoiDa9dvtDuP0hIpEttwvxwJerSCz9gQ/tT4E9hXXHvoI/sVfrOgkOM1kJMmRtbxVkxwOwpKSBkwdl4k3uT1LhfyESxhMIE2+XBJIQQnRG8up9kHp55nru+ng5Y/NT+PvgBjLnP0x93slcG/ckDy6Lw2hQ5Kc7iXeYIT6biDmGSJX0QRJCCCHE7gVCEf726XJ+Kqxuva2k3ouproisWXcCYCidt19i8QZ2PCzKG4hQ1uCjrMFHk3fr5FFxnYe/TF3KwLL3eNHyCKGkfIpO+ag1eaQUZCfayUlySPJoHyQ7rWQl2FlS0ojNZMSXMgBDyIu1af1OHy8hhBAHPkkgHYRemL6Ov326gol90rhpbDrdfrqBQFwuZeP+ySUT+lLbHODLZeW/lg8rRSi5F0oaaQshhBBiN7TW3PbhEl6euYFr315IZZOPKpcPb3MzXX+4hojRRnPaMEyVi/ZLPHszNXw4ovlg3iae/+8H/N71DH83v4w750jWn/guIUcaABaTgZ5pThJjLO0V8iEh2ki7EZvZiDe5PwC22uUyE5sQQnRikkA6yPz7xyLu+3wlxw3owp8m9iT3579i9lRSPOFJrDGxnDwok1MHZ/Lvn9ZRXOdp3U6n9MZUW9iBkQshhBCiM3j82zV8uKCU80d1xR8Kc9N7i6ls9NFl7v9hr11OyfhHcHWdiLVxPQF3fbvGEo5oDKXzSF34JPFFH2OvXozB37DdekZfPaHF71L9+sX8ceEJfGS+g3P5mpp+F7Nx0n+ImGMAcNpM9EiNkX5HbaAgO4FNdR48gRCBxHwiBjP2mmV7lfATQghxYJEeSAeRV2dt4IEvV3FSQQZ/Ojof6/L3SVj3CRXDbobsofRIdaKU4rbj+/D18koe+HIl/7pgWHTjtL6Ylr0jM7EJIYQQYqfem1fME9+t4cxh2dw/eQD5aU7+9ukKTrMvYWDhK9QMuAxX16Ox2+0wDwKb5mPpd3S7xeMNhsmYcz8xlb9sdXvImkAgLpdAbC5mV3E0sUSEBpxUpY3B2/c43DnjCdtTWrdJibXQJc62x7O4iV0b1NIHaVlZExnxNvyJvbHVLicSAV8wLEk6IYTohCSBdJCYXVTLvZ+t4Oi+6fz1pL7Ul64lb9ZfaU4fQc3gq+mZ6Gh9Q5QRb+eqCT149JtCZhfVcliPZExpfQAIVqzE3F0aaQshhBBiazPW1PCXD5dyRM8UHjh9IEopjumfzk/zFnPU6ntoSuxHxYjbSHCYScofDYAunQftmUDyBUiuXUZtn/Op7XcJFtdGrI0bsDS1fFUsYJPfzlehydR0Gceko48n0WnHv8U+Nvc7SnDIkLW2NGBzI+3iBvKSs/Am9ydu49egNd6AJJCEEKIzkgTSQaC0wcs1by2gW7KDB08fSEWDm7xpfwKgeMLjZCRuX4r9+3Hd+e8vxfzt0+V8ft1YjF36ARCqkgSSEEIIIba2qqKJq96YT880J//63VCMSlHj9lPX5ONR09NYCHK9vp4bLbaWWcscBOLzMJQtbNe4QpWrMYS8eNJH4E/qjT+pNy4gGI7w/vwS3t1QjN1i5MqjenBWfsp21UVmkyI3KQa7RZIZbS3OZqZvRhwfLizl1MGZ+FpmYjM3l+OJ7UZiRwcohBBir0kPpE7OFwxz5evz8YciPH/hcBq8QVIW/YuYynmUjbkPe1oeyU7rdtvZzEZuP6EvqypcvPPLJojLJmJyoCtXdsBZCCGEEOJAVdHo45KXf8FhNfL8lGF4A2FWVbgob/CRtuhJEqt/4adet/NNZSw/rK5qnbUsmD4YS9Wi9g2ubD4A3pSC1puWlzVy/TsLeWvuJg7vkcIz5w9lXK/UrZJHRoMiMcZMz1SnJI/a0e0n9GF9TTOvzd64RSPtZXilkbYQQnRKkkDqxLTW3DF1GUtLG3nsnMEkOixQMo/0BY/R0ONU3L1PJyvBvtPtTxjYhZF5STz81WoafWGCyb0w1EgjbSGEEEJEuf0hLnnlFxq9QR48fSBNvhBVTX7CEU1M+c+kLXyC+p6nkznuYo7sncpj366hsNIFQCRrKObmCnx1Je0SWygcwVK1hLA5Bn9CD9z+EP+atpbbPlyKPxTh7pP7cfOxvaPvjwCb2UBqrJUeaTH0y4wjO9GByShvhdvT2PxUTh+axSuzNrCKXDQKe+1yfMEIWuuODk8IIcRekv+andjrP2/kgwUlXD8xn6P6pFFVW0vOtOsIxnSh9PD7yE607/KNkVKKu0/uR4M3yL+mrSWS0htT7er9eAZCCCGEOFBtqm1myotzWF3RxK3H9iHFaUNrMDWXk/7LP8n95nICsbmUHX4faXE2HjprEE6riRveXUQwHMGQFZ2oI7hpfrvE5wmGsVcvwZs8kJlFdfzxzQV8tbyC04Zk8cKFw5nQO40Eh5nMBBu9u8SSnx5Ll3gbDot0cNif7jyxH3F2M09ML8Mfl4etdjlaI7OxCSFEJyQJpE5q7vo67v10BRP7pHH9xHyqXX5S5vwDS9Mmisc/TmJyKrE282730z8znvG9UvlhdRWk9sHkqUR72nfKXSGEEEIcuLyBEE99t4ZjHv+JVeUubpjUm6FdE3BUzCXnu6vo887hpC5+BnfGaDYc8xL22HjS46ykOK3832kDWFbaxNPfr8WaPQitjOjS9kkg+bw+bLXL+ak5mwf/t4r0eCtTrz6cx84ZTEFOAnkpMeQkOUh2WrGY5C1vR0mKsXDXSf0orHRTZOqOvXYFAJ6AJJCEEKKzkUswnVB5o5er35xP1yQHj507mGAkgmvTEnqueI26PhcQ6XoYXeJse7y/QdkJ/FRYTTCxF3YgULECqzTSFkIIIQ4ZkYim0RtkcUkD//zfalaUNzG0awLXjsshv+orkj96BXvtMsKWOGoGXE5tvykEY7tiMiq6Jv060+txAzI4bUgWT/+wlmP7d6F7Uh+M5e3TSLtq7ULSIgG+qM3gpmN6ceX4HjIk7QB16uBM3pq7iS9LU+lv+BajrwFvILWjwxJCCLGX5L9sJ+MPhbnyjQV4A2H+PWUYcTYzlQ0+uvx8LxFzDFUjbiInydHawHJPDMqJJ6JhHdkAhCtXtVf4QgghhDjA+IJhlpU18uR3a/j9a/PZVOfin8Pd/CfxdcZ9Mobsn25CRQKUHPEAK8+bS8WoOwjGdkUp6Jq0fR+he07ujwI+W1JGqMtgrNWLiYQjbRrz/I11fPjFZwCccOzxXHNUviSPDmBKKe44oS8rdDcArLXLaPQGqXH7OzYwIYQQe6XdK5CUUscBTwBG4AWt9YM7WGcC8DhgBmq01uPbO67O6p//W83i4gae+91Q8tNjcftDRFZ/QWzpdMoO+xspaZnYzHs3m8iArHgA5jU6KTDZ0VUyE5sQQghxqJhdVMsDX64kVFXIA8nzOUFPx76shIjJTmPucdT3PpvmjMOhpcrIYIBEh4WkGMsO33PEO8wMyIrnlw116IFDMS1/E0/VWhwZvdok3vfmFXP71KU8ZF1HwBTPqKHD2mS/on11T42h/5CxsOQBKlbPJS7rCMobfHj8YbIS7Rj34uKnEEKIjtGuCSSllBF4BpgElAC/KKU+0Vqv2GKdBOBfwHFa601KqbT2jKkzm1VUw4sz1nPhYbkcNyADgIq6BnJ+vhdfQj6eggvpGWvd6/2mxdrIiLexpNRFMCkfQ4000hZCCCEOBZ8sKuXjD97kEeM7DLQWoZsNuDOPoHj4jTR1O46IOaZ1XbvFSHKMhXi7ebeVziPzknhl5gbCxwwBIFQ8D35jAikUjvDAl6t4ccZ6RuUlcbSvDL+jALtVOjJ0BjazkYnD+1O9NJmGdfNRhweJtZlp9AbxhcJ0TXLs9UVQAZ5AiHpPkESHWRrECyHaXXu/yowE1mqt1wEopd4BTgVWbLHO+cCHWutNAFrrqnaOqVNy+YLc/N4S8lJiuO34PgDUNQeIWfAfrK5NrD/uDTKS4vZ5/wXZ8SwtbSSS0wfTxh/bKmwhhBBCHIC01vxn+jpe/nIW31gfx+BMprzfnTT0OIVQTJfW9QwGSHBYSN5JtdHOjOiWxPM/rWNVOJuRRhuULSD6lm/fNHqDXPv2Qn4qrObiw7tx+WEZxPxrNTW5fyDZJEmHzsBsNGAxGQinDSS/fA0PzdzAdRPzAfAHI6ytcpOVYCcxxtLBkXYeoXCETXUegiFNnTuA1WwgwW4mwWHZZeP4YDiCPxQhHNaEtSaiNZFI9OdwRGMxGkjbi36qQohDR3snkLKA4i1+LwFGbbNOL8CslJoGxAJPaK1f23ZHSqnfA78H6Nq1a7sEeyC799MVlDd6ef+qw3FYTIQjmtryjXRf9BSNucdg6jWRmN9wBa4gO4GvllfiK+hJ4sp3CXvqMToS2/AMhBBCCHEgCIYj3PXxMt6eu4kP4t/AHgqz9vg3CMR3A6Ij1eLtZuLsZuJsptYG2XtjeG70PcT8EheDUgdgqlj0m2J+7JtCZq2t4YHTB3LeyK6ULpuO0iFC6YP2qu+j6Fg2swGVOYielT8xfeUmxvdKZVBOAgBaQ0m9l+ZAiMx4uzyue6Ck3kvI70eh0UYr/mCEyqCfyiY/MVYjiQ4LBqXwh8L4Q5HW75E9aElmsxiJ24MZnYUQh5b2TiDt6JVf7yCGYcBEwA7MVkr9rLUu3GojrZ8HngcYPnz4tvs4qH29vIL35pdwzZE9Gdo1+oas2uUnZc6DqHCQytF3khf/264SDGzpg7TRmEsiEChfhb3HYb81dCGEEEIcQBo8Aa56YwGz19Vyf8/VDCv5mfJRfyWY0I14m5l4u5lYm+k3f3hPjLGQn+Zk7vo6LuwymJilbxAMBjCb9766RGvNtysrmdA7lfNGRi8iGjbP7JY19DfFKfYvm9mIL7k/BiKMjavi0W8KefzcwSQ6fn1e1DcH8YcidE+J2afk5aGiyuXD5fHS47OzsNavxpU7iYbuJ+POHo82Wmn2h2n2e3e9k0gYQ8gT/Qp6W3/WBjNlxkE40+MkkSeE2Ep7J5BKgJwtfs8GynawTo3WuhloVkr9BAwCChHUuP385cOl9M+M+7XMNxSmed0cuqx5n6pBV5OQ3Rvzb5x5pCA7mkBa5u/CYCBUuQIkgSSEEEIcNIqq3Vz2yi+UNfj465EpnLPgKTypQ3APvpy+6XFt3sR4RF4Sny4qI9J/KIZFL+ApW445d8g+xV1S7+XK8T2A6Kxx1qolBG0pWBJzdrO1OJBYTQaakvsDcE1fD2fNC/Hw16u595QBWz3/PP4wpQ1eshMdHRXqAa3ZH6KqyU/a4n/hqF5IY+6xOEt+JKHoY8KWOBq7HUdj91NwZx4OBhMGfwO2utXY61ZirV+FrW41tvpCjEHXTo9RPvIOKsdcS0a8fT+emRDiQNfeCaRfgHylVB5QCpzL9gPgPwaeVkqZAAvRIW6PtXNcnYLWmr98uBSXP8SrZwzEGwzT4A3Q5PGTOetugvZUGoZdR75z7xtnbyvBYaFrkoNZtTGcb7JB9ao2OAMhhBBCHAh+2VDHZa/8gtlo4InzBnPY/JswBJspHf8Q2cmx7TID1shuSbw1ZxOb7H0YCERK5sM+JJB+WFUNwJF9ovOseANhHDVL8KZKA+3OxmY2EnRmE7LGk+1fw5XjT+TJ79fy9txN/G507lbr1jcHcVgCJB1kPZFq3X6SYiz7XF21ue+RtWY5aQueoKHHqRQf+RREgjhLZ5Cw7hPi139BUuG7hGxJaIMFs6fi1+2t8fgS+9DQ8zRC9hQiJgcRs73lewwRk4OUZS+QtvBx1vQ8lQR7T+wW6TMmhIhq1/+6WuuQUuoa4CvACLyktV6ulLqyZflzWuuVSqn/AUuACPCC1npZe8bVGdQ3B3h3XjHfrKjk0jHd0FqxqdYDQMKaD3BUL6R43CN0SUtps/Legux4Fm5qIJiYj1FmYhNCCCEOCkXVbi5/dR4psVb+/bthWNZ8QcL6z6gYfgvxXQe224fDEXlJAMxrTKSfJQ7KFu7Tfr5fVUXv9FiyEqKVED5PEwkNa2jKO55UmbWrU7GZjaAUvqT+2GuXM+mILiwva+K/84rpmxHHsNyt+2+WNXixmQ0HzexiwXCE8kYfnkCYnKR9q67aVOchHPDRbdqfCdkSKTvs79EFBjPunCNx5xyJGuMjtmQaceu/JBjWlNu6U2TIZVkwm5XuGEobfVSX+hnTM5krxnbf7v4NxHUl/4NJpM99gNKEp+mZ5vytpy6EOEi0+6ux1voL4Ittbntum98fAh5q71g6i6omH0tLGnniuzX0z4zjlEFZoDVGXx0W10a6/PIAntTBhAee06bN7Qqy4/lsSTme7Hyc5bPbbL9CCCGE6Bh1zQEufeUXTAbFKxePIOiuJXPmHXiT++MedhU9Yn97FfPOZCXYyUqwM29TA2enDcZcsfcJJJcvGK2eGpvXelu4bAlKRwh1GSw9cjoZo0FhNim8yf1JXvkaREJcOb4HRdVuHvlmNU+cM4TULZ6TWkcTJj1TnZh+Y7uGA0G9J4DW0OAJYjH5SN/Lmc4qm3w0+8OkL3gce/0qNhzzMvaEFLrE2Siu97C0pJG1VW421XnYWJvJprrzaPKFWrc3GQJ0iTeQlWAnP83J96uqWFbaxG3H92ZwTiJKgUEpgtYe1Az8PWmLnqKuzwXUOMaR0gYjHoQQnd/Bkc4/iFQ2+aisa2LV509yG0Ucb/MTO7UUs6sYYyhagaSViU1HP09WQtuOCx+YlQBAmTmX/s0f4nfXY3XKTGxCCCFEZ+QPhfnD6/Mob/Tx9hWjsZmNxM74GyZfPRuPf43slPh2T8CM6JbIzKJaQoMGEzf/GXweNzbHnlczzFxbQyiiObJ3dPia1hrj5gbamXs/HE50PJuppZF22I+1oQiSenPrcX244d3F/ON/q3jg9IFb9fYMhjSb6jzkHQRNteubg60/VzX5MRkUyXuQmPlmRSVv/LwBly9ED/9KHmx8lq8sk3h0TgqmeQuodvmpcvlb14+xGMlNjmF092RyEh10TXHQMzWGvJQYYm1m7GYjJqOB+Rvr+PN/F/Pndxdz5fge/PnoXlhMBiIRTeHQa0hY8wGZs+9mXZfPiLebf3PPVSFE5ycJpANIRaOPsjo3wXcv44/enwiY7IS9uQRiu+LOOoKAM4dAbA6+pL7EZ3aPlgG3oQFZcSgFqyOZ9AeCFauw9pRG2kIIIURno7Xmtg+W8suGeh46q4CkGAvNy/9H3pr3qRp8HXF5Q9v8fcSOjMhL4qNFZdTF9ydehwmULMbWa8web//DqmpibabWoU2+YAR79RICMRnYEjPbK2zRjmxmI00p0UbajupF+JN6k53o4NqjevLPr1bz6qwNXD62+1bbNPvDlDf6yEzovA2d3f4QgVBkq9vKGnyYjAbi7TsfUTC7qIar3phPosNCuiPCde5HqTUk87LzChKsZhwWI326xNG7i5P89Fh6p8eSEW9DKUUwHEHBTqu3huUm8cX1Y7nvsxU8O62IH1dX8/i5g+mVHkt6chLlo+4k9/urSVjxFmX2S8hNjmnLu0QI0QlJAukAUd7opaTWQ+O7V3G07ye+yryajONuQRm2f8E3GRVpsXtX8ronYm1muqfEMMedzulApHIFSAJJCCGE6HSe/G4NUxeWcvHhufRJj8PTVE/+jNvwJeTTNOpP9NhPw1FGdIv2QVoQ7kEeECmdD3uYQNJa88PqKsblp7ZWPngCIZw1S/CmFGCX/kedks1soDq+BwFnNpmz/go6TH3v8xibn8qKsiY+XlxGv8w4Du+RstV2te4ADouRBEfnbKpd3xyASBhn2czW2dEAius8mFJiiNlBQ/jFmxr4/WvzyYi38c8zB5G/8P9IWVbKuuPf5G+5h9Mr3bnLqqw9qRhyWk08eEYBR/VJ4y8fLuWkp2Zw63F9uHRMN2p7n4x75Rukz/8nhd1PpNGRvctklxDi4Cd1iAeAsgYv6yrdFL/zJ472fc3srMvIPOE2lMGAwQBWs4EYq5EEh5mUWAs5SY52mS0FoCA7gR8rbUSMVqiWRtpCCCFEZxKJaN74eSOPfbuGo3qncfrgTOKLPqHHx6di9lRSOv5hslMS9ttQoJ6pThIcZn6uthB0pGPci0bay8uaqHL5mdA7tfU2n7sea+M6fKkF2MzyNrYzspmNYDBRdMpUmtOHkz3jNrp+dyVGXwOXHpFHfpqTJ75bQ2m9d7ttS+q9+ILhDoj6twmFIzR6gySteoO8//2O3G8uxxBsBqJ9njbUNm91Xk2+IPM21HHlm/MxGBR3ndyf9Lp5JC97kdq+F9KcNZbMBFub/h0f078L//vTOMb2TOHvn63gsW8K6ZLgoOzwv2EMuEmf9xDljV4iEd1mxxRCdD7yn7eDlTZ4WV3hYvW7d3B64BOWZp9H7PF3kZvioH9mHP0z4+mVHkv3VCc5SQ4y4u0423HK2oLseCrcITzxPTHWSgJJCCGE6Ew+W1LG3z5dzoAMJ3d2X0uvqcfR9YdrwGBg46QXiOt52H4ZuraZwaAYnpvELxvq8KcPxlK1CK337APotNVVAExo6X8EoEsXARDuMqjT98M5VFlNBpSCkCOdDce/QfnI24nb+A09px5LfNUv3HZcH0wGxd8+W06jN7jVtpuTLcFwZCd7PzA1eIPoiCZp1VsE7anElkyj+2dnYWquACASiZ5XoyfI2io3ayrc/PXj5dS4/dx5Ql8y7WGyf7qRQFxXKkb+hXi7mdg2nEhns9RYKy9cNJwzh2Xz5PdrmbW2BktGf2r7X0zSqrcwViympN67x3/DQoiDjySQOlCTL8iS4gYWvns/l4b+S1HWqXDsA+QkxRBnM2NopyqjXSnIjgeg2tYNc12hXGUQQgghOonCyibu/Ggpk+1LeIfb6P7DlahIkE1HPsWa074inH/sVjNc7S8j8xLZUOvBlVSAtXEdXlfdHm33w+pqCrLjW2OORDSmykUAqKyh7RWuaGdKKSymlo8gykBNwZUUnTIVbbTS/YtzGLDmGe46vhc1bj/3fb4Cf2jriqNgSLOxtrlTvUetbw5gr16MvW4lVUP/xMZJL2JpXEePTyZjrVsF/Nos3OMP8cR3a1hZ3sSfj+7FMFaQ98X5mF0llIx7BKwxZCS0fSuLzZRS3Dd5AAOz4rnh3cV4AiGqhv2ZkC2ZzFl30+jxs6HWQ7gT3f9CiLYjCaQOtKykkZ8/eJwbIq9QmnEMnmMfIz3BTryj48YW98uIx2hQrCMHS3MZ/uaGDotFCCGEEHumuM7DjS98wZvczkOhBzCH3BSPf5TCM76lscepxDqs5CS27eyte2pzH6TVxnwAgsXzd7tNfXOAhZvqt6o+8gbD2KqXEIjNwRqXuoutxYHOZtq6Cs6bOoi1k7+goedppC98guPnX8Zd4xJZXeHisW/XENmm4sUbiFBc79mfIe8zTyCELxghafXbREx2GnpMxtV1IutOeh+lQ/T49HScJT+1rv/m3E38tKaa2we6mbLmerp/fjbm5jJKxj+Gp8tI0uNs7T4bms1s5Lkpw7CYDFz3ziLMjgQqRv6FmKr5JKz9ELcvxPoad6erBBNC/HaSQOog66rdvP/ak9zNv6lOH0v9cf8iKc7RLs2x94bdYiQ/zcliXzoQnYlNCCGEEAeusgYv5/3nZ84NTKWfoZiSsf+k8KwfaMg/E5vVQrcUB91SYn6t+tjPBmTFYzMbmOnJASC0afcJpJ/WVBPRcOQW/Y88gTCO6iV4pIF2p7ej/lURi5OS8Y+xacKT2OpXce7ii7l1SIiZa2t4ZdaG7dZv8oYoa9i+T9KBptYdwBBsJn7dJzR0P5mIJRYAX8oAik75hIAzm25fXUTiqrf5bmUlS+bN4KOkp/j9mt9jr1tJ2ai7WH32dBryT8duMZAcs3+aiGcl2Hn6vCGsq3bz8Neraex1Op60oXSZ+wAmTyXeQIR11c3bVYgJIQ5ukkDqIHmqnIeMT9OUOozK41/AGeMgM75jk0ebFWTHM60+GYBI9coOjkYIIYQQO1PR6OO8//yM2+PlTOscXLnHUN/7XExmC1mJdvLTY9ulV8reMBsNDMlJZFZZGH9cHqaKhXgDu/7Q+cOqKpJjLAzKTmi9LdBUhcVdjC91kDTQ7uSsu0gANvaczLqTPgDgirVXc2P3YqYuLOXzpeXbrVvrDlDj9rdbnL9VOKJp9AaJL/oEY7CZ+t7nbrU86Mxk3ckf4M46guwZtzJ2+gV8af0LA0LLqRh+C6vPmUHtwMvRpuhnhMwE+37t/XV4zxRuP6EvXy2v5ItlVZQefh+GYDPdPz0DS9MGAqEIRVXNu/17FkIcPOS/bwdRKfn4j3uc0uNfweaIoWuS44BpBjkwO4Fl3iTCBguqSiqQhBBCiANRlcvH+f/5mVp3gJeOaMAaqKeh1xmkxVnpnR5L0n6qVNgTI/KSWFnehCe1AEf14l1+6A9HND8WVjO+V2prP8hIRBMqic7gFs4YfMC8ZxL7ZncJQF9yP9ae+jGB2ByuKb+dW9Pm8PxPRcxdv33/rPIG33bNtg8UDZ4AWkPS6rfxJeTjSRuG3bL1uYfNTp5I+ztvhSfSx1BMyYA/svqcmVQPvoaIOaZ1vSSnBYel/SbS2ZnLjsjj5EGZPPtjEXN92aw/4R2MgSa6f3oGttoVhCOaomo3Lt+B+RgcKpp8QRo8gY4OQxwCJIHUgYIDz8PoiCc3OaZDGmbvzKDseCIYaHB0w1BbSCAk45uFEEKIA0mN288F/5lDRZOPly4eTs+yzwjaUkgZdDzpcbYD6n0FwMhuSUQ0bLL1weypoLmmmNBO+qcsKm6g3hNkQp9f+x/VeQJYqxYDoDIH74+QRTuymozsLgcYislg3Unv4846gquanuDvsVP551crWVvl3m7d4jrPAVkFU+8JYKtdiaN6EXV9zkMZFN2SY+iRFoPdYiAQivD4t2t4YVYJn3W9heVTllE/+lYi1vjWfSgFKbEWusR1zEgFpRT/OGMgvdNj+cf/VrHe2idaIaaMdP/8bBwVc9EaNtZ6KG/0Ut8coNkf2unft2h7vmCYTbUevMED729AHHwkgdSBjMboP5H2boS3t3p3icVsVBSbcrHWF1J9AJcGCyGEEIea+uYAv3thDsX1Hl68aAR94sM4N36LK38yToe9o8PboSFdEzAaFL+EewHgLPmJes+OKxamra7CoGB8frT/kdaaapcfe80SfPE9sDkT91vcov3Y9qCPVcQSy4ZjXqKu97lcEHiPJ8z/4oFPF1HXvHWlhdawobb5gLro6Q2E8QYiJK5+m4jBQkPPM4izmTEZDTgsJuJsZu7+dBnfr67i/JFdufW4Ptitvw43VQqSnRZ6d4klI96OsQOTwg6LiX9PGQbA/325ksJIJkUnf0jInkLelxcQu+k7tIYaV4CSei/rqptZWe5ieVkja6tcFNd58Elyo10EwxE21DZjdFeg1nzd0eGIQ8CBlbk4xDitpj3657m/WU1G+nSJY0UwA4u7lMb6OpllQQghhNiPokNftp8mu8kX5HcvzmFdTTMvXDiCw3okE1ryAYZIAAadu4M9HRhirCYGZMbxv7oM/PHdSSx8d7skwGY/rK5iWG5i66y0dc0BQmGNo3oJXmmgfdDY4z5WBjOlR/yDihG3cpyeztORv/PCNwu2+/sIhfUBNTNbnSeACvlIXPshTd2OI2xLJDEm+pxeUtLAyU/PoKiqmafPH8JVE3pgaCnJUgoSY8z0So8lM8F+wFxozk2O4enzh1LZ5OOatxdy+w+NfDLsJXyJvcj95nIS1nyw3TaRSHTGvAZPkJL6A7/heWcTiWg21jYTbq4n74vzSP/sIvA1dXRY4iB3YLwiiQNOQXY8P7ujpeOWhiKqXVKFJIQQQuwPoXCE0gbvdhXAoXCEa95ayOoKF/+eMowj8lMIRzS2Fe/iTeyDM3doB0W8Z0Z0S2JJWRO1Pc8kpmIu1K6jaZu+KVVNPpaVNjGhd/Q9iNaaarcfk6cSs6cCX+pAaaB9kNiri6hKUT3oj2w68mmGGtZye9WNTF+wdLvVPP7wAdFUOxLRNHgCxG/4EmOgibo+52E2KWJtZj5eVMpZz83GZDDwwVWHc1JBJjlJDvJSY0hyWshPd5Kd6OiwWRN3ZVyvVGbeehQ3TOrF+ho3N39Rxjm+2ymNG0LOj38mbcFjOMrnYG7aiAr5ttrWGzgwHpuDyaY6Dz6vj9xvr8TWWIRCE6pY3tFhiYPcgffKJA4IBdnxLA1kAGCtL6SuOSBVSEIIIcR+UFuxiR7vTsS38L2tpsi+7/OV/FRYzX2TB3BkS4LFVboKR9UCPH3PwnKAV+aMyEsiEIqwJPkEtDKQuOY9at1bVyFNW10NwFEt/Y/qPUGCIY29egkA4Yyh0kD7IOG0mjDs5SeRxh6nsOm4V+hmrOGUBZdQX7z9ZC8Vjb4On1q+0RskEoHEVW/jj8ulOeMwSuo8XPLyXK5/ZxGDchL45Jox9MuMa93GaTWRlWDHajqw/44TYyxcNzGfWbcexY2TelEftjGx8hq+V6NIX/AYPT4/iz7vjmXAK73o+/ogen54LLlfXUzSiteoaPQdUMMMO7OyBi8ub5DMmbfjLJ9FxbCbAAiVL+vgyMTBThJIYocGZiWwUacTMlhxVC+KjmuWqwZCiE4uHNl+SJAQB5JgOIJpxsPYGtaQOfNOystKAHhzzkZembWBy47I49yRXVvX14vfRisDxkFnd1TIe2x4brR30aJGG67sCSQWvofb49/qw/4Pq6voEmejT5fY1t5HADEVc9HKgCFzYIfELtqezWwkPy0Wp23vZhZrzhrLiklvEoOPgV+fhblqyVbLtabDh0vVeQJYGtfhrPiZFemncsfHy7n8tfksKm7g5mN788Zlo0h2Wjs0xt/KbjVxzVE9ef2ykdxy4mAeSbiTif6HeKHbI5SMe5iKYTfRmHciwZhMLE0byZp1J47SmZQ1yFC236rG7afWHSB18TMkFb5L5ZDrqR58LWGzk0jlio4OTxzkJIEkdqhXuhOzycQi51gS1k7FEHBR6w7IjApCiE7JHwqzrtpNcd2B0x9DiB2pLV5F0qq3cWUfiTHgJn763/hqWQV3f7ycI3uncvsJfVvXDQRDxKz6AHfWWOJSczow6j2T7LTSIzWG5WVN1Pc6C7OnAmfZjNZeSMFwhOlrajiyTypKKRo8QQKhCAZ/A0mr3qIp91hsjrjdHEV0JhaTgbyUGDITbLudlW2r7boO56tRr9IcMdPts3OIKf95q+Uef7jD2i/4gmGafSH8c14mjIHfL+1NWYOXO0/sy8zbjuKPR/Y8IIen7QulohMCHdM/nQdOL6B736HctyqDlz1jqB5yHWVH/B8bj32Ztad9iT8ul6yZd+Bubpbp5ndCa02N28+KsiZWVTRR1PK+parJR31zgHfnFTPp0R9ZtKmB+HWf0mXeP2noMZmqoTeQFGsllNIHQ5UkkET7OjhevUSbMxkN9M+M4y11Asagm8TC99AamZFNCHHACoUj/PvHIo5/YjoPfbWKsgYvWmuqXD7WVLpp9odx+ULb9VwR4kDhD4WxTX8QbTRTd/QjVBdcSeKaD3jnvTfplhLDk+cN2WompuY1P2FxlxDofzaGDpyhaW+MzEtiUXEDTV0nErQkYFr8Bp8sKuM/P63j9g+X4vaHmNA7reVvN/qeI3XpCxiDLiqH/hmH5cAe3iP2TbLTSn66E4d1zx/fAQXDeST7STaFEsj98nfEbfhqq+WVTb4OmflrY62HW96dR8bGqUxXwzlrwnC+vH4cl4/tjsOyd9VWnYFSipwkB0lOC3+c0JMxPZJ5ccZ6vllR0bqONtkoO/x+rI3rSF38LGUNPrkovY1Gb5A1VW7KG3yEI5pgSOPxh2nwBKls8vPBghJu+2AJa6rcfPfNZ2T/eAPN6cMpGftPnHYzmfE2Iql9MdesjJbhCdFOJIEkdqogO4Ev67Jwpw0jecXLoCNShSSEOCAtKWnglKdn8sCXq9Ba8+y0Isb+8wemvDiXb5dXEtli6FpFo2+Hs1sJ0dHqi+aTUPQxtQMuIysnj9ph11Gq0rlL/Yf/OzmfWJt5q/UNS94hbHZiG3hKB0W890Z0S8LlC3Hqc/N4wzOKtLLv+NeX87j/i5V8uqSMQdnxjM1PodEbrT4y+upJXv4iDXknEkjug/UgqdwQ27OajPRIddIlfs+rkc4+ajRXme9npe5G1+/+QOLqd1qXdcRQtkhE89mSMrrVTidVNZEz8SpOHpRJitOyX+PoCNmJ0UbgD581iFHdk3j6h7UsLqknzm4ixmqkOWccDd1PIXXxMxjr11He6Nv9Tg8B3kC0QnpTrQd/MPoZS4W8EPk1+bm4pIF//G8V+Wmx/HGwiRvr7sFlSWPjpBew2h10TXKglEKlD8AYaCTSWNpRpyMOAQdfGly0mYLseF6ZtYHVuRcw7JcbiN30Ha7cSdS4A3SJt3V0eEKIg9ymWg9pcdZdztTT7A/x6DeFvDxzPSlOK8/9bijH9OvCwk31vDW3mK+XVzBjbQ1dkxyc2dfBxHQv/swh1LgDpMZ27v4T4uDiC4aJmf5/hKzxcPh1ANz39XosgUt42fwgjpXP48q5ozWJ5G124Sz6DFePk0hwdp5hXcf078KlY5qwmBTK8zusS7/i9ZGbCA67jKFdE1sbZJfUuwBIWfo8hqCHqqF/wmY2SgPtQ0BqrJVYm4lql59Gb3CXxRROq4lLJw3lrI9u44OkZ+k3/RZC9lRcXScC0Q/n1S7/fnu9b/AG+XF1NbfbfiRgz8DTdQKpDssh87yNt5uJt5t5+eIRTHlxLvd+upIXL45hbH4qNW4/5aPvIrZkGlkzb2f98W+RGGPBaT00P46GwhHKG300eH6tilYhH+nzHyFl2X+i69iScZuTqW+08oQthYLsXiSXfENIhbkkeDN3WBLomRzTWplqyugPQLB8GdaE7P1/UuKQIJdxxE4VZMcDMMN8GIGYTFKWvwREG7dJFZIQoj3VNQdo9AYpqffutFroh1VVHPPYT7w4Yz3njezKtzeO55h+XSiqdmMxGbn48G68fMkIrj+yB6eEv+F3806n/xenokrnUeWS8nnR8ZaWNPLRwlI+WljKt19+QGzJD8zNupjpJUFu+WAJM9fWMvaEc6NX7Rc9Q/WG5a3VdL6ln2AMNqMHntvBZ7F3nFYTd53cj9uO78thY47Em9yf/NKPsBiNeALRK+6NniD+YASjr47kFa/Q2P1k/Im9scvwtUOGzWwkJ8lBr/RYkpyWXVYkFWQncOzg7pxW90dqY/uQM+16zK5Nrcv351C2wsom6srWMjKyiPpeZ4PBSGKMefcbHmQcFhMvXTSC7qkx/P61+czfWE9yjAVTfBcqht+Cs2wm8UUfU1rv3apC+FBS1xzYKnlkr1pIz6nHk7r039T3PIOqwddSlj6BxY0OUgxuJlqWkbXiP1g85fwy6knmuVP4fGn5Vv20TBkDAAiXL9/v5yMOHZJAEjvVPcVJvN3Md6vrqOl7Ic6ymVjrVqE11DZL8zshRPvwh8Kts7Rsvnq8pbIGL9e+vZBLXvkFu8XIe1cexv2nDSTOZqa0wYsv+GtiKL5xFX8ouoqb/M8QSOxFlU4g8ac7iYQjVDRJ+bzoOLOKapj8r5n86b+L+NN/F5Ix759U6EQuWTGEG95dzIcLSvnDuO5cOiaPhnF/Q5tspP34F6qaokMwzcv+S8CZTUyvcR19KvsswWGmvtfZ2GuXYatd2dpMu8oV/dtMWfLvaPXRkOsBcOyiGlEcnCwmA1kJdvp0iSU11ophJ59cpozuRnpSAhe5ryGiIffbK1Gh6PNo81C29h667A2E+XZFFecbv0OhqO99Lk6bCavp0HzexjvMvH7ZKNLjrFzy8lxWVbjITLBT1+cCPKmDyfj5XkLNda29zg41zS0JcxXykT73AXp8ehqGkJf1x71B6fhHWNzzaiZvOpsbTLdTetaXFF7wC8suXcvK3y0mdeAkThmUySszN7Cm0vXrTu2JhGK6gDTSFu1IEkhipwwGxa3H9WFJaSNvh48kYrSRsuzXKiSZDlsI0da01hTXedEaHJXzMARcVLn8eANhmnxB/vG/VRz58DS+WlbBn47O5/PrjmBEtyQg+rq0+WqeIdBExuy76fnRiZibNlE8/jGqz5jKazGXkNW8grjCD6hvDuIN7P8Gq0KUNni55q2F5KXE8M2fx/HZMS6GGdbQMPJGvrxxEj/cNIEZtx7JX1pmXOuSlUvFiFtxls8itPAtais2ElM6neY+Z2Axd97hH/F2Mw09JhMxWEhc8y6N3iC1bj++YASjt4aUFa/Q2ONU/In5KAUxh+hQFxGd3KVLvI0+XeJIi7NuV5FkMRm4+ZjerA2lcI/peuy1y8icdVfrcm8gzPqaZvyh9nvNr232M2t1Geebp9GUO4mgM4skx8Hf+2hXUmOtvHH5KBwWE5e/Og+LyUCC00bpEQ9g8tfR5Zd/UOP2t+vjciDSWtPsD2GvXkzPj04kbcmz1Pc6mzVnfIM7exy1bj9//XgZoYjm76cOoEtcS+sQZUAbLaTHW7n75H7EWE389eNlWyVHQyl9MVZLAkm0H0kgiV06b2QOY/NT+Pfcekq6nkpC0VSM3loiETpselQhxMGruiVZFLvxa3p8ejpdv7uKQDDMk9+vYfw/f+DZaUUcP6AL3980nj8d3av1ym6zP0RFow+0Jr7oY3q9dyTJy1+hrs/vKDzrexryzwCliB15AYsiPUiZ8wCGgJuyxv3bYFUIXzDMla/PJxiK8PyUYWTEWei59FH88d3JGH853VOd5KXEkJ3oaN3GZjZiGHEJnrShdJlzH5HZz6F0BMOg8zrwTH47m9mIOTYZV+7RJKydCqFAa2Pd1CX/RoX9VLZUHyU4zAfN1Odi3xkNivQ4Gz3TnNjMWz8fuqXEcNMxvXmrvi9TY88nqfCdrZpqN/vDrKl0U+Vq+4kUwhHNirImetV+R4Juoq7vFIwGRZxdkp7ZiQ7+7/QBlDZ4+XxJORnxNgKp/antfynJq97EXjGfWvehNbLBEwiTuuAJenwyGWPAxfpjX6N07D+JWGKpcvn422crcPtCPH3eUIZ3SyTZaSHBYSbWZiI11kparI1kp5Wbj+3Nz+vq+HhRWeu+I2n9MNevgbDMOCvah/wnFruklOLhMwdhMxu4p3IshrCfpFVvAdEPejKbkRCirXgCIapcfkyeKrKn30LImkBs6U98/8b/8ey0IrqnxvDpNUfw+LlDtvpwHQxH2FTnQWtIXfIvuv5wLcGYDIpO/YSyMfcRsSa0rjuqeypPWi4nJlBD2qIn8fjDNHrkTZbYP7TW3DF1GUtLG3nsnMF0T3XS/Mtb2OoLqRt1C/FO+063TY9zUDn+QYz+RtKWPIsnbSixWX32Y/TtI95hpq7XOZh8dcRu+g6tweSpJnnFqzT0mEwgoQdKQVqsTN4hfmUzG+mZ5tyuGmlUXjKXjOnGjdUnUBgznMxZf8VWs7R1udZQ2einqNrdphWoDZ4APxVWM8X0Dc2xebizjiAxxnzINM/enQm90uiZ5uQ/09dhNCi6xNmoHHYjgZgMMmfeTr27+ZAa2eCrWE36/Edo6nYshWd8gztnAhAd2nz9O4uodvl58eIRjO+dSnqcjcwEOzlJDrqlxGw1kdF5I7syKDue+z5fSaO3pQK7ywAMkSDBqsKOODVxCJAEktit9Hgbtx7fh+/rkljtHEnyytdQ4eiVgmqXn/U1zdKMVgix15r9IW5+bzGnPj2DU56eweRnZvHndxbi+u/vCfvcXBj5G9PCg7gm9CqPHmnn7pP6k5cas9U+tNZsqvMQCmucJT+S/ss/aeh+MkWnfIw3dVDrekpBWpyVzAQbPYZM4P3wOJKXvoClcT3lTYduE0+xf73+80Y+WFDCn47O5+h+6dQ0NJE492E8KQOJG3rGLrc1GBRJ3YdSM/AKAHz9z8Zg6PwfThPsFtxZ4wg60kksfBeAlCXPoSLB1t5HSTEWqT4S21EqWo3UI9WJdYtqpMmDszi6Xwbn1l5OsymB3G+vxOhr2GpbbyBCUbWb8sa2ef2vdfspWz2XYYY1NPa/EJSBxEN8+NqWDAbF5UfksbysidlFtSQ7rVhjYik/7F7sdStJWvJyaw+0Q4FePwOAiuG3ELHG4wmEePr7NTzw5Sp6pTv58vqxjO6evNv9GA2K+yYPpLbZz6NfrwbA1OXXmdiEaA/t/t9YKXWcUmq1UmqtUuq2Xaw3QikVVkqd2d4xib13+pBsjuqTxoP1EzB7Kolb/0XrsmZ/mLXVbjyBUAdGKIToTCoafZz13Gw+XFhKnN2Mw2Ik1mbiHL5kZHgBr8ZeQSCpFytHPoDJ6uC4NXejdIiSes9WVynLG314/GHMrk3k/HANvsTelIx9CAy/Ni2Nt5vplR5LepyN1FgrJxZk8KQ6Hz9mMub8nWBIU+OWIbmifc1dX8e9n67g6L5pXHdUPnXNAQI/v4jFXULT4bcTY9v9h814uxnvmJspPfw+LMOn7Ieo25/FZMBus1CffwaxJT9gq1lG8srXaOh5GoH4vJbqo/0zBbvonOwWI/lpTlJio39DSimuHN+D7KwcLnZfg7G5nOwf/wR664udWkONK8CaKjdu/76/h/UEQqyqcDPJ/SkBg436/DNxWI3YpOn7ViYPySLFaeH56esAyEyw05R7DK7sCaQseY66pqZDYlSD1hpT8QyCjnQCcXkUVrq48b3FfLOykusm5vPuHw4jJ8mx+x21GJgdz5TRubz+80aWlTZiSu+DVkZ0hczEJtpHuyaQlFJG4BngeKAfcJ5Sqt9O1vsH8FV7xiP2nd1i5LqJPVlhH8FGlUXS0hei/3lbBEOaddXN1MqHMCHEbqwoa2LyMzPZWNvMixcN55kLhnLHCf14YIyJSz0v05RzFIedfQv3nNKfI4YMoPSIB3HULCFt4ZMEQ7p1hrZGT5BadwAV8pL7ze9RWrNp0vNoc/SNl81sIC81hq7JjtbqBaUUPVKdDO3XhyeDk4nb9C3Okh+pcvkJSiWlaCcVjT6ufnMBXZMcPHrO4Giz6LULSFv4GO7Mw0kYcMwe76tLchKeQRfjjHG2Y8T71+bZ2JSO0O2ri1CREFVDrgOiTXhNRqk+ErumlCIj3k7Xlg/eZqOB247vQ7mzPw/qi4gr/p70+Y9sl0QCCIQirK9uprxx32Zqq3UHmLtyHZONM6nrfioRazzJMVJ9tC2b2chFh3Vj2upqCitdOCwmEp0WagZcjtlXg33tl63DsA5mHn+ImLLZuLqM5r0FJdz6wRK0hv/+4TBumNRrn17vbjymN0kxFu78aBnaaCGY0ANVvbIdohei/SuQRgJrtdbrtNYB4B3g1B2sdy3wAVDVzvGI3yAn0cH1k/rwQuAYnLVLcFQt2Gq51lDW4KO4ziPDQYQQOzRtdRVnPTcLgPeuPJzDeiRTUudFhXzkTLuOsDmWknEPowyKbikx2C1GmvJOoL7n6aQtehp71QIaPEGqXD6K6z2gNVnTb8NWt5JNRz5FIK4bRoMiMyHaZNW5g1mbYm1mzhmRw8vh46i2ZJEx+2/ocBCXT6ooRdvzh8Jc+cZ8vIEQ/54yjHBYU7N2AXlfnoc22mk6+hFslj1vtGsxGeiWErP7FTuReLuZYEJ3mtOHY/ZWU59/JoG4bhgMkOKU6iOx5+IdZjIToj1iYm1m7jqpP2/rY/jSOIG0RU/R45PJ2Ld5/7pZjSvA2qq9640UjmgaPAGS1ryPXQVwDbwYk1ERbze3yfkcbH43Oheb2cALLVVIXeJseHPG4o/rRvKK16g5BJpp+ypWYfZW81ZVLq/N3shxA7rwxfVjW2eU3RfxdjNXTejJouKG6LD+1L6YaiSBJNpHeyeQsoDiLX4vabmtlVIqCzgNeG5XO1JK/V4pNU8pNa+6urrNAxW7l+CwUJAdT2DA2TRqB2rujh+yBk+Qomo3vuChNSWnEIe63U3D++acjVz26jy6pcTw4VWHk+K0sKbSTTii6TLvn9jrVlI6/mHC9hRSY604rSZykuwoBWWH30swpgs50/6ECnqobPSjNSQvf4nEoqlUDrsRd86RGA2KHmkxJDutu2xeOjQ3kWE9unCP/wJsjWtJXv4qbkkgiTamtebOqctYVNzAI2cPIjXW+mvyyGBh/UnvktJ17xthmw+yihyz0UCM1URtv4sJm2OoGnItEK0+Mh4EfZ7E/pXstJIeF008ZiXa+cvxfbnWewVPxN6AyV1Gz08mk/PDdZiay7fb1heM9kaqcvn26Fj1ngAryxqZHPqSstgCfMn9SY6xSPPsnUiMsXDWsBw+WlhGVZMPk9FAlwQHdX2nEFP5C7p8Gc2/YThhZxBZ/xMA79d24x9nDOSp84a0ScJxXH4KAD+vq4W0flhcxUS8jb95v0Jsq73fgezo1XPb0pTHgVu11rv85KG1fl5rPVxrPTw1NbWt4hN7wWiIXlE55/C+fGk5hq6V3xAs3/H4Wl8wwtoqtwxpE+IQ4QuGKaxws76mGZdv6xL0SETzwBcruWPqMsb3SuWFi4bj8oeobIomgZwlP5Gy7AVq+12EK+co7BZja88Tq8lIZoKdiCWOknGPYmnaSMac+wCIKf+ZjDn30Zh7DNWDr0Ep6JrswGrafd8JqylaSv+5fxDr4keTvvBxPA3lh0T/BbF/aK2597MVvDe/hOsn5nNY9xSqixZulTxK79ZPmkO3iLebaexxCiumLCEY2xWTUZESI9VHYt+kxdlIdkaHkRVkJ/DHI3vxWPVwLnU+R0XBH4nb8CW93x1P2oLHUCHvVttuOVPb7i6M1DUHqFr0Fd0NFXgGXYxS0abvYucuOyKPYCTCq7M3ANH7y93vHCJGG0krXzuoexJqralb9j1lOonjxx7OOSO6tlmysWeak+QYCz+vq8PQZQAAgZ18ThPit2jvdy0lQM4Wv2cDZdusMxx4Rym1ATgT+JdSanI7xyX2UVKMBbPRQPKR1+DXZoZ+fjzdPj6dpBWvY/TVbbXu5iFtm2o9h9TUnEIciuo90bJzty/EhhoPaypd1DcHcPmCXPXmfP790zouGNWV20/oQ40rQCAU7UNh9NWR/dMN+BJ6Uj7yDgwGWqqOfn1DlRRjIc5uojnzMGoGXkHyqjdIXPUWOd9djT+uGyXjHwNlID3OtsMhazszsU8avbvEcYfnfAxBD2lzH8LThtM6i0OX1pp/frWal2du4NIxeVwyphtVRQvI+/zcrZJH8Q4Z5rJZvN0cnY7dEL1PUmOtB8Usc6LjZCbYSWj5Gzu6bzpXT+jBjGIf11efzMrTvqWp60TSFzxGr/eOJG7959tt7/GHWVPpZm1V9OLIploPxXUeyhq8VDb5qGiZxKF/2bs0GuLx5Z9MvN0sPbt2o1tKDMf268IbP29qnYAnPjGVhh6nkrB2Ku7Gut0m7jqreevrSK6ZS6FtEDce27tN962UYnT3ZH5eV4spI5pACslMbKIdtPcr3C9AvlIqTyllAc4FPtlyBa11nta6m9a6G/A+cLXW+qN2jkvsoxirCavZQJeuvfj48A94KHQOdXXVZM26g75vDif3q4uJL/oYFfS0btPoDbKmynXQl6QKcajSWtPg2brqyBeMMGddHSc+OYNvV1Txp4n5nDsiB2/g1wampuYKun7/R4y+eoqPfAptspGVYN9hBVFWgh2TUVE57CZ8ib3JnnEbhrCXTUc/T8QSS4LDTOpeztRkNBq4dEw3ZrtSWJV5KglrP8Tlatq3O0GILTz53VqenVbEuSNzuHxst2jlUWvy6L+k50nyaFtGgyLWFk0Am01KmhCLNpGdaMfZ8rw6fkAGfxjXnTnr67h/tof1E56h6MT3CNuSyP3uKnK+u3qHF0O9gTBuX4hGb5CGlskbqpr8VLv8FK1ZyTg9j3XZp6ONVunZtYeuGNedRm+Q9+aVANGhbXX9pmAMeUhc8yG1B2EvpEZPkEff/pQU1UT3Ece3S6JxdPckyht9lOoUwmYnVK1o82MI0a4JJK11CLiG6OxqK4F3tdbLlVJXKqWubM9ji/az+WrOwP4FmMffxPjm/+PW1H9RNeAybHUr6frDtfR9axjJy15one0iGNKsr2mmqsknQ0SEOMg0+ULYNnxP5sw7sFcvBqJTlt/w3iIaPAHuPbU/E/ums3lUswp5SVvwOL3fG4+j4hfKDv87vuT+JDjMJDh2/KHRZDSQlWhHm2wUT3gCf1weJeMfx5+Yj91iICvBvk+xnzE0m7RYK/9tKsAQ9hNeP2Of9iPEZv/+sYjHvi3kuP5dOG9EV5o3Lt4medRfGuzuRII9+vefFmuTHjKiTSilyE1yYLdEL0ycVJDJZUfkMauolke/LcSVPpK1p35CxfBbiNv4FfkfTCJ249d7vH/rktcAMI28DLvF2HocsWvDchMZlpvICzPWEY5ozEYDpuyheFIHk7TyNerc/oNq9EIkornh3UX09i4CwNF7fLscZ3T3ZAB+Xl9HMLk3RpmJTbSDdq+x1Fp/obXupbXuobW+v+W257TW23Vg1lpfrLV+v71jEr9NosPC5vd1E/umc8XY7vy3OIHbXWex8pxZrDvxXZq7jCLz53vp/tlZWBrXAy1jypv8rKtpbh2+IoTo/BqafWTOvofkla/T8+OTSXjzWJZ9+W+6xhl47JzBFGQnRFfUERLWTqXXexNIX/AorpwjKTzzO+r7nI/FZCBzN0mgOJuZJKcFX3I/Cs/+kaZux2I0KLomxezzUBeT0cCFh3Xj7epcwgYr1o3TCIbl9UnsvXBE8/QPa3jgy1WM65nMTfnldPv2D/T86ITW5FGX7pI82pVYmwm7xUCiVGeJNmQwKLolO4ixRpM7kwdnccnh3Zi+pobHvi0kjJHqwddQdOpnhOypdPvmcrJ//DMG/64bEAf9XkY3fM4Sx2hI6EqKU6rm9sYVY/MorvPy1fIKIFqFVNt3CraGtTjKZlPbfPD0Qnr2xyK+W1XFuWkbCTizcKT1aJfj9ExzkuKM9kEKp/TDXLsy+gFMiDYkg3TFXjMbDa1l5gCnDMri/JFd+W5VFS/O3Ii7yyg2HvMyxeMfxVa/mvwPj41WI0Wi45k9/jBrq9w0eoM7O4QQopMIhiPoomlYm9azfuS9vBR3NYHmBh6zPMunoSsZuOoJzO5S7FUL6PHJaeRMu56wLZmik95j08TnCMblolS079GezLaUEWfDao7+69rcNPu3NiGeclguBrOdlZYBOIt/xCWzsYm94A+FKWvw8tg3hTz71WLuSp/Jv11/pOf/LiCmci7VBVdSNPkTMrr3J84miZFdMRgUuckxUn0k2pzJaKB7qpO81BgcViOnD81myuhcfiys5snv1xDRGl9yX4pO/YSqwdeRsPYjen0wCWfJjzvdZ/3890lRjdT0vRCTUUlyeC9N6teF3GQHz/+0Dq01cTYT7p4nE7ImkLzyNWrdgYNi1MLMtTU88vVqThqQRk/PIjwZo7Fb9rxf495QSjGqpQ+STu+Hyd+Iv76kXY4lDl3t8+wVB73EGAtN3l8/ZJ07Ige3P8Qni8twWk2cN7IrDfln4s48gqwZt5H5873Er/+CknGPEIjPIxzRbKr1kOS0kBFnk0aZQnRSDZ4gSctfxW9N4pLFfSh25VM5ZgrnJK8jeeVrpC55ltQlz6J0hKAjjeJxj9CQfwaoX5M+abFWHHv4ZspgUOQkOiiqdtMlfu+aZu9MvN3MWcOz+fiXvtzhe4Pa6g0Q0+s371cc3Nz+EDUuPy5fiPkL5pI693l+sU/H0ejFkzqI4vGP0ph3Espio2uSg1hJHu0RszQgFu3IaTXhTHXi8gW56PBuhCOat+ZuIhiOcPX4njhtFiqH30RT7iSyf/wzef+bgi+hJ2FLPBFzDBGLk7A5lojFSVLh12ykC6mDjiM5xiKJz71kNCguPyKPv368nPkb6xneLYmE+Djqe51DyrIXKGsqpzHettOh7Z1BRaOP695eSPdUJ38ZqTCtrSPU9Yh2fa6M7p7M50vKqY3piRMIlS3DmpSz2+2E2FOSQBL7JNZqwmxSBEPRKwNKKS47Io9mf4i35m4ixmrklEFZhGK6sPGYl0lY+yGZs+8m/8NjqBh+K7UDLgVloM4dwOMPkZPkwGaWceNCdDbuynUkb/qO5yOn0mBU3HfqAAZkxdNMFs3ZYzG7Skgs/C/aaKW2/yVEzDGt2yoFyU4LaXG2vTqm3WIkLyWGmDZIHm32h/E9uHTOIO7gDVTRd+jcfPkwILazuWF8jduPLxjBVrME47SHubD+R8ImI43dT6Gs/8V40wZjtxjIjLGSYDfLRRIhDjCxNjOxNjO3ndAHu8XAyzM3sKy0kasn9GR092S8qYNYO/kLUpf+G1vtCgwBF8aAC3NzGYaAm4iviYSwj/+m/5lBJiOJ0vR9n5w5LIdHvynk0W8KeeOyUSQ6LGzsewEpS58nadVbVCfcRKzNvEcVygeiP/93Eb5gmOd+Nwzb0pcAUHlj2/WYh3VPAuAXbwa5QKRyOQw4vl2PKQ4tkkAS+0QpRZLDQp0ngFEpjIbo119P7ktYa/4zfT1mo4HjB2SAUjTkn4E7cwxZM/5C5px7cZbNoGT8Y4RtifiCEdZWucmIt5Ess1cI0Wm4fEHW/+8pumrN9PiTePmsEVhNxq0aXwZjs6kaduN22yY4zKTH2fZ5+FlbJo8gOstb7wHDKV+dhGXDD3gCV7T5MUTnFoloCqtcBIMRYspn0W3RM8SWzaBJO/gk7ly6n3gjhtg04u1mMmIs8vwRohOIs5n560n9OapPOnd+tIz7v1jJ2PwU/jCuB/F2G1VDrm9dNxSO8NWKSt6eu4lGb5AJvVK4YmwP4u1mqZzbR3aLkZuP7cPtU5fyxHdr+POkXphSe+DOnkDS6reoGnIta6ug6xaN0DuLKpeP2etqufnY3vRIjaGpeBYBZw6OtO7tetweqdE+SDNLwpwa0wUlM7GJNibvbsQ+S4uz7bBy4N9ThnH1Gwv417QiTAYDk/qlA7RUI71E0srXyfj5XnpOPZ5NE/+FN20oWkNZg4+w1qTF7l01ghBi/2v0BLnm9dk8Xv0JS2IO529TjqVnWixaa5q8Ieo8Adw76CXktJnoEmc7IN8IXn1kT35aUcAppTNp9PiIsTo7OiRxAKlq8mJf+yVdF/8LR/UiGgxJPBA8j9o+F3DxUQWkxVpJjLHIB0khOqExPVP4/LojePir1bw2eyOLixv4w7gejM1PAWDO+jpembWB0gYvA7PiuXRMHj3Tov8jUuTi529y3sgcFmyq54nv1jAoJ54hOYnU9ptCt68vJW7j1zTlnUhRdee70Dy7qBaAcfmpeANBYspn486dREI7v//Zsg9SML0vphqZiU20LXmXI9qc1WTk2d8N49j+6Tz5/Rp+WF3Z2vQWpajrdyFFp3wIBiM9Pj2T5KUvtM4QUNXkxxcMd2D0QojdWV3h4pSnZ5Be/CXJykX8uKvJSnAA0Tcu8Q4zeSkx9O4SS3qcFbNJYbcY6JbiIC8l5oBMHgH0yYijKv0I7BE3rrWzOzoccQDxh8IYpt1P7re/x+Ct41nnNYzyPIpv5LXccuoI+mXEkRZnk+SREJ2Yw2LirpP7884Vo+kSb+Ohr1dz3+cruX3qUu7/YiVKwV9P7Mf9kwe0Jo/sFuMB+z+ts1BKcd/kAfTPjONP7yyiwROgueuRBJzZJK94HaD1QnNxnYdIpHM01p5dVEuczUS/zDh8JUsx+RsIdT1ivxx7dPdkyht9NMblY6lfSzgY2C/HFYcGeacj2oXFZODp84dyUkEGj36zhv8tqyA93srmliK+lALWTP6Cpq4TyZxzL12//QMGfyNaQ0m9t2ODF0Ls1GdLypj8zEyaAyH+kjIdX3wPVI8JO3wDbTEZSIuz0adLHD3TYjtFE+HB4ycT1oqSeZ8RDEc6OhxxgKgpKSJl6X+oyj2ZU9QTPFR7OLecNJi7T+5HmkwEIcRBZXheEp9ccwRXT+jBouIGiuu9XD2hB0+fN5SReUlb9cdLcUrvo7ZgMxt57nfDUEpx9VsLsVrM1PW9AGf5LKz1ha3rNXiCrK12d4qLzbPX1TKqezJGg0JvmAGAoXv79j/abHMfpNW6K4ZIAH9V4W62EGLPSQJJtBuz0cAT5w7h9CFZ0eZ4szeSn+bEaYuOnIxY49l09POUjbqLuE3fkv/RCdhqluANhKl2/T979x0mVXU+cPx7pm/vvcMuvTcBAUGs2Hs3aqKxa36J0cQUU0w0lthrrLH33gugoEjvsCwsW9jeZ3Z2+vn9MQMuBJCyy2x5P88zD7tz75z73jnL7p33nvMed5ijF0Ls6vUlFVz70nKGZcby3LEmklpW0zT0IlL2swh2TzZ6UD6bLENIrv1Wfg8JILjaWuSCO9Ba88vqEylrdvP4ReP5+bQCSRwJ0UfZzEZ+e9wQPr5hGq/9cjLnTMwhNsJEhMWI1WzAbFJYTAbiInr+jZHeIicxkvvOHcOGmjYe+LKExqJzCBgsZM//9U5JJHeodmpTu2enmos9SWWzk7JGJ1MGJKG1xlz+Le6YXCJT8g/J8bfXQfreESwj4q9ec0iOK/oHSSCJbmU0KO46azTnTMjhga9KuPeLYvKTIkmNDc1hVorGkb9gy4mvQ8DHgA/OxtxWRm2bC7ev599dEKK/aHV6+cdH65mYn8Bzl04io/hF/KZIXMPPJroPFQuOtpjw5c9iuN7MOwtWhzsc0QM0liwlftNbvKLmsMWbyEuXT+boYenhDksIcQgMTI1hcHoseUlRDEiJpjA1mkFpMQxJj2Vweoys1tnFZg1O5cbZg3hvZRWfbPVRMfM+LG1lFL59PKlL70X5gzd2tIZtzR2sq2qjuNZORZOTRocbp8eH1uFPKm2vfzS1MIkOj5fImkU4M6ccshWnt9dB+rAqFq2M6Nq1h+S4on+QBJLodkaD4p+nj+TCybk8Pm8Lf/1gHakxVvKSIzGEfgKdaePZctLboIxkz78JHQiwTaayCdFj3PdlMS0dXm47eTgdrXXEb3mPlsLTSEpKDXdoXcpgUMSPOh6D0lQu/RB3LxgmL7pPU7uHhIW341BR3NNxAk9cNJ7xeQnhDksIIfqs644s5MghqTw6dzM/RMyg+MyvaCs4gbTl91H49vFE1izeaX+3N0CL00tVi4vNde2srWqjvNEZpuiDvtvSSFKUhUGpMbgqVmJyt+I/RPWPtps8IIkKu5/2mAKM9b2/kHZvqX3VH0gCSRwSBoPib6eM4LLDC3hmwVae/66MWJuZwtRobKEC297oTKon/5Homu9JWvc87W4/jQ6ZQiJEuG2qtfP8d2WcOzGX4Zlx6OUvYPC7aRt5CXGRfW/4viVnPC5zHGM9y3htSUW4wxFh4g9o2tZ+Tuy2edzvOYXfnT6FwwYkhTssIYTo0wwGxb/PHkNGvI1/frKBBh1LxawHKD32OQy+DgZ+cAaZC27F4LHv9vVaQ2uHl4YwfYbQWvPd5kYmD0jC0Kn+kfEQ1T/abkro71W1tQBzw4ZDeuyu5vUH2FTnoMMjN/V6AkkgiUNGKcUfThjK7CGp/P3DdaysaMFqMjIwJZr40IfQ5kHnYM+eSfrif2Jp20pNmwuPTwrZChEuWmv++sE6Ii1GfnPMIBwdbuLXPk97+iRi80aHO7xuER1pxZU9nVnmNTwxf3OPrbEgulddmxPL3L9QqZNh4i84a0JOuEMSQoh+IS7SzOMXTsDh9nHjqyuYu7EOe/ZMNp3xBQ0jfk7i+hcY9MZsUpf9m8iaHyDg/Z82alpdYSm2vbXRSXWriykDO9U/is0nIjn3kMYxMCWK5Ggra/05WBwVONqaD+nxu5LD5cPjC7C53kFzu6woF26SQBKHlMGguOfs0aTG2Lj6xWW0Or0YDIqcxEjS42wog6Jy+p1oZSJr/k0E/AG2tchUNiHC5asNdXyzqYEbZheRFG2lY92nWOwVNA//GQmRfXP1mUiLifbcmSTrJiJbivlodXW4QxKHmMvrZ/3nz5Lp3Mj7iZdxy4ljwh2SEEL0K8MyY3nu0okkRJq55/Nifvf2aja3QvXkP7P55HfxxGSTuuw+Bn5wJsOeH0nep5eQvPpJbI3rQAdCKzs7D3lNpB31jwYm4XR5iKr5AWfm1ENW/2g7pRSTByQyvzVYaqClbOUhPX5Xcrh9ADtW6w5Hv4ofSQJJHHLxkRYeOn8sdXYXv359xY5fACkxVtJibfiiMqie/CeiaxaRtO45HC5fj8g2+/wB2t2+XrF0qBBdweML8LcP1jEwJYqfTc3H4wtgW/E03ogULCNP7tsrUA04EoCTo9bx8NclcqHSz3y7fhtFa+5js6GAEy+8AZNJLpeEEOJQmzIwmfeuncZvjhlMeZOTG19dzuPzNlMfO4ItJ73F+gtXUjb7cVqKzsTSVkbGor9R9PZxDHlpIhF1y+nwBKg7xCuqLtzcQFqslYLkKDoqVmD0tBHIO/yQxrDd5AFJ/ODMAEDVrN2RiOlt1Jo3yPz295jaawBobveyud6x11kqbp+fNtf/jkwTB0+uiERYjM1N4PdzhvLF+jqemL9lx/MpMVYirUaaB52NPXsW6YvvwNK2larWjkM679Xp8VFnd1HR5KSkzsG6qjbWV9vZUt9OSZ2DFmf4E1pCdLdnF5aytdHJH08chtlooLlyA9EVc2keej5JsTHhDq9bRSTn4EoYzElR69lQY+frjXXhDkkcIpvr7Kx4+15yVB2umX8mKyEq3CEJIUS/FWU1ce2RhXx24wxOHp3JR2uq+eULS/h0bQ1eaxxtBcdTdfjf2XTW16w/bxEVR9yLNlrImXsjytdBvT24OtuhoLXm+y2NTB2YjFIKXTofAMOAGYfk+LuaPCCJSp2M2xiFrXkjtW2usMRxMDo8fpKX3U/ShhcY9PpMUlY+jPK76fAEKKlz0Oby4g9o7C4vdW0utja0B1fnq3FQ3uiUMgTdQBJIImwumZrP8SPS+denG1m8tWnH89kJEaGpbHegDeYdU9lK6hxUNDm7vSaSxxegtKGd2lY3LU4vHR7/Tr98tIaKpg7q7L3vl7AQ+6re7uaBL0s4ckgqMwen4vMHMP3wOCgjevwlGPvy6CMg2mrCnj2TbPtK8mI0zyzYGu6QxCHQ5PDwf//9hp8H3qA+ZQpp4+b07ZF2QgjRS2TER3DfuWN546op5CVF8dDXJfztg3U7JYd8URm0FJ1J5Yx7sLaVkr74jh3Tng7FKl6b6hw0ODxMGZCE2+fHWrkQd9wAIpOyuv3YuxOsg2SjwpSHrWk9Trcfey8bleOsL8XWUkLDiJ/jyJpO+uI7KXrzGGIqvsIf0JQ1OFlX1cbWBie1bW7sLh9+fwBL6xbiNr5Oe11ZuE+hz5EEkggbpRR3njmKnIQIrn1p2Y4V16wmIxlxu0xlW/ssAC1OL8W1dqpbO7oto1zR7CSwhxyVwePA6AoWoattdbOtpUOmtog+6e5PN+Ly+vnDCUMBaKqtJGHjy7QUnUFien54gzsELCYDrryZGAIezkkpZ2lZMz6/FPTvy1o7vPzj4/Uc3fwKCcqOY8YfSYrqm3W+hBCitxqXm8h71x7O7+cMYXl5C7e8tZr6XaaptWdOpWHYJSSvfYaoqu9wewPUHILRNwtLGgCYMjCJNns7UTWLcGZNxWo6tPWPttteB+lbz2Aia5dgadlMbVvvWuFab/oCgKbB51N+9JOUHvdftDKQ/+klxL9zIa9+OpdP11Rjad1KwoaXyPn6eoa8PInBr88kZ/6vMc77e5jPoO+RBJIIq1ibmYcvGEez08uNr67YkRRKirYSbTPRXHQWbTlHBqeytW4FgiOAGuweNtS0UW93d2kCp87uwun2Y2tYTXzx66QuvYfsr29g4HunMvSFsQx/fhhDXxxL4rrngODd6rJG5yG5qyHEobK6spXXllZw6eH5DEiJxh/QGL5/EBXw4pp8A2Zj//jTYcifQsBo43BW4PT42VCz+yWDRe/X4HCzZGsTi1as4nLzJ7QMPJW4ARNRSkYfCSFET6OU4ooZA3n60ok02N389s2V1NldWDrVq6uZeAvu2Hyy5/8Gg8dBo8PT7aNvvtvSSE5iBDmJkfhKvsbobcdXeFy3HvOnTB6QxIMdx+A32Ehbdi8dnt5TGygQ0FhKv8ITnYU7vhB/QPMdo/lN8iPcw4Uk1P/AH8sv44Lvjmfw6zPI/vYWoqoW0J5+GJXT/ok9+wgsZfODHx5Fl+kfnwJEjzY8M46/nDycbzY18OBXm3Y8n50QgcGo2DbtDrTRQt5nlxJb+iHo4CiAQCC4ROfGWjvN7Z6DTiS5vH7q2twkrn+BondOIGf+r0ld8SBRtUsImGy05R1D9cRbsGfPJGvhH8n47s8Q8GN3+djS4MAroxNEH6C15i/vryUpysJ1s4sAaKqvInHdf2kZcAoJOUPCHOGhEx0VTXvGFArtPwCwtKz3LoErdk9rTVVLB9UtLl76roR/Gx/EZFA0HfZbEiLN4Q5PCCHEXhwxKIU3rw6ucHbNS8vYXO+gKC2ahCgz2hxJ5Yx7MDsqSf/hdiA4la27ZjD4A5rvtzQxZUAS/oDGWvIRfnM0poEzu+V4+2rygCQaiWNJ+tnEb3kfW+M66npJLaT2DidRVQuoSZ3GS4sr+Plzi/n9O2v4fGMzK3Mu5u1p79FYdBarDUO5y/RLVp/6BRvOX0LFkQ/RPOQCWvOPx+ysxV2zPtyn0qdIAkn0COdOzOH0sVnc98Um7v50I4GAxmw0kBUfgS8qnfIjH0HpAHlfXkXRG0cRv+kNCASz516fprK5g+JaxwEnkrTWVDQ5sTRtIuP7v2LPms7Gs+ax9pJiNp67gNI5r7Bt+p00jL6asqOfomHEL0he+wx5n/8cg8dBhyfA5nqHrNAmejV/QPO3D9azpKyZm44dTKzNHBxd9/2jKJ8L1+QbDvkytOEUbTVhzzmCKHspIyJbWFTaGO6QRBcKBDRljU4aHR5K6hzM2PJvJhg2sm3G3SRkFcnoIyGE6AUGpcXwzjWHMywjlqtfXMZT35aSFR9BhMWIM30iDSOvIGnDi0RXzsPn12ypd9DU7uny2QPrq9to7fAydWAydqeL2LLPsefMIioqvAsxBOsgWXhenYzfEkva0nvo8ARo7ej5o5DcW77D6HVwx6Zs3lxWyYT8BP599mg+vH46Nx8/hDFDh9A4807qjn2Uhx1H8PhaIwajIjbCRFZCBCmjjwXAu2lueE+kj5EEkugRttdDOm9SDg99XcK1Ly+jw+MnPtJCbIQJR/YMis/8ivJZD6GNZnLm/R+DX5tJ4vr/onzBLLrHFzjgRFJNmwu3q4OcudcTMEdSecS9eOIK0Mbd1L8wGKme/Ce2Tb2dmMp5DPjgTEzt1Xh9mpI6B9Wth6ZQnxBdyeH2cfnzS3h6QSmXTM3nrPE5ADQ31ZO45lnaCo4nIX9UmKM8tIwGha9gFgCnxW6QEUh9iNcfYEuDA7vLh9aasi8f52emz6kadjmuIacSL6OPhBCi10iOtvLS5ZM5eXQmd326kd+8vorUGCtKQe34X+OKLyR7/k0Y3K24vAG2NXewocZOTauryxbn+W5z8CbTlIFJeEoXYnI14hwwZ6dpdeGglOLwwmS+LvOyddDPiS3/nIi65dT38MWAWp1evv/sNbzaSEfWVL69eRaPXzSB08ZlU5gazdD0WLISIoiwGDisIJFzJ+bwwepq6u1u8pKiSIyyYE0ZgCc2D0Pp3HCfTp8iCSTRY5iNBv5x2kj+cMJQPl5TwzlPfEdtm4us+Ijgik8GI60DT6bktE/YevRT+CKSyVpwK4Nfm0by6icxeNuBHxNJm+octDh/OpHkcPtosHtIW3I3EY1rqZz+L3yRaTvHZlJEWo3ER5qJtpkAaBp2EVuPeQaLvZzCd0/C1rBqR32m4jp7r8jsCwFQ2ezkzEcXMq+4nr+dOoLbTh6OwaDQWhNY9BhGrx3nYb/qV6OPtrOlDcYTnc0MvYTaNjflje3hDkl0gZpWFx2e4IeG0pXzucrxMFtjJ9E4+Xekxdhk9JEQQvQyNrOR+88dw41HFfHmskou+M8iPH4/2mSj8oh/Y+qoJ/P7v+zY3x/Q1NvdFNfaKW900u727aX1n7ZwcwMDUqJIjbFi3PghAaMV4+BjDva0usRvjhmMUnDztql4bUmkLbmrR49CWrK1ieMfmM/A1u+ojBnNo5fNIjXGttM+BoMiMcpCYWoMRWkx3HbycIpSo/ntG6tocXp27OfNnY61ciHa3zPPtTeSBJLoUZRS/GL6AJ68aAIldQ5OeWgBG2rsZCVEdN4Je97RbD75HbYc/xLu+EIyFv2Nwa9MJXX5/RjcrQC4vQEqmn68w+D2/e/0Mn9AU9nsJGrbN6SsfpzGIRdizzuGlBgrBSlRDEqPZkRWLEPSYxmYEk1OYiQFyVGkxVoBcOTMZPNJb6MNZgZ+cBaxpR8DwWl15Y1Oyhrbu+zOhhDdYWlZM6c+vIBtLR08e+lELpqct2NbS0szCaueoi33KBIGjg9jlOETHWGmZeCpFLZ+R66qZf6mhnCHJLqAY/sHBUctU5bcSKMhkbYTHic60kacjD4SQoheSSnFjUcN4omLxlPW2M7PnlrM4q1NdKSMpn701SRseoOYss92eo3WwVU4t9S3U97oPKBSGF5/gB9Km5g6MIl2t4+YrZ/iyDyc2LiErjq1g5KTGMkfThjKkmovXyVdQEzVt0RVfdfjaiH5A5oHvtzE2Y9/RwrNDDWUEzPiWGyWn76BaTMb+fc5Y2h2erj1nTU7+lENmInRa6ejbEl3h99vSAJJ9EhHDUvjjSunYlBw1mPf8f2WRgpSooiLMLPjxrBStGdNo3TOK5Sc/A7O1HGkLb2HIa9MIW3xHRg7gh/0fP7QHYYaB6UN7bR2eHf8Uqlq6SDgaCJn3q9wxRdSPfmPRFmNrK9u45vieuZtrOfrjXXML65nYUkDi7Y0sry8GbvbR5TViC8QwJ04mM0nv4srYTB5X/6S7Lk3YuwIDmNt6/BRXGunzu7q0tXihOgK767YxnlPfk+U1cTbVx/O9KKUnbb7Fj2Jyd2C87D/65ejjwAizEaaR/4MbTDzS/PHLN7aJFNUe7kOjx+fX6P8HuI/vJwYbWfRxAcwRCeRGW/76QaEEEL0aMcMT+fD66czIDWav36wjifmb2bbqOvoSBxK9jc3k7TmP5gd2/7nda0d3gNaXXn1tlbaPX6mDEjGWb4ci6MS54DjidiHxMehct6kXGYMSuZXpePpsKWRtuRfuDx+Wp09Y2ROg8PNBf/5nns/L+ak0Zk8dliobEDh0fvcxoisOG48ahAfrqrmvZVVAFiKZgLgL5nbxRH3X6o3fqidMGGCXrJEsoj9QZ3dxeXPL2VVZQu/OmoQV80cCECz00NTuwevb+efX1vjOlJWPERc6Ydoo4WmwefRMPIXeGNyd9rPZFREW020tHvI/eIKYiq+YvMp79GRNIyHvirhs3W1+xyj1WQgymoi0RLgKsPbnOZ8nYAlhurJf6Sl8Ay2Z7zMJkVqjI2ESLNMjxCHjNvnp93tx+HyYXd7g1+7vSza0sTj87cwqSCRxy8cT0LUzvW+WltbiXx0HK6kYZgveaffJpAAyhudRH96I5HF73BB9FM8ceUxJEVbwx2WOEB1bS5q29ykfHMr6Rv/y13RN3HsOdeSFmcjLVYSSEII0Vd4fAHu/GQDT31bSmFqNH+dbGTskpuIaFoHgDN5FG0Fx9OaPwdPXMGO10VZjeQnRWEw7Nv1+sNfl3DXpxtZ+oej0F/fTtKyB6m7YjVpGdndcl4Hqqatg+Pu+4aLTV/yf57H2Hrss3gGHEVRanTYP5v88Z01vLq4gn+cPpIzxmVh/++FRNT8gOf6dUTZ9n1ksD+gOfvx7yiutfPpjTPIjI/A9dDhBCwxRF7xSTeeQd+ilFqqtZ6w222SQBI9ncvr5+Y3V/HuiiqKUqP5yynDmTowGYA2l5cmhwe7a+d5y5aWzaSsepSETW+B9uPImk7TkPNpyzsaDD/+EkrY8BLZ395C9aQ/UDH0Mu7+rJgfSpu4dc5Qpg9KxufX+AIafyCA16/xBzRunx+7y0drh5e2Di/NTi9VLR20OL1sqrOT2L6Zu6xPMZpimtMOp+6If+KJzd9xzJ6aSGrt8GJ3eUmKsvaoOyZi32mt2VTnYGFJAws2N7JoSyNtrj3P6T97QjZ/P3Xkbgs81n9xHynf/pna098mbdSR3Rl2j9fU7qFhy0oGvXkU//adxewr72ZUdny4wxIHqKTOgW3Ny2TP/w1P+E4g5fS7GJYZS1Fq9D5/WBBCCNF7fLqmml+/vgqtNdfPLmJmsp3YrR8Tt/UTIutXANCRMISWwtNoGHk5GExEhpJIxn34u3DhfxbR4HDzzjWHwyOT8VkTMV72UY+8nn5jaQW/e30Z38fcTGRsEiWnfkCUzbxfCbOuprVm2p1fMywzlicvnoDL7cZ8TyFt+ceRcP6T+91eWWM7x9//DWNz4/nvZYfh/PB3RC5/Cv9NWzBHxHTDGfQ9YU0gKaWOA+4HjMB/tNZ37LL9AuDm0LcO4Cqt9cq9tSkJpP7pi3W1/OWDtVQ0dXDy6ExuPWHojrvFLq+fBoebFqeXzj/SpvZqEje+QsLGV7C0V+ONSKF50Fk0Dz4XAn6K3plDe+p4VhzxNLd/vJGSOgd3nzWaU8dm7VdsWmsqmztodHj4YWsTn6zaxrDqN7nZ9AoWQ4B1RVdhPPxaVKdV3XpKIsnnD1DV4tqpkF6k1UhylJXYCFOPSnKJnfkDmpI6O4tKm4KPLU00ONwA5CREMGVgEpnxEdjMRiLMRiwmAzaTAYvJQITFSG5iFFaTAWvoOaspuI/T2Y7tkfG4Y/Mx/fyjfj36CIJ3MDfW2Il7+wIiG1by5bFfcvy4AmL3446Y6Bl8/gAlG9dQ9MZsFvkG8Z/8u/nVMcPIT44kRvpTCCH6rJI6O1e/uIziWgfnTMzh/Em5GJTC7KgKJpNKPyKqdjH27FmUH/kQAUsMERYD+UlRmIx7rvri9vkZddtnnH9YLteOViQ9PYXaqbeRdsyvDuHZ7TufP8D1rywnYu1r3GN5jLLZj9FWMIcIi5H8pMi9nmt32VRr5+h/z+cfp43k/MNyadk4n/iXT6Lh+CdIPuycA2rzlR/KueWt1dxx+khOil5P1GtnYz/zVWJGHNfF0fdNe0sgmbr5wEbgYeBooBJYrJR6T2u9rtNupcARWutmpdTxwBPAYd0Zl+idjhqWxrSiZB6du5lH523my/W13HjUIC45PB+b2Uh2QiRpsQGa2j00Ojz4AxpfVAZ1435F3ZjriamcS+KGl0hZ9RipKx/BZ40jYLSxfPw/+f07a2lwuHnyZxOYNTh1v2NTSpGTGEmU1YTZpJgyIImqliLuXj6HGSX/YnbxfWwreZXW4RfD6PPx2xLw+jTbmjuos7vIiIsgLuLQfnjRWlNcY2dxWTNljU6sVYsY4C0hd/oFkJBJuduJyahIirKQGGUJyx8UEeTzB9ja6KSkzs6mWgfFtXY21topbWjH6w9mTOMjzYzKimd0ThyjsuNJ38tUHOV1Yuqoxd2eTIc56n+2J254gRhnDU1H30daP08eAVhMBqKsRlrHXknuFxdgW/c6DUU3SAKpF3K4fcSVfoQx4OF3/iv405QBxEaYJHkkhBB9XGFqDM9cMpHb3l/Hq4sr2NbcwY1HFUF0Jo0jfk7jiJ+TsOFFshb8gYHvn87WY56hIyab0oZ28pOjMO/hOnh5eQtuX4CpA5PR658DQA094VCe2n4xGQ3cfOwQzi+bzRbPB6QvuZu2vGPp8PCT59pdvt5YB8DMwaFanJu+RCsD5qIDHwF/zsQcnpi/hS/W13HWOYcTMFjQW+aCJJAOWreOQFJKTQFu01ofG/r+dwBa63/uYf8EYI3Weq/DP2QEkihrbOe299by9cZ6ilKj+eOJw5helLxjtEwgoGlyemhwuP+nTpKpvYbE4leJLf2Y1YOv56ofkvH6Azxz6UTG5yUedGweX4Cqlo4d0+pcXj+V379BwcYnGUMxPmWhbcCJNA+7EGfq+B01kuIizGTE27r1l/amWjtPzN/Cxlo7m+sctHv8xODkFtPLXGD6EgAfRqrTj8Q79hLaMw8HZUApyE+OItrarTlnQTCxt7XRycqKFlZWtrCqspW1Va24vD+u5pcWayUnIZIx0S3M8swly2wnKjISbbSijRa00ULAaEUbzJhczZjbq3d6GD1tO9ryRqTgicnFE5ePJyYPT2weaUvuxheZguEXn2OzSJ8D2F1etta3Y376SGINLhovWUBRemy/H53V21Q0OYl44QRqGxp5ZsR/ueTwfAalxex2GqcQQoi+RWvN5noHL35fzrMLt1KUFs0f5gzbqQ5k1LZvyPvyKgIGC2XH/IeO1HFYTAYKkqN2+7fi358X8+BXm1hy61HYnj8O5fegfzmPyB58/RQIaN5duY0v3niCh833UzHjHloGnQUEb5rlJ0diNR2665vznviepnYPn/5qBlprXA9PJ2C0YvvlF/s0hXBP/u+1FcwvbmDxrbPpePJ4lNtOxHULujDyvitsI5CALKCi0/eV7H100c+Bj3e3QSl1BXAFQG5u7u52Ef1IXlIUT18ykS/W1/GX99dy8dM/MDY3PjiveVAKBoMiOdpKUpQFu9tHk8ODw+1Da/BFpVM39gbmpV/KXz9YR4RZ8dqVUxiSHtslsQV/8UbR4vRQ1eLCZjZSOP0cmsefxk2ffcbImrc5c/PHDNz8Fh0JQ2gaegEthWfQSjQOt4+MONv/FDTuCp+treFXr64ABQNTopk5OJVZaglzyu4iwtNA/YgrWJZwHPXfPs+c6i9IrPkcd2w+TUMuoHnQWVS1GHpEkb2+qNHh5u3l25i7sZ5VlS076hbZzAaGZ8Zx2tgschIiyYiLIDc6QGrlpyQUv0705u/RKPzWWAx+D8rvQWn//7TvjUjBG5WOOzYPR8YUvFHp+COSMTnrsLSVYWkrI6pqIQntb+54TfOsf5DWgy9+DrUYm5kIq5Evk8/jl/V/x132OQ3RJ5KdEBnu0MR+cLbUk9m0gjfUaZw5Ppu0WJskj4QQop9QSlGYGsOtJwxldE48t7y1it+8sZI/nTSMvMTgiOz2rOlsPult8j67lAEfnkPljHtoHXgyWxoc5CdF7XTjyOH28f7KKkZmxaHaa4msW0b9xJtI6eHXTwaDYkZRCj+MPZ0Vq95n5Dc3Y3S30jji53h8AbbUt1OQHHVIbpLZXV6WlDVx2bRgEXNncw1RDatpOuwmog6yJtPYnHjeWraN6lYXMflHELPwDjpa6oiI3//ZJuJH3f3Tvbte3+2QJ6XULIIJpGm72661foLg9DYmTJjQ+yp/iy6nlOLoYWnMGJTM60sqeXTuZi59ZjGjsuO4/sgiZg9NRSlFrM1MrM2Mx+dn8dYmvlxfxw+lTayvsZMRZ+PlyyeTk9j1HwLjIy1EW0076gslRFq46JQT+HrjRI6Yv45j9bdc655P1sI/krr8AWoO+wMtA0+lsrmDlg4vWfERXfLBRmvNg1+VcO/nxQzPjOWmYwaTZmgj47s/E1/6AR2JQ9l83FN0pIwmE4jPH8PNc9cTWfIhl7fPZcQPt5O29G7qR11J/ZG/JzVGVimC4EpOTo+f2AgzMTbTfo8c8/kDzCuu5/UllXyxvhZfQDMkPYYTRmUyMiuOAclRJEVbgiOPtCay9gcSNrxOXOmHGL3tuGPzqRl/Ey1FZ+CNzvyx4YAfFfCg/G4Mfi9+axzauG8JSeVzYbFXYPA6yBoxfb/Opz9IibbhLJxDZd1jxC1/jKqCY0mPDcj0zl7C6fHRsPx9BhPANHQOSdEWkqO7PlkvhBCiZzMZDZw6NovC1Gh+/txibn5jFfecPZoxOQnU2924E4rYfPK75H1xOblfX0tN21bqx1zHlvp28pMjibSY8PkDXPvSMsqanDx36SQC618LNj70xPCe3D5KjLJw4ZQC/lD2d65p+zdHLfor0VULqDziXny2hJ3OtTstKGnE69c7Soj4ioMzIlTh0Qfd9uiceABWVLRwxMCZsPAOPCVfEzHhwOoqiaDuTiBVAjmdvs8GqnbdSSk1CvgPcLzWurGbYxJ9jNVk5MLJeZw9IYe3l1fy0Ncl/OL5JQzPjOXaWYUoBV9vqGdecT01bS4ABqfFcP6kXK6fXUhKNyZETEYDuUmRtHZ4qWtz4fIGOHJIGiOz4nngqxQmV8zinPRqfm94jpy5N5Cw8RWqpv4NR8IgimvtpMfZSIqyHPCoH6fHx29eX8lHq2s4ZXQmP5uSR0rp22R8/1cMXic142+ifvSVYDCTEGUmNsJMS7uXG44dydz8dM6eewSFlPPv5I8ZuPx+NuccQfyoWXLHHmhz+ejw+HdMVYywGImNMBFrM+/1jk1JnYPXl1bw1rJt1NvdJEdbuOTwfE4bk0V2YiStTi9trmAxeH9zBSmb3iRh0+tY28rwm6NoLTiR5kFn4UybCEoRbTMRbVQ7isdrbUZjResYNGBUCpMx9DAYMBkVZoMBo0HhCwTw+jRuvx+PL4DHZ8RrG4zFbOyRK4eEW1ykmZG5yTw1/3j+3PhfmmqX0RQzhVRZ+r1XaOvw4lv/EQ3EM/awWWTGR8iISiGE6MdGZMXx7jXT+MXzi7n6xWXcesIwzp6QTWVzB76IJErnvEzWN78lfendWFu3sG36v9hSr8lLiuSez4qZu7Gef5w2kqkDk3DO/RB33ACisoaH+7T2iVKKrIQIrj5+Aje8+muutH7JNdueo/Dt46iY9SDO9EmUNrQzMCW6W0cizd1YR4zVxPi8BAAMm7/AZ0siIm/cQbc9JD0Wi9HAyooWjjtmAn5zDGrLPJAE0kHp7gTSYqBIKVUAbAPOBc7vvINSKhd4C7hIa13czfGIPsxiMnDOxFxOH5fNuyuqePjrEq56cRkAMVYT04qSmTk4hSMGpZIed2g/8MVFmImLMOP2+Wnr8BFlNfK3U4bz0eoanl5g4K3AzfwxcwnnNTxN0VvH0TDyF9SNvYHqluAS4mkxNuIi96/Ia0WTk8ufX0JxrZ3fHT+EIwalkLjoLlJXPEB76ni2Tf8X7oQiLCYDWQkRO+obxdrM+PwB0uNsjMmJ4/YPIzmpMomF0avIXPAnqnM+Ji+la6b79Vb+gMbl3XmqWIfHT4fHT22rO5ikMSoMSu2Yu71oSxOvLalgSVkzRqWYPDCRa2cNZFxuAqAIaChvdKJ8LmK3fkJC8WtEVy1AoXFkTKFu7A205s9BmyOxmg2kRZqJj7AcVDLPggEsAFJAeF+NzYnnVtNR/MbwNimrHqcqYzwpMVZJROyD5nYPBqX2+3dZV/lkZQVneJexNe0YUuMiiJKabkII0e+lx9l47ZdT+L9XV/K3D9axZlsrfz15OA3tHhwuqDziPjxxA0hbeg9mZy1lRz3OQ19V8ezCrVw+vYDzD8ulraWemKrvaRp9BUnW3nNNFR9pIT8pkl8dNZi/fxjAUTie/2v7JwM+PIfa8b+mfvTVlDc5GZgSfVC1iPZEa83XG+uYPigZs9GA3+cjonwu7bmziLMc/PtoMRkYlhnLiooWDCYzjuyp2Cq+wR/Q3XI+/UW3Xj1prX1KqWuBTwEj8LTWeq1S6srQ9seAPwFJwCOhC3Dfngo2CbEvzEYDZ47P5tQxmczdWE+MzcS4vIRDvqLA7lhNRlJijKTEWPH5A2QnRDJrSArPLSzjb+sm8UBgMPcmvs2MVY8Rt/k9qif/mbb84yhvchLhMJIeZ9unQtbfb2nk6heXhYqDTyIvMRLDurdJXfEATYPOZdv0O1AGA8nRFtJibBh2+SVqMhpIjrYyrSiF134Zz63vrOGPq8/lQd9DGFe+gH3a5f161SJncxWDX5xJwBSJO74QV3wR7vhC3AmDcMcNxGeJxucPJpm+XF/LeyurqGp1kRxt4WdT8pk9JJWESDMGrx1zcwmmjjrMzjoiaxYRv/l9jF47nuhs6sbeQPOgM/HG5GIwQHyEmYRIi3zwDaPEKAt5mWm8VX8MF259m5rmUuwJw2RFtr0IBDTbWjpocXqJjzSHJYHk8vhY/s2HXKI6iBp1EvFhSmIJIYToeSItJh65YBwPf13CvV8Us766jccvGk9anJW6Njd1Y2/AE51F9vzfkvHWabzfeD2HFRTxi+kDAPCt/xilfeghvWP6WmdpcTYOK0jijHFZPL4MEmY9x7m195K+5F9EVX9Hxcz7qTAG67t2tfXVdmrb3MwMTV/rKFtKtLuZQOFRXXaMMTnxvLakAn9AE8g/Akvpp7TVlhCbUdRlx+hvuv1TiNb6I+CjXZ57rNPXvwB+0d1xiP7HZDRw1LC0cIexRyajgYQoC5MKkhiVHc/aqnxeWlTOL1cnMMw3mXtMz5P/5S9xZEyhdvxvcKZPpLS+nWibifRY226nGK2oaOHZBaW8v6qa/KRInrx4AlFWE22lyxg4/ze0p46n6vC/Y7OYyEqI2Kd5zTERZv5+2gimb6xjjXkuQxb/i9Kik4jKyf6fxFN/4d/4OWZnHW05R2KxlxNdOQ9DwLtju9uWit1vptWjOUUbOd1sJTYlgujICNQ2P6aSeszOOgx+107tBow2Wgvm0DzobNozJoMyEGk1kh5lIdZm7rfvd0+ilGJCXgIPlM7mgsj3SV7zFC1pd0gCaQ9cXj8VTU5cHj9pS+8hpmo+/PJLMB7aJOiLi8oZ0/EdPosVV+50WVFSCCHETgwGxXWzixiZHccNr6zgpAe/5b5zx3BYQRIVzU5ais6k0hvLyAXX8Y7tNmonvEBdmxutIXLjh3gj04gsmBju09hvsTYz+cmRXD59ABtq7Pz7mxpyzrqT0ZmHk/ndnyj45CI2n/gmtRYjaV08Zf/rjXUAzByUAkBg0+doFOZBs7vsGKNz4nh24VZK6hxkD5wJX4O/ZC5IAumAyRWUED2AzWxkfF4ig9JiOP+wXN5cmsWpK4dwsu8Tbqh+l4EfnMG25MOxT7kZR9oYSlwO4iLMJMdYMBkMfLymmmcWbGVFRQvRVhMXT8njV0cPQmvYVllB4eeX47fEUX7U4yTHx5AWu39TbmJtZq6bXcRNH13Ah9ZbSVh0Nw0Jd/bb2i+G0rl4bcmUHfM0KAMEfFjayvDWbmDz2iW46zdjwUt6tJHsWBOxFlABHwS8aEx0pI6lLTINX0Qq3qjQv5GpeKOz0CYbRoMiOSo42kiWie95ZhSl8MjcBErS5lC48VXqxv8KX3yeFNPeRYvTQ2VzB1pD6rJ7SV3xAADuiqVY8/e2IGvX6vD4eXRuCe9bVuDMOpyY6FiZciiEEGK3Zg5O5YPrpnHlC0u57Nkl3DC7iGtmDmR1VSvXL05ggPFvPG+9i6RPzqbs6CdoSB3HsIq5tA45hwRr71yYIcZmZkiGmXvPHs05T3zPHZ9s4J6zzsYblU7+Z5eSM/cGyo96HJvZSFxE190wm7uxjhFZsaTG2tBaYyr9io6UUUTFd90AgNHZ8QCsrGihaNxQvJFpGLfOg+mXd9kx+htJIAnRg8TYzIzLTSA/KYozxmXz6doCri49hXE1r3NF/ftkvX8yP1insmbwNSQVjGVRaROfrK2hqd1DQXIUfz1lOKePyybaasLl9bO5tpm8r67G1FHPlhPfIDY1+4DrP100JY9nFgzhPf+xnLL+eUqGnEfcsIlYTf0rweHz+Ymo/Jb2rGnB5BHg9MELG0y8syIBX+Aojh1+IaePzSIq1kYz0LwP7RoNiiiLkcRIC7ERJvmA24ONzonHaFC8F3k6v/G/S8K6F2hJ+y3J0dZwh9YjaK2panXR5PAAkLL8QdKW309LwYnEl36Ab/O8Q5pAenZhKQnOUjKstWzLvYHYLrz4FUII0ffkJEby5lVT+cM7a7j/y02srGyhud2D3eXlvNPnUBpxOPmfXEz+JxfTMvBUDH4XgV44fW1Xg9NjefDcsVz89A88Mq+E/ztqJtWH/ZHM7/9C2pJ/UXnYLVhNXVNUu9XpZWlZM9fMKgTA3lxPTN1y2ibcSGQXXgMXJEcRazOxorKFsyfm0J4znciyr3B7vVjNcj1wICSBJEQPo5QiKdpKfKSFzAQbjWMycbrH8n7Z1cSvfpojm15lwsoL+XD5YazynciA3PHccGQR4/MTSIq2YDYq/AFNeZOTtIV/I7r6OyqOuA9D9jgyD6J4uNVk5KZjB/HnV0/j2OiFZCz8M1UZb1KQEt2FZ9/zdWxbS0xHPZ68GcRHmnlr2TaeWVBKS4eX2UNTuWLGALJCqzspQClQqNC/wf41G4PFtc3G4GpoJoOShFEvEmExMjwjlrktmiszDydx4yuUT7peEkghpQ3ttLuDReaTVz1B+tK7aC48jW1H3Ivt7U0Ytn4D/PaQxNLq9PLo3M38Nmk9OMCedxQZMn1NCCHET7CZjdx15ijG5MTzl/fX4gtonrhoAmNz46lpjWbzSW+S9/kVJG56HZ81jojC6eEOuUtMH5TCr44exL2fFzMpP5Hpwy/D2rKJ1JWP4I4vpNx4dpcU1Z6/qZ6AZkf9I9fGL4jVAVRR19U/guB19+iceFZWtAAQKJiJaeMbOCpWYh0gZZcPhFxFCdFDGQ2KjLgIkqOt1NvdRFrz0EV/ocx1I9bFj3Dspuc5yfg9zsAYGt0X0eo9iQY7NNg9mE2K6DUvkbzuWepH/hLn0DMZmBh50EmKk0dn8fi8DO5vO4dbap6gad3btE46t0uHs/Z0/s1fAfC9HsFd//meiqYOpg5M4pbjhzAqNExW9H0T8hN5cVEZDbPPJn/eDRi2foMr8fh+P+Ww0eHekTxKXPccGT/8nZaCE6iccQ9p8ZEE8qZjW/UC2utCmbt/Cuyj8zZjd/mYk7iCjqQRRCT139ptQggh9o9Sigsn5zEmJ57Gdg9HhGr1WEwGKppg6/H/Jf2Hf+CPyyMtIiLM0Xada2cVsqSsmfu+2MSwzFiY+jesbVvJ+uYWSmNyqTRNJS/p4Ipqf72xjvhIM2Ny4vH4AtjWv4XXlkxkwaQuOosfjcmJ55G5m+nw+DEVzgRAb54LkkA6IFKwQYgezmw0kBkfweD0GJJjLOiIBDqm38qmC36gavJtGDwOcub/miEvTyTj+79iad2CedtiMhf+AXvWDOoOu4W8pMguqc9iMCh+f8JQnnDOoCaiiPQfbqemoZFAQHfBmfYOpq3zqDXncP3HDcRYzTx/2SRe/MVhkjzqZ8bnJeD2BVgRPR2/JZbE4tdodnrCHVZYeXwBqluDheETNrxM1sI/0pp3DBWzHiA2ykZqjA01YAYGvwt32eJuj6em1cUzC0o5uchKQtMK2nJnS7FzIYQQ+21EVtyO5BEEa4MOTInGZLVRPeUvBA67MozRdT2DQXHfOWNIibFy/cvLKW/xUH7kY3ijs8j74go66rZQ0+r66Yb2IBDQzNtYzxGDUjAaFC3Vm4mp+BL78PMxdcO0stHZ8fgDmrVVrUQkZuOKL8RUNr/Lj9NfSAJJiF7CbDSQERfBkO2JJFscjSMuY9OZX7Jlzqs4MqeTtPZZBr8+k4KPzscbnUX5kQ+RkxzTpaMiphelMHlgCjd3XISlvZqEpQ9R03bgf0R6E0d7O6aKhXzSMYTLpxfwwXXTmDEoRaaf9UPj8xIA2NLso6XwNGK3fkJrUz1a959k6q62tQQLZsdvepOsb2/Bnj2TiiMfxmKxkp0QCYBt4Aw0Ct/med0ez/1fbiKgNZdnlKDQ2POOIsYmA6+FEEIcPJvZyMCUaCIsXVtYuqdIjLLwyhWTSYq28uvXV7KySbH1mKdRAR/5n11GY2MDxbV2Wp3en25sF2uqWmls9zBrcCpaawxLnwEgMO5nXX0aAIzKiQOCq1UbDAp3zgyian6gw+nsluP1dZJAEqKXMXVKJKXH2bCYjbRnTqFi9iNsOO97asbfhDN1LGVH/4fU1PRuueP++zlDmecqZFncUSSvehx7VTFOj6/Lj9OTtHZ4ufM/L2DTLhJGHM2tJwyTqTD9WHqcjaz4CIprHTQNOhuD303Mpndpc/Xt/wd70tzuweHyEV05n+z5v6Y9YwplRz0BJiu5iZE7aiWoyAQ8KSMwln3brfG0OD28tqSC08Zmk1M/D29kKobMMbJSnhBCiC5jNhoYkBxFpKVv3pzISYzk9SunUJgazR/fWcPXDbGUzX4Ua8tmcr6+DrfbS3mTk5I6O22ufU8kfb2hHqVgxqAU2uztxG94hbbco4lOLeiW80iNCV6zraxsBUAPOAKDrwP31kXdcry+Tq6khOilTEYDKTFWBqfHUJASRVyEGX9UKvVjr6P0hFeJyBpOSkz3FPUdkRXHyaMzuaHxdLTBRObCP1PV7Oyzoy9qWl2c8/h3pDZ8TwADR805M9whiR5gfF4CyyuaUZmj6UgaTuLGV2jph9PYvP7g1DWDt52sb2/BHVvA1mOeRptsZMTZiLDsPALSlzsNa81SAu7uu/O3ocaOP6CZlBtNdOV87DmziY2UIudCCCG6Vl+/mZgcbeXlyyczIT+BOz7ZyGtNA6ma+ldiK76i8J0TiN36KR1uP2UNTkrqHDjcP30j7euNdYzOjicxyoJ71VuYXI04R1/SrXUkR+fE7SikbR4wA60MUDq3247Xl0kCSYg+INpqIjcpksHpMaTFWYmLMJOd0L3F/G46djDVgQTeiLuEmMqvsa57g3qHu1uPGQ4ldXbOeHQhFU1Ozk3ajCt1DBExieEOS/QAE/ITqG1z4/EFaB50NhGNa/BuW4nPHwh3aIdUdYsLf0CTtvQeLI5Ktk2/E22OJD7STNJuVqYzDDgCQ8CDq/S7botpU60dgEHOFRi9Dtpyj5L6R0IIIcQBiLGZefbSSRw7PI3H5m3hQfsMymfej8HnJO+Lyyl8Z04okeSjtL6d8sY93yBqdLhZWdnCrMGpuH1+olY9iztuAFFDZ3frOYzOjqe8yUlTu4fI2AQ6kkZgrvyuz9787k6SQBKiDzEbDaTG2MhNOvgV135KTmIkF03O49aqqTQljiXj+9toqqnA7fN363EPpaVlzZz52He4fQFevHgIya1r8ObNkJpHAoBxucE6SMW1DtqKTiVgsBC/8TVaOva/HkBv1er00trhJaJ+JUlrn6Zm0Pm82ZCDQUFW/O6T2NYBh6OVEf+W7itgubHWTrTVRGbdPAJGK/78GVhMcskjhBBCHAib2cjD54/jnAk5vPJDBf+sHMn607+k4oh7MXjbd0oktTo91Nl3Xx91/qZ6tIZZQ1JoK11KVN1SWodfTGxE944SHpMTD8DKyhaUUnhyphJRu5wOp6Nbj9sXydWUEOKAXXtkITaLhd96Lsfg7SDj2z9Q1dwR7rC6hNPj45KnfyA+wsxbV01lgGMFSvtRA2eGOzTRQwxJjyHKYuTbkgZiEtNoyz+W+JK3aWmzhzu0Q8If0FS1dkDAS9Y3N+OLSOFO77k8Mnczf/1gHe17qItmiIjFnToaU9k33RZbca2DAcmRxJZ/iSNzGjExsd12LCGEEKI/MBkN3HHGSK48YiAfr6nhkW+20lx4BsVnfrVLIukEmio3Yd9NXaSvN9STHG1heEYspqVPEzDaMI67oNtjH5EVh0GxYxobeYdjCHhwl/3Q7cfuaySBJIQ4YEnRVu4+axRfNcbzvO184so+wbD+3T5RB+abTQ3Y3T5uP21kcETXlnkETBHYCqaEOzTRQ5iMBs4Yn827K7bh8vhpHnQOJncLlpJP6PD0nZF4e1LV0oHPr0lZ/QQRTetYO+aPvLexnZFZcSwpa+b8JxfRuIdprf68adjqVuJztnZ5XFprimvtTImpw+KooC3vKGL74Ao5QgghxKGmlOKW44dw/ewiPltby2tLKzCbzbQUnRlKJP0bi72cvM+voLKuCY/vx2n9/oBmXnE9RwxKxdHaSNymt2kpPJX4xJRujzvKamJQWgwrQgkky4DDQ3WQundRj75IEkhCiINy3IgM7jpzNH9vmk2JqYjMhX+ktqaq19eB+XxdLbE2E5MKgvWOLGXz6MicjMVqC3Nkoie5auZAFIqnF5Tiz5+OJyqThOLXaO4DSdS9cbh9tDi9WFq3krrsPlrzj+f+bYMxGRRP/WwCT1w0nuJaO2c9/h1VLf87KlENOAKlfbi3LOzy2OodblqcXqYFlgDgKji6WwtzCiGEEP3Nr44q4pKp+bzwfTmfraslJzECm9VCS9EZlM96EFvTetLn3Ux5Y/uOOkNzN9bR2uFl1pAUvMtewOB34Rv/ix0rtXa30dnxrKxoQWtNREwirqThWCoXSh2k/SQJJCHEQTtjfDZ/OGkk17T/HOVqJeXbP1Hduvu5z72BP6D5akMds4akYjYacDWWYW3djC//iHCHJnqYjLgIzpmYw2tLKnD5Fc2DziK6cj6OurI+fUHS1uEFrcn69ha00coPQ25h7sZ6LpycR2qsjdlD03j+sknUt7k589GFbK7fucaArWAKAYOZQGnX10Eqrgkea2jbApzJI4lKzu7yYwghhBD9mVKKP504jNPHZXHv58W8s3wbRWkx5CZF4hswm9rxvyZh89tELv8P5c1O7v9iE1f8dynZCRFMzk8gZtVztKeOJ7Zg3CGLeXROPM1OLxVNHSilcGdPJaJuOU5n+yGLoS+QBJIQoktccngBx8+ezQPeU0nc8i7edR/u01KePdGy8maa2j0cNTQNAO+muQAYC48MY1Sip7pq5kAAXlpUTsugs1BoYje+Tpurd/787wuPL0BC8WtEVy+ketLveHqVi0iLkWtnFe7Y57ABSbx8xWQ8/gBnPfYdqyt/nK5msEbhTh+Pubzrh44X19qJwUlSyyrsObNl9TUhhBCiGxgMin+dMYpjhqVx2/vreGtZJXERZgakRNM64Xraco8mfdHfeOCp5/j3F8WcNCqDD6+fjiqdh7WtlPbRlx7SEcKjc+IAWFHZAoDOn4bB78azVeog7Q9JIAkhusz1RxbRcdj1rA/kkvj1zVRWV/XKJNIX62oxGxVHDA7OyVZbvsYXkUxk1sgwRyZ6osz44Cik15dWYI/IwpE5lcTiV2ly9N5ReD/Fb68l/Ye/054+iUXxJ/LdlkaumDGAhCjLTvuNyIrj9SunEmE2ct6T3/Pd5sYf28idhrVhDW5HU5fGtqnOzuiIOhQad8oIoqymLm1fCCGEEEEmo4EHzhvL4YVJ3PTGKj5bW4PRoMhNiuL5jN9RFkjld447uG1mAnecMYoYqwnz8qfx2ZKwjT7tkMY6OC0Gm9mwo5C2ueBwNAq9Veog7Q9JIAkhuozBoLjx2OF8MehPRPuaaXrrt2ypc1DR5OxVNZE+X1fL5AFJxNrM6EAAW8U3dGRPx2CUX5li966aGRx58/rSSpoGnYvFXoEu/Xa3K5D0dlprkr75EwZvB5XT7uSFRRXER5q5bFrBbvcvSI7izaumkhFn4/Lnl+D2BQuMGwZMR+kAns1de+G2scbOhJgWACyphXvfWQghhBAHxWY28sRFExiZFce1Ly3nw1XV3PDKCu6eV8PdCX8i3uzj7M2/p6K+mZaaLcSUfU7r0POIjY4+pHGajAZGZsXtSCBFxiTiSg7WQQoE+m7Zga4mn4aEEF0qymrijBNPYG7yeUxt+5iFr93DyvImimsdNLf3/MLCm+sdbGlo3zF9zVW1BlNHA3rAzPAGJnq0rPgIzp6Qw1vLKqlMPxK/JZaE4lepbnX1uVpI3uo1xG95n/ox17K0PZnlFS1cM7OQmL1MFUuPs/GrowfhcPvYUG0HwJY/mYDRit4yr8ti01qzqdbBUFsDGkVkuiSQhBBCiO4WZTXx7KUTKUiO4pqXljF3Yz1/OGEof7z0NLYdcQ+R9ctJnP8nfD88A4CacGlY4hydHc+aqla8/gAGg8KdNZXIumU4O6QO0r6SBJIQostlxEWQe9ptlEWN5kr7A2S/dTJvv/smS8qa2VLvwOXtuUucf7GuFoCjhgUTSL5NXwFgKZoVtphE73B1qP7PW6ubaBl4CnGlH+Ftb6GxFyRO94e/ejUALfnH88L3ZaTFWrloSt5Pvm5UdrD2wKptwVpIBosNV8ZELBULuiy26lYXdrePPGrwRmcSE3Vo724KIYQQ/VV8pIX//nwSP5uSx7vXHs4vpg8gPS4Chp1M3airSNrwIsmrn8CeO5u4jIFhiXF0Tjwub4Di2uDNLJ0XqoNUtjgs8fRGkkASQnQ5pRQ5qUnYz3uXTVPvosDSyq21N+J5+WKe/Wg+i7c2UdPqwuH24e9hQ0Y/X1fLsIxYsuIjADCWzsMdNxBb8k9/QBb9W1Z8BGdNyOHdFdsozTkNg99N4oaXqW1z9aopnD9FN5SgUXzfEse66jauO7Jon4pgZsVHkBhlYVVo6DiAP286tqb1dDTXdkls2y8IU73b8McXoNShWRpYCCGEEJAaa+Mvp4xgaEbsjudyEiJpnXIL9sxgssY79jKMhvD8fR6TEw/AitC1iGlAqA5SqdRB2leSQBJCdIsIi5HU2Ahcw86h4oJv2Tr8Oo42LefWLRez/r+/5pFPlrN2WyvrqtrYWGOnvNFJnd2F3eUNW1Kp0eFmaXkzR4dGH2mfG1vVd3jyjghLPKL3uTq0ItsLZYnYs2eRuuzfGFsrqbW7wxxZF2ragicmmxeW1JCbGMnZE3L26WVKKUZlx7F6W6fV2AbMAMCz5ZsuCW17AinWWY5O2H1NJiGEEEIcOgaDIjclhm3HPM7WY54matgxYYslOyF4M2tHHaTYJFxJw7FKHaR9JgkkIUS3SY21UZASRUR0DPYpN7H53Pk05M3hCsO7XLfubEr+ex2lP3yAx9VBa4eX2lY3WxucbKhpo7Xj0Bcf/nJDHVqzI4HUseU7DL4OlNQ/EvsoOyGSM8fn8OGaalaP/TMAWQt+R5Pd3aOnbu4PY9Nmak3ZbKpzcONRRVhM+34pMSorjuJaOx2e4Hthy52A3xyFKp3fJbEV1zoYEO3F5G6GxPAMjxdCCCHEzqwmI1npaTDoOGyW8K2OqpRidHYcKyuCN7OMBoU7ewqRdUtpd0odpH0hCSQhRLeKtpoYmBJNfnIk5oRsmo55kJJT3sebNpaz9GecvOpqCp8bRcpHPydh4yuYnLUEAlDe6GRbS8chvRvwxbpaMuJsDM8MDrv1bvoarYxYi2YcshhE73fNrIFoDS8Xa2on3kJM5TziS96kqqUj3KEdPK0xtWxhsT2RotRoThmTtV8vH5kdT0DD2qrQhZvZgitjEpbKBV1SbLy41s7UhFCNpeQBB92eEEIIIbpGjM1MbmJkuMNgdE48xXV2HG4fAIFQHSS31EHaJ5JAEkIcEjE2M4Wp0eQlR0LWWBpP/i8bLlrF60V38V7gcPS2pWR/81uGvjSRge+cSGTtUpocHjYfoqLbLq+fbzY1cNTQNJRSeHwBzGXzcaWOwRyV0O3HF31HdkIkZ03I5pM1NWzMPYf21PFkfP9XXC21tDoP/ci6rqQdtRi9DlZ2JHP97KL9rmGwo5B25Y/T2Px507G1lOBq2nZQsQUCwRXYRkU2AmBKlhXYhBBCiJ7EEKbaR52NyYlHa1gTmlJvLAjWQVJlUgdpX0gCSQhxSMXazBSmxpCXHElsXBxDZ55DxgWP8fu8VzjOfQcPGy7A76hnwAdnkbzqMVweHyV1Dpq6eSWrBSUNdHj9O6avtdZsIaJ+Bb6Cmd16XNE3XT2zEIXirs83sWXKHRi8TjK/+zPVbYd2VF1X89ZtAqBUZzCjKGW/X58WayMt1sqqypYdzxkGBkf4+Q+yDtK2lg46vH4GGusAMMkIJCGEEELsYkxOPGaj4p3lwRtXUbFJuJKGYa1c2OMW9+mJJIEkhAiLWJuZ/OQoBqfHMCQ9hlvmDONnp57Aq7azOLzlryyLnErGD/8g/9NLMTgb2dbcQXmjs9t+sX+xvpZoq4nDBiSitUYt/g+gUGMv6pbjib4tJzGS+84dw4bqNv70nZea0dcRv+V9bJs/pcHRewtq+xuCCaRAwkDiIs0H1Mao7HhWdSqkHZE9Fr8lFlV2cAmkjTXBAtqZ/iq80Zlgjjio9oQQQgjR98RHWrhwch6vLamgpM6OyWjAlTWFyNqlONqlDtJP6fYEklLqOKXURqVUiVLqlt1sV0qpB0LbVymlxnV3TEKInsNsNJAaa2NwegwnjcnkuUsncsz4wZzR+EsesF1JVNW3FL19HFHV39Pa4aW41k5zF49GCgQ0X6yv44hBKVhNRlpbm0lY/yJtBccTlZrfpccS/ceckRncccYolpe38NuaWXQkDCFrwa00NNbj8QXCHd4B0fUluDGTnX/g08NGZcWxpb4duys4nc9oMtGRORlzxcKDiq24LphAinNV4o+XFdiEEEIIsXvXziok0mLiX59sBH6sg+QtXxLmyHq+bk0gKaWMwMPA8cAw4Dyl1LBddjseKAo9rgAe7c6YhBA9V7TVREFKNP84bSR/OXkEjzlncXbgdpxYKfjoXFKX34/P66OyuYPN9Y4dKzkdrJWVLdTb3Tumr3mWvYTR04Zz3BUoFf652qL3OntCDn86cRjflrZxl/VaTB31pC36B+VNTlo7vF1SOPpQctUWszWQxti85ANuY2SoDtLqTqOQAumjMLduBY/zgNstrrGTGWfD2lqKTpAEkhBCCCF2LynaypVHDOCzdbUs2dqEOT9YBwmpg/STunsE0iSgRGu9RWvtAV4BTtlln1OA53XQ90C8Uiqjm+MSQvRgFpOBi6fk8cwlE6mPHMThTX9mZdxRpC29h4KPL8DaXIzT7aekzsG2lg58/oMbzfH5ulqMBsXMwSl0uL3ErXwKZ8oYYgundtEZif7ssmkF3DC7iKe3JvJV3JkkbXgJQ9kCyhudrK+2U9XScUgKxXeJxhJKdQbj8g68sPyo7HgAVncqpG1MH4FC461Zf8DtFtc6GJ2iMLqaIHHgAbcjhBBCiL7vsmkFpMZYuePjDdjiknAlDsVWufCgP1f0dd2dQMoCKjp9Xxl6bn/3EUL0M0opDhuQxCu/nMyEwbmcWvMzHom9EVvDKoreOoasb27G5KylyeGhuNZB40HUlflifS2T8hOJj7TgWPMx1tYttI25nCjbgdV4EWJXNx5VxMVT8rim5ngazZlkffNbTO01+AOaRoeHTbUONtXaqbe7e+6FS8BPrLOCbYYMClOiD7iZxCgL2QkRO63EZs0cDoCvZu0BtekPaErqHUyMbQbAkCwJJCGEEELsWaTFxI1HDWJJWTNzN9bTEaqD1N5+4KOh+4PuTiDtbu7HruP192UflFJXKKWWKKWW1NfXd0lwQoieLyMugscvHM+1s4q4p+Ew5vAgG3LOI37TGwx67QhSl96LdjuoanGxqdaOw+3br/bLGtsprnVw1LA0fP4AEcsexxuZTsTo07vpjER/pJTiLycP55jRBVzbfinmtgqGvHwYBR+cTeL6/2J0NeHyBqhpdVHZ3BHucHdLt5Rjwoc/YeBBL8M7OjueVdtadnxvSh5IwGhF1647oPbKGtvx+AIMNgevD0wpB16jSQghhBD9w9kTshmQEsW/Pt2IL2cqBr+L9q0/hDusHq27E0iVQE6n77OBqgPYB631E1rrCVrrCSkp+790sBCi97Kajfz6mEE8csE47IY4ji8+gd9nPEVz5kzSlt/HoNdmkLj+BVxuD6X17ZQ1tuP27duUoM/X1QJw9NA0WstWEL3tW1pGXkJcdGR3npLoh5RS3Hv2aGxFMznS/S+W5P8SU0cDWQtuZeiL48n/5GLiN71Be1tzl9X36kptlRsAiM0ectBtjcyOo6Kp48eC+AYj3sRBqPoDSyAV1wYLaGfrGgCMiVIDSQghhBB7ZzIa+O2xQyipc/Bp+0A0CkPZwoOa2dDXdXcCaTFQpJQqUEpZgHOB93bZ5z3g4tBqbJOBVq11dTfHJYToZZRSHDs8nfevm8Z5k3J4vdTM7IpLeW30M3hi88ha8HuK3jyauM3v0tbuZlOtg+rWDvyBPRcpdnn9vLNiG4PTYshJjMD4w+MEjDaMEy45dCcm+hWT0cAD543FnFLEZVuP5Ic5H7PptE+oH3kF1pYScub9H0NemUJTxYHXAuou1VtWA5BbOOqg2xqVFSykvapzIe2UoZgbNxxQe8W1DgCSPJX4ojPAIglgIYQQQvy0Y4enMTY3ngcXNtKRMJio6u+obnXt883o/qZbE0haax9wLfApsB54TWu9Vil1pVLqytBuHwFbgBLgSeDq7oxJCNG7JUdb+efpo3j1islkxNn47SIrFwX+ysrDHwaDidyvr6PoraOJLXmPhtYOimvtNG0f5dBJg8PNeU9+z9qqNq6YMQB7Uw2xm96mZdCZxCelh+HMRH8RYzNz91mjcHn9PDx3Mx2JQ6md9Ds2nrOAzSe+gfK7iVh0f48rrN1evZE2HcGIwQc/PWzE9pXYKlt+fDJlKKb2WgLtTfvd3sZaOzmJEZhbt+KLl9FHQgghhNg3Sil+d/xQ6uxuVplGElW7BHweKpo6et1quYdCd49AQmv9kdZ6kNZ6oNb69tBzj2mtHwt9rbXW14S2j9RaL+numIQQvd+E/EQ+vH46vz1uMOtq2jh7XhJ35j/F5pkPgzKQ+/W1FL11DFGb3mNbUzubau3YXV4ASuocnPbIAtZVtfHoBeM4Y3w2vkX/weB3oyf98qDruwjxU0bnJHDzcUNYVNrEqspW4iLMGIwKZ/okmgafR8Kmt2isLAl3mDsxtZRSZcwiNsJy0G3F2swMSI5i5U4rsQ0DwFO9/4W0N9XaGZwWg6llCzpBEkhCCCGE2HeTChI5amgqL9XmYvC7iN36CR0eP/V2mcq2q25PIAkhRHcxGhRXzyzky1/PZPKAJJ75rpxzF6Tz6ND/snXmQ4Am96trKHrrGCzFH7C1vp13lm/jjEcX4nT7eeWKyRw3IgNXh5OY1c9hz55JXO6IcJ+W6CcuPbyASfmJ3PnpBkxGxbCMWPKSI3FMvAatFLZFD/SYUUiBgCbJVY4jKr/L2hyVHcfqTgkkU0bw/55/P1di8/gCbKlvZ3iSwtjRCEmyApsQQggh9s9vjxvCZ95RlNmGkPXtLVibN1Fnd/fIupThJAkkIUSvlxUfwXOXTeLFXxxGaoyV+7/azMU/ZPPiuFcom/kgBALkfXklya+dxItvvE6MzcRjF41nZKgOi3PFG5g76vFM+CUmo/xaFIeG0aC466xR+AOam99cBQRH5qRnD6R50FkkFL9GU/XW8AYZUlrTQCYNGLpwdbOR2fHUtLmoa3MBYIjLwm+Jhbr9K6S9tbEdX0AzJrIRAKMkkIQQQgixnwalxXDC2HwuaLsWn8FG3ue/QLlaqWh2EthLTdX+Rj4pCSH6jMMLk/ngumk8fP44DAr+9lExV60s4N0pr/N29s0Y28p53fxn3k15gtj2CjbW2qlr7SBiyeO44guJHn5MuE9B9DN5SVH8fs5QvtnUwAuLygGwmY24Jt2A0n4six7qEaOQijesxqA0yXnDuqzNUaE6SKu2j0JSCm/SYAz1+1dIe/sKbPmG4IqKpuSuS3IJIYQQov+46dgh2K1pXOe/EbO9gpy5N+B2e6kJ3ewSkkASQvQxSilOGJXB5/93BLefNoIGh5ub31nPr0pG86fc56kacyPxVfMoenM2aQtuo2P1e0Q0rqF97BVYzaZwhy/6oQsOy2V6UTL/+HA9ZY3tACTlFNFceDqJG16ksbYyzBFCXWlwWllGQddN8RyeGYtB7boS2zAsjethP4pWFtfYMShI9W4DwJA0oMtiFEIIIUT/kR5n487TRzLXVciD1suJrfiKtGX30ujw7Kil2t9JAkkI0SeZjQYuOCyPeTfN4vdzhvCnE4fyt7MPo2XSryk+ex4tRWeStO5Z8r64Ap81nsgJ54c7ZNFPKaW484xRmIyK37y+En9AYzMbcU66HhXwYvnhkbAvJeupLQbAnFrUZW1GWkwUpcawqvNKbKlDMXra8DRv2+d2imsd5CdFYWwpxReVAZbILotRCCGEEP3L9EEp/PbYwdzXMo0vIo4ndcWDxJZ+SGVzB36ZyiYJJCFE3xZhMXLFjIFcNm0AKTE2BqfHkJCWS9WMO9l0+qe0DDiJ5qm3EhEVE+5QRT+WGR/BbScNZ/HWZp7+thSAxLxhtA44icR1z9NYVx222NpcXmKd5dhNSWCL7dK2txfS3r5MrjFtOADe/ViJrbjWzqC0GFRzKf74/C6NTwghhBD9S5TVxNkTc7hixkCubj6XLbbh5Mz7P0x16yhtaMfjC4Q7xLCSBJIQol8xGhTpccFEUmT2CCpnP4z1sEvDHZYQnD4ui6OHpXHXZxvZWGMn0mLCMekGjD4npsWPh+2CZUV5CwWGatxxBV3e9qjsOBrbPWxr6QDAnBFMIAVq9y2B5PL62drYzqC0aEzNW9CJMn1NCCGEEAcn1mbm6lmFnDg2n3NarqZdRZH3xS/wtDVSUufA4faFO8SwkQSSEKJfMhsNZCdEUpgaTazNHO5whEApxT9OG0mM1cQNryzH7fMTnz+a1vzjSVrzDA0NdWGJa1l5MwNUNZa0QV3e9sjseABWhwppG6KT8EWmoerW79PrN9c7CGgYlqQwdjSArMAmhBBCiC4QF2HmDycOZVBhERc7rsPoqCHnq6sJuNvZ2tBOvd0d7hDDQhJIQoh+zWY2hjsEIXZIibFy11mj2FBj565PNhJtNdE26QaMXjvGxU+GZRTS+tIKklUb5tSuX91saEYMZqPaqZC2N2kwpsZ9W4ltU60j2I61AQCjFNAWQgghRBdJjLJy91mjcKWP5/fenxNdtYDCd07AWr+KmlYX5Y1OAv2sLpIkkIQQQoge5MghaVw8JY//fFvKN5vqiRswgbacI0la8x8qausOaQHHQEDTui2YzDEmd10B7e2sJiOD03cupB1IGYalqZiA76eHhxfX2jEZFGneKgBMKV2f5BJCCCFE/5URF8GD543h2+hj+YX+I9rtoPDdU0lZ+TCt7S5K6h24vOFd7ORQkgSSEEII0cP8fs5QClOj+fVrK/H5Na0Tb8DkbiFy5XNsbWw/ZHe7SuodpHqCK6J15QpsnY3KjmdVp0LapA7F4Hfhbtj8k68trrUzICUK1RzcV0kNJCGEEEJ0scLUGB46byxLjSM5wXsn9dlHk774Tgo+Oo9AcwWb6x1hXzH3UJEEkhBCCNHD2MxG7j93DM1OD7e8uYqYwqnYM6eRsupxvI3llDU5f0y4dKNlZc0MMFSjUd2WnBmVFYfd5WNroxMAY/owAHzV6/b6ukBAs77aTlFaDDRtwReVDpaobolRCCGEEP3b2LwEHjpvHNWeCM5ouIJNU/5FRONqit46lphN7x3SEeLhJAkkIYQQogcanhnHb48dwmfravlkTQ1N0/6M8nso+Og8XE3bKD8ESaRl5c0MMtXii80Bk7VbjjEyOw5gxzQ2S/owNApdt/cE0ks/lLOtpYNjhqWhmkrxx+d3S3xCCCGEEADTipJ57KJx1LS5uH7DMNae+CGu+CJyv74Wy3tXgtse7hC7nSSQhBBCiB7q59MKOLwwib+8v46WmCK2HvccJmcdBR9fQHtzPZXNHd16/GXlLQwx1+FP6L7VzQalxWA1GX5cic0WjTc2F8NeEki1bS7u/HgDhxcmcfLoTIwtW9AJMn1NCCGEEN3riEGp3H/uWDZUt3H79y42zXmN2nG/wlC/EQx9f2VnSSAJIYQQPZTBoLjnrDFYzQb+8M4aXBkTKDvmKSxtZeR/ciFtLY1sa+meJFKr00tJnZ0s/zZI6r4EktloYFhmLEvKmneMqPIlDdnrSmx/eX8tHn+A208difI4MDrrUcndF6MQQgghxHZzRmbw11NHsKi0iScXlFM79kZcl3wGZlu4Q+t2kkASQggherD0OBt3nD6K1dvaeHfFNtw50yif/Ri2pg3kf/IzmptbqG7t+iTSsopmUmjFGnCikrp3dbM5IzJYUdHCg1+VAOBPGYq1tRS3y/k/+36+rpaPVtdw/ewi8pOjoGkLAIZuTHIJIYQQQnR20eQ8rp9dxIerq3lvVRVGsyXcIR0SkkASQggherjjRqRz7sQcnphfylvLKrHnzqZi1gNE1i8n//Of09jcRkmdnaqWDlqcHjy+wEEfc3mogDaAMaV7VmDb7hfTCzh9bBb3fl7Ma0sqUGnDUNqPp3bjTvs53D7+9O4aBqfFcMWM4JQ1f2i1NnNK9ya5hBBCCCE6+9VRRZx/WC7/+aaUF78vD3c4h4QkkIQQQohe4K+njOCCw3J58ptS7v5sI7XZx1I5426iqxaQ++WVuDpcNDo8VDR1sLHGzoaaNiqanDQ43Ae0Msiy8hamxDUDYOrmBJJSijvOGMW0wmR+99ZqVrozAQjUrN1pv7s/3UhNm4t/njESszF4CeNvCI5aIqGgW2MUQgghhOhMKcXfThnBccPT+ffnxTQ63OEOqduZwh2AEEIIIX6axWTg9tNGMjQjltveW0tFk5Nbjj8Bw+EdZC24lYKPzqMt/zja0ybSkTwcr89Mi89Li9NLo8NDbmIkERbjPh3L5w+woqKFXyQ3EvBYMcRld/PZBc/v0QvHcfbj33PVJ62sMJqgbv2O7SsqWnjuu61cPDmPcbkJO57XTVvwRaVhskZ3e4xCCCGEEJ0ZDYr7zh1DWaOTpOjuWbG2J5EEkhBCCNGLXDg5j8LUaK5+cRm/fn0lvznmRI46HJJXPU7Gor8BEDDacKaOxZk2kfb0ibSnT2JzfYD0OBvJ+3Bx8/6qKhxuH0WmWvxx+RgM+5Z4OlgxNjPPXjqR0x9ZSIkrk6Tq4Agkrz/ALW+uIi3Gxm+OHbzTa1RTKYF4GX0khBBCiPCwmY0MTo8JdxiHhExhE0IIIXqZyQOSePeaw8lOiOQv76/lKdcsNp79DevP+4GyIx+hacj5GLwOUlY+RMEnFzHojSOx1S6jusVFeaNzr1Pa/AHNg1+VMCQ9hlRPBf7EQ1ucOi3WxrOXTmSTzsFTtYZGh5unvi1lQ42dv5wynBjbzkvkGpu3oGX6mhBCCCFEt5MRSEIIIUQvlJMYyZtXTeGm11fx9IKtbGlo55qZhfgGnEjbgBMBMHjbiar+jsyFf2bg+2dSM/FmGkZeTofXv8cpbR+sqmJLfTuPnD8a0ztl+Acdf6hPjaK0GAIjJpKxdgFnPTWX1Q0Bjh2exrHD03fe0e3A6KzDLyuwCSGEEEJ0OxmBJIQQQvRSkRYTD50/lt8cM4h5xfXc+s5qPH4/MTYTBgMEzFHYc49i02kf0ZZ3NBk/3E7eZ5fhdzSyud5Bg8ON1j+ORvIHNA98uYnBaTEcl+VFBTwYk8OzulnmoAkA+GrWYzIY+MvJI/53p6YtABiTJYEkhBBCCNHdJIEkhBBC9GJKKa49sohnL51End3NJc8sZlOdg+GZcRSlRZMZb8MUlUD57MeomvJXord9S+HbxxFR/QPVLS421NipaXXh8vr5cHU1m+vbuW52ITRuBghbAsmYPgyA300I8MTF40mPs/3PPoHG7Qmk8MQohBBCCNGfSAJJCCGE6AOOGJTC+9dOIz8pisufX8K/PtmA2WggKdpKYWo08VEWGodfwuaT30YbLQz48BxSVjyEz+en3u5mY42dez7byIDkKI4blo6/YRMAhpSisJyPNTkfvymSQaqSqQOTdzyvtcbl9dPq9OKo3hh8MlFqIAkhhBBCdDdJIAkhhBB9RE5iJK9fOYXzJuXwyNzNXPz0IhodbowGRU5iJFkJEbhTRlJy6ke0Fswhfcm/KHznBOJK3uG74mrKGp2cMS6bDbV2nNUbCVhiIColLOdiNBrxJA7G1LCemlYXZY3tbKyxs7aqjU21DsqbnPjqN+OPTAVr/1j5RAghhBAinCSBJIQQQvQhNrORf54+in+dOYrFW5s58cFvWV7eDEBilIXC1GgsUXFUzHqIipn3o/xucudez6nfnsSvYr5gel4EWoOhaTO+hAGgVNjOxZs0BGtTMfV2N20dPjy+AJ1KNmFp24pfVmATQgghhDgkui2BpJRKVEp9rpTaFPo3YTf75CilvlZKrVdKrVVK3dBd8QghhBD9ydkTcnjrqqkYDYpzHv+e1xZXAMEE08CUaBKiLbQUnsamM77goxH3UeZP4gbv0wx/dTJpi+/E1rwRnRje4tQ6ZShmVwPGjoadNwS8JGx8hYjGNWhJIAkhhBBCHBLdOQLpFuBLrXUR8GXo+135gF9rrYcCk4FrlFLDujEmIYQQot8YkRXH+9dOY2JBAr99cxV/fncNXn8Ag0GRnRBJbmIkBqOBf5Xm83+R/6T4xHdwZE0jZdWjmJ21qKQwF6dOC14S2JqDtY6U30PChhcZ/NoRZH/zW9xxAwlMvT6cEQohhBBC9Bumbmz7FGBm6OvngLnAzZ130FpXA9Whr+1KqfVAFrCuG+MSQggh+o2EKAvPXTqJOz7ewH++LWVjrZ2Hzx9HUrSVuEgz35a0s7XRya+PGYQ7PZXy9MewtG0lfvO7JI67KKyxmzKGAxDRsBpry2ZSVj6Cpb0KZ8pYth1+O47smQxLjwtrjEIIIYQQ/YXSnYsJdGXDSrVoreM7fd+stf6faWydtucD84ERWuu23Wy/ArgCIDc3d3xZWVmXxyyEEEL0ZW8tq+SWt1aTEm3liYvHMzQ9ljkPfIPbF+CTG6bT7PTS4HCjdbD00Yis8CZnfD4/3F2IydUEQHvqeOrG/QpH1nRQCqNBMSwzNqwxCiGEEEL0JUqppVrrCbvbdlAjkJRSXwDpu9l06362Ew28Cdy4u+QRgNb6CeAJgAkTJnRP1ksIIYTow04fl01hajS//O9Sznh0YXDFtRo795w1GqvZSHqckaRoC7VtLlzeQLjDxWQy0lh4KtamDdSNvob2zGk7inorBelxtjBHKIQQQgjRfxxUAklrfdSetimlapVSGVrraqVUBlC3h/3MBJNHL2qt3zqYeIQQQgixd6Oy43nv2mlc9cJSXlxUTn5SJKeMydyx3Ww0kJ0QiT/QM+7VtB7xN9rd/p2eMxoUuUmRRFu7cya+EEIIIYTorDuvvN4DfgbcEfr33V13UEop4Clgvdb63m6MRQghhBAhKTFWXrp8Mk9+s4XDChIxGf93TQ2jQYUhsv9lNRt3SiBZzQbykiKxmoxhjEoIIYQQov/pzlXY7gCOVkptAo4OfY9SKlMp9VFon8OBi4AjlVIrQo853RiTEEIIIQCLycA1swqZkJ8Y7lD2ymb68VIlxmZiYEq0JI+EEEIIIcKg20Ygaa0bgdm7eb4KmBP6+lugZ9ziFEIIIUSPYzUHk0XJMRYy4iLCHI0QQgghRP8lxQOEEEII0WPZTAayEyJIiLKEOxQhhBBCiH6tO6ewCSGEEEIcFJPRIMkjIYQQQogeQBJIQgghhBBCCCGEEGKvJIEkhBBCCCGEEEIIIfZKEkhCCCGEEEIIIYQQYq8kgSSEEEIIIYQQQggh9koSSEIIIYQQQgghhBBirySBJIQQQgghhBBCCCH2ShJIQgghhBBCCCGEEGKvJIEkhBBCCCGEEEIIIfZKEkhCCCGEEEIIIYQQYq8kgSSEEEIIIYQQQggh9kpprcMdw35TStUDZWE4dDLQEIbjioMj/db7SJ/1TtJvvZP0W+8k/db7SJ/1TtJvvZP0W+8jfdZz5GmtU3a3oVcmkMJFKbVEaz0h3HGI/SP91vtIn/VO0m+9k/Rb7yT91vtIn/VO0m+9k/Rb7yN91jvIFDYhhBBCCCGEEEIIsVeSQBJCCCGEEEIIIYQQeyUJpP3zRLgDEAdE+q33kT7rnaTfeifpt95J+q33kT7rnaTfeifpt95H+qwXkBpIQgghhBBCCCGEEGKvZASSEEIIIYQQQgghhNgrSSAJIYQQQgghhBBCiL3qswkkpdRxSqmNSqkSpdQtu2y7LrRtrVLqX3t4/Vmh7QGl1IRdtv0u1O5GpdSxe3j9taF9tFIqeZdtM5VSK0LtzzvYc+0rekCfvRjavkYp9bRSyhx6XimlHgi9fpVSalxXnXNf0F39ppRKUkp9rZRyKKUe2svxC5RSi5RSm5RSryqlLKHnpd/2oqf2W6ftE5VSfqXUmQd7rn1FT+0zpVScUup9pdTKUPuXdtU59wU9oN92ez2ilLog9LtxlVJqoVJqdFecb1/RU/sttE2uI3ejB/SZXEcegG7st6OVUkuVUqtD/x65h9fv6W+b9Nte9NR+67RdriO7i9a6zz0AI7AZGABYgJXAsNC2WcAXgDX0feoe2hgKDAbmAhM6PT8s1J4VKAgdx7ib148F8oGtQHKn5+OBdUDu3o7f3x49pM/mACr0eBm4qtPzH4eenwwsCvf71VMe3dxvUcA04Ergob3E8Bpwbujrx6Tfene/dYrvK+Aj4Mxwv1894dGT+wz4PXBn6OsUoAmwhPs96wmPHtJve7oemQokhL4+Xn5H9pp+i0euI3tqn8l1ZM/qt7FAZujrEcC2PbxeriP7UL91ik+uI7vp0VdHIE0CSrTWW7TWHuAV4JTQtquAO7TWbgCtdd3uGtBar9dab9zNplOAV7TWbq11KVASOt6ur1+utd66m9efD7yltS7f2/H7oZ7QZx/pEOAHILvT658PbfoeiFdKZRz4qfYp3dZvWut2rfW3gGtPB1dKKeBI4I3QU88Bp4a+ln7bs57cbwDXAW8C8vvxRz25zzQQE9onmmACybd/p9dnhbXfQvvt9npEa71Qa90c+vZ7fvybJ3pwvyHXkXvSE/pMriP3X3f223KtdVXo27WATSll7byPXEcesJ7cbyDXkd2qryaQsoCKTt9Xhp4DGARMDw15m6eUmtiFbe+LQUCCUmpuaFjexft5/L6qx/RZaMjxRcAnB/L6fqY7+21fJAEtWuvtH1Y7H1/6bc96bL8ppbKA0wjeTRI/6rF9BjxE8E5iFbAauEFrHeiGGHqjcPfbvvo5wTvtIqgn95tcR+5ej+kzuY7cL4eq384Alm9PanQi15EHpsf2m1xHdj9TuAPoJmo3z+nQvyYggeBQxInAa0qpAaG7BQfb9r4wAeOB2UAE8J1S6nutdfF+tNEX9aQ+ewSYr7X+5gBf3590Z78d7PGl3/asJ/fbfcDNWmt/8AaTCOnJfXYssILg3cCBwOdKqW+01m1dePzeKtz99pOUUrMIJpCmHcrj9nA9ud/kOnL3elKfyXXkvuv2flNKDQfuBI7Zz+NLv+1ZT+63+5DryG7VV0cgVQI5nb7PJnhndPu2t0LDEX8AAkCyUuoZFSxI+NFBtL2vsX0SGg7bAMwHRu/H6/uqHtFnSqk/E6zh8X8H8vp+qDv7bV80EBxSvD0Zvuvxpd92ryf32wTgFaXUVuBM4BGl1KldcMzerif32aWdjl8ClAJDuuCYfUG4+22vlFKjgP8Ap2itG7v7eL1IT+43uY7cvR7RZ3Idud+6td+UUtnA28DFWuvNu9lFriMPTE/uN7mO7GZ9NYG0GChSwersFuBc4L3QtncI3iVFKTWIYOGvBq31pVrrMVrrOT/R9nvAuUopq1KqACgiOM95X71LcFifSSkVCRwGrN+P1/dVYe8zpdQvCN5JP2+X6RfvAReroMlAq9a6+oDPtG/pzn77SaG7GV8T/AMB8DOC/8dA+m1vemy/aa0LtNb5Wut8gnPbr9Zav3Owx+wDemyfAeUER0OglEojWBRzy8Ees48Ia7/tjVIqF3gLuEhGr/yPHttvyHXknoS9z+Q68oB0W78ppeKBD4Hfaa0X7G4fuY48YD223+Q68hDQPaCSd3c8CFbOLyZYIf7WTs9bgBeANcAy4Mg9vP40ghlUN1ALfNpp262hdjcCx+/h9deHXu8jmBH9T6dtNxFcQWMNcGO436ue8ugBfeYL7bMi9PhT6HkFPBzatppOKwXIo9v7bSvBgryO0D7DdvP6AQQTgiXA6/y46oP0Wy/st132eRZZPaPH9xmQCXwW+n+2Brgw3O9VT3r0gH7b7fUIwZFHzfz4N29JuN+rnvToqf0W2ibXkT2zz+Q6sgf1G/AHoL1Tf6xgNyuCIdeRfarfdtnnWeQ6sssfKvTmCiGEEEIIIYQQQgixW311CpsQQgghhBBCCCGE6CKSQBJCCCGEEEIIIYQQeyUJJCGEEEIIIYQQQgixV5JAEkIIIYQQQgghhBB7JQkkIYQQQgghhBBCCLFXkkASQgghhBBCCCGEEHslCSQhhBBCCCGEEEIIsVeSQBJCCCGEEEIIIYQQeyUJJCGEEEIIIYQQQgixV5JAEkIIIYQQQgghhBB7JQkkIYQQQgghhBBCCLFXkkASQgghhBBCCCGEEHslCSQhhBBCCCGEEEIIsVeSQBJCCCGEEEIIIYQQeyUJJCGEEEIIIYQQQgixV5JAEkIIIfoRpVS+UkorpUz7sO8lSqlvD1FchyulNimlHEqpUw/FMUXXCP08FYY7DiGEEEJ0L0kgCSGEED2UUmqrUsqjlEre5fkVoQ/t+WEKrXMiyhF6bFVK3XIQTf4VeEhrHa21fqeLwuwXujLRF+rHo7qird20vc/Jy/1oUyul2jv9HDqUUr/twvYTlVL1hyqRKoQQQvRkXfYHXAghhBDdohQ4D3gQQCk1EogIa0Q7i9da+5RSU4AvlVIrtNaf7OuLlVImrbUPyAPWHkgAndoQ/dNorXVJN7V9J7AeuekqhBBCyB9DIYQQoof7L3Bxp+9/BjzfeQelVJxS6vnQSIkypdQflFKG0DajUupupVSDUmoLcMJuXvuUUqpaKbVNKfV3pZRxf4PUWn9HMAE0ItTuZUqp9UqpZqXUp0qpvE7H1Eqpa5RSm4BNSqnNwADg/dAIEqtSKlMp9Z5SqkkpVaKUurzT629TSr2hlHpBKdUGXKKUmhuKfWGojfeVUklKqReVUm1KqcWdR2wppe5XSlWEti1VSk3fpf3XQu+pXSm1Vik1odP2HKXUW6H3u1Ep9VCnbXs8710ppU4Otd0Sin9op21blVK/UUqtUkq1KqVeVUrZdtPGUOAxYErovFtCz1tD/V6ulKpVSj2mlIoIbUtWSn0QOm6TUuobpZRBKfVfILdTP+x2JI9S6qbQz0uVUuqyXbadoJRaHnpfK5RSt3XaPD/0b0uo/SlKqYFKqa9C72NDqL/i9/Se7Q+l1EdKqXs6ff+qUurp0NeXKKUWKKUeDL2/G5RSs3d5/RSCP8/PdEU8QgghRG8nCSQhhBCiZ/seiFVKDQ0lds4BXthlnweBOIJJmCMIJpwuDW27HDgRGAtMAM7c5bXPAT6gMLTPMcAv9idAFXQ4MBxYroI1jH4PnA6kAN8AL+/yslOBw4BhWuuBQDlwUmgKmzu0fyWQGYr5H7t8wD8FeAOIB14MPXcucBGQBQwEviP44T+R4CiSP3d6/WJgTGjbS8DruyRoTgZeCbX/HvBQ6FyNwAdAGZAfOtYroW37ct7b37NBoW03hvb9iGDixtJpt7OB44ACYBRwya7taK3XA1cC34Xeu/jQpjuBQaFzLAzF+afQtl8TfG9TgLRQzFprfRE798O/dhP3ccBvgKOBImDX6W7tBH/+4gkmK69SP9a0mhH6Nz7U/neAAv5JsJ+HAjnAbZ2O94hS6pFd49hHlwEXKaWOVEpdAEwEbui0/TBgC5BM8GfjLaVUYui4RuBh4FpAH+DxhRBCiD5FEkhCCCFEz7d9FNLRwAZg2/YNnZJKv9Na27XWW4F7CCZSIJiEuE9rXaG1biL4YX37a9OA44EbtdbtWus64N8EEzH7qgFoAv4D3KK1/hL4JfBPrfX60NSyfwBjdhmN80+tdZPWumPXBpVSOcA04GattUtrvSLU/kWddvtOa/2O1jrQqY1ntNabtdatwMfAZq31F6EYXieYIANAa/2C1rpRa+3TWt8DWIHBndr/Vmv9kdbaT/D9Hx16fhLBZMdNoffMpbXeXh9nX857u3OAD7XWn2utvcDdBKcmTu20zwNa66pQv71PMBn0k5RSimDi8Feh99geimV7v3qBDCBPa+3VWn+jtd7XJMnZBN/nNVrrdjolewC01nO11qtD/bKKYJLsiD01prUuCb0Hbq11PXBv5/211ldrra/+iZiWhUZTbX8cG3ptDcHk2nPA/cDFofdiuzqC/ze8WutXgY38OELvemCR1nrpT70hQgghRH8hNZCEEEKInu+/BKf/FLDL9DWCoycsBEfEbFdGcMQJBJMdFbts2y4PMAPVwZwDELy51Hn/n5K8m/pDecD9nacPERxpktXp+Hs7RibQtMuH/TKCI6i2293razt93bGb76N3BKPUrwmOtMokOMIkluB7uV1Np6+dgE0Fiz/nAGV7qLm0L+e9XWbn57TWAaVUBT/22+5iyNzNMXcnBYgElnbqVwVsn5p4F8HEz2eh7U9ore/Yx7Yzgc5JlZ3OSyl1GHAHwalfFoKJudf31JhSKhV4AJgOxBD8+Wvex1i2G7eXGkgfEBw9trFTom+7bbskzsqATKVUJsEE0vj9jEMIIYTo02QEkhBCCNHDaa3LCBbTngO8tcvmBoIjSjqPcsnlx1FK1QSTHp23bVcBuAkmgeJDj1it9fCDDLkC+GWnNuO11hFa64WdT2svr68CEpVSMbvEva3T9wc8rShU7+hmgqNpEkLTvloJJll+SgWQq3a/kti+nPd2VXTqs9CooRx2Psd9tet70UAwYTa8UxxxWutogNBItV9rrQcAJwH/12l64E+9r3v7eYLgdMD3gBytdRzB+kzb39fdtf3P0POjtNaxwIXsWz/sq9sJTl/MUEqdt8u2LNUpw0bwXKoIjjLLANYppWoIjl6apJSqUQdQH0wIIYToKySBJIQQQvQOPweODE0b2iE0xeo14HalVExoutT/8WOdpNeA65VS2UqpBOCWTq+tBj4D7lFKxYYKKQ9USu1xytE+egz4nVJqOOwo1H3Wvr5Ya10BLAT+qZSyKaVGETz/F/f+yn0WQ7DuUz1gUkr9ieAIpH3xA8Ekyh1KqahQfIeHtu3Peb8GnKCUmq2UMhOsS+QmeN77qxbI3l4/SWsdAJ4E/h0a4YNSKmv71C6l1IlKqcJQ8qQN8Ice29sasJdjvUawaPkwpVQkO9eVguB726S1dimlJgHnd9pWDwR2aT8GcBAsrJ0F3LSf575HSqkZBGuBXRx6PBg6xnapBP9vmEP9NJRgLaqPCda3GhN6/AlYDowJ/X8TQggh+iVJIAkhhBC9QKi2z5I9bL6OYPHiLcC3BEeBPB3a9iTwKbASWMb/jmC6mOBUo3UEpw69QXD0xcHE+jbBIs6vqOAqaWsI1lraH+cR/BBfBbwN/Flr/fnBxNXJpwSTBMUEpy252Mdpe6EEwkkEC1OXEyxGfU5o2z6ft9Z6I8HRNg8SHDF0EsHi1Z4DOJ+vCK6AV6OUagg9dzNQAnwfiuULfqzxVBT63kGw0PgjWuu5oW3/BP4QqiX0m93E/TFwX+iYJaF/O7sa+KtSyk4w8fJap9c6CY4IWhBqfzLwF2AcwRFgH7LLz6cKrh732E+c/8rQqm7bH/cppWIJTve8Vmu9LTR97SngmU6jjhaF3ouGUFxnhupiubXWNdsfodi8oa+FEEKIfkvte81EIYQQQgghej+l1CXAL7TW08IdixBCCNFbyAgkIYQQQgghhBBCCLFXkkASQgghhBBCCCGEEHslU9iEEEIIIYQQQgghxF7JCCQhhBBCCCGEEEIIsVemcAdwIJKTk3V+fn64wxBCCCGEEEIIIYToM5YuXdqgtU7Z3bZemUDKz89nyZI9rWQshBBCCCGEEEIIIfaXUqpsT9tkCpsQQgghhBBCCCGE2CtJIAkhhBBCCCGEEEKIvZIEkhBCCCGEEEIIIYTYq15ZA0kIIYQQQgghhAg3r9dLZWUlLpcr3KEIsV9sNhvZ2dmYzeZ9fo0kkIQQQgghhBBCiANQWVlJTEwM+fn5KKXCHY4Q+0RrTWNjI5WVlRQUFOzz67p1CptS6mmlVJ1Sas0etiul1ANKqRKl1Cql1LjujEcIIYQQQgghhOgqLpeLpKQkSR6JXkUpRVJS0n6PnOvuGkjPAsftZfvxQFHocQXwaDfHI4QQQgghhBBCdBlJHone6EB+brs1gaS1ng807WWXU4DnddD3QLxSKqM7YxJCCCGEEEIIIYQQ+yfcq7BlARWdvq8MPfc/lFJXKKWWKKWW1NfXH5LghBBCiP7O5w+gtQ53GEIIIYTYA6UUF1100Y7vfT4fKSkpnHjiiWGM6qdFR0f/5D633XYbd9999173eeedd1i3bl1XhSX2ItwJpN2NmdrtVarW+gmt9QSt9YSUlJRuDksIIYQQAG0uH9WtXb+yjMvrp8Pj7/J2hRBCiP4mKiqKNWvW0NHRAcDnn39OVtZux2V0O5/Pd8iPKQmkQyfcq7BVAjmdvs8GqsIUixBCCCF20e720eL0EmUxERe578u87qre7mZpWRNLtjazpKyZNdtayU+O4tMbZ2A0SO0IIYQQvd9f3l/Luqq2Lm1zWGYsfz5p+E/ud/zxx/Phhx9y5pln8vLLL3PeeefxzTffANDe3s51113H6tWr8fl83HbbbZxyyils3bqViy66iPb2dgAeeughpk6dSnV1Neeccw5tbW34fD4effRRpk+fTnR0NA6HA4A33niDDz74gGeffZZLLrmExMREli9fzrhx47j66qu55pprqK+vJzIykieffJIhQ4ZQWlrK+eefj8/n47jj9lwq+fbbb+f5558nJyeHlJQUxo8fD8CTTz7JE088gcfjobCwkP/+97+sWLGC9957j3nz5vH3v/+dN998k6+++up/9ouMjDzYrhCEfwTSe8DFodXYJgOtWuvqMMckhBBCiBCHO3gnsbLFidu3+xFDDrfvf6a5BQKalRUt/PvzYk568Fsm3v4FV76wjOe/L8NiNDBnZAYldQ4+X1fT7ecghBBC9HXnnnsur7zyCi6Xi1WrVnHYYYft2Hb77bdz5JFHsnjxYr7++mtuuukm2tvbSU1N5fPPP2fZsmW8+uqrXH/99QC89NJLHHvssaxYsYKVK1cyZsyYnzx+cXExX3zxBffccw9XXHEFDz74IEuXLuXuu+/m6quvBuCGG27gqquuYvHixaSnp++2naVLl/LKK6+wfPly3nrrLRYvXrxj2+mnn87ixYtZuXIlQ4cO5amnnmLq1KmcfPLJ3HXXXaxYsYKBAwfudj/RNbp1BJJS6mVgJpCslKoE/gyYAbTWjwEfAXOAEsAJXNqd8QghhBBi37m8fnz+YGIoEIDyRiepMVY+XVdLVUsH25o7KGt0UtvmAgVWkwGjwYDRADWtbhocbgwKxuYmcNOxg5k8IIkRWbFYTUb8Ac2KihaemL+F40ZkBGstAWZjuO9tCSGEEAdmX0YKdZdRo0axdetWXn75ZebMmbPTts8++4z33ntvRy0hl8tFeXk5mZmZXHvttaxYsQKj0UhxcTEAEydO5LLLLsPr9XLqqafuUwLprLPOwmg04nA4WLhwIWedddaObW63G4AFCxbw5ptvAnDRRRdx8803/08733zzDaeddtqOEUMnn3zyjm1r1qzhD3/4Ay0tLTgcDo499tjdxrKv+4n9160JJK31eT+xXQPXdGcMQgghhDgwDreP+JK3ccfm0ZE6jro2N1e/uIxNdQ4UEB9pJinaSnqcDbPRgMWkMBoMBAKawpRojhicwhGDUkmMsuy27ZNHZ/DQ15t5fUkFQ9JjiYswk5skQ8yFEEKIA3HyySfzm9/8hrlz59LY2Ljjea01b775JoMHD95p/9tuu420tDRWrlxJIBDAZrMBMGPGDObPn8+HH37IRRddxE033cTFF1+807LvLtfO9RGjoqIACAQCxMfHs2LFit3GuC9Lx+9pn0suuYR33nmH0aNH8+yzzzJ37tyD2k/sP7nNJ4QQQoj/Z++uw+QqrweOf++47Mysu2Q32bi7KwQnuGugWKEUWqSlUErprxQoDsU9OIQWhwQS4u62WXffnR3X+/tjIRCSkAR2s0n2fJ4nD+xcO3ezk3n33POed6+8LicZ395Cjy8uw99Qyh0fbqK0ycPfTu3P+9eO59XZY3j4nKH85aT+3HZ8X24+tg8PnzuUFy4bxSPnDeP0YZl7JI9UVaXG6aO8ycuU3snEGHV8sLYKAP8+psgJIYQQYv9mz57NXXfdxaBBg3Z7/bjjjuPxxx/fNd183bp1ADidTtLS0tBoNLz22mtEIu2fw2VlZSQnJ/Ob3/yGK664grVr1wKQkpLCtm3biEajzJ07d68x2O12cnNzeffdd4H2z/0NGzYAMGHCBN566y0A5syZs9fjJ0+ezNy5c/H5fLhcLj766KNd21wuF2lpaYRCod2Ot9lsuFyu/e4nfj1JIAkhhBBir9TSRWiiQbRBFzEfXUFDq4s7T+rP8Oz4vU41U9X2aW776pUUDEcpavDQ6AoCYNJrOWFgKsuLm6hu9REMR/fopSSEEEKIA5OZmcmNN964x+t33nknoVCIwYMHM3DgQO68804ArrvuOl555RXGjh1LQUHBriqiBQsWMHToUIYNG8b777+/65z33XcfJ598MtOnTyctLW2fccyZM4cXXniBIUOGMGDAAP773/8C8Oijj/Lkk08yatQonE7nXo8dPnw45557LkOHDuXMM89k0qRJu7b9/e9/Z8yYMRx77LH07dt31+vnnXceDzzwAMOGDaOoqGif+4lfTzkSB2ojR45UV69e3dVhCCGEEEctXzCC58ObidvxNn/XXsfdwX+zI/tcgjMf2GNfY2shwZhMVF176btRryErzkJUVdv/RCEUjVLfFiAS3X3c0ewJcsUrq5g5IJVrp/SkV3IMZoP2kNyjEEII8Wtt27aNfv36dXUYQvwie/v5VRRljaqqI/e2v1QgCSGEEGIPrkAIS8UClqv9edM7iq09LqVP+ds4Cj/ctY/BWUr2vKvp/d50enx+MUq4vR9CIBSlsN5NcYOH0kYv5c1ealr9eySPAOKtBqb2SWLetjrafKF9Vi8JIYQQQoiu1alNtIUQQghxZCor3MooVynfRKfyt1MHEEkdheeTrWQuvo1QTDqO0s+I3/oqqkZPc+9ziCt4l+yvf0vZMc+AZj/Di2iIpI3PYK1eSlRv4e6okYV4CX31KYGz7gJL0qG5SSGEEEIIccAkgSSEEEKI3RTUtvHV/95gFDDmmLNJTXcAUD79SXrNPZGeH5+Fqmho6X0OdSP+QNiSgi9xEBlL7yRj0W1UTX4Q9rGCisFZTNaC32NpWI8vYSD4m0kKezhZ34qjfj4124dD8uWH8G6FEEIIIcSBkASSEEIIIXbZXOXkohdW8LC6Hq8lg74DhqHRamh2BwlbUyk/9lnit79Bw6CrCMT/0Jiyuf+l6PzNpKx9mIgpntoxd+x+YlUlftvrpK34O1GdibLpT9GWd/KuzWtLGjhv3hgai9eTNvlQ3a0QQgghhDhQkkASQgghBACF9S7Of3Y5sUaVSdEtOLPPwG42YDfr8AXD+IJRvCkj8absta8i9cN+j9bfQtKmZ9CE3IQtyWhCHjQhN6aWnVjrVuHKmEzl5AcJW1N3OzY3xUGRmoGlZQeRqIpWs/cKJiGEEEII0TUkgSSEEEIIAF5ZWkYwEuXpqVF0X3pxZ00h06RDURSy460U1rv32gh7F0WhZtzdaENuErbPASCqNRHRxxAxOqgedw9N/S/d6/Q2h1nPTjWTyZ6dBMIRLAYZogghhBBCHE5kFTYhhBBCEAxH+WhjNcf2SyG5fgmqokPNnbyrEsig05AZb97jOEWBOKv+h5yQoqFyykNsuWQrm2YXs+XyArZftJadZ39D04DL9tkbSaMoVBp6EBeuJ+Bu7ZybFEIIIY5CdXV1XHDBBeTl5TFixAjGjRvH3LlzO/26q1ev5ne/+12HnGvq1Kn06dOHIUOGMGHCBHbs2NEh5+1IHRnjyy+/zPXXXw/A008/zauvvrrPfUtLS3njjTd2fd2R3/eDJQkkIYQQQrBgRz2t3hAnDEolpmIhnpQRxNjjdtvHbtKTbDcCoNFAst1I31QbmXEWchOtaH40qogaYn52NTZFAaNes1s+qcHcC4Bw7daOuzEhhBDiKKaqKqeddhqTJ0+muLiYNWvW8NZbb1FZWdnp1x45ciSPPfZYh51vzpw5bNiwgUsvvZRbbrllj+2RSKTDrvVLdUaM11xzDZdccsk+t/80gdTR3/eDIQkkIYQQQjB3XRUJVgND44OYmzbjzpyCzbRnAijFbiIjzkzfVDspdhM6bftQwmrU7ZFE2heLUUuv5Bh6p9jon2anZ7KVjDgz3tje7TvUbenIWxNCCCEOjc9uh5dO6tg/n93+s5f8+uuvMRgMXHPNNbtey8nJ4YYbbgDakw+TJk1i+PDhDB8+nKVLlwKwYMECTj75h8Usrr/+el5++WUAbr/9dvr378/gwYP54x//CMC7777LwIEDGTJkCJMnT97jHCtXrmT8+PEMGzaM8ePH76rOefnllznjjDM4/vjjyc/P59Zbb93vt3Hy5MkUFhYCEBMTw1133cWYMWNYtmwZDz30EAMHDmTgwIE88sgju4559dVXGTx4MEOGDOHiiy8GoKGhgTPPPJNRo0YxatQolixZAsDChQsZOnQoQ4cOZdiwYbhcLmpqapg8eTJDhw5l4MCBLFq06BfH+PrrrzN69GiGDh3K1VdfvSup9NJLL9G7d2+mTJmyKxaAu+++mwcffBCAwsJCjjnmGIYMGcLw4cMpKiri9ttvZ9GiRQwdOpSHH354t+97c3Mzp512GoMHD2bs2LFs3Lhx1zlnz57N1KlTycvL67CEkzQYEEIIIbo5pzfE/G31XDAmG4oWABDsMRWjTrvX/eOthr2+bjHoyEuMoaTRs9deSRoNpNpNJMQYf/SagsWgw2IAW0ou7goTmsbtv/6mhBBCiG5gy5YtDB8+fJ/bk5OT+eqrrzCZTOzcuZPzzz+f1atX73P/5uZm5s6dy/bt21EUhdbWVgDuuecevvjiCzIyMna99mN9+/bl22+/RafTMW/ePP785z/z/vvvA7B+/XrWrVuH0WikT58+3HDDDWRlZe0zho8++ohBgwYB4PF4GDhwIPfccw9r1qzhpZdeYsWKFaiqypgxY5gyZQoGg4F//OMfLFmyhMTERJqbmwG48cYbuemmm5g4cSLl5eUcd9xxbNu2jQcffJAnn3ySCRMm4Ha7MZlMPPvssxx33HHccccdRCIRvF7vz37f9xXjtm3b+Ne//sWSJUvQ6/Vcd911zJkzh2OPPZa//vWvrFmzBofDwbRp0xg2bNge573wwgu5/fbbOf300/H7/USjUe677z4efPBBPv74Y6A9cfe9v/71rwwbNowPP/yQr7/+mksuuYT169cDsH37dr755htcLhd9+vTh2muvRa/X/+x97Y8kkIQQQohu7pNNNQQjUY7pl4xl+QLCpgQMmXsOag6E2aAlN9FKtdOHQntvI62m/U9ijBGDbt8lShlxFgrUTPIathGORHdVNwkhhBBHhBPu6+oI+O1vf8vixYsxGAysWrWKUCjE9ddfz/r169FqtRQUFPzs8Xa7HZPJxJVXXslJJ520q9JlwoQJXHbZZZxzzjmcccYZexzndDq59NJL2blzJ4qiEAqFdm2bMWMGDocDgP79+1NWVrbXBNKFF16I2WymR48ePP744wBotVrOPPNMABYvXszpp5+O1WoF4IwzzmDRokUoisJZZ51FYmIiAPHx8QDMmzePrVt/mBbf1taGy+ViwoQJ3HzzzVx44YWcccYZZGZmMmrUKGbPnk0oFOK0005j6NChe/3+7C/G+fPns2bNGkaNGgWAz+cjOTmZFStWMHXqVJKSkgA499xz9/i7cLlcVFVVcfrppwNgMpn2GsOPLV68eFeibvr06TQ1NeF0OgE46aSTMBqNGI1GkpOTqaurIzMzc7/n/DmSQBJCCCG6ubnrKumZZCXFpsdW9S2ujMnYzHuvMjoQZoOWnkkxB31cVryF7dEsBrSswx+KECMJJCGEEOJnDRgwYFcCAeDJJ5+ksbGRkSNHAvDwww+TkpLChg0biEaju5ISOp2OaDS66zi/37/r9ZUrVzJ//nzeeustnnjiCb7++muefvppVqxYwSeffMLQoUN3Vbl8784772TatGnMnTuX0tJSpk6dumub0fhD5bFWqyUcDu/1XubMmbMr7u+ZTCa02vaKaFXd+0qwqqqi7GWRjmg0yrJlyzCbd18E5Pbbb+ekk07i008/ZezYscybN4/Jkyfz7bff8sknn3DxxRdzyy237LUv0YHEeOmll/LPf/5zt30+/PDDvcb40/s4WHs75vvrHOj3/WDIyEwIIYToxiqavawqbeHkwelQuwmd/xeXpQABAABJREFUvwlv1hSsxkP/jCnNYaJAzcIYaiXgrDnk1xdCCCGONNOnT8fv9/Of//xn12s/nn7ldDpJS0tDo9Hw2muv7erHk5OTw9atWwkEAjidTubPnw+A2+3G6XRy4okn8sgjj+xKFBUVFTFmzBjuueceEhMTqaio2C0Op9NJRkYGwK5eSh1t8uTJfPjhh3i9XjweD3PnzmXSpEnMmDGDd955h6amJoBdU9hmzpzJE088sev4H9/LoEGDuO222xg5ciTbt2+nrKyM5ORkfvOb33DFFVewdu3aXxTjjBkzeO+996ivr98VS1lZGWPGjGHBggU0NTURCoV499139zjWbreTmZnJhx9+CEAgEMDr9WKz2XC5XPv8nsyZMwdon9qWmJiI3W7/RbEfCEkgCSGEEN3Yh+uqAJjQM5H47W8R1Rig14wuiSU91swOtb2kXa3b1iUxCCGEEEcSRVH48MMPWbhwIbm5uYwePZpLL72Uf/3rXwBcd911vPLKK4wdO5aCgoJd07+ysrI455xzGDx4MBdeeOGufjwul4uTTz6ZwYMHM2XKFB5++GEAbrnlFgYNGsTAgQOZPHkyQ4YM2S2OW2+9lT/96U9MmDCh01ZLGz58OJdddhmjR49mzJgxXHnllQwbNowBAwZwxx13MGXKFIYMGcLNN98MwGOPPcbq1asZPHgw/fv35+mnnwbgkUce2dUQ3Gw2c8IJJ7BgwYJdTbXff/99brzxxl8UY//+/bn33nuZOXMmgwcP5thjj6Wmpoa0tDTuvvtuxo0bxzHHHLPPvlWvvfYajz32GIMHD2b8+PHU1tYyePBgdDodQ4YM2fX38b2777571z3efvvtvPLKK78o7gOl/JIyqa42cuRI9ecafwkhhDjy+UMRTPq9N3EWHUNVVWb8eyGJMUb+NiOJPm+Np7XXGWhnPY7D8uuaLP7SeMbf+TbLdFfTOPFuEo+56ZDHIIQQQhyMbdu20a9fv64OQ4hfZG8/v4qirFFVdeTe9pcKJCGEEIedaFSlotlLMBzd/87iF9tQ6aS40cOMfskkbHkZJRKkcfDVxJi6pkWioijo7Sk4NbFoG6QCSQghhBDicNLpCSRFUY5XFGWHoiiFiqLcvpftDkVRPlIUZYOiKFsURbm8s2MSQghxeKt2+vCHogQjkkDqTHPXVmLQaRiepidh6yu09TgefUpvtJqfb/LYmdJjTZRosjE275AEohBCCCHEYaRTE0iKomiBJ4ETgP7A+Yqi9P/Jbr8FtqqqOgSYCvxbUZRfvvSLEEKII5rTG6LFE8Je/DHRooVdHc5Rq6zJw1urKpjRN5mMonfRBttoGHwN9i6qPvpeeqyZ7ZFMjC0FBH60BLAQQghxuDoS28II8Ut+bju7Amk0UKiqarGqqkHgLWDWT/ZRAZvSvtZcDNAM/Pr15YQQQhwx1pQ1M/3BBWyoaKGy1Yu1ajHZ31yPacn9XR3aUUlVVe6YuxmDVsMlY9JJ3Pwc7tSxhNKGE2fp2mc46Q4zG4LpaMNegk1lXRqLEEIIsT8mk4mmpiZJIokjiqqqNDU1YTKZDuq4zn7MmAH8eH2/SmDMT/Z5AvgfUA3YgHNVVd2jZl1RlKuAqwCys7M7JVghhBCHni8Y4Y/vbqSk0cNj8wv54zg72d/cgKJG0TjLuzq8o4qqqniDEd5ZXcHiwkZ+O7UnmZWfYvDUUD3xnyTGGNF04fQ1gFSHiSXR9pXYorVbILN3l8YjhBBC/JzMzEwqKytpaGjo6lCEOCgmk4nMzMyDOqazE0h7G4X+NDV7HLAemA70BL5SFGWRqqptux2kqs8Cz0L7KmwdH6oQQoiu8NBXOyhp9DA408GSghoect+GEvbRmncKjuKPIRwAnbGrwzziNbkD1LUFaPYEeeirAvql2pjZP4WkuU/jj+uDL2c62daun0GeHmtip5oBgKZhG3B61wYkhBBC/Ay9Xk9ubm5XhyHEIdHZU9gqgawffZ1Je6XRj10OfKC2KwRKgL6dHJcQQojDwJqyZp5fXMJpQ9P57dRe/FHzBo7GNVRNuh9X5lQUVHBWdnWYRzRPIExhvYvqVj+RqMrzi4rxBSNcPz0fR+U3mFoKaBh8DYk2U5dXHwGkOcy4sdBmTEPbuL2rwxFCCCGEEN/p7AqkVUC+oii5QBVwHnDBT/YpB2YAixRFSQH6AMWdHJcQQogu5g9FuOW9jaTYjJw/OpvUqi85TvcZb3E8vXucTA/3OgAizaVoE3p2cbRHnnAkSo3TT6v3u0bUqkrp5mUkFX3Ny2ktDF32OObGjQSt6bjyZ5FxGFQfQXsPJIBaUy5ZzTvwhyKY9NoujkoIIYQQQnRqAklV1bCiKNcDXwBa4EVVVbcoinLNd9ufBv4OvKwoyibap7zdpqpqY2fGJYQQous9PK+A4gYP95w6gDh3IZnf/pEGxyDurLuA28pbGD4oH4BwcymSPjg43mCY8mYvoXD7jG+Ds4T4b+9gUN1iTtFDxGkmENcXZ94pNPe9gESH9bCoPgKwm3WY9VoqdLn0almF0+fHpLd2dVhCCCHEEUtVVdrXrBLi1+n0tXpVVf0U+PQnrz39o/+vBmZ2dhxCCCEOH+vKW3ju22Jm9k9hrK2RvE/OJ6q30nD8MyT/t45PNtZw5YSxqBodanNpV4d7WPIEwlgM2j0GhI3uALVOP6oK0aCX6Lf/pm/pS/hVPf8XvYjB0y8gp1d/UNpnsWs1ConWw6fHlKIopMWa2EkWM6IhQg0FYB/W1WEJIYQQR5xQJEqt00+bP0SsxUCC1SBVveJX6fQEkhBCCPFj/lD7qmvxVgPXDYLcz85HVTQUn/gWqiOTS8eb+L9Pt7OhysUAWwa0ylLuP+UOhClp8KDRgN2kx27SYzFqqWn14/SFiKoqBUv+y4Tt95JOPZ8qE9nY/49MHDqQOMvuU9USbYbDpvroe+kOM5vb0gGI1m6FnpJAEkIIIQ5GkztAbZuf6Hfrmze7gzS7g5gNWpJsRhxmfdcGKI5IkkASQghxSD02fydFDW4ePMZB/3kXoUQjFJ/0NsHYnmTHWTh/dDaPztvJK0tLuc+RjdJa3tUhH3YaXAEAolFo9YZ+6HMEVDV7aPjsXi70vkGlNoP/DXqGrOHHkaVtrzhSFNBrNRh0GvRahYTDqProe2kOE0tqk1EVLZqGbVJ6L4QQQhygYDhKebMXXzCy1+2+YIQap08SSOIXkQSSEEKIQ2ZjZSvPfFvMOfkqp66/Gk3YR8mJbxOI602K/YenYWeNyOTNlRXcPTgLS8OXXRz14cUfihBoLMPesBF3xkSiBhvQ3jT70zU7GLv+T1ysWcu2pOMJn/QIuXoLADEmHWkO0xFRup4Wa6bGE8WfnIupeTuBcPSIiFsIIYToanVt/t2TR2oUJRJE1Zl2vRQKqwTDUQy6zl6UXRxtJIEkhBDikAiEI9zy7kbiLHr+ErgfbbCN4hPfxJ/Qj0SbgWT7DwObS8b34JVlZWzwOJjka4SgBwzSSBnaq48yF95MTM0yohoD7oyJFMZP46UCPTd5HiFb00DhiLsID70CFAWdViHNYSLWcnissnYg0hwmVBVctp44WgvwBGUlNiGEEGJ//KHIblXJSsVykr69g0RfMc5ep9E06Cr8Cf2A9l6KBt2RMzYQhwdJIAkhhDgknvi6kB11Lp6cGMC+eiXVY+/GnziIhBgDad8t3f69nkkxjO4Rz7LmGCYB0eYyNKn9uybww0gwHCVQsZaYmmU09b+UkKJHX/Axwyu+ZjjgNSVQNvMtfKljAIiPMZBqN6E9zHoc7U+aoz2Z2GzpQVLVVzT6vGCVQa4QQgjxc+rbAqiqSll5KfHL/sEE95fUqPG8F5nE6cWfEF/4Pq7MKTQMugqPZRpx8tkqDpIkkIQQQnS6zVVOnlpQxAkDU5lUdy9hUzzNfc8nzqonPda812NG9Ihj1eIY0EG4uRSDJJBodAdI3PgcEX0MX6dfzcOLaql2TWN2TxcXpdcS6HUiYWsqigJZ8ZYjtr/B9z8TtYYe9FWjRBp2QuKoLo5KCCGEOHz5QxHKm72smvsoV3iex0SAz+POIzj+D/xvYwv3FZXy6uDN9C1/k7zPLqQ6+DhMuqSrwxZHGJn0KIQQolOFIlH++O4GEqwGru3jxV7xNY0DrsBht5MZZ9nncUMyYykNJwEQaS49RNEevsKRKK66UhzFH7HAejy3fFxKVIV7Zw3i9BNOxDNkNmFrKgadhl7JMUds8gh+qEAq12a1v9CwA1VVuzAiIYQQ4vBWUOvihQ8+4ibvY7TY+7LttC/IOOt+ctNTuH5aLwy2BGYXT2H1aQsJWZKxlM4nFIl2ddjiCCMJJCGEEJ3q3dWVbK918YeZvcne9gwRfQyuwZeRGbf3yqPvDc2KpQEHIY0RtaXsEEV7+GryBNGseoaIqnJX7SQuGZfD21ePZWzP+F37WI1aeiZZj/h+QTaTnhijjsJoGioKxtZC/CEZ5AohhBB7U+P0cePb6znH8yZBXQyeWS+jSeq9a3uMUcetx/WlxRPk0YXleFJGY6lbhScQ7sKoxZFIEkhCCCE6jT8U4bH5OxmWHcswaxOOkk9o6ncxCYnJ+12WPdVhItVupkGbgtJafogiPjyFw1Fe/mYTqTvfYj5jue38Y7ln1kByEqz0SrbROzWGzDgzuYlWdNqj46M9zWGixgMhWybG1kJ8ob0vRyyEEEJ0Zy2eIJe8sBJLy3ZO0KygdeBsIqbYXdstRi3JdiP90uxcOr4Hy4ubWRnpjcFdhb9RHtCJg3N0jDKFEEIcll5fXkZtm5/LJ+SSuOFpVI2e1iFXEmc5sOlVQ7IclEWS0Di77wAnHIly0QsrCK58GZviI/X4WzhhYNpu+xh1WuKshv0m5Y4kabFm6tr8BGLzMbYW4g3KU1IhhBDdmz8UobzJS4snSDgSxekNceHzKyht8vBk5nwi+hgaB14JgF6nkB1voWdSDCl2E31SbVw1KZfRPeJ4sigRALV8eVfejjgCSQJJCCFEp/AEwvxnQREjsmPJN7mI3fk+Lb3PIS4564ATHUOyYtkZjEfr7L4VSK8tL2NVSQM3WOfhThlNfO+x6I+SKqOfk+4wUd3qJxyfj9FZjD8Q7OqQhBBCiC7lCYRx+kJUtvjYVuPiT3M3UlDn4oHJenrUfUnTgMuJmmNJsRvpnWzD8aMHdlqNQorDzJMXjmBbNJuAxoyhepX0QRIH5egfgQohhOgSLywqpskT5PzROSRueg5FjdI85BoSDmLJ2KGZsVSoSehCLlRvSydGe3hq8wV58ptCrojbRGywlsbBV5EQ0z2W3E11mGh0BwjG56OJBIg2l0kjbSGEEN3aj6dzlzd7+XxzLScOSmNq7cu7qo+SbUaS7SY0mr0/rEuyGemRbGe7ri+W2lV4AzJFXBw4SSAJIYTocHVtfp75tpjRPeIZbKgifvscWnueiiO91z4HNHszKNNBJckAhJpKOivcw1I0qvLUgiIa3QGuMnxKwJ5LuNdxWAy6rg7tkEh3tDdZb7HkAmBo2Sl9kIQQQnRrvuAPn4OvLC3FpNdyWS9ve4/JAZejWuJIiDHu9zwD0x0sC/XG1LwNj6u5M0MWRxlJIAkhhOhQqqry0FcFeIIRbsotp+dHZxA12GgYcdMBDWp+zGbSQ2wOAJHm7tUHqbDexRsryrk9cSmJzs00DL6GRJupq8M6ZNJi2++1WpcN0N5IOygJJCGEEN1TNKpiW/MU6UvvpGXtB2wvreCsEZnkbX2KqN5C48ArSYwxoj2AB3X90+0sDPRCQUUtX3EIohdHi+7xGFMIIcQhU97s5b/rq7grbQVjlz+BP64Ppce9RGxqzgENan4qMas3bIdoc2nHB3uYavEEeXlpGSmBUn6jeR5X5hRc/c8jw3xgzcePBmnfVSDVhUyEzEntjbSlAkkIIUQ35fN5SV7zbzSRAJN5hXUmDf6KgVgaN9Ew5LeoljgSD/BBXf90O/+O9iSqaNFXrSQ8/OSjZhVX0bkkgSSEEKJDPfV1ATepc5jd8hGuzGmUT38S1RhzwIOan+qdk0nbNjP+uiKsHRzr4SQUieL0hXD6QtS0+vlkXQkfWf9DVGejcvJDJNhMR9Uqa/uT5mivQGp0BQjE5WNq3UmTVCAJIYTopkLVG7FGAszr9w+eXe/n5p41DAquI+jIpXHQbw64+ghgQJoDHyZqzPk46lbjCUZwmCWBJPZPEkhCCCE6TEWzl/SNj3O17iOa+l1M9bi/gUZHss34i1cOG5oVR6WajK3xyOuBVO/y4/aH0Wk0aLUKeo2CRqOgqqCiggpRFTzB8G5NLN9bU8lN6utkh0somfEqEWsS8Zbu0Tz7e1ajDrtJR70rQCA2n9id7xMIRYhG1YPqoyWEEEIcDdSKVQA8VpSEMy4Z08xhFH/3eagoHNQiJQ6LnoxYM5s0/ZhZ/xm1Xi8Os6NT4hZHF0kzCiGE6DAPfL6dMzULaU6dSPX4e1G0OtJiTaTYf3nvnr5pNqpIxuCq6MBIO1c0qlLR7KXOGcATiOD0hWh2B6lrC1DT6qfW6afOGaCuLUCDK7Bb8qjRHcCz+WMu031B48ArcGdNJSHG0C1Ly9NjzdQ4/YTieqENudF66vCHpQpJCCFE96OtXkObPomNbTFcNr7HbtVGiTHGgx4nDEi3sziYjybiJ1K9voOjFUerTh+NKopyvKIoOxRFKVQU5fZ97DNVUZT1iqJsURRlYWfHJIQQouNtq2mjeNNSMpVGvPmzUDQK2QmWXzx17Xt6rQaPJQNHoBaOgGXcg+EoxY1uWr2hgz7WGwwz55N5/Ev7NK7YvtSOuh2jXkNKN2qe/WN9Um2sLW8hFN8bAGPrTrwyjU0IIUQ3E4mq6GvWsCKYy6AMByNy4nZtUxRIjDn4KuX+6Xa+aOsBgK5iJZHo4T/GEl2vUxNIiqJogSeBE4D+wPmKovT/yT6xwFPAqaqqDgDO7syYhBBCdI4HvtjBqYbVqIoWb+5MeibFYDd1TNNnbXwPTATwtdR0yPk6i8sforDejS8YBUATaMXYvAOdtw4lEtzncXpXOfa1TxE7ZybPu67Fpg1TM+NJ0BnJjDN32ylbJwxMpdkTZFMwBQCTrMQmhBCiG3I312D2VLAums9D5wyhR5KVJJsRi1FLku3gq48ABqQ7aCAWtyULS90q3P5wJ0Qujjad3QNpNFCoqmoxgKIobwGzgK0/2ucC4ANVVcsBVFWt7+SYhBBCdLCVJc18vb2efznW4kkYQ052FkadtsPOH5vRE6qhrGgbfePTO+y8HSEYjtLqC9LqDREIRXe9bmrcTO5nF6ALtO56LaK3EtXbUDU6QEFVFBRVxeBun563IdqT5fk3EjvqfEIx6STFGLEYum+7wim9kzHrtcwrg+MMdowtO2kIygBXCCFE9zJv3qecCfQbNZ38FBvAr35I1z/dDkCJZTD96pZT4wvisHSf1V7FL9PZo9IM4MdNKyqBMT/ZpzegVxRlAWADHlVV9dWfnkhRlKuAqwCys7M7JVghhBAHT1VV7vtsG6Ot9SQFymjodRUxHZg8AsjJ6weroLp0O31HzejQc/9SoUiUyhbfXp/YfZ88iuqtVIz7G5qgG22gFV2gBU2wDUWNghoFVSUSCTM3PJ05bcO58PjJjM1LIASY9BpS7L9u+t+RzmzQMr1vMgt2NuJP6IWxtZBQWCUYjmLQdb+eUEIIIbqfDRWt1G5ZRESrYfLUYzrsvOkOE7EWPeuVvgzyf0KwfickDO2w84ujU2cnkPZWc//TyZU6YAQwAzADyxRFWa6qasFuB6nqs8CzACNHjpQJmkIIcZj4amsda8tbebPPNigDbf9TOvwaWXl9AWirKcIfimDSd2yC6peoaPbiCew5nao9eXQ+UX0MxSe9Tcj2w0MPtz9MUYObaqePWqefGqefwgY3LZ4gt5/QlzG5CUB7P4PMOAuK0j2nrv3YiYPS+GRTDbWpOWQ3LQLae0UZdN1rVTohhBDdjycQ5sa31nG/rghfbD9iYjpupTRFUeifZmdhW08uBozVK/H1HITZ0PVjLHH46uwEUiWQ9aOvM4HqvezTqKqqB/AoivItMAQoQAghxGEtGlV54Isd5CZaGeJahCd5BLakrP0feJAUow2n4kDbVk5Jo4fcRGuXJpHq2/wHlDyqJoUN2+rYXtPG1loXFc3eXfvqNAqpDhM58Raun9aL4dk/NMRMthtlAPedaX2TMOk1bAik0NPfiNbfijdoINbS1ZEJIYQQnevu/22hstnNMEsxnvQzd1t5rSMMSLfzSmkc4Zg4LHWrcPkvkfGH+FmdnUBaBeQripILVAHn0d7z6Mf+CzyhKIoOMNA+xe3hTo5LCCFEB/hmRz076908elwsloVbaRx/J9ZOWm7eZc4gzl1Dmy9EaZOHvMSYLpnG5AmEqXcFdntN56kltnAuSRufIqqL4X9Dn+WdhW5WlZajAlajlr6pdqb0TqJPio30WBMJVuNuA0GLUYvDrMdh1qPvpO/hkchi0DGtTzLfFMVyBt+txGaP7+qwhBBCiE61rKiJd9dU8qeRGvSbPUQzRnT4Nfqn2wlGVBrjhhFXu4oKf5hke4dfRhxFOjWBpKpqWFGU64EvAC3woqqqWxRFuea77U+rqrpNUZTPgY1AFHheVdXNnRmXEEKIjvHSklJS7SbGB5cCoOl/aqddSxOfTaZ7Hc9tqOa8UdmUNHrIS7Ie0mRLJKpS0eJFVUEJ+7GXfUnczveIqfoWRY1SFjOUm4JXs3aeE4dZz+wJuZwzKov85Jj241WVSFRFVSGqqt/9AYtBK0mjn3HCoDQe2JICRjC2FtKaNopIVO3wJ7FCCCHE4WLetjoMOg1nJVcCoM0a3eHXGJDePiVup3kwk2q/JtRSRTgh/xet6ia6h05f2kVV1U+BT3/y2tM/+foB4IHOjkUIIUTH2VnnYnFhI3+c2Rvr9nvxJQwkJrVXp13PkdYLY+U83ltdxuT8JNJjzZQ0euiRYD1klUhVLT5CYRUlEiTvk3OxNKwjaE2jbvB1PFAzjPfLzfRLs/OHManMGppBdsLu86w0KBwG7ZuOONP7JnOrNoWgYsTUuhNVbe+DZPuVK9AIIYQQh6slhY2M6hGHvvYjwkYHptT8Dr9GXqIVo07DamUAkwBr7QrcWbnEWqTPoNg7SS0KIYT4RV5aWopRp+GYzAiW+rV4e57YuYmc2B7oCNNbU8PTC4tQVZVAKEpRgxvvIVjavdkTxOkLAZC66j4sDeuonPwg289Zwp2u03m/3MwVE3K5/8zBnDo0fY/kkfjlYow6RuclUqymYWjdCYA3uGcPKiGEEOJo0OgOsL3WxfieiRhq1+BPHoZR3/EPTXRaDX1TbSxxpRLR27DWLMO1l9VlhfieJJCEEEIctFZvkPfXVDKldxL2ki8AUPrP6tyL9p5JxGDnWdvzbKloYHFhIwDhiEpxgwenN7THIb5ghKpWH/7Qr0s2+EMRqlt9ANjK55G4+Xma+l9Kc/7ZvLisgq+21nHuyCxOG5aB2aAhK06SRx1tZv9UdkTS0TZJAkkIIcTRbWlREwBjM/UYm3cQThveadfqn+6goMGHJ3U0MTXLcfnDqKosei72ThJIQgghDorLH+KJbwoJhKOcPDgde+ln+GN7EZPZv1Ovq4vLpGLKQ6R5t/Nv25s8v6gET6D9KZmqQnmzl/o2P6qq4vSGKGpwU1jvptkdpKjBTZt/zwTTgYhGVSqa2/se6Ty1ZC78A774/tSMvoN31lTy4foqTh6UxoVjstFpFbLjrWikN0+Hm943mWI1A6uvGiXkxROQAa4QQoij09LCRmwmHfmhIhRUyOz4/kff659up80fpi5+JEZnMYqrRh7SiH2SBJIQQogDFom2V/v8d301U9LCTNryF2JqluHtdWqn9yEyaDW4cmbSMPgaTgl9zhT/17y+omy3feraAmytaaO82Ys38MPgJxqFskYvDT9ZPe1A1LT58YeiEI2Q9c3vUCIByqc9wfsbG3l9eRlT+yRx3fSeJNtN9EzqmpXhuoN4q4FIYh8AjE1bUFXa/16EEEKIo8ySokbG5SVA1SoA9NkjO+1aA9Lbl13bahwCtPdBkmlsYl9klCuEEOKANXkCrN5Zzdned3i+7WocRR9RP+S3RMbf2OnXVhQFnVahduStuFPHcp/xRQo3r2RHrWu3/aI/k1OodfqpaPYSikTxBsO0eoPUt/mpavXttY+S0xei2R0EIHn948TULmfniLv506IALy0tZUrvJB46Zwj90xykOkySPOpERp0GW9/phFQt/s0fAeA5BL2vhBBCiEOpvMlLRbOPCb0S0VStJuDIw+JI7LTr9U21oSiwPpS5qw+SO/DLqrbF0a/TV2ETQghxdFBVFU/ZOk5cfBlp+lpaM46jbuwdBO096GO3HZIY9FoN4YiOiulP0HPuCTytPsrpc5M5aVRvzhiWgf4ny87qXRUkbHkZV/YMPOnjAWj1hmjdS7+kZncQu1lHit2ESa8lGI5S1dLe98hSs4LkdY9QkHIiZy/PIRBxcstxfbhuak8URaarHQqKojB2QE/WrBhIVtnnNEbvbq8yi+nqyIQQQoiOs6SovcfjqJw4jIvW4c+egrETxxoWg468RCvFTQE8qaOw1qygOhglFInuMa4SQn4ihBBCHJA2XxjrwnvQR7y82utRKmY+R9DeA6tRe8gqb4zfXSdsSaZy+pPkKHV8abqdhFUP8Y85X7CxshUAnaeG9MV/ps87U0ja/By5n11E7M7393v+Nl+YnXVuKpq9VLR4iURVtP4Wsr65gXptGqeXnUmKw8yzF4+Q5FEXiDHp8PQ8iQy1lu0bluMNSQWSEEKIo8uSwkaSbUZS1Tr0vgaiGZ03fe17gzIcrK9opTlpDCZnETpvnUxjE3slCSQhhBAHpLl0I8kNS3lNPZH8saegKJDiMJKbaD1kMcRafljC1pM2ltKZL2JKyef3+g94P3g1OZ+cT9Nb19Ln7UnEFbxNc9/zKThzHp600WQtvImk9U+0d9zej1ZvqL26RVXJXHgziq+J2Z7rOHlUbx46ewgTeiVK8qgLGLQaUkadSRQF9/oP8AYiBMPSB0kIIcTRIRpVWVbUxMReiYTLlgOgye68Btrfu2JiHm3+EO805QBgrVlBvcu/1+n9onuTBJIQQoj98gbD1H71CH5Vj23ClWTGm+mTaiPZZjqkiRSbSb9bEsmdNY3SE99gx7lLqBp6E/1MzUx0fcYnymQWzPyc6gn/IBDXm9LjXqW152mkrr6f9KV/geh3DbajYfSuSsz161DC/j2ul7DlRewV8/lH8Hx6D53IRWNyyE2ySkl3FzHqNKjWJOpjhzMxtJQvt9bJ4FYIIcRRY0ediyZPkHE9EzAUf0XInIQ5c0inX3dQpoMLx2TzXIGVkC4Ga80yQuH2hVN+yQIk3c2bK8u55MWVBMJH/+p10gNJCCHEfn2xajvHN3/OavuxnDNlKHaTfv8HdZI0hwmXP0wk+kMlUciWSfPIm2DEjcwrq+Wf8ysIfNLIjTPimNArEVVroGLqI4SsqSRtfBpr9TI0kQB6TzWK2v5hH7KkUD/0Blr6nIuqNWJq3Ejqiv/j6+gIViWfzT/G9SDJZsTWhffe3X0/VTLS9xT6LL+bZSuWceaIDGIthp89LhiOSoNzIYQQh70lhe39j4ZkxGD7cgHu3ONx6A7Nr+x/nNmHjzfUsFbpx5Ca9uonVW1fgMQdCJMVZ0YnD9D2amVJMwW1Low6bVeH0unkJ0AIIcTPKmv0UPrVk5iVIKkzf9+lySMAnVZDeqxp7xsVDf17pPPwuUPJjrdw3+fbeWlJSXuySdFQO/rPVE34P8LmRDwpI2kYch2VE/9F+bQnCNqyyFj6F3q/O5X4ra+RNf+3NKp2/qb9Lbce3w+bWUeK3Xhob1bs5vskUFvuCQBMCC3jtWVlP3tMKBKluNFNm19WlBFCCHF4W1LYSF6ildimtWiDbYR6HnvIrh1rMfD7Y/KZ583f1Qfpe25/mJ31bqn63YdtNW30TTs0C8p0NalAEkIIsU+hSJTfvbGa/6hf0JQ8hsSew7o6JKB9kNPqDe2zwWNijJF/njGIV5aV8sG6KhYWNDApP4npfZOg30U097toj2OceacQU7WIlDX/JmPpHUTRcEPwDq4+dSRJNiNZcRbpe9TFvp86GLam4U0axlmtazlpdSVnj8xkYLpjj7+fSFSltNFDKKxS3+bv8uSnEEIIsS+hSJSVJc2cMTwTbeHrRDV6NL1mHNIYzh2VxS1LR4LnDbTlSwn3PX3XtnBEpaTRQ06ClRijpBG+FwxHKWpwM61vcleHckhIBZIQQoh9euCLHWTUziNdacI7/Coc5sPnF/D0WDP7yucY9RryU2J49LxhvHjZSIbnxPHxxmp+99Z6bnhzLXPXVeL+afJJUXBnTmbtse/yVMa/uDJ4M33HnMCgzFgy4swyBeowoNdqdv2dO3scT15oJ4nhWv763y2sKm3ZbVqjqqqUN3vxh9qbbPuCUVq9wa4IWwghhNivDRWteIIRRvWIw1o2H2/qKGyOuEMag9mg47gZx+JSzdRvmrfH9mgUShs9uKSqd5eiBjehiErf1O5RgSSjYSGEEHtV3ODm+UXF3Gz7moAtG2O/Ew6rChyDTkOaw4Rep2A2aIgx6Yi16EmLNZGfHLOrV9H0vik8d8lIVt1xDH+c2QejTsuLS0q57OWVPLWgkPJmLwBN7gAvLC7mildXc39RFrq+J3DG8AwSYgyHVeKsuzP+ZBrb3fnFbK5q49IXV3L/59vxBtoTg1WtPtz+MEokSMaiW7GVfUVdWwD1AFbhE0IIIQ61xYWNKAoMsjoxtRTg73FMlyzaMSg7gTLrYFJb1lBQ59pju6pCWZMXp0+SSNA+fQ2gf5q9iyM5NKT2TAghxF49Mm8nQ7Ul9ApspmbYXSTZzF0d0h4SYowkxBxYX6I4q4Hrp/finFGZLC9q4qONNczbVsdnm2vpl2ZjZ52bqKoypXcSZ43IIjvegtnQnqQShw+DToM/FCVo74Evvj9j/Yt58sLf8szCIp75tpgvt9Zx2/F9yYht/3lNXfVP4ne8ha18PgXp42n2GA74Z0YIIYQ4FFRV5autdQxMdxBT/nX7i32O75JYLAYtSp9p5Ky7jz9/8jnXnXUSCXbLbvuoKlQ0ewk5TCRYDYfVA8ZDbVtNGwadhtxEa1eHckhIBZIQQog97Kxz8fHGav4Uv4CI3kpkyIVHzcobyTYTJw5K47lLRrL8TzP448zeqCqcPTKTd64exx9m9iE73oJGA1nx0vfocGPS/7DCSVvuCVjr15Cpc3LXyf358wl9cflDXDdnDdtq2rCXfEri5hdwZU5F72sgcdNz1LsCRKNShSSEEOLw8fnmWrZUt3HhmGxMJfMI2HtgSevTJbGYDVqCOZMBeCf6Bya+M4D8tyaS++l5JG56DtT2qeGqCjWtfrbXuqh3+XebRt6dbK910Tsl5qgZJ+9P97hLIYQQB0xVVf795Q5Ga3cw0jWflj7nkZCQ1NVhdajvP+QTYoxcPz2fz38/mX+eMZiRPeLpm2ojyWYkI9bcLZZjPdK0P+ls/39nj/ZpbI7ij1EUhXE9E3ni/OEkxhh598sFZHx7C96kYZQd+zzOHieQuOkZVHcDjZ5AF96BEEII8YNwJMoDX+4gPzmGY3rFYK1Zijt7BhZD10wWshh0+BMHUnTyeyzp+xeeDZ/EmkgemoCTtBV/J+vr36KEfT+KX6XOGWBbTRvVrb5uN1V8W00b/VK7x/Q1kASSEEKIn1hT1sKKbcU8ZXqaoC0L59hbMBu6TyJFp9WQ6jARazF0dShiL3RaDUm29ilogdh8vImDSFt+D5kLb0LvrsJq1PGHqVncE7ifQEShfMZTqFoDtSNvRRP2k7zuMRpcgW77pFQIIcTh5b01lRQ3ePjjcX1Qi79FEwkQ6TWzy+LRahRMeg3e1NHYJ15F09g/cWHLVdyd+h9qRt+Bo+RTen50JjpPzW7HqSo0uYNUO/1dFPmh1+AK0OgO0reb9D+CQ5BAUhTleEVRdiiKUqgoyu0/s98oRVEiiqKc1dkxCSGE2DunN8Rz3xbzD+3zxEaaqJj2BAnxCV0dlhC7SYoxotUooCiUnPAGjYOvxlH8Mb3fnUrqyv9jZum/6Kcp57f+a1jdYsVq1BKK60lzn/NJ2PY6upZSSps8kkQSQgjRpfyhCI/M28mw7Fgm5yeiLfqSiN6KseekLo3rxw8OZw1JZ2b/FN5ZU8lbutMom/kihrZSen14Mub6dXsc2+wOdptVT79voN0vrXuswAadnEBSFEULPAmcAPQHzlcUpf8+9vsX8EVnxiOEEGLfVFVlQ2ULCQVvcaJ2BXUj/0g4baisQCYOOxqNQrK9vQopanRQO/rPFJy9AGfeySRufIa4ne9TM/g6dtrH8ej8ncRZ9CTEGKgffiOqVk/KmgfwBiIUN7gJRaJdfDdCCCG6m0hUxR0I8+Q3hdS2+TlvZBaFdW5iyr/GnTGJGKtl/yfpRD+ePqcoCtdM6cmQTAePfr2T+0t6sO3E91F1JvI+PpvMhTe3J5J+NHWtqtWHPxTpitAPqe213yWQZApbhxkNFKqqWqyqahB4C5i1l/1uAN4H6js5HiGEEPvQ5gvzzZKl/EX7Ks0p42gcfA0ZsWZpIi0OSwlWAwbdD8OYUEwGlVMepvC0T6geezeNI//Izcf2ptkT5B+fbifZZiIak0LDoKuILf4Ic8MG/KEoRQ3ubjHIFUII0XWC4Sj1Lj/lTV521LrYWt3GpkonLy0pZUROHP3THZiat2Hw1BDMPaa9yrYLWX7SukCv1fDXUwZw2tAMPt1Uw2+/8vHNpLdp6X029pJP6fW/WfT68CTits9BCfuIRttXaTvaF63YVuMi1W4iztp92h50dgIpA6j40deV3722i6IoGcDpwNM/dyJFUa5SFGW1oiirGxoaOjxQIYTo7rZXNnB2yV1EtCbqpj9KvM2EzSTVR+LwpCgKKd9VIf2YP3EgTQNng0bH6Nx4rpvWk/fWVPL55lqSbSYaB11F2JRA6op7IRomFFYpbvDgDYa74C6EEEIczSJRlVqnn4I6F3XOAE5fiGC4vfL1/TWVuANhLh2XA4Ct4msANL2P67J4v2fSa9H8JFNg0Gm4clIud58yAKcvxA3/LeeF2N+x7fyVVE34B6gRMhf/idxPL0CJBPGHolQ7fXu/wFFiW00bfbvR9DXo/ATS3lKnP01DPgLcpqrqzz7+U1X1WVVVR6qqOjIp6ehaDUgIIbqaNximat6T9NeUUTj+frSx6aTZTV0dlhA/K9ZiwGzY+1BGp1VIjzVzw/R8hmXH8vu317GmrBmdxUHtqNuIqV1B9vxrUMLtSw+XNh79T0qFEKKzBMNRPIFwt1uBa19UVaXBFWBHrYsGV2DX7K5wJMrWmjbeXF7Ejo3LuCt9FRO33kP++8eQsvoBvElDsCZm/PzJDxGzvr0KSaOBZLuRvqk2eiXHMDE/gcfOG0b/dDtPLSji3c1tNPe7mMLTP6diyiNY69eQsupfALR4Qjh9oa68jU4TDLdXMffrRg20ATp7bcBKIOtHX2cC1T/ZZyTw1ndTJBKBExVFCauq+mEnxyaEEOI7JQ0e+tZ9TIkxH32/E8iKs6Dp4vJpIQ5EqsNMWZOH6E9aGWXEmdFqFLQahVdmj+bSF1fy2zfWcd8Zg+jb5zw0YT/py+5C+/kllM18nojBTqM7QLIkToUQYr/CkSjVrX58oQihSHRXgiTWoicrvmv79xxKqqrS6g3R4g0SVVUi0faqo6iq7vqeOH0htm7dhK74S2yt2+mnlnCaUolRF4JmCHti8SUNw5l7Mu5+59BTf3isfGs364kx6UiwGndNqdNpoWdSDDFGPX87dQD//nIHrywrJdlmZHLvJFrzz8DcsJ6kzc/hSRuDK2cmje7AUdlPs7DeTSii0je1e1UgdXYCaRWQryhKLlAFnAdc8OMdVFXN/f7/FUV5GfhYkkdCCHHoBMNRvlm0kOuVUjb1+RMpNuNuq28IcTiLMeron2bHH4riCYbxBiLodQr2H02/tJv0vDp7NLNfXsVt72/ktuP7Mn7AZYSNsWQtvJm8T86j9LhXaNAkEW81oNN2+iK1QghxxPIFI5Q1ewiF96w2avWG0Gh8ZMSauyCyQ8vpDVHn8hMI7bkYQ5M7wLLiJtbtrGBGw6tcpv0MoxLGrbXTau9LU9oMIimD8CYNJWjvAd/1m0yIOXx66STG7DlNHNqnkKc6TNhMOv54XB+aPEEenldAQoyBAekOasfcgaV+LVkLb2bn6Z/iJRt/KILpMEmMdZTvG2j3lwqkjqOqalhRlOtpX11NC7yoquoWRVGu+W77z/Y9EkII0fmqnV6s298jjBbbyPNIsu19wCDE4UpRFMwGbXviM2bv+9hMel6+fDRXvLKK+z7fzo3T85nR7zQiRgc5864m7+MzKTnxLRqsPUhzHP2/+AghxC/R6g1S2eLj52aqNbuDaL9LMhxtIlEVlz9EozuAL7h74khVVTZVOfloYzWrSxo5U7OQp/XvEK9zUp51Gt6xNxH6UbJob2ymzq7v6DhWo45BGQ6evmgEFz6/gns/2cYDZw0mM85C+YynyJ97Itnzr6P4lPdp9hhIP8qSittq2jDoNOQmWrs6lENKORLnqY4cOVJdvXp1V4chhBBHvGhU5ZGvtnHB0hMJJw8m7soPsBqPnMGLEAfLF4zwm1dXs7Sokb/PGsjgzFgsdavp8dlFuLOmUnHM0/ROse22wpsQQnR3qqpS2+an0RU84GNS7MYjalpwNKpS0+YnGI5i1Gkw6bWY9Bo0ioLLH8blD+ENRqhz+mnzf7fwghohq/ITTBXf0tjSSiToI0YbJM/QSlKwCk/KSGrG/hVf0pB9XldRwKRvv96RuvpteZOX055aglmv5V9nDsJhNmAv/ZyceVfR2P8y6ibeQ79U+1HVHuHiF1bQ4g3y8Q2TujqUDqcoyhpVVUfubZv8liCEEN1YgztA+erPSVVaqBh8niSPxFHPbNDy9MUjmPXEYh78cgcPnzMUUkbSOOgqUtY9Qn3DRuotI8iM6z49PIQQ4udEoyoVLV7afD9arVKNYm7YiN5Tjc7XiM7XgM7XRFuP43BnTgGgri2AVqOQsI+pUIcTfyhCRbMX/3fT0dw/2a6qKhurnHywtoq15S0oRDlJs4Lf696nl6aaejWWGG0MZnsMFmsMGJIoz/8TzrxTdqs4+j5ZZNS1V81aDFpMOu0Rn1jJTrDw4mWjOO/ZZTw8byd3ndyfth7H0zhgNolbXqSlz/k4HcOPquXut9W0Ma1PcleHccjJbwpCCNGNfbKxhsn++fiNNpS+x3d1OEIcEjFGHU9fNIJZTy7h4XkF3H3KABoH/YaEra+Quup+ypJeJzHm6OvXIIQQBysSVSlr8uAJ/LBgts5bR+bCP2Cr+nbXayoKqs5E/I63KJv5PK6s6QBUt/rRaTWHdRPlZk+Q6ta9T8sLR6IsLmxk7voqihs8pJqj/LNPMTObXiPBvZNma0/m5T2IM+c48lPsuPZRPRQfYyDBasCo0xyRFUYHYmhWLPfMGsit721k/vY6ju2XSv2wG4nf9jpxBW/RnD7wqEkgNbgCNLqD9P2u/1E4EiUcVbvFuEESSEII0U15A2H+t3IHb2pX4e55JnZb91pFQnRv+Sk2/nnGIG58az3vra3kvFHZNAz5LWkr78VStYx602SyE6QKSQjRfYUiUcqaPLv1+rGVfUnmt7egCfuoHns3nrSxhM2JhE3xaMJe8j45j+x5V1Ny/Ot408YAUNHsxZAUc1gu0FHZ4qXF077MvCbgJG3l/6EJttFoymVJWyL/rbLTEFA4LWYbp6dupodrDZqyAAF7LuVTH8OZdwopGi0p+zi/2dA+Le1wvPfOcPaITL7YXMuz3xYzLCuWxJg42nocR2zhXGpH/xl/yHxUJFm21bQ30O6X1j52bts2H1vtSpj8ezAc3T2RJIEkhBDd1NLiJno2foPZEKCm95nkyvQ10c3MGprB2rIWXllWxpDMWPr3v4TEzc+Tsvp+itPG4pMVCYUQ3VQgHKG00Usw3J48UsI+0pb/nYTtr+NLGEjFtMcIxPba7ZiowU7J8a+R9/HZ9PjycopPegt/4mBUFUqbPPRMijms+su1+UO7kkfGlgKyv7oSvauCOiWZvMin9FJULgUwAiEIRHvQ3PdCXFnTcaePB80P46bvi4q+/69Wo5BsMxF/lFTcHChFUfjnGYM49uFveXR+IX87dQAtvc8ltvgj7KVf0Ow466hopv39Cmz9Uu1EoyrGpQ+hdZXAtFu7OLLOJ78tCCFEN/XSkhJuMCzBH5ONLmfcUVtSLcTPueOk/myodHLPx1t54oJhxA7/PZmLb8dWPo868wn06Garqwghui9/KEKbP4TLH8YXjOya0mVwlpIz70pMLQU0DLqaupF/RNXuva9RxJxAyYlz6PnRmeR+djHFJ79LIK434Uj7VLi8pBi0h6DfjzcYJhiOEmvZewInGlWpbvW177vxQ/JX3YY7auDa4B1U2ody4qA4TkxtI9lfgibkwp0xiaAjb4/zGPUaUmwmHJbDd4reoZZsN3HPrAHc+NZ6vt5ezzF9JxKMySSu4G0q8meRajcd8T2fttW4SLWbiLMaaC1cSWz1UoLT/4ZBe/T/HEgCSQghuqFap5/SogJGGzfT0Pv32GXgI7opg07DUxcO57hHvuXlpaX8YcbZJG18mpTVD1CYPQNPwCjN5YUQR41ItH01tUDoh55GKu3T1ULhPZsA2Sq+Juub36EqGkqOfx135uT9XiNsTaPkhDfI+/hMcj+7kKJTPyQUk4E/FKW0yUOsWY9ep0Gv0aDXKui0HVOV5A2GcfpCOH2hXfcSVdlrFVCdy09BTRutn/2dS4JvsTGax0uZ93L6kEEMTLfveqjWyrC9Xsuo15BsM+4zQdXdnToknc831/KfBUUMy4qlpffZJK99BI2zgrbY/CP++7atpo2+301f0yx/nIjeRnT4pV0c1aFx+NQQCiGEOGQ+WFvJqZolaFBpzT8Dm0kSSKL7So81c9WkPBbsaKC8NUjdiD9ibtmOo+h/1LX5uzo8IcSvFP2uEbT/R0mT7sgTCLOz3kWzO4gnENn1xxuI7Jk8UqMkrXucnC8uJ2jLovC0T3ZLHpU1efh0UzXFjW6sBi1xVj0JMYZdU7iCjh6UnDAHTdhHj88vRutvBcAbiFDd6qes0UthvZttNS621bRR3erDGwzzS9W1+Smq99DoCu52L9WtPtr8od329QUjbK5yUvi/+9qTR4kn4r3wE2afOJHBmY59JrR0WoU4q57sBAv5yTFHfBKkMymKwr2nDcRm0nH/Fzto7HU2AHEF79DsCXZxdL/Ol1tq2VHnYnBmLG01hdiKPqZt4EWYYuK6OrRDQh6pCSFEN6OqKu+tqeQ50wo8iSMxJPU8JOXkQhzOLp+Yy8tLS3l9eTl/PuFkfBueImXNg+zMPQGX3yhJViGOUJGoSmmTB28ggqr6u+W0VFVVqXcFaHAF9rrS2G6iYSz1a0jc9ByOsi9p6Xk6VZPuQ9WZiaoqq0ub+WhjDesrWncdEmPUMa5nApPzE5nWN5lWbwhVhUB8X8qOeY4en19MzldXUHLCHFSdaY9LhiMqTe4gTe4gep2Cw6zHotdh1GsOqOFyvctPfVtgH/cO5U1een7XxFtVVTZVtfL4h9/ylvoOdalTUU76D1ZFQa9T6JFgxaTXEo5E8YejBEIRoirYTLqjovnzoZQQY+TOk/vz+7fXs8GVQ3bGJOJ2vkvD8BuJRNUjcuy5rKiJ699cx+DMWK6enEfok1sBDbrx13V1aIeMJJCEEKKbWV/RSkNjA3mmUuozz8Buko8CIWKMOq6d2pN7P9lGYYOHmNF/Jvfzi0jY+ip15mskgSTEESgcaZ8y5QtG0QTduCN6PLajZ1pqIByhvi2AVqOg12owaDXodQpRFSIRlXC0fWnx73safU/ra0IXaIFoGCUaQomGMbXuJKbiG2xVi9AG24hq9FSPvYumAVcQUeHLzTXMXVdFjdNPqsPErcf34eRB6WytcfLtzka+LWjgq6119FxaykuXj6bN155E8qSPo3LKQ2R/cz1ZC26kfPpToNl3IiYUVml0BYH2KhVFAZNeg92kJyHGuEfSocEVoM65e/JICfuxlc/DWr+W+iG/JWJOoLTJQ16SlZpWP7e/v4mb/C9h1KmUT/47KApmg4acBCv676qPdFoNMVoNMUfJz0pXOX5gKjEf6lhR0sTE3ueQ/c31WKuW4E48Hoe5Yz9XQ5EowXC0097fm6uc/ObV1WTHW3j5slEo/hbsW9/AlX8a9qTsTrnm4UjeEUII0c28u6aSUfoiFFS8ScPI7OAPcCGOVBeNzeH5RSW8sqyMnqdOwpU5leR1j7Ij/yycNmOHD3aFEJ0nGI5S0ughGI5ibthAj88vxpM+nroTnyMvKaarw/vV2vwhKpq9RKMHcVA0RPK6x0he/ziKuueBIUsyzh4n4MqahjtjIlGDnbXlLTy/uISKZi9DMh3ccVI/jhuQuivRkp1g4fiBaaiqypLCJma/vIo/vruBx88bRr2rPbHj7Hkq1d560lfcQ9ryv1Ez7m8/LFe2H6oKvmAUXzBAgztAUoxxVyKpyR2g1vndNONomJjqJcQWfYi99Au0ITcAlrpVlJz4FmGsFNS6+dPcjaS0rOYU/VLqhtxIyJ6DzaQjO95yxDd2PhyZ9FqO6ZfMgh0NXD76WNKNscTteAt332M6/DO12RPE5Q/RK9nWoecFKG5wc+mLK3GY9bx2xej25tmfP4cl7EMdf0OHX+9wJgkkIYToRvyhCB9tqObehCrUVoVo5shdg0AhujuTXssNM3pxx9zNbKttwzTmDvI/OI7kdY9Qb/u7JJCEOEKoavu0tWA4iqV2JT2+uAwlEsBR8in11Ztw2UYe0VWF9W1+6vYxZWtfDM5SshbciKVhHS29zsCVNQ1Vo0fV6FA1esKWVPzxfXcldipavLz4xRZWl7WQEWvm6YuGc9yA1H2u2KooChPzE3nwnCH87s113PvpNv5yUr9dU8uaBl2J3lND0ubnsJd/1X5tRQcaLWFTPK6s6bTlzCToyN3nPUSjUNfWnkiym/S0ett7G2mCLnI/vxhL/VoiBjvO3JNp7Xkq2pCb7PnXkD3varZMfpYHvi5he1Uzy+PfIKjJpGHIdcRa9GTGmWUl2k500uB0PlxfzY6mIJm9Tid+2xwaWhsgtuOqdqJRlSZXgEgkQosnSNxeGqf/Ek5fiNWlzdz13y0AvHbFaFLtJtweN9YNL+LOmoo9Z0iHXOtIIQkkIYToRr7cWofLH2aUrpBAXG9sju7R8E+IA3XOyCyeWVjMy0tL6XfmYJr7XEDC1tdo6ncJrbaB0jRViCPAvG11/PvLAi5PLeHsnbcSjMmkfMZ/6PnR6SSvf4y6tGePyARSJKpS0ezF5f9Rs2lV/flqHlUlruAd0pb9FTQ6yqc/iTPvlL3u6vKHWFrUxOLCRjZWtmLSa/njzN78ZnIeRt2B9f85dUg61a0+7vtsO+mxJi4fn0vDd5VItWPuIGKOx9haiBKNtE+hUyMYXOWkrfwHaSv/gT82n7acmXhTRuCP70fImr7H/UWj7EoeKSEvPb64DHPDRionPUBrr9NQtcZd+1ZNvI/MRbfS8tZVbAhczTN91pNYVkTZMc+iM1nIiJXkUWeblJ+IzahjWVETw/udR+KWl7Buf59g5o0YdB3zELPZGyR1wR8wtRZQPut9HObEg64oU1WVyhYfm6ucrCptYUVJE1tr2lBVcJj1PHH+MDSKwtaaNhxb3yDT14Bn7A3d7udHEkhCCNGNvLemknS7gZS2zThzT8J+BA6ghehMeq2G3x+Tz83vbGBjpRPdiJuJLfqQtJX/R3ncCwCSRBLiMFba6OGW9zYyJriS01oepkjJYF7+E4yL7U1T/8tI2vAkdXXbccYMxWE5cj4Dmz1Bap1+ItH2LthK2Ef60juJLZxLKCadoD2PgCOXoD0HTdCFoa0MY1sphrZS9L4G3GnjqJzyMKGYdHzBCI3uAM2eIE2eIE2eAFur21hX0UokqpLmMHHxuB78dmpPku17Nr3en6sn51HZ4uWZhcVkxJqZ3jeZFk8IFA0NQ36712P0rgrsZV9hL/uSpI1Po6jtPZsiBjv+uD54UsfQNOBywpakXccoYT89vpqNpX4N5dOeoC3v5N3OGVVVnvdMJCZ8Dn/UvcNXvZLJrv4CV+YU2nKOI8tukmlrh4BJr+WY/il8vb2ey8aPwhfXF3vp57gDvyVe9+s/T1VVxVWxhdyd7wIQt/YpGu23/ezPbjSqsrnayZqyFjZVOSmqd1PU4MEdaE/OGrQa+qbZOH9UNgPT7fROtWFW/aiFX5NUu4K4grfxJQ7E1nf6r47/SCMJJCGE6CZqnX4W72zgluGg3dJGIG0k8bKiiBB7mDU0g/8sKOK5RcU8fM5Q6odeT9qq+7BULaFCnYA7ECbdYZZfPIQ4zPiDYa55fQ2DQ5v4j/5hmmx9uVX9E+sWN5O5ZS23TDqXk3UvkrT+SeqSHz8iEkjeYJjqVh++4A89iwzOYnLmXY2xpYCW/LPQRPwYnSVYalegDXsBCFlSCNh74Mqahjd5BPU9z2JlmZP527ewpqyF6E9WY0u1G7lwTDazhqYzPDvuV1VVKIrC3acMoNbp567/bmFpURMXjcnGYd53siBky6Jp4GyaBs5GE3Rhat7e/qdlO6amrSRtfIrEzc/R3PcCGgZfS8QUR868q7BWL6NyykM4c0/CEwjT4ArQ6G5fcW5FSRNry1uZkDebGpuJ3B2vtjcHH/c3zEadPAw4hE4alMbcdVUU1rtJz55B0sanaXE2EW9N+9XnbvOFcax9iqjWhDt9PEnrn6Ao7yTi+g3f1aah3uVnTWkLK0ubWVvWQkGdG18oQj+ljKnajfSxmrAnxRBnt5Fgt5FijmIItqDzN6Hb2YxhTTnmxk0oahhV0eJLHIRv+r2Yu2EbCEkgCSFEN/HBukqiKsy0lbW/kDmqawMS4jCl1Sj87dQBXPjCCl5cUsLV4y4nYdvrpK24l8JZH9PiAV8wQnaC5YCndQghOpeqqtzy/kZKapt4O+5FQvoM6k97m7/pY9hW28ZDXxXw8joX4/tdTOLm56hv/D1O24DDOolU3eqjyR3c7TV78cdkLroVVaOn9PjXcGdO/mGjqqLzNRAx2FB1ZgDKmjx8sqmGRYvW4A6ESYgxMHtCLoMyHaTYTaTYTSR3wsp0Oq2GJy4YzjMLi3nm2yLmba3jxEFpnDUik7j9JG6iBhve1FF4U38YpxicJSStf4KEra8Sv20OAUce5pbtVE68j4a80/m/j7eyuqxlt/NYDFp+N6MXx/RNoVH9GzqDiaA9h6AjjzzHwVdWiV9uUu/2aWyLi5oY1nM6yRueRCn6GtIv/NXnbqkpJqdwLk39L6ZhyPXkvz+d9EW3s8Iwhw831LKipImKZh/QXlk0KBH+mraCqd7PSXVvaz9J4Ls/jbufO6K3ETbHE7Kk0jD4ajxpY/Emj0A1xtAnteObdR8JJIEkhBDdgKqqvLemktE94klo/R9howNTap+uDkuIw9b4Xon8bno+j87fSf80O45Rt5P9zfVkz7+G6vF/x29NpbDeTU6CVZZ5FuIw8PLSUj7aUMOLmfNwNFZSPO1NogYbSTYDg7OyKWn08vyiYiqnzSZh68skbXgSd8Zjh20CqcEV2C15pAm0krr6QRK2vYo3eTjl058iFJO++0GKQtiSDEBFs5c3V5WzeGcjep2G8T0TOHN4JicOSkN7iKonTXotNx6TzwVjsnl0fgFvrqzgq611HNMvmal9kslPjkGrbY9lf6vJBR25VE35N/XDbyRpw1PEFc6letw9NPY+n39/uYPVZS1cMTGX4dlxpMeayIg1kxhjJKqqFDd6CIQUasf8BWjvZ9NZS72LvTPqtBzbP4X52+u5cvxIwsZYrOXz8QXPw2z45Q9i3IEwMWufBsA59Gqs8emUD/8Tectu5/NX/8Vn2pmM7hHPcf1TGRwfZVz50yTsfBeN048vri/VY++mtecsVJ0JJRJAiQTQhANEdSYiprjd+mlpNGA16EgyarEZ9d12ERp55wghRDewqcpJcYOHqyblYVq6Bl/ScCzS/0iIn/W7GfmsLGnmsa93kn3WdPSj/0zKmn/T+70Z1I66jeZ+F1Ha6KFHoiSRhOhKq0qbufeTbZyZ3sq0prdozj8bT/oEkmxGUr+rNJncO5GnFxaxw2Mhq8/5JGx7HWfDTRDbv4uj35M7EKaurX15eiUSIGHLKyRteBxtoI3GgVdQO+pPqNq9V/FUtnh5e3UF3xY0YNBpOGtEJueNzmJAugNTF01bT7IZufe0QVw+IZeHvyrgi611fLSxhrwkK6cPzeCUIWkk2Uy4A2Fc/jC+YGSf5wrZsqmeeB/VE/6JCjz3bTFLChu57fg+XDu11x77a1DokWCluNFNKKyiKJDiMO55YtHpThqcxgfrqtjZ6CUzcyq2igU0+wOYDZZffM7m+moyd7xJa69Z2FNzWbCjgX8u78kTkf7coX+LU2bNxhKfTlzBW6Qu/BfaoIuW3mfT3PdCfImD0es1xJr0KEp7P3qV9oeuGkVBp1HQaTVoNQpGnabL3j+HGxntiA7V6A7gC0bIiv/l/xAIITrepionACNTFEytO3Hln4pNpt4I8bO0GoVHzx/KiY8u5sEvC7j/zN/Q1uN40pfcQcbSvxBbOJeqSfdRSh9yE63yRFuILuAOhLnhjXWkxuj4m/I0EaOD2jF/ISHGsCt5BDAiJw6zXsumSidDhlxL/PY3sK95knDe4+gOo0qCUCRKRbMXNariKPovqasfwOCuwJU5lZrRfyYQ33fXvjEmHQ6zjqWFTXy7s4Hlxc2UN3sx6jScNyqL2RNySY8zY9ZrD4uVonomxfDEBcNx+kJ8tqmGueuq+PdXBfz7qwJyE61Myk9kcn4SI3vEodUo+ENR/KEIgXAEfyiK+uO+TYrCO6vK+WRTDbMn9thr8uh7Bp2mPYnU4CHeapCpx11kYn4iNpOORQWNjMiaTmzRh4TKVsOgyfs/eC/8oQjGtS+gCfv4NukCnn95FZuq2hic6cA1+EGMC09nwMpb0YTcWBo24E4dS/X4vxNM6IPNpCPZapDFZH4BGemIXyUciaLVKCiKgjsQptbpR1VBo/GREWvu6vCEEN8pbvBg0muId24GQM0Y3cURCXFkSLaZePS8oVz0wgqeWVTEjdPzKT3+dWIL55K24h56/u90So97mRJGSxJJiC7w4Bc7qGvz88HwjcRs3Uj5tMfR2RJI+0mPG6NOy9i8eJYWNfGbSaNo6X02cQXv4HbdjT02aR9nP7RUVaWsyUs4opKy5t8kr38MX8IAiifNwZMx6Yf9UKlo8fLpplrmba0jEI5i1GkYk5fAJeNymDU0gyTb4Vtl4zDrOW90NueNzqayxctXW+tYtLORd1dX8uqyMvRaheMHpvGbSbkMzowF2hNrDa72leNUFT7fXMvrK8qZNSSdv5y4/yoyk15LbqK1w5aNFwfPqNMys38qX26t5apRU1EVDfrieUQHTPpFi1K0OVtwbH6JJbox3Ph1gKx4Df8+ewinD8ug0ROgvu1GUlffT8iSTPnUx3D2nEW8zUiuzdhtp591hE4f5SiKcjzwKKAFnldV9b6fbL8QuO27L93AtaqqbujsuMSvE4pEeeqbIp78ppC0WBNT+yTRN8XOWP8ijP5GmgZchlZRdnvyI4ToOsUNbnokWNFULkBFQZc1sqtDEuKIMeFH/ZD6ptg4fmAarfln4E4fT96n55H7+cWUznyRUmUCuYlWLAZJIglxKKwrb+GVZaVc2FfD4ILHcGVOxZl3Krmx5r1W3EzKT+KbHVsJhCNE804lYfscwiXLYNipXRD9nqqdfnzBCLayL0le/xjNvc+hatL9oLT/suv0hfhmRz1fba2jvNnbnogZlcX0fimMyY0/IqfYZMZZuHxCLpdPyCUQjrCmtIWvttXx7upKPtpQzejceK6alMew7FjWV7SyeGcDiwobqWj2MaV3Eg+eM+SAkw+/pteO6BgnDU7l/bWVbG3VkpU8HFv5fDzBO7EdZCWQPxTho5fu44qQkxd1p/HPMwZx1ojMXYmhZJuJktHXUxabjzt9PFqLndw4i0w37wCd+h1UFEULPAkcC1QCqxRF+Z+qqlt/tFsJMEVV1RZFUU4AngXGdGZc4tfZUu3klnc3srWmjeMGpOAPRXljRTkj1C2crf8/dEqUqNZAQ98L0Gja38BCiK5V0uhhQLoDXc1q/HF9sNjjujokIY4ov5uRz7aaNp5cUERmvIVRPeLxkUrxSe+Q+9kF9PjiMsqOfZ5idQqZcWZZHlqIThaKRPnTB5tItBq5OfosCipVE/5BrNWwz18SJ/dOBGBNWStjMkegKjqoWHFYJJBc/hDN7iAGZwlZC27CmziI6vH37koerS1v4YEvduAOhBmdG8/Nx/bm+IGpR2TSaF+MOi3jeyUyvlciNx/bm7dXVfDSklKufHX1rn2sBi1j8hK4fHwu54/OlkqSI8zEXknYTTq+2lrH+KzppK6+n7qmKmwZPQ7qPMsLaznR/T4lMcO45zeXkRG7Z/uUzAQbO/OOJ9aiJ81u+kVVTmJPnZ2CGw0UqqpaDKAoylvALGBXAklV1aU/2n85kNnJMQnas7bAQX3oeAJhnltUzBNfFxJrMfDMxSM4bkAqZU0eWqqK6PPRtdSp6RQF4piw5C8EYntRx2h0Gg3xVhlIC9FVguEoFS0+ThyYgnndOtryTiHuKBpwCnEoaDUKj50/jMteWsmdH27muUtGMjwnjhpdyndJpAvJ+fIKymf8hwr1WHyhCGkOmcotRGd59ttitte6eHCqkfjlX1A37Eaijuw9pq79WM+kGNIdJhbtbOCkQYPxJQ7EWL2KaFTt0l8uVVWlxulHCXnJmXcVqkZL+YynUXUmQOXTTbU8820RfVLtPHLu0G6xfLjNpOfKSXlcOr4Hn22upbLFy5jcBAZnOiRpdAQz6DScMzKLl5aWctXpU0jlftj5JWRcdVDnKdy4nKlKMyWj/kaafe+ftXqthj6ptkO26mB30dnvvgyg4kdfV3732r5cAXy2tw2KolylKMpqRVFWNzQ0dGCI3ZMnEKa4wYM3GN7r9soWL099U8jv3lzH6U8tYeS9XzHgr1/wyLydTOuTzMuXj6Jfqp3iBjcul4s+C6/FQIS2Wa/yTPKdlEWTyPzyKvSuSqpbfYQi+1mbUwjRacqbPUSiKv31tWiDbUQzR3V1SEIckUx6Lc9dMpK+aTaunbOGnXUu8hJj0NkSKTnhTfwJ/ciZdzVx2+fQ6ApS2tj+3hNCdKySRg+Pzt/JtD5JTG9+h6jWRNOAy0l1mH62IbaiKEzKT2JxYSNWoxZ/2ijMDevx+n2HMPo9NXmCBIIRMhffjrGlgIppjxOyZWHUKTy3qIT/LCzi+IGpvH/tuG6RPPoxvVbDqUPSuW5qL0bkxEny6Chw6fgeRFWVD6tjCVrTMJXMP+jfFZ2l6wGw54762eSvJI86Xme/A/f2N7bXkZSiKNNoTyDdtrftqqo+q6rqSFVVRyYlHR6N7o5k3mCESFSluMGD0xcC2pNGz31bzKlPLGbiv77h/i92sLCgAX8wwuDMWC4am8M/ThvI72bko6rt87A9/jAZi27H1LSFimmPok3uzU2njuIP2tsJBv1kfXkFBL3UOv1dfMdCdF/FDR4AegXaiz812dJAW4hfymbS8/Llo0lzmJn98iqKGtzkJVox2OMpOWEO7owJZC7+ExmLbsXtdlPU4N7vwFiSTEIcOFVV+fMHmzDqNFw9zEJs4Qe09DkXoyPpgCreJ/VOxOUPs6HSiZI9Bk0kQLB87SGIfO/CkSh1bX4Str5MbNGH1I34A+7MKQTCEf743kb+t6Gam4/tzZMXDJf+auKokBVv4Zh+Kfx3QzWtGdOIqV6E0+U+4OMb3QHiXAUENSZiM3t3YqRibzo7gVQJZP3o60yg+qc7KYoyGHgemKWqalMnxyT4YQqbqkJpo4c/f7CRif/6hn98ug1PIMwl43J4/rx+vHlhPg+e2pObp/Xg3BGZDM5woESCaAJOdN46kjY+RVzRXOpG/AFPj2PIjrcwJDOWC06cwe9C12Nu2UHmwpto9QRwB/Ze7SSE+Hmq+ut+uSxubE8gpbRtImx0YErp0xFhCdFtJcYYee2K0VgMOi58fgXbalzkJsZgtsVROvNl6odcT/yOt8j75BwirVXtS3Lv432sqioljZ5dn8tCiJ/3+eZalhU3cd3UnvQsfg1FjdA46MoDXv13Qs9EFAUW7WxAmzMOALViRWeG/LPqXAG0znJSV/4fbVnTaRh6PW3+ELe+t5HCejfPXDyC383I32tTcCGOVJdP6EGrN8Ry3Qi0IQ+enYsOeLy7tKiJvko5vtjeaLXSkuFQ6+w09iogX1GUXKAKOA+44Mc7KIqSDXwAXKyqakEnxyOAaFQlZt2zmHVmavPO4qH5xSwtauKkQWnMGppOms1AwtaXSP3ofjSR3SuHVEWDou7+JNXZ4wQahl5PdpxlV0+lmQNS2Vp9Gv+3ooq/lM7Bs/0NagyX0Cs5Rj4AhThIZU1echIsv/i9U9zgJjHGiKV+Lb7k4dhkBQohfrXMOAtvXjWWi55fwfnPLee5S0YyNi+eimYNdaNuxZc0mMyFN9Fr7kmUH/MMtYYJe+2JVNniI9RSSYuSRFpSQhfciRBHjmhU5dH5O8lLtDI520T8kjk4c0/CktLrgPt6xlkNDM6MZdHORn47bSwBWza6qpWoqnrIx6j+UIQWd4DspXehKlqqJv6TZm+Iv/5vC/WuAC9fPprRufGHNCYhDoVxeQn0TbXxXIWOk7VGrGXzae53DAkxxv0eu6Sggds1FRjSu775fXfUqb9FqKoaVhTleuALQAu8qKrqFkVRrvlu+9PAXUAC8NR3/2iHVVWV9aU7kc/dQuryv6OgEl76NBr/BVw58VRmDc3A4Cwh85M/YK1bTVvWdNyZU1EiQZRIACUaRFGjRHVmoloTqs5IxOCgLWcmyQ4zDvMPyy86zHqumJTLH6ovYnn1WoauuI/WnONpshpIPIB/GIQQ7RrdAVz+MG3+8G7vsYNR3OBhYLyKsb4Ab+9ZHRyhEN1XbqKV964dxyUvrOTSl1by+PnDOG5AKvUuP/W5x1Pk6EnOV1fS48vLKbR8jEXfH4flh/dxgyuAv2I9ff53Oq6cY4le9JqsEiPEz/hiSy3ba13cM2sA8dvfQBty0TD4arJsBze2nJyfyFMLivAGI5A2Gmv5N/iCYSzGX/Y5+0tVt/qIKfsKe8XX1Iz+C3VqPH/93xYa3QFemT2aUT0keSSOToqicNn4Htz+wSZqM0eSUD6fEpefeKvhZxO5qqqyrXAncYqLYNrAQxix+F6ndyFTVfVTVVV7q6raU1XVf3z32tPfJY9QVfVKVVXjVFUd+t0fSR51slD5ahRU3tTNQhPx8brhn/yu/k6S1j1O/gczMbUUUDHlYcpmvkTTgMtoHHwVDcNuoH7EH6gbeQsNQ6+nadCVNPe7GGfPU7HGxJBi33PFi3SHmdtP6MersdejDXlo+O+fKT6AXhBCiHbBcJT6Fidpy/+Gu2rr/g/Yh5JGDxMsZe1fSANtITpUmsPMO1ePo3+anWtfX8O7qytItpnokWglktibkuNfRVUUsuddTVVj066pai5/iMa6KnK+uhJNxI+95FOcDRX7uZoQ3df31Uc5CRaGpFpI3Pw87vQJ6DKHH/RS9pPyk4hEVZYVNRLJHI3O34S/rrCTIt+Tqqq0eoN43S7Sl/0Vf1wfCnpcwF/+u1mSR6LbOG1YBrEWPR+HR2NsK8VU/BXNnuDPHlPe7CXW1T5pSScJpC4hbey7oebti4mi8EjoNJYd9yk1o/6EtWY5qWsewJ0xiYKz5tOafyZarQa9TmFfSWBFAZNeQ3a8Za/bNRqFful2rj77ZJYnn8NUz+c8/frbzNta14l3J8TRo8bpI2H90yRufgHzqqcI/4Lkq9MboskTpLe2BgBjhnzYCtHR4qwG5lw5hgm9ErnlvY28v6aSGKOOXskx6JPyqJj6OKbm7aQvvI3ypvZ+RxWNbWTNuwadr5HyaU+gqBGia17p6lsR4rD15db26qOzRmQSX/I/9N46GgZfQ9JBVh8BDMuOxWrQ8u3ORjTZYwGIli/rsFh9wQhOX4hWb5BmT5AGV4Bap5+yJg8FdS62VLdR0ewjef1jGNxVFI6+h798vINWb4hXrxjNSEkeiW7ApNdy/uhsHqwbhseWS+rKf9LQ5vnZXkiLCxvpo7Q/bNGkypi2K0gjjG5m0c4G1E0LUZVM7jxjLDkJVhqzr6U1/yyMrTvxpI0DRcFh1pMe+8NSqNGoSigaRVXbl0PUKsoBldmb9Foy48zUnnAnvrfnc2vgWU5+I4trp/XmtGEZGLQadFoFu0mPVfqyCLGL0xfCX7uTrPVPoCo6HCWf0tzmJinOflDnKWpsX9UiM1pNRG/DHJvWGeEK0e1ZjTqev3Qks19exW3vbyTNYWJ8r0TyEq2UMIO6xj+QuuZBvElDKRw0m7QldxNTu4KKqY+iDjwDd8Hb2LbMwTf9VswmmeotxI9FoyoPfVVARqyZST0TSJr7NL74fkRypxHzC8aPeq2GcT0T+baggb+cMJGIwY62YgUwe499vcEwRp32gJYDd/lD1LsCeAP7b4pvbCkgaeOzNOWfzV3r7NS0tvLaFWMYkSPJI9F9XDw2h2cXFvOOfTaXV92JbcubtDh+s88VFZcUNnKysYqwORWdRd4rXUEqkLqRD9ZWMvulFQxVCjH3HEePROuubWFLEp708Wi0CplxZrITLLuSR9BeTWTUaTHptei1moPq0ZAQY8QY46Bhwl/pSwm3JCzhmYXFlDV6afWGaHQFqXH6OvRehThSBcNRKpq91LR6SV/6F1SNgcpJ/0IbbCO044uDPl9JQ/sKbAn+csJxeSga+WdfiM5i1Gl56sIR5CVZufr1NRTUuVAUhex4C60jb6At+1jSVtxL2uK/kLDtVRoGXU2g/5lkxVnwD70Mg6cG75ZPu/o2hDjsfLi+ioI6N+eOzCR97YOYWnfSOPgakmx7tlA4UDMHpFDZ4uOaOetoTRyGuXb1bqshhiNRSho9FNV72FrdxvbaNsqaPNS1+WlyB3B6Q7j8ofZqI2+IwnoXpY3e/SePVBWtv4X0pXcSMVh5SL2QteUt/P20gYzrKY30RfeSHmvmuIEpPFiZjyt5JMlrH6axqWmvVUjRqMrSoiYG6yqJJPXvgmgFSAKpW1BVlSe/KeTmdzZwcoYXO26MPcYyIN1OXpKVFLsRq1GL1ailV3IMcfvI+P4aGbFmnLkn40qfyOzA68TTwmvLS3dt9wWjeIPhDr+uEEea37+9jqkPLqDw61ewVS2idtSt+PudSdiUgGXHXHzBg1vqu7jRjU6jYHWXosb37KSohRDfc5j1vHjZKEx6LZe/tIr6Nj86rYacBBuV0x4maMsiYduruDKn0jj2T2THW9FoFCyDTiZkScGw7mUi0QNbyliIo10kqlLV6uWx+TvJiDVztvdNkjc8SVPfC/D2OWO3pvQH66zhmfx91gBWlbbwalUaJmch3tZ6oL3qqLDBjdv/w9g0FFZp84WpbwtQ3eqnvNlLaaOXwno35c1efMH2aeY6bwMJm58nZfUDpC7/O+mL/0zmwpvJ+eIy8t+bQf9X+tH/9SHE1Czjm4xrmbPZy2XjenD+6Oxf980S4gh12fhcPIEoH6dci97XgGPdf2j1hvbYb2tNG26vj7RQOaQM6IJIBcgUtm7hiy11PPDFDmYNTeeurHXwFWizR6MoClajDqtRR3Inx2A2aEmwGake/3fyP5jJfNNttJbqiZujR6fREDHYaT7jbSxZPTo5EiEOX19vr+PTTbX0sIYZU/AgZea+uPpdRJ9kB86epxC3/U1qW5owpxz4O7a4wUOvOC06VxWRhPxOjF4I8b3MOAsvXTaKc55ZxuxXVvH2VeOwGnWkJadQOvNFEra+Qv3IP5CTaMOga3+WZzGZaO5/AXGrH6G1uoC4zD5dfBdCdJ1oVKXRE6DBFWDJzkZKm7y81nc5aWsfoyX/TKon/B/pv6D30Y9pNAoXj+vB5N5JPPNqKTjf4sU33+aY0y9Fp9G0t23wt2CtWUrElEDIkkLIkoKq33vvT2PLThI3P0fszg/QRIOoioaozoyqNRHVmYkYYwk48nBnTCIYk0lBNINrl9gYl5fAX07u96vuRYgj2agecfROieGFshhOyD2JpE3PUjroYuLydh+3Li5sJFepRauGiEr/oy4jCaRuYHFhAzFGHQ+dMxTv+88RMdgxpfU95HGk2E04E3pRMe0JzKVfsbKokZiIjhGZscTvfA/dupcJp9+129Q5IboLXzDCXf/dQna8hXcy3yWhwMVlzttI+qqQJy8cTrj/mWi2vIy67WPU5Mt/donTHytp9DDa0YriUdEk9erkuxBCfG9ghoMnLhjGla+sZuDdX6D5/j2rgs10Eg8OMtL/J71blJGXw5rHYM1LkHlfF0QtRNdzB8JUNHsJR1T8oQgvLS3lxpivmVT6PK15p1A56QF0Oi1xlo6pmM9JsHLL7POJPHIH9obVnPZkPkOzYpnVS8v5W67F1Fa82/4Rg52QJZmwJYWQNZWQJQVTSwH28nlEtUZa+pxL48ArCNpz2dtKNIFwhCWFTby4pIRUh46nLxohY1/RrSlKezL3zg83s3zk9cws+5LYFQ/iyXhytx65SwobmRZbBz7QywpsXUYSSN3A2rJWhmbFotUo6GtW40sZTozhl5f8/lJajUKaw0RF7gm05Z7AjsQanl5YxB1Z/TjP10j89jk0T/4DybG2Qx6bEF3tsa93Utni45mpUZKWv0HTwNlMsx3DUwsKOfvpZTx5wXCCMVnYCz+kbfTFB1S2H42qlDR6mN27AQBdklQgCXEoTe+bwkuXj2ZVSfOu11RUPt5Qw41vruPVK8YwIidu1zZHcjaunGOxbXsb77F3YrFY93ZaIY5aqqpS3eojHGmfxvna8jKmuz/mJv2LOHOOo2LqI6DRkWo3HVQ/zv2xxdgIJA7iHLWa0vRsVm8tYMKSO4lqGnku/V7ys1LJM7rQ++rQe2rRe+vQeeux1ixH560narBRN/wmmvpdQsS89z5GFS1evthcy/zt9bgDYTLjzLx46chfNQ1PiKPF6cMyuO/TbXxYZmRk/0tI2PISdeVXY80fDoA/FGFVaTNXptWjBnQoib27OOLuSxJIRzlPIMz22jaun9aLsKcFY3MB/vxTuiyeWIuBZk8QTyDC8QNS+XhjNS8vLWX6xIvpOe8KQls+hgnnd1l8QnSFgjoXz31bzLF9E5i882bClhTqR/yB6zNTGdEjjtkvr+K/66u5sNcsEjf8h4rGKhzZPfZ73qpWH4FwlDxNLQCaRKlAEuJQm9I7iSm9k3Z77ZJxPTj3mWVc9uJKXr9yDEOyYoH2KTWhYZejm/s5jWs/wDLx4i6IWIiu0+oNEQi19xLaUtVK1uanuEX/Dm1Z06mY/gRo9KQ6TB3er1On1dCWPprYzS9z8bEG7qy4H72zifvi/87LpVmEi1XirbGMyxvKuJ4JxFsNqGp7wkuNRvGHIjT7wrTsDNDsLcPpax/rugIhPIEIbn+I2rYAOo3C1D7JnDMyk4m9ErHICsRCABBj1HHG8EzeXl1ByQXXErfjLYwrnyDS8wW0GoW15S34Q1F6K+WE43qh13V8z15xYORfraPchspWoioMy4kjUL4aKypK1ugujSk91kyjO4Beq+GPM/vw+7fX86l/IFfHZOLY/AptI87CbpKnMaJ7iEZV7pi7CYtBy+2JyzCXbqFs+lPExydg0muZ1ieZfql2VpQ0c+60s1DWP4Fu+38JZ9yw35L3ksb2FdjSQpWEranojFLdJ8ThIMVu4o3fjOXcZ5dx8QsreOM3YxmY4QDA2m8Ggfk52Da9QvOwc/e5lLEQRxtVVal3BQDwB0Pw5Z+5Rf8xjbmzqJn2EGj0JNuNJP3K3kf7Es0cjWbDM/T67yloA62UHvciszImcWwwzMqSZpYWNfHV1jo+2VTzs+fRKO0rEMdZ9DjMehLjjTjMenqn2jhzeGanxS/Eke6isTm8tryMxVUqeb3OJK7gbVqaaolPTOX9NVVoNQqJnp1Es8Z2dajdmiSQjnLrylsBGJ4Vh7poBSoKhpyuTSCZ9Foy49obEM4ams47qyt4cWk5pw29gKy191NVvhl772FdGqMQh8p7aytZVdrCrRPj6bHxIVzpE/Hln0zWjwaYY/MSmLOiDF3qdHzx/XEU/hff5Ouw7SeBVNzgBiDWV0YkLk/+wRfiMJIea+aNK8dy7jPLuOiFFbx11Vj6ptoxGfQ0Db6chMV307jpU+yjTpX+KKJbaPGGCIajEA3Bh9dwXuQrtuVcSHj6P0DRkGgzkGI3ddr1tTntv5Rq/S2UHfs8noxJGPUa+qXFMSInjqun9MTlD7GiuBlXIERUhaiqEo2C2aAhLzGGzHgzCVYj2g6cXidEd9En1cboHvHMXVfF6SdfQsK2V4mufZ2HNbN4f20lvxufhH5tNcEU6X/UlWREcpRbW9ZCzyQrDosebdUqAnG9Mdvi9n/gIaIoCr8/pjct3hCLbccT1RgwrX+JQPjglioX4kjU6g3yz0+3MSDdznnOF1DCPmrG30NarGW33g5j8+IJhKMU1btx9pqFtX4NgYai/Z6/uNGDzajD1FaCGt+zM29FCPELZMVbePOqsRh1Gma/tIqG76ovdGN+g9/Ri7TFf6G2sXk/ZxHiyNdefeSHaJiEjy9nVNtXfBh/BeFj/g8UDfExBtIc5k6NwRyXRvWYuyg9/hXcWVPRaCA73oJOq0Gn1WDQaUiIMXLi4DTOHZXN+aOzuXBMDhePy+GsEVkMz4kj2WaS5JEQv8JF43Iob/ZSoGbhSRmFdu1LPD5/B+eOzOL3g4IA6KSBdpeSBFIXCkWinXp+VVVZV9HK8Ow4iEYx1K4llDayU6/5S4zIiSPeamBpjYIz72Rid75PS4sMmMXR799fFuD0hfjTACfxO9+lcdBvMKT2xWHefQrn6Nx4FAVWljYT6X8GALqtH+z3/CWNHoYkRND6W1CSpNmgEIejnAQrL1w6imZvkKtfW00gHMEeY6Vuyj8xuCswLnkAdyDc1WEK0amaPEFCYRX79rdJr/+W+zVXkHbyHaAoxJh0ZMR2bvII2ivkW4ZciSd9AgCZcRZMem2nX1cI8YPjB6SSGGPgndUVfBs7i/hAFddnV/B/ZwwiUrsFAE2qJJC6kiSQupA3EKGi2Yuqqp1y/tImL82eIMNz4gjWbUcbbEPNGtUp1/o1tBqFqb2TWFTYSNugS9GG3Kgb3u7qsIToVFur25izooxZg5MZseUfBK3pNAz7HWmxe5bnx1oM9Eu1s7y4iZjkXDypozEXfLTfaxQ3eBhha0/GaqWBthCHrYEZDh48ewhry1u5Y+5mAOx9ptLc+1wSNz1HY+GaThsrCNHVolGVBlcAJewjYfVDrI72JmHqb7EYdOh1CllxnZ88+p7F0D7ZO8lm3ONhjhCi8xl0Gs4blc387fX8fkMWTsXBFaavUVWVaO1mIsZYsKd3dZjdmiSQuoqqYljzLK7meipbfJ0yMFxb1gLA8Ow4wmUrANDnjOnw63SE6f2SafWGKDb0xZcwkLgtrxIMyTQ2cXRSVZW7/7cFu0nPDbZvMTdvpWbsnSTFx2HU7f1p59i8BNaUtWDQKXjSxmJo3oEa8u3zGr5ghKpWH/30dQDopAJJiMPayYPT+d30Xry3ppIXFpcQZzXgmnwXEWMsyQtupcHp7eoQhegUTZ4g4YhKwuYXiQk28JL5UkblJqAoP0whO1SsBi0xJh0pdml0LURXOX9MNnqNhqG5KfgHXYCjYj5tdaUo9VuJJPYDRaaJdiVJIHWVpiJMC/5G7ifn4mqqpaK545NIa8pbsBl15CfHQOVKwkYHptQ+HXqNjjIpPwmdRmFFaQstAy7F1LKDYMnirg5LiE7xvw3VrCxt5qrR8eRsfARXxiT8vU7+2ZVZvu+DtKmqDU3KABQ1QrB2+z73/34FtmxqUDU6iMvp8PsQQnSs3x/Tm+MGpPB/n25jwY56UlPTqBl3F5aG9YRWvsCOWhdVrT6cvhCRqFQkiaNDizeI1t9KwvqnmB8ZRu7wY1EUhTSHaVdF0KFiN+vJijOjyC+oQnSZjFgz8//w/+zdd3hcxfXw8e9s16p3q1m23HvB3WCMKaaY3iGUEAiEEhICgQQChIQf5A0QIJAQQieUUE0PYMDgAgYbF9yLLNmyetf2cuf9Y9dCtuUueSXrfJ5n8e6t5+4I3dXZmTNH88LPJmAafwVojV78LJbaNejsYbEOr8eTBFKsZPTHffbL2JtLKPrgPNx12zo8ifR9aQOje6dgMinM2xYT6HUEytQ1x3Inx1kZ3yeNz9dWYxp5DmFbEqYVr8Y6LCE6nNsf4r4P1zKkVyJn+d/FHGimcsLt5OzlA+v2OkjfFNdhzxsJQKh85W63355AygqUEUoqBLN0xReiqzOZFA+dN5qB2Ylc//JSlpQ04BhzAS150+j13V9QNeuodwXYUudhTUUzDe5ArEMW4qBorQmEDDKXP44l5OIf5ouZPiiTFKeV9IRD3wvIYTXLrIdCdAEFaU7sFjMpuf1pKTiGlBVPYQq6MfWSBFKsyW/IGAr3OZqSmc9jc5XR94PzcdduZV1VCzUt/oP+ZtHlD7G+qoUxvVMJuhuwN6zHyOt69Y/aOnZIFuurXHi0DU/2EZgrlsU6JCE63ONfbKSy2cd1k9PJXPUMTX1OwpY/kiTHnhM82+sgLdpcR3zOAAyzHV29arfbF9e4AEh0bcZIK+rQaxBCdJ54u4Vnfzqe3BQHlz7zLV+ur6Fu+v+BNhj45rH0f+tEspY8iL3mByqbvBjSE0l0Y4GwgdlVQdqq53g7fCQDRkwkKc56SIpmCyG6PqvZhH/0TzGHIsO4rTkjYhyRkARSjARCBpc8vYjnK/JZcfQzWD2VFH1wPrqpnMomH2srm6ls8h3wTG3LtzZi6MgMZ97ibwAwd9H6R9vNGJwFwPyNtRjZI7DVr4OgL8ZRCdFxSmrdPDVvM6eMyGF85WuYgy3UjL1xn6cm3l4HKYiJQOoATNWrd7ttca2bvCQb1qYSdJoU0BaiO8lJjuP1a6YwsSiNm99YwevFVjac/SkVE+7AsCWQtezvDJh9CoVvn0ptc0uswxXigPlDBtlL/oahDR4Jn8vJI3LITYnDZJIhZEKICOfQmQQSCiIvsobENhjR+QkkpdSJSql1SqmNSqnb2lmvlFKPRtevUEqN7eyYuoI6t5/EOAvPf13K2R/BH5P/hHJXM+Dtk8ha8iAmVzU1LX7WV7XQ4gvu9/G3F9AeXZCC3vAJhtmOo8+Ejr6MDlWUmUDfjHg+W1ONLX9MpMZLxe6H6AjRnWituWP2SmwWE5eOTSFj1TM0FZ5IQuEYbJZ9+1U8qSgNX9BgRVkT4cwhWOvWtLudNxBm3oYajuoVwBT2Ycoc0JGXIoQ4BJLjrDx7+QTOOSKfx7/YxCNL/FQMu5LiWW+w5qIlVEy4HWfNcsLfPk3oAL9sEiLWwlVrSd3wGi+Fj2PgoKEUpjtJsB/aukdCiK4tPs5O/eTbcI+4FOwJsQ6nx+vUBJJSygw8DpwEDAUuVEoN3Wmzk4AB0cfPgX92ZkxdRU5yHC9dOYkvbp7O5VP6MLs2n9M9d7Ao2I+spY8y6NXJ5H/5a2zVKymt81Dr8u/X8b/f0sCArAQSbCacmz7E23s6yp7YSVfTcWYMzuLrTXUYvSLdE0Nly2IbkBAd5M3vtzF/Yy03zOhPn/XPYw40U3PEjWQk2Pb5GK11kDbVQdYwrJ5qgi21u2z36ndbqHUFuGxAJPlskQSSEN2SzWLir+eM5DfHD+SjlZX8Y+4mUuOtmBIzqB3xc1y5U8n8/lFq62piHaoQB8S69HmCWHkkcDpnjM6jV7Ij1iEJIbog2+jz8M18INZhCDq/B9IEYKPWulhrHQBeBU7faZvTgRd0xDdAilIqp5Pj6jL6ZsTzh1lD+fq2GZx6wglcZ/yWE4IPsTTrTJI2f8SA2SfT6+t7qKh3Udbg2aci21prlm5tZGzvVNzFi7C6KwkNOvUQXM3BO3ZwFoGwwYLaBMK2JHTl8liHJMRBq3X5+fMHqxnTO4WjCqxteh+N3a9indvrIH2zuQ5Tr+EABMt/2GEbfyjMk18VM6FvGv0tVQCYMiSBJER3pZTihmMHcNepQ5mzpop/zt3EoOxEirISqJ9yOxZfPaaFjxIISS8k0f2ouvVs0PkUFvRmbGEqdkvXnOxFCBFbKXFW4qV3YpfQ2QmkPGBrm9dl0WX7uw1KqZ8rpRYrpRbX1Bx+37TFO6z8fFoRz18xgYS8QZxdcgZXZ75IxaBLyVj5FH0+vozmuho217r3WmC7uNZNoyfI2MIU9Op3MExWLENOPkRXcnDG9Ukj0W7h83U1BDOHY678Ye87CdHF3fPealy+EFcdVUT6ymcOqPfRdhOL0lhS2oDOGgyAUbljIe23vt9GRZOPG2b0x6jdiGGNh8ReHXIdQojY+enUvvxiej9eWrSFv3++kXi7hfQBE2nsdzoZPzxFbfnmWIcoxH4L12xgQzibM8bkkpV46GddE0J0DyaTwmGVBHNX0NkJpPYq4O2c/diXbdBaP6m1Hqe1HpeZmdkhwXU1FrOJUQUpvHrVJG6Y0Z8vSgOcuul0Fo/6E/EV39Dv3VMJVa6mrMGzx+O01j/KSyZu4wd48o4kPjn9UFzCQbNZTEwbmMnna6sJ9xqJrW41hEOxDkuIA/bZmireXV7OeeMKKHQGyVj5NE2FM4kvHHNAUwVPKkrHFzRY1ewk5EiDNjOxhcIG/5i7kVEFKRzZPwPqNhJK7QdKipEKcTj47cxBnD02n4c+Xc8r324h3m7BNfV3oMM4Fvw/vIFwrEMU7QiEDKlT1Q4d9JLgq6DKWsBJw3MO6J4ohBDi0Ors39RlQEGb1/lA+QFs06PYrWZ+c8Ig3rxmMjaL4sLF/XljxBOYgh76vXsGet3HVDfvfnay77c0kuSwkOPfgK1la7cZvrbdjMFZVLf4qYgbiCnsx1/ZfqFgIbq6BneA3731AwWpcZw3Ionen18X6X009kYyEw7sm9aJ0TpIizbXE0wfjLnmx/8/3l1eztZ6Lzcc0x+lFOb6jei0fh11OUKIGFNKcf/ZI5g+KJPb3/6BT1ZVklEwkPqhl5K6/jWqi5dLoqIL8gRCeIOS3NuZv3oTJjQ6rUh6HwkhRDfR2Qmk74ABSqm+SikbcAHw7k7bvAtcGp2NbRLQpLWu6OS4uoXRvVN5/4ajGNM7ld8uiuPevH/gT+pL78+uoal4Mc3tzM62qcbFp6srGVuYil79LlqZsQ2fFYPoD9z0QZkoBfNcuQCEyqUOkuh+AiGDP763iuoWP7dOtDP4g7NIKF9I2ZF/Ib7P/tU+aivFaWNwryQ+XlWFN3Uwtvp1aCNM2NA8/sVGhuQkceyQLAj5MTdvhXRJIAlxOLGaTfzj4rGMyE/hupe/551l2whM+TWGJZ7UhfeyqcaNT5IVXYo7EMYXlMTezmpKIz1os/oMQ0lPWSGE6BY6NYGktQ4B1wMfA2uA17TWq5RS1yilrolu9iFQDGwE/g1c25kxdTdp8TZeunIiP5nYm+dWBrlO3U7QnkbhnKspLy/b4UPimopmzv/X12gNt84ciGP9+3hyJ+FMyY7hFey/9AQ7U/ql8+QqE4bZgZYEkuhmAiGDp+cXM3tZOTf2r+bEry/G4q1h80n/oXHIhWQcYO+j7S6e2JuV5U08/IMNc8hDQ/kG/reykk01bq6P9j6ifjMKjTlzYAddlRCiq3DaLLxwxQQmFaVz65s/8OTiZqpH/YKkLXNwrH+XTTUuWtr5kknEhjcQkqReO6o3RxJIg4eNiXEkQggh9lWnDzbWWn+otR6ote6ntb43uuwJrfUT0edaa31ddP0IrfXizo6pu7GaTfz5zBH835kj+Kocfua9EZO7mtxPr2NLbTNhQ7N8ayMXPPkNFpOJ/149mUKjDHvTJkKDulfvo+1+Pq0fFS0hqp0DMFetiHU4QuyzYNjgveXlPPjJen6ZsZgby28h5Ehj02nv4s6dQnqCDetB1nn4yaRCPv7VNOx5kZnY/vT0G/zfh2volxnPicMjBbPdFWsBsGTKDGxCHI6S46w8e/l4rpjal+cWlnBr2RRc6SMp/PxaMhY/TGmti1qXP9Zh9niGofEFDUkgtSNYvYFqncqgwl3mzhFCCNFFSbW6buSiib1545rJeDNHclvgpyRVLKB29u28vngLF/37G5IcFl6/ZjL9sxIIrZyNRmEdflqswz4g0wZkMDQnia+9+dhqVoEhXb9F1xcMGyzcWMsf31vF+c4l/Nr1Nzy9JrDptLcJJPcl0WEhO9HRIecamJ3IbZeeiUYxKb6SbY1efnnsAMwmhWFo3OWRBJIMYRPi8GUxm7jz1KH85ewRfL3Vy6mu31PR5wyyv3+Igk+vpqq6Bk9AJqKIJU8wjNbgDxlovedZdHsap6uEals+ZpMMXxNCiO5CEkjdzJjeqbx57VSOOudGPnDMYkrVS8yf/W9SnDbuPXMENouJYNjAtuF9vL3G4UzLj3XIB0QpxTXT+/GNNx9zsAV/zaZYhyREu7TWtPiCbGv0smxrI7fPXslYvZp7jEfxZB9ByQnPYthTSI23UpjuxNSBH5TNjgSCSb2Zld3At78/ltNHR77FrWrxYWkoJuzMBEdyh51PCNE1nT++Ny9dOYlKj+Im/zWUT7qLpC1z6Pfu6Xgq1sU6vB7N4w9hCrhQAbfUQWqj2RckN1SGP7lvrEMRQgixHySB1E3NGpVL/0sepSZ1DA/a/83L/T8jU9dR3exn87ofcNStIdjNZl/b2cnDe1GbMAiAQNmy2AYjxE4MQ1Na52ZVeTMltR6qm3z8+f3VJDZv4EnrgwQTe1N6/DNoi4PsJDv5qc5OKRIazBiKpW4NWUmRnk2+YJj6JhcJ5QsJZQzp8PMJIbqmCX3TuHZ6P77eXM+CjHPZfNJLWHz1JM2+LNah9WjuQJjCOVdR8Pl1MhNbGys2lJKhmonrNSjWoQghhNgPkkDqpswmRWFWCrUnP4W/4Eh6r3ycwa9Oofecq8lc+igAtuGnxzjKg2Mxm5hx9HSC2kzVukWxDkeIHXiDYZq9IbaPSHjz+zKqyop5Lf4BlC2OkhNfwIhLIS81rjW50xl05lBsTZsJ+dwAlDV4SVn7KjbXVgITZE4CIXqSK48qIjvJzovflBIuPJLqMTdia9hAsLY41qH1WD5XI/EV3xBfuQifPxDrcLqM4nWR+pbZfYfHOBIhhBD7QxJI3ZjDaiYnrzelJzzDuvPnUTPi58RXfEPqhjfwZo4iLrNPrEM8aGePL2KTKsBV8n2sQxFiB22/Sa5q9vHx4rW8lvgQTu2hZObzBBPz6ZXsIC3e1qlxqF5DUdogULmGOpcfn7uFrKWP4O41AfOA4zr13EKIriXOZubmEwaxoqyJtZXNWAbMACCw7rMYR9Yz+YJh4iq+Rekw5qCbUM36WIfUZTSVrQEgIVd6IAkhRHciCaRuLsVpo1eyAyO5kKoJv2PthYvYMuNxXCc+HOvQOoTDasafMYx8/wZWbWuMdThCtPIGfkwgffL5p7xl+T354TJKj/sXvvRhpMZbyUiwd3oclpwRAATLV1LZ7CNj9bNYvTVUjrsVu9XS6ecXQnQtZ43NZ0hOEn/53zqSC4YSTMiF4i9iHVaP5PaHiN+2oPW1uVy+DAMIhQ3MDZswMGHLLIp1OEIIIfaDJJAOA5mJdgb3SiQ/NQ6HM56molOJLxgZ67A6TP7QyWSoZl6ZI8PYRNexfUrm+q9f5J6aX5Fk0xTPegN33lHE2czkpcQdkjhsmf0wzA6CFSvB20jm8n/SXDADc5/JMrONED2Q2aS4/eQhlDV4eeHrLQQLj8axdR46LLOxHWqeQJiEioW4ek0ibE3AUb2cQEgKaa+tbCHfKKclLhdl6fwvWoQQQnQcSSAdJkwmRWq8jf5ZCQzITsBpO3x6HjgLjwCgcv0i1lY2xzgaISIzrwX8PrIX3MnRq25ntWkgpWd/iDdrDBazojC9cwpmt0eZLQTSBmKvX0vmin9hDjRTNe63ZCbKh3IheqojB2Rw9MBM/v75BrwFR2MONOMpXXzI49hQ1cLKbU2s3NbEqvImNlS19Kip7H3NtcTVrcKVdyTejJHE1SyTQtrAktIG+qoKdFq/WIcihBBiP0kC6TDksJpjHUKHsueNQKMYa93Cb99YgWH0nA+fomvyBQ1yv7qFrDXP8e/Qyaw+7kVUQjZKQWG6E6v50P5qDWUMwVmznIxVz9BYdBoqZwTx9sMniSyE2H+/P3kILn+Ipyt6o1EYGw59HaRA2EBr0BoMI/K7s97dMwpJB8MGtq3zAXDnTsWbORJH/Rr8Xk+MI4u9xSX1FJkqsWQOiHUoQggh9pMkkESXZ3IkEkjpx8y0alaUNfH8wpJYhyR6OG8gSGLJJ7xhTOfLPr9iVGEGAHkpcTHp/aezhmIONKPCAaqO+A2Zh6D2khCiaxvUK5Hzx/fmX9810Zw6FHPJl4f0/GFDY7QzWqu6xd8jvgjyBMIklC8kbI3HkzkST+ZoTEaQcMUPsQ4t5kpKNxGPD5UhCSQhhOhuJIEkuoVQ1ggK/BsYmZfMg5+up7zRG+uQRA8WrF6HJeTmewbzsyP7ApCWYCO1k2dc2x3VKzINcv2g8yG9H8lOa0ziEEJ0LbeeOIhUp5WPvEOJq1yC3914yM4dDLdf6ycU1tT1gF5InkCI+PKFuHtNxGazE8geDYCq6NmFtCuavDibSwEwZfSPcTRCCCH2lySQRLdg5I7B5i7nj/3W4QuGuWP2Dz3iG0zRNdWu/RqAjEFTyEiwE2czk5vsiFk81qKpVI35FVVH3EJGQmySWEKIrifFaePu04bxTvNAlA7h3/jVITt3oG0CyQiTtPkjCj++nPjyBdT0gF5IvroyHE2bcOdOJdFhwZ7Wm2BcJvaqZYQP82vfk8UlDfQ1VQBgzZIeSEII0d1IAkl0C3rsZbh7TWD0d7dwV/9iPl9bw1tLy2IdluihKtcuxK3tTBg3CbNJ0Tvt0BXNbo/dHkfNuJsgPoNUpySQhBA/OmVEDokDpuLRdtyrPzlk5w2GDFTIR+ralxn45rEUfnY1iWVzKZj7K7S3kVq3/5DFcqhprbFumQeAK3cKiQ4LToclUki7ennrLJ490ZLSBgaYKzHMdiwpBbEORwghxH6SBJLoFhzOJEpOeA5v5iguLrubcxJW8uAn6ymuccU6NNHDlNa5SW9cSblzMCkJDnqnO7FZYv+r1GE1kZFgw2SKXSJLCNH1KKW4+8yxLGYI4Y1fEN7N0LKOprd9z6D/TiV//m2ErfGUzvgHm059G4u3lpxFf6amxd9uTxytNaGwgT8UxhMI0eIL0uwL4gmE8AXDBMPGIbuGA+UJhHFuW0jInkogYwgJdgvxNgverNHYmzbhczXEOsSYWVLawAhHLcHkIjDF/t4phBBi/8g0PaJbsFlM4Ehg88zn6fvRRfyl/gEu99zEPe8lcu+Zw8lLdcY6RNFDPP/Vem5VpVT0voyUJAcJXWS2szibhbQY1WASQnRtuSlxbOo3g/zih3h73recOX1Sp5/Tvvp1zEEXxSe/gjtnCkR7adaMvJqs5f+gqehUahOOJzspMvzXGwhT7wnQ6AlgGJEi3KV1btZUtrC13kOty0+Ny09ti58WX4ikOCsZCTYyE+1kJTo4fmgWA7OTMLRGa0iLt9ErRkOLPf4QyRULcedOJtFhRymFw2qiOmsUCo2xbSmknxCT2GKpwR1gdUUzfRIrCKcOj3U4QgghDkDX+MtHiH0QZzXjNpIpOfEl+n54Ps80PMRPNli54ZUgD58/mt7p8bEOURzmmn1Bfli6ELsphLX3ODITu85sZ1mJdixm+TZXCNG+0dPPguKHWDb3bSaPHUWvpLhOPZ9q2oo/sRB37tQdlleP+RVJJZ+QN/9WNvUai9mUQaMngDdgUOvy8+0Pq2jatgF//VbSwrXkqHr6mwOYrA5MNieWVCdmm4OWkIXGgIm6WhNVZYqv14UZdkQK8UYLZn8TymyB0+8Dy6FNrAdCBq9+/CU3uLaxZcjPSXdEPmorpSB3bOR5+fcwsuclkN7/oQKMEBmBcrzpp8c6HCGEEAdAEkii28hPdVJa58ZHCptPepmiD87ledPfOLMsnp8+F+TJS8bRLysh1mGKw9jLi7YwKLwBTKDyjoh1ODuwSvJICLEHCfnD8DmymOBexq9fXc4Tl4wlOa7zkiuW5q0EEvN3WKYUaIuDbdP+StF7Z5G16H7Kp/6ZtZXNrPn2U6ZUvsitpugsZabII2SJR1udmMJ+lN+PydNO7aTtv/6WgEZhWOMxB114B0wjbuShTVR8U1xH+bKPwQo/nx+PfeM3TBuYyU8mFhKXnIk/sTfWymVorWNaOy8W3v6+jCMzPJhcQVSGFNAWQojuSBJIotuwWUwUZSawtd5DC+mUnPgi/d49kzcsD3JKw11c9FSIxy4ay8j8ZOwWc6zDFYcZfyjMM/M3c1/CVkIqHVt6YaxDEkKIfaZMJoJ9juaYDR9zQ3ENT8/bzPkTepOT5Ojw2mlaa6yubbh6TWxdZrOY6JPhpKrJT1P2EdQN/xkZK5/irc1mRnq+5lzTWlzWJDYNuh5T70kE43sRjM/BsCXudHADFQ6gwj5MIR+msA8V8vPG8mr+u8rN7WdNZEivBIa8NA5j1dtwiBNIG6pdTDGtwm3PYvrYyayqaOGZ+Zv5dnM9//nZRLyZo3FWLcYfMnBYe85nldI6N99vaeTRI3ywCsyZ/WMdkhBCiAPQaV9ZK6XSlFKfKqU2RP9NbWebAqXUF0qpNUqpVUqpGzsrHnF4MJsUhelO0hNsBBPy2HziCzi0n3dTHsIWaOKK577j01VVbKhqobLJhzfQc2c6ER1r9tJtVLf4GWvZjCdzFPF2a6xDEkKI/WL0PQZnuJkb07/j3/OKWb2tmU01LoIdXJQ64G7AHGgmmJAHRIr8F2XGY7eYKUiLo8kb4Fc1sygxsrnK9yxDHPWUjr+Tkp98i2fKb3HlTyOQNhBbfDLJcVbSEmykb38kOkhLSSIlPYvErAKcvQbgyBvOuSccTVxSBk/OKyUvPRH/gJNxFH+KEfB26LXtzcbKJqaaVxMoOJJrjunPf6+ezM+nFbGirAmtNd7MUdjc5fgbyg9pXLH29tJtKAUjnbUA2LIGxjgiIYQQB6IzxzzcBnymtR4AfBZ9vbMQ8But9RBgEnCdUmpoJ8YkDgNKKXJT4shJceBPG0zpcf8mwVPGu+mPkaCC3PHOSjZWu6hp8bOpxiVJJHHQDEPzr6+KGZNtJsVdjC9zJA6rDBkTQnQvliEn48kczY3uR/i76UGe+3ghbn+YrfWeDj1PuH4LAIHEfOJsZvpmxGM1m/AFwzzy2QaueH4xS8r9fDDiYTZPf4wtFy+kedSV2JwJ9E5zMqhXIsPzkhmQnUjvdCd5KXHk7vTIS4kjP9VJQZqT3ulOBmQn8qczhrOxxsXri8uwDD8zMoxtzScdem174ylfTRrNuHOnkOSIfNEwrk8aYUOzoqwJI1oHySj7/pDGFUtaa95euo3R+SkkukoJ25NRzvRYhyWEEOIAdOZfQKcDz0efPw+csfMGWusKrfX30ectwBogrxNjEoeRjAQ72Ul23LmT2Tr9YVLqlvJe5uNMNJZz99vLqGzyoTVsqfdgtDNVsBD7atHmeopr3Fw9wIVCE84Z2+NqVwghuj9nYgrFp71FxYTbmW5ewT+brqX40ydw+0JUN/s67DxGfSkA5tTe9M2Ix2I2sbaymZkPf8XDczZw4rBefPrraRx31FG4+p+G2WYnN8XBgKwEkp3WyMyrB+D4odkcNySbh+dsoCZjAmF7Cnr17A67rr3RWmOtXwdAMGtE6xC1IwpTUQq+K2nAkjcKrUyYKrp/AikQMvAFw/hDkUcg1H5PtiWlDZTWeZg2IBNbUzGhlH6ts/IJIYToXjozgZStta6ASKIIyNrTxkqpPsAYYNFu1v9cKbVYKbW4pqamo2MV3VRWkoPUeCvNRbMon3ovqQ3L+Rd/5uPwlXjfuIbw+o8JBENsazy0XdjF4eWb4jpMCkaZiwEwF3StAtpCCLEvlFLExzmoHXk1G8/+hG2O/py19T6S/3cd1c0+XP5Qh5xHN0Z6IGXkD8BsUny2poqz/7EQbyDMy1dO5NELx5Cf5qRPhpPsJDuDshNJT7B3SGL+7tMiHdnv/mADvv4nE1f8CeFDNIytxuWnV3AbAPbsH2v8JDmsDO6VxOLSeuISkvClDsJSufSQxNRZwoZmY7WLDVUu1ldGHusqW1hT0cy2Ri8tviBaa0Jhgxe+LsVmNjGlfzr25s2E04piHb4QQogDdFAJJKXUHKXUynYe+1WxUCmVALwJ/Epr3dzeNlrrJ7XW47TW4zIzMw8mbHGYyUuJI9FhoX7IT1hz8VJKjn+K5oJjOMb4mtFfXUXygntp9ARpcAdiHarophZtrmNobhLxNcsJJBTgSMmOdUhCCHFAUuKsKAXB5L40nvMW/1bn0Hvb+9hXvsrWeg+hjqiH1LQFw+zAkpDBU/OKufKFxfTNjOfd649kSv+M1s3sFjNZHVzEOz/VyS+PHcCcNVVsyZmJOejCs/rQDGPbWOWir6kCt6MXiYnJO6wb3yeV70sbsJtNeDNGYa9eDrr79o6ubvERbqd3dyisqXcFKKn1sLqimbWVzXyxrpqJfVMpXPVPbK5t6KzhMYhYCCFERzioBJLW+jit9fB2Hu8AVUqpHIDov9XtHUMpZSWSPHpJa/3WwcQjeialFL3TnMTZTGiLg5bCE2g68XE+OWkBbxjHkL/2KfTmr9jW6MUXlHpIYv/4Q2GWbmlkXGEajurleDJHEm+TCSyFEN1TaryN/lkJJDgsJMTZSDnpTr4xhpK36G6Mus1sbTj43jqmpjICifnc8c4q/vzBGk4c1ovXrp5Mr2RHB1zB3l00oTdWs+LthiJC9hQ4RMPYNlS76KcqCCQXkWDf8T4xrk8a7kCYDdUugjmjsfgbCdQUH5K4Opo/FKbOtfcv5QwDFhXX4/X5uCP8T3ot+SsN/c9ET/j5IYhSCCFEZ+jMIWzvApdFn18GvLPzBirSV/lpYI3W+qFOjEUc5kwmRWF6PHG2H3+kB+ZnYMy8nxLdi+zPf4WrsY6tUg9J7KcVZU34QwYTsgxsrq0Ee43B3MFTXgshxKHksEYKW/dOdzKydxorJ/yFkKFwvP8LXB7fQddDMreUsTWcwavfbeX6Y/rz+EVjcR7CxHuy08q0AZm8v7IGb7+TcG7+hICvYwuFt2dDVTN9VSXmzP67DMcb3ycyGfF3JfWYsiM9cELVazo9ps5Q1eTH7K4iZ+Gd5M+9kYLPrqX3pz+n8OOfkvPNPSSUfYUKRX6GvllTwouOvzKoYjZVY26k7OiHsTviYnwFQgghDlRnJpDuB45XSm0Ajo++RimVq5T6MLrNVOASYIZSaln0cXInxiQOY1azif5ZiQzITiAz0Y7VohhSmMPayQ+SZjTgfvtX1LoClNS5JYkk9tm3m+sBGKU2AaBzx8QyHCGE6DDJcVYGZicwfcJYZufeRD/fKho//X9UNfupbjnwJJKleSurPElM7Z/OzTMHdegQtX01a1QO5U0+ijOPjwxjOwSzsVVWbCNZuTFl7jpFfU5yZOa4xSUN2LMi9ZGM2k2dHlNHc/tDNHmD5C68k7S1LxFftRhH/RpszSVYPZWkrXmRvv/7CUNfHEn+h5fw2203MIHVbJ32INVH/AaTWWE1yyymQgjRXXXa10Fa6zrg2HaWlwMnR5/PB+SrfNGhHFYzvZLN9Ep20OQNokYcyYrqazi2+HHuf/NxjjnnOgwNfTPipSeJ2KtviusYlJ2AvfoLtDJhzR8b65CEEKLDKKXIT41j1MlXMe8/85i05d98vno6DJ2CQpGZaN+v44W8zVj8DawLpnHyiJzOCXofHDckG7vFxOymfgyzp2Ba8w6MOaNTz2nUbgDAlNG/3fXj+6SyYFMdjuSRhG1JqPrul0CqaPLhrFxEcslHVB3xG6rH3LjDehXyEl/xDeH1nxK/5QtScLFg0pOkDjweAPsBzrAnhBCia5Df4uKwlhxnJSPBjm36b6hMGsm17n/yr3e/pNkbpLjG1THFQsVhKxQ2WFLawOjeqdiql+NP6Y9zp8KoQgjR3TmsZnJSHNhPf5h6lcLAhTdRU1dLZZOPmhb/fh0rWB+Zga2cDGYO69UZ4e6TRIeVGYOzeH9VLZ6+JxK/+RNC/s4bxlbn8pPu3wqAOXNAu9uM65NGTYufimY/geS+mBr2rwaSPxSm2RfEH4pNPcdGTwCvP0jON38i6OxFzYgdaxmFDc38EjfXfZvOcWtO5pjAg/y/Ye+SMuw4ABxWEwVpzliELoQQooNIAkkc9rKT7DjsNppOfAyHBa6tv48nP/sBbyBMca2bQEiSSKJ9K8ub8QTCDMyKx1mzHG/maOwWc6zDEkKIDpeZYCctI4vSox6iQFeS+M7luNwuKpt81Lr2PYkUri8FICG7iIyE/eu91NFmjcylpsXP+szjMAdd+NfO6bRzbax2UaQqCCsLtvQ+7W4zvk8aAN+VNGCkFmFp2LzPx9das6XOQ2mth/WVLlZua2Jjdct+J/gOVChsUNnsI2XTOzhrV1A5/rdoSxyhsMGyrY38Y+5GrnjuO+7/31rq3H5+dmRfnrt8ApdO6YtSitR4K/0yE+QeKoQQ3ZwkkMRhL9I930kwuQ+VR/+VsaaNXLb5Vt75dj3+oEFxrUtmZxPt+nZzHQDDnc1YfHUYUv9ICHGY2j6UzTn4GBaP/jPjjRUYb1xJMBigotFHeaMXvQ/TzldvjQzjGjEs9lO1zxichdNm5q2GfoTsybDug04714ZoAsmfVIgyt18hYkBWAkkOC4tL6iGtCItrGzq4b7WmKpt9+II/fuGlNXgDBpVNPkpq3Z3Wo9oXDLO13sPayhZCPi/Z3/0Fb/pwVmecxD/mbuSyZ7/lD++sZO66asb1SeVv54/itasnc964AuLtFpSC/NQ48lOdMamFJYQQomPJXNSiR4izmclIsFNTdCoYISbO/TWm5TfwTdKTTBrSh+IaN30ynId0lhjR9S0qrqcgNY7elf+LLOhzVGwDEkKITuSwmslKtKPH/4T5rjqO3PQgX75xHSnn/4s6VwBPIExhunOPRZArSteTpy0cc8SIQxh5++JsZo4bks1Hq2v4Xe9J2Mu+7rRzbax2MclUCWnDdruNyaQY1yeN70rqUUf3Q6Hx1xZjzxm6x2O7/CFqWwK7Xd/iC7GxxkXvtI75HGMYmhZ/iDqXH7f/xy/YMlc+hc1dzltFd3L7ayswmxQzh/Vi5rBspg3MxGHdsXdRMGxgaC29joQQ4jAiPZBEj5GdZMdhNdHU/0xKjn6Ecab1jJ13FZu2VhA2NMU1bpp9wViHKbqIsKH5tqSe4TnxpK95EVfuFBw5Q2IdlhBCdKrMRDtxNhPJx9zI3F5XcLT7Y+rfuQ20xhsIs6HKhcsf2u3+vtpS6sxZZKd0jVo3p47KpcETpCRhNLbmUoINZZ1yno1VjfRWlRjp7dc/2m5cn1Q21bhxx/cBIFSzcY/bhw1NWcNOtZuMECZ/E1ZXOSZ/IwDBUORzTHWLD5c/hDcQxhcMEwwbhMIGgZCBLxhZ5gn8uN4XDOMPhXH5Q1Q1+9hU42J1RTNb6jw7JI8snhoylz3O0rgp3PRdEkNyEvn419N48LxRnDCs1y7JI4jMjivJIyGEOLxIdwvRY2wfyrapxoV7wOmsNxSj5t2I5eNLqD79ZbIys9hS5yE3JY60eFuswxUxtraymRZfiFPsy7G5tlEx+W4K2vmALIQQhxOlFL3T4tlU4yLt5Dv54s16jql7lQWfpJA08/eEDc3mGje9050kx1l32Hd9VQtpwUqCqXkxin5X0wZmkOiw8ImrHyOAYPECrEec3+HncVVtxkaIYHq/PW63vQ7SD950ZgBG3Z5nYitv9BIMaUxBN30+voy4muWYwj/WPTLMdiom/oH6IZegUVQ1+YGOrYtkbSkj+cvb0SEfv3GfzaWTC7lz1lAse+iJJoQQ4vAkv/lFjxJnM5OXEgdAaNBpLJ/0MEPZRNY7F7KtshKtYVuDl22NXgxj77UexOFrUXE9AFPr3iSQkEew30yp3yCE6BFsFhN90uMxmU2knvU35liPYerWJ8ha8mCk+A60W1j7wx8qyFO1xGcVHeqQd8tuMTNzWC9eKEkibE3AKJnf4edo8gRJ9kRmn9vdDGzbjchLxmY28U2lJmRPQe0hgdTkCdLoifSMzvn6jzgrv6N+8EVUHfEbyifeSdmRf8GdM5m8hXfQe85VmH0NHXdRWuOsXETBnKsZ+N8jyaz4kifUeVx5xvH8/uQhkjwSQogeSnogiR4nNd6GoTXljT5sw09nOSZGfXMjvHchJSe+SJ+CfOpdAVy+EAVpcVIXqYdasLGWSQlVpFZ/Q8X424iPk15pQoieI85mpne6ky11HlaNv4/6r27lvKWPoMIBqsbfhscfGfrUdojSp8tL+ZVqpCWjMIaR7+rUUbm8saSMqszRpJd90+HH31jTQpEqB8CaPWiP2zqsZkbmJ/NdST2hlL6YGop3u211S6TAdtLmD0lb/yrVo66navxvd9imYdD5pK98hl7f3ceAt05g6/RHcOdOOaDrUOEAcTVLSShfSFLpp8TVraRFJfCv0CmszjuP84+bQlFmfLvD1YQQQvQM8pex6JHSE+yEtaaqyY99+KmsNFsYtuA6TP+7mHXHv8iAPr0JhAyKa9xkJtrJSrRjaPAGw611A7KS7DK2/zBlGAZLShv4W/xnGF47DYMupMgpCSQhRM+S5LCSk+xgcv9sLpt3NVmJSUxf8U9MRoCKiXfS6AmSnRS5D26sbsFTWwp2IKV3bAPfyZR+6WQk2PjE1Y/LvfMJNldjTcrqsONvqHLRV1UStCZiTcjc6/bj+qTx9Pxi/EP64KxY1O42kZpFBhZ3BXnzb8WTMZJto2/ECBlYzAqTivaIVSbqRlyJO2cSBV/cQN8PLyTkzI70trLFY1jjMcyOyKZaA5EeZNpkxTDb0RY7htmOraWM+MpvMYV9aBQV8UO4L3wlH5imcfkxQ7lqYCZmsyIr0d4h75kQQojuSRJIosfKSnRgGFDT4scy5CTWmP/J4K+uRX36ExZPe5Yxg/qhNVQ3+6lzBQjvNKQtEDbol5kQo+hFZ2n0BPiupAHD28CRag6N/c/AkZwh37gKIXqk9AQ7gbDB5KIsrt18MV8MSyd75dOocJCaaX8mOymSnPhgRSUFqgYAU2rXSiBZzSb+eNpwnn5lJZfbIVC8AOvoMzvs+BuqXcwwVRJOLcKq9j7UecbgLJ74chOvbbZxVbickM+NxRG/wzbNviBog/y5N0HIzz22XzP7mSX4ggYAFpOKFKm2mki0W0iwW0izP8DZybPJo4ZEk4/4kA9nyINVNwIKUGii8YUDEPJjMvxYwgGaTUl8bjmez0KDmesfQLMvgdEFKTxw7AAyEiJJo6xEhwxdE0KIHk4SSKJH65XsIKw19a4ApoEzWW/6F4PmXo3ty4v528q7OX7akfTLTNgleQTg8YepbvGRleiIQeSio7X4glQ1+/AGDJZuaeBc81dYDR91wy4nK16+cRVC9Fw5yXGcOiqXz9dV83rG9VwwzETGqmdoGHguLamTibdZeH9FOWekecAF5rQ+sQ55F6eMzOHr9dPw/mCjYsUc+ndwAulqcwVG2vR92n5C3zReuWoSc99YAl64+d/vcOVZpzA8L5lmX5Ct9R4WlzSQuvxfjKhawK3Bq3i/zMm0ARnkpUbqOKIjfYk8gTBVzT4aPAEqvCbu851GoydAMLx/dRzj7WZ6p8XTOy+O89Od9E2PZ3heMkoplIIUp5WMBOmJK4QQPZ0kkESPl5cSh2HoSKHK/sdREvcieZ9ew/31N/Lr168l2P9EfjKpkF5JuyaKqpv9JNqtxNmkd0p3ZRiarQ0emr2Raam11izcUM3frXNwZ48nlDWcpDj5VSmE6NlOHZnDfR+t4fN1NRwz81ekrXmR5OL3aCwcxwcrKthQ7eLIwW6024wtJTfW4bbr9tNGs3r1IJzFC6hp8ZPZQcOxtlbWkqVrce9lBra2JvdLZ9R5J8LzD6Lqizn1sfkkx1lbi2YPVFt53/YvFjmmUDjtap4vSqd3mpOsdj6LQKSoeWWTD60j9zGXP0S9O0CdO4DbH4okgqLbKgXxdguJdguJDiuJDku7vWytFkVavI00p016HgkhhAAkgSQEAAVpTrT20OQN4s+bwtZzPiL/k6t4qv5BHisp4dqNZ/HLYwcxfVAWGGGs7m2EHBloq5OyBg/9sxJQ+9BtXXQtobBBSZ0HbyDcuuztpdtIrfiKAlslW4beQVq8TdpWCNHjWSwmzj4in399uYmaYH8K8o8mufg91g6/mf/7cA2TitLob28gGJ+DzWKNdbjtirOZyRw+g/zlj3L1Kwv415XHHPTsmi2+IPaWSO0nU0b//drXnh2Zse32STYKVH/q3AF6pznJSLAzatX/sJSYSTz3HxzlSCPebt5t8gggI8FOgt3CtkYv3kA4mhiyUpgev9t92o3JaiI+OiQuyWGR+58QQogdSAJJiKiCtDh0vabZGyKYkEfJaW+Ru+B2rt/wOkc711Mx10av7+pID5RjMgK4s46geNYb+IJQ2ewjJzku1pcg9oMvGKa0zkMgZLQuW13eiHvRczzseI2AoxfNRScxKF667AshBMC5R+Tzz7mb+GpDDUVFp9F7yxy+mPM+vmAu/3fmCExvlRFOKoh1mHuUMWw6phWPECxZyL/nFXL10fvea6g9m2rcrTOwWTL3PAPbzszOVEKONBzNJdx07o/7bq33kPnVAty5kwk70jCbFAVpzr0ez2E1t9Zm1FoTNjRhraO9ksDQGh1dZ+gftzE0WM2KeLsFq/Q0EkIIsQdylxAiSilF7zQnCY5IXlVbHGyb9gDbpvyZwZYKhtprWeLO5POUs6kecTXx1UvI+OFJAGpbAjR5g7EMX+wHtz9EcY17h+RReOt3DPvwLP6f9UlM6UWUznyOJKdTPkwLIURUUWYCY3un8OX6GloKjyNkclBY8REXT+pNUWYCluathJPyYx3mHjn6TMQwWTk3vZT/9/E63l9RflDH21DVQl9VCYA1c/+TUcHkvpgaindY5qsuxtG0iZb86QDkpcbt971IKYXFbMJuMeOwmomzmVt7FiU6rCTHWUlx2khPsJOZaCfFaZP7nRBCiL2SHkhCtKGUojDNSWm9B5cvBEpRP/RS6odeiqE1788r5v0VFUxzZvBIYSnZSx6kpWAG/rRBbKnzkBRnITvJITN2dWH17gDljV50tL6oKeAi5+u7SNvwOlU6hSVH3I9tzAWgTORIwVAhhNjB2Ufkc/vbK9ncoijXYzjV8i0lw7Pw+bzYPVX4k7vWDGw7M9nj8WaNZnp4A2N7p3Djq8swNBwzKJNaVwAAh9WEI5p4sZoV28tRax2pH9Q20bKx2sUQcwXB+F5Y7fs/M6uRWoRt67zW125/COeWLwBoKTiGtAQbyXFdc0igEEKInke+ahBiJyaTok+6kxTnjh/YTErx86OKuHRyIV9trOWG5ksIWRMo+PLXYER6HzV7Q2ysdlHe6CUUNto7vIgRrTVlDR62NfyYPLK6yil6/2ySN7zFE6FTeWXC29jGXgQqMjVygl1y7EII0daskbnYLCZ+/9YPvOmfSBpNpFQvor6iBKUNSOnaQ9gAQgWTcdb+wJPnD2F0fjK/enUpzy0oweUL4fKFqG0JUNbgZWO1izUVLayNPtZVRv7dUufBHwrjC4b5cGUFg63VhFP3r/7RdjqtCKu7koDXBUCLL0Ti1i/wJ/bGlN6PnD3UPRJCCCEONUkgCdEOpSL1BnaeoUUpxblHFHDT8QNZVG3ijtDPiKtbSdayx1q30RrqXAHWVbVQ0+JH6/2bSld0vEDIYFONmwb3j8MM42qW0++dU1GNW7gicDPfFP2SGSOLWtenSe0jIYTYRXKcleOHZtPsC+EYciJhawIpm97DX1sCgCm1a/dAAjAVTkXpEE0bF3LbSUMYnpvM3+asZ+7qbaD3/uVPkzfIhioXD326nq31HopM5RhpB1hLKTpzW7BmIwAtrhYSKhbiKjiGXilxB13kWwghhOhInZZAUkqlKaU+VUptiP6buodtzUqppUqp9zsrHiEORK9kB7kpO377pxQcPzSb+88ayRw9kXeNI8lc+ncctT/ssJ1hQGWTj/VVLpo8Uh8pVpo8QTZWu3aYaS1p8wf0ff8c6vwmTvXehXnA8Vx3TP/W2WYSHRZSnZJAEkKI9lw9rYgThmZz9XHDaC48geSSD7E1Rur4mNMKYxzd3tmKJqGVibjyRTisZv40PZlHU17lqgXT6PvcKPI/uYr0lU/hqF0JRrjdY9S2+Hl+YQknFFqwBVtQ6QfWA8kcTSAZtRvxh8JYtn6DKeTFlX+09IIVQgjR5XTmnek24DOt9f1Kqduir2/dzbY3AmuApE6MR4gDkp5gx2mL/K9iMSssJoVSinibhYfOG8WjH17LhKZVJH10LcaJ/yCQOWKH/QMhgy31HpxuM9lJDvlAeAgYhqbeE6DOFdihUDZGmKylj5C99GGWMojrwjdx/rFjmTE4G4i0b06ygxRJHgkhxG6NzE/hyUvH0ewLUt/vNFI3vkXqulfQKKypXX8Im9WZgjdjBElbPsPqriR1w5uMABYmHENls59JW5aSv+VjADQKbXFgmB0YFgeGNZ7GAWfzaOU0DK25cpiGKjBlDjywWLIiiSddV0yzN0Ri2VwMkw3dd1rrlxpCCCFEV9GZf8meDkyPPn8emEs7CSSlVD5wCnAvcFMnxiPEAYuz7VoUOzfFgcsf4vazpvCfj27jmsq7yH7nFOqyJtM85he48o+OdFeK8vjDbK5xY7OYSI23kioznhy0qmYfTd4gFpPCajZhs5gwtKbeHcDYaRSCxVNN3he/JKliIW+Gj+JfSb/kDyeOID81MjVyaryVnOQ4zDJcQAgh9kmCzcLWvCMJ2VNw1v4QKSRtte99xy4glD+JxKX/wt64gbohP6F25NUkJ+SxraKZn84rxlVdyqkpxZyW5ybbCaaQDxX2YWspo9d3f+FO4xmOLrqe3GDkHmLNGnBAcVicKYTiMlANxbT4guRunYs7ZyLxCfKdqhBCiK6nMxNI2VrrCgCtdYVSKms32z0M/BZI3NPBlFI/B34O0Lt31x9fLw5/FrOJvJQ4ttR7OGHWBfxn9QRcC5/iJ1Uf0ffjS/GmDqJ67E009zlxh0RSIGRQ1eSnutlPosNCeoJdeiUdgCZvkOpmPwCR/7Y/zAAgfts8cj/7JQRauCX4c7xDL+C+qUXYLCZMJuid5iTRIbPcCCHE/jCZFInx8TT3OYm0da8QSsynu/wmDU28lnJbNk39TifkzGxdPjQniQfOHcVX63N5/utcnlzlZ3JROpdP6UNuShyG1rz48gv83PsUP9l6F+HKeLTJiin1wIfuBZP7YmooJlhXgqNpI/WDLyLNIZ8LhBBCdD0HdXdSSs0BerWz6vZ93H8WUK21XqKUmr6nbbXWTwJPAowbN06qEosuIdlpJdlrpckbZOqwftQV3s2vPj+fnLKPuLH5Q/p8djUt+cewbco9BJN2/HCpdWTWtmZvCIfVRFq8jVSnba8FM33BMCalsFl6bu8lXzBMWYNnr9uZAi7Slz1O1op/sMnI5XbrHZw681hGF6QAYLeaKEx3Yrfs2sNMCCHE3iXFWajvdxpp617BSO76w9e2i0svoGzElT++tpnISLATMjTN3iDHDM5icr903llWzhtLyrju5e85ZUQOGQl23mjoR5/jXsPJXLKXPEAwbRAO84F/pA6nFmEv/YKELXMB8BQeQ65V7ktCCCG6noNKIGmtj9vdOqVUlVIqJ9r7KAeobmezqcBpSqmTAQeQpJT6j9b6JwcTlxCH0vahbGFDk55g5/enjuKzNTmcOv8ozjP+xy3lbzDwzeOoGX09NSOvQZt37d7vCxqUN/qobPbRK8lBekL7QwACIYPNtW5SnTZ6JffMqX3DhmZLvWeXIWptmfxNpK16ltQVT+MINfF6aBpz+t7Mr6cPb+3tleiwUJDmlCFrQghxEBIdVspyJuHJGEkof0qsw9lnDqsZsynyZUxWkp2kNr1QMxLshA1Niy/I1UcXceaYXJ6eX8J7K8oxNAzplci0Qb1oUBfS2P9M0p1mcg4iFp1WhHXNf0ku+YBAQgH27EEHf4FCCCFEJ1CdNcW4UuqvQF2bItppWuvf7mH76cDNWutZezv2uHHj9OLFizssViEOVqMnwNZ67w7L6t0BXvi6hJVr13KP4yVm8jX+xN7UjriKxgHnYFjjd3u8tAQbucmOHQpoBsMGxTVuAiEDs0kxJCexRxbYLK1z0+wNgdakbHgDe9NmwrYEDGvkYW3YQOqq57CH3XwaHssr9nOZeNRMpvTLaD1GZqK9xybghBCio22udePyhchLjSMtvvtMQuALhnHsR0+fNRXNPL+whLPG5uO0mdn+ETo3Zfdf/OyLlu9fJ/HdSG+ouiGXYJr1EKnd6H0UQghxeFFKLdFaj2tvXWcOsL4feE0p9TNgC3BuNJhc4Cmt9cmdeG4hDqkUpw1f0KDO7W/tGZMWb+NXxw1kw4gcHp7fh/9Uzef37jcZsvAP9Fr8V+oHnk/dsMsIJu5a06s+OntY72gPmVA40vNo+4xiYUPT7A2R7Owu1SY6RnWzL5I8AtJXPUvuN3ejlQmlf+yOZKD4KDyet+MvYNT4afxyQGZrLyOLWZGfGif1joQQogMlOSy4fCGs5u71pcb+JI8AhuQkcf/ZI4HIlzqVTT4aPUHsBznczJzRv/V5S/508qT+kRBCiC6q03ogdSbpgSS6Kq01zb4Qzd4gTd5g67eTWmvmb6zl2YUl5LtWckvKF0zyzUOhaepzEjWjrsWXMWKX49mtJgpSnWxr9OAN7DhmK95upigz4VBcVsxprSlv8lHvCgCQuOUzCj/9Gc29j2P11Mf5+IctzP1hE/hbKMhK55jxoxlXmLpDD62kOAt5KXFYZOY7IYToUMGwwdqKFgb2SuhxNeXc/hB2i+mg7i0BTzO2/1eAYbKx6YqVDMjP7sAIhRBCiP0Tqx5IQvQ4SimS46wkx1nJMzSVzT7qXAGUUhw1IJMJfdN4e2k2P10yiEzjHO7JWci0svdI2fwBLXnTqBl1He6cSa2ztvmDBhurXTucw+RvwhT24yYLfyh82H9Y317zyOWL9Dxy1K2h4IvrcacM4f643zD7xe/xBsOMKyzgnCPyGZabvMP+SkFO8sENLxBCCLF7VrMJp92MrQcm6OM7YBZVmzOJYHwvfMn9iU9I6oCohBBCiM4hPZCE6GRuf4iyBm/r8DOAOpef578u4Yt1NfRPCvNQ3yUMKf0PVl8trtwpbJnxT8KO1F2OZW0upeiD88FkZt25X5GRHEdOctyhvJxDyhcMU1rnaX3vLJ5qimafhj8Q4LTAnygNJHPUgAzOOSKfvhk79sZSClLjbWQl2rH2wD9qhBDiUGr0BEhxSt2eA7Vl+Vy8llRy+g3doaC3EEIIcajtqQeSJJCEOASMNr2R2lq5rYm/zVlPrcvPRWOzuDphPnmL7yOQWEDJif8hmJDbuu325JHFW4PJCFJywjN4+hy/T8W0tY7UTPIGwwRCBoFwmEBI0yvZ0SULnnoDYVp8QWpcP9aUCvvdZL51NmnuTZzjv5OEPkdwyaRCCtN3LUae4rSSlWQ/7HtnCSFEV6G17pETO3SU0jo3Lb4QQ3OSMMnsoEIIIWJIEkhCdBG+YJjqZj9N3mDrMrc/xL++2sQX62oYkJXA74fWceTiGwhZE1g05Sn8qQPobaqm34cXYAq6KTnxRQo/uQJvxghKZz5HQVrcHr/1dftDlDd68QXbn/c+O9lOVuKhnZFMa03I0IQNjaEj/4bCGpc/hMsfIhTe8fdSqHo9yR9cRZ9QCfcl3c7Aoy9gcK+kyHDBaCHx7X+32Mym/S6MKoQQQsRSRZMXTyBMvx5S21AIIUTXJQkkIboYXzBMrctPo+fHQtvzN9by+BcbcflDDFUlPG/7CxbC3BG8gj/GvUqK2c/mU17Flz6M7MUPkLns76w7fwHWjMJ2P3C2nSFmbzISbR0+FM4wNIGwEXmEIg9/9N9g2GBff/WEf3iTAYt+T0Cb+XLonymaciZKKRIdFgrTnfKNtxBCiG6vzuUnbGiykg7tFzpCCCHEzqSIthBdjMNqJj/VSVaiQY3LT4M7wJH9MxiWm8Tq8mY0g/nYO5xTl1/L4+pRGkPx/D7lfs5LHowdqB98IZnLHyNt3StUJd6CLxjGYTUTDBu4o714mrzB1uFfe1PbEiBsaPJS4loTMuFoD6Fg+MfETyBkEDIMLCYTZrPCalKYTArD0AQNTShsEAxH9tm5F9H+UmE/ts/uYOCW/7KMgWyZ8Tj9+g0CIM5mpneaJI+EEEIcHmwWE2YZuiaEEKKLkwSSEDFks5jIS4kjI8FGdbMfpWBq/4zo2gzK+71D6PuHeNcyk9cXW1j5zir+MGsoCQl5tOQfQ+q6V6ka+yvKGjyEDXYo1L3bczaXkLruNVI2voUnayxlRz+EtjhocAdp8YUwtN6HxFP4YC+9XSrkI75yEZbiT0ks+YSUQCUvW04n8/R76ZsamZnGYTXRNyNeakQIIYQ4bMRZzZJAEkII0eXJEDYhuhBfMExZgxdvYNcEzbwNNTz06XoK0uK45/ThFNTMo88nP6X02H/S3PeUPR/YCJFc/D5p614loWIhWpnwZI/DWfkd3qwxlBz/NOG49E66qh3jsLorsLWUYfFUYfE3YPY1YLjrMBpKyaz9Fpv24dNWFhjDWZB6BsefdgkJjkiu22pR9MtMkFnVhBBCCCGEEKITSA0kIboRw9CU1Llx+3dNIi0va+T/PlyD2aQ4cUgm95T+hHBKHzaf/Mpuj+eoXkba5zeT7lpPrTWXFRmz2NL7TBzp+Qys/5JR3/2GkLMXJSc+TyC5aP9i1ZHi1yEjMnQtFAxgdlVibdmKzVWGw70Nh7sMp2cbTs82EvzVmNrpvdSkndToFL7Ww9iYPAVb/+mMLsqhIPXHIXVOu5mCVCc2iySPhBBCCCGEEKIzSAJJiG6mvSSSxazomxFPSZ2bhz5Zz5w1VVxrfoebLf/lf9M/oFfR8B26vyt/C3zxJ4aW/ZdqncJf1U/5KDweT3DH/+fHqA08ZXsAE3CH6UZqSSEBD/F4SMRFNvXk6mryqCaXGhK1i2YSaNTxNOp4WogjnWbyVQ05qh6r+jFmQyuqSGWrzqRMZ1KmMygni0ZbL/yOXlgT03Emp5OeFE+vJAfDc5Nbexu1XoeC7CQHmYn2znmzhRBCCCGEEEIAkkASolsyDE1pvQeXL4TVEkke2S0/Tk+/YGMNH329nLs2nsdz4Zn8xbiEXskORia2MM20ghlVz5Jh1POW+URqJvyWyUOLMJsUbn+IWpefWleAZl8Qly+ErbmES4tvJitY1m4szaYU6qy9qLP2wmtOIt5w4TRcxBstxBkuvJYUmh05NDvycMfl4o7Lw+vMxR+fi9nqwGJWJMVZSY2zEW8373Px6zibmfzUOBxW8943FkIIIYQQQghxUCSBJEQ3pbWmvMlHZoJ9l6FbTZ4gW+o95H56DfHb5rM84Sj6tHxPdrgCgA2qD9+PuItB42a0W5gz3m7GH/pxtjSzr5HErZ9hWOII2xIxbEmEbUkEndloq7PzLzbKbFIkOiwkOawkxVlkpjUhhBBCCCGEOET2lECSWdiE6MKUUuSlxLW7LinOgsWsaBz+U9JLP+QI73zc+ZMoz7malpzJ+FMHMtS0a88ds0mRk+wgNd5GIGSwpd6NN2AQdqTQOODszr4kIDIszWxSWM0Ks8mExaSwWUwk2C3E2+XXkhBCCCGEEEJ0NfKXmhDdlFKKtHgb1TkTWXPRYkKOdGiTMGqv306K00pOsgNLdBYzm8VEUUYC2xq9NHqCHRabyQR2iwmb2YzNYsJmMWExK6ym6L8yi5oQQgghhBBCdCuSQBKiG0t12qhp8RNyZu1xO6tFkZsSR5LDuss6k0lRkObEbvVR1eRvXd62l5DFZMJqMUV6DClFWGsMIzILm6E1VrMJmzmSKLJbTK0JKiGEEEIIIYQQhwdJIAnRjdksJhIdFpq9od1ukxpvJSc5rt06SG1lJTpIddpQRBJHUntICCGEEEIIIcR2kkASoptLi7e1m0CyWiL1kxLb6XW0OzK0TAghhBBCCCFEeySBJEQ3l+iwYrOYCIQMzCYVLURtJsVp22uvIyGEEEIIIYQQYl9IAkmIw0BBWhwmpXBYd511TQghhBBCCCGEOFidNl5FKZWmlPpUKbUh+m/qbrZLUUq9oZRaq5Rao5Sa3FkxCXG4ctoskjwSQgghhBBCCNFpOrPgyW3AZ1rrAcBn0dfteQT4n9Z6MDAKWNOJMQkhhBBCCCGEEEKI/dSZCaTTgeejz58Hzth5A6VUEjANeBpAax3QWjd2YkxCCCGEEEIIIYQQYj91ZgIpW2tdARD9N6udbYqAGuBZpdRSpdRTSqn49g6mlPq5UmqxUmpxTU1N50UthBBCCCGEEEIIIXZwUAkkpdQcpdTKdh6n7+MhLMBY4J9a6zGAm90MddNaP6m1Hqe1HpeZmXkwYQshhBBCCCGEEEKI/XBQs7BprY/b3TqlVJVSKkdrXaGUygGq29msDCjTWi+Kvn6D3ddKEkIIIYQQQgghhBAx0JlD2N4FLos+vwx4Z+cNtNaVwFal1KDoomOB1Z0YkxBCCCGEEEIIIYTYT52ZQLofOF4ptQE4PvoapVSuUurDNtvdALyklFoBjAb+rxNjEkIIIYQQQgghhBD76aCGsO2J1rqOSI+inZeXAye3eb0MGNdZcQghhBBCCCGEEEKIg9OZPZCEEEIIIYQQQgghxGFAaa1jHcN+U0rVAKVABlAb43DEvpG26h6knboPaavuQ9qq+5C26h6knboPaavuQ9qq+5C26j66a1sVaq0z21vRLRNI2ymlFmutZfhbNyBt1T1IO3Uf0lbdh7RV9yFt1T1IO3Uf0lbdh7RV9yFt1X0cjm0lQ9iEEEIIIYQQQgghxB5JAkkIIYQQQgghhBBC7FF3TyA9GesAxD6TtuoepJ26D2mr7kPaqvuQtuoepJ26D2mr7kPaqvuQtuo+Dru26tY1kIQQQgghhBBCCCFE5+vuPZCEEEIIIYQQQgghRCeTBJIQQgghhBBCCCGE2KNDkkBSSp2olFqnlNqolLptp3U3RNetUkr9v93sf250vaGUGtdmuU0p9axS6gel1HKl1PTd7H999NxaKZXRZnmyUuq96L6rlFI/7Zgr7r46oK3+qpRaq5RaoZR6WymV0mbd76LHXaeUmrmb/fsqpRYppTYopf6rlLJFlyul1KPR/VcopcZ24GV3S121raLrpiullkXP/2UHXXK31QXaane/Ay+OHnOFUmqhUmpUB11yt9SF20nuVTvprLZSSqUrpb5QSrmUUo/t4fxyr9pHXbWtouvkXtVGF2gruVftoy7cVnK/aqMT2+l4pdQSFfkbeIlSasZu9pd71T7qqm0VXde17lVa6059AGZgE1AE2IDlwNDoumOAOYA9+jprN8cYAgwC5gLj2iy/Dnh2+77AEsDUzv5jgD5ACZDRZvnvgb9En2cC9YCts9+TrvrooLY6AbBEn/+lzfs7NHo8O9A3eh5zO/u/BlwQff4E8Ivo85OBjwAFTAIWxfr9krbabVulAKuB3ns6f095dJG22t3vwClAavT5ST35/6su3k5yrzp0bRUPHAlcAzy2hxjkXtX92yoFuVd1tbaSe1X3byu5Xx2adhoD5EafDwe27WZ/uVd1/7ZKoYvdqw5FD6QJwEatdbHWOgC8CpweXfcL4H6ttR9Aa13d3gG01mu01uvaWTUU+KzNvo3AuJ030lov1VqXtHdoIFEppYAEIr/kQvt+aYedjmirT7TW29/Db4D86PPTgVe11n6t9WZgY/R8raLtMAN4I7roeeCMNvu/oCO+AVKUUjkHdbXdW1duq4uAt7TWW/Z0/h4kpm0V3b/d34Fa64Va64Z2jtsTddl2Qu5VO+u0ttJau7XW8wHf7k4u96r90pXbSu5VO4ppW0W3k3vVvumybYXcr9rqzHZaqrUujy5fBTiUUva2+8q9ar905bbqcveqQ5FAygO2tnldFl0GMBA4Ktpd60ul1Pj9PPZy4HSllEUp1Rc4AijYj/0fI9K7qRz4AbhRa23sZwyHk45uqyuIZLf3duzt0oHGNv/ztd1mX/bvSbpyWw0EUpVSc6NdNS/dpys6fMW6rfbVz9octyfqyu0k96oddWZb7Qu5V+27rtxWcq/aUazbal/19HsVdO22kvvVjw5VO50NLN2e4GhD7lX7riu3VZe7V1kOwTlUO8t0m/OnEuk6Nx54TSlVpLXW7ezTnmeI/JJaDJQCC9m/LPdMYBmRjF8/4FOl1DytdfN+HONw0mFtpZS6nUhbvLQPx96X8+/L/j1JV24rC5Fk7rFAHPC1UuobrfX63VzL4S7WbbX3AJU6hsiH8iP3d9/DSFduJ7lX7agz2+pgzy/3qh115baSe9WOYt1Wew9Q7lXbdeW2kvvVjzq9nZRSw4gMlzphP88v96oddeW26nL3qkPRA6mMHXsF5RPJSm9f91a0+9y3gAFkqEhh7GVKqQ/3dGCtdUhr/Wut9Wit9elExghu2I/Yftrm/BuBzcDg/dj/cNMhbaWUugyYBVzc5n+uPR17u1oiXSgt7WyzL/v3JF29rf4X7QZdC3wFjDqIa+3uYt1We6SUGgk8BZyuta7bn30PM125neRetaPObKt9IfeqfdfV20ruVT+KdVvtkdyrdtCV20ruVz/q1HZSSuUDbwOXaq03tXN+uVftu67eVl3rXqU7vyiVBSgmUjh0e1GqYdF11wD3RJ8PJNJ1TO3hWHPZsYi2E4iPPj8e+GovsZSwY6G3fwJ3R59nA9varu9pj45oK+BEIoW+MndaPowdi8gW034R2dfZsYDYtdHnp7BjsbdvY/1+SVvttq2GEKlNZon+P7oSGB7r96wnt1Wb7Xf+HdibSD2eKbF+n2L96OLtJPeqQ9RWbdZfzp4LyMq9qvu3ldyrulhbtdlu59+Bcq/qPm0l96tD0E5EOk0sB87eSwxyr+r+bdXl7lWHqlFOBtYTqW5+e5vlNuA/0Tfie2DGbvY/k0j2zQ9UAR9Hl/cB1gFriFRHL9zN/r+M7h8iks17Kro8F/iEyBjdlcBPYv0DHOtHB7TVxuj/WMuijyfarLs9etx1wEm72b8I+DZ6nNf5seK9Ah6P7v8DbRKJPfXRVdsquu6W6C/RlcCvYv1exfrRBdpqd78DnwIa2hx3cazfK2knuVd1gbYqIVL41RVtj6Ht7C/3qm7eVtF1cq/qWm0l96ru31ZyvzoE7QTcAbjbLF9GO7Nz7e73H3Kv6jZtFV3Xpe5VKhqUEEIIIYQQQgghhBDtOhQ1kIQQQgghhBBCCCFENyYJJCGEEEIIIYQQQgixR5JAEkIIIYQQQgghhBB7JAkkIYQQQgghhBBCCLFHkkASQgghhBBCCCGEEHskCSQhhBBCCCGEEEIIsUeSQBJCCCGEEEIIIYQQeyQJJCGEEEIIIYQQQgixR5JAEkIIIYQQQgghhBB7JAkkIYQQQgghhBBCCLFHkkASQgghhBBCCCGEEHskCSQhhBBCCCGEEEIIsUeSQBJCCCGEEEIIIYQQeyQJJCGEEEIIIYQQQgixR5JAEkIIIYQQQgghhBB7JAkkIYQQogdRSvVRSmmllGUftr1cKTX/EMU1VSm1QSnlUkqdcSjOKTpG9Oepf6zjEEIIIUTnkgSSEEII0UUppUqUUgGlVMZOy5dF/2jvE6PQ2iaiXNFHiVLqtoM45D3AY1rrBK317A4Ks0foyERftB2P64hjtXPsfU5e7scxtVLK3ebn0KWU+m0HHHfVTscMKaXe64iYhRBCiO6qw27gQgghhOgUm4ELgb8DKKVGAHExjWhHKVrrkFJqMvCZUmqZ1vp/+7qzUsqitQ4BhcCqAwmgzTFEzzRKa72xIw+otR62/blSSgGbgNc78hxCCCFEdyM9kIQQQoiu7UXg0javLwNeaLuBUipZKfWCUqpGKVWqlLpDKWWKrjMrpR5QStUqpYqBU9rZ92mlVIVSaptS6s9KKfP+Bqm1/ppIAmh49LhXKKXWKKUalFIfK6UK25xTK6WuU0ptADYopTYBRcB70d4edqVUrlLqXaVUvVJqo1Lqqjb7362UekMp9R+lVDNwuVJqbjT2hdFjvKeUSldKvaSUalZKfde2x5ZS6hGl1NbouiVKqaN2Ov5r0fe0JdobZVyb9QVKqbei73edUuqxNut2e907U0qdFj12YzT+IW3WlSilblZKrVBKNSml/quUcrRzjCHAE8Dk6HU3Rpfbo+2+RSlVpZR6QikVF12XoZR6P3reeqXUPKWUSSn1ItC7TTu025NHKXVL9OelXCl1xU7rTlFKLY2+r1uVUne3Wf1V9N/G6PEnK6X6KaU+j76PtdH2Stnde7Y/lFIfKqUebPP6v0qpZ6LPL1dKLVBK/T36/q5VSh27m0NNA7KANzsiLiGEEKK7kgSSEEII0bV9AyQppYZEEzvnA//ZaZu/A8lEkjBHE0k4/TS67ipgFjAGGAecs9O+zwMhoH90mxOAK/cnQBUxFRgGLFWRGka/B84CMoF5wCs77XYGMBEYqrXuB2wBTo0OYfNHty8DcqMx/99Of+CfDrwBpAAvRZddAFwC5AH9gK+BZ4E0YA1wV5v9vwNGR9e9DLy+U4LmNODV6PHfBR6LXqsZeB8oBfpEz/VqdN2+XPf292xgdN2vott+SCRxY2uz2XnAiUBfYCRw+c7H0VqvAa4Bvo6+dynRVX8BBkavsX80zjuj635D5L3NBLKjMWut9SXs2A7/r524TwRuBo4HBgA7D3dzE/n5SyGSrPyF+rGm1bTovynR438NKOA+Iu08BCgA7m5zvn8opf6xcxz76ArgEqXUDKXUxcB44MY26ycCxUAGkZ+Nt5RSae0c5zLgDa21+wDjEEIIIQ4LkkASQgghur7tvZCOB9YC27avaJNU+p3WukVrXQI8SCSRApEkxMNa661a63oif6xv3zcbOAn4ldbarbWuBv5GJBGzr2qBeuAp4Dat9WfA1cB9Wus10aFl/weM3qk3zn1a63qttXfnAyqlCoAjgVu11j6t9bLo8S9ps9nXWuvZWmujzTGe1Vpv0lo3AR8Bm7TWc6IxvE4kQQaA1vo/Wus6rXVIa/0gYAcGtTn+fK31h1rrMJH3f1R0+QQiyY5bou+ZT2u9vf7Qvlz3ducDH2itP9VaB4EHiAxNnNJmm0e11uXRdnuPSDJor5RSikji8NfR97glGsv2dg0COUCh1jqotZ6ntdb7cmwiP0/Paq1XRhMqd7ddqbWeq7X+IdouK4gkyY7e3cG01huj74Ffa10DPNR2e631tVrra/cS0/fR3lTbHzOj+1YSSa49DzwCXBp9L7arJvL/RlBr/V9gHbv20HMSSWA+t5cYhBBCiMOe1EASQgghur4XiQz/6ctOw9eI9J6wEekRs10pkR4nEEl2bN1p3XaFgBWoiOQcgMiXS22335uMduoPFQKPtB0+RKSnSV6b8+/pHLlA/U5/7JcS6UG1XXv7V7V57m3ndUJrMEr9hkhPq1xAA0lE3svtKts89wAOFSn+XACU7qbm0r5c93a5bZdprQ2l1FZ+bLf2Ysht55ztyQScwJI27aqA7UMT/0ok8fNJdP2TWuv79/HYucCSNq93uC6l1ETgfiJDGW1EEnO7rR2klMoCHgWOAhKJ/Pw17GMs243dQw2k94n0HlvXJtG33badEmel7Poen0UkQfrlfsYkhBBCHHakB5IQQgjRxWmtS4kU0z4ZeGun1bVEepS07eXSmx97KVUQSXq0XbfdVsBPJAmUEn0ktS0gfIC2Ale3OWaK1jpOa72w7WXtYf9yIE0plbhT3NvavN7XHjO7iNY7upVIb5rU6LCvJiJJlr3ZCvRW7c8kti/XvV05bdos2muogB2vcV/t/F7UEkmYDWsTR7LWOgEg2lPtN1rrIuBU4KY2wwP39r7u6ecJIsMB3wUKtNbJROozbX9f2zv2fdHlI7XWScBP2Ld22Ff3Ehm+mKOUunCndXmqTYaNyLWU77TNZcAL+9FDSwghhDhsSQJJCCGE6B5+BszYuQ5LdIjVa8C9SqnE6HCpm/ixTtJrwC+VUvlKqVTgtjb7VgCfAA8qpZKihZT7KaV2O+RoHz0B/E4pNQxaC3Wfu687a623AguB+5RSDqXUSCLX/9Ke99xniUTqPtUAFqXUnUR6IO2Lb4kkUe5XSsVH45saXbc/1/0acIpS6lillJVIXSI/keveX1VA/vb6SVprA/g38LdoDx+UUnnbh3YppWYppfpHkyfNQDj62H6soj2c6zUiRcuHRod33bXT+kQivcd8SqkJwEVt1tUAxk7HTwRcRApr5wG37Oe175ZSahqRWmCXRh9/j55juywi/29Yo+00hEgtqu375wPHEBkCJ4QQQvR4kkASQgghuoFobZ/Fu1l9A5HixcXAfCK9QJ6Jrvs38DGwHPieXXswXUpkqNFqIkOH3iBSH+dgYn2bSBHnV1VklrSVRGot7Y8LiRSpLgfeBu7SWn96MHG18TGRGknriQxb8rGPw/aiCbtTiRSm3kKkGPX50XX7fN1a63VEetv8nUiPoVOJFK8OHMD1fE5kBrxKpVRtdNmtwEbgm2gsc/ixxtOA6GsXkULj/9Baz42uuw+4I1pL6OZ24v4IeDh6zo3Rf9u6FrhHKdVCpGj3a2329RDpEbQgevxJwB+BsUR6gH3ATj+fKjJ73BN7uf7l0Vndtj8eVkolERnueb3Welt0+NrTwLNteh0tir4XtdG4ztFa17U57iVEam1t2sv5hRBCiB5BSY9cIYQQQgjRkyilLgeu1FofGetYhBBCiO5CeiAJIYQQQgghhBBCiD2SBJIQQgghhBBCCCGE2CMZwiaEEEIIIYQQQggh9kh6IAkhhBBCCCGEEEKIPbJ0xEGUUs8As4BqrfXwdtYr4BHgZMADXK61/j667sToOjPwlNb6/r2dLyMjQ/fp06cjQhdCCCGEEEIIIYQQwJIlS2q11pntreuQBBLwHPAYkelS23MSkWlSBwATgX8CE5VSZuBx4Hgi0+B+p5R6V2u9ek8n69OnD4sX724mYyGEEEIIIYQQQgixv5RSpbtb1yFD2LTWXwH1e9jkdOAFHfENkKKUygEmABu11sVa6wDwanRbIYQQQgghhBBCCNFFHKoaSHnA1javy6LLdrd8F0qpnyulFiulFtfU1HRaoEIIIYQQQgghhBBiR4cqgaTaWab3sHzXhVo/qbUep7Uel5nZ7nA8IYQQQgghhBBCCNEJOqoG0t6UAQVtXucD5YBtN8v3WzAYpKysDJ/Pd8BBChELDoeD/Px8rFZrrEMRQgghhBBCCCHadagSSO8C1yulXiVSRLtJa12hlKoBBiil+gLbgAuAiw7kBGVlZSQmJtKnTx8ik74J0fVpramrq6OsrIy+ffvGOhwhhBBCCCGEEKJdHZJAUkq9AkwHMpRSZcBdgBVAa/0E8CFwMrAR8AA/ja4LKaWuBz4GzMAzWutVBxKDz+eT5JHodpRSpKenI3W9hBBCCCGEEEJ0ZR2SQNJaX7iX9Rq4bjfrPiSSYDpokjwS3ZH83AohhBBCCCGE6OoOVRFtIYQQQgghhBBCCNFNSQKpAymluOSSS1pfh0IhMjMzmTVrVgyj2ruEhIS9bnP33XfzwAMP7HGb2bNns3r16o4KSwghhBBCCCGEEF2EJJA6UHx8PCtXrsTr9QLw6aefkpeXF5NYQqHQIT+nJJCEEEIIIYQQ4uC4/CEaPYFYhyHELiSB1MFOOukkPvjgAwBeeeUVLrzwx/JQbrebK664gvHjxzNmzBjeeecdAEpKSjjqqKMYO3YsY8eOZeHChQBUVFQwbdo0Ro8ezfDhw5k3bx6wY4+hN954g8svvxyAyy+/nJtuuoljjjmGW2+9lU2bNnHiiSdyxBFHcNRRR7F27VoANm/ezOTJkxk/fjx/+MMfdnst9957L4MGDeK4445j3bp1rcv//e9/M378eEaNGsXZZ5+Nx+Nh4cKFvPvuu9xyyy2MHj2aTZs2tbudEEIIIYQQQoj2NfuCbK5x0+w99B0ChNibDimi3dX88b1VrC5v7tBjDs1N4q5Th+11uwsuuIB77rmHWbNmsWLFCq644orWxM+9997LjBkzeOaZZ2hsbGTChAkcd9xxZGVl8emnn+JwONiwYQMXXnghixcv5uWXX2bmzJncfvvthMPhfUrArF+/njlz5mA2mzn22GN54oknGDBgAIsWLeLaa6/l888/58Ybb+QXv/gFl156KY8//ni7x1myZAmvvvoqS5cuJRQKMXbsWI444ggAzjrrLK666ioA7rjjDp5++mluuOEGTjvtNGbNmsU555wDQEpKSrvbCSGEEEIIIYTYVaM7CEAgHI5xJELs6rBMIMXSyJEjKSkp4ZVXXuHkk0/eYd0nn3zCu+++21pLyOfzsWXLFnJzc7n++utZtmwZZrOZ9evXAzB+/HiuuOIKgsEgZ5xxBqNHj97r+c8991zMZjMul4uFCxdy7rnntq7z+/0ALFiwgDfffBOASy65hFtvvXWX48ybN48zzzwTp9MJwGmnnda6buXKldxxxx00NjbicrmYOXNmu7Hs63ZCCCGEEEII0dMZhqbZF0kg+YJGjKMRYleHZQJpX3oKdabTTjuNm2++mblz51JXV9e6XGvNm2++yaBBg3bY/u677yY7O5vly5djGAYOhwOAadOm8dVXX/HBBx9wySWXcMstt3DppZfuMO27z+fb4Vjx8fEAGIZBSkoKy5YtazfGfZk6fnfbXH755cyePZtRo0bx3HPPMXfu3IPaTgghhBBCCCF6umZfEK0jz7WGYNjAapaqM6LrkJ/GTnDFFVdw5513MmLEiB2Wz5w5k7///e/o6G+FpUuXAtDU1EROTg4mk4kXX3yRcLS7YmlpKVlZWVx11VX87Gc/4/vvvwcgOzubNWvWYBgGb7/9drsxJCUl0bdvX15//XUgkrxavnw5AFOnTuXVV18F4KWXXmp3/2nTpvH222/j9XppaWnhvffea13X0tJCTk4OwWBwh/0TExNpaWnZ63ZCCCGEEEIIISJqXX4aPQEaPMEdlvtD0gtJdC2SQOoE+fn53Hjjjbss/8Mf/kAwGGTkyJEMHz68tYD1tddey/PPP8+kSZNYv359ay+iuXPnMnr0aMaMGcObb77Zesz777+fWbNmMWPGDHJycnYbx0svvcTTTz/NqFGjGDZsWGvR7kceeYTHH3+c8ePH09TU1O6+Y8eO5fzzz2f06NGcffbZHHXUUa3r/vSnPzFx4kSOP/54Bg8e3Lr8ggsu4K9//Stjxoxh06ZNu91OCCGEEEIIIURETYufrfVeqpp8XP/iNyz88iOSi98jEJRC2qJrUdt7w3Qn48aN04sXL95h2Zo1axgyZEiMIhLi4MjPrxBCCCGEiJUmbxA0JDutsQ6lx/EEQmyqdgPwj8/XcuPGnzHYtBWAunPfIn3YsbEMT/RASqklWutx7a2THkhCCCGEEEII0UMtKq7jrndWsbnWjWF0v84F3V2zN9LLaEVZI+G1HzHYtJV/hk6NrKxeE8PIhNiVJJCEEEIIIYQQogcqqXVz3cvfM3vZNrY1egl3w9Ep3V2TN0jY0Dz5VTGX278kEJfNS85L8RCHuW59rMMTYgeSQBJCCCGEEEKIHiYUNrjmP0sIu+q42vwe+d/di9742SE5t/R0ivAFw4Q8jYT/93tGNX7KZL2UhsEXcPzwPNYbuYSr1sU6RCF2YIl1AEIIIYQQQgghDq2n52+muLKeLzIeI8/1A2yF8Lx1MOj4Tj2vYWhq3X6yEh2dep7uwO0PkbTmvwwrf4kjbKBRNAw8n/HBNDZ+l0f/ptX4gmEcVnOHn9swNL5QGKdNUgJi38lPixBCCCGEEEL0IM3eAP+Yu4lHk18mz/UDt6ibuChuESP99Z1+7lq3H39QpqcHaPGFCC1/nTVGb5pG/JT81DiCifnkGppPyCch8BV1zfU40jM79Lxaa7bUe4izmSWBJPaLDGETQgghhBBCiB7kkTkbGe7/nhP9H1M96lpWp86gLmRH+Vs69bxhQ1PT4seQWksAvPS/r+gfWEtZ/iziJ/+MhsEXAWA2KVyJ/QDwV+x/Ie3wXoYIVjX7afGFCIQkkSf2jySQOlBVVRUXXXQRRUVFHHHEEUyePJm3336708+7ePFifvnLX3bIsaZPn86gQYMYNWoUU6dOZd26rjfutiNjfO6557j++usBeOKJJ3jhhRd2u21JSQkvv/xy6+uOfN+FEEIIIYToLGUNHkLhSLJgW6OXlxZt5r74/xJIKKB6zK/IT42jNmCFgKtT43AHQhgGaG9jp56nO6ho9GJdOxuA/CMval0ebzdTkBaHOXsQAEbVmv2uGdXsDe52ncsfoqbFD4BfEkhiP0kCqYNorTnjjDOYNm0axcXFLFmyhFdffZWysrJOP/e4ceN49NFHO+x4L730EsuXL+eyyy7jlltu2WV9OBzusHMdqM6I8ZprruHSSy/d7fqdE0gd/b4LIYQQQgjR0cKGpsEdZEO1C38ozP/731pOZx69g8VUjr8Vq8PJmN6pP/ZA6sTeQR5/mMTSTyh8ahhsW9Jp5+kO3l9RwSzT19SljiaU1Lt1eXaSgxSnjfy+g/FrK+HqdbT4Q/t17MbdJJCCYYOyBg8AiVs/J/v9SyEUOPCLED2OJJA6yOeff47NZuOaa65pXVZYWMgNN9wARJIPRx11FGPHjmXs2LEsXLgQgLlz5zJr1qzWfa6//nqee+45AG677TaGDh3KyJEjufnmmwF4/fXXGT58OKNGjWLatGm7HOPbb79lypQpjBkzhilTprT2znnuuec466yzOPHEExkwYAC//e1v93pN06ZNY+PGjQAkJCRw5513MnHiRL7++mseeughhg8fzvDhw3n44Ydb93nhhRcYOXIko0aN4pJLLgGgpqaGs88+m/HjxzN+/HgWLFgAwJdffsno0aMZPXo0Y8aMoaWlhYqKCqZNm8bo0aMZPnw48+bNO+AY//Of/zBhwgRGjx7N1Vdf3ZpUevbZZxk4cCBHH310aywAd999Nw888AAAGzdu5LjjjmPUqFGMHTuWTZs2cdtttzFv3jxGjx7N3/72tx3e9/r6es444wxGjhzJpEmTWLFiResxr7jiCqZPn05RUZEknIQQQggRc/5QmG2NXhrc8odjTxAyIr1MQmHNx6sqeWfZNn7j/ABPxgia+51KYbqTfpkJuHUcSoch5Ou0WKqqK8md/3sUGhq3dtp5uoPvVvzAUFMpgf4ntS5z2s3E2yM1iYbnp1Gsc6B2PS2+XRNCwfDuew/5gmF8wR2/UPeHwhTXuAmGNHE1y+k95xoSt3xGuKbrjTgRXdfhWTHro9ug8oeOPWavEXDS/btdvWrVKsaOHbvb9VlZWXz66ac4HA42bNjAhRdeyOLFi3e7fX19PW+//TZr165FKUVjYyMA99xzDx9//DF5eXmty9oaPHgwX331FRaLhTlz5vD73/+eN998E4Bly5axdOlS7HY7gwYN4oYbbqCgoGC3Mbz33nuMGDECALfbzfDhw7nnnntYsmQJzz77LIsWLUJrzcSJEzn66KOx2Wzce++9LFiwgIyMDOrrI0X4brzxRn79619z5JFHsmXLFmbOnMmaNWt44IEHePzxx5k6dSoulwuHw8GTTz7JzJkzuf322wmHw3g8nt3Gt6cY16xZw1/+8hcWLFiA1Wrl2muv5aWXXuL444/nrrvuYsmSJSQnJ3PMMccwZsyYXY578cUXc9ttt3HmmWfi8/kwDIP777+fBx54gPfffx+IJO62u+uuuxgzZgyzZ8/m888/59JLL2XZsmUArF27li+++IKWlhYGDRrEL37xC6xW6x6vSwghhBCio/mCYcoaPHgDkT88bckyC1ZPEApHehRprXnyy2KOcmwmK7CFsiF/JTs5DofVTFFmPF8RF9nB7wJrXIfH4QuG2PTybxilq6Pn6dx6S11ZcY2L1Ir5YIWWgmMoSIsjEDKIs/0429qIvGQ+03kc1byOMneAYFgTb4skmHzBMHXuAAOzE3c9eDiEpWY1rsQxrbO3hQ3N5tpI8sjesI7Cj3+KNtsg7CNUvR5zzohDdemimzs8E0hdwHXXXcf8+fOx2Wx89913BINBrr/+epYtW4bZbGb9+vV73D8pKQmHw8GVV17JKaec0trTZerUqVx++eWcd955nHXWWbvs19TUxGWXXcaGDRtQShEM/pitPvbYY0lOTgZg6NChlJaWtptAuvjii4mLi6NPnz78/e9/B8BsNnP22WcDMH/+fM4880zi4+MBOOuss5g3bx5KKc455xwyMjIASEtLA2DOnDmsXr269fjNzc20tLQwdepUbrrpJi6++GLOOuss8vPzGT9+PFdccQXBYJAzzjiD0aNHt/v+7C3Gzz77jCVLljB+/HgAvF4vWVlZLFq0iOnTp5OZGZnJ4Pzzz9+lLVpaWti2bRtnnnkmAA7H3j9czZ8/vzVRN2PGDOrq6mhqagLglFNOwW63Y7fbycrKoqqqivz8/L0eUwghhBDiYGitUUoB4A2E2VzrZkVZI69+t5XzjsgnOyk7xhGKQyHkaSSx9AvKSjdRX57DvQXfYTTE4Rkwi7wEGwAFqU68ansCqRkSOnbWL4A3vyvmHONL5lqnMj20oMcmkLY1ennr+20cZVqB15FFOGMwyXHW1v9Xt3PaLayMG8epga+prVmBK3MULl8IiNQv2mnzVuHV7zLgrZ9Sce4HMOxIAMobvQRDGkfdKgo/uIiWkGLJlKc4fv556JoNnXm54jBzeCaQ9tBTqLMMGzasNYEA8Pjjj1NbW8u4ceMA+Nvf/kZ2djbLly/HMIzWpITFYsEwfux+6PP5Wpd/++23fPbZZ7z66qs89thjfP755zzxxBMsWrSIDz74gNGjR7f2ctnuD3/4A8cccwxvv/02JSUlTJ8+vXWd3W5vfW42mwmF2h9L+9JLL7XGvZ3D4cBsjmSw9W7GRbf9kNKWYRh8/fXXxMXt+E3GbbfdximnnMKHH37IpEmTmDNnDtOmTeOrr77igw8+4JJLLuGWW25pty7RvsR42WWXcd999+2wzezZs9uNcefr2F/t7bP9PPv6vgshhBBCdJTtM11lJzkwDM3K8kb+/dVmvli9jXGmdfQJLCd5VQNc8gbYnLEOV3Qix/9uos+6d+gDfOBIIqkhTFPfU8hMz2j9vGqzmHAkpICPTimkrbVm0bxPuVgFecM7nunWBWh/C3v+VH742VrvodET5OsNVVxlXom34CRS4+27/fukMmcGwdJ/kLDpfbyZo3ZYpzUEQgY2y45VaYymbZgBxw8v4u4/CZc/RKMniNW1jYIPfkJdwMQF/tvJ25zM0fE56PqNnXW54jAkNZA6yIwZM/D5fPzzn/9sXdZ2+FVTUxM5OTmYTCZefPHF1no8hYWFrF69Gr/fT1NTE5999hkALpeLpqYmTj75ZB5++OHWRNGmTZuYOHEi99xzDxkZGWzduuPY4aamJvLy8gBaayl1tGnTpjF79mw8Hg9ut5u3336bo446imOPPZbXXnuNuro6gNYhbCeccAKPPfZY6/5tr2XEiBHceuutjBs3jrVr11JaWkpWVhZXXXUVP/vZz/j+++8PKMZjjz2WN954g+rq6tZYSktLmThxInPnzqWuro5gMMjrr7++y75JSUnk5+cze/ZsAPx+Px6Ph8TERFpa2v+mZNq0abz00ktAZGhbRkYGSUlJBxS7EEIIIbqGsKEpb/TGOox95g+FafEFcflDVDX7qGnx4wuGePGbUq56bjGj1z/CD86recV2L1Oa3se+dQE0df6ELyK2TM1b2Zowkln+P2OKS8YcctM85DxS4207bBefkBJ50gk9g+aur6GgeRkA88NDCJsdaH9zh5+nK6tu9tHoCdLsDWKULyUZF678aaQ4d1/aYua4wSwID8ex4d12i5u3VwdJeyJ/gyVtfJeSbVVUN/sxBd1kfXA5Qb+HX1rupFefoSwuacCX1BdTnSSQxL7rkASSUupEpdQ6pdRGpdRt7ay/RSm1LPpYqZQKK6XSoutKlFI/RNftvihQF6eUYvbs2Xz55Zf07duXCRMmcNlll/GXv/wFgGuvvZbnn3+eSZMmsX79+tbhXwUFBZx33nmMHDmSiy++uLUeT0tLC7NmzWLkyJEcffTR/O1vfwPglltuYcSIEQwfPpxp06YxatSOmejf/va3/O53v2Pq1KmdNlva2LFjufzyy5kwYQITJ07kyiuvZMyYMQwbNozbb7+do48+mlGjRnHTTTcB8Oijj7J48WJGjhzJ0KFDeeKJJwB4+OGHWwuCx8XFcdJJJzF37tzWotpvvvkmN9544wHFOHToUP785z9zwgknMHLkSI4//ngqKirIycnh7rvvZvLkyRx33HG7rVv14osv8uijjzJy5EimTJlCZWUlI0eOxGKxMGrUqNb22O7uu+9uvcbbbruN559//oDiFqIr2d8pY4UQ4nChtcbtD7G51k2Dp/sUmm7yBCmp9bC5xo1217Fq1Qou/Pci/vjuD/yf9SmutbyLr89x/F/SH7gvLjJBC8E915sU3Z9217LClYQpbwxlZ7/P5pnPE9dv2i7bmeKi9XT8HdsDqcEd4B9fbORI61qaEgfSSCIBczzaF5shbKGwgTdwYH8n1br8hA/g85EnEKK6JTL0bPHGbfzU/BEaRajP9NY6Re2Z2j+D7xOmk+KvwFq1bId1cTXLCXh2TcJpTwMahTnkIWXTbFRjCemvnUZy83r+6LiF6845mTPH5BEIG1RY8rE0FnfqzHvi8KIOZLjODgdQygysB44HyoDvgAu11qt3s/2pwK+11jOir0uAcVrr2n0957hx4/TOBajXrFnDkCFDDugahIg1+fkVXY3WmkZ3gNQE+943FkKIw8zGahfeQBiLu4Kcb/5E/HG3Ys0bGeuw9qq4xkVZvZc3vlrCb8uuJwk3Z5se5vbcJUzf9i+qxtxI9dibeOTzDVhLv+Sfxp/gio+h96RYhy46ke+eHF4OTCPt7Ifol5kAwKBeibsMfXrgpfe4ecNP4KynYOS5HXJuTyDEwo11/OKFb1jpvJqWwecyeflJfJPwW5L7jcdy3rMdcp79Uefy0+AJ0D+rnQLUexAMG6yvaqFPenzrTGn7IhAy2FzrJhAysDesxzn7p+SHt1I98hdw/N1kJe6+3mowbPDavBWc88WxWJXGnzaI2uE/w9Gwnswf/oV74k3En3TXDvv4XrkMVbEcbbLgaIzUN2rSTh5P+z3TT7mQpDgr6Qk2znx8Ib90fspFjf+Emzd2St2rw50/FKbJG9xjG3ZHSqklWutx7a3riBpIE4CNWuvi6MleBU4H2k0gARcCr3TAeYUQQnQSz7rPSX7nKrj+W4jPiHU4QghxyITCBl5/CEf9ago/vQqbqwz/D0XQxRNIRihEr/+eRLDRz3VBD5mmFszK4O3Mp3BWLKWx6FSqj/gNAJkJdjZ6FdiRHkiHu5Afh+HBnpzFmN4peINh7BbzLskjAEtctPxCoGN6BhmGZmu9l49WVjDMVILd8NLSeyr9KxJpcjlIjlERbf/HdxPvbaDujEdI38cvyrTWVDR4KPjfFaicYXDSPbvdtqbFT2Zi5Li+YKR4fSisid82j4I519AYMvGvwgeYMuE8Bjj2PDOz1Wxi9IC+3LHs/1FYN48Lg2so+Cry/7FWFlTdul32Ud56jLhUvh12F0u+eAOLDpJ/1E84dfBI7FYTRRnxWMwmTh6Rw2eLkrjIAt7KdcT1lwTS/mjw+Cmp9ZAUZ2U/c5HdWkcMYcsD2hbiKYsu24VSygmcCLzZZrEGPlFKLVFK/Xx3J1FK/VwptVgptbimpqYDwhZCCNGehRtrCS94DJO3DhpKYh2OEELsE631AU2EsTPPluUM+u+RDHj7JMJ+N0FnNlTt7nvRrsNb+h3O2hUkBGvpb6qg4rjHqR37KxKqvsWwJVE+5U9YzIrcFAdDc5PxEP3DOdh9ajyJ/VdfUw5ARnYuhenxDMxKJCe5/d4SNmdktuawt2NqEzX7grg8HjJWP8tfEl4FwFo0lSE5idSH7Id8FrZtjV5+/u8vSF3xFDkbX6F5zef7tF8gZLBocz0lHz5I0pY5WDd8uNttw4amssnH1noPZQ0eNla7CIU11pqVFPzvpxT7U7jAuJeC8bOwW017HL62XbLTyjmnncFbyZdzRM0fuDLwG+62/YaW/KMxNxTvsr3yNtCiErl2jo//mE6n31l3M2DwSJSC/NQ4LOZICuC4IVmsD/cCoHHr6gMamtdTbahq4ZgHvuShT9ZB3cYeNQSwIxJI7ZWM3907eCqwQGtd32bZVK31WOAk4Dql1K4DcgGt9ZNa63Fa63Hbp2BvZ5v9CFuIrkF+bkVXUuvyc/PTH5KwdW5kga8pluEIIcQ+qW7xsaaiBV9w14Ky+8v03ZMobx13hK7gxMD9NGdPxFy7pgOi7Fy1S98jrBV/6PUEqy9bTUvh8dSMvJq6IZeyZcZjmBLSKcqMJz3BTp8MJz6iBZQlgXRYW7MxkmDo36cPACaT2m3SIi4hEUOrduvqHIhGT5D6N3/D73iOXEsLNSOuxpmex5BeSdSH7IS9h/Yzxh9mryRt6yfEqQAtOg7rZ3fu0+zIZQ0eXnvvQ8ZveoywsmBp2ARBX7vbuv1B0JpGT5AGdxCtoam+muT3rqDOiOcfvR/kzp+cSEGqk0THvg0GSou34bRZ+ONpw/jJxEK8RTN5rvkImp0FWJtKdkle+Ftqmb8tTO80J09ecgR9MpxYzIqsJDtO24/nHFuYSq05m5CyYmnY1K0mDIgFw9CtScGLnlqExVPLZaW/o9+rR6M3fhbr8A6ZjkgglQEFbV7nA+W72fYCdhq+prUuj/5bDbxNZEjcfnM4HNTV1ckf46Jb0VpTV1eHw3F4jZsV3dfcdTWcY/oSE9E/wnrYDClCiO7H5Q9R1RQpbBtoZ0ai/aHDIWzFH/O5MZp3zCdS6k9ki6UQS8s28HXd34e+YBjfqo9YoQZyxXFjweIgxWklJcFJ+dQ/48mbSp/0eOyWSOIgJzkOn5YEUk9QvKUUgN75vfe6bWKcHTcOAp6DT+wYhua7N//G8e73WJh1ESUXLaDhyD9gNZsYnJNIC3Ed1tOpPWFDU1rnbv3b8Mv1NXy+tpqrUhYTSOzNyxk3ku9bT9nCV/d4nGavH++Hd/CX+hvx4OBx6+UobUBN+0ll/f2LDPrvFBy1PwBQv+pzCt46lfRwDfPHPMSVJ04iLd6GUpASZ2v3GDtz2izYrSZSnDbOH9+b00flAlCiczCFvNBS2brtt5vrUd5GbIkZvPGLKYzrk8aw3GSG5CTtUqfHYTUztk86ZaoX9sZNNHmDBEIHn4Q/HPlDYTbXuVlb0cJF//6GUCjEJ2l/5ShTpJ1DlatiHOGh0xE1kL4DBiil+gLbiCSJLtp5I6VUMnA08JM2y+IBk9a6Jfr8BGD3A0r3ID8/n7KyMmR4m+huHA4H+fn5sQ5DCAC+WF3O7yxz2aRz6afKpQeSEKJLMwzNtoYfEyDtTWm9P5o2/n/2zjM8jupsw/eZ2d5XvUuW3Htv9E7oLRBIQkJ6QgrpvSek1y8JhBQgJEBCQu+9GIONwb3Lkqzetb3vzPdj18ZGbVfFkuy5r4sL7c6ZmbOypJl5zvM+72u4Ij08mVjGLR9Yyjcf3MFTXTksAejaA+UjWuccd/76+Gt8Wq1j++zPsbDcSSSepMBuQlFUQrEkeTbDUa6TEpeJ8HFWwhaJJzMqBzrRaG9tBkDvKBh2rN2kI4AZwxg4kDbVtXNu6x/ZbV6C7cIfARwOni51malTzcjxse32Fogm6PJH6fJH+N7Du9jV5mNhqZM1Nbk8tq2NhY4Q1f5N+FbcxKmLP0nPn/9E71sPU3Xq+wY9Zuj1O5hXfzsPS2fQuvzr3L9uO581QqJtB7qSJf3G6/c9jiHQQvXj19JprGKBfxvNFPLmKX9j1uwzgdT3ucRlHjCHajDcFgPt3pTrqSbfhk4S7AjncjIQ76pF7ygmkVT4zD83sEGEOX3xzIyCvk+anscbDdO4rG0DajJBTzBKsdOc8bxOBHa2eLnt5ToOdvYx1/MCKEu4dU2YnNfr+Kn1i9wYugVj38GJnuYxY9QCkqqqCSHEp4GnABn4u6qqO4UQn0hvvzU99HLgaVVVg0fsXgg8IIQ4NJe7VVV9ciTz0Ov1TJs2baQfQ0NDQ+OEJ55UcOx/gDKpm8/HPslvDLdM6hV3DQ2NExtfJE67N0IsnsTe+Cy5u+5AdhTCNX/L6jjBaOLw/3c+/S9OUmVOfte1nDwjn/esqOBfTzXwNSPE23agn4QCUjSRpGvLowBMW3sFNpMeRzqYV5IE0/Ks/R5ULQYdBrM1FTqRmPoCkqKo9O54hpIZS8E2vFByouCLxAl7O1NPWZbcYcfbTTqCqgl5lNd+VVV5+uF7WClCtK79NEJOPXLa0oJGnt1IADO6RDBVfiWOTkSJJZSsxBVICYid25+jdfPTPNko+Ir0Jsus9fyt9wL+0HIeBQ4rv8/9H7Sp6BZfw6wiJ68ZFzDd++aAcwAIeHuwvXozbygzOXDyz7hqRTn37wkS8RuR2rYP9MExdGzGV3oa4a56gt5u/mb9EHMu+QJ2uwMhoNhpyji4+0hyrQasRplANEGnL0pNgY03A24AlJ4DUHMK7b4IyWAfmMDsyKwBykk1edz69BLeHX8ZS+eb9OpWUWA3IUsDpdSceDT2BPnMPZvp7O7iH7Y/sFTdwmeKTsPemCBuKcKw4EoaX/svRe0HGP437PhgLBxIqKr6OPD4O9679R2v7wDueMd7dcCisZiDhoaGhsbo2FTXxUe5nzbTdB6MnMSv+DOSVsKmoaExyQjFErR5I4SiSQDce++mbN3XUYWE2mEY9GFwMDr9UQKRBG29fmZ0Pc9+6xKuPGkeAFctK+NXT+cTlcyTNkj72V2dLEtsIWTJx1rWv1PcYA/iuU4neJjyDqQ3Gnrp3LOeC19/L5z8BTj7u8PvdILw1sE+cvChCBnJ5Bp2vMOkJ4AZR3TkzqBIPMl9m5qY1/csYYMDpeo0KvMs2I060qYB7EYdYWFFVhOQiIL+6NKqvlCMQkd28Q61rz/MrOc+QjUJTpYhZswlljOHm9r+xSfyXiaavwBn/RN0rfoa+SWzAQiXnkRh/au0N+ymaNrcfsdsevB7zIp7ebz0J3z+lGk4zAZOmlnI3k1lzG7f0f+z9xzEFOnh3/75/Nj3Mc6fV8zHTq1Gnw6tLs+x4DQP3XVtMCRJYDHosBh02Iw6Vk3L4b43fCgGPWrPAQCa+8I4RerfTrJmJmfML3WyxbCEBDKOxucIFa3CG46TY82svO54RlFU/nTXPfzafytzrW3ok2E80y6iuD4l2Lev+Aqnzy2heX0+Jd7GCZ7tsWMsMpA0NDQ0NI4D2l79F9VSO5z2FfSyjqhs1RxIGhoakwZVVenwRTjQGTwsHumC7RS+/mPq7ctoWfENpEQEgt1ZHTeeVJDD3Ux78v1Mkzpwrn7/4W35diMnzyigVi0j3raTcCw5pp9pLPj3piaWynWoZasQUua39sVuCzH0EA+N4+zGF0VR+ep9Wyl57XsAqFn+22dLXzA2rscfa5r6wuTgI2lyQwY/Gw6TnoBqQsRG1h0tGE1woCvAU1sbOFd+k1DNBZQXuHCY9IfFIyD1tTHd9/wdndiSb96F5aEPZ3XeNza+SvWzH+eAWsIflj7OnqteZP97X6fl0v/QcO7tJGwlOOsfp2/6Fahrbzq8X9nScwGoe6N/AYw3GKao/gFe0p/MTddfhSOdV7S0ws3OZAWic2e/8OqOXa8C8Fh3MZ84bTo3njEdvSwhRKpsdKTi0TuxGHSsqc4lnBAELWXQmwpKb+4L4yb1/RRmd0bHkiXBytlVvKHOwXow1ZUuEBk+WPxE4I71DazquZ85ulb8My+n/oJ7aDrzj/RNv5ykwYGy5HrmljhoUvOxhltPmE5smoCkoTHFiCeSBENTe7VQY3JS2vwYbVIxBSuvSgdcWlAjnjE9h9boQENDY6R0B2J0+qKHXwtvI+LhG0nGo3yw+73sDKdX3LNZCfa2UPTo9cy+ZxUVoe3c4voCeWvff9SQyxaXsiNeiq57D/XdQZp6QzT1Tg7RpdUTZsf+A5TRgVS2LKt9S1xmwhimtAPp1QPdLOh7miViPyoCNdw3bucKRhN4etpAmTohw72BGLnCD5bMyplSGUgWpBFkEyUVlfrulLhb0vIUViIk5lx2uJzynUhmR+qLdzqd9z+N/cCjxDv2ZHTeNm8Yz+M/QBEynivv5YbzVlFcPZ9ZpXnMKLChzDiX+ovuY/e1G+g553fkHREkPWveMrpxIR18pd9x73/kIdz4KVx1Fc4jwq6XVrrZo1ZgiHlQvG/3jer0R3jh+SeIqTq+fP0VfOjkKhxmHaVuM3OKHSMqWxuKpZUpgahTV4LUVw9AS18Yt0inxWQoIAF89JRqnk0sxuLdh97fSCCqCUidvgi/eGoXZ+m2E6o6l9aTfkyweDU2s57m037LnvesJye/BJNepltXiEHJfvFiqqIJSBoaU4zIC7/E/KclJ4zKrXFs6A5EmRavpTtnCbIsM6/ESW/ShDrGDqS+zhbUUO+YHlNDQ+P4J5FU6PSnAmTNnZspfPoTzLnvVKYH3uT+vE/QJpWwxZ9yNKiepoyPm9z7BI6m59lRfCUXRn+MffUH+wUxnzO3kP1SFaZYL7b9D+EJxVPtySeBG+Ufrx1kkZRyHxgql2e1b7HTTEg1EosEhx88SfnHawd5v+EF9iulNNvmj6uA1F2/nao7lsGeR8btHGNNbzBKvuxHzVBAspl0BDGhi2f/MxFPKqiKinj5Z/xEugWPtRrTzNMHHW84LCAd7UBS0x3F4jseHvaciqLyg78/wFnqBrrmXM+K+XOxGnU4LXp0soQkCapyrRQ5TVjyyqnMsyEdke0jJIkG2xKmBTYTib0tmhzsCRLd9TgJZOacfOlR5yxxmug0Twcg1LT58Pv3vdHMHGU/odx5nDS7lAK7icpcKzlWw7jkCRU6TOTZjBykGJ23HtRUi/lyc+rvJJacjI81v9RJe+FpADj3/Jukok5Kt+Wx5N9vNFGTqMOh+ghVnoHZIFGRY2FanhW3zYDZ7j58rQiY082QPCdGGZsmIGloTCEONLdieeMPSIG2VM24hsYY8dbOPRQID85pSwGYX+rAq5iJBsbwZlxRsN5zKTzyubE7poaGxglBpz+K7G2k4pmPMf3hSzE3vsjflQu5e/UjLLj8y8wrdbCpzwZAMotuOIqnFVXIfDt8HX57DVcsLe03xmrU0Tfzat5iNuUvfo6yF2+i6on34t3/GkllYhZzgtEE7d4wd284yGX5HagI5NL+HaGGotBhJKLqiYbGthPWsaK5L8SG3fUsYR9brWtpjVoQ4yQgJZIK9s1/Rihx6K0fl3OMBz3BGHnCn1GANoBelohIFvTJ7AWkhKJibVvP8vpbeZK1NF3xEA7L4DlGRpsz9cU7BCThbwNA3vvosOd8fk8nZ/feTVI2UnzeFwYUaiRJkG83UplrPZxFdCTmmadRKPr4+l8fJBxL0umL8IX/bOV0sZlQ0Yp+pWBCCEyVS4mhI3ng5cPvP7a1iYVSA7ry7JyAo2F6gZV98XykeAj87TT3hSk1pgWkLBxIAOeechIPJ9eQv+3P6H0H8Ufj4zDjqUFSUblnYyPX5e4DoGDx+UwvsOO0pNx0JU7zUZ3q4vaUgKT0NRzzuU4EmoCkoTFF2NHi5d+3/AA5lnaETOHMAo3JR/PuDQCUzl0DpLqE+FQrStg7ZucI7noKo6f28OqihoaGRiYkkgqe3k6mP3QplqaX+HXyGi6QbyPvsp+xZMEC9DrBqTPy2dSZJKm3ofRl7kBS/a2EjflsbQ1ww0nTsBgG7i/zvlPn8uH4V3mdhVgbn8fStZWSF26iob2HSDxJIqngixybB65oIkldV5C/r2vAF0mwythAImfG25kyGWI36YlgJBmbmvcTD25uYbXYiUwSpfosGiNGlNA4CUiBbly196dehKeOi7Y3GMOND6yZOZAA4rIVYzKYtdM9mVRx1j5IADMPlH+dnNz8o3KP3onZ5krtd6TTWVGQAu0oeivGzq3UH9hLpz9CPDlw2eB/X3idS+VXCc5/LyZXYVbzPcSMVRcAYGlZz1W3rudnT+6h7eB+ZotG5FnnD7jP/KoSXk/OQV/3DJF4kvW13bi7NmAmgijNzgk4GmrybWwPpoU4XwvNnhBF+jCqkMHoyOpYp8/O56/mDxFTZUpe+96AOUhd/ijRxPHvTHppXyet3giny9uJ5C9E7zj6Z0uSBGbDEU5VZwUAyd7MFy+mMpqApKExRXh8cz0f0T1BkvQfLE1A0hhDEs0pG7ZcnOrg4zDp8WFGjFEXtse3t7HzgZ+nXkRHFs6poaFxYqC8w9XTG4qR/+ZvkSJ9XBb+Ns/mvZ8fX7Oa6QUpx1Gx08yq6hxUVRAwFYM3cwEJXwttqhurQebalRWDDltS4ean163lY+rXOYW/se+U/8PorcO+4TfUdgbY0+6nsSd0TBxJ4bf+g+P+67Bv+h2nFYTJ8+4gWbw06+NYjTJhDCixqZmB9PDWVi537EXRW6leegYe1Qbj5EASm/6OlIyiyEaU4NQRkDz+EHY1gMhCQErobcgokIhkda5ELIy97nGeSi5n+YwScofp4mV1pBwyQd8R/2ahHoQSR110HQCOF79Fwyv/Zk9zN57Q0SWj25u9LGq7DwkwnvzprOZ6JIaCmcQthXy0vIWgt48bdnyAF01fBEA3e2ABaVmlm+eVJVh8dTTW7uDZ7U38QHcHIWsZ8vxLRjyXbJleYKMhmhKOY30ttHki5MpBFJMrq06UAGa9jsXz5vKH+MU4mp4j0bn/qL9nnlCMdm+E7sDEl+6OJ6qqctvL9cwwByj2bSMx7cxh93G5c+hVbeBpGP8JTgI0AUlDYwqgqipsvZcC4eE1R/piNkVXDDUmH409IcqitXhMZWBKrVg5zXr8qgU5PnqxJ6mo3P34c6xMvpVaFdMEJA2NE5ZYQhkyTD8cS1LfEzxqjL9pJzk77+SexBmUzFnFjy6bj9tiwGKUD3c2WlrhxiBLtIt8RBYCkuJtZX/YzjUrKobtkHTevCJ+cdVCuvxRfrKvmN4ZV5G/7U/kv/U7bA1PU/70Rwk0bc/43CMhEosTfer75Pe8wWfUe/h74JPoIj2I0uwFJLtRT0SdmiHae9v97Ovws1bdTLziFBZVFRAQNnTJMCTG/gG3562HOWhdiOKunlI5fslgD0BWApKit6a+iGZX2ijXPYsh4edR9SSuWlrWL0vsnTicqYyeIwWkztYGAO7qqOAB6RysjS+wcuNnKb59JRv/+yt84ThJReVAZ4Dv/W8j18rP46s6D3NBdVZzPQohiJWvpdT7Jnctr2O+1ED3jGtoOeO3GIvnDLjLojIXvvKUsFC77n6Ktv4fNVIbnafcjNFsG/lcsmR6gY1O1QWAt6uJhKLiFoGUgJQlBp3EuXOLeFg5CQD7wWfxp12VqqrS6omQu/MOlK3/ITGII+x44M71DWyq6+Bvtj+hSnqkxe8Zdp98u5EmtUBzIGloaEwedrf0cnX0frYq1bykpm8SRxBwqKExEK/X9TBPNKAWLTz8nsOsx48FfTww6sD2x7e3scT3AooqaCw8e8TtgTU0NKYu3YEoT2xvw+PzEY0N/oDf4YsQiiZp90VIJBW8oTjBp28mqBrYOuPTfOGcGZTlmJlVZKcm33a4s5FJL7Oo3Elt1I3sa854XsLXSpvi5oaTqjIaf/78Yr583ixe3t/Nn62fxFt9CYVv/oqqZz6C8+BTiNd+n/G5syUUS/CTW/9GYbKNp6Z9hZ1Xv0qg4ixUoUNfc1rWx0s5kIxT0tH84OYW5kqNOKNtSDPPRi9LJI2u1MYx7h4KoAa72OJ3oJrcU6aETVFUpEhKQJJs+Rnvpx4qhczSgWzY/QC9OIiVn0qeffiOY053KpcpHPAAqaiGr935FADPN0s8UvEVfrHkWf47+3e0ysWcW/dTvvqz33DjHev4799/znXdv8MlguhPujGreQ5I1Snow10Ubf0/QnkL6DntZpQF1ww6XJIE3/3ARRwUpZzUfBsf4380lV1MsuasIcv2xpqafBs9OFGQCHa3AOBQ/aimzAO0j6TEZaKkchb7qMDe+CzecEpA8kUSEOqlaMOPKFn3Tbq7O8fsM0wmtjb1cfPje/h1zoNU+LfQeurPsZQMLCIeSYHDRLOad8KEaA9c6K2hoTGpqH3xbi6ROvhD/ndp6Eqr/poDSWOM2Fp7kKulTuJVb69gO0x6fKoFCQVigayzNQ6hqip/evEA3zPVsT9RTptaREXUnxKljuFNloaGxsTy3Yd38ti2Nl7L/RHULIUr/thvTDiWROx6kIr6R2k67Td0+83s2lfL5X0v8KLjEm68aBUVOZZBH9AWlrnY3erkQskLEd9hR+VgqBEvRiWEPqeM8hxLxp/l46fWsLfdz59fb8W7/Au8b9XJOIwStrbXcNY+RjTkxWhxZny84VBVFSEEP3tiDwu6HiNmsHLaZR+hMyLRePafMYkoMwoLsj6uzaQjjAGR8IzZXI8FSUXlwObnucf4U5IGJ/o5FwEgLG7wkSpjs2X//RiMLn8Ul+qlS7HTHo9TksiiRHIC8UXiuNSUCCRl4UASh673sewcSKL1LV5JzufMeSUZjc9zOoirMpFgKmvxzYN9FJIS5+747KXgLCMUTxKJz6Gn7114/v0ubg7dgrfxdqpoBRkC087DNv3krOY5ELq0AKuPdNO7+qs4zXocwzgSnWY9oXkX4dzxZzrnfQTPqm9QaDy2j9bFThNmg56Azk3Mmwoftyb9qIe6gmWJ2SBz1pwCnm5ewqc6HqXR243ituAJxXDVPoCkxECJITbexoHVX8BtMZBQFHIsBnQDBJRPJRp7Qtx492YuN2zkktD9dM/9ICx8d0b7FtqNbFYLMPg3g6KANLW/F8NxfH86DY3jhJr6f9IklWFacAnd0fTFaQquGGpMTvwNbwGgP6KDj0kvERLpB6rIyHKQYgmFLU0e9rR5WMw+GszzaArpEKoCMc1Bp6FxotDqCfPkjnYWmDopDu4iWftCvzFJRaW5s4vS9d/GWf84peu+To8/QttLf8UgkpScfSMlLvOQq/tVeVYaEuluUxmUse3el+qwU1M9I6vPI0mCX129mMsWl3DvpmYueqmEb9bNJ7zgvciJEMntD2Z1vKHoC8Y42BNiQ10P/31tDxfrNhKbfRk5LhezCu3k2AyYRlgyYzPqiGJASmaXdTPRPLm9hZ9GfwxGO93XPAaOYgBkS7rr1BjnIO1p6sQqoniEg31+PWKKOJB6gjFySV+/sxGQ0sKrms21X1XRhbvoVF28a35RRrvkOUwEMJMIpQSkXa0+phl8qAgkRxGSJLAZdeTZjMwsKyB80Z9xEqDEqlJ33l3suGE/8av+OSaLUcb8GuLWYpIGB6YlV1ORaxm2pBXAePY32X/Z43Ss+Q5Ws5H8DJxXY4kQgpoCG924kQIdqTklvKjmkTmQLAYdyyrdvCyWI6lJbI0v0huK4Q/Hce/7N6G8hfgqziZ3x1+J+Pto6QvT4Y3S0BPql103FTgyEPwnT+wm37OdH0m3ECxYRu/J3zmq09pQFDhM3Jc8jRdW3AJMve9DtmgCkobGJKfbG2B64gCthadRU+AgRPripD2Aa4wBHb4IZYEdqRclbwtIQgiS+vTqfWRkndh6gzGe3NHOdNGKMRkgkL+UOl/6sqPlIGlonDD847WDqKrKLcvSK+ShFhR/1+HtqqqyqaGXXff/HF2kh4bCc3HX3o/0yI28m6fpyV9FYfXCAVtwH0lVroUWNfWgrGZQSrBha+pv38K5c7P+TLIk+M01i3n40ydx/ZpKXqntZkN8OlFnNfrtd2d9vIEIx5L4tjyE7rlv88V/v8nnrM9gVCNIyz8ApP5Ol7rMFDsHb5U+FGa9TAQDuikkIKmqysPPvUSOCBBZ+0XyquYf3mZ0pMXDsGdMz1nf2ADArOpq9vr0iHDfqEu7jwW9wRh5In39tmbuyNKbUw6keDiL63QsiF6JImwFlLgye+i2GmSCmA93YdvV5mOG2Y9qzQf5aPFGCEHBzOXUX/Ms9Vc/h3vh+UwvycVlGV7kyQgh8J7yPdpOvhmHI3P3oNVmI5I3H6NeGtIdOZ7U5NtoTTrRhTrJtRrQRT1gco/oWE6znjK3BVPlCrpxYm94inZvhOZdr2Hu3U3PjHfjXXETctTH9AcuwL3nX6lcpI5d1PcEicSnVoe2Ln8UVVV5o76HBXt+y/+M30M1uWg+5xYq8l3IUmb/ngV2IwfUUnYaFoE0dPbX8YAmIGloTHJ2bNuEUcTJn76caXnWtwUkzYGkMQZsrO9lqbSPoH0aWHOP2pY81AJ2BJ3YFEXF8OQXWb7lW1zsTj3IGarX0BNP//xqApKGxglBXzDG3RsOctacQvKbnyEupx4ut298/vCYrc1evnf385zRcw/PKks54+D1PGO5kOXBlykV3YQWfWjYjk4AVbnWVA4FkOgdWkBSFJX6upQDyZpXPqLPJoRgYZmL7148jyUVLn742G48NRejb359TBZ5uus2U/b8pynb/Tc+GfoLH+Ih/NUXYJm26qhxIy0dEUKQkM3olKkjIL24rwtb9zYACmavOeoBz2xP5fwkxrhLWmtrKlNr+dwZ9Kk2hJqYEtewnkCUPOFFETKYMxcU9JbUtT+SzibKhJg35X5x5mVWvgapn7+wZEVE/cSTCnvb/ZTpvEObGjgAAL4aSURBVKi2gR1MsiQorZ5PTVkxbqsBk14eU8FGzL8csfCqrI5p1Mk4zXqq86wTVsI1vcBGU9yBJdbNKVUW5ESo3/1cNhQ5TZw5t5hHE6twND5DV2cHwVdvI6wauGnndChdSv0F96BKesrWfZ2S175DzSNXkmzbSW1n4HBu0lQgEk/iCyd45blH+ZTuYXqqL2P/FU9TVFo9bAj8kViNOqwGmZ7jvEPdITQBSUNjktO2dxMAFXNXUuY2ExPplUbNgaQxBmyq72a5tB+5ck3/jYdyEEZQwtbn8+Hc91/OiT3LNcpjJM05VNTMx096ZXIK3HxraGiMDk8oxntvW8/piXV8oLABY8dbxJZ9lCQS+7e8DMDuNh+f+fsL/CbxQyw6lbIrf8aVyyr4aO97ucB4J7svfRx53iVIGawEl7jM+GQ3cWFAGaYbTqc/ij3WnXphz/yhdyBkSfCjy+bTF4qzP5x+UA92j+qYoYAPy0MfxpM08WRyBe+Vn0ZCIXbm90d13HeiyCb0SnRKOGoA7tvUxErjQRS9FZE386httpyUeBj0dA2064jp7Uw553IKivGQLhecAmVsPcEYeXhJmHKzymQxpPO7Qv7MP2NTcwMA+UXZZe/EZCtyPMCBrgCxpEKe2oM6xO+jSS+Pm1BjNepwZVC29k4qci0Tmv+zujqHPjmHfOHlCwtTAob6jt+NbDl/XhEPcCayEqPukZ9zEa+wu/AitvXAeb99hR/uzOWuxXez47Kn2XfF0yg6C9OefD/G7p10+aNj8bGOCQlFZX+nn4KDjxATRjpP+TG5eQU4R+BsK3SY6A5qApKGhsYkQGnfThw9uoJZ6GSJXHf65nQKtt3VmHy0HtiOSwTQTesvIAlz2sY9ghK2+IF1yMkIUVVPYaSeZMkKZhU7CB0WkEaWq6ShoTE1UBSVj9y5iVN6/8Pvdb/n5Nc+DIBx6bX0mKeR69nOjf96i6v/vJ5f8GtmilaazvkLeTWL+OW7F/HTKxbw1YsXk8ifT44ts1wRWRKU5Vjp1BWh9tUPOba5L0Sx6CGqd4F+ZCVgRzKnyIFeFrQn0wJDKDsBSX2HgLPxf78hN9zALyyfJ3ThH/GXnEzXqq/jLskur2nY8+pMqWYJycn/4KOqKhvre1lpbEApXNivVMTlykNRBWHf6MS7IwlEEyT96WwZRyEBKe3MDR0bAWk0uTK9gXQJmzXzDmwAekcBcVUm0Zd5N8OWppTjr7JyWlbnSuit6BNBdrWm7glssW5EOtPqWGPSy1iPcQj2WLCsMoePvms1AhVj4zoARMG8UR2zwG5k2apT2S/V8GHlPowijvXUz3Dfx9dw2ZJStjR5+PFTB7juQQ8v9uVRf/4/QFWY/uBF2F//FcFoYiw+2vjibcb11p94/K16zpc20F1yJjk5bopGWBKcbzfS6Zs6bs7RoAlIGhqTmKbeEOXRA/RZqw/Xg5fkHRKQtBI2jdHR6gmT07sZAN0ADiTZ4kp9Ec1eQDI1PEtMGPgBqYdGqWIVJr2Mw5UOdtQcSBoaxzX3vNFIpPFNvqL7N76Kc2hZ+2N6134LXeEcLNNWsFxfz9amPi6wHWC1uo32Vd8kWnXa4VK1a1aUs6zSjc2ky6qUYFqelYNqEdIwAlJTX4hC0UfCNjYPq5KUyiNqCKdF8mBPVvt3+aOEYqmHrtq2PmbU/YNd+nl887M3ctnKmbRfei/Gk2/MyImVDao+3SxhCixK1XUH8QZClMcOQNnSftsLnGZ8WIgFxk7c2dPmw036emXNI2E8FNQ9fgJShy9CiydMdyDKnnb/iB9Ke4IxCiUfapYd6ewWM21qDiKDIPrD5+pMja0or8zqXBjsGJNBntnVgU2XRB/tRZogAWkqIzlTri1b80soOjMit2p0x5MEN5w0DcvqGwDwlZ+JyJ/B4go3N1++gDe+eTZ3fXglZW4LNz+xh5++JfHquY/hrTqfwrd+jbdhyyg/0TFg10MUbfwJ797xMfKED8Pid2ccmj0QBQ4TnVPIfTUaNAFJQ2MS89qBHuZIB5FKFh5+rzLfQUTVo2olbBqj5LFtbSwXe4kbcyB3er/tukMdbUZQwmY6+DyvK3Pxzbya1jN/h27lh1Lv21ypAZqApKFx3NIdiPLzJ/fyG+udJC35xC/+A/KqjyCffBMIgbFyJXbFx98uyePbjkeJWwrom3MdZe63Q2iFEBQ4TEzLs2Z17spcK/tieei89UOWZTX3hikWvcjO0ZWvHUl5joX9wfTqdZYOpGhCoaE7RFNvkAfuvpVS0Y3xlM9iN+mRJEFlrhWXZfgcqGwR+vQD0xQQkF7a28VM0YROiaErW9Zve77diEe1kRzDDKTdbT5yhQ9F0oPRgXooSyg0tp3ejiShqPQGYrR5IiQVlQ5flJ5A9g+mvcEY+cIHluwcSHaTnmY1H4M/cwdSqDdV5ifbsxOryosLsRHmiR3trMlPueCEY+x+J08UZHtKdLN0vkXEPQt5DIKcHWY9numX4S89lc6lnz/KnaWTJU6Zkc+DN57E586awau13Xz0vwd4uuprKLIR0+a/kUgqo57DeKKkXYRzlFoikhXT3PNGdbxCu5FOX7Sfm/R4RBOQNDQmMbX1B8gXPhyVb3fHyrUZCGEkEQlM4Mw0jgcefKuJtfp9qGUrB2yDa7FYiKly1uVmak8dJl8DzyUW8fHTp+Ne/f7DAZ6S6VAwtyYgaWgcr/zk8T0UxQ4yI7Gf4LJPkptfRJHTdDhXQj/tJFQE1Y9eha11Pd0LPkZlUS62MSgfqcqzUpssREpEwN8+6LimvhDFUh+Sq3TU5zxEmdvMHm86OyObDCRVRV/3LIT6eGL9Vi713kWvqZyKNVceHmLQjc8t+9sC0iR3NUe8VG78Hp8yPpl6fUTX0EPk2Yx4sUJ47MSdxt4Q+ZIf1Zybuk4eao8+jg6kI8vWbM0vow+00Ol/+8FUUdSMHlJ7A1Fy8IAtWwFJR7OajyXUQjKDErp4UoFAF0HZ2a972nA488vJEz5yDAlW5aadVpoDKXvshQAINUnEPTvj7mFD4TDpECYnDe/6J+H8RdgM/f8+G3QSnz9nJi9++XQqciz86tVOuqddiqv2AQKesSslHQ/UsJeIzsGv4lexf8EXsFltozreefOL+PoFsxlF1emUQROQNDQmMfGWVKcRfemCw+/ZTXpCmEhENAeSxsg50Bng5K57KFXbYe7FA45xmA34sRAPZnczHt3/AgDekpOZX+rEbHh7JUyXbg+sCUgaGscnG+p6+N9bzXyjcg8qAueyd/cfVDCb9kvuJmavIGYrRyy/YUzEI4CqXAuNasoFEe8+MOi4jl4vuXgRowzQPpIyt4WDQRlVMqAEsghybn2Lokffz8x/r+WKN95DhdRN/JyfoNePUYvyIZCNU6OETd39CGf5HuRCXkEx54K7f9aOXpYISnbkEZRdD0ZzX5hifRDVkupqZbCl/q+GsitRzIakooKSpOj1HzLtyfcx7fH3oIQ8eEKp7lZNfSH2dvjp9EdIJBVUVcUXifcTe0KBPgzEkbItYUsLSNZYF9EM7jX3dfjJwUPMNILOXyULESg8dKWTK0vSolzB3OyPc6JjffvfOJo7a0y60wkhyLOnXI8GnYTDPPjf6GKnmV+8exFd/ih3xM9BSoRRNv9z1HMYVyJefFi5U381OWd8atSHW1GVw/VrqsZEvJvsaAKShsYkJamomPv2AiAK5x9+32HSEVY1B5LG6Njw4qN8WfdvOsvfhWHpewcc4zDr8akWYkFPVseuq91NQpW45IyT+20zm81E0Gsh2hoaxyGxhMK3HtxBmcvE6tCLxEpXH87meCfS9DOpu/h+9l37Krk5OWM2h6pcKw1qqg14ovsAqjqwW0P0psQlkde/fHeklLnNgCBuykHJxoHkSeXHHJCqaSeHTWf/F+fCC8ZsXkMhGdIlgonJHf7q3f86PtXM3+fdQei6hwZ0zQJE9U4M8bEVkPIlP6ol1eHNYTXhw3q4/GXMSURxbPgVM/97Bvk7/oJn2kUY/C2Uv/g5uv1h+oIxfOEE8YRKhzeVkbSn3c/B7hC1nQHCseThQ0nBlIgpsiwrK7CbaBMp11KsZ/gcpJ0tPvKEFyntgskGqTgV0WD37ELfsYWktQi0Erbs0RlImlJ/R2O5c8bssLlWI5IEhQ7jsKLU0go316+p4tZ9Vvw5CzDuf3RUIfDjjRruoydhZlG5ixxLZo0aNFJoApKGxiTlYE+QXKWHmGwBy9s313aTjhBGlKjmQNIYObP3/oFeOZfkRb8f9EbcYdLhx0IynN3NeKi7iS7cnD67vw3dZtQTUM2aA0lD4zjkb+vq2d8Z4JvLFYyeWph/5aBj821G3FY9uTYD+jFsgV3iMtOjKyCBTKRjP7vb/P3aSicVFZu/AQA5f+y6mpXnpNw8Yb0bsnCoKL5Ufsx1vk9x2+zbmbFwZVbB4aNBb0rNebLnKsYObmCrUsPaU87CUjp/0HEJgxNLcuyuL019Idz4wJpy1zgtevpUG+oY5iwdfcIN5LzxKxLmPBrP+ANNZ/2JttXfxtH0PPoDz9DiOdoppqqQSKYe0mMJhbruAKFYAlVV0UdSIqacpbBj0ElI7lQYdqK3Ydjxjb0h8vFidGYvIAlnOQmjG6ljO/r2zcSLFmd9DI0USWvq+5/IGzsBSU43B8g0f+3KpWUoKuy1rsDSuYWA79h0KxwJEX8fPUkz580rOsoprzE8moCkoTFJ2d3mJ094SZqPtgTbTXrCGFEm+c2exuRl74E6FiV2UFdyEUUFg2cjOM16/KoFNUsBSQ6249PnDdgtyGaU8atmEmHNgaShcTzR3Bfi98/t570VXs7c9mUU2Yhx4eWDjpckQZnbQpFjZC2TB0OWBNesrKZZySPcUUtSUekKRI8KdG33RaiiBQCRN3YCUsqBBH7ZlVUGkuJvI4EOr3DwsVOrKRzj78lQ6E0pB1I0PHnvKdRYkJxgLe32ecwucgzdic7swqoGQBl9gK8/EscTimNPeiHtQHJbDPSpNpJZdtnLmHR+U+vaH+OtuYRwPEHnrPeSMLpxHXgIVQU54kEkYwPurihQ3x2krjuAS/EAILIsYQPIKU39XiQzEJC84Th5km9E50EIInnzMTa/itFbByX9w9E1MkOxFRE35x92y40V2YT3zy91UOgw8mx8XiqPaf+LYzqXsSQW6MWHldNnZZcRpqEJSBoak5ZdbV7yhA/dO1aO7CYdIdUIsUkeeKkxadn/0r3IQqX61OuGtCQ7zHq8WBERT8bHTiQV7LEu4paiAbfbjClXUyJLUUpDQ2Ny84NHdjGdRn7QcxNSIkTfFfeCdfgHmbHI6ngnN55RQ5MoJtqxH0g9VB/ZXrm5N0S11EbQVASG7Lq8DUW+zYhRJ9GLHZFFF7ZITwvtqot3Ly9nfqlzzOaTCVNBQNr15svoUCiZf+qwY4XFjYyCOgZl0i2eMAbimJTg4Z9ll3mcHUiR1LUxaXSwp93HDXe8we2vN+OddgGOxmcweA4w6z8nM/O+M3AeeBiUVMmaLtQBSiojSVFgQ10veSJ9nbVmL+xU10wnrsoE2uuGDewOhwLYCMNIBCQgmj8fo+8gAFLZ0hEdQwPCK26kbfV30U1gBo8QgrPmFHJvaxFJnQW5/iX8kfiEzWdIol4Ug5Myt2WiZzLlGBMBSQhxvhBirxCiVgjxtQG2ny6E8AohtqT/+06m+2ponKjsbvNTrPP3q11POZAMiMTkDrzUmJyoqkpB0xO0ySUUzFgx5FiHSU+36sQYyfxB6EBXkEJ60bsH7mxkM6VK2NTI5ChhU1WVUCwx0dPQ0JjSvHagh2d3tXGL/Q5UvZW2a57CMfv0CZtPrs2IuXA6ubEW1PX/R8Gbv6InEMMXORRCHKZatBJ31YzpeYUQlLnNdCazE5A8nY10qG5uOKl/MPR4YzSnOg9FwpM3V3H/m6nGDMvWnjPsWH261Mzb0znq8zb1hnGTulZJhwQki54+7OPWhU1NC0j7vTLfe3gnoViSJ3a001p+EVIiTPXj1yCSMZJ6KxUvfJpZ/zmFmocuZc7dK5j+wIUY+/YBsCvtYlcRYMk+3HpheS6tai6J3oNEE8O4uYKp73W2Yd2HSBS83ShGX645kEaKUnUq3ppLsBgnthzr7DkFeGKCdvcybC2v0OqJTLrW9vGkgjnhx+EeQfC7xugFJCGEDPwReBcwF7hWCDFQfP4rqqouTv/3gyz31dA44djd5iMPbz9LsN2kI4wJKaE5kDSyZ9u+AyxVdtBZfv6g2UeHcJh1dKoujAkfJKJDjj3EnoOt2EUYZ2HlgNttRpkA5jFZHR4NO1u9XHXLeu7Z2EggqglIGhojRVFUvv/wDr5keYyy0E78Z/yIisppY5prNBJmzlmEQ4RZuOsXFG7+HY6GJ2nqDRGJJ2nuDVIj2pALZo35ecvcFlpiVqR4EOKZBVOrvjYC+jxmFtrHfD7DYTKnHEjxSdrZNZFUMHdtpltfgsk1fMaOwZ0KYO5s2jfqczf3hcgVqWuVZDskIBnwqDbkaHbdSTNFDXtRhcS/t/ZgMer4x4dWEksoPOatJGYtRh/qpGPZF6m9/AkOnnULMUcFQonRufgz6MNdTH/wImzNL9PQHaTCEEAx54CcfYfD6QU2WkU+en/zUcHcAyGHUmHdIwnRBpBLFwMQc05DWNwjOoYG6KTU31yrYWw6Wo6UtTV5mPQSG1iI0VuH2tfYL4duotnW0IFZxCgsHNgtrzE0Y3F1XwnUqqpap6pqDLgXuPQY7KuhcdzSF4zR4Q1hV7xI1qNrc20GHWGM6JKaA0kjexpfuRudUCg/ZeDOa0fiMOnpwpV6EchsNbepsRaAvOKqAbfbjHr8mBHHOERbVVW6/FFe2d/FzY/v5vI/rmfTwT427a7HvPn2w2UAGhoa2fHoa1v5Zu83+JRyD4Fp5+Face1ETwkAU80a4pKRm+PX0mufTcmr34SwhwNdAbraGrGLMLqCmWN+3vIcMwcjqSwkMnAh9QZjOBM9WPPKxnwumWC2phxI8cjkXJQ60BVkPgcI5C3KaLyjZhUA4brXRn3uhu4ghbqUM0uk78Vc6RBtfSIIiYFziEaDGvGSNNjZcNDDZYtLOGVGPqfOzOe+N1v5l3QxG3TL+ZnnDF450Ett3lnUveseai9/go7lX2b/FU8SdVZT+cyHKehcR5k+gGIZWb6LLAkCphKc0TbC8aGvj2+HdY/sXMaC6SQNDuLFmvtoNOhkgRBgmeBAaJNe5vIlpfyptQZVSORv/ROd/iiRYX6OjiWb9jQAUF7Sv9mLxvCMhURZChzZ47EZWDXAuDVCiK1AK/AlVVV3ZrEvQoiPAR8DqKioGINpa2hMXuq6A+TgR6DCO1Z0JEkQl8zoNQFJI0tUVWV6y0M06KZRVT38jZpJL9MnpVcDAx3gKh92n97WVI6BzjVwCZvVKBNQzcjx8S+XSCYV/rmhkf+91Ux9VxB/2mmkkwQrqnJo6PJyfdsPsDe8CTNOgnQ7YQ0NjczoC8ZofeYPXCjvomXtD3Cf+gmENDniNfXly9l8/W4e+NdmDiZXcGvky1Q8fyMNZ/+V7oYdAMjjICBV5VrZGLWAgVSQtnNoYej5bXVcJUKUlh/78jUAszXlekpM0s6uOw52cKXoobs0swKF6vIy9iplWNo3jfrcTX1hqsxhiHFUiHYP6ZyqUPeYt5xXw17Cko14UuX8+Sl3xCdOrea6v27gNt35uO2XULurmwe3pRZ1cqwG5pc4WFGVw7LKHNQL7qHqsffwvd5fEjXmolqrRj4ZVwW5Hc+wz+8Dl3nQYeZYupxvBFlLAFajgfoL/oWzsIKxSyQ78ZAlgdkgj0uuXLbceMZ0znizmeccV3D2nn/imX4ZrYY1VOfbJnpqAOysS8kPFsfYBo6fKIyFgDTQT+k7Cx3fAipVVQ0IIS4AHgRmZLhv6k1VvQ24DWD58uWTq5BSQ2OMOdgTOiL8sP+KjqIzo0/GUq4JSWs9qZEZ+7ZvZI5ay/qqL1KV4Q1G2JgHCVD97QP+wT4SRVGJ9DSlvK2D3FTbTToCpAUkVR22jG6kRGIJbrx7M8/t6WR6vo2TZ+QxvcDG4nIXTrMesxph33++xeLwm6kdEpmVmmhoaLzNz5/aw3nJ/YRyppNz+qcnVStkIQRmo54b1lbx86eiPDr7a1zUcDMFj91AdbQC9GAoHPsSttXVuTyhOlIvMnAgvbF9N1cBRWUTIyDZzGYSqkQyOjkdSI0NKVdrTmlmeVVmg8xu/VzOCbxKMplElkf+M9nSF+Y8fVdKQErHCTjNerrUtIAU6BhzAYmIl96kmQK7kSXlqQWctdPz2PH98+gLxvCE4hh1gtquAFsavexp97Ot2cPL+7uRBCwsc/HB2Tdz4fqrcMSaiFlXjnwuZcuh42/4dj0L5YO7ls2xPpAZ8H41EyRJoJYsxeAwjnCiGpBaHLMZJ7Z87RBlbgvXrCjnCxsvZIPrNUpf+Rq1+U8Qjpkn/DoRjiVpbW8DPWA6tk0LjhfGYpmoGThyWbqMlMvoMKqq+lRVDaS/fhzQCyHyMtlXQ+NEpGEYAUnVpzsGxCfnDZ/G5KTv1duJqzLVZ96Q8T4xY2p1RvG3Dzu2OxDFlUw/MNkHtgXbjHoCqgVZTWScq5QtkXiSD97+Bq/uaeKmRUn+dKbEZ1c6OXduEYUOE6W7/86cfy7m8vD/qBVpR+sgLZE1NDQGZl+Hn3s2NrLc2IC5cvmEPxQMhEEncc7cAlZNy+HLBxawe+VPyOvewFf195LUWcA+xg//wNxiB2o6tNjbPfzfzd6ORgDEIH8zxxurMVUWn5yknV17Ww8AILkyrz7odC7GqgaJtu4c1blbvSFOj71IuHQNmF1AypnrldPOXH/HqI4/EErYQ1vUyHnzipCO6KZlM+pwmPQIAZV5Vt41v5iPnDqNb1w4m7s+spJb37eUq5aVsbPVy7fWx/lb8oL0jiNzBQE4Z5+BV7Vgq3uMaGLg8qNIPIlFDRIXRtCbRnwuq1HGpJt8f0OmEjpZwjpJBCSAT58xg6TOwo/4KCZvLflb/kBvaOLvtTp8Eaxq2nFpck3oXKYqYyEgvQHMEEJME0IYgPcADx85QAhRJNJ+OiHEyvR5ezLZV0PjRKSxJ8gMa7pEbYCL/2EBaZLe8GlMQhSFmZ1PsMm4kqKS4UvRDpG05KEgUHzD3yh7w3GKRB9RnQMMA7dFtRpl/KSt8OOQg5RUVD5+15soDa+y3fIJbtr7fmY+dBFz7l5G+Qufwdy6gaKNPyZYvIbfV/yO78Q/lNpxnMQsDY3jlb++Uke1vhdbwoNcNjmzS6wGHVV5Nn5xVao89ZM7ZvMB+Scc1FURK10N41BuJ0mC2TXVAAT62g93fhsIRVExR9L5chMkINlNOiIYUCahAymWUEj0psqihysFPJJEWcp1E69fP+Jz+yNxZkR3UxhvJjjn6qPnZU7dlyUzWFjJlmigF69i5qw5/e/9bCYdBXYjRl2qTKnAbmJ2kYN5xU7On1/Mjy5bwKdOryEQTXCreiWBolVQdfKI5zK9OIdnlWVUdr1EJDywS9cXjuMgRFw3utIku0mPQTc5yl+nMtZJJOQXOU384LL5/Kt3Jm86zyF/658IN29HUSa2kKgnGMXJIQFJcyCNhFH/pqqqmgA+DTwF7Ab+o6rqTiHEJ4QQn0gPuwrYkc5A+j3wHjXFgPuOdk4aGlOdhp4QNeb0zdwADiRhSFeJxydnZsGJSiKpkJzgC+NgtO3ZQI7qwT/tXVntZzWb8QkHSmB4AckXiVMkeolaBu/EYjXoCKiHBKSx78T2y6f38uq+Nv7k+ieqpYDG03/PwbP/QteCj+M68BDVj7+HuLWExjP/SF/eCvzJ9Gqd5kDS0MiYTn+EBze38tEaDwCidMnETmgQipwm9LJERa6VP79vOR2+COuCZfxv5X8IXHnPuJ13+awq4qpMoLedxp7QoF2sPOE4+aS7edknphuQUScRwYA6CRek9nX4KVS7Uq3oHQPn6g1EUeVsulQn0fqRB2l7QnGulF8hLpmIzrjoqG1Jc+q+TBkHB5KI+PCpFmoGyIqRJUGBo7/L55BTyaCT+OyZM3jX/CLmVhVTf9F9yHMuHPFcbCY9G00nY1YCKPUvDzjGF4ljE2ES+tEJSJOl9GqqMxnyj47kyqVlXLSwmI93XklCZ6Vg48/xhAcX1Y8F3YEYDpF+fko7CzWyY0x+W9NlaY+/471bj/j6D8AfMt1XQ+NEp7E3RFlOEFU2IAZQx2XjoRI2LUh7MhHtrEUvFOSi2RM9lX40vfEwxcDMtdk1uix2muhodFGVwUqrNxynUPSRsA5+oy9J4u0bzTF2ID29s51bXjzAL8peI6+7noZz/oq/8lwAfFXnEbOXU/jmL2k67TfIFgcVuXFeO3QZ1BxIGhoZ89dX6okrCue52lAlPaJw/kRPaVhOm5XPHTes5C+v1KXaTI/jSv3JM/Ppw46/px2jCvXdQaYX2Po5LLoDUQqFh4RkQjdBK+FCCKLCiDoJc+C2t3gppZu4pRCDzpDxfjOLHGxSZnLSKIK0g+EQF8mvUZd/Fg6T/ahtNqsVv8+GcRwcSPq4Dx9WCgcQijJBliX+eN1S6roDROIKsjRyQUEvC9ry1hJqM6Hb+wgs7L8A5Q3HsRNCMdgHOIKGBnztXbM5bUc7L9gu4tymu6ltqcVRMxudPDGOs55ADIfmQBoVmldQQ2OS4YvE6Q3GKJR8KJa8AUOGZWPagTQJVwxPZAyPfQ7dYzdN9DQGxNbyMnukGqoqq7Lab16Jg46kg4Q3MwGpWPQOGyqa1Kd/fsdQQApEE3z7oR0sKDRyue9f+MtOR559AeU5ZsrcZlwWPb1zr2f3+7agVq5lVqGdmnwbsUMCUnJiV8Q0NKYKf32ljtteruO0mflYureRzJ8LuqkRfru6Jpe/fXAF88ucmPXjJyAV2E306gqo6nsVY+9ekopKT7C/SJ0SkPqImgvGraFAJsSEEWkSLkhtbfJQoetFdmdedg1Qk29ju1KNI9wM4b4RnTvm7cIpQvTkLO0nwrgsenpwjX0GUjKBUQmRNDpGVc4lSYJSlwX9KB/QhRCU5btZn5yLvmXDgGN84QQ2EQaTJiBpDEyZ28L584r4WdcaAJw7/0mLZ+L+3vQEojhECEVnmjLXrsmGJiBpaEwyGntSolAOnkE7WujSF2o1ppWwTRpUFblrF4R6Jnom/Wjv6GBmdBcd+Sdlve+8UidduFLdZobBFwiRhxe9a+hSA/XQSuUYCkj/99x+OnxRvj+rAV3MR++ij1PqtuCyGHBbDZTnWCh2mRCSRHmOGSEEeTYjMfSpAyQ1B5KGxnA8tKWFmx/byf3O33Jr70cwtG2C0qUTPa2ssRl14776vW3Rd0gqCtMevhxL+wa8A5Rt9ARiFIo+FNvgZb/HgoRkQkpOPgFp08E+quRecGYnIJkNMu3WVIe9eMu2EZ07Gkpdn4TRhiz6C0iduCDYOaJjD37SVFm3bB69K8JskCkaoYvpSKrzrexUqzB66khG+99zesNxbISRTI5Rn0vj+OWTp9dQF3ezx3ESOXvvxR8I0hucmOiAnmCMPF0IjJr7aKRoApKGxiSjoSd1gbYlPIMKSHpzqgQoHgkcq2lpDEegEynqgdjk+jfp8EXYtu4RdELBvfCCrPefU+SgS3VhjHaDOnS+UzzQgyRUTK6hw2BV4yEBaWwykLY2efjbunouXljMjNZHiFlLsM8586gONgB5NiPTC2wY051e8uwGoqpWwqahkQmqqvLHF2r5hv0JlkY3ophcCCWGPP2MiZ7apGTNyWdyVfxH9Eg5VD31QXStbxKIJo4a0xOIUkAfkmNiArQPEZdMGJTwpMrw6wvGONDpI1fpQnJn3oHtEMnCVHB6suWtEZ0/Gk5dy2WDpZ/Y6LIYaE86kQJjLCBFUt13DVb3mBzOadGP+hgzC+3sVCoRKMQGEON8kTh2EUY3BqKXxvHL/FInJ9Xk8hvvGegiPRS89TtaPWEi8YHz4caT7kCUPDmCqnVgGzGagKShMUlQVZW6rgC7WlMP1cZoN1gHbr9qTAtIkeDYd7HSGCFduwEQk0xASigq+QcewK+ambPizKz3NxtkFGsBOjWBEhq6FCAWSG3X23KGHKemQwvVYHfW83kne9t9fPD2jeTZjbx/ngFby8v4Zr0bt3VgW7LpiLKVXKuRhDjkQNJCtDU0huLlfV04Ozfxofi9eGoupeGyR6j7RD1ibna5aicKeTYT02pmcm30G8RNeVQ99UG8Xs9RY7oDMQqEB4Nr6LLf8cZnKCA/2TEhD3OD8ebBPvLwolPjiCw6sB2ioryCVjWXZMuWEZ0/lhaQDBYrDtPRkbF5NiMdihMR7ABVHTPhTQl7ADA7csfkeGPBymk57GEaAMnWrf22e0OpDCS9RROQNIbms2fN4OnIbLbkXUzB1j9gO/gsTb3HPoqjJxDDLYW0/KNRoAlIGhqTBE8oTjCSYH9HAJdZhxTqQbIPLCCZrCkHRzSsCUiTgWA0wY4tG1MvYoFhnTrHEkPdcywJreMp59XoDSOr9bbkph5uIn2tQ45LhDypL4a5KEsmF0kklMDoBKTeYIwP3/EG8aTKdy6ay7T9dyBUBbHo2ow6kciSwGZJd4TTHEgaGkPy3+fW82fjb4g5Koid/0vmljqpKXRN9LQmLbIkOHduEfVRB49P+xa6qAd19yOoR1wf/L4+bCKC7JiYDmyHCForcak+ov7eCZ3HkWw62EeVLl0S7sregTSn2MEOpQra+osemZCIph5s81yufteT8+cX0Y0TORkhHvZyoCswJiKS15P6vHbX5BGQTHoZU14lfmFDtG/vt90XjmEjjE4TkDSGYVV1Liuq3Hyy9z2EcuZR/uJNJHsbjrlw3RuM4RQhrQPbKNAEJA2NSULs9duY+/fpXN/wFb5keABJiSFsgzmQUgJSLDS53C4nKnesb2DrW68DIFRl8nTHi0dwvPB1DijFdC38xIgPk1uYunnvamscctyh1dPhBCSLyYAHB2po5AJSJJ7kI3ds4C/hz7PO/g3WbP0G+Tv+Qu/Mq7GVzsz4OA5buiOcFqKtoTEoDR0ePtX+bcyySvfFd1KQP/C1SeNt9LLgzDkFFDqM3NlSRMxejnPf/wjG3n5YivtSJVCSfWIzkJLuagDCHfsndB5H8ubBXla505k7I3AgzS12sF2ZhsXfMKK8vUQ6IiA/p385WanLTGFJJQAHG+qJxhW6A6lFiHhSQRmhmOTpTV0Tne68Ee0/XiyrymGnUoVo39bvs4WDPmShIrQMJI0M+Pw5M2kLCX7u+AYAlc9+Al/g2C6G9wSj2NSA5kAaBZqApKExCdhxoBHzup/SkMxjmtrE+6L3pDbkzhhwvMWWEpC0DKTJwUt7u5gutbz9xmQpY2t6HaO/kZ8nrmHtrJFnbJSWVwHQ1lw/5DiRzm8Y7qJsN+roxT6qErafPbkHW8s65oiDWBU/7tr76ZnzfvrO+uXhjKNMyLFbUBBaiLaGxhC8+ey9zJEaaVhzM8U1Cyd6OlMCIQQlLjPXraxga4ufpvJLsLWsI9B58PAY9VAb+EEWi44VhsLUvUagde+EzuMQ0USSrc1e5ljSOXlZhmgDVORY2C/XIFBR27IP0j4UGG1IRwa8k9UL5wKwZcc2il//Pt7W/fgjcWo7AzT0BEckIvk9qWtibu7kEmjX1OSxLVmJsXcPvf6jg7TjofS/kVHrwqYxPGtr8vjAmkru2CN4bPr3MffsQLfu18fs/ElFpTcYw6IEEJoDacRoApKGxgTz2oEeXr7zOzhUP+sX/5zuD73Bjg/uo+GGrTDz3AH3sVmsJFVxeIVMY+LwReK82djLTNFMVKTLocawu9ioSLcvbteVMq9k5CstNdOmA+DvPHhU+cU7EYdCsY1Dr0TaTDq6FTuMUEDq9Ee4e0Mjn3OvJ2HKYe/Vr7D3qhdoXfsjXNbsus7k2U3E0WslbBoag6CqKkUH/kOPlMu0U97Tr6W5xtBcs6ICScD/EqcgUJF3/OfwNl2oK/XFBHdhc5bOQlEFia7J4UC6c30DaiLG0sjrKOZcGIG7RZIE8YKU2Blv3pz1/kosVcImDJYBt8+ZkbouFu/9J3k7/kbRq9+hoTtEIqkSjCY50BWgqTd0VKepRFIhEE3gDcUJviNQHSDoTZUQFhRO7M/DO1ldncMupRJZieFv2X3UfUAilF44Gua6r6FxiG9dNJdllW6+ur2E3uJTse5/kHgi5cyMxJNjVhI6EJ5QDFVVMCUDSJqANGI0AUlDYwLp8kf4/T0Pc4P0OB0VF3L+OeeRZzdgtloxOAe/gbCb9YQwEY/0b6mqcWxZX9uNW/HiFgF2S6kbyknjQIqkBJ1ppcWjalntdOdQK1VR3fU84SFq1XWxtIA0jAPJatTRozog1DOi+fz1lXqcyV6WhNYTmHM1ToedmKsGh0WP22LI6lj5diMxVUbVBCQNjQHZvH0Hq5Nv0VxxGSbjyHLUTmSKnCZOn1XAffV6gvlLsNU+ejjzwxhJi+i2ic1AKspx0kouct/QLtPR0OmPkEgqQ46JxpP89Ind/PTxXfzddTvF3s1Ez/zBiM9ZXFZJp+pGad2S9b5KLF2Krh9YQBLpf7OTkhtRETianse9519UP3w5pS99kUgsgScUp6UvTH13kIM9Qfa0+6nvCtLYG6KuK0hjT+gop1I00IeiChwOV9bzHU8K7CZ8rpTjyti0Hv8R4pea4cKRhsYh9LLET69YQCSe5DlWYPQdxHNwG029IWo7A0i1z+HrahqXc/cEY1iJIKFoJWyjQBOQNDQmkF/d9xy/jv8gdeE9+/vk242UuS3U5NsocZkH3c9h0hPGeNhirTFxvLSviwXGNgDWR1OdSohODgEp4EutZi6cnr39/51sybuImsR+gge3DDrGkAiQEDrQD/6zC6kSth7VjghnLyB5QjH++fpBvl6yBUlNoFvxQcpzLFTlWajMtSJl6Y7IsxmIoice1wQkDY2B6Fh3O7JQqTj7YxM9lSnLNSvK6fJH2eU8FXPPDoJdjYRjSZxKLwoyWIbuXDnelLjMNCiFWINDu0xHwut1PXz67rdoffUeAnUbBxyjKCoPbWnhjF++yPZXHuJF+7c5JfICHcu/jLTk2hGfe26xk+1KFcoA3cOGJZ6+vxpEQMLsRpVSXTwfsr+HmK2csnVfx9yzg5z991Hw1m8ODw1EEvjCiX79NbzhOAe6AmlXhEoi1EdQWBBS5mXYx4rSGYvZok4nb+st+I/IrFEihxaONAFJI3NmFNq5ZHEJv29OLbwmdz1GqyeMbts9THvqegxPfGFcztsdiJIr0j+zlsmVNTaV0AQkDY0JYk+7j4vrf4xTjtF+yb/IL5ue8b42k46gapx0LeNPNFRV5aW9XVziToVLb1LS4c2T5N+lq6sLRRUsrM4+gPSdxOZcRVTVEdpw+4DbE0kFU9JPVLbDMB3QrEYdvaoDXdSbcXh1XzBGbaefR7a2EYolOd2wi0jObGwlcwCwm/TZfaA0+XYjMXREw5Mk+FxDYxKhqiqlna+w3zAXd9nsiZ7OlOXM2QXk2Yz8x78g9cbeJ+gORMnHQ9jghgkWDEx6mVa5hJxIE/Hk2AlIsYTCl/+zhZqdf2Dx6zcRu/9TqMrbLqROf4S7Xmvgkj+u42f3PssvEzfzL8NPKDQlOHjWLehO+1JWmXbvZE6xnR3qNEyeWohlueAWD6fy8XSDuO4kiaQlHwXBL7rXsnP5j/BWvYt9Vz1P78yrKdz8O2b+51TKXvwcumBqkUmKBZAjHsQRmXuRuEJTb5g97X7UsIeIPHDm0kSzdnoeP42/B0OoDcObfz/8vhxLi0laBpJGlnzurBm0JJzskmaR3PUI/7vr/6h5/RskZAuWg88T6W05anw8qdDpj4w4pB6gJxAjH0/qxQQ3L5jKaAKShsYEcfszb7Ja2kXvvA+SP31ZVs4JWRJ0iVzMkY5xnKHGcGxu8tDqDXNa7EVCxatoJH0xGkUG0liu/gZ9vQQwMb1w9CuD86ZP42llOQX1DxMdoHTSF0ngECHi+uFvfm1GHT2k5xTKrG10VyBKOBLjoc3NzMw34+zZilK2KqvPMBAui4GYqicei4z6WBqTB1VVj3lr4OORPW1eatSDxAq14OzRoJclrlpWxv2NFkL2KgwHnqQnGCNfeImb8yd6egD0mSqwKn4SgZE3N3gn/3itgdP8j/B5/f9olUspCB/g13f9l98+u4+r//waq25+jm8/tJNIJMqDuX9kldhN24qvc+Ddz2FefAW59uwy7d7J7CIHO9UqJBTU9h1Z7SslwsSEccgFkWTuTLpLz6JLyufb23OpPf0W4vZyWk+6mfYVXyWSOxdnw5PM/N85TL//fOb9Yy5z/7mQeXfMoeahS3HVPnD4WPGEghzzE9dPTiFmdXUuG5S57LOtxP3W/xGPhlEUFTmeXjDTBCSNLKnOt/GbaxbzglhBaXgPP1d/wwFRzsel7yLUJIGN/6DNG6bTF6HVE2Zfh58Ob5TargDecBxVVYklFPyRzLvo9gSi5It0btcEZ89NZTQBSUNjAjjQFSC652lkoWKZfyE2oy7rY3TKBbiibeMwO41Muf+tZpbqG8kJNaAuuJqC3NzUhhEKSImkQotn7Jww0UDKDu/KMhdoICpyzDypPxtz0kdk15P9tnvDceyESBqGF6tsJh29avpmM5TZw0oiEqD6v+dwSetveP/0CFLMj75qdVafYSDsRh1xdCTjmoB0PBGOJ0mMUwjnicSW7VuxiijFM5ZN9FSmPNesKCepwhbzGqyt6+nq7iJfeFCtk6PjVsheBYDac2BMjucNx/n7c9v4iuF/BErWkvjgUySEHvf+//G75/bjC8f5yMnT+NN7l/CvWesoCO6l+fTfIE6+iVllBRSMUjwCMBtkwnkjC9JOCUhDz8F/+V10nnsLP79qITtafPz++f1U5Vpw2Kx0LbqRxrNuZf8VTxEsXEHS6KJj2RdpXf09uhZ+DJGMUv7i5yja8CNEIoInFMc6iVuLu60G5pQ4uFc9F13UQ6RhI/5oAjupsHEtA0ljJFy6uJSrP/xl2orO4OApv2Lbux7kpVAFm8VcjNvuprk7QEN3iNoOP/add1P9yJXQuZvGnhC72nzsbffT0B3iYE8wo+Dt3mCMQuFJvdAEpBGT/VOrhobGqLnrtYOcJW8hZsolZ8bIHoK9hmJckZcgEQPd6AUCjeyIJpI8srWNX7o3oQQMmBZdSc6eLeBnRCVsqqrS2OXB9uaf4PRPgHX0tdnJsI/YGNnhLUYdwZKT6G52Ydp+Hyy98qjtvnAchwihGodfTbcZdfQeciBl0IlNUVQKN/wEq+8AV8rN+AwrAdBXrcn+g7wDu0lPDB3JeGz4wRpThlDAiyERhoLRl2+eyLTtexOAnGlLJngmU59peVYWl7t4KLyItco9SPUvkS+8yI6JDdA+hOKuhi5QumuhZvR/W+/e0MjViYdw6Hx0nvYdKsrLCdWcx/ua1rPyfX8kz24l+cbfca5/FGv7BjzTL6dg5VWYDWNbzldZVUPPFgeWli1Z7adLholJQwtIeoMZg0lw2ZICOnwRfvLEHv7wQi1fOX82oXiCeEIl5qji4Hn9S787ln2J4td/QP7223Dtv5/dpVdhpw+9tTSreR5LzpiVz90vVvBto0CpfwVv3gpspBe9NAeSxghxF1aw+6I7AVhj0XPXhxw8cPc5/CD0O2r+sZg9SgUFwk+F1EQCmeJHruOlU+4mZimhKs+KXpbwhRO0ijDlOYNklqXpDsaoMfhRhQ5hntjsuamM5kDS0DjGxBIKj21u4kx5G4nqs0Ea2a+h4qxAQiXWOz6dCjSG5vndnUTCQU6Kvkyk6kxkqxudOX0DNYIQbU8ojmHHvyl44xckt/13TOYoYj6ShrG5qTPqZE6eVcTDidVYDj5LPNh31HZvOI6DUEarp7ZDXdiAZKBr2PHJulfI3XUnm+X5WEWUgi1/JGnJB3fViD7LkdhNOmLoUbQQ7eMK0wvfw3LvZRM9jSlNOJZEdO5OvSjQ8o/GgpOm5/JQTylJnRlX+3ry8GJ0l0z0tAAwF9SgqIJ41+gdSLGEwv/WbePj+ifwV19A/sz0QtniazFEeyl+9TuIl35C6avfQI700jPvgyjn/3zMxSOApZU57FCqSLRk50DSJSMk5KEFJFkWWNMO8o+dWs37V1fy55fruPWlA1TmWChymjAbBrnHk3S0rf0BdRfcQzh/IQsP3Mo0qQOzffI+1J4yI58+1UaPbSa6pvXUdQewiTAJnWXCc7w0pi46WcJilHGYdRQ7TaypyeXzn/8GD06/mabckyhzyBhdhfwj9ybeL/8MNRpk1bNXUnf/9+i468NM+/cZ5G27Fa/Phyc09GJgTyBKic6HYskf8fOXhuZA0tA45ry0r4uqyE6sxgDhWeeP+Dim/CrogHDnAQwFNWM3QY2MuO/NZr5rvg9LtIvQylR3IovJSBgj5hE4kLp8QSq33QJAsmMno70VC0QTmJIBhGnsVjPX1uTxteRJfEh5ktD2B9GvvuHwNm84ziwRRGdxDXucPLvxcAmbEuge/rPufZSYZOLa4BfZ4PoWzkgL0RkXIg8T1p0JdpOOJnSoCU1AOp7Qtb2J7NXE9dGwob6HGTQStJRh1dwFY8Lq6lz++IJMh3Mx07pfQC+S4Cqe6GkBUJrnoAM3ordx1Md6eGsrZ4afwqwP4z/9a4j032rz3HfRs+Cj5G7/CwB9M66i5bRf4rQYh3UOjJSlFW4eVadxsvdR1HgYMUyX0EPolSjJYQQknSQORxAIIfjuxXPpDcX4xVN7eWV/F7+4ahHTC+x0B6JE4kkMskQ0oRCKJYklUmHiwZKTCJacxH+ffoHyg/fzwVUfGt0HHkeWVrixGGR2GhZySvvD7GnpxkVIK1/TGDWVORZ08tuCjttmYtkFN+AJvY90YhHLJDhFL7NtTzXTNv+ML/XeRzBuojZexqKNN+OqfYD6yx7CVJyHST/wnWWLJ0yx5J00pcNTFU1609A4xty3qYlPGx8jqbdimnXWiI/jLE51betuqc1o/Gi6FmgcTasnTGLfs1ynPkbv/A9hmZ36d7QbdQRUU9YZSJ5QDNO+RzH6DpLUWxEdu0Y9x/quIHbCGKyuUR/rELOK7NQbZ9KpL0XecbRLKpWBFEafwfkcJj1xoxsFgRIc3oHk6WymJeHijPmVqIuuA0CqGH2ANoDVkMpAIqkJSMcLyXgMQ+9+RDICsdBET2fKsqXJwyzRhFQ0b6KnctywrNKNThJsEvPIUdINBGyT40Gm3G2hWc1DeEYnIKmqyt9e2s8NhucIlazGXrHo8DYhycTO/iH1599F+7IvE37X75hb4ho38QigMtfCAcMsZDVJpP71jPaJJxWMahRVN7TYpJME1iNcUzpZ4g/XLuHnV6Yykc7/7cv8a8NBXGY9ZW4LBQ4T5TkWZhXZqc63YtK//Rj2VjCP/7k/gjwGpdnjhUEnsaY6lycDNUjJKOG6DeTpowiTJiBpjI4jxaNDlOdYmJZvJd9uJN9uZEaBnao8K4UzV9J7xX3suWYdb1yxni+7fs3HY5/H3Lsb58vfpaEnSDyp9DteIqmwvyNAgeTV8o9GiSYgaWgcQ5p6Q6h7n+Q03sS/6ouIUYQlllTUkFAlQp31GY3vDmoPyGPFvRsb+bbuLoL2aqRzvnf4fatRh181k4xkKyDFydv+ZyLO6UTnvhu5ew+MshtbXXcAuwhhsbtHdZwjkSXBssocnmY1ppbXUcNvl7EFQiEsIorBmtn5ilwWgpIdNdgz7FhPZzM9ws1PrliAceUHCBavRjf34hF/jiORJEFSGCCZeRcPjclNpHMfkpK2sYf7hh6sMSj7WrqZJrUhawLSmGEx6FhU7uLOliOyuSbJg0yZ20yzmo8p2DL84CF4aW8XJd2vUKx2oq74WL/tRQ4T1rnnEj/pC5Tk2LLqQDsShBDEyk8lhg5lzxMZ7ROMJjCLCMpwApIs9XvwFUJw9YpynvjcKSwsc/HNB3Zw5q9e4s8vHaC203+406rVqKMm34bLogdS94flOZbDbq3Jyikz8njcV42KIKdrIwWGmJZ/pDFu2Iw6ipwmipwmDDoJIUT69wTi9gpyc/P46RULMS+8lNuSF1Faew8NL/yDlr7+DWkaekJEEwquZN+kEe6nKpqApKFxjFAUld89uZVv6e4kYK9Bt/ZTozretAIn7eSg9h3MaHxPIDagIq+RHYmkQsOGh5khtRBd+3lczrdFQJtRRxATiYgvq2PKXTuwdG+nb971KPnzkOIBGOUqcF1nADsh7K7cUR3nnayoyuGBwHyEmiC697nD70cCqQd1XYaOp2KnmT4cGYVoGyLdJC35uCwGzLnlBK59CJFbPaL5D4QiG5A0B9JxQ6J1+9svwr0TN5EpTrhtNzoUdMXzJ3oqxxWrq3PYplYTxph6Y5IISHk2I23kY4t2QDIx4uP849k3+JLhAeLWIqwLL+m3XQhx2IlzrJg3rZhXk/OQ9z+Z0eJMMJbETAz0I59jeY6Fuz+6ir9cv5xcm4GfPLGHs3/9Mqf+4gV+9Ogu6ruDSFLqYTjPbsATjlOVZx3x+Y4VJ8/Ix4uNTssMZoa34pYjmoCkcUwx6WVmFKbE10KHkbklDr5x4RxmvOen7NDN5cw936V967N4Q0cvDO5t9yOhYI73IE2S5gVTFU1A0tA4RjT1hVi2+xeUiy6CZ/8cmyWzOvzBsBp1dIiCjFYLo75Oip/5FIHu5lGdUwNe3NvFVbGHCBrycS2/5qhtKQHJjJKlA8m++98okoHb+pZy/WNBANSOnaOaZ3NXHwaRRGcZ25bAK6py2KzOIKJ3oux9ezU3kQ7VFiZXRscpcZnpVuyI0NACUocvglvpw5zzdk5Igd2Y/cSHQjYgKZoD6Xggqag07X7j7TdCmoA0ErzhOC7ffgCkQs2BNJasrs4ljo5WR7q0a5KshEuSwGssRiYJ/raM91MU9XCJ/L4t6/lZ1yeZLpoJnfljkPXjNd2sOHVGPs8qyzD5DxJsHf7aGowmMBNFGEYncgkhOGduIQ986iTWf+1MfnTZfGYU2LnztQbO/NWL3HD7Rl7a10VjT6rUdk312C74jAc1+VZKnCZeic9iidiHS/WCVsKmcYwx6mTKc1JloSa9TIHdxNLqIjwX30mTKGT+K5+guX43kXjy8D57233kCT9CVZDsmoA0GjQBSUPjGPHyw3dwrfwcjbM/Qs78M8fkmD5TCe5Y+7DOosSux3DVPYLY9DeAwxZqjezZuHE9p8rbSSz7MJL+aCHDZkplIKnZdGFLxLDte4A3jKu5fbOPfWqqtCHRPjoBqaO7M/XFGIdbLixzopN17LauxlD3HPF4SnhJhtIxhxneSJY4TXQkbRAauoRtU20bDhEip7D88HtjbfFXZSOyMnTnDo2pwYt7O+nY/xYJYUi9oTmQRsSeNh+zpCaSkh5ytSYNY8namjx+eOk8bCuvI1a2dlK5N2K2VNOFZIbOZoBoQsEbTl0H2p75LSZi7L7oIWxLrhyXOY6EeSUODrhPBiCw9ZHDAdaDEYgmMIsY0igFpCMpcZl53+pK/v7BFbz6tTP53Fkz2N7i4wN/38hn7kl1iJtZNHl+FgZDCMEpM/J5KjgDk4hjDzcjtBBtjUmA06ynpqqczSffBqqC+vBn2dfmo7EnRCKpsKfdz0J32m0+SYT7qYomIGloHAM8oRjzGu6gVV+B5fzvoB8gLG4kxO1l5Co9hMPDBMU2poIjLTvv5bX9Hdz+agObG7VskGyJxJMY6p4BwLL6g/22W9MOJJFNF7b9T6OL9PLXwBquW1VBWVEhXXLhqBxIqqri6U0LM6PI2RoIk15mYZmTJ2OL0EX76N7zKgDxUF9W5ytxmelVHcM6kHbXplpKFxVXjHzSwyDpDMiq5kA6HtjT7meW1MQOMTP1huZAGhG723zMFk3EXDMmjYvkeEGWBO9fU4Vl+fsIXPvQRE/nKFRnJQDJ3swFpFhCwROOs25fFzMDb9Ccs4Y5i1cjj3O2UTYIITh1+SK2KdOw7fo3bZ2dQ44/5ECSjeNTUlZgN3HT2TN59Wtn8MNL5xFLKuRYDZQ4h+76Nlk4ZWYeG5XZKGrq31gL0daYLBQ5TKxYsoQXyz/N/Ohm6h77Jb2BKPs7A+xp97PYFUkNtGkOpNEwJk+xQojzhRB7hRC1QoivDbD9vUKIben/1gshFh2xrUEIsV0IsUUIsWks5qOhMdn41+sHqaaFRNka8hxjt8Ik51QiCZWe1oYhx+lbNhDVOzCE2nn6jh+y+ulL2Xrbx/jAX1/DF9EenDPlxb2dzFYPELSUonf2b71sM+oIqiakbASkzt0AvBSfy8qqHGYV2dmrlCOl3x8IVVXZ2uShqTdIMNo/q6IvFEeOpXOYxmFl8IIFxdzTO4OkbML+2s/o84fw9KaFoAwFpGKXiR7s6KIeUJKDjmtqTIXE6wb4fo8VQmdEpwlIxwXNra2UiW5ejKUEJFUL0R4Ru9p8zJGbEIVzJ3oqxy1Wgw69PHlEFgBzfkqoV/oyz+BLNr9BrGkLdz78FMWil2mrLh6zRbKx5NLFpfw88R5MgUZyH/sIJAZ3nQYj4ysgHcKok3n/mipe+tIZPPzpkyZ9gPYhTqrJwyds1EpVAJoDSWPSIISgIsfCnIs/yy7zUi7r+AP2O0+na+vTNPWGmGFJL7hrDqRRMeq/8EIIGfgj8C5gLnCtEOKddxz1wGmqqi4Efgjc9o7tZ6iqulhV1eWjnY+GxmQjmkjywPrtuEQQd+XcMe04Yi9KlRZ0NO4ZdEzS14HBW8//hc6nFyff1d/FTF0HH9Q9zXkNP+POdXVjNp/jnUe2tbFYrkNXtnTA7TajjgBm5Hgw84MmwijIxNCzsMzJ7CIHW+MlyH21A3YG80fifPQfm7j0j+vY/NLDJPY82W9MU28Ih0hfJMfYgQRw+ZJSIrKd+wpvwta6nuDTP0aO+bM6X6nLTIeag4SCOkjehjcUJ9zXmnoxjhd7oTeiQxOQjgeUjl0A1BtmExVGlDFyIB2Z83IicLCllUJ6kbQObOOGJAlsRt1ET+MoSvPcdKguIt2ZdXcFsD39RSqevJ45fS8AYJp9znhNb1SUusxEK07lF4ZPYWt5heQbfxt0bDgcRhYqOtOxCbV2WvSUuY9dqPhocVsNnFSTR7NzWeqNSVSGqaEhhKAiz4567b95Yfb30SsRTn39w3xLdxf5pO8JNAFpVIzFEsFKoFZV1TpVVWPAvcClRw5QVXW9qqqHlgFfB8rQ0DhBeGZXB85gAwDWotljeuyK2amLd6h+46BjYvWvAbDfuoTwik8Tzp1Pw9VP07n4M1yne4H4+luIJwZ3gGikiMSTvLW7ljI6kcuWDTjGZko5kHRKJPMuNvEIMWHAYdJRlWtldpGdBrUIoSTAe3To+ZYmDxf93zrq9m7lCeM3uGTrJ3A89IF+K6mNvSHsHBKQxn5l0G01cO68Qm5uXUr39HdTuv2PLBIH0ufLTEAqcppoUvMBSPQ0DDimvidIHulspXHsVCTrjRg0B9KUR1VV3N5U6WfBzBX0qbZRl7DtavXxkTs38ezuDoKxkXemmkrEEgpyV8oBqSvSOrCNJ5PNcVLmNtOs5qNkWsKmqug89Zij3XxWdz9R13RwlQ+/3wRx2sx8bvWtIWopRmkevOghGkm5iPXHSECaitxxwwqWn35x6oVWwqYxydDLEmV5bvJOvoG6K5/mAd0FfFj3BPMb/4lisIFB+90eDWMhIJUCTUe8bk6/NxgfBp444rUKPC2EeFMI8bHBdhJCfEwIsUkIsamrq2tUE9bQOJZsauhjtr4DACl/xpgeu6i4jANSFTkdrw86Zv+bzxBV9Vxx4YVYz7iJhqueoHz6fIznfIeDeafyqeQ/eX7dK2M6r+OR9Qe6mZGsBUBXPoiAZNARIJ1hkGkZWyJMGAMLy1xIkmBWkZ1GJS2W9L29Cnz3hkauvGU97kgLj9p/Rpns4RFOSQlNfQ1HHbKpL4RdhFMvxsla/p4VFfgiCZ4r/igqgsvldahCAoMto/2NOpmAObWWoLxj/ofwhGLk40m9sOaNwawHRqc3IguVaCw6bufQGH+6/FFmKnX49fmYc0rpVWwowaFD2ofjJ0/s5tndHbTd82n2/+WGMZrp5GZbs4caNSUgaA6kE4sSl5kWNQ+dP8OOrcFupEQYv7ChEwrUnDW+Exwly6tyAOi2zkAMkTMYC6Wu3wZNQBoUnSxhnHkG/pqLoPKkiZ6OhkY/nBY91flWppXkUXrtH2govxxDzINqHb8FyROFsRCQBlo+GdDnLYQ4g5SA9NUj3j5JVdWlpErgbhRCnDrQvqqq3qaq6nJVVZfn5+ePds4aGseMbc0eltt6UCU9uCrH/Pit7hXMju+io9dzVLvKQ8hNG9ivn8m5CytwWQxU51sx6mScVgO2q/5EWJipWNcvukzjHTy7u5NlurSgU7xowDFWo0wQc+pFhgJSIhoipKTK1wCKnSZ6jSUAqL0NADy0pYVvPridM0sV7jXdjIE4jy/5M3+NpksFevYfdcym3hBFhrQYMk4rg2trcilzm3m4TmW7cQlmEUuJVdmsqLvKURCog6x2e8Nx8oWHuDFnXIN8dYaU6OcPDhNGrzGpqe0KsEDU43PPI8dqoE+1kQyO3IG0ubGPV/Z389W1dt6ne445PU8NmZsy1TlUorf+QA+zpSaSBgc4SiZ4VhrHkmKniWY1H2ukfchsukOoafH/R7HrOGBZjLzk2nGe4ehYXO5CLwsa5Crk3v2D/j7HDzmQzJktiJyoGC1OvBf9RevUqDFpsRp1VOZamVPqIHrezwjlL0bNnzXR05ryjIWA1Awc6VctA1rfOUgIsRD4K3CpqqqHlwRVVW1N/78TeIBUSZyGxnFBIqmws9XHTH0HSVcVyGOfd6CbfhomEef1l5+mtvNo0SKaSFKpNBHKmXfYKm/UyYe35xaVs7H0euYkduNr3TfmczteUFWV53d3crKliYR7+qBlWjpZIiqncwyimQlIPr+fiKpnYZkLSJU05BRWEkdH44Fd3Pivt/jCf7ayvEjHb5M3o4/20fCuuzj55NNoECmzp9J1tIDU2BuixBxHRYBhfLIJJElw9fJyXj3Qw92RtQCoWeYtFbgcdIsc8AwsIPnCcfKFl6R1fBcN9MaUgBTUBKQpTW1zOzWiFUoW47Ya6MOGOooStj88X4vLoucqnkVGwUyMnn2Duz2nOi2eMP5InHW13SwytJDMn5udIKwx5bGb9HTrCpHVBAySTXckiZ7UospbynS2nPVPdGVLxnuKo8Kkl1lQ6mRDuDjl3u0e+L4nHknlGAr91MklmijsJq1Lo8bkx27SU1mYR90l/yNx5R0TPZ0pz1gISG8AM4QQ04QQBuA9wMNHDhBCVAD3A+9XVXXfEe9bhRD2Q18D5wI7xmBOGhqTgv2dAaIJhdJEM0rO+KzQFC04i6QqEA2voKop0eoQnV292EQEvWvwVeT8FVcB0Lj+vnGZ3/HAzlYf7b4ws5L7UYoXDzlW0aVXLDN0IAUCASIYWFT+tvgyq8RJo5LPjp1bWVfbzYcWGLhd+gGWvj00nX0LBbNXU+q2MLuylF7hItG596hjNvWGKTTEwGgDafy64Vy1rAxJwMPRJUQlCxizE5CKXSYalTzEIAKSJxQnT3iRxjH/CEBvSLnGgqEsws81Jh2Rxi1IQsVcuYwcqwGvakOOjKwL25M72nhuTycfXFmCa/fd9LgXA9C18/kxnPHkIp5U2NfhZ+fBDmrUJtA6sJ2QhC2pNWG1d/ggbSXtku3WFfGu+ePXKXMsWTEth2e6UyXR6iBlbIlo+lqgNx+raU1Z7JMsCF5DYzBMepnyXCd6vWGipzLlGfWThaqqCeDTwFPAbuA/qqruFEJ8QgjxifSw7wC5wJ+EEFuEEIeS6wqBdUKIrcBG4DFVVfu3FNLQmKJsb/EioeAINyPyxjb/6BAmu5sGw0xWeh5j5n2no6z/v8PbutpTD+bW3MFjyebPX8RutRJLnfarNxjP7urgXdIb2OLdiJozhhyrHArmi/ozOnYyFiKMkSKH6fB716woJ+aoZK3bz2ufXcxXmj6F2VfPwbNvw7XwAhzpFb/rVlWwP1lEw76tRBNJOv0RovEkLZ4wefoI6ji31i1xmTltZj5hTOyf+2mUBVdltX9FjoWDSgGib/AStgLhRdjHV0AyGI0AhELhcT2Pxvhi7NoGgK5sKW5LyoGki3lBUYbZ82gaugN85b/bWFTm5GrLm+jDXSRP+RL7lFL0TevHY+oTj6oid++lfc9G7tT9GJMSQp71romelcYEoLirAEj0DN+hVe2tpwcXi6uLsUwRIWFFZQ77kkUkJT3J9oHXrJVY+lqgOZCGZSw7C2tojDdOix5Z+5kdNWOyNK2q6uOqqs5UVbVGVdUfp9+7VVXVW9Nff0RVVbeqqovT/y1Pv1+nquqi9H/zDu2roXG8sL3Zy0xjH5ISQx4nAckgSzQXnEqB2osu0IKoe/HwNl9XCwDOgsEFJINOYpfjFKpC2yGgBdS/k6Si8tCmOr5ruodIzmz0i98z9A6H2tlm6EASiQgJyXhUN555JU5mzF6AM9KMqH0afaiDg+f8Hduii3FZ3l45uXRxKY6yeeRGGvnCXetQnv0R23buJKmoOKXwuAVoH8nHT6thQamTgnO/iFj72az2XVDqpEnNRx9qh0T/AGtvKEa+8Iy7gGQ0pVaZQ2FNQJrKFAR20yvnYc4pOZyBJKFA1JvxMTq8YT59z2YSiso3zp9Jzpu/J+KeRe6iC9htWEiJf1vmHRanEnsfp/LfZ3Lha9ewQNRTf+afkGedO9Gz0pgAjHkVJJBQeoZ3IIU66zio5HHhwqmTlbW8yo0iZLpM01AGE5AOOZAMmoCkoaGh8U7Gr7ZBQ0ODbS1eTslJPbyMdQe2Q7gtBloXfIpF0b/QnHcKwtN4eFu4NyUguQsrhjxGctaFSKj0vvXguMxxKvPkjnbOCTxIkdJB3ynfHzbHShzqQpZhBpKUjJCUjP3fz6lCivkRO+8nYcrFPfd08mz9x82at4Rc4Wfegb9StPX/mPPk1VSIDmyEjomAtLo6l0c+czIFDlPWqzpzSxw0qwUIVPD27/oTDXkxEUOMcwmbyZR6SAiHtQykqYqqqsxI1tJmmY1elnBbDHjUtJgbzryM7X+bW+hoaeRLSwXFLU9h8tYSWP1FZFmmJ385ZjUMbVvH6VNMIOkw5JsNn+Fzrt/jWHrlxM5HY8IocttpUfJIdh8YfnBfA80Ucu68qdPVyGUxsLjcxfZEOaJjJ+FY/7DwaDh9/dYcSBoaGhr90AQkDY1xIhJPsrvNxypDehUvb3xS/yVJsKQqDz8W2shH9jWDmuqmk/CmQjANzqFXB2cvWkOTkk9o+0PjMsepiqqq3PbyAa40bCBQuALrnOFbFEvmlGijRjJzPcjJKKrO1O99KWcaAMaG54lXnYbb1n8MgJQ/E4CP6p9gr1JGIhLgP4YfYA40jVsHtrHCYtChOFPi5qFuPkcigp0AyOPsQDKlHUiRiOZAmqoEogmK6SFoTf08mQ0yITktIIUyE5A8oRjPvvgST5m/yYe2XE3ZS18g4pqBdfEVABiqT0mdq3bd2H+ACUYJ9qAImb/4VrFwycoBxWqNE4OKHAsH1UISPQ1DjkvGYzjinQh35eGy6qnCOXMLeT1YhD7UQdPBWkKxt12Fqqri9/tSL7QMJA0NDY1+aAKShsY48c/XDxJLKKwIvUK0ZCVYc8ftXDML7LgtetpEPiIZgWC6FC3QQRwdWHKG3H9eqYuXpJUUdr2ecXbPicCbB/toaG5hplpPtOK0zG6SzW4SSCT9nRmdQ6dEUQYQkHCnBCSBiqg5c/AD5E4HQK/G2TLto1wT/SZmYpiCLYgsu6JNBO6ylDMv3Nk/b0MKpztojePvDoDZlPr+RzUBacriCUaxiih689tdB5Mmd+qLcGad2J5dv5G/qt/BbNDRtuJrhAqX03fqDzAbU7/31dOq8aoW+pr2jPn8Jxo12EVQciBLMteuGNqxqnF8M73ARpNagME/cDbdIbbt2okOhZJpc47RzMaOc+cW8qyyDAWZnM1/oq4rSKsnTIcvQn13EDkZSQ3UHEgaGhoa/dAEJA2NcSAUS3DrSwe4oiKE07+P+KxLxvV8kiSYU+xgZyj9wJQuYzOEO/HJ7mFbMcuSQMy5GD1x2t58dFznOpX431vNnKzfh0DFMP3UjPaxmoz04ELNoAUygF6NIHQDrHK6Kw9/aZw5hIDkqkSV9MTN+Vz1vk/ymfdcyqPzf4simxD2oozmMJFUVtYQU2W8rbX9tkkRT+qLQ0LAOCEbDglIkXE9j8b44fOlHAMG6xGuu7RwrgR7MjpGfPfj5IgATRfeTfeiT1F/4b045r2dAzS/zMVBtQhvyx7UtMvzeEEJ9tCRtHHm7ALcVq1DzYnMtDwrjRRginsh7Bl0XGPdbgBmzZp/jGY2dtTk25Bya3jefA45e/6FztdETyBGpy/KtmYvFtKZfJqApKGhodEPTUDS0BhjYvEkv3pqH92BGB/NTXcFmn/puJ93VpGdNzzp/B1PI6qqYot3EzbmZ7T/WedeQo9qp2Pjf8dxllOHaCLJY9vauCKnDkU2YqteldF+NqOODsUNvtaMxhvUGMIwgAPJYCVpySeWMwvhHDwEHVlHeOH78a35GrLeyEWLSrjmiqtoeu/LcMY3MprDRDK/PIdmNZ9o+26SytEP5XIsXUZgdo3vJORUuU4spjmQpip+X6pMzWJ723Unp51rieDwDiRFUaHnABFhRhTMpjLPQonLhPWIzlIOkx5z0QycoSb++frQ7oypRqC3nW7FxuVLhvhbo3FCYNTJh0tBGaC0+BB6b+p3wFY8/RjMamwRQnD2nAK+570IEJSu+zpyOCU013UFMIkoKgJ0WimnhoaGxjvRBCQNjTGksSfEJX98lSdefYOvF79FdeujhIuWY8od/5KAWYV2DsRSTo1k30H6QnFyVQ9xS0FG+xe5rexxnExN36v0+TILgD6eeXFvF75IgiXJHUSLVyD0A2cQvRObUUeb6oYMHUhGNYY0SKeXyKrPEl7zxWGPET/v5+hXfuDwa50sUVY1EwzWjOYwkcwtdvCCspTy7nX4Ot8OgI8lFMzJdDmlyTW+k9ClHBfxqOZAmqoEA6nMMbPtbQeSwZa5A2lvh5+SZCteSyWlORYcJj25A+QAVc9aSKnUw08f3cqtLx3oJ3pOVRL+LvpwcPqszK4XGsc3+txUCXWip39p8SGktOCCdWr+zFy5rIwWNYeHCj6JrXU9s/5zKrPuXcsH3riEEtGbyj8axr2toaGhcSKiCUgaGmOENxTnA7dvJNTXztOOH/Dxvl9i9NaRXHDNMTn/rCI7ASxE9Q7UviZaPWEKRB9SFmVMpWvfjV2Euf3O246bB6ORcv9bzVSYIuQE9qFUnpzxflajjnbVjZSBgBSJRtGLJLJh4KBOdfWnkBcO3w3JYpCxG4/uDpdtR7SJwqSXecl9BaAivXHb4fe94ThO0q2UxzvLKe1Aisc0AWmqEj4kIFnf/llx28z04ED1tw+7/+t1PVSJdvQF07EYBu+0KOdNR0LhyuokP31iD+f8+iV+/9x+/vtmMy/s6SQSSxJPKiP6DJF4csL+7hpiHiRrHmaDPCHn15hc2EpS2XTRrsE7sanRIAnkKevSmV3k4LLFpXy1eQ1vnP8IvsqzCectIDfezoXyBlStfE1DQ0NjQDQBSUNjDEgqKjfe/RbNvQH+nX87lqSfugv/w573bsK85qPHZA4zClPhsR59EarnIK29XnJEAJN76A5sR1K18lL8hgKWdj7Ir5/ZO15TnfR0+yM8v6eTr+W8BICuOrP8IwCbSUeH6k6VX8WGbgvv96ccNjrjwDeqRp2ENYMHOr0sIabwSmlR5UyeU1dg23EXxFKikTccxymCxGQryIM/0I8JcsqBlNAEpClLOJD6XbLajxCQLAaalPwhy3AOsbG2nTKpG2vxMN0yc2oA+P5JJm5571JybQZ+/cw+vnTfVm644w2u+vN6bn+1gYc2t9DUG8pKEIonFSLx/i3FR4syzBx8oQh2xY8jd/JnpmkcGyqLi+hWHQRb9w86RooHCIup7dL5wjkzURSV322TqD/lNzSedSv1ogILERgom1BDQ0NDQxOQNDTGgrs3HGRdbTd/mLOb4u71tK/5Hrnzz6SkvOqYOUFsRh3T8qw0KXkIbzOejubU+3lZZFrIOqRl13OqvI2n1m0cl4eZqcCtL9VxHU9yQe+deKZfjrF6bcb72ow6OtR017thXEiHBCSDaWABaaoLQ5myvCqHv8TOQ456UfY8DoA3HMMpgiQMjmH2HgMOlbDFouN/Lo1xIRZOOZB0pre7sOVY9TSp+UjexsF2A1Jtu1sb9iCjIOcNk+eSmxKQ1J4DrKrO5TsXzeOfH17FX65fzqdPr2ZN13/pfOqXfO3fr3PKz1/gvN++zE8e302bd/h8LcOjn4H1vx92XKYkFZWfPLGbBd9/is2NfSQGcUZt2VuPJFQKi7X8I40U0wtsNKoFKD2DO5CkeIioNLVFlvIcC184ZyavHujhq//bRncwxv8SJ6U2DlJarqGhoXGiowlIGhqjpNMX4edP7mVlpZvTev5DOGcu0vIbcJr1mbV9H0POm1fE9qAT4W2kvSUVcGnJydyBBGBadQMguFx9hldru8dhlpOblr4wmzat57v6u/BWnov3vN9ltcJqM+poJ901bBgBKRg6JCBN/qyi8WRJuYvN6nQSQk+iZStwqIQtgDLe+UdwuIQtGAoO69bQmJwkwum8LIPt8Hsui4EmtQB9oBWUwcVwXzhBbjQluOvyhxGQzG4Uo5NEdy3xl39L2Ys3UdrzGjXBLXy07bt8U7qDb+n/xWbHF9ng+ha/CX6d19Y9y/V/28jBnuCQh9bXPoF+59g0MYglFD5+1ybue2kLn03+g5J7z4EHPjbg2N0HUjk3ZaXlY3JujalPTb6VHco03N6dkEwMOEaXCBCXp/6161NnTOfW9y2l2RPm5sd3c398TWqDVsKmoaGhMSDjXBegoXF80+mLcOPdbxFNKHx5ZjumV/bRdOqvKBwgfPVYcMmiEv67Lg85EaJt/2bQkXUrd9lVRmDaOVxf9wy/f2MDZ825ZJxmO/lo84a5c30Dn07+k4TRSsspv6DYkt0Kq9WYKmEDSHpaGKoALRhMhZUbzVP/Jnw01OTbMBtNtBmqKOzYDqQEpFIRRJhyxn8CaQeSrMTp8Ecodk7tVfUTkWQkHfx/RHB8jtXAa2o+kppIdUV0DSyQdAUiTBPpnKR0idqgCIHiroa6lyjwNQIq7tr7AVCFTOvq7xDOW0TurjsxJWPM7trMA8p3ebpvKYlHZ6Jc/l0kR2H/48bDSBEP+qgPon4w2vuPGYJEUkEnp9YEVVXl6/dvp3nPJp53/BZrrItIxIZ04PkB961vTC02GOyZdezUOP6xm/TsN87DmHyGaOt2jOVL+o3RJ8MkBnHPTjXOn19MKJbkC//ZCuTRnHcKxU7XRE9LQ0NDY1KiOZA0NEbIq7XdnPvbl9nW7OWms2qYXX8ncVMeytzLMegm5ldrTrGdpCP1kLRGbEu9maWABKC74OeosoFr675OPOgZwxlObhJJla7tz3K2vJmeJZ/GnV+I22rI6hh209slbIpvaAdSKJhyJJgttiHHHe9IkmBRuYs9Sjly5y4gFUrvJIhkPQYCUjoDyUCchu6hc6s0JicDCUhui4EmNSWKxHsaBt23yx+jSrQT0zvAksHPW04NBm89imxk79XraDjnr9Sf/0/2vOc1PAs/ilqxmqYz/0DjObdRe+Uz9FRfwSyphZr6fxF/8x8DHzMd9C1UBbXlrYw+85HENt9LpDklvv7uuf1s2byBB8w/wqpT+EHBb/ivdD4i3NvPTRJLKHh7OlIvrHlZn1fj+MWXvwyARMNr/bbFkwpGNYyiOz4EJIDLl5Ry8aKUY7vp3D+jXPG3CZ6RhoaGxuREE5A0NEbAI1tb+codz/BJcT+Pz36aD229Fnvzi/TMu4Fc9zh3jBoCIQSVC07Gp5q5RH4NFTGiFrum/CpenP9TKtUWOp/46TjMdHLS2niAL4Z/i9dQSGzZR0bkRLEadfgxE5fMKL7WIcdGwocEpBPbgQSwpMLFhnApcqgTAl140iHaeqt7/E+eLmHTk6Cxd+gyI43JiYgdEpDeFmNzrG8LSEpv/aD7dgeiKQHJUZVRuarIrQbAu/ij5JdPJ1B1LoGyU5GcJdQUWJleYGNuiYP5pQ6qK8vwnfdbflpzF7vVSpL7B3YBHVnummh8Y9g5HIWiYH7ic4gnv8p/32zm9mc3c7f1t+gMJrzXPkbJ3JM5ELYgUCF0dFmyJxwjB1/qhUUTkDTeprxqJm1qDsrB1/tt84Xj2IiA8fhZ/BBC8IurFvLvj61mZkkeki67xSMNDQ2NEwVNQNLQyJIX9nRw533/5SH9N/h48h6m1d+NqjPReMYfCK78DDbjxFaGvuukpdzovpWmisuJzbp0xB2sVp51OeuUBZj2PQzqCZALE/VT9eT1uAiw7/RbKcwdmXDhtugRQuAz5KMO40CKhFJihcV6/NyEj5TF5S52KhWpFx3b0xlIQWTLsRCQdKhCwiQlqO/WBKSpiIgHSQj94XJEAJdFT6uah4pA6T046L7dgSjTpHYYLkA7jTz7fPxlpyOf9DlybUZmFdmZWWRjRoENoy5VtCpLAiEERp1MTb6VD508jZeT8zG2bTzcafAo0gKSKhuJNLxOfJDA6wEJtCOSMYzNr3LL/U9zi/Mf5Ctd+C+7g7zymSyrdNOlphc2Ap1H7eoJxXGTzo/KxH2lccKwqMLNm8pM5OYN/bZ5w/FUpzLD8bX4YdLLrKrOxWUxcIz6n2hoaGhMOTQBSUMjC0LRBPc//gR3yT/EarGy//Kn2HnDPmovfxxvzSUUOCfezl3sNPOzD56H59zfEbnsryM+TpHTzP7cM8mNtRBr2TaGM5ykHHiBwkgdv7F9kaLZqzHph0ovGhyLQcesQjvtigv8QzuQYpHUg6RO6/bC4nQJG0C8dTuBYBCziCHMrmMzAdlIrglqOwPH5nwaY0ZSUdElQ8Te0RHKpJexWa30yXkofQ2D7t/tC1JCD8a8YfKPDlG6jN7L78bhSgkuelnCqJORBnniFEIwv9TJK8pCZDVBvG5d/0HpErZ99pVE6jew7IdP88X/bOHFvZ2Ddk87jKfp8Jc/M/yVtdF1+FfeRM7sUwBYWObEI9ICUrC/gJQrfMR1NtBNTHafxuRkUZmTTcpMLJF24u8QYD3hOFYRQTYdgy6ZE8AhAVhDQ0NDoz+agHSc8ddX6rj61teIJU7M9uvjzYOvbuWr3h+SMLo4eNkDmCsWUlNgZUahjWKXCfsx7ro2GDlWA7k2A8ZRZjHNPfNakqpg7wv/GqOZTV46O1oAcM1YRb59dA9Sy6vc1EUdSIGOIcfF0wISei20OddmxJ5TRJ+ci9q+g0SgL7XhmAlIenKM0NgbIql1YptS+CNxLGqE5AB5LGfNLqAukYvS1zioEBPy9iAJFZ0j8xDpYqc5qwdMm1HHTt1c4sKAUtu/jE3xthITRu7qmk6+8HFdQRNPbG/lg7e/wRfv24onFBv84N6UgFSnFLFc3UnMUYH9zC8c3mzSy7gLSlMvgkeXsPWFYuQIP8ljEVavMaUocJiotywAIF53dA6SNxzHSgS9Obuwdw0NDQ2NqY8mIB1HrNvfzY8f383Ghl62N/smejrHHaqq4nj1xxQILz0X/Z3KymrK3BYsBh0mvUzeBHVeGwiTXqbEZR6xi+YQaxbMYps8D0f946jHeRlbU3PqIeyUhTNH/X1bXplDS9KNHGwnMYSYm4imA5t1plGd73hhSYWLXUoFomMHSjgtIJlcx+TcqmzEZVRp8YSJagL8lKIvlHJDJPX9y2kuWlTCQSUf4TlIXyg+4P5Rfw8Awpx5ueRIGiU47Xb2G+cjN7x01PtJRWXr7j20Jl0ULTwHFcHXOr/EFvtN/Lb0BUq230r0n++BQUpiG+t2A/BM8ccAiJ99M5LhaFE6vyjdge4dJWzedAmbasnN+vNoHP9YKxYTxIzacLRrzheKYBYx9Jbj04GkoaGhoTE4moB0nNATiPK5ezejT7fx7W47mGoFrDFmbG7ysDixlfrcU3HPWI3ZMDqRYSoghCAy4yIqlSY2vPL0RE9nXPH0dBDCxMKq7LvWvZPlVW7a1BxkJU6kr2XQcclYOPWF5kACUmVsW+PlyL37SfrSD7rHyoGkM2DTKQSjSTp90WNzTo0xoS8Uw0rkqADtQ6ytyaVLLsIS7aTPN/A1MR7oTX2RhYA0Egrs/9/efYe3fV0HH/9e7A1wb0rU3tuyZXnJM7Gd2ontxEnrOKvZzU6Tvm7ajCbNbtImaXZqZ+/l2PGKlzxkS7YsydqDFPcGQezxu+8fgGTJIilSJAGO83kePAR+615AVyRwcO65DnaZl2Hp2Qep2MntP36qkUR/KyZ/Fe957bW03r6N5ku+QqJoETf2fo+PWX9BRdtDZPb8/oxrNvZE2Pb8Cwzg5dY3vY+ed+7GvepVZxzn9RUR11b0ywJI/dEkJSqE2TP67Csxe6yqL+HpzBLMxx8/bXskNACAzSUZSEIIMdtIAGmG+N7jx+iLJvmnyxdwpWkHlz9wDcb9nyh0t2aU+57aSa3qwbNgE37n1Jiqlg9rX/VOegjgf+QO0un02U+YhrTWJELdRC3+YeuYjEVNwEmzaxkAmWND1DvJORlAkgwkANbWF7HfqMdkpKiP7sludOShiDaA2Y7LlOafzL+j+9AYV8ESBTUQTeFScdQQBX2tZhOBmgWY0CQ79jMQOzMLyYjkJ4BU5rPTnMplbET7Tm7f3zFItamfmrp5KKUIVM8ns+r1NF37Uw7c/DBfXPobjhkVhPY+eMY1//eRI1Tqbmylc/E7rZRW1g/ZdqnXQQ9+kgMdp20PxlIUq0HMHslAEmdaXRvgKWMZjlAjmeBLX4bEItksd4dbMpCEEGK2kQDSDNAXSXLXU41cvayCq5IP813rV7EacfRgx9lPFqMST2Xo2pf9Bi6w6KIC9ya/HJ4iDqz6KEuNQzz1268XujuTom0gjiM1gJ6gYIVSCk/DBgbwYD72yPAHpiQD6VRLq7wcUnMB2Gzdn92YxxpIRbEmPmz9DZ49P8lPm2JCZDOQEpgdQ2dDLDj/WkLaSdmD76O37/QaQFprVDyYfTDJ0yUrvA6a47lgceylAFLnQIxy+lG+KiBbL2luqZsVNX7mLlnNG6+5iKeM5bjan4bM6UH8/R0hGqx92EvmjNh2icdGj/aRGji9LlswkqBYDWJySwaSONOqWj/PshyAxOFHTm6PR7IZSJYZWkRbCCHE8CSANAN8//GjxFIZ3trQx6Jn7uBpvYzjjiUQlzpIE+Wxg90sTe8no6y456wrdHfybtMN72KPeRnL9/4X/333MwzGh64lMl1tb+yjWA1iG0MR3bM5r6GUJzLLsDQ+CsPVj0rFMFBgtg29f5axW8y4qheT0FY2mA5mN+apBhJmO75gtpaMO3ggP22KCRGMpnATw+o8cwobwIZVq/iy/w5KYsco+us/EUu+VOMqFEvj1rmV9yZ7CpvPTkcqlyUV7X2pD6F+HCQw5QJIp7JbzFQGnOxzrsOeiUD7Cyf3GYbmUNcg5ZkuVNHQmUcnlHns9Gg/+mWrsEUjg9hJodxSRFucyW234KpfzSBujKOPndyejOamgw6R9SeEEGJmkwDSNBdNpvnx0028aomXNU9/gLSrjE87PkqvCkBCAkgTZevhHjaYD5EsXzUrlzo2mc2UvPZrBFQE39NfYuNnH+TDdz7MC839xFPTv+DwjqZ+ilQYV2DiAkiXLS5nq7ESR6yDZNfBM/ZnDI3KJEib7CDLBZ+0Zk4pB3UNdiOXneXw56dhiw1FNtBXGj0yfNBPTDnBaBK3imMboaDvui2v4cup11LU/ACD+16aCtYdThAgF0Ca5LFW7rXTTy5L6pQpbCrUlr3jPTOAdEKqbnP25+GHT25rDcZwJIPYdBwVGDmAVJILIFlivadtT52YvpevQK2Ydi5dUsVTmSWYm7aSTGdXMkzHcu8vh6g7JoQQYmaTANI09+cX2hiMp3l72V5s4VZaLvkqrkA5A4YTJRlIE2bboXZWqGPo2o2F7krBVC0+n+jq27nd8iB/c3yUrxy7kfIfbODwr/6VRGp610ba3thPqSmM2V06YdesK3bR5M+Ol8SBh87YPxhP4SBJxiT1j071jkvn4Z+7FgDD5gWzJT8Nm7OB4QwmXDpCqr85P+2KceuLJnGrBMo+/IfZ1XUBdte+gXZdguuxz2Bksh+Ee8IJAipMyuKZ9LFW7nXQr08EkLKBnEQ6gz2eywoaIYC0cF4D+4x6kqdMIzrUNUiNyk3J89eN2Hapx0YPfuyJPjCMk9uNaDB7Z5Kzr8T0tWVxOVuNFTgjLYSO7wIgE5cMJCGEmK0mJICklHqFUuqAUuqwUurjQ+xXSqn/zu3fpZRaN9pzxfC01tz1VBOLK7zM7XqIpLsK6/yLaSj10JNySAbSBOkMxXH27sVGClU/ewNIAI6r/o2Urw5fUTn7l/wTx0z1rDj0LWJ/+X/TNmMjY2gOdwZx6wgm98QWkl26fBXHdRnGoQfO2NcbSeIgiZ6FGW0jKfc6qF6S+3+Wz6yI3L/DHvcmAFLte/LXthiXlt4wThIjZkM4rCZuu3gRX0nfjKd3N7HdfwSgezCBT0Uw8jDWyn12gpyYwpbN/OkKJaigP7vNO/wKkGvrAzxtLMXevh2MbNbnwc7wSwGkwMgBpIDLRi9+TGQg1v/Sjlgw+zNftcbEtLOowsMzrstIYcX03J0AGIlc1p5dVmETQojZZtwBJKWUGfgm8EpgGfB6pdSylx32SmBh7vZ24H/HcK4Yxs7mIC+2hfj7tcW4mh8lNv9aaotd1AQcdCZtqERo2n6on0qePNLDhaYXAbA3XFjg3hSWxVNM9J3bCf/DPdTc+O9sv/Db/F/6agI7vwO7f1Po7p2TnnACr5H7NtU1sQGka1dWcU/mfLzNjxLvazltX1swhkMlpYD2ECxVKwDQ+fxQa86urLi35rUARJp35a9tMS49fbmAyAjZEFV+J69YUUV48U2062JSz/0se244QYAIyjX5GTjlXjtpLCTMHnQuA6lrME6lOnsAaXm1jwM0YMnEoL8RgIOdgyxx5s49SwaS2aRI2HK/306pg2RKBLN3ZAqbGIZSirVLF3K/Pg/fwd+QikdQyVwASTKQhBBi1pmIDKSNwGGt9VGtdRL4BXDDy465AbhLZz0NBJRSVaM8Vwzjmw8fwWO3cBHPYcokMK+4AaUU1QEnIe1C6QykooXu5rT3xOFetlh3Ey9Zhsk3/Bv82SLgslHhc+B1WLl8aSWfSr+RhNmN0byt0F07J+0DcYpULoA0wdM41tQGuNd2DSYypLffddq+1v4YDpKYba4JbXNGqMgGkPL6odZsJ2NxYVtwCa26hGSrZCBNBxlD0x/M1fEZxYfZj127gr8Za3G2PI5OxekJJyhSYcx5CCD5nVZsFhMRi/9kAKljIEGl6iNt843Yf7vFTKp0afZBZ3ZsHuoMs9TRj7a6R/W7K+3MTdENZwNI8VQG94nguWQgiRFcMK+YH6cux5IMYez5HSRz7y2lBpIQQsw6ExFAqgFOLRbRkts2mmNGcy4ASqm3K6W2K6W2d3d3j7vT09FA9KWVr7Yd7eXBfZ289rxaSpruJe0sxTUvW2SzOuBkkNyH0jzXQZppq3NprXn+UDNrOUhq7pZCd2fKWVrlw2O30W2tQfceLXR3zknHQJyiE0V0XRO7EpHJpFixci1PGiuw7vrJyakn8FIGksUuAaQzuIpJe2tgAmtSndX6N9N+wb+xtLaEg0Yt9r79+WtbnLP2gRg2I559YDv7dJqGUjeH/JuxGzFihx+nZzBJkSmKck7+KmRKKco8dgaU72QAqTMUp0r1YniHfOtzmrJ5q8hoRbT5BQxDc7grzDLjEEbl6tEV4vfkFgmIZN9D9UeT+Ihkt0kGkhjB0iofTxtL6XfWw+7f4jBOBJAkA0kIIWabiQggDfWu5eXzpoY7ZjTnZjdq/V2t9Qat9YaysolbKWk66Q4niCTSaK353D37KPfa+XvnNvzH7iGy9BZMlmwB0OqAk0GdmxaTpzpIu1qCPLyvg/DW72D0HstLm/nw/PEgc8PPYSGNWnhFobsz5ZhNivVzizicLoe+6RpAilGsJmcKG8Drzqvjp+nLsYdbie1/qRZSSzCGz5xG2WQK21DCN/wILv+3vLWnFmyhf8kbaCh1c1jVE4g2QmZmBcRnouO9UVycCCCN7sOsdcFlxLUV48Bf2dcRokjlZwob5Oogae/JGkidoTg1pj5MgdqznnvDeQto1JW0H3yOlv4YKhWhJnYQ5mwaVdtmX0X2Ti6AFIym8KsIGgX24VewE6Kh1I3NbKbRthj6DuNScdImB5jMhe6aEEKIPJuIAFILcOrk+1qgbZTHjOZckaO1pjUY4/FDPbzQMsCHloZoeOJjhCsvwLjsX08eVx1w5DUDaSCa4k0/epYf//SHVG29g8y270x6m/nyk6ebuMy8m4zFiTOX4SVOt7GhmD3xEkyh5mn5gbsjlKDElMtAmoQshJU1fhrLLqNf+dHbf3hye1swhsecRlkkgDQUa916zKXz8taeUgqLWeG0Weh1LcCiU+jew3lrX5ybpr4onjEGkFbPq+JJYzn64H3sagniZRCVpylcFV4H3YYbdUoAqVr1okYRQFpa5aPTuQB73z7+68GDrDMdwkQG89zR1eZzektJaTNGqB3IZiD5iZC2+sAki/KK4VnNJhaUe2g0SrGG2/ATwZDsIyGEmJUm4h3Ds8BCpVSDUsoG3Ar86WXH/Al4Y241tguAAa11+yjPFTmGhkTK4KfbjuOwKq5v+xppZwnNV30Xr/ulaTAum+WlbxMTA5Pery/ff4BgNMEHzb8GQLftnJR2dJ4LgodiKbbtb+Ia2wvEazZhtsly60M5v6GYJl2BMtIwMP2WPu8YiFHviGUfTEIGklKKm86bxy9Sl+A49iCZYCsArcEYblMSrDKuhuK05v+bbY89m8WZKV0CQKpjX977IMamqTeKz3wigDS6eizr5xTxN2Mt3mgzy1QTZp3J2zL25T47HSk3KpadwtYXDBJgELP/7AEkgKJ5a6nVHdz3/BHeO78brUxQO7rVQUt9Dtp0Cam+40D2yx+/ipBx+M/tyYhZZUmVlxejRZh0hiXmNswOWYFNCCFmo3EHkLTWaeC9wH3APuBXWusXlVLvVEq9M3fYPcBR4DDwPeDdI5073j7NVEY6SSpj8OThHt5eeRhPzwt0rf0ApeWVWMyn/1NaXIHsnUnOQNrTOsBPtzXxqUXHWamO0q6LUe27wDAmvK3wQA86MTjh1x3Otuee5weZOyjNdJNa/ca8tTvdrKjxc1zniov3Tb/pix2hOFW2GNrigEkqaH3j2hp+yxWYdIbYM3eSMTTtwTgOlULJKmxDMplGUdNlgrlzASRP9VIMrSSANA0090Wpc+e+XBhlRkSV30mzO1uo/VpXrtZVnmoA1QScdKRcqFQUUnEIZQPKjDKAtHDl+QC8aUGU9Wo/mfIV4Bjd9LNSt51WXUqmPxtA6o+m8BNBSf0jMQpLKr3siWWzdBebmlFSQFsIIWalCclZ1lrfo7VepLWer7X+bG7bt7XW387d11rr9+T2r9Rabx/pXDGEnT9n0V1raH7xCWKJOLfHfkLCW49a+wbKvPYzDlfOExlI5x5ASmdGDgIZhuYTf9xDsdvGa9L3kPDW8wPzLVgzEeg7cs7tDsfx85vRf/nohF93OOVb76BG9XD46v/DtuJVeWt3urFbzEQ89dkH07AOUsdAnApLBD2JRXSL3TYuPO88thorsOy8i5beEGlDY9dJsEgG0lThtmeznuZUldKsy4i1yfcZU1EybdDcF6V7MEFTb4Qad+5vlX30H2iL564iqc1c4TyQ3ZCnDKTNC0rpJ5u5oaO9WMO5Wfu+sxfRBrBUZQNft9V1YW7bDvUXjLrtUq+NVl2KOdQCQDCWxK8imPJU/0lMb0sqfRw3ygFw6pgU0BZCiFlKJr1PF31HMCdDbNn+Hv5o/yQl4QN0n/cRqoqGTiG2TkAGUioz9JSxL993gBu+sZX/+Ms+nj8e5I6rG3B2PENywSuxzcl+O5pufu6c2x1StA9r507oz0+Gy679B1ke3c7Tpa8hPXdLdlqgGJY9UE0cO5lpthKb1pqOUJxiFZ6U+kenevsl87gz80oc0XYGHvs2AFadAMlAmjLslmwAaV6Zm0O6BnPPwQL3SLxcxtAc6hokGE3RHoxxrDdChT1Xe20MH2jXNpRzWNeyILY7uyFPAaTl1T4yjuzvmkiwi+JMblVZ/+gCSPjrMWxeqp76NKZ0HEvDRaNuu8Rtp5VSbLEuSCcJRlMEVBSzBJDEKCyp8tJBMUmdm148hoCtEEKImUMCSNOETkQwTDZShkG9uYemK/4X25rXDTvNw+b0YqDGlYGUTJ+ZgdQ+EOM7jx1hb3uIHz5xjHX1Aa7zN2LKJLAvuYIFy9YT11a6Dz19zu2+3B+eb+WO//l+9kGu8Ohke+7eH2JRBuWbb6O2WD7gn01NkYsWVYWeZgGkgViKeMrAp0OTUv/oVLVFLvyrr2ersZKFe/+HYkKYMwnJQJqCGkrdHNa1eCONkEkXujviFD3hBLauPdT+/kaK/vouipLteFQiu9M6+gDSjWtroHIF1kxuOfI8FdFWSjGvPrt2yKHGJqrI/U0bZQYSJhPR1/yYtvP/jb5LPgOLXjnqtku92SlsCg2hVoLRJAEVxnTiCychRlDmsVPkdtBGNgtJprAJIcTsJAGkaUKnIqSsXq6Of4G7Nvye8PzrKPGcOXXtBL/LRhgnRvzci2gnh5jC9t3HjmJo+M07LuT9Vyzkw1cvIn34YQyTDVvDRVy0uJK9eg7p5ufPud2X++1zLdQO7so+iPVP2HWHs6OpjzX999HuXMjilRvxOayT3uZ0V1Pk5HCmfNpNYWsfyBbfdWdCKNfkZiABvPOyBXwqdRvWTISPWn6JyUhKBtIU5HVY6bTPwaJT0N9Y6O6InIyhaXn0/5j3h+tJ9xymtOVBHrJ9hDXB+9BmG1hso76Wz2Fl4epTVi/LUwYSwIoFDQD85G/Ps9AxQMZVBpbh/56/nH3hpbgu/Se8l753TM+5xJ2dwgbAQDMtfVF8RPJW/0lMb0optiwpJ+7J1euSDCQhhJiVJIA0TehklBh2evGzoL6WUo8d8whFZn1OK4PahRE79wBS6mUBpJ5wgp8/c5zrV1VhNiv+rug4xcYA6ugjpKo3gM1Nuc/BcfsiSsL7J6SQdiSRZtvRPjaYsnUqVLwfJnk1tnsf3coa01HU6tfhKMBKUNNRdcBJo1GBKdgIRqbQ3Rm1jlA2gORIBVHuyc1AAlhQ7mHB8g3clb6a11sezm6UDKQpKVG0EIBMpxTSniqeO9pO3Y7P8yLz+d6qX3Ln+t+yp+hK/NHj6HMIglirV7/0II8BpDVL5gPgSg9wUXl89NlHOVaziYDLhtU8trdwDqsZw5f98J/uP86B5k4s5G8FOjH9ffmW1SxYlK3DJRlIQggxO0kAabpIRhk0bARcVmqLnJSOkH0E2W9XQ9pJJjqeItoafUqw5o8724inDK5ZXon7+CPMv/smFv7uapy9e9ANl710Ys06XDpGsGnXObd9wpNHelGZOKvUURLKkV0qfhzT8s5mMJ6i6PAfMFA4175u0tqZaWoDTpp0eTajZrC90N0ZtY6BOOX0Y00GoWhuXtp8z5YFfC19E0Fyhe4lA2lKslcuBSAtAaQpYV97iEd+8TXK6SdxyR289uKVbNm4FtvN3+Xwq+8l8Zo7x37RyuwHYW2ygnVyVmAciieQnQL0ink2fMnOUa/ANhHmzVsMQOfxQ9hSub+leZq+J2YGU0k2g06KaAshxOwkAaTpIhVhIG1lWZWPSr9jxOwjAL/TyiAuMuPIQDK0Jm28FEC6b08H80rdNNjD1D76IeKBhaRzxUAti648edzSTdcB8PNf3kVPODHmdgeiKZp6I6QyBg8f6GKjrQm7SrPdvCZ7wCTUQYqnMjT2RPjj861cz+P0lJ6Pt6xuwtuZqWqKnHTpQPZBuLOgfRmLjoE4F5hzAYI5m/PS5ooaP6/csISHa9+Z3SBvwqek2spyWnQpifa9he7KrGQYmngqQ18kyYutA3z8V9t5Q+q39ARWU7P2GuaXeVhU4aE64MCoWAF154+9EWcRaV8t2lkEauS/qRPKbMWw+1jsTUCoFTXaAtoT4PxFVXTqAMeP7sevItmNMoVNjIGpeG72jkxhE0KIWUmWlpomkrEwA2kbWxaXU+w+e80Dn9PCoHahx7EKmyabhWQ1Q/dggmeb+njjxmrqHv4nzKlBjl33c5LeegKh/dTWrT953uLFyxh0z2Xp4HO8+UfP8rt3XzimVPveSIJIIoPTmuTRA918qLgJgvCH2Co2W5/OBpCKG875eQ2lLRgjksjw7Nb7+QdTF71r/mXYAuXiTNUBJz3an30Q7i5sZ8bgaE+Ey+wHMSweTJWr8tbuF25eRSi6iJ4dlZQuuS5v7YrRm1fm5rBRw9ruA4XuyqyTMTRHusMkUgYdoTg/eWQX/9zz79SYe2i56OvUFr2ULVTisVPisZ+WLTsWRtV61EDjBPV89LSzBG/LI5hTkbxmIG2aV0KLLkUHm1noS0MCyUASY3MiW1emsAkhxKwkGUjTRDw6SBQ7m+aXoEbxTanPaWUQJ2oc070MrUnl6hg9uK8TrTVvGfgmnvanaL3o8+iypdidbsxzzvzm17zwcjZb97O/tZevPnBwTG/uTyQ97WjqpzUYY3PmGfoCKzhiVGd3xCY2A2kgmiIST3H4wB42DfyFlLLjWHXjhLYx03nsFhL2XHHWSFdhOzNKwWiS+1/s4CLLfjJ1F4A5v/F0n8sBa/9B6o9MUfNLPRzUtbhDR6ZVXa+ZoKU/ykA0xQ8fO8hffvbffLrzPVxg2U/zpf+FZ9nVQ54zmr+LQzGu/QqpW346nu6ek9T578GUjmUflC7KW7vlPgcDtkqq6WFtWW6jZCCJsShdTHLeVVC/qdA9EUIIUQCSgTRN6ESEOMUsqfSO6nifw8oR7cKUGjz3NjVkMtlozl/3dHCj/whzGn9N1+p3M7DoJhaUuIYtMm1ZcDnWnT/kfbWHmPfEt9jrfR/LN48i0yIRJvDcN6k+/Gd6MkuoMV9G5eAe+i/4GMHO3LddEzyFLRhNUPfQu1jZeC9YYKDhevy+yV+Ra6axByogCESmRwbSb3a04E33U5E8jjH3rQXpQ8kosglFYdQUOTmmarEYCQgeH1XWYyKdwW6Rwvvj0RmKc+Dgfkrufx+fNw5gt6QI+xfTdNH/kKq7kFrnxK6K6fCXkTEmd2GGIW14C/trbqI4doyaRevy2rSleA5VnU+zvCgDLUgGkhgbq4PU636BzS4fIYQQYjaS3/7ThDkTI2NxYRnlVLATNZCsqcFsJOicvp3NZiClMgZPHenl63N7oRV6Vvwj5T77iCuU2RZcglZm3tv7OZQ5Q9cDh+hfupGi4rJhzwHg+R9T+vTnSLoquDS6h08G4hAB/5obcew8CHEmPAPJfODPBBrv5cfpK6letIG1V906odefLcqKAkSCTlzhLqb65D+tNT/bdpzXljXBIJgaLipIP841a0JMPrNJEfHNh0i2kLZlFAGkgViKcq8EkM5VMJrk7ueaWPfwO1ikmjna8HqcCy9lsP4KzGYzc4qck/J/5mw1BSeDxaTwuOw4S1bmt/4SUDNnEfauNAtoyW6QDCQxRrJCrRBCzF4yhW2asGZiaOvoi+36nFYGtQuzTkM6PvYGtcbcf5R0RtPcFyWZMZhr7iFjcWHzlVF2llXgcPhJVp+HNll5fulHKNF9PPeD9xFJpEc+L54t+v2r9b8grJ1cFfkzKX8DpoqleP2lGKgJzUBKhvspe/wT7KWB//O9i9It78JfMXfCrj+b1BZl6yAZg1N7ClsqY/D5e/fT09PFG9T9GFYXVK0++4li1rFULAEg07V/VMeHYulzrsUzG6UzBp2hOE29EfZ3hLjzyUZMD36CteoQjZu/SPrK/2BwzlU47Vbml7txz6CMB4vZREOpe1Q1DSfavLWXARA4+Gs0Cuy+vPdBTG+FCLoKIYSYGiSAVEDRZJp4ahS1NbTGruOY7KMPIHntFgbJLQ9+LoW0m7fR8PNLUB17ONKdXamlNNNByltLbbFrVN8CJ2/4Lsde+wArbr6D56rfwBWRe/j457/MPbvbh/+QlYxgmO3cezTJj9SNAKQXvgKUwud2EFYe9DgCSIl0BuOU6QrJffdgj3fzmfTtfPTa5cwrc8sbo3NUHXDQpX2kB6fmKmxaax492M1N//sk9z7+FA94P0nN4C7iV3wOzBM7LUbMDLVVVbTrYtId+856rE4nKfvrO0i1PJ+Hns0MLf0xukIJQrE0f9rZxuG/3cmbLffRsfQt6GU34rabqSt2sqDcI1MDJ1L1GgYXvhpzIggOP5jkraAQQgghRmfmfJ03zTT3RXnF1x/jE9ct49aN9SMfnE5gxsA8hgCSyaRIW3P1khIh8FaMrYO5Ojam3v0cTmXrAXljbRCYM+rUZU9ZPdYiA6vZxNrbv0TwW8/ymdA3eP8ffKyOVVOz5mqwuU4/KRUlY3HxTGMfNctvo9ek8G78RwCKXFb6tQd3tJdz/SjRF0nSF0lSX+zC67DStvsxqrWD8y6+hquWVUrwaBzmlLjp0X7SoU7Okp82boc6B/nDzlb2tw/yz69YwuJKL8FokkcOdLOzOci8MjdzS9yEE2kOdYbZ1RLkhZYgPeEk6z293OP9HA6VpvWGX1K16opJ7q2YrhaWezhk1LCm8+wZSIm2F/EfvZtE+Xyoy29Nm+moL5JkMJ7NSP3zc40cefqPfNP+fcJlG+i58A7mlblx2eQtymQJX/yvuI/9FRyBKT/lWAghhBBTh7w7K5DaIid1bs3PtzWePYCUigJgdY5tydSMzQtJzi0DKZ0AwBRs4kh0FeUeG9ZwC+m5m0d9CaXUyWCTxeHG8ro7sf3gcu7M/AvcAzrzOdSm95x2jk5GiGMnldG8bvMSBlxfpKQs+7yLXDb6tIfaaO/Yn8+Jp5XRGAa0BeMsqrBgbd/Oi2ohb7tkoQSPxmlppY/HtA9z9NCkthNNprnlO08xGE9jt5h404+e4SNXL+bTd+9lIJbCZjaRzBgnj1dAXbGLKysi3FzxIGu7/oA22eh69W+oXrgek/y7i2EsqvDyhK5h08CjZ60ll27fnb3TPbrpbrOZYWg6BuK4OncwuPV/eW/fVny2KElnJc1XfItyv0eCR5OstGYe7Zd+iXJLVFLRhRBCCDFq8g6tQFT/MX6beg93BF/HgY41LK4cvgZBLBLCCdido1uB7SS7LxtASgyMvYO5AJIldJwj/WFWlWrMHYNkiuaM/Vo5npplHLn2Ln7w+7/y/5y/x9n2wpmZRMkowbSVxRVe1tUXcepMt4DLRp/hwYj0nXMGkpG7YDJtcLilk4bkUY5W3IZvglf2mY1qi5wMmItwpIKQSU3atLDf7mghGE3xq3dsoj+a5IO/3MmHf/0CSyq9/PCN6yg/fje65XkswUP4I02YTSaU2YK99ShamRlouJbYRR+nqmG5FLEWI2oodXMXtVgzMRhogUDdsMfqzhcBMPdIAOlsgrEUplArtX95A9GMmZ2eS6jd9FqitRfhdLsp8052DqOwmk0Un/8GlFl+BwohhBBi9CSAVCiBuZgDNfxz8pd878mb+ffXrB/20P5gECfgcI8xgOQIwCAnC1OPSSYbQLKGjnOkK8yVCwehA8zjCCABzFt/Fc9tdXAo+gIrO/acsT8aCdGXsvKadTUopU77wr/IZaUfL8QOn1vjqTjep76ILl7NYO0lbH/yQRYqg7qVl57jsxGnMpkUFm8FhIFoL3grJ7wNw9D88IlGVtcFWFTuobkvwieuX8bhzjAfuWYxqed+gu/h92NYnCT880lUrSeFwpQK07vkH4guvI5AZQNVZysCLwRgs5gIe+dDDDKd+zCPEEAyd2frJJkHjkMyArbRTzmebXrDCVwP/QuZjMHnar/HP7ziYiJKYTYp6kdZY0+Mn9MmdaWEEEIIMTYSQCoUk4n0FZ+m+hc3Urz7+6RvWIvFPHQi+UBogGrA5RnbSilmVwAAHQuOvcZBOglkM5BC8TQN1uy0MXPJ3LFe6TRKKS5fUs62J6pZk773jEyVgYEBYti5YU3NGecGXFaatQdTrP/cGj/+FMXbv0YxEPfP52hsKQDz1m45t+uJM3hKqiEMOtyJmuAAUjpj8MiBbo71RPif168heGwHy/70WspWv4sVa97NQDRB0dP/Q6xoCUdu+is2qwWHxXwyCOl3WamyW+TDqRgTa+USOAbprv2YF189/HG9+8jYizAn+qH7ANRIHaRTRZNposnsohGJF//Cwu6H+ZbtTdx61UWYlMJqUdQEnFiH+TsohBBCCCEKT96pFZAx9yKOlVzKm4zf8+TeY8MeNziYzSDyjDWA5A5k24kFx9w3nZvCZou0YyFNWbojuyMwvgwkgMsWl7M3U4cyUtBzer0cnYyQUA4q/Y4zzgu4bPRrD+ZMDFLxsTccy67e1nHex7CG27gheTfdjrlYPMXn9DzEmYorsoG/vq7WCb92TzjJn15opdRj48L5pRQ/82XMyRCVz36B6if/lfT2u7AHD5G+8P0srwmwqMJLfYmLuuLszeewSvBIjFl1dS3d2j/iSmzpwW6s0S5Si6/PbpA6SKfpDSc42h2hPRinPRjHsu1/OK7LmXPth/C7LNQVO1lc4cXrkKnEQgghhBBTmQSQCshrt5C68IN4VYzubb8c9rjIYLYIts/vH9P1XS4vSW1Gn1MAKRugMWFQrXqpNLrJ2HzgDIz5Wi+3qtbPfp0rHJ6rG3KCKR0jY3EOeV6Ry0aQ3DS+XDBoTHKZS/0Lb+GPi79ASptJ1pw/9uuIYVXXZP9dO9ubJ/zag/EUjx7s4dJF5cSPP4fv+IN0rvsQPSveSsm+H1O79WMkvXV41t0igSIxYU6sxJbp2DvsMUZH7vfYkuvRJhuZzuGPnW0MQ9MRip+sZ3d837MsSexhT9XNrKgvZUG5l4DLJv9nhRBCCCGmAQkgFZBSiurlF9FqrmFe291kDD3kcbHIIAB+39gCSD6njQHcZCLnMOUrN4UNYL6lB3+ilYz/LKvFjZLDaqbfUU9aWUm37zptnyUTG7Z2SJHLSr/OrUR3DiuxGdHs65Cx+/ltaAmvN30Z5ys+PebriOHNndMAwMAkZCDtahlgIJbi4oWleLZ9jYzNR3jN22i/4N85cMsjdK1+N5Grv4KapOLdYnZaVOHlkK7BETzMaVX9T3GigLalehXp4gXoruGzlWabUDyFkVsUMWNoktu+TwIr1VveNmSmqRBCCCGEmLokgFRgHoeVo1XXs9Z4kSMHh/7WOh7NZiBZHZ4xXdvntBLSblKRc8jWybw0RWyVux9buAXtG76A7FiV+D20WurRHadnINmMOGaba8hz/C4rQU4EkMb+nHSsH8PiIq2sPH+8n6KGVbgCZWO+jhie319EHBvR/vYJvW46Y/DMsT5MCpYHUviOP0Df0r+nrrqKumInqcA8ujZ+HM+yqya0XSEaSt0cVbXYMmEYHHpcq669pB3FWPxV6LKlGJ37ONYTIZk28tzbqScYTQHgO3YP9j+/i2tSf6Ox4hoqK2uwW6SIsxBCCCHEdCIBpCmg5MLbAOh+6idD7k/Gwtk7Y1zVx++0EsKNEQ2OuU86nSRj9ZLSZjZaj2ILNaGL5o75OsOp8Dk4rOZg7j49gOTQcSz2oQNldouZqCWQfXAOU9h0tA/tLCKWzBBNZrhoQSkOq3yAmVBKETYXkQp1TuhlE2mD7U19LKn04TxyL0pnyCx9NTaLiYDLxooaPytq/FKAV0w4m8WEKlsCQKZz6NpGqu8wqaKFoBRG2VJs4VYqf34VA499K59dnXLSGYNwIo2v8T7qH3oX5d1PcsCyCC75KKUeW6G7J4QQQgghxmhcn7aUUsVKqQeUUodyP4uGOKZOKfWwUmqfUupFpdT7T9n3SaVUq1JqZ+527Xj6M10tWbKCnWopNa33ooeYIpGORbJ3rENn5gzH57QwoN0QHxh7p9IJ0mYHrbqUzYN/BSCz9raxX2cYFT47e9K1mMIdkKvRFI0nsKsUVtcImVbOXMHrc8hAItaPdgT424EurGbFa9adudKbGL+MqxRXso+mnsiEXbMtGONId4T1c4rwH/sLCd8cAvPWT9j1hRhJxbzVAERb9wy5X0W6STrL+Phvd3HNo/V8O309raEUZY/dQf+O3+Wzq1NKKJ7G3rOPukfeR4d3ORfGv8azl96Fs3LRsKuOCiGEEEKIqWu87+A+DjyktV4IPJR7/HJp4MNa66XABcB7lFLLTtn/X1rrNbnbPePsz7RkMinaK7cwN32MlqZDZ+zPJHIZSGMMIPmdVgZwY0oEx96pdIIkFo7rcgC61n0AS8WSsV9nGJU+B42JXKAo0gNAT38QAIfLO/yJrlwA6VyKaEf70c5i/vRCGxcvLJMVfyaJtWo5600HeXTXgQm75vZj3fyj+W6utu3G0/YkkQWvwmGzTNj1hRjJ6sUL6NMeeo7tGnK/HuzinqMZfvdcK+evXEL3BXdwU/wT7DLm4fzLe9j95L30R5J0hs5h9chpLJbKULLn+2hl4a3xD1JdWsQFDcUUueV3rxBCCCHEdDTeANINwJ25+3cCN778AK11u9b6udz9QWAfIKkfL1N3/g0AHNw6xLfVqQhJ5QDT2P655pd5CGkXpsTYM5B0OkHcsPCIXkOw9nK6V74D2wR+Y1zuc7xUEDu3OlpvLoDkdA8fQPK63cRwYJxDXScV76fXcNEZSnDTutoxny9Gx3PZ+3GrBN6dP8QYpjD8WPUfeII7rD/j4mfeidIZ9LIbJ+S6QozG2jnFHNa16K79DMRSZAxNMJpbaCAVx5oeZNAc4O73XcQXb17NJ65fxgMfvZrfLfxPejIuVt5/K61f24L/BxeSfvjzhX0yeRSLRfE33ceLvovZO+jkjZvmYLOaJHgvhBBCCDFNjTciUKG1bodsoAgoH+lgpdRcYC2w7ZTN71VK7VJK/XCoKXCnnPt2pdR2pdT27u7ucXZ76lm+aiPtqgxn099O+9CdSGewpGOkzEMvbT+SgMuGyVWEPT047OpBw8okiBoWHvLdRPMr/g+L1TqhyyxXnhZAygaDgsEgAG6Pb9jz/C4rA8qLPodV2FSsn8ODVnwOC1csHXGoinGwVi1nh3Mzl4d+R3/wHDLFhpDOLYvevfId9Cx/C866NRNyXSFGw2kz0+9qoCx+jObeCAc6BukMJbI7o9kMyqLyWhZVvBT8Lvc5+ORtr6D/9sf5a/FtmBKDEA+i9v25EE8h77TWWBofw5wM8Z3eVayq8bNlcRl1RWPLpBVCCCGEEFPHWQNISqkHlVJ7hrjdMJaGlFIe4LfAB7TWodzm/wXmA2uAduArw52vtf6u1nqD1npDWdnMWzlLmUy0ll3M6uRO9re8FCDrCSdxqgSGZewBJIBAcRlmDIx46OwHnyqdJJw2M68sW7jbZpnYehUVPscZK6oNhIIAeL3DB5CKXFb6tGfsNZC0RsWD7O0386rV1VI8exIppTi29B34idDz8PiLCMeSaXyDR0koJx0b/4WuzZ/CZZcMBpFfpvIleHUY3b6TjKFJZQy01sSD2ZXZXMVVQ563cl41q2//Etcm/5O9xVdj6jvKyXXtZ7B4ysB/9G5iZg/3x5fxvisXMrfUg9suU0+FEEIIIaars0YFtNZXaq1XDHH7I9CplKoCyP3sGuoaSikr2eDRT7XWvzvl2p1a64zW2gC+B2yciCc1XZWsvh63SvD84385ue1g5yAuEij72FZgO6GyohKAoy1tYzovlYwRMcwsqsx+o+6d4Df9FX77GVPYBgezQS63xz/seUUuG72GBz3WAFIygjJS9GRcXLdq6A96YuKs23QFj2VWUrPvhyf/Xc/V7tYB5tPCgGceKBNeh3wAFflXfsGttOli5t3/Zkp3fZuGP91E8uhWejtbAfCWDP97pcrvZH6Zmz2JMlQ6CoPt+ep2wURjUXxN9/MI57GoupgtiyXrUwghhBBiuhtvWsmfgNtz928H/vjyA1R23tMPgH1a66++bN+p77hfDQy9xM0sUb3uGqI4CRy7m3gqA8DethAu4ticI6xMNoK66moA9h9rHtN58ViUpLawrDKbDeRzTmzGR4nbTtTkxsB0cgpbJBdoMI0QLAu4bPTrcwgg5YJUQTwsrhihSLeYEPPKPPzUdjOedB88/5OT2zPnUBPpueNBFplaMEoXA+CT+imiAFYtXczHXZ8inU5R9czncHc+Cwf/SrCrBYDiipHrqp0/r4THe3PZlX1HJru7BZc5vg1zMsTvY2u4cU01ZtPETYEWQgghhBCFMd4A0ueBq5RSh4Crco9RSlUrpU6sqLYZuA24XCm1M3e7Nrfvi0qp3UqpXcAW4IPj7M+0Znd6OFq2hYtTT7L9cPYb6r3tIQLWFGb7uQWQTkz3a2xpHdN5OpUgiZWaIidWi5rwKV9mk6LM6yRq9qCj2eBOPDqY3TnCanNFLiv92oMa6ypsuQBSyuqn2G07pz6LscnUXchutRjns9+ATBqAcDw95uscOHacChVEly7GZjHhc0oGksg/pRSr157Pq+Kf5uFLfkXcvwD6jhHtz/6urqyuG/H88xuKeTGRy8LpPTzZ3S04S9NWDEw8y3JeI4sWCCGEEELMCOMKIGmte7XWV2itF+Z+9uW2t2mtr83d36q1VlrrVVrrNbnbPbl9t2mtV+b2/d2JgtyzmXv96/GpKEef/D1aa/a1hQhYUiMGVUainNm65G0dY3xpM0kSWKnwOSYt46Pc52CQlwpix6O5qU62kTKQrATxYk6GwMiMvrFcAMkdKJvQYuBieGvqi/hRYguWwVboPQRAKJ4a83XSXfsBSBQtpMJnl38/UTC3nldHp7mKX7SUkPTVo/obSYe6iGgHJYHAiOee31BCO8WkTXaMnpmdgZTOGNhanmQ/c1k+r44Sj73QXRJCCCGEEBNgYisji3ErXnkV/aYialv+THswzrHeCB5TEmznuHKNIwBAKtLPwY7B0Z+XyWYglXls+Cd4+toJlT47/XjQueBOOhbO7hghWHZiCptCQyw4+sZybfiLpQ5HvqysDXBA57Iyeg4CYHrxtxiR/jFdpzzemLuzhIBLssdE4dQUubh0URnbm/pRxQ1YBhpRkW6CpsBZA5uVfgf1JR46zFUYPTM7A6mrrx9n5w4eSy/jupXVhe6OEEIIIYSYIBJAmmK8TgfHq17BZmMH333gObQGJwnUCFk5I3IGAPAR4cF9nUSTo5tCZMokSSsrDptl0lbNqfA56Mm4INZPKmNgJKPZHSMEy6r8Dvp0roZRLnNpNOKD2WNLy6WAdr6srPFzTGdf73TXATLdh6h56L1kdv50TNepSzeRVHZcZQ2T0U0hxuTC+SX0RpIkvHMwpSJUxI8SsRaP6txFFV6O6SrUDK6BFEtmiB99CrNOs00v45oVlYXukhBCCCGEmCASQJpiTCZF6aa/x67SxF/4PQDWTAx1rhlINi8aRYk5yr72EKHY6AJIZiMJlsmddlDhc9CdcaOjfXQMxHGSyO6wDh8sq/I7MbtLsg+GqIM0XJHmYE8HADVV8mEmX4rdNoqLiug1l2F0HyLVvAMA3X981NeIpzLM0y10O+Zit0nxbFF46+ZkpwUfTmfry83JHCflKBnVufXFLvYnyzEFG0/WBZtJDEPTGoziaXuKDCYGyzdIzTkhhBBCiBlEAkhTkLthI/2OOv7O9AReuwVzOnbuGUgmE9ruZ44zxb72wVHXoDEbSZR5ct/4zy9zM6A9EO1jb3sIl4qjlRnMIwcK6mprAE7WTjohnspwrCeM1mcGkQb7u4lpG3MrSyfuCYizWlXr54iuRvUeRLftzG4caBn1+YPxNNWql0FnDQ6r/LoShbe0yofDamL7YAAAk9LgHt3U2PpiFwczFSgjBQNjWxlzqtNac7wvSiyexHPsXnYa8zlvUX2huyWEEEIIISaQfCKbgrxOG/Elr+EC8z42l4ZROj1iVs7ZGA4/1Y4Ejt49RLpbSKTPXnzaolNgdZxzm6OxsjZAv/ZgSUfY19yDiwTa6oKz1BJZPHcOAJ2dpxcG7x5MEEsatA/EzzgnFuohiIc5JeeYySXOyaraAC8mK1E9hzB1vACACo1+RcBQPIVLxTGsbuyWiV0JUIhzYTWbWFUT4OFOF5rs7yproGJU59YXu2g0clmQvTNrGltrMMZgPE3xgZ/jCh3hu+nruHqZZHwKIYQQQswkEkCagswmRWbFLZjQfKLk0ezGc53CBmhHgBq6+aX1U5Q8dsfZp7FpjYUU5kmewlbtd5CyBwA41tJKpdMY1fNcuShbC6el9aVARCpjYN7xAxb87hqCPR009UZIpg1iyQydoTjJcC8Rk1eCEHl2y/paeuz1WNIRrG3PAmAKjT4DKRRL4SKB2e6ZrC4KMWZr5wTY1R5l0JYNHHmLR1couq7YRZPOBZv6j01W9/KuLRijP5LClBigYsdX2GdfxTbbhayuCxS6a0IIIYQQYgJJAGmKclctJlx9ITUH78xuGGFlsrPRdh/lAztxqwSV3U8QiZxlNTYjjQmN2Ta5GUhKKQLF2Q9T7R1tVDiNUWVa1VWUk8ZMb3c2AyljaNo6eyjf/mWcffuoefyfCUVTHOgY5HBXmK5QAmtigKTVP6nPR5ypxGPnxqu2AGAyUqS9NZhjPZCKYwxTr+pUoXgaF3EsTgkgialjXX0RqYxmTyxbPLusqm5U59UWOenBT0aZ0aH2s58wDXSF4vSGk6A1NU9+AnO8n4+Fb+Wq5ZWYTCNnkwohhBBCiOlFAkhTlM9ppemaH9F86dcILb4Z5l9+7hfLrcQ2gBebjsOxx4asE3RSOjsFzDLJASSA8orsKl1GpI8SW2ZUgTJlMhEx+4kGuxiMpTjcFca28/+wJIL0L7wJf9P9lO/8b8g9x3TGwJEJoZxFk/pcxNAWLlt38r6x6LrsnVAroXiKZNoY8dxwNIpNZbA5vZPZRSHGZP2cIqxmxaArGziyeEdXA8lhNVPuczFgLsUYQy2wqSZjaOKpDD3hBJ2h7OIHJS/+gMCRP/C7wO3sZx4fuHJRgXsphBBCCCEmmgSQpiizSeFyewkufA3dV34diuac+8UcAQB+XfZeItqBt/EBYqnh6yDpdPYDgTUPAaS6mmxB7CIVxm9JjnqqnnYW40yH+M2OFoyBVkp3f5dw9WZaL/0KwXmvomLHV5h73xsp2fN9ih/8IAtowVoyuiwBMcG8lSTNbpLaTFv5xdltAy0Eo6mz1uOKhrPZcg63BJDE1FHqsXPfBy7hoo3nZTeMsog2ZOsgdali9BhqgU0VWmuOdofZ1x7iUGeY9mD2ywZP88NUbfss7ZVX8NGOK7l1Yx01Rc4C91YIIYQQQkw0CSBNYX5ndjUy81mKSp+NrjmPaNlaBua/ikeMVbibHiAcTw57fDQWBcBqn/wPAAvmZIM6ARXGoxIwytXm3IEyyswR9NPfYvGvLsGcDNG78aPUFXto3vINWi/8DK6OZ6l++tNUt9zDXZmrsW35+GQ+FTEcpUiXLOKAruPZgWwWWLLvOOFE+owMJCOX2XBCPBICwO2R6YdiaplX5sG66mZCq98GxQ2jPq++xEVzphgVapvE3k2OSDJDJJHh1ARWZ/cL1D/0LqJFS3hL6G14nXY+KNlHQgghhBAzkqXQHRDD8zksdFtMmMYbQFr7DxypvpGl/VEeyKznuvgz9DbvhOUXDnl8OBLFDdgdkx9AKirJ1kCa70liysRQ1tGt2qNcxSw37WJ9eC9dlZfSd+nnKK9fhN9lpThpp2/Z7fQtvQ1TMsS3Hmvi8aYYb6qtncynIkaQuf7rfPEn2/F3WLgFiHU34Un9De3xwMqrTh43mEhzvDdKqddGld9JIprNQHJKBpKYgmxlDfRs+Q98ptEX568vdnEsGUAN7shOsx3n7/d8CsdPX4DBEulgzgNvJeMo5jP+T7GvLcn/vH4FRW5bgXoohBBCCCEmk2QgTWEWs4lFFR7KfeNbDe1EAGpljZ/t5lXZbcefHLYOUjgSAcCWhwwk7F4MZWFLvRWSUdQoM5BwFeMwIrTrYm4beCc/2a9J5DJXqnyObPaWMmHYA+zuzrC40ouaRh/UZhpr1QqK563jyaYwGVc5uvcwtY+8H8/Wz5523GA8BXAyMykZy2YgjXpcCJFnLtvYVnasL3bRoYsxpeMQ65+kXk2OcCJ18r4pGWbOQ+/ElAzzh6Vf5Rf7krx2Qy2vWj26FemEEEIIIcT0IwGkKU4phcM6vqXnzbmVcHxOK2VVc2g1VeLqeHbYOkjRXADJ4cxDAEkpcBZRa49DKjrqGkjKXQrA9mX/gtnh5WfPHOfSLz/Cf96zj2TGoL7ERXXAgaENmvuirK4NTOKTEGdjt5jYNK+EvkiSmKsK37F7sCQGsPYf4dT5MKFYNsMhnVuhLRXLjsXRTm0UIt9ctrEl8tYVu2jX2dXbmEZ1kNIZg1jSwBpqov7Bd7D0p2txdT3Hixu/wKee0Sws9/DJVy0vdDeFEEIIIcQkkilss4DZpFAK3DYza+sDPN2+iL/rfJZQIj3kh59YPAaA0zm6YM54aWcR6UgPKhkB6+gCBab1t9NsrmXt2jdwT5GL5r4oX3vwEN957Ch/29/Fl25ZzZq6AIe6wmhg88LSyX0SYkRKKS6cn/03aEwXsyKTLdRuToYwBrsw+SqIJNJkcoEjI/cznQhnLzDKcSFEvtksY/seZkGZh46TAaQ2qFw5Cb0an2TaOON5hRNp/Ef/TO2jH0abLPQt+Xu65lzPh7daMIwY//36tbjs8pZCCCGEEGImkwykWcJpM2MxmzhvbjHPGIuxxntJdh0a8thoNFtE2+nM04d2bzXO7l2Qjo0+A6m4gdCSWyjO1dqoK3bxldeu5q63bGQgluLGbz7B2+58li/ddwBAMpCmgPoSF6/fWMdTPdnMtmj5OgBS3dlxOBhPU7Ln+1Rv/X/Ymx8DrTHiuQDSKMeFEFOd32XFVZZbVXOKZiD1hBNnbAvF0lTs+AoJfwMHb36I5o3/xr9ud3KkO8xnX72CpVW+AvRUCCGEEELkkwSQZgmfI7ui25q6IrYb2RVyTM1PD3lsPJ4NILlc+VmGObP5A9jCrShtgHX0gQK3zXJGBtUli8p46MOX8v4rFvJCywBdg3FuWV97MtAkCuvfX7WcsHc+SW3h+NqPApDpOkg6YxDs76Py2S9Qsv8n1N/9Btj/F3QyOxZlCpuYSRbOm0dam0j3txS6K2fQWtMfTZ7MAgSIpzJEuxuxDxylf+EtpFyVfPuxozx3vJ+PXL2Y16yTBQqEEEIIIWYDCSDNEj5nNtBS6XcQcjcwaPJha3vmtA8JJyRyU9hcecpAMs27lIGGa7MPxhAoKPMOXVzc67DywasW8ewdV/L4P1/Ol25ZPRHdFBPAYTWz8cb3clHi6zxrLMYw29G9h2gLxnE1PYgpk+D45d8EQIdaUalcDSSZwiZmkI3zy+kiQH9HY6G7coZE2sAwIJx8acW1zlAcT+tWAMI1F3PPng7ue7GD122o452Xzi9UV4UQQgghRJ5JAGmWsFteKsS9pr6I51k8bCHtZCIbQDJbx7f622iZTYrOTf9GyjcHypeO+jy31NuYls5fUE7UXsazx0Ok/A0Y3QcZiKXwH/0zKVcFoTlXA2BEg5hSkoEkZp6NDcV06GJiPccL3ZUzJFLZFRDD8WwAKZxIE4ql8bRtJeUsY3uknO89fpQL5hXzyb9bjskkq1sKIYQQQswWEkCahdbVF/F0Yh720DFiob4z9ifj8ewdS34CSEopKuoW0PrGp6Dhkry0KQrHYjZx4fwSHj/UTbpoHrbgUUzJQbzNjzDQcB3abCdjcZGJ9mExYmgUWPMznVKIfCj12Bm0lWMOt2MYGsPQdA+eWXeoEOLp7JcK4USaaDJNU28EtIGndSvd5Zv4z/sOUFfk4rtv3IDTNr4VQoUQQgghxPQiAaRZaE1dgD16LgBG2wtorUmkX8pESiezGUj5CiAB+J1WSoeZkiZmnutWVdEfTdFhrccWOk7Rod9iMpIMzHsVABm7n1S4HxcJUiYHKMlyEDOL2V9LUbqbYz1hWoMx+gcjhe4SkK13BNlMpGM9EQwDHH37scR7+UVPdrraj9583sm6ekIIIYQQYvaQANIstKrWz17dAIDRvpP9HYM098VO7k8lcxlI5vwGdDwyJW3WuGJpBTazieejpSidpnLbZ4iUrydVvY4yrx3D7icT7cdNnIxFVmATM0/V8s24VIKDf/g8xt67WfCDJegjjxS6W8RzU9gAjNzdwOHfYWDiF70L+OCVi2golSmlQgghhBCzkQSQZiG33UJReTXdpjIc3btJZzSxZIZkOvtpIXMigGSRlcvE5PDYLVyxtJzfNDoAMKwejl/xLYrcDir9DiyuInQsiFMlJIAkZqT5W27nGcdmrmz9X+r+9m5MmQTppqFXxswXw9An/w6cYI73UbLvx2x1XkbcUcatG+sK1DshhBBCCFFo4wogKaWKlVIPKKUO5X4WDXNco1Jqt1Jqp1Jq+1jPFxNvXX0RuzJzcPTsPrktGEsCYKQKk4EkZpdPXL+MQ2ouz1vXsv/i/yZoLkOp7DLi2hlAJQZwEwerBJDEDKQUyev+m2ZdTou1gZSrAt21v6BdiqczOLueY/EvN2MdbAagdM8PUek4nw6+gr8/fw4um2SKCiGEEELMVuPNQPo48JDWeiHwUO7xcLZorddorTec4/liAl23soqd6bnYB45hSoYBCMVSaK0x0rlirmbJQBKTpzrg5KPXrebVgx/l+rvNvP77T7Pxsw/xL7/bjXIGMCcGcJKQFdjEjLV+cQP/Xv0dXmf8B6myFaieAwXtTzJt4G7fhm2wmbIXvoUl2knJiz/iBe/FNKo63rx5bkH7J4QQQgghCmu8XyXeAFyWu38n8AjwsTyeL87R5gWl/N6xCJXROPpeJFp5PrGkQddgHJVJkrZasZhkhqOYXK87r454KkNrMEbAaeO+vR08fbQXlgewpkK4lBeTXRITxczktJnZvLSWx+/dTzywAGfLVsikwVyYLJ9k2sA22ARA0cFfYw8eQRlJPh25ifPmFlHucxSkX0IIIYQQYmoYb4SgQmvdDpD7WT7McRq4Xym1Qyn19nM4H6XU25VS25VS27u7u8fZbWE2KWqWbQKg+uEPseyuFdj7DnCsO4qNFFqyj0QeKKW4ZkUlb9w0l/dcvoDLl5TT1BclbfNjy0TxEcVslwwkMXNdsST7Z++gUYPKJCDYVLC+JNIG9lAjSU8tSmfwdDzN84s+wHPRMq5ZUVmwfgkhhBBCiKnhrF9zKqUeBIZ653jHGNrZrLVuU0qVAw8opfZrrR8bw/lorb8LfBdgw4YNeizniqG9ctNq9r1QT2UqiSMVpejQb3i+/p+wkZbpayJvAk4bDms2lr2k0ofW0JN2UgtUmvowOzyF7aAQk2hBuYcyr50nBkq5ANBd+1Al8wvSl1TGwBZqIlK5kaS3HnuokR8kr8Jm6eG6lVUF6ZMQQgghhJg6zhpA0lpfOdw+pVSnUqpKa92ulKoCuoa5RlvuZ5dS6vfARuAxYFTni8mxpNLH9cXfJBRLcW/tN/Af/TPN7jdTRwplkQLaIj+cNvPJ+0sqvQC0xO3UAl5iZKQGkpjBlFJcOL+EPx2K8mEg3bkf69LrC9KXVDKGNdxG0juHrvUfIpUx2PqjZ7hwXgllXpm+JoQQQggx2413CtufgNtz928H/vjyA5RSbqWU98R94Gpgz2jPF5PHbMpOH2odiLOv5CpskTZs7dtxmtIoi3xYEPlXX+zCaTWzs/ulJEMlASQxw104v4SmiJm4q4pUx76C9EFrjeo/jkKT9M0F4K97OgjF07xhY31B+iSEEEIIIaaW8QaQPg9cpZQ6BFyVe4xSqlopdU/umApgq1LqBeAZ4C9a67+OdL7In2uWV2C3mPjZwAoMs53FPffjtxkgGUiiAEwmxaIKD39rSp7cpqQGkpjhLlpYBkCbdQ6qZz/JtJH3PiQzBrZQIwAJ/1ziqQy/2tHMqlo/Vy2vyHt/hBBCCCHE1DOupV601r3AFUNsbwOuzd0/Cqwey/kif4rddjbPL+WBI70E525hbfMTNNsXgkVqIInCWFLpY3ur6+RvJ8lAEjNdTcDJ+Q3FPNtdzi36edp7e6ipGHZNiUmRTL8UQEr65nLP7naC0RRfuWUhSqm89kUIIYQQQkxNsk77LOewmrl8STnRZIYDtmWU614qdDeYJQNJFMbiSi8hfUrQyCoBJDHz3bKhjp9GzsOUSWDd9k20zu9aEdkA0nEyVi9xi5/f72xlXX2Ay5fkN5AlhBBCCCGmLgkgzXJeu4Wb1tfgtpl5NJRdZac60ShT2ETBLKn0MsApQSPJQBKzwCtXVHLYuojt7ksp2fVdov3teW0/mTGwhxpJ+ubwTGM/wWiKt18yT7KPhBBCCCHESRJAmuVMJoXTZuGihaX8pjWQ3UZGprCJgllTH+DiJTVkzLlC7jZXYTskRB647RauW1nFv4ZejSmTRD3x9by2n0prbKFGEr65/HpHM0urfFyzvDKvfRBCCCGEEFObBJAEAJctLqcn46ZFl2Y3mGUVNlEYLpuFH7zpPHAEshtkCpuYJa5dVcX+VDmtxedjOfZwXttOphLYBls4TiVHuiO8/ZIGyT4SQgghhBCnkQCSAODSRdlVgPYZc7IbZAqbKDB9IoAkU9jELLFpXglOq5ldajHWvoMQH5j0Ng1D0xtOkOlvRuk020N+vA4L166smvS2hRBCCCHE9CIBJAFAdcDJogoP+8kGkJRMYROF5vRnf8oUNjFLOKxmLlpYyl8H6lBoUk3PTmp7WmuOdIdpC8axDTQB8Ei3h6uXVWK3mCe1bSGEEEIIMf1IAEmc9A8XzIHKldkHkoEkCk2msIlZ6Mql5fxtsA6NItP09KS21RdJEk8ZANhCjQDsT5Zz/SrJPhJCCCGEEGeSAJI46Y2b5nLr310HgDJLAEkUmONEBpIEkMTssWVJOWFcdDnnQcvkZSClMwadocTJx7ZQEwllJ2ovZfOC0klrVwghhBBCTF8SQBKnsZU0kPTUoQK1he6KmO2cgexPmcImZpFyr4OVNX526kVYO3aAYUzo9RPpDO0DMQ50DpIx9MnttlAjTUY5lywqw2aRtwZCCCGEEOJM8i5RnMZhM3PolgfhwvcVuitillPeKrTZDjZPobsiRF5dOL+EB8NzMCcHibe9eNbjk2kDrTWGoWnui3Kwc5D2gdhpxwzGUxztDnOwI0zPYPKMuJQ5eIxjRgWrawMT+EyEEEIIIcRMYil0B8TUYreYsdjdYJICqqKwTBvfRrD6YorM1kJ3RYi8umB+Cf/++GKwQPLIYzhqV454fGswRiKdwaQUiVxNo0Qqicduweuw0tIfpT+SGv4C2sARbqZRL6ahVKaMCiGEEEKIoUkGkjiD0yrBI1F4yuFDVa8udDeEyLvz5hbTqirptdVgPvrQiMcahiaSSJNK65PBoxPagnHaB2IjB48AS7QTi5HguK5gngSQhBBCCCHEMCSAJM7gsksASUwNVrP8ihKzj8duYVWtn6fUGpytT5KIR4Y9djCRRuuh9yXTBj2DybO2Zx9oBKCZSuqKpeaYEEIIIYQYmnw6E2dw2SSAJKYGCSCJ2WrTvBJ+H16GKR0jemjrsMcNxkfOLhoNW6gRgIh7DnbJQBVCCCGEEMOQT2fiDDKFTUwVVrMqdBeEKIgL55fyZGYpGWVFHx5+GttgPD3utmyhRlJYsBTVjPtaQgghhBBi5pIAkjiDUvKhXUwNMhbFbLVhbhHK5uaQcxWupr8RTZ4ZKAon0mQSMUpf+Bb2vgNjbsMabmPuX2+jbPd3aNSVVBd7J6LrQgghhBBihpJV2IQQQogpxmE1c+miMu4+uoqPRH9EV8teTHXL6QknqC3K1inqHkzgP/pnqp79PFXPfp64fwG2SCsYadKuShqv/gGJ4iVDN2BkqHvkfTh6X6R52Tt583OLuEnqHwkhhBBCiBFIBpIQQggxBV21rIJfRjegUbDnNxzuCtMfSdEbThBLZgjH0/iOP0jKVUHn2g+Q9M+lb8kb6Fn5dkypMDVP3MHJCtvawNGzC0fPHhy9L1Kx4yu4O56hbdOn2dbwblp0OXNLJYAkhBBCCCGGJxlIQgghxBR0+ZJyPmoq5rB7LfWH/0Tn2g+BUnSE4jitZlQ6jqflUYILb6Jr/YdOOzfprad268co3f09Uq5yynZ9G2ff3tOOGZj7SoILb6bjYDcA80o9eXtuQgghhBBi+pEAkhBCCDEFBVw2zptbxO97NvHPkW9S/txXcXc+S9uF/0EksABv+5OY01FC9VedcW7/4tdRfOBnVD3zHwAkvXW0XPQFMo4i0JqMo4hIxQZQivaBOAqYV+bO8zMUQgghhBDTiQSQhBBCiCnqpnW1fOY3q/mw00LF818HoPKZz9F09Q/xNj1AxuomUr3pzBOViaYrv4ezZxdpVwXx4qVos23INpr7o5R67Hjs8pZACCGEEEIMT94tCiGEEFPUTetq+em2Wj7R/S7etHke/ngLFTu+Qunu7xE48ifCtZeizfYhz027Kxl0V454/Vgyw7ONfVy6qExWPRRCCCGEECMaVxFtpVSxUuoBpdSh3M+iIY5ZrJTaecotpJT6QG7fJ5VSrafsu3Y8/RFCCCFmEpNJ8Z+vWckvEpv4r87V9Kx4GylHKVXbPkPKVU77xjuwmLOBH0Nr+qNJ0hlj1Nd/4nAP8ZTBq1ZVT9ZTEEIIIYQQM8R4M5A+Djyktf68UurjuccfO/UArfUBYA2AUsoMtAK/P+WQ/9Jaf3mc/RBCCCFmpKVVPm7ZUMevtzdzw5pqPJs/i7/xHto2fZqmmJ0HHj/KntYBjvVESGU0PoeFSxeVcet59fic1hGvff++TmoCTtbNCeTnyQghhBBCiGlrvAGkG4DLcvfvBB7hZQGkl7kCOKK1bhpnu0IIIcSs8ZGrF/OXXe388tlmPnz1Kwk1vJJf72jmZ9v2YreYOK+hmC2Lyyly2djR1M+9ezp48kgv775sAavr/Ngt5tOul84YPH64h33tId504dwz9gshhBBCCPFy4w0gVWit2wG01u1KqfKzHH8r8POXbXuvUuqNwHbgw1rr/qFOVEq9HXg7QH19/fh6LYQQQkwjZV4779mygC/8dT/nzS0mlTG466kmLl1UxpduWUW513Ha8btbgrzjJzv4zF/2YjEpFpZ7WFbtY1mVn+5wgt/saKEnnKDa7+CKJeXYrRJAEkIIIYQQI1Na65EPUOpBYKgqnHcAd2qtA6cc26+1PqMOUm6fDWgDlmutO3PbKoAeQAOfAaq01m85W6c3bNigt2/ffrbDhBBCiBkjnsrwj3dt5/FDPVhMimVVPv7vLedR7B66iHbHQJy/7Gpnb/sAL7aFONwVJm1k/+YvrfJx87oa1s8pxmU301DqxmoeV1lEIYQQQggxAyildmitNwy176wZSFrrK0e4cKdSqiqXfVQFdI1wqVcCz50IHuWuffK+Uup7wN1n648QQggxGzmsZr5/+wY+/tvdbG/s4xOvWkbAaRv2+Eq/g6uXV7CxoRiAjDbY2zaI2aRYWunFbFY0lLpx2WRBViGEEEIIcXbjfdf4J+B24PO5n38c4djX87LpayeCT7mHrwb2jLM/QgghxIxlt5j5r9etQWuNUuqsx9cVu7Bb4tgsJgIuG/PLPPRFkoQTaeqLXRI8EkIIIYQQozbed46fB36llHorcBy4BUApVQ18X2t9be6xC7gKeMfLzv+iUmoN2SlsjUPsF0IIIcTLjCZ4dEK576X6SF6HFa9j5JXZhBBCCCGEGMq4Akha616yK6u9fHsbcO0pj6NAyRDH3Tae9oUQQgghhBBCCCHE5JOKmUIIIYQQQgghhBBiRBJAEkIIIYQQQgghhBAjkgCSEEIIIYQQQgghhBiRBJCEEEIIIYQQQgghxIgkgCSEEEIIIYQQQgghRiQBJCGEEEIIIYQQQggxIgkgCSGEEEIIIYQQQogRSQBJCCGEEEIIIYQQQoxIAkhCCCGEEEIIIYQQYkRKa13oPoyZUqobaCp0P6awUqCn0J0Qs5KMPVFIMv5EocjYE4UiY08Uiow9USgy9ibfHK112VA7pmUASYxMKbVda72h0P0Qs4+MPVFIMv5EocjYE4UiY08Uiow9USgy9gpLprAJIYQQQgghhBBCiBFJAEkIIYQQQgghhBBCjEgCSDPTdwvdATFrydgThSTjTxSKjD1RKDL2RKHI2BOFImOvgKQGkhBCCCGEEEIIIYQYkWQgCSGEEEIIIYQQQogRSQBJCCGEEEIIIYQQQoxIAkh5oJSqU0o9rJTap5R6USn1/tz2YqXUA0qpQ7mfRbntJbnjw0qpb5xyHa9Saucptx6l1NeGaXO9Umq3UuqwUuq/lVIqt/2/Tjn/oFIqOMz5lyilnlNKpZVSNw+x36eUaj21f2LqmWljTymVOeUaf5qYV0lMhhk49uqVUvfnns9epdTcCXmhxISbSWNPKbXlZX2IK6VunLAXS0yomTT2cvu+mHse+069tpiaZuD4+4JSak/u9rqJeZXEZJimY+9DKvt+bpdS6iGl1JxT9t2e6/MhpdTtE/dKzRBaa7lN8g2oAtbl7nuBg8Ay4IvAx3PbPw58IXffDVwEvBP4xgjX3QFcMsy+Z4BNgALuBV45xDH/BPxwmPPnAquAu4Cbh9j/deBnI/VPboW/zbSxB4QL/ZrKbdaOvUeAq3L3PYCr0K+x3GbH2DvlmGKgT8be1L3NpLEHXAg8AZhzt6eAywr9Gstt1oy/64AHAEuun9sBX6FfY7nNqLG35cTfU+BdwC9z94uBo7mfRbn7RYV+jafSTTKQ8kBr3a61fi53fxDYB9QANwB35g67E7gxd0xEa70ViA93TaXUQqAceHyIfVVkf8k+pbP/E+46ce2XeT3w82H63Ki13gUYQ1x/PVAB3D9c/8TUMNPGnpg+ZtLYU0otAyxa6wdyx4W11tHh+ikKayaNvZe5GbhXxt7UNcPGngYcgA2wA1agc7h+isKbYeNvGfCo1jqttY4ALwCvGK6forCm6dh7+JS/p08Dtbn71wAPaK37tNb9ZAOZMvZOIQGkPFPZaQ9rgW1Ahda6HbL/8cj+Jxmt15ONlA61jF4N0HLK45bctlP7MQdoAP42hjZRSpmArwAfHct5ovCm+9jLcSiltiulnlYyjWPamAFjbxEQVEr9Tin1vFLqS0op8xivIQpgBoy9U93KMG+ExdQz3cee1vop4GGgPXe7T2u9byzXEIUz3ccf2YDRK5VSLqVUKdlskboxXkMUwDQde28lm8V04trNI117trMUugOziVLKA/wW+IDWOjTOqeS3ArcN19QQ217+n+9W4Dda68wY2303cI/Wulmmwk8fM2TsAdRrrduUUvOAvymldmutj5zDdUSezJCxZwEuJvuG6DjwS+BNwA/GeB2RRzNk7GUbyH7buhK471zOF/k1E8aeUmoBsJSXvpV/QCl1idb6sbFcR+TfTBh/Wuv7lVLnAU8C3WSnUKbHcg2Rf9Nx7Cml/gHYAFw6hmvPapKBlCdKKSvZ/1A/1Vr/Lre5M/em8MSbw65RXms12ekUO3KPzacUC/s02Uhp7Smn1AJtL7vMad9kKqU+e+IaZ2l+E/BepVQj8GXgjUqpz4+m36IwZtDYQ2vdlvt5lGxNmrWj6bcojBk09lqA57XWR7XWaeAPwLrR9FsUxgwaeye8Fvi91jo1yuNFgcygsfdq4OnclN0w2W/nLxhNv0XhzKDxh9b6s1rrNVrrq8h+qD80mn6LwpiOY08pdSVwB/B3WutEbnMLp2e7DXXtWU0CSHmgsuHXHwD7tNZfPWXXn4ATld1vB/44ykueNp9Ta53J/YJdo7X+t1yK4KBS6oJc22889dpKqcVki4I9dco17jhxjZEa1lr/vda6Xms9F/gIcJfW+uOj7LfIs5k09pRSRUope+5+KbAZ2DvKfos8m0ljD3gWKFJKleUeX46MvSlrho29IfsgpqYZNvaOA5cqpSy5D4aXkq1rIqaomTT+cgGDktz9VWQLbUvt1SlqOo49pdRa4Dtkg0enBrbuA67Ofe4oAq5Gsn9Pp6dAJe+ZfiNbZV4Du4Cdudu1QAnwENmI+kNA8SnnNJJdbSVMNhK67JR9R4ElZ2lzA7AHOAJ8A1Cn7Psk8PmznH9ert0I0Au8OMQxb0JWYZvSt5k09siuCLOb7Lz43cBbC/36ym12jL3cvqtyz2U38H+ArdCvsdxmzdibC7QCpkK/tnKbPWOP7Mpr3yEbNNoLfLXQr6/cZtX4c+TG3V6yBY7XFPr1lduMG3sPkl0Y4ER//3TKvrcAh3O3Nxf69Z1qN5V7kYQQQgghhBBCCCGEGJJMYRNCCCGEEEIIIYQQI5IAkhBCCCGEEEIIIYQYkQSQhBBCCCGEEEIIIcSIJIAkhBBCCCGEEEIIIUYkASQhhBBCCCGEEEIIMSIJIAkhhBBCCCGEEEKIEUkASQghhBBCCCGEEEKM6P8DlLpubHueCOkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_test):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " plt.title(f\"Model Performance on test data: {test_exps[idx]}\")\n", - " plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "pickle.dump(dfs_gpr_train, open(Path(\"dfs_gpr_train.pkl\"), 'wb'))\n", - "pickle.dump(dfs_gpr_test, open(Path(\"dfs_gpr_test.pkl\"), 'wb'))\n", - "pickle.dump(scaler, open(Path(\"scaler.pkl\"), 'wb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "432.87418821478263" - ] - }, - "execution_count": 73, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(\n", - " np_input_train[:100, :]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4.4999054032351606e+21" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(\n", - " k(np_input_train[:, :])\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [], - "source": [ - "def simulate_carnot_gp(df_wdb, df, power_signal, m):\n", - " \n", - " df_local = df.copy()\n", - " \n", - " power = np.array([df_wdb['time'], power_signal]).T\n", - " runtime = df_wdb['time'].iloc[-1]\n", - " \n", - " eng.workspace['power'] = matlab.double(power.tolist())\n", - " eng.set_param('polydome', 'StopTime', str(runtime), nargout = 0)\n", - " eng.workspace['result'] = eng.sim('polydome')\n", - " df_simulation = carnot_to_series(eng, df.index[0])\n", - " \n", - " df_local.loc[:,'SimulatedTemp'] = df_simulation\n", - " df_local.loc[:,'SimulatedHeat'] = power[:, 1]\n", - " \n", - " df_sc = get_scaled_df(df_local, w_list, u_list, y_list, scaler)\n", - " df_gpr = data_to_gpr(df_sc)\n", - "\n", - " df_input = df_gpr.drop(columns = ['u', 'y'])\n", - " df_output = df_gpr['y']\n", - " \n", - " np_input_test = df_input.to_numpy()\n", - " #np_output_test = df_output.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_y(np_input_test)\n", - " \n", - " df_local.loc[3:, 'gpTemp'] = mean\n", - " df_local.loc[3:, 'gpVar'] = var\n", - " \n", - " return df_local" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "#df_sim = simulate_carnot_gp(df_wdb, df, random_signal, m)\n", - "#df_sim.fillna(0, inplace = True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Export Gaussian Process Model" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [], - "source": [ - "def export_gpr(path, m, w_scaler, u_scaler, y_scaler):\n", - " m_params = gpflow.utilities.parameter_dict(m)\n", - " pickle.dump(m_params, open(Path(path, 'gp_params.gpf'), 'wb'))\n", - " pickle.dump(m.data, open(Path(path, 'gp_data.gpf'), 'wb'))\n", - " pickle.dump(w_scaler, open(Path(path, 'w_scaler.pkl'), 'wb'))\n", - " pickle.dump(u_scaler, open(Path(path, 'u_scaler.pkl'), 'wb'))\n", - " pickle.dump(y_scaler, open(Path(path, 'y_scaler.pkl'), 'wb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "PosixPath('/home/radu/Projects/Master-Project/Notebooks/model')" - ] - }, - "execution_count": 78, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "export_path = Path(Path.cwd(), 'model')\n", - "export_path" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'w_scaler' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mexport_gpr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexport_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw_scaler\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mu_scaler\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_scaler\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'w_scaler' is not defined" - ] - } - ], - "source": [ - "export_gpr(export_path, m, w_scaler, u_scaler, y_scaler)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy.io import savemat" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "table_cols = df_gpr_train.columns.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "mdict = {\n", - " 'table_cols': table_cols,\n", - " 'gpr_train': dfs_gpr_train,\n", - " 'gpr_test': dfs_gpr_test\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "savemat(\"test_mat.mat\", mdict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluate performance with new input and disturbances" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_wdb, df = load_weather_data(\"Exp7\")\n", - "len_signal = len(df_wdb)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "random_signal = get_random_signal(len_signal, a_range = (- COP_cooling * Pel_max, COP_heating * Pel_max), signal_type = 'analog')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_sim = simulate_carnot_gp(df_wdb, df, random_signal, m)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure() \n", - "plt.subplot(2,1,1)\n", - "plt.plot(df_sim.index, df_sim['SimulatedTemp'], label = 'Simulated Temperature')\n", - "plt.plot(df.index, df['OutsideTemp'], '-.', label = 'Outside Temperature')\n", - "plt.title('Temperatures')\n", - "plt.legend()\n", - "plt.subplot(2,1,2)\n", - "plt.plot(df_sim['SimulatedHeat'], drawstyle = 'steps', label = 'Heat Input')\n", - "plt.title('Heat Input')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize = (20, 5))\n", - "plt.plot(df_sim.index, df_sim['SimulatedTemp'], label = 'Measured data')\n", - "plt.plot(df_sim.index, df_sim['gpTemp'], label = 'Gaussian Process Prediction')\n", - "plt.fill_between(\n", - " df_sim.index, \n", - " df_sim['gpTemp'] - 1.96 * np.sqrt(df_sim['gpVar']),\n", - " df_sim['gpTemp'] + 1.96 * np.sqrt(df_sim['gpVar']),\n", - " alpha = 0.2\n", - ")\n", - "plt.legend()\n", - "plt.title(\"Gaussian Process Performance on new random input data/ new weather data\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "### Simulate the System with constant Zero Input" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "random_signal = get_random_signal(len_signal, a_range = [0,0], signal_type = 'analog')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_sim = simulate_carnot_gp(df_wdb, df, random_signal, m)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_sim" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure() \n", - "plt.subplot(2,1,1)\n", - "plt.plot(df_sim.index, df_sim['SimulatedTemp'], label = 'Simulated Temperature')\n", - "plt.plot(df.index, df['OutsideTemp'], '-.', label = 'Outside Temperature')\n", - "plt.title('Temperatures')\n", - "plt.legend()\n", - "plt.subplot(2,1,2)\n", - "plt.plot(df_sim['SimulatedHeat'], drawstyle = 'steps', label = 'Heat Input')\n", - "plt.title('Heat Input')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize = (20, 5))\n", - "plt.plot(df_sim.index, df_sim['SimulatedTemp'], label = 'Measured data')\n", - "plt.plot(df_sim.index, df_sim['gpTemp'], label = 'Gaussian Process Prediction')\n", - "plt.fill_between(\n", - " df_sim.index, \n", - " df_sim['gpTemp'] - 1.96 * np.sqrt(df_sim['gpVar']),\n", - " df_sim['gpTemp'] + 1.96 * np.sqrt(df_sim['gpVar']),\n", - " alpha = 0.2\n", - ")\n", - "plt.legend()\n", - "plt.title(\"Gaussian Process Performance on new weather data with constant zero input\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "### GP prediction N steps ahead" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_sim" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_sim[['OutsideTemp', 'SolRad']]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_sc = get_scaled_df(df_sim, w_scaler, u_scaler, y_scaler)\n", - "df_gpr = data_to_gpr(df_sc)\n", - "\n", - "df_input = df_gpr.drop(columns = ['u', 'y'])\n", - "df_output = df_gpr['y']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_input = dfs_gpr_test[0].drop(columns = u_list + y_list)\n", - "df_output = dfs_gpr_test[0][y_list]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "N_pred = 11" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "idx = 1" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_iter = df_input.iloc[idx:(idx + N_pred)].copy()\n", - "df_iter" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for idxx in range(N_pred - 1):\n", - " mean, var = m.predict_f(df_iter.iloc[idxx, :].to_numpy().reshape(1, -1))\n", - " df_iter.iloc[idxx + 1, 7] = mean.numpy().flatten()\n", - " df_iter.iloc[idxx + 1, 8] = df_iter.iloc[idxx, 7]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_iter" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "data_to_gpr(dfs_train[0], lags_list, col_lists)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "y_list" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_iter.index[0]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_iter" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "u_lags" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "mean_iter, var_iter = m.predict_f(df_iter.to_numpy())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure()\n", - "plt.plot(df_iter.index, mean_iter.numpy(), 'o-', label = 'predicted', color = 'orange')\n", - "plt.plot(df_output.iloc[idx:idx + N_pred], 'o-', label = 'measured', color = 'darkblue')\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "nb_predictions = 10\n", - "N_pred = 8" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure()\n", - "plt.plot(df_output.iloc[:nb_predictions + N_pred], 'o-', label = 'measured', color = 'darkblue')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure()\n", - "\n", - "for idx in range(nb_predictions):\n", - " df_iter = df_input.iloc[idx:(idx + N_pred)].copy()\n", - " for idxx in range(N_pred - 1):\n", - " mean, var = m.predict_f(df_iter.iloc[idxx, :].to_numpy().reshape(1, -1))\n", - " df_iter.iloc[idxx + 1, 4] = mean.numpy().flatten()\n", - " mean, var = m.predict_f(df_iter.iloc[idxx, :].to_numpy().reshape(1, -1))\n", - " df_iter.iloc[idxx + 1, 7] = mean.numpy().flatten()\n", - " df_iter.iloc[idxx + 1, 8] = df_iter.iloc[idxx, 7]\n", - " \n", - " mean_iter, var_iter = m.predict_y(df_iter.to_numpy())\n", - " plt.plot(df_iter.index, mean_iter.numpy(), '.-', label = 'predicted', color = 'orange')\n", - "plt.plot(df_output.iloc[:nb_predictions + N_pred], 'o-', label = 'measured', color = 'darkblue')\n", - "plt.title(f\"Prediction over {N_pred} steps\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_input[['SolRad', 'OutsideTemp']].plot()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - }, - "toc-autonumbering": false, - "toc-showmarkdowntxt": false, - "toc-showtags": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Notebooks/33_gaussiandome_prbs_loaded.ipynb b/Notebooks/33_gaussiandome_prbs_loaded.ipynb deleted file mode 100644 index 23dceda..0000000 --- a/Notebooks/33_gaussiandome_prbs_loaded.ipynb +++ /dev/null @@ -1,1487 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "from shutil import copyfile\n", - "import pickle" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Data manipulation" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plotting / Visualisation" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "plt.rcParams[\"figure.figsize\"] = (15, 6)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Gaussian Process Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import gpflow\n", - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from gpflow.utilities import print_summary" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "gpflow.config.set_default_summary_fmt(\"notebook\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "MATLAB engine" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import matlab.engine" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "eng = matlab.engine.start_matlab()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eng.load_system(\"../Simulink/polydome\", background = True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load weather data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which experimental set to simulate:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "exp_id = 'Exp7'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Copy the corresponding WDB to the model input location:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'../Data/input_WDB.mat'" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "copyfile(f\"../Data/Experimental_data_WDB/{exp_id}_WDB.mat\", \"../Data/input_WDB.mat\")" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timetimestampzenithazimuthdnidhiOutsideTempTsky_radrelative_humidityprecipitationcloud_indexpressurewind_speedwind_directionaoiincidence_mainincidence_secondpoa_directpoa_diffuse
0020170713200077.726968288.78333932.17459484.91301524.018.050-99990.5963000-999977.726968-9999-99996.83936984.913015
130020170713200578.534908289.630841167.59782588.43397224.018.050-99990.5963000-999978.534908-9999-999933.31356588.433972
260020170713201079.337991290.480180104.00938982.37750724.018.050-99990.5963000-999979.337991-9999-999919.24330082.377507
390020170713201580.135916291.331669767.55521533.32631824.018.050-99990.5963000-999980.135916-9999-9999131.49106933.326318
4120020170713202080.928349292.185610126.33467770.31771124.018.050-99990.5963000-999980.928349-9999-999919.91912470.317711
\n", - "
" - ], - "text/plain": [ - " time timestamp zenith azimuth dni dhi \\\n", - "0 0 201707132000 77.726968 288.783339 32.174594 84.913015 \n", - "1 300 201707132005 78.534908 289.630841 167.597825 88.433972 \n", - "2 600 201707132010 79.337991 290.480180 104.009389 82.377507 \n", - "3 900 201707132015 80.135916 291.331669 767.555215 33.326318 \n", - "4 1200 201707132020 80.928349 292.185610 126.334677 70.317711 \n", - "\n", - " OutsideTemp Tsky_rad relative_humidity precipitation cloud_index \\\n", - "0 24.0 18.0 50 -9999 0.5 \n", - "1 24.0 18.0 50 -9999 0.5 \n", - "2 24.0 18.0 50 -9999 0.5 \n", - "3 24.0 18.0 50 -9999 0.5 \n", - "4 24.0 18.0 50 -9999 0.5 \n", - "\n", - " pressure wind_speed wind_direction aoi incidence_main \\\n", - "0 96300 0 -9999 77.726968 -9999 \n", - "1 96300 0 -9999 78.534908 -9999 \n", - "2 96300 0 -9999 79.337991 -9999 \n", - "3 96300 0 -9999 80.135916 -9999 \n", - "4 96300 0 -9999 80.928349 -9999 \n", - "\n", - " incidence_second poa_direct poa_diffuse \n", - "0 -9999 6.839369 84.913015 \n", - "1 -9999 33.313565 88.433972 \n", - "2 -9999 19.243300 82.377507 \n", - "3 -9999 131.491069 33.326318 \n", - "4 -9999 19.919124 70.317711 " - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_wdb = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_WDB.pkl\")\n", - "df_wdb.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PowerSetpointOutsideTempSupplyTempInsideTempSolRad
timestamp
2017-07-13 20:00:00+02:0018.82758622.524.023.922.93333391.714933
2017-07-13 20:05:00+02:003628.96551722.524.015.523.216667121.538700
2017-07-13 20:10:00+02:004391.34482822.524.014.323.116667101.481617
2017-07-13 20:15:00+02:004392.46666722.524.014.022.800000163.710150
2017-07-13 20:20:00+02:003777.48275922.524.014.022.63333390.039567
\n", - "
" - ], - "text/plain": [ - " Power Setpoint OutsideTemp SupplyTemp \\\n", - "timestamp \n", - "2017-07-13 20:00:00+02:00 18.827586 22.5 24.0 23.9 \n", - "2017-07-13 20:05:00+02:00 3628.965517 22.5 24.0 15.5 \n", - "2017-07-13 20:10:00+02:00 4391.344828 22.5 24.0 14.3 \n", - "2017-07-13 20:15:00+02:00 4392.466667 22.5 24.0 14.0 \n", - "2017-07-13 20:20:00+02:00 3777.482759 22.5 24.0 14.0 \n", - "\n", - " InsideTemp SolRad \n", - "timestamp \n", - "2017-07-13 20:00:00+02:00 22.933333 91.714933 \n", - "2017-07-13 20:05:00+02:00 23.216667 121.538700 \n", - "2017-07-13 20:10:00+02:00 23.116667 101.481617 \n", - "2017-07-13 20:15:00+02:00 22.800000 163.710150 \n", - "2017-07-13 20:20:00+02:00 22.633333 90.039567 " - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_data.pkl\")\n", - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Experiment runtime: 554100\n" - ] - } - ], - "source": [ - "runtime = df_wdb['time'].iloc[-1]\n", - "print(f\"Experiment runtime: {runtime}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simulink" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Set the CARNOT simulation initial temperature `t0`" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "eng.workspace['t0'] = float(23)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Set the CARNOT simulation air exchange rate" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "np_air = np.zeros([df_wdb.shape[0], 2])\n", - "np_air[:, 0] = df_wdb['time']\n", - "np_air[:, 1] = 2.75" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "eng.workspace['air_exchange_rate'] = matlab.double(np_air.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Generate Heat Random Input Signal" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "Pel_max = 6300\n", - "COP_heating = 5.0\n", - "COP_cooling = 5.0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define a function for generating random signals:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "def get_random_signal(nstep, a_range = (-1, 1), b_range = (2, 10), signal_type = 'analog'):\n", - "\n", - " a = np.random.rand(nstep) * (a_range[1]-a_range[0]) + a_range[0] # range for amplitude\n", - " b = np.random.rand(nstep) *(b_range[1]-b_range[0]) + b_range[0] # range for frequency\n", - " b = np.round(b)\n", - " b = b.astype(int)\n", - "\n", - " b[0] = 0\n", - "\n", - " for i in range(1,np.size(b)):\n", - " b[i] = b[i-1]+b[i]\n", - " \n", - " if signal_type == 'analog':\n", - " random_signal = np.zeros(nstep)\n", - " # Random Signal\n", - " i=0\n", - " random_signal = np.zeros(nstep)\n", - " while b[i]" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure() \n", - "plt.subplot(2,1,1)\n", - "plt.plot(random_signal, drawstyle='steps',label='Random Signal')\n", - "plt.legend()\n", - "plt.subplot(2,1,2)\n", - "plt.plot(prbs, drawstyle='steps', label='PRBS')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the original electric power consumption" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "power = np.array([df_wdb['time'], random_signal]).T" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the heating power by passing through a heating/cooling COP" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "eng.workspace['power'] = matlab.double(power.tolist())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Set the simulation parameters and run it" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "eng.set_param('polydome', 'StopTime', str(runtime), nargout = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "eng.workspace['result'] = eng.sim('polydome')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Interpret the simulation results" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "def carnot_to_series(eng, start_timestamp):\n", - "\n", - " # Compile the simulation dict\n", - " dict_simulation = {}\n", - " dict_simulation['SimulatedTemp'] = np.asarray(eng.eval('result.SimulatedTemp.Data')).reshape(-1)\n", - " dict_simulation['time'] = np.asarray(eng.eval('result.SimulatedTemp.Time')).reshape(-1)\n", - " \n", - " # Create the dataframe from dict\n", - " df_simulation = pd.DataFrame(dict_simulation)\n", - " df_simulation.set_index('time', inplace = True, drop = True)\n", - " \n", - " # Define the timestamps and set it as index\n", - " df_simulation['timestamp'] = start_timestamp + df_simulation.index.map(lambda x: pd.Timedelta(seconds = x))\n", - " df_simulation = df_simulation.reset_index().set_index('timestamp')\n", - " \n", - " # Resample the dataframe to 5 min intervals\n", - " # Taking the mean when there are multiple points, padding with zero order when data is missing\n", - " df_simulation = df_simulation['SimulatedTemp'].resample('5min').mean().pad()\n", - " \n", - " return df_simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "df_simulation = carnot_to_series(eng, df.index[0])" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAF1CAYAAAC9AVTpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gU19WH39m+6l1IAiHRQRTRwYANBmPce1yIW9wdlyRfEttxd9wSO7bj2InjOO417g3bgA2m944A0QSSUO9l+873x+zM7koraQUChLjv8+jR7syd2Tu7U+6555zfkWRZRiAQCAQCgUAgEAgEJw+6490BgUAgEAgEAoFAIBAcW4QhKBAIBAKBQCAQCAQnGcIQFAgEAoFAIBAIBIKTDGEICgQCgUAgEAgEAsFJhjAEBQKBQCAQCAQCgeAkQxiCAoFAIBAIBAKBQHCSIQxBgUAgEAgEAoFAIDjJEIagQCAQCE5IJElqDPjzSpJkC3g/93j373CQJKlAkqRZx7sfAoFAIOj5GI53BwQCgUAgOBxkWY5SX0uSVADcKMvywuPXo/aRJMkgy7L7RP8MgUAgEPQMhEdQIBAIBD0KSZJ0kiTdK0nSXkmSqiRJ+p8kSQm+dVmSJMmSJF0vSVKhJEk1kiTdKknSeEmStkiSVCtJ0ksB+7pOkqTlkiT9Q5KkOkmSdkqSNDNgfawkSf+VJKlEkqRiSZIelyRJ32Lb5yVJqgYekSSpvyRJP/n6VSlJ0nuSJMX52r8DZAJf+7yaf5QkabokSUUtjk/zGkqS9IgkSZ9IkvSuJEn1wHUd9GmAJEk/+46lUpKkj47qjyEQCASCboswBAUCgUDQ07gLuBA4DUgHaoCXW7SZCAwELgdeAO4HZgE5wC8kSTqtRdt9QBLwMPCZalgCbwFuYAAwGpgN3Bhi2xTgCUACnvL1ayjQB3gEQJblq4GDwHmyLEfJsvzXMI/3AuATIA54r4M+/RmYD8QDvYF/hPkZAoFAIOhhCENQIBAIBD2NW4D7ZVkukmXZgWJoXSpJUmA6xJ9lWbbLsjwfaAI+kGW5XJblYmApigGlUg68IMuyS5blj4BdwDmSJKUCZwG/kWW5SZblcuB54IqAbQ/JsvwPWZbdsizbZFneI8vyAlmWHbIsVwDPoRisR8JKWZa/kGXZC8R00CcX0BdI9x3/siP8bIFAIBCcoIgcQYFAIBD0NPoCn0uS5A1Y5gFSA96XBby2hXgfFfC+WJZlOeD9ARSPXl/ACJRIkqSu0wGFAW0DXyNJUgrwIjANiPa1rwnrqNom8DM66tMfUbyCayRJqgH+Jsvy60f4+QKBQCA4ARGGoEAgEAh6GoXAr2RZXt5yhSRJWYexvwxJkqQAYzAT+Mr3OQ4gqR2BFrnF+6d8y0bKslwlSdKFwEvttG8CIgL6rweS2/mMdvsky3IpcJNvX1OBhZIkLZFleU8b/RcIBAJBD0WEhgoEAoGgp/EK8IQkSX0BJElKliTpgiPYXwpwlyRJRkmSLkPJ7Zsny3IJSr7d3yRJivGJ1PRvkV/YkmigEaiVJCkD+EOL9WVAv4D3+YBFkqRzJEkyAg8A5rZ23lGfJEm6TJKk3r7mNShGpCe8r0EgEAgEPQlhCAoEAoGgp/F3FI/dfEmSGoBVKKIth8tqFGGZShTBl0tlWa7yrbsGMAF5KIbVJ0BaO/t6FBgD1AHfAp+1WP8U8IBPvfT3sizXAbcDrwHFKB7CItqnvT6NB1ZLktSI8h3dLcvy/g72JxAIBIIeiBSc9iAQCAQCgUBFkqTrUOoTTj3efREIBAKBoCsRHkGBQCAQCAQCgUAgOMkQhqBAIBAIBAKBQCAQnGSI0FCBQCAQCAQCgUAgOMkQHkGBQCAQCAQCgUAgOMkQhqBAIBAIBAKBQCAQnGT02ILySUlJclZW1vHuhkAgEAgEAoFAIBAcF9avX18py3JyqHU91hDMyspi3bp1x7sbAoFAIBAIBAKBQHBckCTpQFvrulVoqCRJFkmS1kiStFmSpO2SJD3qW/6IJEnFkiRt8v2dfbz7KhAIBAKBQCAQCAQnKt3NI+gATpdluVGSJCOwTJKk73zrnpdl+dnj2DeBQCAQCAQCgUAg6BF0K0NQVmpZNPreGn1/or6FQCAQCAQCgUAgEHQh3coQBJAkSQ+sBwYAL8uyvFqSpLOAOyRJugZYB/yfLMs1nd23y+WiqKgIu93etZ0WCACLxULv3r0xGo3HuysCgUAgEJywONweNhyoZXL/xOPdFYGgR9NtC8pLkhQHfA7cCVQAlSjewT8DabIs/yrENjcDNwNkZmaOPXAgODdy//79REdHk5iYiCRJR/cABCcVsixTVVVFQ0MD2dnZx7s7AoFAIBCcsFz1n1Ws2FvF8ntPJyPO2mH7Q7U2Ikx64iJMx6B3AsGJhSRJ62VZHhdqXbcSiwlEluVaYDEwR5blMlmWPbIse4H/ABPa2OZVWZbHybI8Ljm5tUqq3W4XRqDgqCBJEomJicLbLBAIBAJBG4TjfJBlmRV7qwCoanR02L6opplTnv6Juz/cdKTdEwhOOrqVIShJUrLPE4gkSVZgFrBTkqS0gGYXAduO4DOOqI8CQVuIc0sgEAgEgtD8tLOMEY/M56edZe22+++y/drr2mZXh/t99Os8ALYW1x1ZBwWCk5BuZQgCacAiSZK2AGuBBbIsfwP8VZKkrb7lM4DfHs9OHglPPPEEOTk5jBw5ktzcXFavXg3AjTfeSF5eXpd8RlZWFpWVle22efLJJzu93zfffJM77rgjaNkbb7xBbm4uubm5mEwmRowYQW5uLvfee2+n938seOGFF2hubj7e3RAIBAKB4KTB4fZw6zsbaHS42V5c32Y7WZZ5c0WB9r7W1r4hWG93sXCHYlia9N1tSCsQdH+6lViMLMtbgNEhll99HLrT5axcuZJvvvmGDRs2YDabqaysxOl0AvDaa68d0748+eST/OlPfzri/Vx//fVcf/31gGKALlq0iKSkpCPe7+EiyzKyLKPThX4gvPDCC/zyl78kIiIi7H263W4Mhm51qQgEAoFAcMKwJL8Sp8cLKMZbW6w/UENRjY37zhrCU9/tpK4DQ7Cu2YUsQ3qshdJ6O26PF4MwCAWCsBFXyzGkpKSEpKQkzGYzAElJSaSnpwMwffp01q1bB0BUVBT33HMPY8eOZdasWaxZs4bp06fTr18/vvrqK6C1d+7cc89l8eLFrT7zwgsvZOzYseTk5PDqq68CcO+992Kz2cjNzWXu3LkAvPvuu0yYMIHc3FxuueUWPB4PoHj8Bg0axGmnncby5cvDPtZnnnmG8ePHM3LkSB5++GEACgoKGDJkCDfeeCPDhw9n7ty5LFy4kClTpjBw4EDWrFkDwCOPPMLVV1/N6aefzsCBA/nPf/7T4X6HDh3K7bffzpgxYygsLOS2225j3Lhx5OTkaO1efPFFDh06xIwZM5gxY4b2Xat88sknXHfddQBcd911/O53v2PGjBncc8897N27lzlz5jB27FimTZvGzp07w/4uBAKBQCA4mflgzUFSY8wkRZnbDff8YXspJr2OX4zrA0Bds7Pd/TbY3QBkJkbglaHe914gEITHSevmePTr7eQdajs84XAYlh7Dw+fltLl+9uzZPPbYYwwaNIhZs2Zx+eWXc9ppp7Vq19TUxPTp0/nLX/7CRRddxAMPPMCCBQvIy8vj2muv5fzzzw+7T6+//joJCQnYbDbGjx/PJZdcwtNPP81LL73Epk2bANixYwcfffQRy5cvx2g0cvvtt/Pee+9xxhln8PDDD7N+/XpiY2OZMWMGo0e3cti2Yv78+ezevZs1a9YgyzLnn38+S5YsITMzkz179vDxxx/z6quvMn78eN5//32WLVvGV199xZNPPskXX3wBwJYtW1i1ahVNTU2MHj2ac845h23btrW53127dvHGG2/wz3/+E1BCcBMSEvB4PMycOZMtW7Zw11138dxzz4XttczPz2fhwoXo9XpmzpzJK6+8wsCBA1m9ejW33347P/30U9i/g0AgEAgEJyM2p4dleyr55cS+rNhbSU07huDS3ZWMz44nPtKExajr0CPY6FAMv3ifWqjb53UUCAThcdIagseDqKgo1q9fz9KlS1m0aBGXX345Tz/9tOaFUjGZTMyZMweAESNGYDabMRqNjBgxgoKCgk595osvvsjnn38OQGFhIbt37yYxMbguz48//sj69esZP348ADabjZSUFFavXs306dNRFVgvv/xy8vPzO/zM+fPnM3/+fM1obGxsZPfu3WRmZpKdnc2IESMAyMnJYebMmUiS1OrYLrjgAqxWK1arlRkzZrBmzRqWLVvW5n779u3LpEmTtO3/97//8eqrr+J2uykpKSEvL4+RI0d26ru77LLL0Ov1NDY2smLFCi677DJtncPRsZKZQCAQCAQnOztL63G6vUzsl8COknpq2/Dyldfb2VnawL1nDQHAYtRjd7Vv2DU6FEMxLkKp3+v2ds+SaAJBd+WkNQTb89wdTfR6PdOnT2f69OmMGDGCt956q5UhaDQaNQVKnU6nhZLqdDrcbmX2y2Aw4PX6b5ChyhYsXryYhQsXsnLlSiIiIpg+fXrIdrIsc+211/LUU08FLf/iiy8OSwlTlmXuu+8+brnllqDlBQUF2rG0d2zQWoFTkqR29xsZGam9379/P88++yxr164lPj6e6667rs2yDoGf07KNuk+v10tcXJzmQRUIBAKBQBAeBVVNAPRPjiLGamB/ZVPIdtsOKaqf4/rGA2Ax6LG7PO3uu9GhrI+1Kh5BjzAEBYJOIXIEjyG7du1i9+7d2vtNmzbRt2/fw9pXVlYWmzZtwuv1UlhYqOXXBVJXV0d8fDwRERHs3LmTVatWaeuMRiMulzKTNnPmTD755BPKy8sBqK6u5sCBA0ycOJHFixdTVVWFy+Xi448/DqtvZ555Jq+//jqNjY0AFBcXa/sOly+//BK73U5VVRWLFy9m/PjxYe+3vr6eyMhIYmNjKSsr47vvvtPWRUdH09DQoL1PTU1lx44deL1ezXPakpiYGLKzs7Xjl2WZzZs3d+p4BAKBQCA4Gdlf2YxOgsyECMwGPU53aC9fWb0SaZPmKyBvMeqwt2jr8niDwkUbfTmBqkfQJUJDBYJOcdJ6BI8HjY2N3HnnndTW1mIwGBgwYIAm4NJZpkyZooVZDh8+nDFjxrRqM2fOHF555RVGjhzJ4MGDg0Inb775ZkaOHMmYMWN47733ePzxx5k9ezZerxej0cjLL7/MpEmTeOSRR5g8eTJpaWmMGTNGE5Fpj9mzZ7Njxw4mT54MKCGx7777Lnq9PuzjmzBhAueccw4HDx7kwQcfJD09nfT09LD2O2rUKEaPHk1OTg79+vVjypQpQcd91llnkZaWxqJFi3j66ac599xz6dOnD8OHD9eMzJa899573HbbbTz++OO4XC6uuOIKRo0aFfbxCAQCgUBwstHkcLO/somMeCsmgw6TQdemIVjuMwSTo5RIISU01D/mKKxu5o73N7Cvoomv75xKVlKkFhoa7zMEhUdQIOgckiz3zItm3LhxsqrCqbJjxw6GDh16nHokCJdHHnmEqKgofv/73x/vrnQacY4JBAKBQKAogN7yznoATh2UzNu/msB9n21lQV4Z6x6Y1ar9nz7fyndbS9j40GwALnh5OTEWA+/cMJFtxXVc8eoqTRzm3rOGcOtp/Xnqux28vmw/f79iNLe/t4Hv7p7G0LSYY3eQAsEJgCRJ62VZHhdqnQgNFQgEAoFAIBB0GV9sLNaMQIDsRKV2r9mgw+kOHVlUWmcnNcaivbcadTh8YjGv/LwXo17i6zumMjAliteW7ufbLSUUVdvIiLNi9NUOdHt6pnNDIDhaiNBQQbfjkUceOd5dEAgEAoFAcJis3l8d9P70oakAGPWSVli+JQeqmhiQ4q/tazHqqW5SFEZrmp30S45iRO9Ynr88l3s/28Kv398AwCn9EzHoFeE3t1fkCAoEnUF4BAUCgUAgEAgEXcau0nomZCdo76cNUGr3mgw6XCG8dl6vTGGNjb6JfgXwQNXQBrubaIviuxieEcsXt0/hD2cOBmBERiwGnWoICo+gQNAZhEdQIBAIBAKBQNAleL0y+WWNXDwmg4fOHYbJoEPnM9RMej0er4zHK6PX+cs3Ld9bidPtZUivaG2ZxajT6gg22t1kJkRo6wx6Hb+eMYCrJ/fFatSzrqAGEKGhAkFnEYagQCAQCAQCgaBLKKqx0ehwMzQthuEZsUHrjAbF+HN5vOh1fsXvv83PJyPOyjkj07Rlgaqh9XY30RZjq8+K8S1TQ0OFaqhA0DlEaKhAIBAIBAKBoEvYUVoPEFK90+QTdXEElJA4UNXEpsJarp+ShdngNw4tRj02nyHY6HBpoaGhUL2LLpEjKBB0CmEIHmOKioq44IILGDhwIP379+fuu+/G6XR2uN2TTz7ZYZsbb7yRvLy8VsvffPNN7rjjjrD698MPP5Cbm0tubi5RUVEMHjyY3NxcrrnmmrC2P9a8+eabHDp06Hh3QyAQCAQCAbCjpB5JgkGpUa3WmQzKsDOw8PsP20sBODOnV1Db9DgLDXY3h2pt2F1eos1tG4JGnbJfjwgNFQg6hTAEjyGyLHPxxRdz4YUXsnv3bvLz82lsbOT+++/vcNtwDMHXXnuNYcOGHVEfzzzzTDZt2sSmTZsYN24c7733Hps2beLtt98+ov0eCe0VsT8cQ9Dtdh9plwQCgUAgEIRgd3kjmQkRRJhaG26qR1AtKu/2ePlsQzE56TH0CcgBBJjULxGAT9YXAYTlERRiMQJB5xCG4DHkp59+wmKxcP311wOg1+t5/vnnef3112lubm7luTv33HNZvHgx9957LzabjdzcXObOnUtTUxPnnHMOo0aNYvjw4Xz00UcATJ8+nXXr1gHwxhtvMGjQIE477TSWL1+u7bOiooJLLrmE8ePHM378+KB17fHuu+8yYcIEcnNzueWWWzTjLCoqinvuuYexY8cya9Ys1qxZw/Tp0+nXrx9fffUVoBhrF1xwAXPmzGHw4ME8+uijYe33oYceYuLEiaxcuZLHHnuM8ePHM3z4cG6++WZkWeaTTz5h3bp1zJ07l9zcXGw2G1lZWVRWVgKwbt06pk+fDiglKW6++WZmz57NNddcc9jfg0AgEAgEgrapt7mIjzCFXGdsYQg++OU2dpY2cPOp/Vq1HZERy9i+8Ty3IB+AlIAag633K8pHCASHw8ktFvPGOR23GXQmTLnL3z73Khg9F5qq4H8twiWv/7bdXW3fvp2xY8cGLYuJiSEzM5M9e/a0ud3TTz/NSy+9xKZNmwD49NNPSU9P59tvlc+rq6sLal9SUsLDDz/M+vXriY2NZcaMGYwePRqAu+++m9/+9rdMnTqVgwcPcuaZZ7Jjx452+71jxw4++ugjli9fjtFo5Pbbb+e9997jmmuuoampienTp/OXv/yFiy66iAceeIAFCxaQl5fHtddey/nnnw/AmjVr2LZtGxEREYwfP55zzjmHyMjIdvc7fPhwHnvsMQCGDRvGQw89BMDVV1/NN998w6WXXspLL73Es88+y7hx49o9BoD169ezbNkyrFYrV111Vae/B4FAIBAIBO1jc3qINOtDrgsMDZVlmU/WF3Hx6AwuyM1o1VaSJB45L4fzXloGEFRsviWqR1CIxQgEnePkNgSPMbIsI0lS2MvbYsSIEfz+97/nnnvu4dxzz2XatGlB61evXs306dNJTk4G4PLLLyc/X5lRW7hwYVAeYX19PQ0NDURHR9MWP/74I+vXr2f8+PEA2Gw2UlJSADCZTMyZM0frl9lsxmg0MmLECAoKCrR9nHHGGSQmKmEeF198McuWLcNgMLS5X71ezyWXXKJtv2jRIv7617/S3NxMdXU1OTk5nHfeeWF/ZwDnn38+Vqv1sL8HgUAgEAgE7dPk9BDXhkdQNQQdbi9OjxeXR6ZfcmTItgAjevtVR3vFtucRVA1MYQgKBJ3h5DYEO/Dgtds+MrHT2+fk5PDpp58GLauvr6ewsJD+/fuzefNmvAFhDXa7PeR+Bg0axPr165k3bx733Xcfs2fP1rxlKm0Zll6vl5UrV2oGUTjIssy1117LU0891Wqd0WjUPkun02E2m7XXgbl4LfsjSVK7+7VYLOj1yoyi3W7n9ttvZ926dfTp04dHHnmkze/GYDBo32HLNpGR/ofN4XwPAoFAIBAI2qfZ6W7bI6j3ewTtTuVZbQ2RSxjIJWN68+mGIlKizW228XsERWioQNAZRI7gMWTmzJk0Nzdrwisej4f/+7//47rrriMiIoKsrCw2bdqE1+ulsLCQNWvWaNsajUZcLhcAhw4dIiIigl/+8pf8/ve/Z8OGDUGfM3HiRBYvXkxVVRUul4uPP/5YWzd79mxeeukl7b0abtpRvz/55BPKy8sBqK6u5sCBA5069gULFlBdXY3NZuOLL75gypQpYe9XNeiSkpJobGzkk08+0dZFR0fT0NCgvc/KymL9+vUArYzuQA7nexAIBAKBQNA+zU5PSKEYgEif8mdts4tmlzJZHGEKbTSq/PXSkWx88AzN6xcKgxCLEQgOC2EIHkMkSeLzzz/n448/ZuDAgQwaNAiLxaIpgk6ZMoXs7Gwt9HPMmDHatjfffDMjR45k7ty5bN26VRNYeeKJJ3jggQeCPictLY1HHnmEyZMnM2vWrKD9vPjii6xbt46RI0cybNgwXnnllQ77PWzYMB5//HFmz57NyJEjOeOMMygpKenUsU+dOpWrr76a3NxcLrnkEsaNGxf2fuPi4rjpppsYMWIEF154oRZKCnDddddx6623amIxDz/8MHfffTfTpk3TPIqhOJzvQSAQCAQCQfs0O9xtGnfD0mPQSbCxsJZmpyIO15EhqNdJxEeGDjVVMfiMRLcIDRUIOoUkyz3zohk3bpysKmiq7Nixg6FDhx6nHp28vPnmm6xbty7IA9dTEeeYQCAQdF86m5Mv6ByyLNPvT/O4c8YAfjd7cMg2Z/99KQmRJu49awjn/mMZr149ltktagh2ljqbi1GPzufBc4dxw9TsI9qXQNDTkCRpvSzLIVUVhUdQIBAIBAJBj+e3H21i2l8X4RXhg0cNu8uLLENEO8Xfx/aNZ+PBGhrsamjokctVqOUjRI6gQNA5hCEoOOpcd911J4U3UCAQCATdkw0Ha/h8YzFFNTZsLs/x7k6PpdGhGHeR7YR7ju0bT5PTw6bCWgCsHYSGhoMqFiNUQ7snW4vq+G5r51KKBMcGYQgKBAKBQCDo0Xy8rlB7LQzBo0dFgwOAxKi2FT7H9o0HYNmeCqDjHMFwMOp0GHQSTQ53x40FXYLXK7OuoLrDdtVNTs57aRm3vbehw7aCY0+3MgQlSbJIkrRGkqTNkiRtlyTpUd/yBEmSFkiStNv3P/5wP6On5kQKjj/i3BIIBILux/7KJj5cW6iVLrA5hSF4tChvUFS+U2PaNgR7x1tJjjazfE8V0DWGoE4nkRJtptxniAqOPk99t4NLX1nJ9kN12rIVeyo1T6/K49/4azaLcVL3o1sZgoADOF2W5VFALjBHkqRJwL3Aj7IsDwR+9L3vNBaLhaqqKnEiCrocWZapqqrCYmm74K1AIBAIjj3ztpYgy/DHOYp4ifAIdg67y0O93RVW2/J6xRBLiW77WShJEuP6+ufzEzpQBA2XlBgLZfWhawwLup7Xlu0HoKZJOTeqm5xc9dpqLnx5udampsnJV5sPae/Ftdf96FYF5WXFQmv0vTX6/mTgAmC6b/lbwGLgns7uv3fv3hQVFVFRUXHEfRUIWmKxWOjdu/fx7oZAIBAIApifV8ao3rH0S44E/B7BbcV15KTHCBXRDrjyP6vYeLCWgqfP6bDt3gplCJfcTvF3UMJDv9tWCkCUKiwjy3BoI7iagxsnDoToVLDXQelWiM+C2NbP2tQYM/srmzo+IMERU9noQPWp1DQ7kWWZuz/c2KrdpxuKcHtlrp7Ul3dWHaDO5uoScSBB19Htfg1JkvTAemAA8LIsy6slSUqVZbkEQJblEkmSUg5n30ajkexsISssEAgEAsHJQEWDg82FtfzujEFYjEoIYrPTw8/5FVz7+hr+cskILh+feZx72b3ZeLAWAKfbi8nQOpDs2y0lRJj1nNI/kQ/WHOSMYanad90WYwM8gpohXrgaXj+zdeMLXobRv4SKXfDxdTD+Jpje2heQERfBkvxKvF4ZnU4Y90eT0jq/57W22ckn64tYursSq1GPxytrv8Hagmr6JUcyqV8i76w6QL3NTVrscey4oBXdzhCUZdkD5EqSFAd8LknS8HC3lSTpZuBmgMxMcWMXCAQCgeBkZtHOcgBmDk3B6VZKC9hdHlbvV0QuDlQ1t7mtANwefzmGQ7U2spIig9bLssyv31dEQP5zzTjq7W7mTux4/DWyd1zrhZX5yv9L34DIJP/ypEHK/+TBcNmbkDk55D4HpkZhc3korrXRJyEiZJvvt5WyYm8lj10Q9tBSAPy4o4zx2QnEWIwA1Nv8ocJbi+v4avMhJmYnMGd4Lx79Oo/KJgcp0RYcbi/RZgOxVmW7Olt4IcaCY0e3MwRVZFmulSRpMTAHKJMkKc3nDUwDytvY5lXgVVAKyh+zzgoEAoFAIOh2/LSznPRYC8PSYsgvU8IWm50evt2q5C2JnKX2qWj0i68U1jS3MgQPVvsN6f8u20d8hJEpA5LoCL1O4oObJgULxdQWgqSDoeeB3th6I0ssZE0Fr0f50wV7HQelRgGwu7whpCFYUNnEre+uB+DBc4dh1Hc3mYzuSXmDnRveWkd2UiSLfj8dIChn9Ked5dhdXh46bxh7ypVrrNHuJiUaHC4vZoOeGKtibtQLQ7Db0a2uAkmSkn2eQCRJsgKzgJ3AV8C1vmbXAl8elw4KBAKBQCA4YSioamJ4RiySJGH1hSvW2VwUVtsAxcslaBtV/AXQCsAHUhawftW+auYM7xW2gTW5fyKj+sQpb9xOWPJXiE4LbQSqFK6BxxLgyztarRqQEg2gGfwteXnRHu11VaMzrD4KoLJB+a4C8y/rbcq5YNBJVPq+y76JkVpIsDrB4vQo4cSqwX+4Ey/L91TyzA87D+8ABO3SrQxBIA1YJEnSFmAtsECW5W+Ap4EzJEnaDZzhey8QCAQCgUDQJrXNLuIjFFVKi0kZ8gR6M0SoWvsElmNoDlF2o9kZbBzOndj38D6ouQpScqDfjPbb9Rrp61heq1WxViOpMWbyyxparSuvt/PlpkOkxypqphWizETYNRdrm1sbzeo11DdR8bzGRxiJMhu0yRa7z+BzuD2YDTrMhsM3BD1embmvreblRXvxeEWwX1fTrQxBWZa3yLI8WpblkbIsD5dl+THf8ipZlmfKsjzQ97/jCpYCgUAgEAhOamptTmIjFA+TOhhtDhgA21zekNu5PF6ueX0N32zxS9/LskxDmGUUegr/Wuz3orU0+sCvwHraoGQ+uGkSwzMOUwkkJg1uXwEXvtx+O6MFxl4PdYUhVw9KjWZ3CI/gWysLcHm93HPWEAAqGk+OMhPVTc6QpT8W7Swn5+EfWBtOQfgAQ1Atv1Zvc6GToHe8YghmxFsBsKqeP6dyXakCQ+pyx2EYgsv2VGqva0IYpYIjo9vmCAoEAoFAIBAcLnaXB7vLqwlVqAXlAz1bthDGDcCHawtZkl9Beb2dc0emA/DEtzt4bdl+tj96JpHmk2P4tLvcb1Q1OUJ5BJVlj12QQ9/EyFbrAaUsxIa3Fa9fIH2nQOZEpSzExvdg3K8UQ68j4voo+1ryrJJTCNBnAmRNZWBKNK8v3091k1OrT+h0e3lv9UFmD0tlTKaiVnqyhIaO+fMCUmPMrP7TrKDlf/YVed9X0cj4rIR291HT7Dckm50eIs0GyhscJESaSPR9x73jFIPQ2iI01OH2YjboWi0PF1mWeWFhvva+stFBUlT7pUkEnePkuJMJBAKBQCA4qVDDPuN8HkGDXikp0BRoCIYYmDY63PzdN/hUQ9/2VjRqBbSrm5wnhSFYZ3PRYHfzp7OH8PR3O0N6BJt935/V1E65iPId8PVdrZef/oDfEFz4MBQsgyveg47qOmaMBUkPP/3ZvyxxINy5jqFpSp7g9GcWseURpRTFuoJqaptdXDq2D2ajYjg63KE9wT0J9fwPzOMEJS92ny/fz+npONSypslvNNfbXUSaDeSXNdA/OYo4X9h1WpxiwLfMEVTFYrTlzs5978v3VLHxYC0Xjc7g843FrQx4WZZpdLiJtrSTVypol55/JxMIBAKBQHDSoYaRqR5Bg6+2nJq/ZDHqQg5Mn1+QT1WTE4tRR02zi91lDZz/0nJtfahcuZ5IoU8RtE98BJEmQ2iPoC/Mtt0i4bUHlP/Xfw/po/3Ldb5tYvvAvYWKSExHRiBAv+lwfynIvt9uz0JoUsTkz89N5+P1RazZX02Tw02k2cDOUiVncGzfePS+c+BkMAQf/nKb9lqWZa1eY2C4czgqnmX1/jDaK19dhYxSduWayX0ZnhEDQD+fmqzFZ2jbncFiMXqdhEmvw+7u3LXz7qoDJESauGlaPz7fWExlY7BR++3WEu54fyPz7prGsPSYDvcnyzI/bC/jwS+3oZckfvjtqdr94WRFGIICgUAgEAh6HKoiaJpPIESSlMGo6tmKsRhbCWaUN9h5c0UBV4zvQ22ziz3ljXy/rRSby8OTF43gT59vpTFMkY0THc0QTIjAatJT0eigvN5OSow/fFM1iq3tFZCv8uUZJvYPHfopSeGFhAZiMPlfDz1Xe2k26Ll8XB/W7K+mosFBpNmgGX1Wo16zMx2dNEhORHYF5ErWNLu0UNmvNh9iZO9YdpY2hMwfbEmgIVjV6GTaoCTOGZHGlRMy6ZMQwYCUKAalKp7YVqGhLkUsBtSJl/C/99pmJwt2lHHD1Gyt7y0nYZb78gc/21DEsPRhHe7z843F/O5/m7X3BZVNfuXak5RuJRYjEAgEAoFA0BWoxeIzE/y5a0a9pA0mY6xGbC6PJoAB8OXGQ3i8MjdO60d8pImaZic2lwejXmKgr05dqBDJnkhhjd8QLG9w8PXmQ8x67ucgwRyby4PFqNM8ba2QZZj/gJLLF5l8dDrqaIDK3UptQSA5WskhU2sgOn2GoMmg04wSRxsiQT2FeVtL2FFST0acIuKiKn/ur2xiW3E9549KJ9ZqDMsjWFpvZ/rgZFbcezpbHpnNP+eO5Y9zhmi1Gkf2jtNCP9UQYXuL8hGghI3aO5EjuGhXOR6vzDkj0vwGZgtDsKZJ6f9ry/aztaiuw33+b50iMnTF+D4ArTyMJyPCEBQIBAKBQNDjOFDVTIRJT1KU33tkNOj8hqDFgFcODhP8dmsJo3rH0j85ihiLkXqbG7svz0mthRYqRLIn8sn6ImIsBmKtRs2gqLe7WbyrQmvT7HS3HxbqccHE22Dq78IL+zwctnwEL42DJsU7lBKjGIL//nkfoHj/jHoJvU5SvMIGXadCQwMnCk4U3luthOPeelo/wF8DUi34PiE7gRiLQasH2BZ2l4cDVc2kxVpJj7Nq4aVtYQkoE+Hxyrg8sqbWazXpOyUWszCvnJRoMyMyYrXczpahpXsq/F7PBXml7e6vvMHO6v3V3D1zIHecPgAQhiAIQ1AgOCo0O93sDlHLSCAQCARHH7vLw6cbihieHhs0eDXo/IagKjAR6KWoaXaSFZDv5PR4sbncWIw6onwCMeHWXzuROVRrI7+sUSu98d6NE5l31zQguAZfk8OjGcghMZjgrKdh5oNHr7P9ZsDFr4FZ8dj2T1b+H6jyCaK4vZpiLIDZoAs7NHR3WQPZ981jRUAJg+5Ak8PN8wvyQx5HZaODlXuruPP0AQzupeTNqYag6gGMsSh1/zoKc563tYQGu5vzRqaF1S+dTiI+wsju8sYgTywoRmJnPII7SuoZlxWPTidhNuiQJH/uISglXg5UNXHVxEwAOiox+POuCmQZzszppSmPVp4k6rHtIXIEBScN324pYerApGOSGPzY13l8uLaQn/8wvW1JbYFAIBAcFd5ddYAGu5vTBgeHI5r0klYyIsb3LGh0uDX1Q1eA0aB6Muptbp9HUBkynQyhoUU1Sn7lYxcMByArKRKvV0avk6gOUJGsafaXaWiF1wOf/ArmPAUx6Uevs4n9lT8fRr2OuRMz+W6b4iFyuL2YA3IYzQZ92B7Bb7eWADA/r4xTBiR1YaePjH8v2ceLP+4mOdrMLyf1DVq3rqAarwwzh6Zq53KjQzEA1bDeGKsRc0ehmm4HqYv+j7etVUxemwRrQ3gDh5wDo38ZtOjiMb0xrHoJxxc64CwtHDcuwsjBalvYx+hwe7VrTpIkLIZgj+JPO8txeWTGZMYzf3sZVU3te/dW7q0iMdLEkF7R6HQSkSZ9yDIi87aWYNTrOGNYath9PZERHkHBScGOknp+/f6GIBWto8miXYqC2byt7YcqCAQCgaBrabC7eGN5ASa9jltO7Re0LjA0NNcnEvHxuiJtvdPjxRggbgGKDL/ZqCPS7AsNPQlUQ1WhnUxfHhj4vT2BBcZrmpzERwQYglV74blhsHuhkh9YvRe+vAPcRzkE78c/w5JntLdJUWZqmp24Pd7QHsEwcwR3lNR3eVe7gjrfbxBY2kFlf6WS29k/OZJoi2JI1aseQd//aItBydlrxyC2F21hSsP35BgPIdUVQV1h8F9sH8i5uNV2107OIk5qYH/BXgDGFb0Jq/7F7Jxe7CipZ7+vdEVHONx+oRlQrkd7wO/23uqDpESbOTMnlaQoU7vePVmWWb63ksn9E9H58lmtJkPIUNXb39vATW+vC6uPPQHhERScFKghIoGFUY8W6w9Ua3V73lpRQHqchYLKZtYdqObayVnMOklmmQQCgeBY4/XK/PK11RTX2rhodAYGffB8t1Gvo9qpDBhz+8Rxzsg0/rN0H7+akk1shBFHgNGgCmDU2VyYDXpNsOJkKB9R7DME02OtQcvjI0xUNwZ6BF3084ViAkqpiPpiMFpBb4Bblx2T/nJwJSDBqX8AICnKpNihzU7FoDAGGILG8EJDPV6ZVfuqAb+CandBNXpUz20gB6qaSIoyEW0x4vXZTWpoaIPdhdWox6jXYTHoKG/HI7hr13ZGAQdmvUrihKlh9y0zMYKCUX/gLz5hlr5Vy8Bu5YzzruXP3+Tx865yspOyO9yPWoNQxWr0ewS/3nyIJfkVXDu5L9EWIwmRpiBPdUtqm12U1Tu0yR8Aq0mHo8XxbzxYE/Zx9hSER1BwUrC3QjEEVTWxo8n8vDKMeol+yZGU1tu5+8NNPL8wn6W7K4Pq9wgEAoGga/lmawmbi+q4Y8YAnrhoeKv1Rr1OK4Ju1Evcdlp/mp0ePl6vDFqdbm+Q3D1Arc3py1GSMOolXJ6erTgJsLe8kV4xllaF4lNjLGwvqaPJ4cbh9lDd0iO450flf1yfY9hbwByjFKb3kejLAatocAQZ9xB+aOiCvFKtKHtlO0bG8WBLcS1AyBy/naUNmnGuerGrfWGT9TY3MVbFB9SRiufHNYO5gicZMWpM6AYlW+B/10LtQf8ytxP+NYU/JPysLdJZY8FeR2ZiBNlJkfycXxFiZ61RQnoDPYL+/v5t/i4Arp+iGJTWDo6lKaBkjLY/Q2vxmhd/3B1W33oSwhAUnBSowi2ejrKJfciyzOJd5Z1KbFbZXlzP0LQYXrpyDH+/IpeFvzuVtffPYmJ2gjbLKhAIBIKuRZZl/rNkH/2TI/ndGYNCqlka9ZL2HDDodAzPiGVCVgKvL9uPw+0JkrtXvRF1zS7NKDTpdbjCzC/beLCGopru5UlS2VZcx+nPLg6qERfIztIGBveKbrX85lP7UVhtI+fhHxjz2AIaHW4SA1RZWfua8j/6KOYEhsISG2QIqrUjS2rtinFvbCkW0/5vKMsyD3+1HYCJ2QlaKGZX4w1zTBJIVaODQl+uXUtDxu7ykHeontGZcQAY9DomZCXwr8V7eWfVAWqanZpIUstQy0A8Xpl5uxvpNeQUjOaIkG1oLFe8v6UBKTfbPoWybSR5q7RFpsg47bc5bVAyK/ZWUddBdJbXK+P0eFuEhvqNPYfby2Vje2vCTiaDThOnCYVadiJwYsNqCjYeZVlmxV5/v0+GWpMgDEHBSUK+r7BqbZg38+V7qrjujbV8s6Wk05/VYHcRH2FiWHoMF+RmMCAlmuRoM5kJEVpdq7bYWVpPeUPoB7NAIBCcrByqtfHnb/Jwt+ON21xUx9biOq47JUvLA2qJMcAzZNQrba6fksWhOjsbD9Yiy/42qvFXb3drRqHRoCiJdoTT7eWif67g7L8vDe8AjzGvLtnHvsom/vr9rpDhcIfqbPRNbG0AnDoomWsmK+IkmYmR3DA1W6vJhqMB3HalXIT+GGceWWLA4TcEM+KVkNbiWlsIj2DrkMCWHKhqpqzewa2n9WdgapTmGexK9lc20e9P8/hxR1mntttUWKu9bllX74uNxTg9XqYGCNv8/cpcBqZE8+AX25ifV8bIjFjAZ1i1YexsydvB567bmRuX13ZHBsyEy96CIWf7l1XtUf6fdi8PnjuMPglWTJHx4FByLS8d2xuH28vvP9nMr9/f0KbwknqNmdrIEbS5PEFGnVGva9dTr4ZzByrcWozBHkGH24vD7dXyYkMJyfREhCEo6PHYnB6tdk5tmDfzD9YooQ4FYSY1B9LgcGsy44GkxliobHS0OQPo8crMeWEpV7y6qtOfKRAIOkaWZb7cVNzuzLGge/KHTzbz32X72VLcdtFoRe1P4oLRGW22UY0/5bUyBOqfElxuIFDuXiXIIxiGIagO1uvtbl78cTer91W1v8ExRi2B8emGIi7654pWzyUlPyv0EPHR83PY9uiZfHf3NB48d5gWhkmtEl5L73FHrd9tYokFez1qUlxSpBmDTuLlRXt8oiP+3zLCpKe2A4/UUl+5iMvH9yHOaqLO5jos711beLwyD3yxFYAlYYZKqmw/pBhV4/rGBxkysizzzA+7GJYWw5T+fkMwLdbKN3dN5YLcdFJjzFxzShbQfmjo0l2lbGEAOYP6hVwPKHUho9MUz6CKKiJjtHDD1GyW/vF0JKvvt5FlhmfEMqp3LAvyyvh2SwlXvLoqZC0/VcwnKEfQpNdCPO0uj5bDCx17BJtDeAQVQ9C/jfpd9IpRvMn19qOvKdEdEIagoMez4WANTo+XCJNeq6HTHpWNDub7CpMePIwE8aY2DMFYqxGv7I9Vb8mbKwoA2FfReeNTIDjZkGWZp77b0fYAe/OH8MwA+Gt/7c/xVD+mfD6JHW//VmnjcQeFk1FbCH/tB1s/OfoHIAifks28XPwL1plvJefDSVC8vlUTWZbpvfE51ptvJebFIcpvvneRsjJ/vvK+LC/II2jwGYVqGGGBL2JDKx/RouQAKMZjOPll2w/5z6vnFuTzzA+7OnPERxVZltlcFGxQ55cH170NDJFtiSRJwc84j1v5fl+fo7yPy+zS/oaFJRaQ4Vnlmtdteoc+CRGUNzgob3AEHcuE7ER2lTVoyqihWJpfQe94K1mJEcRFKM/uhi6sH/nNlkMs36Pcu4z6zg3FG+xKqHJCpKlFDUwXVU1OLhnbu5VH3KjX8fcrRrP6T7M0wRSLQfGwySVb4LmcoHvl9sIKPsx8mIh+k9vvzMKH4dmB/m23faYYgoFYYkH2wI6vAMWrDHCL/mter7iKK19dpURCff8n+OcpgBKW+XfjS1y1dBbs/BZQ6kPuKm3A6fZid3mxGAK9+zqcnrYNdZtL+e0Cw8WtxmDPsOptTIpWQp0b7T2/TAwIQ1BwErBqXxV6ncS0gUltxsMH8v22UlwemfRYy2HldzTa3US2YQgCbYaYfLRW8UIOS4vp9GcKBCcbm4vq+PfP+7j+zbWhG+z5ETxOGHaB9rc15jS+80ygImqw0ubV0+CL26FonSJ3b4qEPhOPz0BW0CZOYyxfu8Yz3zMWc3MpHFjZqs3eikbGOVYjmaP9v3mUT6E5Jk15b4kJChFUB+DRFiPRFkMrj2BL6Xp1maudASco+U3//nkfMRYDv5k1kGFpMeypaESWu86jdCSU1tupbHRw8ZgM0n1GcGAYnMcr4/HKmPTtFIoHRRjEXq94hoZdACMuhWn/B+ltiIscTYZdCBNvVf4PuwDis/njmcp1fqCqOei3PH1ICqDUlQuF2+Nl5d4qpg1MQpIkTQznkn+t0KKLAnG4PZS3kWvZFmsLFDXShEgTVZ0UolEEjfStctzUsgxZIUJ6Q6FOdLgLVkF9EQyeo107ZQ49qdGWjncy5lqYcLP/mhtzDUy/J7hNzkXK/5LNgFLQPSPOym3pe0iS6thT0cjZf19KQ0IODJoNKGGa67yDMLkaYJ8iPDMxO5Fmp4cNvlDm4IkaHc52cvrCCQ1Vv0u12HxXGv7dGVE+QtDjWbWviuEZsSRHm8MSf1l/oIbkaDPjshLYXFTbar3L40UvSSFzULxemSanhyhL60tLVeqqt7khPnhdeYNdy2O0GMX8jEDQEYt2KuFIbUr51xVC6gg49zlt0StvruVHdzlP9h2hLJj8azBFwep/w8FV8NutcOUHR7vrPYp1vgHtuKyErt+5vR4+u4k9mVfxoPtXgMyl5jWY6gpbNV2QV85cqQLdoMuDfnMAevnOA7cTk85fM9AQcA9PijJTWqcM5rXQ0ICBpjo4NOrbH3AC/LC9lNJ6OzOHpPCbWYOIsRh57Js8qpuc/jDK48gWnzfwl5P6cv0p2Zz30rKg60gNsWvLI6hRtBbePBuu/qL1d36siesDZ/3F/75iFyPzP0THALzogkICB6ZEERdhZPX+Ki4Z27vVrjYX1dLgcDN1gOK5mp2Tyq3l/flo7UFmPfczp/RP5PxR6VwxQZkwemHhbv61eC8LfnsqA1NbC+y0xOn28tOOck4dlEy9zRUyNLLd7X3e2paql3srlDFEtk9ApSPU89tbcwD0ZjjvH6BTfvP96+eTazW2t7lC0gA4+5n228RlgjVBi74YnhHL8ntPh+fvhpGX8+/BY5XafZv68Z9rfkE0inH9jmc2f4haQYzvep+QrdxjFu9SQmmtAdenoubb9kSLFhoasI3VqA/KsVTzJdVrXXgEBYIegM3pYVNhLZP7JQbVoGmP9QdqGJsZT2KUqVWysCzLDLz/O+73xfa3RA37jDK3nkmNaccj+O7KA+gkGJwaHVIOWiAQBLMhQOAipLpb/aFWEvaFPg+/JlCQexUMnA1b/+f3Albugep9R6XPPZFLX1nJpa+09tB1CfZaqCuiqkb9rSXqTL1gzX/AG/yb79+8hBipmciUNuqTVe2Fx5OZ6vCLtwRGbsRYjZQ3KANy1WuYEOlXw1TDR01heAS/2FRMWqyFV69RcuXiIpR7f0M3GFjKsszvPtoEKNEnqoEUKNoRSqgjJLG9YdajkDL0qPT1iDiwnIyVj5CCcu4ElrjQ6STGZyWwZn91yE3XFSjbTO6fCCge43vPGsK8u6dx1cRMVuyt4t7PttLgyyH7YbuSSvLUdztZmFfWYS7hmv3VHKqzM3diZof170LhcCniN1ZTsCGztaiOSJOerMTwDEGrUY+EF+OG/yq/pc8I9HplGuwuYkJMaB82466HzIAw0+p9UHcQYvswO6cXv5k1kFX7qrn57fV4vLIWvWWPzIBd88DRoInuqZNPLXME28vdtbXhEQx0Dqh5iZpHsBtcr8cCYQgKejQFVU24PDIjMmI1Q7C98JyKBgcHq5sZ2zeepCgzjQ530I1CNdI+WNN6RhqgyaG0jTK3nklrLzT0260lnNI/iRG9Y7V9CASC0MiyzLYA0ZCQ4dZ3bQyaqZZlWcv51QZPXg/8e5ryOtEnivDxdfDD/Uej2z2Ozg5gO01cJty2nOWGSRj1EhEmPTWmVCXfKCBPsKLBQW6lkn9E7wmh92VWPDW9zP4+Bw4kY61GKlRD0NDaEEz1CUgY9VK7ohQOt4dluys5fUgKep/HUc2n6w6TfBUNDpqcHqYMSMRi1GsD48PyCMb3ham/geheR6u7h8/wS+D3u0nvo1zXsS28WxOzEyioag5ZPqPJ913ERwRvkxZr5cmLRvDm9eMBOPP5Jaw/UENJrbKPn3aWc+Pb6/hqc/v1glfvV9JVpgxIUoy5TpapcniUchiK6qeXvy/czZSnf+KdVQcYl5XQpmJuS4alxzBUOojObYMYf7mPJqcbr+yfvO4SZj6khA6rrH9T+e8zDu84fSCzhqaycl8Vb60o0PJwbfG+MP78HwDISopkl68cWGD0lFGvw+2V2zTC1Un6wBzBWKuRRodbuy79oaG+HEGHEIsRHGUcbk+nQwIEnaPGVy4iPtKIxaRHlmk30V/1MozpG0+ibxCw8WCttl6dMW4L9fds+QAB/0Air6S+1boDVc2M6B1LlNmgzTIKBILQlNU7qGl2McEXjtiqJpXLBpJOG/wDbCuuD5IeB0Cnh8p85fUMn/FnigBX96z91t1Q85yAw6q52iGFa6GhlLJ6O6kxFqxGPd+l3qqsCyhivWJvJelUYUsaDn3bELcwK7nXqabQ9/A4q1F7NgTmEf7ujEEAwfXK2vE8rC+oocnpYcbgFG3Z8TIEXR4vS3cHK1KqOW63Tx8AENoQVD2C+nYMCrcDvvw1FCzvyi53HZZYiEoht4+ShxHoCQIl3wxgdQivoMvjxaiXkKTQx3/aoGSeungE1c1OLvnXCmwuD3+7bBSr/zQTgH0VrfMIAymrt5MSbSbKbMBi0GueqHBRPYIWo6KU+fzCfBxuD/edNYQXLs8Nez8jM2IZEembUJv9Z215vb118fUjxusFZ4AQXl0RxGfDwFnaohevzCUzIYKnvtuhiS2VjrxDWem73vsmRGieupYeQaDNa3NfRRNJUaYg43FCdgJeGVb4FGLtvus/IdKEJInQUMEx4OnvdjLu8YWs2FPJJ+uLOt5A0GnUAWJ8hEmLDW9vwLJ2fzUmvY7hGTEM6hWNXidx9X9X8+jX2zlY1Ux5ffuGYFGNokLWO751snZSlJlpA5P4YmNxkFfS6fbi9spEmvREmQ00OtzdRlSgJ/LNlkPsCGGMB/KPH3fz/bbSY9QjQVjUFED1PuSqfWzYtJ5MqYwz021kSmXYyvawcu1a7nt7IV9vPgRf3AavTA3afN0B/4AvZF5hpG/gbrSCUxiC4bA2YBDdVmHyTuGyKyFj6t/b58Pyv1NvcxFrNWI26CjX+X6nukKtfW1dHbvlDKR+M9ret9ECOgPJnvKQqwM9RoGesLtmDmTpH2cwyJf7peQItj1wV73OQ9P9ol9qCGrTUTYEa5udQTXpnluQz9X/XcP6A/4w6gO+/ql5ZGpoqC0wNLQtj6C9zv/bFK6Bje9C7YGjcixdwvwHuHP7LwDQOeuVfruVyeGhadFEmQ0hVYddbm+7Sp6SJHHlhEwW/X46ozPj0EmKUZEaYyEuwkhNB6UpmhwezTC1mnSdnkRxeryYjXrNY62T4JNbT+GW0/oTH+DFbhdHI7ra/SQNmcJ1nvtpju2vrVLV1aO7MjT0f1fDaz6jr7FCqTfYInQ/wmTgg5snoZMkXvxxNwAJ8XFKfuFBpaxW73gr8dQDclC+nzp505YhuK24jmHpsUHG/fisBJKiTNz8znrKG+za72Ax6kmOMrMhwAnQkxFiMceRzzYUA3DVa6sBOHdkWtAMh+DIUesGxkUYtZuGzeUhLkRbu8vD5xuLmTYwCbNBz5jMeJb8cQZ//jqPN5YX8OaKAq6a4FcT9HrlViEYhb6HbJ8Ea8j+zBnei/s/38ae8kYtqVzNzbCaDEiSB6/PaynOhaPDHe9vBKDg6XNCrp+3tYS/LcgnPsLInOHdMOTpZOU/p0NzFRJwNnC2GdgAN5iBz5Qm9Z5xvON8kvMmnQ+24Jl+1dsTbTEEF2GWdCB7tfwYjBHQ1L1qvnVXAj2CXeLt+uBy2Lc4eFlCP+oLXMRYjDQ53DTIFrhlKcRnQdl2eO10Yoa+wG/dv+RXc84OtVc/xghSd3+AjnPwtpgHDzQErS28R30S/BN7ZoOO6nY8gur3EBUQghZ5jDyCry/bzz8W7WHrI2cSZTaw2VfLMDDKRI2SUY0Ik16HXieFDg0NVA2VZfjHWGhqUfMuvo2czO6AMYJYxyGMuJmW/xdYs0RRpbzsTQx6HeOz4vlxRzn3n+MOChlUPIId+0nSYq18dtsp1NvcxPqigOKsxg7rFTcGlJhqKfgSDk63B7Nex5UTMkmPtRIfadQ81mGz+wf45FfMOu8HXl6Xw5L9TcwcGoXbI2vaCGEbleEw6kpo9t1Xf3pMURAdc22rZhlxVsZkxrPSZ6AnRZkhoZ/SXyA5Qs8/jS/ysedULEa/91/9vVwtJmlkWebP3+xgZ2kDF7WoL2oy6Lj1tP48/u0Olu2u1EK5LUY910/J5i/f7+TDNQc1UaCeijAEjyMtZ4Hqba5Wg3+PV+ZQrS3oQSQIH7VobJzVFJAUH/qm++WmYqqanNwwzf9gy4iz8srVY1m2u5Jf/nc17632hyPZ3Z6gh0dts5O3VxWQHG1ulY+gMmtoKvd/vo35eWUBhqA/iVmNb3d3YeFagZ+OCok73B4e/yYPgIz40Ma84Biy63tY9zpc/G84+1nwOLnvs63YXR4y4q38esYAnl+QT5TZQHZSJBvrIqm1OWH4xa12pQ4QYixGmgPvvb/NCw5ZMnZ9aOjnG4t44tud/HPuGE357kTH7vKw7VA9w9JiyCup71BAJSzKtkP2aYqID4DOAIPPon75erKSIqhq8nnj0kYr6+Oz4KJ/s39PL6LNDm0g1yZDz4NN7xFFM/VEBa3qGyC5n9yOsmdHhavVHO/IAMGwKM0jeHTzvzcX1SHLSs5slNmgPVsCJz7qbW5Mep1WTkGSJCKM+o5zBBvLFSMw95eQ7curNUUp5Va6K7F90OHlyiF6Ui96FT65VDnHfPxyUl9ueGsdK/ZUMWtYqrbc6ZHDru0nSZJmBALERZiobW4/d7bZ6Tc81RIQsiy3GYraEofbS6TJgFGvC+p3WDRXQ0MppOXCRf9mxIDBxEWs5fttpXy2oZgfd5bz1EWKqrJaWL1LGHqu//Xoq6HvVOg3PWTTUX3iNEMw1mqEi16BcuW5nBQTQZTUjAuDJsIEbYeGvrZ0P68v38/kfokhDbrrp2TzwsLdbDhYw8iMOEDJPfzFuN785fudvPjj7h5vCIrQ0OOExytrM9RqzHJ9iNywfy/Zy7S/LuKFhfnsKKk/6qElPY3aZicmg6KupRrZtjYMwffXFDI0LYbJ/RJbrZs6MInPbj8lSDwg8MEpyzJ3f7iJsjoH/5w7ps0bemqMhVG9Y1kYEL4TaAgafTkZHRksgo4pb7DzqzfXUhMgaFHTwQP6i43FHKpT8jdqOwjvERwDXM3QWKZ47YZfDKOuYKFpBt6Rl3PXbx/EOm4uf7rvUe763YOcd83vaEybpAl+tNqVb4AQYzUGhcERk6ZIoKsYrV1uCP60s4LKRgfztpZ06X6PJztLG/B4ZcZlKTlYR3zPctkUQyNrGoy6QvkbcSmYIqm3Kx5Bs0EfrBAbmQijrqDYEx+esEXfKQDESM2tBrlj+vpr+iRHt20IGvXtqxM2OpRi34YAQ0I1Co+m+ESggJIa2qeOFwJDFetsLmKsxqBnlNWkb6EaqnzHQYagWrJj6Ln+32fouX5PenfEF3r42GkxxMfGQO/xUFuoeDeBMZnKb15Q1RS0mcvjbT8/sr2PjDB2+OxodHg0L7HFqMcrtx3SGAqljuBhfu87voZ/TQaDGUZdgSEynnNHpjFvaynz88rweGX++OkWwK9r0OX0mQCjLofo0EZsYOSVTidB0kClRiGQFG3hPOeTfO0NHo/5PYL+Canvt5XwxLwdnJmTyvs3TQw5Qa/XSeT2ieOH7WXaNWAx6kmMMvPo+TkcqrMfVj3pE4lufAX3bNQT7v6zh/LKL8cCoZXvfvDlKb2wcDdn/X0pf/fFTQvCo6TOrj3w1cTnT9YXhczBO1RrI7dPbJtG3JjMeNY/MIu/XjISCDYo31t9kJ/zK7j/nKGM76Ce1qyhqWwqrKW8wR60H6tRj9F3c29voCEIj2W7K/lpZzlbA9QlA1UOQ5Uc2FfRhNmg4/xR6a1Kh3QFZfV2rntjDQerevaDpcsYfjHc8rMi/ODD7vIQH2EKqWiYEm2hstGJJ4RH3emRFcl1o04TjQmJKRIaSpRyA11ESa2SOxyqLumJiirmMDozDugCQ3DD28r/FnlDoBg2MVZjm0ItqnHTIb7z6KsbhvPDb08NWtUvILQusKxES0wd5Ag2OjytVKMjTQbMBp1W8PtoUFJn1wqTq4ZgqS9vM3ACrN7u0mraqgxIieKnneVaTn0o0Rw8LkCC2Na/T7dF7etb58FfshVxKLcN8r4ElNDHWKux1e/i8tXpO6yPtBpDqxgH0Ox0ayWmVIOu3XtSCxzuw++fWstPFU8CuHFqv5DXVcsQ6WNFZmIEz1w6knvmDGm1Tp2kedjwFnGy/9nu9wj6n+uvLy+gX3Ikf79idLve1nFZ8VQ0OPjnYuWer+ZGDs9QvqPd5e2L/5zodCtDUJKkPpIkLZIkaYckSdslSbrbt/wRSZKKJUna5PvrIBGg+6MN/k16bZai3hbs7StvsLO5qC7I/V3fwQ1GEMzB6mYyfWG147PiOWt4L95cUcCPO1oLBjTYXUR3oJIlSZI2SFA9eQWVTTz05TZO6Z/I1ZP6dtinWcNSkeXAgth+WWMt4Vl4BI+YfRXKwz0wLyfQEAz1sK7ziVIkRZuxuTxBs+RdwUNfbmPxrgoW7QotWCHoGIer7fzZxCgTHq8c8rdVlQDNBn3711eGMjHHga5RQ8w7VM86n1hHT7p/byuuJ9ZqJDtJCbE84smrwWfDKXcpHsEAnG4vTU4PMRZjm0ZYfbg1zyzKwC5Bb2/lHQg3LC/SbKDO5mpbpt7hblVHVqeTOGeE4nU5WkJggRNeDXY35Q12TV0xMCqi3uZqpQZ5/zlDqWl28bcFu4DA0NCA76TvZBh7HSQNOir9PyrEZ/lfj7pSCWsF2LNAW5yZEKGJvKk4OxCLaY8Ik6HN9BOVJoebCLM/NBTA0UGeYJPDrQkBHZFH0FGvRFiY/KHRWUmRjPd59ufdNY2nLx7Bb2YNPLz9dxGXjevDbdP7t1qeFGUiWyrhKv2PmA+t0ZarHtyvN/ujLhrsbvonR3Wot3DTtH6YDDrKGxxYjDrMBqW9mpKlaj/0VLqVIQi4gf+TZXkoMAn4tSRJw3zrnpdlOdf3N+/4dbFrCAwHbKvQ+OJdSlL2o+fnaMvCrQ8j8NcNUy9mg17HP64cjdmgY/X+YDEIp9uL3eUlup2ZYJWIFgV4f9xZjleGZy8bFdbvM6RXNBlxVhbk+QxB3wMgwqzXZrWER/DI2VepzOIFSkCrXlgIUXIAvyEY2UE+6eGihi2qM/TrD1Qz67mf+Tm/or3NTl7W/Af+faoWyuXxyjg93iAJ8EDUiZxQJVhcHi9Ggw6TQRe6AL3KAJ+ynbtrSvt8tNYne54Y0aNqhG4rrmNYWow2edVeWZ6wiOujSNjHBgs65PtqhvVPicRs1IX8nNpmZ9CEaZtkjIU71ishgiFYdd9MFv7u1JDrVIb0iqbJ6WllPKg0OdwhPYpjs+Kps7korg293ZESWFez3u6issFv/AWKkYTynuakx3LeyDRFcRe0fM8gsRiA814AQxcKiBxtdHqY8YDyeuaDkDzIFx7qz/VPjTG3KgsVrlhMKCJM+uDQ8xC0FIsBOhSMeeSr7dzw1jq2H6rDeaQeQXN0q5DeV345lvdvnMiw9BiumJDJb2Z1T4NfkiRq5CjMklsJ8/UxzheJpUYqgBI9Eo7oXqTZwJXjFe9xVMC1mxxlxmLUsXpfNVOe/okb3lyrlV/pSXQrQ1CW5RJZljf4XjcAO4CM9rc6MQkyBH2Dl5Y5gkt3V5Icbeb8Uensf+psMhMiRI5gJ9hR0kB1k5MRGf6wMoNeR+94q/8hnj8fNn+IY/17XKRbSm7N97D9C18YTGj8ctvKb6jO8ocbTy9JEmcMS2XZngpsTo+2HyVHUDUEhVjMkaJ6BAOvq/2V/pm9UBLfqiGohZl0oWe2uNamyVEfqGrmyXk7uORfK9lT3siXG4u77HN6FPXFUL4DfN4a1YBr6+GuhvQ0hKj/pA7uzIbQxoSGNR4eqoEJNwFQXm/no7UHD8uTI8sy8/PKOGNYKjMGp/SY+3ejw01eST3jsuI1r1FncpwAXwmCtf733/wWSre1aqaG047MiGvTI1jV6CSxHYEXDVMkRCZB3hdBxoBKr1gLA1KiW28XwDBfWYjAAWcgDfbQhuCQXsp+d5U2dNzPw2BnaYNWCLve5sIeMNkROLFYXu8gJUQO5NC0GGqaXdTZXDjdXkZI+4gvXqSsrC+BlyfC3kVHpe9HFYPvWH3lB4jtA/uXaMrAQ8yVSHXB5bucHllL0+gsESY9zT7xl0DK6u18u6UEu8sTNOls0cpatX/9bPIpwK7aV43d7Tl8Q3DPj2CObbU4McrMKQOSDm+fx5jnr5uBS28NuoaToszcOKCOASXfwuYPYfOHnGb7kRzHZv+G2z6DvK/A29roHtk7DoDKgJQQSZJIjjaztqCa4lobP+4s5/ONPa/UW7dVDZUkKQsYDawGpgB3SJJ0DbAOxWtYE2Kbm4GbATIzu7fKj83lLxmgGhaBKqIer8yy3RXMGJKihaxEmg09akb5aPPdthJ0EpyZE5yQ3Ds+gsKaZqjcDe9fBkA08LwJ2Ob7u/JDGHxWyP1GmoJDQxsdbiJN+o4V6wI4Y1gqb64oYMGOMu13V1XAQHgEjxSvV9byPgJDQw8EiALklzVQ2ehgcr9ETSa7zuYiNcZyVAzBZ3/Ypb3+3Gf4XTQ6g+2H6tjWxqDypMfjAr3fA6EOlixtDILaMwSdbiVH0GzsIDRUkjTDU5Zlznh+CXU2F2P7xndoJLRkW3E9JXV2fnfGIA5UNdPkdHdKHbC7srmw1icUk6B5jTp9rXx9NyDBtV8pHt91r0NqDvQaHtRsqy89ok+CNaRip8crU9PsJClcqfuGEvj8FrjsTSVPqnid4im0xne4KcCgVKW+bF5JPWeNSGvVlx0l9Zw7Kr3VdslRykRhYHh6V1LV6CA7KZLKRidNTk9QkXL1O3N5vJQ12EmPa62I3DdRyZE86DtPXzc9Q+ICJ0y8UMmt1BkURd0TDTXUW+cb7qbmwPbPlLqkkYmc1vg9w1x5ON2X+yNy3IcvFmM16ZFblIDyeGXO+vtSqpucWsH3NN9vEOELI24vr9Dl8WqT15sKa6ltdh2eomdjBVTvhZgT278yY0gqJPT1Cxj5uLvsIaJdFfC58v4RYEfNqcB1yoLv/ghjrlFEoyKDRQFH9G5tHANEGA2U1Pq9gC1TuHoC3cojqCJJUhTwKfAbWZbrgX8B/YFcoAT4W6jtZFl+VZblcbIsj0tOTj5W3T0sAj2Caqx34I27qKaZmmYXEwKER6LM+h4zo3ws+H5bKROzE1vNFPdJ8HkEYzLgl5/BDQvZ+YslnOp4nlVn+O4g1fvb3K9quDf5wj8a7W6iOll4dXK/RPomRvD2igJNlCQxyuRXDRWG4BFRXGvTvD6BRsGWojoG+8p2PPDFNm5/bwNPztuhra+3+zyC6uC2i34Hp9vLD9tLuWpiJjMGK/emPglWnr88l1G943rkw6VL8DhbGILtewRj2gkNdXvVHMEOPIIA392Da9NHXP7qKm2Atq6g1dxjhyzIK0UnwcyhqUSaDXjlzolCdFfUfLSRGbGHHc4uV+/Dji9EUZLg7i0w7oZW7TYX1TEiQxHxUlRDgz+nttmJVyZIQbBdEvrDXRthwBmKJP27l0DxhrD7bTHq6Z8cSd6h+qDllY0O7vxgAw0ON1NDeFbUSYqjVUuwttlFSowFSVLyzYI9gop3qrTOjixDRlxrI0Itn3Gguolmu4tkqQ7XEEWpEVMEXPs1ZHbjUhFtkTUF/lTiL3kx9Xdw92bFIARiY+NY4c3RyhXAEYaG+u5NgWO1x77erk0AvL5cGVuk+36DHJ+HecPBtu8vmwprtdDRxT5tgf7JUW22b5PmSuX/6Q90ftvuRmyfYK++s5loVwWvus9hx2VL4K6NzHS/wIJ+9/jb3LhQyUNuYQRC29+nxaQPKucVSt3/RKfbGYKSJBlRjMD3ZFn+DECW5TJZlj2yLHuB/wATjmcfu4LmAKVIg05CJwXnWKgXfWAsf6TZoBkfgvbZU97I7vLGVt5AUDyCtc0uGrxGGDAT+oyn3JDOQTkVXdooMEa2mmkK3t6K2aBjS5EyGAqM9w8XnU7imslZrDtQwzdbDhFlNihiMUfBE3Uysi9ABU7NESyrt7O/solLx/Zm7sRM7pkzhEGpUczbWoLD7cHrlSmvd5AUZery32HDwRqanR6mD0omPkIZsKZGKwOBSLOhy0VpegxuR6cMQfU67Dg0tP3ICteeRSxYsoQ1+6v5w5mDAQ4rt2tTUR1DesWQEGnSBESOdlHxY8HW4joy4qzER5oOr+SNx41cX8Kru6P8uW3xfTVPrIrd5SG/rIGRvtl6U4AR/9rSfYx7fCFjH18IQEI4oaGg5Lgl9ANzlF9Vsp37fSgG94phV5k/xLOiwcHs55ewMK+cP5w5mLOG92q1TVQ73uquoNbmIj7CqBUoD5xYVr+zjb7wwqzE1sXHNUOwqhmnTTk2XepQf4OIE7j+pSnAk6nTKSIyRuX+m3XRw/xPOpPleyq1JkeWIxgcMbS2oJq3Vh6gX1IkuX3itHFDeqziEUyJtjAsLYa/zd/VanJBZeGOMgw6iVlDU2lwuNFJ/hDlTmH37T8qpfPbdjfiMoOvW19473ZvX36ujMIbl81edwqeiIBjjc8CRwPUHGi1O71O4sap2TxxUXBEQkTAsyYx0tSjBL9UupUhKCnxMv8Fdsiy/FzA8sD4i4tQgvdOaALzwiRJwmLUB4WGaiFQAaIISmjoiT+IOBb8sF0puzE7p/UDuU98BCAjvXMRbP4I8NcR6psUqdxgPG2H71iMeib1S+SH7aV4vTINDjdRHaiNhuKqCZn0jreyPeDmbxKhoV3CvgollCPGYqDRZ2Spnp30OCtPXDSC26b3549nDqHJ6eGXr63m260lONxeMhMjNUOwI4MhXJburkCvk5jUP1ErPqzmlFpN+g6FAk5a2goNbVMsRh1st35YO91KkWiTQYfD5WVvRSOzn/+Za15fw8uL9rAloLTDrdEvc/uhs/n97EH8esYAYiyGTg/gi2ttLMmvYGiaMmDzqw2f+Pfw7cV1Wu714Uya2Jf+HZ3soVhO5rttbddWVGsVjvAVeg404hftKkevgxumZjN3YianDjyM/KZo39Di67s7tdmglCiKamza83j7oTqqm5z8++qx/HrGgJCiYUa9DotRR4PdhdvjZfmeypBlTg4Hr1dWBHOsJl+Bcq/2PUVbDLg8XmRZ5j9L9pGVGBGyxFGEyUBytJmCyiY8zbUAGCLCC5c9kTEZdPwx4htSD36jLetMQfmWaBoCqgfPpxD92e2ncOO0bKYMSOSOGQM0wxvgT2cPxeWR+WjtQeZvL+VQrY1mp5trXl/Def9YxmtL9zNzaAp3nj6AuRMzee/GSVoob6dw+iYvLHGHdWzdirhMsNVoYzh+fBQAKS6TlXurNI94qxIYb5wFfx8JztZKoA+cO4y5E4OV3wO3T4mxUH+UJnKOJ93KEETJBbwaOL1FqYi/SpK0VZKkLcAM4LfHtZddgBomoIaztAxX0ma+Df6TMMokcgTD5YftpYzqExcyF6J/SiQm3FQ5JNj7I3e8v4GHvtyOXicpSfRznoQx17a7/0vH9qaoxsbSPZU02l1hqY22xGrS859rxgF+L0FX5AiuLajmnVWtZ7x6Kqv2VbVS8qpuciJJkBEfoc2Mq/8Dk+xnDEnhV1Oy2VvRxJ0fbASgb0JE1ykh+thV2sjAlChiLEYtfDHRJ+wQYdTj8sjC+A+Fxwl6/ySL+nA3txUaalVKDIRSdAwsH+HweNlWXEd+WSNL8it45oddPBOQw1lrczE8I4Y7Tlck1KMtxk4bgt/5isdP8xkoqqLpTztP7NIh9XYXBVXNWk6Nv35X+Ofvvi0rAPjOM56SWnub7dSyB6kxircvOymSBrubPeUNlNc7GN0nngfPHcYTF40gLuIw1Cz1Bug7VXntCF/EJcdXX2yzz8OmTjKpCtVtEW0x0uhws2xPJXNfW82MZxe3GxIYLg12N15ZKWZuMeiwB3gEYyxGXB4vS3ZXsrW4jtunhzZUAUb3iWN+XhlN9dUASJbD8DqdgFzs+Q5L8SrcHn8u5eGWZ4hooTjd5PAQYzEQF2Hi3JHpvHfjJH5/5uCgPOGpA5M4pX8iS/dUcvM76znl6Z+47vW1LMmvIMZq4PxR6Tx2wXBG9YnjiYtGMLl/69DGsBgwCx6qhvQxh7d9d2LUFcr/Il8JiYR+kDiA2IGTWVtQrd2vrS2fFaoqdE3b6T+BBBqCqTFm4RE82siyvEyWZUmW5ZGBpSJkWb5aluURvuXny7Lc9hTiCUJZgx2TQafVMlJyHwI9gq0HPBZjxyFNJytl9Xae+WEnDrcHu8vDlqI6ThsUOk90SK8YJg1K57zKO9g+6Rm+2aKcThfkpis35/6nQ9rIdj/vzJxeJEaaeGtFgU8l7vAKrw5Ni+GFy3N5zWcQGrU6goc/U3zZKyt58IsT3mkeFm6PlyteXcXZLy4NWu70eDH5ZuDVa0YtNBtoCOp1Eg+dN4ylf5zBH+cMZkJWAiN7x3Z5aGhVk4MkX+jaIV+IYbavgLX1KJWq6BG0zBF0tp4gC8So1zEhO4Gfdpa3Uu0LDA11ur3aQGH5vaczbWBSkPF4Ve2r3OZ+T3sfZTbQ6OjcAEDd/3k+4ZApAxLJ7RPHo1/n8cUJrBKrhnIO93kEjbrOXSsNdheOqgPkR4ylT3p6uzk3qldFvUbmDO+FJME3W0qoaHRoxaWPiPG/Uv7Xhh8eOiE7Eb1OYvleJZxQ9RK0LNTekmiLgXq7W5sIPljdzC9eWamVGOmIg1XNWjmNQA7VKeduSowFi1GJMLAHeASdbq/2u52f21rIRuVXU7Ops7nYkF+gLLCEFtDoadiMCaRRyY++SRqljuDhicX4Q0OVc8Lh9rY5cRXIuKwETekaYGNhDWfmpPLuDRN5/vLcsFXJO0Snb1U64oQkuhcMOksphQFK6Zk71zNxQCrNTg+rfDmfrQzB0b5akmFe74HbJ0eZO8wRPFp1Qo8m3VY1tMey63vYPZ9peyoZYnYgfbsALLFEGia38Ai2DoEyhSNycBJQ2ejA7vLQO94/+zr3tdXsKW9kXN8EcvvEARAfWFdKlmHJs4piHPBivJ5zD57COS8uA+CN68YzY4gvltxlh39OhNy5cNofoXg9bPQPCgFMwOvJtWzZozxcB5uiofJ+SOp8EdYLR/sVvFQp9sP1DgUOEhxuj1YYtaeilmNoOQiNaSzgIf2bJDcakBuAb1LJqLfzZ0MZg9d9C/kWSBsFYxXPb+Tih7m99zhun34RuJ0kH/gWiO86Q7DRSWamcr5ePyWb/LIGLsxVfnd14GBzeloVue7JNDvd2rG3SQuP4EFfYd/0EGIXKufnpvPHT7bwh0+28Oxlo7TlmiHou6eq3qZYq5ERGbGs3Fultenv2k2WpxS++R0AdzvLWdh4ETAu7ONrqSYcYTLwwU2TuPI/q/jNR5twe2UuHds77P11FzYX+gxBX46STidh1Et+j2DROijZBONvVN4vfARShsHIXwBQ/O5tDKAIR8Z5xDQZ2xVKUidE1cFYaoyFCVkJfLahWBFH6QpDMNanMP7jYxCTrqgKpue2u0mU2UBunziW76niD2f6Swi1LNTekmizgXqbS2u/+PfTue+zrTz4xXbOGpHW4fanPqOUbyh4+pyg5apCcr+kSF+aiVf77lRD0Ob0oNdJ7Xq6xmclkBFn5fTG1cqCEGUGeiIpfQZiyV9KyfL7YX8sd9uLKHZchCJc3zlU77Xq6Vaewx0bXmpBd4Cv7phCTnpsx0rkuxfAru867tTpDyg5ngsfhYZSOP8fijf8ROeqD5X/S56BwedA6jAm9VO8pWodbnPLNAI1L3jlS7B7vn951hQYfolSWmLeHyAiEabfq3l4rUa9L5+/7QnbrzYf4m/zd/Hlr6ccXoTCcaIHnAknGBU7kfO+ZLjNhQRKtqO9jpGRT2Nz+d39oeplhVJMO5koqGzi4a+2a8W31Yfh+6sPaqGBawuqGZKmzBAFCUrU7IdFj4MpGgxm4oDPk7cwpfA2nBg14xFQksjj+kKWL2SorhjyvmzVnxFAhl4ZTEbW6aHplsMyBANR1SoP1xBU8xEAappc9Irt2YageryJLRQDR5V/ySnSDzTaY/HKMuQZSfB4OUvvJvagEXSSYmT4DEF2fgsGC+RcBHt/JG3NE8CzXaYaWt3k1MLAh6XH8OUdU7V1ES1UaE8GFu0q5/o31vL57acwOrOdPKT4bLD685nyyxqxGHW+PN/QXDQ6gye+3cHKvVVBy50eGatJp02OVPkMwQijnt7xEbi9MpWNDtJiraxlGAPkIu26P9tWiQ0zcEnYx9hgd2nhoCpWk56Pb53MuS8u46O1B09IQ3DZngoGp0YHqTGb9Dpc6rNp9SvK9aQagvk/KLmeI39Bk8NNStEPePQWEkfOIWaTgQNVrXN1VGwtDEGAc0elaxEPqbFd4CVJGQLJQ6DIV9NwwKwODUGAidkJ/HPxXv7vf5uxmpTc046KVw/uFc3320oZ4zvnM+KtXDkxk5X7qiirs7drCH7lK/YOrcVMdpYoeeb9kiO1KAg1NDTaYuRQrQ2by4PVqG+3dIleJ3Hn6QMY+M0eZUFCdvtfQg/BOHg27F5O75IFyLVGLvBUs7vOA1zZ6X31SYhAr5M049zh8oZV1HxCtv8+NyAlKrxyVBW7Qo5NWjHt/5T/1ngoXKN4BXsSexfDjq/hkv+SkDSQIb2ime/TiWgl5BeZDJmTlfq05X7FcMzRiiEoe5V71tnPgNej3XusJj0Woz5IhCmQRoebuz7YSO94K7XNLmEICtph6m94tPoM3lxRwH1nDeGWYW54eQIZUiXbQ4WGBswkmQ06PF4Zt8eL4TATmU9kvt1aohmBKjanh6e/28GUAYnsLmukosERWlBCDQO48n3IPhWAJFnmvI+3YDLotDpyGtd+5X897HzlrwU64JZ/rWD9gRqeu2AUFycYYd4fYdTl/tpFncSoFmc+TIM/MFeuqslBr64YKHVTXB4vn21QQuzsLcRW1sfOZl51GlVZ51BQ2cwPvz2Vn7aVcuu76/n2lqnkpLeY6b57k/918XoMTWXo8XSJR9Du8tDocGuhoS3RxAVOotDQ77cqD+lth+o1Q9DrldlSXBc8KXPW09pLr1dmye4KhqfHtpnjBEp46O3T+/PUdzv5cM1BrpigeHzU2mBq2G91k5MoswGdTtLyNasanaTFWvmH91KKx/yGR85XJOYrnhhKvKusU8fY6AhdVsao1zG5fyL/W1eI1yu3eyzdDZfHy/oDNVw5IbhOr9Wkp7LRobyx10HSIP/K21dqLz9cW8if7a/w6W2nMLZvPDE7N7ebc6NeE4GhdWcP76UZgmp49RFhjoZfr/a/b6yAFS8pdWQT+7e52YAURW7+0w2KWmFb13cgUwcm8791RazeX0WESY9Rr9MmsSobnQxsLXINKOFmLyzM194fqGrSalranB7eX3OQKQMSiTAZlNBQpxIaqtdJWE16XB4vzU5PWAbJJWN7M2/1aVRHncsZJ7JSaGcYdz1zl/VnZ2kD2OBd4xMM9nTuelcx6nX0ibdqz+JwPYJmg553bphApE9BvF1qD0LJFhh7HZxyR/idm3KX8tfTuP7boLeT+ycqvyWKKmsQOh386vu296U3wu+2a2/V57PZoMNq1OP0ePF45SBD3eOV+cUryn3u3rOGkNUV96VjyMlnTRxnNhys4c0VBVwzuS83n9oPYpUZ4RzvrqD6Un5jJsAjaOxaAYsTjU2+xHwVWZaZn1dKvd3NHTMGEm1R3PaqNzUoLPKQr06UGhYASJLE334xiqcuHnHYfXrh8lymDUxi6sAkQIZN70PVvsPeX6BYjMcr88by/WEXIC6sbuZ/64q0G1RN04md1HzN62uY+9qqNtdvKaqltN7OiIxYmpwevxqjLFMjxfKzcZoSJqXlCCrXTYcP5dg+SLKHLKk0yBDcUlTL7Od/buVp6ghVkbZ3fGvhIgjwCJ5EisBqnoU5YELrmfm7uPDl5f5yAqB44338d9l+9pQ3tjJCQnGRL9z6w7WFWs6G6kWJ9H3f+WUNWm5vUpQ6GFeMGZvLEyQS0GBOY6grD3snvLYNdremYtqSnPQYmp2eoDInJwI7Sxqwu7yaR0tl1tBUvtp8iC83FSPb6pDbyC37ZsshRvaOZWxfZfsYq5HadgzBlqGhQJAnMlQZhCPGXgfz71dCXNuhpREalIrQBqN8Ajur9lVr3j81UqC9+/yrS/axr6KJQamK8Vnb7P/O3l9zkMpGJ3fPVIxvq++e53B5sRh0irfWI2N3ebR7TXsY9TouuPNvnHH9Ix227Uk8eO4w7fVrnrMpzLn1sPc1qk8c6w/WIMsy9jA9ggDTBia3urZCsvcn+Ggu2KoPu489mcn9/NF1KTGHET7u9cCmD2DXd1q5J68sa86FlhPPn28sJq+knvvPHsrZw9Na7a67IwzBY8yzP+wiOdrMPXOGKCEapkgwRnJW89d4XH71tFD1srpayfBEQpZlNh6sDZJcbnZ6+GR9ERlxViZmJ2h1FkN6BH96XPkfk0FX0ichgndumKjMOkWlwn2FMPKyw95flNmAJEF1k4sdJfU8+nUel/xrRVjbqoVq756phKfWneDqVkvyK1i+p22jSy3wfcYwZRpdq8+250cuKfkb0TqHosarqYaGmCAIhc8LcI/hw6DQ0N98uIn8ssZ25e5Dsb1YCdsalhZagU8dUG4NNIB6OKqQSq1NGfzKssx/lynn7+5yX55r5R54fhh8eQder8w7qw4wISuBi8d0fA2nxFj4/exBbCqs5cUflTC3ZqcS5nP6kBSizAZ2ljZoJR0SI5XBQlWjE5fHi8sjB9WPiuzVHy/w+cKfO3WMLUNDVVShle2HTqzffGOhcs2NzowLWn79lGy8Mtz94SYKS0v5cb+NR7/eHtTG4fawubBWU1EFZXKk2enhM59XrSU2l+LVainc8cmtk7lmcl/NgO9SErLhngItp7EthqbFcNHoDPolK9dvq6iSEGQmRGiTA6qwTKJmCDpCbuP1yry5ooBhaTE8cI5irKgTVHaXh1d+3svkfolaaKHqEay3u4iyGDDpdVqOYCvhjLbwnNjPjsNBvSYBFntHEzf6wsPe14TsBCoaHByoag7bI9gpci6GmxZ1+XimpzAxwBBsmTYSFpIOvrgNPriC7IAxpzoeb2kIvr2ygKFpMdw4LfuEivBQEYbgMcTrldlwsIbzRqZrAxAALniJtxJ/G2Tgqa8tgaGhvpPwZCw2XlRjo7LRwY1Ts/nLJYoHL7+sgeV7Krl4TAY6nUSkSamz2Kr0hrMZvG4YcZlSTPhoIUnKTFLNAXCH58VricWoJyPOyt6KRs2w2R+m12DjwVom9UvgAp8qXE9XmC2rdxBlNtAnQfG0aaVVXM2kOgqw6pWZWEcLj6Cpo4dy5il4I5JIkuqCrrUKn7co3N9D5fvtpSREmtoMY+sdH8GQXtEsyFNCkTqqLbajpL6Vd/xEo6ZZuT6qfV7rrcX+73p3mS+8OSoZLvwXTLqN9QdrOFjdzBUT+rSb4xTI7dMHcPHoDJ5fmM+CvDItTzMuwsR5o5RZW3VyLcknOlJUY2ulVAmQcvFf+Xvmizy5xh2yRmEoqpocbYr/DEyJItZq5JP1oQ2g7sqmg7UkR5vJaFGWZ3CvaD65dTJDekVjdjdQ5Y7QxBpU1BIHgeqHcyf2ZUJWAn/4ZAvXvr6GWc/9HBQCafd5tVr+5uOyEnjsguFhnwudQqdXcqm8bvC2/ay1GPU8f3kuj52vFKCube74ni9JkjYhpCqexmuGYOjzam9FIyV1dq6bkqUZker44KO1hVQ0OLhrpj83PS3Wwt6KJr7YdIhesVaMBkkJDXV5sIThEcTjhj8nwc/PdNy2BxFrNTJzSApPXDSczQ/Npt+6x2HdG4e1rwm+Oo1r9ldjdx1+KYo2scRAxpiel+vXRcRajQzppYROH1YalSTB+BsA6BehKPImR5u1iZSWdX8LKpsY1zf+6NyPjgHCEDyGFNfasLu8DPSFd2gMv5h1SRdQGVD6yu7yYNBJQSexuYuLXJ9IrC1QQiDGZSVoSbibCmvxymjFcSPNepocntalN7xuOO0emHDz0e/ornlKsdLyvMPeRf/kKPaUN3YqZ0yWZfaUNzIoNVrzeJ3InmNniJqaLamzuYi1Gon05VNooZXDzudPvd/CYYjRFPTAX0eww4eyTod3wGwypMrgyRnf9vsrm7j/8608/k1eh6I+TreXn/MruDA3o90H0hnDUll3oIZvt5TQ/0/zuO+zLZTUta6F5/XKnPX3pVz48vL2j6GbU+wroaEqd36wphCLUUeESU9Vo29AbYmF3KsgNYdNPnXYtkrChEKnk3jy4hEMTo3moS+3YXN5tLDCWUMVL7I6GI8yG5iYncBbKwsor1ciMwINQSkinqvPnEaD3c2FLy/vUCK80eGmsNrGoJSokOsNeh2/mpLN0t2V/ty6E4CiGhvZSZEhBzzjshL4/jenkmpyMiAznYKqpqB7WKPPCxwZkP9kMuj473XjmJPTi5/zK9hT3sirS/Zp13zLEN1jxrbP4PGUsGqNjeqjeJJuObXtfMJARvg8T6pBbNQrQjPNrtBhx2rIaHqsVZvEcri9ON1eXvl5L+P6xjOpnz+X78qJSui00+0l1mrE6PMI2p0erC0VFEMhe2DGA4qK4knGf68bz9yJfYmNMELpFqg+vDSPASlRJESaWFNQjcMdXm5m2JTvhBdGwL7FXbfPHsiXd0xh00NnHP4OfPUGM6QK/jhnMP+8aqyWnhWYxtXkcFNvd5PWjpJ1d0eIxRxD1OThAS0HBx43c6x53ND8LOUNK0mJMuNtriHaFDzY6KoBvjqICWf2osZXmPt4KyCt3ldNrNXI4NRozZugDhiHrfo9/LSXR3yz+Z5tlwKjsUpOeGUqTLwNZvzp2HQ0zpe/9PG1igjBgDNg1sOd2sWAlChW76/yhzpCh6ISe8oVD2JOeoxm6LRlQJ0IVDQ6yJZK+JvxX3g++xIuf1VZ8eFcqD0AwN3VzdzukUldaOFbUxNZn0aCSQ+9RuLyXIfRoNSMc7g9yLIcvkcQ0Cf0JVWq5cLVV4DpGjyT79S2L6qx8d5qpe7X5P6JzBzahsIDSriu0+1lTN+4dj9v1tBU/vHTHn79vpLL+sGaQj7fWMxD5+Zw1UR/Tpw6IdJd2FJUy/kvLWfpH2d0WExbpdHh1nKcqpudVDc5+WpTMeeMSGfDwRr/bGtDKRSuhuxTyS9rICnKHJQfFg4Wo54/zhnMDW8p+V6qKMy0gcncclo/rjslS2t7/zlDOf+l5by5ogAINlgARiy5hWUxO5la8QTbD9UzfP5VcMaj0Lt1SYmP1iriVMPS2y7IPXNoCs8vzOfrzYe4fsqJoc5Y2ehgaBshzgAcXAXORqzR8cgylNbbNU+4ej9rKaATbTHy8twx/M3lYf2BGua+tpp3Vx3ghqnZ2MMUOOlyolIU9cD3LgOT77xO6A+Xval4C1r0v2U5h/aYM7wXry3bHzQOsBh0Wo3Mlqg1CmOtRu3e7vR4WZBXRkmdnacuHhH0LO+fHMVHN0/i8ldXUdvsxGSIxunxYnN5lImPRU/Brm9DfhZwWM+sHsn185T/Pz8DO8JQ5rxlqXJuLH0OKWsq4/rGax7/oLSAT26Ayl2+NxJMvxeGhHH+LP4L7PwanE2KWIzxxBIkOdaYDfojK5/lG8tJn97A7eZo2AlW4jFyY9DYSp2wTY8NrQFwIiA8gseQ0wYls/SPM7QZQQ1JxwT7SsrleDYcqIX877l3yxzGmoPDhrTZwDbka8Nl3OMLufvDTWG1Hf3nBUz9y6Ij+ryuYE1BNeOzEtDpJM09X9PsJIpmkvZ9AV4P9eZeHJKTsOmVkACzyaCIw6gFR48FKcOUgqUpw8BeDxvf6fQuBqREYXd52VvhVwDtKN9PVVOdOjBZGzidyB7BRrubA3Iqz7gvx2aM86+ITlN+09g+lEnJ1BhTcEenc0hOotnqWxeZrAiD6CQsRj1eGVweWbtuTGGEikjDLmSNZQpF3gSwxmFvrKW/VEx6CxVW1bMVioLKJp5bkE9chJFT+ie12Q4UL4EaRpiVGME3d07F7vIGlQMBmLfVn5/YHQrX/nuJMmO+en/4BmpxQOH2miYnC3eU0eT0cP2ULCxGvb9OU/EG+N81UFPA9kP1WqhPZ5k5NFULH47xGSEmg477zhpKWsDDe2TvOEb1juXdVYqRn9Ayt2TIOSScch1Wo57//JwPB5YF16HyUd5g5+VFexidGcep7Xgwc9JjGJMZpxmNJwIVjY728/L2LwWgoc9M5X9AGK1qCEa3lHP3YTHqmdQvkREZsTz+7Q7m55WFrXTZ5aSPgVFXQvJg5Z7i9UDeF+BoXcy9s4zLSuCbO6dy07R+2jKrSR/kZQhEvffHWA1aeSGn20upz3MdpLLrY0J2AneePoA/XzCcGIsRh6+91aiHje+CrU67j7b6O1mUQsPFGtf2dxX4B8p5suIfkP8Dd8/yh+taDDqlPjEoWgLqNpX5SqmCcNj2KTRVKqVOcudCr8MXuROEQdJgGHOtMpaL7QM6I8mlS+grlQYZgod89SLTTmCFduERPIbodFLoWXOdjuhL/s5tW37g9kN1zBmhJAD3MwYPrroiNLTZ6aaqyclXmw/x9yty2/UKqid743FWM6xucrK/sonLxys3W3VgUGtzkSFVKo1O/T2fFQzl/TUHeSQjB9iCxRIBV35wbDtrMMEFLyuvf35GqV3osoEx/NmiHJ8X4dMAAYWaZme7YgSLd1UwICWKjDirlmN2pBMGxxOXx4sXHSu9ORSNn4JmRp3zrNbmT8/9zICUKH57xiBuen4JL00czbkjlfxI1ysrMOp1mkpeWb0dp0cRnggrZyBlCD+O+huvL9vPxpzZ6Bc8yDzTf/hV4lccqlNu/DoJyuvbDut7edEeDDqJH35zamujogU6ncRD5w7j/z7eTLTFyPCMWKYNTKKsIXj/C3f4DcN6u/u4F6BXjbrOZEYU1Sh14zLirFQ3O7WQ3vQ4KxEmvf8h61E8/s1eAztL6/n1jAGH3c/3b5zEQ19uY1xW+4Pcu2cN5FdvKt7DVr/ZmKuJAC6v384Haw7ijU9HV9vaiHth4W5qm53855qxQbXeWiJJErOGpfLX73dR2egIq/xAIBsO1rB4VwW/O2NQx427ALvLQ4PdrYXThiQqGfpO8dXhWxVULF4LDW3DEASljt1nt5/CmMcWsCS/glqbMyw1zi7HFAEXveJ/v+Ft+OpORVHU0o5HNEyGt5gMDlQ3bklgsXp1cs/p9oYUlFORJIn/mz0Y8E8IVjQ4iDHrIDoVhp4PU39zxMdxUjDhJuUvHCS94kmMySDHEsMV4/vw4dpCYqVGeCIVzvkbzHnS3/4f45RzKhxcNug3Ay76V+ePQdB59AY4/0X/e2cT6/eVs+fN7UGTNppHME54BAVHiMWoZ2BKFFuL66jQpwBwhntpUBstLOQIPD2BdeYaOjDw2iv0eyzZXFQLwKjecYBfSry22clsnU/iOzaTlBgzzU4P+WXKrG2XJ2h3ljjfLOH+JZ3abGTvOEZkxFJY7fectExODqTJ4WbN/mpmDFa8D6rKXlsDixMBp9vDc8Z/Mle/sM3zvVbNEfQNLJsd/uN1emSMBh2zhqai10k8O18pzxKON1Bl+qAUXB6ZZbsraRh0Ib9z3cYp/RVp7yvG9yEpykx5gz3kts1ON/O2lnDeyPQgcYz2mNRfUTr7w5nKAC41xkJZnX//sixTWm/XvJLhlhU5Wrg8Xq3UQ1Ubioeh+HidMsExPCOGmianXxjLqNRp0sqA+JQLl+6twyvToVe1PfokRPDG9RM6NLYm9/N/Rlttpw1MwuH2Kh7orf9TxDV85Jc18On6Ii7MzWBs3449KyMz4oAAgZxOcPE/V/Dij7vxdiAu1FWU+s7FlPbO57HXwfXziPFNUAR6BJucoUNDW2LU6xjdN551BTVUNzk1+fbjitln/IU7aO8kVp/SZyjUUivRFoMWFeR0ewJUkNu/p43OjNPue32To+Gmn4QReDRJGQolm8Hj0n6v5GgLzLi/dX1hSww46sPbr6u5UxPKgi7GFInFZGSitBO7y4PHK/P9tlL2VTQhSYT9nO+OCEOwG5GTHsviXRVMemE9AOPty5VQAx+BieKHS+CAQ5VwV7G7PHy45iBuXy6UI0SB++PBlsI6JAlG+GowaR7BZhcX6n2iGUkDOH9UBia9jtd8MvRR7cw8HxPU0I21/+30poNSg8Pg2hOO2XiwFqfHy7SB/jA0i0F/QnsE9ZU7uVi/jMv0i0N6wB1uD5WNDnrFWrS6cIGea7dHKR7eJyGCO2YM4MtNh1i4o6xTNYXGZcUTbTaweFc59XE5fOudRO/EGHY9PodHL8ghJcZMeUNoA2hJfgVNTg8XhVHqQCUjzkrB0+do4YS9YixUNDr8Hl63Ulsyw1eP8HiXB1m5twq3r29VYRqlbo+X+XlKMfmBKdHU2lxaKKjFoMdq0mNTz1uP8t1+srmc/smRQYIYR4tAYZK2vLjqzG+9KUURoirwT/T8bf4uTHod9509NKzPy0pSIkTUWpPhEqhQ2dSJ2oZHwi7fBFvLe1MoVEOwPsAQVJ834dyXx/eNZ1dZA/lljVpe53ElIhGi0zUvdVdjNuqZn1emKQcHUmdzEWnSY/CJygBazp/F2FpRtSVGvU7LUR7EQagp6OruCwJpLIcfH4V9P2v3xbjEVDjtj5A+OritJbYTHsFmf76q4LiQUrOBV01/o6rJwdLdFdz67nr+vWQfiZGmsLQHuisnbs97IBN9dYA8XnjMdbWysNH/YFBrUtWEIVPdFusO1GivW8qgf7K+iHs/28obywsAghQRK9oY8B4LthTV0j85ShtAaB7BJie9pGqco64Gazy9Yi1ce0pfAIx66fjklgSSmqOorw06s9ObqrWpVL7ZUsJ7qw+EzAtTB1uBM1Jmo+6EVpc11CuCMI+6rg3pESyusSHL0Cc+giizgRiLgc82FlHnEyFRi4cD3Da9PxlxVg5UNdMnPvwHqVGvY9qgJBbtKsfu8nCr/itG5j2rJaHHR5iCCjsHol4v/ZNDq0aGQ1yEEY9X1gxc1WBSDRTHcRYDWpBXhtWoJyHSRHVjePek/ZVNeGX422WjSIwyIctQXm/HpNdp+b82zSOo7HPzoWYuGxd+2Ygj5e6ZA+kdb23zwa5eZ8uy7lIW+AbW5Q12fthexnVTstoPnwwgPdaK2aDTohjC5avNh7TXTY5jcx7klyp9HNiGEioAn90Mn92s5WLe+9lW7v5wI16v7M91a6O2YiBzhvfSXncUVn1MyJ4G/7dDkew/Cqhqnje9vY6P1h4MWlde79C8sKpnTwkN9YZdF/CZS0cxbWAS03b+Gb6+uwt7LmiF1wNFa6FmP7ed1p/spEjOqXoTds5r3dYSq2gJdIQs+zyCwhA8niREmnjPeyb7y+u0Z/8p/RO5/5zwJv66K8IQ7EZcNq639nqf7HsQVu3Vkoz7JFgxSW4KK2pCbd4hhdXNfLDG/5AJzN8A/0NmyW5FeMTp9hsdx2rWORTbD9UHCeyYjTrMOGm02bjV9Vukibdo684fpXhgXJ7jL6QBwGl/UBKOXXblZh4m/VrUnHtzRQH3f76NB7/c1soYVA2+wBAhs6Ft8YEl+RVMefonzWjqNnhcyvfksmPyGYKFckpIQ3BvheJB6R1vxaDX8exlo8gvbeTSV1ZQXGvD5ZG1XECLUc99Zw8BCFvZUmX64BTK6h1sPFjDEN1B0ornK310O4iLMLXplVPDrqM7CINrD3XiQ82hU/9rhuBxFgNauruCyf0TSYg0hX1/2H5IGfQMz4jVjuNQnV07dyNMen8YtC801ImBUweGXzbiSPntGYNYds/pba6PjzBi1Evsd8aCzgDV+8HtpMZXB25YstlfkFuWtXO61Z/bgU4nMbFfIot2lndK/Gd7sX/w2Og4NtfxzrIGMhMiWuf4uR3K8XhcirJmQj8iTQZ0knL4X246xIs/7aa41kZCpCmschADU6O1EOmwi6Afbbwef11Br1c5Zm/XGOGBk5b3fLqVBXll/Pr9DWwrrqO41qbVbTTqlckQp1v1CHbw3fjOvz7ROt65djTGc/6qhCgKjh5RqaA3QU0Bw1PMLLp7ItbVL8LBFaHbGsMIKZRluPYbGHVF1/dXEDb6IXP4Iu5a9pfV09zchBknz18yhIuGJ/nv657jq6lxOAixmG5E4Iz3Q1efBR89A2+dC5IOHq7BbNDzXMTbTFm7Cc7cC3XFULFDSSAOo7CoOov8+9mDeHZ+PjXNTl5etAePV+aumQO1nDJ1cOsM8Ai2ZVQcbWqanJTW2xma5g9HMht0rDHfzmeeaTzOdRjT/epZwzOUXI6zAmaUjzur/gkLHoT7isEcnocou4VHUOXdVQe5akLfIFl69bcxB9SIas8jeNPb63C4vewsrWdiv8Rwj+LoUrYdXp2ueYEGAs2ymUpigs5DUEJAn5y3g14xFk10YXZOL9781XhueXs9176+Bqfbqw2aAM4Zkcau0xuYMSSlU92a7su7nLe1lFPkFCxNK5Skf+C0zAdZ1jwy5HaNdjcGnXREearqgFv1CKrGlmpAHUmu8JFysKqZgqpmrjsli882FvuVPjsgr6Qek0FHv+RIynyqh6V1Nq3mZ5BqqO9cSIyJCrr+jzeSJNE/OYo3Vh7kd/EZGFe8CPWHaJqgCBmd8e1kKP8VnPmEojL5dJ+2d3bBy5yZM437P9/GztKG9kszBLDtkD+crPEoeQT3VzZR0eBggi9SJb+0oXVY6IqXYL7PsJj0a00IQ4fiUVcnK15YuBvwC2GFw62n9SfGamROTje4lzub4Z0LwW2HW5ZA0Rp4/xcw4jJFAOQIUe8TcRFGaptd3PLOOryyohIsy2jfgSRJmAw6HB5FLKZDI/mL22Hz+8rrvlPh+nbKRgi6Bp1OUZlc+ZLypxLXt3Xbs/4S/j6zp3VN/wRHxEUph7ht7+1wEK6yAC+2aHDOc1ox+hMFYQh2M564aDg/7Sin35AxcP4/FLngAANxb/Lp7K3ux90AeV/CD/fBPQVgje9w36v2VTGkVzTnjkzn2fn53PLOem3dDVOztRwO1fPgCqOo99Fmpy8caUivGGWmpWY/Ulwm/5IvZas3Q5FlDkCSJHb+eQ6GdmruHXP6ngIzH1ZmCb+7RzF6rvum3U2yEhVDcERGLFt9ghwzh6Tw065y5ueVBhmCaoigJaBmjtmgD+kxqmx0+FXkulMh6+r9YLDC5F+DOYa8kgae3aQDpFa5jg9/uZ0DVU28f9OkIO/EKf2TuHV6f575YZcirBAgDBOootcZUqItDE2LYeW+KvZwBpeeMpS0aBMs/Rv9HTuosw0NWeOx0eEmymI4onBGVVSjsYVHUBXPOJ4eQVXAaUJ2It9tK203hzWQrUV1DE6NxqjXaQZtSa1dKeCM4hFssLvZUlTLUKcdIzBtSPoxCwsNl9+eMYhb3lnP533u5Re9SiF5iCZWdCj3N2QOnKQ0NJiVaz8Uy56HorXMnn4Zj32dxwsL8/n31a1rErbE7vKwq7SBcX3jWXegRjsvupoZzy4G0GrkHaq1MXVgC8GewtWKV2Pira3CJu87awifbCjivRsn8djXeXy6oYi4TiiA6nUSV08KMXg+HpgiIHOyv2ZkbB/Fszb2+i7ZvTqpc+fpA1m2u4JFuyq4eHQGvWIt/HPxXib390/YmdUC8S6PNoHSJoWroddIyLnIX+JAcPQ5/x/Kd6+iNymTBi2RZSWn0GBqfwznaIBd30PmRH+tYsFxYdLoXP6y0+eZleAPswcT9PgPUVe2uyMMwW7G3Il9mTvR9/Abc02r9dZhc3hy3k6ubLCTYvGFS9rrtJuIxytjd3lCSnRvLa7jrOFpQQ/jWUNTWLijnK3FddqAU/UIujzdwRBUQqCG9IpWCom/NA4ufIX/Gc+n2ukkMcSD8LjnBrak9zj/zcHZqIT7doDFqOen/zuNSLOBiU/+CEB2UiRD62KYv72MaydnaeUkVIMgyCNo0IUcnH+/rVR7XRqgSHncGXqu8ifLIEnsWF/ETxs2A+AIOA9/2lnGpxuKuOv0AUwK4c3s7RNSabC7u0w1duqARHaU1FNBPEy5BGKtsP0zEl1leGUlDLRlGYdGu/uIxYrU7Ru1CRrl9/QbgscvR1CdNFJD/cJRMLW7PKw/WKMN7tXzt8HhJtWnhDprWCr/XLyXlxft4azKA1wIzB7Ru409Hj/OzOlFdlIk75fHcfHFV2DQ62jarlxbDWNuhXTfvdlghmm/C72TvC+htpDkaDNzhvdibZi1GPNK6nF7ZU4ZkMS6AzWtRL+OBl6vTLPL07oGYF2hkgsd4hivm5LNdVOyAXj2spGcmZPaKvf5hOKMR+HASni6L1z5IQSkJBwpauHrXjEWLhnbm0W7KvjF+D5M6pfIb2YNCspXNRl0Wo6gxdjOPc7rhboipZ9tnYOCo0PWFOWvI2Qv/G0QnHYvzLiv7Xb1h+CzG+HS14UheJwZPTyHxzKuYePBWqLMBu45tfMaEN0NkSN4gjHeVwdrXUGNv56RL9l42e5Kch+bz4xnF7fKN5FlmXqbi8RIE3ERJv45dwwLf3cqf75wOKCUlVAHnJWNTm57d32L0NDjM+jML2skLsKoiC+se11ZGNtbC4npdkZfR5hjw5aL7pccFWS0x0UYOXdUGnkl9Ux86keqfB49LTQ0wCPYLzmS7YfqWknLf7+tlOykSMwGXZuKl8ccrxeWvaC89nl+As+9wBDIlxftpV9SJHecPpBQZATU8onpohp7F4/xGyIp0b58jthMMquWkkA96wqqW11vDY6uMwRb5QhGHX+PoNqXSLOeCJM+rNDQbcV1ON1eTRQrIaAsgGq0j8mM544ZA/hhexnPlY/h0djHmDzg2OUHdobBqdFsKqzlgS+2AWhlLyJNYf7u42/UvAS9462UNfgVYtvj3VVK/uwUn5foaHgEA8uiqPlostyiBmDtQTi0MSxPkyRJzM7pxYCU7hPi22kaSuGjX4K9Vim6XrkHnhkA3xy5kfXrGQP47axBzM5J5ZwRaXz/m2naRFdL0SKTQYfdFUZoaP53ivKuMBy6Lzo9nPd3GDyn/Xbx2XDHOhgw69j0S9AumT6tgUjzCTb+bANhCJ5g5KTHYjHqWLO/mmadMrv6yfLtADwxbwcNdjflDY5WQjBOjxev7JdHP3tEGgNSokmNtmAy6CisbqbR4cak16HXSazeXx00AD/aOYIVDQ5eX7a/leHSYHcRH2FSQsMKfHUVe43QZpZVKf0TBkus4hUMM6E4MLwx1mrkllP7c9fpA3C6vTy3IB9QPENGvYQ+ID7hlP5J1DS72B1QN1KWZVbtq2LmkBSiLYagcgvHleq9sORZKPKHKgd6owM9X2X1dkb1iWtT0THwfAhHnTAchvTyD16177jPeAAm6fK44a11nPH8EpocbrYW1SHLMo129xEJxYDfEFSFZ2p9nvpkX327Y6kaWm93sXJvlfZe7VOkyYClnRpogeSV+IViQLkXqQZg4ITO7TP6k5kQQVSvgdx75x3dLixU5aHzhmEx6thUWAv4PbYR4Q4OxlwNuVcCkBZrxeOV26xLqbK5sJbPNhSTFmvR8oibj8J5sGhnufa6zuYKMPwDzum8r5T/2ad2+ed3S7Z/Ac2Vyuv4bIhJg6aKTteJDcWI3rHcPWsgRr1SDmJIr7ZzKfsnR7G5qLZjsZgdXyv/s6Yecf8ER5Gx17UuK9ESgwmSBirjB8FxRzUETzhHRBsIQ/AEw2TQMbpPPG+uKGCj71n9w4Z8bE4PhdXNWhHk0vrgAYU6UGs5g6jTSfSJt7J6fzVVTU76JUdy22n9qW12BnkcjrZH8Pcfb+axb/K03CMVpzugCHhtoZKTYY3T5MWPt3Jip1Fv5GF6BQMHwb1ireh1EnfNHEhqjJn3Vh9k9b4qHG5vkDcQILeP8jnfbSvRljncXtxemXhfOF+4eV1dgdcr887KAipD5SVGJMJZT0OkP/8ocBIi8HVds6tVGGYgmseOI1PsDESSJH4zayB3nj7Av/CUu+GBchoHnAcoHvUn5+3gvJeW8cWmYqqbnMQdYSFstf9qzbiSWhs6CTITlYfQsTz3H/h8G1f+ZxUHfPXumhxuIkx6dDopWOmzHfZXNhFh0pMW6/+N1DzBwBC3CJOBH35zKl9fEoV574IuPpKuIz3OytWT+rKztIH9lU2d9wjKMix+GnZ+Sy9feYCy+va99G+tLMBq1PPtXdO0QUhnJgTeWXWA91Yf6LDdwh3BhqA6aRTk5a4rBFM0DL8k7M8/oVGLeY+4TBmYmyJh8h1K+GUnFF+PlBlDUthT3si+iibi2ot6qC1U8hpTTmxp+x5P5W4o39F+my/vgA/nHpv+CDpEVR8PVyStuyMMwRMQVcnwn6uUh/VAqYh/Ld5Do8PN+CwlV7CspSHoGyxEhJDuPn1ICpsKa1mSX8Gg1GgSIk14ZYIG7UfbENzuU8E7sHkJlOVpy7OaNjNO3gp7FoKtGuKUMKTZwxRDcFL20S8y3aWo4bz1h9pvFwLVM2XQ61j0++mkx1p4adEeHG5Pq3y47KQoTHodLyzcrf12Wi6hQeer13aMbmIlW1i76Avmff0/vvnyI2UGPfCvbDuM/iXE+4UhAst/qIag2+OlweFuV3Ai0CvaVaGhAL+ZNShYbEanA72Jt2Z5WXf3CCQJ3lutlGb5x097KK61kR5g8BwOcREm+iRYWbNfKRdTXGsnNcZChGoAHENDUM3VXbxLKS3T5HBr3qEIk0EzgtrD4fYSYdIrkxuyDEXrOc24k8m67eS6twadE1a9jH7jm/DVnUftmLqCqb6yFm+tKNDUO8MudyBJsOFtKFhGgtFFjrS/zXIkoBhk87aWcOHoDBIiTZo4VGfOgwe/2Mb9n28LXuhxK7lvvu/euXsxzt2LuTBuL5N123Ec2q4NeDLqNvhznGsPKvfjbuqx7XKcyiQI5gBvXWwfcNtg17zge1qzL9+z0ecxrCvusm6c7lM+trk8JEa1mGxyO5X7KSi/jxCI6f58dadSf3P/EihaF3pSofag4n0WdAtULYIjTf/oLvSMozjJuGlaP55bkM+mKgNY4GbzAnJ/uhBQitJ/t620lSGoPshD1XC6Z84QDlY388P2Ms7M6YXbVyspcB/2Tg46q5ucfLethF+M66MV9m6LQ7U2Kn0FqU/Z/hDYRsEv3gbg7vKHiJQb4V1f46RBACRHm1l+7+lamNwJQ3Sa8n/lS3DRK2FtctXETN5ffTAo/y3CZGBsVgKbC2tJjbG0ClHQ6yTuPWsIj32Tx4aDNZzSP0kzqMxGPVaT4YhCymRZ5rWl+zkzp5fmoQpJ1V749zQmAh+YgN2+v6DOmuDB4IdcoBfwn4v3Emk2kO2rrdieRxD8YgpdFRraJuteR1rxD5Jm/InZg/uQuvsDNnkHsKWiPwBpcUcetjxzSCrvrT7AtuI6Pt1QxJjMOAx6HQaddEzFYlQDZXd5Aw63R1FF9T0ELUalZmUo9dRA3B4vBp3vXnBgObx5Dk8DmIBS4K2AxvcWKgIKE287GofTZZw2KJncPnF8tLaQi8dkEG02tPsdtOI3W0GnJ2XjfL4138+ishEw6LSQTT/fUITd5WXuRCXny6iX0EldMEm39X/whf97NgFv6QG78qZs/Ub2z1Bk8EcvvxXs18CcpxRPoGocnQwkK88e+gX8Pkm+XOUPrwpue/UX0H8GHFgGPz2ueA7HdY3CaHZSJFmJERRU+SOANNb9F9a/CbethFt+1kqwCLox0Wmw/TN4S4ku4dpvWpeKcDWDKbzSU4Kjj6rqfunY7idkdjgIQ/AERKeTyEyIYHe5l3XScEaZSrG69MRHGLkgN4NHvs6jpjn4AdBWaCgoHqZ/zR1LdbOTpCgzS/KVQXmgqmSg92h3WQNbiuq4eExGyPwdm9PDr95cy6bCWrwyHUqAf7PlEBfrlrBJHsAbKfdwz3R/vPyTcY9g1ss8dO4wMFgg3S9RntEFA+1jTvZpShFqly3sTR6/YDgPnTus1QCzd7yV77aWYHO29ggCXDauN0/M28GKPVWc0j/JX3her8Nq1GHvwCNoc3rIL2tgVJ+4VutK6+08MW8Hbyzfz4r7Zra9E7cDBpzBX4py2FAXzeycVG6Ymt2iUetzyOXxopMUARyby8MzP+zS1nUkQT8xO4Gluysx6I+yp2Lo+ZA8GJIG8cLAGKx/mUNh7m+5ds9I9lU2dWiwhsOvpmTz9soCfv3+BgDOH5UOKF7dlmU1jhYVDQ4tZPHdVQc5UNWMQSdpifIxvhDWA9XNmrEeCpdH9v8mlUp+68vJD7OkyMuVEzO5MDfd39gYoXjPY9KOwhF1Lbl94thUWMt7qw8yMKWTgzVf/dcovXItuutK22y69kANmQkRWo6lJEk+Izw8Q7De3oa3sTIfdEa4+nOQJL7Zcoh3Vh7ksQtzeOiL7dw0YBySLzS0YPabDOjXT9luxKVhfW6PYcAsuHszxGf5l/WbATf+pHgFA0nNUf5nTYPzX4I+E7u0KzOGpPDG8gISWxqCyUMgY5wSsRBxgkXLnKyc+7xSd665Gv53NVTtDmEI2iCyczVwBUeP9Dgrq/80k5ToE8wR0QbCEDxByUqKZHd5IztNOYyzNrH6NzORUFzVRr1EdVPwQ18NDf1/9u47PI7qauDw727RqvdiWcVy773b2BgMxvQSeggQIAQSAiTABwQIBEICISEJIYEQOqH33gw21R333mRblq3e65b7/TG7K8lWtVba1e55n0ePtLOzs8caS5oz995zWhsRBCO59Nxd9Eyp85SEt5qVt1jA3pIaTvybsTi+weHiwqlZLRKUvSU1/Oixpd5ppct3l3SYCC7fvIenwh7nuegr+cRxfos1DetNI0mKCoOcaZ36vgQ8k8lYGF5f0fG+3pcowk1HnrfMhAgcLs2+0tpWi6fEhFsZlxnHd7uKuZnhLdpMRIZZOixMcenTy1mZW8bme08i8rB1T3uKjJGA/I5aUKSNgkve4Nm7PqFOO0lW6VyZM6n912AkgmEWEx9cfwxJUWHsKKzmvMeXAnS49u5vF0zgP1/tYlJ2x701uyU6xfgAIgCskWRF2Pn013N5bdV+zpqQ0e23yE6KZNbgZL7dWYzZpLhwmjEaZLO23ieyJ2zKb/l/9ZsdxcRHWhnjbpFw+vj+PPDxVl5btZ9bF45o8zh252HrfU0WKgacyPL9+1iYMgpyDr9B0DfcddooXlm5j3q766hHgSOSjDvLztqyNveprneQcNhNEM9obGfsLa5t480TYNA878Xn16vWsSsqkeTRc1j+touTLQNIcP/+VzkzISmERyaaJ4Fg/D7PnNz2/lHJxhroujJjRMfSvXXDHgtG9eOZ73LJOrxY2uDjjA/Rd0TEGwV9XE7jJnH5/iP3sdc2rVEVASEttntLPwKJrBHso8a67wq/GPkTuGEtseFWYsKtKKVIiAzzFpjw8IzotbZG8HCefSrq7FhMigFJUby15gBV9Xa2HGwqcvLbtzfw69fWeh/XNjr4+Qurqbc7+dfFk5g7LIXckvanDjmcLqbkvwhAfWTGEf3IWhSLCRYn/N5oRtxNSVFG4n6woq7N6lWzByezZl85q/eWNU0N7eQawZW5xkVpaz3i7v+og8XtYKx1eOXHOJ0u742IzvSbA+Mmg9VsYnBKNPGRYYzPjPc+Nzi5/QvR5Ggbd5w6qs3Koj0mPA7qK7CaTfx4+oA2b7p01Xh34Z+M+AjveY6wmo8Y9e8pm/KNn/kLpjStNyqvtTM204grLTacSQMS+HZHcbvHcTQfEcw5Bo69jetPHMmVxwzk7IndT5r9xWxS3hYj/WKP7g6xLSoeAGdd2zeImq/L9L7OYur0iOCGA03HbvGa2TfAJW94H24vqGZoarT3hmBFncM7Nbjd4iSidTsXwZ8Hwmfd/53vMXNwEp/9ei7Tmq+RL90DL13Qq4VrhA+ZzBDbH759GOyH3WBtrIWwdpZgCNENAXWFrZTKUkotVkptUUptUkrd4N6eqJT6XCm1w/25h2/1B76J2fGAMU3zcAmRYUdccHvWCHam3K1n+mhFnR2r2cRfzhtPaU0jT3y92ztd9M1rZwJGbzAw1ozd/Po6thdU8a8fT+LUcekMSo5i44FK7v9wc+tvBOwurmGkNooPFKTMYFtBFbnFTcljo3tkKKjkzPa2H+gOz9TD4urGNhN8T3XV577P9Y4ghVlMHVYNbV60ouyw0eXKeru3FYC1vemX9eWw9QMa1r7m3VTeTjGM5moO68PX/P9AZqC2DHEngr42a7BRTbWq2dS+6YOM6a8OZ8+PCq7PK2dAUiQPnjuOrfc19buaP6JpqtL4zDi2F1Qd0f6lOXvzNYJD5sOxtxBts3DXaaO6XWHV334+dxCnjkvn/GbJcpe4qwnruvI2d6luJREMt5o7vX57fbOKzN5pohV5sOcb74Wn1pqdhdUMS4vGajYRbbNQXtdIea2xvy8LMIWMbONvJYc2tr9fFw1Li2m5NGPfMtj+CZTt8en7iF7k+b9SsrPldnudMV1eiB4QaFfYDuAmrfVIYAbwS6XUKOA24Aut9VDgC/fjkOa5E3hK3F548fwW0wkSoqyUHJYI1tmNqT2HT/FrjSepKK+zYzUrJmTFc/r4/vz3m92sP1CBxaSYmJXAFbMHcrCiHq01j3yxk482HOKmBcM5dpgxXe7SmcaU0I82tL3uZcvBSjJUMVUDT+aUqcaU0EVbCrzPN7bSGqHPK9oO2z7p9mGar0Fr67yOyYhjxqBE8svrvGXmbRZ3E/B2RhKaTwc8fORp5Z5StIZjhiRjd+oWhV1asMXCL1dS0W+Wd1NnRy+qW2nI/vwV07jn9CPXSgYMW2yPJILTByZyzJBkHvzROO+240ekUlFn947W9RSXS7Myt4zJA4x7b+FWM5/9ei7rfreAKTlNoxEDkqJocLgoaGe6sd2lsVpMkL8WFt0DNe2PIPYlA5Ki+NfFk1p8T7okLBoXirqqtqeG1jQe+TPRlRHBdXlN/ze9fWa3fgjPnQYNxg3FXUU1VDc4GO7uYxcXYaWizk55rd297CDQLhn6AFs0jLvAaLfRkzzHjwn8dbWiDfNuh/m/O3J9p71GEkHRYwJqjaDW+iBw0P11lVJqC5ABnAnMc+/2HLAEuNUPIQYMm8XM+9cdQ0b5KvjuZeOO0c4vIH8NZ4VHctvmAWzOr2RUf+MPelW98Ye/RW+12lLY8DpM/7nxePN7UFtC5LhLAThbfc1gUyV8vYHfDRrAJxujeOuHA/SPC8dkUvSPD6e20UllnYOXVhi9qZoXAhmUEs0v5g3mP1/vxunSLUr7s+oZqC0hbnsRWaoQa+pAJg9IID7Syu5mI4INjiAcEVz7P1j2ONxVaFwU71zU+n7DT24qOtCKuMjmiWDbyXL/OKNPZKOzaWpolM1Cdb3D6MvXSvGVjQfaTgS/31VCmMXEnKHG2rWaBgdhh699KdpmNDSe8QsqS40L1ZhwS5ujkGv3l1NVb2eOuxx/dYOD6MP6AM4dlsJc902GgBQeBzs/N0q4+2gtEBjFnP53VctiE54bQct2l7RazMdXthdWUVrTyMxBSd5tw9JijtjPU0Vt66Eq0uMijBsdBS1HQE4t388ntoVQuBe+/2fAVwTtVSYTjaYIplQvabP6ak2D01ugx6OzxWI8hZ/GpZiYWvo+MSvXQuZgnKPOxpw81NvD89NNxk07T4uC9LhwvtpWRGZipE+KH4WsuCyoPABfP4S3ONaA2TBgpu/eo3yfUVBE1pL1XYkDYc5Nxt/O7Z/AlCvAaQeXQxJB0WMCKhFsTimVA0wElgNp7iQRrfVBpVSr5ZOUUlcDVwNkZ2f3UqT+MzYzDjLnwxh31cZVT8HyxznfZOUOnubvi7bzxKVTgDYSwXUvw6e/hcmXg8VmJIXFOwiffDlKwcWWL5ni2g5fQooyc+n0xTz1fR7J7kpJKe7PRdX12J2aS2ZkHzH1ND0+AqdLU1TVQL/mfdWW/weKtjAPcCmFKXsaKMWg5KiWU0Nb6ZHX5039GYw511jLcWA1fHlf6/vlrYKLX2nzMLHNzuXhF4jN9Y+P4FBlvXd6cJjFxGnj0nlsyS5eW7Wfn80ddMRrNh6oJNxqot7uoqzZ6LLTpflk4yFmDkoiwd0MvLrB4f3a65u/wvpXYcoVeNpRpkTbjhipBmM62ln/+g6AbX9YiM1ipqre4bOG8L3GPb2PfUtblpjvAakx4QxOieKvn23nxzMG9Fg/o6W7SgBjTVJ7Jg2IJzEqjDdW5XHcsBR480porG6xzwXA8pTZMOFiY4REBdnPdTeZTYqBroPsLywhq1/yEc+3PjW0c9VjNx+sxOnSXJiwnYurXoSVYM+fztCXY/jLeeM51z3FcNnuEkb0i/H+rv7TOWO54rmVrNtfzuj+se29hWhPpnspwJd/aNqWOgp+sdR371Gx39tnV/RxG980+kFOucL4PZk1o6l9iRA+FpB/iZVS0cCbwI1a607PfdJaP6G1nqK1npKSEsAjBz1lwf1w6sOYXHYuHWNjZW6pd81OZb2dMIup5TTLsr3GXSaz+yL+3Kfhmm9QShFpNXNh452cmfA2nPZ30E5+NTmSnKRIfjHP6JPmmY5Y1+hyF3U5MhlJd1dWOryvIdd8Q8VN+UxwvchdY7+E0WcDkBhlo6y2aS1UUK4RjM+C9HFGI+bJl8OdRUd+DDvZuMPbjmibxTvK2t6U35QYG06XptB9DmwWM6P7xzEyPZYPNhxEt1JcoLCq3jvy03wK6dr9ZRwor+OcSRne5KO6oZVm4rWlkDYGIhK8NyGSo23eojHNrd7bNB1uzb5ywFgP1+N9AH3tmF8bn+vant7nSyeN7kej08VHGw722Hss3VVCVmIEmQnt342ODLMwZ2gyP+wrM859Y7Xx+6jZ/+lzk9+lyOa+QWcyh04j8k46OO23AGzcvddbddnD7jR+x0Yf9nMeYTVT1drP32E86wNHJhg/6z+c9RV/Tf8rAIs2N03F35RfyYRmI8xD02J495fHcOywFKYMCPml+Udv+EK4s7Dp5+Enb8Nxv/Xte5TvlwbyweKcJ+Ea4+YoJjP89CMYdaZ/YxJBK+CusJVSVowk8EWt9VvuzQVKqXT38+lAob/iC2hmi7e89Yn9aimrtfP9rhIcTheVdY4jL6yLtkDCwKYLMrPV+AAiwiw4sGCzRXiPGV+fx5JbjmPhGGMNQrjV+O9T73AaiWArCZvnDnZNY7OLla//AruX8NGWEsobFRfNGOx9KjbCQqW7oIjWOjirhjZnMhvTCA//iM82EsF2KsAppbx929qbGuoZrTvkTQSN7+fF07JYt7+cZ77LPeI1VfUOo20HLZu7f7m1ELNJMW94qrcq5sn/+ObIZLCh0iibrpQ3EUyJsdHocOFsVlCkttHB3e9t8j7eX2qUuG9tjWDAi0o2pnvZjpw62RNuOWk4KTFNfT97wg/7ypmW0/5ooMfYjDgOVtRTnm/0CCQhp8X/6Xptxhps6319KHn2ZYxpeIpr3zvItPsXUV7byPn/Wcr/vbGOg+XGz278YSPvI9Nj2V5Q1aKQUGvW51WQGmMj2Wb8LNeao3hvg/FnNKVZL6zaRscRU0ATo8J47opp/P7MMd3+N4Y0s7Xp52Hw8TB4vu8qfLpcULpLRgSDhdnScnlBK+2jhPCVgLrCVkYJrKeALVrrh5s99R5wmfvry4B3ezu2PiPRWKM3Y9sDxEVYueSp5Yy6+1NeXrGvxVRCCrfCnq8hpl+rh/EkFlE2s/eYfHRLi3081UVrG51tjtx5koUW05e+/yfsXsJ3O4tJjwtvMeUoLsLqTQQdLo1LE3wjgp0xbAHM/KXRW6gds9xT9sztFFDx9B476K746vl+njclizCzifs+3Nxi+icYI8jxkWFYTKpFv7ovtxYxeUACcRFWspqNEn2wLr/lm9ZXeKdKetYY9o83Roc9je09lWY3H6zkPz8xenE98fVu/vb5dspq7EesEQx4Mf2MO7dD5vfK2ymlvOs0ne1U6+yOyjp7i0ShPYNSjJsSls9uNzYc1nPN4dRYArXQTwCIjIqhWkcACpc2irus2FPKa6vymPvQYoAjGtYfMzQZp0uzbHdpu8feXlDFyPRYrNr4HVCnbVS6b9CUN7vxVm93Bd9U/EC1/DGjaJIvfP8P4/PhfQ6FEKIDgfYbfzbwE+B4pdRa98cpwAPAiUqpHcCJ7seiNYmDICEHU30Fp44zRu48IzrNi7B4CzlMvarVw3hGkSJt7lHGxMFHVET0rAf03I1u7QLCM2rYYkrgrblwwu8prGxgQFJkixLYseFWqhocOF26qQF6KF6YDDkBjrvduDPYDs/0zf2ldW3uk+Auze9p/eH5foZbzTx68US0hjX7W05nrKwz1ujZLKYWI4L7Smq8jcSHpEaz8o4TiAozc9tbGzj1kW9YvNU9WN8sESypNhLB9DijiIGnYMyuomo+2nCIG+YP5aTR/UiOtrGjsJpHvtxBRkKEt/qsaNvMQUmU19rZU1zd8c5d5HC6aHS6OtV7FCA70bgxsGTqE3DOf48odNTodBlVQ0XrKvN5JPENhitjSrhnpHdysymZhxfqmTwggXCrie92tl+Btc7uJDrcQpizHqdW1DpN3lF8T89ZbzGpTrQYEj6we4lR5M0XirYZn8dd4JvjCSFCRkDdctdaf4u3pNYReuc2ezAYdyF89SBXzOjPdzuL+fOPxnHBE8taVlz0rD9ro6jFsUOTWbe/HKfTPdIw/iJY/Aej35TVGNkJb9ZvEFpP2Dyjhi0q2ykFZgtltY0MTml5h9vTp6qq3u5NQA4vkBAy1r9u9OKb9rM2d/GMCHr6SrYm0Z3U55UZFx3Nv59zhqYQZjHx1bYijh+RBhgjA541emGHJYKNTpc3uQdjWtknN87lnTUHePOHPK54biVvXTuLifWV3kSwtKaR+Eird6qn56bAoQpjHZSnIuXzV0yj3uFkVHpsp/pdBqQnjjNGBI+/s1febmS6MZq+9VAVQ1J9OyXVsza0s4mgZx3h9nINC84/4nmHU2OVEcG2NVRzmv0Tpp55MucuieCpb41+cL85cRg57iJaiYdNDbVZzEwbmMQ3O9qfHmx3GlPsLa566rBR2mwdtuf3d0jfePOHy9733bEyJhszEnppWroQIniE6BV2kIvPAjRDbBV8dctxsOoZdk5cgv3sp43nv/krrH4OIhIhLKrVQ0wflARf7mS3Z6Rh6IlGbxvtgk/vAGsE4RN/A8CkNXfxlHUflF0JtKxA6bmg944Ibnobvn8UTvkzZbV2EqJarkfxTF8tr7Xjcq+faK8iZlDb8p6RsE/7Gax71agkdphBwPZRLqy7TLALOOc/ENGyqENytA2LSZFXVovFpFpc6EWEmZk7NIUlzdaZ1TQ6cWmjwmzzRNDp0tid+oipulmJkfxq/lAun53D5PsWsXrpEibaa9hdZWaAS1Nc3UBiVBjhYS1vChRVGyOUnqmHo4KhKmHGJGMEvbYU3r6m9X2s4bDwQYjtfr+vIanRmE2KbYeqOG1c+/vuLqqm3u464vvc4HBiNZmOaFlQ2+BJBNv4M+F0wIe/hqoCmH8X4f3G8rO0bcxc8Q8Y/3dIG9Vid4fTJX3o2pMyDNMdB0l3OXlt9VlsraminGgyY2eSER9BRnzrbQHmDEnm/o+2cLCizjvqfjjPWmuLq54abN5RemiWCNplRLDX/fAC7PoCTvkrRCXBd/+A3O/af40lDC74n/H1d/+Akl1wxiM9H6sQIihJIhiMcuZA9kyIzTAeN1RhqSvB4rmzX19hJAtjftTmITzT/7x3oPtPMD4A6srBUe8d7bPUlzLTtJnSA29izOxt4k0EPf3jdn0JB1ahbXGU1xYQH9nyDrfnIvWTTYc4ZohRQj2qnYqYQe1HTzZVdG2shuqCVndr8R3U2lj/CZA6wnjeYmJIajRbD1URE25pMRUXYHBKFF/vKEJrjVLKu0YzNsKKzWL2rulr9I4YtH6hGBNuZWxmHOXr3wQr3Lo6jnVrP6HR4WLGoMQWa0oBiquMi9HkTq5B6xNONSoxUlPc+vlyOYxp2UNPgok/7vbbhVvNDEyOYuuhqg73Pf6vXwGQ+8Cp3m3/XrKTP3+yjRtPGMqNJ7QsT17rLvDU5ohgyU744Xmj4JTTOJfTBvfDsqqM3WUNDEpruXujU2ORRLBTMiyVYC0kw7UGGvcAbTeqP2ao8Xvy6+1FXDC19bZJnmJeeuB8nlxtp7LGGI2Pj7RS454i6vk5lxHBXlRXatwcHXUWjD4L6ivb/D3vZWnWhqm+EmpLejJCIUSQC9Er7CCXMACu+KTp8ezrjQ+PE+/t8BBxkVaev2Kad+pZC2f9C4Bw9wXE09l/4sSS65hUd2QZe8/Fv7fgSH0FJA+nOnoADtc24g+rUDe6fxzzhqfwzy92MCzNmDba56pH+oqlWYI09UrjozOeXgjJQ+HCF72bRvWPZeuhKqJauahPiw2n0eGivNZOQlSYd7QgMSrMGBF0rx1q7MTUsd+fMZoP35/B23URlOkpDMC4UP3JjAHegiZfbStiXGY8RdUN2CwmYoLx/EYlw8+/OnK7oxH+kGr0/PKR4f1i+HD9QTbnV7Y5qrqjoClR9CT8H284yJ8/MdYWLd5W1EoiaCQGEW0lgp5/w9n/MaamAROP/xHTl8Vz1Z5wbh/RcneHy4XVLFNDO2Qyw8+/IjlvHTw5Fyr2QebkNncf0S+GAUmR3PrmBo4ZmtLqyKHdqbGaTaiRp/Efp5UT3Ddh0mLC2V9mVOqVqaF+MOky+Px3xs+S1jD/LuOjs7qyrxBCtEJ+44s2zR2W0m7FQM9oX2WdnQM6mfjKrdBY22Ifq1lhUs1GBN1rx4qqjDvSSdFHHv9Xxw+lptHJG6vzgBBeI3i0Tnv4iB5Vo9wJfWvfyzR3r0dPewlPD7PkaBth5qapoZ4Rg/aquI7JiOPWa67i7F//k0W/OZbPf3Msd58+mkEp0QxNi+GEkak8+e0equrtFFc1kBxtO2KEMqhZwiC2/xGFl7rj3EmZAKza23blyE83HfJ+XVjVwMGKOm57awPjs+L5yYwBbD1YeUQ/SU8i2OaI4I7Pjc/NStYnR9uYPyKVF5buZV9Jy98FDncyIjrHljTA+GL7Z+3up5Ti53ONFjxLtrXeWckzImjb+zUx1FLk/hlPiwunttGJy6W9U7b77PrcvigiHsJiYO1L8KcsY4RdCCF6kfxVFkfNbFKEmU1U1tvZqd3TUFc93WIfpRQRVnPTGsH6CgiPZa+7X9yApCMbVU/KjicnKZKPNhgXr5IIdlHOMUdUbBztnuob2cr3MjXWSMY9ybnnIjEl2kaYxeQdKej0iEHVIahpfbrSDfOHUVFn5++LdlBU3dDp1gRB5Yb1sPBPPjvcvOEp2Cwmbw/G1ngKBQEcKK/j9+9txu508fcLJpCZEEGDw+VN/Dyapoa28fPn+VmPbtmC5u4zRmNWit+8trZFW4tGpwuLjAh2XkS88XndSx22kbloWhbxkVbufGej94aNh9aaRqeLFHs+5hfP5pWwP5Dn/r+S4/79W+9wyoigv0TEQ+FmYx1+TPfXDQshRFfIb3zRLbERFvaW1PKC80RjQ+nuI/aJCDM3VQ1tMEYEc92tLAYkHpkIKqX4+bFNTeZDtljM0XI0wHNnGIUI3DwjgtGtfC89U289a4U8U0OTY8KwtUgE3WuIOhoxePvn8PKFrT41NjOOS2cO4Klv97B6bxnJrYwIBz2zxbgh0uCblg9KKTISIvjvN3uOSAI8PEk+GOd566FKjh+RysDkKOLdfSY9/R492h0RrCsHlx1m/QpMLf+MZMRH8PszR7NqbxlvrzkAgMulaXS4sMmIYNfMc4/sVx1qdzelFLMHJ6M17CqsafGc3V35uS46C27N5XLuocTdN3RAklEsrKbB2VQspo01wKKHnHCP8Xn8hUbbICGE6EXyV1l0y9yhKewrrcWFiZqEUa2ufYq2WZouMusrcIbF8L9le0mPC29zROiiadnetWMx4dZW9xFtsNggfy0cXOfdFBdpZUBSJPERYUfs7kkEPX3FvtxaQEZ8BJFhLauGdnrEYNavYM5NbT59x6kjGZcZR22jMzRHBCvy4IFs2PiGzw45NsMY8d2UX9nq88XNRl9rGhxUNziJcVfo9RRsKm/WUgCaEkNPotiC5+c8Y0qr73f2xAz6x4XzmXtKqmdGgIzud1H/icbnTqwpvXaecfNsb8nhiaDxcxtmMUFEAqMHZnif86zRrm10NLvRI5cFvcoze2Pze0ZrJSGE6EXyV1l0y6whybzlvutvj8mEvd83PfnYMZA9nbGZl7BiTwn6oaGomiK2lJnYVVTDk5dOaXd92He3H8/q3LLQLRbTHfHZsPrZpmTDZOH5uQ+jhkw/YlfPiI9nBGjjgUounm5UH7RZTJQclgi2WCP4/o2w+Z2mx+FxcENTAtoam8XMvy6exNn//o7hadHt7huUovsZBZsypxrJ+vNngjUKLv8AEgc27edohCePNxLHw/3oKaNf4fbP4O2ruen013h3LewrqWVSdsIRuxdVNZCTFElRVQM1DU5qGhzearyeZODwRNC7jjfKZrSKeOoEI+6Bc2G7uxhVs/WBzSmlmD0kmUVbCtBaU+OZZio/y12TOMhIBrXLmB760GA45jdG8a/KfHhslnfX0RrW2OxEvGuGj0yQOgou/9B7Iyetdju89w8ePeXXjNlmtIvxzLaobWyaGhouI4K9K879M7R7iV/DEEKEJvmrLLplQlac92vHrBugckHTkyNOgcTBTKtL5P11+VRNP4PIMBP3rBnDtJxE5o9MbffYseFWjhvR/j6iDfN/Bzs/b3q86mkGVK6GpDOO2DWq2Yig1po6u9NbXdRYI2gkiE1Tx5olgnu+gshkGHyc8djaeh+zw2UlRrL09vmhWTzEbIHZNxhfl+83WkmsfwUOrG6ZCJbvhUMbjOliiS37c3rXEsX2h7HnkZaWBhRx46trGZMR26K5fKPDRUFVA8cOT2FlbhlV9XbjHLvPe4K7RUx5XcupoUVVDSREWo3Ev6HGSEQOrjMSwSEngtMO6RPa/GdOzE7g9dV5/LCvnCT3e7RWtVa0I3kIXL3E+NrlgrHnGQkeGD9rY8/z7qqAj1fsY1B8FDOiCmDvt1Bfjt1p/Ewm1ufB2ueInn4NX90yj3q7iwJ3gajaRoe3oFe4jAj2Lls0nPlvGDCr432FEMLHJBEU3TIouWlEJ3HYbDAd0/Sku3LldHfp+k+ybmRkv1hWffMt/zojJ7SqRfa2YQuMD48dn7U5vcxmMWE2KWoaHE2jAu4L9vS4CBZtLqSgst7bRqLFGqL6CqMH1ikPdTnEkEwCDxefZfQeXP8KlO9r+Zzn8Zyb2r5I7DcGTnkI247PeT3jFc47cAEfbzjEr+Y3JYJ7S2pwujTjMuN5ecV+Ct0jfZ6R9n5x4YRZTLy6cj/zhqfy2JKdpMaE897afNLj3T3LbDFwzTdN79u8r2gbjh+RitWsuPCJpbx41QygncIzomMmU8ufs4iEI37untn6FYPiopgx+YCRCJbvp8E2BACbNpI+wiIZkGCsDfQUBMorq6Oyvql/qOhlPugpKoQQR0OuxES3mEyq1a+bG5ISTUKklRV7SilxNzLuFxeCa8P8KS7LGH1qhVKKqDAztY3OphLy7mTvJzMG0Oh08dYPB2iwH9ZwWmt3O5DWe9eJTrJFQ3g8rHjC+J56rH7W+BzX+vTLFoq2MbXkPRbG7mNbs56BdqeL191tWMb0j8OkoKDS+Bn0jAjGhlu594zRfLOjmDF3f8q/Fu/i7vc2UdXg8BYZOhr94sL53WmjsDs1D3++zf2eMiLYk9Jiw43zO+REuDUX+o1tuoGj3QWDrE0FusZmxJGdGMnT3+6hwj01OFbWZAshRMiQRFB024o75vPtrce1+bzJpJiak8jSXSWU1nialUsi2KvO+S/85K02n462WahucFDvnv7paSKekxzFtJxEnvp2D+V1xoWid42gvc6oHBke1+oxRRfE9IOqgy1HbceeBzlzjOmfHcky1n5eHPY12w41JYKPL9nFE1/vZsGoNEb3jyUqzEJhlTEy1Dwpu3BaNte4K/XmJEWy4rfzWXr78fz1/AnGDgWb4dGpkPttl/5Z5042kthlu40eh232JBQ+kRprY+3+cnaWu4wRQ+3yFovxjgg2SwQtZhPXzhvMurwKPlh/kAirud0+oUIIIYKL/MYX3ZYaE05mwpFtIJo7fkQqB8rr+H6X0V8uMerI6pWiB8WmG9P7Dmsa7hFls3jXjgFENGsRce1xgymubuDvn28HmlWR9DRFt8mIYLd5+go2nx466gyjgIypE8lT1lToP4kscym7i2u86zr3lNTQPy6c//xkMiaTIjbCyrr95QBHFGG67eQR/HDXibx73TGkxoaTHheB2TPKX18OxduNdYFdEBFm5r+XNlUWlamhPWvBqDQA3luXj3PxA/BANo3un+kwlycRbLmO90eTMsmIj2BbQRWxEXJ+hBAilEgiKHrF/JFpKAVvrM7DYlLEhssFR6/SGv4xHj6/y3hccQDK9noTwwFJkewqqmm1YMTMQUkA5FcYF5JJntHcsCg45S9S5MAX4owqrRRsMj5XHYJtH0NDVduvOVx8FimOfLJ1Pnu2rYPinTQ21BMdbvGux714ejaV9ca6sEEpR1ZsTYwKI661NWJ2d7N6a/s3fFozv1nBp/COelCKbjlpdD8AHvliB4/tSoIZv8BeV8lAdZCIhkIw2464sRBmMfGL44zRYM+0YSGEEKFBEkHRK1JibEzMigcgNcYmhWJ6m1Iw+pymvm/vXw//GAdb3gNgVP84dhdVU+7uHdf8gj3cauav5433PvaOEoXHwrSfQerI3vk3BLO4TDBZmhqH56+Bly+Ekp2dP0biIKJr9rPYdhMjXj8OHpvJvOKXW4zCXXPsYO/0zJykLiR1je5EMKzriaDJpFh88zwumpZNVkLnqsqKo9P89+pfdvbnq8yr0UXbWGy7ifSdr0JEfKuvO889hVd+LQshRGiRYRnRa+aPTOOHfeXeipSil51wd9PXs66HnV8Ya79Gncno/rG4NKxxTxuMOGzk5pSx6dz0+mH9AZf+21gj6GmFII6eNRwu/wiiko3HWdPh4tfabc9whNk3QNoY/vrpVsLDTPzytNm88qmVyGZrvswmxdLb5lPd6OjazRh7nTvOrieCAAOTo/jTOWOP6rWia968dib7Smv59avr+N27G7ltbn+ub/wld5w6krSBrZ+DMIuJz389VxJBIYQIMTIiKHrNeVMyAThxZJqfIxEMOtboRecuTjK6v7HOb/XeMuDIKXwRYWYWjErzNpoHYP9y2Pt978QbCrKnQ5IxRY/IRBh2UteGaCISYOy5HMg+jeerp8GgY6lpdB6xLi8u0kpGfBdH5uw1xudO9okU/jN5QCJnT8zkphOHsbeklv+squA912xM485vt+XH0LSYFv0nhRBCBD9JBEWvSY0JZ9WdJ3DzScP9HYoAo4fd2hehrpyM+AhSY2x8ubUQaH0t1xOXTuGPZzcbUTj/Obj41d6KVnTSsLQYCiobqPrhTd4tO5tJjjXdP+iKJ43PRzkiKHrfOZONG29r3aP8MbIuWwghxGEkERS9KjnaJo3EA0XWNOPzgVUopZg/sqmoR6sFQ0SfMG1gIgA/1CTztukEaiMzun/Q2mLjs7QK6TMy4iP47SkjvI+lUI8QQojDyRW5EKFq+jXGZ3ej+YlZCd6nkqI70d7j1UtgzYs9EZnohnEZcUTbLLy2L4Z7HZdTF5PT/YM66mHaz6WaSB+zYFQ/f4cghBAigMlcESFCVUy6Ualy7/cw5aeMyYjjGNMGrDiwmk819tn6kdFD7nBaw5YPIHVUr4YsOmYxm5iSk8CHGw4yROWx4ODHsHZ6GzvbYMRpxuf2nPFPiMvyfbCiR+UkR3H6+P7UNTr8HYoQQogAJImgEKHKZDZaP7gLvgxNi+Zn5g+JVbXAncY+i++Hgo1tHyN+QM/HKbrszlNHsmRbEWeav2f6gXfgwLNt73zuMzDmnPYPOOpMX4YnetE/L5ro7xCEEEIEKEkEhQhlV3wGtSUAWM0mbrZfg1lplnme//Hr4Gxs/bUmC8T6YP2Z8DlP9ceHHecy7ZwbmT4w4cidHA3w7GlNrSHa4rRD7reQMgJi03sgWiGEEEL4gySCQoSysMgWTcI/uuPclsvAYvv3fkzCJ4akRrOzsJqkzCGQ0EZbgFt2dHyg2lJ44Sw49WGYeqVPYxRCCCGE/0giKITwSonpYK2Y6DOeumwKLy7fx8Dk6LZ3stdD2R6Iz4awqNb3iYiHn34MCTk9EaYQQggh/CTgqoYqpZ5WShUqpTY223aPUuqAUmqt++MUf8YohBCBbkBSFL89ZSRmUzuVPvcthX/PgAM/tL2PxQYDZsnosBBCCBFkAi4RBJ4FFray/W9a6wnuj496OSYhhAg+6ePhR09ByvC296kuhHWvQlVB78UlhBBCiB4XcFNDtdZfK6Vy/B2HEEIEvchEGHsurH0Z9i9vfZ+qQ7D9Y7j8Q4hJ6934hBBCCNFjAi4RbMd1SqlLgVXATVrrssN3UEpdDVwNkJ2d3cvhCSFEH3VwHWz9sO3nEwdD0pDei0cIIYQQPU5prf0dwxHcI4IfaK3HuB+nAcWABu4D0rXWV7R3jClTpuhVq1b1dKhCCCGEEEIIEZCUUqu11lNaey4Q1wgeQWtdoLV2aq1dwH+Baf6OSQghhBBCCCH6qj6RCCqlmncxPhvY2Na+QgghhBBCCCHaF3BrBJVSLwPzgGSlVB5wNzBPKTUBY2poLvBzf8UnhBBCCCGEEH1dwCWCWuuLWtn8VK8HIoQQQgghhBBBqk9MDRVCCCGEEEII4TsBWTXUF5RSRcBef8fRC5IxKqqK4CPnNnjJuQ1Ocl6Dl5zb4CXnNjjJeW0yQGud0toTQZsIhgql1Kq2SsKKvk3ObfCScxuc5LwGLzm3wUvObXCS89o5MjVUCCGEEEIIIUKMJIJCCCGEEEIIEWIkEez7nvB3AKLHyLkNXnJug5Oc1+Al5zZ4ybkNTnJeO0HWCAohhBBCCCFEiJERQSGEEEIIIYQIMZII+phSKksptVgptUUptUkpdYN7e6JS6nOl1A735wT39iT3/tVKqUebHSdGKbW22UexUurvbbznZKXUBqXUTqXUI0op5d7+t2av366UKm/j9XOVUj8opRxKqXNbeT5WKXWgeXyhKNjOrVLK2ewY7/nmu9T3BOF5zVZKfeb+92xWSuX45BvVBwXTuVVKHXdYDPVKqbN89s3qQ4LpvLqf+7P737Gl+bFDURCe2weVUhvdHxf45rvUN/XRc/sbZfwdXa+U+kIpNaDZc5e5Y96hlLrMd9+pXqa1lg8ffgDpwCT31zHAdmAU8GfgNvf224AH3V9HAccA1wCPtnPc1cDcNp5bAcwEFPAxcHIr+/wKeLqN1+cA44DngXNbef4fwEvtxRcKH8F2boFqf39PA+EjCM/rEuBE99fRQKS/v8dybn1zbpvtkwiUhuq5DabzCswCvgPM7o+lwDx/f4/l3Prk3J4KfA5Y3HGuAmL9/T2Wc9ulc3uc5/cscC3wqvvrRGC3+3OC++sEf3+Pj+ZDRgR9TGt9UGv9g/vrKmALkAGcCTzn3u054Cz3PjVa62+B+raOqZQaCqQC37TyXDrGL5al2vjf+bzn2Ie5CHi5jZhztdbrAVcrx58MpAGftRVfqAi2cysMwXRelVKjAIvW+nP3ftVa69q24gx2wXRuD3Mu8HGontsgO68aCAfCABtgBQraijPYBdm5HQV8pbV2aK1rgHXAwrbiDHZ99NwubvZ7dhmQ6f76JOBzrXWp1roMI+Hvk+dWEsEepIwpWROB5UCa1vogGD8MGP9xO+sijLsQrVX2yQDymj3Oc29rHscAYCDwZRfeE6WUCfgrcEtXXhcK+vq5dQtXSq1SSi1TITrF7HBBcF6HAeVKqbeUUmuUUg8ppcxdPEZQCoJz29yFtHHhEmr6+nnVWi8FFgMH3R+faq23dOUYwaqvn1uMxO9kpVSkUioZY3Qpq4vHCEp99NxeiTGq6Dn2/vaO3VdY/B1AsFJKRQNvAjdqrSu7OeX/QuAnbb1VK9sO/4G4EHhDa+3s4vv+AvhIa70/hJcsHCFIzi1AttY6Xyk1CPhSKbVBa73rKI4TFILkvFqAORh/YPcBrwKXA0918ThBJUjOrfEGxl3uscCnR/P6YBIM51UpNQQYSdNIw+dKqbla66+7cpxgEwznVmv9mVJqKvA9UIQx7dfRlWMEo754bpVSlwBTgGO7cOw+QUYEe4BSyorxn/xFrfVb7s0F7j/gnj/khZ081niMqV6r3Y/NzRa43otxFyKz2UsygfzDDtPi7rFS6n7PMTp4+5nAdUqpXOAvwKVKqQc6E3ewCqJzi9Y63/15N8a6somdiTsYBdF5zQPWaK13a60dwDvApM7EHayC6Nx6nA+8rbW2d3L/oBRE5/VsYJl7Gnc1xojDjM7EHayC6Nyitb5faz1Ba30iRvKwozNxB6u+eG6VUicAdwBnaK0b3JvzaDm629qx+wRJBH1MGbc2ngK2aK0fbvbUe4CnqtBlwLudPGSLuctaa6f7l8oErfXv3MPoVUqpGe73vrT5sZVSwzEWsi5tdow7PMdo74211j/WWmdrrXOAm4Hntda3dTLuoBNM51YplaCUsrm/TgZmA5s7GXdQCabzCqwEEpRSKe7HxxOi5xWC7ty2GkMoCrLzug84VillcV8kH4uxdiokBdO5dScmSe6vx2EUlAnZegt98dwqpSYC/8FIApsnqJ8CC9zXUgnAAvrqLA0dABVrgukDo8KRBtYDa90fpwBJwBcYd4O+ABKbvSYXowJcNcZdhlHNntsNjOjgPacAG4FdwKOAavbcPcADHbx+qvt9a4ASYFMr+1yOVA0NmnOLUaluA8Yahg3Alf7+/sp57f55dT93ovvfsgF4Fgjz9/dYzq3Pzm0OcAAw+ft7K+fVZ7+LzRgXmlswbto87O/vr5xbn53bcPc53YxRaGSCv7+/cm67fG4XYRRv8sT7XrPnrgB2uj9+6u/v79F+KPc/RgghhAhK7untV2mtFzXbdrl72zE+OL4Ghmqtd7bxvM/eq7uxCCGEEB4yNVQIIYQQQgghQowkgkIIIUKeUqq/UupNpVSRUmqPUur6Zs9NU0otVUqVK6UOKqUeVUqFuZ/zVHdcp5SqVkpd0In3ylVK3ayUWq+UqlBKvaqUCnc/N08plaeU+q1Sqti974+bvXaJUuqqZo8vV0p9e7SxCCGECF2SCAohhAhpyuiZ+j7GmtkMYD5wo1LqJPcuTuDXQDJGNeX5GO110FrPde8zXmsdrbV+tZNvez5GA+KBGEUkLm/2XD/3e2VgFE94wl3YoF3diEUIIUQIkkRQCCFEKHjHPaJXrpQqB/7d7LmpQIrW+l6tdaM2Wqr8F6O0OFrr1VrrZVprh9Y6F6O4x7F0zyNa63ytdSlGEjrhsOfv0lo3aK2/Aj7ESByFEEIIn5GG8kIIIULBWa0Vi3E/HAD0dyeIHmbgG/e+w4CHMSrQRWL87VzdzXgONfu6Fujf7HGZ1rqm2eO9hz0vhBBCdJuMCAohhAh1+4E9Wuv4Zh8xWutT3M8/BmzFqMYZC/wWozl0T0lQSkU1e5xNU7PiGoxk1KNfD8YhhBAiiEkiKIQQItStACqVUrcqpSLcjaDHKKWmup+PASqBaqXUCODaw15fAAzycUy/V0qFKaXmAKcBr7u3rwXOUUpFKqWGAFf2QixCCCGCkCSCQgghQprW2gmcjrFObw9QDDwJxLl3uRm4GKjCWDt4eBGWe4Dn3OsPfbGW7xBQhjEK+CJwjdZ6q/u5vwGNGAnfc+7nezIWIYQQQUoaygshhBABQik1D/if1jrTz6EIIYQIcjIiKIQQQgghhBAhRhJBIYQQQgghhAgxMjVUCCGEEEIIIUKMjAgKIYQQQgghRIiRRFAIIYQQQgghQozF3wH0lOTkZJ2Tk+PvMIQQQgghhBDCL1avXl2stU5p7bmgTQRzcnJYtWqVv8MQQgghhBBCCL9QSu1t6zmZGiqEEEIIIYQQIUYSQSGEEEIIIYQIMZIICiGEEEIIIUSICdo1gkIIESjqGp1UNzi8jxOjwjCblB8jEiJ0ldU08uYPedidmjlDkxmTEefvkIQQwi+6nQgqpcKBrwGb+3hvaK3vVkolAq8COUAucL7Wusz9mtuBKwEncL3W+lP39snAs0AE8BFwg9ZaK6VswPPAZKAEuEBrndvd2IUQgcnhdLG9oJqYcAtZiZH+Dqdb6u1Opv9xEZX1TYnguZMz+ct54/0YlRCh64MNB/nDh1sAWLEnhWd+Os3PEQUup0tz0t+/pqiqgTevncWQ1Gh/hySE8CFfjAg2AMdrrauVUlbgW6XUx8A5wBda6weUUrcBtwG3KqVGARcCo4H+wCKl1DCttRN4DLgaWIaRCC4EPsZIGsu01kOUUhcCDwIX+CB20Q6tNQWVDUTazMSGW/0dzlGprLezfHcpWmsARvSLJTupbycWoeCfX+7kH1/sAOD7246nf3yEnyM6evV2J5X1Dk4dm86MwUk88fUuCirr/R2WECHL6XQBMCApEodL+zma7rM7XVz30g8UVjVgMSnuPHUU47PifXbsnYXVAOwvrZVEUIgg0+1EUBtX2NXuh1b3hwbOBOa5tz8HLAFudW9/RWvdAOxRSu0EpimlcoFYrfVSAKXU88BZGIngmcA97mO9ATyqlFLac3UvesQjX+zkb4u2E2Y2sfT240mKtvk7pC57fMku/r1kl/fx+Kx43v3lbD9GJDqjos7u/bqq2UhaXzYlJ4GfzBjA2z/k+TsUIQRgUsExPbukupFPNxUwKDmK3cU1LN9T4rNEsKsaHE7OfPQ7782uCKuZF66azuAUSSB95fudxWwrqAJg/og0ubktusUnxWKUUmal1FqgEPhca70cSNNaHwRwf051754B7G/28jz3tgz314dvb/EarbUDqACSWonjaqXUKqXUqqKiIl/803rMuv3lTP/jIqb/cRHr88r9HU6riqqNX+SNTleLC/O+pM7uJDLMzAe/OoZZg5Oob3T6OyQhQlJ5bSP7S2v9HYYQQevi6dn+DoGqegdbD1UxNC2GWYOTya+oJ7e4xt9hBZXrX1nL79/fzO/f38yji3f4O5w+we50sXpvGStzS1m9t4xGh8vfIQUMnxSLcU/rnKCUigfeVkqNaWf31m7B6Xa2t/eaw+N4AngCYMqUKQE9WrijsJqCygYAdhZWMy4zvsXzDQ4nm/IrvVMaByRFkdwHR+QCgdmkGJMRR2y4lZLqRn+HI0RImvXAl9Q2Onn+imnMHZbi73CEED3o9HHpjM+K58MNB/0dStBxuFxcODWLb3YU43AG9KVuwHhx2V7ueX+z9/Gdp47kqjmD/BhR4PBp1VCtdblSagnG2r4CpVS61vqgUiodY7QQjJG+rGYvywTy3dszW9ne/DV5SikLEAeU+jL2QPOfr3bz8OfbvY9lSqMQojc1Olx8ubWQBocxim4xmZg3PIUo29H92ah1j8aX1crNGNF79pXUUlnfNKPFajYRBMsCRYizWUyYpAFcp9W4//48c/lUfvrsyhZVvEOdL6qGpgB2dxIYAZyAUczlPeAy4AH353fdL3kPeEkp9TBGsZihwAqttVMpVaWUmgEsBy4F/tnsNZcBS4FzgS+DfX1gdYODMLOJJy+bwqOLd1JS3eDvkEQP2l9aS4N7qkJSVBgJUWF+jefLrQUUVTVgNplYMDqtzxYLEkdvybZCrvnf6hbb7jl9FJfPHuiniITomn0ltcx9aPER28dn9k67iLpGJ2aTIszSt67YS2sa+eeXO6i3u3C6ZAqdCB6zhhyxqizk+WJEMB14Tillxlhz+JrW+gOl1FLgNaXUlcA+4DwArfUmpdRrwGbAAfzSPbUU4Fqa2kd87P4AeAp4wV1YphSj6mjQM5sUc4el8Oqq/ZIIBrHFWwv56bMrvY9jwi2s/d0Cv/WZK65u4IpnV3kf/75hNJfNyvFLLMJ/PDcmnrl8KikxNk7757febaLv0Fqzo7DaW3QpPtLa7cIdNQ2OFqNskWEW4iIC72aRJ8ZfzBvMhKx4qhsc/Oa1dS1auXTG5vxKtruLc5hMinnDUzq8ObbxQAWn/fNbv/8+PxrLdpfwzHe5JERasZgDO4nVWrO3pBan1iREhpHo55uoQvQ1vqgauh6Y2Mr2EmB+G6+5H7i/le2rgCPWF2qt63EnkkIEG89Uud+dNorV+8r4cP1BXFpjbnVpbM+zu0urX3/8EB75cqcsqg5xWYkRfbp9h7/sLqpmy8GqFtvGZsT1eoW/HYXVLPjb1y22Lb39eNLjju6c2p0uZj/4JeW1TYmgxaT4/rbjSY0N71asPWVCVjwLRvejrObopiVf++Jq9pY0FTq67eQRXHPs4Fb3ray3s6eohpW5xuqVqnoHDpcLs8l8VO/tD575Vq/+fCbD0mJYu7+cs/71nX+DasP/lu/jrnc2AhBuNbHmrgVEhPWd77UQ/ubTNYJCiKM3f2QqtY0OPlwfGIvrYwPwDr8QfcWNr65lfV5Fi23TBiby2s9n9mocnpHAmxcMo7bRyb+X7KKmG+tjHE5Nea2dk8f049hhKaw/UMFLy/dRXmcP2ESwuxrsLk4Z24+bFgxn/l+/osHe9s2xG15ew+JtgVG1XGtNbaPzqNf19gXl7uT+7IkZvL3mAPV2pySCQnRB8P52EC0UVtXz90U7vH/AcpIi+dX8oX6OKvjUNjq48IlllFQ3YjEr/nreeKbkJPo7LCFEL6u3OzlmSDK/O30UAHe8vYEGu//a14zNjKfSh22AxmfFc+G0bGLWH+Sl5ft8dlx/yiur5bzHl7YoJDE2w1hPGGOzMjApqsNjVNU7GJkeyy0nDeOFpXv9mhTe8sZ63lidFxIVEkf3j+XtNQf8HUan1DY6WrTkSoqy9bl1pMHoQHkd/168E4dTkxAVxi0nDe9TU7qPliSCIeL7nSW8tHwfabE2ahudVNU7uPrYQdgscufMl4qqGlifV8H4zDjW5VWw8UBFrySCLpfmptfXcaCsDgCb1cSfzhlLZoI0mhXCX2LCLQxLiwEgymah0SEVUwNZXlkdByvqWTi6H+nx4azMLeWHfWXER3Rt3VlilJXjR6Sx5WCVXxNBT99O6d8ZWOY9tITCqqa6D8cNT+GZn07zY0R9l8ulqW50+KSg3ZdbC3lx+T5ibBaqGhxcMDWLgckd3/zp6+QWRIh55eqZba5tEL5zxoSMXn2/qgYHb685QGFVPQ0OJ9/sKGbDYdPShBBCdOzSWQO4+/TRzB6c7O9QhB/8/IVVjPrdJy0+/vTxFp8dv6i6geNHpPLAOWMZ0S+mRVIouub6V9Yw7p7PeOa7PV163YfrD/LJxsOW4bgXx9544jD3w6BuTuAlI4JCBJGfzMxh9pAkFv79myOeK6yq52+f7+DlFftQCv509lgunJbthyhFKHvrhwOs22/cpDhzQn/GZ8X7NyDRaav3lnGgvM7fYQjRo9bnVZCZEMGxw1IAeG9dPhsP+PbG6pj+sVw4LZtFWwo4WFHv02OHEs/vI89sqM44aXQaS7YV8b9l+1g4Jr2nQuszJBEUIkR8vrmAl1cYa3m0hm0FVR28QgSS4uoG/rV4Jw0OFzHhFn5z4rA+ObX7h71l/LC3jOpGB+W1jTx8wQR/h9TnvL0mj482HCLMbOK2k0eQldjzU8DLaxv50WPfex8HYrsIIXxlQlY8d5xqrO9ds6/cv8GINnV1BZ9C8Z+fTGnxuyzUSSIoRIhwuWc5rLzjBI7/6xK/xuIvjQ4Xn2w6RGqMjRmD+lZj2e92FvPMd7lEhZmpaXRy6th0xmXG+zusTrOaFT+bM4j/WzgCgGMfWowrRKbe+NrLy/ezZn8Zdqdm7rBkLkjs+ZF9TxuZ644bwhkT+jOkm70IhX/YnS5Kqo21qkpBaowNpYK/IIYQonWSCAohQsa3O4u4/uU1AOz50yl+uwBqdLha9DSLCbd02LjZkzP9ZsFw7vtgM5JDhbaM+AhyS3q/CEh6fLi3AI7oe65+flWLAjY3LxjGdcdLBXEhQpUkgkL0cY8t2cVz3+f6O4yA8/KKfTz7XS4/mzuIcydnAk2jGv62fE8pE+/73Pt49pAkXrxqhh8jEkIEk30ltSzfU3rE9sKqBkb0i+GyWTnc98FmKVQiQpLWmo35FTQ4nH1yiYUvSdVQIfq45XtKaHA4uWhaNieOTPN3OAHjq21FbCuo4uvtgdHc+XAzByVxz+mjGJMRy8FyKRYghPCdZ75vu4piZkIEF03LxtZLvet2F9XwwMdb+dPHW3ht5f5eeU8h2hNls1Bea+ffi3f5OxS/kxFBIYJAdmIkfzpnLABbD1X6ORr/23KwkoOVgZ1cje4fy+WzB7J6XzmbfFyRTggR2lwuTbTNEhANsV9euY/dRTWYTQqX1pw3JVPWJQq/+uv545l2/xdUNzj8HYrfyYigECLoXPXcKtbtL/d3GCKA7CupZdHmAhZtLqCwKrBvEgjhCxazIhDyLa0h2mbhV8cPkbXNIiCkxoQTbZOxMPBBIqiUylJKLVZKbVFKbVJK3eDenqiU+lwptcP9OaHZa25XSu1USm1TSp3UbPtkpdQG93OPKPctI6WUTSn1qnv7cqVUTnfjFkIErwaHk1PHpZMaY/N3KCJAXPviaq56fhVXPb+K372zyd/hCCGEEH7ni3TYAdyktf5BKRUDrFZKfQ5cDnyhtX5AKXUbcBtwq1JqFHAhMBroDyxSSg3TWjuBx4CrgWXAR8BC4GPgSqBMaz1EKXUh8CBwgQ9iFwHM5dJc9N9l7C9tqoynlOKWk4Zz1sQMP0YWmtbnlXPJk8tpaFZw5fgRqTx2yWQ/RtW2+AgrUXLHT7jV2Z3MGZpMQWU9dXanv8MRQgjRjnq7E7uz6XrDYjIRERbahV16QrevkrTWB4GD7q+rlFJbgAzgTGCee7fngCXAre7tr2itG4A9SqmdwDSlVC4Qq7VeCqCUeh44CyMRPBO4x32sN4BHlVJKa5lkEMwaHC6W7yllbEYcI/oZ5crfXZvPD/vKJBH0g9ySWirrHVwwJYv4KCtfbilkU76sRwxFT3+7h7fXHPA+vmrOQM6c0Ds/k9UNDiwmRbi16xcEcRFWKutlTYjoHZ5pmdP/+AX9YsN597rZXa5QuHRXCU99uwcwLndiwq384awxcpNLBLVdRdUs/PvX2J1Nl/kmBf+7cjqzhiT7MbLg49PfJO4pmxOB5UCaO0lEa31QKZXq3i0DY8TPI8+9ze7++vDtntfsdx/LoZSqAJKAYl/GLwLTqePSuebYwQAs2lLg52jEz+YOYkhqNIWVDazeW+bvcIQffLrpEPvLapmUncD3u4pZsq2oVxLBbYeqOOnvX2M1Kzb+/qSQL/stAttpY/tTVNXApvxKVuwppbLOQUpM1/7PfrThIIu3FTKiXwxV9Q72ldZy6cwBTMxO6PjFAWrt/vJW49daU1Zr9z42KYiPDOvN0ESAKKxswO7UXDIjm5ykKMpqG/nX4l3kV8j6bl/zWbEYpVQ08CZwo9a6vWGC1pYu63a2t/eaw2O4Wim1Sim1qqgoMEvGCyFEMBieFsPTl08lNSa8196zuNroeWZ3aurtgdETUoi2ZCdFcvfpozl9fP9uHScuwsqH18/h92eO9lFkvvP4V7vIue1DpvxhETUdVGDsHxcBwB1vb2z1+fs+2MKk+z73fky493Oe+a7tNhgi+J06tj9XzRnEhVOz/R1K0PLJiKBSyoqRBL6otX7LvblAKZXuHg1MBwrd2/OArGYvzwTy3dszW9ne/DV5SikLEAcc0SlVa/0E8ATAlClT+sy00Xve28TDn2/n4fMnMG1gor/DEUJ009JdJXy305iwUC/r0YQQQWpnYTVg3KQpr7O325vw/KlZvLP2AEVtNLE/VFlHcrSNXx0/BID7PtjMIRkBEqJHdTsRdFf2fArYorV+uNlT7wGXAQ+4P7/bbPtLSqmHMYrFDAVWaK2dSqkqpdQMjKmllwL/POxYS4FzgS+DZX3gaePSsZgU76zNZ3N+hSSCQgSBv3y2jdV7y7w9vGwWEwOTo/wcleirtNbc/d4m8srqANhWUEVCpNXPUQnRdXERVu/IfmsSIq1cNisHgD99vKWXohIdqWt0YrOYMAVAX0rhW74YEZwN/ATYoJRa6972W4wE8DWl1JXAPuA8AK31JqXUa8BmjIqjv3RXDAW4FngWiMAoEvOxe/tTwAvuwjKlGFVHg8KtC0cQbbPwztr8dvfTGmobHdgs5oBoECuEaJtLa+YMTeaFK6f7OxQRBKobHDy/dC/9YsNJibGRnRjJrMFJ/Ofr3f4OTQgRYA6U17F8d4n3cUqMjTlDU476eK+v2s8tb6znhJGpPHnZVF+EKAKIL6qGfkvra/gA5rfxmvuB+1vZvgoY08r2etyJZCiymBS7i2sY9btPmTIggTeuneXvkIQQQvSyq+YM5Ko5gwDIL6+TRDCEVdXb2edurVRS3ejnaEQg+eNHW/hw/cEW21bfeQJJ0UfXV9czE2Ffs1ZeInhI/eE+4FfHD2FUeiwfbTzUoz+I9XYne0tqGZQShdXsszpCQgg/e2fNATYfrCTGZuGaeYPl51v0KcXVDZRUN2JSMCglWmbFAFc9t4rle1qWSpAeawKg0eFicEoUT18+lQ/WH+ShT7fR6Ox+cS3V5piPf9idLpyuoFgl5leSCPYBQ1JjGJIaQ25JDQfL63rsfW5/awNvrznAVccM5M7TRvXY+4SivSU1bDhQQU5SFGMy4vwdjggx97y/iXJ3WfZjh6cwLjPevwEJ0UlOl+a4h5ZQ5a5IeevCEVw7b7Cfo/K/ynoH47Pi+YX7exFmNjEhK77NipwitIRZzAxIiiIpKjjbb2itOfbPi6WdhA9IIii8ymuN6SUVdfYO9hQd8dw3e+CTrfxt0Q7v9zQh0sqa3y3wX2AiJLlcmpykSHJLapEbqKIvcbo0VQ0Ozhjfn483HqS8TqZBeqTG2DhpdD/v447aNwjhKw0OJ5vzjU5xI9NjCbf27mi0S0N+RT1zh6Xw9XZpF9cdkggK0QPiIqzcfvIIDrrvVmmtWbytqM2y2UIIIdo2vF8Mn2465O8whBDAvxfv4h9f7ADg58cO4vaTR/oljikDElidW8q76/JJjbVx9VyZLdBVkggK0QOUgp8f2/IXku2jLbywdK+fIhJCCCFCT0l1A7klNd7HYWYzo/vHSiuEbqhucBBuNWE1m6iub30k2uUy2t54bohHhJm5+/RRJB9l0Zq2XD47h5eW7+PDDYckETwKkgiKoLNmXxn3vLcJh0t7fwEJIYQ4OlprdhZV+zsM0UfZfVCopDuufG4Va/eXt9j2+CWTWDgm3T8BBQmLyYTN0nbhsbLaRl5YZrS9iQwzs7u4hjPH9+eEUWk+jeOWk0aw8UAl5bKs6ahI6TgRdFbvLWNdXgXJ0TYmZcfzM3e5dSGEEF33zY5iLv7vcgAipTKl6CRPdeK8sjqsZv+NvlU3OJiWk8jzV0zjr+eNB6CqjVEs4Xu/OG4w/7hwor/DEG2QEUERtB69eCIx4VZ/hyECxJur87jrXamoJ0R7Pt5wkNdX5wHGVK57zxjtvWj+84/GcerY/v4MT/Qhw9NiePTiiVTVOxiSGu3XWFJibMwdlsJ+6YUnRAuSCAohQsLmg5XYnS6UAt1G5cy7393o7c2VER/BE5dOkZ5lIqS8teYA3+0sJiMhgt1FNZw3OdP73ITseMLamQrmLwWV9Ww9VAUYFZsnZsfLTcBO2lday/c7i5k5OAmlfPu7zmRSnDZObhwI33K6NJ9vLvB3GEFDEkEhmqlrdHL3exuprDPugJ80Jo2zJ2Z28CrRV9gsZn45ZyB/X7Sj1ec/2niIMLOJmHALX2wtpKreTnxkcPZhEqItg1Kiuf/sMZzz7+/9HUqn3PjKWpbuLvE+ll64nRMXYWXJtiKWbCviw+uPYXR/6XErAt/6vHKu+d9qABKDtE9ibwq8W3tC+NGOwipeW5XHhgMVfL2jiP8t2+fvkEQvmzsshQumZvk7DCFEJ9XanUzIiufNa2cRH2mlptHp75D6hLd+MZv7zhoDQL1dvmeib2hwGMWH/nHhBH48PdvP0fR9MiIouq24uoE7395IbbM/JBOz4vn1icP8GFX33HvmaJ75Lpc6+eMYsBxOl/f/XLjFHJBT1gJRg93JQ59ubVHye2haDJfMGODHqITonrgIK5MHJHgLlIiOJUaFMSAx0t9hCHFUUmJsPp/OHIokERTdtuFABZ9sOsTQ1GiibBbyymrZkFfepxNBEfh+9Nj3rMurACApKoylt8+XZLATNuVX8q/Fu4gKM2O1mKhrdOLSus8lgqtyS4myWchMiCAzQS5mhcGk4JWV+3h91X60d5tcLIqe8/Dn29l6sJI7Th3JgKSoFs/956tdrD9QQWy4hd+dNpoIqborAoxPEkGl1NPAaUCh1nqMe1si8CqQA+QC52uty9zP3Q5cCTiB67XWn7q3TwaeBSKAj4AbtNZaKWUDngcmAyXABVrrXF/ELnznz+eOY2J2Ar97dyPvr8v3dzgiQFTU2nny2900OFzMHJTEcSNSfXLcvLI6Jg9IICEyjEVbCqh3OCUR7ATPxfFjl0xm7rAUHvp0K//5ardfYzoaVz63CoC0WBvLf3uCn6MRgeL3Z4xhw4Fy7+MIq5mZg5P8F5AIeo98Yaw5P2Fk2hGJ4KOLd1Jvd2J3ai6Yms2ErHg/RChE23w1Ivgs8ChGsuZxG/CF1voBpdRt7se3KqVGARcCo4H+wCKl1DCttRN4DLgaWIaRCC4EPsZIGsu01kOUUhcCDwIX+Ch20QMq6uyc8o9v+PWJwzjRx81DRd/y3a5i/vnlTuPrncU+SwQBRqbHkJMUxaItUkEslNxy0nAmZsfzv2V7+Xp7sb/DCQqlNY08+uVONudXEhvRdytuLhzTj4Vj+vk7DCG8MhMi2VNc4+8wRA9wujTvrTvQYqnFGeMziIvsO79DfZIIaq2/VkrlHLb5TGCe++vngCXAre7tr2itG4A9SqmdwDSlVC4Qq7VeCqCUeh44CyMRPBO4x32sN4BHlVJK67aKwAt/OnVsOocq6vlyayHf7SyWRDDEudw/pgOTo3DJT2y73luXz2ebDnkfD0yO4qYFw/0YUc/7YV8ZK90tO5SCk8ekk9XBuqWpOYlMG5jIF1sKeyPETlm9t5THluzy/h8/UFbH4BT/9k7riqW7Snj6uz3ER1o5YaTvbtYIIQzf7SxmaA/2U3S6NMv3lFBc3dBj7yFa2niggl+/uq7FtpmDk0MvEWxDmtb6IIDW+qBSyvOXJQNjxM8jz73N7v768O2e1+x3H8uhlKoAkoAWt4KVUldjjCiSnS2VhPxl+qAkpg9KYvzvP+uR4289WMUbq/M4e2KG9HgTfY5ncXtry5ae+z6XTfkV9I+PoLzWzgfrD3Ld8UOwWQJjXclHGw5S3eBAY/Rr84V739/M2v3l3sf55fXcc8ZoHx296+rtTq56bhUlNY3ebWYT3HnqKGYManuK4WebCvhiayFj3CX4B6VEM39k37kJpt2Thl//+UyGpsXww74yP0ckRJPCynpKa42fyQir+YgpmIEsIdLKHuChT7cRG95zl91fbS/kimeNKfPTBia2us+hinpW5pZ6H0/JSSA9LqLHYgp2dqdRwfTRiyd6/z7E97EZFf4oFtPa9UNb1xWe8YP2nmvaoPUTwBMAU6ZMkbGHIJQeF8GK3FJW5JYyNDWa8TLfXvQx1x0/hK+3F3HelNZbVEwZkMj/rprOvxbv5KFPt/VydK2zWcxMy0lky6FK1uVVMCg5ipQYm0+O7XRp5g5L4fFLJnHMg4txuFw+Oe7RKqxs4NudxYzuH0v/+Ai0hkVbClixp7TdRBDAZjHx/q+O6aVIhQgNtY0OjvnzYhodTb8bXvv5zDaTnUAzPiueh84bz/y/fuVtfdATat1tUx65aCJzhya3us/9H21pUcPh1LHp/OvHk3osplARF2ElOdo3fxN7W08mggVKqXT3aGA64JnDkwc0vwLKBPLd2zNb2d78NXlKKQsQB5Qi+ryDFXX8b9leHC6NSSkunJrV7p2+d6+bzeebC/jFiz/49IJRa83Owmq2Hary2TGFaM1xw1M5bnjfmnpnNileu2YmLy3fx2/f3nDkXbhuspgUkWEWn40y+sIVswfyo8mZOF2awb/9yN/hiCBSVNXA+rxywBhRyEmOYlhqDCaZ4dKqeruLRoeLC6ZkMSglij99vJWKOru/w+qS1G7cOHO6NO+vy6em0cHC0R2vfx3ZL4b4yNYbrTfYnQxKjuKJSydzzf9+kP6RokcTwfeAy4AH3J/fbbb9JaXUwxjFYoYCK7TWTqVUlVJqBrAcuBT452HHWgqcC3wp6wODwwfrDvKvxbsIs5hodLiwmhS/aWdNlNVsItrm+/+2Gw5UcMaj33kfS4lnIYQQnVHX6GRbgXETsbrBgc3a+kW4xz3vbeLDDQdbbLvrtFFceczAHosxkNU2Onhx2T52FFS3u9+o/rFMHpDQS1EFjk35Fdz46loAiqsa29+5E8IsJoakxhBulSrbwnftI17GKAyTrJTKA+7GSABfU0pdCewDzgPQWm9SSr0GbAYcwC/dFUMBrqWpfcTH7g+Ap4AX3IVlSjGqjoog4CkksvZ3JzL2ns/8Vkykyl3x6baTRzA+M57pAxP59+Jd/glGCCFEn3Hfh5t5afk+7+MTOlgbWmd3MjgliofPn0BuSQ03vLK2z41w+dJ3O0u4/6MtAJw0uu+sq+0tdqdu9rV/p86L4OOrqqEXtfHU/Db2vx+4v5Xtq4AxrWyvx51ICtGTJmUn9Jl1B0IIIfyvqt5BWqyNB84ZB8DojNgOXxMZZmF8Vjzjs+K54ZW1PRxhYHO67wC/f90xjOnE9y5QVdbbKapqID7SitUso22ib/BHsRghhBBCiKARFWbxaY9UXztYUcee4hpqGhwd7+wnZpPyVlXui/7w4Rb+8OEWpg9M5NWfz/R3OCGtst7OFc+s9I60l9Z0f0ptsJJEMIT96LHvMSlFuMXMX84b7+9wRACoqrfz4rJ9He8ohBCiz/jpMyvZ6i6G1lPVtj9cn4/FFHojYTE2C7ERVq6ZN5jXV+2noLLeJ8ctqW7ApaGiTpKYrsorrWPV3jImZcfTLy4cgJykKMIsoff/syOSCIagecNTWLOvHKfLRXWDgxW5pWzKr+jUa19ZsY/HvtqFWSnuOn1Un6t+2F0Op4uVuWX0iwtnYHLf6WPUWV9tL+LRxTuxmhXZHTT1DiX1didvrM6j3u5kYnY8kwfI9GEhRN9R0+hgztBkfnncEEb175npl3/8aKv3675aSv9onTS6Hz+ZMYBVuaWsa9YX9Wi9sGwvd72zsfuB9QKXNirhekSGmYnqgaJ+R+PquYNZOKbjSquhLDDOlOhVo/vH8eRlUwDYeqiShX//ptOvXba7hKKqBmobnazZV96tRFBr3a3iME9+s4eL/rvc+1hhVF7rSZ9uKuCXL/1AuNXE1vtO7tH38gfPWo2Pb5jrvYsm4Ludxdzp/qM8ol8Mn9w4188RCSFE16RE2zrshXk0MuIjePsXs2h0FzKxmk2kxcrfj+4oqKhHKbj3TKNsRqTVzE2vr/NzVK17ecU+Xl7RNJMowmpm2W9bLREiApAkgqLLUmJs7C2p7dYx6hqdzPnzYoqrjbtIpqNYF7D1UBU2s4kfzxgAwDPf7WHboSoGJPXcSFZto7G+ot4e3JW7+vAyjR7hcCfI2YmR3q+FEEIYUns58ftwfT7bC6pYkRu8LaVNSvET9/UNwP+9ud6P0bQvJcbG9fOHsmZvGW+tOUBlnZ1IacPVJ0gi2ItqGhzeBCq/vM7nx29wOLE7NRaTItwa2D+AlfV2iqsbOGFkKqeMTT/qeGMjrNx28ggAXlu135chdtq3O4pZvbcMgHKZyx/UzNLwWQghfOKHfWVc/fwqqt0FbDpzAzI1xkaMzcI7a/O92/rHhR/VzeSu2Haoiute+gEAi0lx/fyhDEqJ7tH37EsSIq38ZMYAwi0m3lpzwN/h+NQXWwr437K9gFFZ/lfzh/o5It+SRLAXrcsr5+JmUxkBbD5q6FlYWc/chxZTb3dhUvDCldOZPSTZJ8fuScePSOOcSZn+DqNbfv/+JnYUNjXCDTObyPLB+rpvdhTx1Ld7SIwM48Fzx0k5aiFESNlbUsNX24v8HYboIbsKqymubuS8yZlkJEQwNLXjxCo1Npz19yzA6dI4XBqX1ljNJl50X6j3hHnDU3hrTSObD1bicmlyS2oZkxEniWCIeG9dPt/tLCE63ML6vApJBMXRG54Ww+OXTPY+TooOIzUmnDIflLUtrm6k3u7ihJGpLNpS2CMjjqJ1Tq05dVw6/7xwonebyQcjRx9tOMSSbcZF0PXzh5IThMVpRM/61+Kd7Cysps7u9HcoQnTZXz/bznvrjJGf1JjQKj4SSq6fP7RLN0+VUljMCksvTXy67vihXHe8cfFfWW9n3D2f9dh7FVc3YHe6vKOkwchut5OXl0d9fdvVVSPsTv57RjoRNQfZsqUQh8vFf89IJ9FShrmmnP+ekU5kzSG2bDGuka4aG4ZLh7FlyxbAKOz33zPSSXIWs2VLWavv8Y+FKUTaHN7XjIhw8N8z0omPqOa/Z6RTU7CXLcUmzh9i4qycfoRbTdQ1Or37A1gcxvtE1xWwZUuxr75FRy08PJzMzEysVmunXyOJYC9Kirb1ePWiGYOSWLSlsFvHKK+zs7ekxkcRhQaFb5I/IXzpoU+3ERtuoX98BFNyEsnt5tpeIXqT3eliUHIUr10zk+Rom7dgkxD+9snGQ+wvNX6f1jt8c6Pts02HuPqF1d7HEQG+xOdo5eXlERMTQ05OTpt9I6vrHZiKqxmUHE10uIVGhxN9qIrMhEjCLCZMRdUMSo4iOtxIePYU1+B0aYa4R5XrGp1QWMWApCjiIlpPilwHKkiICqN/fARgtOs4UF5HelwEByvqGJYWg81qZl9pLXWNDqJtFirqHIxsVnW3psGBqaiagclRxIR3PvnqCVprSkpKyMvLY+DAgZ1+nSSC4gifby7g880FHfYacrm0t8qkECIwXT57IL85cRiLtxbyxuo8f4cjRJdYzCrkWhGIwBVpNTMmI5adRdXsLDKWhMSEWxmb2f2WHEXu4nm/PWUEseHWoJ0FVF9f324SKI6OUoqkpCSKiro2nV4SQdFCVJiZa+cN5i+fbaeyzt7mfmaT4tHFO3l+aa63vLEQQoi2ldY28tYPRjKeFhvut3XcTpfRM7Su0cHQtBgGy1onITrFYjbxwa/m9Oh7nDUho9ersDbncmneWXuAqnpjeuq6vHKfv4ckgT3jaL6vkgiKFganRjO9E32GHrlwIh9tOMiHGw5S4oM1jkIIEcwSo8JYsq2O37zW1Ats3d0L2py21JNW5pZ6p1kOTY3m898c2+sxCBFKPFVN//Chsb4skJeSbDlU2eL3VDCKjo5m+bam6qbPPvss3y5dzvV3/anLx9q6aQPb68o496wzjnhuyZIl/OUvf+GDDz7oVrytHTcsLIxZs2Z1+1h9KhFUSi0E/gGYgSe11g/4OaSQdeq4dBwuFx9uONjufst2l/DQp1u5fv5QbL21slsI0aOq6h1SvKOLHvzROG5wV5t7e80B/r5oB3anf/qR1ruLB2XER/hsfZMQom1RNgt/PncceWV1mJXi3CmBWy3d4TSW/PzjwgnMGZoCwM2vr+NAmRQhbM22TRvYv31jq4lgT1myZAnR0dE+SQT7TD16pZQZ+BdwMjAKuEgpNcq/UYn2TM1JYH9pLf9avIvN+ZX+DkcI0YHPNh3ix08u48dPLuOfX+444vmk6DDAqGzn+Vp0jtVsYkBSFAOSokiKCozvXZil9y4BahocvLcun7d+yOOtH/L4cP1BGiQJFSHk/ClZ/ObEYdxwwlAy3AVKAllMuIXEqDASo8IIC6H2VcXFRfzm6kuZPXMGU6dOZeXypQCsWb2KH59xIhMnTmTWrFls27aNxsZG/v3XP/LWm68zYcIEXn311TaPe88993DFFVcwb948Bg0axCOPPAJAbm4uI0aM4LLLLmPcuHGce+651NYahYhycnIoLjaqka5atYp58+aRm5vL448/zt/+9jcmTJjAN998061/b18aEZwG7NRa7wZQSr0CnAls9mtUok1PXjaVJdsKufyZlUhJGSEC38cbD7Eyt4xxGXHEhls5YWQamQlNZd1PGt2P7287HrvTRXpc4F/IiMDx1g953PXuphbbHr9kEgvHpPspIkODw0VBZT0K0PKHSvQxRdUNnPjwV1Q3OLxtgvrS8rvfv7+p1YECp0tTb3cSbjVjNim01tQ2OrFZzSgF9Y1Nz4Exy0FjVFod1T+W/ztpRLvvW1dXx48WHIPZpLCaTZSWlrLg5FMBuPP/buKSq67lotMXUHDwAMefsIAPv17BkKHDeO6tjxmXnciiRYv47W9/y/Mvvcovbvot+7dv5InH/93hv3fr1q0sXryYqqoqhg8fzrXXXgvAtm3beOqpp5g9ezZXXHEF//73v7n55ptbPUZOTg7XXHMN0dHRbe7TFX0pEcwA9jd7nAdM91MsQogQVV5r5+lv9+BwuThmSAqj+ne/Wpzd5SK/vI5Gh8vvJcP7xYbzxrVtTzfp3wfuZIvA0+AwpsF+eP0xlNXYueSp5d5t/mI1K1bsKWX6H78AYNrARL/G41HT4KCwyqggWVnfdtG23pZfUcf+0tou9fwTPSuvrI49xTXMGZpMelw48ZFh5CQFZ7VRX4qIiODNz771to/wrBEE+HrJYjZt3szffn87SkF1VSXV1VW46mq4/f9u4tD+PSilsNu7/rN56qmnYrPZsNlspKamUlBQAEBWVhazZ88G4JJLLuGRRx7xSZLXGX0pEWztHkeL+3dKqauBqwGys7N7IyYhRB917webUSgmZsdz+vj+nX5dcXUD935gTEQ4fkQpT18+tVtxWM2K/aV1zHrgS/cxU7t1PCECWVZiJBHWBn+HAcC9Z45hd5HRM/dPH2+hqKpn4/r7ou3cctLwDve78IllbDhQ4X2cHue/CpIANvcU4jveNgoMPX/FNOYOS/FnSOIwVx4zkHnD+97fjrtPH93q9up6B7sP6yO4tVkfwd2d6SN4lFwuF8+/8xnjc1Jb9BG863e3Mm3WHP541/vk5uYyb968Lh/bZmtaW282m3E4jMqsh1f79Dy2WCy4XMYNs/r6+qP8F7WvLyWCeUBWs8eZQH7zHbTWTwBPAEyZMkUmeQghjjCiXyxxEVbeWJVHnd3JJxttXUoEPQYkReLwQR/NmxYMZ3qzkYhpAzuu2iuE6L7haTHMcFfJ/scX23vsfUb0iyElxsaLy/cxZ2jHLUNKaxqZmpPAj6cPAPBe3PrLiH4xPPPTqewqrOYPH26hrFYqhYvgNe/4+bzy3H8Zf/cdAGzasI5Bw0dTWVlJaj9jKvuzzz7r3T8qOprq6qpuvee+fftYunQpM2fO5OWXX+aYY44BjGmgq1ev5uSTT+bNN9/07h8TE0NlpW9qb/Sl1Z8rgaFKqYFKqTDgQuA9P8ckhOhjFo7px7q7F7Dh9yfxo0mZHG0uZ/LRQoyM+AgumJrt/RgYpE2EhTic3Rka92un5iTywpXTgM6vQ8xOjOKsiRmcNTGDMRlxPRhdx5RSHDc8leNktoIIAfc/9DCb1q1lyqSJjBo1iheffQqAX/zq1/z9T79n9uzZOJ1NI45TZ85h65YtHRaLac/IkSN57rnnGDduHKWlpd61g3fffTc33HADc+bMwWxuWjZy+umn8/bbb4dWsRittUMpdR3wKUb7iKe11ps6eJkQQgSFRj+1GhDC1ywm4x70za+vo7SmgavnDvZzREKIjpTWNvLUt3sA2Nhs6nJfVF1dzaZm/4bLL7+c08+9iAPldSQlJfPQY08zPC2mxdTQydOm89G3P3jrAtx3333UNDiIS0jgq++WEhN+ZE/YefPmeaeQ3nPPPS2e27jRmGqdm5uLyWTi8ccfP+L1c+bMYfv2I2crDBs2jPXr1x/tP7+FPpMIAmitPwI+8nccQvjK5vxKNh7oeHh/e0EVhyrrsZoV4zLjsYZQKWcB//lqF3/6eCsAlgBuRCxEZ2QlRvDgj8by+/c3s7ek1t/hCCE6kJEQwSebDnHfB02F+oenxVBSExjrfXtCWa0di9lBo5+LWvW0PpUIChFMXC7N2f/+jgaHC6WMhrNtufqF1d6v//yjcZw/NavNfXtTSXUDf/l0GzctGHbEYmfhO/tKa4kMM3PP6aOlf5/o85RSXDA1m4c+3ebvUIQQnXDnqSO5fv7QFtsiw8zM/NMXfoqo51jNxrVMYVVTcRZbD/ZczcnJ8Y4O+oMkgkL0okani7veMX7gpw5MpMHh4uLp2Vx77GCSo23tvvaSGdn8b9k+qhscvRFqh6bkJPDl1kIeXbyTn8wcQFqsfyvbBbvIMDPnT83iy60F/g5F9IK6RicfrM+nweGi3i6N14UQ4NS6xTrT4ureGZFTShEXceTUx2AUZbMwun8cWmt2FFZjD/JlGZIICgD2ltZSVR8YCUawGpMRR0KklQ83HKS63sGXWwsBo29bZ/oyBVpvoB9PH4BC8du3N/g7FCGCzuJthdzyRss1IKlys0WIkGVWiseW7ALAZFJMyk5gybYi0uPCGRBg1wcd0VoH9Cwio1G9arVvXSDTna1G1YwkgiHO07z6Aff6o0BpqBuMzhjfnzPcbQpufn0db6zOA/B7A/G+pLbRQYPduDvnOopfeKJ1Lq1ZtLmAgxV1/g5FuHnuQr9xzUyykyKxmEwkRsm0YCFC1T8unMCuomqUUpw+rj/ZSR3fQA5E4eHhlJSUkJSUFNDJYF+jtaakpITw8K7dMJREMMQNSIri9WtmUlFrB2Bk/1jyy+VisKfddvIIThyVhlkpZg2RvnGdsb+0luP/uqRFyXlP9cFA8MWWAl5ZuR+AXYXVjM+K929AnRQbbsWl4arnVwEwJiO2V97XpTXvrDVawR4fomXpL3piGamxNp66bCrhbdwQSowKIzVGRgKFCHUnj033dwg+kZmZSV5eHkVFRW3u02B3UlTdiKs0DJvVjMPloqCiAXuJFbNJUVTV9BwYU2RdGuwlxhIbu9NFQWUDjpIwIsJa/916qLyOSpuFCveU1+oGB+W1dkwV4e4RQThUUY/DpbGYFOFWE3WNTlRFRFOcDhdFVQ04S8Pa/B3em8LDw8nMzOzSayQRFEzNaTkKKIlgz0uOtnHS6H7+DsOvXl+1n/s/2uJd7xBts/DmtbPoF9f6RW9JTSN2p+bi6dkMS41GKcWJo9L4aMPBXoy6bW+tOcBX24oYnBpNRkIk8/tIcnPlMQOZPSTZex4yEyLaf4GP/HTWQO5tVoGuuz5cf5BDlfVkxIezcExgXzDNHpLMqWPT2Vtaw3c7SzhYUS/9I4UQIcFqtTJw4MB291m6q4SfvbSMl382gwmDk9hfWsvpLyzmL+eNJzMhgp+9uIyXfjadCYOTAbjs6RWU19l595cTAKMi+8/+9w2PXzKZhSNbv9Y67+5PuWBqFnedNhKAF5bmctd7m1h15wnemg1XPfAlB8rryEmK5JihyXy8oZDVd53I/tJaVuwpZU9xDY8uzuWFK6cxcWiKj75DvUsSQSHaUVrTyPvrjFELs0lREyCFWoLBpvxKahucXDw9m7yyOhZtKeBAeW2biaDHiSPTAraxcVZiBB/fMMffYXSJxWzyS8Pqi6dn+ywRrKi188uXfvA+3nDPglZ7OgWKQSnR/OvHk3hnzQFufHWtv8MRQgS55btLSYwK67XiMsHujx9t4eONh7yPEyL77rR9SQT7sOLqBt5dm4/LpSmorO/4BaJL4iOtfLuzmF+9vMa7bUS/GD9GFHwiwszcc8Zovt5exKIt/qmGWVVv5+HPjYatkugHpsp6OzsKqtleUNXq8w6XsZ4uOzGSfaW1uIK7yJsQQnRKdLhxmd/8htPUnAQ/RRM8Gh0uhqVF8+SlUwkPM/Xp6fuSCPZhr6/K48FPtnofW0yqw9EU0Xl/PX88N55g9M1pdGhOeeSbgGndIHxjaFo0tXYnj3yxAwClYEhqtJ+jEoe75fV1fLqp6UZBZLM1H7WNDq54diWAd12HEEIIOGVMOu9dF9miBcLAZPkb5wthFlOfLdjTnCSCfZjTfdt77e9OxGI2YTEpiqp6Ztj/7TUHSIoKY1dRTY8cPxDZLGaGpBojgA6nC4tJkVfm//WTdXYn5bWNAN1anFzb4PSOJIdbzMRFBu5Uup5y1ZxBXDVn0BHbn/lujx+iEW2pbnAwNDWaO08bRbTNwuj+RkGbE0amsb2gCq1h3vAU0uMi2FMcOr+jhBB9X2lNIy8s28vKPaU+P7bJpBiXGe/z44rgIYlgEIiyWbCae656olLwzy93eh/PGBR6LSYsZhMvXDmdvLJaHv9qF4cqen8qrsU92vHQp9t46NNtgNF6YthRTFcNM5t4ddV+Xl1lVLlUCj781dGvbXvwk61Ehpmxmk1cc+xgaS4vfC4uwsqxw1ouxp85OImZg5uq7j79rSTwom965IsdvOH+fXxIlnqEjLTYcBZtKeSudzYCEBVmJsoml+ai98j/NtGupKgwltwyD0ezkv0x4aH538a44Exi26EqXl6xr9ffP8pm4fFLJnt7vW3Iq+CtNQeoqG0kLqJro3mPXTKZnYXVAOwtqeE/X++mpKbro8nD+0XTLzacr7YV4dSa8lo7w9NiuHBadpePJYQQoSw7KZKsBGOq2YXTsvwcjegN9505hhtPGOZ9HGUzExkWmtdYwj/kf5voUG9W36tucBjTMHtwhLMvWzimqQzyO2sO8NaaA0d1nGkDE5k20BjZXZVbyn++3n1Ux5k8IJFlv50PGP12ZvzpC4K5zXvzNWiyHE0I4UuXzszhlCDpFSc6x2RSpMTY/B2GCGHdSgSVUucB9wAjgWla61XNnrsduBJwAtdrrT91b58MPAtEAB8BN2ittVLKBjwPTAZKgAu01rnu11wG3Ok+9B+01s91J+5Q4nC6qKizU9UHipxYzYpnv8+luLqBRy+e5O9whDjCr44fwsGKetLjwnnmu1x/hyO64Yd9ZSzZWuh9nB4fwUUyki2EECKEdHdEcCNwDvCf5huVUqOAC4HRQH9gkVJqmNbaCTwGXA0sw0gEFwIfYySNZVrrIUqpC4EHgQuUUonA3cAUQAOrlVLvaa3Luhl7SLjiuVV8vb3I+9gSwMMYz1w+jTve3kBhDxW8aYvLpckv938RGBH4hqRGc+aEDIA+mwh+1ez3QSh75IsdLNlWhFKg3cPYMhojROdo9w+NDuYpIEKEgG4lglrrLQBKHZFcnAm8orVuAPYopXYC05RSuUCs1nqp+3XPA2dhJIJnYowuArwBPKqMA58EfK61LnW/5nOM5PHl7sQeKg5V1DEyPZaLpmWRGBVGZkKEv0Nq08zBSaTG2nD14B+W4uoG/vb5dsZnxXH8iDQAnl+ayz3vG42tw60yJVUEp/7xEYRbTXy9vYgIq5n+8aFd0Mfp0kzMjuftX8zmme/28Pv3N3svblvzyop93iQ6NtzCPy+eRLQUdfALrTUPfLLVW7Rrb0kN8VIZsdc02F1M/+MX3pu2WYmBe10helZchJXi6kbiI/puQ/VQ11N/xTIwRvw88tzb7O6vD9/uec1+AK21QylVASQ1397Ka1pQSl2NMdpIdnbfnOJT0+Dg+pfXsDG/wmfHzEmK5NKZOT47Xl81JDWaTzYd4h9f7CAzIcKbCJbX2QF49qdTGdM/zp8hCtFjhveLYcu9C72PW7mBJ1phUnDpzAHsdrfOKa5uYPXeMnKLaxiTIb8v/KG0ppH/fLWbxKgwYsMtxEdYOWZIsr/DChlVDQ4Kqxo4fkQq4zLjGJ8V7++QhJ+89YvZFFTW0z9ebgb0VR0mgkqpRUC/Vp66Q2v9blsva2Wbbmf70b6m5UatnwCeAJgyZUqfnLCwp7iGL7YWMqJfjHcKmvCNm08azs0nDeeW19fx3c5iAHYWVvP3RUYz8WOHpcjFsQhq8v+765RS3HvmGO/jzzcX8LPnV7XzCtFbbjxhqNzkbIXWbVwk+dhxI1L5yYwBvfBOIlDFRVi7XLU8UCjgpeX7eG9dPkCP9eEOdB0mglrrE47iuHlA89rHmUC+e3tmK9ubvyZPKWUB4oBS9/Z5h71myVHE1Kf85sRhLBjdWv7dt207VMVrq/ZTEyDFa3YWVgFw1oT+cpEshPCLm19fR2qMjb+cN156iAUYu1NTWW/3dxidYnL/DfvTx1sBo/2Ts5OL+H7//mbSYsP549ljeyw+IQLJrSePYFN+JQBFVfUs2lLYwSuCU0/9xXkPeEkp9TBGsZihwAqttVMpVaWUmgEsBy4F/tnsNZcBS4FzgS/d1UQ/Bf6olEpw77cAuL2H4hY97OUV+3j2+1xibBYSo8IYkhrt75AA+Pmxg/0dQtD462fbefKb3USGWXj8J5P9HY4QAWt8VjyzBidRUFnP6r1lXHPsYJlmF0BGpscSFWZGA2MyYv0dTociwsz85bzx5JXVAjAqPZb/e3N9u68ZkR7DnKHJFFU18PnmAi6e3jeX1QjRVZc0G81emVsqieDRUEqdjZHIpQAfKqXWaq1P0lpvUkq9BmwGHMAv3RVDAa6lqX3Ex+4PgKeAF9yFZUoxqo6itS5VSt0HrHTvd6+ncIzoe7TWxEdaWfu7Bf4OJej94cMt/OMLY9prTlIUs4ck9ej7pcbY+OnsHAqrGiiraeT7XSXsKKjq0fcUoi8bmBzFSz+bwZdbC7jiWZluGmjOmpjBWROblmi4erKSmY+cOzmzxeOOEsHUmHBeuHI6a/aVcfa/v+/J0IQQAai7VUPfBt5u47n7gftb2b4KGNPK9nrgvDaO9TTwdHdiFSJUDEyO4vwpmZTXGtOZ9hTX8MmmQ0zJSejgld1jMinuPn00YPRoO0cuKkJGYVU9+eV1PVIw4GBFHd/tLGHygJ79/yu6p7CygV2F1d7HyTE2puYk+jEiIYQQAtO9DAAAHKNJREFUHZHFCEIEGZvFzJ/PHe99/O8lO/nzJ9v8GJEIZlE2C9/tLOGnz6zk01/P9fnxn3X3awzk1jcC/vDhZrYeajkDYPWdJ5AUbfNTRKKnvLhsr79DEH3cJU8u5/tdxd7HEVYzb1w7i5HpgT8FO9hIIiiEEOKoPffTqdz8xnp2F1V3vHMnbcir4L4PN+N0afaX1qIU/O38CT47vvC9BoeLgclRPHbJJD7ZeIi/L9pBg8Pl77B6lMulKa1tpMHu7HjnIJARH8H8EamU1jYybWAiU2SUXhylbQVVjEyP5fgRqRRVNfDKyv2c//hSwiwmlILZvdwOxqSafx1ahQMlERRCiKP09fYipt6/CK01lXUOspMiff4eH64/SG5Jjc+P6yupseEkR4exu8h3x1y+p4QVe0qZPjCRYWkxnDs5E5MptP4490U2i4kR/WJZt7/c36H0it++vYFXVhptjoenxfg5mp4XbjXz1OVT/R2GCBLjMuO5acFw7E4XiVFh3uq8b6zOY31ey17antzs5tfX8a+LJ/k8ljEZcdy6cATRNjOJUWE+P34gk0QwSDlcmnq7kz6wtl0Escp6R8C0CukppTWNXDjV6JYzY5DvCvIkRBp/jH7z2jqAgKmw25v+e9kUYsP7Zo+qYPHE17txOOUPSWsOVdaTER/BNccOYmxmvL/DEaJPsppN/N/CEd7Hn20qOGKfjPgIpuYksDK3jIMVdT6PwWYxc+280KweL4lgkLGYjdsmt7+1gdvf2gDAiH7Bf6dSBBaryQTA9S+vadpmDs4RnTCzift7oPfWRdOymDU4CYf7bk5arKy1Er0nOzGSkemx7He3IhibEUd6XLifowo8ydFh/ESa2gvRo5RSXD13MCtzpbqyr0kiGGT6xYbz53PHUVzd4N12wsg0P0YkQtGo/rH87YLxVNcbo4FxkWG8tzafA+W+v5MXrJRS5CRH+TsMEaKSo218fMMcf4cRdL7YWsi+0loirGZ/hyKEEJIIBhulFOdPyfJ3GCLEmU2Ksye27Gf1/rr8ozrW5oMVVDc42JRf0fHOQvRhRVUNLPz710TZLN7pxiI4JEaFYbOYeGN1HgALR/fzc0R9w3+/2c0nmw75OwwhgpYkgkKIgPbrV9f5O4SAdOc7G4m2WTCbFL8+cZj02QsCuSU13hYMJ4/pW4lCZZ2dlBiZvtyW1Jhw1t29wFtJNcYml1+d4dJQUWfn7IkZzBue4u9whB95Fpf84cMtfo0j2MhvIhFUVu0tY1tBVcc7ioCUV1ZHXEQVFXV2om0WnrpsCvUOF40OFz97XtYGAIzuH8exw1Koa3TidGmW7jaarUsiGFw2HugbI+CpsTaUgpKaRsZkxPk7nIAWbjUTLlNCu2xQchR/u2CCv8MQfjZtUCJhFhONQd6WprdJIiiCxvjMOFbsKQWMUt6yBqPvsFmM4jI3vLLWuy01xsZ0dxXO+hDp09UZabHhPHfFNO/jnNs+9GM0oqe8szYfs0kRGxHYVVOn5iSy9q4FNDid3kq3fZXDJReYQgSq2HArvzpuCH/9fLu/QwkqkgiKoPHMT6d1vJMISFNyEnn68inUNDQlfAOlUIoIUQ+cM5ZpAxOJjbCSHB340y3jIq1AYCesHbGaTewvNYpZhZlNfo5GiNCW565WLHqeJIJCCL8zmxTHj+heddvLnl6BxaSwWcwUVzf6KDLR2/aV1lFvD+2RmcyESAaldK5vZGmNnf2lxkWT2aRIjwtHqeBs1dKTHrloIlsPVhFlMzMhK97f4QgRsn42ZxCr9pYSZbMwOiPW3+EEvW4lgkqph4DTgUZgF/BTrXW5+7nbgSsBJ3C91vpT9/bJwLNABPARcIPWWiulbMDzwGSgBLhAa53rfs1lwJ3ut/2D1vq57sQthOi8/3y9i9dW7aeqPjAbw88anMzcYSk4nC7q7E5W7iz2d0jiKMVFWPl6exEA4VZTQI/MrN1fTkWdnTEZccT5Yfqm1f29efCTrTz4yVbv9nvPHM2l0teuyyZlJzApu2+ss3115X6KqhrITIjwdyg9amJWAhsPVDAuM97foYhe9LO5g/gZg/wdRsjo7ojg58DtWmuHUupB4HbgVqXUKOBCYDTQH1iklBqmtXYCjwFXA8swEsGFwMcYSWOZ1nqIUupC4EHgAqVUInA3MAXQwGql1Hta67Juxi6EaEdUmJmfzx3kbSgNEB8ZxoCkSD9GdaRR/WN53r1mbk9xDcf9ZYl/AwpRhVUN/PrVtTx07jgsR5nAvfWLWRysqAcgKSosIAtrRNmMmO58Z6N328LR/Xq9SFVKjI1nfjqV4qqmnrG3vLG+xeO+wuXSnPLIN+wtqSU5JoxPbphLlFTVPEJGfAThVhOvrNwPwJDUzo0a91UvXz3D3yEIEfS69ZtWa/1Zs4fLgHPdX58JvKK1bgD2KKV2AtOUUrlArNZ6KYBS6nngLIxE8EzgHvfr3wAeVcb8lpOAz7XWpe7XfI6RPL7cndiF6I4Gh4s/fLAZwLjwSvdzQD1AKcXtp4z0dxiiD1gwKo0f9pbx9poD3LpwBP3iwo/qOPGRYcQHeMGRmYOSeP+6Y6izO/nX4p0crKhjT3ENYWYTp4zt3V8Exw1PbfH4/95c36vv7yt2l4uth6qIDbewv7SOstpGSQRbMSwthi33LvQ+linAvlVYVc+nmwqobgjM2S897bWV+zlUWe+9GSdCgy9/014BvOr+OgMjMfTIc2+zu78+fLvnNfsB3COMFUBS8+2tvEaIo1JRZ+ePH21hd1FNl187Mj2WCKuZl1fs826TsumhZ/rARPLL6xiXKed+4Zh0ymrt3P7WBn+H0uOUUox1n/NpA6VAlS8lRduoDNAp6IFCkr+e8/z3e3l08U4A+sUF97Tbw5XWNLa4kWSzmOgfH1rfg1DVYSKolFoEtNbZ9g6t9bvufe4AHMCLnpe1sr9uZ/vRvubwWK/GmHZKdnZ2a7sIwcj0WD5Yf5AXlu4FoF9sOGmxnR/B+NHkTH40ObOnwhN9xO2njJQRUxFw9pTUcv7jS2lwGBV4A310Y8m2IvLKVvs7DOG2Ob8yZNv12F0uwiwmlt0+n4TIvl0Ft6ucLuOy+t4zR/Pj6QNQgMkkNx1CQYeJoNb6hPaedxdyOQ2Yr7X2JGh5QFaz3TKBfPf2zFa2N39NnlLKAsQBpe7t8w57zZI2Yn0CeAJgypQprSaLgay4ulFK5vaCK44ZyBXHDPR3GEL4zKb8Cl5pNkJ97PAU0kPsjrYwbDxQwZ7iGqblJBJpM5MQFcaIfrGMzYjjuwArpHT6+P6syi2jtKaRCVnxDE+LYU9x12dpiO6Ldk/FfejTbd5toTg9VwGJUYE9Pb0nKaUwSwIYUrpbNXQhcCtwrNa6eQbzHvCSUuphjGIxQ4EVWmunUqpKKTUDWA5cCvyz2WsuA5ZirDX80l1N9FPgj0opTzmvBRhFaYKGxaxQCu+UBABbABZJEEIEnpQYG4u2FLJoS6F320XTsvnTOWP9GJXwtz+eMzbgi4ncffroFo9fW7WfV1ftb2Nv0ZOGpEbzyY1zvNWh4yOsZMjUQOFjD326jSe/3U15rbR4ChTdvd3zKGADPnfPW1+mtb5Ga71JKfUasBljyugv3RVDAa6lqX3Ex+4PgKeAF9yFZUoxqo6itS5VSt0HrHTvd6+ncEywiAm38srPZlDgrvYWYTUza3CSn6MSQvQFX90yj4o6u/fxWf/6DrsztPvwCSG6RinFiH6h07PN6dI0Oozfk2GWwG1TEywGpkRxwsg0KuvtuLTRruXEUakdv1D0uO5WDR3SznP3A/e3sn0VMKaV7fXAeW0c62ng6aOPNPBNHySJnxCi6yLDLESGNf0qt5jkokYIIVrjmfZ421sbuM1d3OoX8wbzfwtH+DOsoBdts/DkZVP8HYZoRehNABdChJS9pbW8unIf2w71bp83IYQIBKv3lVFeY+94xxCQHhfOA+eMpaTGmJr49Ld7yC3x7brURoeLTfkVgNEjU4hAJomgECLgNa+Ybu1Cs/KUaBsrcktZt78cgIHJUT6OTIi+w+T+Qbr/oy1Ay5+rnrDw718T7l7vXttorA6RMhS9a3T/WFbmlgEwIj3Gz9H4n1KKC6c1VZV/Z80Bnx4/wmomv6KeUx/5tsU2IQKVJIJCiIBns5h55qdTKa1uZNrAxE6/7oWrplFS3bQoPSHAm5UL0ZPmDEvm5gXDqLe7iAm3sDG/krX7y3rs/SrrHYzuH0dOciQAmQmRxIR3XJb/5tfXcc4kadHjCy9eNcPfIYSUW04aznEjmta+KWCG1HwQAUwSQSFEn3Dc8K4vLLdZzNIUVwi32HAr1x0/1Pv4N6+u7fH3vHBaFmdOyOjUvhOz4pkyIIGNByqxO/eTGmPr4egCS1dmO4jAlBRt46TRrbXeFiIwSSIohBBCCL8bmhbDG9fO4pInl1MXwE3N95bU8M2OIspqfFMC/39XTqegsp45Q5N9cjwhhOgsSQSFCECXPLm8042V88vriYvoeLpVIDhYUced7xiV2lbu6bkpaSLwWc0mBiRFsreklqEB0u8ut6SWmgaHv8MQAUopiAoz89aaA7zlXls2e0j3p/0dIwmgCDLvrj0gI9x9hCSCQgSQ2UOS+XZnMS4X5CRFkR4f4S10knLYNKmpAxM5dWw6DQ4nJ45Ka/OYhxeIMPmpWsOk7AR+2FvGxxsOebd1Zb2f6LyCynq+2VHk7zDaZTYpvrrlOH+HARhTiMHowejdZpWLGNGSUopPbpxLQWW9d9vglMC4iSFEIEiNDQfgL59tb9oWE+6vcEQnSCIoRACZmJ3AK1fPbLGt1D39KDGqZaGTjPgI/vXjSR0e86wJGdQ1OnG6NGlx4SRF+2fdzbXzBnPtvMF+ee9QEm2z8M2OYr7ZUQxAjK13f82/sXo/se4R6olZCYzNjOvV9z8aZ03sT1yEFYfL3WDabGpR8KEvcUq5+h6VlRhJVmKkv8MQIiAdOyyFtb87kUan8bvUajKRECVF2gKZJIKiTXlltcR2osKb6FmHJ4Bd1S8unF+fOMxH0YhA98JV09hXUguAyaQYm9E7iVi/Vu4Ej82I4/1fHdMr798dkWEWTh2X7u8w0N3M4Swmxb5S49xbzdKoQQSm8lo7r67cx6pcWR4QjOJ7sDq3qdmUJlNP978JEZIIiiOMTI/l/CmZVDc4mJiV4O9w2nSgrO6I6ZJChLrUmHC/TMU5bkQq6+5egMN9J/im19dxqKK+g1cJaGX69lHOSn38ksnsKa4hITKM7CAdtapvdFJWK83R+6qUGBuFVQ3c+qaxVtxmMckNZ9FpZ03MoLbRQYTVzISseH+HExQkERRHiLZZ+PO54/32/gfK6nj4s23Y25jiNDYjjjPG96e20cGMQdKfR4hA0bxoUVgAFQpwOF0cKKtjVHqsv0Np1fSBSdx56khqG51EhpmZlH10N+Dmj2x7rXAwsJpNPLd0L88t3QuA5WgzZuE395w+mmuObVoiEB1ukURQdFpGfAS3nDSizecbHS40Grv7hmR3XT13ECv2lDJzcBJbD1X65JiBRhLBPqay3s7v3t0IwPq8Cr/G4rmL/YcPNwNG8Ye21DY4qay3e+eNt2VYWgzL95Tyz8U7AWN608DkqBb7JESF8chFE7sTuhCdsrOwmphwKwfK6vwdijgKi7cWUlLTyB8/2kKDw+UtChNoIsLMXDVnkL/DCHiPXzKZXUXVAFjMitPG+386r+gak0lJb1fRI9btL2f4XR+3mGJv6WZ1vMtm5XDZrBwAb8XzYCOJYB8yLjOeTzcV8P66fO+2Sdnx3f6PfrTmDkvhphOH0eBwERNuYWQrd9s9d2wveWq5d1tyO8VK7j1zDPeeOcb3wQrRBeFWI2E49/GlrW4XgS+/vI6fPruyxbb/Wzicq19Y7aeIRHcdMzRZWi0IIdqkNdx04jBMJkWE1czsIfL7oiPdSgSVUvcBZwIuoBC4XGud737uduBKwAlcr7X+1L19MvAsEAF8BNygtdZKKRvwPDAZKAEu0Frnul9zGXCn+23/oLV+rjtx91UXTcvmomnZ/g7DKy7Cyq/mD213n6kDE/jj2WOpbWzqzTWiX2BOzxLC4+yJGSRFheFoNj05NtzKoMNGp0Vg8dQOOObBL/GcubtOG8WCUWmkxNgkkRdCiCB3zbzB0sOwC7o7IviQ1vouAKXU9cDvgGuUUqOAC4HRQH9gkVJqmNbaCTwGXA0sw0gEFwIfYySNZVrrIUqpC4EHgQuUUonA3cAUQAOrlVLvaa2l3FQfYLOYuXh64CSvQnRGuNXMgtH9/B2G6KKFY/qRX16H3WmkgTaribMnZnS78q4ILp42ISL47C+rpbLeKCbULy48YKeDC9/yFMfqHxeOWaqJdkm3EkGtdfOVk1HgvQl7JvCK1roB2KOU2glMU0rlArFa66UASqnngbMwEsEzgXvcr38DeFQppYCTgM+11qXu13yOkTy+3J3YhRAt5ZbUUlkn1fhE35UeF8Edp47ydxjCBw6U1VFW2+jTpQ9md0uN/aV1LR6Lvi/MnfCd8eh33m3zR6Ty1OVT/RVSn1Bc08jX24uo6ON/++89czS3nzKCMLOpRYsJ0bFurxFUSt0PXApUAMe5N2dgjPh55Lm32d1fH77d85r9AFprh1KqAkhqvr2V1xwey9UYo41kZ8solBCd4Zkud9c7G73bImQKnRAhweWCsppGahocHe/cS0b0i2H5nhJKauDkMb4rCBMbbuXJS6dwsLKe9NhwqVYZRM6a2J/ocIu3fc1/vtpNSU1jh69TCj7dVMDYuz+l3uEMqUq00TYLy3aXcunTK7zbYmx9s3SIUorIsL4Zu791+F1TSi0CWpsjdYfW+l2t9R3AHe41gddhTONsLR3X7WznKF/TcqPWTwBPAEyZMqWbrXmFCA2j+8fy0lXTqXJfCCZGhUlVN+ETBZX13Pu+UVXY0UY7GOE/FrPiQHkdE+/7vNk2/18I33naKO48rWdGdk8YFdwtNkJVZJiFM8b39z5+Z20+a/aWcdnTKzhQVsfwtJhWX3fzguEs213qfTyiX+v7BaPHfjyZ3cXV3sdWs4nR/eP8GFHg04Dd6cKlg+fvWYeJoNb6hE4e6yXgQ4xEMA/IavZcJpDv3p7ZynaavSZPKWUB4oBS9/Z5h71mSSdjEkJ0QCnFrCCprNV8Gpm/qukKw7jMOJbuKuH1VcaEjhhb65WF/WHjAaP1TnZScDZd76zrjhvaordiQlQYOSH+PRHB4aTRaVTU2SmvszOsXwwnjEptdb8Fo/uF7HrwhKgwJkcl+juMPsOsFKU1jQy942MAxmcGR9Lc3aqhQ7XWO9wPzwC2ur9+D3hJKfUwRrGYocAKrbVTKVWllJoBLMeYUvrPZq+5DFgKnAt86a4m+inwR6WUp8PuAuD27sQthAhOmQkRPPijsZTV2jnFh1PKRNddd/xQrju+/arC/rBgVBofrD/o/jo0LwA9spMiuXz2QJ8fd0pOIvOGp6CASdkJHe4vhK/9ePoAfjx9gL/DEEHkp7MHkhobjnaPBk4bmOTniHxD6W4Mbyql3gSGY7SP2Atco7U+4H7uDuAKwAHcqLX+2L19Ck3tIz4GfuVO+MKBF4CJGCOBF2qtd7tfcwXwW/fb3q+1fqaj2KZMmaJXrVp11P82IYQQQgghhOjLlFKrtdZTWn2uO4lgIJNEUAghhBBCCBHK2ksE/b8qXAghhBBCCCFEr5JEUAghhBBCCCFCjCSCQgghhBBCCBFiJBEUQgghhBBCiBATtMVilFJFGJVMA00yUOzvIESr5NwELjk3gUvOTeCScxO45NwELjk3gUvOzdEZoLVOae2JoE0EA5VSalVblXuEf8m5CVxybgKXnJvAJecmcMm5CVxybgKXnBvfk6mhQgghhBBCCBFiJBEUQgghhBBCiBAjiWDve8LfAYg2ybkJXHJuApecm8Al5yZwybkJXHJuApecGx+TNYJCCCGEEEIIEWJkRFAIIYQQQgghQowkgr1IKbVQKbVNKbVTKXWbv+MJNUqpLKXUYqXUFqXUJqXUDe7t9yilDiil1ro/Tmn2mtvd52ubUuok/0Uf/JRSuUqpDe5zsMq9LVEp9blSaof7c0Kz/eXc9AKl1PBmPxtrlVKVSqkb5efGP5RSTyulCpVSG5tt6/LPiVJqsvvnbadS6hGllOrtf0uwaePcPKSU2qqUWq+UelspFe/enqOUqmv28/N4s9fIufGxNs5Nl3+HybnxvTbOzavNzkuuUmqte7v83Pia1lo+euEDMAO7gEFAGLAOGOXvuELpA0gHJrm/jgG2A6OAe4CbW9l/lPs82YCB7vNn9ve/I1g/gFwg+bBtfwZuc399G/CgnBu/niMzcAgYID83fjsHc4FJwMZm27r8cwKsAGYCCvgYONnf/7a+/tHGuVkAWNxfP9js3Px/O3cTGlcVhnH8/2BU/OpKLSVVGqWuWxcilEpBBQvSqKCkiBYUtNIuihtRQcGVCLp1IS1W6IcVLXaldaUbK6V1obWCtX6FhhR0YUFQEh8X94xOYjIwYXImcJ8fhJw5uTNceHhv5sy896zrPm7e6ySbOtn0fQ1LNnWymff314GXyjh1M+CffCNYzx3AOdvnbf8FHAbGh3xOrWJ7yvbpMr4EnAVGezxlHDhs+0/bPwDnaHKMesaB/WW8H3igaz7Z1Hc38L3tn3ock2yWke3PgN/mTfdVJ5LWAKtsf+7mHdQ7Xc+JJVooG9vHbc+UhyeAtb1eI9ksj0XqZjGpm4p6ZVO+1XsEONTrNZLN0mUhWM8o8EvX40l6L0JiGUlaB2wEvihTu0vrzr6utqpkVpeB45JOSXqqzK22PQXNQh64scwnm+GYYO4/5NTNytBvnYyW8fz5WF5P0HxT0TEm6UtJn0raXOaSTV39XMOSTX2bgWnb33XNpW4GKAvBehbqVc6WrUMg6VrgfWCP7d+BN4FbgQ3AFE0bAiSz2jbZvh3YCuySdFePY5NNZZKuALYB75Wp1M3Kt1gWyagySS8CM8CBMjUF3Gx7I/AscFDSKpJNTf1ew5JNfduZ++Fj6mbAshCsZxK4qevxWuDCkM6ltSRdTrMIPGD7AwDb07Znbf8NvMV/bWzJrCLbF8rvi8BRmhymS8tHp/XjYjk82dS3FThtexpSNytMv3UyydwWxWS0jCTtAO4HHi1ta5S2w1/L+BTNfWi3kWyqWcI1LNlUJGkEeAh4tzOXuhm8LATrOQmslzRWPlmfAI4N+ZxapfSa7wXO2n6ja35N12EPAp2dq44BE5KulDQGrKe5GTkGTNI1kq7rjGk2WPiaJoMd5bAdwIdlnGzqm/PJbOpmRemrTkr76CVJd5br4uNdz4kBknQf8BywzfYfXfM3SLqsjG+hyeZ8sqmn32tYsqnuHuBb2/+2fKZuBm9k2CfQFrZnJO0GPqbZeW+f7TNDPq222QQ8BnzV2YoYeAHYLmkDTRvBj8DTALbPSDoCfEPT0rPL9mzlc26L1cDRstvzCHDQ9keSTgJHJD0J/Aw8DMmmNklXA/dSaqN4LXVTn6RDwBbgekmTwMvAq/RfJ88AbwNX0dy31n3vWizBItk8T7P75Cfl+nbC9k6anRJfkTQDzAI7bXc2zEg2A7ZINluWcA1LNgO2UDa29/L/e9IhdTNwKl0KERERERER0RJpDY2IiIiIiGiZLAQjIiIiIiJaJgvBiIiIiIiIlslCMCIiIiIiomWyEIyIiIiIiGiZLAQjIiIiIiJaJgvBiIiIiIiIlslCMCIiIiIiomX+Ae2kasUhvR3HAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure() \n", - "plt.subplot(2,1,1)\n", - "plt.plot(df_simulation.index, df_simulation, label = 'Simulated Temperature')\n", - "plt.plot(df.index, df['OutsideTemp'], '-.', label = 'Outside Temperature')\n", - "plt.title('Temperatures')\n", - "plt.legend()\n", - "plt.subplot(2,1,2)\n", - "plt.plot(power[:, 1], drawstyle = 'steps', label = 'Heat Input')\n", - "plt.title('Heat Input')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Add the outputs to the experimental df: " - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "df.loc[:,'SimulatedTemp'] = df_simulation\n", - "df.loc[:,'SimulatedHeat'] = power[:, 1]" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PowerSetpointOutsideTempSupplyTempInsideTempSolRadSimulatedTempSimulatedHeat
timestamp
2017-07-13 20:00:00+02:0018.82758622.524.023.922.93333391.71493323.0845814239.488599
2017-07-13 20:05:00+02:003628.96551722.524.015.523.216667121.53870023.4614984239.488599
2017-07-13 20:10:00+02:004391.34482822.524.014.323.116667101.48161723.5862364239.488599
2017-07-13 20:15:00+02:004392.46666722.524.014.022.800000163.71015023.6750214239.488599
2017-07-13 20:20:00+02:003777.48275922.524.014.022.63333390.03956723.7643614239.488599
...........................
2017-07-20 05:35:00+02:009.51724122.522.023.622.7666673.26000023.73448310384.873952
2017-07-20 05:40:00+02:005.66666722.522.023.622.7333333.25000023.80676210384.873952
2017-07-20 05:45:00+02:009.13793122.522.023.622.7500003.24000023.80676210384.873952
2017-07-20 05:50:00+02:004.20689722.522.023.622.7333333.34000024.00824110384.873952
2017-07-20 05:55:00+02:004.23333322.522.023.622.8000003.38000024.03289710384.873952
\n", - "

1848 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " Power Setpoint OutsideTemp SupplyTemp \\\n", - "timestamp \n", - "2017-07-13 20:00:00+02:00 18.827586 22.5 24.0 23.9 \n", - "2017-07-13 20:05:00+02:00 3628.965517 22.5 24.0 15.5 \n", - "2017-07-13 20:10:00+02:00 4391.344828 22.5 24.0 14.3 \n", - "2017-07-13 20:15:00+02:00 4392.466667 22.5 24.0 14.0 \n", - "2017-07-13 20:20:00+02:00 3777.482759 22.5 24.0 14.0 \n", - "... ... ... ... ... \n", - "2017-07-20 05:35:00+02:00 9.517241 22.5 22.0 23.6 \n", - "2017-07-20 05:40:00+02:00 5.666667 22.5 22.0 23.6 \n", - "2017-07-20 05:45:00+02:00 9.137931 22.5 22.0 23.6 \n", - "2017-07-20 05:50:00+02:00 4.206897 22.5 22.0 23.6 \n", - "2017-07-20 05:55:00+02:00 4.233333 22.5 22.0 23.6 \n", - "\n", - " InsideTemp SolRad SimulatedTemp \\\n", - "timestamp \n", - "2017-07-13 20:00:00+02:00 22.933333 91.714933 23.084581 \n", - "2017-07-13 20:05:00+02:00 23.216667 121.538700 23.461498 \n", - "2017-07-13 20:10:00+02:00 23.116667 101.481617 23.586236 \n", - "2017-07-13 20:15:00+02:00 22.800000 163.710150 23.675021 \n", - "2017-07-13 20:20:00+02:00 22.633333 90.039567 23.764361 \n", - "... ... ... ... \n", - "2017-07-20 05:35:00+02:00 22.766667 3.260000 23.734483 \n", - "2017-07-20 05:40:00+02:00 22.733333 3.250000 23.806762 \n", - "2017-07-20 05:45:00+02:00 22.750000 3.240000 23.806762 \n", - "2017-07-20 05:50:00+02:00 22.733333 3.340000 24.008241 \n", - "2017-07-20 05:55:00+02:00 22.800000 3.380000 24.032897 \n", - "\n", - " SimulatedHeat \n", - "timestamp \n", - "2017-07-13 20:00:00+02:00 4239.488599 \n", - "2017-07-13 20:05:00+02:00 4239.488599 \n", - "2017-07-13 20:10:00+02:00 4239.488599 \n", - "2017-07-13 20:15:00+02:00 4239.488599 \n", - "2017-07-13 20:20:00+02:00 4239.488599 \n", - "... ... \n", - "2017-07-20 05:35:00+02:00 10384.873952 \n", - "2017-07-20 05:40:00+02:00 10384.873952 \n", - "2017-07-20 05:45:00+02:00 10384.873952 \n", - "2017-07-20 05:50:00+02:00 10384.873952 \n", - "2017-07-20 05:55:00+02:00 10384.873952 \n", - "\n", - "[1848 rows x 8 columns]" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Gaussian Process Regression" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load Gaussian Process Regression Model" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "model_path = Path(Path.cwd(), 'model')" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "def load_gpr(model_path):\n", - " x_scaler = pickle.load(open(Path(model_path, 'x_scaler.pkl'), 'rb'))\n", - " m_params = pickle.load(open(Path(model_path, 'gp_params.gpf'), 'rb'))\n", - " m_data = pickle.load(open(Path(model_path, 'gp_data.gpf'), 'rb'))\n", - "\n", - " k = gpflow.kernels.SquaredExponential(lengthscales=([1] * m_data[0].shape[1])) + gpflow.kernels.Constant()\n", - "\n", - " m = gpflow.models.GPR(\n", - " data = m_data, \n", - " kernel = k, \n", - " mean_function = None\n", - " )\n", - " \n", - " gpflow.utilities.multiple_assign(m, m_params)\n", - " \n", - " return x_scaler, m" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "x_scaler, m = load_gpr(model_path)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].variance ParameterSoftplus True () float64672551.1934857197
GPR.kernel.kernels[0].lengthscalesParameterSoftplus True (7,) float64[2.96352201e+05, 4.54452962e+05, 4.06450919e+02...
GPR.kernel.kernels[1].variance ParameterSoftplus True () float64676495.6894024109
GPR.likelihood.variance ParameterSoftplus + Shift True () float640.10898288218871159
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "print_summary(m)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "def data_to_gpr(df, lu = 2, ly = 3, dyn_in = 'SimulatedHeat', dyn_out = 'SimulatedTemp'):\n", - " \n", - " df_gpr = df[['OutsideTemp', 'SolRad', 'SimulatedTemp', 'SimulatedHeat']].copy()\n", - " df_gpr.rename(columns = {dyn_in: 'u', dyn_out: 'y'}, inplace = True)\n", - " \n", - " # Add the regressive inputs/outputs\n", - " for idx in range(1, lu + 1):\n", - " df_gpr.loc[:, f\"u_{idx}\"] = df_gpr['u'].shift(idx)\n", - "\n", - " for idx in range(1, ly + 1):\n", - " df_gpr.loc[:, f\"y_{idx}\"] = df_gpr['y'].shift(idx)\n", - "\n", - " df_gpr.dropna(inplace = True)\n", - " \n", - " return df_gpr" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
OutsideTempSolRadyuu_1u_2y_1y_2y_3
timestamp
2017-07-13 20:15:00+02:0024.0163.71015023.6750214239.4885994239.4885994239.48859923.58623623.46149823.084581
2017-07-13 20:20:00+02:0024.090.03956723.7643614239.4885994239.4885994239.48859923.67502123.58623623.461498
2017-07-13 20:25:00+02:0024.074.42825023.8108384239.4885994239.4885994239.48859923.76436123.67502123.586236
2017-07-13 20:30:00+02:0024.070.02716723.8815274239.4885994239.4885994239.48859923.81083823.76436123.675021
2017-07-13 20:35:00+02:0024.070.90666724.4815024239.4885994239.4885994239.48859923.88152723.81083823.764361
\n", - "
" - ], - "text/plain": [ - " OutsideTemp SolRad y u \\\n", - "timestamp \n", - "2017-07-13 20:15:00+02:00 24.0 163.710150 23.675021 4239.488599 \n", - "2017-07-13 20:20:00+02:00 24.0 90.039567 23.764361 4239.488599 \n", - "2017-07-13 20:25:00+02:00 24.0 74.428250 23.810838 4239.488599 \n", - "2017-07-13 20:30:00+02:00 24.0 70.027167 23.881527 4239.488599 \n", - "2017-07-13 20:35:00+02:00 24.0 70.906667 24.481502 4239.488599 \n", - "\n", - " u_1 u_2 y_1 y_2 \\\n", - "timestamp \n", - "2017-07-13 20:15:00+02:00 4239.488599 4239.488599 23.586236 23.461498 \n", - "2017-07-13 20:20:00+02:00 4239.488599 4239.488599 23.675021 23.586236 \n", - "2017-07-13 20:25:00+02:00 4239.488599 4239.488599 23.764361 23.675021 \n", - "2017-07-13 20:30:00+02:00 4239.488599 4239.488599 23.810838 23.764361 \n", - "2017-07-13 20:35:00+02:00 4239.488599 4239.488599 23.881527 23.810838 \n", - "\n", - " y_3 \n", - "timestamp \n", - "2017-07-13 20:15:00+02:00 23.084581 \n", - "2017-07-13 20:20:00+02:00 23.461498 \n", - "2017-07-13 20:25:00+02:00 23.586236 \n", - "2017-07-13 20:30:00+02:00 23.675021 \n", - "2017-07-13 20:35:00+02:00 23.764361 " - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_gpr = data_to_gpr(df)\n", - "df_gpr.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "df_input = df_gpr.drop(columns = ['u', 'y'])\n", - "df_output = df_gpr['y']" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "np_input = df_input.to_numpy()\n", - "np_output = df_output.to_numpy().reshape(-1, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "np_input_sc = x_scaler.transform(np_input)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "mean, var = m.predict_y(np_input_sc)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluate performance of loaded model" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAEvCAYAAAAzXwbsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5gdZ3n3/3mmnLa9qBdbluUqS3I3NjYYAwZMsTEQOoZACC38yAuBF14SQiChJSQhJISEgAkGU4wNxoCxjY0r7nKVLVlWr6vtp055nt8fM6ftnt09u5KslXV/rkuXztQze3Z2zjzf+d7fWxljEARBEARBEARBEARBEJ5/WIf6AARBEARBEARBEARBEISDgwg/giAIgiAIgiAIgiAIz1NE+BEEQRAEQRAEQRAEQXieIsKPIAiCIAiCIAiCIAjC8xQRfgRBEARBEARBEARBEJ6niPAjCIIgCIIgCIIgCILwPMV5Lt+st7fXHH300c/lWwqCIAiCIAiCIAiCIDyvefDBB/cZY+Y0WvacCj9HH300DzzwwHP5loIgCIIgCIIgCIIgCM9rlFJbJlompV6CIAiCIAiCIAiCIAjPU0T4EQRBEARBEARBEARBeJ4iwo8gCIIgCIIgCIIgCMLzlOc040cQBEEQBEEQBEEQDjW+77N9+3aKxeKhPhRBmBapVIrFixfjum7T24jwIwiCIAiCIAiCIBxRbN++nba2No4++miUUof6cAShKYwx9Pf3s337dpYtW9b0dlLqJQiCIAiCIAiCIBxRFItFenp6RPQRDiuUUvT09EzbqSbCjyAIgiAIgiAIgnDEIaKPcDgyk/NWhB9BEARBEARBEARBeI5RSvGOd7yjMh0EAXPmzOHVr371ITyqqWltbZ1ync997nN87Wtfm3Sd6667jieffPJAHZYwCSL8CIIgCIIgCIIgCMJzTEtLC48//jiFQgGAm266iUWLFh2SYwmC4Dl/TxF+njtE+BEEQRAEQRAEQRCEQ8ArX/lKbrjhBgB+9KMf8Za3vKWyLJfL8Z73vIczzzyTU089lV/84hcAbN68mfPPP5/TTjuN0047jbvvvhuAXbt2ccEFF7BmzRpWrlzJHXfcAdQ7dH72s59xxRVXAHDFFVfwl3/5l1x44YV88pOfZOPGjbziFa/g9NNP5/zzz+epp54CYNOmTbzgBS/gzDPP5LOf/eyEP8sXv/hFjj/+eF760pfy9NNPV+b/13/9F2eeeSarV6/m8ssvJ5/Pc/fdd/PLX/6ST3ziE6xZs4aNGzc2XE84MIjwIwiCIAiCIAiCcBAJQn2oD0GYpbz5zW/m6quvplgs8uijj3L22WdXln3xi1/kJS95Cffffz+33norn/jEJ8jlcsydO5ebbrqJhx56iB//+Mf8xV/8BQA//OEPufjii1m7di2PPPIIa9asmfL9169fz80338w//uM/8md/9md84xvf4MEHH+RrX/saH/zgBwH46Ec/ygc+8AHuv/9+5s+f33A/Dz74IFdffTUPP/wwP//5z7n//vsry17/+tdz//3388gjj3DiiSfyne98h3PPPZfXvva1fPWrX2Xt2rUsX7684XrCgUHauQuCIAiCIAiCIBxEBvIec9tSh/owhAn42+uf4MmdIwd0nyctbOdvXnPylOutWrWKzZs386Mf/YhXvepVdct+97vf8ctf/rKSlVMsFtm6dSsLFy7kwx/+MGvXrsW2bdavXw/AmWeeyXve8x583+fSSy9tSvh54xvfiG3bZLNZ7r77bt74xjdWlpVKJQDuuusurrnmGgDe8Y538MlPfnLcfu644w4uu+wyMpkMAK997Wsryx5//HH+3//7fwwNDZHNZrn44osbHkuz6wnTR4QfQRAEQRAEQRCEg0i+FELboT4KYbby2te+lo9//OPcdttt9Pf3V+YbY7jmmms4/vjj69b/3Oc+x7x583jkkUfQWpNKRaLiBRdcwO23384NN9zAO97xDj7xiU/wzne+s64L1Ng24C0tLQBorens7GTt2rUNj7GZTlITrXPFFVdw3XXXsXr1ar73ve9x22237dd6wvQR4UcQBEEQBEEQBOEgEYQac6gPQpiUZpw5B5P3vOc9dHR0cMopp9SJHRdffDHf+MY3+MY3voFSiocffphTTz2V4eFhFi9ejGVZXHnllYRhCMCWLVtYtGgR73vf+8jlcjz00EO8853vZN68eaxbt47jjz+ea6+9lra28Spke3s7y5Yt46c//SlvfOMbMcbw6KOPsnr1as477zyuvvpq3v72t3PVVVc1/BkuuOACrrjiCj71qU8RBAHXX38973//+wEYHR1lwYIF+L7PVVddVQmwbmtrY3R0tLKPidYT9h/J+BEEQRAEQRAEQThIhMZgjEg/wsQsXryYj370o+Pmf/azn8X3fVatWsXKlSsrwcof/OAHufLKKznnnHNYv359xbVz2223sWbNGk499VSuueaayj6/9KUv8epXv5qXvOQlLFiwYMLjuOqqq/jOd77D6tWrOfnkkyth0v/yL//CN7/5Tc4880yGh4cbbnvaaafxJ3/yJ6xZs4bLL7+c888/v7Ls7/7u7zj77LN52ctexgknnFCZ/+Y3v5mvfvWrnHrqqWzcuHHC9YT9R011EVJKpYDbgSSRQ+hnxpi/UUp9Dngf0Bev+mljzK8n29cZZ5xhHnjggf0+aEEQBEEQBEEQhOeaINQ4dvPPzo0x5L2Q3SNFls9pnXqDBoTaoADLmrrURmiedevWceKJJx7qwxCEGdHo/FVKPWiMOaPR+s2UepWAlxhjskopF7hTKfWbeNnXjTFf268jFgRBEARBEARBmOX4oaboh7RNQ/jJlgLyXshMDT+jRZ9dw0WO7mkhIcKPIAgzZMqrlonIxpNu/E+8ioIgCIIgCIIgHDH0jZYoBdNryz5SDMjm8yhvZh2jhvI+JV+jpVRMEIT9oCm5WillK6XWAnuBm4wx98aLPqyUelQp9T9Kqa6DdZCCIAiCIAiCIAiHiiDUDOS8aTt3Ros+vTd+mOX/fSLo6YlGAIGO3lB0H0EQ9oemhB9jTGiMWQMsBs5SSq0E/gNYDqwBdgH/2GhbpdSfKaUeUEo90NfX12gVQRAEQRAEQRCEWUu2FGAMmGkUPuRKAX5g6Nh0QzRj272Tb9CAMBaLpvO+giAIY5lWVy9jzBBwG/AKY8yeWBDSwH8BZ02wzbeNMWcYY86YM2fO/h6vIAiCIAiCIAjCc8rukWL0Yhr6y2DeQxvDOr0kmrHjwWm/rx9Gb6hF9xEEYT+YUvhRSs1RSnXGr9PAS4GnlFK1feAuAx4/KEcoCIIgCIIgCIJwiDDGEMQCzHT0Fy/QPNuXI0EQzQi9ab93f7bEV298mj3DhWlvKwiCUKYZx88C4Fal1KPA/UQZP78CvqKUeiyefyHwsYN4nIIgCIIgCIIgCM85XqgxBlRQJPHMb6beIMYPDVv2ZWlRkVsoCPxpvW8Qar7826e5fUMfd2zYN61thcODPXv28Na3vpVjjjmG008/nRe84AVce+21B/19H3jgAf7iL/7igOzrxS9+MccffzyrV6/mvPPO4+mnnz4g+z2QHMhj/N73vseHP/xhAL71rW/x/e9/f8J1N2/ezA9/+MPK9IH83KfLlO3cjTGPAqc2mP+Og3JEgiAIgiAIgiAIs4Sir1FBkd5rLqNr9AlYfALMPXHK7bwg5MIH3s98NQiA75WmHnzVsH7PKHt3bOIniW8w96F5cN71M/wJhNmIMYZLL72Ud73rXRVxYMuWLfzyl7886O99xhlncMYZZxyw/V111VWcccYZfPvb3+YTn/jEuJ8hDENs2z5g7zcTDsYx/vmf//mky8vCz1vf+lbgwH/u02FaGT+CIAiCIAiCIAhHEjsGC5Ru+CTzR59oepsg1Dy+eTervYcr83yvNK33/cMf7+WW5Mc5y3qao/tvn9a2wuzn97//PYlEok48OOqoo/jIRz4CRKLB+eefz2mnncZpp53G3XffDcBtt93Gq1/96so2H/7wh/ne974HwKc+9SlOOukkVq1axcc//nEAfvrTn7Jy5UpWr17NBRdcMG4f9913H+eeey6nnnoq5557bsUN873vfY/Xv/71vOIVr2DFihX81V/91ZQ/0wUXXMAzzzwDQGtrK3/913/N2WefzT333MM//dM/sXLlSlauXMk///M/V7b5/ve/z6pVq1i9ejXveEfkLenr6+Pyyy/nzDPP5Mwzz+Suu+4C4A9/+ANr1qxhzZo1nHrqqYyOjrJr1y4uuOAC1qxZw8qVK7njjjtmfIw/+MEPOOuss1izZg3vf//7CcMQgO9+97scd9xxvOhFL6ocC8DnPvc5vva1rwHwzDPP8NKXvpTVq1dz2mmnsXHjRj71qU9xxx13sGbNGr7+9a/Xfe4DAwNceumlrFq1inPOOYdHH320ss/3vOc9vPjFL+aYY47hX//1X6f83JthOqKzIAiCIAiCIAjCEYMxhuGCz/y994CKZ+pgyu1GigHZJ39XN8/3p5fxk33mblpVkd30kHEM7dPaWpjtPPHEE5x22mkTLp87dy433XQTqVSKDRs28Ja3vIUHHnhgwvUHBga49tpreeqpp1BKMTQ0BMDnP/95brzxRhYtWlSZV8sJJ5zA7bffjuM43HzzzXz605/mmmuuAWDt2rU8/PDDJJNJjj/+eD7ykY+wZMmSCY/h+uuv55RTTgEgl8uxcuVKPv/5z/Pggw/y3e9+l3vvvRdjDGeffTYvetGLSCQSfPGLX+Suu+6it7eXgYEBAD760Y/ysY99jBe+8IVs3bqViy++mHXr1vG1r32Nb37zm5x33nlks1lSqRTf/va3ufjii/nMZz5DGIbk8/lJP/eJjnHdunV8+ctf5q677sJ1XT74wQ9y1VVX8bKXvYy/+Zu/4cEHH6Sjo4MLL7yQU08dVxDF2972Nj71qU9x2WWXUSwW0VrzpS99ia997Wv86le/AiLBrczf/M3fcOqpp3Ldddfx+9//nne+852sXbsWgKeeeopbb72V0dFRjj/+eD7wgQ/guu6kP9dUiPAjCIIgCIIgCILQgFAb1u0aods4VeEnnDqrZyjvsWj37+vmBdMUflKlKNfnIXsNL9LTbwUvTIPffAp2P3Zg9zn/FHjll5pe/UMf+hB33nkniUSC+++/H9/3+fCHP8zatWuxbZv169dPun17ezupVIr3vve9XHLJJRVnyXnnnccVV1zBm970Jl7/+teP2254eJh3vetdbNiwAaUUvl89vy+66CI6OjoAOOmkk9iyZUtD4edtb3sb6XSao48+mm984xsA2LbN5ZdfDsCdd97JZZddRktLCwCvf/3rueOOO1BK8YY3vIHe3l4Auru7Abj55pt58sknK/sfGRlhdHSU8847j7/8y7/kbW97G69//etZvHgxZ555Ju95z3vwfZ9LL72UNWvWNPx8pjrGW265hQcffJAzzzwTgEKhwNy5c7n33nt58YtfTLlD+Z/8yZ+M+12Mjo6yY8cOLrvsMgBSqVTDY6jlzjvvrAhsL3nJS+jv72d4eBiASy65hGQySTKZZO7cuezZs4fFixdPuc/JkFIvQRAEQRAEQRCEBoTGkN1wB8db29llzY9mNuH4GejbxYvDu3m45xJufcGVDJvMtIWf9nCQkkpRdDtx9PSCoYXZz8knn8xDDz1Umf7mN7/JLbfcQl9fHwBf//rXmTdvHo888ggPPPAAnhedP47joLWubFcsFivz77vvPi6//HKuu+46XvGKVwBRAPEXvvAFtm3bxpo1a+jv7687js9+9rNceOGFPP7441x//fWV/QEkk8nKa9u2CYLG5/5VV13F2rVrue666yrCUCqVqmTmGNO4H54xBqXUuPlaa+655x7Wrl3L2rVr2bFjB21tbXzqU5/iv//7vykUCpxzzjk89dRTXHDBBdx+++0sWrSId7zjHROGLTdzjO9617sq7/n000/zuc99DqDhMY79OaZLo23K79Ps5z4dxPEjCIIgCIIgCILQgDA0LN/2c0ok+Vn7u/jI0JebcvyMPnoDGVVicOW7yXefTInEtIWfLj3IaLIb3DRu0SNqLTb5AFSYIdNw5hwoXvKSl/DpT3+a//iP/+ADH/gAQF2Z0vDwMIsXL8ayLK688spK3sxRRx3Fk08+SalUolgscsstt/DCF76QbDZLPp/nVa96Feeccw7HHnssABs3buTss8/m7LPP5vrrr2fbtm11xzE8PMyiRYsAKllBB5oLLriAK664gk996lMYY7j22mv53//9XxKJBJdddhkf+9jH6OnpYWBggO7ubl7+8pfzb//2b3ziE58AopKzNWvWsHHjRk455RROOeUU7rnnHp566inS6TSLFi3ife97H7lcjoceeoh3vvOd0z7Giy66iNe97nV87GMfY+7cuQwMDDA6OsrZZ5/NRz/6Ufr7+2lvb+enP/0pq1evrtu2vb2dxYsXc91113HppZdSKpUIw5C2tjZGR0cn/EyuuuoqPvvZz3LbbbfR29tLe/vBK+gU4UcQBEEQBEEQBKEBG/fl6A12sbfjBHKpedHMJtw32b2bAOg5ehWUwMcmDCYWfrQ2WFZV1AlCTY8ZIuf2EFoJLEwkODmJ/fuBhFmDUorrrruOj33sY3zlK19hzpw5tLS08OUvfxmAD37wg1x++eX89Kc/5cILL6yUSS1ZsoQ3velNrFq1ihUrVlTyZkZHR3nd615HsVjEGMPXv/51AD7xiU+wYcMGjDFcdNFFrF69mj/84Q+V4/irv/or3vWud/FP//RPvOQlLzkoP+tpp53GFVdcwVlnnQXAe9/73spxf+Yzn+FFL3oRtm1z6qmn8r3vfY9//dd/5UMf+hCrVq0iCAIuuOACvvWtb/HP//zP3Hrrrdi2zUknncQrX/lKrr76ar761a/iui6tra2TtlefjJNOOokvfOELvPzlL0drjeu6fPOb3+Scc87hc5/7HC94wQtYsGABp512WkWEq+V///d/ef/7389f//Vf47ouP/3pT1m1ahWO47B69WquuOKKumygz33uc7z73e9m1apVZDIZrrzyyhkdd7OomdiSZsoZZ5xhJgukEgRBEARBEARBmC18/+5neeWNL6J01IX82LyM/7Ptw/C2a2DFSyfd7pd/dzkXmAfY9p5HKQYBc//nHPwFp3PsB64et27BC6MA6Y5qLsho0WfX368m7D6WR9SJvHnwW/CpbZCSiOcDxbp16zjxxBMP9WEIwoxodP4qpR40xjTsFy8ZP4IgCIIgCIIgCDFeUM1PWXHfZ5mjRkh0zMdNRLkbJpy8ZGu06NPu9ZFLRg6htGsTYGMalIiNFH1GSz55rz7Do+CHtKgigdNKaMUun2B67eAFQRDKSKmXIAiCIAiCIAhCTMELcW2FUoqTh+8AIL/wBSS2RqVYJa/EZD171u0aYYnai996AinXIpWwyeGMC2gOQs3W/jyWUhjqqzCKnqaVEsZNY5n43YIigiAIM0EcP4IgCIIgCIIgCERuHy/UFPyQUBu2Mo/Hk6cyuuQltLdkACiWJnfejD76K5Zbu9BzT6Ej7dKedAmxMWO6gT27L4cxUct4raHoV3ND8n5ACp9EqgU7WRZ+xPEjCMLMEOFHEARBEARBEAQB8EJNoDV+YBgt+qR1Fj/RgVLQ3RYJP94Uwk9i76MAZM/4EO1pl5akTagc1Bjhxw913XTeC9E6cv4USgEZVcJKpNFW3NpZHD8HnOcy71YQDhQzOW9F+BEEQRAEQRAEQQD8QBOEBi/UbNg7Sit5TLKddMLGcSMBRk/Rzl2XshRIkMq0kHJtHNsiVPY44Wfs2G3nUIHtgwVCbSgWCwA4yRZCuyz8iOPnQJJKpejv7xfxRzisMMbQ399PKjVZwel4JONHEARBEARBEAQB8LUm0AY/1OwaKnEyBax0B4s602x1XQD0JG3ZAfCyFEjT01JtvR45fuoFo7F6gzEwXPApBiGl/CgATqoFUyyHO4vj50CyePFitm/fTl9f36E+FEGYFqlUisWLF09rGxF+BEEQBEEQBEEQAD805L2Aoq8YGMmSUSWcdCdJx8KyIwFGB5M7fiwvS8lK0+pUiyv0GOGn7DIxxrD5V1/m/JEb2PX66wjTPZR8Td/gMADJVAbtxI6fUBw/BxLXdVm2bNmhPgxBeE6QUi9BEARBEARBEATA2Xw7C/7wSYLQMDo8AEC6vQulFHbs+GnUlr0Wy89TsjK4dr3wY5lqqZcxYLTmqd/9F6/d8+90Fbagt9xdWZ4drXH8WFLqJQjC/iGOH0EQBEEQBEEQBGDedW8C4IM7XsZpc6J5rZ3dANhO7PgJg4bbAmhtSIR5vGSGxFjhpybjJ9Sau37xn3yg/x8q8/xtD+Gc8JrodTEHQCrdinEk3FkQhP1DhB9BEARBEARBEIQars6+B7LR697uSAGynakdP/uyJVI6T+j0YlmqMl9b9cLPfTf/pE702Wbm0NL/KGVPT74QvXmmpRVjR0M24xep7lEQBKF5pNRLEARBEARBEIQjnuH8eEEnxMJeciYAdtzVy4SNw529QLO5P0eaIirVVrfMWG5dqVf6sR8CsPFl3+XJtz/CWmcNc0fXsX73CAClfCT8qEQGU84W8sXxIwjCzBDhRxAEQRAEQRCEI54NO/eNm/dsZhW0zQPAdWxCozBB41IvL9TsG/VoUUUS6fa6ZWZsxk/os8E6hvxRFxGmulh08rl0qiwvuP5F3PrYZkpxqRdOGhU7fiYrMRMEQZgMEX4EQRAEQRAEQTji2bvj2XHz+k66ovLasSwCHNCNS71Kfkh/zqOFAonMGOHHcrBrhB9Le4SWW5lOn/wqgkQ7C1U/r7nnjbQPPBYtcNNYVlzqpUX4EQRhZojwIwiCIAiCIAjCEU9u37a66Q97H6HnjMsr066t8LEnzPgpBprBbJ4WiqRbxwo/LjZhZdrSHlpVhZ+gZQHr3vk4Gy6+ii67xP/n/Dx+0zSWbQOgwxBBEISZIMKPIAiCIAiCIAhHPMWBnQBoK0G/6sYc9woSjl1Z7tgWwSTCT8EL6dh1N7YypJecWr/QdnBMgNYGAEv76BrHj4pTm4tLzqf/wi9Vt0t1gBUdg9Ei/AiCMDOkq5cgCIIgCIIgCMJoJPyse9uD6GQHfw7YqtpHy7Eixw9jhB8v0BS8kKIfsmj3zYySJnPyJfX7jh0/o8WAjoyLY3x8qwMFpBM2HWmX3cNReHP+mFexof3XtGcSzMt0Y9u7Acn4EQRh5ojjRxAEQRAEQRCEIx43t5uiSuJkOivzrJrRUsKJM37GCj+hZutAnsSjP+Cl+V+zI3MydiJVv3PbxSFg10iBINQ4xkPbCTozLm0ph3TCrlu92LuScO5KAJQ4fgRB2E/E8SMIgiAIgiAIwhFNqA3z/G0MpReSSTr4BR9jokDnMo6lyBsbMybcOQg1AMfd+2kA2noXjdu/sRM4hPheQCnQ2CbAWAkWdaYxExyTFbuNLLsc7izCjyAIM0McP4IgCIIgCIIgHNHsHMxzinqWgY6TcG2LdMLGthStqepzcse24lKv+pIrLxZ+CkQun9KZHxi3/2xqARaGRHYbQ3mPBD6JVArLUtjxv6RbPzSz4iqzSrizCD+CIMwQEX4EQRAEQRAEQTii2b19I71qBG/eGmxLkbAt2tMOrcmq8OPaigAbNcbx44cGvzBMmiI3zH0f/pyV4/Y/3LIMgOTQRrYOFEgQYDnJunVak05daZkqO35UXAYmXb0EQZghIvwIgiAIgiAIgnBE0797KwAt847BtRWubTG/vT6nx7EsfJxxwk8YGvY8+wQA6XnHYTcYYZmeFdH/+9ZT8kNcAiy3XvhZ2JnmqJ4WXKcs+ETzbdsiNAqtJdxZEISZIcKPIAiCIAiCIAhHNEP9fQB0ds/FthSurXDGKDiurSjhYoWluvkGQ37bWgC6jjm1ks1Ty/KlS+gz7QR7nqLghyTwsZ3EuPVakw7L57RiWdWMH9tShFggpV6CIMwQEX4EQRAEQRAEQTiiyQ7tA8Bt7aYl4dCZGS/KKKUokcAeI/yknr2R83d+hzwpnN5j68rDypy0sJ1nzUJW7LiWVN9jseMnNW49ANe2OKqnpdLpy7YUGkvCnQVBmDHS1UsQBEEQBEEQhCMaVRoCwM50YFnjHTtlPBLYulg3b94N7wbg2ZY1oCza0+647TozCfKJORA8xYtvfxNKGRLJxsIPUCceWSpy/Ei4syAIM0UcP4IgCIIgCIIgHNEk/VEAnEz3pOt5KoGjq46fwItEoCfN0ex68dexLUXKtRtu27UgCnhWcQP3dCrd1LGVHT9S6iUIwkwR4UcQBEEQBEEQhCOaVDiCR4JkKjPpep5K1gk/tz/0OAC7j3s7HQuXs6hrYjEn8/LPsJbjq++Zbk74cSyFRmGMCD+CIMwMEX4EQRAEQRAEQTiiSYej5OzWScu8YLzjJ9cXdQNbsGQ5Cceio0GZV+U9WtpZt/hN1ekmHT9WHO4sGT+CIMwUEX4EQRAEQRAEQTiiyegsBbttyvV8K4lbI/wk8rsB0G0LSTqTD62SrkX6lNdWpse2c58IW5W7eumm1hcEQRiLCD+CIAiCIAiCIBzRpHUez26Zcj1fRcKPH0YijFMaiBa09JKYQvhJuTZL58/hxvCMaIY9vnNYI6SrlyAI+4sIP4IgCIIgCIIgHNG4xiO0Ju6yVcZXSVx8giASYUwQu3+cFOkJQp3LJB0L17boMx3RjFK2qWOzrbLjR4QfQRBmhgg/giAIgiAIgiAc0SRMidCeuvQqiNfxvXw8wwPAWO6E3bzKJB0bpeCcVSdFM7J7mjo22yJy/Ei4syAIM0SEH0EQBEEQBEGYgpGiz2jRP9SHIRwEglCTwMc4Uws/xo5cQUExFn7CSPhZ1NsxZcYPQEfaxRx/STRxzIubOj7bsgiNOH4EQZg5IvwIgiAIgiAIwhSMFHyG8iL8PB8pBpoUHsaZustWR1srAKFXiGYEJXwculpTKDV5RzCA+R0pgrkns+lDO2DZ+U0dXzXcWYQfYXL8UJP3gkN9GMIsRIQfQRAEQRAEQZgCL9AYc6iPQjgYFP2QlPLAmTrjp7szyucZGh4BQIUePk7T7+XaFknHmrJtfC2WlHodcUwm3pgGF6Ig1GhtGMx5+KFcqITxiPAjCIIgCIIgCJPghxovlFbas51ghr+joh+SxEe5Uws/c7o6Adi8ux8v0BB6BMqd1vt1pF0UzQs/jmWJ4+cIY7jgNxR4SkFIqMfPL/ghfdkSA3kPRPcRGiDCjyAIgiAIgiBMwpb+HEFoMDKimtUUg5kKP1Gpl3KnLvWa0xU5flY89o8UvBClPfxpCj89rUlcp3nhpxzuLMLPkYHWhoGc19BhWPR1w6tQwQ8peCF+INcpoTEi/AiCIAiCIAjCBBT9kIKneXjrELes23uoD0eYhKI/M2Gk6PmklI/VhOOnZ9kqAI4evIu8H2CFHuE0hR+IOnw1i1XO+JFSryMCL9RoPd64o7VhpOCjGyhCfmjIlqLyMClJFRohwo8gCIIgCIIgTEDJ1+wcKvDZXzzO53/15KE+HGECjDGUZuj4GclFHbqsxNSOn+ScY/iBeg0llSRfCrD09Eu9ABJNdAArUy31knLDI4EgLuUaK/DsGCowlPcbCjvGmMp80X2ERjSfRCYIgiAIgiAIRxjFIOQ3j2zhY85P2ckc0K+M0nZjjDFNdXMSDi7aRI6IZgm1wY4DlkdHo6Bmu4lSL4BSZh7JXIlSdgBL++gZOX6aF37K4c7i+DkyCONw5rKQUz6vhwt+3fxaauc1ygYSBHH8CIIgCIIgCMIEZIs+xY1381HnWr7sfBvW/waIgoRDbRoGrQrPPcaYhiUwjfACTVDjnhkcGQUgkW5panurfSEA9uhuLO0TWolpHm3U3atZJNz5yCLQGhWWMKEHRKVfI0W/xtEz/jzXxlD0Q372nS8RfPfVcq4I4xDHjyAIgiAIgiA0wAs0G/tydJa2Q9nUMbobiBwmXhBOy7khHDy0if41gxdq7NilFYSa4Vj4yWSaE3465i2FXZDbtw3beOgZCD/ToS3lEGKh9cQtvoXnD6E2nPT9U2DO8fDnt+OFmqF85PZJ7XsUisCx51c38At0/f6TPJxbxt+af4d+wMtCquOQHL8wOxHhRxAEQRAEQRAakPcCbly7mU86P6vONJFTxBA9YU9Mw7khHDyse79J79a18JbvTLluyQ9JuVG4cinQlIpRxk+mpTnhp+eolfgP2zibbsEYH203t91MySRsDBZhIC6O5wtaGyyrcYnops0bmRsWYfcjQCRAl/OrVlz36milzw1XN1j/W9qf+F8urd1JKCKhUI98UwmCIAiCIAhCA3KlkIVPX8lcNVSZp8Nq55yCFzZdXiQcXJyb/h9tT/+sqZZGxUATxusFoaFUyAHgJpsTcJYuWcrv9Jks33UDrvEx1vQzfqaDUgrLtgmnOZifaZcz4eCT9YJKZs9Y1v3mPwHwnVYgEif9UBOGE4R7N3L26Mb7Fo5cRPgRBEEQBEEQhAas2zXCuWYtAI92vQyAIB58a2MoiQNj9pHvn3KVgheUjVv4WpPO74omnGRTb5F2bdZlTqclHGY521Fuc9vtD7btVETHZih4IbuGiwfxiIT9wWjwJxByzsvdDEC+dSkAuVKAMfDH23/TeGeBV3n5dffPohdSFiiMYUrhRymVUkrdp5R6RCn1hFLqb+P53Uqpm5RSG+L/uw7+4QqCIAiCIAjCc8MjW/tZbW1k64p3ceOyTwIQBlXHT9HX4viZBdR1Mep/Zsr1i37k+NkzUiQIDW/t/9doQaanqffrbU2Q7V0NQIsqYbupaR/zdLFtBz2NwN7dI0UKngiTsxVtDEE4/tqRLQXMUwPRROijtaHka9yhjbxt4/9puK9sNupKFyiH0M1UthWEWppx/JSAlxhjVgNrgFcopc4BPgXcYoxZAdwSTwuCIAiCIAjCYY8xht2bnyKjSqj5J2PbUTlPEFQdP4mBDahdjxzKwxSIwppHVVs0Mbh50nW1NrQ/8wuS9/4r/VkPb2Qv3XqA21MXwvxVTb2fY1u0LjmFnImcPk7iORB+HAejw6a6yGltIpdIg+5PwuzA0Njxc/8zu2hXhWgi9DDP3MKCP36ewp3fImE8/qhPpODUl3Y9sXUvADdf+Cus+Doljh9hLFMKPyYiG0+68T8DvA64Mp5/JdTnSQmCIAiCIAjC4Uop0LD3yeh194kk3KgnSjlnJfmjyznumotIf/clh+wYhQg/NOR1FNaMl5t0XQMsvfUjtNz+d4TaMPLUbQCsW/xGUI3DdhtxwoJOHtHLAUgkDn6pl2M7mDBkZIJcmFryfogxTcUdCYcIbQxBAxFvz64d1YnQx/7h5fQ+/t8s2/1r7nPP4nG9DGtMfs/67X0ALJ3XjeUkKtseSPpGSwd0f8JzT1MZP0opWym1FtgL3GSMuReYZ4zZBRD/P3eCbf9MKfWAUuqBvr6+A3TYgiAIgiAIgnDw2Nyf4xz/j5SsDMWu4+luSwNV4Sex5Q+H8vCEGvyg6pwIvMKk65oxaki47tcMmRZOPeeiab3nCQvaeMisACCFN8Xa+08i4YIJGSp4GGMmDW4eyEbHI8LP/hFMFKZcw0wDtKNSr/H7N3FG1YjJoGoEnk5GKZ34Biw3iaPrRZigFHk0jJvBLgs/BzDc2RjDSFFKxw53mhJ+jDGhMWYNsBg4Sym1stk3MMZ82xhzhjHmjDlz5szwMAVBEARBEAThuePhzft4hXUfu5a8CuOkyCQjV0c540eYPezLljBEbp1cLjvpun947Nm66aVDf+Q++3QW9rRP6z3b0y43hacD0Lrn/mltOxNSyQQ2mq39efzQMJRvPBAfzHl13aLGCl1C8zRy5NRSCkJGizO8HhSGCIPxgqEqRMLPXrpRJsAou7JszqmXoNwUNmFdu3YnjIQgY6dIJcvCz4G7TpUCLefR84BpdfUyxgwBtwGvAPYopRYAxP/vPdAHJwiCIAiCIAiHgi3PrKNFlbCWnAVAS9JBG0UYSmDubGPLQB4rzrPJ5Scv9RrY+mTldVjK06UHKXUegzWNMi+A1qSDN3cNvwtPx7zqq9M/6GmSSbhYaLYO5gm0njC/ZygWfdZuG2Lbjz5K+MT1B/3Ynq9MJfzsGirOLEdJh/T81xkce+UaGBPYbcWOnwGrG0sHlOyW6rJEuhokHlZdP44uEmLRkkmTSUXLzQEs9cp7IU1ESwmznGa6es1RSnXGr9PAS4GngF8C74pXexfwi4N0jIIgCIIgCILwnJLf8QQAXvfxdLcmaEk6BFiEgU/em/7TdC/QaBk9HRQGsh4JooFuYQrhh92PVl7u2fIUAO29i6cT7wNAJuHw5TeuJnjTVdgnXjK9jWdAOhU5fnYMFgi0mXAgnisF+KFm56/+nlflrkXd8NGDfmzPR/xQEzboulVLMQiZie4TFLPY/iiONwLZPXXL7NIQACNON7bxyZGu39iJhZ+gKvy4uoSnknRkErRkouWed+DKDwdynpQNPg9oxvGzALhVKfUocD9Rxs+vgC8BL1NKbQBeFk8LgiAIgiAIwmFN0Q9pG43agvvdx7KwI0U6YaOx0GHAH56efm5lf67UsPW7mSDrQ2ie5O776VSR4OOXJs/46Rh8vPL64tsvBWDOgqOm7fgB6G5JcFRPZtrbzYRkwsVWml1DRUp+49KbINQYA4/fezOfdK8GIDf3jOfk+J5veIHG1xP/XYba4Acz65tWW45YGtxZt8zyRqP5bhe2CcjGwo+24hIuJw4SrxF+HFPEt1JkEjaOGy33D5DwkysFFLxQOsQ9D3CmWsEY8yhwaoP5/cD0UtAEQRAEQRAEYZYzlPc5Vm1nJDGPREsnSikSjkWIRRiG5ErTc/wYYxjM+fS2ju/+VPQ1tjV90UGo8roH3115bfzJuw8t9LeMm5fuXUhXJjHt980knJlnvEwTpRwWq324A+speMc3dCiVS5O61/+YEZNmhBZSZlrJHkJMKdCEE9iqyq4qmFmAdi6XpdyQPd+/g+RRVXHO8rME2IRuCy4BJR39/p59zTW0px3cZOwACoqVbVzt4VsJ2l0b243auQfB/nfhMsawfbCAH2pGilLiergjVwJBEARBEARBqCFb8jlObWew5RhSbhSumnRswtjxo8PoaXpYvpWeYPTnxd2mRgoBoTZ1q5VdPnkvkKfpBxBVMyBuhKPHOyESHQtJONMfFmUS9rRLxGZMEDmZvtb3Z+QKhYanXKgNW/pznOQ9xrMtaxgyrYTe5J+H0JhSEGJtvgP88Z+fF2i2D0a/j5n87eZyo9V9De0kWwrIlQJ2DBWwvBwFlcZ2IyEypfM80PIiCnNWM689VS31CqvnccKUCKxIVHacSPjxvf3P+MmWArxAc+Pvb6b9B6+A9b/b730Khw4RfgRBEARBEAShhmzBY7nayWjbsaQrwo8VlXrpEBMPBnMqDl6dIEi1FERPyQfzcXvtmkFirhTW/S/MDFMa08UrnNzp4JiAEaqBuQMLX0y6a8GM3jvl2jjPlVtrZFflZXLnfSR23jtOcAy04enHH+QYazfWUefh4RD6B7/V/PMRs/sJ5vz8DXDTZ8ctC00k4rZuv51531wBuf5p7btYk0PlDe1iU1+OZ/tyDGQ93DBHycrgxiVbbSaLSmRIuRYp10bFglCt4ydhSgR2JAg58fJGHcOmg9aG0WLkbDpx8/9yChsIN9854fplkXt/ke5hBw8RfgRBEARBEAShhtJIHynlU2pdRFsqSkYol3oZHVRcJQWrLPw0Fhu8QJMrBWTj0rDaMc1I0afoh2RLgQSn7gf+4La6aRVO4fgxHgUnKrTJphaw41Xfpz0zvgSvWVqT7oy3nRaj1SyYY379ZuZfcylmx4N1q/jFPBc/83kKpPBXvgkfB3MASn6OSEZ3R//3PzNuUTmra9EtH4wyeRqsMxnFfFWsNKP14c7JME/JyuAkIgGnS2Vxkhk641JE1SDcOWk8AisWfpxovWA/Bb+BvMdQ3ueBzQOsMJsBKE3iIiqL2/vLUN6vCObCgUWEH0EQBEEQBEGooZQdAiDR2o1rR7fLjqXQWKDDymC6WBZ+Jni6XvBDNu3L8Wxflnd99z62DuSr7xGEbNiTnTBHRGiOPds21k2rwGP3cJGhCQaiDgHajoQeO9NJyrVw7JkPiTozz5HwU+P4KaNzA3XTfY/cyEqznj8s+xhu+zw8XBF+ZoDWBlUciibKQksNxoC78wES/kg0w7Kntf98TbizLg7XLUuZPL5TdfwAJFIttCYjAVq5UcaPqc34MV4l/LksGO2v42e0GJWn/uGpnRyrdgDgeROfS0U/3K+Q+lIQEmrDYN5jX1ZcagcDEX4EQRAEQRAEoQY/PwhAsq2rMs+xyo4fjYoH0yWnNVo4geNnpBC5ea5bu5NXF69H3/H1yrJQR/k+3/rDRgZkoDNjNm7dXjdthSUG8x5Fv/Eg1DEBA6klAPSt/lBF2Jsp5Qyog44dCUwlUxWawjFB1v3r/oBnbFrPfBtKqUgMCOXcmi7DG+9jwc0fiiac8W4wbQyFx6+vmTG9gO/Rmowf5VVfG2NI6wKB00IiUX3fFteqZFBZTrlrV6GyTSRmxsJPvDwM9i90XBvDSMGnfevvSapoX35pYjedNlGpoZ6hkD2c9xnMe+S9kKIvjp+DgQg/giAIgiAIglCDHzt+Wtq7K/NsW0VhzjqoPG33nbZo4QSBwtoYhgs+T2x4hs+7V3LC4/9Yt+yH927luHXfYPQnf3ZwfpAjgHzNIBrA0iWC0FS6LtVSHiSXkr1s+chOhpe/Fsc+TDqq/elNPHvul9lHe2WWHuPmad33CJucY+hob0cpCJWL1SDM+kik2eyYoh8SbLu/OsNJj1tHGzB711VnTJDxNRF+Icr42WM6cfyq+2co75OhgEq1k0hWhZ82la10/rMTkQMpjEUYPzQk8DFlx0/c1Wt/HT/GGO58Zh9X2L9mKLmAPaYTfxLHT6ijv7mZlnyNFH12DRUxRnJ+DhYi/AiCIAiCIAhCjNYGPz8EQFtHT2W+Yym0scDoSsZPmIiEn4nKaYyBW9bt4XX8IZqmKjKE2nD7hj4+6vyc43f98mD8KEcEtXkpAHbsvvIaCD+lQJMgwHKSWEqRdK39dvw8Z8w7idIpb6FAVYjQNY6fvBfQ4g/gtSwEYG5bEm25OGb/uzs9H/DD5sSEUqDxVLW8y4x1/AQl5n17FacV/8guEwvD03T8BKWo5LPPdOLWCD97Roq0qCKJ9BjhR1fXsdzo2Px4H34YndMmdoQlyqVe+5nxow3kH7ues62n2HXcOyiaBMEkHeK0MZQCXckzmw5+qCl41b9X0X0ODofJlU4QDj2iPguCIAjC85/QGMLCEFDv+HEsFZd6hahYXNCJyH0RNHgSbn77fznlv5fy68d28rZk1A1nKLU4Wjayi92/+TKl/Oi47YTm0drgFWocE6oDx0QD3kaOn5KvcQmw3ASWpVjanTl8hB/AUhZt7Z2VaVPTavzxHSN0qxGctrkAdLUkCK0E9n46fg5Ut6ZDTaB1U2VIXqAZzBYq00UzJsMpP4CT3wvAH/TqaN40hB8/1BXRps90MLfwDJ3PXEvbtt9zyv2fYA5DpFs7SCWr4pPjOJXXKhmVl4aF6NoRhAaXAMqlXnFXLx3sn+C3fTDP27PfZU9qOf0nvgMfh3CSvKihvMdIwWe6lV55L2AoX3+sMuI6OBw+VzpBOMQ0+6TguUQCIQVBEAThwBJqA8UotNVOd1Tm27Hwg6kRfpKR46ect1GL+uO/A7Ai9yBH6ajzlIoH4c9e/Qleuv2b/E3nbw7eD3IEEA5u4Q3D3wVg2wc381DyLNxY+Aka3LeVghCXAOUksZUi6ViV0NzDgUzCJrloZWVa15QYDmQLdJHFau0l4UROptBysc3Ms16MMeRm4OCYjQTaVLpxTUYpCLnj8U2V6UJxjNjhR6LNJj2PtXNfF82bhvAzmPfQXtXxA7Dkto9y9I1XMHfPHWw0C0kdfxFLeqvXHi6ploiqVHTNyWejUGgv1CRUgImFHzfOBiqV9iPUOygx8MDPWWHtYPiEPyHT0oaPg57ARXTPQ4+Q/5/LWLtu/bQflAfasGckOo/v2biPf7jyWr5+41NTbjfTLKEjGRF+BKFJGj05OtRIu0NBEARBOLCE2mCKI2gUJKt5KkopjIq6epVLvcqOn0ahpyYduYX+O/GPaDvJjbwAFQ8QH9wTfX//SfGn0fbW+M5BwtTY17wbh+izdJIptJ3AjUubGmWFFEs+jtJYTgLXViilKqG5hwMp1yZ/0Rf5UU8UPNxy11cgH3X2sgoDWMoQpLppT0dilrYS+1XqVfBDwueJ4z0IzZROEq0No8UAUxqpzCuWxoi6XpTP873Mu+lojbv6TSPjp+CFmFgoHiJy76zVx/B+82k+suCH/OKcn5I4+dUk3Oh3OLDoJdA2v7K9HQs/uZFBhvM+fhi52FQs/JRLvUrefji97v1P3vDMpwAwK16Ba1tRh7gJgsKDx6/jxfYj9N73lWm7dYwGP9BcefdmfvLbm/mh/1H+49mXwpZ7Jt0uEOFn2hw+VzpBOMTMRqvrRB0rBEEQBEGYGaExqNIwBZUGq/5WOcRCmRCr4vgpl3qNF368dFRyk8JjeNklZK0ObB0NEPd5ifp1rfEBskIT1LTCdiyLktNOlxli2Q1vZtkNf0JYytWt7sUDbuUknrtuXAeQhG3hptp4eO5lAFilIfhtNEC3Cv0AmEwvc1oj14dWbkUImwl5L2zKJTPb0dpEpV5T/Cw5L2A4m+dl+u7KPK9YL/wMDkfn3DEL51Y6aJlpOH7ypYDXFKNMr5VxhFjy9Lfzofe+n0+9eg2XrFoYBTnHIksiVX9tSDgueZNEeVl2jxQrwg9jhJ/9CXfWXvXvxus4GsdWBMrB0o3PpeEw+hyOzj86bcePwfCH9X0sefTr/Iv7zeox3P7VSbcLtIyBposIP4LQJLPR8SPtDgVBEAThwKK1wfVGKdqt45YZIsdP5Ql/nLfhNxB+9lJtBb/zvC+CncAyQdSy2USDya0X/hvX63Ox9qMc50im9tbMtRXDySjYuHXX3bTuugfd93Td+uXyF9tJkjyMnD5lEo5FwrZoy2SqM+PSIzsWflq65uPEuUXaTuCwH44fL3xeBK54oY4cP1P8LEFocG77AiusHQCMmMy4zmnrt+0BYOn8XjpaIlEmaDJIOQg1dv96Oonyec5ZEP2eMl3zUaoa/G4pIH5fNSZcOulaZElj+Tm8QJMtBiQJwEnEy8sZP96M80n7stH44n9PvwaInGahclATCD+jI5HrLBOOYjbcDKXms8u0gae27OSjzrWcbG2pzC/2rpxkK3H8zITD74onCIeIRt0hDiVeoEX4EQRBEIQDhDGGbCnAeeh7XGJuo+h2jVsnVDbKhJVMDysRlXr4Y8tBgN2F6DZ7w6W/QrstKCfKW/FDQwtFht25DC9/LYOqE2Vm1z3G4ULtU3/HthhKLapbboa2102XBTrLTVTEkcMJ145K0zoyNY4xKwofVl402E61Vc9bbSWw0ZFYOQNKgZ52WO9sxA819sabUZtun3Q9LwyZv/23lekdprciwJTZtDsKdl7Q0017LPw0W1ZVCjTu4EYAfnbsP8BFf8PwUa9gdOlFlXWUispKy+9ruWMcP7ZF1qSw425gw3mvrtQr6dp4xsZon9IMqxV29w/gG5uFy08BoD3lECoXq0GplzGGIB+VxvWqEVbcdAXc/W9Nv1eoNW07qr+XPa0nAlDyJj9nJeNn+hx+VzxBOETMtnDnrQO5WSdGCYIgCMJsYCaDgi39efaMFGm9+RMABKnxwo8uO37igbSKw53HthQv+iHZXJ5tyeMo9q4CwHISOAT4oaZFFSrlXcqKxSRh2tQ2uXAsxcagt2756O5n66b9uPua445p0X2Y4NgWSceiq1b4idt46yASIzPJ6rJyi++x4kWzhE0GIs92/NAw7/q3k/zhpZOut373KN1U831KODCmZKqYj8qgrFQLmXR0HnlNBil7gYb+DQAMzjsXa84Ktr382xinKu7YVuz8mR85XvSxL63bR9K1yVEVfnLFEpYyFWdQwrYIcFBhMGPhp39omJJKMqctiWVBVyYRCT8NygaLvsaqyUQCKu6jZtiye4AXBvcQqAT7Tn43t572TbImVSnLnAhx/EwfEX4EoQm0NiQ331rp8nGo8UNNwdMNO1YIgiAIwpHOdANptY7cPvlSjQCT7hm3nlE2GI0pCz+ZKMB5dKg/KouJ6c95OMbHqhEYbCdyX3h+QAslfCcOhrUcLET4qaVZ4W64UB2IurbF+y55IQD3HvMRisbFH4wcP+WcRi8O4bYPU+EHwLIUS7prXCCx48eEkfBT7uoEYKz49QShvFORfva3zP/WiZVA48OVZnM6163fQEZFIk7QvoRAuRDWizomzo1yUi1kUlEou+c3J/yUAk1h5xPsNZ0cf1RUlmjVlHjVTS86nb4Prsc++XV1y5OORY40ThAdRy4flfqpWGyxyt0HdTDjJjAjI8MEVgqlFPPaU9E+LaeSUVZmOO8zkPMqx1LGqCbzs4zhjKtO5HX23ew+6jXsesHf4rTPw8dpGJhfJlcKxuV3CVMjwo8gNEGwbwMLf/U2uOEvD/WhAFENsl0cYumN70EP76r7QtuXLdXdCAmCIAjCkYQx03cpFPxwXP5He+v4wGUdhztXSr1aInHI8kbJe9WcnqDcYjkelCccqzIw870SLaqAb1cdP5Y4fuooNjFg9UNNqabk3bYUJyzqYd37t/HMce9jp+mBke3kvYChQpR30j8cuSRqxZHDkdOPqnGj2VH3pzA+Jx232p6+3OJ7JsJPvhTQ87u/wCoOwujumR/sLCBfau7n37v5cQA2v+y/2feuOwlVAjXms1NxptLcnm5cN/r7Dv2p77uDUDM42Meyfbdyv30qqxZ1AjUOH8B1FJlEVTSxMp3jsqh6WhMUTYIFww+T7nuk4mJTNS6bNlXg/IGfUShM7pqZCBUUCOwUCceitxIUnhjn+NkzWmT9nlHaVL5uvtcg86whNaHY/opXRceecvBwKj9XIwrP3MG8byyDZ29r7n0EQIQfQWgKPbgtejGya8b7OJCt1wOtGb7rv2jfejNDv/86m/bl2D1cZNO+HLuGioyI8CMIgiAcoWjDlCGuY8mWogFIrlQdiLTY410CRlkooyulWW4yHeVteCMUakQIPzQkCCoD764WtzJA97wSLZQIY8ePZbtRDsvzoKTmQNFM19LBnFdp5V6LpRSZhMMgbZj8ILuHixQ9zeb+PP0jkUsgFTs1DldaElVxB8vFGFNx/Djl8i5qhJ9plnr5oWZzf44W4gH9NLpWzUZufWTDlOsYY0jvexSAYs/JJFMZQstFhR55r+qesYLoM2ltba+UDOom2rmXAk16+z2kTZEn5r0Wy44En7Rrs3xuC8fMaeGE+e0s6a4Gd9uWqgt9BpjbluIsez0AR/3uPZXwaasmBLqPzui4tt43o4DnpCnhWylaU9XzTFtRRlktxsCOoQKtFBhqXc7T3S8BwCs2KfwE1fVyi84HoCXp4OMQ+I33EWqDevbWaGKKlu9CPSL8CEITFEf6ohexpXtG+ziArdeD0HDfhqjjgKeSeIGmb7REthhdkJ8P9diCIAiCMBOm+x1ojGG0GA3c1m4dqMxv1GkrKvUKK6VerusyQgbHGyHvhZVBVqDrWyx3phNgRa8Dv0gLBUzcEcx24sHVDAKeQ23qSsyeD3iBroQ2T1ais3O4QKsa72iwFLQmHUZNBiv+vRT8kGwxqIRwp1KZcdsdTlg1LhGtbAJdFX4su0YUcqbn+CmX2HmB5oktNS6foMmB/GykfyOnP/jpKVcbLvi83fyKza2n4rcsxHUsQiuBpT32jJTYOxI7a4JCVEplJ3ArrdOnFn68QBNsf5DAWCSXnl4p6UonbDIJh5akM26bWjdQLfes+D8AuIU+lu38FRBliJX5i86oLXpq7yP0jUbH3Wz5ZKgNKTxCO0VnuioiasvFGeP4MRge29LHBfZjqNa53LrqaxSNS2mSMq1aioVIRLt2/v+HcSIxtjPjUjIueoJ29LtHivQNDkcT7nhXpjAxIvwIQhPc+tCT0YuW3slXnITSAezANZDzSBFdyHfnxl/Ip5t3NtN2j4IgCAcCrQ2BhNULBwhtpm7bXEtftkTBi86/vv7+6n5Ofde4dU1c6qViB8S8jhZGaaE0OkDJ15VBVhAaEvjgJFnak4lLvaJBlO97tKgiKtHK0p5MVfiZQeelUJvnXXl3KQgpN+vyJ7ku7B7K00Yk5OiuZZX5tqXobo0EOdfPYkxVQPLjLJbD3fFTi+eVCEKDjoUfrNpSr/jnbFK40Sa6FpcCzcjG+6sLZhgOPSu47gOsKf5xytW27drLPDXEzrkXgFI4lsJYCRzjkS0GjBYDglDjhAU8KwVKVUq9mnH8eKHG2b2W9WYJxy6aS1nTSScmzsNxrMZD9SUX/TnHFH/AvuQSjt/2k2jdmvLFlSuWs9304u55hIF8JKBsHchP+vdUxg81KeVhnHSdGBV9FvU/Z8nXuI/9MPo52rpprZRpNVditmn3PgC6OtopG5sWdKTwcVATfKZ+oLlvffTwG/fwFnCfa0T4EYQmKA7Fjp/0zBw/Wps6C/j+8vS2XbzfuQGAYm50/PtNU8iRZHxBEA4lpUAjVyHhQOCHmmC0H0a2T71yTK4c6LzncS5fH3X02n7+V1DHvmTcukbZqJpw546WNHa6k0J2kLwXMJj3K8fhEmC7STrKT81j90/oeWQogZuhI+1ilx0aMyin0cZMO8h6tlP0deU+ZjLHT65/F64K2XrKh/Hfe1tlfsKxOG5uG6MmQzKov0cK4u5L5dbXzwe8UhFfa7RuIPzELgomKJsZiyG6Jyz4IYk9D1cXHALHjzGmrmvbjHGmFvmypYBdOzcDoNrmkU7YWEph7CR2LHaE2vDU7lHcsIBvRft03eg8KndUm4hSEDJaDGjLPstGtYTVSzpIOZHgk3YnFn4mcvwc1ZvhxIWd/CY4nY5iJIJkMlUR5Oxl3azXi7EGNuAHhqIfUgo0G/uyFKcYj3ihJkUJPeZzM7aLM8YFuaU/zyqeiX7Gi/6OjrSDh0swST5PLRt2RsJPT2c7bSmHdMKiNeUQKAcVNt5HEDuSAHH8TBMRfgShCdxi/ARQzexPZudw4YC2gy/c9e3Ka1MYqFvWN1pi78j0vqAPyBerIAhHJAfCqVMKxgfrCsJM8ENN5t9OJv1vq5reJu8FuDsf4JTrX8VJXpTxESbacRoMuqKMn7Daft2y6erq5gXqcdY+/kSlRCnQhoQK6sovymKD75dI4qES1XDnaOfTf0CkjZlR6/rZTNEPK/clkzkU/Dh/0V50GlaqvTI/4Vi0JB3ydispnavLTvLLAsjzSPgJvGLU5bXi+KkREsoDYz8/fsMGGFMtH1TZaqlXuSTnuaIUhAzm/aa7cU1KjVtf01hIyZUCBndH51OycwFzWpNYKspIcmtcLsZAmxml5ETnW9J1CI1CT1FK54eGYj5HV9BHtvVo0q5dKdebSNyZbJmlFK84eT43Fk6szMukq8LPKYvb2WQW0JrbAkZHgrjW+IFh+2B+Uqe/H2jSeGh7jPBjuTjUCz8b9o5ysrWZffNeiNV1FB3pRJTP02S4857+qGSrraWFjrTLws40SccmwEXpxo6fvcMFlqj4gbw1vjxOmBgRfgRhCop+QGsQiStBEzW8YwlCzWDOhwP0PFtrQ1f/Q5Xp4cE+bnt6Lzc/uYe/uuZR3nPl/Xz+F481vT9jjDh+BEGYMTuHivstHh+Qm3tBAPzAjOvCMxlBqNEagvv/p26+nekaF6oKseMHXSn1Qll0eNEA+SWPfbyiMfihJkEANYGrVhy66xfz2Mqgysus/XH8PP8e3uj+jbTf+UWKXkBpkmtDOBQ5HdK9S+taYrclXSxL4dmtOMbHCvIsvPP/kupfR+jH50ZNAPLhju8Vo/JGPbHwo5ssvTEY/FCze2CIecHOyvxsLnvAjrcZip7GCzTmANw7m0yt8NN46BtqgxndA0DH3CWkEha2pQjdFlpMvlKG6YeaOQyST0T7dG2LAKeSrzThMRhDuG8jFgbVcyzJSVw+tUwk/NhKce7yXta7x1XmuW71WtOeSjCYXkpCF3Hye/ACXSmfLHia/pw34UMbPzSkKaHHumnsRJRbFl/kfvHgZo6/4yOcbG0hnL8a21K0p1x8Y0+YzzOWsCwQuSlakw6ZOLQ8UM6Ews/jN3yTF9hxBMcE6wiNEeFHEKZg8748c9UgAH4T7RrHUi7xskZ2ULnq7s/x9Oc4kWd5cs4reUwdx3F6E3+85Rr+5fcbcAc38EDyz/nNyKVNJ90XfS3ZGoIgzJhCzdP5mRJoc0Bu8AXBm+b3WVlY6O2/nz9YZ7Pp5d9l7xmfwCw5q+H6RllYRoMJo4BXpShd+DcArPCfxssOYoyJu3r5dS2WrbgsxMuPAFQ6AlnlgfoM7hFCHbWuHyn6TeV3HA4suP5tdDz0b2T7Nk/+M41Ewo/duYja8XE5M0UnI1fGots/Ts9TV7HsN2/houwvI9dHy5yDdvzPFRtedz0QOX4i51fZhVZb6hUN3v1Sc8KNMTBaDFh+47t4mf0QJRW5PkrFZh1DB+Y6nveDSPg5ALvLUXWuOIQNs7RCbdBxy/pU5wKSjo1Sin2ZY0nikRzeCERutDkMU0xF50/CsQiwMFNk/GgDel30+8osOpmUs39DcMtSJF2LE5Yurs6sdRcq0N0rop+nf924uIl92RJ7RxuXUvmhJq08jF0v/FQ6xMU/a/Ghq3m1fS8AuYXnYSlFe1zq1az4boJIkEykMjh29TMJlYutx++j4IWs6L+1Mq1n8ED+SEaEH0GYgk37cswhsiKWQwGnQ9HXJAfXc8wPzoY//vt+H89j24foYRi3cyGdnd0cY+3mqsQ/cOeJP+dnma/Qq6IbSr3z4Sn2FJHzAnH8CIIwI4Iweiq7P8KPH0bbS6mXcCAIpimeeIGm0LeZ+XoPw3PPJrv0IgbP+CipdEvD9aOMn6jUKyQSGMyKi7nt9KiLzsbH70eb6G/DJay6eqiWegX56J5ClZ+o70/GTyz85EshT+8eJe8d3m23jTG4I1sByOVyOFtun1AQS+W2UyKJ3TqnoTvrpKMXAdC5KcpEdIoDnOE/yP90fhQ6lxykn+C5o3XZmazVy0mObiWx/oaq60RV3SRWfI5ls807dgbzHgsGHwDAS3RG/xebcwxN5tCaDgUvxAsPTPbb0OgY0apBUHWoDU52Fx4ubltPZX5xzikALLnhrSy645N4xQJz1RBeulb4sad0/GDgmC0/4ffhGo45+aw6kWOmWEpx+lFd9JmOaMaY8kV7yRn4xkZtvXtc5z8/MPRnvYbf3VHGj4dxx2QjxeH0ZbFmSbZaXZCfdwa2pehqScTBzE0KP/G4qqOtrW5+aLlYDdw8a7cN1ZWblZrMEhIiRPgRhCnYvC/LXDUEzMzxk/cC0n2PRBO71u738QwN9ZNQIYm2ubinXEZ2/tl4rUtYuPV6dLKNuxb9KQDZoDkbacHb/6f1giAcmeTim8n9CZf1Q40ujkK+f+qVBWEKpvt9lvdD9j32OwA6TngxALYFKXeCW2RlYZkQpUN0PMC2lWLeitMB6Nv4ALrW8VMzGCvn/QTFKHDYjrvw7E/GT/LOL9N53z8R6MgdcSDzBA8FRT9ExcP9zBNXs/RXb4GHrhy3njGGhaVn2Z1aNuEg+vzlXXXTg7TxGf9PeWLBZQf+wA8BXS0JPFx68xvpvP491TDcGsePigfv+SZLtawHv0fugasr046KhJzRbJbhfHOdqw4EpSB6qDDdZiWNGM7lyZsk/5V5bzSjQVC1F2rmlTbTl1xKJlktA7z0ZRfSTwfp4l66n/4RbZt/S1L5hC3zgFrhZwrHj5ejI9jHxtTJLOg8MIHEi7vTrFrcwUazMP4hcpVlScfinBMWs9Ysp3PTDfj5EZzc7nGCTM4Lxrm0ojJVHzUm3DlwI4GplB2KfyifPaqXx69Yj3FSWCoKqi4xcZnWOGIRqSVTL7SHqrHws2nrZlZamyvTzbaNFyJE+BGEKdjX30dSRRefYJrCTxBqRosB9zy8NprRsXjCdZu2x+biMOdMD6XV72DTq3/K02++iyfevYENl9/MhuVR+9lcdny3r0aUghD3kR/A6O6pVxYEQaghV4qevO2X4ycwLL7yTFJfX3GgDks4BMyWnCY1Mr3vsuxQP+du+gZ9dNO1bA0QPUlPTZDBYZSNRVTqVc4LsS1F0LKAgcRCLsv9hP7+fQShj6M0qiZ3w46FHx0LP1Y8KFczzPgJQk3mnq/R+8A/ofY+Fe3iMH6Qo7Vh+1DVWZLa93j0YmjLuHVHigEr2Mpg64qGIdwAidVv4Jalf0HBRJ/7G9uvIrvyHbz/Rccc+IM/BLi2ha4RFt0w/uxqhZ9kNKD2SzmaIfHbv+QFaz9ZmbaJ/q5Hslm2DebrogEa/c2X/P2/DgwXfIJQc8eGvsp3zP4wmivg4ZLKtEYzGjh+1u8eZbnaTq5jBa01Lcw7WtL8+JzrKtNzn/o+AF3zjgIgYUfCj+9P7nAJBjYDYHcfXcmx2V/aUy6nLGrnX4LXxwdXDXpWSnHKog6+676VztIOFt75fznxR2ex4J7P1e2jP+uNK/nyfU1SBXVlqgBeMhJS/ZG90XvogBAH46RQKnpP17Yix0+DMq2GlH8XY0QmbbmVbmq1LNnxW7pUlmxiLgClkjh+poMIP4IwBcX+HZXXYZNhZWW8UKO1IRyM28om2yZct1l7rFWIWh+alt6GN6btbVFNey470tT+ins30X3L/4Gf/WlT6wuCIJSFniB2F+zPYNMLNXZp+IAcl3DoKAbTd6scDBZ999Sm1w1CTbDxdjrNML866pOouOTKtqIBTCOMFbVzt0xQdfxYCpTi9pP+jgVqAP/hq9HxQLDO8RNn/JjSGOGnUuo1vc9w/Z7qAx41vBnYP/fdoSbQhq1bt1amdS5yARprfBCzlxukV40w0jqx4wc3xdyL/w//ddp1PHDJb/n6m9bw3vOPoTP9/OjopaCuvCcR5qL8Iqv6eZTLCXUpP6PrtBULP9ovYkyUM7l7uEjRDxnKj78nLh2A68Cu4QIPPvYk3/3NXdx286/2e3+jhQLacsCORdixjp/CIC/+5TksVvtoX3rKuO0vXH0svzv3hzyjF7Ik+yh9ppM5p70GqAo/U2XNlG7+ewDmHXXCxG7CGdDdkuT977qCJ9+/ddzD5Zaki738Raw3i+nc+AsAep76AXMf/MfKOtliwN6RUl2WVjnWwqoRrQGCZDcAg/t2AbHwE18D53dE1zLbUng0dus0pPy7cOrfK7QSDYWf8vo3vPDngDh+posIP4IwCVobMoPrKtPTdfz4oWGwbycvt6Na6XCSjKCx9bcT4RTjDmPJblLOeOGnNZPGN3ZTT3f2jhT55+v/GE14zTmEBEEQyjeJWmtS/U8QBDN/KutLjf7zgqI/O4SfZgl11NGysOE2CibB3FWvAKJQ1MnaK6NsLEIwGk2N8AMUF5zJNj0Hd/vd6LhteO3gyY6FH+KgXSdR7/gx03D87MuWeGpX9Xs7Nxw1oTicHT+hNoxsfbQyPToYdVnSDVqvl9tFl8OLJyLl2Fx4+kqSC06qzJvs13s4oRR15TiJMD+ua5XjptBGgV+cdv6OtlMMvzQWCeLzueBp+kZLPNuXa5gPub8ZP36oSWy9kyvufSV/TH2Etzz23v3aH0ChUIwEsnJmzRjHz77Nj9Maxg8fVr5+3PaWUiw46YX8cs23+B9eyw9P+FfsdPQg17JUlPU1hdCxeOeNABxz/OqGeVQzxbIUy3pb6GggZtqW4gXLe7k7rJ77w1Yncx/+VzJ7Hqxbt+yyAgjisYoa83fnpyLhJxyNHkBHwk907epIV8XZAAeryYwfNYHjx1gujhl/PTTx55xIRa3rwxlEcBzJiPAjCJOQLQUszD1JSSXZbnoJp5ke74eajjs+RyvRF+ZkNdZjE/cnwo2Fn/beeSQbPDVIuTYFEmhv6g4MI8WAF+R+H03E3S8EQRCmouz4SWy7nRXXvpK262fuGCz1bTxQhyUcQg5Eicd+M0XORi2B1pR8TbL/KTZaR7NkbiedGZeFnelJhR+jbCyjsXTV8QORyaIzk2SYFsJSvtLO2Kopl7Djp9rKi+4F7EqpV7SfcBoC6kDOY/O+6j3F7x99lo//9BHu3zzQ9D4OBZOVtQdaw54nKtOLVTTAbPTQrTzgc5zJ27JbjX6XzxvhR2EnqgPmpM5XxMgyS3paKJIglxtt+j4TYMTp4YkrniZ1ymspGhczxiUTatOwxLfghYwWZz4YD0JDuL255iTNogMPLKcSdE1YFX6ypYAnNkXO/seXvw+re3wZYFmnedlZazjzvf/GS85/MU6NqyqcKtw5Dif/VfISMp29E683QzIJZ0Ixc/WSDnaZKKx6g17Eufl/ZMiZw6I7PkH3k1dix2OKkYJfyQcLG4jWAE5rdOxhto9QG5Tx0crGsesdkoFysRq5dRpQyaUa4/gxVgKnwT5MPA5LJJN4xiaYZiXGkY4IP4IwCU/vHmWl2khfy3GUjIuexk0lRF9giwfv41f6HEZMhkJ+YheOH5eFTYXtR0/4envmNaxrT7s2RZKYKYQfrQ3Bpjv5U+c30QwRfgRBaJJyiVdiV+RmdHavndmOjOHJ+39/gI5KOJRMZ1B50BjdVT89SemUMZAt+fR62xltOQqlFPM7UrSnHNpSE4sJyooyfpQJ64SfJd0ZulrdyoMXUymXqA7My44f5ceOn2Q0EC2XeoVTdQaq/dGMoX+46vh5/+i/cXTfLdz5zL6m93EomKyLaBAa7JHt4+YPDIwPfi+7DC1n8rwUOx6115os1PNF+QGWz++uvD7bu7dSelPmlEUdGBSrt/0vxUJzOT8Ag92rQSkSjoWH2zAXJ9CGbE0GjymO0Pbsr9m8L8/jO4Z5Zm/zncTK+Fpz89MHLug/1AaHEG051b/FoMRQ3uOZvaNs6suRHYr+ZoaPvbRh2eBYIXisKzBUDkoHE7seY3HDtC8ksZ9t3BuRSdgTntMdaZdiOgqi7kjCi045hr/Mv4vU0DMsuvuzzL/vSwDkvZCCHzV7KVcnqDFizLLFCwmMRW5obyT86ACtHDKJ+nMuUA52k6VeFeHHrXfuadttKPyUr+mZhEuAUympFZpDhB9BmIQntvezUm2mNHdNlNo/zfr7zVs308sg4ZyTKeGSzeUmDEEN4pasU6H8SNCxki0Nn0pmEmXHz+StN71Qc/3d1VaMepL8IeHwJThAHTYEoZZyy+yhjZFdfMblWo9czSUbP3+gDks4RBhj8ALdfJOCg8XwjvrpSR7WGAMbd+5jgepHdy4j4Vi4toVjW3XhruO2U1Yk/KDrymraUy7z21KUSKK8fCUT0K4ZPNmJaHDjelEGnx0/Ubdj4SeYhqtYaxgeGaqb95+Jf+ayDZ+OfrhZSjBJ1zHdv5HVhXsZtjrr5vuF8ZmFYdic48e2FEpBWyr6jJOuVVeWcrjT0TO/bjpt6u/9Eo5Fi4ocHO6jVzW9X7PoDCwrEs48lUA16IQVasNA3BK8FISY336Ko275c1L7HseYyP2T96ZXBuwHmrAwNOZg9q9rpEOIsdyKO8r4BQp+SMGLvsf8fFTm1drRg2M3fqBay9j8L42NMuGEkQ1enENjuynaJxGVZ0ratSd0/KRcm0IqOkdSluZPz1vGps5zK8udQhTUbExUPlr0Q8L4+9waI/ycuKiTAdoJhnejjcEy0ec69mcKVKJp4ccJ4/PKrn8vrERd2/YyOgzwselpSxJgTzt79UhHhJ8DwP5YGoXZzcDmx0grj+RRZ0Q1vNN0/Gx98j4A5h17GkWToFTM0zfaeIAUakMzpflWUCDABieBUoru1gTzOpLYlqI15XDc/LboxtOfXPgpBZrCSPWpSui2Nv+DCYcNh3trX2F2EmgDxtAzFOVxuP5w5eZca4Mxpi4sckJ2PXIwD/OAccgFjVlO0dcQeBh9aIVmPbpnzIxJhB8MWzdGZUWZ+ceOe2o9IbHjx9IhZoy7Ip2w8e00KihggvEBqaolcme0+30AuIkxjp9plHr5oWbLzj3j5p9VuAOm+P5/rmjkYo7azjf+e+r5n3M4ip0U3c66+eXSuFrKn5VjT+74aUk6zGtP0Zp0aE05HNWTOSiui0OFmntC0+v6xeYdP8HRL6Yt6WJZihQ+F4zewMBPPlTXATbUhoIfsrEvy1Deh+GdADiFvso60710bh8s0KWH6mdOs9tdLX6ocQkwlltx/BTyuTqRRsdCk53uJNHA8ZNJ2HHXqmh6rDgUKgdLB+QmELmKsdvfTqRpmURUnimWpUhO0IWwJeHw8rNXAZCyDQnH4v0vOpZLSn9PzqRIDG4gMbIZqzREydeUAl1x/FQyyWLaUy5brcV0jG6IhZ8ALJuulvr1QpzGwcwNsLVHgFMXSA5g7AQJAogfKlTQPiE2c9tTeDhTdlMT6nn+XPkOEaE20cVOeF6i9katRM38VZHYMo0vn1Aberf+hiIJ2pafTQmX0C+yL1tiuOAzXKg/b5xdD6OHtk6wtypWUKCkqjeSizrTzG1LcdLCdpb1tuDaFp6VQgWT3/jtGSnS4lW/nH1r8oBE4fDEP8QDMeF5SOgTFrOEe9bRpQfYqBdEIYxedHM7VPDZ2JdlX7YJF1C6q/LSc2av+OyJc25SsqWAld89Fq5+6yE9jqe37qyfMcnDGm2gZUtUZphc9oKKI2QqjOWSwENRn/EDkErYBFYKRxchDje1E9XvayfViW9susM4HHVMxk8wjYdL1z28g97i5rp5N3W/JTrG0uxo1tDo7ybUZkoxwNSUnveZdqwGwk/ZHeUmJndQdKRdOtIuSddmWW8LyQZNMQ5n1JzmhR9vYPuUIew5UtzU+jr0/FWkEtEw0fSuAOBFI9ez6VdfYSDn4Y5up/f2TxN4BUq+pj/rMarjrnWFapfGZpzstWx79ine5txSP7PJoOBG+KGpCD8qEbW2Hx0ZJleq+RyKw9E9vpsm2UAU7MwkmNuWpDsWONwxIkWoHOYG28nmG99354uRU99NpBouPxCMdSVV5idsli4/Aa91CbvO/TsAVi7q4E2vuYQvBW8mld3G8T+5gKW3/gUQdWXTQVn4GX+8+1pWsNjfRBgEWCZo2HEvmKAVe8Pj01mK9vjv/tCNwpv9wkhdOSE6IMSmO+1Gjh8RfqaFCD/7SdhkeY5w+GGMIT2yCY2F6VoW3eA1KfwEoSZbCjg590ceTp+Lk+mMaqTjdphb+/PsHSkyUvQrT76Oue41JP/zBVPu2wkLeGryLw/fSmKHxUnbaj66fZi5aqjmmGdBPoMwIybLhvKn2WFDHIzCVJgfv52F/76coY33AnCTPh2A3PA+tg1ErsaCp5tyMJLurLwcG0o6m5isPEWA3f1RRylrw28P6XEMDQ3Vz5jkO9sYw7Khu9loLyc595imSzBGkgtJ4TNH949z/LQlHUInhauLFcdPbamX61oM0sYcEwcwx11zLNuND7e5ewytDf7j1/HdxFfr5udblgLgNSiNOhQ0yvMJtGGqv6ZkLOaMdK/iWbMQyx/vVCk7fmxn8tbsthXl1LQ06+g63Jhz/JSrPHrJL9FGYQa3UPDCCe8Z+kZLOCYk09pO0rGqYsJbf8z6y2/imbazeG3uZ7zoR8dywo/PpefJ75PcF3W+DbXh6cFov09uWF/Z53SvnMHaq6P9OS38uvXyaOZ+CD9BXOqF5WAlIjHBK9YLo6o4TN5qJeHaE3bc6mlN0pWJzrWyIFbm9sT5zA92ktp8a0VYC7WplNoX87Hwkzx4D1gnc7Et6G7n6TffhTrx1ZV5py3tYl3PxZXptu23kRx4Ojo/GrgVyxTnrCKFh//YtXGp13jBPFQT5PM0oMOMUBjj8APwEtG8vr276/PjwqiTWMK1CbHRgXdYdzJ8rhHhZz/RxlS+2IJQTzrQFg4vtg0UWKx3MJxciJtMYVRUw9sMI8WA7ftG6DWD5Nui0MjASmCF1Rrpoq/ZO1JitBSwYUsUZljO75kMRxfxrcmFn8CKbjwnaxF/56NP83r7zsr0dDuWCbOHyVw90yn1ypUCcTAKU6LWR4P7vr4oG2CHtRCA4sg+hvJ+xZbd1M1YzU1js9fXQ0FTZWtHMHfcc/ehPgQAirnh+hmTOGjs336SNeHjjLQuoyuTaNz9qQGjLUcBcLTZAVa9mKCUwjgZkrqIKXf1qhk8taVc+k0bSRUfV9zC2LKn19Wrf+0NfMH7yrj5XjJy0Hm52SH8NHrwEISmYalX7by0ren7yLM8cfGPGTVpnKBRqVf0GZY/u6k4kC20ZxXJVv7+2B9OusqiE8/hFnMamexmRosB2QlKkh7fMYxLQFdbhpRrV4WfTA+lruPxX/Mf5JNz6raxveq5Vox3m91XzdqazrNxYwxdA1H57zOX/Yah1OJowTRjFmrxQo2jIoFCJSPHT1Conk+hNtjeCCWndULXDEQCYjphs7AzRW9LvSByW/plACSHNjASu/n9ULMvG10DiqXICZRMHRpnfWvSwbJgTluSOW3JSsnaK888gReW/pl+Eznsjvv5yyj4YSUw2W4g/HjHv5ZNeh5q7VXYJgA1XvjRamrHT6gN+7Iluhih4HaNW+4nonn5wT2EtfexseMHIqeVCX28cBbkyx0miPCzn9S2M3x2X47SNJ+uC7OXJ3cNs1ztothxDGnXRitn0ryAWgKt2bNrG7YyqLYFtKUcQiuJpetLH0pByHDe5z+uae4paSkIccICvj258BPaKVxdmvB81NrQvuV3tKgit678MsMmM61QSWF2MVFgODQ/YDXGsH2wMOm+BKGWfH90c291xS6D7PQ7sRSKVTFcmdn7/SlZWRNT9EN0X/SEv9S6+JAei18YIcDmv3v/KpoxyXd2Zu13AHDb59OSbN4NYvUsB6BTZccJPwAkMiQpVbsg2VVHysKOFKNWTQfN2A1UdvyETQ5wSw82Duk1iahkwsvPEuGnwfeP2XwX7Hhg3Px1O6uinW1CrGQrTiJFgcjBPJZyBzR7ioyfI4GzVkz+d5dybXYml9Nb2sbI6MiEovxwvoilDOlkkpRrVzpcWbFSEGTmsOlNt7Dr7M8yYncCYOf3VrYPYyfN4uIGrr5vCw9uGZyW5Wf7YIHj2cTjva8i6Dq6Kjzsl+PH4BKC7WKVhZ8468gu9DP3xvfzWvtuSHYwr33qUqye1uQ4kdjJdDCgOkkOP8tg3q9k3GVLAVobcrlIaGprOTTlzEopkk7Udn1+R4o5bdHnetayHs4743RuCk+rrKs1ePH3stNA+Jnf3cF2MwddHMUmhAZ/f2G5FfskYsy+bIlNfTm6GKUUu3tqCWIR2yoOEtbsJ+okVhV+0D5FPyQ3yYNuoYoIP/tJaAxBaBgp+pR8PZsbKQjTZO9IgaPVbnT3sWQSDlrZqCZLvUJtGN0XuXgSXYtY1JVG20nssF740RpGiwELg2jdUrJn0v1uGyiQMCWCKfJ4QjtN0hQmrOV+avcoJwZPU3Ta2bXoFXEy/szD84RDy0TtcY0xMLytqX0MFyKnhlzChKYZ3oFnHLrnLQHAG61vI93M9+FQtraEY/YKP9oYsZNPQMnXtAw/A0A+vfCQHktQzFJUKVQspNBEe/TW3kXTyn1Jzzua0MQtwhuUOeCmo9KSsoO3pluNUoowXfM9XxF+yo6f5gYve4rR+o+8dS19L/oHcq//Adsu+EeIhZ9GXbCea7Q2dQM2iISgBde+Hud/XjZu/e27qwKCZQJsS5FKWJRIjLt3gqi7D1RFsyOZo+ZPfu9oKcVw50nYaFID6yYswy3npVhOos79UmuW0slO9p3yPq469UcALL39L0lvuyPqnhU7s15oP84XHz2fl//uQp6854amf47Htw/RzQhu5wJSrn1AhJ9yuDNWAifZgjYKisMcfdULOOmqU1m4I3rwuufs/zvj0O/VSzpZHy4gMfgMXqAZyvv4oaHoh+wcLpDLRdeCVCYz459jf0nYFk4sWM1tS5J0o5/1LWcupc2qfr7d6/6XbCH6XnYaZBLN70iRIw3eKLYJoUHGj7YcLEyl9XoteS9gpOgzkPPwQ023GsVLdI9bz2qNzukgu6/+gWSN40crB6UDRosBpSmyq4QIEX72Ex1n/JStfc2MmuSJ+mHCyA7SykP3HEvCsaI61ibbuQehwRuIxJyuuUtwbQvLdlgRbKDnie/WrRtqQ29c719wOibc50DOI18KSOoioTO58DOcXMAc049XaBzwuG7XCKutZxntWUUm5aKxmn7SKMw+wgncCOEzv2fJlWfBk7+cch8jhegmWuyyQrOkC7vIqzQtHb0AmPxg3fJm8u8GR6KBwpXBy2a146e2rFuoZ6ToM8/bAsyCkjgvh2dlqmJAEy7dZNeCab3F3PYWBmkDqqHMtVhxKKnrx+LLGGHC7T2mOmHXO350k9/D2ewoO60FWJlucqe8C33cKxg94U2YRHRcQX54ij0cfLJeME78nez+t39vtTxIaR+lFB2pBD4uth4v/FRKvRxx/KjE5PeESkE4L+rsxK5HJvw9mLAcmJ2sE0GsBmVyZ564vPJ67u/+HP+eb9FKga2dZ7H9/K+w7cQ/Q2Nx7ENfaPrn2Nu/j4QKSXbMI5OwseKuUuW8rJnglTN+bIeE41AgQab/UdoK0fl2depN/OKFv2Dhqa+Y8XucsbSLdXopqYEnIRYigjAyAwzmfAqxkJI4iBk/U5FyrUq5o1KKee0p2lIOtqUwF36mst6iuz6DLnf1Sox3/MxrT5IjheXlKtlJYwmt8u9tvFPPDw1b9uUJQsNwvkQXo5jMeOHnqMXRA6Whfbsr9xLGGJSpCdVXNmcU7yHXv2OcyCw0RoSf/WVwC0t+917ysbtj6sg6xnVzEmYnqaGNANhzom4GJnb8NJPjpI0hGIzOic55URnEPB21wJz34D9ilYbq1u9U0eBnooBlYwyjRZ+CH5KiBO7kXx6luaux0RS2PNxwIF/wApapXRQ7V9CRdmLHj6jlhysTDki33BP9v+eJKfeR92Ph50Ad1DQJDvWAUWgaEw9sO/29+HaGZFv0ZK4s/Di53Ti53bQ/8A0ojc/mqGXPYCRO+04L1mzN+DGGttv+BtPE39GRyPo9oyxXUTetMDi0HVbcMB+1U684fqa+33Ks6d0Kz2tPMmhi4aeB26ScI+KWs0+c+sHTonPeWJ2It7fLjp8mmix4gcYr5Cr3AZZS2JaiuyVBd3f8lHwWOH5yfVvp/sXbIW6VDaAnyaMr9FfdqeHFX8G2FO1ph8BO4ujx51W51MsRxw+p5OQlSpZSLFx6LP2mDXaunVCUL4tp6dTUJU/JmvdsN6Oc/dSXOErtxkp3MHj8mxk89zP8MjyX7vym5n+QXFQurNLdpGscP743c+EniLt6YbskXYs8SRYNRI0Jfn3+dZz89q9xzAmnYu9HBtRpR3XxsF6BExZJDTzFSNGv60SVjcOdU+lD5/hJjQk3b085LOiMfodHrTiFL3ZVBTrXi4TjRqVeadfBt1twwxyOChteA3XsAgoadNyqFR379+3FVoZM17xx65149BJCo2jfdRfHXHkaZmQXpUCjdIiJc4WWh9E4bcGdnxFTRZOI8LOf2Fe9no4tvyO16z6gOWv7YL76hyCDndlLIhfdyDo90dM5YzlYJqiEtU1GoA1zRx5jUHWS6FoEwDwvEoJsb4Sjb3w3i27/OHZxCIBMEF1krQbqOMCW/jy5UshgzieFh52avE74hNNeBMDg+rsb5vzYud2klYffsYzOTIIQq+knjcLsIgj1hIJzpaVvsm3KffhBvA+/8Tl4sClKPtrhQzzgXEAfodtCS2sbReNCYRB0wHHXvJQTf3QW3X/8B3j21kl31Tc8io+DZTmo2Vrqleuj9eH/xP3RGw71kcxKNu7YwzK1K5rYjyfzB4KkLuDbGSynecePWXr2tN5jbluKgUkcP3YyGtzZ5Qc8YwZGLcecxc6z/5rBd91WqaGxneYdP/uyJZKmCLEAa1nRwN6xFV1d0ZPzYAK373NJy91fJbXpZnji55V5j2zcPuH6amgzABvefCfWsRdiqSiUNlBJHOONu18uf1blz+5IpiU5+WdgKViztIsn9NG0DDw+ofBTdtYkk/UDfqviFJn8OLpVllRrZ7yuAtuNAoCbdGPYxUj4MS29UcbQfgg/5Yeefuz4UZZLwraYo6qi6OJjT6m8nqb+W0dH2mV3x2oAWnb9EWOoaxevvSjcOXWIwp0BMmOCq8u5P+WSrwtf9Wb+PbwUgJ5cVLqr7PHCT8Kx0IlWUjqPSzCB8BM5foIGv7fav+PCvs0AdM47atx6Ha0p9lm9nDByF05+L8GmqJxQmQA9xmXkFPvrOm8ecufpLEaEn/0kjNVpPzfMQ1sGGchPLgqE2pAvhZUTf7QouSqzlmL05ZBojQLGjOWgTMhA1qt0rZmI1LpreIF3D5syq+iI2z+aTFQO8T/BK2jZ+yDd63/CST9YxZyHv0FPELmBXF0Yt69SEDJaDAi1YSDvkVEl3PiJ4kQcf+xyNrKInj13NezslR7dDEDQeTRdLQlCI8LP4Yp59MfM/cd5kO2rn28M/f1x5spUwk/8pOTh++9k+beXN1UadqCZrAOdMLswNaWmKRXQmnQYJcOy9d/huJ9dVNflhSnKtwLPI1QOyrajTIDZaNeOr43KH399FsDZdBsJFTJEK2Y/sjj2F60NKVMgcFqqgb8TZfzEzpMbe6+gZd6x03qfdMJmWEUBzVaDYFMn/n524qfmjBk8ObZF/ynvRc85qTKvfLzNZO0V/JCU8tBxkwfbUpHwYymSmei4TPHQCz/+aJzZE9/7AFx756MTrt9W2EGIhdW1BNtSOJaFY1uEdhLH+Axk6x9KVDN+nqdt2qdBJmnzV8m/nnC5bSmO6mnhGedYFhQ24D7TuKFIudTLGiOmubbiuPmtLJ8z/qGjQfHYn25h65wXA5DoqCmdLAebN5mPaRcj12iY6iZhWyRiV1HgTf+BVD6+p/BCjasClJNgxbzqvdC9S99XJ1rYTXb1a4RS0LNoOevNEtq2/A6Ati2/o2XnXQCVLlmp9OT37geTclD3WDrSLumERVs6wfq5UbnbwsL6eKNEw210ohWHkDSlhuHOpuL4Gf97q3Woh/1RiXDr/MbX4B3d51Ree8YlCMeUesX4vl/n+JFGSxMjws9+kPcCgjhg6uGnN/KTX93Ak9eOb685dhuInm7vy5bYM3ponq4LU6O8qEShfCOFciqlCJMOUrN7WfT7vyCjSmSXvrhSJ63+9EaevfhKNp3+/3hjqfoFPf/Br3K6fhyAhBmvjteKTIM5jzQlkpnJHT+WZfF05kxWFB9jND/+HEvmI6FJty+hNWkTYKObsJgLsw/r3m9FL4a31s33Q8NDG+J5UzymMwaG8h5LHvpyNGPP4wf6MKdkoiByYfYxElZvlluCIVqTDp3E18uRTdwensIrSl+KVpii9Mc2PqFyscrOiSZz1J5LTDmkt8mujkca8/b9kRxpHrJOwT6En1HBD2mhiHYz1RbqExxPEGdY4CRpSU4/I6bcfrhRsHDYGT29XlqMB092/eCpPMCszU0pD7T9JkrlCl404NJOmt62RKXUy7Et0kmHnElivMlLLA82xhi2bI0GdbUPHpL+4ARbQI+3kz57Hok416V872Ri98DA8Ghd6Xr5nsURxw9Jx+ZZZ/mEy5VSJGyLgfYTAei9/oqGZZDV3KR6sbLsDkknbHpaEyRdC6Vgx3sfY93bHwGlGH7Nd3nmdddTOu/j1Q3L536TgrBbivIu58xfiGUprFh48BuUDE1FLi61Knf1UrZLd0v1b7Hj3D+tW79RjlGzKKU455gefheeRsue+7GLQxx903s55tdvwS7sI4wdP43aox9qeluTLOnOoBQk5x1H3iQ5tvRktNBuLPxY8d90uyo0dvzEYnfoN8jmigWa5O4Hee+ev43epvvohu/T9cIrKq9HhgYItMEyIWaM8OMMbyG5sSpmStDzxIjwsx9s2JON6kaBlQO/44bkp3nNzn+BSZ4KlgWDghfSN1qqs6YJswvbz5InTdKNbwotBzv+fXuT2Qhz1c42c1/wtsprq/tocksu5E1nLuW9b3sbH9P/37hNk6ZUeRJZpla5nrfjRtrJk+qYO+Xxe3NPIYnH3q3rxnWjMUF0jibTLaQdB42FMuI+OxyplHMl6sVAbQytxNeiKcovtDE8c9sPuNB+JJqRmbxDyMFAntAcHniBZvto9Xri+iO0phxcFX23vbr0Bb485x9YsSR+6tugG08tFeGn/NRwFub8jI7Ezo1D6GaZrWitWVx8mh2p4yipFLY5dMJPzgti4acFOx6MmAmcrPlieSDWeGAzFX7cathu8BRdz1nJkGnhJP10NGPMU/NyplDtONOOu4r5fnOOnzQexk0zry1FOmHHDhlFyrXJkUaVDq3jp+hruoiPocb1l/H6J9ymIxxkxOmplJ6UCWNnk/aKdbkpOiiXekm4M8C87ombgwBYliKztNq2mwbioImFx8nK5xZ2pjmmt4VFnWncjrmEqc74DWwKc1aTSFVzbJQzPeHHKUXX2ta4YUBZgAqnWerlh7pyT1Ep9RojUPiZ+lwZZz8cPwBnL+vmpvB0LBPStvWmyvwlf/gYl+79ZvwmU2cnPdfYViTqZRI2C7vbeMIcRYL4ujmB8OOWH4gDToNraNnxEzZwagXaUBrdx/xfvQMnLu+2M10N3yd9zAv5zFE/BEAXRwi1Qemgsv8yreEQC37znsr4W+4nJ0aEn/1g+0C+MrA6wappmTxJycxQHOw8XPAJQjMrXe1ChB3kKFpprPKXge2wwPSR2vfopJ2Pgrj872u9X6CltXpxVEpVbvQWdqY5/3Xvm2AH9cJh2fGT2n4nb9j4aTawhOS5H5jy+NuWrARgYNMjZL0xN5Px05OejnZcxyLAmpVP2oUmKN/gjzknjYF2FTkVpuqIkSt5XLTjP9ikoxshfQhyOiSY7/Bg13ABm5Dbw2o2Qq39/w0XX8TfvvZkWlpiS/sU55IT1+tb5Zr9WXgdenRTlF+jmixXOJLY1j/K8WxhqPMktOXiHELhZzDn0a1G0amuSjegRuGiAPlCdG1sFF7aDDpuye6G+XHLjp7TxqO6tnPXeMePUlQ67EA1oNj3p/78Cl5U6pXKtGJZitZE9LeTsC3Srk3WpDDeoRV+tg/m6VHxMdT8TZ9RuBuAQmL8w4WELhDYaZJjSrdMPPhXYbHue6Jc6iUZPxH/9zWrplznwnPOYpOeH000CN6vlnpNLog6tkVXS6JhMHratSt5OfY0QtYh+h0DWIno+8Ou/B1P754k74WVHKOJhB9q8rk6M+5+lXoBHDOnlb62k9jmLGXBvdWg5LbtfyBj4uvEFJ/roaQj7XJ0bwu3hzXn0UTCT7o6tnEb/f3F2zUK+5/3y7ex5idn006Wh7pfxb6T3z2hK92yoKUn6u4V5IfwQ41d4/gJ3nc7T8y/rLpBPnKMBaGR+IAJEOFnPwhLo9iq+iW0hfgJ5wQ3h36o2TtcJH/3t8kP9TVcR5g9uGGeklWtx00SXcCO/cXrmGyM+tSzkb152bJjcSeoqQVYMa+NLV0vqEzvUvHThzGOsVAbVFii6/d/xWY9j1tf+EPslsbqeC3zjomC5vzd68iOyZIy8VP4VCqFaytC7Fk54BImp+iHWOUb/DFOCW00LUQ3UaXS5CWlD93+a5aqPdzYHTnUvOJzX4IaTNLtRZg9eIEmQcCiBdH3XbD6bbQkHYrHvw6A049dRNKxScVta6cSEauOn/haOctaupeCkLufmjiQ9khn66ZnSCmfsOd4QitxSIWf4dEc7SqPyfSgKpk5jYWfQiG6xiWa6F7UCLs1ciSUHQq1HN2TYa+qaU/cICC1LP5UpmPXShA0Ifz4UamXlSiHO6vK/+mETZY0lLKTPqA62Gzuz1cePNTeE6/21wLgWeM/96QpEjrpujbiAMYuCz+lunsvo6XUq5aOtskjAAC6WpN8y35rNNHI8RM7cxqV7zTCttQ4wcS1FUf3tDCvPYlbbgfewPHTqLmNCoqEWJVAdCduU9+oZGgyCl5YOVf80JAgqJRTFt75Wza//LskXYvOjMvyuS0s7krXCbEzIeFYnHpUD18vvQ6nFJU0jpgxYc6z0PFTpj3tcuKCdn6crGliMKHjp+oucxu0fDfxdi1r/6d+gQ7JbL0Vx/jsdhbhvv5bDF7wdxMek2NZLOhpo2AS2Hsewd5xLxZBpYW8WrAKt/ZBeCHOiDKGjX1ZaaDUABF+9oMwX/+Ff6d7bryg8Re3H2puufE6zn7yCwS/+b+V+Yfyy1loTBBqUmEO36laVruDKKhQmXDCjggAz2yJclVWHLUEx67/IkmOuaEZuewH/OjEf+fGzjfzu+63RDO9XN062hisp66n19vOL+f+OS88aWlTX1Bt7e3stuaRGd5QCbmr/oDRl3AiGX3Zaaymw/eE2YMXaqyyQ2zM76/oa9IqulnK5XJjN62j/8nbol0c/2pgaqHoQGN2PMxRv3rzONFztOgzmJPymtlEKRZ+lJPgsT/dTPDqbwCQf81/8dh7qm170+nohrdUnDwQOXL8jC/1msn3Yq4UHPCsqNFigF88tHkps5l9u6MHHemeRYfc8ZMf3hO9aJmDVX7iPIGDpliMRIl0cmbtlXvnLgTA9sYLP45tUUxF5dga1bBdUCZh12WKlIWfZsKdi3Gpl92gyUPKscmZNG6QrwtRfa4Z3PpEdaLmuyllou8WNSZ7KQrmLqGdzDjhpzxYtsJSnePHhFLqVYvbxOeQdm2sVJy51MDxUxm/TDDgH4tjKXpaq+uWnWwtSYe57anK90CjcVG5HGfXcKHye7WCIh6JigOk7MibyLk3EUU/rOzTDwKSykfFXfBYfBajSy+iPeWypDtDJuHst+hT5qIT5/J7f2Vl+n3ex/nT1D9VV2jycz0UuLZFb2uSV5+6lC/4b2O7e/S4joQVOpdWt0s0KPUqCz9P/ghGd1fmB9koCuN+cyLbX/ofwOSh2ralOKa3lVEyLN5zKwuvuTTK+CkLP0Cps5ptpeOKC22iihop+RqPCD/7gSmN1E33OZM7fkp+SKI/+jIcHdzL5n05Hv/J5/AfvvqgHqcwfZ7py5LUeQK3+gSl099bee1u+cOE2+pcpDhbLT3jbmC6WhK0JGtszJbLyvNezcI3fAXfja2TYwa/qWdv5KR7/hKAledfOmU7zTJp12YgcwzzS1sYynt1OT+Vzivlm2Nlo2bZk3ZhasLajLAxjq3hgk8b0eBmeLQq/DQqqVpUeIrd7hLcli48Y+PNoIPGfvGbT9K68270tvsrs4wxFPwQX5xAswq/0iElCcqqDF5t26qzzqcz0U12cSrhhwCt3Gpnnvg8DrQZl002FeXuhweKINTsGiriFycXTo9kRvuiMvfWOUvQB9DxY4yZ9tNabzhyUtutvZWn+7WOn7o2wrHjpzIwnSbnrToeAFUcL/wA0BaV01g0Ph/ntqXq2itbqegJetkpMBmFUkBGlXAaiFaWpSioNG6YO6Tls9aWO6sT8T1xqE2lgcXYssm8H5JSJUhkxg0Eyz9n99p/r3voVi71alhqcgTSTEZNKmGRzETCj18YXw5oyl3wrObENNtStKUcetsSDculyl25Ggk/RT/EGMNAzqu037bCIr6qCgnlMGTdoDvUZHheidZ1P44yM0vR9Vulovv58j10yj3wQ+BzjunBae1hLdH1weleyi1D8/iX4DJ+veCDUzbaONR0ZVxef9oirk1dxgOv+vWEx+v0LsM30fUr0UD4qRO4atxedz76FADDK99FcvEagEkrIxxL0d2SIKeq1zqXoPKgSClIJpP8xwnfByA33AeDW1j+zUW0br99gqvvkY0IP/tD3O6771Xf4Yl3PlFtfzhBF4mNfTlOCKMuD3ZY5ONX38tbRv6HxC///Dk5XKE5Qm3YN1qilQIqUe1G0eHtqb6+6+8n3D7hD+HhYpx03Y0dRE/5Fnam46ciYzYst0j26zMDUg/9FwDrkyuZ09PTdOeBTNIh6D6OY9RONuwaqsv5UaEXdaSLn0RqbJBw58OOfdka+/MY4afQv52O2GpfLOXZNVxgz0iR/tx4y/QyvZWdqWNpSTr4OHjPoeNntOizW0eipz8cPRkKQs3GvizDeV+yf2YZUamXHwk/VJ/W1Q460gmLeZ0tBMaa1PFjjMExPqHlVjN+YgE61GbyEP0GlIKQ8AA6aMv7CktV4ccPpCS2liD+m012LUIrF4dwXIOCmZAtBdP+/etsJPy4bXOx4ywNXSP8FGue/nrxeTlT4ceJS73Gfl+XSXYtnnT7dMKu5gcCdrqdvaaT9tzmKd/bK8X5RKkJWkMnW7H97CF1/KihLdWJ+Ltp52COlIruj9WY0uR8KSBDqerKqOGFJywCoHfjzzEjO6u7jferGrSTPhKZqF13LUnHJtkSiYy50aFxy6sPBZsv9Uo6Ngs60nS1JMYJP+W/Q9Mg5L8URAHMWldbfDu6iG9VS4ecRNnxM71Sr877/on5t/4lPH1DpcOdijtR2ZaiM+POqJvfVLSlHC5YMYc3FD/Da0pf4E9e9kJeuXIBXw/eyL3z3zb1Dg4xSil6W1N8791nccFxcyZcr7s1xSYTidvJBqVedVlGNQ+z9+7aAcCypTWOoUnO26QTdY8jWc0U6lEjlVLEsrssFYeBjw7uhV1ro2Nc979SUdMAEX72A+VFwk+ycz460Va5wBE2HkA/uGWQ09QGIAqD/mkiamNnmN0K8JHGSMGnP+vRQgGrJsAseN232GAv5zfhmajBTRPe3CaDEUZVG6mEPe6LOO3apFybY+e2sqSr/smWiuv1x95IWrsf42f6xTz7qijZvtkAupaETeqo00iqgJFn72OkUBUkVejhU/1i18pCScbPYceuoZpB9Zgb6ZOvPrvyOvBK7Bv12DtSwh/TSVBrQ4YCnttOayz8+NPsoLE/DOV9bt4aHdPI7o0YY9iwN0vB0xR9LcLPLMMLNS4hlpMgk7SpZN/HWQ9J16KnJcmxc9vwcPFLEws/gTa4BBjLQY1p524MlafAU2GMYc9IkVKgD2hEkNaRMHm6ebwyr5ibwOFxBFL0Q5z8HgJsWjrnoitBrvtfnpkrhdP/289HNv9Ex7xKN6GwpkSk6IeUgpC9I0X6h6PBYCI5w/bKU3Q+bJ9/1LR2l3RsNuqFdOS3TOl0Gx6J7j3dCYSf7q5u3DBP/+hzH9IP0d9jJr+T0EQXBx27PTbvGaisY41x/GSL/oTlayctrXYxTTz9y+qC8j7GtHYWJqe9vROAwaEGHdbKzhyrOeHHta3KPWlr0uHonvrfXzmcOWxQqlXwQ0p+LPTH9yV2WKoTfhKJiduCT4Qfalp23xttZxRBIfp7Kbcgt1TU/W4ywWGmtCYdXnz8HAIcHjPHsLQ7w3vOW8YlpyzgklULD/j7HQzKTqjJRhpLujJsN5Ew1KirF1at8FMd07il6BoQpnur8+yJ38mxreiB+fz5lXkL1UDVaEH0mWc6omMpDPdDLB7b3qg4fhogws9+oOIsFjsWByZz/Bhj2LhpE0dZe/ESnfSqEVZZUR7C6LyznpsDFppiqOAzkPNoV3kSNS0L3VPfzODbb+JOTsX1R2Boc8PtE0GWot1CV8v4i2G5jjjl2rSlHOZ3pEi6saIddzGoVce3bNtGmxmlbckpLOrpBKDZxgNKKRInXIyPw7wdNzFU654IPUJVfdqhscc9gRNmP0N7qpkqk2U0hTU26bHlE/lya2AnRWvSxscheA5LvQZqMnz0vmfJeSFBjTgllV6zi7Ljx02kaEtVsxGc+CnqcfPaKiWt3hTnUqgNrgoxlosql3rF1yFtTN15MBlb+vPsHSlR8vUBc/yE2hAaw69+9XMute+uzC9lpy7FOVIYKfi0lfYy6vTQknIx5Zv9AyD85L1g2n/7yZFNaKNombMEKw6F1TXfp0U/ZNtAgT0jJYaz0f1bMjWzjB8Sk2934qqzJ10+lp6WBFvUQrrym/HDxt/FpSBkpOhTGI3OQSfV1nC9js4uWinw7L5DU6I4kPNYYPawTUXxB+VOZbv2RYM+DycKaI0p+iHD2REsZXBSDQKKnaoQ4D74nUoHy+mWJQkRLR1RcxA/36DzWyXjZ2blc2PjDez4d1dq8DDJC3TFie5rjRdoXF0ibOD4CX2vaSG46IfYA88AsG9omNxoJNbb6ejcslTUAe9goJRi1eIOXnTcHD72shV0ZlxSrs2fv2g5x82bOnx7NpCKKxUmqy6Y25ak38TjowZ/f8lkTYi1VxV+EmXhJxWF3ys1/pwZy7LeFrwz6ytjrJrzM+lY9HR2UDAJSqP7KjmptjcinbMbMOWZr5RaopS6VSm1Tin1hFLqo/H8zymldiil1sb/XnXwD3d2YeIbCju+AUin4otVgwGYHxq6dka5MP0nv6cy/wF9XNRRSZgVaG3IlQIKw3voVDncOcfULW9Pu9AaPX0y+cYDgIQu4Ftpelsnf5JoWYrWpEN7KqqLVvGNam248zNPrQWg96iTK/PaUs1/ISdaOlmfPpVTc3cShprh2PVjaY+gpo7aKEuEn8MQZ0c1E2fSrmw1nZX8UNcF4OaKPmlKGDfDoq4MHs4BGbg1QxBqdg8XyahIHAgKw+TjG0FtDD97cDtrt8lAezbh+SFJFeAkkpUbRIiezNVOZ1wHD7dOdByLH0ZB0bq21EtXhZ9sqfpdOpELwoxZ70A5xLxA44eaOYMP180PckMHZP/PB7YO5DlG7WCk5WiSjo0+QMJPOd9rOp3+glCzaOA+1qljaO/ornS80jXfp1pTafHrx4JkeoZdvQCyK98Ob/huw2UL4gc1zWJZiuGWo2jRo5UA1LFs3pdny748bjEaPKnWuQ3Xa23vJKV8uv/4D9M6hgPF5v48i1QfA4nI4eDFbo9yVlZeteDU3G8E2rCnL7rOu+lGwk/1d9SW3wqlSLAod/US4adK6cwPwmu/Mek6c3sjt1qQHyHUpr4cRu+f8DMWK3aDNHIRGwPD+ej9hgs+W/pzOLpEWNMFL5GsRiDUutYnI18skfIG4s1GKiHWduz4UUpNKTbsD52ZBB9/+fFccspCujKJ+D1BHSbVHSnXjlIgJjlcy1L0E3f2atAd7g1nVwOXvZosqYQfiXBBqovWlMNx89pIOpOPgZVS6OUv5ZtL/7kyrzbQPelYLOxMMUKGMD/Ik5uicrJ0/+MQPPcdamc7zZz5AfB/jDEnAucAH1JKnRQv+7oxZk3879cH7ShnK/EJZSXSOLaiNT1xiFnO8zmncDv97gIGT3o7AEPtJxBioaWb0qzBEH0Z2XufBCCzZHXdcoWq2KsLhfqLXdlJkdBFfLu53ICEY9GRdkk4Flbs+AlLNbbIkahDGN3LAJjbnmRee/M3qinXZveCizhK7WZg82Psy5YwxqC0X+/4UQ5KMn4OO+bvqQkZn+w6UpNzUQo02wby7B2Nrl/ZQgFbGexEhjltSTzjjOu4crAoBpq+0RItRDeFoVesuDyufXgH37/nWf7zDxufk2MRmsOPzyXLTZJukGFWeR07fibL+AkrpV6JarhzXKulTVQGOJT32DFUIOeNP7/7RksM5Ly6p3qTdVycDoHWrN89yhr9RN38UnZggi2OPNbvHmGF2kHYGwWZmgNQ6hVqw87hIlozLfdWEIYsK61jfXoVQEX4MV71/Ks9N7x4IJpKzSzjB2DkpV+Dla9vuMy1LZ65/LcU3nxN0/vzu1ZEx9m3ftyyUhDixRlFSS8u0cn0jlsPoFMPAbB68/80XH6w2bJ3mB5GKbVG2TyeF58P8cPSgpXBoir8aGMYHBoCIJFu4GIK6kWD0ZH4YUD5O8+Sh6dlvIs+D6e9c9J1etrbCYxFWBrFDzV1WnnFRXVghB+33JVrrPCz+U4W3/inhLG7LV8MKPoa15QIreo9biKZJGeSmOIwI0W/qcD33RurpbmWl8UJ66szYHyH3QNJR9ol6Vq4tiKTtEm5Fi1JB3UY1djMa09NnUPdEl9/cuOF6vaWqiNyZKTaCEkFJQJslO0ypy1JwrGaEuFsS8H8U6rTNRlCSil6WpNkyUBxmHue2lxZtu/6v51y30caU37axphdxpiH4tejwDpg0cE+sMOCuObUSaTpzLiVWlS/QS3rkztHWWFtZ7DnVMJ0L1su+k8eeOF/ERi7alcVDjnlG8PMnshJkViwsm552rUrNybFXH1Xt8G4lCqlC4RO8zeT6YTN/PZU5Ua1b3CwcoNnyk8q0h2kXIu5bdPLI0g6FokTXgpA8OwfKPmawbyPrT3CmhpcLV29Zi0T3ujokJOGb2edXhJNT/L7UzXBilpHrd73DJfYOVRgcCh6ApPMtOLaCh+noXh9MPj/2XvvMMmO+ur/U3VTx8lpZzZrtVE5ICQkokAEk4xJBmMwYJsXsEmO2GAb26/9Ov1sHLDBJAPGBIPJJkeBhIRy2KjNYXLodGP9/qjbaaZnpidJG/o8zz47fVPf7q57b9Wp8z2n5IfsPTNDGj0giPwiJS/k77+1jw/fepiv2L/PP03+Oiwx0aOFtUO5A2+YzhyPhDrFj23gKmvOoK0WfhgTP4aFlPWlXuLEnTgT+zg2XmQ859FIyDNZ8Dg5GbcNpRj87tto/++Xr+DTVRFFcNehkzxJ3lt/zvkW8VPGmWP7SAmX9Hr9nIzKSS4L/OaLwQ1CxnO6D7UU9ZY3eRKLALdtMwCmaVBSFqqmzKCW+AliQkiYDfwpmoS5gDcFQNR3CdGWJzd9PKNXEz/+mb1z1tV+FwkvJj7SjX2GzIueBEBOtjVcv9YYHz2ly7bateKnXOoVxd+5K9M67ays7osUxbxWBaQzDRQ/A5eS3/VSPpLUhMbEuDbxjsolcS3ip4Jmwj+6Mg6TZDAKozHxU21bMorHLyu4Lmph2GXFz6xn+KdfTduRr5MYu5+dH7+KDd/9TdwgxMEDq4b4MSRTpBGlSaaLwbxk8KmpIm4QMlPyGd53e2V5YWYSM9D3AMOpti3ZrGfCMiCEoCNpYRkSy5Bs68uQtIxzRO+j0Z22Fy2He+mTrtB/5Efmrqwpz6xV/IjQxcdka2+azBLMtQ0h6Onp030KwJyV5NeetMiLDHaQIxHF9xllse6RzzT9HhcKlsQ/CiE2A1cCt8WL3iSEuFcI8UEhROdqn9zZDhHGih8roct14htl0ID4uf/oCOsYw+reQtKWTG95FiLTT4hEtRQ/Zw2UAmv/V3h58ZM8lLkOo62/bn0mYZJIa+KnmM/VlR9MFX32np4moYqE5jxpG/Mg7ZgYcW17MT9TLXeJO0qWk6IzbVf8NJpFwjJoH9jGSXroOKMv29NTJWSkk3Qqn1tIZKvU66xErQdOHfwCCVVin4qJn9r7SNw5utW4hhOinysKt9K595OIoETqzB2VzcZyHsdO69maRDKNZUh8TMSjVOp1ZrrEf/zkCOm41CvyS/zu5+7jmw8N84qLXHbJo2xWJyidmTsD3sJjgwrx08jQsQYJ08DDgtBDKVVXXlhGGCmdAiWrxE+5fKPtY7ew/bM3V7ZtlM5Ru2T8yH10H/gMicPfXupHaohIKZ72019DCsXpq97OQ5f9nl5eaJk7l2Ge0mVw5vorAVBlb44VEMdls9fssW+T/Ok/N71f7rT2O7O6tKmybUgKOITlUq+ZM6z77PMx83FyYFmFYizT3Bkw5cJdaFOKJaU3tw3oiOTC6QNz1tVyYCI2sSbdOHVH7HkB3zKfSEHU+xA9akb5OZ2AKtv1HLEfxO0hVvyUZHxeUbmsF9x4cJjJts89nmExdcvfM5bdqQ+TnyaKVMU0ulXqVUUz4R+daZtDah3Z/GH8UNURP5VJInP5JZC1MMuKn9njojbdNtLf+2Os4ijtB7/AVMEngYe0qhOntimZUmlsX0+0ltvwdKl6j/GCiNEZj32ncxweLaDGDxIpgacMSvkpongCFacBqbhGyCasCjEshI68Xwsz6bWCiA2wF4Kx5Yn6jz0vbLCyZnzhFSqT2TIOlknZS7tmpYShzhQjcXmZadUTPwnLoCBSOEEOOyzgYfH+8Nkk/OlGh7ug0XQrFEJkgM8Cb1FKTQP/AlwEXAGcAv5mnv1+VQhxhxDijpGRBqzgOQwRVG+QacdExpGSgT+303P8yAFdTtG1mY645tOxDELkwt4cLawpZvtGqOGHGPzxu/ExOfiEv55DtDimpL1Nz6LlctMcGMlVBjRhpCh6ESnhoqylET+glWOgb5LF+JgqLidMZ5bGjpdhSIFlGRxKXcFFxbsJQ52SJCO/6scAKLE25s5hpFqpTCtAEOq404aIVTAFVfYWq/n9yikqyT0MKd0JX/+D32bnx6/moi/+PNbMseph4qjqZCqDKbXi59Eq9fr6/af5LfOTXCX1QKdYLHD7I+P88SWj/NmJ11S2Gxs986icz/mMZhOyFkMU35MMa+GBgZQCX1iI0KPkRxVvldnnZBOgDBsZ1+z7QeOJkEa3kVou6OF7b2u8YpkIooiEO0aIZOSKNzK6TXduo+Lkio99vmBg+l5cHOiLPegqpV4rUfzodrr5f19Nxw//pOn9Jk7pktC2AV0WbUpBEQe3kNfPoLs/RvL0HfTc9359imUVobF2ih/LkEvy9RjqyjJCO/7kyTnryoNzpRSiMIInnGogRAPMGB2ko+qgRynFaO7RSfkSsQJAtmnFT1gmfoKY+DHi846fU5FSuAU9OLcamTujPVISmQ79wp3WMeBl4qeV6lVBM0RjR9LiQDTIhpm7EYe+U3e7rCp+Von4sRuXeqmY+Bmc0Or6kkwxWdTEj1ljuJ60DKZJY3n1xM94ziOKtL/b1Czvn0TuGKfpYoIskTtTSfXCfvSIn6Rt0J2uksppx1yUSDnXYPds4pE3nYSdz5m7soZQj9xc9fkf+QRi6WWEhhB0pW1GVAfQOEmsINMkohxOlKckUyhp6pLSlsNzHZoifoQQFpr0+bhS6r8BlFJnlFKhUioC3g80jKZSSv2bUuoapdQ1vb2NZyfOVYiwpMsi4lmfsolZGMydLS+cOQSAl91AR9LSTuaGJMBY2JujhTXF5KwHhvNvN9DmneFuuYctG+fGsTqmZFO/bselfA7Xj5iMzemCKKLoh6QoLZr40Qi2Y+MqE/wCU0UfpRQq7pxu7O1a9kMjYRn4G26gixlO7LuTIIyQkY+oYeQjYa6J4ifnBuRKrfZdxmIxvbMxO3q9FqWSli8XiTtoNfcRFQ+8krP8K0xfz6raNcRPEMdtO6kMRkz8VDp/a4zhfbfzRrMazytDl+fLH/LKQ++o2y4sTD4q53M+Y7WIn7Cs+LEXV0qEwkJGHkfG8wQN2r5O9QrAsCoeP77XmHRs5N2jYs3Pw7d9jV8bfk91xSoYOp6cKpJQRe7tfR5IEzvVoc+5OMlk4dG5Ps5m+EHExd5DHE/trAzuKp39ZSoGlVJMl3ys6SO1C5vatzByGID+DdsAsExJSdnIoKAVtPFAs/3w11j343fz5ul4rnIFJrbmIuoKy5BLUvxs7U0zrDohdwY3qH8el7+GfScn2KP2U3Qa+/uUUTTbSKtCxd+t5Otwh+mSv+J7wWI+K2ZREz8iLvWKYjJXxIofr0z8xM8slRumIx+rnDL1KusypBC0xWlUbn4SNwhrSr1aip8ymin1Mg3JRGy8nf3GO+rurUaZtF0BIVoLKx4XlUr192Q1S62WjHLMzORICB/bqfafTUPi2x2Y3iRQJX4KXsih0TyHR/Ocnqo/dnvpJBP2IHmVYNfwV9hVuFOvWIAoXQs0o746l+GYcv6U4Zr2Mz0zU5nMlqGHvxziR2pD7hEVK37MuccoGhkSYR4nKuDKJKJc1dCkArWRqvh8RDOpXgL4d+AhpdTf1ixfV7PZC4H7Z+97vsMIS3g1yUjlOPdGpV47vAeIEER9uzENbWaVThhELcXPmkEpRRQ1LjEA/QCZrwNvp9sxG8gyTUPS3dUBVOtWx/JuJXq25AWkcBHLeMCkbJMiDpFXwA8U08UAghIuFnIFEtG0Y9B56TMJlcB48HPk3ABH+IiaGty1KvUKwojR/KMzy3guoNHgdyF4YTTvuGd0YhIAGc+QBjVKiWPDel1Pe3WG6xbz3/l5948AMHOnKsvDWPFjJzIIUSZ+1l7xo5Riw9gP6pY5+LzB/CJuapAHX3EXX3j8f+lzbBE/K8ZCJOJSIEp69tRIdiy6bShtZOThB7qcYHbHKogiLAIwbIx48Fb06u/JMk4MaUSaRhGceOBHvPi+X61f4TaIKV4itn78RnrFFJl4sJlMOORUgrAwOX/55QWEAydH2C0OM9Z5OVZZ+VLujDeY/FoMUaQ4Ol7A9SNSwzVJak2SeNHEUSZUhqE+PaC0pKSIgxGW4tlmfY527hg9D3wIg5i8MNeu1Ms2l0b8rO9IMUInTmlkThtToc/I3p9gffU3uVbuY/KqNy14rKLVEf+h/YCCKML1I46MFjg9VVryJEQtFruXOCVdima062FCGA+8RPxburOIn973XcKrJ/+JYdkLPdsbHlMKQW+vTjEr5aYYmXGJykqilsdPBc0QPwAnL3opAG52I5HSEwNBGGGssuLHjmO9Pbf+OvZqKiOOOLqEb/Ohj9HFNE6yvv9spDpwghk69n0aeeg7KKVihX04p3+UdwMGolOUMhvYKk9jKY/rort4MHt9q52sMhZMR5OS01e/HYDczFSFbDYij3AZxI8Qgs6UVVH8GMZcsteVGVKR9vhxjXSV1G+yP7tafaSzHc2MJp8A/BLw1FnR7f9PCHGfEOJe4CnAW9fyRM9GaOay2mkw40YWNmAXr4t+xuHELpw23SlJmAYbu1JEwmgRP2uEoh/ihVVFTi3Ksuf5BuJdDszHtfR0dADQPXI7KEUUaa8U0A83S4SIZdQS7+jPUsShEJscjuZdRODis7KZl7aEhdGxnnsS13LVxJeZzBWxCJBWLfFjIlh9c+dIUUlpaoElxRODJs7mSykandQD8ERalx56NQPmh07qjndfV9Xc869f/XSe9mTtmbLx+29F+prw8eKI3UxsqhkI61Ep9To9XWJnsJfhZDX2c5M4w055jLEdLyNMduOm9Sy9apXXrBirpfgRJT2QNNKL2/opabLdfQDp5QgjRcmvP4cgTvXCsCul0kXXr1N5OJP7EUERMbZ/zvHdIGTito8BcPzyt7I3eWW8YuXET7Z4HIBUthPblHHJQQpZmqLghRwZyzeVMHO+4vTen2KLEHfg6qp3xQoUP1NFX092AOrEz6orSs15NDj5k4wYfSTjZDnLFBSxkUGRghdWSloB3j70nzzD/Uu+0vOaeRUmzWAxxU/KNpZU6iWlIGd1k/HHKqURZbL0/i/8A0/9wUt4Pt/jke2vw7j21Qsey7Pi6zP2A6rt6kwW/GWXfYWRwltM8eNNE2CQyHTp944DTGRQVvzE/aNZavf709fPW6tkG5L+mNQLCpOU/IgwDPTk6RK9D89nNCsy2XXRZn4Y7iF94oeIh79MECrcIMKIXG1B0WBgvRxY5VKvWWTwvhNjlb/Hu64A4MlH34spIhKpeuIn09FDp5pmw/ffTttnXrLgAP3I0UfoF5OocvkpcEe0ne9c9rfz7tPC8rGQb5H55N9mgizO1KFKCa+MvDp/0aWgO+Nw5ROeAYDIzS3/d800Nj5ZNUMgkzWlx831Zy8UW4pmUr1+qJQSSqnLaqPblVK/pJS6NF7+PKXUqcWOdb7BiEoENYqfstllI4+fPjXOiL2RbELfTFOOoT1bpAmtGO1Vh1KKvBviBlGlHKCMMFIMz7gMT7tzLvSJjJaJH7/md3DMxrMDve1ahrp18kd07v0kAIXxk/Te9Q/MTOmHWSq99DSNTd0pXOFQKuhBS8ENIahXlS0HCcvAsSRjO36RPiY4dftnsWcRP8i1UfxESs35/i9kLEXxU/JDRnLuvN/e+JRuJ9m2DgC8oHrfmZzWKonubAbvzfey70XfBGD7hr7KNns+sovE6L2UYm8FO1Elfh4Nxc/dRyfZKY9S7NrFfa89wo86noch9Kf1+i4HQCTi66hF/KwYq0H8BGGEcDXxI5Jdi27fp/T9sOPAf8fET/09JggVNrrUy4hLvUqeXzGBBdjy1VdwyYd30PuRG+sIocMnhznzyTfz8ujLnOy+gYlr38oPu39Br1wp8VND0AonS3fGJmUbTKs0lj+NUjBdDOaUCl9ImDmjPXWygztriJ/lx7mX4tKm7NFvsmn/h2tWNGem3eaeYtoZIBmXRJtSUlQOZlii4IUcPaPT2H7e/SO+c8pin9rA3h1vWBFpsFgyUMIyFiWHZsNL9tEWTVEqxdHnZb+/vV8F4P4nvZ/cTX+wqFFs5MT3TlcTZ7PVduPLLFcs+uGi9xIryFGUaWzLwFcGqlzqFQeieOXwi9Cvm/gMNj953mM6lqSnS6eYPW7/3yL9PGEQENJScdSi2QCQ/jaHQlwmnv7cq7TPUhBhRD7+CvuctbBs/R6hXyUalVKMTFYJ3Wjo2srf9xq7sa56Rd0xNm7YhCOq99qGE2hx+546oL3e2i++jvdu+Sde7r2TD1z8Pp571VzrhhZWjoXuQ1JKDjq7uKJwK3LkQb1M+YQraF99N76a4ce/E25625x1rqnveV1qkshwkBXFz+Jj7CCcO1Y8X3HuWIyfZZgp+Rihhy+rg+dyqlfUQOYsCVGGRVtCN8TOVJzQJA1ES/Gz6vDCSP8L6ktlgjCi4AUMT+uH0Gzixw0ivh5dS9v63fN66tRFFg/rmcnuu/6RgTv/mh0P/yMAbe0dSz5nIQRZw+dxue/Qe+ff6WVBaVUewtmESe9Vz+W4GOSJJ/9dG+jVmLMqYWLMIn5WIgWvHEOplq9aDcIlqJ9KfojveWTv/VDDgezElB4QdcYKtFrCWcX3oEQygezYgNup5fP9WYeDDFW22/jtN/Hi4f9Pv4iTNEJhYqjGA1pvPqPpZeDhR44yKMYxBi4BIRA17TFMaYLKtkymVRLcVpLSSqHvhY3bX7PX+njBQxXiKOnk4oqfD3e8GdCeUsrLVwb3ZdQrfvR91fU8TgzrpLlT9iYMP1ezQ3XwcPiL/5dnFr6oF1/6MgCUrRMXwyZVIvMhdKvvGdlZOlM2GcdkijR2UL0W8+6FOWmjlMKb1HN9bb3V+0m5PEQtw2OprAZb/10tHv9g8Ey9wl38t3T9gL5oBD89WBn42ka11CuMFPm8/k1/5Reez0d+5XF89tdv4OXXbVzyeS4VS42NDrP6+zRmThKEkVa2RIrL2cdtXS9AXXwLCLmof4id0tcCcarZ7EvcD9QcH6FmUPCCRYkfO8xRkmlsUxIiieKJBBm3i8Aop3rVk7zrH/e8+Y9pSHqyVc+67JFvgApQojWMWQ762xLkqT5zNfETYih3WR4s88GJFT+13qdFPyTyXU4lt/HgK+7CvvxF3HnZH/O/z/8Z8le+hujbVX+MnbdU97W78UOFWRgBpdvh/nt/wtBHHsc9X30/m49/Hg+LzKareNVLXsJv/9rreeNTtpFaRjhKC4tjoch3Qwi+ve33AXAOfZMoUpizEoWXCsswmLjiDTCrjQBEpr6vdDBDZNgVtVlTxM8FovaBFvGzLHhBxMnJEkZUIjJqFT9xqdcs4kepcmStWekElB/aQq5NmtKFjpKv65W9MKrjcN0gqksAUKp+JizyS1hOEikEKXvxmSQjThqILN3JuuLMfwPLI34AZnqvAaD3nn+GKESGLoFcOfGTsk0M0+LkVW9npzzGNnkS065J9ZLGnFKvxeTczSCMWsRPLZam+Inov+Ov6fn+O+H+/56zPl/QHXonpWc5wrD6cIviAbKTSNXNAAoh+J/rPs1N7t/ze/5rcaYP0xcO65Ux8RMIC2MexU9xHr+s5WDqhI5oD7q0ys6wq536IKkl/SlHJ3rIFvGzYpQmz6CKjb/HZn/XghvilONRmyB+jrVdwTExSO99/8rG923DLZXqyMPA9zGEQhh2pWbf8wPuOqRTjd6bv5m/CF/JvwZxaohfqOzreJqAOnHDnzJ10fMBUHFqi1dYGfHzhdv3Vv62Um0YUsfxzqgUdlAlhS4UafhsuEGEyA/jYeJkuyvLyzOsYQOfw8WPGSKCEqY3xUeCp/PV6DqguTLP/PQkGVEiyA5WlrUlTUrY9Bb2kxy5p6Js7MjqZ7VtSoyzkDSwujcDEI49ghdGlPyQgheQxMWzq0rixZRETlJfC1FM/PzN53/M6R9/sm6bJVYeA1D0Qvxg4XafCPN4ZroSYKLKpV6xf0xYTj2NQtyS/l0+3PEmOrLzl8hLqeOl3ym0t1Hb0W9CFGq7hBaWjIG2BAVVQ/xEemxjRl5dJcNKUfb4UTXjIi+IsPFR0iFMdpN0LJzrXsNgb09DAZ4cuISRzc/DVwZBpPjI//6EXZ+4mp673kukFPbt76UrOMMrT7yHZ4jbOb7jV0ims5hSVrw6m/U+amFpsBZINjQMwfoNW3ko2oh99PvkvQBD+agVED8LJSmquA/bRgFl2NjlMc4ipV7HxguPWuLh2YCz76l3DqDohbh+iBF5KKN64zQrip/6RuaFERZhXYpSBdJsET9rADcI8UNFrhTUETsKqp4/StGx/zOEOT277AURIiiRTGXoa3NINzFDkD36Tboe/AiTk1pGPqEyPMRmzG1PXdZ5my/9EO/wfx0jcnGmDmojNLl888ky0jGJlbziRXwz1D4YyamD1Q2EMUfxM2+M+BIQ/vh9zHztT2D4oRUf61yHJsGaHyi6QUjH/pjwsZJz1ouy+iE2Eg+DWuJHd7JMy0aK+nSJp1+6nr9+/XOZ3v1Knu7+v+oB49n6aAHFj+uHq5Z8YBVOA+Cn1yEEGGVJOJIwLlPoSNrMqBRGE7P+LcwPNwjZ8R9XIv7p2obrmyV+SkFIMpzGxWrYJmdjfWeKI2GVGFDFSUZqOljlSRJhVokf1/cJ48HgU664mIMXv4aDKh7Qe1WfFkKfUToY3/2qSrlOMqMTP7zcZFOfZz5MT41X/m5v1yVtUkoKRgbTm64QPvP5b53vcP0IpzTKtNFFyq55TsZGyaE3y8g1iBZUlyildNnf1CMAHEhcylXbNwMQzUNW1h3fjQnBMqEAdKRsrrJ0Otj6772VUjFHSVlkEtV+2NkYujOwaQcAM6cPxt9bRKHkYomwznB3McWPGZfulvI5/DDi6Q//IU9/4Lf51o9urXhTLae0IecGqNrrcBamih5JVcA3MxXFT5n4EXEJYFjuN4c+P3lYJ0xuG+pranBe3PlivhldjT32cIv4WQF6sw5FUW1PfhSRd0PMyFvVUi/H0feE2koIL4ywCVDxxPlQR7IyoG/kiWUYktM3/yMfk88jGUzz8O1fB2Ddz/6G8S/+IbeoW9nb+0yOPunvOPyMD5G/8fewTVnXnowW8bMmaBSCU1knBbsH2/lZdDHZ8fuYKXqYyiNcwWS2aYh5q3OVqfskUigwHCxzYXPncp98qug39II9X9EifpaJvBfi4EFNeYJplYmfelmZF0QYhBXzyjpIY028VS50uL6eKZtd6lVbepQ++UM2fO9tiO/+OQD7zszg4JFOp+nJNEe2TDvrGLz1XTC6j2NRL1e6/8q7B94HqcX9LxqhI2Uz3XOFPr9TP8ZSLqGxcuLHNCQJS4KQmC/4JwCMqaOV9UqYSOrb4YrLegrjbLr9j7nu6PtR//nylR3rPEC0/1v0/sPmps1KvSDCKMRqnAaeGUbslyCdmPipUfyUZ9eE4SCEoDtjY5sSy9TKhZRt8utPuojXvvBZvNB+H3dseQNkBwAIhD0v8TPjBhUD1pUi4+rPFqQHdDJEPBgoyjQISXvSojNlU8SupMG0sDyUZ/ZFfnjOOqXmTz6sP4bCDxTJYJoZMk15o1y5oYMjUdVXKixNM1nwmIo7WVFZGWLYGLGnWtfxb+PHxM/WwT5+46kXYyfispUaxQ+hTzCrJMFKdwDgFVdGFKpStZwrUaP83Dy0jv7oDPlP/RrSy11Q8vBaTBRd2oJxik5PxUwZQMZ9oGKpWEmlcoOQw2P5BTvWfqify2MHfgrA9l2XI1MdAJRmJhY9H9/TZGJF2h9jsn03AMIvoLwSLnYdYdKsH8qjie0X78BTBsaZeyvl6vmCbve15bCLefxYCf1cmJrWZuTXSK1ie8tDL+PhT71LJ5EuofkWvZDpkk/68DfZ9K/b4ORdDbc7Pl4kS4HIyuCYhi71ip9NRuThY9ak7QQcPa19wIZ6u5oi4p6xZ4D90SDO9CFM5aJaxM+yIISoTFYDqOG9hJHS5s6rSPwkbJucStCZP1RZ5ocKW/hgWJiGIGlXvbAaBeUZUg/2jXQXJgHPST5QWfeU4Y9iiZDwyl9m6uIXMbPxaSAkliHrjnUWivvOexhSsKknxQNiG4kwR/H0PkxVJfyWA9uQ89vl1ybRmXa1qiFs3GcNoohCnAzXdf+HcT76rAsibKl1KSwTMyUfBx/ZiPgJ6yVjXhBhEiLNuY1dCQOD87+hPdrwSnmckftoO/y/JA9+pbJc1XAZhXs+D0AUs8TT8W/qJFKLzqblnvle3mW/gzf5v4lAsT13OzNGG//1q9fz7ufOrT1tFlLA4NZLeTDaRNuDH8eKXKIaVdlKkImNxbv713PyunfBL36q5o2NarxtjCCa3xNkMUSRYnh0tPI6jL03LmQY33kPIihCg3SiRpgpehWz40bEj4jvMyIub6lTGpbVQPE9J2EZXNyX4eK+LCmn2lHeM9jOn7zq2Qw+/92VgXwkLcz5Sr28cMnJZI0QRYqsP0KASWfvIF1pm0lfP458M0Nv1mFjd4r+9gSusiuftYXlIfIK867LuUFTJUsnJrUXRzqYZFo2Z15/zZYuPhA+u/K6494PEoWK45MFwkgRxYRereJnx8EP4hdjw/G4XMWK432np6vqDxH5dcautikrCXfBCku9VK2nll0tP9m9USdAPSH3Ncbv+fIFW+p1aCTPkBglSPXXed6JeJKiUCwymnOZKvocnyjixj4188ELI5yJvex+8O84qAbZfeX1JDK6lHB6apSxnA5imCx4HBnLk5vlrVQmfsp9sDLGnvbXfDR4Ok7+JClvBC9OYZUynjle+Vex6uhrT3G7vJyrRr9AOH4EL4jI5fT1UO5v2qZcnPiJr51CfpqC65Gieg99ef6jfPZr31jS833G9RnLeVj74v7UqXvnbOOHEQdHcmQoYqTasQxBiEEUl1rI0MUXdlX9HvmomMwVdgpnHl/FWly2vo1DrMdQAS83vtMiflaAXQNVhVzvR29i+6efjKn8VbEXKMMyBJ8Mn8aeiW9VJr28INLebqaDE8eBm3LhkiwpRKWs9KJA96ECK8v9G1/F3sf/FeHGJ1S2FUITo7Uqn6WarLewcphSYBuSmfad+vXYfix81AralxBifpVRjQpZmA5mOcBmnv6sUlWfPmdyP3JsP8jz/37SIn6WieliQAIPw05Vls2n+PFDhUWIac4t9VLCRKjVM0xtQaP7W2/n4s8/h03ffD09X34tnNGO8mVpfpgbZffJz+hl8UDWCyIcfOxEqvFBaxBd8XJ23/zL/Cg3wL3ZJwKQkT4p2yRhL99ETgrBtVu6+Vh4M9nJh7lK7EWYq0P8dKaqN9uxS1+H2HR9zRvPJSDDSC17RtsLI/Yeqwb9FbuWT4adN/BibxBr8fblhxFHjlRnyBrVKBsxGSRjSX9Ya2AXVpUUAI4pkVJgxA/i2ajtbIXSxmTu+0WxX1O4CuUtQaToDEeZtnrIJrVx7rXbdDmPne1loF23+YQpKWFV1E0tLA8qd3rOsrKh82TBb2rmv1z62esfZ8weXGRrjaGOJKJ7Gy923wVAz4MfJjlyF1EEeS+oKH6kaWOY1ftmuQywXK7ixEa1hXwNIRNVFT8dKYutvWkymTZCJQhLM02pmOaDiImf8WveBhseV1kux6vlsTfd81tM3/nZVTHBP9cwfHQ/F8lT+Ouvq1teTooMPBfXjzg2XtDplCxcFhd4JbZ8+eX4UcTfdb4T206QzrQRKImXm+TkZIkDwzlOTBaZLgaVUqXq/mXip17xc+229Xxd6XPcWbobTzr0tTnsGmhjR3+2Tq10tkAIwZd7X4ckInHff5IYe4ATo5OAJn6E0Amgi5o7x8RP6OYp5AtIobhv3YsZ2/lKAH7rzG9z/yMnmz4v14/wh/czdPgz8Ruk52wznvcYmXHJigJOugMhNPETlD1+lL5mRUzyRkFQIX6UmdRJt4sgZZtMDtzAhNL3BHmBJPGsBXb315frOlOHaFO5VSV+hBCccLYA4Oe0usuPS72E6VSI43Kp13zN2pCCTIf2/tvGcfZlH89Dv3Qv6hl/infJS+s/h1klkboyNoMdifqS1BYeFQghkEKQ6NsKgDlzDEv5K1L8gCa+G75fjU8kZgIZj7nVPCmTkVLkvTg1MTdMzlzct/B8QIv4WSamSz5J3IovBYAVmztHswZpnucjhZozGwXa3Lml+FldhJGi7fDX6hdO6w5OpBTJ4bu44pNXVToMuSktJfc9D1NEOE0QP1II9gy2c+PFvfzBuDYe3RgeraxbLoSADZ1J7my7mTz6JlbbxlaChGVUOrqzTzGSCW1AXtN2lVq+eakfRjx8pDrY9FcxDeqchT+/L8JsBKHi2d+rJpxEwVzFi4w0GWI4seKn1ty5AfFTRqPZktrOViAdbOUx25U70k7olcUr8fopuAE9aoK81U3KNkhYBu1p3c5FZzVpxzQkHjYyail+VoSZucRPKQgJQm1234xXTRBFZI9+i83RMXLpzU2/9QuvHGKG6j1VxgO9ohdW26lpYdaUQrfltTeLEZcxJlO6jbuFmUq7k1FAJPQ+fW0OliHJJCzyJCnOTFRKjZYD4WniJ7/7JfUrbnwbhd4rGd78AgAu/dkfMD594flPGY98B4C2y55Tt7xc6hX5+t5UV2a90CNgdD9WaZT3uC9n3cVXA9CesnW7qVEJlI8xO3ggiN9vdqlXOmGS67mMEElW5Qhlgt6Mg5SiYhZ8NiK1/lLyyqHzjr9jw3feTLGonx3t2SwX9WaaOu+OTBpPGbiFGYoF3Z5nshdx8sY/5+4nf5heMQV3f6Lpcyr6Ib3f//3qggaelTOlgJHpEhmKJLN6EBWi49xzboARugTCRsbPpSDwKuWbqUzbomQWaJPnqy7Zw9v9XwOg5PQ0/RlaqEeqARcypE6vSJHRCGZctjk9MQJor0AbHwyb9qRuRwnLoK/NoTvd2NrAkILBTToIwhQRXqp/XnVG+fqQUjDQlqC7SeuGFlYfQsC6/gFmVBJ35BFsEVT6pctFT6bx/rJG8SNNByMmfmoTb2sRxYqfghdw7NhhHphKMllYfr/hXEGL+FkOlOKmu97GRjkC/Xsqi8vEzuxULy8etIkGpV5Is+Xxs8rwggg5uzQkHmDY93yMbV/QCTB/I17FgWiQfOwhEHi6lMF0FjctNYTANASvuWEL94U6fvXB/udW1i0XUgiEEDxux0Y+G9wIQNJYPdKkO63b4OxT9Ky4nKFc4hAGdHzz7aixA8t6Hz9UjI5XDVJ9vzVwF2VDzEUSBkCTx05ULc/x3LmKFyNu4zL2P6lVGlaMn43y7139wS1D0N/u1KUjiFmKH/3HrAfgt9/Dpf++iSiugV5JwtdE0adLzOA5XdX3njkDgOrYVLetL+3KZ70QsRpm2nv36+s4qim59ENtaijcHD3f+R0oLuylEpVybP76a/Q5dTQfg/3iazbQ1lE1eC4nIY7nvYp3iWE6dcRPZ1GT6F2dnVimIBErfrxirpLKKCKfUJjYpsSJ/YGStsEMSZSbo+CF+OHyylVlTNJKp75EVW64hkMv+B/O3PwP/POGvyaj8ngP/e+K1EXnGpRSZMfvY1pksft21K2Txtzo5jIWUgoao9r8/6i1lafv6idpa4+vaZVCNEj088N6X6pyqZdhzx3gbR3q56FI31MiM7HkePXHAlv72tmvdL/CnnoEP6+/g/Zs8yqlPUNtFHHIzUxTzOnnuoxnxP1NT2JvtJ4Np/63qWMVvADXj3hkokE5cYyiF1LyQ0qTp7BFSLJNEzKRMFBRwETew1A+gawqfsLAR8Zx7l0d7U2diyEEj9/axXeiK/g/3m/wrcd/sKn9WpgLI9M7Z1mvmKzzkloNOBnteenlJ1BKcWKyqAkAsxqi0pmy6W9L0JluPKi3DcnQ9isrr9PdQ/O+X20ibzNkYgtrh4RlcOWmLo6rHoLxI9j4CGtlRFz5eT8bsqYCR1hOxV7Fnydlsuz5+vCpKbqjcdat30hHanVJz7MRLeJnGZD3fJyLx74NQOJxr64styqlXvUDO9+L5ezzmTvTUkOsJsZzDcpC4hrP7DfeBsDnwifQ/4x3xDOKU/EmugMim3joCQHZhElv1mFbXxu7Sh8k/4y/raxbLgwhcCzJk7b38sVQl2J1jd2x/APOQmfaJmHJOckJnhkPcEqT+v8z95F98BPYn//VZb2PF0S4NT4by4n3Pe9QNqadp964FmpMl5S83ft1ANzS3DZtRi4RAsvRD7uortQrfo8GMyuOadCbcdjWl9FtQdQrfiopcrMMlY3b/kX/Ma1L+PLu8hO+JgseHSJHlKiR1sad0GjjDXXbBsLGiJbffs71QflsdcNy4J68Xx8rNVBZppRiouDTc9+/0f7gx+COD827fxgpMke/XT3e5qc1/d7tSauO+Fn/vbdpY+RQUSzVePzUqBj6Pa34MdNdbOxKMdCr9/eLuYo0W6oADIuNXdXOXso2yKsE0s9R8kOmij5+uPQ2asSKHyM518uofH/3+68CIH/6wDnfxpYCL4jYWNrLieQOzFmSe8OyCJVANVAoLqQedU/cj68Mduy+ko60xdaeDGnHZIZUhSisRd4NODiSq3zvQfx8MRoMKPYMtnFnpJUCRqPJt7MQgx3JaimTCslO7wPASS6uRi6jLWHhySTF/HSlRLI8MHJMyR1qJ135gwsdooIyqXO8UL1GS7EPF+jf9pHRPFGk6D78JQDEjlv0OgyIAqaKPmacUiqMsjLM0753VM2oF4NjSjZ3p3nhlRv4SvR47PTygjRaAG58C3cbl85ZvFoq8zKSbfo38nMTsWG5wsFHmNXrdTGCpitj09Xejhv3Ve2O+nLjhKXvRUJAW3L5ceEtrD6u2NDBcfppm9mPTYDdgKBfDUh7luLHWFjxoyKIJo7wzG/czEY5Qm///GTi+YQW8bNUjB4g8/W38rNoG393/a2kOvorqyzT1P4Cs4ifcqMzGnj8IM01L/VaKEb1fMSB/Q/PXRj6dbrze7qfza51bcyoJKavOzDlCNram8d8kEKQjWNh//h5e/i9513N9nWd9LU5ONbyLyspBRf3ZdjSm6bQpwcW3tZbln28RuhvT2AZs4gfSz9M/fykXhAbJpZLHpaKkh8SxMk6RWU3nAG+0CDKxEwTqQEn9/0MADmwR8v1Gyl+Ig8PGzsuMa2Nc6+odeYZ6AghsAzJ1t4MW3rSFWNF0ObOwJwZXZXR6UyJg3qWuOiFHB2f3zR4IUwVfbqYgVSVEODKV3H8RV9Eba9v775MYNWUehW9pRFOo7lzWy0ULIO4mI2eibv1sWS1wxUp/V3aM5pkqfstZsEPI5yJfYQYbC99hO07djf93pYh6O6qUfwEBXrufz9QVbIZplMxdwbY6D9CiAQ7Q8o2SWf0/SkoVQf7MvJR0qxTQCRtkxxJzCCHUnBmurQsM3IzyONhYTtzB0DlAUpvdxehEhSnx1eFnDtXcHQsx0WcYKZ9B9asCJ62pIWHRWLswbokvvTJH5E4/qN5jzl5Yh/HVC837hzENrQfWco2mFYpDH/uM8j1ddnXTEnf88rEz2yPH4BLhtr5caSV2etzcw2Jz0as70wyRZUIaZ/UiqhEYvG+SS0MKXlq8etEk3EZelw6KYQgNJx50xtnQwGPjObrJimnakoc3SAkjBT7h3M8xf02p9K7MPq0r18kDIh0co6pPEJhVdJwQ7+AiCfcmvG+A13+25a0ePUNm/m/L7yUp+zsW3ynFhrDdLh73YvnLDaa6AMvBe2dWv1VnBkn74Z4oS71qiV+FkPGMTENSe5KPRkZ9O6srBMCNvek2didYmtvelHj8xYeXXSkLB5MXs1AeIqsKGI7zRPYS4FRQx5Ly6l6zs0z8Zz40hu4/LM30Y/2nrKD5Y13zjW0ro4lYthez6+Hv8U/b/57bt6zvk7dYZuSAHOu4qdsYNlg9l1IU3vNrEJSTiP44cJpGgthNUoMHguMH2nQuYsC/S/G5iueimUIZkhVLvYoLvVq5qEnBSQtg66MTVvS4sqNnTiWpL8tQV92ZbMlQuhO789duZHnZj5RiV9fLbQlrDlx9YGpS72CwqReUFanLJAGtBAmCy4iNjOeJEPUIn6qaKLUa/SINiPfdclV+JjzED8uvrCwTIGvDIKa+44sK2QWqaU2pCDtmJXEN4DIaKz4UWlNcnd+7/ehOEEQRUwXg2WpHUYmJkgKD6utxp9BSryBq+akb0TSxlQeJV8TPn4UMV0KtEfMIve2MFKrFj//WCAIo6b8dxbDQFGnoNT5QMXHHT4ez/rL+c0vXT/CGnuY42KAjb2dDHY033EzDcmzL6ufnU2fvBVUVDFdFKaNNcszJC/SFXlNOk7rCt18RcljqAAl6/dJWQY5lcSMS7WiiCUrfpRSWEGOkkw3NJEse7gNdqaZJo2fH18Vcu5cwZFH9uEIH7q31ZWLAly3pYuk8Fg/8n0u+fB2Ovd+kvYDn2frV17O+i+8BEb2NTymmDrGiNHHxq5UZeIkEyt+BibvInvk6/U7xOR5uW9T9kCzGhA/F/Vm+N/oGr4TXs7+PW9ZyUd/1NCbcZhU1TS59ilN/DhLJH66Qu2psvXgRwBIZWpKFw0Hs0klZckP2fvFv+XnjNsqy/xStW9QvsYevOc2LpGHcXe/uFJSFwmDPv8EKIWpfCJpo+LAisgrIsMy8dP8ZzOkwDIllwy1z2v02kJzePaeuR5JdhN2B0vB0KC+/89MjjJV9PEChU3QMOl4MUw+7m088KoHSW67CdCPiIxjYhm6PLRl4nz2QQjBqXVVlbC9xPtYs0jU+LNadrISqDQf8eM8+GkAHnCuZGznK/Ef/xtrcl5nG1p3zCUikzDZcdOLecl12xCi3hvDNiQ+xpxBblAu9ZpH8QPAGvn8eEHUVGJLI7jB8uO8HyuU/BCGteLny+Hj+KcgNsgNPYhnlv4yeiVXbB1ECEFepLEDTVCUDSmbIX4MKbAMwVBHsmJOt5q1xGnH5MZtPfz5y27EclZfFplN1D8cfTseWMXEz6GTwwAIf2nETxQpgjBi+BP/h/dYHwZgSqVRLeKnimZKvcYfYZQOhvp68DEJGngkSRVojxNDEiEJguZKvRqhtu1WiZ/695yuMeilOFkhDpZKTHhBhH3wGwB0dK+rWyeFqFMfAYRGAku5lLyAvBeiIjg2XuDAcI6Cr31c5kPeC1aFOHmsEERqVTJrnEjf+1QN6RgpRRgpuouH9YJ5rnU3CJk49iBdR/+XB4NBXv2Ezcgl9hx2rWvjwxv+tPI6c/o2uh/4MCKsqmHbZpHRBVkd+GYy+v505d6/hdIMkwUPqcI5xE9HysI301WvMpZuUD9dCkhEeVwjNUcZCfpaMaSgK20zTRpVnFiwDZ5vmDi+F4DUwMVzSNrZg671P/htNnzvLdUFU0cbHrPDO00xqZ/JybjkL+WYdAj9bN78jddh5U7Qf8dfseM/r+Pizz0ToKLmKpcSzzZ3BuhK2Vy2vpPX+L/D9LXnRsc+YRsUqE4gXeLfB4BpL2+mvFjUfZvuzg6kjPlUw9Zq8yYmHX9yzwP8odReOjPJ9QCoeKIMNEHtBRFDRz5HgEFp5wsq67ZFj7A5OETn3k9iKZ/QsJGxuidyCxjlCYYmFT9lnK3G3OcaEqI69nCVxZfDx+HteN4CeywduzYOaHXk1Bh5N8ALQ6w41WupMKUgsjO0Jy06UhZbetL0t61uaVoLq4+hDVu5N9LpbglnbUpuB2ompLKZNEZFDb+w6tvu387JG/8cVaMiO5/RIn6WiJRt8tobt7CufS45YBmCAKOaVBIjiBtduRHWQhjxwytam1lpL1i+4scLo9nBPmc9cm5AYuYwUyLL8Zvfx31DOuYxCvyKgqGzrb0y0C3KNE6oZ4dVJRlkceJHxCbMoH1zhGBOJ3glaEtoJcdscnG1MDvZyUxprxU3N04UKT74He0JopZI/ASR4vBonicXv1FZlhfpugHnhQivNtWsiWs9XTjGiDVIyjHwMYkaED8iCokwsExJgKwrMa3En5tL7xA1Uvz4YcShkyPVjbw8QXm2fQn3CD+MOD5R4Pn73wlQSX4pQxM/swaTqTQSRdEtkXeDiiEf6FKe01PzR73rsrDmz+9sQxCplZ+/UjjoZ5KqaXvOA5+hdP8X6RFxyYZfbLQ3UwWfxH7t2/HJxEu5fH3HnBKfxdDXlsC+5Pm8zns77930D+QGb6D33n9Gxe3atB3Sswju2vteOfENIDV8F36o1QNqlkpJCEGmrZP1wRFSD34SlDYBbvYZ6AURIzMlElERz0hjNygZaEtYrGtPIISgaGTZkbudID+x6j4/syPLzxb4I9ooPDFwcVPPJqEi3rs5Vq26uTnrJ6am6WYS1b6BTMKsmGu2Jy12iipRtPOT19N393ux86dITOxFBMWK0iqsaUezIaXgT194Ca+6fhN7Bud6Np2NSFgG11/UIK1qiQPlh296LwDtrk417WpvZ0tPmoxjVg1W54k6rsUjD/y08ne2eJySsuqI4iBS3LPvAC/hGxzvfxqk55oGtx3+KjYeGE5F3aP8ImZYJMBsmBK2ENJNmly3sDBEXJIHcEgN8Eb/LWQuefaqvsdAR5qcSBPkRlEKAj/AFFGlFGcpKPfdbUOyoStF2jGbNjxv4bHDJUNt/H3w87jKxB7cs/gOy8Bgzbg8lUxWPN3KPrtlzBY0ZPq0+f+FYgTeIn5WgNmx3YYUTKgsSX+yrmH5ZY+feUq9gDmDwdVS2uiBwzKJnyBaldnmRxOuH9JeOsmEPchNF/eyY1B7S7iey2Rck97bqdMjkrbEN5I4qgRRtCTFTy0yjkl3xl51gmZ2OdZaortbdzKnJ8dxg4gOI1apNaFOqUWkFHcemaBEta37wkKuEbF5rqAuIjJc/LvoD04xndxAxjHxMBuapQoVVhQ/4Wzip+yJswziRzVQ/EwVfd1BV/qRMT09iXPiJ3G8+9L8dvJudYAsey6qW2+ZYk7qTk98vR4fHme66NelAxXchQf1hdgI+FxTLpbhBRErvQnXJcKVCVilaP/aG3n87W+q/KalwtxBOUDJjxD5EXIqSduWqxv+Rs3gabt6MXc9h7/d28O+zidjFYZJ5o8BkGpgWtsRVlMB25MWt7h/obc981P8MMJQAci5g8UtPfpYF9362yTGH2Ys5zXtc+eFEUUvIqUK+Ga64T29LWmSdkxSjoFh2mRVjv6vvJbJwuqS2wulYD2WMKaO4mOS7N6w4HbPcP+SDwW38BL/j/jkw/qeF5XmGjVPj54AQLSvY3N3tR1kHJOvbf9jvh9eyrev/yj5vquZ2vJsjj1JhyhY+VMEscI0WsDjB/SA4MVXb5gz4XE2Y9dgBwATdo0qcon38+zVL+ZI1Mc6pRW8VkJ7Zm3oSmGUQywWSUwMIwXDutRsavOzuPXa91LEmTMxkL//K2RECfe632iYbNp2/LtcLg8hLQcR97FUUMQIi7hi6X2dvrYEKcdYUZhGCyCHruT1ng492dSd5r0vu3JNzJEPOTt5Qu5rmPnTEHtHNhOkMhtlxeVaTIi2sHa4bH0H34quZof7URKXvmBN3mOgvdqehJmoBC7N9hh1g1mTKnE/Yrba/HzFhfEp1wiz2UEhBKfpps0bqdQ8K6UqA7LGip8y8VPfMVVqdQYrSqlll3p552Cp16mpEuvUGYqp9WQck0xS3wg8z+W+wzouur+nA8eSbOxKExjxjSIoVToyyzG2a1+DB2Vnyp7jobBW6O3pJVKC4vQYJT+kw1xeaVYQKUZGh2kT1dnAUJiIJk0kz1dMzOSrLxYh06JI0U4Oz+6kK23jKbOhYkqqgEgYMfFjQBRxLDZbNkOXAAMaJQkugjLxkytUz9kLItKUGKVDv77/C2z54ovpvv/fl3R/mS4G5EoBOZXgJx3PwRy8rG59soF8f6Bbv+fh0xP4oZpTurVQKVdZaXWO3cYqyB/5GdYd71vRMU6PVWPaRfk5UzPL/5XoOlxlMT0zd1AOUPRD8uOnGFFtXLOpa94o1cVgSsmbn7aN7ozDvx3oAOCFJ/8GiNOWYsVRQen256jqwDKbMNmnNnIkeQkdh76I6/q6TKXBZEpXTzVwYctXXkrvXf9Qr7hbAEUvpOiFpCkSWJmG2zimgW1KLurNsE7pZ0rm9E9WvdxruUrdtYRSilTxNNNmD5nEwnL9333Vz/PDbb/FhsufwkCfNuCNSnPNM704HcpKZucM5p7xglfzFvvd/N6dab5zw3/wt22/x2e14Ii+n/09QRhycrJUUVXb85RFl0vQZk/Wnc0w4+vsyPqaspslKn46UxZjskZVGSttDCmqRtGLlGEfnyhwdXQvM3YfR2/+V6Y2Pl1P7NQoBEdmXLZO/Iic0Y7Xe8mCxLBpJ5DxeURuESty8eXyJrmGOpLLvh+1oGEZklc+QydpmoZkS29jwnuluHXTG7AJuPizT+d1P3oKwLIUP45pNCzBbeHsRtoxuWpj55qSdnXln6aNWSF+6vvPRS+sG3PnBp+AEC3FTwuLQErtJzAbI6KbNn+YIIqIIsWMGxB4calXAyOzquJnFvHD6gxWouIETBxeeJt5OpjuCvyBHivsOz3FkBhFdW4kYUtSKU3suK7L8RE9g7y+p4stPdq4MzLizo9frM5gLaPueC0M5QwpaEs8OrGUQ11pxsgSTZ+iFITY4fzlMwshjBSl0cMAnLj+PYy9+vtEwlyycuh8w/T0VPXFIuqnvOuREi7CSTPQnsDHbNg5lyogwkBKQYSsROZGkcKIXLxlzKICFePNkfHpyuDTCyJSosSUEQ8ipvUsffdDH0E1oWAqH8MLIu4+PExGlGjr3zqnA9DIt2GwR7/nsTNjREpx/PQwJbc6S73QLer2R8a46z9+F/++zzV1jmcTwkix4VO3kPr2H6zoOEfPVJUzQun2UVumMdLzeIrYDRU/UaQ0aZI7wyjtXLuli57M8urzy744v3rTFr491U9EzW9t2JVSjx9JnWYYiup6KQVbe9N8Qj0dZ+oQ9vDd2CKoTpzUQD3pd/mPyz/BlEphupMM3PnXTRE/MyWf01MlzkyXyFDESmYX3Sfjj1X+9rzl3TPnw9lI/EyXAvoYI5cYaEjS1qI36/CWm7fz6hu2sH3DAEAl6bEWZZPgRIM472zC5J3P3kWuFPCmT97NR247xucO6XWdBz9Hxx3vZaroE3rzmzuDjnoWQocynCswdj8XALmjpuxmiYofKQQ5q6ZkrMZHp6KOWkTxU5g4w5PlPewf1ARU2jF1qVdNH+HIdz/Mc4zbGNv0HBCyYYlk5X2dJKZp4iqTmdwMZlTCk8vzaGn5/KwcliG4ZEiratdSRdO26XJcZWF61b6QsQziJ2HJc0q514KGbUje9XO7+cIbn7Cm7xOW+xVmokL8eF71HhdFilIQUoz7O98YfAOlnksetUn2swGtq2c5ELCuPdnQUGzc7KE9GMX3A9wgwg8iim5Zhjx3EC9jj59w1oy+Uqtj6tn7kSfS9YFrF9xmvnKwkh+yOmfx6GHi2EPYIiS1TkfNtqd1R8f3Sqg4oSqZrsY9RqYmfvL5GfCX74uyVlgLJVEj9Gcdjqh1pGYOE4QKI6zx9mkifryyaaSwJh8BoNB/FapnJ6GwkOrCLvXKzdQQP4sQJYWcfiBJJxMbxpuV1JpaCBXqqFwgQrKxcD9K6XIqKyrhi+UN0MuGiyIskff0uXphRIYSeUuXTkZ5TSY400ewf/ovTR23EB/r9IguO+jsnuth4TRIaEml9IDw+Kj2n7rq45cy89GXcd+JKX2fnIchD8KIj3/hq7zK/QT251/X1DmeTSh/X8CKZgFOjk3q4ylH+0IpVTdb3739Ol264efn7FuKS6QS3hjTspN17QmyyySjpRQkTIPHb+2mPZvhl/o+U11pWNC3i+nnfZC/T7+F/+P9Bg8890t1+7/02g18eWozAPbog5jzKH6MRBsXX/Z4DqtqicwcaXcDjOX0czpx4ItslmdwUov7wRR+4eNExB3GmAxdLZyNxM9UwWeQMYrJgSWlKfV1ZCgqm9z0BDm3PgnQc3VbdJJziR9DCrb3Z/mLn7+MZ+zu510/t5vewS2V9f13/jVm4UwlUMO0Gz+7y0mZ51J5iFh3OfvecJzeHddVFy5xUkoKQS69ubqghvipePwE7oLKbn96GCkUufYdAKQdgxI2Mr6HRJHimkP/wj5zO9NPfg8A7TWTou5rvsXdicdVXtt2AtMQuNhEXkE/q+TapPy0sDiEEIg2Tcz6O567Zqq4HYNdPKg21S1bFvETKy5bOLcgpSBpG5XUxjVDd2wfYNg1xE914jRUCtePOBULAYSTJe0YpC+gNLjW1bMMZB2TrnTjQZXIDmISEk2fxg1CIkUlirncCOu2j2csXXeW+RSrU+plFIYX3SZqUA4WRgrr9N1w8u4Vn8OjhZIf0nXy+wA4Fz8F0xC0pXSHIvB9VNxRactWO/QqJn5Oj46vSPGzVkg7j87NyDQkZ8xBOt1jhJHCriV+FnHEr0UQKdqn9xMhcTsuxhCCSJoYF7jHTz5XnemeL1qyjEJek0RWQkuuA2ERBd4cZZ5UIVGsGOwVkwy5B8ke+TpjeQ9zBfL5TFqXuIRekbwbEz9+SIoSXjI27Zw6Xtm+WTVNMR7sTU2M6vNPdszZpuHALCZi/3L4DRgP/jcATxV38p3/+RB3ff8LFR+fOe/nhbzY+B4Aub5rmjrHswm1XkhLIV9nY2xSt72iSCJVoKn8+F64X27FHrqcorIbmjuX/AiUIhuMU7C7V9Rpsw2JbUraUxZP29nHj47WvF9M4IQ7nsufvuQ60lf+Alt3109YPPeyQSYsXca17fY/oI9JRAMVrZSCtGPy3e2/V1lWl3jXAGGkyMVt/aaH/gSArpm9i3+o7c/kn9f/lT7GxPF51bPLQXAWEj+ThRL9Ypwgs27ebdxXfZUDz/9i3bKejEOOBKXcFCU/ZKpYnejy3Vjxk5pL/OgQBdjck+bNT72Yazd3cemmfm5y/477b/oXBAord7JKjMv5n5fdj6Jn3mrBMmS9ce2SFT9gDdQk1dQYKFcSlUKf/Dz3UAA3VmSVSbX2pEUJBxErfu49PkG/GmVq4AaQFqYhyNb0W4z1VxG+7FP8vv9aANLuMJaUFLGRoYujSgTLVPy0sDow29dx4lcfRN349jXzTNrSk+agGqpbZizD40dKwWB7q72ci8gkTGBtyfeoKyZ+ihPYsdl/rcdPGClmSgH7T+iwEstJsb4zRV/bufd8WC5axM8ysKCx5YB2K3eP312JQ8/HUZqO3aiTqh/E3hzX8RV7ejaNcqxvLcJIse1/novzwac+SmexcuTcgG3TP+aYsQGzewuOadCZtvGUoWcEY2LHSVRnvVS51tzLVwkO68KcfZpMbKAzHCdyc1hRzaBsESl4BQe/TfY/nsGQe4AxewhlJpBCELUUPxTzVW+LgrtwSUgxH3tepHSpSShMROTz8OmZuplyqUKUqJe6O5MHCUKlfROWWerV361l39O5XJX4cYuYIqqktbR52tvkS+HjSUwdbOq4JT9i7+kZtp38H70g0dHcCcXXrSVC9vz4rZXF77f/lpfteyv//Z/vr4vvLuOe4xPcYug0GvccG1iU/JD9wzWfqYnknUZwg5Bi7NXkGSkMpVPRDp/W5Ntdm1+PbRoUcRBBI+InpOuhj5FVOYYzO0mswE/DMSWGFPRlE7z4mvV0pW0OR7EfTzxgl1Jw6foOXnX95jly/nTC5JrN3RxF7yOFajiZoo8DT37S0/mz6NV6QWGs4Xa1n1MpaLv7/SRCff2pGxaP/pZCsG7jNgCOH95fUUitFH4YYRz5IeRHV+V4q4X82ElsEUL70LzbqA3X4Q9cUTcrP9iRIKeS4M0QhIrJgl9JLQvLxE8Dg2+gos4t45Khdo6pfn44HBtyFkeqZHoDBVgZj5Z6djVhm5osPfbEvyHo3Lbk5CspBFt315DeNaN6EXu5BV6JXCmo3Otno0L8OCmkhIxjUVKatAF46OAjWCKko38joL0Jawl8IQS2KfmZ2g6ANXwvhhT6GEEJR7mExrl1fz7fYEmJke4mnbDpnmdSe6VwLAM/1Ve3zJhHobcYziXlXgtVtCXMNS+3DW6I+4jrr8WKq2yiGo+f8oRKsaD7V4m0tv24kLzCWsTPKiO75Vp8ZVA4eCuurz1yyn4UdqOo0bjUy/NnlXqx8hjf8gMbWNDAL4zmGqbe/sjCHeWzEYX8NJcH93Og7XoSlu4wOZZBgDbHFUGDUq5Y+iyDIpQHPmeR4ufRhJ/Vnfme77+TZFRT9hE0mYrzP28iMXw3TzfuJNd9KQlLIiUoaWJc4ObOyq1+n4spfoq5SQASscdIJCyMyCOMFIdG8pUBkxGbO9dCRnHJg/IIlqn4KZsp5/N5Sr4mr4M4hjnZoQfdCVymyHBU9WFGzRGDbhBy53c/x5vMmPhJtjd3Qhuvn7Mol91KKbsJRwT8Uf5P4b5Pz9nmob17WS/0wDlaxMD0bMNY3uPQSPOG4POh5EWV54BnpJBoguMne7Via/emflKOJn5kA+InmDrF0K3vZFS1cWLDzy0rzasMIQR2rGDY1pfluZcN8jLvD/ho+tWQ1aUG5cQWOyaJamEIwbVbOnlR6V2VZdZ8xI8QSCHI9Oh7mv3g3PZRi3Ip2KY7dKnK4f5nwJ4XLPqZTCnYtk0rKnbvfx/FeQbPS4FSitHpAp2f/nn46OLnsFZopF5yx3W8utW5cKJXR8pioE2X9PRmHTZ0pciRBHeGINJeX4fHCvhhRBCXYNdOyNSiO1MNORBCxwJv7k7x0XtiQqI4Vu3fLED8nIuwDT0gmdz+YiZ+5VaWKseQUtC95XImL3oB47/41bp15VKvwC8yXfLrVFi1E4FB/Oxqy2boy+rf1MNExmS0kdeqcpnVz4bZ3pcCfdpvf8XzCaSNeNLvkLJ1uRhBkUSL+HnMYRmico31NbCwWA2YUrDh2b/Frc6NlWXGBdrXvlCRcUycNfblUkNXc+w3TkHHBqx4zB351TFMWJzCmj6CG3v8ZDOLl3Sfb2gRP6uMTQPd7FfrMYYfwAu1n0KF1GkQPStNPdM5m/iRP34v8vbmvDPmw933P1B90cC/oYxIzU3G+fgPHphn67MXEwfuxBYBUwPXV2YbtUeKgapR/FAjLy0rfmRQqip+ziKPn0cTZvsgAG17P83N6tbqiqDE8LRb1zFsiBr/APfyVzHQHit+pKWjly9giKAm5SxY+Hs8M65TmBJp/UAKpI2MS+XCSHFsQg/QJSFK1Jc2WDntM2KvgPhZH5sp5/J5lNL+PkGsUspkqoa37eRQZkL/tk2UIu09eIh3z/xx5XUytbh5rn6jIY7/4nfrFg1f8SaO3PLhyuvIm0ta5A7dBkBJWXUzPucCokgxOtm8L9R8cMMQLyZ+fCOFGRM/QUk/D5KpLD0Zm2I8+z4Hp+8D4M3+m9m5oW/u+iWiTBy1Jy2eeUk/p+nmv1MvqQxoyzHQScuYEwmdsg2ef/kQYbqfEaWvDavBZApU0zl2XnwxAEO3/xlAhTSdjbLxeBnproGGkdSN3kfa+r43EJwgPHXfovssBi+MmJqMk9hG9634eMuFH839rvxxTRimejbPu58QkLJM2pImQ51J+tscUrZBniTSy1VIhaIXcmy8QLSAxw9AW8JiS0+a7ozN5p40OwbaeP+rrsHMao+w7LFvcVHhbr3xEhUxZztsQxOg3Rl72SU4iUSCY0/5B6LBq+uWlxOVvFIJ19ftv/zb5Gv8xbxSfO9PZ2lPWlhxn0rEZLRV1OrPKNNPW9JsaLicdkwG2lM8/NoD8LjXs60vQwkbt1gggVvxWmzhsYFpSMw1lmJIIWjvHuBTW/6s5o3PL6K2hYUhhGCoY22v9VqPKiuusglDX4cVRYr0J57Pzk/dRClOk+zq6FjT8zkb0SJ+VhkX9WY4rTqxisOEERgnf4bw4rSUBvXnIu6oeLNUANa33o359d9f9nn4YcSZ4dPVBV5h3m2jaK7Hjzl1bNnv/Vhh8pTOec2s215JlbDN2Bw39KsDm5pORrnTLoMiolzSZFyYsxBdAxsrfxu1hYahh1JwbLzAVGGBAbRdJX7sdbtJ2SaGFChpYdLcwHW1I5HPFtSaZasF/EZmSj6lvPZkScTESDRLMZUr6f1rPX7K6Nr7SZLDd2Mrj3CZ7bgjqwdgm4a/jVkY1gMCb26ZJFAlSZvwgZq58zMkhM/Bm/4/Jne/graNly26Txlh93Zu2/2HldeGk8XruIi/uupbAJRK9cRPEEYkxh4gQnKPugi1zFKpxxLJk7dVXyxT8RMEIb8+qSPTAzOFRBFFYUXdqMwEA20JSjgYYf13GEYKa/RBAB6INrGjv0mirkls6Erxh8/ZzXuef0llmYx7JAlbzlEXCaEHwNdt6eKE0oP+Ripa0APN7oxN384nMKH0eftuod43qQZeEHHP/iMAnMrsYfja32kq2lUIbVj5uQ2/C0DhzKFF91kMfqgozsTEj91YBfNoIAjnKn5EbGDd3r953v2kEBiGjuxtS1gIIUjbJtMqhelP49ccN++G5OIy2PmIH9uUJCyDwY4kmdg7JuWY7FivFSbtR77Ope7PdPrheVYCUp7A6krbyzbdLQ/oZ+9fJn6KMTEcRKpC+JSfMVAtxctmdEmEZQh8zArx4xS1V0aY6qcj2cDHUmhDaNMQlXNIOyaYCbxSjoTwUI9hO29BY62TshKWQXvSIpuo6bNcoH3tFtYOQlQnmJx4kl+FflyBozCH9eSMmNHj4872JpXn5xFaxM8qoyNlM2V201E6zuBXXk3/p57Nb4z8kV7ZIHrWjJf5i5R/LBVhpJgszxpCXXzvbKQ+/8tYX//dumXJ/LlH/PijOk2qb+NFlRpgx5QEGKha4qdG8SNt3dmUQREZuHhY1dHHBYbrL9/TeEVQIlK69HCyOH87VbVRsckODClwTIlaguJnUVXROQqjxjg3moeEiCLFqalSpSzMSesBq/7+/DnbGjUePx/a9P/4z+hmADoOfh4Hl3CZvjbCSnHC2sQu9x4Gbv9zTfzEiXe1Nfn3b3hFZfBAI7XIrPPdOP4jTptDFHb8PKNP/n9Lmu2TQpC75Jcqr8O4rZXJsWKx/v42Uwroi0aYsXvJq+SCpa5nIyKl2D5cU5oRLu+6UOOH6FfxwMzUpt2JD9+MiNujncqQTVgUsTHCUl1JpxuEJMcfYtzsJy+zbOtrPDBfLrKOxRMu7mZdR7VNlVU2qXkSNlK2ye7BNs6oLgAcp/HAYV1bgrRjYtkOH8r+KgCTJw8SNFCxgP6+n3jnGwEoPu43UU62aR+JnoxNfvPTAZg+80hT+ywEP4j4p6/9TL+wVvc7XwoaET9W/hQlZZHq6J13PwFz1AMpx2BSZXD8qTplFUAYK37seUq9GsEyBBf1ZeqPI+Y3dj5XYcXlN5Yhl+2NYRo6yn62gk3GZTZ+rOYMooiCG6KUYjzvsf/MDHk3wIuJn0xcEmFK3acq+/aZnp6oCJ0O0s5ctY8Qgoxj0pGy6ni59XKMy4L7GRJjOMnMnP1aeHSx1oof0Oa+dcRPq9SrhVWGFKJiH21bBgXlkCqdpuiFdQKHzpwWCsw34XA+48Ic4a4x3EQvKVUge/Sb9SsalHqJCvGzeqUwYaQIIsXM9GR1oacHk6enSgxP1w/SnP1fwbnz/XXLNkea+CmYHat2XmsNa/oII3SRSVdnpu2Y+CH0kdFcxc9AXNaSvecDDATHlx2BfT4g1dbZcHnglSqlgLM77bUoUh3AWY7+HoUQIC2sJhU/5y3xU+OfMl/Z0YnJIq4fVYifVIX4sbXnUk05VaQUBkGl1Gv7TS/i97xfYV/b9bQd/ipt5Jat+EFKPnPVRzgYrSN14laKXlAlfiyHbz33x7yw4zOoW/4v0mpO8XP/sXGuUA8z0q1jfZtRU8xGb7b6eaJ4QNyWcnCViVusL2Ut+iGDjDHjDKAMc9mKmccKBS9kh1tTNrTM8xen76keIv7OjNP3IGN1TzajCQ5XOJhhkZJXvb69ICIx9hAPRhu5ZLCNtLO6ZTTtKYuutF2X8VFuF6kFfACu3tjJGaXvVY0CE0DP+KVsg6RtELTrCOH8qf1zlK1lTB/4MdtK93Nr6mnkNz9tSe0z7Zj09g/pZLSpY7hBuKJETj+KmJzQHnuPpRJidqmXUgpZmmBStGMuYIQphJgziLQNyZTIkg4mGPju2+nY/9nq9jFpLKzmP6tjGFy9sYN3+r/CZHqr3r/pvc8dlFUYhhQr8tcyDYGY1dsv37vDwiTZI18nCHWyXRjpSZ6SH3FoJE8x9sIok/5W2eOnfE+K/+/vaptXNZIwDTpTdl27kKlqf6NNnlvE/PmI2Sbqa4GUbdBWa7J+npVmtvDYw4x9AkGP/74YXs+esW8wk5vRE9ixSv6505/QOyzhuXO+oEX8rAVio8o5aFDqJU1949t06/LLumbDDyOCMMLNVyOklZdnsuAxMuNWjCwXwjY08XMuESHdpaOMWuvqasxtU+IrAxV6yMAlQtTNMty0W5c3dUzcxw3+j8+pz7vasGd15mfQN0TfK1UGTN4CpVhTQfUhXuuQrwwLgwjmmW0vo+AF522pl6wp9Yoa+LV4QcRkXEZXNtN0YnPnh9PX0KPG6Xngg5XtFWAQgtTf89WbOrlmUyf/d+oZ2PlTrBejyBWk0+3cuI4Phs/CKZ4mGD1IFJd6mU6Sq3Zu409+4XEMdiSqs/SLKH7uvfcO2kQBe4s2am7GP6UWUoo6BUaF+ElYuFi4s0q9Sn7IOjFGIdGPkhZimYqZxwoHD+5jgxjh7iiOJl2Gx08QRuy960eV18quzqqXB9ttbVrm7MkEVlRV/PhhRKlYwJ46yF3eEDdu61nuR1kQ5VKgynnFfy80yN0+kOV0TPyY3tS821mGpC/r4Ge1EbE1c5xIKQre3O9y6qefxFUWwbP+ShPVRvPt0zIkQ50pTqge7NxxTk2WmnrGzocwUmSEbs+PpffJbMWPUiDdaUrGwuoMKeaWjQghyBtZTBXQte9TbPjeWzFK43pdGD+Xl2DM3JY0uWpTJx8Pb+b7vS8DwFEL34POddgrGJg7pjGn1MuMyySHfvxuNn/jdSSG76Hkh5XUmzIq/mlxWa8QgggTEfvOldWIPe3zl4JKKUhYRl3fzH/Jx/ld//UAtE3cv+zP1sLqYDmTMUuFY8r61LBWqVcLqwwhROU+Y0jBXezAVi5GYZTJgs9EWH2mTsqu+cfr5zFaxM8awOkcbLyiAbudiAeE2fGVm0KWUZ6tCYpV4qdUmOHkpO4Y1Ro518ZD12JTrPiR58hMuV8qsD08yKnspWRqpKTa3NlEBT5GVMLHrvMB6OuqV7ks1xD3fIAQgv+74zOV1zmhO/i+W4TY8yeK5jdInY6qD/SEVXNrKSvdFmlLw9PuYtzQOQszrCpiGvnN1BJqYZygRVyG+LPOZ/IzeQnrbnsP3fd9ANDXsFQRKv5uhYAXX7Oe77g7OJS8FABrCaUTs7FnsI3b1C59nGO3Vjx0DCtRGUBYpiSbjgeBiyh+isfvBUCu0+dmLGFgDXoWp7YC00joQUZbwsTFwnfrS72Knq+Jn+Q6lGEjz6VUOb/IFbe+CYADbdfpZcvwKBrPe3ROPVR5rZzqgL3s52PEihJfaOKn3A5PThbJnXgQqUIejjZy08VrQ/wkLGNJJAtANmEyTHzfnj61yLYWZpsuS1L5ESKlGJ2p/y79MGLD2A+5P3ElnZ36cy412aYna/MIg3TkH2GmFMwJS1gKztz/PV5paLVwZD6Gip9Z93kF2MEMgb1wCsp8JXJFo36/tsO6lFGGJdxZz+XFoP2eHNqTFp/Z10Ti5HmAlSgyEtbcUjEzVvCYvvZY2vY/z8WeODB38qVB6EUozEqplwo9TdzJxdN60k61b9Y+sIUHep/NQTWIfPofL7BXC+cLhBC01yp+WqVeLawBUnbNxHNS9xXsmWOMjI1hEvBQtJH3+K/gT3d8FpwLr8y0RfysAbKbLm+8ooHix++t+qo0ik9dDhTapC8s5SrLZqanK4kNtVGd//rdgw2PkSJODjpHiJ+jD/xIJ3r1XkWmxh9CCEEoTFTkY4Yu3mxFz6xZRnWBz0CkejYSKt1DLBp6cB14RYyJQ8i4lv/UVImZks90qb5tuKLaMaxV/BCr2hbyKVFKUfBCFKtzDZxtUPHsqKssVIPvwa0hYDuKx7RRaazQ6Erb/JH/S+S69jB425/Q+fAnCEKFSQixx49A8LjNXWzpSfP+mRsA6M3vXfb5pm0T1XUxE6KD1KnbKh46pp2olAwYQmA5evYkX8jNdygA+ooHCZG4Hdsq+y4F7UmLZM1scW93F5t6UrSlLFxslF9PPPn5KRwREKZ6UcI8t1LlDv+Q9QVN2Iy379bLlnEfDqOIzf6BymtZS/xU/M707xcYCSzlUyx5+GFEzg2wJ/S+hfZtXNS3usbOtZjPz2c+OKZBpleXby3kXVdGZybFuMqg8qOEkcKPorpn7Q8fPsEGdRq5Tj+3LVObEi/pnAyDY+Zmer1jWsGygtvYZd94OTcbdwEQGCtT/ITLPJHpQpH2r/8mnHmwsqxw+A6u5QGUs7z425LVUfd68Md/RNsjX0UGpbnP5SbxlB29HFU6be7OgZcs6xjnClaiyGhPWnOuM8OaS246E3vJHb2fzoc/UVkW+fWKH4CwJnBAhL5+XjWBTA3xI4Xg+Vdv5p92/yfGzmc2/VlaOLdx9aaaydYlqPxaaKFZ1JLkdqYbgK1feSk7/+sJtIkiB3ueSubJb+GXb7zosTrFxxQt4mcN8Pirrmm8ogHx077xEj4YPBPXSNdFaM6HMFKcmV5Y0qwUnBgvkqLaKS7UlH3VdgZVjelsrS+BgR6IzjaVfSyxEDE2cfIwAKl1O+eUCYSYEPqYysWfregRgqOvvY//F7wcgASLpxOdz1jXmSKHHmyUTN3Bz9/zBbb85xNZ/4WXglJMFnzOTOsI2FrUdv7qOqllxc8CqgU3jpJdwUT5WQ0RBfjKwMdANSr1imdZnYm9PMX9Nnekn1Qxg/+lx2/m/mADb3D+gpl117Putj8jPP2AjuaO7ylCQDph8rzLBvmfQKtEgg03Lv98Bexc184D0UbsyYNEsceP5SQrpI0hRaXUa3J6ZsHj9bgnOCMHUIZDR8rCXKLKI2Fpv5Yy2to6aEtY9GZtXGVBWH9P9OOkGiuRJlqCufjZgLLi6+N978Aqm2cvp9Rr8jgdzOBKfT3LRHXAboYlfb3Gs/RBbATulQo6YjsCZ2I/oRJ0DO2o81dabSxnQPvW1/0K41e+EZ71l4tu25W2GVPtdJ76Ae3f/j3CMKpT5EwefxhDKFKDuxECejJL/6yWKRnPbMMgwpk8sCLFT1DTLQtXWOq1XOLHPX4vbQ9/Cj7/65Vl2Y9q83gz1bGsY3p2NT3ljwf+kWL3JWz89hu4uHQfvlhe+3rXc3dzlHU8zf0rfrrjt5d1jAsBjchV055L/Gz47lvp/+TTWf/D361M9ER+CX9W6EUkau6poUfQJPFTTikD7cl03ZZuXnfT1iV8khbOdXTX3l9bip8W1hhOW1WtbLk68Kivbx037+qnJ3NhEo8t4mcNkHYMPr7hj+aumO2uB6xrTzBDCifMU3S9BT1Oil7IiYnigga7oCXZM599I79pfq6yzC1UB2ZhTae0264SO4dG85XSL6n0ezQbw73WCCNFcZ6yNIDC5DAAQ4NDc/cVBiL0MSO3YQcz0dHHdMdOALLu6VU643MTg+2JCvHjWXEM8ohWhbVPPkDfd98BkU/Ri+YMKhoRGkB1VmcBxU/RC9l/Zobhz/0+HP7hCj/F2QehAkK00XjU4Hso+2kM/ugPKSqbHwy9vrJux0CW1964hR88MsM/JX8dw5/B+d6fYIqwLikw45g8cXsvZiLDJaUPYDz93cs/XyHYMZDlUNiPNXWYKFbUWLYu9bJMbaBnJcqKnwIlP2Sm5FdKAWsTosyohCsTZBMmQx3Jerl3k+hI2uSf/++4666ptKlNXWk8LMSsUjOv7JOUSKGkhXkWEdi1aERmj4zpzom74UaMOPksXEYq2eRJHS3+5Z1/wfBbTpCwq9+5jOrVj2VlieFOViLP1ehejqh+dm6YP8HpsYLj2Ezc8PvQvn7RbTd2pRijjUzhGNn7PkxUmKh7BqamdRJX0HURjinpSi29M5i0DNpipa86/QBqmSWrUaTIqSrZ47My89PlElBBTptL00Dd42Q6lnVM3+6q/P3Jwym+edU/E9ptbI0OI5aZpGmbBpcOtXNQDS1oON3CXJTVmgAPRdoHS4aliso7ORarvfzSnBL4qEZFKaJgWYlqsuLnteRdWzhf0FL8tLDGyHQ26L/EVgGzfc8uFLRuuWsAIQSn1j+78vqRZ36MwtW/Bpn+OdsmLAM/jtn1CtMLmkIWvICpor+oKmK66HGL+426ZV6hseKn4icCFAtVhZCkTPyEi5ryPhrIucEc08Fa+DMjREow0L9uzrpQWAgVYEVuQw8fKQRiw+NX9XzPVWzoTFFS+mEsy7WxgW47nwufQP/BT9N2+H8BHf9aO7hXSv+de1V924vKrvne/OVABT/kh7ffxlNHP0b0mdeuzoc5mxAFBJha8dMg1UspyBz/HpnTP+Gfg+eRGthWt/75VwzynEvX8b4HLY60XQPFKW2YHSt+DCFIWgadaYsXXrmeTFsXbanlz6YJATv6sxxRfdj+FEl3VC83HaSEoY4kphQ4jv5tS4UcJyaLHB0vVAbVpRpFmBF5BNKhK2MjpViWX0XSNrAu/XnGX/alih+IEEIbss8ifoI4ItpJZc5qxY8bRHMSoE6OatPbDf09lbjywF868TMzfBiAZM9mhGHRblWvVSPy6ozso7iMY+cnr68sM8cPcFANcu3m6oD9bIFtyKZTnPrbEoyrmlI1L08UVZ+DVlFPGtA2qE1wl6FAMqRg6/ZLcZVJ6cR9yyJc3CDkgaNn6BIz3ONo1XAYrsy/ZqFn5oL7FWLT7GTHnHVt5vKuJdWzvfK3lcjwdz84xcEn/gPHVS9HsvOopBeBKQV//Lw93LithxvXyIfqfIXlpPCVJssOp+faE2z98ktI3/cfvFR8Yw47E5U9fpRCRB7Bcoif+Dq7UAdfLdAiflpYc/Q3GBOWI9wv1FtPi/hZI/S3VQddxe495J/8nnmnNkQswXdzk/OaLQOUYlJoMR+U0W//E6aoDroCJaE0hVEaJ/Gl/8P6TzwFxrSKo9YHSPqFCqlULvUCzoooZNdfOCJXFceYEWmSibmD3UiYyCjAVN68xM/1uzdxwhiidPHPrep5n2voTFsE6M5gtkPXxjqBbiN3xFJ6OR63nUgxXawZBEQhI3TA0FV1xwzKyqHC5Ly/4UzRo+/UdwFwu3asymeZjZVELMPKoub1rKgkxKj4/dQhd5r133sbR+V6vmg/m+ddUW8Qb0jJ62/ayjWbOjk4EeK7xdjjR3e4y6lXQ51JXnTVEO//5avnNVltBhnb5IZt3YxYWkHXX4q9wMwEjmmQjdOYnKQmfvL5PAU3rBtQ1/oWGZFHKO06/63lwJBizkDBFzZyVqlXEJs9VxQ/Z4lycTa8IJrjBzMcK376uztJJTUh4/tLL0H1x7VBf9+GrQgBbTXEjxMWCGqIn7DGS0YERYgC2gtHOSrXc8lQtUTnbIGUArNJqcBQR7KupED6ObywqlhUsd+RYafpyS5/IHL55l4OqiFSo/egcktXjk4XA44e3g/A/v5nciAabJgAuBQsp9TLDyNEcVK/SMz97ZPhwn5e8+Gyjd3cH20G4K1P387R8QK/c3cPN7p/z/f3LM/c1zIke4baefdzd7OpK72sY1yosC2jou7t7Z+rlN4XDbH1tnfiiIBkMF23LpIWEgVRiAh9QrE8ZVomYdZFvLdwgaFV6tXCGuPKLX1zliXjfuuFSjq3iJ81wlBnNY1DOukFmUU7o2dUo8IURa+e+KkdrJYHUov15S6790/rXk+RxnAn4XO/ysWnv0R77iDFoz/Txy9VS8CknyNSijBSWk1QxjISZVYbZQ+Y+WCWJsgZ7Q2VBJHUs1O2cgkbmDdLoZUu46/5Mbzko6t63ucabNNgCt2BNtO6XaZC3UZ2XbSJEdVOYViXkASRYqbG4FlFIRFyjnFv2Qx0cnKsoaJNKcXPjk7yRHUHAAVnbUpLljv7XcZUYSXET0iIoUm1BqVeXd97J7gzvK74Zl7y+G1knPqOtBS6tOoFVwxRwiLwYuLHqCdSHNMg5RhND4rng5SCbMLC79XmwlsKcdzurI5aIn6ABl7VKyyMFEEY1Sl+LOUSGc6y1BS1aET8BNJGhrMVP4X4/NIoaWGhZ6fPNrhhOOe+Njap1RaJVBrbLhM/S78Hi+kTTKsU6/t7kUJgR9VjpKJc3WCtosoDEuN76bvr77HwKbVfVOfLcTbBsZo7L9OQHNrzG3wmfCIAnfs+TTh+pKLKEbF/VWdH25KNpmuRTVgcSl7CtsLddP3LpUveP+8GTI6c1MfqHozLQh9d4kcpXVL9nXv26QXJzrkbpZenrLlqYycv8v6Id1z0Ja7Z1MVrb9zC3ccmAeojnpcAI1YPWoa8YGdvl4vaeHgzW//Mvav9Zn548//wW/6vNty3nCbpeiWkCoiWofgB2NC5vLLfFs4TNJEE10ILK8GO/my94hfdLxSCC5Z0Pjt7dOcBLu6rJqik05kFZemdnVpZEZYm5yQlzbjVjl/ZALZZGfnoJa/l4ed/hWmVYvfJz7I7fzv/GDwfgLGxESbyHlFN+Y3w8ij0jJ8kqqQ7LeTN8mjBDcJ5CS+lFI43gWt1NBykeCJBKprBVh6hMdfQUAjBxq7HLjb3bELCMmjv1moTEc/2pingYbK9v53jqhdj+iigBxUFL6y0WRWFKOQcs9bIjhU/+ck5htBlHNr3AI+TD+vt3IXNy5eL5RqdluEt4L+1GITSPgi+MlChX0eYATin7+DrXI/buYObd/XPid4daNftti1pUsIGv6hVeQ0M4/vbEqs2k9G3/mJGVDvr/CN6wSxpdjKWzIZe9TcLI0XODerKAC3lwyol5s2O/w6ljYxmRXTHxI+dTKPK59xIafUYQyt+6ttl5BUIMEk6DqalB0W+u0TFT+CyZeYOThvraE/auj0F1d8opXJ16kdVk9iz7rb30H/X3wNgr79iae/7KMJZAiH1ymc/mS9IbU7ce9+/kf7aW6r3A7+Ij0F7emVGyrYh8fcsL1mq5IcUvJDCpC6pzHb2ESFXTvx4pSWVavuhYni6RD72zKu9Zg9acanW09+zrHO5dH07f/uL1/HmZ19FR8riuZcN8ri4jHBzz8rUOks1i29BXz/lCT47283tz/wSxbjMO9nWzbVb+3jJ636PH657NYWr31C3bxgTP7lCERn5y/L4AU3KZpeYoNdCCy200CyEEPzXE7/Oh4JbKsvashk2dafoWIaf3/mAFvGzRqhVnqTjsoj5MDSgvX+KJx4kikDVdNSm87qzrpSqGMA2O3Gd778Gc/ByZtCkxj2JawmufysAhekJTk4ViWo8fvzClH6fSGES6QEmPObEz1jOpejNHSCVMZn36FXjRIkGs5PAYXsb68JT9DNG2KDUyzYkbUkTKS9c6V8ttmzRKRsWXsUDwMUmaRuMmOvYkruLLV96Cf1f+1VUGJArxYOTKCQSxlziJ1b8hPkpSsHcUkbl5rnq8PsJhMmUShF4a0f8LJQMtxgWMl5fDDIKiDB0+knkc3i0wIHhGcbzHrg5rMIwD7h9vOYJW7SqZdZ32J606MnatCUsSspChiVMIoQxt9OcTVirptK4fEMHt0c1pXdmPXGaSukB25P3/kmlJNQNIop+SMmPmCx4RJHS5srmXNJ1OTBnqfpC6WDWED9RpCqKH9tJV8mxs4DAng23AfFjhiU86dCWsDDjVK9giebO6sSdbAiP8cPel+KYUreH3p2V9RmVJ5DVTs9TLtlU+Tt95qcAfCJ4Kut3Xbfkz/RowVmCma9lSDo6OqoLiuOESuEFESIs4WGRsFY2+yylYMNlT+T74aVES+xanZkuEUYKLzZVlqlOQgRRtDKPn96/3wCf/ZWmt4+UouiG7BYx0VtDlgoVcJv9OIzk8uLcAS5b3xGXipoIIfiD5+ziX195NddsWpmPVMIyluUbdiHDNmXFyzHT1U9m4+X8INJKtbbYEDVhGbQ/508IZ5N98T21WCwhlU+0zFKv8nm00EILLawVrt7aXylrBd1vvZAJ59Ydd42QcqqdyLRjLKj42bLrSiZUhq173w9QN8s3lSsQhJEukQk8Oh/8KBs/9gQ4ff+i5xDa7XSmLbKmfrh3Xfk81vV2EyhJcXqMKAJRqtZuy9G9KCAMdalXkXKU8GNb6lUKIozSOPLEHQ3Xjz34bbbJk0wP3dRw/YGE7sz0i8mKiWktkrah/UpMOUdpcUEiq4lIx5tkAq3W8eI0tO90vwyDiMzpn9D+yFewcieqM+cqIhJzFT9mUiuH3PxEQw+r6L3X8Ozw20wkNnBU9RH6a0P8REotO+XGDeaW5CwJKiQSJiUsRKy8KHoRozmXYOSAfo/2zVy1sQNorGZY155k12AbLjZG6GEQYpqNZ1q7llk6MRtP3N7L7wfVhDFmEU1l4gfAyp1EBCW8Yp5SqYRZGGGmFDBd8nGEj7DWRvETSQdTeRWFUagUUVx6ZjpJVPmcz4KS1dlw/bkeP2ZUwpcJ7X9hxale3tLOfXhkBID0wMUIEZtpX/YSvtz2MkATP7Uk+NVb6ks9zqgO/jbxf3jclrPP2LmMpSh+DClI1aRRKSRhqHCDEBmU8FidttmTsblT7dQD6iWodcqJlUFOG3tnO3u1H9hKyMryve6Bzy28XQ2CSMGZ+3micR8AYc37yyhArWCAD/p3MKSgI2XTkdITYoMdyRWXaXWn7TnPnRYWRtI2Koqfjq4BOlIWnZc+C6CSJljG7InLcqlXsVTUkxoNlKcttDAfold/lcLT/uyxPo0WLhD0tTkVNSNoY/sLGS3iZ42QsU28a99A0L0DxzQWlCJvGOjn36IX0O6e5NIPbIRv18yuhD7jeY/RnMuWzz+X9bf+Afb0YRh+cNFzUFLPYm5K685b2LaBnqzDNCmiovaRcLyJyva77/wDjI+/GD/SpV5eRfGzxNnmBoPrKFLk3eXJ1v0gYvtnnkbvfz2n4fr8yb0AiF3Pa7j+eHJnxbBYLVBu4pjGigxxzxdE17ye3NZnU7rq9ZXa2EA6GFKw5dIb+Fz4hMq2ZmmiqkCLQhRzZ803Dw0AMDkxVuf7UjlG/hQAMtuPj1WJDl9tRGpxf6z5MJFfmVpEqoBIGhRIYARVP5wgVDz0sB5k7d59OUIIOlLWvGqG/rYEkeGQVjkcEczpoJexWr4JPRmHjYM1RtOzro9MplrS2v3gR7nkw9vp/9iT6frGW9j1iavJFV3OTJdw8JCrpPixZifMmA6W8hie1u0mUoqgpBU/wkpWy9POMsVPEEYkjv8Qjt3OiclihVi0oxKhkdD+JbY+d2+J18SZEV0yNNivCR3LkCAEJ9K7AE38RLKmjQjd3u6JtNrvQDTEa2/cuiLPm7XGUvyiLEOSba8qQpWXq/jGydDFk6tDlKZsE2XFM4s11/liCCNFyQ+R7gQRknV9fYRI1EoUP8HSCfQwUnjH7qoeosZbSqqgYWnpUmBKUSFu13cm6UzrNrjSx27rub10OKaBY+rvLdPZR8o2SFz/eo4+5b3MXP6aum1nX2pl4if0fQzl199LWmhhEYhN1+Nf82uP9Wm0cIGgLWHX2XwIa3X6oucqWsTPGkFKQfSMP2PqNT8AWLADbUjBaPvu6usf/0PlbxEFnJl2+en+U6QnHqruNE+nrtxR9ISD2vh4HVVe0iSPl9lAZ8pmRqUQrl6WDibxsDgjtfO5dfJ2gljx48WpL2qJxE8jE93RnLtgYtlC8IMQs6Ql8I1mUV1PD4o6Mo09GhKpNA+ozcDCTG/CMlqKH0AmOzjzrPdjtQ8wUUP8DHUmueGiLo4+4a94h3wHANu+8DzElE4PIgpRYu4tZddQF3nlkJ8eX7Bcys50EQhrzZQZagWKn5mSvyJvYKkClDApKgczLFSWh5GiOK1n+fv712FIoVOIFjqWVV1vWWvf4d45kJ13nWU7/JOtS0l679eKRXvmKG0Hv6Q3yA1zbLyIg4+wV+dhO3vArwwHW7lMFvzK7xT68aDbSiIqHj9nF/HjhRFbv/JyMh97FhN5j5If4ocRDh5BnLJlxd9Zvri0QfzEpCb0h/rrEy1MW9//UkKbbVew7jJGnvb/8Sbjj3iO+2d8evMfceO2niWpas5mGFJw055qOVty+hHS3/xt/FBhRC6+WB3Fj2MaSDu+Pv3miR+l4P4v/zNvNj+PJKIzk4gTAFdA/LhLT9+KIkV4+n4KymFSpfH96jVjqgDmIZqbhWVUFaFCCNa1J0naslVi/RhBdW4BQKa7MQ1JwjaYuuj5pNrrFYCzf58yIS0iH0MFFSKohRaagRCi1ddu4VGDIQRmosZHbpUmIc9VnB+9urMU5SQeYFEZctTfOAVExN4Vk4/oFK7vqGv0iqDxDHC5o/aDdb9MbzaJlBC1rwfAy67HMiR5mUZ6OqkpG00yY7Qz+uL/4Tvh5URCEoQBUij8uBQgmFVmoJRisuDVmbfWYnZJjFKK4RkXP1zeyFlNH6++8GbmrI9CfR4Ju3Hn48qNnfw01MaUidT8JpJl34ELHeXkJMcyGEcrOkJp0560GOxI8dRL1iMGqu01eehr+g/VmPhJWAZFmSYsTJI68WPCsHG7kUQEwsaIlkg0Nuu9M/wQTB1ffLsGUH6Jnnvfhzpx1+IbN4CIS72KwsEK6weEQVGXW1rJNnqziydfmTXkZbkUaC1RNpaeDwc3v3zOsnJKlJU/SckPcfCRazTLUrB7yVJAetOUfK3iKJd6YSaqyWdnWalX7aBaKe0hVfJDkrhE8eyUFf++pdLSiJ/c9CQAnR31pVqmU/0Nolnqx9Kel/Lqp14K6y7nhTdeqT1AzqPe+VBv/XeRve8jOsEyLNUZXa8EjiWRMbnWLPETRYoz41O8ZvSvKsuEEPpeugLiJ4hVvTS4J8+HUCkykw+xT63Hw6pT/BgEDT3FloJMwqzz4jGkYFtftuXP8xjBe/mnOfWM94GdwpSClKPvlR0pi7ZkdbJydrdofY8u3y4Uiy3ip4VloUX2tvBowTAEdqKqTm8RPy2sGaRoXoK8Yd1A5W/lVGfYJ08fBiA9qeNV7734jQCEXuNOpRsnIknDIhHPpHkv+zRHbn4/ykxiGoJIOlxW+AnWzFHaw0nyRgfJno3sU+sxIo/A16qa8iyoP8tzpeiHHBsvUvIaD7hrFT85N2A051UGNkvFqakiheM1ZW2NZjFjA0p7nkHwdVu6uCM2qE2lMg23AVZs7nm+QAr9zzFlRfGj4oFoWQEw0D9U3b4UlwuqECUaf4cnnYt4avHrbP3KSwl/8q+N3zgKCaU1J6FpMZyaKjUsL6w7dKTo+PATSfzjZUs6dhltD/0n627/c/jxPy5rfxl/NyUSWFH99RSWNJnZ3tlJT2ZxIsdJVokf+1FIs7l2cxdfC68lmue3vXHnIA9Em/hQcAv/EjwXAMOLyazcSYqer8vS7JWlJs2H8cxFACQm9hFEEZy4g0vzP9YraxU/Z1mp18H9D9W99kJtip0QXoX4cZyYfF9inHsxPwmAmay/39UqHmeXvUopePLOPv7i5y+jK22fd6ar6xskNwZRhBm5q0f8mLL6HTdJ/IRKcfyur89ZHgkD1PKJn2I+Jn6s5v0MoiBgyD3IfrGZAElQQ04aKpy3tLRZWIZsPWfPIoi2IUrbdYm8KQUZ20QIrVDf1J1mc0+K/nYHMculcnOvJn4Gf/A7mARz0h5baGExtDy5Wni0YEpBOl1L/KzO8/5cxfnVszvLoJUTzW1bG/8e2tXUjOu//WJQinT+KAEGXqce5BSL+YbH8eKOmjBs7S0kBaJ9PdObb4ln1zK0GVottPO/buR6dRd5qxPLkChpI6OgYugYxgMDb9Zsc97VnVE3DBmZcecoLsIaZc/pqRJnpvX+y4nDDkJF4cQDlddRaX7Fj+00nnXata6Nh6ydREqQbj97zUrPFgghsE2JZUjGY3NnIy45Kc/MPumyrZXtjcPfhyhCRGHFK2Q27l7/isrf4ehBvKDaFgL0zKLbvYtQ2hhLLMkp+uGiZVgzy/SXqmBCp9yoBW3a54ehAiJhUBIJuvzT9N713so6VZrBVRYXDXQ2RRQna1RrdtR8OclycfmGDlKv/E+m33G64fonbe/lw5f+B5NP+lOmVb2ibvzkIfJ5XdqWSK6NoV6h/WIAzLGHCUJF+qO3cFlwHyFSm1HH97GllqyuNX5w2+11r4NQUXBDEngVnxjbjs898JZEnEuvgItdUQyVYSWq5Jua1fkxhKgblJ8vZV5lOKZBceeLOMK6yjLP8zAjj3CVPH6EENjJ+Bpo0uMnOnwrv3zo7YRIDj/935l40acAUMJARMu/b91zQKsbldU84dr+79fTTo5C504CZeDHhKNSCpMAabaUHecTTCkw406qaUiSdr0fZTZh0Z125gzSN/drv6z+qXvoIIfxKChPWzi/0FL8tPBoIWEZZLI1lgUtxU8LawVRU+q1GHYOtPE7vk7P8VX9z2JNHqDdPcEZ2Uc6mSJUglKpcafSi/1uTLNsmlh9sA91JLEMyY/2/HH9TqkefZ6mjUFYmV0OpO4wjs3Uq2zKA5BcKeD0VImZUn3nNIjj6KcKPkWvOih3Gxj7LobIK7L96Ccrr3Mzk3O2UXHnOGk37nwYUjAwtJlXR39A4tpfXvI5XIgomwuPoomyLLoNWIZACHCsqgy8ffROOPJDxDylXgDp/ipR5GPVxbofMLdRJIF7w9sJpbWkUq8oUrh+xGJFhDOllak9Hty/HwDfW57xtFQhkTRxhX7gDNz5V2z90i/Qe/c/0pk/RF4kmi53yNTMXNg1fkFrhZRt0Jm2kfOoiwwpeNX1m3nazj5cs94PqPvQ58nntPonmZy/zHIlWL9lOzmVIDj1QF2ZablUVcYqhWCZv91aYV1wou51yQ85MVkkhYsyY+LHiX3WIr+OLF0MTlSgJJPYs9qUzFZJj9mKH8sQle3bkxZtq2QQfjZh5jn/zJeS1RCArf+yCUu5fU9x9QAAVphJREFUdcaPK0U6HaskveauTfn1dwJgEDGz6emEW56s91+h4uffv61N49USPpszowluZ8NVBBiVvoAXRpiEyJay47xCOWWtDNuUmLPM82dvA5BwqveOjXJkxUqwFi48tBQ/LTyayGRq+qbywladtoifNUazN7f2lIV5zS/zg/ASqIlYB/Du/hQ9/ilGzXW0p2xcbEqFxp1Kz9UdNbOGBDGkIGkbtKd0R/7mp93CXyTfXllv9W/HkKJSElH2xyh7QEzlinWzzeXBVVn5M9swN4wUZ6ZLHJsozFle9JYWi22eupMe/yQ/DPcAMDk5PmebMvGzkN/Jr964leue8gJEqnPebVqoImHpW8Nhof2h0sWTgCYS046JlDByzdv5dDr2d8mPgormLfW6+pI9lb/9OMGmDKFCHrYvobc9TSRtTNU8SVNWkS1W6lXyVmCSOn2Kp/rfA8BfZuKYVCEIE1dWZ9/NwhkG7vh/XFr4CUWaV8O0p2qu7WDpBq5LhWXIWO7fGAJNBgohsDP119dG7wDPeui3AUin1kbxc9n6Lg6oIcyxvRXSGWIzWiCKPVeCBmrBxxKp3CMA+JigIvJuyOmpEm0ij0roUgonVtqpwF+S4iehipRkao5Hj9nWz7SqN44uwzZlhfjpb3fIOGdvotdyYQjBS66sN7y2VbW0bjVgxSaSbrE54uekvVn/3/OEyjmCJn7kCjx+MsTPcbM5xY8XRJREkh+rPXTuvFETP4FPEEaUvAiLANEa4J9XEELMmXAoP/sXxCwC0LQu7NKJFpaOFu/TwqMJ3+l+rE/hrEGL+FljzI4eng/daZuL+7KUcLBnDeYuO/iv7IwOMJHcRFvCwsWiVJqH+Iln6Owa4kcITfyUkXZMnvLiN/KI0rO/HbtvxjFlpVMXxTOVgRXP0Ls5cjWqntlETx2PkxtGnLiDyUJ9ClLnvk+x9Ysv4pGRHGP55gfPalInRn08vBmAsDh38KbKZsHzkA4Al2/s4Gm7++Zd30I9yoqfa659PABmnAIHsKEzSW/GwX3CO/hZ18/phX4BocJ5jUQ7O9orf3u58TqVmFQRkTCwDBkTP80rfsok4mJUou8uvyQq+HQ12jZswmulUXqdQYCSBp7UA8zxHS9n34u/VynrLMnmyzG6nCoBIJaR3LMcJC1jXmm2lNX4+Ot3ba4snza1Wmxr/m4ALGdtPH42dCU5amxk0/QdWCd+UlleJiGVrWd63Nzkmrz/cuAFEZ1FfW+zCNjz4Z10HPgcrhfQQR6V1ASaYxnkVIKUO7IkxU9CFfAatKlMwuRQfN9PzFJg2aakLWnSkbIq1//5BikE7Wb99dnJNGoVpd92QhON+XxzROPpKf28HbnlfYA2ooSy4mfpKtky0kKXWIdGc4PyQqlEQhV5JHUFG7uShBhEYUAQKYp+iEWI0Sr1Ou/gzCJ6BtqauBZmzZib86itW2hhPrSCVFp4NNG9/qLH+hTOGrSInzVGs6koQgiGOhIUcDCodky9mpjZ8V2voDdr42Lhz0P8lGvynVkP4mSNd4MUgpRtUnzm3zG+4Rk4m64haRtYsZ9EmfhxbT1wk6UJJotVFcbsuHZVO+z+wM30/tdz6mani6Ui67//DtJnfgqF0SXFYk+e1rPiRv8uALzi9NyNooBICT0CnQcpe/6BawtzUVaqveFZmviJNlxXWWcakt6sgyklyVg+Gbo5hIrmlVDWKt+8mdG6QawkBGlgSIEyHKwlKH7CuDEt1KaiSHHngRPzb7AISjUz92GwOPEzXZx7/jJO9ZoqasLr6wdm+OMvPcSoqU3dPdm8GmYgVdOOnez8G64iLEPOSXYpI22blcHDlq7qfUd2X8QIHdUNFyBmVwIhBMVB3U67v//uynK/bSMAytalcVMN1IKPFcZyLoPRqcprGZYY+v47CLwCjvARZeLHlHw3upztUz/E9ZonRBNREbdBm0rZJoeVbnOJZD0xZBsSIQSDHWtD0J0NkFIge7bVLesW05iraDxuxYbahfzipGwQRkxPTXDC2oxManK8rPhBGki1fI+fsuInkM2RWsWcNul3sp10px0CJCrUSrOi6yGFQlot4ud8w+xyULOZkuNZqvTZXmIttNBCC2cTnrhn82N9CmcNWsTPWYT1nSmKqv4BOr3hqfxD8v/wjuR72HPF49kxkMVTJr5Xaqgs8OLBwewHca18tzwIDzfcwIlbPoBpOTimQSKeqYz8mPhJ9gJglibIu0GFzDFH97Lu1ndVDGrrBt2TsQluTYLO9Nf/ovK3lT81RzG0EArDhxlVbezatgWAoDBNNJt4igLCRSJrF1IstDA/LMvg4ZffRvSLn6lbXvavSqfjWNeZaU3gzDO4N4Rg35P+GYAoP17XBoQKEWV1hmFjsQTiJ1SI0EUtYKTqhRHff+Bw08ecjRN21Z8oaoL4aWQkbRCBNNmU1Z87mc5yZLzA/hl9nXpm88RPYt1OAG4Nd8Oz/rLp/VYC25ALKH60N0xv1qFt2/UoBMfWPYORW/6Zg8+paTe5xubQq4HO63+Zv/F/gcxE1QhePfVdAIhYVXU2lXodHJ5hUIwzTdWvSUY+ZmEYACOtSXfTkHyVG8kG45j7v9r08RPKrajLapG2Te6KtBl2tnC0bl15BvZ89l6QAuSeF/K/A79Wt7zW9HqlcOLnaKmweHvLuQGJqFghJ2v9VJQwNJm+DPhhxCZxRv8t6vsCs8MYyhgeGQUgke4gm7AIMYlCn4m8X0kLNVoeP+cdlmXinu4B4BE1CEDSHVvNU2qhhRZaaGGN0CJ+ziIMdiYpUd9Zl8l2nvKK3+WXX/HLdKQs2pPa44egRK7BALNsxmjOkmQnaqT7xqwBXLmjacaKH2KPH2GlyakEpjuOUjCe91BKkf7Ca+l58MMM3PlXoKKGRI7h5VFKIb/2W9w8/KEKoRVNnWha8RNOHOWaiS8xavYz0KM7GpGbm/t+UUjIwmoC7U1zfpYvrDVU2yCygbLElILeLj2ozudnECpCyca+IFKCe/HP8R35eGx3DPwSxH4sQkUIo0r8mISVdYvh5LFDXPKhi+Ezr5t3G9eP2G0cr/lAS5CcAUXX5YTq5ofhHlSwMCmllPaxmg1T6VKvF1+mB/TXbd/A62/cUklNC8wlGB9f9FQ+eOWn+ca1H4BE++LbrwJkTfpLIzimQU/GpqNvPQfecIzJ53wAq3M96XXb+drVH9Ab9e5as/Pbua6dY8mdldff63814fZn6hcJPaiOYrXgUrxy1grHT53CET5jiQ11y7PT2kTcrPEikzufxYjqwNn/FdygOc8XSYgSc6/Fjd0pvhNdAYDTd/Eyz/7chWVIpCG59Jqb6pYb2f5Vew8nVvy486hya1H0QzKiRGCmSTsGQx3J6nUmDU2mLwMlN+DJ8h4AolnkUX4ev7Mzw5qYTbd3k7AkShpsn7md/OgxDp7WaiCj5eVy3mFZJTfrr+HMK7/DB7reBoA1eXCVz6qFFlpoYXURxCrwCx0t4ucsQsYxkYnqADBM9nDm6t+qvE6YBlIKfGEjArdhSYkfx7nPNjquLTmTUtSVbVixp0A5/QZfEz+WZTKhsqwb/gEi9BjNudy5/yg9xUcq+2794osQUzWD6vJ7+DPcdft32XP8vwA4ndkNQDBxrGnFz9jeHyFR/Lj7RXRkM0yrFPbMsUp5TxkqCnR08yI4H81KHw2YUjQsWTQMwYauNAXlUIyJn/k8fhzTIO0YTGUuYig4xp4PbUd9U5flSCJEuUQs9qMIvOY8eX7ylY/qc3zk2/NuMzqT5y3Df1BdsNRY78DDx8LHXDQS3AsjlKqfVVdKYRCihEXimlcSmQkmL3oem7rTzCitDnCXaDz3zCfdxBufum3xDVcRC5UA6Bhgvb7cVsrR4ENXPoPDv3Iv7Hjmmp1bwpY47dXBu5PKVhRK0k4RKAnuDFGkKKzE6HuVMHFGKyNJaUJ7Uun7fu+ZHwCQ6eytbPuUXes4EA0STRxhLNdc25XzXIvtSYujqp8nlP4eedPbVvIRzkmUjWxF19a65XLwilV7j0RGk7FhYXLRbUt+RJoigZkim7DIJMyq4kqY2jdtGTh87Bgb5AgAUVA/QZRvMGGklGJyXCt+Ort7EUJUiMNt//Nccvm4T9DycmkhRtizi827rwFARCtLzWyhhRZaWGsMv+oHTL/96OIbnudoET9nEXTpTFVZMfacf4Ns1ZDYjiW5obQRoUuhQULWfIqf2VjfmcQ0BFJWZ3zKxI+KiZ+k49AnJmkvHKb/jr8iimB03+0AfK39JQCkh++k70OPh5I2/1WxFLyUm+Tie/8GgEjaHLjkrXjKgMljTQsuyh3R/NAT6M46/Cy6mKGRH6BmqUFEFBK1iJ81w3wDflMK+tu0L1VQyle8euZDJmFSGri2uuCeTwJgECLKSqG4DY5NLe6PUfRCuqcfBGCmrTEJMlnwCE8/VL/Qyy967DpEHpEwCTAhnNvBrb0Gp2MPn1py0g+VLvUyTOjbxcHXHyBo28hAe4JNQs+yT/c/bkmnZBoLK3AeSxhCkLRl5X4FVAiOtULCMkh3DVReZ9raK6khlmmQI4n0ZpgpBfOWujxaCCNFYSwmyzs3A3B7Qic6PX78fwBItVeJn0uG2jlBD3buRNOJiIIQNc+1+MFXX8MvPfMmMC48v5YyqSJ7LuIfr/pyZXlq89Wr9h7pVJoR1Yad175ibhDOmzpY9ELSokRoZUg72ues/DwW0tBpgMvA8UM1JY9RleiZKfkUvLnEjxtElGa0qqe3V7c9W+rrxCqcwfV0IINttxQ/LWgIATdfuZ1TN/4Z/OKnHuvTaaGFFlpYENJKIO0lqOvPU7SIn7MM2Wxb5W8h7UpaDlSJn0DamFFJKwui+jjr+RQ/s9GRshlsT2LWGCIbli4zi2LiZ6grjSP08RKnbgOgOKk9KPr2PKWyn1QBFOIa75j4Gfjf13ODuJf7L/ldHviVA6iNj2ef2kDPyG2oJpKIgjBiZly/17qBdfRlE9wW7SLjDSO/86d126ooJFqk1AtaKQLLxXweAI5p0JGyKSqHwM1hoKrKnQawDUnb9huqC7I6XUjWlHqVFT++V1r0vEKl2B4dAuo9pWpxaqrE/ru/X7esGe+NWojQIxA2kWxM/ARRRBQpcm7A6ak4SadmgO6FEaaokluGFGzoSpFJmHxePUmf/+YnLumcLCnPWi8Wy5SkbJO0bWKZ8SB2jU81YRp09AxWXnd0dCLiAPr+tgQ5kviFKcbybtPkyVoh7wUwrQm/rqe8mXtveC8zT35P/UbxtQEw0OYwZvSR8UcI/OYSEY0F/Lau2dzF03Zd2AmHtiG5cvdOfsF9F7/nv5aO3qFVO3bKNjihekgWTgKaVHHnSWQr+iEZishEti6AAQBpIomW3F6VUrgjhwE4rTrriJ8Tk0UaHc4PI9qmDwDQ36fbniOqpFOZ+HFaxE8LMUwpyTgmk3teBb07HuvTaaGFFlpYEFLAWdptflTRIn7OMlhDV1T+Ni2LjpQmfqSszlYmRcBO7wG6H/hQpVNY8nXHshw33Ywkuz1lkU1UVTAyJovCklZEGIbJkUveCICYPAJRiCpqZY+z/jLOXPkW/s38Rb2zHw/U41jcgeAkP+u4Ba59LQDdaYeH1Ub68w8x+O9XwNTCKUtFP8TLjeEqi90b+uhK23wovKV6LrVQAdEi5s4tLB8pe/6krrRtUsAhcvNIIuQ8Hj+glUOXbl1feR1ltEJDElUGqaETG/HmF09gmi569Ao9S92IkIkiRRAqGHm4bvnM9OQcg/CFICKfUJogrYaSdqXAjyJN+qiInZ94HOLuj1fW50o+JiEyVljYpqQ9aXFRb4ZvWE9hc+njrBsYnHPchWAaolK2crYhYUqSllYvdKZshGDNjdVtU7J9qFou56SyFbJpz2AbRRJkJx4k74b4jzHx4/ohGwoPUBIJ7O6NpK74eXq7u3mF93u8x38F/37tFyvmqQBSSmaSg0gUYnpuWW0jyAUS9srpXRcybFOyoTPFC57/Ii593m+u6rWUcUxOqB6ypVP4YUTJD+uCGGoVZyUvIE0JJ90+9zeJFT9L9aQKI4WYOgzAYTWACqvETxCqhopbpSJunvo0d5pXYnRqHwRbVPfzXN2vsJ0W8dOChm1IUrax5qR+Cy200MJqwDJkZULwQsbZOXK4gLHh6mfwjfAqQCe7pGyTlGOQtqsD6nIMcO89/0QYzwDnPV3CUI6bthYp9SqjK10liIy4zCZ0tSmlNCzSz3w3f578bTLBBKnTtyFcTfyQ6GT46rdxMhEbhMYqIVWT+iF//t9QsYLDNiUPdN0MgBnkYerYgudV9EJUYZIpMvS3JUhYBpsGerg/2oxfrFdsiCbMnVtYPhKzZ6JrkHYMijjgFTCIkMb821qGoCvtcDx9CQC+ldUG4DUeP25ClxkEU3rQ5M0zUw7wyEieDuKyrXBu+ULZSyqVrycZo1KOUpMmuQAy9AiFTSQtZIOoeaX0rH7RC0mM78UqnMb51h9ybLzA/jMz3Hd8WhM/8TVZG5/7ysdvAgQbu5cmP7WMs1fx41hGpc2kHZOEZdSXfa0RLuqtJmQZTqaiVLMMSb8xw5B3iPTJHxGGjy3xc3qyxBO5k0c6bsBxEhhS0NfmcNlNL+Dal72LJz/uqrrtLUOQS+nBuJx4pNEh56CWTJ0Nx5QX/KyXZUhMQ3DTxb1ctalz8R2WgLakxSn6aHNPEwQhrh9VJmYApop+5b7mFguYIsJIzDXP1+bOS1f8RAoSueNMiA5yKomK6u91igbHmzpORuW4J/vEijzPpnpP9eN+hvP/t3ffYXKd5cH/v8/pU3e2aler3iXLtmzLxti4YLAxvRkCmNBCSQglBEggpP+SvMQE8gsvL4GEnjcQQqhJIMaUhGaKwb3ghmxJVpdW26ac8rx/nDNtd7bJkmZ3dH+uay7NnDlz5mj1aHae+9zPfbvzaw0vOp9lKtKOOa1ZiBBCLEa2ZUigmnkEfpRSK5VS31VK3auUulsp9dZke49S6ial1APJnyf329MZan1/ltf5b+daPozRGxegHOryGCrUv3DloxEA7MmDmF/9LSAOlBydrOAnhRzteaZkN07qLSd+j7CSBH4sE8tQdO14DhPaJbrjC5jl4wQYRHY8UbWS1rUk7bQnwnqAqnFialuKV7/idfxeLmk/7c/e8WSyEmKUR5gwczjJOb7+snVM4OFPXaoThUQzTHLE4zdb4McyDcq4mOFkXKtnlsCPYxq4lsF/nPthStqmUi7ih3HgBzMeN34qXoKixg/yyJFJxkozF43ce+AQdnU5QotMnEjDeCmgLzzAruwOvpnUpQrL4y07b83EjCpo00YbNmaLmhsaXSuYmj4Q18AqFjYxMulT8uMr/hYhplXP+Kl621M28rnXXdwUgJ0Pa44uW+3kWUYt6JJxTJbl3aaugqfK+v4sd699FSW3l/TyrU0ZFN9clXSfOXIf/jw7xp0qD+76FYPqGKWhCzEMhaGIs0/OG2a4OzVtIuVaJn73egDsYw/O6z0MIpgh+04pRWqGLL4zhZOMUdNQJz0bzTQUY+mV2LpCMLKHchBSbMj4mayEHC/6HJ/08UtxpzkrlZ92HGVYmIQECw78aLrLezniDMVjoCHwozX0/PyD8NhtTa/R++KaQKXuTbVtDvXP1PRknGlmz7GEXJw57CRz8Ez/LBFCLA22efJ/3y9F87kMGwBv11pvBS4GflsptQ14F/BtrfVG4NvJY/E4KaX40MvO53+95hm1bltpx8JtmDgFqp7Nk77/q5T8kHIQcmS8QqVWhHHhhTurrVqrGT+mEXcYuXjzCr6jLmL53hvJVA4xoTL1q4LVLmR+keNFn73jrb+kDhdS2JbCTlX3n72GSxBpbP84ZStX+zkMd6eY0B5heUrgR4doCfy0TcXwMMNSnPEzy1IvpRSWaZDJdfGAHsYvT+KHERZhLeMnTMeBH2PiAMVKyEiLznVVBw/GNTRCrTBaBn40Dx8eZ4U6TLmwkTsKVyUnPMFYKeB40Z9XAMjUAdp0iQwbs0XGT6RhohwfJ3X4rvicnPoV/FIQYhK1DPxYybKvhbIW8XIdyzRqnb2UUuQ8G8859Rk/hqHIP/t/sec3bscbaO7aFGx9PkXt0H/7h+n7+mtP+bnMZmR3XJC8a2Xc6dA0FBnXqo2LVplc3f3LGdEZrEP3zpkBUu0iN1uh9Zx35hV2nsq1TSzj1GQ/+d1xsXl96H78UDct76qEEQdGS+wfLREU48CPnZ6e8WOYJoZeeMbP8UmfwegAk+kVRIaJ0nFQOoo01sR+Bn72PvjCK5tec+hXtwHQv25HbZvdkPHz+kd/L75zBhYEF61Vv5dNq00lhBCLkGNKtjPMI/Cjtd6ntf5Fcn8MuBcYBp4LfDrZ7dPA807ROZ5xtgzmGOpKYRut/3l+9NSv1u6HTp7jRT/5cqmZKMYBFXUCX9CqWUJBEvixbQvLiLvz7Frza2T0OE8pf4tJI8eavjRp18RLAjlhOc7OqLZVP7jjLfF5qDglOOfZ2KaBm0qWY8yR8WMeuJMLorsI3e7a0pjlXR6TeNO6MiktS73aqWhmSUfjmGr2pV5VPRmHEg5huYgfRk1LvbxcD2VtE47ESwFnq28xcuQAAEdUd1xgfAqtYWT33XSrcZyBDSgnHnu6Ms5YKeDRI5M8cnSiZZebRqauxEsYDQuz5fvoWg0P+9gD8WuqSyKBsh9hE9QCP1PriZyOZVDt5p6GjB+If5atruhsXd7FXt2HVzpE16++UStW2w7BofsBcJfFBVGrE6fqRKpV4Gdtf5bbo/X0PfgFivt/OevxI03cRW6WwE9GrtLjJMslT0WtLGvZFgDCg/cRBkGty18YaaIorrNTCSKOHY1rmdktMn4wLFKqQnjr5xb03g8fHGG5OkLYtRpUvTOYBtIHb413aigeDjC57wEO6S7O2bCqts1Jsim/3Xt9fcdo9s9KceaoXniQjB8hxFJQvfh8plvQT0AptQY4D/gJsExrvQ/i4BBwZrcJOYmUUnFB1BlCk5vPrreeDdxuRib92lXBySTwM1Oa/2ysasZPstTLcZzaJGTLhdfw3+G5QNweOefZOKaBl44n0xMTY/ihxiLk4f6rOLDzHQB0ZxyGuuIlZLZp4CWBn6Aye+DHuC8Obh1Y9YzaF4yBvEtRpTD9KYGfKEBLcee2OWQNMRgdxKOCYc497gbzHiXtEPlFKmGESVTreHX1tkEO08WGh/8Je2zPrFe7f/OxPwRgxOzBaDEhUXf9G79990sp4lI+60UoNwn8lOvjxw80Dx2cmLXFt6UDMG204bQM/Fg//wS5X90IOiJ16HYAjPJI7fmpGT9TJ5ozFc8WCzfT0p21fRn2UW+RXh49fDpPq0n2+INUsFGFlUB94lQNcLdawnf5xn7+T/g8FBp/7+2zHj+Iollr/IB0OIQ4SGgZp2apSu/AMKM6hXvbp9j+8bXk7vkcURjFtfgaPtP8WsbP9MBPNYje/623LKgYfXTHv2GpiPTgJrQyUTrp/PnozSz/Xvx7mYGtTa+xxx5lvzFId7q+lMtNijvf8NjZvCj8Sw6qPhg8e97nIc4Mp2MZrxBCiJNj3rNlpVQW+CLwO1rr0QW87vVKqVuUUrccOnToRM7xjGOo2euOD+Rc/nPgdQCUsakEEfbILgDCpMYPxgksH0lq/KikULNt2ViGwrUNBrs8/rM/XiLRV46zMTzbpLe7AMRZQkEYZzZUCzwrFZ9rIfky6ZgGqUw8+S6Oz95S2zp4F/dFK4nOuq62zbMtQiuNHRab9lU6kqVebXTQXYWpNH1qdF6Bn6GCRxkb/LjGj9mQ8dOVtvlO4YUApI7cRRTFGTWt9On4avm41Y3B9ICM97XXA/BoaiuZ7iHMZFniih+8CyfpelM1Xq6/vjyl8LOlfTBdtGlhtXif1E2/x+pvvY7h770Ti+S1xZH68Sohtgqx7db/J6ud+8TjZxutM34cy2Cft6H2WI+353fRyGSFs4O72JvdjmXH/1eqEyfLNPBso+UVqf6cS2owLqTvj80etAojjTVHxo+IZVyL/ClY9ra6L8NB3U169GEAhr/3e/g/+yR+0Lx0SyXZq06qa9oxHN34mTT/ulT9j/wHB3SBzPkvTAI/8XHMf305th//3tVTvmF0l/cy4q1outikwrhRxFlrhviZv5bX9X4aepqXUAox0wVKIYQQi8+8Aj9KKZs46PPPWusvJZsPKKWGkueHgIOtXqu1/get9U6t9c7+/v5Wu4gpDAWzRX6UUugn/S7/ElyJUT5Oet9P2PyFyyk88G9EyZe1E8n4cZKOHSpMlosZJoahWJaPt5//hCv5G+v17L/2HwHoStmk0vFkOqpMUgkjHBWgksDPsrzXlN3g2QaZJENocrI5a2eq3LF7uFuvZm1fuml7aGXwdJHGnrRKBxL4aaMjqTW1++Y8JptdKQdfuaigRJAs9WoMGB1eHwd+wiPxpKlV1k/UkKFzyB6Os3Km7pOMidHlTyLrWjgNnXNW/M/bmvZtDPzsOVbkyHiZkh/yyJEJHHyU5YDpxEtoZigO3P3Av/GV8BI+Fjwd2z9eG6PlpNOeNUNh1LSz8P+rojXTVLRaIWsoBWsurT2O2hT4+eWuvWxTj3B84Am1pbzViVPGNRkqpOieIRDY3Rcvz9Hjh2fNAAmiOJg6W8aPiDmWMWvx+hO1ri/DQV1o2uYfepBKGOEdvB1rYj8Apj8OgNGiq1cmHKndnxqMnlV5jD3mClLpXK0lPEDQtaa2S7X7J0ClUmEgOkw5t6I5GzH5LvHqK7Zy6YY+zlsl/TuEEEKIpWw+Xb0U8HHgXq31Bxqe+hpQrRD4SuCrU18rTkxPxmH2nB9Y1Z1mTGVx/RHc0bjF7/Kb/xQnuaLHPDIvprKTjB8rbF4u1pWySTkG24e7eNqr/hDvnOcBSaq8Ww38FAlCHbeANV3W9KXpzzV3FlNKUSjEKe1heebAjx47QD44wuHMZpYXpgR+7AwGEUdGRmqZIEpH0tWrjUazGyjpeLJqWHOPu5RtEpkeZlROijvXM34Admxay1GdpfTorSz/0R8RHnlo2jFK5Tjr67vDb6BsZuJitlMygw5mNnNI5ylf9BY82ySTSdWeSx9qXi5T8uNOO8cmKkyWQ/YdL/HgwXEOjpaxCVCWWw+mtigkDVAyM/yx/yoO6QKWDtjw5aez4ctP540/vRoAy822fJ04eawZlnoZCrY+6Xn8yNgJgJ44PGMm2WwWNAFvYfeuBzGUxhvaMm2JkWuZZF1rxmVYawa6OK7TBOOHmPRnPo8w6ZSnJOOnbZYXUhym0LRt3MhSKvts+Oqz2fjla4F64IcWnw25hsTqhWT8GP442s5gWwZaWbWlXrtLKe6K1rBH9xH49cBPuTiOoTTKzTcXmk9e56RyvOvaLbz2srXzPgchhBBCLD7zyfi5FPh14Cql1G3J7RnAe4GrlVIPAFcnj8VJkPNseudo79ydcXDy/djax5qMr16blVFeO/HReIcTyfhJZYi0ois6lhyjPnFoTIdvTO21HI9IK6JK3KGpmh0xUzHX5d1ZytommqXGz8jDPwfAXXnetKv31TbyBw4frX0ZNqSrV1ttXtHLT6O4mKk5j4CjYSgiy8OOypQrIYbSTd3Atg3l2GcOs+3IjfTe82n0TX827RiTk3HgR9ke2rAw0E1tiyFefninuY2ujIdtKvJe/T2UDlBBvbNcyY/Yf7zEofG46K/W8a3khzgEGJZTy2SrlFt3pPt+eDbLB4fY030RAKmj92CWjnJ799P4Q//VGBe8Ys6fjXh8LEO1LI5sGops2uNfV7w73jBxkIl5dHSbarz0+IrbHjmwC4BU7/CCM03W9WU5ovMEY4eYLM98HkEU11o7keC/ODks02DC7m3eqOFXd90cP186yuobX0V+8pH4OXd6xk839eXQ5aQA/WzF7qvP2+EkhpvDMQ20YcZBcaBUKlLBItQGvl8PXlfvWzME7U03vvgidaGEEEKIpW0+Xb1+oLVWWutztNY7ktvXtdZHtNZP0VpvTP48ejpO+Ewx17rpnGdhrrwQgMGfv6+23ST5YngigR8vy4N6OeeQZFg0BFPyDVcCG4uPOpZFCScJ/GjsZJI8U6cixzIo4qD9YsvnAQ48EAd+8mvPw5oS+dFJZybTH69fBZXAT1tduKaXO3Rc+2G+FfO15WHrMpPl+MqzaugGZlsmP9r4ztrjktc37fXFYpwxZtke2kiCpA2ZOFpr8CfxUlkMIz6vqatjlv/wPaT3/zTZP+6yU/abJ1aTlRCbIK5/lRRnPjbeOmi5N8jzhsvXM9p9Fje4b+bhp3+W+1/8fb44+DY+G12Nmy3M4ycjHg/LNGpLUxsppejJOAwNLqesLUqHH2WiHCwo60drzUQ5nLYN4gn3sYkKlTkyM5xiXJ/H7lo+7/etWtWb4hg5jOIRRkv+jOceRknGj3wmtlUl1by03aiMcfjeH9Qe53d/hyePfz1+4EzP+PEa/vkqE0fxw2jOzJ9Hj06SoYSVysfFwhu6ehlRhUrcX5CwIeOnmv1jWlMuNu18DQCuk9Tsm/WdhRBCCLHYSSukJSrn2ay+4Bo+Gzy59Q4nUNzZsw3u0OsxVDKhaMj48WyztjShcSlFYyDHT4o7m870iVdtf9OghIOuzBz4GT12kLK2WbV8+bSr94Eb1xkwS0dryy4MHUoh0zbaPpzngI7/XayGblazMWwPW/uUkrbajW3gLVOxdeeT+Up4CQBaT59ylIpx8MV0U/UgZ1gP/Ow+WsTRFdKZbK1b0pM2NAeQeh74Auv/4zpyu78z43mOlypxYWbHwzDj/1Pjkw1jt2HyPbhskA0DWQa7PD7rX87I4CXcvm+S+/aN4tmmXDFvM9cy2Lgszy/1SvT+OxmZ9KcFA2dT8qNaW+6qYrLk6sBoiT3HikzMkokDkKkk2Zn5oVn3a2VFd4pDukCqeIBiJeLBg+Mt61/5Sac8+Uxsryg/3PTYGd3FuePfB+BDwXMByJAEkVv8W6nrPsEuM26vro7tYrwUzNrlEODQWJksRax0Lr54ZFhxhzeSwI+28LGaavzUAj9Ta5A98wMcfft++nMujmUgH19CCCHE0iaBnyXKNBRbBvP8MH1VbdtHgmfVdziBL/2ubfKTZMlOq2P0Z93ae9deY8WBHPxJgjDAUWGtLXzL97AMitpBBTMv9dLlcSbxyLXotlLJDAJgjz9GMVmqYSBdvdop7VgcTAI/ZnGebbJtD5uAcrka+GnOKOtK2dz3xA+wO+rHn5ieTFguxePHclJQfW1DS/c9I5N4lPFS2dqSmoGGTJA3VN7G/d2XA7D6xlfTe9fHWp5mMQkwOa5XW+rll8v1CX5Yn0Ctuui5KBW3qx+Z9HnxR2/mPV+5izv2HufclYX5/VzEKWObBmv6Mtyj19J9/B4qfki0gIyfYov9JyshxUrIyGQcdJwaGJoq5x9hkhROevrSnrn0ZlzuUevpKz+KWTpKyY84ODZ92WEYRphKo04g61OcPCPpek2cR6IBCru+webirRwni37yH/G3flzE/qi7ovUBetbyT5s/QknbZO/9PHuOFYkiPWuWWuD7eMqv1wwyrFrGjxn5RKYTZ/wE05d6Tes6qBSmaeHZJpsHc1KEXgghhFjiJPCzhOU8C2dtvVPNV/reUH/SXHjGT96zuDX1xPqGKcGUrnRc5NmckvFT0g74JfxK/AVSTU0Zb+BaJiVcVDBzxo/yJykqjxXdqWnP+Zn4Srk9sZ+xUkCxEqKi4ISWtomTp9rBxpiYX+BHJUsbKsfjZoBWQz0SxzRIOQarejMcJ0NlfHrgp1SKx4/jevWx3pDx44eaFBW05dGXnR6IvKdwBdfs+02exKfY17WDvjs/Vsvescd21+r/1N8nhbLq7/Po0ck44yyIA1df7n410fBOPNvg4nW9DBdSXLt9kD985lb+5XUX8xfP2z6vn4s4dUxDkXJM9rtrSIdjmOVjCwr8jExWptYPp1gJ2X1ssrZ9tm5bAOlghFGjC9de+K9epRQPemcDkNn/MwCOjFem1X0JwiQoKRk/bXXZxfXfpePUf5dpZXLl5gHcp/4B54Wf4udP/dcZj7F57Sp+HG3DeSz+9w61pjJLnR9diesCKScOLCrDwCQkjDSWroDpEmASNWb8JJ9hrboONq60bir8LIQQQoglRwI/S5hnm1y1bYg3On/Fz57yBd5w+XouLf0dXxv+XXAyCz6eUor1q1fVN7SYOAwX0k31h5wk40cFRaLkC6RhzZzxU10a1lhYdyrDn6CkPNwWdYLMVDdF7WCOP4bWcP+BMQxC6WDTZiq/LL4zOb/Az7GubQBkDsQ1diy7HvixTINC2mFNb5rjOkM4eWza6ytJxk8qlalnNjTU+AkqZWwVYnqZpu5Jx990L/dc/ws++Gs7+IvnbcfNdfO/D5+PM/EY7siD2OOPseXzl7L+31+Ae+yX7HzggwC4noeRBDSjoEwQag6OlmuBn9DJoxT0ZV0u3dDHJ199IW+4fD1PWNtLxrWkPsYi0Z12UNm49opVPILWcwdrIK6bM1EOp2VbBJFuqgs1V8aPFVWoGC6pE2whfrhrOxXsptpUxyYqTftESeBHPhPba8e6ODu1nBnGp/75ZhP/+1y2sZ9Pv/7J7NiyYcZjbB/Oc79eQXb8VxCFRJGevc5PKe4Sls4V4sfJUq+iH2JFPobt4mOiG4LkQZLxM63GD7QslC6EEEKIpUkCP0vc5sEcv/WKl5Na9wQ2DGR5x4uvZscL3zn3C2ewfbir/qBFFs3UFsSOaVDERQUlIr+UvGzmjJ9qhpAxQ8ZPsRJi+JOUjXTLQsEZz+Yx3Ys9ErewrwRxPQslHWza6v2vvia+M3j2vPYf7dtBSdv0HfoJ0JzxA/GSwJxnEzh5VGlk2usrSSZOPpdpmfETJcXDc9l80+tUth+vsAzLNDh3RYEbXnguv3TPAWDTF5/Cuv98EQCpI3ex6YtXs+Pglzims9jbnkUxE9fssI7eD8DIpM/BkeMAGHaKrpRNIR2PfZkwLU49GQcnPwCAM/orguIowTwDPyos0/uDP4HRx2rbp2YMzVWDxYgqRMo54XpPQ71d3MkGMkngB5iWAVLN+JHPxPayTIP7XvZTDr7sW+wwHqpvp14gXKnWXeiqlhdS7LNXYusKzvhuKmFEEM4yxpKMH9NrWOqFZqJUwcLHcVME2poS+Kkku07P6DGksI8QQgjRMSTws8RVv5hVAzIbBrLk3BP/wr+utyFTSM09PFzLoKRtjKBI5MfZD7Mv9YoDReYMGT8HRks40SS+OX2ZF0DGNflutIOevd9mxXffSjmIsIgw5Op2Ww31Fnjkxd+E6z4xr/37C3l26UEyY7sAsJ3mMVPtCmdnelgV7kaXx5qen0y6erleplZ7pynwU2ko/tzAVIp8yq4tYXAsg8KKel0rZ2w3+y58N8fXPoPRlU/h/es/ydMq7yPVt4qx7u2UtE3mwC21/Q+PxOdlu25TNynLUCgVB4ByniXLJBYJxzLI9cSZGGtuei2pj18xr+VekdYUHvoqPXd+HL7/gdr2qRlAcwV+LO0TnsAy3Kqdq7u5OdiEd+QuDD/+P+BPCQRESf0W+UxcBPJDOLke9q95bm2Tpf2mXWaLEVumQaV7IwDdv/w87m2fmn28VuKMH8OrLvWKx8CR0Qls7WM5HoFqzvgJJeNHCCGEOCNI4GeJq7ZWzzhWbbL8eC7SrR/IUtLJxGQeEwfXMiniYoSlWuDHdFoHbaC+1MsMpwd+gjBirBTgRkUCM93y9b0ZlxuCl3A8s4bcnu9Q9oO4dfHjmEyJx8+zTaKB7eDOr2jt2r4M+3QPXeV9wPSMH8c0yHoWxwtxUKbyw79ver6cFF32vMbizg3t3MtJ4GfKkkdDKWzDaFpqs7qv+Zz/fP8T+MbWv2bXNZ/gTn8FZa8PpRSW4/HTaAu9j3wdlRR1PnY8Dvx4qUzt/x9Ab9Zlw0CWLYM51vRl6G1RZ0i0R/dAvZW6efyRaXV7WgkjzYFfxtlpdA03bI//VGGZQ4/tojgxPutxrKhMaJz4WLh4XS8/i7Zg6JD0gZ8DTGshH4ZxRoks9Wo/yzDwLBP7hR/l/NJHADAJ8RpqPBmzBFcsQ+EObQVg4Pb/Q///vHvWwI9OfgcbdvL7M/lc9f0QmwDDcuJGCA2F8KuFnk1r+gUjUzJ+hBBCiI4hgZ8lrpplkHJMerMzZ9rM17r+LIdJlntFs7cmhnqNHyMoESQt2g175nbulqEo4WJG0wM/E0mXLk+XiOzWgZ+L1/eC6XJT6plY5ePoicNYhHJ1exHwFlCwdk1fhn26l24d1++x7eZJh1KK5QWPPRtfTqANSmPNBZ4r5XisuV66tkShsUVxdamXMSXjxzDANFXTksV1/VmuLt/A6ytv47rwL/nGA5O860t38qbP3cp/33+IlUmRcdcy+ER4LV5xP7lHvw1AOVlylkk3j9esG3fDmW1SJ9pjeKi5zfZ8Mn6CKEIdvCt+YCaBm8duZfNHVuAcuI3u//tUrvr65az+9Pngz1y43tI+2jzxz+n1/RkecrdRUQ7LbrkBe2z3tOLOkSz1WjRsU+HaBp5j8+ZnPoF7Uhcw/rzP0Jt1GcjH42i25VSOabB6eHmteD6Ajmau8RMlmTxGEsSp1j+r+GUc4ho/kbLihgiJ6udmq4wf+fwSQgghOocEfpa4lGOSdk1cy6An7WAaCvU4Ssk6lsHRJ/5B/CDTP6/9SzrO4AkqcTDHdGYO/Cil8JWD1SLwM560yE7pIpHdujh11rW4cnM//3Ugrt3Ste9HrDf21b7oivaxjPl/nPRmHA4bffXXtvj3cy2T4a4Ux8lQLjZnUlRr/BgN7dyrtSoA8CeT55sDMoZSWIaikHJYlnfpStmcs6KLKy69jP82nsBE7zk8/7w4MKC15tWXrOHPn3sWAIW0zfejcyhbefKPfhOot5XPZ7Pz/ruL9lo/1FO77xfWEWnN/uMzF5sHeOTQBBujXQDo6jLV+28EYNXXX86w/wgAqXAcJo/MeBwLH22ceODHMAzWrRzi9/kd3JEHWfXdN6OjiP3HS4yVkpbyQbW4s3wmtpttGlhGXMdn59pewuu/jNr6THoyDr2ZpB7YLIEfw1BcsLqbR/VAfePI7hn3rwZ+rCSIY1Qzfio+rgowbI/ImH/gRwghhBCdQwI/HaCQsrEMhWHEWRKPt4VQ38Uv4/A7Ds5r2Y5pKErKxYpKtSwLc5aMH4CK4WFH5WnbR4s+kdakKKFm6Ur26kvXcIe/AoALfxEXsran1E0Qp5/Tohj3TJRStWLJMPMktTfrUMTFL000bfeT7DJMBzPJoGgM/Gi/GoRsDvyYSeAn5ZgM5D1WdKfoyTg8d8cw//r6J3LDdefyqkvW8JHrL+BDLzufF5y/gu5MfGX+kvV9pFyXm90n0fXQv5M6+Av8JNiZyyy8i55oj5xn897w1zmqswRhSBRByQ9nfc1d99xBTsVjrjSZBCFzQwCkwlEesDbxdz3vibeXjrc8RhhpHO2jZ+l6OB+Xb+zny8Ud3LLtD0gf/AWFB7/M4fEyR8bj8V/N+DFMyYJsN9cyMI16AefG+5ZpsGUo17REtJUNAzk+kv3t2uNln7wIotbjVVfrOyVZkNXP1cze7yXbXbSyMbRfq0dVXepl2bJcWgghhOhkEvjpAF0pu9YBq5B2TrhVcFXOW1j7aV+52FGlVuPHmqXGT33/ElHDEoUg6VYyWfLJqDLKnXkivW15njCzjIfsTbVtbnnmq+zi9LCthUUcx7q31x/MEPjpy7qUtEOQ1OypipKAC5aHqi31aqjxE1THYvMk2zCau+gYhmJlTxonmaBBnBU03J2qLcGo7u7ZJk/ZOsC7R56D7/Wy5sZXoZNW8xkJ/Cwp3uVv4cbwQlJjj2Dc91WCWZbPAHj3frF2f2IiDkLqsB5ofOwpHyLTFWewlacsS6yqBBGu8lHm4wv8XLNtGZ5t8KEjO5nsO4dlt7wPgjKlIG43H8pSr0Uj5ZgopTCUwjDi5gSNnz+2acxZQNmzTZ5y5ZN5Q+Vt9Y2ViZb7VoN+ph0Hwy0jDu6c++P4tZbjopOMn2ptqCjJELMk40cIIYToaBL46QBT257PdQVxLq61sMCRb7jYukRUrfEzy1IvAN/04hazxfpkvtoMJ3P3PwNg5YdmfL1jmpy/upv3l5+HTkJUTkkCP+22kKVeAO5QvZvWTB3k+nIuRZxal66qapARy63X+PHrWWQ6Wb5g2dMn2a1aaWfc+pj3bKOpQHpjDY5nnbOcfWGeL6/9E6zyCM988I8ByMlSryVl59oeSsQT3dzXfoNw9rgPZ439gF+wlRGdoZh0lDtyLA7wfGL5n9KzcgtOphuA0eOHWx6j5Ie4+GDN/vk4l4G8x3PPHeb7Dx3lzrWvxZl4jPTBWwkjTTmI6hk/stSr7aoXYUxDkXYsrGTp10JduKYXI9VV3+BPtt4xqi71ij8T+4sPNz3tuPHSWFM3BH6SAGY1WCSEEEKIziSBHzGNbaqWk+OZBEYcyDH9uMORmmNiU+1qU2qo2xJpjVEZZ9Pdf8uPo62Ut7901vM7f1U3X6/s4P9b/al4W/HQvM9XnBq2ubAJzcZleUZ1kh02Q3HuvGdRwp020XH8ZDmN5aKSK9Xlcr1Oi17gZCbjJMVQFazoTtOfc0m7Jmv60k1t2s9d0cXKnjT/8Mggx9Y9p9aa2XVnz3ITi8uynEuRelBwrgLP6WiCUWcZZexafalfPLAXgA2XvyzeyYsn5uWxYy2PUQpCHHx4nEu9PNvkBRcMk3Ut/unheCmjPb6HKIKJctBQ3FmWerVb4+/R7rSNaxkL+t1a5VoG6Xxv7XFUbp3xo6sZP8ln4j2rrsfXDUHtVBptWBg65PBEHCiv1wWSQKEQQgjRySTwI6ZRSmEtYBIfJEsXPD+Z8MwxsQnNeJJcmax/eY20pvfuT+L5I/yV/zKGegszvt4yjdpyh8//Mrm67c/eRlmcegud0GwYyDKik0wZ1XqSqpSirFzMoKH4blDmeeF/ccwaANNBJR3gjhwbqe1SzfiZ77KalGNSSNt0Z5y4/k/OZX1/lpxnN2XQZT2LF543zMOHJ/li72/WD/A4J/Pi9CqkbSqq/m9WrXcyVTlZPpXWk0ROlpJ2IIgDP0dHRigpj+5sHBg0UoX4NePHCBpSiEZLPiOTFfaNlHAIMFpkoS3UQM7jugtWcNPeeLJujz8GwEQ5pFxJ6rxIxs+i0pWy8U5wGbZrGwwPDtYe+6XWv+90EsSxk3o9E/kNbC1/svZ8OpVCJRk/k+WQsZJPlCyRtR35DBNCCCE6mQR+REv2ApbtmEk9nhfs/2C8Yc7ATzxRKjZl/EDXrq/zq8wO7tDra61uZ7J+IMt1F6xggjiI5K+4eN7nKxaH9f1ZjpEUEJ8h4wfimlBm2JDNc+wRCozz/eWvBqXQXgGAqDhCVJ3AV+uvmPMrWOpaBoNdHv3ZeNzNFMRK2SZXn7WMTcuyfPjnk3zOewn/4l4HXSvn9T5icXBME9VQ+HumhJ+Jcsjh8QpZiig3Rxm7VjjcjopUjHo2mJWOM34mjh9h15FJtNYcm6jwyOFJdh8tsvfoJC7+nBmR85FxTJ559hCpdIbjRgFnPM4+KvohY8X4/CSDY3FRSuGe4DJszza59oLNtcd+cRytNXrKwNW1bK/4c8+2DAIsbs1eAUDGCFCGhUW838hkPfBjyVIvIYQQoqNJ4Ee0tJBlO6v6upo3zLXUKwn86HKRchB3J4mKx/GO3sstavu8r4y+7rJ1AFxa+jv8l3x+3ucrFofujMOYqnaOm3m8+YaHFdUDP4f3PgBAubABAO3G488oj3JgLNmvFviZ32RGKYVtGnPWx1JK0Z9zed1l6zg6WeHdI8/hyz2vhQXWNxLtZZqKdKZel6n/tg8Rju6ftp8fRtz96EFc5WOk8pRwUEn2mRMWqRhx4Fkp6O3KMKFdKB2nWAl5+PAEe44Va8cqVcoYSk8rOH4i8imblGNy3soCu6NevCN3s/I7b8LYfweTxXgJjy0T+UXHXkDnw0auZWBkCtxsXQhAUBonSGo6NUlq/FSL5Q8X4vH5v4/Gr7PTXWDapClhTexnvGFpYLUukBBCCCE6k8xWREtTC0bP5qzMWPOGOSbbqXQ84VJhkUNj8STFePRmlI748tFVPPvcmQs7N3Itk+ecu5y99OOlu+Z+gVh0jHRcEJfy6Iz7+EbcBa7qjjvvBODss84BwHJTVLSJWRllZNKPi5YmSx7mG/hZiLxns2Uwz5M39wPxEg6xtNim4oU76p8zg7fcALf/y7T9KkFEaTwem3a6iwoOKow/s1xdwk8CP8vyHpuX5Rklg1UeAWCy3Nxye3IyDgK5qTSPl2ebbBjIsmUwz3/6F5I+fAeFh7/GwK1/R6lSXe4jGT+dwrVMutIOX+t+JQCV4hhBqKlMqUpezfjBiD+TrtjUz1Vb+vlOdD5Xl2+A7S+sZQNt+sKVBKHGT4rim9LVSwghhOhoEvgRj1v2klc1b5gj42eorweI09XHy8nVxoduoqQ87ra28aILVszrfVOOyWuftJYbf+dyjBPolCLa75yNa+M7k61bYAMEZgqnIfDD8UfxsVi2fDUAlmnGE+7KKEGomSgHC17qtRCebZJ2TV75xDWkbJPlhce/dEecXq5l0jUl8Ua3CD76YUR5YgQAL1OgohyMsEQQRni6RGilsS1FT8Yh61kc0XmccuviztVuYJ53cgqBe7bJhWu7+Uj4rPr5Zofxk/bcji0ByU4y1JUim80DUC6O40dRrTNXTS3jJ86YVUrxtqfGS8Qe0CvAMHBU/BoziAvmV8pJN8RT8FkphBBCiMVDAj/icRtYvpY36nfVN8xR42d4WZwpMfyjP8IPNGGkUY/9nJ+Fm7hs8zBZb35fQHOuheeYdKflC+tSpTdeHd8Z2DrjPpHp4eh6q/ZU5Rgj5DDMpLCtaTCq01iVeOI+Xg5qRU5PRcYPwKqeNEOFFB++/nxe86S1p+Q9xKllRpXmDS06JUVa40/GHeQy+W4C5WCGFY5MVEirMpGVYkV3GtNQZFyTw7oLr3Kk5fuVSvFE2/Mef8ZP1c7VPWgMPrD1CwD03f0Jth79FlAv8Cs6Ry4fZ7ZG5QmCcPpSLx0mWWYNQZzerMPrLlvHm6+Kl8YWwubxGQbNy8OEEEII0Zkk8CMeN6UUqrCqvmGWQr0AK7ZexL3RSrITj6KCuM7P5PhxjukMV29bNu/OJ4ah2DiQPeG6CaL97C3Xsu8Nd8O6K2bcJ7S8uA12FE9qVOQTKKtWFsixFKOkcSojQBz4UQus8bPg8zYNerMOfVmXtCMTpiUpM9D0UFdaBX6gOB4Hfgb6+vANFzMqsedYkTRlIjtN1o3//V3L5KjqIuO3zl4rl+KsNe8kLPWqyqdsluVd7pgsUMksB+CKw/GSNTXH57BYejJJxk80fpigXGS8FGd3lfz6ZyPQFMQppG1evHMFL7ogLkCfDw7XnjNLR9FRMO01QgghhOg8MmMWJ4Xbt3re+w73ZPmQeikGIanDdzJZCdHlcQw3y5ahPMu75r90RimFfYKdUkT7uZaBTvXOuk9kxRNlXYm7wKnIJ8SmurrPNg16GGP50R+T/9U3CELdUOPn1GU99GVdCml7lrLUYlHbcT0/zFxTexiWxqbvE5QpjsdLtwrdvYSGgxWVOTpRIUMRbWeadh81CmTDY9PbhOkIb2I3wElp595oy2CeHz98BDU1cKUk8NNpuvIFANbe8QEKn3sGlSDiyHi5nvkTNdf4AUg7FjnPptqoMLAbiprf8ZFaVy9Z6iWEEEJ0Npkxi5Oiu7tn3vsqpRjvPRuA9KHbGS8FOFEJ28vSn3NnbKU9k4V0IBOLi1IKa476TBU7Xt5QGYuXKKgoIFRmrQPXuv4spoon2oWHvpLsU8HHggWOpYXKezam1JdamgyDNVe9pvawUhzjeNGvPx9FbPrH9bx+z7sBUJlewmTZYdkPyalJIjffdMhU9yC29ln11eej/En0LR9nyz+dy7bPbOete98R75TpP6l/jZdfvIqSH6H88Sl/P8ng6DQ9XRl8HQf0nEN3AbDveIkwSgKNUUCEmtZlsDfr1D4Kf3bOn/PGylvYt+o59NzzGbwgqW0l40UIIYToaBL4ESdFap7Ls6r6h1azV/fhHbyNsaJPiiKRnT6hej2OLPVa0ubqIFdxk2Lg44cAUDogNGxcKx5zWdfi46tvACDz2I9QQREV+gTq1F/B7krbFNLSDWepSrn1MeIXxyhWGjpxTRyq3d1jroTCaiasArlolLLvk6MIXnM3wSdtXw9A1+FfsP3TWzjntj/DLh/jX/1L+X3/dbw5/0FYe/lJ/TtctrGfKzf1Y9HcRWyuJbdi6RnMe4QNX9tWfvctaA1BFFEOwjgozvR/d9s0aksSL9q2ga9HF/NfqWdgBpNcUPxRvJMEfoQQQoiOJjNmcVI8/ezBBe2/cSDLrdF6vAM/h6CIiQYnu+BsH+CEXiMWD2uOjC3fjVu+h0nGjxn5RKp5krLhrJ383+ApWJXjrPmvVzLs7yJAJjJidqauZ/jo8kRzl6TRvbW73xl4JSjFhN2HSYQ1thdbhagpgZ/uJ76cT61+L58Mnlbb9leFP+N7G36f4vbredpTrj7pfwfHNHjyloGm9wRkqVcH6su6TFBfCl3NcAwjTakSzRj4AcglTRPW9mXYMJDln3b3Ezp5VkR7CTBPeXakEEIIIdpLZkbipFjfn+WRl/4PvcYY2bl3Z9OyLF8Od/KsyZ+Qv+/zAFipzByvEp3INmaPP0epOOMnGDsIxEu9tNX80XXJ+j5eEr6Al1vfJrv/x5wPHDPmv/xQnKGGd1JJDXBwMiLlT1AJ64Gf++6/jy3Ai/R7eec1Lwag6MT1qFKjDwFgpJoDP6aT4pyrXsK7D69n70gfXwov42PPv7ZWgD7nnfxfuYahOH9VgWcHr2C1OsBV5m3VJ076e4n2KqQd9ukUvapej0qFFYLQpkgIOl4G20rjktTnnDvEB256gMfWXMzK/d+cni0mhBBCiI4j3wzFSeHZJkb/JqKVF89r/w0DOW40LmXM7CK/65sAuKn8HK8SnWiujJ/Qiyfb4XjcjcbQAZFqXl412OWxfv1GHtLL669TEtcWs7My3ex+zS+4OdqO6Tdn/Dz80AMAvPX5VzLUlQKg6PYBMHTw+/Hr082BH8swsE2Dv7huJ0PXvpO3P++Spq6DpyqpYutQnrdfvZm3+79Z3xhFM79ALEmOZXC3Xtu0zR7fS8kP8cMIIwoI53E979nnLiftmHxEXXeqTlUIIYQQi4wEfsRJY5sGxjxnNhnXYtvyAg/qFWSP3A5AKiOBnzORPUeNHyOVx9cm4fhhjk5UsLSPNpsnN4ZSXLSmG0sHtW2RIV1qxOwsU+GYJsrNYoVFwkjXCuWmygfwMenqHcRIsiUqXlyY+ey9cZainWnOKjMNhVJxIPyitT2cs6LQ9Px8Px8X/vcweOEFKzhGnv8Oz403Flu3lRdL268ueS/Hdbr2OHPgZ5h7fkIQ6Vkzfhr1pF2u3DzAF3bL71whhBDiTCGBH3HSOJYx79bWPRmH81Z1c1dlCDuIu9E4mdypOzmxZPVkXI6QJxo7yEQ5wNABeko2j2koNi3LYaugYaMEfsTsHDPO0HHTOTw9CVpTCSKCMMIIikySAmVgJgGbrZs3Nb0+k5++nHCuDLZTZSDn8uTN/bw3eCkPshJWPqEt5yFOrYu2ruFz4VW1xyu+9w7W/fsLCcMQIwqIZqjx08ixDJ6+fZBKEPGGytu4efD6U3nKQgghhFgEJPAjThrLVAu6on3eygL36VW1x15arj6K6db0Zdij+zGOP4IfRpiEaLN5qZdpKIa7U/yFen19o3SpEXNQSmGbiqhnPRYR3bd/lEoQMemHGEGZgDh4WC2X8+wL1vGC3D/XXp/tahH4MWb+DDRmee7xMg3F7169ifv0Kp5a+mtIFU7Ze4n2Gcp70OISS2VyLG7nPo+MH9cyeMLaHgppmxujC/nJht85+ScqhBBCiEVFAj/ipHFMY0E1LM5f1c1P9Nba43RWAj9iurV9GR7RA6Qn9uCHGkv7LYM6y/Iez3j+K/kz/9cBcHX5dJ+qWIIs0yB3Vtxta8Utf0Xl6CMUKyEqqlBRceCnmvGjlOIZF23jj/xXxS/OTe9maM1QVFmpeMJ9qiilWF5IsX04z+8+deMpex/RXoW0jSKu3/St8Lz69vu/gA79eS1xNQxFf87lkvVx/bSJcjDHK4QQQgix1EngR5w09gIDP71Zh6h7I0d13Aesb2j1KTozsZQN5Fz2qUFylQP45UlMQpiS8QPQn3VZ2ZPmoI7bv2cqh0/3qYolyDENdm7fxo+iswAoHXiQyUqIEVYIlINSkG3oxnXZxn7uW/lrfPTKW2BKO3eA/pzLQN4F4mDPpsEsW4dybB/uoi/rntK/S8ox+fvrL+AlF62ae2exJFmmgZkEfn6qt/Ev+d8AYPnNf0JveBg9j4wfiAOF1z8h/p27dUguugghhBCdTgI/4qQxDTXj1e5WPNtky/I8V5b/lqvUx0j1DJ/CsxNLlVKKifRKDDTGyKNx6+EWV7UNQ5FP2dxnrAfACoun+1TFEmSbinzK4W+8NwGgRh6hEkSYUZnQsFnZk8a16pNpzzb442edxTXbl7c8Xsa1GMi5FNI2m5blcC0Ta44C5idLyjbJulZT627RWVzL4NlnLwNgqJDhi4fqvzd79TH0Apa47lhZ4AtveCLXbFt20s9TCCGEEIuLBH7ESbXQCccT1/UySoaHi+m5dxZnrFLPZgCcw/fgEKDM1pOb5QUPCpI5JuavGpTRuWFCDJzRRwmiCCOqEBoOXSm75f7mLOmNSilW9qRxTuHSrpneN+Napy3QJE4/pRRdXhyIvGrbEMfI1p7r59iCapulHZO0a57S2lNCCCGEWBzk26Foq2efE181v2B1d5vPRCxm1uA2KtrEPXwHFgFY05d6AdiGwTuv3cJfp9/O6As/e5rPUixl/V0Z9tGHM76bKAJLx4GfqarFmxeQ3HhaOZaBI4GfjmZc8XuMb3g25nnXMzRYzzxLqcqCuhkqpRjIeah59+MUQgghxFIlbW9EW+VTNp945YUMd3vtPhWxiK0eKHCnXseOX34GU1U4OMPkxjAU56/qZsX1b8VbljvNZymWssG8xyNhP+eOPgqAGflERnbafpahUGrh2Y2nU7tayovTwykMsv/p/4BrGwwsG4Jj9efUArsZFtI2YaRP8hkKIYQQYrGRy4KirQxDsbzbI5+a/1VKceY5d0UX7w9ehBlVAFAtijtXxUtd1IIKjQsxVEixW/eTPXQrZ39sFefoXxKZ04sxZ1yL/pw761KvdrMl46fjWaYi5Zi8+KK1vCt6Y227WkDGD8Rj5VR2mxNCCCHE4iC/7UXbeZaJsYgnUaL9tg7m+ZVdb1Ft2jMHftKOiWUoGVNiQbYN5ditB5q26RYBRs82KaTtRZ3xIzqfZSqyjkXWswjPfgn7dA/AjPXPZqPks1IIIYToeBL4EW2Xdk3JzhCzsiyDZf0DTOg4A8NxZm6LrVTcXU6GlFiIrcvz7DOmdDeaIbPMtUzJUhRtZRsGhhEXET9vVYEfRtsBiNxCe09MCCGEEIuSBH5E2+U9u6ldshCtrO7NcFAXAHDcmQM/gCz1EgvWl3EZ6d3RtE2bM9cek+VUop2qdZzyns25Kwt8OHgO3wgvZPeFf9DmMxNCCCHEYiTfXEXbebY5rWWyEFOt6ctwkLj7m+fOXgzcs01ZviAWxDAUfSs2Nm1TM3SPE6LdGgOPfVmXh/Vyfst/G1ZhZRvPSgghhBCLlQR+hBBLwvr+DId0FwCeN3vgJ+NIw0KxcNuHu9hZ+nsmVSreYM2eWSZEu1gNNaZMQ/G+685huJBidV+mjWclhBBCiMVKAj9CiCVh02COQ8lSL9eIZt035cjSQbFw1541yIhR4JfhMACOl2rzGQnRmtWQ8WMbBlduHuAjL7+AgmTPCiGEEKIFCfwIIZaEtb0Zjqp4qZeaONTmsxGdqC/r8sonruG4jrMmUl66zWckxNw8x8BOav7IClchhBBCtCKBHyHEkuDaJlEmabc9frC9JyM6kmEo1g9kGSEJ/KQk8CMWP9cyMY1q4EciP0IIIYSYTgI/Qoglw9t4ZXxn23Pbeh6ic20ezHFvtBqArC+ZZWJpkC5zQgghhJiNVEAVQiwZr37WFTx0+V7W92fbfSqiQw3kXB70tkMIjtLtPh0h5sUxjVqLdyGEEEKIqeQSkRBiybAMhUxtxKnk2gb+8gt5j/UO1FP/pN2nI8S8GIZiTa909BJCCCFEa5LxI4RYMhzTkBoW4pTKeza///QtPHhwBaQK7T4dIeZNuhkKIYQQYiYS+BFCLBmGobAMCfyIU8ezTTYMZHGkZooQQgghhOgQ8s1WCLGkuJZ8bIlTy1RK2mILIYQQQoiOMecMSin1CaXUQaXUXQ3b/lQptVcpdVtye8apPU0hhIg5EvgRp5glSwqFEEIIIUQHmc8M6lPAtS22/63Wekdy+/rJPS0hhGjNtaSOhTj1bEMCjEIIIYQQojPM+c1Wa/094OhpOBchhJiTZPyI08GzZZwJIYQQQojO8Hi+2b5JKXVHshSs+6SdkRBCzMKU4s7iNMi40vtACCGEEEJ0hhMN/Pw9sB7YAewD3j/Tjkqp1yulblFK3XLo0KETfDshhBDi9ElLa2whhBBCCNEhTijwo7U+oLUOtdYR8I/ARbPs+w9a651a6539/f0nep5CCCHEaSPFnYUQQgghRKc4ocCPUmqo4eHzgbtm2lcIIYQQQgghhBBCtMecRQyUUp8DrgT6lFJ7gD8BrlRK7QA0sAt4w6k7RSGEEEIIIYQQQghxIuYM/GitX9pi88dPwbkIIYQQQgghhBBCiJNI+tUKIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0KAn8CCGEEEIIIYQQQnQoCfwIIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0KAn8CCGEEEIIIYQQQnQoCfwIIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0KKW1Pn1vptQh4JHT9oZLWx9wuN0nIc5IMvZEO8i4E+0iY0+0g4w70S4y9kQ7yLg7PVZrrftbPXFaAz9i/pRSt2itd7b7PMSZR8aeaAcZd6JdZOyJdpBxJ9pFxp5oBxl37SdLvYQQQgghhBBCCCE6lAR+hBBCCCGEEEIIITqUBH4Wr39o9wmIM5aMPdEOMu5Eu8jYE+0g4060i4w90Q4y7tpMavwIIYQQQgghhBBCdCjJ+BFCCCGEEEIIIYToUBL4mSel1Eql1HeVUvcqpe5WSr012d6jlLpJKfVA8md3sr032X9cKfWhhuPklFK3NdwOK6X+/xne8wKl1J1KqQeVUh9USqlk+982vP5+pdTIDK+/XCn1C6VUoJS6rsXzeaXU3sbzE4tPp409pVTYcIyvnZyfkjjZOnDcrVJKfTP5+9yjlFpzUn5Q4qTqpHGnlHrylHMoKaWed9J+WOKk6qSxlzx3Q/L3uLfx2GJx6cBx99dKqbuS26+dnJ+SOBWW6Nj7XRV/h7tDKfVtpdTqhudemZzzA0qpV568n1QH0VrLbR43YAg4P7mfA+4HtgE3AO9Ktr8L+OvkfgZ4EvCbwIdmOe7PgctneO6nwBMBBXwDeHqLfd4MfGKG168BzgE+A1zX4vm/Az472/nJrf23Tht7wHi7f6ZyOyPH3X8DVyf3s0C63T9juXX+uGvYpwc4KuNu8d46aewBlwA/BMzkdjNwZbt/xnLr+HH3TOAmwErO8xYg3+6fsdw6auw9ufp7FPgt4PPJ/R7g4eTP7uR+d7t/xovtJhk/86S13qe1/kVyfwy4FxgGngt8Otnt08Dzkn0mtNY/AEozHVMptREYAL7f4rkh4g/Lm3U8oj9TPfYULwU+N8M579Ja3wFELY5/AbAM+OZM5ycWh04be2Jp6KRxp5TaBlha65uS/ca11pMznadon04ad1NcB3xDxt3i1WFjTwMe4AAuYAMHZjpP0T4dNu62Af+jtQ601hPA7cC1M52naK8lOva+2/B79MfAiuT+04CbtNZHtdbHiAOQMvamkMDPCVDxEoHzgJ8Ay7TW+yD+D0Q82OfrpcSRylYVtoeBPQ2P9yTbGs9jNbAW+M4C3hOllAG8H3jnQl4n2m+pj72Ep5S6RSn1YyXLHpaEDhh3m4ARpdSXlFK3KqXep5QyF3gMcZp1wLhr9BJm+CIrFp+lPva01jcD3wX2Jbcbtdb3LuQY4vRb6uOOONDzdKVUWinVR5ydsXKBxxBtsETH3m8QZw1Vj717tmOLOBVPLIBSKgt8EfgdrfXo41wy/RLg12d6qxbbpv4negnwb1rrcIHv+0bg61rr3bLke+nokLEHsEpr/ZhSah3wHaXUnVrrh07gOOI06JBxZwGXEX+peRT4PPAq4OMLPI44TTpk3MVvEF/lPBu48UReL06vThh7SqkNwFbqV8NvUkpdrrX+3kKOI06fThh3WutvKqUuBH4EHCJeYhgs5Bji9FuKY08p9XJgJ3DFAo59xpOMnwVQStnE/zH+WWv9pWTzgeRLXfXL3cF5Hutc4qUHP08emw1Frf6cOFK5ouElK4DHphym6QqiUuovq8eY4+2fCLxJKbUL+BvgFUqp987nvEV7dNDYQ2v9WPLnw8R1V86bz3mL06+Dxt0e4Fat9cNa6wD4CnD+fM5bnH4dNO6qXgx8WWvtz3N/0SYdNPaeD/w4WdY6TnxV/OL5nLc4/Tpo3KG1/kut9Q6t9dXEk/EH5nPeoj2W4thTSj0VeA/wHK11Odm8h+bsslbHPuNJ4GeeVBz+/Dhwr9b6Aw1PfQ2oVg5/JfDVeR6yaf2i1jpMPih3aK3/OEmtG1NKXZy89ysaj62U2kxcvOrmhmO8p3qM2d5Ya3291nqV1noN8A7gM1rrd83zvMVp1kljTynVrZRyk/t9wKXAPfM8b3EaddK4A34GdCul+pPHVyHjblHqsHHX8hzE4tRhY+9R4AqllJVM7K4grt8hFplOGnfJRL83uX8OcQFoqSW6SC3FsaeUOg/4KHHQpzEgdSNwTTLP6AauQbJsp9OLoML0UrgRVzHXwB3AbcntGUAv8G3iiPa3gZ6G1+wi7uIxThyJ3Nbw3MPAljnecydwF/AQ8CFANTz3p8B753j9hcn7TgBHgLtb7PMqpKvXor510tgj7jRyJ/E68DuB32j3z1dunT/ukueuTv4udwKfApx2/4zldkaMuzXAXsBo989WbmfO2CPu5PVR4mDPPcAH2v3zldsZMe68ZLzdQ1x4d0e7f75y67ix9y3iQvXV8/1aw3OvAR5Mbq9u9893Md5U8oMSQgghhBBCCCGEEB1GlnoJIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0KAn8CCGEEEIIIYQQQnQoCfwIIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0KAn8CCGEEEIIIYQQQnQoCfwIIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0qP8HVKdhIX6nuQ8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize = (20, 5))\n", - "plt.plot(df_gpr.index, np_output[:, :], label = 'Measured data')\n", - "plt.plot(df_gpr.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - "plt.fill_between(\n", - " df_gpr.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),from pathlib import Path\n", - "\n", - "from shutil import copyfile\n", - "\n", - "import pickle\n", - "\n", - "Load the general math/data manipulation packages\n", - "\n", - "import numpy as np\n", - "\n", - "import pandas as pd\n", - "\n", - "Load the packages related to the Gaussian Process Regressor:\n", - "\n", - "import gpflow\n", - "\n", - "import tensorflow as tf\n", - "\n", - "from gpflow.utilities import print_summary\n", - "\n", - "gpflow.config.set_default_summary_fmt(\"notebook\")\n", - "\n", - "tf.config.set_visible_devices([], 'GPU')\n", - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "Load the CasADi package used for optimization:\n", - "\n", - "import casadi\n", - "\n", - "Import MATLAB engine and start it in the background since this takes a while:\n", - "\n", - "import matlab.engine\n", - "\n", - "eng = matlab.engine.start_matlab()\n", - "\n", - "eng.load_system(\"../Simulink/polydome\", background = True)\n", - "\n", - "\n", - "\n", - "Copy the experimental data set to the CARNOT input location:\n", - "\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - ")\n", - "plt.legend()\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - }, - "toc-autonumbering": false, - "toc-showmarkdowntxt": false, - "toc-showtags": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Notebooks/34_train_gp_from_existing_data.ipynb b/Notebooks/34_train_gp_from_existing_data.ipynb deleted file mode 100644 index 45345d1..0000000 --- a/Notebooks/34_train_gp_from_existing_data.ipynb +++ /dev/null @@ -1,986 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "16537827-7386-4163-b95f-2997fc020a2c", - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "from shutil import copyfile\n", - "import pickle" - ] - }, - { - "cell_type": "markdown", - "id": "a517af1c-4204-45c9-aae4-865a2cb259e9", - "metadata": {}, - "source": [ - "Data manipulation" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "62628e60-28c6-4a9a-8a81-22e5bfd74722", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "0fa93674-d4e7-4b36-ab3a-ebb11df12ed3", - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.preprocessing import MinMaxScaler, RobustScaler\n", - "from sklearn.exceptions import NotFittedError" - ] - }, - { - "cell_type": "markdown", - "id": "acb33a41-06b9-4a1d-9ea7-6a2d87b1f4fb", - "metadata": {}, - "source": [ - "Plotting / Visualisation" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "a42ae056-7511-4e17-b4ba-981fbcfaf922", - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "0f8b23d5-e253-408b-907f-6f9990a98a96", - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "plt.rcParams[\"figure.figsize\"] = (15, 6)" - ] - }, - { - "cell_type": "markdown", - "id": "90fdac33-eed4-4ab4-b2b1-de0f1f27727b", - "metadata": {}, - "source": [ - "Gaussian Process Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "e629471f-350e-4af3-83df-377794a20a02", - "metadata": {}, - "outputs": [], - "source": [ - "import gpflow\n", - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "b33dbca7-4419-4201-8d49-9fe3a5e16a33", - "metadata": {}, - "outputs": [], - "source": [ - "from gpflow.utilities import print_summary" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "fe8d81a8-f8ec-41d0-8a6c-77ee73619def", - "metadata": {}, - "outputs": [], - "source": [ - "gpflow.config.set_default_summary_fmt(\"notebook\")" - ] - }, - { - "cell_type": "markdown", - "id": "0aba0df5-b0e3-4738-bb61-1dad869d1ea3", - "metadata": {}, - "source": [ - "## Load previously exported data" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "a8bf0b3f-1236-41c5-ba72-7e274a75d22f", - "metadata": {}, - "outputs": [], - "source": [ - "train_exps = ['Exp1', 'Exp3', 'Exp5', 'Exp6']\n", - "test_exps = ['Exp2', 'Exp4', 'Exp7']" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "3c8ad21b-8566-4d14-a13c-99e2dc3efc74", - "metadata": {}, - "outputs": [], - "source": [ - "t_cols = ['time_h', 'time_m']\n", - "w_cols = ['SolRad', 'OutsideTemp']\n", - "u_cols = ['SimulatedHeat']\n", - "y_cols = ['SimulatedTemp']" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "ad00a16f-7cb6-44a6-90e7-ecc07003ffad", - "metadata": {}, - "outputs": [], - "source": [ - "t_lags = 4\n", - "w_lags = 1\n", - "u_lags = 3\n", - "y_lags = 3" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "e3225bc5-70b1-4b27-9893-8d0aae750bc9", - "metadata": {}, - "outputs": [], - "source": [ - "#dict_cols = pickle.load(open(Path(\"dict_cols.pkl\"), 'rb'))\n", - "#dict_cols" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "815913ad-73b3-407c-8e05-e3acfa65d73c", - "metadata": {}, - "outputs": [], - "source": [ - "dict_cols = {\n", - " 't': (t_lags, t_cols),\n", - " 'w': (w_lags, w_cols),\n", - " 'u': (u_lags, u_cols),\n", - " 'y': (y_lags, y_cols)\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "b1574455-ece7-4a45-92a9-70410f73266e", - "metadata": {}, - "outputs": [], - "source": [ - "dfs_train = pickle.load(open(Path(\"dfs_train.pkl\"), 'rb'))\n", - "dfs_test = pickle.load(open(Path(\"dfs_test.pkl\"), 'rb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "0ebe637c-ad84-4393-9199-6ba088462132", - "metadata": {}, - "outputs": [], - "source": [ - "scaler = pickle.load(open(Path(\"scaler.pkl\"), 'rb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "136ba207-b4a7-427d-bdb2-0321110be9b6", - "metadata": {}, - "outputs": [], - "source": [ - "def get_scaled_df(df, dict_cols, scaler):\n", - " \n", - " t_list = dict_cols['t'][1]\n", - " w_list = dict_cols['w'][1]\n", - " u_list = dict_cols['u'][1]\n", - " y_list = dict_cols['y'][1]\n", - " \n", - " df_local = df[t_list + w_list + u_list + y_list]\n", - " df_scaled = df_local.to_numpy()\n", - " \n", - " try:\n", - " df_scaled = scaler.transform(df_scaled)\n", - " except NotFittedError:\n", - " df_scaled = scaler.fit_transform(df_scaled)\n", - " \n", - " df_scaled = pd.DataFrame(df_scaled, index = df_local.index, columns = df_local.columns)\n", - " \n", - " return df_scaled" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "d5130037-26f7-4f47-8382-81b12a131e2d", - "metadata": {}, - "outputs": [], - "source": [ - "df_train = pd.concat(dfs_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "a1d9c9f8-6689-40b4-8ae7-75395b343de2", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "35185.23586737608" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(df_train.to_numpy())" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "b862da6c-9bca-4647-aeec-ee861c11293c", - "metadata": {}, - "outputs": [], - "source": [ - "df_train_sc = get_scaled_df(df_train, dict_cols, scaler)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "c0c18759-db54-4c46-8875-535b28d9ede6", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7.478002157732377" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(df_train_sc.to_numpy())" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "5b39e5c3-94ca-4765-aa6b-1426b226ca27", - "metadata": {}, - "outputs": [], - "source": [ - "dfs_train_sc = []\n", - "dfs_test_sc = []\n", - "for df in dfs_train:\n", - " df_sc = get_scaled_df(df, dict_cols, scaler)\n", - " dfs_train_sc.append(df_sc)\n", - " \n", - "for df in dfs_test:\n", - " df_sc = get_scaled_df(df, dict_cols, scaler)\n", - " dfs_test_sc.append(df_sc)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "e8c97d70-2c97-4db8-9e2e-636086bd6271", - "metadata": {}, - "outputs": [], - "source": [ - "def data_to_gpr(df, dict_cols):\n", - " \n", - " t_list = dict_cols['t'][1]\n", - " w_list = dict_cols['w'][1]\n", - " u_list = dict_cols['u'][1]\n", - " y_list = dict_cols['y'][1]\n", - " \n", - " df_gpr = df[t_list + w_list + u_list + y_list].copy()\n", - " \n", - " for lags, names in dict_cols.values():\n", - " for name in names:\n", - " col_idx = df_gpr.columns.get_loc(name)\n", - " for lag in range(1, lags + 1):\n", - " df_gpr.insert(col_idx + lag, f\"{name}_{lag}\", df_gpr.loc[:, name].shift(lag))\n", - "\n", - " df_gpr.dropna(inplace = True)\n", - " \n", - " return df_gpr" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "b351b32a-7018-4c90-8aa0-7c0be5461c2e", - "metadata": {}, - "outputs": [], - "source": [ - "#dfs_gpr_train = pickle.load(open(Path(\"dfs_gpr_train.pkl\"), 'rb'))\n", - "#dfs_gpr_test = pickle.load(open(Path(\"dfs_gpr_test.pkl\"), 'rb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "b0453fdf-58f3-49e6-bdea-ebe5940422e2", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
time_htime_h_1time_h_2time_h_3time_h_4time_mtime_m_1time_m_2time_m_3time_m_4...OutsideTempOutsideTemp_1SimulatedHeatSimulatedHeat_1SimulatedHeat_2SimulatedHeat_3SimulatedTempSimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-06-01 20:20:00+02:000.739130.739130.739130.739130.73913-0.272727-0.454545-0.636364-0.818182-1.000000...0.0588240.058824-0.904139-0.580115-0.580115-0.580115-0.179560-0.132679-0.094006-0.076890
2017-06-01 20:25:00+02:000.739130.739130.739130.739130.73913-0.090909-0.272727-0.454545-0.636364-0.818182...0.0588240.058824-0.904139-0.904139-0.580115-0.580115-0.208254-0.179560-0.132679-0.094006
2017-06-01 20:30:00+02:000.739130.739130.739130.739130.739130.090909-0.090909-0.272727-0.454545-0.636364...0.0588240.058824-0.904139-0.904139-0.904139-0.580115-0.222268-0.208254-0.179560-0.132679
2017-06-01 20:35:00+02:000.739130.739130.739130.739130.739130.2727270.090909-0.090909-0.272727-0.454545...0.0588240.058824-0.904139-0.904139-0.904139-0.904139-0.234855-0.222268-0.208254-0.179560
2017-06-01 20:40:00+02:000.739130.739130.739130.739130.739130.4545450.2727270.090909-0.090909-0.272727...0.0588240.058824-0.904139-0.904139-0.904139-0.904139-0.247166-0.234855-0.222268-0.208254
\n", - "

5 rows × 22 columns

\n", - "
" - ], - "text/plain": [ - " time_h time_h_1 time_h_2 time_h_3 time_h_4 \\\n", - "timestamp \n", - "2017-06-01 20:20:00+02:00 0.73913 0.73913 0.73913 0.73913 0.73913 \n", - "2017-06-01 20:25:00+02:00 0.73913 0.73913 0.73913 0.73913 0.73913 \n", - "2017-06-01 20:30:00+02:00 0.73913 0.73913 0.73913 0.73913 0.73913 \n", - "2017-06-01 20:35:00+02:00 0.73913 0.73913 0.73913 0.73913 0.73913 \n", - "2017-06-01 20:40:00+02:00 0.73913 0.73913 0.73913 0.73913 0.73913 \n", - "\n", - " time_m time_m_1 time_m_2 time_m_3 time_m_4 \\\n", - "timestamp \n", - "2017-06-01 20:20:00+02:00 -0.272727 -0.454545 -0.636364 -0.818182 -1.000000 \n", - "2017-06-01 20:25:00+02:00 -0.090909 -0.272727 -0.454545 -0.636364 -0.818182 \n", - "2017-06-01 20:30:00+02:00 0.090909 -0.090909 -0.272727 -0.454545 -0.636364 \n", - "2017-06-01 20:35:00+02:00 0.272727 0.090909 -0.090909 -0.272727 -0.454545 \n", - "2017-06-01 20:40:00+02:00 0.454545 0.272727 0.090909 -0.090909 -0.272727 \n", - "\n", - " ... OutsideTemp OutsideTemp_1 SimulatedHeat \\\n", - "timestamp ... \n", - "2017-06-01 20:20:00+02:00 ... 0.058824 0.058824 -0.904139 \n", - "2017-06-01 20:25:00+02:00 ... 0.058824 0.058824 -0.904139 \n", - "2017-06-01 20:30:00+02:00 ... 0.058824 0.058824 -0.904139 \n", - "2017-06-01 20:35:00+02:00 ... 0.058824 0.058824 -0.904139 \n", - "2017-06-01 20:40:00+02:00 ... 0.058824 0.058824 -0.904139 \n", - "\n", - " SimulatedHeat_1 SimulatedHeat_2 SimulatedHeat_3 \\\n", - "timestamp \n", - "2017-06-01 20:20:00+02:00 -0.580115 -0.580115 -0.580115 \n", - "2017-06-01 20:25:00+02:00 -0.904139 -0.580115 -0.580115 \n", - "2017-06-01 20:30:00+02:00 -0.904139 -0.904139 -0.580115 \n", - "2017-06-01 20:35:00+02:00 -0.904139 -0.904139 -0.904139 \n", - "2017-06-01 20:40:00+02:00 -0.904139 -0.904139 -0.904139 \n", - "\n", - " SimulatedTemp SimulatedTemp_1 SimulatedTemp_2 \\\n", - "timestamp \n", - "2017-06-01 20:20:00+02:00 -0.179560 -0.132679 -0.094006 \n", - "2017-06-01 20:25:00+02:00 -0.208254 -0.179560 -0.132679 \n", - "2017-06-01 20:30:00+02:00 -0.222268 -0.208254 -0.179560 \n", - "2017-06-01 20:35:00+02:00 -0.234855 -0.222268 -0.208254 \n", - "2017-06-01 20:40:00+02:00 -0.247166 -0.234855 -0.222268 \n", - "\n", - " SimulatedTemp_3 \n", - "timestamp \n", - "2017-06-01 20:20:00+02:00 -0.076890 \n", - "2017-06-01 20:25:00+02:00 -0.094006 \n", - "2017-06-01 20:30:00+02:00 -0.132679 \n", - "2017-06-01 20:35:00+02:00 -0.179560 \n", - "2017-06-01 20:40:00+02:00 -0.208254 \n", - "\n", - "[5 rows x 22 columns]" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dfs_gpr_train = []\n", - "for df_sc in dfs_train_sc:\n", - " dfs_gpr_train.append(data_to_gpr(df_sc, dict_cols))\n", - "df_gpr_train = pd.concat(dfs_gpr_train)\n", - "df_gpr_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "8b866f02-084a-4ec1-b269-818949461530", - "metadata": {}, - "outputs": [], - "source": [ - "#df_gpr_train = pd.concat(dfs_gpr_train)\n", - "\n", - "df_input_train = df_gpr_train.drop(columns = dict_cols['u'][1] + dict_cols['y'][1])\n", - "df_output_train = df_gpr_train[dict_cols['y'][1]]\n", - "\n", - "np_input_train = df_input_train.to_numpy()\n", - "np_output_train = df_output_train.to_numpy().reshape(-1, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "288c99da-56c2-4216-819e-b3722f2a502c", - "metadata": {}, - "outputs": [], - "source": [ - "## Define Kernel" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "dadb3f43-af78-4cb6-98c6-408559f62479", - "metadata": {}, - "outputs": [], - "source": [ - "nb_dims = np_input_train.shape[1]\n", - "rational_dims = np.arange(0, (dict_cols['t'][0] + 1) * len(dict_cols['t'][1]), 1)\n", - "nb_rational_dims = len(rational_dims)\n", - "squared_dims = np.arange(nb_rational_dims, nb_dims, 1)\n", - "nb_squared_dims = len(squared_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "9bca461d-b4f9-4f9f-a6d6-65f7601fa020", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rational dims: 10\n", - "squared dims: 10\n" - ] - } - ], - "source": [ - "print(f\"rational dims: {nb_rational_dims}\")\n", - "print(f\"squared dims: {nb_squared_dims}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "dc8ef81f-271c-4e7a-8eb7-8981557cf7bb", - "metadata": {}, - "outputs": [], - "source": [ - "squared_l = [1e-4] * nb_squared_dims\n", - "rational_l = [1e-7] * nb_rational_dims" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "id": "da302d5c-cb00-47e5-9cad-6e4de21eceb2", - "metadata": {}, - "outputs": [], - "source": [ - "squared_l = np.linspace(0.01, 1, nb_squared_dims)\n", - "rational_l = np.linspace(0.01, 1, nb_rational_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "id": "61caaaba-7527-4437-a7bf-62b5594c147c", - "metadata": {}, - "outputs": [], - "source": [ - "k0 = gpflow.kernels.SquaredExponential(lengthscales = squared_l, active_dims = squared_dims, variance = 2)\n", - "k1 = gpflow.kernels.Constant()\n", - "k2 = gpflow.kernels.RationalQuadratic(lengthscales = rational_l, active_dims = rational_dims, variance = 2)\n", - "k3 = gpflow.kernels.Periodic(k2)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "87e3c3a2-4e67-4181-bd2d-22d684b7ce03", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
Product.kernels[0].kernels[0].variance ParameterSoftplus True () float642.0
Product.kernels[0].kernels[0].lengthscalesParameterSoftplus True (10,) float64[0.01, 0.12, 0.23...
Product.kernels[0].kernels[1].variance ParameterSoftplus True () float641.0
Product.kernels[1].variance ParameterSoftplus True () float642.0
Product.kernels[1].lengthscales ParameterSoftplus True (10,) float64[0.01, 0.12, 0.23...
Product.kernels[1].alpha ParameterSoftplus True () float641.0
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "k = (k0 + k1) * k2\n", - "print_summary(k)" - ] - }, - { - "cell_type": "markdown", - "id": "4af25a43-15c9-4543-af73-3c313b5fc7af", - "metadata": {}, - "source": [ - "## Compile Model" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "id": "99da48d2-f04e-4ef8-a248-bc9b82fdbabd", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].kernels[0].variance ParameterSoftplus True () float642.0
GPR.kernel.kernels[0].kernels[0].lengthscalesParameterSoftplus True (10,) float64[0.01, 0.12, 0.23...
GPR.kernel.kernels[0].kernels[1].variance ParameterSoftplus True () float641.0
GPR.kernel.kernels[1].variance ParameterSoftplus True () float642.0
GPR.kernel.kernels[1].lengthscales ParameterSoftplus True (10,) float64[0.01, 0.12, 0.23...
GPR.kernel.kernels[1].alpha ParameterSoftplus True () float641.0
GPR.likelihood.variance ParameterSoftplus + Shift True () float641.0
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "m = gpflow.models.GPR(\n", - " data = (np_input_train, np_output_train), \n", - " kernel = k, \n", - " mean_function = None\n", - " )\n", - "print_summary(m)" - ] - }, - { - "cell_type": "markdown", - "id": "08f41235-12df-4e9c-bf63-e7a4390cf21a", - "metadata": {}, - "source": [ - "## Train Model" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "id": "9e5e2138-b342-4d44-8987-b7758b0daa6b", - "metadata": {}, - "outputs": [], - "source": [ - "opt = gpflow.optimizers.Scipy()" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "id": "fcfb78e0-2a3b-4a16-a621-6698abdaf3ab", - "metadata": {}, - "outputs": [], - "source": [ - "from datetime import datetime" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "id": "c449b100-acff-414d-a648-c4233879c253", - "metadata": {}, - "outputs": [ - { - "ename": "InvalidArgumentError", - "evalue": " Input matrix is not invertible.\n\t [[node gradient_tape/triangular_solve/MatrixTriangularSolve (defined at /usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py:173) ]] [Op:__inference__tf_eval_1118]\n\nErrors may have originated from an input operation.\nInput Source operations connected to node gradient_tape/triangular_solve/MatrixTriangularSolve:\n Cholesky (defined at /usr/lib/python3.9/site-packages/gpflow/models/gpr.py:87)\n\nFunction call stack:\n_tf_eval\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mstart_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdatetime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mopt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mminimize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraining_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainable_variables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Finished fitting in {datetime.now() - start_time}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mprint_summary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py\u001b[0m in \u001b[0;36mminimize\u001b[0;34m(self, closure, variables, method, step_callback, compile, **scipy_kwargs)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0mscipy_kwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcallback\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m return scipy.optimize.minimize(\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjac\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mscipy_kwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m )\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_minimize.py\u001b[0m in \u001b[0;36mminimize\u001b[0;34m(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)\u001b[0m\n\u001b[1;32m 617\u001b[0m **options)\n\u001b[1;32m 618\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'l-bfgs-b'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 619\u001b[0;31m return _minimize_lbfgsb(fun, x0, args, jac, bounds,\n\u001b[0m\u001b[1;32m 620\u001b[0m callback=callback, **options)\n\u001b[1;32m 621\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'tnc'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/lbfgsb.py\u001b[0m in \u001b[0;36m_minimize_lbfgsb\u001b[0;34m(fun, x0, args, jac, bounds, disp, maxcor, ftol, gtol, eps, maxfun, maxiter, iprint, callback, maxls, finite_diff_rel_step, **unknown_options)\u001b[0m\n\u001b[1;32m 358\u001b[0m \u001b[0;31m# until the completion of the current minimization iteration.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 359\u001b[0m \u001b[0;31m# Overwrite f and g:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 360\u001b[0;31m \u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc_and_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 361\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mtask_str\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstartswith\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mb'NEW_X'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 362\u001b[0m \u001b[0;31m# new iteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36mfun_and_grad\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 258\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray_equal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 259\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_x_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 260\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 261\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 262\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36m_update_fun\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_update_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf_updated\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 226\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_fun_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 227\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf_updated\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36mupdate_fun\u001b[0;34m()\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mupdate_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 133\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun_wrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 134\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_fun_impl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mupdate_fun\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36mfun_wrapped\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfun_wrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnfev\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 130\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 131\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mupdate_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/optimize.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, x, *args)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;34m\"\"\" returns the the function value \"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 74\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_if_needed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 75\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/optimize.py\u001b[0m in \u001b[0;36m_compute_if_needed\u001b[0;34m(self, x, *args)\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_value\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjac\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 68\u001b[0;31m \u001b[0mfg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 69\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjac\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_value\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py\u001b[0m in \u001b[0;36m_eval\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_eval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 113\u001b[0;31m \u001b[0mloss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_tf_eval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert_to_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 114\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat64\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat64\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 826\u001b[0m \u001b[0mtracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 827\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mtm\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 828\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 829\u001b[0m \u001b[0mcompiler\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"xla\"\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_experimental_compile\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m\"nonXla\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 830\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 860\u001b[0m \u001b[0;31m# In this case we have not created variables on the first call. So we can\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 861\u001b[0m \u001b[0;31m# run the first trace but we should fail if variables are created.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 862\u001b[0;31m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 863\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_created_variables\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 864\u001b[0m raise ValueError(\"Creating variables on a non-first call to a function\"\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2940\u001b[0m (graph_function,\n\u001b[1;32m 2941\u001b[0m filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001b[0;32m-> 2942\u001b[0;31m return graph_function._call_flat(\n\u001b[0m\u001b[1;32m 2943\u001b[0m filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access\n\u001b[1;32m 2944\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[0;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[1;32m 1916\u001b[0m and executing_eagerly):\n\u001b[1;32m 1917\u001b[0m \u001b[0;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1918\u001b[0;31m return self._build_call_outputs(self._inference_function.call(\n\u001b[0m\u001b[1;32m 1919\u001b[0m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[1;32m 1920\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[1;32m 553\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_InterpolateFunctionError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 554\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcancellation_manager\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 555\u001b[0;31m outputs = execute.execute(\n\u001b[0m\u001b[1;32m 556\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 557\u001b[0m \u001b[0mnum_outputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_outputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0m\u001b[1;32m 60\u001b[0m inputs, attrs, num_outputs)\n\u001b[1;32m 61\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mInvalidArgumentError\u001b[0m: Input matrix is not invertible.\n\t [[node gradient_tape/triangular_solve/MatrixTriangularSolve (defined at /usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py:173) ]] [Op:__inference__tf_eval_1118]\n\nErrors may have originated from an input operation.\nInput Source operations connected to node gradient_tape/triangular_solve/MatrixTriangularSolve:\n Cholesky (defined at /usr/lib/python3.9/site-packages/gpflow/models/gpr.py:87)\n\nFunction call stack:\n_tf_eval\n" - ] - } - ], - "source": [ - "start_time = datetime.now()\n", - "opt.minimize(m.training_loss, m.trainable_variables)\n", - "print(f\"Finished fitting in {datetime.now() - start_time}\")\n", - "print_summary(m)" - ] - }, - { - "cell_type": "markdown", - "id": "7dd49280-bb3f-4903-a339-b7225a56ae16", - "metadata": {}, - "source": [ - "## Evaluate performance on training data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1bf833f2-83d7-4af4-8d4c-d3a663c18b53", - "metadata": {}, - "outputs": [], - "source": [ - "nb_plts = len(dfs_gpr_train)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "063ef841-2708-421c-9793-f878ac8a6e1e", - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_train):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " plt.title(f\"Model Performance on training data: {train_exps[idx]}\")\n", - " plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "1d7d8ca2-1c2d-42dc-a1d2-1f4af11c9d19", - "metadata": {}, - "source": [ - "## Evaluate performance on test data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fc73ac1e-024b-4c62-9f2a-4a61b776ecb5", - "metadata": {}, - "outputs": [], - "source": [ - "dfs_gpr_test = []\n", - "for df_sc in dfs_test_sc:\n", - " dfs_gpr_test.append(data_to_gpr(df_sc, dict_cols))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "095c0b27-3faa-4225-a91c-3d18f2a033f0", - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_test):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " plt.title(f\"Model Performance on test data: {test_exps[idx]}\")\n", - " plt.legend()\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Notebooks/35_gp_with_trieste_from_data-Copy1.ipynb b/Notebooks/35_gp_with_trieste_from_data-Copy1.ipynb deleted file mode 100644 index 2de8c5d..0000000 --- a/Notebooks/35_gp_with_trieste_from_data-Copy1.ipynb +++ /dev/null @@ -1,2961 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Bayesian Optimisation of starting Gaussian Process hyperparameters" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "Aovwtky_5Cao" - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "from shutil import copyfile\n", - "import pickle" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a517af1c-4204-45c9-aae4-865a2cb259e9" - }, - "source": [ - "Data manipulation" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "62628e60-28c6-4a9a-8a81-22e5bfd74722" - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "acb33a41-06b9-4a1d-9ea7-6a2d87b1f4fb" - }, - "source": [ - "Plotting / Visualisation" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "bVyvgbND5642" - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "id": "E9mmvHyH57RO" - }, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "plt.rcParams[\"figure.figsize\"] = (15, 6)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "90fdac33-eed4-4ab4-b2b1-de0f1f27727b" - }, - "source": [ - "Gaussian Process Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "3Z6cHHaD6EkP" - }, - "outputs": [], - "source": [ - "import gpflow\n", - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "cKhUiuc3ztTI", - "outputId": "93aa5454-70d2-400e-d1e9-47127824d1d0" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tf.config.list_physical_devices('GPU')" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "id": "-fqvYTly6E9D" - }, - "outputs": [], - "source": [ - "from gpflow.utilities import print_summary" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "id": "VpKUUEvC6F7i" - }, - "outputs": [], - "source": [ - "gpflow.config.set_default_summary_fmt(\"notebook\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Input scaler:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.preprocessing import MinMaxScaler, RobustScaler\n", - "from sklearn.exceptions import NotFittedError" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Bayesian optimisation based on gaussian processes:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "import trieste" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0aba0df5-b0e3-4738-bb61-1dad869d1ea3" - }, - "source": [ - "## Load previously exported data" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "id": "wuz33V9a6W-a" - }, - "outputs": [], - "source": [ - "#dict_cols = pickle.load(open(Path(\"dict_cols.pkl\"), 'rb'))\n", - "dfs_train = pickle.load(open(Path(\"dfs_train.pkl\"), 'rb'))\n", - "dfs_test = pickle.load(open(Path(\"dfs_test.pkl\"), 'rb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "train_exps = ['Exp1', 'Exp3', 'Exp5', 'Exp6']\n", - "test_exps = ['Exp2', 'Exp4', 'Exp7']" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "t_cols = ['time_h', 'time_m']\n", - "w_cols = ['SolRad', 'OutsideTemp']\n", - "u_cols = ['SimulatedHeat']\n", - "y_cols = ['SimulatedTemp']" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "t_lags = 3\n", - "w_lags = 1\n", - "u_lags = 1\n", - "y_lags = 3" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "dict_cols = {\n", - " 't': (t_lags, t_cols),\n", - " 'w': (w_lags, w_cols),\n", - " 'u': (u_lags, u_cols),\n", - " 'y': (y_lags, y_cols)\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create the scaler and set up input data scaling:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7uZWtjPo6XhD", - "outputId": "e0c4a8be-881e-4adc-a344-0b7e4ee9bc75" - }, - "outputs": [], - "source": [ - "scaler = MinMaxScaler()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "def get_scaled_df(df, dict_cols, scaler):\n", - " \n", - " t_list = dict_cols['t'][1]\n", - " w_list = dict_cols['w'][1]\n", - " u_list = dict_cols['u'][1]\n", - " y_list = dict_cols['y'][1]\n", - " \n", - " df_local = df[t_list + w_list + u_list + y_list]\n", - " df_scaled = df_local.to_numpy()\n", - " \n", - " try:\n", - " df_scaled = scaler.transform(df_scaled)\n", - " except NotFittedError:\n", - " df_scaled = scaler.fit_transform(df_scaled)\n", - " \n", - " df_scaled = pd.DataFrame(df_scaled, index = df_local.index, columns = df_local.columns)\n", - " \n", - " return df_scaled" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "df_train = pd.concat(dfs_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Condition number of the raw input data:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "35185.23586737608" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(df_train.to_numpy())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fit the scaler and scale the data:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "df_train_sc = get_scaled_df(df_train, dict_cols, scaler)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Check the condition number of the input data:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "17.921225042813802" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(df_train_sc.to_numpy())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "NOTE: Condition number of scaled data is much smaller. This makes sense." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Scale the data for each experiment individually. Used for validation graphs:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "dfs_train_sc = []\n", - "dfs_test_sc = []\n", - "for df in dfs_train:\n", - " df_sc = get_scaled_df(df, dict_cols, scaler)\n", - " dfs_train_sc.append(df_sc)\n", - " \n", - "for df in dfs_test:\n", - " df_sc = get_scaled_df(df, dict_cols, scaler)\n", - " dfs_test_sc.append(df_sc)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Set up the function which generated the GPR input matrix from the experimental data (including all autoregressive inputs, etc.):" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "def data_to_gpr(df, dict_cols):\n", - " \n", - " t_list = dict_cols['t'][1]\n", - " w_list = dict_cols['w'][1]\n", - " u_list = dict_cols['u'][1]\n", - " y_list = dict_cols['y'][1]\n", - " \n", - " df_gpr = df[t_list + w_list + u_list + y_list].copy()\n", - " \n", - " for lags, names in dict_cols.values():\n", - " for name in names:\n", - " col_idx = df_gpr.columns.get_loc(name)\n", - " for lag in range(1, lags + 1):\n", - " df_gpr.insert(col_idx + lag, f\"{name}_{lag}\", df_gpr.loc[:, name].shift(lag))\n", - "\n", - " df_gpr.dropna(inplace = True)\n", - " \n", - " return df_gpr" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
time_htime_h_1time_h_2time_h_3time_mtime_m_1time_m_2time_m_3SolRadSolRad_1OutsideTempOutsideTemp_1SimulatedHeatSimulatedHeat_1SimulatedTempSimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-06-01 20:15:00+02:000.8695650.8695650.8695650.8695650.2727270.1818180.0909090.0000000.0701930.0521750.5294120.5294120.2099430.2099430.4336600.4529970.4615550.500451
2017-06-01 20:20:00+02:000.8695650.8695650.8695650.8695650.3636360.2727270.1818180.0909090.0722660.0701930.5294120.5294120.0479300.2099430.4102200.4336600.4529970.461555
2017-06-01 20:25:00+02:000.8695650.8695650.8695650.8695650.4545450.3636360.2727270.1818180.0617550.0722660.5294120.5294120.0479300.0479300.3958730.4102200.4336600.452997
2017-06-01 20:30:00+02:000.8695650.8695650.8695650.8695650.5454550.4545450.3636360.2727270.0443500.0617550.5294120.5294120.0479300.0479300.3888660.3958730.4102200.433660
2017-06-01 20:35:00+02:000.8695650.8695650.8695650.8695650.6363640.5454550.4545450.3636360.0332650.0443500.5294120.5294120.0479300.0479300.3825720.3888660.3958730.410220
\n", - "
" - ], - "text/plain": [ - " time_h time_h_1 time_h_2 time_h_3 time_m \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.869565 0.869565 0.869565 0.869565 0.272727 \n", - "2017-06-01 20:20:00+02:00 0.869565 0.869565 0.869565 0.869565 0.363636 \n", - "2017-06-01 20:25:00+02:00 0.869565 0.869565 0.869565 0.869565 0.454545 \n", - "2017-06-01 20:30:00+02:00 0.869565 0.869565 0.869565 0.869565 0.545455 \n", - "2017-06-01 20:35:00+02:00 0.869565 0.869565 0.869565 0.869565 0.636364 \n", - "\n", - " time_m_1 time_m_2 time_m_3 SolRad SolRad_1 \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.181818 0.090909 0.000000 0.070193 0.052175 \n", - "2017-06-01 20:20:00+02:00 0.272727 0.181818 0.090909 0.072266 0.070193 \n", - "2017-06-01 20:25:00+02:00 0.363636 0.272727 0.181818 0.061755 0.072266 \n", - "2017-06-01 20:30:00+02:00 0.454545 0.363636 0.272727 0.044350 0.061755 \n", - "2017-06-01 20:35:00+02:00 0.545455 0.454545 0.363636 0.033265 0.044350 \n", - "\n", - " OutsideTemp OutsideTemp_1 SimulatedHeat \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.529412 0.529412 0.209943 \n", - "2017-06-01 20:20:00+02:00 0.529412 0.529412 0.047930 \n", - "2017-06-01 20:25:00+02:00 0.529412 0.529412 0.047930 \n", - "2017-06-01 20:30:00+02:00 0.529412 0.529412 0.047930 \n", - "2017-06-01 20:35:00+02:00 0.529412 0.529412 0.047930 \n", - "\n", - " SimulatedHeat_1 SimulatedTemp SimulatedTemp_1 \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.209943 0.433660 0.452997 \n", - "2017-06-01 20:20:00+02:00 0.209943 0.410220 0.433660 \n", - "2017-06-01 20:25:00+02:00 0.047930 0.395873 0.410220 \n", - "2017-06-01 20:30:00+02:00 0.047930 0.388866 0.395873 \n", - "2017-06-01 20:35:00+02:00 0.047930 0.382572 0.388866 \n", - "\n", - " SimulatedTemp_2 SimulatedTemp_3 \n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.461555 0.500451 \n", - "2017-06-01 20:20:00+02:00 0.452997 0.461555 \n", - "2017-06-01 20:25:00+02:00 0.433660 0.452997 \n", - "2017-06-01 20:30:00+02:00 0.410220 0.433660 \n", - "2017-06-01 20:35:00+02:00 0.395873 0.410220 " - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dfs_gpr_train = []\n", - "for df_sc in dfs_train_sc:\n", - " dfs_gpr_train.append(data_to_gpr(df_sc, dict_cols))\n", - "df_gpr_train = pd.concat(dfs_gpr_train)\n", - "df_gpr_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "dfs_gpr_test = []\n", - "for df_sc in dfs_test_sc:\n", - " dfs_gpr_test.append(data_to_gpr(df_sc, dict_cols))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "#df_gpr_train = df_gpr_train.sample(n = 250)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "id": "eZAetwUd6YuE" - }, - "outputs": [], - "source": [ - "df_input_train = df_gpr_train.drop(columns = dict_cols['u'][1] + dict_cols['y'][1])\n", - "df_output_train = df_gpr_train[dict_cols['y'][1]]\n", - "\n", - "np_input_train = df_input_train.to_numpy()\n", - "np_output_train = df_output_train.to_numpy().reshape(-1, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
time_htime_h_1time_h_2time_h_3time_mtime_m_1time_m_2time_m_3SolRadSolRad_1OutsideTempOutsideTemp_1SimulatedHeat_1SimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-06-01 20:15:00+02:000.8695650.8695650.8695650.8695650.2727270.1818180.0909090.0000000.0701930.0521750.5294120.5294120.2099430.4529970.4615550.500451
2017-06-01 20:20:00+02:000.8695650.8695650.8695650.8695650.3636360.2727270.1818180.0909090.0722660.0701930.5294120.5294120.2099430.4336600.4529970.461555
2017-06-01 20:25:00+02:000.8695650.8695650.8695650.8695650.4545450.3636360.2727270.1818180.0617550.0722660.5294120.5294120.0479300.4102200.4336600.452997
2017-06-01 20:30:00+02:000.8695650.8695650.8695650.8695650.5454550.4545450.3636360.2727270.0443500.0617550.5294120.5294120.0479300.3958730.4102200.433660
2017-06-01 20:35:00+02:000.8695650.8695650.8695650.8695650.6363640.5454550.4545450.3636360.0332650.0443500.5294120.5294120.0479300.3888660.3958730.410220
\n", - "
" - ], - "text/plain": [ - " time_h time_h_1 time_h_2 time_h_3 time_m \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.869565 0.869565 0.869565 0.869565 0.272727 \n", - "2017-06-01 20:20:00+02:00 0.869565 0.869565 0.869565 0.869565 0.363636 \n", - "2017-06-01 20:25:00+02:00 0.869565 0.869565 0.869565 0.869565 0.454545 \n", - "2017-06-01 20:30:00+02:00 0.869565 0.869565 0.869565 0.869565 0.545455 \n", - "2017-06-01 20:35:00+02:00 0.869565 0.869565 0.869565 0.869565 0.636364 \n", - "\n", - " time_m_1 time_m_2 time_m_3 SolRad SolRad_1 \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.181818 0.090909 0.000000 0.070193 0.052175 \n", - "2017-06-01 20:20:00+02:00 0.272727 0.181818 0.090909 0.072266 0.070193 \n", - "2017-06-01 20:25:00+02:00 0.363636 0.272727 0.181818 0.061755 0.072266 \n", - "2017-06-01 20:30:00+02:00 0.454545 0.363636 0.272727 0.044350 0.061755 \n", - "2017-06-01 20:35:00+02:00 0.545455 0.454545 0.363636 0.033265 0.044350 \n", - "\n", - " OutsideTemp OutsideTemp_1 SimulatedHeat_1 \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.529412 0.529412 0.209943 \n", - "2017-06-01 20:20:00+02:00 0.529412 0.529412 0.209943 \n", - "2017-06-01 20:25:00+02:00 0.529412 0.529412 0.047930 \n", - "2017-06-01 20:30:00+02:00 0.529412 0.529412 0.047930 \n", - "2017-06-01 20:35:00+02:00 0.529412 0.529412 0.047930 \n", - "\n", - " SimulatedTemp_1 SimulatedTemp_2 SimulatedTemp_3 \n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.452997 0.461555 0.500451 \n", - "2017-06-01 20:20:00+02:00 0.433660 0.452997 0.461555 \n", - "2017-06-01 20:25:00+02:00 0.410220 0.433660 0.452997 \n", - "2017-06-01 20:30:00+02:00 0.395873 0.410220 0.433660 \n", - "2017-06-01 20:35:00+02:00 0.388866 0.395873 0.410220 " - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_input_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "id": "l_VzOWL66aD3" - }, - "outputs": [], - "source": [ - "## Define Kernel" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "id": "oBHgoYNf6b6t" - }, - "outputs": [], - "source": [ - "nb_dims = np_input_train.shape[1]\n", - "rational_dims = np.arange(0, (dict_cols['t'][0] + 1) * len(dict_cols['t'][1]), 1)\n", - "nb_rational_dims = len(rational_dims)\n", - "squared_dims = np.arange(nb_rational_dims, nb_dims, 1)\n", - "nb_squared_dims = len(squared_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "_WagEJum8uUG", - "outputId": "c65ec503-b964-49f6-fe3a-51c57a175f9b" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rational: 8\n", - "squared: 8\n" - ] - } - ], - "source": [ - "print(f\"rational: {nb_rational_dims}\")\n", - "print(f\"squared: {nb_squared_dims}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "id": "kTIQlLIP6dJz" - }, - "outputs": [], - "source": [ - "squared_l = np.linspace(0.1, 1, nb_squared_dims)\n", - "rational_l = np.linspace(0.1, 1, nb_rational_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "id": "MEGkQJvY_izQ" - }, - "outputs": [], - "source": [ - "variance = tf.math.reduce_variance(np_input_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "id": "WZfssVHG6edn" - }, - "outputs": [], - "source": [ - "k0 = gpflow.kernels.SquaredExponential(lengthscales = squared_l, active_dims = squared_dims, variance = variance)\n", - "k1 = gpflow.kernels.Constant(variance = variance)\n", - "k2 = gpflow.kernels.RationalQuadratic(lengthscales = rational_l, active_dims = rational_dims, variance = variance)\n", - "k3 = gpflow.kernels.Periodic(k2)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 169 - }, - "id": "vo8rcdBm6fuc", - "outputId": "75485dcd-961c-40d9-cf1f-d10516e2b80f" - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
Product.kernels[0].kernels[0].variance ParameterSoftplus True () float640.08675270018153766
Product.kernels[0].kernels[0].lengthscalesParameterSoftplus True (8,) float64[0.1, 0.22857143, 0.35714286...
Product.kernels[0].kernels[1].variance ParameterSoftplus True () float640.08675270018153766
Product.kernels[1].variance ParameterSoftplus True () float640.08675270018153766
Product.kernels[1].lengthscales ParameterSoftplus True (8,) float64[0.1, 0.22857143, 0.35714286...
Product.kernels[1].alpha ParameterSoftplus True () float641.0
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "k = (k0 + k1) * k2\n", - "print_summary(k)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4af25a43-15c9-4543-af73-3c313b5fc7af" - }, - "source": [ - "## Compile Model" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 190 - }, - "id": "PC4cbp926j29", - "outputId": "72c9441d-2657-4e0f-de70-11a197d07ad3" - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].kernels[0].variance ParameterSoftplus True () float640.08675270018153766
GPR.kernel.kernels[0].kernels[0].lengthscalesParameterSoftplus True (8,) float64[0.1, 0.22857143, 0.35714286...
GPR.kernel.kernels[0].kernels[1].variance ParameterSoftplus True () float640.08675270018153766
GPR.kernel.kernels[1].variance ParameterSoftplus True () float640.08675270018153766
GPR.kernel.kernels[1].lengthscales ParameterSoftplus True (8,) float64[0.1, 0.22857143, 0.35714286...
GPR.kernel.kernels[1].alpha ParameterSoftplus True () float641.0
GPR.likelihood.variance ParameterSoftplus + Shift True () float641.0
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "m = gpflow.models.GPR(\n", - " data = (np_input_train, np_output_train), \n", - " kernel = k, \n", - " mean_function = None\n", - " )\n", - "print_summary(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "08f41235-12df-4e9c-bf63-e7a4390cf21a" - }, - "source": [ - "## Train Model" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "id": "Pn5TwPPT6ogs" - }, - "outputs": [], - "source": [ - "opt = gpflow.optimizers.Scipy()" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "id": "slQg9Ohv6oxR" - }, - "outputs": [], - "source": [ - "from datetime import datetime" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 212 - }, - "id": "GhsxZhc56p43", - "outputId": "778ec150-cfc3-44b7-9e21-e52bf69d494a", - "scrolled": true, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished fitting in 0:01:54.540895\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].kernels[0].variance ParameterSoftplus True () float645.408436781529694
GPR.kernel.kernels[0].kernels[0].lengthscalesParameterSoftplus True (8,) float64[6.94141504e+02, 5.39253193e+02, 3.14255326e+02...
GPR.kernel.kernels[0].kernels[1].variance ParameterSoftplus True () float6486.43835724496995
GPR.kernel.kernels[1].variance ParameterSoftplus True () float6477.51929640071984
GPR.kernel.kernels[1].lengthscales ParameterSoftplus True (8,) float64[427.42705895, 330.15913554, 258.4849923...
GPR.kernel.kernels[1].alpha ParameterSoftplus True () float640.0
GPR.likelihood.variance ParameterSoftplus + Shift True () float640.0011611964583663897
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "start_time = datetime.now()\n", - "opt.minimize(m.training_loss, m.trainable_variables)\n", - "print(f\"Finished fitting in {datetime.now() - start_time}\")\n", - "print_summary(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7dd49280-bb3f-4903-a339-b7225a56ae16" - }, - "source": [ - "## Evaluate performance on training data" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "id": "I62Aw_Cs6tv6" - }, - "outputs": [], - "source": [ - "nb_plts = len(dfs_gpr_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "wp3fsnyb6uE6", - "outputId": "2bc7a0c3-0160-4857-d205-9b00dda6bf0e" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAReCAYAAABAXiA7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5wdZdXA8d/M3N6295JN773REnrvRQF5QYoVC+orgiKIWF5QVERRRFEEUSz0KjUQEggkpPdsssn2fnudmef9425usskm2Wx2s5vk+X4++Xxy77Tn7t69d+bMec5RhBBIkiRJkiRJkiRJkiRJRzd1sAcgSZIkSZIkSZIkSZIkDTwZBJIkSZIkSZIkSZIkSToGyCCQJEmSJEmSJEmSJEnSMUAGgSRJkiRJkiRJkiRJko4BMggkSZIkSZIkSZIkSZJ0DJBBIEmSJEmSJEmSJEmSpGOAZbAOnJ+fL6qqqgbr8JIkSZIkSZIkSZIkSUedZcuWtQkhCnpaNmhBoKqqKpYuXTpYh5ckSZIkSZIkSZIkSTrqKIqyfV/L5HQwSZIkSZIkSZIkSZKkY4AMAkmSJEmSJEmSJEmSJB0DZBBIkiRJkiRJkiRJkiTpGDBoNYF6kkqlqKurIx6PD/ZQJOmgOBwOysvLsVqtgz0USZIkSZIkSZIkSerRkAoC1dXV4fV6qaqqQlGUwR6OJPWKEIL29nbq6uoYPnz4YA9HkiRJkiRJkiRJkno0pKaDxeNx8vLyZABIOqIoikJeXp7MYJMkSZIkSZIkSZKGtCEVBAJkAEg6Isn3rSRJkiRJkiRJkjTUDbkg0GBTFIVrr70281jXdQoKCrjgggsGcVQH5vF4DrjO3Xffzf3337/fdZ577jnWrVvXX8OSJEmSJEmSJEmSJGmIkEGgPbjdbtasWUMsFgPgjTfeoKysbFDGouv6YT+mDAJJkiRJkiRJkiQdueIpY7CHIA1hMgjUg3PPPZeXX34ZgH/84x9cffXVmWWRSIQbb7yR2bNnM336dJ5//nkAampqmDdvHjNmzGDGjBksXrwYgMbGRubPn8+0adOYNGkSCxcuBLpn7vznP//h+uuvB+D666/nW9/6Fqeeeiq33XYb1dXVnHPOOcycOZN58+axYcMGALZt28bxxx/P7NmzufPOO/f5Wn7yk58wduxYzjjjDDZu3Jh5/o9//COzZ89m6tSpXH755USjURYvXswLL7zArbfeyrRp06iuru5xPUmSJEmSJEmSJGnoMUxBXae8ZpP2bUh1B9vdD19cy7qGYL/uc0Kpjx9cOPGA61111VXcc889XHDBBaxatYobb7wxE7z5yU9+wmmnncaf//xn/H4/c+bM4YwzzqCwsJA33ngDh8PB5s2bufrqq1m6dCl///vfOfvss7njjjswDKNXQZRNmzbx5ptvomkap59+Og8//DCjR49myZIl3Hzzzbz99tvccsstfPnLX+a6667joYce6nE/y5Yt46mnnmL58uXous6MGTOYOXMmAJdddhmf//znAfj+97/Po48+yte+9jUuuugiLrjgAq644goAsrOze1xPkiRJkiRJkiRJGloaAzHiKXOwhyENYUM2CDSYpkyZQk1NDf/4xz8477zzui17/fXXeeGFFzK1deLxODt27KC0tJSvfvWrrFixAk3T2LRpEwCzZ8/mxhtvJJVKcckllzBt2rQDHv9Tn/oUmqYRDodZvHgxn/rUpzLLEokEAIsWLeLpp58G4Nprr+W2227baz8LFy7k0ksvxeVyAXDRRRdllq1Zs4bvf//7+P1+wuEwZ599do9j6e16kiRJkiRJkiRJ0uAJxlN0RlIAmKZAVWXzGmlvQzYI1JuMnYF00UUX8e1vf5sFCxbQ3t6eeV4IwdNPP83YsWO7rX/33XdTVFTEypUrMU0Th8MBwPz583nvvfd4+eWXufbaa7n11lu57rrrunWT2rO1uNvtBsA0TbKzs1mxYkWPY+xNR6p9rXP99dfz3HPPMXXqVB577DEWLFhwSOtJkiRJkiRJkiRJg0M3THa0RxFCoCgKhhCoyCCQtDdZE2gfbrzxRu666y4mT57c7fmzzz6b3/zmNwghAFi+fDkAgUCAkpISVFXliSeewDDSxbi2b99OYWEhn//857npppv45JNPACgqKmL9+vWYpsmzzz7b4xh8Ph/Dhw/n3//+N5AOQK1cuRKAE088kaeeegqAJ598ssft58+fz7PPPkssFiMUCvHiiy9mloVCIUpKSkilUt2293q9hEKhA64nSZIkSZIkSZIkDQ3b2iL8779W8uu3NmOJNGHE+re0inT0kEGgfSgvL+eWW27Z6/k777yTVCrFlClTmDRpUqYo880338xf//pXjjvuODZt2pTJ5lmwYAHTpk1j+vTpPP3005l93nvvvVxwwQWcdtpplJSU7HMcTz75JI8++ihTp05l4sSJmULUv/71r3nooYeYPXs2gUCgx21nzJjBlVdeybRp07j88suZN29eZtmPfvQj5s6dy5lnnsm4ceMyz1911VX8/Oc/Z/r06VRXV+9zPUmSJEmSJEmSJGnwtYUT/H5BNRubQ0Saqxnzn9PR3vnRYA9LGqKUnRkth9usWbPE0qVLuz23fv16xo8fPyjjkaRDJd+/kiRJkiRJkiQdTtGkzjOf1PP959bg1Ayest7DVDaTGnsh1qv/NtjDkwaJoijLhBCzelomM4EkSZIkSZIkSZIk6QhjmoKNTSF+/dZmyrKd/Lb0daayGcPigricDib1TAaBJEmSJEmSJEmSJOkI0x5J8pdFNbSGEvx4agentf6Np/RT6MybgZIMHXgH0jGpV0EgRVHOURRlo6IoWxRFub2H5VmKoryoKMpKRVHWKopyQ/8PVZIkSZIkSZIkSZIk3TB5f0srL61q4IrxTk5a/T2C7mH8UL+OiOKChAwCST07YBBIURQNeAg4F5gAXK0oyoQ9VvsKsE4IMRU4BfiFoii2fh6rJEmSJEmSJEmSJB3zmkNxfvdONTkOlTsSD6DFO1lz3C+J4SAsnCgyCCTtQ28ygeYAW4QQW4UQSeAp4OI91hGAV1EUBfAAHYDeryOVJEmSJEmSJEmSpGNcPGXwr4/r2NwS5nflb5DT8C6Nx/0Aa9l0AILC0e/TwQzzwA2l4imDaFKGAYa63gSByoDa3R7XdT23u98C44EGYDVwixDC3HNHiqJ8QVGUpYqiLG1tbe3jkCVJkiRJkiRJkiTp2LSxKcRfP6jhutz1zK19lI4xV9Ex/n9w2jTcNo0oLtRUBEyj344ZSx14X62hBEl9rzCANMT0Jgik9PDcnmHAs4EVQCkwDfitoii+vTYS4hEhxCwhxKyCgoKDHOrh0dzczGc+8xlGjBjBzJkzOf7443n22WcH/LhLly7l61//er/s65RTTmHs2LFMnTqVE088kY0bN/bLfvtTf47xscce46tf/SoADz/8MI8//vg+162pqeHvf/975nF//twlSZIkSZIkSZIGUns4wV8X1xCLRrhN/IlY7ngaTrgHlPRle1GWg3bdkV65H6eEJVLGfrOB4ikDfzQlg0BHgN4EgeqAit0el5PO+NndDcAzIm0LsA0Y1z9DPHyEEFxyySXMnz+frVu3smzZMp566inq6uoG/NizZs3iwQcf7Lf9Pfnkk6xcuZLPfvaz3HrrrXstN4z+iwr31UCM8Utf+hLXXXfdPpfvGQTq75+7JEmSJEmSJEnSQFldH+CFlQ38pHgh7lgjjcf9AGFJB33yPDbKsp00J7vK8/ZjEMgQgoS+7+uz1lAifUgZBBryehME+hgYrSjK8K5iz1cBL+yxzg7gdABFUYqAscDW/hzo4fD2229js9n40pe+lHlu2LBhfO1rXwPSAYR58+YxY8YMZsyYweLFiwFYsGABF1xwQWabr371qzz22GMA3H777UyYMIEpU6bw7W9/G4B///vfTJo0ialTpzJ//vy99vHRRx9xwgknMH36dE444YRMlsxjjz3GZZddxjnnnMPo0aP5zne+c8DXNH/+fLZs2QKAx+PhrrvuYu7cuXzwwQf88pe/ZNKkSUyaNIkHHnggs83jjz/OlClTmDp1Ktdeey0Ara2tXH755cyePZvZs2ezaNEiAN59912mTZvGtGnTmD59OqFQiMbGRubPn8+0adOYNGkSCxcu7PMY//a3vzFnzhymTZvGF7/4xUxg6C9/+Qtjxozh5JNPzowF4O677+b+++8HYMuWLZxxxhlMnTqVGTNmUF1dze23387ChQuZNm0av/rVr7r93Ds6OrjkkkuYMmUKxx13HKtWrcrs88Ybb+SUU05hxIgRMmgkSZIkSZIkSdKAiKcMzH1k3Jim4KF3tlCsBbkk/BTByjOJlJ4AgMOqUuxzUJLloCFuSW/Qj0EgISCe6jnA8+j727jmT0swTEHKkEGgoc5yoBWEELqiKF8F/gtowJ+FEGsVRflS1/KHgR8BjymKspr09LHbhBBthzSyV2+HptWHtIu9FE+Gc+/d5+K1a9cyY8aMfS4vLCzkjTfewOFwsHnzZq6++mqWLl26z/U7Ojp49tln2bBhA4qi4Pf7Abjnnnv473//S1lZWea53Y0bN4733nsPi8XCm2++yfe+9z2efvppAFasWMHy5cux2+2MHTuWr33ta1RUVOy1j51efPFFJk+eDEAkEmHSpEncc889LFu2jL/85S8sWbIEIQRz587l5JNPxmaz8ZOf/IRFixaRn59PR0cHALfccgvf/OY3Oemkk9ixYwdnn30269ev5/777+ehhx7ixBNPJBwO43A4eOSRRzj77LO54447MAyDaDS6z/Htb4zr16/nvvvuY9GiRVitVm6++WaefPJJzjzzTH7wgx+wbNkysrKyOPXUU5k+ffpe+73mmmu4/fbbufTSS4nH45imyb333sv999/PSy+9BKSDbzv94Ac/YPr06Tz33HO8/fbbXHfddaxYsQKADRs28M477xAKhRg7dixf/vKXsVqt+31dkiRJkiRJkiRJB6MzmkRTFAp9jr2Wvba2kY9rOnmh5Gk0f4LGOd8D0jPBKnJdqKpCsc/ByqgFbPRvJpApMMXemUCNgRg//+8G4imT2o4oo4s9/XZMaWAcMAgEIIR4BXhlj+ce3u3/DcBZ/Tu0wfeVr3yF999/H5vNxscff0wqleKrX/0qK1asQNM0Nm3atN/tfT4fDoeDz33uc5x//vmZjJMTTzyR66+/nk9/+tNcdtlle20XCAT47Gc/y+bNm1EUhVQqlVl2+umnk5WVBcCECRPYvn17j0Gga665BqfTSVVVFb/5zW8A0DSNyy+/HID333+fSy+9FLfbDcBll13GwoULURSFK664gvz8fAByc3MBePPNN1m3bl1m/8FgkFAoxIknnsi3vvUtrrnmGi677DLKy8uZPXs2N954I6lUiksuuYRp06b1+PM50Bjfeustli1bxuzZswGIxWIUFhayZMkSTjnlFHbWlbryyiv3+l2EQiHq6+u59NJLAXA49v4Q3dP777+fCbaddtpptLe3EwgEADj//POx2+3Y7XYKCwtpbm6mvLz8gPuUJEmSJEmSJEnqrUAshW4Ictw2rNquiTtJ3eS+VzdytWcFUzpfp3nGN0lmjwTSASCHVQOgOMvJ+8KZ3qgfg0CmEKT0vTOUfvD82kwdIGX9c+Rt24G45P9QlJ5KC0tDQa+CQINiPxk7A2XixImZIADAQw89RFtbG7NmzQLgV7/6FUVFRaxcuRLTNDOBBYvFgmnuSnuLx+OZ5z/66CPeeustnnrqKX7729/y9ttv8/DDD7NkyRJefvllpk2blsk22enOO+/k1FNP5dlnn6WmpoZTTjkls8xut2f+r2kaut5zC74nn3wyM+6dHA4Hmpb+cBCi5xRDIUSPf7CmafLBBx/gdDq7PX/77bdz/vnn88orr3Dcccfx5ptvMn/+fN577z1efvllrr32Wm699dYe6/T0Zoyf/exn+b//+79u6zz33HMH/FDZ1+s72G12Hqe3P3dJkiRJkiRJkqS+iCWNTKClKRCnIteVWfb4BzUEO5q4y/tHYnmTaJmWboxTlGUny7lrhkJxlp0gXdslAv02NtNkr5pA729u5fV1zVw9u4LXV1Rz8pZ7cRMnecGPsMtZE0NWb2oCHTNOO+004vE4v//97zPP7T6VKRAIUFJSgqqqPPHEE5n6NMOGDWPdunUkEgkCgQBvvfUWAOFwmEAgwHnnnccDDzyQCfZUV1czd+5c7rnnHvLz86mtre02jkAgQFlZGUCmtlB/mz9/Ps899xzRaJRIJMKzzz7LvHnzOP300/nXv/5Fe3s7QGY62FlnncVvf/vbzPa7v5bJkydz2223MWvWLDZs2MD27dspLCzk85//PDfddBOffPJJn8Z4+umn85///IeWlpbMWLZv387cuXNZsGAB7e3tpFIp/v3vf++1rc/no7y8nOeeew6ARCJBNBrF6/USCvUcEZ8/fz5PPvkkkJ4mlp+fj8+3V5M7SZIkSZIkSZKkfheI7ZoB4o+maA+niy23hxM88OZmvpb/Cc5UJ3Xzfw6qFadNpdDbfcZDsc9JuCsTyIz3fybQzg5hSd3kzufXUOxzcMXMCr7ueRuvEUA1EujBln47rtT/ZBBoN4qi8Nxzz/Huu+8yfPhw5syZw2c/+1nuu+8+AG6++Wb++te/ctxxx7Fp06bMVKqKigo+/elPM2XKFK655ppMfZpQKMQFF1zAlClTOPnkk/nVr34FwK233srkyZOZNGkS8+fPZ+rUqd3G8Z3vfIfvfve7nHjiiQPWxWvGjBlcf/31zJkzh7lz5/K5z32O6dOnM3HiRO644w5OPvlkpk6dyre+9S0AHnzwQZYuXcqUKVOYMGECDz+cng34wAMPZIpcO51Ozj33XBYsWJApFP30009zyy239GmMEyZM4Mc//jFnnXUWU6ZM4cwzz6SxsZGSkhLuvvtujj/+eM4444x91nF64oknePDBB5kyZQonnHACTU1NTJkyBYvFwtSpUzO/j53uvvvuzGu8/fbb+etf/9qncUuSJEmSJEmSJB2s3YNAAI2BOOGEzp8XbSOS0Dnfs5mEr4p43kQASrKce+2jJMtBmPTzIh7st7GZXbMmdmYD/en9rWxri/L5eSNwGCE+lXiGTuEFQO/Y3m/Hlfqf0pdpM/1h1qxZYs+iyuvXr2f8+PGDMh5JOlTy/StJkiRJkiRJUl/EUwabm8N7PR9N6tz42MfMqvTx5+ZP4x95IQ0n3UuW00plnmuv9YUQjLvzFTZaPoN+0q1Yzvh+v4yv4aNn6MyfTWlREdGkwem/XMDksizuumAiRR/fS+HK3/G/yS/xC9vD+M/7A9lzruqX40p9oyjKMiHErJ6WyUwgSZIkSZIkSZIkSRpEwT2ygHZ6bU0TkaTB9VV+tFSISMkJaKpCSXbPjW8URaHA6ySmuBD9VRg61knpKzeQv/qP+GMpvvfsagxT8IV5I7F3bqRg1SPUDbuE182umEOgdv/7kwbV0C0MLUmSJEmSJEmSJEnHgGA8HQQyhWBNfYAPqtsJJ3SW7ehkWkU24+MLAIiUHE9ZjrNb57A9eR1WYkkXnv4KAsXTBaY9jR/w5pY23t3UytWzKyj22Sh7+Q4Mmwf/iXehb91MVPXIINAQJ4NAkiRJkiRJkiRJkjRIkrpJLGnS4I/x41fWU9sRxWFVyXHZyHJauWZOJe7li4nnjMVbUNqtG1hPvHYLEVx4+6smUFcwydmygj+/u54in53LZ5aTvflp3E0fUTfvZwhXPiMKGmj0F1AYrOuf40oDYsgFgfbVolyShrLBqq0lSZIkSYfKMAWaKs+9JEmSBksonmJDY5B7Xl7LfTyIffKp+E64CaeSovijn6K3FOFu/piOcdeQ57YfcH9ehyVdHLq/MoG69qOaSQoDq7j63CtwijjFS+8jWjCdzjGfBmB4vpsdHXmUheowTYEqv1uGpCEVBHI4HLS3t5OXlycDQdIRQwhBe3s7DkfP83IlSZIkaSiLpQw89iF1SihJknRMCcZ1fvvOFmZoNZxnLELfsYaNx19N7vq/k7/uscx60Yr55Nu0A+7P47AQEk5I9k8QyIwFM8WEL82pYVxVLgXLfoE12sL2Mx4BJb20NMvJdj2P+aH16IaJTT3wWKXDb0h945eXl1NXV0dra+tgD0WSDorD4aC8vHywhyFJkiRJB8UwBQkZBBpUfcmCT+gGnZEUSd3ssTuQJElHDiEEnZEktZ1RflqyBNFpwZIIULj8QXI2PUWo/BTq5v8Cu38LlhHzerVPr8NCwHSgJDr6Z4xdmUAh4eQM12baAtXkr/4D/pGXECucAYDdqlKc5aBO5KPpEVKxTrDm98vxpf41pL7xrVYrw4cPH+xhSJIkSZIkHRMMU5DQzcEexhEnmtRx2frnNLojkiTPc+DpHTsF4ylqO6KYXb+2pG5is8iGv5J0pIqnTOo6o2hCZ0bwLQLDz0XVYxSs/gMATbO+g+4qQHcVUHaAWkA7eexW/KYDpZ8ygVrb2ygGqrOOY0rHYryvXI1p9dA0+/bMOkU+B7luGx+JAgDMzh3gk0GgoUh+Y0iSJEmSJB2jDFOQPExBoJZgHMM8Omro+aM9t3Lu075iKeIpo1frRhI629t2BYAAwgm938YiSdLhF0sZbG+Pcpq6HKceoHP0FTTP+AYA/hEXEc+flFm3t1mb6UwgJ0o/1QTasL0eAPuE81GNBIqRZOt5T5HylAKQ5bSS5bSS47ZRL9KBH+GXHcKGqiGVCSRJkiRJkiQdPoYQJI3DEwRqjyRJ6CYVud2nLx2JTUHCCb1fMnCEEMSSBuGEjsN64NoZjYHY3mOJ6+S6bYc0DkmSBs/OINAVloUknYWEy+aBamHruU8Sz5ucWc9mUXv9meN1WOjAiZoKg2nAIdTmEUJQU9+EiYIx9gLagmvoHHsVidyxAFg0hdLsdG3UHJc1EwQisKPPx5QGlgwCSZIkSZIkHaMOlAnUXwGacEJHNwT+aAq7NQ5ALGkQSRiUZTvJcvVuisNQkK6jZJLQjUMOAsVTJkJAKK6Tv48pYSnDxKqpdESSxJJ7/65kJpAkHdniKYPG9g7mq6sIDv8MqOlL9EhZuv5PltOKw6aiHsRnscduYbtwph8kw+DI6vP4Ptnhx4yHSNrdCKuLxhPu6ba8NMuJRUt/Fua4bHTgJaXaUQIyE2iokkEgSZIkSZKkY5RhCoToua6MYQq2tUWoynNlTvD7KhBLgRCgKDQHEt2WHa5MpP4S65q6FU+ZeA+xMWg0qYMQRBL6Xu2UDVNQ2xElFNdx2rRMsK7BH6N66evM5xOG6dtom/Q5Yvnn4exFxyBJkoaeWNIgr20pdpI0VJy213Kf00K26+Cy/bwOK2G6si4ToUMKAj23vJ5pahzF7t1rmduudQvi57htgILfVow3UNfnY0oDSwaBJEmSJEmSjlXNa3C3NZHIP7NbEEgIwfb2CLGkQVs4SXHWoUU7oq3bGf+vM3hv7Pd5VRzPxuYQkYTOTy+djG4ObhCot0WehRDc9fxappe5OGvZl4kd/y2YevYhHTvub2bCEydSe8qvCeVeSJbTSkI3CERTdESTpPR0DaVY0iCa1Hnk7fWcVPMgN1v+SwoLmqpiajZCE8+UQSBJOgLFUwaRhM60xFJSVhuRkuP2Wqc3U0X35LFbCO/MBDrEukCvrmniEq8BNt9ey0qznd0eu20aVk2hw1JIVlAGgYYqWRhakiRJkiRpiIgle1cguL+4Ft9PxYJv7DUlrDmYIJJIj6UtnCB1CNk6T3xQw8vPPI4lFWL66h/x7vK1tIYSVLdGqG4JZwIdgyUQ612R5zX1QZ74cDtvvv0GnqYPsVb/95CPLeo+RksGydn8bxr8MdY2BNjUFKY5mOj2c6ntiPKtf67ghh23cYPlvywvvZrJ8T+yMu9cPA0fEIsn9nMUSZKGqkTKpLYjxsnqSppyZyEs3QPuqtq3IJDXYSHEoQeBTFPQFk6QoyXA4cVt3zWWXI9tr7EpikK2y0ZA8aHE/X0+rjSwZBBIkiRJkiRpiOiMJhHi8AVFlFg71mgzqUhn5rloUqctvCuoIAS0hnoOMsRTBnWdUZqD8R6Xb2uLcOfza5mcXElU8+LTEvx35DM8OrOWWy1PcdKiz1LwzGUwiNlAkYSO3osg13+WpetbFAbXAGDp2HxIx9UNE2vzSgA8tQswErEefwzVrWFue3oV85LvcpK6hobjf4h27r2MLC3gH20j0VIhtIZPDmkskiQNjljKwN+wiZFqI5EepoI5+xAAgnQQKJMJFA/2eXyRZLrmmNOMgs1DoS8dpLJbVUp8PWeI5rpsBIQbNRHo83GlgSWng0mSJEmSJA0R0aRBPGUetqk9aqwr+NO6AYqKMU3Be5taefjdrUyvyObS6WUoikJHJEm+x56ZMhaKp2gN7coWgnQNmz2nBry+tgkFk5Ms64hWnEEwezTFS39GTu0bjLZohKPZOEPtEGkFb9Fhec170k1BJGmQ5dz73mhTIE40qZPjsvH8ygZOHlPAjJpqAGydWzJFm/siljJwta7CVK1oehRPw/uEKs8AYEtLmA+3tlMQraaz+kNGWSdxt+UfRD2TaR9/HYqicM2cSn723FjucyjYa9+Dqaf2/YcgSdKgiKUMfHXvAiBGpf/+bRY1k53Z1+8Cr8NKqKsmkEgE6Wt5/52f8XYzgrANx2O34LZrlGY7u9Uw2122y0pHoCsIZJrpdCZpSJFBIEmSJEmSpCFACEE8la79criCQEo8HQRSWjegG/O597UNPLaoBlVRWFHrZ1tbhK+dNhqbRaUlFKc8x0U4obO9PcqeCUvt4SRWTaXAm+5yZZiCdze1cpynBXuig5bSk/CPuoxY3kR0VxG3vRtjcnwZP4z+GIL1gxcEMgTRpE6Wc1dxUyEEdZ0x/NH0VLE31tXij6Y4dWwhcxu2gQ62SAOhSACrL6dPx03pJt621QSHn493x1u4tr7KW8YM3tnYwvtbWrlBe42vWf6BXdFBB3TYctYjmVbPk8uzEc5cttvGUFD73iH/HCRJOryESH/2VHYsokEtQc8eAUCh104wniIY0/ucCbR7TSAzHqSv3yjhRPoz0G5EoaswdFWee58BIEh3CGtvd6IgIBEAZ98+I6WBI4NAkiRJkiRJg+zDre2UZDkQYlf3qQEnBFpXzQa1fRPf+tdKXljZwImj8vnyySN5fU09gY+f4gnlTG46cyb+aIosZ4rt7VGWbe/k9XXNtIUSXDytlBNH5aMqCs3BOC6bhkVT2NYaYWWtnzsLtkA7JCpOBFUjXJHOWCnNr2bNejdooPvrsZTNODyvezc7u6PtntEUTej84b1qFm5uyzxX2xkj12VjZoFJkd7AcnMU09UtGC2bwDe3T8feUbOZafE2FkSHk8UMpmx+jQXrRnKSZSO/9n5IXqqRYOUZ1E77Gt7atzEcucQKd/2MFAWKfHaWpaZyWcvTGLEAmrPvHYAkSTq8IkmDdn+IWalVrMo/Hzdg0RSyXVZsFpVgTO9TPSDoyiayuAEQhzAdLNz12Wg1IphdQaD9BYAg3SGsOdWVFRrzyyDQECSDQJIkSZI0ROysBaMofU3clo5EgViKax9dwqSyLH544cTDVxw6GUExkwA0b1nOC/7TuWx6GdefUIUCfCP+O3JtT/GfrWv4YOuvmVDi499LN/Ha2kaagwm8Dgs+h5Un//s+61c7+fylZwMKOzrSWULrG4NEkgZzxRoSvirySkfSGU1mAi5VeW4+SGWDBmag/vC85j3obVsZ/tLN1J7xO8x8N52xJHc8s4bX1jZRnuPE3dU1LNdl4+yJRXjb0zV8nhUnM50tmC0bYNTBB4FiSYNH/vkMv9PgrzXZzMiey6mpd3nCdi9CUQkXnsSOMd8jMOIiUBRihdMz22qqQlm2E5/TwvB8N+/WTuJy8S+Mre+jTTy/f34wkiQNuGAsReOqt3ApCdQxZwKQ57ahKApuuwWPw9LnIBCAaveAASLe98LQ4biOgolVj5B07N0ivic5LivVSQdYQcQ6URje5+NLA6NXQSBFUc4Bfg1owJ+EEPfusfxW4Jrd9jkeKBBCdPTjWCVJkiTpqGaKdGaCzSKDQMeSdza0kDIEy3f4+aimg+NG5GGa4oB3Ww9ZVz0gHY28WA3XHTeMK2aWoygKJR/+kNyNTxH3jeDS4Ptc+MY7/MwoQTcFk0p9XH9cBWfa1lKw8W9442+TatdYuvKX+KZdgm6kg5nLa/04SFAR+oTAyIvx2DWcNidbWsIIAcNyXXTgxVCsgxYEYvtiPE0f4tv6Kpvc13Hrf1axuj7AFTPKufb4YVj0KAgT05a++HEuexKhqHziPRU9+hhK66Y+HXZTc4jxohoTjV99/RpCKZW6LYUk3aXE8idj2nvO6LFZVEYWuLF01SEqz3Hx3KZy0EC0H1qhakmSBl5SN3errabj3P4OCaw4x5yKoqSzaHYq26PG2sHyOO3EIi60Q+gOFk7ouEikp3bZ924R35Mcl40OM52FZEY7+zwVTRo4BwwCKYqiAQ8BZwJ1wMeKorwghFi3cx0hxM+Bn3etfyHwTRkAkiRJkqSDYwqBbprYZPPOY8p/1zZR4LXj0BQS7z6Amvs5YvkTcNsHNmHbiLSjAavM4cxQt3DllCxMRSFn4z/JX/MobRNvoGXa1xnz1Il82/IMz4z4EedOKmFcaj0VCy7HFqol5SygcfJXaFv1Gsct/Qb1Po3AiAsBWFnr5x7vc1hSYYJjLiPPkr4UGJbnwhRQku1AoBK0FuAMDk4QyAy3AGDb9gY3LBtPWzjBt84cw6ljC7F3bKDq9RvQkiFapn2VwIiLcDcvJZ49hjxvEXW1JeR29C0ItLEpxBRlK5GsUeTlZGOGEnSO+fQBtyvNdmQCQOnHTtpTdgybHcKtfRqLJEmHriUYx2HT8Dms+11vR0eEYXluDFPQGUkyIfoR2zzTwOrCZdO6FZrfGSzqK4/dQjTqwntI08F0PMQAUHubCeS24ccDgCGDQENSb95Zc4AtQoitQogk8BRw8X7Wvxr4R38MTpIkSZKOJaYQpIzD1x5cGnzxlMGCja2cNaGIb0+K8BX9r0Q/+ONhqQv01LsrAEiVHQeAo3Mzjva1lC7+PuHSE2mcexeGM4+OSTdymv4+367axghHiMo3vwDAjtMeYuNVH9Ax9zv8bcyDrDBHUbrwNrRYO6+va8La8DFXpF6gffy1UHl85rheh5Usp5V8j53yHCetSh5qqHHAX2+PQk3pMTUuJhWP8tNLJnPq2EJ8Nf9l5IuXoZg60cIZlHz0U8Y9dRyehkXECqczosDNRqMUu38L8T78rtY3BJisbiNZOBWHVetWlHpP1q7MwCynFe8eF5hl2Q5AIWHLRURkEEiSBsPTy+o46Wfv8P1n19AYiO1zvZRhEkua1HfGCMZSbNiwllFKPfHKdJ00j6N/A/9eh4Wo4oTEIbSIT+h4lPRrUhy9zQSyEhDpTKCdGafS0NKbd1oZULvb4zqgx8nPiqK4gHOAr+5j+ReALwBUVlYe1EAlSZIk6WgnBOiGOdjDkA6jhZvbiKUMThtXyOR1TwDg6Vgz4HWBXl3dyOI11Vxjg5Ipp0Hj3/DULSBn89MY9hx2nPqbTBeq1ilfxFv7NsNev4mUtxwtFWbLuX8nkTs2s7/Tp4zkO2s+z+vqbXS8+iP+1XA6z7n/QMpZStPs75K/j25n44q91NbmMDy0Y0Bf7z51BYEcJLl/VoDCHJ3St79C9tYXieVNouasR9HdJbiaPsLu34IiDGIjzmZ4i5VNZilnBZcRjMdxWN0Hddj6hlpylRBNBROwaipZTiuNgXi3jmtWi0JFjgu33UI0qffYir4sO90COmLJwRdp22u5JEkDJ2WY/OTl9Ty2uAarpvBBdRvt4SQlWT1P44p2fa6H4jqRpI65+XUAHBPOJgV47fvPIjpYHruFME6Kkoc2Hcy7MxPI3rtMoGyXjQBd08Fi/j4fWxo4vQkC9TQhfV+3KS8EFu1rKpgQ4hHgEYBZs2bJW52SJEmStJv0dDD59Xgs+e/aJrwOC1PKfPheeRWAstgmWvSBDQK9t7mVUnsUBGil0zA1B0XLf41h87H1vL9jOPMz65r2LKovepayhbeTU/0sO079TbcAEEBZjpOC4ZP5+47TuKr9eV5wLSJfCVNz6t8wbZ59trwfW+ylerOPU0VjOgp6mIuiNzfuoNMcxSRLHdM6XsXx8q+xBWpomvlt2qZ8CaGl63NEi+cQLZ4DQLbLyjAjwtNmGYowSLVuBu+0gzpusrU6/Z/cdEtoi6bitluIJQ08dktX1o8lUxfKZev5lL002wFASMshKyozgSTpcGkLJ7j5yU/4aFsH/3PcMOwWlUff30ZbKNGt7s/uokk98/9Y0mBE5/u0WktIZY9CU5V9fk72lddhJWC6UA6xJlC2tnM6WO8ygXLdNhLY0FV7ujuYNOT0ZjpYHVCx2+NyoGEf616FnAomSZIkSX1iivSdRenYoBsmb61v5vRxhYim1dhDO6i2jcMrwojOmgE9dns4SaktDoA1q4B47lgMq4dt5zxBPH/KXusLi5O6Ux5g3TXLCYzsXhVAUUBV4bvnjmfcVT9FsTnJs8TYdt7fiRbNBMC1jw43Y4t9NIhcVCMB0cNbTvLDre2IYBNJTznRivlkb3sJW3AHNec8Tuv0r2cCQHty2jSG5bqoFmUA6Q5hB6E1lCA7nq6BpOWNyDxfmetiQqmPyjwXWS5rrwqD57ptOKwqfjULNSozgSTpcIglDa579CNW1vr56aWTuXJWBeOK0lkym1rC+/we39kZEWD91lpOYBXNZWeBouDt56lgkJ4OFhQOOJQgUFwn35ruIkkvM4FyXOmMprjmldPBhqjevNs+BkYrijIcqCcd6PnMnispipIFnAz8T7+OUJIkSZKOEUIIDJkJdMz4qKaDzmiKsycWY9n4O4SisrD8C4zc+i2oX445etKAdQjriCQp0CKYVjcup4u6+b8ERSGRParbepqq7HpPKgqGMy+zzGnTyHXbyHJaSRkmW1sjqNnFbLvgPxhWNynfMCBd3NTSw1QmSE8He1l07TNYD+68Htfrb+GEzjf/uYI31QCOYVX4y07A0/gh209/mEjpCfvd1m1LZ+psU8owUVFb12eWtYUTpAyTLKd1n9k7G5tCVKlNCBRsebtaJ2t9+F0rikJptpMWw4Maax+UbCpJOpYIIfjO06tY3xTkj9fOojTbiWEKhhe40VSFTU0hkrqJ2959O9MU6fphXX+jyXWvYFMMLJMvIUV66lZ/89gt+A0HyiFMB4skdPItCUjR6yCQz2FFVSCqefB1ZQKF4imAveqaSYPjgJlAQgiddI2f/wLrgX8JIdYqivIlRVG+tNuqlwKvCyEiAzNUSZIkSTq62d74Llnv3jXYw5AOk9fXNmO3qMwbnY+r+hUixceRLD+RhLBgNqwgOYBZYR2RJLlqGMOejdOqkcgZvVcAyOOwMKbIg0XrHlRQFBhR4GZUoYdctw1NVXBYNUYWulFViOdNyASAYNdd4Z4Mz3fTqqYDP4a/dp/r9bdVdX78AT9uYtizSwlWncO6a1cRKTup23p5Hhsl2Q7UrjNmRQGHVcWqqeRl+2iylGFtW49hCiIJnUZ/nLZQkvrOGEL0HNDd0BSkUmkh4SrG7jy0FtCQbiPdkPKks6kO4Y6/JEkH9vt3q3lxZQO3njWWEQXuTJDcbtE4ISfEBdV3wdZ39touljJw177L+CdnYGtZxYi2N2nXCkgVzUBR+r8oNKQzgULCeUjTwUIJnRxLIv2gl0EgVVXIdtkIK16UuB+AYFxnR0e0T4X0pf7Xq3ebEOIV4JU9nnt4j8ePAY/118AkSZIk6Vij1X+MMxEd7GFIh4EQgjfWNTNvdAFKpBmHfwuNY66iNM/HBlFJbttqkoaJYx/TqA5VeyRJtieCcOSgqQo2i0pS3xV08jktVOa6UBSFAq+dRn88s6w029lj+3q7RSPHZaM9nMw857ZrFPoc+xyHVVNx5FZAEHR//WFrJdzoj1Oo+AFw5JR2ZTztujeqqlCa5STHnZ4SluW0EksZKKSzbwCq8txsbqrkuM4NxFIGTYFdP6N4yqQzmiLXbcsEg3Zut6EpxLVaC3pWFZ5++P2WZjnZXp8uEE2kFXpZt0OSpIPzwsoGfvbaRi6aWsql08to6/qsU/Q4eeuf4E/Rn2MXcUJrC2Hy2d22jSR1vDvewhJvp/z1z1El2tlQ8ilURSHLae2x8Puh8jgstOFES4XBNMlEsw9CJKGTpR5cEAjStdOCuofyriBQOK5jmlDTHqEqzz1g321S7/T/u02SJEmSpL5JxbCE91V2TzqarKkPUu+PcfbEIvSaDwCIFM+mNNvJWjGc/OA6kgN0xzRlmARiKXxmEOHIAcC52wm5y65RkePKBC3y3DasFgVFSWfG5Lp7rpUD6eU7WTSFilzXAcdTWFKOjkaqs66vL+mgNQZiFOAHwJJVTPZu2UrZLitjiryZABCkg1U+R/cW7ZW5LlYny7AHt9PS1r5XR7fmYJzOSJJNzWGagrsCRBubQgxTWjCyh9MfynKc1MTTnXj0UEu/7FOSpO4+3NrOt/+1kjlVudx5/oRMAChr64uM/eeJlCz5EQ3ZM9holqO31+y1fTxp4mpdQcI3DEuiE7uSwjrpUhQFCn32vdbvD16HlZDoyjZMhvu0j3BCJ0uNYVocoPV+KleOy0ancKEm/CR0I3OTIaULtrZGuhXJlg4/GQSSJEmSpCFC0WNoqTB6RBZSPBrtPj3ov2ub0FSFM8YXoez4EFNzEM+bSL7Hznb7GJxmGKN924CMozOavnhxmyGEMx0EctjSp4QOq0pVnrtbLSJFURiW62ZssZfS7P1PX7JbNHxOC4qSzpTpzd3tMSXZNIkcEu2HbzpYQyDOcEf6okj1FmUCW3keGxW5rl6NuyrPzcpUOQBm83oUPU5W9fPkbHgSd/376IagrjNGUjdpCyUJxVMkdZO65hayhR9yqvrltZRmO2kT6ewfM5zuEBZO6PucjiZJUu80BmJsbArx8qpGbnzsYyrzXPz66mk0h9JBXbt/C+XvfouUu4St5/+L9af9mXViGFpw78+yRDyCo30tzWVn87Xk11joOx+jbDbZLit2y8BkxXjtFkJ0BeL7OCUsnNDxKnGErfdZQACTSn1sDdvQI52Z75ydDFOwrS0ip4YNIhkEkiRJkqShIpVuw2r4D19GhHT4+KPpwpgra/08+v425o/OJ8dtw1q/hGjhdEryfJTlOOnwTQBAaVqZ2bYtnKA1lOiX7nEdkfQJuVMPgjMXSLcgt2gKw/LcPRYodtq0Xk9XyPPYGZbn6nW743HFXppELrq/fq9smoHS4I8xoisIZMkqxWHVKM12HDDItbvKPBcbRLqBrqNjPflr/kTlO1+j/P3vMuLVz+BqWtJt/dqOGIur2ygxGtNP5I7Yc5d9UprtoH23IJBhCmraImxuCR+2n6ckHW0SukFbKME7G1q49T8ryXPb+NuNcwjHdYQATIPy976NaXGy/ay/ECk5jrJsJ01KIe5EM8JIZfYlhEBtXo1qplgQGcYbxgyiZ/0SFJUC78BkAUG6JlB4ZyZQX4NAcR0PUYTNc1Db3XH+BCrLSnCYUb7x5MfYtr+LvXNjZrlpwvb2KLrsiDooZBBIkiRJkoYIRU/fXZRBoKOPbpi0R5Jsb49w42Mfk++18bMrphIIdOJoX4deNpc8jx1NVVALx2EIBaUl3XXKNAVNgThNgfT0okPVHk6iYGJPBcCVDgI5rRrD8lzYLId+auixWw6qA8zYYh9NIhdrpIFgPHXgDfpBoz9OuTWIUC2ZQFie5+AuxsYUeakTBURxkqhfRfbGfxIums2GKxeR9JRRuvgHYBpo8Q4s0XRwZtGWNiqV9JQtLb9/poNV5LjoIB0EEuEW2iMJhIBEymR7R0R2HJSkPlixw8/dL67j3tc2UOxzcM/Fk4jpJvFUOmiRv/oRXC2f0Hj8D9FdBQCoioLfVoqGSbJjVzZQPGXibFkOwGM78pgzPJfSbCcuuzZgWUCQrgkUpnsQ6GADw5GEjkvEDjoTyGZRmT9lDAA1O3ZQ9cZNjHz+Ytz1CzPrJHWTbW0RGaweBDIIJEmSJEn9KKH3/WRG0dOZQEIGgY46Cd2kKRDnuj9/hCkEf71hDl6Hhc5Ni1GEAZVzM+sOK8qlRhRjNK1lVZ2fxxbX8PSyOgxTEE4ceh2F9kgSLzEUTJSuIJCmKvtsaT7QSrMcNKglZMUbCAaDQPriYCCnMzUEYpSoAQxnfp+KpUK6s9kvPjWdzZSTt/V5HKHt/LhxDitCPhrnfh9nxzqGvfE5xj11PKOePQdLtJUNTSEmONoBsOaP7JfXUp7j5PzpVQSFi2XrNtO8W4HqlC5o8Mf65TiSdCwQQvDgW5u59tGPWNcQ5HMnDeeXn5pCvsdOOJ7+/PXUvUvx0vsIDD8P/8hLum0fcZUCYHTUZJ6Lpwyczctp1wrYGvdx6fQyALKdA9suffeaQCIeANJZpb0NupimIJI0cInoQRWF3klxpacb/2h6EDtJ4rqg6r/X49v2cmadeMqkujVMayhx0PuX+k4GgSRJkiSpH8WTZt+m7BgpFLPrAj/YPQgka3sc+TpDER584QOaAnH+9NlZDMtzs709irPxYwQKtqrjMuuOLHSzSZQTqVvDRb9dxD0vreXVxctYsWEL0XgC8xAzOzrCCbKV9FSonSfpg0lRFFqzp6BhoDUuZ21DgI1NIeo6ByZ4EU7ohOI6ufgx3EWHtK/LZpZTPHoG2UqEuOrmI+c8fvTyOlZ7TyZccgK+2rcIl56ElgxRseBrbGr0M9HZju7Ixe7pn5+9oij84lNTSdhz6Wyt54bHlvLCyvpMBpA/muqXDDJJOhY88t5WfvnGJs4s11lc/AtuX30uUx4fj7M1PT3X5q+m8u2vEM8ZS938X0BXAX2bRaUoy46WWwWA2bEjs89QIkVqx0d8kBzB1bMrmFiahaKkuw4OJI99VyaQGU8H2BO6QUsovr/NMiJdxZsdItKnIJDqzAZgpp7OgrpWv5PVYiSVb91M7vq/ZdYTApoCcQKxw5MJKskgkCRJkiT1q6RhktD7EARK7brgVYL13Rbt3llIOvK0hxO8/ec7+VPwC9x9diUzh+VS2xElqZu4Gz4gnjsep3dXQGDWsFzM/HEMV5t54PJxPH9qCx86vsb1i09n7D9OIBLtW5eXnToiSXK6gkBaVybQYLMMOx6AyJb3Mbv+fPzRFPUDkMXS2LXPLL0d4S485P2pxZMBiIy5lO9dPAO7pvGNf63k9PrP8QXPb1ly3EM0nPAjPA2LuS3xIBNENSnfsEM+brcxqAq+/FJm5RsU+ew8vnAjv3+3OhNArvfHDttUO0k6Ui3a0sZ9r23gxBG5/J/tL2R1riYw/AIMexbl7/0vlmgrVW/chFCtbD/zUUyrG4dVZWyxl7HFXgq9Dhx5FRhCQfhrMvtdsnojhUYz9mFz+PbZY7FoCh67BcsAtIXfXToIlC4MvTMIFE+ZBGN6r7KBIon0OnYjiuhDEEhzp79fvHXvoduzueqiC7nR+B6LlOmULfoeBct/k44AdantiMpi0YeJDAJJkiRJUj9KGWbfTmL0XYEedbcgUDih0xZKyroeR6h6f4yLH1pEaXgtPiXKPP1DGvwxQnGdnA3/wNP0IbExF2XasUP67vDk6cehYnKcr4PK1veIWLJ5VD8Xa7SJ5LYPD2lM7ZEk5fZ0IETz5B/SvvrLF86ewTalHP/Ghd2mBXSEk7TsFgQVQhBPGYfUXnhnYMmdakd4ivs+6C5G5Yno9mw6xl/L5PIsHr9pDp+eVcGcccNZHCrk2/9eyWLvOSyvvJ4L1Q8oiW7EzK465OPuSbjyySHAb+YGWO+4gUs23cZr77yTXiZgR3u0XwqLS9LRaFNTiJuf/ISyHBd3j9yEr/YtmmbeSsNJP6V+3n04Ojcx+pkzsYZq2X7GH0h5050BS7Od3WqpFWR7aSIXvX175rnY9qUAlE86iWyXjREFbvI8tgF/TZqqMHlkuni9EQt2TbNNL+vN9KtwIh04thkRlL5MB+vqPmmNNhHLn8L40izuunQW3xC38hLzKF72c0o+/CGY6XMmIWBrq+wadjjIIJAkSZIk9aNUnzOBogAIFLRQA6YpuOv5Nby8Kt1J6FAueqXB89LKBuo6YxznaQYga8tztIeTOFtXUrr4TkJl89GP+3q3bSyaip4/FoBU4xo89e8TK5/H75Qr0dFQti04pDF1RJKUdgWBcA7+dDCAHLcda9XxTBGb+NGLq7tNC2gOJmgLJ2gJxlnfGGJzc5jqlgiNgVifpko2BuJoGNgTHSjeQ5sOBmApmcj6a1eRyB9PvsfOpLIsfnzJJL5y2ih+fsUUXDaN7z63hm+2X8LJqQepn/kd4nO+csjH3Ys7H0usndyN/0RYXZxiWcs3qm/ig/deBdIXWMm+fDZJ0lFuS0uIa/60BAW457R8qj6+h2jBVNon3gBAqOI0OkdfjiXeQcOJPyVaPAeAbJcVt717LbUin4M6UYDZuZ1IQkc3TJT2agBsxePQVAW7RTuo4vmH4soT0t8l1XWN6ZqFXZ+ZgVgqU8PQMEWPmUHhhJFuIqCHUBzZB3/w3baJ5U8BYESBhx9fPoOf2m7hz/o55K/9MyOfOx9X89LMWLa1RWTAeoDJIJAkSZIk9aOUYZLoy12sVFdnMG8ZWqSRv32wjcc/2M7v39pAwdL7SbRu7eeRSodDgz9GgcPAHa3DsHrxNLyPvWMjlW9+Ed1VSO2pv8Hl3LsrlZY/ClO1krX1ZayxVuIV8zl+/DCWm6Owb3/vkNrqtkeSFFl3BoGGxnQwANvw48lSIjiD1Xz/meV0hnZNBWv0x2kOJrplxLWFkn2qG9Toj1GgBFEQ0A9BIIc13d3HZdPQ1HRGl6oqlGQ5qch18cRNczhpVD417VG8BZV0TP8qWunUQz7uXlwFaPEOfNtfxz/yUqqvfh+/pYDzNt7B28s3AKAbMqNQknZX2x7l+r98TCSpc88Fo5nz0S1oeoS6efeDuqtzV/1J97LlohfoHHslkK4BVJLl2Gt/O4NAjnAddZ0xoikDd7iGsOLB5i04bK9rp1PGlRDFwZbaRlIdOxj/5HS8tW8D6U6RkJ5y3tN00XBcJ5cQqjBQfH34rOyqCQSQKJqK1ZL+fCzLcfKrq2bw4ehv85Xk14kFWhjx4uX4tr4EpD+nQnF542sgySCQJEmSJPVSby68E7u1kD0oXZlAes4oVCPB428uw2O3cELoVYpXPIhl5ZMHv09p0NX748z2tKEgaJvyBRRhMvKly7HE29l+xh8wnTm4rHu3CHY6nCSzhuPd8SYAsYp5zBmey0JjMq721cSCrX0eU0ckSYEaST9wZPV5P/1NVKSLY98/ei2PR2+m+F/nEu9s3O82/mgKf/Tgih43BOKMdXXVRPId+nQwR9dUkD3v7Gc5rYwr9jKq0Mujn53FnRdM4IvzRwAMSFtoxVOAgkA14vhHXYxw5dN57h8oUvxM/vh29FSSlCnvrkvSTpuaQ1z28GI6I0nuvmACJ27+Ge6WZdTNv59E7lgcVpVCn51cjw2h2YkVTgPS06yq8l091vQp8tmpFQW4Ei2kEnG2tUYoTNXR6ajAaT/8HRhVVcG0eYmFOqld9yGWeAdl792KFvfTEUkSjKfoCCeJ9NB5MpzQKVDSXcWUvkyd1ayYVnd6HGUzGV3oJced/px02Sx87fQxFB9/NfMiP2OTbQIVC76Bq3EJQI/jkfqPDAJJkiRJUi9Ekzqd0f0XVjVNQfaaJ7A3LDn4TI2umkAibxQAzngTd589jG9ZnwbA0rjs4ActDbp6f4wptnQgIzLqfGJ5k9CSQRpO/Anx/MkUZzlQVWWv7Zw2jXjOWBQECd9wSoeN5qwJxbxvTkJBYFa/1+cxdUSS5CsBDEcOaIPTFr4n1oJR6I48Jmx7jEJbinKzntJnLyG1W22NntT7YwdVQ6IxEGOqMz09TysYe0hjhvT0PU1V8Dr2/lnuvEi0aCrXzK1kQpkPALul/0/BFU86yyDpLiFaNDv9/+LpLBz+TU5TP6HonW+SSsni0JIE0ByI8Zk/fohhCP7v0kmcVvML8jb8nZapNxMYcSEOq8qIAg9FPgelWQ7s1vTfrKLA8Hz3PgO5hd50JpCCwBpuoKYtQpXSRMw7DJet/4O/vWFzZ5OtxVm7djUAlng7pR/clakVBhDr4TM0nNApVDoBUPsYMDftWaScBViyS9FUhfIcF0VZu7JfL5lextUnjefK4NdpUgsZ9sZNOFtXEpZBoAElg0CSJEmS1AsN/hj6Ae6iJ3WD4o9+Qv7qRw6+LlBXJlDAne4adGZZinlt/yQfPyvMEdiaVxBPygu4I02DP8ZopQ5TtZJXPp76E39M3Un30Tnm02S7rOR79p4KBum7pImcMQCEy07CZdMo8tmpc40nqrhQ+1gXyDAFndEkhWYzRlZlX1/WgHDYNIKVZ5LwVrL9kmd5febDeIwAOU9fwdcffZ37X9/Iiupaij76P8Y/MZW8NX8GITBNqG4N97oNeoM/zji1HlO1oeaN7JexZ7msmWlh++Kwaowp9O4z8HeoNE+601lgxEWg7DrFbxl/HT9LXUnpjhfxvPP9fj+uJB1pYkmDG/+6lFBc54cXjuOk9T8if91jtE76PM2zbsOiKQzLc2emdyqKQnGWA0WByjwXzv0Ec5w2jXZrOmBiDddS29pJKe0oeSNxDEAGYG8oDi8jfYJ4aw265qJl+i1kVz+Hu+GDdIkgIRCp5F7B9EhCp1Dxpx94+tZJUfdVEik5Hod1V5C80OugLMfJzn4Il0wr44qTpvCp8K20G26Gv3I1tvolskD0AJJBIEmSJEnaw+53oMIJnQfe3EQwph+wnkYy6kfTozjb1hz8yUtXTaB/b00HBa62vU/ByoforDybJ40zselhEk0bD26f0qAKJ3QCsRSV+naS2SPI8rowSmfROe5qHFaVsmznPrfVVAWjYDwAycp5KIqCoihMKMtlmToJe+3CPo3JH00iBOQlGzCz+rdN+aFyWDTqT/opmz69kGTWCEbOOJ2PTvgD5Vonf7LezynbH+Tct8+lcNXvidvzKf3wbsoXfAPMFKYJdZ0xag5QUFQIQYM/xnBzO6mckf2WCZXfy04/qqpQ4O058Heo1NIpBCvPpH3Ctai7neGXZDn5nXEx63LPxLXpuQE5tiQdSe54bjVrG4J889Qq5q35PrmbnqJ5+i00zf0+iqpQlefu1vELwOewMjzfja8XBZ3j7nTnMFtoB5GmLaiKwF06dkCCv70hbF5KnSkq1Vaa1UJap3yZlLOAwhUPAlCy5EeM/edJRGLxbtuFEzoFpKeD0cdOip0X/ZX6efdlMql2ynXbGF3kwW1PB8YunlbGKXNnclHkDqK2fIa9+YW9xiP1HxkEkiRJkqQ9tIYSmfno9726gQfe3Ezt6oXkvnAtpPZdiDbQuA0AW6SBVLDl4A7atd/ntimkFBsFDW8RzxlL47z/o9EzEQCj9uNe704I0afOSVL/aehqRV6UqMHIS087yvPYUBSoyHUd8IJAjD6b2vm/gHHnZZ6bXJ7FkkQVtuB29GjgoMfUEUmiYpKVaEIMsUwgVVWw2Wxkbg8DxRNPpuH03zIiuZHr1Vfx507jSvMnzO78IatGfYWc6mcp/vi+zPqhuM6m5hBt4USP7//WcIKEblKSrCGVe+hTwXYaiBo/B0txZlN3zp9JeSupynMzqjB9gZXjsmK3qGxVK9DinaAfuDW0JB2tXlrZwDOf1HPdBAvXbLuN7OrnaJp9Gy0z/xcUhYrcfWf67NkJbF+0rHL8Shbupo8Q7VvSz+WP7rfXcNDsXiypCOMcnWxM5NAaV2ib/EU8DYsoWPFb8tf8CWu0iVTD6m6bhRM6Raofw+YFm6tPh1Zd2Qibu8cpsHaLxogCD8PyXdgsKhdMLqVdzeOZrOuwxDtI1X7Sp2NKByaDQJIkSZK0G8MURBI6HZEkq+sC/O3D7dhIccLq7+OueRO6Wr325JXFy3c9aFp1cAfumg7m9niJF88iWHkm287/J6YrH3fpeMK4UOt7VxfINAU17VHWNQap9x989ySpf9T7Y7iI44vXY3Zl9eS4bFTkuA44dQjA7XTgH/MpXI5dHWgmlWWxySwDING04aDH1B5JUkQnmkhBbtVBbz/QnD38XIJV57D5stdZf81SYpf/jS9c/SnyvS6u2jSfbcM/Q8HqR/Bufz2zvmmmu4ltag5T0xZhY1OI9nA68LG0phM3MbKTTej54w7b6zpcLJqCqqY7lTltGsPy3DhsGiVZDnYks9MrhfZfbFuSjlZt4QR3vbCWK31r+EHtTbgbl1B/4k9pnfoVAAp9drKch966vTDLxWKm4a17F3co3dnTUjDqkPfbZ3YfSjJIkWihTuTz7PJ6OsZfg27Ppnjpz0i6SwBQaj/stlk4rlOiBTBdfZsKBumsVqumoij7vunhc1gZWeAmz2tjRmUOjzdVAfR52rN0YDIIJEmSJEm7CcVTCFPQEUlyx7OryXHb+JrjFQoSXcVpIz13ZVrbEGDb1k2Zx5bmgwsCNbSliy9++vixtF32b7af9Sim1U2+x8640mxWGMOxNn3SrUX27vzRJOsbgzQGYmxrjxCO65gmdEaSmPvYRhpYDf4Yo5R6AJSuIJCmKmS5eneRsfNu9O7FRCeVZbFJpKcaGM3rgfTvuLo13KspiB2RJBVKOktNya7q3Qs5jBzWnYWUlW7TMRK5YzEc6Xb2hV4HP7xwIk6rxlU1F9KZNZGKBbeQu/4JELumgiV1k1BcJ6mbNPjj1PtjLNrSxuSuQt0UHH1BIE1V8NgtmQsuTVWozHVRku2kOu4BwAjIIJB0bLr/vxsJxhLcZXmclKeEzZe/Tsf4/wHAbdco7KepmoU+B6+npmCJd3CGvpCIJRuLO6df9t0ndi/WaCvWVAhXwQj+u7aJTt1G65QvIxQLtaf9jqSnHEfDEpK71TNM1wQKYLoPIQikKJnP9f2xaCrD892cOq6Q6qiDDt94XHULZV2gASKDQJIkSZK0m3AoyLh/zKHlvT+xqj7ALTOsfJFn2KymC8iKSFuP2/3y9U1UWv0ANIhcrC2re1xvXz7Z0gDARbNHYu/KhtC66oeMLfayQozC2bmBSCSY2aa2I0ooniKc0KnrjKEbgrZQkmhi10mTED13/ZD6pj2c2Gcgbk/1nTHGaukgkFY8/qCPZbdouOwa1t3aEJdmOQg7y0kpVkTLekxT0ByKE00YbG4Os6UlRHMwvs+pgO2RJJVqOgik5g0/6DENtJ3v/dIsJyML3Jl6EXsq9Nn54UUTMTQrF7V9mTrneMoW3cHIFy7F0b6ux206wkne29TKydnpv2GteOLAvIhBZFGVvVrVO6wa44t9rI+kWzUbwYbBGJokDap40uCV1Y3cVFaHO1pH69SvkPRVAWCzqFTkuvabrXIwinx23tEnY6IyXt1BzFs1IB0Be0tx+FBEeor79ClTSBomL61qoG3Kl1h/zVKiRTOJFM/G1fQx9Z3RzHahhE4BfkQfi0JDeppvb6fLWjWVz8ypwG5RWapNxdXyCbHwwU97lg5MBoEkSZIkqYsQglT9cqzRZsZu/iOjC1ycH34aFcGt+hcBMMM9ZwJta4swwR0mYs1luTkKa2vvg0CtoQTbmtIXpj63N5MBUZrtQFMVxhR5WWGOQhUGqdoVAMRTBv5oipq2KDVtEfZX/kcGgfpHQjdo8MfZ0BQkoR/4Z9rgjzHJ3opQLNgL+taFas/uYYqiMKE8l22UoTetpy2SIKXv+uXHkiYtwQQ17VFMUxBPGbSEdhXXXNcQZKSlHYGCLXdo1QSCdCaQ12Ehy2XN3BneMxDktGmMLfYyrTKbB66cTl7pCE5u+Sa/8n4bLbidUc+dT+miO7D7t4BpYA03oBhJOiJJajtjTHM0YmoO7AUjBulVDpydmUB7GlXoocHIBsCUmUDSMeilVQ0E4zqf1hZg2HwEqs7FalEoz3EypsjTLdh+qIp8DgJ4WC7SdYDU/FH9uv+DZvdm/ltUOYazJxTz4soG7vvvRn7/UWd6GnzxHKyxVpItW2jrmj4bSejkis4+F4WGdGD6YAJgWS4bp48r5Bn/KFQzhVGzqM/HlvZNBoEkSZIkqUs0aeBoXglAJU38YPh6cjf9i3X557AyWYpQNMxwz5lAgXiKfNFO3FnMWrMKV3gHRrSzV8d96qMdWEUCU7ODqmKzqPicFrJd6Y5DVXkuNijpC1bRmJ5mFoztahe/ewBodX2AZz6pY8HiD/Bv+RCESSwpg0D9IZ5Mp8mbZjpwdyAN/jgjLS2kvOWolr7VmeipPsWVsyrYYJQRa1jLHc+uofilaxn979PI3vwMmOm7veG4zuaWMFtawjQHEplA0JJt7Ux2d6J7SsHSu45Wh5PdolG6W9c0RUm3anZYVRQFfE4Lw/PdWDWV8hwXY4u93H3hRL508ij+GJjN3OC9vOU6h+wN/2DMf05jwmNjGPfUcYx++gyaNywGYISoJZEzGpu1fzqDDSUeu2WvrkYAw/Jc+PFgqFYINQ3CyCRp8Bim4Jnl9VQ4EgxvfRv/yEsozM1iTKGXHLet3zKAdto5rewtfSoAqazhmXbzg0Gx+zL/13Kr+OaZY6jMc1PdGubFVY2srPND5fEAuJs/pikQJ2WY6PEQLmIo3qI+H1tTlV7VwNvdyWMLeCc2CkO1Yal5N/P8oUxtN02Bvp/Okceao+/bT5IkSZL6KJo0UBuW0SRysWuCE9bejWok2D72BkRdgoQtBzWyd9cvIQTBWIpcrQ2RM4K1belpNkbDKrRRJx/wuGsaApzjFKCmL34de1wIWzQVT34FwaAPtXUtQgj8XUGgaFJnQ2MILRVi5YbN/LvGzrnqEm63PoR9nY7+YS7N8++FE6486J+HEKLfT46PZLtnVPmjKQq9Zo8X3DvV+2NUiCb07OH0Z7jl/CkltOw4gcKli2jYuJQC67tEFA8V736D0kV3EC2aScv0W4gWz85s0xxIEIrrbG2NMLygDcNXyaGXPx0Ye/5MNVVhRIEHBfbqqFbgtRNPGZw/uYQTRuTx/MoGblmbhSNxAZdr75GrhLBklXBV4kUuX34Dpv00ckMbiQ877TC+osNnX+2rh+W5AIWItQCbLAwtHWM2t4T4aFsH95YvR21JEJxwFcN9jgNv2EdFXfte5zsJEf8PeuGkATtWb6jOdBDIsLiwePIYm63x6i3zaAsnOPOX77JgYwvnT56Cbs/B1fQRnWM+TVs4gSWaznxWfX3PBNJUBe0gzyNmVeWSwEaddyqFte9jmgJVVWiPJMl2WfuUVRVLGSR1kxz30Lv5MRh6FQRSFOUc4NeABvxJCHFvD+ucAjwAWIE2IcSBz3olSZIkaQjpCCfw1i1jNaMZMXYWOesfIlR+CrnDpwFLiGhZeCPte22X0E1ShiBbbyWZM4/129JBING4CnoRBIomDTxaEmFJB356CiyMKfaxKVjJhPYNdEZTJFImW1rC3PfaBqLBdv5pu4f/UWu5NauSgkQtNc5JPBicx33Of+PZ+DTGcZ8+6DuRScNEVZTBTWMfQnYPAgmR7jSze7Bud7ph0hSMUeRowMid1+9j8VROhqXw2PC3oA4+xb0UJ2s4X13Due3LGf7qZ6g95QGskSayt75Iw/E/5L/+UgDyUg2I7NP7fUwDaX/v3bJsJynDBGxcf0IVV82uoCWUQIhT+LimkxdXNfBgZDa3W/7BFZYFWOMpYoUTDt/gD6M9g2Q7lWQ5sWkqnVoeRWGZCSQdOxK6wdPL6tDMBOcH/0W0cAbW8ukDesziLAcnjcrntAkT2ZD3Aa688gE93oEojnQQKOWtwLFbfZ58j53LZ5Tz50XbCCcMrMWz8e54Gy3WToORnS4ibwPNW9LnY/fl/GFEvptct43VjOb8zn8SjYZxe7wEYkmsmpLJkj4Y8ZRBJGHIIFCXAwaBFEXRgIeAM4E64GNFUV4QQqzbbZ1s4HfAOUKIHYqi9L161DFI3mmVJEkaGh544QN+L5ppGX8N+vRriLYupHnGNxlf7MXrsNChZOGL7l0TKBBL4SCBywiR8pViyyoiEbdDLwuwRhI6LiUFln3fmRxb7GXV2nKmtC/gsocWMj35Cd9L/YawOp/TixspDjRSM/5m8juX4/fMZumI23j2+S3c7N3GsLaVxFJGj7VC9idlCExhyiBQl+Z3Hqay5mnceaV0jr2KzuFnUpLl6PE7vCWUIMsM4jAjRHP7Vg9of7TCdGergrrXiRTO5KcXXMjyHZ387L1qfuJv5XHHz5n01pcBMDU7w974PDWFvyXbauCItxLLqer3MQ0WtStTyB9N0hSMAxqVuS4AhuW5uXhaKYu2tPHP9WWY4+/iZOUTfNMvHdxBH2aaqlCR66TFyKY0LDOBpGODEIJNTSH++XEtt+a+jzPaxNbTfkXuQX4XHiyrpvK3z81lQ1OQlC6w9rIw8kDZOR1M91Xstey646v40/vbeH5FAxfO/Abe5y+l4p2v8fqM35GHHwDV1/fpYH2hKAqzhuWwuLacC4RBsmEN2vA5xJIm4YTetyCQbhJKpOR1d5fe/AXMAbYIIbYCKIryFHAxsHvrhc8AzwghdgAIIfbOlZf2STcFCgKLPMmWJEkaNNGETnz7x2CDysnz8OcUU33JS1g0hRy3jdGFHlqCHoZH6/baNhhLUax0pB/4yhiW6yLQ4CUr1tGrY0cSBi4libC69rnOmCIvr4tKbGacKrWFT9sWkW1E+R9eQfEb7DjlQUKjLiHUtf5oU+C2b+MTfRijI68S8DfiKdr7BHB/UrpJyjD3OcWkJ0IITLH/zI0j0camILlr/oKVACLeTEXTEjaUfEg06cbdwwVFgz9GlZLOuFDz+z8IZCsYianZUY0EwVEXk+WyMqsql9+UZvHCynr+FPo1JzT9jWf9IyktLuFngW/zPzvuxMz/MnSCljv0OoMdqmyXDZ/DSlskQVsomeniZtVUThlbyClj0/co/Yyk0OsZzKEOimF5buoaspmhrxjsoUjSYVHXGePxD7ZjxENca3uaUOlJREpPpGKAg0A7Oa0aKV0f/BspXYWhewoCVea5mDc6n6c+3sH5N86l4YQfUb7wOxQrD1KoJNMrHUJh6L6aXZXLX9eXgR1EwwoCxdNBCKJ9rHEYSxqYZjrzuqfv7GNNb96RZUDtbo/rup7b3RggR1GUBYqiLFMU5br+GuCxwDAFKaPvha4kSZKkQ7e5JcxUtRoTFa1sOgVdhR3zPOmikaMKPdQm3KixvaeDBeMpSjJBoBKG5btpM70Q3XvdnkSSOg6S+80EmlOVi610MgA/nGMy21hBeNRFbPz0e1Rf8DSBUZd0W19TFaZX5PBGZ/rkTdSt6NVYdpcyzIPqLKYbJlvbIoQT+kEfayhL6iY/+Md7jFFqWZR3BddFb0FLBsnd+A8i+3it6xqDDFOaAbAWjOr3MSmahWT2SISioo+/mOH5bsYUexhZ6OYL80dy02lTGHf1fUyddxHPN+XxPfNLTDI2cE/w+wBY8qr6fUxDgaoqFHodTCj1MarQQ1W+izHFHoqzHKjqznXodcvio0lJloPtSR9aMgSJ8GAPR5IGVEswzubmMM+vaOD/Ct/EnuykefZtOKzqYQvK7CyIvL/acYdnIOlMILOHIBDAF+aPoDEQ5/mV9XSOvQr/yIuZ3fA4Uyw7EKoFnDmHc7QAzKrKoU7kE7dkoTatxB9JMuq588le/H9d038PTrzrXCYU7/k7W4h0N82kfmwUj+7NO7KnW3l7RiwswEzgfOBs4E5FUcbstSNF+YKiKEsVRVna2tpzi91jkWEKkrJauSRJ0qDa3BxiqlJNyDsSu9uH12HFZdfIc6eDQaMKPdQn3aiJAOjJbtsGYzpFpDuBqVllDM9z02Z6MHuoH9STaNJIB4GsPdeXAchyWbnzhksRikrupn9jSXQSKj+FlLeiWwHg3c0clsOHsXIECpbmFb0ay+6SBxEECid0trSGiSaMPp2gDRU9tX5/9P1tZLUuBWDS8eeRPeo4logJ5K55lHA01m1dIQRJ3WTxlnYmOdsRioqWM2xAxhodexntEz6LMyddr8Fu0cjz2KnMc1Ge40RVFS6aWsrD/zOD9+0nc0PqO+y8FlGPwkygPTltGl6HFbtFo8BrZ0yRlyKf/aAy244meR47O1JdXYJkhzDpKBaKp2gKxPntO1sYqdRzQfg/dI6+nFjB1MOaBbKz/o5tsDOBfGW0nvRDkhM/1ePieaMLOGN8EY++v43OSJLmGf+LJnQuVt7DcBWSiaAfRhNLs3BYNbbbRmFrXY3auAJn+xqytr28z5sv+xJPGZS++20q3v4qwXiKtnCCra1hatoiNAfj1LRFWNsQZHNzGH8seeAdHgV68xutA3YPG5YDexY5qANeE0JEhBBtwHvA1D13JIR4RAgxSwgxq6CgoK9jPuoYQhzRJ8ySJElHg62tYaaoW0kUTsPedaU8LNeVmdZUmu2knaz0yntk+OyeCaRllVKR66ITL6KXQaBwQsd+gCAQgN3pIekbjrfuHQQK4bKeCw4rClTmurhydgVhXLTZK7C1rO7VWHaXMgQpff9tVRO6Qb0/xuq6ABsbQ13bHbnfaf5oaq/nXlvTyLneakzNTrxwKmeML+T3qfOxRxqwbngu07a2I5JkXWOQDU1BPtjazlRXB7q3fMBascfnfJXG43/YY62nHLeNkQUexhV7OWNCMX++fhZnX3QNWy99meZz/wSH0PL3SGXVVAp9Dipy9z3t8miW57bRJNJ39I1A7+qVSdKRJmWY1HXGeG1tE5/s6OAPOX/DtLponHMHAB7HYQwC2dLnElZtkKdHKwqhqZ9D9e67bO/3zx+Pbgj+tmQ7cd8wXjRPRMNEuAen1K/NojKtIpt3gqVY2taz7e1HAbAHa4i11hzUvhJJA9/218na9jJ6sJVGf5xIwiAU12kJpjtnimNsUk5vgkAfA6MVRRmuKIoNuAp4YY91ngfmKYpiURTFBcwF1vfvUI9epimDQJIkSYfLvlJ9Q03V5CkhRNnMTNHA3Wu1eR1W2kV6Xj2R7tms6ZpA7aSsPiwOL8PyXHQKD1r8wDWBUoZJUjexmfEDBoEURSGRNx6AWMFUDEfubuOzMLrIQ5HPTlW+myyXldJsJ4VeO1uto7G3rjrgWPbkW3wv+av+0GM2UEI32NYWYVNTmDfWNvOVv3/CN/+1gs5IAj0ePehjDRXxlEE0uesuY3s4war6AHOU9UQLZyI0O1PKs1lum02jpZycTf8mmkpnPzX4Y5gmbGuNEIilqFSaMLIHLuPGZlHRVCUz5WBPTpuW6RY1psjL3JF5pHzDMMZeMGBjkoauXLeN5p1BoKAsDi0dneo7Y2xvi/LnRdu4I38hlaHlNM3+LoYzH4dVxXsYM4HsFg2LpgyJuq+qomDdT0ZPVb6bG06s4o31zXxc08GDqYsRKAjP4N0wuOuCiRSPm4NNMZgfepmoJ51Va259b783p/aUat+KJeFHEQZZNa8M1HCPKAd8RwohdOCrwH9JB3b+JYRYqyjKlxRF+VLXOuuB14BVwEek28ivGbhhH10MM32nVZIkSRpY/miSQGzvTA/DFHjb00ESs2Raj9v6HBbaRXoqhYi0dVsWiKUzgXR3CVZNSWcCCS92PQTG/tOWdxY5tIokyn4KQ2fGWpBubR0qP5kspxW7VcVlT3dDclg1Cn2ObpkhuW4bm7RRWCONED64vg2+Df8kf82fiO0WFDFNQUsoXWthc3OIe19dz90vrsUUgjKaGf/yxRQ9eepBHWcoSRmiW82A97e04RVhSuJbiJTMpSzHyfhSL/PGFPBScjqupo+IBDpp9McRAhQjyY6t6wBBTrwOcgY2CNTbjm+KojA8z022yzr49SmkQZHnttHSFQQye9m5UJIGws6i7f2tM5KkORjnJ6+s4yRtHTdF/kiw8gw6x14FpFu3H+7OUN7DmHm0P5qqYD3AZ/+XTh6J22bhd+9sYasoZeXkO0nN/NxhGuHeJpT6OP20swFwKCme9V6N7sjDVf8+jYF4r/cj6tLTuQ2rh6zqFwdkrEeaXr0rhRCvAK/s8dzDezz+OfDz/hvascMQsiaQJEnSQEoZJpubQ6iqgtu291dfMJaiNLKOFFaUokk97sPntNJBOghkhFu6fYEG4zolSieGpwJFUfDYLQTVrtobsU7w7HsK9M6sE6sZB+u+C0PvZJSl6/8Eh53J8GwHFk3db8vTHJeNteER6QcNK2DMWQc8BoAej2CNpgsb680bMD3TaI8kaQnGWVrTyWtrm/iopgOrpvCZOZVcm7WKsvfuwBfsygKKBzPFKI8khikIxVMU+dK/i3c2tHCyYwsKAr3yBIrc6aldF08r5Y+rp/F59UXWLHyOmpwTOXnD3QzvWMgkPcpE13FYk37MAegMtpNNU3Hbe1/gWFXTAUpzgC7ApKEt12MjhJOU5pQ1gaRB1R5JUOCxH1JAZs9OlCnDpN4f5YE3N6P4t/OQ59ck3SOoPeXXoKh4HRa8g1APzOccGjXIFAUsB+jameO2cdNJw/n1W5vRFAVj5o2opYP7PW4rGIFh9WKm4jxYP5ZzRhyPr2ERdZEkuW5br2o8aY2fYGoO2ifeQMGK32KJNKG7000zUoZJS3Mj5o4lWMINBFNtqOd/g/zSganlN1QMjdDkMc6Q08EkSZIG1K/f3Mxv39nCA1dOY0KJd6/lzcE4Y4xNNHjG4rPbe9yH12GhbR+ZQMFYigI1gOmelXkuYcsBg3T9oP0EgXYWOLSYCehFJpAy4mTWX70ELbssk2K+vxPpXLeN1f50U0+zZQNqb4NA7TWZkwRl69ts9Ixkc3OIPy7cxur6ACMdQR4sXcrYyhJyYi+Tt/AJ1qmjWOGZx2dCf8H016EWT+jVsYaS9PS8dKczVVF4d1Mr93vWY0Zt2CrnZNY7dWwhd7knE0i5aF/+IrViFaOs/+UZTido2rieVwHQ8kYM2FjtFhVFOfhTOfUAFwLS0SnXbQMUwtYCnDIIJA2izkiKHJftkGrlJPR07Z/h+W5Shsn29ihPL6tn2dYmFuT+AYsu2HLmo5g2L4oCJdkHvskyEDw93HgaDJqq9Kor2k3zhvPY4hqKfHbsVhXLINczslut+IedQUccmrfY+ViZzDnRl7AHqtlhGU2+x06u25YJBu5pfWMA19aPCNpH82x0Lt/kN/Dcl0kZKrZUAJ8RZprSiKqkb46YQmFj7TkyCCQNPMMU6IbY751cSZIkqW86Ikn+smgbAMl3f0GV/jrmN1agWtJfgYYpqG7yc5qyjU05l1O4j/oqPoeVIG4MRcMMd68JFIgmySNAxL0r2JOy50AUjEgb+8vViCQMQGDpRU0gSE8B0t0leG29ywDJcVtZFLMhFA0R6+zVNgBGR/pnJhQL9u3v8UDLKbyxroksO/xp7Mec2vBHtLYwdMXD2ibdxP2By6H+Ez4D6P5abEdYEMiMBSl5/w5apn+DxoCV1XV+lGg783kd/8iLyfLtuiNq0VQevfE4gi+dzEVtH3GRsoZG12x+b9zC5pYww6bO5viWp3BU9Ny5rT8oinJMtjqX+ibXlc5iC1pycYVlEEgaHKF4iqRukjLMQ2rVnjJMYkmDra1hkobJmvogf/2ght/nPU1pZD3bz/gjyawqID0NbLA+K4dK0N2iqvsMlOzO57Dy8P/MBCDfYz+k31F/aT/7t0TiOlPia3h4RznnAN7ad2jLHkVTII4/mmRUoafH6+ifvbyG34c38DfjDH69SuU46wQmR9fRqBUTs+UQtxfzcc5FJCtOwJI/ivKKcsbnZR3+F3mYySDQEGB2JQElDVOezEmSJPWzPy3cSjRpcHo5nN/6N2xKgljrFpwl44D0CWm0YS1OJUmyaHqmM9ieHFYNm6YR0bKx75EJpEc7sKIjdgsCGfZsiIJ5oCBQUseKgSoMzF4EgXZ+T/Q0ra0nuS4bgbiO4fOmp2j1kugKAm0rOI3i+nd5N1XPD6o2cmXorzi21xIqP5mG43+EYfOiGglSnlKGL6/ntc1ecIDpr+v1sYYKY8cS8tY/AUDDiT/h5dVNXG95HauZIDTzZnL3eG+MKfLSNOYsHA3prJ/oWX/k/sKpbGuLkJd/IvWOLzLS6znsr0OSemLRVLJdVgJKFqVRWRNIGhydkXRdvpRxaNNSd24fT5kEYil+9toGLnev5uzIC7RN+hzBqnQtGZddI9/Tc4bvscRu7X0w5/iReQBDZuqww6oRTxnccd54rnzET03eVCqW/xr/iAvR3cXEUyYdkSR5e/yehRBE69bgUFKcdeb5nDhmHrr+KtsAFAUFEICr6x+A3XZsvFcGP7QnoTWtwN6x8ZA/DCVJkqTuOiJJHltcw0mj8/lBzmu4lQQAesOudumBWAp703IAnMNn7/eunc9pIaRlwx5BIC2afqzs3kXD1XUSFdl/h7BIwsBBEgC1l5lAipI+se2NHLcNIcCweiEe6NU2AHRuI666uLduIi4lwaLS3/DZxh8j7FlsO/uv1Jz9OMmsKgxnHilPKQAjCz00k4NAwQzU9/5YQ4QZSndMytn4FE07NvLumm3caHuTwLCzcJbundVk0VSMkWcgFJVgxWmkymZT6LMzb3Q+dqu2z4CiJA2WXLeNTryovehcKEn9oS2cyPw/njIIxtNBoIPp7tSTnaU0TCH4xesbUeMd/Eh7hFjueJpm3wakp0BV5Bx4mvWxoC/fR0Mli8lhUfE5rMwdkceZE4r5UvAGMJKUvX87O3u7NwcTe72ntrdHGZnaCIBWMTMdDFSU9L9jnDw7GQLyFtxO6Qd3HfKHoSRJktTdI+9tJZY0uGGiRnn1U7zvOh1dqBiN6U5gKcMkFNfJ9q8mgBtvyZj97s/nsBJUsyDaPQhkjXUFgbyFmedUdzoIJCLt+91nNKnjoOskuRdBIAC33dLrzNHcrkLGKasHkehdJpAQgtrqdWzVC3COORWhaOS1fUTLtK+z5ZKXCFec2uNJ1IzKbHQshKx5EDzygkAitKt7muudu/ij/Vd4zCBtU768z+Ke3txitp3zBPXzfkZJlpOSLCd5HjujCz3kuY+NO4rSkSPPbaPN9KDGO3elokvSAGoLJwjGUxim4AcvrOXxD7YDh54JlNTT799/La1lZW0HTxQ9hS0VpO7kXyG09Gdvea5TdkPsciTPNnHaNHxdRb2/d954thhF/MVxLb7at6l88/O4mj7GMMVeHcNW1PqZqlSTsGVjyx9Bjssq4z9d5HSwIUCLtaEZSaIyCCRJktRv2sMJHv+ghvljCpix6QFQFDZO/CYFSzaSW5/OBKrvjCEEVEbXssUyhooDdJnwOix0Rnyo0e3dnncl04EedbdMIKfLQxQ7SnT/QaBIwsChpDOBehsE2lnbozdyutZNWnzYezkd7E8Lt3FqYDth30huPmc69Wt+iu4qIFR5RmYdl10j322nNZwgljQoyXaQ77EzosBNSyKf8iOxBXW4GcPqYZHrDOYHniOhuamf+yO0YXNx7KNWVJbTSkP5PKyaStZugSJVVXD2sm6TJB0uuW4bLZ1uFGFCIgDOnEEdT0I3juiLU+nADFNQ3xkjktD5z7I6ct02rj1u2CE3xcl94bO4m9aTCJ3HS1lLGNexgsbZtxPPS2dtFnjtmcCBdGRzWDQcXadnw/Pd3H7uOH76soE3N8LljS+Ttf11dpzyIP5Rl5DtSmW6wH2yvZP/0apJFE7D47Bi6fqe9kdTex1DVcGqqVjVYyNoKINAQ4Ca8KOlIujRAHgHp3K9JEnS0eaR97YSTxl8eVg92QtfpHnGNymrHMW6D4dxRvtaOiJJQnEdQo1UGdtZnncWYw9QZ8fntNIe8aHGdmUCCSHw6B1gAdW7KwiU5bTSIbzk7ZE1tKdoUsfJwQWBfM7ef33vzARKaG58id4Vg31zbSOfVVuJjr4Yw2OnYdzVmWV2q0qR10GWK32SleWyEk8ZmSDJ5LIstm/MoTJ05GUCGYFG2g0fX20+jx9WlDDmzM9hugoY4d13Ro+mKnjsFrwOeUolDX25bjsNya7pMdGOQQ0CCSGIp3pfDzOa1HHZLDJwdAQRQmCaYCJ4elkdhiloDSWIJnU8h/iZqdZ/hDcZ4n7rHzB1B3Xz76dz9KcAcNs1inwyE/Nosee0tE/NqsAfTXHbOyqLJ1zD/4XuoPTDHxIuP4V6v8LoQguaqrBuez2jlDraiq7A13VTJt9jJ6EbmCIdXPI6LLjs2jH3mXJshLqGMj2Jloqk/9+2ZXDHIkmSdJToiCR5/IPtnDMhn2lrfkrSW0HrlC8ztTKbzUoV3mQLzU3p+i+hta+nNxp5Oq59ZHvs5HVYaDG8aMkQ6OkpXNGkQR5+DDSsntzMuj6nhQ7hxQzvPxMonNAzNYF60yIe9t8Sfk85XUGgqOpGSYR6tU0qUI+NFEpOFTkuGztvjOV5bIwu9GQCQDvtniUzpshLTSobLdyYmat/pKiv206d7uOG06cz6uLvYroKcNo03AfIEMv12DIZV5I0lOV7bNQl08FmfY8uh4ebYYpeZ4O8tqaRKXe/zqbmEIHY3nfxpaHJ6CosnDJMXlvbhLvrQjzn/R/iWvuPPu+3obUNZ8rPU66r2XLq79ly6St0jvk0KAoWTaEy1yU7Lh/FspxWrphZzmXTy3h+XYCXKm9DS/gpWnovKT2deRZPGVhbVqMiEKUzM9s6bRqjCr2MKfJSmecix2075gJAIINAg86M7irMp3ZsHsSRSJIkHT2eXlZHLGXwpaKNODo30Tj3TjS7kyKvg2jOeADs7esAcOx4hxaRzchJxx2wCKLPYaXZSHd7EpH0BVQwniKfAFFbHtbdTiR8Dit+4UFE91+ANZo0yLJ0XdRY+j8bdOfUsRAulF7UBDJNgTO8AwAlbwSqqpDrtpHtslKa7TzgiXVVnpsGkYumRxEx/yGP/3B5elkdlmgLzpxSzhifzuhSlHRr4QPxOaxDpoCmJO1PrttGh5n+DNtZtF4MUrDWFLvquuyPbpj87LWN6KZg2ao12D988IgLMB+rjK7f0+LqdjqjKT4zdxgjlXrGbP0rri0v9Xm/Dz//LgDTp0wjNvJ8EtmjMssqcl1YhkBbc2lglec4ueHEKsYWebn7Y5Udo68jb8PfcTd+SCCW4r1NrUwmnWChls8Y5NEOPfIvZJAZuxUMVTuqB3EkkiRJRwfTNPnX0lqmV2RT3vEBhtVLsPIMCrx2VFXBXj4F6AoCmQajgh+x2jGT3P1M+dnJ57TSkPQCoIfS07yCMZ18JUDcltstQJLltNLRiy48kYROltVIP+hlJtDBcNo0HFaVkHCiJEMHLAbbEU1SKprTw8kfDkCBx055Tu+mqlXlu2gU6aLYyY7aQxj54ROIpbjz+TUUawFGDB9Bkc/edbfQg+cAWUCSdCTJddvoIP0ZZoTTn2H+aCqTsXE4maJ3mUDPLq9na1sERYGyNQ+Ttegn0Fkz8AOUDplhCoQQPLeintIsB+dNKuZay1sAWKKtfWpB/s6GFmq2pjs+OQuGdVuW77XJz+xjhEVTGVXo5QcXTkABvtZ0LnHvMMrf+1/UZJgPqtuZqlYT81Tgzik64P6ONTIINMhaWnbVZ7D5qw+5SJokSdKx7q0NLWxuCXPh1BI89QsJlx6P3W4jr2ta1KjhI2gVWYim1SR2LMVHGH/pfFwHqAcE4LVbaNTdABhdnaQCsRQFip+UM7/buj6nlU7hxRLv3O8+IwmdbIuefmAdmLpwuS4bnaYrXQw2Gd7vuo3+OJVKC6aiYctNn2BbNLXXqfVVee5MECjVuePQBn6YVLeGEckILhFD9RVT6HMwqtCzz2LQknSkynPb6RTpIBBdRevDCZ1wXD/sYxE1i7BteK7nZULwr6W1/G7BFu5/fSMTS30cX5XNxGA6A+RI7D54LDJMwer6AFtawlwyvQyrGecK7T0ALLEWUn3oUPfXD2qY6AoAkPKUZ5532TWKfbK26rHEadM4YVQ+91wyiVUtOn/I+TbWUB3FS37M6+uamWXZRqJoOk75Xb4XGQQaZO+u2ARAi8hG7agm0Yu0WEmSJGnfnvmkHrtFZYY3gC1US6T0JEqyHJkgxqSyLNableQ0vEfex/djCgXvhLNw9aKTk89ppR0fAGZXPY1gLEW+EsR0FXZbd2dhaJseAmPfNSwiSQNvJgjU/5lAkK4L1K53nRwfYEpYYyDGMKWZmKsUzXrwdW7cdgtJdwkARmfdXst3tgoeSuo6YxQo6YuK3Yt7S9LRJtdtI4wTU7FkpqpGkjrB+OGvs2P56Pfkv/+DHpe9v6WN7/xnFT97bSPtoRjXzK3kDPdW8kRXUD2w92eLNPSYJjz9ST3ZTiunjysie+sLeIjyiTIBS6wdPXXwwccdHVEmuoMIRcOSXYJFUyjy2RmR75Z1gI5Rl88o59LpZfxqUx6rh11H3sa/c2HonxSJVozi6fJ90QMZBBpEgWiKtdU1AHxijsYZ2kayDx+GkiRJUtq6xgALNrZy0qh88ls/AECMPCXTLhRgdKGHf3ImQeFieGAJK9TxlJaW9irrw+uw0CG6B4E6I3HyCaB4ugeBfA4rney8477vKWHRpI5PG7iaQJC+8GtNdU13O0Cb+KZgOhPIyKrs8/E8eWUYqIg92sSbpqDBH6PBH9vntoMRIKrvjFGAHwDVW3zYjy9Jh0uexwYoxCxZEG0nqZukdEEorh/+2kCJINZYK3pk72zJh9+tpshn5+MvDmOD9yucHHyJOdH3iIv0Z7nhPzKmmh7r1jUG+GRHJxdOLcWpBylc/iBNjpE8n5yNIgz08P67Z+5JiHTR3zKlFd1TwqjiHMaX+Cj0OeSF/jHuJ5dMYkS+m89uP5tPtKncbn0KAKV81iCPbGiSQaBB9Lcl23EZ6ZPxTbbxWM0Eeg93TSVJkqQDW1Mf4Jo/LuF07RM+M8GKt34hSXcJ3rLx3dazaCo1BadxfPg+jtMfYdW8R3DbrfvYa3c+h5UgLkzFCl2t30P+NqyKgcXXPYPE57Rkpl3sXv9tT+GEgVvtCgL1skX8wcpx2WhOdGX1HDATKE6l0oyWN6LPx6vM99JCLgS6T9loiyRI6QJ/NLXPDj91ndE+H7ev6jqjDLenO6dZfDIIJB29dnaxi3QFgaLJ9M1HwxREk8ZhHcvOQvV6a/fGKKvrAiza0s6NJw7HsfkFLMkApYu/z7iWl3nbnE7MkoXpl+fLR4K3lnzC/1jf4ZLhULHgFizRFhZP/AEtIhsAI9R8UPtrCydJ6CaFZiu6t/zAG0jHDJfdwq+umkbMULk+8lVaHVWYqhVr+dTBHtqQJINAg2hpTQfD3UmEYkEvmgaA0bJpcAclSZJ0BEroBp/980dMULfzW+7jlDcvxFP3LpGyk/D0EOA5e2IxIwrc3HHFPGaOqcRt7918cZ/TCigk7DnQFdhJ+tO13ew5Jd3W9TqsuwqwRvZ9tzOa0HFrAxsEynXbaEj0LhPI39FGrhJGyRne5+NV5bupN3NRQ/WZ7j+6YdIaSmTWqe+M7VUHL5rUCcZ0wonDmxVb748xwhUBQPWVHGBtSTpy2SwqPoeFkOJDjXd2+1sLxtPB2bZwYj976EddQSCzKwi0qs7Pf5bV8aOX1+GxW7h6biWWLa8Ty51ALG8SFj3CAu1E2rRCOR3sCCCEoKr6SX6s/ZGZz56It+4dGo+/G2fVHFpFVnqd8MEFgeq7skizks0InwwCSd1NLc/m++dPoKK0hO0X/JOa857E7fYN9rCGJFk+fRCFEzr5WgRdzaagaiI0QHPNGkpmnjfYQ+s3saSBRVOwylaNkiQNoEVb2miPJLl1/CZEjUo8ezTulmUkqk7tsXX3zaeM5NSxu6ZvuXtRFBrS08EA4tYcbNH0dDCz6yTWskctGU1VSFqzu9bZTxAoaeCyJNMPBnA6WHPCBnYgHtjvumbHNgC0/EMIAuW5qRf5TAjUENcNbBaVjmiyW2MywxTUdkQZUeDJPBfqKk7bGkoc1g4vdZ0xrrCGEIqG4so7bMeVpMGQ57HjF17KY03dsn/aQkkgidOmku85cLfEQ6Uk0tl3om0ToXiKz/xxCeGEjobBFbOrUCItOFpW0D77f2kZcw1Z216hdcd0apsWUSILQw95Ne1RnMk2wo5cIpOuRVgcdIy7hhIBnUpOeqXgQQaBOmNoGLgSLcSyZBBI2ttn5lQyd3gu8ZSJaSvr8RxQkplAgyoU18kmjOHIZsyoUYSEk0jDhsEeVr9K6EaPd5RihznlWJKko9srq5vw2C2M7VxApGgOWy98mi0XPY8y8bIe17doKhYtfWKgKPSqKDTszASCiDUHNZaup2HpCgapvr0LCuuOXABEdN/TwSJJHYeSRFic6cEMgBy3jZBIF502DxAEsgXTHb0s+SP7fLyqfBcbzEpcsQYSwXaEEHREkih6nOKPfoqraQkAkYRBSyie2S7UVZw2HNeJHKZsoJ01Jkq0AIarAFR5aiQd3XLdNloMD1qsg0TKxFv7NtbQrho78ZR5WOoDqcl0EEht38zTy+oIJ3QevWYSa3Jv51b9EQIrX0ZB4Jp8AVkFJUSmfpbJlflsSWSjyCDQkPfuxhbyCGF4SmmZ+b+0Tv0KKAqaqmDJ6pp2G2k5qH3W+6MU04EqDJTsvtetk45eqqpQmedCU5VedX09VskznUEUTuj4CCMcORR4HTSqJbjCtUdVm/iEbtIeTnYr9NkSjLOlJUxjYN+FQSVJkvYnuVsnxZRh8sa6Zi6rjOH0byJYdQ4oKrHC6Xgc+671ky6Qmg4A9bagpK8rEyisZaFF2wgndByJdJaP1kMQSDi7gkD7qQkUSeg46QoCDZBcl40g6SCQ2E8QSAiBL5a+GNRyDy0TaK1It5c3GlcRjOvo8SjD3riJglUPM+zNL2WCZy3BBJGETsowiSV3/V53dEQPy/dhRyRJLGWQK/yYroIBP54kDbbTxhVSHbahJvwoeozKNz5P2aI7MsuFYOC71eoJFCOdAal2VPP4B9uZXpnNbGMFzmg9+eufoOjjn5FyF+Msn0pZtpPSbCcVuS7qzTy0ZBC6MomkoendTa2UWEKo7r0/V3NzconigIOcDlbXGWO0PV1IXM2RQSCpZ3aLRlW+C49DBoH2RQaBBlE4oeM1Q5iObFw2C+22EvJS9d0ubo50Sd1ECGgPJ2gLJ7j31fUs3Jy+YGoLJWk/XPPOJUk6aqQMs1tR4Q+3thOIpbjE+QkAoeHnAAfO8Ml329FUBfdBTDty2ywoCgTVHLR4B4FYCkusjRQWrK7cvdZ3Op1EFSfEeu4OltRNUobATgIxQPWAAHLcVhJYMRUroqsmUDih0xKM0xpKoHcFWzqjKcpEM1FLNjj6Po/ebbfQ6BwDgNq0mvZwgsq3v4KnYRHN029BTYUpW/gdEAIh0gGfzmgSV9PHjHzhEhxta9ANwfb2aGZsA2VnjQmf3o7pke3hpaPfTScNx3TkogoDZ/1iVDOFt24BNn91Zp1EaoDPRbs+h0yLC4t/KzVtIa4/oQpl3XPo9iyCFadhjbWSGH4mSld2nsduwee00ii6pmwGZDbQUBVPGXywtZ1CLYzu3HuK7ahCD60iCzXSclCf8fWdMcY70zcyLDIIJO2Hy2bBt58bgcc6GQQaJEIIwnEdtxlEOHNx2TXCrnKKjeajqk280bkdNRlmU3OYa/+0hIff3cr//nslv35hMbGkcdg7UUiSdORL6ma3YqavrmnCZdMY1/ku0YKp5JWNoCLXSZbTut8MH1VVyPfaDioIpKoKXruFTsWHlgoTDIawJ9oJW3JQe6h95nNaCeCF3aaD7Z7dsrMzj8OMDlhRaEhP/wCFpNWDiPkBaA7GaQ4maArE2dAUoj2coDEQo1JpJuo+9FoLWfmltCm5WFpWk+hsxLfjTVqnfpWWmf9L0+zv4qt9i9wNTwKgG4LmQIK89U/gavmEES9/Ck/tO8SSBusbQ6ypD7ChKUh1a5gd7VEa/DFaQwkCsRQJ/dC+R+o600Egd6qd/2fvvsPkuKqED/9uVVfnNDloknIOliU554wNxtjGNgYMZgkLhm9ZcljSLruw7JoMxuS0xhhsMMY4YBsnOclBliVZOUzOM51Ddd3vjx6N0kgaSSPNSDrv8+jRdHeFW6NWd9Wpc89BgkDiBOC1TM5YMBOA3lfuA0ArF2Vrfjm8TOYw/18d0FBR6FzVQkwnx7zAIKc2BPFveZjk5EtpOe/b9E+9CmfJzbutFvFZtA4HgaQ49ET1wtY+MvkCIWcQ27t7EMg0FNMrg3TpCCS6yBzEze/WgTRNVvGmiqukfkzHLMSJRIJA4yRrO9iOxl+Io31R/JZJNtiIW9kMdG4b7+GNmdp7rqbqrzfxqbteZmN3go9eMJ2fNPydn3Rdj/PoVw/75F0IceLJ2g7JrI3jaBxH8/CaTi6aHsLXvZJ43bmEvRZRv5v6Uv8Bt1Ue8OC3RlcPaIdi169ilsxgbwe1upuMb+TgQcRn0U8IldqZCdTanx4O/uwIZpXm2nEiR+6uZulQW+iMGYRsDMfRu9Vm0xraBopTdRtVF3ak6bD3ee7MClbajSS3vYRny98BGJxcbHzQO/ddxCedTc2zX9mZfeDkCTU/SqzhQnLhyTQ99B5C2x8ZHl/e1qSyBQbTeXoTOToGM2zvTbG+I8H6zvghTx1r7U9j4ODJShBInDgWTC9O96zufIIBVwW9U95Eyfq7KHvtpzQ8/E/YPVuO7ACGgkBPpYqfe++ZZZN+/e+Y+Thqzpuprqqm9fxvE2g4abfVwt6dmUCOBIEmrLXtMQJkcDnZvTKBSgNuJlcE6NZRjGQXmfzorgW01jT3p6gzeoqBJfeBv+OFECOTINA4iWds3ORxO2mUrwSXaWCWFb+Q+5qPjzbxdrIfd6KV8t4XuCT/d776plncOPBDLuz6Gdup4tSWnxB84bvjPUwhxDEmaxfQGhI5m7UdMbrjWS6tSaLQOBWzcbtG/9VmGOqgO0eEfRbdTrH1e393C3OMrWTK5oy8rNei1wlh7DIdLJ0vsK23WO+mmA2pKclsxymddlDjOBhlQQ/lQQ99thcyMRI5m5Hqvm5o66dW9eAqn3LY+/zQedPw1i+iJt9M2zN3EnNXEo8Usw9QBi1n/w+Oy0v9P/4fOHkC7c9i5mL0zbyezZffSbpsDg2PfIDoxnvw9q7Gim/HzAyAs3e2bDbvsLUnuVv9udFq6U9R70mitIMRqjzwCkIcB4xgOQANRjfPZJt415rFmHaS2me/TGTbQ1gb7j+yAxiq53N3ZzHwujTUS2TzXyi4w/hnnU9pwE1diQ9zj8/nsM9FJyU4GDj924/sGMUh60nkqHYlAHbLBFKqGARqLA3QrSO4sz2jDgLF0jbJbIF6u3lMblQIcSIbVQ68UupS4NuACfxEa/21PV4/F/gzsOO2wd1a66+M3TCPP/FMngjFD0eGCoeGa6fDK5Du2jh+AxtD9//jSd4EJFSAz7j+j8Izf8c7sJGeuTfzyZ6rubn7a1z8wtfJnXwV7urZ4z1cIcQxwlj/AGW9m0mc+kGeWF+sMXaSr1hk2F0184jvP+x10ZUrBoFcHS8TUSnidSeNuGzEZ9HtBFHp4sWKXXCwC8VARcdghmTWpop+3IUUmbIjFwQyDcW7z2ii/VE35fF+Euk80Q1/ILL5r3j715GsXsbAtKuw+0xMpQlUHf5YlFJMXXA6rrafcyYv89vUBfzfvav59zfPxTJM7EA1rWd+ncZH3k/1C/+NUcjgmF6e0fOpyrrhkl8x9f7rikGiPRSsAAV3hIInSi7cSKZ0Nr1z3sVGXfydBzxmsQONYRwwKNg6kOZ0fwukwaiU7yJxYjADOy/MS6afxuLIeXzklU/jK2/kP5JfxOpZjePoI9Zeub2rixqgfuo87K4IlS9/G1d2kNicGwm7vQBEhzIYdxXxWRQwSbrL8UpNoAmrJ5Flsj8NOSh4d9bLmxT14XYZ1Ea99BLFZ8fIZNLAgbN6WgZShElSl1xNcs4teI/g+IU43h0wCKSUMoHvAxcBLcALSql7tdZr9lj0Sa31FUdgjMelRNYmqpIAGEPFRKvqp2JrA92/9Yh+8R4Nd7/UwhNPP8Ob3NB53jeZ/PiHcQo5tl78M+INFzLrpRb+Z/sVXOx5ErttpQSBhBCjFnz1F/hbnmLTnLfy+PouZlWHCCVeQqMI1B75IFDIa9GWDAIwqWc5AJ66RSMuG/a56NchjEwxE2jXjjsDqTz9qRxTjHYA9BEMAgG8/ZRGnv+Hn/hgD2x4mPrH/5VcsJ502VxCzY9SsvFuFvmLX+NWxeFnAgGomoXDP0cXXcGaF2P84LFNfOKSWeRsh9jky+id/Q4qVv2IghXgVe/JfOa+TcAmvJZBtfeLLAtspsLKUmamiRhpwipNkCQRlSKqY5T2rSO89QHC2x5i8xvuoNuO0L1L0yCvZVAScFMWcI9YI6qlP80V5jq0cmE2LB2T4xZiwtulkH3lrNO5trae7wxcxCObe/hc3Wy8vWvJ2IUj0mJZa809z6zlg8D7Ll5E7qGFeDpeon3pp3Gf8cH9rhtwuzAUDFhV1Eib+AmrJ5FjmicFObB9xayzkoBFSaAY2HOZBjlfBeTBiXdCzd7Fo3fYkTX7enucM4zXMChgT7ngqByHEMer0XyyLwM2aq03AyilfgdcCewZBBIHIZGxKaF4lqoCxS/imtIQbVTgS2wnnS8cVLHSiea2xzfxrlAvOmeSbjyfddc9RcETRZseABbWRfitrsFRLnSnvJVOBFprfvPcdh5a3cGP37kE70HWYRECiu8jM96K0jbG6/ezYls97zlzMvRuJB+ux+sLHPExhH0uVmWL+5mRepkCBrpq39PBtuggrnwC7BzZPWYytfanmaKKQSB1hINAEb9FaVklRu8mMluWo5XJ+mv+jnb5UHaGKX+5mkt7i0ViXeVTx2Sf7rImbE8Ew86w+Nwr+VJtnC/eu5qKkIcbT2lEa2g/5d/wd72Mr/c1fpOaxwWzKllQF6GlP01XPMv6dJTnUzkSiQLpnE0qV2DXSV+za8J87ax25j/9QSY/8E62XPorHE9k+PVM3qF9IENvIoffbZK1HUJeF5Wh4vdRS3+a+b7VpCsW4Hcf+fePEBOCJ4w2XOAUSJfPB2BhfZSH13bS7pvG9PblDGQy+N3BMd/1fa+209ndDRaUlZbTfsVP6UtmcdxhZoVC+13XMBRhn0Wfq4La2BGuWyQOWW8iy9lW8Wa37S2lJGAxKbp78wMjVAV9YCS6ydkObpdBLJPHcTRul0E8YxNL58kMdap7vSPGucZKbHcYo37ZUT8mIY4no4kyTAKad3ncApwywnKnKaVWAm3Ax7XWq8dgfMeteNYmqorTwXZkAnktF11mNZFMK6ncsRsE0lrT0p9mTrSLnKcebbqx/TuLbZYF3cyoruFTf3TTZdUR6Xp9HEcrjoasXeDLf1nD/z1XnBKzrjPOjMoQvv207xZiJNl8ASvZBoC17k/YhVs4Z3oFrgc2UCg5skGUHcJei86sC8dw43fStLgnE9hHgcodhaEBCsleMjq62+v9qTxTVDu26YNw7ZEeOtPqazB707SuW05FdBbaVTwp1y4vjy/6H07/+1UETBtXsHpM9ufzuEjUnYdWCr8/zE2nl9E6kOb2JzYzpTzIqVPK0C4vm877AVvu+QorXGdy19XzqQgVE/07Bost7HeltSaTd+hJZHmtbZCfP72Vtz8R4QdL/oczXv44U++7hi2X/go7ULPbejnbITeUiZXOFRhI5ekYzJDPpmgy1hGrfe8oJiQIcZxQioK3FNsdQXtCoGFBXTF4+mq+nplOnkz7WgiPfXbcs5t7qbaG/l97QngBJ5+mLOjGGqHL4p7CXotuowIjtrxYNX4/XSDF+OhJZKmOFG92l1XVUlGy96ert6QW+sCV6iJjFzAUNPelcPZR479jIM0/mStJTDoLj3vvqYJCiNEbTfXMkT5Z96y8+BLQqLVeCHwX+NOIG1LqfUqpFUqpFd3d3Qc10ONNIrMzCGT6S4p/G4p+7yQq8m2jLpI2EfWn8qRyBWrsFuySKZQErOHXqsIeaqM+PC6TBXUR1uk6zN5iEKgnnuX5Lb283hEjlsmP1/DFGHt2cy+XfftJ/u+57Vw0pxgMfGX7gHSGE4ckm+zHzCdJm0Fqep+j2koysyqA1b8Jp2z6URlD2Osini2QH6pz0Buahcsc+SIk7LPo0zuCQD3Q8gKzfnsywZYnAMjkC0xRbaRDTRjGkQ+KBsNlBFWaWYUNPJqopz+ZG37t2b4QN+c+QdupXwJjbPpGeFwGLed/h5Zzv43fUzy+T106i7Oml/PfD77Ott7ineL/W2/w4eTN3HzBguEAEEB1xMusmhDTq4JMqyz+mV4VYkF9hPNnV3LL+dO48/2nUhpw877nq3li6Q+xEm3M+ONFTLv7Upr+diNlr/0EK9G219hytsODqzs4SW3C1Db5ulPH5JiFOFZkJp3K4OQ3EPK6CHldlPjdNJX5eXyw+F3ttL16yF339ieRtSlzZdCmF1xuvJZJyOuiJjK6Ki8Rn0WfDqIKGbAzYz4+cXi01vQmcpSpOI7LRyQcHXG5cMUkAPKxDjL5Al3x7D4DQHbBoWvTS1SpfhJ152Lt4ztXCDE6oznLawHqd3lcRzHbZ5jWOqa1Tgz9fD9gKaXK99yQ1vp2rfUSrfWSioqKwxj2sS+RtYkOFYZ2BXf+qjLBeqLEScd2dpLpS+aOqaBIa38ahUNpphmndBp1JX7Kgm4ay/1Uhnd+wS9pKuXldDWu2HYu/Nr9LPnq37npZy+wpjVGa38a+wiceBzL7IJzRE7GjpRUzuYLf36N629/lnzB4RfvXsrnLy/WfuoYzBxSFx8hCn3FbLKfZc/HRYF/rlrLYOdWjEIGVT7jqIzhlCllaA0tueLUoUz5vH3evQ77XDszgRI9mK3PY6W7aXz4PQRbHiedKzBZdZCLTMF1FOrAKV+xtX1QpXk63cT/u/NlWgdS1Jf6WN02SFfJSVin3Dx2+1MKr2ViudTw78g0FN+94SRqIj6+/Jc1vNY2yO9XNHP29PLhQPGuLNPAa5n43Dv/eK3iH7/bxYK6KL//wGlUhDx8YHmQL5f/L+sjZ5D01WClOql99ivMvPNMapZ/gUD7s0Q2/glP3zoAnt7Yw+XRzWgUNEgQSJxY+i79EV0nfwyfZVJf6sdyKRbWRfl7dwjHcOPpXUt/KnfgDR2keMYmYmRwPMXPRq9lUF/qH7Fm10jCPhd9haHMkvTAmI9PHJ7BdB7b0ZQwiO0t22fApqqmGATKDbQRS9v0xZNUvvQtyl/9EeHN9xHZ+CfKVv+cmuVfIPyX9/A5+/sA5Kech2sUGWNCiH0bzXyjF4DpSqnJQCtwPfC2XRdQSlUDnVprrZRaRjG41DvWgz2e7CgM7RgWxi41CJzoZOiCZOdm7Pri1IC2gTRaF2/Mag0lAfde82onktaBFNX0YzmZ4W43tSOM98LZlfz86XoMNOeXDXBNg0XNhjvI/0WRO/Vy2pZeT0OZJOdDMQC0pSdJ1O+mYqiOxUT2wtY+Pn7XSrb3pbj5jMl87OLpJLMF2gczmIZiMDYIvRshOHe8hyqOMRs3rGUZED3pzWS3ruQa80m6uhcBYFYe+aLQAGdMK+e6JfW0rvQz1QSjdtE+g0A1ER9JszjFIjXQjWtgGwUrSC7UQOPD/0Rg6s+oV130lU07Ks0ADF90+Ocb3nIVrzye459/+xJfv3oBq9tiXDi7EvcYn1z73CaFwu7bjPrd3P7Ok3nLD5bz2XtWEXC7+KezphDxWfvYyv5Vhb38/v2n8aV7V/OnTQa/yrwDgMZSPzcstLkydTfVa39N+ZpfAKCVi3VzP0Jr3yLOqNxAxjsTf2Sve1dCHNfMoYtzr7vYTW9yeYDLF9Tw55Vt9AWn4etbQ2syT2VobPswxTN5Ika6OA2NYrD4YBI7wl6L7t6h88rMIIRr9r+COKp6EsXAYagwQMFXhnsfwb3GihK2OxX4elaRzBUIbX+Mqpdu3Wu5ghUgVSjFbyp6p19PoLx+hK0JIQ7GAYNAWmtbKXUL8CDFFvE/01qvVkp9YOj124BrgH9WStlAGrheay23+fcjnrFpMhI43hKMXT4cvZVTYD1kujaSzp9WLIA59JvckSLZn8xRHnTjcU3Meiot/WkmD3W7MSr2PT1jSVMpCz58Pfzwm7xreprI2p/hVStJaovgs4+wqWIyyeBZx2xtpLHiOJqNXXHyBYhl8hM2CHTPyy28vH2AgVSev7zaRl2Jj9+991QWNURp7kuTzhUwlKLJn+OfNt1CycYW+EzrmE07ESeGteuKQaDTFy+iN/Buap/9EmVrfwWAdRTaw+/w+Stm89SaEnDAX78Icx8BnIjP4uNvPh3+Anc/tZK3hraRCzex9eKfMvP3Z3P1tn/HVBp9lKay4SlmAhWsENPmLObP803e/fMX+OQfXgXg3FmVeMa4aLvPMnFce58SzKoO87/XLuQjv3uZj108g8qw57A6EVVHvNz2jpPZ0pNgVcsgK5sHeWJDN197LsfXuIIGtZQFvh6WzJ3FlfHfMeu1W9noBWLQO+edlEqNMnGCMYfOP71D55Mel8lZ0ysIeEzWOg2c1vc8uXyBeCZPyHtoAdqRxDM2YVLDn0cHK+Kz6MoNnQtlBsZsXGJs9CaK9Z4ChQGcwL7ryzWVBfi9s5jr+x7j6juf46P5u6hSAW6d/TvqXINo00POFaJbR/jxU1t49+lNvGVxHdPH8L0oxIlqVGdbQ1O87t/judt2+fl7wPfGdmjHt3gmT7mR3K2DCUDJpKHpDP1bSGYL9Caz4OTB2PmBpzV0xbLUl07MLJnWgTSzXB0AuPYTBAJwl0/DMT2ENvyJQOcLtC/7PHc653HdC9dS+Y9P0lX3MJOrokdh1BNTKmfzgV+/yGttMX503Wxc6Qx26ZQJlwZ7/6p2PnrnSkIeFy5TceMpDXzmstm4TMXm7iR2oXgB6Ep18yP9FabkNhVXzAzs1qZWiP1pG0iT6d6GbVlU1zawSb2N8lU/Irz97xQ8Eczg0ZtmHPJaTD79GtZsKsMbiu532XMWzoC/wGBvJ9n0JnTdQuxADT1zb2byqz8EwCg/OkWt8RYvutIVC/BaLlymwY9vWsLbf/Ica9pinD+zksAYB0O81r4/ry6bX8OrMyvxWgaxtL3P5Q5GfYmfdM5hcnmQKxfVsq4jzusdcTRNPLOpl/teiPMV9TYuNmZxeqiDS2eEyS58B2VSXFacYExDYRoKt2vn/1Gf2+SK+bU88WoVZxl9uFKdtPTXMLXC3G25wxHP2ARIg7vkkNYP+yw25TzFW9OZwTEZkxg7OzKBfLk+8oH5+1zO73GhZ16Kd9ODnG2s5OTss/xDL+LHL8UpTirJA31AHz7L5KI5VXgtQ7rLCjEGTuwUi3GUyNqEjQx6jyBQXU01W50qUpuWc+m3n2CK08ydfIIuStlgTGN2lQ93sITWM79ORcgzIT8IW/rTXOLppqD9uKOT9r+w6SIfnUqo9Qkc00P/jLdyCkG+/My7uS3+v6RX/ID0RZ86obpIaa1pG8yQyOT5l9+9wusdcepVJ1P/+C8ELU38Ay9REhzb1OzDsbErwSfuWsmi+ih3vv9U2gYy5AsOdkHT3J8qBoC0JrL5XmqXfwGnkOBvxtlc5jwB6X4JAolRu/ulFhpUD7lALX6PhdcfoHvRLUx6+nPkS6YN39U+WkpPuY7OWW8+8PQpl5uCO8TSiE10oJ21zsUYwEv17+KUlb+mRCUwKo5OPaMdd94zVScRHBp30OPijveeSvtgmpLA2Hdc8R3ge2rH53vEPzZ3d12mwazqEAWtyRccqiJe5tdHyNuaNy+axCvNA6xuj9EZq4SZlXQ2lFAVmZgZlkIcSaahRgzSXrukjq+8OA08EN7+MH2z38G23iRTKoL7zHo8GLFMHr8nhfY2HtL6EZ9Ft+0rBoGkJtCE05vMAhor20/eX7bfZU87/00Utn+Bjxh/wKcHmXf+DdzTdDr9yTyO1mgNjtYEPS5CXovwIU4ZFkLsToJA4ySRsQmpDHqPuyClATdrK5Zyav/jnNpUwqUDD2D1FegOzGBycjOpDhdVuplUxWLipe+dkEGg1v4004x28qEpeEcx1adQMRt61zAw9Som1dYyxTK4beolPLH9UU5b9VPaln6QqpIQ+YJD0OMadeHAiSxfcHAZasRjaelPs6Ezwef/tIreZI5bzzY474UvEcrGMbMOvc0vw+zTxmHUuys4mrtWNPPfD67DY5n84MbFZPIOiUzxbv72vhRQbP1Z+/TniGx7kFTFIr4X/lfWv76Ky6yhIJAQo7S5O8lZZh8qUgdAedBNy4zrKHvt59g1S476eFxDn2+e/WS67OB4S1nsacGtCty91eL8ZI7n2gv8Lf9OPjttG6Fg5IDbGBOlk8mHm8hNvXS3p31ukykVwSOyy/H4zDYMhUGxGLXf7aIy5KEnkSOZtblgThXLppSSt3dOUQt55MJCnHhMQ414k+3kxhL6I3NZn59Ow2s/o2/WjWTyxWzMw81CdxxNImvjcydhqCbQwQp7XcT0UD1NyQSacHriWUIqg1HIogL7r7XmsjzE688luvkvaOXCN/sSTqoooeBokjmbTG6ok6wqlsWIjtHNAiFOdBNrTskJJJ4dSoXd4wvQbRqUz7uAgBPnYwttLnKvIl02D/OGO3jikgc5P/011nvmUfnKd0gl4+M0+v1rHUhT63RQiE4e1fK6slgcOLHw3UT8Fl7L5PqlDfwqdz5Wpge94e9s6EywtSfFlp7kcdE1rGMwQ3c8u9tz7QNpPnLHy3zm7lV88o8rGUjn+dob6rl8zcdxub1cl/08AMamR5gIJbf+/b41fPruVTSU+vnvaxYQ8LjoGMxg5JOgi/9Gvu6VTP/jhYRa/kH7ss+y6Y1345TNoNcZutiUIJA4CJ3xDLWqBydcDAJFfBam28PGtzxA5vwvH/Xx7Mg8Gk19NsdXSqB3FQCbChX85KnNvLC1j5UlF9N18Q+PXo03Xwkt71yOqj/6QbPxpJSiIuShqTzApKiPqRXB4Zb1hsEJlW0qxA6moYbrAe1KKcWVi+v4XvoSvIObCDU/CsBAKj/crTZnO/QksnudyxxIMmejNXgLSZT30GoChX0WMYrBKEfOIyacnmSOKf40ACpYud9lXYZBrPFiABI1p+ILF7PDTUMR9lpUhr3FPyEv1RHvhK2HKsSxRoJA4ySRsQmQQnl2v/NqGIrMpGKWR3j7w/g7XyJedw4Ai+qjXHNyPf8Wuwor1YnnlZ8f9XEfSCJrE09nKbM70CVNo1tpyc1sfsOd+BpOGn7qgtlVvOxewoCKEHz9ruHnk9kC6zsTtA2kiWXy9CSy9CQO7gRkvGXyBQZSebriWTL5AgVH80rzANf+6Bn+9lo7qnst3+Eb3LHgFS5Y+wVcqU7aLr6d7cGFbDCnEWx+jER2bGpnHKpk1ub3K5q5fH4N/37lXKpCXrb3pnBiHcz83elM+9MVRDb9maYH3k7BHWbDVQ/Qs+ADYLioCHsYYOh9n+ob1+MQx5a+WJIy3YcTLk4zVUpRGfKgTTce6+gntu5IdPSMok6G9pViFDIAnHryyTy5oYfVbTGWNpXiMtWYTLEYLVOpA07ROt5ZpsHUiiAzqoNMKT8yGVBCTHSmGjkTCODGUxp4wjqdblVO2aofDz/f2p+mJ5FlQ1ec9oEMHYMZHGf0N6biGRvQeApJ1CEWhg77LGxc2C4/zmFOByscxNjF6PTEszR5i9ngB6rVZxqKeN252J4SBmdcfcJ/NwlxtEgQaJwksjZ+nR6xM4KK1pML1VO+6scobZMYCgIBXD6/huf0bDYEl1L2ym2ks/mjOewDau1PU0MvprZRJaPLBPIEIiRrT9stxdPtMvj0FfO5xz6dcPPfWbVxK0YuBtqh4Gh6Ezm29aRoH8jQPpBhMDWxfg/70z5YvBDUGrb3JvnZU1t4369W0JvI8Y1LKvmp6+uc6rzMwtf+i3DzI3Qs+xzZqpM4f1YlD2Tn4e96ieRgz7gew99e6yCVK3DuzApg58Vr9XNfxcgncaU6aXjswzguP1vecAe56FSg+O+6sC5Kvy5edDkSBBIHQcXbMdAQ2dketjTgxnKpcbk76DIMlBp9EAjAMSxuvPA0JpcH0BS7JI5m/bFkGEzIqcTjweMyJQtInLBcptrn509NxMd7z53Jj3MXEWp/hrLVvwDALmjaBzLDHWsBcgeRoV0sCp1BoVHeQ5sGGx7qDpW3woddEyieOXbOH48VvckcdZ5iJpAZOsB0MFPheCKsffvLpGddg3EUb4gIcSKTmkCHqeBotNYH3a0pkcnjcVIUvHvfgfS4DBLVp1K64S4KVpDg9NOoDwVxtMZQIRbWRfhj/DQ+nX2BeNsafJMX7jaeXe8oZ/IF4hkbjaYs4Dnid5tb+lM0GF0AmGVNo1rHZRpE/RbWHr/Da5fU80L+A7gf/BtnPHoNjUYXybIFtJz/XXKR3QNMzf0pPFZwwl/YOI4mkbGpeuFrdBuV3LJ5Mes7E9SX+PjP80zOeOXDmNkBNr3pT2jDwjOwgdjky/G5TS6ZW813Vyziw64/4Wz6B1TdMG7H8YcXm2ko9TOzKkT18/+JO7aNZPUySjbdQ9eij9A9/72Urf01g5OvIB+qRykoD3qoDHkYTOeJEUCj0BIEEqOUsx2CmQ7wgIrWDT+vlKI67B2zrjUHwzCKGSWjqXmjhwqg50P1BHwevnXdIu54fjuzqkNH/XPLZRhHPfAkhJh49jzv2tNl86r50oYbeahlAxc/8wUAeue+a6/l8gVn1J9j8UyeIMUAgeE9tJpAkaHiwFkziOswawINpvNE/WNfEP9E1pvIUhMolqxwHSATaEdtPZSBzyOXpUIcLfK/7TBprUlmC0T8B3dC7WSTGJbGGeEL0O0ySNYUg0CJ2tMJ+Py7fVG/cWEtv72/kU97wNn+HExeSCpn0zaQIZ0rUF/qI+p3o7Vme1+KbL54h6YvmaMy5C1OPVDFgpmmoSg4GmeoxozHNboLmn1pHUhTr4pBIKt8yqjXqwyP3Jll+sLTGVx1Nq6eFm5PLeWtvY/T9MdLWVf9JlrLz2BuIIY31U73wg+ysQtKAm5CXldxup3HNXyiMBYcRx/2HYq84+Ae3Erlyh9QCczWH+eG00/l6s5vEn7iCQpWgO0X3EamfB4A2dKZeC2DKeUBqiNeXmMaKSOId+tj5JZdNy4Xvs19KZ7d3Mf7z55CuPlRKl69Dcf0ENn6N3LBeroWfQjt8tG96BagWDS3rsSH3138uIn6LTyWRdoM4pa5/GKUehJZalUvUMyW3NV4ncAfTDBFDXVIyYUaCZqKhfVRFtZH6YxlcB3lO58+t3lcFNgXQhxZQY+L9503m3/57b/iN7/NGc98kUzJDJK1p++2nF04uOlgIVWcKsQh1wQqnk9kzBCBwwgC5QsOyWzhkNcXI+tJ5KgJ9KJRqFDNfpfd9ftvx3miEOLIk/9tYyCRyRxUa9tMvoBVSIIFxgipsJZp0F97Bo5hEW+8mJo97q5cNr+G//hrNUkzgtn6ArHMu9nem2JHreDWgTQBj4u+ZG44AASQtzWt/en9ji3oddFY6j/kYEdrf5omoxutTMw9LtT2Z19TOUJei7WX/watIdoe49PPv8wVHd/jwta7WdB25871Y1vYfv4P6Uvk6EvkgGIBQ7/bPOCdrtGKZ208LuOw7trH0nnWPXgb07Rim6uJW/k+auV30aaH9qWfpm/WjTieCC5TYRc0SkH90L9H0ONiRk2UFYmTOK3lH8TSOcpCXuyCc9CZaIfjrhdbUArObfQw6a+fIVMyk01vvJvw9r+TLp2N5Q1QcDQFR+O1DCaXB3Ybn1KKmqiXeDpEqWQCiVHqjmepVcVpkOYumUDjqdheeXSfB3ooCJSPNOwWgKkIeg5qKsVYCMj0JyHEKJQG3ET9Fh+4YDbv/ev7+UeolcpH/4UHTv4pc7f/irr4SizlkF90E5xzy6i2GcvkCQ1lAo1UEmE0dkwHSxpByjOHfjPJLhTPVbJ2QQoOj5FMvkAia1PttGMHa7Fc+79JY5o7vw+lHpAQR4/kgx8m8+eXEHzoYwe1TiJrE1JDqbAjtMf0uAzywVrWXfc0ydnX7TWFa1LUx8K6KK/o6bg7VrCtZ2cACIotFLf1puiOZ1GFHCWv/x9Nf7uRknV3wgG6SiUyNpt7EmTtQ7sz0tyfYoa7BztUB+bhxxhNQ+EfumCZXRPmQ1eeQ+jtv+XxNz/HXXO/z7m5b/ND651EttxP2eqf7rZuwdG0HCDodTDimTzp3OHdMfrMH19h6eADbAyfQuraO7EDlcTrzmX9NY/Qs/CDOJ4Ifo/JzKoQ06uCNJUHdrvIXDa5jPtTc7FSnWTbVpHK2WzoSrCp+9D/zQ5GS1+K/3tuG2dPr2Da2h/gSnfRcvb/4LhDDEy7imzpLBpK/UyvClIadNO0RwBoh0lRHwM6KN3BxLCcvf9ASFc8S7XqJ2eFcXkCR2lUBzbak1YjUAwCFaJNuz9/EIGksXI0g8ZCiGOXyzQoD3o4ZXIZZ85u5H2J9+FNd3HVU1cwfftdrI37MdN9uNfdO+ptFs+BhzKBDjEI5LVMPC6DpBFAHU4mULyLYMsTh31uJ3ba0aylLNe21/fdSLwuE8ulUAq8lnw3CXG0SCbQYdKBSnwty8kXnFFnnCSGiuIBe7WIB/C7TQwD7EA10X3Mj735zMks/8NUzoit4H///CyGafAW74uc5awgUX8eLVOvZ8XajVz10rupLbSSskqoa32S8Jrfkq+Yi2MFyQdrKXiiGLkYhl0cT6pyManqpWzoTFAWdFPid+91gWIXHDTFrhK7ZgxprXlxWz8fd/VQiDQyVhOxwj6LZLZAyOsilStQGnBDoJzaijfy3voBvv5ANdOcNVzw7H/QvWEFbZMuZanzKo7LT+fJH6M7nqUiNPJ0s4OhVt1FIRCBk998yNvwbn+CGtVHbtlN5ILVrL/2CdglK8BjGcOZWF5j7wvDZZNL+Len54MLjI1/Z3NwBlqDXSiwoTNB1G9RHvQckYvKZNbmDy+20JPIcd3Jk4g8dB+xhovJVC5EUYwvlgXdw0VWJ0V9+9xWTcRLb0uAqZIJJIYkszYuw9pnFmJXPEOpipH3lROYQEGMHW3GD0SFqgDQJdOO5HCEEGJMlQfd9Caz3HL+NDbNq2bV5jQ1XY/zA/Md/K6lhOca/49gzyuj3l48Yw/XBBrpHHi0wj6LQX14QSDXC7cz+dlb6Zj0EvinHvJ2xE69Q9n4kUwruuGSAy7vdhlMqwjSl8zJNGUhjiIJAh0m3XQW7nX3EevchFU7fVTrJLI2QbXjC3DvwtBKKcJei4FUfp8X81cumsSG7Jvhb3cyOfY8N+XuoEm3klVeAs2P8cEnLd6p76XS7OBDzie4P76Qt5qP897uvxLt2UxEpXCzd5txrQxazvoGAzOupSeeoyeew+0yMI3iRX6u4Ax3hHCZiqayAD63idaaLT1JOmNZaoId6JKlo/pdjEbEZ+GzTAIeF3bBoSOWYSCVR2tYUBflBzcu4Zf/+AJbtv2Im3oeYmHv/TgYGDhkI010zrgGv7u4/qFKZbJUPf0FCoHqQw4C9SSyXJx/lKQnSmbKJfgsg3Su+Mv0WAYVQQ9Rv7XfL8ElTaV0U0K7bzqhlsfpXvhBlJ1Bmx40iv5knv5kHr/HJOKzsAsat8soBs4OU18yy70r22gs9TPPasGdbKfr5I8R9VvURHz0p3KUjLI2S3XYS5fth0zLYY9LHB/yBYeMXdhnTYCuWJapKgb+/ReZPNpGG/w36k9h24W34556/hEekRBCjB2XaTAp6qOlP830qhBU/TPd/DPB19rJbd1EzKokkuwsniSO4iI+nskTMYbOgQ+xJhAUzw1jOoDKxYsp8MbB3xxQ/VsAMDY+DPUSBBoLXfEsPjL4cr2kRtkl2GUaVIa9R3hkQohdSRDoMOmmMwGwNz8BowwCxTM2IXakwo58F2RHEGh/rWtr55yBfsDk885tGKT4ZdPX+fbrER7yfJIfW9+gstBF58JbeO/Jt3BJX4rO2FzuSryH7niWgWSOkNOP30mQNIK81JollU7yy8iPmP/Ex3DHm+le9CG06dnnNA27oNnUnSDis4hnbB5e00GQFD57gHTp6D74R8MyjeELLZdpUFfipzaiSeZs3C6jWC/oDYtIZb/Ha8l2nnz6cX66tYJ7S79Lw/Ivkqw5je1GHQG3i1zBwWUofG6TiqBn1LWP0ttW4M8OYGYHKaQHMX0H39Z0fWec6aqFvtKTiAQDVIQ8bO9L4bNMqsKeUd0BKQ96mFIR4JH0At7W8We8vatpeuCd2P4qWs76Opny+QCksgVSQ8UOlSpmlx1qdlBnLMPX//Y6rQNpOnp6ufm8ebg33QVAvP48poa8mIaiPDj6bKuI302/DqJkOpgYYjuadG4/QaB4lgojhg6MvuD8ROIyDWJNl1JjjV2xeiGEOBqifjcu02Bbb3L4RmDdULZvJ6U0FrKQ6oOhaa/7E8/YlLmKU4YOdToYQNjroi/rR6EhOwi+koPehjG4HQDv1r+j9fslE2UMrOuI0TDUIEaVNo3vYIQQ+zRxcuqPUapyDra3DHPbU6NeJ5HdZTqYe+9MICgWaFZq//UmfIEw6bI5mPkEnYv/lcUX3sBH3nga6xd/gcpCF9nIFLpP+gimoVjSVMKZ08u5YkEt7z5jMh+9eCb/dOmpvO0NF/LeS0/lm+88k0uXzeNtqX/lT4UzqXr5W0z9w8VENv8FVcjt3KnWuFLduJIdGLk4WhcLMBcczcvbB5jrK17Um2MYBBqJYShCXguPqxjcqCvx4XObuEvqOO/yt7FsVhPv7H8XjmNT/4//RyGXYTBdrOkTz9h0xbJs6U1ij6Ig68NrOln/1J8AUGiyW58/pDGv74hTqQYwwzWEvC5MQzF5qOvXwZx4/OtFM/h7fj6Gtpn0p7eg7SyuVCfT/vxG6h/7CP6OF3ar/aQ1tPSncBxNfzJHc1+K5r4UHYMZ+pM59AHqRN21opm7X25laffdvOz9Zy4rbSfc/AipioWUVNYdUoeysNfFgA5i5mJQ2DsjTZx47IImnd93XYbueJZyYmh/+VEc1dhRqljzYKwK1QshxNEU9LhoKPUPP64rKf7cYkcB0LHWUW0nnrEpNTNo1D7PgUcj4rPotYeyRw5ySlhzX4p/vfMVsj3FTCBf85M8u6GNdR1xNnbFh8+PYpk8yaxNZj/fTceaA9XfO1yvtcZYEi7+e7jKjs2bNkKcCCQT6DCZpkGs9jT8rcvJ5Gy8o2hvmMjmd5kONvJdENNQlATcexWF3pVhKOJzbyTT/hLdCz8EwMmNJdBwLS1Bh1TlyWB5aSjxE/FbVIW99Cayw1O6cgWHgqMxjWJdi/ecNZlL51Xzm2dr+dPrD/Gl2K9oevRDJK1SUr4aDCdHKN2Ku1DMYnIMi9Yzv8bAjGvBzrK5pZ23lMahF1xlRzYItKeo302u4NAdz4Kj+Odzp/Lh9hj/XvgAX+n4JpOe+CQt534LI5/AcfnAcJHKFtjUnaSxzL/fLJlvPPg6/9X/GPHINILxTTjbn4fZFx30GDe291Om4nRGqoeLXR+KKxbUMq/q3WR+9N9YhSxvT3wco3oenyq7l/nb7yW66U+ky+YyMO0tGLkYZj5Bx5JPsabdGbEuuIb9Thd75PUuZlYGuUU9gmcwy/QnbsGKt9B18kcpDx7aNLOwz2KAoZO/zAAEjs0LezF28o6D3k+b4d5YkghxYsdoEAiKU2jdEgQSQhyjQl6LipCH7niWpnI/QY+Ldl3MwLEHWrFqFhxwG/FMnhIzgzaDqEOYwrVD2GfRZQ/VHkwPoKPF74/R3FR7cHUHf315C7d6+1jhzGAJ6/nhL37JGv8yplUGqAx5Cfss/JbJ6VPLKA95mF4VPC46iOUKDoY6cg0CVrUO8tHgAGTBKpcgkBATlQSBDtOtD63jJDWP81L3Ee/YgLdh9gHXSWRsgsOFofd9F6RyFMWMcwtvomv621AKSgJuoj6LtoE0/TOvB6A24h1uX28a6oBzbqvDXsqCbrYsrOWzz55DsOUJrig8TiiTwsZLi57CVl2Nx+vlev+LTHniY+i191E9+DL3FXK06VMBMI5wJtBIKkNeSv1ukrkCQY+LL71xDu//TYa5le/muk0/J9TyGK7sAI7LR6p8IV0nfZjkpLPY2JWgOlJcd8/pYT2JLJ2dHSzybORedSNvKHVhth5aJlBXRzMAVqTmsFOOq0tDdJ53K2nlY1bvdP72Wjtvbr+cau+lfLT6Fc4d/DM1z/07Whko7aCVi45TPjfitjpjGaK+kQvy9iayvNI8wKfmDOLdtIm+GddRsv73KDT5qRcf8klE2GsxoIc6PKX7JQgk8G5+mFjZAnRFcMT/H7l4NwAqMLFqAh0MUyksU6YbCCGOXVVhT7FWo9tkakWA9alitnhhsG1UDUFiGZsyFUN7Sw9rHGGvRVtu6Dw5M0hvModlGMPnvPuzvS/FTG+xMUXolJuwX/x3Pla7mod0kO7eLI82T6UnX9z2X15t43+vXUjHYIbGst07UzqOHnVZgYmiUNBkcY5IEKg/maN1IM20kh4K7jDmIUzRE0IcHRIEOkzPbu5jTaqR84DC5sdhFEGgWMYmqFJow4Vy7TsoM5ppAz63yUAqT2nATe3Q/OxJJT42dSXxe0zKDqJOC0DA42JyeQDTUHzm8nkUnLm0Db6LgXwxfTQKTIpn+MNLLfy88wz+w/UzruhazqMsZprexqy+Ryl4opi+6EHtd6y4TIOIr/h7u2ReDe88tZHPPHchm4wsp3q6sBpmMt2fpKT1USY/8E7aTvsKfXPeQftAhq5YlvKgm/JdagUt39TLmcZrmErz6+5pLJmVo7b1gYMuQqi1Jt7dAgrc0drDPk6vZZKefjl5W/O2aQbXLavj+c39PLi6g89sORlHL2YSPdTWNfGD0t9R/tqPidefh7d/Hf6ul3BML9mSGfTNvB7bHaI7kSXkddGbyFER2tld7PH13WgNl+YepmAFaD/tS2QjkwlvexhP3UmHPP6wz8UAQ/WwpC7QuMjkC0e9Nfk+5VLU/u3deObcRKbh1r1qoTmOhmQ3WMAxHASyTEPaswshjmlKqeHP6CkVQVZsShandsXaRrV+PGNTQgzHX87hfAPVlfhYkfGABwrpfrpiWbzW6IJAzX0pFgUHIQGBurmkOk5nYfN9LOQ+ALTLJBepJakCbBwE5/clZC77NxLBUzBUsQNWImtTcDTRoUz7Y2Wqb0FrHFsTOPymuXtZ3RYDoNbpwI40YkqNJSEmLAkCHabTp5Xx7Ud6yUarcG9/koLz/v1O4YJiTaBalUG7Q4edEbKjnfyuWUN+t4vykHvUnZr23qaLGZUhOmIZ+pI56kv8u70+rTLIqVPK6IpnKTin8IvOOHesaCbkxLgr+n1Mb5B9Nwc/uj5/xRwunFPF/asa+Nz6btrXZ6gMefj4Oe/n0nWfY9Lyz+EZ2ED7qV+ggIvOWJa+VPGYAx4XT2/o4UJrJbY7TIsxmwcGk7w3FyPfuRarZu6ox9E+mCGY7wE3eEsPPwgExfn5A4U8DaV+PC6DsoCHpZNLSGUL2AXN05t6+P5jG3lf7s381HyEKfcXs8P6XFUoCtTYd1L58rdpO+3LdM+4mq5YsVBjPGPTVO7H73bxyNouanw29e0PMDjlTThWgJ6FH6Rn4QeZMYoTrX3ZLRNI2sSPi8F0Ho/LmBCFMHW8A4Um2L6cVL6wVxCoP5Ujoosnlyp07AaBJkzQTQghxsCU8gD3vGxjl1SgRx0EyhPVg2j/tMPa99tPbeSh5WWQhb6ebgoRTTJbIGsXDjhta3tfigs9/ZCAsrpptJifIzHpLNLl81BOgWDbcqxEM65cghrVS2jwVWL3f5hNpQ9jmLtfOvUn8xhKDd+InegKjqbg7L8WZDpXIJ0vHHRn2VdbBwAIpVvQVfMOdYhCiKNAgkCH6Yxp5Xzr7xvYFl3KlNanSKSzRAL7n3IVS+eZY2bRh1EQbwevy6Q67N3r7nJN5PC+jAyj+IVWFnTTHc+SL2gMBW6XgdssXjiWhzz0JnLURn2cNaMCR8MWdS7VEc+ECQK5XQbLJpdSHvTwtmUNvNY6yHcf28gn79vCisX/xsfnTqZy9U/xxLbQdtq/k4s0kbc1W3uTTK0I8uyGdv7NeJFEw8Wc663h3tfqeS9Q2PbsQQWB1nUWi0IDuMI1Y3JsIY+FyzCGL5irwl4qgh76Ujn6kzkumVuN22Xwi+Vb+X+FW7iWv/MHLuRlexZ2QTPdXs+Pw7+n9uniyY/trwSKJwibupIYqpgJ9MnylzB7U/TPvI6yoJveRA6PZRzW3Piwz6J/KBNIp/s4UBgiX3COmbtsx4pE1ibqtyZEjQN7sB0L8Pavp6+/HQKNu73enSgWhQYwg8duEGh/hf6FEOJYM6WieB6b9lbijrcDxSybXTOKM/kCmXwxMONzm8QzNmFzEA6zvlvA4+ITVy6D38Py1Zs42b4TVcjSF/qn/Z4DO46muT9NU203junBVzIJD2X0Rnd2+E3Wnr7bOk899HNu2P5F7v/TD2k4/z1Uh71YSmNm+yn4yhlM56k5yCYf48XRmqw9cqFrx9G8vL0f99ANooPpLJvK2Ty7qZfqoAtPopXcrCvGcthCiDEmQaDDtLAuit9t8pxaxIzsfWSaXyIy6/T9rtMVz1LiGpsgkGGog57ydTA8LnO4A8TIrxu0D2aI+Nw4WhPP2LitifW28lomUyoCpHIFZlSHOH9OJf9x31p+/1I7mxqv4b+WTWbaiq8w465ziDVeROfJnyBbOpPnNvcxNf48QXeCrtlv4WSnhN+vKCMXjqJbXgTeM+ox7OgMplFjVtMk6HUR8u7+uzaGWrWXBz1k7QJza8P801mT2dS1DHgXnxhaLmc7fPYeP+/oDfI36+Pw+NcZOOe/qHB6yPsrwLB4cHUHyWyON6XuIVW+AF23lNqoj4KjcR1mXZOQx8UgxUwgJ9l3wJTwgVSeilHUyBIHtr03RdBjks4VyNrOhAgCOfGO4Z/V1ieg7h27vd4Vy1Kmit1GzFDVUR3bWPJYEsgUQhw/plQUv8cHXeVUJTqIZ/IMpPLkCw5TKoKkcwU2dSfQmqHAkEEimyfgGcAZRTv5Azl1dhMOBm3trVw2eCeufIKNTRdTGZqxz6z8rniWnO1Q7XRhh+pwGwYVIQ+D6Tw+t4GhFKlcYbdGGvMuuonWO37Hm/p+yq9/14zffJ2l5noCOkV80ll0LfoI8ZLzCHsPPUP6aCk4muwIHcK01nzm7lXcuaKZkxtL+OczG/BaBlP3Uadv1/V6kzk6BjNs6EqwpDSL0ZVDjUNtUCHE6MkZ6WHakWly90AxrVVveox0bv+tJLviWSJG5rBaY04UZUEPc2rCNJT5aSzzD2UWTLy3ldcyKQ248Vom1WEf33vbYj5/+WxWNg9w5TPT+cbsu2hfeAvB9meZfs8l1Cz/Ai9t7eKN5jPkrAjmtHOLnddQdPumYnSvPaj9r+uM02AV58Bjjk2QzDTUfgsSelwmhqHwu12U7dLFy+0y8HtMPveG2fR5G/ht/nymt/yR1G9vZNbvTqXx/rfT0dXN7U9u5t0V64mmt9Ez/73DwcZJUd8hTzXcwTAU2hPGwUAfYDpYwdHEM/nD2p8oKjiaa25bzr/e+TJT734D6qXfjPeQgOJ0MADH9OBpfmqvFrZd8SxlKoajTKxAdBxGODZkOpgQ4ngyuTyAUtCtSjET7bQNFJueJLMFOmMZtvYmh4MpOdshlSvgd1K4tI0ai4YQSuF4wpxrvII724fh5Ch95Qd0xjL7XGV7X7HDbWm+nUKkASjW15xdE2JaZYgpFUHm1ISZXhVkckWAxnI/k0oDZM/7MrWqj09Zv2OWt5+/qTP5tn0VZvdaptx/A4nOrYd/PEeB/4XvYW17Er1Hu9hvPryeO1c0c2ZTkJva/5MlfziFwbYtDKZHPv/SWtOXzLGuM077QIZYOk9+sJO38iBw9LsECyEOzsS7Wj8GnTG1nJf73CSiswi2PMX2vlSxkOk+dMcyhFUGvY/28MeaHYEIpRT1Q/VpjgX/dNYU7r3lTBbVR/nhi0netPpcfrb4bnpnvZ3yNb9g2gtf5GLzReJT3kAw4GdKeZCIz2KTqsfqW8+I/db3YX1nnAZPHCcwPlkM1WEvpUE306uCzKwOMbsmzEmNUX5440mUveHzaJeXc9Ur/LFwJv7256i+93rOMNbwEe/95AK1xKe+gYiveIfLMNSYXMyGvB5SRhDnAEGgRMbGPsD8dTE6L27rpyuepXXjSny9r2Fue3y8hwSAE+ugoEx6q84g0LacZNbe7fXOWIYyYhS8pShDAilCCDEReC2TSVEf2/JRzOwA+UySile+h6dvHV2xLHZh53d3ruAQz9iUqqH6bmM1tdcbZbbaTla76Ki7lNJ1dzDY1bzPG7I7gkDBdBt6KAgEu7dM33GeE/S4CHstSgNurKlnseGqB1lz40t0v/NJpt50O7/1vZ0Puv8TpW2M1X88YK2diSD8/K2UrfoxucLOmy33rmzjO49u5MqZAX6kv8KbjCfxkSH0xBfpT+0dBEpmbdZ1xmntT5PJOTyyupWXf/t5lntu4eyu35CsORWz8ZSjeVhCiIN0bFytT3CnTyumtK4PLsXfuYJ8OsG2vhSD6fxeXwhaa7oTWfyk99se/lh2LMyJ3mFObZhf3ryM/7lmARGfi6/+o4sv2e/msbLreaP9MAEyZGa9eTirZnFDlJcz1Rj5BHqweVT7KDiaDZ0JqtUATnB8gkCGoZgU9e0WvAl5LRbUR2lqmszmt/yNzW97iuzlP+AnNV9iBtv4qfoK0e4V9M69mWgwMOZtUMM+i7gRPmB3sFgmv9uJpDh0D67uwDIVJxsbADD6N4/ziIqfiWvWr6fTifDn2Aw88e2ku7fstkxzX4oaV7yYSSeEEGLCOHNaOc/1FmthRjbfR/WK/6bh0X9GFbKY6R5ql/8bjQ/dTOX9/0QyEaNsjOu7aW8EgGf1PL7pvA3l2FSs/AEt/SPfkG3uSxFSKazcAKqkca/X96Uy7CFbPpuCr/g95DINrjm5jn/0BOmOLCCy8c+kcvYBtjLO7CxGPoW/6yWy+WKQrLkvxWfvXsXc2jCfD9yDv+tltp33fX7heisz+h6FTY9i7xIwyuQLbO1N0jWY5S8r27j1V3dy7tNv50P6DtprLmT91X+n/ao/gjswXkcphBiFUQWBlFKXKqXWKaU2KqU+vZ/lliqlCkqpa8ZuiBPf7Oow5UEPD2VmYzg5gh3PksjYbO9Nsa4jvttd7f5UnnxB49MplCc0jqMWO7hdBlefXMcfPnA6155cx32r2rm59QqeC1xApmQGnqlnDy+7uKGEpweLJy759jUA2AVnv5lf2/tSZG2HqNOHClYf2YM5SB6XSUXQQy4yGdtfxfy6KGdc8S42vmMFWy79Da2nf5XeOe+k7CA7RIxG2OsiRvCA3cF2tGEVh0drzUNrOjhzWjkXhbYCYA1sOaiMtiPhR09sJtXbyoBRyp29U4pPbtk9Q6m5P0WVKzF88i2EEGJiuPGURprtYiCm6uVv4ZgevAMbqX7uq0y5/wZKXr8DT/96wlv/Rr7lFcp2ZAKNxXQwAG8UgK5JF3DnZhebG66mbM0vUW0vs60vhdYarfVwZlBzX4qTQsUac0Zp06h343GZlAXdeKzilPrykJt3nNpIRdDNH/On4etbQ6599dgc05GSHgDAlR3A7tpAJl/gQ//3Eo7WfOYUD+Vrf0PfzOuJTX0jLbNuZqtTReXTX2IglQOgbSDNNx9ez2fvepGf/vLHzHz24/zC/hQzPf1sO+97xK74MdmSGcfMjAAhTmQH/F+qlDKB7wOXAXOAG5RSc/ax3NdhaDLoCcQwFDcsq+cXLbXk3FGqVvwPqlBst11wNFt6kgwOpVN2xYvzlD2FJHglCDRRKKUoCbj5xrUL+dSlszipoRT9lh+z8S0PEt2l29vJjSWs13UAFDrXonWxk9ia9hhbe5IjBivWdcQxcPDl+lATsKhtedAzXEBxRxKX44mSqDubvjnvIBgMHpFaJsUOYUFUZmCfy6RzBWy7QHT9Xdjp2JiP4XizZy2dXa1pj9Hcl2bZlDIWq2ImkJmLYce7j9bwRvTDf2yi0ROnvmEyrVYDg0YUX8tyMvmdqfzNfWlKiaHH6qJBCCHEmJhfFyFSWZxW5Y430zfzBvqnvYXyNb/AHdvK1kt+wdZLfgmA3buZUhUvrjhWmZ1DmUDzzr+OypCHf+l9M3lfBZOe/CSJVJotPUnWdyZoHShOA9vel2KuvxgEOti6NTURHzOqQkytCFIT8VET9fGes6bwk75FxZp1q/8wNsd0pKR33nRLb17OW3/0DK+2DPKhc6cx7/Vv4ZhuuhZ/FJ/b5I0nT+X7hSsJxDaS3vocD6/p4OJvPsHdT7zI9wc+yC/dX+dK90v0znsPm294gtjUNw1vW+rfCTHxjSZUuwzYqLXerLXOAb8DrhxhuQ8DfwS6xnB8x4wbT2nENjz8quLj+Hpfo/qFrw2/pnXxS6c3kaUrlkXhYBVSGG4JAk1E/3zuVO5436mEfRZBn2e3eeIL66PEVIgBo4R8+xq6E1ns3m0Y6X7iGZstIwSC1nfGKSWOoQsY4YmVCQTFIGZV2EPUbzGzOkRJYPfuFkeqK1fYa9HvBFDpfWcCZe0Cgbbl1D/xMZy19x2RcRxP0vl9F6V/4LUOFLCwxKYkvZUVehYA+e4NB7WPTL5AbIwKdSeyNoPpPOUMYIZruHpxPU/kZ+NrfYrE0D4KjqZtIE3EGUD7j9328EIIcby6cNlJwz/3zb6R9lO/yGDTZWy9+OckJ51JPjgJjYKBbcPTwRijoH5h5hV0z3sv0coGvvDGOazqgT/Xfgxf31qqV3yDZLZAznZI5xwKjmZ7X4o5rjYAzLIph73/kxtL6CFCW+kpeNffe9jbO6J2mX6/4qkHeb09zlfPCXJD5zeIbvkrPfPfhxWtYXJ5gCVNJawvPY8sFq/c/xPe/+sXaQzk+XvVd6kxB9l2wQ95/R2v0HHqF3DcYQwDqsIeZlQHpZurEMeA0QSBJgG7Fj9pGXpumFJqEnAVcNvYDe3YUh3xcum8ar7ZMp2OWTdR/tpPaXrgJspW/3w4K6htIMO23iQBitlASjKBJiyPy6Sp3E9pcPdpUAGPi5tOb2J1vpZt617k9j/8lRm/P5s5v1nIzDtOwdz8GBu7EiR2mQK4rjPOgmgaADNcc1SPY7TKgh7qS/1YpkFdiZ+KkAe3y8DnNgl4xqab2Z7CPhddhSBGunefy+QKDuHtfwdAJ8Y3Y+VYkN1HEChrF7j7pVZm14SpTbwGwNPBiwEo9Gwc9fY7BjNs6EywrSdF1t5/F8TRbs/CJmAPQKiK95zZxNPOXLyZbhKtxemW7YNpTCeL10lBQIJAQggx0Vy2ZAZx7WONez6qcjaOr4TtF/6I5KQzAdAuL/lANe7YdkpVjIIrAJZvTPat511Dx6n/ht/t4vL5NZwzo4LPrKlnU8O1VLx6G+Urf0Bo28NMevJT9HVsoyueZXphI7lIE/iih73/WdXFc/m1noW4Y9vQmcHD3uYRMxQEGjRKmJVfy7fPgRtWXEt04z30zHkXPYs+SGOZf7j77DvPnc/zrqWckXmCN8wu5f8iPyAc28j2C39EbPLlaFcxUz7qt5hRFaIy7MXjkiwgIY4FowkCjVQNds85L98CPqW13u9VgVLqfUqpFUqpFd3dx98F3bvPaCKZLfB91010z38/Vnw7tc98kaYHb8LIFdNft/eldgaBpCbQhOZ3F7tC7OmLb5zL5DknM121MnvLL8k6Jj/23kTGDNL40M14Nj/Elu4k23qT9CayrOuIsyAy1K40NPEygUZSHfEyszrE1IojV9gv7LXotIMYdhpyqRGXsW2H0FAQiP1kDImiTH7k6WC/XL6V1oE01y+tx9/5ElqZdEy6BBsDejcdcLuOo+mKZeiOZ4efS2XHJghUztAJc6iapvIgr7kXAWBtf4pYJk9zX3r4zrERKDvsfQohhBhbPrfJX6Z9hQ/H30lHLEN5cGcmSNRvURXxUIg04ks2U6ZiOP6x+yw3hq5k/G4TpRTfvn4R1REvb22+mo0VF1Hzwtdoevg9lK67g9QLvwFgUnodduXCMdl/yGvRUOpnXb443T/beXDZtUfTjm6sD+QWMt1o5bzVn6fgibDurU/QfvpXqCiNYO2S/f6WxXVMPv9dlOoBvpb+CpH2p2k9879I1J2DaSj8HpPJFYHhm4hCiGPHaP7HtgD1uzyuA9r2WGYJ8Dul1FbgGuAHSqk377khrfXtWuslWuslFRXH3x3dxQ0lXDqvml+v6OCu0vex4drHaD7nmwTan2fKX6/DzPTRMZihylMssIYEgY5ZpZMX4tUZ3mI+yfraK/lO5nLO6/kkbZ4pND78Pipf+hbxRIptvSm29CSpt4bSn8epO9ihOpKd3sI+i17CxQepkbOBtr7+Mp749uKD5L4zhkRRxi6g9yj03JfM8d1HN3J1Q5KLBv9AZMt9pMvm0jiphu1OJXbXvk9YM/kCa9tjrG6L0RkrBoCUncEzsJFk4vBrNLUNpqlUxTuTZrgWgEDVVDpUJcG25fTEs2ztSe4sJBqqPOx9CiGEGHtLLr6Bbk8jP3p8M1VhD17LoCbqpb7UT2XIiyppIpRqodqVgDEMAplKYbnUcBAi6nfzs3ctJVNQXNb8Dr6Zv5rfNHyFTHQ6autTlBAjlGnHqRmbIBDAnJowLyRKAfb7nTreBns6AXg9fDoGGu/gRlrP/Dp2oAaPZVAR3H0al1IKa9YlFNxhgu3L6Z31NvpnXkdt1Muc2jBTK4IEj1C2uBDiyBrN/9wXgOlKqclAK3A98LZdF9BaD1dWU0r9ArhPa/2nsRvmsUEpxbeuW8RbB57h1ofXE/ZZLJx+NQVvCQ1/fz+T77+BnOcr1PhsyCBBoGOYq2p28Qetqbjwo9wTauQ/71/LZa9/nG8Ff8UFL91KZNOfaa66gJN0NbWuYzMIdCSFvS769ND/gVQPROt3ez2WyfPUX3/F6S6wvWX7DBSJnQqOJl/QuF07g3c/enwTyazNF/RtRJ57kYI7zOCC9zCrOsRWXU1J7ya01nsF/PIFh629SeyCZjCd5x+rmznztc9ztv00BprYtCvh7b86rPF2DGaoVAMAGJFiltys2jBPtc3hzW3L2Z7J83pHjApjqJPLGLUUFkIIMbaiPou3ndLAbY9v5sN3vIzHZaCUwmeZfOLSmbhLmogWeqkz/Wj/rDHbr2koAu7dL2dmVIV4/BPn8uK2fr79SCmDXXkunXI6lWvv5LzguWADtYvGbAxzasN8f00E7VHo3okZBHIczT9WrucKbXLmxVfj/OVWBqa+iUTjBZQG3FQEPSPe+IuEQvTMew++7pW0n/olqiNeyoJS80eIY90Bg0Baa1spdQvFrl8m8DOt9Wql1AeGXj9h6wCNxGuZ/PxdS7n6h8v5yn1r+NIb5zK//ny2XfRTGh9+D5/kU/w6cJMEgY5xrupig7xY48VE62dS63bxs3ct5c4XqvnMQyXMzy3lw7H7mTf4U/7gKVDY7sHxRDEs7wG2fOII+yx6dTETqBDvZs9Z5Nt7U5xvvMRW93TKo2W4ZTrYARWDQA7uXdqzPrGhhzOmlRPobaZ/+jW0nP2/RANuphuKB3QNZyYfI5W1CQxNfdzemyJjF3C0Jm9rXu+I8Y37V/HV/Dc413yJnxcu5S01ffhbl5O3C1iHMf+/fTBDkycOGqyhellzayM8Zc/hmtw/8PauZnufm0ZvGgrgmoDd9YQQQoDLNHjbKQ28tG2Al7cPAMXvpI5YhpMbS3jDUDv2SYUW7MCZY7ZfpdSItQvLQ17On13F6rYY33l0I5sCizlF/5J/8j4OCfDULx6zMcypCZPVFin/JFTv6OvsHU0/e3oLvsEe8r4IMxtrWX/No+QD1dSX+Ij63ftcz2uZNJ/yMbryDmGfS4o+C3GcGNUETq31/VrrGVrrqVrrrw49d9tIASCt9bu01hO8R+KRVRb0cMd7T2VS1MdX7lvN6rZBEnVn03rm15la2MxZhRXFBd3B8R2oOHS+Ejou+gHdZ30F/y53oK5bWs9fP3Imp1x6I5+JfoOFmdv5rP1ecuEm7PpTx3HAE0/EZ9FPMRBaGGGqV3t3D4vVBp7iJArekv12EROgtUbr3dvEJ7M26zpiLKnz40p1kQs1wNAJc23ES6tRg9vJkOptAYon7LFMnkyuwKvNg6y699uc8ZdzeNp5BxeZL/HK/M/z5fw7eSF4Hla6m3TXgesJ7U/7YJpGd7zYNWao6PPs6jDLnbkABNuW0xnLMtvqQisTU4JAQggxIVmmojLk5fcfOI2nP30+T3/6fJ761Hn4LJOVLQPEvMWeMgYaNcZF/vc1JckyDd5+aiOGgv9aU5yuNSexnFy4EStQMmb7n11bvKHV46nH7N+M1prueJa2gTSpnH2AtY+OO19opimQxQqWUh70kA/V4fW49xsA2iHis1AKaiJjU8xbCDH+pIrXEVIT9XHn+4uBoC//ZQ1r22MMNF1GXPs4I/1IcSHJBDqm5WdfRbCiaa/nK0Je3nX6ZG5/x8l89brTmHPFh9l4zcNkr/nN0R/kBBb2WvQOTQfTyZ69Xu9r24yhNK9kKnF8pRgSBNqvQjZFdMMfye/StevVlkEcDaeUFgtv54LFk/AdBTTzkWJ73NxQm/hYOk/Odrj14fU8fs/tXN95KwlvNZ1z/4mtF/8MY9l7qQp7+OtAAwD2tucOa8wdgxlqXYMUfOVgFk/ip1cF6VEldHkah4JAGZY6K0lXLQa3/7D2J4QQ4sjwWSZea/fMUJdpMG9SmFdbBtlc2Bn4UWPUHn6HXbNf91QZ9nLa1DJe6TVZTyMAdtXY1QMCqI14ifgstlGLe3Az6zvidAxm6E3k2NSVZHtvCrvgkLMdBlK5Md33aHXFs1S5UmhvCV7LJOAxqQyPLjs94reoDHv2+3sWQhxb5H/zEVQZ8nLHe0+lOuLlS39Zzfa45kFnabHVMYAnPL4DFIfFYxlEfHt3D4PiCUl9qZ83nzSJKxfV4nOb0jlhD2GfixgBCspEJ/fuFpjq3gbAtnwpeXcUI9MPzsjdr0Yjs4/26ccLvf5v1D/+UXTri8PPvdxcLLo8wzsAQD5Yh+VSwyfqnqrpAKju9TiOZt26tejfXM0Ht97Ctz0/JFG1hNwN99B/2meJN1yIYSgunF3FfR1RbFcQo/nwgkDtgxkqGcAJ7Mzw8VomDaV+XjEX4O94DiPZRVNuPen6cw5rX0IIIY4c1z7OceZPirK6bZDXBjykdTHrxAyObRDoQC6fX2w80Fm6BABds2hMt6+UYk5NmNW5Csx8EifWvtvrg+k86zsTrO+M09KfxnH2bLJ8ZGXtAoPpPCGdQPuKGVC1Ud8+z2H35HGZVIaknIEQxxO5Kj3CKsNefvnuZeRsh18u38q9hdN2vuiR6WDHsrDXwuc+cD2UkNdiWmVwrztkJ7qwzwIUaVd0xM5fzmBxilI7ZQyoMEoXIDt4yPtL5Y7zIFCyGPBRPeuGn3t5+wBTygP408UT0kmTZzCremfwubJ+Gt06TH7bc7z1R8/w8B9/xMn5F6kpCRKfegXNl/wU7Sqe+CkFk8sD3LCsgbyjaA3OxdOxYrfpZwcjlbMZTOcpcfpwgrt3/ZpVHeax3CxMO8UHXX/GQJNrOveQ9iOEEGL8LKyPkMk7PLC6kxaKn/VjPR3sQC5fUMMFsyqpWfwGAMyGZWO+j0UNUZ4ZKAZYPINb9nq94BSnbGsNiaM8Raw7Xuzu6S/EYCgIJOekQpzYJAh0FDSU+bly0SSe39rH0848Mu4StOkGlxRXO5bJF+jhCbpdKAVJM1rsDrYHK9GGg6JDl9CWG5oGlDr0KWGZfOGo3307mvRQgMzVWwwCaa15efsAixqi6P7taGXgKd29A9v06jDPO7Mwm5fzekect5ZtJRVqYuDae2g599s4nighr4vSoJspFQECHhdza8PUl/pYUZiOt+91krH+Qxpv+2AGgKjdg96ja97smjAPJKbhoLjR/Ds5Vwin5qRD2o8QQojxs6AuCsDzW/vocxczcgiMXYv40Yj4LH76rqU0nHIVm678M54pZ4z5Pj5wzlRSoeIU60L3eqpe+BqND91M+au3YSXadls2ls6P+f73Z0cQyGvHwD92tZCEEMcuCQIdJf987hSUggImrY1voRBpHO8hCTGuDEMR8riIm2HUHu3ftdYEMp3EzVJ8Xi/b0kNpyIcRBLILmlzh0KeTTXQ6XQwCWX3F+j4t/Sl6EllOaiiBwWYKgSowd0/9nlkV4nlnNnWqh+9fVsq09KtkandmK1ZFPDSVB5gU9Q0XQFdKcfqUch6MN6HQ5Lc/f0jj7RjMECVOIN8L5TN3H1d1iH5CrHEacasCiUlnYrkO2MxSCCHEBNNY6ifkLX5+p4NDNyKOcibQDm7LxN24DGWM/eVPxGfxpbdfRFq78b34QypX/gBfz6vUPP+fTP/D+ZS99hMqXvke0+55A/aWp4fXi2WOfECoO57FwsYqpFA+CQIJISQIdNRMqwxx6dxqALqXfZrYTY+O84iEGH9hn8WgimCkdw8C9SVzVOoeEt5qplYE2ZAoZs0VRiggPVq245A9xKlLxwKViQHg7t/A81t6+b/nmgE4qT6KGmymEKrba53aqI8LLnkzAHNb7sDMx0nWno7XMqgKe/ZZA2Dp5FKWZ5rQKFTz7kGgfMEZVTeU9sEMs43txQdV83Z77azp5dywrB4mnw1Aqv7cfdabEEIIMXEZhmJBXQSAVNVS7GAtBMev0+ORbHE+r66EdKiJOqeN5c48vjrjj6y+5glS1cuoffYrVK/4b7x9rxNd/RtSOZuOwQzbe1OHPK16tLoTWaIkADD8pUd0X0KIY4PcWj2Kvvymubxhfg0VUT+mJVPBhAh7Lfrz4eEg0GAqT8Bj0tyfplb1UgjNY1pZkNXri1PvnGQPhzoJr+BosnYBGF0hxGPO0HQwK9HCO3/0OBk8+N0mlSEPZryVQu2SEVebu+hUCk+FKV1b7F4Xnn0u9ZX771y4tKmEBH66/VPxdawgky/gtUya+1IMpIp3Nasj3v2ebHcMppmlikEgo2b3IFDA4+KLb5xLy6pryPY/TrzhfCKmGt3vQQghxISyoC7K0xt7Mea9ma5L30XtOJZDONJT+d11i8huHeCXkc/x4LPNPLEpwHnT/5Mm/0vMmDaN6Rt/RmTrA2zpHSRdKF6GdQxmaCg7ct0vu+NZImooCHSUp+IJISYmCQIdRZVhL29cWEtPIssRyEQV4pgT9rnoyYUxs4PYuSytA1kqwx5a+pKcr/roi9YxtSLIAy96wAt6hALSo2U7+ojfbRtXQ5lABpoLygc55fTzqAx56Y2nqUi0YUfqR1zN43GTrFpKuPkRMpGpeEomHXBXDaV+KkMeXjNncU7XP+hLZRlUxnAACIontZl8gYjfwuMySGYLKKAkUOwO0zaYYZnVQt5bjhWu3msfXsskW72I9W99EmB4OpoQQohjy9nTK/jl8q0sbihBqeM7oB+/8Gv0DSa4xRNl8aYefvT4Zn66fCtQyuIBza0LL6F0/e8xty2HurMx070MUkY8kyfkPTI3qbrjWRp8WXDAkJpAQggkCDQuwl4L+zBaXQtxvAh7Lbr7AgB0drZTUCUMpHJ0dXXiV1my5Y1MrQiQwIejLHTq0INAZt9GchXTxmroE47KDpLyVOLPdvGmSXFq60K4Mn2QGEA5Nio6chDIb5l01Swj3PwIqdrTKB3FXVKlFEubSnl882TOL9xHomUVicisvZYbSOV3CwwB9CazlAU8tA2kmW1sJ1s2m6Ax8kWB1zJJZQt4LQNzH8sIIYSY2E6bWsbqL1+CUmpU04WPZZY3iJMpNr64eG41Z04vJ562uX9VO796dhvPLZxPvctPeOsD+LpfoerF/2XbJT9nmzqfyeXFBgxjrTuepcGbgRTD3cGEECc2yUcZB26XgU86SwlBid9Nc7aYAp3s7wIgnXOIdRbbq3rKG5hSEQAUaSt6yIWhC7EOpv/hQrxrfj8Ww56QVHaQdcZUbG0w391O/eP/yoy7zsHf9RIAZsnIQSDDUOQbi7V3DqYN+9KmEh5LFTuhuNteGH7elewg0P4sOIUR10vnHJr7Uqxv62eys518+Zx97mPH56T/CJwUCyGEOHp2ZAAd7+e/blfx0qos6GZyeYC5tRFm14a5eskkyoNufvViF/G6c4huvJvqF/8HlEHN8i9APsOWniRd8QyD6Tz2GDay6E5kqfUUO3JKEEgIARIEGjfHezqsEKNx6tTS4SCQK9OLKuTAscn2FmvFmNE6yoPF2gFpVxgOMROo0L8dpQt4Ol48ftvEZ2JsTHrpdtdRtu1vRDf9CTOfpObZrwDgKt13R0Jz0kmsv+ZR9MzLR727pZNL2a4rSVpl+DtfxEz3MuXeq5h9xzKm/PWt1D92S/HfcwTN/Wl8iW24yeNUzt3nPnZcLATcx/dFgxBCnCiO9/Nft2mgFMPnLlDsHLawroSPXzyT1W0x/mfbdEw7RU94Ltsu+gme+HYqXr0NraFzMMv23hSvd8RpH0yPyTlLVyxLlZUuPpAgkBACmQ4mhBhH582s5HZV7BriyvQy5b6ryYUnY8YrAbBK6rG8FqahiBsRwoeYCeQkugHw9awiV3DwGsdhUCEzyIDjo1A2HU/HI+R9FSTqzqFkwx8AUNGGfa4acLvojU6j8iDq7syqDlMR8vJ0dgqLtz2HTv4H3u6VtCz+BJbOU/XytzDzCToXf5RM6Rz83a+gUaSql/Hc5l7mqG3A3kWhd+UbCv5IPSAhhBDHArdpUBpwY43Q0fKak+vY0pukrbuU27f38oue07m5sIi3TL6Cype/g2dgIwPTriIbmUw+WEdPHOyCpr700ItGa63pTmQpK0milYnyhA/n8IQQxwk5sxZCjJuo301jXQN0QqDtafzdK/H1vMY0+zQKpokZqgJDUeK3GFQh6tKth7QfPRQE8vatI57J4LUCY3kY46+Qx3Iy2FYIq2oKdDxC58n/SrzhIiJb/op2eTHd+z5mv6cYbPEdRMaNaSh+//7TeP63J1He/wKlbXfz88Kl/GDlKdx0ehNXnV7FpOe+xLR731xsJU/xbmas/nza+6/mvGAHOu/CXT17n/vwuAw8ljGcXi+EEEJMZIahqNxHZ0yXafCZy2YzmM6zunU6/ntX8x9/Xct3eBP/4rK5ZtMjNG2+F4C8t4zOJZ+kf8ZbCXhclA41VThYsYxNznaIkMDxRjGP80wsIcToSBBICDGuTpk7FTohuuFutDJBO7zReJqUt4bQUMZOid/NgA5hpA8tE0gni0Egw8lR6FoLoZHbpR+r7NQALqCqopL4zKtRaPpnXAeGi7ZTv0Qo20lkP+tbpoHXMvC4Di5DanJ5gMCFV8Bdt5P3luA//bOUrOjn1ofX85vQDC6b+SdOSj1DTX47wamnUZptoeLFW/mx/Si2cpGJTsPn9e1z+0qpQz7xFUIIIcaDa4QsoF2FPC7CPov/uXYBz2/po6U/zcbCHP4tGYfWF3HFWngH/2DRU58isuWvbLv0F/Ql3biM4k0Rr2ViKoUyitva3xS77ngWgKATQ3tlKpgQokiCQEKIcXXhvDoGHgkQLSSJ1Z9PZyzL9MGnIbKzVXlJwE1PLISRHQDHAeMgM0MSXcM/5lteganHVxBo7dYW5gMNk2qwqmbQGf4UAJZL0T/rBsyQe79BIICy4Mh3Lg/EVbeYdNk8uhe8n3lTG/nfKQ08s6mXv65q55cv9fNLZgGzMDbDgrrTaKr+OZEtf+WDdVtgxsVUHaDrV4lfgkBCCCGOH4ahiPotKkIeFtWX0B3P0jFYLNys9Rxea4vxzr+dx43qQT7V+jMqV9xK59JPAnsXi3a7DKJ+i2zeQSn2mjq2Iwjkt2NSD0gIMUyCQEKIcVVf6qfZiBDVSQamXcW9q+N8jKdx7dLSvCzgprPPj9IOZAbAX3pQ+1CpHnLBesxsP66OlWTyBbzHUYeSVzZsYz4wo3ESWbeLWNrG7zEpD3rY3psasTbBnqI+65D27fP52XjV/UDxZLQ04OaGZQ2cNaOcVLaAozWdsSxPbezhyQ3dvDJoUxV+E1dfsYSSUWT5SGt4IYQQx5tJUd9wBk950E2u4GAqhctUVIQ9lAUX8ak/GExnG29Z+T3ygWr6Z1yLdu2ePZuzHbpi2eHHlpmhOuIdftydGAoC5XqgZNpRODIhxLFAgkBCiPEXKCcZ72VL2dncM7iR8z1LmD7l/OGXSwJu2nNDNW1SfQcfBEr2YPsryAVr8fW+xkAqT3Xk+AkCvb61WCspGC7DNVTfpzzoIeKz8LmNUQWBjEMMtnitYicUrWFSiY/gUDt3yxVgS08Sx4HJ5S4mlwd4+ykNbOpO4nebKKXwWFLrRwghxIln1ylcSikmRXcP7lSHvUTecTL/79c3M1U3s3D556l+4b/IlMzC9lVg+yvJB6oZbLqMXHQqaI0qZOiOF9evDHkwDEV3PEs1vYTim8gvecfRPEQhxAQmQSAhxLjLLXo3//XYqzgb4rQMZrnn1G/ziYUzh18v9btZnfOBxVCb+IO7m2WkesgG68iH6ild+1u2JVJUhT3HRava7niWnp4ucIPhi+CzTHxug8hQZk9FyIt7FEGgQ6WUwjsUzNkRAIJiR68ZVSEGUvnhzKuCozEMhR7qeOs7jrKxhBBCiLGilOLUKWV876bTuPlX/8G09Crebr3AnFQ3pcn1hO3nsLL9VK/4b5KVJ+OOb8fMxdh6ya/orj2NgXSO6rCX7niWC12vFDc64+JxPSYhxMQhQSAhxLgLn3Ijy1dOoe2lFgBmVIV26whVGnDT44QAKCS6OdjQgZHuQVcuIl02H6OQwezdSLzsJMLeQ5sCNZFs7EoQVqniA28EpRR1JTtrAkR8FnpH1OUI8bldBEboLGaZBhV7dEmJ+i26YllimbwEgYQQQoj9WNpUxi9uPoW/rGzg1rVL2NKTBIo3US5sVFye+Rvz40/jqjqdSP9rNDzyPja98U/kolNp7kuzuTvB262V5AL1WFX77sYphDixSBBICDHuXIbirGkV/PKZrQDMqgntlr1SGnDTTxAAJ9V3cEEgx8FM9+IKVZKuXQpAZOvfSDUuOC6CQImsTZgdQaBw8a89gitHOuMp7HXtlgW0P17LpKHMj9b6uMjEEkIIIY6kObURwj6LNy6sJZWzWdcR58kNPfxjSy8P2peQty8inLH49Klern35XUx+4O20nvGf9NWcw5rtXSzTq0g0XE/pwTbVEEIctyQIJIQYd6apOGt6Ob98ZitTKwJMqwzuFiAoCbjp18VMIJ3sPaht55O9WLrAL1cmqa2OUjPpbEpf/z/aTvsXwHug1Se8RDa/MxPIEx6XMYQOIZgmASAhhBDiwExD0VgWYDCdJ50r0FgW4NyZlaTyNnlbs603ya0Pr+czj8V5ddIX+Xz2ViY/eBN2+DQuTE/Ha2WJT7tovA9DCDGBSEhYCDHuTKWoL/Vz+fwaLl9QS3SPtuClfjdJvBSUhU6NPgikteajP/s7AOuTXr776EZ6Zr0dK9WBa9NDY3oM4yWRsQmRomAFwZDpVUIIIcTxKOKzqI54qY54aSjzM6s6zJSKACc3lXDH+07lw+dP409dVSzt/3f+XPVBqgdf4UvWr3BML+5p54z38IUQE8iogkBKqUuVUuuUUhuVUp8e4fUrlVKvKqVeUUqtUEqdOfZDFUIcr0xD4XebfP/GxfzrRTP2er006AYUaSs6VBh6dGIZm57OYp2ht56zmM09Se5JzSMXqCG86ldHvFbO0RDP2oRVCmecsoCEEEIIMT4CHhc1ER9VYS8fu3gmf/jAaSybVs3/23Ym5+duZcuUG+la/BFCwdB4D1UIMYEccDqYUsoEvg9cBLQALyil7tVar9llsUeAe7XWWim1APg9MOtIDFgIcfxxGWq/NWVKhzKDUq4IkYMIAvUnc5QRA2Dp3BmcvDHGb59v47r51zPplW+S6duOt6zx8AY/zhIZm2kqNW5TwYQQQggxMcydFOG/r1nA4+u6iWdsEk2XY/hcGIZMwRZC7DSaTKBlwEat9WatdQ74HXDlrgtorRN65y31AHDs314XQhw1pqEI7CcI5HObeC2DhBFGpft3e01rTc52RlyvL5WjTA0C4ApV8YlLZtKbzPGkXgBAoeWVsTmAcZTI2pQYabQnMt5DEUIIIcQ4qwx5efNJk7h4bhXAcdEEQwgxtkYTBJoENO/yuGXoud0opa5SSr0O/BW4eaQNKaXeNzRdbEV3d/ehjFcIcRxSSu3WEn4kZQEPA4RQ6d0zgfpTeZJZe8R1BlI5ytUgGgMjUMqyplLKg24e7SkBQHetHZsDGEeJTHE6mPZKJpAQQgghwDIN6kr8TKsMEvZJEEgIsbvRBIFGyh/cK9NHa32P1noW8Gbg30fakNb6dq31Eq31koqKioMaqBDixFYSsOjTIYx0327P9ySyZPeVCZTMU06MvLcEDBPDUJw3s5JnWnPkArWontePxtCPqPiOFvGSCSSEEEKIXfjcJqZMBRNC7GE0LeJbgPpdHtcBbftaWGv9hFJqqlKqXGvdc7gDFEIIgBK/m55UECMzAE4BDJPBVJ5s3iHrKoy4Tn8yR4OK4fh3Bp3Pm1XJXS+20FsxmdKedQDkCw7rOuKYhsIyFYba+WdHJ/NcwcFUiqbywJE+1IOSyNgESIFXgkBCCCGEEEKI/RtNJtALwHSl1GSllBu4Hrh31wWUUtOUKl4qKaUWA25g9NVbhRDiAEoDbrrsAAoNmWKdn55kFoBMft81gcpVDPzlw8+dOb0c01Bsoh5rYBM4BbriWbQGu6BJ5xyS2QLxjM1gOs9AqvgnlS2Qyo0cbBpPiUyegE6CTAcTQgghhBBCHMABg0Baaxu4BXgQWAv8Xmu9Win1AaXUB4YWuxp4TSn1CsVOYtfp46H3shBiwigNuGnN+YsPUr0UHE06VyDY8gSRF76F4+z9kdOfzFFhxNCBnZlAYa/FksYSno1XYhSyJDs30p/MjWoMBUeTL4wccBovdjaBiYPhk0wgIYQQQgghxP6NZjoYWuv7gfv3eO62XX7+OvD1sR2aEELsVOp3synvBzfoZA8JfxO6YDPp6c9gJdrIXPhxfD7fbuv0JXOUEkMHynd7/vxZldz/QDkf98DXfnkPPpfm2szdpIwgSTNM0gyTMfzYykPMNuhJw7k1OaZZfeQu+CxW/YKjeej7pTKx4g+SCSSEEEIIIYQ4gFEFgYQQYryVBNz06RAAhWQv8XCe6Oa/4I4Xmxfmu9bja1y42zrJZJwgKdKB3QvRX7uknt6+02AlzHO1cE7qIVw6T96Bhnw7YR3HTxoXO6d/5Vot3ORJrp4DEygIZOYGwQTDGx3voQghhBBCCCEmOAkCCSGOCWUBN/1DQSCd7CGRydG08vvYngiu7CBO5+uwRxBIJTqLP4Rqdnu+NODms1ctI79pElfbf8Xl9LHtwh9TaLqEfqB/x4KOjSrkuOvZDfz21UFWlX8ONVRMeiLIFxzcdqIYBJLpYEIIIYQQQogDGE1haCGEGHe1UR/9FINAuXgP3i2P4O1fT8fSz6KVASO0e7dSxSCQGanZ6zWAfOlMXJk+spEpxBov2nsBw4W2/Mye2oStDTrcTZh9G8buoA5TMmsTUikAlHQHE0IIIYQQQhyABIGEEMeEBXURKktLyGGRi/UQ3vYQBXeY/hnXkgs1YPau3235gqMJ5HoAMMIjB4GcipkAdM9/H4ZpDLeD39Os6jABj8nrdjXWwGYo2GN3YIchnrEJkS4+8ITGdzBCCCGEEEKICU+mgwkhjglKKa5d2kDvP0I4A52UDawiVXkyGC6yJdNx967DcTSGUYzkxNJ5KocmdrkitSNuszD7zQz0NROfcTWzq8MYhqLgaAqOxtHFvzWgteas6RU8u7mCy5w8uZ5NuKtmHq1D36dE1iakhoJAUhhaCCGEEEIIcQCSCSSEOGZcvbiOfh0i17UB78AGklVL8LkNnLKZeAa30BdPDi/bn8pRqQawlRt8JSNuz2pYQvMFPyAaCQ0Hj0xD4XYZeC2TgMdF0OMi5LW4cHYVr6QrAch37D31bDwksjZBitPBJBNICCGEEEIIcSASBBJCHDOqI14cXwkNqdcAeCo7lYqgFypnobTNYGsxGwh2BIH6yXjL2dc8L6/LRKlioegDOXt6OZt0MaNId0+QIFCmmAmkMcAdHO/hCCGEEEIIISY4CQIJIY4pJeXVmGjy2uTzKzzEMnmMylkAuHrX05vMAdCXzFNFP3l/1T63ZRiK0oAbj8s84H4rw15MX4R+VwWqZ/0Blz8a4lmbIGkK7uA+A11CCCGEEEIIsYMEgYQQx5TyymKR52TpHDJ4eGpjD66qmWgU3v71dMezOI6mP5mjSvVDqHq/26sKe0e978nlAbapur2KUI+XRMYmrFI4lkwFE0IIIYQQQhyYBIGEEMcWfxkA+dpl1ES8PLG+G68vRD5Uh2dgAwVHM5DO0zdUE8jcR2ewHUxj9Bk0k8sDrCvUYPVvBMc5rMMYC4lsniBpKQothBBCCCGEGBUJAgkhjilqKAiUqVnK2dMreHpjD47WZMtmE+h4AVXI0ZfMkogNElYpzH10BjsUk8sDvJqtxrRTZPubx2y7hyqRsQmRkqLQQgghhBBCiFGRIJAQ4tgyaTHZcBNO4xmcNaOcWMZmZcsgyfnvwkp1EN1wF+mcQ3agDQDjAJlAB6OpPMAGZxIAdsfaMdvuoYplbCKGZAIJIYQQQgghRkeCQEKIY4rZcArr3/oEnnAlZ04rRyl4ckM3eup5pCoXU/nK91CFHPZAe3H58P5rAh2MyWUBNuhiEMjpGv8gUCJrE1ZpcEsmkBBCCCGEEOLAJAgkhDimmIZCKfBZJlG/mwV1UZ5Y343HctG5+KO4E62UrL8Td7oTGOtMID/9hIm7yjC61ozZdg9VImMTVJIJJIQQQgghhBgdCQIJIY45pqHwuosfX+fPrOTl5oFiHaBJZ5OqWEjZaz8jkO0GwBUdu5pAIa9FedBDs9WE2fP6mG33UCWyNgGdQkkQSAghhBBCCDEKEgQSQhxz3C4Dj8sE4C2LJ6E13L+qA5Sib/Y78A5u4uz8U+SVG7zRMd33lPIA63U97r514BTGdNsHK51J4yYPHgkCCSGEEEIIIQ5MgkBCiGNO0OMa/rm+1M+pU0q5+6UWvJZiYPIV5F0BFhkbSXsqQI2+BfxoNJX7eSVbi1HIkuvZhNaa3kQWx9Fjup/R0OlBAAyfBIGEEEIIIYQQByZBICHEMWfXIBDANSfXs7U3RctABm35WV16cfGF0NgVhd6hqTzAS5linSG7fQ0t/WnaBjKs64wzmM6P+f72R+Vixb8lE0gIIYQQQggxChIEEkIcc/xuc7fHl82rxu82eWBVB17L4C+uYhDIGsN6QDtMKS92CNMoks2vMpAqBn7sgmZ7b4queGbM97kvKhsHwPBFjto+hRBCCCGEEMcuCQIJIY45ao8pXgGPizfMr+Gvq9oJelw8MljDo96LyE+7dMz3Pbc2QlZ5aTeqUd1rCW/5KzN/dwZlq36CKmTpHMzSGTvygaCCo7HsRPGBR1rECyGEEEIIIQ5MgkBCiOPCtSfXkcjaPPJ6F9v7Ujw8/Qs489865vupL/Xz/bct5jV7Es7256h98jOY2QFqn/sK0/94EZ6BjXTFsgykcmO+710lczZB0sUHMh1MCCGEEEIIMQoSBBJCHBeWNpXSUOrn1ofX42iYXhXCMo/MR9xl82tonLWESt2Lk0vy8Om/Zculv8bIJZh675sJtD9LS3+avuSRCwTFMzYhUsUHkgkkhBBCCCGEGIVRXSEppS5VSq1TSm1USn16hNdvVEq9OvRnuVJq4dgPVQgh9s0wFFcvrhsOvEyvDOIyx7Yz2K7qZi8F4GfmW7nl4SR/HJzJpiv/RN5fSdODN+Hpfo3W/jRbepLYBWfM998dzxJUQ5lAXqkJJIQQQgghhDiwAwaBlFIm8H3gMmAOcINSas4ei20BztFaLwD+Hbh9rAcqhBAH8pbFkwCoK/FRE/VhGUcu2dGcfTnbLvghi677Iksnl/K9xzbynZfybLrsDmxPCY0PvwdXqpNExmZr785AUH6MAkKdsQyh4elgkgkkhBBCCCGEOLDRXCEtAzZqrTdrrXPA74Ard11Aa71ca90/9PBZoG5shymEEAdWX+rnLYsn8caFtZQH3RjGkcsE8ni8xKdczqSyEL95zym8/+wp3L+qne88H2PrRT/BlR1g8l9vwNuzinTOYXNPkg2dcV5vj9Pcl8Jx9GHtvyuWIaRSOKYbXJ4xOiohhBBCCCHE8cw1imUmAc27PG4BTtnP8u8B/jbSC0qp9wHvA2hoaBjlEIUQYvRufesiALQ+vCDLgSil8FomlWEPpqH4zBtmY5kG33tsI4aq5l8v/ClNT/wL0/58Je2n/hu9c989vO5AKk8ia6NUscvXjqEaSmEaqtj5y1SUBNyUBdy7dUPTWtOTyNERyzJJpdFuKQothBBCCCGEGJ3RBIFGupU+4tWVUuo8ikGgM0d6XWt9O0NTxZYsWXJkr9CEECe0PdvIHwlVYQ9eyxx+/LGLZ2A7mtse38SWnhCfufg+Tnrpc9Q+80XQDr3z3jO8rF3Y+yOwoDWFoQyhgqNpH8hgKEVpwA1AJl9gW2+KnO2wqSvBAlcGLVPBhBBCCCGEEKM0mulgLUD9Lo/rgLY9F1JKLQB+Alypte4dm+EJIcTEFfJauz1WSvHpy2bx3RtOYntfiv/35208uuB/GGy6jNpnv8zk+95K/aMfItC2fNT76Elkh3/uGMyQs4s1hbriWaJmFi3t4YUQQgghhBCjNJog0AvAdKXUZKWUG7geuHfXBZRSDcDdwDu01uvHfphCCHHseOPCWu695Ux8bpNP/3ktv2/8Ej3z3oPSNoH2Z5l8/w1UP/cfuAc3g1PY77ayeYfBdJ54Jk88Yw8/35/KEVEpcEsmkBBCCCGEEGJ0DjgdTGttK6VuAR4ETOBnWuvVSqkPDL1+G/AFoAz4wdAUDFtrveTIDVsIISa2aZVB/vyhM3jXz1/gqw9u4sHGa7j5zE/QEISa5/6DilW3U7HqdhzDjXZ5cUwPtr+SgjuCKmQpeEvonf0OEnXn0B3P7lXjqC+ZI2hl0F7JBBJCCCGEEEKMjjrSxVP3ZcmSJXrFihXjsm8hhDha8gWHnzyxme88upGsXeDs6RUsqo/SUNhGuPdV/PHNuHUOt84SzPcR0HG8viD+wfVYqS4GGy9m+0U/2Wubb/nhcl4OfZTAzHNxX3P7OB2dEEIIIYQQYqJRSr24r8Sc0RSGFkIIcYgs0+Cfz5vGFQtr+c4jG/jzyjb+sb576NVZQ3925zYNLpwR5UvBP1G56jZ83StJVywcfj0+2AdofE4KJTWBhBBCCCGEEKMkQSAhhDgK6kv9fOPahXzikpmsah0sTufyuAh7LRytyRc0+YJDVzzLY+u6uH9tF3PPuY4PWL+h/LWf0nzedzCyA1S+/F3mrv45/2udhruQxJHpYEIIIYQQQohRkiCQEEIcRZVhL+cE3LQPZhhM59lzRm5t1MeCugjtgxlue66bq2ZdS826XxOfdBbVz/8XrkwvHZGFXD34JACOVwpDCyGEEEIIIUZnNN3BhBBCjCGXaVBf6mdGVYjKsIeSgEXY58LnNrBcCo9l8KFzp5LKFfhu4gLAof6Jj1HwlbHxqvv55czbuMM+DwDljY7rsQghhBBCCCGOHZIJJIQQ48TtMqgKe0d8bVpFkLdtaeDXz27jbfM/QLXXpvPkj6NdXvo2bONnhXdz5lnnUzfnjUd51EIIIYQQQohjlWQCCSHEBOQyDT7zhllUh718sPVimpd8Fu0qBoz6klmCfj+D825CBcrHeaRCCCGEEEKIY4UEgYQQYoLyu1184Y1zaO5L8cN/bKIzlgGgL5mnNODGNNQ4j1AIIYQQQghxLJHpYEIIMYG9YX4Nb1pYy19WtvHw2k4unVtNdyJLbcQrQSAhhBBCCCHEQZEgkBBCTHBfftNcrlxUy59faePelW0AzK0JYygJAgkhhBBCCCFGT4JAQggxwUX9Fgvro0ypCDJvUpivP7COxjK/ZAIJIYQQQgghDooEgYQQYoJTSlEe9FAe9PC+s6dyxYJaSvwWg2l7vIcmhBBCCCGEOIZIEEgIIY4xtVEfAF7LHOeRCCGEEEIIIY4l0h1MCCGOUUpqAgkhhBBCCCEOggSBhBBCCCGEEEIIIU4AEgQSQgghhBBCCCGEOAFIEEgIIYQQQgghhBDiBCBBICGEEEIIIYQQQogTgASBhBBCCCGEEEIIIU4AEgQSQgghhBBCCCGEOAFIEEgIIYQQQgghhBDiBCBBICGEEEIIIYQQQogTgASBhBBCCCGEEEIIIU4ASms9PjtWqhvYNi47F8eCcqBnvAchJix5f4gDkfeI2B95f4j9kfeHOBB5j4j9kfeH2J+j9f5o1FpXjPTCuAWBhNgfpdQKrfWS8R6HmJjk/SEORN4jYn/k/SH2R94f4kDkPSL2R94fYn8mwvtDpoMJIYQQQgghhBBCnAAkCCSEEEIIIYQQQghxApAgkJiobh/vAYgJTd4f4kDkPSL2R94fYn/k/SEORN4jYn/k/SH2Z9zfH1ITSAghhBBCCCGEEOIEIJlAQgghhBBCCCGEECcACQIJIYQQQgghhBBCnAAkCCQOm1LqUqXUOqXURqXUp/d47cNDr61WSv33PtYvVUo9rJTaMPR3ydDzFymlXlRKrRr6+/x9rD9ZKfXc0Pp3KqXcQ88rpdR3hsb1qlL/n737jrOrLhM//vme2+v0lp6QAiEkIRBCDb0pS9VFRFCxIWJdUdS1rLv+Vld37SvqqiiiKCJIlSq9JiQBQnqfTG+3t3PO9/fHuZnMJDPJTGYmU/K8X6/7ysy9p3zvzZl7z33O830etWS4n7s4uLF6fBQfO0sptbq4/2eG83mLgRkDx8fNxX1rpVRlj/uvLb5vvKGUelEptWg4n7cYmDF8fJQopR5QSq0p7v+Dw/m8xcCN4DFyUvHzYXXx//mKftaXc5AxbKweH8XH5BxklI2B40POQca4MXyMDO08RGstN7kd8g1wAVuAWYAXWAPMLz52NvAE4Cv+Xt3PNv4LuLX4863Ad4o/Hw9MKv68ANjdz/p/Bt5T/Pk24OPFn98BPAIo4GTgldF+vY602xg/PkqBt4FpB9q/3Cb88XE8MAPYDlT2uP9UoKz488Xy/iHHxz7Hx5d7bKsK6AC8o/2aHWm3ET5GgoC7+HMd0LLn933Wl3OQMXob48dHKXIOIseHnIOM6dsYP0aGdB4y6i+u3Mb3DTgFeLTH718CvlT8+c/AeQPYxgagrvhzHbChj2UU0L7nD22f+9t6/BF1jwf4OXBNX/uRmxwfwE3Af4z2a3Qk30b7+NhnmV4frvs8VkY/QQK5HZnHR3Es/1tcdyawGTBG+zU70m6H8RiZCTSzzwm6nIOM7dsYPz7kHOQIPz72WUbOQcbgbSwfI0M9D5HpYGKoJgO7evxeX7wPYC5wRjEN9hml1NJ+tlGjtW4EKP5b3ccyVwGrtNa5fe6vALq01mYf+z/Q2MThMZaPj7lAmVLqaeVMB7l+UM9MDIfRPj4G6kM4V/TF4TWWj4+fAMcADcCbwKe11vYg1hfDY0SPEaXUMqXUWpz/4xt7fJbsIecgY9tYPj7kHGT0jfbxMVByDjJ6xvIxMqTzEPcgdiREX1Qf9+niv26c6PXJwFLgz0qpWboYvhzwDpQ6FvgOcMEg93+gx8ThMZaPDzdwAnAuEABeUkq9rLXeOJj9iyEZ7eNjIOufjXMCdvqhrC+GZCwfHxcCq4FzgKOAx5VSz2mt44PcjhiaET1GtNavAMcqpY4BfquUekRrnR3g/uUcZPSN5eNDzkFG32gfHwcfoJyDjLaxfIwM6TxEMoHEUNUDU3v8PgUnIrnnsb9qx6uADVQqpX5TLIL1cHG5ZqVUHUDx35Y9G1NKTQHuBa7XWm/pY/9tQKlSak9Ac9/99zc2cXiM9ePj71rrlNa6DXgWWDTE5ysGZ7SPjwNSSi0E/g+4TGvdPtj1xZCN5ePjgz32vxnYBhw9yG2IoRvRY2QPrfU6IIVTP6onOQcZ28b68SHnIKNrtI+PA5JzkDFhLB8jQzoPkSCQGKrXgDnK6X7gBd4D3F987D6c6CRKqbk4BbXatNYf1Fov1lq/o7jc/cD7iz+/H/hbcZ1S4CGcuZcv9LXzYrT1H8C79l2/uN3rleNkILYnHU8cNmP5+PgbThqnWykVBJYB64b8jMVgjOrxcSBKqWnAX4Hr5MrsqBmzxwewE+cKPkqpGmAesPUQtiOGZiSPkZl7vrwrpabj/B9v77lzOQcZ88by8SHnIKNvVI+PA5FzkDFjzB4jDPU8RI+BoktyG983nA4YG3Gqp3+lx/1e4PfAW8DrwDn9rF8BPAlsKv5bXrz/X3Gioqt73ParvI5Tsf1VnIJYd7O3SrsCfloc15vAiaP9Wh2Jt7F6fBQfuwWnO8dbwGdG+7U6Em9j4Pj4FM7VHBPn6s7/Fe//P6Czx7orRvu1OhJvY/j4mAQ8VvxseQt432i/VkfqbQSPkeuAtcVj43Xg8n7Wl3OQMXwbq8dH8TE5B5HjQ85BxvhtDB8jQzoPUcWNCCGEEEIIIYQQQogJTKaDCSGEEEIIIYQQQhwBJAgkhBBCCCGEEEIIcQSQIJAQQgghhBBCCCHEEUCCQEIIIYQQQgghhBBHAAkCCSGEEEIIIYQQQhwBJAgkhBBCCCGEEEIIcQSQIJAQQgghhBBCCCHEEUCCQEIIIYQQQgghhBBHAAkCCSGEEEIIIYQQQhwBJAgkhBBCCCGEEEIIcQSQIJAQQgghhBBCCCHEEUCCQEIIIYQQQgghhBBHAAkCCSGEEEIIIYQQQhwBJAgkhBBCCCGEEEIIcQSQIJAQQgghhBBCCCHEEUCCQEIIIYQQQgghhBBHAAkCCSGEEEIIIYQQQhwBJAgkhBBCCCGEEEIIcQSQIJAQQgghhBBCCCHEEUCCQEIIIYQQQgghhBBHAAkCCSGEEEIIIYQQQhwBJAgkhBBCCCGEEEIIcQSQIJAQQgghhBBCCCHEEUCCQEIIIYQQQgghhBBHAAkCCSGEEEIIIYQQQhwBJAgkhBBCCCGEEEIIcQSQIJAQQgghhBBCCCHEEUCCQEIIIYQQQgghhBBHAAkCCSGEEEIIIYQQQhwBJAgkhBBCCCGEEEIIcQRwj9aOKysr9YwZM0Zr90IIIYQQQgghhBATzsqVK9u01lV9PTZqQaAZM2awYsWK0dq9EEIIIYQQQgghxISjlNrR32MyHUwIIYQQQgghhBDiCDCgIJBS6iKl1Aal1Gal1K19PF6ilHpAKbVGKbVWKfXB4R+qEEIIIYQQQgghhDhUBw0CKaVcwE+Bi4H5wDVKqfn7LPYJ4G2t9SLgLOC/lVLeYR6rEEIIIYQQQgghhDhEA6kJdBKwWWu9FUApdRdwGfB2j2U0EFFKKSAMdADmMI9VCCGEEEIIIYQYVoVCgfr6erLZ7GgPRYhB8fv9TJkyBY/HM+B1BhIEmgzs6vF7PbBsn2V+AtwPNAAR4Gqttb3vhpRSHwU+CjBt2rQBD1IIIYQQQgghhBgJ9fX1RCIRZsyYgZPXIMTYp7Wmvb2d+vp6Zs6cOeD1BlITqK+/Ar3P7xcCq4FJwGLgJ0qpaB+D/IXW+kSt9YlVVX12KxNCCCGEEEIIIQ6bbDZLRUWFBIDEuKKUoqKiYtAZbAMJAtUDU3v8PgUn46enDwJ/1Y7NwDbg6EGNRAghhBBCCCGEGAUSABLj0aEctwMJAr0GzFFKzSwWe34PztSvnnYC5xYHUQPMA7YOejRCCCGEEEIIIYQQYkQcNAiktTaBm4FHgXXAn7XWa5VSNyqlbiwu9u/AqUqpN4EngS9qrdtGatBCCCGEEEIIIcREoZTiuuuu6/7dNE2qqqq45JJLRnFUBxcOhw+6zDe+8Q2+973vHXCZ++67j7fffvuAy4jhMZDC0GitHwYe3ue+23r83ABcMLxDE0IIIcYHy9a4DEkjF0IIMXKSOZOwb0Bf38Q4FAqFeOutt8hkMgQCAR5//HEmT548KmMxTRO3+/Aea/fddx+XXHIJ8+fPP6z7PRINZDqYEEIIIQ6gM53HsvftmSCEEEIMn7ZEDq3ls2Yiu/jii3nooYcA+OMf/8g111zT/VgqleKGG25g6dKlHH/88fztb38DYPv27ZxxxhksWbKEJUuW8OKLLwLQ2NjI8uXLWbx4MQsWLOC5554Demfu/OUvf+EDH/gAAB/4wAf43Oc+x9lnn80Xv/hFtmzZwkUXXcQJJ5zAGWecwfr16wHYtm0bp5xyCkuXLuWrX/1qv8/lW9/6FvPmzeO8885jw4YN3ff/8pe/ZOnSpSxatIirrrqKdDrNiy++yP33388tt9zC4sWL2bJlS5/LieEhoWQhhBBiCGxb05nKE/V7JBtICCHEiEnlTdJ5i5BkA42of3tgLW83xId1m/MnRfn6Px170OXe85738M1vfpNLLrmEN954gxtuuKE7ePOtb32Lc845h1//+td0dXVx0kkncd5551FdXc3jjz+O3+9n06ZNXHPNNaxYsYI//OEPXHjhhXzlK1/BsqwBBVE2btzIE088gcvl4txzz+W2225jzpw5vPLKK9x000089dRTfPrTn+bjH/84119/PT/96U/73M7KlSu56667WLVqFaZpsmTJEk444QQArrzySj7ykY8A8K//+q/86le/4pOf/CSXXnopl1xyCe9617sAKC0t7XM5MXTyDiKEEEIcord2x3j3bS/x3XctZEpZcLSHI4QQYoIqWDa2DYmsKUGgCWzhwoVs376dP/7xj7zjHe/o9dhjjz3G/fff311bJ5vNsnPnTiZNmsTNN9/M6tWrcblcbNy4EYClS5dyww03UCgUuPzyy1m8ePFB9//ud78bl8tFMpnkxRdf5N3vfnf3Y7lcDoAXXniBe+65B4DrrruOL37xi/tt57nnnuOKK64gGHTOjS699NLux9566y3+9V//la6uLpLJJBdeeGGfYxnocmLw5B1ECCGEOER/XrGLTMFiU0uSM+dVAa7RHpIQQogJKFuwAEhkC9SW+Ed5NBPbQDJ2RtKll17K5z//eZ5++mna29u779dac8899zBv3rxey3/jG9+gpqaGNWvWYNs2fr9zfCxfvpxnn32Whx56iOuuu45bbrmF66+/vldL8Ww222tboVAIANu2KS0tZfXq1X2OcSBtyftb5gMf+AD33XcfixYt4vbbb+fpsZICaQABAABJREFUp58e0nJi8KQmkBBCCHEICpbNg280AtAUz0pNICGEECMmZ9oAZAs2tnzeTGg33HADX/va1zjuuON63X/hhRfy4x//uLsu1KpVqwCIxWLU1dVhGAZ33HEHluUEDHfs2EF1dTUf+chH+NCHPsTrr78OQE1NDevWrcO2be69994+xxCNRpk5cyZ333034ASg1qxZA8Bpp53GXXfdBcCdd97Z5/rLly/n3nvvJZPJkEgkeOCBB7ofSyQS1NXVUSgUeq0fiURIJBIHXU4MnQSBhBBCiEPw/KY2OlJ5AC7a9m28z/6/UR6REEKIiWpPJhBA3rJHcSRipE2ZMoVPf/rT+93/1a9+lUKhwMKFC1mwYEF3UeabbrqJ3/72t5x88sls3LixO5vn6aefZvHixRx//PHcc8893dv89re/zSWXXMI555xDXV1dv+O48847+dWvfsWiRYs49thjuwtR//CHP+SnP/0pS5cuJRaL9bnukiVLuPrqq1m8eDFXXXUVZ5xxRvdj//7v/86yZcs4//zzOfroo7vvf8973sN3v/tdjj/+eLZs2dLvcmLo1GhVmD/xxBP1ihUrRmXfQgghxFB99k+reWp9C8eHu/h14qNYdUvwfOyp0R6WEEKICSSVMwl6Xezcup6qRz7KznNvo276XEqCntEe2oSybt06jjnmmNEehhCHpK/jVym1Umt9Yl/LSyaQEEIIMUi2rXlmYyunzq7gavUEBhqV7RrtYQkhhJhgmuJZtrence94hmDbG5RuuY+cZR18RSGE6IcEgYQQQohBersxTkcqz9JJAZan/g6AynSM8qiEEEJMJKZlk85ZJLMmvvb1AER3PkHe7Hs6WCpn9po2JoQQfZEgkBBCCDEAPU+6n9vUBsAytZaQFWONPQsjFwNb6jQIIYQYHsmc2f2zv2MDAIGWVZixpv2WbYxl2NqaIpOXIJAQ4sAkCCSEEEIMQDq/92T8uU2tzK0JU9X5OrZy85h1IkrbkIuP4giFEEJMBI2xDOm8SSLrfO7c/dpOdMta0pWLUGi8257oXjZnWty9YheX/Oh57lu9G1M6hwkhDkKCQEIIIcQA5E2bvGmTyVus2N7JCdPLCDWvIFl+LE263Fko0zm6g5yAEtnCaA9BCCEOG8vWtCfzbGtLEc8W0Frz/BvriFgx/uE9k3x4MqEdT2HZmlimwLceXMctf3mD9lSe9U0JLAkCCSEOQoJAQgghxABYWpM1LZ7e0ELesllcFyTQuoZc3VKSRsRZSOoCDav2ZI541jz4gkIIMUF0pfNo7cwutm2o78xQl9sKwO+3R2gOz8ffsZ50zuTfH3yb3728gzPnVnFMbYSOZA5TpiULIQ5CgkBCCCHEAFi2Jpu3uG/1birDPo737MCwcqRrT8ITrgBApyUTaLhorWmKZ7EsuaothDhydKb3Zj+6Mm3Mf+J9fMD1GADNvpk831WON7GD6375HH9ZWc87jqvjc+fPpa4kQFsqL5lA41hzczPvfe97mTVrFieccAKnnHIK995774jvd8WKFXzqU58alm2dddZZzJs3j0WLFnHaaaexYcOGYdnucBrOMd5+++3cfPPNANx222387ne/63fZ7du384c//KH79+F83QdLgkBCCCHEANg2tCSy/GN9K+ccXU2kZQUAuboT8UScIJCVlkyg4bK9PUVLXK5qCyGOHLate3X3Ktn2MDPiKzjftZJCoIrzly7gpXgVStvYrZv5/AXz+PiZR2EoxTR/io9kf0PZIzdKk4JxSGvN5ZdfzvLly9m6dSsrV67krrvuor6+fsT3feKJJ/KjH/1o2LZ35513smbNGt7//vdzyy237Pe4ZY1+8fKRGOONN97I9ddf3+/j+waBhvt1HwwJAgkhhBAHY9uUvPAfvPL6avKWzalHVRBqfJlcdAbRyslofykgmUCDcaCr1QXL5vpfvcp3H90gV7WFEBPWvu3cs6aFLr7l2VoT2P4E9VTzavBMYkddxj+fOJX24AwAvrLMxZlzqwDwt73JF7Zcz0ddDxLdfL9MTR6HnnrqKbxeLzfeeGP3fdOnT+eTn/wk4AQQzjjjDJYsWcKSJUt48cUXAXj66ae55JJLute5+eabuf322wG49dZbmT9/PgsXLuTzn/88AHfffTcLFixg0aJFLF++fL9tvPrqq5x66qkcf/zxnHrqqd1ZMrfffjtXXnklF110EXPmzOELX/jCQZ/T8uXL2bx5MwDhcJivfe1rLFu2jJdeeon/+Z//YcGCBSxYsIAf/OAH3ev87ne/Y+HChSxatIjrrrsOgNbWVq666iqWLl3K0qVLeeGFFwB45plnWLx4MYsXL+b4448nkUjQ2NjI8uXLWbx4MQsWLOC555475DH+/ve/56STTmLx4sV87GMf6w4M/eY3v2Hu3LmceeaZ3WMB+MY3vsH3vvc9ADZv3sx5553HokWLWLJkCVu2bOHWW2/lueeeY/HixXz/+9/v9bp3dHRw+eWXs3DhQk4++WTeeOON7m3ecMMNnHXWWcyaNWvYgkbuYdmKEEIIMZHFdlLy+k8J+tuZVv4eZkdtwg0v0HHMdYR8LnSgDAAtmUADls6bRPyePh/702u72NWZIeDJky+M/hVDIYQYCbFMAb/H1f37nvbu/ra3+PHrOf5r9wvcZ51L/Ph/J3BMDXPKAtx01UXoP93CDHsXbbkYpVvuo3bFd8m4g/woezafct8H6Q4IVY7Ss5oAHrkVmt4c3m3WHgcXf7vfh9euXcuSJUv6fby6uprHH38cv9/Ppk2buOaaa1ixYkW/y3d0dHDvvfeyfv16lFJ0dXUB8M1vfpNHH32UyZMnd9/X09FHH82zzz6L2+3miSee4Mtf/jL33HMPAKtXr2bVqlX4fD7mzZvHJz/5SaZOndrvGB544AGOO+44AFKpFAsWLOCb3/wmK1eu5De/+Q2vvPIKWmuWLVvGmWeeidfr5Vvf+hYvvPAClZWVdHQ451Sf/vSn+exnP8vpp5/Ozp07ufDCC1m3bh3f+973+OlPf8ppp51GMpnE7/fzi1/8ggsvvJCvfOUrWJZFOp3ud3wHGuO6dev4zne+wwsvvIDH4+Gmm27izjvv5Pzzz+frX/86K1eupKSkhLPPPpvjjz9+v+1ee+213HrrrVxxxRVks1ls2+bb3/423/ve93jwwQcBJ/i2x9e//nWOP/547rvvPp566imuv/56Vq9eDcD69ev5xz/+QSKRYN68eXz84x/H4+n7/GmgJAgkhBBCHEwuAcDk1FqWL6kkWv8PDCtHbNY7mOl1E/T7SBLAI5lAA5bKWX0GgTJ5ix8+uQmXoVhirWbOHR+HG/8BZTMO/yCFEGIEpXImpmXjdjmTMzIFi0DL68y+/3K+oCvxqwLh4y5h0ZwqlAKf22BaTQWFyBT8Hes56v7L8ce2kK5cyAvH/zcrHiq2jpdMoHHvE5/4BM8//zxer5fXXnuNQqHAzTffzOrVq3G5XGzcuPGA60ejUfx+Px/+8Id55zvf2Z1xctppp/GBD3yAf/7nf+bKK6/cb71YLMb73/9+Nm3ahFKKQmFvjapzzz2XkpISAObPn8+OHTv6DAJde+21BAIBZsyYwY9//GMAXC4XV111FQDPP/88V1xxBaFQCIArr7yS5557DqUU73rXu6isdAKY5eVO59UnnniCt99+u3v78XicRCLBaaedxuc+9zmuvfZarrzySqZMmcLSpUu54YYbKBQKXH755SxevLjP1+dgY3zyySdZuXIlS5cuBSCTyVBdXc0rr7zCWWedRVWVk4V39dVX7/d/kUgk2L17N1dccQUAfr+/zzH09Pzzz3cH28455xza29uJxWIAvPOd78Tn8+Hz+aiurqa5uZkpU6YcdJsHIkEgIYQQ4mBySQAWG1vIzamkZMXDFII16MlLMQxF0OumS4epkhbxA5bO9+76Zdsaw1A8+EYDrYkcHzyhlI++9XO8uQ6s5nW4JAgkhJhgMgWLgqVxF5OBsgWLinW/p6C81Ol2THeQ+SdfhHYZ+D0ulFJEAx6ypXOI7ngMpS12nfVDumZfQShToFM7nSqtVDuuA+xXHMQBMnZGyrHHHtsdBAD46U9/SltbGyeeeCIA3//+96mpqWHNmjXYtt0dWHC73dg9akBls9nu+1999VWefPJJ7rrrLn7yk5/w1FNPcdttt/HKK6/w0EMPsXjx4u5skz2++tWvcvbZZ3Pvvfeyfft2zjrrrO7HfD5f988ulwvT7Lt755133tk97j38fj8ul3NUat33NG+tNUqp/e63bZuXXnqJQCDQ6/5bb72Vd77znTz88MOcfPLJPPHEEyxfvpxnn32Whx56iOuuu45bbrmlzzo9Axnj+9//fv7zP/+z1zL33Xdfn2Pc93kMVl/r7NnPQF/3wZCaQEIIIcTBFDOBoirNDHMzkV3/IDbjYkLFTJaQz02nDsnV1wEyLZtsoXfh0m3tKVI5k7tX1jOjIshH8ndSp5zX00q1j8YwhRBixORMC9uGvOm8F2qteWPjdkKb7+ce+yz+o+xb7D7rB2iXFwC/x/naFvG5yZXNQWmLbNlcuo66DICo301ShQGwU/JZNN6cc845ZLNZfvazn3Xf13MqUywWo66uDsMwuOOOO7rr00yfPp23336bXC5HLBbjySefBCCZTBKLxXjHO97BD37wg+5gz5YtW1i2bBnf/OY3qaysZNeuXb3GEYvFmDx5MkB3baHhtnz5cu677z7S6TSpVIp7772XM844g3PPPZc///nPtLc7n/l7poNdcMEF/OQnP+lev+dzOe644/jiF7/IiSeeyPr169mxYwfV1dV85CMf4UMf+hCvv/76IY3x3HPP5S9/+QstLS3dY9mxYwfLli3j6aefpr29nUKhwN13373futFolClTpnDfffcBkMvlSKfTRCIREolEv6/JnXfeCTjTxCorK4lGo4c09oGQIJAQQghxEM1trd0/T3n2CxhWlq7ZVxD0Ogm1Ia+LLh1GSybQgFhaY9maguV8+elK50nnLF7e0s6r2zq44NhaKhue5gW9CAAtQSAhxASzp/5Pvvg+mMlbNDx7O16d5xHfRRx92qXEZ1zUvXygWDvIMBRWxVwAWhd+HJTzdU4phQo502dsqU837iiluO+++3jmmWeYOXMmJ510Eu9///v5zne+A8BNN93Eb3/7W04++WQ2btzYPZVq6tSp/PM//zMLFy7k2muv7a5Pk0gkuOSSS1i4cCFnnnkm3//+9wG45ZZbOO6441iwYAHLly9n0aJFvcbxhS98gS996UucdtppI9bFa8mSJXzgAx/gpJNOYtmyZXz4wx/m+OOP59hjj+UrX/kKZ555JosWLeJzn/scAD/60Y9YsWIFCxcuZP78+dx2220A/OAHP+guch0IBLj44ot5+umnuwtF33PPPXz6058+pDHOnz+f//iP/+CCCy5g4cKFnH/++TQ2NlJXV8c3vvENTjnlFM4777x+6zjdcccd/OhHP2LhwoWceuqpNDU1sXDhQtxuN4sWLer+/9jjG9/4RvdzvPXWW/ntb397SOMeKHUo6UrD4cQTT9QHKmYlhBBCjBUv3PVdTlv/H2gUCk182nnsuODXHFMXwe0y+P3LOyh96KOcX96C77OrRnu4Y166s4mGbeuomX86q3d2cdszW7C0piWRY3tbijuunslp953CLwM38IHM77CW3YT/4n8f7WELIcSwaexKUfq7c8me+HHKTn0/z25sIX/HP7M41Enj+57tXi7oc5HJW8ysDBHyORcedjW1odb+lc45V4Gxt7rHl/+6hns7Lsc8+ZP4L/q3w/6cxrN169ZxzDHHjPYwhDgkfR2/SqmVWusT+1peMoGEEEKIg9jV7KQDZ6oWolE0nfgFgj5XdzHPkM9Flw5hZLtGcZTjh+uV/2XWQ1fT3N7FJ/74Om81xGmKZbFtzaWLJjM5vQ6AzrKFdBCBtGQCCSEmFrOrkUDHOty7nFbff1pRz3HGdvSk3p2G6kr8zKwM9eoi5guF6Zx3da8AUE2Jj5lVEeKEne5gQgjRDykMLYQQQhxA3rTp6GgHBU0nfQVvfAe58qOpC+ztbBX0utlNGHe+C2wbDLnGckCpFgwrx91/f4JUroQfXr2Y6RWh7ocDK/+KVgZ2zUI66iMEE60cvLeGEEKMH0ZsOwCu2E5SOZM16zZQ4+qkofq47mVcxcYD++oZEHK7FLVRP2UhL3Ulfjp0mKDUpxNCHICcpQohhBAHsGpnJz4rTcEdIj3pZOfqK1DSIwgU9rnp1GGUtiHfd9E/0UOxdlLn1pVctmgSMyOaSc9/CX+70wI22LqabNk8airKadcRzETrgbYmhBDjjurYBoA7vpPH1jYz29oKQLZiQfcyEX/f1+v9xXZiIZ+Lo2sjlIWc4tFVER+dOiSFoQ/RaJVJEWIoDuW4lSCQEEIIcQAvbGknrLIoX4Sg1znxDvpceFx7P0KDXhcxnK4skoY/AJkuAE7w1vOepdOoWv1jKtbfyfTHPog73UqgdQ2ZqkVMLQ/SSQRXVl5TIcTE8fe3mvjrk88D4Eo28vAbuzjB63RpylTMZ1Kpn2jATbTHxYaevG4Dw4DKiK9Xu+qI302XjkinykPg9/tpb2+XQJAYV7TWtLe34/cPLl9apoMJIYQQB9Acy3KcOwu+CCGfm1TOojLk67VM2OcmpovTmaQu0EHFOlqpBpZHG4lnd1H51q9ITjqVYPPrzL37TFyFJJmqRcyrjfCUjuDNrRvtIQshxLBZ2xBjtnJqzbmw2Lp5Ax8v2U3ONQPlL6Es6KW8mN3Tn9Kgl6i/d5Ao4vfQqcMY2foRG/tENWXKFOrr62ltlcxTMb74/X6mTJkyqHUkCCSEEEIcQDJnUmJk0V4nCOT3FCgJ9j7xDvrcpPZUrcmnRmGU48c/1rdwTLoDFFSnNxF85T/QhptdZ/4AX2wbpVvuA22Tn/tOasM+OnQUvxkDywTXoZ+2aK17XTEXQojREssUmOlqwXL5cFk5qu1m5thbyFQfT1nIg2Ec/L2qNrr/lf+I380uwnhyXSMw6onN4/Ewc+bM0R6GEIeFBIGEEEKIA0jmTCIqA74aQl4XNSX7n3iHvW4yupgdlE8f5hGOH7at+eyfV/OKSlHwleHJdVKy4zGaTvwCZqgWM1RLatIpAFRGvAS8LpKuEmflTCeEqw553wVL43VLEEgIMfq60gWm0Uym9iTCu59jeWA7kcxuGiuvoyx44AygPVx9BIoifg9dOoLLzkEhA57AcA9dCDEBDKgmkFLqIqXUBqXUZqXUrX08fotSanXx9pZSylJKlQ//cIUQQojDK5kzCZEFXxil1H7p9+DUCOrOBCpIJlB/OtJ5MukUPvKkJ50MQD4ylbYFH95v2aDHuU5V8JU5d6TbDnm/lq2xpc6DEGKMyCY7KSVBbsqpaGXwYd+TACSnndOr89dgRfxuuihOTZb6dEKIfhw0CKSUcgE/BS4G5gPXKKXm91xGa/1drfVirfVi4EvAM1preecRQggx7iWzJkGdBl+k32U8LgPT5VxxtXPJwzW0caclnqMEJ0hmTT2VxOTl7D7tP9Hu/bOrAsUi3GbAuaZkJocWBJIYkBBirAimnCLQqnIOhdAkPOkmctHpGDXzD7LmgUX8bjp18bNKikMLIfoxkEygk4DNWuutWus8cBdw2QGWvwb443AMTgghhBhtydzBg0AAeIIAaKkJ1K+WRJZS5QTJPNFatl/8e5JTlgNQEvCwp2SP26Xwup1TFBWsBMBOHXoQyNaSCSSEGDui6WLh5vKZmNGpAMSnX0TAO7RKHVG/h65ip0o71T6kbe1LumYJMXEMJAg0GdjV4/f64n37UUoFgYuAe/p5/KNKqRVKqRVSeV0IIcR4kMjm8dkZlC964AW9xRPvnNQE6k9rIkcpThDIF63ovt/rNphaHqCuWG8p6N07HcIddoJAVvLQzxtkOpgQYiwpyTcB4CqbjlUyDYDYzIsJDGEqGIDPbZBQzgULKzW8mUA50x7W7QkhRs9Aws19VVHs70zqn4AX+psKprX+BfALgBNPPFHOxoQQQoxpWmvMXBqXz8LyhQ+4rMcXxM4pyMt0sP60JHKUKCdTyhuuwK0UpqWpK/WjlKIi7CPi35sRBOCJOMWgdfLQr2pbWqaDCSHGBtvWeM04tlvhDpaSnXU+8WQrmarF3dNgD5VSyqmjZuMU0x9GuYI9pHpFQoixYyBBoHpgao/fpwAN/Sz7HmQqmBBCiAkiW7AJ6QwAyn/gTKCg300u4ccl3cH61ZrIUeNxXk8CZQQsF9pDr2Lbe6aB7VEaCRLXARhCTSD3iz/ClaiHy75/yNsQQojhkMiZhMmQd4Vwuw3soy9lR90FKOVk8gyV9pdCGuz08E4Hy5oWJezfGEEIMf4M5J3mNWCOUmqmUsqLE+i5f9+FlFIlwJnA34Z3iEIIIcToSOQKhJUTtDAOEgQK+9xk8XXXBErmzBEf33jTmsgxyZd1fgmUEvS5uqeA9ac85KNDRzEThz4dzL3zOdzbnznk9YUQYrjE0oXuIJDHMLoD336PgVJ9TcAYHF8gSA4fZLqGvK2ecgWZDibERHHQIJDW2gRuBh4F1gF/1lqvVUrdqJS6sceiVwCPaa2lIqYQQogJIZk1CVHMXPEeeDpY0Osigx+KQaCudH6khzfutCSyVHsyaOUCX5TKkO+g0wvKQx46iKCLNYGyBWvQBUpVLgEFydASQoy+rkyesMpgecIYhurO/on4hyfLJuLzkFRh9HAHgUxrWLcnhBg9AypBr7V+GHh4n/tu2+f324Hbh2tgQgghxGhL5kwixUygg3UHC/ncpPBRUXCCQPGMiS7Vw3Jld6zQuv/nE0sXCPpceFz9X19qTeSoMFLYvhJcSmEM4KUpC3pp0WXMSrcAzv+J1u7B1c7IJ1ASBBJCjAGxjJMJZHudzxSvy0ApKA95h2X7Eb+bhAoSysaGZXt7SGFoISaOoU88FUIIISaoZNap3QAcPAjkdZPWPlQ+jWnZWLYmU5g4V05j6QLN8Vyfj1m2pr4rzcbmBFtak7Ql+16uJZGjVKWcmhUDVBH20qJL8WedTKB0zhr0VDuVS6DMzKDWEUKIkdCVLjgXF4qfKYahKA95DxhAH4yI30NMh1DZrmHZHjjFrLWGgiWBICEmAgkCCSGEEP1I5kxCFGvYDCATKGl7oZAiXzxRTuUmRhCoYNns7srQlsyR7+NqcGc6j22DbTtBmuZ4FtvuPWUrlTNJ5y2iOoE9iCBQWdBLqy7Bb8YwcxlSeZN0fnBBICOfRFl5sKROkxBidHUVM4F61pmrjviGbfsRv5tOO4jKOZlA2WG4GGEVp+BKEEiIiUGCQEIIIUQ/kjmzuzD0wTOBXCS1H/JpCqZzwjzYYMVYVd+ZwSpeCW6KZbvvT2QLxLMFOlK96x/Z9p7AkKYjlSdbsGhJONlBYZ1CB8oGvO/SoJdWnOXTHY2Ylh5ccE1rVD7h/FyQsoVCiNEVSzs1gTzBku773MOUBQQQ3RMEKk4Hi2cKQ96mvScIZA6uHpsQYmwaUE0gIYQQ4kiUzJlEBjgdLOhzk8YH+ZbuTKBkzsSyNa6BFL8Zo9qTOZLZvcGsWKZAayKH32Owoz1NfzWaW5M52lP57o4ym1ucQEzQioP/mAHv32UoUt4K0JDu2A0lFVi2JluwDlpUGoB8CkVxkIUM+EsOvLwQQoygWKZAhAxG4MCfKYfKmQ4W7J4OlspbFCx7SNPN9rzP5yUTSIgJQTKBhBBCiH4ksiYhlUEbbnAfuJV52Ocirf2oHtPBbNsphjxeWbamKZ7ljfquXoGg5niWnR17A0BGrovaV76Fr2N99zIFU/dqKdxYzCDymXEYRCYQQN5fDcCv//4SZS9/h5It9w/86nYu0WNDkgkkhBhdsVSOkMqiekwHG04Rv5sYIVz5BNg2OdMaclFnKx0j0PK6TAcTYoKQIJAQQgjRj2TOpEQVu7gcpMtX0OtkAikzg5XqpGzDXaA1bcncuD1xbk/m+Mf6Vr5y31v84J4n0DteBJyrwnbxKf3+5R28fOc3qXrz58z660X4/nAZU566GWOfqVetiRxh0ngKCVSoclDjuGDZQgDyHbuoXftLKt/8BW3JPJZ94KkJpmXzs0dX7b2jIMWhhRCjK5OOA6AOkl16qCJ+D3EdRKGxs7FiQH5odYFcq2/nqAeuwkp1DNMohRCjSYJAQgghRD9SOZNK18C6Wc2pCZPGh8vM4NvwN6Y89wWCTa+itZM5M97YtubN+hg//cdm5pfZfC/9FeY/fi10bOteZtXOTu5bsYV36cd4y7+ExwPvJJ2MU7b1fjpevYum4vPOmzYPvtnIu0s3o9DoGacPaixXLV+CVgbnBLbg1nkCbW+iM520pw6cZbW1LcXfX9+09w5pEy+EGGWFtFOrx/CPVBDITZyQs69UFzD09u4q1Y7SFqr17aEOTwyS7m/OtRBDIDWBhBBCiH4ksyZlRnpAQaCja6OsqaxAdWns9q0ARHc+QbpuGZ2pAuUhk6B3fHzsWrZma2uSb/99PYah+W3ZbyjPdlKwDXKP/xsvLPoOuxqaWbjtl/wgGKPEjtN+7q1Mrl3GHS9tJ/rW1XjW/pnrVs1jcmmAaeVBWhM53jfrbcz2EoxpywY3IMOFFajkpNwbACg04cZXaAtcRGXIh9FPzaVehb1BpoMJIUad1Z0JNHLTweLaCQLlk+0EOreTdx8HBA59o/kkAO62dcD5Qx+kGBCtNTnTHlj9OyEGQTKBhBBCiH4kcialJNH+gdWwOeXoaQB07HJq40R3Pt79WEPX+MkG2taW5GdPb2FTS5JfznmVqoYnaV72ZZ4pfzcnJp7izafu4qIt/8b1+m9cbD9NumoxqdplKKW4/tSZ6OOu5mRjHT+cv5HP2L8jte1VTpoWZXrH8ySnnI3L5Rn0mKxgFX4rgakNcspHqOEFLFvTmc73u06qZ2FvkOlgQohRZ2eLQaARqwnkIbYnE6h1M0c9cCWBNbcPbaM5Z8zetnVDHJ0YjLxlH3TasxCHYnxckhRCCCFGQTJrUkJywC3Np1RXAODq2gYG+GJb8XZtIV96FJm8RSxToCQw+ADI4dSZyrN6Z4x7V+3mxqM6OWXLj4hNv5D2Yz9E9cwuGv/6Ev/HfwPQcPLX6DrqcrQ70KtmUuHYd8HaH3LZ1m8A8G7fvaQKx+DOdpCYfh6lh9AtzQ7VQNta2nxT2ZiNsqT+eQDaU3kqwr4+10nlTCKqxxQwmQ4mhBhFWmsnCOQGV2BkgkBRv5u4DgKgGlahtI23dS22rfvNmjyYXCqGD/B3rB/3HS/Hk4KlsWU6mBgBkgkkhBBC9COZM4noxIC7WRm+MAAzjGY268kARHc82v14yxiuDZTJW+RNm4ZYhv99ZjNlQQ83Z3+OGaikfvl3QSncoTLar3mU5hP+hZZFN9N+7IewApXYnlCvutmF6HTaFnyY1uM+yrr3rqBh2dfw5GNYnhDpaWce0vjscA0AqnYBL9rHEY5vxtu1hVzBJpbuu1NYMmcR7pUJJEEgISaa/BDr3RxOyZyJ3y6+D41gYehYcTpY55YVAPg7N5IZQnHoppY2AHwd6ymY5kGWFsOlYNrYkgkkRoBkAgkhhBD9yGRzBHWKQqB0YCt4nRNvP3nWqtmkXKXMf/P/6DjmfdjeKNmCTWMsQ23UjzpIt7HDbXdXhkze4vcv72Bra4qfn7Cb8No3qF/+PWxfafdy2u2n5fhP77f+rKoQyaxJPFsgb2oaT/5a92Ptx32Y9mPfjyufxDPI9vDdikEgXTWfRn0SmZ1/oWzFD2k+70fs7soQ9LnwuHpf20pmC72DQHkJAgkxHh0oiyWZMyl3ew/ziA5NRyq/t07ZCAWB/B6DhXOmwy4oj68DBb6uTTSmsoSKFyoGI5YpUMjEQIHLTJPr2A61c4Z/4GI/BcuWrCsxIiQTSAghhOiHzsUx0KhA+cBWKAaBAKZOm8VX0tfgyrZTvepH3fe3JfJsaxt7BYpzpsX9a3bzpxW7uHq2zVk7f0K2dDads6/sXqa/uFXY7ybodVMd9TO7OkJdiX//hQwPlr/skE9odTEIZFfP58KTjuN31vlUbr8fb9cWLFvTFNs/yyqVtwirDKYunu4Uxt7rLoQ4uILdf7ZPMjt+MlPaU/m9dcpGKAiklOJnHzwTjUGpct7zDCtHpnnLIXWaun/1boI6wza7GIhvWjus4xX9y5lSE0iMDAkCCSGEEP1w55xWvgQHGATyBLt/rJ00nfLZy7jbOouKt36Nv31vQc1UzqIj1X9B48OtYNnUd2T49QvbuW5KE99quQl3toOG0/4fGE7ScHnYS3W0d+0dj1thGFAZ7n0VPuJ39x8w8h1aErKevJR8ZCp68okcN7mEV+reRw4PFat+DNDnVIdksTB0J2G0MtCSCSTEuHSgL8LJnDnm2mj3N97OVH5vdqJ3ZIJAABgGdjHIlFVOVzBP+3oSucEHzO5eWU+JkWWVdrJ/VKsUhz4cVmzvIJ03scbYsS0mBgkCCSGEEH0wLZuA6QSBXMEBTmHqkQlkBqv42PJZ/Mz9ProIMfmZz4G9t3ZNUyw7Zq7w5UybO1/Zic+wubXwM2xvlE1XPEyq7mQAgj4Xk0r8VIZ83Zk8bpfiqKowx04qIeLvXeza7TIIePtuaRs9xMLYxuTj2XD1C3ii1UT8bs47cQF/Ms+kbOv9uNPNfdYFSRVbxCd0ENMVkCCQEONUwer7vTJnWli2HjPvpQDZgsXuzr47EbYXp4NZrgC4RrYqhy5O433NtQgAf+eGfuunHcj6pgQRlaHLKCNthCHVMpzDFH1ojGV4120v8diqzehk64DWyZmHXvNJHHkkCCSEEEL0oSOdp1QlAXCFKga2Uq8gUDXRgIf3nbOEL+VuINixlqo3ft79uGVr2lO5YR3zoXqrvot1mzbxX5OfJxTbROOyr1KITgfA6zaYXh5EKYVhKCaXBigJeJhaHtyvBk9P0WJgyOveu4zXbeD39B0cOpg9wSev2yDsc7NgUpTnK96Fsi1Ca36D1vtffd+TCZQkgGn40VIYWohxybT2D/Lu6kjzlXvfxLRsxlAMiPrONIlc72BLwbKp70yzoSlBmDR6hKaC9WT7SwBYlZ1ENjwNX8cG4tnCoLKmCpaNbebx6Dz4InSpEki3j9SQRdHOduezasm671J533sHtM6hBPjEkUuCQEIIIUQfWuI5SnCCQAPtDtZzOli40ukOtmxmBYU57+RRaymVq36MO9XUvUxHKj8mpjG8/tgdvOa/iUuaf0ay7hTiMy4CnBpA0yuCuHsEe0qCHqZVBA86rask4GFWVYh5tRGmlQfxug1KDjELCOgOOPncLtwug6DPxRXnLucJfQLl6+7AlWmnsM8XxVTOpNydI6kD5JRfCkMLMU6ZfUR5/vr6bv6ycjf1nZkx00Y7W7DI5G1s2+m4uEdTLEtnqkBHKk/UyI1YPaCetM8JAu3UVbQEZuHvWI9tQ3wQNZTSOYsQTr01tz9Cu46gJAg04hpiTiZZXWodrsTuAa0TywwuwCeObBIEEkIIIfrQHM92F9UccBCoRyZQqGIyAa/zMfuRM2bxM98HsEyT8DNfB+0EKwqmJpYZ3at3uzrSqN2vY+Fi11k/ZMf5v+yuAF0R9h5y5o7XbRAqBopKgh7m1oT3qx00GC5DodTezKLykI9p5UFWzboJj5Wl7unPkt+ndXEqZxE1MmRcITJ4JQgkxDi1b4AXYE19FwBdiQSWNTamwiR6BFhSeefnTN6iq5ilEcsUKHVl0SNZD6hIFzOBGlQtK5iPP7YZX+cG4oP4zEnmze4aRt5QCc1mGCPdNiLjFXs1dGVR2Eyy6jHyCRhAcCdn2n3WxhOiLxIEEkIIccTIFiyyAzxJaopnKd2TCVQ8mT4olwdteLE8IVz+CJVhp5By2O/mE1eezx2uK5ja8Ah1916JJ7ELYNSDQL96fhszjSaykel0zb4C2xsFnKLP1ZE+unwdIqVUr4yiQ+H3GN3TwsqCHrxug/JZx/Mf5rWU7X4a440/91o+mTMJkcHyhElrn0wHE2Kc2neqp9aaNbu6AM07Xrwa93P/NSrj2lcqZ+LKdlLz2nfIJOJYtqa+c+/7TjxToMTIor2Db9U+aP5SAKbMPJoftZ6AbXgoX//HQU0JSxfrqgGUlJbTakdQGckEGmkNXRkmq3b8FFB2AQp915jaw7I1WjufeUIMhASBhBBCTGha6+56Eq2JHI19tBLvS3M8R6lKYnmjgyrgaXuCmIEq3IaiNOjtLpBcG/Uz+93/wTddn8Dbvp6pD16DO93a5xXuw+nRtU3M97Zglc3qvi8acDO7KnzI7dxHSsC79/9BKUV1xMfk0gB3WOeTc4UwGlf1Wj6VMwnqNNobIWF7QYJAQoxLpq17BS7qOzO0p/JMUW1UZLahOreP3uCKtNYkswWmPPt5qtf8FLXp72xrS5Et7H2Pj2UKRFTmsEwHI1KH5YlwxgkL2J4NsL3ybEo3/xWdz5Lro5B+X5K5vZlAVRUVdBDBne0Ee3Q/tya6hq4Ms1WPaWC5+AGXL1g2aJtUbu9FLnssFcoSY44EgYQQQkxo8azJ9vYU6bxJV7pAMmt2F1C0bU17MkcsXSCVM0lkC+zqSLOjPcW21iTVngy6eDV1oLQniBms7s56mVIW6G6XXhHxc8qVn+Ym9WVcqWamP3YD+VFM384VLFriaeqsBnIlThDI5zGYVh4cctbOSAjt03GsNOhhakUAQyk63dUQ7107IZUtELDT2N4Iae1FSRBIiHFJ694dwN6odzo3LlGbnDvyqdEYFuBkYcQyBdJ5C98bdxDd+TgA/uaVveoCASTTWSI6eViCQIVlN7H58gc56+g6SoMe/mSfgzvXRXTHYwMOAqVyFmHlXDiprKiiQ0cxtImd6RrBkYuGriwnRXpMu8vGDri83vwk8393HNmO3axrjLO5JcHWtuQIj1KMZ2PvDE8IIYQYRh2pPJm8zdbWvV8Sdnak2dmeZktrkoauLDs70mxtTbG9LU1XukA8Y9IYy1JhpND+AdYDKrLDdeRLj+r+3e9xURPdO62qtsTP0tMv5Ev5Gwi2rSG8+YFRK+b45u4YNboDj86TK5kJwKTSAEqNrQygPYLe3hlZSilqon5qon5aqMCVbOz1eCGfwYWF5QmT0j7JBBJinLI1WD3eJ9fUd+F1G5zm3+rckT/8X3j3BHgaujLsbE+ztS2J+7Vf8JYxj1TNUoItezMTIzufYPpjN/BY4f1UWK0Qrh7x8bkCUfIlMwl53bzjuDp+0ziVXLCO0s1/JX8ImUA11VW0a2e6sDnAtuXi0DR0ZVjob+n+3c4cOAhE4xpchQSR+mcwLU0mb1OwJBNI9E+CQEIIISYcJ+snT7ZgkSwW6tw3zhLLFHql6e+rI5Wn3EihA6WD2nfH5XfQdvo3et1XFfH16ox19rxqNtdcxBamUL3qB+QLo1MXaHdXhpmGEzhxV85hRuXBu36Npp7t5veoCPmYVBpgp1XWKwiktUblEgDY3jBJ2yNBICHGKVvrXjOQVu/qYm5NhOOLmUCqcHgzgWxbs6U1yY72VHfR51fe2MBMvZOHcsezI7gAf/talJnFnWpi2pMfx9f+Ng9Yp/Dn6f+GfeatIz5GQylchsIwFO9aMpm8pVhdegGR+mcoxJsHtI10fm9NoECohKTLqY9nSxBoxMSzBRI5k6nWLnI4zRQOlnmlE87/Z7j+WXKmRSxT2K+OlhA9SRBICCHEhKC1piWeZXNLki0tKXZ1ZNjc0vvqsLLyYA+scGJ7Ku+0iB9oZ7A9+whWYPj2L/o5uSyA2+Vk2CilOHl2Df+TvxJ/12bsDX8f1D6GS0NXhpnKaVkfnTKPiP/QW7iPFpehmFMTZmuuBFe6Fcw8ANmCTYhi0McbIWF5UQcprimEGJt0j0wg29as3R1jQZWXWdaeTKDDGwTKmhZaQzzjfJ6Yls3WlY8BsNp1LE8kpmPYBQLta6l68+co22TFWb/jy+aH2TnpYowenSRHistQeN3OZ87x08qYUhbg9uRJKG3hXX9fr2X7qx+T6pEJhC9CwV8OgJWUDmEjpbHLmX5XldvJDu8cAOwDTAdrSWTZtdP5O1Bb/8E1v3iRD//uNTJ5S+oCiX5JEEgIIcSE0BzP0RzP9arB0Cv7R2tmPvJeZj10dXeL9v4ULJtYpkDYTkCwfFDjUArcfRRUdhmKSaWB7t+nVwR5wl5SHPzbg9rHcGmMZZmlGrHcATylk0dlDMPh2Ekl1NtlKDRWvAFwpjHs6e6m/aWktU9qAgkxHpl5ylf9BCvvBCN2dKRJ5S1O8u/AjUWnjhz2TKB9s0hf3d7BMdnV5F1BquaezF2NznSvso1/pnzdnXTNvoIW1yQASgKew1J036UUbsP5qqeU4pKFdTzSUkai9BiCm+4HnM+6txvitCRyfW4jmbN6BYGsQIXzc0qCQCOloStDKQmChU52heYDoA8wHewDv36NWGs9NooSElxe00a2YBNvq8c0R7f7qBi7JAgkhBBi3EtkC7T2cxIbanyZkq0PEK5/hlDTq4SaX6Ns490AKCtHqOEFAi2r8SR2EmhdQ92LX6PmmS/wFffvCVgJ1CAzgfak4PelJOChtsSPUjC9PEgOLyl3KcTqB7WP4dIczzHX3Uy+ZBYet+vgK4xRR1WGaNJOsM7scopDp3ImJar4xTBQ5gSBrBzYo1eIWwhxCOpfpebV72BsfxaAtQ3OF+J5ejsAr9hHH/aaQJkeBf2j2x6m+rX/4kz3W2TrTuIdi6fSYJXS5a2lfMMf0S4vLYs/SSzjfCEvDR6eIJBhqF5TaN99whQANnqPxdexAW3bJLMmlq377VLpTAfLYrsDYLhQoUoAdEqmg42UhliGY43tzs8lJwBgHSAItKsjzSxfgvSkUwH41/z3ecr7Oc596AzUKz8b8fGK8WnsTvwXQgghBqg53k/bd9tkytOfwZtqIOkpJxusww7XUfPad9AuLxVrbyfY2rutuO3yk3eHuNaVJOstxz1t2aDGYvS4+tqXqoiP0qCHtmSOkoCHNqOK6n26Wh1I3rT7rI0zWFprkl2tHKc2Y5adM+TtjaaZVSEatHOF2u5yAmrJnOlM5wNUoJQ0PmfhQvrwtGcWQgyPfDGDL90BwNqGOG5DUWU2kDcCbDdrMPJrDs9Qiu+/ZstGSnevJF21mClPf4bplvMZ1Fj3Qc6aV82iKSX8W+JG/uV0P10zL2FVi80Dbzjv8yXBwzft1u/ZG9yfVRWmNOBhs1nFCfk42WQHiUIQALOfaUPJnMk0VxbbG8EAQsEwafyQaj8cwz8iNXRlWGhsAyBRdQKFbS4Kyc4+l83kLRK5AiVGO10Vl5CpOBajcRVb4yZTjS505/bDOHIxnkgQSAghxLgWyxTI5Pu+ihnZ9RTeVAO7PDOYWtjOv2XeT8XUs/lY8otMffrTWJ4Q9Wd8FzNQgTvbgUYRn34Bz9cX+M9H1vOjKxbzzjmTBjUeQ3HQq7wel0FdSYDZ1WF2t5dTl2gY8PaTOZNyt3dQY+qLaWuu6fo5YZ2i+cSbGM9hkdqon3ajeIU65ryWPTOBVLCcbLHAJnkJAgkxntiFtDN1IbM3CDS7Oow/sZNkcAqpnB/DzoNVANfIBljqO9PMqgpT8sp/U7rlb5iGjywePp3/F7521BbMY66izuPi2mXT+cI9MfyxqTz/l03s6swQ8rq46NhappQGR3SMPfk9ey8YKKWYPynKmx1lXA2YbVtI+I8GnJpGfUnlTEqMLNrrvGeWBDx0EKUsLdPBRsrqXV18yLeTfHAqobJq4gSxU119LtuWzBEhg0fn0OFqmo/9KOm8yYd/8TIrgl8kmu47eCSEBIGEEEKMWznToim2TxaQXXCme8V2k9n0NG1GBeclvsG/zG1lQ+FYXlzTRcXlj3KSezOF8GQKYacWTjJrsrE5QXx7jhU7nBOnirBv0Gn7SikGmqhz7KQo25pKWZYceE2gZNakPDT0IJC1awWXWE/xeMW1LKhbNOTtjSalFMFIGZlcEOJOJlAqb1KKEwTyhJyaQIB0CBNinNHFWkBkOtFa89buLo6fWoa3awepyDTSnX7n8XwKBtnNcTDypk0qZ9GayBFpX0ubdwq5XIb/V7iWXVVn0XXBp6iIOO8zlyyq4xsPrOWPr+1iWnmQz543hwuPraU87CXiO4yZQPtM8104pZRntpeCBzLNm7GnOkGg/tqJp3IWESOLLhayLg16aNcRyjOSCTQS8qbNyh2d/MC/nUzlYqoiPhI6SKCf7mAtiSzVyjlf8ZU6F6yCXjcBj4uEChPNShBI9E2CQEIIIcaleLbAro50d9tgd7qZirW/pWTr/fgSO7uX+433Gi5ePIOTTzub402bbXet4ruPb2ZyaYBUvgVowbY1uzozvVqqVhenbQ2WoUC5BhY4mlcbYYdZjkslIBsDf8lB10nmTKf9uRpaTYnUztX4gQ2T38US1/gvEVgd9dHWXkFFd2FoixKVwnSH8Pn9ZBhbQaCCZeOZAK+7ECNNm04QSKU7aEnk6EgVmFUZwLtrJ3btcpJ7SpyOcBAoazp1gFo6uqjo2sqd5uWsOeomPnbmLHxuF0opQl4n6BL0uvn6Px1LQ2eGs4+upiLsZWr54csA2sPY5yLGgslRbreqwAN2+3Y8pbuI7HoaVz6Grv48yu3rtXwqbxJRGfA5tfFKgh7a7ChzJRNoRKyp78JbiFPlaqCp8jqqIz7iBPFn430u35rIUa26AAiUT8ZlKCxbUxH2ErPDTDlIa3lx5BpQEEgpdRHwQ8AF/J/W+tt9LHMW8APAA7Rprc8ctlEKIYQQPXSk8jR0Zbq7fykzy4xHrsPftYktwUU8XPVh7txVzheP2sFJ593AiR7nKqbf4+Iz583lvx/bgGnZVIb2nvCeOL2cJdNKKQ15CfvcRP0evIfwJd1QioHGZ+bVRHi5WMvG6qrHVXvgIJBtayxbky3YBLxDK+ScbG+kAgiV1+HzjN+i0HtUR3w0tldQlWwEnGkMpSqJ5Ssh6HHtDQLlx0YQqDWR69UtTgjRj0IxCJTp5NVtzpSwBdEMhpVDl80gq1qc5YbYJt60bNwHeM/PFWy01jzy5FMci02y9Gg+cfbsXjXaQr69X60uWlDLznbn/aYy7Ntve6NhwaQSsvhIeirwxHcw7R+fJNjyOgCFeafhmXNWr+VTOZMQWXRxCm1pwEuHjmCkBz6FWRxctmCxoz3NY2ubOK5YFNquW0xp0EuzDlLTT4v41kSOapxsH3fJJCJuN13pAuUhLx2xECq77XA9BTHOHDQIpJRyAT8FzgfqgdeUUvdrrd/usUwp8L/ARVrrnUqp6hEarxBCiCNcWzJHY1fvKWB1L32dQOd6Ps6XebRjAaGkm2NmRJl5wSXYrp4n6C6WzSznV+9f2u/29wRwtOaAXwj6YyjFAepC9zKrKsxu7dSysTp34ao99oDLF4ppT5mCNeQgUKazibgOUFFackjBrrGmJuqn3ipjScI5PUnlTCpJYfvLCHhdY2o6WCJbIJUzR3sYQowLuuC836tsB//3/FZqoj7m+51gkC6ficuXBgvIJ4a0n3TBInqA98JC21bstc/QumUzeODyCy/ELgaA3C6FoVSv7L6Ax4VSEPC6hvx+PVymlQcJ+9y0uOqY1LoaX+dGumZdSunW+7H7qE2XzFmEdBpVrAlUGvSwkxLcuQ60baMG+mEnDmh3V4a8afPSlnYuDe+GPBiTFlES8LCJIK5CR5/rtSZy1BhdABjRWqK2h2TOpC7qp60jiJHtOnxPQowrA8kEOgnYrLXeCqCUugu4DOhZwOC9wF+11jsBtNYtwz1QIYQQR7aOVJ5YpkAy2/vLs9G0mooNf+Q28xK2VZ7CD8+azYzKUO9lDLBtpzOX122QbE6itRPwqY76QIOlNW7DoCzowe0yDnnKlVIcsDtYT2VBD20uJwhkD6BN/J7paj3bEx+qTGcjHZQyvSI4LN3GRlt1xMcusxRXphVsi2QxE0gFqgj0zAQa5SDQo2ubuP2F7Xzj/Dqwg2CMjS+HQoxZxey9fLyNNS0xbjzzKALJ5wBwV8zC9mwDC3QuyVAmyWbyFlF//1OAg6/fxuI3b0e7ZmO6Q9il0wGojHipjvhJZAu9lve6DY6pi/aaZjzaDMMpDv3G7jJmZZ3X8C7rbG7kfux4037Lp/MmAZ0GXxhwCkO36hJcdoF8qhNPuJydHWmmlgX3m3q2R8GycRtqyFOYJ6qOVJ50ziKZNVnflOB7ZW+TC8wiEK0m4HWR0EE8hR19rtuazDHfk8B2BTB8EUqUoiToYWZVmKZNAQw7BrYlnzNiPwM565sM7Orxe33xvp7mAmVKqaeVUiuVUtf3tSGl1EeVUiuUUitaW1sPbcRCCCGOOKmcye7OzH4BIMvWJB//NjEdJL3ss3znqoX7BYDCfjezKsOE/W4ifg8+t4upZUHKQh6OqgpTHfFTHfVTVxKgKuLrzv451BNWl6EGXExaKYURqcXCQHcdPAhktm9j0vNfJpvNHNLYekm1kPGWEw0cviKlI6k64qdVl6K0jZloIZUzKVNptL/UyQQaA0Eg07L5jwffZtvWjcy+8xRYefuojUWI8UKbTiaQmWqnNOjhvGOq8cZ3oJULT8V0LLfznm/nkkPaTyZvofXegE22YJE393bNcrdtBOB4YzO5imOYVR0hGnBTE/HjMhSlwf0L9rsMNeaC7J86Zw6eylkAdBLljsapWO4gJPoIAmXzBO0kBIo1gQIeWnQpAHa8iWzBJp4x2dGR7vXa9dSZzpOUzMc+mZbd3dzigTcaCNoJ5qZXEZ9+AQGvC6/bIO0K47P6PrZbEzkmu2JYwRp6zkOvifrosIvnQv1MJRNHtoG8K/V1JrvvX7kbOAF4J3Ah8FWl1Nz9VtL6F1rrE7XWJ1ZVVQ16sEIIIQam0E+71/HItjW7u/YPehQsm7sffpRluRd5a/J7OP/4ORh9BG7Kg14CXhczewSHSoIeppQFRyRFf7DFfqtLwnQYFRDffdBlXRsfoWL97zF2vYo9hKvLLfEsEbMTHaqiMjz0TmNjQXXUR6t2aipZ8WYSWZMSlXSCQB4XWd2jRfwI6u+LEMCDbzSyqzPDx9wP4jJTMIDsLyGOeMWaQCErzskzK/C5XXgTOymEJ+H3+7s7V+ncEGsC2Zpcj6BPUyzLltYksUyBbMHC17WRVHFaab5yPiGfm+kVoX4zYMaq0+dUsnyZMyV6W/QkmpMFzGA1Ktm837JGPo4LGxVyateVBj20UgqAlWginXeCO8msSXM81+f+OlMF4lkJAvWlKZ7FsjXpvMn9axr4aM1GDG2SnPWO7uBhwR3Gb6exzf1fQ2c6WCdWuKbX/bVRP13ayd4iIx3CxP4GcqZaD0zt8fsUYN9Jo/XA37XWKa11G/AsML77zQohxDiW7We6kDlGg0OxTKHP+7XW7OpMkyv0HncqZ/Knv97Npxq/QNYIUXbOp3s9rhR43Aq3SxENjO1GmDUlfhp1BUZ8AAGBuFP0ONC0gsQQrqy+vK2DShUjWFZH5ADTH8aTPZlAAGaiicauDCWkIFBG0Os+bJlA2ULff2Naa3729BYmuzp5r+sp57780DIXhDgiFINAAXLMLncT2v08wabXyEWm43UZaK/zZXeof09a6+7PmkzeIpE1MS3NzvY0azZsxZNp4+fmP9FQeiK52e8Y2nMaZarKuVbfWHUGpq1J+yr3CwKZlk3QdLJIVMiZtlwa9HYH23WimXR+77lGayJHUyzbKxCeypnkTZt4P5/xR7JkzmRXR4ZP37WKv//6GzyoP8n79AMUgrWoyUu6lzO9UQAKmf0zeloTOSp0J3qfIFB11E8XxQtfEgQSfRhIEOg1YI5SaqZSygu8B7h/n2X+BpyhlHIrpYLAMmDd8A5VCCHEQPW8mtlTf8GW0ZbMmX0GrpriWeKZ3sGO9mSOv/75dr7Z9WV8gTC7Lvsrlt9JVVfKSVefUxPm6Noos6pCY74OQW3Uxy6rDCN+8G4rqtj5KtT82n71Jwbj1U1NlKoUlbVTD77wOFET9dFK8ctJvJmWji68FFCBUnxugzR+57ERzgTqLwC7YkcnG5oTfL36eVxY5F3BIWcuCHFEKOzNBD3dfIlZj7wXw8rRseCDeN0Ghm/PdLCh/T1ZWne3gW+O720+ULBs/vfuhwB4i6PYdemfUUedPaR9jTb3lBPYdtHv6TzqUgCSnkqMYhAoV3wN0gWLMpxi20bQCQKFvC7aVTkAOtk7CAROUGJLa4qCZWPZmqbi62haWorh92Dbmt2dGX71/FZ0+xa+5LmLKa5OSuMbiM+4kIBv78UZXSzKbaW7em1Da01rMkuF2YKOTun1WG2Jn1gxE8hO9V1UWhzZDnp5VGttKqVuBh7FaRH/a631WqXUjcXHb9Nar1NK/R14A7Bx2si/NZIDF0II0b+8ae9X2Lhg2SRzJhVjpFVtTwXTJpYp4O/RqjxbsGhP5nstt6M9xWN/+z3fs75DIjqb5sv+1B0A8rgVs6vCvTp6+dxjvxhiTdRPo12KkV5z0GWNYveWYPNKdmdyUBY8pH3urHeKTLqiE6eZZ1nQS6dyjgUr3kyyyw0eUMEyDENhePzYKMinhlQ89mD2fInc112v7qLEqzkz/ThP2ks40dtO6RC7GQlxRDD3BmTmdj4LwIZ3P40nXAz+FzOBGGImkG07beAT2QKJHtOXNrckmWLuAA9cddF5BL1u/OPgs+VAvG4XySnLmZZ2pnDFXeVMTjeTzpu0xHPMqAyRyplUqDgARtiZDqaUwuWPktdedKKZfD6P0jbatXdacSZvsaU1iUKRN21Cu5/D9kRo8Z/ITN/YzswdSXnTxlBO19F4tsBLW9p5Yl0zj1X8AVfey6YrHyXU+DKJqWczpedUdX8JxPYPAnWlC5RaXXh0nkLptF6PVYV9dFEMAmU6B5T1IY4sAzomtNYPa63naq2P0lp/q3jfbVrr23os812t9Xyt9QKt9Q9GaLxCCCEGwLI1Bat3bZJk1tzvvrGiYDlBoLxp0xzPksqZNHRl6Fle5c2drfzjntv4nv0d0qVzab7sz70ygKaWBQ+ppftoqysJ0KpLcZlpyB04KOBKNmG7/LgKCVyt6/vNOjkYnXSaeBrhiRMEMgxFJBIlo0KkO3cTtJ0vL6pY0DTgdVNQfnRhGIpqH0Bf08Hi2QIPvdnAJ6dswZdr4y7rbHKGHyQTSIiD6zGFM9L0CvnIVGxfCd7i+73P6yWLF4ZSGDqfonTtb8nk8jQWC/VWr/wfSrY+wFsNMWar3ZjuEAuOme/s0zP+Pmt6MooNDGZVhnEZimZdilFI0djaRjJnorUuFtcvfiYVM4EASkJeuoxy7HgTNSu+y9F/OIFQw4u9tl8wtVNU2y4w7alPMOXZz5HMFGiJZ4kV/z3S5EyrOxu7OZ7lf5/ezAcjK5ibWkHT0i9SiEyla+67sYOVhLx7g2WuQLHWXXE62J7P/dZkjsmqDQC1TxDI6zYwgs5nn52W6WBif+P7HUwIIUSfbK33Kw6dzJmY9uGtCZTIFpwOXjmzu4BkXwqWU4thY3OClniOra0pUjnnRCeWKfD843/lkkfP4L+NH5Itm0fDP92F5S/tXr8s5CU0Tq8w1pb4urut6MT+hTm7aY0r1UR82rkABJtXHFJ6vWVrPBmnQ6cRqTnI0uNLddRPh1FKvquJUpwAixF0pi4EPC7yhg+dH9nAS8E096u99eCaRrIFm3+yHqcQrGWF+3iyKgAjPBYhJgJlZunEqYviybaRLTsaoLtw7p7uf0P529abHmfSC/+Kd8fT5Ao2wcZXqFn1AyeAsfmPLPTuJl82h0llQVyG6pW1Ol553QZlIS+TSv3sKjivr9nVhNaQylukchbl7AkCVXSvVxrw0KHKcKdbCDe+hDsXY+Yj7yOy47H99hFueAl3rgt/12YCbW/QHM+xsz1NczxHYyxDczxLY2xkA/NjRb6Y8WzZml8+u41cop0vqt+SrjqejqPf171cyOfu1WHUE+odzGnoymDZ2ukMVgwCGWW9g0AAgUhFcb2BTQfL5A/topIYnyQIJIQQE5CtnTn4e8QyBRpjmV73HQ4NXVnWNcbZ1prar737HnYuxeTHPoqvc0N35k88U2D37p24nvw637vzAd657VukPaVsWP6/7Lzs3l4BIGBcd7iqifq7u62YscZ+l0t0tWBYOVpKFpEPTSK8+3my/dR+OpD2VI4KnCuK7ugECwJFfLTpUlypZkqUkxXgCpYCzhfFrPKPbHewpjeZ/cs5mG1bu+9K503uX72bYyrcVLe8SNdRl1EaCpDU/iFPXxHiSGDm0jTYZd2/Z8vmAb2DQKkh/j3pYhvtcDGjpWbVDygEqohPPpOPJn7CCfZbFCrm4XEZTC4NHPJ+xhK/xyDodTGtPMjWrDN1yJ12skSTWZNUzqRcJTANP3j3Tj0uDXppowR3qhl/5wY65rybTOUCpv3jk/jbelcDiW5/BMsdxDa8lG7+a6/H2hJ5WuI52hJ5WhN9dxabSPKWTSpn8eq2du5dvZsfVd2HrxBj9+n/CcbeoGLU3/uCllH8nDbjzdi2Jp236Ern2daWYopyLui4y/cPAlWXhkgSQg8wE6gtOfH/D8ReEgQSQogJyLI1+R7ZCB/+7Wv8v4fXo7Xz2OFg27pYm8j5PdPP1KVCwxuUbH+E2tf+C4DdnRlu+sPrJB/8MvO3/YZ7+BzTjFbSF3yf/NxL0G5/r/VLAp5xUfunP9URf3cmkHWATKAv3f4oAD98LUlj9ZmEdz9LLjP4K9+tiRyVFKdKTaDpYOAUh260o/iybZSp/TOBcvhGtjtY+2YMK4ddv7L7rt2dGV7d3sG10zpQ2iI3+WSqIj4Stk8ygYQYgEI2RaMu7/49W75PJpDHVQyqHvrfk511Ml5CjS8RbHqNcMML7Jz3IR449n/4TP4mtlacSfboqwAoCU6MjorlIS9KKaaWBVmXcII8nrTzGZTMFUgWg0AFf3mv9UoDHprsUnyxLRhmhnTtSew4/5eYvlJmPfweSjfeDVpjFgoEtjzMxpJTaa49i9It96Os/H7jgCMjAJE3bWyt+eaDb3OadxNnJh6mbcGHyVY4Uwz3HM/RQO/jy1dSi6UVhc7dpPImWkNHKs+bu2PM9HRg+kq6p4z1VBP1OR3CBtgdLJU3j+hsINvWR9TzlyCQEEJMQLbW3VO/mmJZXtveSX1zK1WrfkQhf3jm4u9bILe/IJDuclqjR3c+ztN/+Qkdf/0s79MP8i7Xs6wufwfJmpNoW/BhUpNO2W9dl6Gojo69QteD4XUbWMEqAHS8qd/lCl27AWhTFfwtuwiXmca147lB7681kaNSxTBdAfCGDm3QY9TxU8toNKME8u3U+YpfKgKlzj9eF5mRDgIVa5Lo9i3ddz29eiNuXeD0oFOMOzBzKeUhHzHLi5JMICEOysxnSKgwltvJwMmWFzOBXHuDQGn82EOoCaSzTmA80P4WgWf+jTYd5ZKX5/KV+zdwn30628/7P5h15hCfydgSLNadmVoeZGPa+SwIN7zA1KduJpeM05kuUEaiu/beHqVBL/WFCArnCk+2/GjMYA1b3/lnsmXzmPrsvzD52c+jn/omwUInP26cz607TsCdbafw6FfpaKkntPt5ehb9M61iDaEJzI7t5uW1W1jXGOd7oTvIh6fQvOSzAEQDbubWhJlU6sezT23DkpCTLawTjd3T5LMFm5U7Opnt7cCMTNlvX+BkGXfYoQFNB9NaUzA1idzY7CB7OGQKFtvaUodca3G8GZ8FFIQQQhyQbVsUTCc75uE3nY5S51vPUrvyV2Tmngrzzh3xMex7RaVgaixb95rrDmB27gIgpX18suu/sFEYaEx/BZ5LvsvOYnvUffk9BtMrQt1Xz8azYEklZocLnew7EyiVMyk128EDxx59DD9fn+MT/hDh7Y+TP/GyQb0GLXuCQIGqCXcScNGCWn7+tzLCpJnhjaFzLpTPqXUR8BSDQCM4HczOJTAA1bGFHe0pvvnA2/zr9vczOTSPss4g+fAUSqumUBnupMP0oWzJBBLioAoZgsEwlqsMZZvkSmYB4NtnOpgeSmHoYlF+pW0mJd7g577388FTjgWgIuSjKuIb9x3B+jOtPEgXYSzDQ/mGPwIQn34+jYWTmasSEJzUa/n3LpvGn1dXggU2BtmyuQAUotPZesndVL/+fWpW/ZBy4B77LK645mPc/spufrV9NR9q+CO5v/0FnyrwVN1HcB3zTqa72khMv4B03sTrHr9Tuw+m9sHrWNgV5KyyD1Cd2sTuU7+F9gQxDJhUGkAp1Wf31pKAhyZdRnmsgVTzFuY8dB3bzvoJ29tSTI60YUfm9rm/mqifmA5hDSAIlCsG4BJZk+q+T7kmNK01b+7uYmtLimSuwKKppeM6w3wgJtr5nxBCiHQHc351LE0X/woq3sEDbzTidRksN94AwE60HpZh9FWvJlOwCO9TwHnd+reZpwM8Ou1fOKukmdZFNxFsW0MhUIXdTwDI6zaYURna74rZeFVTEqSjs5RQoomCZe/3vFoSOepUOxrFu846kV+/9TLrw0uZu/NxMoUCXrcP07JJZE3KQgc+iW5N5FhEDB2qGsmnNCpCPjdVddOhGeaxA9sXxaWcoGPwMGQC2dkkBuDq3MrfVjfw0oadzPTtZprdgt1QQn7KKXgNRXnIS0fBg3KlwbZ61YMQQuyVyBbw2DnKSkqwzDIsXwl+n4+KsA9V/Nvekwmk8vFD31E+iekrReczJGwP4dNu5Iw5k3pNnx7vHcH6s3RGOT63i05VRiUt2C4f0R2Ps8WzgCtVHHd4Ya/lZ1eHueGiZfDQz9hm1/DEpjjnHlOsk6QMWk74FzLVx/Pzf2xkfcnp/Fd1CV99Z5TGjv9h18tetnTkice7uLTxl9D4SwAaTv4GqZNvpDS47+gmBjOfxde5iWW2TaR0JjqjiM+4AIDa6P7ZPz1Vhn3s0GX42uv5yz1389XcFkpe/R9M+wNUmM3kS87rc73aqJ8YYVTmAA0ninKmjTe2jUzpzEN7guNYWzLH9b96lWzTetxYbNRTufvGU1g6o/zgK49jEgQSQoiJJlaPy0zjbVxBc+wcVu/s4tLjqjhto1OwUacOTxAok8nib99Atvxogi2v441tJVt6Xa8g0Bv1XXQ2biPur+HoCz/KnslQiannAE7rd71PCSOPWzFzAgWAAObVRmjaUsK0WBNbGxPUlfqp7HFFsDmepYZOst5y5k+pYMGkKI+kj+PY7NPEmzaQm3osm1uS2DYEfa4DXsFqTeSoNWKoyPTD8dQOuwXz5kAzHJNdRXr2Jez5ThHwuEjaXijERm7neSebwN21hRU7OllekYQkuHQBV7aN7OQTAKcWR7PtAxdOHRN/dOTGJMQ4tmJ7J6eTp6q8hM7JN1HQBtURf6+6PAGvixQ+VGEI3cGycSxfOT8pnEk2VMOlsyZRHfWhcBocKLU382iiqS3xc+OZR/HYMwtYOquKCr+iZPvDNEU/RIVKokKV+60TqZwMQFPgKH745CYKluaiBbXdjzdUncEf417eN7+EaMCDy1AULE3XhT+mAojk8+xY+T88s7NATdcqLnj532iomgcnvONwPe3D5q3dMb70i7t5QFmgYEHjPaSqT8AM1hDwGn1m//Q0tyaMmjmbKbs3UZLaAW6Y1Pg4S9UpeK00+dKpfa5XHfWxSodw57rQWncHTftib3+ReXdfytaL78Sqe+d+GdsT2Z9e28XbjXFeqvg/qjLbeGrJj5lTHR7tYY24ifluJoQQRzC7WNvA07WVX7+wDQ1cM6mFqCq2YU22HJZxBNb+gTn3Xsi8P53KUQ9cwdRn/4VcV+8rUre/sJ0prnZCVfsHJJRivy4sAa/BzMqJMQWsp5NnVdCsS7GLNYGaYtle7d9bEjlqVQeFkHOSfc7R1TwYm+E8uPNldnVkKJaAoiPlFN7MmX3Pa29NOtvS0ckj82RG2dFzZgOglUHy1C923x/wukhrL6owcu2IdbG4rCsXY+uOnZxe7vwtFgJO1pVr6omAc2U3RfHYluLQQvTr1S3NeJRFTXkZmXmXE5/5zv0ycgIeFykdwBhCEEjlE3RaPn6SPp/pZ7wXt8ugPOilIuxjSlmAkM99wC/R492NZx7FD4Of4FPx9xGffh6ufJxJna8SIt2rPfwerhJnitjM+cs4a14VP316M799cTuFYkOKtxud975j66KEfW7Kgl6MHv9tXq+X+Cm3Mu2dX+DThZtJu0oIbrh3wI0r+vt8G4te2dbBpIJT+zDndeorxWdcBDjTwA5GKUXN5BkErTjnV7TTqqOktY8feH8GgKuP9vDgZAJ1EsFXiFMo9N2dtXsfu1cAULr1we56kkcCrTX3vF7P6VP91KY34tIFzl/9aUo73hztoY24iXUWPQq0dmpcaK2JpY/cYlpCiLGjOwgU28afV+xiybQyZsVexsIgSQhSbSM+hmzBItDyBpYnQq5kFvFpxXTllrd7LbezI81k1Y67bGr3lac9/1ZFfJSFvHjczu9HVYeYXR2ZkPO0T5xeTjuleDJOlpbW9GqZ2xLPUqs6IVIHwIXH1rJd15J2l2HUv9yr/lJnqkBXOl/MDNr/hDrZ1UGYNEQm7ffYROAtdYpkds79Z6jcWysh4HGRsL2oEZwOpnsUeq7O72JBwPlbazzt30lXL8E3dW8mUEoXr/5KEEiIfm1vcv6GPP4gHsPoMyNnz3Qwt3nof9t2Ns6ulItjJ0VZNKWEirAXo/hZVBbyMrNyYhXR31fA6+L6k2ewrinBStcibJePi/OPAfSZCeQpncyuM/+H7OL3c9t1J3DNSdP4y+v13PKXNexoT7FyRyduQ3FMXZSg14XLUL2yW/eoCPuYO7mKVXoOgeaVAy7KG88cOKgxlmxuSTDf51wAa1v6eWzDS2zmxZSHvd3FuQ9GFz/752TfIF5yDLdaH8PncoI1ruq+awKVBb00U4mBhRlr6Hfbd7y8g5WvPgtAeMdjWOb4eW0Ho+eFtT2e39zG1tYU10xpRWmb+jO+S+6oC6F84k+LkyDQEFm25u2GOG83xtnZkSadn5h/OEKIsUnvO1eKvV1OjM5tdKYLXLawjui2R9geWMAuXYlKD206mG3rg16tS+ct/J3ryFQtZPvFd7L79O8A4Gpb12u5ts4uSnQco2wq0yuCVEV8HFMX4ajqEFXFE8byoHdQJ0vjUcDrQkVqCVldYDufI8mc2R3EcTKBOjGKV1/nT4pSFfbzlns+weYVGLkYVat+xOx730Fgx1PdmUGxjHNxotdV02QjAKpkYmYCuSJVbLv49zSe/PXuL3HgvMYJywtD+KJ4MCqXxC52MJqhmpimG7EClaj5l7H7qvtx+ZzJaRVhb49MoMSIjUeI8U7v6WbpCeB2KTwuY7+MHKcwtA+XnQPr0M7DE7FOOi0/1540DcNQVBykttpEdOWSyYR9bv7yRge7a8/jAsPJDjHC+weBXIYiNvddeCJV+Nwu/vPK4/j5dSfQnspz8x9X8chbTSyeWkpF2Nv9/1UT9RMNuPG6DUK+vRdzls+t4sXcLPyxLRQS7QMaazw7fi68b2xOcpy3mUKwho6j38e6a1dil0ynNuof+EbCThDIneukdMrRXPbem1n3rufY9K4n8NTO73MVw1AkA87nvNWxrd9N/+GVnUzNbSGtfXiz7ehdrwx8XONIZzrf/fPurgxX/exFPnHn63hdBgvtDYBTED1+yc8hOLHrAYEEgYbNnsy5PSfcQghxOHT1kYG4Z0pKwIwxv9TkdM86/LHNbJ5yBa12FDN+8CKBB9KazJE6SMA7lcnh79hAtvwYAMxgFaa/Am/b+u7AVcGycSWdq1OqZAohn5vaEj9KKYJed6+rsIM6WRqnSqsnY6DJx5z/H62dTh0A7V0xylSiOxNIKcWZ86p4MjULX3wH0x66htqV38PXtZma13/Qvc3OdJ5UzmRn+97AhzflTDkzSidmEAggO+1MbE8I9z5BoAxeDDO790N7mNm5BJ2ho7AwOMbbQjC1E6tsFhVhLwHv3i89FSEfKYrHtGQCCdEvbTrTN5U3iNul+qzLE/A6mUAA5AffISyTt8inYvhCJSyZUUZZyIt7AtWcG6hIwMM7jqvj5a3tPOK7GEM5n9Wu0P7TwQA8LqPX/8eFx9by6GeW8+lz5/C1S47h65fOpzraO/tnWnmQebURZlaGiPjdBLwuzptfzevayWbR9a8ddJy2rUnnrAFPHRtNWms2NSeYqRrIlR4FSmH7SogG3IOqu6Ojdd0/W2UzqY76KY2GsSuPPuA0xXyxfbzu3AmwX3awbWt2t3UwSzXwJ+ssTOXBtf6hwTzFccG2dXf2WM60uOn3K1nXGOf4KSV89IwZlHSsJls2h0C072N9Ijry3uFGmASBhBCHi9aa9lRu//tzezukfPBom8r1d2D6SumaeQltlODKHPp0sIJl05rIkc4dOGU717YVw8qSKQaBALLl8/B3rqNgOSchTbEsNThX/Vz9FDYE50TzSChSOHnKDAC2bd/afd+eq51mlxMsM3pk73z8zFlsDx4HQKTjLb6mbmbzws8TbF1FZMdjTHn6M5jNG9jZkSZbsClYNum8Sanp1IRyT9BMIACPq/fUQihOGdkzBWuEpoTFY5281WGw065imb8eV+dWdNlMgl435T0yC8pD3r1jGUpbayEmOFUMAhmeAB7D6LNDV8DjIrEnsy43+My6O1/ZQUBnmD21lpqIn8rwkZcFBOA2FNecNBW3S/G9DRVssJ0AQl/TwYBiUK739OyaqJ/Pnj+XG06fxXGT92+zvSdgoZRiRmWI2dVhFk4upSV8DBYGxu5XDzrOfLHu0ECnjo2EvqZa96UlkSOeLVBXqMcqm42/ePxGA56DrNmbEd07fTtQO4+A19nOwYqVu8qmYqOgayct8SyN8Wyv59AUzzLV3IUbixV6HvWBeRgtbw1qbOOBuetVyl//MdmCxb8/+DZr6mN85pxZ/Fh9h0+tfTehptco1C1lRkVoQmed9yRBoGFWMPUhTwkbyBSLicy2Na9sbe9zeosQYn/JnEm2sH9Gg53d2/3oNPd6otsfpXPu1QSCYdp1FF+u46Db7uvkqiWe5cO/XXHQqa8508LT6tT+yZbP27vN8mPwd26kUJxvXt+ZYbJyAlKuYh2XI9mco44C4JzXb2bWA1dRtfonxNMZp6tHYs8Urr0ngkdVR/jSDVeT8ZSypvIS7jbP4CvbjsNyB5nx+Icp2/xXqtb8L2Yx6JbMmk5nMJz/f6NkYtYEAnAVK5C6e1Qi7W4RDzBCxaFzqTjaG8az8CqOy76GJ92MqjiquP+9J5Zet4HpLtYYOYTMBSGOFMp0vrQqj7/PoAMUO/9pJwhkZQffJv6B1buJqAzVlVWUhbwTsu7cQHhdBgunlHLlkinkLc3dnsuc6a3Rvj8r+gvKDZZhKKbVVrFZzcDTsOKgy+fM0Q8CpQe4703NSSqJ47cS6Mo5lIW8KAXhQQYaPKFSbJeT7aYqj2JSaQClOGiTjIqSKC26DKtjO83xHJ2pPDnToqErQyxTYGtrivnGDgAa/HPo1BFUtnNQYxsP1Oo/Urviv3jw2Zf5/cs7ufL4yVwW/wPRXU9h5BO4Cgn0lKUYhurVwXYikyDQEGit2bB9F3c99wa//ev9VD3zRSI7nyB1kCvk/UnmzV6FQI80v35hG1f/4mX+vGKXBIKEGICudAGt2S94XN/YTEIHsDGoXf1DQNE+/3oifjdtugSPncXOHvhqaVsy16uIXt60+eI9b/DMxlaefmUlVvO6ftdN5Sz8Heuc7kyR2Ty1voXmeJZs2dEYZgar3cl0qe9MU1cMSLjLJAjkm3YiL9deyz/MBeSyKWpX/BfRTX8jlbfwpJ0pXK59snfKS0JsveYFjMt+wseWz+K1JotfZs+lnTJidadRsu0hvLGtTH3qE2Rat9Ecz1GnOsh4y8F94La045nbUPudIPs9PYNAwz8Fq6Erg8tMUVFejvf0m9AuJ5vAqJzd5/KGv9iCVqaDCdEvozsIFNhv+tEeAa+LZDETSB9CECiZTuLGQvmjQxvsOGcYCpeh+MgZswBYXXkJ2294A/wlfS7vcSu8wzRtbl5thNfMo/C1rHHmQh9AIdbI1H98klxy9IIVucLApqNtbE4wSxWnvVfOoSzopSTg6VWvbiDcLheFUA1auXGXzyDodXN0baRXhmlfTp5Vzi5dSbrZOe/SGra3pWlP5p0gUFuS+WoHljtIPjKNDjuEynYNamzjQrEhytqn7+bYSVFumlZP9es/oHPOVWx899M0LvsqxsJ3jfIgDy8JAg1R4PeX8K0Nl/C9jpup3fRHql///iFHphNZk7Zkjrx55LTm26MxluH7j28E4OWtHd1RfiFE3zJ5q3v6ac92nlprdjQ0ETeiFMKTMMwMHfP+mUJkKlURL+04J7lm4sDFoZM5s7vVuNaa37+8g39saKUyoLhx1y1MefTDvd7rWhM5dran2dWRpi2Zw9exnk7/NG7801q+/8RG/rRiF0btsc72mp0sod1dTiZQIVA1oQMSA+by4HvHt/iG8UluDv43hWAN0R2P0RzLUmoWO+SU9r4iG/G5wR8BZXDp4kl8+8rj2L74Fk7K/og7/NdimBmOuv9ySrc+gHvtX1jXGKdWdWCHJ24WEDjTwCL+3jUXgl733ilY+eGfDnb/mgZCZJhSW40vWkvHvGsAcFf1HQRy+yPFsUgmkBD9cVnFrD1PELfRd00gv8dFQjtF1+1DCAJZGWcd5Ysc+kAnkNnVYW65cB7/tHASLl//XdGCHveggxkH2uc2uxpXIYnOdB1wWdfWpyjd8jeMbf8Yln0fCsvWA2pTv6klyUKfcxHHU3MMLkNRWzL4Gocel6IQrCUfmYrb7Uwlc7sM/J4DZ62dP7+WDk8tRnwX3s5NRLc/2v09M5kz2dScYLFrG9nyY5hcHqbVCmFkDp4tfrgULJtH32pkR3tqSN+PraQzDf481yq+ekYZM575FLmyOew+9VtY/nLaF36EYPDI+vs/MvKdRohSCnXGZ9mabOPJzXF0bBcfbbuPpo4d0KMOxkAlss5V/a1tye5UtIjPQ0lwcPNGx6PvPboR09ZMKw/y5u4Yecs+6BubEEey3V2Z7otlPa9GPbupDZ1N4ImWkC+pwZNuoXXxJwGojvjpxLmip1MtUDWrz21nCxYFUxOzCpTlTP6yYhf/7+F1zKkO872pLzJrbQMkoCPWhr+yBq01rYlc9zi01mR3rWFFYToVVT6mlQdZsb0DdbHTHlu1OllEuzsznOFuwSqdwcR/lxuYsM/NucfU8OAbDbQvOI+qrfeyqqWdWtVJ3gjg3eeKrFKKqN+DrTXTK0LMqgpz4oxyWpJ5frDBxVXBqdTldmF5owTrn+O5tgu4xdWJUXr0KD3Dw8NtKELe3ldIA56RnQ729PpmPqJyEC3D9BrsXvI5dMVsqmoX9rm8NxCBBJIJJMQBGFYxQ97t77dYs8dlkDWcIJA+SJbrvkzLduoI+cA4wjOBevrE2bPZ0JQ4YD2+oG/4ztNnV4d5Sju1h/IdO/EGSilYuu/pTu2bAXA1rcG0rh6VIt6W1uQKNsGDlI9a3xTnw/5GLCuMr2Ia4Byvg6WUov2Ez0AhxfRBrO8yFBWT51C143l46gvUdr7OlkvvI9iyEnemne2N53Cc2kJs8seZpAI0bwlgqAwUsuAZ3YYcuzrSfPKPq1i9q4ubz57Nx8866qDT3/rT1dpALXCysZb8cx9BmRl2nvMzXP4QPreBrRm2gOZ4IZlAQzT1zA+QWvIxKs68kT/kzwDAv/mRARcM2yOTt3A1rcHf9iYFU9OZKtCZKpDITfxC06Zl89jbTVy2eBKnza5ga2uSjmT+4CsKcYRK5kw2Nye55/V6Qrufw0ruzep55M1GSlxZApFSWpZ8ll1n/4hC2JlCFA14SHudtpc62X8mUDJngrbRGv74yk6++eDbTgBouZsFm/6XduVsI7tzZffyPQNRO7ZtotZuQk1dxgOfOI33nTydznSBzZ02hWAtRud2wAlkzVSNWGV9Z0ocidwug+VzKjFtzfPuZbjMNGrbs9SoDrKBGuijC0hF2MuUsmD375VhLx84dQbzaqN8ofARPm9+nN2z3k2weQW7mtqYpDr6rfEwUXjdBhF/7+tcQd/ITgfLZlK4sMEXxud2ESitJLP4Q33+nwGEggHyeNBSGFqIfrmsvS3iD6TgcaZX9myMMBDxrEmYYvFpCQL1UhbyHDBgcSjBjP4cVR2mUTudmayuXSRyZr9t4F2dztQmf+ubbGtLHXRalmnZtCeHt9yGaemDzlpI503e2h3jaNdu8uVzcQ3x9SpMP4PsrIsGvd7M2cfgVjZ1nStRaKY/9iEmvfxNqtb8L0e3P4EbC3vGGdRE/bSYxXOJzOjWBSpYNh/53Qo2tyTxugy2taUoWIeWCfTY2ib8+Q5afDNw2QV8sS3sPO8X5MvnML0iyMzKEHWHkJ013kkQaJjMqYngr5nLNmM60e1/JzuAFME9tNY8/EYD1X//GFMfvg4yXdjFS/xHwrSo1bu6SGRNTp9dyYJJJdgaXts+dlIRhRhr0nmTO17ezhMvvcasR67FveJX3Y91pQuUGRlc/ijpmhOJz3wH4NRM8HtcFPzOSZYupsb2JZVOc/QfTyb1zI/47qMbOKoqzA9OaGfB39+F7fbzp1n/DwCzfhWxdGG/rogNax4HYO6yi3C5DM6YU4VS8Mq2DnLR6bhi2wHo6GinXHeiy48attdmvHMbitnVYepK/NzVMh3LE6F812PUqQ7scF2f6wS9vac9lQQ8LJpSygM3n877r76ae8wzeCwzH8MuMCv+MhGdQEUnbmcwgKh//5oLR1WGyejiZdtCpt8vGIdqz5dPozjNq67Ef8CiqVG/mzR+7EPoZiTEkcI9wCCQvScIVMwEGmijlc50nogqZgb6woc2yAmqLOjFfZiyI6J+D/mQc3HC7qonli70qku4Rypr4u7cAkCg/U2yeYttbUkno6sfHek8LYncsNYbtfXBp4O9vqOLgqWZlN+OWTHvgMsOhMdl4HYN/v/DXTGj++e/T/oknmwb6eolKDQ3mr/HVB7c00+mtsRHpy7+DYxyEOgXz25lfVOCT587h1lVIWc62CEEgWxb82/3raJUpfAvupy2+R9g+4W/JTllOZNKAwS9bpRShI6QYtA9SRBoGC2dUc79+RMINb9GNtaGZWt2tKdoimXJ5Pt/o3h+cxu/vOdBSrK78ec7WPG7L3L5T1/gV89vHdXK94fL0xtacRmKJdPLmFcboc7o4u3N20d7WEKMWc2xHK9s6+BS4wXnjtTerJ5ErkCIDIa/hB6Nkbpb3upg5X7r7Cu7azWedBOzN/6CGVHFf54ZZPaznyRfMpPNlz1IaNYpbLdr0LtX0RjPEM/sPVHrTOcpa3mVlBHBP2UR4LTDXjSllBc2t1GITscd245ta/zxbQCofgrnHolchkIpxRlzqnh9d4r2SWcyve1ZJhsdeMsHFrhRSlESdIIgx0wq4aSZ5fxyRzWW8vA+wwnQGRO4PTz0ndZdEvRQUVYGQFesi4auYZ4SlnOyi/bUFfF7XFSG+691VRLwkMIv08HEsDjUq+R7ZAvWfts40Bfrw8G0bLwUM8PdBw4CaU+xdk2xJtDW1uSAarZ0pQuEKAaapCZQLx6XQckgW5kPRXnNZAq46WzcRmc672Ql7+PGO17D6NyK6S3BnYvhSewkk7fZ2tZ/zZiOVB7T0nSlhy/wb7RvIp/r/zOkYNk8/nYTVSpGoNAJ1YMvE7Ivt8s4pELcRvl0ANa4F3Hj1pO5MvcNfjj5v2mLHkuFStAcXUgoHKUm6qeL0Q8CtSVz/PDJTZw/v4aTZ1UwvTzIjo70IdUE6kjnKSTaAQhVTqXptG+SmnQqpUHPQYtqT3QSBBpGp82u5CV7Pkrb2PWv0RTPEs84Hb82tyTZ3JIklinsd3Xi+U1tXORagUaxtfIcrnc9xm9DP+LSjbcy/YH3UMhM7KuE/9jQwpJppfjcLmq33M0/vJ/hwq3/b7SHJcSY9chbjZi2zZWu5507enRySGRNwqTRvgiBYl0tt0t1n8gFgyGShLo7JeyrLZnj8UcfBKBSxblj5qMseP4mtOFix/n/hxmq5ZhJEd7SM4l2vkXB1L3e0x57u5llai2J2mX4erRAPXNuFavru0iHp+JJt9DQ2sY0XWx7Xjln2F6b8c7jMvC6Da44fjK2hhc9JxO1u6ilHSKDn8JVFvRw9dKpNGddvMwCTnOtBcBVMXO4hz4uzJ5cBUAiHqNg6j6vNB8qtafAs3dvNsGB6mlEAx6Stl+mg4lhkc5bQwramLYm3eOCpW3rPr+EH04508a/Jwh0kPokPq+HjApCPkHBsskWbLYdIDCwRyyT754Ohk+mg+3rcNbbmVdXSpNdxoo33uShNxqxbXpdRM/kLbZv34yfPGtLzwIg0PYmALmCzZbWJK2JHBuaEt0X0bvSeQqmc47SGMsOzzFdyDD5TxcQWfULtNbdJUAsW9Mcz7K9LcXG5gSvbe/krHInAGFUzx/ybj2GOqRMIE/5dBJTzsZ39i18+eJjsKecxG9XNHNn6iQAXEctx+s2qIn6iRUzgex0+5DHe6geWNNA3rT54KkzADjNu5H/sb6D5/GvDHpbTbEslSoGgCtcTcjnJuRzMbn0wEHlI4EEgYbIUIq6Uj+zq8NceGwNu/zzsDHQu1bsV9cmk7fY2Z7m7YY429pS3W9QL25p5xLfKtI1J5C5+Id0HfNeFrq2schaS7jxRQq714zGUxtx963azT/f9hJrG+KcNrsSe+erTHnuC7ixmFzYPtrDE2JMsmzN399q4ozwbmYbxbajPa7YxDMFAnYa5Y8SLAZhKsJeVLEuSdTvoVNFUam+p4P99sXtzMi8RdJfS6r6BGre/jXudDM7z/lpd22huTURdvrnUZZvxJXtBK3xdm3B2/IGnW/8nelGC/a003oVdz/1qAqnNalVA8CqN9YwUzWiUbgr+y5QfSSqiviYVxvhlKMqmFMd5mf1M8lr53VUh1DHJ+h1c9niyXz63Dl8LPMJbjD+nW2X/BnX9JOHe+jjwtHTagFIJJyLK12Z4bkyXLBsvFax49gAp5RE/R5S+DAn+IUecXhYtiY9hOxx07J7feFO5k0K1vBNnzkUOdMmMMBMoIDXRVoFIBvvPr8umJptbakDBse60gXC3dPBJBNoNH3q3Dl4K6Yxy9PJY283A/QK2qza2clU7Zz33NZyLLbhIdj2RvfjpqVpimXJmzbN8SwFy6ahK9v9uGVrtrel2NScYF1j/NC7TaXaMKwcocZXqe/M8HZjnLcb4qxvitMSz5HImqRzFhubE5wScbKuXbVDzwTyuAzcxuC/uvu8XrZf9FvMGcu5euk0bj57NraG36aW0VC2FLXgKgBqo/7u6WB2avQygf76+m4WTI5SU+KndNM9XL/+45zvWkl0898Gva2WRJYKVawTFqqiOuJjRkXoiCsC3RcJAg2RYSgqwz4CXhdKKZbMnsIGPZXMtpcPmIaazJpsbknSmsjS1bCZ2dYW4tMvxPaV0HDat3js/Ce5Iv9NAMzWzYfr6RxWtz2zha1tSU6cXsYZsysxGl8H4LXwOdToFgrm6F6BEmIsWrWzk61tKb4UeZSs9rAjMB+VjXU/ns1k8FAAf5SA14XLUFSG9k5JiQY8dOpwr8BRTxubE5zo2ow5aSm7z/gODSd/jQ1Xv0BqslP4PuRzURr0UqhxpnoFmlcS3v0c8/5yNvPuv4Sf2v8OQHLS6fjde4NAi6aW4nMbrE6VAtCw7W1mu5rIhyfj9QcR+/unRZPY0KV40V4AgFFyaMWcXYbiM+fN4fqzjmP2CedjTj2132LFE92xM5y6Sh1dzvEfSxeGpU5EKmcSUsUvG96BfZEsCXhI6oDUBBLDwrTtA5YeOJi8ZZPO7z3vSmbN7vqUoyVnWvhVHku5wXXgmh1Br4tUMRMo0yMYljd7BwL21ZkuEEGCQGNBScBDtGYG092d+NrXkX7zAVoTue7j+uVtHRylnAziNwuTedt1NOVv30Go8eX9thXPmGxrS5HIOrWF9rzPaw3Zgo1paXZ2pAbdyAfonioVaH2drlQerZ0Ak21DLFPgLyvr+cQfXse0NQvcDZi+kv/P3nnHyXGX9//9nbqz/XqX7tQsuci2bMu94YptbHAcegsEQoCE/BKSQEggECAQEkJC78WhGzAYGxfAvVu2Zdmyer1etved8vtj9k53urZX1Of9evHCtzszO7u62/nO5/k8nwc9uvBhDIos5tUOJoRAVQR+TSbiVzm9I8pnbz6NWy4+nZE/+QVGqzstNKArmHoUAOcIjImPZYts2BNjU0+S15zRhtj3BG0P/wOJpvP4qvkqjNIImHMbHDSQKlJPZY0caCCgK54AVOHES0E6xLz1/KVs3n4SV8Ue4Sff+Sh/Ld9GsvY0zFU3kFh5M7Z2wGrqOHDXpn6ukNwJO8Xl1xDQZbJFi+UNQQZEAyYKDG8/Um/nkDGYLrClP83fXrWKy09qRJJAHt6KqUfoDa3l/Mx9ZEZ6UJuWHulT9fA4qvj5hv1cLL/EyfE/8HX5dawVg7QWdh/YoJgC1c0l8Wsy9UFtwgUvbCjE7MAE4Wg8if49NDNMb+M6ijWrKNasGnsu6FNYUusKNpEVF5Lbr7P1kV9iWSZN+PgH+/0oisp7r1tPuf6kCaM8farMuiU13D9o8z7AHtnNanUQq8YLhZ6OG9a28Pn7tvFHsZ7L2Ihcs2TexxJC8K6Ll9Edz897xOrxwIpWtx0skUwSwV24Z4omId/Cci8yRXNcS0mVTiDDDYZ2iokFvbaHB7guzpNbwly/dn43m6blTBBP0gVz0oS9w02x7LaDWZKP2YaRG6pMFoPGYppieaLDI5kvkyqUCU/xd57MlQiKHI6kIJQTb0LQ0YYTaSdcHuLf1W9z8lP72X7yNewadljZGOKJXSO8PjCCbRu844oLeMed8Ovwf9B591vYe9W3yLRfOuFYsUyJd37/aZaUd7He14NxzpvpagjSFNKpC+rkSzY9iTwdtXMrRDm5GAJQikli+zYz7FvCw9uHeW5fnP3xHLYDlzcV+EH9b1jRfw+FxjPxz8PBczCqLGGJ+QmzmiyNhR83hHRes66dG22HLf0pguNa98PhCGZawc4dPhGoO57jo7e/yIPb3TxdWQguXdVA3V0fwvLV0HP1N+i/9asAWKle5NrOqo89kBrnBAo2HIKzP3Y5cVeCh4izO2tZf8nVhEWOv5V+xF67gdhQH22Pf5Tl/7eewGOfxTfyMthuteWF7iTXyM+Qi64i0Lqa1qiBEO54267GCL1SC1Js5xF+V4vPYzvcXtN1S92QTtsGPbGdYnQVpVA7AKn+49MB5eExX4qmxd0vDvBJ/48phpZwV/h1jFgBpKJblSqULXS7Ek7ri6DK0qRg2oihknD8E3KERjEtm8aka62228+ZECzt12U66/xjGScXndzG46zlzPzjnGs+zSbfWWS7ruH0K15HsfmssVa08Zy/vI4NQ1BWwwRz+2l3ej0RaAaWNQRZtyTKzrab2Hv1t1DazljQ8YKVG7rFHOt7rCHLMkV07GQvTU9/FqmcnTTdbj5ki9Y4J1Cgqn1G28GEFwztsUCGM0W+fP9ObtvQM+9jmJbrZCiULVKFMiXTrnrC1qGiZNn4KGLKs4szPlUm4xiIUsZtBzvIxbQ/liOenewiSOTL1CpFHDV4wjokjyZEuA3JMTlT2o7uFCjtexrbhp54juf2xVmjDlAMd/G2C7u48MxTuT71YXqUDpbe+07Ce+5xj2EWwLF5bOcwWinOTwL/ycedL/HMw3fxj794gXffuoHfV9rNErkyvYn8nPK0Bvp7x/7713f+mr/7+UbueKGXDn+JLy55mIdW3ca3s+9j1eDdJJbdSOLK/1qUz2a+08HAva88eAKWLAmaw74JhcKoXyMthSB3+NrB/vcP23l05wivWtvKey5dzsdedTL5kkVg4GnSbZdi61GcSju8mZjbd9xAqkC7lsGRNC/z6yA8J9AiI4RA7jgXAEmSKdz0A+4fDPDNFx/lytiPuG7zl2HzlynoDfSe+hc8u3kJ/yFtYaTzfdT4VVRZoi1qMJwpclpbhK2xJi6OH19iSNG0eHj7MFG/ypJag2TOBMdBj28j2XUdZqgTgPzgLuCKI3quHh6HG8dxg5anCmO8f8sgSn6Ypb5d9J35z0T6ggylfUhWCmybVKFMCDeXRFTGVB9sew37VFJOAKk42QnUHc+zkr3YyGhtp9OgaAwki6iKYGmtfyxXCGBFYwjfpa+l6aG/BxsK61/D3646MAI1oE+u2563zM0F6pWauUZ6GsPOkmpYPb8P6gThB+88l75EniIs+AZFlSVOa48s6pjcYxFb8XFN+UH0jb/H8tUSP/3dOFFnwu/3XMlUpvIBE4KhZyJsqOxwDGTTE4E8FsZTu92q/d5YlqJpoSuz+WYmMzp+uTueH2u/OeLtYGUbnyhjV+HQMVSZlONHFIfxb7qV5Y9/nMSKVzOw7m8xA83YtvveMkWTtkrBVQhBIlcmKhVwvFawowJR0wGAg8Bx4OXH7uTUzgt4aPswZcuh3dpPqfYcDEnw169YgeM4XP/8P3B75At0/eEvSCy/icieu4mtfhMP9L2a//F/m5Cdpuyr5xvRX3HH2bfyy+d7+J8/bqc7kedt5y9lJFMili1xckt41lahR3cMc+/dT/NxGSwk3tuyjT/XBqjXytQOPI5SGKFsNJDqeAX96z9COdROU2T6KZFzQZYEkphfEUdXZPzq5O+FuoMKhYYmkxIh/IdpOljZsrl38wAXrKjjnRcdGFihJXaiFGLkms8BQI62QQqsRPecjj+QKnK5msHW6pE9kXcCngh0CNCbVlKILCe5/EakumVcUQesuZnB1HV89vnnGNnyMK/J/5HzN3ySHzs1yMKmvPK6sepsTUCjJqBx4Yp6dm5s5orURrAtkOZ+UT8aSWRLPLJjiAuX11POxFn6+79haO1foBQTFKOrkEMd2I7Aiu050qfq4XHYMW0H03KYag3/yI5hzlT3AJBvWEtdWqevZCBkB4pJ0gWVUCXgUvJFpjx+xFDZQwC5lHIrpeMuijuHMrSLYfJGEz7DIFSpGtUF9CmnHJnLr8J5yH083X75hOeC+uTLy+kdEVojPjblarlB3kaq7gyctW+Y/UM5gQnqCg0hnfgijrZdiNhxPKD4gqimK4LWbv4+w6e8Y8EtYZmiRXB0zHSVIlDEUEkQQC2nj6trvMfh54ldrru6O5YnW5yfCGTargiUL7mj4hVJYJWLQHXOtkNB0bTwUcKWZ7+J9msySceHKKUxBjeCYxPd8SsCfY+z+7qfUg66ToJErky2ZGJaDi0RH/FcibBUxKny79bj0CJH3G6AbMv55FLDdKWe5Y8vD7K5L0W9ViZU6CVW57apB3wK77iwC1mSuP7ZD/I1/YtcuuNX5Pzt1L30XW4s93KJ8jS9534US4/Q8dDfcd3AVzn34j/hpYce5NPPnkGuZPKOC7vwqbLrPJvle/iBrYPU4E50LDSdxYqBP2LLOuVAC4Xa1fSt/wiF+lMn7DOfv8fpmO/1O2KoVWXh+DWZFEFaCoenHezJXTESuTLnL6uf8Hhg4GkAsk2uCBRsWAr7ID+0j7k07w2kCjRIaWx//awtpScaJ64n/BAS8Glsv+WPDK77fxMebwz7uO6S87nxLf+PL7R9ng+U3kudlKUUaMVYetak49QHdXY5LUh2GSex73Cd/iHnmb1xBlJFzltWi7L3EcL77qP94X8AoFi7kpWtdfRTg5Tce4TP1MPj8GPZDmV7alvyc/sSXBrsxkGQrzuF+qDOiOUu0K1cojIe3hWBZGNq22vYUN1qqWPDQYG0OwYztIshrFA7huqG3TeGfNOOuVYjzWSb15NrPgfTf6DXWpIYG08/Hl2R+d0HLkFadgl9+jJ6rvk2uv/I3WAcK4R86gmd47PYiEq71stiOXp6H6Hu+0ksUGQbDYa2ZN+sAbajhA2VYSeChA1HcByvx7HPk7tifFj5Eec6z7NvZH7OsrrHPkndpm9h2Q5/9ePn2HT3N1n6nbVwBNsV3elgRZxZJoMB+DSZlO1DKmVQM90U6k5h1/U/RcnH6PrdGxHl3Ni2ZdPBcVyXwEimREjkPSfQUYJSv4xSsJ2RU/4M0XkxZ8vbuePZXTy+a4QbW901i9PgTtoKaApCCN52/lLe9YpT+cWqz3ENX+HVpU+Qc3T+XLmLoaaLGDn1HSRW3Exs1etp2PR1Vv/qav5k5Ov8OvJ5Hn5xF+//8bPEs6VJWVJTEcuWaVLzWIqf2EmvJ9t0Njte/Vu2vfYhdl/340kCEIBPPfLX72rXEH5NIeEEEPnEoT2hCne92IehypzTBK2PfJjQ3nvd8+h/GtNXSzm6jCV1fk5d1k7aMcgNz+1+eCBVpI4kTqB+9o1PMI78b+VxiE+VUVUJIaA16qM2qE3I1ogYKh+5bg2X3fJ+dt58N3uu/T4hY3IFsiagstt2J5nYQ8dHOLRp2fxuUz+aInFWZw3G0PMA6MldAIQ6TmNpvZ/9TiO+zP4jeKYeHkcG03YoTzG2tGi640bPlPdQjCzH1kK0RHwkK1VaKztCKn+gHWy6KScRQx3bh0KCXMlkIOU6GHYOZeiQhrEjS6rKjTFUmb1XfZM9V31rwuOjC7MpX9+vcvYtf8fwWx7ACjSge+LGrMiSIDrFNcJjnqjuDeUHCu8m72ukbvOtpArl+U2JqTAaDG2r1YuaIV1hmCgAZrJv3q/tcWITy5bYPpDkXcpdvEu+k+2DmTkfw7Rc10zd5u/x5O4RehJ51gzdjVxKQ3b4EJx1dZRMGx9lnCrbwZK2gVzOoGW6KQVbyTeuY+9V30BP7qJ5w+cm7WPZDrFsiWZnEAKNh+IteMwRoQfZ8cbHSXVeQ7b1AjTKrEw9QaZoclmNK5aLRlcE8msyEUNFCMFVJzfzrktX8Z4bL2N/McB/i7cwbHQxfMUXQEggyfRc8h/svuYH9J73MfZd9r+0lXZzb+s3iKcyPLUnRtGafbpeIleiXs5i+WpIrPpTdr3qlxRrTppyWyEg6lcX1Ql0qDE0mZgTRJoiN3KxsWyHe1/q54b2Aif/9ibqtvyQzvv+nOanPk2w91GyTefQWuMnYqh01gXod2ox59AOVrZsRrJFwnYCAl4o9MF4q+9DREBTiBgqdUGdtqjBmuYwLdEDFXUhBCsag5RrViA1nTzlDVddwHUCATgjx0cuUK5k8sC2IS5b1YBtg39oI2W/e+G1tDB6tIVav0a300Ao3zvL0Tw8jj8s26FsTb4ZfWF/grLl0FneTr7+NACWNQRIOO5Np52Lu04gMTqhaOp2sLBPIemMikBJCmWbwVSRwXSBPYNJGonjRNurOldDlbH1KLYeRZEFhiZXRsjPLFj4Ki4hTZFO+Nakajk40NFj/jhGLdnoSeygg8eCVxPseRApM0iqMH830KgTaC4tJZIkyKq1ANiZwXm/tseJzVO7R4iSQcLmXGkLu/vmLtqUS0WU3BB6eh9PPb8RgwKnlja6Tx7kGD2cjI6IpwonkF+TSTvudmpqH3GlCYBs64WMrHkrdS9+h+j22yYFRgeKfTSafVgd5y3+G/CYF5rirgsyrRdSiCzj89pXuUjbzklyD7aso9YvA9x7qSV1fmqD2ti+KxqDfOft53Dd2z9M35sexPRPFPcyHZcxcuo7Sa54Nd2XfI7W2FN8Uf8qu/pHqnMC5UrUShkwaqZ1SYMr/qxuDs158tiRxq/KjNgBROHQZwI9vSfGcKbE28RvUXOD7LrupySW3UjDC19Dy/aSbb2Amsp6ckmtnz6nFjXbX/Xxh9JFHMchaCYQngg0iapEICHEtUKIrUKIHUKID03x/GVCiKQQ4vnK/z66+Kd6bBHyKTSGD/QwS5KgPqizujnEsoYADaEDGRvhaUZw1gRURghTkAIwsuuwnPeh5r7NA2SKJpesbMCxLIzhF0h1vpLUkqvINp2NrioossSg3EyoPARm8Uif8jGLbTsnfADssYgrAk1eiDy5O0YDcYLFQfINpyFLglWNQRK4N512Pk66UCY0NqZ6eidQigPCUaEyEnggWSA9uBcZGxGtbhS5r+J4BGirMVjRGGRZQ5CoX5t5v0pVbKqWMQ+PQ03+ms+z/5rvsLY9yreS6xGOTXTH7QtqCcsWTTcYeo4tJUXdtahbqYGx4/QnC/M+D48Tj+54ntrKCGRdlFG7H5vzMcxUHwJ3vVAz+ASXyC+hUfl7OKIikDsdTGiz30hfe0oLq5a4hVMJm1tftrh/qyuu9q//MLnGdXQ8+Lcsve+dyIUEVIYwnF7e5B6g8+JD9TY85ogiSUgS+AJBdl/3Eyx/E183vkwg9hLFyHJ0beIaoy1q0BA6cM8V1JWq3MyJlX9C3/p/5hrxBP+2540o2383+z65MlHSOEYtkYMKXoYms7wxwKltYTpq/VMO+Dja8WsyI5YfycxDOX9IX+t3m/rwKYIVqSfItF1EtvV89r/iS2x+07Nsf83vKJz+trFCoaHJxJUGAsWBKdfIUzGQKhAmh2IXEd54+EnM+tsphJCBLwOvBE4G3iCEOHmKTR92HOeMyv8+scjnecwR9WtT2v8kSRDQFZojPk5qDlEX1AhPY/PXFZmgrpKWozi5I2fHXUx+/Xwv9UGd09oj6MmdyOUMuYbT2Xvl19h/zbfHelaTegsSDuXY8ZOFdLjpjuendJR4HN2Ytj3lBe7ZfXEu9Ls22Hz9WprCOs0Rg3RF0HGyrhMoJPJuiKYytRDjZgJVRKB84oAIlCoSKbkVFqV2aVXnKoTAp8oIAcEpRsJPh6ZIGJpES2R2i7+Hx6JT00E51MGFy+t5PF1PPHoa0R2/IF0w2T2cHfubmAuZokVIFKoOhR6lbLgLUyczSNG02D2cXZAjyePEI1M0qa+IQABLYo/P+RjOuBaLS9WXeVPd1gPPHUkRqGzjo4RQZ79WLKnzc9O5B6ZNSjUdfP6+bdy1qQ9bDbDrhtvoPe+jBLsfZOUvr2TND8+k887XcoG8mZwcRjSfcijfisccUGRB2KcS8qmYgWZGLvkkgeIgwd5HKdasmjLfpjnioyXqQwioC2pjBSoh3OKXf4qJpQDDa9/NN7v+m4ytEnnq87OeWyxbIuykcXxRIpX7t9F7uhWNQfwztMMfCxiaQtypFDMOYS6QbTvcXWkF82X2k26/bOw5y6inUHcKAf9EB2DeaCZixcjlqyuUDKSKNArX0SRF2hbt3I8XqpEo1wM7HMfZ5ThOCfgJcNOhPa0TA1kStEaNsdaIqagNaGRF4IhWYhaLRK7EYzuHuWxFFEkIjCHXapxvOAMkdYKynzeaAbCTXkvYXLFth9s2dDOQKhzx8a4ec2eqdjDLstnUneJK/w5sScVqWkttQEOSBLYedTcqJEgVygTJ4WjTuxFUWaKous87+QSFiv1551CGNlyxWampTgQCt2pkaHJVUyfG01UfPCarZB7HPlJlgX7taU1IAu43rsSIvYxvZDOZgsnOoQyZojmnY2aKZYJSEfS5iUCqEaKIjpMZZDBVxHHcHJSF5BN5nFjkShbNsrtGjCuNnFHaMOffn9GC2w46uFZ9jvMyv2er7bYF24XUTLseUtx2sDKSNns7GIAY58R76zUXccHyOr758C62D6RBkhk59c/ZdcPPKUZWkK8/jejAk7xGepi+6FnI3nS+owZVlqgJaPg1998k03YJ+VrXf2DVT52/A+5AnZNbwrRGDWoD7j1FR42fJXV+Omr8E/JZxyMvv5yHrLUoyb1YM/ztmJZNMl8mYKXBX0dQV+iodV1Ix8vwBnfKXiUyYBHHxFu2M+GzfW6/OyToxsBLAKTbL520j6FN/Jt0wq1IOJSqzNAbTBdoHhWBwq3zPfXjlmp+Y9uA8Qm93ZXHDuZ8IcRGIcTvhBBTyulCiHcLIZ4RQjwzNDQ0j9M98agJaKTxQyF5pE9lwdzzUj/vEb/iY/vfCbaJf3ADlhqiFHV7e8cHxNoh94/VSvUckXM9lvnuY3v44M838uzW3dgpL2z0WMO0JreDvdyfZihT5Bx7I7mmszECobFKk8/vpyh8kHedQDVyAXsGEQiAinBkZuOEtv6C8O472TmUpUNyv5fV2o6qz9dQ5bFR8nNhpl56D49Dyeiv3srGEGctreGrQ6djSyo1228DwLZhz3CW0hQB7dORLVoERBHUueU/RPwaMRHBTg+QzLsOIMdx22A8PKohUzRpUtww6G21l7Fc9JJOz23N+PzmlwFInPR61HKaofCp/GP53cCRFoHc6WBSFe1gANK4qZiNHSv48hvXUR/S+dRdL7OjEpidb1zH7ut/wp5rfsBA3bnIwmGobr13TTqK8GsyQV2pDJkAhGBo7XsAsBtndmyNFqQaQzr1IW2sZUtTJNorQpAQEDYOrFtWNgbZ6zShmWmK6ek7L5L5MgIbn5VG+N08t9na3481DE0mR6W1btxEvYVi2jbpiss1VzL5/uN78akSawtPUwx3EWxZQX3ogIML3Hzd8eg1rjCdHXRF61ShPGPsxd6RHO1Kwv0h1Lxo7+V4oRoRaKpvxYM/8WeBpY7jnA58Ebh9qgM5jvMNx3HOdhzn7IYGrzevGuoCGknHQBwHTqA7NvaxztdDKLuH8N77iOy+k3T7JdSFXJuvPm6EohJxRSCnovZ6VdHq2D6Q5rN3b6GGFLc8+xa0X7z9SJ+SxxyRBzbhG9yIOU4IenjHMPUkacptI9N28Vh1DCDsU8mIIOTjpAplonJh1lG3qj+MjWDTjr20PP4vLP3DX3LNjk+w2hej7G9C1qpv0zI0meA0uWYeHkcjkhBu3oQq86dndbA9o9HTcCmRHbeD7TqAHAd6E3ls26kqoydTNPFTnHM7WNinuhPCMoNuXq1tEeh7gkKxNPc35nFCki2aNElpHASp0EoAMiPVh6cOpAr07t1BTvjRL3wvO2/4BY9d8B12OpXK+RHPBCohVykCCd0VgSzFjxKopSag8d23n4OmSPzjL17gj1sGxm0s+G7NB3jEPhXplFcd0y08xxshnyvcSJIYc4Mkl9/Erlf+EGfFVVUdQ5ElWiITHWQRQ+WkJrdta2ldgKaIK3ZE/RpJn+tvsIanz2CN50qEySFhj4lAxxt+TaZARdhaxEwgy3ZIF9zr687BDHe90Md1J4UJ9z9BuuMyWiMGLRGDrvoAiizQVWmSMBtscb/f0vtfZDBdYO9wjl3DWXoTeUYykzNkdwxmWO2vTEv0nECTqEYE6gbGl4XbgQk9Oo7jpBzHyVT++y5AFULUL9pZnsDU+DXiloEoHrlKzGKQK5k8tnOYLsP9Qml79MMoxSSxNW8hamiEDWVCW1wkWkPaMXBS7q/anpHsjBZND5dP/HYzQQW+qX+BulIPIlP9QtDj6CD6yL/S+uhHJrSEPb07xlWGW6nNtF08wSIb8imkRRBRSIxlAs0WTvvPrzqVrPDTv2czSilNOrqaKwr3caX5EGaouslgo/hU2Qt49jimEOJAKPkNp7fgUyXu4BLUwjCh7gfHtksXTLYPZhjOFGcN2c8WTfzkQat+RDxAa9SgzwxBZhAl20/XXW9g2Z2vhZd+Mfc35nFCki1a1EtpLD1KOVCZiBWr3kX99J4Yjc4w5WArSDK55nOoDfrI4hYDnOLcR84vFsWyiU+UkatsB5MNdypmOdiKUsnlXNMS5rd/dRGntoX5799v559v38R/3buVnnie2/ZofKHlczS3Lz9k78FjYQRHncZCkG27GF2defrobCiyNHa/0Rjy0VzJJnRqugAwZxjEE8+VqRGuKCr8NQs6j6MVvyZTdCqfsbl4QwpM2yGZL/Ps3jhff2gXpu3w5vrtSFaR8srrxhxcAV1hTUuY5Q2TCyqdq9YSc4L0vfgAz+1NAJArWoxkSvQlC5Nc9DsGM3TqKSw9Cmp13yEnEtWIQE8DK4UQXUIIDXg98JvxGwghmkVFQhdCrK8cd2SxT/ZEpC6oMWLqiNKxLQINp0vYDkTtBABKIUYhspxc6/n4VIm6oD6hHawuoDHoRDGTfeRKJtmiRXd88WyJxyMPbhvk4e3D/MNJA5wttjAs1SOKx34b4YmGnB1Ey3RTqlzMHMfhuX1xXmlswdSjFOpPHZuuBa6TIIErAqXy7nQwRw9Pd3gALlxRjy9UxyVBNwz0n1Ov5hfWRShY2JHqJoONx6ugehxLSOJAddmvKVy5polv9C2n5Kun4/6/ovHZL4yNkS6ZdlXtWdlCGZ9TQOhzE4HedO4SYqIGJzNIyxMfxz+8EVvSkPqen3G/uWYWeRy/ZIsmdSKFadSB33XZF5ODVe8/lC7SLGLYwZaxx2oCGjYSRcnAOYLtYFbJLRxWMx0MGCuAmMGJqRV1QZ2fvvs8/uyCTpL5Mk/ujvHB2zYynClx5Zomz816FFMf1DG0A/cH47sGFoOGkM7Sej++hooINIMTKJYtUYMrikr+ukU9j6MFQ1UOjRPIcvjDy4Pc/NXHuP+FXaxfEqZr6AFMvQal68JJ20/VnrmqOUyqfh0riy/xlz/cwH/d8TRfeWAHz+2L4zjud1mmaJLIlciVTHoSeVqlBHZFHPeYyKx/SY7jmMD7gXuAl4GfOY7zkhDiPUKI91Q2uwV4UQixEfhf4PWON5t6UagNaCRsA6mUAXvuE0uOFkayrk3PX46TbV6PIyRiJ78VnyYjhCCoKxOmqXXU+hlwahjq3U1fwlWiU3mTgZT733PJajjeKZoWL/Um+doDu/BrMpfLz1NC5X75QreN0PY+q2MJJT+EUohhFtyFxo7BDIlckXXlDWRaL8SnqxNCmMOGSsL2IxXcTKAAuarGVDt6hGjejXvbWmzgo+U/Y6hmHeXOSw7NG/PwOEqQhMCvHrjpe/sFnaTKgg8GPk269UKanv08Ndt/PmGfYnnm79FisYCCNed2sMawj6aWDoJWEm3vg2xruJpC3ckoQy9Nu49tO/QmDu3o3hOdY2kJmy2Z1JDC8dejhBsBMFPVu4CH0kVaxQhE2lBk99qiyhIhn0JeOrKDSexREajaKn7l2meFJkeXqorMx248hbv/5hI+ffNpFE2LoK6wvqv2gNvE46hDlgSddYGx3039EAQwh30qa5e1M+REKA7uHOs8OPheI5ErERHu2kwOHJ8i0IR2sEV0AtkjO3lu0yZawxqP1X2S75b/nvD+P5BaehUhf/URBMGVF9El+vi3rhf5zsAt3LjtI2y764uIR/+HkVSW3UNZehJ5tvW731u19gh2qGWWo56YVPWtV2nxuuugx7427r+/BHxpcU/NA6DWr7HVqVRAiikwjk37YTxXQsZCLydItFxA98WfoxReSu00Y6UvWdnAS41L8A1v4O+/8VP+vfYuClf+O4M0kS26zqCmsE5j2Bsx/bFfv8RPnt5PAwmuX3cK0e4H2Gqcwf5CBIEDpQz4ZnaGeBwlmCXkinvLTPRATQ33bx3kLLGNYHmEfZ3XTpomGPapjNgBpOI+0k6ZgJODWZxAAI7Ptc07CF579UX85sUR9l3/Szrr5xZs6+FxrCEJ8I2rLJ/dWcvfXX0Sn7tnK9Laf+RTTTGan/wUqSVXYvnc3IeCaRFh+jYEq9IyI+bYDgawds0qpAEHv53h691L+ac1fmr23kXZtFCVya2W6aJJsWyTK5n4p7mGeiyMsuWgKceGwzFbNInaCRz/UuoaXfHDyU4fbnswI8kUDSJJLNxOyKcQz7rhrQ1BnVzBh3EERSCn4kSodjoYkkzy5DeRW349kWk28akyrzmzjZaIj0SuREBXjpvJTscriixRF9SIZ8uHzHm8vDHAXqeJtuReN+NNkxlIFeioPbAmimXLY04gjtNMIEOTKTiL7wTS7/hL/jE+wsOrPkxkx27Iuo9nl72S2jlECpht5wDw+sEvYPtquLr8HK+0HoeX4Zs9Bax17+TCFfVs2OtOBQuVhyB06qK9j+MJ71vvKKc2oJGi8gV0BC25C2UkU6IWdyFhGvWUIl0gJPzT/OFLkmBZ1wpa5QTX8yhdg7+n/levRc6PkC26jqiBVHEsuPNEZXNvkp9v6Oa1qzWeMD7AR9L/hp7azZ6aCxksVdL9j4PJcicKZubA1ESzMrL3/i1DvNa/AVvWSXdcMemmL2woDFt+5EKcdL6Mz84iqhD9HF8UcLMTzlnewr/ddCqaInmLYY/jHiHEBOcpwDsv6uK601q4/YV+Hlj5T8ilNC1PftLd3ixQKM3cfuWU3Hbl+YhAoboDgZUPldewW+5CKSbJDu2bcvvRCSuj08Q8Fp+SNb3zy5zhuSNBtmgRtpM4/nraGmpIOX6kXPUTeMuJSsxnqJWwcUDobAr7yDiGW0iaJ9Wuz2LZqYPQnYoTaC5T94Yu+w/Mrstn3e68ZXVce2rLWCaMx9FNXUCfMBRjsVlWH2Sv04g/s59s0SSeLU1qu43nSjTIFfXiGC3Kz4ahyuQPgRPISvayRtrH60e+jC3r7Lnme4yseSti+ex/q+OxW87EljRkM0f/OR9m6+sf555X/I4XlZN5depHPHDvr8g/+AW29SdRhYOWH/ZCoafBW+0f5dQGNdLjnUDHKLFsiTrhnr9pHLBQGjN9oYdbkO0yfxLeQkyqJZjrQfz4dXzmjucZ7N4JdpmRTIn9J2BWUKFs8fjOEf7z3m3IQvC+ZYPITpno/t8DkOm4jORx8HtzomGlD+Q4OMluMoUyG/YOc7V4knT7pdhacNIiKORTSTghJKuIUowjY1clAjEqAoU7ifoPLPw9EcjjRMSnyrz3suU0hXU++bRD36nvpmb7bTQ9/R+cfOta9BdunXZfx3EQ5YoTSJ9bOxiAFKqE+daeTFKK8njOdXOUe1+YcvtsNkNw//0ksqWjTpA4Xpip5Xxoiik0R5JCsUjQTkGgnrqgxrATRs1XH8spp10RSETbCekKkuReB1oiPpL2wqbT5sqzxxjkSia9ifzULXhmZX2nVC/UyJKY07j3iLGwoGGPw4MsCZoOofu/JqAxKLcQKg+SzWUZyZYwLYeieeB3OJ4t0aJmcIQMvum8Zsc2h2I6WL5koZUSAITjL5JaciXpjlfQe+EnCYfmds1UdIN84xmUgh3EV96MZdTRuuwUjGs/TgNxfqL9G+u3f56G7T9lTbiAcCwkTwSaEm+1f5RT6z8+nECxXIlmueIE8rmD4zRFmtTaMh4p7PZw+mMvYa24hh+1/wtr7G18ZuBdXHH35Rg/ex1WMXdC5AMdvDj6wu+384ZvPsEftwxy7anNBAefwVYM4itvIdN6IbVL1pAe+73xnEDHAo7jsGHztrGf1XQPD2wd4hR7B1FzmFTndaiKmKIdTCGOexFtdVwRSVTRDja6gLGinXTU+umode32muxdFjxOTNprDP76FSvpSxb4fOEmiqElNG78EpJVwNf92LSuhlzJwu+4FVNpHiKQXBGBcm0Xc+aSKL8fcdsMnD5XBCqa1thrF02L0Iu30nXP29B7nmB//MTJBiqZ9oQbskP9WlNRNK1pXStHAsdxxm6uCDSgyhIxEUEvzUEEyrnXDSncghCCtqjBisYgDWGduKVDaQEi0CwOuqJp0R3PTx++Xq44EeYw2UcWYiw/xuP44lAXqfLBJUg4OCO7MS0HqZQZ6z6wbYd4rsRSaQgr1A7S8TkV1a8pi54JdOvDWzEoUlLczK7k8psAd1JncI4tzQFNYd/lX2TXDT9DUbWxx3PN5zJ4+nvZe8p7eV6s4e3FH3JOwP1ukyNeJtBUeM3kRznHjRMoU2KJngWLseDCGv/M1RcpckC5LTaewfrVb6DvhQJNL3yDh6SruCRzHxt+8ibs138LmmYPwj2WSRdNdEVCV2TKls1tG/Zz0Yp63rZ0hIauBvy/e4pc45l0X/p5NFnQ4UDKOfbFwxOJl/vS/PzB57hAAxuBmu3jD1sGOV11w5uzLecRmOJiGTZU4o77+79EVEQgXxV/D0YUALtmGQBRv0bRtL1JXx4nLBFD5brTWnh81wi/eKGP5lX/xGXBB1gt9uGLb6FgWlNm8GSLJn5RcYfMox1M1HYxuO5viJ/0Oq4e0PnUXXFy9UvRRzaTL1n0JfO0RAw3q6FkE9r3RwBqtv2U7pbz6E8WxlpaTMtGOU6F3LJlky9b6MFDf/N18KjhUeLZMrZ99HzOhbJNDZVCT8AtsKWkKK3l6oKhLdvBKI2AAnLYFSOjfvfGqjHkI+34oNg77/PLl6YX7bJFkzs39fLkrjhvO38phbI1uTBojraDVS8CSRIo0pH/t/E49sg1roMMhLofxBd7mfaHPkj/Wx8hTif5skU8V6aDAazo0uP2BtqnSiAkTKEil/IsdEWYzJX56cMbeTcwcub7cWQdZ9W1RBUV23EmDDqpBr8mY4dasG1YXudHICjbNoWyxcA5HwKg3H41tfe8hvfnvgzgOYGmwfuWPMoJ6Qp5yb2ZdwpJiqZ1TE2tGCWeK9GmuXb55tZ2hDiw0JgOOXxAuVWXnoMkwfDav2DrmzdQ88Zv87OWv+e00vMs++nl2NPY5o8XckWLZM7Nf/jDy4MMZ0q85YwwVz72FpY/8D58sc2UWs9FkiBkqDRHfJ4T6BhjKFMca5ncabcipbp5YtcIZ4bTOEKh7G8iNMUY27BPJe647oMlYgAAqYp2MKkiAlG7bOyxQ2m19vA42hFCUBPQ+PArV7OiMchXtoe5ZfeNDEbWoid2kc5kp9wvUzTxU6mYzkMEQgji6z+IFO3g8tVukWS/bxX+gQ30xLNkixb5SltNMZci0P8UtqQR2XUnUinNULrISKbIvpEcfcnFy3A42ihbNpnCzM6SxWIqV0oiV+LJ3a7DZqbMoMNJtmRSK1ynjhx0x8On5RqCZqKq/UcyRepJYCOjBicG3YZ8CmmnMp12nhTK9pRrVtt22LA3zr/d8TL3PruNttv/BHvbfZO2k0ZFIGUOTiDJcwJ5zI9I20lssjtRt/yK2he+hWQVcXY9SE8iTzJfJp4t0Wz3Y0c7j/SpHjKEEBiqTFnoOObCnabP7o+jFhMAlMJLGDn1HYQDBu01xrzWnKMTpVVF4NcUDE0m7FNpCOpjTjFfxzoG1n+YmkK3u5M3HWxKPBHoKEcIQSDiXpjtfJJYtnRMLvJGsm47mCMp6IFaltb5Z7V1KhUnkC37iCw5lRWNwQkX9sTqN3B96d9RSwnsrXdNd5jjgmzJZPdwlu88spuv3L+DxpDO2coOhGMS6n4A4dgoXRfQUesnbKjU+FXycqUt4TA6yCzbGROrPOZGIleiXiQxhcY2pw0nuZ++ZIFlWpxyoAUkmcAUY2xDPoUYBzuBquhVH70oNq5etPfg4XE80BIx+J/Xn8lX3ngWAJvKbQjHpNC3BXBbcMZn8WSLFgEqTiB1HiIQ7o2rT5VZ3hCkLWrwoLUWNTeA0++Oih8VgXqfuxvJLjF41v9DsgpEd97uPp4okMyXSebL07pYjnVufWIvv9nYe1iGQZStyeLFP9/+Ih//+ROsuO0KnK33HvJzqIZs0aS+4gSSgq4TKKvWErRTmOXZ29YG00XqSZHXatGUideXgKaQwUAqZ2CexceyZU8pmG0fTPOJOzZj2g5/r/yUupFnUHbcM2k7YY7+XVV/sygJgTJHd4GHB8DJrWF+a51PffJFgiMbAfD3PoHjgGk5lLJxQnYK5zgWgcB125QlDae88PvNeLZETUWotn01COHGGAgxOd6gWgK6MinLSwhBc9hHXVCjOeJjeO176D33oxRazoFg44Lfx/GIJwIdA9x07hoA9vf1k8qbjGRKZIuHpxq2WMSyJeqlNJavDiSJkK+KID5Fw/TVka8/FV3T0BWZpXV+VEXQENJpq/Gz3WmnoERw0gOH/k0cIRzHIbv5Pv73p7/lE7/dzAs9Sa5f24LY/zSOkClEVuAIGW3pesI+laDufrn6Q5XJBYXEYTvX/lThsGU2HG/EsyXqRYqyr44epwEj3w84tDhDlIJtGJqEOkX7QcRwg6EBOkRlIow+ezuYdNK1bH/1ncgNKxfzbXh4HPNIkqAmoNIa9dES8XF/3HVYSIObKZk28Vx5LCcCIJEv4RcLcAIBSkUEEkJw6UkN/HBkFQCh/X8k2P0Q7HUziXY8+isyjo9beRW5hjNoeuY/UNMHpog5zvSTlo5l9o3k+MJ927n1ib1kioe+0GA7DmXrgPCRzJW596UBruFRjMR22P/YIT+HasgUzbEbLKXiBCpotUg4lNOzj4kfyhSpF0nKRv2kVuCALpNxDCTHmldArG07OM7kfKXueI6/uHUDe0ay/PfZMd6suAMtlJEtk44hzacdTAivHcxjXlx+UiNrr307AAVHJdl8PoG+JwF3KmO4UGmNrO08Mid4mDA0mRL6ogRDx3NlorhuwvqGFgK6suBW2uAUIhBAxK/SGjVoCOkYmsTIaX9O7HV3HLf5TQvF+5Y8BnjD+SspovL89n1jF9NjUQSqdZLY/vo57ZdY916SZ7x7bHHi1xRWN4dpjvg4t8t1SKWUGsgMznSYY5rhdJ6u+9/LBwtf5FOvPpWf/8X53HxmO1rf0xRq17D3qm+y/xVfRA9MdH/URUIU0bDzh8cJtK0/xZ6hLNYx2K54NBDPlakjiROoJ6U14qNEk5wlXBqgHGqbMLp3PGGfSgL3xrNTrvwdVNEOJisKhfrTvGlgHh5TUBfQkSTBWUtquHcgiC2p+OJbSORLDKQK5MoHrsEjmRKBhbSDAYos3CwG4NJVDewthRgJn0zNtp+x9L53UvvQR9mwN8bZ9gtskNfy5Yf38cP2jyIch6W/fw9iXIDncKZ4VEwNW8yCwFce2EEn3fgy+3ip99Bf0xwHTPvAZ/iLZ7spWTavlR8EQCS7D/k5VEOuZBHGnaA12uJrGu46y6wUx9KF8qRR16MMpVwRyPY3THouqLtOIADmMSHMrDi2xotAjuPwtz/dSG+ywM9PfpRrnn8fI3o7v7HOR4ltwzrI5SVbld/rubaDeU4gj3kgSYJVq06hu/kqvmddw3PGBWiZ/dS99D1a7vtLVoged7txbfTHI35VoSi0RRGBkrkSNcIVgUK1jbRFq/9bng6fKk+ZzzeeloiBEExZPPVw8T6ZYwBDkzHVELlUjKe37AbHHrOGHwuUTJt0wSRsJ3DmKALlz34vpZU3TPlcfUinIagTEzWQOT6dQI7j8IWf30eIHGeK7Zzj73ftk7aJMfg8uaazKEWXY66+aVIVry6gkxV+nMOQCbRjMMPNX32cbzy8C9NaPBHoRHIVJXIlGuU0jr8eEWkH4MK6FGqun3KgjagxdYZW0KdgopBy/DRTmQhThRNICIEkgepVTD08JjE6IvvszhpypkTC34UvtpXBVBHTciYE3o5kSwvLBMINsjUq1vgLV9SjSILH5bPRU3uQrCJ6fCsPPvcSndIAS9deyvnL6vjsk0UeX/spjJEXaX3so9Rv/Aodf3gvtmnSnzqybeMl06Y3sTjn0JfMc9uGbr4R/CZfVv+XR7bP7nBZKI7DmBPIcRx+9NQ+XlE7wpnSDgCk1NEhAmWKJiGRw5J0UNxrhGnUAWCn3aJAumCyeyjL9oE03fEcyVx5rNVt1AmkVEKhxxPQFTLO/EUgu/8lVv/obKz43rHHbn18L0/tifHxkwc4c8eXSHbdwDNX/pLn7RVoxTil5MS1nGzPvR1MkcWcw2Y9PEZRZYnY9d/i28af8duUK/a0Pv5Rugbu5U3KH9xt6ruO5CkecgxNpoi2KNPB4rkyzWqucuDaw1Z4DOgKS+v86Kq3xp0O75M5RtADNbT5Ctz0yI203PsX5A6DHXqxiOdca3rQSuAE5iYCKbKY8Q94aZ2fISeCyB6fTqAHtw2R2PnM2M+Nz/0PS+99J22PfAjZzCEtORdDm1oR92syaQKHXARKF8q870fPkimajKRyKAMbF+3Y043pne7xY5l4rkw9bkVWaT4FgOu0jQjHhmjHtBdOWRKEdIWYE0Km8rlo1U3L0xXZWyx7eExDXVDnpjPa8KkSO8QSfLGXcSpOhfGFmJFMkaBUxJF1kKtodZ4CnyqNWeSDusK5y2r5Yv/JFByVXa03INllQltuA0BpP5OvvnkdDSGdv362hb1r3kPttp/Q8vRniO7+LdFddxDPlo+YiJ7Mldk7kiVbNCc5O+bDSz0pTNuhnQHWSrvZve3QDoKw9z7B8tuvxyq41evn9yfYMZjhPZEnMZF5Rj0b+RCJQGXLnXJTLdmiSYgc5rjvfKmSf2Fn3Pbg0d/VQtkmni2zL5ajJ+FW+IdSBRpIIoWmEIG0cU6g+YyJ738BNTeItNdtneuJ5/jM3Vs4o8Xg5v4vUAx30n3Jf9La3Mg2xy18OIObJxxCGXUCqf6qX1b33K0eC0BXJYQQXLi8jtt7o8SJEDOWkhFBzpW2YOo1yP7okT7NQ4pfkymgLUowdDxXoknJYivGnMTcxSDkUwlXEz9yguJ9Ux4jOL4w65Wd1JGkfv891D352TnfCB+pBeFoPoG/HEMEJluOZ0KR3LHo07Gkzs++UhgpOzjv4MJDxWLY8V/qTXGKtAdbUkl2vpLo7jsJ9jxM7bafASAvOZf2GgO/Pvkz8mkyaceoekT8fISVXNHkL27dwNb+NHUBjdenv0fLT6+FZM+cj1XtOZUt+5hrh6yGeLZIDUmcQAOty05hyAlzbsatOml1S2bcN+RTSOAGgduqH+Tqhpf6vAqJh8eM1AQ0Ll7ZwB+yy1Bz/eiJbeDY2KZFoWyRL1kMpYvUKGWcOdyoHszBoe//9adn8LZXX8eZ1vf4vvYGAK4u3A2A0nEmUb/G/77+DHJlk7fsvpLfhf6Up874dwrRlTRs/Ao4zhERywtli+u/+DDv+sEzmJYzbRvSXIjlShgU0MtuQWPF4L2LctzpcHqfwz+8CYbcjJr/e2IvQdXmjPjdbAqcx9OlpSi5AbAWvxgXy5amnEw2HbmiRVjksceJQKOj3s2U66qZSlSKZ8sMpgqkk8NowkRMEZwa0OUFtYM5WdexJQ+8gG3b/N3PN2I7Dv/Z9hB6aje9F3wSR/EhCUG3UrnGDW2dcAzFLmIjQJ55mux4NK/9w2MB1AY0hIA/PbuDK09p4T3qv3Fz4WP80TkHADOy9Aif4aHHr8nkHXVR2sESuTJ1cg7bqJ19Y4/DivdNeayghzEK7gV9g3QaDRu/Sj4dn9MhcsUjJwIZFFCtPCI4NxFIk6UZqzpLawPsLQXd8MAFjDE9FJTn2BY11UJt30iOM5S9FGtOov+cDzF88tvZ+toH2XP1d+k750MYjV34VHlKpdtQZZKOv+oR8XMVCYtli3f+4Bke2znCX1yyjJvbErze/LX7ZG5x7PoHL4Z/v3mAjfsTx2XuUCmbRMOEQD2XrW4i03AWoUoIoVwzswgUNlRilXBop0oXEDDWfuLh4TE9V5/cxC9zp+MgiOy5m9ZH/4kVv34V+ZJFbzLPcKZIVCnhzHMyGEzOLWiO+LjpjDZOaavlnh4feSlIlzRALtBOMOresJ/dWcu/XH8yQlL4YOoW3v3CCvaufje++FZC++5bFBfOXPnqAzvpjufZM5LlpQ0Pky4sXCiJZUu0CrfV1UbieulxXuw5dA5Xp1RpXYjtJlM0uWtTP+9p3Y1WGGZX26vZY9YiHJtSfHGKHaPYtsNIpjSn6W6ZihMI/UAOnB6IUnBUzGQfRdPCnuZwA6ki6WH3GiNCU4lA7oh4ALvKYtIEKiKQNvQi/3nvNp7YFeMD63SWvfwVkl3XkWm/BIC6oEZBbyQnBRBDE8OhFbuAKekgqnesHtwa7+ExF3RFJmKonNoa4WtvPotXXXEpe/I+flk6GwD7BBCBDE0h52iIxZgOlitRKzI4vppFODOPxcQTgY4VKhf4vBzii4VrETiYPc/N6RC5I5QjFMuWaBExAKRI25z2VWQxswhU52fQjro/HGUTwkzbntMo29QUi+W9IxlOEbspN56G3LCcvgs+gRloIb3kClJnvR91BpeUocokbKPqEfGWXX3l2LRs3vN/G3h85wjvuWQZr1oT5e1D/4EiKvvPo2o4FePPJ10o85c/3MD3H9yC1P3Uohz/aELKVSZ7BRowNBnf8ovGnpNrOmbcN+xTiY86gbTZQ6FHme94Tg+PE4kr1jQxImrY6z+Fmi0/pnbrTzBGXmRkuJ9c0WI4UyIil3DmmQc0HX5NZn1XLf3pIhst98aj3Hg6Ac39uxVC8LpzOvj6W8/iM69ZS7Zo8rHdqylGltHy5CcpFxdexT14TPp0FE2LR7YP8bUHd3L+sjr+Nvowb9r4ZvK7F/5dHcuWWKK4Ra++tqs5Seomvu/lBR93WsqVoOX4Ln729H7yZYvX8ABlowFn+ZX0OG5buxPfN9NR5kwiX8YyTUrFYtX7ZCuZQMJ3YDBE2NDod2oh3UehNPM13aq4haQpnEC6IlEQCxCBKsUgbfhFvvnQDs5eWsMb41/GETK9530MIaAprNMS8RE0VLqVpcjDB5xAjuOgOkXK0uFtIfHwaAr7CBuuO/PC5fUsrfXzqH0aOV8TVuu6I3x2hx6/KpOzVRjXDpbMz0/QT+TKREjjGJ4IdLThiUDHCpVpP+m609lkV1Lpe5+f0yFyR6iFZnwVT5nF0XAwPlWecZTgkjo/Q1QWP0dZOLTtHJiOMRM/e3o/X/rjdtLJxKTn8iP7iTgp7ObTqA/qE57zazPfwBua6wQSVTqBLNuZtQJp2Q627fC3P9vI/VuHeMeFnVx/agNL//AeWvI7+B/zZnfDRRKBypY9dhPywNYhypbDRQO3UvPTm6pucztWUAru34gUbESVBdkmt+pk+upQfTPfXIYNhfioE0gPVv2anhPIw2N2agMa65bUcFvuDLRsr5vTBch9zwPuNS4oFRfkBJoKIQRXn+K29rxgdQJgNp8+wemgyBIdNX466wO87fxOntib5q72v0VP7cH31JcWfA7VtCaVLZvn9ib4+9teQFMk3nV+G+9wbgcg/9Jdc3K2TMVIpsRyzRWBssvdQRHl/pcWdMwZqbRAiPguvvfYHs6uK9I6+CCJFTezoqXmgAiU3L9oLzmYLnDNfz+IcvcHqf/xtVXvly257WDCOCAChXwKA9SgZPrI5bN03fUG2u//AOHddyEqAhdArmTiK7kFOnmKTCAhBJbmXk+c4jyc1jn3mqaaWU41Ynxi9X4i+37P4Lq/wQy00BT20Rj2IYQgqCvsk5cgx7eP7W7aDj6n5DqBPDwOI5oijX3PBn0qb7ugk7a6MJtveQhr/V8e4bM79BiaTM5RJwRDx7KlqosC40nkSoScNHjtYEcdngh0rFARgZy2dUihRoalBuSBuYUjlix7wYuxqZgtxHAkU6RdVNqDojM7Gg5GniW0dkmtnyEnCoB9lDmBHMeZMGJ2um3++/fbuOf+B1j27ZOhe8PYc0XToiHrVsWkltOJGCqGJrGk1k9dUJuUIXEwPlUmjR9RqtIJ5MwsAjmOw47BNH/z0+f5zcZe3nTuEl5zRivtD/09oe4HeHjVP3G7dWHl5BdBBCqmiW74X0zTrT7cu9n99z0r/xjCsapuczsWKFs2/nLFLRdqRJMlCnWnYMs+SsG2WUdchn0H2sGqDYUGvFBoD48qedclXbwUvgzLEfwxdBMAxpAbgh/PVUbEL7ITCOCMjhpOagrRa5wEgGibXIUO6AqNYZ23X9jJqW1h/uXFRobbrsT/3DcX/PqlcUL8dOwazPCR2zcxki3x0RtOZtXg7wgW+0k5fmr6HlnwNNNYtshSJYGDwFxyMQBKbMeCjjkTTkUoKQ7sYF8sxwfrHkc4JrHVb6K1xqAPd/oWiygCffmPO/Bl97Oq91eoI1vAru4zyxZNwmJiO1jYUOl3avHlByj0byPY+yiR3Xey9A/v4eT/O50l972LQM8j9CcLNIgEwJTTwYAD15N5XNPziQFijisi/esZaVZs+DcK0ZUMn/pO/LpMQ+iAuBPyKYw4YaR8fCzfsWja+ETJnXzm4XGECPkU3nTeEu76wMXoPgPtBCie+TWZrKWOtYNZtkO2aFKa4z1kybTJliwCVgr8ngh0tOGJQMcKlQu8aDuHi1bU87zViW9oU9U5Lo7jYNvVVfXmyvhRuVOxazjLSUYCR0gQalnU167xaww5bgXMSvcv6rEXyvgRs9OxsTtJX7LAWnszwrGw+g4Ie/tjedpxW4TkhpUIIVjRGCLiV2mNGtQGZg5K9GsyKSeAZBbALFV1vtN9wacKZX7+TDdf+P12frOxl1vWtfO6sztofurfqdnxS/rP+iB9K143Nk52Xtbxg9l5Pw1P/Qf23icpmhb3bxmkXQyxwtnjPr9IbqOjgUSuTL1wPzMp2IAQAlnTia+8hWznlbPu7wZDjzqBqm8H8/DwqI5rTmnh7153NR9r/Tp/k3odhcgy/EMbMfb+gSvMhzEoHhIRCOCrb17HzW95L/su/xLK8kum3KYp7KO9xs/nbjmdTNFko92FXIiDWX1r0VQ49szXsULJ5EO/3MTu4SwfunY1a31DND/9GfJ1p3Kbcj1tuZcppkYWdA6xXJk2aRjT34geqWdY1BDI7F7QMWek4gTSU3toMATrhm4n3X4Z5WgntX4NTfeTlmsQyeonhE2Xz9Qdz7GpJ8lPnt7Pe+TfImO7RY4q1zPZokmQPMJ34Hs/5FPod2owCoNI8T0A7L7+p+y67qfETnoD/qHn6bzn7ZS6n6deJLGFjPDXTXl8VfdjIuPM8ZqeKZpkY/1skk/BllTWPvsvaJn99F7wSYSs0hY1Jmwf8ikkbZ/73isiXCpfxkcJSzGmegkPj8OCT5XRFXcKr6qIEyJ43K/J5BxtrB0slS/jOGDOMes0kSshsDHMlOcEOgo5/n+TjxNEtANb1qF9Hed21fKc2YUvtYtCOlHV/qNtSYdiWshsVb7tAxlWaAmsQPO8x+dOhywJLF8UC3nB7WDzsTnOhO04swZz/vr5HmRJcIpwF7R24sCicl8sS7OIYUkavvDcArXBbfVJj032mH0B57aDTT5f07J5/Tee4B9+8QK/e7GfV61t4a3nL6Vh0zdp2PR1Rk5+G0Nn/BVhQx17vUURgSpB31ZyP0/sipEpmrwhMq4F4LgSgUrU4X5maiWgU5Ulei/6NMn1fzfr/pevbmRVVyWs0Fe9E8jDw6N6DE2m6+T1pIrQbazBP7iBpQ98gI+oP0R38odMBFrWEGR1ax3J5Tfi12a+hq5pCRP1q/SZle+B7MJC+u1ZHK13vNDHc/sT/PWFTVyTv4tld70BB8G+y79IT90FSNg4ux4A3GtMqlAmmSvPabpXLFuk2RnBCrVSH9DpV9qpLy6eC2cSFREo4iT5p7bn0fKDjJz8VsI+FUWWCBsqI0ojIlX9OYxOkhtPtmgSz5b5+oM7iVgxXqs8yF6nGZi4FpiJfLGInwKMzwTyqQw4tShOCWPYLSwVI8vItp5P3wWfYPvN92D5annFpr/nJNGNZdSBNPXtgN+nurlApWzV7xXgv+7dSsRJ0dqxnEzbxRRqV7PrlT8i23o+tQFtUh5dUFeIW5X1SiGF4zgMpgv4KLlrXw+Po4BavzZjRMXxgqEpFFARZgEch0yhzIpfXYf0+NxajOO5MiFySNgIv5cJdLRx/P8mHydIp7+era99CD3cxLKGIC86XQBYPc9Xtb89tI0Vv7iacnLx3TK5GZxApmWzazhDuzSMHW5f9NcGCPl0UnINTnpwQccplBdXIFO2/RZneGrLer5k8fz+BPe+NMDZS2tYp7oBk8640er7RnK0iBjlQDPyPC46PtV1AgFVtU5ZtkN5CpHwW4/sZnNvivdetpyvvmkd77p4GcHeR2h56pMkuq6n97x/BSGIGioFNGxknMLCBRp7NIMg2cN9m/vxazLXac9jOpXPonT8iEDxXJl6kaSoRpBV1+E1GoheTdXpspMaed0lp7s/eE4gD49DQsRQOXNJlIAm82C6DaUQQy2naBZxAsUhxCESgcDNqPDrM2fkjdIeNegtVcbVL3BSo+04lM2pixmO4/DbF3oJ+xTe2fMvtD36T1haiD2v/CGl6HKkjrNJOX6cHX8AYChdZO9wjn2xHHuGs1UXXmKZEvX2EFao3c0/M5bSavVgHoL2dgBKB3Jzbhj6JsXwUtLtl1MTcAW4sE9lUGpAmoMTyLSdCZPS8iWL7nie3cMZ7trUxz+3PI2KyafLr3e3T1QnMI0WXKZyAgEMvnQ/ORHg7p2FsWBXy1fLvld8mVB5iKvkDdj+6YtMQV2mIPQ5i0DP7h4kLHLUNLaw95rvseM1vyPbdhGyJGgMTRZ1grrKsFl5vJimZNmMZEr4RAlH9oKhPY4OZnPgHy/4NZmCoyFwwCpB/0aMkRcRPXML+o/nStQIdy0vTeM29DhyeCLQMYKkqFjBFnRVYnlDgE22KwI5lWDK2bD3PYUR34K079FFP7eyZU+7GNszkqNsOdRZQziRQyMCRQyVuFSLyC7MCbTQ3IKDCd391/ie+eqUz33kV5t49ZcfpSeR59wlIZY7lSkj4yqLe2M52qQYTmhuE9VGMbRxTqAqRCB7ikygXUMZ/vu+bZy/rI5XnhThrJ1fJjDwNG2PfoRiuIvuS/8bJLei1xL1IUsSRdmPU+VEspkYDaJ0kt3ct3mAy5bqLEk/yyP2ae4Gx5ETKJ4rUSeSlHwHLpKjOUCKXF1ujxRw9xWeCOThcUiIGCqqLHH56kbujLUC0KO4OXeqfWgygcZTH6jOEdEaNeguVQLis0MLek3bgfI0TqB9sRyP74rxuo4Eob7H6D/7H9j+J7+nULcGWRJcsKKZp+2T0HqfoVC2GMkeaE1znJkLSKMUyhbZkkm0PIgTbkUIQSGyjBrSpGKHJgfQLGZJOa6IphZjDJ/6blRNIeRzRaCQT2HIiSLlq29zMy2bVMF1PyXzZe7b3M9n7trM1t9+gYv1HVxT+B39DRfyuH0KUL0TaLRNSxoXDB3UFTq7VgCwqryVvU4j/3v/Tt723af4zO9eZjhTJNd8Dn8V+RJPKOspLJs+iDqgKeTwzVkEcrLuZ+OLNE6Y7t4c8U0pZAZ9CkPlUREoRdlyyBYtDErYqtcO5nF0cCK4gMDtJChSEbzKefSd9wAgpXpm2GsyiVyZGioiUMBrBzvaODF+m48TJOH2otYGNCyjjoRchzy4ubqdK61S8sCmsYccx6lkBTnkSiaJXInBVIHBdGG6o0yJZTvTZslsH0gjsAkWBhCHSAQKGwojIorILNQJtIgikOMgyjmkdO+kpwaSBe7c1MctJ2m8FP1/vLH4M1TK5B0NKz6uHWwkR6sUh3DrvE7BUGXSlYVsNe1gxtZfwcgB55JtO3zol5tQZMF7Ll1O08Yv0/j8F1n+21vQU3voufCTOIpboQv6FDrrAtQGNPIisCgCjVNpB8sN7WMgVeTG0FZkxxwXPj2PaSVHKYlciXqRwjbqxx7z6664Vq0IJAfdau74irCHh8fiocquG+cTN53CP737LXxafg/vyP312PNiDpP55sPoyOLZaI0a7Mi6N9R2ZmFOIGeagQGmZXPHxl5Kps3rnbuxFYORNW9m9I6/PqRxVmcNzzkrqcnt4n/ueIrP3rWFT/3ySb5150NI6T6yhdlHDseyJaJk0JwiRFzBTdSvBGB4z6GZEDYcT7DVcdcrpq+O+Ko/neAACBsqKduHKKbGQoxnw7Qd8iW3JWxzT5KP37GZxj2/4e/Nb/B9Poqe6yd12p+Rxk9R8k9wBc+EVBn8II373hdC8L6b3OwojTItnav5n9edwavWtvLsvgT/fPuLJHIlNmRq+Ubbp8lf+A/THj+oK+ScuTuBlMLo1LHGsSEWhiZP66QI6cpYpiCFJKZlky2a+Cghqf45vbaHh8fCaAzrFCoikFnMEdr7ewDk9FxFoBJR4d4PTJc75nHkqG5F4XFU4FOlsWk+yxoC7Iwv5eTYFgpla1J/9SQqAok69BIv9riukOnWLj5VojFUnf3Wsh03ANl0YIpr+9b+NPUkkZwyYo7j4aslYqgMORFEdu+CjrOoTiCrjHDsKUWgX2/soWja/Fl7D4G9AwSe/x8AHrZP4xXZF91/GCHYO5ymwYlhLkAEyo46gWZbwDkODb//G5QVN2Ot/jqyJPjRU/t4aneMv3rFCprNbupf+DqJrhsoB9uwFYNsmzulxa/LLK31I4SgLqCRzRoEF6EdbNSSb8b2IUuCdYUnKGsRHiqsdZ8/jpxAiVyZOlKI4LKxxwKaghDVtYMBKJFmui/+HA2nvepQnaaHxwlPU9hHUFeQmyW+t+x1bN3US8IJEBVZhHZoRaDxo+Fnom3UCeQDKzO4oGqfPU0YaCxb4t6XBlgRLNHVdyfxlX+CrUcBt3WtPqAjSYJ47RmQ+hlbnvkDH9Z+wRp2uQf4KYyc/xG4ZnoBYvR12oTrKhktJPlbVsNzkO19GbgS23YQovrPZyZe7EmiZNIooSUk67vItF8Kqo+6cS6ssE8lZo2GGOdBm12kGBXStvan+ew9W1ELQ/yb/1ZyNevI152Klt6PtfxKOus3Mlyopy5VnRNIqlwHxbhMIAA53Dz233a0k3OX1XF6R5TzltXy0d+8xEduf5HhTKnizJn+c/PrMhlHHwtrroayZeMrx0EDKVBP1FAxLZuO2ukdPUGfQhr3c7QKbjtYpmjiEyUU3XMCeXgcTs7sqOF2URGBhndijLyIqUdRckPusAGlOldqfJwTyJsOdvThOYGOIfzaAc1uWX2QF80O9Pg2dg0kSeZmrqiJrCsC+UZewnFmLl7NNtFqPFYpT3T7Lyiak0MeB1MFnt0XZ23QrVQpcxwPXy1hn8qI5UdawMhwNxR5EfMFKon6SrZv7KFC2eKZPTFuf66XjhqDJZkXsCUNR0hYapAnnJNR7CLkRihbNqnYACplRGT+7WD5cXbOGSnnEHYZX9wVFTfsjfHpu17mzCVRrlrdSOtjH8WRdfrO/1f6z/0Ig2f9LeAKhp11gTFxsi6okXaMRcnrcSrClb8wwLr2ELW9D5LuuJyMVLnROo5EoNFMICl4YEyvLAl8anUZIKOk1rweOTTNqF8PD48FE6y4GvyazFlLawDBFsctcEj6oW0Hq5bWqEEKP7ak4mQW2g42tdP3yd0jvNCT5B+bnkayioyc/HbAdS521vvHrgl/9ebX4QiZL7Xewxp2MbT6LXycd9OrtOPb/ftZc4Fi2RItFRFIjroiUEPHSkqOjFNxro5kS2wfzDCULhLPzj4JcyY+defLBKQyS5rq2XfVN4mteTM1AQ1ZOiCUhA2FmFkplFV5HQo9+K8EXvw/PnL7JoyeR7k38K8odoHuiz9H74WfZM+136cubLCmJUS3XYuoou3CcRzsfGXdc5ADVFF1yj7XWSrVdtEc8dFZH+DVZ7bx3689faw1ryXiQ50mFBogoCtkbR0xBxFotKgBIAfriRgqyxuC6Mr0xcqgrow5l+18AtNyxpxAylHyd+XhcaJgaDLNdZUg521uK1hi5S3uz6nJxe2DGR2Kk8iVqJcrRWjDC4Y+2vBEoGMIQztwAV3eGOD5YiuSXUKJ76QnkZ95MVURgdT8EEpu5rYp191TnRDkbLuHjgf/H+x7fOwx23bYO5JlIFVk70iOUwKV4MJDJAJFDJVh00BYBSjPrZVtFDcUufr3PSuV85AL8TEB5vP3beO1X3uUW4a+xGuXZFB6nybXdBb96z9C+ow/pxSoiD3JbvbHcjQ47sJXWogI5FTU+tkWcBUBTY9t49/u2MQ//fJFTNvhvZeuILL3HkI9DzFw1t9h+hvHdlEVQWd9YMLiuC6gV2zyi+EEcqsHEdLcXLsLpRCjsOxqaoIGJaFjH0ciUDKdJSqyEJgY0BnyKahVtoOBewMmLUI13MPDY2ZUWeKMJVE0WWKP3Ok+eIgzgaqlJeoDBEW1BrILG89uO86YE2j0+pgulPnZM90ENcHFiV+TaT6PYu1qmsI6Kxsn3uyHo1EKtWsIDL9A2Whg4PyPMbzqDdxVPB1j8DnS2ZnbemPZEq3CbWlTatw1REd9mL1OM77ETsC90SiWbfqTBbrj+QUVdHYPZwnLZQz/AVdX3UEtTCGfOiG/phqCm39E85OfRB14nlv1z6EZQXZd/3OKNW5rmxDu5KGu+gB7yjVTuogPJpErY9iVG6yDsuAUWcIMVNxANZ1jj/tUmevXtvKDd6znlac2c9bSmhmdQEFNIe3oY9fjakjmS9RWWkCUUCOSJMZEwekIjXMCUUhRHnUCUUL1ee1gHh6Hm64WV0S2B1/GQWB3Xeb+PEtovW07Y50V8VyJZjWHIyTwRQ/h2XrMB08EOoYIjBOBltUHx6qPvtgWLNsZm/wwFXJ2kLLh3mD6Rqbuo3ccB6ecR0vuplyubnyrUwmdlPrdrKGiabFzKMPW/jSf+d3LDMZiXCy5I0pH+/kXm7ChMmyNLh7m5wYaVa3n4oKaEfOA88apqOYPbRvilS1Z3qHczduTX8I3/BLFlnMYPu1dFC/+MEpNJYMg0c2uoSwtwu2pV6Lzy1IyVJkclYVqaTYRqFK1s/I8uWEDe0ayvPviZbQEoOWJj5OvXcPIyW+dsEtHjX8svHiU2oBG3PItzuSucS1sV6R/iyMUpBVX0BjykRP+sUDM44FcohJwGqif8HhAV2as0h6MKkuzLrY9PDwWh9qAxoUr6hjyuyG8R4sI1BZ122cyas2Cg6GlVA9m0b1+9CTy9CTyvNCd4NEdw/y/JbvxZbsZOeXtGJpEY3hy6K+hyuSazgIgtvqNOLLGK1Y38Zi1Bskukd7++KTXHM9ItkSriGFLGkrILUL4VJk9UjvB1HZe+7XH+fAvN/Hpu17m/57ci+04JGZxRs9EvmyhOUUUPYAQoKvSpHb7sE8hM9pqXY0IVMwgl9L4nRw/1T+FUDR2X/dj8o1nVCa+CaJ+d/x8R42fXrsWNT+EWXTXEdMVpwbSBUKicm0/qB0MwAq6IpBU1zXpubOW1vKP164m5FNnFIECuuIWk+bgBIrnytSKFA6i6up/yKeQxXVX2YUkTmw3tbHn8VFC9x0df1ceHicSK9vce0ZzaCemUY+/xb3OWbOE1pcsm1Jl0nAiV6ZByWLrEZjDWtbj8OBlAh1DjF9cLW8IsNNpxUbGF9tCcvmNboCif3Iwz4+f2seNyX62Ry7ijPzdJJ/6Eb2bniFgJiiVy5SKBeoK+2izumkTQ0g4FK/9Lzjvz2c/qVzcPbfBTfQm8oxkity1qZ/vPLqby8TzPBX4OqF4nHzX1RiHKLA2YqhsHw1ALiRgHu0wVmWRVbJsNGURvqjMA1NQzEQvaV8HW/rTvPeMNMQh1P8kAHrXeYQNBZ8qE2jshH7IDe1mJ2torohA83YCqfJYsNtsC7hcOjZag+OzF8kYp18AQGTbz9Gyvey++D9AUgjoMvmyRdinjoU9jqc+qBG39EVyAmWxkJCxaej9A9nmcwlG62kK7ycb9xGaQ2XyaCef6AdABBsnPB7Q5DnlXMzFNeTh4bEwagIaX3zjOoZ2CpyffxkRPTS5d3OlIaijyoKUCBNZ4Ij4ph9fhXzy28m3/AuJXBnHga8+sAtNEdxS+DmlQCuppVfTWJmcdTBCCMorrqG8+y7ia95EyKdwdmeUr4fPwCpIKPseJbXmcnRFomjahA86TixbZLUYxgy2oI27ifC3nUp7z1OUilmUUobhssTju2Q6avxce2oTDVOMIa+GfNlCVQs4mp+Arkwovo0SNtRxIcazi0ADPbtpArL4Cdg5etd/FDPQjCwJltT6kYQYK0R11PrZgBugWoh3E2xeSXc8T0NInyRGDaaKhKgUnKaYCmkFW3CEjDSNC3tpnZ+BVHGWdjCZLD7EHIKhR9vBSloUXZolr7JCUFexkSjJAZxCmponP8c7dt+DImxs3XMCeXgcbkZFICO7n25tGS2VTLbZnECm7VA0XSfQUKZIvZTFMbw8oKMRTwQ6RllaF0DTDXrVDsKxlwHIFi1K5mQR44ePbOMNdoZ7B8OE5BbOiN/DGfF7MB0JCxlbSPQr7exWVnNb9mI+oN8BI7uqOg8n5woV+shmdiULfPXBndy3eYBP1t3Dm7PfJx9ezc4Lv0FgxcUcqmi/sKGQpFIpyifmdQyr4gAqmzbMb+04kXEZPE6yh6cqo2RP0V3Hh6X4kc0caue5tBgGQkBzSwfFjSqpgb3slDKcpCZwJAVxUItQteiKRBHVrcaVskwnD5Qtm6/8bgMfrPy81NzDIIDjUP/SdylEV5JpuxhFFiytC2DaNvI0wkRtQCeDH7EITiArn2a/3cQyqQ/hWKSXXkmzJtMQ8pG0fTQtRvj0UYBp2TiZQZDcSSrjmWvQ6aIImB4eHlUxKliYnaez+882saz10EzAnCuSJGiO+BghwtLctvkfyCwhF+IYw5voTeZxHHfi5yM7hvn4qt1E9j1H90WfBUkZy0qaCnnllWxp3EBdUKO14lI6b80yNm/oZGnfE3TH8tiOO2TC0GSW1PrHvsti2TLtcgwrNHFAwilnnofU823+8xKNpfd+ENlK83jgNDKP+LCi/0ix9oIZM2imwrYdbLOEopiUVYOgrhDyTX5fYZ96oHVploKHbTt8885H+Wdg1/p/pZ4UIye/HSGgvdYYc9OOtlV31PjpdVwRqBzbj9O0gmS+TKZo0lUfmCAEDaRcJ5At60jK5AJg5ow/J9lwDk3a1BO5hHB/T2YioCvE0JFMt5CUK5kT8imnIpFz28GsOdz4BSufc0kJohRTKJlefE5lHaVUN6jEw8Nj8dAN975KxWRbPkxixGStrxZ7FidQ2TzgBOpPFqiTMzg+Lw/oaMQTgY5RNEXilrPaefbpVq7ve5zWRz7EwFl/T65koB20GHAqk8HefMU5DNa9n5eLw5Siy7C0CIosjd1o7t4b53/ueIl3648jV2shLyQA0OPb+Pjtz7GxL883lvyBqwe/T3z5a+i5+LM4io/oIbw5jRgqKaciAs03HLr/BVqe/RHlq/6NfEmmL5knbKjUB+epCJkHsolyw/t4NDeCoco0l7spGw0Mn/YXBIafJxw60P6zrCFIn1MLsf1sMdNcoyWw9GaUeVoopUqwcEnyoZbz04pAv36+l329/aCBLWmEuh8guvNXlP3NGCMv0nPBp0AIWiI+ZEkgz1DZC/kU+h0D2cyDZYI8/6+YXDbFTqeFZbjh2taKaxBC0BR2c4ecKrMYjkYcxxn7u+tN5AmaCXeSykEi0FzR5bnd9Hh4eCwcnyqDET3SpzGBlojBQCKIZC4gE6jsuj/0xA5yRbey+/3H9xD1Sbw2+R0KkRXEV/0psiTwT+GYGWVUIKoZ51S+fE0jjz29hpMH7oXcCI7PFQzyJYsdgxmawjpRv0YsW6RVjGCH1k44ptS4BoDo9l+g5ofItFzAyck+jGw3PY/8B7mTfjFnEahgWvhwg6WF5qem0qJ1MGFDIV0pa9mF1Iy5CvdvHSTWtxs00JauZziyDE2R6Kz3T3l+LVEf/VSyOGL7yBRNnMqEth2DGeqDOpJwq+3bBtJ0kcPWw1OfQ8NJJI0u2hfQhhHQFbKOD8kug1UmV7KxbIfQNM4vcJ1AS0QK/PXTbnMwo78jBTmAP5+ckF0pad50MA+Pw45y4O+uz6llqDfFKeE2nNlEINsVgUzLZiBVIBxN4xiTW1I9jjxe2fgY5q3nL+U75rXsME6nduvPaHz+f8mVJo45L1s2at4VdCIN7ch1nZitZyP5a1GVia0moxWhtBxFVCkCiXylZckuw+BWfnbSg1w9+G3iK2+h+9LP41QqOOohFIHCPvWAE6giSs0VZdtvqX/xW5ixPbz3hxt41ZceoS8xy0StmRjnBNq1axv3bu7nzCVRlMROrJpljJz+buLXf2PCLl31AfY5jfhTO9gznKVNik+qfs4VQ5UpCR/ODJlA/ck8YeEu9vMNp+Mfeh65mMAX34ap15BYeTN+XZ6y1fBg/Jp8ICthgW4gs5DB9tVgGg0UIssxmt0AzdqAO4HMPoadQKm8OWb/39Kfpk5UJugF5+f6GsVzAnl4HH50RZq3WH+oaIsadJcDSOXs7Jlw01FpAdLS+xBmgef2xdnYneQfVvZhJHcyuO5vQHLdMjO5Fn2qhF+XJwy3OLerlt9wGbJTpnbLjyZsb9kOvYkC2wfTdA+nqXdiOAe1RasNK7EllZrtPwdg3yu+zP43PMDPxLUsjT1GIT33Nrh8ycIYFYFUY9rJjGHfgXaw2bLpdg1laRZu23zZ72b0NEd80wpUqixRDi3BRIaR7aQKB/IZHQeG0kUGUkVGMiX6EgWicn7KVjAAVRJIEgvKiQvqCvmxbMEsZcueNXMpkS/RQBKC1bfmj4lAUgCKKdTcwIEnVa8dzMPjsKMecODFlXpe6k3hhNqQ0j3Y9vT5qWXTpli2GEwXsR0I2mlvPPxRytG1avGYE8saguid63lD7u9IdL6S6I5fkctPXOyNZEo0iAQAarQZQ5v+n7wh5FaYYiKKyFUnAmUTQ/Q7rs3vew3/x/q9Xye26rV0X/w5kGR8qsTSev+kPv/FJGKoJCtOICcfn9cxRKWt7flnHuX+rUNkixa7h3NjN+pzZpwTaKhnNwOpIqe1RZBjO3HqVlIb0CZZqpvDPp4Rp9CY20Gw0M/S8k7s2hXze/0Kfk2hKPlmzARKF0xqJFe0Sndcjq0Y7Lnm+2x5wxNsu+WP2GqAllks46MYqjxWIV3ICPcdg2lUK09rYz3JM9/D4Fl/O2YXD2iVUM5jeDpYybKJZUsUyhZ7RnLUixSWpCIZk8M954InAnl4HH6EEPhmuLYeCRrDOvsLlZvn+eYCVcQj4djc9vsH+coDO2kM6VxrPYCpR0h1XgNA1D/z9V0IMRZWPYpPlantOp0nxVpqXvo+LY9/jK47X48xtHFsm1zRIjXUjYyNOGiwhKbrlCJdyOUs+bpTsIw6hBBsqr0KBRN5yx1j21Z7HS+YNj7h5vlJ2vTCQ9injhU77FlEoN5knjYlgaWF8QWCGJpMxJj582qtC9EntaDEtpOcQXAZyZaolYs4+tTXDUWWJg1vmCt+bfyAiSxl0x1CMtNNYCJXpkmKzymfcdRNlhN+5HQfkpnnEXm9+6Q3WtrD4/AzzgmkRNvZ3JvEibSjZnrJlqYfHhR68GN03vkGuuPu9cMwk54IdJRydK1aPObMLWe1E8uWeKbmOpRiAm377yZcnIfSRRqE2yKlhJsJ6tMvPlRZoj6oM+yEkXKzW8hNyyYdH+Jl+SQsxaAm8SIjq99Mz8X/AZJMQJdZ1hA8pAIQuCGNqUp/vp2fZztYJbNn+6anxgSPXUOZsb7WOVMRgfqcWk4NZfi/d57LjSf5UQojiPoVNIT0SRkKkiTYHj4fgH9Sf4RhpbFXXT+/16/gUyWK6DNWgtNFkzqlgC1pDJ3+Xl5+4zPkG9fhKAaWUUfYUGbNABjF0OQDgZkLEGlu29CDnwKdLQ3kz3kvuVU3jlVOR+3p4hgOhrYdh1i2RCxbYjBVoF4kMY0Gd07wApC9yWAeHkeEQJXfkYeLuoDGoF1xiGTnKwId+I5N73mOz5qf4YtdjxPdew/JrhtwZB1NkWZsDRrl4FBjgLdf0Mm3y9eg5weof+m7+GKbWf7rG6nf+BVwHHrieRoc99ylg6ZkypKgVLMKgEzrRWOPO02ns8tpwdj6K8CdWDqULlINE5xAM4lAhoKJQlnSZ50O1pcosERJYAVbWN4QZGnd7K6Wjho/2+1W9MQOnEKK1kf+CT2xY9J2sWyJqJSDaYZuKLJYsAgUrFxvASjnKNs2jgPDmek/03wmRYACBFvm9Fohn0JWBNBSewG42z6Pf2/7Iqy4at7n7+HhMU/GOYFCjUt5uT+NHVmCXE6Ti/VOu5vW9wz+gafpHk6iU0Kx8ghPBDoqqerqIIS4VgixVQixQwjxoRm2O0cIYQkhblm8U/SYiSvXNBLQZH4yvIxSoJWabT8jXz7QEjaUKdBAAgAp2EDQp6ApEnVBjaaITlNEpyXqo7Pez0nNIVY0Bhm0Qsj5Ydd7PAM/e6abgJ2iqbmNoTP+ir71H6H3wk+BkAjoMp11gcNyUxoxVEwUSpIxbyfQYL/7hXam3sMnX30quiKxazg7bxHILrnOmgGllUZ7iJbksxjDLwIg1a9ClaUJ1vhRbrjqahJyLTfIT2CqIcSKy+f1+qMYmkxR6DizOYHkPLYeBiFha6EJz9fNIRfJGN8OtgARaMOufnRh4g9G0BRpgmAW8ilk8COXj10RyLQdSqY9JgKdK23BrDvpSJ+Wh4fHPDGmEDmOJLUBnRHHFQec+Y6JHzcR6h+C93Cp/RTnbvtPJKtAYuWfAFATmH+R54o1Tbzuje/k+/obeUPpI7yv/nvEO6+n5enP0P7Q3zLQt4824YpASs3kCVdm/Wr3NJdcTEvUR01A5eS2CL+zziHY9yTFfIZ0wSSWLU07Zn08hbKFQUXcmKEFafR6VJSDOIUUtu2QyJWm3LYvmadFimMFmxGiOlGmo9bPZrMFLbWXyO67qNvyf3Te/RaUbP+E7fRsN7UkZmgHk1AWuAYLTNEOBjCYLk6/PspUzjPUPKfXCupu1pJwXJfBPjPCSPT0BWULenh4zJNxTqCWjmWUTJue8JkAODsfmH631H4ku0yudwsR3GuI5IlARyWzfrMKIWTgy8BVQDfwtBDiN47jbJ5iu88C9xyKE/WYmrChceGKeh7ePkzstFfSuOVWRnJZAhV7sOsESlDWa1BllaAMJzWHpj3eklo/e3oDCKfs5uvMYMP9+TP7eK3IojS30H3G+8ceNzRXAFpIH/pc0BUJTZbIy0EC85gO9vvNA7Ql3elM6/39bA/5OL3W5IPb34Kz47Owdu5unJ7hOB2Ar2UNaveLLP/tn2JXvlDVxpXT7nfd2hYSL74Ctt9GuvNqgvrCAhENVXYXcDOIQJlCmahwwyU1RZqwsNNVacapLwfjV5VFcQJZRffCIbQAuiKjjVs4B3SFjONDtktglmCKqShHO6PT6BwH/LEX6RCDjKz80GiylYeHxzHG4breVUtdQGMEVxyw0sPzmwIy7rrRVNhJKdhGaslV6Knd5BrPQgiorSIrbiZOX1JL3Zv+ne3PdvPDJ/ayv/ndfO3UpXS89DXeLO6iUzkZAHUqEWj1jcRjOxFdF40NcbhkVT3/dVcXAptS3xZSodVYtkMqbxKZpW2tULYwREXMUae/9iqyRECTyQs/WjFNrmzRHc+jK/Kk4k5vskC9PQKhdVV/Jh21Bg/ZrUiOSe3WH2OpQeRigpN+dgnZ5vWU/U0YIy/yG9OdDFuunTp0ddGcQFQcAaUsth0HNYKDYF8sR9hQ0GQJnyqPub3krJvnI4WrbwcDCPpU0vkDn3uPGWaZfnSJqx4eJwyy4k4otk2WLVsJPMVGawldehR930OY1ltQZGnCVGqnlEWp5NDKwy/TWikqS4G6I/UuPGagmqvDemCH4zi7HMcpAT8Bbppiu78CfgEMTvGcxyFClgTXnNJMvmzxLGuQ7BJW97Njzw+m3HYwO1Dd1KEldX72Fd1bUTs98z9lKZdCwUIP1Y91sciSYEmt/7AuiIUQhA2VrBTEmcd0sI/++kUaZNdVoqd2I8wCfy7/liX2fsS+x+d1Ttt73M8udPkH2H/p59l/yX/hCAVb0hDTLNhG30uh60oAksteteAFnE+VyTnahKDqg0kXTMIij6OHx7IdQj4FQ5MnTHOp6vU0aVwm0PyndzkVEUjSg+gHOYGC+vjw6WPTDWTaB4S2tckHsJAorbj2CJ6Rh4fH8URtQBvnBJrfsqx7wF3MD6tuW0981Wvpu+AT7Ln2VhCC+qA+bXhytUQNFUUWvO7sDv7x2tVsH8ry6s2Xc8eFv2RE1HKltAFLC0/Z8iQ3rqb7sv/BMA7I5131QfZISwAo971IMTWMltjJQLqAWXGxTOdgyZctfFU4gcBtQ89JfiimyFUmeO0azpAqHMjwKZoWsXSOsBWHcNsMR5tIe42fHY67vX/wWTJtF7PrhtuInfR6lMIIoZ6HKUsGnyi/hW+d/D2sy/9lyuMokkCVF7YW0xWJQsUJZObinPSTi2h4/kuA2z43kCyyP5Zn+0CGvSNZLNvBV3B/b6TwHNvBdIWEfUAEGnRqqmo19PDwODQ4ioHpq6WruQ6fKvFib5Zc20UEex4mU/muGxrXGloe2Tv234HEVpYF3Oe8drCjk2qu3m3A/nE/d1ceG0MI0Qa8BvjaTAcSQrxbCPGMEOKZoaF52pM9JvHqM9uIGCq/z3a6D+x/csz6PJQp0iwncQLVVWSW1PoZxnURmbOIQHIx4f5/sHbsJr2j1jgi4bRhQyEjgjBHJ5DjOAykC0RJUwx3IhybYN9jXJ6s5AkM7Z3lCFOzp88Nmq5p7iSx8hYSq/6UHa++k8Eb/w/kmRc1zpob2XXdT7GWXzmv1x6PocrkHQ0xSztYiCyOHiHqdxfkHbV+VjQGqQ/OTQTyawecQAuZ3jWW96MF8KnyhBuNgK6Mazk7NsfE26OtCY7DhaVH2epfh+xVSjw8PBaJ2oBGFh+m0LDnkQlkWja/eGIrAE7r2TgI4qteO/a8JLnDJBaKIkuEfAp+Xebms9r4rz89Hb8u88H787y//NeUUbGCU0/J1CvOk/HuG1kS6E0rKaFiDWym+fGPs+LXr6KcTbJ7OMv+WI4dg5kpg40LZXssE2gmJxC44dBZ/IhimmxlKqttw97hHIMpNxNwIFmkgQQSNmIOgsialjDJQOfYz5nWCyjUnULfBZ9gx2t+x5Y3PsWDF/2Q71ivpNy4FkWe2i0jhJgyi2kuCCHoanXXj6ne7cilFHUvfRdhTc4ESuVNeuJ5AqVKC194btNNg7pCvCICmbJBGoPwLCHaHh4ehxDFhxVsQZElzuiI8szeGIUll6DmBsj3bsayHeLZErbtkCqU+fC33UB+R8g05nfSqlcK0IYnAh2NVHO3PlUZ4eCr5xeAf3Qcx5pi2wM7Oc43HMc523GcsxsaFjYK2eMAsiQ4b1ktj/VLFCPL8Pc/PZYLNJQu0iJiOKHqFiBLawMHqoeZmUUgpSICCaOWiKHSENKPWNUmYqikHD9ijiPiC2Ubw86hOCaZ1gsAWPKHv0R2TPbajdiJfXM+l30jOdJZV8TQ9APVxFKkE7vzkln3D+ga2dbzF+Wz9GsyWUef0QmUKZoEnSz4IuiKTFf9gSynmcb+ToWhyosj0IyKVlpw0lNBfXzL2bHpBLIqmVH0PstS0c/O+isWXFH38PDwGKUuqAGCrFoDmbkX3X6zsZd4IgFAbP3fseuGn1MOHqj/1Qa0Rcv8awr76KoL0BjyccWaJv7jT9YS9as8V+rg5ys+S+rij0y5n65ISNLk0OmT22vZbreyfePj6Hv+iFzOULP9FxTK7nhzy3YYyU7O8MlPyASaRQQyFNKOO6VSfvl2mp/69JgwMpAqsmsow46h9Nh4eDlavRMoqCt8/z2voJ96AJ5wTpnwfNmy2dTjup5n+3dYjKyqv7p2LQDPb3wOALUwTGTXnVNuO5wpErVjlIWG5I/O6XWCPoWY6QqLBb0eEITm0I7u4eGxuDiqgRVyv7vWd9WxuTdFuvViAMTuB0nlyzgOFEyLvcM5AvkeAPaFzmSpuYdGubKW95xARyXV3HV0A+ObsduBg2PBzwZ+IoTYA9wCfEUI8erFOEGP6rhgeT39yQLDtevwDzxDJu8ucEZSOeqcOFRZkemoNRh2KuNGZwiTLFs2huXe5EuBGiKGSlN44VXB+RIxVBJOADFH4SFTNKkRrmMl33AmhZqTyNWvZdsV3+EZ5ySMXO+Mo1Cn4vFdw+iUsGUdRZGRpANDn/QqXFKjVc3FEIEMTSY7ixMoVShjONmxcMmFVA5lSVBWXOHLmacTqGzZaHZFJNEmp+SMjYiHY3NMfCnHih+cRf0LX0d6/gfkHJ3cyptQFmjb9/Dw8BjFryn4VImMHJnXiPjeRB5/RRApB1rJNa+f8HzUWLwsNp8qj7WQB3SFdUtr+NcbT6GrPkD4tFdir7h6yv1UeerMunde1EWxdjXrxUv4zQSWpFL78g8mDLsYzhQnhUUXSuMzgWZuBwv5VFKOAcUUdS9+h4YXvkbn796MXClEZYsWL/akWCLcYpoSmZsrpqs+gN56MsOihr9/IM8n79zMT57ex5fv38Fbv/MU33h4F4Yq0xb1zVisWYzW/M4W1wkkJfYAYMs6dS99G5zJbXWZgkmTiJPT6uY87bIl4qMn7/57ZjW3UHyop8t6eHhMT+HcD5A//c8AOLerFtuBLYUoxXAn/v0PMZgqULPlx5TivQxlCnSIIYpo/Cy2nBaG6ZAqZgLPCXRUUo0I9DSwUgjRJYTQgNcDvxm/geM4XY7jdDqO0wncBrzXcZzbF/tkPabnguVuK8lL8hqUYoJC/xbAbemSsaHKBUjEUElJYWykGZ1AmYJJDa4LQw7UIUlizq6RxSTsU4nbc3cCZYomtbhCgmnUs/1P7mP3DT+nsOQyup16QuVhSqXqxsuOksqb+CjhKL6xc1vVFKI16qtKYNEUCUObenrYXPGpMmlbmzYY2nEcMkUTw8qAL7Lg13NfU6Ug+XHm6QTKlSz8uHb6qUQgSRKYSuXxY1AEctL9yKUUTc9+nmV9v+P30oWs7mxb8BQXDw8Pj/HUBXQSIoqYhwiULVkEpSKOkHHkiQUeXV2c69N0+FSZa05p5rtvP4eldQH0adqdYGoxanlDkJWnrUfBdUR/RbweX2IHkd2/BbtMsPtBzHKZQnmiiFEwx2cCzdYOpjBU1nEKafTETvI1q/EPPsfyO16NltoDwHC6yI3yo5SNBkTTKTMebypSl3yC/mu/zWvPXsKOwQw/fHIff9wyyLolNfzz9Wu49Z3r6aidfeT8gqkIYp2SG/g8dMb78Q9vouGFr07aNF00aSRBwVddDuV43nXJMgIh92ZxRHKHkjQeweKih8eJjnnG27CWvwKAM5dEUSTBpp4kmbaLCfQ/gdLzFO2P/CPKc99nKF2kQwxRCrbT71sOwJrcBncozrhx8x5HD7P6LB3HMYUQ78ed+iUD33Ec5yUhxHsqz8+YA+RxeFjRGKQhpPNAYQVXA8q+R7FWnoma7QMJ5CpDCYUQBH0aWRFBmyFHIFM0iQpXBBJHgcLbGjXoK+pIcpod/Qkao4GqKkjZcU4ga9z7kCXBoGhAwoZUL/iWVX0u+bJFiBJURKDRRdpcRq03hBbnC9NQZTKWikTerYIeJNRlSxaKY6I5RQrG4ohAfk2maBoo82zVypVMAmMi0OR2MABbC4IJlI49EcjKDKEAkpnHAHq6/pQuIVAkrx3Mw8Nj8agNaMRyIaRcz5z3zRVN2uQSthpAliUs26EuqFEoWwQOQ4vO6JCJHUOZGXMGw8bU5yKa3Kli8fBqvhm/iivVx1l1/weI+DuIZHfTt/4j5Go/MEHMypescZlAM4srF6yoZ2izjuakwYRda/4SuX0dS+/7c5b/+ib2Xfl1ygmHy6XnSa55H7WzZAFOhdR4Ek6wzD+fEeDD161mMFXEp0qULIegrtAQ1A/PEA7VwEHQLtw14Y6V70SPbaXpmf9ELibJNp1NOdBMoe5U4tkSq0QC0z930SvsU/nADWfDbfBszF0vtUUXNiHVw8Nj/ggJFMf9/vVrCqe1R3h6T5y3r7sU+eVbaXni4+52w1vpVwqcKgZxapZz49k3E/vVl2jObhlrJ/M4+qjqrsNxnLscx1nlOM5yx3E+VXnsa1MJQI7jvN1xnNsW+0Q9ZkYIwQXL67i7108p2E6g+2EGUnmipnvRliLV/xFGDJWkFEHMMFEkVSgTwZ3gNNMY+cPFK09tJm67i7ZSJslIZnK//1SkCwecQP7oxMrViNoMgDPHXKBcycKQyqDMf/ESWaQwREOVydqVSukUuUDpQpkQrktImmL6ynxfsyg0MOfmoBolV7Lwi8q+UziB3MfdsZPHohPIruRzPBe5irutc1h11ivQFOmIBKp7eHgcv9QGNAadMFJ+ZEIrVDVkSxZhqYij+gn5XKGlxq/RWRegNrB4rWAzIUmC9pqZh01M50CWm08FwOy8jH+5aR1vMz/CBms5xUycWHAV9Zu+QT43sVCRL1sYoogjKbMOcHjt2R382eVrx37+z+ccHimtZOeNv8H01dF11xt4d/eHkYVD/tQ3V/uWJ6ApEkKAX5WJGBorm0J01AZY3hCkKew7fFNYhcBR/SiYpByD37w0Qs/FnyHTdjH1m75F531/zsrbb2D5HTeT3/8cjSKOr3Zu7W+jLG111137y25RqnaOwyk8PDwWD0mICVEF67tqeaE7gbnkIhwh4R9+AQA5voPepNsORnQJZ6zsJHmNO0XQ9h35e0SPqfHuOo4jLl3VQCxXpqfufIK9j7F3MEmzcKdUKTXtVR8nbKjERXTGHIFMwXXQlGU/KEf+Ir22PYIacL9o5FKCTMGkaM6YUw5MdALV1LeMGWUMTSKluYsRkvun2XtqCmWLgFQ+KuyPhiaTq4x3nUoEyhRMwqIi5vmii/aaJTQwC/PaP1e0xjmBphaBhO6KQAuZQHakGJ3U86HkTXy77RM0Roxpq9keHh4e86UuoNFfDiKZBShl57RvrmQSlEo4quuqdduU3ewe9TCG2Ps1ZV4B1HptB3uv+CrJs97H1ac087V3Xk7xTXfwpuC3+UDyDaj5IdSNt07Yp1C2CYgSTpUFHF/wwM1Nwr+Mj9/xEj/ZqbDjxl8xsOpNtJr7eU5fj1TXOefzB9BkCZ8qHT6xZwYc1b0WZ9U6fvVcD0MlnT3X/oDNb3mBHTfdQc+Fn0ZN7+eNW95HROTw1cxPBCLcTk/DxTxin4ZPldCVQ9d26OHhMTMCUMe51M/rqqNsOexIyeQbzgCgGFmGlthFOjZIWOSgppOALpPpuIze8/6V8ulvOTIn7zErngh0HHHJqgaEgCfF6cjlNOldT9IiYliSCv7qx09HDJURIkgzBEOnCyZRkcXUo4tw5gtHCMGariUAKDvuIbz7d8Sz5Vn3yxRN6kQaWyjogchYyGRj2EfWVxGBEnMTgfIlC0OUxzKBjiQ+VSY/JgJNvglIFUzCFSeQvEjtYIYqU0SdtxMoWzJnzAQCkHzu4/MNnz6iVESgfQU/f7LOFWcXy/nl4eHhMUptQKOnXPkOneF6PhXZokVQFEDzE/QpRP3H1neUJAnyK2/AF64nYqgEdIVowMeHbjiNR82T2GucSvjln2BaB3KBCmWLoFzGmSUPaOw1fG4xwlL8fP19N3HJyga++9gePvWHXj5UeAvri19h7yu+PG8hwxXejo4CgVNpj/PXNGPbDt97bA+O42BrQfINpxNb82Z23fBzJNtdd4kqJ9JOQtHI3vJjYuHVXii0h8cRRhJiggh/VmcNQsBz+xKkll1PKdDC8CnvRLKKnBq7DwDReDKKLKGrEiOnvgPz7HceqdP3mAVPBDqOqA/qrG2L8KvEChwh4dv7IE0ihulvntOUhrChMmIHkfKxabdJF8tEyGAdJSIQwFmruwBY/uyn6Lj/r8iOdM+6T7poUkMaU69BSBK1QY3Oer9b+fQZxEQNIjX7ccaTK1v4RXksE+hI4tdk8s70TqB0oUxIVNrBFksE0kZFoHk6gUomflHEltRpLfkBn04OY97h00cSOzNEAY3O5gZOaY2gKgL/UbLQ9/DwOH6oDWr0mZXW2dzInPZ1v4ddJ5AsCRrmkGl3tKAr8lhhp77SVtQY8nFqa4Q/lE/BF99KLpMY275QtgiIObRyV4YplGqWUxPU+e6fncP7X7GCDXvjPLB1iEvXrmRFe9O8RX5NkfAvwoj3xWBUBFIjzbzx3CU8sG2Iz/9+G/nSAcd1PtTFpy239U3Udc37tRRJ8PfXnMS7L6k+i9HDw2PxEQLUce1gYZ/KyS1hntodo3T2X7L1dY/hVFpvry/8hhIqctcFgHv/AXhDT45iPBHoOOOykxp5qt8mXXc67SOP0iHHITy3ikzEUElYOqKcnTZHIFOoBEMb0UU468VhSav7PtP4EXaZ0MbvUDInjzAdT7ZoUivSY6HQYZ86NprdrykMSA1Ic2wHy5csfKKMOApEIEOVyTOaCTR5QlimeMAJJBbp39JQZYrOApxARXc6mKVMkwcEBHWFHD6ceYZPH0mGBnoZdsLcdIab0+W5gDw8PA4FdQGNmFNxq6Snz/ibimzRwqAwFpB8NLQkzRVdkcZCrOuCOk0RnYAu88rTmnkotxTh2Fj7nx3bPl928+icWUKhD7yA+9maNSsB15H8watP4lfvvYC3X9DJW85bSk1Am1c7G4AqS4clhLsanIor1wk28k+vXMObzl3CA1uHeNetz/Cr57oplC16EnluLV/BD9bdhrz0gnm/liwJrjy5iT+/2BOBPDyOJKosTcpdW99Vy7P74miqBJJMdOlpACx1etnlPx3dcAe61Ad1JAlv6MlRjPcvc5xx+epGHGBT4AKWlbayWuzDCc2tNzvsU4mZGsKxpnVzpAomQfJIizRWfFGILmUouJoPlN7L/qYrqHv5VtKpOOCOQp+KTMEVgfBPnnAW1BX6qEeaoxOoULbQKc06YvZw4NPGtYOVchTKE3OS0gXT7eGFRRsR77qPFuYEClAYyyCYioCukD5GnUDJ4T6SIsz6Lvd3rsZ/5DO1PDw8jj9qAzojuN/rsaHeSd//M5ErmRhOfvpw/mOAsKFOyC9qDPlY1hDk5nXtbLTdEcZS74ax5/MlC7+Yw7W7IgJZdasmPHxKW4QPvXI1DSGdugWGaB81AwMqwpgTaMCnyXzw6pP43C1r6aoP8J1H9/CuW5/hrk19AESXnIK6gPOWhJiQQ+Lh4XFkmErAPrerlqJps2s4i6HJBCN1lI0GAPbXnDe2j0+VWVoX8JxARzHet+xxxtq2CK0RHz9IngFA0MngVDkefpSIoZK2R4WDqcMkM0WToCgg9KlHeB8R9CDJt/6ep9X1fMe6DrmUwnnp1xTKFgOpqV0pbiZQBseYnJnk12SGnTBSITGn08iVTHyUjo5gaPVAO5hVzLI/NtENlCmYRKm4aRYxGDrvqGAtwAkkCmOVx6kI6goZx3fMTQcbyRQRuWGkQD2q7Aat+o4Su7+Hh8fxRW1AZWScE6g7PrkleDqyJQufUzymRaDgNC6aprCPjvZ2uqU21L4DIlDBtDHmEAxNTSf51vMwl1896SmfKtNZHzh+vt81d60nAk0A1AQ0rljTxKdfcxqfufk0AprCnZv6UCTB0jr/tFPbqkGSJk4k8vDwOHo4p9MtYL7xm0/yF7c+g2U7ZEOuay/eevGEbYO6cky6SE8UPBHoOEOSBNed1sI9/QFetDsBEPNoB8s6lUXQNDfZ6UL56BOBAENTuGx1Az/sa6ZkNKHuuo+9IzlyJXPK7TOV6WCOMdkJFNAVUqNtcXMgX7ZdJ9BR0A7WEvGNOYEy6RSFsj2hGpwulKkTKWzZt2iLfUNVyNsKYp5OoHzZIkARoc/sBErZBlTawcaHex7N3LGxlxqRprahlZao77CNWvbw8DjxqA3o5PFRlnzI+Rj5kkW5yu/KXNHEd4w7gWaio9bPJrESrf/Zsbb3QsnCRxG0KkUgLUD/zb9EajntEJ7pUcJoi1ywYeyh2oDG6uYQN5zeynfffg7NYR9d9YGxLJD5IgkvR8TD42ilLqjz3687nVed3srOoSyb/z979x0eV3klfvz73ulNvVqyLfdesU3vvYROQgmBkM5CSPILCZu+2WST7GY32SQkbCqEUBIgdBK66RhsbGNw75ZtdWl6v+/vjzuWZVvVlqx2Ps/jB2nuvTPv6B3mzj1z3nP2hGgsms8WsxJX5ezBHp7oAwkCjUAXzrWCPs9kjwXAyO97JlCEXAAj1XnNlUgig494ezr0UGFTinNnVZDOwuaCE/DXvko6mSDZRW2gaCJNgCjKU3jINp/LRijrRGWTkO2509g+iXQWpx4amUDjirzkBfIAiEStgF4wvv+5hBIZymwRTE9Rn4qHd8fjNIiaDkgfXhAomszgUwlUT5lAeNAJazlYMJ7u01KHwbKlMUqxCuEvrqDE75IgkBBiwFQVePA6bYRsBdgTVlfCju//XTFNTSydxWkmug3GD2eFXgcrspOxxxuhbQdgfQHhJoXqbU0grICFYzRkreReB0ag/ICbDUPhd9mZWhHg2S+dzI8un3PAErzD4eykDokQYui4bEE1375oBgCvb25i+YSbOT/1Y6qLR+b5YqSSINAINH9sAWMK3LzoOpNw9anYxx/fp+PzPFbRXaDL5WCxeBwnGYwh9gHRZihOn1ZGkc/JC9n52NIRKt75IZP/vBCzacsh+6cTEexkUZ68Q7b59i05gi6DYZ2JpTI4dRLV25TyAaSUYnaN1ereTFpLwTpeBESSGUqNMKa3pN8e0+u0k9B2K3h2GGKpLAEj0Z5+3hkrCORun5d0VtMYPrzHO5oi4SAeUtCPf28hhOiM025wwqQS6jN+7HGrO1ioF0GgRCaLobPYdQq6qc02nBV6nbyfsuol6mbrs0EincWrY33KfjKUOuKgx7CQex2og4JAHeV7ncytLsDlOMIg0FCpgySE6FJZwM208gBvbG4imMiSwsG4osG/7hG9J++0I5BSih9cOpuPnbGEXRf8BSP/cJaD5YIfXXRfSies29UQywQKuO34XHbOnlHOvfUTMA0nJR/+CUe8kczOdw/ZPxu3Mkk664zlc9qJ9hAM60w8lcWu06ghUBga4JgpViZYa1sr7uYPSabN9rau1nKwcKc1kQ6X22EjifOwC0NHkxn8JNDdvLasAJ0HIxcESmVMgvE0yczQzgbK5Dr0KJ8EgYQQA++0aaXszQRwNb7PuOc/S7ppWy+6ZmbxYgXVh9qS7/5S4HXSqK2i2dlwIwCJVJr8bAv4K3p9PzZD4RwFQSDlKUArO/ZAWbf7Oe0G5YEjy4KWIJAQw8OJk0t4d3sLdcE4NgXFPtdgD0n0gbzTjlBnTC/nsgVVOO19T6m1loPlAhhdZMCYcWtpkXIPrSDQviKM582uoDFp59H0ErY4pqCVgdm06ZD9jWTQ+q+780ygmO6+QHZnMukUNrJDJgi0ZEo1AEXbn2bKo+fj3/UybfEUkKuJRAjt678gkNdpI4nDygTqoitbd2KpLH7iqG4ygXwuGxE82NIR0JpU1kRr2NEcG9L1gcyo9W280aGughBCDJRTp5bynjkFM5smb+dzFK29l7pg9wH6WCqDF2sfY4TWBCr07i+abUatIJAn3YoNEx3ofRDIYTNGReHT7MJPsu3C+7G7el4qd6R/j9EQVBNiJDhpSjHJjMk9b+1gcllgVLwXjiTyTjuC5XkcOG19L9CX53a0LwczuygMrVNWBo1tiH5LeOrUUv7zyrn8pfwOLkr8Oyl/FTRvPmQ/I2U9P1unmUC2DplAvVsOlsmaGNncB2z70IiIlxb4SWOnOrYWgOK199AWs5YEhBMZ8nWwX5cneRw2ktqB0iaYnRfk7k40lcFLHDoJzO0TcNuJag+GzkAm2V7sNJk22dwYYVdLjLZY6rCfw0DZtyTD8EsmkBBi4I0t8vJM4XVcW/wQ4erTyN/2FMFYkmiy6/dmq0OjlQlkDNFz/JEq9DoJ4cNUdsyIVS8pkLH+awR6nz3tPsKlT8OF4SsmMaZvpQUOl9QDEmJ4OHZCMWOLPFw0dwz3fmrJYA9H9NHoOHuNUjZDUehz9Pm4PI+jvRaO7mI5mE5amTFDbTnYPoah+OiisVwwr4p42iTsHY/RcmhNIFs6FwTyFhyyzevquTbSwazCkrmaC0MkEwgga9ufnh3Y9TKqdTvhRJpkPIpbJ/p1eZInlwkEHNaSsGQigZN0tzWBfC474Vy2mk6G8G5+CnvM+jY3ndG0xdLsaomzoS7Mpvowu1pig1442jQ1rmQLAHZ/9yn1QgjRX06dWsr7tUEaxl+EM7Ibb/2KbmuodcwEwtn7IsnDSYHXASiSzkLIZQIVZKwgfV86qo6YFvA9MBTStl0IcQCfy85rXzuDX16zgLK8wW+GI/pGgkAjXMDd9yCQzVDtwZ3OgkBa6/ZaLN1dqA8Fi8ZbXb+a3eOwt209YHmS1hpn2spownVo1onfZdtfG6kPQSAXuQyUIdAifp99Kf1ris4FZVC87i+EExmIWt98Km//LQfzOGwkyHW9yvS9WLPOZZ91F2D0Oe3tc5Nu3cX4F79A1Wu3H7JfKmOSSJu0xdI0RQa3cHQokaaA3PJDyQQSQhwl58wqJ2NqXtaLMG0uCrY+QSSZ6XLpbDS1vybQSG0RX+i1zlExRyFEm0hnTUppBcDoQxBoVBSFxvpcaJOlHkIIMWKMjrOX6DOvx0MGe3sQqGMWRSJt4tZx65chnio+uyofp91gS7YCIx2FSH37tnjaqj0DgDv/kGO9Tjsx+lYTKJ7K4la5INAQygSy5dbxP5JYRGjcWRRs/jt1rREcucyU/qxR4z3CTCCVCzB2V28q4La3160yG61aT3m7XiKw66Uuj+mpGOpAa46mKFYhMsoJQzSDTggx8iweX0SB18ErOxIEay6gYOND2MN7umwXH0tm8Kl9mUBD+xx/uPYFgaL2AlSsiXg6S3kuCIS/6w5Yo5VSCochlwxCCDFSyDu66FSex0Hc8EAyTDKTPaCtbDiRxteeKj60vyV02AxmVARYFbMyL+J1G9q3RRIZ8sgFdzqpP+N37c82MbtYFnewA5aDDaFMIO2wgkBPtlSzrfpiHPFGUhtfpFjllsP1Y2aKO1cTCIB034NA++o0dVeLwloOZj2nbJO1zM+0uah67Q58e97o9JjUIBeMbommqFCtJDxlIDUPhBBHicNucPzEYt7b2Urt/K+gdJaKZf9OW1dBoFR2/3Iwx8hcDhZw2zEUhIwCjHgziVSWctVK1F4IdudgD29IchxGoxEhhBBDkwSBRKfyPXbiuNGpKMmMSbhDEcnwAd8SDv2MhllV+bzaYgV5knUb228PJzMEVAxT2Tv9oOt12tprAulkBK01sVT3hY7jqaG5HAyHl5i/hmbyeTw8i4yrgNKtf6cIazmc8vV3JtC+5WC9CwKlOwRojHSu3lQ3haEdNgOv38reiufmdPdJP8a0u5n4zDVMefhMxrz5bfK3PEFg54s4g9vIZDX6MLqV9RcrCNRC2tf7pQZCCNEfrjymmlgqy1utPhrm30rBtqdh5zsHvPfuE0tl2gtDD/Uveg6XYSgKvE5aVT5GLhOoTLUSc0nnxq5I1y4hhBg55B1ddCrf4yCKB1JhkmmTeCqLaVoX0OFEBv++bwmH+HIwgDlV+WxIFGAaTrKN+9vER5MZ8oiRtvs7zczwufYvB9OpCKmsSSzVfXHhA5eDDZ0gUPK4L9J43DeZV53Py1vaCE66hHENSxlv5JbH9WOL+AMLQ/euDs++v6vWGntmX72p7gOMd1y6GIC926yuZ+Gxp7Pp8ufYe+y3SfsqKdz4N8a9fAs1z32SqQ+dRtVLt5FM9j0zqStaa5KZ3hebbommqKQZHRjTb2MQQojeOHVqKeOKvPz9vd00zvoUWYePwg1/7bRLWLRjJtAIDQKBVRy6RQewpSNs2dtMuWol4ZYgUFccdrlkEEKIkULe0UWn8j0OwqYbUlGSmSxaQySXBROMp/GpOBpjaGW7dGHWmDw0BkHvOJwtG9s/9EYSViZQpotgg8tuoA0HaeWEVJR0VhPvKQiUzuJqXw42dGoCmVPPJ1RzLh+ZN4btzTE2FJ+FQye51PYm2rCDu6DfHsvrsPe5JtC+v2syY+LVvQswTqm2MmqqzD1kMUja89B2N01zPsP28//C2uvXsOnSZ9h88WM0z7yBwi2PYm5+8fCeVCeypiaR7v0Ss5ZIgnLVir2wqt/GIIQQvWG3Gdx82iTW14VZvjdJcMKF5G97ikg4dMi+sWSGgNpX92/oZ/serkKvk4as9fwSbfWUqTZSHqkH1BXJBBJCiJFD3tFFp+aPLSSYdRIOtrVf6O6rC9QYTuIjQdbhGxa1TSaX+VEKtnnm4K1/l93NIZKZLJFcJpDp7HzZkVIKn9NGyvCgkxFSGZN4D23GrZpAQy8TSCmFUnDxvDEYCp5srSai/NSoOkx3Ub/Oo9tp7K8J1MsgUDJjZZpFkxl8vb34yG0vUhGadB7ffmItO5qjmLklX9rmJFEym3jZQhoW3AaA2bK9z8+nK1mtSfah7Xy8rR6XymAvqO63MQghRG9dvrCaqgIPf39vN21TrsSWjmBseAqwloBtaYzQFksRTWUpscUw7R6wuwZ51AOn0OugLmN92WCLNlBCEFOKQndptHRCE0KI0cA+2AMQQ9NVi6p56zk/wbY9+N75X0ob32fn2b/F70rRGE5STGJYLAUDq8vXuCIv76g5LEw/im3vSrawmEgyw1gVA3fXS6F8LjuJrBtnKko6ESUdjZE1/V22So2lOgSBhlCWlKGsD3BleW6Om1jMW9tDvGNbwBmZ1zC9xdj68bGcNoOM0bcW8RlTty+3C+zr2NZTVxqnD41CoTEC5WxtinLLAytx2g3cdgPDUDhsBtMrAlw6bwzT7F7ozyBQHzOBzOAe64c8yQQSQhx9TrvBJ0+s4QdPr+MD+1yqA2MJbHyUxPHXU9saJ5k28btMYqkMRUYM7Tq0a+ZIUuB1sitlLXfzBTdiUxrTXzHIoxq6pEW8EEKMHBLWF51y2AxqKstwZONkN71A/o5/Yos3Udsapy4UJ9+WGBZFofeZWh7gn7GpaBT+3a+RNTWN4SQB4hiegi6P8zptJJQHUlF8L36DCc9c3W02UCLdoSbQkAoCKVy59fxnzihne1OUZxJzANDe/usMBlbWkd63FC6TIGv2XIw5a2qSGSsItL/zXA9BIKXQuX0CxZX847aTueX0SVwwu4KTppRy3IRiZlTksXJnG//zwiZSgXEYwR1H8tQOGXOiDzWBbBErCGQrkCCQEGJwXHXMWNwOgxc3NBEadza+vW+xq6GZZC6gnTE10WSWQiOG7sdlwkNRgcfBzoTVFCI/aHUONfKkcL8QQoiRT4JAokuVZSUEjATuyC4A/LtfR2vY25agwJZCD6OCkdPKA3zQYiNWMgf/7tcB2N0WJ19FcfoKujzO77JbHcJSEewtG/A2vU882Njl/vFUlgAx65duulsdbUqBy2H9737WjDIAXsrMRaPA239FofdxuHIBsEySSCLTXlS8K9mEtdwukszgV3EyNg/Yek5UNHOBSO0tY3yxj/93zjR+dPlcvvuRmXz9/On82yWzuGbJWHa3xYn5qrH1YxDINCGZNnt8bvs4o3UA2AvH9tsYhBCiL/K9Di6dX8WzH9bRWH4SRjaJfdfb1kZtkkkliKUy5Kso2j2yM4EKfU52p60vEgpbVwFQUjluEEckhBBCHB0SBBJdUq4AAWIUZZoACOx+FYCGcII8W7LnTJQkczwAAQAASURBVI0hZGpFgIypqSs+Hm/DSuzROva0xclT8W5bkXud+4JAUYxoAwDxLW912lYXrJpABSpqFVseQn8fKxPIWvQ1vtjH5DI/LeSxYvynycy6st8fb8oYK7tIp+Mks1liueypRGdZVMHdTLtnDmx/lbZYCj9xq95UL+zLBNK5FvdKKTxOG+V5biaU+JhQ4uOsGVaNh0Z7BY7QTuinNvEZ03oNJDM9LwlLpLP4kw1ksGHzl/XL4wshxOG47tjxJNImrySnYtpcBHa9xLgXPsesP01h7O9mQbyVPB3t14YBQ1GB10EYD6bhoDq2jr2UkDd+wWAPSwghhBhwEgQSXXP5sZHFUJqM4cK/+zXQmqZICr8aPjWBwMoEAlhTcCba5mDyYxdS0LwKH3FUNx90fS47Ue1CpSLYo1Y7dXfdu9S2xjvdP57KUmREMd2FQ6podsflYABn5rKBdsz9Esb0C/r98RZMsOoqtIbCpLOaWK4jW2P40BpBmeatGGYa254VVtFx1fulhvuCQHQTWJlTnY/NUOzIlmJk4qRCDX18Np0zo03YYw2dB7aAUCLNnrY4dcEEe9riFGYbCTlKwZC3XSHE4Jldlcf4Yi+vbo8SrVhC8do/k7/9H8TKF2Oko+THd+MnAt0slR4JCr1OQJF2FQLwRMEnsDmHzjJuIYQQYqDI1YjokuqQybLMcwqOWD3ulvW0RFN4dRyG0XKwCSU+HDbF+5lqNl/yBCiDT4V/A4DydJ0J5HPZaM04ybTuwjCtWj+++uVEEhmCsfQh+8fTWYqNCNpdODBP5DAZyioKus/Hjx3P1YvHMqXcj30Aij0umjwGgB31LaRztX5MUxOMp0kdlDljRqzldbaWLTSGk/iJo9y9DDDu6yDmL+1yF6/TzvSKAKujBYAVdOoPgef+H+Of/wwN4eQBr4VUxmRzQ4QdTTGaI1Yh9R3NMcp0M3G3dJ4RQgwupRTnz65k2bYWWipORuksbRMvpm7x1wFwp5rxmxHUCA8CVeZbAZ9WexmbzTHUTbhkkEckhBBCHB0SBBJdUh0yfX4eOo2s3Uvla18nm4rj0vEhtdypJ067waRSPx/uCZEsnEaw5nxm6C0A3RaGnlGZR1vGiTsbASDlq8TTuBqVTVEXSqAPWloUT2UpVFG0Z2gFgZRSB7R3HVvk5cdXzKXE78I+AG1fJ1ZYz39PUxvprEk0lSGcyKA1hxRT1tFmAOxtW2gIJ8m3JVB9zARSPSyxWjCugNebrX2zzdv78lS6ZIRr8TStJhMLsbMlRmvUChLWBRPEUwc+x+3NUSpUCyp/TL88thBCHIkL5lSQNTXP2U9n74yb2LT4+6RznTID6UY8OjbiM4HmVhdQnufi8/Ev8PHUvzKlYmidt4UQQoiBIkEg0SUjFwTKGg6Wp8dz/5hv4G9axTft9+E24yjX8OkOBnDhHOubzz1tcZpLl+zf4Oo6E+jzp07iqhOmtf8ennghRjaJt+4dUhmT5tyF/z6xdJYCIkMuCNSVIp9zQO5X2exksFPfGiSZyWKa0Bixun4dvHxKR62aU67gNqtYt5Hcn+HTk9x+hr/7DJsFYwvZmCyyfmnd3vsn0g0j0YbSJp7GlQDsCcZpjiQJxg/NENvd2MoY1YynWIpCCyEG35yqfKoLPfzwlUaOX3kWV92zlt+vjAJQmtwJgDFMzmOHy2YoLpo7hlWRQuooZkbl0GnmIIQQQgwkCQKJruUusDOBsZwytZwfb5/CpsqPcLntNezm8CoMDXD1knE4bIrn1tax3Td//4YeungZHTKi9oy/lJSvkqo3voGRilAfSpDJFYnOmppEKks+kWHTWtftsA3YfZs2FzqdILHmaRzhWuKpXCHl9EGFlGO5TKBEC5HWRvwq3vt6U7kAnhHoPhNoVlUeCVxEncWotu19eh5dMRJtAPjqVwBWt7A9bYlO963Z8TBulcY+7bx+eWwhhDgSSinuvHYh37hgOp8+aQLjirxsbMmQdfiZwB4ADO/IDgIBfGSelZ2Z57YzJl/qAQkhhBgdehUEUkqdp5TaoJTarJS6o5Ptlyil3ldKrVJKLVdKndT/QxVHXS7Ik84bx+dPmUQ0leXhyByrKDRg9LZuyxBRGnBx/uxKnltbz66kh3VmLiujhza4HZfFvdKcz67Tf4EzvJPKt/8N04SGcJLmSJKGcIJ4OktAh1HeooF8KsOCcrjxkGDBslspe+9nADiD20kmYwfuGGtq/zEQ3W7Vm+ptJlCggqzDj91f0u1uNcU+lIJmxxiM/ggCZdMYqTAA3vrlne7iiOwmb9s/8O1+nfPb7ucDxxyYcPKRP7YQQvSDeWML+Owpk7j++PEcP6mY3W1xEq5iJikrCDTSu4MBzKvOZ1yRl6nlAdxO+2APRwghhDgqegwCKaVswJ3A+cBM4Bql1MyDdnsRmKe1ng/cBPy+n8cpBkOu8HM2fxyLJxQyrsjL/Y0TyWjrZWMMs+VgAFcvGUs4keHNLc28beZext0sB4P9BbLD+Hh6fRvR8iU0zfksRRv/irtpDS3RFHvaEiTSJulkHDdJlEeCQIbDwzh7Kzadxb/3LeyxBqY8cha+VX86YD8VayHjKgCgOLkLj471eqlhdvFn2Hz5P1C27j+8ux02xuR7qFUVOII7Duv5HCDeBljZTt6GlWDuX+Lmat1AzT8/wfQHj2f8i59j4j+upVi3snTMZ3DYBy7zSgghDse4Ii8TSny0RFMEjQLGKqtY/0ivCQRWRtQfbljEbWdNIeCSIJAQQojRoTeZQEuAzVrrrVrrFPAgcEALBa11RO+vkOsDNGL4y2XAmPk12G0Gp00rJYyXlXrKAduHk8U1RQRcdpZuaOCR7MlEx50B+dXdHrNvOVjKW866vWHe29VKw/xbyLiLqFz2Q7RpvdwT6SyOVBuAZAIB2F1MtFtZPs5ILcUf/hHDTOFpXH1AXSAVbyZROhdT2Zmod+HUqV5nAhlOH7qwplf7Tiz1sTlThiO6l1Q80uenc4B4KwDRyhOwpcOMeft7OMK7sCVamfjUVXgaV1J3zO1svvgJ3j3+Lm5OfZHs2BNwDkARbiGEOBJKKWqKvQDsTgcwVO4j3CjIBAKoLvRSU+zDGIBOmUIIIcRQ1JsrkipgV4ffa3O3HUApdZlSaj3wNFY20CGUUp/NLRdb3tjYeDjjFUdTwXja5n2W9PSPAHDB7AoAltkWWNuHWU0gAIfN4KQpJZgadrmn0Xb5/WB3dX9QLiPKW1zFhBIff35rB2l7gIYFX8K/900Cu14CIJPV7UEgwydBIG13U5ZtaP+9ZI2VIOhuWU8kmWm/3Yg3g7+CuK+a2cpq3264excEUgpsqncf3CeV+lkds7rfZJq3EUtlMM3DjFfHWwBomXY1bRMuomjdfUx+/GKqX/0qtlSYrRc+TOOCW4mXzedd52KeMY9jYqlcZAghhqZxRdZ5bkvMs//GUZAJBFaB6HyvY7CHIYQQQhw1vQkCdXbVcsiVk9b6Ua31dOBS4N87uyOt9W+11ou01otKS0v7NFAxCAwbbSd/D1UwHoAlE4qpKfbyrvdk0oFqKJ3Wwx0MTadPs4oIl+e5ehdAyAWBtL+Cr5w9la2NUV7f3EjzjOtI5k2g4p3/IG/bPxj/zxvwRvcV1JQgEHYXdm11T8sqO4aZwrS5cQW3Eo5aXWjQGiPeiuEvocU/hUXGRqD3Sw1tSmHrZWBlQomPjWlr7qN7NrC1MUpTNNnHJ2XJ5trap/1j2HXmr9l4xfNoZZC383maZ91Issj6fyOcSHPfsp0E3HYmlfoO67GEEGKgjc9lAu3NdFgePUoygeyGkqVgQgghRpXeBIFqgY59jash1zqiE1rrV4FJSqnuK7WKYcFQqn0Ji2Eo/veaBVxy5mnsuP5t6OUynKHm1GlWALIy39O7AEIu40n7y7lwTiUzKvN48N1dZLSNuiX/irttE+Nf/Bx5tS9zkrY6RTHCW+v2im1/htXLmTkA1E+9FqWzZOs3kDU1f1+2ESObQHuKeGfcp7GTWybW2+VgSmE3erfEamKpjx3aaiWfadqC1tAYTpI9jGwgM2YtB2syvTRFkqQKJrHtggdpmnUTb439LP/36ha+9NeV3PLASupDCb5x/gxKAj1knAkhxCDxueyU+F00YTVK0DY3OEZHtyzDUKheZpQKIYQQI0Fvrp7eBaYopSYopZzA1cATHXdQSk1WuTOoUmoh4ASa+3uw4ugzDHDY9384mlddwIJxhRjD+ANTeZ6bS+eP4fRppQTcvfj2b1/to0AlhqG4/dyp1LbGeX1zE6Hx5xIcfy6hsWcAcJyx1tpXMoHaLyDSjgB7Z3ySR7In83rgfABczeuJJDK8tML6ez26Mck22wT+kLW24+6+WPc+hqGw2XqfCRTCR8xegDO0HbDauteFOm/r3p1QSz0An31oK5+8+10eWrGLHbaxfCl4Nbc+uoVnP6wj4HYwtdzPNy+YwbyxBZT4JAgkhBi6aoq9NGkrCGT20DVTCCGEEMNXj1fAWuuMUuoW4FnABvxRa/2hUurzue13AVcAn1BKpYE48LEOhaLFMNZZpoXPZSOeynZxxPDw86sX9H7ngvHEqk7ErDkFsJaTLRxXwL1v7+CEycXsPPt3AEz880ImpfZax0gmUHutpay3nNknXszH15dzUkOAKwwn7tb11IcTRFutYMrSXSarm3cRzV7JJacdR8W4E3r9MI5eBoHG5HtwOwzqHVWUBre3394SSVHgceDr5XKAcCLNE2+v5Xpt8KULF/Hihkb+/NYO7lu2E5uhuHrxWC5fWEVlvge3w0Y6a+Jx2KQekBBiSBtX7GX7zlwm0ChZCiaEEEKMRr266tFaPwM8c9Btd3X4+SfAT/p3aGIosBnqkIvsgMtBMm0O0ogGgdNL/WUPUZZbzqOU4vZzp3PN797m5fUNnDurEoA69yQmpZowDSeGwzuYIx4a7FYmkOkrw24zOGZ8Ict2BEkWTsbdsp5oIgPxZnDAjEkTeGFTkiJfgMjcm/q0DKG3HbcMQzGhxM/2WDlVoXUUbvgrybwaYpXHUtsaZ1KpD7vNIJUxcdq7vs+1e0LYk21kPPncdPJEjptUwq9f3kw6a3LNknFUFXqoKfHhkE5gQohhpKbYx/LccrDRUg9ICCGEGI3kKkV0y2U3Dlkr73Haur1IHokMBfYOwbDjJxVz8pQS/vL2Tv7v1S2srm1ju80qoK09hVbbqtHObnWZ0f5y3A6DxTVFtMXTNHgm4W5ZS0MoQaEOAfC58xczvthLeZ6714We9+lLsOWiuZW8FynCGd1L9Wu3M+7lf0FlEqQyJtubY4QTabY0RugukbEpkqJQRcjmLpIq8t3ceuYUbjljCsV+F2MKPBIAEkIMO0smFGH4c007RklnMCGEEGI0kisV0S2X3dbp7Xnu0dVOtbNlcV8/bzpuh41nP6zjnje3s5lxgKTRt8stBzP9ZQTcDhaOK8RQ8C4zcMQaSO5+n0IVBsBfWM6jXziBb5w/vdct3/fpS8Dl+uPHs8deDUCk4jgcsQaK190LQDyVZXtTjExWk8x0nenWFEmST6R9yV+Rz8m0igDjS7yUBJy9XlYmhBBDyXETi1n6zY9g2j2SCSSEEEKMYBIEEt1ydZHx43F2HhwaqWzGoa3IZ1fl8/Y3zuRfTpvM5sYIb0WszlPaI0WhAXDkCiH7Kwi47ZTluVg0vogH2mahlUHRrucoUmG0soG7gCK/i0llfnrZ7Gv/w/SyJhBYwcuyxZfzudSXeeXY3xEecxKlq3+NkQofsF+sm5pXTZEkBSqC7aDi33luB5X5nr4NXgghhpjY4lvRc64c7GEIIYQQYoBIEEh0S4rZWrpb/nbC5BK0hrfCpZgYUhQ6R+VqAuEvw+u0UehzcsaMMlY0OwiWLGRC08tMMBrIuoval89V5LnxOPoWYOxra99PnDSVV2zH8tDKOuoXfx17opmylb84YJ9YKgNAIn1oMKgxnKTYiIJX5lkIMfIkT/wqtilnD/YwhBBCCDFAJAgkRC90t+Ro3th83A6DJE425x2LWbXoKI5s6NoXBFKBSpRSFPucnDm9DID3vCdSldzCBcbbJCZf0H6MYSiK/QPbSr0i3835syt5dVMjW51TaZl6NSUf/AFX66b2ffZlAu1qiRFNZg44vj6cyC0Hk4wvIcTI47Ab8gWQEEIIMYJJEEiIXuhqWZy1zcbiGisg8MqiO9EnfukojWqI2xcEyrOWySmlmFzmp7rQw0PRBSRx8Ib7VEKn//CoDkspxVWLqrEZivuX7aRu8dfJOn2MfflW3E0fMOnxS3BtfJKWaIpE2qQ+lDjg+JZgFB9xyQQSQoxI3Z3vhBBCCDH8yZleiF7oqQ35cROLARhb5O1zd6uRSgXKMG0ubHlV+29TigtmV/CPWicnJH7JQ+O/h91+9IuMj8n3cOMJNSzd2MiyBsWu03+Fu3UDUx67AG/jSgo2P86etjgA0WSWYCzdfmw62gKAIcv+hBAjUFcNIYQQQggxMkgbGyF6oafU+KsWVROMp5lbnY9dgkAAqLkfY6N3IRO9+Qfc/v/Oncau1jj/+ADGl/ixD0I79Yp8N189dxovr2/gVy9tZvo1J2I/+T8pXncvps2Ft3ElHbvE72qNgfKS57ajo83gAOWV5WBCCCGEEEKI4UUygYToB2UBN9+4YAZ5HmefCxWPWDYHmUDVIUExl93GNy6YwS+vXsDp08oGJXPK7bDhstv4n4/Npy2e5hcvbaJ1ypVsueQJQjXn44jVY4/Wte+vNexsjvHu9hbG690AGMWTjvq4hRBCCCGEEOJISBBIiH7kc0oafUcOm9FpUCzf66CmxIfNUIOaOTW3uoCvnD2Vt7Y288UHV/Ifz6wjXDIPAP+eN6n55w34dr/Wvn9LJM08YwtZZcdWOXuwhi2EEEIIIYQQh0WCQEL0I8kCOlBXAZ6Ay46Re/cZ7BpKN582iY8fNw6P085bW5tZFhuDaTioeOeHBGpfpnLZD0CbALTGUsxVW2kLTAP7wHYxE0IIIYQQQoj+JkEgIcSAcXRR70cpRZ7bQZHfidsxuNlTSim+deFM/uOy2fhddl7aHCJRPBNHvJG0pxRPyzrydjwPQFssyRxjK9GSuYM6ZiGEEEIIIYQ4HBIEEkIMGGc3rYbL89xUFXiO4mi65nbYmFDi48TJxSzb1kK4eD4AO875I8m8GspW/Dcqk8Bo2UKeimNWzh/U8QohhBBCCCHE4ZAgkBBiwHSVCQTdB4gGQ4HXyfXHjyeezvKvDWfzpwn/TbRkLnuP/Tbu1g2MXXobhS2rALCPXTS4gxVCCCGEEEKIwzC0rsKEECOK3Ta8aiSdMLGE06aVsjbi5d/WVfLgOzsJjz+bumO/Rf72f/DR3T8ijgtVNm2whyqEEEIIIYQQfWYf7AEIIUYuZzeZQEORYSju/uQS6oJxvvnoBzzw7i4mlfk5dvaniedN4MMX76PVXc2FTudgD1UIIYQQQggh+mx4XaEJIYaV7paDDWVel52bT5vM1HI///P8Rmrb4rxpLOLW2KcIHnMrXqfEz4UQQgghhBDDz/C8QhNCDAuD3f79cHkcNlwOg99evwiHzeB7T37I/e/sxO+yc+LkEtwOeesUQgghhBBCDD9yJSOEEAdx2Awq893UlPi487oFZE1YuzfEGdPLyPM4UGp4BreEEEIIIYQQo5usaRBCiE4U+10AnDS5lD/csIjHVu7mzBnleJ22QR6ZEEIIIYQQQhweCQIJIUQPZo7Jw2k3yGQ1HocEgYQQQgghhBDDkywHE0KIHjhsBhNKfBT6HHhdEgQSQgghhBBCDE+SCSSEEL3gdtioLvQO9jCEEEIIIYQQ4rBJJpAQQgghhBBCCCHEKCBBICGEEEIIIYQQQohRQIJAQgghhBBCCCGEEKOABIGEEEIIIYQQQgghRgEJAgkhhBBCCCGEEEKMAhIEEkIIIYQQQgghhBgFJAgkhBBCCCGEEEIIMQpIEEgIIYQQQgghhBBiFJAgkBBCCCGEEEIIIcQoIEEgIYQQQgghhBBCiFFAaa0H54GVagR29HL3EqBpAIcj+ofM09AnczQ8yDwNDzJPQ5/M0fAg8zT0yRwNDzJPQ5/M0fAwEuZpvNa6tLMNgxYE6gul1HKt9aLBHofonszT0CdzNDzIPA0PMk9Dn8zR8CDzNPTJHA0PMk9Dn8zR8DDS50mWgwkhhBBCCCGEEEKMAhIEEkIIIYQQQgghhBgFhksQ6LeDPQDRKzJPQ5/M0fAg8zQ8yDwNfTJHw4PM09AnczQ8yDwNfTJHw8OInqdhURNICCGEEEIIIYQQQhyZ4ZIJJIQQQgghhBBCCCGOQL8HgZRS5ymlNiilNiul7jho2625bR8qpf6zi+Ovym03lVKLDto2Vyn1Vm77GqWUu5Pjb8k9tlZKlXS4PV8p9aRSanXu+E/213MebgZqjpRS1ymlVnX4Zyql5ndy/ASl1DKl1Cal1F+VUs7c7Uop9YvcuN5XSi3s56c+rAzVecptOy137IdKqVf68WkPO0Ngnrp6z7su9//R+0qpN5VS8/rxaQ8rQ3iO5LzUwQDOk0MpdY+yPjesU0r9axfHy7mpB0N1jnLb5LyUMwTmSc5LPRjCcyTnpQ4GcJ6cSqk/5eZptVLqtC6Ol/NSD4bqHOW2Dd3zkta63/4BNmALMBFwAquBmbltpwMvAK7c72Vd3McMYBqwFFjU4XY78D4wL/d7MWDr5PgFQA2wHSjpcPs3gJ/kfi4FWgBnfz7/4fBvIOfooH3mAFu72PY34Orcz3cBX8j9fAHwD0ABxwHLBvvvJfPU6TwVAGuBcd09/mj4N0Tmqav3vBOAwtzP54/W/5+G+BzJeekozBNwLfBg7mdvbh5qOjlezk3Dd44KkPPSUJonOS8N3zmS89LRmad/Af6071hgBWB0crycl4bvHBUwhM9L/Z0JtATYrLXeqrVOAQ8Cl+S2fQH4sdY6CaC1bujsDrTW67TWGzrZdA7wvtZ6dW6/Zq11tpPjV2qtt3d210BAKaUAP9abWqZPz25kGMg56uga4IGDb8z9/c8AHs7ddA9wae7nS4A/a8vbQIFSqrLXz2xkGcrzdC3wd631zu4ef5QY1HnKHd/pe57W+k2tdWvu17eB6p6ezAg1ZOcIOS91NJDzpAGfUsoOeIAUEOq4g5ybemUoz5Gcl/Yb1HnKHS/npe4N2TlCzksdDeQ8zQRe7HBsG3DwChg5L/VsKM/RkD4v9XcQqArY1eH32txtAFOBk3PpUq8opRb38b6nAlop9axS6j2l1Nf6ePyvsCJ9e4A1wG1aa7OP9zESDOQcdfQxOr8gKgbatNb7TigdH7+7sY02Q3mepgKFSqmlSqkVSqlPHMHjD3eDPU+99Smsb4xGo6E8R3Je2m8g5+lhIArsBXYCP9Vatxy0j5ybejaU50jOS/sN9jz1lpyX9htKcyTnpf0Gcp5WA5copexKqQnAMcDYg/aR81LPhvIcDenzkr2f7091ctu+9mN2oBArZW0x8Del1EStdW/bk9mBk3LHxoAXlVIrtNYv9vL4c4FVWNG6ScDzSqnXtNaHRMdHuIGcI+sBlDoWiGmtP+jj43e3bbQZyvNkx3ojPBPrW6a3lFJva6039uXxR4jBnqfeHH861oftkw7n+BFgKM+RnJf2G8h5WgJkgTG5+3lNKfWC1nprLx9fzk2WoTxHcl7ab7DnqecBynlpKM+RnJf2G8h5+iNWsG05sAN4k0MzruS81LOhPEdD+rzU35lAtRwYIavGiiTv2/b3XNraO4AJlCir4NIqpdQzvbjvV7TWTVrrGPAM0JciWJ/s8PibgW3A9D4cP1IM5BztczVdfyPehJWyuC8AefDjdzW20Waoz9M/tdZRrXUT8Cowr5ePOdIM9jx1Syk1F/g9cInWuvlw7mMEGMpzJOel/QZynq7Fes9K59Kx3+CglG7k3NQbQ32O5LxkGex56pacl4ChPUdyXtpvwOZJa53RWn9Zaz1fa30JVv2YTQftJuelng31ORqy56X+DgK9C0xRVpVsJ9YH4ydy2x7DiiqjlJqKVbypSWv9ydwf94Ie7vtZYK5Sypv7Q5+KVWypt3ZiReJQSpVjFYDq0zcXI8RAzhFKKQO4CmtN5iFy0deXgStzN90APJ77+QngE8pyHBDUWu89jOc4EgzleXocK73SrpTyAscC6/r+FEeEQZ2nHo4dB/wduH6ofOswSIbsHCHnpY4Gcp52Amfkzi0+rG8F13fcQc5NvTKU50jOS/sN6jx1R85L7YbsHCHnpY4GbJ5y17O+3M9nAxmt9QHXtXJe6pWhPEdD+7yk+79K9wXARqxK3d/scLsT+AvwAfAecEYXx1+GFTlLAvXAsx22fRz4MHcf/9nF8V/MHZ/BisT9Pnf7GOA5rPWtHwAf7+/nPlz+DfAcnQa83cPjTwTeATYDD7G/arsC7syNaw1ddOEZLf+G6jzltt2OFYT9APjSYP+tRvk8dfWe93ugFSutexWwfLD/VjJHcl4ajHnCKm76ENbnh7XA7V0cL+emYTpHuW1yXho68yTnpeE7R3JeOjrzVANswAoKvACM7+J4OS8N0znKbRuy5yWVG6AQQgghhBBCCCGEGMH6ezmYEEIIIYQQQgghhBiCJAgkhBBCCCGEEEIIMQpIEEgIIYQQQgghhBBiFJAgkBBCCCGEEEIIIcQoIEEgIYQQQgghhBBCiFFAgkBCCCGEEEIIIYQQo4AEgYQQQgghhBBCCCFGAQkCCSGEEEIIIYQQQowCEgQSQgghhBBCCCGEGAUkCCSEEEIIIYQQQggxCkgQSAghhBBCCCGEEGIUkCCQEEIIIYQQQgghxCggQSAhhBBCCCGEEEKIUUCCQEIIIYQQQgghhBCjgASBhBBCCCGEEEIIIUYBCQIJIYQQQgghhBBCjAISBBJCCCGEEEIIIYQYBSQIJIQQQgghhBBCCDEKSBBICCGEEEIIIYQQYhSQIJAQQgghhBBCCCHEKCBBICGEEEIIIYQQQohRQIJAQgghhBBCCCGEEKOABIGEEEIIIYQQQgghRgEJAgkhhBBCCCGEEEKMAhIEEkIIIYQQQgghhBgFJAgkhBBCCCGEEEIIMQpIEEgIIYQQQgghhBBiFJAgkBBCCCGEEEIIIcQoIEEgIYQQQgghhBBCiFFAgkBCCCGEEEIIIYQQo4AEgYQQQgghhBBCCCFGAftgPXBJSYmuqakZrIcXQgghhBBCCCGEGHFWrFjRpLUu7WzboAWBampqWL58+WA9vBBCCCGEEEIIIcSIo5Ta0dU2WQ4mhBBCCCGEEEIIMQpIEEgIIYQQQgghhBBiFJAgkBBCCCGEEEIIIcQoMGg1gYQQQgghhBBCiMGWTqepra0lkUgM9lCE6BO32011dTUOh6PXx0gQSAghhBBCCCHEqFVbW0sgEKCmpgal1GAPR4he0VrT3NxMbW0tEyZM6PVxshxMCCGEEEIIIcSolUgkKC4ulgCQGFaUUhQXF/c5g02CQEIIIYQQQgghRjUJAInh6HBetxIEEkIIIYQQQgghBpFSiuuvv77990wmQ2lpKRdddNEgjqpnfr+/x32+973v8dOf/rTbfR577DHWrl3bX8MS3ZAg0ADQWg/2EIQQQgghhBBCDBM+n48PPviAeDwOwPPPP09VVdWgjCWTyRz1x5Qg0NEjQaABkMyYgz0EIYQQQgghhBDDyPnnn8/TTz8NwAMPPMA111zTvi0ajXLTTTexePFiFixYwOOPPw7A9u3bOfnkk1m4cCELFy7kzTffBGDv3r2ccsopzJ8/n9mzZ/Paa68BB2buPPzww9x4440A3HjjjXzlK1/h9NNP5+tf/zpbtmzhvPPO45hjjuHkk09m/fr1AGzbto3jjz+exYsX8+1vf7vL5/LDH/6QadOmcdZZZ7Fhw4b223/3u9+xePFi5s2bxxVXXEEsFuPNN9/kiSee4Pbbb2f+/Pls2bKl0/1E/5DuYAMgmTFxO2yDPQwhhBBCCCGEEH3wb09+yNo9oX69z5lj8vjuR2b1uN/VV1/N97//fS666CLef/99brrppvbgzQ9/+EPOOOMM/vjHP9LW1saSJUs466yzKCsr4/nnn8ftdrNp0yauueYali9fzv3338+5557LN7/5TbLZbK+CKBs3buSFF17AZrNx5plnctdddzFlyhSWLVvGzTffzEsvvcRtt93GF77wBT7xiU9w5513dno/K1as4MEHH2TlypVkMhkWLlzIMcccA8Dll1/OZz7zGQC+9a1v8Yc//IFbb72Viy++mIsuuogrr7wSgIKCgk73E0euV0EgpdR5wP8CNuD3Wusfd7LPacDPAQfQpLU+td9GOcwk01nwOAZ7GEIIIYQQQgghhom5c+eyfft2HnjgAS644IIDtj333HM88cQT7bV1EokEO3fuZMyYMdxyyy2sWrUKm83Gxo0bAVi8eDE33XQT6XSaSy+9lPnz5/f4+FdddRU2m41IJMKbb77JVVdd1b4tmUwC8MYbb/DII48AcP311/P1r3/9kPt57bXXuOyyy/B6vQBcfPHF7ds++OADvvWtb9HW1kYkEuHcc8/tdCy93U/0XY9BIKWUDbgTOBuoBd5VSj2htV7bYZ8C4NfAeVrrnUqpsgEa77Agy8GEEEIIIYQQYvjpTcbOQLr44ov56le/ytKlS2lubm6/XWvNI488wrRp0w7Y/3vf+x7l5eWsXr0a0zRxu90AnHLKKbz66qs8/fTTXH/99dx+++184hOfOKCb1MGtxX0+HwCmaVJQUMCqVas6HWNvOlJ1tc+NN97IY489xrx587j77rtZunTpEe0n+q43NYGWAJu11lu11ingQeCSg/a5Fvi71nongNa6oX+HObwk0tnBHoIQQgghhBBCiGHmpptu4jvf+Q5z5sw54PZzzz2XX/7yl+1NiFauXAlAMBiksrISwzC49957yWata9EdO3ZQVlbGZz7zGT71qU/x3nvvAVBeXs66deswTZNHH3200zHk5eUxYcIEHnroIcAKQK1evRqAE088kQcffBCA++67r9PjTznlFB599FHi8TjhcJgnn3yyfVs4HKayspJ0On3A8YFAgHA43ON+4sj1JghUBezq8Htt7raOpgKFSqmlSqkVSqlP9NcAhxvT1JIJJIQQQgghhBCiz6qrq7ntttsOuf3b3/426XSauXPnMnv27PaizDfffDP33HMPxx13HBs3bmzP5lm6dCnz589nwYIFPPLII+33+eMf/5iLLrqIM844g8rKyi7Hcd999/GHP/yBefPmMWvWrPZC1P/7v//LnXfeyeLFiwkGg50eu3DhQj72sY8xf/58rrjiCk4++eT2bf/+7//Osccey9lnn8306dPbb7/66qv5r//6LxYsWMCWLVu63E8cOdVTO3Ol1FXAuVrrT+d+vx5YorW+tcM+vwIWAWcCHuAt4EKt9caD7uuzwGcBxo0bd8yOHTv68akMDemsyfq9YWaOycNm9JwmJ4QQQgghhBBi8Kxbt44ZM2YM9jCEOCydvX6VUiu01os62783mUC1wNgOv1cDezrZ559a66jWugl4FZh38B1prX+rtV6ktV5UWlrai4cefrKmFVRLZyUbSAghhBBCCCGEEENHb4JA7wJTlFITlFJO4GrgiYP2eRw4WSllV0p5gWOBdf071OHB1BIEEkIIIYQQQgghxNDTYxBIa50BbgGexQrs/E1r/aFS6vNKqc/n9lkH/BN4H3gHq438BwM37CFs47NMe+A40onoYI9ECCGEEEIIIYQQol2PLeIBtNbPAM8cdNtdB/3+X8B/9d/Qhiejbg3O6B50yzYoWDDYwxFCCCGEEEIIIYQAerccTPRFvBUAHawd5IEIIYQQQgghhBBC7CdBoP6WaLP+G9yD1hrT7L77mhBCCCGEEEIIIcTRIEGg/pawMoHizTtYUxskksoM8oCEEEIIIYQQQgxl9fX1XHvttUycOJFjjjmG448/nkcffXTAH3f58uV88Ytf7Jf7Ou2005g2bRrz5s3jxBNPZMOGDf1yv/2pP8d49913c8sttwBw11138ec//7nLfbdv387999/f/nt//t37SoJA/WhvME6wuQGAZavW8NCKWskEEkIIIYQQQgjRJa01l156Kaeccgpbt25lxYoVPPjgg9TWDnyJkUWLFvGLX/yi3+7vvvvuY/Xq1dxwww3cfvvth2zPZrP99liHayDG+PnPf55PfOITXW4/OAjU33/3vpAgUD+65rdvE2yxgkDVqpldrTGyEgQSQgghhBBCCNGFl156CafTyec///n228aPH8+tt94KWAGEk08+mYULF7Jw4ULefPNNAJYuXcpFF13Ufswtt9zC3XffDcAdd9zBzJkzmTt3Ll/96lcBeOihh5g9ezbz5s3jlFNOOeQ+3nnnHU444QQWLFjACSec0J4lc/fdd3P55Zdz3nnnMWXKFL72ta/1+JxOOeUUNm/eDIDf7+c73/kOxx57LG+99Rb/8z//w+zZs5k9ezY///nP24/585//zNy5c5k3bx7XX389AI2NjVxxxRUsXryYxYsX88YbbwDwyiuvMH/+fObPn8+CBQsIh8Ps3buXU045hfnz5zN79mxee+21wx7jX/7yF5YsWcL8+fP53Oc+1x4Y+tOf/sTUqVM59dRT28cC8L3vfY+f/vSnAGzevJmzzjqLefPmsXDhQrZs2cIdd9zBa6+9xvz58/nZz352wN+9paWFSy+9lLlz53Lcccfx/vvvt9/nTTfdxGmnncbEiRP7LWjUq+5gonfqQ0nKnXHIwlh7C22xNFktQSAhhBBCCCGEGBb+cQfUrenf+6yYA+f/uMvNH374IQsXLuxye1lZGc8//zxut5tNmzZxzTXXsHz58i73b2lp4dFHH2X9+vUopWhrawPg+9//Ps8++yxVVVXtt3U0ffp0Xn31Vex2Oy+88ALf+MY3eOSRRwBYtWoVK1euxOVyMW3aNG699VbGjh3b5RiefPJJ5syZA0A0GmX27Nl8//vfZ8WKFfzpT39i2bJlaK059thjOfXUU3E6nfzwhz/kjTfeoKSkhJaWFgBuu+02vvzlL3PSSSexc+dOzj33XNatW8dPf/pT7rzzTk488UQikQhut5vf/va3nHvuuXzzm98km80Si8W6HF93Y1y3bh0/+clPeOONN3A4HNx8883cd999nH322Xz3u99lxYoV5Ofnc/rpp7NgwaEdwa+77jruuOMOLrvsMhKJBKZp8uMf/5if/vSnPPXUU4AVfNvnu9/9LgsWLOCxxx7jpZde4hOf+ASrVq0CYP369bz88suEw2GmTZvGF77wBRwOR7fPqycSBOonqYxJPJ3BZ48AUGo20xJJYpqDPDAhhBBCCCGEEMPGv/zLv/D666/jdDp59913SafT3HLLLaxatQqbzcbGjRu7PT4vLw+3282nP/1pLrzwwvaMkxNPPJEbb7yRj370o1x++eWHHBcMBrnhhhvYtGkTSinS6XT7tjPPPJP8/HwAZs6cyY4dOzoNAl133XV4PB5qamr45S9/CYDNZuOKK64A4PXXX+eyyy7D5/MBcPnll/Paa6+hlOLKK6+kpKQEgKKiIgBeeOEF1q5d237/oVCIcDjMiSeeyFe+8hWuu+46Lr/8cqqrq1m8eDE33XQT6XSaSy+9lPnz53f69+lpjC+++CIrVqxg8eLFAMTjccrKyli2bBmnnXYapaWlAHzsYx87ZC7C4TC7d+/msssuA8Dtdnc6ho5ef/319mDbGWecQXNzM8FgEIALL7wQl8uFy+WirKyM+vp6qqure7zP7kgQqJ+EE2ncpLDrFGlvOc5YPcSbJRNICCGEEEIIIYaLbjJ2BsqsWbPagwAAd955J01NTSxatAiAn/3sZ5SXl7N69WpM02wPLNjtdswOWQeJRKL99nfeeYcXX3yRBx98kF/96le89NJL3HXXXSxbtoynn36a+fPnt2eb7PPtb3+b008/nUcffZTt27dz2mmntW9zuVztP9tsNjKZzhsg3Xfffe3j3sftdmOz2QCr/lFntNYopQ653TRN3nrrLTwezwG333HHHVx44YU888wzHHfccbzwwguccsopvPrqqzz99NNcf/313H777Z3W6enNGG+44QZ+9KMfHbDPY4891ukYD34efdXZMfsep7d/976QmkD9JJzIUICVBRQvngVAIFlPMj34ha+EEEIIIYQQQgxNZ5xxBolEgt/85jftt3VcyhQMBqmsrMQwDO699972+jTjx49n7dq1JJNJgsEgL774IgCRSIRgMMgFF1zAz3/+8/Zgz5YtWzj22GP5/ve/T0lJCbt27TpgHMFgkKqqKoD22kL97ZRTTuGxxx4jFosRjUZ59NFHOfnkkznzzDP529/+RnNzM0D7crBzzjmHX/3qV+3Hd3wuc+bM4etf/zqLFi1i/fr17Nixg7KyMj7zmc/wqU99ivfee++wxnjmmWfy8MMP09DQ0D6WHTt2cOyxx7J06VKam5tJp9M89NBDhxybl5dHdXU1jz32GADJZJJYLEYgECAcDnf5N7nvvvsAa5lYSUkJeXl5hzX23pAgUD8JJdIUqCgA6ZKZAFSpJhrDycEclhBCCCGEEEKIIUwpxWOPPcYrr7zChAkTWLJkCTfccAM/+clPALj55pu55557OO6449i4cWP7UqqxY8fy0Y9+lLlz53Lddde116cJh8NcdNFFzJ07l1NPPZWf/exnANx+++3MmTOH2bNnc8oppzBv3rwDxvG1r32Nf/3Xf+XEE08csC5eCxcu5MYbb2TJkiUce+yxfPrTn2bBggXMmjWLb37zm5x66qnMmzePr3zlKwD84he/YPny5cydO5eZM2dy1113AfDzn/+8vci1x+Ph/PPPZ+nSpe2Foh955BFuu+22wxrjzJkz+cEPfsA555zD3LlzOfvss9m7dy+VlZV873vf4/jjj+ess87qso7Tvffeyy9+8Qvmzp3LCSecQF1dHXPnzsVutzNv3rz2+djne9/7XvtzvOOOO7jnnnsOa9y9pQ4nXak/LFq0SHdXzGq4eX1TE7/605940PkDms69i5JnP8+75lRKJx9DzfW/gR7SxoQQQgghhBBCHH3r1q1jxowZgz0MIQ5LZ69fpdQKrfWizvaXTKB+Ekqkyc8tB7OVTiFlD7DY2EjN1gcgHR/k0QkhhBBCCCGEEGK0kyBQPwnF0+TnloM580tZdc5D/G/GqghOMjSIIxNCCCGEEEIIIYSQIFC/CSXS7YWhnf4inBUz2GqOsTYmJAgkhBBCCCGEEEKIwSVBoH4STmQoVFFMw4nD7cduU5jOAABaMoGEEEIIIYQQYsgarFq5QhyJw3ndShCon4TiaUrtMUx3ASiFw2aA22rrZsaDgzs4IYQQQgghhBCdcrvdNDc3SyBIDCtaa5qbm3G73X06zj5A4xl1QokMRUYU05UPgMOmsHvzIQFmIohtkMcnhBBCCCGEEOJQ1dXV1NbW0tjYONhDEaJP3G431dXVfTpGgkD9JBRPU6iiaHcBAA6bgcNbAC2gE+FBHZsQQgghhBBCiM45HA4mTJgw2MMQ4qiQ5WD9JJTIdQfzFALgshs4fQWALAcTQgghhBBCCCHE4JMgUD8JxTPk6fABmUBOr1UTKB1tG7yBCSGEEEIIIYQQQiBBoH4TjqfIN1vBXwaAy2FQUegjot2kY5IJJIQQQgghhBBCiMElQaB+opMhHDoN/nIAvE47VQVewnjJyHIwIYQQQgghhBBCDDIJAvWDTNbEm2oCwMiraL89z2Mnoj3oeGiwhiaEEEIIIYQQQggBSBCoX0SSGcpUGwBGYH8QKOB2EMYDSckEEkIIIYQQQgghxOCSIFA/CMUzlNIGgC2vvP32PLedsPZipCKDNDIhhBBCCCGEEEIIS6+CQEqp85RSG5RSm5VSd3Sy/TSlVFAptSr37zv9P9ShK5RIt2cCqUMygbzY0uFBGpkQQgghhBBCCCGExd7TDkopG3AncDZQC7yrlHpCa732oF1f01pfNABjHPJC8TSlqo2s4cLmymu/PeC2E9YeHBnJBBJCCCGEEEIIIcTg6k0m0BJgs9Z6q9Y6BTwIXDKwwxpeQgmrJlDKXQJKtd/udtiIGV5cmeggjk4IIYQQQgghhBCid0GgKmBXh99rc7cd7Hil1Gql1D+UUrP6ZXTDgGlqdrXGKKUN019+yPaUzY9TJyCbHoTRCSGEEEIIIYQQQlh6EwRSndymD/r9PWC81noe8EvgsU7vSKnPKqWWK6WWNzY29mmgQ5WpNe9ua6HSFsTWoT38PllHwNpP2sQLIYQQQgghhBBiEPUmCFQLjO3wezWwp+MOWuuQ1jqS+/kZwKGUKjn4jrTWv9VaL9JaLyotLT2CYQ8tmxsjVmHoTjKBMk4/AOm4tIkXQgghhBBCCCHE4OlNEOhdYIpSaoJSyglcDTzRcQelVIVSVjEcpdSS3P029/dgh6LMznepaFlOQEc6DQKRKxRtShBICCGEEEIIIYQQg6jH7mBa64xS6hbgWcAG/FFr/aFS6vO57XcBVwJfUEplgDhwtdb64CVjI4+ZRT36Gf7bbrWANzpZDqZyQaBsTIJAQgghhBBCCCGEGDw9BoGgfYnXMwfddleHn38F/Kp/hzYMGDbem/xFjn/v/1m/Bg7NBLJ58wHISiaQEEIIIYQQQgghBlFvloOJbjzHcazUUwCw51cesn1fEEgnpTC0EEIIIYQQQgghBo8EgY7Qurow/xf4F8I1Z0PJtEO2O3NBoIwsBxNCCCGEEEIIIcQg6tVyMNG1ynwPjqKF1J9yFQGn95DtTn8RAKnwqKiTLYQQQgghhBBCiCFKgkBH6Gcfm8+ulhhdlcH2+7y0aR9muL79tlAijdNm4HbYjtIohRBCCCGEEEIIMdrJcrB+UORzYrepTrcFXA7qdSFGpA6A1miKHU0x4qns0RyiEEIIIYQQQgghRjkJAvUDn8uO3915UlWexwoCOeP1pDIme4MJAOJpCQIJIYQQQgghxMEScq0kxICRIFA/yXM7Or094LZTrwtxxxuobY2RNa11YxIEEkIIMdo1R5KDPQQhhBBDkASBxNFgml3UdBnhJAg0wPI8DuoowptqJhpPtd9+uMvBoslMfw1NCCGEGBRLNzTw7cc+oC2eHuyhCCGEGGK01iTSZrf7ZE2N7qooqxC9lMx0/zobqSQINMDycplABlnsiSbrRjMLqdhhRbhjqSzJjETGhRBCDE+N4SRfenAV9769g0x2dH74EkII0bWsqUn1cHGezpo9BoqE6I7Zi9fZSCXdwQaY32XH9FVACuyxelQ2Tc1zn0QrG4lPv9LnDmGprEkiZeKyS2cxIYQQw893Ht+fARSUTCAhhBAHyWpNKtv9l94ZU5NMZ/E45ZpIHB5Ta1Kj9MsoyQQaYEopFs6aAUDLjrVMevJS3K0b8LSsJRms7+HoQ6UyJrG0LAkTQggx/Dz9/l7+8UEdk0v9ALTFJAgkhBDiQKbZ8zIdvWc1qYZNR2lEYiTKak1agkBioJy0cC4A+oNHcMQa2DPrswCkd73X5/tKZUxpLy+EEGLYaYmm+M7jHzC13M+1x44DIBpqBanpIIQQooOs1pgm3V6ge57+F/JeuL1P95vJmrIMWbTTGjLZ0fkZRIJAR4GvuAITg4Wp5SS1nT+aF6FROOpW9qm+j9Ya39oHyTasH8DRCiGEEP3vR8+sIxhPc+vpUyjwOJiqdvGR50+D9/822EMTQggxhJi5Lwe6q9diRBtw16/g/15ax66WWLfBnc0NET72f2/xzJq9o3b5jzhUNtKI2bbrgNtGS7FxCQIdBQ6Hk6y3FKfKstExjRd2miQLJuNpXE040fulXalElKpXb6fkvV9J20QhhBDDxns7W3loRS2Xzq+ipsRHwGXwn47fYjcT6NDuwR6eEEKIIWRf2+4ug0BmFpVoxZZN8uzz/+SrD62mMZI8ZLdoMsPSDQ1c+Zs3WbathXe2tZAeYpkfr2xspD6UkGu7QeB84ZtUPPPJ9t+11qNmmboEgY4Cu6FIe8sBaCtdwvbmGM35c/A0vk8olurh6P0yzdtRaPx73yIlHcKEEEIMA1lT8+3HPqDI5+Sji8YCMGXHA8w3tgCgk9HBHJ4QQogh5u/v1fLrlzd1XRcoEURpa9tVpTvJbH+LPz71avvmjfVh/vXva/j0n5dz45/exe+243PZCAbbMEN7j8ZT6JXa1hg3/ukdfvvq1lHbqnwwqUgDztZN6KyVlBGMp0mbo2MeJAh0FNhtBhlfBQDeqacBsMqcgCPRRLplJ1mzdxHpbJP1gdkRq2v/WQghhBjK/vruLj7cE+JTJ07A47RhizczdvXPedWcS1J50Ol4t8ePltRsIYQQVt2e7Iv/wWc3fY5dLbFDtmutuffFFe2/X2a8yt9cP+CUDf/Oqp2txFIZPvPn5Ty2cjebGyJcsbCan310PjPzUty+62YCf7vyaD6dbj28ohatYU9rDDMjjX+OumQYw0yRaq0FoCmSHDWfOSQIdJRkA1WYNheuCccxrSLAs21VAHjqlhPvZfpf7ZYP23+27XxjQMYphBBC9JfWaIr/fHY9c6vzOXlKCQDlK/4LIx3jZ7abSBoudKr7TCCp3yCEEKPHyxsaqc5sZ4Gxmdc/2HrI9hU7WnnszTUApANjcbdtxkaWE9UH/PShF/niA6vY2RLjPy6fw/0XerjpmAJ82SD/mfg3xmV3YoRqj/ZT6pRpah5abo3lmPqHyPvtQmmU0AemqWnuZAlgn6Qi1n01b2Hd3hB/eH4Vz//88+zeeejrbqSRINBRElx0C9vOv4/8vDw+MreSpxrLSLlLyNvxLLFUz5Hf59fWs3zle4S0lzajENvO14/CqIUQQojDd/87O2mLpfnMSRNRSuFu+oCi9Q/QPOtGmj01JHBB+tBvejuSFHkhhBg9HnhnJ6V267ywd+PyQzIztjZGKVYhAJIzr0Arg9qTfoShNAta/8kL6+q5dsk4ZjobmPz4RUx9+EwmPXk5VZmdvGbOxUhHIZ046s9rn33P54V19exui+N12lgUew1beA9kjjCoMYrsCcbZ05boU5Olg6lcECjTuIWb7n6X/HX383HzMdKhhv4a5pAlQaCjxJY3hljFEtwOG+fNtrqFfZB3Knm7XiIZjfR4/LvbW5hg1FPvqGKFmoWr9q2jMGohhBDi8D25eg/zxxZQU+IDrRnz1nfJuouoX3AbAbedWC+CQN11hxFCCDFyhBJplm5ooMplBWk8LWvZ3XbgkuH6UIJCZV07Gcd8knXXLic08+NExpzALYXLePhzx3L14nGUrPk92nCQcRdjjzXyt6k/5+nsEutO4i1H9Xl11BRJ8fqmJm57cBUTS31cNCOfWWau83Oq52tCYYmnrOBPIn34nxH2BYE2rX+fxmCEW3wvkhp3EjWzj+uXMQ5lEgQ6Suw2BYDLYTC5LMDEUh9/TxyDkYmjtr7Y4/E7m2NMtNUT9Y3j3eRY7NE6SIQGethCCCHEYdlUH2Z9Xbh9GVjhpofw1b9L3aLbMV355LkdxLULeqgJJEEgIYQYHVoiKUwNAW1dnE9XO3ltU+MB+9SHE1Q5rWXEnoJSTG8J1UUewrM+jiu8k/IdT2GLN1O46SHaJl/G5sueYf01b5OoPp5WHbDuJNZ8VJ9XR2t2t/HZe5czvtjLb65byIzUhzjIZbNIEKhXTFO3ZwkfdiaQ1qi09ToK7t7Ap4rW4E/WE1v4uf4a5pAmQaCjxG5Yf2qX3frvebMq+GvjWNKuIvxbnibTQ82D3c0hKnQjqmgCe81C68bw0KluL4QQQnT05Pt7MRQsHl+Et+4dxrz+DSIVx9E69WMAFHgdRE0n9FATSJaDCSHE6BBJWiUy3JkgADONHexpO3DpVn0oSaUjhmn3oJw+qgs95Lkd2OZcRrx4NuXv/oTqV/8fRjZJ0+zPgGHHdAYoC7hoGeQgUCqd5T//uQGbofjZx+aTymhmJlZ12EG6ZfZGIpNFa7Al2kjFDjNwlo61d5gbk93DZ+3PkMyfSGriWf040qFLgkBHidNmoJT1X4DzZleQ1jY25p+Av/YVYql0l8dqrcm07sSGib9yKvUUAZANShBICCHE0BNKpPnbu7uYPSafEluM8S98jnSgmp1n/RYMGwCV+R7CpqPHTKB01hw13TqEEGI0CyXSuEhhzybQys50tYvm0IGBkYZQgnJ7FO0pBqDA68z9183eY7+FM7qHQO0r7D7h3zHKp+GwKwwDFtcU0YofAB0dnCDQ408/wX+33ML/O6HQ6g6tTSaF3yGlrfOiBIG6F4xZ18uxaITC525lxn0LyX/+K4d3Z0kreBTDxTSjluLQhzTN/hSo0REeGR3Pcgiw2xQuu4FS1rKwOVX5lOe5eDk5HXuyjVTtmi6PbYulKUvvBqBo7HSaDetNLxvcPfADF0IIrNTbRC87GYrRTWvNN/6+hoZwguuOG0/5iv/Clmxl5xm/JusuAMDnslGR7yKqXZg9fOjNmpp0VoJAQggx0oUTGfKwzgmx0nm4VBqj9cBOTfWhJMUqjPYWHXC7027AhJOpPenHbL3wb7TMvIHKfA9TygJMKvVTWeAh7bRWU2SjTUfnCXWwqyVG7Yp/MMvYwfnxp7BF65nwzDWURDbwnLnY2ikZPurjGk5aYymiyQxvPHUP1TsfJ+HIw9mw+vC+KMotvVtrjgcg4yqgdcqV5Lkd/TnkIUuCQEeJw2bgstvaf1dKcf7sCv7aVANAZssrpHNLwg5+Ie9siTFe1QHgKptMXtlYa7+QZAIJIQaWaZr8/rWtbKwPE0tJEEjslzU7/9D1zw/qeOr9vVx37HgWGRspWvcXmmfeSKJ4Zvs+Ywo8FHidVnewVPeZQFlTd/lYQgghumcOo/fPcCJDvrKCQNHK4wEoDG1sfw5ZU9MYSVKgQ+2ZQB0V+1y0Tr+WWMViPE4bPpcdm6FwO6xrMF9BKTA4mUD/8cw6anLXc8Xr7mX8czfhbVzF2kX/wZ2ZS6ydJBOoW8mMyUvrG2jYsIykdrDUey7O8E6Sie4bTHTmzbXbAAjmzwCgZfrH8fsD7a+VkU6CQEeJw6ZwOQ78c58/u5Jd2SLaPGPx7nmT+lCCYDxNbeuBH4itIFADGZsXR34FNRVlhPGiQ3uO5lMQQoxCL65r4AdPr+O/n98omUDiAJ0VbDZNzc9e2Mj4Ii/X1YQZ/9wnSQXGUn/M/nTtQp8Dt8NGkddJTPfcHUxrSJtSF0gIIQ7H3lD/tUMf6KW54USaAnLLdMrmA1CU3Ekq90V5SzRF1tT4zSDKd2gQKM9jx2G3Vl2UBlyHbK8o9BNS/kEJAr29tZm53iYyrgLsiRY8TR+w8/RfEp99LRHc1k4SBOqS1pp01uTnL2xkoWMHO50TWdpWitIm6YbNfbqvlmiKO59dDcCic66mfuGXaZz72U5fMyNVr4JASqnzlFIblFKblVJ3dLPfYqVUVil1Zf8NcWRQSuFz2Q+4bVFNEYVeByuN2fjq3qE1nGBnc4xgPH3At577MoFSeeNw2G1MKPFSZxZKEEgIMeCeeN96n3lpfQM7W/r+TYsYmbTWnQaB/vFBHRvrI1y9sIKJL34GbfOw7YL7MZ15ACgF5XnWh91Cn4M4Toxs15lA+86FGVkOJoQQfRZLZWiJpNpXGxyuVDrL5oYIWxoHNkgRTmQoyGUCpX0VtNjKKE3Vto+/PhfQ8mSC4D00CKSUosTvoqrQQ77n0GU9ZQEXrTqAPsqFoSPJDK2xNBWZ3YRqzqNl2jXsOeEHhMefg89tw+ayahVJd7CuJWNhAi/eQbixllnGNlKlc1mTrADAbNzYp/uqbY3hMq3PtIGCchoWfhlXoOiQa/WRrMcgkFLKBtwJnA/MBK5RSs3sYr+fAM/29yBHCu9B6WU2Q3HxvDE8HpyELRXCW78csL71DMX3F4qubY0x0daAWTABgHyPgzpdiBmqO3qDF0KMOumMyeubmpha7sc0NX9/r3awhyT6IJM12RuMH3771G6YnWTnaK355UubGF/k5QLjLZzhXew+6T9IB8a171Pid+HINUgo8DqJ48KeTUAXmT7Ztt1MeOoqsmE53wkhRF/sDcZ5ZIV13o4lD/888PSaPZzxP69w8a9epzmSHNDlZZFkhhKbFQQyXQU0u8dSbe4hnluO3hBO4CCDMxNB+Uo6vY8Sv4sin7PTbQG3nRYdQB3lIFBta4wAMXyZNoySyew++Se0zLwej9PGhBIfXn++taMEgbqU3fYm47fezw8cf8SdjeKrWcgeexUmCqN5Q5/uqzWWxo/1BZThDuC0GxR6O3/NjFS9yQRaAmzWWm/VWqeAB4FLOtnvVuARoKEfxzeiGIY65LbPnjqJpeYCgrZCKt/5Aa7WDZS/+2NCoWD7Pruaw1RTT7YwFwTyOqmnCFtUagIJIQbO21ubaY2luXR+FdeOqcf14UOdZn+Ioee5D+tY8sMXeHFtA4l0/8+ZmUvL7mjpxkbW14W5fMEYytfcRaJwKuGxZ7RvdzkMyjqkWhd4HMR17vdMF9lAe97DX7cMW+3yfn8OQggxkn35r6v59uMfsmHjeqKJvi8Jq22N8Yk/LONf7ltJJJkhlsryfm2Q5AB+Dggn0pQ7rPOBN7+UsG8cNaqOpkgKsIpCF2AVTzY6WQ7WE7/LQZPph1hL/w26F3a1xNvrAXkrpuJ2GLgdBhNLfLjsNgL+AFkMdFKCQJ3RWhPdsw6Ac2wrAPBNWMSMsRU0GKUYzZv6dH9tsRR+lft/whXA67S1d5kbLXoTBKoCdnX4vTZ3WzulVBVwGXBX/w1tdKgq8HDWgin8W/JavI2rmfzIeZSt/jX2tQ+319+INdXiJIMu3J8JVK8LcMYbu/z2VAghjtRTa/bishssriniC4nf86/mb6kPypKwoe7v79Xyub+soCWW5s2tzSQHoJZT1tSHLNG6a+kWygIuLvR+iLt1A41zvwDKwOuy4XYYjCvyHvBliNdpJ07uQ1cXbeJ1og0A1baj35+DEEKMVGtq23h7azOTjL1c8uoFsOLuXh2XNTVvb23m/mU7uPhXb7BiRyufPmkCv79uHtc7X+bC1y8j++HjAzbuUCJDiS2GVjYC+YUkAhMoUFGaG60vvutDCUqUFQRSnSwH64nfbadVB1Dxo58JNCEXBHKUTaaywMO44v3nxNI8N3HcaKkJdADT1DRHknzzsQ94/tXXMLX19zINJ56q2Ywt8rDZrMLe0tcgUBpfLhMIl5+yPBe2TpI1RrLeLHzr7C9ycB7gz4Gva62z+1qgd3pHSn0W+CzAuHHjutxvtPnyWVP4zO7zWBp8B282wuy8GPmbHqV2zscp8DhwhXeAE1TxRGDfcrAiDJ2FaCMEygf5GQghRppM1uS5D+tYXFNEIF5LdexDUPDelnWMLV7c6TGmqWmLp9FaU+wfPcX1hpJdLTG+9dgHzK3KJ2NqWmo3km1yQt7sfn0crTkgE2jlzlaWbWvhMydPpHzdL0l7ywhO/AglASeV+Z5O78NlN4iTe52kotBJar+OhwAwgjv7dfxCCDGS/fKlzXidNn495hUcdRmC65dSfuYtXV7oRpMZXlxXz/88v5HtzdaXPaUBF/955TwW7L6f0od/wyKjEVIQ2/wsLLh8QMYdTmQoMqJkXXn43A4yuVIYyfqNwDTqQ0nGe2Jg0mlNoJ4EXHZaCGBLtFgnsm6uW/vTrpY4k+31AKiiifgdB16ClwZcRLULT1KCQB1tbYoQTWZ55v29XOOuZ697NkWONKbDh8ftYWyhl/WZCk5ofdlKjDB61/OqLZbenwnk8OHq5XEjSW+ecS0wtsPv1cDBFYkXAQ8qpbYDVwK/VkpdevAdaa1/q7VepLVeVFpaengjHoGqCr385vpjSF91H9dmvsNzzrPw1y0j07yDp9fUtacP2ksmA1YQqEEXWgeHpTi0EKL/vbW1mSWJN/hh/PsUr7u3/fa2HWsO2dc0NU+/v4cl//ECX3t4NZFk5mgOVeTEUhm+/NdVaA1fPH0SX7fdz72xmyl87Pp+fyxrOdj+74P+75Wt5LntXFQVI1C7lJbpH8fr9XQZAAJriXTayHVE6SITiIS1NNoW2oXWWjrUCSFED3Y0R3lhXT3XToWp9c9gakVp8MMu3z93NEW5+b73+OKDq8iami+dOYV/+8gsfvGxBcwOvsKYZd8nWTiVB6f8D29mZ5Kp71v9lb4IJ9IUGFFMVwEOm4GrfAoAumULAA2hBHMcuWufool9vv99mUBGNtljZ8r+tKs1xgxnIxn/GHAcel4s8DiJaDdmMnTUxjTUWed8k62NUdriaSaqvXjGzGT7eX+m7pzfYDMU1UUeNusqjGwCgrt6vtOc1liKAlsS0+HrdeBopOlNJtC7wBSl1ARgN3A1cG3HHbTWE/b9rJS6G3hKa/1Y/w1z5CsNuAjFM5w7q4L//nAelzqhcPPf+SBxCZONBkzDibPQWoVXkCsMDaBDe1FjFgzm0IUQI9BTq/dytmM145tfh+bXiRdOx9O6Ht2wvn0f09Qs3djAnS9vYcWOVuyG4rVNTbTFU4zHN4ijH31W72rj5vveY3dbnFtOn8yUpucZ13g/tZQwJrQdMkmw9192llr/FHl7t8B5/4+tjRGeXVvHNYvHUrXpT5iGg5bp11Ldi1arWZvX+iHdxbefuSCQPbSTLY1RvE4bYwq6DiwJIcRo9+ulW1BKcZP5d7RSPO66iMtST9IaasBXOuaAfV9YV8/tD60mlMhw3bHjuHJ+BSXbn6RozQOYa114mj8kXjybbef9mfxgmk3r/sExrW8OWBZNJJEhX0fQbus6p6h6KlmtcAW3k8pkWbGzlc+6N5EJVGHPr+rh3g4VcFuZQADEmsF5dD6r7GqxloNlCiZ0evHtddqI4sZMSE2gfVJZE62tTOM8ovjSzcSKJpPxVeDLdX4bW+jlMZ3LCAvXQeH4Xt13MJ6m0J5EO/0DNfwhr8fQl9Y6A9yC1fVrHfA3rfWHSqnPK6U+P9ADHC28TjvFfifXHjuONmcF7zoWUfL+/9GyezMzXU2k88bhcFgv+LzccjAAU9rECyH6mWlqnl1bxzRvjIy7iKzdS9Pcz9OoivGHNmGamtZoihv/9A433b2cjXVhbji+hm9cMAMyCbatfr29tbcYeBvqQnzyT++QMU1+dNkczp1RQvl7PyNWMJWfZa7EwCTVtKVfH9Ox5gFKV91J1tT87rWtOGwGF07Lo3DjQ4QmXIijoIKA+9D2vAfL2nuXCaTadvDw8l0DWpBUCCGGu7pggidW7eGq8VEqtz1Ey4yPs67wNADMgwrsN4QSfOWvqwg4FfeeGuWzpWuZ9syVjH3ly9jizTjDtahMgl2n/QwMB1UFHnbZxuLKRsmGBqY5TTiRIaAjaE8BACX5fvZQij+6gzc2N9MWSzEru45kZefL0nvid1mZQIAVBDoKtNbsbo1TbtahC2s63cfjtBHDjSnLwdrtyzbetW0DJxe2AuCpnIHdpnA7rRBGdaGX5tx8ZqONvb7v1liKfFsSRnEQqDeZQGitnwGeOei2TotAa61vPPJhjU4VeW7KAi6+cf4MvvTo9bzk/Ve+3PoDqu0hMgXz91VOwGYoUq5cECjSiK3ruxRCiD5riaVoi6Up97QSK5rPjrN/B4YDtexeKhLbqQvF+fQ9K9jUEOa6Y8dx8bwxeJ127M0beNL1baa+u4vo/DfwVfVvHZqDpTImTvvoTOPdZ+2eIF98YBWxdJafXjKbSZ4oJe/+CldwKzvO/D+SbwUhBumGzTgrZvbfA6ei2BPN7Kqv55EVuzl/dgU1u5/Clg7TPPMGSnpZE8q0eyEDpLpIy8+lxrt0gtfe38AlC/r+za8QQowGWVPzpze2EU9n+aJ5H6bdR8OC2zDfbyJbpzB3LYcFF6O1ZktjlP97ZQuhRIaHprzMtLd+B0DGVcDO039JcOJHAIUyU2ibC6/LRrHPSSJ/MoQgtXctnvwx3Q/oMIQTafzuMOQygVwOG+uNMVQmdvHAmr1MdLThTzYQrDq8INC+FvHAUQsCBeNpMskIAdVGoqCm0308DhtR7ZYW8R28umYbjhe+wZ8Sz7HXZS06spdPo8jrxOOwrn7LAi5CRgEAZrih19fEbbE0eUoygcQQYRgKu83g6iVjGTdxOl9L3MgUduElRnrCWQfs6/V4SCgPxNsGZ7BCiBGrPmQVywukm8l4y60AkIJI3hQm6F189u532NwQ4VsXzuSa+SWU732J6pdvY/pj5zLWaAIgvWvlgI8zkRnd9WEeX7WbC3/xOnWhBLefM50pjkamPnQapWv+j+D4cwjVnIutZBIAZnP/ZgKp3AfVf772FhnT5MI5FRSvvZtYyRxSlceQ7+k5CwhA23NLuzqpzZDKmNTV17f/bgvupDWa6rcsM/MoZasdrccRQoxu4USaR1fu5uqS7Yypf5nG+TeTdRcxo6aSjXosutZqrR1PZ9nSEOHx1Xv4l+rtTNv0O1qmXMXmix9nw0dfJTjpElAGKIW2uSjPczGp1E+B14kqmwaA2dD/dYGypiaayuLNhtEeKwjktBk0OKopTdXy/No6riirtfatWnJYj+F3OWgjd+HfSZv4gag7t6slTpWyPhsZRZ0vV/I6bcRwSRAoJ5xI0/zUdzkz8TybbZOoTG7DNBw4SyZQ2CEIZBgKd4HVIElHep8JZLWIj4MrMCDjHw4kCDQEKaX45TULiE27ggXmPbx51Woyx9x0wD75HgcRw4+WIJAQop81hJLYyOJOtZD2lgHWt2dG+QzcKk24fgs/unw2J/jqmPrIWdQ8/2nydj5H06xP8cDiR0hqO+HtqwZ8nNmsJjVKlwfFUhl++PQ6ppQH+N31i1hSU8iYN74FwKbLnmXn2b/H53ZQXj6GNu1D9XMQiFwb27Ufvs+pU0uZHFuJu20TzTNvpDjgortOoR3pXIHMztrifveJD4kEm2myWa/BsaqR7Tt3keyn4F/aPDqvnVR2dL5GhRBH13Mf1tEUjvNV7iblr6Zp1qfI89iZWZnHKnMSgZY1ZE3N9uYo33niA2bY9/Cl4I+JF05nz4k/IF62ANNVAFjLk5x2A4/TRmmH+m6lFeMIai/Z+nX9Pv5IIoOBiScbRnmtIJDdZhD2jcNHHHu8mVM928javdgq5xzWY/jddsLaqkVnxoOHjqGXjS1CiXSvH3Nbc5RqZQUobEU1ne7jdtqIaA/GUSxWPZT99tWtTDG30lI4n8T1/yBePJtk8XQMuwOn3cBu2x/CKC/KJ4oHHe19ZldbPI2XBLhGbyZQr5aDiaOv2O/ka+dNIxSfhNNu4HYcmOBW4HUQCfnISxz6BiaEEEeiLpSgmBAKTSYXBMr3OMhMnAdr4OaZSU4uT1F892WYzjy2nftnomOOt1LG9wTZpKspbur/D4gHy5iadHZ0Lgn77StbaQgn+epZk5i99JM4wrtxBzez5/jvkyieAcCYAg+lATfbdQVTWrb26+PvywSqyOzhlHljKF7932RchYQmfYRpXmev70c7ch/GU7FD0rg31IUosSdwVs2Dnc9zu/2vjHv1V4SnL4cxk474OWSyGtdR+BSUMTVZU3fZmlkIIfrDfct2cpPvDUoiG9l5xp1ou5uygBul4CFdjSfzMms2beHzf9/B1Pgq7vL/EbSTHef8oT0r0+0wqCr04HVab46mqQ8I6k8o9bNJVzNxADKBQok0eVhfCBi5TCCAExYvhufgP8/wMXHjOuKl8/G6D6/RgddhI6Ss847u5Boqmsz0ajlzNJnBbqj2v1N31u0NMd5mZQLZusoEclg1gYyumiSMIuFEmt+/to2bnA3o0jPRdjdbLnqYgD1DZ3+96kIvzbvyKO9lTaCsqQnG03gcMXBKJpAYYpRSjC3y4nJYU+Q66CIn3+MgqH2QaAMgI980CiH6SX0oQZmyivClveUoBXluByUTFqBRnF7QgN7+GrZMjO3n/IHI2NPQNutDU6HXyXo9jrzg+u4eol9YbcpH33vfB7uD/OaVLRw3sYjj4q8SqH2FjLeM5unX0jzDagef57Hjdtgo8jnZpiuwtQ1MEGi+v5UZniB5O5+jZfo15AUCB3xD1+P95Dqz6E5qAsVSWXxESfvHkHEVUmPUY2CSrVvTL88hk+3bMq3DXdaVNUfn61QIcfTsbI6xubaOL6m/Ei1fRHDCReR57HicNtwOGy3eGgB+8pcnuCH1APfa/h2nSrPjnD+SDoylutDD5DI/k8v8BwQ2jIOC1xNKfGw2x+Bp29TvzyGSzFCorHOL4Stqv91VPhWAaaoWd8s6kmVzcfThPNORYSicLi8Z5UAnDm3H3ttMoGTaJJzo3b5r94SY7WnDtLnAV9bpPh6njSgu7JmY1XltFFu2tQWVjlKYbSaVVwNYXxjZAyWd7l9d6KHJDBBvqyeRzrKjOUpLNNXl/YcTabQGtxlDjeJMIAkCDWFuh40JJT4Cbvshb3b5Hget2ovKBYGC8d6nJQohRHfqQ0kme6wPYmVjxjOu2IthKFy+AMmCSbgbP8BW9z6mzU2iaEb7cUrB1Ao/68yx+NLNZMMNAzrOrKlH3VKb+lCCm+5+l4Dbwc2nTqL0/d+QKJjMtgvuZ89JPwbDhsdpUJ5ndd0q9jvZblbgju3tugNXX2nd3tJ9rreZovV/AaBlxvW9Lgi9j9q3HKyTFPhoMo3XjGK68oiXzGaHazoAZuPGIxl9u74uB4t1UitCa91jcEhrLd3yRJ/oUX4RONQNxfl5es1ebrY/jj/Twt7jvgtKtZ8HADJFViBlgaeej/tXEKk4jg0ffZ142XwKvA4KfU48TluPS3knlPjYpKvwpFtJh3tfg6U3wokMhYQBMHz7L/iNovFoZSdvx/MYZgqzYt4RPU7AZSdu+A7JBMpkTUyTXi0zN1u2E472bunWur0hJjtbyAaqwej80tvrtBHTbhRm/52rh6k3tzQz1W7VA0zmT8Rus16TBydE7DOlzE+zzmfvnl1M//Y/uenud9lYH+7yvNsas66ZnVkJAokhzOeyU1PiO+T2fI+D5qwXlXsDiyQzkg0khOgXDaEEE13WBzF34Rjycq2+nTaDePEcPE1rcDd9QKJ4Jhh2DMNaojq5zE9NsY+tRg0A2b0fDOg4s+boqglUH0rwsf97i3Aiw7cvnMG4plfwtKyjce4XrCKeQHm+i8llgfYlxMU+F9t0hXUHLdv6ZRzxWBRDWwGRksQOitY/QGjcOdiLxuJx9q1fpcvpJImj0+5gOhnFhonDW8D2c+/m6SX30KjziO3pnyyzvmYCxTp8Q9wUSXLxr15n1a42Mj0EeLKm7vNjidEtPgDFaUX/GYpfPjz9/m5usL9I24SLiJfOo8DrOKCUxMxpM4jj5roxdXjDW4lUn4K2u7EZiop8dzf3fCCfy06TuwaAdN06MlmThnCiX55DOJGmUO0LAu3PBHI6nKTyxuHf/Zq1rWrBET2O320nqnxwUBAoncnirXu3x7pzOhmm5q9nEHjnf2mJpmgIJwgl0p0GHRrDSRrCSSppwMwf1+V9epx2IuQaJXRSI280eXNLE6eXWllansppTCsP4HHaugwCnTWjnNlTJjLOHeOmEyewpTHKsx/UEekiU6stlsJGFruZRElhaDHc5HsdtJlejKT1BpbMmPKhQQjRL+pCCaodITQKI1DefrthKFJls3HE6vA2riJePJsiv5OZlXmMLfLidljfIjb6JgOg6z8c0HHmvfIdbNuWDuhjDBXRZIbrfr+M+lCS7108i2nuNqpf+xqJgilWJxfA5TAoPSgTp9jvZIfOzWHr9n4Zy91LreBewlmEI96IPdlK86wbKfL1vUaD22GQwNVpdzB72roYcPgKwXAwbUwhW/UYaNnSL5k1fVmipbUmltp/jn1s5W7erw3yzrYWzB6yAkwNmaNUhFqMDNGkfJ4bypJD7MuH7U1R9uzZjZ8osfJFKAVleQe+H998xhQonUpZ7bMAxMoWoBTUlHj7vLQqncsqyjZsoC6UoD6YZGdz7Ijfl8OJ/cvB8Ba33+60GyTzalA6Q9YRwFV2ZDXh/C47UeWFZPiA281NzzHpqSswdy3v9vhU/SaMbILCTQ+zuyVKfTDJjqYYa/eEWLsnxPo669+6vSH++cFeAAqSdVDQTRDIYSOmc3M2ijuENUWSrK8LszhgdW4rGTsdw1CMLfIcUh93H8NQFJVX4c20ccPxY5lTlc9Ta/bSEkt2un9bLI0PK9tKgkBi2NlXE8hIR9GZFCkJAgkh+kl9KEm50UbWUwS2A1t9m+VWGraRTULlPKoKPIekjzvzymlTBdAwgMWhsxnyVv8e37q/DdxjDBFaa+74+xq2Nkb45gUzmF0M41/4DMrMsOPs3+FwuSn2O6kuPHQuinxOWrA+5JidtMPtq2AszcNvWZk42bLZACQKpxKvOp6CXraF78jtsJHAiT4o/T1rapwZ6wO6zVuAOxfg2murIj+6nViqd7UYutNTBs/B+yY6fDv8yHu7ASs7q6cgkPPDv6Jq3z28QYoBNVQzCfvj9S0GzlB73by8oYHxylo+k8obR6HPict+6AVzpmgKRiaORpEun8/4Ym+vChsfrKCihph2EdyxhtaotbQmGE+zpTFCPHX41yLhRLp9ORieDplAdoNU/gQA4iWz8Tj7fq7pyO92EMZ7SCbQvs8sur7rLOZQIs3Kldb7uTNSi6327QO2Z01NOmP9y2Q1WxqjeEngTreiCrsOAnmdNqLkMrJGcSbQm1usDl8T1V7S/ioMl1XE22W3dRusNPylKDNDonEbXyt5E3dkJ89+UN/pvm3xFH5y2WujeDmYdAcbpvI9DjZiLRNLRVsp/PAhUjMvgcDYQR6ZEGI4S2dNmqNJSnytmL7yQ3eonNv+o6N6fqf3URpwUd9UTE2kboBGCSTaUGgcrf1fnHKoeer9vTy5eg+fOG488ytd1PzzetwtG9h+zh9J5U9kbJ6Lgi46crkdNrLOfMBqh3uk3/zsDcVxZmNgh+yYhVD7Ks0zbyTf6zykgGhv7Pv2s+igjijxdJYAVnaQ4cnD47SRSJvE8yaQH3yRxnALAXcnr88+6MsS6mwyig7uxSwLsL4uzLq9Vqp6ed1LqFUrYMknujzW/+q/kaw+CaafdETjFf3LNDUt0VSflsIcLamMSSozOjsfDgdmrtj74RYn7m8f7gkx090CGtJ546kKdJ6VaRZPAyBROI1J1RV9KuLf0bXHTWDbmiraNqyktuAdjvM3EJpwIcm0yZbGCIU+J/FUlvI8FwF37wM24VxhaG04DsjQcNr2B4GSZXPwH2GnxYDLTtD0opIHfjGicl00VWPXnc9++8pWbO8sY4ldkcDJnmf+kw/d87HnjyFTPJ2QbxwOh/X3T6azLNu4lxN8eyALRmHnncHAqncTbw8Cjd5MoBfX1VPgdZAf30W2YCK9ffWoXA2pshX/w7TNj/KaC36/8laix38Pn8tO1tQkM1m8Tjut0TRjlNWtDX/FwDyRYUCCQMNUe3cwIFv7HlVvfpPGdBCqvznIIxNCDGdNkSRaQ362GbPg0JOjy19IMq8GR2Q39sqZnd5HacBFvZnPxEjn38L0i1xWi6ttC5lMBrt9ZJ7OUhmT/3p2A5PL/Fw5v4xxL34Ob9277Dr9l0TGnobdpsjvIQPH7cuHGOh42xGPJxTP4M19g6bGncCWspOJlR/DJF/v28J35HLYiGknpA7MBIolM+SpfUGgArxOO9FkFt+Y6RCEpu0fUlp6ZEGgvtT1MN78BZPf/T3nOf9AbTCF3VAU+Zyc3XAPzmWq2yCQSkUwInuPaKyifz25eg+RZIaTJnfebWawpbIm6awEgYaqrLayPLpYnXLUrd0T4kZfC0TAVzGxy+CUKrWWcSUrFuI5ggDW7Kp8GifMpXT763jevoPxxmZaxp3D3lN/iukqoCVidWbaG0zgd9l7LDa9TziRoUaFMd2F2Doco5QiW2gtAcuUHVlRaLCWgwVNDyp5YHcwo9UKAtlbum4+8OGeINe6G4k7K6nNP4az6p7krPR70AQ0QVrbyGBDoTEwcar9mVH2kq6XsSmlSNtzNWBHaRAonEjz7Id1XLGgCuf6LSRnXN7rY21+q+ta3o7nSeRPpiEBx7U9zeaGrzK9MkBdMEE6q5lc5qctnma6scs6sLzzz7Gjwcj81DwK5HschLBS5My9VrtcZ8MqsqbGdoQRciHE6FUXtC7wA+lmtP/QD1seh41I1Sk4Q9vwujyd3kep383uTD4qOoA1geJWEMjIxAk27CATqKa0i28/h7MH3tnJzpYY3/vITKrf/CZ5u16i9qQfEZx0MQDFPmePH7AL/B5icQ/2g1PfD0MwnsavrNeI05dHrGAmbodxWEsKwKoJFMOFeVD6ezSVJQ/rNpu3AK/TRkW+m8ikObAO6rZ9wIzFZxzRczFNa6ldry5Q2nbiSLaQDW3m7HmLmVji4+2NuxnXsBXSlV0fl81gZBLYBjIrTvSa1pp3t7fwlb+tojrfzen2NVB4gdXacIgwTd3eoegwymyJo8DUVndBD4MfBUplTDY1hJlY1kTaV0FpYUGX+xqVc9HKIDv2hCN+XNeYmeRte4wyo4k3zFkcu/NFnA+dR905vyFeZhVuTqZNmiKpXp+b64MJlthjmJ6iQ/6y5viT2H3if8C0i4547AG3nRbTg0oeeE60t1nNExwtG2mOJCnupNvl2r0hJtvqUCVTyJ7xI7Y030AqbwL2eAOOprU4WjdjZtOAwmbYUO4ApisPlVfJmDHdF7Q2HV7IMmqXg/1jTR2JtMlFE8H2fghVMqXXx+7LBLKlI7RWn0JDwsuiLb/ioS1bsdsmsa8sXziRpi2WYrZjN1lnHra8qoF4KsOCBIGGqQKPsz0TSNVZQSBvw0raokmKA0MvtVkIMTzUh5IYmHhSLaQCh2YCuR0GW076AXabYnoXAefSgItG8rHFm8DMgtH/H5R1tIl9j75i+duMO/biERcEiiYz/PKlTcwfW8AJvj0UbfwbjXM/T+v06wBw2FWvWrIX+VxEGn3k90MQKBTfX1DR5c1DZaxGBYfLbbcR1y70Qd3BoskMAZUr3OguwO2w4XbYmDxtDtknFbs2vc9Pn11P1oSqQg8nTS6hqtDT6+UZ2ayJu+kDspXHt7ef7c6+ekofKW/mnFMmkTU1bRvewE72kADWAXLf6NqidaD1kAo2jDZN4SQvrq/nL2/vJJ3VHBd5noonfg0lz8G4Y/v1sXodXOxE2jSxJVpIZUbvMoWhzjQ16SFSF2hzQ4R0VjPGrCOTN77bDB9nyQQ2XvkShWOnHfHjqlLrPkybi8azf8vnl77Gd2P/Tc0Tl/Oo76MsKcngqJxFw9ybKPQ6erX0bEdLjHJ79IB6QPu4XU4aZnycCteRX+P43XZaMh4MFYNsBmx29jY2URmtI+vMwxndS11DIxmzhPI86/ES6SzNkST1oQRjvLVkik/Cn1dM0LEEgIy3lETxrC4fM89j7/H937T7RnUQ6OH3aplQ4mNy0KqzZJt0au8P9pW2/xitPA6Pewxs+RXJ9c9iTr4ZtImRCrM3aLBmd5CrbLtJF087IONstJE802Eq3+MgmKsJFNyxCgBHvJFQ445BHJUQYrhrCCeoUXUYOoMqnnzIdqVUrlVn14Gd0oCLBl2I0iZEmwZknB2LHL/1zluE4ukBeZzB9PvXttEUSXH9ceMpX/VLss48Gub9S/v2qgJPr+rwlPidBLUX1R9BoEQaXy4TCKcfr9NGgefwloKBVbMo3kl3sHh6fyYQ7rz22/0+L62ecUzNbuFXL2/hN69s4VuPfcDlv3mTzQ0Hdnrpjt7xBlMeuwCd+xKlJ63NDQCcXVjf3gFnlrbqUalOOpu1ywWBjGySdKSZq+56k7+8vaNPncnAamnbFkv16ZjRyOyi2PfKna2c8/NX+foja1izO0hNsZcreMHa2M/LVhPpLHuCh9cy+51tLTzy8jtMv38xxubn+nVcop9kUlT+YQG2dY8N9kgAKzMFoDC1B7Og65ozYBVYzhROPOLCygD28ukABCdcwKTxY/n8dR/jj7Pv4R3nsVwVfYCxOx6mYtm/42jeQEO48y5NB9vRHLO6g3kPDQLtaw/uchz5pavfZSe8rx17bknYf93/DwBaxpxmPU7bZhpCSfa0xdnZHGNTfYRXNjRSShCXGUMVT6Ek0PtzX6+Wdjqt6zqd7P25bKR46v09vLOthVOnluLc+iIp3xiclbN7fwcduslFK5Zgls+m1SiktP5V/vzWdoqf/yLT/nYyoeZ6Vu9qZZLeQaZ4+gA8k+FDgkDDVJ7HzkeOtdYxlqd2td9u7F4pXSWEEIdtQ12YeQ6r85FR0fkJ2OOwtX8g60xpwEWjtooR9/cFFljfsi9daXWoSuBkInvY05ZA99ClaThpiiT57atbOGlyCXPtteRv/wdNsz6J6crHMKC60NPrgptFPietZiedUA5DKJ7Bx/4gUEnAdUR1S9wOgzhOOKg7WDRXEyhruMC+P9vJZijUlLNZwgc88Zn5PPz547n+uPG0RFNsa+r9t6dmyKrRo0M91+qJJjPEg1Ywc1xyM4Xr76d66W1MTVudZFQ2CdkugpDJ/bUdXnxnFe9ub+XnL2yivocggWlqErmOnw2hBLta4kSSA3duP9LWzkNFKJE+pHPT0+/v4erfvo3dUPz7hVN59KTdfGXyXhYZubof8SPvmrdPJmuyvTlKMHZ4Qel73tzOiy+/gGGmsdW/32/jEv0o3oo9WodtT/dtxI+WD/cEybdn8MTr0YUTetzfZbfh6YdiRs6yqdQf8/9oOOYrFPutbmSXnzCbwPUP8OpZT3Iuvyai3ZS9+X1aIkk21YfZ1hTt8n0smszQFEmSZwYPuKDfZ1978O4+e/RWwG23uoMBJIKkMibpxs0APBiaYz1emxXkb46kCOa+ZNrWHGOiss4ZRskUvE47E0p9TK3wM6Xcz7hiL+X5LsryrH/l+S4q8t1UFXoo7KJ5Q0faaXWq0snRlQm0oznKHY+sYU5VPpfOLsG/5zXi48/oW+as3UnWlU+8cDregjI8Lgf1pSdygrmSitW/ZMzOJ7An27At+w1lugWvGcEsG731gECCQMOWUorbLlwEgE1pdnumYRoOPI2raDvMDx9CCLF8eysnBOrRysBe3nnKuNdpa/9A1hkrCFQAQLYXF9l99eT7e9m0fSdp/j97ZxkeyXWm7fsUNJNajKNhtseMMdux49ix4zBvGHeTL7th3g3tZgMb3KyzG3QSBxzbidmOmWnGHmZpxNCMBef7US2NNCOe1nig7+vy5ZFUXVUNVX3Oc573eXXSVatYp+xg8ZNfwOyZmavjaOAH9+0gb9i8+Yw2ap//Lyw9wOCad+HWFZbWBamaRRBzdcBNQvqwc+VxAkXUkiPFHSA0i84vE+HRnXIw5QA3TbZoESKL6Qod9Jj84pej2EUi++5j6QMf4pM73sxv9X9D2XwLljXD9sSllVZ7BmHZ//3AToLSWS32Dr1Aw1PfoGrHTZyQuG//RpPZ94tjRaD1VPtdDKYL3Lq+e8pjDmWK7OhPs74zxmdueoGbn+/CtOZPqDnSWl7PlaJpEys5pqSU/PTBnXz4hudYUO3jO9cs5potH+Okp/+Fq9d/AEM69zCZjc3qGFOJzV3xHIYpsWw5pwW5ffEcC0cmmfGKs/uIZMTdl9j3Ep+Iw8auJKdFnHMSVe3Tbh9wa3PuCjYWVVUYPvWjaDWLaIp4WVjrd0prhaCq/UTec+XL+J55HZGeh/Dtup28YZPOm+weyLBzIE0yP36u0hnLAhKvlURM4gQSwukUdqgE3DpJWRKBCkm29aVolc519z/d7RjChXv44A5he4YyrHY7C1tq3dLSvjTcmjMmCnt16oIe6kPOf3VBD7VBN1G/a8ox0wiay4OFgiwcX8HQP390D4Zl89krVxIaeArVyGAtuXTW+8kvejmx5a+jMeJhUY0f9ZyP4A5U8XHtD2y223jaczYrOm7gXJfz3irHcSg0VESgoxvdi1SdFdKtRh356Ep8A89TOEYGcxUqVDi8JHIG2/pTrNS6KIbaES7fhNs55WCTf33UBFz0EwHATvWRKZiTlmnMhZ39aSKkwFeFFV3GamUvq7v/ABv/UrZjvJR0DGX5zRN7uWx1PYvpJLz7NoZW/wOqv4pFNf5ZO29qAi6nkUDJCTTiMJkLyZxBVC8iFX2cQ2eueHSFPC6ENd4ZM+IEsl3Bgx5jN5+B6Q7T9OhnCe++DbNqCY3KEJdv+iTWUz+f0XFH7fbTuKMMy+Z/HtpFlchguUJohThaIU62xlkt3mOXOpRNJgKNsfWLdA//+qrVtFf7+N1TnQeJCYZlUzAtbFvSn8xz18Ze3vDTJ7hncz+3vdAz6xKy2WDYdlmv0ZeKomUznCliWTZfvGUjX7ttC2cuquabL2/g5PveQqD7UXpO/xy9i17Dd8zrMIU+rrR0JuQmuX6GM0X+8PQ+7t7khICn8rMXgbpiORYJRyDUkh3HxHtyzFG6ptXUSy8CZYsm6/fFOTUUB0CJTu8EihxChtuBeHR1dCEg4NZYUhfA73bEjpWNIdxnvpdN9gKC932GRzftxi7d87IFi72DWbb3pUYF6L1DWUJkUaSF8B/sBBJCEPTMvNPYVAQOcAK92JWgXfRS8NRy5WkreMZaTGTjL6jacsO4x6X79/B+5SYMXz16Vdshn8eBeF0aOeFFHmfdwR7YNsCZC6OsufdtLLz9LdiaF33JLPKASqQu/z7xE96DW1NRFIHWtJZtr7mP7jO/wN1rvsVnE1fjsnN8VfkpAK6mteV+KkcVFRHoKMd2OyUX2/IR+qtPx9/7FFai6yU+qwoVKhyNPLNnGCmhzdiDMUWt9HR2cremUnQ7nRoK8R52D2bYF8tNuv1sGcoUqNMySG+U4vJX8pRcSV54kdmhsh3jpeS/7tuOqghef2or9c98G1v3Mbjm3dQG3HNawY36XaSkD6XouFn2xXJzFhQSOYOwmkfq/jk9/kA8mkoBF4o1PjMiW+oOJt0HO4HcbjeplovQCgnii66i8+X/y1s9PyShhKH7uZkdOF9qDTyNOyqWLaIYGTQs8s1nOedWs5bdV/yGXS3XcqNVGqhOlgs0ZjB/YihLe62ff254jh+kP8qmffvFh1imyNbeFH/fPMDLv/sgb/3fJ/mv+3awtC7AZStqOTn1d6J3/9O48rJyYlkS62gvp5SS6E1vxrvtFv7xd8/zy8f2cs26Zr5wjodVt78Gd2Iney/7GYMnvJe+C/+Tn8pryakhZG52TqBs0TpInCmaNjc+3ckP/r6Dnz2wFW3rX0nlZpfhlDcsBtMF1rid/CkR24NZEYGOPErXtHYEiEAPbB2gYNqc7etEItDqpu+mNBNHykxxa4oTeFxCVxUW1QZoi/pYWh/gdWcuYucZ/0Y1Ma585DrMn19F/5N/QpZaNeUNm92DGYYzRZ7dGyMiSkH6E4hAwCE7T0cIerT9TqB8khe6EixRe7CqFvHVa9fyh8Vf4zFzOS0Pfwrrnq9g3PtvtP38JK5PfZAgWXqv/Dko5Z9C+1waOTzHVYv4zuEsuwYyvLylSKDrYRKLrmLn1X/BH4jMel+qIvC59n++A24NqfsYWvNuLjz7TC4670LeZXyCgquKQngxruDEn7PjhYoIdJQjPY4I1CWr+Zv+cpAWwRd/fUxlY1SoUOHw8OjOIXyiQDDbgVWzcsptpwskPntFC0npo3vfHqR0xIPB9MzCIadjOFOkRkkjvVFYcimfDn+TAaUGMkenCDTWmZPMG9y6vpvLVzewcPB+JwvohPejBKJEZ1ECNpbWKh9JfGhGiqJhkCtac34vknmDkFIczS44VNy6Sh4d1S4y2sMVZ6IdEDlE6TtuLC5NIbb8DWRrT6LnzC8B0FoTpFvWIJMznJiVVvPlNE6geNYggjMglwvPJ1+1nP6T/x+2O8L2M7/BNtnqbDjJoN3O73cCvazBxDJtLur7OWuVPWx47vHRv3UMZ9gzmOErf91IXzLP+Y02/3Kam69ctZzPJb/ID1zfp3rHn7D3PTOz5zdLDNseXaU/asnF8HXch/7g17jthS5ee0oLH1yRYcmt16EWU+x6xe9ItV4EgCIE9SEPSRGEWTqBLFuSN8e7gZ7YPcR37t7GgioPX1d+xMqHPoi2655ZjcW6445QvkhxnES+Qj9WsXzieYUyURJitfzwS162c9sLPYQ8GkuHHyBbfyp6sOawHj/s1SdsEhH26Xh0lYawh4Xrzmffy/6DfM1a6q0+Lt7wMVy/uIyeZ28HKSmaNl2xHJ2xHM2ukpg+QSYQOOJNOQh5dMcdC1BIsmnfEKvFXuyGE1EUwYevPJ1fLf4WvzMvYN2e6zl59095qtDGU6HL2PHyXyMb1pXlPA7E61LJSM9L/rk6nNxVck6e6XfK8YZW/wNa09oZNb04EF0dLwKN/bx4XQrvPHch733ne9n7xgfpee2th3jmRz8VEegoR5acQJ6aBfx+l06q9UKiW26gUJhbZ4oKFSocvzy9N8b5VTEEEg6xVvor1zidGfbu3U2+41nU3CB9yXxZSloG00WqhCMC+VwqjWEPg3awrAGvh5PMmKDMv67voWDaXNzuoumRz5CrXk3/iR+kNuCesw2+vcbPuiULUJB897bnASfsci6LBcmcSVDJl00E8uoqeVkSt8z931vZokmQHMJzsBPIpSlkms5i56tuRgnVUxt0s7w+yF4ziphpTkepI4woTC0CDWeKRIRT6uWubmX7dXeTarsYVRFEfDoZSu2KJykHu2/DLgBSei0Rc5DAvgfxpZ2sl9TOx7FtyY/v38m1P3qUD//2OfpTBT73ihV8LftFPrDxjSy56220DT/Kz8wrnJdoHjK2wBE27KO8knzXTieou9nq4msn9POOdSHa7343UtXZedWfydWdBOCE2OoKLVVe4tIPs3QCWbYkV9wvAsUzRb5151Y0RfDzxfdztfoYAL7Oh2ZVnr8vliNAloAxxBa7FYHEjlVygY44xgi+fft2HPbDjwQrF0yL+7b0c1VrAe/wJjKLX3HYz8XvnlqU8egqUb+LxPLXkbv2F/S//RFuX/hZItYwlz37Pjw3vIps14vkiha9iRwLfaXFiQlaxANlyTICaK/2jbpMc6kh7N5NuClAs5O16ndpfOTiFQRe80PWr/4kj532feQbf0/1638IzaccUjOEqfDqqvOdchy0iDctm2c7Yty5sY/6kJu6rHMt5aMrCEzzuZoMVXG6147g0VV0zRk3NYa9VPtdTp6i7sUdnPgzdjxREYGOcqQnAsC6NWvpGM7yfMPr0HMDWNvufmlPrEKFCkcVPfEcG7sTvCxUCj1sXH1I+wt5dMJ1LSyx97Durtew6C9Xoyb20RXLHXLOxVC6QEimwFeN363REPLQb/nhKC0HM8d0gvrjM50srPFzcvwu9NwAXed+A013zdkFNMK5axYDcPNjm9jYnUBKx4o/W5J5w+kO5ipTOVgpEwgYJwJlChZBkUN4Ds4E8urq6CC8PuR0Xzm1Pco+WYOS7IKZiFslEWi6TKB4tki4VKKgB2ocu7lbpa3aR9irYyilNsPFg8vBnt4zzDPbnO6dWt0y9Gwf1Zt+juGtJa2EqI5t4GM3Ps8379jCWYuq+fgli/judas4o/AI3uHNGMEWAt2P0r/63fxAvg6YWTezuWAe5eVgecPiF7c/DIAtNK4Z+l/a73kPWm6Ajkt+SjGyGCGcrnpNES9L6wK0Rn0MWj6YQTj4WCxbjuYC2bbkhqc6WL8vwSfXZmjf+AO21V/JI9Zq9M6HKcziGuuK50Y7Dz0qHMFKDu+e1blVmH/Guvu+dsPddA5PUgo6T8SzRUzL5tEdQ2SKFtd4ngWgsOTwi0AzoSHkGW3rrusuWi5+Hz1ve4Q/1n2EaHYni257A//zfz/hNX3f5SLFeS4TtYgvJ5qqsLq9GYBd+3pYg9MJTGs7DQCPS0UIwYKaIMpZHyJw4qtoCHlGH1+ODmUT4XOppG33cSEC3fj0Pl79o0d5cvcwJ7dVIXtfpBBaQDRaNefcKk1RDooqWFQTYGGtH79bQ1EcByhQlg55RzsVEegoZ0QEOvuUk/C7VP4w0OT8fuDgVPsKFSpUmIwf3r8DbJNX5m6m6G/EVbPkkPfprWpioehBx8TKDrPwtjeQTiXZ1p8at5I+W4bTBQK200HEo6u0VHkZsgNHrQhkS0cE2tGf4tmOOBetqKNq51/IRVeRqz2RmkNwAY2g+CIALAyYfPee7eQNa9KA26lI5gx8lM8J5NFVCpQGfGPaxGeLJgGRA/fBIpAQgsaIM7GIlNruLm8I0C1r0KzsjJwdolQOJqYRgYYzBlWlcjC8VfhcKtV+FwG3RkvUh8dXOr8JysF29KfxixxSqNhVC/EMbybUeR9Dq97BcPRE1rKdm5/v5t3nLuSbC57i/c++iituP4umR79APryE7a++i51X/Zm+Mz5LNBp1AkPnSQRSe55DDh5+V0O5uPHpTijlIQ6e8D68Qy/iHdxA99n/Sq72RBQFFlT7RrvqCSFojnjpM32I/OydQCMC6vb+FD99YBdr6jy8ruvrmN46+s/9Nx6xV1OV2kYx2Tvj/XbFcixRnPf3Wdcpzi8rTqAjDjkm7D2Q75lTF7hDwbIl8ZzBLeu78blUVsYfIFe9BiW64LCex0xRFEFb1BHNR8QgzeVl+dX/wiPn/hq/rvA/6jd5k7iLSzJ/dR40zyIQwOlLGshIN7s6ezhF3UHRHcVd0+4cXledTmcTPh/wuedHQPDoKinpPiYzgSzb6Zo4wgPb+mkKe7htzf18dMFeXEObsWpX0xj2os/R8eXRlYPcYi5NGecsivpdLKr143OVp7TwaKYiAh3lyFAThreWSFU1l61u4MG9BQxPDWJ410t9ahUqVDhKGEjl+cPT+/hKw6OEElvoPeuLuFxlCGAMOJ2T9oRP5535j+NOdVC74ccYpqQzlp1TOZJp2Vi5BCo2SmmgeMqCKmIE0fKxmblAjjBGJpW/frwDTRFc3pDBN/A88SXXoqmC6kN0AQFQytZ5+wkeXpP5Lc9u75y1CGTbklTBxCuzZXQCTVIOVjAIMHEmEDhOs7bo/u517dV+unFyJGS8Y8pjfv/e7QwMDgLTl4PFssXRsFK8VYS8OmHv/m44Hn+pXG2CldtM0cJPHlsPQKgRIS3SDWcyuO4DuNvPYJnSxWtWBXnLkhwtj36OYrCV1IJL0fIx+k77BFJ1ka0/FRSVBdV++mQVpGcuKsyGmrs/jPuhr8/Lvg8HO/vTtGvD2Kqb/tM+wQvv2svGf9hObMWb0FTB4toAwQNCZZsjXmIygJhtOVghS75oksobfOfu7STzBv/ZcBee+Ha6XvYNQpEoz2snAiD2PDLj/XbFc6xx9yOFyr7gCeRxI+J7ZnVuFeYfM+e4CA2p0iwG6EuWJ+tuxse3JUPpAvdu7uOiVgX/wHMk2y4pS+v0+cKjO+7JZfVBmqu8owLLwpUnse/qG+k5+Z/509r/xlK9SKGCe+L7fjk5a1E1KXxkk8Oc6d6D0XAyohT2rKkKS+sC40KvVUWga4KFNf4Jc5DKgc+lkj1Gg6FN2yaVNwBnzPP4rmEuWBxk5Y7/YeHjn8GV2I2sOzQH+kwXy/xubd5K+o4mKq/AUY55zsfY86q/IITghJYwiZxBNrAAJVaxEFeoUGFm/OSBXWAWeE36N6RaLqC49JVl2a8Iltpnn/oujNazudU6i+j6n6CnOigYNvtiOQbThVm5gmJZY3RSLvxOCOai2gDDMogizf1lPkcRUsJwpsCfntnHectqaOv6KxJBfPGraIp45xSQeBAlMeWUxN38s/4Hmjf+hNwsV7DTRRMpwW3nwV0uJ9DE5WBWqeRionKw/Y/dPxDXVIWE3uDsJjZ1LtC9W/oxsnFn/9N8XmKZIrVqqdzDEyHqd40baE4lAuWKJgFySJcfufB80g1n0HnRDwj6PLjbzwDgQ8sS6J1OQPS+875N54Xf58V/2Eqy/fLR/SgKnNgSptcOYyXmwQkkJVq6G/Lx8u/7MNEVz7NQj2EFW6gKuKH0Ho0IQBN1RGqMeEjIAIqVH+dCm5JihvZfnER42x+5c2Mvd2zs5f3LMizb/j/Ell5HqvUihBCkomvI4EPveHDmzyGWY626m0J4IVXBAN2iHiVecQIdafQMDJKVbhJ6LU1iiP7U4c3gtG3J03tiJPMmrw5tQSBJtV086rI50on6XSyrD1IXciMEFKIrGDz5H1l2xhV0XvxDsqd+cF46bx3IioYgGeGjSQzSZHRgNZ0y7u+aqrCg2k804KI+7GZVU4gVDaF5dZD4XCppeWxmAtm2kykIsLknSSJncGF1HIHElelBIFEaj++W7Yebo+OOUWFSVE8YqhwL6MpGZzA64GpGS1REoAoVKkxPMmfw1w3dvKluD7qRZGjV2/G4yrPKJVdeTf+JH8Jc+nI+e+UKbq59H0ULFvzxCqq2/p541qAnnmfXYHrGlvqhTIEojkCg+h0nUH3IQ5ySWDCLkrCCac3IjWRa9iHnGE2FZUtue6GXVMHkipW1VG27kXTTOfhqWkZdJ4dMSQQK9D4BwMWJP2HEe2flxkpknVU8t51FTFCmNafT0tT9IpAxZjI1Etw8QTD0ZGS8jghkT+MEyhRMfNKZ9CvTCB/D2SJ1ehZb84LuOejvurf0OhgTO4GCSh5cAbT2s9n9yj9g+uqoDrjRW09FCgV/z2P4e5/E8NVRDJXKORQdVRGjq9CtUR+rm8KOEyg1D06gQgrFzI+WyB0Oyn09dcdzNIkhZKiZmoALIRwdaEG1b9IV34jXRZySmDlTN1CqF7WYIthxDz+4bwe1fo0Ppr+P6YnSc8YXAXDrCsubqnheLsHVtx5wsrT2xbLkDQvTskevu7GvQ/dwijXmJnJNZ1MbdNMp61ATU3+WKxx+evoHyOJBRFpYJHpQOx4Fs3jYjm9JyWM7h3BpCifmn8Lw1JCvXUvgKCpvUUvZLMsbguOuz1TbJeTP//xhOQdFESjeCOeoGwEQC8+dcLvmiJe64MH3/vnAoztOIMU4vDlThwPTtkkVDKSUPLLDceKudTmLGobP+e7Wmioi0OGkIgId5SjK/rT8lQ3OYLlHaUTP9GIXjj0luUKFCuXlrk199CULXOd7Hkv3k246p2xWZ71mMX2nfZKQ38tJrVV88vWX8K+NP+T5YistD/0L/m6ni45tw66BDEMzaFs+nC4SESWXSKmNrKoICq4qZ4NZtHvOG/aE3XuklKQLJt3xHNv7UmzuSZGdQ37OjLAtIg9+gWeef5ZFtX5OKzyGK9PN0Op3UB1wl+84pfw4V6abjB5FlwauJ74/43Boy5YkS1Zu3cwgylQOpigCSyk9T3O/G2NEkFBnIQLhq6GIC6bpEJYuOA4dAKWYnLKEMJYpUqNmkZ6qCf/ucnkwUZATfN/mihZBpYB0BUZLNdy6k0/gDVaRbjmfyI4/4+95nEz96aPuFYCaoIsF1X4W1/mdkHWfTp+swp3rL2vJo5SSPXtK5eOHsQRhuutptqWi3Ykc9XY/MtyCW1NZUhdgeUNwylX7sFd3uoPBzEWg0nb6vsfYM5Th35dtITC0gd7TP43liYxmD61qDPGi1Yo7to1ischAqkAsY7C9L83mnhQvdiV5YV+Cjd1JXuxK8MK+BLXpzXhlDrv9XKoDbvqsIEru6Mw5O1YxLJt4PIbtCqBULeBEZRfXrn8vbLr5sJ1Drmjx0I5BTmsLEe5+gHTrBfg9rvI4Rg8zuqrQXuMj5NVoq/ahqQLtMLiARmhpbERB0nP6Z3EtOuewHXcyfC6NDB4UI3NUlrZPhW1DPGPw5Vs38avH99Je7SOQ3IEUGh0X/5ihNe9Cr174Up/mccWMrjQhxOVCiK1CiB1CiE9N8PdXCSE2CCGeF0I8LYSYWE6tUHYUIdBKN/6wT6c54mWbUQtAYWBnWY9llqG1c4UKFY4cEjmD2zb0EHAJlscfItVyIVLz4C9T6KGiCIRwslMURdAa9fHqyy7m84Ev0kE9TQ99gmDnfbhj25ESuuN5OoezU7oEBjPF/UG9Y8IjTbczSbfSAzM+v4JpjeveI6WkL5lnS2+K3QMZhtLFUZHEmEWr51kR20Nkw/VclLqFV6xppGbTzykGWsm1XzLnNqkT4t4vpqQbz+ZB+wSCXQ/OOBcoUzRJ5kx0TFRplM0JBGBrpVXWMU4gURIkhHvmIlDY56JfqYV455Tb5Qt5fKJAXvEibBOmWHWNZQ2qRAbbO7EI5HVrZPFgTyCgZIsmQeE4gRRFOKvfpRVlRRGkV74eV6YHPdtLpvEMdM3pPKYqgmq/I4yNiBhBj0afjKDZ+Wk7ms2Gh3cM8slf3APsf80PB0XTxphgTGHZkj2DGfpTM89ZyRRMstksYWsIwi1AqTXwNBkpYa9ObMRBOEMRyM44IrPfjPPGpkHO3fsDsrXriC95NeC0IXZrKquaQmyx21DsIsmuLWQLk19nUsIL++KcKTYBoC08l6jPxbAMoBylOWdHG1LKGQmPT+waxmVl0b0hiqd9gP+W1wJgz4dDbwKklDy+rZdEzuAtTX1ohQSp1gsJeo4eF9CBuDUn8yzs1WmN+iYNZJ4Piuf8M3suvZ7YuvfPW87PbPC6FLLSg0BO+b10NKI/+DW6/vY1fvnYHhJZgwuX12H3b6YYWUSu4RTi539l3EJIhflnWhFICKECPwSuAFYBbxRCrDpgs3uBE6WU64B3AteX+TwrTIIqxLiBzsrGIE+nnImROVDeTh/DmcNnd61QocL8IqXk+Y4YD24f4B2t/ej5QZLtlxP0aGWteffoyuj+PLpKY8TDhy5dyyeK78GV6qD9znew5KbLCe25E4B41mDXYHq0VKt4gPgylC5QL0oTNn/t6O/tkivIysyiHMywKZjO5ExKSedwjv5kAdM6eDJg2PMkApUcLxerz3N5zQCB3icYWvU2wv4y289VDVt3XA92/Rr2updRk9+LkZtZCVCuaJHMFfHhCDXKFFk9s0WOiEBjnECaUTqvWYhNYa9ODzUoycmdQFJKKDhiRx9OptRUoooTDJ2CSZxAXpdKVnpG9zmWTNFyHEel/KSwz3H0jGAvuxxzJAC17SyW1QVZXBtgaX0A9YBV/aBHZ0CWziHdN+n5zpY9gxnqSteTchhFINM+2IW3ezDDpd9+gJ8+uIueeG702pyOnkSOeuGIM0qkdcbnEPRoJCg5gWboIBx7f/l88dvo2X56zvwiCIWARyNaCnFfVh9ki2xzdt25npr1P6bumf9ET3eBPPhecuemPs7VNpGLLMMXbSTqL4lAdvGYzAc50hjb8W0qHt81REDk8AXDKI0n8FvfW4DxHcPmE7N3I+98+DyuDG7nzNjNWLqfVMsFhDxlKht+iQm4NfzlXPyYBtF6GqkFl+ErUwn8oeLVHScQcMxd93LjX3hF7De88aQabnjPmbz65BbcsW1YNcupDrgmzG2rML/M5Eo7HdghpdwFIIT4HfAqYNPIBlLKsSMHP1BZtjhMKIpAH6Oar2wM8cstQXCDPVTeDmHpgkmgaE44QexP5amdRRtjy5YHDXIrVKhw+IhlDX760G50RfKewi+wXCHSbReyKFxe8SHsHd/ZqjHs4dT2Km5bcSGXbonyb5c2cOLmb9F27wfoPuuLDK98G7mizY7+NKoisG1YVh8YLXsdzhRZqnRh+hvQxpQKCV81DIOchQhUHONESOZNEjnjoG3U/DCBrodQg2E4+VWzffrTEosNUgUsEt2kn/4qtuZlePnraS9XFtAYbFcIxciQj65iIOBGidvQtxFqzpv2sUXTZihTHC2jKld3MAA0N5iMcwKpIxk7sygHC3t19tlRTk5unHSbnGHhx1lh3W1Ws0DpdESgUNOE28cyRYLuNNLbPuHffbpKRrqpLmQ4cAibK3UHw+WIQI2h8deW1+sntuwNhHfdgqd5zWg5x0QOFscJ5IhAdqIHpXb5pM9xNvQlC9QKRwQTxZTjOjkMq7GWLSkY1qjbLV0wec8vnqYzlmXXkxn2Dmf599ecQHPEO+2+uuJ5moVz3SuRthmfg6IITFfE+WEGTiApJXc9s5krgbzix5feS3zxNWTrT0EIaIrsf3+jfhfD3nZMW2X347fwsuzdKEjqn/seEgXDFcJWPWhWFtMV5p+SHtaqe0i3vJkqVSHqd+13KWWHyhbEXmFiTFuSKZp4pxEDUnmDkFJAcQdx6wrRoJdMzou7jO68qejZ+QJtFPmKcj2RXT0MrX47uj9c6XQ0R5TSve5wCk9T4XWpZOSICJQG6l7S8yknRnqYiMjzrqoNmMPO4o8r2UF29WupCbhJ52fXqKLCoTOTT30zMNZbvQ8448CNhBDXAl/H+cReWZazqzAj3GPU05WNIRLS7+RjlLlNfMG0SeYcEci2JV3xHEXLxqUqxLMGQbc+7RfoCEXTnvG2FSpUKC9SSu7f2s8jOwb50cKHCfc8S+f538Ufqir7akzEN17M0FSF1qiPj12ylNfvGuITT+r856t+zopHPkrzo58n0P0o+87/NrbuHy0L647naat22oEPpotcrnZhVS8f9wXm8YcpoiEzgzM+t4KxP6A1Xdg/ANGyfUS2/4nw7r/hHXwRgXRcNPMgAj2ycTcjvdgCPY8ytOLNaP7ovAxKpScEmR7y1SuJhV0QB7VvA6yeXgQybUksa+x3YQUayndimjPRl2aOEfnBbaadEcosnEARn06XGUHJDToBBBNkS6QLJsGSkNVlV4MCdjY+oS3asGySeRO/loLJysFcKlncWIU0B8p2mYKJl/2d1A7M7PC7Vbad9kn6T/4oi9wupsLv0ugjAoCd6i5boGNvMs8SEQdASNvpkuXyTfu4RNYg5NVmvPBzIJYtyY9xxHz9ts3sGkzzlatWEXzy28Q6hsgWfgJMLwJ1x3M04Vz3atXMnUAAeCOQAys7fJCIdyC/fqKD4b0d2Jogt/ASXHvupPc0JyGhLug+qJzkjWcvoePRFs7N3oOC5B3FT7BQ9FAlUkTMDF4KZPFQXcgQlglitafDCY6zJOp3EZPOZ9/MDKGVGoBUmB9sKWfUpTJd2O/uc6kK1QE36X4v7sPkBHphxx7agOpCJ1IoDK5+J6EjRMA4GlFLJesHjlNeKkZbxMOE7tKjlb2DaRrtFAhoWf8d9EwftupCIBH1K9FV5Yh5D44nZnLnmOgb/iCnj5TyJuAmIcR5wL8Clxy0IyHeC7wXoK1t5qs1FabGPWYFYFWpQ9iwu5VgbBdSyjkP0sZi2RLTcoJBgx6NfbEcRdPGsiUD6QINIQ/ZGayijFARgSpUOHQyBXNOYkG2aPGHp/fR4s7x8oGfk2y7lPiSa2meB0v5ZLkcKxpCfP7KVXz6phf46j2dfOaKn9K29f9oeOrrLL7lGvZcej1GqVtSImfQOZylpcpLLJ1jEV1YNReP21/E56ych2ZQ1rGpO8lr//tRvtX0AKuWr4S6t5HKG7gSu2l84l8Jdv4dIS36wydwX/U/cEIwRduePziDsjKuyJuWzbPb9vJKwNL9qEaGodXvoMo/P4Mh6Q5jeqoJVDejhPMMySBq74YZn2s8W6RZlES2WZTdTIfiKolARh6B8/3gkSUn0GzLwWTAETPy8XGZUSOk8/tDobukUw5WzMaYyP8WzxqAxGslkRPsC5zMniwe7AkG7DnDwitzk+YnuTUVt9tF0dTwTNPeWVUEGZdT/iiT5csf6UvmOaskAgHO6vMMRKBM0cSWkir/1OLVZERveTvJFa+DM15L53CW3z/VyStW1/HKnV8kEr8ZFHhx233IuldNO4bpGMqyTOlCKhoi1Dyr83B5gxg5HZGd3gm0uSfJiVoW2x2m58wvMnDihzECTbg0hdrgwSHuH71kGfHek1F37CVbcyLvvOy99CcL9KfyDJUykYYzRYYzRaJ+F5EzFoyK3Y4I5Nxr7PQgUkpsScVBPU9YJSfQdGQKJn6RB3cQt6ZQ43eRsL1U5ebfCWTbkj2dTqlrquV8ioFWjGDrEeNiORpRhSDk0afNDztceHX1mCwH++szu/iQsCh4anCnu0g3nIE7uQfVzKLVrwQoy1y1wuyYyZ1jHzB2tNcCdE+2sZTyQSHEYiFEjZRy8IC//RT4KcCpp55aKRkrE2NvXguqfQQ9GruVVk4ffoSCYeEpQ77HSC5HwXDKNDZ1J8kUTf74zD629Kb4z9esJeJRZtzNpmBZcNC6aYUKFWbDcKY4pwHglt4kj+8a4qetD6EOZOk97RMgxGENl1QUwdXrmiiYFl+6ZSOf/POLfOGV7yAfXUnr3z/EkpuvIlt3Mv6+p9l9+S+J153s5AQlOvFSIFOzctz+wj4Xw3aQ0AxaxL/QFSdbMDin+//oH1pA/PQ3IJO9LLr9zch8kjtDr+UH8TN5sc+xYn9j0Qu0AWQGyioC3bO5HzOXBB36130EPTdIMbqcKt/cJtbTUVx0Kbmak4n4XbREfWy02zmpf2YikGFJ4lmDhXpJZCsF8JYDMeIEMhxxJle0CIqRsrOZv94Rr4tNcqSEZnhCEShTsAgKpxysBydHyszEJ9xfPFskQhpNGpiB2gm3cYI83VA8OMSzWMijY2BO8ZkJejRyRWtGA2DNEyBX9KGleqbddqb0JwvUEt//i0IKAtOXIBiWTaZgzk0EMvL4dt+FobjhjNfy/fu2owjBB2s3EHnsZp5d+F5qdt5Ey5NfpXD6K/C4XfQl80jpZIxJCfGcgWXbgGBrb4r/p22hUH8SHn125axhn4tULEBwBuJxLFOkVstguauwvDVYXkdErA9NXgpv162CHTcRX3ItVT4XVT4XyxsmFgVHQvTBEYFG2tfb2WEyRYvBVIH2mjKWYVYYxbbBMCWGZU8pCGSKJj6ZA1cAIQRL64Ok8WJkE8zPXXs/T+weRi3EMVxu9lz+K2D8Z6bC7FEUQXVgvt+5mTO+HCyDadklt9LRK5BIKXlg/TY+BAyt+zCWO0xi0SvRsn2E995FY8OBMcMVDhczkT6fApYKIRYKIVzAG4Bbxm4ghFgiSp9QIcTJgAuo9LV8CRBCcEJLmKeLC9AKcQoDu8uy30I+Q+PjXyYz0MGXbtnIp296gW/+7QUGY3GWKL1ccOelBB780sz3N8O2xBUqVJicZN6YsMPOdPz68Q5CSp4L4n8mseDlFKqW43Uph301zKOrvPWsdn72jtMYSBX4+B+e51n9JHZefStGoAXv4AvYqpuWBz6OMPPkijahpBN4r9SPF4EiXp1hGcROT18O1pcs0CIGCIkczYVd/Pf9W/Hf8m7M9CDXZT7BR4evoXrBaj5/5Uoawx46Cs7ES6b7y/r8H94xQI3mdEEaWvMues78AkGPNm/vQ+HMf6L39M/g0hSW1AV5US7En9iOUchN+Thp5Fhyw9k0dN/NIlcMyx2ZlUNnOsQYJxA4E60AOYqqD5SZO0ZD47o9TTypH9se3gg4rhFzEhfIcKZIu3BCmEV08YTbjAZ5TrRqW3IHKVO8VkGPPuMg9qBHI65GyxoM3ZfKUyfiGLL0Os+wrKVo2uQNm/wMu8uNIx8HwD24iV0Daf70bBeXr65h0aYfkq9aTs+6j/It8/VEUtswtjmdy4bSTpv1zuEc+2I50nmTXNEmV7RIJ4ZYyU4KrbNvTBv26iRFYEaZQMOZIlGRBl90NDbJ61KJTCHa2ktfTrrhDIzV17G4zk9dyE3EpxP0aPjdKiGvhs+tomsCv1sbdfr4XCoZ1QkNl9lhkjmDVN6kK56btIuVbUtSeWNu78lxzvP74uwaSE/ZxQ0gly/goYAoCbsLa/2kpA8rO/9OoJuf76JWzSDHhNR7dLXiDjtEjiQnVcCtkRX7M4F6k3m29qUOapBxNLG5J0Ui5nRtNf31xJdeh1TdGME20ie9t9IR7CVk2pGmlNIEPgzcCWwGbpRSbhRCvF8I8f7SZtcBLwohnsfpJPZ6OZNeixXmhRNaItyXdEIui53PlmWfcu9j1Lz4M4Zu/jQbu5N8/YQBNoT/H0+q7+Jm9+epNnrx7b0Pa4rWzmMxLHtG7TgrVKgwMbYtsW0mDDOeikzB5I4Xe/lM3WPoRpKBEz8EOJPRl4oLltdx04fOwaurfOrPG7h1n4cHLvgTG173JJ0XfBdPYidNj36eTK5ATc7JOnM1HiAC+RwBQEwy+R9LXzLPaW7HVu8VRdY/fBtt6fX81v06Lr/0Cn71zjP458uWc/rCahrDXnblHBHISpVXBErlTar1ArbqRqqOi3Ku5TUzYST/wKUqNEe8bLTbUaSJ2b9lyscZQ3twpTtpiz/BIn0YKzi7kpvpcLlcmKhOHg1Oa/UAOUxtdq6HiM8RAp2dTLwOlS6Yoy4jLeqUpVuTiECxbJEFwim9UmsmFoF8pe5ginGwCKQYI23uJ38efpdKYIYOvIBbIyX8ZWsRnzcs4lmDBjVBhyy5f2YqApXE5+IcRGhycQDciV381+3PowrBB6LP40nspO/kj1Ef9vJ3ex0Adt8mMgVzyrFFS+p5VGystrmJQMP2zESgWMkZJr1Vo92Y6kNTu59djavY/co/4K+qx+fSqA95aI36aK/xs6g2wIJqP4trA6xoCLFwjMtHCIHmq8JGQGaIZN65zw+ni+wZymJO8LoPZ4vsGcyycyBdEYJmgZSST/5xAz99aNe0HemsguP4GynxbAx7SOE9LN3BtvenafHkHRG+xNHcGr7CwXh0lbZ6x3VqF1IkcyaGKWc9zjuS6BjOEsH5fvSFa8b97cActQqHlxndPaSUtwG3HfC7n4z59zeBb5b31CrMlROaw/zMasV2acju58gbrznksNcNTz/C+cAVPMyapU0s2PZ78pGlDC+5mmT3Np4bFFyXeIhUcpBgZGLb/FgsW2LZEk2tKMAVKsyFkZblqbxJzQzLMAH+/Ow+bCPH1bk/k2o6l1zdOoRg3kqQZsqy+iC3fuRcPvibZ/nB3x23T2PYw1dedRqBdR+h7vnvUz/cz0kiSc5Th9c3Pqi3yueiUwZR81MLGuA4gS5wdUDR+flLtfdDAs6//LXkap37l64Jwl6dZfUBnul3VuasdP/MvjRnSKZgElFy2IqzqqypguA8rkoqikBTHWt5fcjNHlkPgD20B1pPmvRxdtwRzBZae2jAxgpOLIjMFY+uUkTHVRKBknmToMhi6rNzG4W9OrFSCY2VHpww6DdTMAmWuoNV1zWR63Yhs3HnMbZTDuLWlNEg7HbRh0QgIhMH8/pcToaDYh5cDqYUM6AzaSYQOJP9mZZzBD06KemDfHJG20/HQKqAjklEJnlKLmExPaWONFNj2ZK+/kGi0eq5rVCXBBeBpHPLU1y+5nzat/8r+aplJNsvp97vxhOIkLCrEEM7RgWQieiO51hVeB5TdyFbTpv1qYS8OsO2H/IzEYEMQtIJCQ/7dIqWPa147i2NveYyWQ8HvGRjfmRmCMPcL4Kl8ybb+9O0RX3jXAzxrHNDs23YOZDGW3KJWLbErat4dRVdFeiqUmnHPIYtvSl6k3kKpoU5zUKmLDpiz8g1HfW5SEkfmjH/IpAjQmawxjiBwvPQRbLCS8tJS1vhSYjHYlh1zucxmTcmzB07Gohli4SF870SjtbSK6Clyku2aFVcbC8xFQn5GGRtS5giOn2+JQQHN9CXzLOgeu515L9+fC/eXc+S1EP4VMmCPb8ntvQ6us75OlLzkMob/OX/fsZ16kPIrucgctm0+zRtiWlLKiJwhQpzI5E12Nid4NT2ibsWjVAwrXGrLb97qpP3BR/FWxhi17qPAFAXch8RLWarA25+8+4zuGtjH1v7Uvzs4d188k8b+MrVH+RkTzVtj3+FhapNdoKW5mGfzrMyjLsYB7MI2uSiVn8qzyqxh3x4Ca50J8sSj2K5QuSq1+Bzq9QG3aMr/UvqAvwp7wcPyDI7gUZdKZ4QEZ8TTjmftf+KELhKpWZRv4tu4YhAxPZM+Tg77jQIXS46cRdVzPD5ZT0vr66Qx4VuOuVgncNZqsghZtEeHkpusJITyM4OTSgCpQomAZFDCpWmmihJfMhsgqJp05fMl8KgHfYN51is9Dnhv5NkzXhdKjncqAeIQKZl47JLv3OVp3Qu6NFISi+iUJ7PYV8yTzWOq2i3bATAzientYg/+eI2zrnpHJ5Y+AGMaz8z6+Na2djoe7NW7eCatn682zbSdc7XCPvctEZ9LKjx0zHYxKLYTpI5E8XIYGs+p3RASryDG1CMDJ2be7hMeZpU7cm4PNMHWh9IyOOIQCK7b8rtpJTEMkX8niTSGyXk0WY0gdFVhYBHm9OKd9TvYjgWxJvoRymJc3YpI8u0JLsHM9QG3dQF3RRMm1xxvyBn207+1QiZA8qcltYHKkJQiXs39/FF7RcUixqp/JlM1ZFOjJR4epxr2ufWSONFN+c/xDeRNQipSSx3c+nYauU9PAY5e2UbPAk7u/sINnXg730KM9CEGb0M7QgJsJ4NjgjkXB+6P8qSgHPvifg4qsvcjgUqItAxSHPES9TvYpu6hHMHHySZNciHrDl/WdzxYi9f0PZB40l0rnknWm6Q+NLXjNZxBj06w6FVkAO15zlYPb0IZNkSu1IOVqHCnPn5o3v4yQM7+dMHzp50Gykl+aI9OgHZ3JNkY3eS/626l2xkHZnGM53ONrNwEs03mqrwihMaebndwCWr6njXz5/m0ze9wBeufA1/0QL8i/pbFq569UGPi3h1+nAEMZnqQUzRUrkvmWeRtYtc7fnYLj++gfVkGk7H53WxqMY/Tohpi/ow0DBcYShzJlC6YBISOaQrSFPEO+Ny2rmiCjEq9gkh8AajZIwAxPdO/cCEM0EOihyYYEbK291zQbWfrHThzmeRps3uwQytIofmbZrVfsJenQweTKEjMxOXg2VKmUCWK8jCWj9J6ceXHmQoUxgnAAE81xnjCq0fM9w+aeirV3eCPFVpjhMfs4ZFYCTcukxh4kGPRtz2IgrlcQL1Jp08IIA+vRkk2PnUlCKQadn8/o77OEsYnLX3x/T3XwfhdbM6rp1zRCBbCq5tHGLB7huwXCESS69lcdi5Fy2s9rO9r4EV8fWoPc+x/OarMD1RisEFKMUknsROABYBWdVL/4nvpnUOTTDCXp04AZRSTtFkpAomwjZw2zkKvuisHFzTlYxNxnUntzC0N0BuTwfNyXfTaOxl15V/wAg6oexSOsHemYKJrircv7WfJXtu4LThW3j85P9Er19B1O+acOyXN+Y+JjzWuHdLP99UXqRZDPJ4f4zlDZOLz4qRcWZOLmdh1aurpKQPl50DywR1fqZVUkriOQO/L4X0RhDCcSFVOPZY21aHgUqubwen3ngBQppYrhDJFVupCs5e6H6piWcNqtXSd6E3Mu6+cyQsPh7PVF79YxAhBCe2hHks24paTOJK7iVWsgnPhc7BBAvlPgrRFaRbLyS+7LUHBXlp/ir2Kc2oPdNnENmWTdXGX2Jmps/uqFChwsRs6U1iS6e0aTIsW5Y68Tnc9kIPYZGlLreLVOtFIJzOGEdi5wlVEaxtjvDH959N2KvzyT9v4JF0E3eu+xFy3ZsP2j7ic9EvHRHISk7ePcmyJTLVT8QaIle9hlz1agCyTWfRFvUd9FqMtGzO6lXIzPSh07MhU7Dwk0W6Q6iKmPcBkaKMH3TVhz30inqUkgg0UU5bTyJHX+eOcb8TZWwPD3BCS5iC1EmmUhQtm32xHEGRQ/POzgnk1VVcqkpWDcEUIlBIZMEdpL3azzbZTDC+mcHU+O9IKSVbelK0iT6syMJJj+m0iC9N8seUUmULFn4cZ9NsOpxNRdCjM2x5EMXylJ70JQvUlkSglL8dYNpsk98/3YkY/bxA5IHPz/q4qZhzHe11LWJ1/O+Ed91KbNlrCYYio4L1gmofW4p16PlBIjv+jBQKydaLKWgBhrR6Hl7xeX6y4Du8q/hx/veMuzCXXj6n0oKwVycuAyhWfjSTaiJimSIRSqVAvupZHWOmwd8Hcs1JzbS3tVKvpYkOP4cr3cXCv70eV2J8w49MweLpPTEeufcvXNbxHaLpnZz54Ft57rdf5E/Xf5Xbf/oZbvjlj/jen+7lB/dsYihdIF9pzgHAYLrA851x6rQcflHA3nnfpNsWzbHuPueaVhVBXi1NzMt0XU5EumBi2TY+K4UrWMOiWn+lFOwYRVUVioqXttR6hDQZXvY61GKS3J4nXupTmxPDmSL1Wg4plLK5YiuUh4oIdIxyyap67sgsQaJQvfkXxDLGjIOYh9L7J5VF08aT3I2OQT66P4hVCGd1a0GNj5YqLzUBN5uVpeg9zzojwykwB7fT/Ojn0DbfPLcnV6FCBbb3OxPOwdTkIpBpy3Gd+O54sZeranoQSLJ1J6MoR/5qYlu1j7995GVcvKIOt6Zw6oKqCVewQx6NvhERKN496f6G0gWWi9IktmE1+doTnX+3nz9hV662qDPATypViEz5g6F9MlfWTltToQqBW93/2jWEPHRSh5roIF0w6Z/gs/R/j+yhe+8Ottr7W8KrVWUWgZoj5HGRzaQxTJuBVIGQyM+6HEwIQcirk1bDk3YHS+VNwkoe6QrSUuXjWbmcUKEHLdOLMLII0xECBlMFzGyMkJ2AqslFIK9LJcv+lr4jZIvmaCv6cr2/QbdG3PKimDmwDj0otD+Zp1FxysHSvhYsFGR+6onsM3tjrPAMYyO4Rb4MT//zsz7uhh17nH8svhitmCS++Br6Tv5/4zIv2qr9oyVq7k03solFXLLr9Zy8+wOc0/Vh3vL8Sr6xtZ7uugs4bVnznDv8jDiBgNHA6omIZQ2qSrkWij86p2PNBU+4lkV2J0GR49fmxeTTcRbddCXBjnvGbffbx7bzPf2H5EMLefSiP6IHqvmU/ju+oV/PJ5Rf8/XiN7g+9g/8ePcVnPLHM/He/6XD9hyOZLb0pJBSEpTO575m392TbjsSWA+Mc/cV1dK/y5TVNRHxrIGXAposgrcKn0tDqeSpHLNoniDtwlnM6j3xI0ihou28b9rg8iOReLZItZZFusPOSlSFI4ZKOdgxyuWrG/j8Xxp5oupKztj4C4aXv4l4+ITRzjOmZU9YW2rbkt5kfrSGfV8sy3I6ACjUOCKQENBe4x9nhQ55dV6Ui7g0e79TMhGsn/TcZMppbysn6d5SoUKFqckbFvuGncHoUKaAlHJCN48tJYVSzfXuwQzb+9N8bnEHMiXI1q0j6ncdFQPJsE/nf95+GgOpPIPpIu4JHDOaqpB2O6HOMjW5E2ikPTyAXruUTNMZ7AwtItR8woTb+1watUE3g4SonyY3ZLZkCiY+TwZmKXbMFUWMdxvVhzzsMms4L/Us2wdTuHWne9FYuuI5mpQhNtrt1LssIsUe9OjkpXZzIezT6dA85HMZipbNULrghDfP4XWJ+HSSxSA1JRHowGtjJIxbukO4NIW9/rVQgOLOh1ix5b9wpToxvTWsyg3zXX0NAErNokmP53QHK4kXxv5coGzRIkLJGeQrj2gQ9GjsoeQ6yCfBPztHyoH0JfOs8aTBBNtfRw4vrmmCoQdSBa5QB0irNWzL1qOKJGYmhuafOptshETOYF93N1nFj3L+J9i2+rUUqpbjdY3PN1laF2BXSQQKygx7Q6dwSk0VdUE3qxtDuHWVuqB7tD37IYlAspSZmBuGUOOE28UyRapK76cySyfQIeGNIqQJQOjc9/K6x1/Nt41vsfqud9J30kfpP+mfWN+doqrrfupdMfac9Z+E206jY/EDKMUUajGJpfvxxLbjjm/nzsee42KeonXTb+Hqrx/37ZmTeQMfBVRpYCNYGnto0rKuTHGsu2+/sGvoAafJwDx2CEvkjNEOS6JM95MKRy6qJwjZHnpklN9tV/hk3UkE9t1PLGPQED66yjhjWYOoksV2hyvOkyOMyvtxjFIdcHPW4mq+nHk1tu6j/ulv0p3IkTcsYpkiw5mJy8Ni2SK27XSfANg7lGWlshdLaEQXrGFBjY9Ftf6DauFDHo1uqzRgn6LV6n1b+vjro88DICoiUIUKc2J7X5oRv91Qujhploxly9Hgvbs2Oq2uV9vbKFQtxXaFiM5jO/L5oDboYVl9cPLyNW8UEw2mKAfrS+ZpEkNIFLzRJvxeL9nGM/C7Jx9YtUV99Foh1Fz5ysEsW5IzLDx25rA5gRRFjBPQ6kJudpk1KFYBJd1Prmgf9FnqjedoFkOsXrkKUb8aW3Uj/NN3gJwtutuHWchiJvvwpvfiI4dwz14EcpwdQUR2mKF0gYED3E3pgkk1CWRpIn/5xZeSky6Cj38Ld3Ivj/ou5jn9ZF70nsZF6vMAqDVLJj9vVaGglIJkx5aDFS2qRBpbaGUrBwuMdAcDKMy9TfxIe/HeZJ5mLYnlqcLv9ZHBM+1EdiDliKj5QCvd0mn3a8RmLo7+dUM3PjuN8FXhDQQpVC0HoPqAe9HKxhDfeu+rkMK5LleefRX/eNFS3nBaG2tbIiyrD44KQEKAf44lV+OdQJOPXYYzRSLCeW0OpxNopPTMVt0sXHUqn37DZXwu+i3+YJ5H/XPfpemvb+K39z7Jm90PUfTWkWq5YPSxtiuIEWjGdkfINpxGbMWbeGLBe/mt8TLUQhyrzEH3RyOpvDEq1m7Q1hKwk5i9GyfcNlMKlQfGOYGskS6GZcrqmoh41qBq5PNXEYGOfUqZU/3eRfz6ib10VJ2Nb3ADicHuGVd1HCnEskUiIoP0zmyhoMLhoyICHcO88oQmNifdbG9/E6G9d6MmOtg9mKErnqNoTVwPHs85FvN0YUQEyrBCdJALL8Hn9RLy6BPWt4e8OgPF0mroFIPIv23o5YWt250fJrHrV6hQYWq29u2/xoYyRaxJBgWWLbFsiWnZ3Lmxl8U1PiLD68nWnkxwjh1rXmqmyv2I+NwMK1FI9ZAtmvQl8wdt05dyRKCCrx6/x4PPrSHE/lbOE7Eg6qOj4EctJJzw3zLg3GMlbiuLcIfLss+ZMNb51RDy0CnrAAjue4DGR79AOjM+FyWf6MOFQXXTImKr307slH+aF0u3x+tDWAXc93yWnxX+xTlXz+zFsYhXZ8gOInLD9CTyDKQL44StdMEkSgICzvO+dG0rhfp1LFJ66Bc1/HPhPbyh/228eviDrNfWIoWGawonEIChjWSC7C8HyxRNwqQxXJGyuS2CHo3USOeiOZaeWLYkXxKG98VyNKgJbH+ds2/pnVYEGkwXqbf7oKqdbukIFFasY8bH70sWCJNB81eNjiUUZeJW1yctrMcItmIrOpn6U8f9TdcEXpeCR1doCHvm3Gp4JBMIwM5OPiaJZYuj5WDlcnbNiNKx8tGVoOhUB9x88dpT2XTa1/mU+V58fc/wi+L/41yeI7H01QhVo73Gh6ZO/Hqsbgqx0XAC14s9E4sdxxOpvEmk9L72+ZYBYE/SACBdMCfM+bL00r/n0Qk0tsPS4RQhK7xElESgpmWn0Fzl5Vu7nWYM/t13TLqIf6QSyxQJkgHP4RvnVJgZFRHoGOaKNQ3oquDXxkUgFKo3/xrTkkg5eVs+w7Lx9TxBNhVDSsmeoSwrlU6MmpVTdpIYaV0LTLkakswbo0GUYopVtwoVKkzO1t4kl2jPc6v3y+RTg9iTZHyOTH73xXI81xHnypYsWiFOtv5kqgNHlwtoJkR8OgOiGpHupTueZyBVIFs0x23TlyzQyBAy1IyiCHy6is+lThmO3VbtY2/eGZQZpXLWQyVTMPFSQMFCzEHsKAdnLa6mR3FKd5se/Tw1m35Occ8jo3+3bYmWdvKV1KpWzEUXkT3zY/NyLn5/AA9FikN7neBmmHUmEDiT+gHLj1qIIW0b23ZKJkfI5/OEZAr8jgikKYJi4+kA2Ce/g5++40y+8MrVuHQXN6/8T/Zc82cUz9ROHntEBCrsdwLlSk4g0xOZ9XOYjKBHI0mpdGmOrgPTtikYFkXTpjueo1bGkf56Ql6dlPRMGQxt2ZJ0Jk3EHECLtpP1ltrKx2fuBErmnNIA6Yng01WEcDqaTlaWWmg6nXTL+dRVV7G4zs+CGh8La/2saAixpC7I0vogNYfQ3TA0VgTKTD4miWWLREdEoMO4oj0y4c/VrMWjO0N2VRG8+pRWznnNx/hY5LuY3hoEktiy1xH26gQ9OkvqArRFfTRXeWmNeqkLuQl7dU5tj7KtlO9l9205bM/jSCWZM4iUxJV8qN35f2Jgwm2zBQu/yCERoO/v0iRLTk6Zn7s7bzriuf2OJdVXcVQc68iSCORqWsvnr1zFvYlGBn2LiW65gYG0EwGQLZpHvCvItiWJnEHAToE38lKfToUDqIhAxzARn4uLVtRz8y6It11K1dbfI4wsruQeQo//O9gHB4xpvetZ/LfXUvPs9xnOFOnv66FBDGPXrp7yWCGPTnpkhXKKQWQiZ1CDM3hVZukEOhoD0SpUmA+29qW53LuZtXIrbx76PvZkTqDS7+/a1IcELvLuAqDQeApBz7HXWcTpEBaBVC+5ooWU0DmcG+cE6U/maVWHEeFmwHHGVE8ziWyL+hiUjiBhJstTQpEpmARLIaOK96VZIWsMe7nkzFOxpXC6IwHKrvtH/z6YKdAgnRI4paoVv1udMDy7HISCQbzCgMyYCdgcyuTCPp0ew4eQNu74DjxDm4ll9ocoa3mnDFkEHPFLVQSJRVeSrT2J2PI3AnDKgip+8+4zuPq05cimU6Y9pl3KB5FjhBknEyiD9JRvwhZ0jykHyyfnNAGwbCcnrCuew5YQtochUE/Io5GWHuwpgqGHMgUaGERBolW3U9fUhomKSM5OBIoozqqwoggW1wZGy7omIn7pd9l76fUESy7kkEefcWv2maAqAtMdAcDODk1aWjucMWjQs0jVPU4AmG+Er1RyV3cCi2oDBD37n3t7jZ8PvfaVDL7hDrZfdw+FyJJRcV9XFcI+najfRcTnoj7koa3ax9mLq1FDDWREADmw+bA9jyOVZN6kXnfuw7JqMQDxoYmF/nTpnm3qwXFuSOlyvhvseQyGToxxos22O12Fo5CRzKm6VVy6qp6VjSF+WbwI3+ALaD3Psy+WY9dAZjTz8UglmTewJXitFJRxQaRCeaiIQMc4bzqjjVTB5IHo61ALcdru+yDtd7yVmme+B/3jBwCmZVP37HcBCO2+je5YDm1wEwCiYc2Uxwl5ddJyehEomTOoEc5qyWydQPkJ8ioqVDge2d6Xol1zRNSLjAcR226fcDt969+ofvF67trYS2PYw4LUs5iearS6FYfzdA8bVT6dfVYELdOLt/85qrbdSNG06RzeH9jbl8hRzxCE93e4mq7V7oJqH4PSEWqsMjmBUoX93aOUwxQMPREfuGQVvaKaLq2FbO06vPseIm84gntvIk+TcEQgPdKKz6WhT1JmcqgoLh8B1SBoxXnQWuu4TGpXTv/AAzh1QZQ+03F2tN3zPhbfeg12smfUEeYplESgoJNrpKsK+erV7HzVzRCsI+LT8btVagJuVEXgnsIBO8JIJsjYSWC26JSZSG/5SjccJ5DzPSvzCVKF2a8EmyURaO9QBpD4ioMQbHC+w/FO6QQaSBVoLYWqi2g7TVUB+qhGmY0IlDcIkRmdEHhdU7++bl1FKMqoC2Y+0D0BTDRkLkZ3PHeQexCckoZ6NYXlqzmsYcpqyykMrnkXxaWvQFUE7TV+aoLjRTOpeShEluB1KdO2oxdCcEp7lB20oAzM3Alk23LC8tqjnVTepEF37sOyaiG2FBipiZ1AmYJJWGSwD8gqE17nZznP3cFq1FK5aSVb5djH5UcKFaVuOUIIPnLRUv4vfQaG4iG6+TfEswZSOo7TqXipnUJO6ZrEY6YQlc/tEUdFBDrGOXdJDQ1hD9fvraP7rK8Q6rwPd9Jpj2wM7xm3rdn1PKGOe8hXLced6sA1+CI1mR0A6M1Ti0BBjzZjJ9BIOZian50TqGjZFTdQhQrAYLpAg+xna+A0ilJFdD454XaeF39D3TPfZn3nMGcsrMbf+wSZhtPxlnEl/UjiyrWNdJlhVCNN6/3/RMuD/0x4582k8iZ7hzJYtiQ51IMLY9QJNBPaon4GcUQgu4zlYMHRdsMvnQgU9Oj8fsGXeUfu48Sazsc7sIFUzJkE9STytIhBTNWDFqzF51LRJ+jMVg6E5iEoMwRFjsftVax/zSNQv2rW+7l4ZR0F3XmvPImdKGaOume/RyzruIG8RUcEUsY4gUaEiLBXpzXqY1FtgLZqH/UhN56ZPN/RcpD9333ZokVEpFHKWLrh5PY4LhQ7nyRbsGa9EmzbkoJp0TGcJUQG1TYQwTpCHp0MXsQU3cEG00XahOOE06rbCXt1uuwoaqprxsdPZg2nHG+Gr4uuKtOWax4qVQEXSRHESA8RzxoTZm7EskXqlCR2yZlzuFDcPnrP+iJ6cL/7ozHslHgd+JJUTeGoGsuqphAbjUb04W3kSvmP042tknmDgVRhNFR8MoqmPaGIdqSSyhvUqI4I5I3Wk8A/aefabNEkRMZpdT0G3e3DRBl3/ZebeM6gTstia17QPdM/oMJRjb3uzfSc+UVcHmdedfnqBmpqarlNOZ/Ijj+jZZxGH/nprtvcS1syFssa+Mk7Ze+VMsYjjooIdIyjKoIPXbCYF7uT3OK+ks7zv0PHhT8AwB7eO25bsekv2IrOnkuvdxTozbewjL1ktQjeSNOUxxlbDjaVJTaRM6hXnL+rxaTTinOGmLY9aZZRhQrHC0XTxrAkUaOXjK+NDF7ymYmzCJR8HM1I0yT7eHlzAVe6i0zjWVOGIB/NnLGomvqWhQC4k3uw9CDND38KV3wnyZzJlp4kVrwTACXSOtWuxlETcJHQa7ERUHr8oZLOj+0089JkAo2waN2FbLfqeVZbh0Bi7rwfcJxAi0Q3xdBCEAJdVebchWladC+adCbfQ4SpDc4ts8qjq6xavHD052TbpUS3/pZczzZs2yZgOosParBudJuQVyv9f7wjrC7kOeh3E6G6vJio41w02YJJhDTqIbZxH0tgzGKLzCfIFs3Zi0CxvYjBHewZzNCql76LQ42ESsHQqjG5CDTiBLIVHT3STMirs0/WoCRnLgIV8ml0TMQMy+R0bXp3y6Fy7UktDFo+BvsdgTeeNbAPcB3HskWiJJD+uol2Ma+oisB1QBlmxOdiSV0Ad8khJQRTltWNZWVjiO2yBb0YJz3cjWGNd0tOxHCmiJROIwLTsskbFpmCSSJrMJQu0J/Ms6M/zdbeFJ3DuSn3dSSRzBtE1Qy26qa1rpqYDEwaVZAuWE5e2QHZJj63Tlr65jcTqOQEsislNccFouU0hla/Y/S6VxTBhy5czH9krgDbouqJb7Lgzn/A8+DXptxP1jDJTOMWmk/i2SJhSoHmlUygI46KCHQc8KYzFrCiIcj/PLSLr3WdyCPu87A1L7LU0WPUTpjowvQ3YIQWkG48i5rdf+FkZTvFmpVo03QRCnl1bBQMdXI7uWE5K0TVJJwuJDBlS9aDHm/KSQe8UsppV6gqVDgWyBRMAmTxWSnMUAsZPBQyEwuvIu9cX5dHe1ljvABAuvHMeZ9UvZRccdZJABhobL/yj0jFRdu9H0CYOfYOZamXziqvXtUy430KIWiMhhlSa1Fiu8tynk6+RGni9RKWgwGctqiKsFfn9ngzlh7Aved+iqZNbzLPYqUHWb2/RfpcuzBNi7Y/lynvjuJS5y5Unnui0+WnI3I6Xed+HYDQlhsZzBSplqWJWmD/ZD7s1VEVgX+C0qSZZCB5XRpZfOPKQYr5DF5RLKsTyK2pKJqLouJB5pNkixYFY3YDfN99n2XBve9n71CW1aFSJlXQCYbO4EEzMzDJyvFAqkCtiGN4a9E0jbBXp1tWo2d6JswYnAiZiwMgZjghcKnKtCVjh8pbz1xATgsxPNhLYPcdePrXE8uOdwMNZwzCdhwOsxMInPDyicoSPbrKktoAEZ8++hmeCSsbQmyTzv3P6HmR/lSBXNGetLSkaNpkCs7f+pMFNvek2N6XZtdAho7hLN3xPH3Jwujjne3n5gaybEnsMHY/SuVNoiKD7amiKewlRhA1P/G4NFMwCZM9KMPN51Jn1FnvUEjkilSVzrPCsY8iQFPFOAfktSe1QGQBfzLPoWHXnwh13ot/21+m3E/BsEnnXzpnXixrjHbfq5SDHXlURKDjAFURfP3Va/HqKndv6uM3T3ZQDLZAooO8YRHPOV+4mcEO9hTDbOtLMXDSP+I3hlimdKFMkwcEjIYVFlX/pHXRyZzhtIbFZId0SjGszMS224kwbJuCMbHQk8yZo21vK1Q4lkkXTJpLOS0y3EZGejBzE19zVsZZ0XxFdR/+nsedANS6FfM3kT8CqGtqB+BO61R+3xGk84Lv4Y1toeWhT9A1lBzNuBmbCTQT2qI+OmQ9amJPWc4zUzhynEB+l84Fy2t5YHuMZPN5BDvvZTCVYyCWpFkMIquXzvs5CN07+u/TVq+YtMX1TDhx1SqeU1bzvcJVGN5aMo1nEtpzOz2xHDUiQVHxjbbgBUdcqQ2651xy5HOppIV3fMeufBwAUeZ24iGPRk7xY2UT1D/+b4hNN8/q8UqqB3dsG/1Dgyx0l1w/gQanHEx6UaQF5sTZLwOpAjVKGlkKpnVEoBqEtCDVO7PjFxwRbqbimK5OLM6VE5emUFPbQNgcouXv/0jL/R9jIJUbLaOwbUk8WyBoxsaJh4eLiZxAIyiKoDXqozninfDvE1EfcrPXvQILFX3PA8QyRbRM70HC1wiZgomaGyTYcc+MjzHZvqYiUzDZ3p9i6DCLQGEch03AozEsg7iL8YnPr2g6TqAD3Dg+l0YKH3Zu/pxAsaxBNQmktxIKfTyglJy3Y1EVwY/edDLx0/8fD9gn8GLwXFypDoqZ+KT78Wz4BYWe+Q2AP9A1OZZYpkhYjGRZReb1PCrMnooIdJxwUlsVD33iQq5c28jOwQyE21ASHcSzxqiwUoztY2s2wMf/sJ4vrI/wgeI/YQod2XLGtPsfEYHyin/S1ZCxeUDbS6tQdmZwxs/BtOSkdesD6TyWVQmNrnDsky6YtJTCWfXoAjJ4sCe45qRt4TKcSenS7HOE99xOqvVCvK5jryvYWJTqRcQXv4pHGt7Grx7fywbPqfSe+gkiO2/mZc99jCWiG1t1wyw7rCyo9rHDrEUvkwiULpiERpxAL2EmEIBHV7j6xCYyRYtNwXPQs/3k9j6DNbgTFRtqls37OYwVgd5y8anUh+aee6Hobh459xf8KbaY3UMZEu1X4EnsJN21kRqRIOc++L2vCcyt/AwcJ1BK+ka/+/KGhcg6bgKl7CKQzqDh5qmNW6l58Wf4Nt4wq8cruWEEklBsMw1qSbQK1BHyaqSmyfUbTBeoVfaHXY84gQBITB8ObVo2erHUHdQXmdH5CiHQ5qkj3Vhq6hpYrPSg23k8iR14dt83miPVl8rjt9OoWIhA7byfy4HoqoJrmmwqZRbCvhCCtqYGXlBXEei8n+DuO1j529Mp7HpswuYbmaJJy4P/TPtd7ySw74FJ95vOm1jxfQT33k0ik59ycjiCadmkCyadw1l2DWQwTIlpH74FvVTeICiTSE8EXVVIiSAeIz7htiPB0HgmcALhndfuYPGsQdQewg42ztsxKhw5KIrAPcE1v7YlzLmnncLXo1/lRutCAIrdGyfch51L0vDgpwk/+Z/z2lQnkTMmzR2KZYssVEo5ipEF83YOFeZGRQQ6jlAUwblLa8gVLRLuRtTkPpLpNLJ3A4ZpETYGcVW18J6XLeThHYPca5/Cw69+BrHmmmn37dZUPLpCXvFNIwI5KyUdahsAMjvzcGhXx4PYsf05RpmCyZbeJF3xHLmijXEYBw4VKrxUjHUCuWrayUgvopg5aLsntuxFxcZGxTe4AdVIM7T6nfjmeVX9JUfVGbjsh7zmlVcQ9bv49j3b2LfmA3Sd/VWWJR/jzdq9WIGmWXf4aYv62GXVo+WHSSeGSWSN6R80BemCRUg5MpxAbk3lZUtrCXo0bsmuRgqV4J678SR3AaDWzr8TiDEiEP7aQ3arXb6mgSqfzp+f7SK76HIkgqo9d1BDgqLnYBHoUIKHnXIQz+h330CqgFpwRCA1UN6V+395+XKEJ8xyaztCWriGNs0q+HMk72SF3EmTmsBWPeAJE3Bro2XaZmbicpiBVIEqkRoVUENenV7pCEJWsnvaY6cL5mhpwJHWLliUhC1DqqT0Wmpe+B/6knmKps3eoexoV1PlJXACzUc53MrGEHcX1+KNbaH+qW8CEN7yuwmzgR6+/w5CnfdhoRK871Pc+/e7efiO3/LATf/NE3/8T5664cs8c/2HCf3yQtb98Wza734Xoe03k8hNfo+0bcnuwQybe1LsHsgQzxo8vmuIOzf2YlrysITZSilJ5k0CdgpKZVYZLYzPSkxYEpkrFPCRR0wkAskDnIDlPs9cnrA5hKyIQMcNE4lAQghqAm7WtUa4L+YI0lbPhgkfX+zbCkCw835298XoT+bpSeRI5Q9t7HIgedMiN0lZcixrsELrc75nZum+rjD/VESg44yT2pwvun2yFrUQp+qxb9D+p1ey8YXn8IoiTa2L+OyVq/jO69bxznPaqa6KzDhENujRyYjJRaBk3qQWZyDV42oHZi4CmaZF293voe6Z71A0nYDojuEs+aLNzx7aRX8yX1alu5IvVOFIxXECDWIpbqSvlpziRbcOHrj/4WEnAyhbt855XMMZ5GpPxH+MdgYbi64qNEd8fOu1J7J3KMu3797GwIq38Cnvl0iKEFbt7LtOtVX72SudjlI9uzfRMZxlKF2Y8zmmCwZRNY+t+0F56YU5l6Zwycp6bt9VJF1/KsG9d1GTd3LjXPXz7wRSSiKQ5QqWpfuN361x7UnNPLh9AMtfT7buZOr23eFM5v3ldXN4dZWE7UWUvvuyRQsxkndX5hyEK9Y20txQT13JVatn+ykk+mf0WFnMopjOvWKtsos6kcD210LJbZPTSh3wJumONJAuEJbJUREo7NVJSKeszi5l/UxFImeMKQ04svIhRjrXbNJW8r/W5QR6HkXveZbdgxl2DaSpoRSiHTz8ItB8hLGvaAhyj3kC4HTRMz1Rwrv/Rjqdoj+1vxywN5Gj8dnvMCwDfMj4J2qKXXx057v4wL5P8uGhr/Lu+Pd4Z/ZnvJW/4vKF+brxRhLuRiI7b2J4kpKwvGGxazA9mlUylC7wH3du4au3beZH9++gaNqY8+hcGCFnWFi2xGelkCXHXl6L4JJF5AQLK3Kk3OsAF5vP5QS2izJnAo0IYdmiRchKOk604NRNWiocO7gnyWKt9rs4ua2KfbKaghbE7n1xwu2sfkcEUo0U6t5H6EsWGEwV6RzOlRqM2GWZ6ximJD1JBlgsU2SJ2oMZWQhKRXI40qi8I8cZi2r8BN0aW/LOgKd6y68R0qTv+dsAaF/orPhee3IzbzurHU09uC51MkIejQyTh+MlcsboatqgbxHApK04D8TMDKMaGTxDG+lN5NnWl8K0JLes7+J/H9nDI5t2Yw+XJ7AVeEnT9CtUmIp03qRZDJDzOW6WvPChW+MHrH3JPNt2OxP4VPvl2IrOwLoPoyoCzzHaGWwsuqYQ9Gict6yWL161ikd3DvFf927nlvQyvrz4d2Sv/MGs99le7RsVgVxJx5HYk8jPOQA1U7CoVjLII8gRcfmaBpI5k62RC/DGtnCVeIi0qxbVexjK1UrCj+UtT/CuqgiuPbkZKeGhHYMkFl9NTWY7i0QPvqryrqZ7XarTtauQREqJYdloI7ki8yB2HBhMW+yeeBIwlkTO4I3/dfvoz+f69lFvdiH99aO/M9zOucpJsvpiyTQ+mUXx7xeBRkvIZpCHksyZo51ijrR8iJHQUmvRRfw0ewFZLUL9s9+maNps60tTV+pqKl4CJ5BHL/9Q/YyF1XRo7fTIKEnpZ/tZ/45qpAnvuYP+ZGF0Uvfg+m2cr26gb/lb+dAHPsqeS65n70U/YudVN7HtunvY/MYn2Pi2jWx61y5yb76V+2vexB+LZxHoeohirIe8YdGfcjqH7RxIs3cow47+NLmiTcG0+P3Tnbz/N8/w6M4h1rVGqJYxqh78POZwR9mf84GkSiKU10qOvv9FdwQAM31wVIEodf9SD+oOppKSPtRieUWgwbQjosVzBvWitGAarjiBjhfck1z3iiK4fE0DPpdGh74Q1+Dm0es1X3Lk3L2pjz/eeS+20LA1L6GOu0cfb9mSnQNOJ7+O4ewhu+6K1v7g+LGYls3uoQwL6MasWnxIx6gwP1REoOMMRRGc0BrmmUTA+dl0yhHCXQ8BEKjdb9dri/qoCbgP3skkhLw6KelFTGKJHckEshUd099AER1m6gQqdTLzxLaTTKd5fNcQf3p2H7963JmMvXLXV6j902tmfK7TcWCXjPmwJh8Ou3OFY49MyQlUCDi5WgXFi9se35K3P1kYLbvI1p3EprdtJN1yPn73sS8AAXg0ZbTs7R/OWcj/u3QZ923tJ2/Y1NdU4/LNXtRoi/qobXUcMcbADsCpGOiMZefkQkwXTGpEEtt3+DNGJuP8ZbX4XCq/LJ5PQqtlmdI1rjPYvKI5YkK5Xg+XqrCmKczKxhC3vdBDYfnVWCjowkIPN5TlGCP4XCpp6TgBipaNlOAu5XHhLW8mEDCaITUgHTGo0LV+2ofs6E+THHLCm1NVq6kpdOAbeB5j+dWj21ge51ztCb6XC6aFUuqapPgdoc5Z+PFgIyZtCDGWZN4gJDJIBLjD025/OBFV7UgEtSdfxaLmBn5qXUVw3wP4ep9k92CGxb6S27LMLrIZndshlCpORlu1j+e/cBkdZ3yFfzbex/W9iykGW6l9/geIYoaOoSzxbJH+F/8OgL70YgBS7ZeRXPRKsvWnUKhahulvxHYFQSgIIXj72e38Nn8mQtqEd93KzoE0fQmnc1i2YJHMmdi25OEdg3zwN8/y68f3clJrFT9688l8dGWSW92fY+HOX8HmW8r+nA8kmTNwU0SzC6NOMNNdugYyB18DSmlse2Cra5/uiMCqmS7r+SVyBtmiyVC6QENJBFJCFSfQ8cJE5WAjhLw6Zy+u4dlCC57hzcTSefqT+dFQ9bs29lJf7GSXVcdz+skEtv0Zz50fp+We99P08GcwDRMpncWojuEs/cmZZXhNhGE53QBH5jSJrMHOgTTPd8bZ0xejwerDih6mcUSFWVERgY5DTmyJ8PBAycKNgqX5WGM4NaVizBeMoghqgzMXgYIenYTtQZRWQw4UOZI5gzoRx/TWEvK6iIvQjEUgGe90zk+a3PvgA/zb3zbz80f3EPG5ODs8zLrso6jpHihTLlC2OH51P36I+R8TUayUnFWYA+mCSZMYxAw4HfYMzYfHzo7LMEjkDCI4A1LLHUFqjsviWG4NP5awVx83cfrHi5fy9Vevpcqns7opjD6HzlNCCL702jMZkGH2bH8R19AmkDaGKemK5abfwQGk86bT7eUlmFROhkdXefXJzdy+NcH3eAMASs1hyAOC0RbxdplacAc9zmfgqhMbea4jTlyp4mnlRKD8bg4nGNaHUkxRzKaoWf9jAsV+DKGPzzoqE8LjiEBP2CvJumpQ+zeNrgBPxmC6QFQ43825BRcBEFvyaswzPjC6zUjg84gTaOw+exP50ccrAec90lQFv9tFXpm8K+hYRjqEmnrwiCsNUJdezLY3PorauJZPX7GC/8lfyLASpfW+DyOHdtLmKYlXswyUP5Jx6ypVp1yDuewV3LKhlw3rvow7voPmhz+FZdnsGcwS7HuSonCRrztxRjlda5vDhNvWskm2E9z+l4OGZFJKfvLgLr55xxZ8LpWvXrOGz1y+hFU9f+G8h9+GiYopNOQMu80dCsm8Ofo9OSICjVwD9gRuOHVE2D0gE8jvdoLhVdsAY+LOerPFtiV5wyKRM9jRn6ZBlATYcEUEOl6YTvx9xdoGni00o5pZcr3b6EsWyJXmLi90JVjl6iUfXsy/pq/m+WIzdR1/w+h4iuotv6Z2w4/xDG3CM/giyZxJX7JApjh7V7OUspThBdv60mzuSdIxnCVbsNjel6aFPlQsZLTiBDoSObK+hSscFi5b3YAvUkdGunlRX8uAfxkBUfriOoTQuZBHI26VRCAp6U6M/zJM5AwaRQw72EjIoxOXAURu+nKwommzY9v+Fof7tjzJpavque1Kg9vbb+SflRtQkE6b2lJb3kPBsiX5Use0p/YM85sn9jKUmXv2x2QYlW5mFeaA01UqB94IfreKpfnRsMDc/xkdm72h+Pc7EY4XJ9BE3YTeeHobz33hMs5ZUj1pu+XpWFQboBhawAW5e1h+0+U0PvYlwHm9x+ZozIRM0SQiy59Pc6i869xFmLbk/9Jn8Gjt67HWvuHwHLgklpRLFBuZsF51gjNpum9LP38ongmAEqqf9HFzwekO5kWxi7D1Nhqf+jrX8nfyWmTWAeQzojQJ3SZb2OdaiHd4M8PTtNUeSheJ4og4xspXs/eSn9L1sm+iq/vvCbo3WHLoDiGlpC+5/zPdFc+NikCqf78QEvbq5BQ/5GdQDpY3iIg09hHmAgJACKxgCx5d5ewlNfzDBWt4U+4TGMU830x/lmYxhO2NHhH5XeUk6NF433mL8Lk0Pr2+hp6TP05k581Ub/oFW3qTnCQ3MRA+gXAwwJK6ANoBAroQzrWmKoKQV6Mp4uFjlyzlFvNMgkPr2b1zM0PpApYtSeQMfvLgLm57oYdr1jXxf2f08IqdX2bFDWfQ8vAnydafyjtd/0FMqUakZ5ZzdSikSp9HAKUk7gn/iBB6cDmYXix9xg9qEa9O21lvtuQMCymdEsqN3UmalBhSKGjB8t67Khy9XLKqnidZA0Bozx0A5A2bXNFkd3+cZqubhSvW8R8ffjN7rvoj/33W3zk7/z3+Js+m4el/Z+lNl7P41mvxDDndxSbL9ZmKomlRs/5H6KkOJ8trzLxma1+KRaLH+aH6MC0mVZgVx8eycIVxrGuNcP8nLuJX13+GG3e7+Yz/ERp4HtNbg6bNvU1uyKsTszwIaZPPphhOS8JenUApiDaZM2hShpHBkwl5NYZlgPaR8MwpuGV9N8MbXmClqmMLldc1xwicorPsLx9GNVLUAIMyRI1IQmYQDrElr2nbWLbEtGz+9a+b2Nqb4sb3nXVI+zwQRz2vOIEqzJ5svoBbGKD7aK7yOp2lskAxPZqrMtYJFIjUkstKVEXMOOT9WCbim/s9DsC36EwKG3bxoLWUizb9nELVUoZXvpW+RIGgW59xJ5903iBsx7FfgpbTU7Gwxs8lK+u5e1MfQ+d8CXXBYcpAKbnVpL+8x2uN+jipLcIvH9tL1jyLq5f7OG/ppWU9xkg5CAADThinXxSIz5PYoZScQIWqZTyXt1iS/RvxdJbGsGfS1eOhdKmzF+CpaqDb76zMjp3Uh7w6CYL4s0PkDItU3sSynXtHVyxHVUlEGuuGCXl10mk/gcLMMoGWkEEeYaHQIziZaY5A/KELF3P/tn4+NfR+vi++QTT9EHZVG8faHTTg1ljeEOSb153A+3/9DP/ReCVfbn2Oxse/QrIBVos99LdfTWPEi6IIFtb4sWyJriooYmLB/azFNTy66lWw/Xesv+tX/Mx6BQLHXW7ZkqvX1vNZ7dfU3nc9pidKpvFM4ouvJdl2MaG/baV/IEIw3Tfvzz2VN/cLmyUnkFpyuU3kBHKbaWfp/KDuYI4TCHA6hJXhnp4tRRIUTZvnO+O8253EdNWiq5VpWwWHkEenfckq1u9dTvuWPyPqz6Np2y9Zf+qXaZaOA0fUrqClykfesFnVGKIl4uWuLZ9C7/oeT2Yb+LB6B413vIf0mjdjtJ4NJ1wwq3MwY500PvUN3Mk9dL3s38f9bUtvknO9A2CBdhiaS1SYPRUn0HFM8JTX8oLVxn1DpZWPQ2w9GfRoDBrOBCuTjANOZ4kREjmDOoYh2ETIozNoB2AGwdC9iRxNYhA73IqsW80a4wXa73kvUlHY9uq7uGPJl/mS8XYA7PTAIT0H2F9RtrknyYZ9CQqmTU88j1FG0caWHJbuFxWOPQo5x+EjdS9uTUXqTmmnHLMCmcg5K5yW5ifodwanVX59XrIljjcy532BDW96ls+4Ps3D4mQaH/synqFNAPQkZl4WJvIJNEzEEeYEAvjclSv5+GXLWFDtO3xB4iNlU/Pwelx1QhOJnIGBRmbde8peouUtZQIBKINb9//hEBckJkOEm5FCoXnFmdyVWYRiF/Ht/fuUK7mD6QKNulPSFIg4E10hQFPGi0DDBBG5YbJFx4kw0sFpX2y/E2icCOTRSOObUWekZN5xKIojLBR6BFUReEodebwujded2srt+VUMywBuO3vEufbKQcCtEfLoXL6mgTed3sZN63u4dfEXKQRbeW/PF1CFxLX4ZSilz4lHV/G7NVyaMqEABM7r+PrLzydTtYoPVD3FX1t+xb3V/85v6m7gL2fv4Wupz1D74vUMrnoHm9/0DB0X/4Rk+8tB0WiL+ugyg4jM/ItAybxBLXHnh6CTE+byR7GlGA2GHok1yBUtPFbpM36gCOQeIwKXqU382EiCvUMZWrQ4VqC8WWYVjn5eta6ZPxpnEU5tp/W2NxPd9nu6Nz/GYtENgFK3DK9LJeLTcesKZy6u5v0vP4nat/yMrpXv4l25j2BmYzQ89U3q7vnorPMN7cGdAIT23An2/tgMKSVbe1Oc7OnG8NTgDszPd2GFQ6MiAh3HnLYwiktV2Gg52SIycGgiUMijE7ec1dxcog9XYhe5ok0i59wYipk4PvIQaiTk1UlK/6Qh0mMZyhRpVYawgs3ka9bgjW3Bld5H54U/pBBdwfDSV7NLOuduZQ5dBLJKX/p/eb579Hd7hjIUzfKJQJYty9rSvsLxg5F3HD6qxxF/cDsh71Z+vAhUJTLYngh+t4aqCKoO0QFTwcHtchHwevjny1fz0cL7SBCg9e8fQZh5MgVr9H43Hd6iI4C/FN2GpmNBtZ+PXLSU6qB7RjkgZSG6iPiJ78FcekXZd33lCY2jZSsLa/xl339NwD06CdSHthJzN7PXrkOtaiv7sQDEiley/bX3c+7pp/CAfSIpLUrVthun/OwNZorUa849we1y4dIU6kLuccJwyKMzZAcQuWHMjmdouf+fiKfTdAxl2TGQpsVdEjnHhF2HvToJ2zeuHCyZNyYMGU3mDKqU7EHlNEcKPpc6KnYAXHdyCyG/jzus04DylSoeSQghRp/zF65axdK6AP/+QB/faP1vfmK+kt6qU3G1nzHr/Ua8LlKLrqQmvZVVsfuo96ucln2Adc9+Bk9sC/te9h/0nPXlg8rrWqt89NmRw1QOZo4GLo9EIQT9XhL4R0WgTNGiczhLVzxLSGSxhQqu8fcQn67udwLNIBtrJoxEEqTzJoPpIvUMYx/iGL3CscfVJzZx+pXvxEIhYDn34GLnc6xzdQHgql8OOI7YZfVBFtUGaIv60DWFD16whH9519u4WPk/bgi+E3dyN5mhfbM6vhzeBYBWiBHofgyAZGKYrXf9lB8ZX+TszL3kGk8/fOOICrOiIgIdx4S9OqctrGK77XQZOlQnUMirjw6EA09+j2V/vAjvwHoGSlkZetYJ+lMjLYS8Gkn8qDOwkA9nijSJIYxAM7El15Fov4Id1/yNdMt5ANSH3AxJxx5vT9DWc7ZYtsSWkr9t6GFtc5gQWS56+n1YvRsPed8j2FJWnEAV5oSVd5xAuscRf4QnCIAs7O9MksgZ1KjOhA+ca+R4aA1/OBgpF1neEOSqM9fykfz78MS30/jkVwHojucmLPUcG5Rv2xKf4ZTCqsEjTwQaoTHkOXwHU1SGz/0Syjy0QK4PeTh7cTVL6wJE/eUXQ5fVB2iqd7I69OQe+tV63ii/irzi36d55BxRFKyqhbRGfZy4oJa/ivMIddxLZqhn0q6TQ+kCtWraybUBGkIe6oLj31+nTDuIyA6jbfsrVTtuQu64j0TOYN9wlmZ31ukENaZsPOzVidselKIz+e1P5dk7mCU9QchoMl9qEX+EikD+A4Lz/W6Nt565gLuVcwAQR1jpZrnx6Co/fsspuFSFnz8zyP+430Hfq/+E3x+c9b6CHo3YyjcxuOod7LjmNnZdfROb3rKe7dfcxrbXPkhs+esnzMtaUu9nQEZwFWNgTp1zdaik8gYNIo6t+ZyyahwhNCYDo93BiqZNPGvwfGecEFkn1PyA89ZUhbzqiEB2SQQ61O6vVi5J+x1vJ7n7KQDC5iD2IY7RKxx7KIrgtNXLeWzJx/lH4yPkXVUE4xs5x7WdfHQ5ivfgkmS/W6Mp4qWt2kdrtY+zltbyp9hCAIxdj8zuBIZ3YSsuLD2A/uz1vPiHr7Dyxpfx2s6vslgfYPcpn2Xwsv8qx1OtMA/MSAQSQlwuhNgqhNghhPjUBH9/sxBiQ+m/R4UQJ5b/VCuUG79L5fI1jWRdUQYXXo1cfvkh7e+09ioyJREouO8BhLRpeuSz5PIGiZyBJ+fYe9WwUw6WkH4nSNOYuoQikUpTSwwRbqHQsI6OS/6bYnjh6N+r/W5SiiMCTRTmN2v6NpF++L/pTea5fHUDrw88x7L0U4jdDxz6vkvYUs65HWOF4xuzJAJpbmc1UikNXu0xTqBk3qBKySA9Ts5BdWDmXf4qTI27VC4S9Ghcc1Izudbz+Jn1Cqo3/YJgxz2YlqQrnqMvmWfvkPNeFU2b7f3pUYt/ImdQIxwB/Eh0Ao2gHObVO0UI1HkqWfyvN5zEz95x2ryIQEIIrjnTWXEV0qZXRnGFatF9kbIfawRdVdBVhatOaOT69DkIaRLa9mdSk5SEDaWLREUK2+uUcoV9+kHbhL06wzJIJt5H325n0SOy4yYA+lMFapX9ItLYx8Qsz2g5WLLkRkpO4EpKZosEySCP0HKwiYLz/+nipXzy/e8i1XIhLLrg8J/UYWZJXYC//uO5nL24mjee3kbAo83pPqAoAm+knp6zv0KhqhQKq6jka9ZgeSbOhPK7Vc5eXMMAzsTVSs1vSVgqb9KsxbECjaPCTsirESM42rRkxAHeOZQjLDLY7siE+zL1ke/hJKZls6M/TWYOQbvgLBIE995NcN/fad/0YzwUcJupQ2rcUuHYJezVUc/6ALfLM9lkt7OouI2V5hYKTZM7+KJ+F2GvTlPYwyUr61hvLqCoeGHvo7MSMLO92+gW9dxaPIWW/vt5Y+J6Bv1LePz839D3D0+TPul9uDzld99WKA/TikBCCBX4IXAFsAp4oxBi1QGb7QbOl1KeAPwr8NNyn2iF8iOE4M2nt/HIpy4mdeVPUA9RBFrREOK0FQsAUItJDF89vsENVG37HX3JPIGiU6qlhpuccjBG7LNTu4GUVCldPtxy0EodOBb/6kiQrPCVRQTSN/yac7Z+jcX+AmcvruYVqrMSIxNdh7zvESqZQBXmil10hAWX13EC6V5n8JnPjCnHKLViPlInW0czLk2hMeKhvcZPXcjNRy9eyg/VN7Nbaafpkc8jrALJnEl/0vl/LFOkO56jYNjsGsiQLph0xXOjItCxmDMyVxQh5s02Xh1w0xzxTppjcqicsLh19N+dZoS6oGdeLfAjAeRXrG1kl2xmn3cF4V03k8hOXBI2mC4QkckpW5y/fHUDixe0EhEZtFgp62HvXdQ8+12+kPsmURJI7/jHh706w7YPpZjEsmxyRWfSnMofPAEuZFPomChH6H1pos+GoggW1oXZc/kv0FaUv1TxSKQ+5OGX7zyd157aMtrYYy4EPDN7rBBOZl17tZ8qn4shHJHITM5vm/hkzqBBxLAD+ztuhTyOEKrmHafmiAg0kC4QIoPimzjsXbpKjtx8krxpky/d73cNzF4MMmyb0O7bAVgae5ALXVsAEMFKe/gKB+N1qVQHXKxsDPFEvoWVSiduO4vVMn1DGyEEV5/YTG04wBZ9Jb7eJ0nmZvZ5vXV9N/F929hu1fP3hR/nxhOuZ/11D1F441/wL33ZqLDq0ipFR0cqM3lnTgd2SCl3SSmLwO+AV43dQEr5qJRypM3T40BLeU+zwnyhKIKIz4VXV9HLMDh+y/lrR/89cMIHyNSdQt1z3yefy1FllPJ6gvudQADk4lPu05N1xBelqhX/mAGJrgnaqn1UB1wsiPqJizCiDCJQctipRX9fex8uM8Xa4rPOHxKzq5WdCicTqNIdrMLskSURSC+JQFpJBCpm9mcRxLMGIdKjTqAK5aWm5KxqDHtpqvLytnOW8bn8G3Fluohu/vW4bbviudEJsZSwZzDDjv4U1SKJREw5KT/eGMntORoR7tDov7dkgzRFPONCl8vNSKe/+pCHk9oi3GKeiW/wBXK920ddpiMruqZlE8saBKwEcorPW8Tn4qQVi1GQLBH72KYtR7EKND77ba5QnmBxdv1BYddhn05KehHSJp2Kj/7etOS4cFsAWZpYC9/RdV9yaypBj3ZcBetrqsKCaj91wbm7SIPTiEAeXaE16nW6FlX5UBQnn6jodYRx+xCdQNPlLibzJnXExkUhBD0acRnAVYwDYGaGEGaOgXSBqJpDTFLKaLuc72OZT5A3rNHfZwoWuwYydA5nZ+ywsPIpgvv+zjPuM0BKfqB8C0sPwILydqmtcOwQ9uqcuSjKRrt99HeybWafF0URnLukhoeKy/AMbyEZm9l199DWPhYofaxYdSLvvmQdK0+/DKVqwUHlkiPu6QpHHjOZ9TcDnWN+3lf63WS8C7j9UE6qwuFnIhv0XGio2b+q3eFdRf9J/4Qr0417043Ui2FyWhh0TykTaHonkJQSf965ISlVraOrUkI4AYJhr05TxEtLlZdBOwi56buNTUdfn+M8epl7O6GOu9GkybAMYMbL5wSSUlLpEF9hTpTKJ4XuXD+u0spkMTcmGDpbJGin4AhtxXws0RzxcvHKOlKN5/K4XEPNc99HKe5/L0bH/dIe/fmFriS1JLA80YOCUY9nhGDeysHmHff+3JQeGWVpfXBey+m8YzK+rj6xiV+nTgYgtOuvJHIGA6kC8ZIraDhbBCR+KzGt6ChKf1eF5Ne5M7nBvJBvq+9kSAZRpXnQ48NenVTpuzyXckQef9dDeAY3MJQen+kicqUSyKPwvlQdOD6D9Q9F+HJrKi5NQdcEXtf46UbAo7GoNkDE5zroOrH8jjNHHqITKJadOlNo33CGajmMGCMCjXTIcxfjICXNf3wlK353Nqf1/7EUaj6xE8jt9lDEBYXUOBFohHjWYO/QzISgoef/hmIV+FbqUrZGL0S6Q+y68neo1QunfWyF45OIT+dDFy7hsksuA6AYaMUVnbkfY1VTiPvzyxBI5O6H6RzOTuoqHSE1uA8vRWTVoim3c1ecQEcsM3lnJvoGmPAuJoS4EEcE+uQkf3+vEOJpIcTTAwOH3sWpQvk4FMvvOEqdiopS5Vd7gqRbzidbcwJNL/yYZjFI0ee0uBzrBJK52KS7SxVMwtJxOOjBOjy6gqoIWqq841xBYa/OoB1EmUHL+anoHM5ilQIBwwNPE938G7K+Zv5ur0PPdB9y2N8I6uZbqH7s38qyrwrHF8LIOv8odSjRfY4DwcjtdwIVcymn/fhRONk62vDoKvVhDx+8YAnftN6AVojhfehrGKaFMJ1Q/KptN7Ly1ycS7LgXgP5knjo1dUx2GzoUNEU57DlEZUP3IhXnO6lXVrO4NjCvhxsJKAd4xQmN9FDDXt8awrtupS+VpzeRH20ZP5gqEiCHKs1RkWcyFH/N6L/f/IoLeX7dV/ivzCXcZJ0LgPCPf/xIp0+AfGqY+qf+nUW3v5nW+z9GPGuQyhtkCiZdsRx26btePcqcQABBz8EZShWmpzHiYVldkCV1QZY3BKkJumip8rKwxj+p608LOTlpMn1oTqBYZnIRyLIl8eF+XBiI0P4yq6BHIyaD6LKAkYnhTu4BafHe9I9ps/fBJKWMXpdKRviQ+SR0PUtk+58Q5vi8y1Sp09d07H3qdhLSz9VXXYf1qp+w5Q2Pka85Adc8lbJWOPpxaypRv5srzjsb0x0m3XgmvgniMyZjZWOI5+QSilqQQMffiWcNOoazDKULxLNF+ksNfsaixncDoNcunvRaDnq0igh0BDOTd2Yf0Drm5xag+8CNhBAnANcDr5JSTjgTl1L+VEp5qpTy1NrayuD3SKJsNmfNjVTd9HqXcMfWOMPZIv0n/SPB3D7OUzagRhwTmc+lkhbOINnOxTEte8LVk+F00QnjQ8XlDSOEYFGtn8gB7a6DHo1BO4CSO7RysP97ZA9h4ZTb+AbW4+9/hq7V76NHVuMvDGKacwv6OxB9+9+o2nxD2UQlOPRuFBWOfAzLRrNLX8YlJ5DP66UgtdFgaNuWaIWjs+ziaKUu6GFpQ4BVp1zAL8zLaN91A+5fXsGqX63FO7Ceume/h1ZIsODudxHZ/kf6UwUa1GRFBDoATT1KBSAAIZzOWUDGXcfqptA0DzjUw+1/reqCHk5tr+Ivxul4hzejDG53zqNUjjWUKVAlnPuD4p9OBNr/9/alJ/Cm09uoC7r5vXWhc9wx+SngLOikSg0hPLvvpm79DyiEFuKJb8eV3MO+WI49Qxn2DKUJSKeDoThCM4EqlJ+QRx8Vdl2aQmPYS9U04exVQT8xQohDEIGcMaVNwTx4XAlOF8eo5UxVxnYkdGsq6VKjkULPJgB6T/0EN9oXAyAmcQL5XRoZ4YNCiqqHv0zrAx9jxW9PJ7rpl6MuUIC+ZH7ScxpBSfcS0+tY01qN1DxI3YeiHP6g/gpHH7qmsfeVfyB+7udmVVq9siGEicb2wGkE9903amHujufpHM7RlyiMK++1bEkg6xQJ6bVLqBnjlBzJ+Fpc56e9xn9cldEebcxEBHoKWCqEWCiEcAFvAG4Zu4EQog34M/BWKeW28p9mhaMJK9yGsvgCdFXw5+e6SLVdSoe+CFVItJIIJIRAljIU7HyCvGmPrlqOZShTJEKaoh5CKa2CTNTqOujRGSaEkhseU38xO6SU3Ph0J7VqlmLA0T2L/kYSy19Hj6xGwcIqU1ChKKZRi0ms4sHq+lyZrCtMhWOHTMHER8H5oSQC+d0aGTyjIlC6aNKEI4YqkUo82+GitcrH609rxfPyL5PwNFJn9ZCy3bTf/hZc6U46z/8OmcazaHnwX1gQe4xqkayEQh+ArhzdK4bSFcBWXNz/xdfQGvUd1mNffWITv0mdgkQQ3vVXAAxTUjAthtJF6nGEYSXYMOV+1JIIJIWGq7qNxoiHz125knUnn8muK25AOeXt47ZfXOsf7Yzk63kSgH3n/TvAaLc824aeeGF0gWUyN0WFCuBkrvXLMByKCFTKAxrJY8sVLfqTeQZSBfpTeR7fNUS9KDnTwuMDl/OuCABWj9MhL63X8qniP3BP8weRJ75xwuNFfC7ilpdCOoae6iTTcDr56jU0P/o5Fv7t9ehpZ+1cSuiJTz7uyxsWPmOYortm3O/LkdlZ4fhANKzGE66ffsMxhH06zREvj6mnoGf78QxtPGibrlhuNG+uL5lnAT1YQsNV3Up1wI3XpVLl11laH6ClyjcrJ1KFl4Zp7ypSShP4MHAnsBm4UUq5UQjxfiHE+0ubfQGoBn4khHheCPH0vJ1xhSOexFvuxDjv07zljAXcur6bRN7gZ+I6AERo/4qL8JZWVLJxCoY1YQeF4UyRiEhjuidefRkh4NYYkkEU24BCcsptJyNbtEgXDPwyRbLtYgxfHX2n/gsut5c+SmGYyYNMcHPDcAbDZrp8ZZHpvIlZCRo6pknlx4hArpII5NLISC8UnVX2ZM5ggeIMnkV06lrtCuXDpSnUBNysWdhE9xvu5Zdn3MqnC+9AKyZI+tqIL76GvZf8lHzVcr6S+xp1Vn9FBDqAo9oJhNMhyAw0HBSMeTi4fE0jg6KK3f4TCO+6leDeu6jZ8BMyBYvBdIFm4QjDalXblPtRAs7ksxhqQ6g6dUE3V69r5suvWk2+9WUHuQsjPhdvOs9pCKF0P0NB9ZOoOZV8ZAmhjntGtxtIFwhTEoEmCdetUAGgJuCiz44ckghkpAfx9T3NULrI1t4UO/rT9CUL9Cby9CUK7OhPU1cSgcQBrdfD1Y5Q+vCjDwLQLyPYKGxb8i60hgObIzu8//xFpPDQ09uNnu0j3XgWu6+4gX3nfQvv4AssuelyPIMbAOd7PJmfOG9le1/a6RwZGP/dUBGBKswUr0udsJPydKxsDPG33GrAKWFX8/Fxf88bNl1xp8SxK55jiegm5WvD7XKjKoIldY74UwmCPnqY0V1FSnmblHKZlHKxlPKrpd/9REr5k9K/3y2lrJJSriv9d+p8nnSFIxvhDuJ2e3jf+YtxaQq/eryD36TXcWftu2Dta0e383l95IXb6aZg2mQKE5SDZUoDx2myTYIejWFZst/PMRcoUzTxk0eVFkaghS1vfIr40tfg1lViWqlGPVmecGhRcCbsn/v139nUPTfR6kCKpk12gpK6CscOmaKJRxScrlKaB3BC3dN4UEoiUCJnsED0YQkNLTr1hK9CeakNuhECbN3PZSe0c/417+FH2tt4T/zt3PpCH7YryIsX/ZxH7dWoWIiKU2scR7sIZAcbMSJLXpJj1wbdnNoe5XeZ0/DEt7Pg7vfQ+OTXyMV6GUwXaVVK34vhqfp6ALoPW3VjRpwQ2hErv8+lTdrt6crTlgMQsJNsNuq5c1MfqbZL8Pc8iVKIAzCYcpxAUijgnt9SuQpHNzUBNwOEUTL9c96H9uR/s+ivr8FOdI22eR9LdzxHqxp3fjjAHfexq84AoD6/C4DvPOEEmteF3JOWtiytD9Lc0ECz0YGQNgV/EwhBbNnr2HHtbdi6n4W3vxV3zCmW6InnJzyvTd1xakighxqIjimxmc9OgxWOLby6im8OzX5WNYVYH3ORqjuVmk0/Z8UNpxLcexfCKuBKOPk/8azTdKBzOMsi0U2haulR29GzwgxFoAoVZoMqBJ7/z959h9lZVYsf/+739Da9z6STSjppBAi9ilRRECliQ0XxckVALPxQVK5cO1f06hVBigLSBEU6oZNAEkjvmZlML2dOb+/+/XFOJjOZPplkZjLr8zx5MnPets/sZN5z1ll7LZuFQp+DK5ZN4Ln1tSRNxfZZX8FaOLV9vyyXlSBedKQF15t3UfjWD4jEOwcxGjM1gfoqJOlz2mgi050lNMggUCxFDuk30ilHdvunuVkuK232dBBIDVUQKJG+Tn1dNf9aPzRLzBIpk3A3gTRx5AhmMoFSFmf7v0+P3UoYJ0Ymu8wfSTBR1RF2laIsUsz0cLJZjE5dhGaVZXPMp2+DCcfx+5U7eHJNNTVJL9ckbuSJ+f8Lx3x2+AY7Ao325WChs39N0+m/HLbrf+GESbzjOp6ItlNjTQcYzV0raQhEmWRvIenMay8o3yOlCI87keiEk7tsKuyhXXjHOilNzgk89n4VjZPOA52iZNVd+Pa8wHmbv8U4oxnTkQ2jfJ7FoZXvddCgc7BFGga9vB9/JUqb5Gx7otvN1a1RJjra0h0arZ3/XXvz0kGh+Y69aBQf+dPbS7KdvV6ypLAAr0ov9frzBrO9hko8ezI7z34IbViZ8O9rMGJ+4kmTbfXBLq95t1fV4lQJPPmllGU7yfXYUGrsdqcTA+dz2gaVOTar1Iep4dl5v2HHOQ8RzZ/F+Je+yrRHTmLaIyfhqXkbgFp/lK17m5mg6rAUTR/q4YvDSO7EYsgZxv7OJV86cUr711OKOneDyHHZaUq5eHntNoyNT5K/4T4CwWCnczWH4uSqIIY7r9drdswE0qHBLbEKxZLkZGoWpBw57Y9nOW2kHDnElAP8QxQEiqevk08bH+xp6bNQYH/EkvtfdKRMKRI9ksWTJntbI11eAPYlmKkJlLLurzficVgJaSeWZPrfVFMwznhVR8Q7YUjHLPqnyOfs9HvObbdy68dmctbRJfzh9Z08/F4loEiNW47VeWg7SI02o73wqeEtbF9ONRxOn1XCrz9/Jt+f+BfOit1ByubFXfUmm+sCTLI2kfL1kQWU0XDuvUQWfK7L493V4wMyndHSAefc8bNpDMb5V2MhTbOvIX/jfYx/4UvMC67kDONddB9Lu4Uo8Npp0DlYzDgcsCSlv/YVlc7d9nfQGmfjRxSs/S15G++ncO3dfLvhRs5MvozpK+t6sDMHjcIaayXlyufezy3n66ccxfjc3ut8dfy3/VKNg/98ZC27m9L35Xj2RPac9jvswb1UvPafoDUpU1PdGu50jr3VewDw5ZehlKIky8mEfKmvIvpvsJk5x08tpNDn4E/vNRAoXc6uM/9MNHcaSXcxCW8ZZW98G5VKd7cL127BqkysEgQa1SQIJIacoVT7mtACr4MvnDCZIp+DaUWdU8C/dupRuLPyyTNCuIJ7MFJRgtveoqpl/00xXRMoBH1mAllpzmQCmYPOBEqSrdJBKIs3HXRy2Aw8Ditep40mo2DoMoEyS3cKjTY+rPKT6CYteCCSKROt03WNQrFk+wsPMXKkTI0/nKCyOcwrm+upb4t12xGvN8FYZjmY1dX+mN1qEFYubKn0/5uWYIyJqo5UZjmHOLwshqI024nXaSXHnX5jnOex88vL5nPKjCLe3J7+/VSa7ZSuGUcYpRTWYc5yyXbbmDtjBm0JK1W++Xj2vsnWuiBlqolUVv+WH1oNNbB21B06o42bOo95Fdk89O4eds+9gVjWJKL5s2lR2biJoqUekOhDYSYTCMBsG1xdICNUh1YWnC2bmfroKUx94hxK3/sx5W/cSsl7d+JMBXk/92yCp9zR9WCLFXNf4xJPMccdVcANZ0zvs9i7cqT/D2gUP7nmbCLxFDc+upY3tqXrcYWLF1G75Bayd/+bnO1PABCJm+2t7E1T09qQfo1pzxT2tVoMfE7J6BWHntdh5ZazZ7CpNsALG+tIOXPZfsEzbD/vCfYu/wHO1m0Urv0fANz+bQCSCTTKSRBIDDmnzdIpEn3D6dN47VsnU57r6rTfjJIsioqKmWHZi0Oni916q1fSEkq0F4luDkbwEsboo5uIz2mjTadv0HqQnxyF4/uXg+UVpG/AeZlWpm67hQaVjxEYgiCQ1u1Ld5YWa1ojCfY0Rw7qlPFMQeiUqdneECQcT7VX8RfDrykYY3NtgFe3NHD9wx/wxftX88+PaogNMPjX3h3M3vnFaNRwY0+FSaZMIm0NZKkw5EkQaLjkeuxMKvBQnuPCbjXIcdtxWC3875WL+MIJkzlmQk6nlqriyGAx1LDXNfI5rMwdl022y8brqVk423aQm2wgL1GH6etfECj9PAb28nDfm2Z7yXS+c+4s6gMxHvmwma0XPcf28x7npUypSN1Di20h9sn12KknB4BkW02X7fGk2efrG0uoDv/Es0nZs4ib8OKUW/ifY/7JzRP+ynnOP3Fu/EesOvo7qAnLuz0+5Ux/EGh6itof6ytor5zp/wMpTxFLp5bx7PUnMLM0izv/tYlnPkw/j8ajryFcOI+Sd36IEU/Xg6zxR4kmUuz1R/AkMx3LfAPr7iTEULhwQTkLx+fwh5U7O30gHxh/Gq1TLqDog1/g2fsmueF0jSDJBBrdJAgkhtyBqYgqUyPIbu3mn5szh6xU+qaXVHa8e1cC6bomALFgCwa6S0eSA3kdVoJkgkCRwRVaDnZYDub05ZPjtpHrtrefv5lsVKRlUOfuJB5CkX4BM9WTDv6sq2o9uFNmggm/eXkbX3/oA0xTS5HoEaLGH2FjTYBfvriVb/z1A7bUBXHbLVRV7SbVvHtA5/JHEriIow6o6xE33DjMMElTY7TuAsBSIJ3BhpthKMbnufE60qn8FkNx68dm8siXllPg672+hBh9LEoNe10jw1Dkuu2smFrA35rSvwM+ZnkHuxmBnHH9Ood1EMEs7chCKwOVP5nFE/M4d24pj6yu4nMPfshfV1fzVDzTL0QygUQfbBaDWKZFug7WkUiZBDMfDPrDiXS3r4Zgj8veU4kYlmgLb7YVcrL5W+Y1/D8+t34O//VGC0/tBFt2CVcdO5Flk/N7rJ1iutJBIO0dQDDGmc4ESvjS/8+Ks5w8+IVlnDqzmHte3c6D7+xGK4O9y3+INdJI+cqbwUySMjU7GkJsrg1QqNJFqPEW9XQVIQ4ZpRS/unQBDqvBD57ZwG9e3tb+/qT6uB8Ry5rEuJeuY3biQ5ptJTjcvuEdsDgosshUDC/X/k8FX7Yu57SGV7FEW/Bb8ijNdhIPpJdO9FUTyG41sFmtRA03xqBbxCfbM4EMdy4V1v3LNTwOK23a2b6M62Bs3F3DzMzX2aYfq6FYV+3n0oM4Zzxl8mG1n+c3pFOnN9cFKMl2tr/5FMOj1h/lyQ/28quXthJLmpw7t4wrZ1lo+vdPOWnvPzEeK4Rvbuz3+VrDCdwqhmHP7/R41OLFlQgTTSVxBtKBJSNfgkAjgcvetY6KYaj2LENx5FAKLCOgw1mhz8FlS8Zz+bpq6q35XGn9NwCqn0Egy0CXg5HO8In7xmF3pDN+v//xo9vvbQ++sxuLPpqINRtLX93JhABMbzEEwGyrJRBJ4I8k8BZ6aQimCy/HEiZ7msNMKuj8gYjWmqt+/TR/Ad6os1BUnscFS/KZVZqN1aIo8Do6fVDZU7BTu9L3WO0t6XZ7d4xMlpuZtf//mdNm4Z7PLOTmv3/IQ+9VEk9prl4+j9olt1D67o/AsFJ50i9JmbBqdwsFyo9GodzDV1tMjG0VeW7+5zMLufmxD1m5tYGXN9fzk4vmMLXIx57T7mHyE+ex3FhPZdZx5I3yOn5jnWQCiWGlMp8Kmlj4TfAUAMpX3kgykaApGCMZSmfe9BUEgvSSsIjhgehgM4FSZKsgpsUBNlen1F+Pw0rAtKMSB19r54l3Nrd/bYs1M7nQc9Bt4sPxJJtevI9J3iR2i8ErmxsIDbDosBhajcEY9721izv/tYnxeW7+cF4ht/E7Fj55CqeFnqHSLMQW3Aux/gcWWyMJvEYMdcBysLAtDwOTVLgZo2UHJgqLLAcT4rCyGGpEtHJ22iwsnZxPvtfJs8ljmKDSrbatueP7dbzVMAb8PMJLvk7N0u+2Z1YU+hzcceEcbj5rBgAJrPxz+V9JnvCtAZ1XjE1uby4x7BCspy2SIBxLUeOPEInvX0IdjCZpDMY6HdcaThDM1NW54aIVfP/jR3P6rBLKc10UZ+0v2u92pDvY9hTs1K5M9vkAlmUZmeVgZnbnYKvVYvDTT8zlsiXjeOz9Kl7ZXE/j3GupO+Y/ydn+BFm7nwOguiVCsdGG6cwFi3yAJ4bP8ikFvPatk3nhhhMp9Dr40bMbaQ7FieVO56mKbwLgKJnZx1nESCdBIDGsVCYTKJlVQUvuXH5h+zzZu/9NyXt3srk2SE6mUHN/UsiznFbCygNR/6DGEo4lySbUqTPYPh67BX8q04bbHHwR50g8xTub090fUjYf1kgT43Mc1DQfXIbRex+s4/b4T/lZ6YssmZTHyq0N+MNx9GDbq4qD0hKKccvfP+R/XtnOMRNy+fmyCCe+8HFytv2dlumX8ffj/8EvkhcDEG/a2e/z+sMJPCrRpc1z1J5+wRpvrcMZqqbNmo/d2XsRSyHE0LIoNajWvIeCxVCcM6eU58zF7Y/Z8voZBLIMoibQxBMJTjyjU5aFx2FlVlkWZ88uBcBdOAmLK6unUwjRrjDLSSM5mG01hDMfaDUG4l32q/VHO3VX3d0cpkilPzzMLRpPlsuK3WpQnutiRqmPaSVeZpT6mFLopaSX4vz7MoHUADKBVCYTSGd3zbhTSnH7+bNZMjGPX7+0jQ01bdTP+yrRnKMoee8nYCbY2xqhwhbEdBf2+5pCHEplOS7+7+rFhGIpfv7CFlKm5sHocm61fwt97FeGe3jiII2MVytizFKZT1tS2RO5/tSp/DJwMluLP0bepr+wq6aeHDKZN67eawIBeJ1WgsoNg1wOFownyTNCaGfXa3kcVvypzPKNRLjL9v5qjcRxZLo4JbInYI028kX/L/nvxO0H1db9/TWrAZjV8iInTSugLZpgbaW/vWC0OLQSKbP9hWg8afLVBz/g+Q11fHLROH58TIhpL15D3FPGlkteZe9xP6R0wjQqdfqFXnIAQaDWSBy3ioGtc5H1uCP9gnVP5R4KdTNxV3H3NbiEEIeMYahBt+c9FM6dW8a75gzClmxMiwPD2783lz22gu+FxVDd/s4pzXbxwwuO5ocXzKYsxzns3dPE6HDevDJqzWyaaiuxN2/B1bAWAHfNO/gqX4LMB1xaw7b6IHVt6WVie5rDFKlWAIysEspyXEwr9pLnsWOzGDislv4FajPZ50ZW/4NAFEwlUjgXPeH4bjfbLAa//cxCynKc3P6P9exoilK7+BYc/h0Urvsd1a0Rii1tmB4JAomRY3qJjzsunM2aylb+8s5uNta20VhxJrbc/i0vFiOX3I3FsDIymUCp3EmcP7+MXLeN+5KnYkmEyN31THvL9v4EgXxOKwHtRg22JlAsRa4Rwuwm68jrsBIi88Y7PvglYeF4Co9KF4NOZU/ASEZY6H+B6aqSpgPSmvtrTWUrtKQDCY5gFacFn+I9x1dI7nq9vWC0OHS01uxuCrO1Lkhlc4j/fGQNb25v4gsnTObree8w5V+XkXQVsvOch0h4ywDIdtkIu9OdeswBFIduDSdwEu1SGDqR+dSyunoPhaoVI6tkxGQkCCGGx+KJuXz73Nm0TLuEaMmidNGifhhMIMswus+CshiKXI+DzyybgMtuGVFBMjFynTqziKijgERbLeWv3cjEf30Ga6iGic9/jonPXc3E565q765lmlDfFqOuLcqOhiCFqhWNAk8hNovRZ1evbuWMRysD+rmEEgB3HnsufhajcGqPu+R7Hfzl80vx2K3c9Pd1/Dsxn9bJH6dk1X9xYvCf5OFHe6QotBhZLlpYwWVLxvHo6ipCsRSzyrJxyAeNo57MoBhWRqbrl86bhNVicPbsEh6sKSGcNZmZNU+Sq/ZlAuX0eS6fw4b/IIJAoViSXBXavxa8A7fdSkhnuvkcRHHoSDyFl/QnVjpnAgBWHSePNvYOcknYsx/WMMmoxzRsmIadie/eRqHyU1z/xoBbkIuBq2qJEImnME3NXc9t4em1NVwwv5xLi6spX/ktwiVL2Hb+kyQ9+z9RzHbZmDBuHGGc6JZd/b5WaziBQ8fA1nmpl+lOB4Fa6qspMfzYskuH5LkJIUYvpRSXL51A8/Lv0nTxo4f0WhbVdz2kXCmGLvpJKUVJ+QRKzXpcDWuxxvxMfuZSLPE2GmZ/AW/1Sipe/WZ7RhCkA0GbagOMs7aRchUcVF0dc+b5bL3o31gHWMjcYtDnBzAVuW6e/OpxTMz38KN/bea3uTfSUHwCP7L+gbx4DUgmkBiBvv/xo5lVml7Oe3RZlgSBjgAyg2J45UxAG1YoWwjAp5eOJ2XCW76zmRT5kKX2HZg2D1hsfZ7K57TSajpRmZpA0QG2SA/Fk2QTBGd2l20eh4UwjvQ3BxMESqRwq0wQKHd/4V6L0jQ07B3UORuDMaZYG0j4xhEYfyqmxUmjkU9paINkAh1CWmuqWsK0hhMkUya/fnkbT67dy7lzS/n8kkIqXruBhKec3af9HjNTZ8pzmIhfAAEAAElEQVRpM5hS5GF8vpvppVlUmoXQuqff1wxEYth1vEthaG92ISmtiDZXkkvbwNraCiGOWE6bBbutn0tgDoKhul8O1lGOq+/7uBD7lJVPSHfDxCTurcDRtpNAxUnULvsutUu+Tfbuf5G//o+djtnbEqHC6sf0HNw90Gq1Ec+bNuDMNaMfwVCA0hwXj117LMcdVcDv3qjiS/Fv8KK5EAMTNYBi1EIcLk6bhT9evYj/vmQeEws8A64bJ0YemUExvHLGse2a9RgTlgMwuzyHWaVZ/L51ESaKY833u12e1R2v00pLyoURD4DWXbpG9CUUS+HTwW6XnnkdVoL7loMNoJvTgcLxFB7Sy8FUpntT3JG+XiDT0WKgWsMJxqs64r4JVK34KVs+8QKbvEs5KrGVWDw56LGOVYl+1FEKxpJsqw/SEkqgteauf29urwH01QVOJj/7Kexte6g88WeYdh+Qzv45qsiL257+dHJcrps9uhBadvergHciZZKKpTPjDlwO9tkTjiJkzWGqzgSUfAOoYyCEOKLtK457KBn9yICQNw1iIFRWOqM1pB08MO7/0WbN47tt5/G717ZTM/Ma2sadSvGqu9JdNjNq26IUGa2Y3oNbUmUYg1sWaTWMfv879zht/PrSBZwzp5T3a2Jcm/gG2xf/P/ScTw74ukIcDqXZLi4+poKJ+dJ45Eggd2Qx7AyHt9OLx/Pnl/FOk4P39AwMdLeFmrvjc9poSrlQZgKSUQLR5IAyYWKxCE5i7W3rO/I4rITbl4MNviZQx+Vgqmw+0eyjaJx7bXpbc+dMoP529moNxSjTdcSyJmDas0j4xtOWO4dsFcJfs7V9v3jSJBBN9Kv2UHIMF5QOx1I9FukOx5NsrQuwsyFENJH+Gb22uYYr99zKq/k/4ZuWh5j2+Jk4/DvZffr/Ei5dCqS77ZTldO5EMj7PTZUuxBmsJJrpftIWTRCKdR+4aw0ncJHujqIOKAyd47Zjzypiua8WAEt22UH8BIQQR5Isp+2QB4HSndGk3o8YOkYmI+Z942j+3wcuFoTvZq05hX+sq+H2Zzaya8ltKJ2i9J3bQWsSKZPGYIw8sxk9gK5e3bEaRr8yeg400P9neV47/3HaVD67fCInTCshPO+zWHMGtgRNiMNNAvpHBplFMeysRucXj/vayT6ZTGcH9ac9PKRbxAd0+s1xMtRCMqUJDyATxowGAFBOX5dtHruVIPuCQIF+n/NAkUQSj4qSsriwevPYeslLBCaeDUAqUNe+XyCaYEtdsF+BIDPcjEeHiWftL2CYLFkAQHjne0B6adzm2gC7GsPsbY1i9tGJLBQb2FK6I0nSNAl18+/GH06wo0PwB6ApGMPz+h2caVlFKQ0Urf0fQsWL2HbBPwhMOANI12Itz3V1uWmOy3NTqYuwpcJE2xoAqG+LsqMhxLb6AK3hzu1w/ZE4rsxSwgNbxAMkXfnYw+l/Q5aBdDQRQhzRPA4rzkMdBOqhMLQQg2XJZAJ5Zp7OdaccxX2fXcKvL1vA9adOZU1lK79dm6Bh/nVk73yWo544h/iudziKSrKSzei8KQd3bUMN6o3uYOqklOWksyv+84zpKCVvsIUQh8fgq6YJMUScNkvnDIl8N7PLsnh27xJ+YL+3X0WhIb1kq02nUxRj4VbAQyieIqefWYs6k+FjOLxdtnkclvZMIDMWHHT0NBI38RLBtHmwZVrlJt3pIoBGqL59v4ZAjHjSJJHS2K29fxqVHakEIO6bsH+84+YQfduGvW4N8aSJP5LodEw8ZeI0em4DHE2m8KQsY/LFSNLUJGIpspz761c0h+JUt0Q67ReIJlj12M/4Jk+za/KnCZz8I6zh+k4FoB02gwn5bhzWrj/r0mwn1aRT1uONO4nlFhGJpwNMkbhJZXMEfySBz2kjZWo21wbaM4EOLAwNpAthZliyJQgkhNjvUP8uV0phH4P3C3HoWMrmsXf57fhmfpIrs3Opa4uR77XzuRMmUdkc5u8fVHPUyZfwyRNKKf7g58x7/Vpus5YSt3pJLrjyoK8/mOw5h23gx3gcVkqznextjWKVbDohxGEid2wx7JzdvEE+e04prfhYc/QtJBd+tl/n8TltBEi/OY4HWwEI97C0pjsqU/BZdRMEStcESgeB9EHVBEpnApl2L4ahMAwwbR6iyokt2pg+v9aEM8uD+qpPo7UmL55eRhbP2h8EKsj2slFPJLf1IxoCUR5+dw//9dwmvvXoWvyRBMk+MoGSpj7iOosFovsDYb1lWCXNzhlk9W3RLgEgfzjG2kfu4JuJ31JVuILgibeDMjoFgABKsp3dBoAg/aYs6k23idfNO2mLdP232hZJUt0SodYfpdYfxU1mKV83QSAzEwTSKGxSWFIIcZgZ0v5dDCXDIDD3GlzebPK9DmxWRaHXQZbTxo1nTWdWaRa/fnkHX9s0iw9P+j8syQjLLRuonnENNk/+QV9+MFk9gw2E5nsdFGc5BrUETQghBkMygcSwc9q73jQ/s3QCsUQKy4zjoKTr8qzu+Jz7M4FS/r2Ur7qXukXfJFXo7VeBP0siBFawdLMczO2wEmZ/JlDPOTS9i+wrDG1PB5rsFgNlVQSs+XhizSRSJomU2d71tK8gUDieokKn68DEffuXg1kMxS77FE4Kr+SYn75M0kz/fALRJBtr2ji6LIt9zc66k0yZxJImnl72GW1awwnsVgObYdAYilHkc3a7XyqVDsJpranxR2kKdliWpU1CHz1D7ru/5Mt6C7sLTiJw7v+iLV1bH3ud1k7ZRN3ReVNI1RgYjZvxR+K97huIJnGpTBDI3k0mUKZNfNJVgM0qXXiEEEKMblaLwmO3YjEUkzp0JCrNdvGry+bzyKoq/vTGLr70LxuLY1/iq77XUAu/NCQZNYMJAh1Mxl1RlhOPQ96WCSEOD8kEEsOuu0yJbLeN/zh9GlaL6neHBq/T2p4JZNv2b/K2/JXsHf/oV12geNLEbma6djm6CQLZLCSxklT2gysMnUjhVTHIZBtZLQY+p5WoI5883UKdP8qHVX7+8vZu4kmTeB9BoNZIgkLlJ2LNJifbh8NmoFQ6AyVVMINsFeKKWXZ+/sn5/P6KRQDsbY2QMHs/byKliSWPrLpASVPTEkrQFIoTiPb8byJppoNwOxpDnQJA0ZAf+0MXseydr1KgG3lz7o9oO//PaEvnSFmWy8r4PDfjcl0HnrqL0vxcdlOKs2kDkbiJo3kzKtV94e5ALImrt0wgdzoTKOU+uK4oQgghxEhgMwxc9vRrxANfK07M93De/DJuO+9oQrEku4tPJ3bZ45h235Bk1BzqYurdkSCQEOJwkd82YsRSSuFzWvt9M08Xhk6/OXbUrgbAU/ce4XgKXx8ZGeF4sr11e3dFdw1D4bFbiBkubLHBF4YOx1P4VBTs6e5NViP9HOtcRRS2beS/n9/CMx/WEE+aTC/xUZLdeypOazhOlgoRt2XhtFnI9ziIJFL4nFbmH7McnvkFVx4VIe5oJGvzv/i982Xmr9uNw3kVnHFzj+dNmiaxxJGVlpxMmbQkUmgNmp6Xg7k3PUY8fwHhDsvrqvbupfzZK5mit/Fg0TeYfPqX8bn3B3ly3DYKfQ5Sph7Qi7hxeS4+So3nzKYNuOrXcNRT55FwFdI843KaZ36GZIeATjCaxKN6DgKpTG2plEeCQEIIIUY/p83Aaet5SXWhz8Gc8mz+eNUiXLZ0HUOLoTrVmRysnpZyCyHEkUAygcSIluW09bvOQEWuG8OVBYDTvw0Ad92qftUFCsaS7a3b6aYmEKSXhEWV86AygaKJFF4VRWcCTU6bBZfNgvIVUahaefyDauaWZ3OisZaLXjsT38u39no+fzhBFmGSNh8Oa/oTszyPHZvFIJE/PX2Nli2Mf+krlL77I+YaO3Cl2nDseqXX8yZTmugRmAmUTGlSpsY06T7TKZWg+MXrKXnvzvaHdu7eyaRnPsUMdvDu4l8w5/wb8HQIADltBuU5Lpw2y4A/xRuX52ajOQFHqJqc7Y+jlUE0/2iKP/gF0/96HLmbH27fNxiNscS2Pf1NN8vB8KaDQOZBtsYVQgghRoIsV+8f4BVmagX5nLb2pVg2Ka4shBB9kkwgMaJl9/ECoCOnzcKlx83EXKkwVDrTwxauJ9G0Ewrn9HpsOJ7C3d5+u/saRF6HlWjMje+gCkPvqwmUvkaO24ZSivzicfh2hPifTx7NNHZzVN2dEIdo3Qe9nq81kqBIhTEdeV1Sl+1ZhSRchXirXsHV9BG1i2/iu01ncPGO73JKqKbHcyZTJpZgLWF7Lk1BB0op8jxda96MNqkDimFH42bXT/rCTSg0WXtewEiE2Ly7kvkvX02ZauSjFb/HN+20TrvbrQYT8j2DLohakevmcZ2u5ZS7+a9ECuez66z7sPt3UPbmd6lY+S0K1/4PlniAu2IRXISJTDwNV1ZFl3MZ+4JAHikKLYQQYvTrKQtoH6UUUwq9NARi7cu3B/K6UQghxirJBBIj2kDfXF953OT2ukCh4sUAuGreI5roPaulUyZQN8vBINMmXjlRB1kTyE2kPdvIlvnkSmW6OU12R/DWvAHA29bFWIK1vZ7PH0mQRQic2V26UjhtBrHcafiqVwLQNv40ynNcVCWzsYTqoIcOWYlYmCl/O4lX7/8hp/3sVaqaw4N+viNFMlNsO5ky24NB3WU6pQL1ABipKME3fs/ily+nSLWy8bT7sB0QAHI7LEwq8BxU3YDpJT5qnVMAsCTDBMpPACCePZldZ/6ZuoU3EM2biX/iWbzkOIUfuG+m5fz7weh6TUtOObGsiaTKjhn0eIQQQojRxGYxKMtxkeuxYTEUBd4jqKOFEEIcIhIEEkeUbJeNVCbLpmnCOaRsPtx1qwj1sSQsHEvhURE0Bti6L+jrsVsJ4YT44GsCRWMJ3ETbu4Pto3zpOi7WSAOuxg9psJWxNlGBNVyPmex57K3hBFkqjMWV02UNvMtmIZqbXhIW91YQy5lGWY6LOp2LJRlGx9q6nK/GH+GGP/wTeyrMIvNDWsIJPqz2j/oi0UkzvQzs5r9/yF3/3ow1XE8k3k0QKNjQ/vXSbT8nTwXZcdYDWCcub3/cbjUoz3UxpdB70IUjvQ4rd11zFq2k/80+3DSV4L6i1YaV+oXfYM9pv2Pv8T/m57YvstZ3IkY3ASAAq8PNlk++RvKoMw5qTEIIIcRoU5btojzHNejMXCGEGEskCCSOOIYzXRdoi64gXLwIb81b1AdiJHvptBWMJfEQJWXzQA8FBT0OKyF9cJlAZjydVaMOaENvZI8DwNG6FVfDhzT6ZlKZzEHpFPG2nrOBWiNxfISxuHO6bHPaLERzpwEQGHcKKEV5JggEkGjd2+WYh97Zg792JwDLHDuxGvDeruZuAyajSbKtluzHPkW4fhtFu55ixoOLMRu3dNlPh9JBoOdSi0hgZc/p/4uq2J9Zk+O2Ma3YO6TL46aW+KBkNhHl4ddbsvjcfe9x/9u7aYsk0FpT3RLhL2/vZldTiAKvg55e3+4roG7tIUgkhBBCHKkMQ5HtlqVgQgjRH/2qCaSUOgv4JWAB/qC1/skB22cAfwIWArdqre8a6oEK0V9OXy4E4N1gIbMqTqTs7dtQLbuotE1hUkH3S73S3cGimLbut0O67XrjThs6HmRva4TSbOeAO1DoeLqekDpgyZlRejQJdwm5m/+KPVhJZNrF1Nam18Kn/NWQ17UGDEAgFMGjYrS5crpsc1gNIsUL0Sj8k84BoDTbSSM5mfPWQMnMTsc0BONMcbSBBlushdNLIry7s5lwPEVON7WIR4vI9jeZ5H+b2xya8WYVCo2tbi3MWNBpv3Wbt7MYuL/gBopOn4o1a399nTyvnfKcvtu+D5TDaqFqyU1Yww3cnbOE+9/ewyOrKnl0dSUA+0oZnTitkM8sm9Djp5z7lhZapSimEEIIIYQQogd9BoGUUhbgbuB0oAp4Tyn1lNZ6Q4fdmoGvAxccikEKMRCGK4eA8vJGrYWLZ58Mb9+Gr+oVmrMm0BiMdbtePBRLkqciaHv3ncEAjhmfi3+1Ax0L0hSMk+ex91m08EDtWUQHBIGsFistE8+iYMO9AFjKF1L74R4ATH/PRZxjwdb0/t0EgZRSqOKj2fiZD0g58/A5rficVrSvFGJgdpNh1ByKsdjWAun6ipydU8k/9zrZUheg7BAEQA6X11at5WLgVN5pz390NG8mmTLbO4q8vrWRtR9tZqHV4PqPL8Vq3/+JYo7bdkgCQPvoikW0xU2W5bk54+gSVu1q4bH3qzA1FPkczCrLYlxuOgpn9BB4TLfF3Z8RJIQQQgghhBAH6s+6gSXANq31Dq11HHgYOL/jDlrreq31e0DiEIxRiAFJzP4krxVfycbaAAHPeGJZE/BVvgxArT/abZHoYCyFhxiqh/bwAIsn5hHCiZFIB3JiyZ6Xl/U8uPRyMOOAIJDFUAQmndX+vbV8PgF7uk5QoqW6wzg71wdKhlvS53Nnd3s5t91CypmH02YwscBDvteBJasUAB3oGlxqCSWoMJpJ2bNI2TwcH/wXbzuuo+a9p9A9FJIe6V7f2kjj3h0klJ2kM59aSyk7KcfZsoVkh45hb+1oJF8FSLnycXYIAGW7bFTkHtoA2L4uZW6HBaUUiyfl8cMLZvPFFZM48+iS9gCQxVC4egk82iwGFgkCCSGEEEIIIXrQnyBQOVDZ4fuqzGNCjEipmecTPOYrmBpWbm0kUHEy3r1vopJRtIaqlnB7QGNfQKg5FMNnRFGO7tvDA4zLc4Hdi1UnUKk48UEEgVQykv67mw5ksfKlJB25xLIm4M0tIL+wjARWUq1VmKYmlkyxqzHUKYhlhluB7jOBIF3MGtL1jPZx+XII40QFumYCNYViFNNE3FtBpGAuefVvU6Ja8FS9ypa6IE3B2ICf83D735U7mGxvJeUtY8c5D/Ps3F/xUWoc1sZNndrG17XFKLUG0K789kBKlsvKuDzXgJf9DZTTZsFuNdqXdAFYLQaTCrxMKfIwvcTHxAI300t8uOw9B4GsFiU1gYQQQgghhBA96s+7he7e/QwqJUAp9UWl1Cql1KqGhoa+DxBiECxKMac8i+OPKuAPr++gunAFRipK/ob7AIjETeoDMapawjSH0uueGoNxsoxoj+3hIb28Ki83XVRZJcPEeyk03ePYkulMIIuj63WsVhs1S79D/fyvk+O2M7HQRyM5WEO1tEUTtIQSaA17msPtRa5VzA/0nAm0L2Dgde4PAuW57dSTh+qm/XxLOEGhbiThKcU/+VwieTOps4+nNLyZ5lCcpszPazSpbAkz0dpC0ltGLG863rKZbDErcIerSEb2d3qra4tSaATQnkLKcpw4bAYVue5DHgACcNgM3N0EdyyGwm23Yrca+Jy2PrN87JIJJIQQQgghhOhFf4JAVcC4Dt9XAF3bCvWD1vr3WutFWutFhYWFgzmFEH2yGAqnzcIdF84mmdLcubUM/4QzKF51J87GDwGob4vREkoQznS9agzG8KoY9LIcDKC0qACAttYWYt0sK+tNImViN6Ppb7ppQ281DFqnXULrtEval2/tNXOxhGrxRxK0hNMBmFjCZEdjiETKxMi0eTecOd1e0241sFlVe0YQQK7HTq2Zg3FAEChlalrCcXKT6SBQ88wr2HbRc7SVHs9MtZsPdjcRS5gkBhH8Gi5aa/a2RijQTSQ8JQDke+xs0elfabphc/u+dW1R8lQbpruAHLedSQWewxZQcVoteB39qtPf+3kGWKNKCCGEEEIIMbb0Jwj0HjBVKTVJKWUHLgWeOrTDEmLwDKWwWw0m5Hv4+qlTeXNHM09NuIWUM59xr3wDldqfzRJNpNBa0xiM4yECvRSGBhhXnA5eVtY1DDgTKJJI4SKznKqbjKN9AQel0jViJuS7qdF5GIEa2iJJkqn9CXixhMn2+iCOVLrbmNFNi/h98j2OTsGMPI+NWp3TJROoNRzHoWN4Un4S3rL2xx3j5uNVUXZv+wiAcGz0tItvDSeIJ5JkJxpJeNLPKddjZ4tOd1szGja271vrj5Jt+sGdD9BpadahZrcanbK1Bstpk6VgQgghhBBCiJ71+Y5Ba50ErgOeAzYCf9Nar1dKXauUuhZAKVWilKoCbgC+o5SqUkplHcqBC9ETi6HaC+1+ccVkphR6+OWbTexY9kOcrVspWHdP+75aQzRh0hiM4dSRXgtDA5RmMthOWvdNCl+5CdPs/8rISDyFW2WCQLau/db3BR32vZGfVOChTufhiNSmB3qAyuYIPtLLy3B2vxwM0pkvHeW67dTpXKzhuk7nbQnHKVXNAFhyytm3CipWOAcAvXcNptYE452LU0cTKfzhkVkTvro1QiGtGKRIeNMFsW0Wg1ZHOQllQzVuAtJzE41GcJkh8AxPluJQBJ0kE0gIIYQQQgjRm36969BaP6u1nqa1nqK1viPz2D1a63syX9dqrSu01lla65zM122HcuBC9MRiKByZQIrNYvCji+bQFIzz68optE46l6IPfoW9dTtojSXaQjCWwB+KYNdxsPdcGBrA6UnHNouiu/BVrySeMvvdNSscT+FuzwTqGgRyWI3M3+k38hMLPNTqXGypCEYi0GX/plCMLBXCxOg1g8k4YElTnsdOvc7FkopB1L//fME4Je1BoAp8mcyUWM5UUsrK5OQO9jSFCXXoUGaamq11QRpDI7NgdI0/2h7Y2pcJZLUoCrPd1FpKsbTuAjJLwUj/ylLe0btU9XBmLwkhhBBCCCFGH3nHII5IHdtoL52Uz4ULynnmwxpemfyfaKuT8tdvofz1m5nx4GIaaqtwmumuXYaz90wgCqay2zKBDy2zsAX3EovFqG6NdAqM9CQS77AczNZ1OViWy4ZS+7M5spw2Wu3pOjaO1u2gTSzR5vb9m0NxsgiTsvtgAMWLcz12GnQOALpDh7CWcJwymoB0ECjHlc4g8njchHKmc7TaybpqP7GE2d5Va9+SuEg8NaCsqMNlb2uEUpV+Tt6iCVgtinyPneIsJ406GxVJb6v1R8lX6UCbMUyZQEIIIYQQQghxqEkQSByRDsyIuOWcGRT6HPz0jVaqFt2Ct/Zt8jY/hGHGiex8Fw/pgs1GH8vB8Bbxi2l/5sHECpRO0bx3Gy2hBPWBvjNhIokkbhXFVFaw2rtstxiKbJetU12XmrzFmCh8Va+Qt/EvzHhwCc7GdUA6cydLhdGOga28zHPbaSKd8ZQK7u/S1xTanwlkzSnH57RS4LNTluMkUXIMiyxb2VZZDdBeHDqZCfxoDaF434Gww22vP8I4S/o5OfLHMSHfTZ7HTkmWk/qUD0u4EYDdzSHyVabT2ijOBBJCCCGEEEKI3kgQSIwJhT4nt35sJtWtEe5uPZamoy6mft5X0MrAVrcWj0pnAvVVGBpgQr6HbYmi9DdNOwEIRpNE4r0XTI7ETdzESFm7dgbbJ89j71TXJb+wlPUcha/yFfI2PYhhxql47UZUKk5TKEaOCvdaD6g7uR47zTodODJDje2PNwfjFKpWkvZs7C4PhqEozXbhsFrwT78YFzEm1DyHqfX+IFCH4tihEVgwem9rlEn2VkyrC4c3H7fditViUJrtpDblxZLJBKpqiZBHOhPI6pMgkBBCCCGEEOLIJEEgMWacN6+M02cV87f393LMRxfzk/iniGVPwdeyvj0TCEfvNYEAJuZ72K2LAbAHdrc/Xt0a6bU+UDiexNVHEMjjsHbKYppc4OX5xDzcDR/gat5A2/jTcTVvpOTdH9EUjJFniaAdAwsCZTmttGbqtpvBDkGgcJxSi5+ku7BLJpVZegyN7ilcoF9gZ2OIRKZTWSKlQWscLZsJ9mNJ3OG2tzXCOEsLCU8p9g7BteJsJ41mFpZ4GzoZo8YfZYIlHRBS3qLhGq4QQgghhBBCHFISBBJjhlKKH55/NF84YTLTi308v7GOcP4cCgIb8ahMEKib1u0HmpjvoZ4cEoYDR9v+IFAknqKuredlYZFEujuYtnYtCt2TuRXZvGzOB8A07FSt+G8aj/4sBev/j7Ma7yXHCKMHmAmklEK70m3Q6ZgJFIpTbLRhurtmwjjtFhqmXsp8YwfB3Ws6LAczyd7xNNMeOx1V+Q6VzeFO2UH7aK3xhxNUt0YGNNaOoomBZxrtbY0wQe8lmT2h0+PFPidNpH9uyUADdW1RTrd+QLRwLjilsaEQQgghhBDiyCRBIDGmFGe7+Myy8Vy8sJxANMk261H4Eo1MUTXpHfqxHCzPY8PrsNFgLcXeIQgE0BiMtQdIDtReGLqb9vA9OWl6IQuWnMhenccq13JSzhxqln2f5qmXcHn0IcpTewecCQSQ5XUTUh70AUGgQtWK6emaCeO0WQhPOx+A4oY3OiwH0+RufTR9zl3/ojWcYGNNgG31AWr8EVpCcWr8ETbVBtjTHKY5GG9fNhdLpmgNx2kJxWmLJojEUyRSZrdBpLZogm31QVrD8X4/x2TKpKktSGmyklTBrE7birOcNGWWxEVba9FtNczWWwhNPrPf5xdCCCGEEEKI0cY63AMQ4nArzXZxzMRcXDYLrwTKWAIcb9uU3tiP5WBWi8HEAjc7Wos4pm03+evvJenKxz/542id7rJV5HN2OS4cT1FBrNv28D1RSnHV8ZP5v+gfeWhtM1/YWMepM4upXv5DglteZbyqJzXATCCAXLcdfyCbvExh5JSpaQ7FydOtpLzFXfZ32izYsorZpUsoblvXvhzMDNThrV4JQNaeF6hd+h0gXf8oEu8+YNMcjlNmc7KnKUw00X3ADNKFsu1WA4/DQksogdZQ2RzBH0mQ57FjNdIx7JTWmFqjNaBBkx5bnT/GOOqw6gRm4cxO5y7OctCk03MdbqljTuB1AOJTPtavn58QQgghhBBCjEaSCSTGHLvVoCLXzQlTC3hsbx4pDJbxUWZj35lAhlJcsWwCm2L5OFq3U/bW9yhfeRNGrBWAllCi2+P2LQdTAwgCAdgMg3OPW8jk8hJ+++p2ttUHCaSsfDfx2fQO7rwBnQ/SBahb8KEizWitqfFHiAT9uHQEuqmJ47JZUEqxwZjG+PB6ksl0Nk/V6w+gdIo9ky/D4d+B3b+jz2u3huPUB2K9BoAgHZiKxFM0BuLtLekB2iJJdjWG2VYfZFt9kJ0NIXY3htnTFGZPc5jK5giVzRFe39bADFUJgFHcOQiU73XQonIA2LR9B8cm3qbZOQ6zcHqf4xdCCCGEEEKI0UqCQGJMKvI5uPq4idRFrfxP8jx8BNMb+moRD/icVj65aBypnIkYpEg4crEkghSs/xMA8aTZbZHkSDyFmxhGP+oOdeSwGVgMxY1nTCfbZeP2f6xnU22AV815PDP756QWXDmg80G6Q1ij6UWFm2iLJmkKxlGhdLt4w1fSZX+LobBZFdscs8hJNaP9e9Jj2/4vNprj+PSGZQBYNz3d57VNE+p7qZ00VD6s9jPTUoVWBpbiGZ22WQyF8qRrH63btJmlls0kJ5/WpSC2EEIIIYQQQhxJ5B2PGJOUUiyfUsAlx1Tw38lPclvp/9B0zu/7VRja47CilGLZsSsA+GvRN/BPOJOCj/6IJdoKQE03ncKCsSRuFe/XNQ68HqQDN9//+CxiSZOfPb8lfc4Jp2PxDbybVZ7bTl3KhxFpoi2SoK4tSraZHrslq+tyMEhnA1W6jwbAWfs+4XiSwlQ9bVnTWLxgPqvM6Uz58L9pvP9qtr/xd8LBtvZjVfUqil68npn3zyVn62MDHu9grKv2s9BVQyxrEg5n1+yrL5+5gAQWpsU34iBOrGA2FkMdlrEJIYQQQgghxHCQIJAY07738VlMLvDgHreA+PTzBnRsxdxTuL7kPu7YNYNds7+OSkYoX3kjaE00YdIQ7Jzt0hqO41EDqwkE4LZZUJnYxHFHFfDlE6e0Zxrle+wYauCBi1yPnSa9LwgUp7I5TKFqBcDw9RAEsltoy5pOBAfu+vfZVhegiBYsWaV87vhJtF38EK8WXMaxsde5YOM3mP/QfIw/noLtDycy+58X4drxHCYG+ZmMqQH9DGrfZeKzn8a35wU4ILjWnWA0yc6GENOoJJ43HWs3GT4XLxqHdhdwsjMdUIvmzex2PyGEEEIIIYQ4UkhhaDGm+Zw2/nDVIkKxFJYBBlNsNgunLVvMkw9/wIN7svjG4pspfecH5G5+iJYZn6a+LUa2y4bDagGgJZzARQxlG1gmkGEo3Pb0OXLcds6fX8a7u5p5Z2czeR77oLJXyrKdrNZZGGYCYgEqWyIUKj8A1l4ygXxuJ+vMycyuX8OOqr3MVXFsOWUUeB1oXQAX3MnWxG00b3oNY8fL5LZtwlSaf2Z/iVuqjuWbzrf4TOPv8FSvpHj1z7AHq9CGlZQjl1jOFOLecZh2Dymbl5Qjl7hvHAlPCeNf+grWcAO+va8TKllC06yriHvLAYWRiqFScVQqmvk6RmtdC5+01JIfr6a14JM9/hy0uwBH43q0shDPPQpP5ucshBBCCCGEEEciCQKJMc9ltxCKpTAGGEyxWwwmFng4/qgCHv+gmjM+fTlZO5+lcN09tEy/DI2ipjXKxIJ00Kc1FMNJFHOAmUCQXhJmz2SplOW4uOmsGextjWC3GoMKAp02q5h1vkKIgtlajaVmK2W2NrQy2mvlHMhtt5LttrHNLGNh2/vU790NgCu/gnyvHX8kQTxpgs1F3pwzYc6ZaCAFVADnvLuHX74b5tMuCxOf+yzasOKffB5KJ7FGGnHXrSZ7x9Mo3bVgdFLZudr6X8zRm7ii7gnG13611+c3DjjBlv7aLFvY436mKx+AWPYkXG6PZAIJIYQQQgghjmgSBBJjnsuWzv4Y6LKqfUGZzy6fyLu7mvm/N/cwbcanGffaf+Kue49wyRIC0SQNgRiFPgehcAgDjTnAmkCQLka9L6PIajE4qsg7qGVg+9gsBh9fPhteAsvLt/PdwBustx5NypaP1eg+G8ZiKAq8Dqp0IbZYC8n69DIqR24pNotBjtvWa8HnixaW88a2Rl4LzuUk4wN2nfQLApPP7byT1qhUDEs8gCXajMO/g+DWV7l7ezF7cqdh5M/nxuRFjI9uwWu2oTFIGjYSyk4cG0mV+VrZmVno5qwZORRMnN3jmEx3AQDR3Bn4nLYB/hSFEEIIIYQQYnSRIJAY8zwOa7oD1wCDKoahsFoUEwrcfGpRBfe/vYf356ygzOYhd8vfCJcsAaDWHyWaSBELB0CBGkQQyG3v/F/VabNQku2kITD4LlvTJ01O/x14E4Cjk+uJ5czq9ZdCSZaD9TqdKVTYuhYAa3YZADluG03Bzu3cO3JYLdxx4Rx++fh1/Kl1C++/WEDhux/gdVjxOKxYDIWh9i1/s1Lo9RCKzeTvW31MzPfwowvn4HXsG92cfj3HGODsZYmXzmQ9RfNmkOuSX4dCCCGEEEKII5u86xFjns1icFShl1Q/Cg4fyG41KPA4+MKKKTy6uponNrRywqRzyd7xNDVLv4PpyAGgMRDDjIXACcruGpJx53nsRBKpQR9v8aazYCxoUlphURrT3XunsZJsJ5WZINBRsfUA2HJKgXSQZ3qJj6ZQjEA0SSSe6lTDOctlpTjbwY2fOIV3ds7DUe2nJRwnGEtR3RrB1BrT1KS0JhRLtRe/Pml6IdeumNLeJW2gnNZe6vxkMoFShbPaM62EEEIIIYQQ4kglQSAhSGefGAx8eZXXYSXLlf5z+tHFPLuuhp3nXcHCrY9Q/P4vqDn2NgACsSQulc7aMQaRCdSTkizn4A/2FLR/eU/q43zV+hR4eg8CleW4qNTpfWbp7UStXpyerPbtFkNR5HNS5IOUqQlGk0STKbJdNpyZZXet4QQnTS/ipOm9XysYS9IWSVCWM/igmd1q9F7rKXciWlnRpXMHfQ0hhBBCCCGEGC2kCqoQB6HQ60AphVKKzx8/iaSpebQ6m+bpl5G/4T4cLVsBCESTuMks3RrCINBgikK3s3swrU5abUXcbV5MzFVEqmBar4eUZjlpwUcEBw6VJOosaq+p1N3Yst02irOc7QEggBxX/2rveB3W9gCQUlCe66I4y4HT1v9fW33ta848j82ffBVrzrh+n1MIIYQQQgghRivJBBLiIHTMMplbkcPxRxXw9LoaLv7kN8jZ8TSl79zOrjPvoy2SwJ3JBMI28O5gh0q8cA7RwiX89KilbPW9RkVRbq/7220Wslx29qQKmW5UYckqwTbAjlrZbhsNwRgT8z04bRZSpiZpmkTiKeIpE1ODaWoSKZN4yiSR1BRlOcjz2AEoynISTaRIpEyUStcRshgKSyYYB6AAU2v6WuBntVpJ+MZht0o8XAghhBBCCHHkkyCQEEPoxjOnc/7db/D4lhhlC75B2Tu346t8iUBiHq5DkAl0sBo+8SSt4QTjlUKTDor0Jc9jp9JfyHSq0L6SAV/TYbUwtcjXHnixGAo7Rpfi1/vEkqku9XqcNkun7KLu9Gd5n9UwMmOSIJAQQgghhBDiyCfvfIQYQvPGpbOBnlhTzZ4pnyaaPYXSt28j1Va7Pwg0gjKBLBYDlMJlT/8qsPZjeVm+x0416Xo+pmfgQSBgQJk3h7Jg877nK5lAQgghhBBCiLFA3vkIMcS+cdpUQrEUT33USPXxP8EabuDT665mtrErvYN95ASBrBaFUlCana6905+lXZcuGUfZhOkAg8oEGkkMQ2G1qAEvaRNCCCGEEEKI0Uje+QgxxBZNzGP5lHyeXFNNfd4x7Dj3UaypCF+wPJPewTZyloNZDQOvw4rHYcVpM/pVaPqiBRVMmzE7/Y2v9BCP8NDz9LAMTQghhBBCCCGONBIEEuIQ+NopRxGKp3hkVSXRgtm8lHUeNpVKbxxBmUAWQ+F1poMgBV5Hv44xDEWifAnB0uXoiiWHcniHhdtx6JabCSGEEEIIIcRIIkEgIQ6BZZPzOWt2CY9/UM36vX7+YT+HxL467FbX8A6uA6uh8DrS48px9691O4DVV8TOjz2MJaf8UA3tsJFMICGEEEIIIcRY0a8gkFLqLKXUZqXUNqXUzd1sV0qpX2W2r1NKLRz6oQoxeiiluO3jsyjJdvKz57ewLeLlVcfJpFz5YIyc2GvHLlv72qv3h8OWfg42S/+PGamctpEzH0IIIYQQQghxKPX57kcpZQHuBs4GZgGXKaVmHbDb2cDUzJ8vAr8d4nEKMeqUZLv4zzOmUR+Isb0hxF8Kvk7zZf8c7mF10p8aQN3Z17HLOoICWoM1kOCXEEIIIYQQQoxm/XkHtwTYprXeobWOAw8D5x+wz/nAfTrtbSBHKTX6K8YKcZDOml3KnPJsAFwuDzpnwjCPaGg4rEdOJpAQQgghhBBCjBX9CQKVA5Udvq/KPDbQfYQYc7wOK58/YRIAWS4bxiAzb0YahzXdSUyyaIQQQgghhBBi9OhPRdTu3uXpQeyDUuqLpJeLMX78+H5cWojR77x5ZdS1RZlS6MU4QoImVouByy5dtYQQQgghhBBiNOlPJlAVMK7D9xXA3kHsg9b691rrRVrrRYWFhQMdqxCjklKKzx0/meIsJ5YjJAgE4JHW6kIIIYQQQggxqvQnCPQeMFUpNUkpZQcuBZ46YJ+ngCszXcKWAX6tdc0Qj1WIUctiKHLcNtTor6Pcbl9reSGEEEIIIYQQo0Of7+K01kml1HXAc4AF+D+t9Xql1LWZ7fcAzwLnANuAMPDZQzdkIUanAq+DpNllleSo5bJJJpAQQgghhBBCjCb9+ihfa/0s6UBPx8fu6fC1Br46tEMT4sjitFkwj6AgkBSFFkIIIYQQQojR5QhanCLEyHekdAcTQgghhBBCCDH6SBBICCGEEEIIIYQQYgyQIJAQQgghhBBCCCHEGCBBICGEEEIIIYQQQogxQIJAQgghhBBCCCGEEGOABIGEEEIIIYQQQgghxgAJAgkhhBBCCCGEEEKMARIEEkIIIYQQQgghhBgDJAgkhBBCCCGEEEIIMQZIEEgIIYQQQgghhBBiDFBa6+G5sFINwO5+7l4ANB7C4YihIfM08skcjQ4yT6ODzNPIJ3M0Osg8jXwyR6ODzNPIJ3M0OhwJ8zRBa13Y3YZhCwINhFJqldZ60XCPQ/RO5mnkkzkaHWSeRgeZp5FP5mh0kHka+WSORgeZp5FP5mh0ONLnSZaDCSGEEEIIIYQQQowBEgQSQgghhBBCCCGEGANGSxDo98M9ANEvMk8jn8zR6CDzNDrIPI18Mkejg8zTyCdzNDrIPI18MkejwxE9T6OiJpAQQgghhBBCCCGEODijJRNICCGEEEIIIYQQQhwECQIJIYQQQgghhBBCjAFDHgRSSp2llNqslNqmlLr5gG1fy2xbr5T6rx6O/4FSap1Sao1S6t9KqbIO227JnHezUurMHo6/LrOPVkoVdHg8Wyn1tFJqbeb6nx2q5zza9DRHSqm/Zn7ua5RSu5RSa3o4Pk8p9bxSamvm79zM4/lKqZeVUkGl1G96uf4kpdQ7meP/qpSyZx5XSqlfZca1Tim1cIif+qgyUucps+2kzPXXK6VeHcKnPeqMgHnq6Xfe5Zn/R+uUUm8qpeYN4dMeVUbwHMl9qYNDOE+nK6VWK6U+zPx9Sg/Hy72pDyN1jjLb5L6UMQLmSe5LfRjBcyT3pQ4O4Twt6XD8WqXUhT0cL/elPozUOcpsG7n3Ja31kP0BLMB2YDJgB9YCszLbTgZeAByZ74t6OEdWh6+/DtyT+XpW5nwOYFLmOpZujl8ATAR2AQUdHv82cGfm60KgGbAP5fMfDX96m6MD9vtv4Hs9nOO/gJszX9/c4efqAY4HrgV+08sY/gZcmvn6HuDLma/PAf4JKGAZ8M5w/7xknrqdpxxgAzA+8323/5fHwp8RMk89/c5bDuRmvj57rP5/GuFzJPelwzNPC4CyzNezgeoejpd70+idoxzkvjSS5knuS6N3juS+dHjmyQ1YM1+XAvX7vj/geLkvjd45ymEE35eGeiKOBZ7r8P0twC0dfkCnDfB8twC/PfBcme+fA47t5dgDf6ndAvxP5j/LJGAbYAz3BBz2Ce9ljjo8poBKYGoP59gMlGa+LgU2H7D9anp4Q5Q5d2OH/1Tt4wF+B1zW3XXG2p8RPk9fAX443D+jkfBnuOfpgP06/c47YFsuPbwQPNL/jOQ5kvvS4Z2nDudoIvOB1AGPy71p9M6R3JdGyDwdsI/cl0bZHMl9aVjmaRJQxwEBBrkvjfo5GtH3paFeDlae+SHvU5V5DGAacEImXepVpdTink6ilLpDKVUJXA58rx/n7o/fADOBvcCHwPVaa3MAxx8p+vNzPAGo01pv7eEcxVrrGoDM30UDuH4+0Kq1TnZz/YOd4yPJSJ6naUCuUuqVTKrxlQM475FmuOepvz5H+hOjsWgkz5Hcl/Y7XPN0MfCB1jp2wONyb+rbSJ4juS/tN9zz1F9yX9pvJM2R3Jf2O6TzpJRaqpRaT/rnfG2H3237yH2pbyN5jkb0fck6xOdT3TymO1wrl3TK2mLgb0qpyToTKut0gNa3ArcqpW4BrgO+38e5++NMYA1wCjAFeF4ptVJr3TaAcxwJ+vNzvAx4aBiuf7BzfCQZyfNkBY4BTgVcwFtKqbe11lsO0VhGsuGepz4ppU4m/WL7+OEawzAbyXMk96X9Dvk8KaWOBu4Ezhjg9eXelDaS50juS/sN9zz153i5L3U1UuZI7kv7HdJ50lq/AxytlJoJ/Fkp9U+tdbSf15f7UtpInqMRfV8a6kygKmBch+8rSEeS9237u057FzCBAqXUnzIFk57t5nwPko5i93Xu/vhsh+tvA3YCMwZw/JGi15+jUsoKXAT8tcNjB85RnVKqNLNt3xrJ/moEcjLXOfD6BzvHR5KRPk//0lqHtNaNwGvAvAGc+0gy3PPUK6XUXOAPwPla66ahOu8oM5LnSO5L+x3SeVJKVQCPA1dqrbd3c325N/VtpM+R3JfShnueeiX3JWBkz5Hcl/Y7LK8ftNYbgRDpGk4dyX2pbyN9jkbsfWmog0DvAVMzVbLtwKXAU5ltT5COKqOUmka6eFOj1vqzWuv5WutzMtumdjjfecCmzNdPAZcqpRxKqUnAVODdAYxtD+lIHEqpYmA6sGPgT3HU622OAE4DNmmtq/Y9cOAcZfa/KvP1VcCT/b14JvPrZeAT3Rz/FHClSlsG+Pel541BI3meniS9tNOqlHIDS4GNA3p2R45hnafeKKXGA38HrhgpnzoMkxE7R8h9qaNDNk9KqRzgGdJ1At7o7uJyb+qXkTxHcl/ab1jnqTdyX2o3YucIuS91dCjnadK+wIFSagLpn/OujheX+1K/jOQ5Gtn3JT30BZrOAbaQrtR9a4fH7cBfgI+A94FTejj+scw+64CngfIO227NnHczcHYPx3+ddOQtSToS94fM42XAv0mv6fsI+MxQP/fR8qenOcpsu5f0msfejs8HXgS2Zv7O67BtF+lOAsHMPHRXoX0y6QDeNuAR9neMU8DdmXF9CCwa7p+VzFPXecpsu5F0xfuPgG8M989qjM9TT7/z/gC0kE7rXgOsGu6flcyR3JeGY56A75D+BG9Nhz9dunT09DsPuTeN+DnKbJP70siZJ7kvjd45kvvS4ZmnK4D1mfl5H7igh+PlvjRK5yizbcTel1RmgEIIIYQQQgghhBDiCDbUy8GEEEIIIYQQQgghxAgkQSAhhBBCCCGEEEKIMUCCQEIIIYQQQgghhBBjgASBhBBCCCGEEEIIIcYACQIJIYQQQgghhBBCjAESBBJCCCGEEEIIIYQYAyQIJIQQQgghhBBCCDEGSBBICCGEEEIIIYQQYgyQIJAQQgghhBBCCCHEGCBBICGEEEIIIYQQQogxQIJAQgghhBBCCCGEEGOABIGEEEIIIYQQQgghxgAJAgkhhBBCCCGEEEKMARIEEkIIIYQQQgghhBgDJAgkhBBCCCGEEEIIMQZIEEgIIYQQQgghhBBiDJAgkBBCCCGEEEIIIcQYIEEgIYQQQgghhBBCiDFAgkBCCCGEEEIIIYQQY4AEgYQQQgghhBBCCCHGAAkCCSGEEEIIIYQQQowBEgQSQgghhBBCCCGEGAMkCCSEEEIIIYQQQggxBkgQSAghhBBCCCGEEGIMkCCQEEIIIYQQQgghxBggQSAhhBBCCCGEEEKIMUCCQEIIIYQQQgghhBBjgASBhBBCCCGEEEIIIcYACQIJIYQQQgghhBBCjAESBBJCCCGEEEIIIYQYA6zDdeGCggI9ceLE4bq8EEIIIYQQQgghxBFn9erVjVrrwu62DVsQaOLEiaxatWq4Li+EEEIIIYQQQghxxFFK7e5pmywHE0IIIYQQQgghhBgDJAgkhBBCCCGEEEIIMQZIEEgIIYQQQgghhBBiDBi2mkBCCCGEEEIIIcRwSyQSVFVVEY1Gh3soQgyI0+mkoqICm83W72MkCCSEEEIIIYQQYsyqqqrC5/MxceJElFLDPRwh+kVrTVNTE1VVVUyaNKnfx8lyMCGEEEIIIYQQY1Y0GiU/P18CQGJUUUqRn58/4Aw2CQIJIYQQQgghhBjTJAAkRqPB/LuVIJAQQgghhBBCCCHEGCBBICGEEEIIIYQQYhgppbjiiivav08mkxQWFnLuuecO46j65vV6+9zntttu46677up1nyeeeIINGzYM1bBELyQIJIQQQgyhcDw53EMQQgghxCjj8Xj46KOPiEQiADz//POUl5cPy1iSycP/WkaCQIePBIGEEEKIIbS3NUrK1MM9DCGEEEKMMmeffTbPPPMMAA899BCXXXZZ+7ZQKMQ111zD4sWLWbBgAU8++SQAu3bt4oQTTmDhwoUsXLiQN998E4CamhpWrFjB/PnzmT17NitXrgQ6Z+48+uijXH311QBcffXV3HDDDZx88sncdNNNbN++nbPOOotjjjmGE044gU2bNgGwc+dOjj32WBYvXsx3v/vdHp/LHXfcwfTp0znttNPYvHlz++P/+7//y+LFi5k3bx4XX3wx4XCYN998k6eeeoobb7yR+fPns3379m73E0OjzxbxSqn/A84F6rXWs7vZroBfAucAYeBqrfX7Qz1QIYQQYqTzRxJE4iniSROX3TLcwxFCCCHEAP2/p9ezYW/bkJ5zVlkW3//40X3ud+mll3L77bdz7rnnsm7dOq655pr24M0dd9zBKaecwv/93//R2trKkiVLOO200ygqKuL555/H6XSydetWLrvsMlatWsWDDz7ImWeeya233koqlepXEGXLli288MILWCwWTj31VO655x6mTp3KO++8w1e+8hVeeuklrr/+er785S9z5ZVXcvfdd3d7ntWrV/Pwww/zwQcfkEwmWbhwIccccwwAF110EV/4whcA+M53vsMf//hHvva1r3Heeedx7rnn8olPfAKAnJycbvcTB6/PIBBwL/Ab4L4etp8NTM38WQr8NvO3EEIIMWZEEymqW9Ip3PGUiQsJAgkhhBCi/+bOncuuXbt46KGHOOecczpt+/e//81TTz3VXlsnGo2yZ88eysrKuO6661izZg0Wi4UtW7YAsHjxYq655hoSiQQXXHAB8+fP7/P6l1xyCRaLhWAwyJtvvskll1zSvi0WiwHwxhtv8NhjjwFwxRVXcNNNN3U5z8qVK7nwwgtxu90AnHfeee3bPvroI77zne/Q2tpKMBjkzDPP7HYs/d1PDFyfQSCt9WtKqYm97HI+cJ/WWgNvK6VylFKlWuuaoRqkEEIIMZKFYklWbmngvrd387VTppJImcM9JCGEEEIMQn8ydg6l8847j29+85u88sorNDU1tT+uteaxxx5j+vTpnfa/7bbbKC4uZu3atZimidPpBGDFihW89tprPPPMM1xxxRXceOONXHnllZ1aikej0U7n8ng8AJimSU5ODmvWrOl2jP1pS97TPldffTVPPPEE8+bN49577+WVV145qP3EwA1FTaByoLLD91WZx7pQSn1RKbVKKbWqoaFhCC4thBBCDK+mYIxNtW38+J+beHN7E6HVf0XveWe4hyWEEEKIUeiaa67he9/7HnPmzOn0+Jlnnsmvf/1r0rkX8MEHHwDg9/spLS3FMAzuv/9+UqkUALt376aoqIgvfOELfO5zn+P999MVW4qLi9m4cSOmafL44493O4asrCwmTZrEI488AqQDUGvXrgXguOOO4+GHHwbggQce6Pb4FStW8PjjjxOJRAgEAjz99NPt2wKBAKWlpSQSiU7H+3w+AoFAn/uJgzcUQaDuQnzdVsTUWv9ea71Ia72osLBwCC4thBBCHF5mh6LP4XiSqpYId7+8nd3NYaYZVZy84Tt43vnF8A1QCCGEEKNWRUUF119/fZfHv/vd75JIJJg7dy6zZ89uL8r8la98hT//+c8sW7aMLVu2tGfzvPLKK8yfP58FCxbw2GOPtZ/zJz/5Ceeeey6nnHIKpaWlPY7jgQce4I9//CPz5s3j6KOPbi9E/ctf/pK7776bxYsX4/f7uz124cKFfOpTn2L+/PlcfPHFnHDCCe3bfvCDH7B06VJOP/10ZsyY0f74pZdeyk9/+lMWLFjA9u3be9xPHDy1L5LY607p5WD/6KEw9O+AV7TWD2W+3wyc1NdysEWLFulVq1YNatBCCCHEcIglU+xpCjMh30M8ZbK5JsAdz27g/T2tXLp4HBdu+AZLU6uJ5U3H8fV3h3u4QgghhOiHjRs3MnPmzOEehhCD0t2/X6XUaq31ou72709h6L48BVynlHqYdEFov9QDEkIIcSRqiySJJkw21wao8Ue4/R8bqPFHue7ko7jMeIHy1GpatI+sQBVoDf1YMy+EEEIIIcTh0p8W8Q8BJwEFSqkq4PuADUBrfQ/wLOn28NtIt4j/7KEarBBCCDGc/JEEAHVtUW7++4ckkiY//PgMTm58gJLVd7Ez51j+1jCBm9TDmOEWDE/eMI9YCCGEEEKI/frTHeyyPrZr4KtDNiIhhBBiBEqkTCLxFE3BGN978iNiyRQ/O6ecE1Z9FnfDGlqnnM/6o29n56N/Su/fvBuHBIGEEEIIIcQIMhTLwYQQQogjXn0gxt7WCN998iMC0SS3f3wGy9d8FWfzRvac/Bv8kz9OhYYGI934INWyB8YtGOZRCyGEEEIIsZ8EgYQQQog+1AeiNAfjPPzC25waf49LFhYzZcO9+Pa+TtXxd+Kfch4AFgXWvAnQBmbLnmEetRBCCCGEEJ1JEEgIIYToRUsoTp0/xq7GEFc1/YyTLGthLaTsWTTM+RIt0y9t31cpKCgqI9pmR0sQSAghhBBCjDDGcA9ACCGEGKkC0QTVrREAXlqzmeOMj6iZ+hk2fXIlGz6zltqlt3bqAFaa7WRioYcqswDtrxyuYQshhBBilKmrq+PTn/40kydP5phjjuHYY4/l8ccfP+TXXbVqFV//+teH5FwnnXQS06dPZ968eRx33HFs3rx5SM47lIZyjPfeey/XXXcdAPfccw/33Xdfj/vu2rWLBx98sP37ofy5D5QEgYQQQohuBKIJdjeF0Tr9tWP7v7CpFKFZnyKRNQEMS/u+SkF5rot8r4PxeW6qdQG0VpIy9TA+AyGEEEKMBlprLrjgAlasWMGOHTtYvXo1Dz/8MFVVVYf82osWLeJXv/rVkJ3vgQceYO3atVx11VXceOONXbanUqkhu9ZgHYoxXnvttVx55ZU9bj8wCDTUP/eBkCCQEEIIcYCmYKw9AATw/IY6zuQtQu5yIgVzO+3rdVqZWuwlz2MHYFwmCGQPVhNJpF9EtEUTh3X8QgghhBg9XnrpJex2O9dee237YxMmTOBrX/sakA4gnHDCCSxcuJCFCxfy5ptvAvDKK69w7rnnth9z3XXXce+99wJw8803M2vWLObOncs3v/lNAB555BFmz57NvHnzWLFiRZdzvPvuuyxfvpwFCxawfPny9iyZe++9l4suuoizzjqLqVOn8q1vfavP57RixQq2bdsGgNfr5Xvf+x5Lly7lrbfe4mc/+xmzZ89m9uzZ/OIXv2g/5r777mPu3LnMmzePK664AoCGhgYuvvhiFi9ezOLFi3njjTcAePXVV5k/fz7z589nwYIFBAIBampqWLFiBfPnz2f27NmsXLly0GP8y1/+wpIlS5g/fz5f+tKX2gNDf/rTn5g2bRonnnhi+1gAbrvtNu666y4Atm3bxmmnnca8efNYuHAh27dv5+abb2blypXMnz+fn//8551+7s3NzVxwwQXMnTuXZcuWsW7duvZzXnPNNZx00klMnjx5yIJGUhNICCGE6KAhEKPWH23/PmVq/Guf5njLelqnfK7T8i+nzWBCnhvD2P/Y+Dw3r+sCnIkWGkJtKLLY3RimOMtBUZaz12vHkyZ2q3w+I4QQQgybf94MtR8O7TlL5sDZP+lx8/r161m4cGGP24uKinj++edxOp1s3bqVyy67jFWrVvW4f3NzM48//jibNm1CKUVraysAt99+O8899xzl5eXtj3U0Y8YMXnvtNaxWKy+88ALf/va3eeyxxwBYs2YNH3zwAQ6Hg+nTp/O1r32NcePG9TiGp59+mjlz5gAQCoWYPXs2t99+O6tXr+ZPf/oT77zzDlprli5dyoknnojdbueOO+7gjTfeoKCggObmZgCuv/56/uM//oPjjz+ePXv2cOaZZ7Jx40buuusu7r77bo477jiCwSBOp5Pf//73nHnmmdx6662kUinC4XCP4+ttjBs3buTOO+/kjTfewGaz8ZWvfIUHHniA008/ne9///usXr2a7OxsTj75ZBYs6NoJ9vLLL+fmm2/mwgsvJBqNYpomP/nJT7jrrrv4xz/+AaSDb/t8//vfZ8GCBTzxxBO89NJLXHnllaxZswaATZs28fLLLxMIBJg+fTpf/vKXsdlsvT6vvkgQSAghhMgIx5PUtUU7PZZ86cf8LHUPjZ5pNM7+HAAOm4HHYaXAa+8UAAIozXZRrYrTxzbsoN6cCUBdWwx/JEFpjguvo/Pt1zQ1OxqDJE3NjJKsQ/X0hBBCCDEKfPWrX+X111/Hbrfz3nvvkUgkuO6661izZg0Wi4UtW7b0enxWVhZOp5PPf/7zfOxjH2vPODnuuOO4+uqr+eQnP8lFF13U5Ti/389VV13F1q1bUUqRSOzPZD711FPJzs4GYNasWezevbvbINDll1+Oy+Vi4sSJ/PrXvwbAYrFw8cUXA/D6669z4YUX4vF4ALjoootYuXIlSik+8YlPUFBQAEBeXh4AL7zwAhs2bGg/f1tbG4FAgOOOO44bbriByy+/nIsuuoiKigoWL17MNddcQyKR4IILLmD+/Pnd/nz6GuOLL77I6tWrWbx4MQCRSISioiLeeecdTjrpJAoLCwH41Kc+1WUuAoEA1dXVXHjhhQA4nb1/ALjvZ7Iv2HbKKafQ1NSE3+8H4GMf+xgOhwOHw0FRURF1dXVUVFT0ec7eSBBICCGEIB2IqWyOtC8BA0i99VsW7bqHZ4yTqfjE7zBsTrJdNipyXV2CP/tYDEWzdxpEIVWzjqBnavu2aMJkZ0OIHLeNkmwnNks666cpFCcSN4H00rEs58F9wiOEEEKIQeolY+dQOfroo9uDAAB33303jY2NLFq0CICf//znFBcXs3btWkzTbA8sWK1WTNNsPy4ajbY//u677/Liiy/y8MMP85vf/IaXXnqJe+65h3feeYdnnnmG+fPnt2eb7PPd736Xk08+mccff5xdu3Zx0kkntW9zOBztX1ssFpLJZLfP5YEHHmgf9z5OpxOLJV1LUevu6yVqrVGq62sr0zR56623cLlcnR6/+eab+djHPsazzz7LsmXLeOGFF1ixYgWvvfYazzzzDFdccQU33nhjt3V6+jPGq666ih//+Med9nniiSe6HeOBz2Ogujtm33X6+3MfCMk5F0IIIYDatijx5P4XUsk3fsP89T/mZbUU50V3Y9icWAzFuLyeA0D7qPyjiGPD0bih2+2t4QSbawPUB6KYpqYxGGt/AdASig/dkxJCCCHEiHfKKacQjUb57W9/2/5Yx6VMfr+f0tJSDMPg/vvvb69PM2HCBDZs2EAsFsPv9/Piiy8CEAwG8fv9nHPOOfziF79oD/Zs376dpUuXcvvtt1NQUEBlZedOpn6/n/LycoD22kJDbcWKFTzxxBOEw2FCoRCPP/44J5xwAqeeeip/+9vfaGpqAmhfDnbGGWfwm9/8pv34js9lzpw53HTTTSxatIhNmzaxe/duioqK+MIXvsDnPvc53n///UGN8dRTT+XRRx+lvr6+fSy7d+9m6dKlvPLKKzQ1NZFIJHjkkUe6HJuVlUVFRQVPPPEEALFYjHA4jM/nIxAI9PgzeeCBB4D0MrGCggKysg5dZrgEgYQQQox5LaE4TcF08MWIB3H86z9ZsPG/eMk4FvWJP1KU4wUgy2Xt8xMggHEFPrYwHlfzBjzVK5ny1AU4mzoHhLSGOn+MLfUB7nllO5f94W3ueXU7DYEYyZTZw5mFEEIIcaRRSvHEE0/w6quvMmnSJJYsWcJVV13FnXfeCcBXvvIV/vznP7Ns2TK2bNnSvpRq3LhxfPKTn2Tu3Llcfvnl7fVpAoEA5557LnPnzuXEE0/k5z//OQA33ngjc+bMYfbs2axYsYJ58+Z1Gse3vvUtbrnlFo477rhD1sVr4cKFXH311SxZsoSlS5fy+c9/ngULFnD00Udz6623cuKJJzJv3jxuuOEGAH71q1+xatUq5s6dy6xZs7jnnnsA+MUvftFe5NrlcnH22WfzyiuvtBeKfuyxx7j++usHNcZZs2bxwx/+kDPOOIO5c+dy+umnU1NTQ2lpKbfddhvHHnssp512Wo91nO6//35+9atfMXfuXJYvX05tbS1z587FarUyb9689vnY57bbbmt/jjfffDN//vOfBzXu/lKDSVcaCosWLdK9FbMSQgghDqVQLEl9IJ2BE4qlX+gYMT+lj3yMnEglf7WdT9nFd5Ln259+PLHAja8fS7V+9+p2sp+/gYvca4gWLySr8iVSVjc1y75Py7RLwNi/Gltrzef/9CZ2klSFLXzuuEl8/bSpZLtkSZgQQghxOGzcuJGZM2cO9zCEGJTu/v0qpVZrrRd1t79kAgkhhBiTavwRgtFkewAolTKJP/E1siJV3J57B5M//bNOASCLoboUdO7JSdOL2GZMwh5vxVv5Ci1TLyaafzQVr9/E1L+fQdauf7Gv+NCe5jB3JO7iX5b/YGFegjd3NBGOH/x6byGEEEIIIQ4kQSAhhBBjTkuHQsz7rH/m1ywIvMIzhZ/jgosux23fH/DxOCyU57r6tRQMYHqJjwvOOhMAA5M/xk9n/Rl/ZfepvwOtmfDCF5ny1Pl4ql+nYcOrnG5ZjTfRyJ3G3WyuaWVPU+8tTYUQQgghhBgMCQIJIYQYU1pCcapbI50ee+udN7io7tds9hzD5PNvxdKh8HOhz8HkQu+Al2eVTk9n4DZaS/nNZh9femA1j0UWsOnCf1N1wk+xRhqZ/M9Pc9GWm2gih73LvsfU4Lt83HiTVzY3YJrDs1xbCCGEGIuGq0yKEAdjMP9uJQgkhBBizGgKxqhq6dwG/tUPNnLy2m8Ss7hJfPweUPtvjYU+ByXZzkFdy+7JoW386cQXfYmfXjyPIp+TX720jRse/YhXPGey5ZKXqZx1LV6zjReKP0vT0Z8jlj2Zzztf5K0dTYRkSZgQQghxWDidTpqamiQQJEYVrTVNTU04nQN7rdq/4gZCCCHEKOcPJ9jbGgVgS12A4nd/gmrezhmx3Yw3Gth1+p/R3mIADANKs13keeyDvp7TZmHTGX8EYJnbxoxSH69taeTet3bxnSc+YsnEPJpCZ9OcXML3ly0DpWia+RnmvH07lroPCcUW9qsItRBCCCEOTkVFBVVVVTQ0NAz3UIQYEKfTSUVFxYCO6VcQSCl1FvBLwAL8QWv9kwO25wL/B0wBosA1WuuPBjQSIYQQ4hBJpEyqWtN1dv6xbi8fvv4UD9rvp4Vs7DbFntP+RHzccUC6/s/4PDdWy8Ely9osBhZDYWpNRa6LAq8Dn9PG0sl5PLV2L4+sqiKRMrn1YwuZUuhFKWiZ+gkK372Ti5PPsa3+YkqyXX1fSAghhBAHxWazMWnSpOEehhCHRZ9BIKWUBbgbOB2oAt5TSj2ltd7QYbdvA2u01hcqpWZk9j/1UAxYCCGEGKjqlgimmf77vje385zrASKucVR/4kW0xQGZgs+GAeOGIAC0j8NmoAClFC67hYkFHkqynRT6HJwxq4S2aIJxuW58TiuGUvh1DrWlp3F61es8Vu3nuKMK+l2MWgghhBBCiL7051XuEmCb1nqH1joOPAycf8A+s4AXAbTWm4CJSqniIR2pEEIIMQD7CiuHYkkC0SQNgRi/eHY1v7X8N+NTu6k79vtoq7M9AARQkePGNkQBIEgvCTuwrbzTZmFCvodFE3OZVZqFUlCS7STLld7PnHA8hcqPv2oTkURqyMYihBBCCCFEf17plgOVHb6vyjzW0VrgIgCl1BJgAtBlYZpS6otKqVVKqVWy3lIIIcShorVmrz/dAawxGKOyJcwPH3mNn4dvYYWxlurlPyQw4YxOxxRnOch2D20NHqfVwOPoPunWaUtnBk0p9OK0WfA5bSgF0bJlAPjq3iEY218cOp40uz2PEEIIIYQQ/dWfIFB3eegHlk3/CZCrlFoDfA34AOjS1kRr/Xut9SKt9aLCwsKBjlUIIYTol3jKpCWUoDkUZ1NNgDv//ja/N29jmqWW3WfeS/OsKzvtn+O2UZQ1uC5gvXHbrbjtll73cWW2WwyF12Elnj0Zv5HL+MAHhGPpTCCtNXuaQ9K1RAghhBBCHJT+FIauAsZ1+L4C2NtxB611G/BZAJUuXrAz80cIIYQ47PZlzexoCPLDZzZwi/49k1UNu866n1BZugC0UunAi8VQlOccmgLMrj4CQAfKdtkIRJNUZy9kQfMadjSH8DmthOMpInGTpKmxWaRGkBBCCCGEGJz+ZAK9B0xVSk1SStmBS4GnOu6glMrJbAP4PPBaJjAkhBBCHHb7gkD3vbWbef6XOIc3qV/4H+0BIIDiLCczS7M4qtCLYYyMwEq2y4bFUMTKl1Gumlj30YfsbY3SGk4A6S5ng5EyJYNICCGEEEL0IwiktU4C1wHPARuBv2mt1yulrlVKXZvZbSawXim1CTgbuP5QDVgIIYToi9r0NJaXb+eZtZX8P/ffCBfMoWHel9u3O20GBd70ZxcjJQAE6bHkeey4p54IQO2HLxLtUBw6kRpcMCeWlALTQgghhBCif8vB0Fo/Czx7wGP3dPj6LWDq0A5NCCGEGBzHuvuZtecVfu7aQX6yjt3zfwhG+pbnsBmMz3eP2NbreR47DXnTiNmymRP5iB//cyNTCr1ctmQ8yUFmAkUTJm573/sJIYQQQogj29D1wRVCCCGGWSJl8h9/XUNb5UYAztMvEcuaRNv40wDwOq1MKfTisA6sVs/hZLcauBxWomXLOMm5lc11AR5ZXUXqrd9i7HhpUOeUTCAhhBBCCAESBBJCCHEE+ajaz7Mf7KRY17PDPReAhrlfBMNCjtvGxHw3lhG0/KsnHoeVUMlSipJ7+cMF5ZxmrGbxpjtxfvDHQZ0vnjQxpS6QEEIIIcSY16/lYEIIIcRosK7Kz0RVi4HGuvQLbC6YRzxrAk6bQXmOa8QuATuQ226lvnQpAJMq/86d9j8AYATrBnW+lKlJmCYOY+RmQAkhhBBCiENPMoGEEEIcMdZWtTLP1QBALHsy8eyJKEMxLs89ogpA98XrsBLNm0XK5qPk/Z/hUCk+sszCEh5cEMhR+TqJRHKIRymEEEIIIUYbCQIJIYQ4Yqyr8rPI2wiAKjgKgCynDadtdGXAWAyFy2mjcc7naZ56CXdMvI+ViRlYwg1gDrC+T/1Gyp/6FGx6ptvNsWSKSFxqBgkhhBBCjAUSBBJCCDEsGoOxgzo+nuzcKSsYS7K9IchUSy0JTwllRQUAFPhGZ1ssj8NK/cL/oPrE/ya3uILqVDZKm+hg/cBOtG//pi1dNrVFE2yrD7KtPkhLKD4EoxZCCCGEECOZBIGEEEIcdqapqWuLEk0MPgOlNRKnqUMg6cMqP1pDRaqaRM4U3HYr5bku3PbRWf6u47gn5Huo1zkAJNtqB3aiqB8A1bK708NNwRh7msKYmVhaLDm49vNCCCGEEGL0GJ2vjIUQQoxqbdEEppn+e7BLtcKxFOF4CqfNQmMwxr8+qgE0uZHdRCdeDECeZ3RmAUG6LtA+E/Lc1OlcAEx/DVQs6Pd5zEgrBmC07gLSRaL3tkb426pK/vpeJYmUycULK7hq+cQhHL0QQgghhBiJJBNICCHEYdecWXrUFhl8seJQPEnK1OxoCLGlLsijq6s4q6gVayIABdOGaqjDxmIoXPb0bdrjsGJ6iwFItdUM6Dw6kwlk9e8CYEttG7c/vYFfv7SNYrfiGp6k4sO7SbZWDd3ghRBCCCHEiCSZQEIIIQ6rSDxFKJbCGq4nogtIpkysloF9JhGJp8je8AB13qN5vqWYZz9MB0b+X9ZTpCIemHPxoRj6YedxWInE4+S4bfjyy6EWdGCAQaBIJggUrGH9njq+9reN7GgM8fl5Lr7Rcgde/yqIQfKvT8M31oIr91A8FSGEEEIIMQJIJpAQQojDqj4Qxda2m+kPLyd380ODqkWzu6qKitdvoeCfn+feVzdgxIP8Zt4uiqueo3H2F3BkFR2CkR9+HocVp82gPMdFSZ6PZrLQg8wEUmhu+uOz1AWi3H1chJv2fBF383r+Me2HfC1+HdaYH9247VA8DSGEEEIIMUJIEEgIIcRhE02kaIskyd/4FwwzTvauf5NM6QGdY11VK7++934AJqh63iz/FS/pz3PyhzcR95TSMu+L2AaYWTRSeexWJuR7MAxFRY6LWjMXHRhcYWiA+a56/jn1Kc5Z/XlMm5dt5z1FYsZFbNUVACRb9gzl8IUQQgghxAgjy8GEEEIcNi3hOKu27eWS9Q8B4Kl5i+ZYCNw5/T7Hk2v2skBvxDRstE65gNytj+Kfcj4tUy8mXLQQpyf7EI3+8LMYCouhACjPdVGvc6gYQHew376ynekfbmcO2RQqP9+2/xX3tu00zrqaukXfwrR7GZ80qSEfgFRLJbZD8kyEEEIIIcRIcGR8VCqEEGJUaAnH2fP6g3jNNtZVXI6RiqIq3xrQOdZUtnKcfQuRwvlUn/BfbLrsHSpP/hXBihMx7T6yXUdmGKMiN90hzBquJ5pI9euYd3c2ka3ChHyTSFlcuNu2Eyg7nprlt2PavQBkuazk5BQQVm7wS3FoIYQQQogjmQSBhBBCHBbheJK3ttTymfgjbNUV3Nh0LqbFgX3HS/0+h2lqdtXUMy21nVDJEjAsJD0l7dvtVoP8UdwWvjflOS7qycEZayQWS/TrmJZwggJrhLKSUhJZ4wGoW/TN9u0FPjtHFXmZNz43nQ0kQSAhhBBCiCOaBIGEEEIcFq3hBNF37mWKUcPmo/+DzS2a6qwF2Pe81utx0USKpmCMllCcNVWtTE9uxkIKJizH7bC072cYUJLlRCl1qJ/KsCjNcVKnczEwifdzSVhrOI6HMDiziUw5h+bplxEpWojVophQ4KY024VSipmlWexO5oO/8hA/CyGEEEIIMZykJpAQQohDLmVq3thcwyWhB9njm0fF0ouxrnmL7Wo85f4PQGvIBG/C8SShWIqkaWJqaAnF0Zna0W9ta+I0431Shg3rhGWMy3ZT3Roh32vH57AesQEgAIfVQotzHKTArN8MZRP7PKY1ksBDCOXMInL8TTQF0+3my3Jc7bWGAMpynOzV+Rht7x/CZzC0tNbdzrdpagzjyP13IIQQQghxMPqVCaSUOksptVkptU0pdXM327OVUk8rpdYqpdYrpT479EMVQggxWtW3Rdn42mMUqVZiS7+O1WowId/NnkQ2RioGkRa01myrD7K9PkStP0pjIE5zcH8ACGBHfSvnW96kbdxpuLNysVsNJhV4yHLajugA0D6hnGkAmHXrqWwOE4wle9w3ZWraIjEcZgjlzMZps6AUlGQ7OwWAALJdNvbqAuzxFoiHDulzGCoHPvdQLElbJE5jMDZMIxJCCCGEGPn6DAIppSzA3cDZwCzgMqXUrAN2+yqwQWs9DzgJ+G+l1JFZlEEIIcSAJFIm/95Qx8K25wlZc4lOOIksp42jirxsj6U7eSVbq4kkUkTivRc8zql+lXzVRmDGJThtll73PRL58spoIQtH02ZawwmqWsKYpu5237ZIAq+OYKBRrhxcNgvZLhs2S9dbf47bTrVOdwjDX30on8KQ6RgEqmwOs+zHL/Ltxz+iNdK/eklCCCGEEGNRfzKBlgDbtNY7tNZx4GHg/AP20YBPpT+G9QLNQM8fTwohhBgz6gMxnn9/K6dZPiA09TwwbBT6HEwp9LIxlO5QlfJXE4p1EwDSJs7Gj8jbeD++127jIv99BCw5mJNPPbxPYoQoz/OwyazA0bIZgERS09BD5ktLOE6WCgOgXNk4rAaFPke3++7LBAJGTV2gYHT/y4zb/7GBQDTJP9bV8Mrmhj6DiUIIIYQQY1V/agKVAx1fEVYBSw/Y5zfAU8BewAd8SmttDskIhRBCjFrxpMnGvW1U1DyH0xanauqF5LhtuOwWJhd6ecrMBcBs20uoQ2aHSsXJ23AfhR/egy1cnz4XdkylqZn1VTxu57A8n+FWketikzmOxc0rQZugDBqDMYp8ji7L4VrCCXykg0CGKwcMhdPoPnsqHQRKZwKZrZUjvmuE1ppowiSRMnltSwPPb6jjM8vGU7LxXha/dDstc17EZfcO9zCFEEIIIUac/gSBuiuycGDu+ZnAGuAUYArwvFJqpda6rdOJlPoi8EWA8ePHD3iwQgghRr5oItW+VKshGOPfH1byVeuTBHNmECtewMTsdABnSqGHOp0OAmn/XkLxJM7GdeRt+Auenc/hTLSw2jKPJ9UneVfPYlM0myuPncglx4yj1Gkbtuc3nE6bWcyv/zEOayqMLVBJImsCpgmBWJKsA34m/kicrEwQCGd2r+fNclqpJQ8TA93a/0ygnoozH2rJYBM5W56gNetybnt6PRPz3Vw6FaavvR8bMbZtewsWn37YxyWEEEIIMdL1JwhUBYzr8H0F6Yyfjj4L/ERrrYFtSqmdwAzg3Y47aa1/D/weYNGiRd0XMRBCCDGqNYfilOW4ME1NTWuE7I0PMkHVs3PpT8n3OrFmatJMLvSSwErQmotu3YvrjbuYvP5XhHHyXGohT3ASLYXHU+C1M8lisNBt54L55bjsljFZDwjSRZ2zJ86HKrBUvoWlOEC0YDb+cKJLEKgllCBLZYo8O7J6Pa/VYuB2OAhacnAH6/s9nlA8hdcxDI1GP3yEca/dzD1NRVQ2W/jRhbMZt+pmUIqoacO66QkJAgkhhBBCdKM/r9zeA6YqpSYB1cClwKcP2GcPcCqwUilVDEwHdgzlQIUQQowO4Xi6wHM0keKfq7dzrX6UhvxFBCtOotS9P1CR7bJR4HXQqPIJ7NqGL/Qib+uZ/KboBxw/ezJfm5TXbRHjPM/Y7jtw4vEnwMMw9a1vAbDjnIdpq1jeJSunJdz/TCCALJeNcMqNK9bW5777BKKJYQkC6WAdAFVrX+XUmZey1LKV7J3Psn76V9mz4V1OrPwXOpVEWYYhQCWEEEIIMYL1uexfa50ErgOeAzYCf9Nar1dKXauUujaz2w+A5UqpD4EXgZu01o2HatBCCCFGrpSp8UcSVDaH8a37A4XKT9tx38blsHbJ4JlS6GFb1EdBaCsTVS358z7GTRcs4bijCroEgFx2A6fNIMc1NpeC7TNrYjlvOU/gOb2UiG8CFStvhFiIwAEt01vDCbKNTCZQP4JAOW4bITwQDfR7LIHo8PSA0MEGAI6xbOXKpRMoee/HJNxFtMz9Ev9IHYs73khi5xvDMjYhhBBCiJGsXx+Raa2fBZ494LF7Ony9FzhjaIcmhBBiNEqZmpZwnL+/8RE38BQ1JScTLl5EeTcZPCumFRJqKKY0+QEAlvFL2rcpBWU5LixK4bQbOKxjcwnYgZw2C83n/C9fe+h9vp7dwPVV36Bg3e9oyfpWpyVhLeE4FbZYuopfH8vBIJ2ZFQy4oJ+ZQFpr4kmTeNLEbj28paRr91YyAVjh3EGg6VU8dauoOv7HFOTn8paanx5f5Xtw1ImHdVxCCCGEECPdSG8AIoQQYpRJmZqmYJzsDfeTpcIElt+CzarIdXfN4PnqyUdx+rL5AGhlEC6Y276tLMdFnsdOttsmAaAObBaDiQVuTp9ZzG92FNFSvJzcbY8RiCRIpPY35myNJMi3RDHtXujHsqhslw2/dqH6GQSKJU20hnjq8DYDfXFjHc311QDkxyope/v/Ec2eQsu0T1Ge48KbnUdIeTDbDixfKIQQQgghJAgkhBBiyCTjUdx1q3l01R4+zms0FywiljeDYp+zxy5SKqsMgGjuDLC7yfXYmFrsHfO1f3rjtFm4+JgKUqbmRdsK7IFKnPUf0BKOt+/TGo6Tawmj7X1nAUF6OVhramBBIFvbbuKJVJ/7JoYwUPSDf2yg2BIg5ikHwB6opG7xTWR5nPicNsblumhUeahAzZBdUwghhBDiSCFBICGEEEPG3PQsU56+kIUb7+QoYy/hGRfjtBnk9hLQsWSng0CRogXMKPFRkeses92/+sthNSjNdnHMhFx+VT0d02InZ9sTNAbixJPpgEtLKEERLZiewn6dM8tloynl6HcQKFW7gRl/OwG9/cU+993dFKYpGOvXeftS2xYlX7URnXgqpmEnXLSQwMQzKc5yAukMshqdi8pkAjUFY7SE4qQbmAohhBBCjG0SBBJCCDF02tLZF1ca/yJl2PBP+hjF2c5eD7EUHAVAvHxZe/t40TunzYJScPEx5VRG7OzIPYGcHU9jJmLsbgphmprWcJyy1F503pR+nTPbZaPNdGEkQmD2nd1D7ToALFXv9rpbYzBGJJ6ixh8lluzHeXsRiadQiTAOM4I1bzy7z/gje07+NbleR3vgsDzXxZ5ELkYw/W+xIRijqiXC5roALaF4b6cfkRIpk2SHTKq/vreHpT96gd1NoWEclRBCCCFGK3m1LYQQYsjocBMmihAuAuNPx5mV36lYcXcs+ZPYevG/Scy66DCNcvRz2ixU5Lq4ZOE4yrKd3Bc9Hmu0iaxd/yKaMGkKxQmGw+Qn6zBzJ/frnDkuO23alf4mlu4QprXuMXCjGrcAYG1Y3+M5U6amri2aORdsrQtS3xYddFZOSzhOvkqPzZ5dTGT8SSSzxlHkc7TvU5bjopZcrJEGQpEoiWT6Womkpro1QjA2PB3NBssfSbR3YXt5cz3ffvwj6tpivLqlYZhHJoQQQojRSIJAQgghhkyopZ5W7eF/ZvyZ6hN+0unNeW/Mwlm4HGO79ftAeB1Wctx2rFaDK46dwP2NUwm5K8jbeD8ANf4IhckaDEzIP6pf58x22QjgTn+TWRLWGk7QFuk+aGJp2QaAvXEDKbP7oE5DIMqepnB70EdrqGuLsaMx1Cm7pb+aQ3Hy8aev7y3C57SS67Fj65BBVpHjolbno7SJv76q0/FaQ2VzeFQtDWsNJ2iLJli/1891D7zPpHwPAC17d5AItw7v4IQQQggx6kgQSAghxJCprd1Lq/axYO58DHcuXkffXakAbBaFS+oADcqnl0zAYbXyrPMcvLXv4GjeRGMgzmSVXg6l8vu/HCygM0GgaBtaa+oDMaLdFH42TY19XxAoWMXmXXvYVh9kY00b2+oD1LVFaQ3HufuV7Xz5gdXc/+d7ePGt9whlsnDCsRTN4YEvzUpnAqUDVIavEJ/TSqG3c6CxPNdFrc4F4A/PvsF7rz1DU/3+TmHJlCYcP7hlaQORTJmDLowdT5pYtr9A45pnuebe98hy2fivT8zlGGcNX/roMtSLPxzi0QohhBDiSCdBICGEEEMimTIJttYTd+RSnOUk22XrsSPYgWwWQ4JAg5TttnH2nFL+q24RSauHca/+B9urapioagFQ/cwEynHbCLJ/OVggliSeNIl0EwSKxePY/buI5B8NgLNxI5F4imRKE4mb1LfF+Ki6jedXbeJv3p/z0+SP+diHX+e6+97g+Q21aK1pDScG/FybQ3EKVDoTCE8hOW47dmvnlzIVuW7mz5oJQFn9a1yz5csc++TxtD14DTSll7CF4odvSVgonmJrXXBQy9DaogkKXvs24167kXg8wY8unIMj2cZvjLtw6ii6ZechGLEQo0sknhpV2X1CCDHcJAgkhBBiSLy4qR5vqg1XdgGQDir0l8dhxTD6FzASXd14xjSithy+b/8mzuZNLPngJqZa60g487F5c/t1jk6ZQLE2gpk6NPGkiXnAcq9I/Q4MM45/8rkAOJu71gV6ZFUl1/MXFqXW0jjraqYa1dzhvJ/fvbSBR1dXEUuYRAaYkdMSilNApnuZu6DbfSyG4usXngTAle43AHg/92wWhFYy6/Ez8Gx4mFDs8GUCRRMpUqZmT1O4vXNbfz360jv4ItUUqRb+cGKUAo+dipU3UWg2sFuXoAK1h2jUQvx/9s47PIrrbN/3mZntXaveRceAsQ3Gxr2XOC6J4xSnN6cnv/T+pbcvvcdpX5xux3bce+/GGGPAVAFCvaxW2/vM+f0xQjRJSCBA4Lmvy5fRasqZlbRz5jnP+7xHD0XDID/Jvy0LCwuLVzOWCGRhYWFhMSXc+EIHYSVFoKyKcp8dt31ipWAAfufEt7XYl9qQm09fOId/ROfycO0HWZx5lkuUlZSCLRN2Y/ldNpLDTiAjGyedL6EU09ijm8ntFQ59ywOPAvClVQGiShnRNfdxzwP3svnxf9O79lFuW7WDtWtW8kb1caLHvZ2e077JwKIPcHH+AVa5PoL/pd+SyReIZSdXEhbNFAmLBIbNA3b32Bu6w0jFjj3dQzY0D+8bfs0/T72Tp/UFtDzzebQN/z1szoGd5XS6YQZTT5S1nXHWP3c/AFIotHTfTdmGvxFou5cnGz/EU/oCpCUCWVig63JEUI5lCgeUN2ZhYWHxasISgSwsLCwspoTNfUmCIoUzUElNwDWpfa3W8AfPG09u4MSGIJ9tP4WI9OOXcfTQxPKAAHwOjdRwMHQpEydXNKh95ivMuv1yspnMHtvK4c5g/vr5rBLHsTCzgs+3f4Crt3yOC59/Jx978RL+4/o+aE76T/goAL3LvsS2S/9JvGIpnxF/x3/He4ilCyNizETax8cyBaq1JMYYLqARhED3VgGQqjsTgGUL5/I/ri+xTZtJxcqfkisengfFXL5gJlLDSCbSRGgdSHKyspGi5iE28ypCrbdS98xXSNadRd+C99EnQ9hyEdAnX1ZnYXEsUTIkuZJORzTDmT94lOuf2LaPe9HCwsLCYhfWrNvCwsLCYkrIppM4ZB7hLjvSQ3lV4rZrfPCcmcSKGn8uXQqAnGAoNICiCByeIAD59BC2ZDvB1ttQSllKvbvKvaSUlGXbSKghvvfWs6l/79/Y8rp72XHeb3jxwpt57Pgf0l17EY6KGfSe8mV017BgIwTpujMYvPyv3Oh6M/PjT6D2rSWRLSGlZMdgZr8BytF0gUplAiIQoHtrgV0ikBCCE2fWckvuZJzxVjKxvgm/NweKYUgqb3wNLf85H0/Pc0jJqEHbo9E1lGWZspFs1RKSx78L3RGg76RPsuOiP7G0JUwfw2V+qUN/HRYW0xn7hlsoda7mC7euIZkvsaYzTuow5n5ZWFhYHG1YIpCFhYWFxUGTK+rYC2ZgryUCHTlOmxnm/PmV3Ou6jETjBchZF01q//OPb6YkFRKxKBVrrgfM1XSja/WIY2cgmWeG7GDI3YxDU/C6nOTCC0jMeC32pmWEl70J/bKfs/3ym4nOfzs2TbBHRZoQ9C14DwWp4thwM4PpPLFMkXzRIJoevzxsKGMGQ0tPxX6vRfpqMBQ7xfrl2DRzAKfOCPO8PgcAfcezk3pvDoR7VrxCKL4ee3w7zXe/GU/nE+Qn6EAaivQyV+mk1HAanhmnsuFtq+k/6ZN4PB5mVfrIOYbfA6skzOJVju/hL5B7+Hs83TqI266yPZJC1y0nkIWFhcVYWCKQhYWFhcVBE00XCIkkAMKzf5eGxaHB57Txndct5PvXnsGOi/6Mrfb4Se3/1lObSeKmp7uT0OabGJp9Dbrdj31gDfGsWXa0qTfBHNFJLjQPRRH4HGMHgGuqYE6ljwW1flz2XVOOmupaHjVOpLztTtLZAn3JHACDqcK4ZRzRdJGwjIKnar/Xklv6IbrO/AHhUIB51X6ay90cXx+g3TmXAjaUjucm+rYcEGs749x0590A/Lr8K2w26qh75KMUojsmtL/WP+y+qltC0G1HCHDYFBpCZqll1rlTBOqZ8rFbWBw16CWUfBz/4BpOnRHm4gXVdMdylKxyMAsLC4sxsUQgCwsLC4uDZncRSPVYTqAjSZXfRW3QFAoc2uRu87MqvRQ0L4HB1Sh6no3uJWTLF+GKrCWSMl063Ts24xU5tOrjAPA4VGyaQFUELrsy4roxx+JEUQRCCBrLPKjDHeCawx5uN87AU4jg6XmGYkmiZfrRdYP2aGbM0OZ8Ko7fSECoab/XIuqXEJt99UhAuc9pY161jyUzqlnLLFw9L4yEySZzU5+r8/jmfuZhtnBffu7lfLj0/1CKGRwrfj2yTa6o05/IEc/se36R6ARACzejKoLGsJtZFd6R/KycyxTCjIQlAlm8epHZKABVYohPnuIh6LIRLHRTevk/R3hkFhYWFtMXSwQ6Qkgp92t7t7CwsDhaiKYLhEgBoHjCR3g0FhU+BzZNoCgT6wy2Oy5fiNmiA4AbOwJkyxfhjG4il83S2p8k2b4WAH/TYsAM9Z5X7ee4Wj+zKn3Mq/Yzu8pLY5mbMo995Lh2TWF+jY/ZVV7KfQ42+paTFh5Crf/FMbSJef86hdCmf5HMlWiP7psPJKXEk+0CQIQa93sdmmKWoTltu6Y6QgjOnFPOc6XZuCJrSaXiZAqlQ3I/3tibZKmjnYK3Dk+wEnf1XF4Rs7H1rQbMdvet/Sn6EvkRJ9ROpJS4s2aZlz1UD4Dfadvj5ymdZZRQMeLdUz52C4ujhWfXbRn5d3VyPbV+G7+x/Zzqhz5qhaZbWFhYjIElAh0humJZElnr5mRhYXFsEE0XCApTBMJtiUBHGqdNpdLnPKB9Xd4gAAVh574eD7HQAhSjgGNoE9mCgTtmdgazDTuBxjp/wL1vmZgQAqdNpaXcQ0t1mAc5FX/bvZSv/QNC6lSs+S0YOolsiU29SRK7OXSyRZ0qwwxBVkLN+70OTTXPJcSeQtjSpjJeMOaiyBJ6+4tEkgUyhYmFNU+mrfzG3iQLRRu58EKEgOUzw7xQaMI+8ArRRIp/rmjnn8+389D6PgolY48yuEiqQKUcIGUL43CO3mnP67IzKEJIywlk8SqlUDL41+Mvj3ztGljNKdHbOV7ZjkBCLn4ER2dhYWExfbFEoCNAtqAzlC5SMg5Pe1oLCwuLQ000XaAMsxwMV+jIDsYCYA8XzqRw+AFI+WeTNxRWFczSK0/fiwCEM1uJKOU4fAdX9reoPsCN+VNRi2nKNt9EwduAI7ED/477ALOrevtgZqRUK5ou0CD6AdDCLfs9vk1RcNvVfV6fXellu90Mh5Y9q0nkipR0SaG0/3vyQCo/oe5e+ZJO/0CEar0bvfp45lT5OG9eJWuNGahGnnf/8O/88P5NbHnhAXj8+7hfvJ5ccnBk/65YlloxSM5VvY+ItROvQ2OAEKSsYGiLVycPrO8lHzc/EwzVSWD7PSxY/1PS0mFukB06gqOzsLCwmL5MSAQSQlwihNgkhGgVQnxhlO9/Vgixevi/dUIIXQhhhULshpSSfMmcOD68oY8nNg9YoXUWFhaHnVT+0LTN3ZkJpNt9oI4dFGwx/ZFOUwSiagE1ASd3dzjIls2nbMPf0HWdhmIbA64Zk84b2puTGoM8Z8wnbqsEoOPsn5D3N1O18seoOfPhTUrYMSwEDaWLNIgBiqprQm4zRRF4HNqorzc1NNEnynFF1rLT3JOdgLiTyet0xbL73W7bQJo5tKEgETXHY9cUTmkJM+sEs139m2t6ebLpz/zH8U0+abuFGau+A6v+NrJ/15ApAslA/Zjn8Do1eo0QwuoOZvEqpXMoO+JATdedhiPRRsldwY/Eu80NsrEjNzgLCwuLacx+Z3BCCBX4NXApcBzwFiHEHh5wKeUPpZQnSClPAL4IPC6ljB6C8U5r4pniqCuJuiHZFknT2p9iZVuUz968ht893oqj42koWblAFhYWh4d4pkg0dWg+cwbTBSq1DNJp6f9HO2LYCVSsWMBlx9fw7PYoO+a+F2dsC/qGO5kpuskE5xxQ3tDuLKoLoioqP81cwsNyKVtdi+g6/bvYUx203PtW7PE2YJcQtC2SokEMkHXXwRjumL3xjSICASxrKWN1qZlS5yqGNj3NrFsvIRcf2O/xskWdTF6ntT9FfzJHPFskmSuSyO15/9/Um2SpYpbNqfUnAab49P4rz0e3+XhD8u809D1E7wkf5zTxdwbVcuhbO7J/ZzRNjRjEXjZ29pHPaaPbCKBYTiCLVymRZJ5KNQ1AesmHiTddxLbLbmLIO9PcwHICWVhYWIzKRJbxlgGtUsptUsoC8G/gynG2fwvwr6kY3NHGQCpHJJXf5/VoukAmb2YcfPxfL5Et6ry9dAstd78ZfeM9R2CkFhYWrzYKJYPueHbEkTjVDKULlCspDKsU7OhnxAm0kDef3EBRl9yYPZmCp5Ylz30chygSmHvmQZ8m5LFzx0dPp+U1n+bjfJYfP7iFePVp7LjwjzjiW5lz87lUP/8dkAZSwpa+FPVigJJ//6HQOxlLqDpnbiWvyBbK8x3Yn/kRruh62PHMuMcqlnR8r/wdLdNHtqDTF8/TPpihLZJhRyTDpt4kr3THae1P8vz2Qc5S15INzcMVqh05hsthI1uxCFt2gHT1MgaWfJqFLTWsKTWi7iYCRQf78Yj8+CKQw3QCKfkYFPfvTrKwONaIpPLU2LNI1YHacibtF/6Rkqcad6DC3CAXO6Ljs7CwsJiuTEQEqgM6dvu6c/i1fRBCuIFLgFvG+P51QoiVQoiVAwP7X3E7mkjnS2QLBtF0gdJeHU1S+RK6IfnxA5voS+b58qx2PqOZrStlwurqYWFhcWhJ5ops6U9S0iX5CeSeHAjRdIEykUK6LCfQUY+/FkN1IKoXMavSx/IZYe5dP0jXqV/nQds5fNH9dfwnXjUlpzquNsCyGWV85JxZbOpL8vsnt5GsO4tNb3yCoTnXULH2euqe+CwYOlv7kzSIARwV+88D2h8L6wK842pzPetU3cw6UrpfHDfvJ9e7ifqnvkjDo5+AMQKiDQOyBYP23ghLlU1kG88eaem+E736RAB6TvkqCMHJzWWs0xuxxbZC0ewSlh1oM8cUHL8cLIbP/MIqe7F4FRJJFahQ0xjOEF6nWYYsBFRX1QCgp191RQkWFhYWE2IiItBoy2hjhdlcDjw9VimYlPL3UsqlUsqlFRUVEx3jUcHO9rJSsker2Ugyz3V/Xcm1f3yOlTuG+OCZTbwl9lu2yDoMFIz04FiHtLCwsDhoDEPSFctiGGBLdlD/0IcoJKf+c2cwnadCRpC+2v1vbDG9OfHtbLn6QWwe09X19uVN9CZy/L5/Pu9PXod97kW4bPsGLh8ofpeNs+dW8KGzZ3Lvul7+/HQbeWclXWf8gL6TPknZlv/Q8Pj/I9LXiVdkERPoDDYR7A1LRv6dUX24+lfTOZQZswOY3m12IfL2PEN43Z/AGF0wyhRKeHuex06JUvO5+3y/cOrH2HbZTRSrT6ChzMW1pzSwSTajSJ3erS/REc0Q72sDQBu3HEwjJYc7h+WTE7lkC4sJMZkueEeSSCpPuZJCukI4bQqKAvUhF76gmRmWS0SO8AgtLCwspiejF8vvSSfQsNvX9cBY9pU38yosBZNS7tHGNpopUOl3IqXk87esYXskzZcb1nIiGwnbT8Ob2sHPS5/gh64b0NLWDcrCwuLQMZguUCyZE/raZ76Kv+MRsm1vhkVXTOl50qkkQTlENtiw/40tpjWqzUnB34x9OPj5wuOqOKEhyL9eME3Bp80M45xKEcipYRiSz10yl3i2yD9XtLOuK87nL5kHJ30SQ3VQ88L3+a6xEhRQQhMvBxsPe6CKgqeW/pzKs3IBr488STZXpD+Zp8rv3GNbKSW59pcwFBuZqqXUPv9NKlf/kkKgBUNzopRyFHyN5EJzeCYe5jU8ga44EE3L9zmvO1BBb82pNAScBN1mBzdRswgiUOpayzYxC3+hD2ygjvP35HVoJLFEIIupI5YpcMfL3VxxfC3BA+0ueBiJpPIEbUmkqwwhBC3lHtx2jYDXRUK6KKWieI70IC0sLCymIRMRgV4AZgshWoAuTKHn2r03EkIEgLOBt03pCI8C0gUdwwBHdBMlV5iiq5xErsgjG/p5eGM/v5m1ktd0/sTcuO9W8v4WXsycTpxbCWcsJ5CFhcWhIV/S6U+a5SXP3vcPFnU+AoAxuG1Kz6MbEm+uBxxAcGoe0C2OHIoiEIKR7l82VeHG607lq7evI54p0hh2Y1MPrjPY7ngdGqoiEELw3dcvYllLGV+5bR2fufllvnLZfOYt/jDdRS8zX/oeAFrFrCk5r0NTaDv7R7zQU+K555/hGvt9OOKtDKhzCbhsSGn+DQXddn7+0BZOevkZIqKO6/o+ytvKzuFkuYZwphcbSVTNSbD7eYJbb+P1ACokas/B5/Ptc16XTcVlV0YEIIBZcxeRGnCi9K9lq+NCasUghtBQPGO7pvd0AiWm5D2xeHXzv/dv4p/Pt1Pld3DxgpojPZxx0Q1JNF3AF0iC2ywRddvNx5qg20ZcenFabnsLCwuLUdmvCCSlLAkhPgrcD6jAn6WUrwghPjj8/d8Nb/o64AEpZfqQjXaakswV0XMpZt75erLlC9l+2Y30JXL85MHNLCkrcmnXz0g0nM/QnGuoe+rz9C35FFVrPQwO+Sm3RCALC4tDQKFksD2SxjCgf90jvLHj22yllmZHCoa2T+m54tki9cLMeVOmqFTH4siiqWKPLBuHTeXzl8yjO5abUhcQgBBi5OEN4KoT61hQ6+fdf3mBL/93HZ+6cA4p10W8J1/J/12scVLNwik7b6npLOZU69y1KQkZsPe+RD40l/ZohqJuYFNNsebOl7t4p9bOjvCZtDgr+EvfUn6YXLRPbbyHLM2il3ed4OOEk89g9ijvlaIIGsrce7x2xpwKNj7ZSHPX8wwqrZyjbKLkq8WujC22+Zw2UjudQIXUwb4dFtMAKSWZgo5njK52h5LOoQz/WWm6/TqjWQxDHnQHwEPJYDqPIcGjJ8C9ZxZdwGUnjgdHxuoOZmFhYTEaE7rLSCnvAe7Z67Xf7fX1X4C/TNXAjibuX9fH2rt/y4/tSbw9z+LpfoaHc+Yk8quLdyA2GfQt+SS58uNJNF8CQqG+s5X+iId5WUsEsrCwOHj2nrBHh8vAbJENnPnc++mQ5byz+DnuDP4B51DblJ47ms6PiEAi1DSlx7Y4MoyW+VPmsaNLSdB16MtEZlf5uP0jp/OeG1by/fs2Uu61ozuC+I7bt7zqYHBoKrmiwZsuPofYrR5KL98Ic99AvmhOj/KGwZb+JKlIJyFnHGXRcr4xfwHZgk5JNzAkpAslIsk8kVSegVSeXHEeM06owx10jnve3Tm+PsiPOZUvpP7KZze8AUMRpBZ/lfHeaasc7NgjU9DpjmWZXbWvg+xQ88uHWzGGVc3y7Xegt5yNUn/iYR/HRIkkC4DEWYpj7NWQIOi20SM9VOXiR2ZwFhYWFtOcqfNzv0rRDcm963p4s+1xOqimV4bIPPAt/vDEVip9DpaUVlFyhsmFh1cuhfmWL6gJ0FfyQsbqXGBhYXFw5Es6kXR+j9cyhZL5j4f+h4y0c8dJf6JTVtKtVKPGptYJ1J8wRSBdsaP5q6f02BZHhtFEICEElT7nSFbQoSbsdXDjdafy9lObGEwVmFvtw6FNrUPCaVNw2VXOP66GW0PvZVbqRfyPfGGP7l93r+lhgdIGgFJzPA1lrhGnlF1TCLntzK7ysXxmOVcsruONSxuwawreSbg5bKrChua380Z+wPW8nm9U/4rSqR8bdx+vUyMtTaFJ5qxysGOBRK5IrmgwtFuDkcPBc9sGuXFlB9csqadBjfLabd9Eef53+9/xCBJJ5fGTQZE6wrOXCOSyEceDmo8dtvGM11nQwsLCYrphiUAHSSJbILJjAyeLDYiT3s4L9e9mYekVztBe4d2nNeHvepJU3Zkj4g9AwGVjdpWXKD7UXNTsKWthYWFxALQPZuiN50hkd4XT7ywp2LHyHualnueh8rdxwdKF1AScbC1VYEt2gV6asjFs6k1SLwbIuWtR1KktFbI4Mjjt0+Pn6LSpfOuqhdz9iTP4/CVzcdimdtri0FQCLhtOm8rc136cP3IVTW03seqOXxN/5QGqXvg+K7ZGOMXZjkRgqz0eh6Yyv8bP7CovzeVumsrdtFR4qA06CXvt+F0aboeKb5IlPZ+5aA5blBl8L/cG1LoTsanjl+J47RrpYSeQYYlAxwT/fL6dXz3aSio/dZ/P+yOdL/HZm1+moczF1SfV8z7no6joyFzssI3hQIik8gSFWQapeMJ7fC/gMjOB7MXD83chpSRbsEQgCwuLo4fDX3R8jPHQhn7OFysASM25mpbFYQo3/Ytvee6gO7QULTdIsv4sVEXgtqskcyXKfXaaih6ek34UqUM+Dq7QEb4SCwuLo422SJpLfv4EJ9QH+eJr5pMv6SPlLbmhHk5Y/T/0i3JmvuaTACxrKeOFjUGuoIQe60ANt0zJONZ1x3mXMoC0QqGPGaayBfxUcFxNADDdt1OJw6bgtJvCUm3Qzebzv8qLj2zhmv6fYxsoYUMnoHt4veNJMhVLcXsCI/s6beoe+UiTcf6MxqL6ID98w2L++Xw7Z8yq2K/jSlEEdoeLorAjrHKwo56eeJbbn1xFyIiSv3juYTvv357bQUc0y6+vPRGXKHKV8aD5jWleShVJ5Qlh/t4L954ikKYqZFQ/Tj1huvrE5LONckV9wvlnuiHJlSwRyMLC4ujBcgIdJPes7eFc+3pywdkUvbVI1cHA4o/i6X+Rpgffh0SQaTiLlnIPzeUe6kMu3HaNSp+DqByu+ba6F1hYWBwAd63pJlc0eG57lFtXdZHImqvHmWyW8jvfSVjGWH/mr9Acblx2hbNnV7A5b3Yb0iNbp2QM0XSBLX0pGpQIRsASgY4VprL711SiTnFQrdOmjuTzuO0qS1sq8Lzpj2gOFy8ac+mRZXxb/T0VpR4Si9+LOICHyclwcnMZn7poDvNrffvkBo2G16GRU9yQs0Sgo50/PLGNL/InbtK+RqJj3WE5Z76k8+entnP6rDAzKrxUvvQLAjJBFD9iGrvL8iWdvkSeCnW4F81emUAABZsfTZagcGD9aibj7CkZklzRcvVbWFgcPUzPWd5RgpSSSrdgCRtJ1Z0xstAwNPeNZCpPouBrpP383+GvqMc1bK0PecyYx4DLRlzxm8fJRI7I+C0sLI5untgSodxrZ3lLGf9+fhudQxlyRZ2tqx+nOb+RW6o+QXjOaThsCs1hD7OrfOyQlQDI6MG3iR9I5umMZugdHCQoE0hLBLI4itl5ny5669jy5mdYdc4NPOC9kjBxCp4aSrNfc8jHEHDbmFPloybgmtD2PqdGVriRVov4o5psQefWFVs5R12DQxRpfPKzYBx6Z8ltL3XRn8zzztOaCaz5M5Uv/4oXyi7nUX3xtC0HK+oGrf0ptg2kaHQMd8Vz7ysClRzDrr0DvI7sJDJ+dEMes5lAUk6t+9LCwmJ6YIlAB4EQgu8uzWKXeVK1ZxBw2XDZVaTqYOsVt7H9tf8h0XLpqBZxRREYTtO+qqcsEcjCwmJyJLJFXmof4rSZ5XzBczuP2D7BS9sjbOhJ8PxTpp1//plXA1AfcqGpClV+B32EKAk7RA8uHDpX1OlL5IimCwTzPeaLVjmYxVGM167hdZr3a8Pu5cw5VSx9/acoOsuJLLoOp3Psbl9TyWSCt71OjbRwW93BjnK2DqRYoq/GRZ5b9DMpj62BTfce0nPGM0V+9tAWFtT6mRlUqVr5I5L1Z/P03C8Tl54DdgKV9EPriOkaymIYEMsUWaZsRHcEIdS8z3aGczhmIXtgbeIzk3ACya4XcW+975Bf+5FgMmKYhYXF0YMlAh0kYvtjSKGSrjmVoNtGdWDPSaIQ4LGPnhOgessBMCwRyMLCYpI8tKGPoi45q8nFgva/UycGGWx9nn+/0EFTbiMpZzX2UC0Blw338GdQ2OtAUVSi9lqItU36nDsnuFJKOocySAnbB9NcoKwCQJTPmbLrs7A43CiKoDnsJui2jbxmOAJsvHYFgwveg3OKQ6mnAq9DIyVdx5wIZExx9tN0p20wzYXKixQ1Lz/V3wSATHQdsvNJKfnybWsZSOb58Dkz0bY+jFpMEln4fiqDbpK4UYqpA2pcsj/RQEpJMlccd5uxSOVLJHNm2XMklWep/jL5hjNAGaV00hUcHtDkRSApJ+fssT/7c+qf+DS54uEL9D5cpHLH3jVZWFhYItBBI7Y/TqbiBITTj9ehmf85d4k+HoeGMkaGgc03LAKlp6cIZFlALSymLyvWt3KNcwWnRW9DK5gPgO7Op7jtpS5OsbehV5+IEFAVcIzsoyqCCq+DqFKGSPVP+pzbI2lKukFHNEu2YD4cxLs283HtVgYbLkKtWzw1F2dhcYQQQlAfcuGyKwTdNqr8DlA0tEm2fD9c+J02ktJ5zIlAiQMUCY5W2gaSnK+uIlF/DoqvCgAjEztk53uqNcJda3p435ktNJZ5CG69jaKrglTtacyt8pGQbgQSDqDMcH8i0EAqTyRVOKBxDyTzAHTHsthjrZQbEQqNZ426reo2nUBGZvIikG5IpDRLzyaCyA6iFhIUezdOaPvD2f3tYEkeRWO1sLCYONNvRnOUYRz/ZgZzDgJu20hgZF3QxZb+JIYxfreQQCBAtsMB01AEGkzlsWkKfqdt/xtbWFgcVgxD0rD133yEf8FKyFScSDKd5qTky3j0c6jSe+ipeBcNIfc+4bJVfgeRlJ9ZmbZJnbNQMsgVDTb3pUY6NKm5Ia7Y8hVKwkb/Gd9m5jQNE7awmAxCCJrDHjRVQTckA6k85V7HIQ+FPhC8Do244UIUBo70UKaMkm4QyxQJuu1HeiiHjaGebVSIBJ31Z1CV85LpdWI/wDKm/WEYkp8/tIUqn4NLFlajFBL4Oh4hOu9a/B4nVT4H/8ZtbpyL73LUTJD8OAHJRd2gP2EKOSXdQJvEPSNb0EdcKY9u6udMxQzPLjWfPer2Nu9w5EI6OukV75JuoBTTFHXPhELyxfDPqtD2PHrjIlRFkCvqpPIlSrpECPN90aUcyQ9aUOuflp8pe5Mt6BiGHHNB28LC4ujEmrEfJHLpe4nPvBLfbu4fu6ZQH3RTFXAQco8tolQMdwiT00wEGkoX6InnjtmQOwuLo52NvUmCxX7yqofo7GvoOeUrZOvP4CRlM9c1dAOg1i8hMMrnT6XfSZ/uR8lM7qFx54roiACUjVD739dRV9jO32q+iO6txqZak0SLY4OdD6eqIqjwOSjzTE9BwuvUiBsOROHYcQKVDEkqX0I3JNF0YcJujKOZfGSH+Y9QE3Or/cSkB3kADpaJsKYzxsodQ7xmUQ2OTD8t974dRc+TnPcGGkJunHYNORKqPPk28aVY55jlfIlsESnNru3JSZQZ5Yo6HUMZkBJbvA1t/X95u/Mp8r5GKGsZdR/HsNs+lziAOfbm+5n/9xMpxnsntLnIml1+bT0r2R5J0RHNsKUvRU8sx0AyT38iTzxbJJYu0Bk1S6nzpen/e62XSqjpPnKlXc8D1rOBhcWxgeUEmiL2zv0xH77Gd9GUex0MSh/+aZIJJKVkc2+SPz61nQvmVxFwWS4gC4vpyBNbBpglohR8jXSd/WMAvKUMjs1/5l3ZG5AItIaTRt232u+ks+hFIQ2FDNjdEzpnIZtGzUXRnWUIvUDNfe/DkerkC+6vce1Fb0VTxVGxqmlhMVkqfYcnEPpA8Dk1YroTUUhNyfGKujEh58OhpDRcijOUKdCfyOO0uY/4mA41It4BgCPczIysi5j0EkhH9zOLPDD+/HQbTpvCRfMqaL7vSuyJNnacfz2uxqUjbg/D7occkxeB+tbT8tfl5N95H46W5ft8+561PZS7BbPoIeFaNNIxdzSKukFfwlyQzBUNpISaB66jvON+vg2UhI2BeZ/GM0aQusfrIydt5BMD+CZ3FcjIRhQ9h+xeDRX1+9lYogw7gVx9q3h+W5TtkTSJXAlFmAHTsUwR3TBY150gnS/xh3cspTHsxmkbJctoGmGsu5W5d36U2PtfwFnZSE88SyJXYn6N/0gPzcLC4iCxRKApwGlTUA/AJlnhczAkfTRPEydQTzzLV25fxwttQ1TGVnPizDSc9+EjPSwLC4u9eHLLAOfZEkhf08hrmZpTyJbNR8sNEZv1Olze4Kj7Vvkd7Ch6TY06PQD2plG32xvHY99gzsb/svnqh6l88ceEBlfxKfkJXnv5G3Ha1GP+Ic3CYjrid9oYlC4UPQ+lPGgOpJQHLMim86UjXoZlDLbhGuimVyw2c1lKEqanEWtKiGeLBAp9YANPZSNN2TRx6aGUik75uRK5IoX1d/ODikEa21pxRdez47zfkGi5lNm7OUd1h+/ARKChNgBkzxpoWY5hSLYPppFScv8rvfzw/s380vNnZhmPsPXNT0J44aiHKeoGm/uSe+RS27tXUN5xP38rXciW+tdz1YXnY3M4qRyj+UrQbWcQP1rqAEol06azR/SvB1478rIcLufa6RQslAw+dcPj/ErqDEofoaEtfP+2FSRxExQphDQoaF78bheVIsapIcj2bmbWvT+G098Ny942oeEczN/0wSAHt6LoeYztT3Hd/XN5ujXCn965lFxRn/YCloWFxfhYItAU4D7AsMhyr4NOgqiZzVM8ov2TKZRGOgYBxDIFPnXjy7zQNsR8Z4wPdH0Jb08eefb7EarlCLKwmE6sbo9RbRui5D4ZAJddwWnz0fr6+wGzK+GCMToZVfqdrJLDq3jpCIQmJgIpkY1ouSgt970d1+A6ri9dRs0Zb6XSb7ok7JYIZGFx2DmhMcjtuADIpeNo3nLaoxlmVHgP6HipaSACOR7/Ji3bHmHjtSuwZQbQSyo0jy4WHAu0RdLUiQgZexi320tDmWQbHmR26kWgO1Z38x5xB8uim+AZSFctJdFy2fA9ZNdDvW4fLgebbDD0sCNGDu3g5Y4Y7/q/FQxldoV8v6WslcszDwHgab0LffaCURdRe+O5fRqTiSd/yKD0oV/wDa6ZZbpzxluEDbrtDEo/VekDEIEy5uKsOrB+5CUpJe3RDAGXbeRvpD2aYW3rNnBApOZswr13cWvTLQRcdirbbjf3Q2BIL2ohCXlMQTMOmY3hCYtAiWxp1PLuA6WoG6hC7DfnRw6/d5tX3M9DPUHsFPE8/EWK578H56x9nV4WFhZHD5YINAV47Aemhlf4HKySQZz5iFkgfRhV/kiyQGPY/PEXdYN3/HkFazvjfGJ5mGs2fQt/JgUG5CPbcVQd3rbPR2rFw8LiaCCdL5ErFPApQ/S7qwGo8DoxpGQobU62nTZlzL+har+TiDQn+DLdT6Gkoyn7dzOqiQ4MxY5rcB1r5Ezur3w/X1tQNfJ9xxiWfAsLi0PH4vogt9pMwWdHdy+EXMMh7ge2Up8pHPm8D5HoRC0mGXzs15w6cDP4a+GDjx7pYR0ytg+LQCVvHQABl42Y9KAV2qb8XDe+0MENah/Z0HEAdC//JkIRVHj3Knl0mAsFMhtjMrMxPT2ICoih7Xz9zlewqQpfuWw+ElCMEm9b+UU61XoSJRtN2+4iV/wMnuGF1GxBpyuWxe/SiA0LR/b4djy9z6NtuY/q5PP8O/AelszaVZ413iJs0G2jW/qpPQAxTQyLQFpkA/3JHKoQDKYL5IsGrt3m/EOZAiHMUszwyW9kYHsNMzf8FYCBRddR9NSi5ofQ8jHygRnoNi+3rO7j5NTDnBxtnfB44tkibsf4jtuJ/s0nckW6hrI0hd17LAaPynClQnjwRS5d8HEu3PodFvc8QnqNEywRyMLiqMYSgaaA/X6IjkG510G/DKLKEjIziPCUT/HIxiZdKJHKl/A6NH7y4GbWdMb5zqlwzeZ3oeYi/LZ0OR/S7qTYu/Gwi0BFXaIqHFCJnYXFsc5AMk8FMQQSR1kdZV47AbeN/G7BjeNNBKv8TgaHnUB6op9YpoghJTUB19gn1UtoqW76572T+7Zm+VvuDL504QIUIXA7VOqCLssabmFxBFAVQWNNFfSAyCdHwmYTueIB/U0WCgXyJX2froKHEyVlhvGe0fZrFCEpidFDho8VtkfSLBIRtLIlAHgcGnE8OIqTb88+Hu2DGbZ39VDmjNEz84NEFn8YVRHMqvDs87siXOZCgZGNM5nfBDnsBMr0beWlgRjfunIBJzaGkBL82+/GkdzB2gU/5MXVq/nK4D+IDWyF+rkYhqRjKEO+aJAdFiJ97Q/R9MB7EUgGCPEXrmDmxZ/a43zjLcIGXTbW4seen7jYshORMcvB7LGt9A2lQLGxqTdJfdBJwaHDcE7YULpASJih7K5QNduqvsrACR8BKdFd4VGPPZTs5KUXNrE8/jLoRZiA276g6ySyRcJex6jfj2UKdESzaKpgVqV3H7HIMCSxbJHBVJ7ccPe2Qslgf6a/2EA3VcBcpZOv+e6kmkcoSA2l75X9jnm60BPP8uentpMu6HzlsvkH/MxmYXGsYS3dHiSaqmA/wBVwv1MjqpQBUIr3TOWwxkVKSUmXDKULrNge5fdPbOO8WQGubvsaQhpsvuxW/shV5rYDh79UzZDyVdENxMLiQBhI5akS5kTbHa6nLmiKNw5NHRFOx5vkVPudRNjpBBogkS0ymCqM2/HDiHchjBK3dHj4Wvy1vOHcU6nwOfA5NVrC+z5AWFhYHD7mNNYCMBDZlS+YmkTnpZ3oWx5h/l8XkR/qnrKxTRrDQEn10WFUoAhJQThQMwOgT/56jha29CWoUwYRwUYA3DaVuPRik3koZqfsPFsjKZqFKbAV/GZHrSq/Y9TPb5fDTgoXMheb1DlkxnTdOJM7mFvlZWlzGd4dD+Hb8QDla/9IwdeAPvtS7tFPAUDZeAcA0Uxhj9bytlQ39Y9/in73HN6g/YLTi7/C+9rvEQ4FsGm7Fgg94zqB7Azhx1mYvBNIyQxiqA4Uo0ixbxM/fWgzX775Bdy3v4vq/zvFdO9jOoHKMEUgd6ACRQHdWTamAASwsNbPVqMWRZYoDGyd0HgKJUlit7/pXFGnN56jtT/F9kiaziHz96SkS3rjOQCSuSK98Rw7BtNs6E3QNZRlVXuM79+7ga6hLIX9dCf723M7iEV6GBQhAKpX/4y28nP4l34uWmQ9+9TrTUMe29TPeT96nD88uZ1/Pt/Ok1umRwarhcV0wBKBjiBCCAquCgCMxMTaUE4FRd28eQ2m8nzhljX4nBpfL3sQZ2wLXWf+gFLVYuqqqxkUIcTg4ReBSoakNEZ7UQuLyRBNF3ilO07pGBIVB5K7RCAtULPH9zwOczLvHmd11O/SQHOSU9wUE30jXVcG04Ux97n36ecBeGbQw0fPncXps8oJum00hd37zRSwsLA4tCycYZYR/fup9XzttpcpX/ULSv2bx2zTPRayby1qMY1se/pQDHNC/Oru51BkibvdV/BD7Tr+430rQhpmiP0xSmdXB04KiKBZ5qQogqw63M8qG5uy87QPZmgZFoG8dXPwOrUxnSVuu0ZKuicfDD3sBHKT48PLgmh9a2l68DqaH3wfnv4XiSx4N7UhL72inEFbDUrfWsBsHQ+g5mKUv/xbmm6+mHw+x5uGriPhaebrly9ibrWPcp+dlnIPDptCpd8xbnmUXVNwBiqxyzwU0hO+hNUdMWQ6QqtzEQB/vf0e4pue4p+O73N88km0TP9ImdRQpkhw2AkkPGF8DtPVIwSEPDZcdnUk6UEI87+5NT46FPNnrfdv2u94jNQgTXdcTannFTqHMmzuS7KlL8VAMk+2oJPKlXZqUgDEMkXaImnaIhkGknnimSKbe1P84L6NfP6WNTy9dZAdL94H258Y97y/emQLVWoSZp2PobnIheYQufCXvCKbselZ8hMUsI4Ut6/u4n03rKQp7ObHbzie45R2Is/+Az07tQ47C4ujlQl54oQQlwA/B1Tgj1LK74+yzTnAzzB7zkSklGdP2SiPYaSnCgpgJA+nCGQ+EN+0spNtkTTfOzdA/YrfEptxOcmG8wBY0hhiS38Nx0+iZnmq0A0JlgZkMQWkckUMwxQWj2B1w5TSn8hRKWIAKIG6Pb7ntmv4nLZxnTlCCKr8TqK5AEqkm8DWOyh664grS6kNOPfJEuqIZnjk2Re5zA7vfs1ZVDZX47KrNJRNrLW8hYXFoaW8zCwlnxUwmNP7J2oit+FId5Jo+eWkQp7lcBelHasf4e6BxbjtKu9c3kxwnDbeU8n2SJp7nnmJjzrgglOX8LXWWQz0PsJbAZnsRfhr9nuMo42+RA5ineAANdQ48nre5gcdyMVgiq67PZphltoHQLh+HmH72J/hXodGXLoJZycpAmV2uW4WOfqoeeJ/KDlD9J/4cTy9LzA0580E3TYay9y0l+qZP7QV3ZBk8iUqV/2M8tW/RjUKPKEv4t/B9/Oei87mhIYgQghURVDucaAogjlVE2v6Hq6qhxQko734qmdOaJ8v3Pg89xlZ7ok3MUN7iZ9ov0HRDFKKj7uMM3ktT0K8A7wVDKULVKgppKIhHH6qNUnAbcNlU0eqBAxDUjQM7OqurD4jPAviYEzAbV9qX4GndwXhtX+gK/SjPb6XL+n8e0UHx3X+m2tSfydds5zEqZ9jwDuDzqEsK7YP8lRrhI6hLC6byrsWe1m89Xe8ru0eioMNsHjdqOeUUhJL5/DbEmTKGtk2/0YKvnrcniDtthnmNfSuharZE3pPDwepfAlFmPOgG55p4+t3vsJJjSE+d34z857+BFfbH4BOyD2voJ7zySM9XAuLI85+RSAhhAr8GrgQ6AReEELcIaVcv9s2QeA3wCVSynYhROUhGu8xhytcB0NQiPWQSuYp6ga1wXGyOaYA2f48Nbd+hMeGPsU5c+dxycBvAOg55SuA6SZY3BCgdUUNS6IvHPbQat2QGNJSgSwOjvbBDBf89Am+ecUCZlR4jvRwpoyBVJ5aMYQUKsK9Z45Yudc+oVD1dyxvoudBH7JtMyd0Poh0+Nn8hkdIZF37dCB5pTtOg9KPRHDeKSexJVocKUGzsLCYBjjMB+J3+VcRiD9EARu+9ofpSOUmLAKVdIOe7g4aAdHxPH/Ytg1Dgt9l4+2nNo20xD6UtA2mqRx2OXrLG2gcdLFhmwfsUIp3Y6s78ZCP4XCzpjNOrRgOIQ41jLxetAVMEWjYWTMVtEczXOMYoOSsRRtHAAJwO1TiuJGTdALFov2kjSqalT6qVnwfV3QDbRf+kWTTRUSPeyeqIqgPuZlb7WNzWzWLYw8xlM5R+8RnKdt8E3cZy/k/ruK0M8/lg/OrsGkKAZcpqjhsyqSdp031jbAVNmzZyrIJikAyZf483nbhqQxkjsOW7CBXNp+/pZbw1PPP81rHk5RinWh1JxFNF5inZTCcIVQhsGtin4gIRRE4lD0XZsrD5QwkyvBMwG1vDJqLscGtd9C17Ctsjqus3bqD+v7HCQ2tYWFe513aA6yXzdR3PsngLVu5JvcNQCAwy8+uaxnkosIDVLTegaLnaJPVNKW6oFQAbd/PiGS+hEdPotgkjkAlxZoT0XVJS9jNkGcmRlpB9K6Dxa+f0Ht6OIilC/QmczyxaYBfPNLK+fMq+eiZ9cx69EP4Oh/l6cYP0bzjJrTW53Cec6RHa2Fx5JmIE2gZ0Cql3AYghPg3cCWwfrdtrgVulVK2A0gp+6d6oMcq154+j8QWF5u2bME136zj1RQx0nb5ULD1xQdZnN3OD4K3ULHgY4Tu+S/9x3+IkqcGv0ujIeQmU9C5WdZhKz5MId6HPVh9yMazN7ohTTeQhcVB8MSWAQolg3XdCS5deOysIA8k88y1xdE9lWjKnpPNiXbVe9+ZM0htbcHd9gCKISE7QPULPyB6wf/id2l7HGd9T5JGEaHkqcZmc9Icth9wDpqFhcUhYFgECnQ8RJdrDr9MnM33+QNG12ryZadPKOT53X95gXe3tdGowgKlg9vevYAf3vQA/3zWyWuPr6HCd+jmJDvpjGaoGnY5VtQ10xIt8Yhh5pEYicOXm3g4eaU7Tp0wHVg7M4EAio4A5JjycrAZSi+l0Iz9Tv49do2EdCMn4QTa1JvEmxyk17OA5mwfnv4XSVcvIzvjYlyqoFCStJR7sGsKc6p8rN1YyZtsWdKbH6dx8038qXQpd1V/lP934VzKht1n9SEXPueBt0af2dIEj8Om7W00HJ8dvwECpmvHXoiCHTxlVWyd9aaRUqva9iF6pJn1Y8Q6ALMcrEJJIV1lkxpXU9hNa2sNJw3u321fGmjFECqKnqPr7x+iUo/zZWUDNqGTwYlby5FoOI/I8l/y0qN/4q0DP+Fb8ztpViPMlO2UDa7CuX4LhuYiNvMqHgi8gRVPP8RP7L/DGNqBUrGvm2coXSAszLIpxVtBwGVDEQKvQ8Pt8dKVq6Oqf/qEQ7/cESP75ytYX6zhF6V3cNWJdXxweQ11978Xb9dTdJ7xA0TzG3jphpc4s3/1kR6uhcW0YCIz+TqgY7evO4df2505QEgI8ZgQ4kUhxDtGO5AQ4johxEohxMqBgWO3vnsyLGspI6mFGepvJ1MwQ98SBxDoOFEGU3nWb9wAwJm5x5hz/7UUPLUMLP4wdk2hsczM+JhZ4WWbNMMmSwP7r1meSnx3vBfvg585rOe0OPZYsd20pbcPpikdBQGGE2UgmadWjaF7Dk6YtQWqUZDkpI1HvJcR3vh38gNtbOlPMZQujOQovdIdZ6ZtECNgrlJbApCFxTTD7kEKhZIjQMf5v+MBYykGCr72hxhKFyd0iFe6E7S4shiqEwWdOXe/nr+VPstNyXfw8iP/OcQXYNIezVCnxABQfdWcMStMhAASgTyGRKBkrohhSAolg77udt6uPULJXQmu0Mg2hmNnd66pcQJJKWmPZqjRu5FlM/a7vduuksAD+YmLQL94ZAshkWTB3LmUhu9P/Sd8nNqgi1mVPuZUeUfaq8+q9LLFMOeYQ0/+AYBXqq/iq5cvGBGAXHbloAQgAEegCoCe7k7i2f3/LSTzJULDQc+at2KPfL2Wcg9RfJQUB0as0xx7pkDoAESgxjI3W4xa1OgWGMf5fsMzbby0ehVr9SbWyJlcwtMs9CbpW/h+Wq+4g63v3ci6d21mx8V/IeT3sfi1H6LgqeVtbV/kzNYfUtH1MLozROcZP2DDtS/Sddb/Ujv7BHZI830pRraNet7BdIFyYf7sVV8lYa+dKr+ZH1XmttMqmlEHpocI9Ep3nPdc/zCnypd5j3Yf15/UzntOa6bq8c+bAtBZPyK18FoW1AXYpM4iUOgdyXSysHg1M5HZ/GhLy3t/YmnAEuAy4GLgq0KIffqKSyl/L6VcKqVcWlFRMenBHqu4ymopM4b4zWNbkVKSK+qHzAnznXs2UGEMkPY0kvc3k6k4ka1X3onhCFAb3JUH4rKrpH3mREH2H95waG1gHba+lw/rOS2OLaSUrNgepZIhzuy9AW24A8mxwEAqTyVDSN/BuZuE1/wM3uo5kR8MnQ+Ar+MR8kWDzqEsG3uTZAs6G3uSNIgBDH/jeIezsLA4UghB4rQvsuPCP+KpnsWcliZWMwffjgeIpgv7DYgulAyi6QJlxEk3nAWAM76VvkUfJC3cNL3ym3G7B04V7dEMLc6E2VlJszOz0guKRkorQyaPfhFISklbJEV7NEN/Mk8qm+f9Oz5DtYgy+Jo/7FF2L52mICQzByYC7WyzvpOBVB57MY5HTyDCs/a7v8ehkZQulPzEQ3RjiSRu8rgCFRQrF5GuXoYy61wCLlPI2b2kcHalj63DC43zhh4jqfh5+2svwq4pzKjwUOV3TI0jfrhk2kgNkCsY+/1bSGSLI92+NF8FPqcNIaDMa+fk5hAht52oWgHxYREoXSAok+AeuxvYaDSUudkuq9GKyXEFibvX9DBT7cNfOwfeciObrnmMzrc+ydDyL5GtPAGEgtTM90lVBFJ10Hfy5yl462m78I9sfNsqtr32ZobmvQXD7gUg5LZTHL6fG4PbRz3vUHpX1zPc5Tg0deT5IOSxs92oQkl2TYsOYQ+u72OOYYZUlxwhLtjyLRqe+DShrf+lf8mnyC54EzPKvQRcNvp8CwEodqw8kkO2sJgWTKQcrBNo2O3remDv/qGdmGHQaSAthHgCWAwc/tZSRyHOUC0z4l3kWx9ns2sNc8+8hlS+NHLjnEqebo3wCWccvWwW2y78Iyjmr4DPqe2z4hKqbqKwQ0MOtU35OMZDyUahmJny45Z0A1UREy6ZsTh66RzKoid6eNT5GbzFLIVnV8HSa470sKaEgWSesDEIvoNzAgmvGd1WaD6XTauqiPnq8XU8QvQ408gppbnC1hdLUuaMkAtaIpCFxXQls+xjZJJmh7/Lj6/ljh3LOCn6V2z9LzPkX0bY66BQMkZ18g2m84DEUxqiUDGbQVcV+eBsBhe8i7XtJa6N/5HBns04G+cf0mtoj2apV2MYnmpUwKGpNIXdDObKqD6MzTMOBVJKvnDrWm58oYNFlXYuPL6Jk/WXWK5v58+VX+KyxlP32F51+TEQyAN0AmWLOg5tV4ZORzTDbGEKF2rFPmu0+7DTCaQVkxPOhRTD+UGKp4zUFX+iL55j1hjlVzMqPAwpARLSjV9kyDUsx2ZTqQu68Di0cVu/Twq7h5LiIEQc2foI+fCFuDxjh0rHs8WRMijhKSdotxFw2Ub+buZW++jpLyOQNB+DhjIFfCIB7smWg3nokOY9uDS0A807+sJ4+0CMajlAsmE+aV8lBTl65GrAZaOhzEW2qLNNvI7YrNeNeW6bJmhoaCHb6kAOje0ECg87gfDsObaQ20ZfyYVQDMgnwBXcz9UeWtZ1xTnL2wUFaLvsn1St+AGhLTeTrl5GfOnHaSn3jHSRK1YuQk8q6B0rsc275IiO28LiSDMRJ9ALwGwhRIsQwg68Gdh7Wf124EwhhCaEcAOnABumdqjHML4qQvog1zt+wRs2fZq6xz9NKpuf8tPohiSSKhDWByh6akYEIIDqwL4rLjOrA+ZNaoybxCFBL6Lk46iZATCmduWxZEgKx1CrcIuxeX57lIVKG16ybDeqkLt1LDmaMQxJNhXHYyQhUH9Qx1KqF2BoLkInXUlNwMWTnIS3+2lEKTuyTWt/igWiDQUDUTn3YIdvYWFxiFCHH9KFgNefVMdT7gvJ4iT8yg1EUgWG0gU6hkZfXOlP5PGQQzPy2PyVDJ7zPQYXvAuHTWGw+QoMKUiv/NfI9ofCFSSlpCOaoYIhjN0E7pawhx4ZREn1Tfk5D5a93Tbj8cuHW7nxhQ7e0Jjmr4n3UP3YZxh86k9EpQ//kmv2aXXudtpJ4j5gEahkGHvMd9qjGeYpZrKDVrtov/t7HGYmkJAG5JMTOqeSM8equEM4XG7cHs+YnSqdNpXfvnUJRtjMoynVn8pxNX5CU92JTggKjjIuUFZx4hPvxlj973E3j2eLlIkEhtDAGcSmKnsIp3OrfGwrhlCTXeiGJJYt4NHjiEk6geqCLroxxRU9umPUbZK5Iu5MJwoGtsrZI++NEObCbV3IxewqLy0VHhrKXAghhjuEji6gOW0KdSEXc6t8NFd4aDcqITq2EygskkjEPgJXyGNnUB8OFs/FJnXdh4K1XXFOsu2g5K0lPHMpbZf8lS1X3UXHJf9HS6V/j7+tynDYdKB1rzqCI7awmB7sVwSSUpaAjwL3Ywo7N0kpXxFCfFAI8cHhbTYA9wFrgBWYbeRH7ztosS/eahQ9R0AmeFBfQtmW/8CWB6f8NNF0AZuRw6vHKXp3xToFXKO3lJ5d6WOHUYkcwy461bRF0lz6/dsBENJApqc2N6pkSIq6FTj9auDFHVFm2wcBWCVno+aHxq27P1oYyhSolKZ1XAk27Gfr8VFbzmD9O1/BVTmT151Yx38Sx6HoebzdT49s0xZJc5ayBolAzDj3oM5nYWFx6NjpcK3yO3HZNS48aQ63lE4nsPV29FSEzqHsmKLFQDI/4n5QvZX4nTb8Lo05VT7OXHo8zxnz8W++FV03SOVLbI+kKeoG2YI+kmV4sMQyRVL5EkF9ELFbqWtVwEl3yY+Snl4ikJSmADCR7f789HZ+8tBmrpxl5zvZbxEUad6oPc5r1BfIz7+auXXhfRxaXodGTHoPOBhaNyT54i4RaMdghuPEDkqOAMK/d6znvrjtKmmGXTyF1ITOaSvEzH+4ynBoCmGvY9ztL1pQjTa8uCCaT5t056+JIt3lzFSGywmj4y9qxofLwYqO0Kjup6awh3a9DDXdRzydxSuzqOgIz+REILumUPKZCznGGCJQWyRDszAdcFrFDKp8DupDLubX+Gku91DmseO0qXgdezZz2F0sctoUgm4bMyo8zK7yUeYxO4jWBFy0y0oYw+kfTReoEAkMZwj26mxW5rabv5swpd3rDoT+RI6+RJ5ZpVZKVYsJeezUBJ0UKo+ntrpqH3G1vszNGmMGSu/aIzRiC4vpw4QSPqWU90gp50gpZ0opvzP82u+klL/bbZsfSimPk1IulFL+7BCN95hE+MyAtmxgJp/h/5ETTpxtj0z5alt/MkeNGHZE+M1abLumjOoCAjO4r11W4ki2H5YH6E19SYqpwZGvS7GpzQDQdUmxZDmBXg3sGMww3zmEoTpplfVoRuGQlBgebgZSeeqE+TdysCIQgGaz4XFofPCcmUTCJxOXHmof/jjVz34DV/9LPLs1wvm2dWTLF2H3j25Dt7CwOPKYpc6MhOq+bXkjN4pLUY0C4Q1/A8zb+Gjziv5knnKGS3m8lYQ8NupD5kr/orogD4tTCeY6yPRtYTCVp1QyaO1P0dqfYttAmsFUHjnKHCFTKNHan6R9MEOuqI+IRsVRHLnt0QwqOp5iFOHfTQTyOekoBVCzEdAnFnJ9OCjoBun82AKYlJKuWJav3fEK37l7AyfV+/h26cfYMn1su+xGsuGFKBik5r8Zv0vDY9/zQdtj14hJzwFnAumGJFfa9bPe0pdika2TUvi4CZV2eewaGTks4hQmdu90FIbLh1whHJo6oUiDUss5ZMMLsNUtntA5DgTVW77ri1j7uNvuLAfTxwh6rgu56JFhhDRI9LePlEypnvJRtx+PcLiCpPAiY+3ohumEK+w2R90+mKZZmOKnvWIOmqoQ8thR9yOW+Z02gm4bs6u8zK7y0VDm3qe8ri7oYoesxJ7sGHV+H00XqNaSGO59ryvothOXHvOLKexedyCs7YrjJUM434GsMX+Hyr0O5lf78Y8SKt4QcrHNqMGe7Yf8xMRNC4tjFavNyzRADZqrAUPHvYOlM2t4xliIt+MRYun9rzJNhv5knprhB8hAdQtN5W5mVHjG7PYzr9pHv1aLXU8z0N9NapwJz1QQz+wK5APQpzgIcm97tMWxS3csS5MyQMFXj3QNr9BlBsff6ShgIJmnVphOIC108Bk9NlXBbVPxO2386h2n8v9c3+G+wiKCr9zArDuu5O39/8vxbCHdcPYhW6W1sLA4eBRhlvDsfECsDbiYvehkHtFPxLv6j3SvfYTZ/zmXYse+ZRC7O4HwmCGwO4+jKoJ49WkAbHrmTrRnfs7sW86HRA8YRShk6I7l2NyXIpoujIhBRd2gLZIhWzCIZ4ts6TNFo639aTb3JYlnTefPYCpPNF2gPZqmTkQQSJTdRSC/gz4ZQiAh1X8o38JJUdQl2YIx0kVxd3LFEr9/YhuX/eJJ/vrsDi5uMPht8O/4ep+l6/Tvkqlexo4LrqfzrB8hahbREHLvk1XocajEpQd5IA/ZhkH5za9H2XQPYOYhPrWlj9m0o1cumNAh3A6VLMMiUDG93+3zJR2P3BkkPPF8HLnwGlpfdy8ux/iuoYNiONNmSClDSXSMu6lZDpYcCZTem7qga6RNfLK/jWoxLNINL6xOhqawm05ZgYi305/MEcsU2dKfJJEzxc62SJpm0Ytu9086c6ihzI1DG70UD6Am6GSHrELTsxTj+861o+kC5UoSOcr7UOaxE2N6OIHWdsVZKEwnlag7ceT1seYrDWVu2oY7o5UiWw/9AC0spjGWCDQNUJpOo+OsHxOddy3nzq3k4dLxOFKdZHqmNlZpIJGndsRFUI/fadvHKrk7TpvK7Hlm7fgr616mL5Gb0vHsTSxbICR2iUDGKDemg0EfbslqcWwjpaQ7nqPa6KXga0TdadM+BnKBTBFoEEOoBx0MDWauwM7JUkOZm4+95SpePuUnLCv8jr+ULuYN6hMo6OSbzjnoc1lYWBw6hBB7OC+EELxjeTN/FK/Ho8c577n34oxvhS0P7LNvfzJHo2P4Qd+zb0DtkpNOpkeWMfDyfbhWXY8z1krDXW9m7o1nMO/G0/B0P02hZNA1lGVTX5Jkrkh3LIuuG7gGXsaW2rOXiGFA+2CG7QNpumM5uoayvNQR50LlRQDUmeeMbFvld9InhztlJfbuSXLkkG1PE37l/0jnd7lt0vkSd73czeW/fJrv3buRWjc8eNx9/Lr/7VS13khk4XuJz72G5nI3jooWYnPfSH3INeoDq9ehmS3aDyRzJRfD2fUszk23AbC6I0Yw341T5qBqYiKQ16GRZtglPgEnUDK3q7X67q3u94ddU7BpYo/OYVONPutCHneex1PKydgS7eN2CItlTCfQWOVddUEX3cMiUH6wnWp2uuv3X2K3NzMqPOzQyykOtjGYMhd9DQN2RDIjZZcn2NophedOyL01GWqDrpFg6uIokQ/RTIEwiVG7npV5bCNOIOMIO4HWdcW50LsFicDecPJ+t68LumiT5typGNlqPRdYvKqxRKBpgGazEZ97DWgOTplRxmqH+UHmbHt0XLvxZOlP5qjFFIHsoYmFyp5zqjmWdetWTyoE8UCIZ4uUK7vZM6fYCaTn05TyR39JkMX4DKYLFEo64WIPBV8jDE/m9PTRLwK1RzPUiQglT80+dfoHwu4PjTZVwePQuOqEOj72mqV8V76DV/xnUnSWI+v2P7mysLA4cqiK2CcQdn6Nj8+97+20B5dRQCPnCKP0vGTm2WR2OY0Hknnq7TtFoH1X/t9yajPO2edwibqSMhnj/0oXY0/sYHPGSww/Lfe+lfrH/h+O6EaKJUlbJEOyfS0N/zqLWbdfzuz/nE3g8a/ie/IbVD/zNSpW/wpR2rWoJKXkhe1RrrC9QK58AYRnjnyvwudgQAYBKCWnTy6Q7cU/UvPs10n1mRkz+aLON+58hY/+6yXIRrml+XZu1z/M7G1/JTr3LWy65gl6Tv0aTWE3PqeNhpCLuqBrzOBkM5jZhZhgHs8eDC94OPrMn/XDG/o5TjHLoNQJhEIDOLXJOYFSuRJBkUYXGgy3Ip8IDk3BNcZ7MFUYx72O/zR8lS2FMrT8EK2dPQyN4bSPZ4sERRrGKAcLum1ENVM8kbH23SIWakbdfjzedHIjMXs1tmQnzpW/47i/LqTqhf9FKSTojefoGogyX26lVH/KpI+9P/xOGwM2072kj+KIGUrlKDcGkKM0oAi67cQZFoEO4+JarqgzkMzT2p9kU2+SdZ1xntoS4VxlDbnKxSje/ecyOW0qGa/potYHtrBjMM22SOqQhN1bWEx3pqgHo8XBoioCt12lKexh8aJFbH6pnqpt99J10nXMKPcggULJOKi2mf3JPMfbopRcFWi20XOA9iZYa3ZuKAxsI1vQyRX1MSctB0ssU6TalgEJKelCTHFL2OCd76boKIO3/mVKj2sxveiJ5QiQxqGnyZc345IV0AVGJsKhnWoeerYOpDlLG8I4gFXH0djbLu62qxRKBic3l/HX9yxH15azuZSm2jWxzwsLC4sjg9um7uMocWgqZR4H3Rf9njf/9Ul+FbqLRf0v0ZvImQ+7bjM/qD+Zp1pLYUg/ijZ6WY468xxE660UHSFKZ3+T67Of586NSbr6I3zBcQtv2noPodZbSdafy7q5H6Xq0U9R1If4fOn9nKmv5bVbbiAvbeSFHT9plA3/ZdA1g4p8B4ZQOX1wAYttm4jO+gK7f9pU+Z1EZAAAY5IikG7I/eanHChKohOBRFv7b9bZP8GX/7uOlzvjvGmOwtcT38XRv51k4wUMHvcu0rXLAQh77fiGc0p25ruMhdeh0YMbtTCxzlx7MFz6bE+2E+nv5sENfbzb14fMK9irj5vY9SkCqe0Mhp6ACJQvESRFwR7ANQnXija8+HAo0RQz+3J7KQx2INZJj+Yl6LbtU4aXzOTxk6Y4RrcvIQShUBnxVBB7op1qkUG3B1DtnkmPK+CycdqSE3GtuJPgS79Bt0HFy78msP0u2s+/Hm9kNTZKFBqXH8hl7xcZaMBIiFE7hKmZfhzkKZS17PO9oMtGHjtFYUccJidQOl9i28Cev4c3v9iJsxSnJb+BWNMnd8aY75eKcJhofwjR3zri5GuPZphV4bXK3i1eVVgi0DTBpgq8wzfCNy6p546Vy/nMwH/oibbTJpoo6gZeh3ZwIlAiT6M6RMlbO+EfvLC7yTgqOc9YRd1tV5C/+nc4GxcekslVLFvkeDVFwXDRUaqgeqibyd9Wx8YW3Ywq9h9UaHF00x3P0ijM7Ag1PAMtO+wESg1ytP/0t/QlqRWDSP+8Q3J8r0MjljHzCHZ+1hhqAO8YLWctLCymB2M9vFT6HcSzZXgqm3g+38xJ2fuJ9bZT8lSPLOoMJPNUaAkMd/mY9nBt1jlwPyRmXckbT5lJx1CGc46XbOhNcOuqOn687SreaX+Y93ffw/LOqwG4c9EvmVlxOlsKOr8wCuQMlfvW99E4+BQ/ktcTTg3witFIhYjzBZvZurs494o9zhv22IkppggkJ5kJNJjKU+k/NAK2kugEwLvhRl7z0qkYpQx3N/2X+V33IRUbbZf8jXStmaWkDc/vqicxFo9DIyVdqHoW9BKok/gM3i3/bsVTD5LsV7nKey+5yhNxOSY+q5J2D5SYUDlYIlckKFLo9uDExznMRAKkDwZVEdQEnbwozVJHe6qDfNlcEtkSAfee5y5k4qgYlNxjl7TVBl10pmvwptupVTQMX80BLzBVN82FFVBOjC9n38ecBUu5tuN/aL77zZxaOg000JoPjQhUEfQzkCzHPdwhrFAysGsKhZJBON8FDqBsxj77aapCwGUjo/pxH0AmUKZQwqntK1qPxcbeBP/3dBsbuhPEskUqfQ5mVnp5aH0fb6vYikhK9JnnT/j8syq9bO2porG/FVuqG6WYJh+azUAqT9Uh+rywsJiOWDP7aYKmKCMPWosbgvxv4ELI/Afvlv8y5PsYwEEHM/cnc1QziOGbWE34TmSomRPyKyAO8U33IBsW0DmUoSk8lRKNGQxdoaYp2UL0F4NUTqUTSErUTATVKFHMZ7A53FN3bItpRXcsS8OwCKSFm7HHzZ91PhHhaL69F4o6OyJJyrUIxVEs2lOB32WjUjeIZYojdfI2TYwbMGlhYTF9cdrMLk0nNoZ4eFUtH7KDp+NxHOlO0md8HEdZmIFknlAojhynw5GrvJG2S/+O2rCUBrcNVfXg0BTmVvs5qbGM1r4W/vZ8M39rPZcfhe+kaeZ8mpddSYvYs/nQJQtrGEjNZ7XxXkCwsS/F/Ws7+Xr4YZqcaXx1c/c4r6IIgj4v6aIPdTcRaCILUYlcEb/LNuXu5YfXtnN+pp/NRh1zsl1coK7gurlRZrbezuC8txJZ+D4KwZkIYXYqqvI79nGc7A+PQyW509uQT0wqGNhIR0bEvPaXHuKP3u04KdB7wU+YjIdU2IZFoAmWg/nIYDgDkziDyXjZlFOBpgiaw56RDBx70gyHjmYK+4hAO8ubxDgiUF3Qxbb2Sk7LrqNBCyF9B96kQStrMs8rNHrrLuIfL5eIL/weH299L+9V7yHpn43PN7n28xOlNuhiR3slC+M7iGUKdMdyzKnyEssUaFJM1522W2nm7oTcNlIFL+4D6F6XKegYkpGF77HYNpDie/du5MH1fdhFicvLulimrGfGwBpET5blspwz3EOUHEHUuiUTPv8nL5zDqg31NA+9QPiOtxHO7aDz7J8yMOsKPA7NzOPKFVGFOOQuNQuLI4n12z1NcDvUkQctIQRvveRMVtw8l8Z1NxGf9wH8LhslnX3KsaSU5EvGhCY5A6k8ZXIIOdySfqKUGk9n+0AEjxHH3fMSQ5kiiWxpZNVgqhjpyuAJ05cMcVJmPVLKcSdPuiFRBOSK5ljGnBRmhxCG6XAo9m0mXjafcu8h7EZhccToiedoVs0OWvbyZvx9SeLSTTEZOcIjOzg29SXxl6JoWolS8NCIQKoiqPI7qfI7SedLtA2m8dit24SFxdFMpd/BefMquH1lEyWpUPPUF7FRIhKsJ3HyuynoBgE9Cu6xS4WEEOgzziXkMe+buz/Azar0UuV3MK/GRywzF1V5DVkBM8o9eBwa6XyJwVQBRTGP43FqZIbLMKoCLs6eUwGcSNSmUD7K502l38lQNEh5agAwO1HtGMzQUu4ZU0AwDEmuaLZxn0oRKJYp8N1/Pcj5dmib9Q78vTfz3fyvUbYWiM59C91nfA8hoNrvJOS2HXDgsdehkRoRgZKTE4EyURRgh6zk/drdqCWD9nN+gb1ycg5S4fBAlgk5gVL5EpUii3BMvlX6oUZRBHOrfQhvBYWSHVvSdHGlciXyJX2PRQ5l2NmijiMC1YdcbCpWcrltEJeSR/pPPfCxDXf5TNWfxfeuOZsv37aOn73Sxwzbcl6rPItoOu2Aj70/agNOtpYqOTG+hm1DWaSE3kSOZK5Ek+jDECpKqGHUfUMeO4mil8oDCC7PFXV0Q44qAsWzRV7uiLE9kuIH921CEYJ3L6vkk92fxR95CYkgVzafgi3M/GQ77lQP0XnX4ndPfD5f6XNy2rJl+J9+CDJxhrQKGh/9KG12LzvEedQEXHTHsgA0hNz7CIUWFscK1ux+mhBy71kbfs7cSm6puIxlgz/hNzd8i5bGJq70byb1mh+D20UyV6LC5yCeLZIu6NQFx6+GlVISTaTxaknSnspJjS1/xhf4a/ENLFn5ac7seolXuuJUGBESuRmUex1kCiXcU/CgGMsWCMgEqqeGITWIuzhIvlDE6Ri9bn4gmac3vitcsqncjd85xof1biuIX//zf3nttXWcMavcqv89BumOZbnAHkG3hVCdAfzOLEPShzt99LSIH038XNsVp264PbwSPPj28PvD49BoKHOP20nFwsJi+uO0qVy8oJrvv+lkuu9tobGwFV11Yt/2ID1z3oxGiVCuAz18+bjH8Tm0fcKnR77ntOFz2sgVdbpiWUJu+8gqumeUUvaBZB5DSpyaiiEl/ck8wTHKgip9DiLRABVp8z7eHcuRLxqkcqUxc3XShRKOgbWkteMIT+GCT3s0QzWmGLXo+CUMnXo1oTtfj1LM0HvyF1EUs9PimHORCeJxaCTlsGM5P7lcoE3b2pglNda7ltKUu4eu075NfNZVNNgmJ0hpw45pWUizv5lSKm86gVSXf1LnOFwE3XYuO76WjhfLCSbaR14fSOapD+1yhqv5mPn/cVxxtUEnjwy3GXcbKfIHk9HnDBBd+v+I1Z/PDL+Tn77pBC792RP8NP5GLvJuQM59zYEfez/UBl20yipsuUFEPoW0exlKF2kfStMk+ki7avGpo/8el7ntxKIeyA5hGJKCPrHFaABly/0UfXXgXwaYwurjmwfojef4/RPbGBwO7V5Q6+dzF83kxGc+hi+ymq7Tv0tsxmsxHMFdBzN0XE474UmKrc4qM+90SCvnzNT3eLzsu9Q+9SW2VD1E127NwtqjGSqKDqoDR7OP3MJidCwRaJqw92qWx6Gx6PIP03r7Sr45dAP0AD3QddybiFQtpaRLAi4bkVSBQsmgNuAc1zGTyJXwlmKggeKbnAhk1xRObgnz8ooWXpt/jnv/9Qu+K39B15U30T/zbIYyReZW+w7gqvcklinisyfBvQDdU4GaMUjH+3FW1rN1IEW2oKOpApuq8HJHjBd3DNHan6JzKMsHzpphfkiP8TltJPtG7NG1pXY29yVZ1lKGcwo6LFlML7pjWWYqvZSCM1AxS5xieHFnj47uYLohyRX1PR6aErmiufItzBJJbYzVuanmYB9kLCwspgdCCF53Yj1tyU/zzQee59xgjNO6HqStf4gZogdVljD20z487HXsd+HEaVOZWbH/7lAVvj2FGb/LhpSjC85Vfgc9up8FmV50Q450TU3lxxaBspF2Zt1+OZETPwZXfHO/45koXUPZETG+smEW8WKY1tfdg1LKYveHaSxzT4lD2uvQ9iwHmyCPbeqnb8t2auwBWt74fbYOvZ9M1RKEYNKOKKfDQR47tgmIQMlcCa/Iok1TEchjV7nihFraX6igsfMxvDeeQcd5vyYmFlPpM53khiGxFeNgY9w293VB90ibcQAlMPnOYLuTXP45tOF32OvQuPEDy3ml+zg2+V7P3JpD937WBJ08Mlwi54hvxRHbSrzlNbT2pTlX9FH0N425b9BtZ9BwI/Kd9CfzJHNFZlV691/2KCVVD32cbPg4WsM305/M89n/rKFr2Hkzp8rLx8+fTVWph7qaWmpf/Db+9ofoOu1bROe/bd/jKSr+A8gs1KpM12PmxOto2lrNRwfeyT/Vr1O94tt0nfZdjGd+gS5BXfZ+BjDdhw0ht7VwbHFMYYlA05jqkJfBK/9Ax/0f58EOwbu0B9DaHqMYNmtf26NpsgVTsk7mS9iHhaTRbvQDyRzlIg6A4p1cOZhdU2goczPzta+F+//Fp4y/gADnptvorjBtsMlccaTrxYGgG9KcRKhxhDuMGqyDDJSGdvBK0cfda3tGcgVWd8R4dtsgAnMlYyCZZ8PG9VzQoINv9Prlrs4dNABFVGaJbvTN/8KoPgNmnz2h8R3KrmgWU0tPPEeT3o5Rfhlghk72SB8NucnXrh8JSoZBulAaEYGklPQn8oieNfyP7W8UfI3Yy2cd4VFaWFgcjbhPvJpNm2bS1/UIZ3I7kVceZZ4wM1KU6oXj7nuoOm3tOvbox6/yOekt+VAya0nmikhdp2LNb8lXLIJTrmAgmafcax95AM2XdIbW3EulNPBv+S/R1JcJuO1TMv6umCkCSaGgButp1AXbdIl0BmgKu6cs38ahKWTE5J1Az24b5GQliTdUhVFZTY89SMhjo9rvnHRpmsehksOBNoHuYMlcCS9ZNPfkM4EOB0IITmwI8iXHxXgVByflNlCx5re0n/87BtN5agIukvkSAVLmDuOIQLVBJzvkrnm0epAZfTZV2UM4rA26qAk42R5JT2nkwt4srg9yvbsBSlD13Lfx9T2Pa3AdG7Nv4d2iD1Fx1pj71gSc9BVdkIkSSeWR0oycqPSN75jZtnUTMwoJXD0ruOYndzGEn3KvnR+8fiHHDd6PK9yEJ3IjNSu+ixQKQhr0H/8hose9EwBFMd8vKc25kmGYAvJkUarmsf3K28hULOY7iwTv/kuWv3El79j4TwZaVzGvtBGAvk3/x9OLvsesZZfisu//+iwsjiYsEWgaE3LbiSRdDL3m9/z9xtWckt6Kb/PD9M7+CHZV4Ut/X8t5cyt449IG+uI58sMt5FvK9w1s7k/kqRgWgVT/5JxANlXBYVNoXHga3A/lIkFBqmib7+H58g9zvmcbUef5ByUCJbJFNEo49RRFTxhb9ULohr/cdi+/GIrtsa1dVXjnqQ18oPQPKrfcSMau429PULypHj79yj7H7kvk+PejK/kskCw7njOi6wh2PEdhxSsTFoGSuanNFbA4NJR0g2KiH78jRm44/8DvsrEeL7bCtiM8uomhG9LMyxg21/Un82RzOd7T9WVyipvoFTfSMkYbZwsLC4vxcNs1LlpQzfe3zqXksuNtf4TlXg1Z1FAr5hzp4Y1Kld9JmwygFpIk40M0PvIJAm33kg0vZHDBxfQlcjhtysgc5DePbmXOs7czVwVHsp1/3XMn5XNPI+y1E3TbsakKlX7HATkdu2JZFiuD6J4qNNWGW4WmsBtDTm3AsRAC3TZ8E8hN3AkUTRUoV9PgqcDvtDFkK1AbcB2Qg8Ft10jjxDuBTKB0LodH5JHO6ekEAvM9dS1+HW98+gQeO+FRGjf9GVuqiyGlnmq/k3imSGhEBAqOeZzagIsLT5pLvjWEozCEEjiIcjDMhda983GEEDSWHdoGJh6HxvuuOA9uBV/f80ihEF73J0L2CvwiQ2aMUGiA957Rwn9fDKEVsiQ3P0GD3kni+LeNK5I8tSXCn/7vZv7PDioG31vQyfb6q1hUF2Rm61+oWfHtkW3jzZdS8DdhqA4GlnySsNdOmce+zzw8UzjwuXmpdil+m0pDmZufvekEPvC3Ih4R4WqeYmXl1XTXv4YTVn+NK9Z8mAcjH8R91ZcsEcjimMISgaYxTpuKy66QLRhcdWIdjz66gA+m7uDRmz/HGcpa4qkvUvvin6ncuIbbTr2Zk5rLkXJ0V05nLDviBNImGQxtUxWq/E6cLh95fzP2RDs3uN/J+7N/5vQnrqVFaWeH/gc6F7z2gFabwGwPv/Pmq3jCNFXPJ/2ig8bidj69/BKuTP6LQHwjuupE99XhHOjG1/UkicYLWZ90ko10cG5ytTlZ2msS8nJHDG8pim63YdSdTFn0JQBEauLdx/IlfcqDsC2mnq5YllnCDH3Uqk27r9+pEZM+HIXYERzZxCkZkkzBDE3NFXUGknn0V+6g0hjgl1Xf4vLQ2BZtCwsLi/Fw21QuP76W3z6+lVXGYpZlnyTunUXBOwuHNnpp1ZGmKuBkJabDxP7iHwi03Uum/HjckTW0dbcj3ZUkcqWRec+qtgHep65jpftMjs88i7HmP3x0lVla5bQpnDmrghMagtQEndhVBZddpcrvpNy7/+yPrqEsV2pRdH/DyAT6YBbAxkPavVAAI5dgojOPaLpAWCTBNRe7ptBc7jngEhavQyODAybgBCplTKFKOKavCARw9Ul1/Pnp7dzIxXyWP1G2/q/0LfsiiVyJeNZsc1/QvNjHyMIBM2j6x29cTO63LdA3BP7agxqTy6aOKmQcaKj4ZDjz+Fmkb/PhMZKsXvgl5m+/gW8mfwAClHDLmPuFPHauPPU4eAIqHv8S9bTThcQ470Nj/r6t7YqPuA6LrgrOHrqF83t+j3iuiJqPEW++lGTj+ai5KJGF7wdFRVFgZrkXl310oedg8khtqjKScXbWnAp+8qYTicR+zibnDhzVS2gRgtiCU+m66QNc2vMbove2UXzb37Bp1qOzxbGB9Zs8zakNutg2kOa8eZW4/W9Bu/s23mncBgbcWPV35sWfQM0bPPbgbdxdcxpfu3wB3bEcsyu1PT6IdwymqRTDq0neyTmBwCypAUgufDtGKsJZSz6OccPfmU87BTQCG/5BR/PFpPIlmsOeSSvzsUyBkDAtz4onzHnzq4mH53OJI0KaB6ls/QeZqiXYSnFsnZtAKPQu/RwDiz/C2u1RVt53A+eqqylFtqLVn7jXsYtUiDhFZzlGhekOSUoXrlTfhMenG5JsUbdEoGnOy51xZu8lAnkdGjG8OIwMlAowTR90dqLrciQXqCduBqDaX/g97bKKBWe/EZv1O2hhYXGAKIqgzGvnmiX1/Omx07ne/gLV6RfI1L+O6eovPKWljIcD1ZAB+5a7KWleus74HrNvuwxv5+MIo0Ch8ngIngGArXcVPjJUnPoWsts8vKftPq72rqXXPZeeoof01gg3bjqLJ4zFI+eYX+3jG1csxOvUxm1d3R3PUisGkP7TD/l14/BDAeQkMoEG0wUCclc3sYNxJ7ntKmnDgSzu6QQyDIku5R7HLmWHx+g4+HzIQ0lTuYfF9QFu3prjuqaLCW/4O5HjP0QsoxHPFgmIFCV7gInMEvTQDIzoRhTnwZXAHek25KKshXhkG5/ZspB3Lv4dc5/9NCcrW9Cq95MRVmHmIs2inTx2ap/+KtnZp+JuOmnU7TuGMpxu66TgqSXRcinl6/5ELjibTOUShJ6n68zvIzUXQpidyyQ7F8MPjQvfru1yDwohOG9eFa39KQqygpFoI4ePbef8mhfu/hofb7uN+PYVBGYfuo5tFhaHE0sEmua47RpNYTeqIkh7TqforqTPM4/ugptl8fvQbT5Khs4X6l/hqvYF/Oj+9XzhNQvoSeT26BjWNpjhLGcaAzeKfd9ysYlSPOUjRJIFGsNuBhZ/mN6hJI+3Rvlo120UIm1Q3kxrf4oyj50Kn2PCE5BYtkh4WKQS7jAIAVXH4dx2D0Ivkq1YzLbLbx113zlVPm4ZDukbVQTKFphDHOmuQC64ivt2ROnc9CLvST8MUsL+guyAom4+lAcOoPbY4vDx0o4h5qtd6HY/qs8MaxRCkNWC5gbZKPiqxz7ANEDPJVEKGfoSGqlciZeeuZ/3GRt4ds5nqPC7sKlWMKGFhcXBcc2SBs5/5CQiMmC6hCvHbg9/pHHaVK67bDn8B0Lx9TxlLGRAb6bZXUnVqp9gT3WRrDuT9NzbyJcMFudXYWgKevNZdNWeTqbiRFyRtbREXmZmIYl0q1yWe5YhzwwyjgpELk5vtMTATbPpestPmNs0trOjJ5oiLCMUg4fekak6POhJBZmduAgUS2XxyiS6O3zQ5/c4NDLSgcynRl6TUtI2mKbMY5bW7cTIHR0ikKYILjqumh8+sInHq9/LFW33Ub72evqXfZ6+ZI4gaQzn2HlAu5M/9RNkZ1xC+QTmkNOZxOlfYt2OCNueM/j2U0mQX+W/b25hQcXY5WDAHiVznyp8kF/Zf4XccBeMJQJFM8xXOimVzye37KP0uKuIzn87hs18JmkqdyMw52zjCbFTRWivnDCnTaUx7KYjmhnp8JfOl7Brgv/nvZqP5O6AjXeDJQJZHCNYItBRwE6lWhFuNr/hMQybB182Qv7O9USO/yCe3hUs6HyURyo6yHRF+O+LN3Dl0hlkCzoOTcFpU2mLpLnWlkS3VUzYVjwaLpuK26EScNnoPeUzKCWDsuq1yGdvY/DOr2C/6peEQyEGUwVKuqQxPLGa5kS2ONJxg+GQvVLFcWgb/onW/yL9J3x81P08DhWf003aY4bbGZGt+2wzlClSIWLgm4Pb4yc+7830bNyOYhQgOzSyYjYeuiHJDpfoTBes8rR9WdEW5fX2Hkrhuai7TcwK9iAUQE8Pok5zEch778dwJXrZdsV/yafjXLD56wwqYfzL3w0Kh2VyZGFhcWzTGHZzwcJ6Xhy4mIvjN6HWLDrSQxqX+vpdoss6MZcnVnVydv05lG2+CUOx4e1+hi3dXXTlnZytvMxgYCHh8mpShRIR54f2OJbQ85St/xvenmcIZQfRy2ooaElOiN/H1oe85N95PQ5tX/dBplDCletDdejoocZDfs1ep42McOOaRDC0nhlCERLpHbvF+UTxOc1yMD2fxgYjXVqlBI/D2GNbsXOM01wEsqsKy2eGCblt3LDNzdkzLqf8lT8TWfheNvUWuFik0DwT6/alVs2nWDY9c7Qmg9FyDlUVBb5ZFeNrd6xjfk0AZ8UERM5hsUxXXTxknESvexbBzufH3LxrMEGj0Umu4rWEqhrZpnwQv0vDrik4NPWwdyMdzWHkd9qYV+0fEYc8Do3ZlT7OPWEOzz09nxNb7wO+c1jHaWFxqLCeII8inDYVxeUDISi5K9j8xieJzn8bsZlXoOXjNKXXsEDZgX3l72jtN2/WsUyRnliW7ZE0lUoC6ak46DGEhld//C4NIeCsk09i04x3cZH+BHNuuYDWNc8AEM8WJyycxDJFGsQAEgEBs/21UbFrZTJZfyZC7DLtCAF1IRczKrw0l3s4rqmaAcogum/4byxTpFJJgKfCdFaVuRmQwys9EykJ04uUP/U1ikMdIy+l8yUiqTy98RxbB1IUdWOcAxwa+hK5w37O6cxAMs+m3gQzZAdG+bw9vlfcOVlJRY7E0CaFMrQNT/+L2ONtKA98iQbZy5plP0Zx+ZlV6T2oGngLCwuLnfz2bUuYc9XnGZz3VuwzzjjSwxmf3eYu/tnLeWbrIKuCl5AKzafjvF8jpI572328tGkbx4ttZBrPwefUqPY78TrNB82d8wepOhhc9D52XPRntl55O22X3ED3FTfyJ/1SZnf8h8Lmx0YdQtdQlhmiGwClYvahvmLCXjtJ6ULPxSnqBplCadzt8yUd23D2neI5eCfQspYyMjjIZUyBJ1c0BaCKl36J77/v2GNbUdgpAk3vTCBFEYQ8dt6yrJFV7TFeavkASilL2aZ/s30gTbmSRnFPzAnk0BS0Y6Bl+E7H/rWnNPKP953Cx8+fjWMiC4zDTqB07XLqK0KsMuZg73sJ9H1/T3VD4ohvQ6OEqFqAx6FRG3TSFPZQE3BR5pk+Zfp7dxFUFMHS5hAPGktwx1uRkdYjNDILi6nFEoGOMrwOU3hx2pQRRSRZfzb9iz/Cttf+h2jDRXxU+y/3PL1yZJ94tkimoBMwYkj3wYtAO0uiAi4b1QEntUEnxgXf4Kkz/44qDC58/l203vUTlHyM7niW7liWSCo/7nFjmSL1oh/dWzOS2SKG65F1mwffrOUsqPWzsC7AcbV+5tf497hpNJa5aZNVKLHt+xw7ns4SIg7eKlRFUBdykXeZuUgyuf9waKNvPeF1f8K//p+0D2ZY351g20CanliOgWSeTF4nni1O7A2cQhK5Iun8+JPCYw0p5aivF0oGT2wZ4CrxOB49jqiav8f3dZc5IZap/kM+xoNFzQwAEFzxI06I3MVd7tdRvvA8yr2OUVenLSwsLA6UYGUjg+f+AMXpPdJDGR/Nge4ws1fOPf9S/E6N9z3h5KSBr/Gy5wzyvkYC2+/B0/kUipDY516IoghURdBS7mFutY/javwcV+tnQa2fqoADl11BUwUOm0LY6+BG7zsYVMJoL1w/6hC6YllahDln0CrnHvJLvvKEWuKGi0gkQjJXonMoO+Y9EGAoXSSEKcaICTic98fcKh/C7sHIpynpBoYuqXzxJ1S/+EPc2++HXHxkW6VwdDiBAFrKPVx31gycmsLftjpI1ZxG2cZ/0RNLExSpCbnDwXQVHY7w5kONGY6uoCqC5TPLOXtOxcSiD7xVGDYP6ZmXcfGCah5MNqMW06Q71+yzaU88y0xpLqSqw3mNYe90TSHbl/qQm4eMJQDoG+89wqOxsJgaJvTpJYS4RAixSQjRKoT4wijfP0cIERdCrB7+73+mfqgWYNpzG8rcNJS5R8Qgn9tF38mfJ1t5Ev2nfQ1NEby9/4es7zZv0N1x0zHiK0WRBxAKvTc7VXK3XaPc60BTFfxOG4G5Z9F/zd30OVt4Xe/PmPnvsygM9TCYKtATy43rXIllCzQrEfTALou10xcm72skVXsmIZ8HMSx6qcMTu90Jeexs06vQRhGB9FQUDQPFZ157bdA1kgujJ3r2e707t/F2PUU8W0Q39p2ExTKHVwSSUmIYMJgqHNbzHmkyBZ3SKK6r3niO8pU/5Ue26xmqPAXlhGv3+L70DIt+010EMnSUXBSAqh13kMGB74LPoSgQnkYrZRYWFscGAZftiAfTThTDXUE+MIOyihpu/MByfviG43GoCn95to14y2V4u57k/MF/kBReHE0n77P/TlFIUQSVPiezKn3Mr/Ezp8rH3Gofi2fU8Kw+H61vNQD9iRy54i43c1fMdAKVbL49nEmHirPnVFLQPESjEVK5EvmiwUBy7AW1wXSesuEGG0xBJpAQgoqyEGopS2ywl+b730HVSz8jFxougRp2REgp0YrDuUHTuEX87gTddq48oY4nNg/QOeNN2FMdNMefwydTCNfEnECKInAfotDiw4lNE3gdu0Qfp02dWMc7h5eu96ymuPAtXHhcFS/opjsut9WsBkjnSxRK5nytPZoZiXywl4/ddWy6Uhd00SkrSGph5MDGIz2cMcmXpldshcX0Zr8ikBBCBX4NXAocB7xFCDFaguCTUsoThv/75hSP02KYoNtOwGXDaVOp9DloDLtHyrMAir4Guk/+Emepa4k8+GP641l6YllUdJzFGMJ7aCYuIc/wDcNfS/RNd/MRx3dQi0l8K346sk1/Ik9HNEMiV2TbQGqPFa14pkiD6McI7KpDdts12i75O31nf2+/AdMht50dsgot0w+7hRgCiIz54C98VYApIu38t5HYvxNIDm/jHliNyMfZHklx08oOvnjrGq770+OkNjxEKdo+crM7HBR1873LFg/uA79QMsZdWZxulHRJai/3U6ZQou+l+ziz+088oJ5N1+X/wu7dcxKnucsooiKTZvnftL3mTBQhDWIu8+9gZfWbqKiqpdzrOOA2vxYWFhZjoSiCKt/RsSKfXvxuBhZ/CIemMr/GzzVLG3j36c2sao/xSPgtJMsWMcvYTqv3ZPzuyV/TqTPCvFhqwZbpIxPpoD+Z32Pxqn0ww0ylh1Jo5oQaShwsqiLwB8ogn2DrK8/j6l/NQCo/6kIUmO3hQ1MoAgHUV5bjIkffQ7/E2/kEXad9m/bzfwdAsW8DAPmSgUtmzR2OAifQTt57ZgslQ3JT6gSKzjBvLd6GgoGYYDkYHFz3temCTVXwOA5MzBJOL067yuL6IAVvHVE1jNr1ArmiTlcsOzJf64xmqRGDlGxeFNfBdVM7EngcGmUeO1GtAuKdR3o4YzLdskstpjcT+fRaBrRKKbdJKQvAv4ErD+2wLCZCpd+JQ1PxObU95iPJhe+gM3wGHyn+heqbLmXGS9/jPHU1AonwVh2SsficNhrDbmyawGnXuPQ1r+dmeR7Vrf+m7JlvU/nijxGlHLFMkR2RDOm8TjS9y8WSTKcoZwhCu0QgVREQnoEzsP8g35DbTpscvrahPd1A9py5+qD5dl27xxcig3NC5WA7nUBC6vz5H3/nm/9+HPcLv+K78c/xuPEulj/9Hhoe/TiJ3OFzAxmxDoKb/0OxpB+UoJEv6WQO8qZR1A2G0ofHkVQyjJFJhZSSZK7IlvZOZjz1SbZTi3L5z3A69nXM+NwOotIPaVMQbI9m9luieEQYHt/Pc6/h77ZrCF3wGVx2hYqjyDZtYWFxdHG0lLQUlryP3MI9XZ4fOXcW86p9fO+xPt4v/ofr9cspnfaJA7qmJU0h1hgzAOhe/zSunhfIRDpH7u3PbY8yV+tDls06+IuZIFWVlfhFjsYnP8vMO1+Hf9PNY967oukCZcPlYLgOvhwMoLoijF3o9GxdS8FdTfS4dyDKWpCKDWNgMwDJXAmfyJiZjrYD7z57uJlT5ePk5hB3rY/Q1vgGlqvrAVCmoJTuaMKmKngOMGtQVQQOm4qiCC44ropnS3PxdD3F9r4Y+aJBKmfO10wnUBTdWzeVQz+s1Idc9BFGJLqO9FDG5GDn8xavLiZyl6wDOnb7unP4tb1ZLoR4WQhxrxBiwZSMzmJCKIog4LJR4XNQ7rODUBi68q+sW/IdNEVyUfpOrrf9xNzWd/DlYGMRcNmYVeHFZVdoCnuwnftFstJO9fo/UvXSz2m591rU3NDI9v3JPMbwila8ZzsKErWseY9juu3qqAn+exNy29gx3CZ+73BoLW+eU/Hs6pYR9trpl0HYjwj04o4h7nv2JRLSTUY6+LTyD553fYwv2v7FrJDK0+Vv5Fb9DNx9K8kP7b+0bKowVv6Fhic+TdkrN1A4iFBq3djXWTMZ7lvXw10v95DKHp6QanXT3RR61gGmNX/7QJptt32PMDG2n/FjWuoqKR9FMAm4bPTLwIgTKJUv0RPL0Z+cZuHaaTMPaEO+HM+l30B1B2goc1suIAsLi1c9NkXZJ7DWYVO5/u1LEMDznTk6lnyB5oUH1sK5pdxDr3sOuhS8/NA/ab77TTQ+8mHaI2m2D6TY0tlHhTEA5YdPBLK5A1RoaeoLbRhCo+HxT5HZ8sSoZdHRdIEKEUfX3GCfGjFGdZhZUdXFDlrzQf789HaEaqMUbIaBTYB5P/WRpah5QDk6BMWdvOu0FvqTef6QP5+iNOeaUxGqfbRxoHMMVRG4bOb7dsH8Kv5bXI4tF8HV/hgVq3+F/YVfI6WkYyhDgxaFwNEtArXrZSjJLpimbnJLBLKYDBP5tB7tk2Hv3/5VQJOUcjHwS+C2UQ8kxHVCiJVCiJUDAwOTGqjF+NQEnFQHnFT5nNg0AYqGPPHtdL/pAa52XE+fVguAeghFIDBXFGeUe2koc7F4/hxuO/MuTiz8iW84P4drYA0z73wdFat/xbx/noxr2/1sH0zTEU3jSg8Hxu0lArns6oRqrss8w6IOjDxIg9nNwqsPhxfuZo8Oe+z0ySBGcvzuYDc800ZAH6ToraXQeCa1pS7is1/P5jc8wtar7ka7+Fv8ybgSgcTWevjC4l7ZZE6+qp//FqXOVQd8nKIuSeZKu31t0BvfvzBiGJJv3vkKH/z7Kjrv/yl1v50N0X3zmKYa/wP/j8qnvsZgKs9Qusgzq17ikuStrA1dwJwTz2ZmhZege18nkN+pEZEBSA2QK+oYw/Pnvnh+3IyFw83mraaAeeL82cyq9FLmsVth0BYWFhaAqgqctn0/D5vCHv70rpN549J6Xn9iHX7XgbkahBD8+l1nMOSZydXK46iyhKdvJf5td/Hg+j6aMBeN1MrD1xZcOP249SQOUeR6zwcouiupeOFHREa5b0XTBarEENJXM3XlanY3AHO1Xjr1ILet7uIvz7ZhhOegRLcAEEnl8ZJFt03zcPFRuGhBFRU+BzdvLnGXcar54gQzgSzMUGn7sDB7+qxyVqgnkRABfE9/l+qV/0v5S78km8+zYzBDDYPgP5pFIDetuQBKMQO52Mgi9rTBMDCSfUekW7HF0clERKBOoGG3r+uB7t03kFImpJSp4X/fA9iEEOXshZTy91LKpVLKpRUVhz5U79XETuuzogjqgq6R18u9Dr711vMYfN2NDB5/HaL2pEM+FkURBN126kIuTpg3m09fdhL/SJ7Ex2xfw0hFqF75v6j5GDUrvksmm+fuNb00CLMMZlQn0CiTvr0Juu0kMCcrRiY28nosUyTEcEbQbjf2sNfBgAxCanwnUF8iR72WwB6qo/usH7L5msfoOutH5IOzRs7rb1xEBzW4Wu/Z7zingkgqT2awi61GDUiJsv72Az5WyTDIFXV0QzKULtAWSTOQzBPLjF7eVdINtvYnufp3z/DXp1v5hPMuPpb/A4qeg/4NBzyOCVHMouTjeLqfZaCjlYq73sn7V70OTRg4L/4f6kKuMXf1u2wMyCBqpp9832Zm3PE6ap77JvZ4G73xHNsj6SNeS50v6TzwwloA3nHhyQjBqK4mCwsLi1cjNkUxO6OOwpKmEP/7hsXMqPAclHB+QkMQd4sZKn2fOJONsonwM9+ka9t65tqGO4OVH/r28DsRu2Xs3BapY03ze/D2Pk9286P7uIEG0wXq1CEM7/5L6CfMcHmXzchx1tITOGdOBc+0DkL5HLRYG5QK9MZzeEX2qMoD2olNVbh2WSOGhD+Kq0k3nA2V8/e/owVgZnfuxGlTOXt+LbcUTyWcbkUXKlo+TnrrCtr6BgnIOATqj+BoD476kIsOfbhUMN5F/zRaQARg0z3M+sepFIamb2aRxfRiIiLQC8BsIUSLEMIOvBm4Y/cNhBDVYrh1kxBi2fBxB6d6sBYTw+e07QpqxrzJyUAj0dP/B2zOwzYOt10j6LZxUlOIr19xHI9lZ3FR5hu8s/B57p/3bRzxbQRb/8v6ngRNSgRDsYOvZp9jTMSmGnTbyGOnKOzIXGzk9aGMGZSY13yg7rpZ7SwHs2XG7xbVn8xTLqMY3mp0V5hCYN+uBgvrA9xdWoqn+xlyyeh+x3qw3PBMG+UMsV1WE7dXHVRIndL+LFqinadaBzj9B4/w/r+upD2aoTuW22OVI1sosbE3wT9XtHPFr54m27eVFcEv80n+ydO6Wf1pxDpGPceUdSsY7uwlkFTd/Q6qex/ln+I1rLn0Niobj9unY9zu+F02IgRQs4P0r7oTT/+LlK3/KzPuuhpbsoNUrkRrf2pEDMoUSoe9y8K6rgRKJoIuNGqqaqgNukZW2CwsLCxe7ajK6E6g3RnNCTpZZNNpSKFRdvEX+JHzIxSyaT7Z9gE+Z7sZAOUwloOJ4W5bhmIn7m7i273LKLirqXzxxwzulQ0UTRWoEjGkt2a0Qx0Yw04gAC3UwOmzytkWSZP0zkBInXTfFvoSObxkUY/CwF+Aa09pRBWCrH8mfVf8E5xH53UcCfaeo/z4jSdwwhWfIIed79s/hhT/v737DnPrKhM//j33qteRpnf33hI7jkMaKQQ7kAIhJKSwhBIChLL7AxaWspSlBHaXsrSlE9hNAiyBBNJDnF6c4hTHvY/H02c00qjrnt8fksdje6ote4rfz/PM49HVvVfnzkl0pPe+5z0Gva/dQzCTz9A3SyZ3EKhZ52cU5Hqa6IilTuiCMCPR3bswrDTW3uf7t024bCUxoYz4DUNrnQVuBu4HNgK/11pvUErdpJS6qbDbO4DXlFIvA98HrtYTdvmdk0N10I3bcWj3jkfxx5oSN/Or/bz91Dru+OAZfO09l9BeeTYffamWjsBCqp/7GjQ9zxnO7eQCdUc9n9xuGgRcNuKmH53o6d/eE88QVlGyzkPTe0sL08ds2TikokOet703TjDXjS1YhXPAHUibqagMOJlb5eeihVU8bi3C0FmyTS8dVfvH4rbn9lBr66XbCNFmlKN6Bw++jEbpvTdSs/b/8fk7X8NuGpzV9yB1//dWOjva6Elk0Frzh+f3suZ7j7P6u4/znb88TZ3X4vehHxO0Ijy18kdcl/ksOcMxZBCoaBk2hWl+OUxCsW08oZZjv/ibBKcvI+gZfjnTRTVBbIFKbGTZsu5BepWfpy78M8pKM/2+63FE8tOwDgSDtrf1sbcrUZx2j1JHLEUZETKuUlCKsCwJL4QQ/eymOiGrMZnL3sWmq5+iYf4KPnrdO/nZvF+w2ZyN9lXRfcZnDwmMHG9GISCRDs/hIxfO56XmJC81vg9v6/OkNj90yMIQXbH8TSsCRcwEGlBbyAjW8YaZ+ST/l5P50gKJ5tdpiSQJGAlM9+RYHv5wlQEXN58/kzctqMQ2yWoaTTQOm8GMRSv50RmP8rPISjpKluLbu5Yalc8LmNxBIE9/ECjetpOaRz9Jeucz49yqg3SiUPqi5VXWbm7jnf/9NO2xCVb3Ukwoo3q301rfo7Weo7WeqbX+WmHbT7TWPyn8/gOt9UKt9VKt9Sqt9VPHs9FiZKahmF7mI+i252sEAbZxKC5rGgqbaeCy55d0rQu7+fxb5tMQ9nJN5/tI5Ey+3/dJFmVfJ7X42mN6rZDXQVz5IBnp39YTT1NCDOuwlTJKfc6DNYSGqAsUS2VxpXswyWH4a/q/lFcGncyr8lMRcOGwGSyuDbKFaQDolleP6RpGkszk6IolCVgRMu4K9mTDmEe7UkE2hS3eTqD1WdyRrXzhvAr+1X4rS9U2kvd/iUe3tHHFj5/iU398hVCmhb9U/5qXXDdxX/JaAj2vs/fc7+BYsAYwiNjLhwwCpXNWce6WxPL99PvsOSSVm9AV/8nK6WGqg0NPAzug3O/k+gvzKf7nOTezVdfx0Yf6eHblDzGTncy682JKX/05KntwwEykc3TEUnQVpsnt6Ywf16XlO2IpSlUvlueImbRCCHHSUydgWXYAp91GzldFyGtnblWAi885A89776LryjtJrfrECWnDwcbkp1hlyhdy1Wn1VAVcfKvtNNK+Wsqe/096ExmSmRxt0SSZvg4cZDACNcV7/QGrfZkldcyr8hP2OnigrQTL5sHc/hAtkSQhIwnOyRkEAvjHN83l/WfPwDRlEYZj5XfZOGduFX6XjbXWUipjG1lm7gJAldQPf/AEVlvipp0Sspi0PXM74S2/x3j5d+PdrH5WKv/dx2h7je8/vJXndnaxdnO7ZAOJIUnIewozDUVDqYd5VQEqAk5s4zy45QNTXk5tDPH7D64iG5rJmtjnuCt3Bvef+t9kz/jYMZ0/5HHQixcGZgIl8plAynPoag+lXgdt5LODdHTwVb1ae5NUqsLKYsEqwh4HjWUeKvyuQz6MuuwmldW1dKkQqnUD2ZzFvp4EO9pjbGuLFXUp8q6+NKVEMLBwhWrYmgphi7dCbuzL09/1xMGC0j+etY7z9/4AWzbO64GzuSD2V279/R/Z297D3XX/w58yH2Fx76O0L/oAHYveT9NZ30DPXcPiuiDTyry0qnLUENPSsjl9TCuYHbB523YA7i37BzZd+wIVjfOZUe7D6xxdEVCzcHfUk41QNmMZSiluetzBg+fcSbxqJTXPfoU5fziX8MbfEtz2Z4Lb72J/T5J93QmiySyRRIbmSH6aXCSRoS+VPSQopLUmdwyDbWcsTZmKYPiOb/F2IYQQQ1NKUerLF+V32U1qStz9dZaHqkl03BSCQLmKRThtJjedO4MX9sVZP+19eNpeJLZlLXu64kSTWWx9+RslRrCIQaCBWU/BWgxDccbMUh7ZESM++xIC2++mo7sLn0qgXJOvJtBAYa8DxzhkzE81hqGoCrq46rR6fta+CID32wo1M4sZoDzBvE4bFy+ppZ0QM+PrAbA156deDbZa3wmX7AXAaHmFF/f0ALD95SdJ93UPc5A4mcm73UmiMuAiVIS58sdKqfyc/jK/izs+uIp/vurNOK/6NdWnrD7m+ichj52I9hySCdQdT1OiYth8hwaBXHaTqD2fcZHrHbw4dGtvkopCEMgMVGMYioBr8GlHp00LsyHXgNG+gW3tMbpiafpSORLpHC2RJH2pLJkiZMR09aWpUD0AhCsb2JULo7RFpmds2UAv7enmNw/k01jTnkpm7vkD4a1/oHPhe0hf+mO6bWX8OPhb7ly6jsUdf6NzwbvZcuWjtKz6Ai2nf56+RdfTEPbgtJnMrfSzKxtCRZsHfS2rt5V08timVr3e3Mt9z74CwNeuPQ+Xz0+Zb2z/PQ8MrpRPX8qdH34DXqeNf7qvnR/V3sK2NbeR8dZQ++TnaFj7MRoeuRlv85OHnKMrlmZjSy97OuPsaO9jV2e8P+i3obmXzS1RkpmD09/GkjnUEUtRYUTAK0XzhRBiPFX4D9ZPDHsdzKrIr3rqG+VNh6Ipn0e6ZCbW9PMAuHplA+V+J99rP5WcI4D3lVvJRfajX/wdnlSh7kqgiDWB7PkgkDbs4M2PoefPraAtmmJz9eWYmT4Wdv8dr45jTOJMIMjfqJRp2MVRW+Lm3aumsVXX8ERuIaW6m5wrDPaRM7cnsh9ccyolVQdrgzq6NpOMdrGjo++4ZoqPhhXPf/dxJ1qotPXxxmkePtl0M/rJ741ru8TEdYJHMzGeRiqoeKKV+10sqgsSS2ZRimO+AxPyOui2PKjk7v5tkXiGMFFM35FTbLKeCkiAFc0HgXqTmUOCPG29qf6Ai22EO2tnzy5jw7P1nN55H794dAuWsqMK22eU+9jV2YfW+dpFM8u9R12fqXNAEKi6rpHm5/J3/nLde7CXThv1eV7e20Ml+SLW+9/wVbwtz9Fbfz59NW/IB8jO/wbTHnw/rP8OkWlr2H/GlzEMqPA5yVmaEo+9vxDz3Co/WzeXsDrXks9IMgcEyrSm+rbzSSy9AVZ/4aiuGeDpHZ2EdTdZZ4j68hIS6dyYpwbYApX9v6vK+TSWevnTh97AR297kR8/up2HKnz8wxm/ZEZyA2VBH42P3EzNk18gMusyPC3rQBm0rPg0ybJF/eeJJbNsaolyYOzPac3Ojj7sptEfDFpYExhVWzuiScL0gmQCCSHEuDp8oQGX3Ryfz1D+SvZc8xjlfmd/O969qpH/eHALexa9jcYd/4urewuu7s2cbawpHFPMwtD56WBZbxX2Qr2cC+dXYjMUf+1uYGFwJpd234fLmJyrgx1uuAUmxOgplZ+JcP7cCn69ZTVnmRuwArVMrG8hR8csqYOWdTxmnM451rO0vf44qeqz6EvnTnyQeIC29jaqtIFNWbyrIcLCGnC0ZGlr2kixQ2/prCULl0wB0oNiXDWGPYR9DmaW+465cHXI46Aj50al8imRWmuisSgelcLwlh6xv8MXJo0dHW0hZ2naD1vusbU3SSWFNEpf5RHHD3Te3AqWrTgTB1m2v/o09lf+h8Wv/hu5Oz9E8pFv0dTZR87SpLMWuzr7jnrlqc7YwcBUY+NM9ul8cMvqHltx6LZoimojf56+qtPZv+qL9NWehcdlpzHsJdp4EZFpa8jZ/ew/40uEfQ7mVPqpDLioKXEfsizonEo/+3QZSltw+NS6RDdmohNz/wtHdb0HtEQSVBgHAyRux1F8lHCH8nczAVvVAiBfuPyPN72Br1++iI5Yis//ZQPX3A9fedFF86ov4Ypso/KF/8CW7MLd8QqND30QW7wNb/PT2Ht3g9YcfvMnm9Mk0jm0Bq0hPsrC2H3RHpxkMPwSBBJCCJFnGgrngC9c7zq9AYdpcId1AYaVwdm9BYBLzKfzO/iLXxjaGhBYCnrsvGFWGQ9vbqdl/ntZauSnauOa3JlAovg+cM4MnlDL6fM1YpXOGe/mFIUK5esafTVxBRYG7vW/ZMHvlpF+5c5xbVci2sVWW37lwitqullkbQQg17Wz6K+VPMGr54rjQzKBxLgyDEVtSXFi1GGvg86cG5WKgGXRGc+QjeVXJBgsCFTqc9HVESIUbSWRyRFP5cjmrP5gVFs0xRwzn8Jq2oZPEVZKsWT5WbAe7vB/D3uinazNS1fORcX2R/n6pk7WV7+TT72xFkqq2NoaY1qZd8x3Dbr60pTTA4ArVEXSXQUWEBlbEKg9mmKJI4KlnFiukv7tFX4nbodJicfOnvN/iJnqoaqmftgU6cqAs3/FBCJNUNJw8Mne/BQxe8fGMbXvcC29KWpsvWjvMQRIlCLnKYNsGnugYsBmxTWrGrl4STUPvN7K09s7ufOlfXzPN4PVi/6THncD3tqFzLc2M/PuK5h328p8wAuI1p7NrjffCsbQQalYKjuqukW6UPha+WQ6mBBCiDxTqUMypct8Tt66tJpfv7qfBt81VDTOZ+m2H1KZbSHnDmPanMV7cVv+85nlrz1k85pFVXz2T6+y1reaU62fs8TYOSUygURxrZpRyrrPX8TufQtoqAhSxP8yx41e8X42qRnserSS160GFu1fC4Dj5VvhtCvHpU2bWnpxZ2NQtZxUMkVo3yPoQlZ+SXJf/o5kEQvrZ7IWOUtL5twkJ0EgMWWUeOzs1N78F/R0lEjCJNXbBnBEYWiAMl9+mfhwrIXslgeZ/vT3iV79B0IBH5DPBLrY1kauZPqoUlgdlXOwDDv2RDv7zvwaXfOupS+Vo/e+G/nnjt/T2343zj9mefKsW6mat4rmngSzK3xjmtbU2Zem1ugh5yzBtDkJBgJEeoPYxxgEaoumqLVFyLkqqQ972dMVp8Rjx1+YDlcddJHI5FDOCkIjLL8e8jr6g0BWz16MxoPPWZFmDMDW1wKJbnCHxtTOA1ojyXzwy7fwqI4/IBtoIGe6Bn3jK/E4eOeKet62rIZMzuLP65v5M1VAGtNYz2dWz8N19i149j9L77Q34+54lcqXvof/ya/hTnXgJE333KtJls4n667oH3CjySyVo7hB6igU9TQnceFEIYQQxeW0GxiHfdn68Btn0dab4tvNb8O90+QLLGQNLVjequJOuTEMcsFGrMrFh2y+aEElX/jza/zuuX38KfNe/uT5GrbQ9CFOIk5mfrcdZ7Ach8cz8s6TgD3cgF58BfcuU2TuOYe+nfvZEVjJon1PEu1uxR8afubA8XDni/u4ScVxVFXS615K+bPfxDKdpLHhtvryn7894ZFPNEo5rcnkLMxhboCKiU+CQGLKCHscrKewnGkyQiIdoK+7DRSDvvmFvQ72W0Hmx1oxN/0VX/NTtG59BJZfAuRrAjWyn1z4/FG9vs3honveVaQ8NXTNvx4Ar8sgteY7pO77B2JmOamWF1n8+Ad5KPFTlp5yOu3RFBUB1whnPqgzlmKlrRfLV4lJvuB3a7Scht7BV+YaSls0RaXqxvJWEvTYmef0Yx9wp9FmGkwv85LOWiMGqUKew4JAA57L9e7rf2y1vI4x/cwxtfOA/b0JSnQPyn9sg2vPmh+R1QbeYfax20z+612n8PELZrOzo49kJseP1m7nlvs28b/h2Xgc86i3PDjMmbzdXMcbN/+cpLaTwMX0XfkVMKK2Ulp986j0QNei95Ere/uwd0zSWYtQZj/YQYUah9xPCCHEycVlO/KL1qwKH797/+n86smdfPnu13nAmMMax8PFnQpW0PWeJ3DYD80GLvU5Wb2oir++sh+YyQtXvcTp0+UGhhhcud+JfZxXKC4WpRRBt52aEje9V3yNz9y2hqa9u7jTfJzEK3/Bf+6NJ7xNf9/YyqdVHPwheuZfi/X8dzByKda7zmRl8kl0925UEYNAjo1/IdO4ElelBH4nM6kJJKaMEo+DXp2/05CJdaO3PownU6jpM0gmUKnPSatVQqKrmdje/MpT9s13092XBiDS20OZ1YEqnTXqNkTO/xbty24+ZJvlLGH7ZX+h560/p+2S3+Az0lz9/FW4H/sqsVR2TNfY1Zem0uhBe/PBkMqAkyarFGOMQaD2aIoy3YUuzPO3D1KPyW4ao5rGFHTbSSoXcTMIPYe2Q0cO1gjKtWw44tiBqylE4plBl9nUWhPtjeDSSdQxFk02S+oxgyMXzVRKMbvSzzlzyrl4cTV33HgG71heR3XQhWVpntzewUOb2vie+yM8Uf0efr3sNr48+498zvMlvpp7Dw+n5pLp2ouz7WXCr/1yxH7u7EtRp9qxMCBYd0zXKIQQYupwOYb+qP6O5XW47SbPWPk6d7qYRaELDLsTm/3IzwLXrzp4w6K6LFj01xVTR8BlH/NiHhPZgdWWvV4/l5x1KuuzDXTYa3Fv/gu9yQx7u+JEk5kT1p54Xy8mFspVgidURWTGWwHYULYagGznjuK9WC5L8N6bsD33k+KdU4wLyQQSU0bY66C3kOOR2/YQi9d+hQ/aCh9SBgkCXbSgkvUv1RPofBB772YAArvvZ1NXLy57Ce7oLjBBlY0+COSym0STWaqCLoJuOzZD0R1P09yTBEBVLuaVy/9O552f4pItP2PP9DdA+dtHff6OWJoyutG+pUA+E2hXJswbo6+Mes5vNmfR2ZeixN1RlA+MpqEocdvpsZVRflhhaB3dT9Zdhsqlie59hZ5ZMQylyFqaZCZfPDmSSLOlNcqy+hCNpR5KfYfOGu+OZwjmusAG5jHe5bSbCkONPvZ9YDWYoMfgm1csIZnJ0R5N4XPaSOcs2qMptD6bM4F8jtN8cpYmlc3xzluf59vO/+Wi1nvZ39dH0F0y5Ot0xtLUq3birkp85vDT74QQQpw8nINkAh3gd9lZs7iKP72YY+fM66ldcGnRX99QCtsgWRwrp4eZU+mjM5amtmRqTPURYjQOLE5iGopz55Rz6dJa/mfDG/h48x/YtukZEmVLAPpLLABkctagN1yPldYanewFBxjuAF6njR0rP0Nf9RlEEqdCE2Q7d1K0T5apXpS2UD27R95XTGgSBBJTRmOpB8NdAjlg91MALDQKb1KD1KKpD3uoWrUU/gZuUmwLnc2s7sfx7nuK17JnUptrBhPM8tmjboPbni+qfGA5V8hnHEWTWbJWIcultJp7Fn6Jua9eT+MTnyOz7E3Y3aMrqNgVS1Fi9UCheHBFwMVeXYKRTUAqOqrVOTr70nh1HKeVIBUsTvp2yOugN+OnItHVv21PZ5zo9q0ErBAZ0wU71/OfmS109yVI9Hah+zrw617S6TRaK5ZXPIkxcwFc+rVDzr0/kqCMSP7BMRZNtpkGpqFH3nEILrtJffjgh12tOWJVOdNQeBw2LphXyZ9fncFqe4rcnnVQ9qYhz9seS1Gv2kj764+6bUIIIU4+N583i1Kvg9xp38RWNtxk56NjKIXNOPLLq1KKW65Ywv5IUgrEipOW02by0fNnc8XLb+a9tvtw/v1fqfB50K4guet+h2ko4uksOzv6mFHmw+0wsSx9RJ2voxVLZfHovvwDVxCHzcATriMZfBfh7R106AC2th3FWya+sAKzEZEg0GQnQSAxZbjsJjdedCrcC9bedf3bLUcAY4jsCmNAZsl/xC7i+84NVK37Jg8t+DnTVT6rxTaGTCC3w8TrPPKuXWOpB6UU2ZzF9vY+6spL+Nfse7it72skXr0T+8p3j+r8yXgvDpUmU1hGvNLv5AWdD3DpaAtqFEGg9kI9IAAjUJzU8ZDHQXfEB4nW/m13vbyP83qb2WmU0qxLeQcP89UtlxJUMQwGBGIOlBqIgLX+cTIXfhq752BqeWtvknJ1IAh0bDWBbIYqakpymc9BRyyFUvQvCX/A6oVVfHr9PCy7wtn0JKkl52Moxba2GF6HDafdwGEauOwmnbE081QHOrh46BcTQgghDjOj3Mfn3rKArr500b5YDmQz1ZBBnlMaQpxS9FcUYnKZVeHjolPn8MP1b+EzvbdDPk5CZ9NGbOWz2R9JYFmwq7MPm6EIeuxU+EdfD3Q4PfEMAeL5B878Z+cyv4OeeIZyn5O9uoJp3UVcJj6Z/zxui+wu+qpj4sSSIJCYUs5dMgvuBU82QlT58OsYepgVqQ7Uh9Eo1kZr+dWsT3Fj02eZ+/LX6TZ7yPhqsDtGn+bssA2e6nkg8GAzDWaUe+mJl/Ataz4Zw4lueW1U505mcjjTXeAEs5ARUxlw0UYJALneFmzlc0Y8T1s02R8Eso2iPs5ohDwOuru9qAGZQPt6klQb3cxcci6ZZe8m9qQHyxGg3RUm5wqTdYXJOUNoZRDr7eaHj+3iv/k2sY0PYF9+cJnNlki+Xg4AgdrDX3pMHKZR1PHKZho0lHrw2E3imRx7u+LUBN2kC7WNysor2RGfQVXz00STWZKZHNmcJpLIQOLgebbv7+TtdBMrkyJ7Qgghxi7oPj5TiYf6XCOEOOhb71jC5tO/wt1/NPi/zkZ+5biF3Au/o/m0f+7fJ5vTZHMad/bI+pdHK5LIEFCFIJArHwTyOGyYhqIi4GSPrmB2756ivR7JQiZQpo9/+vXDfPP683AMM2X1AMvSKMWUqg012UkQSEwtzgAahULzaHYRS5wtVPsqhl4y1ZfPBMoEp/GOZXP5xjMuzpp/A+fs/BUx00cudErx5tEW2E2DFdPC2G029jumUdH++qiO6+pLU1a4vWB4BwSBdAkAVm8LkF9pargPbe3RFLWqAwB1jEGVA8JeO21ZL0amp//OQHtPhDC9pALVuBqXs8nxX0Mer2rB3rqFrq0/wbnpr3BIECjBHGMfOU855jGubnA87pIGCnO+A6bB/KpA/2uEvQ7OnlXGo8/P44a2B2np6SGpBr/zk+3ajaE0znIJAgkhhBi74zUl63jUMRFiqlFKMau2nNa3fpmnb32B58xTWbTxDp7rqqVSd7Co2kts4XVom5vUKIJAyUyuvy7lcCKJAZlAA2YDOG0mFX4XT+tyPPFnwcpBMZZ0L0wHA9ixZQMb9y9naf3QN9sPyFoaS+tRXZM4MeSdXUwthoF25t8Et+ka/qfx30iu/u7Q+3vL0MokUzqfz148j/qwh/fsehNbrFp8OoYew8pgY2EaitkVPrbSgK1j46iO6epLE1a9/e2G/HSk9kImkBXdTyqbY0trlKbu+JDnaetNMU/txTJdEJp2LJfRL+R10JLxoHSuf4BIduen0xnBGuymQYnHTnWJi4ZSDzPKvSyoCbC4Lsii2gALagKcNaeSB3PLce56CLLp/nO39CaZZzaTKx05y2m8DQwy2U2DM2aW8nBuKYaVxr7rUXQuh5nsOeI4RzS/qpopy8MLIYQQQkw6NtNgWX2If7t8Ebdnz8Ob7uB9e/+Ftzb9J9PWfZWuX7+LJx97AOeWvw57Hq01faNcPTiSyOA/LBPogHK/k2ZdhkEOoi1HdU1HSB4MAjWoNppffwrSfSMeZun8gjBi4pAgkJhydOFNcLtVg6tqLkbF3KF3Nkyiyz5Aask1eBw2vnvVUjqS8OnMB7GUiapadNzaObcqwMvpGmyJDnSsjcwgy6MP1BFLUXpYEMhmGji8YTLKjo620pvIojV092XYH0mQyubo6ksfcp62aIpFtj1kyuYX564AEPY46LAKBSnjhSlhvYUgUCBffLo+7KHM5yTotuN12vrvWiqVrzewtL6EB6zl2DIxsruf7j93SyTJTJqwyobpxwnqtGlhnrPmkTD9+Hc/QNVzX2fB75Yw4663Edh1/8EiQj35VF1bqWQCCSGEEEJMRkG3nStX1POlT32aR1b+jNcuvpN7LnqUOyr/kXN4kZu2vJ+6Bz+I1bZ5yHNkLT2qbCE4vCbQoXVBXXaT1bcn4QAALFdJREFUbnu+hmi2O/85M5E+tkCMLtQEAjjXXM/qp69Fv3jriMflVwUe/Jq01vTE02h99Au3iLGT6WBiytGFwmh1c5Zx3rzyEVOkY+d+qT898dTGMP944RzuetnHpjWPM2vG8ckEAphX5Wft+hpwwK7X15GoO5s5lT5sQ6Red/WlKSWaf+Ap699eGXTR3RMmEG0hEk+DlQHDTkc0TUc0HwBSQInHTiKTo703yXx2k6t4W9GuJeRx0KN9+QeJLnqTdQQy7eAAc5QrkM2p9LPRNg+AbNOL2GaeC0CyswkvcdIV84rW3hOl1OekvizIuuwKztx9PyqXoq9iOWaqh8aHPkDaV4fKxPGl7GRNGzZ/cWo0CSGEEEKI8RH0OqhfsYZE2qIeoOEf+cODQTq2v8CHbHeTbduCY4ib1JmcNeog0IFMIG3YUfYj1wBLe6ohDtnuJtI1WZp7ksyq8B31db28bTfLgD5bCZfzJApNrnvv0GU3CnLW0JlA+yNJOmNpupxpZpQffdvE2EgmkJh6XCVoFJ9811uYVeHHNkIQyGYqnANq6Hz0gtncfuMqrEAdDqdzmCOPzZwqP5utBgCcXZvIWZp9PYkh92+LpihVESybBwYUq670u2gnhI61Enziqyz89Xym3XsdjsjB1QD29STY1BJle1sfic49BIhhVSws2rWEvA66+4NA3ezvSfbXHSIwuiCQaSjqautpV2Xo/a8AsHF/L46erQDYKucXrb0n0unTw/ypbylmuhe0xd7zvs/WKx6gedWXiJcvpalkJfWqnbivsWiZWUIIIYQQYvzUhz3MrvQRcOdzLqxF7+DH2UsAyHVsH/I4a/fTeJ//0aheI5LIUKLiaKd/0JW6rELtT6uniUgiQyKdyy9OchRe3NPN85t3k1JOzPLZmIWVfvUopppZliaZPTIIFElk6Izlb1jH0zksS7KBThQJAokpR/vKSQenYTo9+Jy2ITNrDrAbxiFBIMhncIS9jiGOKI6ldUESjjA9Kkhg573UPv5p4h176YylBt1/X3eCKlsM7Sk9ZHtFwMW+bIBYRxOuPWvJespxd7zCtPvfg6flWSpe/C5GoodsTpPOWri68oWozZolRbuWsNdOD4UgULyb5p4Ei4xdJNzVMIZizsvqS3gl14DR+hp9qSx/Wd/MbJWvl2NUTM4g0PVnNPKScwUx7eIu80L+3uIih43ORe9l7wU/5r8rPseF6f+g862/Gu+mCiGEEEKIInDaTFx2k/qQB7fDZHaFj4TpJ2YGoGvoIJD9pV9T/uzX0aOotRNJpAnbkv2zIA7nD5YSwwORveQ23Uf1M1+mNZI4qqlXT27twKvjmO4gulBTNK3NUQWBspYmk9XkBgR5tNa09iYHPGbQQJE4PkYVBFJKrVZKbVZKbVNKfWaY/U5TSuWUUu8oXhOFGJvs+V+idc0vRr2/y24OGiiqDg6+klOxlHgcfOOKJbyarcfXuo7w5tupe+yT7O9J0N2XZkd7jFebIuyP5LODmnsSVNn60AOmggFcuaKOpKscb2I/np4t/CF7Dq+e/RPssX3M/OuVVL74n9Sv/Tgqm6Rp4zPMsfIZQs6axUW7lpDHQbf2A5Dr66S5J8FitYNUxdgCTcvqS3jNasTevY19bR10b32a5c595Jwl/XWQJpuFNUF+++HzuW3FH/iOcQPfun8zN/72ee56uZlEOsemliiqdAbemslX80gIIYQQQgzNMBTTy7wEPXbmVvrZSxWqa8eQ+6vIPpS2SDe/NuK5I4kMJUaif1Gcw1X4nTRbYXZs34Ln5d9Q9tovcG3+C+3RwW84DyeWylJiJFCuALrhTDrc01lrLSPXO3IQyPvQP1O57haSmRy9yQw98TRdfWmauhJ0vPhnKu++DnfbeuLHWLNIjN6INYGUUibwQ+BNQBOwTil1l9b69UH2uwW4/3g0VIjRMkrqUEb5qPd3OwafgqMGSasstkuX1nDL+v/HbZvXc8NSN6dt/CYlm/6XpnnX9u8TTWapDuandJWpXrT30OLBpzaEWLByKa7H/wbAo30NfGetjXeFv8gSVysLq33UrPsG8//nFBZl+kjbTFKBRpzuwQeMoxHyOIiQLwyt4500x1qYYbTQW3fDmM5z/rwKNlUsxui6k6bffYhbUn8HIF12OuYJ6I/jpdznYtUpS1m5TLOtLcavntrJzx7fwW3P7SGdtbhgfgUOWYZXCCGEEGLKMQ3F9FIv58wpZ9OTFczs2TnkvkZhxVhr/ysw7fRhz9sTzxBUcXAN/r3nqtPq6Xu1GjOyF2I9AFQ/+29sbbwAm1lGwDXyjIkDooUgkHYGMZa/m0dsFxL78//D6Bu6yPUBjt2PEk5G2HnGZ0hm89lAuzv7+OEf7uGP5r/gVSnK73qczot/BiuvHFV7xLEZTa+vBLZprXdordPA7cBlg+z3UeD/gLYitk+IMTOVwmmfPF+ob3j7xaz3n8uHtyynp+pMap7+Ms6uTXibn6J0w69xb/w/Upks+3oSlOgIapCMGOWv6v/9mre9jVKfkzsi8/nAtjP4p6ZzeKHySvaXrOC/jOvIGC4ydWcU9RoCbjtamSRNHzrejdGSr+lj1JwypvO47CafuPbtAJyf+juvWtPYXXURmaXXF7W9J5rbYeKwGZT6HFyxvI6/fvRsfnLdqSyqDZDOWZzSEMIuQSAhhBBCiCnJMBRL6oLstKqwx5ohkzxyJyuHGcuvrkuhPuZwIokMfuLgGvzG7uxKP/PmzmeBuY+w7mGt443Y4y3Urv0n9nXG2NQSZW9XfFTTw6LJLEEj/1pOm8H8qgBtOoQjG4N0fNhjVbIbW7IT3bYJgGQmx7/fu4Hv274Ldg8XpL5Nwh7Gvu3eEdshimM0q4PVAnsHPG4CDglLKqVqgbcB5wOnDXUipdSNwI0ADQ0NY22rEKNiGgqnOXkK7IY9Dj755rl86g+v8K+2j/Hvzo8y667LMLIHi0TvL20kmszgc/cMGgQyApUApALTOPeUeZyzbB7b26Pc9txefv3ULq7QA1YCO/eDXLWqgWLW3zcNRYnHQcwI4O3rJNyTT2E165aP+VxGeBo5RwAz3UvLGV9CLzqPyip/EVs7PkIeO0GPvf/xmxdWce6cCnJao7U+oi6VEEIIIYSYOupCHu7RVSg0VucOjKoFh+4Qa0VZWQBU66u0RZN4HTa8zsG/svfEM/h1FNzD1N8sqcPU+WLQ/9V3Pq96pvPRXb+i4eEP0TX/OnpqzqQi4MRpG/67UyxZCDg5AyilmFbmoU2XFJ5sgfCMwQ+0LIxUfml5X/OTpMJz+fGj2zml9+/Mduxl5zk/Zv9DYbbbZzKrYyM5S4+4srM4dqMJAg3WC4eHC78L/LPWOjfcFBqt9U+BnwKsWLFCyn+L40Iphcsxeb5Q20yDS5bWsKcrzncf2sqc+f/KlS3f4dWat2KbfzHnPLCG5MYH8HEqNp3B8lYccQ4zkF9aPFV5Ck6lUAoaS3185LxZfPi8WWzc38tLe3p4bV+ElXNrcbu9Rb+OMp+DnrgPZ6yT+uR+2mzVlAdKRz7wcEqRmnY+mXSKOSsvIp21pkSApNzvPGSKoVJqyKmIQgghhBBiaqkLudml8zdusx3bcBweBIrkp4KlSmbi6NhIa3ccZZrUhz0E3fbDT0dvIo1PRcA79OdtI1gHgFYmH77qcv7xT5tIZ6LcvPtupu++j5S/Ab3m27Bg9bBtj6Wy+AZkHflcdqL2QvAp2jp0ECgVQen8kveZbX9n764Wpu+NcpPvMRK++cSmr2Fx7SZeaq1lYfKvJJIJvB7P4OcSRTOaIFATUD/gcR3QfNg+K4DbC19wyoCLlVJZrfWfi9FIIcZqpGj2RGM3DT5y3iye2t7JtzfCt/kKdMPM7gR3VZyCb+9awmo2AIZvkEygUAOW6SRTf1b/tvz0o/wS90tqS6gPebjm9Abaoync9uL/fS5eXM2+R114utpYYLXSW3YqFUdZxyd+6U9pjSSYH/JgTJG7ASeixpQQQgghhJiYgm47bfb8su2DLRNvde/BADKz1uB8/geEN/0PyfB89ujTcDsMppf5+rNksjkLlerFdOWwhlk8xSjJf41PhedywZJG/lQV5rdP13H2S5dxWnodt2T/D/far4wYBIoms3h0HOU6uBJZ3F4GWfKZQENJdOf3VW4aOx6jkce42A6kYfcpP0EZBmfMLOX53TW825HB6tgKDUuHbYs4dqO5vb4OmK2Umq6UcgBXA3cN3EFrPV1rPU1rPQ34I/BhCQAJMTZ20+D2D6zikU+ey63vXcn7z57O9vY+mkrPpDz6OnNVYVamd5Dib+4Qu655guzSawY9d9BjZ1qZlzKfkzmV/lEXgRuL61Y1ElF+yvq2UKO6CC0efjAZjstuEvI6p0wASAghhBBCnNyUUgRD5fQawSOWiU9nLX7xt8cA+Ft6GQC1T32emX+9gvDrvyGRtkhmDq6e1ZvMEla9ABjDBIFsoXwmULoiH1iZVeHnny6aw49vOJu/WavY6FmBGsUy78lkAqdOHRIEShQKUg+3Qlgq2gnAXZlVAGxZ8HE2X3o3TWd9g95pq6nwO3nrkho26XypGKN1w4htEcduxEwgrXVWKXUz+VW/TOCXWusNSqmbCs//5Di3UYiTRn4ZSR/lfhdL64L89und3JtcxFzgHbbH8zt5hkj5DNTgtI+c3He85tmW+ZyESitxdOewMDHmv/Woz+WyGdh9jiK2TgghhBBCiPFVG3LTFK1i5mHLxO/s6MPR10zE9PLPz7l52XwfrZTy0eATLHvqCwR33Uv2vC/C7PziLpFEhjDR/MGeoYNABOtJVJxCevZbDm5y21neGKIq6KJVl2AkOiGXAfPIKWf9koWAk/tgEMhyhcjGTBgiiJTOWnzv7mf5NMCya9m45FtkPfnpcOmKpbgdJhUBF+V+TbOtlqyyo9okCHQijGY6GFrre4B7Dts2aPBHa/2eY2+WECc3X6EA3FsWV/OL1+Eas5w3sy7/5BDRfrtp4DoO07zGYtHs6fAcxKpX4QoeWbtotGymMbo3JyGEEEIIISaJupCbbTsrmdOz7ZDt29tj1KhOjJI6Xvvwal5tWsX/PruHd21YzA2qgY91PIDzvk/A7GcB6ImnCasDQaBhCkObdva9426C7iNvrs6p9LOzs7D4SqwNgrWDnkJrjZGOggNwHlyJzOd20G2EKBkiCPTMjk6ampvBAactnEW8EAA6oNyfL1uhlCLo9dJsNVDZ/vrQ1yKKZvJXWxViCnvvWdNJ5+Dy+Bf4pee99K78BATrB93XZioc47zMeDCcD/zEZlyMyy5vL0IIIYQQQhxQF3KzNVuBLdYMmYMrAW9ri1GrOjFD9ficNuZWBfjCJQu4/aaz+Zm+jMd9q7F1b8tn7JDPBAodCAINMx0MwGYYOAf5XD67wsfrve78g2Hq+iQzFh7dl38wYDl6n9NGJ6F8YehBtEVTlKgYAIFwfuqYUvkfl904pNh12OtgpzkdW7tkAp0I8i1NiAlsUW2Q37x3JT2OSl6ovZ7EWZ/Nv3MOwuOwjXsNHaN2OcngTFKz3yqFkIUQQgghhBigtsTDLl0FgB4wJWxbW4xaoxMzlK+NE/Y6qPC7WFof4tSGEM/EKlBWFt2ZzyBqj6YoJT9Fa8hSEQVD3SieU+mjKVuY3jVEIAcgmsrgV4WAlfPQIFCbLkHFBj+2I5YiRD4IFC6txDCgsdTDnEo/tSH3IfuGvA726nLMvlawcoOdThSRBIGEmOBWzSjl3o+fzQ1nTsM2TJDHOxGWG68/jR1XrcUdqhrvlgghhBBCCDGh5JeJz39OzrYfnBLW0tJCkBhGScMRx1w4v5JnovlMmkzLRgD2R5KEVRTL5gKHd9jXdJgGTtsgmUCVftp0CQBW7/4hj48lswQ4kAl0sCaQz2WjVQcx4m2DHtcZS1Fq9mE5Apg2O7MqfPhddhw2A4/j0MIPpV4HbdnC0vCJnmGvRxw7CQIJMQk0lnpZVBvE7xq6YNvxWPHraJiGwuucAAEpIYQQQgghJpDaAUGgdNs2epMZLEvj7spPgzKqFx1xzNlzytiua9AorNYDQaAEVfY+tHv4LCAAj9M2aIb+rAofHQTz5x0mCBRNZgmoeP7BgOlgfqeNrqwLlYoNelxHLE2FLYHlKgHAaRv6+0HY62B/upAdVFhWXhw/UntViElivIs+j5bNVHgd8tYihBBCCCHEQKVeBxm7j6hZQqZ1K/s64rgdBrOsHWCCWbPsiGPmVvoJBgK0W1X42zcB0NyTpMqMoUeYCgbgGeI7RMBlpyLopTdbgmeIKV0AsVQWP4NMB3PZ6NVuVC4J2TTYDi0+3RFLUWbG0K7QiG0Mex1sz3ryxaclCHTcTYzUASHElOF3jn9tIiGEEEIIISYapRRnzy5ne7YCs2cnAOv3Rlho7CbhqgBf+aDHrJpRyqZcLUbHFgBaIklKjdiI9YCAYT+X57OBQughVviCfCaQn0Im0CE1gexEKUzhSh+ZDdQRS1Oi+tDukYNApV4HPdqXfyBBoONOgkBCiKIKuIeesiaEEEIIIcTJ7BMXzma7VYm9YwMz77oc89U7WKR2kilfPOQxC2sCbMhUY+/ZjpVJ0xxJUKIjqFEEgYZTH/awPxccsrgzFDKBVJyczQvmwWx/n8tGTBemcKV6jziuI5YioGMwiiBQyOugh0JtIwkCHXcSBBJCFNVkmbYmhBBCCCHEibawJohRNgtPLoqn7UXO2vMjZhr7sdUuHfKYBdVBtlq1GFaG7qZNRJNZfFbviMvDj6S2xM2+bBA1TCZQLJkhQBzt9B+y3e+0EeNAECh6yHOWpenqS+fb6BlbJpAV7xrjVYixkiCQEEIIIYQQQghxgsxc8zE+lbmR/674POVWByYW5jBBoIU1AV7T0wHo2fIUDjI4c30Y3mPLBKoLuWmjBCPRMeTS7NFkPhNo4MpgkM8Eig4RBOpJZLCsHO5cFOUOj9iOsNdBL958kWoJAh13EgQSQgghhBBCCCFOkEWzprO99m18c888dljVANhrTxly/5DXQcw/i26zFPuuvxMiH3RRx5gJVBdy06ZLMHQO+joG3SeWyhJUiUPqAQH4nAOngx0aBOqMpQgQR6FRnpGDQKVeJxYGKZsfLUGg406CQEIIIYQQQgghxAliGIqrTqtDY3Bb8P3EZlyMEWoY9pgFtUGeZhkV7U9TrnryG4+xJlBdyEObzk/X0tHBl4mPprIEjcQhy8NDIQg0RCZQeyxFicoXizZGMR0s4LZhGoq46ZeaQCeArOMshBBCCCGEEEKcQGsWVbE/kmRRzXIiNR/Bp4ZfXXdBTZB7tizkYvvDrDHX5Td6ji0TqNznpNPIB5KyPU3YB1miPpbMElCJI6aD+V02okMUhu6MpSnhQBBo5EwgpRQhj4Oo8uOXINBxJ0EgIYQQQgghhBDiBAq4HXziwjlkchZ9qeyI+y+sCfCb3CJydoOP2P5CzhXCrJh/TG0wDEUm0ABxyHXuYrA1fmOpLH76UIdlAnkHZAJZyeghU4w6YinCqpAdNMpspVKvg96Uj5pEDwA5S2MOs7y9OHoyHUwIIYQQQgghhBgHdtOgxOMYcb9z55SzYEYjj+cWs8eopfPqv8EosmxG4g9VEscN3bsGfT6azODVfajDMoHspoG2u7Ew0MlDM4E6YimqjUJGj79qVO0Iex10ay8q2U0yk2N3Zx+QDwblLD22ixLDkiCQEEIIIYQQQggxgbnsJr9570oeWPIdblvxR8yyWUU5b23IQxMV0LN70OeTiTh2shiHZQIB+JwOkoYHPch0sEZHIRPIVzmqdoR9DjotL0ayh86+NH2pHE3dcba2RYkkMmO7KDEsmQ4mhBBCCCGEEEJMcA6bwWcvWUJPPEOpz1mUc9aF3OzKldHYPXgQqL/ez2GZQJCvC5RIenAUCkMfmMLVEUtxtq2HnFmGaRs5ywkg7HHQmnGjMj0kdz9PSedmuudcCUBPPE3Ye+R5tNaoEWopiSNJEEgIIYQQQgghhJgE/C47PmfxvsbXhd3s0RXYel8HreHwoEoykv93kCCQz2kjnvIQSEZJZXP0pXKEvQ72diWoMXqwfFWYo2zHadPDrF/nQdk11U98AU/7SxjZBPa+FrTpIPOWL2A3D05kiqez7GjvI+x1UFPiPsqrPzmNajqYUmq1UmqzUmqbUuozgzx/mVLqFaXUeqXU80qps4rfVCGEEEIIIYQQ4uRWzOyXmeU+9uoKzFyC9pa97OmM9z/XE09jHMgEcg42HcxGH25IRUmkc0STGbI5i50dfVSobizf6OoBAVyypJqa6loAPO0vYRl2ap/6PBUv/4CKl75HT8e+Q/aPJrNoDV19adJZ6yiu/OQ1YhBIKWUCPwTWAAuAdymlFhy228PAUq31MuC9wM+L3E4hhBBCCCGEEEIU0eLaINlAAwCR/duJJDLEUll6kxk27o/iV4n8joPVBCosE6/SUVIdu0jve5W9XXHSOYtQrmvURaEhH9i68uzF/Y/3vOHrdM67huYzvoLSObIv/+mQAtHRvj6wMmgNbdHkUV79yWk0mUArgW1a6x1a6zRwO3DZwB201jGt9YEe8QJSvlsIIYQQQgghhJjAlFIsX7YMgMie1/G0vkBLT5x93Qn2dsXxU8gMGiQTyO+00WvlM4G8a/+Vafdcy4Z93ZjkcKc7Uf7qMbUlGK4AIKcV/7ZjJv/luZndM68jEZ5PcOud/cGebM6i6i/vYt7tZxDa9L90x9Jsa4vSFk3KSmKjMJrJhLXA3gGPm4DTD99JKfU24BtABfCWwU6klLoRuBGgoaFhrG0VQgghhBBCCCFEEV1wxmnwNMx95Rv41kfZ88bvY7N7OO/JW9ikVuV3GqQm0MwKH22vOkj19WCztmBPdtC75QnKyKLQqMDYgkC4QwDscc/noR1J2LGLnniamXPeTsUzX6Np32bs5nxssRZKWp4lZpZQ98RnsOw+IjMvJZFO0RFN43fZ8DltuB0mLvtoqxKdPEaTCTTYhMMjwmta6zu11vOAy4GvDnYirfVPtdYrtNYrysvLx9RQIYQQQgghhBBCFFcwECRihvFZUXKmk6p136Tu8U9THt/K6cbG/E6DTAe78ZwZ+IMhjGQEe2QXABVNDzLHEwPAFhxjEMhTmm/Pwjex5d/WcM3KBv76yn5aGy/BMp2Uv/Bd9vckaXvhLgDeEf8Mr1uNONd+mYdf2UU6a5GzND3xDE3dCba2xtjcEmV/JEE8nT26P84UNJogUBNQP+BxHdA81M5a68eAmUqpsmNsmxBCCCGEEEIIIY6zbM1yHs8t5pf138DR14yZ6gFghbkVjQKH/4hj7KbB+Utn4VZpTJ0lq2wsjj3GPG8+CDTmTCBPmPZLfkty5c04bAafuHA2NlPx0/UJOhZ9gND2O3G3rSe36V72WuVcf+kanprzKSp1Oyue/hB//vUt/OyRjazf20Mmly8Wnc5adETT7B5Q8PpkN5rpYOuA2Uqp6cA+4GrgmoE7KKVmAdu11lopdSrgADqL3VghhBBCCCGEEEIUV+7K3/Lj215i/Y5eykqup6x+Lstf/xqlOoLl8KOMwfNH3L6D08T+mDmLq21rOY91+Q1jrAkEkJn5pv4pXBUBF+95w3T++7HtXH7VDZyz5Q7qH/4QVl87a31v5vSZZSTqL2V/cDenbLiVs5I/Zu+2P/LbTRdyuzoVT80Clk8v44wZpYS9DvpSWbzO0YRAprYRM4G01lngZuB+YCPwe631BqXUTUqpmwq7XQG8ppRaT34lsasGFIoWQgghhBBCCCHEBOW02bj69Eaqgy7+pfutfLVpCTsPTAgapCj0AWrANLG7fO+kV3s4I/oAWhngHXsJGNNQuAfU8fnQuTPxOW385oVOdr/pZ0QtJ27S+JZezowyL16nSccpH2XHtc+xc/XvCJXX8i/22/ib7VP8su1KFj31Me6+7Qck+yJEEpkxt2cqGs10MLTW92it52itZ2qtv1bY9hOt9U8Kv9+itV6otV6mtT5Da/3E8Wy0EEIIIYQQQgghisNuU5zaGOLh//dGrjm9ga2tMTbm8pk8epCi0P2c+WliOWeQj1/5Zn6mL0ehsTwVYIy9KLPdNHDZD4Ypgh47N507k8e2dvD3WANvzXyTm3zfY9m5l2EYivqwB8MAlCJWdw47L7+LTVc9RdM5/056zqVc4N7Gv/Ndlt2xguz2R8fcnqloVEEgIYQQQgghhBBCTE0O06Dc7wTgLYur0cCmXF3+yWEygQ4EgTIlMzl9ZhmXfvDLpL3VWIHao2qH12mi1KFrU733zOksrQvy9Xs20RLLcuaZ5+ErTOuymwa1JW4GHpLx19E95500n/Mttl33PJ/2fZNey4X/td+SzOQGfd2uvjQPb2wlEp/62UISBBJCCCGEEEIIIU5iNtPAactn7iyrLyHsdbBVF4JAg6wM1q8QIMqFZgAQDgbZtfp3JFd/96jacaANA7kdJre+73RObSjhDTNLuWB++SGBohKPgwXVAerDbhy2w0Ichsms0y7i/uypePc8QiqZGPR11+/t5n2/eZ5t7bGjavdkIlWRhBBCCCGEEEIIAYBhKM6eXcZz60efCaTDMwEIex20l8/BDHuK2qag287/fegNWDpfN2iwNpd4HATddqKpLNFklngqSzJjcdq0MD/QK7gm9wjxXU/A4tVHHL+vOx8cqgu5i9ruiUgygYQQQgghhBBCCNHvsmU1JN2VZFylwy/1HqwnVb4Ia8b5ACilqPC7sA2xmtixUEoNGgA6fJ+Ay05tiZvZlX5mV/qoLnGz07+cpHJi23rfoMc19SSwm4pyn7Po7Z5oJBNICCGEEEIIIYQQ/c6fV8mLX7yI1t1/o6pymCCQ00fr1Q8S8tr7N4U89iPq+owXl92kKmhSX1HK8/uWcvquvw+6377uBNVBN8YIQaapQDKBhBBCCCGEEEIIcQilFM7ymeAuGXY/w8gXaB543EQzs9zHC+lG7L27IXNkXaB9PQlqS6b+VDCQIJAQQgghhBBCCCEG4XGOvMy7oRQOc2KHFqaXediaqwLA6th+xPP7uhNUBV0nulnjYmL3lBBCCCGEEEIIIcbFYKt1Hc5hMyb8NKrpZT526vy0tmzH1kOeS2VztEVTVPinfj0gkCCQEEIIIYQQQgghjpLz8GXZJ6BpZR526kImUPs2AHKWBqAlksRBhnrX4MvHTzUTv7eEEEIIIYQQQggxIY0mW2i81QTdZG0eIrYy6NxGW2+STS29dPel2dedYLmxheseOw92PjbeTT3uJAgkhBBCCCGEEEKIo+KYBJlAhqGYVuphn1mL7txGa28Ky4L9kSR7u+OcovLZQVQuGt+GngATv7eEEEIIIYQQQgghjsG0Ui9bMhXYunfg6niVwI6/kstm2d4WY5mxjUxoJnjC493M48423g0QQgghhBBCCCGEOJ7efmotz2+u4HKri+n3Xoct1U0yOItI8Kucam4nW30R9vFu5AkgmUBCCCGEEEIIIYSY0lYvqmb5qSvyD1K9bDvlX3BEd3NJ8/coo4ds9anj28ATRIJAQgghhBBCCCGEmPJWn38+GsVPrMv5h42n0VR9EWdlnwHAqD9tnFt3YkgQSAghhBBCCCGEEFOeCk1j17sexXfRF9jXk+ALzWcCYJlOXLVLxrl1J4bUBBJCCCGEEEIIIcRJwSibxQXlike3tvPIZs324Hyqysvx2h3j3bQTYlSZQEqp1UqpzUqpbUqpzwzy/LVKqVcKP08ppZYWv6lCCCGEEEIIIYQQR89lN6kMuPjiJQtZWBNk60W3ErnkF+PdrBNmxEwgpZQJ/BB4E9AErFNK3aW1fn3AbjuBc7XW3UqpNcBPgdOPR4OFEEIIIYQQQgghjkaZz4lpKKaXefnbx85mb1ccj+vkmSQ1mkyglcA2rfUOrXUauB24bOAOWuuntNbdhYfPAHXFbaYQQgghhBBCCCHEsTENdcjjUp8Dt8Mcp9aceKMJAtUCewc8bipsG8r7gHuPpVFCCCGEEEIIIYQQx5vHYcNpO3mCQKPJeVKDbNOD7qjUeeSDQGcN8fyNwI0ADQ0No2yiEEIIIYQQQgghhDhWo8kEagLqBzyuA5oP30kptQT4OXCZ1rpzsBNprX+qtV6htV5RXl5+NO0VQgghhBBCCCGEEEdhNEGgdcBspdR0pZQDuBq4a+AOSqkG4E/A9VrrLcVvphBCCCGEEEIIIYQ4FiNOB9NaZ5VSNwP3AybwS631BqXUTYXnfwJ8ESgFfqSUAshqrVccv2YLIYQQQgghhBBCiLFQWg9a3ue4W7FihX7++efH5bWFEEIIIYQQQgghpiKl1AtDJeaMZjqYEEIIIYQQQgghhJjkJAgkhBBCCCGEEEIIcRKQIJAQQgghhBBCCCHESUCCQEIIIYQQQgghhBAnAQkCCSGEEEIIIYQQQpwExm11MKVUO7B7lLuXAR3HsTmiOKSfJj7po8lB+mlykH6a+KSPJgfpp4lP+mhykH6a+KSPJoep0E+NWuvywZ4YtyDQWCilnh9qeTMxcUg/TXzSR5OD9NPkIP008UkfTQ7STxOf9NHkIP008UkfTQ5TvZ9kOpgQQgghhBBCCCHESUCCQEIIIYQQQgghhBAngckSBPrpeDdAjIr008QnfTQ5SD9NDtJPE5/00eQg/TTxSR9NDtJPE5/00eQwpftpUtQEEkIIIYQQQgghhBDHZrJkAgkhhBBCCCGEEEKIY1D0IJBSarVSarNSaptS6jMDtt+hlFpf+NmllFo/xPFhpdSDSqmthX9Dhe3XDjh+vVLKUkotG+T4mwuvrZVSZQO2B5VSdyulXlZKbVBK3VDsa58sjmMf2ZVSv1FKvaqU2qiU+uwQx09XSj1bOP4OpZSjsF0ppb5faNcrSqlTj8PlTxoTtZ8Kz72x8PoblFKPFvnSJ5UJ0E9DveddW/j/6BWl1FNKqaVFvvRJYwL3kYxLAxzHfnIopX5V6KeXlVJvHOJ4GZtGMFH7qPCcjEsFE6CfZFwawQTuIxmXBihCP11Z+DtaSqkVhz332cJ5Nyul3jzE8TIujWCi9lHhuYk7Lmmti/YDmMB2YAbgAF4GFgyy338AXxziHN8CPlP4/TPALYPssxjYMcTxpwDTgF1A2YDt/3LgXEA50AU4inn9k+HnePYRcA1we+F3T6EPpg1y/O+Bqwu//wT4UOH3i4F7AQWsAp4d77+X9NOg/VQCvA40FB5XjPff6yTvp6He894AhAq/rzlZ/3+a4H0k49KJ6aePAL8q/F4BvAAYgxwvY9Pk7aMSZFyaSP0k49Lk7SMZl4rbT/OBucBaYMWA7QsK53MC0wuvYw5yvIxLk7ePSpjA41KxM4FWAtu01ju01mngduCygTsopRTwTuC2Ic5xGfCbwu+/AS4fZJ93DXW81volrfWuwZ4C/IXX95F/U8sOdzFT1PHsIw14lVI2wA2kgd5Bzn0+8MdBjr8MuFXnPQOUKKWqj+Iap4KJ3E/XAH/SWu8B0Fq3jf3ypoxx7ScY+j1Pa/2U1rq78PAZoG70lzWlTNg+QsalgY5nPy0AHob+96se4PC7fTI2jWwi95GMSweNaz8VnpNxaXgTto+QcWmgY+4nrfVGrfXmQZ66jPxNpJTWeiewrfB6h59bxqXhTeQ+mtDjUrGDQLXA3gGPmwrbBjobaNVabx3iHJVa6/0AhX8rBtnnKoZ+UxzKD8hH+pqBV4GPa62tMZ5jKjieffRHoA/YD+wB/l1r3XXYsaVAj9b6wIAy8PVH07aTxUTupzlASCm1Vin1glLq3WO7tCllvPtptN5H/o7RyWgi95GMSwcdz356GbhMKWVTSk0HlgP1hx0rY9PIJnIfybh00Hj302jJuHTQROojGZcOKkY/Hcu5ZVwa2UTuowk9LtmKfD41yDZ92OMhs3hG9QJKnQ7EtdavjfHQNwPryUfrZgIPKqUe11ofcdd2ijuefbQSyAE1QAh4XCn1kNZ6xyhffzRtO1lM5H6ykf9QcQH57IenlVLPaK23HEVbJrvx7qeRG6jUeeQ/bJ91FG2YCiZyH8m4dNDx7Kdfkv9S8zywG3iKI+9sy9g0soncRzIuHTTe/TQiGZcmdB/JuHTQ8eyn0ZxbxqWRTeQ+mtDjUrEzgZo4NNpcRz6SDEAhZf7twB0Dtv2qUDDpnsKm1gPpbIV/D0+dupqj68gbyKdkaa31NmAnMO8ozjPZHc8+uga4T2udKaS8PcmRKagd5FMWDwQgB77+sG07yUz0frpPa92nte4AHgOWHtPVTl7j3U/DUkotAX4OXKa17hzTlU0dE7mPZFw66Lj1k9Y6q7X+R631Mq31ZeTn6R9+R1DGppFN9D6ScSlvvPtpWDIuARO7j2RcOqgY/XRU5y6QcWlkE72PJuy4VOwg0DpgtspXyXaQD9jcNeD5C4FNWuumAxu01jcU3qguLmy6C/iHwu//APzlwL5KKQO4kvx8v7HaQz4Sh1KqknwBqDHdUZ8ijmcf7QHOV3le8oXKNg18ca21Bh4B3jHI8XcB7y4cvwqIHEh1PQlN5H76C3B2IdXYA5wObDzmK56cxrWfhqOUagD+BFw/Ue46jJMJ20fIuDTQcesnpZSn0D8opd4EZLXWrw98cRmbRmUi95GMSweNaz8NR8alfhO2j5BxaaBi9NNQ7gKuVko5VX7a3mzguYE7yLg0KhO5jyb2uKSLX6X7YmAL+QranzvsuV8DN41wfCn5gmZbC/+GBzz3RuCZEY7/GPnIW5Z8JO7nhe01wAPk57e+BlxX7GufLD/Hq4/IF5D7A7CBfDX0Tw1x/Azy/xNtK+zvLGxXwA8L7XqVARXaT8afidpPhec+VTj2NeAT4/23Osn7aaj3vJ8D3eTTutcDz4/330r6SMalceqnacBm8h++HgIahzhexqZJ2keF52Rcmjj9JOPS5O0jGZeK209vK/ydU0ArcP+A5z5XOO9mYM0Qx8u4NEn7qPDchB2XVKGBQgghhBBCCCGEEGIKK/Z0MCGEEEIIIYQQQggxAUkQSAghhBBCCCGEEOIkIEEgIYQQQgghhBBCiJOABIGEEEIIIYQQQgghTgISBBJCCCGEEEIIIYQ4CUgQSAghhBBCCCGEEOIkIEEgIYQQQgghhBBCiJOABIGEEEIIIYQQQgghTgL/H8Abs5ipsWj0AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_train):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " #plt.title(f\"Model Performance on training data: {train_exps[idx]}\")\n", - " plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 855 - }, - "id": "OPB0DbY_6wyj", - "outputId": "e29accbe-4029-45b5-cbe1-0e216325d2b0" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAANCCAYAAADx7dxVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5hcdb348fc5Z/rMzsz2kt30npBGQgsJvQkqRRQLiNgVrz87XhW9eLn2DoodRRRFpCgovZdAAklI75vtZXant1O+vz/O7mQ325NN/76eJ8+TnVPmO7O7szOf8ymKEAJJkiRJkiRJkiRJkiTp+KYe6QVIkiRJkiRJkiRJkiRJh54MAkmSJEmSJEmSJEmSJJ0AZBBIkiRJkiRJkiRJkiTpBCCDQJIkSZIkSZIkSZIkSScAGQSSJEmSJEmSJEmSJEk6ATiO1B2XlZWJyZMnH6m7lyRJkiRJkiRJkiRJOu6sWbOmUwhRPti2IxYEmjx5MqtXrz5Sdy9JkiRJkiRJkiRJknTcURSlfqhtshxMkiRJkiRJkiRJkiTpBCCDQJIkSZIkSZIkSZIkSScAGQSSJEmSJEmSJEmSJEk6ARyxnkCSJEmSJEmSJEmSdKTpuk5jYyPZbPZIL0WSxsTj8VBbW4vT6Rz1MTIIJEmSJEmSJEmSJJ2wGhsbKSoqYvLkySiKcqSXI0mjIoQgEonQ2NjIlClTRn2cLAeTJEmSJEmSJEmSTljZbJbS0lIZAJKOKYqiUFpaOuYMNhkEkiRJkiRJkiRJkk5oMgAkHYsO5OdWBoEkSZIkSZIkSZIkSZJOADIIJEmSJEmSJEmSJElHkKIoXHvttYWvDcOgvLycyy677AiuamSBQGDEfb7xjW/w/e9/f9h9HnjgATZt2jRey5KGIYNAkiRJkiRJkiQdtRJZHcsS/W4TQgyxtyQdm/x+Pxs2bCCTyQDw+OOPM2HChCOyFsMwDvt9yiDQ4SODQJIkSZIkSZIkHbVyhkVXOl/4OpbRSeXNI7giSTo0LrnkEh5++GEA/vKXv/Dud7+7sC2VSnHDDTewbNkyFi9ezIMPPgjAnj17WLFiBUuWLGHJkiW89NJLALS0tLBy5UoWLVrE/Pnzef7554H+mTt///vfuf766wG4/vrr+exnP8s555zDl770JXbu3MnFF1/MySefzIoVK9iyZQsAu3fv5vTTT2fZsmV87WtfG/Kx3HrrrcyaNYvzzz+frVu3Fm7/9a9/zbJly1i4cCFXXXUV6XSal156iYceeogvfOELLFq0iJ07dw66nzQ+5Ih4SZIkSZIkSZKOWqYl6ErlKfG5AGiJZago8oD7CC9MOi79zz83sqk5Pq7nnFsT5OtvnTfiftdccw233HILl112GevXr+eGG24oBG9uvfVWzj33XH73u98RjUY55ZRTOP/886moqODxxx/H4/Gwfft23v3ud7N69Wr+/Oc/c9FFF/GVr3wF0zRHFUTZtm0bTzzxBJqmcd5553HHHXcwY8YMVq1axSc+8QmeeuopPv3pT/Pxj3+c6667jttvv33Q86xZs4Z77rmHN954A8MwWLJkCSeffDIAV155JR/+8IcB+OpXv8pvf/tbPvWpT/G2t72Nyy67jHe84x0AhMPhQfeTDp4MAkmSJEmSJEmSdNQyLYFhCrrSeQxToBuCnCEzgaTjz4IFC9izZw9/+ctfeMtb3tJv22OPPcZDDz1U6K2TzWbZu3cvNTU13HjjjaxduxZN09i2bRsAy5Yt44YbbkDXdS6//HIWLVo04v1fffXVaJpGMpnkpZde4uqrry5sy+VyALz44ovcd999AFx77bV86UtfGnCe559/niuuuAKfzwfA2972tsK2DRs28NWvfpVoNEoymeSiiy4adC2j3U8aOxkEkiRJkiRJkiTpqGX29ANqj+ewenoB5Q3rSC5JOo6NJmPnUHrb297G5z//eZ555hkikUjhdiEE9913H7Nmzeq3/ze+8Q0qKytZt24dlmXh8XgAWLlyJc899xwPP/ww1157LV/4whe47rrr+o0Uz2az/c7l9/sBsCyLcDjM2rVrB13jaMaSD7XP9ddfzwMPPMDChQu58847eeaZZw5qP2nsZE8gSZIkSZIkSZKOWr2BH9MS9PaDlkEg6Xh1ww03cPPNN3PSSSf1u/2iiy7iZz/7WaEp+htvvAFALBajuroaVVW56667ME07S66+vp6Kigo+/OEP88EPfpDXX38dgMrKSjZv3oxlWdx///2DriEYDDJlyhTuvfdewA5ArVu3DoDly5dzzz33AHD33XcPevzKlSu5//77yWQyJBIJ/vnPfxa2JRIJqqur0XW93/FFRUUkEokR95MOngwCSZIkSZIkSZJ01DKtgZPAcjIIJB2namtr+fSnPz3g9q997Wvous6CBQuYP39+oSnzJz7xCf7whz9w2mmnsW3btkI2zzPPPMOiRYtYvHgx9913X+Gc3/72t7nssss499xzqa6uHnIdd999N7/97W9ZuHAh8+bNKzSi/slPfsLtt9/OsmXLiMVigx67ZMkS3vWud7Fo0SKuuuoqVqxYUdj2zW9+k1NPPZULLriA2bNnF26/5ppr+N73vsfixYvZuXPnkPtJB085UuMVly5dKlavXn1E7luSJEmSJEmSpGPDjvYEmfzAoM+sqiJcDnlNWzp4mzdvZs6cOUd6GZJ0QAb7+VUUZY0QYulg+8tXTUmSJEmSJEmSjlrmEEk/+aE2SJIkSUMaVRBIUZSLFUXZqijKDkVRbhpke7GiKPcrirJeUZRXFUWZP/5LlSRJkiRJkiTpRDNYORhATpcTwiRJksZqxCCQoigacDtwCTAXeLeiKHP32+2/gbVCiAXAdcBPxnuhkiRJkiRJkiSdeKwh2lfITCBJkqSxG00m0CnADiHELiFEHrgHePt++8wFngQQQmwBJiuKUjmuK5UkSZIkSZIk6YRi9ZkItr+cLoNAkiRJYzWaINAEoKHP1409t/W1DrgSQFGUU4BJQO3+J1IU5SOKoqxWFGV1R0fHga1YkiRJkiRJkqQTgjnMEBuZCSRJkjR2owkCKYPctv+r8beBYkVR1gKfAt4AjAEHCfErIcRSIcTS8vLysa5VkiRJkiRJkqQTyFD9gADyhsWRmnQsSZJ0rBpNEKgRqOvzdS3Q3HcHIURcCPEBIcQi7J5A5cDu8VqkJEmSJEmSJEknnqH6AQEIIbOBpONHW1sb73nPe5g6dSonn3wyp59+Ovfff/8hv9/Vq1fzX//1X+NyrrPPPptZs2axcOFCli9fztatW8flvONpPNd45513cuONNwJwxx138Mc//nHIfffs2cOf//znwtfj+byP1WiCQK8BMxRFmaIoigu4Bnio7w6KooR7tgF8CHhOCBEf36VKkiRJkiRJknQiMYbJBAI7G0iSjnVCCC6//HJWrlzJrl27WLNmDffccw+NjY2H/L6XLl3KT3/603E739133826det4//vfzxe+8IUB203zyE/1OxRr/NjHPsZ111035Pb9g0Dj/byPxYhBICGEAdwIPApsBv4mhNioKMrHFEX5WM9uc4CNiqJswZ4i9ulDtWBJkiRJkiRJkk4M1ghBIN2U5WDSse+pp57C5XLxsY99rHDbpEmT+NSnPgXYAYQVK1awZMkSlixZwksvvQTAM888w2WXXVY45sYbb+TOO+8E4KabbmLu3LksWLCAz3/+8wDce++9zJ8/n4ULF7Jy5coB53j11Vc544wzWLx4MWeccUYhS+bOO+/kyiuv5OKLL2bGjBl88YtfHPExrVy5kh07dgAQCAS4+eabOfXUU3n55Zf54Q9/yPz585k/fz4//vGPC8f88Y9/ZMGCBSxcuJBrr70WgI6ODq666iqWLVvGsmXLePHFFwF49tlnWbRoEYsWLWLx4sUkEglaWlpYuXIlixYtYv78+Tz//PMHvMY//elPnHLKKSxatIiPfvSjhcDQ73//e2bOnMlZZ51VWAvAN77xDb7//e8DsGPHDs4//3wWLlzIkiVL2LlzJzfddBPPP/88ixYt4kc/+lG/572rq4vLL7+cBQsWcNppp7F+/frCOW+44QbOPvtspk6dOm5BI8dodhJCPAI8st9td/T5/8vAjHFZkSRJkiRJkiRJEsP3BILhy8Uk6YD8+yZofXN8z1l1Elzy7SE3b9y4kSVLlgy5vaKigscffxyPx8P27dt597vfzerVq4fcv6uri/vvv58tW7agKArRaBSAW265hUcffZQJEyYUbutr9uzZPPfcczgcDp544gn++7//m/vuuw+AtWvX8sYbb+B2u5k1axaf+tSnqKurG3COXv/85z856aSTAEilUsyfP59bbrmFNWvW8Pvf/55Vq1YhhODUU0/lrLPOwuVyceutt/Liiy9SVlZGV1cXAJ/+9Kf5zGc+w5lnnsnevXu56KKL2Lx5M9///ve5/fbbWb58OclkEo/Hw69+9SsuuugivvKVr2CaJul0esj1DbfGzZs3853vfIcXX3wRp9PJJz7xCe6++24uuOACvv71r7NmzRpCoRDnnHMOixcvHnDe9773vdx0001cccUVZLNZLMvi29/+Nt///vf517/+BdjBt15f//rXWbx4MQ888ABPPfUU1113HWvXrgVgy5YtPP300yQSCWbNmsXHP/5xnE7nsI9rJKMKAkmSJEmSJEmSJB1uw00HAxkEko5Pn/zkJ3nhhRdwuVy89tpr6LrOjTfeyNq1a9E0jW3btg17fDAYxOPx8KEPfYhLL720kHGyfPlyrr/+et75zndy5ZVXDjguFovx/ve/n+3bt6MoCrquF7add955hEIhAObOnUt9ff2gQaD3vve9eL1eJk+ezM9+9jMANE3jqquuAuCFF17giiuuwO/3A3DllVfy/PPPoygK73jHOygrKwOgpKQEgCeeeIJNmzYVzh+Px0kkEixfvpzPfvazvPe97+XKK6+ktraWZcuWccMNN6DrOpdffjmLFi0a9PkZaY1PPvkka9asYdmyZQBkMhkqKipYtWoVZ599Nr1Drt71rncN+F4kEgmampq44oorAPB4PIOuoa8XXnihEGw799xziUQixGIxAC699FLcbjdut5uKigra2tqorR0wiH1MZBBIkiRJkiRJkqSjktWn5c8/1zVTE/Zy8qTiwm0yBiSNu2Eydg6VefPmFYIAALfffjudnZ0sXboUgB/96EdUVlaybt06LMsqBBYcDgdWn1+SbDZbuP3VV1/lySef5J577uG2227jqaee4o477mDVqlU8/PDDLFq0qJBt0utrX/sa55xzDvfffz979uzh7LPPLmxzu92F/2uahmEMGAYO2P12etfdy+PxoGkawJAT/YQQKMrAweSWZfHyyy/j9Xr73X7TTTdx6aWX8sgjj3DaaafxxBNPsHLlSp577jkefvhhrr32Wr7whS8M2qdnNGt8//vfz7e+9a1++zzwwAODrnH/xzFWgx3Tez+jfd7HYjSNoSVJkiRJkiRJkg673kyg1fVd/Or5Xdy9qr7fdpkJJB0Pzj33XLLZLL/4xS8Kt/UtZYrFYlRXV6OqKnfddVehP82kSZPYtGkTuVyOWCzGk08+CUAymSQWi/GWt7yFH//4x4Vgz86dOzn11FO55ZZbKCsro6Ghod86YrEYEyZMACj0FhpvK1eu5IEHHiCdTpNKpbj//vtZsWIF5513Hn/729+IRCIAhXKwCy+8kNtuu61wfN/HctJJJ/GlL32JpUuXsmXLFurr66moqODDH/4wH/zgB3n99dcPaI3nnXcef//732lvby+spb6+nlNPPZVnnnmGSCSCruvce++9A44NBoPU1tbywAMPAJDL5Uin0xQVFZFIJIZ8Tu6++27ALhMrKysjGAwe0NpHQ2YCSZIkSZIkSZJ0VLIsQTJncNtTO1CAHe1J4hmdoNfuiTFCyyBJOiYoisIDDzzAZz7zGb773e9SXl6O3+/nO9/5DgCf+MQnuOqqq7j33ns555xzCqVUdXV1vPOd72TBggXMmDGj0J8mkUjw9re/nWw2ixCCH/3oRwB84QtfYPv27QghOO+881i4cCHPPvtsYR1f/OIXef/7388Pf/hDzj333EPyWJcsWcL111/PKaecAsCHPvShwrq/8pWvcNZZZ6FpGosXL+bOO+/kpz/9KZ/85CdZsGABhmGwcuVK7rjjDn784x/z9NNPo2kac+fO5ZJLLuGee+7he9/7Hk6nk0AgMOzI9uHMnTuX//3f/+XCCy/EsiycTie33347p512Gt/4xjc4/fTTqa6uZsmSJYNOErvrrrv46Ec/ys0334zT6eTee+9lwYIFOBwOFi5cyPXXX9+vl9A3vvENPvCBD7BgwQJ8Ph9/+MMfDmjdo6UcSLrSeFi6dKkYrpmVJEmSJEmSJEkntj2dKb75r008vbWdD6+Yyi+f28UXL5rFihl2T46wz0ldie8Ir1I61m3evJk5c+Yc6WVI0gEZ7OdXUZQ1Qoilg+0vy8EkSZIkSZIkSToqrdnewM273sPN03dzyfxq/G6NNxqihe2yGkySJGlsZBBIkiRJkiRJkqSjTlY3efDpF5iktnN1+i9oCiysDfPG3mihkarsCSRJkjQ2MggkSZIkSZIkSdJR545nd6ImWwHwRzbga3uNxXXFLEs/h+fl7wMyCCSNnyPVJkWSDsaB/NzKIJAkSZIkSZIkSUeVhq40P396Jysr8wBYmpuyjb9jZWAvP3beztTNvwTLlI2hpXHh8XiIRCIyECQdU4QQRCIRPB7PmI6T08EkSZIkSZIkSTqqvLijk7xpsaJKR0RVuuZcS+nG37Gk7XU0xUQVBs5UM8I96UgvVToO1NbW0tjYSEdHx5FeiiSNicfjoba2dkzHyCCQJEmSJEmSJElHleZYFkWBEqMTw1tG5/wPUrrx92jZLu4t+Sjv6roDd2wX+WIZBJIOntPpZMqUKUd6GZJ0WMhyMEmSJEmSJEmSjiot0QzlATeudCu6vxo9MIGm5bey9/w72FB6EQDu6M5x7wmUM8xBb4+m80TT+XG9L0mSpCNBBoEkSZIkSZIkSTqqtMSyVIU8ONOt6L4qALpnv4fExPMxPWXEhQ9nbNe4B4EiyTzpvFH4WghBQ1eahq4MyZwxzJFSX3nDoj2ePez3a8omUZI0IhkEkiRJkiRJkiTpqNIcy1AV9OBM2ZlAfXndDnaJapzdOxnvPr55w6Ilti940didIZrWAcjkB88SOpElsjpZvf/z0hbPsq0tQVs8d9gDZ0NlckmStI8MAkmSJEmSJEmSdMhYlhjT1CUhBC3RLLV+Cy0fx/BX9tvudWrsEtV44rsQYnxHe+dNi3TOJJbW6UzmCgEggJxhYZ3gmSYdiVzhOdBNi4auDHsiKXTTAqAllqE9nisE59oOczaQbooT/nskSSORQSBJkiRJkiRJkg6ZRM6gKzX6fjqxjE5GN5niigGg+/pnAvlcGrusajzpFhQjM25j4oUQ5A07mNEUzdAay+63HTL6iZtpYlmCtniW3ZEUpiVo7M5gWgLdENRHUrTGsnQm+n+f0zmTRFYf4oyHZo26ZR22+5OkY5EMAkmSJEmSJEmSdMjEMzrtfTJIRtIctYMvExxRAHR/Vb/tXpfGbmEHhtyx3ePWF0g3RSGDxbTEoKVmJ3IQKJk3EMIO7GxrS5DM7iv1yuQtOhK5QY9riw9++6FgCiH7AknSCGQQSJIkSZIkSZKkQ0IIQSJrYJiCzuToggEtsQwAVSICMLAnUE85GIA7Nn4TwobqJ6MYWSpf+y5THrmGTDo1Lvd1LEr0CfoY5sDnPJkz+NMr9Xz+3nW0xjJ4OteDZZDJm4UMq0PNsgT6IGuTJGkfGQSSJEmSJEmSJOmQSOXNQmZGRzKHYY4cDGjuKcMqtjqBgZlAPpeD3cK+zRXbPW7NofPpBBOf+Ciezg2F27ztrzPjHxdSse42As0vIVo3DHOG41s8Y5d15QyTf7zeyPa2BGBnTT2wtokP/3E1f129l0mR55l031uY8cBlVKz9GcBhKwkzhRjVz5gkncgcR3oBkiRJkiRJkiQdn+KZPD96YhtOVeHjZ08nltEpDbiHPaYlmsGhKviz7RjuEMLh7bfd69LI4ibuqhzXTCDRso7Qnn/jjWxg++WPYMTbqPnne0loRXSs+C61z38RtX0DprUCTVXG5T6PRum8gcehofZ5jJm8iWEKIskctz6yme3tSQDOnF5GUzTD7s4US+pCfDd4L9N33sleo5zdnplMfPM3ROZ+gES2bMTv+3gwLYGpyEwgSRqODAJJkiRJkiRJknRIPL6pnae2tAOQ1k2+/ta5IweBYlkqgx7UZMuAptBgl4MBRDwTqYztGr8x8d31ALgSDZQ98V/kW7eQtjQuz3yZb9W+hWrX/+Lt3EhGNwm4j8+PUYZpsaczjdupMrnUj6YqvLSjk188u5NM3mRHR5KsbvL5C2fR0JXmpbVvUuYy+PLFZ3B59I9Urr2TyJzr+IX2AV5fs4pH3TdRtuHXtC/7ApYl+gWWDgXLAl0GgSRpWMfnq5ckSZIkSZIkSUdUIqvzq+d2MSHs5bw5Ffzx5Xq+/e8t/PLapcNm0jRHM9SEPWjJFoz9SsHAng4G0OaqY2LsCdLjNA1Kie1FoLB1zqeYvfmn6Gj8ec7tNK4N8mp9N4tL5uLt2kQqf/wGgVpiWUxLkM6Z7OpIoqkKn/rLG5hCMMmn8xnPY5RfciN11eU4k8387/av4Mx1Y77gQzPSdM26huYzbuFdQuHxLRFecqzk1I2/o3P+B0nmfQQ9zkO6flMIhOwJJEnDGlVPIEVRLlYUZauiKDsURblpkO0hRVH+qSjKOkVRNiqK8oHxX6okSZIkSZIkSceKu16upyma4Yblk7l6SS0XzaviqS3tdI8wLr43E8iRah3QDwjAqak4VIUWrRYtH0ekOsZlvWpsLzlvBe/deia/U65g4/Kfsnj5JVQUuVm1q4ts6Vw8XZvJ64dv5PmBEAeYGpXMGUTT+x5bVrf46ZM76ErlufnSudwxZz3vT9/JWas/jpqLUffUJ1GtPM2n/w/RmVfTevLnaVr+LVBUNFVh5Yxy/if+VlQ9TdmG3xUaS5uWoCWWoSuVH/eG0aYlMOR0MEka1ohBIEVRNOB24BJgLvBuRVHm7rfbJ4FNQoiFwNnADxRFcY3zWiVJkiRJkiRJOgbkDYtfPreLBbUhrt76WeqevpHZlUVYAra3J4Y8zrIErbEslX4VR6YT3TcwCAR2X6BOpdj+Ih056PXqpgXd9WzNlpA1BRWX/x/anLeiKAqnTS3ljYZu4qE5qEYGtWvnQd/foWRYYshJZ8Npi2f7fd3Qneaf65u5YG4lMyqLKGp4BsNTgq99DbPuPRt/+xqazvwOkXkfoPmMb9Kx+L9A1QrHnzWznK3WBBqCiwk0Pk0ya6CbFrs7k3Qm8jR1Z2iOZg724fZjCTHo5DJJkvYZTR7jKcAOIcQuAEVR7gHeDmzqs48AihRFUYAA0AUY+59IkiRJkiRJkqTjX30kRSyjc8VUQfDVpwE4OXwBUMb29iSnTS3F/ujQXySVJ29aTHImUBADxsP38rk0EpZdWiRyYxvbPlhvmme2djCvYxd7xBxuvmwek0r9hW2nTinhoXXNrDXqmAo42jfA9IVjus/DybQEOcPC7dBG3rnHql0RvnTfejL6vuBRKmficahce9ok1HwCf9tqOk76MLniWdQ++xkic99PbNrbhjzn7Ooi6oq9vJSfwbsSf8fIJNjR3j9IkxvnTCBn+3qy3iqgaFzPK0nHk9EEgSYADX2+bgRO3W+f24CHgGbs37h3CSEG/EYrivIR4CMAEydOPJD1SpIkSZIkSZJ0lNvZYU+POjn9IgB5fw2nbPkOXr5JczQ7ZF+dlpidGVKt2tk9g5WDgd0cOm70NJjOJ8e0trRu4nVqhb5EL++M8Mm7XmGzu4v5c08iXR3st//p00oJeZ08FQlyuerE0XF0j4k3LEFON8E7uv47sYzOp+9Zi2FZnDQh1G/bObMqCPtcBHY/iSIMEnXnkq4+lWTNGRi+ykHPF/Q6qAx6cGkq58yu4D+rJnGNy8TbsZZUzfJ+++qmhRBi0IDggah7+H1Ep74Na+qPD3kTakk6Vo0mCDTYb8/+OXYXAWuBc4FpwOOKojwvhIj3O0iIXwG/Ali6dKnM05MkSZIkSZKk49C2NjswM6X9cTLFs2le/k2m/etq/p/zQTbHppLKGYMGgZqjdklSuWX3+RkqE8jrchC17O4TIj+2TCC9J/uk9/6f3NxGndqFhoWvcirpPvuWBFyFxtZPbGojWzIDV+fGMd3f4Waagqw+fIaNYdrbNVXhy/9YT0cyx3euXMCsqsEzaIoansZ0FpGuXGIfP0RwrtjvpLbYV/j6ysUTuO7lGQC0vPkMTcpJ1BZ7KeppEC2EnQ3kcY4+a2lIpoEj24UrsRfdsnCr43BOSToOjaYxdCNQ1+frWuyMn74+APxD2HYAu4HZ47NESZIkSZIkSZKOJdvbE8zyJQm0ryE+5S2kq06le/oVXK/9m67uKJn84D1rejOBytK7EIpGPjh50P28To2YbgcSlLEGgUyLdH5f54qNzXFOCdt9ijwVU6kt9qIoEPA4qAl5ADh5UjHxrEEsNAd3xwbGby79+DMsi+wIPYFa41l2d6a459W9PPJmK+89dSKzqopwpFqZcd/5lK+7fd/OQlDU+AzJCWeCOnR2UdjXPwAEsLAuzPL509hm1aLveYUv3ree9/xmFR/+42pSOft7kDfHpyTMzMQAcKZaZF8gSRrGaIJArwEzFEWZ0tPs+Rrs0q++9gLnASiKUgnMAnaN50IlSZIkSZIkSTo27O5IcaX3DRQEsSlvAaB7xtW4yTOh+9UhgxTN0Qwuh0owvo1caCrC4Rl0P59Lo8s4sEygvGmRzduBByEEG5tjzPN1A6AWT6bY72JymZ+JJb5CmVLYa99XpGgWjmwEEq1jus/DybQEecMackpYVjfpTunUR9Lc8q/NLKoLc9WSWhAWtc9+Fk/3Nqpe+w6Vr30bhMDTtQVnupVE3TlD3md5kZvaYu+A2xVF4X8vn0/JnJUs9+zi5ktnc/miGlrjWba02oG33AhZS6N+3OkoAM5Us5wQJknDGLEcTAhhKIpyI/AooAG/E0JsVBTlYz3b7wC+CdypKMqb2OVjXxJCdB7CdUuSJEmSJEmSdBQSQrAnkuYc38tkw9PJFc8EIF11ChnVz+LsK+T1j2JaotCXp9e6hhgzKwN4uraQrrBLjxyaMiCzw+vS2NuTCYSeZix0UxRGkzd2Z4hnDaY5IwjFgSNcCzCgVC3ss++rM2A/Fto2QnDwUrUjzbDEsGVWzdEMlhD89MntANx4znRURaF0w+8oan6BpuW34olsomLdzwnWP4Zi2Rk7idqzB5xLUaCuxEdomP5DxT4XTVVLKdv6Z84MdbI47GPim//At2UTrtB55ANzxuVxi2wUAEcuhpFJgLdkXM4rSceb0fQEQgjxCPDIfrfd0ef/zcCF47s0SZIkSZIkSZKONR3JHEouznRlPZ2zPlm4XWgu9oRP4+zIGjancmR1E3+fYEsmb/JGQzcfOLkE1/pGuma/B4BJpT52d6aw+iSMeJ0aXboTNFDG2BhaNy3yhoVp2VlAALW0kw/U4HQOHszoDXLEHaUAWKnOUZVUHAnuDfcQMlSyJe8eEAS6/41G1jfEaI5mWN8U48ZzpttNnGO7qXrt28TrzqNr9vsAyAcn429dhWqkSdSdg+GvotjvJJrWC9VwdcXDB4AAVFXBmHAKAKH6R5m0/R8sdu62Rw81/C+tb/k9nHLlQT9uK91d+L+IN0OJDAJJ0mBGFQSSJEmSJEmSJEkajZ1tSWYre1GxSFUu7beto/oc5nQ9yRt7XydTe26/INDq+i50U3BGUTsA2ZLZBL0OfC4HIa+T7pRe2Nfn0kjqYLncKPmxZQL1ZgFldJONzXFUBYrzLehFdfi1wSdK9QY6ksIuT7NyiaM2CFT0xi/xWxbRxe/qd/t/NrTymb+uK3y9fHoZF861J3yVbvw9CEHTim/b6T1A54KP0rngo/3OUR3y4nc5aOzOUF7kJuQb3QQyrWQqurecyjU/wNI8fKfqh7zWanGv8kUcbeuAgw8CiWxs3/9jjcD8gz6nJB2PZBBIkiRJkiRJkqRxs7UtwVy1HoBsyRwUZV8fZWPqeZgbvkao4Qmy+ln9jnt5ZwSHqjBL2Vs4dlKRHXQp8bv6BYG8PRkupsMH+ugzgQzTKqwlkzfZ0BSjttiHO9lIavIFQ44q7w12xCx7PSKbGPV9Hm5qthtnuoNcJgU9ja0TWZ2bH9zAlDI/377yJFRFwe1QURQFxchQvOMfxKdcMuTYd7BL8DRVodjvQtMUigaZ7jYUj1sjXbmUYP1j7D3vFxCby+o9O8mW1uCI7sayxMGPdM9EC/9V4k0Hdy5JOo4drQFsSZIkSZIkSZKOQdvbk8zX6tE9pRi+SgJuB2VFdmPlcFk1b4gZ1HU822+MuWUJnt/eyezqIlyRLZiuIO7SiXhddrDH53LgdtofXTxOlSKPHYAwNR/KGHoC6X16C2XydibQnFIVZ7YTMzRxyOMCLgeqAnHdiVBURO7oDgIpwsTq2Fy47XuPbqUzmePGc6bjczko7ViFr+MNAEK7H0bLx+ma9Z5hz9v7nAMEPc4hA2aD8To1Wk67mZ1vvY/ExPOYWWmPou90TcAV2z0uE8JEvyDQ/sOsJUnqJYNAkiRJkiRJkiSNm50dSRY4GsiWzgVFIexzUhX04HGqODWVVxynMCG7HSO6L1tjb1eajc0x5laH8HRtJlsymxK/u995i30uvC6NKWV+wj47qKRr3jGNiM+bFp7ON3GkWmmOZmhP5Fgc7AnohCcNeZyqKoS8ThJ5A8vhR+TG1ofosNEzqGYOAGfbBixLsKa+m7teqeetC2uYWVmEM7GXyY++n6kPvwt/80uUbPkzueAUUtWnDXvq/Ztlj4XXqaEHJpDpafY9qdSHU1Oopxp3fA+5/PAj7UclF0coGrqnDC2x72drqClpknSikkEgSZIkSZIkSZLGRSyj09CRYIq1l2zJXBRlX9ZIXYkPRYH6osUAeDrWk9VNLEvw7LYOLAELJgTxdG0hWzIHj6v/R5Vin5MpZX4cmlro0aNrXhR99EEg3bSY/Oj1VL9yS2FE+Wx3V88dDB0EArsvUCxjIFx+yB+dmUAiHSn839u1icZomi/+fR2VRR7ee8okEIKal25GKBr5QB2TH/sA/rbVdhPuYTJ7VNXuw3SgHJqKo0+/JaemMrUswKZcOVo+Tj7ZfsDn7qVkY5iuIHqgGi3ZghCClliG7rQ+8sGSdAKRQSBJkiRJkiRJkg6ablrs7kjhT+7GhU62dC4hr7PQ68Xj1Ah6nORKZtlfd20lp1t0p/OsbYjiUBUWBOJoepJcyWzcjv5BB4emFkbKh7x2VkpO9aLomVGv0cjEcWY6CLS8zK52O5AzRTQAoJRMGfZYOwikI1xFcJRmAhmprsL/PZGN/Oq53ezsSPGRlVPxujSK9j5OsOEp2pd8ht1v+TOGtwxLddE94x2F46pCdtZWX36XY0zlX4Px7jepbGZlgNWJYgCszp0HdW4AslFMdxDdX4MSb+Lpre10JvLo41BqJknHExkEkiRJkiRJkiTpoDV2Z2jsTjNH2QNApmTugOlRRR4HJcUl7LXKSTes47FNrXztwQ38Z0Mrc6qDBOPb7B0r5w17X8U9pWJ51YM6hkwg0WU3nXZkI3Tt3UB1yENp2wtkimfjCFYMe2zI5yKWzoM7AGMcS3+4iJ4gULZ4Fu7IJv722h7OnF7GssklKGaOmpe/TrZ4Fp3zb8DwV7HzrQ+w823/wPSWAlDsd1Je5GZKmb9fICjgOfh5QvuPq59ZWcR2w25ErXQdfBCoNxMo5qxAxBu5+cGNwL5pcJIk2WQQSJIkSZIkSZKkg9ISy5DMGuzqTDFXrcdUXRgl0wZMkCryOJhU4mOrmIjZupEv/H09T25uZ9nkYj59aojQ7ocBcFSPEATqCS5llbGVg4lYfeH/4fZVXDKzCF/rayRrz8KlDf/RqDcTCFcA5SAygYxDmJlipu0g0HbfEhxGmumOTj6yYioAoZ0P4Uo20XLqV0G1nz/DV062bAEAXpdKTcgL2FlXU8r81JV4mVDsLZTfHYzeTCCHpjCzKsC5sytoEOVYaKjduw76/EouRt4R5KHdCkVkiHZHSGR1mQkkSfuRI+IlSZIkSZIk6QSRzBn4nNrBj+PuoyuVpzORB+DNxhjXaw3kimdR5PMOKCFyaCrLZ5Rh7V3GtO2/5vuXz2ZSZTGTX/82Zf/+NYqwiE65FLc/NOx9FnnsoESGsWUCaTE7Eyit+jld28yUkl2olk6i7mxKRwgChb1Oohkd3EUo6c5R32dfpiXoSuWpCHoO6PiRiJ4g0E921/AbF9x6msDhd4EQlG34LdnimSQnrBz02OqQt9/PhUNTCw24x4PHpaIoMLHEh9uhMbHUh4GDqLsKZ3T3wd9BJsr6VBU7cyFwQJXSxfa2JKUB98jHStIJRGYCSZIkSZIkSdIJIqubJHLGmI8bqqSmO5WnObqvJ8/6xm7ma/VkS+cOKP/pFfY68dWehCpMFnrb8Ik0ZRt+S6LuXLZd9TgN5/1ixCbEvZOq0nhQjcyoJkAJIdBiezE1L08YiznTsYXKtucxHT6y1UtHDIyFvE7iGR3hCqAcYDlYMmuQGo9JWEPYvtsOchXPOQuhOJiQ3QGAv+UVvF2b6Jz3wUEbQHucKv6DmP41Gm6HRnXIU7ifgNuBU1Noc9Tiiu05qCle9ZEUyVgXLXk3559mTyCboETY1p6QmUAHSE5VO37JIJAkSZIkSZIknSB00yKeGfu0pLZ4tt/XliVo6ErT2J2h97NiazyLlWgjZMXIls7FO0QgJ+BxkC2eDYCnazOBpudRhEHHSR8lVzwLh6bgHCErx+NU0RSFtHCj6iksa+QPrJua4+iRPXQ6KnnRnEPIihLe+QCpmjNwub0jHh/yOrEE6A7fAQeB4lmdzCEKAjV0pVmzdRc5XHzi4pPJhqfj6doEQNmG32B4SohOv2LQY0v845fxM5y+WTmKolDid9Gs1eCK78Y8wGBNLKNz1S9eIkCSpbMnM3/OXADmBpJsbU0gBDIQNEZ5w2JX5+gz7KRjiwwCSZIkSZIkSdIJwjAF8aw+5qv8sYxOVt8XvGiOZYjuN3r7zcYoF2mrAciUzhswDaqXz+XAKJ6KpbnxdG2lqOEpTFeQdOXJPdtHHkWuKAo+t0YSDwoCS08Pu39TNMNlt71Ad9MONqbDdJYuA0DTkyRqzxkx6AQUmlznVB9q/sA+ICdzBqYlyBnjGwgSQvD//rqWYhLgKyHodZItm0eg+UWmPnQFRXufoGv2+xAOuwyt2O+kNGAHflSVcS37Gotin4sGpRpNT2Ek2g7oHDs7kiSSSTzoVJRXooWqESjM8cbxtL1B5avfQh/n5/t4lsjq7GhPks6ZMhvoOCWDQJIkSZIkSdIJIZ4dewbM8SZvWlgWYyoJM0wLISCSsvv+pHIG3amBz2XHnjf5ivPPJKtPx6hZVhjnPpgin4dceAaers0UNTxNovYsUO0yoaGCR/vzux0kLTuzxMoNH5TZ1ZFECJjiiBCqns47L1iJ7qsCIFG7cnRBoJ7myBnFi2LlwciPap290nkDw7Q/VI93NlA8Y7Cmvpu5xRaKtxivS6Nr9ntJTliJcHhI1q6kc971ADgdCtUhLzVhu+Fz2Oca9nt1KJX4Xeyy7AlhRA5sQlgsoxOkJwjoCeNyuzF8FSwzVnOHuIWK9b/AiDaP04qPX52JLD95chvn//BZNjTFANBNGQQ6HsnG0JIkSZIkSdIJoTORI+g5+ClHx7LesphYWh/1c2H0lFp1p/JUFrlp6tMDaN+JM1zf/E101UPT2T/B7x4+s8Tr0siWzCK840EUYZCoO7ffttEocjtIWD3305OZo5sWkWQeh6YQ9jpx9AR3GrszBEnitZLUTJ6Nq9hHfOL5+DrWogcnjSoIFO4JAqXpKR3LJ8FRMqq1AiSy+wJvGd0kPOojR9aZygEQEgksTzFep0amain1lb8dsO+EsLcQ9Kkr8R7RD/olfhfbIhUAiMhOmL5izOeIZ3SCiv39V7xh3JqG7q+mumMtKewgoRltgMpJ47fw44gQgld3d/HdR7eypr4bgDX13cypDmJYFi6ZN3Lckd9RSZIkSZIk6biX1U1SOXNUvWOOZ72ZKGMpCesNHAkBuzpT5PT9+qsIQfjZrzKLPTw+4+sY/io8zpF6+mhki2ejCAOBQqL2bNxOldpib6Hp80gCHgeJQiaQ3aMnnTfpSORoiWbpSu/L1GnoSjNJsyd65YtqAWg+4xZ2vvUfALgcoy8HS/UGgXKJUa2zV6JPJlp6nDOBIkn7sXrNGMJbjKIog34PQl5nYbIa2GV1o3nsh0qJ38XWbBihOFC6DiwTKJ7RCdETBPKEcDtVMuULyYRn8SnzswCIWNO4rfl40hbL8ul71vKe36xiQ1OMj6yYyoSwl/qu3qDqif16ebySmUCSJEmSJEnSca+3GXLetPCoo8s0Od7opoWSTyEcXixLJWdYQ07w6svo80FwQAAIKF93O1V77uWnxuXMOulSADwjZPN4HCodJXZz6EzFYrSicmZWFo3l4RBwO4inezKBesrB+vYt6k7pVBTZPXD2dKaY6+0GA6zwRBQFhOpAqA4Uxc4qGklvOVi8J/DEGJpDW5Ygk9/33GXydr8VZZBJXQcikrQzgTx6HMtbDIDX5SCT71+yVhE8usall/hddGcF+bIqlMSBlWzFMjpBxS4HU31hXJrK9tNvAQSJe1+COBCXQaD9rd7TxUfvWkM0o3PRvCretbSOEr+Ljc0xdnWm8Hasw3RMBu/EI71UaZzJTCBJko5ashmdJEmSNF56+wHlhhh1fiLQDYOZf1tJxes/AvoHTIY9zhr6OQtv/ztVq7/LP8WZPBT+ANUhO+gyUl8fh6aSL5uHUDS7LGuUJWB9BdwOYoYdBBL6wCBQ3rAK2Td7u9LMdNmlLo6SSf3GofvdjhHHwwOEvfZ9xXqCQGZ29JlA+Z5sKn/T80x67IMI0xjXn8XOVB4QOPNR8Nolar79vgcBj2NUQb/DqXcqWd4ZhGzsgM4RzxqUOXqCQN4wqqrgdKqgqFRXVZMWbpCZQP3c89pe3v3rV3BqKj9+5yI+fta0wvdicomX96b+yPQH34r3+f87wiuVDgUZBJIk6agUS+t0JsfWcFGSJEmS9ieE4M2maCELY7ynMh1LjFgbzkwHpZv+iGJkyYwyCGSm47i7tva/0TKpXP096p79LK8p8/lf7ZP896VzURRlVCPeAZyhSna8/SE6T/rwqPsA9eV3O4gadnaO6MkE2v8xdad0TEvQHMsy2dGB6SzC4S8pZPUAFHlGVxzhcaq4NJVuo6cEbQxBoN4MqtLNfyK493G8kY3jWhIWSebwk0UVBhQygfo/p+VFR1cWENjTwQByjiKUbPyAzhFL65Q77Ewo1Wc/dlfPz19NsY8WUYIVaxyH1R77hBD83yObuem+N5lXE+KH71zI5DJ/z0YLX+sqPtr0ZW50PIClOFASMnh2PJJBIEmSjjqxtE5Dd7rQg0CSJEmShjLS34p/vN7EW3/2Ilta7A+Y+RM4E8iM2h+EHbluQrv+OeoJVb7Vv2DG/Rfjju6wb7AMJj3+ISrW/oyHHefzQeOLfPmtCwtBhtFmm3icGtmykxCa+4AzgbqM3sbQSUxLoBv9s4jjWZ3mWJquVJ4a0UG+qBa300HQY5eBweiDQIqiEPI56dJ7so/G0BMoZ5hgGQSaXwTA3/wiHYncuE0JiyTzTPJk7S98diaQ26EWHqPXpY6619LhVNqTfZLTAii5A8sEimV0Sh12s3KHLwSAu+dn0OfSaBElOJKtmCdwP7CWWIad7Uk+etcafvXcLi6cW8nXL5tb6A9V1PAUs/56JtP+dTU1sdf5mn49u4vPQE11HOGVS4eCDAJJknRUMS1BQ3caITih/1hLkiRJo5PODf8h+t7VDQA8u7WN0g2/w4we21e2hRAH3tw6bgeBTKef0s13jToTSI3tQREmVav+F4Dy9XcQbHiSn7o+xGcyH+RzlyxkWnmgsP9oAzq9wSJFGf1Y+L78bo3OXE9gI58etLxNCNjUZAdrys1W8kV1uBwqDk3F59JwO1XcjtHfd8jrpCN/IEEgC1/7G2j5OAKFQMvL5A2LnR1JOpO5gy6Bj6RyTPTZQaDebBhFUZhY6mNSmY+6Et9Bnf9QKe4JAqW1ogMOAsWzOqVaBktzozjtpt29mUB+l0YrpbjSLSfsxcWsbrKnI83/++taHtvUxrWnTeLGc6YXJueVbvw9kx67AdNVRMPZP2HTe9ZwDxfRZoVQ0+1HePXSoSCDQJIkHVW603l63wedqH+sJUmSpNFL5Y0htzVFM7yyuwuHqhDf8TI1r3wD7+Z7D+Pqxl88a4w6eDNAT1+UzpM+gq9jLe62daPKjNISzQgUgg1PUfbmr6l4/Uc8qZ3Jbanz+dpl81gysbiwr9OhFLI7RuLumUrlcWoH1CA54HaSEvuaNA/V46g1ngUE4VwLeqC2ECCwJ2WNLTsm5HXSkespQRtDOdj29iSZLY8hFJXotMvxtb4Glo4Q0BLNsq0tSVcqf8ABvs5kngluOwik+EsLtwc9ToIe55gCXYdTbx+alOJHzR1gOVhGJ6ymMd2hwm3unslofreDZlGCJ9tBXj8x2wxsbI7xxfvWsbklzucumMk7l9bZv2+WQfVLN1Pz8teJTzyfnW+9n+j0K1DcAepKfDTki9AyXWAO/RorHZtkEEiSpKNKV2rfH2hDZgJJkiRJI8jo5pBZFPetsTNfrj1tEmcaLwPgiNUfcNbF3kia9ngW4whepOhO5Ufd0HmAeBOW5qFz/gcxHT5KRpkNpKVaiE++mHxRHdWrvknU8vHfueu4+a1zWVQXLuynKFBX7CtkGIykNxPoQPoBAQTcGmnsRtQinxrysbTHc5QSx2Fm0IN1hZHowf3GpY9G2OukNWsHjvpmAo2Uvfyjx7dhbHucHc7ZtNacj2ak8XWsK2zPGxZN3Rk2t8ZpimbGfCEsksxR5extjlw8wt5Hj96eQAn8qHoKTH3M54hldIKkEH2CQL2BvsllflpEKSoWZrRlfBZ9DGmPZ/nMX9fRmcxzy9vmcfasCgDUfILJj32Qsk130nHSR9l73i8Rzn3ZYpNKfOzK+FEQkO48UsuXDpFRvUIrinKxoihbFUXZoSjKTYNs/4KiKGt7/m1QFMVUFKVk/JcrSdKxaLRXtVI5o9/o2b4jaSVJkiRpMKYlBp2yJITgvtcbmVMd5NKTqniL9ioArsTeA5rKZFmCeFanLZ5jZ0fqiEywtKddHXgmkJZoQg/UYLmCJOvOxt/yyogBJdO0cKZayRdNZMfi/yaHk6+aH+bTl53Gwtpwv30rg55+U7dGXI+q4HQoA6ZYjVZ5kRsLFV31oORTZHULZ6KR8jd+xvR/XMSUR64BIWhPZDnb8SYAeuWiwvFObex9ckJeJ5EsCM0NOXtEfFY32dmRHLLpuGFaxCItLFB383B6Lh993s5e8je/NGBfy4KuZL7fRbHRiKTylGp2EMgRKBvTsUeSy6FS5HYQs3oCEAfQHDqe0SkihdU3E8ihUhl0MyHspUXYH0utE2xCWCZvcsMfXqM5muFrl87hpJ7fV3f3VqY9dDmBpudoPPNbtJ76FVD7/w5OKvWzJ2eXeJrx1sO9dOkQGzEIpCiKBtwOXALMBd6tKMrcvvsIIb4nhFgkhFgEfBl4VgjRdQjWK0nSMciwxKiuWu7/hse0hBwTL0mSJA3LtES/Cwi9Vu3uoj6S5pxZ5YRim6lVOkgLN8743sK47rFI5o1CuXLesMb8IX08dKft+zyQTCAhBI5EM3l/DQCZkrm4E3vJpYbvw6InO1HNHFlfFZ9/s45l+m8487L3Fz5Q9ioJuA5o+pTHoR1wJtB5cyqZWRkgabnQs3Y52JT/vI+qNd9DNTIEml/C1/YabfEcVztfIh+ow5pwygHdV6+g10k8o2M5/Yi8HQSKZ3VyusXO9hSxzMBMltZYlkX5tagITj7vatzBCjZZk+h48wmao5lB7yc+yHmGopsW0bROqWqvh2MoEwjsn50uy+7lQzY6pmMtS5DIGQRE/0wgRVGoCHoo8jhoET3lcfETKwj0vUe3sLEpzlfPLuf85l9Qtv6XlK+9jekPvBUt283ui++ie/Z7Bz12WrmfDmE/n1ZCBoGON6PJBDoF2CGE2CWEyAP3AG8fZv93A38Zj8VJxz7Z2FcCsMTIQSDTEoO+cZIlYZIkSdJwTEuQ3S8DQwjBn16px6EqnDm9jNCe/2ApGveZK3Amm8lls2O+n2S2f1+M9kTuwBs0HwAhRJ8gkDXmiyS6KXCmmtEDdhAoWzIbAKtt07DH9WZP/HM3bGqJ87Hz53PShFC/fYJeBxPC3jGtp5fPrY16mtj+nJrK/7xtHknLzY7GVoSp44rvoX3hjWy/4j+YziJKNt+NHmthmVhPdPrluA8w4NQr7HOSyBlYrgBKTyZQoudnw7QEeyNpdrQnSffpVbWlLcFKbT1ZZ4jwtFP43jsWEq86jRm5jXz67lf4yZPbaOhO97ufrG4NmVm0v+6egGRQJLGcfnCMrifT0aLY56LT6Cnry46tOXQiawdnvWYS4QkN2O53OwqZQGqi+eAXe4wwTIsH3mjijOllvK3z11Ss/wXVr95K1ervkqpcyo4r/0NqwpkDjlNVKPY7OXtWBR30BoHaDvfypUNsNEGgCUBDn68be24bQFEUH3AxcN8Q2z+iKMpqRVFWd3TIcXMngmTOkIEgCSEgPcII1FhGZ7D3s7IkTJIkSRqKZQmEYEAm0PrGKP/e0Mr5cyop8jgJ7v43yapTWS+m9fQGaRjijENL7BcEMkxBZzJ3UOsf0/3nDHRD4Gtbg6/x+TGXtOn5HI50O1ZRDYoC2ZI5ADg7Ng3b48jqmab2aIPGu5bVsWJGeb/tQa+DiQcxeSrsPbiAxdLJJaieAJGubnZu34oiLPKhyQinj+4ZVxHa/TDnxh9AwyI67fJCr5gDFfLaPYRMh78wln7/Me+ZvElD174Mn+1tCeYq9SRLF4KqoakKVQsvxKPo/K30V0S3v8wn7n6dL/9jPRub9wVB9v+ZG0pnsjcIlMD0HFtZQGA3h27J2UEgKx0d07HxrH0B0WsmwBMesN2pqejOIDnFc0IFgVbt7qIrrXNZTZLi7ffSOf+DbLxuA1vf+Rx7LvkThq+i3/4OzZ4kN7c6SG2xj9piLzmXnUElEvJz+/FmNK+Cg7XqH+pT2VuBF4cqBRNC/EoIsVQIsbS8vHywXaTjjGkJkjnZUX4s0sNMOTlWWUKM2L8gmh48rV635IQwSZIkaXBmz9WDvplAliX48RPb0VSFa5bV4e7aiie2g8SUtxD39FzH7No9pvvJG9agU7Qih7EkLJLMg6VT99QnqX3hpgGBh5GYsSYUBH/fIdjQHEMP1GI6A3i6tgwbUNqxYysAEyZO5z2nTOy3rSLoZlKp/4Ame/XqbdJ8oDRFIRgME3bq/P3JFwDIBWoB6JrzXlQrzw3ifpq8s8gVzzjo+wv77CCQrvlR8kmSWWPQi1h5wyoEKHa1x5mqNGOVzQTsCWqJunNpW/xp5uXf5O+Or/Fs6beZFX2O7/57Y6Ep9GhLwiIpOxjpN+NYgwRCjnYlfhctWTsYaGW6x3SsnUUucBmJQTOBAIo8Trod5WjJEycI9K/1zXicKhe1/w5L89C+8JNYriD54GRQ+v8O+N0a0ysChLzOwu+yoiiEQmEyiheRlJlAx5vRvAo2AnV9vq4FhvoNugZZCib1YVqClAwCjZphWsQzx9/zNVI5mG5apHKDbzdlJpAkSZI0BDMdo/K176Jn04XyqFd2R3hmawdvW1BDqd9F9av/i+nwEZ98CUZosn1gd/2Y7ieZM/C1rWbWPWcw4fkv4Wu1m0wbpjgsJWFZ3SSZNQjt/jeuVDOuRAO55Njab3Y27QLgxQ4v/1rXgqopZEtm4+neMmTW7Y72BKvWvYmJyocvORW1T7CnMuSmMug58Ac1TlRVQXH5mFuqsaI8BcBfd9glX7niWXSVLUVTBDur3gIcfNCpNxMo7/Ci5JOFQM9gIj0ZOon2ejyKTj48DUWByiIPqBrtJ3+OLe9eRfNp36Ba6eYH1nd5yLoR6/Fv4IrtIp03RzWJrjcjzWPEEZ5jbzZPid9FQyEINLZysFhGJ0AGFQtliCBQwOOgQy1DO0EygXTT4pE3W3lHTTcle/5FZP4HMb2DNwsvK3IxpcyPc5AMubDPSbdajJKSQaDjzWheBV8DZiiKMkVRFBd2oOeh/XdSFCUEnAU8OL5LlI5lMhNobHRTkBjmzcSxyhL2tIuhAkGD9QLqJTOBJEmSpCHtfIqKdbfhb36pkM3y4ye243NrXLWklvD2v1PU+Cxty27C8JXjKakhjwMttmdMPXWSWQP/tgdwpFoJ7XyQaf96ByWb/wRwQE2mxyqSzHHrwxtxvfZzLNUOQlgtb476+ERW565H7UlUZTVTeW1PF0GPk2zJHDxdWzDMwf8+/88/N1GtdKH7KpldU4zTYQeB/G6NiqIjHwDqZTn9OMw0l082MND4w4YcLTG7HOuN2utoF2G6pr4NRWHcysGyig9FTw77PjeZNcjqJs6uHQDkQtMJuB0EvU5642mW009k/g1sfeez7Dn35+zVJrK48Y9Mf+AylFx8VCVhvcEmtx7FOsaaQoPdE6hDt3tKiTE2ho5ndILY/ZQUX3jQfYo8TjqUMhypE2NE/Es7I8QyOu/nX5iuIB0nfWTAPooCtcVeqkPeITP5Ql4XEcKQkuVgx5sRXwWFEAZwI/AosBn4mxBio6IoH1MU5WN9dr0CeEwIkTo0S5WORaawJ3boh+EN0vFAtyyy+uAp58ey3qukQwWBoumhg0CyJ5AkSZI0FJGxs2E8nRvJ6RZPb2nn1d1dvGNJHWGri+pVt5CqXEpk7nUATK0I0mCVo0br0Uf592VvJMWtj2wiseUpnjfm8oMF/yJVdQoVa36IqqcOaNz8/mIZfciyaNMSbG6Jo+95harkJtoXfAIApW39qM+/pr4bd9r+AHzx8pPJGRY725NkS2aj5eOIWOOgx+1sTzLdm8AK1OB1aUwu9eNyqNQdRA+gQ0G4/Kh6CneyEd1fA6qDP75cj2Fa3N48g9PyP6eksg6nph5U6RrA1LIAbofK3pSGkk+O+D5lZ0eSspydeZYLT8PvdqCpysDR9KqDxNTLePrk23lf/stoepKixmdJjaJNQGcyj1NTcOZjx9xkMIBSv4s0boSiQWZsI+JjGZ2QYn/8VL2DZwIFPQ5aKcWRbgfz+L043ft++1/rmgm7BFO6niM2+WIsd//nxetSmV4RoNg/fD+usM9JuxVCTbUfsjVLR8aoQuFCiEeEEDOFENOEELf23HaHEOKOPvvcKYS45lAtVDo29ZbyyJKw0el9I3G8ZU9ZPVdbB+sLlDPMYfsayMbikiRJ0pDSdhDIG9lAVjf4wWNbKfG5uGxBNVWrbkU1sjSu+B4oKooCc6qD7BUVaNH6UWfw3PiXN3hzy3ZmKI3sDS3ljpdbebL2RpzZTso2/GZcLnS1x7M0dGVo6EqTyhnEs3ZQKJLM0RzNsLYhxoccjxAVfh4NvwvdW46nc9OoLxo1R7PUKBF0Z5BTZ03E7VB5bnsnomIeAEr7xgHH6KZFazxLudWJEagGwOPUmFERGLR05Ihy+lCNDK5EA2aojisWT+CFHZ18458beX1vN584ezrFPhfugywFAyj2u3j3KRPZ0mWh9IyIH86WlgTTlGZyjiJMTylFHjv405tRtL/zZleyTptHQg1RVP/EiNNVwc4UK/U50PIxhPfYKwezgxEKurNozCPiYxmdsGJ/HxRf6aD7BNwOmq1iFGEhEsdnNlA0nWdza5xVuyP8a30L76/ei0NPEJ98MYoCU8r9TC33M7HEx7TywKgm8oW9TlrNIFpaZgIdb46yV3DpeNPbsLE3lTWazrOnMzXq+vnDOXr1aNBb9328lYT1fhsHC/bEhskCAmQWmSRJkjQk0dNE1hvZwKOb2tjQHOeaU+oo7n6T4p330zn/w+TD0wAo8jiYXhFgr6jAm9qLPooP189t62B9Y4wvzrJ7Yiw5+3KmlgX44ioXrTXnU7b+lxgHOTknltbJ9kw3i6Z1dnWkqO9M09CVoTmaJZrWad2ziYu01fxDuZCHNsfIls7DE9nUryH2cJqjGWqUCEZgAkUeJ6dMKeHZbe1QMRcArX3gmPi2eBZLCEJ6B1ZRdeF2VT24TJpDQTjtTCBnooF8YCJXLq4l7HOyrjHGe06ZyEXzqgDwHeR4+F4fPWsqabyoehqEoPLVbzH9/kvwNz0/YN/G7jRTlRbSwak4HGrhw3eRx8FgSUl+t4OzZlXxmLGIooYnyeZyI5YuRlJ5JnszKMJC8Q/e++VoVtKTkZJzBMccBIpndUp6M4F8g2dBFXkcNBh2cMyMDp71dqwSQtDQZb9eWBb8Y00TWd3kSu8bmE4/yZozKfG7CLgd+N0OQj7nqLPhwj4nLWYQLRcD4/BNQpQOPRkEkg4ps6efSypv0NZzlSuRNdjVmRqx0V1bPEtTNDPsPscb3doXNBPC7g90PDwHYphMoK4h0t97yUwgSZIkaShKTxDIlWjgb8+/SXXIwwWzK6he9U10TxkdCz9R2DfkdTKxxMdeUYnbTKGnhm+sLITgtqd3EPQ4WK5txHQFsSpO4r/fMoesbvG30AdQjTSeNb86qMfQnsiOuI4lLX/FQqN19nW8Xt9NZ2AWnu5t6NnRvUdojmao07oxiqrRVIWzZpazsyNFl+kmH6jDEdk84Jim7gxB0risDARrDuixHTYuP5qRxpnpIF9Uh8+t8d2rFvBf507nmmX75tuEfINn34xVdcjL5JpKVCwi0Sih3Q/jjWxk6r/fy8THP4K7e2th34auDNPUZqyS6f1KwByaOmRQamFtmMeMJTjycXwtrxWChEOJJHNMddllVCJYOw6P8PDqDQJlHQGU7NjLwapddk8gzT94JlCRx0mDEQQ45idd7R8QbOzOFNoqJHMG/1zfzPKpYWpanyJRdy6a23vADdzDPhcdhO0vkrIk7Hgig0DSIeXd/i8cqRZ0Q9Ae3xdBzuRNmqODv+lJ5Qx2dSRpj+dIj3H86bHOueM/lGz+E0JAfSTNns70kD0CjiW9cZz9m0Mnsjq6se+PmRCC376wi689uKFw22h7NkiSJEknoD7jpIuim3nPKRMpaXgMf9trtJ/8WSxXALCboBZ5nHicGlG3HdCw9hsT3x7PsrMjyY72BFta4/xzXTOv7u7ibQtrCLW+TLL6dFA1yovcVBS5WZ2sIFsyF0f76Bs07y+W0Uf8gN/c2srbxNNsK7+AMxbNR1HgxVQ1ijCgc+uwx/ZqjGaoUiKYgQkAnD2rHIDVe7rJlszG2TlIECiaoUqxA2VK6CgPLPR8nwGMUB3TKwJcOK+Kj509rZD14HNruB3jkwkEsGzWRAAef+k13Im9tC35DK0nf55A8/PMuO9C6p78BGo+QWekg0olil48fUAfoJqwl8qQu2c0977bp5T5ec46CUNxEdz7+IglYZ3JPHUO+3dBDR3lAbtBlPjsIFBaDUBu33Sw4doF9IplDModvY2hBy+FC7gdtOtuYOzTx44mQgj2dqXZ0hovXCzv21fz4TdbSOdNPjq1E2e2k/iki6gKetAOMHsv7HPSIex+Qka8dVweg3R0kEEg6dAx8tQ8/nGqV9066OZ4Vu+XDZQ3LLa1JdjVkSqMC88b1qhGYx4vAmt/Q/XLX0fLRAoldJY1uj+CRzOrz1WLpmimcBWjO9W/FOy+15t4YG0z6xqi5HpS3E1LjGmCiyRJknTiULPdZItnAnCKp5EV00upXP09suEZdM3a16oy0NOMF8AITbJv7O4fBIpldNI5k0zeIq9b/OXVBrxOjSunmLgSDaRqzsDr0nA6FCaX+tkdSaH7q3Ekmg5o7aYlChOsKtb8gJJNfwQx8D2Pc92fCChZEos+SmnAzenTSnk0UgGA0jK65tBd3VFCIl7IEplWHqAm5GHV7gjZ4lm4ojsHNMxt6s5Q3RsECk44oMd42Lj6NKoOTyqUXPlcDrwu++NOsW/4JrhjFQ7bAQd17wsApCqX0bH4v9j6rpfoWPgJwrv/RdmG36J17wTsyWD+/YJAHqc9ZW1iqY851UGqwx68LpWqkAecfjZ7lxCsf4zMMM2hhRBEUjmq1d6A3VH+vRpE0Gv/fibxo2btII1lCVrjw2fJgT0drFxLYTk84PQOuk+Rx0FC2D8jYoyZRkdaezxLJJnDMC3qI2niGaNwcT2SyPHk5jY+/ZfXefAPP+Djb7ydR4r+j8U7fo6lukhPOo/wQWS/hb0uOnuCQFbi2M6gkvpzjLyLJB2gTDcKgmD9o1jpbkx3qF8jQSGgO61TXmRH5tsTWXKDXA1L5U1C3hMjXqklmlEtneLt99K5YN/wvVTewDtOdexHQt8gUDpn0pHIUeJ3Ee/T++i5bR384eU9VBS5aU/kaI5mmVLmB8CwBE7t6OtBIEmSJB1ZSjZKh2cyDtHB+eE2As3P44ntoOGsH4O6721uSWBfAMBVPgW6QY3WF24TQvSb8nXXK/W8vCvC+06bREXkRQCSNcuZWOzF49RYWBdi9QtdZCfW4G9dhW5agzZLFkLQHMtiWYLSgAufa9+amqMZdEPg7t5G5Rs/ASBY/xhtJ38W1cyj5uNouRg1zX9hjTIf36Ql+N0a08oD3N9Qgun0oXVsGHCf+7MsgZpoAieIngCBoiicVBtid2cKs6oSRZiQ6YJAxb71xTJMc8dAgKP4aM8E8hf+K8KT+m0q8btp1jNDNmI+UIqnCIALvdvAgEbPLIoB01NM27Iv4Y1sonjTXZSlLgcn6MXTcA3TmFpTFcoCbsoCbnKGybQKP09nlnJS4hWMts1QfPKgx6XzJlndokJEEIoDrahi0P2OZoqiUOJ30W15UQw7SJPIGaRyBqYlhs1kiWV0SpQkprt4yOyGoMdJkp4A0TEUBBJC0JHMYVkMqKCIJHPc9vQOttc38PPAb1huvMou10xqvTkCrRuITbqYQCh8UNPw7EygMACWLAc7rpwYn6ylI8JIdgKgmjmevu/nvP93r3LnS7vpSOwrC+vuKXXKGeaQY8LToxiNeVwQAmfKnlhQsuXP/a4GHuvT1az9Ynu9QZ7e2FA6b/DzZ3YwpzrIFy6aBUC0bS+hnQ+BEHJMvCRJkjQoNdPNtriDLUxhmrmTso2/Q/eWE5t6WWGfYr+ToGdfAKC6vJwOEYSu3YVM06xuIYT99+juVfXcu6aRS+ZX8c4lEyje9jd0XyVGycxChsnCujCWgHa1DC0fJ5+KDlibblrs6kzRlcwTTevsbE+xoz1JNJ0nltYL73uKt92LUBy0LPsy/tZXmf7Q5Ux9+J1MfvxD1D33OUqtTp6vfB8AlUEPlUEPiZxFungOro6BU732F0nlqRD2e7K+WSLVIS8t0WyhkbCZ7N/gurE7w1RXDKGoOIJVI97PkaT0lINZmge1qLLftrDXSbHfdcAlMUNR3XYQ6FR1E3tENbc82VR4XwvQOe8DuLIdfET7F5aioZROGfW53Q6NeTUhHk3Yx6htQ5ccRpL2fZaYHej+KhzasXnR8JxZ5WyNqqg95WDJnIEQkMwO/x44ntEJKUks7+BNoQECHgcmGobmO6aCQOm8OeA9tLBMntrcxif/8jq7m5r5T8kPON1aS8upXyN17aPUv/NJtrzrBRrP+gHhg8x+C3mdROjppSQzgY4rMhNIOmSsnjp9HQfnZR7jherLqV5/O5WbVmO9448QnkhOt0jmDLpTeYaq+DlR+gLpqW6cRoZ02Un4Ot9E3/kMpQ6dytXfpen8n0PpKUd6iQfM2u+bK4R95abXw2+2kMqbfPjMKdQW+3ir+hLvePUP+MwE24pnYZQvBo7NNzWSJEnSISIEai7K1ryD6VXz8XbehRLbTtuSzyI0+8OP26lSE+pfIjK1zE+jqGBCrKGQ/XPXK3v462sN7O5MYQm7Z87HzppG8fa/429bTeOZ3yHQJ5A0p9r+YNRgljAfMLobIWiXB6VyBpFknnhWH/DeJpM3aejq08zZ0glvv4/4xPPpXPhxYlMvwxuxm1CbriCrW01ufaaNj89cjN+t4Xc7qOpp8tpVNJvahgftKy3q0Nd1m6MZJig9F+b6ZMnUhD0kcgZ5t91M10y0o1XNK2xvimaoc3RhaOU4XeNbSjXuesrB8kW1AzKyVFWh+gAb4w5H7ckEcuWjGFWn09CU5nP3ruNrl85hSlmAZO1KmrUJTKOJXHAqbvfY1rCwNsT9r5UhNBVndBdZ3Rx0rHdnyr64GtLtIJDrIDI/jqT3nzGZh9/woapZMHKFSbnxrD5sQ+94VifkTCA8QweBijz2R17dGYDcsRME6m0N0did5o5nd+JItvC93P9wlZWhzHsBl/o2EYzuYu8FvyZRd27hOL1oIg5NGdCDaqzCPid5nGS0IBzjDbWl/mQmkHTIiFQEgAfNMzhJ3c2vQnfyecffmC12M/nha3Ck7AZjrbHswCwgISjd8Btm/vVMjEj9CdETxozaPQV2THkfMYoof/oLTHriw3ii2/HvfnTEpoBHs/2DQH1ldZMH1zazuC7MjMoiJm78OT9z3Ua6J23XmW6TmUCSJEnSQPkkqqUTU4qonn0qCgJLddE1+72FXWqLvQNGmk8rD9AoynAnG3lwbRMrv/s0//fIFhQU3rW0jv+9fD6fOX8mzlyM6ldvJVVxMt2z3oXPve8D+ORSP26Hyu58GAAr2gDY5Rv1kTSxzMAA0GCCe5/Cme2ke9Y7AdCL6ohPvphUzRl0BmbzvVdzlJeVc8a00kL5fFXIDiZ0eiei6Ums5PAj6ltiGWqVDixFQyvelwlU1RMciyp2QMvqyeDufRzN0QyVdGEEqg+qpORw6M0EyhdNxDFIWd6hGGuv9GQCAfgmL+M7Vy1ACMGX7nuTzmSOnCn4Tf4CAHKhqWNuSr2gNkweJ3FPDe7ozkFbJgDsjdhNkYP5dsxA9QE+miNvXk2IcLGdlZaKRwqDQ5LDZMMLIYhldAJWAjFMJlBRTwA3pwVQjqEgUCrWSf7xb/LPv/0WR+cmfqF/hSoi6KEpvCd7D6Hujew97xf9AkC9xqP8sbeXWsJRgjLC64x0bJFBIOmQeXXTLgB2TXkPluqiZNtfiUx5O9cY38CZ62LqI9eg5mIDmh6reoq6Zz5NzSu34E7sxd/0wqCjxY8GhmkRz+p0JHLkjYNrYJ3v3gvAt17Jc784izqlgzeKLyIbmoav/fVh/wge7Yab8v7E5jZiGZ13Lq1Dy3ZTvv7nvOI6jZu83wDAkelA3z8XVpIkSTrhbdxp9/SZPWUSjgmLAYhNexuGz558FfY5+/Xg6TWl3E+TKMebaeGm+9YxodjL969ewI+unMUN02KclX6cynW3M/HJj6HlojQvvxUUtd9VdU1VmFVVxMZ0T6lErNG+/4yOOdwfvf0Ub/sruq+CRO3ZA7b9+oVdRDN5/uvcGRR5nYUPsr3jnrsUO/PIGKFMoymaZYLSSd5XhdO574NhTU8wqcO0gxkitS8I1JXKk9UtKo1mzODEUT+eI0Xx2EEgvagOx+HqIdhnIlmmfAHTygN864oFGJbFH17aw7qGGH/VV5BxFpMpX4jHObaPXTMqA2iqQrOjFndsFxndRAhBeyJLrM/F000tcVwOBW+2HTNw7E0G62vxTDtT7YU3dxZuM0wxZGuIjG6imwK/GQfv4JPBgMLvbk7zHxNBICEEL27v5MW//ZCT63/Nz7XvcR9foMSRo/ltfyX5zvvYes1LbL/iERKTLiwc53GqhbLHg2kI3UtRFMJeJ1GtGCUlM4GOJ7IcTDokXtzRyYtvbmOFAy4+awUdGz6OI9tF8+n/Qz6xmS8nvsSPYl8nvOshuuZcC4CWiVC24beUbPkTWi5G68lfoPzNX+LtWE8qZw76Ru5I0E2LVM4gltFJZI3ClT7dtKgJDz6VYCT/2dDC2gef4ybAVVLL5PPfzlcfP50nkrN5eMq9hOr/TXc2T1nAPX4P5DAaKpNLNy3ue72JOdVB5tUEKVvzAzQ9xWN1H2bdXg0UOwg0ljfUkiRJ0vFPCMGdT7zO94CVi2bSHKyl4awfkpywErBHwvdmzOwv4HbQ5azEJQzeM9fN199zOk3rn2bSXe9CtfZ9uDadRbQt/QLZ0rloqjKgFGdOVZCnNiURigpxO5u3M5lntFzxPQQanmZt3XU8samDaFonntGJZe1+QW82xXjnUnvceW8WEOx7XL2jm614K0xYMOT9tEQzLFQ7MIrq8PfJkqnuec/SavgQKJDad6W/KZrBhU4o10KiZPqoH9ORorp7MoECdfiGKY0bVz33KRSVTOl8wP7eXLG4lr+tbqA5lsFyBth29TOoniJmjTETyO3QmF4eYIdezazYWhIZu0Qq25MRVGN5KA242dQcZ3EZqNEsZtGxmwkEcNL0SfA6PL1uOx9ztlP77OfY9o4nSWTdg34OiGcMQOAx4+SGyQQK9pSDZbUA5BKHavnj5mdP7eCHj2/jX55naPLOJLXi6wQja4lPuYRc2P591AP7svp6X+/KAm6EEKTy4/e5Kexz0m2FmZLePfLO0jHj6PhULR1XOhI5Pv6nNdzky2HpDhRXgPaTP1fYvmRiMb9/aTq3lk8htPthOwgkBFP+cy2eyEaaqs7l1ZrrmLH4HAItL+LtXEfnEewLZFmCPZEUlhAYliikp+6vK5WnMugZc+NByxJ85q/r+LKnCwuVz125EkVzUr7gIlqf2MZ291xOy92D6NwOZUvG4yEddhVPfY6cp5S2ZTf1u/3ZrR10JnN88uxpaPkYpRt/T2zKW1BL59KxfRem34sj3UFWloNJkiRJfTy6sY3m1mZwgT9UjsepEZ3xjsL2iiL3oNO6es2fOx82wqcW271uvM2voFo6e8+5jUzpPPTABIRjXxDJ7x74AX52dRF/XW2SL6lAjTeRyZsDspsBivY+iVA0khNWgNpzHkun5D+fIGm5+cS2JbRuszMf/C6NoNdJyOvk4nlVXLOsDrdT7VfaEXA7CLgdNBl2EMhMtA77XDVGM9QpnRjBk/qVdVUUuVEVaEsamJ5iRHpfJlBTd4ZJShsqFpQeA0Gg8CQ6532A2JRLKDtcmUBOeyJZLjwD4fShqnZ7pncsqeWJTW1sa0uyfHoZqq8YRWHYyWBDmT8hxPrN5bxVZDGjTf0++DdHsxiWxaaWONdMzEAUKDr2xsP35Q7YgZyW1lZcO1fhyHUT2v1vOnzXEvQ4B0zKjWV0isigCRNlmEyg3iy6jOpHzR3dU666UnnueHYnl0/KM79tJy0n/Te5iSvomLhi0P0dmsKUMn8hSK0oB98LqK+wz0VXogg12z1u55SOPBkEksbdm01R4lmDFZNVzLZiOzzdx+KJYX7/ksKboXM4pelOtEwEd3QH3sgGflf8aW7Zcyrsgd/PzFFZtpCyDb8hn0sDviPyeLrSeVK5kYNQQkAklaOiaGyN/5pjGTK6ybIJWcx4BQGfh1TO5IxppdzxrMY/u+o4DXA2vwazj80gkLdlFT4jS9vSLxV+HkxL8PfXG5la5ufkScWUvfFjND1B+6L/YkLSCyhk3KU4Mx2kZCaQJEmS1McLOzqodtkNllVfMX63VgjAODRlxMzZ009eDBuBeCNZw8Qd24XuqyQ27W2D7j/YVfXZVXYpWNxVhTfRTGcyN2Cf4O5/M+nJjwKg+yrpnnEV3TPfSdGWv1Ee38DX3J/nv684jzk1QSaV+FEUexqSpik4VAVVUQYNZlUG3dTn7A99I03tae+OU0Y3sWBdv9udmkp5kZuWaAbLW4rSpxysKZphqtIMgFI2c9jzHw1Uh0bL6f+DojBs8G9871TFdIdIly9CVWFudZBEziCa0nn/GZP50RPbOH2q3XR7rKVgvebWBHl8bQW4wBXb1S8IBLC5OUFXKs9cv53dogSP7UwgxRMGIEgKR/NrAPYF47nXUt+VYlp5oN/3N9YzGQxA9Q8dBOotk0rjRckf3kygvGGNKQD4m+ft0r+PlW+ANohNubTfdrdTxampJLMGDk1harl/zP2mxiLsdRKJ+dFyMTAN0GT44HggewJJ4653VKVfJDDdoQHbJ5f6KfY5eUhfhiIs9I0P0fn0bUSFnx93LOHSk+w/YC/t7CRTvhDV0lHbRx6BeqhExpDaHUnmx9zEendnCoBSswMjUE1tsQ9FAY9T48zpZdy314PhCuNtXYN1jAZDVD2JM92KM9lQuO3lXRGaohmuXlqHauYo3Xgn8YkXkC2dy4SeFPWYVmKXg50AjcElSZKk0Ysk80xwZwFwBEr7BWlK/K4RGwGrYbvPjRLdSzZv2o13w9OG3H+wK+tzqu1eOh1qGc5U04AhF57ODdQ9+/9Ily+m/tyfkymdR/n6O5h179nUvPlz7jHOZs651zG1PMC0sgAuh/3hrtjvIuix+xl5nNqgGcZVIQ+NKRXTGYDk8JkNVrQJDQsRGtjbpzrkpSWWtYNA6f5BoFkOO8NIKz/6M4G0ngtM4z0GfiStb7mTtpM/h9uhoSgKQY+TiaU+PrJyCre9ezErZtiNjg/0Q/riiWF2Wfb7Ynds14Dtu3reQ1arXQCooWM7EwhvGID5gThlmV2YriD+1lfQMp3ohmBvV7rf7vGMTjF2EEjxlQ55WkVRKPI4SCp+1Pzh7QkUz46+T1h3Ks8fXtrDObMqmNj6KOnyRehF+4K3XpfG1DI/U8r8zKoqYlp54JAGgABCPicdRs+F+GzskN6XdPjIIJA07rpSdtDEo8cQ3pIBDfrcTo3FdcU81FpCq6MGx+u/Y0nqBd4ouZSfvO8MPnbWNCaX+nhhR4RM+UL7mPZ1GOahaQ483AtzLKOPqeGzYYp+o89HozcIVNQz1cHlUAv1/m9dVENWFzQXnYSvfc0x2yBZ7bnq4m9ZBdi9HP62uoEJYS+nTy0ltPthHLluOud9AICKIg8OVSFCCEem45gNfkmSJB1PjqZJnZFknkqH/YFQ8Rbjd/WWQthBoJE4fUUYnhIciUbSOQN3bCe50ODBjpB3YBkK2GUSU8v9vNjhRU00s2pXJ89u6+DJDXtpff5Oav59PXlniPoLfk186mXUX3QnW969ijfnfI57zbN4aspnOak2TJHHMebpVZVBD23xLKavHGWYIFDesPBmmnsWXDdge03YQ3Msg/CXoWYihdubujPMcbWh+ypx+gZe0DvaqD1BIOfhKgXroU84FcNfhXu/TA+vy8FF86sKQan9t4/WkonFnH/KApLCQ/OO9QO29waBKulCKCpaqOqA7ueo4bF/1i5wbUBFsHPOJ1CERWjPvwFI58zC6Hiw36cXK/Z7TNU/dE8gsMfEx4UX1ciCaZ9DCEHOOLQtJ3KGNWRj6/399oXdpPIm75tl4et8k9iUy6gOe6gt9lIZdDO1zF+YfudyqAdUYjhWYa+LFt2+OGumIiPsLR0rZBBIGneRVB6XQ8WRi4KnmNrifc2SK4Juppb7WTalmETO5MH8KcxT63EoFjXn31hI3z5zehmbW+K0UoruKcPXsQ79EPSFyRsWTd2ZIbcPltptmBbrG6P8fU0jd//rP7S/cCeVq79HeNu9ACSyY5vitasjhd+l4k61YBXZUx3KAm5qi70sn2Zf1djpmYcnugMj2TWmcx8NLD2HatrPo7/VTu19eVeE3Z0p3nFyLZqqULr5LrKhaaRqlgP2lbzqkIdWM4Qj3THsdDFJkiTp8IiP8e/boRRJ5ShzpLEcPnC4cWgqbqdK0OMcVTmQS1PJB2pxJRvJRlvQ8nFyoakD9lNVqA4PXeZ95/WnUFozBafQ+cUjq3j48cd4z8uXccHWm2nOOLki+mnef289tz21ndX1XfxpY47L1y3lW85P8b4VcwEIesY+xacq6KE9kcPyV6Cm95WDxbM6O9qT7I2kiWd12uJZahW74bNSPEQmUDSL8Jai9Q0CRTNMVVrIhaYd9sDKgVBVBUUBx+FqCt17vz3BJ/cg5V5OTS18bw8mW+Mrl86lzVVHpmULz23rP6Z7d0eS6pAHX7YNw1uOy3VsDhApcHgQqovJ6TcxhcJ9nEcuNJXQ7kcKu/Rtvt6VyhPGDoQ5/GXDnjrgdhK1ej6TZO1soJxhkTzEr2t5wxpVW4mtrQl+9fwuzp9TwdzOxwFITr+UUr+LYr+LiqBnzMHi8RD2OWnT7f5XRp+SUenYJov6pHEXSeYp87tQs90YlQsp8jgpCbgwTKsw1vTa0yZhWIJT/DfAvx8gWXs2+dDkwjmWTy/jT6v2sqE5zpLyBXg71pEzrEGvxB2MRFYnltFJ5ox+qd5CCDqSOdK53nGcOTY2x1m/N0K0fi2LjfW8U3uBeWo99PRjFIqD5IQVpBxjq8fe1ZliXqmC2p2GUG3h9mK/CyEEbofKFudszgFoeA3CbxmHR374WNl4Idrsb11FKmfwy+d2MbnUx9kzy/F0bsDX/jrNp93cr3/UhGIvDe0BHEY3pjH6kjxJkiRpbFI5g7xhUTxCBk13Kt+vQfGRFEnlKQkmMT3Fhb8xPpdGsW/kLCCwg0CJwATc3dtxRe0ym96pO31VBT3DBpUmlvoIn34yPADfPb+EWQ2PUtxs8uqpv2F38FSWtyfZ2Bznue2dPLrJDtasnFHGR1dOI+h1oih2hsJYVYU8mJYg6y7D272lcHs8o9sNqjGJZXR2dyapVToRKDiKawecpzrkIaOb5FwleLPRQs+P5u40tUoTevGyfs2kj2aqohy+8fC999nzozFUkKc04CKW0QcNEo2W16kRrp1LoP5l3v/YVuJZncsW2BcNd3WmmFrmx5lqQfdX4z5c/ZAOFUXBcgfRMp3s0ibz+K40H5x2KeXrbkfLRDC9pSSzBpm8idelUd+VotrVUyLmG7onENi/Z9F0T0A3FwN/KbmeAE1p4NA9pLxhYY2QRZkzTD59zxv4XRofPLWC0gd+T2LCCooqpx7x37+wz0lU2EEgKyWbQx8vZBBIGnddqRwlARdqtBt6xjVWB/tfRQt4nLz7lIm0dJfTdvLniE26qLBNUxVOn1bK7KointrSztW1CylqeJpEJga+4aP8Y9WbtdMczTCjIoCiKKRyBs3RNE9s7uDlnZ3MaLqfdxkPMYs8H1IS+JUsOCFRchLbJn2N/7emhNpiH7+Mf5zSTXfStuwmcoY56qs+uzuTXFSegm5QgjX9timKnRGzzpqGUDRoeg1OOtaCQHaabqZ4Nt7uLdz//OtE03m+8pY5ODSV0s13YWkeuvtMdQGYEPaxe68fHKCmO4Gha70lSZKkA5M3LOojaYr9Iwd3kj3BosNRgjAc3bSIpnWCwSRWTyNZgFK/e9QXi1RVwQjWUdTwFO7odgBy4Wk4HQpFHicuTcWlqYR8Iz8vSs8FnBmONqqbnyA25TK8sy9kLjC3JsTbF00gb9hZxE5NZWHdvjX7XFqhvGMsei+qJZ0lFKX3ZYfsn428J5JmgtJJ1luJyzUwo6k6ZGdGxLUwxQjIdNEugiiZLvyeBF3HwGSwXpo6eBPtQ6mQCTTE74Tf7cDr0g64HAzsn1WzZDoVux9ixSQfc1/+LOpmyF78Y1piWc6bU4lzTwv58Ax8RyBTZLxZ7hBappPu0sXsakixbsm5XCB+RtWr/0fTyu+DotCZzFFX4qM+kuZibw4yQJ/XgsEEPQ664vbvgJmJoWG//iVzhy4TSAiBblropj0NeLBMHiEEt/xzE1taE3z10jlM3vU3nNlO9i7+f9SO4nX5UAt5nXRj9z8T6WOvIkEanAwCSeMukspT5QU1kkP0ROUHe9Er8jhoURTaF38asJNAKoMeSnsaOl56UjU/eHwb7XPmUomAlnVQet64rdOyROGFP6db7O5MkTMsOhM5bnt6B6t2d7Hc28CXxa/oDExDLz2ZdFEJXRWLSVUuQy+y3/Sd523lZ0/tYGv1SqZvuZv2Rf9FKucdVRAoZ5g0dmeYNdFOS1XDAxv6VYe8NKUMdF8FSrxp3B7/4SJ6Um5XOZdxNltIbHuOyxZcyczKItR8nPDOB4hOezuWO9zvuAlhD5stuzZcS7djWTOPSBqsJEnS8cowLeojKUxLjNj/zjAthLADQSWOobNthBCH/Mp1d0/vwYCVQPQZCz3WbGErWItq5vC3vorl8FJaM4XyoHfkA/fj6CmzKt18F5qeJDr97QP2cTlUlk7un6nQ+77nQFT1HBdTS6jNxzGyKXTVg7Ff6XxbPMspSgdGUS3+QQIkvaVuEYJMAqxkBy+36n0mg804oPUdCZoKjsP8PkFV7DK04YI8NWHPQf9OWCXTUBD81PsrwtpL6HGN6N/fwmLlU0wtm4tzYyvZupUHdR9HC+G2p+6FZy4n1Onk9k1uFiz+f1S+8WP04ETaF3+aWEan0rDYE0lR7cpgmkG0EaZWBdwOOnX7593KxO0gkGlhWqKQWTTedMOi6qWvE512OemyMwc0mF/bEOXb/97MK7u6uHBuJafV+Si75w4SNWfCpNMOedPn0Sj2uYgKO1XKSsueQMeLYzxnUBpvo21cNpxIMk+dx+6zo3iHTs10O7R+VxMDbgflRe7CB/1z51QA8Lph1+irLesOem19JfMGwrJQevrVRNM6/3i9iU/8+XXW1HfzkdOr+W3wVwhfOV1X/p3oRbfResYtRKdfUQgAAVwwp5LFdWFu7ToHRy5G8fb7SI3yqsLeSBohoE6z0yu18CCp2mEPHYkcpqcUJdUxYPvRLpOMAvC7xhpSws35/p2879RJABRv/weqkaFrzvsGHFfid9MhwgA40x0jptJKkiRJo5fVTXZ2pMjqdvAnN1IQqKc5W9+mrH2ZlqCxO01HYmAvvfHW2xPEb8YRI1z9H47omRAWaHqeXGgaPveBXXV3BEqxNDf+ttfQfRWkqk7rt93jVAn7nOzfrqYq5ME/yNSx0egdINFBGAAj3k4iN/B7s6M9yUQtghWsG/RCSk1PJlC7YX/IM5OdvLwzwlyX3WxaKz92gkB2OdhhzgRS7QDfcEGevpPrDpToycgK73mErhlX84sZvyZjKtzj+ibLow+h6UnEftnkx6re7D6j5hQ+vGIKaxuiPFl5A93Tr6RyzQ8I7fonQkBHIktTd4YKLYXlGb4pNECRx0mHbvdMEj1TrnK63atnsN+d8aDHWynb+HvK191Oer/PBn97rYHLb3+RLa0JPrxiKp88o5qKtbfhzHbSvuT/UTqKBveHQ9jnJI4PS9FAZgIdN2QQSCpI5gxaY9mDPk9XKk+Vyz6P4h+5PrdXeL+U69lVQfwujXVdDgx3MVr3zoNeW1+JrEHVq99i+l/O4NEXX+Xjd6/h18/vYnKpn59cPZePpX6BJ7aThrN+gDnMm0xFUXjHybU8n5tOa2AuZRt/SzI7uh42OzvsZnYVIoJAwRUa+Ad8QthLeyKL7i1DTR97QaBXN+8G4H3nLMaccApv8W/D61RBCEo2/5F0+cLCFLi+gh4HHcLOBJJj4iVJksZPMmewsyPZL/tnxEygniBQMmcMmBKWyhlsb0/QndLpTh+aD1N9RVJ2oMljxAtl5wckbF+QcGS7yIWmHnCZm0NT0QN2Jm9s6ltB3Xf1XlGgtthHXYmPOVVBu4eQz0nY5ywMwzgQZQE3mqrQ2pMxayZaBx1Msas1RqXoxAwNnAwGUF5kn6epp/GrSLbz4o5OlgU6sDQ3zpLJB7zGw01TFVxHoBzsYEq9Rn0/ZdMRikqmdD7Ny2/lnLPP51+n/oV67zxmrb7Z3qnoGB8P38tnD4Uxw5P50IqplPpd/GnVXhrP/A7psgVUrboVxcyxpTWBJSCsJEcVDC7yOGjL9QSBMnYQyLH3RYrqHxtV4+YDYUbs98BFjc+SStgXfIUQPLO1nf++/03OnF7Kr98znxvbb+akPy+kYu3PSNSeg1F72lHTfy3sdQEKOUcRZGRPoOOFDAJJgF0a1dSdKVwRPFDpvEFGN6lw2MENbYQmbYGeIJCiDJyOoakKiycWs6E5Rj44GUd090Gtra/maIZfPrMN7c178GQ7uGzjZ5jgM/mfy+by41NTnPfsVZRs+xvtCz9JasKKEc930oQQE8I+7rYuxB3bhaP9zVGNnOwdDx/S2zF85ajOgVH/6pAXS0DGVXrMBYEsS/Da1noAJlZXEp96KZ7odkq23I2/dRWe6A665lw76LEhr5NOeoNAnVgH96MpSZIkYY9U3tOZGvCaKsTwgSDDtLdZFqTy+/6+dSRy7O5MoRt2YMiehHNop+1EknlA4MzHRmwGOxw1vG9aVi487YD7ySiKghGwL+JEp13eb1tpwFUoM1FVhZDXSV2JHRQ6GJqqUB5w06jbvTr0WAuZfP/3HZFkDmemDQ0LhggCaapCZZGb+qy9nq6OFhq6M8xytpEPTsLtOjo+iI7GEWkMrSh4nIe+ZMfhCbDnoj+y56I/IBx2FtiKhTPJv/vv+37mSgdOtzsWpZd/ifqLfo/HpeFxanx45VQ2tcRZ05SmbekXcaWaKd76N/Z22Q2hi0T/stChBDwOui37uRO5OJYlKHntB9Q+9wVSmdyA4PZ4sLrszy6qmWP3i3/n/x7ZxM0PbuSTd79ObbGXz104iwk77iFU/xhds9/L7ov/RP0Fv6KiyH3EG0L36u2LlnGEUGQQ6LghewJJ7OlMcv8bzZw3uwLVymOYgQNOp430pGiXqnZwQ/ENf4Uu4HKgKPYH/sHSlJdMKua2p7aTnj2RYMcadNM66KZ/Qgje95tVlEbWUOKO8Xr521nU+S/+5LwV9bUknthO8oFa9lx0J4m6c0d1ToemctG8Su55cQaf80Cg+WVSM04dsZZ3d2eS8iI3rnQrZqCawd5q9dbrJx0llGci9jv1o+QPw0ie39Fpl4M5QbiK6J51DaHdD1O96ptkSudjuoJEp7510GODXic5XGS0AI50u8wEkiRJOkjxrE5Dl12G3Je7eyuhPf8hf8GXh8yGMRKdFNW/RGLSBbTHs3SpKlnDJDfIxaPudP6Ay5xGI5LKEyCDKoyDygRy+kIY7hCOXAyz9ODKnvIVC1GzUTJlC/ad36FQWXRgPX9GozLkYXfWzuDJdbcgygVTH74aV7we0xXE4TuJ+aqd7aQUTxryPNVhLzsSAoFCa0sDMI0aoxG9fA6eY6gXn6Yqh70nkKYoqIchE8jpUEnWDuz5IzQ3DWf/hPZFn6SyZtEhX8fhoBRPJkMlZT3B0/efPpnfv7ibP71Sz5KrzyRVcTLl626jfbZ9kdZjxBC+kRuYF3mcJLCDnSITJ29auJLNOHLdeNvWkCg/e8AF6YNlde1BoBAhhPHm/fxKtwN1FUVuvnbpXFxGioq1PyNZs5yWM26xH49THXFS4+FU5HagKpBUg3gyshzseDGqVy1FUS5WFGWroig7FEW5aYh9zlYUZa2iKBsVRXl2fJcpHQqWJdjaGue9v3mVnzy5neSWZ5j7h7noe1454HNGepo1hpUkYNfJD0dVFfxux5DTN5ZOKsYS0KxW40w2kc9mDnhtveojaXZ1pvj8xG1Yqgv3Jd+i5fT/wdu5EcNfSdPyW9l+1ePDBoAUBYJeBxNLfcypLmJuTZArl0ygWy2h1VmHv+Vl2hNZtrYm2NAUKzSx3N/uzhSTSnw4Uy1YgcFruXvr9WNqGNXSsdLRg34ODpc7X9xNhct+7KarCBSVxpU/wNJc+Nteo3vmOxGOwZtwepx2z6i4VmyXg1kyCCRJknQw2uO5fgGgNfXdvLlpI1P+/T4q1/wAPbJnyGNd6//I5Mc/iCeykVTOHj8+WAAI7Gwj6xC+ZkeSOUpVOwtAHeFi03CcDgU9YPfiEwcZBIot/wo73v5P6GkUXBpwMa08cEgHGlQF3WxPehEokGzDHd2Bv/VVcqFp5EJTmNn8ID93/gQApU/W0/6qQx6a43ksT5hoRwuVHgt/qhGz5NjpBwQj9+Y5FBR16PHw42nYMjdFIVc8C+dBjKE/mmg92VyenufV69K4YfkUdnQkeWV3F20nfxZXqoUpDffhdWo4clGUUQSDgx4HBg5MzYPIxcjpBo50q72t/nGao5lxfa/ZEsvwxro3aBHFvOBeybnON7nvA/O576On8ZtrZlMR9FD25q9wZLtoXbbv43XFATaLP1R6MxgTSgA1Gz3Sy5HGyYivFoqiaMDtwCXAXODdiqLM3W+fMPBz4G1CiHnA1eO/VGm8tcYzfOOhTbTEMrjJM2v1V+0gQ+PqAz5nV0+dflDYY8GHawzdq9jnpGiIK4aLJoZRFNiml6MgMIZ5gzpaz2/vAAQnJZ4nOeFMLFeArrnXseED29j9lnvomnMtltNf2F9TFYr9TkoDLiqDbiaX+ZhbHWRSqZ+Q11nImppeUcTy6WU8k5+Nt3kVel4nb9jTVJqiGWKZgX0SdnWkmBh24ko2Yg2Rqt2bCdTRUxplJFoP+jk4HJI5g6e3drC4QkMoDoRmPw7DX0XTiu+RD9QRmXvdsOcIeZ10K8U4Mx2HJE1XkiTpeGX1TLzpldXNfl8/s7WdH/7rNZa++FEcabsJcG/pwmDUWCMAJZvvHnKfQOOzlK3/JZYpiA/RQHo8RJJ5Jvl6eg/6hr/YNByXppLvCQKppdMOak1Oh1roBTSp1EdN2HvIx5VXBT20xHVMbymOTAf+VvsiXtOZ32bvBb/h88U/Zo82yc4KKhn8PQZATdhLUzRDXA1jJDq4umwPijAwJ55xSNc/3g5Hb579aYepJ9Boeh0d6p+3w0XrCeT1ndb1vtMmUlvs5U+r9hKvWk6qchnndP6FuqCGlovBaMrBej5r6I4ASi6BHmtFtezXqaK9T6AbdnP78dASy3DJT54nmG3CCk1i/gXX4bDyTHn9/5j3wIUsuGseM/92FuXrf0l0ymVkKxYS9jmZWOo7anoB9RX2uYhRhJqV5WDHi9G8WpwC7BBC7BJC5IF7gP1nX74H+IcQYi+AEKJ9fJcpjbdUTucnT+7g5V0RPrB8Cl8OPExprgGhOKBz+wGfN9JnYoelucE1cs172Oca8spN0ONkVmURryftF3cR2VHYNpqeO4N5bnsnKwLN+NJNxCdfsm+DOjAQFfY5mVkZoLbYfkNXEfRQ5Bm8dM3j1Lju9Ems1U7Caaa458GHiCTtoJgQ0NCV7vemOJbWiaTyLHA1oxoZRM3iIZ+DgNtBs94zuSNxbPx69WY/lTpzmK5AvxK2+OSL2fquF8gHJw97jpDHSYQwjkynzASSJEkag0TOoDm2L3u2q09G6vPbO7j7iVXc5f4OU2hi7eJv9uy0a8jzKQl7ZHh45/2o+WS/bVqmk7qn/4sp/7mW6ldvxRPZWJjgdShEUjkmuO0g0MFkAjk0lWTdWcQnXoDTGzioNTl73hdoqjJgDPShMqnUTyJn0GaFUVPt+FtWofsqyQcnIYTgsa4KfjDpl2x51wu43EO/H3vPKROZXlHEtqSbIivKudo6LIcXJh1rQaDDP07b7VAPabZXL1Udvt+RohxHQSDVzqbrG1zzu5189oKZ7O1K8/yOTjrnfYByq523u14DRhcMLuop9eoyPWzZ08TunVsBSExYiSe2E1dsF/GMUXjvfjBe29NNNK0zz9uNv2o6mcql6L4qSrbeg1AdtC3+NNniGeRCU2lb9kUmhL3UlRydASCwL8p2iQCOXLd8P36cGM2rxQSgoc/XjT239TUTKFYU5RlFUdYoijLo5X1FUT6iKMpqRVFWd3QcWw1ujyc53eSzf1vHX19r4LxZZVwbepNrjX9wv7WCVOl81K4dI59kCL3lYF4zNqpxjaNx8qRinonYjQ9FzxvUWEZnW2uSjc0x9kbSI0416aWbFi/vjPCuovUIRSU+8fxB+x+4nSpTyv3UlfjG1B9p2ZQSrrn63QCUdKzic/euY0e7/WZZCHskfDRtP0ev7I4AMM/cYm+vPWXI89aEPezN9Uzu6BMEOtTNNw9Gb+aTT6SxnEUDdxhFynbQ66RNhHCk5XQwSZKksYhndNI5k1jaLs3q7vnb8/CbLTzz+IM84vkK87QmbtQ/xX+0c7BUF0r30JlAWqoV3VeFpqcI7XqwcHt+x7PU/OU8/Lsepn3BxxGKRmjXP8nkzSHHyR+szmSeSqcd4HL4DzwTCCB10nXUX/jbA54M1qv3vUKRx3HYSpLefcpE3nfaRHakfTQ37sHZ8CKJqtNAUWiJZUnlTKZVhRGeMM5hAgiTy/w8/Kkzqa6ppc6VYk5qFcnqM3B7/UMeczQ62O/hgTicI+l7gzwOTSkMVtl/2/HAbrY9sLTv8kUTmF4R4P43mojWnU+XKOKK9L32MaMIBk8r9zO13E+X4SERi/DUq28AFLLSg/VPANASy476c8VQGrrSuMnjy7ahFE/G5XSw97xfsOfC37Hjyv/QfvLn2HvBb9hx5X9QS6ceVT2ABhP2Oemy/KhGBj03PtlS0pE1mleMwf5q7P9pzAGcDFwKXAR8TVGUmQMOEuJXQoilQoil5eXlY16sNLJ03hg2Qmtagut+9yqPbmzjlpm7+XnXB5n85EdIeyr5Zv69tDrrcESHvhI4kq5UHrdDxZEb3yBQc85L3hlE7d6NYVo0R+03f5ZlBxu2tyfoTI7c2X9dQ5RkzuC0/CukKk/BESxnZmWA0oD94ut1qVSHPcyoCBzQlbygx4m3uJps8UyuraxHURS+/o/VvLzTDnraGUEZIskcf161l6qgh2m5zeje8mHHsFaHvGxP2VfxrKQdBNJNi8buzFFbJtUbBPJYaTsTaIx6G4a3GEE0PYEl/+hIkiSNihD7yrFa41miGR3TFNz50m6anr+LP7v+D19RmF2XP8gb/hWsb06SL5qIFt0z5DkdyRbiE88jU/z/2TvrKEnKs31fVdXVrtM97rMy627ILh4gSHAIIfbF7Rd3Je5KjC/JRxISCAmEoMFtkWVhYV3HXdu9q+r3R80MO7szO75a1zmcs9Nd/dZbzUzJ/T7Pfc/Dv/tvyD07CN7/FZY99Q76clYuTX2LJ8s+TKz0TLwND4Cm0R2d+or6SPTF0+RLegDFVNLB4I2H56lGiw9WaUy3seyRsJklvn3FYmqqa5ijNeLI9vHbxiIe2dnJ3i69LX9uoRNZGtsrRxQFAoVlFCvt2GLNRMvPwXoMRBWD0Rn8HS1wWagOOCjz2ZAGqpCOJPKdaEiiMGJVlygK/M8Z1dT3xnmmPsLdynpK0vozizgOMdjvtPDkp89mTkUJNS6VTF8zAInC1STzFuBqfgzQ79U7wlPzIG0NJllgCwEg5FVR6LaQKFxJtOJ83UjqIIo8x5cH0EjkOy00JS0AqPF+UlmFup4YiczxuxhtcGTGc3ZvBQ5uJC4D2kfY5r+apsU1TesFngWWTs8UDSZCJqceceXtry82sqmhn8+tc/K2ju+imhw0n/tr9l37FDHJy36lCDneiZKKTmr/fbEMfocZEv2oVu8kj2I4Kyt9gEALhSi9dbSHUuSU4cKHqkJHKMXerih9sfSoQtiz+3vJF8IE4vuJlZ+FxyYjCAIlXhvzi13MLnARcE4tltFjk4kVn06gfwt3LNvOC6YPMe/xd/GfV+qGBJvXmkM8u6+HK5eX4ujZQqJgBeYjRIyWeK3si5jQBBHiuqAUTeXI5FQiyePzBDwkAikxVPMIlUBHoNBjobbIRaHbQltuQECKnxhtcAYGBgbHmkgqNxQBn8npCyd/frER79b/5VfmW0gVraTuLfeT9tWyuNTDjvYwaXcl5kjTiCvgWjaJKdVP1lFM//ybsPXtYN5/3syGrr/wkm0DdVfcT499Nv/3fCOh6ksxR1uw9W4jkVaIzUDFan8sQ95ACilTvNcYfHieqggkiyKCwGEVGkcDX0EZZvTvucGxjFueOsAtTx7AbBKpyHOMu0JGsAcQNL3VPlFxzlGtcjEYG7NJRDYJ5A1UjfgcZmYXOLGZxZOqEkgShWF+QAdzxfIS3FYTf3mxkTuVc4ZeFx3jF4M1i5s8U4oSoY+0YEVy5BGpvABH12bsnZsAiCRzI3p5jpfWYIIlDt0/R/BV47WbscpvVHIFXGYcFgm3zTTUpnY8c9WKMjoy+mJ0pL+bA90xEmmF+p74lL4ng2PHeM4Ym4E5giBUC4JgBm4A7jtkm/8A6wVBMAmCYAfWArund6oG4yGjqKP+MfZE0/z40b0sKfNwY+i3CGqOpgv+l3DNZZgtNpaWe9gU0at3Ml2T8wXqi6fxOy0IqRDaOEzaxkNFnp2PnjOb3ekA0Y59fPHf23lyTzeREY4zm9NoD6XY1R7hQHeUrkiKVPYN76CN+3u4wqeXu8eKTx/WeztdNzsOi0S85HREJcWcV76BkFfFBmk7p736KX79xC6yisojOzsRBDirDCyRJpKFK4ZWc0ai2GOjO66gWP0wUAk0KPb1TEPv8kww+HsoK3EUefyVQHlOMwUuK7Ik4neaac+5ARBiRgupgYGBwXg49Pr47y1tNLz2FF+VbydcdRGNF/0V1aKHDSwu9RBN5eiTSzBHmkhnDxdtsqEOAF7olnnP1rn8KncFXxc/xt9Pfxj3TX+luKCAm9ZWsLcryqPqalRRxlN/P6Dfe0wnyYxCPKPg14IoZjeYptZGYZZETJIwZV8Xk6SnnR7pWj5juAoByNry+X/XXsznLqzFbZNZWuZBEoXxV4k4AwCkPLMR/VUzNFmDySJLAgUu67CFSrNJpCbgHBKGThZGq8a3m01ct6qc3liGOq2UUGCl/sY40sEG0Sxu5GyUhc4o7VoeLquJ3sXvI+OqpOKJD2OK6wEsHeHkpFMOW4NJ5pp7AZAC1QAUeqwDXqMuij02avKdVPpPjJbLdTV55AWKAIgFu4dSJgc9T6faPmdw9BnzqVfTtBzwUeARdGHnLk3TdgqC8EFBED44sM1u4L/ANuBl4A+apu2YuWkbjEZW0YimciOetG6+fyeprMpX57bgbXyY7uUfJ+uuBHTV/fz5hbwY1oUbpWdyIlB/PEOew6y7x0/ghHwkBEHgMxfWsnTpCsqFXva19dLz1K+pun0t8t+uwP3s14dO2AeTzKh0R9Ls74pxoDtKS3+C11tCnGvdq4sSJUuxHqH6ZrI4zCbiZesJV11M64YfU3/lQ7Sc8V3Ok17jhrov8IN7XuDx3V2srPRRFNkOQK5k1RHHLB4oFU1b/AgJPSkrmswgZmL6DfFx6A00JAJlx18JJJsEig6Kxgw4LPRoXgCEeNe0z9HAwMDgZGOwFczeuRl3/QO8WNfLH59v4JPe51BkFy1n/RzN9MZ5dlGpLgbVqYVIuQTZyOHX09d36rd099SBYLYTXvd5LrnpUyxesHBom3PnFVKZZ+cPr/QTLd2Ap/4B0FRiqdywxZip0jeQQlqSaSA7DRHmsiROi5eMLIm4j0EVEIDg1EWgePE6LGYT16ws4/6PncG3r1gEjN8rR3ToIlC0/Bwc5mNzLAaj47CY8NkPrxoRRV2APJk40v35O06rQhB0ATe4/MNkfHPAVTLusQWLGzETpcYcokXx82pzENXspumCWxGzcSqf+CCCkiab0+iMpCY8d1XVaAsmqRS6UU02zG7979NtlSnPsx8boXiKCILARavnA7C/qWXYe5p2/C5IG4zOuK4KmqY9pGnaXE3TZmma9p2B136nadrvDtrmR5qmLdA0bZGmaT+fofkajEF2IJI8mhouCmxu7OeBbR1ctyyfpdu/Q8o7m97F7wdAFKHUa+PMOQEatSI0BNTefZPaf18sg9dmQkqHpk0EGsRWOAcRlb9d7uar9n9jMltIxcMU7f0rlXeeg/TqH0EbWYlOZlR+8YQubC3ObCNetAa3wzat8xtEFAUsDjfN5/+e4NzrQBAIzb+J1jO/xwbTLn4Z+giLU69w0cJi7N1b0AQTYtmKI45Z4tXnGpd9iPEeYukcvt1/Z94dqzHFO2gPJckpx5cKH05mMYkC0oAIJI7jbFPssQ27OPqdZno1/QFFiBuVQAYGBgZjEU3nUBWN0ue/RMVTH+PBp55mRUDljMxzhGZfiSYPT4kq8lgp8VjZltCv2WrfcF/AP7/QyO2P6i0S/3Px6fzw6iW8ZVnpYe0akijw9tMq6Qin2OE9D3O8HUf7C8AboRHTgZ5CqpGfqCMXmD/l8WSTOOVWsEG89mNTjSE4CwBdBHJZTRS4rRR7bMwt1Nuqx5uaJfpnAxCpuhC75egnbRkcGassHTXT8eOZCr+dixYWMbfQSazyAtrf9gzI4/fV0axupFwCX6aToCmfv21qxiqLpH21tJ71E+zdW8h//RZAP98M+t50R1P0jkPs6ImlySgqRWoXGVcF8jFIrZsJTluonx921TWiHuJHGoxnyB5nzyEGR+bkaSA1ABj6Azw4ilxVNb71wC78DjMfNj+EOdpC++nfRpPMFLotzCty47HLzC5wkhXMhORCxP66Se2/L54m35xFVLMwTe1ggwgDNyfFm7+PJRsidtEt9L31Yb5XdRuvK9UseO1mPLdtoPnp2wjHhxu6xVI5HtzWwSXVAs5YA/Hi0/DaZu5mbaQy1uC8t1F/xf3Y3H7+Yv4BF0Xvxt79Gkn/AhyOI1fKDIpAEcmHlOwjksrh6HgRKRsnf+tvSWVVGvvix1VsYziZ1T2XMlGwuMY0y3RYpMOiMQMuCyH0VjIxFZyxuRoYGBicLIQTWaz9u7EG9yJoCp9Wb+Pb1TsQlQz989522PYlXhunzQrwdPfAdegQEejfr7WxxK377yyonTfiPgUBir1W3ra2AqfFxO2RpWQcxRS98gPQVILxzLRdn/riaQoIYclFUPMXTHk8WRKGRVFPhWO1wi9WrKV72ccI1VyO/SBxThAECtzWccdOS6XL2H3jZpLFa4xKIIPjmp9dv4y/vldP1Z3o351g1W0G5FQvhWWzeKm+n5cb+gGIVF9CcPaV5G/9DZZ+PUK+LZikpT9BVzhNLDV25X1Lvx5k4s+2k/NUTmhuxzPSQLtoLtbHnzY2DAum0bTpb/01mFkMEegkI3OQCDT4x3n/tna2tYb50HIrJTt+S7jqYuIlp+veK27r0MnTYpKoyLPTKpUiTSImPpHJkcqq5Mv6yU+YgEnbeJD8NQC42jcSKz6dROFKClxWrr5gA7kb/83t5TeTVeGSA19jyd+Xk/zzNfQ9/nOEcCsPbm8nmVV4V7FewpirOGNGo0RHK8tN+RfQfPVDhKsupvTlb+HseJFEwQocoxjgDTLYDrYjbEGLdfPIjk5svXp5ft7eOzDFO0lmVBp645PuX55uwsksASuIShosLlxjlMkXuA9fxSlwWUhjJitaEVKhGZqpgYGBwcmBqmrcs6WV5qf/RA6JX+auYIO4jdq9vyFRsIKU/43KGUkUqArYyXOYWVbhZU/KiypICIckhLX0J5hji6DITvz+AN5D2lGsssjsAicBpwWb2cRFCwt5uj5G2/JPY+/Ziqf+fjSNoYj6qdIbyzBP1FN9pkMEMk9TO9ixRDJb6Vr1WVSLZ1RD3fEgigKKoxCrLJ2QLSsGpw5WWcJnt+CwSEPJfONlUAQCmFs7n6XlXn7y2D5iaX0BvWPd11HNLso2fh5UhVRWJZTQ34tncmOm8rYGk4CGK9mGchKJQMg2VMnCygKN+7a2cuDR32MJvfG82G9UA51QnNhXPYNhKKqGKViPmA6jqtAdTZPKKvzg4T3MLXRydfB/QVPpWPtlJHG498ogswuc7FeKMIfryeUm1sOvl2iDfyCxQ5xibOuhmD0FQwbD3cs+Ouw9n9PC0gvfTfzdz7Bp7a/ZnXceRblWzm78KYv+eTpXvf4ebijppjq6BcXsRi5dNq1zOxSHWWKwYtdlNQ27wdRMVprP+y29i94LQKbizDFNqa2yxJmzA9Qn7Vi0FLc++DyWSAP9c69HUBXyt/4G0A0z2w+JtTxW1UGRZJYC60BFmsWNyyozWhWzzSyNWD2V79R/RxOSGzHZP1NTNTAwMDgpaO5P8Ksn9rKo/zGe1Zbzcvn7SHlmIWUi9B1UBWS3SMwpdA6l0lTk2cliImEtQgq9scIbS+foi2coEvrJOoqQJZESrw3ZJGCRRQrdFmblO4f5d1y5ooxkVuG/0tkk/Qsp2vwDhFyK/mlqCeuPZ5grtAIgFE69HUwQRk8iOlEwDQg2o0VrTwRZEnEYrWAGJwh5DvMkKoE8Q/8WPWV8/6rFhJNZbn9JF5cVax4d676OvXsL/t1/HfZZVYVE5sjPR63BBAEimJQk+E4iEUgQUK1eludrfKiijatavsucf51H+RMfQo62oGnQGZ64h5LBscEQgU4isopKzYPXU/nEB0HT6Imm+f0zdbSHU3x8cQ5f3X/oXfx+sq4KijzWEU+aswqcbE/mI2XjpMMdE9r/YM+/X9Hd8MWBtIrpwiKbSOXNI16wknjJGSN6zAiihH3xZdiv/jWh/3mRu0//D38w30QxPXyv/1N46u8jXrQWp90yrXM7bB6CgN0sYbfo1VXVgUMiWgWRjnVfY891z6HVXjKuMW9/71o++ObTALjSpYfvNRacT3DO1eTtvQM50gRAMJ4d6s1t6I3TFkyOOuZMEklmKbToIpBgdSEdwbiwwD3y/w+X1YQoQFxyI6ZDMzVVAwMDgxOCWDpHTzQ9ahLL/VvbWSvspFAIMuv89/D5SxbTtv77RCrOJ1xzKQBeu0xNwDEsUrp0oOW431Kmx8QPrOY29+mVvXlKL4qzGNCFhjkFLuYWuihwWw9L1VpX4yfgNPP0vl461nwZc6yVvN23k86q02IQ3RtLs0BqIWsvQHT4pzweMGXh5FgjCAKSKAxrBZssR7pWGxgcb3hs8oRDXoaJQN4y5he7ed/6Gh7c3sHezggAoVlXEC07i8JXfoAca9M31lTETGTMMJaW/iSL7AMLl77qCc3teEex5mFKh3h33naSWLiNt+BqeZqKJz8KmkYokR3yUDI4vjFEoJOITCKMnOjC2f48rpYnCMYz/P7Zes6aG2B17Gk0QaR34buxmcVRoyRn5zvZr+o3ermuiZlD9w8kduQn9Qh2qaB2CkdzOJIo0HbRn2i88DZESWBBsZtFpW7mFDpHXLUSBIG5C5az+u3foe6aJwjWXoeUSxCtOGfM9qvpwO+wUOV3IIqCHuGZ7zhsnll3JU7L+Hr1AUSXbv74rnzd5PqbW2SaFnwYTbIw64FrsAQH+pdDSfZ3xYilcoST2WlNZhkv4WSWAln/nRAseuntSC1hVlkc1S9IFAU8NpkITqRUcMwSXAMDA4OTlVRWoakvTmc4xd7OKLFDHkQUVePRXV3cZH0RRXYRLT8PgETRWpre9Cc0kw2fQ0+nOdRctsyni0BdphLMkcYhkal5wNvCmelBHRCB4MgeHJIocPnSUl5tCtKRt5ZY0VoCO/8Eam7MFfTx0BlOMV9sJeWbh2k8iQOnCCZpekQgWRIMPyCDEwZBEMb0nDwU0TZcBAL4+HlzqMizc8tTB9DQQBBoO+O7CJpKyfNfRkr2Uv3g9dT+4wxi0fARx28NJVhk130spUDNBI/o+Ea1+jAl+/A2P0p/8Qa+lb6OO/M+hL3nNdxNjwLQHjKqgU4EjKvnSYTar1eCaIJE0abvcOemetI5lRvXlONueJB48ToUW4Aiz+ipWLMLnNQPiEATTQjrHWwHS9STdRQj2LyTO5AjYHL6US0evHYzgiAgCAJWWaIm30mZTy9RPxRREPD4/LSt/yF7bniJzNJ3HJV0BY9dHnajLEsiNflOavIdw1I3JpLAITrzAQh0v0DcUsiOkIUvPRNl90X/ADRqHrgGW89WNG14G1jXJCIup0o4mcU/KALZdBFopAt1vuvIVVleu5kQTqR06LgyvjYwMDA4WmRyg55vb7wWTmaHbXOgO0pdWxfnsolw9SXDYuAHGe18a5UlAk4zLRRhSofJRPsAaO6PI6JiTfWguccfwXzNyjJyqsZTe7vpW/QezLFW3E2PjbmCPh56IglqaCWdVztths4nAyZxetraXFbZ8AMyOKkRBzyBchYvJqtuM2EzS3znykU09iV4aLveCZF1ldO56rO4W55k7r/OwdH5MqZ0GLH5+SPej7YGk8w26V0RpryTqB0M0KxebL3bkBPdqLWXcsniYr7evJSoo5rCV34IqkIyo9AdNYSg4x3j6nkSoQX1XtaG+R/EGq4jsOdvXLyoiBqlGWu4jnD1pbisphG9VwaZVeCkgzwyggX6JpYQNhib6I7uJ503vVVAg1gGSj599sPFBJ/DTG2hizKfTW8jGuG3O+sswWk9NhGugzgsJmoCDrx2GYssDivJHwtpoMVOykZRCpfw0+uWsrczwlde1Nj75rtRZTeVj70XU0KPU5dSQWzdrxNJ5khOwwrseNE0jUgqh0/SLwLSQCWQ2SQOE71kkzBmaonPLtOvOpFSIRSjEsjAwOAUI6fo6Y85Zfj5L3KICPSf19s5X9yCRU0SmnMVJmn4+dVpNR2x7anUZ2d/Vl9oGIyJb+5PUGONI2gKTEAEWlDiZkmZhwe3dxAqP5+Msxz/zj9NuRJI0zSkYAMWMuQC8w9rRTuVMYki9mmo4HGPEeJgYHCiM9gOlnWUDLsHXz8nn6uWl/LHjQ2EkvrCdt+CdxMvWIlqclB/2d2okgVn20bio7Q8KapGeyhJudBN1l6E2WKf+QM6imi2PEQ1iyrKRMrP5aZ1lbgdNn6qXIs1tB/vgXsA6Aqnae5LGIu3xzGGCHQSoQxUAl27ZRHPKYv4rOku3lWr4Gl4EE0QiVRfRJHn8JXBg3FbZQrcNnpMxUiHJIT0xzOEk9lRvQi2NAUp88jYIvVkZ0oEMolY5NFvdARBwOcwUxVwsLDEw6wCBwGXeVhywFgpVUcDQRAoz7MP+TCMF2mgHQwglb+Ey5eV8o3LFvJ6S4ifvpKm8fxbkdIhyp/6KI62jcy55wJm33c51r5dtIeTR62dKpbOoagaHlEXgQYrgUD3nhgsxPI7LGNWZfnsZnoVB6Z0CM24mBgYGJxCKKpGY1+cdPbw625O0YYqa5IZhSd2d3Oj7UUyjhLiRWvwO8wUeaxD59vR2sAHKfPZ2JEe8NgZWARq7k+y2B0DQHKXTmju7z2zmo5wii2tEfoWvgtn5ybEzm1TSo/pjKTwxgbSaAqnngx2MuGwTE+i11hBFQYGJzwDlUBZZ8lhfzNfvmQ+LqvMjx7Zqy8mixINl9zJvuueJVG4injhapxtGwnFsyMMrFfeZxWNIqWDrLvipBOqNZsPgHjJGagWD3aziQ9sqOG20BLa7fMofPXHiFk9ICiczNIeOja+pAZjY5zpTyI6m/eR0Cyct3Ihe9d+D7PFwsKNH9XNkItPw+UvHpd52uwCJ01aIeZII+mBhLCsotIWTNLcl2BvZ5Sd7WHqemJ0R1NkciqZnMqLdX1cVJpCVNIogXkzcowWk4h3jMqRg7GbTRR7bNQWuvA7zcgmYcIGcjPJhM0XJZmcxQuAUrQEgHecXsU7TqvkyT3d3NHsoe3M7+HseJGah29ElZ0oZjeFr/6YRFqhO5oeGiqnqDMW5TjYpuAWdD8J6SARyCpLFHmsiOLYDyUAeU4z3TkbgpZDSUVmZL4GI7OnM0J7KEnYMPozMDiqtPQnaO5LUN8TI5l54zxt7d2BpX/P0M+D59rXW4L0dbWyWnmd0OwrEEQRn8OM2SRS4LYgm4QxKzzKvDa2RH1ogojQf2BoHrMt+nlX9I6/EgjgokXFBJxmHtzWQf/c61BMdvy7biORnnw10JamIHNoQUNAnGbfwRMd1wR9UQwMTllMFlSTFcVddthbfqeFmy9fyLbWME/s7gJAkyxokn6/GitdjzW4l3hfK+HE4UJQ60AYiy/dRs57crWCATAgAoWrLhx66bQaP6uq/Hwq8lbM8Q4KXv3p0HvRlHHveLxiiEAnEdGuOjqEfG5cW8naZUtpO+eXWIN7sUQaCVdfgtc+vjao2flO9mUDmCNNpAYe/EKHnOhUFRJpha5wmr2dUf79WivxjMJaRzfADIpA0riP42BEUaDEa6Mm4JyBWR1dFPtAuX7RsqHXvvTmeZw1N5/bXmjkk3vmc5fz7WwpuJoDb3mAniUfxN38OLbuLXRH0sTSOSKpLPu7Y+ztjNIWSpLKKtNaJTT4YOJErwQyHWTCBxBwWijz2ce1aul3mOnK6eW0asKIiT9a3L+1nUt/uZEv3rOdlmCCbM6owjIwGCSTU3nfX17h1abpPyelsgqhRHbA1P8NAcjW/Tqz7ruCufe8iTl3X4Cn7j4iqSw5ReXOzS28xfQiEgqh2VfhtspDbQ75TgtFbuuYVZdlPhtxxUTKUYYcPEBOUWkNJiiXQwCYvIc/MB0Js0nkbWsrebUpSGvSTLT8XJztL4zaRjEWqqqxtTVMrdhC0lWJze6a1DgnK2bDH8nAYNx0vun3hJd9cMT3Ll1SzIULC7nlqToe29XJwzs6aOjVKyJjpWcC4Gx7nrZQ8rDF1Jb+BBYy2NPdaJ6qGT2GY4FauISsvZBI5YXYzBJ+pxmv3cwHN8ziNWp5xHoxgZ1/xNq7A9CrWY9FOI3B2BhXjJOExt4YzmQ7WVf50IN1rPxsuld+CkV2EKt587gTsWYXODmQK0BU0mSD7QCEEpkjfuaVxiCiAPPEVgC0/LlTOJrRMZvEKd3onAw3Sao9QNZeiOwtGnrNKpv49Y0rOGdeAf3xDD/LXslVzVfzeH2C3oX/Q9YaoOiVHwLQ2BunqTdBTtHQNOiPZdjfFWNne4SG3vi0iEGDIpCdBJpgwjRCT/RYXkCDBJwWQtqAeJcITnluBmPzr1db+fidr6FqGltbQ5AMofRMzCjewOBk5pXGfh7b1cWjO7um/QZ3pJVTKdlLxRMfIGcvoH3dN0BTKXv2M+RSCfZ3R3l8Vxdvs71E0r+ItG8ufucbiyWCIIxr8aTMp5+ng/YqzKE6mvsTelsD/aiiGdmVP+FjuXGt3g7x9N5ukoHFmGOtpCI9Q+9PxCg6mspxoDPKSukAmcCi46qq18DA4MQiXXMBgq9ixPcEQeBbVyzCZ5f55ZMH+M3TdXzzgV3IkoBYsoScxYez/TkUVRuq/BmkuT9BmThwjvNVzfBRHH206rPZc+NmFFsAn12mxGujwm9ndqGT962v4bOhK4kIbkqf+zxiRhfOpiMQ4IhzMvxCJ8WJ/0RsAMDfX26mXOjBWTg8irB7+cfZ/bbXcOQVjjsRa1aBk0ZNFxiUvjpSWWXYauRIvNYcYl6RG1f0ABlXOSarsUI3U8SWfYDO1Z/HIg2/AXZaTfzxnav433eu4jc3rmBJqYdbntrPnj6FnmUfxdn+Au6GhxjtXKlpEEvlaA9P3dF/0LDUpiZQzE6YQhpbwGkhOCACaYm+Kc/NYHTSOYVv3LeTz/xzK2ur/bzztCpyiTBV91+L564rj/X0DAyOG57Zp9/kH+iOkcwo5KaxtfbQG2ZByVDxxIcxpfppOv9W+hb9D+2nfQNRSeFse477t3ZQlG2mJruP0OwrscrixFuNgdKBmPhucwWWcD313XobWL7WT85RNKnzeKHbSm2hi7reOMnAIv14OrcPVRnV98Q50B0d10NCOJlF7d5JIf0kys+aUKiCgYGBwcGIwpH9rwpcVp757Dm8/OXz+M6Vi+iNZWjqS+C1W4iVnIGzbSNoGrFUbigYB2BHW5g1noEWWn/VTB/GUefg0J2Dhfgij5WLFhVx7ZmL+VzqXVj7djL73xdj69lKfAotwOMhkjRaziaDcQU9CcjkVP77yj68QhxrfjWVATvOg3r/NZN13FUXMOgJpBsQ1+/bwebGfqKp7KhKaziZpa4nxooKL9bgPlLeucYK3QySnXMRoTnXYJEP//MVBIGKPDtWs8TnL5pHvsvC9x7ezb7ya0nkL6Ps2c9iDjeCmiWw9TcEtv4G1OEnz/5Yhr6DLmiTYbASyKrG0MxTEwTzXXpEPADJ0JTGMhidA90xrvz1C9z2QiNvXVPO5y6qZV6BlV/Lv8QZ3osU74KsYfBnYADw9F5dBKrriZHMKuSmybRe0zRiBwsiqkLZ0x/H2fkSLy78Bne2+KjriREvXodiduNufIQHtnXwAefzaIKJ0Kwr8IyQnjkeBoMKWqRyRCVNb5tuDh1I1qF4qyZ9TEvLvezpiJDMWwjovkYHemIEB4xVkxmV+p443ZHRFyBUVaM7mqI2tgmAXM25k56PgYGBgSgImMawJLDKEgUuK9evKqfYY+X2TU04rSZipeuRE13Yu7cA0BlODdkqbG0NscIVBsDkrznS8CckB9s4HPysZzFJBJwWrlhWSt7Kq7ku/RWUbJqa+68i1/LKjM0nq6hEUiObdBscGUMEOgnY1xXFnuzQf/BW4rbKVAccFHv1JDBJFI4YC38o+U4L5rxKsprEltdf5e1/fJkb/7CJ6259kf9352v88JE9PLi9g/aQnjb1WnMQDVhR5sQcrieVV4v1JGi7Ol4ZvGiZR1nBkCWRSr+decUubnv3GlJZhe88Usf+Db9CE0UqHn8/s+6/iuLN36d48/epefA65GjrsDHaQyl6opMXggZFIDkXR52iCOR3WghpA2Mk3/DfGC2lzmBiaJrGXZtbuOxXG2kLJfjapQu4cU0lJhTO3f8dzpK2ccC5Ut842nFsJ2tgcBzQEU6ytyuK1y7T3J8gksxOyGQ/eYSY9ERGQVMU5EgT5nAjpRu/iLfhQX6g3sTbXq7kj8838J2HdpPMiUTLz8Xe+Bhd/SEu5RkilReQs+fjm4RvHuhBBXkOM/VqMQCZzj14xCTO0F6ypWsnNSbAsnIPkVSOkOAk4yzF1rtjRI+xrkiapr6RW5Kj6Rx1PXE2CNvod85B9k0sqczAwMDgYCRxbBFoEJMkcuOaCp7b30t7KEVq1sVk7UVUPP5+zOFGNE33AmrpT9AbyzDX3IcqWbF4isYe/ARDHKgINZvEw3w9810WTJLA5ctKeV2Yz3fKfg+As/6hobZp3etu+iqDEhmFpOE5NCmMJ/WTgO5oijJBX5U8uL814LRQ6LbgtpnG3QoGejXJfz91DllXGZeXp/nchbV8c0k/Dzu+xbeyP2V96//S/txfuOVv/+TGW5/jd8/W4bKYmG/uQVSzZPNqjYjRGUQSBWSTcMTYSbvZhN9pYW6hi1/csJwD3TF+uCnJ84u/iy24B62/gS+ZPsPHMx9G7dzJ3H+cQc3f1lH56HuQY7oPVGc4RWswMak5hpNZ/QKbjaFZpiYCFbttRMXBSiDdEyiVVSY9N4Ph/OC/e/jc3duYU+DkF9cvZ3VVHlKqn+qH305+3d38wXQD/zBfrW8cMUQgA4NnB1rBblxTgapBfW+MnDK+SiBF1Y64ahlL5yh+6Wbm3bWe2n9uIG/fnfyeq7nXdhXfuGwhX790AT3RNLdvaqKl8Bys2RDfcvwTezZIf+0NOCzSlNqkSr02dmT0SmBTsI5zHQ0IaCjlkxeBlpZ7AT01J+lfhLVv56jbRpI5OkeoCIokszR3dLFa3EOs7CysJqPa2MDAYPJIojChZ5Xr15RjEgX+9lITVm8+DRf/DUFTqH74RkzxTlJZlSf26OE4JVonGXcF4kn4LDQo/FhH6EaQRIFSnw2nxcSyci+PNuVI5C/H2fEC8XRuKGl6Oj2CkhmFdFZFnaZq3FOJiTeNGxx3dEfSQyKQ5BseR1jgtk7Kq0CWRDK+agKJNtbPyae8+WFcuQZKbRHOSD+LYNb/2GKSmxctZ5IsWoO/vntgp/OndkAGR8QkilgmcAN8/oJCPnthLT98ZC/PH/CxUvg6LRRSVl7F3PkufpM5i7wD/6Yg1sJFmReofOw91F16N5psJxjPku9SJrQ/0EUgt9UE6Sg4CiZ6iMPw2GWuWlVFdKuNnq4O3APjx9MK4UR20q0PBvDYri5+90w9b1pQyIfPno09tBfvK/fj2/dPpHSQlrN+xrP1C8l07gJAi7QzeXcng0NRVe2IYq7B8ckz+3ooclt58+JifvN0HeUv3YyppxbO/dSYn83k1CPeAEdTOcraniORv4zO2nfwu1cj3B+bx48vWUBFnh2bWeSKZSXct7Wd3e58HtRMXKc8SMZRTKx0A2WTrAIapMxnY097lpzFizvWwGlyP1pOQixdPekx5xS4sJsldndEOSewCHfTo4iZGKp55LTO3mgGp8U0FHmuabpwZml5HrOgkK0+D9s4gy4MDAwMRkIUBGRp/NffApfuefO3Tc1kFZUzZpchXPQXah68gcrHP0D9pf9ka0sYsyTiTraT85yE8fCAJAyKQCOfg91WGZ9DZv2cAK88vp/mqlXMP/A7+iL9RFJuFFUjkVHwT9N8BquAklllUl54pzLGt3US0DUgAikmO7IrcNj7k63KUbxVWDtfBTWLq+05wjWX07bhhwi5FOZoE9bgPtxNj3Je06OI9Q/pnzHZEQvmTOl4DI6MJAkTTjn70NmzWFHpY39XDFVbSE3AcVBaTCXR1av44SN7+Xfb0/xJ+TGlT3+S1vN/C4JIIj0ZESin+1Clo2i+WRP67Ej8zxnVRLe52N/UQllOGWo364gkcVlNxoP0JGjpT/Dpu15ndoGTj6wLUPHMJ/DV/RtNEIkXn0bnqs+TLFhGbaKNf+x3gBXUSDvGo9f0kcop2M3GZfhEIqeoPLe/lzcvKqYm34GAytyO/4CwYtwiUCKje0ccWqGrqBrZaA/WcB0tKz7HJ3bXsj0Y5quXzqMiz44oQnmenW9esYgX6/o4EE7TVbqO8r6NBOdehyBJE/L/G4kyn40n93QTL6qhoKcZj8lM0r8Q2T6yYDMeJFFgUYmHra0hlNWLEdCw9u8iUbRm1M+0BpNUB0SsskQ0nUNVoTz4AknBSqp4NRaj5dzAwGAK6O1gEzuPfPHN88kpGrdvauavLzXx0XNmc/WGH1H5xIco2vx99nVdQbXfjinSRLbizBma+bFFFAUEYXQRCKDYY+OM2QF+9eQBHk/PY4GmojRsJFb5JkBv4ZouBturDRFo4hjf1klAdzTFeaZesq4yzNNoyKz6apCyUdxNjyNlIkTLzwF0o+m0r5a0r5ZwzWUIuSRyrB1RSaGYPRRaJ3+zaDA2JlGY8A2wIAisq/FTE3DQFdG9fmxmCVXTSGdVXFaZb1y2kNtecPCd7e18tel2Mk9/jp4N3yWRNeOb4BwjySwem4wYj4DVPcFPH47LKmNy+TGHQvzi8f1cVmPCmuwl5Z9PRyQ1ZGhqMD6yisrH7ngNRdP47qokC+69AFOyn67lH6dvwTtRbLqYbDNLnDk7wP8+Zycn2dDChgg0naSyKlMs3DA4Svzr1VZ+8cQ+sjmNaCrHWbX52M0mVrrCWLJJMonecY2TVhQ0Tb9hPVQADCez2Dp1A81f7c9jR2+YT10wl9VVeYDeqmUxSVhMEn9+zxp2tkUgei3qc68QnHudfs6doiBe6rWRzqk8G/RxJi/jymQJzXob3im2NSwt9/DnF5vIFSwGwNa3k0ThKmw92/TUMHH4d5FTNPZ3xRBFEBBIpLOsyr5KvXsVVpttQi3uBgYGBociTbASCPTz4+/evpLOcIqP/H0Lv3ryANL5q3jbgncR2PEHqhQP3rlnItUlIK9qZiZ+HCCJwojtYAe/v7Tcy6oqH3e2C3xUsuJsf4Fo5Zt0y4lcklz+silbh6RzCmomiTnRSdJuFCBMFGMp5SSgK5KmXOwl4yyb3sjUgROYf+f/oYoysdKRVW3NZCPjnUXKv5Csq8xIBpthTOLEK4EGKXDrSXEFbguz8h3UBBxDJ3JJFHjPmdW4z/44v1auoLDuLqofuoF0cOI+MOFkFrdNRsjEEC1TF4FMkoDFHaDSnub3z9Rje/ZmZv3nMmzdW6YlzexU41dP7Of1lhCf2FDGspc/jSZZOPCW/9C98tNDApDPITMr38GSMi8gEJEDaIYn0LRimBmeGDT1xfnKvdtxWWTOmB3gXadXce48vc11nUP3UJOS4xOBBg3tR4rMDSYyqE0vksHEfb1FfOZNtZxdq+/H55APqt6EeUVuLlpURGjWFex+2xayrvJpaY0t89kB2JkuwCdEMSkpUsVrpnyzvrTcSyan0ph2k7UGsHe/RvnTn2D2fZcz598X4Wx5esTPqapeIdWx/1XKhR4iZWfjMKrnDAwMpohsEiYtJhd5rPzihmUsKfPwiyf28w/f+wl6F/Fj8RYuVp8BQDyJRSBZEsbsEJAlkWtXltMeU9nCPKK7n+SVvQ3UPHANVY/+D/FpqAZKZhT8u/7MnLsvIB3pmfJ4pxqGCHQS0B1NUaz1oHrKp3Vc0a+38Tg7XyJRtHpcKU96iaDxazWTSJOoBDqYCr+dQrcVQdBN8WrynfgcMjazhCjCufMLearkA3xJ+hS23h0EnvosygQN1yLJLH6LhqikwTo1Y2gAWRRRLF5KLSkCLjNK22uIaobKx96HKd5JRzg1rUZzJzOvNPZzy1MHOG9+AVeE/oI51krLWT8lFViMJAr4HDJVATtlPjuCIOBzmCn12ujBjxBtP9bTP6nI5Awzw+MdTdP44j3bkUWRP71rNT+5binfuHzh0GLHIqkFADHZD8rY56BBEejQhLB0TuHRnV2E9j7HLmr4wqXLWT8nHwC3zTRitaPdLCFJIqrZiSQKuKahFL62yIXFJLJg8cqh17QpmEIPsrTMC8DerhipwCK8dffirbuXvnk3ISgZqh95B+VPfhQxGx/x847996NoAtYlV2C3GAtNBgYGU2OiNgeHUuazc+s7VrGwxMNPnmzk8+Yv0an5WN/wc+DkjIcfZLxt7BctKuLiRUXsti6jWm1k4YufwhxrxRJpmNQC86EkswqW0H5EJY2l4fFR76fCiSzhhBEjfyjG0/oUUVWN1mCCpr449T0xDnRHaeyNT8qMebIkwv04tRjqNJuQSXlVaAM2sNGyc8f1GbNJNMq0ZxhBGFuBnwiSKFDmszO7wMmcAhcmSW8d+3t8Fc1ll+HofJlEemInz3AyS5EpCoBon7r9m0kSUCw+TOkQnz6nkkq1jVfsZyJm41Q+/j7IpuieQqT9qUBzX4LG3jif+MfrFLqtfGJhisCOP9BfewOJorU4LBK1RS7KfPYhQ9ZBFpS4ac56EGJGJdB0oqgamaN4rTCYOHe90sILdX188c3zKfJYAeiNpckpKjlFZZbaAICABsn+McdLD1YCZYYLRm39SX7z+A4WCfXkzVvP2po8ZJOA22aiIs8+4nVVEARcVv1m3GuXp+XaW55nZ8fNF3La2tP1+borsXiLpzxumc+G32Fme1uYeOFqNEGk9cwf0H7md9l/9eN0rvwMnoYHmHXvZViC+4d/WNOYH3yCbfISTK4CoxLIwMBgyhwabz4ZCt1W/vqeNcwvdvNoM3xA+BoZRwmaIGIOVE/DLI9Pxuu947CY+O1NK1n/pqsAWJN7le7S8wFQm1+a8jwSGQVzVF+IcTc9NlRdHU5kCSUyPLOvm+f299DcnzjsmmtgiEBTRtU0gvEskWSOeFohmVGJpnIc6IkdttI3EyiqhpwYWJ33lE7r2LLFTtah3/wN+gGNhRHbemJjNolU+u2sq8lDFODVXDVSJkK6+8C4x9A0jXAyS4mmp8UJ01ASK0t6JZCUCbPC2oFJUPljaCX/qf469p6tlG78woSFqlOJdE6hK5LiA399le5omk+fP5tZm75MzuKjc/WXcNtMVAcco94UVebZacp5kGJden+GwbSgatqQKGBw/NEVSfHtB3eztjqPG1brlbbhRJaOUIr93TF6YmmKk3UkNAsAarT7iOOpqjYUJZ9TNNK5N+4R/rWllblKHWZyaOXrmFfkYl6Rm0q/44jizsEi0HQhSyJyoBpVNJMoXD0tSVyCIHDuvAL+83o7t0tvYe91GwnOeysAmmSmZ/n/o+HivyGlQ1Q//Dak1BuCmta5gzK1nfrCN2Ezi9Py8GZgYGAwHXjtZv787jUsr/Aye8486i/9Fx0X3gryyetV6ZjgNcFUtpyM2csmdR5/KPgyqmTB1PYymja1SuhkRsEcbQXA2foM+9t6eG5fD0/s7uK9f36Fd/5pM5//1zakZB9KyytT2tfJyLhEIEEQLhIEYa8gCAcEQfjCCO+fLQhCWBCE1wf++9r0T/XEIpvTqOuJ0R5KoqjaUMRpdppXffviafK0EACiq2hax5YlgbSnhoyrnLR3NvkuC4VuC3lOM06rCdl0+I2Y0Qp24mM3m1hc6mV+sZuH+nQRUG19ddyfT2QUcqpGodoF6BVlU0WWBHJWL4Km4ujQVw9MJYv57M4Kts/5ML4D95C37Q/DHqoMIJbO8fTebh7a3sGP/ruHfV1RPnPBXE7vvxd7z1Y61n0N2ZU3aqXBIG6bTGvOi6BmIdF3FI/g5EYXgYzf2eOVr/1nB5mcyvevXoIoCuQUlbZQEtBFnP7eHpypdl5W5+mvxY4sAmUUFTnagr1jEwD98QyxdI5QPMP9W9u5yN0IgFq6etxVPS6rjEUWpz1lzmK20PSmP9G18jPTNva3rljE+fMLuOXZZu7Yx2EPAPGSM2i86M9IqX7Knvk0DLyv7ryHnCai1V5ipOkZGBgcdwRcFv70ztV8+OzZZF1l5OZccqynNKNM1CPOabNSf+UDfNN9M8/Ux0gGlmDvfIVUdvLPxIqqoSk55Hg7Ifd8pFyCn/3h/3j7n17mU//cys72CCsqvDgiB6i+582U/vtK1FR00vs7GRnz/6IgCBLwa+BiYAHwVkEQFoyw6XOapi0b+O+b0zzPExJNg75Yhr2dUXZ1RGjqTRBJTm+1QnckjZ8IAJKrYFrHFgSB7vXfofGCPyKIAgUuCwVuK6VeG9UBB/OK3MwpdFLgtuCymnBaTdiNeL6TAo9d5pLFxTwdCqBIVqSO18b92cH49kC2HQ0BwVsx5fkIgoBm1TPKHB0vopjsfPDK8ylyW3nH/rPoq7iIope/Q6Zp85T3dTLxxXu2867/28xf7/on/9t5NX+avZENhRkKX/kh0dINRGa/hVLf2Ek7HptMp6YnFGH4Ak0bqvqGR4zB8cXD2zt4ZGcXnzh/LtUBBwAd4dQwfzRr/x4ANolLgbErgdI5lcJXf0L1f29CzMbpjWZo6Inz0PYOWoJJznU0kPbUIHsKxz1PSRQomYF0RItJJFa2AdFXNm2VN1ZZ4rc3reS8+QX8+cVGfvzoXhKHlOinAovpXPMl3C1PkP/6rxAzEUrb/stL2kKqK6qMCGADA4PjEp/DTKFHrwq1GAviw3BaTGRdFaycU8berii9ecuw9u0gHI1Mesy+WJqNW7YiaAo/6VtLAgsfLt7LN86083zBj3mp6Mf83PMP7jZ/AznVi6hmSbdtm8ajOvEZz2/pGuCApmn1mqZlgDuBt8zstE4g0hEsoQM42l/Ae+DfBLb9jvytv0bMxIY2UVRtqINipESQqdAdTZEvhAGQPdNbCQSg+WeTzpuHVZZGjJ61yhKFbitVAQfVAQdO4wbtpOGypSUoSLRb52Dt2Up3JEV7KEl7KHnEEs5BEcib6SDnLAbT9GRgC3ZdhHB0biKdN5+FpT6+etl8gimFe8q/CAiw77/Tsq+TgV3tEe7f2s4Nq8v5Wc2ruIUk57T+hjl3X4CgZmk/49v4XZZxrax7bDJdmi7CEe2c4ZlzalTHxHoofvLjZOOhYz0Tg0MIJTJ87b6dLCxx8771uq9DLJ0jdIixpK1/FwD17jUAaLEjp5NkcirW/j2IShpXy5NDrz+0o5N8S46q6BbiRWsnXO0yE9ddcSCF0jbNaZ+yJPK9qxbzjnWVbDzQy6fu2kpT33Az6L6F7yZceSFFr/6YhX9ZRH62jddcZ2M2iRNuQzAwMDA4WhS4rBR6LFMKbzkZMUkiVlnkjFl6+uxmtRZRzZJq3DzplrDP3b2NZ1/WW7xmzV9BquIsVsaf42073kthug5ZUCiru4NeMcAXnN8FINf6+rQcz8nCeH5LS4GWg35uHXjtUE4TBGGrIAgPC4KwcKSBBEF4vyAIrwiC8EpPz8kR5abdeg5z/3UuNQ/dQPnTH6f45e9StPkHzLrvLZjDjYdtH5vmBKOuSJqAEEYVZcx277SODWAeKPkzxJ1Tj/I8OwtL3DyXqMDau4OuUJy+WIa+WGaoJWIkBkUgT6qdnHvqVUCDCDZdhJCycdIB/RRzwfwiPDaZF1uzpL2zETu3Ttv+TiQOXU3vCCe5+f6duKwm3r7CT3nX4wRrb6B1/Y8Ajc5Vn0fLq6bQZR3X+AdXAuXCbdM9/WGoqjYhP7Wp9pQfK7TmF/AduAe55bljPRWDQ/jaf3YSjGf44TVLMEkimqbRPnDOE5Q07sZHEJQM1r7d5Kx5JDxzyCGhxccQgbIZLCHdX83d8BAA3ZEUL9b38YmS3UjZGME5V0278DJZrLI4LX5Ah2KTJa5dVc6337KIRCbHp/65lSd2d72xgSDQfN5vaLjwzzQt+wz/l7uQvqrLsMjilKPqDQwMDGaSApcVj236PNpOFpxWEzX5DhYUu/lnZwkA1s5XDltcGS9NvQk25CcAWLdiOfGqCzGl+tBMNuov+zd1l9/Lrnfu4ncLbuee3hIyVj/CKfqMMBrjuZqOVAd86F33FqBS07SlwK+Ae0caSNO0WzVNW6Vp2qr8/PwJTfR45QepK/l45sO8NfNlzk3/mNP4C7dW/wxTsofZ/7kUa+/w0jNlgg84YzHYDpazBRBn4OZo0PfHiGQ9NfnRNUvZptUgKSkSrTuGXg/Gs3SER64I6gynAHAmWlGmMbFOcOQN/Vsp0EUgSRQ4uzaf11qCJAKLMXdvRzsFjYt7omma+xJomkZPNM3Gfb1saujnymWluBsfQcwlCc65mmDt9ex6+3b6Fr+XYo9txOq+kXDbTPTgQUNAC89sO1hO1SbUJz7dwvrRQk3p1aJy984RY01T2VOgGuo45KHtHdy3tZ3/d94cFpZ4AOiJpUkP/E4Wbf4BlY+/j5oHrsHR9TKpvPkUuK3040EYQwTSeusQ1Qw5qx9Xy1MIuSR/frEJSRB4c+4J0u4qkkVrjhtvPYtJwj4DIpB1QORaUu7lb+9dy/xiFz9/Yj+3v9T0xkaiTKz8HP4mX8PNuXeyoKpkyATbwMDA4HjGSEk+HJdVpjzPztUry9jUBVFnDfbOV+iLZyY8lqZpdEZSVJv60AQRk6+McM1ldKz5MnWX/5u0d7a+nWRmbY0fVRPodtRi6t4+3Yd1QjOeO41WoPygn8uAYU8BmqZFNE2LDfz7IUAWBCEwbbM8jjn9ig+w+rIP8q4b38G7LruAiuICvru7kPeaf0ROslLywteHzA0Hmc6Hlq5oimJTBNU+M6KaPCAsGZGspyYLStxcc9nlADz2xMP0HBTD3hvNsK8rRvgQFX9zYz95FhVrqhvNO30ikHSQCKQWLh769zm1BQQTWTod85CTPaSDeqVKJqfS2BunM5w6Kkl9x5KsorK3M8oZP3iSdd97gs/dvQ2vTeaypSV4D9xDxlWOULEOQQBECZfVNKGVKo9NJoeJpNmPFplpEUgdUwB5cFsHf36hkUxWIR6PH3Hb4xUtrRsU2vp2HRYTH0pk2N8VozOcOmErnU5E+mJpvnLvDpaUefjQ2bMAXYzrjujnPVv36/h3/olYyelYQnVYwvWkAwsIuCz0ai4Ywxha6NkNQM+SDyDlEoS3P8yz+3t47wINX8/LBOdeh9VsOm4eIGyyNCNVSbIkIop6bPyCEg93f/B0rlhWwj9eaeGBbW+cXyLJLH9/uZklZR7mFbnw2qantdjAwMDA4OjitJiwyhLXrCzDJku8Ti327ldJprOHVbOPRSSZI5lVKNG6yTqKKfG7kSw2epd8gJy9gIDLTJnPhs8hc978AgJOC9uUSiz9+8ikRu9kONUYjwi0GZgjCEK1IAhm4AbgvoM3EAShSBi4axEEYc3AuKdEhMyGOfksLfdS4rWxvMLHVy5ZwBcumscL/S5+nLkaR/er7Hn670Ol5ADxaRSBuiNpCsQImn1mNDdZFI1I1lOc+QuXkTU5mZPbz1f+vZV45xtx8ZmcSnN/gpb+xFA1wyuNQc4r1h+aBF/VtM1DGvAE0hCgcN7Q62fNzUcQYEtGF5yyrbqJdUc4STSVoyeaprEvTm6ak/mOJ3pjab5x/04iyRxXLyvmjuI7uL/gdxS2PISzbSOh2VdR7ndQFXAgmwSKveNrAxvEPSAYxcz5EOmYiUMYIpeMkD2CwW5OUfnmAzv58aN7Sb92BwW/XwTpEy/xQUvrlUDW/l3DYuJVVaNjoJquJ5qmK5Ie8fMG08//Pd9IMJHhR9csRZZEXUjui+vrOGqW0uc+R85WQNP5t3LgigcJVV9Kav41BBwWelU3Wrx31LE1TUPu240miHTNvZGcxUd627347DJvs25EE0SCc66ekfaryeKyzpwgVeV34LXroo5JEvnxtUs5b34Btz5bzyM7O1FUjTtebiaRyfG+M2uwyNJx9d0YGBgYGEwcj03miuWl3B2agykdwtXyFO2hJOFkFk3TSGUVGnvjR1wMbA/rz9T5SicZZxkWkzQUkOC1yxR7bPgcZsp8drx2M+fOy+eJYBGCliPdvmPUcU81xhSBNE3LAR8FHgF2A3dpmrZTEIQPCoLwwYHNrgF2CIKwFfglcIN2Ci9fnjE7wPeuWswjpvPYp5aycv8v+NWjO3G2Pouj/Xli6dy0re52R1P4iaA5pjcZbBDZJBiRrKc4VrNMumAJb7G+xl3pD7HugXOxvfTTYduEElnqe+P0RFPs7YpyWp7+UC76q6ZtHrJsQjG7yXiqsVjdQ6/7HGaWl3u5tzMPTRDR2l8jksoSSb4htuYU7Yg+Ricy8XAfXf/4JL7oXr5yyXw+K/2ddcH7KenfRMWTH0FAI7XgGmRJxGkxUVvowmKa2MOU26qLQBE5HyE2syKQ+YmvUX7fdcNSmA7mmX09dEXSRFM50jseQMxEIdQ8o3OaEdJ6KoY51kY21j/0cnc0TU5549hP1Ha3E41EJsftm5o4d14BpT6bfiPaFyeb0/9f5G+/FVtwD21nfBvV7CbjqaLlvN8glizF7zTTgwchMboI1NgXp7vudVoo4oo/bOPu+FJWZzbxx8J/UbD/H8RKzyLnKMZ+nPgBAeNuF50Mh6Z8mSSRX9+4gjXVedzy1AE+8vctPLSjg4sXFVMVcBgeGwYGBgYnCe84rZIHcqsIy4UEtv2eZEaluS/Bns4oB7pjRFO5I1bwdwyIQJ50B1lXOZIo4LHJFHoslPkOT8tcUOxmc0b3KFXbDV+gQcb1dD/Q4vXQIa/97qB/3wLcMr1TOzEQBAGbWcIqi5hNImZJRFE1BAF+/fY1yE3fpPqx9/D38E24/5tANdnY9fbtJDLKtESddoWTeNQQWefMtYMZrWCnNpIokCw9g/z2F5ADa3myt5Jzd/ycV1M5zGd/bmi7ZEbhxTr9IWihNQiAKa962uYhSyIZVzmpvHlYD0leOHdeAT9+dB/JwlmIndtoHUHwiSRz9Mcz5DlOnpaCrKJy++1/4APp+7hMfpDYjidwNz9G74J30bnmS3jr70PMxHCWvFE5NZmVfassYTGJBKU8amIz21MthhowB/cRj/Ti8B5+Xrtzcwtmk0gmp+DoeFF/MdwGhSPmERy3DFYCAWid28nl5RNKZumNDa/8SWUVFFUzqjFnmLu3tBFKZLlsSQkNPcNbDOVYOwWv/ZJw5YVEK9807D2rScLvtLBX8yCnRi+Afv9fXuV3oX20WKq5cU0F4eQNiI3bWNL3MIgyvYveA3BKV7tYZYm/v28dD2xr52eP7cNjk7lxjX7j7rUbIpCBgYHBycD8YjdLKgLc1ncxH++8DVvPVpL5S4ctgMUzOXyj3K+3h1KYyWJLdZNwv+FYUzBK2Emx10aLlk/W5ETqMmLiBzGe7qeIJArMLnAe9rrDYqKxL06s4ny6q69gV10jqm8W54buxtazlbjvzCmLQIqqkY6HkM1Zco4ZFIEsMzK0wQlEcvXH2DX3rSi2ALlQjMfu/RAXHLiFLb37sb7paygDJ+HXmkOYRIFiulAlC2Zv8bTNQZZE9l14G6rJRq00/IH47FpdBGqzzaWqZ/PQ6v2hdEdTJ40IpKoan/3nVira94EM4TlX4tv/LyLl59Gx7usgSgTnXocgwLxpMFT12GR6RT9iKgjZJMiHr7ZMB0JCf5BWWreA98Jh73VHUjy5p5v/OaOKl156Hls2BIAWbh0xweC4JhNDMdmRcgly7VvZk7d6yD4ub/fteOruo3XDj8i6K4lnckPVWAbTj6pq/GljA0vKPMzKdxz2ftGmb4Om0rHua4e9Z5UlAk4zL2huTEoS0jGwDL8nUFWNzr4g1XIXzkXX8daVFUAF9We9edh2gsApHy0siQJvWVbKufMKqOuOIYkiFlkcMpM2MDAwMDjxuX51Bd+8ez0fdt5NYNvvaDnvt8PeH6sSqFzsQ0BD8YydQlzssaIh0ueah7fbaAcb5NS+25hBrLJERZ4dBIGu837JbdU/4sv9FwPg6HhxWkr8++Jp8rQQAIJzZtrBACOS1QCrzYJi032nir1OvG/9Iw+438rC4JPMuessvC99H9QcO9sjzClwovU3kXWV608104QkCiiOQrC6D/udnF/sxiZL7KIGOdGNKdE14hjZnHbStNf85cVG7n29nQuLY2QcxbSe9VP2XvsMTRfciiBJQ1+902Kalr9hj02meyAmnujMtYSJAy01Wvvrh733ry2tKKrGjWsrudRTN/S6Em6dsfnMGOkYWVcZWVs+1t5d5BSN7z+8m0/8/j/kbfwGzs6XmP2fy3G0vzitPnIGh/Pknm4aeuO8fV0lhwaiOto24m14gJ6lH9HPaehVKYKgn96sskjAaaEPvUU1N4KfVW8sTYXaiohKKm/eYe8P4rHJx40p9LHGZZWZV+ymzGejyDMxDzMDAwMDg+Obc+blE8fGJv9b8DQ+jBxpGvZ+KquOagvQFkoxzxYCQB2XCKQvWnbY5mDu2wnqyR0WM16Mp/sZxG42DUWsX7SwiI6MnW77bJwdL5LIKCPGAk+EwXh4ANE1cyKQgcGhq7BWi5mKa7/PH1fczQPKaZTv+A2l97+VcE8rC0o8mKMt0xoPP4gs6S2XhyKJAgtK3GxK6RcDW+/oLUvBScRRHo+8VN9Pld/ObKmbjEdvu8t4qkGUKfJYmVPoJM9pxmefnsonj02mS3XpPySC0zLmYagqYlL3x5G6XgdgS3OQdd99gtqvPMyP/ruXVZU+qgMOThN306YFUJwlaOG2mZnPTJKJospOUv6FWPt3c8+WVp6v6+NHzjsQRJEbMl8havJR9d+bSHfXjT2ewaR5el83LouJM+b4h71uSnRR9tznybjK6VmiWyA6rSbK8+xU+u3YzBKCIOCzm+nVRheBDnTHqBVaAEj7akfVxkcrfT9VscoSPofZqIIzMDAwOMkocFmpyXdwe/YcBE3F1frsYdscnBp2sJdueyhJrWXAS9E7tgjkd5gxSyINplmIuRT07pv6AZwEGCLQDDN487Kg2E15np2NufnYu16BXJr4BCPxDqU7miIghAEQZ8gTyMAAGBYTPPgAIwgC61cuI3nJr/mc8mFsPa9xj/xlVuclMUeb0cZxYp4osiRgHqVdYnGph0f6CtAQjigChZPZUVcXTiR2dURYWOLBFKon46kZet3nkAk4LVhMEqVeG55p8tJw22S6MgMtYMkZEoFSIQRNX6Exd21jT2eEd//fZswmkRvXVnD1ijLecVoVdd1R5iS38pI6n4S1UPcEOsEQMnFU2UHSvwBL/17uermej5YeYEXyBfpWfpK91qV81folRDWL3PjMSfE7e7zS2JugJt9BOvvGdyymw1T99x1IqT6az/0NmsmKIEDJQLKeyypT5ddbx8wmkZRZF5CykcNFoPreOHPFVhRRJuutGkoxORiLrBu3GxgYGBgYnApsmJPPk112chYvtr7D79sHW8I0TaMzkhp6vSOcpErqRRNMiJ7SMfcjigKFHgv7Nd2iQu1rmKYjOLExRKAZZjDRQhAEzq0t4L+x2YhKGlvP68TTUytH6wynh0Qgk7toynM1MBgNWdJ9GUq8VuYXu3FY3hCFFpd5WXbJB7kxdzNuEly+/aNImQhMYzz8wfMYTQRaVOqhLyuTcJRjCR0YcRsATYNQ4sSuBoqmsjT3J1gWUJHSIWyFc5hb5KTYa6V0hAfM6cBjk2mfaREo3gNAKrAYc6yVj/3vY1hlkT+8YxXXrCzjo6X7mU8dStcebNkgL6nz6ZUCCJETUQSKIVjdRNzzEbUcX7HcxSfDPyDlnUP/kvfypgVFPNhmI23Nx965+aRpYzweaeiNUxVwkEzE8O/4I8UvfoOaB67FEjpA8/m3ksxfCkCB2zIsWe9gs27NobfL5iKHt6I29sapFVpIe2Zjt1rJc5ixysPPY9NVsWdgYGBgYHAicNbcfDKKRrdzPrbew7164gMiUDCRJRjPAgMee+EUZUI3GWcJkml8iyfFHhsNKb2aXZlBS4MTCUMEmmEcFhOmARPbtdV5bFLnoyHgbJ+6L1BDb4xCKYqGAHb/2B8wMJgCs/Od+J0WJFGgyu/AdZDZ8OIyLzddeTlPLPw+tojeuiLOgAhkkgTkUfxtFpd6AAjL+cjxziOOEzzBRaA9nVEAltr1clgxMBuLSSLgtMyYp4jHJtOe1qsglMToKUhTIq77AYXLzgZgtnKAH1y1hHROxb33X1Q99h5m33sZ5U9/HIBd8hKacz7EWDtoJ1aljJCOYrK5+EuDbiJ8k3Y/iYLlNF70FxBlLlxYhCAI7DEvwtH1suELNEOksgrt4STlPjvuA/dR8tLN+Pb9A0FTaDnnFmJlGwC9UiffOXpKgmnAl089pB1M0zRa+2MslRpIBxZgH0j/OtjnRhDAZ6RfGRgYGBicQqypzkOWBPZQjSW4F0EZno6ayORQVY3uaApF1cjkVPriGbKKRr7aQ9ZZiiyOT8oo8VjZHdUXMrXIkZ8RThUMEego4B6oBirz2bB7AjSYqnF0vDQU/TtZ6nriVFniKLY8EI3kDIOZRTxo1VsUBaoCDiry7FgGVrTnFrqoOf0q2k+7WS/RLF407XM4UiXQrHwHVlmkS8sb1Rh6kGRGPaErK3Z36F5g1aJ+IZPzZ8/4Pt02mba0/hCszpAnkDLwAP3dvSWomsBHa6P4nRYcbRspe/ZzxEpOp3fx+7H27yXrLMNfPpfdcbfe4z1T1UkzhJCJ0RKX+OsBmefzrqR1/Y9ovPhvZJ2lmCSBxWUeVlfl8XCkGnOsjWxf09iDGkyYlv4EmqaLMq7mJ8jai9j1jl3sv+YJItUXD21X7LEeUWD1uJ3EsKPFe4Z5FySzCtbgXvKIECs5Y0gEclll/E4zXrtMiddmBDAYGBgYGJxSOCwmllf4eCFZjqhmsfbvGfa+qkJ7ODmU+JvMKHSEkwB4sz1kHUVDhRZjUeSx0R7Nodj8aFFDBAJDBDoqeGwydotEhd/O6bP9PJ2ep/sCZVNDvkC9sTR9sfSwm8exqO+JUSJHUW2GH5DBscFjl5lT4KTQbRnyCupf8E52vWsX5vxZ074/WRzZGBr0FLsFxW6aMm7kRNeYlSE90fQR3z+e2dUewWeXccWb0AQR0V894/t0W03kNAnF7EKbIREoGdbFu1eiXqLOSspSe3G2PE3l4x8g7Z1F0/m30rn2y+y75kn6rrqDpeVetkUH4rhPpIQwTUPIxniqIcH8Yi/2t/yMYO31Q4ZbJV4b+S4L164s45n0HADktpeO5YxPWup74wDk28HZ9iyRivMOSzV0WU24xjAn9jv0hDBTso9UVh16PZLMURPZDECs5Ezs5jcqKEu8Nsrz7OQZhtAGBgYGBqcgZ84O8GhQtzQZyc9zsA0MIJHN0R5KIaDiyPSSdRQPa8s+EiVeK1lFI2MrgNiRF4pPFQwR6CjgtJiYle/Eazdzbm0BTyuLEdUM7qZHCcWz1PXE6AilaA+l2NMZpTuSIp0b7hekaRpNfXF2tUdo7I3TGkzQ3J8gIERQHYYIZHDsEASBArfu8j+Yhmey2GekLUk2CaOKQKC3hO2OOxCVNFI6fMSxYqnckOncicbujgjzi93QX0/OWQqm0dtUpotBf7Oc2TMjVTfpnMLDm/Se8G9cvx6hZDmu1meoeuSdZFxlNFz0F9xePx6bTMZThaVwHhV5dtpVPbZeO5FEoGwSQVMJ5iz8+Nolw6pA3DbT0He9rMLHXq2ctOTE0r5pQosEBuOjcUAEqoptRcrGiVacN+x9QYBi79gR5X6nmW7VjZToGZZoEkxkWJp9nU5zJSZvybhvWA0MDAwMDE52zpqbT7NWQFx0YR3BF+hgEgOVQH6iiFqOnL1oVIuIQxmMiU9a8hEMTyDAEIGOOqfPDrBFXka3qQT/zv8jnMySOMggOqdodEXS7OuMUd8TIxjPkFVUGnrjRJI5FFUjmsrxenMIVQO3EkSzB47hERkY6NjNJqr8DgSBUVu2porVJA1rSzuURaUeWnNegDFbwuDErAbKKSp7OqMsKHYjButQfNNfcTUSg8JEVp4ZEehL9+wgGewkZXJzweJy1LI1iEqa0OwrqLv8Xix5ZZT5bFT47VT47TgsJgJOC+2a7oemnEAJYemELlCWFOSzoMQzJAxIojB0owJ6C7GKSIN9MY7Ol0nn1BHHM5g8jX1xfHYZf9tTqJKFWMkZQ+8JApTn2YeZQY+G32mhT/MgJntJZvVreiKTo7s/zGphD215a7Eb6V8GBgYGBgZDLC338r71NbyWrSDR9OoRF7uSGYX2UJIyKQRA1lE07oWV4gEfvojJjxg/PMXzVMQQgY4yHqvMysoAt+XehKP7Vay92/Q31Cxow2/w42mF1mCSPR3Rw5LE2kJ6T6Qj2w8DhpQGBscaqywNPDTNzKnlSAIQ6CJQl+YFQE6M3fMbTmZPOMPdxr446ZzK/CIXpmADWl7N2B+aBgZFoLTsnhER6NFdnSzyZpBc+vlMWPEuDlz+H1rP+jlmm4NKv2OousxjkzGbRPIcZnrxoAom1NCJUwn03A49nnTFnDJAbzcySQI1+Y5hAqpVlihyW9khLcAaOkA2aty4TDcNvXHKfTZczY8TKzkDzfSGCFfqtQ393o9FwGGmV3MjJ7pJDVQChZNZcs0vYxfShAvPwGE2vPsMDAwMDAwO5vMXzSMRWExBso5Ht7cgKGnEbPyw7TQNWoNJ5tr0hTTNXTzufQyKQP1iHlKiB9QTsxNgOjFEoKOMKAqcO6+Av6bOJCVY8W3/P+xdrzLvzjOY+8+z8O3522Hu6CPRGkxiJY2sJBAchghkcPzgsckUuGa+PWkk5hQ4CUp6ZZw8jkog0B8Co6ns2BseJ+xs102hF3qziJkIgv/oVAINGtwnJTdCKjStY2dyKtFUDr8QGapstNutJAuWYzKJVPkdI672+J1mVETilnw4gSqBHtlyAIDailIAfA4zNfkOrPLhIkFFnp1Nai0AWtOLR2+SpwiNvQmWO3qxRJuJVpyHIIDXLlMVsOObgFeP32lhv1aGORsmF+5AVTXCySyu9ufJaSJK5enD/IAMDAwMDAwMdE/P2uXrsQg5tK13Mveus6h65J0jbtsWSlJt0e+DNVfJuPeR5zBjNol0al4ETRlKoz2VMUSgY8CFC4u47oyF3JVdj6fuP1Q/eB2qZEYxeyjb+EVq7ziNok3fwRyuH3WMtmCSOQ69GkhwGZ5ABscXxyrpxiSJLJqnPzDnguMTBTQNmvoSJ0xa2O6OKLIkkJ/VK1+ko5AMBm9UAsUlF2JqeiuBQokMAE4ljGbX27tkScRmlqgOOEZtL/Q7dLExLBdA9MQQgXa1R2ju0Ct6JJsL0H3jRms5Ks+z80K8XP+ha9dRmeOpQjKj0BlJcbryCgDR8nOp9Nspz7OPaQR9KH6nmR1qFQDW3h16jG1Oo6jvJbZqsyjIL5ixNlkDAwMDA4MTGaVwKQCfTd+CHO/A3rkZMRM5bLvOcIoyKYQmSIgT6IQRBIFij5W2rFt/IWYkhBl3JMcAh0XiiuWlSOs+gKbBC+oi/rnidurecj/1F/+NROFKAjv+QO0/z6b6gWvx7fkbBa/+hOqH3kr5U/8PV9OjdAXDzHMOiEBGJZCBwRCfuGgx/ZqTpqa6cX9G004cf6AtzUFmF7jIdu8HQM6fc1T2OygCxQQXYio0ZvraROiL6yKQIxuEg4zuqwMjV8cMYjNL2M0S/VI+YqR92uYzkzy0vQO3mNJ/MLvG3L4iz057XCNry0cIt8zw7E4tGvv0cvPa5FbSnhrwlk1Y/Bkk4LSwW6tEQ8DWu4OeaBoxE6EssZtXxaVGApiBgYGBgcEoaL4qko5yNqu13FnxDQQ0HJ2bh22Tyir0xtKUiP1k7QWY5Ildr4s9VupT+n2XGjFEIKM2+RhgN5sQBFiybA1P5j/DD57pouGRVtbXp7hxzUrKLliPKdGNb/8/8e29k7KNX0QTRFJ5C7D27cRbdy+3ay7aHAsAkNyFx/iIDAyOH6oDDtosBaSDbbQGE5T57OP6XCyVI51TxmUCO91kFXVcCQcb9/fyckM/nzh/Dqauf6GJMoK34ijMEOxmCZMoEBaceiltJgaWsUWM8dAfzyCiYsmGyDreMLofj+FfnsNMtxBgcfQ5XZiagVS66aQnmqbQmgUFsDjH3L7Cb0MDYrYSLJETx/foRKCxN46ASkl0G7Hqi/HZJy/UuK0mspKNHnM51r4dKKqGu/1FRFT2OVdyndW43TIwMDAwMBgJs0mi7ron+ca9e0j1JLhelHF0bhqW2Lm/K4qqQZEYJGcvwjTBtM1ij429fQ4AlEj7KV8Jc6of/zFBEgWssv7Vl5aW85PrV3D96nJebujnI3/fwo8f3cuemJ2epR9h37XPsO+qR9n19m0cuPIhdr/tVbaf9QdeUuexIKGXsEue8fdEGhicCjgDZRSLQW57oXFCnwvGj+wNlMmphBIZwsnp9RBqDSZJZY9sUpdTVL71wC7K82y8udaF78A9JGZfAtLkKhcmiiAIuG0yIVW/gE6nOXRfPIOPKAIagmNi7a1+h5kOzad7qZ0APd6hZIaAWa98wjwOEShPFzFD5iKkqFEJNJ009MWZJbRjzoZJFK2akggkCAJ5DjMN8ixsAzG3zvaNJLHQ71uK00gGMzAwMDAwGBGTJKBJFtbPyacuqBDy6qmoAKg5vPvvYX9HPwC+XB9Zx2REICt7onr4gxoZn2/oyYwhAh0j8l3WoQVrs0nk8xfN4+GPr+fqFWW83NDPJ+96nc/9ayv/eLWNrekSsqaBFXdRZrttDR/KfpJ7NjxM82V3gavo2B2IgcFxiOApodIcYVNDPxsPjF8Y6I9njhhP2dQXp6U/SXckNR3TBCCWzhFL5eiNHbkd7R+vtLC3K8onzpuLY8/dSJkI6RXvnbZ5jAePTaZ3BkSgYDyDX9B7v0XnBEUgp4XmnE//IXL8+wKFEll8pgERaByVQOUDIlCvVIgcayebOzG8q04EGnrinGXV20a1inVT9uwJOC3sFWowx9uRUv042jaySZ1Pkc91zHzSDAwMDAwMjndMon6NPH12AFGAl9RarD3baO7sIW/PHZQ/8wnymh6i1GvDkuzSRaAJXleLvTYSqomcxQfRDgAUVUNVp8/e4ETCuCs5RnhsMrPynVhkkQq/nTyHmZp8Jz+6dilPfuYsPnLOLJJZhdtfauKzd2/j3be9zO+fqWNne5iWoO4FlFdcTab8jGN8JAYGxx+qowhXrp/afBu/efoAwQHj4bFQBhJ9RhxT1UjnVABSWZWcok7LXDvDuqAUSmRHHfPJPV384OE9rKzwMbfAgX/Xn0n6FyGVr52WOYwXt02mJ6eLEkq8f9rG7RsmAgXG2Ho4eQ4zB9Je/YcTQAQKJ7P4pPFXAuU7LVhlkXbyEdUs2dAb3kdHEiwNxmZ/d4zT5P1krQFcxXOnPJ7faWGHVgWAu+kxrOE6nlMWMq/IPeWxDQwMDAwMTlbMA4KOz25maZmXO7srELUc9/z7Tvyv3wJAQWgrS/MlpGyU7CTawUoGYuJj5gBEdU+grkiK7hPEE3S6MeqTjyE2s8TcwsM9NYo9Nj574Tw+ef5c6npiPL23h6f39vDori4e2N6BKIBVFvE7zcjS8e1/YWBwLFCdRQiaymfPzOND97Xzm6cP8KWL5yOMwy+mN5bBO0JbSDKrDPNCjqcVPPap6eiRVJZkRgFNQ0OgP57BaTXxSmM/uzqiZHIquzoi/HdHJ7PyHXzw7BocHS9iDe6j9ayfUHiUfUY8NpnOgVJaJdHPdLkn9cfTlFvioIEwgbQH0FOZXk7awQRqrOe4X9kIJbK4nSlU2Y4ojv0NCoJAuc9OfVZPTcv1N0OggnROob4njt9pJs9uJqdqKKqGw2g7Ghf98QzbWkMsd+0hUbgKl23qxs0Bh5nNbXqSW2D77wHYa1/JR5cZLdsGBgYGBgajYTroefZzF82jo9uP+siP+Kr0F6yJLtIWP4uSe4jmJaEFco6iYZ8ZD2tr/FQHHOyK2lli6UDLKvQPBJP4HPKQJ2hOUU+J6l3jbvE4xiSJ1Ba5qS1yc8OaCpr74zy9p4eNB3opdFsRBWFcxqkGBqca6kCLZJU5wtvWVnLbC4281hxiRaVvzM8mMwrxdO6wh+lEZrhnTyyTw2Ofmh9POJElGYsw64GreM5xIZ9Jv4kD3TGUg0pTRQGuXlHK29ZWIgsKBc/+gpw1D3XBVeMyk55O3FYTHb36SoqamM52sCy1chwygH1ilUB+h5munBNMoJwAIlAwkcHtTqLJY1cBDVKRZ2dXrwcALdgEnElvLENO0egKp+kKv7GK5bBIlHhtR0xVO9VQVQ3xkGvlva+34deC+DPt9JS+d1qupWtr8rjntTZ6XcUEQgfo0dycdtp6vLaj49tlYGBgYGBwInKwoOO0mJhTXkwqsIiq3m1sF2pJFm5gZdMfiFl0L5+soxhZnNgdn9Ni4k/vWs22W7wk+nbQ3hlBziXRBInOsImKPDttoSRmk0iByzqtx3c8YohAJwgem8ziUi+z8p1cvqyESFL3hTjaD4EGBicCmrMYAFOii8uXLubB7R3cvqmJ5RXecVYDpQ8TgZKDIpCm4Wp5gnjVOeC1TXqOPdE07/vLK6zvvZM1pn1cFG3g357lLFk+m0UlHmryHUiigEkUsZklUBXKn/4Ezs6XaF3/I/K8R7/FxGOTeTVl0X8YEIE0TRvXd3ok+uJpikwxtIyAYM+b0Gf9DgtpzCgmB9pxbgydyiqkcyoOUmjjaAUbpDzPzgP1ThBBC7WQVVSC8ZFbHONphQPdMeYXu41FggFag0kq/G+kBAbjGR7b2cU59npQgfJ107Kf61aV81pziJdfL+fNUgfb5GVcvLhkyn8fBgYGBgYGJzMjCTrxorXYe7fxw/SVlPXaWCNozOl7GgDFWXTY4s54qA44EOfX4tu1kc8+soffpj6HoGape8v97M+ppLMqhR7LVA/nhMBQEE4w7GYTlX4HswucOCzShPshDQxOCVy6CCTHu5AlkRtWl7O/O8bLjePzsYkkc4eldSWyuvBq7dtO1aP/g33XXWSn4Av03P4eGjr7+JjlYfrcC5BNEr/w3807TqtiZamN8t7nmL39Z8x76r2UP/Uxqh55J976++lY82WSi956TNKGPDaZnpSIarKiJfTvsjOSomeK/dT98Qz5YhTVlgfjaJE6mDyn3saTtuQd9+lgoYTuN2XXkhMSgSry7PRmZLKWPIRwC32xDEeyA9I0iKamN8HuRCWrqIST2SHj9Xg6R0NvnC3NQS50NaJKVsxly6ZlX4Ig8PmL5pH0LwLAMvdcnEY0vIGBgYGBwRERxcO7W3oXv5f6077HJnEpD/SXoiLgaX4MAMFdPOl9lZTXIAsKnvoHsPduw9a/m8D2W0lnVVCzWLf/DdTp8f08nhmXCCQIwkWCIOwVBOGAIAhfOMJ2qwVBUARBuGb6pmgwEjazRE2+c0qRtgYGJyuaI4AmSMgJ3fjt3NoCij1W/rapGXWcZroHp3VlFZVsTv+cJdIEgKvlSeLpySc1vd4S4ib5KdxKP6H1N9O79MN4Gx6k5PkvU3vn6VQ9+m7yt/0Wc6wFW/dr2Hq30rnyM/Qu+QB5jmPzd++xybr3jMULySDJjEJfLENnODUl0aE/niWPCKrNP+HP+ge+i5TZB/GeSc/haBBK6tU7Vi05LlPoQQZj4uO2YsRIC33xNHm7b2fO3RdQuPmH2DtfxtnyFN79/8KU0L+D0QzOTzUGxdzOcIp4Okdzf4LXW0IUKe2cnnyKROFKHPbJV/Qdit0isfCsa4l65uJfdhl2syECGRgYGBgYjMWhPrc5RzHxhW/j9FkBotjptFQjZaPkLF5MFsek9yMOWEZ8wfJP+vAQLL+Agtd+gaP9BWoeuA73o5+CuiendCwnAmPenQiCIAG/Bi4AWoHNgiDcp2narhG2+wHwyExM1GBkJlMKZ2BwsiNJJnK2fEwJvXfYJIm8dU0FP31sHy/U9XHm7LF9Z0KJLH6Hgs0sDfMDkmN6ApWz7Tk64vERTaTHw97WHn5tup9Y4ToSxWtJ5i/Ft++f+Hf/lWjZObQufDfxojVosn3Y52STcMzEX/eAt0nO7IFUkLZQYqgipbk/wZwC14RjtlVVI5jI4LWE0CboBwR6IhNATPLiSvSNul1OUUnl1GNSQTVIMK4LMxYlAZbxC16DrUyNOT/VwWbCiSw1u29HjrWTv+03FGy9ZWhbxeymY80XCc17K6pqP+WvEckBEUjToL4nDsDe/Xv5u/l7mATo2vBtqqaxrdpiksgVLKTx2scBsBveTAYGBgYGBmNikkTIHl6B86b5hTy9t4doYAW01ZO1FyFP8F7zYCSPHtZQonXxs+zVPN93CX9Wn6fmoRtQZCfhS36HZ875kx7/RGE83+Aa4ICmafWapmWAO4G3jLDdx4C7ge5pnJ+BgYHBhBEFgayjEEuojvzXfknlo+/h3FKVcp+Nv29qGma8PBqaBq3BBJqmveEHBJijrQBIuQS5ho30xtKo4xjvYFRVw9f1IgGtn96lH9T3Z7JSf+ld7Lv6CRov+jOx8rMPE4AkUaDK7zhmD/ZlPr1iIio4UeNBkpk3LtaqCu2h5ITHjKSyKKqGS5mkCDRQCRQRPQijiECd4RR7OqM09yUm/P9qOgkPVALJShwshydDjkZFnp2KPDubQ07MsTY+84cHsfXv4k7b9Xy0+A5+VfBNHlz9F/Zdei/JvAWUbfwiRS99m4jREkY6k0PIJt74ORbk/U2fJk+M03jxXzAVzpv2fdrMuvBjlcVTXoQzMDAwMDAYD6MlXi8u8/K7t63ENut0QE8Gm1I6tqsQAFWyoKx6N3FzPr+wfoSnlaV8wf8rkrVXTH7sE4jxiEClQMtBP7cOvDaEIAilwJXA7440kCAI7xcE4RVBEF7p6Tm+y/YNDAxOXERRIGsvwtH9KkWv/hhn69PMevRdvHtFHi3BJM/uH9/5J5VV6YmmSWTeaPuSY62kPTWokgVn81N0hFLs7ozQEU4OtZ4kMwrhxOgP4A19cRaoe1GRiBWto8BtwWU1kXWWkvbNGdpOEPQHSdkkIIpQ6bcf09Sn02cFKPXaaIibkdIhAEyJHsRMFIBoKnfE4x6JwXhORy4IjomLQFZZwmGWCAoepGQfh5rlqKpGbyyNpoGiaoSOYZvUoCeQKZeYkAhklSWe+ezZXLphLTYhw7ertgLwQGopr/eb+X3XPD7ynImbHlF4bPUfCVddjHf/v4jEJi7KnWxYXv09C25fhrP1WTJZhew9H6RSa+eF1b8kFVgyI5Vhg3+jg2KQgYGBgYGBwZE5UthRqc9GsnAVAFlHEeapVPA6i9BEmdCsK7j+rJXc+f7TuOxtH+PJVb/hn40Wfv1U3eTHPoEYz93PSFLboUupPwc+r2macqQUDE3TbgVuBVi1atWxW441MDA4qREF6J3/djKuCoK1NyDHO6h89N1cd+Cz/MP/Ge54uZn1swN66ekYdB9iemyOtZHyzibjqsTV/CQd676OqkJvNENvNIMovuEnV6Jah9qVDmZbS4jlwgEinrlgtuN3mBGdAvW9MZIZFZfVRMBlwS5Lx1UlgSQKvP20Shofs7BECIGmUfPAVYi5FE0X/IFk/lLaw0mcVtO4k6n64xksZLDkoqSdhZOaV57TTK/qQlAzkI6A1TP0XjyTG6YL9cXSx8xTaVCAkrIxVMv4PYFANx12FdYAsD5yP2l3JV+69nIQBLKKyqaGfn7/TB23vdjIimVX4Wl8GKXhWdTApcfV79DRRFU1bM3PIiopKh97D63m01mfeZHnaj5BwZI3AcyIZ49tQARyGH5ABgYGBgYG42Iw7MhtM5HKqmRyw1vDMu5KIuXnEi3dQGAqIpBspfPqe+i3zaLCLuOyynhTMtesKKM/nuGvLzZx3rwCzq4tmMrhHPeM5xtsBcoP+rkMaD9km1XAnYIgNALXAL8RBOGK6ZiggYGBwUQRBYFY2QY6132VtG8OsbINtJ71M5xdL/Ptoo10hFM8trtrXGNp2kHFJZqGHGtFcZURqTgXS6QBc7hh2PYHBwp0hFMjtuRsbe5juVhHtngleQ4zJklvG6n0O5hV4KAq4MBpMR2XD+/XryonJjqR0iGsfTuwRJqQ0iFqHrgGT91/yCkaXZHUuMfri2fwEwFAcE1OBPI7LHQpA6LKIQlh0dRw8+5UVp2SofdUCCWy2CQNUUlNyBh6EMGrX4rlRDfR8vMwyxKCoK+enTk7wJXLS9naGmaLeQWKyY674WHimWNzrMcDqWwOW+82wpUX0iKVsz75FLt85+E995MA+J3mCXtYjQerrI9pVAIZGBgYGBiMD5Mk4rBIVOTZR07WFASaLryNSM2lR6waGg9q6WoEq2uoGrjYYyXfbeFn1y3jx9cuZcOc/CmNfyIwnm9wMzBHEIRqQRDMwA3AfQdvoGlataZpVZqmVQH/Aj6sadq90z1ZAwMDg/EwUhVKeNblREvOZGnHXSwttvPHjQ009sYnNm46jJSNY8qrJFZ+DgCFW36KOdw44vaaBs19CbojKbSDylFCzTtwCknSRSsJHFQpJEvicZ8m5HOYKSwsxqylse//DxoCB654iET+Msqf/iTWvl30xTLDfJSORDCeIV8IAVMRgcy0Z/SkCO0QEUipf4aa+67Eu/8eUPU5HZz8djQJJTIU23RRRphAO9ggUl7l0L+jlecxp8DJgmI3cwqdzC928ckL5uK2mvjH6z1Ey8/B3fgIyXRm2uZ/opHpa8KU6ufR1AIui3yO+4o/gXb5LSAIeO0yJd7pSwU7GKtJQhKFY9q6aWBgYGBgcCJhN0tU+R0IgnDEVm198Wtqi6SyKOCxywx2MJkkkWKPDdkkcs3KsuNyEXa6GVME0jQtB3wUPfVrN3CXpmk7BUH4oCAIH5zpCRoYGBhMlNG6UnsXvw9zopPvz6vHYTbxnYd2jzvaXNM00n2N+vjeMmwFs+ib9zY89fdT+88N1DxwDd59/8QcbsS37y6KX/gapngHmgZdkTT7umJ0R1IE4xncva8DIFWsmZFKhJlm8ewqAJx77yZRuJK0bw7N599KzuKl7NnPgJobSA7T0LQjVwb1xTPkC2EApMm2gznMNKV0ESgXe8PvKZNTsW/7K47uVyl/5hPMuecC5GgrkWSOxt44OeXwFIqZJJTIUmTVRSDROnERyOzwoZjdKLITpfx0RFFAHBAbTJKI2ybz7jOqeam+n4b885BTvahNL033YQCQzo1P5DuWKK1bAPhrcx4bFs+h6s2fRJUduKymIZPzmUAUBXwOecbGNzAwMDAwONmQpTfCFJwW06j38iZJ4Ej2M+PBJIl4baf2dXpcTx+apj2kadpcTdNmaZr2nYHXfqdp2mFG0JqmvUvTtH9N90QNDAwMxos0ysUhVnYWKc9sqvb9iS9eVEtvLM3PH98/rjEf3tHJb//zlD6OrRSPXab9zO+x54aX6Fj9BUzJXsqf/TS1/9xA2bOfIbDrNqr++07EjN7qlMmpdEXSvFTfx0J1H0mTB1vhnCPt8rilpFiP1/Tk+jjg2wCAYvXRfsa3sfXtIH/770lmVDrCKep6YnRH0qNWBvXHM5SYdGNp0T3JSiCnhYakFQDtIBEomkhiaX6GfykbuNn6OaRIK0Wbv6+/l8qxrytGKHH0KmVCyQxFFl10FCboCQS6uJDMX0K4+hLstpFFjHedXoXdLPHX/lpUyYJ53wNTmvNotPQnqO+JkVVUNE0jkcnRF0vTEU4e1e90NNI5hZc3Pk5Gkyift4r3bahBEARkk0CZzzblG8ix8NmPje+UgYGBgYHBic6h1bT5rjeq5k3i1BdP7WYJxwwEQ5xInHhL0AYGBgZjII72gCeI9C5+D7a+HawQ9nDTukpebuxna2tozDFfqOulxqRHkN94Vxu3Pd9AOJUh5yiid+mH2XfNU9Rdejdtp3+L/Vc+QsNFt2MNHaDi8Q8iKG88FB/ojrFc3E/YvwyH9cRchRDteUP//m5d9VAqWqT6zYSr30zBlp9jCe4faAvTq21G86bpj2coM+tCGY7J9WD7HWa6FL2yRj2oHWzvq0/jVKO05J3Jg8pafpe5CG/9fcQb9QoRRdVo6U9yoDtGMJ4hGM/QG0vTGtQFjukmlMiSPyACYXFPaoyOS/9G25nfxz6K34zPYWb9nACbWjPESjfgbHyM7DRXPMXSOZIZlXhaYV9XlF0dEeq647SHUvRGM7QG30jKO1Z85d87cAd30GOfzWcvWYIkCggCVOTZx2UIP1WMVjADAwMDA4PJ4xrwBXJYpGEi0JSSwQYwrtGGCGRgYHASIg488I1EaPbV5Kx5FL72My5bXEzAaeYvLzYO8+w5lEQmx872CKcFkuQkG6UlZfzs8f28+/8285PH9rK3MwqCQKJoNf0L3knKP183o17/A1ztG6l+8HqsfbsA2FHfzFyxDaFs9ZSN7Y4VksMHQMRRxctRP3dubsZm1o+l/bRvoZpslD73uSEPHjSN+Chtd/3xDCVSFMXiBdPhSWrjwe80k8aMYrJDTBeBMjmVuhfuRUHkrIuv43c3rSSx6sOENCeZR7/OnZubh8SRZEahNZikNZikI5QiGM8STyvjbhUcL+FkFr88IAhOwhgaQJZlEKUjmg6vrsqjLZSkJ28F5lgLyXDPqNtOht6DEvNUdbgZOuheWK3B5BH/pmYSTdN4YlcHy02NWKtWU+l3ML/YTVXAcdx7bhkYGBgYGBgwVKmT77IMVAbp95my6eT36zkanJhPIAYGBgZjMJoIpJmsdC//OM72F/C3P8GNayrY1xXjpfq+Ucfa2homp2rUyP3kXGX84V2reeLTZ3HtqnI21ffzmX9t5cY/vMTb/7iJj/59C6809gMQmnstLWf9HEukgdn3vpmiR97Pmc2/1edXvnraj/moYdMrgdI1F3L96nLu3tJGSzBJwGUmZ8+n47SbcXS/in/X/+Fu/C/z7liD47nvjDhUfzxDgRhGtU8+iWEw8j1tyYOELgL94bl6lqY30+1ejDsvH1kSefOqefQu/wgbxK20bb6Pj/59C0/v7SYYH7l9KZSYXhEomMiQZxoQUCbRDgYgm0QkUcBiGl0EWlvtB2CPUAVArm3bpPY1EqmsQrKvhdo71lGy8YtIqaA+r2grrubHydt9O769d5JM5+iNHZu2sNZgEk+qFbsWJ1e4DEEQkMQjG00aGBgYGBgYHD84zBIOi4RroGp+UBQ6URdQjzeMOyIDA4OTElEQUBm5EqFv/k3k7f4rxZu+xXlXPsY9r9n4y0tNrKn2j5gs9mpjPzZZwp/tJOsswyIIzMp38t0rF/OFi2r5x+ZWdraHSedUdrSFufmBXZw9N5//ObMa5lxFpOJcCrf8HPO++3m71IMiWjBVnMAikKeMrjNupr/yUj5WUMJrzSE+969t/Pfj67HIIqFZV+Cpu4/iTd9G0FQ0BFwND5HKfvuwEtz+eIY8QqiOgklPp8Cl+wFFRA/eeC+hRIa7ntnCh8UGOud8huqAg7qeGOmsSmrZe0jX/4M/RX/KH3PX8P3HLkFBIs9uRpIEHGaJT11QS3XAQTiZpUTVRvydmCiprEIqq+IWB0yyJ1sJJAmjtoINMr/YhcMssSleyiWA1rkdFl8wqf0dSm8sjffAvzHH28nbeyeehgdRzS7M0ZZh22miieii64eVcB8ttrWGWSzUAyCWrTjq+zcwMDAwMDCYGoIgUJ5nH/rZYTbRR8YQgaYJ41s0MDA4KTnig7so07Hu61giTRTu+iNvX1dJazDJk3u6DttU0zReaQqyvMKLOd5Gxlk6bGy3zcz7NtTw8xuW8+sbV3DfR8/kk+fP4YW6Pj78ty08uqsTxeyhde3XOU/7Le/N+wsHrn4Uu8s7A0d9lBAEIkveQ86ej9dm5qfXLyWUyPDV/+ygzGtDEAXazvweSf8iulZ8is41X8QSaSTZ23zYUP3xDD41iDbJZDCAeUUuVlf52Be1oMV7+Nlj+1ie0X1/tNnnI4kC5T47gqBXgh14y31Eai7lfcqdvFLwXb66JMqKSi9LSj30xzP88sn9KKqGpuktXNPB4DguYUAEmkREPOi98GOJQCZJZEWlj5e6IGsvQurePvTeVFq0MjmVUCKLt+4+EvnL2X/lf4kXrSOZt4D2027mwOX3sueGl4gXrKT4pW+RiXRPel9T4bWWIMulelTJirl4wTGZg4GBgYGBgcHUOFjwcVj0e5/p8AQyMEQgAwODk5SxijdiZWcRqbiAos0/4OquX7K4QObvLzeTyQ03OGnsS9AXz7CuzIIpHSLrKh1VYNKjoc18/Py5PPyJ9SwodvOrJw/wkTte43fP1NEby7B22WIUX80Jb0o36LtkkyUWlnj45AVzeWh7Jw9u76DAZSHnKKLuigfoXvEJYiVnAqA2bBw2RjKjkMwqOHPBSZtCD87l21cspltxkQh2ccfLLVzn3UPWGsBctgwAm1miwK1XpagWLy3n/JKm836LMxfkPfs+wE9z3+VH5v/lzsK/8d3QZ5nzl2X49vz9sKSrcDJLeyg54TkOtpY5mFolkEkSj+gHNMiaqjz2dcWI5y3A0ruLdE4hns6xpzPKge4YfbH0hAWhnlgac/9+bP27CM26nHReLXvO+g0bV/6CpzxX0mRdQNZZQtv67yNmYxS++M1jYhD9enOIdeY6kv6F2K1HvxLJwMDAwMDAYHoxSSIWWUSWDE+g6cAQgQwMDE5KRk0IO4jmc2+hd8G7COy6jb+qXyAei/DQ9o5h27zSpPv7rMtLAJBzlY9r/7Pyndz5/nX8+Nol2GSR/+7sJOC0sLoqb2g140RGEgQsJhFxQBD7wIZZnFbj5+v37SSWzg0TKlJ581HMbqTm54eN0RdPYyeFRU0guCZfCQRQW+SiuKQMpxJGQGFV7jVi5WfhtL0R1V3gsg777iPVl7Dv2qfoXvYxLOF6XK3PMCf6Ig6LiVDWRN7W3xNP5ajridHQG2d/V5TmvgR9sQzd0dSE5jcoJtm0BJooT9oEW68EGruTe0217tvUZpmFNXSAzr4QDb1xcopGMqPQHkpxoDs2bpEmq6j0RtOEN9+BisjX6+byP3/ezPW3vsRH/r6FL9+7g4/csYW9nVHSvlp6ln4Y34F/k23aNKnjPBKKqqGoIwtYqqrR0dFKrbKfZMXZRtm4gYGBgYHBSYLTYjoqCZ+nAoYnkIGBwUnJeEQgzWSj4/RvEi85ncrH38+n/Zv4xStOLlhQiMNiQlE1ntzTzex8JwWK3iqmuMcnAoFeoXLNynKuXlHGS/V9pHMqJkk4KRKKJFFAEqVhP//0+qVc/Ivn+MBfX+X02X6iqRxXLS9jXrGLePFabO0vksoqQ1VQzX0JAkIYAHGKIhDAsnmzsXRl+dK8buS6EMnKc/EdYqBc5rOzvzs6lGilyg66Vn2WrlWfHdqmI5zk9jt+yveiv8fUvplE6ZrD9tUdSeMwm4aMCsciOFAJ5Ep1oLiKMY3j93MkzKbx3fwsLfdilkS2KRUs1HJkOnajBRYP2yaVVTnQHcNlNSEOmCeLgoAogiyKyCYRsyRiNon0RNP89YVGPtJ4Py+ygIa0i1WVToo9Voo9NgIuMz95dB/ffHAnv7lxJdLC91D42i9Qm16E2adP6lhHQlE1GvviyKJIhd9+2Pt1PTHW5V5FNGvkZr9p2vZrYGBgYGBgcGzx2c1jb2QwLgwpzcDA4KRkIma+kaqLiBeu5kb1PlLpFLdvagJg44FeWoNJrl5ZNmR8q3pKJzwXQRA4bVaAs2sLWFDsHkqzOpERReGwtqRij42fXreUUDLLPa+2cc+WNh7f3UXAaSFddjqWSCPR7qah7et64wTQRSDJVTTlOZndurn05cKzaIKIMOucw7cxiZR57aOmxw0ex5xzbiKhWWh96n+HouSFbAL/jj9Q/cB1mPv30hJMoI5SkXIo4aReCeRItKJ6qiZ2YJPAKkssKfPwaJ/+ndj6do24naZBJJkjlMjSF8vQE03TFU7TGkzS0BNnb2eUne1h6rpj1G/fSLXYRdn6t/Pg/zuT3960kq9dtpD3bajhyuVl3PG+ddhkiU/d9To5q4esLR+hZ8+0HZM6IAAl0grhZJbeWPqwbZ4/0Mu50hZS1gLk0mXTtm8DAwMDAwODY8t42uENxochAhkYGJyUTLTQomfph7AnO/hK5R4e3NbBro4I/9jcTEWendNn+bH1biVrDaA5piZWiKIwLWlTxxqTOHJK1bnzCtn85fPZfvOFXLK4mHtfbyOdUxCq1gOQrXtuaNu67hhlcgQA0TX5dLBBRKfuK+Rp/C/J/GU4fCOP6bHLzMp3YpVHvwSurq2koeB81iWf5aO3beTe235IxV/WUPLSN7F3b6Hi8Q+hJGN0Rw8XIkZi0BPIGmtG9VVN7MAmyVUryni6x0FSsGHu3YmQS1K4+Ye4Gx8BdfxePaoK/3ilhZuEh8lJNjJzLxkxor48z87Nly+iO5qmP54h7ZuLqW/vtB1PbyxNIv3GvDvDKXpjacLJLOFklgPdUbY0dHOWuJ1YxXnYLfK07dvAwMDAwMDA4GTBEIEMDAxOSsbTDnYw0fJzSfnmcm36bvwOMzffv5OWYJIbVpcjCgL2rldJFK5EMnqRAf37tY4gBBzM9avLCSWyPLarC2vZEhSzG2vbC8TSOQDqe+PMcw6YLE8hHWwQaUAEEnNJouVn4zxC253NLDG7wEmh2zKqYGhb805cQpK/yTfz1dwt7FVLebf4bTadfiuWSD2lG79IbzRFOje2oBJKZvFJSeR0EM1bNZnDmzA3rq3gi29ewA6lnOCBTRQ99mEKtt5C5ePvo/auDfj23AGaOuY43ZEUu3e8zhXSCwQXvB2HJzDqtisqvADU9cRR8+dhCe4nlXkjYW0839VIqKpGb0yvppKSfZgSPWgadIRSNPclaO5LkMyoWDs24RSSJKrOO6LIZ2BgYGBgYGBwqmLcIRn8f/buO77Osnz8+Od+zl7ZO917Lwotq+ylbFRcyBIHoqg/cQu4vl8VVFT4ihtBFESGiCCyKZu2dNHSPZI2e559nvX74yRp0pwkJ23aJO31fr3yojnPupM75Dy5nuu+LiGOSIPOtlEaDXM/jb91Ez+au4dYymRsgZ8TpxThiDfiad9JrPSYQQeXjlQBj6OrKHRfTppSRGWejwffrsLvcRMtX0Jwzyu0RNJFlbc3RJjgjWIrDQJ9BxayH9S+cyQnnD7g+JRSlOR4mVYaoijkJtfnIuR1kh9wURRyEy1bQjI0jgmprdQtvJGaix9iDTP45HIfm2d+nrxtj5G7+R/sbR24SHRrTGeWtwkAO3/iwX2dg/CpZZNxVc5nur6Roj3P8ffiG1h74q/Q/SWMeeVrTPrXZfhr3wZLz3i8Zdv8dvl2Put8DNvhonHupwh6+w6uleR4Kcvxsra6FWfpLBxGjGTDTiAdTNpcG2H9nja21oepbonRFEkSTRp9Fnru1BrX0/tYBpP+/UGmPnI2rsieHvu0x3Vmtr+Grtxok09Dyf+rQgghhBC9jP7qpEIIkcGB/P3XOuViSlbfyUm77uJLp9/LxJLcdBZQ/SoAYqWL8UtrSiDdGn4gmqb40OKx/PzZzexpjeOZeiE5u57B2PYS0eA57GmNUxlqx/IW9CgyfcD86SCQ4S1AVSzM+jC3U6M819fr9UjCYNdZv0czYsRLFjERuO2D8/h/f1/D9btO5Z+lr1H+1g/ZNP4sWv0u8vopWNgaSzHV1QgmqILDFwQCGDf7BKh5iCfzPsY395wIe+CMGT/h2vI3WPjeT5n8xGVYDg/JvKlYTi+2w40eKCcVGseTtbmYOy0u8b5Cy4wrMQMl/WZYAcwdk8va6jYcx80CwKjbQLhwAnXt6aVztg3xlEU8ZdHCvuBT0Osk3+8ix+vqFcDrrP+Tt/VRvK1bsTQX45/5JNvOfxjblS4Q/dLK1XxCe5uWkuMJhXKH7PsnhBBCCHEkkSCQEOKI5DiQKJDmovbYrzH+uc9wmeNlWoo+DECgbgWW5iZeOIeQZBcAZJ1l8YHFY7jjuc38fUUVVyy+EGP5t8l/7wFW5h2HbUORasUKlDAkpf7cfkxPLuExpwxJPZj8gJuaghldnxcE3UwvC/GTD8zjU/et5Deln+bL9Z+idOXP2HPS9wh4nD1aktu2TdKw8LoctMZ0ljoaANAKJxz02AbDmH0pO5zFjK08md9EkvxjZTXPbKjjaWsiufyIc7wbmG1uZXJTNT4tgU9FKGULxWYjV2NztQcszUPDvM8Q8DgHzLCaPyaXZzbUEc+djQew6jdSVda7SPf+IgmDSMJA0+LkeNPBIKdDkTIskrqFMpOUrvo5saK51B/z/xj/9NVMeOYawpXLsGKtfHHjn3Aqi70LrqKwn2wlIYQQQoijmdwlCSGOSAe6bKt9wnnEShZRuvKntE66ENvlx1+3gnjRXGynd8A/gEVPlXk+Tptewt/equKaEyfSOuVSCjbez7ayGwEI6C3YOQdfFLpT/QV/odVdwfgh6CCR73dT25bAttNZKpV56Wyhs2eXcfniMdy5opoLp32QKRvvo3nGR6l2z2FiUYBwQqclqtOeSGe5TC4OsLUhwkRfPYa3ALc/76DHNhheX4C6McsAKAl5uf7UKXzkuHFsqg2zvSFCc2wKbyh43YZoyqAtrlPblqA9FubycRE+ObkNM1iOESgjlEVwZd6YPADebVEcFyjD2bhpwOVe3VlWevlcZzHtTvmbHsAdqWbPSf9LZMwp1Bz/XUrf/hHBva8B8IS1BNfZ32fa1DlHRPF1IYQQQohDQYJAQogj0gEHa5Si5rhvMvmJD1Cy+lfUL/oivsZ1NM26EjjADKOj3JUnTODKP77FC5vqmTfzoxS9+ydKdz4GHI8v2QjBGQOdImtGxWLMuJ7VcrWBODRFrs9FW1ynIs/bY9stF85m+ZZGvtZ8AX93P035m99n53n3s7GmHcPsGfBYtbuVhnCSiYEG9JzxOA/zz1D3At65Phcp0wTcLJ1UyNJJhX0eANk+ywABAABJREFUZ1o2Dk3R2vG5pqUDYwOZNya9FGtNdSsLC6bjbdmc3mDbgA1q8OUIlZGg5J1fEilbQqQyHdBqmn0VjbOuZHdtIz/59xqKK8q5deKMrAJVQgghhBBHK7lTEkIckQ4mESBWdhzN0y6nZM1dKMtAM5PESo5Jn1cyDAbt5ClFTCoO8OfXd3HXRxcSK1nEgvrHqAwcjyvRiBkcukwgp0PhdWlDVhQ4P+DG63L0aonudzv54lnT+Oo/1rJyztUs2fpzfPWriZcs6HWO17elC0IX6XsxixcPybgGw+3UUAo8To2xBT6UUrQndOrbE8RTfXcH2z+bpjDgySrDJs/vZnyhn7VVbZiF0wns/TNYJuOe+wzBPcuJlSwiVnYc0bIlxEoWYju9A54zf/PfccUbuKvgG7zx1HukDBPTsqkPJ6lpS+By+LjxuHEA5HilNbwQQgghRF+kO5gQ4oh0sF289p7wfWIliyhe9xsAYqXpIJAsMxk8TVNcefwE1lS1Ut0cp3H2NVQYVTxlfRrNTKKFDr49fCeHpvAOQRZQp6DHSVEwc/bLpQsrGV/o59a9x2G4cylec1fG/dbvaaPEp+GN1WAf5qLQnXxuB2ML/F3BsRyviyklIcYW+LJqpa4UfX4fMpk3Jo+11a3YJTPRzCQl79xB7q6niZYvxZlopmTVz5n05OXMunc2k/95IeWv30qg5o2ObKH9WAZ5q3/NKmsKv6uqoD6cABSGZVOZ5+OG06bwp6uOY1ppiIDHgdsptzZCCCGEEH2RTCAhxBHpYIM1ttPLrjN/w5THLsByejH86WwVpwSBDshlx4zhtqc3cd+bu/jiGRdzxXON3BT6L/Oir6GVzh6y6ziUwj9A96rB6iuryOnQ+PJZ07jxgdWsnPYhluz6HZ6WTej+MvK2/ZNQ1QsEat9iqvlRCkqXompNVN6EIR1btsbk+3plM0E6ayfP7yaeMgkndbDBhnQxZsMioZvpAt5BD05H9sGVeZW5/GvNXsKhKeQApe/8gmjpsew6+4+gNLRkG4G6Ffhr38Jfv4qC9/5K0bt/JJE/jaaZn6B1yqVY7mB6jNseJxDbw+/5Kr+/8jjmj83F73aimxa7m2PoZjqbqSTkpSCQfaBKCCGEEOJoJEEgIcQRaShWAxn+UrZd+CiaHut67WAzjI5WQY+TK08Yz10vbCPocbI8NY2Zs87FPa+AGWOHLhPIqWmHNRPkgnkV/PrFbXxm82Je991H0VOfJpisw21GSYbGkXTncV3kQZaHJkMtaIXDkwmUKQDUnc/twJehmLZt28R1E/cgAkAAC8blAXDzawZ/ACyHh+plt3fVA7I8uYTHnUF43BkAKCNO3vZ/UbDhz1S+9m3K3v5f2ia+n0TBTELr7+M9ayw5c99PQcDdFeRzOTQmFwcHNS4hhBBCiKOdBIGEEEekoSrgrAcre55XMoEO2JfPmk5tW5IH364C0tkpTk9gSK/hcqqsljcNFU1T3P/JJfzyuS385Z1zuSr6OE9YS/mdcT6LFpzCXGMdH1r/Gc6q+z0AzqLJh21sQ0EdYGbV4vH5fOXsafzxlZ38w1zGBsdcat4xWTSuiZnlOeT6etbtsZ0+WqZ9iJapH8TXsJrCDX8md+d/KNj8dwB+xxe4dMEY8vxS70cIIYQQ4mBIEEgIcUQ6VBk7EgQ6cA5N8ZMPzEMpeHTVHmZV5OByDO330+dyDFlR6GwVBj3cdO4M3pt7O/9p+DqWM0Th6j385Y1djCsoY5I9k8XtG7EcHtx5FYd1bMNFKcUNp0/lkydP4rcvT+DdrY2sfq+ep9bXAlCZ52NWRQ6zynNYOrGQYGdHL6WIlyykumQh2Da7q3fzq8dfZfaCpeT4XL2CR0IIIYQQYnCUnakI4/47KXUu8AvAAfzetu0f7bf9IuD7gAUYwBdt236lv3MuXrzYXrFixYGOWwghBrR+TxuQrmfSGElmrDk7GJoGsytyh2BkRzfbtmmIJCkJebvakB8J3qttRzfSP2QJ3eRrD69le2OUayt28Z3mb5DMn4rnxqPvfW9bQ4RY0kQ3LapaYqza1cKGmnY21oSJJA3cDo0TphRy9qwy5lTkdAXxwgmdLz64Gsu2+cXlCynN9TClJDTMX40QQgghxMinlFpp23bGtrQDZgIppRzAXcBZQDXwtlLqcdu2N3Tb7Tngcdu2baXUPODvwIyDH7oQQhw4h6YYW+An6HGS43Omi8gaBx4JOlKCFcNNKUVJKN0W/Ej6nub73dS3JwHwuhx8830z+dZj68iddSbhnf+B3LF4hnmMw8Hj1IglTcrzvCwan88F8yqIpgxaYilW7WrlvxvqeGlTPS9uaqAi18uyacXMrczlkXf20BxN8aNL55Hjc1EcGriVvBBCCCGE6F82y8GOA7batr0dQCn1AHAR0BUEsm070m3/AOnmIkIIMazGF/q76pn43U4mFAbYWh854IygoaozJI5MuT4X9e1JXE5FUdDDtLIgr3/9DDbVhdk5/V6KcjwcjXksbqeGQ9sX+NM0RcjrIuR1Ma4gwDmzy2iIJHh8zV6eWlfLg29X8UBH3ajrT53M9LIQXpcmS8GEEEIIIYZANkGgSqCq2+fVwJL9d1JKXQL8L1ACvD/TiZRSnwI+BTBu3LjBjlUIIQZl/4K2XpeDXJ+L1ph+QOfTjqCsFTH0vC4H4wr85PicPeoSFQbd1LUlB91h60jhcTgoy/X2mfXlczsYVxDgc6dO4WPHjWdHY5TVVa3EUibLphYBdAWQhBBCCCHEwckmCJTprq3Xc3Tbth8FHlVKLSNdH+jMDPv8FvgtpGsCDW6oQghx8EpzvLTF9QPKBnJKEEgMIDdD96rCgIeGcBKPq/827UeqgMeBM4sAmFKK/ICb/ICbKaVBWqIp4rqJQ6mM31chhBBCCDF42QSBqoGx3T4fA+zta2fbtl9WSk1WShXZtt14sAMUQoih5HZqFATcNEVSgz72UHUcE0c2h5ZeHna0ZgJlEwDaX47XRY43HfjJpoGFEEIIIYTITjZ3Zm8DU5VSE5VSbuDDwOPdd1BKTVEdue9KqUWAG2ga6sEKIcRQKAl5cB5Aa/IjqYixOLwKA27czqMzCHSwlARfhRBCCCGGzICZQLZtG0qpG4CnSbeI/6Nt2+8qpT7Tsf1u4DLgE0opHYgDl9vy6E4IMUI5HRpjC/zsaIgO6jgJAokDdSDZMEIIIYQQQgw1NVyxmsWLF9srVqwYlmsLIQRAXXuiq6V3NspyvRSHjsYm30IIIYQQQojRQim10rbtxZm2ZVMTSAghjkglHQGdpkgK0xo4IC6ZQEIIIYQQQojRTPLThRBHLaUUpTleZpaHyA8M3H1IgkBCCCGEEEKI0UyCQEKIo55SirIcL9oAvxH97qOzxbcQQgghhBDiyCBBICGEIF24t796Px6XhkuK+wohhBBCCCFGMfmLRgghOhQF+m4dL1lAQgghhBBCiNFOgkBCCNFB09LLwjIJuKWOvhBCCCGEEGJ0kyCQEEJ0kx9wE/L2DvgEPBIEEkIIIYQQQoxuEgQSQoj9VOb7ehSJdjkVbqf8uhRCCCGEEEKMbvJXjRBC7Mfl0KjM83V9LkvBhBBCCCGEEEcC+ctGCCEyyPO7sWzY2xqXpWBCCCGEEEKII4L8ZSOEEH0oCLhxaAqvS5ImhRBCCCGEEKOfBIGEEKIfuT7XcA9BCCGEEEIIIYaEPN4WQgghhBBCCCGEOApIEEgIIYQQQgghhBDiKCBBICGEEEIIIYQQQoijgASBhBBCCCGEEEIIIY4CEgQSQgghhBBCCCGEOApIEEgIIYQQQgghhBDiKCBBICGEEEIIIYQQQoijgASBhBBCCCGEEEIIIY4CEgQSQgghhBBCCCGEOApIEEgIIYQQQgghhBDiKKBs2x6eCyvVAOwalosfmCKgcbgHIbIm8zW6yHyNHjJXo4vM1+gi8zW6yHyNHjJXo4vM1+gi8zUyjbdtuzjThmELAo02SqkVtm0vHu5xiOzIfI0uMl+jh8zV6CLzNbrIfI0uMl+jh8zV6CLzNbrIfI0+shxMCCGEEEIIIYQQ4iggQSAhhBBCCCGEEEKIo4AEgbL32+EegBgUma/RReZr9JC5Gl1kvkYXma/RReZr9JC5Gl1kvkYXma9RRmoCCSGEEEIIIYQQQhwFJBNICCGEEEIIIYQQ4iggQSAhhBBCCCGEEEKIo8ARGQRSSp2rlNqklNqqlPr6fts+37HtXaXUT/o4/oMd2y2l1OL9tn2j47yblFLn9HH8DR372Eqpov22naqUWt1x/pcO9msd7UbAXN3fsX29UuqPSilXx+tKKfXLjuPXKqUWDdXXPJodqvlSShUqpV5QSkWUUnf2c/2JSqk3lVJblFIPKqXcHa/LfGUwUuer2/ZjlVKmUuoDB/u1HglG6nwppXKVUv9SSq3pOP/VQ/U1j1YjYK4y3mcopT7W8TtwrVLqNaXU/KH4eke7kTpfHdvkvnA/I2C+5N5wEA7hfJ2llFqplFrX8d/T+zi+r/cuma/9jNS56rZd7gsPF9u2j6gPwAFsAyYBbmANMKtj22nAs4Cn4/OSPs4xE5gOvAgs7vb6rI7zeYCJHddxZDh+ITAB2AkUdXs9D9gAjOvv+kfLxwiZq/cBquPjb8Bnu73+VMfrS4E3h/v7Ndwfh3i+AsBJwGeAO/sZw9+BD3f8+26Zr9E5X93G9zzwJPCB4f5+DffHSJ4v4JvAjzv+XQw0A+7h/p4d5XPV133GCUB+x7/Pk9+FI36+8pD7wpE4X3JvODLmayFQ0fHvOcCePo6Xe8NRPlfdxif3hYfp40jMBDoO2Grb9nbbtlPAA8BFHds+C/zItu0kgG3b9ZlOYNv2Rtu2N2XYdBHwgG3bSdu2dwBbO663//Hv2La9M8PxHwUesW17d3/XP4qMhLl60u4AvAWM6Xb8vR2b3gDylFLlB/6lHhEO2XzZth21bfsVINHXxZVSCjgd+EfHS38GLu74t8xXbyN5vgA+DzwMHO2/BzuN5PmygVDHPkHSQSBjcF/eEWVY56pjv4z3GbZtv2bbdkvHp2+w7z3taDZi5wu5L8xkJMyX3Btm71DO1zu2be/t+PRdwKuU8nTfR+4NB2UkzxXIfeFhdSQGgSqBqm6fV3e8BjANOLkjDe0lpdSxQ3jubEwD8pVSL3akyn1ikNc/0oyYuepI9b0C+M+BHH+UOJTzlY1CoNW27c4/PrtfX+artxE7X0qpSuAS0k+BRNqInS/gTtJP//YC64Abbdu2DsEYRovhnqtsXUv6KfjRbiTPl9wX9jZi5kvuDbNyuObrMuCdziBFN3JvmL0RO1dyX3j4OYd7AIeAyvCa3fFfJ5BPOiXwWODvSqlJHZH+gz13NpzAMcAZgA94XSn1hm3bmwdxjiPJSJqr/wNetm17+QEefzQ4lPN1sNeX+eptJM/XHcDXbNs20w+GBCN7vs4BVpN+gjcZeEYptdy27fYhvP5oMtxzNSCl1Gmkg0AnHc7rjlAjeb7kvrC3kTRfcm84sEM+X0qp2cCPgbMHeX2Zr55G8lzdgdwXHlZHYiZQNTC22+djSD+97Nz2SEda4FuABRQppf6k0kX5njyIc2c7tv90pKM2Ai8D8wdx/JFmRMyVUuoW0nUuvnwgxx9FDuV8ZaORdCpvZ/B6/+vLfPU0kudrMfCAUmon8AHg/5RSFw/BNUezkTxfV3e7/lZgBzBjCK45Wg33XPVLKTUP+D1wkW3bTYf6eqPASJ4vuS/sbUTMl9wbZu2QzpdSagzwKPAJ27a3ZdhF7g2zN5LnSu4LD7MjMQj0NjBVpauPu4EPA493bHuM9JNMlFLTSBfFarRt+2rbthfYtv2+Ac79OPBhpZRHKTURmEp6rXC2/kk61c6plPIDS4CNgzj+SDPsc6WU+iTpp9wf2W95w+PAJ1TaUqDNtu2aA/5KjwyHcr4G1PE04gXSbw4AV5L+fwpkvjIZsfNl2/ZE27Yn2LY9gfTa8Ott237sYK85yo3Y+QJ2k85UQClVSroo5PaDveYoNqxz1R+l1DjgEeCKozybpLsRO1/IfWEmwz5fcm84KIdsvpRSecC/gW/Ytv1qpn3k3nBQRuxcyX3hMLBHQHXqof4gXQ1+M+kK6N/q9rob+AuwHlgFnN7H8ZeQjogmgTrg6W7bvtVx3k3AeX0c/4WO4w3SEc7fd9t2E+lOEOuBLw7392q4P0bAXBkd+6zu+Li543UF3NWxbR3dKuAfzR+HeL52ki44G+nYZ1aG4yeRDuZtBR5iXxcDma9RNF/77XMP0gViRM8XUAH8t+P/rfXAx4f7ezXcHyNgrjLeZ5DOAGph33vaiuH+Xo2Ej5E6Xx3b5L5w5M2X3BuOgPkCvg1Eu83DajJ0rULuDUf9XO23zz3IfeEh/1Ad32whhBBCCCGEEEIIcQQ7EpeDCSGEEEIIIYQQQoj9SBBICCGEEEIIIYQQ4iggQSAhhBBCCCGEEEKIo4AEgYQQQgghhBBCCCGOAhIEEkIIIYQQQgghhDgKSBBICCGEEEIIIYQQ4iggQSAhhBBCCCGEEEKIo4AEgYQQQgghhBBCCCGOAhIEEkIIIYQQQgghhDgKSBBICCGEEEIIIYQQ4iggQSAhhBBCCCGEEEKIo4AEgYQQQgghhBBCCCGOAhIEEkIIIYQQQgghhDgKSBBICCGEEEIIIYQQ4iggQSAhhBBCCCGEEEKIo4AEgYQQQgghhBBCCCGOAhIEEkIIIYQQQgghhDgKSBBICCGEEEIIIYQQ4iggQSAhhBBCCCGEEEKIo4AEgYQQQgghhBBCCCGOAhIEEkIIIYQQQgghhDgKSBBICCGEEEIIIYQQ4iggQSAhhBBCCCGEEEKIo4AEgYQQQgghhBBCCCGOAhIEEkIIIYQQQgghhDgKSBBICCGEEEIIIYQQ4iggQSAhhBBCCCGEEEKIo4AEgYQQQgghhBBCCCGOAhIEEkIIIYQQQgghhDgKSBBICCGEEEIIIYQQ4ijgHK4LFxUV2RMmTBiuywshhBBCCCGEEEIccVauXNlo23Zxpm3DFgSaMGECK1asGK7LCyGEEEIIIYQQQhxxlFK7+tomy8GEEEIIIYQQQgghjgISBBJCCCGEEEIIIYQ4CkgQSAghhBBCCCGEEOIoMGw1gYQQQgghhBBCiOGm6zrV1dUkEonhHooQg+L1ehkzZgwulyvrYyQIJIQQQgghhBDiqFVdXU0oFGLChAkopYZ7OEJkxbZtmpqaqK6uZuLEiVkfJ8vBhBBCCCGEEEIctRKJBIWFhRIAEqOKUorCwsJBZ7BJEEgIIYQQQgghxFFNAkBiNDqQn1sJAgkhhBBCCCGEEEIcBSQIJIQQ4ohhWfZwD0EIIYQQYtCUUlxxxRVdnxuGQXFxMeeff/4wjmpgwWBwwH1uvfVWbr/99n73eeyxx9iwYcNQDUv0Q4JAQgghjgjRpEFMN4d7GEIIIYQQgxYIBFi/fj3xeByAZ555hsrKymEZi2EYh/2aEgQ6fKQ7mBBCiCNCYyRJns893MMQQgghxCj23X+9y4a97UN6zlkVOdxywewB9zvvvPP497//zQc+8AH+9re/8ZGPfITly5cDEI1G+fznP8+6deswDINbb72Viy66iJ07d3LFFVcQjUYBuPPOOznhhBOoqanh8ssvp729HcMw+PWvf83JJ59MMBgkEokA8I9//IMnnniCe+65h6uuuoqCggLeeecdFi1axPXXX8/nPvc5Ghoa8Pv9/O53v2PGjBns2LGDj370oxiGwbnnntvn1/LDH/6Qe++9l7Fjx1JcXMwxxxwDwO9+9zt++9vfkkqlmDJlCvfddx+rV6/m8ccf56WXXuIHP/gBDz/8MM8//3yv/fx+/8FOhUAygYQQQhwBkoZJe9zAsKzhHooQQgghxAH58Ic/zAMPPEAikWDt2rUsWbKka9sPf/hDTj/9dN5++21eeOEFbrrpJqLRKCUlJTzzzDOsWrWKBx98kC984QsA/PWvf+Wcc85h9erVrFmzhgULFgx4/c2bN/Pss8/y05/+lE996lP86le/YuXKldx+++1cf/31ANx444189rOf5e2336asrCzjeVauXMkDDzzAO++8wyOPPMLbb7/dte3SSy/l7bffZs2aNcycOZM//OEPnHDCCVx44YXcdtttrF69msmTJ2fcTwwNyQQSQggx6tW3JwEwpSaQEEIIIQ5CNhk7h8q8efPYuXMnf/vb33jf+97XY9t///tfHn/88a7aOolEgt27d1NRUcENN9zA6tWrcTgcbN68GYBjjz2Wa665Bl3Xufjii7MKAn3wgx/E4XAQiUR47bXX+OAHP9i1LZlM32u9+uqrPPzwwwBcccUVfO1rX+t1nuXLl3PJJZd0Ze5ceOGFXdvWr1/Pt7/9bVpbW4lEIpxzzjkZx5LtfmLwJAgkhBBiVEvoJm1xHQBDgkBCCCGEGMUuvPBCvvKVr/Diiy/S1NTU9bpt2zz88MNMnz69x/633norpaWlrFmzBsuy8Hq9ACxbtoyXX36Zf//731xxxRXcdNNNfOITn+jRUjyRSPQ4VyAQAMCyLPLy8li9enXGMWbTlryvfa666ioee+wx5s+fzz333MOLL754UPuJwZPlYEIIIUa1hnASuyP2I5lAQgghhBjNrrnmGm6++Wbmzp3b4/VzzjmHX/3qV9gdNz3vvPMOAG1tbZSXl6NpGvfddx+mmW6SsWvXLkpKSrjuuuu49tprWbVqFQClpaVs3LgRy7J49NFHM44hJyeHiRMn8tBDDwHpANSaNWsAOPHEE3nggQcAuP/++zMev2zZMh599FHi8TjhcJh//etfXdvC4TDl5eXout7j+FAoRDgcHnA/cfAkCCSEEGLUShr7soBAMoGEEEIIMbqNGTOGG2+8sdfr3/nOd9B1nXnz5jFnzhy+853vAHD99dfz5z//maVLl7J58+aubJ4XX3yRBQsWsHDhQh5++OGuc/7oRz/i/PPP5/TTT6e8vLzPcdx///384Q9/YP78+cyePZt//vOfAPziF7/grrvu4thjj6WtrS3jsYsWLeLyyy9nwYIFXHbZZZx88sld277//e+zZMkSzjrrLGbMmNH1+oc//GFuu+02Fi5cyLZt2/rcTxw81RlJPNwWL15sr1ixYliuLYQQ4siwpzVOcyTV9bnP7WBKSXAYRySEEEKI0Wbjxo3MnDlzuIchxAHJ9POrlFpp2/biTPtLJpAQQohRyTAtWqKpHq/JcjAhhBBCCCH6JkEgIYQQo45hWuxsirJ/Mqu0iBdCCCGEEKJvEgQSQggxqliWzY7GKPFU74CPZcFwLXMWQgghhBBipJMgkBBCiFGltj1BQu8740eKQwshhBBCCJGZBIGEEEKMGgndpCmS6ncfqQskhBBCCCFEZhIEEkIIMWrEUuaA+0gQSAghhBBCiMwkCCSEEGLUiOsDB4FkOZgQQgghRpu6ujo++tGPMmnSJI455hiOP/54Hn300UN+3RUrVvCFL3xhSM516qmnMn36dObPn8+JJ57Ipk2bhuS8Q2kox3jPPfdwww03AHD33Xdz77339rnvzp07+etf/9r1+VB+3wdLgkBCCCFGjXjKGHAfyQQSQgghxGhi2zYXX3wxy5YtY/v27axcuZIHHniA6urqQ37txYsX88tf/nLIznf//fezZs0arrzySm666aZe201z4Ad6h9qhGONnPvMZPvGJT/S5ff8g0FB/3wdDgkBCCCFGBdu2+y0I3UnaxAshhBDigD31dfjT+4f246mv93vJ559/HrfbzWc+85mu18aPH8/nP/95IB1AOPnkk1m0aBGLFi3itddeA+DFF1/k/PPP7zrmhhtu4J577gHg61//OrNmzWLevHl85StfAeChhx5izpw5zJ8/n2XLlvU6x1tvvcUJJ5zAwoULOeGEE7qyZO655x4uvfRSzj33XKZOncpXv/rVAb+Ny5YtY+vWrQAEg0FuvvlmlixZwuuvv87PfvYz5syZw5w5c7jjjju6jrn33nuZN28e8+fP54orrgCgoaGByy67jGOPPZZjjz2WV199FYCXXnqJBQsWsGDBAhYuXEg4HKampoZly5axYMEC5syZw/Llyw94jH/5y1847rjjWLBgAZ/+9Ke7AkN/+tOfmDZtGqecckrXWABuvfVWbr/9dgC2bt3KmWeeyfz581m0aBHbtm3j61//OsuXL2fBggX8/Oc/7/F9b25u5uKLL2bevHksXbqUtWvXdp3zmmuu4dRTT2XSpElDFjRyDslZhBBCiEMsrptk0/1dMoGEEEIIMZq8++67LFq0qM/tJSUlPPPMM3i9XrZs2cJHPvIRVqxY0ef+zc3NPProo7z33nsopWhtbQXge9/7Hk8//TSVlZVdr3U3Y8YMXn75ZZxOJ88++yzf/OY3efjhhwFYvXo177zzDh6Ph+nTp/P5z3+esWPH9jmGf/3rX8ydOxeAaDTKnDlz+N73vsfKlSv505/+xJtvvolt2yxZsoRTTjkFt9vND3/4Q1599VWKiopobm4G4MYbb+RLX/oSJ510Ert37+acc85h48aN3H777dx1112ceOKJRCIRvF4vv/3tbznnnHP41re+hWmaxGKxfr/vfY1x48aN/PjHP+bVV1/F5XJx/fXXc//993PWWWdxyy23sHLlSnJzcznttNNYuHBhr/N+7GMf4+tf/zqXXHIJiUQCy7L40Y9+xO23384TTzwBpINvnW655RYWLlzIY489xvPPP88nPvEJVq9eDcB7773HCy+8QDgcZvr06Xz2s5/F5XL1+3UNRIJAQgghRoV4FkWhAQxTgkBCCCGEOEDn/Wi4R8DnPvc5XnnlFdxuN2+//Ta6rnPDDTewevVqHA4Hmzdv7vf4nJwcvF4vn/zkJ3n/+9/flXFy4oknctVVV/GhD32ISy+9tNdxbW1tXHnllWzZsgWlFLqud20744wzyM3NBWDWrFns2rUrYxDoYx/7GD6fjwkTJvCrX/0KAIfDwWWXXQbAK6+8wiWXXEIgEADg0ksvZfny5Sil+MAHPkBRUREABQUFADz77LNs2LCh6/zt7e2Ew2FOPPFEvvzlL/Oxj32MSy+9lDFjxnDsscdyzTXXoOs6F198MQsWLMj4/RlojM899xwrV67k2GOPBSAej1NSUsKbb77JqaeeSnFxMQCXX355r7kIh8Ps2bOHSy65BACv15txDN298sorXcG2008/naamJtra2gB4//vfj8fjwePxUFJSQl1dHWPGjBnwnP0ZcDmYUuqPSql6pdT6PrZ/TCm1tuPjNaXU/IMakRBCCJFBNp3BQDKBhBBCCDG6zJ49m1WrVnV9ftddd/Hcc8/R0NAAwM9//nNKS0tZs2YNK1asIJVKAeB0OrG6LYNPJBJdr7/11ltcdtllPPbYY5x77rlAunjxD37wA6qqqliwYAFNTU09xvGd73yH0047jfXr1/Ovf/2r63wAHo+n698OhwPDyFyn8f7772f16tU89thjXUEir9eLw+EA0sv7M7FtG6VUr9cty+L1119n9erVrF69mj179hAKhfj617/O73//e+LxOEuXLuW9995j2bJlvPzyy1RWVnLFFVf0Wag5mzFeeeWVXdfctGkTt956K0DGMe7/dQxWpmM6r5Pt930wsqkJdA9wbj/bdwCn2LY9D/g+8NuDHpUQQgixn6SRZSbQYQwCJQ2T1ljqsF1PCCGEEEee008/nUQiwa9//euu17ovZWpra6O8vBxN07jvvvu66tOMHz+eDRs2kEwmaWtr47nnngMgEonQ1tbG+973Pu64446upUXbtm1jyZIlfO9736OoqIiqqqoe42hra6OyshKgq7bQUFu2bBmPPfYYsViMaDTKo48+ysknn8wZZ5zB3//+967AVOdysLPPPps777yz6/juX8vcuXP52te+xuLFi3nvvffYtWsXJSUlXHfddVx77bU9AmuDccYZZ/CPf/yD+vr6rrHs2rWLJUuW8OKLL9LU1ISu6zz00EO9js3JyWHMmDE89thjACSTSWKxGKFQiHA43Of35P777wfSy8SKiorIyck5oLFnY8DlYLZtv6yUmtDP9te6ffoGcHC5SUIIIcR+si0KDYcvEyic0NnVFCPocZLndx+WawohhBDiyKOU4rHHHuNLX/oSP/nJTyguLiYQCPDjH/8YgOuvv57LLruMhx56iNNOO61rKdXYsWP50Ic+xLx585g6dWpXfZpwOMxFF11EIpHAtm1+/vOfA3DTTTexZcsWbNvmjDPOYP78+bz00ktd4/jqV7/KlVdeyc9+9jNOP/30Q/K1Llq0iKuuuorjjjsOgE9+8pNd4/7Wt77FKaecgsPhYOHChdxzzz388pe/5HOf+xzz5s3DMAyWLVvG3XffzR133MELL7yAw+Fg1qxZnHfeeTzwwAPcdtttuFwugsFgvy3b+zNr1ix+8IMfcPbZZ2NZFi6Xi7vuuoulS5dy6623cvzxx1NeXs6iRYsydhK77777+PSnP83NN9+My+XioYceYt68eTidTubPn89VV13Vo5bQrbfeytVXX828efPw+/38+c9/PqBxZ0tlk67UEQR6wrbtOQPs9xVghm3bn+xj+6eATwGMGzfumF27dg16wEIIIY4+Cd1kS10k4zbdtLjz+a2cM6eMWeU5ODTFrIpD9/QE9gWAbBs8Lo1ppaFDej0hhBBCHDobN25k5syZwz0MIQ5Ipp9fpdRK27YXZ9p/yFrEK6VOA64FvtbXPrZt/9a27cW2bS/uLKYkhBBCDKS/otD/XL2X5zfV8+rWRiCdCXQg67EzaU/oGGbPDKTWWKorAASQMqwhu54QQgghhBCH0pAEgZRS84DfAxfZtt000P5CCCHEYCT6qAfUGEny4IrdANS0RFF6ev38UC0JS+oW9eFk+t+Gye6mGFXN8R6t6m0bUmZ2S9WEEEIIIYQYTgcdBFJKjQMeAa6wbbv/XnVCCCHEAciUCWTbNr95eRuWBdNLQ3y08RdMe+QsYOiKQ+umRXM0xZ7WOFvqIrTF9Yz7JQ0JAgkhhBCjmWT1itHoQH5uBywMrZT6G3AqUKSUqgZuAVwdF7wbuBkoBP6vo42Z0dfaMyGEECIbbXGdcEKnMs+HUipjUehXtjbyxvZmrj5hAjmtG7mo9Rm0sA2WPmSZQLppYdvQHOm/A1hKgkBCCCHEqOX1emlqaqKwsHDAFuBCjBS2bdPU1ITX6x3Ucdl0B/vIANs/CWQsBC2EEEIMlmXZ1LYlSBkWsZSJQ1O9gjptcZ27X9rG1JIgF82voOCRG9FUeh9nohXDyh2SsehZLvOSTCAhhBBi9BozZgzV1dU0NDQM91CEGBSv18uYMYNr0D5gEEgIIYQ4nBojya7MmmQfbeF/+/I2YimTG8+YStG2fzCm7W3esGayVNuII9mMaY0bkrHoZnYZRZIJJIQQQoxeLpeLiRMnDvcwhDgshqw7mBBCCHGwErrZVYi5L89sqOXlLY18+NixTHG3UP76rbSVLOFXxsUAOBMtGNbBB2Vs28bIMgiU7KNwdSYSMBJCCCGEEMNFgkBCCCFGjD2tPTtv7e/xNXv55fNbWTA2j8sWjaH8ze+DbbH31NuJufIBcCSaGYIY0KA6fulGdsEi3bRoT2QuLi2EEEIIIcShJkEgIYQQI0JVc4xYsu+Mmrd2NPG75ds5flIhN58/i5yGleTufIrG+Z/FyBmPJ1QMgDPRPCSZQNlmAe3bf+BrRhIGCT37rCEhhBBCCCGGkgSBhBBCDLumSJLWWN8ZMntb4/z0mc1MKQ7y/86eRiCyi4rXb0b3l9Aw5zoAgvklADgSLUPSHSzbotCdsmlLH0kaUkRaCCGEEEIMGykMLYQQYti1xfsOAJmWzc+e2YxS8I3zZlC29QEqX/0OltND9Sl3YLv8AOSFQkRsH45EU1YBmYEMZjkYgNXfOrYOkaTR53I3y7LRNGlLK4QQQgghDh0JAgkhhBhWpmUTS/W9ROrhVdVsqgvzlbOnM632X4x55RuEx5xG9bLbMfzFXfsFvU6a7SD+WFNXJlBCN6ltS+DQFOW5XpyO7BNgB70cbIDAU0I3u85pmFaPsbQndJyawu+Wt2UhhBBCCHHoyHIwIYQQw6q/7BjdtHjknWqWTCzglEkhKl6/hUjZUnad+ZseASCAoMdJMzmoeHNXsGVva5xwwqA1plPVEh/UuAa7HMwcIGjUPbNo/yVhTZGUdA0TQgghhBCHnASBhBBCDKtwP92y3tndSjRpcs7sMoK1b+HQIzTO+xS209tr35DXSbMdSncHs20Sukm0W6HpwRZlHuqaQN2DRN2DQAndJJIwBr38TAghhBBCiMGSIJAQQohhFUkafW5bvrWBoMfJgrF5hKqex3J4iFScmHHfoMdJCyGciRZsGxrCyV77NEVTWY9LH+RysIFqAnUPEiUNk5RhUdUcY2t9BEAygYQQQgghxCEnxQeEEEIMG9200I2ewZPa9gSRhIFl27y5vZmTphTh0hSh3c8SqTgR2+nLeK6Q10mdHcKjtwBk7DbWEk0RdDvJ9bv6HZdt2ximjStcjR4oB83Rax9v0waK1/6awJ5X2X7+QxjBmf2es3vHsra4TlMkhW2nO6PlB9y9gk6mZeOQQtFCCCGEEGIISRBICCHEsNm/IPTLmxu47b+bery2bFoxnrZteMK7aZz76T7PFfA4abFDuMw4ykhkXDJm27C7OUZu3MW4Qn+f59JNG2UkmPbwGTTOuY66xV/pcZLCDfdQ9uYPsB1uHHqUQO2bmOUz+v1aDWtfpk9n4Gv9nja+9dg6Pn/6VN43t7zH/tsaIrgdGgVBNyGPE6UkICSEEEIIIQ6OBIGEEEIMm3i3IFBTJMmvX9rGtNIgH1o8FgCfy8HcylwCGx8HIDz2lD7PFfK4aCYEgCPZguEs73PftrhOe0Inx5s5I0g3LZzxejQjTsHG+6hfcAO204uWbGPM8q+Su/Mp2seeQfUpP2XG35bibd1Ku9X/cq79N8dTJnc8txnLhrd2NHPWrNJ944vpJHWLpG4RThgolQ5y5ftd5PpcEhASQgghhBAHRIJAQgghhk00la4HZNs2v3x+KynT4stnTqcyv+eSL1/jOgxvAXpwbJ/n8ro02sgBwJloxgj0HQSCdOewYIkTLcOSK8O0ccYb0+dKtlC44V40PUzhhntwpCLUHPdNGud+CpRGMm8yntatPZZ7ZdI9E2hva5xfPr+F+vYkU0qCrN3TimHapAwLt1OjPpzocaxtpwtbRxIGeq5NccjT77WEEEIIIYTIRIJAQgghhoVt212ZQP/dUMeq3S186uRJvQJAkA4CxYvmQj8ZMEopEq48AJzxpgGvrxs2deEE5bm9r5cyra4gkOkKUP7WDwBoG38O9Qu/QKJobte+ybyp+OvexhygMLRp2QSrX8K59q98sOoTOJTGF8+cisuh8ZOnN7GlPszU0iBJwySh951VNJgOZ0IIIYQQQnQnQSAhhBDDIqFbXV28/vDKDuaNyeX983pn7ygjgbdlMw1jTxvwnClPHiTTy8Gy0RRJkedz43P3LPxsWPuCQHuP/x7+hjU0zbqCZP703l9H3hTytj2GlYhARyZSJoZl493yFGP3PsUEzwf42geWURT00BbXUcDqqlbOnFlKa7x3QevukoYEgYQQQgghxIGRIJAQQohh0dka/i9v7MKwLD5/+lS0DJk+3ub3ULaRzgQagOHJhyQ4E9kFgWwbdjVHmVwcxOXQul7XDRt3RxCobdIFtE77YK9jdzZGcWiKnLypALhat2FZ5RmXlwEkdZP2XZsZC9xygpdgML2kK9fnYnJxkHd2txLuWPLVn3TwzJa6QEIIIYQQYtC0gXcRQgghhl5rLMXW+gjPb6rnwvkVlOXs6+aVu+1x8rY+CqSXggFZBYHw5gHgSLVlPQ7dsNnVFMXqVtNH78gEMt05vbqMRZIG//fiVr7wwDv88MmNJPOmpC/dshWjj7pApmXzt7eqyE3VATDW3ttj+4yyEDsao7TGUgOO17YhafRfhFoIIYQQQohMJBNICCHEYZfQ03VvIi/fyW89q8g55q9d23z1qxj74o0o28SRaMLXsA7Dk4ceHDPgef0+LzG8OJLZB4EA4imLPa1xxhak28anu4M1YPiKuvaxbZsXNzfwx1d20J7QmVgcYHtDlBrHdKYqJ57WLVi2jWFaaEr1yAhKGSaPvFPNLe4msMHdtr3H9SvyfMR1k9a4Tr7fPeB4k7qF1+UYcD8hhBBCCCG6kyCQEEKIwyZlWDg1RWtMx7Rsjml5kllqJ1sim0h4ZqOlwox94QvogXISBTOoeON7AIQrl/VbFLpT0OOkzQ7gGWQQCKA1phP0pMgPuDu6gzVh+IqwbZt3qlp5aEUV6/e2M700xK0XzsaybL780BrerYuzJHcCntZ0JlBbXMey7R4Fp1tiKbxmFL8dA8DTvrPHtSvz0vvubY1nFQSK6ya5ZG5vL4QQQgghRF8kCCSEEOKwiCYNdjZFse10PGdbdQ0XswuA/M0PUbNkBmNf+DzuyB62v/9B4sULyNn1NI5kK5GKE7O6RsjrotX2U3EAQSCAvW1xvC4Htg3OeCN13ol8+aE1bK2PkOd3cf2pkzlndhmaUpiWjc/lYN2eNgx/Kc54I7pp0RxNYVo2uT4Xfnf6bbYhnKJCpWsM2cqJZ79MoBNq7+N/nSvZ0/pjZlfkDjhO6RAmhBBCCCEOhASBhBBCHHKtsRTVLXE6u6jbNrRsegWHskn6y8nb+ijORDM5Vc+z54QfECs7DkgXZR6MgMdJOwEqEq0HNE7LgqqWGC3RFHp7LS82TaTVq/OF06dw6vSSHsWjHZpiZnkO7+5txyzJwRNvoDaawjDTX2R1S5wpxUE0TdEYSVKh0m3rYyUL0nWObAuUhiPexOQNd1LugFtaYlmNU2oCCSGEEEKIAyGFoYUQQhxS9eEEVc37AkCdvDVvYKJRu/Q7OJMt5Oz4N3ULb6R55hUHfK2QN70cTEu2HvA5krrFk6t3EbIjjBs7nt98/BjOmlXWIwDUaU5FDrubY8QdQRzJdmJJs8d5atsTADRGUlR2ZAJFKk5CM5O4ojUAFL37RzQzQVAlaG+uy2qMuilBICGEEEIIMXiSCSSEEOKQqWtPUN+e7PV6SzTF1MR6aoLTaZ/4fnaf9itiJceghwYu/tyfHF86CORI7jmo80RbagGYNmkSzc6+n5fMKM8BoEn3UqyHe21viqQoCLhpjqYzgSzNRbQjy6nw3XtwxuvJ2fk0hrcQZ6IJWncDxw84PtsGw7RwZghMCSGEEEII0Re5exRCCHFINEaSGQNAAKt31rJAbSNRfhwoRdvkiw46AFQUclMYcNNGAJd+YDWBOhnh+vR/fcX97lcS8gDQavtw6FGwjF771LcnaYqkawLpgfKulvLF635DcM8rRCtOoPrkHwPgi1Zh9tFmvtcYs9xPCCGEEEKITpIJJIQQ4oDEUkZX4eP9tURT1LQm+j5403/wKB1t6llDMhaf20FZjpd8v4fNdgCXGQdLB+3AOmipaGcQqKjf/QoC6U5ezWa6u5cjFcb05vfYpy2u0xBJMlZrQg9WYvhL2bv0FvRgJe3jzgLNgZaKAFBh19MYSTKWWsY991ki5SfQMu2DJPOn9+qOljKlTbwQQgghhBgcCQIJIYQYtKrmGCnTYnJxsNe2hnCS2ra+A0CmZTOv6UmanUVEs+z61R+/x8GEwgBKKUpyPERUekyOZBvmAEGcTOIpE7/eDC7QBzje5dDI9bloNNJBIC3V3isIBOmgWKVqQg/OAaVomnNtj+2WO0jClc84o567X9rGNxx/wdu8EW/zexSv/x26r5h40VwiY06lZeoHsNzBrgLUQgghhBBCZEuWgwkhhBiU+vYErTG9V5ty07LZ1hDpOwBk2wT2LKf53ec4idXsrDgftIPLZHE5FRMKAzi0dJZMns/FuMoKAFqa6vftaJn46lfRqzp1BvXhBEWkl5NlE0QqDLipT6Yzghyp9oz7tMeSFNOM7i/v8zxm7jgWhNrYWd/KuD3/4mnjGD7o+z0Pln+V6vwluNt3UfH6zUz7x6loyTYMKQ4thBBCCCEGSTKBhBBCZC2aNKjrqPNjWZA0TDzOdCAnnNB7dMfqTukxxrzyNfK2/ZNJAAq0hR8FwOlQB5zVMibf3xUAgnTb9mOmT4Q6ePT1d5l1bBmzizRmvvolcqqeo/qkH9Ey46P9nrOuPUGpakF3BnD7QyT0/oMtBQE3Ne3p2kCOVO/i0AB2vAUHFoavCKUyx6L00Fgmp9bz0IkRip9tp2nKB0i0FfPNXV5MawE+l4OfzdjEeVtuxt+whlTBGQN8d4QQQgghhOhJgkBCCCGyVtfeM8snkbK6gkDt8d5FkQFckb2Mf+ZavE0b2Db7Rv6xpp5pRR6mlMzA53bg0BQRM/OxmTgdiuKQh4Dbic/dM5PIqWkEctPZO82N9fzhiZf4g/t2AtoeUv4yStbcRcu0D4HW99tfbXuS41QjqUAlPrcDpRTxVO/gVtDrJMfrpDLfx966dO2hvjKBnPEmIF1jyOvSiKd6B5ZSobHk7Hqa4g33oPuKmXfaB5mnOYmlDNZWt/GXN3bxy6qJnAf4mtaRME/P6vslhBBCCCFEJ1kOJoQQIisJ3SS6X6ZPvGNJmG3btCf0Xsf46lcx+Z8X4GrfxWMzf85X6s/hD1xE3rnfAiDoceJyqF7H9cXn1phWGqIo6OkVAAJwOBSmJxeAm08K8Gzu9xnnbOaq1Fd5qPSLuMNVFG64N100ug/17QkqtSbMnDE4NY08f8/i0l6XxpSSIBOLAhQGPYzJ97E3mc4E0jJkAtm2jSfVDKSDQL4+imnrobFolk5w76s0zPtsV6DK73aydFIhZ84sZWOrg3hgDN7Gd9FlOZgQQgghhBgkCQIJIYTISnM01eu1ziBQOGn0WuIU2vVfJv37cpLKy+Xm9/nSOyW8U9XKhxePpSiYDpoEvU7cjuzfispyfT2Wf+3PqSlMdzoIVLjnBXzJRmrPuhs1+XS+895Y9vpnUPHGrcy8fxG+hjUZz1EXTnQUca7EoSlyfS6UShegHpPvY0pJsEcAqjLPR7vd2R2sd2v6aNKkwG4FwPAV4u+jo1cqNA6ARP50mmZf2Wv7wnF5AFR5puJrWo8uhaGFEEIIIcQgyXIwIYQQA7Jtm5ZYhiBQyqQ9oVO3XzHowN5XGffc9dT7p3BByxdR/kJuu2w6pTle8jvaqisFfpcD3cguoyXgcRD09P+25dD2ZQL5a9/ERhEvW8znSj0kdIuzd36FK0u2caP5Z8Y+/zm2XvIkljunxzna2lrJJUxNsBKPpnA50tlHbmfmYFVlvp8I/vT1k72Xg7XFdQpV+nXLX4THlfk88aK5xIrmUnP89zK2th9X4Kcg4Ga1MZ5p7S9gJ9qwrBBaP0ExIYQQQgghupNMICGEEAOKJA2sDLEa07LZ1RjrUTw5WPUCE/57DfWuSs5tvJHyskp+9qEFzCjP6QoAAfjdDjRN4cxyOVhhR/ZQf5yawna4sZw+HEaMZO5kLFcAv9vJt98/k0+cOpe76ufyA99XcEf2MGb5V3tUabZtG2d4D0BXJhDQZwAIoCzHi4VGyhHAofdeDtaW0ClUbVhoKF9Bn5lPpjefbRf/m1jpMRm3K6VYODaP59vSHca8TRvRM02KEEIIIbJi75fGbFk28ZRJOKGzvSHC5rowTZHkMI1OiENDgkBCCCEG1Bbvu4ZOJ2UkKFl1BxP+ey3VWiXnt32V42ZN4bsXzibX1zuzJc+fDgi5slwO5s9QA6jXGJRKZwN1LAlLFM3use28OeVcd/Ik7q0u46G8a8jd8SQFG+/r2qemLUGhUQekg0DOLLJsynK8AMS1IFofmUBFtJNy5+NwOnE6NLQDfPedW5nLyuRYIF0c+kC7qgkhhBACWmP77m8M02J7Y5St9RF2NsaIJk2SukVNW0Lq8IkjiiwHE0II0UtCN/E4NZRKB0H66vzV3fhnriW0Zzmv+07hUy1XcO4x07hi6fiuc3SnFF2BoWxqAjkdKutgkbOjOLQrVku8cE6v7RfOryCaNPjaW6cwu3AtM9/4HoaviPaJ72NzXZgKle7kleqWCdSfHJ8Tr1MjqvkJZCgM3R7XGa/aMXyFXefzODN3CBtIZZ6PBvKIu/LxtmxhV1MMv9vBuAK/LAsTQggxqti2jWnZOAdRG3CoNUaS5PpcaJpiT2s8YzdQ24Y9LXGCXicJ3UQ3bXTTojzXS8jb+yGXECOdZAIJIYToJaGbXYGfSNLAtPrPOLFbdxHas5w/OS/nIy2f5kMnzeYTx0/IGACCdACoMyCiaWrAYEs2WUCdutcFihf1DgIBfPjYsVwwfwwfbbqWKu80xj33WQo23MumujDjHI3YyonhK8kqE0gpRUmOl7AdyNgivq49QZFqw/IXd53P7ej59bicqt8lZ51Kc9NZR+3OQpzxBkzLJpwwqGlPDHCkEEIIMXLoHVk32WQaHyqGaZHQLaIpA8O0CCf6fuAVThjUtCZoiepEEgZJ3SKSHPgBmRAj0YB3nEqpPyql6pVS6/vYrpRSv1RKbVVKrVVKLRr6YQohhDicDMumKZrEtGz2tMR7bGuJpqjtFnTYXBfmqb//BoBHzGXcesFsLl5Q2eucPrfG1NIg4wr9Xd3BOg3UJj5TO/i+dO8QFi+cnXEfpRTXnjSRY2dO4uzmr7A57yQqX/s203Y/yHRvG3qgHDRHVplAAHMqctibdGMl2nAkWlDGvu9PdUucUkcYy1/UZ42h0pAXTxZBoDyfC69Lo0Xl4Yw3dr3eHEkRS8nNqBBCiJErZVgkdJOkYbKtIUIsaZLIsjnEoRDr6HAaSRq0xfVeXU4HEpUgkBilslkOdg9wJ3BvH9vPA6Z2fCwBft3xXyGEEKOUZdlEkyY7GiOkut2gVbXE+Oaj6zAtm998/BhCXhd/e2s3N2tv0hiaybcvOQ+/u/dbS1HITVmOF6UU3gwt0l0OrUdx6YDHgWXTlZad6Zx9cWiKZO5E4gWzsDx5fe6nKcUNp00lmjQ5f/t1PFUOX2i5m4gjl1RwJppGn5lM+/vG+2byzh1+Ym17mfTEBwGbbRc8guXJpaolRgHtxLyF+zKBOgI+Tkc6Ayg/4O66Ge2PUoqyHC/1Zg6T4pt7bIulzEF9n4QQQojDJZI02N0Uw7RslNrXkyGRxXvfobCuuo3tDREmFQeJJIys3++7i6csTMvO+oGRECPFgI8dbdt+GWjuZ5eLgHvttDeAPKVU+VANUAghxOFndCz/6l63pjma4tuPre8IEBn89a3d7GqK4qx6lXlswZhxYa8ghKbB+CI/5bm+fm+wXN2yYHxujfGFAcYX+nE508f4MgSO+uLUNGqP/RrbLnhkwH0dmuKmc6Yze2wR76+5ljXWJIJmG3qwAucgqjePLfBTWV5GkVmPt3Uz3tYtjH/u0xipBM1t7fjtGIZvXyZQjtfJzPIQM8tzmFwcBLKrjQRQlutljxHCGW/o0dksUx0DIYQQYrgZptUVAIIeb12HNQhkWjbtCR3LsvncX1fxxQdXs3xLAwndOuD3UFkSJkajoagJVAlUdfu8uuO1XpRSn1JKrVBKrWhoaBiCSwshhDgU9q8BZNs2v3huM5GkwQ8vnss5s8uoXv8K+Y9+hAfcPyDlLaZlyqU9jnE6FJOLg+RkUTSxczlYwONgYlEQh5YuBD29NMSsipxBPWVzaAo0F7bLn9X+LofGt943k4llhXwm9SXigTHEShYN+sne+IoynCodNNsw9TME975G0YtfJd9qBcDwFnYFlpwOrVchzGxqAgGU5fjYlQyimUk0PdL1etIY/A3scD2BFUIIcfSoCyf7rC1oWfTIOD5UbNtmV1OUXY0x/rGymt3NMfIDbn72zGa21kcGPkEfZEmYGI2GIm88011yxv/Lbdv+LfBbgMWLF0tfWyGEGKH2v1n7z7u1rNrdymdPmcx0x15OjP8PBe7naNdyeHnsDRScekOPoIvToZhYFMi49CuTooCHXJ8Lt0PrkTGklGKAckG9DFRfKBOvy8F3L5zNjsYJbC2/EJQiOMggkN1RjLqGIj6x/Uwemedl3No7+IarFgDDV9hva/j9awKNK/DjcCiiSYN4yiRpWKSMdDeSWjMHHOCMN5JyhwBI6Ba2bQ8qpb09rmc9R0IIIUQ2bNumOZqiOZrCoSliA2TZJAwz6wchB6IhnKQtnurKbn54VTW5Phd3XL6Az/11Ffe9sZPvXpi5kcT+bNsmaVhd753JYaxpJMSBGoogUDUwttvnY4C9Q3BeIYQQw8TslqutmxYPvl3F7IocLg+tY+w/vwCak9pjvkLT7GvIdwd7RP7dTo0JRX48zuyDC5qm8GhDE4w40FbpfreT2RW5XZ9n0xmsO9ubA0By3Cm0btX5Uu3ZfC9nFee3vwyA4Svqd4mZq1tmkFIQ8jrRNEXQs++tOmmYbKjxs570OJ3xBlK5E9PXt+lxY5qN9oRBcWhwgSMhhBCiL20xnZr2OLqR/fP+hG5mlTWcjXBCx6GpruXpScPk5c0N3P7fTbTG0p3I4rrJBxaNId/v5gOLxvCn13by4qZ6/G4npmWxoaad9XvbcVtxAm4nTm+Q1mgST2wPhfFdFNlNnD/BZsKUWcRnfWhIxi3E4TQUQaDHgRuUUg+QLgjdZtt2zRCcVwghxDDpngm0fEsDTdEUtx6TYvxznyJeOIddZ/0eI1DW4xiloCjooTjkGdYiiY4hCmgM+mvoyATSJp/GdeWT+PVL27jB/WGe0N4iQALDW9jvOR2aSre3t2yCHmfGYJbH6WB6aYh77H1BoO4SujmoIJBuWsR1KSgthBDi4LVEU1Tv11E0G0l96LJpWmM67QmdSUVBfG4HT62r4duPrSfkdXLO7FIgXTvw4oWVOKO1/L/dn2WF75P89Jl0s4Wl2gbmazs4PRjm7OTTeCNJwgTwkMKNvu+v5z1g73WwccLZQGjIxi/E4TDgXZ9S6m/AqUCRUqoauAVwAdi2fTfwJPA+YCsQA64+VIMVQghxeOwr3mjz6Dt7GJ/v47Sqn2B68tjxvr9iuXN6HRP0OCnL9R7uofYyVAGowWYCpcaeTOPsq2kfdybnOX28u7edl7fAX4qu5RrrYQx/6YDndDs14imTHF/fT0QnFQdp6soEauyxLa6b5A1izGZHFzgJAgkhhDgYjZEkNa2J7A+wDIrW/xFP62aaz/jpoK+XafmzbduEEwaWBbubozyyag+/eXk7Ewr93HrBbAqDnh77h957nmDjGn48awcvFJ3A4sgLHLfqf1BY2EkHrZMvojV3Ms54AwmHh1TOOBL503ixxs1Lr7/Gve4f4695C3P8mEP28Guwy7yFyMaAd322bX9kgO028LkhG5EQQohh1xkEWrW7lZ1NMe5YVE9ww+vsPf57GQNAAHn+oUnlPljaEN0sDXpZWaCAmuO/C6SL5d1w2hQawgkap17Be/O+itLUgOd0OzQSyiTH2/fbc8jrpLi0AqtVQaS+x7bBdDcxTAvblq5iQgghBtZfMGJva5ymSGrgk1jpIsqOZCvjn7mOQP1KAFqP/RKUzhrUeBK6hWFZhLotI4umzK77l2c21PObl7dzzqxSrls2KeMS9UDdCgDGtb7BOVNPY/LyrxMrW8yuM+7GdvqwXIGM155XaPKrt9tJKTfBva+imxfjGKIl7fsb7DJvIbIhj/6EEEL0YFk2/r1vEC+YwSPvVFMYcHNG84OkgmNpnvHRjMcoxZCt5z9Yw5UJtP91fW4HP/nA/H3ny6JgtdelkR/w9+oc1p1Sik+fOp3mR0Ps3r2T4HH7tsUH0e3L6LhRjiQNatri2HZ6HstzfVmfQwghxNGhPWGQmyFLdU9rnOaBAkC2Td62xyh//WZszY3tcOOIN1E399OUrvsNzsaNMHVwQaCkYdIW13sEgdrjOvXtCerCSX63fDvTSoN89tQpfd4X+OvSQSh/7QqKV9+F5fSx8+w/9vmwq5PX5WDx5HJWbp/Ggj2vkjIPTaDGtu1Ddm5xdDt0ZdiFEEKMSqaeYOKTH8W3/H9YW93GFTMUodrXaZ5+ObbDnfGYXJ/rgAsyD7WhCgIN9jwDZSBlU6uoOOTpcUPbl8UT8om7C4k017CtYV9rW8vKvlW8bqZrMJiWTWM4RVMkRWM4Je1uhRBC9NIS7R3oaYmmBg4AAfmb/srYF28kmTuFaPECoimLDye/xd3WpQC4m98b9HhShkU4YZAyLJKGSVVzjJ2NUW742zt889F1RJIGN5w2tc/3cke8EU/7DiLlJ6BZKXJ3/YeWaR8YMADUqTzXx3JjNr6W9zDa6gY9/myYlo0u3cfEISBBICGEED2YkQaUbVC460lCbrjMuRwbRevUyzLun+NzUj4CagF1118r9my5+snGyXjNAYI8/WX3dMp23b/f7SBYWEGp1s5tT28i0S0DKNvlXd2Lf3fXEssipV8IIcRRJZI0ejxkSBkWe9v6KQJt2zgSLThjdZS9+T9U5x3L3ZPu5P3117Ow/aesV9N4bkecVHAM3uZNfb4n9SVppJc0b62PsLk2QmtM58n1tUwytvKNU0v5v48uYmJRz+Vc/tq3yX/vfrBM/PWrAGiYfz2Wln7A1Tzziqyvn+tz8Zo1GwC1+7VBjT1bpm2jm4P7vgiRDVkOJoQQogc7ku44lWu3c/OMGkq3P0yk4kT0YGWvfR2aYnxh5jXzw8mhKaz9biiVSrdRz5Z7kEGggTKHBru8rD9el4N4oISJvp3UtUR49J09fOS4cUD2xaH7urFsi+tU5NojJrNLCCHE8DItG9uGcMLA5ddojCRpiCSxMiSpuMJV5G37J3lbH8XbugVTc2NaNlfUfZgdtTsoz/Vy6wWz2d0c5Y+v7qR94hQCzZswLGtQdXU6A1KdwaOUYfHSmi0857mVWN05VM35vx77+2vfZuJTH0MzE+RveQRbc2JpbqJlxxEZcwrYFsm8KVlfP8/vYqtdAYBqq8r6uMGwrH1Zu0IMJQkCCSGE6CHSUktnVZhLt38bhxFn79JbMu7rcY3MhFKHUuj0DHKMyfdR3RLPKhDkdAxcxHl/A+0+2Myi/jg1heErIi9Rxxrvp3n+vVPh2F+DUllnAhmZ7t5J33S2xnUKApmX/gkhhDi6dAYimiIpGsJJjEwPEWyborV3U7bixyjbIlp6LJtnf4lN767iDXs2Hzn3NMYXBigJeXA6NIqCbv746k62qfEc2/YqCT0Fzuxr0unxMMp2YDvTmcgvbKpnSep13C4d184nqQ3vRg+NI2fn05Su+DHu9l3oobE0zr6a0lU/x5lopm382dhOL7vO+t3gnhKRzgSK4MNSTuxYc9fr9eEEeT43bufBv+enM4EkCCSGngSBhBBC9LBqwxbOAZoKFlHYvIo9J/yQ8PizM+47UosV7h/A8bk18vxu4rpJY3jg5U4HcvM2UNAom8LQ2XI6NFI541C2QcxdxgWpJ9m15je0L/hM1sWhVe06pv/rGrZd8DBGoKzHtvRN7Mip8ySEEGL4dM+2yUTpMcYsv4m87f+icfz7uNd/DWujuazf1IauTuB/L5vL2Hx/j2PGFfgpCrpZES9jiaVjNW6FsXOzGo9uWoz798cxvQXsOvsPWLbNo+/s4WfeFejuYpyJForW/4Ga479LyTu/QNNjNM2+hsY512IEymiedWXPoI/S0m09+6EUBD1OPC4Np6YBNqCIO3NRsSZgX5Fsl6bhdh78gxTTsruaOAgxlCQIJIQQokvKsNi4dTvnAA1n30VLvJF48fw+9/cMwZOuQ2H/IswFAQ8AJSEvTk0jaZi0RPU+jx/sUjAYuCaQaygKFXXTPvMjxEoX82a0nJKnruWMlT9h45wrsZw+4ikTn7v/AJ2zZiXuSBWh6pdomX55j226YdMYTVISGlm1noQQQhx+GTN/OrjCuxn/zHV4m9/j8aLr+Or200noKUpz2sn1ubjhtKm9AkCQroG3aFw+z24t4HMaqPoNWQeBUrqBr2k9mpnE3baDl5tyiLQ2sNi3muap1+GMN1Cw6QHCY8/A17SevUtvoWnOtfsPYFDfg/JcL4VBT9fn/o732KgjB0+ihXjK7CqSHU0Z5A9BNq0da8Fqa4HS6Qd9LiG6kyCQEEKILv95txZ3qgXT5UQPVGSsA9TdSM0E6l6fx+vSyOtoa+vQFMWh9E2cbcdojWUOBB1IJtBA3b+GMhMIwOH2kiiczYxck99bp3K2vRJf07vEShdT0xZnUnGw3+NVuAaAQM3rvYJAAPXtSTSlKOp20yuEEGLkiCQNfC7HkHXF7Iva9iwTX/8lO8+5t0eXUH/tW4x/5pOYpsln+QbP7J3LsqlFXLpwDBOKBq4XOK00xIsbysALNG3Jejx6yx4CZhIA663f8XztUn7luweHbdI28f0Ynjxytz/B+Gevw1YO2iZdOOivuTuvS+u1RNrvduB1abRrOZQlWqhuiXVti2W5LHvA6770PSZUvYU55c2uOW6L6eT6B+4iKkR/RuYjXCGEEMPi3b1tFGvtWL7CrJ6SjdRMoM5lTJ2FqzMtaxqT7yPkzfws5IAygQY4ZMiDQB1fk8fpIFayAABfwxoAokkzYzvf7rRILQCB2jcz1kKwbahpTVDfnhjCUQshhBgqsaRBJGkc8us4dr9CcO9rhKpe6HrNGWtg3LOfoZUQ50S/y0b/cdz5kYV8+azpWQWAAKaXhUjhIunMQUUbszqmJZrivn8/B0ANRUzd+Vf+lryB49V6ahd/lXjRPPSc8dQvvBHNiBOpXIbhL+7zfAFPz4dZSqWXkPs9DsYW+Bhf5Gdsgb9X906lFIUBD22EcCaaSej7lsoldWtIavmocA3uth3oRnqOI0mDpmjyoM8rhGQCCSGE6FLfnuQkRwTDVzTgvpo2tMWOh1JnVk5BoO/ijEopxhf6qW6J98oIOqCaQId5OVj3bmNjx02kprkAV+07MCf9Wl04QZ7flbHtvG3bOKPpIJA7sgdXpAo9NC7jderDSXL9LjzOkZn1JYQQR6toysSwbHJ9hzgzpCNAk7flYdonnIMj3kjlizdiJ9r5SPKrjJ86lxtOmzJgdrDXpWHaNoZpM7bAT2luOtM04szDF8suCPTi5npqd7wLLvhD3o18nH/jnHwK4ekfxPCXdO3XOPdTuNt30TLtg/2erzTHy/aGaNfnY/P9WWfaFAXdtERDOJKbem2LJU1y/Qf3vq8SbWhWCiNcz9thH9sbosytzD2ocwoBEgQSQgjRTX04QbEWxvCWDLjvSF0KBvuyclwDZN8opRhb4CfXr7OnJd5V92Col4Np2sCFowd9vW7nmzcmj7WrJrGkbnXXa7ph0xxN9ahh0LXNtHFG60jmjMfTvou8rf9M136yTWIli7A8+24ybRuqW+JMKgpkDCgJIYQ4/GzbJpYy0M1D/zBGdQRoQlXPUfbmDynccA+YKb6hf5KTjj+JSxZWDvj+UJ7npSjowbZtUqaFx+nAtp0E3A5aCRGIN/d7fKftDVEmqlosh5eLLruCsLqy51hV+n3LdrjZs+y2fs/l0BQBjxOvSyOhW5TkeAa11Kow6KEpHMCZaklftNv3oD1x8Mu2VLIdgNbanXzyH1Es2+bPVx+HYVo4R+hDODE6yE+PEEKILvXtSfJpx/D2nwmkafuKIo5EnQGZbIM5OV4XU0uCBL1OlDqwDCdNU32uoDsUGVPObplFU0uCvKumkBffjZZs7Xq9PpzEzrDU68f/eY9USzVPRmfQQg5lK29j4n8+zsSnr6TitZt77R9LmtS1Swq6EEKMFAndwrKGbulRf7RYI6lABZqlU7zuN7zqOoGzkj+h/NRPcemiMQMGgHJ8zq76ckqprsxSpRQTigI0WiG0jg5bA9neEGWGu55k7sR0V6/9lIQ8Ay7P7tS5FCzodeLQBl8DrzDgptYIoGwDTQ/32NYW1zEOcl5UKh0Eevq1lbTFdcIJg7d2NJPoo0ubENmSIJAQQogude0Jcq1WTF9Bxu05PidTS4PMrsilPNd3mEeXvc4smcEEX5wOjQmF/q7C0QdCqfS1Xc6eN8TOQ1C0s3smkMuhES6YB4C/YW3X64aZzgba33PrdpFLBCNYzs+Lv8ed+V/nQ8mbWZFzFrk7n+wRSOrUEE5S157Akna1Qggx7GKpdJ2YpGHy5LoaHnx7NzVt8a527kPJEWskWnE8b8/6FjcF/ocrWq/j7GXLOGNmaa99vS6NwqCbsQU+JpcEKM31UJHX9/3C5OIANUYQLZ5dEGhbQ4SJqpZU7oSMD17y/G5CnuwycAIeZ9d/i4LuQRfYLgx62JtMf22OREuPbbZNxvffwdCS6cBS1c6tXDi/gsKAm2c31pHQh6bwtDh6yXIwIYQQACR0k2Qihtcbp9VX2Gu7z60xLkNxxJFI6yqaPLhnHUopSnMOvC26Q1N4nQ7G5PvY1RwjlkzfqB2aTKCe8+AZdwxmi0KregPGLOt6vSGSpCDg7po307IhXAtuWDp/LjOmXQrAqmc28/2tXv7peoa8bf+keVbPFHtIZ4q1x3WmlARHxM+Bblojti6VEEIcSgnD4tmNdfz5tZ20xtN17S6YV873LpozJO3Ju9g2WryRt+sdfKpuNoUBN186cwKnz+i5bNyhKcpzvb2u7Xf3/+fmxKIge97147CbwbJImHafy80ty6aqqZ0yRw3teReT63P1qOkX8DhwOzVCXidt8d7dP4tDHkJeJ1UtMXTDJtAxtqDb2fXvwSgKutlipYtgOxMt6Dnje2xviqYoDnkO7P3SMtH0CAAT3a2ct2QcHqfGw6uqqW6JZ521ZNs2Cd3CJh0cTOgWCrqynjsDYeLoIrMuhBAjiGnZVLfEcDm0fp+cZRJJGgTcjgP+47whnKSQdOqxK1TSta4e0jcLmbpjjFQOpXA61GEfr6YUPrcDp0NjUlGgq+j0oQhUOPardzR9wlhWrJ7OpJ3/pf34r3a9rhs2LTG9q71tXXuCYjtde8Hw73uK+7El4/j0lgZ2e6ZQvOnBjEEgSN9ANoSTlBxEsGyoJHQT2z6wGk5CCDGa1bcluOuFrUwuDnLjmVN54K0qttZHhnxp2Kqt1SwyE6xsdHDxgko+vnRcr0YBuT4XFXneA6pTM6k4wFo7B2WbkGilNpYO1BQGPb3aoe9ti1No1ONwmNiFkykKerqCQEpBUUcmb3C/zp+V+T6cDkWON32u6aUhLHtfRu2B1uwrDLppsUMAOJIdmUC2hbJ0bIcHw7RpiqYGvcwMgI56QADHFyVIup2cNq2Yjate5sX3prBgbF56N8MknDDwODVaY3rX/Mc73h8hYwNQIL20f0ZZzqAzoMToJ3dNQggxgjSEk7THja4078GIJAza4/vSwwerrj1BgUrfdGjBYoLdng7l+kZXdyiHpoYlMKAp1fUEs7PodMjrHPL28NA7E2hScYDXnUsojm7GFd7dY1tDt9pAe1vjlKr0zaoe2BcEKsnxctr0Ev4UOxlf03q8jev7vHZ9OEk8Nfzp6JYF0cPQHlkIIUaaf67Zi2HZfPmsaSweX8Ck4gC7W2KkhjAIZNs2t/ztJQBOWzSba0+a2OteoDLfx7hC/wEXKp5YFKDJzgHACDcQSRrUtCXY0Rhld3OM9sS+jJ7OotAAqnAyPreDPL+L0lwPM8pCXUEel0PD11G3MOBxUBBwd22D9PvzUAQ+CgMeWkgHgZyJFlzh3Ux9+EzGP3111z4N4eQBLaN+ae22rn9XaumlcvMa/skTnm8T3vRi13t6QzhJTWuCnY0xWmM60aRJNGliWR0Fsvu5tGVBY0Tq/R2NJAgkhBDDzLTSdVtShtX1ZpzQrYwFffuTMiwaIgmiSYOt9ZFBFySsDycp6ggCqWARoW5P0g6mTs5w0JTCPQzLhByawrdfGvvYAn+v14bqWt1pSuGcdT4AqfVP9NiWMixaOp6W7mmNU6rSmUC6v2c9hwvmV/CwfjyGclOw+cE+r23bsLMpekDBxqFk2jaRbkEg27ZHRHBKCCEOpZRh8c/Ve7i16EWmt70CpFubl6aqUMtv7/Mv/8H+fmyJ6Tjj6c5gEyZM6LW9NMfTlWV6oCYWBboCKXv37ukKXEQS6d/te1v31Tna3hBhnKoDQCucCKTfY0tCvbOQSnPS9y35/iFcGrefdCZQEABP23YmP34J3tatBGteQ+so6myYNs2xwdUGaovr/PRfKwAwnQFc0Rq0VDtlK9Ldzlz166luiWGYVo/lcAeiMXJgQSoxuslyMCGEGGZ17QmaIik0jR6pu3HdHHAtfXcp0ySestjRGO0qSDiYJTv17QkKOpaDOYIl+DqCQLk+14huB5+JQ1PDUivG7dR6ZSB1tqAdas4M7U+OXXQMm9eNxbP1CVJLP9ujXW19OEG+38Xu5hhlqgXT4cXu1goe0jfjEyorebb5OM7c+ig1x30L25n5Z8gwbXY2xphYFBi25ViGZRHtljXXnkhn0fncI7douRBCHKxXtjYQicX5OPeQWv0m4fFnMa7Azycc/6Vy1X/hjOsh0LvLZ2s8hcvhyTprp7olRmHHw6HcwnIa1b5O6PkB95AsCw55XVx28gJ4E37xr9c557JZPRpP6IbNtoYI4wv9bG+MMtnZgOXw4s6tGPC8eX4Xub6Da9Pen/JcH2EVwEIjb+sjuOIN1B5zE2UrbyNQk54XgNaYPqglYXXtCbxmBJygF0zD07CO0lV34Eg0o2teJhi7eXVrE8dOLMC200GjnY1RTNumJZqiOZbCstNZQi3RFJZt0xrTezw0mVke4sYzpgGKlGnh1fq+z0saZscye8kfOVJIEEgIIYZRQje7ukdY+yXuxFODCwIl9PQJOgNJgy1IWBdOUqJ1BIFCRXg6ChwPaYHJw2S4loMF3IcvWOboaEnf/YGv3+1kQ+kFXFz/f7z31l3oS27o2qYb6YyzquYYpzpbMQJl5AXctER7PkX88HHj+Ms/l3Gu/QrFq35Bw6Ib+wwEpYx00NHvduDQ1KDrWB0sy0p/XUnDxON00BxNoZsW5bkDHyuEEKNVdUuc2WonTiuFo2EtjkQrY/J95Glb0zuEazIGgVKGRThhZP2+Xt0S7woCuXNLKVBuDNOmPM87pA9azj1uDrwJIauV7z26imWzxjK+0M8Jk9NfQ1K3qGqOs7U+wrmuRlKhcbizeDg1Jt93SGsDFgTcfHDxeFrX+imIVGN4C2mcex0lq39JsOa1riBQPGWSMqys70va4jo5KgaAUTQDb/07FK7/Ay3TLsfRtpNpNdV88cVtxP67mUKjnkQyToOdxzna26y1J7HNrgQg5HFSFPKgqfQDvTH5PlDpe88XNjVQEHBz1QkTSepWvw/7GiMpokmDcQX+UfdQUGQmQSAhhBhGe1rjfa7XjqVMevfoykw3rV7nMcx0RwhfloGJ+vYEJ7gaMdx5uHzpv6JHYwCok9c1DEGgw9xlw6EpDLPnxBee8UWeun8V56y7jV2V84h06xRWH05S3RJnjKMV3V9Kvt9Na0zv8bMztzKX3SddwLOvP8WZa+8if8fjbL3wn5i+3n9QQPqPipSR/c/ZUDI7Br6rKUZhwN21fGAwN9tCCDHSDPQ7rL49yTGOLQAobAI1r1I45nRmqF0AWG170crm9jpONy3aEzp5fhcNkSQlof4zeaqaYxTSBoAjWEyZw3PARZT74wql318+NinJTduv5v9WXsj/mhfxxZkRTjv1LDSHk9ZYipW7WpgQqEfPmYI3i3EcjuYQXzlnOq1rcyggwkvmHOJtJhNKFxPY+3qP/drietZL69tiOiHSQSCreGb6v64AdYtvomT1L5lev5amSILjxuXw05qbKfA0YCknmm2gu3LYfupdOGwDp5ZEmc34GtaAcqAsHU/bNnBYbC3U2bjWzY6K71CaMxPInDFlWTatsRSWBVvqIvg9DiYWBg7Jz4E4fCQIJIQQh4lp2dS2J6jsyJaoDye6Woh3Cux9jeK1v8bbtIE9lzwKBb1v4jJJGZnr/yR0M+s/zmvbE0zV9pDMm0JgFBWB7ot3GL6Gw70EzakpCoNuYsl0dxCAvICX/8z9AdPWXUHp8m8R/dBz2I50MM8wbapaYlTa9eihWYSc6eKZ+/8cvn9eJXc23s497z3LPdGfMe6Fz7Pj3L9AP+ni6U5d9mHtyNZZxyCpW+xtTXS9HkkaFDhHbwBTCHH0MkyLXU1RppaG+tynPpzgTOdWUoFyHKkIwT3L0QPluFT6d7nZtjdj4dekYZHQra7OlV6Xo0fB5P1VNceY7oxgukM4XN5DVkxWuf2YTj/j657BTYKvuB7i/TnbmbVjBU81fZDSy27j3T3tJA2TYr2GaN4Zh2gkg1cU9GDnl0DrXp5OzKbpnT0sLj+BspW34Ug0Y3oLgMEFgVrjOqGOTCC7fAEA9QtvxPAXk8ibRqEd48HLxxFqeZeC6gaaZl2JrbmIlC+l4vXvMv2ZK3qcz9JcKNvCVg5SuROxNRcznEnmOrazbpWX5Kzf9zmWtrjeI1M9ljSpCyd6LNkTo48EgYQQ4jBpCCdpjqQwTAvTsonu94d3MtzI5Kevw9ZcuPRmXLuXw7TsgkDJvoJAWRbuNS2bPS0Jxtl70PPPzeqYke5oeEqV63dREvJiB9M1E+Kp9M/BBYsmcdu7V3N39H8ofPePNM77DJAunBxub6PQ2Uhd7kScDo2Qx9krCARw3bJJ/L/aJXw3dg3f3/tryt/4LjXHf7dHnaHubDv9c3g4U8XNPopZRpPGQRcrFUKIw8Wy7K73rJq2BAndIp7q+yFOfXuCRWoTsbKTUUac0J7lJPOm7jtfe02vY0zL7vpjvrOYcG1bgpDHiVKKhG6S1C2CXmdX44HdzTFOc0UwfYUc6t/slq8Qd7gK0xVA95cxs20le33TOLvtH9z8+ImEixZQ7mjHZSWw8yYe4tEMjj+vGFqBSaexfEsj9TNPpIzbyN/yMI1zrwPSS8LaE3q/QbdObXGdEHEAtLGL2XzpMyTzpwGQ6PhvoH0r+Zv+hu4vZe/SW0BL/1m/rWgeoarnSeZNxtbcoDQSBTOxNWf6jbrbw5y1f7iejzQ/SVXDJihYmHEsmYpaN0VS5PpcgypZIEYWyZUWQojDQDf3df5qjxs9AkCF6/9A4X8+Q+3fv4jHiPDx1Ncx3Ln4GtZm3eGr70ygvo+3bZvdTTHeq21na32YVKSJPKsVo2Bqn8eIkaUzlV8pRajbjWXA46TimPN5xlxE0co7cMbS3VTaEwblZvqPA7NgMpAunhn0OikKuSkM7guceJwOvnHeTB6zT+Nvjgso2nAPZW//L5oe7XM8Cf3wdubKe+nbhHb9t9frhnQ6EUKMInta03/whxN6V4AmnOy765PdVk2R3Uys5BgiY07FHa6ieO3dtLmKabBz0Fv39DpGz3A/kdQttjVEiSSNrpbsG2vaqWmLY1k2VS1xSrR2rD6WAw8l05deAB8tW8KO9z/I1oufoOWDjxLxlPC5xu+xa/1rnFKcfv9R+RMO+XgGI1l5PG0TzuPEBbNJmRaPN5QSrjyZ4tV3dnUJA9jTEu/x8MKy7IydudI1gaJYDg8ut5dkwfSuBzCdwaDcHU8SqnqBlmmXdwWAAIxAGS0zPkqsbAnxkoXEi+ens4GV1iub9/nij5HATe7bd/R4vfO9PKGbGR8S2XY6QDjYLrRi5JAgkBBCHAb14WTG2j92/SbK3vwhFdVPcr79MisLz+ed5BjqgzPxNa7L+o/Z/paDdaebFjsbo2yqDbO9MUpbXEc3bKqa45SldgNgFU4f3BcnRgT/fk+M3ze3nLvcV2ObKUrf+hGQzkabqNJBIDt/EgA+t4OJRQHKc31U5Pl6PHmuzPfxrffP5JbEh3mM0yheezcz/raEwN5XM44hfjiDQLZN7rv3Urzut702WX0V2hJCiBEmXXNFpy2u91jW2rnEN5PSyHsAxEoW0jz9clonno8rVkd9zhzq7XzM1r29jklFm5nx18UEq1/q8Xo8ZbKjIdpVX862oTGcYkt9mL2tcQppx/JnW6HwwNmdQaDyEzD8JSSK5mK5Q9Sd90fcDo0HnLdysfttAByFkw75eAYjesxn2X3mb5hUHGR6aYh/r6th7zFfw5lsoXjtb7r2M8x01m5zNMWe1jgbatrZUh/pdb72uE6BI4HtycG93zJz05uP7iumYPMDmJ5cmmd89IDHXVgyhufMBfhqV6KbFpZls70hwvaGKGbHz2VfdMNmd3PsgK8thpcEgYQQ4hBLGiYt0d7ptBv2thF57EuELTcX6f/D+mmfx3XO9/C6NNZaE/C0bMJIJTKcsbeUmfmPb8O0u57UpAyLbQ0RwgmDlGH1eLrzXm2YKVr6yaFdJJlAo1HA7eyxUsvjdHDK0qX8zngfBVsfxl+3ko017UxQtQCowskZz7P/MqrZFbn87EOLuDPnS1yS/C5hZwFjX7wRR6Kl17Hx1GEMAqWiKMvAX7cSLdkKgDNaQ7D65YxPVoUQYiRKdbxHVzXHejzQiafMjL/LLMvGnWgCQPeXguai6rRfUnPs19k4+ZPU2gWoSO/lYHb9JlyxevLX/Z5wou8/7jvVtydJGha5Vgu2v/hAv7ys2R2BpkjFCT1eTxbPZfOFT5By+Fla/yA2ClfRhEM+nsHovvz8smPGUNOW4D/NpbROvpiidb/F3baja3tSt9jTEqc5ksK20/dm9n4PLtriOvmOOJYnB01TaB1/sSsFxSEPbZMvom382Wy59L9YOZWEvE68Lo2SHE9fK7YzmlgUYJddiiu6l2QqRV04QTRpdtWwbMmwFKy7aNKkPpzdfaoYWSQIJIQQh9je1ji/en4rX3loDbc//R6xlEFLLMXmp+7kBG09b028nqsuuxh72U04A4UcM76AZ9sq0Cwdat/N6hopw8YZrQW7d0ZQwrAwTIudTVF0I/Mfx5tq25nu2Ivl8KDljTuor1cMD01TvTqinT6jhKfyPkY9BZS9dgtv72hkjqcB3V+K0xfMeJ48n6vXTeT4wgD/e8lcYiWLuLLt02jxZsa89GWU2fMGsb/lh0Mu0QqAsk1C1S8DUPnKN5nw9FXYHduEEGKkS3b83tw/gdG29wWIumuOpcghDIDpyUu/qDlpnH89WuVC6uw8XB1LgLuz2tIPekJ7lvOb+/5C7pOfwd2+s89x1bUnySNMwGjBzpsw6K9rsMzimaRCY0kUzuq1LVRUQeT4rwKgB8rxeEdWUWJHtzfNpRMLmFgU4MG3q6g+9pvYmpuK177de4K72b+uY1tcJ1eLY7tzALqygUpCHnJ8TmqW3szus36PESgjz+9iQlGAqaUhSnO8g6qHN6HQT5VdgmabROt30hTZ956ermFpg21T/trN5L/3t4znqG9PEkv1nbUmRiYJAgkhxCGUMiweeKuKp9+t5UOpR7l515X88pHn+OWD/+b/WffQUHw8ZWfcwJSSfX+QL51YwBuJjkBM7eoBr2HbNsRamP73k6l76kf85On3eiwDi6UMdjbFum40M9lUF2aup55k7iTcroGLFoqRaf8W9ZpSfHzZLH6Q+giBprVMr32cmZ6G9Dz30clM0xS5vt4/A16Xg++cP4uW3Jl837iCnKrnGP/0VWipfanspmUfthoBdry169+hqudwt+0gp+o5lG3gq35t0OeT7CEhxHBI9pHJC5nrmzWEk+SpKLrmxXb2bPFeFPRQZxfgSzWDse8P+pRhsfbdjQA4sPiD+i7j9j5J3kvf7vPade0J5mg7AbDK5w/mSzog+nGfY9MHX6Qw5O1alhzw7Fue3Dz9w8QLZpIqnHFYu1BmQ+v2dqqU4iPHjmVvW4L/7IK6Y/4foT3L8de91efx+9+ftcV1cohhe9NBIJdDw+PSKA558OzX+TTP3/P9uiTkQdPA5VS4nAq3UyPX5+r6KA55umoATisNUaOVAhCt294rTrWhpp0nHvg/ijbcw5hXvkbxqjtQRs/MH9tOP+zcP5tJjGwSBBJCiENoS32Y+97YxbkVca5O3c9krYafhL/Bn82v4/D4aTzzF+lifd1MLQ1SbReTcOag1awe8Bop08Lb8h6amWTengd4c0sNjz72d1Kp9A1gfXuy32U6KcNid0MbU+1dJPOm4HbKW8NoFfT07tQxuyKX5okX8rY1ja84HqBS30UqZ0K/7ez76l6S63Pxo0vn8nrBpdykf5rA3teZ8MSHKFj3B8b/9xoc8aaMT64H0ldNq/6YsfRyNN1fRs7u56h4/RYszYXpChCoemHQ54vrphS5FEIcdhl//1np9+xMv5Pqw0nyiKC7c3E7tR6Zm0UhD3Xkpz+J7MsG+sVzm9m8dRMJPDQVL0U5vTxqn0Jp3csEq17MOK611a0sdO5Mf9LRpvxQcjo10FwE3E7GF/oZV+BnUnGQHF/H+5rmZPv5/6Dp3F8f8rEMVvdMoDy/i1OmFzOrPId7X99J9bhLsDQ3uTuf7vP45H6dXNviOkFi4OkIAjk1SnO8KKVwaOngDoDbqfXq0OV0aMwsy2FGx8f0shDjCv1dH2W53q4agBOLApA3HgDVsrPHeRK6yZ3/XccVkT/ynj2Ox83jKVv1M2bcfwx5Wx7psW88ZdEY6X/pmBhZ5E5fjDiZuhcIMRp0dv/qZFk2P3tmMynD4ruev2IrB7tO/z/KXDHMisXsuPhxjEBZj2NyfE6OGV8AKJo849Dadg94Xd202bwu/YSpRLXyYtFt/E/b14g992Ognwxky6Rozf/hW/59fuX4OflGPe0TzsEjQaBRK+R17bth7ubqEyfyA/MqCgjjNsIkcyf2GwQKeZ191hUIeV18/6I5bKm4iGtTX0Zr2kzlm98lZ/ezhKpfOqCATmt88DePVqwVSD9lNTx5hKpfpGbM+4hULiNY9RK2Nbhx6KZF7DB3NxNCiO6/MzfUtLPyrVeYdd8cQruf7ScTKILpySPgcfQo5p/jddGkpWvrGG37OoSt3t3KFG8YlVNB3Tl3s+WyZ3l79i3stEopfON/et0o6KbFK9saWRasJhUaiyNQMNRfdi+ujnQan9uBy6GR25HhUpnnw9Ox1Nlyh3AHcg/5WAbL0VETKOh1MibfR8jr4tPLJhFJGvxlTQuRypPI2fV0nzdkmZaDBewYdkcQKN/v6pGh25kNtH8WUKfuNYr6o2mKi5cdi2FrrFyzmmc21FLdki72fM9rOzk19jRjVAOOc/+XbSfdwdXmt3jXHMOYl/8fwY5l2J3q2hMH9P4vhkfvO0UhDrPWWKrrj5GmSIr2hM7M8pyuX6hCjBb17UmCHidel4PGSJIXN9Xz3MZ6vjV9L6W7nqP22K/RPul8No47s0cKt1Lpm554yqQs14tT03BoirAKUpRoG/C6/323luj21URdARw5ZVS0raedAPP2/p0q46Ye19KSrZSu/Bl2Mky4tYnyphcpRmOWw2Lb4lswp1+c9c2DGJkq83zEUpGuTi8AJTlezjj9bNZvfpt5dY+Syp2Iy9H3PGuaIuBxEumjO43P7eDm82fx7MZCvrFlMntr9vI330/wNa0f9E2gYVq0xw1KQoM6rKvuT7R8CX9Pnci7yx+mrfUY7pi7m9ydT2HUv4ezrHdtib6kTAuM3llQCd3E63L0cZQQQhyczgBAfTjBD55Yx332t3FoUXJ2PEVq9vt77d8QTjJORbB9BfjdTtyOfY0ePE4HKW8J6GC07sWZTvJgZ1OMSkczeqAc01uA6S3gfQt1frPuEv637W7uvf9PHMu7VLgiNE26hJq8Y4gmTWb4txMvmo/nMNwXODSF06F6ZSM7HRqTi4NUNccIJ4xey6FGgs77phyvE6UUQa+TScVBzphRylPra7jhhNOZVvU83ub3SBTO7HV8ZyZQe0In5HHSFtfxuaLgTQe89s/28bo0Iom+g0CDccniCbQ9W4Y7vJtfPr+VD7lf4Tr/y6xpu46HQi8Sy5lHYuzJnAmU5X2Yq/81mX94vsf45z7D1ov/TSp3IpCOb9W0xRlfGDjoMYlDTx73imHVGktR1Rxne0OU7Q3pdtW2LdlAYvRJGuluCg3hJLVtCaqb49z5/FbKAhofb7mLZM5EGud8EqDXGv7SHC+Ti4NMLg7icTpwaIrCgJs2AmjJgYNAz79XzyznHuzimexZdht7l97Cn8b8gFy7jdB7f9+3Y+06xj14JgUb7sOz7T9ManqR/9E/wvs89/Lv058mtuBavCPw5koMjtOhMbUkSMjb86bxtOklOM/6LvXzP0dy3CkD1lTI8fb/nMjl0DhvTjknn3Ayb1kzqPdPxdu4rtcTzYEYlk1CT///MxidNYGe3p7gd69VscKzlBX18Ko9N73DrsHVBTJMm9h+yyYjSYOt9RFa++mQktDNHjW4hBAiW5Zl49n9MhUv/T/ueHoDH7OfZIG2nRZHEaE9y9GN3r9b6sMJClQU25uH3+0g1C1w7XIq9GA6w9hqS7eJTxkWNW1xiq0m9EBp1765PhflJ15Bs1bId5I/40OJhzi2/VkuWvMplrxwORd61xCK7yFeNBfnYQgCuRwKvzvzPYhDU4wt8ON0qBGZrdy5HKzzgUGwo1vnB44Zg2nZ3N82BxtFzs4nMx6f0NPt2fe2xtNd4YwUHjsBHTWB9ud1OvB7HEMSEFNK4SqaxKklcZ6Z9yI/0f6PqYn1/D1wO+WpnTTP/HjXvnMqc7n6tHl8PPplEpbGuOc+06NGUHvckGygUWLk/V8kjip7WuMZXz+QmhJCDKfOmjutMZ2GcJJ/r6thZ1OMn05cga99BzXH34Lt8PQ6zud2UBR0d/27U0mOh1bLl1UQaHdTlKmqmmTBNGKli2macy15M05jtTWJ/DW/Acukfts7jHniI4STBhclv8uFvj/z0KkvsPijt/Ljj57EuEnpJ1P7d5cSo5PToTG+0N9rPk1vHnXHfg13H53BuisIuJlUHOgVTNrflJIgBQE366wJ+JreJWUMrkuIblrYNj2yjizL7nhIEKMhnOx1jG3bvLNpJwB3vFKPU1P8+NJ5lOd6+ePadCp798LR2Y6jexAokjTY2RjFttPvVZ0PJ3TTYmt9hKrmGJtqw2ypi2QcoxBCDCRlWuRtfYzCLQ/xocY7+X/Ov7PWfzy3Jy/GFatFNW3pdUxnYWjTm4fXlV4O1pk973JouINF6Dixw+k28dUtMWzbIsdowAxW9DjXaXPGklz8aXLsdlonXcCmT6xl+fRvUelo5Zekl5THi+bi7Gf58FBRSmWsa9fJoSkq8nwjMwik9QwCaVo6oFWR5+PEKUX8fWOSlopTKF57N76GNemD7HRXV2e0BtuyaYwk0Q2bunCCEOn3sc6aQPvzuDTy/dl3ARuIlTuOQNtmpmz5Aw2TLuGViV+kwqjCdIVonXRhj31PnV7CvNlz+Fz8M/iaNzL+2U/3CATJ33CjgywHE8NGNy36KtmgSxRZjDLxbpkAzdEU97+5i+PGBjhu731EypYSHnt6r2OUgjH5vowZGcVBD00RP1qqHSyrZ+uJ/SSa95Jjh9mbP73rtTlj8viTfSG/iN/B5ufv4Zgdv8FQDt46+c98Y8IsAh4nWobremTZyxFDqfST0631kV5lCDxZBPuUSi8J87sd7G6O0R7PHNzRlGLJxAJe3FzB2VoEmrZDyYKsx6l3LFtriCRpjaeI6ya6sW/AIa9NcahnAPXpd+uo2VnFfJef333iOEJeFz63g2XTinnw7d3YPid2Mpz1GADcmx5H91WSKjmJuG5S1Rzr+r5ZFuxpiTOhKEB9OF1ovXux9Ux1O4QQYiBJw8Ks3wTAFc5nMR1B6pf9Dy/9cw04wbP7JZi2oMcxDe0JcgkT9e+r05MfcNEUSZdXKAh6aSaXYKQBgO2NUYpox2GbuAvG4HFpJHULpdJLeJpmX43hK6Zt4vtRTi95J3+ahqUfx/n6rQT3LCdV2vP6h1Koj6YEnTJ1rhwJNJUu1ty9lEWe3000GefyxWN5bVsT39Vu4DbfVsb/9xqaZ36cYPXLBOpXAlBz7DeoX/BZIF1aoFC1A6ACRRmv53UOTRZQJytvPA4jhqW5aFzyDXJ9xbQba4mXLMR2+Xvt/6llk7i17RS+WdvCD6t/z/hnrmXnOfeC5khnAvV+5ilGmJEXShVHjf3TBTufrqb/LTfUYnTpzCBojqb49j/XY1g2N49dhytWR8OCG4B00Mffrd1pRZ6vz1ojJSEvDboHZVuYyTCxlNGr8DRAOKFTnNwBQKJbEMjt1GgYcza7rBLO3/FDJqhaas/4JZNnzCfkdWUMAIFkAh1pvC4H5bneXq8P5uZRKcW4Aj/5gb5vvo+bUMA7+gQAXPXrBtVuvbP7TTxl0h43egSAoHfBTIDNdWFyVBRnoIDKAl9XFl2ezwUoDFcAkpFex/Wn+OVvUvr2j9ndHGV3UzoAZHWLnoUTBvXhBC3R3kvDpKuYEOJA/Hd9De7WbbykLSGaP5O9J/yAwvKJ7KWERncl3qqXex3T1t6KCwNHoLDrtfJcH2Udv+sLAm4a7FxUtB6ALXURSlVzesecCkpDXnxujSklQTQNbIeH1qmX9ViqbrkC7Fl2G5s+8gaaL+/QfQP2M1q7kzo01Ws5fUHATcDjYHxhgA8sGsM/t6Z4YvbPSYXGUbrq57gj1dQc901SgQr89au6Hjo0hJOMUY0AqLyxGa+naWpoa6d2dAhrnXJZumGJ5mDXOfdQv/DGjLu7HBrfOG8mLwXfxw/VpwjtWU7R+t8BB9btUxx+o/P/NHFE6Lyx390c4w+vbOfKP73Fl/6+mvV72qQmkBhVbNsmnjLRDZNbHl+PHm7gkWnPMuPdnxIvnEOk8mQgvcRrYmEAn1ujIs9LQaDvVN7ikIeaZPqGzIi10hrTqWlNsKMx2uP/j11NMaaragAS+dN6nOP/s3fW4XGdZ/q+Dw6jmM0YY2wncaihhhsqN223DNv2V9hucYtb3jJzu6UUNknDSYMNNI4TU2IGyRbTMB/6/XEk2bLAki3bsn3u68oVz8yBbyTNnO883/M+7/+7YgH9S96BS9CJzX0VzLx43PchipMTBxxODcr8LvyHlXRN1k4vCAL1ES9N5d5RgyjnVgXYbdWhCyqevhcnZwfvepHQ3rvGfLmkmyNEpd50kXIpB+7QsJXhwX9rkhdKExeBLK2AXIjh636eQt4u/fr2w7t45y8eg/s/irf7eQC6k8VRm7s4CxcODtMXa8wWmSeXkm7y7b8/TUjIUr/i5ey75UESc29GlkTCXpXdygJc/TuG7WOaFvlUPwCiNzLstXK/bb+I+lW6zdBQi/hd3Wma5AQAQqiOkFdhZrkftyJRGRi5SHA4TjD+kRGF4SX9g9RHvIgivGZ1AzPKvPznkzrfavwBt138GLedezfP1dxKvnI57vjOoX36syVqhYHf8Rgi0FRjNa4lW72GnuX/PurrHlUaYUj3u2T+88r5/KZ4Mc+6zqfq+f/BFdvh3MOdIjjlYA4njXX7+vnuI7vZ0ZVGFgVWz4jyr339bO9KsWbW8W9F6eAwVaSLOp7O9Sy493W8U7uA6/078Dd3kam7iK7VnwBBwKNKVPhdCILA7Ar/EUN5K4Mu9lh2hwUzGyep2JO9TEFnd3eGhqjdgrS5L8tMoZOSEsTwDLcNe1UZYc2/0RYJkJx13RHfx3iilMOpTX3Ew67u9FAJ7tFmKgTdCkG3gmllh5WHhTwKYb+XVrGJ8th2iro54RsH7ws/oWLXnWTqLsJwh0fdpmSYuMWDx+tNF4mKeUx3lLBHpS9tu3MGXU8lyYs8iXIwLdmFCohGAbP1eT79QoCezlb+4Pk689ubyfQ+yv7XPILpGn18hmlhWdYRP9cODg4nnlzJwHdY1oxhWpiWNdSd9mTQnsjTYLSDDGLF/GGvVfhddJWCyKU+dN1AEEW6UgXyRR2fkQIZBO/oc+WyASeQlNtGpqjTGstxoScFJZBCdibQoIuk3K/Smy6OG8w/mrjhMBxhYJ53OKosUh/xcqA/x5dvWsI3HtzJL59qHnpdFOCRs+cwo/l+BD2PJXtI5ErUCn2YgjT0+zreyJE69l33t1Ff87okZpb5KOgGzX3ZYVEesyr8vPX8Wbz3yTfyT/82Gh7/IO2vuhcYWULmML1wnEAOJ4VYtsTHb3+RWLbEW8+fwa//bTWfvGYhNSE3e3oyjorscEqRzGkoex9EMDVeKz+OW9TZe/0dtFz1vxTKFo7I/pnIjWKF30USWwTKpfuHtfs2TIuWvhw9qQL7erPUCX1ogfpRj2NJLuILXo+pjh4uWBFwURexbeQ1Ic9k37rDKYIiidSF7d+v3Yb32C7/9REvHnX4MWaW+2gxKlAy7aTy2oSPJWZ7ECydwIF/jLnN4d23+jJFQoLtBPKo0tBYZlXYgdcF0QuliYtAxkAXHYB1j91JoWcPj4S/xBypi5+63oK7FKP2mc+MewwnDNPBYXqSLY3MM8trxqQ7GU41Lf1ZZov2d08xPGfYa+V+lQ4tgGgU0IsZMkWdWKbE5rYkYcF2OYq+0UWgqM9FL2GUYj9d8QydyQIz1CSWICMHqoZtKwjCEcP/PY4TaEL41NF/jiGPQsSnEHArfPb6xXz71cv5xi1L+dhVCzAt2FKsRcDClbBDwNMF3Z7Xee2yrBPBeN3f6iOegaBrmflVAapCLg6dxl63tIa5M2fwkfxb8cS2EXruW4DtwJuuLjyHCYpAgiBcJQjCTkEQ9giC8PFRXg8JgnC3IAibBUHYKgjCW6Z+qA6nE/99r7068ZnrFnHTinrCAwn3cyr97OnJDLvhdXCYzpimRaqgYe7/F5ut2Txz9UPsvvlh8pUrhrapDLgmbaeuDLpIWfZKSjbZP+o23aki2ztTNEr96GOIQIejyAIzK3zMrfLTWOalOmSXpR0evOtw+hH2qoQ8yoRCoY+EJNqOtkNzgmZV+NldjKBm2khkSyRzGumCRk+6MM6RQMzZuRWh5nsPe76XYPN9lL34C4rF4XlYvZkiATJY7hAAsyv8NJV7qQnbTqCC4EGYRDmYmbJvxNKWh5cb/+Q+3xfwWRmar/kThdXv5Vf6VYT3/h2pkADsDKDmviyP7uhmR2dq4DnnuuXgMN0wTYtCaaTYky8ZFLWR7ddPJPv7sswR2jFkL5qvethrZX4XrUV7DqCne8gUbSGrL1MkzIAIdFg52CBRn0qfFUK0DArJPrpTBebRQjHYhDJKyfd4HbkEwRGBJsp4GT2D9zmSKDCn0s+CmiDnzy6jMuDisYSd7eTt3cyM+15Pdd+/qBP60YMTm9dNBeohC0MuRaQyaM8JA255WEyALIlUBtzMqfQP5TcJgsD7LpnDQ8bZbAteQGjX3zBNi2zJGNY0xWF6ccRyMEEQJOCHwBVAG7BeEIS7LMvadshm/w5ssyzrekEQKoCdgiD8wbKskemJDmc8O7pS3L6hndesaqCpzDfstWXhIiv2/Qlhd5xS1S2nbECcw+lPQTPoSOQJeRTMUoGa3A42eK9jbt08Dr3kyZIwVKc/GSr8blIDdlqhkBpzuwP9WWrpI+evO+Ix3YrIzHLfkAvEqfM/86gNu+kfJdj4aBjMCQq4NIqGwcrGCFs3lCMaReR8L20JAcuyPwPj5U7IeTsA09/2JIWnfojcuxV/ag+zSzsRBVtY6alaAJFrh/bpTRfxSZmh8jFBEAi6laGblbzghWLnhN6Hbpg8/vwWrgX+Ka/lWuMRiu6Z7Hv5LymG53BB1OTbT57LO7mX39/2O/5hrMAqZugz/cwQOrnCt48Ll3nQL/oAuEJH8ZN0cDhzMU0LcSoDbg9DNy2K+sGrcrao89/3buOWlfXUhk+u+7WlP8tlUifF0CwQDs53BcFeFN3wYhAksNI9ZLBFosH28ADyIcHQhzJYDgawp3kviplnbnYjycVvxD2KE3kwM06VRVyySLpw0DnlksXj+vs5U/ANZOocWkolCHYUxkPbC5iqSsWmH6BmO1kU8FEv9GEEFp2w8Q0GTYuivagiiQIFzRgzJsCtSDSVHew+Gvaq1Ee9bDFmsDD7NMVijlTR/nvyjuGQcji5TOS3sgbYY1nWPgBBEG4DbgAOFYEsICDYNQ5+IAaM3kvW4Yznb8+3oUgC1y+rRSwmKNv2O4qhmXj6t/GhrT9DUkp0b9yDdt5NjgjkMG1J5TWyRYNs0SC+dz0uNITGc0dsVxlwHdUEqiLgIjmQCSQVk2Nul0324iVP0l9PwC0Pm7wdiiQKwwQghzMTexVval1fIa8CKKxoCPOgVQGAkmkn760EQNMtskV9RCaHbpi853+f46f5fp4wlnKxtIXVO75GrxWiXazlV8pr+FdxJr+UvoLQtxOwRaBsUUcvFVDdRfLu4aKLIomEPApZ3AjaxJxA/9jWTev+fWiyQu0Nn6Nn3yJ6l7wTc0DQUWWRxiUXkHnRw8XKVl7h3si51sNklTJ8Wr8923kBUvWLYcXNR/+DdHA4AynoxnG9STSyMay+/ViVKxEEgXu2dPCn51qZmXqe+sVRWH3jcTv3kWjuyzFX7KQUXjvs+aqgm1kVPh6y7DLuUqqHksdWD/oyRRpEWwQSx8gEivpVeq0wAJu27+JKTxrZKpGfecWo2yuSiEeVqA278aoyBc2gJ1UkmdecPKApYnChIpEbXiq9akaEe1/spNvfSE12DwCNmc1UCTFSE3R4TxWqLBBwK0OOprqwZ9w5o1uRqAt7aE/ksSyYX+Vnc3OY12Kh9e8nLTdgupy/n+nKRL5164DWQx63Aeccts0PgLuADiAAvMayrBHeS0EQ3gm8E6CxsfFoxutwiqMZJnduaufieRVESTHzvlvx9G8der1v1o1s3b2P5bl2JxfIYVqTKhy8kCd3PgVA7VkvG3pOEMDnko86bNmjSgguewIolUYXgZJ5DV+hC1xQ8tcNdUYaTQgqD6iOAOQATCyT6miYU+mjX7bzJtR067CSyHiuNEIE2h/LsWnnXkS3RaLhcm4PvwOlrIlQ3UIifhel3b088uBOiu4wUmwXumEiSyK96SJBcvZ78Ywsh4j6VNKmG3GC5WDtiTyVQhzTX4W7Ygbd0Y8Oe93rknjtObMwkudzWe86pGycdP3F6K4om8Q5fOslL//n+jykuib183JwcICCZuI9jj0JpKe/yazNf6A0by8WIrdvaAfgopbvEYlzUkWgrr4Y1VYP3eHZeF0SuaKB1yVREXBRE/LQP+DmKSa6YSDKpzddZI2axxQ8iMroDsuASyZUUQcpSPa2c2t1G0Y6gFY/cqFqkIaoZ6jsx61INJZ5SRc0xsmLdpgkAbc8QgRaWhfG55J4NlvFTdIeksF51Kd2AWCcYBFIkcRh3T8nMmeM+FR8LpkDsRzzqgI8u6McXFDs2UOpso7BQziNE6YfE7kjGO03dvhXwpXAJqAWWA78QBCEESmklmX9zLKsVZZlraqoqJjkUB1OB/65q5e+TImrz6qm4YkP4krsoeXlv2bvtX9l94330Xnp99irLiCg9VEqjZ8j4eBwMrAsi5Jukh/IGLAsi1Df83RItXijNQCU+VUW1gSZWe47poteWdBDVvCN6QTa3Z2mTrBLaTR/HR5VosyvIgj2GAaRRIEyn5P543B8EUWRcPVMAKR027DXknltRPeZA/05KoQEAMsXzmfu2huYMX85kYHyyUU19jSiyzUDV3wPsYEyNjsU2hZ4BG94xDiiPpWE4bIzgSYQStmXKVEtxLH81QQPaTcPdjbX7Ao/5QEX2boLkAv9WKJC20XfpO2S75JZ9nY2WHMxkSA9sfKzyeIEazqczhz3zJBUB3IxSbGvhb29Gda3xJgbkZltHUBJHcDUTk5yhWFauJL7ACiGZzOjzIdHPRjgXxt204/9HSjm+ob268uUqFRyGGN0KgRb6P/6my8HoE5OsiS/jnT9RcjK2PMA1yhZQQG3MrS45HDsBNzKiAoHVRb58evPJrL8FbxgzuVL2uuHXrNCJ1YECnvVUf8OjoQqizSVeVlYHeSAZauVpV77b7ugmViWRSKnDSvLdDj5TEQEagMaDnlcj+34OZS3ALdbNnuAZmDB1AzR4XTiN8+0UO53scp6iUDbE3Sf/VHSjZeRqzmHQvlZAOS8tYhYmMnD/8wO4nyROJwMErkS2zvTtCfyQ8919vay2thMV9l5gN1FoTbsGTcgcKLcuLyOuOlhX1sHpmmOuKHd2Z2mXrQnh3qwDrciEXArzK7wUxv2DHVMqgi4pmQ8Dg5H4oZzF5KwfPS17R72vGnabqBDaenPUi7YAqfuKR9xrDK/i6qgi91mLa7EHmK5EpZl0ZsuEmKgHMITHrFf1KfSr7sQLAP0Atni+NXpfZkitWIc018zdMMjCPbKeFXQXmmvDropNF0EQHzeq9EHSt2qgm4UWSYpRxEyx0cE6koVMJ3leIfTEN0w0Y53h658HIAN657k2//YjWnBx1boKIKBaBlo/fuO7/nHoDOZp8myXUlm2TwkUWBWuX8oq68y4MYQVfKiHznfC6aOWEzSmy5SJmYx3aOHQg8SjZZhSm7eVr0XV76HdOPlKI4b+KQiiQKzKnz4XNKAW1yiIephUV2QsnNex6fLvs3d8UZ0a+D3FGoY/4BTzLEIfookcuG8ctJymKLgRk3tJ7LrL0S2/o68ZtCbKZItOvdu04mJfBusB+YKgjBTEAQVeC126dehHAAuAxAEoQqYD5ycb1WH48JUrES+sD/Gk7v7eMvaJirWfY2Sr4b+RW8asV3BW2ufM35gzGMlchr5kvNl4nDiKOkm7Yk8hmmROaTcKr/5DjxCCWPJq6kMuogcZfnXaLz/0jkIngjJeB/Sb69m1h/PpXLjdxE0uxRmV3eaBe4EpuRGDVQO7TdYw1/ud+EbsJY7OJwILp5XQY9URbanhUe2dw/rDNafGS4C7e/PUSvbbdyl4PC2xYMsrgmxIVeJXIxjpvvoSRfZ05shKAyWg4VH7FPmU+nXBiazxQyxgU5lY9GfKVJBHCtQjU+VUGU7QD18SI2KKArIlQvZf/nP6Vr9saHnJVGgMeKllwhipnv8H85REM+W6EuX0EynPNrh9EM3reNe+i8UbKF54/qneHx7O4sqFBZaB0VqvWf3WLseV7Z3ppgjdmAiIpbNBhiWHyiJApUBF0kxhFzop+Gx97P4d0t41Hgzi/MvYI1SCjsMQcDwVRLpWYcliKQbLkGWnMWgk40iicyq8LO4NsisCj9hr0qZz3Zwv3xhFXncHFDtvwcpcmJFoGMl7FVZUBOkxaxk1/YtlK/7GpWbvk93qkhRM4fNnR1OPkcUgSzL0oH3AQ8C24G/WJa1VRCEdwuC8O6Bzb4IrBUE4UXgEeBjlmX1jX5Eh1OR4jGu1JR0k28+tIuoT+Wm8na8vRvpXf5+LHlkPfNQq+vE2CJQpqiPWFV2cDietMVzw7o6VK/7EjMeeDML2v5Gm1CDe8a5U26bFgSB8vIKVgTTnGVsJ5krUvXCN5nzt8vxtT7Oru4Mc1xxSv46vK6R5w55FBqi3ikdk4PDePhcMnK0iXK9i+88spuv3r9jaBGhpJsk8wfFmP39WWa5bUdPpHJ02/ui2iAvlWyByJ3YTU+qSFssf7A7zijBqFGfSm9pQMAppSnqBl2pwpiLGdl0Ah95LH81gmC37z08vwjs7nqpGVdiqsOr3RvLvLTpYaTssWcCHer46csUaYvbrkOn/bzD6YhhWpSOuwhkO4EWSa08ufBObhf+E1/38+QE+9po9p04Ecg0LdriOXZ0pdh0IMlsoYOCvx6XZ/TrdE3ITa8VIh/vxN32DD3BJdxlrKU9tJL8wluOeD7Da0dv5CpXYrijKKLjBJouHBoVIAgCLlnk/DnlNES9JGoupBicieoNnMQRHh0funweGW8DK4wtuIu9KLkuCv12eXjmCK5chxPLhL4NLMu6z7KseZZlzbYs60sDz/3EsqyfDPy7w7Ksl1uWtcSyrLMsy/r98Ry0w4mnqB39RfqJXb1c9q3HeWZvP2+/YCbunXdgSi4Ss28YfYeBGlitf/+oL1uWRb5kkMhpTlaCwwmh/zAbq6DlKNv+vwTaHmOBsZOt5VcjSeJxabluucOUZ+1J6j1NH+d12mfoyJjMevBNfN78Ho1mx1Ae0OEIguDYvx1OKC5ZJFg9i9lqnHdcMIPdPRnWNceGXo8f0p5+fyxHnZrGlD2EwhEU+dBJsR3IfPG8CvaYdfaxE/bnIJEr0aim7A29I1skDwZDA1DMUNBMSrpJf3b0hQMhbYs3QtDO9BqrdNI1xue7KeqlVQ8hZ7uO6ZpkWRb7+rJohu067EwcdFHpTjmYw2mI1fIUNY//J8ZxFIIGnUCrlb1UHbgXd6qZ8L672etdRswKIMb2HrdzH4ppWrT0Z4lnNTTd/vccsQM9Mgf3GDkssyv8tJV8+GLbcGtxvte/is/ob+Hpc3+KtuQNRz7ngAiUbrwMwHECTWPcioRHlfjR61eiXP5pdt/8AOopOH972fxKZs8/C49w8Hrr7d0M2KJv4XhngDlMmOPXk9HhpKAZ5pTf9JlHuVJjWRa/fKqZL9+3ndkVfr5801mcVe0juO5uUo2XY6qjK9yhgJ8uKwLJ1lHfT65kYFlgWBb7+3MEPcrQhc0yQRDBr8pH1ZbbwWGQom7gkiUKmkFncnhIeaDtMUQ9zz9q3o3e9gLm8jfhH8U5MBVYroOugwsuvIKG1R4++vhKLur+Le+T7kTKW8T8a/App95kweH0QxAE9EA9kp7jhrkutm/uRnzyHsymLyJKCpmiTkk3kUSB1liOmrIUurcSFagKuDEtC59LRpVERFFgdgWI4XoKRTeuhN0+N57TWCXuoeRtRPWNFIHK/CoZbBGomEthDVRD9qSKRLzqMJHHsizUQg9IIIZqx31vLnn0z1hTmY9uK4JcSqEXs8hu/1H85GzHbb5ksLMrPSLPWne6ZTqchsi77sO/6zYK2S8jBUd+lo8Z00AsJilYClGjH4BCeK7tKgwsopju56zYnqk/7yi0xnPDFpP2dSeZKXSRCl9FYIzr9xdvPIve/GyC+9YDsPKcl1HmmctZtaEJ5fxZfrtMPNVoh0Q7i0LTF48qkchpCAJYogySjHKqinaRGQBsNxuYL3Xi6d2MK7Eb3V1GKvhvx2XB1GHyOCLQaYRlWSTzGuX+qc3/MK3J1Wz3povs789y2/pW/vZCG1curuLdF89GFkX8bU8gF/rJzBvDBQREvArtVjm16bZRRaBs6aCdMF3QR22HPaPcS8DtdDRwOHoO9OeoCrnpShaGbsikQhypmCTUfB8lV5QPt1/E/Nob+GzTLHyu43RRc4cBKPnrMTxl1HvgMzeu4O7NVXxz/zl8MPsdstVriDiTO4dpgl5tt4af9cg7+IW1B7ee4r7nVtFw3iuxLNvJU9RNNMOiTEhiuO1Q6LHytC6YW8HOLfXM7nsJgHi2yFJzO4WaSxltj6jPRdayO+zo+SQMXBIN06IrVRjqvgO2PT1q9Nsi0IATaCxcsmhP0A8TaCqDLl607LI0I9WF7J4z7nHGYtBxe/jxxVIKM18Cv9NV1eE0I9sDgJFoheMhAhWSCFhsEeaxhq0UIvM5cOmPmHn/G+iquJD+tj0si2+d+vMeRkciTyp/cK5qmBbF2AFccolSePaYArNbkexW7/vAEmTmLT2PuQMxCvIESru0udcQK5QohufhVsQRnakcpg+eAWGkKmjPOxVJPHVbqkftLqGPCucgWC8QeOlOas0ONF8Nuxe+lqhPRRAEUnltSnM0HSaHIwKdRuimRbqgHwcRiAmLQG3xHFd/98khYebdF8/m5pW1lHJZap79CpFdf0F3RQicdQ2JlDlq996IV6XdKmd2/gCabnH4LH8i6fK5kuGIQA7HRFE32d+XG3osaDlm3fNKXIk9GIjcLV5GVoO3nG9f7EbLEJkSBkSgfPmSoadEQeCG5XWw/PXs5PUosnDqThYcTjuM+jUcuOQH1P/zI2ieCvozIsHtf8I45xYkUaAvU6I7ZbvrQkYMyzdv3ONdMr+CpzYuYknPfRQzCaRkC2ExQW/NmlG3L/MddAJpuRSh/r+TbrgMU/UTy5RQJXEoLL0vU6JKsDNDpCOIQIO5DZphMbPcR0Ez8KgSVUEXf2QgpDXVCZVHKQKN0vVSznYx++6bMCrPgjf95aiO6+AwXRGyvQCYiTZoXD7lx4/FeogCierzsbq3E5v/GoqRuex4/XPoB+K0bngAJf8EFJLgDk3omAXNmLCTwbIs2hN54tnhwfRt8RyNpp2TYpXPG//67bPF30Jk3rAczYmUdhkzL6UjshaAoNPqfVrjViRkSaDcrxLPlU5p15bQsIZk08sRI2+geXuGq4sPAKBm2lFie+j2LUY3TIq66YhAJ5FT9y/MYQS6YZEt6lPeSnYiTqCibtCbLvLRv27BNC3+51VL+f5rV3DtkhqMZBez73kl0e2/IzHrFey/4W+EAoExy2caol7arXL8xW6K2vAMB80wyRY0ap/+NL6Of405niO1BHZwGA/TtEYIlHXPfBpXYg/Pha6i1wrxdPAa3n3xbBqjXlT5+OQBAeCxJ6b5iqVjbnIq1o07nL4okkhy9ivY9cpH2HPTfRxouonzjOd5bou94m6YFhsO2MKLV4th+sZ3uKydU87T1jJES6f5+ftZrG8HQK87Z9Ttoz51yAlE6zoaH3s/Neu+MPR6V7Iw1F2yP1OkWoijSV5k75FvAt2KRJlfxaNKRHwqbkUi6FHotmwRyEoffZv4wmHZe1K+jxkPvhk1046UHLtRgoPDqYo44ASyku3H5fiPb9wFwPyl57L7loeJnfXWITdMuV+l2RoQfvsnVhKmG+aQgD0epmnRlymyszs9XAAydQKtj1L+/Lf4vPwbLETEivFF8EER6NCFIBg7u+xQDnULBZ2F0WmNJArUhNwIgmCXRJ/Cri2XL8yBK37BhavPZumaSwF42DwbAH/7E8QyJVJ5naJmOhlBJ5FT9y/MYQSaaTtrMiUd3TCnTAwyLYuSPvqxSrrJDx7dzTlfeoTVX3qYf+3r55PXLGRJlcoi/SUwNZoefhdqch/7r/gl7Rd9A0/tYoChTkqDCyCKLDCrwsei2iA9YiWypWOk7MDOQREqmdfwdD1H2fb/pWrDN8ccs50b5ARpOhwdh7djjuz6C5Hdf+PAWe/jTf1v5hNNf+bNr7yZq8+yJ5AR73GcXA2sTubKxxGBTuHJgsPpx+AKphZoxHSF8ax+M5JgIWz6HebA9/K+3ixe2UQtxrF8o7eHHyTgVpCbziFruTD2PMIV/n0YahCjfPSbp5qQm/MWNgHQt2sdAJGdf8YzEE4JDLWu78sUqRTiFD3jj2EQtyIRPWzl0q1IJGW7pM1KHb0IJLY8TuWG74Cp4+1cx4y/XYkY20sqvBAx5zRcdTi9uPGHT6Onuu0HybYpP75lWTy71RZ3GuvrKEXm4HOrVAfdiCKU+V12/iRApndCx8yWDNIFfdyMrnzJYHtXis5EwXazD2LqND72PmY8+G+c2/pzeoQozZf9FFdwfBFcHMj1OVwEkicgAg1qQIosjNo8wmF6Efba1xafKp3Si3uDY/e5ZPQ5L6ez/ho+WXor3WojgbZ/Dts2kdNGO4TDCcApBzuNMAZayPakipR0k6qgi7IpKA0zi1nIJTDNwLCw5aJu8Jm/b+XP61s5b3YZy+pClPldLKkLUfavz1O+9VcUgzNwpVo4cMkPSDdehiwJQxPogFsm7FWoDXvQDBNZFJAHvjgSrjrQgFgzuaom9vfnmFPpZ3NrAvXxXzAb8HU9x4YNz2GWzUGVRCRRQJVEZlf6ERHIawZe1fkTd5g8h7ZjdsV2UPP0p9gkL+PtWy9AMwxevboBsCdYpnnwwn08sOZcQc/y95OrHt31AI4I5DC9ODzMUgvPoiVyPq+M3c3fd7+XFXMbWdfcz5W1eegBKzR6e/hD+eyNK3jxZ0u5RHuOoCWQqzobWRr9+10QBP7nDWvhv6GusAcE0N1l1D7zGfa+4g4QRFJ5nXzJoC9TYr4Qx/BPTASK+tRRV+AlT4ii5hrqNDZZLMsitOHHBNr/SXD/Q7j6t7HfquQ9pS/w+cAu1iR/A6YBonMj53DqU9AMXmrtw+O2O3cJx+CgG4tkXiOf6gcVBE8EDxIRr0LIq5DXXAgIpPABYOYTE1oVz5V0LMs+tt8tky8Z+FzykPBtmBb7Y1nMwzUiy6TuqY8Tar6PzlUf4z27VlKSfHxt5lJqjjRPrVtB/8I3kpx5zZCoY5qTcwIdr8YVDscHn0smVzp1HTKiKCBLAn6XjKHU0HvVT1j00E4eaF7ErZ2PIegFu7TR1EkXRKpD7iMf1GHKce4cTiMG3Qv5koFhWmO2w50s6mOfY+Z9rxnRIewv61v58/pWXr2qnk9evZBrl9Zy7qwyJC1LZNdfKETmoWQ7ic1/LcnZr6A65GZBdWCobEaWRBqiXiRRGKiFPfjnmPHPAECM7aYjkUc3LFr6stzz/B5Wph/nKeFsdEsk/9xv+fzd2/jUnS/x8dtf5MN/3cyDW+1J+ESygxwcRsPs2UnFph8gZ7to/Mc7SZhe3ld8LwvrI7z9glk0RLz4XBKzyv2EvcpxFWFEXxndqz6KJY0tNJ3KK0YOpx+jZRkUL/gYESGD8NxP2d2doS9T4srwwI1f7fIjHjPqU6leeS1VQgLRHaRr1UcZLxdVlBVM2Y1HKNFtRdi97GN4ezcS2f23oW36MkX6MyWqiCMExs8DGmSsG6+wz0VcjCJkju5mtqibuGPbKfobcPVv5V5jDe/3f5udViPdegDBMiEfP6pjOzhMN2LZEmWkhh5L6akvB0vldUJC1n7gieB3yUMlUVVBFyGvQsryAmDkExM6ZrZogGXSnSqyuztDayzPzq40bfEcvekie3szw90/AJZFzbOfJ7rrLzzb+E7esHMtm3oMltWHEARwH6Gzp+zy0nH+l7B85SyuDQ38F5xQDuDg95XPWRA9pVAkEd8p7txSZZGAWx5yoN16bhMPWauRjCL+jT+jbMtPWfDHNRjJjpM80jMX51vhNGLQvZDKawQ9CkXNJF3QJhSQPF7QnZBswx3bQSafxq2EAehK5fnGgzuZW+nntasbEfQCrmQzglHA17UeScvQfOHXKYbnYSo+GqKeybklQvUU4ypi/17yJXNgjCYVrQ/gE4rUXPsJMlt+yjvaHuL6uix5NYJpiWzrSmM9LxD0XEtx6S0TP5+DwyHIG39N9YafU7nhO5imybuKn+It15zDmpnRoW1CHgWPKtEQ9R7XsYgTmOg5TiCH6cRoIlCpajm7IxdyY+x2bnnoKiRRYpmwD1P2IFTMP+IxXYpIZvEbOOArJ9X0cizZTdkRuuNYih/0As1WDd89sIRfVJ5N1XNfJdn0ckxXmGReoyeVp0pMUJygCDQWEa9CXzpCNNM94X0O7X5ZSnQTzPfyC+87+F5hNectnMVnL5rNe/+4gTbNbjlvpnsQfeXHNE4Hh+lAf6ZEuWC7gIqCGykz9TeCqYJGmIz9wB2mXFSG3OyCIBB0y6Sxr9/WBEQg07TwbvoljZt/wq5XPoqlDOxrMZD7M3pZS+WGb1G+9df8QbiOT+26mLqwyYcun8vF8ypxK9IRxZxBIcclH5yjixNwAR26r/d4dS91OG7Ip/jint8l41akob/BGeU+apZdwX1bHuSyTd9FEQxETEK776A06z+deexJwPmJn0bohsWdG9t5wy/X8ZtnWoDxay11w0QzTPIlg/39uTG3o5RBwMLstQP2DNPiC3dvI1PU+cClc3FrSebefgVz77iSOXfdQM1z/02ufCmFyhWYqp+wT510uUx50EOzVY0ruXfouWRe49LCP+hzNZCrWk3XeZ8nOedGyvPNNPX9k5l9j3EF67hKe4Sapz6JNkqnFYcTz6mYzSSkOtDdZfS76vmE9lYWrLlimAAkCAczrY43g3M9VRaZUe6lOuQe0RXEcQI5TCcOLwcb4sKPEhJyXJx9gKV1IYLxF8mXnYUsH/n64JIlLMlFcvYrhjrkHKk7jqXa4olUMYd/Ncd4ZOZHkUpJmh5+F4JRxLIgFe/BhQbHKAKFvQoJy49QTE54n0MbGDRvs7OL/pmq4m2Xr+B9l83DrUjUBN205O2SFWOCuSUODtOd/myRCiEBwHZrBkq2E2OCXWgnSjKvERKy6JIX5JFlnH6XjC4olAQXVuHIn9u8ZuBrfxo120Fk9/8dcXtXfDdVz3yWqo3f5Tb9En6ovIX/vmEJP37DSi5dUIUkTiynRx4SgSZ/nZdEAVUWhwlIDg4ngsHoD0USUWSByqCL91w8m45zP4chKuwzq+kNLCSy5/8oOfdrJwXHCXSaYFkW2/72ec5te467A5/i/za0EfYq3LyyDsuyRqw0WJbF/liOXNFAEOyVDNO0Rl1dEEoDKyk920nVreDR7T3c92IXv6y9i1Ubf4tcjKNkOmm76H8w1CCevhdJN13B3OqAbbUPTr7WsyroZo9Zw4zEPqRCjPCe29luLuXV4na2zPgAgiCgBeppv+gbw/bLlXT+79f/w9e1HyH2boOKsXNUHI4/uZJOV7LArAr/yR7KpBDT7fQHFnB++/tYWh/ms6vsDKCgRybiU0kX9BO2SiMdMgEMuBUCbrsFdl+mSG+mCJz6K0YOpxeCYOcBHJqtBVCoXE6qcjXv7v8Hjyz/f3gefYnYwlsJTaDV8eDNTEk3B85x5BKHQRGoZuZZ1GbcfGmjxaK1X2POUx+m9pnP0H7h1zCTdvmWdcwikErc8CAUJu5oKOkmRd2gUDK5/5FHWCbCa669isaGg/lEVSE3e2P2NdTM9BzTGB0cpguxbImKASfQBn0Gy9lBId2LFJ5YNtdESOVtJ5DuCo16syMIAkGPQl70484fWQTKlnTCsW0AlG39FZvClxHZdxdLEo/Ru+J9ZOsutDe0LCo3fIuqjd/FROAv+sU8OucTfOeiuSNEH+8EuooKgoAkCriOUDY2FgG3c6vncOI51BFc5nMRdCuYpsU5y86iuelBPnbfftZmnuCT1s9JdmyGWatO4mjPTJw7h9OEz9+9jUDbk1whbeBXN1azsjHCn9e3ounWULiYZpj0pot0JvO0xvLkigabWhP8+ukWPO1PU0qNYWMv2iJQqWMr+3qyfPeR3Zzva+Oy2G0EWh/D1/UcHWu/SHzeq0nNuIruVR9FaVyNS5aoDXsmFF53ONVBN/usGlzpA1Ru/B61z36Ba154K4YlICx73Zj7eVWZYt25AKht6yZ9XoepwzQtWvpyJzXcrniUqwtCuoN1/S7CXoUPXzEPUbBX7BoiXoJuhbqwZ4pHOs5YBAFBYNgEUBQFKoNu5lYGiBzHUGoHh6NltJIwgNiyd1FhdHNF+w8QjSK58mUT6nID4D3kBupQm/lYDIpAQtlsPnDZXHpSRb7RsYzes95BZOdtuGI7IGNnyEnBYxSBPAr9hgexmDryxgNopkVBM9nclmCu1ULOVUFjQ+OwbWaUedmXt8tOTMcJ5HCaEMuWqMAWXraYswDQE1PbISyZ1wgLWSx3ZMxtQh6FrOCDCTiBCpkEarqVHt9c3Mm9XHnvWtbu+DJS1wYaHno7np5NYBqE/vFBqjZ+l7/oF3O19HNil3+b91++YEgACnsVasJu5lb5ifgmdv2WJeGo3TzBE+RadnAYi4qA3aQo4FYQBDDDTVx/ziL+nF+NIchI2+44ySM8M3FEoNOA1liO3zzTwnxXDIBI+2NctbiKTFHnpY4k6YKOYVrs7c3QlSzQ3JvlD+v286cnt/GluzZS2vQX5tz/OoRnfzjq8QedQO74Tu7Y2E5zX5Yvh+9Cd4XY8bp17LrlH8QXDBdmIr5ju+hcPK+CDrkBAZPIztvQ3OX4jRSb1RUQrBt38i9HGumwyvB0PntKliKdLvzyqWY+cNtGipo5bjvV44Fd4pgdv8xxLPQSUq6XZi3Cx65cQMijIEsCTWXeCdfhTzWiIIxa8qXKIrUnUJBycJgogyVhkigMK51MN1xGpvocyrb9FoBi1bIJBZwCw3LrJtTtxmWLQO6aeZw7q4ybV9bx4LZuHq18M6YaIPrsV/EWbXeNFD7WTCCVpOVFKKUZ2RpodAzDoqgZbGlLsEA4QLFs0dCqvShCbdjNsoYwCfxYiJB1RCCH6YlhTm6u1ZcpUSEm0WUf+yz7s2dOsQiUKmgEhSyCJzzmNiGPQmaCItDDjz8KwH/Fr+Mh6SJeqH41d636HW/w/JguPcCMu2/B+7uraDxwBz+0XslLZ3+J/771Ms6fczDHqzrkpiHqpdzvGjOHczQkUTiqcjDglA8Ydjh9kERhaDFnQXWQJH763E2I/btO8sjOTByP4GlAayyHhEHUsCeIwQMPc8HSRZwr7+bZvTWsmRmlpJv0pookchpfe3AHRryNu1yf4pMuHcUayA2K7x/1+IJmi0Bm9zZ+u6eZz1U+RVP/U3St/hiGpwzDU4ZLESnzqYiCQFE3JxRGPR41YQ+XXXA+PPV9JD3HPTUf4K69GqtXXMiFIsyq8NHSnx3ZhQGI+l2sMxdwbec6SrqBS3H+zE8092zu4Mv3bUfEwNz4O3Tv9ciVM8fcPlfS8U5R94pYtkR7PD/0eLzQ89F4cuNLXIhFQ+Mc5tYEEQRojHrHdDacCEQRXJN4Dw4OJ5vowPWg3O9CEgVSBQ3LAkSJlqt+R91TH8cd34UZnjXhYx7qBJpQ0KnqxxJE5Ogsarxubj23iSd39/HT9f1ctORd1LzwDa4U7Y5bcqh2sm9xGCGvQpflQcCCUhrcoSPuo5kmaLC1tZ93iu2kK69hRrmPvkyRoNvuOtgY9WIhUlAj4DiBHKYhumHSkSjQWDbxJgmxbJEVchrTV0FPbkAkSdkdwvozRbpSBWaU+fAdQ2vzZF4jQgbRO3vMbYJuhVTSN5TllS5oeFV5xEJjRyJP80vrQIGrX34N1bM/iCAIzAQ+OLfEO//6Zd5c+D23mE9yb9W7WPnyj+E/rAyrKuQackRMFlUSj1oEmqjI7uBwIqgMumnuzVLmV6nwq7RSzdJE88ke1hmJc3d8GtCWyFNNDNHS0d1RfB1Ps6DjaX6huLhy3xzu3Ojloa3dtPbGuEZcx5VykfdWriOUN4k3Xs3GXTuZ7S9RnhqlRadpImo5CoKbkNbDbdGfc27qcVKNV9C3+G0AQzfJk7nRngizFiyHp8CwBD6/ewazmppYu3IR9WH7XFGvSneqOGK/Mp+L58wF3FR4mlzvHqhdMKXjchifzmSe//jbZpZHS3wy82VWb95FUW6F678x5j6JnIZHkShoJndv6eAVy2qP+u8prw0vAUsVtAkfy7Isfv/QM1wILD9rMVmgNuw5ponoVCCN4QRycJiu2PlVyiGPZVJ5OwjZkt20vew7AHgncWPjGfgcCwL4JyAam9VLySZ7UNxuXLJEfcTLrec28a1/7OLvS67njdJPuZyN6K4IiuvYHHURr0oKO8CZQvLIIpBlEXnqi6Tn3ki2fTsqOmblYgDK/QdvFJui9jHTcoRAru+YxujgcDzoTBbIHBJyPhFi2RKVYhLLV4lHq0LPyZC056CZoo5p2sHpx3LtTeV1wmIWPOOXgyUtL0LR/my1xfNYlu1mD3vUoRKup/f0sVDYT1EJsXTRQrKlg26/qE/lE696GT3p89gaVWhUR+ZglgdUKgOTz8ccxKMeuYuYg8OpgN8lUxFw4VEkljWE2XGggpXF9WAaIDqLnScS567iNKA9nqdBtFcIYwvegGhqaP46/FaGCwqP86PH9zJD28MG/wf5tvpj/kv8FdHUNtpe9h26Lvk2H3J9jn1iE2J6ZKBlImmvkm7Q7dXac3OP073ig+y/4ueIqoeqkIumsqkXgABUb4iSr4au6GpmNTXxwcvn4VYlQl77xiLiUxntmljmU9lkzrEfdL045eNyGJ8v3bsdw7T4YcXtLBGbyYqBoRW+sSiUdPKawRfv3cZ//m0Lv3766FcFCoeLQPmJT0570kXUrB0UWz9jNnMq/UMdDk4msiQ67TMdTmkOFTYORTlCm/dDEQfCUSsCrgmVZurn/T+ar71tSECtCLi46qxqZpb7+NX6Xu5QrgPA8B17GG3Yq5CyBpwQEygtIddPdPNPcG/6DVXZ7QCItStGbBbyKoQ8CglCiE45mMM0wjAtDvTnSOQ0DNNCm0TZd1+mRDm2CDSjIkCvEEUYmCcM5ghOVlg6nGReI8T4IlDQIxMzPIjFJLmSjm5YGKZFX7rEnp4MLX1ZCprBc80xFksHKJUtoj7qY/BrSxRhZoWPsoDK/OoA0igCUMAtUxM6NpH5SCH4Dg6nEtUhNyGvworGCFsLZYhmacozwRyOjHNXcRrQnsiz0GOLNfF5r6L5qt+z56b7yUcW8KHg43zzlUv4buB3qIrCvmv+zPbXPceO1z1LuunlADREvOzXI0jZLjAOXnQLmsHbfvYYAMUZl5JquIz9l/+cnrM/DIJIZdBFZcB9zKVfY+GSRQ5c/jPSV3yTz71iMSGPMuyGXJFEGsu8lPlVwl6FiE+hPKAyq9JPl2Vf9M1013EZm8PorG+Jcc+WTt69UKNm/93c772B7cIshHTn2Dulu2j6+QLWP/Z3/rjuAG5F5BdPNpPKa0c1hiERyDTwdq0nX9QmnEnU0pelWrCztdRIw4Tat54IPE4pmMMpjs8lD8sGGmSyn7GakHvCHSelgVD1Q7vnzSjz8bYLZtKTLvKNxMsoCG4M/7HlAYEdDD3MCXQEzAHXg6trPUuEZkqSD6Vq7qjbNka99FhBxGniBBrs0OZw5mJZFi39WZID12kl00G+NHHRpj9TJGIlwFfBjHIfbWYUKdNBUTeGugrmSgbmJLOGDiWfy+CiNG4mUNCj0G+4EYspUrmRc450QWd3d4YNLX0sENrQKhahyiI1IQ9hr8KMMh9+lzzqd5JHlagMumiITrxMbiymy1zEwWEqWVofosWqBkDv23uSR3Pm4YhApxijdTtqj+eZp8awBBHNV0um/iJMxUf/4n+jOr+bq597M77ejXSt+QTZ2vPQfdXovhrciojPJTGrwsfOfAjBMoc6pYAtLiUS9g3xkkWL2H/lr0nNuBKwA2nLjrNDwq1K5CuWoQWbmFnuI+JTRnRCCroVasMeGqJe6iNeakIeltaHSBBAF2RwRKAThmFafO6urZT7Vd6i/RFT8bGp4c3sL4VGdZkNYnVvQ9Iy9Dz9OxbVBPnua5fTmNvKw489POkxaIaJpZXwtz3B7LtuYPY9txDe/X/ktIl1CWvpz1Ir9KPLvgllepwoHBHI4XSgOuQe4d70TSTb5xAms+ggioxw0KmyyM0r6lhWHyKJn3sWfYv0+Z+Y1BhGI+xVh5xAVj5xxO2NlC2MhzN7OV98iXzZWXjV0d9bmV+l1wwg5o9NBDrcJXm0HF5y63Dm0Ra3O8y+2J5k7zO3s+C2czF33Dv0um6YxLMlkjmNZF4jVdDIFHVyJfs/d7YNv5mG8nnMLPfRbkYRUh3k8iWqnv0Cs+66iZonPzHha/do6LkEAIJn7Gt50K0QM7wIlkEqPbp4mynqeGPbcFFEr7XbWEd9Kg1R71C5WplPxaMe/K5xKyKzyn1UBd1H1SHXweFMYGldmP2m7cTVeh0R6ETjiECnEAXNYG9PdoTltj2Rp0nqRfNWY0kHRZL4vFfRs+x9uOK7yVatJjHn5qHXJFGgqczHrAo/ZzdFOaAPOGcOseOlCzo+CgB4A6Fh+9ZHPMe9PvnQ/Aevauc5TORiqkgiEZ+LlBhFyIzR9t5hyvnL861s7Ujx8cUpovsfoO+st1NTU0eHFUXM9dr1vqPQtn83AJeJG/jOa5Yyy5Xi966vsvSFT016DIVMgnl/vYSZD7wRJduJ7i4j1Hwf+Qm2qW/pz1EjxjEDxxYSO9W4Veer2uHUR5XFYcGognB8Bc6xuup5XTL/ceV85lT4KV9yBULNsmM+V8ijkMIWgYz8RJxAB4Xx2WInes2yYY6lQwl7FLqNIJKWAS0/6jYTITGK0+FomCoxyeHUpCddIJHT6M8U+c59z7Nm6xcBEDo2AvaCUEt/lrZ4ngOxHAf6c+zvy9Hcm2VvT5YdnWlWGFvsfWZdzIwyH51WGWquk//5/Z1UvvQLpNhuojv/RC6dOOpxmgOOPHGcBZ3QIQ4+Izf6uXZ0plgl7rSPWX/OqNsIgkB9xIsg2N9zjSexm6iDw6lCyKvgitZTQsHsd0SgE41zZ3GKUNQNmvuyGKY1ZL8FME2LzmSeGrOHUqBh+E6iQvfq/2T7G16g+eo/4FZlGqNeZlf6mFXhG1ohnVvlp8MqA0BPtA7tnspr+AV7wunxhYZWVedU+k9IUK4iiciS3U5wsoJTVdBNvxBByDoi0IlgT0+abzy4k2V1Aa7p+B6at4q+pe9izcwo3VYE0TIg0zNiv4Jm8Ohz9sQxShKp/QUqnv4CPvLM1PdhTSRb4xDMln+hZlrpOO8L7HzN0yTm3Ii/4ynymYkdp6UvS6MUxwzUTeq8xxuX7DiBHE4PBruFwfEPO5UEAWWMLK21s8v53utWUOZ3TUneliqLGKp9s2nlE+RKOvFsacztrVQHFgK6ZZ/brB5biAp5FDp1u929eQwdwhL5scczUUzToqiNLAdL5rVJZcI4nJr0ZYp0J4sYpsUfH3qKb5n/QzUxinIAqW8HpmnR3JclXxr7byGZ11grbiWrRJGrFg6IQFEkSyfY/SwAvxZuQrBMSi3rjn6whTQA4nhOIM/BLC+pmELQCyO2eWF/nNXSboq+WuRI/ZjHcisSM8p9zK30O9dsB4cJsqQhShtVCLFmLOvoyz8dJo8jAp0ClHST5r7sUJ30oSJQT7qIZliU6V1ogQZcyshfqSW7QXHTWOYl5FXwqvKwIOc5FX46B0Sgw51AfmwRSHAHifpUmsq8JzSg1qtKR9U6vCbkptsKIzki0HEnni3xvUf2EM+W+PTsfXh7N9G1+mOo3gArGsPEpYH2r6OUhP3kib24s52U5ACWINPw+AcIN99DS2gNkmDR+dITkxtM2zosQSI279VYsptk01WIRhFp38RKy1r6s1QL/RCcXk4gB4fTBUkUhtxAxzvsVBSFMdsqS6JAVdAehzJFnfdkdxAAq5AkU9RpT+THds2kO8kpEbZZTfZY61aOedyQR6FDs90K+lGKQAXNQNOtCeejjYVhWSPK0i3Loi9THJqjOJw+JHMalmWRLxns6UnTmShgmBa333cv3+x/L2uUffyX8TZ2epajxHazP5Y7ovM2mSuxVtxGZ3QNkiRSF/FQXms3H3lXXQsmIj9Pn4eJiNK+bugzNJ6oOhpCKWX/wxUcc5tDnUDa9ns56zfzmHP7lVS+8E3c/dswLYtn9vRxrrybfPWaI7Zp97tkxwHk4DAJltaH2GtUIsabnVLjE4wjAk1DdMMcFobXFs+h6Qcf54rG0IpbWzyHikag1IsRbCA8SvAm2J1LxlqZiPhULFeQgugd6s4AkC5oQ+VgqH5qQp7j0gVsPDyKdFSBeNUhNx1GECnbQ6ao09KXPaaAQYfR+cWT+3jdz5/l3hc7efniaub1PIDmqSAx+yYqg24EQSDvtut99cTIDmFb2pLMcSWgbDaZuguQcz30LH8/zZf8GM2SSO2YuAhkWRZK+3ryZYuwFHtlL1e1Ct1dRmDfA6PmaR2+f7yvh7AZh+iMCZ/XwcFhclQEXNSG3fjdx99ROt41K+pTcSnilIlAQb+bnOCFfIJs0cCyoH+UG9eWvixt+/fSaUZ4QVqO5q3EVTlnzOOGvCpZyxasjEIWYNLXs8Eb6eIxhjobpjXsGHt60iz53ENsaImjm44T6HSiM2mXc+3qzrC3N0O+ZGJZFn96+Bn+vfOTGGqQfa96mC1VN7GpUIOaaiGbyQCgpNsI7ruHwIFH8HU8g6dnE67YTpTUftztz1IpJEhVnwfYguxbr70AgGDXs5SCTRieMlrkmfi61pPIaRQ0g7Z4nnRhYiWNBc3AY9ifFVyBMbdbVh9iVr296KNtvQsTgfa8QuXG7zP3jquouvPVXFh8jKjZT7ZqlePwcXCYYpY1hNlvVeFO7ydTOHa3qsPEcXoOTkM6k3a9dcijoMoi2eLIm9dMQSfiU2lP5KkT+hCwECIzCHoUulNFwM5bsCz7/4fmMIxG2KsQ0ysoO0QEShU0fMKACDTORfR44lalo8qMqA66adNCyMRp6YpjSSpt8TyNZcfepQEgV9LJFHQqJ9ilZhDLso57ltKJYkdXii/du525UYmP1L7E2SvmErjjUWLzX4fXow51Air5qqB0sBvOofSkCwPOm6WkLvsmrekcYqCC1WEPL1ozKet8bmjbZF5DlUQkUcDCvgEadI4apkVXIsPMno20z3glP3liL4ok8rYLZpJqvIJQ8z2ksjlysou8ZqDK9o2fIIA1cN+SLJQ429iMKFkIMy86vj88B4cznLIxWsZPNe5xVu4FQaAq6EaRpuY7eU6Fn2Sfh2AuSXagvXWmMLJj0p+eO8CN8XbarHI2z38355z7OeaPEQoNtluhYNl5f2bJducm8tqwbplHIpfLUvfER9Eu+zRUz5jEuxqOaVlYlh3Cr0giP31iH5mizrbOFFcsrjrq4zpML3rSBfrS9g3Zod3gHt2yl39r+RhBWaP1+r+iBRpY0QDPPVfFm1QTV3IfhivMnDuvRS7GRz32goH/G00XDj0nhew4A9EoUIzM5aKacp7aPpdbex6nPZOlqNtzra5kgVzJoKiZ487nUnmNgJCzH7jHdgKFvSpfeM358H1YKrbQKdVxVfITBM0k7wyt4zWxO/muapek5atXnVAnvIPDmcDi2iC3W3XIZoFc9z4InnWyh3TG4IhA05BBx0JynBbZ2ZItArXF88wS7DIboXIubkXCpYgE3DIl3SSV1wm45SOuXoS9Cr2ZcipSB0t20gWdwEAmEKr/GN/V0eFXj85aWx10s4EwAHK+F81fRzKvEcuWRkycu5IFqoKuSYkz3akimYJOyTCpCLhQJRHTYtzg6mReo6gZkxaOpitfuW8HPpfMbxofoHbHryg8/GdEo0hy1vXUhjxD24m+CrS4jJka2Sa+N1WgzOiFcAORaAU5IU9D1ItbkdipnsWrsveQzaQRVS8H+nPjjqfQupHZep7/2RHmXt0+1zVLqgnMuJLorttIbn+EdP0lY+7/UnuSi8QtFOUAauOqo/ypODg4TCfGClseZLS29UfLW86fSXKbl3RXF/6WhzAVH9na8yloBm5FIlfS8aoybfE8NWIcseEc3nTRfBSXPO61I+RRKDAoAmWxLGvUa9l4GF3bie7+K6naJVD9/476PRqxFnztOyhVXEU8W+LOTba4f+Ger+PSg3Dz94/62A7Tg/6B3B8ATB1E+1Zh686drFr3YeaJbbRc8VuK0fkArJkZ5Xvr7Kwcd/9Wojv+iGCW2HfNbZiKD1HLIRp5BD2PqOX41+5uHjhg8dmmBUPnVALlmJIL0SgiVCzgwuoKHn9xHm8SH0Dq3kKq0i6XLGgmBc0eWzxbIjLGZyBV0AgwMGcYpxzMHrSdGSRi4mtaye/PP4fHd/Xyu81VfDt/MZ+ofJbr6/NYFQsn/8N0cHAYF68qk4osggyInZvoqJhNbdhz5B0djhlHBJqGTMSunRuouW7py7LY1QsWKBVzATsUOeiWyRR1Unl9QhPFiFelK1POWekNQ8+l8hp1cglLEBGUk/OBPNra6sqgix4rDICc60Hz20G/nck8fpc8tJqTKmj0pov4XNKEWw9ni/rQ6m48qxHPakOuK48qIYsCFnaekVuWkCX7cXs8jyhyWohA61tiPLGrl48t16nZ+VtK/gbciT2UfDW4Zp07rIQv7HPTT4RIangmkGlalLJx3GoBLVSHV5WZU+kfEuP6y9cgd91J/55nyNSdP+ZYLMvin7v7yD5xO6sFiC64kHsuOZc3/eo5fvfsfj5++fkYio9g8wPjikDt8Ry3SptJ1ZxPhTR1N4YODg5nBssawmxzBUnH+1j29KeQCzH2v/zXpEMvJ18yyGkGXlWmO5YgTBq1cTa5qPeI3bbCXoU8tnPKLOUpaCb5koFhWhNuP20U7HwUsfvFY3qP6rofMGPLn0guauY3zxxANy2WB5JcnLoLq3XWMR3b4cTSFs9RFx7Z6bUvYzuAqtZ/nfKXfk7n4nfS0dPH9Z23o4oGLed+iVzDxQCIIlw8v4Ifls9BT0vUPPcl5EKMA5f8gGzt2hHnNEyLrz69nln1PqpDB+dCsixR9FXjSu3HqpzPopog3zTnAeDt2US+cmRmVmeygNcljbrImcxrBxcxj+RkP0QkypctxueSuXZJDVctruaF/XEay8+nI+AiMsE5ooODw+TwNyxF2ybh7n2R7sz1+FSZkNf5vB1vHBFommHnAY18PlPUae7NsKQ+DEBRM9ENk02tCa709KGbUTxBO4B3cGUz4FYIuOUJiRshj0KHEUYq9oKhgySTLuhEpCKW5D/lSpjmVPrpHXACKbkeBpvqmqYtBDWV+TBNi46E/UqqoE9YBOrPlJBz3WBZ6L5q4GBZ0qGBiKOVARimLTwFT/HJxC+fbCbolnl96scYapA9N95N+Ys/pxiZR0VguGAY8Sp0EiWSHu4EiuVKVFn9AIhh2wp+6N+ZMvsCSp0Su//1d9YH81zV8UP6lBoyYnDgB26BZRHLFqnI9/Me+Z+kQ/P48C2XEPCovOuiWXzl/h28YlktdfWXENz/IGqqBTXdRinYQMnfiKn6B45jUtNcolqI0zvnsuP6s3NwcDh9iUYrCHdtQc3FMEWFpoffwYHqpym4K5AHBJtSfMC9G6ol6FYQj3B9PbQczCjlhsIzcyUdnyqTKmiEveMv9ghFu1OS0nNsIhDZfkSjQLZjO39Y18/F8yq4Nf5/SJqJke8/tmM7nDAe3dHNW3/zPB+6fB7/7/K5Q88XNINsUWfPXV9nSf+PaBEbmLHl+1RaEk+p5xO4+rO4Ku3tQx6F2rAbWRJ57XlzaH6gmrmFdvoXvZnk7FeMet4X9seJZUu875I5I8Qbw18Lqf2IFQuYW+WnX4ySlqN4+l8a9ViGabGvN8vMct+I7K9UXidAHl32IYtHiBSQVUzZg6jnKZQtHnpaEgXWzIwOPfafgK64Dg5nIhcsqGPH1gYibRvhHOhM5Qm4nZD1443zjTbNGM0FlMxrfPrOF2npz/H56xezsikC2J3B9vRmmFPWSSk4G+8otveG6MQycCJelR594Oa9mAJvlFRBJygVsU5SKdixUB/xsnTBfNgHUvuzzNz2G7pWfYx85XJSeZ1sUSdb0tF0i8oXvkWx/lw4++ojHlc3TFK5HHPveRVyIUbzVb8jX7liQmNy92/H07uJnqW34palITdSQTOQReGIZQvThdZYjoe2dfGOJRKhXU/SffZHMNxRuld/DJcijpiMhb0q7UaYsw7rDtabLlIj2DcNUmhk29Xls+vZ8OQ8Ip1P0dSxn9niBupQ8ZHHEgQs7IuDhYCgysTnvIa+8z7F/AGB7U3nzeAvz7fylft3sOicy1ncfA+u+G6ytWtRMu0EWh9B1HOAiGUZvEHPYSKgzLv8OPzUHBwczgQiZeW4umMA7D/7k8xc/3mUXfeRXvQmdMEiW9RQ893gAilUiyqLhMTxFwXCHoX8QDmYVcqTL9kLDPmSQUk3yZWMcUUg07QQS3ZgrxrfDVoBlKNzpAoFO+dl0/onSebncvOiIBc+eD+GJSAWEmAacKSbboeTimVZfPeRPQB855FdLK4NcvkiO88pniux9fav8sbkT3haWcu3Qp9gdaCfBTMbmTVz9tBCjUeVaIgedBHdtLKO2x9YSlYI8em2G9D+uhlRsIUUlyLhViTcssiengxhj8JlCytHjMsI1GIhIFXOwyVLzKkMsDs3i0V9YwuXumGxpydD1KcOKyFJ5u1yMEMNTuhGx3SFEPU8+fKx80h8jgjk4HBcuGZJDffeNZem+L/oM0xApC9TPC0qJ6YzzjfaNKN0mAgUz5X49J0v0ZUq0OTVqH3k3/Fc9nbyTZfy/P4YlgWVWhtm5NJRjzdRq3jEq9CuuUEB8vEBEUgjKBROSREI4N+uWI35E4Hq7b9FRmfmA7ey79o/UyhbTGcyTyKn0bLpCZZs+g65thXkllxxxHb0ibxGZPufcKVa0N1RZt7/emIL30gxOAO5ECNTez66twrBKFIKNoFgCztyrpcZD9yKku+lxVvBrqbL8aoS+/tylAVUGiLeMWvbpxu/froFQRB4rfo0FgLxua/E65LIFY1R8zUiXoVuK4qYefFgUjm2iFk7IAIRqhux3zmzyug97wYq1n2VhVIX8Xmvo+P8L407tohPGTZJ/ekbz+YVP3iaGx+v4BWuj/ASK5DiYUIeBXFggU+RRLpTBcS+HXzt6gbmV844+h+Og4PDmY07PPTPXydX8qnQLIL7H6QYmknFlp/ScuUvqRZsIUUJ2997R7pOBw/JBLK0g23nswMi0JEu84ZlUcolARAsA71rK3LD2Ufz7hAK9nES+15gYfVKVuSfxWXmuNs8l+ulZyGfAF/ZUR3b4cTw9J5+Nrcm+Mx1i/jjcwf43N1buXRBJYIAt//lt/x78idsC7+M0E2/4HPSyHmJKos0lXmHOXeDboX2cz7Dr1/qIuJy4RIFFElAMywKmkEsUyKn6eQ1gzefN4PKwMibu/zCV5F31xBx23PORbVBNmxvYkXiDsRigvDevxOf+6qh7p+DWJbt0I761KFFqFRBo0LITbipieUKUkJA8JWhCAzryDv4nqeqi6CDg8NwJFGgYt45BLf/g40vbmLV8pX0pIsoknhC742sgcYHZ4oDyRGBphmHOoHi2RKfuvNFetJFvnhVE5esfxeVyS3s/1eGfNOlrG+O4yOPt9hLOjp2e9mJEPKqbLV89oN8ArCDof1CAVynpgg0tyZCUgoTMuN0VF1CeWYHTQ+9jd03P0CeMHdubGfthh+BBN7ejezavQW5ch7mgE5RF/aMcLUkkwkaN36XTPU5tF7yfWqf+S/KX/w5gjUy08FQgxTCc9G9lbiSexGLKfqUWnyPfJxPR3/CjrhJX6bEe8+r5A2raoj4Rrphphs96QJ/fG4/F8+JUtdyB9natcjRRmaV+zgQy40uAvlUtllhJD0HpezQ39OgE8gUZET/6F1lvAsvh3VfRTSKxOa/7ojjO/z8cyoD/P7t5/DX51uJZaopL+ok8xodiTyDn7SiZtCTLnLDstW45851JnoODg5HjTAQMhuTyrljZ5H3LrmCqq2/xJVsRs20Edv9HFWC7RQSgrUTOqZbkUC2M4FsEcj+9hosORaEAbfPGBNX3TBZt6OF2QOPjY7NxyAC2QLWDG0vr17VQHDvjym4K3g4tdIWgXL9jgg0zfnBY7upDrp5/TkNFHSDrz+wk2f39fPM3n4a9t9PTvVj3vQLLEkdyjscRJVFZpb7Rr1OvuOiWbxiWR2CYJfkHz5/OhLWrEvorVhL5cCxF9UEWb+pkberJnXPfIbw3jtR0610nfPpUfdP5rWhcyZzGrPIIYzTGexQtKpl5C0XtSEPIa+CZpikBpqJFDQTn8txtzk4HE/mLj8ftsO2DU+yeNEyPKpEWzyPW5GG5YweTwqaSVEf31l7OuGIQNOMkm5S0k1iuRKfu2sr/dkiX7h6JtdteR/e1FZeVJayOL2ZDYlOdnalOScYhxII5XOPfPBxiHgVkoMi0MAkL13Q8JIH9dSd0CnhGojF+XDsBj51+Qc464FXUffUJ2i99Ed0NG/jKmk9f+dlXGc9wbN3/Ig/+N7EguoAly6oJFc08KgSNSE3PpdMIlfCve1vKPleDlz2I3RfNQeu+DlSvg9Rz2EqAQJtjyPoeRBEPL1bcKX24YrvxsLic+K/sysX4M/K5/l633v5h/96SmKB12y8HaWlAesDz0677KWibgyr2//J4/vQDIv/V7MN9UAr3av+YyhYsiHiHfUmJOJV6WdgIpbtHSYC1Qr9GL4qxDHKB9wNK9HdZZT8tXiaVuAXBQzTGjYpHaTMr47q5FrZGGFpXYg9vRmCbgWvKlHSTYq6OWRMypV0DNMi6Ha+Eh0cHI4ewWOLQLnoQtKtOk8r53GL9VPUTJu9Qdt6lon7KHkqUAcEo4kQ8rooaSqUciO+/ywLCroxppP1bxvaSMX70SWRkuhG7NxyVO8NwMjGkYEVahvhei/+xx8nPudmEi8OvJeckws0nXlhf4xn98X4r+sWUdBMzplRht8l85m7trK3J8VG3xZKjZdgSSoBt0xdxEN3qoBuWPjdMmU+dcx5yuBcoTLgmrQABLYr99AW7ItqgvzKnAlAeO+dWAiUv/RLTMWHp3cz7Rd8dSiXESCR06gaKB/pz5YIiwUEdzUTIXP1D+hOFZkzcH5FEinzuyjzu0gVNKRpNjdzcDjdUGqWoMk+3lv6Pf/31BKuvNSucMkU9RMmAuVKOqmC7ohADieH2ze28f1H92CYFh5F4nPXLeSaLe/H2/MCrZd8nz6zBvHxm3nx0dvYHjuP95XHoA+kymMVgVQS2DfnVj6BgN0dzOs+dcvBALTGC2nxzOa5fZV84yUfXzv7I9Q8/zV6dt/NDfE/YsgKDbd8leaHPsj1mYfJ6uVkt8bY/ZLJz0M38IaLl7GsIczMch+diTz1W/+XfdJMvvRimGWJbs6dVYbXU86gDygx56ahc8fnvxaw7YXffngXT/T08t83LqHZmkv1uv/mzfGfA9BpRamJ7yDXvQdv9bH9HqeadEHH5be/fPsyRX6/bj+vXaiyeNMXyFUsQ1t449CX81ir0BGvSp81cIOQ7YOoPanrSRdYI/ZihhvHPL8kSey/+lcU5SCzQ54JlzcejiyJzKsMHNHiaY2mLjk4ODhMEGGgHMzTsILatJs/tgW5zl9PoXwJnr6XCPZtZKG4lVLj5aiTuLEMeRRKugvBKI76er40tgj0z119XKGWKOBnu1HHsqPsEKZpGi4jQ0IIETaSRHb9FUnPkZ5xJer+PsiDme3F8VJOL7JFfSjP5geP7iHqU3ndmgY6EgXqXvwhX65I8IG2S7gy2kM4F6O18RL8bpnGqL2wUx+ZWLakSxZxKSIVAddRjVORBNRDHEZnz4jwstUrSL0UJGil+GvVh7gp/iuqNnwbC4G6pz7B/pf/aqjEvKTbXfM8qkR3qkBIzIN7YuVgg8LWoSLUIKd6Iw8Hh1MBl8fLgav+l7L738E79r6X++vuZPH8BWSL+lF/p0yW/EAwvmaYZ0RVgCMCTSP+vqmd3zy8ke9E7iEQrkCeexmzYv9HoP2ftJ//ZZKzrqfcsuh+qpaZvY9SMNewxteF1SegVsw+8gnGIXSIE8jMxRFMi0xRx63mEE7RcjCA1EWfI53TeMPzrfzu2f3cVn8D747eTcO/Ps08KcHWWe8gXNUAl3wM3yPv5z2ZH4Nshw2/Lfcgf73nYratfTPm0jW4O58nkNjB1/W3s7E1waM7exGF3YiCQMSn0hT1okgiAbdMdchNddBN0KPw0NZu/rm7l9evaWTNzCiZ0kXsqXsQOd+LYGp87Z4t/DrzLoydD8I0EoEM0xrW7ez+Fzsp6Sbvt/6EqOdou/jbVAaOPDkMexX6LNsJpKe7h750etNFmoQerPDI1q+HItSvQTbNoxaABplIje90c2I5ODicWgheW/C2qs7iVZ4GvvvIblbzGa5pmMXHK7/Hwn33owoayaaLJnXckEehmFYR9fyor+fHaTOfymtEpBKW5GN3ppplsc2TOvcgj27axZVArOIcwj0PUbPuCxhKgFLD+QTLnoU2MDP9jgg0zcgWdSRR4PmWOI/t7OWjV85HQEBLdFG58btcIyr836xX8B+RdVhbBZhzOTMOy/yZCC5ZHLXl/ERRJBHlEBHGJUt89obFFJNr6Oncxsf3r+S3QjlzwvDBhRlmbvgy4T23k5h7y9A+6aKGR5XoShUICDlwTcxtJ4kCojjxHE0HB4epRZVEctWrSV//VxbeeTWRJz5Nc9lvmV3pO2FjkLbeTkgrkgrdSpn/xAhPJxNHBJomWJbFV+/fwTvD67k+fxfkgc5fYgkiqcYriC14g72hIGAseAUXvfQznlzyCJU7/0C2/iL8qmfc4x+JiFclxYAIlE9QKOmYFrjMiQfrTUcGldxXnl3P5tYEP3uqlQtf/hlWPfJaeq0Q+nn/j6hPpTBrLTvLn0ZJH8BwhVDTbZQ99zXe2nEf2rMPstn9a4Ibv0Xa8hA+9/Wsu2o5L7an+Me2blJ5jc5kntZ4Hk03SeQ1knlt2DjedF4T77tkDpVBNz3pAr3pIrrX7o4hV+TYn6mlat/DcPH7TvjPaCw0wxwKIAW4Z0sncyv9lPX8i1TjFWjRORNaIYv6VPoHnEBmpnfo+UQqRTlxCuEZ4+5vO42cenwHB4fpj9SwhnTDpVgzLuRtoQq8qsQdG9u5d3uM95+zgvC+uwCwZl48qeOGPCp5XPiNwqivF8YTgQoaQTGP7AnSmq5CLcagmJ70tf3uZ7dxJaDOu5SU28RwhYjNey2RoA/FXw6A5ZSDTTs006K5L8uH/rKJWeU+3nhuE32ZIpGdtyGaJUSzxBcWdVG54R/kK5ZRXlV/VEKOIAjH1EFLkcRhTiCwbwz3XfxNDK3If3bJ9KZn87/PtrB9l5u/Va6i/p8fxZTdpGZeC0CuaEAAelJFvNbEM4EkQcA1igvIwcHhxCCKAqosUiqfS8ey93Pl5m/y+6d+innjh8mXDBRJQBCE4ybUmqZF5Plvo6bbaJ1zOWX+puNynumEIwJNE7Z3puhMFriqehtFdSZ7brqPsm2/wd/+FO0XfGXI7goQO/uD+JO7qd72C4rBJnqv/AHH6tWJeBWKqOiiCyufID0QOKkap7YTSJbsn9uMch//df0i3vjLdXzwGRcX6O/GUz2HWzxBAm4Fn8uiL1NEC9of+oIrTPs1v2NH7wGa7ryJNU/ciojFdwMf5PUXLkKVJc5uinB2U2TU82aKOnt7MvRlivhcMvOrAkMJ95UBN1GvSqZo/4zrIh6e2LecN7Y9AqUcqBOzXh9vdNMayM2x6E0Xea4lxscviKCsbye/+K1EvOqE3DVeVSItjRSB5FSr/Y/I+F+0HlVCdlbnHBwcTgWCtbRe/VvqAh6CboV3XTybkEfh47e/yFZpHnVAt1yHLzp2GexohDwKeUshMJYTqGSiGybyKBb2dEHHTx7JEyLuqgMTiLdA9ZIJnz9d0Gjt6AAXqOFa9i/41dBrdW4Fvz9AznIhZfsm9b4cjj+6YfK1B3aQzGt89rpFHIjlwNSZt+P3ZKrPxR3fTs2/Poua7aDjZd+k9gTlbxyOJAq4leF/v4IgIPrK0HWT8wf6n9RHPHzpvu28WfwP/rf8GzQ98h5SDZfRee5nyYozME2LeDqDqpQwJigCCSKokrPY5OBwMnHJIiXdJHP2e9my43Fu7fsOnRskMpd8jHRBozzgGrH4PFUdvfLZFN7EXgQs7vnZZ7nifd9nXtWpa4KYCI7sPU24Z0snLko0pV8gXX8xpuKjd9m/03zNn4YcI4NYipf9V/yctgu+QvPVfxhagTsWAm4FQYC8FIB8nHRBR0FHtjSEU9kJJIoIAgRcMqtnRHnvy+bQFs/TMfNmLrniRgJuGUkUUCSRWRU+qkIu6iMeasNuZEkgUNHIIyu+xx6zlm97/x/n3fIBKiZgEfS7ZJY1hLlsYRXnziob0eJQlkTCXpWwVyXolnlEW2JnPbQ9d7x+FJPGiO3H1/pPCprJPVs6sSx4eWgg3LR+FTWhkS1eR0MQBLxeH3nRZwdDY9fue7L2saSymePu71OlowqZdHBwcDgZSAMrmoO8fHEVUZ/KR540yVou+qvPxzvJ77SQRyFrqoj66E4ggGxxdDdQKq/hJw+uAL5qu3Tc6Ns3qfMnchphIQuAN3RwzuFSRNyKRMSnEiOAmXFEoOnG1o4Uj+/s5eYVdTSV+bAsCOx/GDXbSf9ZbyPVdCVqtoN82VkYS157UsfqGyXX6vCcnlUzovznVQvY3Gtyc/o/eHHue/F1raP2X5/BNKEzmcdt2H+romeC5WCCMGoekIODw4nDNSgCiwpPr/4h9xurqdz0PXpicbJFY1hExSDJvMaOrjSpgjbitYliWRZ/uucBBCxiBHmr8g+81ugLLqcTzjfeNKCkmzyyo4cbogeQjAKZ+glkBYgy8QVvQAs0DuvedLRIomBPMsUA5BOkCho+7A+AeAqLQJIk4FGlIYX4fZfM4W/vPo+PXrmAiE8l7DkoznhVmcqAm4hPpczvYn5VgKZyL+eeewHrr7mfC171QWrDnlFXWo8Fv1um2xpwFBWSU3rsY0Fd9wOaHnoLT25v5esP7mBFY5jy5ItYgkzVvDWTsotHvCpJMQSZXjJFnX29GSr0TgCUI4hATk6Pg4PDqYQkDi8tifpcvGJZLWlN4mfzfobv6s9PetUy7FXImYrdfXIMMiV9xHOWZef7eS27tNsYKL81Ys2TOn8ipxEiA9gi0ODXcmCgo2LIoxC3/OiZ07scTDPMkz2EyaEVmP33G7nCvY2bVtQNPV227beUfLVkZ1xOct4tmKJCx7mfJeA5uV1xRvtcjCbOnDerjM9ev5ikoXLDSxfQPPN1+NufRMr3sb8/Z+cBAYJrguVgoiMCOTicbA69n105q5K/mpcimRqujvWAnW92OH2ZEoZpEcuUjvq8L+yP0/zSswDEX/ZVXLJAfXHPUR/vVMH5xjtJmKZFLFsiU9R5qT3Jrq4013m3Y4oK2ZrzJnUslzI1v8awRyEt+KCQIF3QqBFi9gu+Y3canSxkUcB/SI26KAqcVRdCEOwyo5B37EwbURQIuhVmlPtZ2RQh4JEpPw5BYQG3QoGBcWhjr/KeaDJ9rYimxk///HdmlPn4zmuWI7Q/T7F8EaJrciVrEZ9CnBDkeulLF9ndnaFR6EETXeCvPPIBHBwcHE4RXLI44mb2Q1fM47uvXc51V1yGN1g26WOGPAp5XFjaOCJQYeQEOVsyMC1wmzksNYA3WEbC8mH2T84JlMxrhAacQKI3MnRdDXnsa1fEqxKzgqd1JlAsWxr1Zzyd2b7jRebrO/hk4H68qoy77yU8PRvwdzxNbOGtRANepJkXse1NL5GrOWfYfGm6MJgT5HMNX/Bc2Rjh269ejiqL/DazBsEyCDXfS1s8TwBbBGKi5WDC6GKTg4PDiSPglgl77coUrypTrD0HzZL4x71/4YX98RENEPKlg+6gTFHHNI+uw+/mtiSLhRY0NURh7rX0vXszNK095vcz3XG+8U4g8aytUuZLBrt60rTH8zT3ZvnV082ogs7q7BNkq8/BVCaehC6JwqRt5WMR9qokLT9Cwc4EWinutl+oO3tKjn8yUCRxRFChW5GoDLioDU+snEmVReZW+llQHTwuZUl+l0zBGlh9G2eV90Syvz9LW9sBAN7Y2MdXbl5CvljC07sFo3b8bl6jEfGq9FtBhGwvmWyW1vYDNAi9lAKNw/KuHBwcHE51vKNkqoQ8CjcsryPgUobcM5Mh5LEXC4RxRKCSblLShztVBpsU2E0e/ER9KvutKsxYy6TOn8iXCA84gXCHKfOrzK70DbWlj3gVYgSQCrFJHfdUoCddIF3Q6EoWKOqnlhPo8ec2ATAz/QKVL3yLuXdew5y7bsQUVWLzX0vEpxD0yFiyh4BbnnKn81TgUuyy/saoF//AZ2dw2hD0KFyxsIo/tvjJhOYT3nMnB2I5AsLA52SiTiBBGBFK7eDgcGJRJJGGqJfasN3s6NaLFtHhX8z50jZKG/5AZMsvhzVB6M8Wh/5tWQfdsJY1OTFoa0eSJfIBtPLF1IS9MIn78FOZCX3jCYJwlSAIOwVB2CMIwsfH2OZlgiBsEgRhqyAIT0ztME99NMOkLZ6nPZFnX18GTbf/QJv7stz3Yiefq9+AJ99B39J3j3ucwyePdZGpK0+KeBUSlhehkKAnVWCluAvNXQ6RGVNy/JOBJAr4RpmQVwbdQ5PXiXA8J0YBt0yeAYfROBP8E4VpWrzrdy9QTgKAl/kOIIsi7pbHkLQMQv2aSR8z7FXpNoOIuX6qnv8G//bCzSwVm5GiM6Z28A4ODg4nmfGuLWGvclSLCQ1RDwVc6KXcuNtlDrPLp/IaIiaqmcdyBYj6VFqtSsREy6TOn8jZTiBD9oGsEnArw95n2KsStwIoxfikjnsq0JUs8OV7t9Pashdh36MnezgTJpYtsb/lYElD1cbvkK08m56l76HzvM/hiVTjkqWhTMiKwPRsiaxKIiGPgiyJ1IbdNEQ9zKn0DwlBNyyvw7IsHlNfhq/nBYTYHoKTdAI55WAODtOHqE8l5FGoj3hxz7uEs4R9vK3vG1S98E1yBdtQYZoWybxG2dZfU/XcV1AyHWQKOumCRkdyclUV29vjzOMAeuVZRH3qtHREHg+O+I0nCIIE/BC4GlgEvE4QhEWHbRMGfgS8wrKsxcCrpn6opza5AbtaLFPCHFhIKmgG331kFxGXyc3Z28hWrSJTd+GYxwh7FWaU+4bKv8JeZciKPRWEvSr9hgexkKA9UeBsYTeF6lWnvFNjumfKBNwyBQacQNNABIrnSuzoSlEl2vlEnt5NiMUEdU99gkJ4LsrSmyZ9zHK/SoceQC7E8Lf9E6+ZpUboP6UFRgcHB4fROLzD0fDXjs5NurIxgt/nxyjmKOpjt4NPHxaOmRwMhcbOR7GdQJWomXYwJl7alMzbwdCme/Sg3bBXIWYFUPUM6EefzTDdKGgG92zu5M/r9zPv8XdRefebTpn3d/uGNspNuzwvOeNqdFeY1kt/QPeaT9ilYAMNKyRRoNzvOqb27scTVRKHxuqSJcJeFbciURW03dxVQTcXzKng610rMQWZpV13UKkOOAQm6ASa7vNEB4czjfqIh4hPIVuzFhGTIiqSliHX9iJgX5PETC/V6/6byi0/Zt7fLiHb08yBWI5ErjRhN1BBMzB7d+OihDXQMXMyJoFTmYnI3muAPZZl7bMsqwTcBtxw2DavB263LOsAgGVZPVM7zFOfQxPN2+N5HtrWxdcf3MG+3iw/nvM8rlwX3Wd/ZEzBJexVaIjaOSyD7fGivqkN8At7FXo1D6KWRUh3MEPsRq9bPaXncBhJwK1QHMoEOvkiUH+2hI8CqllAd0dxpVpoeuQ9yPleOi/7Dsok84AAXnl2PTk5goCJJ76DZrMaADE6fii0g4ODw6nG8bihFASBRU3VqFaJ+17sHHO7dGF4LkLqEBGIASfQAasK0dIh1Tbh8ydyJSJCFjyRUV+PeFXiDDSRyJ86JWFHulnY29JC5tlf8xH5L8ws7UQwNax4y4kb4DGwvTPNLFcS3R2l9ZLvsfPV/0Tz2+HQsiQQPMRZXhWcni4gsPMZRxOoKgIuyvz2PPjmlXW0agG2hS7m3NT9NKiDpYsT6w7m4OAwvRBFgfqIF5rOpW35h3mH8TEAhNbn6EoWeHJ3Lxv//l1EU+OueV9B1PP4996HaYJpQmqC+W27utPMpN0+Z+XC4/Z+piMTEYHqgNZDHrcNPHco84CIIAiPC4LwgiAIbxrtQIIgvFMQhOcFQXi+t7f36EZ8ipIt6RimxR/X7ed9f9rA9x/dw56W/bz/nBBnH/gVqYZLydaeP+q+QY88JAANPnYpI7NujpU5lX56DbsOMtz+OIAjAp0A7BI/AV10T4tMoL5MkQohAUC68TIA/B1P07H2i0hHkQcE0FTm4zUvO7jv5/Q388+Fn0NafnLb0To4ODicKlSVhfEKRR7dMfY626G5CDDgBBIOF4EGwvjj+yd87mReo0zKYY1xU+1RJdLigOviFAqHTuV1ejPFUV/Llww2/+0rfFn6Kf8u30WLWQWA1rPrRA7xqOlOFaiX4mi+GizJhekKD70W8arDxMpT1QlTG/ZQF/GwqDbI8oYw30leQMDK8DrtdnuDU7i7rYODA/i9buKrPohefx69hFE71/PTJ/bykT+/wKXZe1knLOWj22aSCS8gsP8hAAS9QCJ30LFpWRb9mSK96ZHf9ds6UswSBroVV849MW9qmjAREWi0K8PhyyYycDZwLXAl8F+CIMwbsZNl/cyyrFWWZa2qqKiY9GBPVSzLojdZ4At3vcif1rdy3QyLZ+b8no3ud/OhLdcjahm61nwCAK9LoiroojygosgCkihQNxCQNYhXlakKTCzUeDLctKIOTbEncYvSz2AIMnLdiik/j8NwBmtPNdE1LbqD9WdKlGOXgulzriZTs5a2C79OfNGtVB7DamFTYyMApiWwwZyLfPYbkfyT75Lj4ODgcEaieJAwaetP0ZMe+1qRPmQFNDWsHCxAmc9FzJq8Y2cwEwj36E4gAN018Fq2b8LHPZnohsk/tnfRmSiM6gb6zN9fojG3jbhvNk+u+gG3avY8zThFRKCuVIEqYhCsRZbsqXzQI1PmV6fcSX4yifpU5lT4efPaJp7WF/IX/WL2uxeSOe+jIE1dZIKDg8OJJ+CyP8OvXdPEC8Zc9P3P8utnWnhPzR6q6Uc5551ohslT0mp83eupeeYzLPzjKvK9B4aqcDqSBToSBbqSBdoTeXpShaGA6a0dKebJXWjeKly+M8s5OBERqA1oOORxPdAxyjYPWJaVtSyrD/gnsGxqhnjqs70zxcbbPsvPe1/Pj8/awdeTH6G681F6l7yT/oVvomPtFylG5uN3y8yu8FMZdFMT8jC/KsCsCt+oocTjtTY/WryqzOqFswC4RNpEpmYtXt+ZkZB+MvGpMoJgi0CWNn7o54nAdgLZIpC7ag7N195GfP5rqQy6jqk7muCzV597vbM5d+FM2+bp4ODg4DAhBMVeEPJQ4vmWsQOYE7kSxkBJWDx3qBPIj0eVKMoDjp18YsLnTuQ1QmTAEx5zG2ugVMzInRrh0A/88xkueehqtj15OwVteNevgmZwx8ZWViotmA3n4j3rOrrEKjJSGPr3jH7AaUZ3skDU7IdADRUBFy5FpCFid9453UKQRVFgVVOUb7xyGd8PfoiHV/6I/NqPnuxhOTg4HCMeVUKWBOZW+clVraLG7GJVWYm3ux6h5KtFWXQNly2o4sed8xEsk/Jtv0EqpQjv/hudyTz5kkEsc9AVFMuU6E4V6UjY18XNbQkWKN1o4VmnrCPyaJnIVWA9MFcQhJmCIKjAa4G7Dtvm78CFgiDIgiB4gXOA7VM71FOTom5w6y+f40L9X5QJKa7e8wVEvcDeV9xJ1zmfpnPtF4gtfCMAlYd1ZhAE4bi0JB+Py1bYBi4Zk8zcV+CST+z5z0REUcCvypRQsaaJE6hyoBzME6kBQJEFKvzHmBngs91/6szz+PmbV1Ef8RxhBwcHBweHIWRbOG8ICKxvGdvFY5oHW+cmCxplsv1vYaBTkuiN2ttNQqxJ5jT8VgY80TG3EbyRgeOOPraibky6de/xZMeGJ5gldnHTrv8kuX14168dXWkarU68ZpZ8xXJUWWRJbYgWoRYhNv1FoExRp1TMETASCME6ynwqjVEvonj63uREfCpNZT5+9PqVXLawCuk0fq8ODmcSfpdMfcTD0vOvAeBH4T8Q7HyK2II34HKpfOiKuTQsXkunWM0L5lz6omcT3fVnsgWNlv4smDqClgPzYD5vtmjQlSqwrSNJo9WOGZ1zst7eSeOIIpBlWTrwPuBBbGHnL5ZlbRUE4d2CILx7YJvtwAPAFuA54BeWZb10/IZ96rC1I0Uhm2IRLfQt+jd6lr2Pfdf9hULZsAZreF3StOjMEIzYN+qmqGDOu+Ykj+bMIeCWKQquaRIMXaRBzWAJErK/HI9qd+Y4ZoXcGyW28v1kl70F4LSejDo4ODhMOYpdBr66zs3mtgRfuX87m1oTo27anynZLXRzGmXKgAg0kI/i8/nRUDDzExeB8rk0qlVCGMcJJPvs8l5rjOMmctqEwzqPNy+1JynG7GDsmBWg+I8vjnh9qbAPAM/MVcwo97KyKcL2UhVyfO8JH+9k6UoWqBTs34MYqj0pi4onGr9LHip7A5DOsFV9B4fTleqQm7BXJThnDb1L3kVl+z8wRYX4/NcS9aksqg3xhRuX0H7LPbxP/hw/yV6Emm7F1/kspHuY/5cLOeu3C5j/57W4+14cOu7jO3oImCm8Rhqr/MwTgSakOliWdR9w32HP/eSwx98AvjF1Qzs92HQgwUpxNyIG6cbLydRfNOp2h7uAThoDdu5M3YW4g+UneTBnDgG3QqGgTpNysBIXyikMpRxZFAm4Fcp8U/D3KQgk134C12lmQ3dwcHA4ISi2E+jimX6e7IeNBxL0Z0osbwiP2FQ3LLpSBVJ5jQVSEQwQB5xAUb+LdNxPcBIikFCIgwSib2wnkM8XsDtdjuEwShc0skWdkOfk57T8eX0rc6Q4huzjBek8Lss8aluoRPv6tLUjyWq1GUP2EmlciijLlPtd7DaqkfOP2aV04whiJ5vuVIFq7N+DFD68l8vpS1OZl/Z4Ht20UGRHBHJwOB1QBmJR/C6ZvWs+iSWpmIoX019BxGvnmwXdMu5wJW95mcQ379P4sC9I7TP/RdJdh5Xp4deuW7mh+A+a/n4LhrccI1DP7dVfHwqFlipGRBmf9jh3Y8eZja0JLnHtxhIkcpWjd1byqBIB98mfFAHgLSPXdDl9Z70dn+v0XjWaTvjdMgVLnXQwdEk3j7zRJOnLFKkUk5gD5VsVfteU2aplUTjtsggcHBwcTgSCapfQNgZFvvuaFbzq7Hp2dqdH7XgCthsonisRkuzXB0WgMp9KAj/WBDOBCpqBT7dz4iTf2ItDEZ9KwvJhjSICaYaJuuPvGB0vDQVynkw2tSZY4M2g+2uIBxfhJQ+xfUOvv9SeYpXcTKliCaJsr5eGPArNll0iTf/0dgN1JQvUCHZZnhQ6c0QgryoztyrAwpogXvXku+sdHBymDo8iIYgC3as+Su+yfyfsVYfuT2RJxKtKnDszypKmKt6jfRA5dYCqrsf5ObfwR9eruTb3We7XV7IxX42/61ka9/2RlT67kYFUcWZ1BgNHBDrubDwQZ62yk3zZYkzVP+w1lyKiyiJVx9BxacoRJfpv+B25+gvwnObW4elEwC2Ts9RJt4hPFbQpz1joz5Qot5JYPrsd7lSWbUmi4DiBHBwcHI4CQbZFIHHgOrF2ti3I/Gvf2N24EjmNkFjAkL0g2tf0iE8lbnphwAlU1McXZZJ5jbCQsR94x3YChb0KCcuPkR2ZCZSJ99Dw2AdoePwDNPekTroQ1BbPUSXEEIO1uBrtLqiJ5ucBe3FlX1eMWcY+jJqDHVLDXoV9QyLQ7hM+5snQlSpQNSACEaw9uYNxcHBwmAIEQcCrHrw3LTusy2HIo1ARdPH5GxbztL6QNxc+zJ+Fq5h5wyf41quX87P3Xkfm2p/wxsKH2SAv45bk/3KNsgFTVHCVzTzRb+ek49yNHUd600W642nmajvJVa8Zel4QoCHqYV5VgPnVgenjAhpAFAU8qnTGpaSfTPwumaypTDoTqKibFKfYDdSfKRI2Y1j+yik9LthOICds3MHBwWHyCKpdDuaK76Lun/9BfUBgRpmXp/f0j7lPtqQTEPPDFqGiPpWYedCx05kooBljX0cSOY0oafuBt2zM7cJe22E0GAw96FTVdZOu525HsAzc8Z34dt/Fnp4M3anCUBezE0mmqBPPaUSNXgjWEp2xhKIlk25+AYDdPWnmmftQrBJC4zlD+4U8Ch3WwPtPd53wcU+G7lSBJiWBqfhhwAHm4ODgcKrjd9sOv6BHHpFzFvaqVAfdLK4N8e3XLOPmW25l/lt+yoL6ctyKLXksrQ/zkSvm80X937CAFfl/oUXngXTmOQfPvHd8AtnUmmCW0IFslchVLKM+4qEnXaQ+4pkWIdBjIR2mtDocfwJuhawpI+iTKwcragYFzZiywMd8ybBvGqQ4mm/qRSBVFp1yMAcHB4ejQBgIhg7vvRNf9/OkZl7D+XPm8Md1B+jPFCkbpYNjpqgT9OQxlcDQc2U+lRQ+yHcDtlDUnSpQH/GOet5ErnTQCTROd7CIVyVp+YYcRgdiWcJeld8+08LKf91GQKzAcgWpeP4bZOoupMcqoy9TpNzvwueS8SrSCWkY0B7PI2Li1/oxQ3XMqIyw02qgrGszAJtbk5wt7gJAmXHe0H4hj0IeFyYiQjHNdF4m60oWuFxOYPhrnNVeBweH04bKgBvDtEY1UBwaXbF2djkdiQKSKNAY9aJIIn2ZIl3JAhfOreCcmTdx94G1rPL1Eiyv4Uz0SzrXhilitJKc51tiLJLs7hNWxUIiPpX51YFpLQCBnYvo1FKfWIJumbShTtoJZCbbKBRGz4M4GvoyRUJkkSwdIVA1ZccdxOOIiw4ODg5HhaD6AHDHdgDga3+al9VLXCM+y7P7RrqBdMOkoJkErDSGOzz0vJ3d40csJijpJqYJ8awd2jwayfyhTqCxRaDZFT6S+Cll+tF0k3zJ5EB/jnvWbeMCaStbw5fwsezrEdJd1Pz1WpTO5zFN6EkVae7NsqMrTV9m6q5nY9EWz1FOEtEyEEO1NES9bDNnEEluB8vi0R09nK/uoRRoRA3XDO1nB1oLaLIPq5g+7uM8FrpTBaqFGFag5sgbOzg4OJxC1IQ8+I9wLx31qcwo99JU5h0Kli73u5hV4WNmhY+KgItls2rQqpaiRBtOxLCnHY4IdIyYpsWengwvtafY1Z1mb2+GPT1p9vSkeWBrF+cHujFFBbV6/ske6oSRRdFxAp1ghsrBJpEJZJVyzLztElzP/WDKxtGfLVEhJAAQAlPvBHJKwRwcHByOEtl2Akma7crxdz7D2Xu+xw/V77Fn19YRm2dLdu6Oz8xgukJDz88s95GwfMh6llw6QXj3/4Gp0RbPY45SnpXIa0SENLoSAGns8vVZFX7mzmjEo6f59B0vIiWaeXJXD7cU70BBZ8kVb+Jtt76Rz5d9Ha2YY8G9N+P9y6vQmp8Gy8IwLToTBdoTk1sMmSxt8Tw1gi2aiaE63IpEq3suXiNFtqeFp/b0sFLcjVa7eth+Ia/93ouSF6swvUWgzmSBCqsfgo4I5ODgcOYhCAIBtzLCeOFVZfwumZqwe7AZ5FCp2JmGY/c4RkzLIj8w0SpqB2vqu1IF9vfnWFbVTtE9G5/Xc7KGOGncijikmjqcGAJumSzKpMrBSr17cek51P2PAZ+YknH0Z4pUCANdYALVU3JMBwcHB4cpQDk4j7AQ8PRvxZXYA4CndxPx3MVD7XIBYlnbVeMz08NEoHlVAVbMnwn7YNPdP+Rl+/4HT+9mOtd+we4OGXQPO20yp1EhpLHGKQUbZNGsJtTWIv0b/86ird/EZdUyW+4gNvdV+Gefw1pJoip4C4/uO5fs0z/lhuTtzH7kdaSEIOnKVWTP/zgxFhDxKsfNkdwWz1EvJ+wHA6HJqchi6IWtLzxJha4TkmJkGs4Ztp9flREFKIg+fMXUcRnbVKAZJrFMnqArhhk8czqDOTg4OEwURRKpj3hJ5bUpi9Q41XDu9I8Tz7fYwYj1pWaK0QX4T6HyKqcU7MTjdyvkLReCqYOhTWgfo29g8t+9Eb2QnZJx9GdKVJAAQAo6IpCDg4PDtOEQESjdcAkAolHEFGSWCntHlIT1DLSOdxtpTHdk2GsvWzYPgMyepwEo3/YbwnvuIJYrjThtf7ZEVMiANzLitcMRBsrF3tdkl8IHFZPOuivpuvjrBNwKHlWiLuzhrFl1rH7D53nhhse5o+6j/MNaja9rHXNuv4ro5h+TG6M0bSpoi+dZ4B1w8gRsEUiqOQvdEunf+xxrFfvaemgeENhNM4IehbzghWlcDra/P0fUSiJhl7s5ODg4OIwk5FFoiHrPWOODc7c/BZiWRV+mSLqgky3q5DWDf+7qZV7QwJPvJFex8ISEHTqcugTcMgUGVnC1/LiW+0GsARFINEt0bn8KZfbFyJKIKNg2SCxAsDtyAXgn0PGtN1McKgfDV3G0b8fBwcHBYaqRDzp0ErNvxNe1nnzFUgS9wJreZj67t5+rzzpY/tOTKiJiomopMoc4gQDEAUFnhbiHbqGCQFktlRu+xa7ZN5Ap6sPyFlrjOSrlLHiP3EJ38Ljz9B1o3iq6Xv8cAGV+dej6E/GpuBSRzmSB2spyuPr9FDSDzz62kSuav8Z1679CkiJc+9mj/EGNT3sizzVKEktXEQa6ndVXRNlj1aH0vMR1wQp0PYyr9qwR+4Y9ClnLM61FoL29GaoH2sNL4fqTPBoHBwcHh+mIIwIdI+/9wwae3N1HXjNGvPYfCxLQAlQtOtHDcjjFCLgOEYH0AjB+S9dkTqO/ZRuNSgBJzyIfeJruinPH3acu4iHqU8fdpjWWY4GawRRdiO7QuNs6ODg4OJxABAFTdiPqBYqRuTRf80c0bxUVL/6Uhb2/Z2tbP6m8RtBjLyL0pIuUyXaJseU5zMUz8LiOXh7Xl2FWvJJLt/8Xvs5/Efe9bJgI1BbLERUyCIcfYxQkn+0E8vRtJVttZ+q4FJHKwPDOZV5VZnaFn2xRpzddRBThbVeczXt+91Eq+B9Wbf4FXP1fDIU2TCFt8Ty1/jimvxpp4PgXzC1n/xOzOY8XcVldlOrPRx7l3CGPQjrrgWLnlI9rqtjTk6FmQAQaLHdzcHBwcHA4FEcEOkZqQy7+o+4lLsk/jCpaiJKIKIqAQDBlW7Ol6pGrSQ4Oh1IX8RziBModcftfPd3M2v3biIv1RFUD78776DRmoPrKkH1hUL0o6IiijOwN4VIkesQIEW9kXDfQvr4sV6oZTLUC8QiuIQcHBweHE4spexD1AqXgDEzF7haWq1hOufVL5tDGuuZ+rlhkl/L2pgvM9JagxLBMIAAO6RbWIddzR89iLlaDRHf8iba686nSTVTZFkFa43mCVgp8ZUce4IBQJFg6VnQ2FQEXZX4VeQy7vc8lDwV3Zoo658+t5PbNSzlHfhatby9K5dzJ/HiOSLaoE8uWqHZ3YEYbGEyCWFAdpPHCy/A+9jjokJ158aj7Bz0KybQbSpkpHdexki3qQz/Hvb0Z5nlToDNU7ubg4ODg4HAojgh0LJgGn+3/T4SuZygGZ6ArZQiWCZYJlgWiTGLWK1DP0NZzDhOnqcxHOBiEPKAdORx6b2+GW8UutvvOZV3Wz3tLf+PlWz407j6Z2vOJve52ygLuMbdp7stSraYwfVPfGczBwcHB4diwJDeat2pIAALIly8D4ELvfp7ee1AE6kkXWT4gAlnu0Z1AANHGRazfWeDA4htoav4zYj5Gd8rOSsgWdTLZLG53HtM7cREIQK6cR3Vo7OvN4fhdMq9a1cB/bZgF8v9n777j7CrrxI9/nlNum5pp6Z0QCCGNhCqRJl2qDVkQwYKI6093VXaxLa67FlZdhZV1V8UCIoggiqvSeycJhPTek5nJtNtPeX5/nHvvzJ2505JJMsl8369XXpl72n3unDunfM/3+T7gbHljyINAW/YmCeEwJrkGb/aNRfOM8fMKP5vTSweBqqI2bV4YpYdXd7C9iWyXIFCCMyId6GRndzchhBCiKwkC7Q/DxJ96BjsnX07LjPeBUbq6+HG2/JpF/46bPAZWQWt7O9X9xGD2NDZRTyvR+Scwed5NvLjxJtLtTWTjzfipNgwvjYuJ9lw27tjF6OQ6PrjjCdrXPAEnXFRymx1ph8aODLU1Leiyow7AJxRCCLE/tBUlGxtdNC1bORknUscFoTX8dGsrzfEMteVhGjsyjB8dFIfW3bv3dnk9b/5CQus097pncqv/K0atfZCm4z9ObbnL1pYk1QRZL8YgMoEAVN3gzyMLJo+iJTaNrB9C71gCfGjQ2+jLS+ubOVZtxtQO/oSFRfPs8UEwzSkbQ3j00SXXr47ZtHgRDDcOvn9AuqsNlu9r2lIO432NUrB+T5wJ1S145aNLdmkTQgghJDqxn/TiL9Cys/cnQiHLkKLQYkDmTQuCQG+s386JExzKw1bJrltaa2hZD4Cqm0FdRYT2sUdRMbb0BXdZR4Z//O2rnKHepvqlb+HMPR/b6hmw3NQUdEOrdPdCuWQCCSHEcNM6/1Mk7W5DtStFx6RzmL3hT1j6Ov701k4+dOJEWlMOY8O5mkDdg0CmhR+qwMh2MGrScVw0p5l73tnF3zfMZ9Sq39A0+2NsaEywvjHOKJW7xon1P0Q8oXK0YaF8F6Nu8Fk8pqE4eUYDq1dPYcaupYNevz/PrGnk7IqtkAVrUnEQyIxWkaqfS2bMfKp7CZ5URW2anFBw9ZyNQ6Tv+n0HQ9bz0RoSWZdk1iOecan1m9FSD0gIIUQv5BHBARax5VcsBmbK6OAp66trdrC7PcO2llTJ5VqTDqOzwfC7Vv1RlIUtRleGGVMVYUxVhIbKMHUVIRoqw9RXhJk5toKPvfsY/iN7KbGmt0iufbbkdjc0xTHwCTutGBWjSy4jhBDi0Ok47sN0TH5Pj+ntk9+D7ca5bvx2/u+dnWzdG5w/GqzceSTaM4CjI9V4dhmh6vFcc8pkklmP5youJNK2jtju19Aalm9vo6YQBBpAJpBS+OFqtLKwa6fs02ccVx1liTuFUOPb4PccdGNfpR2Plzc0c3psE27ZGFRVz5Gzdr3vD8TP+Eav26iK2rTraPBimIwQlkmnCbesJpHxWL69DYBRXhO6Ymw/awohhBipJEJxgEXs0l3EhOhOhWIAbNzZyKsbm2lNOrQlHSC4eM3b1JxgstoNQKh+GgANlRHqK4Kgz+jKCGOrooyuDIJC46uj3HD6VF6JvhsHC73qUdKOR2NHho508B7N8Qzr98SpVe0o7UsQSAghhqHe8orj40/Ht6K8v2wZiYzHz1/cCECtmQBKZAIBfmQUTtU0lGEwf2I1x42r5Pu7jscLVTL58U9Qu/x/2d2WpiG3jVKBpFL8SDXZykkoq+/RKHszuiLMMm8ahpOA5nX7tI3utNa8snEvGdfnqMwq3LELSi4XiUSIRXqvY1QdDRHPB4H2sTh0IuMGGb1DRC27hxm/P4/kjhU8vaaRMFnKMntQVeOH7D2EEEIcWSQINISUAstUhCyDsG0QsgyiIQkCiQGyggvL0VH4xYub0Vqzqz2N6/lsbk6SygaBoM3NScaqvWTDNahQWV9bLAhbJh89czbPe8eRfPtP/Oy5DWxojLN+T4Ite5PsaE2zbFsbx5YHT43NyjEH5jMKIYTYZ72N7qitCB3j383kxqc5deoo3toWZIRUq2QwopjdM7CRPuVztJ74+cJ2P3b6VNa2+Hxt1L+THDWLcS/fxnG7H2ZSJDdYwUC6gwHO6Hmkx5+6D58u0FAZYaWeFLzYs2JQ63aknZLTd7dneHzFbkZbcSpSW9HjF5ZcLmyZRPt4eFcZtYmz75lAacdjU3OC5kR20Ov2xti9HKV9Wl/6Jfe+vJH/rfwpppfGmH7WkL2HEEKII4vUBBoC0ZDJhFFRyfoR+yd3kX7Z5AxnrP0qe176AKNP+TDrGuM4rqY97RANmWxqTnC82otfPrhU72tPmcLTGy9k3Lp/56HHnuRnuoImKhlfGeZdU8tZszvJBbEEtAEyOpgQQgw7fVUYbJt6IVWb/8IXT9nL1Tss0o5Pmd+BF6oquZ4/8704XYIml80bz9rdcf7r6fUsHftFfj0WPrLzx2yzJgcLDDATKH7RnaSyHj1zjwZmdGWYPTpXYDrRNKh129MusZCF2a0W4/Ltbdz32ha+PHY1NIE9/fSS60dts89u/FVRm7jOBdQy7YNqG8DOtjS+D7vb01RGbHytybg+rufja9BoamIhLHPgz2iNvUG21NjNf+A7lS2cnnmOnSfdytijzxl0+4QQQowMEgTaT6ahmF5f1uvTOSEGzA66g82Ov0DYXAYrltDkvc3O079FqG0TCX8UVE5ic3OSC60WqBxc0U3DUJx8/tVwx7/zaNk3CLkddFijMJwM4VVpHvVPpjKWKyQphaGFEGLYMfq41mifch6eXcakrY/wj+f+E6t3dWC1t+GFq0peo5imImx1BhuUUnzmrBmUhSy+//gaLrGu4bdqBbW0klz0aWIlsolKMZUaVBCju4aKCHupQKPQHbsHlbKeyrqkHa8wXPru9jTPLl3Fomeu5T3mB7lcP0Fm1AzCExeVXL+/7O2qqE2c4FxNpoP2tEPYMgiXGGyhlGTWJbx3FU7ZWFbvKr1MyDSojg28K53ftI5mXclYtZcrMw/TNOs62ufdiFQEEkII0RsJAu0nCf6IIWMFF9h28yo8ZXGPcybXrr6Xl7LTuHDrf9Ax6Rycq3/JpuYEY9gLlYPv7x+tnUDHpHOwO7awa9qNhNs34ltR2n2DC9b9jlDLi8GCEgQSQohhp69LDm1FaZt6EVUbH2XRqbexcHIN5p/acMPVlBqk1FRB9/WuoiGT82aPoa4izGMrdnF7+EHOnz2ORdNq8qGPfpmGwjb3/dqooTKMj0HSqiYcbxxwEMj3NWrHEjLGMZSFg3PYbX9aQf07P+f99ma+b99JuDlBy7u+Rngfr92qY8XdwZrjWZJZl9GVEWrLQn1eE6Ydj9CetznqD5eSqp/D+osfJJ7VtKSyJNIuKcfjuHFVJLMe1QP8Zf/k8bf5RGY3j0Q/xJXGM6Qb5rHz5K9RIZnpQggh+iBBICGGCzu4sDS8DOmq6TwWvpELdr/Kezf+KwAVW5+kpb2DHY0tVOp2MlWDH/5VKUXrZb+iNdmzbsLek2+hYvNjVFkOVQOsNSSEEGL4aD3qSmrW3E/Vhj/RevT7MTOtQZHmEsEJwwC7RMZOTVmIdx9dz3nHjS6MMtY9WNQX01DYet8zgcKWyaiYTbtZTX1iz4DXS8dbmPrIFSTm3QCXfJus6/Ps6kYeKXuZlD2RcLoR37Ax51+1z21rqAgzpq4eOuDJZeuprc1gGCY7W9PE0y5T6oJzZ0siS0XEKsqISiTi1P7tM2Swie15kzd/9hmWZCcxXjVRr1qpUCmiNYrwzJPgwi8PqD2PP/8CnwBOPmUxayffhjbD2LbB+FHRff6MQgghjnwSBBJiuDBMtBlCeVky1dP5wjkLSa79Oulnv8SDxnlc7fyRPW8/QTjdCmEw9iEIBFARsWhNOkRsg4zrB2+tFJ5dRttRl1FWPbCUfyGEEAdXfwksibEnkao9jjGvf5v2KedhZtvw+sgEMqyeM2rKOrsiNXZkiNgmsdDALxe71+PZFw0VEVoy1dQnGge8jrPpZWK+g73tJQBe37SXhuxmpqo17Jz/FdLVMwhnGhlbs+8DH1imwd2fOgu+A1vWLefkTbPQFWOJz7iMxjmfJF4RxlSKbS0pTEMxrb6sUC/yzUf+i/ckN/AJ7xaujTzHR5w/8ZHcrzpjVbLXixBuz1D9+kvoc7+AssJ9tqUt6TA6uxVCUDbuGBJWBKVgSm1ZyeCeEEIIkSdBICGGEW1FUF4Wv+YoKqI27UdfyTPWqXzzzyt5f+wxnJWPMpZjAbCqJ+zTe1REbGaMNonYZtEwte1pl9ZkdlBPfIUQQhw8/XZBVwbb3/Utpj9yKWNe/TesTCteqAqzRGlo01D9bm/8qCiRAda7yTOUwtiP7mAQdAlr3F3JzMTmAa+jtgTdmcONyyET58lVe/iA9TxaGcRO+CAJqlFha7+78ZfHomgzwmWx1fcsTRcAAQAASURBVMSSKZa3w+w3v8eoNfez49L78KqnAuD5mi17k0yvLw8CY1teplnVcNPHbsTyr2ND4xKc2Bic8vFoK8JDS7bR+NK9/Ch0B6mdK4hOnN9nO7a2JJmqdqFR1E48hnQiqFkkg5QIIYToj9ztCTGc5IaJD48+mql1ZVTHbOZNHcOkhhpeUXOZuOcZpoVaAFD7UBMIggv//EWiUqrwrypqM7m2jIqIPTSfRQghxJAaSJJNqn4uTbM/Tu2qezHcFF64GlXiam8gwZBYyMIYZGaPZaj9zkQZXRlhp1uOSg58dDB728v4ZhilPZzNr/Lsym18yHqK+ORzqGqYyKSasqIsp/2hw+VUJzejMfhS5be52v0KRnovo178N9w965n41N8T3bOUjOOzsSnOW9taOSq7ksaq4ymPWqhwjMS408hWT0fn6gGeMr2Od/QUANxty/ptw9a9SaYZO0hFx2JFypg4KjaogtJCCCFGLgkCCTGM6FxdIFV/NBBcCIdsgw+dOJFH0nOp8Rq5OPp2sHCljP0hhBAjiepzkPhOuxbdwt6jPwCAFxk1wLWGhmUa+90lbHRlmG3ZcoxsHJxU/ys4KSJ7ltIy431oZbDsxT8zt/UxqnQ7/omfBIK6RgMdxas/OlQBQGbUUfzTJfNZbs/hHvVeqjb+mal//iDV6x9m+h8vp2bFL0llfR5+fhlTjd2Ep5zEhFExJtXEUCro3heyDKIhk2n1Zdj1R5Eigt45gCBQS5JpaidezVEAgw7WCSGEGLmkO5gQw0nuiaCZCwKFLIMZDRU0VEQ4/88L8LXipMwL+KEKjHDFoWypEEKIg2zAPZkMk+2nf4eOCWcQn7CY6sNsJNPRlRGW68rgRaIRt2JC38POb38D5Tt0TDwLY8ebxDY+zs1hl1TVTMpnnjX0Dcydf/0xc3jXjHr+/Yrj+eI9bVwS+T8qkk1sfM/PqF31a8a99DWSdcfTtu4VAMpnnErEDrpjHzu2skew7LzZ43jn+UnM3PUWrudjmQaO55fMrNranORqtRNdd+bQfz4hhBBHNMkEEmI4saO44WrsirrCJNNQ1JSFOG7GdN7UM7C0i1cuWUBCCDHSDCqUowzap12MH6rEOMyCQA0VEZp0VfAi3sjGpgTJrNvr8uuWPA3AZX90eXDvFGapjUzUO0if9iXMA1AkWeeCQHrMXAAuPH4sP/nYmXyt/Gt8IH0rn186hpWn/AdObDRjnvh7FqZfwsekbMoJhW2UypZaOKWGd/zJRJpX0JLI4PmadXvi7OlI91i2rWkbZSqNqp0x5J9PCCHEkU2CQEIMIzpaS6b22JK1Gm5893TeqTgtWK5y30YGE0IIcRjbx1jOYRYDYnRlmOZcJlCqdRd6zyq2NMdxPb/k8s3b19Omy7jpwkWMueTrLD3zl6y6dhnl8y8/MA3MBYHUuHmFSaceVccXb/gwJy6+gOU72vjqX7ex7l3fI5zcxVXWU6RqjiUa6zuDd/6kalbqKdhekvjONexuT+N6mt1tGfa0FweCzOZ1ABgNEgQSQggxOBIEEmIYcS76AY3v+VHJeSdNq+WC910fvKjYt6LQQgghDl8DrQnUY73DLAg0a1wluqweAL3k1xz94DnUvPQtdrb1zIgBsOI7aDbr+MTi6Vy0aCZlx5zFmIbRB2yodJULAtnj5xRNH1MZ4aYzp/NfV5/Auj1xPvtSjA/pf2e1PYv0MZf3W4y7ImITH3Vc8Jl2vElzPFuYt7s9w+72NGnHQ2tNRWITAKHRM4fwkwkhhBgJJAgkxDCiKsdhVvUe4ImNPZbmY65GH3vJQWyVEEKI4WBfa/8ebt3BwpbJJacGXa2i6/8CQMNbP0a9+QvaUk6P5csze0iERwPBqGczRlcM2UhgpfiTT6Nt2sXYseqi6ZZpUBmxec+s0fz47xawozXFm+kxPHXar3FOunlA266ZvoBduobKDX9EuWlqVvwCMxWMkranPcPa3XGWbWtlkt6OY4QxqyYM9ccTQghxhJMgkBDDiFL0+eSyLGyxa/G/Y8489yC2SgghxHAwkGHdS7EOw5GjPnjq0cR1FIVPy/TL6Zjwbsa99DWa1i8l63Z2C8u4HnV+I27FwesmrRZ8hMbz7+pzmXOPG8Mfbn4XN7xrKidNrSEWHtjIZAun1fOwdyoV255hzKv/xvgXv8JRD19MpGl5YZk1u+JMVbuIl00GQy7lhRBCDI6cOYQYRhQK2+z9Yl0pRVXU7nuUFCGEEEek/NlhMPf9hrHvwaNDqSJik43UArCy5iy2vft7+HY54578e7Y2tRSW27anmVrVgT1q4kFrm2moAQ03f1RDOf947kwiIZOYPbAg0CnTavmzejeGdqlbcTfxsacCMPX/rsZu3wzAtpYk09QOvFFH7fuHEEIIMWLJnaQQw4ihwLb6/rOsLQsfpNYIIYQYTvKxnK5dnfqL75QahepwUV47liQR/mXFaOrHTGTb6d8huncFlS9+h7TjAbBzywYAKhomH7R2KaUI2wO7hI6GTGY0lA/44U19RZhbP3ol640ppLXNT2r+gQ0X/gbwmfK366nY8jirt+xkotFIZKzUAxJCCDF4EgQSYhgxlCLUz4ViNDSwp4lCCCGOLPnC0KNiIZQKsnzqyvt+MHA4dgXL8+dfyzszP8PqZpf739hK6LiLaD7maure+m+Sa54GoGXXRgBqx087qG2LDjCzBxh09u7s8VWkL7qT7zf8Kz98I8N/L4fNZ/0YO7GLKX+7ntu2fRQLH7NeRgYTQggxeBIEEmIYMQx1wEYzEUIIcXhTudNDKFeAuKYsRHnE6nMd83CuGTPvasac93nOnTWaHz2xDs/X7H3X13DKJxB54TsApJq2AFBeP+WgNm0wQaDBKgtbGOPmcNElH+LiOWN5aMl2vrNmDK+9/1VeO/E/Celg1DCjToJAQgghBu8wvjIQ4sh0OKfuCyGEOHAUwTnCMBSVUYuashAx2+yzS9jhnAlkGYqKiMVX3zsLjea2P61gXH0NrUdfQXTnq6RbduK1bgsWrjx4haFh8Nk9g1UVtTEMxXffN4e/O3kSf3tnF5+4923+Y9tMLsl+g7UnfIXQpBMOaBuEEEIcmSQIJIQQQghxGFBKEbKCoE5V1CZsmRiGItJHfZrD+cGCZRqUhS0mjIrxuXOO5rEVu3liVSPW7MtR2qflzd9jx3fQYVaBHT3UzR1S1bEg0ysasvjXy47nlzecSENFhJc37IXqKfiLPokypHu4EEKIwRtQEEgpdb5SarVSap1S6pY+lluklPKUUu8buiYKIYQQQggFhS7DXUf8ioV67xJ2OGcCQefn/djp05g7sZqv/WE5quFYMlXTCK35EzVeE+nomEPcyqEXC1mMrowUXp8+o57/unoBf3fSJK45eTLhfgaREEIIIXrT7xlEKWUCdwIXALOAq5RSs3pZ7tvAX4e6kUIIIYQQI51SlKwbV9ZHEOhwzgTqyjQU37xsNi1JhweX7CBz9MWM2v0KC401mNUTDnXzDoju++7oMRV85b2zOGfW6AGPTiaEEEJ0N5AzyInAOq31Bq11FrgPuLTEcp8BHgT2DGH7hBBCCCEEwQiSJYNA4d7rAlmHc2HobmaPr+KEyaO495UtcMqnebv8NCpVkrIJsw910w6asGUyta6MUbHQoW6KEEKIw9RArgzGA1u7vN6Wm1aglBoPXA7c1deGlFKfUEq9rpR6vbGxcbBtFUIIIYQY0UIlgkBWbrSwUkzzyMgEyvvwiZPY0JRg+V6Lfw59kasq7sY+s9dKBUckpRSRAzg6mRBCiCPbQIJApa4edLfXPwC+pLX2+tqQ1vonWuuFWuuF9fX1A2yiEEIIIYRQCmyrdFCnuqx0EOhwrwnU3UVzxlIds/nB42tZtydOw/gpGOHYoW6WEEIIcdgYSBBoGzCxy+sJwI5uyywE7lNKbQLeB/yXUuqyoWigEEIIIYQARenuYAAVYQurRNbPkVITKC9im3z5olm8umkvGdfnjKPloaIQQggxGAMJAr0GzFBKTVVKhYAPAY90XUBrPVVrPUVrPQX4HXCT1vrhoW6sEEIIIcRIZRq9B4GUUtSW96wTc6RlAgG874QJfGjRRJSCRVNrDnVzhBBCiMNK78NJ5GitXaXUzQSjfpnAz7TW7yilbszN77MOkBBCCCGE2H/9ZfXUloVp7Mjg+8FrpYqHkj+S/Otls7nhXVOZMEq6ggkhhBCD0W8QCEBr/Wfgz92mlQz+aK2v2/9mCSGEEEKIwTANRX15mN3tGYCS3cOOFJZpMGN0xaFuhhBCCHHYOXLGDRVCCCGEGOHqK8KUhYORo47ErmBCCCGE2D8SBBJCCCGEOEIopZhSW0ZFxMI05DJPCCGEEMUG1B1MCCGEEEIcHgxDMaWujLTjHeqmCCGEEGKYkUdEQgghhBBHoIhtHuomCCGEEGKYkSCQEEIIIYQQQgghxAggQSAhhBBCCCGEEEKIEUCCQEIIIYQQQgghhBAjgASBhBBCCCGEEEIIIUYACQIJIYQQQgghhBBCjAASBBJCCCGEEEIIIYQYASQIJIQQQgghhBBCCDECSBBICCGEEEIIIYQQYgSQIJAQQgghhBBCCCHECKC01ofmjZVqBDYPcPE6oOkANkcMDdlPw5/so8OD7KfDg+yn4U/20eFB9tPwJ/vo8CD7afiTfXR4OBL202StdX2pGYcsCDQYSqnXtdYLD3U7RN9kPw1/so8OD7KfDg+yn4Y/2UeHB9lPw5/so8OD7KfhT/bR4eFI30/SHUwIIYQQQgghhBBiBJAgkBBCCCGEEEIIIcQIcLgEgX5yqBsgBkT20/An++jwIPvp8CD7afiTfXR4kP00/Mk+OjzIfhr+ZB8dHo7o/XRY1AQSQgghhBBCCCGEEPvncMkEEkIIIYQQQgghhBD7QYJAQgghhBBCCCGEECPAkAeBlFLnK6VWK6XWKaVu6TbvM7l57yilvtPL+u/PzfeVUgu7TA8ppX6ulHpbKbVMKXVGL+vfnHtvrZSq6zK9Sin1x9y67yilPjo0n/jwMwT76LtKqVVKqbeUUg8ppaq7zPun3HZXK6XO62X9qUqpV5RSa5VSv1VKhXLTlVLqh7n131JKLRjCj33YGa77KTfvDKXU0tz7PzNEH/mwNAz2U2/HvKtz23xLKfWiUmruEH3kw84w3kdyXuriQO0npVStUuoppVRcKXVHH+8v56Z+DNd9lJsn56WcYbCf5LzUj2G8j+S81MUB3E/vUUq9oYL72jeUUmf1sr6cl/oxXPdRbt7wPS9prYfsH2AC64FpQAhYBszKzTsTeBwI51439LKNY4GZwNPAwi7TPw38PL8u8AZglFh/PjAF2ATUdZn+z8C3cz/XA3uB0FB+/sPh3xDto3MBK/fzt7v8XmflthcGpubexyyx/v3Ah3I/3wV8KvfzhcD/AQo4GXjlUP++ZD+V3E/VwApgUl/vPxL+DZP91Nsx71RgVO7nC0bq39Mw30dyXjo4+6kMeBdwI3BHH22Qc9Phu4+qkfPScNpPcl46fPeRnJcOzn6aD4zL/Twb2N7L+nJeOnz3UTXD+Lw01JlAJwLrtNYbtNZZ4D7g0ty8TwHf0lpnALTWe0ptQGu9Umu9usSsWcATXdZtBRZ2X0hrvURrvanUpoEKpZQCygkOau7AP9oRYyj20d+01vnf3cvAhNzPlwL3aa0zWuuNwLrc+xXkfv9nAb/LTfoFcFmX9X+pAy8D1Uqpsfv1aQ9fw3k/fRj4vdZ6S1/vP0Ic0v2UW7/kMU9r/aLWuqXEdkeaYbuPkPNSVwdsP2mtE1rr54F0b28u56YBGc77SM5LnQ7pfsotJ+elvg3bfYScl7o6kPtpidZ6R276O0BEKRXuuq6clwZkOO+jYX1eGuog0Hhga5fX23LTAI4GTs+lSz2jlFo0yG0vAy5VSllKqanACcDEQax/B0GW0Q7gbeCzWmt/kG04Egz1PrqeIBLd37bzaoHWLn9sXZcZyPojxXDeT0cDo5RST+fSI68d0Cc6Mh3q/TRQN3TZ7kgznPeRnJc6Hcj9NBByburfcN5Hcl7qdKj300DJeanTcNpHcl7qdLD205XAknywogs5L/VvOO+jYX1esoZ4e6rENN3lvUYRpKwtAu5XSk3TWusS65TyM4KD0uvAZuBFBheZPg9YShCtmw48ppR6TmvdPohtHAmGbB8ppW4l2Af3DGDbA3n/gaw/Ugzn/WQRBGHPBqLAS0qpl7XWa3r5LEeyQ72f+m+gUmcSXGy/a7DrHiGG8z6S81KnA7mf9vf95dwUGM77SM5LnQ71fuq/gXJeGs77SM5LnQ74flJKHUfQBencQb6/nJcCw3kfDevz0lBnAm2jODtnAkEkOT/v97m0tVcBH6hTQbHnpUqpP/e1Ya21q7X+nNZ6ntb6UoJ+dmsH0baPdnn/dcBG4JhBrH+kGJJ9pJT6CHAxcHWXP6a+tp3XRJCyaJVYZiDrjxTDfT/9JZdy3AQ8C8zdj896ODvU+6lPSqk5wP8Cl2qtmwez7hFkOO8jOS91OpD7aSDk3NS/4b6P5LwUONT7qU9yXgKG9z6S81KnA7qflFITgIeAa7XW60u8v5yX+jfc99HwPS/poS3OZAEbCApk5oszHZebdyNwW+7nowlSt1Qf23qa4sLQMaAs9/N7gGf7acsmigud/Rj4eu7n0cD2rvNHyr+h2EfA+QSFruq7TT+O4iKpGyhdJPUBigto3ZT7+SKKi5y9eqh/X7KfSu6nYwnqc1m5v8vlwOxD/Tsbqfupy/Ldj3mTCGrUnHqof0+yj3rdR3JeOgj7qcv86+i7UKqcmw7ffSTnpWG0n7os1/2YJ+el4b+P5Lx0EPYTQTLDMuDKftog56XDdx8N6/PSgdgZFwJrCCp139plegj4de4X8CZwVi/rX04QOcsAu4G/5qZPAVYDKwkqfU/uZf2/z63vEkTi/jc3fRzwN4L+rcuBvzvUv/xDttP3fx+ty/0hLc39u6vLvFtz210NXNDL+tOAV3PbeYDOqu0KuDO3/tt0CQKOxH/DdT/l5n0hd8BcDvy/Q/27GuH7qbdj3v8CLV22+/qh/l3JPpLz0iHcT5sICpzGc/tiVon15dx0mO6j3Dw5Lw2f/STnpcN3H8l56SDsJ+DLQKLL9KWUGD2qt2Mecl4a9vsoN2/YnpdUroFCCCGEEEIIIYQQ4gg21DWBhBBCCCGEEEIIIcQwJEEgIYQQQgghhBBCiBFAgkBCCCGEEEIIIYQQI4AEgYQQQgghhBBCCCFGAAkCCSGEEEIIIYQQQowAEgQSQgghhBBCCCGEGAEkCCSEEEIIIYQQQggxAkgQSAghhBBCCCGEEGIEkCCQEEIIIYQQQgghxAggQSAhhBBCCCGEEEKIEUCCQEIIIYQQQgghhBAjgASBhBBCCCGEEEIIIUYACQIJIYQQQgghhBBCjAASBBJCCCGEEEIIIYQYASQIJIQQQgghhBBCCDECSBBICCGEEEIIIYQQYgSQIJAQQgghhBBCCCHECCBBICGEEEIIIYQQQogRQIJAQgghhBBCCCGEECOABIGEEEIIIYQQQgghRgAJAgkhhBBCCCGEEEKMABIEEkIIIYQQQgghhBgBJAgkhBBCCCGEEEIIMQJIEEgIIYQQQgghhBBiBJAgkBBCCCGEEEIIIcQIIEEgIYQQQgghhBBCiBFAgkBCCCGEEEIIIYQQI4AEgYQQQgghhBBCCCFGAAkCCSGEEEIIIYQQQowAEgQSQgghhBBCCCGEGAGsQ/XGdXV1esqUKYfq7YUQQgghhBBCCCGOOG+88UaT1rq+1LxDFgSaMmUKr7/++qF6eyGEEEIIIYQQQogjjlJqc2/zpDuYEEIIIYQQQgghxAggQSAhhBBCCCGEEEKIEUCCQEIIIYQQQgghhBAjwCGrCSSEEEIIIYQQQhxqjuOwbds20un0oW6KEIMSiUSYMGECtm0PeB0JAgkhhBBCCCGEGLG2bdtGRUUFU6ZMQSl1qJsjxIBorWlubmbbtm1MnTp1wOtJdzAhhBBCCCGEECNWOp2mtrZWAkDisKKUora2dtAZbBIEEkIIIYQQQggxokkASByO9uV7K0EgIYQQQgghhBBCiBFAgkBCCCGEEEIIIcQhpJTimmuuKbx2XZf6+nouvvjiQ9iq/pWXl/e7zNe//nVuv/32Ppd5+OGHWbFixVA1S/RBgkBCCCGEEEIIMQx5vsb39aFuhjgIysrKWL58OalUCoDHHnuM8ePHH5K2uK570N9TgkAHT79BIKXUz5RSe5RSy3uZr5RSP1RKrVNKvaWUWjD0zRRCCCGEEEKIkcXzNfFscEO+qy3Nng4ZwvxIdsEFF/Doo48C8Jvf/IarrrqqMC+RSHD99dezaNEi5s+fzx/+8AcANm3axOmnn86CBQtYsGABL774IgA7d+5k8eLFzJs3j9mzZ/Pcc88BxZk7v/vd77juuusAuO666/j85z/PmWeeyZe+9CXWr1/P+eefzwknnMDpp5/OqlWrANi4cSOnnHIKixYt4itf+Uqvn+Wb3/wmM2fO5JxzzmH16tWF6f/zP//DokWLmDt3LldeeSXJZJIXX3yRRx55hC984QvMmzeP9evXl1xODI2BDBF/N3AH8Mte5l8AzMj9Own4ce5/IYQQQgghhBD7yNeaHa0ptusUnq/RGiojNhHbPNRNO2L9yx/fYcWO9iHd5qxxlXztvcf1u9yHPvQhbrvtNi6++GLeeustrr/++kLw5pvf/CZnnXUWP/vZz2htbeXEE0/knHPOoaGhgccee4xIJMLatWu56qqreP3117n33ns577zzuPXWW/E8b0BBlDVr1vD4449jmiZnn302d911FzNmzOCVV17hpptu4sknn+Szn/0sn/rUp7j22mu58847S27njTfe4L777mPJkiW4rsuCBQs44YQTALjiiiv4+Mc/DsCXv/xlfvrTn/KZz3yGSy65hIsvvpj3ve99AFRXV5dcTuy/foNAWutnlVJT+ljkUuCXWmsNvKyUqlZKjdVa7xyqRgohhBBCCCHEkU5rXTTaj681jlvcHSyV9SQIdISaM2cOmzZt4je/+Q0XXnhh0by//e1vPPLII4XaOul0mi1btjBu3Dhuvvlmli5dimmarFmzBoBFixZx/fXX4zgOl112GfPmzev3/d///vdjmibxeJwXX3yR97///YV5mUwGgBdeeIEHH3wQgGuuuYYvfelLPbbz3HPPcfnllxOLxQC45JJLCvOWL1/Ol7/8ZVpbW4nH45x33nkl2zLQ5cTgDSQTqD/jga1dXm/LTesRBFJKfQL4BMCkSZOG4K2FEEIIIYQQ4vDn+RrH81EKwlYQ5ClVDsjXUiPoQBpIxs6BdMkll/CP//iPPP300zQ3Nxema6158MEHmTlzZtHyX//61xk9ejTLli3D930ikQgAixcv5tlnn+XRRx/lmmuu4Qtf+ALXXnttUZAxnS7uXlhWVgaA7/tUV1ezdOnSkm0cyLDkvS1z3XXX8fDDDzN37lzuvvtunn766f1aTgzeUBSGLrV3Sx6ZtNY/0Vov1FovrK+vH4K3FkIIIYQQQojDn+v7ZFyfeLqzKK9XIgokdaKPbNdffz1f/epXOf7444umn3feefzoRz9C54KAS5YsAaCtrY2xY8diGAa/+tWv8DwPgM2bN9PQ0MDHP/5xbrjhBt58800ARo8ezcqVK/F9n4ceeqhkGyorK5k6dSoPPPAAEASgli1bBsBpp53GfffdB8A999xTcv3Fixfz0EMPkUql6Ojo4I9//GNhXkdHB2PHjsVxnKL1Kyoq6Ojo6Hc5sf+GIgi0DZjY5fUEYMcQbFcIIYQQQgghRgTfhx2tSTY2JQrTdImsn1LTxJFjwoQJfPazn+0x/Stf+QqO4zBnzhxmz55dKMp800038Ytf/IKTTz6ZNWvWFLJ5nn76aebNm8f8+fN58MEHC9v81re+xcUXX8xZZ53F2LFje23HPffcw09/+lPmzp3LcccdVyhE/Z//+Z/ceeedLFq0iLa2tpLrLliwgA9+8IPMmzePK6+8ktNPP70w7xvf+AYnnXQS73nPezjmmGMK0z/0oQ/x3e9+l/nz57N+/fpelxP7Tw3kIJKrCfQnrfXsEvMuAm4GLiQoCP1DrfWJ/W1z4cKF+vXXXx90g4UQQgghhBDiSBPPuJz2rSdpSzls+tZFADTHM+xoLe6yU18RZkxV5FA08Yi1cuVKjj322EPdDCH2Sanvr1LqDa31wlLL91sTSCn1G+AMoE4ptQ34GmADaK3vAv5MEABaBySBj+5H+4UQQgghhBBiRPB8TdrxKAtbJNIubSkHANfzsUxDagIJIYbcQEYHu6qf+Rr49JC1SAghhBBCCCFGgPaUQ75+7hOrdhemb29NMbm2rGTAR4JAQoj9MRQ1gYQQQgghhBBCDFLS8QrFnx9a0llWdUNjHCgd8JEYkBBif0gQSAghhBBCCCEOgVTWxdMaz9cs397GSVNrANjWkgJ6Gx1MokBCiH0nQSAhhBBCCCGEOMhczyeV9fF8zdo9HaQcjzkTqgFIZoNhvn2/53oyRLwQYn9IEEgIIYQQQgghDrJ4xgWCbJ+NjQm+aN3H+5p+DHQGgdwSUSDJBBJC7A8JAgkhhBBCCCHEQeJ4QWCnKZ4FgmyfeMblJusRZm78BX9v/h47sTOYV7ImkASBjkS7d+/mwx/+MNOmTeOEE07glFNO4aGHHjrg7/v666/z93//90OyrTPOOIOZM2cyd+5cTjvtNFavXj0k2x1KQ9nGu+++m5tvvhmAu+66i1/+8pe9Lrtp0ybuvffewuuh/L0PlgSBhBBCCCGEEOIgybo+jueTymX7eFoXMn8APm//jsWbfwSAuedtwq3ritaX7mBHHq01l112GYsXL2bDhg288cYb3HfffWzbtu2Av/fChQv54Q9/OGTbu+eee1i2bBkf+chH+MIXvtBjvud5JdY6uA5EG2+88UauvfbaXud3DwIN9e99MCQIJIQQQgghhBAHSdb1STmdN5me7xe6huUliQAw9XcXcPTvzsLxfHauW0amoxm/VKEgcVh78sknCYVC3HjjjYVpkydP5jOf+QwQBBBOP/10FixYwIIFC3jxxRcBePrpp7n44osL69x8883cfffdANxyyy3MmjWLOXPm8I//+I8APPDAA8yePZu5c+eyePHiHtt49dVXOfXUU5k/fz6nnnpqIUvm7rvv5oorruD8889nxowZfPGLX+z3My1evJh164IAZnl5OV/96lc56aSTeOmll/je977H7NmzmT17Nj/4wQ8K6/zyl79kzpw5zJ07l2uuuQaAxsZGrrzyShYtWsSiRYt44YUXAHjmmWeYN28e8+bNY/78+XR0dLBz504WL17MvHnzmD17Ns8999w+t/HXv/41J554IvPmzeOTn/xkITD085//nKOPPpp3v/vdhbYAfP3rX+f2228HYN26dZxzzjnMnTuXBQsWsH79em655Raee+455s2bx/e///2i3/vevXu57LLLmDNnDieffDJvvfVWYZvXX389Z5xxBtOmTRuyoJE1JFsRQgghhBBCCNGvrOdDl0QDX0Myky1aJq1t/Eyi8MT+qfu+zz+k/hOAzbM+BR/41kFq7Qj0f7fArreHdptjjocLet9n77zzDgsWLOh1fkNDA4899hiRSIS1a9dy1VVX8frrr/e6/N69e3nooYdYtWoVSilaW1sBuO222/jrX//K+PHjC9O6OuaYY3j22WexLIvHH3+cf/7nf+bBBx8EYOnSpSxZsoRwOMzMmTP5zGc+w8SJE3ttwx//+EeOP/54ABKJBLNnz+a2227jjTfe4Oc//zmvvPIKWmtOOukk3v3udxMKhfjmN7/JCy+8QF1dHXv37gXgs5/9LJ/73Od417vexZYtWzjvvPNYuXIlt99+O3feeSennXYa8XicSCTCT37yE8477zxuvfVWPM8jmUz22r6+2rhy5Uq+/e1v88ILL2DbNjfddBP33HMP73nPe/ja177GG2+8QVVVFWeeeSbz58/vsd2rr76aW265hcsvv5x0Oo3v+3zrW9/i9ttv509/+hMQBN/yvva1rzF//nwefvhhnnzySa699lqWLl0KwKpVq3jqqafo6Ohg5syZfOpTn8K27T4/V38kCCSEEEIIIYQQB0nG6cz8KdvxItVb/oZrXgVAfOwplO98ibDbzttLX2Fubp18ACiuo4xb+VPI3ArhikPRfHEQfPrTn+b5558nFArx2muv4TgON998M0uXLsU0TdasWdPn+pWVlUQiET72sY9x0UUXFTJOTjvtNK677jo+8IEPcMUVV/RYr62tjY985COsXbsWpRSO4xTmnX322VRVVQEwa9YsNm/eXDIIdPXVVxONRpkyZQo/+lGuW6NpcuWVVwLw/PPPc/nll1NWVgbAFVdcwXPPPYdSive9733U1dUBUFNTA8Djjz/OihUrCttvb2+no6OD0047jc9//vNcffXVXHHFFUyYMIFFixZx/fXX4zgOl112GfPmzSv5++mvjU888QRvvPEGixYtAiCVStHQ0MArr7zCGWecQX19PQAf/OAHe+yLjo4Otm/fzuWXXw5AJBIp2Yaunn/++UKw7ayzzqK5uZm2tjYALrroIsLhMOFwmIaGBnbv3s2ECRP63WZfJAgkhBBCCCGEEAeJ6wfDwuO7TPvzhwBQR50NQOtRl7N99x6ibjtb1ixjLrD66E9hTnsXfvlY7nnwQf5F3wmJpqIgkOdrTEMdio9z5OkjY+dAOe644wpBAIA777yTpqYmFi5cCMD3v/99Ro8ezbJly/B9vxBYsCyrqHtgOp0uTH/11Vd54oknuO+++7jjjjt48sknueuuu3jllVd49NFHmTdvXiHbJO8rX/kKZ555Jg899BCbNm3ijDPOKMwLh8OFn03TxHWLuzDm3XPPPYV250UiEUzTBHovbK61Rqme32Hf93nppZeIRqNF02+55RYuuugi/vznP3PyySfz+OOPs3jxYp599lkeffRRrrnmGr7whS+UrNMzkDZ+5CMf4d///d+Llnn44YdLtrH75xisUuvk32egv/fBkJpAQgghhBBCCHGQ5G/3os3vFKZFUzsA8EKVxI0Kol47KtkEQHbRp0hNOJ1M9VH4du5G2EkVbdOTatGHtbPOOot0Os2Pf/zjwrSuXZna2toYO3YshmHwq1/9qlCfZvLkyaxYsYJMJkNbWxtPPPEEAPF4nLa2Ni688EJ+8IMfFII969ev56STTuK2226jrq6OrVu3FrWjra2N8ePHAxRqCw21xYsX8/DDD5NMJkkkEjz00EOcfvrpnH322dx///00NzcDFLqDnXvuudxxxx2F9bt+luOPP54vfelLLFy4kFWrVrF582YaGhr4+Mc/zg033MCbb765T208++yz+d3vfseePXsKbdm8eTMnnXQSTz/9NM3NzTiOwwMPPNBj3crKSiZMmMDDDz8MQCaTIZlMUlFRQUdHR6+/k3vuuQcIuonV1dVRWVm5T20fCMkEEkIIIYQQQogh4no+ltn7s/b8Q/+yXa8WppUluwaBKhnj7sFKt+BiQKTLzaBdBlnAKa51UmooeTE8DCRLSynFww8/zOc+9zm+853vUF9fT1lZGd/+9rcBuOmmm7jyyit54IEHOPPMMwtdqSZOnMgHPvAB5syZw4wZMwr1aTo6Orj00ktJp9Norfn+978PwBe+8AXWrl2L1pqzzz6buXPn8swzzxTa8cUvfpGPfOQjfO973+Oss846EL8OFixYwHXXXceJJ54IwMc+9rFCu2+99Vbe/e53Y5om8+fP5+677+aHP/whn/70p5kzZw6u67J48WLuuusufvCDH/DUU09hmiazZs3iggsu4L777uO73/0utm1TXl7e55DtfZk1axb/+q//yrnnnovv+9i2zZ133snJJ5/M17/+dU455RTGjh3LggULSo4k9qtf/YpPfvKTfPWrX8W2bR544AHmzJmDZVnMnTuX6667rqiW0Ne//nU++tGPMmfOHGKxGL/4xS/2qd0DpfYlXWkoLFy4UPdVzEoIIYQQQgghDjdpxyNim2Rdn5DVMxi0dncHacdnyl+upWLb0wDcH7uKDyR/w7pL/8i6v/03p6Sf4fXo6cxPvsD2j3UWKf7t737Dv7Z+CX3tH1DTzihMT2ZdYiF5vr+vVq5cybHHHjvk2/V9TdbzidjmkG9biLxS31+l1Bta64WllpfuYEIIIYQQQggxRPJds9pSTs+ZHbupffEbmOkWyra/wFJ/OgCVbtD1y7fLSFmVlOsEUWcv7WZV0epGOMgA0ZniTCCtg4CDGF48ydASw5AEgYQQQgghhBBiiLi5YEwiU6KA6+Nfp2bZfzPxyU9jaIffeEGXm+puQSATn1Odl0mbxXVBjFAs+KFbdzBNZ60hMbwcqp43QvRGgkBCCCGEEEIIMUTymUAZ1++ZnRMKMnkqdjzPBjWJ573ZANT4QTFcK1pGxuoM/Ex11hWtbuYzgboHgbSWukD76UAEa2SXiANtX763EgQSQgghhBBCiCGitcb1fBzP7xmYqRhT+PEp5zjaCYI6dToYCckKl+OGqgvLrK86pWh1M1IOgJuO93hfCQLtu0gkQnNz85AHgjQ6yNKSfSMOAK01zc3NRCKRQa0n1cOEEEIIIYQQYohoIO36aB3UhCm64cplAgG84c9g6rjR+M2KGhXHUyahcIRJEyfA9mCZV+b9G10ru9qRYP1sMk6423tKnGHfTZgwgW3bttHY2Dik23W84Htgmwql+h4hTIh9EYlEmDBhwqDWkSCQEEIIIYQQQgyVRBPtdhWj1twPmWNh+rs653nZwo+7Ry/muPHVxJsjVJLCNaJUx2xOmjUdXg6WmdBQU7Rp047ia4WbKc4EUrveQlc0QO3EA/axjmS2bTN16tQh3+6a3R1kHJ9po8tlhDAxbEgQSAghhBBCCCEGwPc1htFHRkemg7ofz2LPpIto2PIo2gzDV/Z0zs8FgRak7+KaWZPxtaadMipJ4VlRYiELs6qusPjUujJSWb/w2rJMUoTQ2UTR21bcfVbP9xKHnOsF6VneQRi5LeN6hC0JNIn+SU0gIYQQQgghhBiAjOv3vYCTBqBhy6PBy7IxxfO9YNj4VlXByVNrGVMVoUNHAfCtYOQvKxZk/7TWnUBtWbhodctQJAlDNtXjrZWXGdyHEQeU52s8z2fUqt+gWzYf0PfyfU22v++mEDmSCSSEEEIIIYQQA5B1fSK20Xt9F794WPh0dDShLq+1m8HFYkZDJeURi6Pqy+kgCP5oO/jftEOsu+QRMtXTmB4qzuywTYOUDlPWbXQwMfxkXI/ybU8z4fkvkW15Dd7/0wP2Xr7WOF5ntpHWWmoQiV5JJpAQQgghhBBCDIDj+/TZs8d3il5277a1pzVBVpuceUwDANPqy2jXQfBHdSkanR0zH7usmpBZfLtmmYosNtqVrJ/hLpN1GfPqvwOg7fID+l6e1jheZyZQPOP2sbQY6SQIJIQQQoiDruvFqhBCHA507ka7z/ouXnEQiGxxxs6WplYcLM6cWY9tKeorIlixKgCsSGcQyDQUY6oiGIYiYnfesoUtEwcL3Cyl7GpLH5T6M6JvqaxH4+Z3iLasAkA5PbvvDSWtoTmepTmeYUtzsv9ui2JEkyCQEEIIIQ6qtONJEEgIcdhJZD2cLW+gWzb1vlC37mCmWxwEamzpQBs2sZBFdTToKHbiMcGoVEa4M1vENBRhK7hVi4UtTEMxrjrC9PoysljobhlHhe13ZPBlrPhDriPjYLdvLbxWmbYh2W5vdX88X+P5mh2tadpSDr4EAkUfJAgkhBBCiIMqnnH77k4hhBDDkOv5THrwIsJ3zu99oS6ZQE95czHd4gyQbDYDpg1AVTT4X+WCPzpWW1jONhWWEdyqja+OMmtcJbXlYcK2iYtZNNQ8fnFgQIJAh5br+TR2ZAh1bANgpzkO0kMTBEpmXTKu12N66A8fZ9ojlwPw1rZW9nRId0HROwkCCSGEEOKgSmU9uUkRQhx2sk7/dVZ0Lgj0VPlFrFZTsP3iTCDlO/iGjW0pormiz2bblmDdcZ3BJcs0MEsMRR8yDRwsVNduZ92yj/o6vGo59h5wadfH98Fq30IWi3eyY2CIMoGa4hl2taV7TLdX/J6yPW/w+ze3cevDy/nuX1cPyfuJI5MEgYQQQghxUCWyLlp6g4nDQMb1pMCqKLj/mSX9LrOrtQOApvHnoK0YlnYL9Xu01pjaRRs25eHOQZr9aWcE86efXZgWsUrfpoUsRVZbxbWHunQNU162zyCQ1As68Jxcl630jnfY6tfTSjmkSgeB3EF2jb74h89zyR0v9Dr/5y9u3KftipFFgkBCCCGEOGiSWRfH1WjkRkQMf2nHl5spUfDKWyt7TEs7HrvbOzMzVm9vAWBCbSWenSv07AQjhGU9H5sgCDS2KlpYx593DcuvW4OqmlCYFraLh4bPs00DFxPll84EqvnNefCHm3r9DJ5kAh1wWc/HSu5hwt4Xecw/gXYd67Um0GAKOOtMnKv1n+hI9d7V69IZYabUxjjcjlrt6dI1rsSBIUEgIQ6S/tJv007P/r1CCHGkaY4HT8TlYbQY7jxfM/df/sYvXtx0qJsiholvud8q/NyWcli1q511e+I0dmQK13mb9gRBoNE15XhmLtCTGyY+7XQGgbp29TIMA21FMFTntN4zgXLdwYqCQJ3XkOPS6wmt/H2vn0FiQAde1vXRS+/FxGfDhMtpJ4blxIv2U9dlByr5zA/4iv1rfmp/F98pPTrc9XOiTAwnObXlkX1u/4GUH13P9Xzakg6bmhIs397GluZk/yuLISNBICEOkv4i/cmsBIGEEEc239e0pYIbF6kJJIa75kTwtP37j689xC0Rw4LvM57Gwsu2pBNkNeogsOJ4wTEtmwm+N+FwBNeKBQvngkAZ18PCQ+cKQ+dZuYBQ1xJAlln6Ns02ewaBkunO4tN7dDXJ6NheP4Z0BzvwPF8TW/8ob/ozWHzKqaR0OJjhFtfycT0fdxD7Y2/uIcqZ5jLiL/5PyWXGb3yAX+39MJ9J3glt2/ftAxwgWgfXAO0ph03NCba3puhIu4W/IRnR7OCRIJAQB0mqnyBPQmoOCCGOcBnXLzyFliCQGO72tMvoOqKT26Wmi6NCpLuN0JTNdRv0c7V6qspiaCuXCeQEWQ4ZxyekXDBCRevms4JKFYLuLggCmRhdgkD/91YwCtUfJ/8TT3tzMbzev7vSHezAc50U4zPr2FG1gAmjYrj5W+5uBbwdTw+qUPeWdLjwc1s80Tm9sfO7Wbfi7s4VMh2Da/gB5Ho+n7t/Kc+taaQj7ZLK+j0CkoMJiIn9I0EgIQ6SVD/dvQbTJ1gIIQ5HRWnvcq0nhrk9HT1H4BEj17NvrwNgi1+PrbPBUO9d5IsB5ws2l8eiKCsX7PGCm/+M62HjgmkVrauUwjQUSvUfBApbBo4OMoHy9aoSyeC7etSYKjLYfQaBpCj/gbdnzRvYeKjx8zENhUduf3frDubrwVXH29HcGdSJO8F3Je14vLImGF1u6YybaT72GhJmJQB6GAWBHl+5m4eX7OBz9y/rtdi+ZKkdPBIEEuIgeGLlbh5bsbvPZRwpPCmEOIKlsl6hK1g66+A5kmUhhrfd7RmuNh9nitopw2oLVm0KutY0mfUAGJlE0fx8dmN+iHgMG8PMB4GCbjz5mkCYxZlAENT6GYjO7mBuIXMin30Ui4TJYGP2FgTa/ib2q/81oPcZDKlrWSz89q/JaItRx5xBLGyCkSvy3S0TyNd6UFmx7R3tneum2tjUlGDdnjiJtlYA7Kox7Djtm/x2+rcBSCda9+tzDMRAAzfPrW0q/NyeKl0E2vUP3r1QY8fIvgaRIJAQB8ENv3idrz3yTu8L7FxG/Qv/gi+BICHEESrr+bSlHLa3pGj5+QcY+6NJh7pJQvSpqbWNb9o/4+nwP5CQun0jXrJ9LwBtdgMAhtOZZWEld6NzXb4KQ7ebNoZdHAQKMoG8zgyhLiL2wG7LTEPhKhNTO4UHiJ4bvGc4lAsC6V5ucP/nTGJPf3VA79Ofrjf/7SlnUAWOj2haM6P5KZ6yT6e6YTzVURtt5DOBugeBBjdIgukmcbBJ6RB+uo1ENqink0kGwaFoeRUARiTIBErHS49INhgZt+9j30ACN2nHK3oYvqExXnK5g5kJ1JrMjujgvgSBhDjAOroMedjbwU3/7gbqlv8v7t7NB6tZQghxUOVvVp5bs5tzzTcOcWuE6F9b857Cz+nE/t9MicNbNpdVkYiMASDa/A51b93FtEcu59h7FxF7Psi+0PkbfcPCKHQHy2VB5jKBVIlMoIqI3WNab3xlY/ourlecCRSNhNFmBFN7hS5oJfU1b4Bc3y/cRDu+LtREGulaG7dTqTtI1R5PQ2U42K+9BIG0HlxNIMtPkzXCdBBDpdsoxF8SQZZNpHwUACpcAUB2P49b8YxLa7LvodsHErhZtbODPR0Zrj9tCgDL/vgjWl/6JZGmtxm1+j4mPnETs35xLKHnv7Nf7e2u1O+2sSPD5uYEaccf0aOUWv0vIoTYH0u2tBZ+3tGSYmJtrOdC0erg/6bVUD8Vz9cYigH1DRdCiMNB/ilxYnOXAJDWIMc5MQxprWlu6gwCZZPtUFN7CFskDqW046FTrQDEK6ZDO0x+/BMAeKEg68LavSxY2O/MBDLtoJCv62Sw6KwJZFg9Az4V4YHflnmGjYGLk4sC+G4QXKgqi6HNMPiAl+lRe6jATYFZMeD3K0VrCterjuvjeSP4jrqLJW+8zJlA/bQ5xEJm0M3PMMGjRxCI5vVUv/pjuPz7nV3G+hDy07h2lA7XQmU7gnpCWnPmzp/iYELtUQAY0WDfOqn23jfWD8fz2dSUoKyf7+VAijkv2doCwElTa3ns7e3cmrmHyneSkOskkTbLML0E5vbX9rm9pSSzXo/2Nycy7GxN88iyHfzb5bOJhkZmOEQygYQ4wF7fvLfw8/qm0umPLaFgKE9/z0qyrs/6xjgt/UTeu8q6Pk3xjIwwJoQYtlKORyLjMnbvq50T3f3vky9dEMSBkHI8/GRL4bWTKn3+FiNDe9rByAbdv5yG2YXpj8z/H25o+A3Phd6FEd8F0Dl0u9EZBOpIJGhPO0EmkHIxrDDdGQMYGSzPVxa2dnDdfBAom9uIBflt93V8zSYH/F69tkFrXF/Tkszi+v5BrecynDVvDiIbtZNnE7ZygR0jF/TrVhi6/JEbKH/7F7C7j5IROZ6vCesMrhEhrsqwct/HUWsf4Oj0Mu60P4qqmQKAGQ4Ck+4+BIHyw7QnMkFXM7efDK+BBP+Wb2+jPGwxrgzumfs2larz+/fBzFc4JvETnvLm4sSb+tjK4CW7dOPVWtOWdHBczafvfZOHlmxn5c7hUzj7YJMgkBAH2NJcJtDRaistidIjjTy/MTgIJXeuZU9HmozjF3Uj60va8VjfGGdna1puhoQQw1La8UhmPJ5ZvYcLjJc7Z7j7N/qS1ppkVoLfYuglsx6kWwuv3dTIvVkYyTKuh+P5JDIuoVwNIKt+RmH+P7wU5ul1bbyTHIXRvhV8v0tNIAszF5DxnCyNHRnSTj4TqGd3sMHQuaCC6wTvpfPduwwTrEjwc6njqwqCEunk/gc1g3o2mkTGI+30HO57JPr9m9vYsjUYqUuXN2DmA3u9FIbW5Obr/muOpR2PGBk8K0LSKGN8ajUTnv5/THj2H3nLOp5nKi7GMoJbezscJqNt/PTgj1tJJxjEoTXp8KM/v87u+z/X51Dz3TOBSgWNdrWnaagMM/HZzzPptdsAuLnyR/zz5PtY/J7LuPnMGbRQgUq19Fh3X2mtSeWCQK7ns6k5yTs72vjqH5aTzHpMV9vJNq0fsvc73EgQSIgDSGvN29vbeF/dFv4W/hKT1v+25HKmG0TEE617CoGcgZxLM67HpuZEZ5/wEVzgTAgxfGXcoHZEx9LfM8fYyCo1LZixn0Gg1qQzoFR0IQYqX7uqNZnFzHTW03DSkgk0EmXdIAC0dW+KsaqJlF3NjHGd3QK/fMlc7rhqPlt1PYbvQHwXqlATyMYKBUEgx0mTzHi0Jh2iZDHCJUoDDIKfDwLlMoAKQSDTRtl9BIFytYhaWlv36/0huMb1fE1H2mFjY6LQNW2k2tWW5h8eWEaDFSdjlRMJd2Z7qV5qAnUGh/r/3aUcjwgZfCtGyiin3G9n1Lrfs276R7gq9UVG11QyKmZTEbGojtnEiUBm8JlAyaxLPO1w22+f4Sc7ruBdzQ+g33m41+U9v7iuUanh39sSGc7jJao3PlqY9sn3v5er3nMqi4+uZ+7Ealp1OXamddDt7Y3razKuh+9rNjUniKddfvXyZpZubeVd9SmeCH+B457+xJC93+FGgkBCHEBb96ZoSTqcXrYNgPKOdT2W8XxNhOAk7sabCoX1+nui4no+6/bEcdzO5eRWSAgxHLmez/Id7bwv/SBNsWn8MXRBMMNJ7fM2tdZs3pvAG+E3HmJoeb4m63r8w/3LqFKdQ4DvyxN1cfhzPE1TPMPy7W0cZewgU30UC6fUsPvEW9h54q0smDSKSTUx0mZ5sEIm3hkEMm2sXHcwJxt0zWpNZoiSwQyV7Ve7opEg0OM6QaDHLwxLb3UJAvXsDqZzGUi7W/b2mDdYfq4m0PcfX8Nn7lvCo2/t3O9tHs5e3tiM1rB4ggnRGiJ2lxo/XYJAjufTnsv217nMrAFnAqkM2oqStKoBSFVO49NN78MKRbj5zKOwTIMpdWXMHF1JQkcgO/jgteNpXtm4lwt2/rgwLZPN9rq86/uknM72Z12ftFP8ec6NP8SXOr5VvKLqDEPUloXYqysIeQlwe3+vwXA9Tdrx2d6aIpX1ybgez61t4uaJG/mPqgcACl08R6IBBYGUUucrpVYrpdYppW4pMb9KKfVHpdQypdQ7SqmPDn1ThTj85AuhTYkGNzpJs7LHMomsS4zgRG1nWgpBnf5GC3B93ePBgWQCCSGGI8/XvL11LzPUNtxJp+NZuRug/agJ1JZy+PGP/5PIj+aAs38ZRULkaQ1vbm5h97YNfM3+VWG6n0n0sZY4UmVdn1TWZ9WuDmaoHVijZwLgnPJZmuZ8EggG8cjX/sHLls4EygTHumQyiak0VmT/gkCjKoL1Q9teIZ5x0V3qEKlCTaASx0UjCAJ9+5ElbG7u+zvd33Vo0B3XY/XuINCwsXFk/428vnEvYcugWrfjRWqIdgkCqXyBbs8lkXFpy9f9zAeB/IEEgXyiZNFWjIQdjAK2ORlize4OPrl4GnXlnZlHsbBJgghqsLWftCb0wu08+9jDXGq+WJi8d/e2XldxPV2U/eNrCt2wIKgxtMBZAkD7xLNKbsM2DTJ2MLw9qf0PUKYdj+ZEPvDqsKExzj8+sIyTnFf4h8ZbGb3tLwDEQ/X7/V6Hq36DQEopE7gTuACYBVyllJrVbbFPAyu01nOBM4D/UErtX2dXIY4A7+xoxzIUDUaQjqm7p4ESHCijKjhQlbmt4DvUrPgVdtOKPrddKlNIYkBCiOEklfX4/P1LeWp1I//09gWUqQxezQywosEC7r5nAj27pon/Dn2fKmcPJPb0v4IQA6DRPLu2iS/bvy6a7mekO9hIlHE9fK3ZuG4lo1QHuu5YgM5aL3n5wr9eFuU7+BhgGIRCQVZOvnBzNhUESuz9DALVVgWZR1Meu4GmjkxxTaA+MoFcFQQjomT47Wtb+3yPTD91Jn0NW/cm2bo3CDTsbB85wfhSAbIlW1s5ZkwFVrYVLzKKymjnCHBdu4OlHb+Q9a/z2TBe/9kvaccjShodirItE3x/UlmPz73naM48poHa8s5b71jIJE0Y1e0c2z1Dp4fmddS/djs/SN1KSLm8uOD7tOhy3Lbes7zyw8jn70t8rUl2zQzyPOr9JpZXnM7m8+4OppWN6zEwaDYcBLZINvfdxgHY1pKiJeHga82vX9nMZ3+7lEx7E7fHfokbrmb38Z8kqcOoLoHSkVbTaiCZQCcC67TWG7TWWeA+4NJuy2igQgXjWZcDewGp1ChGNN/XLN/exuTaGOXtQTcwq0TaYSLjEs1lAo3SrfgP3cj4F29l0gPnw46lvW7fK3ECkkwgIcRw8uOn1/H7N7fzTw8uLYwGkq2cjMrdGO1rBk884/C3//t954QhSh8XwtewdEsLJ5lraJ12CUsvfyqYLkGgEclY+1calz/FSennAchOPxcAyzCwLUVteYiJNdFCxg+eg6kdvFywxQoHN+Y6d4xyc7Wl1H52B6ur7Fw/7XroLt3BMHvPBMrooF1VJFjf2Pd3ur8gEMm93P5okOHxfvNpEi0jIxivc6OidZV2PFbv6uC88vXEmt5GRaqKA4VmZxDI17pQ/1Png0MDyIpNOx7lKgXhCmoaxgMwpTbGWcc0MKYygm123tZHLJOkDmM4yaKAVdcMnVKWrS/O+ImPOZE9uhoj2fe+zTido8P5WhcFm1oTWcarJhLRYCTk1e97ih0f/Ct15WGiIYOGyjCT62KoSEVuY/t/rE07Hvguf33lbX772lY+N2kDT1d8mVFuI3uPuZo9J93KkyzE8Dp/704/o6AdaQYSBBoPdA0Vb8tN6+oO4FhgB/A28FmtdY/fpFLqE0qp15VSrzc2Nu5jk4U4PGRcj5U72zmuBsqb3wLAdtp6LJfMeoUgEMDclsd40ZuFgQ+bnut1+6WGZJQYkBBiOHlre3DMG03QNdY3wyTGnITqa/SaAXhpfTPnJDsLTO5PRpEQXfm+z96dG6mnheTohVhVwY2Llu5gI07W9Zn4l49yzivX8WHrKeK1c1A1UwGwTUVtWZhx1VGqYyGMbt3B/FwQKJILeKfTwTHKzX+P7P0rDF0T7byF87KZzkzzosLQPQMLST/ofvT90I9xEr2PxOT5ut+hwWvunMkdzR9nfmU737V/wlfavz6oz3C4cjzd46Hr6l0deL7H5Xt/BoCli3MhlJkfIj4IAuW7UBVqAg3gXJhyPCpIocKVfPiM+QCELcW46iijyoo74BiGImNEMNxkUTAv2U8m0BNLVhd+3nj+rzHL69mjqwmleg8C5X8V+UwarSkarbilpYlylSYdC46l2erpxEY1UFceYsKoGKMrI1RGbJSV+5vYz/N5UKgaUi/+D19cfjGvlP0Dn93zZbRdxu75n6Vx7qeC5Ywwpt/5NzLSBpkYSBBIlZjW/bd0HrAUGAfMA+5QSvUofqK1/onWeqHWemF9/cjtgydGhq0tQVHoxaFVqFzBt/zwol2lnKA7WFJFC9P+duy/AaCzvV90ljpYSSaQEGI42d4SXMxNUsEF5Ob3/BRtRVChfHewfQsCvb6phUXGahL0frMjxL5oWf4Y52UfByBZP49IpAxfK3DiI+5J8UiXSHUeV6apHbQedy355A7bNAhZnbdR+SHftZvB0G4hE+iUo+pwsHht/W52tqXwMrkaLXbnNd++GOV11k0xE7ug0B3MQlm9H1/bs51tHh9/u9ft+92yXVzPpyNXzLir0ezl0inBcnNYCxz5GRWO5/d46Lpt42o2Rv6Ose1Lg2XO/GrRfKPQHcwr1PPcujfZWRx5AOewTDpNRDkYkUrC0SBgEoqWU1NWugKLo8LYfrooKyeRcfus9eTEO79XiQmnc1RDOe3EMLPxQjHrrnT7TmI7Xwk+gq9Ba8qW/A9+srUQCErsCoZhd8s7c0hCpoFlGkXFs839zBDOywejMjuWAzDa20nb5PNZd8Vf2HPCP+CHghCFb4ax/M4sYqe/zLcjzECCQNuAiV1eTyDI+Onqo8DvdWAdsBE4ZmiaKMThaeXOoA7Q3MybeHYZL/vHEnJ7BoGSWY8YGTpqji9MU2X1ZLRFNtV7SmSpgI/EgIQQw4XWmu2tKT5W9TrnVW4CIFsRXE7sbybQlo2rGa+aeSu0IJiwH6OMCdHV5Ec/zOfsB/EMm3TtscQiFknCkE2yp0OCjSPJU2+8VfQ6WTcXIxcFskxFuEsQyMwFgTw3g41X6OZTEbExrBC1fhO/fG41fv7hXmj/MoHsslGFn0PxHZ2ZQIaFESodHG9PO8Tdzmf7M1K9B4E8X5NxfFoSWdY3xlm5s4P2dOlKH+c1/bzzhe8d0UGgXW1pbv3+nTS/fE/R9JYdaws/7zzpK1j1RxXNV926g0FQUNnL34oP4FzopoL7CjNWBePm0zLvRvxL/6vX5R0zmgsC5bpp5fZpYx/HMT8ZZIet/PBrlEVsxlZHSRHBdJOl1/vZeUx/9P2gNb6vYddb1Dz3VSY+/Vl2t6eDdba8FGx73PzCaj1qakHRw6H+ipL3JR8ECqWDXkfJuuPZcdo30Wa4eEErgq27dAcbYSONDiQI9BowQyk1NVfs+UPAI92W2QKcDaCUGg3MBDYMZUOFONzkg0ATWl8jMeZkWqkk7PYM6qQyDlGymOPmFaaVR23ShAoFBKFnwbL8E5oVO9u57U/v8KGfvMSjy7rHZ4UQ4uDTWvPS+mai2b18OfM9rs/8imzZOLIVkwAI5Z5i6n0I3jjpBHfuuQ6AldFcEGgfg0lC9CZdcxzaDBO1TZJEUNkE8XQwso8YGZq2ri16na2cjJGrZmsbBqEuNVjyo4N5TgYbF9/oLApsukkuM57j33fcQHNLrgvWfnYHY9HHuCtyQ7Cp+I7OwsKGhWUHASm/WxAonnZx6My8ON59p9fN+5k48ZZGtrWkSGaCTJJSZQgAxu59tfCzl+wc5fZItHRrCz9If5XxT3ymaPrO1s5zWbJhAbZZHOTo3h0szx9EEMhLtQJgRivBMGk57StYoyb1urwVKcf2UiSywTErf9/QFM8GAZsuUlmPrONhZ4P3iFTUUBmxCFkGKSLYfvA96F5TSLVuDv53U8H2c7WpKrY9S1vKYVdbmvKdL7PFr6e8YXqwrApqanVn5rLjOuIdhcDVYDR2ZLj9r6tJ5T5vudPE25GFrL/sUdxYZw+kaMjEMIJMIFt3ZgK5vXy/j1T9BoG01i5wM/BXYCVwv9b6HaXUjUqpG3OLfQM4VSn1NvAE8CWtddOBarQQh4M1uzuYXukTbd9AsmEBKRUh5PccqjGVSmIojVleCwQHpfKwRZII2XRn0Kj7kxXH9Xl46Xa+/fsX+PDu23lD/R3XPHcmDHY4SCGEGGKur/m3/1tJjerMfmyac2Mwcg0QiQQj27iZwQeB1q94E0MFF2t7Kmfn3lCCQGJopcacwKgym2jIIk0I5aXJuj7bW1P79ZRaDH+F2iYtm4qmaytSCPwYhipkBUGXIFA2S0RlcY2e3b0mGo1cYOQCJvsbBDItXqsNxumxEzs6hxg3rEJ9Is8pLpjveD4Gmni4gRdrr+A41uH1Uusq/IvzmfXrOUXTug5I0ttISm68qTDy1ZFo697S56yu5RsyDbOxzOJbbLNEJhDQpSZQ/1mGyfYggGjHqoP/TaPoO9hdeXkFYZ0hnnbxfY3n+Sgvg+drtrYkiwJBjR0Z1jUmqCCBY4QpL6+gNjfkvGtGCfnB5+7IFHcJy7ffyrQE28vmCp9rF53LrClPbWOdmkR5JFi2KmqXzASywsHfTDwRH3RWzqamBIu++Th3PLWOp1bvIe141Ph7yUQbipZTCqbVlTFzdAXaDGPiF7pSjrQgkDWQhbTWfwb+3G3aXV1+3gGcO7RNE+LwtmZ3nAsqt0MTpOqOx1VLMboMEe/7GqU60zutaAWbrn6BlA5T3RYipUOYmd4zgX76wkaefvlV/hr7FrV6L4ZywHcg1bLfacZCCLE/khmX1bs6+OKsKKyHDRf+hsS40wCIhgwi0eBiz8umsPvaUAlrN2/lGGDT3M8TyeTKD+5nDQEhIBhRJteRhuT405g0KjiXZghh5IqVZhyfXe1pxlbtX00XMXy5vo/nK+o7VpEmzJ4z/wPlZTAMiuoAdZUPArluhghZ/O5dTwiyPq6ygtHm9jsIBNRUV8N2GPP6d1honJhvCFauMLSbzRQdXx3Px8SjreJodlXOJ9T8e26840FmzTuFTyyeVlyfpXFFrtFeIXjf9Tp05fZmZnfZdtyqodzdixtvxolM3u/PNtz4vsYwFFv2ln7QarjB9OZjr2V83age85XVNQjUdUbwfdJuumQR3rxdbWn2NgdDp5dVBNu3zb5zOaqrqgntdtnR3MGkmhixV/+T2c/8K+98ZCXtlBEvc6mMBN+QrOexfHsb1SRwQtVUdRne3rVi2K4DvksyY0FFlzcJl0O6DTPdEgQJu4zsFW5dR2bU0VQ4zcStaZzSUEFzIkPYMrFKBoFyGcLZ9KADMv/9bGcHpBfW7OI49QcaaGF7RVCMWimojNiMKrODAC4KrzCKXgrMCukOJoTYfx1phwvb7+csgic+6dpZeMoOhg3NHf3TrkfG9QtBIDtaiR41lfCosRw7poIUYfxM58mma4G+Nza3sOeV3/HH2DcYZabZ8N7f843Q/8stKDdDorTu6b9CHCjLtrfheJqjy4Mn0V64BgguxCbVlGHmLva87OAzgXbs3AmAPetiQpHcMMkyOpgYAsu3tQKwbdRJ6KPPL0zPGhGcVKKQAdQcz5ZaXRwhXE+TyLpMy65iW3QmbdMvofXo9xO2zF7XMXOBF8/JEiWDZ/UMEm599/c6XwzBw7rRlZHCz4v9XIaRYRaGq3e7BccdTweZD4ZFqKwagERHK997bA3n/+BZnlvbc+RmO7ETtCbS/A6j//IJiAfLrN6yu7CMVgYPzLg9eM+OJlTblv3+bMNNPkCwJxeI6c7KnYM6Fn66KICSZ+S6g2UdpygTKJ7N/VziQUa+oLPj+TQnMrjpYLRNIxo8/OgtIJlXNyoIFm3d00RrysFa9utgvfagC1dbsjOrJ+P6rN7dwTjVhKoYXbRtnRu1y3CTha5lBaEgq/eBB35Feu823lzXOaB4bPdr4LtU+G2kI/VEQyYTRsWI2KUzmOxw/nye7ndkuq5cz+ev7+zijJn13Fv1X9yy5oMcs+pHLNPTycy4mLBtcFRDOZNqY1REOvdNIVDrZgr1ktpSTtHIZkcyCQIJcQCs3rKTf7Z/wylND+LZFbjRenzDwtROYXSFZDboW+ung+4SdqwSy1CMioWorQiTIozu0rWr6xOYP7+1k9vsn1Nuemy86H5S9XNhPwutiiNPjz7fjofW/Q/7KsT+Wrq5FYDx4eAYpmNBEChsBSPqFG6Y9qE7GKkgJT5cUUMolz7uZqQbrBiY3rqxAKzZFXy3MhNOJRrqvOGvrqxigfMG7oOfQHkZtIaM2/dQy+Lw5fqa1TtaOIZNtNfMJhoKbpcqIr13oMgHXnwnQ1Rl8c1Ij2U6pl3U+WI/RwcDGFPVM9sIM4TVpT5RV47nY+GjTItZU8YB8N33TuMbl86mOZHlhrtfLxpJCmD887cw5f6zmfHQBVRseBS2vQYUH3O9UAXZcBBwiL74bcb+/ETYtXy/P99wUniAu3dryflmLhMoHKsoPT8fBMpm6Zpw8vbWIKikS3QHS2Y9XM9nY1MC3wedCoJAhAcYBKqpBqB6459JZFy8UFWwXi4I1Jp0WLcnTksiywuvvsory1dxtLkTs6F4bCc/l7VmOEl8n6LviA4Fn/ef7d8w9oGLWbJuW2Fe/Vs/IbbnTQw0XqyzW1bULh1MtSPB34zvpHAG+NDS8zUvb9jL3kSG25s/zamZ52nQzew2x3Jl9uuMnnkiU+vKirLcCusWgkBpfK3xfM2W5iStqZER5JcgkBAHwPptnU9IMlVTQCm0EcLSLm2pXBAo49GcyOKmgiCQGakgbBnYlkF5yCKpwyinayZQZ3X/1RvWMVq1smf+Z0nXHhssYA3N0IriyJHp9jTD0zoo1Ncu3xFxYC3Z2sLUaoujXv0KAKHKegyDwoVYOGSR1SbePgztbmWDC+FIZR2haPDk0NmXYJIYcbKuX/SUt3tAyEkH3yMrFCUW6rzhb6gJbp4WtP6V0Y9cjZHtGDFPi0ciz9dsW/sWEeVgT5hHeTi4ga+O9d551S5k3wTdwXSJII82w2w8/9ckpl8M4ar9bufRoyu4MPNvne3GBDtWaItfoiaQiYcyLKpH5epQZjqYN7GaG06bStbz2ZErcOznhriv2P4sK9tMHvRODzaSq/nSNYtz58n/gpMPMDTmik23lQ6WHK5cPxj9ymvf1TmxS0ZPvmZOKFo6CGTkuoNls9lCJpDWGosgs0Z7Pc+FiYzLtpYUGcdHuWkWJp7BwYKyoMhxqJ/uYFZutK0P7PwOWsNuJ7hPCLVvLCyTynr89Ln1fGLp+/hT+qOMphm/dkbxhkLBeTbf5a0l2fm92pbsDK5EkrtQue/Hbj2KcPtGpv/pfQCYlWM629VLu6PhEBlt4WdTAx6ufXd7msdX7maetZW6+JrC9Bez05g5porqmN1rtzltdt43+c0bqX3n7gG955FCgkBCHAA7mjrTRbNV06iIWPiGjYVLR8rB8Xza0w6prEdHW26kiFAFIcvANhUhyyBNCNPP3axrjbX6UfA9NjYlCOdOsuna4wrvo2zJBBLFMq5XVMBU+wQjfWTlCbY4gDa9wB2bL+GqiiWFSaYdjLJUXxHcnIRMkyw2/j4ErcNuO46yKS+vwN6PbmXiyLBiRzsvrh/YWCQZ1ys8UElkXJoTxTdebjb4PhpWuPhpdZf6LfXNr1Kz/GeMsPIRI4rj+WS2LQOgdvpCQpZBVdTusztYPvDS2NZBhCyql+5e8QmLabrwJ1BidKTBGlsVZeHJ7+Z1/2gA0mYFKEXYzgXZe2QCBd3BDNOivDLI3PFzA5CMqQquIbe1pNibyNKiY+zVFXxl3P/wzKm/4u7yjwXL54YQ93PH3M3vup3WGVfg2RV4uksXHzO0359vONGpDna3xqnw2jsnep3dqWwvhYdJLFp6v+czgVzXKcSOXF9jkTuQ9NIdrCPtYmTjTP/j5Zzsvsbvaj8JkYFlAnXtJp3oaGF7c9D22hW/xMh2fo72HcWj4KmGY4teTxkbZPHUP/5Z0Jq9iSAIFM+4bI137nMfA51J4GtVCG7lReqm9N1WggyhDCG0k+rxELMUnXuw+frmvVxTuQStTJpnXgXACUdP5jtXzunzd6S7ZALZv7mScS99FSPb0evyRxoJAglxAHjpzgyeVM0sKqN253ChnsPGpkThJKAzuQNOuJywZRIyg0BQknChjzEr/kDNn67Hef6HvLm5hZk6iOKnamcV3kflnzpJbQyRk3X9oifdvtZBN4Z9GHpTiIHSz32PMlKcn/gDAG7dsdhm0A0snwkUsgyyWPjO4DOBol47KTN42mrZNo428WVUxBHr239ZxZcfGljXE3/t4xhLfkVTPMPm5iROt+KjXu5GLBKLFY1eo0LFWR1j3/wPjFWP7GfLxXCktSaZ9YjtXUEWG7thJrapiroHlhLKBYHiiRRRlcEM9d7dKz/M/P6yTYNJNTGadJCFk7aC42LYMnCwegwRH3QH8zAtm1AsCCRUbvw/7PbNNFQEQaDNzUk2NsUp1yk2TbqCD1x4HufPHsNRE4PuYzpXl0bnrjV1pDpoi2Xgdh1vSB1Zt5hV/zmVll9fxyjVWfiYLtk7IZ0ia0SJhkt3GTSsXBCoyzkv2B+5YEn3rNiOXdS89E2Ul2XsK7cRaV7Bje4/8Pb4qwbe6LkfZnPdYgDWLnmWauK06RihxA5qV/yysNio5jcAaDnqcjad+zP0jPOKNrN4dlDou6ZlGWU7XsD3gzo8rclsUZHrNqsW042TVBG26iBb6a+LfsZV2VsZNe2EfpsbC5lksMHNkHX9fkdh9DX85tUtLN/ezhnu88THnUrHnI8CkD3uAyil+syW0oUyGhnIBEExM9PabzuPFEfWX6gQw4XTOapXYtyp2KaCXBBI+Q4Zx6dy45+p2PwY5IeVDJUTsQ2UUpiGIk0YK58JlG4FILNrNS9v3MssYzOpson4XdKJTbvLwUyMeKmsx99W7Co6QYfe+B86Ni+hPeVIkWhxwKRUcDM0KbmC9KijSVz/HJapip6iB0Egu8dNSn+01sS8OBmrqrCdzD5mFIkjw/rGOO1pp/8FgaoHP0TZXz9HazKL5+seXQ58J7ixrawoL14xl9WwY/7n2KWCmxve/MX+NVwMS1pDIuMwOrWWHaGphCNhbNMgbPd9yxQKhfC0IpNOESWLnS9aD6Q+9CAbLvxN4XVfw3oPhmUqptSW0aSDgE6mWxCoe3dbx/MxVVATKF/Qt3LrExxz/+ksevYjnGquZEtznFQqRVg5WLkCxACVZWUkdRgnHmQC6dzfSv5G2jYN3K63ld7Br6vSvZ7RkMkFI2btfZzLzOc7p3f5/Yb9NE6JOlB5lh3cA/heZ4ZM1vWxVa7N3bP4n/sPapf+mKN/dyY1q+/jbi7hefMkrjxhwsDbHYrResF/kdE23qo/U6M6eM46jSf9BdS/+Z9Ur3sIrTWViU24mGxb/D06Jp2DZRUHsmJlnfcaVa99HwiyyvLt31Z1Ao9Y52F6GSJ+EAy7Mfs5Xpx/O8vM43jJP45po0t3k+uqpixEBpvJm+5n0uOf7DcbKON6/GHpDiZEUtRmt+NOOYNR0xaw9lPbSDUsAPoZQc3qHB1M547xEgQSQuyfXGDHsytI1R4XHIRyqaAqlz46+YkbmfLYDSgn91QhXI7KPR1SSpFWEWwvl9WTO1l3tLfyyNKtnBjaRLa+6+CcYOYKpOZPzGJku/Xht/nyw++wcmcu5Vdryp78Z0597FIm3/su/Padh7aB4ogV9zuLlcbHL8YwwDIUkS43USHTIKst9CAzgZJZjwoSOHZwTLTNoOus1EIbmdKOx/bWFB1pt99lnS4F8VOZ4MbL7dany891BwuHi7M4lJ+7UQtXsPqsnwIQ72hHHHk0sKctw9F6E22VM4naQYZ2uJ+uN6NiIRws4skUUTLYkc5Aop52BolxpxVeD1EMCNswmFIXY4cO6vsYVnAjG7aDILvXoyaQxsILgkBWZ3etxjk3Emldy732N5i1/Xdkk8F32+pS36amzKaNMtLxXLmD3DFX5x5AVsdsXLpkSx2Ca9EDFgTyO7d7orG6c3oucKO1JqJTOEbv2V91lUE3MadpU2Fa1vOD0drozEIsyNf96djKn1jMf1sf5jtXzmFaXRmDESuvZkVsIRerF2hQrcyeMYVvcgOr3TFMfPqzND98C9O9jbSHxwYjy5mqZ80e3XmcrG16DTu+g6zrk3F9bFy0YeNGainzO6hQSTyrjF3U8lbVWexoTRMyDcZW9h4gy5s/qZoJKujaW7Xp/0j1U7rgnR1ttKUcPj8/l2E8ZmZRt03DoCijs7uu3cHIBfCsdEu/7TxSSBBIiAMgXzxtw0X3gWFhm0Yhyqz84pNytbMn+CFUHCV3VRg7nwmUi1Zv3d3E39lP0+Dton3ye4qWN+38KDkSBBKwdEsrdbQRb8vVyujyVG6C3kli9VP7/R59jbIjRoZSGWVtbmfxVG/6OVhG0A2svEuafOdNSopEpv8b+LyOtEu5SuPbwfEyHwTyJfg9IuW7Vme6FXwu5YkVnQM25OthZN3i728hM80qvmFROviO+qFKqibP5V7vbKrj6/a3+WKYaty2mjrVjj92HrYZDGfdVz0ggJOm1uBg0djSRkQ5hKOdN+uK4hvRoeoOZpmK2rIwW/RoAMr8oLxAUHPNIpMuPi7mC0PnhyvP27XwC6z+4AtksBkbX46bCwKFy6pRCsrCJlPrymjXMdxEa25j+evT4NozYpvFQaBDkJWePlBd3XvLasp9xozrEyWDZ/UeBJozuQ6AqRt+TbglqMHjep2Fobtfu+eLR79lHMNX/I/z5ffOYVpDGZUlhp/vi1KKjTNvoE4F+9SuP4ob3/tu/nPaf/N/5lmc2fwbzjCXQXlQ96dksHPcfDqOu4Z/qfg6AGU7XiDrdQkCmTaqrBZTaaaq3YUugt/6yypeXN/EuOrIgLLfuv+NpeOtfS6/q7GF2+27uGLJdQBER88MtpN74NRf4ex80BTPRefusyQTSAixX4zcqF6+XYZlBt27CplAvlNUkO3v9J+CH8zi9EtPWZh4QRpqLnvoROc1vmz8jI7xp9N61BVFy5u5AqmZdAIhmhNZXo98ihP+eC4Afqbze5HWNumNr+z3exywp27isBHP9gzg7El3XsiVjTuGiB0EgVSXG5+QGXTj0m6W+CCCQPGMQxlpdDgfBFJBRpF0gx2RNjQmqKeFTZEPk3njnpLL5OtK6Fy3agAz2chbf/0ZE399KqQ6pxcy06wwRXKZANFYGaahaDYbiHod0v36SPTcf/DBF98LQOUxZwx4tVFlISLK4TrrrwBY4S5BoFwgJV+kdohiQIVaa1t0cAMfcXPBG9sIaqW52aKHNV2HiC9i2GgrwkZjMlFnL05uKPKKqhqOHVvJtPpyJtTEaCeGytUEytefNEJRYmGTiG10CwIdvOzMrOvzzOo9/Pa1LQfmDfoLAjk+EbK4Zu9BoKl1nV2qwq3BKFZZ18cmOLZ079LsJNvIYnNl5mt84aJ5HDW6nOn15X1mtpRiKBh//JmdH2XMPI4ZW8nN58xi/HU/58FjfxC0qXwUoyvD1JaFe27ECtFy1nfgqHNo1JXYm5/B17nuYLhghDDLg8ylWcZmqD+aj58+jVjIZE9Hhsm1g8teKvwOWrf3Ob961W94n/ls52etmQJANBT8rdWU9V2cPB8M9bwsm9qCAOLepl1sb0mRcY/861sJAokRx/UOfFFcI3dy9K0YteXBQUjnagJNfuxjdOwOCjtvis5im65jY9WJPbahjdxJWvu4XU4OTsUktpx9V4+ie/nC0FIbQ2itaU8FFyeRTJC6/ea64GR6X91nWKknE2pZ2+v6vel6Mfnqxr08vXrPELRWHK6yrl+yyPiOROdFarR2QlHwJy+cqwmEmxlUMLE97VKuUqhw0NUiZAa1L/QhqD8hDr0NjXFmG5sAsN75XcllOnJBxvx5F8B65Eau3vp1KpJb0Y2d3TvyxW57ZAL5wYOYirIo0ZCBm8tEIy1dwo405lPfAKCdcsonHNfP0sXsriMi2cWjRJWHLRpyoyOaQ1YYOhhNdnMuEyjftai+PIyDhZtNF93MBqODeRhG6aymdqOaCrcFPxV8r2OVowpBh6ht0qFjhYeYKhfkUaEoo2IhYiHrkAWBUlmPH/51Gec9/wHY/NLQv4Ff/KDCy39OL58J5BFWTiGbpBTD7Pzd5LscOV26g+lu1+5L1m2jXUf5wrkzmT+pmun15X3Xt+mFUopY2CZTOQUAe+yxRfOOPu0KNp73SzrO+Q4NlRGqYqUzjZSCE6bU8qI/m/IdL+D7PhnXw8ZDmzaV008uLFs58Xj+4dyj+dUNJ/L59xzN3581o+Q2S/HGLyr8bMT7LlswdvdTrNKTWHnVKzRfdm+hi2PMNhlbHaG2vPf9AWDawfKJZJqWXDz/yTdXcfl/vcjy7W0DbvPhSoJAYsRJZAZ+w7GvASMr1x3Mt6Kdw8zmuoNFm9/BeycYVeQfWt/PuzI/5OkTf9JzI/kgkO/y6JubCpMb5/89fqiC8kgwXyloqAwzqiq4KPVlqOQRb1tLigZai6Yt2RCcTCePH09cR9DO4EdT6lo/4wP//RKfvndJH0uLI10y6xZS1rtqT3ZezJpW6QvK/Ohgysv0m8Lf9TjcnnIoI4URyWUCWbmnz97ACgOLI8uGpgRVBFmOGbuq5DKJjEsy6xLfs6kw7ShnTeFnv21H4Wft5oKJZvHNQ74mUMgOMWFUrJCJlh9RRhx52uw6IqHSIz0NSDZe9NIwFKPKQlRGrSHrDqaUwjYN/u1D7+Ivo/6O9AfvB4KsJMwQqXSaZLZrECjIBMpnQCQu/xWbL74Pywza02GNosJrJZMIboAjZZ2FoSO2SZoQKhf4yP9v2hEitkEsZOLqQxME2tGWIrrrDY5hIzxx26DXd/q71u/ykCFVM4vfHv0fwYsu3cHCOD2OG0W67HO7YysQ1AQqBA67/b6a9zbj2eWcfnQ9U+vK9ikABJ0Bx/Xv/T3rLnmYWKTnEPbxiWdgjZrY53aUgkk1MZZGTqTcaSb09r2FTCBlhqidOJOkEWT8GGNnE7YMxlfHuOmM6cydWPrYXErq2r/w+dE/C7bT3ncmkJntoNWswy0biz7qnMJ0yzSojPTfbU7lgkapdKqwHz5v/47lVZ9jur95wG0+XO3H0U2Iw4/j+bmnIgPrU+v6Gl/7hRTerjxf95qWaeUKOutQrHDgDoU7Tw6nbfsfkjrMpz94KevbFefOGt1zI/knNZ7Dzr2dF5rtk4OhG2vLQ6Qdjym1ZURDJpVlMXytJAgkWLq1lUmqOEvHSQUXpKFoOXFCKHfwQaB8DOhgZNOJ4a8j5WA57VA5tmi68h3o5x4nbJlktI3ysmRdv8/jaTzjUh0LLtZaE1nKSZPNjVbSmQkkQaCRaH1jnJPMIAiUMiuo7ja/Pe3QkXbJOD6h+I6ieT+cehd/v/FGnNbthfyFfHZDj+5g0dyWQ2VEbJNweTXEgfSR/7R4pLKsUFEx+/2hVOfNeE1ZCH+IT6HnHT+WlXX/hmroLEZthSJkM+mi4rqOG9QE8nOjP/kzL6DM9ZlUFqIt5bDJrqE63UY2GXyvrWjnzXvEDgL3Rj4gkguAKCtMyDRyo4MdmppAz61tZIraFbyonT7o9bOuj6lUr3VrMpk0hSNCrAYjVwzbz6YxyGUC4XQWGu6H3R50W8sX6gaKfl+O5xPykuhYOZNqYkTsvutR9SVsG4Rdgwx1pGN1lEcsoiGDVLb4S9hf4XOlVJBVtOBDrH3pAWpX/IHMqRdhKxffskEptl/yW8Jtmxgz9QyUUlRGrZ5FpvthKIjUTSG7y8TYu77vZZ0kOjyaafVl+9TFMv+QKp1OEyVDyqoiM2kx4UiU8u4jRB6BJBNIjAj5mgAZ18cr8eS6N77WpHvpF9pXFwbLS+FiYdvhQmGy02aOK1rmKeNk6uvqOHlaLWXhEvHYLplA+ZPu7vn/Dz9UTtgOotzHjq0kGspVxbdMGSpZAPDS+maOsoIgkJ87zLu5mkCRsgoyhDpvdgYh/7ezvjEBaD5kPlkYCU+MPLHn/42xdx3To0uMqYOATHbGRb2um88EMnKF8pO52kIdJYb6Tjkercks21tTbNy5B0NporkgkG0aOJIJNCJprdnQmOCo8uBYljJ6PuFOZjwyjk9H2qUsvQsHi93XvcyGC3+LP3YBGW2TbNpaWF71Uhia879Fy+n/AlPfDUC0MhiNSTKBjjy+Cq69LNvqtxh0b3ae/79w8k2F14rOAENFxC5kcg8VyzSCQFOXIEY4HEG7WXa2dT4YdP0g6JDPBDKNIJNIKUV1LIQXrcPGJZbMdcMJdw5YErVNstouHLPzXSRrq8qxSgSB9MF6IJloZvYrX2SuCgIGbsX4flfpPqBBtp97g+3NnX/nqmoCVig3EEvuejvtBJlAqvtxoxde7pzpeD5Wboh45WUKGUktySwVKoUOlZW+PxiEaMgsbCNfo3R8dXCs7Bo4KfWwu6v8V2vm2EpW6wmYbZsLmUCmHQS/0nVzaJt+SWGI+dg+ZNIpFONrq9igx6H2rCjaV93rW4X8JFa0grKwtW/vlcsEymSzxFSGrXWns/WsO+m44EdQN/AubIcrCQKJI57Wmvxx4/4XVtL81t8GvO6e9gz/9ujKkgXC+goChfwUWTNKWdgsnPinNFR3rkuY31VcU3jKVOrpQ6EmkO8VRhRrnHsTSsGYqp4nmpAVjJKTHyJeDyLYJY4sL21o5pTyYCScNiO4WfZzwZqJDTWkCWF4+xAEyv0hvb5pL+cbr/Et+3/Rz9w+RK0WhxPX86ldckfwIrW3aJ6hXRJmNekrf9Hr+qFcTaAxyTVEmlcWnlbv6ej59Nj1NFv3ptgbz5LoaAUgWl6d247C0RZKgkAjTmNHhnjGZUoouKFysz2/O13P02Xpnew161E1U0mMO4XKWIhdehR+W5cuB14vhaGj1SRP+GThrilUVg2Anxp8JpDj+XJ+Hsbay6cCsHPOpwe9buay/2Xj+b8iOf0CsDuv07oHaAZb3HcgTEMVbTcajRJSLit3dBSCC1nXxVQaI1cY2lCqaAQlJxIEN2syucBolyBQxDaLMoFU7v9IrnuRZarOWjmAPkjdwfzXf86picd5vxUUCHbd/gcaaE11ni+SWRenbRd+vLHX5Xc0twKwftrfwYXfxQoF+9bJjeiVrwmEPbBMoPzD2qzrFzKBDC/D5uYEWmtaEkG3Z8KVfW1mQGK2yahcnR8rX98pFNTMmVpXRkNlGKUGMJKWUtRVBN1ht+kGylLbyTpZbDxMO4Rt5Y6NljGgkcB6oxRMrImyWk8k1roat1vgJ29zc4IoGSKxff8dWbkgUD4TyLd6Pkg4kkkQSBzxtA5uXluTWaY99WlmP3EtJPf2vyLw7b+s4r7XtvL06p4nh0wvw9FqrQn5aRwjytiqLiMFmJ1V6melf4pRM6UzOl/qgFkiE0ibISaOipXs62rnR9vJnVxcGb57RGpLOWxsSnCcGVzE2Tr33ckG3b/KyivJaBvTG3yqtu9r2pIO3/7LKo5SwY1T1pWb75FoV5eny2Q6Cj/6vsbSLr5h9XlRGc5lAgHMeOg8kqkUrueXDK53ffrnpoL3MiLBhV/h6bMv38ORJshIhIl+LohT4qbztY3NjLt7IWOf+AxneC8RL5tU6J5QFrZooRzdZXSw/I1tjyAQ3c7Tue+fm2ztsVxfXM9n9a4OstKldthKEuF5bzZlcy8d9Lr+rCuIT3h3j8LPiqErBt2bkGUUBYHKolFsXNY2xmnLBT283PE13w3GUKpQDwjAKwtGeKpzcl0n7c5RncJW0PXW0PlMoCw+qnCtahu5rMycgxUE2pIt7rbjOv1f27SlHFzPx/F8NjQmaPjJ8YS+P7PX5XfuzZ3jpr0bO1qBkQsCuZnguirj+ITJDjgTiNx1elCjKRcE8rOksj6bmpM0JzKUkcYI73+XJMs0iIUsqqI2ltF5Tq4rD1MWthhdGWFybazkAA5F2zEUoysixMImbZEJWNrFjO/CxsWyw5TlMnGi+9F1DYIg0IRRMVboqVRkduF3BN38fF93CwIliZGmrGLg9Ya6yxeGzmYzxMhASIJAQhxRNEG3rhU72jnDXBZMHGAQ6PhdD3GiWsn6PcUF/rxuB6OuMq5PTGVwzWjx055cEMjXCh+DS+eNY2xVhKn1ZSVTjlXXIJCfxcWiMhbqtXK/bRpktVW4EHY9CQKNROv2xDHwGZ9ZB0BUp0DrQhDIDJfhGmFMP1N0cz0QGvjdm9toT7uMM4K/oVSkYUjbL4Y/z9e8/VaXouBduoM5vk9IufjKLh3czrFNg/Iuae7+jqU4nsb3u9Wc8n0qXv0+VjLIbPPz75W7OLbNfIFpCQKNNBuagmNdQzI30mGJrtB3/OEZat091G38A3sYxeoTvlaofVEVtUjqCHQpkp+v54fdc6jnrudzI5wPAg0uEyiecdE6eDglhifXyaIsm5rYwLI6ulIKaspDPbrWKKUwDvAdVyxUfB1pGT5zjQ3M2PBLdrUFfxt+LsiZzwSyct3B8nS0DoAGZzsJonRttFIKzwhh5gLuhpfFwypkx9mWwut6W+kcnO5gq3d1FL12nf5Hikw7Ho6naUlmeW1jMIKqovc/ylQy+CyxSHBdb+WCBV4u4JTIBjWB8t3EerP+qud4xT+mcJ3ueJ1DxJu5jP942mVLc5JylcaK7n8mUF59RbjHdySvYgBFlMN20LOhKmoTDwfXfXYyCALZoRCxkIlpqMKIyPtKoagrD7Ozah4AesvLQHAf1/WatT2RIKQ8yvcnCJTLBHIyKaIqixnet6HsD1cSBBJHPF9rfK15Z0fnjYpO9R8E0lpzU/xH3B/+Bsu3NRfNSzterzfQaccjSgbP6nYyyPXB1qbNHVfNZ97EUSilKA9bJVODVW55fAdTZ/EMu89q9yFLFRVIdYa68qA4LKxvjLNQrSbitLIlND0YftTLgtt5c+OZEWw/Q2oQQ3ND8Dfx1rZW6spDnFYfXPyks/2nXosjS9rxyG54vnNCl0wgN1fo0jfsfgtCjgl3Bm7Cje8U6gEVZVk2raH21e8y+fFPgu8xPv5OMD3SWRPIxSrUpxAjx/o9cWaauwuBm65dXF3Px/V8bqJz2Pg/2udz3Ox5RGyTiojFMWMqSBKGbKJQk8rMb6P7+ZviTCAzd3Pm9ZMJ1P06oSMdvE+pUfXE8OC6DpZlF+otDlZZyOxR8+dgZALF7OL3NFo2AfC+9l+gddD1yM0Hy3MPGbt329Flwc19nd8UdEfqxjdCQc03rTH9LK7RecNvdYtyedmDlAm0uwmAeHgMrbqsEJgpaku3ujKup8l6Pu0ph7+8vLTf9/ByowZWlOW6voWCAGEmHQSQExk3CAKF+w4CVY47mj26unCsynoaMxcEsnW2EB3e0pygmg5CFXX9tm2goiGTyujABsUpJR88Lw9b+KH86IgdhJRHNBKltjxcVH9oXxkqaKs5fj6ONlE7g4f3vi7u4ZBOBNcdsf3KBAr2o58OtiVBICGOMFoHB4+123YVpiVa9/SxRqBrbYp/2nRD0bxkOkNszR8KB+yu/fvTjk+sVN/SfHcwM8Tk2jJMs+8LApUfHcz3MH0HV4X6PICHTBMXE+0FF5mSCTTyuJ7P+j1xzraW4Rs2b1eeEczIJjDyT7vtGNoKY+KRyQyiS5jWlD90DeHNTzGjoYLKbJCZkU0PfpQxcXjKH+fSjofa9VbnjG5BIBu3s6ZZH+rszie20ebl7E0GrxOZLoHFXOHd2J43Of5nU/lk4sesD82ECYuA/Ohg5oCCQN2LgYrD28amBO8q3waAp1VRECjj+vz2iZf5oPV0YdpZZ55LTVkI01A0VIYZXRklRRjDTdIcD757tp/GVTaYPb+/XYOa4VCIhA7jpTt6LNdVtktAszWZZUNjnD+9taNoxCYxtP701g5u/+vqfV5fuw6WHeq3RkopSgXfk/JuRWq71wQ6ELoHrVTLRgAs7dLYkSHr+fj5ejm9HJ/LR9X3+R7aDGGgSWcyKN8J/lZybFMVDQqZ7yp1oDnpoFvoH9/1MA4WXolMoK5BoGyygwlPfRZ/72aWPnIHv41/tN/3yGdQlcfyQaAg2JNOpci4HolUGkv5hPoJAoVtE88IY+S64zueTwg36FYHvPrKcwAkOlqD4ErV0AWBgP0aZSyfMVYetlC57rBmJsiEzAdT9rcrGAQZZyHLYExNBa2U48WDIJ8fb8Rv7azflkkE1wbhWEXJ7QyElesWqXKjPIaiR/6IYF1JEEgc8XS6FS/ZQsf2lYVpbrz/TKCVOzszhyZ6naOHeL7GeP4/GPPYTbDqUYCi/v3xjEtUpfHt0kEgbRQXaOtVPnPIc7B0NngC01f3CksV1caQYbxHHtfXrNsT5xR7Lem648lGchcQTrJzNDA7hs495R5UAMdNE17/V76VvI0TK5oYFQ+6YLiZgzQCiDjkXF+jteaFdU1UpLaxR1cHM7qMkJT1gtFCfKP/J46jrFxKvBEm0vwOjuNTvfZBEnt3FpbxuhTr/B/3Qm7xb2LTRfcVjo92LgPSGEAQSOqkHVk2NyeZb2/BN8Os0JNRXeqcpR2PbeuCQGWmcgoahTtmfqGbTixkEbENUiqK5SZpSzn4vsb202RV6W5AXc/ZwXDZNr7bd9eTfBAokXF5Y1MLH/n5a/z3sxt4fl3Tfn120bub713CHU+t26d1U1kPfJdQKLxPxW0NpbDNnkON54fXPpB6G90prFxWb90VjIDlFmcCdbdgav9BIIC2jgSmdvCKgkAGis7rTu8gjVRr5LKcrUgMB7NkJlDXzDt/3eOMWv8Q7qNf4N1bfzyg99D5v/Pc57fD+dHBUuxoTdPWEQSDQ5G+a8ooADuK5Qdt9JwstvLQkWoAblj+d6x64WHSbcF5zyrve38cCkqpwuicRirXlS53Pt7X7LmujFyR6rryEK26HCcXBAr/6Hga/nd+Yblsrj6gHdn3IJBtmUG2UUaCQEIckcK3T6XqP48i2tp5UeDGO7t35YMl3UcA29RYXAcoL55xsXe+WTQtf6GXynq0pbLEyGB0Tyvs0h0M+g8CqdyTSNd1sHHx+rmpyg+VnM8E0ntWgCdddUYSx/PZsLuVY/x1JEYvLHwHvUwC20uiUWCFqaoITpp7lz828I3n0sgNpfnc6qu7TD44F3ri0PO1Ju14fPsvq5lmNdFYFhTS1F0zgfygxoEeQBAo5AbH2GWh+URaVjNqzW+Z+MznqHj9R4WuYU8vWQXANyfchX7Pv3Lptf/I0RPHFLZhmwaOtjB0/8e6wdbAEsOX52u2tiSZqTeQrjmWJNGiYvcZ1yfUGgwZveGi+1n+sc0QrSrK7lBK4ZlRbD+F1kGxWNvP4Jqli7sWDb+dGynJ7+f4l39A1NiR4RcvbeZc4zVeCt/MnJf+375+dNGH/R11bVtLEhuXcHjw9YAguMm3D3TxnwHyrnmE9nGnA7B12ZMksi5+oTtY6Zv1CaNivKFmk9EWjx399R7z80GgRCqB4TtF16VWt0wg7aQP+Ch4WmssL0XWiFBXEcXRVqHrVlddHwB4LUH2YP2OJ6lXbaw66Tvc655FxuyjK1C+YHz+4UM4OEb42TTxtEtjSy4g0U8mkFKKSKSsEATK101SsZrCMuetuIWaXbnu1rHaPrd3qFRX59qbr6+a+14MZSZQQ3kkKNyfCN4jH+Tf2JSgI+3gpHIPn0L7HrgJ7pssQk6wrch+ZBUdjobHkUqIg2C62oaf+8p7ic5MoHiu68HeRLbohJXJdjuR+EGQKON47NoWXFzmC+K5XvCEPJ5xaUs5xFQGs5eq/oYVDMdY1U/fXCN3snEchxAOvtF3sbVQ19oYzesZ/esz4cnb+lxHHFmSGQ+vdRshHDLVM7ByT0i27m5kNE10hBpAKc4+fjIAxz37qYFv3O/lJvsgFX8UB0dfgRKtYcnWVma3P8NkvZ149dG42iATbyksU+gOZg6g9kDlOACezByL4WWoe+snAFipZna2pfF9zZ7dQfr3pWct5pTpdZRHrKKn7JYRZEAOLBNIsiOPFDtakoS9BOPTa3Eajierwp31fIBk1qM6tYWMiuDGRqMUTKsr75GN4VkxQn4atGZjc5yQTuOZpW/kijKBLDPoetJPJpDbuo1kxuEHj6/5/+ydd4AcZ33+P+/U7derercsyb13GxsDtkM1psWmt1BCIJQAgYT8CKGEhA6hB3DozQZTbIyxce+2rN6lO+n63tZp7++PmW23e013J52kff7R7szs7Oxp5i3P+3yfhx3bNvIF80t0iUHaBx+ewa+vYzzsGyr1R2MX9qaCkayNKjwioSmmPI2BqlSrgI4all3C3qu+hitUFow8zJbeZKks3Bh/svv1FZ9jTf67DK56SfXOYLKfy2ZRPatiXKorCkqZEgg7iz2JLYE1TsruVJF3PEyZx1FCdCRMbLSa6rzyfm3zUw8VX+dECOfkF5FUEuhudlzHdllQUAX9mqlr5KVW9D1yrIDM0Se+bwTQ2pRAlzZDGQs3COwQwidPhrouxhUq73O/6n+gjByaTwgFPjxaPuj7A2XZeGq06UJVBJ0NIYZlDJEbqtiXTqXoT1nkA08gjMP38Ymavo2G6QRKrkhdCVRHHcclVooDDIUXMyRjeJlB+lN5pJRFo8ac7VWuFowxtRvu30/Gctg1kKZD+vJEafm1yK6UOJ4knXcYSttEyKGFxjRMhRWTtjW0xc1JTVMLSiDbtjBx8NSJSaBSVLIDqcDzaM/9E36mjuMLO/pTLBC+jNiKL8SI+HXbh/r6WCZ6GY0sAqCpoZQ4IcuSnSaEWzmwSseXk5IhOIyo+TrmJ6SUpCcx+t54IMlrtN8BMNh2LinCONnSPWS7HppwS+3dBBAv/V9+tuoT/C53MgChEV+taYzsIG977OhPo+WGsNCRZVHF5QarfmKNXlcCnWCw//JfPBV6PSE3hdd5KrbQUbxSG7VvKEM7g6TMDsKmRkhXa5YqNDQ0ouFiWVmSGYcwFt44Mc/lBFJIV8hLHelM0P71babrG2ew89ZPs+nx+7jbfCeGzHO7ezrIOiE5F3hqfymtLZWbvhLacnwlo64fnoHuXJd8TQcC8PQow40bOE95hq0H06h2MHGeIHr8zCVNAHQ2VD8HQvMVUo6VxxhD9iuKIFr+jLn5SQ3QHc8bN2l3KhjNOUREHlcN0RYP+eEoNUigwgKv50m8vpJflG02I1UDT4v4BJY7DqnrVpaDmZoalIPmgt0FQ/lJSCABXa2N6MJl475BnLw/hyA3DEC++1weX/qG0gfmqRIoEY2QkzoN+aB0O9w069/R3RRmSMbR85UkkJ7pJZVzcNNBRUfo8I2hOxtC2KiYrv//EArHWdsVpzV6eErAYw11EqiOEwarlf3kG1cxKsN4uSQ9wzmePpBkJBukablexSSh0Ljvj60HoL9nD9sPpbnrmQM0CJ+9lwH770mJ5XhkbZddA2ki5DHCY1ZaGhYwcN13cF/4dToSk68yFSLibdvCwJ60vMLQFL+21bOLA8zJpLj1SdHxhe19aRYGJJBoWowa1G3v6TnIUtGLaF3h7yuLP7Z6n6k+US2MieB+6lnfZZhYyWuojmMeOdvDnmBl1pOSjQeSrBQHGFx1PSMLLyVFuBTbDtiuDCYHU4iJjbURPuUF7JBd5LQSMWmO7ADPJWu5mNYwKbWxqLoUgqrkHU9MrRys7gl0/CC26/fF16LTVwJpnt8WSStD44P/RbcYxAm3kghp43pVrF/qq9HsOz/t+/mRh7F+fjUQCsrBZA3/kSJG/LITZ+Nv+JT5dQDyiWXsVbqL13q0cbyNAcpTYEcnIYFqGcVbroeGg9AOP0VpvqDAR1kLL+BMZSva7j9jB2a6mOMrga7Z0MUbL17OmYurJ/YFEsi2cug4oFZOlpe1+GMLTwqEk5/0/nI9yUjWPuyysXTeIUTeV/SpCtY4SZFS+v/fvSMZVot99El/bGToGotbIoiCfUOwsFt9oZXlYKaukEeHoBzUKSiitYnJA0UIOpr9796yv79oni0XnOn/nq5zab7i7aUPzFMlUFPEYJQw7XZg1Bxrn/XvaIkaDBHDtJPIMhWvlvZDSeJWsNgdKIoPB61REweVBhH8vxsRNFWZP2q+OUadBKrjhMES0YvVtIoMIWQgwZSy1DlYTqUSqFDrPxLzJ87p/gMADGwrSUmx/YbD83wZseNKBkezhIRNKFKa1BSQX3E1SnhqrLUSDEIc2w4mVRN3LroaGEO7DhQkv9RJoBMJO/vTLBT9SKEQalmEGvEHcS/Z+j6aRYrEgrX+gbIkkx/Y8fiUzp3NlWT2TqgZJdFNXuoVZqx1HNtIW86k5WB9vXtpFSPkWtYSMVTyUscrU03agTH0eMajY7GmM46haeww/Xtzj9eGaqeIHPTb2UZvgIzRTHvC5KSuOOu6E8TMahJI9Wxy9sTlH/X27vjBoCxNYpXW5diKiR74bHj3fonTtn2R05VtqPFWoqZGIlT7flza5Zvnn7f367gDOwkJq4IkHw8h3S8Hk+MpB6Dou3Kq8wQb2MbQyhex83k3Bz5E+XFLT44kjrcSyacP+EqgFyp/ITt8cMJja5HCtivRcFGmQmLPcxRUSSPrbsRB4dz93y2a6U7koxIxNP7mtO6apT3NDf5zl81mMLCLpEgRwT2dIoxwc5MS70P9PXzhtscnbbsLcD1Z0Y4nszZhLN9sWfVDAoRbgwTCV+xv2r6TJpFif+tFgF921BDWEUZA/Nq1wzJk4ZzBfRE3NfLorO/5KfronlIfOMk4XRECLShf2rr/EF6BBDr9Rvb87f1kOs9FKCqbX3oXAxf/65wobGYDpy9uJC3DLMWfFxHrnPgDh4GQrpJREmjS4qldpXTn9sc+R+PWn5Kw+8gLc0Z/I0UReEInQUACTWEB4HhCnQSq44SBgkS2ryOHUdXQ5x0PKcEtq1+WAQlkxRcCsPbed2E9+QuW9t1ROiYgkzwpGUz7g8F81jc7VceWg+GvzExVLlzwBHJsG0PYpYj5caAXPIGkXUzrmWyIWd6Z1tPEjnFYaS7e/HHO1ndiRxeQiEbpaOso7n7SOA3j7Ff7bzIlY/TUvqemtArXO1QySs82n0zEVMljICYqh6jjmMJozplw0C5He+gc8smZXPNaooZGHgNZpgZzPH8SNVl7VUDYUFnXneAJZzEAd3vrsYRJ07afkXdcumQ/6XAXHYmQnz5To/10FR0Nh0x+/JV/KWWdBDqGkJrg/xLgkFPqX41oM44w0IJyMK/MqDzc2EnU1KqIwwJE2aA/8fDnCZNHMSefCIR1vxxk3PIRqFAVWJFO9l/0CexYN54Wnrj0pAZ6R+ZGOeRM4tlyrGHLwRQXxnr4rPFl2v7ywQmPrdUe2K6HhofQpkZiz3cIAXasm3sjz6LT2oUMorAnUgIpCjRFa6fRLmtvBGDpAx9BF9VKoMKoc5QwipuvqbYqx+Kvb+DGJ/6Wh3cNTXhcATnbJZVzsByPvYMZnto/QkTkiySQg4rwapeDeVJyaPtjADSc+WJGF1yM+/yvAOCqwTNv1SaBiuqioF9rT4QIa/7f56QfXoRrTU0JpCmieMzAcJKhkeD/w4hA42La4v4+K7GUzOlvGO80Rx0tMZMuZbi0YQ6UQACu6S+mDw72MSR94jK+/y8s+vO7eIX7K9JGa0nydpiQqk5IBP+/dRKojjqOYyw5l4w0EWNIoNF8EKtetipWnNg0+pMTw0lx5v3v4E3qr3g6dDquFMUOo/2bZ9P85DcAiI3u9D9XozERCKaqMjQMnwTKWnki5PH0ic3PjCAdTPEcCAbBkw3vyn9vfoYGfXUcZTz5Yy4b/TUXyEfJNa0irKuctGRBcXfouk9ixIIVk7XPJ91yCkkZhr5nSFuTr8IdHCrJ7PMdpxML6eTRUbw6CXQ8wPMk5sNfo/W7l4x7TOwL6/kU/wWA03oyYV0lh14kzKGkBBJTMYYGNEXh9MVNfD15NgC3eedwi7yQxm0/Rex7kAWiHyu6YMJzFEpls/nx70V5aBPhR742pWuq4+gjlXMmXJg4YJVKqk1dxVFMdOlP/lxZ6mSVqB+xPO7iS7qv+PLy9G/ZoOxCM6aiBPJT6caS4OXEws/uK3mP9J3+dqQW8heCCuaxUzTVdz3JUGbqhNF0cDyRQKM5m/3DWS5t9D0bXWdiIrGWCsoOysGOByUQlCK7802raWOIaC5QVExAAqmKoDlSmwRa2eV71CxMPsZy0VMsDysiWFAalRFUz8KdwgLTcqWXZb+7cSo/h7zjsXcow+beUYYzNlnbJUQejCi6omBJrTokQEqiv/k77O13E+25FxdB+7pL2XvND9CXng+ApwXPvF27HEyMKQcDSOil++ffUv/sv5iERFAUAYHS8B/0n5TIIz2CqSt0NoRoigYJwur8Lkkaiq8svZmBL89EUMI+CZRPjRDC4tbYS3hW/lPF/c35/TP/jvKxygxMpo9F1EmgOk4oxFoXkcFEdcpIICnpG/UHchnLLa5ceEGt/5LuruKht3W/lc3r/4E7lvwDWUxcKw1OHi25l+77/oUNX1/MRw++DQ8Bzcurvl+ZhhKovcFvjPb3J6fkU6AoAhcV4TlFjw7XlUXPo1ooDFh/+eh+hjOTp+vUMY9RJu92W9b4g42yqFq1fKUm2sLQq37HY+HzWD36AIPP3DXp6Q8Nl5RA1qpr6EiEyGGgTGM1u475i/50nu57P4oxuGXSyWnabEOJtfi+CNIAJ1dsN23Xw8CpLhMYB7oqOGNxE9vkQpblvseCs67l07kXMKJ3cOYfX0pE5PESCyc8h6L5EzZrAhJIfOMqmu76Z79cto55Dy8IWxgPyXyJuBZCBCRQnkPJLL0HS2VASrxt4i9a5pOeD573xeImM9c33tFFFDyBxvqPlKcdDQyWpZB2XYCiwLLWKGY4aKvt7JTUad+/fzcfu2XjnMRt28dYOdhEf4MtB/0+ar3pEx3DoYnJ48Lfvvz/IG+7GMItluMf64ibGooCWtc6AM5VNvk7JigHU4TAHCflqTFR+lyLGEXRx5JlpXIw000js+MHTwylSu31goG/TvQzisg7bkUVZcZyiZFDMaIoiggScse08XaW0MYfE/2/F7Is+RDbtVWE4y00RPSi94vUp6gEKvPmVAPF0UFzCZu7/oYDZ70fAm+fCRGYR79EvYszlK3++bUQIc0n7LoawghBTRJuPiH1optLb+bIEN0okECZYcLC4sxVC3jVtVfxauu99MkE+077hxl/R0gpWwStK4HqqOP4hBVbRMTQyGLSmdnCyp8/j9U/uph1315DdKdvMjmc8VeSAAiUQGao1CgsvOodWOf9PenGVWQxsbMpqJGutOn6u2DF5VXbp5Mc0dXkr9TsGxglKnLIKTDUBYPUZ3b57LjjOGTHU3lIiTvay5P7RvjGj37KX2/++JSvrY75B0srDc68tpOq9je0dFS8N1SFXSv91TfzmZ9OWpM/mPQH2CNLn4PSfVrgiaGj1j2Bjgvcs7VUIki6f8Jjcw0rSIR1TE0tmmMOBkoFx5VowkVoU1tJ11SFc5b55pcShbddvpJw2xKuz7yfft2fxDV0VRPq5YiG/UG1ZY1fMiOsoERonJXeOuYXvKB8oxaklKjBRG/4b74FgKuYKEiS6Qz79+0uHqs0Tkwg0rmebW/dT2j9dXxy4RcA0Aa3TXp9pqZgoZcUAgHKSSDFLhHnsmUFq9rjRE2t5D/iZMdNRiqQHaM5m//+5V+5dvd/MLT13kmva1rYeRfhO/55ds85x5hIsbzloP+ML3N9NfZk8eOOJ7FdryJK3gmiwNUptl/zHYamEDM14isvxJWCS9Un8FCLapRaMLUJjHHHlH8pVUog/2+ekv75275YUouMJfDu2TJ9FcfY8ezB0TztYhi9wfekcYSGIscsaAZthZAua9yt9LacixKonYrXVlQCTVYOVkYOBs9+9tKPoF/7GZzz3wlTuW/K1IeXKY/5LwIlEPjkT3vCRFPm9xS9o6ubZ15+P72vuGPygw8TRrQRAG/UN4E2w1HOWtLM61/zJm6+5A5iV31gxt/RmNtXejNJutvxhvl9h9VRxyzCWnAOIV0lK/1OKzzwFK7ZhOLmSOz5Iw3bfkG0577S6mMg81bLpOGF1YLGsE5WGr6zf6HGGjgkG3ngzM9gtteetEyH2e9u8UmgnqEUYfKIKZBAruKTQPc9EwyCrVTFAKcCT/yIli9vIL3zfn5lfpjrD31uytdWx/xDf7Js8FKDBGpJVK5waKpCZNnZPOCtQevbSHICxRj4KXUAAyffRNgIkuuEUVwNq+PYheN6bHzmqdKGzMQkkGhcQns8REgPSCA3X1QcOl6hHGyKJJAiij4IAJ0NYT5y3Tr61HbOH/133mm9lY4zrpvwHNGI30a7tj25smKcld465hekHD/NzfEkOg4prRFxkn9vuMHk1LOyROySAkdbfdWk31Xolp975dX+i471k35GCOH3t2Pav7xb6m8LJNCmG+6mIxEuGu16hYm0nR33N9pBmdbDu4d4p/YzXqHdQf6h7096XdPCd64j+shXjhl13BP7hvnin8Yn6Db3jhIxVJqTWwAqylRrwfUkOdutaDNc22/HFPX48ATSVYV4SMeINfEMywCwtciEyo0JFyvHkBw6leMGUSAvqSaZ7DGlh/39/sJDHgMbbUKjdCn9/6vsmMWq3r5+EiKD3uSTvY6oUQ5WpgzShUto9bMAKhIDhRFM/sfxOFQ8GxelaPYOpRIxV/fH6lNe4131bKz4IgBOVXYE3x+uUF+1xUwi4yQazheoisCJduG1nzxn3xGONwIlEkgPvFYbwjqXr2nH0GeZxpjnxNts48T6tXWccJBS4gS3efaqT6AqgrziN/YDJ72Kv1z6Qw41n0nz5v9j8Z3vYPmtL8UOSJNC6pFhhsld92WSF3+YFe1RQrpCS8wkQwg3n4Z8iQT6RPfnCJ9+Peo4vcF422shEUxsBpJ+5HwxwnICeEJD8Rxi+GomNd2D2HNf7YP33g+Au/fB0janPqE/VjGULJmhirY1kx6vq4KVbTE2eYtpGnqcoUN7JpxAFxI3pKITMvxnyieB6kqgYx2HRvOEd5et5qUHxj8YUGJ+opKp+TG5ipsna7k4roflyKB8dWorarrq30s/efP5fOalp6IqghXtMT59/al0NydIrX5RhRqzFuIRf3/zo18gY00yoR0vAriOeQVPynFNZQu+U57Q0QNz1nISqMkbZlvoFLa8/K/VniU1oBT6Zc1ky4v+gLjhf6d0jYoWqkoHK5/oak6GnBJBa1lKU7SW6sAvB6v1OwsKoUd2D3Gu8gwAuZFDU7quaSM7OPkx8wB/84V7+Pwd28YtCdtycJRTWiRmxk8sEs7EJJDjSbK2S3lFnFtQAlWVOR2b0FWlaIquLToLAMUcvxRsUowpFQ6N7KjcHyiBMqK6zXY9WfF/5+b8MUuPttBPlMwNV31mKG2xoy/F0weS7DiUQh/YClKyeyDN527fyvYdPikoEr5tgyc01HGUQABpQiw89bKq7xEFBcg494zh5bCU2uopz5gmCdS4iK0vvwdXK/sb6eEK8k0IQUif3yRQod0s9OFzgUSDrxLODfslnrFonOVtURrC+px/94mA+l+vjuMaB0dyKFJy38LXEYn7jUlW+o3HQ32CN33vYf7aVzlI7LztDf5qcUACCc1EbriB/DlvJ2JoRE2NxrDhp4xZJSXQ31nv4PRTTgPKBpVjMC2SuRCxbKVQhEQPTd5xy6AcrMP0r910Uiz+5YvIJWtM6oKBwL0bS9L5QqpYHccehkZLk1sjUjJ9HH7FrYy89OdVx+uqwvL2GL9yzwcpab/348WEu1ooRKQqmoEZ1K77iTx1EuhYx76hLBuyD5Q2ZCYmgQrGuSFdJScNFDePlJDMOdi2SxhrSspFKKkjT1/cxIYFvrlkU0SnMxHiC684g3c/e/X4pQkBEjH/ejo3foNUtnoQX3FfW6mq/Ucac+HtclwhN0LrLa9B2faHmrttR2IIG0/Ri5OAgrpG2llaGKY3uhrZsHhKX6epgkTY72+tljUQbpzS5wzTRJQtnLiZIejzzaCllBhuGkuNkAhV+ssU/UfsLMree3GHdjMWBRJo8+59rFH8cgU11Vt13ExQJKMmKf+cbxirKClg90CGc0JlpR2TkECuK8nk3QqDaCf4/1SPE08gXRUYmoKpK8SXnAaUGZMfDpp8NdFH7JsA0Aa3Vu4PSKCcUtb+B0ozd0xCY4EEGgwFJZupai+uVN4hnfd9gAYe+imrf/osnvjGm3nbzY/y2LY93BB52D8w0e2fU+h+OEo5yiLjn46cQyxWPZZWCor/cZRApsyOSwK5gb/SeOP+WhAIBte+qvT+GPSiKfTd+hwaWC/s9L0s3WTQ9ukRoqZGe8KkI2HOKgl08O27Zu1cxwrqJFAdxzW2HhxGEZLGeLQorWw0/QbroV6Xi1e18lXj1byXd/CfZ/0JV4uQ2HUb3qbflFI/tBCqIooNXUhXaYhoZIOUsfSIv4o2ElvOhgUNtMVNOhpqrz5Op5MoyE4/oX8dgGh8cvd9VTdQpEPIy3BQNha353o2Vh8crF6EKVvZqZNAxyyGUz4JtOuKL2OUd4wLz4GlF1cdb6gKiZCOuvQCbhWXEN97BwPJ1LgT1MKKd6H0BvxobkUeG6UEdYyPR3b0cKHyNHeZlwEg09WD8aEyIkW0rAD8hKQ8elENdmA4SzoziiLktA0WVUUUJ8sRQyMUyLwNbfLV0PZYmcpi38NV+9PlceNzqASSE6hXylGPqp8Y+zY9SHTn70j87BU191uB+bhUjTISyJ/Yxrb+krjI4oZbp5yuY2oqC5sihA1lWiXboVAEVVrFkmvxvy9gwfcvxXZc0pZLlByOGiE+hgQq+k7YWeI/uA7t86fV/I0A6R6/tClNiIg1uWH1tFBIiJqE9J0PKO+XcjVK3D1Pcmg0x0n4ypR+Gopq7ppID9DymzeQS/ZXJFi5Qdnz8ZIOVlCXLG6OkO46D4DMRf90+CeMd7D/73tJn/JaLKniXfbByv0BCVROmNgZP/7d9SQVTV+QYpuK+KVRpKuVbgUPKOFatG7xjYhfyW/54soHuDf0dt7s/gAApcEnklyho44dk5SRQqPdFxMzqkv91IAYk+MQh6aXw1Zr92leUA42rfE90HvOP2GHfFXtZNHy8xGqEIR0BW0O1TjLF/heT03Sv4cKXlYhXaU9Mbv+PYpx7BFxM0WdBKrjuEY2WBUOh0tSy+esaQTgZeev5r1Xn8Q7X3ApfzYu5XN39/CGyH8B4CUPoBRJIBNVEcWGLmZqRAwt8MKwuHejb0J4/YXr0FRBa6yklBiLabn9K5UdlRkeP9KzgGg4HJBAaUbiq3l35P/5v+fgM1XHFoymz0qUET81TK7rODaQTPleJ1bXmUXvCfDvuVoKtIK64rUXLeOn+bPRrBHiT988bkpcQQmUKCOBPEWvll7XcUzB8yRDW+4nIvLs6b4aRyq4qWplwJN7/Ylif8N61FNfClA0hi6owaSEfMZX2ihTKF8di0I0LsCqjjgdDWaRDJoInbI0OVYPPVm1P3XESKBqH5tapGqdA5oYj24/MOF+vxzMrUjqkQEJtOjRT/sbYu1oU+xvTd0nfxY1R2iJTn3yHwmH0aRTVJopPY8BsPtALyMZiyhZXD1W4T0ClAjSwIRWUKscTHLL4weI53oAeEY7mYTdP6FvynRRnNRO4gE2H9Cb9Mdy71B/hru3mujtS+WxXckyaxtWtJs+0YriTqAEeuCrRLffwrJf/A3RO/+luNl1jy9PoAJCugptq3nq1Ztx175gRucSwE0XLmXzG3agXPbeMXv9+7O82bZG/b5De+IHsP32sh1+W5wLB6EV+VJJOwCORdNfPsrS225kzf+dz9p0Sa16zb7/wk4sZfezvsLey/8b0eobULuTlIN1rL+0prK0QAJ5NXykpJSEZRZbHacczIyhKqJi3DUZhACEwtaX3MGOa388Z+lacwlFESxtjVYuOs4ymhvi5NFpE4HtxkxUbJNgnoexzQnqJFAdxzWcIOY9ZJYajoTmryKZ4Si6JljcEuFrf3sWb7pkOXccipLFRCZ7SqkfgRKoMKA0NIWQrvjxsG7el4AD65YvImKoE7Li01MCjVk9nEJ5RTwaxsQmLtN4Roz2DVeQlQaZvU/gjEkh6cv4f4dzM3cWt1mZ4alfXx3zCulsIc2ucqCiKROvbl+5toNN0fN4SltH+2OfYzRde5Jc8AQKlZ1fKhpaXQl0zCJruezf8ggfOPguAIaaTiGD6Rvej8HBQX8QNrz0uZiBV4GuCix0TC9L45YfA+DkAhJoiuVg5RhLnrfHQ3Q3jJ9iU4DeWTKm1Po3F1/broeUcowSaO7KwSRUJVqNNTKlxjF1VGIyL5eCJ5AsJ4HGpLpoDZ1TnpQVoplNTSVqTn3yH42EMbDZ2VfZZnojB9gzmKFBpHHNGgreYDXby49zL+5/hJYfXsd//PpRLlMeB2BvdD0GNmSHpnx9k2HrsH8fymOgHGzrwRQxMvyD/hPUTb+q2t8z4t8zXdmt5FrX+351E5FAQQmPmdxF9OEvFTd7To0UqOMEYV1FauFJy2sngxDQHDNrnydo26JKiYhx0v49G/3tOzBufknp2KAtdiN+yU+h7yh+bte9tDz5P8T33clT6UYAfr7gH9n9rC+z7fm/Ztvzf0Vy2fMYWfnC4mdcZXwlUB9NtC87peZvUgJjaKcsYbLQfzieJEIeZxwl0NoFLZzUGad5GgRyYSrghhrJdJ075c/NN+iqMi3y63CQFREWi0AlFm6a9fNbr/sTO5538/QW6Y8T1EmgOo5b5B0XJ5D26kbZANHxy58S8Rgr22KBskfl2lO6uWJNB4dkE4z2oHpBZxDINMud+01N9eNhPQvFGsVFoautlc6GiVnqmSiBpkICJaL+4HKF0oM0E1ywso27vfUkdt3G/sHKDnZ773Dx9ajRBkAmWW0QOZY8qmOeIiAtTbNSVqwqYkLyUVUErzx/Cf+e+Rv0zEFCG39Y+8AaEaleLel1HccMHM/jgTt+VnyvJjrJY+DWIIEKhLphllSVfkKSf78tuuvd6KN7kHl/QjwVI/upYEoTlnUv5J3dN/OkWIM5tKXYZrmexHK9CiWQnR0d7yxTxrglk8GEoYB7tvWz9WD1RL9eDjYx8tkyUqVGWEGRBFLLzZYr271orJGmyNQmZeWTmOkk8sSiUULC5kDPAaSU2MGzoGUOsm8oSwNpZI1JiwhIIHc88uX3HyLU8yAvyf2EG7Q7AcjHAt+UGua5U0X5fWc5Hmn88Yo9Ov9JoC0HR1kqfF+QgnlzOXpHskTI0ZDZhd2+AUcxq5LbKhBKVL4PfIGKJNDYRbjjAAWD6JlOdgW+4r3muOKcNwJgKaWxcGGhdCwU23/OZdQngfKZSiX6r+/4MwBvNj/Bu+KfYp33Q1ovfRPJZdeQbTu1OEYu/z2ylhIoWMC6ueVtxMO124SCz51rlewRcrZL3vGwXY+IyFUaOQPuDT9g9JTXBGrrE49AOFLo0RfTKYJ7KNo2+1/QdRrp7gsnTsU7TlEngeo4LlEwk3ODiUtF0sMVHyaz4EISp1zrx2SbKoua/cZ9w8IGemUj9nAPphsMRIMVo/IGwtQKSiALxU6RJUQ0pBOpUWtcjmn1E8o4EvIJEC8r1RFmnLVdCR4IX0zC7sPq2VgxCNzaUyJ8fn3GNwDIJis767zjsneoMg2ijvkJEZA0hjFmRbxMxTYebjx/KQ+rp7DDWE3DI1+qGRlcVMaVk0CKjoozqyUKdRw5uJ6k/5BferPt3I/TGNbJSQO3Roy6k/fbATNUeX8VUpkAmrb+DMXxP6sehhLosCEELV1LeMheSrjvcaxgRdnxJI4rSedLapxMauYlr1nbrUmOS0oT7WTW5tPf+B7Rb15SVebgHiPPy9EysB5Nlf29avjUWY7EEE5FW1Q0OQb2yVbU7g2Hla4znYlAIubf41ff9UL2DWUZdgMSKN3LUNqiUaTQItUkkBKYDnvZkap9AER9n5A3qLcCkD71NegxP9hi74GJS+UmghX4q1iOR38qj4r/3s4efbP0ybD1YIrlAQnk1SAG9w1lOUns8UvrOk/BUUy0iTyB1DEeLJZ/zzlFEmh+JzMdDuKhgDSZ4WRXUfyF0Fgt1dyF76D/PYdYcOVbcGTg1zVO2mSBBCLml4ONjibpHcnRN5pnNGczuv8ZcsLkLa+8gc+//Ay++9pzWdFebepcbkzsKjoabsWYZCjt912dTfHq0swApq6RlxpumRIo73g+EWR7RMnhjh2Dr3keySv+veb5JoPgxCMcDhdbG84vvQkIw7nAicjj1UmgOo5LJLM2tuvVJoFaVtD3oh8XV4KaIwYhXUVRYF13gkOyETnag+llySnhmpFepqZiSQ3Fs1GcLHkxtTrVaTHNY5VAsrqsYCyi4dJAWA0laI2ZiM71ABhDWxnNlVZICn5Jw8v/hkjCH2AOD/czmLaK5qapnEMq57C9L0WuRllDHfMHSkACmWblvagoYtKVv4awzkvPWswnU8/DTO7G3frHqmNEoa6+fPVd0VCQ4NXvjWMR/ak8be4hho1O3NNvJB7SyWHg2dXEb0EJFAlXDoRFWTvVsPNW1AIJFDqCJBCwsj3GH70zUN0c7jZ/Bdl1JbbrkbYcPOk/A2NXmw8HGcstGpaWQ9zxMYzbP4znSV79rQf4tP4VVsrdxcSoAuQxIq6sVcp2JGDnypRAuWqixHY9DGxk2UReKyO/L8p/jmjQp80lQvhkRNzuZyRrk5Z+/zv05G0MjPpKoHBDa9XndCNIMhtHIeGGWwCIiDxDq15C9qr/oKvDj8D+6A//yk8e3jslA/IKOBb28AFe++0H+fwdW8nZLiZ+n2HXUP7NNzzTm2SZ8P2R3BqLFLv60yzT/YUtpWU5nmKglZl2V2EsQZQdBkred8djOZim+ilh00qprXUepeSPWQuKEJy5/mTW5b+Jh4rSv6Vm6pbm+M+5lvBJoEwqSd9ont6RHL9/+iCLvf2MRpeiKP74vKsxRCxU/Z3lCVHFEtGyRLAdvf5ztrh1jPqrDGYQcpDJpBnO+M+1nRqit3+AjT1JIiKHMCoJKEUcPnFQPhU4AQUo08LZFz+39GYOPIGEKPnCnWiok0B1HBcoX7H0PEkyZ2M5JRJI0ytXfcp9ewoyTkNVWNISYUjGUfNJQjJDXqmtvjF1BQsdxbNQ3SyWmANn/7LJ1fBFH4ElF036kXIlUCzhd3jtS9fhSoE8tLmiLKIwqR967pfpaPMllrnkIPuHsuwaSON5sjjRyeRdhjITSKvrOOpQXBsPhbBZLXeeCvn4ritX84h2KgDeoWojcVGQ1pfdl8VyDLd+bxyL2LtvL+vELrLRhcRCGiFdJRuUg2WtysmTaxdM9ivbxFUNfhvhGA2EhjZz07Z3AKCFqlds5xIndyV4yFuDi4rc/7CvejjwCO6hZ8jk8n5iGTMngZ4+MMJNX7+PQ8lqvxHtnv8k/NCX+dUTB2jY9ydWKP6ktUJVYOcQe+8tvh13kjoPkLGOzrVVGPrWUgIF5WDlE/W1izsqjulunNxLaqYQ/VuKr4dHR9GE//c6degPnPL4v6AJj3C8moxSNb/dlOX+PmVjmH2Z0u8aXvECDE3hgvW+8e2F6pO858dPcPEn7+Brd22fulrr1neR+NJ6ejY/yAV/eTX26ECJBLLmt9rXcT02945yStgvW5M1lEC7BjKsivikgt7YjauG0L08/anafZOVH0NKBGV2XqEvOw7LwQAaI/q4wSVTRSF1L2LWPo8ifIJI0cP0mkvQ+56EGv5XupPGQSMUbcCWKpv39PLFP23jhw/u4banelkuDqC3r2Fle4x13Q10N4ZrmhCXk0BekQQq/b/v6PWJ5KXt4yfsGqpv8WDlMkUT8q6vrGH5D6/g4EiOKLmqPk2IiUvt65gdRBasm9PzC3yV3FwaXM9XnHi/uI7jEsmsUxwM9afz2I6/AlyQDatjSCC9BuOrqwqdDSGSRNCdJBEvgzWOEZyh+uVgqmejudmK+udZQ9kAN33WW2oqksbC1EsT9NbgJ69d1MFu2UHb9h/jBatdAELauKg0RQ0WtiTokw3EhzchXIt03mXroVF+88Ov4Pzfq7DzOXL2MbJ8fYJCSBtXaIddm94UNTj/5GUMkkAObK8+oKYSKLhHvWqPhjrmP8767XWsUfaRWXgpEV0lpCu+EsjK0p+qnCS5VkCojyk3PLPDv98eavmbiu1HmgTqbAizsK2JfepC6H2SVN6h4XvPpuXbl2BlSuVFdibJwRoEzlTx2T9s5WtDr0H7/gvHPeY/f/MkHze/XdpQPmm97f0kbr4O+rex5eAotz9zcMLv+5dfP8237tl52Nd7uMg7Lr3Dh/93mgnUcpVGjcRK2/HTwYRWaovOWNFVfN0U0Q+rFGzaWHxe8WW+ZxNRcmxf+nJ+oT6ba+zfA6BEq0kgJRiPFAxz/ROU7tHewdJvdpdd4k9Owo0AvJZf8eVVD5G1XD7+m0384IE9U7vWLf71/ML4Z85XN6L0PooZKJncfOn/edoKoyOArYdGyTseK9WgHGysEsh1GBnoYak5iqeahGJNSNXEkHlSOYdDyRx5x60gzHYdGuN/WBgbOdVlz8cT2mIzX7DUg7HoeGSSEAIhBK1xg53aCkIDT2OVke9OoS9xs+SVCMvbY+SEyXOHf8Carf+D+dCXyW/+PQuVfszONRUlXKamVClntLJysFok0EjGV7q1NYyvTjU1Xwnk2TkcVxZJWSN9gNGcTYQ8eo2E3sMlgUTF6zqRNBFEjTZ0Vs8vBKoQcxp1P19x4v3ieYKib0DO5it/3l43350hRrJ2UbUylPYnpDm7XAlUqY6oJftb0BQmEdJJiyiqdGlmGFut3WkoisAVBqq0MLzcuNGRM4IoUytNtY+wS7JuXfoDu1UdMT7l3EA010to662lc3oOrvBX/xsjOj2ymZWDd3LSD84ktu8utuzr4/U9H+X01F385dsf5JHtPbPys+qYG6ieTwLNBKcvamSn14HTX00CKTWMoYuEkFsngY41SM8lbveTIYx68TsJGyohXSUnDbCzjGTtSoVlIbFpjJdGe5tfo/+rgW6efnkpwncqHmazCV0VXHVyJ49ZC9D7N2KVKWysZClC3ssO0TeaP2xz5kw2wwIxwKJh/7fWOs9V6V/TJfv4Sfh6f0M5qXFoo/9vuo9nf/Yu3vr9R8f9rpGMzbfu2cW//Nr/zJFUDb3yq/ew+auvhL0PTH7wNGBPYayjTlEJJMoI6WikRDoOZY5Qe3Te3/GtVV8AIH/gKaJkCccaMK/+GH3SV+KKGsbQhq7jScGhQ2UEYFnZ23DS/83PvOJBFjbHfEIr1Fjc/9y9/8n95lt5tvYYG/fV9lupQuAzZIpA/ePYxdduWfnnfEyue3L/CCDpdPYBZebNAdxb382vszexWPThRNrRNBVPC2Fg43geB5N5tvSm2D9c+p2b9/t/t493/Ke/IVACaXZAxpnjlw4dy5gN89vJymYKu9tiJlvlIvTMIZyh3cX9I8O+osv0MlhqmIVNEeL4Y9d3KTfzYf37fNf4DxQkStuqquuPmRpCQHdjiJO64hUG8LKgVC4bkxRK/FRtfKN4U1fISx2cPFKCnS6RhGu2/g+6cGuSQCdiCdGRhioEPed8iJErPzMn5xdMMYDiOESdBDpKcIIkgk/etolP/HYTf5xkNbCOiZHKO+Rsl1Te8csAPBfXcbACkzcxpvGvxfjqqoIQAs/wO/8uBnD18VcOPEVHkw6Gl8OZExLIb5SkHp26fLeMBKJzAwBtcZO7tPMZ0lqJ7Lq9uFuRNp6iYWoKMVMjavqTey0/wrLbXsUZf7qxeOw71R+z6o+vwXPnb+nCiQ5F2rhiZquXJ3c3sEe2I8sGbAUUPYHKvaoCQiibm/+eEnVUoueQT4zct+j1tCQihHSVkKaSw0Bxc0jpT7YLKCiBGNOWiovfw+0n/Ss/SJ7CI4NlKqEjaQwN6JrCject5hlvMeHMAf7yRKlUJz9S6l/N9AHCvQ/RPzp9lUsq55Df/1Tx/Wgmx0O7qhMVP6x/j1TnuTwSDgwty5VAAXExkkphYvE5/fOM7n6suFtKSSbv8MU/beOCT5Ta6/6UP5HdPVAZRz5XGN73DC9W/wK/fNusnteq4aU0FrpX9n9TSwnkSgycyn49iIh3peCkzurJ2pxAUWDRuVhSRe19HEO4hKINLOzu4t4V/+Af07Co6mO6qmCjEfHKDLDLSKBMNs2Q1obe2FVSNI3xwtCzfXxN+yRX7vjklC7VCrVUvHezKQz8Nt0rM8Odh0IgNh4YpVNNFsM6xiqB5DO3ANBl78ELjGOlFsIkXwj9AirvveFkYASd8FPXvMCfyXSC/5NAeVVHNcqNmGuhoI5Z0Bjm0ZxfprnnibuK+5NDBRIoiz1Gbb/zOd9j8/V30bfhjdiRdtTF1fHpC5vCrF/QQEvMRFeVMZ5A1SXqsnC/TKDuKiT+Lun5LW2Pfh5v593Ffeft+iIARlNX1ecOlwSqewJNHaoi6D/ljVin/u2cnF+Iw1d0HeuYEgkkhHiOEGKzEGKbEOL94xxzmRDiMSHE00KIP8/uZR5/KHRMhfjYHX1HZmB3PCLvuLieJGO5jGRthJ3hpJvP4aT/Ox+lMIBUKycuE3ZiIb9uuFMMFpPBasELOpSoTOHOBQkEpK/7GtYb/kKihhleTQQresMn/y2sfzHgr5ysaI9zv3om4f13g2vjeRJVunhCK0p3l0b8geC/2a8EYEHan+zsvPo7ZJQYp9hPkN15/yz/wjpmC6q0S1Low0RnIsSwjKFZ1WasqmfjoFWOWIJnIJU5OmUjdRw+Nu7wy0gaW9qLEdmFcjDTHgHPxnZLM0JZMPYcm6qjh1hw6WuImTqfuO0ZHme1v32CtnMuoCsK3U0RBmL+yvFZf31rcV8iuRWApIywaPRxVvz6ReSevnXaCtyNPUlWejuK75/7sf/jhq/dV/PYg+e8j2gkIMLKlUBBX/Tk7n6epTzC36j34t7+8eJu25W85yeP86nfbWZZW5QrWob4o/EeNm3bFuyfe9VwKu+wVvj3h1uDxJgJLMeblAjSZB5L+uSHW8NLxHY9dFGpBEIPkznlRrZd82O+ftNZs3rNE2FFZxPbZTfLRx8GIBRrBGDZFa9l540PQPdpVZ8xNIGNStStTQJpnoWrmDTUiLMeXXgpT752J1tfcCtDShOXpm8De/L2d0uysm/IpkaKnkAyUPlJKeelEmhz7yjnJYaL7+UY5akdlOM3ZPZArNM/Ro+i47LyR5ehBiqfctWeCPozPSg1SQ33seXgKJoVjBnLlFd1VGIyNVFhQr2yPcbDWZ8Ecvc8WNzf/JePsH8oQ1hmcfXKfiLfuBKrYSm9536Ira96GK1ladX5JyrbqVWiXrxfJkh862oIsVgcAqDz4U+h3/pOALa+4Bb+3/rfcHX+E5hnvqLqc4evBDoxSYfDgaH6JYCTkY8zwUwT845VTEoCCSFU4IvAc4GTgZcLIU4ec0wj8CXgb6SU64DrZ/9Sjy+4UuK4Hpt6/UGAL3et43AwmPYZ/4zlkso5xPffhZ7tQ8/0smHIr4MfSwJN1HArEZ8EMoWDEhp/RdFT/MnQCvbjaXNDAjlrX4TSsmzqtaqWTybK9opHlLOWNPHr9DpUaxT2PoDlemg4FaSBPNn3uNhw3Tu4Pv/Pxe2phZfy8/N+BMDBLQ9Sx/yD50k06eDNsBwsHtJIEsFw0lWx70I6uGNIpmhgEjyU9O+7wrNYx/zHwaAUpbG5rWiIWCgHi+UPsvKXz8cum6x7BRJIq/aUiJoar71oKem8y8ty7+ffur8wJykeE6EwQIwuOg2AZdmSYmdp+jEARiKLi9uaHvsKzjRkD54ned037+FqpdQGXq48yu3Gu3E2/46nyvrwwdUvJbriQgwz6BecahLo6X19nK34qWGHlFKC1J2bD/GbJ3u5dHUbH7l2HR9rvJWVygG8Tbf513EE5ugP7RpkneKrAe347JJAtueRzlenO5VD9yyG8fvebHq0an8hHaxCCSQEqas+xbIznsXCpiNXiriyPcZWuYhV7MZCQ19+IWEj6K8DlclYGKqKg0pUlhFcAQnkeRJDWniqSVOksr0d+Yf9ZK//AeGQTq51A7e1vR4FiUxNriQfq3xLjw4XPYEK9+c85H8A2D+cZV3In6AnZaSKBMrh3weKtCHukw5d7X7YRTi5g+aN3waoeN5V18IROrG4b0qcTQ6Stz10u0ACjW8iXMfEKMyn13TG2S9bcZQQizJ+Seuj3koa9v2JnZufICayiDGKUTtSigAP6dMvVpE1StSLSqAJFskWNoWJiFI7reR8ZdiXH0rz801ZtrIY06ju+2aDPDhB+YcpQ1EEDWF9zjx7hBAzTsw7VjGVn30OsE1KuUNKaQH/Bzx/zDGvAH4mpdwDIKU8NLuXefzB9SQP7BpkJOs3VHuH6uUUh4uSB5CLnUvT/shnccwmXCPB8mDwP7bx1yd44s1YyYRMrVEDXEBRdgrIufK/mK5MsW2N/2/r6orN5yxr4XF3CQDe4A5/EC1cZDlpcMWH2frqJ1m7bAF/d9Pf8sbEl3nwoq+TiBjE25YwIiPQ++RMf1EdcwDb89BwZ6wEioU0UjKMQIJVuQKveDYelStpyzsaAdhyYADXkwym8/PSWLSOahTiqSOJ1uLKbiEmFyA88BReX6mkqkhkqNXqBF1VeMcVq7h4VStZQvTG5jbNoxYKA8Q3X3sB271K2f5Vji9O7uz0t+/12kgcehCx5bdTPv/uwQwfkN/gCvWx4rZ/1v6XFUoP2a13sW8oQ59sYM+yG+i97DO0xU3UwqShPD0vUM9tPTDAc0I+UWVnS8/ad/66i/a4yTuftYqG0a00pX0F0EDa//vPtVLD8yT3bh/gZLELAMuaXWJXShjOju/ZI6XEkHlGha8QyKaTVW2KFRhDK2NLExFH3KMjHtLoMZcD8IiyAX3BqSxvjWFoCto416KrAhsNlTJFVEACWa6HiY2nmlWTHtUM0RyLsKItxpLWCEajr3pJDU7s15fOO7hjEsDs9BBqkJinegEJxPwjgqSUHEzmWC568RSDPbK9FFIQIO2V3Qdx/2+yZsmC4qbGx75K4q6PYOwvqfZUaeEoOs0xkxGi2CnfI8iwk1jCOOIk9vGEwph1bVcCicJAaAkJxy8B+0bD32Gj0bbxO7SL4aqF1pMWNLG6M8bCpjDRcSLoJ4KsYQwtC6ogZfzzlaubco0ri69/vS1PfyrPgnHSBg+XPKgTP9NDxFDHbU9nA9oJygJN5VcvAPaWvd8XbCvHaqBJCHGnEOJhIcSN1IAQ4o1CiIeEEA/19fXVOuSEgedJHtg5iBDw5u7tLEs+dLQv6ZhE1vJLwYRrIT2P5s0/JDz4DPsu+TR2tIsmJ7jPxqxeT2QCdtLS0spneCIvnrIBqKrOTIExHoSYptz0nDfR94rfoay4tGLzmUuaGJL+oNpLD2A5BSVQ6bo1XSeUaGVFW4wNCxt4+0uvYfE519GRCNEaD7FZLsIc3kYyVzcBnm+wXYmOg6dUT9CnA11VyAVm6E5muGKfIfPYSuVztKKzEYBr73kxh0ZSZC1vXpYT1FEDQYlEZ2dncVNIVytWQ0MPfbn4Wk6gBNJUP1nj2lMCkmXw6C1qdDSE+VLje4rv/8TZpZ3Brfn79texW7bj/fFfp3zejftHeIX2JwCcuD8E0oNI8Gw2R97xzYpV3aA9YaIqAn0CJdASZxddzn4AlNwgg2mLgVQeu/cZXtC8h66nvsLqnz2byLBPxImkP9Gf68fL8TzueOYg65Rd/vtZjg+XcmKD67zjEcbCUsJkpImTSxdDHwrwPYFslLH9uphGiMIswdAUVq5YAUBb9zL/OhTBkpZIRWpROXRNwR5DqMvgeSyRQNUkREhT0ALvwkRIp63LV7b19+6dkHzPWC4mFgfj67n30h/4HkbZkqG06vkTZiklkvnVfg+kLT8ZzN5ErmkVefSSsiPAqFta/FACEqi8HPVRewkLNn+HFbdcj7v9TqAQpGDQEjUYkVFk1ifhDGeUnHqEPKWOUxSewUVNESKGyh7VH1PbaFxyyRX82j2PNXt+wELRX2wjnSv/lcypr0ZXFUzNT63tSEyfiBNqNQlUVAVNMfFtK/6C6ShhHv3o87j5Defy5VedUfPYwyUP6ulg00PYUCu8n2YbJygHNCUSqNbdObaX0IAzgWuAq4EPCyFWV31Iyq9JKc+SUp7V1tY27Ys9nuB4ki0HR1nYFOb9gx/m8/ZHK5JY6pgaUnkHpMf6b61k4V3vofXJ/yHdfiaji6/ECZcZIdaYuIyHc9evKb4Wp94w7nGyPJnEq5aszwambVamKMiu0zC1yke7LW7S2tyMjQ6ZQWxXouGWVk0CRE0NVRE0Rw2WtEaKiUGnL26knyaMXB+9I3X/l/kGK5iAjv3/PBy4uj8AHhmpNLzVpe9TUY5wuKSAS+98iGjPfXj9W2d8DXXMHnJ27Qm3yAflS2XeFyFNJUHJn07vfaz0gcKgusZAuqCsfMFpC3j2ug7efsXKqmOOFIQQ2NESsTX47M+xT7aSiSxAsf3fdtm5Z/JXdx1kqk2dx8PO/T4Jk+y6iPQNP8UtK1vIp4eKz6AZCtMS9fsGzfAnMQXPFaBIAhXKyg7SjJ4f5sBwli0HU3zU/iz/dPBddD34CQBGlj4XgKahx/n9LTezY1/vtP4e08XDe4Y4c/DXtAi/T/Pys+hXKCWRBz8P6f5xD8k7HiHhl0NlMDEGNmLlK0lFx7ExhYMwK0tJVEXMSvrRdGBqKudf+xqGVr0E/aoPF7eHdJWWaO1xh6Eq2NJfgBkMFmes9LD/b9nvH4uxyqB4SzcAqf79VURZObKWS0jYSCOGsuQ80oQxrOHi/vmsBNo/lGUBfSxKPUl64SW4qAivciFqyCkjgRLBs2+WiJzd1/2QV8S+DoDX46uZVWnhKTqtMZMkURb13EZi4/dZ4PVi6cdnMtiRQmHcqiiCVe0xNnk+aZ4mzAtOX8QvG15VPDaW9stO5flvJ3vV1EzOJ0SRBKpVDjZxwEr6jDdxn7eWe/v9djslEsRCOuevaGX9gsbaX3eCpkodaYQ0dU7/1nUl0PjYB5QXhS8EDtQ45jYpZVpK2Q/cBZw6O5d4/EFKiZSSTb2jbGgqSyuYQCI9X/G1u7az5eDcECBTQc52Gdn6VwCatv4EI7WXvg1v4AcP7OHxwbLJyjRIoKaWNv5p4XdYZX0fc8WF4x9YRgLFvOoEk9nA4cgfVSGqSCCAtd0NjIgYMjMYeCpUkwZR0+8kCyuN8UCOGzY0MkYrEXuQdM4ha9VTwuYTiv+fU1zpmggFEiibHKrYbkgLZ+zEpExJ1nnfv7H81pei3fLOGV9DHbODP2w8yOfvqE3KqQUSqCwFR1cFTcKf9GebTkIdLYmAVSdQhNRITNS1QjmZyqevP5UzlzRXHXMksXjJ0uLrs9cspf8195N+3V14yy8HoHnRatKEUJ2pExyjwz5hlFxxHXr7Ktx4N57QOCCbcTIjxdjycChUJCL0gARyrHISyH9GVyv7sWKL2KKvJWQPIyXsGczQFJAvw8uuZfu1P2HPlV8l03wylyqP8+7e93HFrRfBntpm1LOBJ/eN8Er1j4yGutnqLcCbgunwlHFoI4m7/42T/vd0eOS7NQ/JOy4hLDw1hINKy8G/Ev7lGyuOkYH3nWJUlmjMlWfEZAhFG9l36X8i4p0V240a/XBhuxMogYZknFEZJj/qK3Msx1cCySmMWZra/cl115bvYe+8Z9zjsrb/N0UP09kQIk2IuO1/n4tAC5RAbPsj6tM/mfR7jyTym//APaF3okgHe+H5uEIDWRp/OK7HsF2maE4EpaBlEe/ruhvYsGYNrhTkkn2Bh56NpxgkwjoW/ueX/PUDXKBunNZ4sY5qlCvtV3XEuTu7FIBGRjE0lX+44bmcl/s8AEHXgSLErEzEC4uzllWmvvQm9wQCMK/5BA9f/j2/5BAIibmbk5WT1fXSsMkx1xHuJyqZN5Un7kFglRBimRDCAF4G/GrMMb8ELhZCaEKICHAu8MzsXupxhN99iIZvnM/O/jSXmZuKm3f1H1sJYXsGMnz8N5t40/8+XLXPcrxpJ68cDrK2y457f158L4XKD/pXcvODe9mSKpOS1lhVmwhvf8nV/PBNF05o+haJlCZDujI3y2eHE1uoKUrN1dC2mOmXhGUGyDteoASqLGMbG0Vffp5wUxdRmeEzP7mDHX2jFUkbdRxdzKYSSAYrqE4mWVQnup7EpFoJVEGEHgpKWrNTV1fUMbd4w3cf4ot/2l7zWdXtJC5KRdmEEIJwo6/S7U1s8Imi7DAAmhOoMWpEv5cP3uOmhj7O5PdI4U2X+WrOzOoXYOoKqqajhRKIS/6RA699hET7EtKE0d0sFRnSE8AuqIbCDZiairv8CkZWvoADshXVSmLZLoZwK0qUdLOaBMo4pTY1vfBi8kYTcW8YgN39KRpJsXv1a9j7rC+R6TwHALHYj5o/ZC4mTB5309S9jKaLho0/YIOyi0NLrmOQONKexXIwURbl/JfP1Dwkb3uYWHha2CcuAGPbbyqO8Sz/XlTNymShufSMmAiKIjB1ha6GqZWv6KpSJB5SSowkEey0T7r7JJCF1CY/V3tTnH6ZoDW9lcTN1417XIkEChE1NTLSpNnz1VhDNBRJIP3m6wn96k1T+g1HCl7vxuJr0bIST6goZUog25VFY2gAmpb6/465NzoaIwwTIzPcF5Tc+eXTiZBOG8MA/KL5dXzDeS671rxurn7OCYfVHTHuzvhli1nhk7YbFjTwvhuu4OdLP4x46bcBv4RMnYX0p0JiYDJdph4skkAT2zYIITh1YSObPF/30OTVxzJ1HN+YdKQmpXSAtwG/wyd2fiSlfFoI8WYhxJuDY54BbgOeAB4Avi6lfGq8c57oEPd9AXNkB1LClYM3F7f3DhwbCWGFieHd2/xBxOgYj5i843JoNFc0vZ5L5GyXk6ynS+9ji/jhE0MoAvplWbqDNj2vFFUR6KoyIQmzuL2x+Hrgyv+a1vmncx3T/sw4HWlb3GTAiwXlYD4JNNnKSDmuOmcDAN8bfS199/+QVG7ihJc6jhysIDJ5qjXvEyIwalSsZLHEwHY9Qli4Y30qapgE16nB+YfdA9ULDIadJKPEqpYhF7/mm7yPd3LzgO9zwoivBtK9ghKo2gS/PLpVCEHUmFh2P9eIh3R6/76H1DVfpjGiI0TgW6TrqI0LUBWB1KO+Abo9Nf8iN+P3zy2t7aiKwLvsg2Sv+QKjMoxuj+LY/sqzqpeeCbOGEqhnqKScdZddTj7cToMchXySkUN7CAsLrdn3pGgI63Q2hPCu+hh7L/0s31j3HZIyjJ2fO8+lG3o/DYDVeQZ5qSNmkwQq80ZyGpbWPKTgCST0Egk0FiLwKVJrlIMdLTRGpp5eU64EymsJP/EqW2YMLWyo4Qk0FhFDY4DG4nt7nIU3vxzMQtEjRA2NNGE68Ce4g6IRTc7fVMe9dknRozYvxkNFlCmBbM+r7HNCwfFl5WBCQFcixLCMkR/1F8EMbDzVoC1uskAdBuC/ek7mY87fYq990Rz+ohMLqzripAnzXvsN/EfnZwGfNH3Oui4ufPHboNk3VRdCzA6JG4xJstlSu1UsH5xkfKQIWNEeZYusneo3mxDjvK6jjiOJKfVYUsrfSClXSylXSCn/X7DtK1LKr5Qd8ykp5clSyvVSyv+ao+s9rtAcUmhMbsEOyi+G+iZOeJgvKMRs3hOQQI5b6oKH0ha/fHQ/r/v2Q9yxaW5D4hzXY+fu3ZzCVn7tnsdvjav5J/VdpC2HT7zoFAYpM/ebwqpaORTFTxmZSIK4vN0fbPzVPZlE14rD+g2T4bBIoHGIq7a4yaCM42UGi+kq0yENjGhj8XXDY19jV08vQ/VI8HmBYglBDVJmulACj5iFd76LTBDlbLkFn4qxJFBpZe07zrPpU9qQ+cpUsTqOLq5R7mPb7j1V20POKNkaBqjxpg46L3wVDwwEZE9gSKy7WfIiVNNBcazy8Ej7stSCrqnomoapqSxoDBfVSuGAoJIFRZM1tfu1YNwbjvulboamEAtppEUEw0nhWgUSqKQECpsaeanh2iXy4+Cw/31SKOgrL8VJ+KvOG/53Pf9v50v9czQtYllblO7GEG1xE80MMbzqxRihKHkM7NzckECW47FXtpHUmmH1c8hhIJzZKwcrN5nOmB01j8nZAWFhhCvLMZxSX+PZhXKwSkLyaCmBAJojU297Y6aGHSiBHKOBJNFSOligBBL61NTLi1pKRNhwf+2o+JztG0MrRpiQrpAmhCn8tn1INKLPYxKoXNFhmiE8oaGUpYO5rvTHMsDAZZ8ofbBM4bikJcLiljBDxFGyg+QdNyifNnwfqbNeDcDbXnQVb75kOacubJzT33QiYXWH38f8yL2c4Ya1xe1hQ6UhXDn+NGahnFPR/HO6dr7ks+q5hZ0TflYIQUTXSBLjaW8JT5/ygRlfz/jfNWenrqOOKePEdEKaJ7i8PYXiWeTaTwfgUO/eST4xP+C4kqcPjHDrkz00Mso5+b8WE6NufnAP7//p4/zL0HvpvPMf59Rl0PEkoUe/iY7DXV2v4y3Jm/h5bxvvf85JvPCMBUXpKTDtcrCQrhIPTdxhLG30O5scBk3TGADONcYjjlpjJsMyisgOYR+OcqSrZPN1urIN+7cfKsYW13F0Ybv+6rnUqlUa04Uaa8NGRfEs7N2+98hwxq6dWFNGOn0z8VZus05FzqFKoY6pQ0rJarGXLxqfY9kDH63aH/FGyWu1DVDPXdbMKH776WZHkFKiuxlstXZM7nyEpipEAo+zpqhRJH+iht+uqwXFgDV5GbbleIh84PsW8hWmuqoQMzRSIobppopKoPLYckNVsNArfHWGU/7zkW09lWhjG5ecfWZx3y3NN7Fx4ctoXPcsYqZWVJYUJkdhXSWPjjtHz9i2QykMbPa2XsKC5ig5DFRv+iTQeCEXfcMl77y8VbvvyDu+6lAzK+81J1VKlHVzAXE3pjTxaJKP0/EjagjrRRIoFG8mKSMowf2VDwh99Kk9ayG9NE6xtvyBfUMZPzCjDBnLJYSNovt+VRlRRhwpjWjSnnJZ5JFGOuPf632nvBlTU/BEtRJIxWUgsozsqTeVPlhGAsVDOmu7GhiSMXRr2F8EE05x0cS98t946jVbWdPVyDWndB/1ctbjCd0NIcK63/a2xivHyWPtB2bD96Uh5o+BcrkcdrBALaZYDgYlf7trrH9HveCtM76eqaBOCNVxtFBv6Y4izov4/tpO91kApPuqV2uPFvYOZnj3jx6rGeVqex4f/ZVfgvWL+Kf4mvFZkoN9PLhzgKduv5kdoVdxnvIMF6d+C4M75uwaM5ZDS/8D7DJW0rB4PQDtcZNXX7AUXVVQyweI0zSci5nauKaOBRRWz1zVnFemYuNdS1vcJEUExU5huX5EvJgOCdS0lB1v3ceB8z4KQGff3fxx46F6qt08gO16hEUeOcWJw0RYs7CFU3P/g6uG0Df9Esf16BvNEarlUxEMoqVQedsVK8lgojh1Emg+IG25rBR+BLmaT1bsk1IS9VLjpuAsa42SU/zB9MBgP1nbJUwOR505yXikENbVqkkGlNpHLRxMEvOTBxtYjotuVaepKYogq0QJuSncQKkiyohRQ/O9X7wyJVAhtWbwgn9CUxWaFqwq7lryoo/hPfeThGJNFd8vhEBTBWFDJScNnNk0ay7Dzv40EfJE4w0kwjo5TDR3+t81mq9dKtw7MFx87eRqK7AKxtDxWOW9uf/AvmLSXVEJNQvt3dGCK/3xRVNLO0miqFaSnO366WBYiCmql+VVHyNltHFQNhJ66CsMpSzsMUlhBU8gNTDSzqklgmRENAYXND8XdApKtIHT3uKTQIqGIsuUQJ5Ew0MKrTJCWlFInvMurJt8/yxDUxgVcUK2TwIZ2MX+S9NUjFCY5piBohxdRdnxBiEETkAwnr+8ZZKjZ44FLT5Jf9I9f487GlQjFEigKYx3dVXhfc85CYBlLdX+d7OFeix8HfMBdRLoKOK8sE/6OKueg4fCwuymST5x5PDW7z/CTx/Zz8YD1alXfaN5Ht49xE0XLGWpvQ2A9NBBfnTLb/iS+umKY2Vy/5xcn5SSv27p4WS5nUzHWVy0spWrT+7gW685u7QiZ8xswjKpNLXBl/Hnu86Z0ffMNsZXAhmkZBjNzWJZ9rTLwcAvsRg97fU8dvL7WCj6uejOl5JOHb10uDp8FFbPRQ2/luni1IWNZAjRG19PqOcBBtMWqZzj+1SMTU0p3D+aSWvMJIvpxw17s5seN17MeR3j41Ayx1rF72MGlSaSOZuRjM3Wg6M8uX+EOBkcozYJFDE0Wlt8g2g3m6R3JEeEPO4s3F9HCpOR+FpRCTR5OdhwxibqBYohs/JvZikhX0lR8M4pe0YMTSGPjizzwlGlw8HwCvQVl/gbYn6i1KHT3j7hdRuaQlhXyWEgrVn06SlDOmcTJYce9n+jLQw0b/rkwEimth/gwUGfSMtKY9zo+bztEBJ2VfKXO9rP7oEMridxCyWnx9D9OBZRzW/T2tvaScoIhjPKaM7Bsm3fYFyfGgmkrrycA699lK/wElpGnmbZb1+B9uBXKo7J5fPowkUzA5VEGQmUVBv9F7NY9jebEK5PrkYjMYQQfjlYGQnkuDIIudArSSAgc+H7EYvPK75Paw2EnRFytkuEPGj+PaarClFTY0FjmLWdiXlRzno84XUX+b4/5684AiRQa8kLVHno6/6/BU+gqSiBVIW3XLaCRz58FaY+d952lbdY/X6r4+igTgIdRXTu+iVOqIX44lPZZyxjvTd/AtU29vjkT1WqjJ2l7w//BdLj/EWlAVhu+CANA48CMLj6Br6y4UcAjB6aG3WT40m2P/UAEZEntOw82hImb7tiFavaSx4XijkzFn+ySQQLz+LAK+/kOa/7lxl9z5FCa8wkFZR4yHwKDXd6SiD8Ou7FzRH0M18FwHq20fvgz2b9WuuYHmxXEiYPxsxXxtd2JQjpCk8oawkPbGT4wGZO/sOrWCj6i5OIIpQSCbR+QYK0DCYuUzTbnQryjsuugXRdcTZN7OhLsSpQAgk7w4HhLHsGM+Rsj0PJPA0ijSiLhy+HpgraW5pxUVCtFBt7kkTIzUq54XyBFg76iimUg/UkczSKFJYarfDBApCKUXmeMiWQqalYskQC+aoFF09ohAoTDEVhz9sOcPDM9wDjLz6EdZWVHTGfBJpNs+Yy5HMpFCFpavSVSJZiTpsE8jxZLA8fi/6gHGyYGNi1/+52zv9tQg/jdZ1e3K7lfC+77X2pkoroGCaB1jYHJX6JFpJEMd0U2bxdNBEX01A5tcVN8if7flKxA/cQv/PDpDOle6Tw9yqo3wo+lC4qlghIy3laDqYG958Z8vsWKVSU8oj44JlCUYtlRwUootIjMa83YkiL/qFhmkUSJ1wiJQpm9nMdRX0i4h+vXsNj/3wVEWNyEmam6GoukfTikJ8sJ6SDizqtuquYOffXWkD9lqvjaKFOAh1hSCmxpd/Z6Nk+UiuvIxQK8UT0Qs70noLe+RGq5nqSK5RHYO/9lTv+8hnO2/Ipbow9wHKlZEJ4sHc/a93NpPQW9l/8SUItvru+M7xvzq5P2f+g/3rBObTGTHRNVBA3coYDxElJIMBtWYM6C2Z2RwIhXcXVfWJM5pPoOCjTNBJuihiEdAUz3sTtz/4DGWmibfvdXFxuHdOAZbuEsVD0mcuXDU3hzCVN/H50GUK6dNz377T1++1AFQlUGFSpJo0RgyzBhMKaHRJo/3CWLb0pbEdSI+W8jgnwTM8oi4UvhzftYWyn9AccTls0kEaLNtf8rK4qLGiKkJJhFHuUVM4hKnIVPhvHOoyIP1lwstVq1wpYadr/8DbWKzuxo9VmxjIgQpUCqVFGrBfKwQokkO166Dig6BUTVlVTEIpAURjXj6QlZtARD5GX+pypNgpkgR4QZI4wMWR+Wt5+GdvF82osIFEq4xohhjLOb8hn/b+jHooib/wVH2j5bwAW/+ltxPbdRd72SuVgM1T7Hk0U0vaUSBNZJYaCxMmOFP2eFGPqYRYRU+XGS9byIfcN/v0BpAf8sVfecSHrx88XnvdsoAQSgFCC+7DMbHk+EUKqZ+GiYhj+WMVT9EoSqJB0quqE9MpnRxkT7mEbjQCM9O2nWaTwIq3FfdEjOOk/0aAqgsYj5JupG2Vq5VQvAMJzkWJ6qp6pjP9nCxOlENdRx1zi2Ji9Hkc4NJovTZQAt20dAA81PsffcOCRo3FZFcjZLo2M8k3j05x1+8sq9hUGiRc3DbH651cXt+8/sJ+l4iCZhhW0N4RobW5iREaQIwfm5BoHUnkWp59iRGvFjnaTCOlVSQN5ppcINhZjpcW1oCjimJIOK0EJhMyNYggHoU2vY1aD37u8NUbzwlU85K3GGNk1B1dax3RgW1kUIRGzNCk6f3krfxxdjETQsOu3xe36WBKoQAqc+nJ0VcEtGAePs8o/VeRsl0PJHIMpi3Te4bG9w3Ul0BTxp02H2D2QZlNPksWKb6YbdiqJjvi+2/3ykNbaqYa6KljQGGaUMF42STrvECaPmKG6cj7BjPplA/n0JCTQpt+wZP+tnK1sQUl0V+2WAelT9MJSq42hC8lWdjBhlUql55yuCJa3RVnX3UB3Q+1+y9RUoqY264ld5XCyfmlvQTHiFFROztTVQIVEQacWkRD4zoyKOJpbrWbK2S65gAQyw1GUUBy7fUNx/9Lf3Ujk4EOohb/1MawEKhLloUasQJmTeOjzRRNxdRpKIFNTOakrwevf+S+8V38/AK3/ezm4DgeGc8iABFIjPgnU2OQrYFyhIQslMmXECu78SQvTPAtHMUrPi6KilpeDeRJNuAhFqxqLjfX2cQI/r+iIb2MgI23FfVMZ79VxDEApzQNEyl+oVqSDK+YvyVcngeo4Wqi3ekcYAymLLKVBomxa6r8opFfNspfG4eDAcJZLlCcAsLTKld+9gQr7dKuSrBruO0CHGCLcvJD2uElDWKdfNiDTfcwF/rp9gDPEVpJtZ6CogpCu0BiuJDTKyba5gn6M6Tj14ur3CBFyCOPwJnWKIuhIhBjS2gjnasfS1nHkkEn5D6YRnp1J+gUrWxglwkB0VcV2Izxm0hVK0Pe2rYhn/TNA6X6aQonNePA8yU8f3sddW/p5ePcQN/7PX9h9y3+w9+HfHPY5TxRIKXnNtx/k0k/dyRPbdhLDn2jGPJ/oCPU/xYK7/pGrH38n27xu1NNfVvM8Qgi6G8OkZBg3O0Iq7xIlh3o8kUDxRgDyqcGJDwyVPCa0xoXV+wPSR7FrkECBEoiiEsifsI71YtNUpWhiPdGiQtRUyaGjzJGJrxcs8oiA3PUKEyqvdnlXLWSGell459/jZUaq9ong75BSEuhjSKBU3mHrwRQ9/f7/hxmOIoTg7GX+RL1HNtOvtLPo9rfwLPcv/oeOZRKocL+EG4tllq2Pfxk35xNxijn90t7OhhDxjqX+561RBg5sI5Vzikogwn6Z31WnrwHAS3RDYXJcrgSaJySQ50k0aeEKo0jSSKGhUq4EKpSDVU/yxya2yZBPgl3xqO+/JaOtVZ+p4xhHWfurpg8iPQ9FOtNWAs01ypv5OgdUx9FCnQSaA0y0Ym27HklZGkgrzUsA0LQaqzFHCQeGczQLfyCSMtoq9m0e9K+vecRPBxs69U1kpUHcG6ZTDKE3LUQIQcRQSRNCzmAyOBGe2rSFRUofyqJzSIR0hBDFCOACsmJmSqCpYD6lgk0FZrQRAC87SoQ8wjz88o72uEkm1EGDO1hMvKnj6CCT9p/XUGR2ynXWdzdgagq71UUV241QNQkgQg3F9L2iUmQG5WC/fuIAH/zFU7znJ4/zvVt+x4+Nf+FD+vdpuf+Th33OEwXJbGkid47ll8vuN5bTIftpf+hTrLjlxTRt+RH9xkI+YL+elsT498uqDn9fV88fiQw9Q1xki2VCxwOi0QZsqWJNQgLtHSoZR4taSqCAKFGd6nIwUwuUQG55OVj1hDWsq1PqS0xNxcJEOYzErqlAWoHJf0DmFkmgKbbvUkriD3yWpm0/Qzz14+oDAhIooyUwvBy9Izl2D6TpT+U5mPR/k5ULysEC1eHzTuni4Osf48vrf8grM+9i2FI4jS3++Y7hdDBRGBuFGrHLvGkSff4C23SUQAWEdJVrLjq7+D73zB9Y/42ldPff628ISKCGoDRHa1pcSk6dhySQ5XqY2LiqWSKBFG2MEsiPiK9JAo15pkSk0phYRCvHt3UcByhrfxXPJj86SAgLR537+cB0UE72132o6jhaqJNAc4C8M349te16FasYRvNiADS9sBpzdEmgp/aP8NW7tpMIVpAtKlcsdw6VBoPp9jNJXfpRkkoDK8UBNFzUBn+QHNY1X4kzBwaWedslt8sf1GQ7z6I1Vlvxk2fua5C1aUbPH210d7QDMDLUR0jYqDUm9VOFpirkwp0oSEjV1UBHE6MpX+lRi6Q5HBiawqkLG/ksr+JHzqU87vnpHoaobtvKjTfVAqk4zXIwq6zN/M49O/ls7LvsCr2CP5rv5VRlBwBevRxsUvQmS+TAS9S7yDau4vEWv9S447HPozhZNr38Pt7e+g02GetL5sQ1sLojzknKXgCes/WjNIkUWufJc/sDjiASEYMkEZzM8ITH/XXj3uJr0bSo+oBCzLQ7jhJIaiheeTmYUySOChi7gDERDjexayqQhcQuMyD7pkgCFRa+craHmun3N2ZrKIGC67a0BIbMkbEcklmHnuEcmbw/9nHzwZghUPnoqoLZvIDrz1/DeedexPmpT/JW6x38ZuVHj/El9KA9CzeiLbuY17r/BEDzoE8CaebhTVrPX7uEO2LXAtDy2BcR0uPqkR8F3+WTQLSuBsA9+01F8uSZA8Olk8wTEijveJjCwlXKxnKKhkKlMfR4SadjS7yWL658fpV4++xecB1HH0Gb4En/39zgHqIih63OX8K4zgHVcbRwbM1gjxEUSCDPk1WqIMv1MITDgc4r2fGS3xOLBBGV2vwggf71lo3cv2OQFXF/0CfHXI8o8wZILbwUU1NoauviMvVxANTGBQBEDJWsNBGzmBIE/mDz+q/ey4rcRhxhYLWtG3cA7R4B+aeqHlut99kn+cqz3N7HADBmuLJvR/1449zA3KTA1TE1pEZ9Emi2PIEAzlzaxN2HTN7rvIlPOjf452+sngSXr2KJQjrZNMlf2/XbzEPJHLl9j/NC5zYAUl0X8Ier7+T37plz5oNyPKGcBFqo9JFvXc+GteuK2x5vvIp/v3uEe3cM8PzTq1UtY/H0aR8CYJG1HQBl2UWzfMVHD4mQzoiM4qaHJjzu0GBpv7rhJVX7C75q+jieQHn0Ysy17Y4/YZ0qbMVA8+Zokm5Vpm4VyapJSAHb9cc5qbxDaHgrAGJgS9VxqmthCQNXi6Dj4NjV5/WsAgnkkyC6qqAqgoVNYV5/8XI+eO0GDi16Lo3n/e20f968hBHj7GUt/Mk+GVcxaEz7pHeV/9o08NT69wIQyvRU7iikAbasYO/bD6CufV6RBNraU/YcTMMDai6Rd1wMHDy1tNAnFc0v/wrguBIVD1FDCTRWXXf+Br+8+T65nvfabyDSddIcXXkdRxN9b9vOtfb/A8DpeZoIeZx5lmxZfmfWPYHqOFqok0BzgLzj8uctfSz/p9/wxP7K1TA7qF92w00oneuL23UtGGwdxXKwfUMZHtg5yJsuXc41q/0GUxkz2FTLvAi8VVdj6iqirK5aWXQO4KdVZDBLBo6zhL9s7eeJfSOsV3aSaV5LZAIPlGs2dM3qd9fCWLnxfMeKxYtwpMKr5S8AUA7TE6gAL+5PJId7d9WNe48SpJTkMoXJ2+ytdp27rJQcdY+3gbNyX4Z1L6o6rnygrRRIoGkSNk4wiXzF1+7jBvVPAOy+8n/Y9ZzvQKLbN8OdIx+U4wn3bh8AJP9xzVIWKEO48QUsWlrydXpx79/y1+0DXLyqlbdfsWr8EwVYdPU7+UftAwDYSgil4/hRAjVG9EAJNMRoEGnu1Ui0Ktx321/1AIQS1fsD0sdwqyPiC55ASkCiOIV0sJmQQMJEl9N7FpI5m/7RyT+j2YFJduCDJKfoCVQgcXOpEcwhn/xRhrZXHad6eRxhIAOy2suXFIPm0GbaH/4MJ6fvCy7Gb0tURRDSVZqiBgubwly0qpWPXLeO9Qsbqs5/TOHGX5E+620gBGctbUKiMGh005LxSSDVOPy2/KXnryYp/b/xn91TSju0Epmia0EJYpAO1hgqWzSbJ0ogy/HLwcpJIBTdVx8HxuOON/VnqjkR4/XN3+Jv8+/ld8azaRlHRV7HsQ09kmAkuhJb6IjeJ4iKHK46v/zs6p5AdcwH1EmgOcBIxuambz4AwFP7xpBAjhdEc+sV6SBqQAJ57tEjge7f4XsjnNSZIJsc8K9rDAmklQ0+o0vPIBHSEGF/sjh42lsg7itDIoZfDqY4WT+idJbw4K5BFAFnNqTwGpcSmUBG/7qLls3a946HY40EEkaUb0deXdoww8hn0eAbpbrD+ytUCHUcOdiuxC1MpmbRKPWcMhLo4y/cwOuec07JP6IMFeVgBSWSPb17wZWS4YzFwsF7uEn7AwDJxc9CqiamrpCXeoUKsY5qZCyHr/x5Oy9X7+CG2y/wzTAbFkLDguIxH7hmA9957Tn86/PX05GYvNzE0FSe9+LX8OBJ72XHi36LcoyVv06E9rhJRokjciPsHfTVJ8PZarJDcYIo73A1AQQlJVDIrX4GjcATqLCYYgXpYGIGJJCjmGjSnpJquEBqXfGxn/PgZ14I6YEJjzesgAQqlA2pUysHK5BA9v5HEUgGZQyR7q86TvXyuIqJKCiNyrzDWp/6Jh2P/jfPz/wUGw0SpUWcQlmPoghWtcdY1hbFONbTnJZfSu4y31C/IxGiuzHEXjoIef7fRNUP38OksyFM/0t+xi0X/pR/Mt7HLe55PNX5wopjzGD8WVDQaLLs/3iekEB5x8PEQlaQQIVIe/96HS9QAqlTS39af/J6bDQsxzumkl3rmDoEgmUdjewQS9D6niZCDncem8jXlUB1HC0c473oPESyh6d+9h+AZKnoQTv4eMXugjGkqptjSCC/Y3Ndh6OFB3YO0hDWWdgURuR88kodswJYIIU23fBXIoYfySkCIkTGS4O2sK6SkSaqm/XTKWYJWw+mWNgYRk/34sS6J/RSKHTwXtfps/b9YzE2feJYwEhr2d9jhuVDkXgTaWkiR/YzkLLqaqAjjFTOZntfqjSZmkUlUMTQ+NA1a/nSK8/gFecu5qYLltY8rpwX0AqJNs70ysFkfpT3//hRLlSeKm4Lh0yEgNaYQR69gpCu32fVKBAZb2zbWNymNC6GmE/MZ5tP5sJVrZy2qJFlrVNbFVWEoDUeInTR27CbVhxXkyYhBCLciG6N4HoSz5MMpqsnv2qQYhUaR3WqBERJxKtW42mKwC4jgZwgHWymJJD/YnKi1ZV+SfrrxK94LvfgPfLdCY83nVEc1KIxdFHVNCkJJLEcj/yWO3Gl4A7vDMhUE06a5/u7FFIElbJ2Qh3ZRSbSzfXGl3jrgp9ADRNu8P/fYqY2oZ/VsYJyT8FTFzbyjNVR2jnDtrxlxVksWXs2//23F/Cl1g+RvvozFfsLfz8ZkCqyvITXmSckkO1hCrtCXVf0qQqMrAvPFMrUnqmXnOEvXF15csckR9ZxzELASV1xNjmdGMM7iJJD6vNLCaQpCo0R/56tk0B1HC1MjTqvY8qwfvpmXnjwTp5euZ4P7Xs3PAo8v6QGsgI5uGEY6OUkkOp3xJ539Eigx/YOc1aXxvLf3USs934ANFkaDDiuhyktknobWsuSIgFSXKEvS15QFYGlhNDdHP05Z9Zkt1sPjfIh5VsonoXZvIioMfEtPPgPB4iHjTrbWYZo90lQ8Dqd4epIQ9RkQCbo2v4jhi78MHnHOy4G5/MZnidRFMGh0RzXfu5u+kazfF//BTktTKhxyax+1+svXl58HRnnWStXAumFdLDpKIE8l5bPLefzUkXXfHVD/xseYVlrFIFvn3ovBkqZGa7rSbRjzI9rrrFn0CcCI4lmGPa3JRasAVVj34t+QTKylO5EiKg59W6/XOh4PA5UI4lmFmUPkHr6J+SNy2i45+twzYdKJAigujkcodHRWNs/raQECpK1yibvQggcoaMGKovCIpA7AxLIK5jkOvmK66wF15MMpCw6ha/y7bM0Jpr6hpwkGTVOovB/XSSBJiYFXE8ymrNp2PcnHpWr2OF1ojlpvx0IFC2262Fg4yoGStBOPLXzAOElHewZyNDWs5k/eut40G7khSuaJv4jHCco9xQ8uSvB/RsX88oC36HNbMykqQJFgTOXNPGVV51Ja7wyKKOgBFICEqjoxQTzRglUSAdDK1NFFRQ/ATHpegV13dTatc6GEA996Epi02gH6zi2oCqCtZ0JtrpdPD97N60iQjY0O8mps4V4SCOkKwxn7LoxdB1HDfW58Syjf2gYgDe4P6q53zeGdFB1k3ioNBBUg0GhPErlYOm8w9ZDo7zS/TXxfXcWt+tlEuFckNTgqSaJUKkDFcExsWjlgNRVw5gyR75vR8XKfdY6vN9oux67BzI8O/0rf0O8Y9JoRVUzEEqdlCjHkoVl5r4zLAdriuj004DupFn221eSHa6nhM01LNfDcT2+fOd2TkvfzWPmG7lA3ci+cz4MkebJTzDLKPcE0gIzU286xtDBsbooS01sWYyqCBRFoCoCZ4wZrltXAlXhqcB/TpilZ1prXQGAu+AciLSMS+SNhwq/p+NwtNBy2nUArL33Hwh/6QzaHv8Sqb9+veIYzc3jCHPcvkYtkEBeoRysUsHhKiUVmxWkg4kpqhZqQY5RQkwE15Ns70vRgW/6mx6ZuBzMdJLk1TKya8yEezx4UjLSt4/uzDPc6Z7GIEHpXKZUEpazXULk8dQQ8bi/f9O9v+YrP/gxX7/tfjrFIN0rNvDR69bx9itWTvrbjgeUE+irOmI8IctK2LWZRVqHdJXVHXGEEHQ1hghpleOg4v1cuJ/K1ZvzxH8tb7sBCVQixMSY+7/gszlVdZ2mKrTGzPpi1XEMTRGs6YyzQ/rVCQ0igxapXc57tBDSVcLBPXg8KWzrOLZwHA7rji52pPyOqKPndqA6Yt12HDThoWiV27Wgg/aOUjnYU/tH8CScnH8Mx2xkcNX1bA2tR6c0+Ct0yK4aIhEuXb+4+uOkVlyDedLVFecsRDIuue0m0gHxI6UkbR3eb9w7mEEtj8ZtmzzZQSjH5wr2TLCh3FBzhuVg67obeLf9FgBiPfei3vlxRjKle6ZetjP7sFyPfUNZfnP/U3zR+AINIsPAqusJnfvqo3I95QOYkGniSYGTryaBHLc6Xt7fUakaGn72Z4uDowI8teCDUkhenOFFH2foGc7y37dvJayrGG7Z3z74v1EVwYLGcEUJ8lQghCBs+J851vzPpoKF57+YD0b+uWJbZqSfvYMZRnM2juthyByOOv6EXNH9CWpMBiTQmMm7K4yi34pTmLBqMyCBpujTw8B2xFM/ZntfisXKIX9bum/cww+OZIl6KRyjrH8oKIEmMoZ2bRp+9w4ij30LgMEFlzEofSLJS5W+L2d7RMjj6hEu27AUgA/qP+BX5od5KOT3Ia2nP58zlzRVLJAdzygnWVd1xNkty3RaMySBVEUUvZR0VRmXxCx4Ak1WDnY0+vK84xHCqhynFO9//xpdT05LCVTH8Q9VEaxsj/EUK/GCHC5jnpFA4BOSy9uix2XfWsexgToJNIvwPEmfXZLc/ibyAgzsitIIN+hclTFSX01RcKSCd5Qi4p/YN4KGQ9voRoZXvogDl32GrbFzUPEgIKYKHbJUx6yiNC9n6JqvVxEK0Zjf6IZGtpPp31c8h1sjgWUq2Nmfpkv4K5n7L/gYasfkJJAqRN15fwwWNIaxCpWgM0wHa44a6O2r+F4kiOtN7idj+/eL50mGM5NMVI5TfPRXT3PHprlRRTnZUf7nTxt5lrwfHZttz/81By79zLww7Y2YGjkMnHx1KqAzznNfUE8CZJrWYpx1Y3HyUkDRGDRYoa4rgSpx/06/3Oc9z16FlvUn3r0v/W1xv64qE/qnTYSFTRGEgMaIMfnBxyBWXfQiHvDWFN+HBjYynLGxXUnWdgkLC3cCEigc9hc74iKLrZhVUS+eEpBAUgYlUQ5iBqU+xSjsSRK7+NplRH79Znb3DtBNEPSQHax5aMZyeGzfCA0ijSzEiFPyO5qwPKj3CaLP/IjOxz/PgIyz8pTzyWj+OZzRchLIJSJyeFoYzSz1O/su+gRDK1/IoVPfitexjuaYQTx0Ykzoyyd/S5ojaGrZMzpDEmiqEIXvLCOB5BglkJSSkayN50mylksqP/uLlbWS+SzHIywsRJm6ThaeneCetAOzdWUGJZZ1HF/QgkRBo3Up97lrAQiF51c5WAFRU5sw4KaOOuYSR3/WcBwh73iECTqmcBuD4aDsJp8sHuNYBRKockCtqQIX5ailgz2+b5ir4ztR3Rz5Bef56pnCNQYDgnwQ1ylrDGDNGivMaztKHbe71U/8kU//ko7/7IDR6U+Qd/an6Q5IoHzjqopVtPGgKqIutRwDIQRy5bP9N7OQmHDe8hb+deQaBpddR2hoK5bjyzTyjsdQZn54CxxJjGZtvv3XXbz22w/N+FxjV1/zjkvzfy/j9U+9irdE7iDXsJJs6ykIMT8UbxFDI4eOXYMEssZRAj2wdX/xtZnrw9SqB0RFEsjJwcg+1Ee+NTsXfJzgyf0j6KrgZdZPifXcS6brXLzukgG8pgj0w/RQCukqDWGdxvDxOclqj5uMyNIEIbHnjyz+45tQn/wRWdslxMQk0ClL2vzPkcZVq8183eK9my+Wgwt1BoRaQUU0mWo4GHfYB55EEX47oueqy8FcT7J7IMPI0CBLRS9KpMyPJ7hOOZFRcNlveUyu5vKT2rEjvhm5N7KvuC9nu0TI+watZSatQ2tezr7L/puDZ7+fJS0RFjSGT5hSnXJ1jqYqLG+N8aS3NNhwZOLLiwqaMkVmPlepzsw7Hn2jeTYfHGXboRSZOSCBavUP/sJjHqVsnCLG3JN1JVAdY1EY8z9rbTv3eScDoOeq0wrnC+pzlDqOFuok0CwiYznEyTBidLLl+j8hQo3+jlzJGNoLOi51DAmkqwIP5agZQz+xb4QXhB7FU0M0n/Jc2uJmabUyMH7O2S4hYSFrDIhrTdzWxkorS5HddzCSsVH//HF/w8jequMnw47+NGsNvyG3Y90VyRrjYSpE0YkI74VfY+glP4F454zPdcGKFizX49b+TozUXhpvfy9ISd5xSedd0nmn5irf8YptfX5K0GzcenmnNDAeTFvsC8x/l4leFtk7GT7nXSxrjxEx1Hlxr0cMlRwGVq6GEsitfQ/s7i1NTL2Trq39Owqr4k4evn894d+9Z9K46xMJm3tHWdEWQ3vqxwCEBp6pKP0K6eqMBpodidAxmYQ4Faxsi5HEn2R+j+dho9Gw67c03PZ35DNpwlhIbfykptXdvg9XQmTxaqg3CkbO0snh2BaqkCj6DEigoifKJEog4ffJDYNPANArmzDylUogx/XYP5TFtXKc+egHiJLDWvfS0imCcUomN4HRe5nS+WDj6TRHTdx4NzYacmBHcV/O9oiIPFKPVKqGy43lj9N7bKpY2RHjZdaH+dTSr5ai0OcYBWWZKFMC5bLpimOc7XcSeeI7fhvu2TC4bdavw65JAvkkrGKUma0Hih/H9seltjc9T6A6Thy84pzF3O6dAYBoXj7J0XXUceLhxO5xZxlZ2yUuMgxFl6NHG1HCQQ1qrqQEKpSDqWMGgZqi+NGsR6EcbChtsWcww0lyB9n2UwnHEjVJoIISqNYKlalX30qJM14MwFPaOmL77+bgSAplcLu/8zDKOXb2pblafxQr2k2kY+WUJr31WtvaCEVieEsvmZVzXbq6nZaowbf7VwPQsPF7eH1b0f7yKZb87jXs7EuxayBN78g0EqOmgXG9Zo4Sth70SaDWWUjEK6yOHkrm6BvNk0+WJnF2pB3tlBcT0VUM7fDLfWYTYUMlJ43ankBObYLbDSYfe674IuK5n6x9Yq1MCZQKVITy6Kgm5yN6RrJ0NYTIJfyBrtN2coWv0kyVFdP1EjqWsKojjp9BB6efejo35D9UVGNYw/sJi/yEJJBa1h/WOq5ApFhWDi/oS2dUDjZVT6BAPbHaehqJ4ElvOaqbRUrJUNpi72CGzQdHGclYdN/+dlYM3MmnvZfTfMpzi6coeBem0pnxPWHKDYVXXknc1GhNRDkgOhBDO4u7MpZDhJyfDFZDgSpEfdFmbWecNGH2hdZMfvAsoVAOJsr+H3PpZAUpE/u/F7Hgng/Sfc+HWP+tVbR/+0IY2j2r12HXWCTI5vIYwkULlZRjhefJDchH13HRhDczdV0dxyWWtETZa67kKu/zcPbrj/bl1FHHvMPxO7I7CsjZLjGyeEaCjngIAiWQzA0Xj5HOOOVgisBDHJVysMf3DQOS9vxu3ObVxe0iWNUsdLb5QBo/Nv0EwKi1grfgDP759Hv4cvZKVCsJex5AE8HAwqmeJE6GnX0pTnWeJLP0Kha1TM3Lpi6zrA3f8HV2SIOwofLd153DdtnNQHgpALlDWzG2/ZbE3tsJ9z5EOu/SN5qvudp3OCgQP7c91cPKD/6W/UPVypOjhV0D/ipqY2R6K5N5p/rZL5TW9acsLMcj11+aVO163s0kwn5qUczUiMyDEoqIoRESFl17b8HdVPKkYXAn7Z/tgqd/XvUZGUQTK/EONKP25FiWE9KFyagzPxJsjhTe/9Mn+Npd26u2SynpGcnRFjdR7VFcI4F9/fcqSKATfXI9EYQQrGr2n9W1y5fy5le9nC+qNwJgD+0jQQbPrB0PD5SMagHTGqraXUjNdKw8rl3bE3Ba16tOUQkUqG3OVjaTiixiWCRQ3RzbDqXYN5RlOGPjedDy+Jdp3nMbH3deQfvV7yFWZspcGKc4tkUyO45KuUwJdNqZ56Mogu7GMDu9dpShkhIomXOIkEcLxWt60dXvUT9oAfwQjCOFghJIKfMBSieHGMlW318tz3wXIYM+PHVo9i5CSuwaCweZjL+gYobKSMPg2clkAxIoIEMVrV4OVkc17vunZ/HVt7/oiCnr6qjjWEKdBJpFZC2PuMggwgliIQ3Cfodup0sDw4ISaOyqhaYquCjIo6AEemLfCC1iFNMeQbStKm5XDZ8EsoLOOe94mMJG0asl7+MlT1y2po273A3Yikls0w9LO6YTIY0fYZ8f7cOUObymuqxzNjA2gWkmOLkrQWcizHti/w6Ac2gL2uBWANoe/xJauhcokRozRcEY+Lv3+quRmwP1zXzAoVF/cJqzp/dba02yLMfD8ySuJ2nc9nM2/OFlAPzuwv8jvODkokIjZmrjPoNHEu1xk27hq5Xk3f9V2nHwaf/fx39Y9ZlCKk1nS+P4Jy6UoDo5KExCTiASKGe7/PSRfdyxqXrilUwO8xHvyywx0xjJXaS6ziecaJ0X98OxglM6/YUNRQ9x6Zo2Ym2+n19+cB9xkUGaDeN/uKwv1/LDVbsTMZ/wsHKZYgnLWCXwdDB1JZD/mzrFEG7bWmwlhO7mfHWh9DCHNtN170fpfOiT/No9D+WCd3DJ6vaKUxTIKunaJHO1v8+1fMLi3c1fYlmbT5Z1N4bY7naiDu9iZ18K2/VIZnKEhI0RjlUQZ8XLPUzPquMJa7t89fiSKS5yzQaUwEtHKVuYszLD5Gx/LNo3mqdPNpKWJjcYX+TF+Y8EB43O3kVs/CVtX90AVmUZWi4ggcqVQImAVN3bN+xvCLyMlBqLk3XUETE0uhvr90YdddRCnQSaRWRtlzhZtHACVRGoIb9Dt9PVnkBjB0FFY+gj7AmUzjt8856dXNLgp3iYnWuL+woDQCsfKIEcD5PKpIbJcOrCRkLxJv4SuoLunT8t7ZgmCeSbQgeTy4YF0/psHbUxmyopIQSXn9TOn/Z65JQo2s47UNwcmcRyEntvZ+3N57Ds1htwt90xK99XiAjPBgPVvH1kyNNJS88ci08/fSlvVX9BapxJ01jkbN83KVfjN+QdD8v1MAc3s+jOd6K7WR71VrLi5LPoaig9h/PFr2VJS2nFVqYHSkRN0N7JGuoFEQziyxODqlCmBJJB6Q7uiUMCPX1gBNuVNUsqs/d/mxu0O/m7h5+LkdqPZ8TrBNB0cf7bkIoOi8/H1FSWLFsJQG5gLwnSiNDUSKBaaEz4ptPuX7+IDJ6HmSmBCoENE7cvsqzkKtq+HFc10b0czY//D2t+dDGrf3oVrU9/k9+6Z/Hnkz7C35y2oOL5BVCC71rwl/eRydSe9O895HtznbGyi1BQFr6gMcwu2YHqZMgNHWBXf5r+QX8xzAiXVFUFvyQAdR6kGx5tdDaE+MXfXci/vWD9EfvOghJIc0oETGpkkHzWJ/c27uunhRE2Lb+RD914HQs6fCN08rNIAg3tRMmPVKmL8gEJVD7mXNnlG5dv6xnEdr0ieaUYMw+5qOP4xIliNF9HHdNFvdedRWTzFiFhowbScT1YvahIyhkzKSpAVxQ8FOQRLAfzPMkPH9zLcMbm8rif4qEvOqO4f6wSKGe7mNRWAo2HkK7ynHWdvG/kxZU7DoMEKsTDKw0Lp/XZOo4M3nXlKkCwVVlGeO/dALx28CZ2rH0zALGeewn99T9n5bsKSqCc7dHCCKNDsyhNnwCpvDO+NwaA7Q+k36v/iEe86yv8wMZDMmuzayCNN/a8VprIY9/EGelh+W9uwNWjvKLx+7y/6bOs6G6dl+UT5cSiPrQVbnmX/yYgemStiWuhLZigXRFauRJIll6fIHh0zzAAPSO5qvvvUKbyfciuLkmqYxIsvZC+d+2DmD/BvfyUFeyTrSzc8SMSIkso0Tz+ZycxpG2O++OB1mf+F88ueAIePglULHuZrBysjATSGzpw1TAaDl33f4wdViP/yat4Xv7j3LLmE9x06TpWd8SqjJk7m/1rF9Kl4fFv1FRy7uzx++VTl3UVn//uxjC7ZQcAxsgucrbH4JB/X5pR/5xDL/0ZO15+V5E4OlFi4SfDaYsaiZpH7m9RuJ90u9RXnd3/CxZ841RSmQzDh/ahCElH9wo6G0I0NAbpcflZVN8W+oBspXF5MWCgjARqa/Tvnxds/HuyQ4eQtn9MnQSqo4466pge6iTQLKLQYamm3xnpwb9OBQkUTFzGGEgWlEDyCCqBbM/j6QNJdFVwaWwvVnwxItpa3F8ggezgdxWMocuTGiaDoSm87JxF9LljOuhpegLt6EsVSaBo+9JpfbaOI4P2RIg3XrKc2/LrEfiThc1OB1c+dgkfWnMLuzqfgzq8Y5KzTA2uK9k7mOGZniQPh97Ci/90+aycdzKM5hzciZLOxpAc1siBSc+5ayCNGNxF+89eDJnSIFje/jE67v4Q5o9fiZYb5JcnfYa/9grOXNp0zHhdye2B8itYNZaOheN6lZPJcdrECgSTZunkyVpBG3kClYMVSKC84zGUqbzH9pYtyNuhVrjyX47glR0/KF8tXted4FvGK1gg/TLWaKJl/A+WPYuS6ueyNVI6r3T9e30m5WBFFdEkEfEVSWXRtmLMfVqavCj7Qe7tfCUvvfYa/u7yFSxvi9ZUE562tFQe1rjlJ2Ty1cRT39AwAJ0tpWj5tV0J+gx/sWbFrddjDm/DyfmkgWoGyqjFF9G2YCWrOuKs6ojRHKkb+x4NKIESKORUKntCboqD259g5JCf5Nq1cAltcZNYvNE/wJo9EuiupwOT6WwlgW0F9ww1IuJVPLTfvw81IJCUiZSkddRRRx11VKFOAs0Q5auyVnGQ43dYZtjvlNx8WZ1zYcIzZtXbN4ZWjmg6mO1KNvUmOWNxkz9Ia11bsV8JytnyQTlb3rIwhYM6DRJIVxXWdTfwvA2dfMouRc+61vRIoEf2DLMmPIJUdIxEx7Q+W8eRw7nLmrndOQ2AFBG+9qZns6ojzvceT/KjvQnU9MFZWUF0peTmB/YU36tHICkqa7kMZ2ycCUigff2Vg9hUqvTs1yol+8qft/PSr94Hv/sA4f33wo4/FffJgBDSDz7GYGIt7324gVMWNvD3z1pVdZ75hF+u/0LxtYwGk8hAEZXLWzzTM8qWg6UJh+LWbhPLUVAC2fksXqEW8ARSAj2yZ4ioqRInQ89IZdu5Z6Q0Md97+ecwu49cKcnxhJBWImuEEIQWnVZ8r0Yap3QO7x2PVW1rSpQmsKGMr1hUp6GmHQsxRSXQnuGy/dF2MtKfPOeUKN+86Rw+ct06nrW2nZXt8XGVJwtaSqVboZHt2LsfqD4oMIZuTJSONTSF0zacyuecF2IrIVb+/HksG7nP3xlM6BUhKFSAhXS1XsJ4lFBIgDOd6vIue/8TZIb8NEY17rfl0bhP9rnZkarjDweuJ9nd2w+AzFT2n4UFSMoJzbLyS2Pn7UUlUK3EuTrqqKOOOsZHnQSaIVxPMpDyV6QLHVahDCxs6GSlgVumBBIFHwttDAmkKrjyyBpD52yHrYdSLG2OYCT34DUtrdivRPzOfmSoD8+T5HP+5EM3p2+y9rqLlvNF9/mcnPum/92ZqRMBecflgZ2DrA4lcWNdUPcOmLc4a0kzm1lEj2xmwOjm7GUt/PhN5/G5l53GTtnlHzQ4czWQN9rLpgPDrGyPzfhcU0Uq77Dy589F/c0/jHvMj++v/G12rkQC1YrA/dkjfhlmS2qLv6GsXXBEaWL2RDJKZ0OIr/3tmbQnDn8CeSTgrbicpPQH5DLcCMCj23zCTnGyqLkhtORe3KD0VS2oAieK4Q5UiU4+i+DESgfrGcnSM5LjLa1P8GTo9XgHnqjYn8uWSCEn1lmfTB8mCibrBazfcGbpzUSeQMDojbez63VPojYvrdqnr72Gm5VrAQinfMXDTDyB1Cl6AmVzZc9HrI09o/5zEw6HOHVRI+sXNLCoOTKhX8bYKHtl731VxxRIXM2snIR/+Lp1/GXhG7kk8ylG1CZeNRiQw4lu/3MCtHpfftSRiPj/xyG3mgRqvP9TLBq8x38T8dVwDYkYeamRS88OCZS1XSIiGEOnBir22YUF1HKCp6z8UrNHMTOB2rZuDF1HHXXUMS3Ue+BZwGDar/MvlH0VysDChkoOAzufLiqGlEKc6lgSSBFV6WBSysmNaGeAnf0ZLMfjXXveiuLmUMYMYBua/NKw4YE+MrZLPut3yLo5/RWX0xc18sLTF/KsU5bhSUE+l578QwF29KXJ2i4LlUG8RN0Uej6jIaLTHg/xQfu1PL76nQAkwgbXntJFPhQYSqZn6N8z2kvrVzZw0b7/YU3r4U+mpouM5RAeeBr90W+Pe4xrVapTylWAtld6li3H4/6dA2w5mOIj2nfokL4xe7nZ5ua+0uS+x23gcy87nc6G+T/Q7WoI80IrKEnK+b/nwc0+CRQe3MjJ3zuVk354Id5vPwCA6ubxECXz5xooKoGsbKng5gQhgQqlYM+3bgVAjOyt2K96pb+Dmug6Ytd1vOOqUxaX3kwUEQ94XacSbmivvVMIHkpcCUA0E6gXJ/ERmghqWWz7RLDL26JICysX+NcXCoUJG1M0Si2LVU7HlqD3PFh9PW4OC6OiLA78VJ7PvPRUVq06iUuT/8IXnOfzP7E3w8KzABCI+nrOPEBzzO9TYl4Kt2xKsEcsoFMe4pqc3+4QWAU0hnXShLDHMQqfLrKWSwi/DRsd6iPvlMbAnlXDL25MP7FsqFJhVkcdddRRx9RQ74JnCPH4D9C3/Y6s5RYnfHpQBhbWVbIY2LlMMf65VPpQOZnT1cAYuowEcj05YenJTLHl4CgGNp2jTwGgNXRX7F+zxK/pv2znZ7AH9xYNrqdjDF2Aogg+e8NpXH5SOzkMZLlP0iQ4mMyxTuykMb8f6iTQvMdbL1vJHd4ZdJ15bXGboig0NgbmqjMtB8v4q4UXOfeyrunIeWhZmclNnsWYEiVZZoDuurJIBvel8vzXH7ay2BzlNdrvSh8oM5Lu7yuRZYsWL+OMJSXPjfmMRc0RtssF/NK9oOjxsCjiqxZ+rDyXz4lXAJDb7ytaVC+HI6onkeUomtTnMiecEujRPUMYmkJndhsAzhiiUfVKZEBrS9sRvbbjGZqqcPCif/PfNC2b8FghIDaBma9sXgFAe3prcPIZGEPrPoGUyY1fDpmxHKRrk9JbyZ5yIyQW8IbLT/Z3HiYBtUlbS7j3YawxKYaqm8NSav+e1pjJh649ieeevZafNLyG+CV/V9wnlLoSaD6gKe6TJzGRJSsieAvPBcC86oPFYxyhg+Grbk1NIS3DkJ+8P5wKspZLGL8Nyyb7Sef9+2vjgRHsbC0lUKV31Hkjv6k+po466qijjklR74FnAtdGefB/WPTndzHSt7dY9lWIOo4YKjlp4FkZ+lL+gK1UDlY5aCoYQ1NmDO3KOSSBPI8V9/4TL9TuLW4yll1QcUihVhwg9P2/wcoVVmUOX43QGNbJYuBNIx1s9OAubjU/SCR/COrx8PMeN12wlN+/6xJOW9xYsV0rRAPP1FAyGAQaOFyRunVm55oGnMG9kx/kVq7OlyuBPCmLptJbeke5d8cAb1niG88OCJ8g83JJspY/CA47Jbn9ORtOmtG1H0ksaAxz0cpWhmUUskNYjkfYy9CjLeKk136VBdd+kFvc8xDJ/XiexPRy2OrEA3glaHPyuQwKRycdzJ5DVeZEeHTPMKd26OhO8NyMmXyVk0CJcD1haTYRuvDN7H3rTmhaMuFxgoljiNvb2tjttbM4+4y/YZJY+YlgGv7YIZUZvw9NZh00XIYbT8Z53n+CohbTk8RhkkB35Zaj5/px+rdXbNe8PLao/XsihsaKtjhvvWwFn3/5GVyyukRSKkLMy4TDEw2tiZKhck6EcV/5Uw68/nH0U6/nK+E3AKBJu0jSG5pCivCspYNlbKdYDuakB8naLpbj8cvHDrBW2YMUarEUDRifxKyXg9VRRx11TAt1EmgmUHXcF3wV1UqiPPq9ov+HCDqj7sYwthIiOZoka3nsHcyUlAFj08ECY2hZVjIi9z8Gu6tr8GcDuZFezhu+hf/QvgLAzpfeAbFx5OxAOLUHJyjtmMkqZkj3S+TkNIyhR4f7i6/FqqsP+7vrOHJY3RGvihvWAxIoP1MvgYAoDQuLkzZ/aWbnmiIsx+O2uyd/FqUzpkSjjOz0JEVS92eP7ENXBc+xfo8dbuOfl/+QPDoyn2Q0Z2M7LnGvNNkv/O2OFbzsnEUME0fJjzCayWF6aSwtSkNY54zFTRyQLZiZg+Rtl5jIYmkTeztpRSVQFo6CEujrf9nBLx7df8S+rwDb9Xhy/wjPbigjIHOVz0+BBBq44ZZjJjXuWIGhKmhT8MCbjNBY0hLlabmUsAzagxmUg3W3+IENh4bHn4TbroeGC4pOPBR8V6EEfZoElLXupdy64qPcNuITYXLv/RX7NS+PrYyvDlYVwaKmCPGQVkGUaXUCaF6gKVb6v8urEVQzhproJKyrnHLFDVXHG5rij+FmiYTPlJWDLdp3C2LHn+gZyfJ/D+zhJfrd5JddCZHm0gfK7t+sLLuX60qgOuqoo45poU4CzQBSSm7va6C36Swatvy4ZHYckECGphCLhDkrdx/RBz7HcMYuKWDGlFRFDA0XBa8s9jX0rSuI/eCaObn2rT2lFAaJgJblk34mPhqY3k4U5TwJTF0hJ41SosMUkBz1J8M7r/4O2hi1Uh3HDoyob66aHh2uqPufNgK1TYeoTBKZy2Q9d/PvePOhj016XFHpF0Bapfs8/MDnkT1P0DOS5Y/PHOKmRf009d5D/4Y3Eo+EGJVhvGwS25McHM3TJEbZ2HQ5fWe8C3HStWO/al5jYVOEQ7IRgcT4wweIeCksNcrilgjL2qKMGu3oMk8u2UeMLI4+cbxvIZHQLjOGdu0jowSSUvJvtz7DP/7kickPnmXs6EuTdzzOcx7BU/zJvBhDAmnSwkFDLjrniF/f8Y6QrhCeQOFTwGSKlmWtUTZ6ZWqiGSiBFgaJXUOjGbxxlMK266HjVJJN0l9gEtP87uy1XyJ+7qvYIhdgqTGUfZUJYZqXwx2nHKwARREsaYnQHC1999hFgjqODtSye2SBvRtFEeiqQthQWbRiHQfO/yjZK/+jeIyhKtiokxqTTxXl5WAqHt2/ejl//3+PYeb6aJVD2IsvHnPBpXvoWflPl7YbdRKojjrqqGM6qPfCM8R//nEr30xfgJncxdKRYIWsjCRp0/1J4fInPo2wM6XV6zHG0C1RAykU8vbsdKyTYev+krrGiXVjmpP7/CxIP+2/mIESyNR8JdB0SjlSKZ9cU/Sob4HBAABHBElEQVRQfaX7GEYsGsWSKk52lNHc4Xv5jKTGMRW3pm42Pl2kn/oNYWHxmLccV0ywij9GCVRU/nkesb98jPA3L+NP9z3Mvcprec/AP+OYjQyufRWtMZOUDGNlhrEdj/1DWZpIkYssYOjcd4N55FLQZgMLm8Lskb6yMP7ktzmVrTh6Sc3kxv2yzvzAHmIii6tPrHQydZW81AMSyIeVqySSC35Ls419Q2Vqrjn0aKuFTb0+Ab5i8E6S3RcxKGOIMeVgmpfHUQz0ur/KrEMIQWNkctJkMlXLstYoG+XskEBdTf6zcvnOT5MdOVjzGNuVaLiVpV8iuD8Cg9+pQhF+sIOuaWw316IdeKhivy4tXHXy8cPYvrteCjZPoFSXkBaS8hY2hUmf9nq8s19fsc+RKnizM1bNWC4RKhdP+vdt5u7wuwFw29ePud4SKfvyq8oWBWewOFlHHXXUcSKiPmqcAYQQvPHi5fxv8jRsNcLVmVv8HWW1ybpdWrVtu//faXUO4qJWycEVRaCqGpZV3bHm8hOngBwO9vUNFl+7DYsrVujKkb/g3exf+DxGZIQX5H/lb5xB7bUZSInFNDyBvGDFXzHqnfyxjERIJ00YmR8lmT38AeSmfYMV73/bcpP/Yo5IoJztkurdxlPeUn7vno0q7XFLkYQ3ZnvhPi9Tvim776ZRpAnZQ/Svfz3SiNIeN0kRxs4kcTyP4ZERwsKCSMsxOVlqiRocVCuTqly9RGSpjT4JlDq0izhZRCgx4flMXSGPjmdlUPEVDVa+sg3JO6VS2mTOxnJmx8NnU2+Sc8Uz7Aq9gp5dG2flnFPFMz2jtKppIqk9OIvOJymjaFaS/lTpPtOljSN0NPXYu0+OF2iTqFra4yb7jJWlDTMggTS9tAjjPf2rmsfYrocm3MpxxuLzSF/yYbjuc9P6PiEEEVPjzMVNPGkvRB3aDmVl64bM46pHLqWxjllGGXl85zlfBfxxGvj/92FDrWhbdFXBmUUlUMZyCInKfvN/w/+JIf1xn9e2dtzPLmkpU//USfA66qijjmmh3mrOENed2k0i0cCd2oWljeW1yUE6TkqG6Nj0HV4i7sBVag8ANU3Dsu2qFW0r2V/z+JnALfPkkY1LxjW1dC/7J/SXfosvRd5cdqGHP+AzNIWsNBDu1JVAhcSlrpbGw/7eOo4+EmENG42Ozd/DHtyDc5hGu1t6Boqv7XAbw6GFwZuplxhOB6M5Bz25h16l0zfEhIoo93IoQanaM2d/nLzUStdURlBlhv3V+5Flz6N/wxtpjOgsbo4wKiMoqV6WfOdsOrf9EAA93nxMKjyEECiNiyq2ybKY7XCrH7890LOTOBm08MQkkKH6JJCWG0ARfvtojyGBspZbbDsPJXN4s6QMenp/ktdpfgJNfld1RPZcYlNvkksb+wBQu05hlCianaR3JFc0GdekhauY9fKaeQwhBM1ds6MEKid25OiBmof45WBjlUAC+7x3VPqrTAECX7Vz3vIWHs80obh5GO0BwHE9TCy8KSiB6pj/yCy8BKgs1WuNmRV9kKEp2GgVISYzQXk5WAFLvb0kF1/Fjuf+AD3eMs4nYWV7nL+468fdX0cdddRRx/iojxpnCENTuOmCpXw1eX5pY5nfjwjq8D8Re19x23j185qmYzsOyZyDZZc6WG//7E88RJmfhnvSdeMepwiBoSm0nPXisgs9/AFfoRxMmUY5WOFYzazXfB/LaAjrtIthABb8+d2krcPz8EmmSmRPpuNMMAI/mTlSAo0O99Pp7Ec2LUEaAZExTjxuwRMou+hSX/HmFJRApWszU/vIKFH2POsrSC1EzNRoDZRAiaGn0dM9rNniG7Yb8Xai5uSeJPMRXc1xfqs/u/hemiWip7FtIY5UWLL9BzSIVNEvajyYukoenUi2p7jNzle2IU56AMvK8cD2fnZ+7VXkbr5pVn7HM72jxfvWcefOd6oWNveOcm7E/81G93rSShTdTiGlv4IOYEgLVzGKJRx1zE+s6SwjOrUZkEBl5TvK8O6ah/jlYA4olYrjyRRLtVBQIp63vJndsgMAK0gIyzkeYSzkDMYEdcwfrF9Y3Q6HdBWlTI1qqEpVku1MkMnbVeVgAH2nvIn84otLxuY1cHJ3gvhrfsbQO7bNyrXUUUcddZxIqI8aZwEvO3sxTyhlktWy2mQZrPhded0r+Y5zFQDuOAOmkKHjeS5bDo5yx2Nbi9sbf3FjcdV31hBMTndf8SXE6ueMe5iq+KknzzqlbBVzRiSQQg4TxZl6OVhRNVQfaB7TKPfWCPc9Qd5yDs9jpSyG3VlwDkpAAjmzFFk7FuLOjyP+f3t3HidJVSV6/HcjIiNyq6x96+p9p4FeoGkQBJp9U0FFBUHFZebhjMuMT0cdHWf0zaKOznPDQZ8roqLjgruIiiAiCAo0S7M03dD73rVkZWVmLPf9EVGZWV17V3VnddX5fj716cyIyMxb1beyMk6cew5QmH8Rqj+bJT90EMiIOjXF4gn6cMrLwSoKRF9n/Ir+7HrTUGTiMWoTMXoov2/E3U4A7EzTsEs1p7rZ9Une2nNDKeit4uVMoHULG7FUQFvxBTKqj3i6bsTnsk2Dgo5RUyjXQPEP+/9u/vxy+M7r+X/f+CoXeb+jbvNPJvw9bD2Q444ndtNqRMt6eyc/K3M4nbkiu7ryLFPb8Jx64vUd9KoUth9mobm+xg80MdxRC/OK6lvYXFHXayKZQBW1dcxdjwz52aC/O5iyBtZ7OZKOXP1ZIStn17GdMAiU3fkMAAXXJy5BoGljdt3oF9rCTCATNUlBIC+fLWV3Vso3rCBlD65XdLjVC1uJp8eX3SaEEEKCQJOiIWXz0lWz+Jh7DXuSSwesTVY33sv+y77IsrYM23UzANYwBfVSCYcYHhu2d+LnBnY+6uoe+qTzSPVnLBRrF454BdlUYaeIRc01bGyMrurbR16k1omFNYHMw2unjMDo77g0gVpEovpWza4r3TbdLMH2h+g8ktpAFUEgf8F5OMkwuOD1TX4mkOsHZHb+gbuDlbSsvKDcgWSYmlb9QaB4IhEue/QG1wQC2LX09QA01dgYhiKTiJHV4fzWqvz76GSaj9ti6Mvbw/+Xruj7Uk75KvPilhr2ppaW7seSdSM+V1gTyKbR31fapiuDQNH/h7P5V7zevx0AT008eHbbg1sBqDHD/1ej78BIh0+qB58P/wbMcTdTbDwB0zToM9J0FJ9n/i+uw81ncf0ABxd/IkEFcUzMb6rogDdJ/1+J7s2l5aWVitFyMOOw1zmS+mL9j0nYJqmWBeRUAr1rAwXPJ+8FxFVRivJOE8YY5odtGnhYqEkqDO33hQF2veZ16IpSCdpJE48N/dnUXXIZ/vkfKo9JsiCFEGLc5J1zktxw5gL+238ZPzrjtoE7mpfhLb+SphqHnnhYKDVeHPpEIuXEOMXYxIo//zPZrvCYn/pnAFDcv3lSx9u/xEpb8RFrSRiGKl09nPeWW+i87g5INx/x69qmQV7HMP2xB4HMUiaQXO0+niVskw+23cw7rQ8SmA7Wxh+UlrSMR+WHT7N1BYYTnlwVcpMbKAXIHdxFY98WHtQrWNmRIRaPgkDDZLKZ0dji8SRFYqiogHRQKAeoHnrlA7jrP4BhQGMqnNM1jlXKBCpm5lM0wivrybrWSf+ejpXXrpvLstYaXvDDbkRWYmAHsOCNv+Sr3iXhHT1yfajmtEOR8lXh3boene8u10/Lld9TzzYfp1snwgLewcSKQx/IFrk9/mHSfji3zGMYBPrDpv0kYlDXs4mgZQUAeTOc6zU7fk/y9/9WCgIFkgk05c2uT/Cm4ru5xzpzyI5MR6q4/eFB27yoO5hhHbYcbIJF5k+e08DjeiGJfY/SmXNLmUBygWbmsK2wMPRkZQIVc50AqEXnsfMdW+n82408fe39LGxOkUkMvRSs75XfQJ/196X7x2PzBCGEqDYJAk2Sk2fX8rU3nsbLVs0atC9mhtk051x0FQB99cuHfI7+wMiLDv2Y5P4NABzIhMvMMne+e1LbExtRYMWOj57+219HIBGPozpOndDrWqZBQTnEgvyYu/eUsobkauNxb+nKF/Gj7Ar2tJxN7XM/oeiOv8aKirqSPPWaPxC3rVIQqKena9LbhGefvReA4uwziNtWuS7VMN3BzCgTyLadsINK9EH54U3bAfjW6ltx6ttpTDu01yZKH14NQ+FaYYadF6vhnxd+h3f4f09tU/sQr3J8UErx4iVNpVbxKWNg8c/G+nqaXvFx/rT472D1dSM+16y6BB2qvBTrBd2KUeyhGBUX375je2nf3vbz+arxShR6QC2mI9HV08Nqni7dtwoHRzh6cj2+o4szm4oYXg6zNfybUbDKgbTUY9/A9Xwc5ZaWHYupa0Fjijmnv5zE9d8csKRrovyDYbZa5Xuf6/nE1GGFoRncpn28Vs6u40/eYuL7H6Nv66Pk3YA4LkqCQDNGzDRwtYmhJykIlI0u3jgZHMvAyrSQaplH0raGbVhiKIVxnGbICiHEVCFBoEm0flkLDanBV2RjUarq5Wes5PFr/4S6/n+GfoKKjlnrdt4KQN2yswFI7nmIrt2Tlw3Un13T3DByQdZKSinS8YlfwfQMBysokHfH9iHCCgr4mGBO3tVTUR0XnBAGBB40VhHr24fzzO1DHjdSMEdFgRbMGImYiRnVmin0Zsm7k9MWvF/nxt/Rp23OWx/W84o5Iy8HM4MirrKJWSYuJkSZQS/sDgMYaxaFQeJ4zBhU66e/hfqTe/Pcsz1gQ+bc43YpWL9lrTV83QuXkaYXnTFgX8w0uHz1PNovfy/UtI34PKahaFZdpfsHdQbLy1LwAvxA84cN5UDNwfM/jo5H72vDdHEbs+yuAXetQtcwB04urTWb9mY5KR7OG7MpbC9erAgCGX4Bv2dv1J1JMoGmOsNQfPjKk1g5RPHdiWj53T/AE7fTVxFQ96IgtbKGL6p7JFbOruVL3uUUzTR1f/4MB3v7cJQEgWaSmKkmNRPIzUXvqU4NtmVgmwbJUWoBKca2dE0IIcTwxhQEUkpdqpR6Wim1SSn1vhGOO00p5Sulrp68IR5fhlqbbFcst0o0dGDUzh76wRXZBa1e2Pr1Jeev573mu8Pdm++dtHH2ZyykkuOr7zMZabdFI45BQCE/tg5hZlDEk+UO08KsugRr5tRx58GwkGPHr98GXdsHHecHetjMt/5MICeeCJcrxvsLQ5czQyZLzZ4/sUEt5UVLw+BNLB6e7BSGqT9kahdfxbBMFdVNiD4oRxkpygl/34Zagpk3wgBTQVvs6Oyjvfb4P7Fa1lbDX/RS5ue/Rd28lYP2m4aiJTO+3+3rM1+hz0zRUthKz4HduH4AuTBY8syrfkvLrHmY8agT0wSDQFZ2d+l2t06UMiiPtoO9Rcy+/ZymHwMg1rwIgMVzOwYcF3TtwMFFSxDouGEfQYeuw/Vd9mluWnBTecOmO8nmyyflXjH8+25O8hLq5W01GKlG7o6vJ7P1TvbseB6Qzp3Hu75X3kLuzfeM6VilFFpZk5YJpPPlIJBjGcRMRdIeuSOmLP8SQoiJG/XTiFLKBG4CLgNWANcqpVYMc9zHgDsme5DHu8oTPts0GPbvV5Rd4OnweB8DM1mPOuGl7NV1xJ783oS6hHXlXDpz0YfDoHrFlv2o3glb7h71WNcPcHRBut9ME0oprljZzj2HynWl/H3PDjou0OAPkw3UH1ipSYYnHlYUWFm24eOw9f7JG2y+i9nF59ieWVO66uhEAafeXC9aDwxUaa0x+9t1m1HdBD8cq47a1yfTNSxqSQ0ZBDLj4feRSYf/TofPuUtay0Hm4bKaHGvkD/z9uuJhAMSv6cBK1GIQ0PbVdbh+gNEXLtNqaplFQ8rGTExOECiR31u6fUBnMPziCEdPnucP5PiR80+8ePfXCQwblQkvHJx9QvjvDt0YHtizS4JAx5nJyO7zV19PMPv08oa6eeTdIAyIAkEUKD+8JtBEWabBy1bN4ubO0zD8Ah3P/wgAOyFBoONZsPQKVOtJYz/emLwgUFAoLwezTQOl1LDLwPrJUjAhhJi4sVySWgds0lpv1loXgduAK4c47u3A94G9Q+yb0SqvWqQda9g/YP1FZJ9iAQB5swYMg4tPbOdr3sXU7byH7I6nhnys1hpvhCyIW+9/gVUf+RWf/91zAFh+AQ8LjLGdgE0mPzphaf7x9aMemyv6xJWLJyc508ZLV82iizSbatYB4O9/btAxgdbDBjz7l4OlU2EAM5Uoz43ab79k0sbp7tiAgSbfsqa0zY6CQPm+XvZni+zoLC8L8wONo10CI4ZlqDCYG31QVlGL+PamxmFT3d94RniCf/LcZt66fhF/s37xpH0v1TJaWv94bHzZT1mXv4mUbdLeHAZBTC+HW8hjFToJUDQ0hssNjVIQ6MiLheddn1ovzDDqPOVveVwvwBhHV8OJ6C14zI5qIAWplnLHySiouJPw+1TdO7GVB9Kie0ZRwNzGJFuCqHC875L606cIttwX3vWiiz1HoVbUK07p4GFvAfsTC1mxM1zaHk+kRnmUmOrGE1fRhoWh/QnX4PP8AKO/y6NTM+YAqWQCCSHExI0lCNQBbKu4vz3aVqKU6gBeDtw80hMppf5aKfWQUuqhffv2jXTotFWfsodfyxx1HNoUWwJAyg/TZM9d1sJvnAsIUPDE94d8aNEP8A47aXb9gKIX8JV7N/PB2x9ntdrEkqdvhiDACgp4RnWKifpm+YTF7x7c3rZSn+sRl5oX00prJs7CphQfSn+YwHTQBwcHgejajt8dLsXJuz5P7+7hUG90YhMFVuJOOI/WzK0b+NhJKg69e28Yz25rL7/dxZPhyU6xL8furjydObfU4cz1Nbby8A0H01B4qrwczPB6cbGI2cPP49aWsC6OalnOey9dzpmLGyfl+6i2n7/jbO569/oJP8/aZfN5yVmn8OErT2J2snwVuvYLp2AUuuhTyVJQ25qETKC93QWaVSeesuk56wO4yhlXV8OJ6HN9NgfhfOi6vOLPalt4tf7XqZcQYKCye3AooqVz4oyiFKyZU8flxf8AQPfspvGBj+HcegUAfrQcTMUmf16c3FHL4uYabmc9mWL4HpkY57JyMbUoNb7smkBZmNojVxx/Y4d+WmsO9BZI6vACCU7NyA+oIEEgIYSYuLEEgYZ6tz38LOtTwHu11iP+RdBaf1FrvVZrvba5+cjbjE9bUSZQ18KB2QymoTj1pBN5SC/HeeoHFIYoqOz6upQK3i/v+vzddx7mIz/dyPsa7uZ250O8qutrcOBZLJ3HrdISK7Pig2nhhT+NeGxf0Y8Kn8qV7ulkzdx67ttyiC6nA3XohUH7459bSeqzKwgCzZb9vTy6ZQ+9ufCKoRG4+BilE/5BS6tyk9PBaXcUqF7QUS5anIwnCLTCK5YzgHqiWhxFL8DGJTBtlFL4mBiBSxBoLK+XPmOUq+UL19P5sq/B+rDs2vFeFLrfilkZFjRNPFPAMg3eeeESOuoSNKhycMfM7cX2sqX26QBWIiy+6+WOPBNod3eeRtVDMd6AHTPxDDtsO38M5F0fF4vdsy7GmFux7KflBLbd+Bxb2i6lDwdd7MXBRUkm0IyiUMxpSPLydUvZS/2gZbDaC2tXWfbkzwulFC8/pYNPHnpx+D4MxJzjv37ZTKZQ41p+rM0YBgHZ/JEvj+0t+jyyrYtWdZCCXV+VrHQhhJjJxhIE2g7Mqbg/G9h52DFrgduUUs8DVwOfV0pdNRkDnFGiD26vvehM/rLi/eRf/tXSrpeumsWPvTOIdz7Hjk2PDiqa6+9+Er3z0dL9gufzte/dzs7H7+UbDV/hxtwXSh/YKGaxq1hseWldeezB9odGPDbvBtSpLJ49uR1VRHVdd8ZcALZ5tajDOjBVunPjHn7+3//Aq+84laabT4ZCTxgEUiPUuujeMSljPHAwXI4zp721tK0mEaNAjHyuXBi6L7oaWvQDbDyCKMMuUBZKezy3L4vj9dBnjnK1XCn0sivAnNw6HtOJExXedy76pwHbm/y9FCp+vnYqfL8o5jqP+LX2dOdppAudaCJhmwSGjRUcm5pAfUWfJAWwkzixgX+mzXiKuQ1JctoGN4eDC0ch40NMXYYRBmOaa2x6gjjqwDMA+HYtWmu0G36WMGNHJzh41ZoO8sT5sncZAMrNHZXXEcfOuOrsqHCZb65r/xFn3nbminzhR3fxCvNedOPxv/RZCCGON2MJAj0ILFFKLVBK2cA1wI8rD9BaL9Baz9dazwe+B/yN1vr2yR7stKfDTJ5YPE3teW+DFeXSS6cvaODpxGoA0k//kJ68W6qZkit61H71bDK3XFA6/rcb9/L2TW/hdudDnJ37NYHp8LnGD4Q7C1ksXaxaseXZzfWl28bOv4x4bMENqCeL59SPeJw4vpwyt55XrZ3NlkINqmf3sMfd/p2v8L+NbwMQ97OQ3VvqwDWsSQoCdXeGGUWxRDkAuW5BA0rBSS98DWdb2K0vW/Do6nOjIJCLjupw+MrCCDzybkDCz1IcLQjE0N0FRVl/EIiGhfzv5b/hgWA5AKfxBF6svJzA6Q8C9R55S/c93XkaVA9mTTMp28I3HCxdmHAdjLHoc32SKo+drBlUVylmGmQSMXLaQee7sVSAkuVgM4oZnbA31cTppTLQo+kpeKWsYuMoZAIBdNQluHBFK5/0XsWneC2c+PKj8jri2FBqfC3XtRG+Jy34ysnwyLeO6DUf2HyAzxQ+SFy5GJn2I3oOIYQQR27UMw6ttQe8jbDr10bgu1rrJ5RSNyqlbjzaA5yR7CTxmDlgmYthKOYsPhmAlkc+S++Dt3Io6vR1xxODT6K3HSgvl+hrPJGnX3MvxZowocvP9+BQvSBQ29lv4G3Ft/Noy1U4ux+GYPhVhPUP38RiYydBvO7YDVAcE+vmN7DDr8Po3QvB0EXN/9v4GACftf8q3FDMhkEgY4SCw5MUBHJzXWH2XEUHvZp4jDjh793SO14LgYvWYSC26AXYyhsYBIrqFyV1L0Vr9JoHEgQaWeUSub+7+ARuDq4q3Q9i5eVgqUSCPm2T6+kalDU5mrwbvh/t7srTqLqxapoxDYVv2MS0S0/+6C8J63N9UuTJZOoG7YuZipRj0YcDfZ0AqKOU8SGmJiv6bNCUsunV5fcns9hNPtuNjoJARzM4+N5Ll1PA5lP5l1Sly6iYPOPttjWg69zmu47oNTfu6ikVvyfVdETPIYQQ4siN6YxDa/1zrfVSrfUirfW/Rdtu1loPKgSttb5Ba/29yR7ojBJLUpeIDSp+t25hMxuDMJBTv+FLdGXDFGy/su5F1Iq6b0+52O6u0z9IsrGDutowm8bL90TFlqtz4tBel+LPNefxYLAM0+2hsPOJYY+d9/DHAdCJ6VEkV5QtbE6xW9eHgZLc/tL2wzMtDqx4A4dSYcc8CllM7RGMlAk0wbbg5efJUjSSI7ZNydz/CQBcT0f1q1yIiphrZaK0T6A1ad2LFxs9E2io1vFiaCknhlE/r3Q/aZRrpWXiFlkSFHNdAzq4jUV/EOjpPT00qh6MdFi/rr/4ci43vuc7EoVCkbhyMZ3BtZRipkHKNsljYxQ6AaQm0AzVkLLpZWCgx9h6X2lp+dHsGre4Jc2FJ7TyhjPnjX6wmNLGW2i5NpUs3dbpthGOHIZXpP3ZMIOor3457rkfHP9zCCGEmBA545iKDJOUMzjT4ao1HXxq7mf5tPcKEgeeYNHN83lhfw/+/k2lY/bt2Mwze3rw92wE4Lkrf0xmxQW01yaIp8KOOX3ZbuKqSFDFJQSr59Tx087ww6O/5Q+jHh+vlULi0828xhR7dLTMr6dcF+iPmw+Ubvd0nEPxko+RSIfLe3QpE2hgEKjv7Y/zyeW3hXf8wYXTxytX9HCCHK41fOBmq25h3pP/TazzOYp+QJ8bBoH6O/IEyqLB20vTn/6TeWovvp2Z8LhEmWMZXHTOi/lX9zoAkuRL+9Jxi6yOE+S76My548oG6nN9gkCzadtOEhTKQaAoc1I/95tJ/C7KKoOfXiEM5itn8Pyz+jOBtIPVHwSSTKAZqanGoZcwC+d2/0wOkSH+5G2l5WBHMwgE8KU3rOUfLz/hqL6GOPrGGwRqzJSD00Fx/PWgCg9/mzd3fRaAfWvejpWqG/dzCCGEmBgJAk0lr/o6hRWvHnZ3PGbyH9eeyS+t80rb3K1/xj9Y7q607flNFNyATE8YGEp2nEhT2sG2jNKJdC7bVdVMIIC18+t5JFtLPtEK2+4f9fh0ojrt7MXR05iy6YlFwb2KukA79oeZbYV4M91XfpX6pI2dDJdSBfkebDy0GhgkVZlZ5FJhsWmCiS/X2dtdIE0fvj18EOj2NV+lqE0af/IGvK6d5F0fGxcjOvEKoiVrHY99Dke5kJDi5pPJsQyuOW0uDwThSWhcl4NANfEYvSRYuPuXpLf9DneY5YZDKXoBz+7N0l54PtzQHNYdqq8N52D7z99I4E080Hi4Pre8LFYXwk542IMzgWzTIOWY5HBw3LDmkSFBoBlpbkOSgzqcl72JDn7onUli8x0ki1FmpXn0/246lnR1mmmaasvvSzp3kKI39vdXgCd3ZUu3s3POxZYMWCGEOObknXcqOfEq8i/5/IiH1CVsrrv0XC4pfBQfg1n3/RP1hzaU9p9y9w003nIOb3G/Sc6sobWpvIwqlQ4zEfLZLuK46CouIThtfgOg2FGzitiO+0ftMBE3xvchQ0x9Simc+o7wTne54WAxH2ZB7D/5r2luaCAeM0uFfr18FgcX33QOey6I2yZFbRJ4kxAE6imQJgfO8HV8zj31JD7T/GEa89tY9K2z8Lp2YeNhRJlADTUDT+BrpOnXpOqvi3JAh+9rZqKcadWUtomrcB4suOP1FB+6lYI3fO2xSlrDr57YzQojCq63ngTAxavKy16K20buangksoVyYCmIMoGIDQ4CKaVI2RZ92CSD8GTKiUtNlpkoZhrc5F3FF70rWHLRW7iHNZiBy6zeaIm1LBMUR8GitnKjDp07yM7OvnEVzH96a5j5u2/FDaQzjQNqvQkhhDg2JAg0xahR/kcMQ3H9GfO48Nzz+H/e5ST3b+Cy7u/iUs6MmFV8HgDLig3o+FCbdOjVDvm+bhyKVf2AeOKsWmoci0eNE4j17iY4tHXE49XaNx2jkYljKdMymwBF0F1eDuYWwportZmaUqHkZLoOgL5sJw5FgsOKmptK4VgmHhZ+/1KICdjV1Ued6sUcInuncOkn2XnGP2MaiouufB1ftF9HTBdRB57BVm4pCLRqXljs8gDh2FNJOVE/Gv7l+ov55Zx3oV799dK2mniMFrO3dD/9y3fS1Te24OCm3Yf45J3PsMbege/UQu1sABKJiiUQm46sGOpIcoWKTKCotttQmUAAKcciX1ELxnGSQx4npr/LzljJv3vXsfbU00k1hEH1THFfuFO6xomjIOGU55Xfe4CevEdnbuwXX3q6ws6b+8/8J9pqJVAphBDVIEGgKWasXRpuXL+I2zJv4o7gNAAKRgI/PQuA3179OL9a+mG8V39zwGMyiRg54hR7u4krF1XFjh6moVgzr55f9YQFf4tb7ht8UHRl6TuJa2CI2hji+DevKcMBnaH3wPbSNi/KBEqlyv/niYp6Vo5yCQ7LBDKUIh4zcDEJvOKEx/Xkzk4Wql04bcsG7fNPuYHcKX9FTdzCUIq9HRcCoLp3RplA4Yfa/uKZ9/nLeW3xH7HOf/+ExyUGu/ikdtZd8/5SsKZfJugs3c43nkhP3sP1g5HrAz1/Lxd+70TWGw9zfnITXvOKcmHwiqU1hWcmty6Q1preYjkTSI0SBEraJjld/h2IJyQINFN95MoT+fW7zsEwFOmGsEhvprgn3CmZQOJoqOjOGd//OPVPfZviOJbIOm4PBRUnHk9IR0whhKgSefedYswxBoFq4jG++IZ13ORdCUA66KH7+l+w+eU/o72xltnr34Q9/4wBj6lNxOjVcbx8ljhFTKe6mQmnzavnzoNNYdekbQ8M2u8WwoKD6fTorbXF8WleY9ghrLBvcymd3CuGmUCVQcpUMkFBx3D7uqPlYANPbgxDkYiZuFj4k7AcbM8Lz5BUBcy2EwftM5Qi7cRI2uEH4drW+QDk9m/FxsWKMoH6PygXlcMj1ioytQ0THpcYWjw2/J+yn/nrSBx4HPvJ7/Pc3p4BtXcG2RsW1P+a/Z/U925GNy0v76s4oU4feGzCY65U8AKCADw/WvbqjhwESjsWecpBKdOWLLOZSilFc004N+uawyBQg7c33GlJLT1xFBgD60DNvve9pH79vjE9VGuN4/eQN1MkbaknJYQQ1SJBoClmPEujl7bWMOuEM/mpfwabT34XicY5pBeu5YT2DPObkqWaGf0yiRhZEpAPl4PFqryE4PSFjfja4EB6OebuRwbtf2JreDVzXpu0h5+u1s6v5+5gFU17/0jv8w8C4EfBPyqDQI5FLw5uX0/Yhn2IZQ4J28TDJHAnlgmktUbveRIAo2Vw5xulwg5NNfEwyNPcUM8hnSbo2oGNh2lHwQIzLAK0uK2ec5ZKd7ujaajitPoNP+XuthvYrsOf/Zy73kF88514xeHnR4878D3TbF1R8YTlumSxIA/jKDY9mv629F6UpWS40e/AcJlAjkWD6ilvkIyPGa02Eb7XtNelOaTTpHQURJR5IY4GN7xQ4+vyB9b0Y19HH9wy6kPzbkCKHK5VU5q3Qgghjj0JAk0xY10O1u99ly3nF8v/g5Yr/pF4zCz9Ue3PUqhU41gcpIakewBHecSqnAm0ak4ttmXwjLUYa9+T4A/M4Ni57xAAbY2SQTFdzWtMcXfTa3GxCB77IQB+9AFzQOaFY9GrE1F3MBc9RBAoHouCQP7EMoF2d+VpdncAYDQvGbTfUIqYYRCPmdiWQXONw27dQE1+FzHlY/UHgaJMoJVzm/jIlYMzisTkGarFsVpwNulL/5layrWB5t/5ZpLfuGTY59my91Dpds+c87BOu6G80+0deLA7/tbIw/nhwzv45gMvEPQXVy0O3x0MIBkzma/KHfXwJ14HSxz/2usSpW5hAJhSE0gcBdFy1Q1q6YDNPXvKQaDhlt12510y5PDtDPGYZAIJIUS1SBBoihnqZGYk85tS/PvLTyblhCecI7VrNQxFt1FHcxAWjax2JpBjmayZU8eDuXaUX4DDriL1LweLxaXexXR2/urF3O8vx9x0BwA6Wg5WmQmUdiyyxNGF3rDdujn4Crdjmbh64jWB/vuuZzjFeJZiLAOJ+kH7FWCa4e9pbSLG4uYUW3UL8/xtABj9AaooE0iZFi01ckW+GuY2JrnTOAuAh63VAMT2buCpnYc41Dt4nhQKYZv5A7POY+8Fn0ZVLqdJhhmJuwgLfvdfDR/JiPWHCLPOgkDz4Z88yW0PbistB9PF/my4oYNAhqH4Rc2rALgjdgF0rB11LGL666hLsJ+ok6KywJCPeOIoiALgO5wl/MZfwwfcsHFH8UC5wUdumGW3PXmXjOrFdzJD7hdCCHFsyCeEKWacMSAAapOxMbfY7LEaaFbdADiJ6hdbPn1hIw8ciq5cdg3sEOZHwQBLOt9May9ZOYvfBmtIdT9Hfs8m9FCZQHGLHHGUm8WhOGQmkGMZeFjoCQSBsgUP+6EvcLn5J4xhTqAMpbCiX9TGtM3shiR7YrOZY/R35Okfd/Q7qeRqZ7UkbYs3XP9GLq//Ka/MvpsPum8EQPfsLS29quRFSwm3X3ATbe0dA3cuXM/BV/2Qr9vXhPcPzwwawlCvUcn1NQd6i9SS5fn4ayk8dCtaa4xRagIB1J3ycubnv8VHnXdI7RcBwKy6BJuCcN76SpbaiKNk2eVow+KR1lfwZvc9fM8/B4CmX78TOsOLIUUvwPUHL5ntzns00jPkBRYhhBDHjgSBppixBnOOlJ9oKt22qrwcDOD0BQ1sDaJ6KZ2HBYGiTCBbMoGmtTkNSba3nAuAu/FnaDfMxhiQCWRb9Oo4hpvFwR2yEK5tGRNeDvbo1k5ON54K7wzTkc4wFLGo3lbMNIiZBvma+eUD+k/Ig2gchgSBqsWxDM5Z2sxnrl3Dx65ezW7CpaUnfHsdme++AryBy6i8Yni/qTZVyq6sFMw7i6A/O2cMmUD+KEGgQGu27M+yTIUnTs4jX6PP9XF0Hxo14HfgcKcvDDOTtuwfPRglZob6ZIwn1SIAnGD0+SnEEWlYQM8/7OasM8/m/OUtrJjTUt639X4gfO87vAh/Z67IUzs7aVUH0ZnDguxCCCGOKQkCzTDzO2aV72T3VW8gkVPm1nPAaMDHRB/aNmBfEC2JmArBKnF0rV65hmeCDvTTd2B5g+uhpByTXuKYXg4HF2uIIJBjGRSx0IcFgTw/oOCN0BEqsrcnz398504uMv8MQO8rvz3ssYcv21x12jnlO4Vo/EHUMtcYHEwQx0Z/cfzGlM2r1s7Bqi2feDjb7oWu7QOO96NMoPb6oZcqWIbCiEVB6THUBPKi4tH5YZZGaA2b9/XSpg4C0KNq6OpzSVLANRMjdgo4uaN21NcXM4tSimfjUn9MHH2WoThveQufv+4ULjmpjTv9UwHoObgTAOcvX2bPsw+z7WCOrj6XvOuz/VAfha492MrHrJUgkBBCVJMEgWaYk+ZWdCladU31BhJJ2Cbzmmo4aDajD1sOpkutwodfEiGmh7OXNPHb4BRSu++nvhgVvE2UC4JbpkFeJYj7vWFR8yGywxwrLAx9eBCo4AVsP9RH0Ru5m9OGbV18sPhpAHJNJ2O1rRjx+EqrTj+XVwYf5V5jLSy9NNwYRCf+pizLqLb+gvm1bfMH7ih0D7jruUVcLAxz6D+NpqFQ0fLUbE/3kMdU6s8E6sl7Q9YH8rVm464e5quwE2IPSTpzLkny+NbIGZAJ2+RNZy3g/75m1ajjEDNHNr2IH/pn8ULz+moPRUxj/U1M4jGTl62axV+57yJHAn1oK3gFMne9n0W3v4TOnMvWAzk27c2iNfiHwsB7qmV+FUcvhBBCgkAzTN3p1/Ee969Z7t4KdXOqPRwAFjWnOaDT6L7OAduD/uUWMSmqO92dOKuW+2OnYWqf9cV78LAG1UNxzSR1OjzxtofIDnNi4XKwyi5zfqDxfE3BDegrjpwN9OSubmoIszvyjSdhW2N/e7RNk/e/6TU0vuWH0LI83CiZQFOGEWVu3XDRadw++z28R78j3JHvGnBc4BXCOTQM01CYTjgvc73ZEV9Ta12qCZQrehSHqI8RaM0TO7s42YkCn8UsLxzoJaUK6DEEv9932XKuWi1X1EXZyR21/L37t/x0xSerPRQxjVkV2bCz6hLccOYCfA2ZR78Em+8GwKjoWqg12J3PsXDnTwCoaZ57bAcshBBiAAkCzTSmxRvf9kF+8ffnV3skJYtaUuz34ui+gSdkpZobliwHm+5MQ1Gz+Ew6STOb3fRZNYOWwnixFHEVBnicxFCZQAauPiwIVMjh5jppePhzBLs3DPv6u7vy/NedzxBXLn0NKyhc+K+luj9jYRiKmniMpFMRQOjPBJKaQFPGCe0ZXnzNeyg2LAs3HBYE0n5xxIK6pqGw4mGtqEJf94iBRa3L3cFyRX/IIqnZPo9Htx/iNBXWoYoVu3hkWydJChAbvRaabRlHvY6cOL68au1sABa3SAatOHqsw/4+ntSR4Rf+OgC6//K98o7oYkh6210s/f5FnN99Oy+Y86BpyTEbqxBCiMEkCDQDddQlmd84dYotz29M0aWTeLlDA7arMXTIEdPH2cvauMc/GQA3VjNofyZT7iYSG7ImkImHReC7aB2efFtfvZimzy2m7cGPUfOD64Z97d8++AgPOTeySO0k17qW5oaGYY8dTjxmoKg4IZdMoCkpE4+RqInm0qBMIBdfDf//ZRkG8WQYBEo+/xs2788OW/xZEy736sq5eL7G9Qcf94fn9tMR7KLO3x9uyB3k5rs3s9g+gJ0c/DsgxGjWzm9gw79czMUr2qo9FDGDXHRCGx/0wlbx3VseKm1v+J+rcDb9jNm/vpGn9RzOzH+Gm0+8VT7XCSFElUkQaAaqcawpdfW4oz5Bt05Bvqt08g5geFEmkD11Albi6Dl7SRP3BWFR06Q/eKlNa1Nj+Y41eImgbRm4mKjApRDV/zH2Pl5+SHYXHLbksN+BJ++hSYVLzQrtpw66yjkWzTUOqQGZQBIEmopsy6CmLuqSOFQmkDFyJtCiWWEnnMZN38fs2jZkhg+Ey8HybsDWg+ESw0APDgLdv/kA58SeBmCDvYo6leX9qZ+ywH8eJS2UxRHKxGNT6m+8mP5qkzH+1/kncEinmV14DoCvWK+hvvtplv7urcT8Pv498S5ed+mLufHcRVUerRBCCAkCzUCGMbU+HM6uS9JNErPYze7ufGm76UXdd6Qw9IzQXpvg8WA+APHiwUH757TUle94+UH7axyLwIjhe+6w3Zjo3T/k5vqep/Ew2Xjtn8ise+14hw5A0rZoSNnlDWuuD/9dfsURPZ84eurq6vG1wu0dmH2IV0SPkAkEcPKCcoZF/TPfJejaOfSBW+7GfvQWADp+/w/Yj9026JAHthzkouSzuMkWHmMZjaqH/+V/i+455+Nf8tHxfVNCCFFFi1vS7NV1AHhYrH39R7njsnv4S+psHk+u462vvIIXL24iYcsSaSGEqDYJAomqa6116CFFLCiQ6yu3Xba8HEViYEomxUzxjB6+WHmrrggMDZEJZBiKVDxOe2ELPDpMe/fcgSE3dxS3sNeeQ1DTRjpuD3nMWAy4+t56Ip3/sA/q5x/x84mjo7kmQQ9J+rrLc8oPNEp7BCNkAgG0NZaXCrY+/Gmcb16JN0Q2kHXrVXT8/n089Ox26p7+DtamXwzYv+1gjjO6f8nZ+bvobX8RKlV+3q0X3IzRMP8IvzshhDj2FjWXg0B7k4sxTJPFs9uJXftN9LX/Q306RnONU+rWKIQQonokCCSqzrFMAjsDgJ8rL8+w/D4KhhSFnkn+6rzl/B/3egrX/XjQPrX2Bh5xTuOm9n+Fla8Z8vGZpAOAtfFHQ79AbnAmULbg0aQPkI3PwhlHR7CxkCUZU1N9yqZbJ3F7y0GgPtfHCFz0KEEgDJOvNL+Xr6hXAGAeem7Iej/9fnPXnRho3Kg1cr8Hnz/IJ2JfAKC3dS1nnbS4tE9b8VILZiGEOB6saM+wTTeHd1pWEI+VM37itsnCpjRttXEcSzKBhBCi2iTFQkwJNXWNcBB0X1gXSClFzO+jaEh7+Jnk3RcvY++LPoGTGSL4VzubzFtu56WGAcbQwZpGO6zDY+19bMD2F8y5zPO3Uuzex+F5Pnu689SrLLlkA7PrJ7f+1BRbeSki9ckYB6kh2VvODMvmXSztjR4EAoonvoaP/vIpLlnUR8uhv+AGAYlhWsufqp8AoppUFQ72Fku3u+ddQmPPU6X7rRlnyi3bFUKIkRiGouGKf+G53x9i9tlvpqkhyeb9WVxPU5e0sSf5IosQQogjJ+/IYkponh0WClzwk6vp3rUZADvoo2hIUeiZRClFc3r4wJ9lGJjm8CfHdWZYKyie38u2zeFJ9U7dwC9WfgaAQve+QY/Z05Wnnh7imeYBVy4ngykn8lNSXdJmv67FrMgM68l7xPDQ5uhBoItPbMVQcPsLMWK5PaiNPxn22KvVXQAkigfAd0vb831h4ftdp7wbL9WGlS4vB2vJSPBbCHH8ufRFqym+7ifYC8/CtgwWNaepS8akDpAQQkwxEgQSU8L8NRfyM38ddn4/fU/dQd71ifl9+KYsB5tpRsqAcGIGaXv4BMaELteU6tr4WwA+711J29yl9Gkbr2dwEGhfZycpVSBV3zqBUQ9NlvRMTQ2pMAhkF8pBoPijt7DE2AHm6DWhGtMO166by35dC0DNj9447LFzjHDOGWjI7iltD6L6VEHUBczONI3/GxFCiCmmNRMvLYWOmQYddQmSk3yBRQghxMRIEEhMCafOb+CTmfeTx8E6uIln9/QQ03mCmGQCibJ4zCQdHz4IZBR6SrdTO+8D4OJTlpFyLA6RJsgN7Drm+gHbt+8AIN0gQaCZojYR4wAZ4sVDdPcVoJBlzn3/SLs6iBpDJpBjGfzdhUvpZWwZO0+rheGNipb0QVSPyHPqUQriNc3j/0aEEGKKGdAlk/DCjixvFUKIqUWCQGJKUEpx5pIWNgXtxA48xaGcS4o82NIeXpQlYubIS6yiIFCftmne90cATl48j7Rj0asTBPmegYd7AT0Hw+wMJzP5J+HyuXdqMg1F1mrAxGf3nt3ornLR5rEGgZrSNt2xijlTGDi3PBWeCLl2Ld+MXxNtLJTHkA+DQH68AccysFJhRlAw65Qj+p6EEEIIIYQYCwkCiSnjtPn1bAgWUrvrD9Q/cQsnGc8Tky4SosKohSUL3QD8KVhOuhgu9Uk3doRBIOJQyA443A80ZnZneCfRwGSTTKCpy403AlDz5G0DOncpyxn1sUoplFLsaDyLL3hXhBt7yku9/ECzh3A+bXnZD6E/o9EvF4M28ofCTU59WIvKMNl81U/guh9M6PsSQgghhBBiJBIEElPGBctb+Kz1enqMDCc/+hEAgtp5VR6VOK68+hvsbz2LB4ITSptitW2kHJOsjoPbO+BwY8vdvOfgP3PIqIf2lZM+HEmBn7q82S/iGebS9uBH0U/8sLTdGEMmUL+vvvE07g5WhXeyu0vbn9nTA4HL4y0vpVC3GKM/sFSRCWQVO8NN8TrSTrjE0W9fgxFlBAkhhBBCCHE0SBBITBnpeIyL1yzhE4VXsD8+j78tvoOeM95d7WGJ48nSi+m++rs8rucDEKAg2UjascgRx3APywS67yYAvjH/Y+DUHOvRiipasmQpV+X/BTeWwdlwa2m77fWM8KiBmtIOQaolvNNTDgLlij4OLjE7rBlkRv8ODAKFrxPEakp1rhzJfBRCCCGEEEeZBIHElHLdGXO5VV/C2s7/4GfBGdQ1SLFUMT6NaYddiaUAdKlaMC1SjkWWBKbby8HeIp4fABDfcR/fDC7hwgsvreaQRRVctKIVz0xyf/zFA7bX7Lx3XM9T39wR3ugtdxoregE2LjrKALL6g0B+RRDIyxKgsJNpYmb4p7ghPXpnMiGEEEIIISZCgkBiSlnamuE/r17J+mXNrJvfQJOcFIlxsgxFe8dcduoGsla4tCZpm/QSx/Jy7DjUR8ELKBT6iOs89a1zmNsoBchnmpaaOK88tYN7D9UBsDGYS7dO0H36/x7X89Q3tuCjCLL7StsKno+DhxmLYxhgD5EJZHu95I0k9elyh7H+ZWFCCCGEEEIcLfKJU0w5L1s1i+VtGeY2JrFMiVOK8TENRXsmznf99axraWAOYSFf10hiBzkgzNTYuWcnS4Cm5hY5+Z6hbjhzAf/5UCtEq7BWFr7MX865aFzP0VKb5JCuIZPdR3/Iuuj6OMrFsh1mNaYw7agmUFQYesu+XmJeL8V4mqb06IWohRBCCCGEmCxyhi2mHMs0OKG9Rk7MxRGxDMU5S5v5lHc13rnvK20P7BS2LnLyl+ZiPPx1tu/cBUBbS2u1hiqqbElLml067BJm17Zwxcnt1CXGXhgaoC0T55CuodC1t7TNc8OMHzueJOVYpZpAbqGPINBsO5QjRY7ATk/SdyKEEEIIIcTYSBBITElKWmuLI2SZBlesbOdXf382py8st31f0NZUul3763ezedsOANpa2475GMXUYBiKJ/Vc/su9msbrvsSHXrpi3B3d2mrjHKQGP1uuCeQV8wDE4wkATDv8N5vLkfd8DvUWqSGHtqUYuRBCCCGEOLYk1UIIMS0tbEpjVAQT19bnYFt5f7Er7OZkpxuP9dDEFPLF16/jiZ3LqGtbQN71x/34tto4m3UG1bcfP9CYhsKPgkD9BaH7awIV830UHvkxqx+8hbSxFSO+etK+DyGEEEIIIcZCMoGEENOSZRoDsjpqTzgfgM96VwHQkt0Y7kjUHeORiankohWtvHX9IgDisfG3aG9KOxzUNdj5A/QWPQA8NwwC9WcAWU4YBGp94N9IPHgT8/bdRaPqIZaqm4TvQAghhBBCiLGTIJAQYmY44SU889ebuUufCsArs98Ot8drqzgoMRU41viDP/3qkzZ7qSfhdeHu2wxAcFgmkGOXiz/X7nuo/LopmXtCCCGEEOLYkiCQEGLGyKRSBG2r+HXsvPLGeF3VxiOOf6ah6Ik1A9D45XXguwRRK3gzFgaB4vbAINNeIzzebF95DEcqhBBCCCGE1AQSQswgiZjJK9fO4y0/+itOU2fz0hMyvN6yR3+gECPIJ1ohF93JHcB3B2YCrVswsO7U7+a9kxUXvI6TZtcdw1EKIYQQQgghmUBCiBnEiRlcd/o8XnPaHDaYK3BOuKTaQxLTgJus6DDXuw9dDCNCyk4C0FGXKO1eX/gkHWe+BsOQP79CCCGEEOLYk0wgIcSM0V/4972XLuf60+cxpyExyiOEGINMB/R3iM/uRblRWlAsOejQ53U7L1rUzOb9vcdufEIIIYQQQkTkUqQQYsZpSNnMrk8QM+UtUEzc/Nnt/JN7AwC5zt0ory/cERscZPzaDadhGIq5DYMDREIIIYQQQhxtYzoDUkpdqpR6Wim1SSn1viH2X6eU2hB93aeUWjX5QxVCiMlTn7JJOZIMKSbubecv4bexcwFwu/ei3P4g0OBAz/rlLQDYlgQghRBCCCHEsTfqp1CllAncBFwGrACuVUqtOOywLcC5WuuVwP8BvjjZAxVCCCGmqtbmFlws9MEtGH5YGHqoTCAhhBBCCCGqaSyXItcBm7TWm7XWReA24MrKA7TW92mtD0V37wdmT+4whRBCiKlrbmOKe4x1ZDbeRrqwJ9xYEQTKv/HX9L7591UanRBCCCGEEKGxBIE6gG0V97dH24bzZuAXQ+1QSv21UuohpdRD+/btG/sohRBCiClsbkOSL+XPx/ALLMk9HG6sXA426xRU6+FJtEIIIYQQQhxbYwkCqSG26SEPVOo8wiDQe4far7X+otZ6rdZ6bXNz89hHKYQQQkxhZyxs5NFgIQEGiwpP4WOAaQ84xlBD/TkVQgghhBDi2BlLEGg7MKfi/mxg5+EHKaVWAl8CrtRaH5ic4QkhhBBT39r5DSg7xU57PhYeReVARdDHUEqCQEIIIYQQourGEgR6EFiilFqglLKBa4AfVx6glJoL/AB4ndb6mckfphBCCDF12ZbBqjl1bGAJAK4RH7BfKTANCQIJIYQQQojqGjUIpLX2gLcBdwAbge9qrZ9QSt2olLoxOuxDQCPweaXUI0qph47aiIUQQogpaNWcOn6fmweAZzgD9hlKSRBICCGEEEJUnTWWg7TWPwd+fti2mytuvwV4y+QOTQghhDh+rJ5Txyf9RWCBbw5sDy8BICGEEEIIMRWMZTmYEEIIIUaxek4dm3QHPTpBYCVGf4AQQgghhBDHmASBhBBCiEnQmonTWpvk3uAk8qmOag9HCCGEEEKIQSQIJIQQQkySVbPreKf7Nh474xPVHooQQgghhBCDSBBICCGEmCSr59ZRJEZtKlXtoQghhBBCCDGIBIGEEEKISXLB8hYWNKVY2lpT7aEIIYQQQggxyJi6gwkhhBBidEtaa7jr3eurPQwhhBBCCCGGJJlAQgghhBBCCCGEEDOABIGEEEIIIYQQQgghZgAJAgkhhBBCCCGEEELMABIEEkIIIYQQQgghhJgBJAgkhBBCCCGEEEIIMQNIEEgIIYQQQgghhBBiBpAgkBBCCCGEEEIIIcQMIEEgIYQQQgghhBBCiBlAgkBCCCGEEEIIIYQQM4AEgYQQQgghhBBCCCFmAKW1rs4LK7UPeKEqL358agL2V3sQYsaReSeqReaeqAaZd6JaZO6JapB5J6pB5t2xMU9r3TzUjqoFgcT4KKUe0lqvrfY4xMwi805Ui8w9UQ0y70S1yNwT1SDzTlSDzLvqk+VgQgghhBBCCCGEEDOABIGEEEIIIYQQQgghZgAJAh0/vljtAYgZSeadqBaZe6IaZN6JapG5J6pB5p2oBpl3VSY1gYQQQgghhBBCCCFmAMkEEkIIIYQQQgghhJgBJAgkhBBCCCGEEEIIMQNIEOgIKKXmKKXuUkptVEo9oZR6Z7S9QSl1p1Lq2ejf+mh7Y3R8Vin1uYrnqVFKPVLxtV8p9alhXvNUpdRjSqlNSqnPKKVUtP3/Vjz+GaVU5zCPP0cp9RellKeUunqI/Rml1I7K8YmpZ7rNPaWUX/EcP56cn5KYbNNw3s1VSv0q+n6eVErNn5QflJh002nuKaXOO2wMeaXUVZP2wxKTZjrNu2jfx6PvY2Plc4upZxrOvY8ppR6Pvl4zOT8lMdmO03n3LhV+htuglPqNUmpexb43RGN+Vin1hsn7SU0jWmv5GucX0A6cEt2uAZ4BVgAfB94XbX8f8LHodgp4MXAj8LkRnvfPwDnD7PsT8CJAAb8ALhvimLcDXxnm8fOBlcAtwNVD7P808K2Rxidf1f+abnMPyFb7ZypfM3Le/Q64KLqdBpLV/hnL18yYexXHNAAHZe5Nza/pNO+AM4E/AGb09UdgfbV/xvI1I+beFcCdgBWN8yEgU+2fsXxNm3l3Xv/fUOCtwHei2w3A5ujf+uh2fbV/xlPtSzKBjoDWepfW+i/R7R5gI9ABXAl8PTrs68BV0TG9Wut7gfxwz6mUWgK0AL8fYl874ZvmH3U4u2/pf+7DXAt8e5gxP6+13gAEQzz/qUAr8Kvhxiemhuk298TxYTrNO6XUCsDSWt8ZHZfVWueGG6eoruk09w5zNfALmXtT0zSbdxqIAzbgADFgz3DjFNU1zebeCuBurbWnte4FHgUuHW6conqO03l3V8Xf0PuB2dHtS4A7tdYHtdaHCAORMu8OI0GgCVLhMoI1wANAq9Z6F4S/TIQTf6yuJYxgDtWurQPYXnF/e7StchzzgAXAb8fxmiilDOCTwHvG8zhRfcf73IvElVIPKaXuV7Is4rgwDebdUqBTKfUDpdTDSqn/VEqZ43wOUQXTYO5VuoZhPtiKqeV4n3da6z8CdwG7oq87tNYbx/McojqO97lHGPS5TCmVVEo1EWZuzBnnc4hj7Didd28mzCbqf+5tIz23CNPzxBFSSqWB7wN/p7XunuAS62uA1w33UkNsO/wX6hrge1prf5yv+zfAz7XW22SJ+PFjmsw9gLla651KqYXAb5VSj2mtnzuC5xHHwDSZdxZwNuEHnK3Ad4AbgC+P83nEMTRN5l74AuEV0JOBO47k8eLYmQ7zTim1GDiB8lXyO5VS52it7xnP84hjazrMPa31r5RSpwH3AfsIlyJ643kOcWwdj/NOKXU9sBY4dxzPPeNJJtARUkrFCH9Jvqm1/kG0eU/04a7/Q97eMT7XKsLlCX+O7psVBbE+QhjBnF3xkNnAzsOeZsBVRaXUv/U/xygv/yLgbUqp54FPAK9XSn10LOMW1TGN5h5a653Rv5sJ67SsGcu4xbE3jebdduBhrfVmrbUH3A6cMpZxi+qYRnOv36uBH2qt3TEeL6pgGs27lwP3R0tfs4RXy88Yy7hFdUyjuYfW+t+01qu11hcRnpw/O5Zxi2PveJx3SqkLgQ8AL9NaF6LN2xmYcTbUc894EgQ6AioMi34Z2Ki1/q+KXT8G+iuQvwH40RifcsB6R621H71hrtZafyhKv+tRSp0RvfbrK59bKbWMsPDVHyue4wP9zzHSC2utr9Naz9VazwfeDdyitX7fGMctjrHpNPeUUvVKKSe63QScBTw5xnGLY2g6zTvgQaBeKdUc3T8fmXdT1jSbe0OOQUw902zebQXOVUpZ0UneuYT1PsQUNJ3mXnTi3xjdXklYPFrqj05Bx+O8U0qtAb5AGACqDE7dAVwcnWfUAxcjmbeD6SlQnfp4+yKshq6BDcAj0dflQCPwG8Io92+AhorHPE/YCSRLGKFcUbFvM7B8lNdcCzwOPAd8DlAV+/4F+Ogojz8tet1e4ADwxBDH3IB0B5vSX9Np7hF2LHmMcM34Y8Cbq/3zla/pP++ifRdF38tjwNcAu9o/Y/maMXNvPrADMKr9s5WvmTHvCDuCfYEw8PMk8F/V/vnK14yZe/Fozj1JWLh3dbV/vvI1rebdrwmL3PeP98cV+94EbIq+3ljtn+9U/FLRD0oIIYQQQgghhBBCTGOyHEwIIYQQQgghhBBiBpAgkBBCCCGEEEIIIcQMIEEgIYQQQgghhBBCiBlAgkBCCCGEEEIIIYQQM4AEgYQQQgghhBBCCCFmAAkCCSGEEEIIIYQQQswAEgQSQgghhBBCCCGEmAH+P/H/gEF4iJb6AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_test):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " #plt.title(f\"Model Performance on test data: {test_exps[idx]}\")\n", - " plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "MG8l9PhX6yhz", - "outputId": "db07cfa0-0e64-4725-8697-1a2b70beafec" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "219.7794477289139" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(np_input_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "0xkmBo0X9uCr", - "outputId": "13b9f9b6-01c4-45d6-ce49-995f4c8be04a" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "1.9737396046057597e+21" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(k(np_input_train))" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "id": "uBB14WZQz0r7" - }, - "outputs": [], - "source": [ - "def m_obj_value(m):\n", - "\n", - " tf_errs = 0\n", - " tf_vars = 0\n", - " for idx, df_iter in enumerate(dfs_gpr_test):\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - "\n", - " err_iter = tf.reshape(mean - np_output_iter, (-1,))\n", - " tf_errs += tf.tensordot(err_iter, err_iter, 1)\n", - "\n", - " var_iter = tf.reshape(var,(-1,))\n", - " tf_vars += tf.tensordot(var_iter, var_iter, 1)\n", - "\n", - " tf_cond = np.linalg.cond(m.kernel(np_input_train))\n", - "\n", - " obj = 1 * tf_errs + 1 * tf_vars + 10 * np.log10(tf_cond)\n", - "\n", - " return obj" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "id": "xVrIALdM2Hrr" - }, - "outputs": [], - "source": [ - "def get_gp_from_hyperparams(tf_params):\n", - "\n", - " print(\"Training a GP\")\n", - " rational_l = tf_params[:nb_rational_dims]\n", - " squared_l = tf_params[nb_rational_dims:]\n", - "\n", - " k0 = gpflow.kernels.SquaredExponential(lengthscales = squared_l, active_dims = squared_dims, variance = variance)\n", - " k1 = gpflow.kernels.Constant(variance = variance)\n", - " k2 = gpflow.kernels.RationalQuadratic(lengthscales = rational_l, active_dims = rational_dims, variance = variance)\n", - "\n", - " k = (k0 + k1) * k2\n", - "\n", - " m = gpflow.models.GPR(\n", - " data = (np_input_train, np_output_train), \n", - " kernel = k, \n", - " mean_function = None\n", - " )\n", - "\n", - " opt = gpflow.optimizers.Scipy()\n", - "\n", - " opt.minimize(m.training_loss, m.trainable_variables)\n", - "\n", - " return m" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'.kernel.kernels[0].kernels[0].variance': ,\n", - " '.kernel.kernels[0].kernels[0].lengthscales': ,\n", - " '.kernel.kernels[0].kernels[1].variance': ,\n", - " '.kernel.kernels[1].variance': ,\n", - " '.kernel.kernels[1].lengthscales': ,\n", - " '.kernel.kernels[1].alpha': ,\n", - " '.likelihood.variance': }" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gpflow.utilities.parameter_dict(m)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "id": "aJSky20pFHdI" - }, - "outputs": [], - "source": [ - "def gp_cost(tf_params):\n", - "\n", - " try:\n", - " m = get_gp_from_hyperparams(tf_params)\n", - " obj = m_obj_value(m)\n", - " except tf.errors.InvalidArgumentError:\n", - " obj = np.nan\n", - " \n", - " if obj == np.inf or obj > 1000:\n", - " obj = np.nan\n", - "\n", - " return obj" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "id": "BNL_0TyS8GYW" - }, - "outputs": [], - "source": [ - "def gp_cost_map(tf_params):\n", - " obj = tf.map_fn(gp_cost, tf_params)\n", - " obj = tf.reshape(obj, (-1, 1))\n", - " return obj" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "DeT3sdTy4Z7E", - "outputId": "59db2e16-8ab6-40e5-8445-114a005f82bf" - }, - "outputs": [], - "source": [ - "#obj = m_obj_value(m)\n", - "#obj" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5vSmv1XjKLuS", - "outputId": "d3b1cc9a-c4a9-470d-b9ab-f868fa32e957" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[name: \"/device:CPU:0\"\n", - " device_type: \"CPU\"\n", - " memory_limit: 268435456\n", - " locality {\n", - " }\n", - " incarnation: 6710647087580534683]" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from tensorflow.python.client import device_lib\n", - "device_lib.list_local_devices()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "OdPl93sfBmg0" - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": { - "id": "ycO8i7gYICgS" - }, - "outputs": [], - "source": [ - "search_space = trieste.space.Box([0.1]*nb_dims, [1]*nb_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": { - "id": "QEhgf703Nbbl" - }, - "outputs": [], - "source": [ - "init_X = search_space.sample(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ful_q-WE8dsc", - "outputId": "34999d5a-beea-491e-b539-8c72315f9805" - }, - "outputs": [], - "source": [ - "#observer = trieste.utils.objectives.mk_observer(gp_cost_map, OBJECTIVE)\n", - "\n", - "#initial_data = observer(init_X)" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": { - "id": "VgCT1JkLD6DU" - }, - "outputs": [], - "source": [ - "#bo = trieste.bayesian_optimizer.BayesianOptimizer(observer, search_space)" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": { - "id": "0te5Vr_0wkTr" - }, - "outputs": [], - "source": [ - "## Optimization with failure regions" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": { - "id": "UDqwUp2OQ-Ar" - }, - "outputs": [], - "source": [ - "OBJECTIVE = \"OBJECTIVE\"\n", - "FAILURE = \"FAILURE\"\n", - "\n", - "def gp_observer(x):\n", - " try:\n", - " y = gp_cost_map(x)\n", - " except:\n", - " y = np.nan\n", - " print(y)\n", - " mask = np.isfinite(y).reshape(-1)\n", - " return {\n", - " OBJECTIVE: trieste.data.Dataset(x[mask], y[mask]),\n", - " FAILURE: trieste.data.Dataset(x, tf.cast(np.isfinite(y), tf.float64))\n", - " }" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "_WHmvaLbRwRd", - "outputId": "a92663ab-e4d7-4c50-9b5b-d7cf316e9578", - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training a GP\n", - "WARNING:tensorflow:AutoGraph could not transform and will run it as-is.\n", - "Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\n", - "Cause: unindent does not match any outer indentation level (, line 187)\n", - "To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert\n", - "WARNING: AutoGraph could not transform and will run it as-is.\n", - "Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\n", - "Cause: unindent does not match any outer indentation level (, line 187)\n", - "To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "tf.Tensor(\n", - "[[ nan]\n", - " [ nan]\n", - " [ 97.21004445]\n", - " [ 97.01221739]\n", - " [ nan]\n", - " [ nan]\n", - " [ nan]\n", - " [ 93.7408702 ]\n", - " [232.76088786]\n", - " [ nan]], shape=(10, 1), dtype=float64)\n" - ] - } - ], - "source": [ - "initial_data = gp_observer(init_X)" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "id": "pj2PYA-gZD_Z" - }, - "outputs": [], - "source": [ - "def create_regression_model(data):\n", - " variance = tf.math.reduce_variance(data.observations)\n", - " kernel = gpflow.kernels.Matern52(variance=variance, lengthscales=[0.2]*nb_dims)\n", - " gpr = gpflow.models.GPR(data.astuple(), kernel, noise_variance=1e-5)\n", - " gpflow.set_trainable(gpr.likelihood, False)\n", - " return gpr\n", - "\n", - "\n", - "def create_classification_model(data):\n", - " kernel = gpflow.kernels.SquaredExponential(\n", - " variance=100.0, lengthscales=[0.2]*nb_dims\n", - " )\n", - " likelihood = gpflow.likelihoods.Bernoulli()\n", - " vgp = gpflow.models.VGP(data.astuple(), kernel, likelihood)\n", - " gpflow.set_trainable(vgp.kernel.variance, False)\n", - " return vgp\n", - "\n", - "\n", - "regression_model = create_regression_model(initial_data[OBJECTIVE])\n", - "classification_model = create_classification_model(initial_data[FAILURE])" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "id": "LFPOK1Yrbgmr" - }, - "outputs": [], - "source": [ - "class NatGradTrainedVGP(trieste.models.VariationalGaussianProcess):\n", - " def optimize(self, dataset):\n", - " gpflow.set_trainable(self.model.q_mu, False)\n", - " gpflow.set_trainable(self.model.q_sqrt, False)\n", - " variational_params = [(self.model.q_mu, self.model.q_sqrt)]\n", - " adam_opt = tf.optimizers.Adam(1e-3)\n", - " natgrad_opt = gpflow.optimizers.NaturalGradient(gamma=0.1)\n", - "\n", - " for step in range(50):\n", - " loss = self.model.training_loss\n", - " natgrad_opt.minimize(loss, variational_params)\n", - " adam_opt.minimize(loss, self.model.trainable_variables)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "id": "slD_7rh0b4T9" - }, - "outputs": [], - "source": [ - "from typing import Dict\n", - "\n", - "models: Dict[str, trieste.models.ModelSpec] = {\n", - " OBJECTIVE: {\n", - " \"model\": regression_model,\n", - " \"optimizer\": gpflow.optimizers.Scipy(),\n", - " \"optimizer_args\": {\n", - " \"minimize_args\": {\"options\": dict(maxiter=100)},\n", - " },\n", - " },\n", - " FAILURE: NatGradTrainedVGP(classification_model),\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "class ProbabilityOfValidity(trieste.acquisition.SingleModelAcquisitionBuilder):\n", - " def prepare_acquisition_function(self, dataset, model):\n", - " return lambda at: trieste.acquisition.lower_confidence_bound(model, 0.0, at)\n", - "\n", - "ei = trieste.acquisition.ExpectedImprovement()\n", - "pov = ProbabilityOfValidity()\n", - "acq_fn = trieste.acquisition.Product(ei.using(OBJECTIVE), pov.using(FAILURE))\n", - "rule = trieste.acquisition.rule.EfficientGlobalOptimization(acq_fn)" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "nb_optimization_steps = 10" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "bo = trieste.bayesian_optimizer.BayesianOptimizer(gp_observer, search_space)" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[93.78287553]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[243.34803879]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[215.09037253]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[97.20999161]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[93.76406811]], shape=(1, 1), dtype=float64)\n", - "Optimization completed without errors\n" - ] - } - ], - "source": [ - "result = bo.optimize(nb_optimization_steps, initial_data, models, rule)" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "query point: [0.34635562 0.26878551 0.76424444 0.92876329 0.61091314 0.35062807\n", - " 0.39009512 0.993673 0.14636107 0.4627374 0.86743204 0.25986113\n", - " 0.22203288 0.84095108 0.76710384 0.27424296]\n" - ] - } - ], - "source": [ - "result = result.final_result.unwrap()\n", - "\n", - "arg_min_idx = tf.squeeze(tf.argmin(result.datasets[OBJECTIVE].observations, axis=0))\n", - "print(f\"query point: {result.datasets[OBJECTIVE].query_points[arg_min_idx, :]}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "best_params = result.datasets[OBJECTIVE].query_points[arg_min_idx, :]" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "scrolled": true, - "tags": [] - }, - "outputs": [], - "source": [ - "#result_new = bo.optimize(nb_optimization_steps, result.datasets, result.models, rule)" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "#result = result_new.final_result.unwrap()\n", - "\n", - "#arg_min_idx = tf.squeeze(tf.argmin(result.datasets[OBJECTIVE].observations, axis=0))\n", - "#print(f\"query point: {result.datasets[OBJECTIVE].query_points[arg_min_idx, :]}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'\\nbest_params = [0.69451063, 0.5384062 , 0.23517986, 0.91982074, 0.59555472,\\n 0.66430469, 0.08747336, 0.42367986, 0.5296011 , 0.01447965,\\n 0.08559091]\\n'" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"\"\"\n", - "best_params = [0.69451063, 0.5384062 , 0.23517986, 0.91982074, 0.59555472,\n", - " 0.66430469, 0.08747336, 0.42367986, 0.5296011 , 0.01447965,\n", - " 0.08559091]\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training a GP\n" - ] - } - ], - "source": [ - "m_best = get_gp_from_hyperparams(best_params)" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'.kernel.kernels[0].kernels[0].variance': ,\n", - " '.kernel.kernels[0].kernels[0].lengthscales': ,\n", - " '.kernel.kernels[0].kernels[1].variance': ,\n", - " '.kernel.kernels[1].variance': ,\n", - " '.kernel.kernels[1].lengthscales': ,\n", - " '.kernel.kernels[1].alpha': ,\n", - " '.likelihood.variance': }" - ] - }, - "execution_count": 72, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gpflow.utilities.parameter_dict(m_best)" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAReCAYAAABAXiA7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXicVfbA8e87npm4W2NtmnqTutDS4tLF3WFxWGR3WdgfsMuyBgu7sEBZ3KVIaXGHUnd3TdO4J5OxjLy/P6aESjwzmbQ9n+fZZ8n73vfeM6UkmTP3nqOoqooQQgghhBBCCCGEOLppQh2AEEIIIYQQQgghhAg+SQIJIYQQQgghhBBCHAMkCSSEEEIIIYQQQghxDJAkkBBCCCGEEEIIIcQxQJJAQgghhBBCCCGEEMcASQIJIYQQQgghhBBCHAN0oVo4Pj5ezcrKCtXyQgghhBBCCCGEEEedVatWVauqmtDavZAlgbKysli5cmWolhdCCCGEEEIIIYQ46iiKsrete3IcTAghhBBCCCGEEOIYIEkgIYQQQgghhBBCiGOAJIGEEEIIIYQQQgghjgEhqwnUGrfbTXFxMU6nM9ShCNElJpOJ9PR09Hp9qEMRQgghhBBCCCFa1aeSQMXFxURERJCVlYWiKKEOR4hOUVWVmpoaiouLyc7ODnU4QgghhBBCCCFEq/rUcTCn00lcXJwkgMQRRVEU4uLiZAebEEIIIYQQQog+rU8lgQBJAIkjkvy9FUIIIYQQQgjR1/W5JFCoKYrClVde2fK1x+MhISGBGTNmhDCqjoWHh3c45qGHHuLxxx9vd8zcuXPZvHlzoMISQgghhBBCCCFEHyFJoENYLBY2btyIw+EA4NtvvyUtLS0ksXg8nl5fU5JAQgghhBBCCHHkmff8b1n47qOhDkP0cZIEasXpp5/O559/DsC7777LpZde2nLPZrNx3XXXMXbsWAoKCvj4448BKCwsZMqUKYwaNYpRo0axePFiAMrKypg6dSr5+fkMGzaMBQsWAAfv3Pnwww+55pprALjmmmv47W9/y/Tp07n33nvZtWsXp512GqNHj2bKlCls3boVgD179jBx4kTGjh3Lgw8+2OZr+fvf/05eXh4nnXQS27Zta7n+4osvMnbsWEaOHMn555+P3W5n8eLFfPLJJ9xzzz3k5+eza9euVscJIYQQQgghhOg7ln/+CtPKXiZh14ehDkX0cX2qO9iB/vLpJjaXNgZ0ziGpkfz5V0M7HHfJJZfw8MMPM2PGDNavX891113Xkrz5+9//zgknnMArr7xCfX0948aN46STTiIxMZFvv/0Wk8nEjh07uPTSS1m5ciXvvPMOp556Kvfffz9er7dTSZTt27fz3XffodVqOfHEE3nuuefIzc1l2bJl3Hrrrfzwww/ceeed3HLLLVx11VXMnDmz1XlWrVrFrFmzWLNmDR6Ph1GjRjF69GgAzjvvPG644QYAHnjgAV5++WV+85vfcNZZZzFjxgwuuOACAKKjo1sdJ4QQQgghhBAi9Mr37SJvxQMARHuqQxyN6Ov6bBIolEaMGEFhYSHvvvsuZ5xxxkH3vvnmGz755JOW2jpOp5OioiJSU1O5/fbbWbt2LVqtlu3btwMwduxYrrvuOtxuN+eccw75+fkdrn/hhRei1Wppampi8eLFXHjhhS33XC4XAIsWLWL27NkAXHnlldx7772HzbNgwQLOPfdczGYzAGeddVbLvY0bN/LAAw9QX19PU1MTp556aquxdHacEEIIIYQQQojepfp8VLx1IwNUD6sipzOy8Sc8bjc6vT7UoYk+qs8mgTqzYyeYzjrrLH7/+98zb948ampqWq6rqsrs2bPJy8s7aPxDDz1EUlIS69atw+fzYTKZAJg6dSrz58/n888/58orr+See+7hqquuOqib1KGtxS0WCwA+n4/o6GjWrl3baoyd6UjV1phrrrmGuXPnMnLkSF577TXmzZvXo3FCCCGEEEIIIXrX6q9eYbRrJUvy7kGjM6Db/CNVVSUkpGaFOjTRR3WqJpCiKKcpirJNUZSdiqLc18r9KEVRPlUUZZ2iKJsURbk28KH2ruuuu44//elPDB8+/KDrp556Kk8//TSqqgKwZs0aABoaGkhJSUGj0fDmm2/i9XoB2Lt3L4mJidxwww38+te/ZvXq1QAkJSWxZcsWfD4fc+bMaTWGyMhIsrOz+eCDDwB/AmrdunUATJ48mVmzZgHw9ttvt/r81KlTmTNnDg6HA6vVyqefftpyz2q1kpKSgtvtPuj5iIgIrFZrh+OEEEIIIYQQQoSOtb6GzOV/Zbt2AGMvvBdjTDoAdeV7QxyZ6Ms6TAIpiqIFZgKnA0OASxVFGXLIsNuAzaqqjgSmAf9WFMUQ4Fh7VXp6Onfeeedh1x988EHcbjcjRoxg2LBhLUWZb731Vl5//XUmTJjA9u3bW3bzzJs3j/z8fAoKCpg9e3bLnI888ggzZszghBNOICUlpc043n77bV5++WVGjhzJ0KFDWwpR//e//2XmzJmMHTuWhoaGVp8dNWoUF198Mfn5+Zx//vlMmTKl5d5f//pXxo8fz8knn8ygQYNarl9yySU89thjFBQUsGvXrjbHCSGEEEIIIYQInU1v30uM2gAznkSn12NJ6AeArXpfiCMTfZny846WNgcoykTgIVVVT93/9R8BVFX95wFj/gj0w58MygK+BQaqqupra94xY8aoK1euPOjali1bGDx4cLdeiBChJn9/hRBCCCGEEL1h3/a1JL99Aqtiz2TCnW8CUF1eRPxzw1k2+I+Mv/iwAzziGKIoyipVVce0dq8zx8HSgANTicX7rx3oGWAwUApsAO5sLwEkhBBCCCGEEEKI7qmacx8uDAy4+B8t12IT0nCrWnwNpSGMTPR1nUkCtVZZ+NDtQ6cCa4FUIB94RlGUyMMmUpQbFUVZqSjKyqqqqi6GKoQQQgghhBBCHNs2LvyEUY4lbMi5nvjkfi3XNVotNUoMOlt5CKMTfV1nkkDF+I96/Swd/46fA10LfKT67QT2AIcVkFFV9QVVVceoqjomISGhuzELIYQQQgghhBDHHK/Hg+mHP1FGAgUX/fGw+/W6eMKcFSGITBwpOpMEWgHkKoqSvb/Y8yXAJ4eMKQJOBFAUJQnIA3YHMlAhhBBCCCGEEOJYtuLjmQzw7aF07H2YwiyH3bcbE4lwV/dqTDVV5az96dOOB4o+QdfRAFVVPYqi3A58DWiBV1RV3aQoys377z8H/BV4TVGUDfiPj92rqmrv/s0TQgghhBBCCCGOUk3WevpveIJtukGMOv26Vsc0m5OIa1rRazGpqsrel69ihGMFDSN2EhUT12tri+7pMAkEoKrqF8AXh1x77oB/LgVOCWxoQgghhBBCCCGEAFg362EmU0ftaS+jaFo/1KNGpBBe5cDWWIclMiboMa394UNGOZeBAvs2LyFq8oygryl6pjPHwY4pFRUVXHbZZeTk5DB69GgmTpzInDlzgr7uypUrueOOOwIy17Rp08jLy2PkyJFMnjyZbdu2BWTeQApkjK+99hq33347AM899xxvvPFGm2MLCwt55513Wr4O5J+7EEIIIYQQQgRDWdFORhW/ycqIE8gbc2Kb4/TRqQDUlO8Nekwul4PYhX+mnHgAmvasCvqaouckCXQAVVU555xzmDp1Krt372bVqlXMmjWL4uLioK89ZswYnnrqqYDN9/bbb7Nu3Tquvvpq7rnnnsPue73egK3VXcGI8eabb+aqq65q8/6hSaBA/7kLIYQQQgghRKAVffhHNKikX/BIu+NMcekANFYWBT2mVe8/QqZaQtXx/6SSWHQV64O+pug5SQId4IcffsBgMHDzzTe3XMvMzOQ3v/kN4E8gTJkyhVGjRjFq1CgWL14MwLx585gx45dtb7fffjuvvfYaAPfddx9DhgxhxIgR/P73vwfggw8+YNiwYYwcOZKpU6ceNsfy5cuZNGkSBQUFTJo0qWWXzGuvvcZ5553HaaedRm5uLn/4wx86fE1Tp05l586dAISHh/OnP/2J8ePHs2TJEv7zn/8wbNgwhg0bxpNPPtnyzBtvvMGIESMYOXIkV155JQBVVVWcf/75jB07lrFjx7Jo0SIAfvrpJ/Lz88nPz6egoACr1UpZWRlTp04lPz+fYcOGsWDBgm7H+NZbbzFu3Djy8/O56aabWhJDr776KgMHDuT4449viQXgoYce4vHHHwdg586dnHTSSYwcOZJRo0axa9cu7rvvPhYsWEB+fj5PPPHEQX/utbW1nHPOOYwYMYIJEyawfv36ljmvu+46pk2bRk5OjiSNhBBCCCGEEL1mx7oljG/8hjVpl5Kcmdfu2KjEDAAcNcHdyFBVVsTwnc+zzjSO4dMvosQ8iISmrUFdUwRGp2oChcSX90H5hsDOmTwcTm87c7pp0yZGjRrV5v3ExES+/fZbTCYTO3bs4NJLL2XlypVtjq+trWXOnDls3boVRVGor68H4OGHH+brr78mLS2t5dqBBg0axPz589HpdHz33Xf83//9H7NnzwZg7dq1rFmzBqPRSF5eHr/5zW/o169fmzF8+umnDB8+HACbzcawYcN4+OGHWbVqFa+++irLli1DVVXGjx/P8ccfj8Fg4O9//zuLFi0iPj6e2tpaAO68807uvvtujjvuOIqKijj11FPZsmULjz/+ODNnzmTy5Mk0NTVhMpl44YUXOPXUU7n//vvxer3Y7fY242svxi1btvDoo4+yaNEi9Ho9t956K2+//TYnn3wyf/7zn1m1ahVRUVFMnz6dgoKCw+a9/PLLue+++zj33HNxOp34fD4eeeQRHn/8cT777DPAn3z72Z///GcKCgqYO3cuP/zwA1dddRVr164FYOvWrfz4449YrVby8vK45ZZb0Ov17b4uIYQQQgghhOip+m//RZMaxtCL/tzh2LiULAA89SVBjWnXrHsZRTPxF/wbAFf8MPrtXYLNWo8lIjqoa4ue6btJoD7gtttuY+HChRgMBlasWIHb7eb2229n7dq1aLVatm/f3u7zkZGRmEwmrr/+es4888yWHSeTJ0/mmmuu4aKLLuK888477LmGhgauvvpqduzYgaIouN3ulnsnnngiUVFRAAwZMoS9e/e2mgS6/PLLCQsLIysri6effhoArVbL+eefD8DChQs599xzsVj8bQXPO+88FixYgKIoXHDBBcTH+891xsbGAvDdd9+xefPmlvkbGxuxWq1MnjyZ3/72t1x++eWcd955pKenM3bsWK677jrcbjfnnHMO+fn5rf75dBTj999/z6pVqxg7diwADoeDxMREli1bxrRp00hISADg4osvPuzfhdVqpaSkhHPPPRcAk8nUagwHWrhwYUuy7YQTTqCmpoaGhgYAzjzzTIxGI0ajkcTERCoqKkhPT+9wTiGEEEIIIYTortI9WymwzmNlyqVMiI7vcLw5PIpGzGisZUGLaduqeUxo+IIlKZczccAIAEwZo9EUvcC+zcsZNF56RvVlfTcJ1M6OnWAZOnRoSxIAYObMmVRXVzNmzBgAnnjiCZKSkli3bh0+n68lsaDT6fD5fC3POZ3OluvLly/n+++/Z9asWTzzzDP88MMPPPfccyxbtozPP/+c/Pz8lt0mP3vwwQeZPn06c+bMobCwkGnTprXcMxqNLf+s1WrxeDytvpa33367Je6fmUwmtFot4K9/1BpVVVEU5bDrPp+PJUuWEBYWdtD1++67jzPPPJMvvviCCRMm8N133zF16lTmz5/P559/zpVXXsk999zTap2ezsR49dVX889//vOgMXPnzm01xkNfR1e19szP63T2z10IIYQQQgghAqXoi8eIRyFnxu87/UyjEoXWVR+UeHxeL+qXf6CaaIZf9reW66mDJ8BCaNi9AiQJ1KdJTaADnHDCCTidTv73v/+1XDvwKFNDQwMpKSloNBrefPPNlvo0mZmZbN68GZfLRUNDA99//z0ATU1NNDQ0cMYZZ/Dkk0+2JHt27drF+PHjefjhh4mPj2ffvn0HxdHQ0EBaWhpAS22hQJs6dSpz587Fbrdjs9mYM2cOU6ZM4cQTT+T999+npqYGoOU42CmnnMIzzzzT8vyBr2X48OHce++9jBkzhq1bt7J3714SExO54YYb+PWvf83q1au7FeOJJ57Ihx9+SGVlZUsse/fuZfz48cybN4+amhrcbjcffPDBYc9GRkaSnp7O3LlzAXC5XNjtdiIiIrBarW3+mbz99tuA/5hYfHw8kZGR3YpdCCGEEEIIIbqquqKYBW/8hS1/Hce+vwxiVOUc1kSfTGJ6TqfncGrM6D1NQYlv5af/Y5BnG4X5vyc8MrblekJKBtVEo5Hi0H1e390JFAKKojB37lzuvvtu/vWvf5GQkIDFYuHRRx8F4NZbb+X888/ngw8+YPr06S1Hqfr168dFF13EiBEjyM3NbalPY7VaOfvss3E6naiqyhNPPAHAPffcw44dO1BVlRNPPJGRI0fy008/tcTxhz/8gauvvpr//Oc/nHDCCUF5raNGjeKaa65h3LhxAFx//fUtcd9///0cf/zxaLVaCgoKeO2113jqqae47bbbGDFiBB6Ph6lTp/Lcc8/x5JNP8uOPP6LVahkyZAinn346s2bN4rHHHkOv1xMeHt5uy/b2DBkyhL/97W+ccsop+Hw+9Ho9M2fOZMKECTz00ENMnDiRlJQURo0a1WonsTfffJObbrqJP/3pT+j1ej744ANGjBiBTqdj5MiRXHPNNQfVEnrooYe49tprGTFiBGazmddff71bcQshhBBCCCFEV61f+BlZ397AFMXOdu0ASs2DKNaMJPPch7s0j0trQe+xBTw+a0MtOWsfY5tuIKN+detB9xSNhmLTQOIbtwR8XRFYSneOzQTCmDFj1EOLKm/ZsoXBgweHJB4hekr+/gohhBBCCCG6Y9VXbzB8yd2UapLxXfAqOUPHdXuuNf86nUhXGf0fXBu4AIHFz93OpPI32fGrueSOnn7Y/aUzr2dY5WeE/6U8oOuKrlMUZZWqqmNauyc7gYQQQgghhBBCiBBKXPZPirXpxN/2LZFxiT2ay6MPJ8zRfofmrirasZ4xZe+wPPo0xrWSAAJQw2IIVxy4m53oDR035hGhITWBhBBCCCGEEEKIEHHYrKT5yqhMO7nHCSAArz6cMDWwSaDa2ffQjIGcS/7V5hjFHAdAQ21VQNcWgSVJICGEEEIIIYQQIkSKd6xDo6gYUocGZD7VEIFFtaMe0MG6Jwq3rCTfuZQN2dcRn5LZ5jhduD8JZKurDMi6Ijj6XBIoVDWKhOgJ+XsrhBBCCCGE6I76vf6OWnHZIwIzoTECg+LF5QzMbqDShW/hVRVyT7ulg2X9SSB7o+wE6sv6VBLIZDJRU1Mjb6jFEUVVVWpqajCZ5NyrEEIIIYQQoms85VtoVrWk5gwLyHwaUyQANmtdj+dSfT4yS79gs6mA+OR+7Y41RSUA4Gyo7vG6Inj6VGHo9PR0iouLqaqSzKE4sphMJtLT00MdhhBCCCGEEOIIE1a/nRJtGtkGY0Dm04b5k0AOaz0ktZ+46ci2NT8xSK2gdNBvOhxrifbXM/I01fRoTRFcfSoJpNfryc7ODnUYQgghhBBC9EnVZUVs+ep54odOY/C4k0MdjhAiABKdeyizDCZQ74R1YVEAOJvqezxX3dJ3aFZ1DJp+aYdjI2L8O4G8NkkC9WV9KgkkhBBCCCGOTs1OB7s2LqNq62J05asxeKwM+c2HmC0RoQ6t0+a9+gCxg6cyYsIpvb62y2ln9Yu3M7p6LlMULyVFH+Au2Iheb+j1WIQQgWNvaiBVraAo9pyAzak3708C2ep7PFd21Q9stowjPzq+w7HhEdG4VS04en4MTQSPJIGEEEIIIUTQrP7hQ3wrXmGYfTmDFTeDgSbCCMfB5o1LGDK+9xMq3VG4bR3T9j7N5pLvoZeTQFVlRVS9fBETPVtYHHsWmsTBTNj2KMs/f4lx59zaq7EIIQKrdMc6BgDGtMB0BgMwhvuTQG5bQ4/m8Xl9JKo1FMYO7tR4RaOhQYlA46zt0boiuPpUYWghhBBCCHH0qCjexcifrifLsYlVcTNYPvZJqm5YTdO1PwFg3d8R50hQ+tMrAAzxbGbvtrW9tm75vp24XjiZLPduVo57kkl3vsn4i+9jtyaL5HVP43G7ey0WIUTg1e3dAEBs1siAzWmyRAPgcTT2aB67vRGNooIxvNPPNGki0Ll6lnwSwSU7gYQQQgghRIu66nI2z3qAsLwTGXVyxzUg2lO08kuSFJXGC95n8rDxLddVnw+bakKt2tLTcHuFz+slu/QztusGkuPeSemPL5KZNzNo69VVl7N9yWeobif9NjxFlK+R4l/NYsyYE4D9n7aPu4uCpXex4uvXGTvj+qDFIoQILk/FZppVHWk5QwI2Z1hENAA+Z8+SQA5rA+GAYuz8sV27Ngqju75H64rgkp1AQgghhBACgDU/zsbzzAQmV39A/sJbWPzGn1B9vu5PuGc+dUSQNXjMQZcVjYZifSbhDTt6GHHv2Lz0S1KopjH/BjZYJpBb/hmeZlfA16ku3cvCV/8P7dMFjF/1Oyasv59wXxOlZ81i4P4E0M9GnnwVVsLwFi4OeBxCiN4TXruJfdp+6AJY38sSGQMEIAm0v6aQ1tT5JJBLH4nZ07N1RXDJTiAhhBBCiBCrqyolPCoWvcEUshiWzpnJmLUPsE+bTu3pL9H409NM2v1flrwNE698+KCxddUVbP7iWZTGYjLP+C1pOYfXslB9PjIbVrA7fDSjtdrD7jdGDKB/3QJUVUVRlKC9ru7YtnoBlavmoqgqoBJXuYQmNYyh0y9lqzGc+EW3sG7+bEaedFm31/B5vVQU76Jsxxrs234kpWYx/X17OQ5YEzYe0wl/wByTSExiOnlRsYc9r9FqqdIkYbSXdv+FCiFCqqmxljznelYlX0T/AM5rNIbRrGrBZe3RPC6bP5mj299yvjPchmgs9q09WlcElySBhBBCCCFCqNnlRJ05njXRkxl316yQxLD4/ceZsOlvbDKOpP8dH2MOj8Y36gRW/ftXjN45kz2bZpA9dBxbVs2n7qeZjGr4nsmKm2ZVi/L6HBZlXM/kX//roDmLd22gH7XsyZzS6prehMHE1n1OdWUJ8UnpvfEyO2XZJ8+Tv+p+8hR/rR2fqqACy1IuZ5IlgqFTz8e98HYce5YB3UsCedzNlP9jOOlqOSlAs6pji2EYC/qdRcroGRSMmNCpeazGRCJdFd2KQQgRetsXfcwoxUtUwTkBnVfRaLApZjTNTT2ax7V/J5De3PkkkM8UQ5RqRfX5UDRy8Kgv6lQSSFGU04D/AlrgJVVVHznk/j3A5QfMORhIUFVVyoILIYQQQrRj27IvGE4jY+q+Ys/mFWQPGdur6y9662Em7/w3a8PGMeiOOZjM/gKgGq2G7GtewPrsRJQPr2XrRxYGe7dhV42sjT2DxBNuIyIuiX1v3sLEohcoLfw1qVl5LfOWrvmafkBawWmtrhuePhy2Q/mONX0iCaT6fCx+5Q9MLn6RTYZhpN88m6i45JbaCZP2/7/BaKRYk4C+cW+31yrZvYlMtZwlsecQPuoC+hccz0hL599k/cxpTiXDcWTUVRJCHM675XPqiGDg6BM6HtxFDsWMtrlnO4E8dv/zxi4kgVRzLEbFjd1uxby/S5noWzpMzSmKogVmAqcDQ4BLFUU5qGqVqqqPqaqar6pqPvBH4CdJAAkhhBBCdMy2/lMcqoEmwqj/9MFeXXvxm39h8s5/s8oyhSF3f9qSAPpZbGIaeyf/kyy1mDBfE4sH3oP37i1MuPMNcoaPJyE1i9RLn0IF9n5zcKFk3d4FlBPfZrHT5NwCAJr2bQjKa+sKl9POiicuZHLxiyyPPJXc331HVFxym+PrDKlEOEq6vV717rUAJBx/I8OP+xXmbiSAAHyRacRgxd4knXiEONJ4ml0MbFzMjqjJAa0H9DOHxozWY+vRHD93FzN24XuUxhIHgLW2skdri+DpzP6sccBOVVV3q6raDMwCzm5n/KXAu4EITgghhBDiaKb6fGRVz2erZSybsq+hwLGErSu+65W11/7wARN2PsEqyxRG3vURBmPr9YhGnXw5VTeuJ+PBjUy67AEiouMOup+ckcs680TySufQ7HQAULR9LXlNKyiKGtPmcYC4pH7UE44S4g5hqs/HumevZpz1OxZl3MLYu2ZhMIW1+4zd0o8ET1m312wu3YRXVUjP7VlLaH1MPwCqSvb0aB4hRPeVFe9mzT9OYPFbf+nSc9tWfEcUNvRDzghKXC6NBYOnZ8fBvE7/TqCw8OhOP2MI99cwa6qv6tHaIng6kwRKA/Yd8HXx/muHURTFDJwGzG7j/o2KoqxUFGVlVZX8pRBCCCHEsW3XhiUkU40n9zRGXnAfHlVD3drPgr7uvl2byf7pTgq1mQy55Z0OP4VOSM1st7aDZvz1xNLIui+ep2jbaozvnIdTMZBy1p/afEbRaCjVZxFp3dnt1xEIS979B+Mav2FxvxuZfN0jnaph4YvJIgYr1vqabq1prN1KqSblsJ1XXWVOyAKgoVySQEKEwsZl36N76QQKmleRuHtul561rvsYl6pn4KT29ld0X7MuHKO3ZzuB1P2FpX9uOd8ZhogEABwN8n6/r+pMEqi1dg1qG2N/BSxq6yiYqqovqKo6RlXVMQkJCZ2NUQghhBDiqFS1cg5eVaH/5PMxh0dRpknGUL8r6OsWf/0UYbgwXTmLsPDuHUU60Igp57BPSWHs+j+T8e50TKqThvM/oF//w7uGHcgamUtac2HP2tD3wOZl3zBu+79ZEzaJCdc80vED+xkTcgCoLOpeB5x4+26qzTndevZA0Sn+OZzV3a9PJITonp8+fYP+X1yCWzGwOmIaWd5CHLbO1eBRfT4yquaxJawASxcSLF3h0YVj8vUsCYSrCZ+qdOnIqjna/z7fZa3u2doiaDqTBCoG+h3wdTrQVi/KS5CjYEIIIYQQnZJQ+j3bDEOITfRvsq4xZRDjCP4ber2jkipNHKnZgwMyn0arxXX+68wf8AcW9P8d9Zd+Tv/h4zt+MGkwkYqdihAcZ2qoryX6y9uo0CSQe8vbaFppY9+WyJRcABpLd3R5XafDRpqvFFdMXseDO5CQmoVPVfDW7+t4sBAiYL56+z8ct/IOSgxZhN86D82Ii9EpPgo3Le3U84VbV5GqVuDq33rh/EDwGsIxq/aeTdLchB1Tl7p8hUcnAuBp6t5OSRF8nfm3uQLIVRQlW1EUA/5EzyeHDlIUJQo4Hvg4sCEKIYQQQhx9yvZuZ4B3N40ZJ7Vcc0Zmk+otxef1BnVtY3MdTdrogM45YNh4pl5xP1Ou/BOZgwo69UxE+nAAKnatDWgsnbHllVtIUqtoOvNZwiNju/RsYuYgAFxVu7u8bvGOdWgVFUPqsC4/eyi9wUi1EoPW2tbns0KIQFv99VucvP1hdlhGkfXb74lMSCV96GQAGnZ2LglUsXwOAP0nXxC0OH2GcCyqo0dzaNxN2JX2a6QdKjLWvxPIZ5c+UX1Vh0kgVVU9wO3A18AW4H1VVTcpinKzoig3HzD0XOAbVVV7uOdMCCGEEOLoV7TEX0IxbcL5LdeU+FxMipuK4uDWyTF76nHqo4O6Rmek7u8QZi/u3Q5hezavYkLjV6xIv5q8MSd1/MAhIqPjqCMCpb7ru7bq9qwDIC6nZ0Whf1arS8TskCSQEL2hdN33DF18Fzt0A8m6bS66MP8xqfjUTCqJRVe2tlPzxBR/yzbdQOJTM4MXrDECo+LG5ez+biCt24azi0kgo8mMXTWiOOq6va4Irk7t61JV9QtVVQeqqtpfVdW/77/2nKqqzx0w5jVVVS8JVqBCCCGEEEeTsD3fUKSk0e+ADlHhaf7jWdWFm4K6dri3gWZj13a/BEN0QgrVRKPt5Q5hdcX+9eLHnN/ByLZVaVMwNxV1+TlP+SaaVS2pOT3fCQRgNyUR1SytmIUItsaKIkxzrqVUSSDy1x9hOqROTrF5CMlNHX/vri7dS55nO3XpJwcrVAAUoz8+u7Wh23PoPDZcGnOXn2tUItA6JQnUV3X+cJ8QQgghhAiIhvoaBjnXUZo8/aDrSfsTA7bS7hUc7gzV5yNabcRrCn0SCKDMmE10U/CLYR+oubYYgJjU7G7P0WhOJ6a56ztwwup3UKzth95g7PbaB3JZUknwVYWsuLYQxwJ3s4vSly7GqDqxnv0aqanph41xJY0kXS2jsbb9pOyuhe8DkDTu3KDE+jNt2M9JoPpuz2Hw2mjWdj0J1KSNwtDc/XVFcEkSSAghhBCil+1YNAeD4iW64ODWwHGJ6VjVMJSarhcc7iybrRGj4gZzXNDW6ApbVC7pnqKg10E6kNpQQrOqJSY+tdtzuCMySPJV4XE3d+m5JMcu6iw97wz2MyWqHybFTV11WcDmFEL8wuf1svqZKxnk3szGUX9lREHrRe/Dc/zXizYuanMu1ecjfutb7NZkkjVodFDi/Zk2LAoAZ1P3d+QYvXbcOkuXn3Pookh07KK6VDoX9kWSBBJCCCGE6EU+rw/dhlnUEknuqBMOuqdoNJTp+mG2FgZt/cbqcgC04fFBW6MrtElDMCsuyvZu67U19bZSqjVxXeoIdihtXDZ6xUtlFzqbVVeUkEIV7qTA1AMCMMRlAFBb2vUi1UKI9qk+H0ufvZ7xjV+zJONGxp99U5tjM/YXh27avbzNMZuWfE5/XyE1w37dpY5b3WEw+3cCuWzdPw5mUh14upEEUifeTpRqxffCNLatmtft9UVwSBJICCGEEKIXLXnld+Q7V7C9/7VodbrD7jdaMkhwdb3WTGdZ6yoA0EcmBm2NrojIHAFA5e51vbZmmKOCel3PXr85eQAAZZsWdvqZfRsWABCVO6FHax8oIikLAGulfOIuRCCV7N7KukdPYlLNRyxNupQJ1zza7vio2Hh/jbOGtv9bdC+cSS0RDD/9+kCHexiDJRqAZnv3k0BhqgOvvutJoBHTzqf0gk/woCP9k4vZtOTLbscgAk+SQEIIIYQQvWTZ7P8yueQVlkWfyfjLH2p1jDtmAMlU47BZgxKDs96fBAqLTgjK/F2Vtr9DmLOk9zqERXsqcYQl9WiOjKETKSOe/OW/Y8nT17Fo1qOs+OqNdmvzOPYsxaNqyBo2uUdrHygxYzBOVU/ksn9TW1EcsHmFOFZ53M0seuPPxLw+lVznJpYM/APjb3q2Uzt36rRxGJxVrd4r2r6WkfalbEu7CFNY1xMrXWUK9x8H8/QgCWRWHfgM4d16dsDwCehv/I4qTTw5X13F+nkfdTsOEViHf/wkhBBCCCECbuOCuYxa/xfWm0Yx6tZX23xDYUgaCHthzYeP4rPVEFm/iTBvEwm3fEF0fHKP43A1+t+gWKJ7PlcgRETFUk48+ureOQ7m8/pI8NWwz9L9ekDgbxOv3rGM5W/cxcSa2VDjv7543xom3fBEq89EVK9lry6L/paIHq19oKjYeFZPfZbB82+j8rlTKDvlPwydeFrA5hfiWNJQW03FzFOZ7N3JGvMEUi+fycT0AZ1+3maIJ7y5+rDrxTs3on/nApoII3fGXQGMuG3m8BgAvI7Gbj3f7HL568d1MwkEkJCaiebmryl5fgaDfryBNR4XBSdd2u35RGDITiAhhBBCiCDbs3Epmd/dTJE2naxbZ7fbGSouOx+ASXueZmzFB5g8NnK9u9jyxTMBicXX5E8CRQYgoRQoFWE5xNm290qHq7rqUgyKByWqZ0kg8CdgJt71Fg137KT6xvUsjT6TSSWvsPS1/2PDws8pK9rZMtbn9ZLl3EpN9PAer3uoUSdexO7T3iRCtTL064vZ9PfJVJfJ8TAhusLn9bHrxSvI9uxhxZh/U/CHr0jqQgIIoNmUQLS35qBr1WVFmN46ExNOys95n/iUjECG3SZzZDQAqrN7SaCfu4opxp4lreOS0km47Wv26LIZtuA2Vn3xao/mEz0nSSAhhBBCiCDauOBT4j44F7sShvma2URGtd+aPWvwaNZOf4Nt53yJ8n8lDPzTKjYY8sna/W6XO1G1RrXV4Fa1RET2jRbxAM7M6WT7ilg66x9BX6u2rBAAQ2y/gM0ZFZtAfGomo297jdXGcUwonMnw7y4j+uWJrPjiNQCKdqwjQnFA+tiArXugoRNPI+z3m1iUew9ZzTtoePFsGutrOn5QCAHA4jf/xCjHElbl/ZaxM64HRenyHF5LEjFqA16Pp+XanmWfEE89FWe+xsCCKYEMuV1h5gjsqhFNzfZuPW9vqgdAa+r5zsWouCRSfvM1O/R55C+7m+Uf/6/Hc4rukySQEEIIIUSQbFn5AwO/u5oabTzea78mJSO3U8/lH382efmTMBj9O4Y8Y24ghWo2/PBuj2PSOmtpUCKC3pmmK8ZeeC+rwyYxdtu/2bjw06Cu1VTl3yETkZAZ8Ln1egPDfvc560/9kLXTXqNQn8PoZXex+PX7qdzsLwqdNDhw9YAOFRYeyeTLH2DX9P+R4S2iaOY5OB22oK0nxNFixZdvMHHPM6wOn8r4S/6v2/NoIpLRKip1VSUt1zzlm2lWdQzInxqIUDtN0WjYEHsKI+q/p6G29TpF7XHuryWkMUUGJJ7I6Dgy7/ySLcYRjFn9Rxa9fO9ByTLRe/rOT38hhBBCtLDbbaz42zTmz54Z6lBED9Rv+BqD4iXm1m9JzRzY7XlGnHAJZSSgX/VSj2PSu2pp1ET3eJ5A0mi15N78NiWaVDK+vZEdaxcEbS1XzT4AolOygjK/wWBgxMSTyZ92Ltm//Z5VEcczac8zDFn3Txox0y83cO3h2zJi2vmsHf0PhrnXs/HpS+SNlhDt2LTkK4Yv/S079QMZfPPbPUqQ66P9x0zrK/e1XDPXb2efth86vaHHsXZV/PRbMSlutnzZ9Z03zU3+JJA+LHA1zCwR0Qy46wtWRUxn8r7n2PLoNGorSwM2v+gcSQIJIYQQfdCK9//FWM8aBm74N06nI9ThiG7SWEupJbLHBZ21Oh2FGecxrHk9dVVlPZrL5K7HoYvq0RzBEBEVi+GaOTQp4STOvZgdazvfer0r1IYSmlUtsQlpQZn/QCZzOGN+O4dFuX/AQDO7TcPQaLVBXxdg7Fk3s3TA3Yyxz2fZczf1yppCHGk2Lf6SjK+uoVKTQPLNHxMW3rNdL+Y4fxLIVvNLp75E5x7qLP17NG939R8xiS26waTtfBef19ulZ5vt/lpCBktgdgL9zP99cTbLRv6dAc1bqX3uDBpqKgK6hmifJIGEEEKIPqaqooSCPS9QqiSRTA1rP3s+1CGJbjLZy6jVBqYVe3iu/xhR8ZblPZrH4qnHaYgJREgBl5I5EK75DDthxM29lOKdGwO+ht5WSrUmrteSMYpGw+TL76f62sWkX9u7BVEnXPEQy6PPYELVbDkWJsQh1v04m5yvr6JOE4vp158RFZ/S4zmjEtIBcNX6d7dYG2pJoRp3fF6P5+4u+8hr6KeWsnHB3C4959nfVcxoCfyHBopGw/hzb2f79OfJ8O6j4tkzaKg7vKuaCA5JAgkhhBB9zLb3HsSCA/WSWezU9id903NynOMIFdlcgdUYmC5c/QZPAMBWuLJH80SqjXhMfaco9KFSs/LwXD4HUFHePo+daxfhsAcugRHmqKBBF5jEXFekZg0iPim919fV5ByPRlGp2Lut19cWoq8q3LqaAfNuoUSbTvgt35KYHpidOrHJ/oLzvsZyAEp2rAEgLHVYQObvjmEnX0U10bCkax0mPU4rAEZz8HaOjph2PpunziTLs4eyZ87A2lAbtLXELyQJJIQQQvQhu7euZXzNXFYnnE1a3igax95BuloWkILAonepqkq8t4pmS88/XQaIjk+ijHj0Vd3fHeNxNxNNE76wuIDEFCz9ckdQOeMNYnz1DJh7BsZH09j4t0ksfv9xnPamHs0d5anCHhaYxNyRIDzVX4y8rqR7HYKEONo0NdahvHclTsVE1K8/IjYxcEdDjcYw6ohAsfmPNzXuXQ9AQv+CgK3R5ZhMZnbkXMkI12p2ruv8MVvf/iSQOSI6SJH55Z94CRsnPUV/z06KnpmBt4vH1kTXSRJICCGEaEddTRXzXrgHW5O1U+NLC7fR2INPsurm3ocLA7kX+VtljzjxMppVHc49y7o9pwiNxoZaIhQHalTgdn+Um/NIaOr+jo762koANJa+nQQCGDTmBOqumc/Sgn+xJO1qIrwNTNr8V8ofn8DOtYu6NafP6yPBV4PbcuwkgRL7+Y+hOCt2hjgSIfqGzS/eQLqvhPKTZ5KQlh3w+es0sRgd/u+1voot2FWj/6hrCA09626a1DDqv32808+ort5JAgGMOvUKVg++l6HuTWxb/k3Q1zvWSRJICCGEaMeWN3/LtNIX2L6k47bVVeVFRLx6PJvf/H231tqw4BNGO5ewsf8NRO//ZFKnN1CsTSOsXj7FP9LUlO4CQB/bL2BzOuOHke4rxWat79bzTbX+Iwq6iN4/DtUdadmDmHD2TUy+8b9kPLiBNVNewOJrImPOr1jz3Ttdnq+6vAij4kYJYGKur4tJSMWmmlDq9oQ6FCFCbtVXrzHO+i3LMq5n6ORfBWWNJn085mZ/fRtLw3aKdRm9VoOsLZHRcWxIOY8C6zxKdm/p3EOuJppVHQajKaix/WzoGTfiVPU0rvqgV9Y7lkkSSAghhGjD1tU/MaHOn/xxlnX8S9OuWX8kQnFgadzVrfX0P/2dMhLIv/C+g67XWvqT4Czs1pwidKzlhQBYErICNmdYRgEaRWXf5u4Vh7bV+T+dNkUeGUmgAykaDQUnXoz+9qUU6rLJW3AXO9bM79IcRet+ACA2d2IwQuyTFI2Gcm0KxqZ9HQ8W4ihWW1lC9tIH2aHtz9gr/x60dZymBCI9/h3Bya5CGsJD0xnsUAPO+gNetOz7/NFOjVfcTdiUsCBH9YvwyBg2h09gQPX3UgcxyCQJJIQQQrTC6/XC5/dQp0RRRwTa2vaPUuxct4hxdZ/jUTXEubvewnv7mgUM8mylKO9aTGGWg+65YwaS7KvE0dTY5XlF6DiriwCITckJ2Jwpg8cD0LBnVbeedzX461SExRy5x6Gi45OJvWEODUokMR9fyY61Czr9rGfXfGyqiezhk4IYYd/TEJZOjLMk1GEIEVLb33+QcNWG7vzn0RuMQVvHa04kVq2jvrqcBOrwJgwK2lpdkZCaxZqYU8mv/ozaiuIOx2vdNhy9mAQCUIecQzz1ciQsyCQJJIQQQrRi9RcvMci7jcKCeyg1ZBPZtLvd8U1f/ZUGJZxVCeeQ6KvC427u0nq1P/0Pu2pkyOk3HXbPmDoYjaJSsmt9l+YUoeVr2OdPCiZnBGzOxJQsaolEKe/e34Vmq/+IQmRsUsBiCoX45AyaL/0ADzrS55zH0rn/Q1XVDp9LrlvJzrBh6IL4BrAvao7IINlXgU8KropjlLvZRV71N6yPOJ7sIWODupYSkYxB8bL1s/8CEJU7OajrdUXy6X/AgIdtn/6nw7E6dxNOxdwLUf1i0NQLcKgGGlfLkbBgkiSQEEIIcYhml5PU1f9mtyaLghm30BTRn1TPPlSfr81nYp172R0+CiVlBDrFR2VJ5+tv1NVWM6LuOzbFnkxEdPxh9+OyRgBQv3dD11+MCBldUynVSixanS5gcyoaDcXGXFIa1lBd0Y2dHRWbsKtGYgLYDSdUMvMK0N/yE7sNA5mw9j5W/+sMKorb3rFXU1FMlm8f9tRjaxcQgBKXg1FxU1kqdYHEsWnTgjnEYEWXf3HQ19JH+ztCjtjzMtu1uQwae1LQ1+yszLx81lomMXTfuyx64nLmv3hPm9249F47zdreTQJZIqL3Hwn7od3fuUTPSBJICCGEOMSauU+RplbQdNz/odFqUeMHEomNmsq2t0+bVTseQxTmJP/Z/9rizndw2vTl85gVF4kn3trq/dScoTSrWtzlmzuca9fm1Sya8yyLP5pJ2V4pJh1KZkc5dfrEgM/rGnIhKb4KTM+O5sfnf0ddTWWnn02qW82usGFodfqAxxUKcUnp5N3zA4uyf8MQ+0qiX5zA4v9eyZqfPmH9gs+oLClsGVu4+lsAYoZMC02wIWROGgBA7b7ud5YT4kjmWfsedUQwZMq5QV/LHOdPspsVF01jf4Oi6VtvuSNPvZ9GTSSDG35iaskLbFzUeuMLQwiSQACerGnEU0/J7o5/5xHdE7iPpoQQQoijQH11Of23zGSzfijDp10IgCVtMGyDyt3riW/jaE+EakM1RhCb5m8Da69o//jYgcJKl1KiJJM5rPUt43qDkT3aNEz1Ow675/V42LdzAz53M6ULXmVCxXv0V/yfnq3f9hEpf/y+03GIwIp2V1AeMSzg8449+xaK8sZT++kDTC97iaan3mZx/OlEj7+CwWOmt/mGo766gmzfXpYmnxnwmEJJZzAy+eq/UbLnCoo+/itjar/A8OMnALi/07Is8gTiT/kd7l3zsalG+o84LsQR977YdH9NElvZ4d9DhDjaNTXWMbRxIevjz2C8MfhHQSMT/N0Hi5RURp50edDX66oBIyfDyG24nDbqHxmIe/lrMPWcw8aZvE00mVJ6Pb7EoVNhE5Rt/In0AYH/GSokCSSEEEK0cLubKXrhYgapTdSd+WjLm+mEbP9xrKbizcCMw55zOmyYFDcYo0lMz8GjavDWFnZ6XZ3Xjk0b2e6YWnM2SbaDd/ZUFO+k7rXLGOTxf7qfAyyNmUHqaXdT/s2TjKz5CofNSpglotOxiMDweb0k+GrYZ0kNyvwZg0aRMegLCjcuo+LLRxhd/SnGLz5i47fDiLn0BdJyhh72zJ4131EARA0+PigxhVpa9iDS7nqbmooiSratRlXBuuFzCqo+xjL7W/qpOraa8hlxjNUDAkjql4Nb1eKt7XxyWoijxZbv3mCs0kzUuN5JyMSn5bBbk0nd2LvJCOBx4EAzmiysSTiDUZUfUVddTkz8Lw0DXC4Hyb4KSiN7/yhbZt4oGlUzvqKlwG29vv6xoFN/KxVFOQ34L6AFXlJV9ZFWxkwDngT0QLWqqkfnbxhCCCGOWktfvIspzWtZkf83xuZPabmemJqNTTWhVrV+vKqpoRYToIRFodMbKNUkoLd2vh2z3uvocMt1c8xAUqzzWbfwc+xLXsbgtZHj3EQ/1c2igfegi0ojpt8gJoz0t75uqDgP44+fsm75V4ycfmGnYxFtK9qxjsbqMoZNPK3DsbWVJcQrHpTo9KDGlDVsPFnD5tBYX8OqL19k2Nb/ont9Olv12bgVI57xt1Jw0iUAOHcuwKXqyRk5pYNZj2xxSRnEJe3fsXf8OTTU/p0Fc58ka99HOAcH/yhIX6TTGyjWJKBv2BvqUIToVc0uJ6kbZrJLk01eL9XmMRrDyPnTkdHIIfH46zF8+D6rv3mJCZc90HK9ePt6+ite9Gkjej0mjVbLnrAhJNav6/W1jxUdHlBUFEULzAROB4YAlyqKMuSQMdHAs8BZqqoOBeS3TSGEEEcUj9vN+Ir3WBV1MmPP/c1B9zRaDSW6fpitu1p91t5YA4DWHA1ArT6FCHvH7Vd/ZvQ58HSQBDKkDEWrqIz87jIG25YR1VxBoXEQ1Zd+zeTLH2D8jGsZuD8BBJA77lQcqgHH5q87HYdoW0NtJca3z2HIV5ew9MMnOhxfU+YvwGuMDVxnsPZERscx6dL7sF2/kHWR03ApJmLcFRQsvIlFz92Ox91MXPUqdhnyMJosvRJTXxEVm8iU6/5Bvz9vZdw5t4c6nJCpNaQR6ej89yUhjgarP3rCX+Nvyv19rjZPX5AzbDzbtANJ2vkequ+XAtG1u1YBEN9/VEjisieNIdNbRENddUjWP9p15r+EccBOVVV3q6raDMwCzj5kzGXAR6qqFgGoqtr5CoVCCCFEH1BRvBuD4sGX0XpdnnpLNonO1j9FdzTWAqC3RAFgt6QR5ynv9NpGnwOPrv0kUNrwKdQRwdK4c9DfvYEBf1pLwR+/I3NQfqvjTWEWtoeNJLV6UafjEK1TVZVtr9xErNrAVv1gJmx8iOUftt9et6FoEwAxabm9EWKLlH79mfi79xl5/0/E37uaJTFnMbn8TbY/ejw5np00JI3r1XhE3+EwpxLrrQp1GEL0Gpu1ntxt/2OTfjgjjj8/1OH0WQ0jriPbV8Tqz19queYtW49L1ZPWf3hIYorInYxGUdm7dl5I1j/adSYJlAYcuKe9eP+1Aw0EYhRFmacoyipFUa5qbSJFUW5UFGWloigrq6rkh5AQQoi+o6bI34XCkjKw1fue2FySqMFhrT/snsvmv2a0xALgjcoknnocNmun1japDnwdJIGS+w0g5qFiJvzmdSxRsZ2a154xnQy1lNI9Wzo1XrRu5ZevM67pB1Zl3UD/33/PJv1QsjY+ja+NtroAauFCGrDQLy80n6KCPxE48c43WVbwCJnuXegUH+EDp4YsHhFavrA4olTrQZ/2C3E02/TGb4mjAe2pf5FdQO0YPeNGdmj6k7rqXzjtTQBY6rexT5eBTm8ISUxZI6fiVRXsuxaHZP2jXWf+a1BauaYe8rUOGA2cCZwKPKgoymG/Rauq+oKqqmNUVR2TkJDQ5WCFEEKIYHGU+7vmJGQOafW+Pi4LgOqywsPuuW11AJgi/ckZfXw2AJVFnWvHHKY68ekDf0QndbS/C9S+Fa23fxWdY1j/FiVKEmOv/BtGkxnHiKtJpJbtK79r85m0hlXsMY9Eo9X2YqStG3/2LVRe8iULM29j0IQzQh2OCBHFEodO8dHYUBvqUIQIup3zZzGuajbz4y9h0JgTQx1On6bVanGe8DApVLPmg38AkOraRW1EXshiCo+IZo8uh4HF77Px78ex5L1/hSyWo1FnkkDFQL8Dvk4HSlsZ85WqqjZVVauB+cDIwIQohBBCBJ+vdjcO1UB8Sus1XAz7j3o5rXWH3fPs3wlkjvAngcKT+wNQX7qz43W9XsJwgSHwSaCM3BHUEw4VmwI+94HqGxr4/olr2fSX0dj3f4p4tHA67Ax0rKM4fgpanR6AvKkX4lL11K/8oNVnyvftJF0tx5k+qTdDbVf24NEcd+0/0B+DnbGEnzbc/wFsY3VZiCMRIrgc1UUk/PB7tij9GX1dxzXcBAw/bgZrwiYybPcr7N26hjga8CUe3mWyN9Xl30yJPptYdwXDN/+HpsbDf/8S3dOZJNAKIFdRlGxFUQzAJcAnh4z5GJiiKIpOURQzMB6QvedCCCGOGCZrIeXaFBRN6zs3DJYYAJy2w38J8TkbAFqOacX383965qjsuB2zw96ERlGDkgRSNBoalSj0ruD84qT6fCz+5gNqnpjEiQ0fMVTdyd7Ny4KyVqjsXPUdYUozpkG/dJWJiIpls3ks2VXft3okbN/qbwFIGNb7rXWFaIsx0p8EstVVhDgSIYJH9XooefkKdGozjrOex2Ju/6i1+EXkGX8hQnHgmH0rAOGZod3TMfZXNzL8/gVYZzxPuOJg05cvhDSeo0mHSSBVVT3A7cDX+BM776uquklRlJsVRbl5/5gtwFfAemA5/jbyG4MXthBCCBFYsc591If1a/O+MSIaALet4fCbzgY8qgazJRKAuIRUPKoGtanjPgn2/fMpxvCuB90JNl0Uxub6gM7paXay6svX2PSPKUxafD0RipNNY/4GQMPOFQFdK9Ssm76mWdUyYNzpB133DD6bJGrZvurHw55R98ynAQvZQ6UIs+g7wmKSAHA2SP8WcfRa9+6DDHCsY37ufYwqGBvqcI4o/YePZ6VlKoPc/hqJ6Xl9489v4KhpbNfmkrTtTVSfLyhrqKqKw9lMZfEuXE57UNboS3SdGaSq6hfAF4dce+6Qrx8DHgtcaEIIIURgrJ8/F8NP/yDlti+Iio0/7L7X4yHFW05ZxPFtzhEWEecfa68/7J7G1UiTYiZ6f+FJRaPBqljQuFpJGB3Ctb94tCZISSCnPpoo56GnuLtHVVUWfTmLvOV/ZDR1VBDH8kH3Mvq8u0nQGalZ+Rja8rUBWauvSKxczA7jEIbuTwL+LO/4i3CteoCMzy+j8QstWtWHisLG+FPJrF/BLnM+o/pAPSAhfhYekwhAc6M0ZxFHp10rv2P4jv+xyHICp156V6jDOSLFnvEgvvdPoVqJITE+OdThAP7fqeqGXcP4dfezeekXDJk0o9PPqj4f9VXFqM4maG5CbW7C2lBPXV0t1qq9UFdImK2YeHcZqVSRqHjY9quPyRs9LXgvqA/oVBJICCGEOFL5vD7M8x5igG8PSz5/molX/uWwMVWle0hWPChx/ducxxLpPw7mcxye2NE2N2JTLEQfcM2mWNA2N3YYn9PuH6M1RXQ4tjvchmjC7Vt7PM/WbVvZPvefnOWYyx5tFnsnPEr+tPNI0utbxuwz5RHfuLnHa/UV1eX76O/dzZKM2w67FxkVy9L8h/AUrUTVaAAtOlcd46o/RquoFKZd0+vxCtGeqPgUAHxN1SGORIjAa6qvxvL5zZQqSQy5/iU0WukG1h05Q8exKPFi0BlJDHUwBxh52rXUrnsEz/wnoAtJoGXP3cyEyvcOuhYHZO3/5wbCqdalYI0exLrwk/FGZZKblhOwuPsqSQIJIYQ4qq37YRYFvj00YiZr11t43Pcf1vK0umgLyYAlJbfNecLDo/GqCqrz8CSQ3m3FoTl4J49DE47e3XGLeLfdP0YfFpydQD5TzP620L5utch1WmvZ9tKvGVb/I4MUlW3pF5J75VNkGw+vs2CLG87w4hW47I0YzZGBCD+k9iz+iHggfuTprd6fcO7th13btm4JVT+9yKCTrgtydEJ0jdkSiV01gl2SQOLoovp87HjpWob5atk+Yzb9YuNCHdIRbfJtz4c6hMOYwiyszrmOSbv/y+bFnzNk0pmdei6pegnbtQMoGXQtPq0Zj86MMTyKhLg40vtlExWbQFSQY++LJAkkhBDiqKX6fFiW/odSJYmKcX+kYNldrPr2bUafce1B4+xl2wGIb6M9PIBGq6FRMaO4Dt/dY/BYcWkPTuK4dOEYPB0ngZodPyeBgrMTSDXHYVTc2O2NmMOju/Rs8fa1MOtShngrmJ94GaPPvZu81LYTZYaM0WhLXqZw83L6jzmyiyI77U2kbXiGPZpM+g/vfJevvJETyRs5MYiRCdF9jUoEWqe0iBdHl5Vz/svYpvnMz7qDqWOnhzocESSjLryXikffQvvDQ6gTTu/wg62mxjoyvftYnnkD0y88/EObY5nskxNCCHHUWv/TRwz07qBk2C2MOPlKipVkLKsP/4TLV7Mbl6onMTW73flsmNE0H57YMXmbaNYfnMRp1kVi8nbcLt3r9M9nNAcnCaS1+D8RbajpWkegvVtXY3lnBmG+Jtad8AbTb3uWyHYSQAApgyb419q1vHvB9iFr3v8bqWolthP+hkZq+4ijhFUbjaFZ2iyL0Ni3ext7dwX2yPDerasYtv4frDMUMPmqhwI6t+hbTGEW9o64kzzPdlZ82vFupcINi9AoKuZsadJwKEkCCSGEOCqpPh/GRY9RRjwjZ9yCVqejOPN8Bnm2UF9dftBYo7WQMm1yh2/2HRpLq0e8zD4bbv3Bx588hggsvo6TQB6Hf4zRHJwNyboIfyFsW13nOwKV7tlK2Kzz8aDFdvnnjDm+c+fv0zJyqCAGzRFeHLp092ZG7nmFVeYpDDvurFCHI0TAOPTRhLnrQx2GOAb5vD68b56H/d3AHZVtqK1Cff9qHIqJ1GvfQCsJ+6PeqF/dwlbdIPJXP8D6+XPbHWvdtQyAzBFTeiGyI4skgYQQQhyVNi76lEGerRQNuQmD0QSAJcf/aVDxlmUHjY2376HO1HZ7+J85teHoPYcndsJVGz7jwUkgnyGScNXW4Zw+l38+kyU4O4HCohIAcDR0viNQ2ew/YFKdNF34Phm5Izr9nKIoFBnziGvc1OU4+4oty77B9MapuNGRfMHjoQ5HiIByGWII93bctVCIQNu0+FOy1GIy3HvweXve5ttmrafs2RmkessoOXEmCSkZAYhS9HU6vYGUWz6hWJvGgO9vZMea+W2ONZavoVhJJiqub3Q560skCSSEEOKopJn/GJXEkn/WL52d0of4jys1Fa5quVZVspt+aimOlPEdztmsi8DoPTix43E3Y1GccEgSSDVFYVZcuJtd7c6pNvuTQObw4OwEMkf7+3u4utAWOspRzB7zMLKHdvxncihH7GBSPSX43O2/7r5o6/Jv6f/FpdgUC/WXfkFazqBQhyREQHlNsUT5jrwkUGNjHfPffQyP2x3qUEQ3uZe8AIBFcVJZurtHc6k+H9ufvZhc9zY2THyC4VNkx+axJCouiYgbP6NBicD8yfU0NbZ+xDXNvpny8KG9HN2RQZJAQgghjjrbV89jqHsDuwf+GqPJ0nI9Jj6ZcuLRV25suVa4/DMAkgpa7wB1ILc+HPMhR7yaGvb/8mE6OImj7P+6qaGDIqwuG15VwWg6vNtWIITH+JNAnqaaTj8T463GGda9T860cTloFZWakl3dej5UGhtqifziVqo0cUTcNo/MQfmhDkmIgFPNcVgUJ05Hx7sU+5L17/yZqdv+xualX4Y6FNEN5ft2MdK2iK26wQBU7lrXo/nWfPs2BY6lLM+9i9GnXRWIEMURJiE5g7rTniXZV8mWl2887H5lSSFJ1OBJKQhBdH2fJIH6gGaXE4+7OdRhCCHEUaNu4as4VANDz7z1sHtlYbnE27a1fK3s/pFqoskZMrbDeb2GCMyHHPGyNfqTPFpz9EHXf/7a3th+8kVx27Bj6lb79s6IiknApypg71wSyOW0E0cDvvCUbq1nSR4AQM2+rd16PlS2vXwjiWo11jOeJTpeto6Lo5PG4q8R1lBT3sHIvqOqsoz8svcBaNqzIsTRiO7Y89UzKIDmjEcAsJd2vzi002Ejaclf2aPJYOxFfwxQhOJINGTCqSzr92vGNnzDqk+eO+he8aaFAMTkSrfO1kgSKMRUn49dj09n7VMXhzoUIYQ4KjgdNgbXfMPGqOOJiIo97L4jfjj9vCU4mhrxejz0t65gT9T4TiVhVEMk4aod1fdLPQOH1Z9c0R2SBNJbYvz3G9vfCaRx23AoYR2u3V06vQGrYkZxdK4tdE35Pv9z0WndWi+hn/8Ilb18Z7eeD4XSwm2MbfyWFWlXMmjskd3aXoj26CP9OwObarvWLTCUtnz0COGKg0bMGCrXhzoc0UVOu5VBJR+wzjyBgaOmUUcEmuptHT/YhtXv/YM0KnCc+Hd0BmMAIxVHonFX/5PNuiHkrXqI0j1bWq47t8/DrWrJHDohhNH1XZIECrHNS79isHszgxsXd1g3QgghRMc2/fAukYqdsLFXtno/LCMfjaJStHU5u9YvJgYrmgEndG5yUyQ6xYfT/suRMKfVfxzMGB5z0FDD/q+dTe23Y9Z47DgVU+fW76ZGJQqdq3NtoRsqCgEwxqZ3a62ktEwcqgFv7Z5uPR8KtcX+NyQRQ08OcSRCBJcpyp8Estf37SSQw+Hk239fzcK/n86oslmsjTienZYxJNuOrB2GAtZ//hwxWDFMvROAMn0mEdbu1wSKLpnHVt0ghkyWOkDC/0FX9BWv4UPB+vY1eJpdWBtqGV71Gesjp2Iyh4c6xD5JkkAh1rzgKcBfJG3Xmp9CHI0QQhz5dBvepZx4hkxqva15yiB/seP6XSupWe+vL5E97sxOza3ZX+fHdsDunmZb60mgsIiYg+63Ga/HTrMmeDuBAGzaSAzN9Z0aa6/27wSKTOxepxWdTkuZJhlD495uPR8K9qpCAGJSckIbiBBBZolJAsDVUBniSNq35vPnOdk6l2zfXiqMmaSc+zeaE4eTrpbTUNv5IvcitHxeL8mbX2G7Npch408FwBqRQ4p7L6hqt+aMcVdgtUgnMPGL1Kw8to79K3merax84z42ffE/IhQHEdPuDHVofZYkgUJo3451jLQvZWn8+fhUhfpN34Y6JCGEOKKt+vI1hjlWsSftLDRabatjktJyqCOC6B0fMajwTXbocolN6rg9PIDWcngSyGOvByAs4uCjZ2GRcf77tvp259R77TRrglMU+mdOfTRmT+c6ArnrSgCIScnu9nr1xjSinMXdfr63eWuL8KkKCamSBBJHt8j9rZI9TdUhjqRtPo+HjE3/Y6e2P6n3b6T//y0nKWcElqwxAOzbtDjEEYrOWv/j+2SopTSOuqnlyLUan0c0TdRWlnR5Po+7mQS1Bm9E944ri6PXuBnXszTydMbte5WB255jq24QA0dPD3VYfZYkgUKo5Ntn8KCl/wUPsVM3gKiyRaEOSQghjljLP/4f+UvvYrt+EEMverDNcYpGQ7FxAHmebTRoogm7+OVOr6HfX/fH2fRLEshr9ydXLNFxB40Nj/J/7XPUtzunwevAow3ucbBmQzQWb2PnBltLsatGIlupp9RZzogMEr3lB9VO6su01hJqlGgMpuDuyBIi1KJiEvCqCtj6bhJo07evka6WUTf6joNqtfUbOgmApj0rQxWa6CL3ug+oIYr8U65uuWZOGwJAeTc6hFWXF6FTfGiiZSeQONywG56jWJNMLI00jbop1OH0aZIECiFz424KddkkJGdQkziRAc1bsVnrQx2WEEIccRrqqslf/QBbDMPIuPOrDhMY7nG3siDhMuLvXkh67shOr/PzkS9XU/0vF53+JFB4xMHHwSzhUXhVBdXZ/g4cg+rAowvuTiCvKYYotXNJIL2tnGpNXI+6lakx2Zhx0VB1ZOwGMttLqdElhToMIYJOo9XSoER0ulB8b1r73t/Z9O/TSVv2MLuUfhSccsVB96PjkylVEjFU9qy9uOgdPq/X33ghchw6vaHlekKO/2eutXhTl+esK90FQFh8ZmCCFEeV8IhoPBe+xYLUXzPy5Cs6fuAYJkmgEDJ47TTrLACEDz4JveJl54pvQhyVEEIcebYv/AiD4kF3ykNYIqI7HD/qxIuYctv/CO/E2AOZ9ieB3PuPgAEorgasahhane6gsYpGQ5NiRtNBEsjkc+Dd/7MgaMyxhCnNOO3WDodaXBU06hN6tlxSfwAqi7rfAaY3RbsrsIWlhDoMIXqFVROJ3tm3kkDVxTsZvvkxohp3sIN+FE78B7pDvqcClJnzSJLi0EeE3ZuWEUsj9D/4SE5yWjZNahhUdf3ng62yEIDIlP6BCFEchXKGjGHKjf9Bf0DiURxOkkAhZPTacOv8Fctzx5yIS9Xj2PZDiKMSQogjj7L1c2qIZuCo4J7/Dov0J4F+PgIGoHU1YlNaT+LYlHC0ze3vwAnDiU8f3J1AGrP/aFpDJ9pCR7mrcYT1bFdMTHoeAE1lO3o0T2/web0k+qpwh6eGOhQhekWTLpYoR1GfOq656+tnUQD16s8Z/9AiTjyl9c5PzQkjSFMrsNbX9G6Aossq1/obL2SNO7hJg6LRUKZLI8xa2OU53bX+hgOJaVK/TYiekCRQCIX5bHj2J4FM5nBKtGmYGo+clrpCCNEXOB12BjctZVfs1DaLQQeKJdJ/zMzn+CUJpHM34NC03oLUrglH5257943q8xGmOvHpg7sTSB8RD0BTB111fF4vcWotHktyj9ZLzhyIV1VwV3W/DXBvqa0oxqB4UKTGhDhGNA08l/6+QtZ880aoQwHA3ewiZ99HrA8bS7+cvHbHaqP9BYEba8t7IzTRA+HFC9ijySQ+5fCjW41h6cS6ul4YWtNYQh0RhIVHBiJEIY5ZkgQKITOOg37xbzClEOkqC2FEwdVQX8uCZ29j1Q8f9qlPn4QQR7bNiz/DojgJG3F20NeyWCLxqBpU5y+7e6KdJTSYWt9F4tKGY/S0nQRqbnaiV7wohtaTSIFijPQf73J00Ba6tqoUg+JFE9mzXTEmUxiVSjy6xsIezdMbqvfXmDDGZ4U2ECF6yeizf8NuTSZJy/6By2kPdThs+GEWCdShjrmuw7F6SzQA9sa+dZxNHMzWZCXPtZHKhImt3m+OyCDJV4nX4+nSvEZbKTXaxECEKMQxTZJAIaL6fJhVBz5jRMu1Zksaid7KozJBUlW6l6qnTmBK5VuMnv9rNv7zeBrqZCuvEKLnXBs/waaayJtwZtDXUjQabEoYGpc/CeRxu0nzluKMar0+QbM+ApO3qc35HE37k0nG4O4EMkf7f2l2WdvfCVRX7t9qb4jt1+M1qw1pxFq342l29XiuYLJV+nfgRiVnhzgSIXqHTq/HNu0vpKkVrHzz/pDG4nTYsax4mnLiGTHtwg7HG8L9uzFdVkkC9WU7VnyDUXFjGXJKq/c1cTnoFS+VJbu6NG9UczlWU892qgohJAkUMk6HDZ3iA+Mv2xnV6AzCFQfWur7btrM7dqxdgOeFE0nxlrL2uOdYMuBuhrvXs+2HN0MdmhDiCOfz+hhQt5DtkeN7rb23TbG01PkpL9qOQfGgTchtdaxbH4nZ104SyOY/VqY1BncnUESsPwnkbWx/J5CtqgiA8ISeJ4Eac2aQ7dvL1sdPoaGDY2ih1Fzjf81xaQNCHIkQvWf41HNZEXESk0teYdGzN2NtrMdub/t7VTD4vF7Wz7ycPO8Oyic8cFhx/daY9ieBmm11wQ5P9ICjeD0AmSOPb/W+Jdn/wUnNvs4Xh1Z9PhK9lbgsaT0PUIhjnCSBQsRm9f/w0ph+2QlkiMsCoLK47xfS7Kylc54mY865aPBRes6H5J90KRMu+xN1RMC+ZaEOTwhxhNu1aTkJ1OHtf3KvrenQhKPz+N8sVRduBCAifXCrY33GSCxq28ctXPu7dWlMwU0CxSSkUU48lt1ftTvOVedv6R6TlNXjNSdfcg+Lh/+Vga4NND81hkXvPoLL5ejxvIGmadhHI2Yio+NCHYoQvWrUne+xJP58Jle+S8R/MjH/K40Vnz7Xa+svfeN+xjX9wJLs28g/7dpOPWP+uTi/rT6IkYkes1XhUvWE76+jd6jY/c0D7OU7Oz1lY30NFsUJUekBCVGIY1mnkkCKopymKMo2RVF2KopyXyv3pymK0qAoytr9//tT4EM9utit9QBoD0gCRST7K903lvf9QpqdseTDp5iw7gG2GYdiuG0huQVTAf9xir1hw0huWBfiCIUQR7rqtV8AkDV2RgcjA8epsWDYnwRylvlbFSdnD291rGqMIlxx4HE3t3rfZfPvKNId8LMgGLRaLbuzL2Vo8zr2bFzS5jhfQykeVUNMYmA+aZ10/h3sOWs2lfo0Jm/7J9v/fWq7NUjczU42L/6C2vIiUNWAxNARo72Uao3UmBDHHq1Ox8TbXmbVhP+yMOs3VBONZutnvbL2vp0bGVP4IivDpzHhyr91+jlLtL/Ivc9RH6TIRCBoHTXUKVEomtbfaiam5eBWtfhqO98Qp6rEnzAyxkoRfyF6qsN9l4qiaIGZwMlAMbBCUZRPVFXdfMjQBaqq9t5v4Uc41/4jALqwqJZrCen+4wTNNYWhCCmgVnz1JuM2/IkNplHk3f05RtPB7Y8dKWPJ2L2EuqoyYhJSQhSlEOJIF148nz2aTLLTeq+eS7M+gkinv4i/UruTOiLa/D6m7P8eb2usIyru8Lbrbod/J5A+LLhJIIChv7oD+39foPrbJ8ke1nqxTlPtNso1SaR34lhGZ+WNno5asJBlc/7L+A0PseKZyxh99+xWO7mtevF2JlR9AEAjFmqVGKy6OOzGeNyGaFRjBBgi0IRFYIztR0LGEDIGjmjzjUZnRDjLaTRKjQlxjFIURp92DQArntxJbv0CfF5vUDstqqpK1Ye/JRYdWZc/1aX/fsPDo/CqCqqzoePBImQMrlqs2mja+s6q0+sp1iSibyzq9JxN5f6EkSVJ2sML0VOd+a47DtipqupuVVWbgVlA8FuwHOVc+7ex6s2/JIGiYhOxq0ao7/w3xL4qZsV/KNJmMOA3cw9LAAFEDZwMQNG6eb0cmQilpV++xaL/XEqzq28XihVHBofNykDXRioSJvXquh59OGGqDYBw6x4q9G3Xz9GGRQPQ1NB6EdOfk0AGc/CTQFGxiayPP5OR9d9RXbr3sPs+r5ccxzpKo0cFfG1Fo2H8+XezOOdOxjb9yLKX7jxszM61Cxhb+SHLw09kfv/fsz7mZCpNWWhUN2lNGxlR8xWTSl9nyt6nmbz1H4xZfAuZs45n7b9Oo6Gm++2iE3yVuCw964YmxFEheyrRNLFnU3CP66/54QNGOZexMfeWVtuHt0ej1dKkmFFcjR0PFiFjdtfh0Me0O6bWmEako7jTczqr/T+34tIkCSRET3Xmo740YN8BXxcD41sZN1FRlHVAKfB7VVU3BSC+o5Z7/04go+WXwtCKRkOFNgljU0mowgqYBE8FWxNPJzs8qtX7OSOOo/lLLY7di4FLezc40etUn48Frz/IcYUz0Sgqhbs3kjV4dKjDEke4HSu+ZoTiJmxw79UDAvDpI7DsTwIlufexJ7rtJNTP7Ywd1ta7IXqd/mNlxl5IAgGkn/47ePMTql+5CPNdX2MOj265t2fTMvpjQ5M9JWjrT7ziIZY8vYeJZW+y+qsxjNq/A8Hr8aB+ehe1ShR5179IVBv1eVSfD7vdSlNDLdUlu6jd9APjCp+n9unJ1F30LllDxnUpnuJdm0jHBvGtF/YW4liSMeY0WPNHqjZ8S/8RwUuuN2/5kiY1jNEXHVZholNsSjhal+wE6ssivHU0RLTeNfNnDks6mTVbOj9p/V5cqp7YBCkMLURPdWYnkNLKtUMP6q8GMlVVHQk8DcxtdSJFuVFRlJWKoqysquq7nUJ6g9fp//TXeMAv4ACNxhQiXWUhiChwGupriVJsqJFtf5M2mcPZox9AZNXqlmuqz4fq8/VGiKIX7SvcyepHTmHq3mfYrfN/etNQURjaoMQRrXzfTpbNeQbf8pdwqnoGjj21V9f3GSMJV+001lQSTz3e2La7Sukt/k9CnW20M/a6/Ekgk6X1hHmgpQ8YxoYJTzDAvZ3dT52N0/bLG6mqjd/7xxQEL6mmaDSMuul5tmrzyFtyL/u2rwVg5Yf/Ite7k8IxD7aZAPr5eXN4FIlp2QwZdxLHXfsPdp/9ERp8hL9/Ift2rO9SPPsWvw9AxsTzu/2ahDhaJKXlUKSkYSpeFNR1tM1WGjWR6Aymbj1v11jQu60BjkoEiurzEaM24A1rv9i+GpNFFLZOdY/0eb2kVf7EbsPAHh3/FUL4dea/omLgwL3u6fh3+7RQVbVRVdWm/f/8BaBXFCX+0IlUVX1BVdUxqqqOSUhI6EHYRz6vw7+NNeyQJJDTkkaCtyIEEQVOdckuAAxx7W/xrY3NJ6d5G0uevYkN/zieuocz2ffXoZQXHT3d0Y5lqs/HTx88TeSrUxniWseyvHuwXPkOAM6aI//IowidmjeuZvy6+8m3L2GjeRxhluB21jqUsd8otIrK9tdv8X+dnNfmWFOEvzOKu412xmpLEiiy1fvBMPr0q1gx8q8Mdq2j8t8TKdq8HABj8RJKlCSS+wW3VbrRZCbqmndxKQa8sy6neMd6hm55inXG0Yw547ouzzdo1PE4LvUnggxvn82CV+9n2xp/XZOOxOz9ih3a/qRktv3vUIhjSVnsWHLt6/A0B+/Yts7ThENzeKmAznJqIzB4JAnUVzVZ6zEpbrC0X3DfkOD/WVNZtLXDOTct+oR+ain2EVcFJEYhjnWdSQKtAHIVRclWFMUAXAJ8cuAARVGSFUVR9v/zuP3ztr73XQDgc/qTQOGRB5+XVaP6EYmNxvoj94/PWrG/cFti+0kgU97JmBQ3BRWz0Xua2Bo5iWhfPY7XzqOxvro3QhVBUlVWxKp/nc7xmx6gzJiF9dp5jL/0AeJTs/GpCr76zp8BF+JAuzcvZ6h7I0vSr6fomlUMu2tOr8dQcMoVrDWNY0zjdwDEZg5rc2x0Yho+VcG7/sNWkxJqs/9YmbkXk0AAE8+7nXUnvEGYz0bCe2eydcnn5NjXUhLVO8c0U/r1p+TEmfTzlhD71kno8RB70dPd/oQ3M6+AuvM/wKqJYsreZ8j7eAYNf81k2ePns2X5960+U1VayCDPVqr7ndKTlyLEUUU3YBoWxcmudQuCtobB3YRL0/3kfbMuApO3KYARiUBqqPafaNBFtP+Bf1Sq/xhuY+n2Dud0L32JOiIYdrIkgYQIhA5rAqmq6lEU5Xbga0ALvKKq6iZFUW7ef/854ALgFkVRPIADuERVe6m365HK1YRH1RxWNFkflwW7oLp4J5HtbInvyxw/F25Laf8scP708ykaMJrE5HQGGQ0AbFjwCXnfXcOm56+g4N6vgh6rCJzdW9ZQsW0ZalMFQ3a+wHDVxfK83zH24v9D0fq/1egNRqqUaLTW0g5mE6J1ld//jzRVz+Czf090iDoLKhoNyZf/j6aXjsOEi5SsQW2OjUvqx+L+v2HS7qdY/PytTLr1+YPuaxy12FUj5gB24+qsUcefRUVuPhUvnkb2V1djVNwoWcGrB3So4VPOYtGeO5i8+78s6ncTk/sP7dF8/YdPgOFrqS4vYueSz2DPPAY3LCTqi+8o+yIBj6Kj0pRF1KkPMiB/MrsXvEcCkDLhosC8ICGOAv3HnUnz0t9Rv/IDGHtSUNYw+uzYDN0/EeAxRGK2SxKor2qq9SeBjFGHd8Q8UNL+HZhhq19k0c4FuC0paOJyiIhJJCY6Bm1YJOjDcNZXMNK2iGWpVzKplWYzQoiu69RvnfuPeH1xyLXnDvjnZ4BnAhva0U3TbMWmhBF1yKeeEcn+mimN5bthWGv1t/s+X/0+3KqW2KS2O+aA/41URubBFf6HTzmLxduvY9K+Fynbu+2Y36KvqiqL3v0npuIl5N89G53eEOqQWrV78wqS3zuTHMW/fXyrNo+wi55nXF7BYWNrdQmEObrfyUccu2zWeoZVf8mGqGmMCVEC6GfJ/QawetJjOPeuYpKx/boWE6/4C0ueLWVS5SyWfzSEcef90hkroWYlu415tL2XKLiSUjMovWYuda+eRjI1pBcE501fWyZd8RDb1p7MhJGBK0Ibn5xB/Lm3Ardis9az6NOZ6EpXoage8mwriZp7Bts+zSXLW8teJZ3MVr5PCXGsio5LZLVlAgMqvsLrcaPV6QO+RpiviXp9dref9xkiCd9fnF/0PfZ6f1mLsOj2k0DhkTGsCxtPmmMbaTVFRNXaDm5FdAAvCpkn3xboUIU4ZvX+R48CAI27CTtmDi0FGpfmPx9rWvoES9fN9pfgVkBVwRMWS/4VjxARFdvr8XaFvqmUak0sKd38ZDvrhOvh9RcpnPcGKVf/PcDRHTm8Xh8Lnr+TaZVvALDmh3cpOPXqEEd1uCZrPdoPrsGuhFF6zmxMkQnkZuai1WpbHW8zJhHn2NPLUYqjwcZvXmW84iBiys2hDgWAUadeCVzZ4ThFo2Hczc+z8V87GLbu7xQPn0Z67kiqS/aQ4ytkcdodwQ+2HamZA9l31ecs3byECZkDe3VtRaMhb1Twdh9ZIqKZfNn9LV831New4IN/ElG5ArPXSkneVWQqrfW/EOIYNuJi4pbewYaFHzN82gUBn96s2vHqu98RUTVFYlGceNzNffbDsWOZu7ESgIj4jj+sGXnvNy3/7LLVU71vOzXVlTQ11KG4m9B4XfgULeHJAxie0/auWyFE10gSKES0bhvOVorixSakss44hnjXPiKs9f6L+38/TbZWsvqlasbc/WGfroxvcZRRr0+iu5/Tp2YPYotuMMl7PwWOzSSQx+1myTPXMa3hE1bFzSClZjmGlS9CH0sClRXtoPKtGxnmK2HrKW8yNL/jN3PNlhQSmpaj+nx9+u+x6INKVlNHBANHnxDqSLpMq9ORcPVruF6cimvWNbj/sJg9yz4hHkgcdWaow6NfzmD65QwOdRhBFxUdx5QbHm/5uv39qkIcm4ZOu5CGpX/EtepdCHASSPX5sKh2VGP3k0CKKRoAW2MtUXHJAYpMBIrP6k8CRXciCXQgoyWatEHjkAbwQgSfvAMLEYO3CZfWcth1RaNh5B+/J+2h7b/878/+/y3Lupmx1u9ZMee/IYi482LcldjDenZUozH3XLJ9e9mzaVmAour7VJ+PdfPnsPyzF1nz5HlMafiEFelXMfr2t9jb/zKGujewe+PSUIfZYuUXrxD58mQGujayYtiDDJ38q849GJmGWXHR2NB6y2wh2mJwVlOniTtik4dJaTnsnvgI/b27WfXe39Hs/p5KYuk/dFyoQxNCiBZGk5mtsScxtHE+1gD/rHa5HBgUL/QgCaQxRwNgk98j+iTFVo2VMIymw9/nCCH6hiPzN+mjgMFrp7mVJFB7xl/1d9YZRjF8/T9oqOmbNVXcbjcJag2eiJ7l8XOnX4lb1VIx78UARda3qT4fS2dez8gfrmHcyt8z1jafxdl3MPb6p0FRGHLGrThUA9XfPxXqUAF/vMkrHqVcm0L9dQuZcOHvOv2sLsb/2Xtt6e5ghSeOUubmapoMR2bB/J+NPvUKVoVNZsSuFxhoXc6e6AlHbFJLCHH0ip3ya8KUZja8c3/Hg7vA2uDvfquYut8RUW+JBsDeeOR20j2a6Zw1NCjRoQ5DCNEO+c0zRExeG25d15JAWq0W02l/IUxpZseCD4IUWc9UlRWhV7xoo3u2yT42MZU1kScwoeoDlj15KfamhgBF2Pc47U0sffoaJtbMZknixey+6AfKrl/LpKv/2jImKi6JDTEnMrj2B7weTwij9duy8gfS1XLqRlzf5eLd4QkZADRWFgYhMnE0i/TU4jLGhzqMHku5+AkUVCIUB7qBJ4c6HCGEOExuwfEsjT2b8eXvsnXFdwGb17G/1IE27NCqmJ1nCPfXxnRZZSdQX2R01dCkiwl1GEKIdkgSKERMqgOfvuvbJHNHHkc58ei2f9Hx4BCoLfPv7giLz+zxXAV3vMPClGsYW/clVf+eyK71i3s8Z1+i+nws/egpGv41nIl1H7M4+Qom3PwcOUNGk5J+eNcMJft4IhQHe7euDEG0B2tc+iYO1cDgEy7v8rPRKf7X5qopCnRY4iim+nzEqfV4zYmhDqXHUrPyWNP/FqxqGAMmnBXqcIQQolXDrnmSSiUO8xd34AxQS3bn/iSQrgdJINP+JFCzrS4QIYkAs3jqceglCSREXyZJoBCxqHa8hq6fh9ZoNRQmTGOQbUWf3B1j27+7IzK5+60/f6bXGzjupv+y8cQ3MKt2+s3+FQufv4OaypIezx1qjfU1rHr8bCasf5A6XQKbTnmHSTfPbPdYSNqI6QBUbf6pt8JsldPpYFDtd2yOPA5LZNc71cUlZ+BVFXz1R/6/R9F7GuurMSgeCD/yk0AAE6/8C7p7dxEVe+TvbBJCHJ3CI2Opmv4YGWoJq9+4NyBzNtvrATDsP9LVHeZIf4LBY6vveUAi4CJ99TSbjuyj20Ic7SQJFAJerxeL4kTtRhIIIHzkOZgUN9sWzglwZD3nrvXv7khI7x+wOUdMPQvtrYtZF34cx5W9jmXmSEofGsDevwxh1ZevB2yd3rJ9zQKs/51Ivm0hi3PuZOAflzB0UsfdgVIyB1JFDNp9y3shyrZtmvch0TRhGHVZt57X6w1UK7HomkoDHJk4mtVVFgOgj+pZ0fm+QlEUwsxSNFMI0beNOP48lsb8ivFlb7Nt5Q89nq95f+LGGN79nUCWaH/y3Oeo73E8IrB8Xi/RaiOqWZJAQvRlkgQKAdv+HTwaY3i3nh80/lTqiMC7+dNAhhUQmsYSrJgxhQd2G2hsYipj7/mYvZf8yOqEc9gXOQqPoqdg6Z0se/fIaSO/8rMXyZp7DjrVw44z3mPSVQ+j0Wo79ayi0VBkGU6adV2Qo2yfdu3r1BDNkCnndHuOOl0CJkffLG4u+qamav/OMVPM0ZEEEkKII8XQa56iSokj4bOr2PLXcWz66wTW/e04fnr9L12ey2NvBCAsous7iX8WHh6FV1VQnX1vR/yxrqGuCp3iQ7EkhDoUIUQ7JAkUAvZG/xnm7nZG0OkNbI+ewoiGH1k482Z2b13D3u3rcDpsB41TfT52bV5DQ21Vj2PuLJN1L9W6pKDNnzloFJNuf4nxv32flN8tYI15AuO3/YtV/z6HxprKoK0bKHGrn2afNh3j7YsZPP6ULj/vThtHClVUlISms1bR9rXkO1ewI+NitDp9t+exmZKIau77/75E3+Gs8+8cC4/rWedBIYQQXRMRFUvDr15iT9gwmnXhqFojKZ4S8va80eW5fA5/4sYcHt3teDRaLU2KGcXV2O05RHA0VPt/Vusij46j20IcrXShDuBY5GqqB0Br7n57zAGXPc6atzxMqpyFZta7AJSSiOeS90jMHMTSOc+QtuNtctVCfKrCHm0GNaYMmi1p+KIzMESnomh+2YESnTaQ3BETevS6nE4nA10b2Z50Oj2vCNQxsyWSEb/9lJ9ef4BJ+16k+alhVCoWKnWpJF77DolpPS9OHUhudzNp3mJWp15G//jkbs0RN/h42P44+9b+SFJaToAj7FjZN/8lWdWRe+ZvejRPszmVeOsSUFVQlABFJ45mnkb/zrHopJ51HhRCCNF1eaOnw+jpLV8vfe0+JhT+D7utEbOl87/PqvsTN5aonu0YtynhaJolCdTX2Gr9P6uNUcH7QFgI0XOSBAoBx/7z0D3pjBCXmEbcbz+gaOsayrYswud2kbv5v4TPmkE9YUyjmt3aHJb2/wNuez2WqjXEO3aTZFtGWFVzq3Mu/+YE+l34KCmZA7sV0461CxmuODEMOL7br6ur9Ho9x1//KNvXzKB6/ktofS6G1/9A9UunUX3DV8Sn9p1EUMnuLWQpXnRJXWupfqCsoeOxzzXiKVwC/DpwwXXAbm/CXl3M8KrPWRN9EuN7+kbcEkeY0ozTYcNk7t6xSHGMsVbgUvVERnX/CIEQQojAMCQNhEIo3b2JAcMndv5BVyNOVY/JYOrR+naNBb3b2qM5RODZKvcAEJmYEeJIhBDtkSRQCDTb/J9cGHuwE+hnGYMKyBhUAEDx7jOpffMS3BoTVcc/xvAp55JzyC4Ln9dHdXUp9RX7UFUVAFX1UbViNqOL34RXJrEo/UryL/kzlojoLsXSuMVfMDBj1Kk9fl1dNbBgCgMLpgCwZelXZHx5NZUv/YqIPyzFaDL3eH5VVVF6uGOlZs96soCYzBHdnkNvMLI5bAQFlXP46SmFvAv/THJKeo/i6sjGRZ8z6JsrMCs+UCB6+h09nlNj8idAmxpqJAkkOkXrqKJWiSalnQ56Qgghekd0vyGwDBr2bYEuJIE0zU3YFAs9SwGBUxuBoQdJoOZmNwZD94+1i9b5StfhUA2k5QwLdShCiHZIEigEPPvPQxt7cB66Nek5g/A9uAaNpu1khUarIT4pnfikgxMHA/OPo2zvLez74F4ml7xC1b/nsHHk7xh71q2dLlwcUb6EQk0GWfGpPXodPTV4wmmssT1FwYIbWfL2n5j468d7NN+SZ35NeMN2ht73Expt99+AOss2A5A6oPtJIIC0a15h3Xv3cVzNB7ie+5hF8TMYcNa9JGV2f4dRe5pWf0Azehbl3o0+oT+T8if3eE7t/tawdmsdpPSd3Vqi7zI5q2nUxSJloYUQIvRSsoYA0FyxrUvPad1N2BUzPe0d1ayLINpZ3K1n182bzdAfr6dCiaJSl0ZDWDq+mP7EZQ+n/+AxmBJzQNO5333FwSLqNlOkzyZPJ28xhejL5L/QAGh2OTEYO/+Zhsfh3wlkCnASCGg3AdSRlMyBpPx+DpuXfoPm2/sZv+4B6tc+wk7TULz6cLSqB6+iw60LJ3bC5QwZf0pLPZdml5MBzk1sSPwVWQF6LT1RcOLFrFgzi9FFr7J32xVk5uV3ax7V5yO3+jviqWf1N68z6vRrux2TrnYHlUociRE9Owcfn5xB/J3vULZjLUWf/ZOx1XPRvDKHpZapGCfewMhJp3c6cdcR1ecjo2YR2y2jOf7yPwZkTgC92b8TyNFYE7A5xdHN4q6h0SRFoYUQoi8IC4+knHh09V1rVKF3W3FqLT1e32OIxGxv6taz9t3L0Sk+CqPGE2Hfx2DrUuKsX0ER8BO40FOrxODUmKnPv5mCX93S43iPBarPS0bzTjbH9/6JACFE10gSqIe2/W08DZYsxt39Xqef8Tn821d70hkhmIZMOAXf2BNZ8fUbeLd9Q4p1PbpmN2506PAS46vH8tXHFH2bQZMuFocxHk2/MRQoLvT9e68eUEeyr3gK53Pj0b97AQtzr2XEjFu6XE9k77Y1ZFGPR9UQv/wxvCdf0e2uWNG2PVQZswhUv4SU3HxS7n6P0r07Kfzi34yomEP49/Oo/D6WSn0ajfp40s5/hMz+g7q9xt7ta8mikuLsmwIUtZ8h3P/voXl/kXQhOhLtq6M6LD/UYQghhNiv2phOlK2wS88YvDZcAUgC+QyRRKpWfB4Pmi7uOtE2FlFFDOMP+N29obaKzRtW0li0EUPdDozOahIduxi68n62pQ4mb/S0Hsd8tCsr3Eaq4kBJ6dmOdyFE8EkSqIdsxgQyGlZ2qcvRz50RzF2sudObNFotY8+4Fs44fOeLvamBH+c8S0Th1xjcLvo7lxDd+B0+VSFzdNfbngdLfHI/Np3yMtof/sxxO/6F8z9PsMIygcgTfkvemBM6NUf5um/JAlbm3sWEnf9hxSfPMva8O7sci9vjId27jy3Ro7v8bEdSMweQesv/cNkfZem378DWz4jw1DLSvoSGN2dQdOWnZPQf3K25y1d+ShaQOf7sgMYctn83VLO9LqDziqOTu9lFtGrFZ5aWs0II0VfYwrPIqPkW1edD6WS9NpPXRr2h5wX+tdmTMFfOYvkHjzLu0vu79KzZXkyNPoWEA65FxSYw8fjTgdNbrjXUVFD79GTCP72B6oxFxCfIz6D2VGxbRioQnTM21KEIITogSaAeau53HMlbF1BauJXU7E6+0XZZ93dGMAY3uCAxh0cx/co/Av7jQdW1NXz94b9RVA+nJHSv9XmwDJ10Okw6nW2rfqRm8RsMqvmOqE/PY9Gaaxl39SPoO/h3YNi3kDLiGX/Zg+z62xwitswCup4EKi7cQbbiQpvU/V05HTGaI5lw9s1w9s0A7N2wkOjZF6G+cRI7NfFo8AGgwYeCSmnMGMbf9mq7R8csRT+wR5NBdkZuQGMNi/T/AuixNQR0XnF0qqsqI1FR0URKy1khhOgr1LhcImvmUldTTkxC5+pBmnw2PPqeN4QYc+qVrFn7FsO2/peKogtJyuh8Z9u45jJKIvM7HBcVl0TN2S/Sb+75bHvuLJRbPyMuLr4HUR/dXMVr8agaMgYH/gNPIURgSZuVHkoZeTIAxau/7vQzGlcDTUrPt8L2FfGxcZx64z845aZ/hTqUNuWNns6k37yK7q61rIg6hcklr7D9sROprypr8xmf10uObQ37osagaDRUJkwgq3kH7mZnl9ev2r0BgKh+vdctIXP4cdRfMJtdEaOxhqVSF5ZBbVgm1WE51BlSmFj7MUtfuafN522NdeS5NlCROCXgsYVH+ktCqo76gM8tjj4NVf7in/ooKQsthBB9RViyvyFFxZ4NnX7GotrxGSJ6vLai0ZB06TMAlL7b+a6l7mYXiWo1nsh+nRqfUzCdHVOeJM+zncqZp7FwznNsWv49Hre7W3H3ZQ21VSz94N/YGru3S9tcs4kibT9MYUfPexwhjlayE6iHMvIKqCYazd4FwF2desborKJeG4d8ltD7IqPjmPDb91k691kK1vyJmmenUnrKUwyZePphYwu3rCCHJsieCoAhazyminfZsWk5uQVTu7Suo3QTACkD8nv8Groic9hEMod9cth11edj2X8vY1LJyyyc2YTblEDiyFMZOuaX17Xu3T8xSfESPercgMdltkTgUTXgkp1AvW3tvLlEJqaTM2RMqEPpNHttCQDmWEkCCSFEXxGXORQAa/FWGNdxMWCf10c4DtQAJIEAUrPyWJx9A5MKn2Hbqh/JGz29w2cqi3eTpqhoY7M6vc6Qk65ii85I1o+3M3jdvbAOyr6IZ1P6xRx/zcPoj4JOWE6HjZJnz2KCZzMVm2ayY8o/yT/x4i7NkercwZ6o8eQEKUYhRODITqAeUjQaCsNHkdm4CtXn69Qz4c3V2PU9Pw8tum/CObeye8b7KKqPIV9fwqrHfkX53q0Hjala59/d1W+Uv85R2jD/jpjabYu6vJ6udgf1RBIW3TfOkysaDSNvfpkNhnyOq3qP6fueYehnv2LZfy6iaOtKtiz5kgmlb7I0egaDxp0clPWtigXFZQ343KJtToed3B9vovmj20IdSpe46vw79iIT0kMciRBCiJ8lZ+TSrGrxVe3o1HhbUz0aRQVTVMBiGHn+PdQRgf3bRzo1vq5kOwDmpP5dWmfwtIvR3beLkst+ZMXox6kzpnFS8UxWfv5yl2Pua3xeLxtmXsYQz2YWZd6CXWNh2PybqSje1ek5ijavIJ56PInDgxipECJQJAkUAJ6s40igjuKd6zs1PtJbh8vUN5IBx7LBY08g6p41LEi7gcFNy4h55TiWvHAnnmYXjfXV5Ox4le3aAaTsr4eTlJZDJbFoS1d2ea0Y207KTdmBfgk9YgqzMOy+H1EfrMZ+13YWJV9JQcP3ZMw6kQFfXU6JJpnhv54ZtPXtihltc2PQ5heH27b0CyyKk0GerRRuWRXqcFo4HTYWP3M921f/1Op9b4N/J1BsUue27wshhAg+nV5PqTYVS92mTo23WesB0JgCsxMIwBIRzdasKyhwLmXnuoUdjrdX+lvax6Z3vdahPiyStIGjGPurGxh874/s1fQjae0zeL3eLs/Vlyx952+MbZrHkpw7mHztI+guewed4mPPT291+GxDTQWLnrud5PdOw6aaSB3zq16IWAjRU5IECoDUkf6dImVrO64L5PV4iFXr8VoSOhwrgs9siWTKDY/T8OvFrIk4nomlr7HhibPY+sqtxKgNMOPJlrGKRkOxZSjJ1o1dWqPZ7SXDsxdbVOeLFvYWRaNB0eoxRycx+eZnqLtpNQsG/pF15ok4z34JSxA72Nk14ejdshOoNzk3fIpdNeJWtZTNezHU4QD+TyA3PnMpk6o/QP3inlZ3VOoa91FJLEaTOQQRCiGEaEtx4gkMdqyhpnRPh2OdVn+tGa05cDuBAIadcw+NWGj68q8djvXWFuJRNSSk9uyDOUWjpXb0neSoRaz95s0ezRVKuzYuY8zOp1hjnsSEK/4CQL8Bw9mh7U/s7s9afUb1+di+bhGLnr0Z3VMjmFz+Jqsjp2O9YSmZefm9GL0Qors6lQRSFOU0RVG2KYqyU1GU+9oZN1ZRFK+iKBcELsS+r1//oRQryVh2ftrh2PqacnSKDyWib3XROtalZAxgwu9ns2jQ/zHSvoxxjV+zPOVyBhYcXBS5OXkU6Wo5tZWlnZ67eO92whUnmuQhgQ474JJSM5ly2X2MufdzcvOPC+pazdpwDB5JAvUWn9dHdu18toaPY4NlEnkVn3eryHmgLXnpLsbYfmKLfih5nm1sXfHNYWPM9hJq9fI9Uwgh+pr0E29Eq6js/Ob5Dsc6m+oB0IcFNgkUER3HpuxryXcuZf1Pc9odq2/cR6UmAZ3e0ON1R5x6LUVKKtErn+x0SYi+pLG+BuWjG2hUwsm69mUUzS9vC2uyZjDQu52S3VtarhXt3MSC5+5g31+HMHDOGYyveI9N4RPZdcG3TPjdhySn960d70KItnWYBFIURQvMBE4HhgCXKopy2LvZ/eMeBTrfJusooWg0FGVdyNDmDRRtbf+oUH2lv8uNIUre0PRFky+5l9XjHmd5xEmMuurw8+WRuZMAKNowv9Nz1uxaC0BUxoiAxHi0cOkiMHltoQ7jmLFr/UISqcWbezqa0VcQSyMbf3w/1GExovQDVlmmknXX19QSgXPek4eNiXGX0xTWufbDQgghek9W7jA2GEaSsXc2vg6ORbls9QAYLNEBj2PUxfdTrCQTOe8B3M2uNseFO0qo1QemyYBWp6N04JX09+6hvGh7QObsLVWlhVQ9dQL9vMWUTPsPMQkH/4zNnHo5APsW+Hc5rfjyDeLenM6ksjdo0CexeMiDNN62iXH3zKX/sHG9Hr8Qomc6sxNoHLBTVdXdqqo2A7OAs1sZ9xtgNlAZwPiOGHmn34pL1VP23bPtjrPV+GtbhMWm9UZYohvGnHk94343G5M5/LB72cMn41E1uFe9RX1dbafmc5b6j4+lDhwV0DiPdF5DBGZfU6jDOGbUrJqLV1XIPe58hk09j0bVTPP270Mak7WhlgjFgTspnzBLBFvTL6bAsYS9W9e0jPG4m0n0VeOJkKLQQgjRFzmGX0GKWsmWxa0fH/qZ2+7vCGoKjw54DEaTmZrJD5GlFrPivX+0OS7eU47dErjfwaMHjAegckfX60WGSkNtJc0vnEKyt5wt019k5LTzDxuTkpnHVt1gBu15nU1/m8jYZb+hRJdBzfUrGf5/PzHpot8TmygfzghxpOpMEigN2HfA18X7r7VQFCUNOBd4rr2JFEW5UVGUlYqirKyqqupqrH1aXGIq66KmM7TqC2yNdW2Oc9X7jxFJl5sjU5glglUpFzPWvgDPk/n8+MzNrJ73MV6Pp81nDLVbqVTiMEVIR7gDeQ2RWFR7qMM4JricdjKLP2GLcTjR8cno9AZK9ZmEW3eHNK7a8r0A6GL83w8HnnEHAGUrP24ZU1W6B53iQ9OFdr5CCCF6z4iTLqeOCNyL2/8g1OvwJ4HCglRvcMQJF7MmbCJjdj7N1uXfHnbfYbMSTz3eqIyArZk+aAw+VcG5b13A5gy2ba/eSqJaTfGMtxnRSgLoZ67Jv6dI3x9V0bIk4UIyfz+PxH4DejFSIUSwdCYJpLRyTT3k6yeBe1VVbXcfqKqqL6iqOkZV1TEJCUdfYeTIKTcTrjhY/+E/2xzjaSgHIDpRdgIdqcbf/By7z/mUMvNAJle9z6h5V1H1jyFUfPUYeA9PBsXadlFh6lor0mOBaowiXHG0m0ATgbH6w8dIoQr1uN+3XGsMzya5eW8Io4LGiiIAzHH+rl/xqZlUE422emvLmNoSf4vasISc3g9QCCFEh0xhFrZkXkG+Yyk717R9XN5r839IGh4VF5Q4FI2GnBvepEoTT/wX17PyqzdZ8+NsnA7/0fPK/Ue29HGBq10THhFFiSYFQ82Wjgf3ASu/eI1x1m9ZmXEdeWNPanfsyOkXMOL++Qy7fyETb3sJY9jhO+SFEEemziSBioED+/KmA4dWxR0DzFIUpRC4AHhWUZRzAhHgkSRv9HRWWqYxfu8LrP7mnVbHaGwVNKlhmMMDWxRP9K6c/KkMv/c7fPfsZlHBY+zzxZG09G+sePdhfL5fcqTNzc1keIuxR/e9zmChpoRFAtDUzs65fdtW43JK3aCeaKivYfDOF1hvHM3wqb+c5PXFDySOBhpqKkIWm6PGv8k0Kjmz5VqZMZto686Wr39u5xuTKolUIYToq4af9wfqCafp67Y7dGnrdlNPBJbI4O2MjopNoPmCtwhTHYxZejsFP13HmlkPA1C1axUAkWmDA7pmpXkAifYdAZ0zGKoq9pGz/AF2aAcw5sq/hzocIUQIdSYJtALIVRQlW1EUA3AJ8MmBA1RVzVZVNUtV1SzgQ+BWVVXnBjrYvk7RaBh661vs0vUnb9HdbF2z4LAxOnsVtZqYEEQngsEUHs3ks28k47c/siZsAoN2vMBNz33FysJaVFWlZPcmjIobXfLQUIfa52jCogGwNdS0er+psY6kd05m7ex/92JUR5/NH/6DaJoIP/NvB10PS/X/Ely2s+Mt7HablcUfPcOaf57I4ufvCFhs3gZ/ofy4A5JAtqiBpHmKWgqMemr34lMVEtJlJ5AQQvRVEVGxbM66hnznchY9dQ3zn72Nn/53Oz+9fB8Om7/+X3jTbsr0gTuK1ZbsoeOw37ySLWfOYZsuj6R9XwKgbPmUaqLpP3JyQNdzxg0hTS3HYa0P6LyBpPp8FL12ExbVifHC59EbjKEOSQgRQh0mgVRV9QC34+/6tQV4X1XVTYqi3Kwoys3BDvBIE2aJIOb62ViVcJI+vpRdm1YcfN9VTZMuONtgRegkRZrIv+5pzBo351U+zcqX7mDVP06k8psnAIjKks5gh9KZowFwWFtPAlUWbcegeNBUbuzFqI4+cWU/sckwnJwRkw66Hp+VD0Bj8aZ2n9+3cyMVj09k0vr7GeJcx+jSd9rdvdUVGmsZdUQcVIRdkzQEs+Li/9m77/g6y/r/46/r7ORkz6ZN99570JayZcpWQGQIooDgBMGN6+f8Kg4UERUFFBkyZMqmew+690jbNHuffe7fHycNbbPbJCfj/Xw88iC5r/VJepPc53OucXhfbNq+o2o/JSYdtyexQ8YUEZHOMfmqe9lr8plW+gpzjjzFvMInOePAH9n0/tNYlkVeaD81yV2T0M/OG8TYmWdTNuxyhkX3sWvDUsbWLGdn5pnY7fYOHcuTPxmAgm3dd3PoFS/9kem+xawdeReDxsyIdzgiEmdtmQmEZVmvWpY1yrKs4ZZl/bj+2sOWZTXaCNqyrJsty3q2owPtSbLyhmDd+BJhHKQ+cxX7tn/0TntyuIw6T1Yco5POYrJHYWbcwoUs5nOOV8kP7WN22YtELEP+yCnxDq/bcdWfDuJv5p2zqsOxvWBSavd2TUC9kN9Xy5DwbqqzpjYq6zd4JD7LRbRoW5Ntiw/vZ9ETPyTl8Y+RbpWzbv6f2HXB47hNiG0Ln+uQ+Ny+I5Tbjk+Kpw6OJUyLd8VOCEusO0ips1+HjCciIp3Hm5zGkO9tIuH7xbi+X0r0G4cIWg5CB1ZTXnyYDKqJZnbt8vihC64FIPrSF0k0AbxTruzwMXJHTQegcu/aVmrGT+aHj7LTPpxZ13473qGISDfQpiSQtF/esPH4rnseGxbuf17Bwd2xjU4zomWEE3rfptgSYzv3e4QvehDbVz4k+zvbWTHnIVZN/1mTx833dZ6k2LLIYG3Ts0r8JXsByAsXYEWjXRVWr7J30zJcJoJ7yKxGZXa7nUOOfBIqdx533YpGWfy3b5D+8GTm7/wlh5351N30FlPOvZbRM8+jhDTY/GKj/k6GN1BEjev434cDRsUSVv6DsRlgGcFCahN0DK2ISE/j8iSw1zGU5NKNFO7+EPhoKXJX6Zc/jC2OsYwMb6ecZMbMubDDx+g/cCSVlhcKu+/M5YxICWVpE7A5HPEORUS6ASWBOtGg0VOpvPoZEvBj/vFxSg7txWv8WEm58Q5NOos7Ccesz0DqAOx2O7Mu+DSzL/18vKPqlhKSYzNAwnUVTVeoiJ0clUItZcUHuyiq3qVi+1IA8iec3mR5eeIQcvx7G74O+GtZ9tCtzNv3B9Ylnc7eT77NmG+voP/Q2EO73eFgV+aZjK1Zjq+2+pTjy4iU4E88fpZPUko6h0wOjtIthENBsq1SQskDm+lBRES6s/K08QwKbqf6QCxBkjVkYpfHUDHkIgC2py3A6XR1eP82u40DrmGkVG5tvXIchEJB0qxqIok58Q5FRLoJJYE62dAJczh4wV/pTxF7nvkmAPZkLW0Q8abEZgJFmkkCuWoKGj4v2t19313rzhyH11JEBtn9hzRZHsoYRR7FlBcfZtHDd1H309GcVvofluRez7SvPs+QcY33DfBOvYpEE2Drov+cUmyBgI9MKokm5TUqK/IMI6N2F8WH9uAwUewZg5voQUREur3+U0mhDveet/BbTvoNGtnlIQw76wYO0I/kubd02hgVaRMYEtzJkV3rOm2Mk1VRfBibsbAlKwkkIjFKAnWBcXMuYL17OtPLXgXAk6GlDSJJqbEjYi1/VZPlyf7D7DP5AFQf3NJlcfUm/Wo2UuBt/mQ6d15shk/tH85k7uEn2JU4mQ3nPM7cO/6ArZmNM8fMvoAykols+u8pxVZ6ODbTy546oFGZL20U+ZECDm9aBEBCjk4GExHpiTJHzgZgfO1yDtrzm/3b0plyBwxl4APbGDfr3E4bY/Al91FDArX//AyhgK/TxjkZlcWxN9VcqXoTWkRilATqIrYFX8NmLAC8GY1f9Ij0NQ6ni1rLgwlUNlmeFTnCkfSp+C0n0ZIdXRxdz1dRUki+VUggt/Gm0EdlDo5Ny8+OlrJ2zoPM+PorTDr90hb7dThd7EmaRn7VqW2AWXlkHwDuzPxGZc68cbhMhGkrvkoZyQwYPfOUxhIRkfgYNHoafsuJ00QoTxwa73A6zcDBQ9l52k8ZFtnN6j99nlAwEO+QGtSWHQYgIb3xzFsR6ZuUBOoiE067kC2OMQCk5jR+0SPSF9WaRGyBxjOBaqsrSKeaaOoQDtn746ncHYfoerb9Hy4EIHn47GbrDBw1hSUDbmH3xf9i+oU3t7nvUP9Z9KOEooKT/3epLTkAQEpO46Ve+VM/xl6Tz8KcT2N9YSUZOZo9KSLSE7ncbvY6Y7M5g+kj4hxN55p1wadZknMtc8peZO9PT2PnhqXxDgmAQEUsCZSSpTehRSRGW8R3EWOzET3/Z3yw5B/Mz1ImXgSg1paEI9R4g+Higp14AUfWYMqLBpNbp5lAbbX+7acYsPA+Rlg+ohiGTJzXbF2b3c7c237d7jEyxiyA7b/gwIZ3yMk/uaVa4fLY9PT0vCGNyvoNHA7f20TjEhER6WnKUydA6Tac/UbHO5RON/fOP7Hq1dMYuuK7pDx3MUuW38SIC+/GON1k5fTHGNPlMUWqjwCQpjdURKSeZgJ1ofEzz2TBl/6Kza4fuwhAwJ6EK9w4CVR5OHZseXLuUIJpw+kXPUIw4O/q8Hok+/I/YmFYnXkJS8d9m6T6Dbg70tAJs6mz3IT3nPy7nFb1YeosNympmR0YmYiIdDdm4CwAMoZOi3MkXWPGRTdjv2sFa1LOZu7Bv5Lz6FSy/ziOhX/7ZlziMTVF1FluEpPS4jK+iHQ/mgkkInETcCSRGCxrdN1fHNsvJnPASKoOjsZxMMq+PVsYPKb5/W0ECvfvYFxgPcsH3cbpt/6i08Zxutxsc48hs+zk9wVy1R6m1JbJQJuS4iIivdm0i25lZc4IZo7rG0kggLSsfsz+2rNsWPQKVQe3kLL7FWbs+wslhXeQ1W9Ql8bi8JVQZksnsUtHFZHuTE/fIhI3YWcyidHGM4Gs8n0ELCeZufmkDBwHQNn+TV0dXo+z552/YDMWg8/5bKePVZ09nSHhPdRWV5xUe6+/kCpnVscGJSIi3Y7L5WTm3M47mas7mzT/YuZfcw/pn/gdLkLsfO77XR5DQqCEGkdGl48rIt2XkkAiEjfB9JHkRYsoKTxw3HVnzUGKbNkYm52MfrGNg4P1GxtK06xolPx9L7LJOZH+Qzp/34XEEfNwmCh7173f7rZVlWUMC+2gOnNiJ0QmIiLSvQwcMYFVGRczregFFv39Oyx65rfU1TZ+E6wzeMNl1Lm09FpEPqIkkIjETc70y7AZiz1L/nPc9ST/ISpc/QBIycgBwKot6fL4epJta95loHWI2nGf7JLxhkw9i6hlCC75A8WH97er7Y4lL+IyEVInf7yTohMREelehlz5ABUkM3/Pb5m/6TvsevAi6moqOn3c1GgFIY9m3orIR7QnkIjEzbAJczjyn0wcO98AvgSAZVlkhwvZmbIAALcnkRorAXyN9w6Sj5SvfYmwZWPMWdd3yXipaZkszr+FWQWPEXx4BgdsGdiIcmDI1Uy/7rs4XZ5m20a3vkYlXkZOP6dLYhUREYm3fgNH4P/mNirrqtn+/lNMW/ttdv36XA5nzyXkSMKRmEZq3ggmnX4pdkfHvEQLBgKkU03Um9Mh/YlI76AkkIjEjbHZ2Jt5OhNLXsPvq8WT4KXo0F5yqcLKHtdQr8qWgsNfHsdIu7+swkVsd41lXFrXTfmed9uvKNhxEwdf+yUEanAHy5iz5yH2/uRFjky6k6kX3oLLk3Bcm0g4zIjKJexIOY0ZTleXxSoiIhJvHrcbj9vNzMvvYrkjgeGrvs/ww//AbqxYhe1w6P0c9oz9PPOuueeUxysvOUguYEtWEkhEPqIkkIjElWfCxSS+/wLrl73K5LM+wcFNi8kF0kbMbqhTa0vBFayIW4zdXVnRQYaHd7F8yOe7fOz8kZPJH/k4EJvFtfrNf5G59MfMXv9Natd9n2rjocYkcSD3HAbM/zSBuirGUI0ZfUGXxyoiItJdzL7kVrjkVrAsov5qKivL2LnmHbxr/sy8LT9k0V+LmX/Lz05pjKriWBLIldqvY4IWkV5BewKJSFyNnnMxdZYb/8aXAQjsW0XYsjF4/EdJIJ8zjYRQRZwi7P52r3gFm7HInHxhXOMwxjD9Y59i0Lc/ZN0Zf2Vt5sVsSzuDCmcucw4/wdBnP8aAV24gbNkYMfeKuMYqIiLSLRiDLSGF9H5DmHnRLYy5fyErUj7G/P0Ps/hv3zilruvKDgGQkJHXEZGKSC+hmUAiEleeBC9rvTMYWvoB0UiExJIN7LMPZnhickOdgCuNrED7Nh/uS6I73qaCJIZPmh/vUACw2W1MOesqOOuqhmslRw6w9e3HSdv9MjXJw5mTrk0qRURETmRzOJj+xX+x8jfXMG/fH1j8mI15N//4pPoKVhQCkJI5oCNDFJEeTjOBRCTuImMuJYcytq16i8GBbZSmjj++3JNBSrQqTtF1b1Y0ytDK5exMmtlhG0l2hqzcgcz/1DeZ8O0lzPnS4/EOR0REpNuyOxxM+9K/WZl8DvP2/p4lv7mRfVvXtbufcPURADJylQQSkY8oCSQicTf6jE8SsJwE3v81adRA/6nHlVsJ6SQZH0G/L04Rdl/7tq0lm3KsYWfFOxQRERHpIHaHg6lffIqlmVcwo+xlBj91Bnu/P56lv7qGVa/9vU3PRKamiBorAc8xs6tFRLrv28Yi0mckp2awNnEmU+uWAJAxas5x5cYbWzpUVXaErP5Dujq8bq26uAAAb//RcY5EREREOpLD6eK0ux+jpPAAW994hMTDyxlTtZj05a9Tvew+im0p+E0CVbO+zNQLPtOovdNXRLktnaQ4xC4i3ZdmAolItxAZexkAAcvJ4LEzjytzJseSQNXlR066/5IjBVjR6MkH2E2FfRUAuBNT4huIiIiIdIqsfgOZf9MPmXb//0j+1m7Wnv4oH6afxwHvRACmLvsy6351OdWlhxraFB3cy9jqZRxJHt9ctyLSRykJJCLdwtElYXudw3C63MeVuVNiSaC6iuJ293tg5yZW/OJSsv44nuVP/aRDYu1OQnXVAHiS0uMciYiIiHQ2h9PF1HM+wdwvP86ce55j4P0rebv/7YytXEj4d7NY9uKfsKJRdj/7bRyE6X/5D+Idsoh0M0oCiUi3kJyawZoxX6V25l2NyrxpOQAEqtqXBIqEwyQ8cRETapZxwOQxevsfqaoo7ZB4u4uoP7ZhdmJyWnwDERERkS7ncrk453M/Y89Vr1Fk78ectV9n8/+bz8yyl1mdcyX9h42Ld4gi0s20KQlkjLnAGLPNGLPTGHN/E+WXGWM2GGPWGWNWGWO6xznFItKjnHbdN5l2/o2Nriel9wMgVN2+JFBVeTFZVLBh9BfxX/Zn0qlm0zMnd8xqd2UFjiaBUuMciYiIiMTLmEmzGPmNpSwb+y0GhPdRSwJjPvnDeIclIt1Qq0kgY4wdeAi4EBgHXGeMOTGl/DYw2bKsKcAtwKMdHKeI9GEpmbGZQNHa9s3iqSqL7SHkSM5m5JTTWZV0JpMKnqD0yIEOjzFuAjUELQduT2K8IxEREZE4sjmczLnm65gvrqf21g9Iz86Ld0gi0g21ZSbQLGCnZVm7LcsKAk8Blx1bwbKsGsuyrPovvYCFiEgHcbsTqLESML6ydrXzVRQB4KrfWDrzom/jNQF2vv+vDo8xXmzBamqNEkAiIiISk5qRRd6gkfEOQ0S6qbYkgQYAx75tXlB/7TjGmCuMMVuBV4jNBmrEGPO5+uViq4qL27/Bq4j0XVW2FBz+8na18VeVAJCYmg3AkDHTOWRyce95p8Pjixd7qAafSYh3GCIiIiIi0gO0JQlkmrjWaKaPZVnPW5Y1BrgcaHIBqmVZj1iWNcOyrBnZ2dntClRE+rYaWyquYPuSQMHq+iRQei4AxmZjf8ZcRtatIej3dXiM8WAP1+GzaSaQiIiIiIi0ri1JoAJg4DFf5wOHmqtsWdYHwHBjTNYpxiYi0sDnTCUhVNmuNtHaWBIoJSOn4Zp77Pl4TYAdq/7XofHFiytcQ8DmjXcYIiIiIiLSA7QlCbQSGGmMGWqMcQHXAi8dW8EYM8IYY+o/nwa4gN51DrOIxFXIlYY32r4kkFVXTtBy4E366OSsUbMvJGg5qN74RkeHGBfuSC0hh2YCiYiIiIhI6xytVbAsK2yMuQt4A7ADf7Usa5Mx5vb68oeBq4AbjTEhwAdcc8xG0SIipyzsySC1sqpdbez+UipNMtm2j/Ld3uQ0PnRPILdoUUeHGBfuqI9KR1K8wxARERERkR6g1SQQgGVZrwKvnnDt4WM+/xnws44NTUTkI1ZCBl7jJ+j34fK0bSNkZ6CCGlsKJ+5AVjPwLCbu+jW7vj+RKns6UZsLy+bAsjmIGgeWcRC1ObCMnQR/EZnBAoqmfYWZH/9cx39jpyjBqiPi1HIwERERERFpXZuSQCIi8WbzxrYZqyo7Qlb/IW1q4w5VUudIbXR99AWfZ9G/D+KtK8AbKsdEarGFw9itMHYi2K1I7L9EqLKlkmJVU/Xhk9ANk0CJlo+oUzOBRERERESkdUoCiUiP4EjOBKC6vO1JIG+kgtKEYY2uZ2TnMf+uP7epjyxg2Z/uZNqhp6itrsCbnNbGiDtfOBQk0QSw3CnxDkVERERERHqAtmwMLSISd4nZgwAo37OuzW2SotWE3WmnPHbS+AtwmQg7lr92yn11pNrq2EbZxq2ZQCIiIiIi0jolgUSkRxg19UwOk4Vz49Ntqm9Fo6Ra1UQSMk557JEzzqXWcuPf2r1OFKurLgfA5tFMIBERERERaZ2SQCLSI9jtdvb0v4RxvtWUHN7bav2qyjIcJopJPPUkkNuTyI7EqQwqXQLd6OBDf21sJpA9ofG+RyIiIiIiIidSEkhEeowBZ96C3VjseutvrdatKT8CgN2b2SFj+wefRX/rCAW7NnZIfx0hUFMBgDMxOb6BiIiIiIhIj6AkkIj0GINHTWaLYwz9dj/Lmnf/w87Na5qtW1NeBIArJatDxh4w4xIADq19vUP66wiBuioAXImaCSQiIiIiIq1TEkhEepSqsdcx2Cpg2vufYdC/z6OitKjJev7KYgDcKdkdMu6AoePwWS6ixTs6pL+OEK5PArmT0uIbiIiIiIiI9AhKAolIjzLz8rvZeunLrJj4fVwmzO6VrzZZL1hdAkBSWk6HjGuz2zhsz8NTva9D+usIEX8sCZSQpJlAIiIiIiLSOiWBRKRHsdntjJl2OtM+fgc1VgKh7e80WS9cUwpAcka/Dhu7ImEQGf4DHdbfqYr4jiaB0uMciYiIiIiI9ARKAolIj+RwudmZOIX88mVNV6grJWIZklNP/XSwowIpg+kXLSQSDndYn6ckUA2AN1kzgUREREREpHVKAolIj+UftIAB1hEO7dnSqMzmL6fKJGOz2ztsPFvWCFwmwpGCXR3W5ykJVuOzXDicrnhHIiIiIiIiPYCSQCLSY+VNuxCAgtWvNCpzBMqpsqV06HhJ/UYBULa/cdIpHmzBGmpNYrzDEBERERGRHkJJIBHpsQaNnMwRMnHsfb9RmSdYQZ29Y5NAWUPGAlBbuL1D+z1ZjlANPiWBRERERESkjZQEEpEey9hs7E2bzYiaVQT9vuPKEsKVBJxpHTpedr/B+CwXVunuDu33ZNnDtQRsCfEOQ0REREREegglgUSkR3NPuZoU6tj8/tPHXU+JVhBydeypWTa7nUJ7Hp6qvR3a78lyhWsJ2L3xDkNERERERHoIJYFEpEebMO9SikmH9U81XCsu3E8WFUSyR3f4eOWegaQHuscx8e5oLUFHUrzDEBERERGRHkJJIBHp0RxOJztyL2Rc7XIqSw4DcHDTEgBSh83q8PGCKYPJi3SPY+I90ToiDs0EEhERERGRtlESSER6vJz5N+EyEba9/Q8AfHtXEbUMgyac1uFjmawRuEyYooPxPyY+0fIRcSoJJCIiIiIibaMkkIj0eMMnzGaXbSipO54DIKFkA/vt+XiT0zp8LG/eSAAK1r3T4X23V6Llw3IlxzsMERERERHpIZQEEpEezxhD0dDLGR3eRsGO9Qz0baU4eXynjDVi6lnssg1l0prvsPbtf3fKGG0R8NfhNiFwKwkkIiIiIiJtoySQiPQKw8/+DBHLUPjK/yOTSqL9p3bKOJ7EJDLvfIP9jkGM/+AOlv3nd50yTmvqqitjnygJJCIiIiIibaQkkIj0CjkDBrPRM40ZFa8DkDa84zeFPiotK5ecu95gm3siczZ8myV/uL3LN4qurigGwJGY2qXjioiIiIhIz9WmJJAx5gJjzDZjzE5jzP1NlF9vjNlQ/7HEGDO540MVEWlZcPwnAQhZdgaPn92pY6WmZzPmnv+xJPNK5hb9i42/OJ+qipJOHfNY1SUHAfCkD+iyMUVEREREpGdrNQlkjLEDDwEXAuOA64wx406otgc4w7KsScAPgUc6OlARkdaMO+s6ai0P+xxD8CR0/qlZTpebuXf/jSXjvsM4/1rKfnsGZUcKOn1cAF9ZLAmUlKUkkIiIiIiItE1bZgLNAnZalrXbsqwg8BRw2bEVLMtaYllWef2Xy4D8jg1TRKR13uRUPpz2farm3Nul48795D1sOfcxciNFlD3y8S6ZERSqOAxAeu7ATh9LRERERER6h7YkgQYAB475uqD+WnNuBV5rqsAY8zljzCpjzKri4uK2Ryki0kZzLrudaedd1+XjTjr9Urad8QcGhfdx+HcXUnxob+cOWFNI0HKQkp7TueOIiIiIiEiv0ZYkkGnimtVkRWPOIpYEuq+pcsuyHrEsa4ZlWTOys7PbHqWISA8w5exP8OHc35Af3oftkQVsWvxKp43lqCuizKRjbNrfX0RERERE2qYtrx4KgGPXG+QDh06sZIyZBDwKXGZZVmnHhCci0rNMP/8Giq55hRqTxMj/3cjKV/7SKeN4/MVUODI7pW8REREREemd2pIEWgmMNMYMNca4gGuBl46tYIwZBPwHuMGyrO0dH6aISM8xdNxM0u5+n53OUUxf8TUW/+1bhIKBDh0jKVSKz53VoX2KiIiIiEjv1moSyLKsMHAX8AawBXjasqxNxpjbjTG311f7LpAJ/MEYs84Ys6rTIhYR6QFSM7IZ+pX/scY7n3n7fs/+n85iw8KXWm/YRhnRUoIJ2g9IRERERETaztGWSpZlvQq8esK1h4/5/LPAZzs2NBGRni3Bm8z0e15i9f+eYMCy7zP87Rv4cOFkKvIWYE/JIVJXiVVXCjY7xu4CuwtncibD515Odr9BzfYb8NeSSi1Rr5JAIiIiIiLSdm1KAomIyMkxNhvTL7gR/4IrWfzcrxi1669M3Pe7FttE13+XVUmnM/WrL2C32xuVlx0pIA+wp+R1UtQiIiIiItIbKQkkItIFPIlJzLvhu8B3qa0qp6rkEN6UTJIzYiclBoMBggE/R/Ztp+iDR5lb8gzL/vMgcz7xtUZ9VRUfIA9wp/fv2m9CRERERER6NCWBRES6mDclHW9K+nHX3J5E3J5EkifNYfiEWWz6yVbGbPoV5Wd+ivTs42f81JXGDmj0Zg7osphFRERERKTna8vpYCIi0oWMzYb3ygdJsurY9s97G5UHK2JJoLTcgV0dmoiIiIiI9GBKAomIdENDxs5gZb9rmFX2MltXvXNcmVVdSNiykZ6l5WAiIiIiItJ2SgKJiHRTE6//CSUmHftr9xAJhxuu22uKKDNp2B1a0SsiIiIiIm2nJJCISDeVlJLO/pnfZGRkF8v+8hVqqsoBcPuLqLRnxDk6ERERERHpaZQEEhHpxqZfeCtrEucx7/A/MP83miWPfQtvqIRaV1a8QxMRERERkR5GSSARkW7M2GxMvedltlz0H7YmzmDu3t8zPLKHgCc73qGJiIiIiEgPoySQiEg3Z2w2xs46h6n3vMwHebcAEEnJj3NUIiIiIiLS02hXURGRHsJmt7Hg879m7bJLGDd6SrzDERERERGRHkZJIBGRHmbqnHPiHYKIiIiIiPRAWg4mIiIiIiIiItIHKAkkIiIiIiIiItIHKAkkIiIiIiIiItIHKAkkIiIiIiIiItIHKAkkIiIiIiIiItIHKAkkIiIiIiIiItIHKAkkIiIiIiIiItIHKAkkIiIiIiIiItIHKAkkIiIiIiIiItIHGMuy4jOwMcXAvrgMLj1BFlAS7yCk29L9Ia3RPSIt0f0hLdH9Ia3RPSIt0f0hLemq+2OwZVnZTRXELQkk0hJjzCrLsmbEOw7pnnR/SGt0j0hLdH9IS3R/SGt0j0hLdH9IS7rD/aHlYCIiIiIiIiIifYCSQCIiIiIiIiIifYCSQNJdPRLvAKRb0/0hrdE9Ii3R/SEt0f0hrdE9Ii3R/SEtifv9oT2BRERERERERET6AM0EEhERERERERHpA5QEEhERERERERHpA5QEklNmjLnAGLPNGLPTGHP/CWV315dtMsb8vJn2GcaYN40xO+r/m15//TxjzGpjzIf1/z27mfZDjTHL69v/2xjjqr9ujDG/rY9rgzFmWkd/79K67np/1JedaYxZVz/++x35fUvbdIP74676sS1jTNYx16+v/72xwRizxBgzuSO/b2mbbnx/pBpj/muMWV8//mc68vuWtuvEe2RW/d+HdfX/zlc0017PIN1Yd70/6sv0DBJn3eD+0DNIN9eN75FTew6xLEsf+jjpD8AO7AKGAS5gPTCuvuws4C3AXf91TjN9/By4v/7z+4Gf1X8+Fehf//kE4GAz7Z8Grq3//GHgjvrPLwJeAwwwB1ge759XX/vo5vdHGrAZGNTS+Pro9ffHVGAIsBfIOub6XCC9/vML9ftD98cJ98c3j+krGygDXPH+mfW1j06+RxIBR/3neUDR0a9PaK9nkG760c3vjzT0DKL7Q88g3fqjm98jp/QcEvcfrj569gdwGvDGMV9/A/hG/edPA+e2oY9tQF7953nAtibqGKD06P9oJ1wvOeZ/ooZ4gD8B1zU1jj50fwB3Aj+K98+oL3/E+/44oc5xf1xPKEunmSSBPvrm/VEfyx/q2w4FdgK2eP/M+tpHF94jQ4EjnPCArmeQ7v3Rze8PPYP08fvjhDp6BumGH935HjnV5xAtB5NTNQA4cMzXBfXXAEYBp9dPg33fGDOzmT5yLcs6DFD/35wm6lwFrLUsK3DC9UygwrKscBPjtxSbdI3ufH+MAtKNMe+Z2HKQG9v1nUlHiPf90Va3EntHX7pWd74/fg+MBQ4BHwJfsiwr2o720jE69R4xxsw2xmwi9m98+zF/S47SM0j31p3vDz2DxF+874+20jNI/HTne+SUnkMc7RhIpCmmiWtW/X8dxLLXc4CZwNPGmGFWffqyzQMYMx74GfCxdo7fUpl0je58fziA6cA5QAKw1BizzLKs7e0ZX05JvO+PtrQ/i9gD2PyTaS+npDvfH+cD64CzgeHAm8aYhZZlVbWzHzk1nXqPWJa1HBhvjBkL/N0Y85plWf42jq9nkPjrzveHnkHiL973R+sB6hkk3rrzPXJKzyGaCSSnqgAYeMzX+cQykkfL/mPFrACiQJYx5m/1m2C9Wl/viDEmD6D+v0VHOzPG5APPAzdalrWrifFLgDRjzNGE5onjNxebdI3ufn+8bllWrWVZJcAHwORT/H6lfeJ9f7TIGDMJeBS4zLKs0va2l1PWne+Pzxwz/k5gDzCmnX3IqevUe+Qoy7K2ALXE9o86lp5Burfufn/oGSS+4n1/tEjPIN1Cd75HTuk5REkgOVUrgZEmdvqBC7gWeKm+7AVi2UmMMaOIbahVYlnWZyzLmmJZ1kX19V4Cbqr//Cbgxfo2acArxNZeLm5q8Pps67vA1Se2r+/3RhMzB6g8Oh1Pukx3vj9eJDaN02GMSQRmA1tO+TuW9ojr/dESY8wg4D/ADXpnNm667f0B7Cf2Dj7GmFxgNLD7JPqRU9OZ98jQoy/ejTGDif0b7z12cD2DdHvd+f7QM0j8xfX+aImeQbqNbnuPcKrPIVY32HRJHz37g9gJGNuJ7Z7+rWOuu4AngI3AGuDsZtpnAm8DO+r/m1F//dvEsqLrjvlotPM6sR3bVxDbEOsZPtql3QAP1cf1ITAj3j+rvvjRXe+P+rJ7iZ3OsRH4crx/Vn3xoxvcH18k9m5OmNi7O4/WX38UKD+m7ap4/6z64kc3vj/6A/+r/9uyEfh0vH9WffWjE++RG4BN9ffGGuDyZtrrGaQbf3TX+6O+TM8guj/0DNLNP7rxPXJKzyGmvhMREREREREREenFtBxMRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPUBJIRERERERERKQPaFMSyBhzgTFmmzFmpzHm/ibKU40x/zXGrDfGbDLGfKbjQxURERERERERkZNlLMtquYIxdmA7cB5QAKwErrMsa/Mxdb4JpFqWdZ8xJhvYBvSzLCvYXL9ZWVnWkCFDTv07EBERERERERERAFavXl1iWVZ2U2WONrSfBey0LGs3gDHmKeAyYPMxdSwg2RhjgCSgDAi31OmQIUNYtWpVG4YXEREREREREZG2MMbsa66sLcvBBgAHjvm6oP7asX4PjAUOAR8CX7IsK9rOOEVEREREREREpJO0JQlkmrh24hqy84F1QH9gCvB7Y0xKo46M+ZwxZpUxZlVxcXE7QxURERERERERkZPVliRQATDwmK/zic34OdZngP9YMTuBPcCYEzuyLOsRy7JmWJY1Izu7yeVpIiIiIiIiIiLSCdqyJ9BKYKQxZihwELgW+NQJdfYD5wALjTG5wGhgd0cGKiIiIiIiItLRQqEQBQUF+P3+eIci0i4ej4f8/HycTmeb27SaBLIsK2yMuQt4A7ADf7Usa5Mx5vb68oeBHwKPGWM+JLZ87D7LskpO5psQERERERER6SoFBQUkJyczZMgQYmcdiXR/lmVRWlpKQUEBQ4cObXO7tswEwrKsV4FXT7j28DGfHwI+1uZRRURERERERLoBv9+vBJD0OMYYMjMzae9+y23ZE0hERERERESk11ICSHqik7lvlQQSEREREREREekDlAQSERERERERiSNjDDfccEPD1+FwmOzsbC655JI4RtW6pKSkVus88MAD/PKXv2yxzgsvvMDmzZs7KixpgZJAIiIiJ2nP5lWUPDCIfdvWxjsUERER6cG8Xi8bN27E5/MB8OabbzJgwIC4xBIOh7t8TCWBuo6SQCIiIiep8L0/k0UlRVuWxDsUERER6eEuvPBCXnnlFQD+9a9/cd111zWU1dbWcssttzBz5kymTp3Kiy++CMDevXs5/fTTmTZtGtOmTWPJktgzyeHDh1mwYAFTpkxhwoQJLFy4EDh+5s6zzz7LzTffDMDNN9/MV7/6Vc466yzuu+8+du3axQUXXMD06dM5/fTT2bp1KwB79uzhtNNOY+bMmXznO99p9nv58Y9/zOjRozn33HPZtm1bw/U///nPzJw5k8mTJ3PVVVdRV1fHkiVLeOmll7j33nuZMmUKu3btarKedIw2nQ4mIiIix4tEIgwr+h8A4bK98Q1GREREOsT3/7uJzYeqOrTPcf1T+N7Hx7da79prr+UHP/gBl1xyCRs2bOCWW25pSN78+Mc/5uyzz+avf/0rFRUVzJo1i3PPPZecnBzefPNNPB4PO3bs4LrrrmPVqlX885//5Pzzz+db3/oWkUikTUmU7du389Zbb2G32znnnHN4+OGHGTlyJMuXL+fOO+/knXfe4Utf+hJ33HEHN954Iw899FCT/axevZqnnnqKtWvXEg6HmTZtGtOnTwfgyiuv5LbbbgPg29/+Nn/5y1+4++67ufTSS7nkkku4+uqrAUhLS2uynpw6JYFEREROwtblbzCeMgAcVQfiHI2IiIj0dJMmTWLv3r3861//4qKLLjqu7H//+x8vvfRSw946fr+f/fv3079/f+666y7WrVuH3W5n+/btAMycOZNbbrmFUCjE5ZdfzpQpU1od/xOf+AR2u52amhqWLFnCJz7xiYayQCAAwOLFi3nuuecAuOGGG7jvvvsa9bNw4UKuuOIKEhMTAbj00ksbyjZu3Mi3v/1tKioqqKmp4fzzz28ylrbWk/ZTEkhEROQkVK96ijrLzWHHABLrCuIdjoiIiHSAtszY6UyXXnop99xzD++99x6lpaUN1y3L4rnnnmP06NHH1X/ggQfIzc1l/fr1RKNRPB4PAAsWLOCDDz7glVde4YYbbuDee+/lxhtvPO5Icb/ff1xfXq8XgGg0SlpaGuvWrWsyxrYcS95cnZtvvpkXXniByZMn89hjj/Hee++dUj1pP+0JJCIi0k5WNMrgssVs886gzDucjGBhvEMSERGRXuCWW27hu9/9LhMnTjzu+vnnn8/vfvc7LMsCYO3a2KEUlZWV5OXlYbPZePzxx4lEIgDs27ePnJwcbrvtNm699VbWrFkDQG5uLlu2bCEajfL88883GUNKSgpDhw7lmWeeAWIJqPXr1wMwb948nnrqKQCefPLJJtsvWLCA559/Hp/PR3V1Nf/9738byqqrq8nLyyMUCh3XPjk5merq6lbryalTEkhERKSdCnZvJo8SgkPOIJwyiByrhFAwEO+wREREpIfLz8/nS1/6UqPr3/nOdwiFQkyaNIkJEyY0bMp855138ve//505c+awffv2htk87733HlOmTGHq1Kk899xzDX3+9Kc/5ZJLLuHss88mLy+v2TiefPJJ/vKXvzB58mTGjx/fsBH1b37zGx566CFmzpxJZWVlk22nTZvGNddcw5QpU7jqqqs4/fTTG8p++MMfMnv2bM477zzGjBnTcP3aa6/lF7/4BVOnTmXXrl3N1pNTZ45mErvajBkzrFWrVsVlbBERkVOx7OlfMGfzjzhw/UIOf/guszZ8l0M3LaP/0LHxDk1ERETaacuWLYwdq7/h0jM1df8aY1ZbljWjqfqaCSQiItJOzn3vU0gW+cMnkJgzDICygzviHJWIiPRGa957niWv/KPZ8sMHdrHsl1ey7u2nujAqEemplAQSERFph0g4zPDatexPm4Wx2UjvPxIA35HdcY5MRER6o4wPvsPsFV9k7TvPNirbuPR13H85gzk1bxPa8FwcohORnkZJIBERkXbYsfY90qjBNvxMAHIGDiNs2YiU741rXCIi0vsUHznAkOgBotgY/v7dFB3Y3lC2/v3nGfb6jVSbFPab/iT4jsQxUhHpKZQEEhERaYeKFf/CbzkZveATADidLopNJo4qHRMvIiIda//qNwFYP/NneAiy5z8/IBqJ8sFj32XcO7dSaO+H9/NvUOIdSUqoOM7RikhPoCSQiIhIG4VDQUYUv8WmpDkkp2Y0XK9wZpPgL4pjZCIi0huFd71PreVhysduZFXWpUwre5XV/3cZC/b+hg3e08j64jtk9RtI0JtHVrQUKxqNd8gi0s0pCSQiItJGW5a+ShYV2CZefdz1kN2LM+qLU1S90+Lf3szihz4f7zBEROKqX/kqdiZMwOFyM+yK72BhmFn3AYvzb2PaPf8lJS0rVjE5j0QToKqyLL4Bi0i3pySQiIhIG/nWPEWNlcDYBccngcKOBNzRujhF1ftsX7uQeWXPM7z4rXiHIiISF6vfeIJVP72QwdECavvPBaBf/jDWTPt/LJv2C+Z99pcY20cv5RzpAwAoL9wbj3ClAxw5coRPfepTDBs2jOnTp3Paaafx/PPPd/q4q1at4otf/GKH9HXmmWcyevRoJk+ezLx589i2bVuH9NuROjLGxx57jLvuuguAhx9+mH/8o/lT/Pbu3cs///nPhq878ufeXkoCiYiItIHfV8eY8vfZnLYAT2LScWURhxd31B+nyHqfute/D0A/SqitrohvMCIiXSwcCpK/9LsM83/IRsd4Bs27rqFszmWfZ86ln2vUJjFzIADVRfu7LE7pOJZlcfnll7NgwQJ2797N6tWreeqppygo6Pz9BmfMmMFvf/vbDuvvySefZP369dx0003ce++9jcojkUiHjXWyOiPG22+/nRtvvLHZ8hOTQB39c28PJYFERETaYPMH/yHF1OGZek2jsqgjkQS0HKwj7Fi3kCmBlWx1jgXg0K4P4xyRiEjX+vCdf5FLKfvn/YwJ315C/vBxrbZJyx0CgL/0QCdHJ53hnXfeweVycfvttzdcGzx4MHfffTcQSyCcfvrpTJs2jWnTprFkyRIA3nvvPS655JKGNnfddRePPfYYAPfffz/jxo1j0qRJ3HPPPQA888wzTJgwgcmTJ7NgwYJGfaxYsYK5c+cydepU5s6d2zBL5rHHHuPKK6/kggsuYOTIkXz9619v9XtasGABO3fuBCApKYnvfve7zJ49m6VLl/KrX/2KCRMmMGHCBB588MGGNv/4xz+YNGkSkydP5oYbbgCguLiYq666ipkzZzJz5kwWL14MwPvvv8+UKVOYMmUKU6dOpbq6msOHD7NgwQKmTJnChAkTWLhw4UnH+MQTTzBr1iymTJnC5z//+YbE0N/+9jdGjRrFGWec0RALwAMPPMAvf/lLAHbu3Mm5557L5MmTmTZtGrt27eL+++9n4cKFTJkyhV//+tfH/dzLysq4/PLLmTRpEnPmzGHDhg0Nfd5yyy2ceeaZDBs2rMOSRo4O6UVERKSXsz58mjJSGDfv443Koq4kEizNBOoIJQv/xiDLiTn/R/DyVVTu3whTTo93WCIinS4UDLBv50bcqx7hMFlMPKvxmw7NycwbBEC48lBnhdd3vHY/FHbwGxD9JsKFP222eNOmTUybNq3Z8pycHN588008Hg87duzguuuuY9WqVc3WLysr4/nnn2fr1q0YY6ioqADgBz/4AW+88QYDBgxouHasMWPG8MEHH+BwOHjrrbf45je/yXPPPQfAunXrWLt2LW63m9GjR3P33XczcODAZmP473//y8SJEwGora1lwoQJ/OAHP2D16tX87W9/Y/ny5ViWxezZsznjjDNwuVz8+Mc/ZvHixWRlZVFWFtvf6ktf+hJf+cpXmD9/Pvv37+f8889ny5Yt/PKXv+Shhx5i3rx51NTU4PF4eOSRRzj//PP51re+RSQSoa6u5aX6zcW4ZcsWfvazn7F48WKcTid33nknTz75JOeddx7f+973WL16NampqZx11llMnTq1Ub/XX389999/P1dccQV+v59oNMpPf/pTfvnLX/Lyyy8DseTbUd/73veYOnUqL7zwAu+88w433ngj69atA2Dr1q28++67VFdXM3r0aO644w6cTmeL31drlAQSERFpRW11BeOrl7Au6xLmOF2NK7i8uEyEYMCPy+3p+gB7iUDAx5jS/7ExZT4TJ84n/F8b4SNb4x2WiEiXWP3wbcwpexGAJUPvIs/R9pdqbk8i5SRjqzncWeFJF/rCF77AokWLcLlcrFy5klAoxF133cW6deuw2+1s3769xfYpKSl4PB4++9nPcvHFFzfMOJk3bx4333wzn/zkJ7nyyisbtausrOSmm25ix44dGGMIhUINZeeccw6pqakAjBs3jn379jWZBLr++utJSEhgyJAh/O53vwPAbrdz1VVXAbBo0SKuuOIKvF4vAFdeeSULFy7EGMPVV19NVlZss/OMjNgprG+99RabN29u6L+qqorq6mrmzZvHV7/6Va6//nquvPJK8vPzmTlzJrfccguhUIjLL7+cKVOmNPnzaS3Gt99+m9WrVzNz5kwAfD4fOTk5LF++nDPPPJPs7GwArrnmmkb/FtXV1Rw8eJArrrgCAI+n9efCRYsWNSTbzj77bEpLS6msrATg4osvxu1243a7ycnJ4ciRI+Tn57faZ0uUBBIREWnFzpVvMNmESJp8eZPlxh3bI8hXU4HL3a8LI+v5opEou7Z/CNEIRZveYR7VOKddj8vtYb+tH66KXfEOUUSk09VUlTOx9HXWJswmMOnTTDvr6tYbnaDUno2nrrAToutjWpix01nGjx/fkAQAeOihhygpKWHGjBkA/PrXvyY3N5f169cTjUYbEgsOh4NoNNrQzu/3N1xfsWIFb7/9Nk899RS///3veeedd3j44YdZvnw5r7zyClOmTGmYbXLUd77zHc466yyef/559u7dy5lnntlQ5na7Gz632+2Ew+Emv5cnn3yyIe6jPB4PdrsdiO1/1BTLsjDGNLoejUZZunQpCQkJx12///77ufjii3n11VeZM2cOb731FgsWLOCDDz7glVde4YYbbuDee+9tcp+etsR400038ZOf/OS4Oi+88EKTMZ74fbRXU22OjtPWn3t7aE8gERGRVvi2vk3AcjJixrlNltuPJoFqq7oyrF5h1YOfYOS/FzDymbOYt/mHFJPOuPmXAVCaMIRM3974Bigi0gU2vfkYXhMg8dyvM+eiG/EkJLa7jxpXNknB4k6ITjrb2Wefjd/v549//GPDtWOXMlVWVpKXl4fNZuPxxx9v2J9m8ODBbN68mUAgQGVlJW+//TYANTU1VFZWctFFF/Hggw82JHt27drF7Nmz+cEPfkBWVhYHDhy/h1RlZSUDBsROmju6t1BHW7BgAS+88AJ1dXXU1tby/PPPc/rpp3POOefw9NNPU1paCtCwHOxjH/sYv//97xvaH/u9TJw4kfvuu48ZM2awdetW9u3bR05ODrfddhu33nora9asOakYzznnHJ599lmKiooaYtm3bx+zZ8/mvffeo7S0lFAoxDPPPNOobUpKCvn5+bzwwgsABAIB6urqSE5Oprq6utmfyZNPPgnElollZWWRkpJyUrG3hWYCiYiItCKnZBk7POOZcMKpYEfZPLHrfiWB2mX9+88zq/otlqZ9HGvIfMDQb9R0suuX3PlTR9C/djnhYACHy91yZyIiPVjqln+x1zaQUdPOPuk+Agm5DPJt6cCopKsYY3jhhRf4yle+ws9//nOys7Pxer387Gc/A+DOO+/kqquu4plnnuGss85qWEo1cOBAPvnJTzJp0iRGjhzZsD9NdXU1l112GX6/H8uy+PWvfw3Avffey44dO7Asi3POOYfJkyfz/vvvN8Tx9a9/nZtuuolf/epXnH32yd+LLZk2bRo333wzs2bNAuCzn/1sQ9zf+ta3OOOMM7Db7UydOpXHHnuM3/72t3zhC19g0qRJhMNhFixYwMMPP8yDDz7Iu+++i91uZ9y4cVx44YU89dRT/OIXv8DpdJKUlNTike0tGTduHD/60Y/42Mc+RjQaxel08tBDDzFnzhweeOABTjvtNPLy8pg2bVqTJ4k9/vjjfP7zn+e73/0uTqeTZ555hkmTJuFwOJg8eTI333zzcXsJPfDAA3zmM59h0qRJJCYm8ve///2k4m4rczLTlTrCjBkzrJY2sxIREekOSgr3k/XwRJYNvZs5N/2oyTrr33mayR/cxrZLnmf0jM55aOptggE/h386DTsRsu9bg9vjbVRnxQsPMWvdN9n/qfcZNGpK1wcpItIF9u/4kEFPzmf5iK8w+9MPnHQ/S//6dU7b/yeC3zii/enaacuWLYwdOzbeYYiclKbuX2PMasuyZjRVX8vBREREWrB35WsAZE36WLN1nAnJAIR8TU/zlcZWPfVDBlsHKT39h00mgACScocBUFW4twsjExHpXNUVxSx96ud88NdvcHD3Fg4ufRqAwQs+dUr92hLTAaipKDnlGEWk99JyMBERkRaE96+iznIzdOLcZuu4EpUEao8jBbuYvPvPrEmcy7SzP9lsvcT0XAD81drjQkR6j80vP8RpO2PLczb9ayEZVpAd9hGMHDTqlPq1JcRObqqrriAj99RODxKR3kszgURERFpgD1ZSaVKwt3BUrysxtnlfxF/TVWH1WOFQiMJ/fBY7Ufpd82CLdZPTcwCIVOtdbRHpPaK1xQQtB0tG3sP40IeMDm+jZOB5p9yvIzGWBPLVlJ9yX31RvLZJETkVJ3PfKgkkIiLSAke4Fr+t5VNaEryxB+9IQEmg1iz96z1MDq5h3cRv0X/I6BbrpmbEkkBWbWlXhCYi0iXsgUqqTRIzrr6XAtMPgP5zmp8V2VauxDQAAkoCtZvH46G0tFSJIOlRLMuitLQUj6d9e4BpOZiIiEgLnOEaAvam96w5KiEpNhPIUhKoRcGAnzmHHmdVytnMuforrdZ3OF1U4sX4lAQSkd7DHqyixpZEpttD5Xm/Yv+GV5k7Ztop9+tOSgMgVKeTKtsrPz+fgoICiou1/Fh6Fo/HQ35++5Z/tikJZIy5APgNYAcetSzrpyeU3wtcf0yfY4Fsy7LK2hWNiIhIN+OK1OF3pLRYJ6F+TyAlgVpWVnSQfiZCdPD8NrepMqk4AhWdF5SISBdzharw2WJ/N8bPvRjmXtwh/SYkpwEQrqvokP76EqfTydChQ+MdhkiXaHU5mDHGDjwEXAiMA64zxow7to5lWb+wLGuKZVlTgG8A7ysBJCIivYE7WkfY0fJMILvDQZ3lxgSVBGpJVfFBAFypeW1uU2tPxRXU0gYR6T084WqCzuQO7zcxOQOAiE8zgUSkeW3ZE2gWsNOyrN2WZQWBp4DLWqh/HfCvjghOREQk3hKidUQcSa3W8xkPJlzXBRH1XHVlhwBIzBzQ5jZ+ZyqJ4crOCklEpMslRGsIOVueYXoyvCmxI+Itv35nikjz2pIEGgAcOObrgvprjRhjEoELgOeaKf+cMWaVMWaV1luKiEhPkGD5iLhaTwL5jQd7qLYLIuq5ApWHAUjJbnsSKOROJymiFzQi0nskRWuIuFM7vF+X24PfcmIC1R3et4j0Hm1JApkmrjW3bfrHgcXNLQWzLOsRy7JmWJY1Izs7u60xioiIxEU0EsWLH9qQBAqYBOyaCdSiaFUhAOnZ/dvcJuLJIMXSCxoR6R0ikQjJ1GJ1QhIIoMZ4MUH9zhSR5rUlCVQADDzm63zgUDN1r0VLwUREpJeoq6vCZizwtL53Q8CeiDOiJFBLbLVFVJCE25PY5jZWYiYJJoivVi9qRKTnq6qswG4sTEJap/RfZxJxhPT7UkSa15Yk0EpgpDFmqDHGRSzR89KJlYwxqcAZwIsdG6KIiEh8+KorADDu1pNAIXsiLiWBWuT0FVNhS29XG7s3E4DK0sLOCElEpEvVVJQAYPe273dhWwVsXpwhHVIgIs1rNQlkWVYYuAt4A9gCPG1Z1iZjzO3GmNuPqXoF8D/LsrQhgoiI9Ap19UkgextmAoXtibiivk6OqGdLDJZQ48hsVxtHchYANeVHOiMkEZEuVVcVSwI5vWmd0n/A4cUV0csxEWmeoy2VLMt6FXj1hGsPn/D1Y8BjHRWYiIhIvAVqYxsSOxJb37sh4kjEoyRQi5LDZRxOntiuNgmpsT0EfZVFnRGSiEiX8leXAuBObl9CvK2CjmS8vn2d0reI9A5tWQ4mIiLSJwXrYkkgV0LrR/lGnYl48Hd2SD2WFY2SHq0gnNC+gyES03IBCNS/ey4i0pMFasoBSEjpnCRQxJlEYlQzgUSkeUoCiYiINCNUVwWAy9v6TKCoM4lES0mg5tRUV5BoApCU0652KRmxJFC4WkkgEen5wjWxQ5QTUzspCeRKJtHS/nQi0jwlgURERJoRrk8CJSS14ShfVyIuEyYYUCKoKeVFBQA4Uvu1q11KejZRy2DVlXZGWCIiXSrqqwAgOTWrU/q3XCl48RONRDqlfxHp+ZQEEhERaUY0EDtm15OU1mrdoyeI6SjzptWUHATAk9a/Xe3sDgeVJgmbr6wzwhIR6Vq+CiKWwd2GveZOhvEkYzMWtTWVndK/iPR8SgKJiIg0I+qPzQTyJqe1WtfmTgLAV9v7Hry3rV1I3Sm+oPCVHwLAm9m+JBBAtUlmeMnbrPrZRVRXKhkkIj2XCVRSY7xg65yXYbaEWHKptkq/K0WkaUoCiYiINCdQQ9iy4fYktlrV7kmqb9K7kkBr33qK0S9ewv5fn0d1ReMlWQuf/H9s+uFsNv9wFlt+OItFf/sGVjTaqF6oLLYcLC0nv90xHBx+LUccA5jhW8zm1x9tc7toJMKSv3+LyjKdLCYi3YMjWEWtLanT+rfXJ4F81eWdNoaI9GxKAomIiDTDFqym1iRg2vCObUr/UQAcXvt6Z4fVZUoK9zN40b0cJJdh4Z0c/P3FhIOBhvJtq99l3vafk2j5CNu92Igyf98fWPLwXWxZt4Sa6lhCLBwM0H/XU+w1+aRltm9PIIDTPv09xn1zMbtsQ8nc/q82tzuwYz1z9/yere880e4xRUQ6gzNUhc+W3Hn91y8zC9RUdNoYItKzOeIdgIiISHdlQrX4SKQtOzeMnLqATa9OYOj2Rwn4v9Km2UPdWTQSoeBvn2GM5aP6uhdYtW0Vc9d+naVPfIfEsedRsX0xg/c9S7FJJ/vL7zE0JSM28+a3NzCv6El44UmCloN17kn4kwcxxzrEmnl/YMhJLoEwNhvFo65hztafsnPdQkZMOb3VNv76F0HRykMnNaaISEfzhKsJuDovCeSq38MuUFvRaWOISM+mmUAiIiLNcIZr8NnansyJzv8auZSx9qWHOjGqrrHsqf/HlMAq1o69h8FjpjP3ss+zIulsZu97hMlvXM0Ze35Nv0ghh+b/hKSUDABsdjtzvvgE689/jiXTfsny7KvIDe5nTukLbHaMZ+o5151STGM/dhs+y0Xp+39qU/2QL7ZJt73m8CmNKyLSURKj1YScKZ3WvycpHYBQXUWnjSEiPZtmAomIiDTDEa4l0I4k0ITTL2fzwl8ycdMv2L52DqOmtj5bpTs6uHsT07f/hrUJc5jzya83XB9188Os+ctn8OfNZMz5t5GYlM5Ur/e4tja7jcmnnVv/1W0Eg0GWvv0MgyfMadOyupakZmSxNP1jTC17nYriw6Rl57VY/2gSyOXTnkAi0j14ozWUuTrnZDCAxORYEihSV9Vhffpqq9m/bS2jpy3osD5FJH40E0hERKQZ7kgtQYe39Yr1jM1Gzq1PUWlSyHjx05QU7u/E6DqJZVH89JcJYyf/xj8dl7hJy8plxn2vMv/G75OVm0+it/Wfjcvl4rQLr6f/wOEdEl7e+V/FY0JsefnBVuuGfbEXQcnB4g4ZW0TkVPgCYdKowUrM6LQxvCmxJJBj91useefZDulz3d+/xtAXL6e2uncdfCDSVykJJCIi0gx3tI5wO5JAAFl5g/B94p8kW7Xse/zOToqs86x65VGm+FewbsQdZPcfEu9wGhkydjrr3TMYue8pAv66FutG/bGZQBnRkq4ITUSkReXlxThNBOPN7rQxEr0pHCKb6b4lTHz/c9RWV5xSf8GAn9FFr+IyEYoO7OyYIEUkrpQEEhERaUbCSSSBAIaPn8WqoZ9neu1CVr36106IrHN8uOQ1Jq78Blvso5l1zTfiHU6zbPPuIosK1r/a8nHx0UANAOlUt5owEhHpbNUlsf3JHMmdlwQyNhsZ93/Iqtm/xWki7Fn3/in1t/G9Z8ggllCvKlQSSKQ3UBJIRESkGQmWj6gr6aTazrr+e2y3j2DYiu9RUdz9NyauqixjwP8+R6Eth363v4jT5Y53SM2aMP8y9tgGk7XxUaxotPmKwZqGT0sLD3RBZCIizfNVFALgScvt1HE8ngRGnXYJUctQvWPRqXW27p9UWwkA+Iv3nnpw0iaWZcU7BOnFlAQSERFpQjQSxYsfTjIJ5HS6sF/xB5KsWnb84wsdHF3H2/jsT8igiuClfyS9lQ2X483YbJRM/CzDovv4cOGLzdc7JglUdWRfV4QmItKsYOURABLT+3X6WClpmeyxDyHpyKpT6mdU3Vo2Z34Mv+UkWq7fo12hsqKUsu8PZv27z8U7FOmllAQSERFpQnVVOTZjYTwnf4rL8AmzWTnwVmZWv826N5/swOg6VmXpESbuf5w1ifMYOfWMeIfTJpMu/CzFpOP54EdEwuEm69iOSQLVlmomkEhvEggGWLP07XiH0S6h6thJhcmZXZNoL86YwjD/ZsKh4Em1j0YiJBkfUW82RbYcXDUFHRyhNOXI7o1kUknd9vfiHYr0UkoCiYiINKH8SOxkL3vqqT2sz7zhh+yyDWHA4m9RWd49Nyje/MIvSTY+0i/+XrxDaTO3J5H9M77FqMhOlj/7f03WsYfrKCWWxAuWH+rK8ESkk6156Q9Me+NKDu3bEe9Q2q4m9jcguQtmAgE4hszFa/zs3bzipNrX1cX2AjLuJCrceST79Hu0K9TWL7vzVGoPJukcSgKJiIg0oaYkNnMkMTP/lPpxuT1EPv570q1K9jz8Sfy+7rVBsb+uhtEHnmKtZw5Dx8+OdzjtMu2iW9ngmsr4Lb8hGPA3KneEaymz5+C3nJjq7r8vk4i0na0gltioOLw7zpG0nc1XQiVJ2JyuLhkvf/LZAJR8+NZJtffXHwlvXEn4EgeQFTnSYbFJ8wL1M1czfXvjG4j0WkoCiYiINMFXehCA5OyBp9zXqKmns2rid5kSWM2HD16O3+875T47yobX/kwGVTjn3xXvUNrN2GwExn2CVFNL4b6tjcpdkTqC9kRKbRk4agvjEKGIdJbsqk0A+HrQLD+Xv5RK28kvMW6vfgNHsMM+nMw9/z2p9r66KgDsniSiqQPJoIq6msqODFGaUhlbdtc/WtjkGxwip0pJIBERkSZEKmMvLDJyTz0JBDDn6q+wavy3mRlYzoe/+cRJ79HQ0dI3P8FO2zDGz7043qGclOQBYwAoO9BMEsjhpdKRTaK/qKtDE5FOUlNdyeBIbMluqKLnJHg9wTJqHOldOmbp0MsYGdnJge3r2t02UBtL+Ng9yTgzhwBQfEBLlDqbszY2c9VhohzevSnO0UhvpCSQiIhIU2qOUGt58KZ03AP7jE/cy5KR9zLTt5AVf7u3w/o9WVY0yoDwAUqyZmJsPfORoN/QCQD4C7c1KvNYdUQcifhdGXgj5V0dmoh0kv0bl2A3sSO0rZqekwRKipTjd2Z06ZjDz76JqGUo+ODxdrcN1u8J5ExIJil3GAAVh3d1aHzSmNd/hApiJ5OW7fswztFIb9Qzn/hEREQ6mbPuCKW2jn9Yn3v9t1me8jFmHHycAzs2dHj/7VFZVkSiCUBax8x2ioe0rFwqSMKUNX5h4rH8RJxJRBwJOK3uMfNKRE5d1a7YfkB1lht7bfeZ5ffuv37J2//4UbPlKdFKQp6uTQJl9x/CZvdkBh58GSsabVfbkC+2HMzlTSUrfyQA/uI9HR6jHC89XMTupGkA+Asbz3IVOVVKAomIiDQhMVBMtTOrU/oeft3/EcBF6XP3dEr/bVVyMJY4cWcOimscp6rQkU9S9d5G1xMtH5bTS9SRgMfSvgoivYWjcB2FZHHIkY870D1OXTy0fxenbf0p83Y9SHlJ49lJkXCIVKuGaELn/F1piW/MleRbhWxf81672oV9sZlA7oRkMnIGELZsWFU9Zw+mnigcCpJllRFIG8FhsnCW9aDT76THUBJIRESkCSnhEnzu7E7pOytvEB/mXcUE30oC/vidFlZTtBeApJyhcYuhI1R7B5MdPHDctXAoSIIJYrmSsBwJeKxAnKITkY7Wr3YLhxLHUOvKxBssjXc4AOx9/gEcRPCYENtef7hReVXZEWzGgqSuTwKNPvvTBCwn5cufbFe7iL8GAI83BZvdTrXxYvzaGLozlRTux24sbKn5FLsHk1bb+syrSDjE1rWLWfHmv3n30W/w3qP3t3vWl/QtSgKJiIicwIpGyYiWE07M6bQxXPmTcZgoh3bFb71/oHQfABn9h8Utho4QShtGDmX4aqoartXWf27cSeBMxENQD8UivUBNVTn51mEC2RMIeLJJjZTFOyQO7dvOzLJXWJ19ORsdExi0619Y0chxdapL6zf7Te68vyvNSUnLZGPSHEYWv9muQwmigdhMIE9SGgA1JhlHUEmgzlRxOJb08WQNwp+Y1+r9vfSfP6L8R8MZ8+JFzFr8Oc4q+ANnFvyRksIDLbaTvk1JIBERkRNUVZaRYIKQktdpY6QPngRA2d74JYGsigIClpOM7P5xi6EjuHJie1Uc3ru54Zq//lQbmycZy5mAzVgEAr64xCciHefA1lUAJA6cQiQxh3Srkmg4HNeY9r37V5wmwqCP30/lhJvobxWya9nxx7LXlceWiLlTc+MRIrbJ15BJJZuXvNLmNlYgNhMoMSkFAJ89CWeoqqUmcopqi2NvzqTkDiHqTiXZqmmx/vDtf6HalsriST9h3Xn/ZuXE7wNQUaQkkDRPSSAREZETVBTGHsIcqZ2XHBkwYiIRyxA6vLn1yp3EWXOQIlt2jz0Z7Ki0gWMBqDywpeGav+bo0cZJGFciAIG6lh+mRaT7q9qzBoDc0TOxJefiMFEqSuN3QpgVjdJ/33/Z7JxA3uDRTDr3U1RYXqqXH3Mal2VhHYhtZp2Q1i8ucY6eeylRy1C7a0nbGwVrCVhOnC43AD5HCp6wkkCdKVQeS95k9h+GlZCGx4Tw+2qbrBuNREizKjnS70zmXXknU+ZdQNqQyQDUlhR0WczS8/Tspz4REZE22LVhCdt/OJ2Ff76HmsrW94+orn94SsgY0GkxeRK8HLTl4Srf3mljtCbJX0ilq+uXJnS0fkPHAxAo+mgDzUBd7IWKIyEZW30SyKckkEjPV/ghFSSRO2AYzrTYbM2K4vi94N21YTGDrQKqR10JQHJSEpsyzmNsxfvUVpaxcdkb7PrJHMZu+S0bokNJzx8VlzgTk1IpsPXHXbKpzW1soVrqjKfh65AzlcRIdWeEJ/VM+V6qrQRS0jKxJaQDUFPe9ObnVeXFuEwEkj76O56SGzvt019xsPODlR5LSSAREemd/FX4/n0rxW//nsT/3MiAcAGnH/wzR357LuFgyydF+cpiD0/J2fmdGmJJwjAy6+J33G56uIi6hJ69FAwgKTmVKryY6sMN14L1y8GcCakNSaCgTy9eRHq69KptFLhGYGw2EtJjv79qS7r+BW/xkQOs/sl5pLxwI0HLwZhzbmgoy5h7Ex4T4vBvzmLC658kKXCE5/Lvh8++TVZaSpfHelRR0mjy6tr+xoMtVIv/mCRQxJ2Kt5XlSXJqssrXsccTm93q8MaSQLWVxU3WrSiO3ffO1I9ml2XkxJJAVmX8ZsdJ9+eIdwAiIiKd4fDbfyBvy7Mk8CwBy8meS5+j/NBOTlv9VZY9+T1GfPxr1FSWgxUhEg5xeMM72AuW4QmW0T9Qv2Fyv849Oj2QPpIBtUsI+OtwexI7dawThYJ+sqxydiV33mynrlRmS8fl++hB+WjCx5WYQsDtrb/W9JR6EekZwqEgg8J7WJt1NQDJWbFEvb/icEvNOlwo6Kfo0WsYH9zOhsTZBAaezukZH83GGDP9THa/Npj+kcMsGXQbkz/5Ha5KTu3SGJsSzp5AXvU7VJYVkZrR+ixQR7gWv/nob1PUnUaKVUM0EsFmt3dmqH1SRUkhw6N7WZp3EQCu5EwA6qqansFcUxpLAnnSPtq/0OlyU0oqtlolgaR5bUoCGWMuAH4D2IFHLcv6aRN1zgQeBJxAiWVZZ3RYlCIiIu0QCPixr3qElWYC+yfcxaj+mUycfgZMP4OVW19kzr6H4fcPc+xBvcOBUlIps2VS5BjArswLWJCc1qlxOvPG4TgY5cCuDxk6fnanjnWi4oN76W8sHOkDu3TczlLtyCIh+NGU+ai//lQbbyo+TywJFPYrCSTSkx3ctZHBJoQjbyIA6TmxJHakqute8NbW1bHpoeuYFdrE8uk/Z/aln29Ux9hspN3+Oj5gbk73mW3pHTwVdsOBLctJnffxVus7wnUEbQkNX5vENOzGoqq6gpS0zM4MtU/avfpNpgFp484GwFOfBApUN31CmL88lvxMyjz+zZwKewZuX1HnBSo9XqtJIGOMHXgIOA8oAFYaY16yLGvzMXXSgD8AF1iWtd8Y0/M3GBARkR5n5QevUrfwIezhWuZbpRQu+AlXnX3NcXWG3/wn3n/mR5jEDOyJ6WBsRI2dzKGTGTt1PplduElyxpDJsCp2QlhXJ4EqCvfQH/BkDenScTtLwJ1FZs1HJ61FjiaBklJw1s8ECgWUBBLpyQ6tfInBQM7YuQB4k1OpsRKg5kiXjB8Kh9n8q4uZFV7DoqFfZH4TCaCjMrpR8ueo/mNmwbtQs3cNtCEJ5Iz4CNo/mglkS6zfo6aiREmgThDc+T4+y8XwyacDkJga+xmHappOAoWrYvd9Ws7xS9drnVl4g00vIROBts0EmgXstCxrN4Ax5ingMuDY40w+BfzHsqz9AJZlKfUoIiJdpqzoILv+8QVm1rxLBck4bFCUPIFJZ36iUd2M7DzOuPOhOETZWM6g2AahodJ9XT529YENAGQOGtPlY3eGUGI2GVVlWNEoxmbDqk8CJSal4uhGM4GsaBS/309CYtcu/xPp6ULBAEN3Pc5G1yQmjJ7acL3GeLEHu2afmu3rFjMzvIY1o77M/E99v0vG7EiZufkUkYHz4Er27NgExk7/gUNwuz1N1ndH6/C5P0r2OLwZANRVFgOjuyLkPiW7dCU7PeOZWP/vkZQam68cqWs6CWTVHCFoORol5AIJOfT372iyjQi0bWPoAcCBY74uqL92rFFAujHmPWPMamPMjR0VoIiISEsO7tlG5A/zmFz9AR/0/yyeezaR9J0D5HxlEXTzo8+TUtJj72JXd+1+FgD2/cs4QgZ5g0Z2+didIrkfHhOiuir2sGwFa4lYhoTEZFwJsSRQpBvMBFry929R9/MxRMLheIci0qOse+Nv9KOEyJwvHHc9aNzYIr4uiaFiw2sAjDiv+RlA3d3BhNFMr1vI0CfnMvSJ2Wx68Ipm67otH2HHRwnro8uT/M3sUSMnr2DnRoZH91KbN7fhWlL9TCDLV9FkG0ddCWUmDXPCs07E248Mq5JwKNhp8UrP1paZQKaJa1YT/UwHzgESgKXGmGWWZR23/bwx5nPA5wAGDerczTZFRKT3q6yswPf4J0kmwJ4r/suCKfPiHVK7ldoycfm6ZinDUVY0yqCadexPnkJuN0+UtZUjJXY6SkVRASlpWZhgDXV4SLbZcCUkARAN1sUzRGqqK5iw7++kUktp2REyc3rHptwiXSFxwxPsNwOYeMbxMzyDNg/2SMsnPnaUtMMfsNM+nBHZ3W+pV1vlfer3LFrxGsaKkr7t3/T3NX9aWILlI+pM+ujrlNhMoGAzy5Pk5B185adkW05GnP9RgtHucFCFF5u/osk27kAJ1fZ0+p1w3Zaah63AoqToEDkDhnRazNJzteXJrwA4dtfIfOBQE3Vetyyr1rKsEuADYPKJHVmW9YhlWTMsy5qRnZ19sjGLiIhQUlnD1t9fzdDIPvaf9RCje2ACCKDalUWiv2vX7hfs2UIOZUQHzW29cg+RkBF7UVZdXACALViNz8Q2NE1ITAbinwT68MXfkEpsNlJNqU5uEWmrSDjMkOB2Dmed1uhUqpDNjaMLZgJVV5QyOriF4tz5nT5WZ+o3cATzr7qbeVd/iap+p5FjlRIMNJ1ES7T8WE5vw9fetNi2r83tUSPtV1FewqblbzK17FXWZl1MVt7g48prTBL2QGWTbb2hMmpdjfdmcqXF3mCoOLK/4wOWXqEtSaCVwEhjzFBjjAu4FnjphDovAqcbYxzGmERgNrClY0MVERGJOXC4kLW/vZbZoZVsnfY9JpxxZbxDOmk+Tw5p4a5NAh1a9xYAuRPP7dJxO1NS/VHRvrLYkbmJdYcoc+QC4E6MvZNtxTEJFA4FGbbz71QRW1pRU961s79EerKDezbhNQFM/0bvMRO2eXBEAp06/qb9RSx/4SEcJkry+As6dayuZM8cgs1YFB3Y2agsFAzgNiEs10dJoOS02B410WaWJ0n7FB7YCb+ZzPjXrsaGxcCLv9GoTp0tCUeoqsn2qZEygp6sRteP/j2sLT3QqEwE2pAEsiwrDNwFvEEssfO0ZVmbjDG3G2Nur6+zBXgd2ACsIHaM/MbOC1tERPqq3ctfJuFPszknvIh9U+5h/GVfiXdIpyTs7UeGVU40Eum6QfcvoZwUBo1q/IKqp0rPiU1aDtcfFZ0eOkxNYuzdULc7gahlMKGu2TekKRs/eJ5cStk88HoAApVKAom0VfH2lQBkDp/eqCxs9+C0Om85WJ0/gPMvZ3Hu3v/jgJXDiOlnd9pYXc2bOwKA8kONNxGuq4klHoz7o+VgngQvQcuB8ZV3TYC9mBWNUvjk7bisEIsm/IitFz/HgGGND2rwO5LxNJEEioTDpFlVRL2NV9ek1f89DJSfuHhHJKYtewJhWdarwKsnXHv4hK9/Afyi40ITERE53pa3H2fEB19iv+lP1RWPM2zKgniHdMpMch4uE6G05DCZufmtN+gAWdXb2J8whvResh8QQEpaJgHLCdVHCIeC5EaL2Z8cexA2Nhs+XBCK40ygNU9QTjJDzvsc/PXPhKp1fK9IWwUPrido2Rk4unESKGJPwBXtvJlAO9YvZrIpYPWwOxh00T14PE2fpNUTZeTHDgbwHdnVqMxXW0kqYD8mCWRsNqpMErZARRdF2Hut/O+fmOVfyZLRX2f+1Xc3Wy/oTCU51Pjfp6K0kEwTxSTlNipLz80nahmsqq4/dEJ6ht7z9CciIr3amhd+y6gP7mabfSSJt7/ZKxJAAO6Mo2v3u+6Y+NRoOYGExg+OPZmx2Si1peOoK6Lo4B4cJoo9Y0hDud+4MeH4zAQqLz7MpJrFbMu5iMx+sf0eojUlcYlFpCfylm3mgGMwriaOMo86PLg7cSZQ9ZZ3ABh50d1kZzVeetOTZecNIWjZiZY3/vsTqIntQ2PzJB93vdaWhCPY9B410jaV5SUMX/sTttpHM/ua+1usG3Kl4o3WNLpeVRJb+uxMPXFbaLA7nJSZVOy12ntOmqYkkIiIdGuH9+9k+a+vYdq677DeNZX8L75OXr+8eIfVYRIyY7NVakq6Zu1+OBQi3aokmpjTJeN1pSp7Bp5AMWUHY6fdJOYOayjzGw+2OCWBtr39d1wmQu4Zt+J0uWOnvdQpCSTSVv39OylLHtVkWdSRgJvOmwmUfHgJe22DSMnqfaf52R0OjthycVY13kA44KsGwJlwfBKozp6Cq5k9aqRtNj15H+lWFY5Lf4X9hI3OTxR1p5Fi1WBFo8ddrymNLfXypDf9PFRhz8Tt04xTaVqbloOJiEjPVl5ajGVZZGT1jBf+RZU1FG5fjWfHfxm47e9kEuX97OuY/dlf4/EkxDu8DpWWOwgAf+nBFuuVFR/m0N6tJKVlMWTkxJMer6LkMFnGwqT0rplAAD53Fum+fRQf2Q1AxoCRDWVB48beBScINSV513/ZYxvE0PGzAag0qTgCOl1HpC1KDu0jiwp25k5qstxyJOCxgp0ydjjoZ6R/I+uzP86QThkh/spdeaT4Gv/9CdbFEj2OhJTjrgccKSQFlVw4WTs3LGV28XOsyLqcOZPbcNJcQhouE6aurprEpNSGy3WHtwGQMWBEk81qXNkkBYs6JGbpfZQEEhHpAwoevhLL2Mn45nvxDqVVezYtJ/rMZ5hE7KH0LecCRl77M84YMS7OkXWOzNyB9Wv3W97AsfThi5kQ2UXEMuy99i2GjJ1xUuNVFB8kC3Cl9p7ZVEcFErLJqF1DYeluIpYhe8BHM4FCxoM90nlLRppTcmgfY4ObWD7oNobWX6txpOIOaGNVkbYo2LSYLCB1WDO/85wJuE2ISDiM3dExL22KCg8SDvgo2/QWE0wA+/AzOqTf7sjnzWdg2TuNrofqk0CuxONnAoVcKST6d7fabygUZNlLjxIJ1JA34QxGT5rdMQH3YNFIhOBLX6XKJDH2023bSteemAZAdUXJcUkgU7iBcpLJPebv3LGCCTmk+3RYtzRNSSARkV6u6OA+JoY2UG0lYEWjmG64GbBlWbz2ynNkbnqMKb5lVOFlycQfciB1BhefPoskd+/9c+V0uSkxqdhqWl67nxc+xLqE2YzxraHwzd8yZOw/Tmq82rJYsimhmSnkPZl90BxSSp5n4KHXKDJZ5LncDWUhmwdHHGYC7frgn2QZi/5zr2245nemk+rXqS0ibeHbtZCg5WDopGZmTTgTAfD7avAmp53yeMtfeIjZ674JQH/AbzkZPO1jp9xvdxVNG0R6WTW1VeV4U9Ibrof9sX1o3InHzwSKuDPIjJazbc1CRk87vdl+17/1T07/MHbkeWjbT1m85FNY/aYwZNo55A8a2my73mzVK48yK7yZVZN/yIz0xqd6NcXhzQCgrrIE8oc3XE+v2kqBe0SzBzxEvblkllUSDARwud1N1pG+q/u9EhARkQ61e9G/AUg2Po4c3BPnaBqLhMO8/9tbuWjVrYz0beAtz/mUfOot5l71Ra45d26vTgAdVW7PxO1r/sjw2upKkowPX//ZrE//GJNLX6Oy7OSm4wfKY6eF9Mb9LcaddR21lpsB1hHKXMcnucJ2D85OPEHoRIf27WTRLz7B4K1/Zo9tEIPHfnSqUcidTkq0ostiEenJMkpWsdM1Bk+Ct8lym6s+CVTXePPc9goFA+Sv/w27bYP5YPS3+d/k37Dy0rfIzW28+W5v4cyKzSQp3PPhcdcjdRUAJJyQWMs75w7KTSqDX7yCla83/2ZEePdC6iw3+69fyOqkBcwrfJz5675Gxl9ms+gPd/DuP3/O3j3bO/R76c6ikShZ6x5ir20g0y/7QpvbuZJiSaCyg7uIhMNA7D4dHN5HbXrzM6Rt9bN9y4q6Zr/Bnu7A7q18uOwtDu7dRjjUOctLuxMlgUREernE3a8RtGIbDxbtXBvnaBpb/uT3ObP8OVZkX03aN7Zw8f1PMnbUyNYb9iI1rhySW9hjofxI7CHOkdKPrHO+RIIJsuXVh05qrHB1LNmUltP/pNp3Z97kVDanxN6Zrk3MP64sbE/AGe265WB733uM+bX/o9qWSvGUu44riyRkkmpVN9roU0SOV1tdwfDQTipzZjZbx9QngQK+2lMeb80rjzDAOkLNvG+w4Lp7+dgVN3P69Cmn3G93NnDy2fgsF+Vv/+b4grLd1FluMnOOf8Ng8OgpOO54j72OYUxZ+mVWvPpYk/1mla1ht2csg0ZOYvY9z7P/M2vYeskLbEqcyfyif3LW9h+T9djpLHr61530nXUvG957mmHRfRRPvhNja3kz6GN502P7901fcgc7f3Ia/roa9m9bi8uEceRPabadOz3271Z5pPGm3/KRyrJi1v74TAb+YzYTX7+KAY/NYvvqxssjexslgUREerGKkiOM9a9nXeaFANQd3BjniI63b8tqZuz+A6sT5zPzjj9jczf9Tm9v50sbycDIAXw1TZ+4UlVSAIAnI4/hE2ez3T6S1L2vn9RYpuYIdZabxKS0kw23W3NNuw6ASOqg465HHB7cVtfNBEooXMkB05+R313LrEs/f1yZ8WbhNBGqKku7LB6Rnmj32ndxmChJI5tfdnR0JlDId2ozgcKhEP03PMQu+zAmnnXNKfXVk+QOGMKa/tcxo+otdqxb2HA9oWo3hx0DmkxYZOUOZMAXX2encyTTln+FFa/87bjyqopShob3UFOfvDPGMGjwcMbMOIuZ971CxZf3su+at9nnGsn8zQ9waO+2zv0m42jfllUceWAYYz+4i8NkM+XCW9vVfsi4WayY9AMW9r+VkeEdrP/TbZTuXAlA9shZzbbzZsXeCKkt1dLjlmx67WGmhtayeMBnWTbnDywZ/z3yhk+Od1idTkkgEZFebOtrD+E0ETLPvIsS0rCXbI13SMc58sYvCeBkyE1/6pZ7FXUV76gzcJoIu9a+22S5ryy2SXZSZuyhrjTvDEaFtlJZ2vI+Qk1x+koot6W3XrGHGj//Upbkfor+8z513PWoIwFXFyWBrGiUIb5NHE6d0mS5PSm2F0RVyeEuiUekp6rZvpCIZRg67exm6zjq3zwI+k9tJtDqV//CQOsw1bO+0uf+Hk265nuUk0zNa99vuJYV2E9F4uBm2ySnZjDwi6+zwzmaaSu+yqInf9wwu3HvunexG4ukUU0n79LS0hk8dgbpn3oUgH0fPNGB3033Urj+TXIpZWXaBRSf+xucrvbtz2NsNmZd+SVO/9yvWDrgZmZXvsrQ9f9HneUmf/iEZtsdPXk0VNHyyaN9Xfbu59lpH8682/6PORdcz9xPfJX07N63Z+KJ+tZvOBGRPiQSCjB81+Osd05h+KTTOOwaQmrNrniHdRxv3QEOuIaRmZvfeuVebNi0swlbNmq2vddkeagiluxJyxkIQMbUS7Abi51L/9vusdyBUqocGScda3fncLqYe8cfGTzq+HfyYsdId00S6MDODaRTjRnY9Lu07pQcAGrL25/EE+lLEko3sd8+iKSU5hPXDk/9TKBTSAKFQyFy1/2OPbbBTD7v+pPup6dKTstk+5DrmRpYye7NK/H76ugXLSKYNrzFdkkp6Qz84mt8mDCT+Tt+ztqfX0DpkQJqty8kbNkYNvXMFtv3HzqGbY7RZO97ueO+me6meBtVJDLvS/9g0vyLT6mrObf8kkW5N5BNOftcw1s8DS8jqz9hy0a0quU3G9a8/g+W//wylv/6Gqoq+tbs1L2bVzIysouS4VfFO5QupySQiEgvte3Nv5JNGb5Zsf1IalNHkR/ahxWNxDmyj6SHiqhL6P3vuLQmOTWD3Y7hpB5Z3mS5VV1I0LKTlhnbG2DElAWUkUJ0+xvtHytcis+ddUrx9kSWI4EE/F2yD0/hpg8AyBnf9LHSCfV7PPgqijo9FpGezBH147e3vEz46Eyg8CkkgVa//neGWAVUzvxSu/Zr6U3GXPJlfJaL4v/9msK9m7EbC2fOqFbbJaWkM+Xrr7No5NcZ71uD5w/TOO3QY+xwjTnuSPPmlA/7OCMiu9m3bV0HfBfdT1L1Lg45BnXI7DK7w8H8O37PpoufJ/HqP7ZY1+ZwUGbSsNc2f+gEQNLK3zG1diGzK19nz5o3TznGnqCqopSlv7oGnrmZkGVn5Dk3xTukLqckkIhIbxSNkrzmD2xnCNPPujJ2LXcMiSZA4f4d8Y2tXiQcJitaQiip951SdTJKs2cyPLityRNu7HVFlJn0hodIu93OrpTZjKxays7Nq9o1Tlq0nLCn7yWBjDMRu7EIBjtvc2grGmXnptXYd/6PSrwMHNn0vgJJ9UmgUJWSQCItcUSDRGyuFus4PUkARIInlwSKRCJkrfkt+20DmHRe33sxeFRqVh4bsi5iavkbHPkwtjFu6sDmT586lrHZmH/9t9h/5X/ZkLyA9/JvJ/2mJ9vUdtgZNwBweNmzJxd4N5cb3E9V0rAO7XP8zLMZPHpKq/Uq7Zl4/M3/nbGiUfpFCtjsjc1aDZT1/v2DrGiUHY/cyMzK/1Fn87JswM19cja6kkAiIr3Q1kXPMjC8n4Pjb8PpiL2rmdQv9o5e2cGd8QytQemRA7hMBFvawHiH0i0kjDgDlwmzc/Vbjco8geJGS7iS5t+OzYoy+N8fo/CBYWz4f2dQW1Xe4hiBgI80aoh6czo09h6h4RjpUz9BqDkb3nuaEc+czfTahexKmIzN3vSMgrSs2Mls0dqSTotFpDewtyEJ5Ko/Oj4SqDupMVa/8QTDrX2UTfsithaW1/QF/S/4Kg4ijNr8OwDyhjW/50xTRk4+jdPueZYzP/sz+uW3LfGRM2AIhWThKO1eexZ2hMqyIrKoIJrV+oyqzlDrziaphZNHy0oOk0Id/v6zAYi0snSsN1jyr58wvW4RK4bfzbjvrOD0z/0q3iHFhZJA0q3466rjHYJIrxBd+BsOk8VpH/9swzVPSiYAwdqKk+ozFAqy6J//j4rSjpm9UHYotj+RJ6v5jSf7kpGzL6QSL4FljzYqSwqWUOc6fvbO2FnnErxjBSv6XcvepGmMD6xn01/vbHGMsqLYu3y25NyOC7yHsDUcI31qJwi1JLzmn5SRwtI5f2TgzY3/HY/yJHoJWE7wN30anIjEOK0gEVvLG+m6E+pnAp1kEsiz7q8cNLlMuqB9pzb1RgNHTmZ94hzSqeIIGS3uxdSRit2DSKnd2yVjdaVDO9cDkNi/bTOqOlogIYf0aFmz5UV7NgGQMGACpaRir+ndSaCtq95j5vb/Y23CHE779APxDieulAQ6ReFQiBXvPM/7j/+QcCgU73B6tPXv/Bv7zwazc/2ieIci0qNtXfk240Ib2TPyM3g8nobrifVJoHBdy7NFmrPiiQeYv/1nbH7uR+1qd6hgD35f44fzmqK9AKT2G3pS8fQ23uRUNuZdzZSaRRzas+W4svRoGcGE7EZtsvoNZN4df2DOPc+ytP9NzKp4lR0/mML7v7utyb1vqotjp4S40/p1zjfRjXV2Eqi6sozx1UvYnnUup13wKbJzm1/maIyh2nixBSo7JRaR3sJhBYm2MhPoaBLICp1cEigtVEyhdyw2h/Ok2vc2rtO/CECxa1CXjVmbMpwB4QNdsmdbV6o+EEuyZA2dFJfxTe440qlmy6p3miyvPhibfZU1eBzl9izcvt67RLmyrIiUl2+j1KQz/LOP97kTAE/Ut7/7U2RFoxz4yTRmfXAzZ+z6JWte/XO8Q+qx/L46Mhd+F6eJULL21XiHI9Kj1bz7KyrxMuWyu4677q1PAkXqKtrd596ta5mx9xEilmHUoRcJBVs/ZenQvp0s+dU19PvzVNY8dk+j8nDpPgCy8ls+faQvGXnJV4lgY/+r/9dwLRgIkE41UW/Ls3dm3fxz3s/+FAG7lzNKn2bFfx9pVKeiYDMAqf373s/cdvQY6U6acbr13afwmBBps9p2slCd8WIPaiaQSEucVoioveWZQB5v/cbRQd9JjZFkVRNxt76BcV8xbs4FrEg8g6qhF3TZmCZrFF7jp/jQ3i4bsytEirbit5z0GzgyLuOPv+BzVOGl9p2mlzxFincQsuzkDhxJrSsLb7D7LVH2F26DUzzQJBqJsvPPN5JtlVJ9ySOkZPbBJfEnUBLoFBibjeIxN7J8xq/YZRtC7rqHiIbD8Q6rR1r97x+TbxVSRSKJh5fFOxyRHmv/jvVMq13M5gGfJDEp7biypNR0opbB8rVv9sGhvdtwPnUNPuNm9aQHyKKCje/+u8U2ix9/gIy/zmFG5VuUmHTyi95rXKmqgCq8JKX03uPK2ytnwBDWJ5/B2OJXCdVvYFxWVACASW559o7L7eaML/yRcfd/wDb7KEas/X8se+Xv7Nm7u6FOpGANfsvJwFHTOu+b6KYc7lM/RrrF/re/xGGyGT3j7DbV99mTcIW1BFqkJS5CWPZW9gRyuglbtpOaCRSNREmxaoh60k4ywt7H2GzM+vpLzL3uG102pnfAWACK9nzYZWN2hYTKXRx05MdtrylvSjqb+n+CabWL2L9jfaNyd+UeDtv64XC6YkvHIt0nCRSORHn/L9/A8/AsNr/52Cn1tfTfP2G6bymrR32ZUTPO6ZgAezglgU7RrE/ey+xLbqV8+t0MtgrY8OY/4h1SjzRo33N86J7C5qwLGO7fSLgNswxE+rJAMMiu3Y03eD709p8IY2fkx7/WqMxut1NDArZARZvHKTywE/PYRSRZNRy+5HGmXXonR8jEtrb533VHCnYxZ+eDbPVMpuimxewZdQuDrIMc2rvtuHru2sOU2BovcerrHFOuIZVati56HoDK4lgSyJ2W16b2NrsdLvk1iZaPOSu/iOex8/D7Y++Qp5ZvYq9zBPY+uOzBUX+CUMjfOcvBkgLFFHmGtHmKecCRjFtJIJEWOa0QViszgYzNhh83Jtz+mUA1NRU4TBQS9GZEPOUOj52kWHdwU5wj6TjRSIQh/s2UJY+NaxyjLruHAE6KXvxeo7I0/37KEmLL/iJJeWRS2aaZ3l3h1Ue+zRkH/gBAzd7VJ91Pwe4tTN32G9Z7ZjL7um93VHg9npJAHWTq+TdTQC629f+Mdyg9zsHdmxloHaZu6Pk4h83HawLs3rg03mGJdGvL/vFdcv8+j7ra419EOmsPccSWQ1a/pk/cqjVebIG2LUGpLCvG97crSLJqOXLF04ydcTYOp4s9WWcx0reBSLjpfdB2v/4HDJB9zUPkDxtDv2mXAHBg5cvH1UsJFFLlbltioy8ZO/9yyq1kQutix+XWFsWWzSVltf0I09FT51Px+bUsnfgD8ijhwzceIxIOMzi4k8r08Z0Sd3eXmhN70K07sqtT+ndH6wg7vG2uH3Qm44l03kllIr2BiyCWo+UkEIDfnGQSqDx2cpI9sWs2QJamZeXmU2UlQsmOeIfSYfZuWUUaNZgh8+IaR2buQNYMvIkZNe+yfcXrDdejkQj9I4fwp8T2ZbSnxJ7HSo8ciEucx1q7ajEXFD7MltQF7LINIaFi+0n3VfrvO7Ew5H36T31+H6Bj6SfRQewOBweyFjDSt77dm04W7NpE+ffyCXwvi4IHRrHi/65m4a8+xbr3XuicYLuZgvoXhv2nX8LgaecBULap6Q3MRAQikQgjC54lyfgpObTnuDJnqAafrfkXonW2JJyh1mcfrHrjCXy/ncOAyEH2nPMnRk2Z31BmHzSTRBNg39bG78yEgwGGF/yHDQkzGDBsDACDRk2mkCyce949rm52tIiAV0mgE3k8Hjann8nYqoWEfNUE9i0naNnJH92+JVx5/fOZc8Xd7DX5pG/4MwU71+M1fkz/qZ0TeDfXf8hoyknGHDz5dxRbkmD5iDjbngSKOFNItJQEEmlONBLBZSLQykwggKBxYzuJJFBdZSwJ5EjKbHdb6TjGZuOQcyCJ1btbrLfk8QdY8reuW6Z2Koo3xl7LDJh6XpwjgSnXfpfDZJH76i2s/9HpbF+/lEP7tuMxIWxZIwBwZ/QHoPLI/niGSigcxv3qF6k1XoZ+5lFKvSPI8e9pvWETaqormBxYw4b8T5Gj/SePoyRQB0oY9zESTJCdK99sV7uC5S+QbqpZmX05hz3DGFS9hlmV/8O96KedFGn34tr3DgdNLvnDJ5DVbxAHTH/ch1fFOyyRbmvjklfoT+zBterIvuPKXOEagi3MRvA7Wt6HxIpGWfqXrzFj6ReotSWx7YJ/MWnBZcfV6TculhAq2bq4UfsP33uaHMqwpt/ScM3YbOxPn8OI2tWEQ8FY3JVlpFCLldL22S19iXvKNSQQYPui50grWc1u5yg8iUnt7sfYbBwaezMjIrsof/kBALJGz+7gaHsGY7OxL2EcOVUbOqX/BMtPtB1JoKg7mWQlgUSaFQzUJ3XaMBMoYNzYw/52j+GrKgXAk6wkULxVeocyyr+RLT+cxbY17zcqt6JRRu/6K3P2/pHdG5bEIcL2cRxYwmGyyBs8Ot6h4E1KofiCR9iUMItB4T3w4hcoePEHhCw7eZNjSSpvVv1s2dL4zgTauPhlxkV3cmDafXjScglljCbXKsFX1f6TbcsKY8/Iztz4bMzdnSkJ1IFGzb6AgOWketPrrVc+hvPgUg6ZHObf9Sgz73+dfg/sZl3e1QwL7SQQOLmTDnqC4sP7WfrSXxhVu5YD6XMapuiVu/NIDBbHOTqR7su/8nHCVuz/F1/J8X+sPdEaQo7mkwVBRzKeFpJAa1/6PacdeJQlyecz8L7lTDzt/EZ18oeNo5xkKGicrLWv/huFZDHxzE8cd9024kxSTB17NsY2ft+/KbbkMzF/QrOx9GUT555PqZVKZN2/GR7cTkXWyW/kPOWSO9hsH82Umg+os9wMGjml4wLtYXw5UxkSLaCqomM3v4xGoiTiB1c7EnWeVNwmhN+nRJBIUwL1e5kZp6fVuiHjwR5p/zNzsDqWBEpIzWp3W+lY3rmfY3XiXAaG91P9zq8ble/fsYFMKrEZC/9/v96tj5O3olGG1K6nIKX7HMIwac45zL3vBfbM/B6joruYU/kqK/tdw8CRsePr03NjSaBg+aF4hklw9ZNUk8CY8z4DgKd/bAn7oR1r291Xdf3BGp70AR0XYC+hJFAHSvSmsM0zkX7Fi4hG2vaLyYpGGVq7noMpx0/Pdw2ejduEGl4w9UYF//g8p635Kl7jxzPx4w3Xg650kiPtO71IpK+oqixjYuX7rEuLnW4Qriw4rjwhWkfYmdxs+5AzlcRo8y86w/uXU0YKc778FC530w/exmZjn2cs2VUbj7t+cNdGJgVWs3vQVTicx288PHjq8Us9q3fE3sUbPPmMZmPpy9wuF1vTFzCpdgkuE8EzfH7rjZqRmJhE7h0vs9k2kq2eyY3+bfqSpOFzANi/YVGH9uurq8JmrHYlgWwJaQDUVJZ2aCwivUWo/sh304aZQCGbG0e0/TOBwjVlAHjTdEhBvE2YfQ6n3fdfPsy6iInVixol6ws/jD0/LMm+lnGhD1n57P/FI8xWVZYeYcnf7ieTSqKD58Y7nEamXngr693TOUw2k67/fw3X07PyCFp2olWH4xZbbXUFEyrfZ0v6ObgSYjNrM4dNAaBiX/tn8frKDwKQnK1Z5ydSEqiD+YZdwJBoAft+OJH3H/kaBWvfAstqtv6+7evIoAoGH79pWP6kMwGo2NZ4uUVvEAoGGFm3lhXJ57L3huVMPvPqhrKwJ5PUqJJAIk3Z8tbjJJoAKaffQQVJmOrj37HxWnVEXM0ngaLuFLxW8/uWJVXvpdA5EJu95T8PddlTGBw5wLpl77L0f0+z9LnfcuS5+whbNkacf2ej+tn9h1Bg8nAfjCW2PUfWsN/0JzWz5WPP+7KESVc0fD54atuOHW9OZlYOw+5bwpivvNx65V5s8KQFRC1D9a6OPXzAVx37m2U8zf+/dyJ7YhoAtZVlHRqL9E0VJYUEA+1PgnRnwXbMBArbPTij7T/VKOqL/f+XnKaZQN1FxtwbcJsQ295+/Ljr9v2LKSGN2Z9/iHXu6Uze9DO2r2s+oW9Fo7z/yD0sfPAmFj3xQ+pq2nYoxskoKjzAkhceZumDn8L524nMO/An1jmnMOasT3famCfL2GyMu+d1kr6ygqSUjzZEt9ntlJp0HLWFXRqPFY3y4bI3Wfj7z7H7d5fhNQGS5tzUUJ4/dDR1lpto0eZ29x2uiD0jp/cb3GHx9haOeAfQ28y8+h6W/TeZjE2PcfrBv2A79CgFL+dTOPI6xl94Bwmpx685PrLhbYYA/aece9z17AFDKSQLx6HeuTfOrnUfMMb4cIy7hCHDxxxXZnmz8Bo//rqak9oDQ6Q3S9r6NPtNf0ZOO4s9r2bhrvvoj3UkHCbJ+LDcKc22t9ypJBsfkXAYu6Pxn4Dc0AF2pbc+68Q7fA62A48w5fXLj7u+IuVcZg0Y0mSbQ2nTGFP+HtFwmIF1m9mTOptBrY7Ud42fdzGV73spt2cwJOvUk2Uet6sDourZUtIy2WsfQOKRjt0c2ldbAYC9HUkgpzf28O2r1kwgOTXhUJDw72ezeuDVnHZr95wdcTJC9Vsi2NowEyhiT8AZPNLuMYyvAp/lIkHPm93GqKlnsO/lASRveQor+iWMzYYVjTKwai37kiaT5XAw+LNPUPnQPNJf+DR7PS8wZMyURv1sX7+YMw79mVrLg7fCT/Ev/8JO50Cqk4cz5TMP4k1OO+kYd2xYSuGyf+Mp34E94mdCYC1zTQSf5WJNyjmkn/1FpkztfrOAjnI6XThTMxpdr7Zn4A507d+kFf95kNkbv0/AclJosljmOZ1ZMz56XexwONjlGEhCRftPjrOqC/FbTpJTGn+vfZ2SQB3MZrcz5/I74fI7KThcyIa3/snA3f9ixtZf4N/yIMtSzyH7gvsYPi62RtS1+y2KyKD/kLGN+jqYNIEBNR929bfQJco3vUXUMgybeWGjMntSbEpuRclh+g3SRl4iRxXs2sT40EaWDf0Cg2w2qt05JAeKGsprqitIBYyn+SSQSUiN1a0qJzXj+OnvleUlZFLJjowRrcYyYf5lLDryXZzuRJJyh+BK709iUjoz8ppfd20Gzyel/BXWvfsUU6hg14AZrY7Tl7ndHtZM+x4Ot5ch8Q6mFynMPI2pRS9QW1WON6VjjoX218b22WpPEsidFBs7WN3+zS5FjrVn4zJGUsGh4nXxDqVDhYOxmU12V+szgSIOD26r/TOBbP5yqk0SCe1uKZ3F2GwcHPMZ5m75Ecuf+zWzP/E1Du3dzgBK2Zt/GgDp2f3Zf80zeP99Jd6nLmfvtY0TQWVLnyBo2Ql/eSPrN68ksvBBPOEq5pS+wIFfraTyxmfpP7Tx66+W1NZUse4vdzOv/AWGWYYDtv5Yxs6K7KvJmHM9IybOZl4zS+l7gpA9AedJ7K11KlK3Ps1u22Ay736XwemZNDVnpyJxKENq1rS7b2ddEaW2DAboaPhGlATqRPl5/ci/4atEo19h1Yr3qVvyKNMr/4fn32+wOP1S3KPOZoZ/GUsH3U5OEzdnKG86eTveo6RwP1n9etf75SmHFrPbMYwRTby77UyOvTCtLitUEkjkGAVLnyUfGHpWbLM8f0I/Bvq2NpTXVZWSCtg8qc32cXQfktrK0kZJoMLdH5IKePqNadzwBHaHg/nXfK1d8edPPRfWfYOcJd8HIHPMye9z01ecdtnn4x1Cr5My7SrcbzzDxkXPMf2iz3ZIn8G62DIDV0Lbk0AJyRn1bZUEklNTuvldRgI5/r3xDqVDhQN1ANjbsBwsavfgOokkkDNYSa2t7f/fSteYc/VX2fCzl5mw8WccmnkJB5Y9ywCg/7SP3jweNHYG+z75PElPX4H3qcv4YPQX8GYPYdrZVxONRhle9D82eWczNT2byfMugnkXAbDuvecZ+u4XqPv7JRy66eV2JYI2/OcXzCt/gUVZ1zDqE99jSG7sja+hHfrdx0/InkBSFx7OU3xoL2PCW1g6+HaGpTd/Ql84dTDZVW8RDvhwuNuesvUEiqlyZKFtoRtTWqwL2GyGGXPOZMFXn8B3xxqWZV3JaeUvMWPFl9hn8pn+qQeabOfOHgZAxZH9XRht56urqWRkcDPF2XOaLE9IjyWGfOXtn9Yr0ps5C9dwmGxy65OjkaT+ZFBF0B97UPZVVwDgSGw+CeTwpgFQV9X4dKSqA1sAyBw8rgOj/kje4FEsHPwFUqLVVFhJDB6rmUDS9UbPPI8S0mDzSx3WZ6g+CeT0Nv//3om8KbEH3kj9UjKRk3V0r7V+lFDdAXtMLX3nZXZu29h6xU4WCcWSOrY2JIEsRwKek0gCuUNV+OzNz56V+LDZ7WRf/2ecRDjw0v8jdc8r7LYNZuCoKcfVGzxuOjWffB4DLNj2Y6Yvuo0ljz/A+nf+TQ5lRMZf3ajvKWdewZHLnybR8uH++/ksefXxRnWajauqgEq8zL/rEXJye19qIWL34DqJDdZP1u6FTwPQsyB9mwABAABJREFUf84nW6znyByKzVgUF+xsV/8poRJ8bu339f/Zu+/wOKp7/+Pvs72pF9uSe++9G5teQ+gJJaGEVAgkl9wQ+KUSEnJTSA833FQSQkmAUBJICB033HDBvRe5qNft5fz+mJVc1HallXYlfV/Pw4O9c2bmyGNrRp8553zbIiFQLyscPJQld/+BLef9iW2WKfgv+wU2R9uJpjOnGAB/XUWb2/uq7W8+hU1FyZ5+eZvbPfEQKFgvIZAQpxri3c4xz8mAxpJrVDuoOn4IgECTMaLAGg962mL3GKMPAo2tf1AIV+4mok0MHtn5SKCuWvqJ7xG8+wPqb3sLq1XWqBG9z2yxsC//bCY1voc/Po2ruyIBIwSydxDAnsmTa4RAMX9dSvogBqZYNMoo3xYj2ASO70u+gs6pKsuPMeud26h5+cEU9K57ovHqYBZb52/+tdWJg2DSZcMd0UaCVgmBMtGQEePZmHcxM6pfZlJ4O+VDL2mz3YjJc/Dcu5Ujt6xhnfsclhz4ObNX3UkF+Uw+5yNt7jN+1llUX/8SdaZ8Fq+9i+3r3kioT5ZgLY2q//59iVpc2HXvhUCufa9wWJUwfMKsDtu5BxvLFFSXJbcuUH6slpBrUJf7159JCJQmM8++kilfX8XEeee328aVZ4RAwYbeG5bXG2zb/soxVcykBRe3uT27cAgA0ab+9XUL0R1V5WWU6ArCg2e3fOYoHAZAfflBAELxEQXNa420xRGfghJuY/SBvW4fx02DsSaw/kJ3FBQWMWLU+B49hxAdcc26FpcKsmPFCyk5XtRvhElOT+IhkN3hIqQtqGDPVawR/d+hXe+TSxN7So1qgnWHureW5K5//xqHCuMMpP8FZCQ+EsiSyD3J6sSiYmxd81rLGl2J8MQaCNsS/3crelfRRV/CocIAlCy5qd12DncWw0ZPZPrdT7E698O8W/opzHeuxuVuP7AZPXkuRXf/B4C6bW8m1B9bqI4mc//9+6ItThz0TghUX13OxOAWjg6+ANXJmj0Fw4xnRl/5voSP39RYh0f5wSNVaNsiIVAGy843/tL2pzDkxJF9TA1s5FDpFZjM5jbbZGXnEdJmtFcqpgjRrOwDowxqzriT0yizio3l8/xVRwCIxIMdhye33eO44gvhRryt1yHJ8x+ixtG/1h8Toi0TF15KLVnEtr6QkuPpYBMAjiRCIGUy0ajcEgKJbqncYdwbSs++jaC2Eivf0eVjRSMRRh34KwCeSPqfwWLNC0MnsAaI2WO8OJ326kfx/2gSq35/L9FIuNP9snQTMUdqFogXqTd68lw2OJew0zyeERNmdtre7nCx6L/+wrJP/5iC4s5/+M/OK6ZMDcFRsSmh/jgjDQSt/TcEilmdOHSoV861e/mzWFWUgnnXdtq2eMgI4/tb7YGEj19zwlhOxZI7pMt97M8SCoGUUpcopXYppfYqpe5vY/s5Sql6pdSm+H/fTH1XB56s3EKiWvWrMOTAm3/ApDQjzvtku22UyUStysHib71miRADlf/gWiLaxMgpJ0uOFpSMBCBca4RA0fiUFFcHI4HcOcbc6OgZU1BCoRCl0WMEcseksNdCZCar1cbu3KVMbFhJML6mVnc0h0DuJEIgAJ9yYwlJCCS6LuY1pvYWloziqLkUZ33yZZSbrXnmYUopp5wC8mLdX1uou2JhYzpYIqNTZ195Fx9c9FdWz/kp+xxTWHzkN2x++HJ8TfXt7hPwNeFUIXS8YILITFO+8CzD7klspE5XnPBModSXWHjqidYTsuX2WF/SzurGrsJEI5EeP5Vl1z8pp4BxM5d22tZsNnPCNAh7Q+Lr5DZWlgHgzOt/azelQqchkFLKDDwCXApMBm5USrW1auhyrfXM+H/pn0jcD5gtFhqUB+VP/404VYoOvcxOyyRKRne88GyjORdrsP983UJ0l7tyE4fMI3B6Tg5tzsrKJaCtaJ/xbyXmNx523Tn57R7Hk5VLTCvwn/5gfHj3RuwqjLV0Zuo7L0QGcsy4Bo/ys3NlChaIDjXi1zbMluSKrvpNHqzh1KxLJAYmHWoiphVOVxY17tEUdbFC2Jrnf8XCnd9nk30uB4ZdTS5NBPzdD0i7Q0fi08ESGAlksdqYtvgSFn34dube/yorJtzPDP8atv/6lnbXCWqsM142mlzt3zNF+jmcLtyenqvgFhkyk0FUU3XsUKdts3Qj0X48ckzZXAD4fT37csLXVM8k3zoOFp6DMrU9M+RMtfYSsgNHEz6Hv8YIgTxFQ7vUx/4ukZFA84G9Wuv9WusQ8DRwZc92SzSrN+X0mzDk8J4PGBs7QP2oyzpt67fk4gxL2dyuqK+rYcXPb+P44a6/DRSZJRIOMyqwnercaad9rpSiSbkxNU8nCTYQ1mYcTne7xzKZzTQpFyp4eghUvWcdAEXj56e280JkqEmLP0yDdhHc8ny3j2UKe/GpxMvWNgtaPNgiEgKJrlMhLz4cKJOJcO5YY+24UHJrepQf2cOMTQ+wzT6dif/1EuZ40YHaiiM90eWE6bDxddiSKAnd7Kwb/x9rRt3JXO/bvPfsT9ps460zlluwuCUEGshyxhrT7Mu2reywXcDvw62C4Oy/f1+aQ6CAr6lHz7Pj3edwqDDumVclvE/AM4ziyPGEF38P1x0DIHeQLHPQlkRCoFLg1LtAWfyzMy1SSm1WSv1LKTWlrQMppT6jlFqvlFpfWdl/1rnpST5zLvZQXbq7kRJlK58GYOSyGzttG7TnkxWt6+Ee9U/b//h5zqp9nsNrUlf+WKTXga2ryVJ+zKOXtdrmU27M8ZEEpmCDEfB0ssBek/JgDtad9pk+tgmftlM6emrK+i1EJrPZHezMXcbkune6/cBrDnvxdyEECluzcMZ69mFb9G+msBe/MqZLqfiIlqb65F6iHf7bfQAU3PRbHE439rwSAOorE3/r3hNi8ZFA7VXR7czCm7/DFvts5m17iJVPPNTqh8eGcmN9EXt2Ufc6Kvq0kVMWEtEmAofWddiuocZYLN3Uj0NDk814iRj09ezLCdumP3GCQiYuaLviW5vyRpKl/DTUJpYhqJoD1OMmJ1dKxLclkRBItfGZPuP37wMjtNYzgF8CL7R1IK31b7TWc7XWc4uK5BtuIgLWXFyR9ucz9yWFR/7NLssEBg0b12nbiKOAnFj/+Lp708Y3n2FR/SsAxBqOp7k3IlWqtxmlS0fMvqjVNr/ZjS0eApnDTfiUq9PjVVhKmF3/But++GHKy4yH4Oy67RyyjcGU5HQWIfoy55wb8Sg/2995plvHsUR8BE2d/9s7U8SWjVtCINENpoiPQDyANDuNNal8DYmvJXlg21rmNb7BhtKPUzJyAgCuAuNdr7/mWIp7m6RI80ig5P9tgTHyddSdz7HFOZ8le37Imp9/7LQ1wIKbnqNROxkz69yUdFf0TU53FofMI3BVbemwXVNtOQAWT/8NFcyO5hCo5+5LB7avY1poEwdG3YjFakt4P3vRaACO7u34OjXLatzHcctwUG1FGSKREKgMGHbK74cCp90VtNYNWuum+K9fAaxKqf77L6QXRRx5ZPWDMKS+tprx0b3UDTs/ofbaVYBbBXp8OGJ/omMxclZ8h8OqhFqyMDdJCNRfOI6u5rAqpbBkRKttIbMHW8T4d2INN+I3eTo9Xsntj7N88M1M8a7B+rulbHn3JUaG9tKQMynlfRcik01efDmV5KE++Gu3jmONersUAsWKJlNIHTvWvt6t84uByxrxEjQZIZDFbYRA/sbERwJV73sfgKFn39byWW58DY1QXbpDIGMkkDWJHxTPlJWTz8x7X2HFkE+wsP4VAv8zlsPfnsjG155kct3bbMs7D6e78/um6N9q3KMpDHa86LCv3hiBYssq6I0upYXZboRAoUDqf/7yeRtY/sT3aHjhKwS0lYkfuiup/UsnL8avbRT/65Os/scfiEWjHbYfFD5Co2d0d7rcryUSAq0DximlRimlbMANwGnzTJRSg5UyYjal1Pz4cftPSas0ijryydGNCc9/zFT1VcaQYnNeYvMyzR5jpFhtmoci9yVb3vk7o2OHKJ/xearNxdj8FenukkiBSDjEWN8WjufNbXN7yJqFI+YFwBZpImhufz2gZsVDhnH2Hb+k/IZ/06BymPjGJ3CpIEoWhRYDjNliYW/xxUzxrqX88O4uH8cW9RG2JB8CTf/w56khm9Ab3+vyucXAZon6CMUDSJvbWLA20JR4CBRpOAFA3qCT73tzi0qIaYWOb0sXFQkS0NZOpzh3xmQ2c9Znf8b6Rf/L1txzUMCMFXfiVgE8829OTWdFnxbJHcPgWCXBgLfdNqFGYyFxV25xb3Wr11kdRiAa8ac+BNr895+wdM8PmBF6n/eLriSvcHBS+xcPHc3xj/yTBlMuizbcQ/l3xrP7O3NY9UTrelT1NRUUUke0YGyqut/vdPpdVWsdAe4CXgV2AH/TWm9TSn1OKfW5eLPrgK1Kqc3AL4AbtNZnThkTXaDcBVhVlMaGvr04tK/OCCRsCc67zh41C4CmP93I4X07e6xf/UFNfSPv/vNxbCt+SAX5zLj0UzTZi8kKybpb/cGBravxKD/mMa3XAwKIWrNwxaeT2KNeQpbE32iOmjQb56f+Qa0yKo7lj53X/Q4L0ccMvfgLBLHR+NhHaWrs2shbe8xHxJx8COTy5LBr9G3MCG5gw/9cxMo/fbNL5xcDly3qJ2wxRgI5PLkAhLxJ/D1uqiCorWRln6x4ZLHaqFE5mHzlqexq0lQ0SEh1fRTQmeZe/DGW3PMk5ltfpE5lUcYgJi9oPc1aDDzWQeMwKc2JA+2Xig83GuMbPP05BHLGQ6AOwrCuKj7wArvN46j/0mEWff53XTrG6KkLGH7/OlbP+iFljvEoHWPxnh+z6bUnTmt3fJ8xZcxR0nE16oEsoWhda/2K1nq81nqM1vqh+GePaq0fjf/6V1rrKVrrGVrrhVrrVT3Z6YHE7DZCk8bq9L6N6S5/fAilKyexb5wT55zLuoWPMDh6jII/n82KNhb0E4Y9//dxlq2/i0nRXewffzs2u4Ogs5j8WFW6uyZSoHrzqwCMmNP2g2rUloVbG2scuGJNRKzJlVEdVDqahmv/yrvFH2fUJAmBxMAzbMwU9p/9C0ZFD7LlN5/u0jGc2k/M2vkovLZMv/q/2WKbxbDgHubt/xXexrouHUcMTPaYj4jF+LvnzDIWrI346hLe3+KroEblthptU2fOx+5P88ukaIgw1pQftmTkBAK3v03s5hcxmRMrTy36t5yhxnT4miPth0AxnxECZef33xDIFg+BosHUhkD7t65hTOwAteOuISc7B9WNdXosNjuLrvws8+7/F8PuXclu81gmrvgiB789mRV//hYADWXbASgcIcVO2tO98ZWixzWPnGlejKyvCjcYDxLu/EEJ7zPvko/T+Il32OOYyll7fsh7j94hQdAZ9m1bxzzvO7xXdB0Hb3iHBTd8FYCYZwh5NJ62AKLom7KPvsMe8xiKBrc9lVLbc3CpIJFQEBd+YrbkQiCAcdPms+zORzDLotBigJpx3kdZP+wTLG58lfWvJb8+kFMHiFq7tq6IOyuX6V99m4oLfo5NRdmz5l9dOo4YmBw6QDQ+FdEdH80T8yc+EsgerKbB0rrakddagCuU3pUdTNEgoR4IgQBKho9h+BhZB08YBo8yClsHj+9qv5GvBr+24XD13zWk7D0UAp1Y8WfC2sz4829L6XEdTheeW55ife5F+MzZnLX/Z6x57ufEKnYS0hYGj5iQ0vP1JxICZThHfMhhoL5vT+2JNRn9zylIPAQC423NjPteY2X+NSyqeJqqB0ez9TsL2bLmzZ7oZp/RWF/D6n/8nsaX7sePnck3fI+RE2eiTMYbLXOOUd61+sSRdHZTdFN9bRXjQ9upGry03TameDWYpvpq3NqHticfAgkhYPbN3+OgaRhDV36V+rrEp2DHojFcBMDWvR8Mxs29AJ+2E9j5n24dRwwsp45Caw6BdKAh4f3d4Rp8ttYL3QYcReRE07sUgYqFiKieCYGEOFVWTj6V5GGu3dduG3OgjgbVv5+xHC7j64uFUhcCNdbXMOnEi2x1zSevqCRlx21WMmI8Z93zJOO+8g6bbbOZs+UBRpz4D0fNpVis8v2jPRICZThPrhGaBBv6dgikfdUEtBWnKzvpfZXJxKLP/553Rn+ZPdkLKI6WM/mVa3n7118gEPD3QG8z37a/fIVFG77EzOB6tgy9kewzwjVHnlHetaHiUDq6J7ogFo2y4u+PsPpHV7PqyYcA2PveP7GoGHnTL2t3v+YQqPr4IcxKgz35f2NCCLDanUQu/wXFupptf/qvhPfz+RowKQ327oVAdoeL3c4ZlFa/163jiIFDx4wAUscDSIvVhk/bUcHEQ6DcWA1hR+uCvlH3IPJ1HbFIJGX9TZY5GiScwjWBhOhIhXUoHu/BdrfbQnU0mfv3M5bDHQ+5UhgCffDMQ+TRSNZFX03ZMdtitdkZeedz7LGMY4iupMY5skfP19dJCJThsguMkUDNI2n6KnOglnqV3eUKDyazibNv+QaLv/RXXP+1jvdzL+Kc8j+x5+ELU9zTzBcM+JhY+S/edy5m30ffZP4nHm7VxlNkVPnwVkl1tb5i/7Y1nLXlqyxoeotRu/8AQHjXazTgYuzsc9vdz+rOBaCubBsA5qzkRtsJIU4aO/s81g6+nsW1L7L8Z7ew4omHOt3HH19M2uTo/hviwIhzGKaPceyAFEQQnQv4vUb4f8ootCblxhRKLAQKh0Pk6kZi7tZrnJjcRVhUjIbanqs0uuXdF1n1y0+2O9XfHAsRMUkIJHpHk2ckg8Jl7W63h+vwW3J6sUe9z253GpUBw6l5yV5bdYIZR/7CBvdSxs5qu8BJKuXk5jP4zpdZZ19IZOIVPX6+vkxCoAznycolpC3g69vVwWzBWprMqfnG6cktZP49f2V16W1Mi3xAfU3fDsiStf2tv5JLE+YFn2LM5DltruOSP3gEAOG69m9mIrN4a44DsMW9iCFUUV9dzrC6dexzz8Zibf8huLkkcPiYsQies3BYu22FEJ2becuP2GGdzLzaVzhrzw85um9rh+393joAzI7urxNRMudDABxZ949uH0ukVm1NFTs2rkx3N07jbYoHkPaTi5L7TS4s4caE9q+rPI5JaVQbLw9MTmPEg68p8VFFyTh2cBcj3riDxdXPcnDHujbbSAgkelMsfwz5NLDh9b/SUNM6/HRHGwhZ+3cIpEwm/NhR4dSsKXp4y7u4VQDnkjtTcrxE5BUUMe//vcqCD3+q187ZF0kIlOGUycQJUzG5VRvS3ZVucYTr8KU4PXeMmAtAxeGB8ca0tvI4yx//Dp71v6KcAqaedWW7bXPyiwlqKzQc78Ueiu4INxrV3ALDjPV/dq96kVLKCZbM73A/e7wksL12NwA5g0b0XCeFGAAc7mwmfW01lbe8A8CxdS922D7oNX5INju6P01g2NjpHKcI28G32ty+94M1HNi5qdvn6YtWPP0j1rz027Sdf9djdzHihasJBjNnGnrQ2xwCnRyFFjB5sCYYAtVXGi+KrDlDWm2zOI1jhnxJlJtPUH1dNU2P34QZYwTQifVt/xuzxEJEZTqY6CXuYdMBmLPiM+z/7c2ttnt0AxF7Xm93q9f5lQNTikKgUGO8olqxvKDMNBIC9QFHxn6cieHt7OrDFUPc0XpCttR+48wpGQdAw7E9KT1uJqqpOEbtry9m6b6HGRfdy94RN3ZYyUmZTFSZ8rH4+nZVuYEk0mSM9hs80ygF79nyGAB5E5Z0uJ8r21jQs9BnLGZYMGRkz3RQiAFm6OjJHFKlOA++0WG7QKPxb9fu6f49TplMHM5byDjv+4RDwdO2xaJRcp67npKnLuC9Z3/a7XP1JccP72H+jv9h6MYfpaVKaH1dDdPr38SlgpTt3tLr529PwGuEPRbnyVFoQYsHeySx9Ty8NccAcOW1DoHM8emNzedIlbqqE1T84kJGRg6w56yfsts8jrwjbf8bM+swMRkJJHrJ1KVX8cElz/Je9sVM9q2joa6qZVt9bTX5NKKzS9PYw94RUnZMkdSE3VGvEQJl5bWecirSS0KgPmDWVV+gmhyCb/4o3V3pshxdT8TRugRpdwwabpT9C1W2v5J/fxDw+6j8vysojR5j09l/oOG/y1jyic7Xqai3FOIM9F4IVF1bi9eXOW9I+xrtN36QHDp2OhXkMym8jZC2MHLq4g73a64GUxI7TgNuXJ7+PVRZiN6ilOJI4VmM928m5Gt/Skyw3pg24MobnJLzWidcgEf52bvx9NFAezevpIhaalQOC7c+wLoX/jcl5+sLDrz0fWwqSqku58i+D3r9/Dte+yMuZYRyNfsyZ2R289/L5lE7AGGLB0esKaH9g3XGaOHsotY/2NrihTzCSVQa64zWmn1/+CQjoofYtuzXzLrwRmpKz2V8eBfVFa3XMLTqEFGzhECid5jMZqYtvJCcZZ/FpqLsefeZlm2Ht64CwD1qXrq612uCyoE5mprnee2vJaYVnpzWFQhFekkI1Ae43FnsGn0b04Mb2Pz2c+nuTtLCoSDZeIk5U/sNwJ2dRw3ZmOv7dwWsDb+7iwnRPWxf/GNmnnst2VmJLT4asOXjiqR+GHdbqipO4P/5fLb85tO9cr7+SPlracCFxWrjmGMsAPts47A7XB3u584yQiCz0lSbWld4EUJ0nXPyZdhUhH1rX263TThevTOnIDUh0JgFlxPRJuref4HamuqWz6s2vkRMK6yfe4ut1mlM3fgt9n2wOiXnzGRV5ceYVfkS22wzADi+vvfXS8rd+VcOmYYR1FaixzNnJFA4HgJZnSenIkZtWbh0YlM5og3Gi6K8tkKg+DEjHQSgydrwr8eY41vB+tF3MOv86wEonH0FJqXZt+qFVu2tOkTMZE/Z+YVIxIRZ51BOAeadL7V81nRgLQDDpixKU696T8jkwJKiEEj5a2lUrg5nL4j0kBCoj5jz0fs5rEoofPv/4e2hRfp6Sn18cTWTO/UpcIWlBFfTkZQfN1NsW/1vllQ/x3vF1zPr4luT2jdmdmDTwc4bdlMsGuXwH25hKBVk+fp3INeTzME6mpQR8PnzJwNQnz+z0/0sVite7QCg0SbDbYVIpYkLLqJJO/Fv7WA6treKmFZkp2i4e05eIXusE1lU/hQ5Px/DzvVvAlB47G32WCdQOHg4g25/kgblwfn3W9tcwDSdQqEw4RSWFT+6bQVOFcJ03v/jsCrBcajt9ZJ6yr5t65gY3cWJMR/liGU4rrpdvXr+jkQCxlQtu+tkCBSzZePRiU0HU00VNGknTk/r9ayaS0VHAomNKupMbdUJRq39FrvNY5l/0zdbPh811fihOlpzsNU+Fh1Gy0gg0ctMZjP7Cs9jsnct7//PBbz/+l+xVWzmmBqUsrA/k0VMDizRQEqOZQnW0ai6v16eSD0JgfoIu8OF96KHKaWcTc/+IN3dSUpTrfGmyZpVlPpjO4eSHz6W8uNmioZ97wEw+YbvJr1v1OLE3sMhkI7FWP2/n2F2YA0NuPBEanv0fP2ZLVSH12TcKG1DjTfetlGJvXFqUkZlmIBTysMLkUpul4vtrjkMrV4BWrfZxuSvok5lYUrhm073R3/Nu+PuI4KJ2g3PUXX8MOOje6gdei4ARUOGU33ZbymMVVH2v1fy5m+/wpED6Q8nIuEwu394Npt/dFnK1u4JxkdaZRcN42jhEib4NxPwpSaYSETFO78lpM1MuOhT1GRNoDSYOVPQmwOaU0Mgbc/GocKEgp3/EGcJVFJnym1zmyM+tTgWSM2aQLv/dBfZugnL1Y+cVvHSbLHg03ZUsPV5bISImWUkkOh9gy+4i222aYwM7qJ45TcpadrOcffEdHerV4TNTqyx1IRAtnA9PnNiMxhE75IQqA+ZtOhD7LJMoODIa+nuSlK8tcZbSlt26qeqRHJGMChWSTiUmm9WmcZUe4B63GTnJ/+GWfdwCKRjMVb++g6WVD/LqqLr2VFwIdmxnp1+tnfnZqqr+udi145IA36r8SA/5dwbWDX+K0w99/qE9vWZjBAomlXSY/0TYqCKjLmQYl3NkR1r2txuDdbQYErtWlzDx89k2ce+ym77VAaVL2fPW38GYPD8q1vaTJ5/AeumfZMR4f2cd/T/CP/5Ovze3gtH2rL++V8wNbKNucE1bH772ZQcM9ZkLM6aXTAE+9hzcKgwh9spKZ5qwaCfCRWvsNWzhNyiEmLFkymgnqoTh3vl/J2JxUMg5ylrwSmH8eum+uo29zmVM1BJo6Xt9RpdbuM4OpjYqKKObPjPEyxofI11Q29l9NSFrbZ7lQtTqHUIZNVhtIRAIg1GT5zJrK+9zcEFDzJUn2AIlYSKZ6S7W70iYnFii6VmOpgj3EAgxdWhRWpICNTH1JaczfjIbmqrTqS7KwkLNhghkDsv9aMUTAWjMCtNxZG9KT92JnB6y6gwt67akQhtdeIglOIenbTi9/dyVuXTrC68jkV3PErMWUCObiQajfbI+QIBP4VPXcbup7/aI8dPN3e0gbDVuFE6nC4W3/Q1bHZHQvsGzUZlGHNO/69aIURvG73ICF6Ot1Mq3hGqxWvJ7ZFzNw09m9GxQ4ze/Xt2WiYycvKC07Yvue6/cH+7nA/O+yOj9WE2/eGuHulHIhqqTjBh+0/ZbpnCETWEnBXfJZaCaWHaV0VYm/Fk55E9ZDQA3sremXq89c2nyacR6zxjOrZnxEwAju/snRCqMzoenLiyTo4EMjuN+4ivofORuQXhE3hdbb88cDhdRLQJ2ghnklF+eA9jV93LHtNo5tzcdlELv3JhDrcOMO2E0RYJgUT6TL/gYxzHmMngGQCLQgPEzE4cOjUv112xBkI2CYEykYRAfUze9EuNBfTee6nzxhki3GC8xctKUeWUU3kGGwvo1hxJ/zD4rtr8/nusfqft9SbygsdocA7t2oEtTqwq2qrMcCqsfPxBlh79HWtyLmHhnb9BmUyY3IWYlaa+umdG6uxa829yVRNOb1mPHD/dPLqRiD23S/sGLUYI5CgYlsIeCSEABpeOYLd5LEMOPs+7v/lvKo+fPgrEHa0jaOt+efi2DJpzufF/amiaflu77aYtu4aVRTewqPp5tq56pUf60pFgwEfZ/12LSwewXfFjjs34AqNih9j9fvfX7zH7a6hXWSiTiYIho4zz1fTOfcC+8Q8cp5DJZ10FwJBxswHwHtuR0vP4vA2s++GH2fn+O8ntGPQS0SZsNmfLR5b4CJ5AY02Huwb8Pop1NZHskW1uVyYTPhyocNdHAlUe3U/jYx/BrGM4bnq83UIHAZMbyxll7SPhEBYVA0tiL0OE6AkWq439Ez9Lg3YxfOqSdHenV2iLEzup+dkhWzcS7eKzrehZEgL1MWNnLqOWLPSevjMlLOaNz+cvSP1IoMLhxvxcX0XmzNFPlv3luxjz1h2t1k+IRiIMipUTyh7epeMqm/Gw5U/x2gmrn/0ZS/b9mA2upcy9+y8okxkAc7YxZa2x+nhKz9fM+8E/AXCHqnrk+OkUjUbJ1l60o2s/SIYtxnzr7EEjUtktIURczfiPUhyrYtmx37H3xe+fti07Vk/Y3vaUmu4aOWke5eRTQzbTLuq4OMDs2x7mOEW4XruPQKD3pkjrWIzNj3ycyeGtbJzzEGOnL2LkvMsAqN/X9hS6ZFiDtTTE163JLRhEQFuhoXU58VTb98Eapoa2cGjMx1oq2+TmG88x2l+X0nNteuEXzPO9S+26vyW1nwp78SknynTycd7mNu4jwaaORwKVH96FSWmsRWPabRNQDkyhroVAR/d9gPrtuQyJHmf3sl8wbOzUdtuGLC5s0dPPEwwY01GULAwt0mzx9V9Gf3kPOXkDo8x5zOrGmYLlJCLhMNl0/dlW9CwJgfoYs8XCXs88RtevSdmiiz3NXH+YKnITntqSjLwiYxiz9nY+9z0TlR3cxcToHoqp5fD+7adtqzi6D5uKYs4f1aVjK6sRAoX8qQmBGupqWPvS/zH/gwfYbJ/D1C/8DbPF2rLdEQ+BmhcCTyUdizGyynhDmhPt+O1mX9RUV4VJaXB17QfJqM0IgfKHjExhr4QQzRZefx/2b1ex2TGPEeWvtdx/o5EIObqJmCv1a96BMRrj6Fnf59DSn7Q7iqKZ051F9bLvMFofZuM/f90j/WnLit99mfmNb7ByxJ0svOKzABSXjKCCfMwnNnX7+I5wLf74mhLKZKLKVIi1qecLQlS+8Qv82sbky05OsTNbLDRpJyqYuiqtAb+XsXt+D4C7dmdS+5rCXvyc/mxl9+QCEPLVdbhvbZkxgto9eFy7bfzKhTmSfAgUi0ape/qzWHWY49f9g9nnf7TD9mGzG3v09LL24WB8TRKrjAQS6aWUIifLk+5u9B6rC5uKEAl3b0mJxvi6ZMolIVAmkhCoD4qWzqeAemrK+8a0mOym/Zyw9cwIBavNjk/bIdCzCxL3lCMrT771K9/yxmnbqst2A+CKT3lLlsnWHAJ1f1HH935+C9k/G8X897/CTutkxn3hhVY/kLji0/2C9akPgfZuXUsJlVRQQL6uI5rC8sOZoKHWGC1n8XQtBFJFEziqBpGV3TOjEYQQhtD4D1OiK9i7ZSUAddUnMCmNyd0zIRDA7AuuZ9b5H0mo7dRzb8CrHVCR2ulK7dm9aQVLj/2eNbmXsfjWk+u9KKU46pxAUWP3++GO1BO05bb8vs5ajDtY0e3jdqS26gQza19lS8ElZBecXpjBq1yYQ6kLgTa++AuKqaFMDWFIILlRzeaIl4DJedpnzvh9JOzr+LkoUG6cq2jEhHbbBE1OzBFfu9vbs/a5nzAlvI2d0+9j7LT5nbaPWD04Y6c/qzRXNzPJmkBC9CoVn17a3ZkEjfHCQBbPwBhB1ddICNQHOYeMB6Di4NY096RzOhajJHwYb3b7w427q0m5MafwrVxvyjn4Lw6YRlBLFhxaddo2/wljsev8oe0/oHXEbDe+iQe7ORJoy1vPsrD2RdZ4zufdcV9l2N3/xOXObtUuO98IgcKNld06X1sq1z9PTCv2D70Si4pRW9UzU87SxVdn3Citnq79IDn/+v9Hyde3nzYlQAiReuOW3UBYm6la/QQ+r5fGGqNIgyWrKM09i1OKKnMRdm/Pj5QBqF79F0LazMRbf9Hq+4+/cBrDokfxNXa+QHFHsnQDYcfJHyL8zkHkhns2BNr58i9xqDCDLvhCq20+kxtLODVl0+ury5m48xG2WadyZMwNFFFLbWXi184S8RE0nf5CxpNjvHW37P4X7z7+IO+9/KdW61gBUHsAn7aTX9R+QYGQ2YUtmnwIlLv7OfaYxzD/6rsTah+zenDR9kggJSOBhOhVymZUnA16u/d9zldn/DxglRAoI8lPDH1Q0UhjXnXT0d5509cdlccPk618UNS1ICMRXpMHS7hvhUArn/4Rxx8Yw+TwNo6XXswB1wxKGzae1iZac4CwNlNcOrpL5zDbjW/i4UDXRwL5mxoofPf/cUgNZcbn/8Kyj91Hdk7bo01yCo0QqLmcbyoVHH2DPdYJ2Ica5TnrK46k/BzpFGgwhszas7t4o1QKZbaksEdCiLbkFg5ih2Mmi8qfwv7DUo6t+AsA9pziTvbsPfW2YjyBnlmg/1SxaJTR5f9hu2seOXmtQzDnyLmYlObwtve6fI5IOEyObkI7T953Iu4SCnVNj40IjYRDjD7wFFttMxk5uXU1oIDZg7WNSlbJCPiaWPPvv7Drj58jWzfhvPLHeIbPBODYrsQrj1mjPsJnjATy5BRQSS6z/atYtu/HLFz3BQoenc62h5bw3ov/11KxzdF0mBPmIR2+PIiYXV0qFe2K1tPgGpHwi4mYPQu39p+2zEEkaIRCJquMBBKiN5maQyB/90KgYKPx84Aju+dGyoqukxCoDxo0bCxBbSVWlfll0cv3bQbAPXRKj53Db87CmqK3cr0hFo0yeuejhJSddwquZ9yHvkCgdAGlupyqY/tb2tnqD1FuKsZitXZwtPZZWkKg5N/iNdv0+H2U6AoaL3wYh7Pj9SisNjv1uDH5UjsSqPzoASZE91A77AKc+cYby6bqnl8UtDeF48GZOydDRhMIIdqVe93PeWfUf+HHwcSjzwHgyk194YOuCjiHkB/t2ZEyADvXv8EgqolOvrrN7UMnLwKgeucKjpRXsfqtl3nr+d+z+q2XEz5HQ20FJqVR7pMBuSm3FIuKUVPeMy8D3v/XHxhENZF5n2lze8jiwRHt+jOHjkXZ+YurWfDe55nf9CZri69j9NSFDJkwF4CmQ5sTPpY95idsOf3ebLZYcN+7neq79lD+2a1sueQ5lpd+kuxwFQs3foV1v7oFHYuRFzhKfSfVRyMWF/ZY8s8QWclWu7RnYVExgqe8tPJ7jelsFpeUlxaiN1k8xmjCpvhI164KxisUunMlBMpE8uq4DzKbzRw2l2BvOJDurnTKe3QbAIPHzOixc4QsWXhCqZ+C1FN2rHmVKVSxYc6POPty4yGzasJZsOfHHN26gsISY+RPlv8oNbYSulggHqvTCIEiwa6NBNq/ZSXzTzzF6rwPs2jxpQntU69ysARSu3DzgVV/ZxBQsuBqLHZjYb5Qbe9MdegtEa/xZ5aVlzmjCYQQbRs+bhrDx03j/R9uYLZvOQDZBUPS3KuTolmlFNbWEQz4Ol1Mujsa1j5BQFuZePb1bW4vGjKcYxSx5OCv4Ne/Ylj885hWHCx5h5ETOn8uaKgpJx8wnzLdzp5vVMysOX6AotKuFU5oT2NDHSPe/yF7TaOZdm7bX1fYkoUj0Mb0qgStfuJBFgfWsmLEnRTPvZqFU4zwp3DQUKrIxVS5vZMjnGSP+am1uFt97nK7cbmNzwcNGQYLLyAW/SErfnsPZ534Eysf/TxzY+Uczzq7w+NHrW6cOrlKc7FolGzdRMyRm/A+JrsxxbypoQ6Hyyh00PwDpN0ta90J0ZuGTlkCK6Bu1wqYd0GXjxNtfrbNoJck4iQZCdRH1TiHU+A/lO5udEpV7aIeNwXFXY0yOhe2ZuGKpbYMek9qWvs4Xu1g8rk3tnxWMmYmAIHyPYCxltLgaBm+rK4vqG11GA+A0S6EQNFImOiLX6BG5TD5lp8mvJ/Xkos91L31H87k2PcqR9Ugho2fTf5g48eIaEP33k5kGu2rJaYVWfK2RIg+Izzm5MNxTkHmPOSa84z7bdWxnntGaKguZ3rVv9iScx7u7PYrv9Re8RjLx/w3G0Z+mq3LHmX3pU+jgWPv/CGh8/ji1SbtWScD8qxiIwTyVab+69v05DcYRDWxS3/YUhb+TFFbFm7dtZcrq//2Ixbu/TnrXWex5NaHGD9t/mlTpo7Zx5DXuDvh42XpBmK21mv0tcVkNrPkMz9jVf5VLKl4ErsKozqpPmqUik5uOlhjYx1mpVHOxCsCmZ1G8ONvqmv5LOw1niWcUvBAiF5VNGQ4h1UJ9mNdn8oLgK+GmFZ42llGQqSXhEB9VDBnNINj5URCwXR3pUNZDXs5Zk18XnhXRG3ZuHXmh0Dvv/5Xdjw4l5m1r7Et9xyc7qyWbTl5+VSTg6nGmA5WU3mULPzo/PZLt3bG5jBGzUSDyQ3lriwvY+1fvsW46F4OzP0mOfmJT1HyW/NxR+qSOl9HvI31TPK/z5Gic1AmEw6nmwbcqKb+FQKZ/DU0Kle7P3QIITLP8AVXAFCPG6stc9YtcRYaLw/qT+zvpGXX7fjHz3CpIAUXfbnDdlNmn8XSm7/JnNseZup5NzJ+waV84JzH2GMvtaxN05FggzGtzZV7MgTKj4+WDdamvkLq6PJX2eRcyPh5F7bbJmbPxqN9p61fk4h1L/yKRdu/yybHPKZ8/uk2n4u82aMpiZQldOyA30sOXmKewQn3QZlMLLrrjywf/nmC2krBxCUd72Dz4FLBhK5VM2+82qU5iRE8Fqcx5StwSggUiZe4d+fIorJC9LbjubMZ7dtCLBrt8jFUoJZG5cIkz7YZSUKgPspSOA6rinLicOJvjHrbttX/ZmhoP42eri1snChtz4k/kHX9G1VvUBv+QEnsGJvdiym+9L5W2ysspbi9xpvNioPGNDpXSdcX1LbHp4PFQomFQDoWY9UvP0HRr6ew6OAjvO9YwLzLPpHUOcOOfLJjdcl2tV27Vr2EXYXJnnlFy2c1pjxs/r4z/S8R5mAdjSqr84ZCiIwxZOho9plGUqdy092V0+QMHgmAr6pnRgKFAj7GHnySTfa5jJnaefnvVvtPu4liati16sXO2zYY66VlFZwMOnLziwloK9ay91j36pNsfPt5Plj9KuVHDybdlzM5dICgq5NQxZGDVUUJ+BMfDVRetpeJG7/LVstUpn7pn6e9BDpN7ghcKkhDbedrOlUfN9ZEMmcnHgKBEQQtvf17mL5+nLHTF3fcOL5ArM+X+BpI3vrkKwJZ4+v+BL11LZ9pvzESyCMhkBC9zjRiCdl4ObRzfZePYQ7W06gSG6koep9Ec31U1tCJsAVqDm1j6NhpHbatqzxOVeVxRk2YgdlsNj7Umlg0TFVdA8eOlVF3ZDu+muPYcku44MM3dni8zjTUlLP7D59lbtNbVKscshcnFyQkSzlzMCtNU1M9ngwdNhyNRBjj28LO/POZ/8W/tNmm0T2c0fXG0MumMqPyW+Hwri+obXMZI4F0OLEQaNUT32FJ9d9ZnX0J4aGLmHHRLUmP4Io5C8jRjcSiUUzNf9e6Ibz9ZRpwM37uybeyTZZCnMHUVyBLJ1egnAaLTAUToq+pXfYdgt56uj5xN/WKSsYAEKlJ/UgZgM3P/5h51HHkrP/q0v7TzruB+rVfw7fxWVh2bYdtY17je31OwcmRQMpk4ohlOHN8K2D1ipbPfdrOsdveoWTUpC71C8Chg2hLxyXJTQ4jsPDW17Qf5pxCx2KcePwzjCVG3k2/xWZvf9SYvXAk7IHKI3vIKeg43GmoOkIpYM8r6bQPbbEmUHTCFF+HL9BUj6eDaX+nCsSDO0dW4uGNzW38mYbji0EbB6onpC04nK3XPBJC9KzSmefDJji6/HGiZidjJ05P+hi2UC0+s7zgzFQSAvVRg0YZZeL9RzYDN3TYtux3NzA1uImgthJCYSaKTUUxAcXx/5qFtRnf+R/GFQ8QkrV/6xqcz97EDF3L26WfZu6N32BiVs9WdjA5cwFoqqvO2BBo/9Y1jFM+zKPPardNNHc0hfX/xtdYS7RqD0FtZfDwsV0+pzP+4KQTGAm04dUnWLT3p6x3L2XBF5/scoCj3IVYVIz6uspOH2A7E41EGFe/kt1Zi5h7ylSLgKOQksYt3Tp2pskLn6AsZ3a6uyGESNLcc67ovFEvc7o91JCFqTH1IZC/qZ4xu37DZutMZpx1eZeO4XQ62eqezYjaNaA1KNVuW+WrxqsduB2nBwGD7n6NHQd3EQn6CQX8hL21zFpzD0defJCS/3qqS/3SsRh2QtBJCGSOj1rxNtZSmED8995zP2NRcAPvTbqfhaMnd9g2e4gR4DWe2Acs7bCtv8aokukuHNZhu+4wOeJr9ZwaznQi1FgNgDMn8RcbDk8uANFAw8lzBxtoVB4KOvj7IYToGUNGjOeoGsRZJx4n8tQTVHxmI8WlI5M6Rna4qtMKhCJ9JATqo/KLhrDdMpnSQ8+jY99Fmdr/oT0/dIzd5nGU589Fo8BkRiszMWXB6nDjyikgu3QSdfvWMnfnjyg7vIdRE2cl3aeNbz7DuHfuxqec7L78Oc6Zd253vsSEWdy5APgaUluVKpWqtr3JOGDYrIvabWMbPB4OwYkDO7DXH+CYeQijujGP1mqzE9JmCHe8qOPBne8zadU97LWMZcrnn+rWCB5zvIxvY233Q6DdG95gEg0cmHR6ZbKwq5iC+lp0LNaja031lnA4RJGu4WCW3CiFEKlRYy7C7jue8uNuee77LKCB4xd+E9WNH87DI8+jePtyju7eSOmE9gNwS6CGelM2Z44Fyc4tIHvm6VOZVh94h3kVz3F0/zZKRyc/ijYcDmFTMbTV2WE7q8sYEeOPhx0dOVG2n2lbf8hW+wzmf+QrnbYvGjoegFDVwU7bhmqN65vbg4U3LPG1BYPehk5antRc7TKZstDOrFwAov6T57GG6vGa3MhkMCF6n1IKdcs/WLn67yzZ/X2ObV+VdAiUH62iwjWvZzoouk1CoD6safqtTH7/PrateIkpy65us42OxciL1XG4+HyW3vFoh8fbpUywE+rLdkESIZCOxVj59PdZuOtHHDCPwHPbs0zpxgiWZNk8xuifQGNqQqANq96gYse7XPrJb6fkeACOslUcVYMoHdr++kg5pRMBqDu6k4LAYaodI+lu8dsgNlSk4xDoxPqXGKmCZN/6ZEJD2ztijr+tDQW6VjnlVPVrn8SvbUw465rTN3gGYVdhGhtqycrt+4+HlUcPUKJimPOGp7srQoh+osE2mLzgsdQes66SSQceY4NjIXPmn9+tYw2b9yHY/m2Ovf9yhyGQPVhNkzk3oWOOu+Yb6Ef/zuHXf0PpZ36edJ/8fi82QHUSAtnjo1ZCpyxi3J7Da//BfOXHc9XDCb1gyc4roEG7oP5Ip21143HC2kxe4ZBO23aV1WWs5xFMYk2gmM94FsvOTbyohCceAsUCJ89jDTfiM8lUEiHSpWTUBHKL7iD2ox/gP7IJuCnhfRsbaslRXnRW16arip7X91+jD2DTL7yFGrIJvfebdts0NdbhVCHI6rx8bdEwI4QIVu5NuA9+bxPrfnwNZ+3+AVuc8xhyz9sM6cUACMAeD4FCTd0PgWqrTjDsP5/k0iM/o7am++vObHrjaQ5+ewpTfGs4mjOnw7ZDRhnDxEPHdzIkepxgTvcX1A4qO6ZOQiAdNB66ikvHdPt8Zns8BPJ3r1pbKOBnUvVrbMs+q9UUP7PDeCj1NaW2FH261B7bB4CzaGR6OyKE6DdC7sEUxFK3gL7f18S2v32HbHxkX/pAt483bNQEDqpSHIfe7rBdcfAg9e6RCR2zcMgIDpuH46rZ1qU+hX3GfUtZXR22c2TlxdvXdXrMaF0ZMa0oGZPYehpKKSrNg7A3dT6Vz+KroFblpGT9vfZY46XbI/7ERwIpfx0+bcfm6DhMO5Xd4SKszRA8GQLZI02ELBICCZFOLk8uZaYSHFVbk9qv5rhRmMCaV9oT3RIpICFQH+Zwutg5+Aqmed+jpuJom23qKo3PzQmEQHlFJXi1A2oOJNyHjU98nfnet1gx/A5m3vuvlrc5vckVDwnC3u6FArFImIN/uJ1ijOMc3bG2W8drqKtm6PL7sBBhY9bZFJ53d4ft3Vk5VJBPwdE3sKkolqLuh2lGCBTosI0KNtKknSl5kLTGRwJFujkSaNu7z5KDF+vsj7XaZoo/lAaaEl+jIJP5Kox/b7lDeraKnhBi4Ig5C8nGSyQU7PaxVj/xHZw/LGXRsT+xzn0O42YsSkEP4WjhUib532f1Xx5os7pnfXU5g6ghWpj4Qs81WeMYEtjXpf4EA8b6eSZbx+GFM/7METmlklV7zI3HqFE52OwdrzN0qgbHEHKCnU/lswcqqTP3bEEBR3wkUDiQ+Eggc7COhiSrXSqTCa9yYgqdPI8r1kjYKiGQEOlW6R7PIP+epPZpKD8IgKtQRrlnqoRCIKXUJUqpXUqpvUqp+ztoN08pFVVKXZe6LoqODD7rFiwqxp6326k4VWWEQI68zocLK5OJ4+YhOJsOJ3TuymOHmHn0SdZ5zuWs27/fo2+jOuLONqYExfx1XT5GTcVRdvzgXGb5VrK82Bju2Hjw/W71a+uT/498XY//it+y4MvPM7qzUqzAcccYxkWNkVi5o2Z26/wAIeXAHO14JJAp1IhPJf7GriPW+PoB3Q2B9Oa/UUUuU85qveiqJb5QZTJrFGSySK3x761oaO+OoBNC9F8mjzEVp762vFvHCYeCjNnzB3abx/LWqP9m5K3tjzxO1qTrv8P7zkUs2vtTdvzPMk7s3XTa9rJdGwBwDU28Kk20aArF1FBXmfx6SM3TmM22jkcCNY9O1YHOX0Q4/CeoNSc+LQog6B5KUbQCHYt13I9QFV57z06JtnuMRbBjgcRH91pC9Xi7MI3Lp1yYwifP49ZNRGxSXlqIdAsVTaFEV1Bfm/gMCX+1MaU1e1B3F7YQPaXTEEgpZQYeAS4FJgM3KqValTeIt/sB8GqqOynaN2rKfA6YhpO158U2twfiCwe68xObk1nvHEpusO1RRWfa99y3sBCh5Jr/SayzPcSTYwzN1v6ujQwJhwKc+M11jAntZPnUhzjrjv+lmlzMFR90uU9NjXXMLX+OdbmXMm7WsoT3G/nZv7Hxwr+x/dJnGDuj48ogiQib7JijHb8JtoSb8JlSU4LVFq9IFg11LwTKDhylzDkBi9XWaps1Xpkl5OsfIZC54QhV5EoZXCFEyliyjBEijdXdC4E2/+fPFFODf8l9nHvrNykq7nxUcaLyC4uZ95V/snzSA5SEDpD9l4vYvebfLdsbD20CYMiEuQkf0z18BgBlu9Yl3Z9wPAQy2TsOgVzubCLahA50fg/KClXQ5Ejyzyx3GB7lp6G24+l8ebEaQo7iDtt0l9PdHAIlPhLIEa4nYEk+vAkoF9Z4CKRjMTzaR8zes9VlhRCdc40w1m07umNNwvtE64wprQVDZCRQpkpkJNB8YK/Wer/WOgQ8DVzZRru7geeAihT2T3RCKcWJ4ZczObyN44d2t9oerj8BQE5RYnMyg1kjGBwtR0cjnbYtqtvMDudsSkcnPlS7J1isNpq0ExJ4K9eWDb+9i8mR7WyZ+z2WXncXSimOOsZR0Lizy33aveqf2FQEz/yPJ7VfTl4+s5ZczOQFF6Wk8lXY5MAS7Xg6mDXSRDBVIVB8Olgs2HlZ+g6PE/MTtbT9IG5vHp7uT/yhNJM5fceotqTuByshhHBkG6NPfHVdD4F0LIZn4285okqYdva1qeraaZTJxNLr76H2tneoUIUMfeUW1r72NwBMlduow0Ph4MR/iCiZYFSiaYoHSMkIx+9blk6mgymTiSblwhTs/JmjMFpJyJVcpUx7kfHmvLKs/ekX4VCAPBqIuXv23uHyGPdbncSLHWe0gaA1+fAmaHZhjRjn8fsasKooyiEhkBDp1vx9NZkZEqbG49SQLS84M1giP2WWAqeWKSiLf9ZCKVUKXA10XH5K9Ijhy24B4NDKv7XaFmuqIKoVuYmW684biU1FqDlxqNOmjpiXsC0zbtBNyo051LWRIVMq/sk6z3nM//BnWj7zFUxmePQIAX/XwozwjldowMX4eRd0af9UiZgdWGMdh0C2qJegJTXfpB0uYwh4rJsjgRw60H4IFH8zmcxClZksN1ROk6PnqrsIIQYeV54RDgTru7449Np//p6J0V0cn/zJHp/uPWrUONyf+TfHzSXMXvFZXvnj98hp2EOZbXRSL0QKBg2lilzMlduT7kM0PhLI4uj8fuhTbsyhjl9ENNbXkKX8SVfHyR5srA934v1X2m1TU2G8ZTfl9Oy9w2qz49N2rLWJFwzxxBqJdGEET8jsxhY1rkFTnVHow+TKS/o4QojUKhw8jArysZzY2GG7vVvXEQ6HAHD4j1OT5FRY0bsSubOqNj7TZ/z+Z8B9WuvWK/udeiClPqOUWq+UWl9ZmbqqFQNd6ehJlKnB2I+sbLXN7DWqR5gtloSO5RxkrEtSXdb5KBiX9hHNkEX7fCYP1lDyI4Fi0ShZyk8k7/RFea2ls7CqaMuaBMkec3TdSvZ45mO12ZPeP5UiJgdW3XEI5Ih5iVg8KTmfw2UcR4c6Xoeo0+MQINZOCOSIv5lMZnh6popFoxTHKgl7pHqCECJ1svKNFz/hxq4Nzq6prmLU+w+x1zyGuVf/Vwp71r6iIcMZ+t9vs8szn8sO/YAx4T005YxP+jjH7GMoqv+A7RveJRbteF2dU0Xi9y1rJ9PBAHwmN5ZIx+vk1BwzFv235A9LuA8AoyYvYLNjLmcdeoQVj30d9JmP3FAfD4HsuT1ffnlj0RXMrn+DXevf6LStjsXI0l6i9uTDm7DVgyNmvHjzNlQDYJYQSIi0U0px2D2N0obN7bYpP7qfsc9ewKafXE04FCQrWEGjvWenq4ruSSQEKgNOvYMNBY6d0WYu8LRS6iBwHfC/SqmrzjyQ1vo3Wuu5Wuu5RUWSDqbSsdw5jPFvJho5fRqXNVBNvTm/nb1ayxs6AQDv8Y7f+mitcWs/MXtmhEABswdbJPlQwOeNB0dnfB3F442hj7X7kw+Bdm9eSRF1MO7ipPdNtZjFiU13vCaQM+YjYk1NCGRvfoMa7vp0MB2L4dRBtK3tt7HueAW6WLB7ZegzQdXxQ9hVGJUnc6aFEKmTk2+MBIo1VXdp/12v/Z5iajF/+CeYEnyJlAp2dy4Tv/gi22wzsKgYatCUpI/hLZzOSF3G5H98mDW/ujXh/WJBYxSKzdF5CBQ0e7CFO37maKgwRlS7i5L7/m6yWJh0z8us9ZzLWQd/ycpf30EoaARUWmu2blxF7Vu/Mo5d2PMvEKbf/EMqVR6WV75ELNrhu14Cfq9xT3PmJn2eqMWDRzehYzECjcbfW5sn+eMIIVIvXLqQwVRRfqTtaaq1x/YDMM+/gk2/vJGCWCXBJKfCit6VSAi0DhinlBqllLIBNwAvndpAaz1Kaz1Saz0SeBa4U2v9Qqo7K9pnGrWMbLwc2PbeaZ+7Q9V4rYmHQMWlxlz0UN2JDtsFA35sKtIqPEmXoDULezT5UMDXaIRApjO+jsIhIwCIduEBun6PcQ2GzcmMEMjeSQjk1j5ittRcR5PZhE/bIdz1kUChUMBYC8DadgjkdHqIagXBvj8SaP+7TwFQPPXcNPdECNGf2Ox26rUb5e9aCITPmI4zfOqSFPYqMWabg6F3Ps87Qz7B2LNvTHr/GTd9h/VnP8bqvCtZVPsS6//xfwntF4vft6zOzl+KhCweHJ08c/irjMqPOV2ojmOzO5h7z3OszL+aJRVP4f+fMWz53jIOPDidqS9eyuyGN1njWMLQ8bOTPnaysnLyOTzrK4yJHWTru3/vsG1DrTHyzORO/LmzWbR0Hnk0sO6vDxFqrAXA7unZ6mdCiMQUTj4bgLLNb7a53VdjFCJa7z6HeY1vkIM36amwond1GgJprSPAXRhVv3YAf9Nab1NKfU4p9bme7qBIzIh44FC19fThutnRGoL2woSP43Q48Go7KlDXYTtvQ3y+tiMzyndGrNm4o8mHAv4mIwQyO08PQRxONzGtIJR8sKTj+3hy0//wErM4cXQQAkUjEdwqgE5RCAQQVHZUpOshUMAbv472tkMgZTLhxXlaKdm+qnDfs+wxj2XUlAXp7ooQop9pMOVgCdR0beewl6C2YrZYU9upBOXkFnD2Z39GQVHya9643FnMPfdq5t7xW7ZZpjB5/TfYub7tH1xOFYtPB7MnsCZQxJrNoOgJlv/523gb69psE60/SkyrlpdKyTKZzSy+6w+sXfIbtrsXYo6GaLAWsnLcV/DetZUF97+C09U7i67OuOQTVJFLbM1vO2znrTNKSFs9yYdAC6++mw2ORczc+VMCe98BwJWd/HGEEKk3asp8mrSTyIFVbW4PxQsRDb/pZ2y0G7MpLDlDe61/InkJrbantX5Faz1eaz1Ga/1Q/LNHtdatFoLWWt+mtX421R0VHSsqHcURVYKj7OQ/Th2Lka/riLgSD4GUUjQpN6ZO1tfxxx96MiUECudPYDBVVBzeldR+wfh0MIvz9K9DmUz4cEAXFjjW8beJDkdqplh1i8WBgyA61va6CE3x66gcKQyBsGGKdH06mN9rLPhsamc6GEBAOTB1c/HpdNu3ZRVjo/upHnddursihOiHvOZsbKHaLu2rwl58ypHiHvUuq81O8SefpkblMfifN7P64etY8fSP2m3fcu92dX7vdiy4jTLzUJbu/wkNP57LB8tfbNXG3HiUGpWDzd71P0dlMjH/wutZdO/fmfKN95j51bdY8rGvkVvUu2/YbXYHe4dey3T/Wsr2tb/odmOFsQ6SMzf58M5kNjHmU38iiI2Zx40fI9w56X+ZJoQAi9XKPsdkBtW2XSFMN5YT04r84lJKP/EYy7MvZ9i8y3q5lyIZ3a9BLTLGsbx5jPVtJhwyRn401FVjUxGUJ7kSoj6TB0snlbYC3joArK7MqA42dMkNAByIT69JVMhnhEBWZ+swy68cmMJdCBrCPoLa2qvrKLRHWV2YlW75O3Emf3zItSmFZViDJgfmbowECsZDIHMHIZrf5MIc6dshUOU7vyWkLUy68PZ0d0UI0Q/5rXm4InVd2tcU9hGkb4dAYCw2zc3PccJcytim9Zy187us+ms7QVC4eSRQ52sCTVt8KRO+uYHNFz5NSNmY/PqtrP7Lg6e9cHH4y/tVdZwxl95NFBNHXv5+u218Rz4AYMiEOV06R27hILYWXIRdhYHMGFEthDB4B89nZOwwDdWtCw6YfBXUqSwsVhvFg4ey9EtPMLh0ZO93UiRMQqB+xDrhQjzKz54NxrDnusqjAFiykwuB/KYsrJ0seBiMT6PKlBBo+Ngp7DaPJe/gy0ntF/YZgUNz2fFT+ZUTcxdGtJjCfgLKlvR+PcLmBMDvb3vqlL+pDgCzM3XXMaQcmKMdVyTrSDDeV0sHIVBQubD04RCovvoE06teZmPuBeQUJPfvUwghEhGy55EVTb5qJoA54iNg6vshEMDQMVOZ+I215H99D5sc85m//Xvs3byiVTvV/ALHbE742DOWXEr+Pat437WYRXt/zJpffJxwKEDlsUOM9m+jwT0yhV9JehWVjmJ90VXMq/4Hh3a2PRrAWrWd4xSS043wJu+sTwHg1Q6s1gx5lhJCkD1hKQAHNrWuFGjzV1Fvkmp+fYmEQP3I2AWXEdEm6j/4NwANJ4yV2p35yc3JDFqysHdSaSvkqwPAnkGVG6qGX8r4yG6OH0p8SljEb4RAjjZCoKCpayGQivgJkt7S8M2U1XijGfK1HQIF4iGQ1ZW6aX1hkwNLN0KgUPyaWDqYohayuLBFuz7lLN22v/RTXCpI0cVfTndXhBD9VMyZT45ubHc6cEcsUT8hk7MHepU+ZouVUZ99ihgmKlf9pdV2FQl06QVOVnYus7/8D5YPvo2FdS+z7wfLOPqn27ESYciV30pF1zPGhI9+Bz926p7/MpFwqNX2Au8+yp1ju3eOmWex1zSKRpUBU+qFEC3GzDibkDbj37uy1TZnqJqmJAoRifSTEKgfyc4tYLdtMoXlywHwHtoIQGmSw3LDtiycsY5HWUR8zeFJbvId7SEjln4cgINv/iHhfWIBI+xyeFqHQGGTC1s0+dEmpmiAQIaspWC2GyFQ0N/21xGKT+uzt/H1d1XE7MAa6/p0sEggXqbX1X4IFDb33RAoFPAz4dCTbHLMZ/TkeenujhCiv3IVYldh/N7kRwNZoz7C/SwEAsjJK2S7czbDK95sFY6paKDLL3DMZjNLP/dz1sz5McXRY8wMrmfD8E9QOmZaKrqdMfKLS/lgwheYEdzAth9dTMWJIy3bQgE/Q6Nl+PImduscymQieOlPObTggW72VgiRSk63h/3WceRWrm+1LTtaS9Au0zf7EgmB+pmG0mWMi+6jqrwMS8UHHFPF5BYOTuoYUWs2bt1x5aVYwHiodGbldrWrKVc6eiJbbDMZeeg5YpFIQvvEgsbX6W7j6whbnFijyYcZ5qifcIYMo28OgUKBtkOgSHxNJIc7dUM4I2Yn1ljHZek73D8ezNk6KNMbtbhx6K4HTem07e2nyacBtVCKKwoheo7ZYxSFqKsqT3pfW8xP2NL52jh9UWjspZTqcvZtW3va56ZIgJDq3ijeBR/+FOrz63hv+neZ+/HvdOtYmWrxTV9l1ZQHmBTcjOfXc1jx689TX3WCsr2bsaoo1pLuB19T5p3LgktvTkFvhRCpVFM4l9Hh3QROmWGgYzHyYrVEnP1nDbSBQEKgfqZwprES+75VLzDYu5MTrglJH0M7ssnSXnQs2m6bWMAYCeTOzqz5n6EZtzCESraueCGxHYINRLXC4WxdiSpidmHvQtBgiQYyJgRqrrAVCrQd6kWbp8OlMMyLmh3YdNeng8XigZXd3f4UtajVjVP3zZFAavPTlJPP1LOuTHdXhBD9mC3LeCD31p5Iel97LEC0n4ZAY5Z+hJhWVKx97rTPzdHuh0AAeUVDWHjN3d2qCpbpFn/kHspufIMtniUsPvEE5l/OpPa1nwBQOHpWmnsnhOgpzrFnYVNR9m54q2U0ZVNjHU4VAk9xmnsnkiEhUD8zZvoSjlNI1vanGKqPEyyamvxBHLmYlSbg7aBCWLCRkDbjSKCKRm+adsFN1JBNZO0fE2pvCjXhVS6UqfU/hajFhaML05qssQBhU2asCWRxGCFQpJ2FoaM9EObFLE7suusjgZpHZ7k6WKcoZvPg6kbQlC5VJ44w1beWfUM+hDkDqscJIfove67xQO6rb13JpTMO7e+3IVDBoGHssY4n98Sq0z43xwJETLIQcaJGT5zFwnufZ891/+GYuYQ59a8S0haGjutfU+CEECeNmnkeMa2Y+sbHOfydaUQjkZZCRObs5GaeiPSSEKifUSYTBwddyOTwVgBcI+YmfQyTMxeAxrrq9s8TasSrXKBUl/rZU+x2J7uKL2WKdw3exrpO25vCXny0ve5BzOrBQfJBgzUWJGLOjLUUcgaPAsB7bGeb21WggZhWuNpYGLurtMWJoxshkA4ZI4Ecng4Wq7Z5sKsw4VDXz5MOe996HIuKUXK2lIUXQvSsrDyj8mCoLvnpYA4dINZPQyCAJscQPJHa0z6zRIMZM4q3L5kwbT55n3mJg6qUvdZxUtFLiH4st3AQ6+b/hPeyLmSELmP/1tU0VhkhkD13SJp7J5IhIVA/lDfvoy2/Lp28MOn9LfHFnn2N7YdA5lATPpWZD4jZM67ErsLsWvlip23NYS+Bdha/1DY3Lh1IurKKLRYgZs6MB8nSkRM4ThHWw8vbbhBqxIsjqZK4ndFWJw6CXapIY/TJS1ibOxxKr+zGotG+BIK+TKKq91CPm5ETZ6e7K0KIfq546FiatBNdti6p/XQshosA2FpPk+4vIvZcsvTpo52tsQCRDBnF29cUDR5K3hdXUvzZF9LdFSFED1vwodsZe+OPAaje8h8CtccB8BSUpLNbIkkSAvVD42edw3EKKaeAwkHJlYcHsHmMEn+Bhpp221giTQRMmfmAOGHeBdTjJrL95U7bWiJegqZ2wiybG4uKEQwmNyXMrgPEMmQkkFKKw7lzGe3dSCzaeo0nU0+EeVYXFhUj3Eb52ESosA9/J9XVTHZj0WhfvMR9X2EJ1FCvUjfqSggh2mOz29ntmsWwmtWgdcL7Bfw+zEr36xBIO/PI1k2n3RetOkg0Q+7dfVFObh6FRTIdRIiBoLBkBAdNw3AdW0W43lh3LruoNM29EsmQEKgfMplNlC38Nvtn3Nul/R0eY32YYFNtu21skSaCGRoCWWx29mQvZlzDKsLhcIdt7VEvIXPbX0dz0OBv6mBtpLaOSZCYNXMeJE0jl5FLEwfOqIQCYAk34W8vBOsiZTOO5/d1XGGuPaawl0AnZXrNTmMkUIfrVmUge6gOn0VCICFE7wiOOJshuoJj+7cnvI8vXlJe9eMQCGc+ZqVpbDj5nGPTIWJmGQkkhBCJOJG/gLH+D4jVlxHVirwCCYH7EgmB+ql5l3ycRVff0aV9ndkFAIS97YdA9qiPsCVzHxAtky4jj0ZC3y3lvZ9/vN12tlj7X4dqCYHqkzq3Q4fQlswJgYbPvRiAyg9ea7XN2gNhnrLGy9L7Gru0vzniI6A6/vOzOI31goLe5K5NurkidfitmVVRTwjRf5XOMSqGHtnwz4T3CXiNAN/k8PRInzKB2W085zTVnlwvyaaDxCyZMZVbCCEynW38ubhUkDnHnuKIqVQKnvQxEgKJVjw5xsNR1FfXbhtHzEvYmrkPiFPOu4G1Jbdw3FLKhNq3212fxhnzEW0nBLLEH4CDvsRHm0QjEewqDBk0EmjQ0DEcUSU4j7zbaps92kTQktrraLYbIVCgnYpkne4f9RPqZHFOW7xyWDiJa5MJsmL1hO0SAgkhesewMVM5RjG2g28nvE/Qb4TrFnvm3uO7y5plPOd466paPrPrILEMeoEjhBCZbMy8S6nTHrbbpmP6+DPp7o5IkoRAohVPjvFDqvbXtdvGpX1EMzgEstpdzP/ML6kefwN5NFJetq/Ndk78xKzthUDGlKNkQqCW4CODQiCAsuKzmeR/n/raqtM+t8d8RFI8ostkN44X8nu7tL816iNk7niKms1lTKkK+/tOCKRjMXJ0A1FHQbq7IoQYIJTJxJH8RYz3biCQ4PfkkNcYxWnuxyOBHNmFAATqK09+RggtI4GEECIhOXkFWO/bw4yvvsXwMZPT3R2RJAmBRCtWq40m7UQF2p9q49Z+tC2rF3vVNTlj5gJwfOeaVtt0LGZ8He287bQ2jzbxJz6tKRBfB6d5XZxMkT/vo9hUlF1vP33a555YIxFbB6XYu8ASD4HCga6NBLJGA0Q6GQnkiJe0j3RxtFE6NDbUYlNRlFtCICFE73FMuwK3CrJ71T8Sat/8vdvqyvx7fFe5cowQKNRkVEGNhIJYVRQsmXXvFkKITOZ2uVBKpbsbogskBBJtalRuTKG2R1kEAz5jypM9teFBTxgxaT5RrQgc2dhqWzDgw6Ji7YZZzQ/A4SSChmD8TWumLag5fvY5HKcI+64XWj4L+L0UUE8sK7Wr+VscxtceCXRtJJBd+4l08iDu9Bh/93Swa+sOpUNjjVE9wewpTHNPhBADycTFH6JROwlufSmh9s0vPmzO/jsSKCtvEACReAgUCDTfu2UkkBBCiP5PQiDRJp/JgyXcdgjkbagDQDky/y2h053FEfNQnFVbW23zNtYBYGrn63DERwJFA4kHDaF4YNS8Lk6mUCYTBwdfxGT/+9RVGWFERdleAMz5I1J6Lmt3Q6BYoNMpaq6sXABifSgEaqoxFiC1ZUsIJIToPXa7kx1Zixlbu5xYpOOKmQDR+EggmzPzX/R0VVZufESmrwaAgC8eAmXYVG4hhBCiJ0gIJNoUMHuwhdv+AdsfLx1v7iMPiJWeiZT4d7f6vLnql8nedghkdxufx4KJjwRqXgfHbM+skUAAhQtvxKqi7H7nKQDqjxnrJLmLR6X0PM1vjyOhroVATvxoa8chmt3uxKsdZJe9k/A6F+nmr68AwJFdnOaeCCEGnEmXk0cDe9f9u9Om0aDxPdXp7hv3+K6wWG004EYFjOeZUMAHZN5UbiGEEKInSAgk2hSyZuGIth1++OMjaMzOnF7sUddFB02nmBqqThw57fNAvLy4xdX2g67bY3x9OomRQOH4w7Mlw0YCAYydvoQyNRjHbmNKgK/yIAD5pWNSeh57PATSQV+X9nfqILFOQiBlMrFt5teZEt7Kjl9cQzQS6dK5elOowViA1JM/JM09EUIMNJOWXUutziKw/FedN46/+HD04xAIoFF5MAfrgJPrIJlsMhJICCFE/ychkGhTxJqNM9Z2CBSIjwSythOeZBrPyNkAHN+59rTPQ/EQyNrOiCaH00NMK0hiREvzFKjmdXEyiTKZODLkYiYHNlFTcZRY7WEi2kThkJEpPU9zCBTrwkigUDCITUVQnYRAAPOvvptVE+5jlv893vv9l5I+V2+LeY3KbNkFg9LcEyHEQJOVlcPWoTcw3fceR3au77CtDhn3fqc786d8d4fXlIMtZDwHNI8EMstIICGEEAOAhECiTeGsYQyKVXJ0z6ZW2wJ1xtomWX1kREPJuFkAeI+evi5Q2G88/NncbY9oMpnN+LFDOPEwo3kYvS1DS+sWL7oJi4qx5+0nsTYeoVIVYLHaUnoOh6s5BPInva8/XpqYdiq2nWnxjV9lde6HWXL8T6z887eIRaNJn7O3aG81IW3GE1/PSAghetPkq/4bn7Zz4l8/7Lhh2EdAWzFbrL3TsTTxW7NxRIzngEgGj+IVQgghUs2S7g6IzDTuw/cQ+N+/UP7CNyi99/SyspF6Y2HhnKKh6eha0vKLS6khG1PlztM+D/uMwMHewYgmn3JiSioEMt4m2p2ZNxIIYPSU+Rz+ewmufS9jiYWosQ0m1VGevXkUVDj56WB+bz05gCmJ6mqzPvsbNvz8Gpbs/xn7HnqBY55pRK1ulAJltuIYvZjpy67EkeZrYvZXU6+yKTJJ9i6E6H0FRUNYXXg5c6pepK7yOLlFbX/3VyEvfuWgv9fJCltzKQiWARCJjwSSEEgIIcRAID+NiDYVDRrKpmE3M9v7Lns3vXvaNt1UTlibyc7vOwvcHrONJKdp32mfRf1G9TOnJ7fd/QLKiSmJMKN5CpQ9Q0vrKpOJo4POYUJgC4PDh/E5S1J+DpPZhE/bUeHkRwIF48GcOYnKcw6ni9lfeYVVUx8kYHIzreEt5lc9z/zKv7P4xBPMX30H23/5kaT7kmrWUB2Npr6xjpYQon8afP6d2FSEHf9+tN025oiPgOrvERBEHLlka+OeEwk2h0CZ+QJHCCGESCUJgUS7pn3kqwS0lapVj5/2udlXSa3KwWQ2p6lnyWvKHktp+DA6Fmv5LNZojGjKLWo/CAmaHFiiiYdAOmS0tbkyMwQCyJ52OTYVJY9GIlnDeuQcQWVDJTGCqlnIHw+BknwQVyYTi6/7IlO+vorcB47i+nYFzm9XErm/jPdyLmOydy3hUDDp/qSSM1yLz5Kb1j4IIQa2UZPnst06haH7/9ru9FlzxEdQ9f8FkrUjj2y8RCNhwnXHAHDn9Z2XW0IIIURXSQgk2pWdk89O1xyGVb5zWnhiD1RRb85PY8+Sp4om4VF+KspOjgYyNZVTQzY2e/tvPEMmF9ZIEiFQfNSQM4NDoPHzLqBBG0PeLfnDe+Qc5ZZScup3dt7wDMGmOgBsKapK43C6sU64AIcKc3D72s536EGuSD1BW25a+yCEEP7pNzNMH2f7e/9qc7sl6idk6v8jgZTLeI5prK2C8q3UazdDho1Nc6+EEEKInichkOhQcMzFlOpyDu7c0PKZK1yNz1aQxl4lzzN8GgAV+ze3fGb3l1Nr7vjrCJud2GJJrG0T9hPRJqxWe5f62RusNju7s+YD4Cwe1SPnqC1eyNjwbryNdUntF6gzRme581M3Ta1kylkA1OxambJjdkWOrifi6FvhqRCi/5l87scIaCtNG//e5nZr1EfI3P/XxjG7m0OgcnLqd1FmG4WSNduEEEIMAHK3Ex0as/haAE6sfa7ls5xoLUF73wqBmiuE+cpOVghzhyppshV1uF/U4sIe8502EqojKuwngB2U6npne4GacjUhbaZ41PQeOb57wjlYVIx9G15Par9wfNHxvBQuOj542DiqyMV0bEPnjXuIz9tADl5ibplqIIRIL6cnmx3u+YyqeqvNKWG2qJ/IAAiBbNnG/b+x8ghDwwdozJ2Y5h4JIYQQvUNCINGhwpIR7LKMp+jIq+hYjFg0Sr6uI9rHfpjNKxxsBAGVO05+Fq0m6Oz464hYsxgeO0ro28V8sPzFTs+jIn4CKnNHATWbfcmtNN61neLSkT1y/LFzzyekzfh2vZ3UfrqpgpA2k5VXmLK+KJOJI87JDGrY2nnjHnJ0jzECzTFkUtr6IIQQzaITL2cQNeze+E6rbTYdIGrp/2sCDZuyhLA2E1r1f7hVENPgaenukhBCCNErJAQSnaob/xHGRvezffUr1FWfwKJiKM+gdHcraYdc0xhTv4pQwE84FCRf1xNzD+5wn0GX3cdbpZ8lqGz41z3R6TnMET/BPhACKaUoKOr4a+8OlzubvbaJ5FWuSWo/i6+SWpWb8iH5gcGzGK6PUV9TmdLjJqruoBECFYyemZbzCyHEqcYt/QhhbSb86rd453/v4tXf/D92bH0fAJf2EbP0/5FA+UWD2eaYxUzvcgDyRs9Oc4+EEEKI3iEhkOjUjA9/nkpyib3zI+qrjAoa1pyeCxB6imXebeTTwNY3/kJNRRkmpVHZHa89M2LcdM799A/ZlXMWExpWEAp2XGHKFA0QGgCldRNRP2gBY8J7aWqoTXgfe7CShh5YdNwzegEAR7atSvmxExE5sZ2gtlIyanJazi+EEKfKyStiU+75TAhtZ3H5k1x87H/xvfx1fN5GCqgnmp26KbmZLDj+CgAi2sSwCRICCSGEGBgkBBKdcjjd7Bl9G9NCmyhfZ0yJcuYNSXOvkjd12dUcU8XYNv+ZuvLDANjzSxPa1zr1CnLwsnPNvztsZ44GCJsyfyRQb3CPPQuLinFw87uJ7xOuwWdLfQg0aLSx9pH3ePIVy1LBVbebMsswLFZbWs4vhBBnmnfPM9i+XY31gWo2uRZTEDxMxZE9AFgLRqa3c71kwtk3ENZmysylODK4qqcQQgiRSgmFQEqpS5RSu5RSe5VS97ex/Uql1Bal1Cal1Hql1Fmp76pIp6lXfIGQtjDmwF8AyCpMXfWm3mI2mzk08iNMDW2hZruxDoKnMLG3nROXXIlf2/BufqHDdtaon/AAKK2biBEzziamFU17Ex99kxOtJeRI3XpAzYqGjMCn7eiqfSk/diIGBQ5Q6x6dlnMLIUSHlCKQPYoh0RPUle0CwDNkYJRKzy0cxLpB13F8xFXp7ooQQgjRazoNgZRSZuAR4FJgMnCjUurMOQ1vADO01jOB24HfpbifIs2ycwvY5ppLEcbUnpziYWnuUdeMWPpxAEoP/A2A3EEjEtrP4cpip2cBE6tfo6G+pt12lliQiFlCIICcvEIOmYfhLE+sKlc0GiVP1xNxpX7RcWUycdxcgrPxQMqP3ZmGumoGU0W4QCrPCCEykyoYjV2FCexbCUD+0PFp7lHvWXznb1h063fT3Q0hhBCi1yQyEmg+sFdrvV9rHQKeBq48tYHWuklrreO/dQMa0e+EJxiX3a9tZGXlprczXVQyejJlagjDY0eJaBP5RYmPaMq+4F7yaGTLcz9ot41NB4hKCNSiMmc6owLb2yxDfKbmRcdNWT1Tea7ONZz8QFmPHLsjx3ZvBMA5VCrPCCEyk2vwOACKK1bi03YKiwfGmkBCCCHEQJRICFQKHDnl92Xxz06jlLpaKbUTeBljNFArSqnPxKeLra+sTE+VHtF1E5Z9lJA2U2PKS3n1pt5UVrgEgGqVh8lsTni/MbPOZpNrEdMOPd5ulSlHzE90AFRVSdjwBWTj5Ui8RHpHGiqNgMaS3TPrTYVyRjEkdoJwqOPFvVOtdpdReaZ4zKxePa8QQiQqf6gxUnF0dD/l5kF9+h4vhBBCiI4lcpdXbXzWaqSP1vp5rfVE4CrgO20dSGv9G631XK313KKioqQ6KtIvJ7+QjVnncMLRt9cKcE66GIA6S/Jrz+Rc9i1ylJetz32v1bZIOEyBriXaSdn5gWTQ5GUAlL/0LVY9/+tW26PRGIFAAICmaqPynDO/Z0Igc+E4LCrGicO7e+T4p9KxGMeO7GPjW39n9t5H2GadwpDh43r8vEII0RWDho4mqC0A1Nn73pp/QgghhEicJYE2ZcCpC8AMBY6111hr/a5SaoxSqlBrXdXdDorMMvMLT2MsE9V3jV9wKcF3rPjsyYdAo6YuYsO/z2Zm2ZPUVNxLfvHJh+WqE4cYrKKYcvvmekk9YdjYaRw0DWO+713Y/C7l8y9mUOnJBZLX/N8djKh4E/Mn/0Ww7gQAWQU9EwJll06AzVBzeBvDxnZ/ata+rWsp2/Q6yu5h/uWfwuF04WusZ8PfHmJ02QuU6nJKgDLTYEo+85y8WRdCZCyL1UqZaRAj9VH8brmHCSGEEP1ZIiHQOmCcUmoUcBS4Abjp1AZKqbHAPq21VkrNBmxAdao7K9LPbuv7Ja6d7izWzvgGnpIJXdq/8PJv4XzqfDb//SEWf+6Rls9rj+1nMOAoGpmajvYDJrOZkd/cyoFtaxj1zEUcfO9FBl17T8v23NqtlFLBoT9eSXTIBcZnPbTo+KBRUwHwH+/+SKCN777EhDc+xRhlTC17f9/LBMd9iDEf/JSl1LDJOou9w2/GZPMwadm15BX1TLAlhBCpUmMfysjAUXRuYgUThBBCCNE3dRoCaa0jSqm7gFcBM/AHrfU2pdTn4tsfBa4FblFKhQE/cP0pC0ULkXHmX/PFLu87YuIc1uZcwKzjf6PqxH0UDh4OgLfCqDyVM1hKgZ9p5KR5nKAQ677XgJMhUGH4GHvNoxkWOUxp2Z8JYMXTQ4uO5xYMogE3qqZ7ZeIrjx9m4huf5IR5MKYb/sLR9S+zePcP4IP32GUex4nzf83MxZekqNdCCNE7fJ4REFiDrUjuYUIIIUR/lshIILTWrwCvnPHZo6f8+gdA+yWThOhnhlzxANbHl7LnuQcp/PzvAAjXHAKgaOiYdHYtIymTiUMFZzG16t8EAz7sDhd+bxPF1LB/6Ec5ZnKy7MBPqVCFlPTQtCllMnHUOoLi2vfRsViXp2eV79tEkQrhO++7TBk/gxHjZ/DePwcRi0ZYePmnklpsXAghMoXOHw1VkF0i65cJIYQQ/ZksUiFEFwwbO5X1eZcyp+J5tn53Me/9/ReYGo5SSxYuT066u5eRHJMvxa0C7F77GgAVh3cBYCkczZKPf4N1jsUcdU3u0T40TvkYo2KH2fLOs10+RiC+dpGn8GQJ5YWXf5LFV35WAiAhRJ9VuvQW/lz4JUZMmJ3urgghhBCiB0kIJEQXjfzI99jgWsKgyDFKPngUh/coVebidHcrY41fcBlBbcW79WUAao8aa/NkDRmH2Wxmzr0vM/e/n+/RPsy67NPGtLRVP+/yMSINFQDkFpWmqltCCJF2o4eVcstd38JhS2iQuBBCCCH6KAmBhOiiwaUjWXTfS+wbcwvD9VGGBXbRZJfy8O1xerLZ6ZxBSeVyAAIVewEoHjERAJPZ1OMVtKw2OwfH387k8FZ2rv1Pl46hmyoIazPZeUUp7p0QQgghhBBC9CwJgYTopoKpRlWrfBoIumV0SEcCI89nuD5G2d6tqNqDNGknuQW9G5xNv+IuasnC/9aPu7S/2VdJrcpBmWTqlxBCCCGEEKJvkRBIiG4aNXURDdpl/Ca3Z8qb9xdD518NQNm6F3E0HabcMqTHR/+cyeXJYeewG5nlf48D29clvb89WE2DOa8HeiaEEEIIIYQQPUtCICG6yWK1ss81HQBrwYg09yazlY6exGFViuvAa+QFj1LvSM/IqclX/Tdebafmnw8kva8zVIvPKiGQEEIIIYQQou+REEiIFPCXLgbAM2h0mnuS+Y6WXML00EaGx44SzBqelj7kFAxmy6hPMse3gvdffTypfbOiNQTtBT3UMyGEEEIIIYToORICCZECEy+7i7dG/Tdjpi1Kd1cy3rzbvs/yohsBsJRMT1s/5t70APtMoxi2+hvUV5cntI+OxcjX9USdhT3cOyGEEEIIIYRIPQmBhEiB/PwCzr31m1gsUlq3MxarjaWff5SDH1/NnA99Om39sNrs6Ct/RY5uYO/vb0fHYp3u09hQi12FwVPcCz0UQgghhBBCiNSSEEgIkRYjx07GZE5vha2xM85i3di7meNbwa6H5rPmx9cSCYfabV9XeRQAS7aEQEIIIYQQQoi+R0IgIcSAtuimb7Ky+EYUmgWNr7Nj9SvttvXWHAfAntO7Ze2FEEIIIYQQIhUkBBJCDGgms5kldz7KiP9+hybtxPf+X9tt6681QiBXfklvdU8IIYQQQgghUkZCICGEABwuD9tzljGp7m2CAV+bbcL1xgLSOUUSAgkhhBBCCCH6HgmBhBAizj7ro2TjY+P/3sbqF37danusqZKYVuQWyHQwIYQQQgghRN8jIZAQQsRNXvJh9qkRzK1/jUWb7ue9535+2naTr5J65cFitaWph0IIIYQQQgjRdRICCSFEnNVmZ8y3tqC+UckW2yxmbfkOezcvb9meX/cBFRaZCiaEEEIIIYTomyQEEkKIM5gtFoZ+6glqVQ6u52+nobqCfVtWMy66j5rRV6W7e0IIIYQQQgjRJRICCSFEG/KLS6n90G8o1NUc+r/rqHnjJwS1lUkXfTLdXRNCCCGEEEKILpEQSAgh2jFp3vlsmP4AE4JbmVf/H7ZkLSW3cFC6uyWEEEIIIYQQXSIhkBBCdGDRtV9g3xUvst6xkLyL70t3d4QQQgghhBCiyyzp7oAQQmS6SXOWwpxX090NIYQQQgghhOgWGQkkhBBCCCGEEEIIMQBICCSEEEIIIYQQQggxAEgIJIQQQgghhBBCCDEASAgkhBBCCCGEEEIIMQBICCSEEEIIIYQQQggxAEgIJIQQQgghhBBCCDEASAgkhBBCCCGEEEIIMQBICCSEEEIIIYQQQggxAEgIJIQQQgghhBBCCDEASAgkhBBCCCGEEEIIMQAorXV6TqxUJXAoweaFQFUPdkekhlynzCfXqG+Q69Q3yHXKfHKN+ga5TplPrlHfINcp88k16hv6w3UaobUuamtD2kKgZCil1mut56a7H6Jjcp0yn1yjvkGuU98g1ynzyTXqG+Q6ZT65Rn2DXKfMJ9eob+jv10mmgwkhhBBCCCGEEEIMABICCSGEEEIIIYQQQgwAfSUE+k26OyASItcp88k16hvkOvUNcp0yn1yjvkGuU+aTa9Q3yHXKfHKN+oZ+fZ36xJpAQgghhBBCCCGEEKJ7+spIICGEEEIIIYQQQgjRDSkPgZRSlyildiml9iql7j9j293xbduUUj9sZ/+PxLfHlFJzz9g2XSm1Or79A6WUo43974qfWyulCk/5PEcp9Q+l1Ob4/p9I1dfc1/TUNVJKfUwptemU/2JKqZlt7D9KKbVGKbVHKfVXpZQt/rlSSv0i3q8tSqnZKf7S+5RMvU7xbefE992mlHonhV92n5MB16m973kfi/872qKUWqWUmpHCL7tPyeBrJPelU/TgdbIqpf6kjOeGHUqp/9fO/nJv6kSmXqP4NrkvxWXAdZL7Uicy+BrJfekUPXidbEqpP8av02al1Dnt7C/3pU5k6jWKb8vc+5LWOmX/AWZgHzAasAGbgcnxbecCrwP2+O+L2znGJGAC8DYw95TPLcAWYEb89wWAuY39ZwEjgYNA4SmffxX4QfzXRUANYEvl198X/uvJa3RGm2nA/na2/Q24If7rR4E74r++DPgXoICFwJp0/3nJdWrzOuUC24HhHZ1/IPyXIdepve95i4G8+K8vHaj/njL8Gsl9qReuE3AT8HT81674dRjZxv5yb+q71ygXuS9l0nWS+1LfvUZyX+qd6/R54I/N+wIbAFMb+8t9qe9eo1wy+L6U6pFA84G9Wuv9WusQ8DRwZXzbHcD3tdZBAK11RVsH0Frv0FrvamPTRcAWrfXmeLtqrXW0jf03aq0PtnVoIEsppQAPxje1SFJfXf/Qk9foVDcCT535YfzP/zzg2fhHfwKuiv/6SuDP2vAekKuUGpLwV9a/ZPJ1ugn4u9b6cEfnHyDSep3i+7f5PU9rvUprXRv/7XvA0M6+mH4qY68Rcl86VU9eJw24lVIWwAmEgIZTG8i9KSGZfI3kvnRSWq9TfH+5L3UsY68Rcl86VU9ep8nAG6fsWwecOQNG7kudy+RrlNH3pVSHQKXAkVN+Xxb/DGA8sDQ+XOodpdS8JI89HtBKqVeVUu8rpb6S5P6/wkj6jgEfAF/UWseSPEZ/0JPX6FTX0/YPRAVAnda6+YZy6vk76ttAk8nXaTyQp5R6Wym1QSl1SzfO39el+zol6pMYb4wGoky+RnJfOqknr9OzgBc4DhwGHtZa15zRRu5NncvkayT3pZPSfZ0SJfelkzLpGsl96aSevE6bgSuVUhal1ChgDjDsjDZyX+pcJl+jjL4vWVJ8PNXGZ83lxyxAHsaQtXnA35RSo7XWiZYnswBnxff1AW8opTZord9IcP+LgU0Yad0Y4DWl1HKtdat0vJ/ryWtknECpBYBPa701yfN3tG2gyeTrZMH4Rng+xlum1Uqp97TWu5M5fz+R7uuUyP7nYjxsn9WV/fuBTL5Gcl86qSev03wgCpTEj7NcKfW61np/gueXe5Mhk6+R3JdOSvd16ryDcl/K5Gsk96WTevI6/QEjbFsPHAJW0XrEldyXOpfJ1yij70upHglUxukJ2VCMJLl529/jw9bWAjGgUBkLLm1SSr2SwLHf0VpXaa19wCtAMotgfeKU8+8FDgATk9i/v+jJa9TsBtp/I16FMWSxOYA88/zt9W2gyfTr9G+ttVdrXQW8C8xI8Jz9TbqvU4eUUtOB3wFXaq2ru3KMfiCTr5Hcl07qyet0E8b3rHB8OPZKzhjSjdybEpHp10juS4Z0X6cOyX0JyOxrJPelk3rsOmmtI1rre7TWM7XWV2KsH7PnjGZyX+pcpl+jjL0vpToEWgeMU8Yq2TaMB+OX4ttewEiVUUqNx1i8qUpr/Yn4H+5lnRz7VWC6UsoV/4M+G2OxpUQdxkjiUEoNwlgAKqk3F/1ET14jlFIm4CMYczJbiaevbwHXxT+6FXgx/uuXgFuUYSFQr7U+3oWvsT/I5Ov0IsbwSotSygUsAHYk/yX2C2m9Tp3sOxz4O3Bzprx1SJOMvUbIfelUPXmdDgPnxe8tboy3gjtPbSD3poRk8jWS+9JJab1OHZH7UouMvUbIfelUPXad4j/PuuO/vhCIaK1P+7lW7ksJyeRrlNn3JZ36VbovA3ZjrNT9tVM+twF/AbYC7wPntbP/1RjJWRAoB149ZdvHgW3xY/ywnf2/EN8/gpHE/S7+eQnwH4z5rVuBj6f6a+8r//XwNToHeK+T848G1gJ7gWc4uWq7Ah6J9+sD2qnCM1D+y9TrFN92L0YIuxX4r3T/WQ3w69Te97zfAbUYw7o3AevT/Wcl10juS+m4ThiLmz6D8fywHbi3nf3l3tRHr1F8m9yXMuc6yX2p714juS/1znUaCezCCAVeB0a0s7/cl/roNYpvy9j7kop3UAghhBBCCCGEEEL0Y6meDiaEEEIIIYQQQgghMpCEQEIIIYQQQgghhBADgIRAQgghhBBCCCGEEAOAhEBCCCGEEEIIIYQQA4CEQEIIIYQQQgghhBADgIRAQgghhBBCCCGEEAOAhEBCCCGEEEIIIYQQA4CEQEIIIYQQQgghhBADgIRAQgghhBBCCCGEEAOAhEBCCCGEEEIIIYQQA4CEQEIIIYQQQgghhBADgIRAQgghhBBCCCGEEAOAhEBCCCGEEEIIIYQQA4CEQEIIIYQQQgghhBADgIRAQgghhBBCCCGEEAOAhEBCCCGEEEIIIYQQA4CEQEIIIYQQQgghhBADgIRAQgghhBBCCCGEEAOAhEBCCCGEEEIIIYQQA4CEQEIIIYQQQgghhBADgIRAQgghhBBCCCGEEAOAhEBCCCGEEEIIIYQQA4CEQEIIIYQQQgghhBADgIRAQgghhBBCCCGEEAOAhEBCCCGEEEIIIYQQA4CEQEIIIYQQQgghhBADgIRAQgghhBBCCCGEEAOAhEBCCCGEEEIIIYQQA4CEQEIIIYQQQgghhBADQEIhkFLqEqXULqXUXqXU/e20OUcptUkptU0p9U5quymEEEIIIYQQQgghukNprTtuoJQZ2A1cCJQB64AbtdbbT2mTC6wCLtFaH1ZKFWutK3qs10IIIYQQQgghhBAiKZYE2swH9mqt9wMopZ4GrgS2n9LmJuDvWuvDAIkEQIWFhXrkyJFJd1gIIYQQQgghhBBCtG3Dhg1VWuuitrYlEgKVAkdO+X0ZsOCMNuMBq1LqbSAL+LnW+s8dHXTkyJGsX78+gdMLIYQQQgghhBBCiEQopQ61ty2REEi18dmZc8gswBzgfMAJrFZKvae13n1GRz4DfAZg+PDhCZxaCCGEEEIIIYQQQqRCIgtDlwHDTvn9UOBYG23+rbX2aq2rgHeBGWceSGv9G631XK313KKiNkcmCSGEEEIIIYQQQogekEgItA4Yp5QapZSyATcAL53R5kVgqVLKopRyYUwX25HargohhBBCCCGEEEKIrup0OpjWOqKUugt4FTADf9Bab1NKfS6+/VGt9Q6l1L+BLUAM+J3WemtPdlwIIYQQQgghhOiucDhMWVkZgUAg3V0RIikOh4OhQ4ditVoT3qfTEvE9Ze7cuVoWhhZCCCGEEEIIkU4HDhwgKyuLgoIClGprSVwhMo/WmurqahobGxk1atRp25RSG7TWc9vaL5HpYEIIIYQQQgghRL8UCAQkABJ9jlKKgoKCpEewSQgkhBBCCCGEEGJAkwBI9EVd+XsrIZAQQgghhBBCCJFGSiluvvnmlt9HIhGKioq4/PLL09irznk8nk7bPPDAAzz88MMdtnnhhRfYvn17qrolOiAhUA8IBgOs/OdjnDh6MN1dEUIIIYQQQgiR4dxuN1u3bsXv9wPw2muvUVpampa+RCKRXj+nhEC9R0KgFNq8/J+8+4tPUfU/01iy/osceOn76e6SEEIIIYQQQog+4NJLL+Xll18G4KmnnuLGG29s2eb1ern99tuZN28es2bN4sUXXwTg4MGDLF26lNmzZzN79mxWrVoFwPHjx1m2bBkzZ85k6tSpLF++HDh95M6zzz7LbbfdBsBtt93Gl770Jc4991zuu+8+9u3bxyWXXMKcOXNYunQpO3fuBIxFtBctWsS8efP4xje+0e7X8tBDDzFhwgQuuOACdu3a1fL5b3/7W+bNm8eMGTO49tpr8fl8rFq1ipdeeol7772XmTNnsm/fvjbbidTotES8SNzgN+5mom5kj20irrAfq68i3V0SQgghhBBCCJGgb/9jG9uPNaT0mJNLsvnWh6d02u6GG27gwQcf5PLLL2fLli3cfvvtLeHNQw89xHnnnccf/vAH6urqmD9/PhdccAHFxcW89tprOBwO9uzZw4033sj69et58sknufjii/na175GNBpNKETZvXs3r7/+OmazmfPPP59HH32UcePGsWbNGu68807efPNNvvjFL3LHHXdwyy238Mgjj7R5nA0bNvD000+zceNGIpEIs2fPZs6cOQBcc801fPrTnwbg61//Or///e+5++67ueKKK7j88su57rrrAMjNzW2zneg+CYFSKFs3sXHIR1n4uf9l50MLcQSr090lIYQQQgghhBB9wPTp0zl48CBPPfUUl1122Wnb/vOf//DSSy+1rK0TCAQ4fPgwJSUl3HXXXWzatAmz2czu3bsBmDdvHrfffjvhcJirrrqKmTNndnr+j3zkI5jNZpqamli1ahUf+chHWrYFg0EAVq5cyXPPPQfAzTffzH333dfqOMuXL+fqq6/G5XIBcMUVV7Rs27p1K1//+tepq6ujqamJiy++uM2+JNpOJE9CoBQJBYM4VQhtzwLAb8sn138kzb0SQgghhBBCCJGoREbs9KQrrriCL3/5y7z99ttUV58cVKC15rnnnmPChAmntX/ggQcYNGgQmzdvJhaL4XA4AFi2bBnvvvsuL7/8MjfffDP33nsvt9xyy2nVpM4sLe52uwGIxWLk5uayadOmNvuYSEWq9trcdtttvPDCC8yYMYPHHnuMt99+u1vtRPJkTaAU8TbWAqAc2QCEHYXkxOrS2CMhhBBCCCGEEH3J7bffzje/+U2mTZt22ucXX3wxv/zlL9FaA7Bx40YA6uvrGTJkCCaTiccff5xoNArAoUOHKC4u5tOf/jSf/OQnef/99wEYNGgQO3bsIBaL8fzzz7fZh+zsbEaNGsUzzzwDGAHU5s2bAViyZAlPP/00AE888USb+y9btoznn38ev99PY2Mj//jHP1q2NTY2MmTIEMLh8Gn7Z2Vl0djY2Gk70X0SAqWIr8EIgczOHABizkJydSORcCid3RJCCCGEEEII0UcMHTqUL37xi60+/8Y3vkE4HGb69OlMnTq1ZVHmO++8kz/96U8sXLiQ3bt3t4zmefvtt5k5cyazZs3iueeeaznm97//fS6//HLOO+88hgwZ0m4/nnjiCX7/+98zY8YMpkyZ0rIQ9c9//nMeeeQR5s2bR319fZv7zp49m+uvv56ZM2dy7bXXsnTp0pZt3/nOd1iwYAEXXnghEydObPn8hhtu4Ec/+hGzZs1i37597bYT3aeak8TeNnfuXL1+/fq0nLsn7NuyijF/v5T3F/2K2RffzJq/fp8FO/6Hqs99QOHg4enunhBCCCGEEEKINuzYsYNJkyaluxtCdElbf3+VUhu01nPbai8jgVIk0FQHgM1tjASyZg8CoKHqeLq6JIQQQgghhBBCCNFCQqAUCfuMoXB2dy4AztzBAHhrjqWrS0IIIYQQQgghhBAtJARKkYivDgBHVh4A7gJjfmWw7kS6uiSEEEIIIYQQQgjRQkKgFIn6GwBwenIByCkqBSDSWJGuLgkhhBBCCCGEEEK0kBAoRWIBIwTy5OQDkJ1TQEhb0E0SAgkhhBBCCCGEECL9JARKlWADIW3GbncCoEwmalUOFn9VmjsmhBBCCCGEEEIIISFQyqhQI17lQplO/pE2mnOxBarT2CshhBBCCCGEEJmuvLycm266idGjRzNnzhwWLVrE888/3+PnXb9+PV/4whdScqxzzjmHCRMmMGPGDJYsWcKuXbtSctxUSmUfH3vsMe666y4AHn30Uf785z+32/bgwYM8+eSTLb9P5Z97siQEShFLqBGfcp32mdeajztck6YeCSGEEEIIIYTIdFprrrrqKpYtW8b+/fvZsGEDTz/9NGVlZT1+7rlz5/KLX/wiZcd74okn2Lx5M7feeiv33ntvq+3RaDRl5+qqnujj5z73OW655ZZ2t58ZAqX6zz0ZEgKliCXsxW/ynPZZyF5AdrQ2TT0SQgghhBBCCJHp3nzzTWw2G5/73OdaPhsxYgR33303YAQIS5cuZfbs2cyePZtVq1YB8Pbbb3P55Ze37HPXXXfx2GOPAXD//fczefJkpk+fzpe//GUAnnnmGaZOncqMGTNYtmxZq2OsXbuWxYsXM2vWLBYvXtwySuaxxx7jmmuu4ZJLLmHcuHF85Stf6fRrWrZsGXv37gXA4/HwzW9+kwULFrB69Wp+8pOfMHXqVKZOncrPfvazln3+/Oc/M336dGbMmMHNN98MQGVlJddeey3z5s1j3rx5rFy5EoB33nmHmTNnMnPmTGbNmkVjYyPHjx9n2bJlzJw5k6lTp7J8+fIu9/Evf/kL8+fPZ+bMmXz2s59tCYb++Mc/Mn78eM4+++yWvgA88MADPPzwwwDs3buXCy64gBkzZjB79mz27dvH/fffz/Lly5k5cyY//elPT/tzr6mp4aqrrmL69OksXLiQLVu2tBzz9ttv55xzzmH06NEpC40sKTmKwBZpImQ+fSRQxFVIbl09OhY7bZqYEEIIIYQQQogM9K/74cQHqT3m4Glw6ffb3bxt2zZmz57d7vbi4mJee+01HA4He/bs4cYbb2T9+vXttq+pqeH5559n586dKKWoq6sD4MEHH+TVV1+ltLS05bNTTZw4kXfffReLxcLrr7/OV7/6VZ577jkANm3axMaNG7Hb7UyYMIG7776bYcOGtduHf/zjH0ybNg0Ar9fL1KlTefDBB9mwYQN//OMfWbNmDVprFixYwNlnn43NZuOhhx5i5cqVFBYWUlNjzKj54he/yD333MNZZ53F4cOHufjii9mxYwcPP/wwjzzyCEuWLKGpqQmHw8FvfvMbLr74Yr72ta8RjUbx+Xzt9q+jPu7YsYMf/OAHrFy5EqvVyp133skTTzzBhRdeyLe+9S02bNhATk4O5557LrNmzWp13I997GPcf//9XH311QQCAWKxGN///vd5+OGH+ec//wkY4Vuzb33rW8yaNYsXXniBN998k1tuuYVNmzYBsHPnTt566y0aGxuZMGECd9xxB1artcOvqzMSAqWIPealwT749A+d+dhUFL+vCacnOz0dE0IIIYQQQgjRZ3z+859nxYoV2Gw21q1bRzgc5q677mLTpk2YzWZ2797d4f7Z2dk4HA4+9alP8aEPfahlxMmSJUu47bbb+OhHP8o111zTar/6+npuvfVW9uzZg1KKcDjcsu38888nJycHgMmTJ3Po0KE2Q6CPfexjOJ1ORo4cyS9/+UsAzGYz1157LQArVqzg6quvxu12A3DNNdewfPlylFJcd911FBYWApCfb1Tdfv3119m+fXvL8RsaGmhsbGTJkiV86Utf4mMf+xjXXHMNQ4cOZd68edx+++2Ew2GuuuoqZs6c2eafT2d9fOONN9iwYQPz5s0DwO/3U1xczJo1azjnnHMoKioC4Prrr291LRobGzl69ChXX301AA6Ho80+nGrFihUtYdt5551HdXU19fX1AHzoQx/Cbrdjt9spLi6mvLycoUOHdnrMjkgIlCLOmJdai/u0z0yOLAC8DbUSAgkhhBBCCCFEputgxE5PmTJlSksIAPDII49QVVXF3LlzAfjpT3/KoEGD2Lx5M7FYrCVYsFgsxGKxlv0CgUDL52vXruWNN97g6aef5le/+hVvvvkmjz76KGvWrOHll19m5syZLaNNmn3jG9/g3HPP5fnnn+fgwYOcc845LdvsdnvLr81mM5FIpM2v5YknnmjpdzOHw4HZbAaM9Y/aorVGKdXq81gsxurVq3E6nad9fv/99/OhD32IV155hYULF/L666+zbNky3n33XV5++WVuvvlm7r333jbX6Umkj7feeiv/8z//c1qbF154oc0+nvl1JKutfZrPk+ifezJkjlKKOLWPqC3rtM/MTiMp9TXJukBCCCGEEEIIIVo777zzCAQC/PrXv2757NSpTPX19QwZMgSTycTjjz/esj7NiBEj2L59O8FgkPr6et544w0AmpqaqK+v57LLLuNnP/tZS9izb98+FixYwIMPPkhhYSFHjhw5rR/19fWUlpYCtKwtlGrLli3jhRdewOfz4fV6ef7551m6dCnnn38+f/vb36iuNqprN08Hu+iii/jVr37Vsv+pX8u0adO47777mDt3Ljt37uTQoUMUFxfz6U9/mk9+8pO8//77Xerj+eefz7PPPktFRUVLXw4dOsSCBQt4++23qa6uJhwO88wzz7TaNzs7m6FDh/LCCy8AEAwG8fl8ZGVl0djY2O6fyRNPPAEY08QKCwvJzu65QSQyEigFdCyGR/vQ9tNDIEs8BAo01aejW0IIIYQQQgghMpxSihdeeIF77rmHH/7whxQVFeF2u/nBD34AwJ133sm1117LM888w7nnntsylWrYsGF89KMfZfr06YwbN65lfZrGxkauvPJKAoEAWmt++tOfAnDvvfeyZ88etNacf/75zJgxg3feeaelH1/5yle49dZb+clPfsJ5553XI1/r7Nmzue2225g/fz4An/rUp1r6/bWvfY2zzz4bs9nMrFmzeOyxx/jFL37B5z//eaZPn04kEmHZsmU8+uij/OxnP+Ott97CbDYzefJkLr30Up5++ml+9KMfYbVa8Xg8HZZs78jkyZP57ne/y0UXXUQsFsNqtfLII4+wcOFCHnjgARYtWsSQIUOYPXt2m5XEHn/8cT772c/yzW9+E6vVyjPPPMP06dOxWCzMmDGD22677bS1hB544AE+8YlPMH36dFwuF3/605+61O9Eqa4MV0qFuXPn6o4Ws+pL/N4mnD8qZfXoL7Dolu+0fL599b+Y/OoNbD3/z0xdemUaeyiEEEIIIYQQoi07duxg0qRJ6e6GEF3S1t9fpdQGrfXcttrLdLAU8DYaQ9Wa1wBqZncbI4HCPhkJJIQQQgghhBBCiPSSECgFfI3Gmj/NawA1c3iMFc0jfgmBhBBCCCGEEEIIkV4JhUBKqUuUUruUUnuVUve3sf0cpVS9UmpT/L9vpr6rmSvQWAeA1XV6COTKzgUg6m/o5R4JIYQQQgghhBBCnK7ThaGVUmbgEeBCoAxYp5R6SWu9/Yymy7XWl/dAHzNe0FsHgNWde9rn7izj9zogIZAQQgghhBBCZKr2SpQLkcm6ssZzIiOB5gN7tdb7tdYh4GlAVjk+RcRXB4DDk3va5za7g4C2ooJtl4ITQgghhBBCCJFeDoeD6urqLv1ALUS6aK2prq7G4XAktV8iJeJL+f/snXV4HNf5tu+zzCtm2zLbMXMM4aaBpkkaaFPGtCm3v3L7lTltU0ybpkxpqE2ahhuOKWZGmcSsZd6d749Z2Za1Wq2kXa1knfu6csWaOXPmXWl3Z+Y5z/u+0HDWz43AqhTjVgshdgPNwGcVRdk/pEjGMeGeFgAcRZX99vmFBU1EikASiUQikUgkEolEMhapqamhsbGRjo6OfIcikQwJk8lETU3NkI7JRARK5Yk7VyLdAUxRFMUnhLgWeBSY2W8iIT4IfBBg8uTJQwp0LCM6DuLGSnHFpH77AsKKNurLQ1QSiUQikUgkEolEIhkMvV7P1KlT8x2GRDIqZJIO1gicrW7UoLp9TqMoikdRFF/y308CeiFEybkTKYpyr6IoyxVFWV5aWjqCsMcWds9RmvRTEZr+v86QxoIuJkUgiUQikUgkEolEIpFIJPklExFoKzBTCDFVCGEAbgMeO3uAEKJCJKtoCSFWJuftynawYxElkaAmegKvY0bK/RGtFUPMP8pRSSQSiUQikUgkEolEIpH0ZdB0MEVRYkKIjwHPAFrgj4qi7BdC3JHcfw9wC/BhIUQMCAK3KROkqlZH80nKCEDZBSn3R3RWnKHmlPskEolEIpFIJBKJRCKRSEaLTGoC9aZ4PXnOtnvO+vevgF9lN7TxQWvdDsoA++SFKffH9HZMwcDoBiWRSCQSiUQikUgkEolEcg6ZpINJ0hBo3AdA1cylKfcn9DasikwHk0gkEolEIpFIJBKJRJJfpAg0QrSdB2mniIKS8pT7E0Y7ViWIkkiMcmQSiUQikUgkEolEIpFIJGeQItAIKfDW0WpM007Q6EAnEoSC0g0kkUgkEolEIpFIJBKJJH9kVBNIMjDtc9+N3uoccL/GZAfA7+3BbLWPVlgSiUQikUgkEolEIpFIJH2QItAIWXvLJ9Lu15pVgSjo7YGKyaMRkkQikUgkEolEIpFIJBJJP2Q6WI7RWVQRKORz5zkSiUQikUgkEolEIpFIJBMZKQLlGENSBAr7XfkNRCKRSCQSiUQikUgkEsmERopAOcaYrBcU8UsnkEQikUgkEolEIpFIJJL8IUWgHGO2FwEQD0oRSCKRSCQSgPa2FnZs/F++w5BIJBKJRCKZcMjC0DnGYi8AIB705DcQiUQikUjGAIl4nLbf3crs6BGUC1sRGrkeJZFIJBKJRDJayDuvHGNzFhFUDIiOg/kORSKRSCSSvLP9kZ+yILYXqwjj93vzHY5EIpFIJBLJhEKKQDlGpzewt+By5nX9D7/Xle9wJBKJRCLJG+6ORubs+zFhRQ+Az9WR54gkEolEIpFIJhZSBBoF7Gs/gE0EOfDsn/IdikQikUgkeePIfZ/HpETYWns7IEUgiUQikUgkktFGikCjwJzlV3BCM5mpe3/Gjh9cxcmD2/MdkkQikUgko8rRXa+yrPtJXit/M4Wz1gIQ8nTlOSqJRCKRTATC0Vi+Q5BIxgxSBBoFhEZDz4VfoF1bwfzgVlpf+HW+Q5JIJBKJZNRQEgnCT3wJl7Cz8G3fxewsASDilSKQRCKRSIZH3Z6NbPnRDXQ0n0o7bttLjxH4Ti3bnr1vlCKTSMY2UgQaJZa+/h1c8NXXOGBZwaTOV1ESiXyHJJFIJBLJqLDrxYeYH93LkdkfwVFQjCUpAsX83XmOTCKRSCTjkVDQj/6R21npf4nuP9xCKOBLOW7Df//EvBffT6HwEm3YMcpRDs76//6FU8cP5zsMyQRDikCjTGjq66hW2qg/uiffoUgkEolEknPisRjODd+lUVSw7OZPA+AoVEWghBSBJBKJRHIOm+//Ia/d9ea0Y3b++TNMURrZVP5WZsaOsvMPHz+97/iBbWy4663s/N7lrN3+KZp0k3BhQ+trznXoQ6Lx5GHWbf8ETc/8LN+hSCYYUgQaZWovvBGAlq2P5jUOiUQikUhGg22P/ZppiVO0r/gCeoMJALPFQUTRogRd+Q1OIpFIJGOKeCzG1EP3sMrzDO1NJ1KOWf/PH7C67Z9sLHoTqz98D6+VvIkVnY/ScHQ34VAA7UPvZon7eUqizWys+QC1X9hIu64KU7BtlF9Nek699FcA9MHOPEcimWhIEWiUqZg8kxOaKdjqXxjysS0Nx1j/q9s5vG3ox0okEolEMtoE/T5q9/yMI9qZLLn6Pae3C40Gj7CjCbvyFptEIpFIxh4HNz9JOapL9MTGf/fbX7dnE2sO/YBd5tWs/PC9AMy89VuE0dP1r8+y/XcfY4rSyLFL72bS1w+x5gM/QWcw4TeW4YiMHRFISSSoqn8MAGNYumLzjd/n5dWHf8m+711MV1tjvsPJOVIEygOt5RczO7wPrzvzD/zhHS/j+P0a1nU+iHv973IYnUQikUgk2WHPk/dQThfRy7+J0PS95fBrbOgjrvwEJpFIJJIxiW/rP/EpZtooxnD8f/3295zYhUYoFN90Jzq9AYCSiknsnvJeFoe2sKbrX2yzX86Cy27tc1zYUklxfOw4bo7te42piXriisASkyJQPlEUhbqfX8dF+/4fBdF2uprq8h1SzpEiUB5wLroOvYhzdNNjGR/TveM/mAhzTDMVp+9YDqOTSCQSiSQ7mOuepF5UccHqa/rtC2odGKKePEQlkUgkkrFIOBRgnutFDhZeyomSS5gd2NGv4HPM0wpAYXlNn+2r3/N9Dr/pKQ5c9yhLPvlQ/8kdVdhFcEiL8Lmip6MF8egdBBQje62rscdd+Q5pQrN/09Msiu5ic+1HqP7qAWYtvTTfIeUcKQLlgVnLLseNldihZzI+RudtpFMU0Vm0hOpovewuJpFIJJIxjbunk7mhXTRVXN7PBQQQ0jkwxbx5iEwikUgkY5Ge9ibsIogyaRXmeW/AIsIc3fps30G+NoKKAautoM9modEwe9EaLlh+GVqdrt/cuqJJAHQ3p64zNFpEI2Ha73kj1fEm6q74LcGCGRQqbvlsl0diL/+EHhwsfvOXU96vnI9MjFc5xtDpDRy1rWKaayOJeDyjYyyBZrr15VA6B5sI0tF8MrdBSiQSiUQyAo5u+Dd6EadwyZtS7o8aHFgT0gkkkUgkEpWgzw2AzuykavZyAAJtfTMg9MEOejSFQ35Yt5ZMBsDTdnLkgY6Abf/8FrPjR9mz8k4WXvwmhLUUg4jjceXfoTQRObp7I4vDWzlc+w5MFnu+wxk1pAiUJ5SZr6cEF8f3bMhofGGsDb+5CtukBQC0Hd+Vw+gkEolEIhkhh56gk4IBbdVxQwH2hC/lPolEIpFMPMJ+FwA6sx1ncQUACV9HnzGmcCcebdGQ53aW1wIQ6moYUYwjofn4AZYc/y3bLOtY+Yb3AaCzlwHg6WrKW1wTGdf/7sSnmLngxs/kO5RRRYpAeWL66htIKILOnf8ddGwsGqU00UXMXk3FjEUA+Bv35zpEiUQikUiGxdFdr7LI+yrHSl6HJoUtH0AxF2ATQWKR8ChHJ5FIJJKxSCSgukMNVicGowkPVjSBvsWcrdFugsbiIc9dUjmFhCKIu/LX+antoc8QR8vkt//q9DZjQTkAvu7WfIU17nD1dPLqH79M0D+yhaT6o3tY6n2JfVU34ygoyU5w4wQpAuWJorIqjuhnU9T00qBjO1tPoRdxNAWTKSqtohs7ms7DuQ9SIpFIJJIhEg750T/2YbqFkzlv/8GA44S5EACvu2u0QpNIJBLJGCYWVEUgo9UJgEs40YX6XiOciR4ipqE/sBuMJrqFE62veeSBDoN96x9jSXAju6e+n7Lqqae3WworAQi5pAiUCYqicPgPH+Si+rvZ97+/Dn+eRIK2R79KDB0zbvhCFiMcH0gRKI/0VF/GrPgRutrS2xK7m9RcWFNpLUIIWvRTsHtlhzCJRJJ7IuEwr/30Nup2Z5a6KpHs/NdPqE000Hzxj3AWlg44TmtV7fy+nvbRCk0ikUgkY5hY0glkShZ99usKMEV6Tu+PRsIU4SVhLRvW/N3aUkzB/Igt2pd/QAulLH3LV/psdxSrIlDELa+FmbDliT+yyvc8AJqjTw17nlf+/l1W+F9iR+37KamYnK3wxg1SBMojpcuuB+D4pkfTjvO3q1XsnRXTAfDaZ1AVPZXT2CQSiQTg0OYnWeV+Cs8z3813KJJxQCwSZsrRv7BPv4All9+SdqzBptr5Ax7pBJJIJBIJxENqx0iLTXUChfSFWGKu0/t7OlQXj8ZePqz5fcZyHJH8iC3V0ZOcKrkIk9naZ3tv7SPlnNpHkv4oikL59rs4pp3GloI3MMe3hXAoMOR5OlrqWXvsLnZZ1nLhu7+Xg0jHPlIEyiPT519IO0Vojz6bdlysWxV8ympUEUhxVuPETyjoz3mMEolkYhPY8x8AFvo30dYoHYiS9Ox69i9U0kl01ccGHWu0q06gkFeKQBKJRDKWScQTBAKjUMg/rDqBLPYCACKmYhwJ1+nd7g61no/BWTGs6aPGQmwJ74hCHA5edzcO/OCo6bfPYDTiwoYISBFoMOoP76RWaaRr5psxLrwBqwhxePOTQ56np+UkOpFALH0nQqPNQaRjn4xEICHE1UKIw0KIOiHEF9OMWyGEiAsh0i//SQAQGg3HSi5nvm8jna31A47TeBrpwYHZ5lB/NhUA4HPLVoISiSR3KIkEU7te4ah2BjqR4Pgz9+Q7JMkYRkkkcO78LfWimkWX3TroeEuyCGPMJ0UgiUQiyTadbU3s2/T0iOc5tGsDh793IeE75+D3urMQWRoiPsKKHr3BBEDCXEyB4iERjwMQ6FY7aFmKqoY1fcJgw6wEsxPrEOhqPg6Arjh12pFbFKAPyWvhYLRsfhiA2otuY/bq6/ArRkL7Hh/yPL2LT0Z7YVbjG08MKgIJIbTA3cA1wAXAW4UQFwww7ofAM9kO8nym5upPoyPO0f/eNeAYc6CZTu2Z3FettQCQFnqJRJJb6vZsoJwu3Avewx7jMiY1PpbvkCQZcmz/NnZ/9xLq9mwatXMe2fECM+N1tMx5Dxrt4CtrVmdSBPL3DDJSIpFIJEPl5F8/wtynb+PY3teGdXzQ72X93R9ixiPXMTV2nEK8HNvxQpaj7IuI+AgI85mfbaVohYK7W03hivSo9XzsJdXDO4HBhkWET4tKo4W7VS3tYSutTbnfryvAGJGL+4NR0vA0h3RzKKueisls5aRhFnb3kSHPE/Gpv2uTfehd5s4XMnECrQTqFEU5rihKBLgfuCHFuI8D/wJkVashMGnGfHZZ1zK36SFe/ft3OLZnY78xznArXlPl6Z/1FlW1DHnljbNEIskdnVsfIa4IZqy9BX/5CmqUVoL+0bdRS4ZG3Z5NFD50I4uiu+jYdN+ondfz8q/xKmbmX/vBjMabLTYAlMjor8pKJBLJ+Ux70wkW+V5FKxSC//0cSiIxpOO97m6O/+wq1nXcz9bCa3HfvpmoosV/+MUcRayiPUcE0tnV5gKerhYA4t42AIrK+6dVZYRRve4E/Dl2NJ1DqFPN+Cismppyf9BQhO2s2keSvmx48C7qvrmIGfFjdE++6vT2gKWSwmjbkOeLJxefehejJiKZiEDVwNntqxqT204jhKgG3gSkzRUQQnxQCLFNCLGto0PmPfZivfz/sCt+Lqr7EdZ/v5NIOHR6XyjopyrRQsR55kvDmKyYH/ZKxVgikeSO8pbnOGyYR0FpJYbymQA0H9+f56gk6YiEw+gevZ0oehpFJfau3aNy3s7WehZ5XmJ/2RuxJms5DIbBaFH/EQulHyiRSCSSIVH35C/RkmBT+VuZH9nNnpceHvQYv9fNq/f+H63fmA53XcCsyCG2LP8xqz/1D8prZnBMP4vC9i05jVsX8xPSWE7/bHSoBaB9PeqDvvC348HSr7hypmiMdgCCuU5rO4eEq4GYoqGkYkrK/dFzah9J+lJ96I9YFR/rHdcx66o7Tm+P2aopUbqJx6JDmi8RVEUge6EUgdIhUmxTzvn5Z8AXFEVJ661TFOVeRVGWK4qyvLR04LaxE43Zy68g8H/H2b7q51TQya7Hz2hppw5sQS/iGKcsP73NlCymGQm4RjtUiUQyQWg6fohpiVN4a9UVl4JJahawu+FAyvGRcJhX/vxVdj7/wKjFKOnP9ge+S22igZaLvk9T8Wqmhg8Tj8Vyft6jT/wSg4hT/frBC0L3otPriShaKQJJJBJJFgmHAsxuepg95lUsf//PiSpaAnXr0x5zYOvzuH+ynIua/0CzcRp7C1/Hgcv/wMrrbj89pqdsJdOjR/B7XTmLXR/3EzlLBLIWqQWgwy41DUwf7MAlhl/HRWtOikCj7ATS+ZroFEVodfqU+xVzEYV4h+zYmgh0tNZTm2jg1LS3se7//kFJ+Zl6UJqCSehEgq40tXVTEnIRUXSYzLYsRzt+yEQEagQmnfVzDdB8zpjlwP1CiJPALcCvhRA3ZiPAiYLdWcTSq97FEe0Mqvb95rSi6apTFffKuWtOj7U41PzFmN816nFKJJKJQf2mhwCYtFqt8185bR4A4bbD/cbW7dnI8Tsv4uKTv6Bw/bdGL0jJaZREgk0P3cWSY79mp3k1i6+4DU3NcqwiRMPRXTk9dzQSZkbDQ+wxLmfSzEVDOjaCAWLhHEUmkUgkE4+9z/6VYtxoL/wgeoORNk0ZBs+plGMT8Tjr//JVZj6uFvPf8/oHWPql/7HmU39n0SVv6jPWOvsy9CLOse3P5yx2YzxAVHfG5eNIikBRj5pB4gg24tYP30igM6lNdsKjLAJZAi306MsGHmBQha/htDs/3zm1XS03XDT/in77TCWqs6q7+cSQ5tSE3HiFDUQqr8vEIBMRaCswUwgxVQhhAG4D+lQHVRRlqqIotYqi1AIPAx9RFOXRbAd7viM0GrwrPkWN0sr2R34GgKZlB904KE+2hwewFahOICXoykOUEolkImA/9SwnNZOpmqY6gCw2J20Uo+850ya+vaGO1+56M9P+dS2VsUZ2WtZSqzTSdPxQvsKesGz83SdZvf+bHDVcQM277wWgbO5aANoP9a81l032PPc3SulBWXX74IPPISwMaOKDO4F8Pg+hoLw5lkgkksGw7fkT9aKKeRfdCECXsQZnsCHl2C2/ejfrTvyC3dbVWD+5iYVrrh5w3ulLLyeuCPzHcndNMSUCxM4SgZwlqgiU8HfQ2VrPjPgxvJVrBjp8UPSW/IhABbF2AubKAfcLfVIECvpGK6RxQ/zYK3gVM9MW9P+7O8prAfB3DE0E0kXc+DQT1wUEGYhAiqLEgI+hdv06CDyoKMp+IcQdQog70h8tGSpLX/929ukXMHP/z3H3dFDiOUi9aQ5Cc+ZPZTbbiCpaCI/uF5hEIpkYRMIh5oT30Vp+cZ/tHcZJ2APqauL+jU9h//1qlrifZ33ZbSif2EnJm34AQOPW/4x6zBOZ3S/+i7Utf+W1gjcw74svUlqhtqCdNGMBHsUCjdtyen7zzj/SJMqZf/EtQz42gh4RT+8Ecru66P7JSvbe/fbhhiiRSCQTgqM7X2FO7BDNs95xuktjyDaJ8nhzv1Sjkwe3sbL7cTYV38yyz/4X5yD1Uax2J+2iBL37ZK7Cx6wEiOnPPJzrDUbcWNEEOjmx8REAypffOOz5DUkRKBYcvSYX8Xic0kQnUdvAHc00BrUYdkiKQH1RFKp6tnHMsgid3tBvd0n1NABi3UNLBzPGPAQ19qyEOF7JxAmEoihPKooyS1GU6YqifDe57R5FUfoVglYU5T2KogxefUySEqHRYLr+RzgUH3W/fx+T4/UESxf2G+MTFkRYdumRSCTZp7u9CZ1IoCme3me731ZLZayRuiP7qHzmdto1pbS8az0Xf/QeCorLmTRjAY2iAuOJ5/IU+cQiEY+z8aGfUvvSxzmhmcyiD97bpzW7RqvllHE2Ra59OYvh2J6NXBDdT8P0t6HV6YZ8fFQY0KQRgZREgiO/ex+TlRZqfTtRlHNLEkokEomkl+6X78GvGLngmjPr9ErRNOwEcXX17aLU+cR3CGJk7m3f7bPYnI4uQxW2QGNWYz4bsxJEMfR1aLiFE32oC23ds7RSwrR5K4Y9v9HaKwJ5RhTnUOhqbcQg4mgKBu5opkmmg0WC/tEKa8zz0h+/QvwbhUxSmglWp3Z/2Z1FuBUrwtM0pLlNMS9hvRSBJGOMGQtWs3nyB1nmfwWtUDCfVRS6F7+woY2M3heYRCKZOHg61IupoaCvdVkpnomDAPr7bkEv4pje9SBTps89M0AIGkvWMSe4k1BArmblms1//zpr9n+DRn0thnfcj8nS39octNVQEO/KWQydL/yKoGJg7rUfHdbxUWFEO4AI5O7pZMtdt7DC/xInNZMppYf2Ieb9SyQSyUTB53Uxv+d59hdegaOg+PR2U5na3bP91JnGDgc2P81S70vsqX4LBaUDpymdS8A6ibLYuaVhs0M0GsUqwnCOCOTXFVIUOM5s/1ZOFa/LWLBKhSXZYTkeGr2F9K4WNY3eVDx5wDEag5oCF5FpzwB0ttSz6tS9HDTM58XaTzL3DQM3nejUlmLwD+09aUn4iOqdIw1zXCNFoDHK2vffyfrpn+GYmELt4sv77Q9obOijUgSSSCTZJ9CtXkwtRVV9tpsr5wBQo7TS+vrfUD51fr9j9VPXYRJRmo7lzn0iAa+7m3kn/sgu00ou+PJ6qpOFu88lbiqiQPHkpOOIu6uNRT3PsqfoKpxFwyvUGdMY0CZSi0BH//hBlnlfZP2kDxG6+i4Amvbltr6RRCKRjFcO/O8vWEUIx5r39dleWDMLAG/zUQDa6o9S/vQHadJUcMGtXxvSOeIFUyjCg8/Tk52gz8LvS5a5MDr6bPfap1GbaMAqwtiW3Dyic5ht6oO/MooiUO/v3Vk5fcAxOqOaDhYNSScQwNFHvoueGAVvuYfL3vMtCgqLBxzrNZbjCLcOaX6b4iNulCKQZIyy7p1fY/rX91BQUt5vX0RnxRiTK+0SiST7hN0tADhK++avV89dSUAxsnX2Z5m55saUx5qL1BXFYM/QLsiSobH333fixI/16q+lXRUV1mJ0IoHX0531GA48+WtMIkrpFR8f9hyqCBRJuc8ebOKgaTHr3n8ntfNXE1W0hE9tHfa5JBKJ5HzGfuCfnBI1zF7et4tS+ZTZJBRBrPMYp47sJvqn69ArUeJv+eegdYDOxVCqChnt9UeyFncvgaSwpDX1TdNZ9pE/0/Tu12h77xbmrbt+ROewWO0kFAGR0XuGirYeJKZoqJq+YMAxOqOaDhYLSxHI6+5mcdu/2eG8kpoZ/RcbzyVkqaQo3pHx/Il4HJsSQJEikGQ8EtE5MMalCCSRSLJPwqMKOIWlfZ1AJRWT0X+lgQvf9v8GPNaWbOcadksRKFc0HT/IgpN/ZpdpFTMXX5R2rMaq3uB7u9vSjhsq8ViMKcfvY79+PtPmrxr+PBojugGcQPpEiJhWXR01WWzU66Zg7doz7HNJJBLJ+Upb4zHmxg7SXHtDv4UBk9lKuyimoOVV7Pe9Aavip+ENf6d2zpIhn8dRpbqKXE3ZF4FCyY5dWnNfJ5BWp6N66hzKp8we8TmERkMA06iKQKaeIzRrK9En3T6p0JvVFLh4WKaDndjxAmYRwbw8s2YQiqOGAnwE3JkJQV53DxqhgLlgBFGOf6QINE6JGexYE1IEkkgk2Ufjb8eFDaPJ0m+f3mBMe6yzRHUPRT3tOYltohMK+gn+420k0FD2ll8MOt7oUEUgX5ZFoL0vPUSV0k546QdGNE9cY0Q/gBPIoISI687cNHc55zElfDgnqW0SiUQynjm54V8AVK1K3aWx01DNnOhBEmjxv/0J5q28IuW4wSibrKaFRzqODS/QNPS2bdedIwJlm4Awo42MnuOmNHSCbsu0tGMMvU6gUYxrrOKve5WYomHakksyGq8rUX+3prtm0vLNGWy5682EQwOLaT5XJwAaS+HIgx3HSBFonBI3OLAp8otCIpFkH32wA5dmeBdHR0ExUUUL/sytuZLMiMdi7P/VbcyIH+fYup9QNXXOoMeYHGqtnrAne38PJZHA8NovaaOIBVe8bURzJbRGdEpqEcikhIjrzhIiq5bixE/j8QMpx48m4UiY5//8Tbo6pdgpkUjyj+n40zSKSibPWpxyv885G69ixnXT/dTMXDTs8ziLSnFjRfRkv0h/JCkC9bZxzxUhYUYTG51nKJ/fR3WihUhRehfTGSdQcDTCGtM427dxXDcDq70go/ELrng7Ly/+CS9Wvo8G40xWep5h33P/GHB8wKOKQHqrFIEk4xGTE4sIE4sM3FpXIpFIhoMl0olPN3ARvnQIjYYe4UQbyF1HqonKlt+oXSPXT/s0S698a0bH2IrUmnLh5E1PNtj14kNcEN3PybkfHtQZNhgJrRH9gCJQGOUsJ1DxrNUAtB3Kf3HofS8+zBUn7+LYKw/kOxSJRDLB8bq7mRvaRWPZpQPWiFv03p8R+sh2ZixcPeLztWsrMfuz3yY+mmzbbkx28MoVYY0F3SiJQI1HdqMVCsaq1M0bejGY1e5gSnRip4OFQwGmRw7TXbIs42NMJhOX3PgBrrjjLpZ/7nGaRDmm3X8ZcHzIq96fGu3Du889X5Ai0DhFmNRiVrmozi+RSCY29lg3IdPQikWejVdbgD4sRaBssv2pv7C6619sLL2Nde/6RsbH9dZoivuzIwLF43EcG75Ho6hg6Zs+OeL5ElojRvqLQEoigZkQiv6ME2jKnKWEFD2x+m0jPu9ISex9GIC4dLxJJJI8c3TTYxhEHMeSGwccY7ZYKS2vHnD/UPCYaygKZ18EiidFIJMttwV7I1oLhvjoiC2uU3sBKJ2W3n1l6hWBIhPbCXR896sYRRTj9HXDOl6j1VJfeyvzontpOLIr5ZiIT22UYXYUDTfM8wIpAo1TtMliVn6PfNCSSCTZQ0kkKEy4iJmH1/IbwK8vxBLNfjeqiUpnaz3TXvsKR7QzWP6BwesAnY3DUUhU0aL4s3OtaD55iOmJkzTPee+IXUAAitaEIYUTKBwOoRUKGM6IQDqDkZP6GTh69o34vCMh4PdwgXdD8gd5DZZIJPklXL+dqKJlxpJLR+V80Yol1CitbLj7gyTi8azNG0+2bbfk2AkU0VmHLQLteeUxDn5rBUe+vYwtd17P83/4f2x7+b+4XSnueRJxYq0HiCpaKqam73J1WgSKTmwRyHXwJQBqlwyvZhXAjKs+RFTR0vTi71Puj/tVA4XFObGdQLp8ByAZHjqbmscYzEHbX4lEMnHxeV3YRRhsZcOeI2wooiTckMWoJjZH//UtVih+PLf+DoNxaMKL0GhwCzvaUHauFaHkwoOhaHJW5lN0RgxE+20PB7yYAGGw9tnuLprPgrbHiEUj6PSGrMQwFI7s2Uz79sdYJ9RUbG1QXoMlEkl+MfccoVFbw1SjaVTOt+K2/8fG3zSwtuMBdt9Zx5T3/42Csiy4jMJqwxtLjp1AcZ0FkzI8ESi480Fmxk9yyLiQSYEDVAZehoZfknhB0CYKiQgTEWHEpvgoVTpZpuhp0VYxWZ/+2q3TG4goOsQETwcrbvgfR7QzmVVaOew5Sisms884j5L2DSn3JwKqCGQvGL7j/XxAikDjFKO1AICwV96ASiSS7NHT3ogd0Dkrhj1HzFxCgdudvaAmMB2t9Sxpf5QdBa9n5Zylw5rDq3GgC7uyEk/Yp948GZLXoBGjM6MX8X6iTjDgxQloDX071GlrlmFpf4gTR3Yydd7wW9MPh1OHdzH9X1czSyi0U4RfY8cQltfg8cgrv3g/aPRc/LF78h2KRDJiykLHabHNZ+oonU+r07H6o79jw4OzWH7wR3h+vZbDV/2K2auvG9G8SthLRNFiSNNKPRvE9TbMyvAcNw7fMU4YZrHky88D4Ols5uiuV/Gf2ILW04g2HkKbCNMizOwwljMlUodh9pUZzR0SBkRs4jqBmo7vZ1b8KJtnfHrEc3kr1zL/1G/o6Wih8BxBSQm5iCpazDkuQD7WkSLQOMVoU/MYIwFXfgORSCTnFb7OJgBMBVXDn8RagkWECfo8mG0T+yI7Uo4+8gNWEaPyjf9v2HMEtE5MEVdW4okEVHEva4U7k6uj4VCgjwgUDqgrwsLY1wlUPmc17IDOw5tHXQRq+d8vqETL7ovvpXLmYnx/fz+mqGtUY5CMnL0bn+Li7oepFyP4jpNIxgg+Tw9VSjunitN3n8o2QqNh7W1f4NDOdZj+czszn34Hrx14H8vf/UO0Ov2w5tT5W3FpChi+DzkzFL0VyzBEICWRoCp6isPFrzu9zVFSxbLXvQV4y4jjCmNExEIjnme8Uv/qfVQDUy7KrPFFOooWvB5O/YbjW59k2bXv77NPE+zBK6wUDVBEfaIwsV/9OMbiUNPBYn5XfgORSCTnFcGeZgCsxcN/QNImU8lcnc1ZiSkdB3duYMNjqfO+xzvd7c0san2YHY7LmTRjwbDnCRsKscRdWYkplhSBzPbsFFQUOjV9IRLqe0MeCaoikM5o67O9evoCPIqFmj2/4KWfvpuXf/4+Xvj37+j25fbG2evuZkHHE+x2Xs7Sy2+mctJ0woYibFn6vUpyT+PxQ6x/6GdYnvsiACWJLpREIs9RSSQjo+nITgBMVelrzuSKOUvWUvipDWy0vY5VDX/A+51aGr45h/0bnhjyXLZgM1363IuzitGOSUSJRc/Uozt+YBvH9qdvOtDV2oATP0rpnJzEFRZGNBPUCaQkEpSdeoJDujlUThm5oDl90To8ioXY0Rf77Sv27KfZMG3E5xjvSBFonGJN5jHO3v0Dtt/5hjxHI5FIzhei7lYACspqhj2HwamKQL6ulqzENBDr//Fdpj16PWt3fAaP+/xLyzn06A8xE6HsDV8Z0TxRYwH2hCcrMSWCqghkdRRkZT6NPikChfu2640G1QKhOlNfJ5BGq+Xwmp/QZaxhufsZVvQ8zuV7PsuJH19KONq/tlC22P/kb7GKEM5LP3p6W9xUiEPJ/PcaCYc4/K1lbPjHd3MRoiQNB7e+gP2vl7Nu/9eZEq/ngGEBFhHG48pO17xssXfjU7x63/fzHYZkHOE+tQeAshmZt9TONs6CQtZ+9iE2L/sJ+52XIFCoefZ2Th3aMaR5SmItBKzDv/fIFJFcXPB7z6Stx/51B4UP3UhPe9OAx7Uc2wWArTp9u/fhEhVGtPGJ6QTa8tivmZ44gXv2rVmZT6c3cMy6hBk9r/DSbz5G4/FDALi7O5gWO4GvYnSdxGMRKQKNUxzOIl6s/TTHDbNYFlhPw9Hd+Q5JIpGcB4jOI3gVM86i8mHPYS5U868DrtZshdWPV//4ZdYdvZNOjdrdobPhaM7OlQ/cXW0sbHqAHfZLmDJnZDf3CXMRTsWbFdeDElJFD6u9cMRzAQi9Wvsheo4TKBZSRSG92drvmBVXvY35X3oZ2zdaMX+1mV1T3ssyDtJ88nBWYjqXUNDP1MP3clA3l1lLLz29PWEpwUGASDizm/ZdT/+J2Yk6Zh39HdFIOCexSvqz59XHmPz4W/EJG4dv+C89H95LcLGaHtDVfCLP0fUlsvE3rDn8Q9qaxlZckrFLom0/AcVI5ZRZeY1DCMGFb/wAaz99H5p3P0ZU6NA88HYCPldGxwcCPsrpJu7ITtOBdGiMdgCCydii0Qi1sRMU4eXkX+8ARUl5nL9xPwDlMxbnJK6Ixog2PvGuDS0Nx5i787sc0M9j+Zs+lb2JF9yKQYlwUevfif39FkIBHye2/w+NUHDMvSx75xmnSBFoHHPZe75B2dt+C0DTlkfzG4xEIjkvKHLt5aRxNhqtdthz2IvUotIRd1u2wurDzucf5KL6u9lqvwLftb8GwNN6PCfnyhcHHrkTmwhSfM2XRzyXsBSjE4nsuKXCHgKKEV0W2sMDaA2qEyga7tsRJZbsEmMw29MeL7Q67IuuB6D7RG4WQ3b8+6eU003i0r6OLI1VFSA9XYO/z5VEgqLd9+JXTJTSw57n7svo3KFQkBf//A22PPW3oQcuYfsz/2D2c++jXVuG4QPPMHvJxZRW1GAtnQSAt70+zxH2xRpqRysUjj3/p3yHIhkn2NxHaNRNGdE1O9tU1c6m9crfUJ1oYe/vP5LRMe31dQBoi3Nf3lqbvK6E/KoTqPHoHgwixhHtTJb4XmHzgz9KeZzoPIwHK8Xlk3ISV0xjQjcBnUAnn/wZZsIU3PY7tLrslStecs17sX+zlf2X/YHaRAO7//BRgnWvEFb0TFt8cdbOM16RItA4p2rqHE5oJmM79Xy+Q5FIJOOcUMBHbewkvpLFI5qnINmJIe7tyEJU/QnVbwdgwYf/SslkNXc81HH+rJx7XF3Ma7iPHZZ1WSl+rLWq6cO+7pE7s7QRL35hGXxghmgMSSfQOW6aeNIJZDDb+h1zLhXTFwEQbjmYtbh6ScTjzDz6O/YbFjJv3Rv77NPbSwHw9gz+e923/r/MSBxn3/zP0yTKMe8cvI7VsX1baP7hSi47+VOKt/54eC9gArP5P/ewaOPHOKWrpeij/6O0+szDZUFFLQDh7oasnvPI7g0c2bl+2McXxNTvzIqTj8p6RZJBiUUjTA4fpccxukWhM2H+2jewqeqdrHI9wbY730DzifROTXeLKgJZK3Jfq0VnVhtW9IpAXcfVtDXN9T9nl2klyw98n9eef6TfcXZPHc36KYgcFRSOaYzolYknAhW3b6bOMJuq6blJs1t46c28WvpWVnU9yuLWf3HUOBdTCpfxREOKQOcBreWXMDu8b8zltkskkvHFyf2b0Ys4xtoVI5rHYnXgV0wIf3uWIuuLCPbgU8yYLDaKSqsJKXpwja0V/ZGw/9934hABHFeN3AUEYHAkRaCekf89tFEvQU32RCBtUgSKn+MEikfUn42W9E4gAKuzmHaK0HcfyVpcvXjdXZTiwjulf4tfo1NNmfT3pHcCxaIRLC99jVZKWHTdHZyafDMXRPfR1dL/PRsKBnj5j19h/c/fQ+VD1+FQPOw3LKIm3kQ8FsvOi5oAbHvqz6zc8UUOGeZR9clncRZX9NlfXD6JuCKIuweu/zFUGur2UfXvmyn8zzv6FJzNlFg0SonSTQeFTEuc4vi+TVmLTXJ+cnTb8zjwo5/9usEH54FV7/sJr076EBf4t1L857VsuPdTBH2p66iFOlQ3b3F17tPaDMnW4LGAWnsu0rSXiKJlytxlzProAzTpapj3yh3s2/zc6WP2b3mOKZE6PPbciVRxrRldYmKlg3lcnUyPHcVVsSan51n9oV+x0XktZhHBW3FhTs81XpAi0HmAc/H16EWcug39VWuJRCLJFHfdZgAmzb9oxHM16iZT2/48XlfXiOc6F22oG49GFQeERkObphyDrzHr58kHiXic2vqH2WNcxoxFa7Myp7lAFStcJ3eOeC59zEdIk70VNH1SBIpF+tYEUiKqE8hkGdwJBNBmrKXAdyxrcfXi7VGdGdpk6tfZWAvVAuhhT3pxbcuDP2R64iTNF34Nk9lK8aJrADi545l+Y3fceweX1P+Khd3PcMQ4D+X2l/HPvgmjiNJyKjc1j84rFIVtT/2FBZs/yxH9bKZ/6ilsjv6d7PQGI12iEK03Ox0MI+EQwX++GyMRSulh74sPDnmOrvYGdCLBsSrVcdZ1dEtWYpOcv7j3PE5E0TJz9fX5DiUlOr2Bi95/J+73bWSX7WLWNv8Jz48Xs/mRu/uJ2krPScKKnuKK3NcEMlicAEQDLgCsPQdp1E5CbzBhsRfhuP1xXJoC5jx1K96vV+D5eiVzn7gFr7BResUnchZXXGfCqEwsEej41mfRCgXH3Ctyeh6dTseFn/g721b+nAW3jqzZxvmCFIHOA2Yvu5xOCmD/o/kORSKRjGO0LTtpo5jSqikjnitxzQ8pUbo58OePZSGyvhgjLvwa5+mf3cZKHKHct6MfDY5sf4FKOglfcEvW5pw6/0IOaWczf++dnDq4fURzGWM+wtrMhJlM0BqTTqDIORb4pBPInFyxHQyfcybVsQaURDxrsQH43arDVm/vLwLZkrWvYt6BXbinDm5n0ZFfstu4nCWvfycA0xdciFcxEz/2CgCujhY2//zt7Pz+61jT8x82Vr4TxzdbWPzlFymtrsUxSbXId57Ym9XXdr4Ri0bY/qPrWP7aJ2jQ1lBxx38wWwd2kvXoSjCFslO3bNuD32dWvI49K++knSLEjr8MeY6elpMAGGqWAJDwn38dDyXZpbztFQ4bF2B39hc6xxKVU2aw6nP/Zs/rH8CtLeTC3V/m5PeW0Xhs3+kxRm8DrZqyUaltVFIzg4QiTqcQV4SO0W2beXp/YcUU9O9/ko3lb2NX8RvYU3wNG2o+gPXTW7OSoj0QCe3EE4HCR18kpOiZvuTSnJ9Lo9Wy/Nr3YLMX5Pxc4wEpAp0HaHU66kqvZJ7/NTw5WHWXSCTnP0oiQaV3L02WC7Iy39zll/Na1TtZ5XqSTQ9mt56JOeoiqC84/XPQWk1JPDdFqEcb19b7CSl65lx6W9bm1BuMFL7vfgLCRPyh9xKJDD1VpRdTwk9Unz0RSG9UU8vi0b7pYET9hBV95kUiS2ZjEWE6m7LrBgp5VIHHlEIEchapTiDFl1oE8ntd8OC7CAoz1e/+w+k6Ejq9gWOWRVT0bOPkkb14f30ZS7qfwRlpY7PzGla+764+81QmO9GEmvdn6VWdn2z553dYFljPq5M+xOQvvEZBSUXa8X5jOY7IyFMku9ubmF93L3tMy1n2hg9QV30jC4NbaWusG9I8/o5TADhr5hJW9ChBKQKNZfZueoZX//nDvJ2/5dRhpibq8U/JrYMimyxcczUzvryFzct+TFGiC8vfrmb93Xew4e/fpiBYj8tQOSpxOAtLOKmdjKVtK90dLWpXsrK+9WjKa6Zz8Ufu5qJP/IF1n/gjF93+45yLbYrOjGGCiEANxw+y6ce3MKv9KY4Y52MyZy/NXJIZUgQ6Tyhc9VaMIsqhF/+Z71AkEsk45ODmp6hW2ohOy94N5cr3/pidppWs3P8d9r74UNbmtSY8RAwFp39OOCdRgA+fZ3w/NMVjMWZ0PMd+24VZv9ksr55G85rvMC1xio0jEOXMiQAx/eB1ejKlVwRKnOMEEtEgQZF5BzLbpPkAdBzLboewqE9dWDE7S/vt0+sNuLAhgqkXXw69/BBTlEYaL/4RJVW1ffYFq1czWWnGdN+N2BQfx9/wT6Z9fS8Xfvp+dHpDn7HOolI6KUDbfTQ7L+o8pL5uH0uO/YadltWse+8PMBgHf+9ELBUUJ0ZeS/Hw/V/BQoiCG1VBoHTFTWiEQtO+oRWIjnSrKa0l1VPxCBvaUM+IY5PkhoDfS+kzH2H5oR/nrYB3/Wa1BETVyhvycv7hotFqufCNt+N56xP0aIpZ1v4v1tb9mKnxkwSsNaMWR0fhEqYH93N869MA2GqXjdq5B0LRmTEx/EWa8UTD879llfc52jVlRJZ+IN/hTEikCHSeMGvpZTSLckyH/p3vUCQSyTgk/Oov6cbBomtvz9qcOoORmR99mJPayZS//Hn8nuw81DgSHmKmwtM/64trAehoGNrK+1jjwIbHKMGFmH9zTuZfdOU7OGRaxKKjd9Pa1jKsOWyKn4QheyKQwaSmgyWifUUgTSxICFPG85RPXwxAoGlwt0wioRCLZZY2FvOpwqKtoCTlfo9woAulFh9jyXoTNXP6pw+UzFcLuRYqbjqu+zNzV/YvPH02rYYpOHzHM4p5ItL46t8xiwiT3v7rjDv3KI4q7ARH9L106uB2VnT9h20lNzB5znIAqqYvACDSOsQaTp4mgooBR2EZPo0Dfdg17LgkuWXnA9+mgk7MIoInS9e1oWI68RwNopJJMxbm5fwjZcrsRUz/2m7M3+zghWV3cygxidCUS0ft/NraNVhFiIqtP6CTAuZceM2onXtA9Cb0Ik40cv67gZzt2zimm8Hsr+1g+dXvyHc4ExIpAp0nCI2GhuJ1TA/tl21FJRLJkKg/soslwU0cqnlzxoV4M8VmdxK59qeUKD3s+dvnRjxfOBTAJoIo5jNOGVu52q3D05r9wsCjSXjrX3FhY95lb8nNCYTAeu23KRQ+jq1/eMiHx6IRLCIMxszq9GSCwaQ6gZRo38LQ2liAiCZzJ1BpaRkhRU/c1zHo2C0/fys7fpZZzSUloD7gOQr7O4EA/LoCjFFX6mOTKW7GFHVpps2/kO3mtexZeSezlg/e2cfnmEZVrF5e3wdA622mGwcl1Zl37tEXqq6DrtZTwz6v69HPE8DE7Nu+f3qb1V5AKyXohujcMvhb6NSUIDQaAjoHxqh72HFJcofX3c3iU3/GjVog3zWC989wCfo8zAnuoqnkIoQQo37+bHP5G99B9Zd3cvEb3zNq56xZdLn6f6WVuqrr0er0o3bugRAG9XoYCvrzHEluCYcCTI8coqsk/+6riYwUgc4jRPkFWEWI1gZpGZdIJJnT9MK9RBUts677VE7mn7v8Cl4rvoHVHQ+x/o9fGtGDrKdbreGhsZ5xZhTXzAAg1HFiZIHmEXdXGwu86zlUejVGU+5y42vmr6MLJ/qTLw75WL/Xpf7DlD0RyHhaBOrrBNLFg0RE5k4gIQReYUUTGfzBudB/jNne10jEB38filAPPsWM3pBakArpnZgHeFhXThe37i+sanU6ln3hSVa84X2DxgBAyWzsBOlqGf0HzvGAMdhKjza1W2sgTIVq/RFvx/A6C+558WEWhbdxYOaHKCztW8ukwzgJh39ofytLuA2PXhUbw/oCLHEpAo1Fjm78D1YR5uBk1b3g7Rz9zpRHNj+BUUSxLnjDqJ87V9hNerSa0RO0KibPpBX1O6Pm8g+O2nnTolevh+GgL8+B5JYTu9djElGM09flO5QJjRSBziPsk1ULcnuWayJIJJLzl0Q8Tm3rM+w3L6OkYlLOzrP0g79hi+0K1tX/mo1/+uKw5/F2qwWg9fazRKDSauKKQMnABTJWOfTcnzCKKCXrMhQFhonQaDnhWMEM79Yhd9LqTZvRmJ2DjMwcQ7I7GLG+9nddPEhEYx7SXAFhQxfxDjrOmAjiFH6aTh4cdKw27MIrBnbHxbWWgQt5RgNEFF2/Gj/DwVw2HYCulvHtdssV9nA7XkPZkI4x2VQ3YcTvGvL5YtEIjle/QaOoYOktX+i3P2CfRlWsYUiCd0G0g4A52XHOWIA9Mfh7WTL6xA89hRsrlatVx2aou2nUYwgdeAq/YmLWqqtG/dznE8er3sAW2xXUzFiQ71AA0BrUa17kPHcC9Rx6GYApiy/PcyQTGykCnUdUzVwKQLBp3yAjJRKJROXItueppJPYBTfl9DxGk4UV//cwW+1XsKr+dxza+vyw5gm4VSeQ0XEmPUej1eITFkTIlY1Q80LRkYeo005jxqK1OT9XfOrlFOGh/sBrQzou6FVFIL05e04gjVZLRNEhYuc4gRIhYtqhiUBBrRV91DPoOFNCTT1rO7R50LH6iBu/duDXm9CZMCqhlPs00QChIRS3TofBWgBAxD/46xsqPu/4d5wUJjqJWMqHdIw52fEtFhh6TZdt//4ZtYkG2i/8f6frWvWhdBY2EaSrtT6j+eKxGKVKNzGb6iiKGwuxK16Z/jfGiMdizHBv5Ih9NcXJ1MOoe3j11YZLLBphevfLHLKtwGgc2nekpC9rPvgLVn527NRS1RjUFMNI6PwUgQJ+D6/+/TuUn/ovp0QNRWXV+Q5pQiNFoPMIZ1EpHRSi7TyU71AkEsk4IRctyQdCaDTMfv/v6BBF2J78KJFw6ofndITdajcfS0HfGi0+YUMbyf4D8mhwfN9rzIzX0Tkjszo1I6VmuZpC0Ln7qSEdF/YlRSBr4SAjh0ZIGOAcEciQCBHXZp4OBhDW2jDEBrfRm1FFoGjD9kHHGmNuQrqBC2ErOjNGUjuBRCxIiOyIQEar6r6KBrP7Hj+09TmMP55K0/Hx234+FPRThJeEbWjtpW1O9X2cCA5NBHP3dDLr4C/Yr1/AkivfnnKMtWouAK0n9mY05/F9m9CJBNoSNbUVSxEGEcfvG/8C3fnE0R0vUIgXMecabI5C/IoJ4W0d1RgOvPqI2kBgUe6v2ZLRRWs8v51Au/7yOS6q+xHTEqdoqkrfDEGSezISgYQQVwshDgsh6oQQ/Xz8QogbhBB7hBC7hBDbhBAyyS9PtBqnUuCTdnGJRDI4Pk8PczqfYb99DTZHdh/sB8JRUEzbxd+nRmlhxyM/G/LxsWTKl72wos/2gMaWkQtkLNL+yh+IKFpmvy63qWC9VE+q5biYhLFpaE6g3rSZXldKtohgQMT7CilGJURMN7RV7qjegTmR/uZZURTMSeeOvXtw16wl5iWiHzj9LaEzY1JSt/TVxEKEh1DXKB0mWwEA8SyLQJ5Te9CLOG1Hd2R13uEQ8LnZ8Mv3s3fT00M6rrdOkrZgaKvKVkevCDS03+n++79KgeLDeN0PB+xEVjp1PgD+psFTDgG6Nv6NiKJj9iXqg73Oqqaq9dZAk4wNevY/T0IRzFxzIwDdmiL0gbZRjSG6/e90Y2f+JaOzaCAZPXRGtSZQ9Dx0ArWcOsLytofZ4rya6Fc6WXP7z/Id0oRnUBFICKEF7gauAS4A3iqEuOCcYc8DixRFWQy8D/h9luOUZIjfOZOaWD2J+NBqPUgkkonHnod/QAE+HJf/36ied9Glt7BfP58Zh35DYIgr3Ql/FwCO4r6pH2GdHWN0/NXQiIRDzGp/kr22tf2Ky+YSt7EKS3hoNZSiAfVvZbYXZDWWKHo054hAJiVEQje0AtkxgwNrIr0TKBIJYRBxEopgSvjIoNdKm+IlaiwYeIDejFFEScRi/XZp48EhdThLh8WmClHxUHbf43Gv+gAb6cx/+/k9v7uDtV0PM/fpt7LpwZ9kfJyrTRWBzMWTh3Q+nd6gOjnCmX8H7XnlMZa3PsDWwqvTpm6WVU3FrxjRn3iB1559gCP7txPwp35vxqIRZrQ/wz7rapxFqsNRZ1NT1fwuKQKNJUSwmwAmnIVqTTqPrhhzuHPUzu/uamOBbyNHSq/BYMyOwCwZO+hMajpYPBzIcyTZp/6Rr6MgmHzLd9Hr89+JTQK6DMasBOoURTkOIIS4H7gBONA7QFGUs69sVkDJZpCSzBHlczG3P0DzqcNUTTtXq5NIJBIVd3cn8079jZ2W1SxZeumonltoNGiv/AYlT97Cxr98ljUf/V3mxwa78SlmbOfcAEd0DuzR8dcdbP9LD7AELw3L3jmq5w2bSnCEDg/pmN60GbO9KKuxRIQRbbxvOphRCaMM0QmUMDqwKX5QFBigbXLQ68YInNDVMj1+gobj+5k0c2HKsUoigUPxkUgrAiVb+oZ8WGx9x+niQaJDLG49EJZe4S2UXSeQ8Ksig3BlVrsmV2x78s9c6H6STWVvoaB7D9MO/Ar4TEbHBrsaALCXDU0EAvAJK5pwZr/Tuj2bmP787TRqa5jzzp+nHSs0Gk4aZ7E0uAk2bjq9vZ0iOnSVRLUmEkJPyFyGUBRW46L+rPQek1MVg0Lu8Vvs/nxEEw0QFCZ6S8WHTKWU+w6kPSabHH7pn6wUMUrWvmvUzikZPfTGpAgUOb+cQEG/lwU9z7Or6BpWTZqR73AkSTJJB6sGGs76uTG5rQ9CiDcJIQ4BT6C6gfohhPhgMl1sW0eHvLDlAufpDmE78xyJRCIZyxx4/Bc4hR/nNV/Ly/nnrLySzcU3sabjQbY/9deMj9OFuvFo+hfqVV0gmbkkwqEAG+/7Hp6uwVfZI9EYipK7dQ2x6z7aKWLeRTfm7BypiFtKKVA8KPH+DpaBSIRUESjbqYMxjQFN4kxKVSKewEzktMCSMUYnBhEjEhp4FTXoV19DZ4Eq/HSfGrgWjt/nRi/iCMvAr1djSIpAKVwe+niIaJacQAajibCiR4lkt3WwIai6GIy+0W9z3Us8Hqds6w85rqllxQd+iavqYkqVHsJp/o5nE+1RYy+uqh3yuQMaK/oMHYSd6/+MljiO2x/DWTx4Eeppn3yKY7f+j/1XP8imRd/nlZoPcsy+ggQaTDEvjkgrs7tfYrXrv7RRxLxLbz59rCUpAkW8XUN+TZLcoY0FCIkzwm7EUk5xonvUCngbj/yXJlHO9IW5byAgGX0M5vPTCXRw/aNYRBjbUpnCOJbIxAmUajmt3x2xoiiPAI8IIS4Gvg28LsWYe4F7AZYvXy7dQjmgZvYyeAJCjXuA1AULs8nRvVto3vQAq975bUzmId6wSySSvJCIx5l84n4O6OdzwcI1eYtjye13c+RHe5m7+bPsNFlZctnNgx5jiLjwafrXaEkYnaoLJAP2v/Qga478kKYjf6brlr8xdf6qPvtDwQA7X3gQ7d4HWBTcwpYl32LVjR/N7EUNgc7mUywIvMaWqndSloU24kNB2MrRiQSe7nYcpVWZHRTyElG0GE3Z/a6PCQPas9LBQiEfFqFAslNKpmgs6vvC5+miyJz62JA/+cBfNg+6/kOwY+A0KG9POzZAaxnY+SSSIlA4RQ0HvRIipM2eYOYXZjRZFoHMEVUEcoabszrvUNj1v/tYpjSzY8VdTDMY0RVNQVOv0N54jEkZtG4WnmbVHegYukMtrLWhj2UmAmnDPfSIAiorazMab7bamT5v5aDjfD4fNqH06fRkLVTb3cd8o5dqJBkcNcXzLBeqrRyziODx9OAoKM7pud3d7VwQ2sm2qrdSPUAtKsn4xmhWPWaJSDDPkWSX2L7/4MLG7FVX5zsUyVlk8i3SCEw66+caYMC7BUVRXgGmCyFKRhibZBjYHIU0iEoMnbnr9NHWdIqX7/4IG3/yFiY/fC2XNP+efS8+kLPzSSSS7LLvlUeoVtoILn5PXuMwmiwU3f4ILdoq5r10O689/odBjzFH3QRTFOpVTE5MIkoog64aUZfa0tdMAOPD78DvdQFw/MA2Nvz8XYR+MJPVWz/JtNABBKA0Dt5FajjUvfBHtEKh5vIP5GT+dOidqpPB1Zm5A0QTduEX1gGL4Q6XqMaILnFGBAomhZpegSVTtOYCAAKe7gHHhANq6o+pbCoBxQg9Jwcc63epD+C99VlSntMwcDcXQyI85Db36QgKM9podkUge0z9XZXH2/LSjlxJJLBs/SVNopxFr1dTXKzlauttV3NdRnMYAm10aYf3AB7W2TBm0FEOQB9x49f2dyGOFJvNhtXatwOds0gVgRLDaF8vyR36WIDIWSme+gJVQO9pzX065eGXH0Qv4pSsfHPOzyXJD70LLInI+eMECoeDzPFs4GjBxegM2XHGSrJDJndyW4GZQoipQggDcBvw2NkDhBAzhFAT8IUQSwEDID2seaLdMpOywNGczL1309NofncJa9rvZ7Z3E3utq3FhI3HoyZycTyKRZJ/4lj/QhZMFrxvdOjSpKKmYRMnHn6NOP5sVWz/DpgfuTDveHu8haijot12TFAB87sEvPQlvGzFFQ/Pr76VC6eDgPe9iyw+vo/aB17G0+ykO21ay86LfU/j/6mjQTsLkbxrOSxsUTVcdnRQwaeainMyfDlOh+vDi68zcAWLzHqdNP7QOTJkQ1xjQnZUOFg6oD+Ua49CcQPpk17JgGhEoGlQFJoPFQau2AqOvYcCxIU8yVcqeRgRKxhhJ4QQyKiESuuwVbw0JC7pYdmtFFCV6CCl6LCJMT2dLVufOhAOvPcPc+GGa5r4frU4tFlpUrdaMCLZnVuPLGm7Doy8d1vmjOvugHeV6McU8hHT2wQdmAb3egFcxI4IDv5cl2WPzgz9m23/vGXScPhEkepaw2/s96u0c+HskW+jqnqaVEmYsuijn55LkB6ujkKBiQPSMv/qGA1G34yUcIoBh/nX5DkVyDoOKQIqixICPAc8AB4EHFUXZL4S4QwhxR3LYzcA+IcQu1E5ib1FyWURBkpZIyQXUKK340twIDxlFYeM/v8ecp99GWBhpvPUpir9Rz/LP/5ejjjXM9GwiFk3dJlcikYwdutoamR94jSMV142Z7iLOwhKmfvpZ9phXsPrgd9lw9wfZ/uK/6WzrK750Np+igk5iZfP6zaG1qmk3ve6NdGgD7biEg/lrrmVL2c0s97/MrOBONla+k+BHd7Pqc4+w5Ipb0er0eE2VOMK5eTjWxgIERX7SaB0l6sNLyJXZa1MSCSZFT+B2zM56LAmtEd1ZbdYjwV4RaGi/G6NNTQcK+wa+9sV6RSCzA7epioLQwCJY2KvOY3YObGxO19LXRHjIHc7SEdZa0WdRBPJ7XVhEmBOGmQB0NuZm8SgdkZd/Sg92Fl73kdPbSiqnEFW0JHpODXq8kkhQGOsgZBq8Rk8q4gY71gzTSM1xD5EULsRc4dU40IWlEyjXxGMx5hz4KY5dgztRDYkgMe2Zz7S9VE2UCHXnZqHgbGzhNtpNU7LuxJSMHXR6A3Wm+ZR1bcl3KFkj5GoFwFE5M8+RSM4lo28SRVGeVBRllqIo0xVF+W5y2z2KotyT/PcPFUWZpyjKYkVRViuKsj6XQUvSY560BIDGg1uzNuf6P3yONYd/yB7zCuyf2NCnhoZm7rUU4uXojheydj6JRJIbjr7wF/QiTsXF7813KH0wW+3M/8wTbCy8kbUdD7Ds5fei/GYNJw/tOj3m1I5nASie36/kHHqrKgAEvYOL34ZQF26tOn7Z7Xez5/K/YvniUdbd8UuKyvrWxwnbqimLt+ckVUYbCxDOUveooVKQfHiJetoyGt/WdBwHfijLftfJuMaIXjmrJpDPBYDOPLTUG3OyJkwkeXwqekUgo8VB2DaZ8njrgH/bmF91ldkKBnaZ9Lb0jaUSgZQQij57f9+ozoIhnr00gZ42NRXQVbwYAG9rZulXACcO7SQ6woWf4we2siT0Gocmvw2T5YzDRqc30K4pQecdPFXxxKFtlNFNonrpsGJIGB1YFX9Gn29bwkssXae4LOPXODBEMm9fLxkedXs2UICP0vjggrgxESJ+VtdCq1P9zokHs9u1LxWmuI+oPvvpiJKxha96HVMT9XSOQorhaBBLLsqku45K8oOUk89DKmavAMB9MjsdwjY99BPWNf6Ozc6rWfy5J3EW9l0VnbnmBiKKFveuxwaYQSKRZJuAz83RXa8O+biiukeo005j6gUrchDVyNDpDaz++J84ctMzbF97DxoUrPffSP2R3QDEjr+CR7Ewbf7qfsca7aoTKJyBCGSNdOHXqyk+eoOJhRffgGGAYseKczI2EcTdnf2Olvp4gIgmT04gZwFBxQDeDEWgozvU42oXZz2WhNaI8SwRKNCtunNsxRkWrE5iSaZtxYKuAcfEw6rLyGRzQOEUNQ2qI7UbKOFT/+b2gjROIFNvS9++4kw0EsYg4kPvcJaGqM6GKZE9EcjbpboXjLXqok6kc3DnDcDB155l6v2XsvPx3w773Eoigec/XyKgGLnghv/rt79HX4EtOHiqYtvGB4grgukXv3V4gZicGEQ8ZWHvc+N1KD4SpoLhnWcYBPVOisINuHtkN91c0r37KQAK8Z6uDzcQJkIk9GfSVHsL+SrR3NdwsSk+4gYpAp3vlCy4EoBTW8+PMhuJgHpPZi+UItBYQ4pA5yHl1VNxYUO07s3KfNZjT3JSM4kVH/8HWq22336Hs4gmbQ1Gz8msnE8ikQzO7n/9kCmP3DDoTevZnDq8i1nxo3ROvyl3gY0QodEwa+GFLLvyrXhufRgtMYz33UjD0b1U9WzjmGUhWl3/xpbmXgHAP7gI5Ih3EzZl1rvAUDIVgM6m7KfKGOIBorr8OIGERkOPKEAbzKz7UKBBFeKqZi/PeiwJ52RK6cHrVv92kR714d9ZNnlI8/SuyicCA7snlKQIZLE5MJVNB6Cj4UjKsYauQzSLMkwW24DzGZIiUCLcV0QIJusaDbW4dToSeitmJXsPm8Ee1flQUDOHHuxo3ZmlX4n/fVWNp3n3sM+95ZFfsji8lT1zPoWzuKLf/oClmqJo6yDBKFQ1P81B4wJKKob2XulFY0p2lHOl/97weV3oRRzMQ+9ANlyCc2+lItFO+Ocr2bPxqUHH7934FK898QcObHmB9q4uEglZlSETHM1nkhfa6w+nHWs5x91nsaqijJLjQr5KIoFN8RM3jl46oiQ/TFuwBg9W4sdeznco2SHkIqzo015HJfkhkxbxknGG0GhoNMyg2J2dDmEF4RY6rdOpTfHg1Usoy7UKJBJJegydBzGIOG1tDVjtBRkd0/Lav5gCTLvkHTmNLVtMnbeSY8q/KHr4Zkx/vwqn8NNUc1vKsVZnUgQKuNLOmYgnKFRcnLBktirlqFBFIE/rcVi0LvPgM8CYCOLR5scJBODRFWEKpXcZhMMhejpbMXQepIVSKnPQBtk8eQmcgsZDW5m76ioS3hbiiqCoZIhOIIuVsKKDkGvgQckW6yaznYIqtQCxr/UYcHm/oRX+g7RY5pAuCmPyxjYe7vsQGOktbp1FESiut2FRstc6OJKs1eAsraZHU4w+OLjjZOezf2Vp7BBRRYvVk3n62Nn4PD3M3ftD9usXsPLNX0g5Ju6ooczVTTgUON0xp5dQ0E8kEubIhsdYnmhk8/R3DysOAK1Ffaj2e7opqZoy4DhvTwd2QGspHPa5hsqqG+7g8KQLsPz3g8x95u1savgCq9/8eVD7sPSh+eRh5jzzdlWoShJRtISEiU5tGS5jFUFrNRRNZ+n1H8VsHZ0C12Mdr6eHmZED7DMtZn54F+7mOpi3KuXYWDSCUURR9GceZrU6HWFFj4jm9v43GPBiEXHEKDrRJPlBq9NRZ1nCVNcmgn7vuP+sakMuPMKG9AGNPaQIdJ7irV7H/BO/or3xOGU104Y9TyIepzzRTrP90rTjwlob1qgsYCiRjBYFfrV7hLezCWYsyOgYe8OL1GmnMaN6ai5DyyrT56+i3vAksfvfgTPhp2zRVSnH2ZPixGAtlT09HRSIONjKMjp/Wc0sACKdJzMPOkNMSpC4fmgdsLJJwFBMYSh93ZXt932D5Sd/h0mYOGmeT2UO4qiaswpeBffx7bDqKnT+NrpEIWVpFh5SITQa/MKCJpymPkfEj18xYdVqKZ+sFrmOdvbvxOLuaqNaaaO+7Na05zQlnUDnpoOEgr1OoCz+fY12LCJMPBZL6YYbKoq3jbgiKCiupE1rxZDBQk7s8LP0YOeYYxWTvTuGdd59T97DhfjRX/MdNCncxQDaolqohx1P/J5ITxMGbz0k4pT4jzIzcRwTsBzowsn0S4eZCgbokwXlg2mKiQME3KpjTmfLvgiajtlLL8YzbT37fvNWVh/8Hlt+sZsld/wBvbGvg/DUf39ACbDr8r8R8fWgtB8kHPSSCHqxhpopDtYzx78NS0eYLU/pWXnLZ0b1dYxV6vdvZp6IE5r3Ftixi1DH8QHHBvxeHIA4p2thUBgR0eyJs6nwujqxACLZBVNyfmNc+2FK//d2Nv3lM6z+yL35DmdE6CJufBq7FIHGIFIEOk+pXHUznPgVJzY+RNkAK22Z0NnaQJmIIgpr046L6W2YwoMXcZRIJCMnEY9THW8EAcEMu5J4XF3Mjuxna/U7mZHj+LLN5FkLCf7feg4e3Mrc+RemHGM0WdTWqqH0hVRdHY0UADpn/xSUVNgLS/ApZnBlv0jjufUlRpuoqQRnIH3asN51AoOIYcBHsHBOTuIoqZxCDw40bWosxlAHbm0Rmcl0ffELG9rIwCKQJuonKExYUYuRd1KArnO/muZ0Vted+v2bWQDYpq5Me75eJ1Ai0vchsLfDmXaIHc7SIYzqirDf58KRpk5RpmgD7fQIJyU6HVGdFUskg6Lq4W66NSVES+ZQ5n0Or7sbuzPzFKlEPEHl4b9zRDuTWUsvHXCctVxdvFq9V00966CAGDq6deW8WvF+0JsxlM9izprrcRYM351jtBYA6YuJAwQ9qghkso+uCATgKChh4eef5uXf/R+XtP6ZIz+6hNL3P0hhZS0AHS31LO38LzuLrmHVxdcPOE8inqD721Og4fzpPDRSIknxzzl5Af7tJoRr4JTIcEAtKn+usBvGiCaWWxHI71GL1Ouso5eOKMkf89Zex+YdN7Kq7UEOvXYzc1alXvwaDxiiHkLa8e1mOl+RItB5ypRZi2kQVZiPPQMMXwTqbjxCGWAuTe8ciOttGdUqcLu68fV0UD01+22GJZKJQmv9UapEFICoe5C6GUmObXqMJSJBwaI35DK0nGG2OZi74oq0Y7zChiacXgTyJYvhmgsySzUSGg3t2jKM/uyK3EoigVUJouRRBEpYyyjo8hKPRdHq9CnHGEMdHNfU0lj1emZc+cGcxCE0GhqNMyjyqvU4bJFOvKbMRLpzCWqs6KPeAfdrowFC4oyL4ljBGla5nmTHndeQWPoeSmrn4ygqx39C7a45OUUR8rMxGs0kFNHPCRAJqSKQzpi9Oggak3ojHfBmRwQyhDpxa4soAaI6O+ZQw6DHmCPdBPQFmCrnwgloPrqL2cv7p9INxP6N/2WB0si2Rd9PO27G0kt5eec70FUtZNFlt1KaFJqy7UQz29V5o/70DsKIV30INztH/nsfDlqtlkvu+DnrH1vEku1fJPjbSzhwzb1csOoq6h74EiuIU3PdF9POodFqOGW+gHLPvlGKeuwTC6iCsdlWSJu2HKNv4O/5kF+9tmjP+UyHhSnnIlDIo4pVRtvopSNK8suC9/yc1p9sxPb0JwnO3zpu08LMMQ9eUy48xJKRIgtDn6cIjYbG8kuZE9qF19U17Hm8bao11lk1M+24hMGONQMR6MA/v4LpL1eSiMcHHSuRSFLTcfIs94Y3MxEocvhZPFiZufSyHEWVf/waG7o0AgBAKFkMdyidpzzGShyhzH7PmRIOBdAKBbKZLjRENLYyNELB1TFwa2R7tBO3qZqLP/Ajqqakvw6MBH/RXCbHThEJhyhIdBMxDc88HtbZMcR8A+7Xxf2ENWdEoBUf/zsbpn6S2cFdLN94B7X3rcP2y7lUn/wXTaIcZ1F6P5LQaAhhgHPSwWJJJ1Bv97BsoDGpRWjDg7hWMsUa6cCX7JIXN2S2kGOLuwgbiymZqqaguhuGVnvQf+w1AOZdnr4umdFo5pKP3M3aGz+EbQhOo6Fidqhzx9IUE4ex0+Z43fXvo+GmxwhhYsaTb2XDL97LatfjbK28jerpg6cFh8qXMkVpxNPVPgrRjn0SoaQIZC/AbarGGRq4I104WedLa+orAkU0JnTx3IpAYZ8qUhrt0gk0UbDaC+i64ifUKC3s+sv4Td+0JrxEDbKg+VhEikDnMc4lb8Ig4hx59aFhzxHrUmsllE8aJIHEaMcsIkQj4bTD9IE2inHTUJedzmUSyUQk2HwAAL9iQhsYvJirkkgw3bWRI7aV6PSGXIeXN0JaG8ZomnowQMyjtkQvKK/JeN6wrYbSeGat1DMl4FMfOjVZdIoMFVOZmnLTsOeFAccUJLqJmIeTmDU0dNWLMYgYpw5upRg3cdvwnEARvR1zYmARSB8LEDlLBNJotax997fQfekE2y/5ExsXfJc6/SwmKc20WOdmdM6QMCLOcQLEkoWiDVkUgfQWVQQK+tMLFplSGm8jZK0GQNHbsGUgAhUk3MRMRVTWziWi6Ei0HxzSOZWwh4iiw2wbG62uewUmJehKOy4RTIpAY6DN8ZxFF2L/5Hr2Wi5kbfe/aaGURe/4QUbH2mesAeDk3ldyGeK4oVcEsjoKCdsmUR5vRUkkUo6NBNUFBp2pryNDFYFCOY2zV4S0OEc/HVGSPxZcdD2bC65jWdvDdDafzHc4w8KheGVXuzGKFIHOY+Ysv4I2itEeeGTYc2jd9XRSMGhrP2FUb+j8nvSWan3yAa394IZhxySRTHQ0XUfpwU6zbhLGQbo7ARzft4kSXCSmv24UossfYZ0DUzy9E0jxtRFRdDiGcDOtOCfhEAHcPZm1U8+EkF+NU2PKn8V73rrrqRdVOF77aUp3ZjgUoBAviq0857GUzlRr73RufwwAjX14IlBM78CSTgSKB4mk6MhmNFlYdtlNrLn5Y9R++hleKbkN09qPZHTOMEY05zwExpIt4/Xm7Il8hqQIFA2kFzozwevupgAfilNtra6YHBhFlEhoYEdDKODDKkJgKUWnN9CkrcbkOjak82oiXnwifx3xzsVssRNTNCjpiokDBHsIKEZM5vw5987GWVjK0s89zuZlPyZwyz+w2DJ7yKpduI64Iggc25TjCMcJYS8RRYvRaIaCKVhEmJ7O1M7IaNLdZ7D0fQ/EtCb0idw6geLJhgc2KQJNOGre+GV0JDj6+F35DmXIRMIhLCKMIrvajUmkCHQeo9FqOV7+ei4IbMXdNbxVbEugiU7d4LmcGrN6AxLwutKOM8bVG+N449ZhxSORSMDmPU6LfjJ+YwnWyODpnh07ngBg6uqBi4aeD8QGcYEA6AIddIuCPkWAB8NQUgtAZ8ORkYTXh9P1JUz5cwLp9AZaF3+SaYmT7H72r/32d7epNWI0jtzn80+euZAunFQ3Pg6Asah6WPPEzcUUKB6CvtRuGaMSIK5LL0JYrA4u/thvmb86s2KcEY0R7TlOICUpAhkHWUAZCgZLAQDRQVKXMqGz8SgA+uR7+/RCjnfghRxX8uFYY1Pr4vSYp1AUGlrBdG3ES0CMDSEF1HQ+32Ad5VDbHHtF/j6rqRAaDRe+8Xamz0/d0jwVNkchJ7VTsLYPr7Pb+YYm4sUvLAiNBmPJFAC6W/p3CwSIh1Th3mDuK9zHtWb0ifQu+JGiBNXPvC1PNakk+aNm+jx2WtdxQfPDpx3E4wVPj7pIqbHINMaxiBSBznNKVr8dg4hz+KX7hnV8YbQVn2Xwm3Fdr009zQ0kgDGuPqAV9cjChBLJcCmPNuKzTSViKsGZSP+ZA3A2vcgR7UxKKyaPQnT5I2YupijRg7t7YHeUMdSJRze0GxJHslORu3Xg9sFDJZJ0c5ybWjDaLHvDB2gQleh3/bnfPne7WiTVWJR5/aThIjQaTtiXMVlRa3JYi4cnAtnnXYVexDn86r9S7jclgsR12RUhIsKE9hwnUDyZDmY0Z+/va066PWLB9G63THC3qO9le8V0ALSnF3IG/j7xdqkikMGpOsOipiJsSnrR9Vx0MR9BzdgRgQD8wpq2oxyAPuLGrxmfhVnPpcsxl6rw0Bxc5yuaqI9g0plmsKpFlwequRUL9Qq7fVMZ41oTRiW36WAi7MKrmNHqZD+fiYj1kk/gxM+ex3+d71CGhN+l3ovJrnZjEykCnefMWLiWelGF8+B9A+Y5D0QsGqE80UHMPnjtDL1FvYEM+11px1mTq/S1seOEgv4hxSORSFTsip+4uYi4pZwixU0sGhlwrKernVmRg3RVXjyKEeaH0rXvwUCM/Q9+Y8AxzkgrfuPQ0ptKatSCyJHOkyOIri/RYOpV5dFGq9PRWHEFs0J78Xn6tggPdqsikK048/pJIyFee+Y9WlA2PMFy7sor6cRJYv+jKfebCZHQZzcdKaYxoj3HCaAkC0UPlko9FMz2AuBMHZOREOpQ3Q7F1Wq9P13yGh5M4+YN9KiOYlOB+vlJGBzYFP+Q7i0MMR8R7dgSgXxaJw7/qbSvwxh1E9SNjTpGIyVeModi3GkLwk8UdGeJQEZbAQCRAe5jlYh6/2q0nOME0lkwKLl1AmnCHvxjzIkmGT1mr3gdh3SzqTn8Z+KxWL7DyZiAR3Wq621SBBqLSBHoPEdoNLTM/xCzY0fY9b+/DenYxrq96EQCTcn0QccakysokUFs6lYlQLMoxyDinNovc9IlkqESCYcwiBgYrGgc5YN2dzr4vz+gFQoly28axSjzw/SFq9nmvJJlLQ/Q2lDXb380GqEq0UrYOXVI8zqLywkoRnANLfUlHbHe1AJr/h8snQuvwyDiHN34WJ/tEZf6vnKWTRqVOGqWXANAXBEUlg7PfaTT6zladClzvJsJBfo6ZpREArMSImHI7sNUVGtCf25h2F4RKIs1ZCx2VahRwiN3AuGqJ6gYKEr+nk8v5KTpPBZJFlW3FyXrNZkcGESccGjwgtK9mOJ+Irqx9TDbM+MmZsWPsm/9owOOMce9hPXnR3FTS/V8AFrqduU3kDGAIeY/XSOsV2SNB1PfxyaSKZ6Wc76zFZ0Fc46dQPqoB79mbH1uJKOH0GjwL/0QNUoru5/7O7HY+OiwHPaqIpDJIdMYxyJSBJoALLv+I5wUNZRs/j6v/O27nDqaWWeu1m3/AWDysmsGHWtK3pzGA64Bx8SiEawiRKNzGQCeU7JDmEQyVHprnQiDDb1TrdXi6mhIOVZJJCg//HeOaGcyc/G6UYsxn0y6+TsoQPM/P9lvX+upI+hFHG3p0FqdC42GNm05Rl9jlqI8U2TUaMn/g+Ws5Vfgxkrs4FN9tic8rcQUzWmhINdUTZ1NE+V0iwJ0ev2w57EtuRmLCHPwlYf7bA+HQ+hFHAzZdaLENSb0ib4PgSLiJ6AYh1R7ajCMRjNhRY8IDy0FKxUGXyPt2rLT8fW6INLVG4p5VWu/M/l+6K0F6HMPXpesF0vCR0w/ttKqltz4SVoowfDK9wd0A1kTXmLnSZvj8hmLAfA0yHswQ9xPJJkeak5+BuLB1E47EfGTUASmcwpDK3ozJsJDdtsPBWPUQ0g3tj43ktFl0ZXvpIVSlm7+JNFvV3D8wNivrRpNikAWhyxoPhaRItAEQKc34L74W5QlOrn42J30/OuzKce11R9h0wN3nq4J4Kh/jjrtNComD/7AZLGpTqDYABdPONM5LJHsRjLQaotEIhmYoF/9jGlNdizF6sOYv6s55dj9G5+gVmnEveA9oxVe3qmcMpsd0z7E0sB6djz9lz77uuvVdtb2qjlDntdjrMARzl76hJJ8kDdZ839jr9MbOGpfxTT3pj5dwrT+NrpFARqtdlTiEEJwYuptHCm6fETzzL3wGtopQrvz73229352NMbsrqjHdeZ+6SAiFiQsjFk9D0BAmBCRkTuBHKFmXIYzBb9NyQfgWLpW6f4OIooOa3KsNlmoerCuoGdjIUjckP/3/NkYTRbq53+U2bEj7H3l3/32K4kETsVL/DzpcFNePQ2fYob2Q/kOJe+YEgFiSWea1aHexyoDpFsq0QBBjAjNOd+HBgtaoRAO565DmCnuJSJFoAmNTm/Ae/3vebXq/ZhFhLZtjw1+UJ6JB9QUc3thaZ4jkaRCikAThEWX3Uzsc8fYbr+c6tDhlGNOPfJNVh/8LqGfLGTrI79kduQAHRWXZTS/1aHmeyZCA9+c9t4oap1VJBSRHUu7RDLBCPU+yJpsOErUWi3hntQiUHjTb3FhY8Hr3zNa4Y0JVrzt6xzVTGPy5q/h7jlTJDrYqn73ldZeMOQ5Q9YaSuLD67KYikRSBMq0tXPOmXU1xbip2/3q6U3GUDtu7eiu4K1797dY+4k/jmgOnd5A3aSbWRjeRtOxM00Iel102RaBElpTChEoRIhciEAWaro3seHXH05bC2wwSuJthKxnim9b7OoD8EAuCABtsJse4TztHtInRaCQNzMnkJJIYFUCYBx7D7OL3/hh2ihCs/Hn/fZ5ejowiijCVpaHyLKP0Gho0k/G6umfMjvRMCsB4nr1+8BoshBW9CgDdIrTRP2EhKnfdpGsMRYOjNyhNxDWhI/oeeJEkwyfWUsv5aIP3sVJTQ2W5rFfUkMJukgoAptTOoHGIlIEmkBYbU6ilUsppYfO5lP99le5tnFYO4sOTRkrdv8/tEKhaNkNGc1tMluIKlpEeGB3T8CrKsI6WxF+TIhBWrJKJJL+hJOtxXUmO0XlqggU97b2G9faeJxFvg0crLghq8VpxwN6vQGu/yUFiodDfzmTFia6j+HBMqz0JsU5CSd+PK7MU1/SEvGpqQVZrBkzEmasvpG4IujecWZ10R7pxGccn7n8M6/5GFFFS/2zvzq9LZRMddJmuSNbQqemg5yNLh4goun/wDhSTpRcjk6Jsrb9Po7ueHFYc3jd3RTgQ3GeKb7d64JIV3TaGO7Cqy0487NV/Xe6OkJn4/e50QoFTPmvg3UuRqOZ49Pfw/zIHo5s7/t77Wg8qo4pnZaP0HKC2zadysjJjMZ6XF00nThMR3M9rs42ujpaqD92kL2bnmHX+ifY9MRfefl3n2XLD69j/Z++NOyYIpEoLlf34AOziEUJkjjLmeYTFrQDOO20sQDBFCKQxqh+hwcDuVvYtCl+Esax97mR5Ie2wuVMD+4jHovmO5S0aII96mdKdrUbk0gRaILhmLocgKZDr/XZ3lp/lBqllZ7pN1D96efZYVzJCc1kZi7KrI6I0GjwCzMijbsnnEwz01ucyZas2blgJhJKVuaRSMYDvV2l9GY7JrOViKKDFJ+740/9Cg0KU676+GiHOCaYuXgdr1W8lVWuJ9j1/P0AWLwnadVWD6tOi75YLSbd2Zid1XMR8RPAlNWaMSOhoKScw4YLKGl56cy2RDcR8/h0P5RW1bLHtpY5bY+fdswEku1qDcn05Wyh6MyYznECaeMhIikeGEfKuo/eg/aOVwBwHR3eSvCxHc8DoC+pPb3t9HdJGjevOdpDQH/md2e0qw7gaJpagGfjT94DaExj09Gw4IZP4MGK7/kf99nuaVHbqTsqzh8RKFGqdgjrGaRDWCwaIfKzpVT/ZSWl9y6g4FezKL57DpP/diELnnkzi597G6u3fpxLmn7HrOBOVp/8DacO7xpyPHX7ttLw/WX4f3ZhTmvrnE00GsEiwn2caUFhQRNJ7ejRxlILuxqD6gSKBHPjBIpGwlhFCOU8SUeUjBzt1HXYRJATe8e2G0gbceOVXe3GLGPj7lMyaky6YBUAgfodfbY37HgGgPJFV2KzF7D0S/9j8pd3DqkWREBY0UQHvgiG/eoNoMleRFBjQZtmbKY0Nxyn/ltz2frMfSOeSyIZD5xuLZ5sUxsQJjTRvt15IuEwM5v+xV7LCqqmzh31GMcKS991J3Waqcx45VOcPLCVknADbsuUYc1lr1BFoN4HwpGiifoJCHNW5soW7kmXMyN+jI6mE7g6WynCg2IfnfbwuUDMv4lCvBze8j8AfE1qDZTSKUNPB0yL3oxBxPq07tXFg0Rz4AQCKKmYRLMow9CyfUjH7Vn/OJvvejMLXrqdDgqZsuTKPvv9wowmMrATyB53ETGeEYEsSfdQbICW2ucS7E0Jt4xNR4PNUci+qjez2L+B+iO7Tm+PdJ4AoGTS7DxFln16O4SZfrWQTT9964Djju1eTwkuNpTcyiszv8gr0z7DK9M/y/oLvs7Wtfey45I/cfAN/ybwmVMkPvwaEfS0PfG9jONQYmG2/e0r1Dx0DdOVU1TTRk9nf2drLgh4XQCIs5yBQY0VfSy1EKqPB4hoLP22a5NOoFyJQF5XJwAac0FO5peMPyYveT0AXftfSLnf73Wz/YWHR01QHQhDxEVAM/bSfyUqUgSaYNidRTSISowd+/psV068Sg92psxZfnrbUO17QWFBn0bYiSWt+BZ7EWGtDcMAF9pMURIJWu77CLW0EDu5cURzSSTjhVgo2VXKqq6mh+gvArWcPEApLqJzbhzt8MYUZqsN23sfJiiMmB98M+VKJ7GC4a3ml0+dR0TREdnzr6zEpo2lri+RTyqW3wjAiU3/5tgWtVNYwQUjK9KcT2avexNhRY931yMAKB2HCSoGSqunZ/U8wqCKeaGzHgL1iTAxbe7+vs22+dT492c8vqFuLwufezvz3a+wqfhNGD65jZLKyX3G+IV1wMUZRVEoUNzETGfSA63JOg9KKLMmDyFfrxu4IOO4R5tZN3yWCDpanvzh6W3CVY8HC87C8ZkamYo5F17LhprbOWxaxGr3kxzd9WrKcd37ngXggrd8m4vf/iUuftfXuPidX2Xdm/+PFVe+haWX3cTcFVdgsRdQVF7DroqbWer+H43HBn9vHtz8DA3fX87yY79il3kV2xZ+E4C2k5m/r0dCb51KzVnpiRGtFUPMn3K8Lh5KKezqTKrTIRrKjQjU231PO4Y/N5LRpax6ivos15T62WfPwz9g2SvvZ9tdNxHy568JT0XoOG5rbd7OL0mPFIEmIO3W2VQEzhSHVhSFSe5tHLcuGVEXmLDWij428EUwkew6YrEXEtZaMcQCA45NRyjoZ8Mv38e+71/CsqBqhdT7moY1l0Qy3ugtvm5OrqaHNWa08b6fpWCy/pbeMT5TebJJxaQZuG9+AB1xNEJBVza09vC9OAtL2V7zTlZ6n2P/hidGHJcuFiCiGVtOoNo5S2kUFVgPP0L86PN4FTMzllyc77CGjdVewAHLMqZ0vIiSSGDxHKdZV5P1bme9hWFDZxWGNcV9xHT9XQPZIla5jHK6aG86kdF4d9tJAE5eeS/rPvGnlIJGSGNFN4AI5PO6MIsIWM90ebFaHcQUDWQoAkWStYMMyVpCY5GS8hp2lVzHkp5nOHVIdVoZ/U10aMrzHFl2MZjMrP3Aj5n+4QdwY8X/9LdSjrM3b6ROO43C0sqU+89l5o1fIo6Wpv9+d8AxXnc3m372duY+/WZ08QDPLPw5Kz//OJWLXqfubzo49Bc0DELJ96POfJYIpLNhiqcWgYyJYMrPtN6kOoGiwdTHjRRfp3p/a5TXc8lZNBavZXZgJ6EUtaiMHXsJKEaWeV8i8KP5vPrL23np3s/SdCJ1Y6Bc0NlaTxndxMoXjdo5JUNDikATkHDpAqqUdo5+azFbn/gDrY3HqaSTWM2FI5o3orNhHODiCaAku45YnUXE9DZMiaGvmkSjEfb94lbWdv0LQyLIRud1HDAswBbMXutmiWQsoyTrFZhs6o1rRJjQxfq2pu0t1Gq0Zrf2yXhlxoIL8dz2GJutV1C7/Ophz7Pk7d+mWZRhe+7zfR74h4MuHiCizZ1IMByERkND7a3Mi+5lTs8L1FmXoNMb8h3WiIjOegOVdHJszwZKwvW4LLVZP4dI1gQJJx8ClUSCkkQXEevQC5BnSsGs1QA07Xslo/Fht1oPyVo08MN8OI0LorvlJAD6wjOv6UwtwMyaPESSbmBzlmsyZZsZt3wLn7AQe/D9hIJ+nOFmPKbc/S3zib2gmP2172FxaAv71/dtOR30e5kV3k9nyaqM5yupnMLOshtY2vM0zSf7P3BGwiFO/upGVvQ8yatlb8P5mR1cddN70GgE5ZNnEVG0xDuOjvh1ZUJvk4WznWnqvekAIpASIq7tL9zrzKoTKB7OjQjkbVSdUaXTFuRkfsn4xLLwjZhFhMObHu+3ryx4lEO2Vex5/QOcMs5idefDXNr8O3R/uZpTh7YTPSt1OVc0HVBdSo7pK3N+LsnwkCLQBGTKJe9mo+31FCa6sez6I83Jm8jC2ZkVgR6ImG7giycAYTcBxYjeYCSmt2NRMnMCBX0eNj7wIzb8/N10f3c2y4Mb2DTrc8z+6jbWfPof+C01FMay17r5bHa++G9e/svXczK3RDIclOSNpsWaFIG0JnTxviJQLFl/y2wf2w9bo8nUOYu58HP/pvScFJihYLLY6bz0h0xRGtn950+NKB5DPEh0jIlAALOu+TARRYcDP+HJl+Q7nBEzY+0txBVBx6Z/UJloJ1o4I+vn0BrVv2M0mQ7m6m5XC846q9MdNiKmzl9NRNEROrE5o/ExryoC2YsGdrSoCzmpxU1Pm9pR1Fzct6aWX9gybvIQDyZFoDH+vVRSOZn6dT9meuIEO/7xNcrjbYRt47c21mAsvvWLNIhKCp//LIGzOr3VbfsfBhHDMvd1Q5pv2g1fQUHQ/ff3seXpf3D80E687m6aTx5m789uYkF0N9uXfI+LPvIbrPYzRcJ1egMtmkqM7szcbSMlkhSBDNYzMSQMdqykvjc1KUHi+v7dHI05FoGUjsMEFCNlWU5jlYxv5qy6Cq9iJrSvrzPZ6+6mRmklUnIBi9dexZIvPY/umz3U3fQMeqJMuf9ylG+X8cqfvprT+IInt5NQBFPmjcxgIMkdUgSagFTXzmTNZx/iaMV1zIwcJFb3EiFFT+28zFd7UhE32NIKO9qIB79Qb5YVgx1rhiLQ3mf+yJqD32Fx91M0mWayfc3drH7b/zu9P2avoVTpIRIOjSj+VFjXf5cLj99NLDq22zBKJhARHwHFeDqlJaa1YEicIwL11t9yFI16eOc7Cy+5iQ3FN7Oq/aGUK3CZMlBqQb4pLqtmt0MVf6qWDt81NVYoKqvioHEBC1ofRSMU9BXZL+57ujBsSH0I7GpSi4cbi4dXhDwTjCYLR4zzqGhfn9H4hF+tK+JMIwLFdVbMA1yXg10NABRU1PbdrrGii2YmAvXWDuptRz+WWfy629hlWsm8xn+qgl5B7v6W+cZideC+8qdUJNrZ/efPnN7u3/MYIUXPjOVXpjm6P2U109g+57NMip1g5eaPMO3+S7H/dCpVf17JgsBmNkz7FKtu/HDKY7vNkygMnhrR68mUaFKUNJ6VnphI3pumKqhrUsIo+v7f2aZkk4ZEjkQgi/sYTTlIY5WMb4xGM4ftq5je8yoHd20kFFS/uxsPq2ms5kmL+4yfsfBCPG9/mhenfJL95hVcfOoXbPzp2ziw7aXcxNexl3ptNVZ7QU7ml4wcKQJNYCyzL8cg4izsfJLj+pkYjCMrYqlePIMD7tdGvAQ06s2yYrRjFhGikfCA43uJe9VOEdovnmDpF59l2evf0XfeoslohEJHhrURMqXx2AFmxeswiigt9UeyOrdEMlzO7SoV05r7iUBKsv6W1SlFoFyw6L0/p5EKLM9+lmBgeDf+JiVIfAyKQAA1t/yATXO+wqQZC/MdSlbw1V6NTaifkYJJ87M+v67XCZQUgbxt6rXIVlab9XOdja/2SqYm6mk6PnghXU2wCw9W9AbjgGPiBjsWJfX7Oe5qBKC4qq8YEtLaMKSpBXg2SshLQhFYbGOzRfy5JBa/Ayfq78NYWpvfYHLM/DXXsLn0ZlZ3Psz+TU8RjUaY1fU8++1rhvX3Wv3WL2H+4jF2X/F3Ni78Hq9M+QQv19xB5/teY+27vjngcSHHNKriLSRGIV0lnixRYDnrIVWYHGiFQjDQN8UxFPSrYmCKNu2GpBMoERlencvBKAufwm2dmpO5JeMbZfYbKMHF3EevYfdv3gOA58ROACpmLe83vnbmfC5777dY9Nkn2Fh8CytdT3HB4zew58WHsx5bTfAQHbYsd+KUZBUpAk1gpi9/HVFFi1lEcBePvHCXMDowiijhUOoLoSHmI6RRL5bCpN5U+N3dg88b7MGvmDCZ+9twASwl6k2pq+X4cMIekPr1Z9rOd57Yk9W5JZLhoo0F+nSViussmJS+Ljgl5CGmaDBbZGvOXGCz2XFf8UMmKS1s/utXhjWHWQmSSJFaMBaonDKL1bd9HqE5P24Rpqy9FYCEIqiaNi/r85vsapcsf4taAyWcdM0UVQ2vE12mTF6tvq6GTYPfwOtC3XhE+tbsvQs5qVwQGm8z3Tgwmvq+Z9VCupmJQCLswSfM4+Z9Ne+yN9ON+h3qqMh+GuFYY/F77qJJlON89lPsfvpPFOFBs/DWYc9nMJlZdNEbWXPTR7n4vd/mkg/8kKop6Qvza0pnYhRR2pJuulySCKUWgQD8HlefsZ3NJwHQFvSvDWWxJq+zkew7gfxeFxV0Ei0aXkMDyfnN0mvex/ZL/swe4zJmejaRiMehbR8erJTVDJw+qNHpWPPxP+D7+CFc2AjvfCBrMSXiCbY8809K6SFeIYtCj2XGx5VYkhNs9gKO6OcAoJ8yslQwAGFSL4QDCTvGmI+wThWBtMluDH6va9B5taEePGLgh9mCSvWLLtCRXSdQSf1TnNKodQBCzQeyOrdEMly0MT/hs7pKKXoLJvo66jQRDz5hGTcPW+OReRfdyO6CK1nT8jd27nhtSMcqiQQWQmAYmyLQ+UbllFkc1c6gVVOK2Zp9YXT6gtWc0EymaN+fVQHF3UBY0VNUmttiwlVT53BcMwXHyWcHHWuI9ODXDuLoMDnRizihFF2OTIEWurWl/bbH9HYsGTZ50Ea8BBg/73mj0czB0muJKlpKJ5//D+EWmxPX639BSaKL5ds/j1cxM/eim0Y1BnuVek/aeWoU2sSfdqadEUe1FvUzEjjn3tTTXg+AuWhSv2n0BiNRRYsSHdgJP1xa6tQFSFPl3KzPLRn/aHU6ll32JsJz30QRHk4e3IbTc5hGw7SM7v8KSso56lzLLM8GYtHIiGIJ+T1s+uf3OfqdZazcdAdtFDNl7ZtHNKckt8gnhAmOq2INANXzLxrxXOZK9eJdt+nRlPtNCR/RpAikS3Zj6G1lnQ5DxIVfO/AKZkm1utoa764fQrTpOXloB7PidbROu5VOCtB2jU63ColkMPSxYJ/W4gm9BfM5TiC1/tb4edgar8x81y+ICCPKfz+NP5R53bCA34tWKCgG6dQaNd74CzovvysnUwuNhvZ5H2B64gT7Nz6O3t9Mh6ZkVETY1srLmR3Zj6uzNe04S8xN0JC+Fo8muZCz/1dvYe+r/+mzzx5px2vs36I6bnBgJTMHhC7qJagZX99LC9/1Iw5d+xCOCZJaO2/11Ry75h+4sLGv5NoBHdi5omSyKnYEWutyfi4R8eIXJoTmTK0dvVkVgULn3JsGutR0SHtp6gLhQWFERLOfDuZq2AdA0RTZGUwyMJOWXQNA+yt/ZFr0KJ4hZHdoL3gjTvwc2vLMkM8bj8XY9J/fsuFn7yD4owtYffgHaARsnff/KPrSPiqnzBrynJLRI6M7FCHE1UKIw0KIOiHEF1Psf7sQYk/yv41CCOn/GifMu+XLvHbJX6mcPHKr84KLbuC4ppay3b8hliKf26IEiBlUMUdvUf/f26IzHaaoi6Bu4BVMk9lCB4VovY3DjLw/Lc/dTUTRMfP1t9NqqKXAn3trskSSCYZEgKj2rBtzgxW9iPcpjK6PegkmUy8lucNSVEXn6i+zVNnPiw/+POPjulrVwqd6x8BFeiXZZebitSy86I05m3/RtR+gCyfRDXdjDbbi0o/O37Zk2U1ohULdhn+lHWeLu4kMIgKVzL2YOs1UZgZ2Ufz8Z4lGznynFCc6iVhStJc3OrAqITUNYRD0MT8h7fgSgex2JwtWXZHvMEaVeRdehekLR1hxxz2jfu7CUvU9pvg6c34uTcRLgL512XqLREcCfe9No64mNb7K2pRzhTChiWXfCRRtPURU0eYkjVVy/lAxaQYNoooL2+8HBLXXfjrjY+esvZ6Qose36z+DDz6L5pOHOfb9Vaze+XkW9DzPMfNCdl75ADO+uoMVt34OvXFs1jyUnGFQEUgIoQXuBq4BLgDeKoQ4t9LTCeASRVEWAt8G7s12oJLcUFBQxKrLbsjKXEKjwbviE9QqjWx5+m/99tsVP4pRXWk02tSb0ajfNei81riH8CA3r126csyB5qEHnQK/18X8jifY7byMorJqfI5pVEUbUtZJkEhGG7Wr1BknkEimFAV9Z25aDTEfYa0UgUaDqVd+hOOm+aw99jOamhoyOsbTdhIA83lebHYiYTJbOVxxHfMDW6mM1RM0V4zKeWcsWks7RWiOPDXgGCWRoEDxkDCnv45OX3AhM762i5OX/pwq2tnxn7sBCPjcOPGTsKdIbzM50QgFXwap3ca4j4hufIlAExWT2YpObxj18+oNRjxYEcGunJ9LG/UR1JwjAiWLYJ97byo8LQQUI+EQjA8AAO5ASURBVPYBOm5GhDHrItDhrc8xp/nfnNBNTVvQXSIBaCpcAcD2khuomJT5wr7F5uSweRHlXVuGdL76p+6iNnaS15beie1rjSz/wpMsWXs1QoghzSPJH5k4gVYCdYqiHFcUJQLcD/RRDRRF2agoSk/yx81Aar+k5Lxn4evfTZOmkqIdvyIRPyOahIIBjCIKRvUCa+oVgQKuQee0Kx7ixoK0Y/ymCpyRtmHHfTb7nv4DdhHEftEd6oaS2dhEkM6W0WlbKpGkw5gIEj/rQUrTKwIFzrRpVh+2pAg0Kmg0OG79JTYCnPznZzM6JNChpq6e225bMr4pvfBt6EUcJ37i9upROadGq+V40UXM9m1JWcsHIOD3qNdfS0lGcy685GYO6uYwZ99P2POddez4728B0Bf2v7XTmHubPAzu3DAn/MT0MgVSkh63cKIL5V4EMkZdBLV9349muyry9HYO60UfaKVLUzxgimdYY0Ibz54ItOOZvzDl8dvwCRvG2/6UtXkl5y/WZbdxXExi6k1fG/KxgaILqI43ZtSxuReDr4kWTQWrrv8QGq128AMkY45MRKBq4OzlzcbktoF4P5BySUoI8UEhxDYhxLaOjo7Mo5SMG4RWR9vCO5iTqGP3K4+e3t6WbLGuK1DfOr3dGHq7MwxELBrBrgRImNPn40fNJTiVwVPLBkNJJCg5+FfqtNOYvexyAGw1qg237bjsECbJP2b6dpXSmFSxJxw4U5zVkvATk/VmRo2S6UvZXfN21vqeZu/m/w06Pu5SL6nFVbLt7/nEjIVraBBqOoso7F9ANleYF1yPVYQ5sunxlPvdXeoCicaWmQgkNBrEG39OnWkeVbEGVh36gXqekin9xuqS6TPBDJxAVsUnRSDJoPh0ToyRnsEHjpDiSDN+S9/HGbNdXaCMB/veT1rC7Xj0A39+osKELksi0M6n/8TijZ/khG4a5jueZ8rMhVmZV3J+s2DttUz7+j4qqmuHfKy+4gIMIk7zsX0ZH2MLteEx9K8TJxk/ZCICpfJ1KSkHCnEZqgj0hVT7FUW5V1GU5YqiLC8t7d9lQnJ+sOCaD9FOEYaNZ4pwdp3YBUBBrVouypYssqgE04tAnp4ONEJBY00vAikGO5YBWtsOhUPbnmd64iTdc995esWnqFrtChLsODmiuSWSkaIkEliUUB8RSGdURaBI4Mxnyar4iRvSt4OWZJf5b/sO7RRhefYzvHL/j2k+dXjAsb3ttke76KoktwiNhoaqqwEwF08etfPOWX0tPsVMcF9qEcjXrRaNNtozv++as+hCln3pfzRdehd6odb7cZb3F4H0FvWh+dxCuucSDgcpxItilXWwJOkJ6QuxRF05PUc4FKBc6SLmqO2z3ZZcoFTC3j7bnbFOgqaBH3ijWhP6ROYuirTseYAWUcaU/3uekvLRcRRKJjYFU1ShsfNE5ovdRfF2QuYUdeIk44ZMRKBG4OwlrRqgX/EVIcRC4PfADYqi5N7HKRmz6I1mjs98L/Oiezm87XkAws37SSiC6pmLATCaLIQVPYTTi0DeHtUxph1sBdNoQycShEMj687gffUevIqZ+Ve///Q2czJHPBHJrAOKRJIrwuEQehFHGM6keunMSREoqDqB4rEYdhFEMUoRaDQxWZ00rv4mk+ONXHzo22j/dDWdrak7FpoHaLctGf9MvfrjbLFexpTFl47aOY0mC4dsK5ne/UrKAs1Bd7s6rmDoq7YLL34Te/ULSSiCkqra/udOpnaHXOm7k3W1qJ8FrTNFXSGJ5CyixkLsiZE7u9PRVn8EjVDQlU7rs12r0+FXTIiz7k2VRIKSRDdR68B1vmJaM/osOYHKgsdptc3FYpWuOcnoUDNzEXFFEG3JzAkUCYcoUtzEU9WJk4wbMhGBtgIzhRBThRAG4DbgsbMHCCEmA/8G3qkoypHshykZbyy4/hO4seJ/4acAGLqP0KIpw3zWRc0vzIiId6ApAAi6kjev9vQikCb5wOv3Dt9CnIjHWeR5mf0lV2GxnelGZrapcyfCUgSS5JegX70xFcYzDhJ9Mh0sFlJFoN4CrcI0cEc9SW5YetW78H/iMPuvegC74qfz97fi7umf+myPtOE1SkfE+UjlpOms/NyjOAuKR/W8yqxrKMHFsV2v9NsXcavvQXvh0N9zQqOh4G2/Z9PSH6V0rk2avYR2irBv+xXxFF1Be3G3qyKQsUiWjJSkJ24qxql4ctqMo6dRfVSxVfRvYe0XFrT+ttPnd3W1YRAxRJoH3oiphMp4M83HD4woroDPTbXSRqR4zojmkUiGgslio1lTiaF7YAfz2XQ2n0QjFLQF8vt8PDOoCKQoSgz4GPAMcBB4UFGU/UKIO4QQycq5fA0oBn4thNglhNiWs4gl4wKrvYD9VW9msX89DUf3UBQ4Toe574pLQFjRDiYCJVcwTc70q+YakyouhXzDXz0KBrxq8czC2j7bjUYzcUUgolIEkuSX3g5gGuMZJ5DBor73YyH1s+R3q0ZMrVmKQPmgoLiUeauvZt/KHzA9epTgzy9k36an+4wpiXekbrctkQyTWetuIqZo6NrxSL99cb9atNlePLyOZZOmzmbtDben3Ge22jm19IvMjNex+Z472Pife4lFo/3GBTob1RjKRq9WkmR8IqwlGEQcryd3dYGCbXUAlEye3W9fk2U2K3wvsu/7l7B/y3N0t6pNQQxFA6dmTb7hq8TQ4r7vfWnF0MFoPLILAGPV/GHPIZEMhw7zNEoCxzMa62o9AYCpdPTSniXZJxMnEIqiPKkoyixFUaYrivLd5LZ7FEW5J/nvDyiKUqgoyuLkf8tzGbRkfDDz+v8jio6WJ75PdbyJYMHMPvtDGgv6mG+Ao1ViPvWB1laY3sauM6sPwkGfa9jxnnZZGPqudgqNhgAmiIws1excfF4X23/0RuqP7s7qvJLzl3Cy7o/WdMZRZ7SoTrV40qkWTLrhegu2SvLDyje8j7o3/ouo0DPz6Xew9Yk/AOB1d6vpeg5Z60GSPZzF5RwyLmBq0+O8/OuP0nTyjClb8XcSVbQDtrceKcuvu51dphWs7XyINTs/x/bHft1vTNSlikBFFf3rCkkkZ9Ob/u/pbMndSXpOElCMFJf1/x6e94lHeHXm56mMnmLekzcTf/TjAFiKBxYwK6fM4tDSrzM3dpDXfnP7sF1MrlPq/WDp9MXDOl4iGS7hwllUJ5oJhwZf8A50qMKoo0w2txjPZCQCSSTDobRiMjuLrmWl60kMIo6+4oI++8NaG4ZBRKC4XxWBHEXpbex6i+p6iPjT1xhKRzjZYltj6G95DwkTmiw7gQ69/CDL/K/QtPGBrM4rOX8JJ9/fWvMZEchkUV1BSlIE6i3QqrcUjG5wkn7MXX4Zjo+9xDH9DJZt+Qy7nr+frmZ1pU1XJB0RkuwSXPguDEqEi9r+QcNj3zm9XRPsxi3sA7a3HilCo2Hh556h5b3bOaaZStn+3/d/CPa0EFb0OAZZ0JFIDE71PeIfpM7USDB562nVVqT8TBhMZi56+1cwfWYvr5S+jVlxVVB1DuJiW3H9h9hY/lbWdP2bV3//uWEJQYnWA4QUPVW1c4d8rEQyEvRV89AKhYZD2wcdG+1RO5yW1kgRaDwjRSBJTqm69rMkFLXBXG/1+V4iOhuTI3Xs/t5lNJ84lPJ4JdBNRNFhsaYvcmtIikDRwPDTwUJ+VQTqLbTbZ58wo41l1wmkHH4KAENH5i0ZJRObaFB9j/amgAGYrcnC5WFVUI36XcCZgq2S/OIsrqD2U89wTDuNma98ktYtarqOtVQ6IiTZZcV1H6Dwm43ssq1jWverp4tEW/0NdOtyK75otFoqp8yga+HtTE3Us++Vf/fZrw+00qkpypkQJTl/MDvVRb9gT3vOzlEQbsRtSl/PxGZ3cvFHf8Mr877NFuMaSqvSP/AKIVj9obvZ6ryai5t/z6afvY1weGjFoi2uozTqJqPV6YZ0nEQyUqYsez1BxYDr+Z8OOlbjbcaDFYutIPeBSXKGvBpLcsrkmQvZaV1HVNFSM3NRn33xBW+mzjCXeeFdnHr27pTHa0OZrWCa7EkRaJCW8+nofcDWGvuLQGGNGW2WOj8ARCNhZns2A1DmP5q1eSXnN9FkBzDD2U4gs0UVWqOqSBkNuAAw23OT+iEZOhabE8f7H8YrbFx44lcAFFTIFTRJbkjMuoYyujm661UAKiIncdtmjMq5F13zPtopQrPxZ6Aop7ebQ+24dbIjnmRwbEnnd9Tbv6h+NlAScSrirYTsmdUzufjWT7DyS0+h0+sHHSs0WpZ/8j421XyANZ6nOPrjK+npzNzRVB4+To9tesbjJZJsUVoxmZ3Vb2W59wXq9mxMO9bgb6FTI7/PxztSBJLknCnv/i0HXvfX02krvSy/5j0s+srLHDAtYXLrMymts/qwC59m8FbX5mT9k3gofaHpdERSPGD3EtWY0GfRCXR4yzM4RICj2hlMUprx5bAAomRssXv9U2z9wbUc2tG/i89gxEOqyNlbBwjUVIwgRkRETQeLJ0Ugi0M6gcYS5dXTSLz3SU6KakKKnpJK6QSS5IaZ625Wi0Rvf4SezlZKcJEo6V8ANxcYjWbqZn6AeZG97Fv/n9PbHdEOAiaZCiYZnIIStYB5zNeZ9bmbTh5i0/0/wCSiaIqmDX7AMBAaLas/8BO2Lv0hMyOHcN99BR2t9YMe53Z1UU43cdkZTJIn5t36NdxYCf/3c2kLnKsdTuX3+XhHikCSnFNSXs2ii64bcH9o9o1UK23U7X613z5j1E1AN3iXI0vSCaSEhu8E6m2xrU+RDhbRWtAnsucE8u3+D2FFj2fphwFoOLglK/PW7dnAtmf+kZW5JNmlo6GOrT+6gUXP3caK0AZcm4f+d0okRU6Tre9nIihMaJIipRJSUyJtztFtUS0ZnKopsyn4xCucvPE/6A3GfIcjOU9xFldwyLiAqtbnaT66EwBzzeh1G1p606dpphTTS9/ktaf+SmdbIyWJLqKWobeol0w8LDYnQcWACIxMBAqFgmx+4q9svfM6mr4xi45v1FL951WsOXInrRRTtuCKLEWcmhXX38HR1/+FskQH/t9eQ2drQ9rx7ScPAmAsn5l2nESSK5yFJRxe9EXmRffx2t/+X8pOjwDF8Q7CssPpuEeKQJK8M/vStxJRtHRt/me/fZa4m7C+YNA5LFaHmhITTl9oOh29NVWMlv5OoLjWjCFLIlA4FGBOx9Psta2hZvHlAHhODF6IbdB5w0FMj7yP+Rs/id/rGvF8kuyQiMfZfP/3sf5+DQt8G3i16v0c19Ric6Wug5V2rqTLx17QV+AJCROamPr+FCE3QcWAwfj/2bvv+Lqr+o/jr3NHcnOzd0e690r3hrKn7I3IVBH5oSgKgooibsWFogxlCAiCCLL3Ki3de8+0TdvsPe7NHd/fHzeUtlk3yU1u0ryfj0cfTb7fMz65p803+dwzXJ2OXSIvJTWDsVPnRzsMOcbVDD2docF9VK95CYDskVO6rW9XnJt9U7/LyMAuZi/9BpUPnYPL+DBJA7otBundKkwS9vrSDtXdsPxDFv7+S3h/OYI5y7/BiLq15LvHsSNxFh8N/y5bL36XrLt3MGz89AhH3dTE+V9g9xmPkxUsprqNRFDVgdDWAEn9lQSS6Jl5/i2siD+ReXv+huPnGXz6hy8esVKjpDCfVKoJpnbNTDrpPkoCSdQlp2Wy0T2bMYWvUl9z5EyetEApPnfbUw6NzUYtLmjo+HKwQONMIJe76fKzgMONK+jpcNuH2/D+v0ihhthZ15HVfyhlJGEK1ne63VX/+R05VgEu42PLwhciEKl0VsDvZ9mfrmTOll+xJXYiB7+0kONv/D0lyRMY2LCz/aeHeCvwWE5iXUeeYOc9bONyu6eUatN0NpuI9B2D510KQG7Bi1RbcWQN6N4f2Ged9zW2X7mQRQO/zIjgbgAcKU2P4xZpTo09hZiG9i+TD/j9DH/1MqZXvs22pDmsPv4Rkr6/g9l3/I+533mOE665mzGTZmKzd9+vPxPmnc2u0x4lO1hE6SMX4WvwNluuoSR0cmT20O5ZuinSHGOzMfZrj7NwxHdZmngacytf49Nnf3nofv660FYGKaPmRitEiRAlgaRHiDvx26RSzdr//fHQtarKMpJMHVZSeD841hk39oaOH+NuNdaNjW9mJpDTTSyRSQI51z7NQTKZcNz5GJuN/NiRpFZv61SbNVXljNv+N9bHTKGEFNj0vzbrSNfyNXhZfv8XmVP1FotyvsrUO99l2KjQsa/BrImkUk1JGPsEHM7urWw2weOzx+EMhJJAGdVbOejSxpIifdmAoWPYaRuG23jZ7xzS7adyGWMYNSaXqV+8hzJCz1R3euunMYl8pt6ZQlxDRbvrFR/cg9t42TDhdmZ+579MPeUyHD1g6e3E485h8+xfMSawjeX/+HazZWwVeZSTREKSDnWQ6EpISuX4q+9m1rf/zeq4Oczc+jt2rA4lf+p3L8Fn2Rk6STOaezslgaRHGDv7dDY6JzF8+2N4PaFfZkv3h94VcaaFd4KDxxaH3d/x5WCfJYGaO47ecrpxW51PAlVXljHRs5q8gedis9sB8LgHkBbo3Nr3jW89Sgo1OE/9ITvST2Rc9RLqazs+K0o6p7KsmC2/PS2UABp0I/O/ct8Rv4QlDZ0KwIGty9vVrqOhmlpbM0kgmwtnwENdTSWDA3upy5zcTG0R6UuKBp4KQFVi95wM1hx3fBIbB19DwDKk5YyOWhzSu3jisukXyG8yO7wt5Qd2AuDK6nmnL04/+waWpJ7HvMKnWfH6o03ux9fupcihfVak5zA2O8O/+hRlJpmYl2/CU1dNYskadjuGNznsR3ofJYGkxwjM/zZZlLHhvX8BUFUYmkIenzk0rPoeWzwOf8dnApmGWjyWE7vD0fSmM4FY48Pva+hw+wC1VWXYjIU97fOTgYLx2aRalQT8zW/AFo60LU+zyzaEMTNOIX7KRbiNl62LX+lUrNIxfl8Dex66jDENG1gy+RfM//Jvm5QZOGYmAPV717ar7RhfFR5705lqfoebmGA9ezZ+it1YxA2Z2bHgReSYkTnzIgACmROiGseca+5ly0Xv0C+n5/1iLj1TwpzrSKKOda/+tV31agtDbx4m9+uZs2Gn3Pggmx1jmbD0e2xZ8cER99IaDlLj1mw56VmS0zIpPPkPDLb2s/YftzDcu4Wy1NxohyURoCSQ9BgTjjufItIwG/8LgKdkDwCpA8L7wbHB7iYm0Ilj3P111JvmN9M1sW4A6jo5u+azY+htje0BmKR+2IxFedGBDrW5fc1CRgV2UjT6SozNxtDc4wHwHNjUqVilY5b9/VZyvatYNelu5lz4f82WSU7L4CCZOEs2tqttV6Aar6P5jctjLQ+VO0KnzOVMnNf+wEXkmDIydx4rF/yD3HOb/z7UXZwOBxMmKzEt4Rs36zQ2O8aSs/XRVo+qPpqvLPRzY9ag6M1+a40rLp7Mr/yHcpPCoFeuYM2Hof0bfQ1esoLFNCQNaaMFke6Xu+ACFmdexuzSl3AbL/bBs6IdkkSAkkDSY9gdDnZlncbE2qVUVZQQrNiH37KR0S+8h6LfEU9soOMzgey+Ojy0kASKCU179NR2/Ah6gIb6UHz2mM+TQDEpoRNTKopbPz60JSVLn6PBsjPujK8CkJicRgkp2Cp2dSpWab/FT93LvMJ/8Wnahcy5pPl1/58pjBtJRu32drXvDtbgczazcbnTTazlwVGwmkLSyegX3hJKETm2TT/5EuITk6Mdhki7GGPwzLyZgVYh6955Mux6tqp8ykgirpm9HXuKjH6DsH/lLQrs/ZjwwVdZ+cbjFOXvwGGC2NM1W056pmk3/JE82yAA+k84PsrRSCQoCSQ9SuqsK4gxfrZ++AyOmgOUmLTml2c1w+dIwBXs+Ewgu78er635JJDdFUoCees6lwTye0PxOQ6bCeROCyWBakvzO9Smvb6ECpNMcmrGoWvFzgHE17Zv02HpnE+f+x3zdvyOle7jmHXz39ss70keTv/AQYKBQNh9JFg1BGKb/kIXjEkkyaphePVy9rvHtStuERGRnib3lKtCM2ZXN90/pyVxdfspsWd3YVSRkZ0znMxvvs8O5ygmL/k2+a/+CoCEfjoeXnomV1w85oqnWTj8Wwwcpp8zjwVKAkmPMnraiew32cRseQl3/UHKneE/zC1nPG46kQQK1NNgi2v+XmzoSG5vXeeWg/kaN712HHbEd1JmaA24t/xgh9p0NFRRazvyXa8a92AyG/Z3MEppr8X//i1zN93LmtiZTPjGc+ElLlMGE2P8lBWHN07BQIAEqw6rmSTQkDO+yS7HMNKoxttvWnvDFxER6VHsDge7h13BxIZ15G1eyda1S/j4n/ew9qMXW6yT4i2g2tU7NldOSkkn5xtvsNU5jtllLwOQPkibp0vPNWT0ZI6/5ifdftqkdA2NovQoxmZjb+aJjKtfQ3bDPmrjwn+YB2MScVserGCwQ33HBOrwtZAEcsaFkiy+TiaB/A1NZwKlZYeSQIGqgg61GeuvwmM/cpd+f8pQsijTCWHdYN+ODUzf9GvWuGYy/tuv4IqLb7sS4MoILXMsOxDesr3qynJsxoK4lCb3Bgwdw8jvL2PNiU8w5eI7wo5dRESkpxp71tdpsBykPXsOY148gwW7/sCk969n6X/vb1LWCgbJChbhSxgYhUg7JjE5jaG3vsE652QqSCCz/9BohyQifYSSQNLjJOaeQ4zxk0EFvvgB4VeMTcBpAni99R3q1xn04HO4m73niAslWRo8HT+CHiDoDe0JFHPYTKBYl5sKErDVFHaoTVegpslmwc6s0JTigjxtDt2VrGCQ0v98Cx8Ocq75OzGu5pOIzUnMHg5ATeMpeG2prSwBwO5Oafa+3W5nyokX9Oi9EERERMKVljWQFQOu4oBjEJ+Mvos9V33C+tipzF53NxsWvnRE2bLi/biMD1J615548YnJjLvjPXw3LcVmt0c7HBHpI5QEkh5n9MwzqLZCv0zbUsI/LtPmCv3yW1tV3qF+Y4P1BOzN/xIf6w5txuuv71wSKNA4EyjmqNki5bY0YjzFHWozLliDL+bIzYKTB44JtZu/rUNtSniW/vdPTPEsZ/2or5MxYGi76mYMDB1h6yvdE1b5uqpQEsgRn9aufkRERHqreV+7n7F3L+O4L97JkFGTGH3rK+wxA0l/7zvUVJUdKle6fycAsZm9b3Nlp9NJZj8dDy8i3UdJIOlxYmJj2Zo4G4DYjPCPy7S5QokQT21lh/qNtTwEHa0ngQLeziWBrIbQLKXDZwIB1DjTifOWdKjNBKuG4FFJoKwhoU3bGoo+P33K72ug+IA2i46U9Z+8yvT1P2Vd7DRmXn5Xu+snpaZTbcVhVYa3IbinOvTDbkyCkkAiItI3xcUnUH/2/WRZpez8y8Uc3LsDgOqC0Kza5H7DoxmeiEivoCSQ9EzjzgMgbfD4sKs44hqTQDUVHerSZXkIOJvfz8XlDi0HszqbBPLVHdHeZzyuTJL9pe1uL7RZcH2TzYKTUzMoJxFb6XZWvP0My39zDp6fDSbz4Uns2bKq41+AALBp2bsMe+cr7Lf1Z8hNz+NwxrS7DWMMJfYsXLXhbQzdUBNKArkS09vdl4iIyLFi7MxTWTr+B4z2biDhH8exackb2Nf9iwbLQdZgba4sItIWJYGkR5p+1vXs+eJCBo/KDbuOs3G2jre2/ce4W8EgbjzgbH5PIHdCKMliNe7p01GfzQRyxR21kbM7i3SrvN2bWldXfbZZcNMTowodA5lV8TozFt/EiLo1bI6fCUDxzpUdjF6sYJClLz/E4Ne+RLktBfdXXiU5NaPD7VXFZpPgDW8vKH9taJljfLJmAomISN827/LbKbn6Q8ptqYx540qmeJaxfOztJCSlRjs0EZEeT0kg6ZGMzcaQ0eEngABi3KFEiK+u/cvBvF4PDhPEiml+JlCsy03QMli+ziWB8NXTYDmaHCFuErKJMX6qyovZuOx9PvnjNVSHsbdRbWVo9pDN3fSHnqpxV7LcfTxLZ91P4vd3MPH//hUKoXhn576GPqqkcB8r7zuX2avuYJ9jMDFffo2sgZ3be8DjHkBGILwkULC+AoCElI4nnURERI4Vg0ZOIObLr5FnG8yi9EuYd7lOxxQRCYej7SIivUNsfGMSqLb9G0N7aqtwAaaFJJCx2ajFhWnoXBLI+OvxmFiOXjzkSOkPwKYnb2N6+RvEmABrlp3NlFOvaLW9usYToxzNJIFmXfwt4FuHPnfGuCghBXtFeBsRy+d2rPuUtP9eRq5Vx8Jh32DuVT/G4XR2ut1gUg4ppTXU1VTgTkhptaxVX4HfshGf0HTWl4iISF/UL2c41t1rGGHT+9oiIuHSd0w5ZmQPHhU6an3Lq+2uW9+4hMzeQhIIoN64sPk7lwSy+evxNkkBgTstdCrE3IpX2Rg3AwBPwdY22/M07hMTmxDe9Odi5wASarU5dHvs3rSMtP9eSgMx7LvsTY6/7mcRSQABONNDG58X5+9qs6zNU0m1icfoB10REZFD9FwUEWkffdeUY4YrLp5NAy5hSu0iDuza1K66DXXVANhcCS2W8RoXNl99p2K0BTx4TWyT66NnnMqikd9l24VvMPXOtyknEVPW9rKthprQrCdXYnj7xNS4B5HhO9C+oPuwPVvXkPjcJQRw0HDVS4yYMDOi7cdnDgWg8mDbSSB7QxW1puV/nyIiIiIiIm1REkiOKaPO+TZ+bOx94/ftquetD5365WgtCWSLwxGo61R89oCHBuNqct3hdDL/S3czevI8AAodOcTX5LXZnr+2AgB3cngnRvmTh5JFGZ661k85O7h3B8t+cx7rfnFCuzerPlbs37mBuGcuxAC1V7zI4FGTIt5HvxG5eCwn7k9+TkVJQatlY3xV1NkSIx6DiIiIiIj0HUoCyTElc8BQ1iUuYHTxW+1KXjTUh2YCOVwt/5IdSgJ1biaQPeDBb2v7OPHq+CFkNexrs1yw/rMTo8JLAjkzhgNQuKf5pWYBv59PnvopSf+Yz6y6j8htWMOebWvCars3WPjY3Sx+7ndtlju4Zyv2J8/HiY+KS/7D0LFTuySe1Ix+bDrhb+T491H1wElsXvF+i2Vj/VV4HEoCiYiIiIhIxykJJMec4LATSaOKvdvXhV3H7wnNjIlxtzwTyG+PI6aTM4EcAS8+W9OZQE36ShtBFmXUVle0Ws6qryRoGRISw9sTKGHAKADK929r9v6K//6e43bcx3bXRDae+hQABateD6vtnm7XxmXMz/szIzY90GqCsHT/LqzHzyXOqqf4/GcZMXFWl8Y17eRL2XbaE8RaXka/chGL//glivbvPqLMwd2byfQfxOdUEkhERERERDpOSSA55vTLPRmAgnXvhV3nUBIoruUkkM+RgDtQ1anYnEEPAVvTPYGOFps9GoCC3RtbLWe8ldQYNza7Paz+swaPBcBTtKPZ+1bJdmqsOCZ/7x0mHHcu+8wAXHs/Cqvtnq7y1buxGYtsSluc3VRdVkDdP84hMVhF/jlPMXrqcd0SW+5xXyDuW8tZknERM8pfJ/HhWXzyl6+w8O93sOy355P0+Ik4LD+2WV/ulnhEREREROTYFFYSyBhzpjFmqzFmhzHmzmbujzXGfGqM8Rpjvhv5MEXCN2jExNBR6PsWh10n2JgEcrmTWizTkD6OHKuAqoqSDsfmtDz47XFtlkvJGQdARf7mVsvZG6qoMS2faHa01Iz+1FhxmLLdzd53eMqpsiUdOmnjQPocRtevxevp3AyoaNu4+HWm1i9hadr5QPOzmzx1NeT/9QKyAkVsO/VRJsw8uVtjTEpJZ/43HqXg6oWsSzye40qe5/j8hxhSu44NScdRde2HTF1wXrfGJCIiIiIix5Y2k0DGGDvwAHAWMB640hgz/qhiZcA3gfsiHqFIOxmbjT0JUxhctSrsfYGC3tDR7674lpfbJIyYDcDe9Ys6HFuM1UDA0fZysP7DJhC0DL6C5pdtfcbZUEW9LfwTo4zNRpE9i9i65k8Ic/oqqT1s8+HYMafhNl62r2x5r5qezu9rIO7dOzlIJrlf/it7W5jdtPaVvzDOv5k1M3/N9OPPjkKkIYNHTmD2d/9L3Xf24r2rgKwf72L2d14gZ/iYqMUkIiIiIiLHhnBmAs0CdliWtcuyrAbgWeD8wwtYllVkWdZywNcFMYq0m3/QXLIo4+Ce1pMon7G8oY2h4+KTWywzeOLxANTsXNrhuGIsL0F720mguPgECk0GjorWjw6P8Vfjsbdvn5h6Rwqxvspm77l8ldQ7P38NRs4+E79lo3rj2+3qoydZ8cLvGB7cQ8Hcu4mLT2hxdpNVlke9FcOss6+PUqRHcicmExsbhzEm2qGIiIiIiMgxIpwk0EDg8GOK8huvifRY/aedBcCet/8SVnlTV0qNFUeMq+WlWslpGew1A4ktWt3huFyWF8vR9nIwgNKYgSTWtX5CWFyghoZ2bhbsdSa3uLdRfKCKBmfKoc8TktLYHjOOjMKOz36KtoRdr7PTPpwpp10NgHPEAtzGy94tK48o56gvpsyWemgpnIiIiIiIyLEmnN92mnsb2upIZ8aYG40xK4wxK4qLizvShEhYBo+azLKkM5h+4BkO7NrUZnmHt4xKW8v7AX2mMGkCg+o2tev4+cPF0oDlDC8JVBufQ7q/oNUy8cFq/M624z6cPzaZ+GBNs/cSrSoCsSlHXKsccDwj/DspK2p+CVlPl+IrpsI99FByJyFrKAB1pfuPKOfylFDtSOvu8ERERERERLpNOEmgfGDQYZ/nAB36bdCyrIcty5phWdaMzMzMjjQhErZhV/wGH3YK/nN7m2VjvOXU2lteCvaZYP9pZFBB0YHWl2k1x9fgxWkCEMaeQADB5MFkUEF9bXWLZeKtWgKxbcd9uIArlWSrukkiK+D3k2jVEYw78rj5tNwzsRmLXct731HxVjBIerAUnzv70LXkzBwAGioOHlE2wV9KXUxGt8YnIiIiIiLSncJJAi0HRhljhhljYoArgJe7NiyRzsscMJS1Q29gWt0nbFj0Sqtl3f5y6p2prZYBSB4Z2hz6wKYl7Y6nvi40+8bEuMMq78wYDkDR3q3N3vd664k3XnC1Lwlk4lJxmgC1NUfuC1RVUYLNWBj3kbNhRkw+niriCWx/r1399ARVFSXEmQZIGnDoWmpWaDVroOrIWVYpwXJ8cUpOi4iIiIjIsavNJJBlWX7gFuAtYDPwnGVZG40xNxljbgIwxvQzxuQDtwE/NMbkG2Pat0ZFpAtMu/yHHCSTuPfuJuD3t1guMVBJQ2zbS4H6j8gFwFsY3obTh2vwhE4gM2EuB0voNwKA8gM7mr1fXhRazmRPzGpXHLbGJE91edER12vKCwFwxKcfcd3ucLAjfhqDK5a1q5+eoLQgDwBn6ufbmMW63FQSj6n9/Ov3eupIoYZgfPteSxERERERkd4krB1QLct63bKs0ZZljbAs6+eN1x60LOvBxo8LLMvKsSwrybKslMaPm995VqQbudwJHJj1fUYEd7P8hd83W8YKBkmxqgi42k4CJadmUEYStvL2Lwfz1oWSQLYwZwJlDhodqle0s9n7lcWhJFBMyoBm77fEmRha8lRbceS+XJ99HpPYdEmUL2cu/SmhYF/zCameqrootLF2fPqgI65X2FJx1pcc+vxQQi2pX/cFJyIiIiIi0s10DI4c86adeR0bYiYzdvOfKC9putFybW0VscYH7vRmajdV5BxIfM2edsfR4AktB7PFxIdVPi1zALVWLFZ5833VleYDEJ/evsP6YhNDX2d9ZekR1z1VoaSIK7lpEih93AIA8td+0K6+os1bFnqNkrKHHHG92pFOXMPnSaCqks8Sav27LzgREREREZFupiSQHPOMzUbihb8nwapj69NNN4muakwM2RPD2w+m2j2EzIb8dsfh89QB4IgNbzmYsdkosvfDVdP8MfGfbWyc1LjRcbjikkNfZ0NNyRHXfdWhz+NTmr4OQyfMptaKxZ+3uF19RVugIrSHfUb/I5NAntgMEv1lhz6vKw2Vi09r36wqERERERGR3kRJIOkThoybwfLsS5lV9grb1yw84l5NeSgJ5EwKbz8Yf+owsiij7qiNldvia9wTyB4b3nIwgArXAJI8+5u9F6wK7eHz2UbH4UpsTPL4a46cCRSoDSVFElKzm9RxOGPY7RpHRvmadvUVbbaag5SRREzskSey+dxZpAXLwbIA8DYmi5KzBjVpQ0RERERE5FihJJD0GRO++EvKTDLWK9/i4+f+xIE9of1t6itCSaC45PCSQDFZowA4uHtzu/r3e0NJIIcrvOVgAN6EQfQLFDQ5zh3AVldIOUk4Y2LbFUdCaigJFKwrO+K6VVeG37KRlNz83kg1WTMY5t9NVWVZs/d7otj6QsrtzRz7npCF23ipra4AIFjdmFDL1EwgERERERE5dikJJH1GUko6edN/wAj/ThZs+hGFz9wMQEPjXjgJaU1nwDQneeBYACrz25cECjaEloM5Y8NPApE6FLfxUri/6UbUMfVFlNva3sz6aK44N7VWLKa+4ojrNk851SYBY2v+20L8qPnYjUXemo/a3We0JDQUURPTdHmbIzG0AXR5UWhZn622iHIS251QExERERER6U2UBJI+Zca5N1Lxf5tYlnYe4+tXUVNdQaAmdCpWUnp4mwL3Hz4BAG/R9nb1HfCGkkAxceEngbInn47XclL92KVUlh15pLu7oZSamPA2sz5atUnE7i0/4prTW061LbHFOplDJwHgKcnrUJ/RkBooxRPXNLkXmxoa6+rSxg2h64uo6EBCTUREREREpDdREkj6nPSsAcTPuJJY42PbopewaktosBwkJKaEVT8+MYViUnG085j4z5JAse1YDjZs/Ew2n/BXhgT2kvfQ5QQDny8LS/aX4YkNbzPro9XaEnE2HLmnUUxDJXX2pBbrJKeHZs8EjtpQuqfyeutJp5JgQtPkXkJ6aNlXfVloc213Qyk1zo4l1ERERERERHoLJYGkTxoz81TKSSSw6VUc9WWUm6QWl0E1pzBmCP0r1+D3NYRdx/LVAxDbjplAAFNOvoxV47/HZO8qlj7/m1BbwSBpVjkBd3j7GB2t3pFMrO/IJJArUIXHmdJinbj4ROqsWExdaYtlepLSg3sBsCc33ecnOSt0opqv8iBWMEiKvwSPq5m9g0RERERERI4hSgJJn+RwxrA9aR5jqhbj8hRSY0tuV/2G6V8hxzrIqv/9Jew6lq9xJpA7oV19Acy+9LusjZ3OlM2/Y/eGpVSWFRFjApjE8PYxOlpDTBLuQNUR1xICVfhiWn8dqkwSds/nG0OvevspPn70+xQf2NuhOLpS0Y7VACQMGNPkXmp6P/yWDau6kHUfPkc2pQRz5nR3iCIiIiIiIt1KSSDps2JnXEUStUzyrKSulRkwzZl62lVsdoxj+IY/hX9UvM9D0DLExsa1O1ZjszHw2seoMfHEvHA1BTvXAOBIDm8foyahxKSQEKw+9HkwECTFqiTgan1fnGp7MjHez5NAqUt+w4K9D5D80FQ+eeS7eD11HYqnK9TvXESDZWdY7nFN7tnsdspMCsmFS0n65Bfkm35MO/+WKEQpIiIiIiLSfZQEkj5r8oLzWe4+HgBvTPs2BTY2G9apPyGDCta9HOZsIF8dHmLatezscBkDhlB81iNkBktIevMbAMSldexI86ArlSSr5tDR88UFebiMD1va0Fbr1TtTiGtcRhYMBOgfOMCKhJNYnXA8x+1/hMpfTWDhQ7eSv3tLh+KKpOSSVex2jiQuvvnNrrcNv4YRvm0MC+6hcMZ3dTKYiIiIiIgc8xzRDkAkmnK++GeqHplHQ9LgdtcdP+cMNr87jkHbnyDg/x52R+v/nezeSmpMPO6OBguMn30an2y8keP2/g2AxIyBHWrHuFNxmgA1NZUkJKVSvHsj2UB8/7Gt1muISSXDG1r6VXwwj2zjIzB4PrMvu53VH/4X69O/Me/AE5jHn2CzYzSlKRMhGCCpZhdgGH3bG7jauSdSR3g9dYxo2Mrqfpe0WOa4a37Cnh2XcnD9x8w684Yuj0lERERERCTaNBNI+rT+OcOo/9pSpl71iw7V98z8OgOtQta+82SbZZ0NFdTaWj59K1wzr7qHHbZhAKRmD+pQG7b40ElYJfk7AKg9sBWA9KETWq3nd6WRHAztJVSyJzTbx91vNABTT7yIaXe9Q8H1y/hk0FdD10peZWL5u7gD1eT61rL6hfs6FG977V6/mFjjI2b4vFbLDRk5kTkX3ozNbu+WuERERERERKJJM4Gkz8se0P5ZQJ/JPeUq9i35JUkr7id4+jWtJhNifVXUOZpfmtQesbEu7Ff8kw9XvMmJSakdamPIrHOpX/NTSl7/BUPHv4hVuoN6K4asAcNar+jOIN548NTXUnuwMXE0+MjZQwOHjmbgV357xLUUYN0vT2bcjoepLP8/klPbdxJXTVU56956DBNowGG34bA7wBiC2MDYCGIAG5axYRkDOz8EYPDkk9rVj4iIiIiIyLFMSSCRTrA7HBROuZUZq+9kxeuPMuPcr7ZYNi5QTUVcx2buHG3Y6FyGjc7tcP3sgcNYlPMl5u9/lK0r3sdVtZuD9gEMb2NGjEkIJW8qSwsIlO6kwXKQnTMirD7dX/gZSS+czapHrmfqbS+2uXzuM74GL7v+cgHzGtaEVf4zu2xDGN4vMq+3iIiIiIjIsUBJIJFOmnbOjexc+xD9Vt1Hw+lXExPrarZcfLCaYmfnl4NFyuTLf0TZ7/9D3Xu/Id2zl2L3yDbrOBMzAagpKyC2ag8Hbf0YEmYyZ2TuPBat/Rbzd/6BFb87H9vMG8gcMpaU9H4kJKU2u2F2g9fD6geuZnbDGhZP+DGD51xCva8Bb4MfGxZYFlhBDEEMjR9bQSwssgcMad8LIiIiIiIicoxTEkikk2x2OzXzvseIT25i5Xv/YvrZzW8ynGjVEHR1bPlWV0hISuXT7C8wo+A5DBb7U05vs44rOQuAuooiUur3UeYaRHtSLfOvvodFj3mYkfd3Yj/+5NB1v2UjgJ1QOsdGjYmnxNGP2GAds4O7WTToRuZfelt7v0QRERERERE5jJJAIhEw6cRLOfjJD3GufRKaSQJ56mqIMw1YcSndH1wrso67HucLzwDgyBzVZvn41GwAvJVFjAwcoChxTrv7nH/9r6itvpP1y9+lvnQ/Vm0p1JdjrEBoZk/Qh72hipT6vbiC9Syb+Qfmf0Gnd4mIiIiIiHSWkkAiEWBzOMgbdBFz9z3Mgd2bGTBs3BH3qytKcAG2uJ4zEwhg+MRZ7HxxKCOCeSQOHNdm+aT0fgD4DmwgzjRg0od3qN/4xBRmnNzy8e2Hy+lQDyIiIiIiInI0HREvEiHDTr+JgGXY+85fm9yrrSwBwJGQ1t1htcoYQ9GoK6izYuk/YnKb5ZNSMwlYhuyijwFwD2g7cSQiIiIiIiI9g5JAIhHSb9AI1sTPZ9yBF6irqTjiXl1jEigmoX1Ho3eH2Zd9j5qbV5Oc1nZsdrudSpPI8EAeJaQwdvYZ3RChiIiIiIiIRIKSQCIRFH/St0mmlvWvPHDEdW9VKAnkSkqPRlitstltZGUPDLt8tS10wtm2/ufhjIntqrBEREREREQkwpQEEomgsTNPZZNjAoO3Pobf13Douq+2HID45J43E6i9au0pAOSc8rXoBiIiIiIiIiLtoiSQSIR5Z99Cf4pZ+9YTh64F68oASEjNjFZYEVPWbz6Lk85k8MiJ0Q5FRERERERE2kFJIJEIm3zy5ewxOSSv/itWMAiAVV+B37KRkNizTgfriOO+/Bvm3fbvaIchIiIiIiIi7aQkkEiE2ex2CibeyMjALjZ88r/QNU8F1SYem13/5URERERERCQ69BupSBeY8oWvUkg67g/vwdfgxeGtoMYkRjssERERERER6cOUBBLpArEuN/vn3cuIYB7Ln74Hp6+KOruSQCIiIiIiIhI9YSWBjDFnGmO2GmN2GGPubOa+Mcbc33h/nTFmWuRDFeldpp3+JVbEn8D0vEfI9O7B40iKdkgiIiIiIiLSh7WZBDLG2IEHgLOA8cCVxpjxRxU7CxjV+OdG4G8RjlOkV+p30a9w4Ke/VYwvJjna4YiIiIiIiEgfFs5MoFnADsuydlmW1QA8C5x/VJnzgX9aIUuAFGNM/wjHKtLr5IwYz6rEEwHwKwkkIiIiIiIiURROEmggsO+wz/Mbr7W3jEiflHzKdwEIxqVHORIRERERERHpyxxhlDHNXLM6UAZjzI2ElosxePDgMLoW6f1GTz2OJYV/Y2TucdEORURERERERPqwcGYC5QODDvs8BzjQgTJYlvWwZVkzLMuakZmZ2d5YRXqtOWd+kawBSnyKiIiIiIhI9ISTBFoOjDLGDDPGxABXAC8fVeZl4JrGU8LmAJWWZR2McKwiIiIiIiIiItJBbS4HsyzLb4y5BXgLsAOPWpa10RhzU+P9B4HXgbOBHUAdcH3XhSwiIiIiIiIiIu0Vzp5AWJb1OqFEz+HXHjzsYwv4v8iGJiIiIiIiIiIikRLOcjAREREREREREenllAQSEREREREREekDlAQSEREREREREekDlAQSEREREREREekDlAQSEREREREREekDlAQSEREREREREekDTOh09yh0bEwxsCfM4hlASReGI5Ghcer5NEa9g8apd9A49Xwao95B49TzaYx6B41Tz6cx6h2OhXEaYllWZnM3opYEag9jzArLsmZEOw5pncap59MY9Q4ap95B49TzaYx6B41Tz6cx6h00Tj2fxqh3ONbHScvBRERERERERET6ACWBRERERERERET6gN6SBHo42gFIWDROPZ/GqHfQOPUOGqeeT2PUO2icej6NUe+gcer5NEa9wzE9Tr1iTyAREREREREREemc3jITSEREREREREREOkFJIBERERERERGRPiDiSSBjzJnGmK3GmB3GmDuPuveNxnsbjTG/aaH+T40x64wxa4wxbxtjBhx2767GdrcaY85oof4tjWUsY0zGYdeTjTGvGGPWNvZ/faS+5t6mpTEyxvy78XVfY4zJM8asaaF+mjHmHWPM9sa/UxuvpxtjPjDG1Bhj/tJK/8OMMUsb6//bGBPTeN0YY+5vjGudMWZahL/0XqWnjlPjvRMb+99ojPkogl92r9MDxqml73lXNf4/WmeMWWyMmRzBL7tX6cFjpOfSYbpwnE4zxqw0xqxv/PvkFurr2dSGnjpGjff0XGrUA8ZJz6U29OAx0nPpMF04TrMOq7/WGHNhC/X1XGpDTx2jxns997lkWVbE/gB2YCcwHIgB1gLjG++dBLwLxDZ+ntVCG0mHffxN4MHGj8c3thcLDGvsx95M/anAUCAPyDjs+veBXzd+nAmUATGR/Pp7w5/Wxuiocr8DftRCG78B7mz8+M7DXtd44DjgJuAvrcTwHHBF48cPAl9v/Phs4A3AAHOApdF+vTROzY5TCrAJGNz4ebP/l/vCnx4yTi19z5sHpDZ+fFZf/f/Uw8dIz6XuGaepwIDGjycC+1uor2dT7x2jFPRc6knjpOdS7x0jPZe6Z5zcgKPx4/5A0WefH1Vfz6XeO0Yp9ODnUqQHYi7w1mGf3wXcddgLdGo727sL+NvRbTV+/hYwt5W6R39Tuwv4a+N/lmHADsAW7QHo9gFvZYwOu2aAfcCoFtrYCvRv/Lg/sPWo+9fRwi9EjW2XHPaf6lA8wEPAlc3109f+9PBxuhn4WbRfo57wJ9rjdFS5I77nHXUvlRZ+EDzW//TkMdJzqXvH6bA2Sml8Q+qo63o29d4x0nOph4zTUWX0XOplY6TnUlTGaRhQyFEJBj2Xev0Y9ejnUqSXgw1sfJE/k994DWA0cHzjdKmPjDEzW2rEGPNzY8w+4CrgR2G0HY6/AOOAA8B64FbLsoLtqH+sCOd1PB4otCxrewttZFuWdRCg8e+sdvSfDlRYluVvpv/OjvGxpCeP02gg1RjzYeNU42va0e6xJtrjFK4vE3rHqC/qyWOk59LnumucLgZWW5blPeq6nk1t68ljpOfS56I9TuHSc+lzPWmM9Fz6XJeOkzFmtjFmI6HX+abDvrd9Rs+ltvXkMerRzyVHhNszzVyzDusrldCUtZnAc8aY4VZjquyICpb1A+AHxpi7gFuAH7fRdjjOANYAJwMjgHeMMQsty6pqRxvHgnBexyuBZ6LQf2fH+FjSk8fJAUwHTgHigE+NMUssy9rWRbH0ZNEepzYZY04i9MP2cdGKIcp68hjpufS5Lh8nY8wE4NfA6e3sX8+mkJ48RnoufS7a4xROfT2XmuopY6Tn0ue6dJwsy1oKTDDGjAOeMMa8YVmWJ8z+9VwK6clj1KOfS5GeCZQPDDrs8xxCmeTP7v3XClkGBIEMY8xjjRsmvd5Me/8ilMVuq+1wXH9Y/zuA3cDYdtQ/VrT6OhpjHMBFwL8Pu3b0GBUaY/o33vtsjWS4SoCUxn6O7r+zY3ws6enj9KZlWbWWZZUAHwOT29H2sSTa49QqY0wu8HfgfMuySiPVbi/Tk8dIz6XPdek4GWNygBeBayzL2tlM/3o2ta2nj5GeSyHRHqdW6bkE9Owx0nPpc93y84NlWZuBWkJ7OB1Oz6W29fQx6rHPpUgngZYDoxp3yY4BrgBebrz3EqGsMsaY0YQ2byqxLOt6y7KmWJZ1duO9UYe1dx6wpfHjl4ErjDGxxphhwChgWTti20soE4cxJhsYA+xq/5fY67U2RgCnAlssy8r/7MLRY9RY/trGj68F/hdu540zvz4ALmmm/svANSZkDlD52fS8Pqgnj9P/CC3tdBhj3MBsYHO7vrpjR1THqTXGmMHAf4Gre8q7DlHSY8cIPZcO12XjZIxJAV4jtE/AouY617MpLD15jPRc+lxUx6k1ei4d0mPHCD2XDteV4zTss8SBMWYIodc57/DO9VwKS08eo579XLIiv0HT2cA2Qjt1/+Cw6zHAU8AGYBVwcgv1X2gssw54BRh42L0fNLa7FTirhfrfJJR58xPKxP298foA4G1Ca/o2AF+K9NfeW/60NEaN9x4ntOaxtfrpwHvA9sa/0w67l0foJIGaxnFobof24YQSeDuA5/n8xDgDPNAY13pgRrRfK41T03FqvHc7oR3vNwDfivZr1cfHqaXveX8HyglN614DrIj2a6Ux0nMpGuME/JDQO3hrDvvT5JSOlr7noWdTjx+jxnt6LvWccdJzqfeOkZ5L3TNOVwMbG8dnFXBBC/X1XOqlY9R4r8c+l0xjgCIiIiIiIiIicgyL9HIwERERERERERHpgZQEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpA5QEEhERERERERHpAxzR6jgjI8MaOnRotLoXERERERERETnmrFy5ssSyrMzm7kUtCTR06FBWrFgRre5FRERERERERI45xpg9Ld3TcjARERERERERkT5ASSARERERERERkT5ASSARERERERERkT4gansCiYiIiIiIiESbz+cjPz8fj8cT7VBE2sXlcpGTk4PT6Qy7jpJAIiIiIiIi0mfl5+eTmJjI0KFDMcZEOxyRsFiWRWlpKfn5+QwbNizseloOJiIiIiIiIn2Wx+MhPT1dCSDpVYwxpKent3sGW5tJIGPMo8aYImPMhhbuG2PM/caYHcaYdcaYae2KQERERERERCSKlACS3qgj/27DmQn0OHBmK/fPAkY1/rkR+Fu7oxARERERERERkS7VZhLIsqyPgbJWipwP/NMKWQKkGGP6RypAERGR3sIKBqMdgoiIiPRCxhiuvvrqQ5/7/X4yMzM555xzohhV2xISEtosc88993Dfffe1Wuall15i06ZNkQpLWhGJPYEGAvsO+zy/8ZqIiEifsertp6j4yWAO5G2NdigiIiLSy8THx7Nhwwbq6+sBeOeddxg4MDq/Vvv9/m7vU0mg7hOJJFBzi9CsZgsac6MxZoUxZkVxcXEEuhYREYm+4gN5DF/8PVJNNfvXvBftcERERKQXOuuss3jttdcAeOaZZ7jyyisP3autreWGG25g5syZTJ06lf/9738A5OXlcfzxxzNt2jSmTZvG4sWLATh48CALFixgypQpTJw4kYULFwJHztz5z3/+w3XXXQfAddddx2233cZJJ53E9773PXbu3MmZZ57J9OnTOf7449myZQsAu3fvZu7cucycOZO77767xa/l5z//OWPGjOHUU09l69bP3yB75JFHmDlzJpMnT+biiy+mrq6OxYsX8/LLL3P77bczZcoUdu7c2Ww5iYxIHBGfDww67PMc4EBzBS3Lehh4GGDGjBnNJopERER6k8ryUoof/SLDrAY8OAnsXxXtkERERKSDfvLKRjYdqIpom+MHJPHjcye0We6KK67g3nvv5ZxzzmHdunXccMMNh5I3P//5zzn55JN59NFHqaioYNasWZx66qlkZWXxzjvv4HK52L59O1deeSUrVqzgX//6F2eccQY/+MEPCAQCYSVRtm3bxrvvvovdbueUU07hwQcfZNSoUSxdupSbb76Z999/n1tvvZWvf/3rXHPNNTzwwAPNtrNy5UqeffZZVq9ejd/vZ9q0aUyfPh2Aiy66iK9+9asA/PCHP+Qf//gH3/jGNzjvvPM455xzuOSSSwBISUlptpx0XiSSQC8DtxhjngVmA5WWZR2MQLsiIiI92v49O6l74mJGBfaydtZviV/zD1Iqmj1MU0RERKRVubm55OXl8cwzz3D22Wcfce/tt9/m5ZdfPrS3jsfjYe/evQwYMIBbbrmFNWvWYLfb2bZtGwAzZ87khhtuwOfzccEFFzBlypQ2+7/00kux2+3U1NSwePFiLr300kP3vF4vAIsWLeKFF14A4Oqrr+Z73/tek3YWLlzIhRdeiNvtBuC88847dG/Dhg388Ic/pKKigpqaGs4444xmYwm3nLRfm0kgY8wzwIlAhjEmH/gx4ASwLOtB4HXgbGAHUAdc31XBioiI9BRbVrxP+qvXk4KHHaf+nRnHX8SSPUvJLXwJv68BhzMm2iGKiIhIO4UzY6crnXfeeXz3u9/lww8/pLS09NB1y7J44YUXGDNmzBHl77nnHrKzs1m7di3BYBCXywXAggUL+Pjjj3nttde4+uqruf3227nmmmuOOFLc4/Ec0VZ8fDwAwWCQlJQU1qxZ02yM4RxL3lKZ6667jpdeeonJkyfz+OOP8+GHH3aqnLRfOKeDXWlZVn/LspyWZeVYlvUPy7IebEwA0Xgq2P9ZljXCsqxJlmWt6PqwRUREomf3xqUMeOUqGkwsZVe8zrjjLwLAkTMVt/Gyd/ua6AYoIiIivdINN9zAj370IyZNmnTE9TPOOIM///nPWFZoV5XVq1cDUFlZSf/+/bHZbDz55JMEAgEA9uzZQ1ZWFl/96lf58pe/zKpVoeXq2dnZbN68mWAwyIsvvthsDElJSQwbNoznn38eCCWg1q5dC8D8+fN59tlnAXj66aebrb9gwQJefPFF6uvrqa6u5pVXXjl0r7q6mv79++Pz+Y6on5iYSHV1dZvlpPMisTG0iIhIn7F/10bcz1+Bx7iwX/8ag8ZOP3Qvc8xcAEq2Lo1WeCIiItKL5eTkcOuttza5fvfdd+Pz+cjNzWXixImHNmW++eabeeKJJ5gzZw7btm07NJvnww8/ZMqUKUydOpUXXnjhUJu/+tWvOOecczj55JPp379/i3E8/fTT/OMf/2Dy5MlMmDDh0EbUf/rTn3jggQeYOXMmlZWVzdadNm0al19+OVOmTOHiiy/m+OOPP3Tvpz/9KbNnz+a0005j7Nixh65fccUV/Pa3v2Xq1Kns3LmzxXLSeeazTGJ3mzFjhrVihSYNiYhI77Fn6xrcz1yAAz/ll7zA8Imzj7gfDASov3cAGzLPZvYtj0UpShEREWmPzZs3M27cuGiHIdIhzf37NcastCxrRnPlNRNIREQkTDX/uQU7ASovf6lJAgjAZreT7xxCfPWuKEQnIiIiItI6JYFERETCkLd5BRN869k24nqGjmv2jRUAauIGktqgQzJFREREpOdREkhERCQMBe89gNdyMubMr7dariFxEFnBEgJ+fzdFJiIiIiISHiWBRERE2lBTVc7E4jdYl3IyqZktb6IIYE8bitMEKNq/s5uiExEREREJj5JAIiIibdj45t9JMPUkHn9Tm2XjskYAUJa/o6vDEhERERFpFyWBREREWmEFg2RueZLt9hGMmXZim+VTB44EoLZIM4FEREREpGdREkhERKQVW5a/w/DgHsrHX42xtf3YzMoZQdAyBEvzuj44EREROSYUFhbyxS9+keHDhzN9+nTmzp3Liy++2OX9rlixgm9+85sRaevEE09kzJgxTJ48mfnz57N169aItBtJkYzx8ccf55ZbbgHgwQcf5J///GeLZfPy8vjXv/516PNIvu7tpSSQiIhIC0r37yLhzW9RSTwTz7ghrDoxsS6KTDqOqr1dHJ2IiIgcCyzL4oILLmDBggXs2rWLlStX8uyzz5Kfn9/lfc+YMYP7778/Yu09/fTTrF27lmuvvZbbb7+9yf1AIBCxvjqqK2K86aabuOaaa1q8f3QSKNKve3soCSQiItKM0v078f39DFKC5ew741HcCclh1y1z9ie+fn8XRiciIiLHivfff5+YmBhuuunzvQeHDBnCN77xDSCUQDj++OOZNm0a06ZNY/HixQB8+OGHnHPOOYfq3HLLLTz++OMA3HnnnYwfP57c3Fy++93vAvD8888zceJEJk+ezIIFC5q0sWzZMubNm8fUqVOZN2/eoVkyjz/+OBdddBFnnnkmo0aN4o477mjza1qwYAE7doT2R0xISOBHP/oRs2fP5tNPP+X3v/89EydOZOLEifzxj388VOef//wnubm5TJ48mauvvhqA4uJiLr74YmbOnMnMmTNZtGgRAB999BFTpkxhypQpTJ06lerqag4ePMiCBQuYMmUKEydOZOHChR2O8amnnmLWrFlMmTKFr33ta4cSQ4899hijR4/mhBNOOBQLwD333MN9990HwI4dOzj11FOZPHky06ZNY+fOndx5550sXLiQKVOm8Ic//OGI172srIwLLriA3Nxc5syZw7p16w61ecMNN3DiiScyfPjwiCWNHBFpRURE5BhSUrCP+r+fQ0qwmt1feIbcWSe1q36teyBDKpeFXX75Kw8R3PImzmlXMO2Uy9sbroiIiETKG3dCwfrIttlvEpz1qxZvb9y4kWnTprV4Pysri3feeQeXy8X27du58sorWbFiRYvly8rKePHFF9myZQvGGCoqKgC49957eeuttxg4cOCha4cbO3YsH3/8MQ6Hg3fffZfvf//7vPDCCwCsWbOG1atXExsby5gxY/jGN77BoEGDWozhlVdeYdKkSQDU1tYyceJE7r33XlauXMljjz3G0qVLsSyL2bNnc8IJJxATE8PPf/5zFi1aREZGBmVlZQDceuutfPvb3+a4445j7969nHHGGWzevJn77ruPBx54gPnz51NTU4PL5eLhhx/mjDPO4Ac/+AGBQIC6uroW42stxs2bN/PrX/+aRYsW4XQ6ufnmm3n66ac57bTT+PGPf8zKlStJTk7mpJNOYurUqU3aveqqq7jzzju58MIL8Xg8BINBfvWrX3Hffffx6quvAqHk22d+/OMfM3XqVF566SXef/99rrnmGtasWQPAli1b+OCDD6iurmbMmDF8/etfx+l0tvp1tUVJIBERkcPs3b4W+78uJT1Ywa4zn2x3AgjAnzyYrMo38dTX4oqLb7N82uq/MSK4Gxa+zyq/l2lntDydWERERI5t//d//8cnn3xCTEwMy5cvx+fzccstt7BmzRrsdjvbtm1rtX5SUhIul4uvfOUrfOELXzg042T+/Plcd911XHbZZVx00UVN6lVWVnLttdeyfft2jDH4fL5D90455RSSk0OzosePH8+ePXuaTQJdddVVxMXFMXToUP785z8DYLfbufjiiwH45JNPuPDCC4mPD/18dNFFF7Fw4UKMMVxyySVkZGQAkJaWBsC7777Lpk2bDrVfVVVFdXU18+fP57bbbuOqq67ioosuIicnh5kzZ3LDDTfg8/m44IILmDJlSrOvT1sxvvfee6xcuZKZM2cCUF9fT1ZWFkuXLuXEE08kMzMTgMsvv7zJWFRXV7N//34uvPBCAFwuV7MxHO6TTz45lGw7+eSTKS0tpbKyEoAvfOELxMbGEhsbS1ZWFoWFheTk5LTZZmuUBBIREWm0acmbDHjzywSxse/cZ5k44+QOtRM3eBrshS1/uoBhX32K5PTsFsuWFOYzIribJYO+ysh9z2OtfwGUBBIREYmOVmbsdJUJEyYcSgIAPPDAA5SUlDBjxgwA/vCHP5Cdnc3atWsJBoOHEgsOh4NgMHionsfjOXR92bJlvPfeezz77LP85S9/4f333+fBBx9k6dKlvPbaa0yZMuXQbJPP3H333Zx00km8+OKL5OXlceKJJx66Fxsbe+hju92O3+9v9mt5+umnD8X9GZfLhd1uB0L7HzXHsiyMMU2uB4NBPv30U+Li4o64fuedd/KFL3yB119/nTlz5vDuu++yYMECPv74Y1577TWuvvpqbr/99mb36QknxmuvvZZf/vKXR5R56aWXmo3x6K+jvZqr81k/4b7u7aE9gURERIB1H/yHEW98iSqThOeatxjTwQQQwOSTL+fTsXcxvn4ldX+ez7ZVH7VYNm/56wCkTT2XXWnHM7Z6CV5PbYf7FhERkd7l5JNPxuPx8Le//e3QtcOXMlVWVtK/f39sNhtPPvnkof1phgwZwqZNm/B6vVRWVvLee+8BUFNTQ2VlJWeffTZ//OMfDyV7du7cyezZs7n33nvJyMhg3759R8RRWVnJwIEDAQ7tLRRpCxYs4KWXXqKuro7a2lpefPFFjj/+eE455RSee+45SktLAQ4tBzv99NP5y1/+cqj+4V/LpEmT+N73vseMGTPYsmULe/bsISsri69+9at8+ctfZtWqVR2K8ZRTTuE///kPRUVFh2LZs2cPs2fP5sMPP6S0tBSfz8fzzz/fpG5SUhI5OTm89NJLAHi9Xurq6khMTKS6urrF1+Tpp58GQsvEMjIySEpK6lDs4VASSERE+ry929Yw7MNb2OcYRNL/fcCA4eM71Z6x2Zh7xZ3sOvcFwGLY/y5k8V9voqqitEnZ4I4PqCSeEbnziZ10PvHGw5bFr3WqfxEREek9jDG89NJLfPTRRwwbNoxZs2Zx7bXX8utf/xqAm2++mSeeeII5c+awbdu2Q0upBg0axGWXXUZubi5XXXXVof1pqqurOeecc8jNzeWEE07gD3/4AwC33347kyZNYuLEiSxYsIDJkycfEccdd9zBXXfdxfz587vsFK9p06Zx3XXXMWvWLGbPns1XvvIVpk6dyoQJE/jBD37ACSecwOTJk7ntttsAuP/++1mxYgW5ubmMHz+eBx98EIA//vGPhza5jouL46yzzuLDDz88tFH0Cy+8wK233tqhGMePH8/PfvYzTj/9dHJzcznttNM4ePAg/fv355577mHu3LmceuqpLe7j9OSTT3L//feTm5vLvHnzKCgoIDc3F4fDweTJkw+Nx2fuueeeQ1/jnXfeyRNPPNGhuMNlOjJdKRJmzJhhtbaZlYiISHcoPpCH95EzcVu1eK9/j/5DRke0/fKSArY+dRuzyl+n3CSxfeK3mXXhN7HZ7VjBIIX3juJA/Him3f4KXk8dvl8OZ1PaKcy69emIxiEiIiLN27x5M+PGjYt2GCId0ty/X2PMSsuyZjRXXjOBRESkT/I1eFn7wQvUP3IWqcFyir7wWMQTQACpGf2Y861/seOClyl0DGTOhnvY8YtZbF76Nkuf/SX9KME//BQAYl1utsVPZ0CF3iQRERERkcjTxtAiItKnHMjbSvEzX2eUZwOTjZdK4tl39pOMnXlql/Y7euoCrMmLWP7qwwxe9Wuy37gUgJXu45h23s2HynkzJ5Kz5xNqqspJSErt0phEREREpG8JayaQMeZMY8xWY8wOY8ydzdxPNca8aIxZZ4xZZoyZGPlQRUREOicYCFD2r68wwrOJNRnnsmr+X4m9YxtjZ5/eLf0bm42Z591EwnfWsGjgl1mSfDYTvvEcDmfMoTJxg0Lr+fM3L++WmERERKRjpzqJRFtH/t22ORPIGGMHHgBOA/KB5caYly3L2nRYse8DayzLutAYM7ax/CntjkZERKQLLXvuN8xpWMey3HuYd/G3oxZHfGIy87/6+2bv9RszEz6ByrxV0E3JKRERkb7M5XJRWlpKenp6m0eAi/QUlmVRWlqKy+VqV71wloPNAnZYlrULwBjzLHA+cHgSaDzwy8ZAthhjhhpjsi3LKmxXNCIiIl3k02d/yewtv2Zt3ExmXtix0yK6Q/bAYVSQgClYH+1QRERE+oScnBzy8/MpLi6Odigi7eJyucjJyWlXnXCSQAOBfYd9ng/MPqrMWuAi4BNjzCxgCJADHJEEMsbcCNwIMHjw4HYFKiIi0lGfPvUT5u74Pavdcxl7y/MYW889F8HYbOTHjCS1amu0QxEREekTnE4nw4YNi3YYIt0inJ+Cm5sPd/TCs18BqcaYNcA3gNWAv0kly3rYsqwZlmXNyMzMbG+sIiIi7bb8xb8wd8fvWRl/PJNue5m4+MRoh9SmmtRxDPLn4fc1RDsUERERETmGhJMEygcGHfZ5DnDg8AKWZVVZlnW9ZVlTgGuATGB3pIIUERHpiPydG5mw5l42xExm4lEbMPdk9gG5uIyPfdvXRjsUERERETmGhJMEWg6MMsYMM8bEAFcALx9ewBiT0ngP4CvAx5ZlVUU2VBERkfAFAwEqn70RP3Yyr3mMWJc72iGFbfDU0/BZdgrf/1u0QxERERGRY0ibSSDLsvzALcBbwGbgOcuyNhpjbjLG3NRYbByw0RizBTgL6Lk7boqISJ+w/KU/M8G3ga1T7iI7Z0S0w2mX7MGjWJV2NtOK/0fBvh3RDkdEREREjhGmI+fKR8KMGTOsFStWRKVvERE5tlWWlRC4fyqFzhzG3rWoR28E3ZKDe7aS/uhcykwqRc6BDPn6f0lOy4h2WCIiIiLSwxljVlqWNaO5e73vp2IREZEW1FZXsvsnk3D8aTwpVjUx597XKxNAAP2HjGHVhDspcQ4g17eWvDXvRTskEREREenleudPxiIiIs3IW7+IYdZetiTMZvXsPzAid360Q+qUOZfdwaCv/xeAuv0boxyNiIiIiPR2jmgHICIiEinVu5YBMOyav5GWnRPlaCIjOS2TYlKxl2yNdigiIiIi0stpJpCIiBwzHIVrKSDjmEkAfaYgdigpNTujHYaIiIiI9HJKAomIyDEju2YLB+PHRjuMiKtNHkWOfy/BQCDaoYiIiIhIL6YkkIiIHBOqKkoZZB3Amzk52qFEnC1rHG7j5eCebdEORURERER6MSWBRETkmLB342IA4odOj3IkkZc0JBeA4l1rohuIiIiIiPRq2hhaRESOCdU7lgAwaMK8KEcSef1HTQXAE8ETwpb+728MWPMn7JafvWO/zJwr7opY2yIiIiLSM2kmkIiI9HpF+bsYt/txtjjGkpLZP9rhRFxySjqFpGMv6/wJYT5fA4sfuJHZq++kzpaAnSDJO1+OQJQiIiIi0tMpCSQiIr1WfU0VK994nPLHL8dp+Yi//OFoh9RlSp39ia872Kk2yor2s+U3pzKv+N98mnkpw7+3iLyME8hp2I0VDEYoUhERERHpqbQcTEREep3a6grWPvV9Jha8yHRTR40Vx+aZv2DGqGNvU+jP1MX1Z2DVmg7X37FuMfH/vZpRViXLpv6CuRf8X+hG9gQSS/7Lgb3bGTB0TGSCFREREZEeSUkgERHpVfJ3boKnLmROsJAVCScSN+cGxs4+gxkxsdEOrUv5EgeSWfkeAb8fu6N9j+/dm5aT9cIl1Jk48i98kVlTjj90L3noFNgIRTtWKQkkIiIicoxTEkhERLrVjnWLKdq8iHmX396h+vvef4SZwSK2nPkMs+aeFeHoei5byiAc+4MUFuwhO2dEWHWWv/YP4lb/g4H+vXhNDMHrXmfkUYmegaOnwWvgyV8HXNkFkYuIiIhIT6E9gUREpFv5Xr6NeZt/xpaVH3SoflzpBvbZBzG+DyWAAFwZQwAoP7Ar7DqOjf9hqG8XeXETqL3s+WZn+iQmp7HfZOMs2RSxWEVERESkZ1ISSEREus22VR8zzr8ZAO87P+tQGwM92ylJ7HvLlpL7DQegpjgv7DouXyV7Ykcz9XtvMXT8zBbLFcWNIKNuZ2dDFBEREZEeTkkgERHpNpUf/play8WnA69nsmcFW1e83676JQV7yaScQHZuF0XYc2UMDCWB/KV7w64TF6jCG5PcZjlP6lhyAvl46ms7HJ+IiIiI9HxKAomISLco2LeDyZXvsT7rHCZe9iMAyte/1a429m9eCkDi0OkRj6+nS0hKpZJ4TFV++HWC1fhiUtos58gcgd1YlB7Y3YkIRURERKSnUxJIRES6xZ4X7wVg6Ll3kpicxkEycJS3bwlS/Z7VAAwaPzvi8fUGJbYsYmsPhFXWCgZJsqoJulLaLOuMTwOgrqqsM+GJiIiISA8XVhLIGHOmMWarMWaHMebOZu4nG2NeMcasNcZsNMZcH/lQRUSktzq4ZytTS19ldfo59Bs8CoCS2EEk1u1pVzsxxevJN/1ISknvijB7vGpXP5K8BWGVrautIsYEMHGpbZaNSQwlgTzVpZ2KL1oavF4+/eMXWfvBC9EORURERKRHazMJZIyxAw8AZwHjgSuNMeOPKvZ/wCbLsiYDJwK/M8bERDhWERHppfJe+x0AQy780aFrdYnD6O/fjxUMhtVGg9dDTu0GCt2juyTG3sDjHkBGsDisslVlRQDY3Wltlo1LCiXVGmp650ygFc/9irkVrzHko29SfKB9iUURERGRviScmUCzgB2WZe2yLKsBeBY4/6gyFpBojDFAAlAG+CMaqYiI9Eqe+lrGFb3G+sTj6Ddo5KHrVtpIkqilrDi85U2r/vNrsijDMePargq150vOIYlaqiranrFTWxFKFjkSM9os604OJYECteWdiy8KSg7uJXfH39jiGEus1cD+J2+MdkgiIiIiPVY4SaCBwL7DPs9vvHa4vwDjgAPAeuBWy7KavLVrjLnRGLPCGLOiuDi8dzJFRKR32/De06RQQ8ysI1cKu/uHjnkvytvYbL3iA3ksf/0fLH76Zyx64keM3/4Qa2NnMPmkS7o85p4qYdgMALZ+9O82y3qqSgCITWx76VxiSihRFKyr6HhwUbLz2duJoYGEyx9hTf9Lya1bSoPXE+2wRERERHokRxhlTDPXrKM+PwNYA5wMjADeMcYstCyr6ohKlvUw8DDAjBkzjm5DRESOQa51T7HfZDNh/nlHXE8fMgGAmv1bCD1GoKaqnPVvPkra1mcYE9hO5mHlK4kn+YJfd1PUPdOEeeeQ934OqesewTr3Joyt5fdyvNWhpV1xyW3PBIqLS6DBsmN5KiMWa3fYsvw9Zle+yacDrmbuqFwOrBuNrcCi5OAeBgwdE+3wRERERHqccJJA+cCgwz7PITTj53DXA7+yLMsCdhhjdgNjgWURiVJERHqlras+YmLDWj4d/k0G2u1H3Os3eBQNlgN/8TZKDuxh23/vZXLxq8w1HnbZhrBo6C1kTT6DtIEjiImNIzYmlqFx8VH6SnoGY7NROO4GZm+8l01L32L83LNaLOuvCS0ZS0zJbLHM4e1WmwRs3opIhdrlgoEAtje/RzGp5F75UwDiMocAUHFwl5JAIiIiIs0IJwm0HBhljBkG7AeuAL54VJm9wCnAQmNMNjAG2BXJQEVEpPepf/tnlJPIpAtua3LP7nCwz96fIQXv4H7oeWbhY2XyqaQc/zVGTz+Z4a3McunLJn/hRso3/gH/h/dBK0kgqy40Eyghte0kEECtScDZ0HtmAi1/6c/MDmxn5fRfMz0pdAJaUvYwAOqKtTm0iIiISHPa/Anbsiw/cAvwFrAZeM6yrI3GmJuMMTc1FvspMM8Ysx54D/ieZVklXRW0iIj0fFtXvM8UzzK2DLuWhKTmjykvdw1mgFXIrtgxFF6zkNm3Pc+Ymae2usypr3O5E9k64gZyvSvYuOi1lgvWl1FnxeIKc/ZUvT0Rp6+q7YI9QGV5CaPW/47NzvFM+8LnG0FnDgwlgXzle6MVmoiIiEiPFs5MICzLeh14/ahrDx728QHg9MiGJiIivZnn3Z9TTiK5F363xTIJp93Jp1s/ZdYlt2F3OLsxut5tysV3UPibJ3F88BOsuWc1mzSzeSupNgm4w2zT40jE7ev5p4P5fQ3seugqcq1qys6574iv3Z2QTDmJ2Kr2RzFCERERkZ5Lb7WKiEjEbVn+HpM9K9g6/HriW5gFBDBq6gLmXvE9JYDayeVOIG/8zYzxb2XL8neaLeNsqKDWlhh2mz5nMnHBmkiF2GWWPXwLUz1LWDH++4ycPL/J/TJ7Jq66g1GITERERKTnUxJIREQizvveL0N7AV34nWiHcsyadPaNVFluahc93Ox9l6+SekdS2O0FYpNIsHp+Emh08VusjF/A7MvvaPZ+VWw2id7Cbo5KREREpHdQEkhERCKqYO92JnuWs2XwlcQnpkQ7nGOWOyGZTZlnk1v5IWVFTZc/xQWq8DpTwm4vGJtMolVLMBCIYJSRZQWDJFvVNCQPa7FMg7s/GcHiboyqe/n9fnZuXhPtMERERKSXUhJIREQiavcHjwMw+MQbohtIH9DvlK8TY/xse+uhJvcSgtX4Y5PDbsvEpWA3FrXVFRGMMLKqq8pxmgA2d1qLZaykHJKopaaq5+9v1F5WMMjyv1zLsGdPZP/urdEOR0RERHohJYFERCRirGCQ/nv+xxbnOAYOHxftcI55Q8fNYJNzIjm7/n3EDB4rGCTJqiYQ2/J+TEezu0Nlayp77uGe1WWhZV62hPQWyzjSBgNQun9Xt8TUnT596h7mVryKzVgUbl8e7XBERESkF1ISSEREImbnhiUMDe6jctRF0Q6lz6ibfC05VgEbP/nf59dqq4gxAUxcStjt2ONDSaC6ytKIxVZTVc7yV/9ORXlk2qypCC3zciZmtlgmIXMIAJUFuyPSZ0+x6q1/Mmfn/axxzwXAe3BTlCMSERGR3khJIBERiZiSj/9Bg+VgzMnXRDuUPmPSqV+ijCR8S/9x6FpZYT4A9oSMsNuJSQglgeqrI5cE2vDEbcxc8R0cfxzPx3+8lj1b13SqPU9lEQCupJa/rpQBIwAY+uE32HHvFJb8/grWfvBCj97rqC0bFr7MuMXfYZtzNGNv+Q8FZOAs1XIwERERaT8lgUREJCI8dTWML3mD9UkLSMnoF+1w+oxYl5utAy5kSu0itix/D4CD6z8AIGPM3LDbiUsMLbHy1ZRFJK6De7YxreRlVsfPZ1vqCcwpf4WB/zqJRQ/fitdT16E2fdWhpWrxKS3PBMrOGc6i0XeyIe10ap1pjK1ayOSPbmDbL+dRXtz7jo5f8vzvGPPudRTas8n4yn9wuRMocg0jpfbYmukkIiIi3UNJIBERiYgN7z5JErXEzr4+2qH0OZOu+AmFJp2417+Jp74Wk7eQchIZMnZ62G24k0NJIH9N2xsq19VWkb9zU6uza/a++GMABlz+J6Z96zlqbl7LypTTmX/gcVY9/p2w4zqcvyY0SykpLbvFMsYY5n/xLubd+gST73qfuDu3s2TiPQzz7aTyb6dRUdI7jo+3gkEWP/A15my8l02uqaR98yMy+oX2O6pLHkmOfy8Bvz/KUYqIiEhv44h2ACIicmyI3fhv8k0/xs/9QrRD6XMSklLZddJ95H5wHZ8+8xOGVa5kV/xUptvt4bfROLsmUF/RZtkNj3yNWRWvU2u52OMcRm1sNkGbA3/KCOJyJuHJW868itdZ0u+LzBk8CoC07EHM/va/Wf67i8k9+F8qy+4lOa3lGT3NserKCFqGxOTwl7nFutzMueTbbMgaysT3r2PJO39nzpU/aFe/0bB15fvMK36WpWnnM/3rf8fhjDl0z5Y1FlehjwN7tzFg+PgoRinSsxQe3EtyaiYuV1y0QxER6bE0E0hERCIiw5vPwaRcbO1IPEjk5J5wISvdxzF1z6P0owT/4Pntqp+QmELAMlhhJIHSqrew2zaYtRnnYGEjq247g6vXMH/fQ0z79BbmHXyCpSlnM/Orf25SN/2MO4g3Hja9/Pt2xQdgPGVUmgRsjva/hzVxwYXsseUQv/vtdteNhuoD2wAYcPbtRySAAJIGTwSgeNfabo9LpKfat2szCQ/OZNUzP4l2KCIiPZpmAomISEQkW1XscaVFO4w+Le3cn+J89mQAsnNPa1ddY7NRalKJqdjRajkrGKS//wAbss5h3v/944h7tdUV7Nu6Em9NJTOPP7/ZhODwibNZ++oMRuX9Cyv4c4wt/PejnJ5yqk0i4R98f6QD2Scz48DTVFWUkJQS/myiztiy4j0SUrLJGTmxXfX8ZXsByBwwrMm9/qOmAlB/QCeEiQAEA0HKn/06g4yHmLIt0Q5HRKRH00wgERHpNE9dDW7jhbj0aIfSpw0bN41laeeSb/oxZMzUdtfflXUak2oWU1a0v8UypUX5xBsPVtqIJvfiE1MYO+MUJp94UaszwjzDzySDCgr2bW9XfLG+Cursye2qc7iUqefhNAG2L3qxw220x6q3n2bkK5eQ9eQCFj96B1YwGHZde3U+pSTjcic0uZeckk4JKdgqdkUyXJFea9lLfya3YTX1VgxJdS1//xIRESWBREQkAirLQpvtmnglgaJt5s2PkvKdFe2aYfOZ/id9jRgTYNvbD7dYpnjPZgDc/UZ3OMbkYaEEVeG2le2qF+evwuvseBJo9LSTKCUZa8sbHW4jXLs2LmP8olvZ5RjJ+vi5zNv7ELs2Lgu7vqvuIGX2rBbv15oEHA3VkQhVpFcrObiX8et/zSbnRNaln0lmoPedAigi0p2UBBIRkU6raUwCxSR1zxIbaZnD6SQhIbFDdYeMm84m5wRG7HiCxX+4ih3rlzQpU31gKwBpg8Z2OMZBY2cQtAz1+e3b0yY+UEVDbEqH+7U7HOxKnMHg6tXtmpXTEYUrX8FlfKR95XmGXPMgQctQvCL8GUhJDQXUuPq1eN9jd+Pw10UiVJFebc/TtxBrNZB46QMEU4eRSjXVFaXRDktEpMdSEkhERDqtrrIYgNiklmcuSO/gm/stGkwMMyreoPKtXzS5Hyjeic+y029Ix2cCxSemcMDWj9iS9u1pk2RVE4jt6I5AIYEBM8mijML8nZ1qpy2O0q0UkUZG/6Fk9BvENucY0vPfC6uuFQySGSjGmzCwxTI+u5uYQG2kwhXplTZ++ibTaz5i1ZDrGTR6CrEZoT20ivZui3JkIiI9l5JAIiLSad6qUBIoPkVJoN5u8smXMfDH21iTcQ5jq5fgqas54n5s1W4KbVlNTqxqryL3KLLqwt8T6LN9pyx35zYfTx93HAD713/UqXbaklKzgwLX55s6lw86hVGB7RTv340VDLJjw1KWvfp3Ni56rUndyrIi4o0XknNabN/nSCBWSSDpw4KBIPb3fkQxqUy57G4AEvuPAqDqYPv2GxMR6UuUBBIRkU7zV5cAkJCWHeVIJFLiJl9EvPGy+ZOXjrieVL+P0tiWkxPh8maMZ0CwgNrqirDKf7bvlM3duX2nho6fRb0Vg2/P0k6105qA388g/17qkj+fLdV/1kUAlDx2Bbt+NpWR/zmdWSu+w8i3r23yGpTsD81Sik0f3GIffkcCcUElgaTvWrfwRcb6t7Jn0q3EJSQBkDU4tEy1oVibpouItCSsJJAx5kxjzFZjzA5jzJ3N3L/dGLOm8c8GY0zAGKNzgltQfGAPOzcuj3YYIiIRY9WG9l9ITtNMoGPF2DlnUUECgQ0vHbr22fHwnsQhnW4/LmcyNmORt24RwUCgzfI15aHZZjGJnUsCOWNi2RUzmtSyNZ1qpzUH8rbgMj5s/cYfujZkzDSWJZ5KTLAery2eJeN+wPLce4k1PrZ9+uoR9asKdwOQmNX0ePjPBGMScFPfNV+ASC9Qvz+0nHT0iVcdupaclkEl8VCxJ1phiYj0eI62Chhj7MADwGlAPrDcGPOyZVmHFvJblvVb4LeN5c8Fvm1ZVlnXhNy7VZaX4HnkDOIIwARNVRWRY4OpL6WSeJI7uURIeg5nTCxbUxYwvvwDPHXVuNyJlBTsJbOF4+Hbq9+YmbAIJrzzRXa+N4zsb31AQlLL+/3UVxYBEJuU2em+qzKmMv3Av9iy/D0Gjp5KYnJk37cq3rmGQUDKkNxD14zNxqzvvHBEuQavh5q1v6Rhy1tw+pc+v14a+gU2bWDLr3MwJpF4qw4rGOzQSXAivV5NET7LTmLqkQcSFNn7E1ezL0pBiYj0fOH81DAL2GFZ1i7LshqAZ4HzWyl/JfBMJII71gQDAXY9fBWDrIMMsIqa7LMgItJbObzlVJmOH90tPVP8zC+RaOrZ8M4/Achb8j8AMsYv6HTb/QaPYtn03/LJwC8zNJDHxkf/r9XynooCANwR2HfKPeo4YkyAsa9dxM4Hr+x0e0fzHlgPwMBRU1otFxPrYlv8DIaWLTrytLKKfXgsJ6kZ/Vusa2ITsRtLP0tIn2WvL6HcJDdJglbFDSTVuz9KUYmI9HzhJIEGAoen0/MbrzVhjHEDZwIvtHD/RmPMCmPMiuLi4vbG2ust/ef3mVq/hI0xoXcGC/ZsiXJEIiKREdtQTq1dSaBjzfg5Z7HPDCB+w9MAOLa/wUEyGTFpXkTan3XujRz31d+zdMA1zK54jZWvPtxiWd/+9TRYdvoPn9DpfiedcCkbTn2a5cmnM7FuGWVFkf2F0Vm2jQMmm/jElDbL+kecSjal5G1e8Xn9mv0U2zJbn+HjCu2BUltT0cloRXqnWG8pVfamswcbEgeRHSw6MrEqIiKHhJMEMs1cs1ooey6wqKWlYJZlPWxZ1gzLsmZkZnZ+OndvEAwEWPzPH7H095cxO+8hlieegvPMnwJQka/jK0Xk2OD2V+KJSYl2GBJhNruN/cMuYZxvI1tXfsD4uhXsyTwp4suPZlz3GzY6JzBp+V1s+vSNZsvEl21kr2MosS53p/uz2e1MPO4c0k/7Dg4TZPuHT3e6zc8EAwEG1GygMG54WOWHzrkAgMJVn+8LlFG3i9K4oa3Wc8SFkkD11eUdilOkt4trKKfO2cwSUncGMcZPXU1l9wclItILhPNTXD4w6LDPc4ADLZS9Ai0FO8Ky537DvF1/YkTVEta6ZjDha4+RPWQcAJ6iHVGOTkQkMhIClTTEtLyfi/Reo8/4GnVWLINevpxY4yNx6oUR7yMm1sXAr/2XAlsWw9+8msVP/eSIzaKtYJBB3m2UJY2NaL/Dxs8iz5ZD4vb/RazNTYtfZYBVRGBsayvnP5c1cCh7TA5x+xcDUFdTyaDgfurTW5/x9FkSyKNfdCWCKut90Q4hbEmBMryxTTeKt7lDe3xVV/S9VQciIuEIJwm0HBhljBlmjIkhlOh5+ehCxphk4AQgcj9J9XJ7t68nd8sfWOuaQfqP8ph617u4E5JJTs+minhM+e5ohygifcTm5e+zecUHXdK2FQySbFURdCkJdCxKy87h4MUvUmZLpZA0xsw8tUv6ScnoR/xNb7PZPZ15O37Pyj9cgtdTB0Bh/k5SqcbqNyWifRqbjYODzmG8bwP7d25osdzGRa+y5lensfZXp7L4kW+zcfHrlBbupaayDF+D94iy3qX/oIIEJp52TdhxFKTNYFT9OnwNXvZuWYHNWLgGTWm1jtMdWn7pra0Iux+R1nz85nOU/moSRUUF0Q6lTVYwSIpVSSAuo8k9Z0LoWVRbUdrdYYmI9Aptng5mWZbfGHML8BZgBx61LGujMeamxvsPNha9EHjbsqzaLou2lyn8349IxzDg6keaTJ0vtPcnrmZvlCITkb6kqng/A1/7EmUmFWZsjHj79XXVuI0P3J07ult6rhG58/GMWkVddSWOLjwBLj17EGm3v8HiJ+9m3u6/sP73ZzH05v9ycMtS+gHJI2ZEvM+RZ9xM7UOPUfDi9xn43SbvcQHgX/gnRtWv46C9PxPzH8O+/9FD94KWodCkUu7Ioia2H7k1n7Ay+xLmxsWHHYNj5Im4S19i67qFVO5aBTSentaK2PhQEshXVxV2PyIt8fl85Cy9l+HmIOt3riEr68xoh9SqmuoKEo0PEppuLxGTEJoJVF+lmUAiIs1pMwkEYFnW68DrR1178KjPHwcej1RgvUnxgTy2v/gLkqdewPg5Z4beWdyzjanVH7Ki3+XMGdh0X4Aq9yCya7QxtIh0vT3/+iaTqCXJqqW0MJ/07JyItl9ZWoAbsCc0fUdWjh2uuHhc7UhsdJSx2Zh37c9Z9tJApq7+IXvvP5lAwij8lo2h42dFvL/MAUNYPOhq5uX/nS0r3mPsjFOOuO/11DGqfi3rM7/A7Fseo7ykgLx1C6kr2I4V8EF9Jfaa/bjrC8iq20qlSWLgabe0K4Zh08+ApVC+4X1M1T4qiaffoFGt1olr3HQ6UK/lYNJ5q157mNlW6ByY+qK86AYThori/SQC9oSmpwXGJYUSQ76aZrcoFRHp88JKAknrdrz6O+YV/xve/jdb3h9L4KQfUrPyOTKBYV/4TrN1GpKGkF31MX5fQ5e+qyoifdvepf9jUvm7LHfOZKZvOXtWv0f6mddGtI+a8iIAnIl9Y8N/6R6zLriZtSn9GPrBLYyoymOXfQjD3Qld0tfky++m5Hf/wf7GHfgnf3rEc3n7ineZaLzEjj0dgNSMfqSefGlE+0/LGsAu2xAS93+EM9jAvpiRTGxj8+24hBQAAvWaCSSdU1ddzpA1v2e3bTDDgnvxl+9ru1KU1ZYeBCA2pV+Te/EpoVmp/lptmi4i0pzIHu/RB1nBIIMOvsPGmEksHvdDMv0HmfDOl5hd9jJrkk4ke3Dz7+TZ00fgNAEK9+3s5ohFpK+oqqrA+eZ32EUOg2/8N/VWDL5dCyPeT11Z6HhtV0rTd2RFOmPyiRfRcNMSFiedRdHY8PfYaa/4xBT2zr6HUYEdLHv6J1RXff7LY/XGt/FZdkbN6trlMYVDzmGCbwOjA9uoSR3fZvn4pNC+J0FvdZfGJd2nvLSYvO0t703VVdb/87tkWaXUn/EHyknEVpXf7TG0V31FKAnkTm2aBEpMCb0hEajVTCARkeYoCdRJuzctJ8c6SM2oC5l3+e04v7WaFbPvZ/msPzHq+odarBffP5QcKsvf3F2hisgxxgoGWfTgLWxa8laz91c8fjv9rWK8Z/2e7Mx0dsaOJ6N0ZcTjqM8P7TPUf8TkiLctktl/MPNue5Y5l323S/uZesa1rHbPY17eX0j8/VA+/euNof6LFrEtZvyhpEtXmXP1z1ic/UUAYobObrN8rMtNg+UAJYGOGXsfvpzYpy/o1j53rP2EmUUvsDTjIsbPPpVSexauupYOAe45GipDM1CTMwc2ueeOT6TBsoOnopujEhHpHbQcrJOKlvybIZZh5ILLAUhKSWfGWW0vtUjtH9onyFPS86fcikjPtGvjcuYXPEnZmy9RNGghWQOHHbq3aeXHnFD6PGuyL2TK7DMAqO43i/F7HqGqooSklMjt3+Mo2UwRaWSlaTmY9F7GZmPkjU+x5M2HceQvZW7Rv1n9671MDexiyfDml3ZHuv+5X3uAvG03MnV0eAnVWhOHraGmiyOT7rBp2btM9oaS9HW1Vbjjk7ql34p37qOGOCZccx8ANbHZJHv2d0vfnRGsCSWBUjL6N7lnbDaqTQI2JYFERJqlmUCd1P/AW2yJndTujVbTskLvXASqC7siLBHpA4qW/4egZYi1Gih+4vOlMgG/D+fr36LcJDP6S787dD1+xFxsxiJ/09KIxpFas4MC14iItikSDYkp6cy54i5yv/EsW+2jmVr/KZ+mXcDMy7/fLf0bm42hY6c2OVG0JfXGjb1BM4GOBb73fnHo48I9W7ulzwN5W5la/SEb+19IUnLoRC1v/AAyAkXd0n9n2OpKqCABZ0xss/drTCKOBm2aLiLSHCWBOsEKBqk77T5sJ7X/h0OXO4EaKw5qdXyliHRMVv47bI0Zx7oRNzGhYR0HdodOHFzx718yKrCT3bPuwZ30+bHtydlDAagrjdx+D74GL4MCe6lNHROxNkWiLSbWRdpX/8vyOQ8w55bHsDt65sTpepsbu7822mFIJ5UU7GWydyVr4+YAULl/e7f0u/e13xLEdsQhJsHkQSSaeqoqSrolho5yekqotKW0eL/enojTp03TRUSaoyRQJxibjXFzz2Lc3LM6VL/CloKjvjTCUYlIX3Bg9xZGBHdTOeQMBsy6AID8la9xIG8rk7b9hdWu2cw46hSwlH5DAPBXHoxYHPt3rifGBHD0mxixNkV6gsx+g5h55pfCnpUTDV5bPDF+LQfr7YryNgHgG38RAPVFXX9oyI7VHzOj6AVWpp5Fv0Gfz+R0pg0GoGx/zz64xOUto8be8j5dXmcicX4lgUREmtNzf7LpA2ocqbi8SgKJSPvt/fR5AAbPu4zBo6dQRBr23R9y4PnQ5rn9v/hAk19ek5JSqbdioLogYnGU7FoNQNrwqRFrU0TC43PEExOoi3YY0kk1B7cB0H/8fKqtOGzlu7u0P099LY5Xvk6pSWHcNX864l58VujNgqqCro2hM4KBAFm+fOpdLZ9I2eBMxh1UglREpDlKAkVRfUwa8X4dXyki7efa+zF7zUAGDB+PsdnYkzKb8TVLmFH7MesGX02/waOa1DE2G6W2NBx1kdvvwXdgA37LRs6o3Ii1KSLh8TkScAWVBOrtAiU78Vl2sgePpsjRH1dt1x4asu61hxgazKdgwS9JTjvykIC0/qFZQZ7SPV0aQ2dsXfYWGVRgjT6zxTLB2GQSLO2XJSLSHCWBoqjBlUFKsDzaYYhIL9Pg9TCqfi0H0z8/RtqMOIk400AVbsZffFeLdasd6bi9kUkCWcEgicWryLcPJNbljkibIhK+QEwCcZaSQL1dTGUehbYsHM4YKl05pHi77oh2Kxgka9Oj7LAPJ/fEy5rcz+g3CK/lwKqI3N5xkVa1/FnqrFjGn3h5i2WCrlSSqCPg93djZCIivYOSQFEUdGeSbNXg9zVEOxQR6UV2rPqAeOMlZvQph64Nn30O9VYMm4Zd3+rx73WxmST4IrMM9f3nH2BiwzoKhl4QkfZEpH0sZwLxSgL1esn1+yiLDZ0y600cRL9AIcFAoEv62rDwJYYG91E+6SvN7ndlt9spNynYa3vm6bUNXg9jyt5jY9JxxCcmt1jOxKUAUFPZc7ZdOLBnO2sWvhLtMERE6JnHXfQRtoQsbMairOQgGf2HRDscAEoKD7DnseuJPf6bTJz/hWiHIyLNqNz4LgHLMGLW51Ph07IGUnHLWman92u1rs+dRXr1kk7HsGHTBmZu+gU7XBOYfdWPO92eiLSfFZtInGnA1+Bt8ahs6dmsYJBs/wE2pYX2VbOlDSO2wEfRwT1k5QyPeH+BJQ9RQgq5Z17fYhmPLQ57oD6i/QYDQT56+hekj5pN7tzTOtTGni2rqHjxdiZTg3NK01lMh7O7Q5tGV5cXk5ye3aH+whEMBFn38YvUl+6j37i5HFz3ARRuIMZbjmVsxPhrSPSXYrcCDAruZ4Cx2JP1EUPGTOmymLpCZUU5eTs2MnnGcdEORUQiQEmgKHImhza0q+whSaCa6gpKHz6P6YHtLFueCkoCifRIKQWL2OEczZijZvykZA5os66V0I/4Ig+1VeXEJ7V8skprfH4/vhduwm6CZF//BMbu7FA7ItI5NncaAKUFe5vdB0x6vvKSg6SZekgbBoA7ewRsgtJ9WyOeBCop2MvEumUsH/Al5rayhNdri8Pu73wSqKKkgH3rPsAK+Knb9BYnlb9Cwa4M6nLX4I5PbFdbNVVluJ+9iBSrgUXDv8G8k1pPAjkT0wGoq+q6mUD19fXs+u0JTAluDV3YAMOAMpKotKVgs4J4bS4qYgcQNA4OuOcyt+R5Cta/36uSQJ76Ovb/5Wwm+LZQPGANmQOi/zuLiHSOkkBRFJfaH4C6sq5b+x2uyrJiDvz1XEb5d7Lfls2AyjXRDklEmmEFgwz17WRtv4s6VN+RHPq+U1a4r8NJoGX/+hnzA+tZP/1nTOqnXzxFoiVj/Amw+RfsW/WmkkC9VNGezaQBcdmh8UvuH0r81BbnRbyvHe8+yhwTZMCJX261nM8Wh7OTp86tX/g/xrx7PZPM58vaVsUvYFrtxyx+7pfMu/4X7WvvqbuYbVWw4/yXmD/txDbLuxJCCVJvVUm7+mmPwrxNTAhuZcmAa8ie/yUKtiyl//j5DB03nbRmylvBIGX3voVtX+dn43YXKxhk7d+uY7Z/ExjYveQlMi+6NdphiUgnaU+gKEpID71r76mI3HHNHeGpq6HkL6cxwredtXP+wL4RXyTHOkjJgZ57MoRIX1VdXUGcaYDE1pd9tcSVNhCAquKObfq5a9MyZu78M6vd85h0zi0dakNEImPY+JmUkILZ+WG0Q4koT30dC//1S6qrjv3DM6oPhI6HT80ZA4A7KZQ+CHiqItqPFQySveu/bHWMaXMWis/uJibY8ZlAgUAA9wc/osSWwfrTn2HTOS+z4ewXmfqd/7HGPY/Jef+gvjb8k7u2rfqYmYXPsTztHEaHkQACiEsOzZT11nbdKbx1FaFDFhLGnsKwCbOZe/E3GTpueovljc1GnjuXAVVruiymSPv0qXuYXfUWSwd9hULScex4J9ohiUgEKAkURSmZoV/GAtXR3Xxv9ZN3MSK4m43H/5npZ11H2vgTAdi75r2oxiUiTVUWhY4OdiR1bI+DpIzQ5qOesv3trltfW431nxupNvEMufYRMKZDMYhIZNjsdnYnzmBY9fIu20g4Glb9/Rscv+1XbH7/mWiH0uX8xTsJWIbswY1JoITQZseWpyai/eTv2siw4B4qRrU9izTgiCMm6OlwX6tefZgRwTwOTr+dSfPOZvyME5g462SMzUYw93LijYf9O9aG1VZJwV6SX76WYpPO2C/dF3YM8Y3LpQO1nU8kWsEgGxa/TmVZ8RHXPY1LzVzJLR/GcLSGgbMYaBVSciCv03F1teUvP8icnfezMuEEZl3/G/akzWd07QoavB3/t9Hd9u/awuL7r2XpHy7HCgajHY5Ij6EkUBQlJKbgsZxQU9x24S6yc90iZh54imUpZzH11C8CMGziXGqtWHy7F0UtLhFpXnXpQQBiUzo2EyglO7SW31fZvmWonroadvzpXIYG8shf8FvSsnM61L+IRNiIk0inkt2blkc7kohY/urfmVf6HwAChZujHE3Xiy3fygFbf2JccQDEuRMJWgYaIpsEKtsbei2Th7U8U+UzQYcbl9WxmUB+XwP91/yRnfbhTD3rhib304ZMAqBiz4ZW2/F66vj0378m8OCJJFq11F78JMltHHxwuOS0bLyWk2DprvZ9AUepKC1m6R+vZOLbV7L5uSMPQfDXhJaaJaRmhd1e6tgTANi79oNOxdURG5e9y/LfnMve7evaLPvps79i5qrvsTlmIuO//jTGZidm3FkkmHq2LXurG6LtvLXv/Zv0J45jXtlLzK5885j5HikSCUoCRZGx2agwydjru269cmv8DV743y1UmCTGXPPnQ9edMbHsih1PZumKqMQlIi2rLw8lgeIbl3W1V1JKWij5XB3+MtQlz/+O0t9OY4J3DSum/IzJJ1/eob5FJPKGzAwd4pD0whWs+tXpBPz+KEfUcQv/fgfTl3+XLY6x7DMDcFXuiHZIXS6jbicl7s83gDY2G3W4oKE2ov3UF4WSIRmDRrdZNuCMJ46OzfZY8/YT5FgFVM36Nja7vcn9AcMn4Lds+Iu2NFvfCgZZ9r+/Uv6rSczd/AtKHVnsOfspRk6a2644nDGx7IwZS3pJ+36W3bHuUxY9+xs+eeQ2Vv/yNOLuH8esyreoseJwVxwZc6A2NBMoKS38JNCwiXOpt2JoyOu+fYHyNq9g6e8uYdxrlzCz7mP2f/R4m3VGbHmITc6JjPzOW8Q1buI9as4XCFqG6u2fdHHEnbfy9UcZ9/HX2ecYzM6LXidgGQo/PfZnFoqEK6yNoY0xZwJ/AuzA3y3L+lUzZU4E/gg4gRLLsk6IWJTHsCp7GrHerju5oDXLn7mXuYFdrJpzP9PSMo+4V5MxmXH7/4mvwYMzxhWV+ESkKX9lKHmTlNH2SWDNMTYbpbY0UkpWU7x/N5kDh7Va/uCerczZeC/b7CNZc9xPmX2KEkAiPUnWwGEsHnwT8YXLmeZZytqPX+hwotYKBln55j/xFG3HmTKAWed9HWPrnvcL83du4vj8h1iZeAITbn6aTQ98kYy6YzsJ5KmrYWDwIAfSzj7iep2Jw+aL7EwgyvPwWE7Sswe1WdRyuomzPFjBYLvG3woGSV35AHtMDpNPvarZMjGxLvba+hFTvrPJvcL8nRx86iZmeZax1T6KouN/w6QFF3b432Bl9kxm7nucmqpyEsI8CMH50leYH8wnaBn22QayMvN8+p/wZUre/SNDKo+aSVJfRoPlIM6dFHZMMbGx7LIPwFXd+X03fb4Glj59L86SzQRjkxhx4d1k5QzHCgY4uGcbeZ88S0beq4wO7CDLimVJvyvpX/wJiUUrW23XCgZJsarYmXkOsa74Q9fjE5OpNG5sddF58zpcy//7J6at/TFbnePIueVVklLSWf/aFHIOvNXuf9Mix6o2k0DGGDvwAHAakA8sN8a8bFnWpsPKpAB/Bc60LGuvMSb8lHgfV+PKJqd2Iw1eDzGx3ZdsWfXG48zc9VdWJhzP9DOvbXLfkT0Wx4Ege3ZtZsjYqd0Wl0ikFOzbie0fp1J+3hOMmbYg2uFETLCmiIBlSM3o3+E28gZfypy8B/A9PJOt5z7HmBknt1i2cNsK+gPBs37DtBmndLhPEek68274NQ1eD2W/HEVgxRPQziSQZVlsW/UR3rfuYUbD6kPXN2QOZuL8cyMdbrPK9m0mB4g77mZc7kS8qSMZWLMQr6eO2FaOM+/N9m1bwyhjETNg4hHXPcaF3d+507mOFlO9j0J7P4aE8QuwiYnHbiw8njpc7oSw+1jx8t+YGdzNssk/Y0gzs4A+Uxo3lLT63UdcW/XmPxn16R2MIcDi0bcz+/I7sTs6d4hxwugFOPIfZffqD5h0QngnaiYFK1mWcjaTb/o7Q1zxfHYYesGaN8mqfIvKsmKSG984tXvKqTBJZLUzqVDpGkCKp/378gEU7N3Grk+ex6o8QFrpCo7zb+EAWaRVl+N75A122vvRP3CAAcbLAGCbfSSLhn+b8Wd9jXmZ/Vn6lxuYWPwqfl8DDmdMs33U1lSSYPwYd3qTe9UmCYe3okOxd4cl//oZc7b9lrWu6Yz6xouH9tiqH3Uekzb8hB0bljAyd16UoxSJvnC+a80CdliWtcuyrAbgWeD8o8p8EfivZVl7ASzLKopsmMcux8zryaKM1S//pdv63LjoNSYtuY3tzjGM+dqTzZZJGRL6gaRsz/pui0skkvYuf40syijfcGydZGGrLabcJHfqh+P51/+cgmsXUW5SSHzta1SWt/yuXn1+aO+AQaOndbg/Eel6MbEutvU7l9zaT9t9uueKP1zKmFfOZ5h3C5+O+wGVt+6gmFT46DddFG1T9UWhpEB6zkgAnNljsRuLg7s2dlsM3a0ibw0AGSOOfLPNa3Pj8Ed2OViyZz8VseHNIDUxocSPpzb8E8oK9mxl3OqfstE5gennfr3Vsp7kkQwIHMDvawBg1dtPMenTb3HAOYiyaz9k3lU/7HQCCGD41JPwWzZqtn0cVnkrGCTRqiUQn33EDBgA98DQXkYHtq86dM3praDGFv4soM94EwaRHSgIa6NiKxhk16ZlLPrHHWz/6TT6PTqTedt+w4yCf5PlP8jy6b9lwD3bKb32I7bGz6TamcHqzPNZPPYH7L1qIaPvXsn8a+4hNTP0xpF96FzijZe8jUtb7LOqNHRgjS2+aRKo1p5ETENFu7/mrnRg92a2/XQ6DT9OY86237LSfRxjvvXqoQQQwPDjLgWgZP270QpTpEcJJwk0ENh32Of5jdcONxpINcZ8aIxZaYy5JlIBHusmLbiQLY6xDNn4t27Zbb++tpqUd79NgS2bnG+83uL02P4jQg8778Hm12yL9Hh7PwXAXro1yoFEVoy3hCpbSqfbGTh8AlXnPERmsJTNT3235f5Kt7DfZBMf5lR6EYmegafchMME2f7Ow+2qN6xqOWtdM+G2Tcy9/A6SUzPZOforTGxYx8ZP3+iiaI8ULM+jwbKT2W8oACmNGwiXtbGBcG8WOLgBj+Vk4PAjZwI12ONwBiI3E8gKBskKFOCJD29Df1tsKAlUXxf+Me77/ns3BouULz7WZgLHkT2GGBPg4O5NLHv5ISYu+ia7nSMY+M23GDh8Qth9tiU+MYWdzpEkFYW3IXBtTSUOE8TEJTe5lzViMgDVez/fVDnWV0m9o/1JIFKH4DZeyotbP6Bh5ZtPsP+n4xj+3GnM3fswfuPkk2HfZO9VC4n9SQnp9+xl5rk3AqFn+ow7XmHKXe8y/5ZHmHfFHQweldukzZzJJwFQurnlxFhNeSgJFJOU2eSex5lMnL8y7C+1q+3ftZG4J04jO3CQZdlX8MnoO8j99ou44o6cPZieNZAaKw4q9kYpUpGeJZwkUHNnAFtHfe4ApgNfAM4A7jbGNNl5zhhzozFmhTFmRXFx9E7E6kmMzUbD8d+jHyWs+OedXd7fmifvZKBVSNVpvyMxOa3FcgmJKRSSjqNsW5fHJNIV+lWGjp9NqWm670BvFt9QSq2z5f+77TFmximsST6ZcaVv4/U2fxJMRu0OiuNGRKQ/Eelag0blsjFmEoPy/hP2kfEBv59Uq5K6jElH/Fww5YJvUWW5qV32VFeFe4SY6n0U2bKwNSYQBoyYRNAyNBw8dk8Ic1duY59jcJOkic8eT0ygY6dzNaeyrIhEU4+VOjSs8vbGWTDedswEctcXsCdmJAOHjWmzbNKgUKKn7L/fZdaqO9geM45+t7xBQlJknm2HK0+bwrCG7WHNuqmpCM2KtcU1fdOj36CR1FhxWIWHdsPAHajE60xpd0yuzNAztXhf6z9jx65+lFjLy6fjf0jZTWsZ98OlHHftT5tN7oSr36CRFJCBY/+yFsvUV4Z+R3MlN00CNcSkEB8I/99FV9v3ybOkUk355a9w3M1/5bgv/gBnM8vcjM1GkT2b2Nr8KEQp0vOEkwTKBw7fRS4HODp1nQ+8aVlWrWVZJcDHwOSjG7Is62HLsmZYljUjM7PpN5a+KveEi1iacjZz8h9n/cKXu7SvoQVvsdo9jwnzzm6zbFHsEJJr87o0HpGuUFq0n8HW/tA7rP59Yf8y1Bsk+svxxjadot1RMVMuI5laNi18qck9T30tOcH9eNLGRaw/Eela9RO/RI5VwKZPXwurfHnJQezGwpaYfcR1lzuB3e6JZFeu6YIom0qsP0B5zOd7nbnjEzloy8JZvr1b+u9qS5/9NWX35LD4z19m34711FSVMcCzk4qEkU3KBhxuXMHIzQT6LNkQmzm8jZIhDlfoNChvXfi/7McEamlwxLddEOg/MvQrwmTPcpYlnsaI294mKSUj7L7aw6QNx228lBa1/ct/bWUZAI74lKbt2GzkO4eSWPX5v8eEYDW+2KZl25IyMDTm1YWtv0mV7t3PnqTpzL3sdjL6D2m1bHvsjx9Pdm3Ls6QbqkJJoISUplu8BmJTSbLCnyHW1ZzF6zlIJkPHTW+zbKWrP8meg90QlUjPF04SaDkwyhgzzBgTA1wBHJ2p+B9wvDHGYYxxA7OBY/etmy4w6SsPkm/rj/uDH3VZH1YwSJpVgTep9dOAPlOXNJwB/n1hvXsi0pPsWfMBAOtTT8FtvBzcc2zMaLOCQVKtCvzuyO29P/648yknkcDa55rcy9+2GruxiGncC0FEer6Jp11NJfF4ljwWVvnK4tAGtc7kfk3u1WfPZEgwn8rSgojG2JyMQAF1Ry1XKokdRFJd71++sfa9Z5mx+ZdUmyRmlLzIoKeOw/rdeDKowDbmzCblA854XFbkZgJVHQwlG5IHjAqrvCMutBzMXx/+CWWuYB2BMJNASclpfDL4JpZM/TUzb3seV1x49TrClRVKuJTsbXtpuKc6dFpvTELzM5IqE0fSvyEPCD2Pk61qgq72L5XOGhQaB3/x7hbLeOrryLZK8CWH9zN7e/gSBpIRLGnx53t/TWhGVGJ60+8JVlwq8cZDgydy/z47I7NmKwXuJotPmuWNzyErUKjfa0QIIwlkWZYfuAV4i1Bi5znLsjYaY24yxtzUWGYz8CawDlhG6Bj5Y3cRdxdwJyRzYPSXGBHcTd6WVW1X6ICqyjJijQ+OerevRRljiDceig60/JCKpMqyYhb/8WpKCltfIy3SFu+uRaFjW2deDUDJrjXRDShCqqvKcRkfJERuJqUzJpZtaacwvmoRhXuPfMe9fPcaoOmmpSLSc7ni4tmceTa51R+FtUF0bWkoCeRObbppcNKY4wHI+//27js+sqp8/PjnTM3MJJn0vpvN9t77skiVLiAqVRFERAUsX9sXLGCF708RURQRBEEQGyAgTZC6vbC9l+ym90mbTD+/P2Z22WwmySSZJJPs83699rXJvefe+0zObu7Mc895zgdvxTfIk2NodZFBCyFn5+XLPUk5OIONg3rtwXZw2yomvns7B00TyP6fNbR8cQuri25id8py9nzsBRZceGOXY4LmZOxxTAL56g8BkDM2tg/LFlt4JJDfE3sSyKbdBMyxryR22o33svTSW1AqWtWJ+EkrDCdc2qoP9NrW2xb+t5aUEj0JFMoYTzqttLU00trqwqyCKHvfp7DZk5004MTQ3P3/z5ojezAojTm760ixAXMWkaT8uCIFoLtwNxDQBlKjlI04Viy6pbGbY4dQa3MjRaEqPNkxPqhKG0uy6qClSUqSCBHTmoZa65e11pO11hO01j+JbHtIa/3QCW3+n9Z6utZ6ptb6/kGKd1SbeOanCWpF1fuDM//eFRkKa0rtmtmPxlEUngJSe2ho8nmlW95kuesF9j1/z5BcT4xetuaDlJnGMGbGMgA6KkbH6jLNdeH/w8ZYE7kxyjvvawQw4nnsMprqPhwqHSpdTYe2xLVQpxBi8I05/6uYCLH/37/sta3HFR7lk5LVNQk0fs5KfNpIx6HVcY/xRLVl4QS0OavzqIegI5cM7SIUCAzq9QfLwa2rSH72OtpUMmk3Pos92UlW3liW3/QLFn/jWabO/0j0Ay0O7Mobt6nMxqZDNJHS7WIgJ7M6wkmgoCf2aT923YG2pPQrvsGUO3YSIa3w1/f+QDPQ3gSAPTX61DRzejhJ2VBxiNaG8ELI0VbQikW9KQ+7u/spak3l4ZFLKQWxJe76wpIRHnHXWHUo6n6Dp5FmlYIyGLvsMyWHX29r0/AvBF22ewMGpbGPje1BlSXy+6WufHRMMRViIGJKAomhkZU3ll3WORRVvDwoQxVb68M3m6T0/F5ahhVMmh9eWnPn0KwM4m8L33xnVP6DtlbXkFxTjE6p3hpaLbk40zLDBc4bRscqd60N4QRNUnpsidxYFU+ZS/n5fyQvVEPowSWse/YBGmrKmdP0OtsyzsNoMsf1ekKIwVU4YSZbHMuZVvF3Ko/sw9PD1I1QSzgJlJbTdeWoJHsyh80TSavdMKhTKFoqw6M0UnI7F6E3pORiUiGaGkZWHY+muirW3fdJJjx3IRb8tF7xFDmFsdd0UZHVudx9KMzckwLXJo7YpsfcPskeXh0rGONIoIDfh1150dbESwIl2RzUqQxMPYy6OSbodgHgSIue2HHkjAOgufow7a5wEsSS0r9aRq22ItJ93f+79tSEp7Hnjou932LlyA7/W2ytjT7V0uxpotUQfdUza+T1HisePZyaD20CoHDa0pjap+aFa2K1Vo+uBUOE6A9JAiWYjimXM0ZXsX/Le3E/t6cpfLNJySqMqX1GTiEfpJ7J7OrnaO5uyGgcHXsC41Tt7HjxN4N+PTF6ZYTq8drDiZJa61hS3b2/+RsJOhrD/4cdGbH9H+6L6csu4Ojlz1FjKmTJtu/R/PuLSFJ+8s7vfvl4IUTiSjr9dtJoo+CxRZT9vxXdN2yvxa2tOFLSou5uylrI1MBuXD8cy6o/fXdQCu13RGqjZI3pPOrBkhZ+aOWqGRkr+ng62lnz9I/RDy5iXvObrMr7NIbbtzBx1rI+nUdZwkkgT9vAl+KuOLSbIl2FZ2w3o46iODYSKORrj6l9e2s4zmPJq0TTYM7H0cOom+M8LkJakdLNKmXp+eGRJJ6Go3iaw0mgpG5GDfXGnzqGnFA9za6GqPtV4yGacZCWFd+HPgAZ+eFkiLcxehLI6nfhNjqj7rNFVgzztgx/EshYs5UGnDEXzc6O/H7x1pcOYlRCjAySBEowU868Fp820rj2qbif298cftqXnj2ml5Yfyjr/2ziUh13/+kXc4zmZ7ggngQ4ZxpFS+uqgX0+MTu72FtJoQ6eEEyU+Szq2YOx1DRKZ3xV+ExvtiX08TJq7kinfeY+1zgsZHyrlA9syiqfMHZRrCSEG1/Sl57N52YOsT/0ok4IHqT4afQqEyV1Po6H7aULTrvoRa6Z/jyNJ01hx+NeU/3gmu368lFWPf5eWbj7A9pWq24NbW8nI7jwlzRZJeLc3JH4S6MjuTdT+3yKW7ft/VJhLqPjUK6y45Tc4M/qeJDBGVufqaB94Eqhs40sAFCy4KOZj7JEkEN7YkkDu1nAtHWNS9NEjw63dMYYsf+/1JpWnmTZlw2DsOg0KwiP2A9pAyFWGrzVcPNme1r8afdkLr0Ch2f+HG6KOsrO3HaXGGP8HPhB+yOvXRkKuiqj77YFmvJa0qPsc6eGFKfxt8fm/31+hYIj8lq1UJE2GGOtKpaZl0qptKNfILzYvxEBJEijBODOy2WlfzPja/xCM9xz4thp82khKeuxvSEpmLGFr0iLGH/37oFfTV55m2rSN+tTp5PgS/w2fSEz1kULmxvRwoiRgScWhR0cSSDUcoAUH6VmxTensD6PJxKLb/8zqGXeRe9WvB+06QojBN/+868g+/1sAHN0UfWp3kreeVlP3xW2daZks+9Q3mPOt11g7824aLYUYdZAVpb9G/XIGq373pU4FqHUoxJpn7qH6rgns/dEiPrjn3ON/Vj/5Azzuzr+P6ytLmd3wCjudp6MMnd+WpmaFH1p5mxJ7wYgNLz1C1jMX4NBtbDn9EWbe8S4lM5b0+3zGSGFmTxymg1lL36KKbMZMnB3zMWazBY82gz+2e+exOI22xEwCBZzF5NCIp6PnpJbR10yb6n40k8lsCU8ta60k0B5OgqSk969G38R5p7Nxwq0sbH+HVb+/jYDf32l/pq+cFnvsD237wmgyUa8yMLdF/3+VEmrGb42eGHZmhF9vqH14k0Db33uOMboK//QrYj5GGQzUGXOxtslnDCFMwx2A6Co48wpyNnyDneteY8aK2J/c9MborqNRpZNn6FvuzzvxQnJ33M2RfVsonjo/bvGczOh10aYcBNPHk+16mbaWppiLGApxTEt1KQD2rLEAhKypJGs3OhTq8gFjpHG0lVJlKiR1kF+H0Whk+Se/NqjXEEIMjXFTF1BPGoZDbwO3d9mfHGigyTau1/Mog4Gln/gq8FUA9m95j+b//Jyl1U8T/P1fWZN5Eflnf5naV+5lWdub7DJNJ2Cw4PA3ogGL9jHv4P147n2QFmUBoFGl02bOYgpBCi77YZdrZuaHPwQHWwZ/ifr+CAWDrPn9bayofYrd5mlk3fgMcwvGDfi85kgSyOeOvTBzNC3NjUxs38zuzHPI7+N9o0MlofyxrVDmbXMBYLZHn0I03MyZJXAEao7u73F0q9nXSoeh5yltLnMOto4qWtxjCGlFanr/V+tcct1drPtNKafV/Jmt/28XY256ioycArweN7mhOo6kxX95+GOazDnYPF1LPehQCKduJZgUPTFsc6SEE4SR0ftDoam+mrIdq+loqiQ1bzxjpy9Fr32IetKY9dHP9ulczUn55HYcxONuI8memNMXhRgKkgRKQNM/8ina19+Je/3jEMckUJK3nhZTBn2dXVy04ELYcTdVH7w6qEkgs7+FdkMKSXmT4TBUH97JxDmnDdr1xOjkri8DwJk7LrwhKQ2LCuDxuEf8DT/LW055qizXLoSInTIYOJy6iAkt69ChYJcVf9JCTdTYFvX5vJPmroS5K6k4tJOjL93LwoaXMP/9XxRoI2vG3sySz97TZVrNjlX/xvXBv1A6XFco27WFmb4trM26nKXjuxbATbI5aMGBakucJFDA72P93+7FUrEeS6CFFb4trM28nAVfeAizJSku17BEkin+jv6PBGptbqTi1xcyER+pSz/T5+M9JGHwxzYdzBeZtmZxJOZIoOT88DLrrop9PSaBLIEWPMaei1u3J+WT37aDtrYaWpSDNFP/P0opg5Eltz/Jun/cx9ztP6Xptys5cuXfcFUdZI7SWPLjXxT6mI6kXHLbdnXZ3trSRKoKYrB3PzqwWaVi9Ax+Emj/lvdofe0nzHKvZ7aK1CLbCsFXFXOVZu3Ym1maZOvTOUOzriRv7dfYdf8FFH/5X6Q4u3+dQoxmkgRKQPZkJ2vyPs6ymr+wd+ObTFl4dlzO6/A10JrU9wJzBSVTKVd5WMviX6z6RBZ/Cx5TKmljpsMacJXvBkkCiT4KusJJoKzI01iDLfxmus3VMKKTQO62ZvKo53D6hN4bCyHECUIlZ5Cx9T+seeAzWGd+jPnnXAmA19tBGm2EHDn9Pnfh+BkU3v4ER/ZuoWzVM4xdeQ3LJkWfejRzxUWdHm7pUIjdG//L3B4KJzca0rF0DH8RWoBgIMC+/zuT5f4dVJFFEl5WT/g6y679XlxHmlrt4UREoA9LtJ+orbWZo7+5mCn+vWxfeh/zFn+0z+fwGGyYAu6Y2vo7wkkgqyOtz9cZCnklswhpRcfhdcCnum1nC7bhsvU8BcufnE92yzso1zpKbTOZG4f4lnzi6+yfuIj056+j4++fxaHMVKocZp19bRzOHp3PkU92y3tdRkm3NlaTChiSuy8d0WZIxexzDVpsXo+bzX+4lSX1z9KsklmfexVpcy4gOWsMjeX7aTvwPraWQ0y55Ot9PveCC25gg9/LvE3/S/mvTqflur9SOH7GILwKIRKbJIES1Kxrf0bNfa9h+/dtvL/pXPJXXMOEmf2fXw6QFmqkIWlmv46tSF/CjIbXCfi8mCzWAcXRHVuwlSZbMRPGTSOkFf6a6EUsB6K1pYmd7zzLkotuGPFTg0R0hrYqmkghPZLwMdrTAGhvaSCrIPYlehNN1eHdTAAsuZN7bSuEECcav/wySrf9lvlNr9Hx/tt4VlxCks1OU20leYAxpX91TU5UPGVunwvJK4OBaYvP6bFNmykLm294648cU310L9P9O1gz5maW3nAvymBg+SBcJyk5/PAi1NH3JFB7WwuHH7iY6b5dbF3yc+ZfcEO/YvAbkjAGY5sOFoyMWEpKTuvXtQZbWlYuO6yzyKt4FR36f92+/3OEWqk39zylTTnHYKkKUKBrKSu5OW4xTpq7kq2u+5jz9o0ArJ/9Ywqs8RlZFo1yFmKt9tNYX0VGzocFqNuawqueWVO7n+bWYXKS5B940fIThYJB1vzjPuyHXiXLV8kyXcma7E8w47r/Y0Va5vF2xVPmwtmfHNC1Fn3sFnak51P05pfwPnEJLbetJTWz/4lwIUYi+RScoJJT06k+/R6cIRfLK/+E518Dq8/h9/tI1y2E7P37JWeadCbJqoPD9y7j7T/dPaBYupMcaiVgSSXJnkyNysLsOtjrMfUNDWzd8B4ej6fXtjoUYu9D17F009fZt+X9eIQsElCSu4pG44dvXiyRJFBHZPWSkcpVthuAtKJpwxyJEGKkyc4tYtwPdrHvrN+TRhs73/4rAK314dWBLM74L0MdL56kLFIDiZEEaqo6BEDKlJWD+iApyRFJAnn7lgRyu9vY/8DHmOHbztaF9zD/wpv6HYPPYMccjG0kUCgyYsmekrh1HNsnXsK4UDmluzd228ah2wlae57SlpQ59vjXxUsvi1d4AMw54wpWFd7IdvNs5l/yhbie+2SWjPDraKwq7bTd09x7EshrcWIPxicJtP6537D3x4uo+PEMVuz+Mem+alymLDYt+TXLbn2U1BMSQPE0c+Wl1H7sL6RrFwcejb5CmxCjmSSBEtics67EeXcl6yfezgz/Tkr3bO73uVx1VRiURqX2743elNMuZ53jLIw6wMpDv+Twru5vov2VotsIWdMAqLeOIbU9+hKONRWHWHvflZTdNYWsX49nzr8vZvM/f97r+df8+S4WusPJn5aj2+IWt0gsKd5aWq0fPtW2RN6UetuGrojhYPDX7AEgX4YtCyH6afqKS6klA+PWpwForS0FwJE1OEtRx4PfnkNGqDEhPqR11IVXQUvLGz+o13EkhxMROsYl2o/Z+twvmev7gC3zf8z8S24ZUAx+kw1LKLaRQDqSrHIkJ2ZhaIAJH7mGoFZUr/lL1P0+rxeH8kJSz68hOVJv8JChmLyxk+IdJis+/0tm3fkeJrMl7uc+UVpheFRx3ZZ/d9rurgqPws/M774odcCajjPkIhQM9v3CWrNr3Wu899BtrPvFFSzeeiemkI96yxjWz/kJxd/bzqw732PBBX2vY9VXk+efzsaJtzHf/T7rng4Xpq84tIv1932SDT+/jE2vP5UQv3eEGAwyHWwEmPTRm/H99jdU//chxk19+Pj2/dvWUjB++vE3Cz1prisnG7Ck9W9p6eSUNJZ88zlc9dW4fz2X5pe+C9NeAaX6db6TeTraSVJ+tC0NAHfKOIrrX+Po/u0cfetR0uvWo3T4F/EYfylzCbAzeSkV2ZczofQZrFXrezz/6ifvZvmhX7HZvpKZ7asJ1OyNS9wi8WSG6qizf1jA3JYSforkbx/ZSSCj6xA1ZJKbwG+yhRCJzWgycbDgEhZXPEF95RF8B96lQ1sYO63vhaGHikrOI0n5aW5uxJnefZ2SY47s3UL5e38mtWQBExedhy01foVfA02RmnOFg7dqE4SXIu/QFpQvtiXaj1Guo7RpG/MvvXXAMQSNdqyh3kdZAyhvK25txT6AIsmDLSu3iO3WOYypeAUd+kWXkVwtrnqyAEPkfWh3sosmEtSKmrwzGNxU4OAqmb6IzfYVzDv0MOUHrqZo4iwALJXrqCKb/B7+jauxy3A2PM+qP36TFZ+/L6brudua+eBvPyO34jWmBw8R0Ab8mFibdTkLvvB7zINUaqI3S6/5Pht/sZnF++9n8z2rmdmxiTSMeJWFjNVv8cHmxxlzw2Nk5RYNS3xCDBYZCTQCZOYWsS1lJXNrnmXvjxaw4aVH2LnmFSY9ex6Hf3UhXk/vw3XbG8oBsPUzCXRMWlYeO0puYK57Ddydxrr7PhWXLHlrUz0ABlt41IbOnEgq7RT9eSXLKh7HqIMEDEkEDEnsTl1Ow/XvsOCbL7H0s/dQljyb/Pbd3Z57/5b3WX7wPjY5VjLzK/+g0lhAUnP86w2J4edua8ZJO6GUD/+dOyIrPwTdrmGKKj6cbaXUWXouWCmEEL0pOvNzGJXmwJuPkl+/hv22OViT7MMdVrdMkalqrproo4NPVv36fawo/wOz3rsF8y8msPsny3j/kW+w6umfsvk/TxHwefsdi7G1ggacJNkc/T5HrMJLtPdtJJDJ20iLIT4rdIXMdpJ0bCOBDL5W2lXi/hs6xjP9kxTpKvZueKPLPndL+H2o0dHzlDZnRg67znmSmVfeNRghDhllMFB07W/xYab5b19Eh4LoUIji9m1UpM7p8dhFl9zMhrQLWFHxKKtfeDSm6+1448+sOPo7gphYPeU7+L95BNvddSy97fFhSwABGIxGpn/pz+w3TaTEs4vNWR/DffM6Uu88xNrJ32J6xwcc+dPARtUJkYgSN2UvOsm44E62//tHZHsOM3fDt2hUTppIYaZ/O7t/fiYuxwQKLvwmxVOiLx/dERnynVU0ccCxzLvye7z9jxTstZtZ0vIaG156mEUfG9gvyPbmOrIBU+Tmmz/3PA7vf4aq/LOZfOFXmNrDEwl/7hwKDr5DY20lGTkFXfa3RIa2Zlz4PSzWJBptJWS7DwwoXpGYKg9uZyJgyfrw+VyyMzwSSHe4hieoOPjg9SeZF9zH6qIvDncoQogRbsykOew2TWP8wSfJoZG1Y64c7pB6lFo4BTZBxftPUTx1fu/tW/azxzSNjtO/S8uu18mrW8Vp5X8I79wH9avu4FDyQnzOYrQyYXBkMG7JxyiMskT9ycI153IYnColnXUoG0Z/30YCWXwu2ozxGS0aMjmw6dhGAhkC7XSMgCTQ9LOvo/2DH9Ky9nFY0nnFNHdLuG6guZckEMCslZcMRnhDLqdwHOtmfZMlO+5m3T/vp2jB+RTi4mDR0h6PUwYDc7/4R/b9/CwWbPo2O7IKmLn8gh6PCTYcIqgVJd96jymDWPC6P+zJTib+71oAlp4wmm3pNXey9qEKFlb9hbrKI2SP4MVFhDiZjAQaIcbPWMyib71Ixu3vUG4sJJdGys/+LWsmf5vkYDOzXW9g+8vHqSztZppT4yE6tIXMvLHR9/dBks3OGZ++gwVfeYbdpmlM3vxDyvYPrMZOR0u46KMlOTxqo3jaQkq+v53ln7+/12HXyePDq6aV71wddX+gLXxjd6SFi2J70ydSEKrC54ntCZcYORr3rQEgb9ppx7cl2Rx4tRndz6V2h1td5RFKVn+HfcaJLLzmruEORwgxCrRM/RQ5hO+NufMuHOZoejZp7umsTz2PpWWPsuqJ77Pp1Se7HYGsQyEKfaU0p01j3ukX85FbHmDK9zbR/vVSmr68m80rfsdh+2xK2jZxWsWjrCz/PSv2/gz7Ex/l6L4tvcbi9FXTmjQ0RbS9KvYl2o+x+V14TPFJAmmLHRvemEZ7m/1teIyDPzpqoBwpaexMO5Ppjf/F3da5sLE3sniEJXkoUnyJY/HHv8oOyxym7/h/lL0ZLjmRM/OMXo8zW+3kffFf1BhyyH79y73WBzK1HKVOZWJJsATQMUaTCWOU6YxF53wRkwpx4LXfDUNUQgweSQKNMKlpmSR/4RW2nv0ks1Z+jGXX3MGYH+yh9lMvkaS9+P708S43NgBr6xGqjflxXc3CaDLhuPJhghhxPHURB7et6ve5jt18k1J7n+9/srEzlxPSCnfphqj7Q+7wuVPTwysdmHOnYlSaysM7+xmtSFSqYjNNpFAwrvMy6q3KgcEX3+VMh8rBZ+/CrjtIuvLRhH3zJIQYWaaecz0d2kItGYyLYXTNcFIGAzM+/wdKjWNZcehXLFh7K1v+8+eobWvKD5Kq3JDTeVSPIzWd9OwC5p97DYu+9SLZd5XCXc0E76zj8CdeQ6MwP/0J2lq6rx2nQyGygvX4HF1HHA8Gr9GOKcbVuY5JDjbjtcapBpIlGYPSeDp6n5JmCbbjMyb+SCCA5KWfJVl1sOM/f+q03dtYCUBq5sDKJow0ymAg/aqH8CszSysepxkHxVNi+52QmpFLzdxbyaWh188ADncljeaR97MtmjiLHZa5jDvyj/4VwhYiQUkSaATKzi1izsqPddpWMmMxZef8jrGhCrY9+uUux6R7y3Elxb+o2dhJs2m75kV8WMj+5yfYte61fp3HHxmtY3f2/QlMijODMkMhSXVbo+5XHU14tJkkezIAaWNnAtBYur1fsYrEldWyg6O2aV2SnW5lx+RrGaao+q++8gjz6l5kS8YFjJ08d7jDEUKMEs60TDZPup0D0780qEudx4sjxUnRt9dTef06ylU+KevvjzpCpeZAeBXV1OLZMZ3XaLZQMnMpZR/5BfnUcWBD9+9hWlz1OJQHnEOzkprf6MDSxySQU7cQTIpPEsiYHH4oV1u2r9e21qAbvynxRwIBTFtyHocNxWRu/2Onf0PBhsMEtSJnzIRhjG54FI6fjutTz1KPk33JSzAYjTEfO3H55YS0on7zCz22y/RX0W4fmgRqvLknXUw+ddSUSykJMXok/p1fxGzGyktZV3AdS5teZNtb/zi+PRQMkh+sxpsy8Klg0YydPBdufBWXIY3xL1/Lqj99l4Df16dzBCOjdZKdfR8JBFCXPJV8d/Q3KgavixaVcvz7gomzCGmFr3pPv64lElNbSxPFwTLc2XO77PMYkzH7R950sP3/+hkmAhRdcudwhyKEGGVWXPc9ln/qm8MdRsws1iQKSqZSOeuLTAweZO2f72L/1jWd2rjLdwBQMHlBn849efEF+LWRjkNrum1TV3EQAGvG4LyXOlmHPZ9C/9EeRyd1at/eil15wR6fJNCYBecDULWx5w/3ALZQOwFTclyuO9iUwUDdjBuZEDrMrjWvHN9uajlCjSEbk+XUHHE7fvoibN/cxfRbnujTcenZ+eyzTCWr8q1u23i9HWTrRgKpQ/N/J95sOeHEYFPloWGORIj4kSTQKLPwhp9ToXKxvX/P8SccdVWlWJUflTl4Tzfyxk4i+Zb/sMu+iBWHf80HD1zdp+OPFe1N7sdIIAB/ch7p2hX1yaDZ10y74cMkkN2RSo3KxNR0sF/XEonpyPbVGJTGXrKkyz6PKQVrYGQlgY7u28KC6r+zKe08CmIoWCqEEKeCuRd9gQpyWXboV0x67nx2rH75+D5z/S5qyIxpKfkT2RwplJpKSKn7oNs2bTWlADhyB3d5+GOcy67HoTzsfO2PMbVvbqwBwODo38O0k+UXT+GgYRypR97sta2NDkLmkZEEAph9wU00kYJv1W+Ob0vpqKDRMjJHqsSLw5GMIzml94YncRWdxaTgAeoqS6Pury07iEFpTJkjs7CyMz+82Eh77eFhjkSI+IkpCaSUOl8ptVcpdUAp9Z0o+89QSjUrpbZE/nw//qGKWJgtSVTM+jKTgvvZ/tZfAag/Eh7xYs8b+MpgPcnILWL+t19hddFNLGp9g40vPhzzsQaPixbsUYuyxcSWgUUFo9ZDsvib6TB2XjK1xZSB1dfYv2udIBgIDPgcIj5a9r8PQPGs07rs85tSsAX7tsrKcNKhEC3/uA2PsjL+6p8PdzhCCJEwLNYk7Let4sDlL1NDJtY3v3e8Vkd620Gqk8b3coboGtLnUOLdQzDgj7rf23AEgIyC/p2/r6YsOItDhnFk7vlzTMWZ2yJJIHNqdtxiqM0/k8m+nbQ01HbbRodCOHQH2jpykkBJ9mT2FHyc2e1rqC4LT/HJClThdsS/bMKpIHfhZQAcXvNc1P2uyvDP2J4zMqfa5URWVg40HhnmSISIn16TQEopI/AgcAEwHbhaKRXtsfR7Wuu5kT8/jHOcog/mXXwLFSqX7Pe+x5HdG2mvjiyRXjRtSK6/+Pqfscc0lckbf0DZ/uh1ek5m9DbTpvr+9OH48Y7wCKKWpq5vVGyBVrzmzkkgjzkdm9/V5+sE/D62r3qJ9x+8hcM/nEXwRzns2/xOv2IW8XNw22pmH36UXeYZpGV1XbklYEnFrnsvbpkoNrzwW2b6trFnxtfJyhsz3OEIIURCSc/MZuKcFRyd9w0mBQ+w+cXfUn10P2OCR3Gn9++9jql4CQ7lpXTXxqj7dcNhvNpMRvbQ1ARSBgN1U69lYvAQezf9t9f2blf4/Y/NGb8kUPq8SzCpEPtWPdttG6/HjVkFwZLabZtEVHzul1BA6eu/o721mSxcBJ0jc6TKcBs3bSFVZGM++HrU/e7a8DSqzKLBfRg9WJLsyTTgxNhSPtyhCBE3sYwEWgwc0Fof0lr7gGeASwc3LDEQZouVlosexoyPzGcuxr7vOfzaSO6YoXl6ZTJbSL3uCQLKCE9fiau+utdjzD4XbkP/nyKZIgUM26MkgZJDLfgtnZdM9VkzSAm6Yjq33+dl48t/ZN3Pr6D9J+OY9Z9rWVz7d1pNmXhUEu1v3NPvuMXANdZWkvzstbSpZLJveDpqm5A1lZQRkgRy1dcwccs97DFNZeHHvzbc4QghRMJacPEX2GWazrQPfkzjk9cTwMS482/t17nyZ3wEgLrNL9LcWN9lf2bDRg5apvapaO5AzTj/87hIxvPmvb229bXWAWBPj98S9pPnnUGFyiX/g/tobqyL2uZYzSJl6/+DvOFQUDKVbbaFjC97lurIarGWrKF5nzzaKIOBI1krmdK+KepqcsHGIwS0geyCoZlKORjqTbnY3JXDHYYQcRNLEqgQKDvh+/LItpMtU0ptVUq9opSaEZfoRL9NW3gGoZvept6QyUzvFqoNuZjMliG7fsG4KdRe+Bg5oXqqf/cxmpt6nnqV7zmIy97/m0NSangkUEdL1zcpKbqNUFJ6p23BpAzSdEuvQ6x3r/8P9T+dzsL1X2Ny2zr2pJ7G5iW/wvc/B5h9x9vsLLqKee7VHNmzud+x94fP66H84PAvcf/Bf//Ong1vDNv1dSjEkcc+R7puofXyJ8kuGBe1nbI6sSp/TEvdDrc9f/46qbody2UPDOmHDSGEGGkMRiMZn30Kj7Iy3b+TrRO/SH7xlH6dq2DcZGrJYGnpgyT9airb333++L7mxlomBA7Skr8sTpHHJjk1nT0l1zPXs569m7ovvAvgbwknrlLTc+N2fYPRSNtFvyUnVE/Vby/m/d98nqMHdnRq424NJ4GMSSMrCQQQnH8DOTTS+N9fA5CSP2mYIxq57DMuwq687Fv7Spd9ltYyag3ZGE3mYYgsPtqS8nH6en+oLcRIEUsSSEXZpk/6fjNQrLWeA/waeD7qiZS6WSm1USm1sa4u+hMFET85ReNx3PwKB1UxVclDn5ebuvhc9q78FRMD+zn64MW4ukkE1ZQfJIdGAgXz+30te1oOAN7Whk7bPe42bMqHtqV1PsCRhVX5aY9SQ+hE7e/9DjsdfHDaQ6R+t5QlX/8b8y/4LMmp4aTSlI/9Dx3aQvXrv+x37P2x6dHbyXzijKg1kIaCDoVY9dgdzHv3JoyvfntYYgBY/+wvmdexmk2TbmfinBXdtlO28EiwtuaB14EaTLvWvsZS10tsyL+a8TO7FrgWQgjRWV7ReBo+9gSrc69l4ZV39Ps8ymCg+eNPs3bOT6kwFlDy5i0c2rYagIMbXsegNM4ZZ8cr7JjNvPybNJGC5z8/6bmhu4GQVqSkx286GMCUheewefb3yA5Usbzu71S+2rlOXXtj+IOxNTV+yaehMvvMT1JDBvObwomL7LH9SyAKmLz0AtzaSmDDY2x+61mCkTpdAMkdFTSZ4zdCbTj4kgvJCdXFVJ9LiJEgliRQOXBiUYoioNN4OK11i9a6LfL1y4BZKdVleQKt9cNa64Va64XZ2fG9SYnosvPHUvS/G5n3lWeG5fqzz7mWPct/zjT/bmp+81HWPvcg+7a836lNxY73AMiY0v2H+N44Im96gm2dk0CtrvCTMcNJS6YaksPtm3uZqmbz1lFpHse8c66OWrQ6I6eQPY5FFDZt6HfsfdXcUMOcmuexKR/l+7bE7byeDndMN7fqsoNsufc8Vhx5kBYcFAWOHi/KOZTK9m1h1vZ72W6Zx5Krv9tjW6M9DQB3S0OP7YaT3+fF9vo3qCaLOdf9dLjDEUKIEWPy/DNY/sXfYrZYB3SeSbOXsfTyL2O/8XlalYPMZz/Bvs1v4z/wFh3awoS5Z8Qn4D5ITk1nb8n1zPFsYM/G7msDqY4GmlVy/xfY6MGSK75G5l1H2WFbQH5j5/c77oZwnZTk7JFXv85stnCg6AqMStOqbaRl5Ax3SCNWks3BrpRlzHe/z/x3bmDjiw8BEAoGKfIfoT11ZBaFPkY5x5Kk/DTUVgx3KELERSxJoA3AJKVUiVLKAlwFvHBiA6VUnlJKRb5eHDlv4n7aOsVYLRbMg/CmIFYzz/scu1c+SHGglKVb72D8c5ew/b9/Pb7fV7oenzZRPH1xv6/hjAx/1u2dR3q0ucIjzkyOzkvPWyOFE9saq3o8b4q/gQ5rz8utenLnUaSrYqp9FA+7XvwlduUFwHW4++Vs+6Lq6H7a7p3Krp+tpKb8YLftDmxdhenRM5ni2cqayd9kz6xvYlM+qiIr0A2V/VveJ/DMZ/ApM7nXP97rtCmzIzxyq+zdJ7tdwnS4Hdq2ipLQUcrnfR17ctpwhyOEEKesvKLxBK//N20qmXH/uoIZtf9mf9IsLNakYYln1uXfCI8GeqP7BwRmbyOthsEtzuwuWE5xqJz66qPHt/ld4efCGXljB/Xag2X8+V8ioA3UmPJRhpgWTRbdmPmlpzj8idc4aijEueNPAFQc3k2y6kDlzx7m6AbGmj0OgKaKA8MbiBBx0utvO611ALgVeA3YDfxNa71TKXWLUuqWSLNPADuUUluBB4CrtNYnTxkTp7BZ51yD96u7OXrNOxw0jWfSO1/m8KbwKgKpDVs5ZJ6INcne7/NbrFZatQ3l6ZwE6mgOjwSypnQeCWRLy4vs737ZU4D0UCN+W8+j1lImhmsEHNn+bp9i7q/xpX9jm3U+bm0lVL2j9wN64fN6aH7iOmzayzjffoyPnNUpoXVw2yq2/exMvD/IouTZiwhgpu7qV1h2zXdxFs8BoPZAfJJRsVjzzL1MeO5inKFGjpzxADmF43o9JnfSfCpULivKHyHj93PZdO+FNNQk1ioPHU3hn7lz7KxhjkQIIURRyVSsX3iDjVmX4lMmPJM/NmyxOFLT2TP+s8z1bGBPN7WBrD4XbqMz6r54yZh5DgClm177cGNLJT5tIjV9ZI6iyS8az5rcq6kqumi4QxnxkuzJlMxcStWka5ga2Mv+Le9Tuz88cix9wsJhjm5gUnPDRcNbaw8PcyS927X5Pd69/3oCfv9whyISWEwpb631y1rryVrrCVrrn0S2PaS1fijy9W+01jO01nO01ku11qsHM2gxMjnTsxk7eS5pNz1Ptcom68Xr2fXus5T49uFKH/gTglZDKkaPq9O2YzWCklI7j+ZJjqye4WvpPgnU0d5KiupAJ/c8z33c7NMIaoX70Lp+RN03fp+HXBpoz1vMUXMJKc17B3S+Pevf4Mj/LWdqYA97lvyMysufI023sOcv36Gm/ADr7vsUJf+8iLHefWzMvoy1RTdg/PwbFE9dAEDh5HkAeCt3Dfi1xWL3mpdZtPsettsWYvrqFuaccUVMx+WNmUjB9/Zw5Mr/srbg00x3b6D19+d3epo53I79W0zJzB/mSIQQQgBk5Y1l+W1/JOOuchZf8dVhjWX2Zf9DMw463vi/qPvtARcdlvSo++Jl/KxltGoboYPvHN9mctdQb8gY0aNoVn7pt6y84cfDHcaoMe2CW+jQFhrf+R2+8i34tZGiKQuGO6wByRoTXt7etOVJ1j3362GOpmfe13/E6a7n2bOp++mjQozc39hixMrNH4Px+udpx8b0/96ATfkwlQx8xY02QyoWn6vTNn9beGSQI61zEsiZFU4ChVq7L1DeWBNOEBidPX8oT05J44hxLI66LX2MuO+a62sAMDgyaUmdRIHvcL+L1O1Y9W/G//tKUoMuNiz8BQsuvJFJc1ewIfsKFtU/j/MPS5nb/F/W5F2Dun0rK259hBWf/yXZhR+u4pacmk4V2ZgaB5aMisWRPZvIe+1mKgz5lNzyV1LTep6mdzJlMFA8bQErvvBrDp33ONnBWtp/fwH1lUcGKeK+CbaFk0BpWZIEEkII0ZkjNZ3dY65hXsdqDu/a2GV/SqgFv3Vwk0Ams4UD9jkUnFAH0eapo9nUt/uxGN1S07LYnnEusxtfJ712PUeNY0iy9X+0fyJwpmWy2ziF6Z4tLNn6XSpLB/99b39UHtnH7I71ALRseaGX1uJUJkkgMSzGlEzB+IW3Wb/ol2w67WHmnnvdgM/pMTtJCnReLSvoDieBTl4tw+5IxaPN4O6+dFVLXXi6UFJaQa/XrnfOotize9BXDWiJrMJhTskmlD2DdFr7NZql/NBuxr5+E1XGPJJuW8Oii286vm/6NT/jiHEs21JOp+GGVaz44m9xZnT/Bq/WVkJG2+DOka6pOIT9mSsIYIJr/kpqWmbvB/VgxvKLOHLBE2SF6un4w3ns3fR2fAIdANVeT5u2kWRPHu5QhBBCJKBpl32Tdm2l7tV7O213t7eSoV3o5MF/iOAtPoMiXU1ZZGGKFH89HVZZ7EV0lv6RL2FTPqb6d9GYMjpWXZv2vfXUXr8KgKOr/tpL66HX4mrgyKsPoIDDhmKKaqJPHRUCJAkkhlF2/lgWX3QjC865EpPZMuDz+cxpOIInLZnubiKgDThOKrSrDAZcyomxo/skkLshXOwwObuo94uPXYKTdtb96lo++O/f2fLfv7P1rX/Q1tLU15fRI3ekbozVmUtKpB5P1b6uTwR7U7HpZVKVG/WpJ3Bmdp7u5szIZvz3t7H4G89SMK73G3eHcxJFwXICfl+f44hV6ft/J5smXJf9meJJ8amZM33p+ZRd9Ges2svEFy5j9W9uint/9YXJ00DzIBf1FEIIMXI5M3PZnnMJc5v/S+MJde3K9m7GqDSWwsEvvjtuxScBqFj7TwAyQo347CNveXgxuCbNPY09pvB7yEDO6Kl1WDB+OgcNJThLXxnuUDrZ/OrjpN4/nmVVT7LdtpDayVczVldQvn/rcIcmEpQkgcSoEbQ6SdFtnbYZvC5aVHLUueptRidWb/dJIH9zOAmUltP7sqdzL7yZNTlXssD1GvPevYm5797EnHc+R/39K+Nad8bbEp6+5kjPOT6/2l22rc/nCbWGk0n542cOOCZj3gwsKkDFocGrCxRqqSKgDYyfuTSu5526+FySvrqR9ZmXsbTuHxh+MYX6u4pZ+9foNRcGk9XbQJtxcIfyCyGEGNnyz7kViwqw79XfHd/WfHgzALmTBr/4bt6YiewzTiLt6Ou0tTSRrDogOW/QrytGnuaZ1wPgnDjwkg+JpHbMeUzx7U6YcgIQrlVUQyarpvwvOVf/ljHLwjUzK9b/a5gjE4lKkkBi1AjZMkilvdOIFJPXRZshJWr7dnM6Nr+r2/Pp1mr82khaZu9PuCzWJJZ96WGaPr+BvRf9kz0XP8vGRb8gJ1iL+aGllN49g9VP/2TA08UCkRpGKRl5ODNzadM2VGtln89jaK+liVTMFuuA4gGwZYeXhW2tG7wiy6b2ahpUOkaTKe7nTk3LZNntj7P3on+yJesS6kz5LNr1U3ateoFQMEgopBmKxQ4d/iY6LBm9NxRCCHHKKp4yj+2WuZQc/gvvPn0vRw/vQ1fvoF0nkVc8NNNuGsacw9TAHo7sWAOAKYZp8+LUs/hjX2TXxc8zbfHZwx1KXOUv/SQGpUn9/Xz2/2ghAZ93WOOpry5jesdmDhVcwoqrv0N+8WQKiifTRAo0Jf5qZmJ4SBJIjBrKHv4A3dL0YbFnq6+p2yVTfdYMkoOubs9naq+lUaWhDMaYY8gpmsCURecwdeHZLLzoJo5e/Bf2pCynw5jC8n3/x/pfX4fH3db7iboRaq8npBVpmeGnbo2GdMzunpe5j8bcUY/LEJ9RJ3ZneFlYb0v3o6oGytpRS7NpYHWAejNt8dksv+1Rim57mXJDIdP/82kMP8pA353OgR/Np65icG+kqSEXviRJAgkhhOhZYMmXydKNnL7vpzQ9cwspzXspM4/DYIz9/cpAFCwJTwnzrXoQgKSMwiG5rhhZlMHA9IVnopQa7lDiqnjKfNZM/jabnecyKbifLa88MqzxHHz7SUwqRP7KT3fa7jKkY+nofgEccWqL/2N1IYaJKTmcJGhz1ZGRE35DkumroCJ1XtT2waRMnK6Wbs9n9dbRbMpkIDPdpy46GxadTSgYZNUjX2NF1Z849PPlWK/7G4Xjp/b5fIaORppVMumRETGt5kxs3vo+n8fua6DNHJ+EQ3J6+CcUaOt7HLFK8dfhsvU+LS8u13Jm0HbD87z35mOooA9D0Mucyr/R9MgFvD35JkgtID/DicWaRNX2t0kre4OAwUq7vQhduJC8GctJycjDYrH3WFD7RKFgEKduJWSTFVaEEEL0bN7Zn6J9yQVsf/oOFlc8iRczWzMvGLLrF09bwD7jJOa1vw9ASmREsBCnAmUwsOyaOwgFQxz8yXxytvyG4EVfGJTR6rFIPfgSBw0lTJjWeTpomykDm2/wHtCKkU2SQGLUsKSEP0C7XeGRMR3tbeRTz5G08VHba3smduVl9RPfZ9zKaygo6ZyUSfY10JIUnyHOBqORFV94gK1vfYSSd26j5qlr8H5rFVarrU/nMXsaaFWpHBvD02HNIa9tZ5/jSQ02UmmPTwHJ1IzwSKBQDyutDVRGqIFa2+DXOjgmf+wk8m/46fHvt6+5mMJXP8cZe3/UqV0JsNc4CUMoyLimN0l1vQiR7vBqM1U3riI/huH5LU31pKkgOGSFFSGEEL1zJKdQeM6XMDzxBDZ86JyB1/jri6bp18H2HwCQkSdJIHHqMRgNuBZ9hQXrvsqm1x5jwUWfH5Y4Mv1VlKYvY8JJ2z3WLDLatg9LTCLxyXQwMWrYnOEP0J7m8IiUqiPhQsWm3ElR29uLwqsVLD/0Kxr+8oUu+9NDDfhs8f1QPufMKzi4/P+YFDzIpj9+vc/HW31NtJvSjn/vt+eQEWrqU60hHQqRHmoiYI/Pa0uy2XFrK6pjcFbW6mhvw0n7kCx9251Zy87DcechWm/ZROUVL7DxjCdYv+IRDl31DlO+t5Gp311P8vfLKbvmHdbN/RmrJ3wdMwFK33g4pvM3R1aiM6XmDObLEEIIMYqMGT+NrebwSqHJxXOH9NozP3oDrdpGu04iOVUWNRCnprkf/QylqoiMTb8mFAwOSwwpuo2gtWvpi4A9m/SQC4agrqUYeWQkkBg10nKLAfDsfxvOvYbmst0AOAujT7uac/ZVuJecz9Z/3Muy0t+yf8t7TJq7EgCf10s6rYQc8V/2dN5Hr2Pj9n8yu/o5dOjBqCuXdcceaO40LUql5GKv8dLa6iLFGdv0rrZWFynKB8nxe20tKgWjp3MSSIdCVJUdwmAyYU1yYDAa8blbaaouxVV1kEBjGTrow9h4kLzWbXRc8CumLT63y7kba45QCBiHufCk1WLBmjeRlLyJRIvEYDQyZvJcxkyeC8C2e96lpOx5goF7ex0i3NYYXq0tySnL7AohhIhd87wvsWvdzxg7fcmQXteR4uS9MZ8hqWEXi0ZZzRchYmU0GqmbdxuLNn+bzW88zfzzPt37QXHk9bixKR8kpXXdmZyDXXlpb3XhkEStOIkkgcSokV1QzJr0S1hU83cObrseT80BAPJKZnR7jD05jRmXfYO2Xz5G8xu/gEgS6MjuDUwCzNknD66Mj+CY5STv+i/V5QfJGxt9pFI0KaFm6qwfTuMypYZHxzTVHI05CeSqLSMFMKXGL+HQZnRi8bk6bdv4wkMs2vK/XdqePP6oRdvRSuF/7duEFpzVpbBlc81RCgFbRlHc4h0KwTnXkbfuq2x773lmn/mJHtt6XeEkkCNDltkVQggRu9MvvArPuZ8kyTw0RaFPtPKm/xvyawqRaOZdcCNlH9zPzNVfoXrNXTRd+FDUh5qDodVVjxUw2NK67DOlhN9TNtVWSBJIdCHTwcSoMv3T9+FSqfhe/AbGpoPUk9ZrciQ1LZPt+R9nXuvb7N34XwDqd7wBQPH88wYlztTicCKn5sAHMR8TCgZJ0y0EbR+ukpWUER6T0lpXHvN5WuvDU4+scRxZ02FKJcnv6rQtULMTnzaxdvqdrJ74P6we/xXWTP1fNi97kIMffwXXrftwf7Mcx/fKOLDg+0wKHmTjiw91Obe7MfzaUrKHpjB0vMw462pcJOPd+vde2/pbwnWsUjJlmV0hhBB9MxwJICFEmMlsof2iB9mQ8wkUIcyvfWvIpoa1u8IlMIyOrkkea3r4QXFrQ0Xcr9vS2sy+nZvjfl4xdGQkkBhVnBk5rJl0E8v2/5zapmpqzYXEst7SjKt+RP39r5L079vwzFiPvXwVR1UhYwtLBiXOgknz4RXoqNgBfCqmY1qbG3CqEMrx4StKyQqPjulojP0XfEdTOAmUnBW/hIPXkk56W3Wnbea2KmoNWSz91Ld6PX7ehZ/nwJaHydz2B7jsy532BZrCry09vzhu8Q4FizWJnfY55Ddv7bVtqK2OkFakZcp0MCGEEEKIkWTqwrNh4dlsfOEhFm7+NhtfeoiFl34Zv8+L0WjqMso9XjpaGwGwOLo+8E6OPFjsaKyM+3V3PvolZje9ge+Oo1is1rifXww+GQkkRp0p534OnzaSQyNtjtgSB6lpmdSc+XOKdTlbHvsaEzu2UZWxaNBidGZkU0sGxvo9MR/T0lAFgCn5wyRQWl749QWaq2I+j785nKxJy47f9KqANY0U3dJpm8NTTbM5tuLTBqOR+vwzGBcspaOt83lorcatraSkxmdJ+6HkKVhMka6ivvpoj+0M7jqaVTIms2WIIhNCCCGEEPE0/6LPs884ifmb72Tnj5fj/UkxdT+ayOqnfsiGV56grjr2kfux8EaSQNaUru+RnTnh9/nH3vfHS1N9DfOaXsOhPFQe2hHXc4uhI0kgMepk5BSwPXkFAMH06MvDRzP7Ix9nbfqlLK39Kw7lwTThI4MVIgA11nGktR2MuX17Yw0AlhNWkEpNTadDW6A19l/wurUGvzbizIjfSlTalkGKdhMMBI5vcwbq6EiKvcZN0rhFGJXmyM41nbab3DU0GjL6VEA7UaRPDdeYOrrlvz22s7qrcRlGXpJLCCGEEEKEGYxGsr7wAmsKP4s91MaOtLNoMOWyfP8vWLTuNsqe6Loa8UD428JJILszs8u+tMw8AtqAbquJ6zX3vPJbkpQfgIbDvY92F4lp5H2qEiIGpoWfBcBa0H1R6GhmfPZ+KgknR8YtHJx6QMe0OydTFDga87xhd3O4bow9/cMpQ8pgoNGQjqmjLubrGt11NClnXIemKnsGBqVpaQrHEQoGyQo1EOjDsu5F05cD4Dq4vtN2u6eWZnMsk/oSz/hZK/BoM75Dq7tto0MhxnTspj512hBGJoQQQggh4i0jp4AVN99Pyfe3sfRrTzPtjtUcvfY9NiefTol7K6FgKG7XCrrDK/M6nF3fJxuNRpqUE2N7bdyu197qYtzBp9hrmkJQK3xVO+N2bjG0JAkkRqXZZ3ycbef/nTlnXdmn41KcGbRf/gSrpt5JZk7hIEUXZsidhk35qD6yN6b2/tZwgiU5vXPdmBZTJjZP7Ekgq7eeFmN8VwkwOcJPIFqbwk8bGmsrsKggyhn7lLOsgmJqycBUveX4tlAwSJ7/KG7byCyYbLEmcdAylcyG7ovnVZbuI5NmdOHCIYxMCCGEEEIMNmUwMHbSbIIlZ5NOK2UH4jd6JtThAiAlLfrD0mZjOhZPfXyuFQyy93fXkqPr8Z/5fSoN+Vgb98Xl3GLoSRJIjEpKKWYv/SjGfox2mTRnGSuu6r2Y8UClRFYIq97xdkztQ65KQlqRkdt5lawOaxbJgYbYr+utpd3SddjoQFhSwjcftyucjGqsOgyANXNsn85TYZ9Gbuuu498f2Po+GbSgJpwZp0iHXkvuYiYEDrD2gc9Qc7TrzbJq17sAZE5ZMdShCSGEEEKIIZA76wwAamJ83x8L5XHh1lbMlujFmdvNmdh9jXG51uZ/P8x89/usn/R1Zq64mHpbCZkdh+JybjH0YkoCKaXOV0rtVUodUEp9p4d2i5RSQaXUJ+IXohCj04RZKzhoKKZ48z001JT12t7YWk6DSsNiTeq03ecoYEywgs33nMfaZ39NU133RaKb6ioZFzyCO2vOgOM/UZIzPIXO0xJ+2tBeVwpAcnbfkkCenDmM0ZU0N4XP07DlJUJaMWHZpfELdohN/8SdrM24hPkNL5Hx6FLW3X8N5fu3Hd8fOLoBt7ZSPE1GAgkhhBBCjEZjJs6miRRU2bq4ndPobaZVJXe735uUTWowPkkgf124juniq+4AoCN9MoXBSnyejricXwytXpNASikj8CBwATAduFopNb2bdvcCr8U7SCFGI4vVivrEIzi0m7LHbkSHep4jbOuoptHUtZjzpI9/jzX511Hk2cfSbd/F8OACdq95Jeo5Dq75FwalyZx3SVxewzGOtHBcvtZw8sbbGF79ILMg9sLcACkTw6NhDjz6OVqbG8mofJt95imkZ4/M6WAAzrRMln/lSRpvWs+GzI8xt+l1Cv58Ohv/3yUc+OBd0hu3UmqZJCuDCSGEEEKMUspgoNQ+i7zm+E0HM/laaDekdLs/mFxALg3s/vFSDmxdNaBrKV8r7ToJo8kEgCV/BiYVovLgtl6O7N7mN/7K+3/8Nuuef3BAsYm+i2Uk0GLggNb6kNbaBzwDRHssfxvwTyB+1aeEGOXGT1/MlilfZ65nPRuee6DHtk5fDe1RVtvKzC1ixS2/Iet7B9h7yb9wqTQmvHot5XdPYd0vrqC91XW8rdr/OvWkMXHOaXF9HSmZ4SRQqD0yLa25Ao82k5aZ28NRXc1YfiHvj72Fua3v4P3lPCb599NUeEZcYx0ueWMmsvz2x2n54mbWFHyayW0bmfivS5gS2Etz1tzhDk8IIYQQQgwiT/4ixuhKmuoq43I+i78Fj7H7JND0T9zJ+yW3kxmoIf25q6k8vLvf1zL42mhX9uPfp40Ll7VoLO1fUmvr2/9k/vs3c9rRh1iy5Q6qYqyRKuIjliRQIXDiXJXyyLbjlFKFwOXAQ/ELTYhTw+Irv80Oyxymb7un21+AOhQiO1SHz9H9iBiD0ciUBWeQ+uW3WJ99BVX2ySxseZPaX57O6gc+y+q//IyJres45Fwa15XBAFJS0vBrI7jDSSBzexX1hqw+L+uuDAZOu/Fe9l/yLNWmIoIYyF0yumaXZueNZcUXfg1f38n7427lkBpL+sLR9RqFEEIIIURn9sLwZJraI7t6aRkbW7AVn7n7JJAzLYPTrv8RHVc/h5Eg+olLqTzQv5E7Rn8bHmU7/n1e8VQAfA29l7Q4WX3VUYre/hqHDcXsu+Q5AMo2y2SioRTLJzQVZZs+6fv7gW9rrXtc61opdbNSaqNSamNdXeyrGQkxmhmMRjKu+QMKTf1TN0ddMt7VWItN+SCG1bbSs3I57dY/sOibL7LtI3/AHPIwo/F1lu+9ByftGKeeH/fXoAwGmlUKBk94qUq7p5pmc3a/zzd14VnMuOM92r6yn/HTF8UrzISS6szgtM/+hPE/2M7UBSO38LUQQgghhOhdSl64TEJbbWlczmcPteG3pPbarnjKXKou/jM23YHjz+ez6YWHon7e6Ik50I7H6Dj+vcORQlAr8LX26TyhYJDKx6/HrjswfPKPTJp3Bo2kog6/26fziIExxdCmHDhxOaIi4OQxbAuBZ5RSAFnAhUqpgNb6+RMbaa0fBh4GWLhw4cmJJCFOWQXjprB2xrdYuuuHrLv/SvzJ4cF2WQsuZerCs2ioOEg6fV9ta95Zn4SzPgnA3k1vU7/zLRaddXW8wwegyZhJassBgoEA2f5KDjsXD+h8ymAgPSO+q5gJIYQQQggxHLILJwLgrz8Sl/Ol6DaCFmdMbactPJOj6a/R8dSnWbD52+zY+hj15/2OMxbPj+l4S7Adn/HD6WDKYKAdG8obWxKo1dXAjlcexlC9jSXezayb+X2WRBZFOZyygOKWTehQqM+zCET/xPJT3gBMUkqVKKUswFXACyc20FqXaK3Haa3HAf8AvnRyAkgI0bMln/gaG5LPYkHLmyyr/BOnVT1O0r9vQ4dCtNaEl1xPzhnX7/NPWXAGKz5zd5fVxeKlvuRSpgZ2s+Gx/yELF8apFw7KdYQQQgghhBhpUpwZtOBAtZQP+Fx+nxeH8qCT0mI+ZuyE6Uy8cz2b5/2YkuARZv/7EjZ+sDmmYy1BN35T55XI3MqOwd/e67FtLY1U/uYClu29hyXNL7M+9aMsvuJrx/cHi08nh0bK+jlVTfRdr0kgrXUAuJXwql+7gb9prXcqpW5RSt0y2AEKcapQBgOLvvEcprubMN7tYv2suxiny9m7+S28kfm2GX1cbWsoTb/wy7i1laUVj1OmCphz7qeHOyQhhBBCCCESRp0hB2t718LQXo+birsms+dHi3j/4a/z/mN3cGRf90WXW13hFXmVLa1P1zcajcy/9DbU514nQ7XRseOlmI6zhdoJmBydtnkMNkz+th6Pc7e5KHvgIsb7D7Bpya9o+3opi7/+904jfgrnnwdA1ZbX+/RaRP/FMh0MrfXLwMsnbYtaBFpr/dmBhyWEmHbO9bi3/YyWVY+BNRWvNpORwEulOzOyWJt5Pksb/0XlzJsZY4rp14sQQgghhBCnhJakPJyeqi7bKw7tYDw1NAQ9TK18FIBA6e9Yk3Y+Yy+7i8KSKZ3atzfXkwGYHOn9isM+Zja1ZGCri211LztuQubOI4E8BgemQPcjgXyeDkofuJjJ/j1sWXIfCy/4bNR2BeOm0aEt6IZDMccvBkYm3QmRoFKcGWxPO5PpjW+Q3LSLun6stjXUSj7+A1YXXM/ci74w3KEIIYQQQgiRULz2ArJCtV22u47sBKDp8r8QvLOOhi9sZ0POFSxwvU7248vZv+W9Tu3dLY0AmPuZBAIos00ht21Pr+10KIRDdxCydl6JzG+0Ywl2nwTau+4Vpvu2s3HGnSy88IZu2ymDAZdKxehpjD14MSCJ/YlSiFNc+lm3YyLATO8HuMy5wx1Or3KLJrD85gewJtl7byyEEEIIIcQpRDvHkIqbVldDp+3e6r0AFEyYidFsITN/LMu+/Aium9YAUL/2L53ae1rDCRNrSka/Y2lJn8WYUDmhjuYe23k9bkwqhLKclAQyJWMNubs9ztMUHvFUNL/3lYnbjU4svqYYohbxIEkgIRLY5Dkr2HvWI3RoC+0pxcMdjhBCCCGEEKKfzBnhlX7rKw523t50gGqysCd3Xu0rZ8xk9lunk123ptN2n6sGAEd6Xv+DKZgXjmX/hh6btbWEkzMqqXMSKGh2YOshCRRsC494csZQzsJtTsPmd/XaTsSHJIGESHBzPnIZrhvfZ9qnfzncoQghhBBCCCH6KTm3BICW6s71b1Lbj1BnHRP1mNaClUwMHqK+5sNVxQLN4a+z8sf1O5a0iYvCsRxa32O7jjYXAEZbaqftQXMyNjq6P7CtDq82k5yS1mssPks6jmDPI5JE/EgSSIgRIL94CqlpmcMdhhBCCCGEEKKfMgsnAuCpP3J8mw6FKAiU4U6Jvgpwxuzw6lmlGz5cp0m1VtKMA1tyatRjYjFuTDHlOgtV+UGP7TyRJJDJ1nmUkrak4NAd6FAo6nHGjgaalDOmmqYBawapoZbYAhcDJkkgIYQQQgghhBBikGXmFOLTJrTrwyRQfXUZyaoDsiZFPWbC7BU04yB04K3j26zuahoN2QOKJd1h4aBhHPbmAz2287WHkzNm+0kJJ2syRqXxuKMvE2/xNdJmdEbddzJtzyBFdeDz9DCySMSNJIGEEEIIIYQQQohBZjAa2WeZxriq1/B5vQDUHNoGgKNwetRjjCYTh+xzyW/ecnxbsreWVsvAkkAAXlseyb66Htv43eFpWhZH54SOSgonhdpboxd0tvuacJtjK1ytHFkAtDTWxNReDIwkgYQQQgghhBBCiCEQWnYbedSz+eVHAGiv3A1AdsmMbo/xZM2gMFSFuy2ckMkI1uOxD6AodEQgOZ8U3Qr+7kfgBCKrhyUlp3XabooUiu5oi17LJyXYhNcaWxLInBJOArU2SRJoKEgSSAghhBBCCCGEGAKzzvgkpcZicrb9jkAggPHoKppIIaegpNtjkormYFCao3s24ulwk0kzoeTeV93qjdEZPoevqaLbNsGOVgBsJyWBjPbwyCBvpGbQiXQoRJpuJmjLiikOqzMHgHZJAg0JSQIJIYQQQgghhBBDQBkMtCy4lfG6jPUv/J6ZravYl3UuymDs9pjcyeGVvJoPf0BD1VEAjGmFA47FmhFekcxVXdptm5A3nARKTk3rtN0SWS3M4+46Eqi9vYUk5Qd7bAvbONJyAfC11MfUXgyMJIGEEEIIIYQQQoghMvOjN1Clcpi39S6SlJ+0pdf12D5/7CRasEP1dpprSwFIyoq+pHxfpOaMBaC55kj3jbwtBLQBa5Kj0+ZjNYIC7q6rejXXVQJgTM2JKY7kjHA7f2vP9YlEfEgSSAghhBBCCCGEGCIGk5myaTdhUz7KVAGT55/ZY3tlMFBuHo+zZS/u+vBIoNSccQOOIyM/fA5PY3n3sXpbaVe2Lku9JyVHkkAdXZNArQ1VAFicuTHFkZYRbqfbZSTQUJAkkBBCCCGEEEIIMYRmXfRljqhCyidd2yXBEk2rcwpjfIfxN5YBkNlDDaFY5WVn0aJtBJu7rwmk/O24sXfZfiwJFPR0TQJ1uKoBcKTFVrzabLHSggPV0RhTezEwpuEOQAghhBBCCCGEOJXYHMkU/2AXxTG2V/mzcdT/k+TKVbRqGymp6QOOIclspFJlYmyr7raNOdCGx9A1CZScEr5+yNPWZZ+vJTytKyUz9hXMmpUTk0eSQENBRgIJIYQQQgghhBAJrGDuuXi1mVmeTTQYY1t1KxbN5mxsHT0ngbxGR5ftSTYHAW1AebuOBAq11QLgzMqPOY52oxOLrynm9qL/JAkkhBBCCCGEEEIksKIJMzh44dO4SKYpqShu5/Uk5eIMdF+LxxJ044uSBFIGA25lQ/m6jgRS7fW06ySS7Ckxx9FhTsMecMXcXvSfTAcTQgghhBBCCCES3PQlH6WhZD3jTea4nTOYnEd6SxM66EcZu57XGnTTlhR9RE87Ngz+rkkgU0cDzQYnXVNH3fNb00np2NuHI0R/yUggIYQQQgghhBBiBMjMKcSZEdvS67EwOgsxqRBNtdGLQ9u0m6A5Oeo+j8GO0d/eZbvVW0+rsW81iwKOXDK0i6rS3X06TvSdJIGEEEIIIYQQQohTUFLWWADqyg902RcKBknTzQSTMqIe6zU4sAS6jgTK8ZXR6hjTpzhKzrsVLxZq//JlQsFQn44VfRNTEkgpdb5Saq9S6oBS6jtR9l+qlNqmlNqilNqolDot/qEKIYQQQgghhBAiXsbMOg2/NtK08R9d9jXUVWBRQZSzMOqxPpMdc9DdaVtbazO5NBBIn9SnOPLHTmT3jK8xx7uJNc/9uk/Hir7pNQmklDICDwIXANOBq5VS009q9iYwR2s9F7gReCTOcQohhBBCCCGEECKOsnKL2Ja8nCk1L+Hzejrtc1WVAmDJiD6qJ2BykBTqnASqOrgDAGvu5D7HsuCKb7DbMou5239K5cGdfT5exCaWkUCLgQNa60Naax/wDHDpiQ201m1aax351gFohBBCCCGEEEIIkdBMCz9LOq1sf/Mvnba31R0FICWnOOpxAVMyqSEXXs+HiaDm8nDyJm3sjD7HoYwm0j/9OAGMmJ+8iLd+eim79+7p83lEz2JJAhUCZSd8Xx7Z1olS6nKl1B7g34RHA3WhlLo5Ml1sY11dXX/iFUIIIYQQQgghRJzMXHkZVWRh3fJ4p+3ehnASKD2/JOpxlpmXkk4rW393AzoUruPjr9lHSCvyx/c9CQSQN2Yih895mDLbVJb5VuF67n+ittty70c5evc01j79I5obJbfQF7EkgVSUbV1G+mitn9NaTwUuA34U7URa64e11gu11guzs7P7FKgQQgghhBBCCCHiy2gyUTr+Gmb6tnBw+9oPd7SU49Mm0rOiLxE/95yrWFN4I4ubX2Xdgzfi93mwuA5SbcghydaXBeJPOu/Ki5n/7VfZVXIjyzzvs23tfzvtP7htNXM71mHRPpbu+znmX83g3V9cw76tq/p9zVNJLEmgcuDESYBFQGV3jbXW7wITlFJZA4xNCCGEEEIIIYQQg2z6xbfTrq00vnHf8W3m9mrqDJkYjMZuj1ty489ZlXM1SxueY/d9F5LuPkSddWx8YrriDppIRb95Nx9Wn4H6t39Hh7Zgu30t+y97iV2Z57Ko5T9Mfu5CDv1wNu8/8g32bnqbUDAYlzhGm1iSQBuASUqpEqWUBbgKeOHEBkqpiUopFfl6PmABGuIdrBBCCCGEEEIIIeLLmZHN9pxLmOf6D2V3T2XdX+/B3lFNsymnx+MMRiMrvvQQq6d8h9meTYwPluJOHR+XmJKS0zgw9Rbm+Lew7Z3nAGh2NTCz4TW2p5+DMyObSXNXsvD2p/B/ZSerJ38br8HO8rJHmPLipTT9qIS1v7yanWtfj0s8o0WvSSCtdQC4FXgN2A38TWu9Uyl1i1LqlkizK4AdSqkthFcSu1KfmKoTQgghhBBCCCFEwpp4+ffZlHYeRh0kb8+TOAN1uG25MR277Mpvs9UyHwCV1bfl4Xsy57KvU0kOjvd+jA4F2fn8fTiUl4wzvtSpXWpGDsuvuYNp311L8627WTfvHg4mL2CG6y0mvXI1dZVH4hbTSKeGK1ezcOFCvXHjxmG5thBCCCGEEEIIIbpa+9QPWbr/F4S0Yl3BdSz7wm9iOq68dC+1T91C5pW/oXhi/wpDR43nuQdZuvUO1o+5kUllf+do0lTmfOeNmI6tOLid/CdWsm7M51h20y/iFlOiU0pt0lovjLYvlulgQgghhBBCCCGEOAXkzrsQAIPSKGdRzMcVjZvC/DvfimsCCGDhJV9greNMFpf9kXRasX30uzEfWzhhFtvti5lU/o9OS9mfrK7yCGv/+Svqqo/GI+SEJkkgIYQQQgghhBBCADBu6nxqyADAkhF7EmiwmEwm5t3+F9Ynn8WatIuZPP+MPh1vXPZFsnCx482nu21TsWsNS7d/n6bKQwOMNvGZhjsAIYQQQgghhBBCJAZlMFCatpRc18uk5BQPdzgAWK02Fn/juX4dO235JfjeNOEr39ptG29DuGZQRkF8ilonMhkJJIQQQgghhBBCiONsC6/lkBpD3viZwx3KgBlNJqqMeVhbSrttE3KV4dMmMrILhy6wYSIjgYQQQgghhBBCCHHc7NMuhtMuHu4w4qbJWoSzo6zb/ea2SmoNWRQZjUMY1fCQkUBCCCGEEEIIIYQYtTwpxeQHK9GhUNT9Dk8VLnPuEEc1PCQJJIQQQgghhBBCiFFLZY7Hrrw01EQfDZTur6XDlj/EUQ0PSQIJIYQQQgghhBBi1LLlTgKg9sjuLvv8fh/ZuoFgyuivBwSSBBJCCCGEEEIIIcQoljl2GgBtVfu67KuvLMWoNIb0MUMd1rCQJJAQQgghhBBCCCFGrdwxE/FrI6H6A132NVUdBsCWVTzUYQ0LSQIJIYQQQgghhBBi1DKZLVQbcrE0l3bZ564Lb0vNGz+0QQ0TSQIJIYQQQgghhBBiVGu0FpLuPgJad9rubzwKQHZhyXCENeQkCSSEEEIIIYQQQohRrb1gBSWhUtY+dVen7YaWcppIwZ7sHJ7AhpgkgYQQQgghhBBCCDGqLbn2+2xwnMHSA/ez5onvo0MhAJLay2k0Zg9zdENHkkBCCCGEEEIIIYQY1YxGI7NufZqNjtNZduhXrP/VtTTVVTGtYwv16fOGO7whI0kgIYQQQgghhBBCjHpJNgcL/udfrMm9hiXNL3PksRuxqAA5Z31xuEMbMpIEEkIIIYQQQgghxClBGQzM++zPqSKbue7V7DLPoGT6ouEOa8hIEkgIIYQQQgghhBCnjCSbg/JF3wGgbdZnhjmaoRVTEkgpdb5Saq9S6oBS6jtR9l+rlNoW+bNaKTUn/qEKIYQQQgghhBBCDNzCCz/H3stfY9HFNw93KEPK1FsDpZQReBA4FygHNiilXtBa7zqh2WHgI1rrJqXUBcDDwJLBCFgIIYQQQgghhBBiIJRSTJmzdLjDGHKxjARaDBzQWh/SWvuAZ4BLT2ygtV6ttW6KfLsWKIpvmEIIIYQQQgghhBBiIGJJAhUCZSd8Xx7Z1p3PAa9E26GUulkptVEptbGuri72KIUQQgghhBBCCCHEgMSSBFJRtumoDZU6k3AS6NvR9mutH9ZaL9RaL8zOzo49SiGEEEIIIYQQQggxIL3WBCI88mfMCd8XAZUnN1JKzQYeAS7QWjfEJzwhhBBCCCGEEEIIEQ+xjATaAExSSpUopSzAVcALJzZQSo0FngU+rbXeF/8whRBCCCGEEEIIIcRA9DoSSGsdUErdCrwGGIE/aq13KqVuiex/CPg+kAn8VikFENBaLxy8sIUQQgghhBBCCCFEXyito5b3GXQLFy7UGzduHJZrCyGEEEIIIYQQQoxGSqlN3Q3MiWU6mBBCCCGEEEIIIYQY4SQJJIQQQgghhBBCCHEKGLbpYEqpOuBIjM2zgPpBDEfEh/RT4pM+Ghmkn0YG6afEJ300Mkg/JT7po5FB+inxSR+NDKOhn4q11tnRdgxbEqgvlFIbpdB04pN+SnzSRyOD9NPIIP2U+KSPRgbpp8QnfTQySD8lPumjkWG095NMBxNCCCGEEEIIIYQ4BUgSSAghhBBCCCGEEOIUMFKSQA8PdwAiJtJPiU/6aGSQfhoZpJ8Sn/TRyCD9lPikj0YG6afEJ300MozqfhoRNYGEEEIIIYQQQgghxMCMlJFAQgghhBBCCCGEEGIA4p4EUkqdr5Taq5Q6oJT6zgnb/6qU2hL5U6qU2tLN8RlKqf8opfZH/k6PbL/2hOO3KKVCSqm5UY6/NXJtrZTKOmG7Uyn1olJqq1Jqp1Lqhni/9pFiEPvIrJT6k1Jqu1Jqt1Lqf7s5vkQptS5y/F+VUpbIdqWUeiAS1zal1PxBePkjRqL2U2TfGZHr71RKvRPnlz6iJEA/dfc779rI/6NtSqnVSqk5cX7pI0YC95Hcl04wiP1kUUo9FumnrUqpM7o5Xu5NvUjUPorsk/tSRAL0k9yXepHAfST3pRPEoZ8+Gfk5hpRSC0/a97+R8+5VSp3XzfFyX+pFovZRZF/i3pe01nH7AxiBg8B4wAJsBaZHafcL4PvdnOP/gO9Evv4OcG+UNrOAQ90cPw8YB5QCWSdsv+PYuYBsoBGwxPP1j4Q/g9lHwDXAM5Gv7ZE+GBfl+L8BV0W+fgj4YuTrC4FXAAUsBdYN989L+ilqP6UBu4Cxke9zhvvndYr3U3e/85YD6ZGvLzhV/z8leB/JfWlo+unLwGORr3OATYAhyvFybxq5fZSG3JcSqZ/kvjRy+0juS/Htp2nAFOBtYOEJ26dHzmcFSiLXMUY5Xu5LI7eP0kjg+1K8RwItBg5orQ9prX3AM8ClJzZQSingU8BfujnHpcCfIl//CbgsSpuruztea/2B1ro02i4gJXL9ZMK/1AI9vZhRajD7SAMOpZQJsAE+oCXKuc8C/hHl+EuBJ3TYWiBNKZXfj9c4GiRyP10DPKu1Pgqgta7t+8sbNYa1n6D733la69Va66bIt2uBothf1qiSsH2E3JdONJj9NB14E47/vnIBJz/tk3tT7xK5j+S+9KFh7afIPrkv9Sxh+wi5L51owP2ktd6ttd4bZdelhB8iebXWh4EDkeudfG65L/Uskfsooe9L8U4CFQJlJ3xfHtl2opVAjdZ6fzfnyNVaVwFE/s6J0uZKuv+l2J3fEM70VQLbga9orUN9PMdoMJh99A+gHagCjgI/11o3nnRsJuDSWh+7oZx4/VhiO1Ukcj9NBtKVUm8rpTYppT7Tt5c2qgx3P8Xqc4SfGJ2KErmP5L70ocHsp63ApUopk1KqBFgAjDnpWLk39S6R+0juSx8a7n6KldyXPpRIfST3pQ/Fo58Gcm65L/Uukfsooe9LpjifT0XZpk/6vttRPDFdQKklgFtrvaOPh54HbCGcrZsA/Ecp9Z7WustT21FuMPtoMRAECoB04D2l1Bta60MxXj+W2E4VidxPJsJvKs4mPPphjVJqrdZ6Xz9iGemGu596D1CpMwm/2T6tHzGMBoncR3Jf+tBg9tMfCX+o2QgcAVbT9cm23Jt6l8h9JPelDw13P/VK7ksJ3UdyX/rQYPZTLOeW+1LvErmPEvq+FO+RQOV0zjYXEc4kAxAZMv9x4K8nbHssUjDp5cimmmPD2SJ/nzx06ir615E3EB6SpbXWB4DDwNR+nGekG8w+ugZ4VWvtjwx5W0XXIaj1hIcsHktAnnj9HmM7xSR6P72qtW7XWtcD7wJzBvRqR67h7qceKaVmA48Al2qtG/r0ykaPRO4juS99aND6SWsd0Fp/TWs9V2t9KeF5+ic/EZR7U+8SvY/kvhQ23P3UI7kvAYndR3Jf+lA8+qlf546Q+1LvEr2PEva+FO8k0AZgkgpXybYQTti8cML+c4A9WuvyYxu01jdEflFdGNn0AnB95OvrgX8da6uUMgCfJDzfr6+OEs7EoZTKJVwAqk9P1EeJweyjo8BZKsxBuFDZnhMvrrXWwFvAJ6Ic/wLwmcjxS4HmY0NdT0GJ3E//AlZGhhrbgSXA7gG/4pFpWPupJ0qpscCzwKcT5anDMEnYPkLuSycatH5SStkj/YNS6lwgoLXedeLF5d4Uk0TuI7kvfWhY+6kncl86LmH7CLkvnSge/dSdF4CrlFJWFZ62NwlYf2IDuS/FJJH7KLHvSzr+VbovBPYRrqB950n7Hgdu6eX4TMIFzfZH/s44Yd8ZwNpejr+dcOYtQDgT90hkewHwOuH5rTuA6+L92kfKn8HqI8IF5P4O7CRcDf2b3Rw/nvB/ogOR9tbIdgU8GIlrOydUaD8V/yRqP0X2fTNy7A7gq8P9szrF+6m733mPAE2Eh3VvATYO989K+kjuS8PUT+OAvYTffL0BFHdzvNybRmgfRfbJfSlx+knuSyO3j+S+FN9+ujzyc/YCNcBrJ+y7M3LevcAF3Rwv96UR2keRfQl7X1KRAIUQQgghhBBCCCHEKBbv6WBCCCGEEEIIIYQQIgFJEkgIIYQQQgghhBDiFCBJICGEEEIIIYQQQohTgCSBhBBCCCGEEEIIIU4BkgQSQgghhBBCCCGEOAVIEkgIIYQQQgghhBDiFCBJICGEEEIIIYQQQohTgCSBhBBCCCGEEEIIIU4B/x+0d4DJLyKvLQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "nb_plts = len(dfs_train)\n", - "\n", - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_train):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m_best.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " #plt.title(f\"Model Performance on training data: {train_exps[idx]}\")\n", - " plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAReCAYAAABAXiA7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5wjd3333zOjru23u3d7/c4+1/MV2+eKzx1TDBhTDY/p5CHEhIQEcEIIBEIeSEjoiUNCx8EBjE2xwRgb44p7v95v77YXdWna7/ljJK2klbTavd3zle/79QLfTv1pNJJmPvP5fr6aUgpBEARBEARBEARBEATh2EZ/qQcgCIIgCIIgCIIgCIIgzD0iAgmCIAiCIAiCIAiCIBwHiAgkCIIgCIIgCIIgCIJwHCAikCAIgiAIgiAIgiAIwnGAiECCIAiCIAiCIAiCIAjHASICCYIgCIIgCIIgCIIgHAf4Xqodd3Z2quXLl79UuxcEQRAEQRAEQRAEQTjmePLJJ4eVUl3V5r1kItDy5ct54oknXqrdC4IgCIIgCIIgCIIgHHNomra31jwpBxMEQRAEQRAEQRAEQTgOEBFIEARBEARBEARBEAThOEBEIEEQBEEQBEEQBEEQhOOAlywTSBAEQRAEQRAEQRBeaizLore3l2w2+1IPRRCmRSgUYvHixfj9/obXaUgE0jTtFcBXAAP4b6XU5yvmtwPfBk4AssB7lFIvNDwKQRAEQRAEQRAEQXgJ6O3tpbm5meXLl6Np2ks9HEFoCKUUIyMj9Pb2smLFiobXm7IcTNM0A/gG8ErgNOA6TdNOq1jsb4FnlFJrgHfgCUaCIAiCIAiCIAiCcESTzWaZN2+eCEDCUYWmacybN2/aDrZGMoHOAXYopXYppUzgFuB1FcucBtwDoJTaAizXNG3+tEYiCIIgCIIgCIIgCC8BIgAJRyMzOW8bEYEWAftL/u7NTyvlWeDa/CDOAZYBi6c9GkEQBEEQBEEQBEE4ztA0jeuvv774t23bdHV1cfXVV7+Eo5qapqamKZf59Kc/zRe/+MW6y9x+++1s2rRptoYl1KEREaiatKQq/v480K5p2jPAh4CnAXvShjTtTzRNe0LTtCeGhoamO1ZBEARBEARBEARBOOaIRqO88MILZDIZAO6++24WLar0XhwebHvSrfycIyLQ4aMREagXWFLy92LgYOkCSqm4UurdSql1eJlAXcDuyg0ppb6plDpbKXV2V1fXzEctCIIgCIIgCIIgCMcQr3zlK7njjjsA+NGPfsR1111XnJdKpXjPe97Dhg0bWL9+PT//+c8B2LNnDxdddBFnnnkmZ555Jg8//DAAfX19bNy4kXXr1rF69WoeeOABoNy589Of/pR3vetdALzrXe/iIx/5CJdeeikf//jH2blzJ694xSs466yzuOiii9iyZQsAu3fv5vzzz2fDhg188pOfrPlaPve5z3HyySdzxRVXsHXr1uL0//qv/2LDhg2sXbuWN7zhDaTTaR5++GF+8Ytf8NGPfpR169axc+fOqssJs0Mj3cEeB1ZpmrYCOAC8FXhb6QKaprUB6Xxm0PuA+5VS8VkeqyAIgiAIgiAIgiDMGf/wyxfZdHB2b2VPW9jCp15z+pTLvfWtb+Uzn/kMV199Nc899xzvec97iuLN5z73OS677DK+/e1vMz4+zjnnnMMVV1xBd3c3d999N6FQiO3bt3PdddfxxBNP8D//8z9cddVVfOITn8BxnIZElG3btvG73/0OwzC4/PLLuemmm1i1ahWPPvooH/zgB7n33nv58Ic/zJ/+6Z/yjne8g2984xtVt/Pkk09yyy238PTTT2PbNmeeeSZnnXUWANdeey3vf//7Afi7v/s7vvWtb/GhD32I1772tVx99dW88Y1vBKCtra3qcsKhM6UIpJSyNU27AbgLr0X8t5VSL2qa9oH8/JuAU4Hva5rmAJuA987hmAVBEARBEARBEAThmGLNmjXs2bOHH/3oR7zqVa8qm/fb3/6WX/ziF8VsnWw2y759+1i4cCE33HADzzzzDIZhsG3bNgA2bNjAe97zHizL4pprrmHdunVT7v9Nb3oThmGQTCZ5+OGHedOb3lScl8vlAHjooYe49dZbAbj++uv5+Mc/Pmk7DzzwAK9//euJRCIAvPa1ry3Oe+GFF/i7v/s7xsfHSSaTXHXVVVXH0uhywvRpxAmEUupO4M6KaTeV/PsRYNXsDk0QBEEQBEEQBOHwYTkufqORxAzhWKURx85c8trXvpa//uu/5r777mNkZKQ4XSnFrbfeysknn1y2/Kc//Wnmz5/Ps88+i+u6hEIhADZu3Mj999/PHXfcwfXXX89HP/pR3vGOd5R1k6psLR6NRgFwXZe2tjaeeeaZqmNspCNVrWXe9a53cfvtt7N27Vq++93vct999x3ScsL0kW84QRAEQRAEQRAEIJU7/IG4glDKe97zHv7+7/+eM844o2z6VVddxde+9jWU8no0Pf300wDEYjF6enrQdZ0f/OAHOI4DwN69e+nu7ub9738/733ve3nqqacAmD9/Pps3b8Z1XW677baqY2hpaWHFihX85Cc/ATwB6tlnnwXgwgsv5JZbbgHg5ptvrrr+xo0bue2228hkMiQSCX75y18W5yUSCXp6erAsq2z95uZmEonElMsJh46IQIIgCIIgCIIgCEDadHDcykbIgnD4WLx4MR/+8IcnTf/kJz+JZVmsWbOG1atXF0OZP/jBD/K9732P8847j23bthXdPPfddx/r1q1j/fr13HrrrcVtfv7zn+fqq6/msssuo6enp+Y4br75Zr71rW+xdu1aTj/99GIQ9Ve+8hW+8Y1vsGHDBmKxWNV1zzzzTN7ylrewbt063vCGN3DRRRcV5332s5/l3HPP5corr+SUU04pTn/rW9/Kv/zLv7B+/Xp27txZcznh0NEKSuLh5uyzz1ZPPPHES7JvQRAEQRAEQRCObFI5m2TOxtA1OpuCh2Wf+0fTtEcDNAUbSs0QjhE2b97Mqaee+lIPQxBmRLXzV9O0J5VSZ1dbXpxAgiAIgiAIgiAccYymTAbjOcbT1mHbp+MqMqZz2PYnCIJwuBERSBAEQRAEQRCEIw47X5ZlOe5h26ejFFlLRCBBEI5dRAQSBEEQBEEQBOGIw3E98cd2FIcrwsJ1FWlxAgmCcAwjIpAgCIIgCIIgCHOG5bhs7U8wnMzhTiN02S5Z1rRd3vWdx/jK77bPxRCLOEph2q6EQwuCcMwiIpAgCIIgCIIgCHOG43rCSt94lpTZeAt225kQYh7eOcJ9W4f43eaBuRjipH1mpCRMEIRjFBGBBEEQBEEQBEGYM9ySUq6c3Vi+j+sqSivAvvPQbgC2DiSw5ygjSKmJfUo4tCAIxyoiAgmCIAiCIAiCMGc4FWVdjVBaCtY7lub+7cOc0BXFtF32jKRmfYxQPs5COPThyiIShIGBAd72trexcuVKzjrrLM4//3xuu+22Od/vE088wZ//+Z/PyrYuueQSTj75ZNauXcuFF17I1q1bZ2W7s8lsjvG73/0uN9xwAwA33XQT3//+92suu2fPHv7nf/6n+PdsHvfpIiKQIAiCIAiCIAhzRqm40qgTqHSdnz9zkICh8w+vXQ3Apr7E7A4wT6nwlMja7B5OsakvTuwwtqgXjk+UUlxzzTVs3LiRXbt28eSTT3LLLbfQ29s75/s+++yz+epXvzpr27v55pt59tlneec738lHP/rRSfMd56V32c3FGD/wgQ/wjne8o+b8ShFoto/7dBARSBAEQRAEQRCEOWNmTiBvuXjG4t4tg1x5+nzOWdGBT9fY3Befk3GWlq05riKZtXFdGEnl5mR/glDg3nvvJRAI8IEPfKA4bdmyZXzoQx8CPAHhoosu4swzz+TMM8/k4YcfBuC+++7j6quvLq5zww038N3vfheAG2+8kdNOO401a9bw13/91wD85Cc/YfXq1axdu5aNGzdO2sZjjz3GBRdcwPr167nggguKLpnvfve7XHvttbziFa9g1apVfOxjH5vyNW3cuJEdO3YA0NTUxN///d9z7rnn8sgjj/Bv//ZvrF69mtWrV/PlL3+5uM73v/991qxZw9q1a7n++usBGBoa4g1veAMbNmxgw4YNPPTQQwD84Q9/YN26daxbt47169eTSCTo6+tj48aNrFu3jtWrV/PAAw/MeIw//OEPOeecc1i3bh3/9//+36Iw9J3vfIeTTjqJiy++uDgWgE9/+tN88YtfBGDHjh1cccUVrF27ljPPPJOdO3dy44038sADD7Bu3Tq+9KUvlR330dFRrrnmGtasWcN5553Hc889V9zme97zHi655BJWrlw5a6KRb1a2IgiCIAiCIAiCUAWnRFyxHBelFJqm1V8nLxzds2UA03F53dqFBHw6J3Y3sWWORKBaHcFSOYes5RDyG3OyX+EI49c3Qv/zs7vNBWfAKz9fc/aLL77ImWeeWXN+d3c3d999N6FQiO3bt3PdddfxxBNP1Fx+dHSU2267jS1btqBpGuPj4wB85jOf4a677mLRokXFaaWccsop3H///fh8Pn73u9/xt3/7t9x6660APPPMMzz99NMEg0FOPvlkPvShD7FkyZKaY/jlL3/JGWecAUAqlWL16tV85jOf4cknn+Q73/kOjz76KEopzj33XC6++GICgQCf+9zneOihh+js7GR0dBSAD3/4w/zlX/4lL3vZy9i3bx9XXXUVmzdv5otf/CLf+MY3uPDCC0kmk4RCIb75zW9y1VVX8YlPfALHcUin0zXHV2+Mmzdv5gtf+AIPPfQQfr+fD37wg9x8881ceeWVfOpTn+LJJ5+ktbWVSy+9lPXr10/a7tvf/nZuvPFGXv/615PNZnFdl89//vN88Ytf5Fe/+hXgiW8FPvWpT7F+/Xpuv/127r33Xt7xjnfwzDPPALBlyxZ+//vfk0gkOPnkk/nTP/1T/H5/3dc1FSICCYIgCIIgCIIwZ7gl5h+lvJKwqQQV21W4SvHrF/o5taeFJR0RAE7taeGRnSNzMs56beFHUyYL28Jzsl9BqOTP/uzPePDBBwkEAjz++ONYlsUNN9zAM888g2EYbNu2re76LS0thEIh3ve+9/HqV7+66Di58MILede73sWb3/xmrr322knrxWIx3vnOd7J9+3Y0TcOyJkohL7/8clpbWwE47bTT2Lt3b1UR6O1vfzvhcJjly5fzta99DQDDMHjDG94AwIMPPsjrX/96otEoANdeey0PPPAAmqbxxje+kc7OTgA6OjoA+N3vfsemTZuK24/H4yQSCS688EI+8pGP8Pa3v51rr72WxYsXs2HDBt7znvdgWRbXXHMN69atq3p8phrjPffcw5NPPsmGDRsAyGQydHd38+ijj3LJJZfQ1dUFwFve8pZJ70UikeDAgQO8/vWvByAUClUdQykPPvhgUWy77LLLGBkZIRaLAfDqV7+aYDBIMBiku7ubgYEBFi9ePOU26yEikCAIgiAIgiAIc4ZTEa5sOlOLQI6reHb/OH2xLG87Zym2o1BKccqCZm57+gBjKZP2aGB2x1lHBBpLmyxoCaHr9R1MwjFAHcfOXHH66acXRQCAb3zjGwwPD3P22WcD8KUvfYn58+fz7LPP4rpuUVjw+Xy4JSprNpstTn/ssce45557uOWWW/j617/Ovffey0033cSjjz7KHXfcwbp164pukwKf/OQnufTSS7ntttvYs2cPl1xySXFeMBgs/tswDGzbrvpabr755uK4C4RCIQzD+8zXCluv5RB0XZdHHnmEcLhchL3xxht59atfzZ133sl5553H7373OzZu3Mj999/PHXfcwfXXX89HP/rRqjk9jYzxne98J//v//2/smVuv/32KV2MMwmTr7ZOYT+NHvfpIJlAgiAIgiAIgiDMGW6FuJKzps4Fsl3PBdQc8nHBCZ4zwHRcTu1pAWBz/+yXhFWKVaW4rhcWLcwOhe5rgsdll11GNpvlP/7jP4rTSkuZYrEYPT096LrOD37wg2I+zbJly9i0aRO5XI5YLMY999wDQDKZJBaL8apXvYovf/nLRbFn586dnHvuuXzmM5+hs7OT/fv3l40jFouxaNEigGK20GyzceNGbr/9dtLpNKlUittuu42LLrqIyy+/nB//+MeMjHhOv0I52Mtf/nK+/vWvF9cvfS1nnHEGH//4xzn77LPZsmULe/fupbu7m/e///28973v5amnnprRGC+//HJ++tOfMjg4WBzL3r17Offcc7nvvvsYGRnBsix+8pOfTFq3paWFxYsXc/vttwOQy+VIp9M0NzeTSFQPtd+4cSM333wz4JWJdXZ20tLSMqOxN4KIQIIgCIIgCIIgzBm2O9kJNBUDsSyP7h7hylPnE/B5tyy2o4oi0JY56BDmTjEsa6oFhIbpHcvQF8vMyDVxLKJpGrfffjt/+MMfWLFiBeeccw7vfOc7+cIXvgDABz/4Qb73ve9x3nnnsW3btmIp1ZIlS3jzm9/MmjVrePvb317Mp0kkElx99dWsWbOGiy++mC996UsAfPSjH+WMM85g9erVbNy4kbVr15aN42Mf+xh/8zd/w4UXXjhnXbzOPPNM3vWud3HOOedw7rnn8r73vY/169dz+umn84lPfIKLL76YtWvX8pGPfASAr371qzzxxBOsWbOG0047jZtuugmAL3/5y8WQ63A4zCtf+Uruu+++YlD0rbfeyoc//OEZjfG0007jH//xH3n5y1/OmjVruPLKK+nr66Onp4dPf/rTnH/++VxxxRU1c5x+8IMf8NWvfpU1a9ZwwQUX0N/fz5o1a/D5fKxdu7b4fhT49Kc/XXyNN954I9/73vdmNO5G0V6qD97ZZ5+t6oVZCYIgCIIgCIJw9LNjMEnGnLihjAYNVnY11V3nm/fv4p/u3MxX37qOFZ3esks6wrRFApz9j3dz6cnd/Mub1tbdxnTpHUszlqrdDr6rOciC1qnzPY5lXFfNSkncCwdiKAWdzQF6Wl/6rKXNmzdz6qmnvtTDEIQZUe381TTtSaXU2dWWFyeQIAiCIAiCIAhzhlslE2gqxtJeW/bOpok8jMJ6Jy9oZtMcdAib0gnUwLiPdcbS5iFvw7RdCqeEacsxFYTDjYhAgiAIgiAIgiDMGZWBy5atJuUEVTKettA1iAYn+thYjrdOV1OQvlh29sc5RYVEZVnb8YbluMRnIRcpa0+4wuqFcQuCMDeICCQIgiAIgiAIwpxR7UZ/KjdQLGMRDfrQSzrx2I5LznZQQG4OgoWdKaxA9nHuBEpm7VkJdC4NBhcNSBAOPyICCYIgCIIgCIIwJyilqGawydUpA3JdRSxj0xLyl023HJfBeI6AoZOdgzKiqTSe490JlMzZ2I46ZPdOqZBUWSr4UiIh1cLRyEzOWxGBBEEQBEEQBEGYE2oJBvWcPLarSGQtWkK+sulZy2U8bRHw6TiumnVnzlTihu2o40IoGEnmqk5P5rxSsEN1A5UKgEdKOVgoFGJkZOS4eH+FYwelFCMjI4RC0wus9029iCAIgiAIgiAIwvSp5Z5Jm7WFBMdVJLI2XSWh0EDRURQwvOfYOdvFZ8zeM+1GXCm2q/Abh94d60glbdocHM8S8htleUxZy8HOZzLlbJdosNYWpiZ3BGYCLV68mN7eXoaGhl7qoQjCtAiFQixevHha64gIJAiCIAiCIAjCnFBLWMnUdQK5JLIWKzujVecHfJ7wkzHtMqHiUHDc6mVrk8bmKPzGrOzyiEMpxYGxDACjKbPs2BZcQFAu4kwX03bLurAdKcYbv9/PihUrXuphCMJhQcrBBEEQBEEQBEGYE2o5PWxH1WwP7riKeMamJeyvOr8gAiVyh96pqnSfmpVm2V3vJhDbVXM5a6o+8kcxIymTbD60OZaxyt67ZElXsKw182NQTUA6UtxAgnC8ICKQIAiCIAiCIAhzQj3NJFOjJCyZszEdl+ZQdZdPoRwsMQvtygu4ShEa307L/nto3X1nzeUc59gVLEqPp1IwnjYBGErkyuaVCjn1cpmqiTvVBCQRgQTh8CLlYIIgCIIgCIIgzAlOnXqfjOXQymS3z2jKEx8qu4MVCOadQMlZFIFsV2HkYgCEh56pudyx7ASqFOXG0iZp02E8bZVNt2yvQ5ihawwmcsxrChD0TdTIDSayjCRNAj6dE7qaytat5gQ6kjqECcLxgIhAgiAIgiAIgiDMCfVcHmmzuogzkiyIQDWcQHnBITnL5WBGbgyAyNCzNZezj1EnkGm7k96rjOmSMauLXjnbIWDojKZMwn6jTAQaSZrYjsJVkwUfcQIJwkuPlIMJgiAIgiAIgjAn1LvBrxUOPZZ3AjXXcAIVMoFSsygCua7CyI0D4E8P4Ev1V13uWBWB6gV1VyNnuYykTJQqF+MSWYs9wynAKwW0KsrFqrWXFyeQIBxeRAQSBEEQBEEQBGFOqFcO5rrVRYGxjFd+NFUmUKpOm/npYrsKX14EAojUKAk7VsvBqr0P9UhbDsPJnPfv/PswGM/yf/77Uf705qd4rnd80nazllO1G9gxekgF4YhFRCBBEARBEARBEOYEd4pSn2rh0IVA4qm6g9UqJ5sJrvKcQK4RQmk+wjVKwo4VJ5DtuKgSRaZWSHctnt0/Ti5f2mXaLo/uGuHVX3uQrf0JWkI+fvDHvSilysq/0jX2UU8oFARh9hERSBAEQRAEQRCEOcFxFQfHM0XXSCXpCgfKWMosZgI1B6s7gQrB0FnLrdudqhbVWtM7rsLIjmGHu8h2nFJ0Ao0kcxwczxSXs48y24qqIbAMJXPEMxMi2nTKwR7YPsQHb36KG3/2HCPJHE/sGeWd336MaMDgX9+yluvPW86W/gRP7B0rcwLVEu0kE0gQDi8iAgmCIAiCIAiCMCeYjsvf/fwF/uZnz1cv/UqZRYEoYzocGM+QyFpEAgYBJ1l1mwUnkGm7mDMQgXK2M8mh5OQzgZxgK+mudYSHnmM0mWXwfz9E6GfvoFDH5LpTu5uOJKqVzFmOy0jSZDTvuLIct2GH066hJF+5ZzvLOiLsG03zF//7DP9452aWzYvyw/edy9L2KFec2k1Pa4gf/nEvGatEaKrhBKolVM2EagKfIAjliAgkCIIgCIIgCMKc8PTeMYYSOfrjWX7wx72T5isFfeNZ9o+m2TeaRilIZG0uC2zm1B+ux5cemLROIRMoZ7szuum3HTVJPLIcFyMXww62kelai2EliN36Yd6sfsPF7qMEN986sexR4gbK2U5V4WUwkfMCnbM2OduZMg9o32iamx/dyw8f3cvn7txMU9DHZ1+3mn95w1rCAYPTF7bwhTecUXxffIbOdecsZddwige2D6OUwnUVuRrv1WyWg6VNe1IYtSAI5YgIJAiCIAiCIAjCnPCbF/uJBgxeftp8fvnsQV48GKu63HjaKgo68azF6cZ+dNfCX6VLV5kTaCYikKuwK9w8puPmnUBtpDrXAvBa69c813Qhz7orWfzk/0O3vK5Xh5oLNJvOl3pkTGeS2GXabrH7GsBYypqyFOw/79/JLY/v58eP7ydnu/ztq06lPRpgeWeU/3j7Wfzj61Zj6DqxfKA3wMZVXYT8Ok/vHSdnu2RqhELD7JaDmY5bM3tIEAQPEYEEQRAEQRAEQZh14lmLh3eOsPGkLt73spV0twT5j/t2NrCezUJ9DADdmlwSNiECOTXdJfWwXRerZD2lFLbjdQdzQu3cP95BXIUZDi7BvPrf+QfrHURyQ3Q9++/e+ocoAs2khG0mZCxnkkiWzNllYsxY2qwbCt0fy/Jcb4y3n7uUX9zwMn743nM5aX5zcb6ha2iaBlAWAm3oGqcsaGFTX5ycVV+YmU1jleWoaYdcC8LxhohAgiAIgiAIgiDMOnc810fOdrn8lPmEAwaXntzNvtH0lM6PRNZigTYKUHTflKJrGj5dw3TcmYlAjiorGbIchcpnAuV8LfznA3v5WPgf6LvmpwSb2hlsW8sDoUvpfP6baFb6kMOhrcPUYSxtThaBKku/bEeVBURXcvfmAXQNLj9l/rT3f1pPC3tGUgwnc3WFmdksB7Nsd1a7xgnCsUhDIpCmaa/QNG2rpmk7NE27scr8Vk3Tfqlp2rOapr2oadq7Z3+ogiAIgiAIgiAcLdz6ZC+L28OcNL8JgPZIAAVlZUPViGdsOtUIAIZZPRw66NMPqRys1I1jOi66lUBTDo8PwnAyxyWXvRKaewBY1d3Eb3Onozs5/JnBSaVk0+VwhRdnLQerohX8dEQzx1Xcs3mA9Uvb6WoOTnv/p/W04Cp4at9Y3ZIzdzaDoR13Wp3OBOF4ZEoRSNM0A/gG8ErgNOA6TdNOq1jsz4BNSqm1wCXAv2qaFpjlsQqCIAiCIAiCcBQQy1g8sXeMjau6iuVCbRE/AONps+Z6Vv4mvt0ZBkC3JzuBwCsJM20Xx1XTbhPvuG6ZG8eyvTwggIcOOFx+SjenL2wtzl/V3cyBXAgAIxc7ZBHncIhAWcvBdb3g7dLXOlUIdClP7RtjJGXy8tOm7wICOGl+M7oGT+4dq/uaZ7Pbmmm7uO70XqcgHG/4GljmHGCHUmoXgKZptwCvAzaVLKOAZs37hm8CRgHx4QmCIAiCIAjCcUh/LAvA4vZwcVpbxHtGPJau7QRKZm1A0WLlRaAq5WDgiUC5vPhjOi4+o/GUC8tRKFXuBEqMDgHghtp5z4UrypZfNb+JJ5TnZjKyY4ckMCilDkv3qtLyK9NxCfj0vGBWXXDpj2X5jz/sKBOM+mJZ2sJ+NizvAEA343Rs/V+GT38P6MaUYwgHDFZ2NfHiwXjd5WarHMx23GLeUcZ0CPmnHqMgHI808m25CNhf8ndvflopXwdOBQ4CzwMfVqXfrHk0TfsTTdOe0DTtiaGhoRkOWRAEQRAEQRCEI5mBuCcCdUQnigPaG3ACxbMWHSTwKU8oqi0CGUV3yXSdNU5FOVgsbfGTB54F4NoLz6Al7C9bfmVnEwktLwLlvG5XM+3w5bhqVrth1aK0JKpwfHJ2bfHqfx7bywsH4rhKFf83vyXIO89fjj8vsHVs/V96Hv0skaGnGx7HaT0tbB1I1BW+Zut4lApYaXECCUJNGnECaVWmVX5SrwKeAS4DTgDu1jTtAaVUmeyrlPom8E2As88++/AkogmCIAiCIAiCcFipJgK1hb1/j9fJBIpn7WIoNIBRpTsYQNDQS8SNxkWggltEKU98MHSNX7/QRyY+DAHo7JxPrmKdgE+nqb0bUuDLjaOU1wkrHJi+08RRk9vTzwXVRKDS7l2l9Mey/GHbEK9du5D3vmxlzW1GDz4EQDC2i/T8sxsax2k9Lfzi2YPsGkpx8oLmqsvMViRQqbCXkXBoQahJI06gXmBJyd+L8Rw/pbwb+Jny2AHsBk6ZnSEKgiAIgiAIgnA0MZjwpJRSESgcMAj69LpOoNLOYAC6WT8TCKbnBCoVYArulL2jaeYZaQCcYFvV9RbM90Ki9Xx20ExLwlx3doOQa1FWDjaFE+inT/Vi6BrXrKss9ijBtYj2PwpAcHxHw+M4racFgId3Dtc8ZkrNTi5Q6XmQtdxpZ0UJwvFCIyLQ48AqTdNW5MOe3wr8omKZfcDlAJqmzQdOBnbN5kAFQRAEQRAEQTg66I9laQn5CPrK3TLtkUDdTKBE1maBNgaA44+i13ACBXx60QE0LSdQhQiklKJvPMuioOdccoKtVddbMq+ZuArjJL2uZTPtQOWo2rk8s0VpNg6A6XhjreYEGk7muGfzAFecOp95TUFQiuiBB9DsTNlykcFnMPKleYFY47d57dEAy+dF+NnTB3jrf/2Rv/rJM3zrwV08tW+sbLnZyAUqLTlTCrYOJBiIZw9L+Z0gHE1MKQIppWzgBuAuYDPwY6XUi5qmfUDTtA/kF/sscIGmac8D9wAfV0oNz9WgBUEQBEEQBEE4chmIZz1RoYK2iL9+JlDGYr42itJ0zJbl6Ha66nIBQy/e9NfLuqnEKe0K5igsRzGQyLIgkMbxN6GM6g2OIwGDcdWElvXEi5k6gRxXzbkTqLLcLFfHCXTb0wdwleINZy4GoH37T1j567cz/8l/LVuu6eBDKDSSC84jOL5zWuP5whvW8KmrT+Pa9YvwGzp3PN/Hp37xIv35kkGYnVygytwh14XBeC4fNi4IQoFGMoFQSt0J3Fkx7aaSfx8EXj67QxMEQRAEQRAE4WhkIJFjXnSyoNIW8dM3nq2yhkc8a7NGH8MOd+EEWmpmApU6gVzXc7800iHMcieEAstxMR2XgXiWrpY0jt5Wc72Q32CcJubny8Fm6gRyXVWWRzQXVAoqruuVSll2+fRkzubuTQNsPKmL+S0hgmPbWfjwJwFo23Eb/RtuBN27XYwefIjsvNNJzz+Lruf+E1wL9PIA7VpEAj7OXt7B2fkuYy8ejHHjz57nwFiGBS0hYHZygWqFT89W9zFBOFZovJeiIAiCIAiCIAhCAwzGs2V5QOC1GD/VOMhYHSfQYCLLEmMcK7oA1x+t2yK+NAjYbDD/pVQgMW2X0WSOVM6hXUvVzAOCvAikmvDlRaCCsDJdCoLEXJYoVQueTmQnl+Dd9WI/Gcvh9esWodlZltz7Z7i+CAfP/wz+zBBN+SBozUoTGXyK5MILybWuRFM2gfi+GY9vYWsYgL7YRMnZbAg1tcoCD0cGkyAcTYgIJAiCIAiCIAjCrOG4isFEjvZIuQi09N4P8bEDf04ia9UUQfaNpllojGJFevIiUI3uYCXB0AC5Gp2vKil1i1iOy54Rr9yslWTNPCCAkF8nRhS/OV6clp1GGVqBQgDyXIpA1bYdryiJshyXXzx7kLWLW1nZ1UTL3rsIj22h96IvMHrKdTiBFtq2/wyAaP9j6K5FctFF5NpOBCAYm15JWCltET8hv05fbPbKwRxX4dY4BUQEEoRyRAQSBEEQBEEQBGHWGEnlcFxFe2SiXKip936ae39P2E3SyTixKm3iLcfl4HiGTncUK7rAC4au1R3MKBeBZuIEshzFvlFPBIq6cexge831Qn6DMdVMwIoXp2XN6YtARSfQHAoTdhU1JJXzRKC0aTOUyPHbTQOMpkyuWe91BAsPPYdrBEksuQxlBBlf+Rpa9/waX6qPruf/E1cPkFqwgVyr10J+urlApWiaRk9rmIPjE06gQ+0OVqsUzNv2IW1aEI45GsoEEgRBEARBEARBaITBeL49fCEY2nVY8NjnUJoPTdms0PoZT5uTysV6xzKEVJawmyQWnY+RHcOwa5eDlQYdxzIWluOiaxoL28I1x2aVBUO7HBjzRKCQFSNepxws7DfYR9QTgZQLml6129ZUFEQoZw47hFXrPqaUd4ze//0ninlGSzoinLXUE77Cw8+T7TitmAE0vuoNzNtyMyf99DJ0O8fBC/4B5QujfGGscBfBQoew/LGYLgtaQuwfmwj9PlRRrJ4IKE4gQShHnECCIAiCIAiC8BJyqC6II43+fJlPIRi6fftPCY9uZuCsjwCwTB+o2iZ+70iKBdoowEQ5mJ0Bd7LjJujTcZUXCA1eOdhYymIkaZKp49ApdQIpBfvHMkQCOj4zVjcTKOjTiakmdFx003MDzaQcrLD/am6d2aJWadVv8xlA73vZCj502Yl84pWnomkaKJfwyAtkOlcXl013n0W2bRWuv5ldV/+Y0VOvL87LtZ5AcHwHuDYn/Py1LHj0H6c9xoVtIfpjE+3bD1WoserkM4kIJAjliBNIEARBEARBEF5CcrZLyK97N+THAAMJTwQqOH3mbfoemXmrGVrzf+l+8t9YnncCVbJvNM1C3WvBbkUX4MuOAKDbKdxAS9my/nwnMLNKV7B41iIcMKqOrbJsqD+WZUWzQks5OME2NK16p6pwwGBMNQHgy41jBtswbRel1LTet6ITaE7LwSZv23EVd77Qz7olbbxu3SLvRebHHYjvxbCSZDrPmFhB09j5mltRegDlj5RtK9e2ktbdv6Zj64+IDD8HWvVjXY+e1jC2qxhJ5uhuCR1yyVY9HVXKwQShHHECCYIgCIIgCEIdsjNsB94ojlINZ9ocDQzEc2hAW9jLBPIne0l3rwfdT655iScCVckE2jea5pSIFwTtZQJ54kO1DmFBX14EquIAqdYJCybas5eNNZFjZdQrX7ND7TXFo6DPaxEPYGTHAU9HqdWRqhbuYegO5lRRPR7bPcJwMserz+gB5bLyjjex+A+eMys8/DxAuQgEuMG2SQIQQK71RHy5MeY/8c9APiR6mqJWT6vXGr4QDn2oopiqs744gQShHBGBBEEQBEEQBKEGGdNh/2i67k3moeK4akbtxo9UCu3hfYaOZmfw5caxoj0AWK0rWKEPMpaq7gRaFfZKrazIAlx/XnQxJ3cIC9QRgTKmWzUouNIho5RiMJ5ladgTgZxgK81BH9WMPYaukdKbvX/n28TD9AXCwrAOR4v46IEH6Xn47wH41fN9dDUH2bC8g9bddxDtf4zWnT/HyI4RHn4eVw+Qa1vV0PZzbScA4MvFGD/hGgwzjpEbm9YYe/Jt4g/m28QfaklkvbXn0nUlCEcjIgIJgiAIgiAIQg0SWYus5TKUyM3ZPpRS03aUHMn0x7N05kOh/ak+gKIIZLYsY1mVcrCs5dAfy3KSfhA72IryR3D9UaC6Eyjg8xw7uRoOqngVp1FlDk8sY5GzXRYF826UYBt+Qyfkr36LlPF5JWmlItB03zfnMLSILwRDt+7+FZ2bvsvBgUGe643xytULMLCZ/8S/YEXmo7sWbTt/TnjkebIdp6CMwBRb9ii0iR8/4RrGT7wGYCIougGC4zs46+EPcI3vEfrHvff2UI9HPbfPXAq4gnA0IiKQIAiCIAiCINQgnvVaaw8mcmXdqGYTV1V3tBytDMRzdDR5gsJkEWg5UbKQGihbp3cswzxinBH7PbEVVwMUnUB6lQ5h9ZxAAIn8+1ZKpRNoIN/FbEHAc6M4wTYMQyMSqB6bmvW1Al4mUHHaNJ1ABbGiWm7PbKDURMmbP9UPwFPPPInf0Hj5aQvo2HoLwfgeDlz4T2TmnU77th8THn5hUilYPazmJey77BscPP8z5Fq8lvGB2O6G12/edw+t++/hy76v8dfbr8eX6jvkkq16qx9jueuCcMiICCQIgiAIgiAIVbAdt9hpSqmJ1uezjauOvXKwQmewShEo17ICgObU/rJ19o2muN53Nz5lMrz6fQA4dZxAQaO+CJTM2ZNKjCpbpw/EPQdQt57w5oc68OkakYpcID1/x2T5PRGotPRpOk6g0kyiueoIVyou+dODAAzs3cRFq7poDWp0P/VlUvPPJrH0CsZWvZHwyAsYZrysM1gjxFa+BifUhtm8GKX5ik6gSN+jnPqDNSz+w18SGXii6rqBxH6cQAtfb/1rFjoHaNl3zyGLQPXWn0vX1bGMfQzllAnliAgkCIIgCIIgCFWodJPEMtac3Bi5hzEYeqbiQ6MilWm7jKRM2iP5UOi8G8WKLvDmtywHoC3XW7bewaFRrjd+S2zplZj5zJmZZgKBJ9qlK1w6mYq/CyLQPHsA1wjihOZh6FpZOHRTyMfKziZ0HfwBPyktUlYOVugQ1gil2TRz5QQqFTx8+WO/0Onj6jN6CMZ24c8MMXrK20DTGD/hGpTmuZ6m4wQqQ/eRa1lWFIFa99yJbqVo2XMXJ/zyWpr33j1pFX+yF7N5CXvmX+ltIjt2yMejvhNIRKCpUErRO5ZmMJElnrXYP5pm++Dkz51wbCAikCAIgiAIgiBUoVIEUgrG0tU7Tx0Krjs9MeFQGEmZM3JGJHOTy6uqMZhvD98WmXAC2cE2lM8LAjabF+Fg0GMfKI7DVYplvb+gQ0syfMafFLfl1ukOVhCB6jlx0mb5mDMVfw/Es7SG/UTSBzCbloCm4dN1gj4Dn+GlQ89rChAOGCyfFyXkN4hrzWUi0HQ6hJUe97lypxQCsTXHxJ8dBmBdZIRV85sJjW4BINtxqjeG8DwSSy71QqHbT57xPs3WFcVysGjfo6QXnMOWtz2Oa4Ro6ntk0vKBxH7MpiV0treRVkHs5CiWrQ7pmFR+dP7rgV189Z7tVecJkxlM5BhLWQzEcuwdTjOetsRBdQwjIpAgCIIgCIIg5DFtl6zl4LiKRG6y4DNapavVoeLmc1wOhxsokbVIVsnLmYpG1ynk7HQURKDkQazowokFdD/xUA/LtAH+sG2IezYP8Bc/epKrEj9jX+hk0gvOKS5azASyqjiBCuVgdY5Z1pyYp5Qia5Uv+2JfnJWdUQKJ/VjNS9A0rwsYQCRgEPTrtIQ8R1M06KMl5CdOE758i/jifhrMBSp1pCg1NyVhhRt3X74UDOD08AgAobFtKM0oBjsDHLzgM+x9+bdRRnDG+8y1rCAY342RHSM0uplUz3m4/ijZ9pMIjW4uX1gpAslerObF9LSGGCeKmfTEqkrRbjqokv5gm/ri/OLZg/xx90hhl3NWfncskMrZVYPvlZJQ7WOV6qlngiAIgiAIgnAcsm80RcasLSyYtks8axXFgdlAH96CQRumHSHoM6ZcXimFVq2P+RS4riJtOvgNi9ZI4+NXSjXsBOodSwPQ1ZzvDpbuL5aCFUg3LWNZ+gA3/G4bAK9v3soJeh97z/04pf3ZXV8EhYZRxwlUr0wtbU2MOWu5ZY6Q/niW3rEMr1y9AP9z+0l3ry8KQADhgEFTsPxWKRwwGFdNLClxAsHMnEDglYfpTP99rEehrCoxtA+AIdrptnoZBYJjW8i1rigTfKymRVhNiw5pn2brCnQnR9vOn6OhSC44D/AcR8377ilb1siOoNsZzKbFLGgJMa6aCWa8jKWM5dA8w89V4dA6ruI//7AT8Jx8yaxNU8iHOwfH+ljAKwPL1HRLuQoMOWzHHOIEEgRBEARBEARgJJmrKwAVGE/NbklY523X0f3UlxvK3UlkLSxnZk/nU6aNUtU7Z9XDdr1SnUa6o20bSODTNRa2eeVf/lRfMRS6QLD7RE4JDPGlN63lq29dx6cXPIQV6iSx8tXlG9M0XH+0anewYAMikGWrYnlUpcvkyb2e8HBujx9fLobZvARfiQjUEvLTHilvmR4JGIyraFk5GEzDCVQx1Lkot3FcxWjK5Pb7vVDm3OIL8GeG0c0kodEtZA+h7KsWuVavQ1j71h/hGkEyXWsByHacgj87jC89VFw2kPCyoMzmJUSDPsZVlIA5DlAMYZ8JBcfKXS/2s2s4xcZVnQD0xbzOb2IEqs5w0qz7GZKSsGMTEYEEQRAEQRCE4x7bcYulTFNR6jCZDYzsKIHEvobKwUaSM8v0gYlcH8dV0yq9Kewv24BAtm0gydKOCH5DR7Oz+LKjk0Qgs2UFfjvFKU0pTgqO0rL/HsZOeVvVkiTXH0U36ziBnPrCQTovLFSGQj+5d5QFLSGW6p5AYTYtLnMChfwGul5ugQgHDEbcprLuYDANJ1CF3WIubrAtx+Wf79pC1PTKwbRlFwIQGt1MMLGPXMcps77PgggUHt1Mums9yhcCPBEIPAdSgUDCcyiZzUuIBAzGaCJoxYGJ92omuMrLePr+H/ewZlErbzprCQB9sWx+vogZlTiuqloGVooct2MTEYEEQRAEQRCE457haYgrpQ6TQ8Z10Jwc/lT/lE6gnO2QyNpYlZaSBinN9ZmOG6hQYtSI+LVtIMHKLq+1uz9d6AxWLgKlFmxAaTor73gLPY/9E2g6I6e+ver2XH+0eiZQA8HQMOHSKXWZmLbLs70xzl7WTiB1wBtj8xJ8ev1bo2jAx4gbwcjFQE3st9FQ78rzay46hD2+e4wXD8a5fJGDawRJd60DoGXvbwHIts++CGRH5uPmg79TPecVpxf2FR6dEIH8Sc8JZDUtwm/oxGkmbMe87Tgz/1yZtsMXfrMFFNxw2YksaPWEqAknkIgZlQwnc1N+58lxOzYREUgQBEEQBEE47mm0pKfAobgWysi7XPzp/ikFjZGkF0rtzKAczHbcsmDkeKbxkrbC/qYq18mYDvtG0yyb53X18if7gMkiULbzDHa9+n/R7Qytu+8kvvwq7Iplivv2R6tnAhlTl4OB9z65rio7ti8cjGHaLmctay9zphhThJ9E8plAGgrdjBenKwXxzNQCWeUN9Vw4gb73yB46ogFWhRJYkfmYLcsBaNn7GwCyHYdWDtYUqhIpq2lFN1CpCOSE52GFu8rCoQOJXuxgG26gGYCk0UzEiRdbeM30c/Wf9+9i+2CSD1++ip7WMCG/wbxogINFJ9CMNnvMYjvulC4gkHKwYxURgQRBEARBEITjHnua7ppDyS8pw/KClH3ZUaxsuuZijqsYS3si0EycQJXBzlnLbbhjUuHYVJZUVbJjMIlSML/Zc2H4U9VFIID0gnPZ/vpfM3TGn9B/9seqbk/TvA5h1ZxAmqbhN7QGRCCbjOWgFOweTrJvNM2ju0fxGxqrF7USSPTi+KM4wfayTKBqRIM+xpTXsayyQ9hoeuqucZOCoWf5BvuJPaM8s3+ca9cvIpAZwI4uwA00YYW7CMb34vrCmM1LZ7x9TYP2GoHiuZYVuHqAdPeZZdOzHacWW9MDBJL7MZuXFP/OGC0YOMX3eCafq30jaX7+zEGuXtPD+Sd0FqcvbAvTN+45gY5XMSOerS72jqWtmmHQpczQdCgc4Uh3MEEQBEEQBOG4Z7phy4fSzrqMkrwbIzXAQLyV7ubgpO5f42mzeEM2kxvaai4jy3UJ6lN3Iyvsz3U9x1TIX32drQMJAJZ05J1A6doiEHhOkf5z/67mfkN+HdcfLYpJlQR8+pQikOtCLGMxlMjx57c8U5x+5tI2Qn7Daw/ftBg0rSwTqBpNQR/jeCJQZTh0Mmtj2m6xTK0ale9bI0Hb0+Hrv99Ba9jPVacvwL9tgEznGgDMluX4M0Nk208CbeYegGjQV7N73dDaD5BYekUxD6hAtuNU5m36Lrg26D78iV5y7ScV56eNVnC84+kGmqcUGqsxnPIcLWctay+b3tMa4rHdo8Dx2eo8ZzsMxrNVOxmONyBagpSDHauIE0gQBEEQBEE4rlFKYU9bBHJm58bSmnD/+NP9DMZz7BpOTcpGGU1N3LRNd6xQ/WauUTGpNLumXtncs73j+A2NntZCZ7B+7GAryh+Z5mg9Qn6jphMIIGgY5BrIkBlLmwwnPaHg2vWLuP68ZbzrghXeGJO9RWeKv4FMoHFVXQSCqW+sK9+DsZRFooZTY7pkLYf7tg7x8tPmE/Lp+FP9WNEFAOTyJWGN5gH5fdXFsGjQKHZlm7T/zjWMr7p28vSOk9GdHMH4HlCKQMnxBjD9rQDFsO2ZiKsF91CoRKDypQd5hX0f77Fupu2Jr+DMVobXUUTWdMmY7iQXYNq0y0pDS1FK8cz+8aJAWRlmLhwbiAgkCIIgCIIgHBfUEm1m0nJdqca7QtXFLBGBUgMApHMO+0cnpqdy5TdtMwkUrrZKo6+7VCw6OJ5lIJ4tc+CYtktfLMOmg3GWtEeKjhpfqg8rUt0FNBU+Q8Nv6Dg1uoOB5wSyGngPCm4ggItWdfHms5ewojPqiRKJ/ZhNiwGmzASKhgzieIKWYcYmzR9L1xd0HFfhj+9l3gvfLk7bP5qZJPiZtjvtgORC2U9nUxDdjKE7WayIJwKZrZ7g1Uh7+HBA58SuJrQqh6I56EfXNXxTHKdSsh2nAl53Ml9mEN3JlYtAAU8EKpTXFdxm06GQI1TqUFv40Ce4dt9n+XPf7Sx55l9RmbFaqx+zFFxVwxXZP7XOU6UU33pwN5/8+Qs8sG0YoOGSUeHoQkQgQRAEQRAE4bggVSNvZLp5QAVmJRy6JPTYn+ov/juVc4rOklIXEHihrtOl2s3cTJxAjqsYjOfY2p/ghQMxNvfF2TaQYDhhsnckzdJ5E66fQPJgzcDnqQj5DTS87mBGDSdQwKc3LMQVRKDWsJ+up79Ky567MHIxDCtZzMmZKhOoKeAjqTyXUzV3kmm7dZ09rlK077ydhX/8NHreSeS4ir0jKQ6OZ9g/mmb7QIKt/YlpBXfDRLe3SMAoiol2dD5Q4gSaoj18wKezbF4Un6HTGi4vIdJ1CAc8kaWWG6gaubYTUZpBaGQzgUShM9ji4nwr2AaUO6tSuem5gQruoaB/Ylyhsa30LbiUv7Xe602oISQeyxREoETWLgprrquqOtaUUnz7oT38/NmDAPQnJFD7WEZEIEEQBEEQBOG4IFmjLbplz+xOZ7o3q9VQJTenhQydAn2xLDnbKQoYBWbiBKpmgmpUTHJqiGRKeaVpSnnHYjiZY2nHhAjkKylJmi4hvw5avkW8k/UyZSoI+HTMBl9D4Ri2BRTdT3+FRQ98jNDoiwBYzXkn0BQiUHPIRwpPBDJqiAp9sWxNx5njgm56uUm+zEhxesZ0GUmajKetouNrui6zZFEE8uFPe2KiFfFEoMSyK+l92RdI9ZxfdxvzW4L4813XWipEoKbgRJRsvdyjSpQRJN19JvM2fY+WvXcBYDZPiEBOoA2oFIFm6ATKl4NpjkkgsR/VfTpx5Z2PyqwuJB7LlIZs7xpKsXs4Re9YZlLYc852+Mo927n9mQNcfUYP86KBYucwKQc7NhERSBAEQRAEQTguSOaquytm0m0Lpl+2Ug0355V9Kc2Hr8QJBJ7AsmsoNUnAmUkwdLVMoEbFpEaWK5SvLeuIAqA5OfzZ4Zqh0FMR8hnomobr9zJ49Cpt4oMNBEMXiGUswn6D5uRudNfClxtj4SOfBiiWJ03lBIoEfaQI5cdTXVTIWS5Dyeqttx1XYeRby/uyI1WXKW5nmiJQwQkUDRpFR1lBgFNGkLFTroMpQsBLy6laQj5KI5KiMxSBAPZf+jWcQBNdz90EgNk0UQ6mwm0A+HIT5VqVGTZTkc4vH8o7gQKJfWjKwWk/ASPonY/KrN1571jEtN2y7wnHVSSz9iRBeTCR5eO3Psc9Wwa5bsMS/mTjSrqag8UMLSkHOzYREUgQBEEQBEE45nFdRdZyqwooMwlahtnJBCrcnJotS8vKwQpUG5vnwJnevquKQA2+7kaW21sQgfLlYL70IFC7M9hUFMrBHL93E6/bk2/iA8b0RKDWsJ/Q6CYA0l3rCY1tBcBsWoyuM6kjWyXRgA8XHVMP1yxRAxiM5yZ1/srZDo6rqjqBqjFdgbFQhhYJGEUnkJ13AjWCrpeLQJqmFbtK+QytrMNUrQ5htbCaFrLnFT/ADrZihTrLgsKDwTAJFUbLZwKBJ1hM5/WnKjKBArFdAORaTyDS1OItdJyJQJkGSlWTOZu///mL9MWyfPLVp/G2c5ehaRqdTcFijpB0Bzs2ERFImFOOx3aMgiAIgiAceeRsF6WoGrg73RDeAkrNzJVTto28wyXXsqJ4894I0y0Jq+4EaiRUWVUtJavkkV0jNAV9dDUHAfCnvVwaaxpCRClBn45W4gQyqpTzeJlAjYkFRRFoZBOuEWTfpV/FNYI4gRbcYCu+KTqDAUSCnsiQ0yM1nUDgnRf9sWzZtEKuU0E88mWH6+7LdtS0zq1EbqIczJfqxw51oIxgw+uH/ZOFnbaIn5awj1XdTWXun+lkAhXItZ/Erqt/Su8lX5603xhRtMxo2fTplFqmTRtdm3ByBcd3evtsW0lTc0EEOr4ygTJTiGiOq/iXu7YwEM/y91efxjkrOorzPCeQiVLTOweFowcRgYQ5JZmzJ4UZCoIgCIIgHG4KzoJq4slMRaBDXRcoOhTMtpVeoK9qbHvTF4Fmto1Glnly7xhP7h3jTWctRs+7aXx5EWg6bpQCQb+Ormv5YGjPNVKtHCwwzXKwlrCP8Ogmsu0nY7Uso3/DjYyd9CZg6jwggIi/IAKFq46nlHjGLgYWu65iLOU5dYyCEyg7WnPdAtNxwxTLwQI+rz18ZHpZTIXQ51KaQ/5iUHQpAWNmt5C59pNJLt44ab9jqgmtonvXdHKBUqZD2G8UnVzB2C6scBduoIXmZq/7mJk9vjKBphKBvvvwbp7aN84HLj6B0xe2ls3rbApiOi7xrC3B0McoIgIJc4qr4OB4pmhRtR234Sc2giAIgiAIs0U2f/1RrYxqJkHLBQ5VBFJmCqX7sJqXoil7yjKhAs40S9iqOYEaGftU5SC24/LfD+5iYWuI16xdWJxe6FBlRacvAhUCfsszgao4gYzpBUO3hfyERjeT7TgNgJHV76XvvE8BU+cBAfgMHb+hkdGjU4pAAAPxXHHfBUeFns8EMhp4n6dTbli41g4HDHyZQexId93lO5oCxQwdqO4EqoWua/h9jbeJr0ckYDCumjCy5SLQdHKBMqZDsGT8wdhOzNYVAPjD3vljpY9tEUgpxWA8Szx/HtQrB3twxzC3P3OQq8/o4arTJ4uFXU0BAIYSOSkHO0YREUiYW5Rnid03mmbHYJLNfQm2DyTpHUsf+pMzQRAEQRCEKdg3kub//uAJhpOeM7maaFDPTWJkxwjEdtecP9M8oQLKTKN8EVSzdzPmq+gQVnO/0wyzrra4605duj+VQHbnC330jmV478tWFDtLgecEcnU/TrB9WuOEklbf2kQmkHEITiClFPGMxWJ/HF92lOy8Uyct04gTCDyxJKOFi46eeiSzNsmczUiJK75Q1ubL1C8Hg+k5gZJZm7DfwNA1fNlR7PA8b39VXpeuw/zmIK2RiZyf0DREIJjIBepuabzkrBrhgME4TfjMWNn06eQCpU2bUGm5Wmw3udaVAGgB7/xxcseuCGQ5LruGUwzEc+wdTrNtIFGzjOvAWIav3rOdk+c3856XrSibp5txUIqupgCv0R9m472vo+XZbx2OlyAcZnxTLyIIM6egHrvuhCKtFIylLHy6zoLW0Es5PEEQBEEQjnF++dxB7npxgLOXdXDeynmTRBtnisybhQ99gube37PtTfdjR7omzZ9pZ7ECmplC+SOoZi9A2Z/qJ9u5Zsr1ZiMTqLAdv1FbAKnnOBqMZ/nhH/exfkkbG5Z3lM3zpwe8UrApwparUWz1rVHXCRRssEV8ynSwXcUqtQeAzLzTJi3jq3MMSgkHDFKE0a3Y1Avj3XSXClW61Xg52PScQDbRfGaRLzuKHfJEoEjAKJaKFehqDuIzdNrCAQZiuUmh0I0Q8OmEAwbdzUFGkuaMs2MiAR/jqgm/OT5pXjxjNTSutOkUl9Nz4/iyI+RaT/D+DnjlhO4xmglkOy47h5JY9sTxz1nVz5us5fD532zGZ2h8/BWnlIm2HZt/wKKHPoHjb2KVv5nXB/ogCbGBJ+f8NQiHH3ECCXNKPQuhI/ZCQRAEQRDmmEd3ezfbLxzwbtorRaB6zmTNStOy73cYVorup/616jLWITqBsNJet6TmRcBEGdVUTFcEqnXZNZWTqZbjyFWKr9y7HYA/u/TESZ21/OmBGYdCF/JpNMAJNANg5CaLLgGfgWm7U7qZ4vm22MssLzA423FoTiBPBGrMWVLmVHKdoqNpqmBoYFoRComcRTTgQ7Mz6HYGJ+Q5sCIVWT9+n0Zn1HPvFISc6ZSCFQj5dBa3h9E0ra6IOBVhv8EYTQSs+KQ8rJGU2VCTmdJysGCxM5jnBDICUVyloXLHngjkuoo9I+kyAage/3n/TvaOpPmrK08uBrgD+BP7WfDo50h1n8XYqjeS6zyDv7Y/yIHgiWjHqHh2vCMikDCn1PtKciVpTBAEQRCEOcR2XJ7c44lAm/u9LJZK5049Eah5/73oTpZ095l0bL2F4OjWqvs4JKw0yh9Ga+5GaQb+VIPlYNPYb71rrqmcTLUcHr95oZ/nemO8+8LlzG+Z7Oz2pQemzKWpRsivFztR6ZqGE5qH6wsTSO6ftGzAp+OqqQWxWF4EWpjdgdm0BDfQMnm8DXQHA8+5kiRUt0V8LUqFo0aynyy78e5MiaxNJGgUt2uH5qFpEKoQgZpDfvQSwast4q8aCj0VHdFA0X3jn2FQNHgiVUw1oeOiV5TY2Y4inpk6GyhtOsVysGJnsLwIFAwYpAmijkExo3cs01AreIC7N/Xzu82DvHnDEs5aVlKiqRSLHvg4aBr7L/s6fRd8hn0v/28eil5BgjC6nZZ7tmMQEYGEOaWeE+hQQhgFQRAEQRCgvoizqS9OynRY3B5m51CKrOVMcr7Uc8K07r4DK9zFniv/G9ffRM9jn6uy/9lxAvl8PuxwV8Nt4qdzHVXXmT2lE2jy/P5Ylu88vJt1S9p4RZVgWQB/enBGTqCW8EROjaZ5/5drXkYgvnfSsoG8A6XUbbP07vex5J4PlgkK43kRqDO1nUyVPCBovBwsEjBIuFN3B6vkxYMxnt2xDwArsgAjOwru1DfwjbqBElmbSMCHkfNETzvUga5pk9q5hyr+bgv7ifinnxBS6vxq9NhVI+z3uoMB+HJjk+YPp3JTbiNjTZSDBWO7UJoPs2Wp97ehkyGIZqVnPMYjkb5YpihuTsXekRQ3/WEXaxe3ct2GpWXz2rf/hOaDD9J/zt9iNS0qTu9qChJ3guhWUqo3jkFEBBLmlHrfGTOtHRYEQRAEQShQLzfl3i2DAFx75iIcV7F9MDlJNKrlhNHsDC377yW+/BU44U4G191Ac+99hIZfKFtuugHNk/ZjpcEfwWfoWNEF+FINikDTEJ/q3cRN1wnkKsVX7tmGrmn8+WWrJpWBgfeaDDOOPYPOYC2hEhGIvMjTsoxAfM+kZQP57KBSESgy8BRtu3/FiT9/DcGxbYBXDhbEpCm1p9gZbNK2GnSzhAMGCRVCd3Jojjn1Cnl++Me9fP++5wHItSxHQ2HkxqdcL1sj36WSRNYiEjDwZTwRyAl14DM0gj6jLJap0vXjM3RawocWEzvTlvGF8YzjiUDVSv7SOWdKt4tXDpZ3AsV2eQKQ7p1HQb9OWgXR7fQxc+8xnMwxnGjs3FNK8e/37STo1/mrl59cVvao2VnmP/FFUt1nMXrK28vW62wOMu4E0K1j57gJE4gIJMwp9Z48SctBQRAEQRAOlVyNDkLxrMUfd43Q0xri3OVeSO6WvjhKlQsbpU4eIzvO8l//Hzqf/Xda9v4W3c4QW/EqAMZOejNKM2jdfWfZfg61Oxh5EcjQNXKtK4gOPklo+LkpV5uO+HQoD+UqnUC/eq6PFw7Ged/LVpTlipTiT3vi23SdQH6fViZSFMQLs2UZgcT+SZkxwbz4kCk5BwwrQXLhhehmgmV3vx/wysFO0/aiKZfsvNOr7rtRISMa8BF3vNc9HTfQSMqkRfPcKNtsr0xuNnOBEvnuYL7sRDlY4YY/UOL+KYRul1JNyJsOvkMQgfyGTkLP5z5lJzuBAMbS9QUPrzvYhBOoUAoGXhezNEF0O3NM3HvkbIe+8WzDy/9+6yCb+uK864LltEcCZfM6tt6CP93PwNl/DVr5e9jVFGTcDqBbqbrfH8LRSUOfWE3TXqFp2lZN03ZomnZjlfkf1TTtmfz/XtA0zdE0raPatoTji3pfGod80SQIgiAIwnFPtoYTqD+W5cWDcU7raaEl7Gdxe5hNfflcoBI3UGm2zoLH/x/NB+6n5/HPs+S+D2OHOkgtOBfwnBWpnvNo3X1H2QWOUvVL0qZCs9IQiOLTNfo3/A12aB4rfvPOum3poby9+1T7r1ueP8X1mFMiNvXHsnzvkT2cvaydK06tLfD40l649XRFoFIXEJSLQLqTK263wIndnoPksXz4t+aY6E6OZM8FDK39U4Lx3fhS/cQyFhv8XmBwunvd5PEaWllOTj0iAYNx18tAajQcWinFSNLkshVhAH7b53WsaiQXyGywQ1gyZxMJGEUhxQ51YOQPYKEkLODTG36d0+FQgqEBcr5WgJrOqKlaxRfKwfyJXoLj28mUCH1Bn1cOZhwjIlBlp7d6JHM233loDyfPb570edXsLF3PfoPkgnNJ9Vwwad3OpiApFUSzUmVOQskHOjaYUgTSNM0AvgG8EjgNuE7TtDIfpVLqX5RS65RS64C/Af6glJq676FwzCNOIEEQBEEQ5pJqTqBkzmb7QJJE1mb1Qu8G89SeFrb0J3CVKnO3FASUSP/jdGz9EUNn/Am7r/oe2faTGTn1etAnSmViK15FML6b4Fh5QPShPNjSCplAhoYdXcDuV/wAUCz/zfWTnCZGdpRI/2P4E735sSvSps1gon5uSr37tqmyhUrnf/eRPWhU7wZWij8v1tjTFIFawxUiUKEcrHkZAMGKXKDlnVFO7Wnhzhf6cJUqHi/XHyXdfSYAkcGniWUszvLtwoz2VB3TdIKNo0GD8Wk6gRJZG9NxmR/w3qdIz0kAPPrC5KDxShppE287LmnTIRLw4cuOoDQfbqCl6AQK5l0yM+kC1giHEgwNkPO3AdUzgQDMOiKn6yqylkvIr9P54rcBndFT3lacH/QZpFUQw0lziJWbRwTJaYhAP3uql3jW4k8vOQG94vPquYAGGDzzL6HKZ7mrOUiSMIadxik5/o2cj8KRTyOf2HOAHUqpXUopE7gFeF2d5a8DfjQbgxOOfurpPEqJmiwIgiAIwqFhOWpSG+mhRI4XD3r5Iqcv8jpBnbaghWTOpncsU3T/2I7rZa64Fose+lvM6EIGz/xLkksuZce1dzF41l+VbTe+7BUoTffcQKVjOIS7S81KowUixe5UZtsJ7Lv8JoKJfcx78TvFZU74+Ws47YfrOOFXb2Tp72/wlnVc9o9mpuwUVt8JVH/dgsC1pS/OQzuGuXb9IjqbqpeBFfDPwAmk65PbmRfuTXMtnghULRz6VasX0BfL8sz+cXTLC4N2As1k552OqweIDD5FLGOxmh1kutZV3XdleHI9okEfY7ZXVmNUdLOqxUjKK2ea5/P++/KXec6LzTt38ZV7ttV1ujTiBErmPGEgEvDKwexQO2haMbC58PpC/rlJAjlUEcjJd2ur5QSy7Mmf8QLZfLlcq56hfestxFZejR3tKc4P+HQyhPCVOIGmchYdqSiliu91IzzbO86pPS2c0NVUPsN16HzuJs8FtHCyCwigsylAWoXQlYOyMsXpmaP02AnlNPKJXQSU9mTszU+bhKZpEeAVwK2HPjThWGAqs490CBMEQRAE4VCwXbcs18dyXJJZm8f3jNLZFGRBvn35qT3ejebW/njRWRDLWCgFLfvuJTS2lb7zPonrj9beV6SL1IJzJ+UCWTN9Oq5UPhg6iqFrRdEj1XMe8aVX0PXcTei5cRY88c9Ehp5l4Ky/IrnwAvzJgwAcGMtg2u6U11OqzvBK16280XZdhVLe9G8/tJv2iJ/Xr1885cvypQdwjVDVVuy1CPuNSe6ignvBalqE0nxVw6EvPLGT1rCfO5/vwzC98izX34QygmQ7VxMZehqVHmGR20e6a23VfU/PCeQjobyyrkadQCP5Dldthncz7bQsRaGxcSH8bvMgH/3ps+wfrd69SqmphaBCiVA04MPIjmGHvAysQjlYIROosl38bFF67s6EYDBAUovWzASC2g6UdD40+tzRX2JYSYbOeF/ZfL+hkSaI350QgUZTjQd6H0kkc3bD+Tw522HnUIpTF0z+DEb7HiaQOsjoae+ouX5Xc5AUntjr5rzPleOqQyp9FY4cGvnGq/aRrnX6vQZ4qFYpmKZpf6Jp2hOapj0xNDTU6BiFo5ipSr6kJOz4QLoKCIIgCHOFUuUhyTnbJZ6xeGrfOBtXdRaFhfktQTRgOGkW3S1jaa/Fsi8fZJyef/aU+4uteBWh8e3FzlNwCA+17CwaCi3gCU+lrbYHzvoouplgyX1/wbwXv8PIqe9gcP2HyXSu8dqLK1UUB6ZyVtdtEZ9f13EVQ8nysrLC63pk1wib+xO87Zxlk7pLVcOfHsCKzq9aZlKLUJVSpeLaug+zeXFVJ5Df0Hn5afN5fM8osVi+M1bAcz6ku9cTHnqOFZkXAch0ra+678A0nEBNAR9JCiJQY5lAI0lPdGjRMl6plj+KE+pg/TyHT73mNEaSJn9+y9N8/5E9VV0qU4VDF0SgSNBzAjkhL5p1ohwsLwJVCYWeLUqPYWdzYFqiUNhvMEYrvkzt+8NaJWEZ08GHzdkDPya54DyynWvK5muaRk4L4XcyxRyt8bRV01l0JDMdF9COwSSaa3FG1+Rzu337rTiBFuJLr6y5fiTgwzG87Co3L66ativX9McIjXzj9QJLSv5eDByssexbqVMKppT6plLqbKXU2V1dXY2PUjhqmUrkkS+SyaSm8QV/tGC77pR2c0EQBEGYLgWnSqkTyLRdHto5jOMqLj5p4nrTa4XtZyztiUBZa6L1tGF6pWNOoHXKfcaXvRyApt77i9Nm/HTczLs/Ap6o4CsJ7c3OO5XYCa+jZf+9WE2L6T/nbwCv65PummUCxFQiVOn1WCxjlf0mK+WVhPXFMuQq2pG7SmE7Lt97eA9L2sNceVpj5V2+1MC084CqikAlQoLXIWyyCATwitMXoGsadzzhCXOu3+s2le5aj+5kudq+GxeNTOcZVdefjggUDfpIKc9dZjQsAuXQgKhK4wSaQdOwQx34siOcvayDf3/7mWw8qYufPNnLP9+1ZdL6UzuBPDHTywQaxa4QgXyGTsCnT+t1TpfSc7erKcjSeZGGhaBIwEc/nQRSfTWXqXUM0qbDidpBWswBxk5+S9VlcnqYgJvFVYqU6eC46qisRphOHtCW/gQf8/0vb33sDehmvDhdN5O07vk14yuvRvlCdbeh8uK0lvMcbyICHTs08k3wOLBK07QVmqYF8ISeX1QupGlaK3Ax8PPZHaJwNDPV98TR+AU8l1iOW3xadCzhuuUX6IIgCIIwGxS61pSKGqbtct/WIZZ0RFjROVHapdkZbtU+yqKxR7Fcl1jGKs4zcjFcIzjlTRGAHe3BjC4kMvRMcVrpb9y08kYsTwQqOIEMvfzSvP+svyLdtZbei/+1WKZWuMEvtAKHqR+qFY7TwfEM7/v+4/zs6QNejVh+eixjMZayJm3HdhW/ebGfg7Es775wRVFUmAp/eqBmHlA4UP32o1pocWl5mNm8bFIwdIHulhA3XHoiw8Ney3Unf6wK4dCXaU8xHFqBG2iquv50ultFggaJaTqBhlMmbRE/PjtRHIMd7sSX8cbbFgnwl1ecxDXrFvHUvnHSZvnNfr1gZChxAgUMjOwoTjhfDlbyflWGbs82hZK6oF/3BNeQnwWtU3+eAMIBgwNqXrHMsRq1RSCbCF7L9MJnY9K6eoigyuK4nksQjr4uxaadzy9rkM19cTb6NxPMDND1zDeK01v2/BrdzjC+6o1TbsP2eZ8jNy8C5RxHqjiOEaYUgZRSNnADcBewGfixUupFTdM+oGnaB0oWfT3wW6VUY8WxwnHCFE+mRAQqw3Jc4lnrmHPNOEpNeQEjCIIgCNOlIFqUijD7RtJs6otz8UldZSJCaGwbJ7p7WJp8HttRjKUnHroYuRhOcGoXUIFM9zrCJSJQ4Xc7lQ+ebpi8CKQXysEqRBarZRk7X/dLUj3nFacVS31K8lOmarahlHesvnzPdrKWy+a+OEvv+VMW3/cXAPTF8jfRFdsYT5n86LF9rFnUytnL2ht7TUrhS1d3AoX8ek3HT61w5tI28YYZx8iOV13u8lPnc/EyT3S4Z7f3HlhNi8iGutA1xVDL6VXX0zQITCMTKBIwSOVFICOfCdT5/H/R88ina64zkjSZ1xTEMBPFEGQ7NM8r6yvhnOXtOK7iud5Y2fRKh1YlhTKhJh/4cuPYQe+98pWIiodLBCoN924K+motXkYkYNDrduBLD4BrVV2mlgiUMR2CmreOMqqLTpYeRsfFtbPE866pQwlzfykojLsRlFLs6hvhRLUX1wjS+cK38Cf2AV4pWK5lOenus6bcTkF4VjkvAN203Skf8AtHBw194yml7lRKnaSUOkEp9bn8tJuUUjeVLPNdpdRb52qgwtHJVF8UzlGoJiulGE7m5sQO6XU/gNH0seUGKtjJBUEQBGE2KTyVLi3HumuTV1JSWgoGFDN8wtYopu1i2RO/44YZa6gUrEC6ax3BxL7iTXxBhOqLZciYE2VmU2J6IoIW8LI3fHUcKbGMheW4xdDfUicQ1HdXu0rxy2cPsrkvTkc0gBreRuueXxMeeR6YaORReW3znYd2E8/avPvCFXVbwpeiW0kMO13VCRQN+qqWJAV8OnoNl9HkDmF7au77giVe166fPB/zMl80jeFWLyMmPq96KLTP0Bp+bZDPSsHA1kPo+ayUlt13Mm/Td/Glq2fajCRzzIsG0M0kTr5UzQ534ssOly13Sk8LYb/Bk3vLA5KndgJ5AkELyfy2vXOk1FjWSJbToVBwU0UDE8JP0Kc3VBIW9hvsczrQUPhTA1WXqXUMUqZDCO+62a3h5LPz4lA2mSh+7p2jyAlUuPdolL5YlsW5Hfhw6D/nb0HTWfzAx1j+m3fS1PcwY6ve2FBel5t3AmmmlIMda8xdYaggcOxlAmVMhx2DSfrGs+waSjbUtnM6FJ5KjKUaV/uPBlxXSTmYIAiCMOsUriNKBZB7Ng9yyoLmYlewAsHxHQA02WOTQmENc2onUNZy2DbgPREvtBovlIQ5rneTljG93/FCN6gpqSgH8+nVL82VUvz5LU/zwz/uxQ4XysHKXST1rqkG4jl+8Me9nLuig9etXchrcl6Le1+mUkgqv655aOcIaxa1cmJ39TKqatRrDx8N+ggak8WIeoHFWj4e2iyIQIm9hAefJnrggUnLGlYKhcbuBGzu996rA02rAc+9VY3puIBgQuQwjUixHMyf7kdTLq27f1V1nZGUSWdTEMOaKAdzwvPw5WJozsSDP7+hs3ZJK0/tKz9HTdutG2Qcz5eDNbvj3rYLJYM1zqe5wFdwAgUn3ktN0xpqSx8JGPQpT7jypw5UXaZeOVhBBKrmBPIZGo7PE1kz6URx+tHkBIpn7DLReiq29CdYo+8CILb8FQyt+QBNBx8mNPoiA2d+hOEz/qSh7ai8OE3e8WY6rpSDHSOICCTMKVN9TxxtItCB8UyxHjdruewaTs5qSVvhSaZpu9OyfR7pSEtJQRAEYS4o3McV3KYvHoixZyTNJSdNbkASGt8OQAexYlvpAkYuXtcJ9NjuUf7sf57ir37yLI/vGSXTeQZK0wkPPlNcpj9fUgUwnp6cr1OVYjB09XKwAkPJHKMpk0d3j+IU2n9XCDj13NU7BhKYjsvr1y/ipDbFG437cdHx5cbKym8K3ZNKX0dnU3Dq11GCP7EfADvSPWleNGAQrCIKhGrkBEFJOVizJwJ1P/0VTvjFNSy994ZJyxpmAsffRNBn8PstXse3/3Uv50br/QQWras+3mmKQCu6ogQMjRQhrxzMdfCn+gFo2zk5GjVrOSRzdt4JlPCCoZnIr6ksCTtzaTuDiRy94xNlhUrVdwMlczY+XSNsjRW3rWk0nOE0GwQMHUPXCFYIepV/VyMcMDiYF4ECNXKBvAD4yccgU8cJFAkanNjdhOvzyve0wueNoysTqLJr31Rs6Y9zpm8XVrgLO7KAwfV/zq5X/5itb3mYwTP/oqHsMwDygqUykyilsB0lItAxgohAwpxyLDmBHFdNsndbtmI8M3tiTanKv28kXbT3Hu04SkQgQRAEYfZxiuVg3n9ve/oAugYXntg5adlgXgTqJFaWBwT1M4F+9lQvn71jE0G/wYKWEN96cDemHibXtorI0LPF5UoveZSCsbRJxnQYS9Uu8XbyZRb4vSfuRo1ysH0j3s3rgfEMfWkd1whOdgLVuam1xvbxRPADXLD5c1ww9L80aVmem/dKYLKjqNRVFctYtIQby3UBQCm6nrsJO9RBpqJVdygfGFzNeVMtJ6iAnleBlC+EGe0hNL4Ds2U5vtwYmp0tX9ZK4gaaOP+EeTywY4gtfXFu35IkefrbaI0Eqm6/VhZRLZqCPs5ZMY8RK4hmJvBlhtCUQ65lGZHBp/BXhFeP5t//eU0BDDOBW8wE8s7RyuN/5lIvz+epypKwOu7zRNYiGvR5oh75DnLT6dE+C/gMjWiwisurzntbIBLwFUUgf2p64dBp0yGkVReBls+L4jd0VP7zpdtHnwiUytmNl5fmefFgnDN9e8h0rfVUVN1Hquc8lFH9M1CTvAikm0lMxy1miwlHPyICCXPKseQEqtWWcTo1ulNRak1VCvaOpI8JR1Bl+15BEARBmA0K1xGOq3Acl18938f6pe20Vdzwa3aWQN6h0qXFGE+X/7Z6mUAtk7avlOLXL/SzemELX3nLOt5/0UoOjGe484V+0l3rvXDoGhc7feNZdgwm6R3LkMpVv4ZQBREoX3bhr1G+s3d04ub1md4YdqhjkoOkspSrFN/oDjq1OEt338Ky57/KC5zIg7oXDFvoUFWgcEyzlkPGcmipDBR2a9+QNu/7HU19jzBw5l9O6sQVzYcE67o2yaFStxysZNHeS77Czqt/yuD6DwEUHTgFDCuJ62/ispO7SeUc/uFXm2gJ+Xn7uctqbn8mbdMvObmLmBvETMXx59uaD69+PwBtO8ubKI/krxPnRQNFpxKAFV0AQOvOn5edQ/Obg/yflqdZtvmbZdNzdUUgm2jAwJfxzgkn1FE3X2ou8Bt68T0upVYWUVvET1dzkHDAIOw3yBAi52+ZdoewjOVULQcrdUKpfMCxbpWIQEdJOdh0HzYfHM8wOjrMYqfXE4EOASMQwVUamKnisT9KDpswBSICCXPKlCLQUWQpTOSqfwnnrNkr3ap0yyhF3SeIRwszLQerV/8uCIIgCKWO40d3j9Ify1YtBQvGdqEpl3jLKlq0NPFkomQjDoYZr+oE2jOSpj+e5ZKTu/EbOhuWt7NuSRs/emwfo22r8eXGCCSqty0vZbTGb3lRBPIXWsRXv3HfO5JiXjRAZ1OAp/eN4YTmTQqGrndNZWXi3uu55BuMrnoTP25/P1sT3g3z5FwgVTbmlpAnAulmnIUPf5LTv3cKXc983WsxX4prseCxfyLbegKjp7xt0hjKAoNLSsJ0vb4QU3pEUj3nkV5wDla0B6AowBS3ZSZxA82sWdxGRzRAMmfzzguW1+1SNd1yMICNq7pIESabjhXHkJ5/FqkF59C287ayC+Dh/HHsCis0ZRfLwTJd6xg96c10P/cfzH/iC/jSg0QPPMCKX7+NfzT/hetT34HUYHE79ZxAyaxNJOgrnhN2qP2wO4Fg4lwpJVTjvW2PBljQGqK7JVjsKJYK9tQXgapcS6ZNm3C+O1ipE6j05Vd1Ah0lD6Jz1vRcQI/sGuEMfTcainTnoYlA4aCPFCHcXHkOqnR3PvoREUiYM6p9QYSHnqX7yX9DyyvxR9OXSLLGUzyA4cShu4EKtbaVZKdoC3o04Lhe17PpdghLTdP+KgiCIBxflDqKf/7sQUJ+nXNXzJu0XKEULNlzPgC52EQXJ8P0BKFqItAfd42gAees8PJbNE3jnecvJ5mzeSi7HPCubaYilqmREVTMBMo7gWq4N/aOplk2L8r6Je080zuOFeqYVjC0m/VeY3b+Wg5c/K9kFp7PpnhBBCrvaFUoKyuIQK1hP6HhFzjpp5fTsen7ZDtOZcET/8zyu95JePBpNMckOLaVJX/4K0KxnfSf8zegTxYDSkuFSkvCwlOUC1XTMqyI56Lxpyc7gRx/E4au8eazl3DxSV1cdsrkbKJSZuIEaov68YVbUdkEvqQnAlnRHsZPuIbQ+A7Cw88Vlx1Jesex258vWcp3B0PTOHDRPzNyytvpfvbfOfV/zmblr99OePh5nu9+DQBm36bidtKmU1MIKjiBjOyo52jT/TXzpeaSasfSZ+hVXUmF8fl1vXgOxIPdMyoHixreNboyJvKrygTVKiLQ0RJTUM8BVoqRGWb+458nvfUeLm3uBSDTtWaKtWrTFvGzuD1MmiAqlywT4I6mh/hCdaZR5CsI06MyDygQ283y31yPLzdO6+472Hf5f2B3nvwSjW6CVM6ual8tJWc7dVP5UzmHrOU0VPdcC8tRVZ1Tpu3iuqpm69SjAbcks6GBfEDAu5hNm3bdp3eCIAjC8U3h98V2XH7zQj/nr+ysWn4SHN+B0nTMRefB1u+jkhNtqA1zHKBqMPQju0Y4paeF9pLyshWdUQxdY5O9ENcIERl6htgJr6s7TqU8IagjWpHJURCBCsG1mobP0MoeCjmuYv9omrVr2ljV3cTdmwcYo5me7O6yTdXLOFF5EcjNlyKt6IzyG9crf6ssByuUyRSdQGE/Hdv+F91MsPN1vyDTuYaOLT+k54+f4cRfvA5XD6C7Jq4RZGj1+0ksvXLS/ptCvmL3KCjP4Znqd75a+3Y7X0rlm+QEShTLrF59Rg+vPqOn7rZ9hjYjJ5ChabS2tRPuTzM+vBfXCOIE2xk/4bX0/PEztG+9pViKM5LMEQ0YRJTn+io4gbwXp3Pwwn8i070e3UqRaz2BdNdatu0f5IzBX6IGNsGqSwEvAHlrfwK/T2NlZ1OZ4BLPWrRF/Piyo9iF4PAj6Lox5DdIOuUPUwvH3W9oRSfQuH8+i8eem7R+gWqCSMZ0iOoWrh4EbeKYGCXnjR7MZ9vYE2HbhRD0aufXkYLrVn9AXIZStG3/KT2PfhZfbpx/BrJ6BLN5SbFLXCNoGpzY7QmoSnmCXkvYT0qFiJipsofSjqs4hFse4QhAnEDCnFH6lWVkx1n+23cDGvs3/itGdowTf/4a9Hj1NpCHk0YyfWrlAZUSO8SA6Hq1yVn76HbEFB5ONtKO8+fPHOCzv9pE2rSnLCcUBEEQjm8KPysv9sWJZSwuPHGyCwggNLYNs2U5dtMib0JJmY1ueqVSlU6g/niW3cMpzl9ZfiNl6BrzogEGkg65thMJxMrFmFpUKwlTZsorYSnJAqpsbd8fy2I5imUdEdYubkMDenMRjGx5cHC9Zhya6bUyd/NlZys6oyQIY2uBmplAhSyblpCPQHwvZuvKYtDs6KnXs/UtD7P38psYOf3d9J3zt2y57lH6z/tkVevO/JbyDmOlAkZzlRKisrFXmeb6oziBlkmZQHreCdQoM314p2ka8zo6iJIlObTPK0/TNNxAC7GVV9O28+dF1/tIyqSjKYiRbyfvlopA3sYYO+nNjJz+bpKLN+IGW2nuXMSYaiIwtm3Svi1bTTqXkjmbsN/Alx2Z6Dp2RIlA5becpXk9vpIsoVGjC18uhp5vSV5JtkppVDovApW6gICyh6d60DvvqdjukZ5X2YgLaP4TX2DJ/X9FrvUE/vu07/F56634dI3kwpdNa1/dzUFCfgO/oRc/n01BgxQhNDNZduzl+vzoR0QgYc4ovRhZ+PAn8Cd62XvlfzF+0pvYd/l/oNsZgqNbXtLcF6UU8Yxdt84a6peCFThUEaie0+hoLwkrXFBaUxznoUSOv7vtBX7wx72kcra0oRQEQRDqUihLeGz3KAFDZ+3itqrLBce3k207ETuc78hUInwYuZi3rQoR6I+7vHyV81dO7jTW1RxkMJHDbFpMILGvobFmTIdcxUMdZaVRvkjZtPZooKwj195R78Z12bwoLWE/J3Y3sTMVwrCSaM7Eg6x6GSealcLGV7xR7mkNE/QZxI02fNlKJ5C3neGScrBAYh9my9Ly5SJdxFe8iv5zP8Hwmg/UdB00hXxEAuVun8JNpt+n1QwOLo69hlPDisyfHAxtJotup0aYqhStFroG/nArES2HFttPNrygOG/05LdiWElad98BeA8bO6OBCbExMPX4OptDbFeLaUnsqDp/NGWWXT975WA+jOxY8X14KcrBalF5nCvdV4Xw8SHdy/OqlQukFJM+Q2nTJqJZuBUiUKkTyBfKtzrPpcuWOdIb1Ex1f9L5/H/R/ey/07/qOp687Ef8rG8ed7a+lS3/52kOXPiPDe8n4NPpag5Omh4N+kgTQrfS5e5EuT4/6hERSJgzCt8PmpOjZe/djJ1yHekF5wBgR+YDeD9WL+EXcGHf45na4ctp0ybRgBMoZ7lVn1A0SrWwuwKHst0jgdJysHp88a6tJHKeKDcQz3KE/zYLgiAILzFe5pzi8T2jrF3SWt3Z4VoEY3vIta0qikCBklDloggUaCtOU0rx4PZhls+LsKC13JkD3lPzwUQOs3kJgURvw4/GK68nNDNVDK0tZWFbuOiU2DuSRgMWt4eL8w5a+SDpklygetdTPjtFVg8X/zZ0jWXzIozQOikYutQJpGsQ9Wv4E72YzeUiUKNUuoBgIhOoWpBwJbW0DCvaU54JpFzPCVTptKnDTEUgDa3oOFrJAXabbcV56fkbyLaeQMfWWwDPCVRoDw/g+id3oavEb+jsM5bSld1d9dxyXFXscKeU8pxAgYITyHPDHUkxApWfy8rsq6Dfc58M6t7ns14uUNYsv15Omw5h3UJVtIcvdUL5gl6Xq2IQe55GHOovJZWCVyntW/+Xnkc/ywutl3Lh86/mHd99gk19cc4/YZ53LKrkctViYVuoqtgaCfhIqdAkZ9aRLp4JUyMikDBnFH6zIv2PoztZEosvLs6zQ22AJwK9lOn8hX2X/pAOJXJF0SVrOewZTjdsezwUN1DdcrCjXAQqOoHqCF3P98b48ZP7WdnpXdj2jmWOquBwQRAE4fDjKkXvWIa+WJazl5U7UQKx3cx74Vt0bPkRmrLJta1C+cJktTARc0I8McyCE2ji5vwP24bYOpDgFau9TJnKYNvu5hCjqRzZ6GJ0JzspXLkWk8rLrXRVEchvTDyZ3zuaZkFrqHgj3Rz00Wd5AkSpgFMrO0Qphd9JYRrRsunzokGG3NYqmUB5EShl0hLyE8wMorvmjESgSNCY5AICrwRI16E5NHXun1a1IMxrsV7aHUy30mioaTmBQoGZ3Qpp+kRpXYuW5smx8MQNu6YxdvJbiA48jju4hbGUyYKWULEcrFGRaii8gqibxJceqDp/JOW5wNKmg+OqYjC0HWoHjiwnULAiMLrSCRQwdCIBg143LwLV6RCWsSqdQA5hzcQ1ykWgUk0jEvCRITBJBJoyb+clplY5WMem77H4gY+yvfkcrh14F+ed0MUHLzmBGy49kdevWzStfUSCRs2SzGjAcwIZdrmDSrr3Hv2ICCTMGQX3R/OB+3E0Hw9Yp0zMC7SgNB1fbuwlLfkp7DtnuYynTXYOpeiPZdkxmOTAeIY9I6lpqd2HIgIdF+VgdUSg//frzcyLBvjEq08FvG4a8hsjCIIg1MNxFY/t8QSdDctLRCClWPyHj7Dwj//Aoof/DoBsh/f7kvR30OxMOJEnnEBeOVg8Y/FfD+zi5PnNvOL0BUSCBj0VbqCu5iCughF/vktVsreh8SZzdtkNlJtLFTsXVdIRDaDrsG8kxdKOiWWaQj4Omt7fpR3Cal1PJbM2EZXFMsr30xzyMeg218wEGk2aNOdLwYAZiUD1MnfCfqOh5g+1cnutaI8nvrmesKYXRZbGRCBdh2Cj3SoqxwS4JfvZbbXxu80TOVNjq96EawSJPPVNFHBid/O0ysEAYs2rAC/PqhoZ0yVt2sXIgjYji+5aOEdgMLSmafh9Jc6cClHVZ2gsnxfl0eEACq2+E6hCBMqYDiGssvbwUP76wwGDNEG0CkdLvQewRwLVRKB5L3yLRQ9/kk2tG3n10J9xwckL+ehVp/DK1T1cdfqCKZvdVFKtDKxAJGiQUiF89tFVRidMjYhAwpxRuBgJ7/8DT7on8clf7+Fzd27yggY1HSfY9pKXg5W6kPaPZsjkW5Ir5V381BNmqnEoJWH1ysEcV027vfqRROG6tJbrazCe5eGdI7zj/OWc0OVdHI2lTckEEgRBmAMS2UPLsDuScFzFY7tHWdkZLbuZaTrwANHBJ+k75+/Y8bpfsvPqn5Cd54lA2UAH84gVj4ORi+HqfpQvjOMq/uvBXaRMhxsuPRFD12iPBGgN+wmWhNsW9nUAr/14ILG/ofEqBan8tYbjKpxcChWoLgIZukZT0MeB8QzL5k24eJpDPkbx3CSl5WBKVb85G0nliJLB8Zc7gZpDfvqdZozsSFnJUWEbY2mT1pBvQgRqmb4I5K8jRMxrCh5SZyY7Mh9NuUUXVjF42d+Y02ampWAAuqaVBVD72hbzo8f2MZTw3DlOeB5jq97EigO/oItxr+tSsRysuUwQqYXZcRIA/tEtNZcZTpjF87hD87Zvh4+8YGgoF9x8+mRn0JlL29gzZpILd0/TCWQTwkRVOIFKM4EiAR8ZFZzoxpfnSHcCTcoEcm3mP/Ultjefy2sH3sf5Jy3kLy4/acbvdciv1y3J9JxAQfxORTmYXJ8f9YgIJMwZrgJfepCmsc38wTmDa9Yt4qm94/z1T5/1RI1gO0ZuQgQq1PUf1jHOgQAVn+HF9SSXjCr/O9tAh4AjkdIL0loBd3dt8qzOr1y9gO58dsBISkQgQRCE2cZ2XPaPZo6JJ7lKebkoW/rjbFhR7gKa/9S/YTYtYuT0d5HpWkt6wbnF2Vaok04tViwFN8wYdqCFbz20m3d/9zHu2zrEG85czPLOKJoGbWE/mqbRXSIyFf69x8lnDDUoAsFESdhY2kS30lAhzpRycNzLx1s+L1LSscfPiMq3d89Wz/MpZSRl0qRlJ5VJtYR8DLkt6K6Fni+Jgwl3xFjaoiXsJxDfh9J0zKbplZnA5LKfUlrDjWWW1Mq2saJeqV4hHFovdEBr0Gkz085g4IlAbsn7dsW56zFtl3/69ebitc7wGX+Criw+GPkdrWE/upn0hDjdaMiB1Nzew7BqQRuqLQLFs1axU1gHeafREdgdDMo7wgUqzgu/rnNWvpxzxOgikKrdPdh2VNk1c9p0CGJOcgKVnjchv+4FHNtHjwhkO27ZPdKtT/Vy929/hWHG+beR87hgVQ9/ecXMBSCo7wICiAYNkoTxO5kyoVguz49+RAQS5g4F1rZ7ADCXX8p7X7aCP9m4kuGkycFYBifYhq9EBBpLmw21QpxN5iKPKJ2bvhNIKTXxQ6QUxn3/yKpvn0rXY19Az40DR28uUOkFqVJUdTT99sV+VnZGObG7iUjARyRgMJoyJRhaEARhlumLZXFcddT+ppTiuIo/7hrBVXBuSSlYU+8fiAw+xeC6G1BGYPJ6YU8EGkt7N8/xsWEOZIP86rk+Tl7QzBeuPYN3X7gc8ISKws1kWyRQdAMVbp760hpWqHOiQ5hSaE7tZhMAyZwnPo2mTDQ7W7McDOBHj+0jGjR4zdqFnLygOZ/f4SNGFFczysrBCsekktGUSZQMqkIcaQ75GFJeCZy/pCTMdQsCm5cJFEjsw4oumlbQbIHKsp+ZUGsLVjRfipfPBdItzwnTaIv4Q3ECaVq546hj4Uo+cuVJ7BhM8u/3eR29zNbl3Kefx5vVb9HNJIaZKApxlRk51ehuCbLNXUxgdGvNZZSC3tEMAK3KE4EKwdCVbpuXmlLhp/K88Ps0lrSH6WoOsseZR3Bse93PUen3V8byRKApnUAEJ4lAcxkMXflZNG0veqJRSisE/vvBXXz34T007f89ttIJrLqMj1x5aAKQ36dNKcRGAj7SKoSOW9aJ8Fh4iHC8c2R9OwjHFK5SjL94FyOqhYsuugyAE7u9H789wymcUAdGdrxoKRxPm8VyrMM2xjn4EkuZU3cSq6S0a5b/4X/ltB3fZLfTxYLnvsHJP76IQHzPUXvBXunmqewQFktbPLJzhKtWL0DTNEzbpSMaYKyi/akgCIJwaKRydtH9crT+ppTiKMW9WwZZ1BYuXl8AdD1/E2bTIsZXvan6ik3dtJNkPJXhtqd72X+wj5TezJffso5/ev0ZvOWcpZzQ1YTfp9EeLReR2iLeTVPQZ9AW9jOUyGE1L8Gf8DKBWvb8hlN/sIZAbE/NcWdM72YwZ7neTWkNEagvluHO5/u4bsNSluQzgea3hGgO+lDo5PytXilXCdUyTkZTJlEtixascAKF/YyQdxRV5AKZtkssY3nt4eN7Z1QKBvWdQI1SLxMIJpxARsEJVEcEKt3WVK3ppxqTE/CcQK4RxAm2c97KebzprMXcs2WQ3cNJklmbL2deRVQlWfHr64j2P1IMhW7EhdTdEmKbWkxLcldd68XOYe91d+r5crAj1AlUWk45KRNI19E0jbOWtvP95Pn4M0O0bb+15rYKJWFKKTKWQ0Dl6jqBIgGdtAqi25myZeZSzEhX3A/kbIcD45m6+Zhly+fzQO947iC/eq6Pa9Yt5PrO7WR7NvC+K9cf8vvbFg5MWY5p6Bo53TuupR3CRAQ6+hERSJgzHt01zKnpJ+ntOJf2qPcFsrQjgqFr7B5OYYcmysGylkPGdCfV+c41c+EEct3pX1wXfhB8z/6QUzZ/lV9yMa8y/4nvnvTv+HIxogcfOmrDoStFoMpjc8+WAWxXcdXp3hO9jOXQEQ2IE0gQBGGWKW1ecLSWGJeydyTNpr44l5/aPXEzoxTh4RdILLmsqgsIwNc8H11TPL1lB995aA+LQjmW9PSwvDPKonwb9oBPZ2Vn06Tg4ubgxJPzzmKb+MUEkl45WMveuzDsNF3Pfr3u2A+OZwE8EahGJtAPHtmLqxTvvGB5cVpT0EdXvmw67WvDlx0rW6easWEsbdFEBj1UnpXTHPIznHcCGRUi0Gja+w1uCXuZQDNtDz8bIpBe40bVCbbjGsESJ1B5MLTP0MqEB/DK+Ba3hwn49IbcOLXQ0IpOICu6oKguXbNuET5d43ebB9k+mOA5dQJPnvQRUC6BRC9m8zKgMSdQZzTADrWYoJOqG5TcH8vh0zVa3YlysCNNAIJyJ5B/UiaQN96zlrVzl3UGIy2n0/3s18GtHrFQaBOftVyUgoCa3B2s9BhMdLkqF4EaFWRmQuWD7azl4rpwYCxTY41ysrbDL549wDcf2MU5yzt437oI4ZEXSC65ZFbGVxC0p8L2ed9Puj0hAskz2qMfEYGEOcFxFV+7exNdWozO5WuL0/2GzuK2MLuHUzjBdnzZURxXFeuZD/eTyRkr2VN8+6Vy03MDWY7LiwdjpB6/ma1qKbz2ayxsi/Lr2FJcPUAwvndOf6jmkspjnLXL3+O7XuxnQUuINYu8C9GM6YlAkgkkCIIwu5Q+aDkWnEC3PXUADbj05O7iNCM3hmHGybWsqLme1uwt339wP8vmRVgUyqFCbXQ1B8uyWgJVbtTDAaN4c9ldFIGWeEG2rkO07xGUptO+/Vb88b3ouRjLf/MOup7+atl2Cr+Nup2pKgJlTIf/eWwfLz9tQdEFVGBlvoFCymidlAlUzQk0lswRJYserBSBfIxUKQcDGE5612XzfCa+7MiMnEC6PjtulJpb0DSsyHz8+RbqpcHL4LmmKjslRYI+2qMBTprfdEih1Lo20SLeii4sTm8J+zlv5Tx+v3WQzX2eKGOecwM7r7mDF9+5mb1X/jeaVv3cqsRn6AyGvPM4WKNDGMBgIktXcxB/bhTXCOL6IrNShjfbBH06muadF5U5T5qm4TM01ixuxafr3Nb6fwgk9tO+47aq2ypcSxbc936VQ1U6gUpdX0Ev4NjnlAswrjs3VQHgdfYq3XYuP+ZE1mbvSKpqQL/tuMTSFoOJLDfc/DT/9cBuzlrWzl+9/CTaDt7vrb/40kMeWzigN5yJ5eS7ChpmiRNIrs+PeqbXQ04QGuRnT/XSOzgCIdCC5RcvK7qiPN8bw1nahu7kcLIp4sp7qnW4nUAzEYGa9/6WRQ/cSN/5nyZ2wmurLpM2HeZNY5s/+ONevnT3Nh4MDmEvPofl3W2sXtTKA9uHMNsWE4jvPWqtl5XXo6VPRjKmwx+2DfGWs5cULwgylkNHJMBY2sQ5wlt3CoIgHC0opcq+f492Ech1FT9/5gBrl7TR2TQRbhqM7Qa8PJZa2GHvF3qxP8EbX3kqvl/GcAItDTtDmoI+YhmL7uYgT+wdw2xagu5aRPv/SCDVx8D6D9P13E0sePKL+BO9RAefpLn3PqymhYyvemPJi3DQnRy7YoqHHtzNgbEMvWNpevP/jWdt3vOyyWLWwny7+pjeSnemvDV9tWuFVCqJT3Ohshws5GeUZlz0SWVlw/kuVwvx2p7PxAk0Gy4goI4KBHZ0Ab4KJ5DrjxIO6HREA4ynTQqpSZoGkfyN76EIQIX1lRHA1QPFbKICV546nwd3DPPL5/roaQ3RFPJutwoiha5p+HQNTZvaURFvPhHGITS2leSS6jf/g/Ec3c1BjOyolweU3/6RhqZp+A2dWkPzGxqRgI/Telr44cgpvK3zDLqe+RpjJ14Levkta87yBJbCd5rPnewEKnWQhf0GaTVZBAIveyekz7w0sBaOq8jaDpGAN/ZSR388YxPP2LRF/GUi71jaoj+W5Sv3bOP5AzFuuPREXn7afDRNo2n/77Ei88l2nHrIY2sNV3dJVsP2N4Fd7gQ6Wu9JhAnECSSglGL/aJodg0l6x9JTrzAFGdPhi7/dyrr5ns3Q9ZV3vVgxL8pIyiSpe3Xo2fhw8cvEdT2l/HC1Q5+ukj3vxe+y7O7348uNsfDhT2JkRqouN51cIKUU//77nazpaaJHGyHU5V3wnbGolbTpMB5aRCCxH6Xm1rY6V0wuB5t4DX/YNkTWcoulYDDhBLIcRSI7/XwlQRAEYTI52y274XTdo/M3pcCju0c5GMty+SndZdMDcU8EquUE8vs07HAXAH9yVgsLW4MYZhwn2NqwMFC4qe9qDnlhr0HPCdK+9ccAjJ9wDaMnX0fbzp8TGXqGfZd+nWTPBSx64EYiA08Wt7O332tt/tPnxvjsrzZxy+P72D2cYn5LkNetW8SX37KODcvbJ+3fZ+hEAgbj2mQnULXrmkxy3JtXkZXTFPThopPytRbbrBcYSXki0HzHE1heShFIq6MCWdEe/OlCJlAC1wiijAA9rV5ZX+EGHLwOUbU6jU2XwmbGT7yG+LKXl83zhMkAyZzNqu7J+USGrqFpWkMuqUhbF0O0E6rjBBpIZOluCeHLjhQ7gx1podAFAj4dX43zonC+nLG4lb2jGfat/nOC8b20b/tx1eVztkvadACFz53sBCo9vmG/QYYgAWfyfY45R9+DrlJl17w5e7LwHstYZd/DY2kTy3F5ZOcIF63q5KrTvbxMzcnRfOABzwV0iAImNF4KBqDyjjfdmjh24tQ/+jkyvyGEw8pAPMd42iJjOoynrUNWd5/eP8ZAPMdb13s/RG5F4OGKTu/L5EDO+4HWS+rZ06bN+773BJf+632HRWWezj6a9/6WhY/8PfFlV7LztbejW0l6Hv1s1WUtW9Vsh15JImeTsRwuXWihKQezaTEAqxd6Itk+NZ9AfC+UdhA7iqi8IHXciWNz14v9tEX8nJNv7ZuzHRxX0ZEP4hxJNt5FQRAEQahNtcYLR7Mb6L5tg/gNjfNWtBPpe7Q4PRjbg9J0rOYlVdeLBnzYYa+t+2J/Et1KoikXJ9DacOlSISeo0CHsgPJEpdY9d2JF5mO2rmRo7QdJd57B/ku+TOyE17Lv8v/Aii5g8f1/VbR/3PfCHgDeftEpPPXJK3nxH67i7o9czHfefQ6fvWY116xfVFOYagn5GVUtGLlxcCcemFS7TjDTXlmSW9GK3tA1moI+EnobvoqHWqP5398OsyACLWvo2JQyW26UepuxIgu8YGil0K0kjr8Zv08rloF5ooO3gXBg9gogCu/LgY1fJL7i1WXzDF3j8lPmA5QFlk/M9/7biEg2vznIVmcRgRoiUM72rt3nNwfxZccmQqGPwHIw8ErCap0XBXHo1J4WFPBH3wZS3Wcx/6kveV30KjBtl7Rp48dBx52cCVTy2Qn6dNIE8bvZSfarRq/Xp4urJoQf03ar5nUpRTESI23a5CyXZ/aPkzIdLjyxs7hcx5b/wTDjjNeoQKhHpeDTHPJNT6ANFESgCSeQiEBHPyICHeckshZDiYmWf0pRtUZ1etv0LkY6A963nesLl80viEB7Mt7Fk5EXgQYTWT5+63M8sH2Y/aMZtg8mDmkcjTAdEah11x3YoQ72XX4Tma61DK/5U9p3/Iym3vurLl/ZFaAWg3Hvh22x5tXjm82eCDSvKciitjAvZjswrARGbmxOW1nOFdVqrbO2g2m73LN5gCtOnV/84S8E/RVEoNGUOWe12oIgCMcT1cqtj9aGAwDjKa9zVVf/HzjhjjcR6X8c8JxAZtPimqHQkYCB62/GNYL4MkMYuXyYbrC1rthQSsCnE/TrdOdFoL1OBwoN3cmR7LkANA07uoCd19xB7ITXedsPtTO85v8SjO0iOL6dZM7m2V1e2O/S+Z10RKfu1FNKS9jHHhagoQiPvFicXu26xsoURKDJgkRzyMeY1japO9hw/sa0NduLE2jBCbY2PLYCjeTeNEK942JFF6A7OS8LykrhBpomBUlH8+JP5BBawlcfV+15Lz99Pis7o5y9rGPSvML4/A0INd0tIbaqJQTHtoOa/HkdzF/Dd7eEMLIjJe3hj0wRKODTawoQheNxUnczugab+xP0n3Mj/vQA8178zqTlc7ZDxnQI4Z2rypgoC/WyhyaOga5rmNrkVucwdyKQKnECVXMBFRjNd8Mdy3dufGjHMNGAwbolbd7YrRRdT3+NZM8FpBZeOK0xBHw6i9vDxU54Ib/39/Q20pQfR7I4ScrBjn5EBDqOcV1Fb5WE+tLuITMhmReBonjihusrdwK1RQJ0RALsiHsXaL7cGA/tGOYvbnmGwUSOv7hiFQBP7R0/pHE0QsNfYq5Dc+99JBZfUqxLHlx3A2bTErqe+/eqq4ymTFI5e8o254Px8rp7q2ni6eXqRa08EfMuvALxvceEEwggazr8cdcI8azNladOWPnTlnfulIlA8rRBEAThkKkuAk1MO1xl2LNFMmcTDfqKGUDRgccALxPIbK0dCh0N+jyRJtyJLzOIYcaAggjU+I1zNOgrikADKVXMhUktvKDmOvGlVwLQsve33Ld1kNNdz92htS9veL8FWkJ+HlLrUJpOy967i9OrBUO7We+hWmU5WGE7I7Tgy5aLQCPJHCG/TjjZ65WCzaAEZbaEiHpbybWeAEB4+AV0M4Hrb5q0fCRolP13tqh3SLqbQ3zlresnhXrDRJlSI26MxW1htqnF+JwM/sT+SfML15DdzUGv2UrIKx88kkWgWqHVhY5h4YDBis4om/vjpBecS3zJZXQ/+w303HjZ8oVysIIIVNoivtp7Yxr5CoSKDmFzJQI5ShW/Y+sJ7rbjCUDj+VKwP+4e4dwV84rnx7wXvo0/O0z/ho9N+3MYCRhomsbSjgiRoMHyzmjNcrxaGKG8E8ieKAeTS/OjHxGBjmOGU7mqokIiax+SwpvMd8aKaHkRyD/5B3B5Z5RNMU9Mue+ZrXz+N1uY3xriX9+0lpefNp+OaICn9o1NWm82cV3V8JdYZOgZfLkxEksuK05TvhBjq64levARfPnOFKWkcg67hlJs7kvUdbP0x7zj1GkPoNCwmnqK885Y1Mo2y7OZeyLQ0XWRDlRt856xHO56sZ9IwPtBKrjRCuUK7ZFSEeiwDVUQBOGYpDIUukDh6XRfLHPID4AON/GsRTToK94YR/qfAKUIxPfUzAPStIkORZl5Z9DU+0CxDMoJTE8Eagr4aAr6CPsNtg4kMPMPcJILz6+5jh1dQLpzDc177+bXL/TznvAfyLUsR19We51atEb8HLQipOZvoHnfhAiUMV2Gk6UObwW5QmBydSfQoNuCLz1Udmc3mjJpCfnxpw5gNi2ctF4j+GfNCVR7XmrBObh6gKYD9+fLwSZ3/YrkO7qVdn6bDaZzvlRbr5EOXicvaMbqOMn7Y3DLpPmDCe8ackFUw7CSJU6gI/MWL1jPCVRyvpy6oIVtAwkcVzFw1kcwzDitu39dtrzpuKQth6CWdwKViEDVSjttvSAClecCzVkmkOsJPI6r6jqBAA6OZ3BdeK43RirncOGJ3vtoZMfpeu4mYsteTqb7zGmPoeAACvh0TuhqmlFOlx7yuu2VloMpNXdd1YTDw5H5DSHMOa6rGE5Uz1tRCuKHcDFYKCcLKu8ipNIJBF5J2KZxTwQaHjzIWzcs4V/esIbF7REcF9YubuXpORaBbFfhT/QS6X90ymWb9/8epekkFm8smx474XVoKFp3/bLmuo6r6l5c9+XLwdrMPuzI/DI768rOKPuU55QJJvZiHYVfuNV+JNKmw283DXDRqk5MW9EfyzKeNotPqkN+g2jAECeQIAjCLFAZCl0ga7kMxrMMJ0ysBpymhYc8RwKJrE00YBBIet2xIoNPeuVdVrKmEyjg04utqEdPuQ5/dpj27T8BplcOBt7NlaZpXHxSFw/uGOae8fmMRU/g3v4wd73Yz4M7hnmud3xS7lJ82cuJDD3DgrEnWeO8yNjJb5mRy6Y17CeZtUksvZLw6OYyl0h/LEsq/15lLIeg6930VmYCaZonAj3nrsCw08x78dsT48zatIT9+NID2JHy7leN4p8lIaJeOZjyR0gv2EBz7x8wrCRuoGnS4Qz7jWKO02wy03zeQplSoIEbck3TuOyiiwHY/sJjk+YPxHP4dI0uw7tBt8NHdiZQwNBrvu5S99KpPS1kLZfdwymy887ACbQQHn6+bPmc5ZIx7QknUEkmkFHlzbELTiCrQgSas0wg7zs1azlTlt4Wvp8f2jFM2G+wfqnn6Gru/T2GlWBo3YdmNIZI4NCFz0Awiqs0jIrjJm3ij25EBDpOGUmZdd0+h/JEMJGzvZrffBvGak6gFZ1RMq5BkjCvXBnk7ecuK7MnLu2IsHMoxZb++IzHMRWuUnQ//VVW3Pl2fKn+uss277+XdPdZuMG24rS0afPAWDvxttNo2/mLuuuPpWsHHPfFMp7lOn2wmAdU3G/IR44ACX8X/vi+o9IJVO08e3b/OEOJHOetmFectn80Uxaa1xENMJo2xXIqCIJwiFRzAYF34zGQLydp5EZo9AgK60/mbCIBH/5EL0rT8eXGad5/L1C7M1ihBbxP10gu2ojZtIjWXb8CPBGo0WBomChr+eAlJ/CXV5zEp7Jv4WUjf8s/37WVr/9+B1/4zRY+cfsLvOPbj/Gvd2/lxYNe2dmLTReiofhK8CaUZhA/+U0zev1t4QCJnE1s6RUAtOz7XXGeUrBvNI1pu4ymTKJ5Z7YTKHcC+Q2dtoifn5gXEF96JQse+ydCw88B3nVgZ9DFl4thRebPaIyNZN40wlRiS2LxxYTGthKI78PxN09y6GiaxrymxltiN8pMnUBG0QnU2G3YsoULGDW6cQY2sX+0/EZ8MJGlqzlIIDcKgBMsdAc7MkUgTdMI+RsTgQA298VB08jMW004f24WKDxkrVYOVq0LnOOr7gRSam6EoML1a9ZypnQCgfcQ/YEdQ1xwwkQpWHBsO0rzkZl32rT3r2meAHqoREM+UoSgxAkEEg59tCMi0HGI66qyMOhqZBv4sqpFMmvTHPRBXjGu5gQ6d0UH121YghGdx4LA5HaNJ833rIeP7hqZM7uh7Sr8yV5016Tr+W/WXM6XHiA88gKJJZeilOLZ/eP8wy9f5O3//SifvWMzP8mdR2ToGQKxPTW3kcrV/gEYjOfoiAQIJHuLdvICzSEv0X84sNBzAh0jmUCFUrDTF7XUXK8jGhAnkCAIwixQLQ+okkZKIpI5+4jpKJbIWoT9OoHkfpKLLgKgfZvn6jFbl1ddp1AOZOg66AZjJ70FTXmvxw22TCuYGbwbLE3TuOyUbr7+f87nb67ZwNevW8+33+n991NXn8ZFqzp5fM8oN/7seT5263N8+D6Tg3TTwxDxpZfjNs1MYGmL+L2b4MhSsq0n0lwiAoFXhrJrOMlgPEeUwkO5cidQwKfTFgmQsVx2X/jP2OFOlt77Z2hWmnjGYqnfE64KeUfTQdMaFzmm3NYU85OLPKeMYSU8J1CVZaJz4ASq1BnCgcZeb8EgNS2RrPsUTtYP8KXfbStrKT4YzzG/JYSR9USgghPoSBWBoLazy2foRcGvqzlIZ1OAzfmHwZnOMwiNbkFzyoXogXiWJsN7cK2mcAI5+fuRykwgmP2SsNJ7l2TOrtoZrJI7nu8ja7lcs25RcVpwfBu51hWgN97SvUDBrXioRIM+0gQhV96w5yjsVSOUICLQcchYur4LCLyLh6kCjWuRzNk0h3xodUSgkN/gbecuQ4Xb8WXHJ81fle8MsKkvUew2Nts4rvLaigIdW272fkCVIjT8XFkryub9vwfgHmcdH/3pc/zdz19g11CKq9cs5NVn9PDfY+sBaN1V3w00nq7urhpM5JgXMfAn+7BKnECF7iPRoMGAscDLBDoKv3ErRbzxtMkD24e5/JRuwv7aF2XtIgIJgiAcMhnTKbYgroc1xU2QUl62RfwQO4jOFsmsTaeRwrBSJBdtxA62ER14HKX5MJsWV12n1AkEMHryW1CajtIMCDRPewz/n73zjpPrrM/99z1l+szO9iJpV73ZsuRewNhgMMVgWhxKLgRCKEm45KaRm3DTQ8olBJJAQgiQSwuhFxuwDS7Y4F5kWbJ6WWml7W36nHr/ODOzU3dntmm1Ot/Ph0SeOXPm7MyZc973eZ/f8ysutWjyq+xeG6WvNUh72Etfa5Cr1rfwP1+2hf/3rmt4340bGY1n8XsUjC2vAmBy21urTlbrId9AIZExiPe9nODgY0haqXtaN2wODsUIFRp1lIpAqiyI+p3J5RRhzr3oo3hj/YQGHyWW0VkjOyKQMQ8n0HyyR2oxl+Mm07IdPeCUzjuZQIv21nNQ+kbRQH1uo/x33ki5nNm2nS3yIMdHYnzn4b3IuW5uw/FMIRQawMxnAi3i57+cFH/XO7ojHBx0hId02y4kS8M7eaRk+5F4lg6fM060lJk4hWquPjtXmSCVOVpg8Z1AxQug9cxjsobJnc+d46q+Zta3zfxOfZNHyTZvmdcxLEYpGDgiUNL2gVb6ubnlYBc2F+YVwqWCamVCtYSe8ToGg7bNvF0n8YxByKcgcq0Ei4PagBIbqOltRs5WZv/4PTJ9rUEOD8VnLaVaCKZlo6aGiK95CcLI0PHMJ1l3/2+y5XuvZcu3X07g1H0kf/bPtP38T+m3O/nIo47t9Ddv3sR/vPMq3vPiDbzjuj6m1A4Oe3cRPf79Wd+v1t8xFs+y2RdH2EbJwLWvNcCO7ggtQQ9n6UJNDWNmK1cvVjrlp+E9B4YwLJtX7+qu/oIc3X6TW9L3YF6AJXAuLi4uK4GsYXJyLFlXWe1ciz9G7mK+kMzAxcK0bJKaSafldNXUwr2kOq50/h3pLXTxLCffsjw/QTSC3cTX3YLhb0OaR+mSv85Jlk+Ved3uHj73zqv4zK9cSeqK9zGy50PE194875X65oAj3sSzBrF1tyBZOsHByozDiYRTDmbIfpBKj9cjS4VGDLG0TrrtMgDsyX4yusUaeQoAPdi4CFRP6HG9zPkRCae8D8DyVJaDLRXFOoMQTqe1+l7nvFCSRN0liJnmbShWlo+sP8zvH/0Vur93B1ldZyql0xHxFQLODV9LQ2WNK43i82Znd4SxRJZzU2nSbbsAKnKBRuNZ2nIiULETqFo5mKE67nNZq4yaWGwRqHgBs57r708PjhDLGLz5ipl5gDAyeOL9ZKLzFIFmWWhthKA3Vw6mJUoed9vEX9i4ItAqIVVmz84aJimtUnmOZ3Syc4ST5ZlrVbAWiYzhBPDpaSzFD2LmNAt4ZTa1hwj7nAuT6asuAgFs7wpzZDhOLKPP+1hmw0rHkPUEiTU3Elv/Ktpe+H9E+u9ldNf7MVHY9NN3c93Rf+AJewf/seGT/N837+az77iSV1/aXRhIBr0Kt+7s5GvJK/FNHcU7dazm++mGzXAsU/KYbduMJbJsUJybdz4TSJKcQSNAs99Dfy4cWo31L8lnsZQU3yQM0+LH+4fYsy7KuuZKh1gxN6fu4W+Vz5I8d3CpD9HFxcVl1WHbNqfGUhUDdWGk2fztW2nbV1kGPVtJRH4/ac2adcK0HPeofEB1l50XgdaS6nREoGxkfc3XlTuBAAZu/L+ceuUX5yUcNJq3IUsCjyKhh3sZvur3QVIaCqMuptgJlGnZDlB1DBLPGIRIV5SCgSOK5fcTz+gY/nYs2Ud27CQAvZ5cOdg8nED1hB7Xi5izIAzieRGoSge0paJYwMt/t/WUhBULFPWWhGWbnQ5h7xn6KzzCpDl5nPg+J8+qM+xFzk5iCwnTG11UAW65KRawrtnglLY9fGwMLdJXNRx6LKHR7MmVdBZnAlX5CPRcrqecqZx3LLYI1IhJZjKl8Z1nBtjWGeaSnpmYBO/0SYRtka1DBBIC2sIetneH6Yh4nTygRXIChb0KKXyFCo88860YcVkZuCLQKiGjmyUDvYxmVU2iH2sg1HG+F8R41iDkVRF6qqIUrD3sRZIEfa0BQj4Fw9uMUuViDLCtM0xKMzk9nqpZSrUQ7NhZwKl1H7rqw0xtfB3HX/8DDl/2YV5r/D1/Y72Tey75GKF3fYe3vPxF7Oiunhfwut093Gs6g8/Iqbtnfc+RWJapIkdQImuQMSzWSY6tV89lAgU8M+p9c9DDcbO4TfyFddG1bJsnTk7wn784yT/dd5TxpMbrLpvdBQSwObkXgOnpqaU9QBcXF5dVyHRar3ofb9/37/gnDxE+c1/Fc7M5gI2iMUat5hFnp9KMzJE5uBjku5B2GMMAaKG1JDuvdv5dozOYLIlCiUzxRNP0t5Jp3TkvEUiRpcKi0HyZr2ulIN5kDSxvE7q/He/08YrtxpMaIZHB9lSKI6os0ZzbTyxjgBBo4bWIqX4AusQUluzF8jQ1fHzL6gQCEmtvJtu0kXTrjqoukKWg+G3y32PEP7cbSC4Rgeo7fzLRLdhCJhvu5YlX3smA3U7zs58G7IITyPQ2g5BWdB7QXBSXyHWEfezojvDwkVEQUtVw6PFEdkYEmisTyNuEhai6+KyZi5t1Vm+UwZHhOL/7jb1MpXV+9fq+knmGd+oo4LjAZkNVBFs6Q3Q3+VFlic6Ij80doQVfm/KEcuVg5WV0rhPowsYVgVYJtl0a/JjWzYrwxoxukmggX2feTqCsTsSnIOmpks5gfo9UsMoKIQh5FUxv1LFlWgbdj/wpnU/8bWH7Dbma2DOT6QV1K6uFiJ8DHBFIi27izMs+zVnvZv7k+/sZiJmsf83v03P9W1CV2ZX0zoiPvg1b2ceWOUUggIHJdKFTS36w3G2PYCPQQ444UlzH2xL0cFRrA8ATP41+AeUC2baNYdr8031H+P5z53jkxDjbOsNc2dcyxwst1sSeBSCTqqzddnFxcXGZnWqLPmriHO3P/Su2kJwVdbv0fqLPsvhTXHY+Es9UCEznptJMJDSmU/qSrxDnnUAtxhCmJ4LlbSLdvpt0yw4SPS+u+priCVG1vJT5zpsX2n1nviJQvowrL4hlmzbhnaoUgYam07SoGlaVrBxVlmgL5ffjfKZ6aB3+1FkCHpmwPuqEQs/jGBerFAXqe3vTF+XIHQ+S6rq2Dt/Q4lDsUMqfP/WUhBULFLXEMidYe+Y5Ww1w8tVf5fjt36N13TaObnoXezjC1eIwnWEvSmYcw+e0FVcayBpaaZS3tr9pSxv9Eyn6x5MV4dD57mBR1RlT23N0B/N5PMQJoGSnKp7LLnYmUB0CyeGhOP/7O/uQhOBjb76MXWujJc/7Jo9gC7lm0D0458iGtmAh9L7w2kXoCpYnkHMCKYabCbSauHCvEi4lWLZd0gI2pVV28GjUTTPfpPxEIROo1AnUHi7NBlJlgelzxADv1DFaD36ZtgNfQMpdnHuiTivHs5MpMrq56F3CRGwQAD3oCC8HB2P8zjf2Mjid5iO37ai4GM/GtRta+KF+FYGxfaiJs7Nua9twdsqxVJ6bcjJ+2s1hjEAntuyE2vnLRKAz2QCmEsCTOHtBOYFMy+bYSIJYxuB3Xr6Vb3/gBv7hjt1z1qt7J4/g06cA0DKuCOTi4uLSCGnNrNoWvuvJvwVsRvZ8CFlP4Jk+WfL8bIs/xU4gy4KByZnSgIHJFOOJmYlZbIkaOuTJCxbR7GAhS89WfBx70z3Ee2+p+hpvsQhU5R403xyVRkouZElUCBrzna/nHSf5xb1sdCPe6RMV2w1OZ4jKWUw16JTq5xDCEcZag6VikhZeR4t2jr6WAGpqeF6h0D5VoinQeDejWtRTDlay/TKpQMXvk3dw+FS5Zgv0PMXfeTURUZKchdByV1Gy5wZMv7Mo2P6SXycuNfFB7100Bz3ImUmMXCh0uZByIVH+27xhcxuSgIeOjlWEQ8cyOpYNYbk+J5DfIzNphwud1IqxrMV1tsy1K8u2+ezDxwn7VP7xl/ewsb3SqeedOko2sr4wN6h4XpXY2F4pAC02Ia/MsN1MIDNcUufmakAXNq4ItEqwbEpEn7RukjWsktW4/MpZvcwnGNq2baf+3FsqAgnhdM4oRpZEYdWi7cAXELaJZGaJnrgTcG6kbSEPA1PpCqfTYiAlHCfQOSPKfzx8gj/+7vP4VJl/+KXdXNHb3NC+9qyLco91FTB3SRg4mQrjiSxD005GUJM2WMgDAgiopSJQWrcwvVGkbKxqCPhKxbRtnu6fQBJw+bpo3a8LDT5W+LeWTc2ypYuLi4tLOWOJypIsz/QJose/z+hlH2B6w20ABMpKK+rJBMqTzJqMxrOcHk8xmSxdZJpeghLuYvLCRyRbeu8sR5EFmztCdEa8hSxCqC74zNeRU08HnohfYUd3mJ09kQqnyHyzc3yqjE+RiOfGdtmmzSjZyZIJrm3bDE5niEgZLDVY0iY9X4YU8ql4Fakg3GXDawnZSbZFbdTUMHqgsj18wDv739xRtui3UBr9apYrGLr4bYpPqfAcbqDi42sNeelrC6AqAkUWNPlVNrWHCHoVfLOU89iKn+Se93ATz+CL96NkxgsLqxdyOVj5b7M54OGytVEePjpKqvVSYCYcOh+vEMi3iJ/LCaTITNqhqplAsLi5QNXckJ7YKdT4GQB+dmSUI8MJfvX6vor5UR7v5NGaeUDRgMrm9tCSC0DgRFSctLtQrQxKarjwuFsOdmHjikCrBMuySeVW/RzXjKPQ5u2NpmVXOIPmYj7lYFnDwrBsQj4FSU9iqY6bp1pdqipLTv0yED32XVLte0g3b6f5yDcL26yJ+jk76bhlklWCrhdCdvwMMSnKe7/2PD98fpCbtrbz8Tt209daGZ44F60hL2Z0I/3y+rpEIIDhWLbgBAqlz6Hl8oA8ilRiVY/mVtM0JYSsxdAvoIuuZcHTpyfZ2hmuq04+T3DoMSzh3Nj0jCsCubi4uNRLvkSinODwUwBMb3o92egmLMWPf/S5km3qzQTKMzSdqfpesYy+pBMEp0OZTTB9Fr1GO3iAjrAXv0emI+Irad9dbZI83xyZamUXnZGZlXshnLLx/H29fMJXb1vxaoR8SkEQ06IbAUpKwmIZg7Ru5oKhnYyQ/HgsH0gsS4KwTyWWcwJNeXoA2BWYzIlAlU6g9rCXrqbqQo/fs7guIChvxL7428+XYjGn+N/FgmM1yl0qEZ/Kts4wO7oj9LYGCufUXCU9k9veii1kmg//N0pmAmMViEDVjv0lW9oYnM7wQqY1Fw7tiNd58TkgdGwEHm+RE6jKfhwnUAiphghUraHOfKl2+Vv3wG+z6c43oycm+OIjp9jcEeLmbR1VXy9MDW/sZNX28D5VYl1LYNmyr4I5EQgocRu6ItCFjSsCrSI0w6oQe/L/TmrGrLY9SUvQdPwHdD32V4VyrPko4nmLdsijIBnpghOoWvCd4wSKOu9vZpnccgdTW+8gMLq3YPVc0xzg3FQa27ZJZRfPCfT5n5/k0JFDnDGjvObSLv7jHVfxv16+dc7Vm9nYvS7KnfqVBIeeQEmNzrm9admcGk8RUGy8yUH03Gpm+apivu4/q4SRtVIn0Ep3BY0lshwdTnBlXwPOKtsmOPg48fYrADBcJ5CLi4tL3dS63/tH9mJ6ImSbNoKkkG69pCJkddZysAbuN7ZdOzx6MZhMaURJoBipmk6g4s5X5SxmJpAsCVSlzL0Q9NCSy9qJBtSSyXzYpxTKgYJeeUHhrRG/SjybzwTKiUBF4dCDuYUmn+10B5MlURhjeIo6pUV8SqEc7KThlBvtlE4jGemq5WA+RaY97C10IcojSY7gtdg07OxZJg2klggU8Mg1y/yEqC44Vms84p3j3DCCXcTXvYzmw99Azk5i5srBLuhMoCqfzfUb21AkwUPHxkm37SKQE68nc06goKRjy17CfrVwPtYsByNc0wm0mNes8mDo4yMxpNEDqKkhznz1NxlParz3xo01z21P7CTCNqu2h29kUXUx8HtkTlldhePKM9/YEJeVwYV7lXApIX+xSetmwRGU/2+A5CylYNn9d7H1y3vofeCDtO//DyL9PwGcQVyjIkO+5CzolZGMVJEIVHmRUyRRcAJZkoepTa9jcvMbsYVScAOtifpJaiZTab3k71oItm3zTz89Qq86TceajbzvJZtoD1evt22Ey9dF+YF+DQKbyKkf1fWa8USWrYEEwjYKuQa1RKC0FHScQLmV2lhGZ3gZurAshIePjmIDV80VBF2Ed+ooSmac5NqbAbC09NIcnIuLi8sqJFPjXhkY3Uuq7TIQztAv3XYZ/vEDYBkIM4tv/IVZF3+qOYFmY7xKSdpiMZXSWSecxZZ8V81yuiK+qhPrPOWTzWqTxnopLsmQJYEqS3RFfHgUqaI0SpJEoSRsIS4gcFxF+cU3LbQOS/KUOIEGY07JucdMYaohFEkUBKl8GZoQwhGTcvs5mIkCsCHtCIR6sLQcLJ8lBI7gs60rTFeTj56ojx1dkQUtptXiQigHK88HCnurfw6NHJsiS3N2WZvY/nbUzBjCtgpOoAs7E6hyahryKVzR28zDR8dItu9xwqGNDJO5slO/0LAUH7IkChld1T7mQM4JpGhTVd87pZmLtriazzG1bZuvP3WGf/zW/fjQGPJu4PXyI3zuin52dkcqXidnJvFMn8Q3fhCAbPPWim2Ks72WA48iMSq3oQsP3ulThccXs3zOZflxRaBVQn5sltbMkuycfJv4Wl3BbNOg64mPctJs54mbvowlefDlWhJC4ypvfiUp6FUcESjXHaxazbsQAjvgrFrE+l6B5Y1i+tuI9b6Mtv2fY/tXr+QDh95FO1OcnUzPq6StGoPTGWIZgy4xgRTpWfD+8ly6poljrGPIu76QazQXE0mNrV5nRUIrOIFKL+7NQWcgkZKccjDDchxf56bSy9KFZSE8dHSMqF9lY3v9JXbBwccBSPa+FABLd0UgFxcXl3qptmAijAy+iUOk2/cUHku370Yy0pgjh1nz8IfZ/L3bEJmpmpOgRq3/Gd0qlBgtNlNpnV7JEYGqOYEUWcxZklQ+uZ5NMJqL4iBgrzrThn5Te7Cq06cpoFbNSmyUJr86M76TnC5C5U4gGQvFdJxAkphxAhU7tIvFpMPTCnH8RMecDp3l5WDloceqLNEe9tIa8i5ZeUqj382ydQcreqNyUTFUoySs0QDyuUrC4mtvRss1OFkN5WC1Pp8bt7QxntQ4Im9B2Ab+8f1MpTT8qoxqa9iyD0kIwjmBpGo5mOoEQytGCmFWitSL6WC0LJvguV/w5UdP8ZXH+rm9JwZA6uV/T6r9cm45+H/YcNcdtB74T7By12zbYuMP72DbN2+i98EPYSMKDr88siRKsr2WC5+qMqr2lJSDGaa9oucgLrNTlwgkhHiVEOKwEOKYEOJ/19jmZiHEXiHEASHEzxb3MF3mIv8jLO8IktEdVTsvBpUz9dQ3WGud5R+NO3haXILWtAHv5IwIpBuN/bjzg5GgV0HSZy8HA5B9Ic5d9+cMX/XhwmNDV/8RY5f+Ook1L6Y1foiXSPs4m7M05we3hmk1HHSd59BQDC8aAWO60BmsEYSgai18wKOwrSvCPdxAYOhJlOTQnPuaSGpsVMeBmdXM8gFWS74NLEEkLYZh2gzFMuiGjWnZJBfJIbXYmJbNo8fHuaK3uaGVr+DgI+iBrsLqh61nluoQXVxcXFYd1Zoo+Mf3I2yDVMeewmOJ1l0ApO7+c5qPfRdhm3gSZ2vmAs2nM+XYErlVYxmdDYpz79SqZALNVUYDVZxAC5g4FzuBvHO0ogcIexVagp4FvSdA1K8WgqEh1ya+aJI2GMuwLuSM/yw15DglcqKCWnScUf9MJtDpiTSjche+6WMAGMFSEWg5gmir0YgOtGxOoJIW8WUiUI2JeqNf+ZznsiQzufUtAKsiGLrWsV+7oRWPInHXxBoA/KN7mUzpRAMqkpFxnEBCFMS3WuVgUzhduGqVhC1WZ0Nl4FE2/uhtDO39Ma+8pIu3b3SiDTLN2+l/xecY3f2byFqMnkf/jJbDXwMgNPAQvskjjF3ybkZ2/xaD1/95Sdg1zJ03tVT4PTJDypqScjBwS8IuZOa8SwohZODTwKuBncDbhBA7y7aJAv8K3G7b9iXAHYt/qC6zkV+gi2X0kiwAw6weEAlgWybrDvwrx1nHT+yrODmWJBPdjDd344d5OIGy+UygsnKwGjcxRRKMX/praE0bZt4zuomhaz/CwE2fwPA0cY1ymIF8OHTWwMpl6QxMpubVNv7gYJwu4XTPKLc5z4UQ0NsaoD3srdodY8/aJr4UvxKBTdPJu+bc32RKp1eMYSPQQ92oiqhY8YoWRKAAshbHtiwmcq14YWlzFxbCdFpnOq2zuaOy7WVNbIvQuUdIrHkxtqRiImG7TiAXF5cVTNZYOUK8blpVxRr/6F7Acf/k+cYJD3Hbzw3G4+i5LBE1cbbqfd+27XmFgCaz5qKGreaJpXX65DFMTwTL21TxfD05O+WTzYXMm4sXb+ZyboDjbOlahOycaMBT4vTONm3CEzsNljMuGJrOsCHkfG+Wx8kEkiSBT5VKHNrtYS/xjMHd+4c4PZEi7ltTeK7cCeSdo/35UtGIrrNcLeKLz5ny88ejSFVbxTfqlqrnfBq/5F2M7XwXqc4rgdri44WAJImq35/fI3PN+hZ+fMpGC3YTGH2OqZRGNOBBmBmsnBPIr8qF87ycfDkYgJzLPy0nmTUWpSRsaMjpQPzm1n5+46ZN+KaOofvbMX1RjEA7w1f9AcfeeDfJjitp3/svCCND24EvoAc6GLrmIwxf/YeMX/Luiv2eNxFIlTkr9eSuLzP3PLck7MKlnqvENcAx27ZP2LatAf8NvL5sm7cD37Ft+zSAbdsji3uYLnORdwJVc+WNJ7XKB4GhJ77FBus0h7e8n57mECfHEmSjW/DETiMMx33RaIew/GAkpFgI25y1HAzmCK8TEqnOK7lWPlroopXSTAYm06Q1E92wGa2SORDP6BwZjnN8NFF18HlwMMYl4aTz9zXoBOpq8hVq+duClTlCr7q0G61pIwesPtj/nVn3ldKcrh3djGAEOrFlb9XPyaNIBD0yU5YfYVtIerLk+dgKFYHyOVR+VcY3fhBfWQBpNXzjL6BkJ0n0vBiEQMNTOBddXFxcViIraRBczQUEEBh9Di3YUwj5PTuZ5qtPDPACG8naKs9e/Q8AqMnBqvf9evOAQgMP0fPz/10yGBmLVx+DLIRExqBPDJGNrK/6fD1ulXIXzkLKwWo5gWZjMUqn2kIeNNPi+YEpALLRTQjbwBvrB5zy996Qc07YnpkFGb9HLslq/KUr17JnXZRPP3iMtG4WGlWYngi24i95z/PmBGqgyKuRbRdC8TlT7fyplo/UaPZUNSGpHNPXwuANf1kI/77QqZWD9JItbcQyBoPBnTknkEZzzglkKz6ElMtjqiGUBFSFScIAjA4PVhV7bHtx3EATk47T6MXe48iSwFet3bsQDF/5u3iSg3Q/8VHCAw8yseMd2HL1rDAhlj8PKE/Ao3BGdCNZGmrybOHx2TpKuqxs6rlTrQHOFP33QO6xYrYCzUKIB4UQTwsh3lltR0KI9wkhnhJCPDU6Onf3JJf6mW18lq1SCjaV0mjf/3nOiG56XvR2NrQGOTmWIhvdjMAu2IkbFoHywdA4E3crN3ioFgwNtS/0eVJdV7PeHiA+OQw4g+1i58toPFuxCjs0nSGrW6SyJuOJysHnoaE4u0IJwOmsUC9CzIQ0A0T8SkVHkJagh4/90m6eCb+UnsR+PN/5VbZ+82Za93+uYn/5Y2szhguZBrVWL5uDHiYt57OUtXjJc4Zpz7s0binJT0a8qsS6B36LLd97Levu+w3U+Omarwmd+zkAiTUvAkATHiRXBHJxcVnBGKY9L1fqUlArFNo/8mzBBWRaNv98/1FURXD22j/lXfqH2SvvwpJU1MS5qvf9uVxAlm0jjx2i977303rov/BOzTiK892rFgvdtEhqJuvsIbRaIlAdE+fyRaiFTJ6LO4TV49xYLN54+RrWNfv587teYO+ZKbJNmwDwTJ8gpRlMp3XWBHLfpzdceF3Er5aIFi1BD3/+ukv4lWt7CXpl/J1ODkk1t3Q9osRS0JATaJkOcTYnEDid4cpp9DxrVHSba1x9IVCrJOzKvhYCHpmnjA14Y/1YqQmaAx6kIicQUDMPrDmoMpVzAn3lgWf4yuPVx6NjieyCs270tDNWb57cB5aOd+pY1XbvyZ4Xk+i6ltYXvoglexnf/is19+n3yOfN5RXwyJyynYVzNxx6dVDPmVTtl1j+y1CAK4HbgFcCfyKEqIgzt237s7ZtX2Xb9lXt7e0NH6xLbeyKr6Q2pmXzxR89yOUcIrb9rciKwoa2IGOJLBOBXIvRXDh0oz/ufDC0XzgOHUsJVC1xyjNX3XKy8yoA1iaer6nYn5lIFZ6bTGol+UfTab1kcJ7RTU6MJtjkdQLa9ED9IlDAI5fcvIUQtFZxAwW9Clfc9j7Swk9w/HkMXaPzmU8ilYk3Lww6x9CqD6Hl8oBqikABDxOm46qStFjF8yvRDZTPbwrIFt7pU6RbdhI5cz8b77oD7OrnVejsz8lEtxRWq3XhRTJdEcjFxWXloptWRTvg80U1J5CcmcAbP00qFwr91cf7eWEwxvtu3MTa7dfwqHUJpyczGMEuPMnBqhmCxU4gSU/ScvArhXvRWCLLR/7rZ7T84J0gnAlrcOjxwvaWxaI0dSgci2mjZdN0WCM1RaBa7uNiyifLCzVQeBWnLXitDMSloCPi42/euIueJh9/edcBfjToTHBD5x4ptIfv9ufGB56ZBg3hMjeBIkvIkuCtV/fytV+/jmCHIyaVl4IJUd9nuxQ0JAIt3WGUvU/tTCBwBMFgWXRAow6wYoGxHi7kPKA8co0qAY8isWddlHumnIXTzfoRmgMqIucEyv/p5ed3nq2dYd77SmdesS2i83T/RNXtsrpVs4qiXoyMM+aXzQzhMw8g6/Gq7d4dN9DvAzC16fWY/raa+1yMEtL5EvDIHK/SJr5Rs4DLyqGeK/kAUNx/cy1wrso2d9u2nbRtewx4CNiNy7JhNfAb/OKjp9g5ejc2Anm3Eya3sc0ZHBzUO7CFVFjFm08mkEeRUHITd0sNzjogmkvRTrftxhQKV4rDDMWqiwFpzeLEWJKMblZsU570f3Q4gWXDGnnCyRLw1J9XE6nSxaM51+GjHCuylqffto83qJ/hN7UPIWsxWg5+pWSbvWemaA/I+NNDBeu1V66+4tMc9DCmOxd/WZuueH6pOrAshFTOndRqDCNsg7FL38PZG/4aT3IQ7+SRiu2FmSU49ASJNS8uPKZLXmRr6doMu7i4uCwU3bJndeMuJ8UiUOjMg/T8/I9Y8/M/cp5r38NTpyb45tMDvGJnJy/b3oHfI9MR9nJ6Io0W7EFNnqsq2Jg5y7+SHGLjXXew5hd/TN+972FofJK/+dbP+cvkX9JsjvHkDZ9F97cTGHqy9LgWsYGBYVk0ZYeQschG+iqeF6K+kqzKTKCFTZ59qrTspVKKJIgGPHz0DbvY0R3hHx8e4gnvDbQd+AKXPPa7hEnR4XXGB6LICVS+MFe+wKWFe4HKhTKvIi2obG4hNPL9LFswdNFpVus9yxcL56PRNHJeLacIuVTMJmRd2dfML1LrsBHsEceIVnEC1TpHhRBs3+hcMy5tNjg1nmIqVV3sGY5lFpQNZGVnohtaDv0XQGU5WI5U97X03/LvDF39RzX31xLynJeuYHlCPoUT6SCmGiwJn3eDoS9c6rlSPAlsEUJsEEJ4gLcCPyjb5vvAjUIIRQgRAK4FDi7uobrMRr2rkKPxLN/fO8Cv+B8l2X09eshpkb4hJwIdn9DRwn34cpN0y2qsLWwiYxDxKQjNufhZin/WVaO5bLG24mMqeilXSocLHcKqkdUtjo0kqgZiThRd4A/m3TfWRMHmPFssUTGRKrXdiizVtH43Bbz84Su38/PUOp7zXE7b/s8V8m0s2+a5gSlu6jEQtoEWciosazuBVEZ0ZyAhZyudQLphL+ogezHIO4FaM47dVmvaSLL7WqB0lThPYPgZJDPj5AHlMCQviisCubi4rGB0Y2U4gQzTKnT0jJz8IevvfTfR498nOPgImaZNnA3u4B9/coQNbUHe/5KZtsO9LQFOTyTRgz2oiXMYpl0x+dEtCzV+mk0/eAOe6ROM7no/waEn8H/3V/mc8Udcppzmd4wP8t3xNSS7rqm4xicXMRzaMG3a9AGAkqYSeVS5PqGifPyxUOHAq8jLXiolhECSnEWqv3r9pbznxRv4H/Hf4t/kt7Nx5Cd8z/Mn9GhOPlCxCFROecm+Hl6LjcAoy01czlK3chr5dpYvGLpIPKvx1Uf8SonrrNFMIGisBK+eUPSVzmxzgyt6m0niZ0DpZbd0vMwJNPdnK1Q/luKn1++MLfcNVC6sgjP/qbX4XA9WNkkKH1poDeGBBwHIVCkHyxPb8GpMf2vV51RlcYLkF8JVfS1Mpg0SgXVuOdgqYc4rhW3bBvBB4B4cYecbtm0fEEJ8QAjxgdw2B4G7gX3AE8DnbNvev3SH7VJOvePPe18YYjfH6DTOMrXlTYXHm4Meon7V6RDWvKWknr+RzieJrEHIq2DnwostNTDrqkStrKBist1Xc5k4wZ1Pn2RyFntmrc8glTULf8PBoRh+VSasjaAHupAlwbqWwJzH4PdINW+skVmS+rd3R3jvjRv5u8RrUNOjNB/9JgAnRpPEMwbXteQCqkNzZAIFPAxmcyJQWVlZnvgKcwOlcqvJ0ZwIlG3aiB5ahxbsJjiYmyBYBt2P/QVt+z5D9Pj3sIVMsvu6wj5M2YfqikAuLi4rGN206r4HLyV5F1C4/1567/+fpNr3cOhtT3DwHc9z9I4H+I/HhskYJh9+5bYSZ0FvS4CzU3kn0BBYJpmygb1p2TQf/Q6e5DlOvPZb3Lfug3zUejcvZi/dngz9r/ka53pu5YFDIyS6rsGTPIcaH5g5tkVcpNAtiy5jEKBqMHS9wcyLmQkE58cJBDN/hyQEb9izho++aTf/Zr6Bt2U/Qoc0zbq9H3c29NZ2Ppf/7ZYapP/WzzO+szTis97PdilorBxsuVrEz1BL3BFC0BKcyZOcTyC4vwHxbbU7gdpCXvpaAjyV7WWHdLrMCTT3viUhMLzNtElJgh6ZfWfGwaouUk8m9UKTkzz1ZgVJeoKs8JHqvAphWxjeKKavusgzF+0h73kP/L55azsC6KenpBzMMO0F5ye5nB/qulLYtv0j27a32ra9ybbtj+Ye+4xt258p2uZjtm3vtG37Utu2P7lEx+tShXp/fIZpce+BYd4XfRJL9jK9/tUlz69vC3JyPEk2uhnv9MlCi9Fq+QC1iGcMQj4FW0sBuUygWYSeei5q2ppr8QqDwNg+fvvrz/L4yfGGV12nUs7fcmgwzpY2H77pY2iR9YS8ChGfWhLeF/IpFYONai6gPNW6PxTzmku7CG97Kc9Ym4k++QnUxDmey3XyuDTgrEBo4XXIkqj5eTQHPAwVRKBKJxCsvJKwdG7lN5Lsz938mkEIUl3XEhx+Amyb8JkHaNv/ebqf+BtaDn+NVPseLM/MaqUle/GgragWzC4uLi7F6Ka9IpxAsYwBts3ahz9MunUHp171pULJ83MDUzx0dJQ3X7GWtc2lCx/rWgLops2Y1IawDZT0aEVJmGHZKKlhNG8Lnz0a4k+/f4AfB17H3hs/y4k3/pBU19W8bHsHI/Es++VLgFLHZ9awFi08O5k1WMcQGSlQdVJVbwvzSifQwo7rfDiBoPLv2N4V4R/u2M3Zpiv4q7Z/QPc7GZySL1JzH9U6tcZ7X44R6Ch57Hx1BoPGuredDyfQbC6U4qYi83EC+T2NiECrIRNo9r/hyr5mjltddIsJWj0mwsxi1ekEkiUwfc0o2Ul2rW3idaf+hvX3vqfm9men0oV51kRSYzJV31hbNlJokr+QbZqNbpn3idnI979UtEW8bO+OsC/diid+pjBHBLck7ELlwpeLXerOInji1ASxVIqXGj8n1vfKksk2OCVhp8dTpCKbS1qMNuQEyjhOIArlYAHUWVaO1DpqsVIdVwLwJ7sTBL0Kf/3Dg/zWfz3DTw8O1y2ATaY0bNvm4FCMa5umkPUkqfbdhcC+nqgfv0emry3AhrYgmztCBLxOEHTAK1fNA8rjpPXXvrALIfjAzZv5bNP/wsom6fnROzjSf5a+lgDNmrOaqYd6ZrXwNgdV4tQOhgYnG2klBbQls855E0qeQmuaKT1Idl2DmhrBE+un+cjX0f3tHL7jZ5y77k8ZvO5PS/ZhyT58aMTTK6/7mYuLi4tt25jW+ReBDNNiMqmhxk+jZCaY2P72wj1eNy3+/WfH6Yx4+aUrHddp8aSiN+eGPWO1AE6b+HIRyDRtpkfOcCIT4ltPD3Dtxhb+7k27kLe9Cj3sxEZev7EVnyrx3bMRTE+E4NAThdfb9ow7dKHE0wYbxBBTvrVVJ1X1BhcXT5aFWFiLeHAmrkHP8md2VHNNdDf5+bdfuYK3vu41HL/9u5x+6aeQvLVdz7Ik5pyfCkFFyPFyshLLwYrfZ7b39CgSgdxnNx8nUD50vB5WhRNojr/hir5mTtlOpEOncdZpES976/pshRCY3ihydorda6NcZT1HYPBRsKpfn7K6xUg8Syyjc24qXXfIvWKm0GU/qZwINFsp2OzHC77zKL7mkYTgug0t/CLRg7BNgoOPFZ473yVhK6U754XGhX+lcKl78Pnj/UPcGjiGT59ieuPrKp7f0BbEsGxOS86AzjvpdAhryAmUNRxnTKEcbPZMIKmOgYfpb0UL9tCdOc4/v/Vyfu8VW/EqEv9031E++qODJcHPtdANmxfOxZhK6VypngIg3X5ZIWRNlgSbO0IFx49PldnUHmJnT4RN7aE56+BDc4S1qbLE21/7Kj4s/wGB2Al+a/QvuXxtGDUxgB7oxJa9s9qsmwMedBRM2VfTCQQrq0tYvjQhEDtFtii3Idnl5AI1nbyLyOn7mNryZrSmDYxf+uukOy4v2YetOCLQSnM5ubi4uMDMCuj5HoNOJDVsGwJj+wBIt11WeO6eA0OcmUzz/pdsKjg51jb7Cx2H1uWcQcezTQCoibMV9/0Hj4yQGBsg4Wnn02+/gg+/cjvRIncDOPfNGza28fDxSRIdVxEoEoEAUouUCzSV1ugTQ8QDvVWf99ZZOiPETNelxQoSns8Ef6HUWmgTQqDKEnq4l+lNt1d1+xQzV2vxtpD3vLWnhgadQMtVDlbSIn7294zmFhPne4oE6hQYz1f3tsVkrg5nO7sjnJWdTNNA4hSSmcVW6svMyZeDKdlJrmnV6BKTyGamJOy4nNF4ltPjKWy7vk6HhmnhMdMYSoBM83bia15CvO/Wuo6vHI8inZfrSjmSgGs3tHK/dTlJpZnWF75UeE6vkse6nCzWAsPFxoV/pXCpK4vg3FSavWemeFfzc5hKgPjamyq26cutBh42nSDAfJv4xjKBdMJeBbvgBJq9OxjMPfAAyLRsxzdxEFWWuHlbB5/45T2898YNPN0/yYf++1n25cqrZuOufY7r5lJxDFMJYLVuWbSQw9nKxfI0Bz28/La38GfGu3mR9Dx3SA/giQ+gzZEHBDNWYk0Jzy4CZVaOYyalGYSkLJ7UINnIjBMoG92M4Wuh49l/RtgmE1vfUnsnij8nAq2cv+tixLYrg2JdXFwoNCNoJBNhsX9Ltm0X2hn7R/dhSR6yzdsAJ8vne3vPsqMrzNXrHadPNKA6ratzk8p8h7ADCcc55ClzAj16fJy/uusFuuVp+no3zpqjd/WGFlKaSX9oD77p48jpscJzqewiOYFSadaKMZLBGiJQA7k1+QlzvS6LlUi95T9zlSHNJhIJAW0hT83nl4NGpsHLNWcubRE/+7ZNfqeb7HyzXerJBVJksSIEg4Uy12ekyhKt63YA4Js4DNCACASmrwU5M8lGYyb/1DfxQs3X2PbMXKuehfHxhEZAZLHUIEgyp179FeLrXlbX8ZXTSB7UUiIJwZpmPx3NTfxIfQWR0z9BTZwFqjuBljMnqDy3yaU+LuDbnkueepxA9x8aQREWexI/J77uZVUvlm0hJ3NmOCOjBzrxxJ1AX92w67baJXKZQEYm1xrRG5jzYp4feHgUiQ3tQda1+Olq8tEa8hTq6zMtO/BNHUOYzkBXCMHtu9fwD3fsxq/K/J/v7edLj57CMC3UxDnanvtXNv7gjWy4645C3eoDh0fY2R2heeoFMm2XEvR5qx/QPKiWI1SNrZ1hel76AZ6TL+Xak5/CO3W0YKWfTSzLZxZl5NCsIlAya5x3W2aelGayVRkBKHECIQTJzmuQzAzJzqvQoptq70T14RM6CdcJdF6ZTutuzbeLSxX0eTiBFnvVdCqlF8Qo//jzZFq2Y8vOhP2xE+MMx7K84XKnA6UQ0JnrMlPcbnhdS4BDUzKmEkBNnsO2ZxaAPvOz47T4ZNqYwg6Xtgwv55JuJ3fmSZwJWujcLwrPpRYpHNqcGEAVJpkqodBCNFYOk992PjktKwWvXN8kcS6hazbxrDXkOa8uIGjMrbVcbeylBpxAiiwR8irzdp0Vl3A65YuV26yGUjCY2wkE8L6X70bzteObOOQ8oDbgBPI1I2vTBMaew0Kg2TLy8PN1vd605l4UG01kCZAFNVjXPmej3oyzpSZ/3l67oZV/mnK6+LYc/ApA1SiK46MJjo8mmErVbuizGFiWvWj3louNlXFmuSyIuTQgy7a5//AIb+08iyc7TmzDq6tuF/YpqLJgLKGhhdbiKerskanDDWTbthMM7VUws0lsBKpn7s5b+Yt9NKAS8ipEAx7aw156on5ac8JUpmWHk1M0dRwASUsQPPswu4wD/NutIV6+o5NvPj3AR778E3q/9Wq6n/w7ZG2a0NDjtB78KhNJjUNDcW7YEME/vp9022VzlnA1giyJuoPbXrKtg8DtH0fWYqjp0bqcQPnOEikphFSlRXwe23byj1YCyazBZmUYoCQTCCDZfQ0Ak9veOus+hOo4geKuyn9eGY1nMc93vYuLywokL+g0kgm0mIJqWjNn2hjbNv6x/SWlYN999izdTT6u3eAEKEcDauFeU5zv0tsSYGAqgx7sRk2cA2ZWvAen01zWYiJsE70sKLic5qCH7iYfP5nqwfC1EDl9X+E507IXnFtn2zbKtNOZRm9aXyjnytNoMHNe+Fgu0WApKP8MajFXOViwxpjIcQEt3qLZfGnkK1o2J1BxMHQdb9rkV+ftBAoUjTGb/CrNwUpn1mooBYP63FJ+j4we3YBv8qDzgOKva99CgOmNImyL0LlfkAxt4LC9juyZZ+s+vvLuieWMJbIEySA8CxeBVo4TyPn/r7y0ixGpg6e919Jy+L8RZrbinqabFmnNIpU1GYkvbYdf3bLc5jHzZHVcLS5ybCoHny0vfJmux/8agP1npxmNZ7kj8AyW7K1pSRRC0Br0MpHMoofX4UmcKTyXrcP+mDUsDMvG75ERWgpL8aPUEWaWLwcr7tCVJz9Ay7RsB8A34Vzsu578Ozb++FfY9MM7uOwHr+BvQl/nL27bwt/Zn8DWU/yK8nH+ZdtXiXddT8czn+DZo07I9Y3RcSQzS6p9N6FZWrvPh3pKwvJkWncwvsNpvaqFcyLQLDfvfDlYjAB2emrWC56TDXH+J+wpzWSTGAIq2/hObX4TI7s/yNTG22fdh1D9eNGIu06g80Yso5PRrfOeeeLishLJixr1XnKtOlaR6yWe0Tk+mii4gDyxfmQtRqzlUkbiGZ48NcHh4Ti37+4pTKqKFz+8ykxTg+4mH5ppkfJ1oSZz7dd1E920GI1n6fU4nSyNQOesxyQE7FrTxIGhJLF1LyM08EBJ++XsAp2qhmXjj58CwIpupLclUCIOzNbEoRoFJ9AFXEJT78R/LidQoMZClkeRLjiHyXI7gep9uya/Om/XmSpLhd9re9hLR9hb8b71CoIrHSHErAujebKRDYUmNjSQCWR6mwEIjDyL0bWbc74tNMcPY1n1XZ/mygVyysEySN5QXfubjcWKrVgoeSdQV8THHVet5ZOxm1Ey44RP309GN0sqRorLs7L60jatMUwb3XDb1M+HC+uq7lKVapOzphN30nrwy2CZ3HdwhKBHsGPqQeJrb3ZqVKsQ8St0NfkYT2pooTWoicFCWn49A7d4LrfFp8hIRhJLCdR1s1MkCb9Hrtp6NH/xyzZtxJI8jghk20T67yXe82JOvPq/GN/xDtqf/yxve+JNXGa+wFO7/oyx4FY+/bPjfHD8TcjZKXoP/Bs9TT42aU7tsNm1e9EHNeEGRaXhK3+Xia1vJbH2ZoSY3Qnk98iEvQpHpyXGx0f58Lf31XRmGKbdUIaOYVpLYtdMaSbrxSBasBtbLXWEmb4Whq/+8Jw13LLHj1cYJNMrw910MTKaW8Vxb7AuLg7FA9wZEai+34dl25iL8FtKayb9uaDSPP5cKPRfPOXhPV98ir+86wWCXplbts8IN+XhsvlcoK5ciVjc21nIecjoFgOTKabTOmsUx4E6lxOoI+zlmg0txDMGJ1tejJKdJjDydOH5ejvr1MIwbYLJ06RsL55oFwGPQkfEcalEAyod4fomgnny990LWANCkaW6RIi5xmM+Va4qhjWSsbSU1KudLKepSwinuUm9JV6StLDMnoBHJuxT8Kmyk4tTltN0oYl1s7GtK8ylayKsaa7t8NGa1s/8R4PlYADCNkm37cK/7nKaiXHo6OG69jGnCJR0nECyb2EikCKLFfOdFp+3b75iLWdCezCQ8Yw8h2VR0sAlXjYHWcrMnvwiyEIXGC5GVsaZ5bIgqtnQPYmzSEYae+wYj5wY423rpvCkhomtf1XVffS2BuhrDdLd5GM8oaGF1yJsAzXllPPUM3BL5H7kqiwh6Wls1V9X2KIiC5qruIDAWZ1TFQGSQrZ5K76Jg/jGD6Cmhpje/AaSa17MuRd9lHPX/TlqfIDx7b9Cy3X/g4/90mX82et28ry1ge9ZN3Jb6vu8pXsI/9jzmJ4Ino75tWqcDZ8qN1S7a3mjnH3J/52zPXye//drV7N+TQ/tapYTo0lOPXEnG374FoSRrth2IlmfaKIZFifGkpyZSNM/nlzUwNJk1qDXPodWnAfUIF6/I1im0k7GlGv5XF4mk1ohzNUtB3NxcUTzM5OpgugzUw5W3+vNXEv5hWDbNgOTqQr3kX9sH6bk4eexNl6xo5MPvWwzf/36XYVSZUWuXF0PemWEgI3tzrV2Su1ESY8hTKcr49nJDJYNnWISmN0JFPDKtIe9XL3emWA9bO7CklQi/T8tbLPQgbpuWURSZ+i3OwvdydpDXpqDKmui9ZWDFDMjAl3AKhCzLyLlqcftVM0NVG2B7nxQ73d0Pr7K5QoW96sybeGZ0rz2kLfkves5Dy4khBC0BD1VKwXAcQIVqLMcTBIUnEAA6bZddG67GoATzz9a1z7mCocej6fxCR3FH65rf7VYKS6gPPlzTZUl3nPzdo5aPSRP7wWcbLo8ybJOkIklFIH0nHvLFYEaZ3VdLS5S7PLz3jILdu6BQ4+R0S1eHXVKu5Ld11W83qNINOUs1N1NPsaTWbSgU6Kk5krC6nMC6bn9CSQjhakE56xBB+di0jSLhTs/AEm37MA3cZDImfuwEcTXvrSwzfilv8ahtz3OuRd9FHBuHFf1tfDJt+zhu63v5Zzdwm+d+T0ip39Kum0XoQZKtxqhUTdQnnrs3Ff2tbCmu4uAnWRjWwDthbsIDT5K85FvVWybyBgcG0lwZDjOZA1BKKObHB9NFEr9YmmDM5OVgtJ8SWkma61zJZ3BGkEI8AeciUk2lQKcv2uhK8ku9ZHIGpydmjkfXA3IxcUJSdcNuzConQmGrtMJZC1cUB2KZapOQvxjzzMa3IKBwmsv6+YVO7vY3DGzEh2s0mI66FVoDnroanJW0cfkdgQ2SmoI26bgEm0jJwL524HKSa8iC9Y2+xFCsLUzTDSgsnfEItl1LeEzM7lA2QVev03Tpkkb5Cwd+HN/jxCCtc2BeTks1JyL5kLvqDTXGEKS6iuRCniriUArY6pQtxNomdrDF95PLF+weDTgKSnpVGSpIIbC6skEKqcn6q9a6pYtzptU680EEpi+KAA2gkzrpRhtl2Ah8I7uZ3B67nFw8YJktVKnRNxxTtpllReqIircW7OxUvKA8hQLsZf3NnPOu5HI9GFs27knGqZFRjfRjdJ73FKKQDNOIHdu0Cir82pxkVGeCaSmhhG284PLnH6W7iYfGzMH0AOd6MGeitcXK+zdUT+6aTPhcdrE58OhNcMq1HtOp3VGYhnOTaVLBrOJnP1PkSUkI4WtBupaHYn4lFm7ThR3CFPTo0SPfot0+x6MQHvJdkawC0TpfpoDHn73jS/h1Ou+hRFZh5oadvKAFjEUuphGcoGKqddBZHsjSJbOr13TxRrdEeja9n+2ULZXTFozyeoWE1VKvbKGycmxZOHimWcxRRahxQnbcbRI9Ta+cxH0Kkge56auZRKAIyyl3S4AS05GN+kfT5Y4DRoJvnVxWa1M5lY7p1I6dt7VYxlYVa7B1bAW4ATSTYvhWIaxeBVh37bwjz3PYWkzflWmr7Wy7Lta8wKfKtMZ9tISzHUHxQmQVhPOQlJ+dbfZnMDwtRS6jvU0OV08hXD2u7kjVFiw8akyl/REODAYI957C76pY3hip4BFcgLpY4xLrYvmevAo0gXdHQxAneOzqDfzqJpQuFK6E9Ur7iz3VykJsWwZRNXO+WjRIupKKR1abGRJ0B2pFHm0SN/Mf9RdDgZGzgmUbdqEpQaxPCEy4T52yqf50fNDc+7Dspx5kWnZnBhNVnTlTSecDDWzLArBp8h0RXx1/6YaDbpfasrdeJ6e3XQwzuGT/c6iQVqvWvqlG3ZBpJlMaou6mJsX4VZKZ+QLiZV1drnMi/LxpJpwhBsbQUfyMC/b3kFw5BlSHVdUvTsWi0B5O/VQYSB4tvBcPGtwcizJ6fEUw7Es4wmNU+PJgjiU7+DklSUk3QmGrmdgNdfN05cbWObDob2xfmK9L59zv3lkSdDW3ceJ277J+I53kr70bUsWAhnwVK+pn4t6V28sbxMAV3RIbFcGGaEZb6yfSP/dNV+TypolF0fNsKoKQHlGFynJX8q1sjc9TfN6fdArY+du6lrGcQIlNYOU6wRacsYSWcrzEV0RyOViJ6PPiNDTaZ2sYWHbsP6ed9H04P+pax/zLQcbnE5zeCjOSKz69dk7eQRZT/BYppdtXeGq96FgFZcH5NwEfhVJwFm7DaDQGCLfbTJijKP7Z/KA/B6n9GtzR4hN7cGSyacQgt1ro4zGs5xqvRGA8GmnJMwwF1YOZ2TTBK04U0rrok14VVm6oDOBYO4xRL0il1+VK4aJK6ccrN7tlvfLlIQ4r+dP0KvgUSQk6cIOOJ+LiF+p+PtsxY8WdBatRZ1OIEkILE8EWyik23YVHtfaLuEK9TQ/OThUl0iRMUzOTaXRjMpczUwy5wRSSkUgryohSYJ1zYGaYqUQ0Bry0BP1EV6iqoX5Un6Z6dx6JQBH9jlldFMpvabrJ5mbi5ybTi9qh0zDcjOB5osrAq0CLNsmOPhYoQOHJyfcnApexiVSP6/qBU/8DKmOKyteG/CWBjJ35sIhR9MC3d9e0ib+9Hiq4PbJk8qanJ5w8hHyzwU8CpKRdoKhF+GG5C1yAuWJ997S8H5MXzPnXvTXS5IHlEcIUbN2eTbqXdG0vREAvMmztNoTfNG4lRG1h/Z9/z5re5qpomDlc1PpCqtmMc7kxkn6X0hOkKw57p1aQeRzEfaqhRpvU3NutLphk9bcdvFLiWXZTKcru7G55WAuFzvFmQe2PZO95h/fjzJ1qq59WFZ9IkixcJ93/8ymwzaduhsbwXdj29m1pone1gBNfrUw0RBi9tICSRI0Bzz0m63YCDyx0wCFa0FQG8MIdhb2lc+q8Kly1YWcq9e3APD4VBOZ5q1ETt1beG4htn075uQUxpXWRSt98SjSBd0iHuoQgeoci0mSKMkhURWxcoSFFRgMnX+/850pFQ2oq7YULE+t8bWWywWqVwQSwvk/567/C8Z2vbfweLptFx3mEMHsGD87MjrnfkZi2cI9YTJVOmbS0nEAzLLxb36+5ffIbO0M09sSqIiRaAt56Yn6aQ15V85vL0f5ddJsvwQAa2g/44ksac2sCIXOk8gYDEymsKz6Ok7XS36Ospj7vFhY3VeMi4WpU2z84S8TPf59YMa9c2dmD80iwabRnwCQ6ryi4qXNgdLa1EIuQEKraBNfi3jG4NR4qpAM7/fISEYKS10cESjvBDL9rej+drRgT4kg1ChLVQqWpyPc+IW7blt7zgkUGHkGgKa+3fxz6pUERvcSGH6q5sumczeo6bRe8wKdx7ZheDrLibEEsbQxb3Vd1p0wZ9PTeDCeJDnnkciLQNkUqZz4k9Ett1PVEhLPGBUuIKCk/aeLy8VIcfcTcEQgYWRQMhNgZOrah2UzZ3cwy7I5Mhzn1FiSwel0TfdPMZFTP2Ykuochu5kr+qI0+VV6WwOszXXW8XuqizXFtAQ9TGaF06wg7rRdnkrpyJLAmxkpOIFqtRIv5pKeCM0BlWdPTxLrexXB4SeQ0+PA3KGqs5IrU0t42havHEyWVtxkq1Hmag3eyN9XPEZaKS4gaKAcbImPoxxppYhAKyS7aSkpn7MAZHMdwkSd5WD56+DEzneQabu08Hi871YA3hF5hh89PzjnOLM4mkAzrBIHjJlxRCCr3AlU9B15FImmgEpvS6Dw+5UkaGsgM2i5KT/PjUAHWW8r2zjNvS84An2tj206rZPMNRpZTCdQvjmDWecCi8sMq/+KscTYts10SieW0c/bySelp4CZ9rBq4iwZTzP3pzYB0Hrwy1iSSrr10pLXCUFFIHNH2IvAaW/otIkfoB4SGadUDJwBoqQnnXKwRRhYSfkOYcDo7t9i+Mrfm/dSjxDVa94XE0WW6G6auRk5g+/Zj6nuFRxfXgRyWu5ee/X1POh7OUn8RA99rebLMrpFSjPqCrwD52Kd1uafuG9ZNh7LKeGajxMoPwjNr+yYWppk7oZr25B2S8KWjMkqGVLgloO5XNzYtl2ROWDboOQ6aAqzPhHItOyapbh5MoaJbTuCbNX8nzI80yfwTxzkSf+LkcSMCwecINnOiLcu4aYl6CGWMdDCvQUn0FRaI+qTUVOjhc5g1bKFyvF7ZC7vbebZ01NM9r0SYVtEciVhC3ECiYST12EEu1DlxZl4ey6GcrAG/sDiceFKCYWGRlrEL/eXKc5LR7JivIo8a4OV1YLfI1fk5GSjW7ARUOeCY62fQja6mXTLTt7keYITY0leGIw1dGz5Jiy6aWFr1ce/1X5PkiToyUVxtIW8s2aknm+qlZVqbTu50neWuw8M1V05sFj5PXZZebUbDt0YK/dMu0AwLZvTEyn6x1KcmUidl2OwdWfw6Rs/yJ98fz8HDh7gaCbKKaUPW0h4p0+Qab0UWylVyavl16iyREvQw3hSQwutRU2cq9J+rDonx5J0hL1Ofb2RxlKDi7Y6kncDjV/6a0xtvaOu1/g9coV1NOCRl6ULSHPQQ9in0NXkY3NHaNZuAI1Y0W2fUw7mH3kWS/Yitazn3Tfv5PvGdYRP3IWkxWu+tn88NWsZWC3mc1FN6yZBHMHJUkNzbF1JYSUyt7JjaSlSRassbjj00qCbVs16bneFxeViRjOtqiucatIRJUTdTiAb22bWVeZGr29NJ38EwPeyV9LXGqQt5C15viPiq3isGq0hD9NpHS3chyeeE4FSOn3+NMI2MAI5J5A690KKT5W5sreZeNbgeaMPLbSWyCknu24htn0r5jiBvNGeRZssOXkqF7YKpOS6nNWiERGoeKK9kkSgldoiXloh3eUuBhEIKOmGBjCx/e2cfM3XEIHmGq8oZbbzaHrT61iTeJ6t3gnufO5cQ8c1ndYxTIvJpEYA535gFQVDy5Koec2K+FSag2pd1+nzSbWPLtOygz7rNNPJNI+fnKhrP4sl1uhlCypuOHRjrJyr+yognjEYSyxOqG5D6I745B0/wN4zk2xQxrEi6/jALbvINjluoGqlYKEa7cw7wl7GExp6eC2SpaOkRuo6jJNjSTa0BcG2nXKwRcoEAkpq1OdCCOhs8rKpPci6lgBtYeeG0eR3bJfLxfq2IO1h54LeGfbVtGs3VMedcwJ5koNkIxtAkrlmQyvPtb0Oj5XBe/j7NV861+pzLeYzYE9qBqHcTbC8JroeCudmzglk66UtkVOuCLQkTKf1mlZeVwNyuZip5YhUU42LQDATZlmNRq9vkVM/Jtl+Ob8Y9bOjO1z1fllPiHJLMCcCRXpR06NIepKplM56j5PvpuecQD7P3PtSZYkr+5oRwDNnpoitfyWhcz9H0hLzLjG2bRtt8hyaLdPS1jWvfVQ/VnHey3kWg9kEm0a7n+Un2t4V1KK63r9gub9LcZ6DoYuP42KgfHHXVvwke25YFJFwauPrAPhQ534ePTHOSKy+6zo4ztCReJaxhEZQOK+zi0SguTp9rW1evDnTUlHt+DItO1AsjatC4/zoeUekj5y6m53/bzvr7vtNQmcerHiNbtiLEuuglzmPFlRqfBHiikCLzNB0ZlFb39WDrTuOC1WPs1aM0c0Ya9Zv5UWb2wolYMkqodC12pl3NfkYT2TRQmsBJ1R6LrK5lPwNbUGEmUXYVt3dweqh1uBGCFjfFijY02VJsKEtSEfYV7ghdjf52dwRorc1cN5slpIk6G6qHlrXSB238M102so2zwRcv+imV3HEWoO876vzP8gazGfAntZMQmJ+TiC/ZyasPF/jXT7BcsvBloZYWSD0mYkU4zlh2y0Hc7mYqbXCqCadQW+9IlDeUTebs66RMYQaP01g7HlOtN9CWje5fF207teW0xL0EkvrZEK9uX2fYSqts0512h0bgQ4nH6jOnJjOJh9bO8M83T/J9PpXIZlZwgMPoBnWvDLGdNPGjjldMde1zq/hQDUUWVq00rLzSV7oiwZUOiNeIn6lMOFtdHLZHHBCxX0XohNoiY+jHEk0LrK5zB9VlqqOm+s9P2bbTg/3kmrfw0v0hwG4c99gQ8c2kdQYjmUI4IybwpGZMftKElTnS7XPLtOyE4BfWjPFvrPTnJlIET32XRAyocFH2HDPO6sKQYvRzat8cbu4CY7L3Kycq/sqwbad7kvLidBn3u8VvkMoZhot1ANAuuNybCGT6ryq5DWqImq6azojPsaTGnpOBCpuE1+L/vEUlg0b2oJIRn7yH1g0i6y3hoLeFvIS9qlsag/SEfGyqSNIsErwcz0ZBktNk9+xe5bTkAik+rAkZ4UuG91ceHxDe4i9ba9lQ/oA+/c+wVOnJqp2eJoPutl4EHNKKy4Ha2yw3ly0ypPPBJLMTIkIkdUttzypQeaq1bZtu8SBMBzL8HvffI5/f+gE4IpALhc31QasDx4ewZp2SgbqdgLldlPr+mVZdv2DY8ug55E/wxYS91rXAPCize31vbYKrUEPNjDpdcYPnulTTKU0euQpAPRAR13ZQnl8qsQVvVGOjsQZCu/G8LUS6Xe6hM1HyDctGzk1wogdpXcRRSBYWQHI88WjSLSFPaxrCdAR8dHXGmRDWxBZarzDlyJLNPnVFZVPUmscWM6ydwdDXDQunJVCteuQVOepOtdXNbXxdiKTB7ijL8VPXhgqNCWpB9t2qiKCOSe8L9i0Iksr50u1zzgb3YQlqVwXOIsiCe7ed4bQ2Z8zvfE2Dr3lEWwhFZrZlLxuEUQgvayLiW7YFQ0cXGpz4Z+RK5Bk1qyZq7EkFA0+b/ftBSgIOBPb387RN96NESy1Ts/WIau7yU8ia5DwdwPgqSMcOh8K7YhAuWwkz+IN0qoN0DyKREeu3EoIQWfEt+IHcmuifiL+0s++kRuDJEmYHicXqFgEAljzknej2zLpxz7HX9z1Ar/7jb2LUh9r241frFOaQUhkMIWCLddf4yxEab13XgTyolWsji/rb2wVMJaYfYUkqZmFUjDLtvnkT4+Q1k0Gp9OosX78px9ahqN0cVmZlF9Lh2MZPv6TI0wNnwJAmPWVgufF1FodwvKh0HNi26x5+A+JnLmPc9f/FT8dDrC5I8SaaH1tkqvREnSuvSOKc+9n6hSGZdMhJgHHCdTIgkpAVbiirxnLhr1n4yQ7r8Q3cQiAE6NJDg3FGG6g3EIzLXzpEcZoLmm+4OLQFvJWOI6DXoVNHcGGSurzdEZW1mfsVWbPPcqz/OVgtcOGXZaGaou99TvFZt9uetPtmEqA/2V9iaRm8BtffYb3ffkpvvjIqbr2Pzidxi+y2EJGVnwzpZWrQQSq8hnbsodU19V0DtzNTVtaGTn0c2Q9TnztzdhqAC3ci2/qSMXrFmN+Ui3mIh/QXY7b4baSC/+MXKE0MrBZMLlMoAk7xK6so7ZqoTWA8+PMtmyreEm4RikYwJpm58Y/mpExfK11lYOdGkviV2U6Iz6kXGtwoS5e/k61layuJt+KCONrBCEE65oDJQPpRpxAkhBYXkcEykS3lDwXaethYsPreKf3Z/zhSzoYiWf54fONBdvVotFcoLwTyFCCDS3LNfnVku9Z8jgDWh9aRVhq3FX768a2bcaT2VlvgskiUe37e8+y/1yMzoiX4ViWtQ/9Pmvu/5/LcaguLiuS8iDLE/lumBknM08yM7V74xaRF3/MGhlt9YZCtz/3aVqOfpPhy/8Xpze+jcNDMa7sbV6Q67U1JwKNGwFMTwQxecp53J7C8EaxZW9DYoLfI7OlI4xXkTg8HEcP9hTK58BZtR2JZet2rWYNk7A+RlxtKzSLcJmh1ljCq8jzEoFWWstxIcSKnEhL0urIlLqQCHqrOIHqLgeb/Xkj0MHIFb9L98hDfHT7KS5b04RHlvjh84MVGTTVmEhqhEQGSw0iZFEI7F7pi9T1UOszntj2NjzxM/z2hnO8TN6HiUSs50UAZJq34p2sIgItQpv4at9HPGNUPD6WyLoOoSqsvKvpKiGVNZdtkipy5VfPWFtQLGc1Mu8Eqrq9mNsJBDi5QOG1dbWJPzmeZH1rAEmIQjmYvYhOIKi0Aodn+RtWMpIkWNvsR4gG28Pj1J2bnjC2kNCaNlQ8P33Fb6KYad5o3sMVvc18/akzi3IeNprkn9JMxwmkNHYOlAf+keto5xNaRVhqLO06geola1hYFiRmsTXHM85zB85N86VH+7luYwuvu6yHjcZxQkOPI2mJRQnyc3G50LAsu6Kz4slRJyw5ojkikLAtbHPuPIK8EFvLCVRPmZScmaT9uU8z3fcqRq74HfYOTGHZcPWGlgVN3FtyXSynsyZauBc11u88rg8V2sM3Mgn3KBJeVaK7ycfgdBo91IOsxSq6WJ6dTNc1udLSSYJ2gqy/o2ajBZfVTT1i1nIvDgqW3310seNVZJSyHK96v4J6vquxS99Nunk7d4x+mj946Vp+5dpe0rrJ4aHaHXjzDE5naPMYTnMcIfAoEmGfsuJE1flQK/sq1vdKDG+U3v5v8vrQQZ6ytnLnIWehJBvdinf6FKLs/phdhGzPag0WbLvUDTSd1hmcyixK+dlq48I/I1cwI/Fl6hSWaxF/0ueEc5lKANMbrbl5tdbwxeQtwONJjWx0M77xg7OucNq2zamxJOvbnAm/nMm1CCwKMV4MigefF3pLV58q0xL0oMr1t4cHEBKY3ihauK9qmVW2ZTvxtTfTeuA/+bVru0llTb759Nwi3lwUXzzr6YCX1kxCpDHrDIV2ysDUCoeaJMkYkgcfesXkyLTsEveKS23yAloiM/N5mZZdmJBalk1GNzkzkeKvf3iQzoiP//nSLXRGfLxbcdo6S5aGZbihey4XH9VWLE+MJZGwiFoTWLJzz7S0ufMA82PWWplA9YRCtz3/H0h6iuGrfg+E4Jn+SYJemT3rFnbPzZeDJTI62UgfgeQZIiTonnicRPf1QIPdLHHGG91NfganM+hBJ2tITZY6VE3LZmBy7s/OmHY6sZnBroaPw2V1UE8u0PIHQwuEezouO0FP6UJw3U6geuYOksq5F30UT/IcnU99jMvWRpEEHDzRT2Do8VlfOjidoUXVnFzU3DGttNLK+VLrPLcVH1Nb3kzTqXvoTB7iaPg6vvTYKZJZg2zzFoRt4ImdLHnNYjiBamVdjsSzHBuJc3IsyZkJp1rGbR9fiXvZWkJSWbNua/dCsLQkWVvF7NgFgB5aM6skPpsLCJwyK4Dnz05zJngZamYMT25FsBoj8SxJzXTawwP+8QPOcbXvaOjvmItiFX2uVosXAp0RX0Mhm+Dc5Iav/H3Ovvjvam4zetkHUDNjXH/0Y/x7x7fZvv8fGJ6uPsAWZpbWA/9Jzy/+T8FRVo28E2g6rTM0nZkzlDmpGQRJVw2FLj81A16ZrZ1h1rVUlg9KAizJi5dKJxDg2jvrJC+gFecoDccynM2F2Cc0g7F4lj+/8wCKJPjz2y8h4lfp9SR4nfQImux8N2YmufwH7+Jynqm2gnhyLEkb08hYZCPrAbD0uYWM2bqD2bY9a4vboekM9z17iOYD/8n0htvINm/Dtm2ePj3J5euaa3b8rJfmXHZFPGughXsJZ87xevkRZEtjcusdyJJoePHF75HpifoYms6QDTjZhGqisuNOImMwlZojt2zMKU2XI10rKrDYZfmoxwm07MHQwnUCnQ/KS8IauTTV83Wluq5mbOe7aDvwBTrGHmNPp8I7jn6IjT98a4WbMY9t2wxOp2mSNSwlUAhSXgnNaRaD2brgTWx7G8J2xpjRy15NRrc4PBQn07wVAF9ZSdhitInXa5RV2zakNYtExih4GFwnUCXuXXSJKXdNLEU5RTKZJI0H37o9wOylYFA9UK2YkFdhbbOfe18Y5vced0rDvvndb/A3PzrIt54e4MC56ZIBbHEoNIB/7HmykT6EPzrPv6g6xfW086lvX2nIkmg43FIWgnT7bpI919fcJtl9Pan2y2k99FVeHv8e75fv5KGH76/YLnLyh2z9xk30PPpntB78EuvveVchz6mcrOF0CBuOZbBt5hysp3PlYLY3XPFceclXW9Bb0yYrhMBSfPjQqnZocEvC6iOd++yyuoVuWmQNk4mkxlRKZyKpcXYyxZ/84ACxjM6fvnYnXblVq0sGv4VXGDzZ+gYArBoDHxeX1Ux5OWwiYzASz9KnOoHJMyLQ3FmAhWDoKiKQc52tfE08o/N739zLe7/8FNLj/4pqJBne8yEATo2nmEhqXNnbPOe9fS7UXEeoeEZHi/Qh2wYfUO4i3bydTOuleOZRghX0KHRF/BiWzbBwOpeVO4HyDM6ywKCbFolxp1NpoG32MY7L6qWeLCg3GPrioPx610gHvHpPkaFr/ohM0ybWPvR7/L3xMbZYJxC2WSFo5JlK6WR0i7CkYarBVScOzvb3ZJu3kuy8Cj3QQfvmqxDA4eE42aZN2ELCO3m08jULFGYa6RLcaKzFxYArAi0x02m9UOs+Es8QX4LyFTObJIMHJdJNNtxLumV7zW0lqXprxXL+69ev5RO/vIfbb7mZlBzmBs8xTo0n+eKjp/jf33me9335Kb759Bn6x5McG00ggPWtMyJQunXXrIrxfPCWOIEufBEIaHg1s66PVAhOvuqLHL7jQQ6/7TEsBNEz93FsJFHYpHX/5+m77zdIyFEeuOaz7L/24wSHHmf9Pb9atdWxZcFoPFsIiJ5Mze7AcYKhM+ApLQeTJGgNzpSxCQFhX+2JiyTAkn34hFa1G5hmWHWVT1zMlLsLEhmD4elsYbJ5dDjO//zaXoanM/zJbTvZ0ukId/6RZ+g58Fl+xhUcxMmfsrOuE8jl4qPYRq4kB+m8/7cJk+LaNmeRJxbodZ6cwwlk23bhd1dVBKrhAvrGU2c4OpzgX7Y+x28pd3KXeR3P607zh3sPDCEJuHJ9c8PO0mq0Bj3E0o4TCGCNGGNq6x0gBOo83Dd+1XECAfRnnTw7T6K6CGSYNkM1mmpkDQt9ynldc8e6ho/DZXXgRAHMvs1yT7sFbjD0+cCnyoVzwcnYbEAEqvMssRU/Azd/EjU1ypbEk/yz8QYAvJOHqm5/Lue6D4oslhpc9HnQ+ab8t1dennnmpZ/i5Ku+SsCr0tsS4NBQDFvxoYX7qnYIW4gI1IgABM48plb52MXKhZmsewFh2zCe0PCpEsPTWToj3gVbtsux9DRp20PQp3LsDT/EVmq3iA16lLoulGGfyuaOEJs7Qhj9V3ND7BiffftVTKd19p6Z4p4DQ3zp0X6+9KhTJtbT5MOnysiZSTyJAcZ3vpPFdmsXZwCshnKw+VDvQMPyRtFyuVDJ9it41ejT/O9HTvL7t25jzb5P07P/E9xrXc0HRz6INqKiSGG+dM3fcsPeP6Tl0H8xfumvVeyzOOMqrZlkdLOmGJfMGoREGqtMBPLIEn6PjFeVyOoWEZ86a3mBEAKh+gnLBo+fmODWnV0V20yn9VUjCi4Fab205fRYIlsiCv37Qyc4OZbkI6/ZwWVrowB4Jw+z/p53oQc6+JT12+zJnADA1lwRyOXio3ig2vrCl+k4dye3y+1c3tQMkzCmrqGXucvBiget1QIts2aloD0Uy3DXvnP8a+f3efXprzO15ib+7PS72bXvHBF/L3cfGOLWnV2sawk0NAmqRWvIw1RaQ4v0OceJxNSmNwDz6xYlSYL1bU456dm4jh7orOkEAphIaHRFfBWr+lndhNggWVuhq6un4eNwWT34VJlUdpbFn2Wed0tuOdh5w6vIpDWz4RJASYJ69YB0+27O3PwJ0FN89uH1vFfci2/icNVtB6cdEdtnpzGUwAWdXVqN8vO8ya8ybmqFe5semrk2b+8K8/NjY1i2TaZ5S9UOYRndLHRPa5RGRSBwcojcUuIZXBFoGRhPzqy6V8s1WTBamgweQj4Fyzt7EG+9dvHi1P1U19VEztyPnJmgyd/CTVvbuWlrO4PTaQ4POcFb27py7oGx5wFIt+0iOtdyTYNIkkBVBIZpr4pWi/NhPveTxPpXsHP07xgZOME//ufTfM/7Cb5nvogfbfpTPrK1CwF85mfH+c3nNvJg6xW0Hfg84zt/FaTSz7i8TGEqpdPVNIsIRJpsWSZQfiW5ya8yomfruvjbio+1IcGTpyYYjmUqAvYmkhodYe+iTIBWI+W5ZMUC0NnJNA8eHuH23Wu4en0LAJKeZP3d78SWPZx89Vfx/CLF4PApAKxsAheXi42CQ8e2aTp5JwBvUh8lpNxA1lYYkVqdp+coBzNtm6bjPyA49ATjN/9N7fcp4suP9vMO+Se8evrrjG//H5y74S+54ef9/Hj/ELGMjiQJ3nr1uqotk+dDS9DDsZEEerAbDYW9nivwB3JlXPMcPPe2BlFlwVAuHHo2EQgc4bo8uzBrWCipYcZFM9FgZVMEl4sH/xwi0PKXgwm3HOw84VUk0prZ8HfubF+/iDC96fUA7D51iCMDa+kdfaHqduem0siSwGOl0atkYl7olH/OsiRoCqhMJCojIrZ3RbjnhWEGJtN0R7cSOX0/wtRo3/dvSFqCoWs/sqDcXGse8SqaYZGLvnPBLQdbFixrZgJdT/vXhjHSZPDOGfgMs5feFFM82Et2XgVAYPipmQ0snTV+k5u3dfDuF23ghk1tAPjH9gGQbr10SWyQXkW+qF0f5auj9Ygo8d5XAPCxXWf5l7bvkFBb8L/xn/ifL9/BFb3NXN7bzP957U400+ITyVvxxM8Q6b/b+Y4f+gPan/3nqvsdS2Rrtp9PZQ0CIotV1h0sv5Lc5FfnLAXLYys+OgM2QsDd+4cqnjdMm+m0GxBdi9muOV9/6jSKLPGmK9YUHms6+UM8yUHO3Pwv6OFeuiJezqZyvznXCeRykWGYVmHF0T+2D2+sn36xlss5RGfseUbsZsazznXMnrMcDMJn7qP5yDcwqtjgy63xR4bjjBx7mj9Wvkps3cs496KPgqRw264eDMvmmdNTvH53D60hL2Hv4jiMW4Jep9xXUvhj5Q/4RtsHC8/Nt8Vx2KvQFfE5HcJCPag1ysHyVMt/y+gm/uwYU3IrijvjvqiZawy4/N3BXCfQ+SIfE9G4CDS/93vNpV0cttbCyAt886nTFULE4HSGjrAXWU9ieyqbnVzolM9BZCFqzkO2dTvmgMNDMTLNWxG2Qdv+/6Dz6Y8TPfYdYGFz4vxnHzn5Q7Z8++VI2ak5X+OGQ5fiikDLjGHahYygxUIyMmRsz5x5ALIk6hZQikuv0m27sSQPwaEniZy4ix1f3sWuL2ziki/tpOfnf1RiEcmHQlvepjnrtueDR5FWTcr+fBBClNheOyJeIv7ZhZRsdDPZyAauG/g86+J7mb7m9+jp6CjZZl1zgD+4dRtfmbqUYbmHtn2fZe3Pfp+WI18neuLOqvu1begfTxWyevSiyZKRTSJjVbSIz4uLPlWmPeytyyprKz68tsY1G1q494Whqm0ex6qsQrg4GSTJGiumA5MpfnZklNt2dRe6AgE0H/5vMk2bSHZfBzhd7OJW7nlXBHK5yCjOIms6cSeWpPLb2geQsImOPMEQLYxnczc7bQ4nkGUja3EkMwNapasuf20L99/L2nvfy/SP/5J/9X4K29fEwEv+oRAKt6bZz5V9zYR9Cm++Yi2StHjdZ1qDHqbTOiPxDN9LXYYd7Ss8N9+27GGfSk/Uz+B0OucEGqy0lhaR0aoLZBF9jKSnHXWeYpTL6mCuOIDz4gRyhcnzgqcgAjX6ytIX1HvKXLY2yp4rX0SzSHD3Y8/x3WfPljw/OJ2mu8mPpKewV6ETCEo/K1kWBD1ySfVInm1dYYJemUNDcbLNWwDoevLvAVDTowgjg2Ha887pyc83gkNP4Js8Quczn5zzNW6b+FLcO+l5oLgkbD41jcVYlo1sptEl75w3vnqcQnkkSRR+1LbiI922i+YjX6fv/t9Ei2xk6MrfZ2LLHbQe+iode2ecIvlQaGgsqb9evIqE7yIfABZ/zYokWNscQJ2ta4sQxPpegZoeJdO0iYltb6262VXrW3jnDRv5VOZWgqPP0nz8u2ihtXhi/WBXv3DaNpwaS3JoKMahwTiTua5hVjbXRcpb3QkE0BGuz9JvK36EmeG2XT3omQRPHDpZsU1aMxdkK12tTKf1mje9rz91BlWWeNPlMy4gz9RxgsNPMbn1lwsnWmfYR8p2SvDcYGiXi414xhGB+sfiKAe/xz7fVew1NzIS2gHAhNzGWCZ3rzTmyASybaSc+COnxkozgopE9NYXvkT49H28S/8GGzjL2Zs+gelvK9nX771iK5/85T0EvUpD9/a5aAl6MC2bf33wOELAqy/tLjw333IwWRJs7ghxbjqDFuxGMrPImYma25evDpuWTUYzabUnyPo75i1GuawO/KpMZ5O35hhzuU05SzHWdamPfDREo3EA5V9ZI9dQpftSAN7QM8l/Pd6P99FP4Bs/kGsPn2FdRHZapXtWpwhUfL4rkkAIQaTMDSSE0yzoyt5mjo4kCh3CLMXPSK6zpScxAFR3A2mGNadhwso9rSadCoHWF75YNXeoGNcJVIp7Jz0PFHczGphMLahtvGXbKFYWQ65sNV5+Y2p0pbB4wJfquholO8XUxtdx4ravM3r5hzj7kn9gcvOb6Hz647Qc/ApyZgJPYoB0+2VV338x8CrSRV0OBjOrXEI43cVkSdATrR0GDjC94bXYQmLo2o+AVLts4I2Xr2F445s4YPWxd9NvMLr7N5DMDEpquOZrbBt0wzmH8xMmctkxqj9Ssm3x4L3um7biQzIy7F7bxHf9H+U3Hnsp2752HZ25FYU8E3O0rb8YKQ7zLmZoOsNDR0Z59aXdRItcQC1Hvo4tZKa2vLnwWGfER5Lc9cV1ArlcZOSdQA/f/yOajRG+kriSlqCH2GYnIyKutjOaca5rc5aDWSDrjkCupEdLRCCtaMCrjB7gu8YN/PbGuzj81kdJrH1Jxb7CPpWOXD7aQlvDF9Macq4HT/dP8oY9awoZbJK0sHv6ts4wmmExqTguVDV5tua2mmGVfDZZw2RkfJyISCHC3fMWo1xWB0IIOsI+tnWFqy6A1dv5abFwyxPPH/N1AhUvmgtRX7RCnkyuA/NbeuNcJx9i64FP0Pnk/yWWMUhpJr1h51q+Wp1AxZ9d/t/Rss8v6FWQJcGVfS2cGkuSMBVGL/tNTr/0X4jn7mdqvLYINJ3W5xRs8uVgavIcqbZdWGqQ7sf+claXqdsmvhT3TnoeyDuBMrpJLG0sqG28DShmBrNMBBKiUtluVAQqbsk+svs36b/l3zjz0n/BVnyFNzl74/8lvuZG1vzij9n4w7cATig0sCSZQB5XBCoMxIvtlxGfOuv3m+7Ywwvv2Ee89+Wz7lsIwftvuYy3io/xafuXyEbWA+CdPlXXsSWzBpZlI3Kr3ZIvXOL+UatYRufCVnwIM4OwTbZwisesHYx519Hx3Kfx5YLIAbdVfBlTKa1my+nvPDuAJARv2FPUZcfSiR79NrHeWzACM+WCHREvaRzXlq27IpDLxUNGNzFMm1NjSTZMPIQhVN79rt/ki+++Bn3HG7FkLxP+9Yykc9e1OoKhZS0GgJIudQLlf6sTwwP4tXEGvJv4HzfuKOm2Ug2/R6Y1uHhJly25fbUGPdxx5Uwrdu8CHbjr25wJ0YDlBNB7EoOzbl+cC5TVLWJnnW48ascm13nhAjhjoWquMLHMMxv3fDx/yJIo/K8RSkqaJEHYp9TtIDN9zeiBDlqSx/jTtgcBCA38jMmhUwCsDeau66vUCVT8UecF0KBXKSnTzOd9XtEXxQbe/5WnefX+m/lucjda2LmveBJngOrlv9Npbc7SLbMgAg2SabmE4St+h/DZhwgOPlrzNW6b+FJcEWih2Dae6ZNEj32XyKl76npJvmxlLOGs0k+n5h9qa9k2qp2tEIFkSeDzlH69/gbFk+LVNssbJbbhtoq7qy17OPXKL3Luuj9DTQxgC5l066WFY1hsvIp80d9w839++epTV1OlG6wYyxOZ9fk8HkViS2eYo8NxtMgG57HYqbpea9sQzxrIei7vwhsqZFVJEvNqzWjnnECe+ACybXKP8lJ+2/pdTDVE+/OfLWxXS/C4WKnlAppMafz04DC3bO+gNTRTkhc++zBqetQpBStClSVCgQAGMmIFOoEW4qR0cZmNWC74/q5959guDZCJbsHyOCWuRrCbw7/8MPvbX8tgKveCucrBLBtJyzuBxgqDWHBs6tNpne/efTcA199wEwHP7A4fWRL0LlJr+DzrW4NIAj5w06aShYWFum/WtzoTopN61NlfHR3C8qR0E3PUsflHe3cu6DhcVhdKlfDJ5R4hLsWCp0v9eFVpnt3BZv6tyI3ljWaatxM6+3M2TTzEQ96bkLDwHfg6AD3+3LVrtYpARXOP4vlY8Xgy4nOcQdduaOW9N27k2g0t2DY8eGQEI9CJJak1nUAZ3SStWXO6dizLRpgaSmoUPdjFxPZfwfREaD76zVlfp7kiUAFXBFog8r+/iG3fvIl1D/42fT99L5FTd8/5GtOySWsmUznxZzqtY80zG8i2wWtnZ9w5OVRZlAwgPYrUsHhSdycQSWH80vdw5Jce4MRrv4XlbUKIxmt0Xeoj/7mWD35CXmXR2gRv7QxxeiJF3NOBJXnwxipzeGoRS+sFEUh4wwXn1rxzHBQfkpnBkzuG9Vsu48khk2Nr30zTibsKNxLTshecsbVaSGlGiSgmZafoeuJvEEaaH+w9h2HavOmKtSWvCZ++H1MJkFh7U8X+Opv8ZIRvWcrBbNuu2h2oFokFOCldXMopXiVMZAxiaZ0HjoxyiWcIo3lz6bbBLqJh/0wwtF5deM1jWxayVlQOZhaVgxkWH7/3MN2Z4wBE+q6Y81jXtvjn3bGrFutaAjz3Z7fymsu6Sx5f6Pv0RH0okqA/HcCSvXN2CMuvDmd0k8mkhjp5HAuB2rZpQcfhsrqoFki73MHQbij0+cUjSw3nQJU6gZz/nxcu6iHTsh01NYwtKXDrR3nc3smWwe8jC4t2b25MslpFoNyHJ0ml87yoX801IJIK9wuPIvGR23bw2y/fwnWbWjkynMC0BXpoTSETqLz8N5br9luPE0hJjSCw0YPd2IqPqY2vJXLyx0izuNbdBeMZXBFogVhX/RoDL/57jr7hh6Ta97D2Z7+Dd/LonK87O5UulC3adlGWSoPYNnjQQCltRShLUonzp1EXEDReumMEu0h1Xpl7f/emuFTkL8DVBj9zuYHqZUtHGMuG4+NptHCvEw5dJ/GMgWo6S+PCFymsrsx3EmGrfoSRwTvtiECX7b6CsE/hH+O3AIK2A58vbHuxJf/XcsEkyq4nTSd/RPu+z6Acu4cf7R/khs1tpTlStk144AGSPTdgy5WB3Z0RL0nbi1iGcrCsYdV9k87ophv057KoDE5nGI5lsCyblGbyk4PDCCNDmzFENlopQLQGvWTJTR7mcAJZehJhO6ubSnqsZEVyOJZm75kpbm0dRQt2Y/qis+7L75EamrQ0QtinopbdwxfqBFJkibXNfs7FsujB7hknkFXdCZ3SnWvYudxYKZzqZ0xuR/GuzomVy/yolsfjrj9eXCzUCZQXMubqtFtMpnkbANMbX0dzZy9DG+9gvRjmFcETeCynLFis0mtV3vlWPs+TJEFL0EO4yn3JI0ts6wyT1k3OTKScpjPxM4Xni91AUzkRaO5MIKcUDCiUTU9tfjOykSJy6scA9I8nGZhMlbwu4+YCFXBFoAViX/XrTG5/G5m2XZy+5TPYso/en75vVhUSqOhkNJXWsG2nfXwjriBTz6Jiglo6+VdyNbL5iXd5aVg9LGTlzxWBlo78BbjaoDzgURq6kdViS6dT8nBkOI4W6au7HAwcR45qOue/8IQKAuS8JxGyD4GNd+oIphpCCXfy+j1ruGdA4XTPq2g+9DWk7BRQKgJZls3UKg+LruWCKc8ZC4w+B8DYc3eT0U3edvW6kuc9sZN44meIr7256v4iPpWkvTxOoKxu1S3sxDNGIRzwQmSu7hcuy0/WsBiJZTk+msAwbX74/CCv7EwgsMk2VROBPIDAkLxgzJ4JZKVjhX8r6TFG49mC8+iJU5PYwEbzJJmWHXMeZ3Ng8XKAqlF+vV6MMObLe5t57MQ4cW8nauIcHc/+E5d8cSeRE3dVbKsbNuOJLMmsiW5adOtnmPT3LbrzyeXCplqJ+XIHQ7ucX7yy3LAIVLx5/rVeRS7JtZmNZPf1ZJq3Mbr7NwDY8JK3kRQBftXz4Mz8zxOaZQ8XLvnPrpoA2xryVA3Z9igS27vCABwejqOH1xZc/OC419OayUgsU1gEnGtR17LsGREo2OXsp/MqspE+mo9+mwcPj/C/vr6Xj//kCFJ2Cv/IMwBMJnU3RiCHezddRPRQD6df9ml808fpeOaTDb02ljbYf9Zps314OF735DWVzAXwekqdQHmXSD6PZT5OoIW0YXVFoKUjfwGu9Rl3RnwLXglrDnjoCHs5MpxAa9qAN3Zq1sT9YgzTwmc5K+LCFyqIkfOdRNg5gdM/cQgtsh6E4PbLeogGVD4WvxXZSNF66KtAafJ/xjCZSK5eEciy7KoOwny5aTH+XID2+tgTvHZXN32tpStU4TMPAhCvUgoGzvUjaXuXJRMoa5h1d3BwgsiX+ICWkHLHlsv5Jz/wzOgWj58cZzSe5fa1znmfjW6u2L4l103LkLxzBkOLbLzw73x3sMHpDJph8Uz/JC1em0jiJJmW2XNvhKCkq99SoJaJLQsNhgb4o9dsJ6DKPDUZJDjyNJ1PfxxL8bPuZ7+Lb2x/xfaD087neW4yxQYxSCay0e0M5lJCtXGQ6wS6uPAo0oK6gxVnOtXbJUwPr+Xom39CNucIEmqA5KX/g+tSDxAYedp5bJWKQPnfXDXhTa2RraTKEt1NPsI+hcNDcbRwL2pmDJFzzw5PZzk2kmA4NlNSbduzC0FmiQjUQ0Y3ueeFYR4LvYLAuUf4r588iiQJJseG2XjXL7PxrjsQRgbTsplOzz+LdzVR191UCPEqIcRhIcQxIcT/rvL8zUKIaSHE3tz//nTxD/XCINlzAxPb3krb/s/hnTg0r30Yps2ZiTRnp2a3lgPEEs6gUvKUtgjP/0jzeSzzEYGEEFXbb9aDG5S3dOTrz9UqgYjgfOeNtLusxZaOEEdH4mQj65GMdKFNvGeOTmEZwyIknHNX9jo3Qb8qz38FV3XObe/EIbJNTlC13yPz1qvWcddIG2dbrqP1wH8izGyJgyStmSSz5qotEdNMq2przUTWKOh1pmUzND6Fd+IQkyLKWjHGu3c4T3Y8/XHanvs3AMIDPyPbtBE90lf1vaIB1WkTr6eqPr+YZI36nEC2bZPIGiXhuhcaznd14R7/aqM8V+zO587REfZyiWcYG0G2aWPFa/KduXThmbMczM44TiBTDaNkxgGYSumMJTI8e2aKV3dOI2yDTOvsTqCmXPbCUlK+yrsY4ktH2Mcf37aDZ9OdWAgGr/ljjr75PgxfC30/+XWU1EjJ9vmfxujgaUIig2jbUrUM2uXipVpsgTv8vLjwKlLDuUzF50jxvxciro/t/iCmN0Lb859z9rvKM4GqhbLXQpUlhBBs6wxzaDiOFnIyKT1FbqBqzLYgaNo2avIcphpiIKXw4W/v41MPHOMjJy9FwuYrkU/zyV39fF75W/yTh5AsvZBDNL6KF4gbYc5vUAghA58GXg3sBN4mhKi2TPWwbdt7cv/7y0U+zguKoav/CNPbxJpf/DHY85+ATiQ04pnZ1cpUTgSSy2pP8wJBwCOjKmJeXZlg/gM/1wm0dMizZALl6Yz4aA152NAeJBqYnyC0tTPMcCzLpC93sY71EzlxF9u++RKC535R83VZ3SREBk0KIMuO+OjzSAsKhgaQjVShWxnArZd00RXx8YnkK1FTI0SPf79UBMoJJKu1JEwzrQrHD5SWiH3lsX4+9d/fQ7INPqu9CoCOsUfxjR+k89l/ovvJv6XlhS8SHHy0pgsIHLdDyvZia4nF/0PKyBoWmmHNKY6kNBPbZt6h+isB3bTIuCGFK4ZiwfjkWIL952Lctqsbf+w4enhtRQMGcFrjhrwKWTwIY/ZgaLKOCJRt2oCSHis8/Ez/FBNJjRsjQwBzloM1L2JL+FoUX699auONJWpxy/YOzmx9Jy/O/BPfC/wSRqCd/ld8DiU7yfp73lXonlaMNux0BvN3bVuQQ9ll9VG9O5g7/ryYkIqiL+ql+BwpvrZ5FInAPBusmL4oI5f/NpLljDmlVZoJlP+45AYE+fz3s707wpmJFNNep/FAvk18LWZbxLVtGyUxyKTSzu9+Yy+j8Sx/ctsOPvae2zl+/d+xzhPnNQf/kEtEP4/2/KrzfvHTAKSyJpkqi6gXG/X8aq4Bjtm2fcK2bQ34b+D1S3tYFzamr5nBaz5CcPgpWl/4UuHx0JkHaN3/uYb2dXYqPWvHo0Qy12nEWxYMnftx+lWZgDr/jJj5DrjcbglLR+ECPMtn7FEkeqJ+Ql5l1vBQRRYEvNVdOls6nfrdg9l2ALyxU7Tnzt+Wg1+tuc+MbhEkjaYECysGC3ECCWXG5ZZtWl/4typL3HHVWr41vZXpyDba9v07WtFFPX+BfcI2egABAABJREFUn0ytTtunI5RQcSPLlxhZts39h0d4ZdQJYN38snehBXsInf057Xv/GVMNkei5gTWP/AmSmamZB+T3SDT7PaTwIbTlcAI54s5cbTzzYteFnAlkNdgJzWVpKR5w3rlvEI8i8YqdnXinjpNtqiwFA+ca2hHxksGDmCMTSOREIK1pI7KeKGz/zOlJAHZKp7FkH9kisbscnyoR8i48920uJEmQn1+HfIv3fook8Ws3baepawP/+JPDvDAYI9N2Kadv+Td8E4fo+8mvV3yO8uQxAMyWzW45mEsJ1XJJ3OHnxYdPaUy4KT5Hysuaogtw0k/seCfZvKN6tTqBch9eIxUf+bnk9vy8ItMMUJILVI3ZXOH7BqY5e/o4LyRC9LYE+ORb9nDNhlZCPoXUJW/n8C8/RP9LP837+QjfUl7rHEdRk5vVHBdRL/XcTdcAxVLdQO6xcq4XQjwnhPixEOKSRTm6C5ipLb9EbN3L6Hr8r/CP7CUw9Dh9P3kvXU/+PVj1D/p1w2ZwurbFPJ1yRCC1THHO3xglSdA0TycIzD8cutqN2WVxELMEQ1ejWtt4IWBNs58d3RE2tYdY3xagfEFtU3sQATwXC2JJKtHj3yMw8gx6oJNI/73Imcmq75fWTUIig6EEC0JV0KPMfyW5KPRcK5scXdrTBAh+0fE2fFNH8Z95CNOysW274LDQDIvkKmwjnp+wFnfS0nIuGoAD52JMJDVeGjmL7mtj69YdJNbcSHjgQZpO/ojxS95N/y3/TqZpE5bsI9l9XdX3aQ548HtkkrYPyVhaEcgJxnf+PVdJWF4Emk0kX+kYuQ5ULiuDrOl8F9NpnZ8dHuWlW9sJe2W808erdgYD5zoc9atkbHXOYGhR5AQCJxcI4NnTU6xr9tMSP0KmZRtI1Sc0kuS0cF8u8gP34CKKToos8CoyH7ltJ+0hL3991wucnUwTX/cyBm76OKHBR+l+7C9KXhNKnCQrvBihbtdl7FKCJImK8i/h1oNddDQ6VykWfsrHvk1+dd4lhbbsYeAl/8Dorvchq0vv2DwfSDW6g81GvmxzS2fImVdMeLBkb0mHsGrM5gT6f4+cot0eo3PtRv7+zZfRGSlz6koqsU2vY6LjOp6dUDGVQIkI5C7A1ScCVfuWy0fdzwB9tm3vBv4F+F7VHQnxPiHEU0KIp0ZHRxs60AsOIRi46ZMYgS5673s/fT/5dQAkM1todV0vk0m9ZhegTMqZlHn8ZcHQRVe1yAJW8ebrBGpUlXepH0k4Ik69F2BFlvAXdYeTJFjfFqSlqKTAq8gVk4uAR2FdS4AnTsfQwusInfsFphri9Mv+FcnSiB77TtX3yxomQdIYSrCw2rIQZ5hdJALlJ095upp8+FWZn9jXAOAffY6sYZLWzZIc69UsAhXnAhWH3T10ZBSvItGXPUK6/TIQgsSaG5GMNJYaYOzSX8fyNnHytq9z4rb/xlb8Fe8hS4LmgIeARyaFF9lILWmGTbHwM1ub+IxuktZMlOQQ4b3/UXdo+UrDdEWgFUX+N/Wj5wfRTIvb96xBTZxDMtJkaolAkkTYp5K2PYWQS6h06AFF5WBOtpCSHiNrmBw4F+Py3mZ8k4fINNcuBVsbDRRy/pYDRZYQwhHxF4v8favJr/Lnt1+CJAn+/M4DTKU0pja/kcktbyZ64s7CYplmWHRqZ5jwrsWzAFezy+qlfEHM1Qld5qJad7A8iiwRXsC8KdV1LUPX/p9Vex7WahE/G/l7ScCj0Nca4OBwEj20BjUxfydQIpWmjSmiXRtmFX43tYc4PZFGC/cWysHAWYS72Klnhj8AFPcTXgucK97Atu2YbduJ3L9/BKhCiLbyHdm2/Vnbtq+ybfuq9vb2BRz2yuGbT53hXx88xoe/vY8/+f5+To7NZGaYvij9L/83lPQ4CIUzL/sUAL6Jgw2/z9nJdNXsi2zGeT+PvzSFvtiJs5BVkfIOIfVSLR3eZXGQJdFwOGbIO+MG64z4qpYTRHwq7WFvyWNv2NPDkeEEZ4VTvzu59Q5SXVeTaruM5sNfrzr5zuhOMLSlBhdlRU7kgqFNTwTT21zynCQEG9uDHBw30QOdeGMn0YzKrJxqAcoXOvlyqeK/LW9vNUyLXxwf48Y+P/7po6TbLgMg0fMiLMnD+M53Y/qcz9IIdJDuuKJi/5IEG9qCSJLAnxOBFCO1pBk82aK/ZbZAwLNTaWwb2vZ/nvZf/DkkL8xFBctyJrlGldI3t159+dEMi6xh8sPnB7mqr5nelgDe6eMANcvBVEUQ9ilkbKWkjClWJc9PysaxEWhhp1xASY/y+IkJNNPixm4bJTNBpmVr1fdpCXkW5OqdD6os8Knyorpviifs3U1+/uS2nUykNP76hwfJ6CbxdS9D1mIERvcCMJDrDJYMb3BLwVyqUj4ecp1ALnNRfI5UK2sqHwvPh0bb1l8oiNxluNH7Qt6ttaM7wsHBGNngmkJQcy10s3o+pG3b+NIjSNjowe5Z97G5I4Rh2Ux615Q4gQzTFYHquaM+CWwRQmwQQniAtwI/KN5ACNElcr8oIcQ1uf2OL/bBrkS+8vhpHjoyigBOjiX5nW88x5cePVUoUci0XcaJ132bY7d/j/i6l2ILBd88uoZphsVIvDJ0Uk87TiCvf6YcTIjFy+SZjxMo3xLcZWkQQjSUyg8zmQ6KLGiZpftBa8hTskLy8h2d7FkX5eGJKDaC8Z3vBmBy21vwTx4qtMIsZiyRJUQG4Qs3dIy1yItA2aYNVdt+bGoPcXIsSTayAc90TgQqm0CvxvDdmVbWzt8ay+iFx/YOTBHPGLy+axxhW44TCDD9rRy5436Gr/zdWfctSbCxLVQQcwMexSkHsw2sucJvF0CJE6jGCtBkUiOVdf7m4OCjuY0rw2RXOsVlbEmt/Hw1V6V7baWjmRYPHh5lOq3zxsudqnfvlJNHU6scTMk5gZKWijCd30ZGNyucbLZtI2kxLDWEEehwXpse475Dw7SFvFzuH8q9T6UIJEuCrnKr+zLgWeCKeDXksvKdbV1hfv/WbRwZjvOFX5wk0XMjtpAIDfwMgGdODLNOjCC3bXXHFS5VKV30PI8H4nLBMFsmEDhjntbQwsq5VqsIVGhO06gIlJtPXtHbTFo3GZa75iwHq5UPaZgWIc3pJqmHembdx+Z2xyRxVnQ6TqBcwybbpuoC3MXEnHd327YNIcQHgXsAGfiCbdsHhBAfyD3/GeCXgN8QQhhAGnirfZH0vf3yr13DwGQaIQTxjM7nf36Sbz7tKJvvvH49AOn23YXts9GN+Cbn1zp+NJ5FCOgIewsqtpFNAo4IlJ+aLeZqmUdxLHyNfJsB1wW0pEiielvU2Qh6ZIRwVjdmEwhVWaLJrzKVC1MWQvBbL93MX33tNs40XcfrI30IYGrT6+l86h9Yf/c7GbzuT5nc+sso6TFsycPAZIqQyOAJRBbyZ86QK1MqzgPK/y0jsSwb24JkDYsJ3zp6hu5nIreaX4xmWJiWvWryJPKh0OCsZuimxWgsyxcfOcXZqTQ7R3/Iv3qf5KZ+RyROt+0qvFYP9865//awt8TN55SDOZNQM5tE9VaWji0Gc5WDmZbNUCxDImNgpibxj+93ntCSS3I8S0mxCJTWTJqKwiiTWWPOTCSXxcW2bbK6xXefPcum9iC71jQB4J06juFtwvS1FrZtDXkYTziuu7xQkrTUghMopZkVVnPLBklLYHpCGH5nX/r0EHvP9HLHlesITN0PQKa5UgTqbvKdl2uXIktLIrwoskA3Zj6f6ze28trLurlr3yC37uxiffsewgMPMXTF73Lo0D5kYaN0bHU7g7lUpbj77Sqdd7ssMsUCjahxWemK+Ihl9JJrVSOslvFmOfPJBIKZypLL1jYhS4Ij2Wa2ZCaQtASWJ1TzdRndwlsWMRLLGnTYjtdED3bN+r6dES8hr8JRrY2rzSxKagQj9xrDsrmY00vquqPatv0j27a32ra9ybbtj+Ye+0xOAMK27U/Ztn2Jbdu7bdu+zrbtR5byoFcSEb9aEGTCPpX/9fKt3Lqzk28+PcBjJyrNUJmWHfNyAuUZiWU5PposrPgb2Xwm0MwPaLEvPLN1l6qGWwq2tMiSaPg7FkIQDaizuoDytIVmbLBdTT56oj5edd0VfH54Ew8cdpR3yxPh2BvuIt22i7UPf5hLv7CZHf91FVu/9VKGJmKERQY8i+wEiqwvPOZTJTojPlpCHjblVP4zdKFkxtGTk1WdP6upvKZ8ZSSW1vnus2f51jMDnJuI8dv6F7hZeQHZSDK18XaMQGfd+xaCivPErzrlYABkl05wKQ4BNC27YpVmKqVhmDb/fP9R7v7RtxH5FZ0L0AlU3NUskS0tHUpmTVcEWmayhsVzZ6Y4O5XmDXvWFO7r3qljTilYfvVTFnRGfIXJpiILwl6FVJEIlMwamFbp96ebFrIWx/KEsWUvpifCyOAAlg0v296Bd/IIhrep4rfq98jL0hK+Gl5FIrgE9/NqK8hvv7aPJr/KZ352nNial+Afe47DJ/t5UfoBANKtO10nkEtVSpxAbnt4lzooFgtrdbmSJMGa6PwXvFapBlT47BoWgXKL1z1RP5d0R3gk5sTCzGWMqJaJO5nU6BZ5EWh2J5AQgs0dIZ5LOREInnhRSdhFngvk3lGXgPe/ZBObO0J84qdH+O8nT3P/oWEmc1kdmZbteBIDSFps3vtPaybHRxNkdBM717JZ8foLddGNukTmojnoikArCUmIebm9epr8dZUJ+j0yAa9Mk9/JCPIqErdd1s2O7gj/8fDJwrmsh9dx8jVfY+DG/8vorvcytvNdKJlx2iaeIkAaexZlvyEiXcTX3kSs7+VFx6jk/iYf27vDqLLgkO6UWFhjx6s611ZTLlB5x4Tjo0m+/Fg/l/RE+MJLDSIkGH3pxzj6S/cXssjqpcmvlqysgtMdKGXnnEDa0ggulmVX/F3lQshkSsMwLfaemWJT8tmZ1y6hMLVUlDqBrBKRMqkZs2YiuSw+mmnxxMkJPIrE9Zscp44wNQJjz5U46SJ+FVkShcURNecEyreIt22btG6il+UNGJaNrMcwVUccN/xtJCfPsaM7Qk/Uj2/yiFMKlhth97YE2NgeZH3r8nUDKyfoVZYkX6VaOXPIq/CuG9ZzeDjOfdqlCNvC+9S/8xvynYxteiPZlu14XRHIpQpuOZhLo5R0B5vlpAmXZWXmx8ZzIcTqzabKiz+NtIgH8MoyPlViTdTP1RtauG/KceP4xg/M+rp4lXy98YRGt5hAk4NYdSw4b2wL8tR0FABPrCgc+iIvB3PvqEuAR5H4o1dtpzXo4auPn+YTPz3Kpx90cgUyLU7nj4W4gcApATk+msDSHRFIqDNdQxbbCRT2qSUrcELM/K8a/mXsXnIxIkTjtbjQWE5Ud5OPtc3OCogqS0hC8KGXbSZrmHzmoeNFByMxue2tDF/zRwxd80dYspfrMr/Agw7exRGBhOzh1Ku+TCYXbgwUVqeFEKxrCbC+NciziRYAPLFTVfezqpxAZeLIfz3eTyyt894bN9J0+l4s2Ut8zUvmte9qroOARyaZKwezl6j0Srcqb8bFK0BpzSStWRwdSZDWTa4VL5D1OStJF6ITqHwFKh/qndFNp8TPsJc0hNullKxu8sSpCfasjRas5/6xfUhGmmT39YXt8t028xMBVRaEfCpZHCeQZlpkdatE5IPcYDMbYyCt8pHvPs/RpJ+APskt2zvAtvFOHSmUgsmSoCmgEvQqFYLsaqBWY4OXbu/g0p4If/a0l6QU5vWxr5KVg4xc/2cArgjkUpViUXG15rC4LC4l3cHmuKx0RrwEvTJeVaKvJYDPM/d1aDWfh5IQ88qe9aoSva0BJElww6ZWhmghpUTxj80uAumGXTF+H885gdL+0lKwWh97S9DDaasVW0glHcLKF2suNtw76hLREfHxr79yJd/6wPXcsr2DfQPTGKZFpnk7AL6Jwwt+D8sCNMd+Lql+fKrzdTYaGlwPeTeQIgu2doa5dE0Tl/RECHhLBR9VmZ9LxaV+JCGWfGIQ8CiFC3xeAFzbHOBt1/TyyPFxfrx/sOI1tuJnpO16XiM/7vz3IjmBqt1Mi91mPlVme1eYR6acDCLv9Mmq+1mtItCZyRR37hvk1p2dbGoLEun/CYmeF2OrjTsIvKpUtXOcV5FI58vBMksjAlXRgBiNZwvf20TKEUn2DUwRJc5OqZ/TbTcCYGcTlS9e4ZQLPFMpHdu2SwKh3ZKw5ePwUJyReJar17cUHgsOPgZAsvtawJks5H8fYZ+Sy8wTBSeQZGVJZJzvz7ZL3V4/3j/E+PgYh6cEad1kSkRZpya4cUsbSmoYJTtNNicCedXVfQ+tNUaRhODPXncJt+zs4QF9JwCHdv8xpq8FVRGrdmXdZWEUi4ruKeJSD8Vlg3MJNvnFxr7WAIosFRbcZ2MJpmErhvl0KAZnrJ5fYNnRHSHq93BC3ohvYnYRCCq7bU6mNFpEvJCvl6ejRle3sE9FRyHt78Zb3CGs2sDzImIVn6YrA68ic/X6FtK6yZGRBHqwG9MTmVeb+GrIZhpNOGG/vtyPaz4/zrloCXhQZMGGtmBBFBBC0NcSQFVm3s91AS09shDzcgLNl+Iwzjddvpar+pr5zM+O80z/ZMW2hyIvokXkJuSL5AQqv0ErsqgIibuyr5mJrEw60IMnVksEqt5q8kIgrZmcGksWnDGaaaKkhgmeeZBPP3AMvyrzP67rwzdxEE9igNj6V87rfZprZEYJITAVR1RaKieQTbU2oE6LaNOymcqJQM8NTPMy31EAng++CADrAhSBzLJz0bRsYmmDZHZGrHRLwpaPh46MAXD1+ubCY8HBx8g0b8P0OcJQxDeTAShJgpaca85pEe9Bsk2SqZk28XqR1fxT9x8lQopLN67jH395Dzu2bKZTiRHwKPgmjwAzodD1TDIuZGYbo/hUmQ++bAvZaz/EPV3vx3P5WwEqrvkuLnlKRKDzeBwuFw7FQ+h6yppUWSpcg3x1XIsaLZW60Fio2cCrSFzeG+WJ7FrHFGFVlnwVE8+U5gJNpXQipMA704BGkpymJsVz0jx5B288sM5tE1+EKwItA7vXRpEE7D09CUKQbtmBb+Igkhajdf/nkTOVk+l6sG0bycyiS063sPzAcSkEAkWW2NwRqhicKrLE+tZgYeXSzQNaeqR5qvDzRS2y4MuS4A9euY3elgB/f88h+sdLBYFHlasL/xbexekOVn4vrdZ9bk+vM3Eb96zFO32q6n5s+8JwVsQyOtNpncmkxnAsQ/94kmMjCeIZg1NjSaZSGlnDom3fZ1l/z7s4c26Qd79oPdGAh0j/vdgI4utumdd7z1brbqlBALT0EmUC1bgXpzWLk2NJLMsRRQ4Oxnhj9Cgp28uT4hJnI+3CE4GqlXpNpDSSmusEOh88cnyMTe1BWvPB+JZOcPhJEsWlYGW/j7wIFPGpZHD+nUzN/D6KnUATSZ2wSBNucgQlw9+Gkp1GmBreqbwItA0A3yove6pnjLJ1z430vPYjiNxkww2FdqlF8YTUdYu51ENJJlCjrc4VaU6nz2o/DxfaqVFVJHataWKv1otkafgmj826fVozy+6nGmGRQviaCo+Fvc4iTdRfuZgZzmX4TXl7SsrB3GBolyUn5FPY3BFi78A0ANmW7fjHD7D1W7fQ89hf0HrgC/Pab9aw8NpZDMlpH5uvl1+qUqFaZV4+VWZrZ5hNHcG6AtNcFs5ytsotf6+AR+FPX3sJPkXmL+96gcmcQwPghUSAF8Qm5z8WKxOo7F5aTWjc3OG81zmlthMInBvJSkYzLPrHUpweTzEwmWYkliWWnhEFbBvOTKSxLJAmjiFh8Ya2c7xih9NRKNJ/L6mOKzAC7RX7jvgry7yK8XtmbwedLy/LpGJL4qiyZtln/ns7OBin2Zrkutg9/Fy+hv64wJI8F2Q5WLkTCGAioXFuMs1ILENaM8lW6XLnsvhMJjVeGIyVlIIFRvN5QNfNPFZ27cnn74W8SkEEypdow8wqY1ozsfQ0iq1jehxx3Mi1nFfjZ/BNHsHwtWD624CLwQnU+P3LzQNyqYUsicI4YZXPvV0WiYWeL8XX6Gr7WK3t4fNUc9s09HpJYkNbiAN2H8CcJWG2TaHUGpxOsRHSWEWLzfkxbrV5aDjnBBpVe1Ay40i5hUM3GNplUZgtKBkcN9DhoRgpzSDdegmSmcHwtZCJbiZy+r55vWcia+ATGqbsRcqFdHlVaVlLhYoJeBTXsr1MLOcqQzXBqT3s5U9eu5PptM5f//CFQtnKwGSafYEbnGNcokygoKdSzAh5FVqCHvqtLpTsFHJmquq+Miu8vKa89ftsGOMnAHjHuhGEECjJIfzj+4n1vaLq9u01aqXz5FdKapH/PoWWJF6lZedCsev40587M8WH1O8i2wY/aH4XQ9MZbE/wgnQClQcH27bNH357H+/50lO850tP8RtffZqUtvifs0slDxwewbIpywN6FIBkl5MHJEu18+7CPoUszu9HmEUiUC5vYDyZJUQaANMTRlUEiZ4XYSoBeh/4IP7R58hEtxZet9oFj/mMUVwnkMts5N3RqzmQ12XxELlw4/mKNcUiUEfYW+HOX+Ua0IKzX1VZsK7FTz/daMKHv6xDWPveT9H1+EdLHksUjYemU1lCIlVYVBFiZgzr98gV94t8N88hqRuYaRPvBkO7LAghBC0hD1s6Q2xoC9YUgi5fF8WyYf/ZaaY2v4lTt36BY2+4i6nNb8I/vh8lNdzweycyBn40LNlfuPF5FWnVK9Auy0ut8rPNHSF+79ZtHB1O8KkHjmHZNmcn0xzsup3JzW/C7rx0cd6/6EclRO3cqd6WAIdzbeJruYGK81ZWItl6w6tti+bsOQC6YvsACJ95AKBqKZgiC0eknSVwNjKHCCR5HSeQpKeYTs1evz0fqmUCgRPo/fmfn+Tj9x7myKF9vE2+n8ntb0O0bmRwOoOtBuFCdAKViUBPnprk2GiC1+/u4fbdPYwnNQ6ci52no7u42HtmCp8qsbVZouOZTxI+cz+hsz938oBywZOz/XbCPpWs7TiBJDNbeDz/HY8nHOs6gKWG8KsyWtMGTt/yGXwTh/j/7N13fCR3ffDxz2/K9l116aTT3el69TXfuZ197hXjSg3BGAOhh5BAIIEAIZDAEx4gBBNCAhiDwQ/G2JjujrtxO7fr/XRNp67tbZ4/Zne1K62klbQ6Safv+/W6193tzszOaiTtzHe+xd25LdcU2tAnvvH/ZMsPAs2pdpd0V/lkZr+K6SdbEiZnv6JUSo09aJhfshtwm4P6KZ7qwcjxBoGyDbYbKrzsN1pw5U8Isyxqtt5O1a67CtbJH+4SDfWiYZE27fHwHodecO1b6Sk8n/U4dTQFB7RmoH84UyptTdteoeUgn6rjpGuK2ZVunIaO12kwp6r4RJ5ljQGchsZLh7qxdAd9cy8BzcxdsGUv4EajL5bESRzLdOeCT25Tn7RMIHHqGuou7NkLanjbxjk8uuMEv375CPFUGn/9PFov+Caaq0zlYAP2Y6j67bnVHl6N2uUUw00Im8pjt0vtAWOGjuEgQQQXnraXIJ3C3/oocW9j7mIyXzZwlj/5y2lquDOjTk1DjdjPy+F0EcdAS4bpjSbK/sE51GG587mD3LvlMNuP9fFh/h+WZtK27mPMqnATSaRIGh6YoGbVEyk/CGRZFne9cIh6v5Obz2nhLRvmAPDSwS5pDn0StPXGqPE6qTj0EA0vfp2WP96M7+hTBf2AhivRchgaSd3OtFPJvMbQmWN8IhjDn8kESjv9uW0F51zA4XP/DYBI7aoRX+dUYegaStnp+5UeB/NrvcMGgpQ69bOjxPhkz3tP8WtvUUYKxVhjGdnf007TDmZkJyhnneo348sRlDd1jZYaD6+l5uHu3GrXfAGO3gOY4WMY0U70SEdu+fwgUDpit1dJOewg0MBM9iqPo+C6xe8y8LtM9qSbSOtOXHmZRzO5L5B8qpZZhcekoWJw2YWpa6xsquDlQ90Fj0erlxH3NuEfQ0lYMJbErWJYhisXdfY6jVO+IZk4+Yb7hf+WDXOYX+vlB0/agZfmKjdQvukI+UGf4QKcc6rdbAlWYiltyEwgy4LwFB4VX2oQKDvd4EXfZvREEFfn6/gOP0Gw+YKiZ8HZXibevCBQjddBS4097W+kLCB7GwZRXGiJMOk09EbLW6pUrCfQ/vYQ9245wqUrGvjBm1u4zHqK7pXvIumpp6nCBUBU86CmYTlY/vt97Ugv24/1ccO62Ri6RoXbZGGdl5cOdUtz6JOgrS9KlcfE2bMHC8X+S/+XE6e9n46VN+eWGSkIoUz7956WVw6WyqSat/VGc5lAliNQ8Pu0a+nb2Hnjg3QtvrGk1zlVGLqiIWD/DDsNnQW1vlzfhoFMXZPzGjGsCreJ26Gd8hkYonw0beytFbJBoOy5k9PQ8Tj7A/in+vehWYbhNKauaKn18lysGT3eixk8BPSXYgO5yZlAbjgIgBXNBIEyPYG8zsKbJw5DY2GdF69Tx+8yaKnxUukx6YmliVYvw53Xg2gmTwibGWcbJ1m931W0Ceuq2QEOdUUI5ffTUIq+ORfhO/w4Ki+NvBShTDmYMj25XzjFJicJMV75EfWBaZaGrvE3Fy/OfZhms+HKeSck+3k6XArq3GoPMcsg5GvBe/TZIZcLT0A/m3KJl3jBr2cynbbXXQVA3SvfQ0/00TfnwqLLuxz9mUDZOvgqjwND15hf6x1yNHw+j0MnjAstYWfd9EbKWxI2MAiUtixufXQ3XofOzWe3ULHv9ygrRdfiNwEwKxMECltOSEzHTKD+f//ihUNUuk0uWdGQe2zdnCq2H+ujMxQvsrYop/ZgnCqvA2f3HhL+ZvrmXcaxMz9DvGJBbpmRMnQ0hx0EKswESue278cOAil3RcHERcDO3tPMkl7nVFHrcxa8V4eh0VLrpaXWMyiOLf2AxEiqvA4W1ftzN6GEGImm1JhvVuqawjRUQRPi6rzzqHFOUJ/yylGybGamS7+ang+A7+gzAHiPPkPKsK8jspMzs6KZYRkqapfKZ8vBil0bZM9v59V40DRFpdukL2r35XV1vJ7LPMp+Ts9Ep/i36eRprvIUnLgoBZsW2b0F9p4ovGvdN/ci9GR42AvXYroicVzE0R3uXBMyuVsmJkL2zrWh2+WPAwM8C+p83HTWPFY2BXJjlMt5J6SUINCcavtDY9esN+I79gzOrh1FlwtN0QlhlmWVHARKte8lbukEG88k4a6jYu+vsZRBsGkTkO0r0v/192QutnRN4TJ1anyOXIaVw9BGLAWDbBDIiZa0L2YTZZ6qMDAR6IGtx9l+rI9bNs0n4Dap3PsrolVLiFXbY7SbKu0y2L60a1pmAmXLwXa3BXnxYDfXrG0qaKy/bm4lqbTFs3s7htqEKJP2YIwqjwNnz15iFQuLLjNSho7psIOSBZlAmWPcHoxRpdmPW87AsJmVrmF6D51Kan3FG9X7XSZV3sKg9EzJjhLjJ+fAolTaOHoCgZ0FlH/uVOE2c+fGp3omUDk4DDsI9Jo1nw73fKq33g6Whe/o0/TNuYiUI4Cra1fBOrFEimgihTNt3/hLOQIoNfS1gd0A3D4WVV4HvdEE0eqVGLEezOBhQDKBxATQNcX8Wi/1AScuU2NOtYcN8+zJI7vaCi9Ygk2bSOtOGp/+AvUvfnPIi9eBOkNxPCqOcnjkg09MqOyd6wq3iaYpqr2DM0duWN/MV25Ynft/OUuisx+oxRpUZ83NBIGeqriKtOagZuuPiy4XiiWnZCO40ZT96N37aLXqqKvwEa5fj8IiNGsj6Ux9dKXHzF1kmUZho9mAyyh6/EbicRgELRd6wg4CDWxsPF7ZQ6JHu0i0vsRtT+1jVVOAi5bVY4SO4j32Z7oXXJNbvsrjoKnCTXfKgZqGPYGymU+/eOEQHofOVasaC55fnukj94wEgSZUKJYkHE9R7TFx9Owllpf9kzXcZLAsw+kFKMjozQZKO0Jx6hz248oVwNTVkL1LXDJhk1pf4e+nocrEhBBi7NS4MnYGBrI1TeUylMvVDuFUZmiK+oATt2nwoO8aPO2vULn7HszwMUJNZxOtXIyza3AmUFe4P7M25fCXnCla7XXYmUC1KwFyE8lm8ph4CQJNIIeh0RBwsbjBT4XbpMbnpLHCxZ4BmUCW4ebwef+HtMNL/YvfYPEvr6DupW9BeviMhY5gHLdKYBmuiXwbQuTuXGfLhgY2wSvmZJeDNVa4MTTFvrCbnoVvpHL33WjxvkHLWRZEpmBfoNEEgVzBgxy0Gqj3Owk3nA5AX/MFuecr3Q5qvA4MXQ2aplbrc45psoPHoRNKO1GZ0qtyN9PLBkWanvos6/9wLQ/wQb5Vczd6vJfKvb8BoGfBG3PLe50682o8tMcdaInplQmUTltYFhzqCvPUng7ecFpjQb8m/8GHmPvsFzhtdgV/3tc1iXt66jvRZwdn5hhd6MkwscrBmUDDTQbLMlyZ6Xl55WDptJ3h1xmMU2vYj2uuAEoVDyoN1/h+JnEaeq6kvsprDmr6KYQQ4zXeTKBiwYdqr0N6U5XINOyv09xqD3clzyVl+ml6+nMABBvPIVa1GNfAcrBkis5QnEB22qYjUPL5bDYIFK1ejqU0XB2vAdIYWpxEq2ZXDMoEAuhedD17rv01297xIj0LrmbWC19j/u/ejsrcdS+mMxTHRQzLlBpoMbFMXeEy+8uG7Gl4Q9+xVqq8adnZD9ThmtHpmqK5ys2x3igdy9+FnghRufuXRZcd76j4iZgwVvIUKMuiItLKARqo9Tnpm3sJsUALPfPt/kDOzHHSNEWtzzmo1GusF5luh04IJyo5MZlA2SCQeeTPbEkvoCOwgvm7b2fJ3ZdSve12wrWnEa+Yn1ve6zSYV+OlLWYM+3tyKsqedPzyxVZMXeOaNU0Fz9e8/kNqt97GGbNdHO6O0No1vd7fdNKWCQLNTdup4cXKwUrp0+PMBIFUXjkY2Me6KxynSo+RMjxohh3QKPa7bKaUgpWi1ufENBSNFXJ+I4QoP02pCQnWNFW6T/meQOWQvbncUutle6dF1+I3ocd7SbjriFcsIFq1ZNCEsHgyTWcwTmCMmUDxVJqI5SBWsSAvE0iCQOIkWd1cwdGeKMEhmtOm3DUcuuBbtG7+Gr5jzzDrua8Mua2OYAwncTDkJElMLKUU9f7CjLM6v3PI8qxyj8fMbs4Y4ZN1TrWHtr4okfq1hGtXU/fKdzFCxwYtF46Przl0aJzrFxNLlNgUOtqJKx2iw5yNrililYvY+ZbHSATmAYWNu2u8DvzO8txF95h2Y+hs6ZVllTcQZFlg9R3DGz3OI+b5RG/8MXuuuZeU6cPZe6AgC8jt0HGZdiZQR8KBlopBqryNqidS2rI40RfjkR0nuGxFA5V5DSVVKo73+HMArHS1AfaUNDEx2vrsoM2spD2ZpFg5WCk9aVxuH1CYCQT2CWZnKE6lHiHt8OXKBIqduA7M2pvJvE57osupPmpZCDE5lJqYBs4eh4HPKSWsI8lm8Myv8RCMJdnd8nYAQo1ng1LEKpcAhRPCLMu+ceNXYVKaiWW4Sp5Ulq1k6Ismidasyo2Jl8bQ4qRZ01wJMKgkrIBSdC15C+0rb6F26214Dz8xaJG0ZRGKhNFIg2QCiZOgYsBUML/LZNksPy21HhorXTRWunJ3sst/4j5yJhDYQaBjvfZF2JFz/gU91s2C370NI3y8YLnxZgL1lXk8OkC8xLpkR589Hr7XM6fo85Xu/AkVqqSmz6XwOAzClhMt2R+QSJbxwzNtWWx55mEAlq4/H6ehE6lbw+7rf8fBC/+TjhU355atD9i1+NUeB2Eywclp1Bw6lbZ4Zs8xruJJrl/uLXjOfWILWjICQGPcDkwc7x3d5EhRuuM99u+LmuhBUqaXpKdh0DKlZAK53JlMoAFBoEQqRU8kQUCFSZmB3O/GYs2hXTLds8BMmZQmhDj5JioTCKRBeSl0ze6N11JrnwM921vNoQv+g7Z1HwMgWmUHgQZOCDveGyWA/XkK4NRL+5yoylzD9EUTRGpW4ggdRY92Fs0EKjkzf5qTINBJdtrsCsCeCDOSYxs/TbRiIc2PfQIt3lvwXG8kgZm2LwykJ5CYLEop/C67CXGtz5kLFJU7BqQpuyn0SB+sc6s99EaShGJJIvXr2H/57RihY3ZpZV7D1lTaIjqOvkBDZfKNR6mZQM6e/QC5zJ98boc+YeOU3ZkR8XomQAHlzQQ61Bmmd++zpNCYu/Ls3OOW4aJn4bW533Nuh0Yg0yPE5zIIZoNAsWkUBLIs2P0Q/+n4Nuf/8VJqX/4vVMoeBe878hQWCktp1MbsgF+2ZEmU37HeKIam8Af321lARX7HlJIJ5PHYJ7KpeKTg8WAsSSyZxk+YtMPfHwSSTCAhhJg0SkkD58nmMDSWzQqwoNbLj57az+E5byRWtRiApKeh6ISw9qCdCZR22kEg0yjtGFbmZQJFalYA4G5/bdCk22QqTW+k/Of4U5EEgU6yKq+DxgpXSUEgy3DRev7XMcPHmPX8vxc81xGyx8MDYHomYleFGLXsxXm5765oSpWU8pmdEHY8kw0UnrWRI5v+FVf37lzqZ9ZYAznxZJpYIl3WCWPJVLrkgIrRs5+0pVBVg4NAE5mC7HHohHChJ8O5UV6JMtZSf/uR3azV9hCpXIo1TIlrna8/6O13GYQt+//paRQEisZTRDpa7X9XLaPxuX+j4bmvAuA9+jTRmpXE/XMJBPehKTjRFx1uc2IcjvfGqPQ4cPbsIVaxaNDzpUwGA/C7HcQsc1AQ6FiPHcDzWGFSDn/uomPgNg29tNcRQggxfmoCM4FEaUxdQ9cUH75wEd2ROD96en//k0oVnRDWEYpTqUVy03BL/dzMloP1RhNEa1YB4OrchmVBT7i/nUBXOIHFzOgTJGcck2BlU6CkIBBApH4dHctvonrr7bjaX8k93hmK41aZu8NSDiamCJep4zS1speDKVXaL/psEChbEgYQajwT6B8HmXt8jEGgaCZNtJwBkJEmg2nxXmb9+V+Z9eyXcR96jKNUU10RGLRcuUq/ivE4DCKWE81K5bKqypkJtPVID2v1/cQb1gy5jMPQCsoSfc7+TKB0bPAkuKnqhQNdVKW7Adh31U/pXPIWarb+CEf3HjzHXyDYdA6xioU4e/YQcJu0B+OTu8OnsLa+GLPcaRzBw8QrB/cD8pT4M+V3mUQxSQ8MAmV+F3nSfaQcAXS9eCaQZAEJIcTJo01QTyBRumyW7ZIGP1evbuL3rx1j29H+ypdiE8J6wgkqMkGgUq8NIL8cLEnKVUXSWYGjzy65P9Ybzd3Y7Q7PnPMt+fafBKtmV9gTjIKlpfgf3/AJku5aZj/5mdzY+I5gXiaQNIYWU4jfZUxIJpBRwi/6OdkgUE9/ECjhbSLprBiUCTTWvkDZMrKBKaTjkQ1I6dEu+66H1b9tV/srLLrnKmpf/R9qXv8hlR0vsiM9h/qAC8+ACW2lXrCORTYTCEDLTAgrV08gy7KojR/Fl+4lXLd2yOUq3AP7Uk3PTKAn97RTr/WQdFSCZtK2/uOgFPMe/Cu0dJxQ0znEKhfh7NlLtUsr+bNC9EunrZKm+LUHY6xwngCKN4Ue+DM2FL/LIIqDdCICloWzczsAbb1RwMIbO0HSU1+QCZT/a3IiA7hCCCEKTWRPIFGa/Jsff3nmPPwugz+81j/MJVKzEiPaiaNnX+6x3miSChUm5QiMqv1BfzmYnfWT8M7GDNpTQePJNB2hOOF4kmiJrRlOBRIEmgRXrpqFqSv+46FdubHIw0k7Ahw985/wnHiZ+i3fAitNZyiGJ1cOJkEgMXUEXObEZAKVsM0Kt0mF2+RIXhAIpYhWr8TdsbVg2bH2Bcr27ilnEKgvEwSa8+hfs+TuS1hx+2ksuudKlv30DBb96hpUOsneq+/i9Zu3cfvan/HxxIdoCDip8fY3gTaNiS0n8Th0wtgNmbVEecfEx5JpVrEbgEjd0JlAAXdhuZvPaRLC/v1nRadPEOiZvZ3Md4dJemoBSPhm07H8Jlzdu7CUTqjhDGKVC9FSMRa5eugIzZw7U+USS6aJlPDz3R6MsVi3TzqLjYf3OkorsfS5DKKWAxIRKvb+miW/vAxH9x46Q3H8RDBSERLexoLfjfknsNIEWQghTh6lJmKIiRiN/M89t0NnZVOAbcf6M4H65l4CQGD/7/sfiybwYweBRnPO6zA0vA6d3sxgl4SvKRcEAmjrjdHeN7POtSQINAmWzgrw/s0LeelQN3e/0FrSOj0Lr6V7/tU0vPgNWn7/l6R7Wqlx2RehyiGNocXU4ZmA5sRKlR7gOGN+Nc/t7ywIUERqVuLq3AbpwhKwsfQFyk4NKHWa10hSaYtI3N6mq2MrofrT6V50HQlPA33Nm2lb9zF2X/97wg0bQDPZlmqmFx+NFW78LjOXTeAxJ3YkqduhE7TsgIset0uvik1VGItgLMlqbQ8J5cxNhBjI0BWeARfkfpdBKBOYsoaZDjaVJj209UbZ3Rak2ewj6a7LPX5i7YdJmT4idWtIO3y5gMRS/ShdMyg9uVyiidSIQaBEKk13OEGLZZ8IxirmFzyvVOllWgGXQQwTKxnD3/oIAM7effREkjSoTvv1vLMKLjryf6dJOZgQQpw8ClVsDoA4iVxmYUbs8lkBjvZE6YlksnV8swnXraVi3+9yy/RGE3gse9DCaK81Kj2O3Hl/3NeMI3Qk91wqbeVed6aQINAkuW5dE+ctruUnzx5gy6HukVdQikMX3Urruf+Gp+1F/r71Iyx2dtnPSWNoMYUopQaV7YxXdjpYKW5YN5vOUJyXW7tzj0VrVqClYjh79hYsO5a+QNlU0bIFQKJJLAu0eBAzcoK+eZdwZNOXOXD5bRze/DXa1n+clKsqt/zxvhg1Pgdep4GeNwJ+ostJPA6DTsvuQ6RHO4DyZQIFo0nWaHs44VsKWvHvHb9rcJDLLlHLZAINUw4WjE6dSQ+P72oHoIYeku7a3OMpVzX7L/8Rhzf9GwCxSrtJ8QJ1hO5wgmQZM89mglgynQuuDqUj02upnnYS7rpBDcldpo5W4p1iuyeQA5WM4Dv8BABm8DA9kThzjG4AEp7CIFCl28zdjZ6oqX5CCCEG01T5h5iI0VFKFUzfXNZon2Nuz8sG6pl/FZ72VzD77KSJcDSG24qQcvhLGhiTr9rbHwRK+JrQ472Dpm/PJHLWMUkCLpOPXLiIOVUevvTbrbx+pGfklZSia9k72Hv1L/Cne/lQ7Af246ZkAomppdxlSdooMoEuWl6Pz2nwyI623GORmpWAnWmTb7R9gaKJVHYwVtnKwfpi9p0HR69d8xwLDO5Lku9wV4R6vyt30ejPTATzlti7ZKw8Dp0O7GkMRtTObChXT6BgLEmLOk6Pb3A5TlagSGBRKYVy+uz/DBEESqTSIzbePpm2H+vFYWi4E10FQSCwp9lFa5YD2I0LXdXMSbUSS6bpjkg20GiUkgnUlpm6Vp1qJ+lpGPT8aHpsZXsC1Yd2YoaPA+AIHqYnkmC+w/58T/lnFaxT5XWwsM5X0OxcCCHExNOUkhHxU0B+SdiiOh+Gpth2tH/QR0/LlQBU7P89wWgSLZP1nXIEcOqjO++t9Jh5PYGaADCDR8e1/9OZBIEmSX3ARVOlm3+5bhV1fif//OsSA0FAtHYVX+Hd+C37h0RJJpA4xY1mAoDT0LloWT1P7+nIZQLEKheS1p2DJoSl0haHOsPEM0GCWDJFb3TodND8YEK5gkDZuxLOTOO7Ys1ps471RNlxvI/1cytxZL4ePpeBUuAyJjYI5DQ0urDv0hiZTKBkuTKBYkm70b3DV/R5pfqDXQM5nF7SqCHLwaKJVNmytsohGEtRZabQ470kXbXDLhurWMisxEEAjvdIc+jRiCZTxBLpYbPVjmd6h/kT7SS8swY9X2o/ILDLuWI48CfsTK+U6cUMHqEnkshlAuFrHLyeQ2d2pfT1E0KIk0lTquRMTzFx8oNADkNjYZ2vIBMoEZhHpGYVgX2/40hPBL/K9KR0BDCN0R2/Ko+DvlxPoNn2a4YOD7fKKU2CQJNoTrWHlhovX7p2FVUek8/e+xq/fvlIbkzdUBKpND+Ins+WykuxUChX5cnZYSEmia7UqBr4XXVaI7Fkmqf32sEKNJNo1ZJBE8IAusMJdh7vY3dbkJ3HgrkLw2JieZkF8eT4AwvRRIpEZjvZUrV4YN6Qyz+0/TgKuGhZQy4TyOMw8DmNCT+ZUUoRc1SQRsOIZIJAZQqu9EXiuImhijS51zVFtdeBGuKOndflIKZcMEQQKJZMl61/UzmE40maHPa+DswEGihWuZCayH4AjvUN/X0pCqXTVu7narhsoMPd9jh3T6yNRLFMoFFk1ymlSGp2f6qYfy6R2tWZcrAETVoXSWcVmvTvE0KIKUEfZSmRmBguszAUsWyWn13HgwU3WntarsTb9gI9xw8QwA4CpR3+3M3QUlV5zFzfn3gmCJTfHHqmkSDQJKvzO6nxOfm/b17LurmVfO/xvXzlD9uHbU7VFYoDikeWfYE9196H8tacvB0WYhKMtl/G+nmV1PudBSVh9oSw16FIkNWyyGUNRYfJHsgfHZkqcQT1cPIbUzt69hH3zcYyil8opi2Lh7e3sWZOJXV+Z0EddX3AOa79KJXbdBDUA7meQJbFuL8GAMFIBEOl0ZyFWY3zaj2saArQNEymhM9lEFFuiIWKPh9LpstWtlYOoViKWXqmsfZIQaCKRbgTXVTSx4leyQQqVTSvEfhwfYEOd0dwkMAR6yI5IBNoLNP2Upo9rS84+1wSvtmYITsTqIGuTFNoOeUSQoipwJAsoClh4GTM5Y0B4qk0+9r7z+n65l4MgOfIUwRUfxDIGOVndGUmEyiVtki667CUgRk8MvKKpyg5I5lkboeOril8LoPPvmEFN5/Twp/3dfLhn77In3aeKHox2pkZF1zp9xKpWzPkHXIhThWjDQI5dZ1LVzSw5VA3hzrtD4xozQqMWBdG+NiI64fixRsJD5wylRhncCGeV17m7N1LLDB/yGVfbe2hrS/GpcvtjIX8OyADp2ZNFLdDp1erzGUCQXlKwiIhOzNGcxQGgUqZmORzGoQZOhNoqpWDheNJGpSd6pw/HayY7LSqFnWc41MoCBRLpnJZNFNRfrB2uCDQ0Z4oC1x2QC7hsYNAbodGfcDJnKrRl1mnNDuAG2w6l7hvNmb4OKFIhBqrwx4PL5/VQggxJch4+KnB1LWCwS/LZtm9J7cd7S8Ji1YtJq2Z+Hp20uy2kyQsV8WoX6sq038vGEuCppPwNuKQTCAxmbINXTWluHF9M99861rqfE6+dv8O3nv78/zk2QOZ7B9bR+bfNV5HZr2Tv89CnEyjTfk0DcWVqxpx6Bq/2mL/gs82h3a3vzri+uEhGkYPbDCcGGdwIRfktSycPfuID9MP6MFtx/E6dc5aUINpTE4tu8eh060qcj2BoDwTwmIRO4BjOL25x3SttEwMv8sgZA1TDpZIY1nl6+E0XqFYkjotGwQaPhMoW7PeqDo40RedEhPCookUe0+E6J7CY+ujeSVgQ5WDpdIW7cEYC53ZIJAdXK3zuWgIuPAO0YNqOOlMFl+o6RwS3iaUlaY61UlV8gRJTwOSCCSEEFODZAJNHfnZQDU+J3V+J/dvPc73HtvDPS+1YimDWOVi6sO7mePJ3KR1Bkb9OlWZ6+Zs78+4b7aUg4nJNfBkc16Nl6+9eQ1/f/lS5la7+flzh3jvj5/nh0/uoyeSyAWBqr12CYhEs8WpbrTZboamUeE2uXBZPQ/vaKM7HCdSexpp3Ynv6NMjrh8ukgkUT6YHVZIlxjl1KhuY0KOd6PHeXObHQK8f6eHJPe1sXlyHw9BGHRQrFzsIFCgIApWj1CobBMrPBHKapb1Hv8sgaLmKTgdLpvpL+6ZKNlAonqJWdQMlBIEy0yvmm510hxMF5YOTpbUrQjJlkU4XBlumkvxgbTyZLho8C8aStPXFaHHaAblsY+hSv++KedZ3Cf/teBcpV3UugDdPO44vaZeDGRIFEkKIKUGqKKaOgVnfFy6tpyMU44Ftx/nBk/s52hMlUr2cecl9NLkyWdFjyASqzgSB2nrtHosJXxNmSMrBxCTyFbnjqGuK8xbX8c/XrOK7f3k65yys4Z6XDvO+25/nj68fw9AUAZe9nia/yIQoYGZSS69d20QiZfG7V49iGS5Cs87A1/qnEdcPx1ODGrQPLAWD8WeXZEupck2hiwSBdh7v459/vZV6v4u/OGMuMPryuHLxOAw6rIpcTyAoT3AlEbFrv628xtAD68SH4nMa9FlOVCJU5JjlTXObIn2BwrEkNVYPKdM/ZP+nrJSzgpThYZ7RTXckkZtqMeJrxJMjDhgYi3gyXVBeNVyp1WQaGJwKFwlWdYbiHOwIs9id6c/kaUApCnptjdaRijX8gGsA++QS4BynPfUv4ZklmUBCCCHEAAODQLec28KvPnwuX3/LWgBePdxDl38xDaqLedoJAJRr9JlAG1uqaapwccezB0lbVqZ33zFIT/4NtskgpyRTgMvUh83maap083eXLuXWv1jPhpYqDnaGqfc7c1FsiQEJUUhlponNqfKwsaWK3756lHgyTXD2+bi6d4+Y/mlZg8tI4kWyfhJDlEJZlpXr3TWcbADF2WtfKEYD89l1vI//fmwPH//5Fj7+/7bw2Xtfo8Jt8uXrVlHpse9iTF4QSKfD8mPEeiBtp9OWoydQItPUOW3kBYFKfI8+p0lf2omKhwaV6+UHA8abtVUuoXiKKqt72CwgpTJlwkqR8DYxW+ugOxynN5oYMbgTTaTY1x6akKyhbAp1VrHgymRLptKDApPBIsGz1w/3kExbtDh6SetOUs5KXKY2rrvDFS7TztiKJunQ7X5PF3r3A0hPICGEEKIIl6PwfM9t6rgdOs2Vbio9Jq8d6eGgYd8kXRB+hbThxjAdo38dU+dTVy5jV1uQh7e3Efc1oawUZrht5JVPQRIEmiKKZQMNNKfaw99fvozv/MV6PvOGFbnHJRNIiMGy2UBXr26iN5rkhQOd9M05H6CkbKDQgL5AAwMMMHRg4VhvlNAIF+GWZfWXKp3YRQqd9//6BH9718v88fVj+JwGlR6TjS1VfOm6VdT4+ieAOfXSR1eXk8eh027Zd1+MaCdQnp5A6ZjdvNsyRp8JZJeDudESoUGj4POPWTmCVeUQiiepSA8fBHI77BMggISvkUba6YkkSKftLLWhJFJp9neESKcZdsLkWPUO2GZkiAbqWRPZw6itL0pb3+Cfs4E/t8CgDKpEKs3rR+wysAbVZfcDUgqnMb6fq2vWNpFIpfnR0/t5/ECYTsvHovg2+zWlHEwIIYQYxGnoBZmyblPHbeoopVjVVMFrh3vYYdmZ8DV9O0g5/GPui3nNmiZWNgX48dMHCDkbgQFj4i0LEuExv5fpRM5Ipohsc+hSzKn2MLe6v3eGBIGEGCzbVHhNcyUVbpPHdrUTq1xCwjMLfwlBoIGlLsWCQOF4iuO9UXqjiVymUDCWpL0vPmLQIZ5M88iONj5z76tse+0l9qfr8bpdfOTCRdx+y5n8y7Wr+PwbV/LJy5fRECgsG5qsTCC3w6At5QPITQgrR0+gdDwz8jMvCFRqWY7PZU8H0xJBYomhg0BToTG03Z/GIpDqGjYI5HcauYBEwjub2nQ73WE7AJMNaLRlvu/ydYXjJJL2911vZPQlYcWy3bKSqfSgAFQ0kSY9xPd5Km2xtz1UliBhsX053hPjeE+Mfe0hejJfm55IgkNdg0/e4sl0QTlnTyTB7rYgAZeBP243bYbSA49DWTrLzxtXN/HH14/xixdaOaHV44x32/ss5WBCCCFEUfklYS6Hnvv/qtkVtAfjPHHMvgmpSJMyA2POrFVK8YnLl9IZjvPHw3YCRn4QyH3iJWr/axUceGoc72Z6kFOSKcLnMsZ8gih9oYUYLDtyUtcU5yys4bn9nUSTafqaz8d35MkRa4AHltPkLpAti8C+30M6QSpt0dYb40B7mB3H+njtcA/72+3SppEufp/b38XXH9hJW2+Mtd4O/LOX8dUbV3P5ylkjZgaOp2/JeHgcOseTdhAo2xeonJlA2elKhq4wSmx+7XcaBHGhJ8PEkwMDd3nlYFOgMXS24bgv2TlsEMjrNHLHOOFrpCLVSSwWIZlK0xtNcKgzzPHe2KApdvn/T6WtUZWEpdMWe04Eh2z23BtNDmqMXqxsMutYb5RYIk1HsPyj7fMDrJYFh7rCtHaFOdQZHrSPWfklYR3BOLva+lhU78cMH881hXaNoyk0gELxF2fOpdrroK0vRspvN4e2y80qZIiDEEIIUYTH0X/e6zb1THk2nDbbbgD9zN4O9ul2SVja4R/X5+mGeVWsnVPJXbvsEwZHqD8IVLXrlygrDQ2rxrz96UKCQFOE09BZ0uCnwm2Oaj2lpMO9EMXkjxffvLiOWDLNn/d1EmzejB7vxXNiy7Drp9JWrtTEsqxcEMh9YgvzHno/Ffv/MGgdyyJ3ETpScGRvuz3N6stXL6Ih0YqqXTziewq4DRY3+CZlPDzYQaAjycJMoLIEVxIRoD8TaDQZGX6XSdhyobBIREO5x+PJdC4rBia2NKlUoXgKgySeVO+QQSBNs7/OuSBQZkJYg+qkJ5IglkjnsoJCA8qxBv5/NCVhPZEEyZTFwc5w0eyeobZVrDwtHE/SGbR7YrUH40NmC43VwCw7y4KuUGLIABD0Z1D1RhP0RhIc7AyzuM6LGT6WywQabzmYpuwT2Q9dsJAKt4mvvgWw+wGR6VMmhBBCiELZzB9DV5i63Z/PaWjMqXJT4TZJpi2OuhYCkHIGxvV56jA03nBaI4dCOlGjAjNoTwhTqRgVe+8jtugKGEPj6elGgkBTiKlrzK3xMLvKXXKzZ4n/CFGckfcBsaIpQLXXwWO7ThBsOg9LaSX1BcqW2+SXFTm7d9t/ZyZ6DWWkMqmDHWE0BQvbH0FLxeibc9GQyyoFc2s8zKvxjrtkZTzcDp2OXE+g/kygWDLFib5Y0QlqpVBJOwhk6XYQaDSZTj6XQQg7gygR6c09PiiTawoEgcKxJDXY+5gfBMr/Pe51GChlZ0LpmiKemTLVROegQEwkb4pdNJFi4LfcaErCOsN20CaWSLOvI5TLrNnXHmLHsb6izZWz+2BnxEXZcyLI3hNBDnb2l2Sl0hYdJTRJH42xBPSCMftr0RGMs689RNqC5TWgJSO5yV3jLbPMlmafMb+Gn7znTMxqu4dBwmNnGkljaCGEEGKwbHPogrKwTF+glU32eWdfxVIAUub4MoEcusbGlmrq/E6OWDW4OraCZeE/9AhGrJvoireM451MHyWd8SilrlBK7VBK7VZKfXqY5TYqpVJKqTeVbxdnnmqvg5Zab0nlYdIPSIji8suJNKU4d1EtLxzoolf5iNSehu/IyPW+2eyBgiBQ734AHJm/hzJSq5xDXWHq/E5q9vyCuG8OocazUArqA86CDzeloKXWO+oswYngdRj04MVSeq4xdDyZZuexIMd6omMeGa4lx54J5HMahCw7CJSOBHNBj2zQQqXiOHr2kU5T9oyU0QrFU9SqbBCoLvd4vd9Jpcc+vj5Xf0q009RymUBNqr8vUFZ+OVaxjJxU2iJUwjGJJlIFpWThWIquUCI36Wq4XkF9sQTbj/XmytNCsVRBBhbYvYrKaSzZZ5Zlj4UPRpPsarOz8FZ47b8T3lllCa4O/DjOjolPZsrNJBNICCGEGMxp2JOys0MxgNy/syVhiVp7KNJ4y8GUUjhNjStXzeL26Ll4216gettPqNx1Nwl3HfF5m8fxTqaPEcMMSikduBW4ElgBvF0ptWKI5b4K/LHcOzkT+ZxGQfPnochJpRDFOQb0lNm8uI5k2uKZvR2EZp2F+8TLuQyUocQSdkPZ/AwXR8++zN/7R9yH4TIWDndFWOXtxXf4CboW3whKw2loNARcLJvlp6XWw4I6L0tn+UuaHngyuB06FhpxZxVGpH3Q80P1hxlOOm2hpaL2vzM9gUbTm8WfaQwNoCXtMfGWZdEXswMm1dt+wuJfXoYWD5IoQxPr8QjHktSqHqAwE8jvMmmucuNx6gXH2mlouUBCo+pg67HeXF+hrOw0rKGm0fVFRy4JGxhcGg07uDb8MsMFkcZirH2ojvbY32e72vqo9jios+xAZsLTUKYgUOHncdxn9wRKeO1MIyndFkIIIYpzO/SCz+JsVtDGlmrq/U4aFqwhrTtJumsLsv3HwmFoXLZiFndYl/O0to7ap/4Z74GH6Fp4HWhT45x7opVypn0GsNuyrL2WZcWBO4Friyz3UeBuoK2M+zej+V0m1T7HsMtIDEiI4rKNobOWNPio9zt5bFc7ocaz0NJxPG0vjrid3kiyYOpUNhPIOUImEEBqmFKcw90RruExFBZdS+zkyWw5iqYp/C4Tr9Mo6G002Soz2UgRswo9kwmUbyyZQKF4EreKk1QmaAZKgWsUvVn8LrsxNGBPCEumieSVRrk7XkVLxTBDR0hOcnPoUDxFLYVBIEO373wppWgZUO7nNHQsw03CWcU8s4v/99wh3v4/z/CP97zK7187ypHuCHtO9NERjA05On7gePSBLMsqe6bO4Ncob0+msU56y/447m4LsqjehxE+DkDS24CrDM3WB34ex/1zsZROLDBPxsMLIYQQw8iOhs//P0BDwMX337WR5rpK9l79C9pXvXfclTAOXaPCbfKOs+bzLd/HCSs3Bkn+qF84ru1OJ6WEumYDh/L+3wqcmb+AUmo2cD1wEbBxqA0ppf4K+CuAuXPnjnZfZ6TGgItQLDlo9HGW3FkUoji7sZydVacpRU8kwXmL67h3y2GOnr+OeUrDe/QZQk2bht1OXzRBLnRgWTh695HWTIxoB1q8l7Rj6OZxQ2UshGJJusJxzjXuJ9h4Ngm//ftwska/l2pjSzWagva0n8YimUDRIX5PDScYS+ImRlKzAzkBlzmqxtduUyeSCwKF7XHgif6ve7aHkxk6Nulj4kMFmUB2OZg/r/xrYGanM5MRlfQ1cXltkviqVbzS2s1Tezr4zqN7csspBZetmMVNZ80jMKBsMJvNNlTT475Y8qQExxIpi3H2Xc4Z2Bh6NPacCHK4K8KFS+sxM0GghKdc5WCFxy/lrmX3db8hVrkIjy6f1UIIIcRQ/C6j4DxY0+yyrfxr4EjdGmD8lTDZG6w3rm+G9c10HPs+v3nwl/zfV0w2nZuk3j+uzU8LpVxxFPsqDzwD+ybwKcuyhr0NbFnW9yzL2mBZ1oa6urrhFhUZmqZornIP/bwEgYQY0twaDy213lyflc2La0mlLZ44FCdSswrv0WdG3EY4nsqNzTYibeiJEOFZdqx7pL5AQwWBDnWFWan2UxM/TNfi/hZq451ONNGqvA5WNAU4FPflegLlS6WtUZf+hGJJXMRJ6pkgkHt0abhKKZKZQJwe6yGeStObzX6xrLwg0NFJHxMfiiepVr2kdCdp0wvYGZ9DyZ8Q5gwfZe2cSm46u4X/esd6vvnWtXzs4sV87OLFvHXDHB7YeowP/OQFdmf63eTrjQydDdQdGnsp2GiUsxSvlKyiOY98lDmP/HXBY6m0xXce3U2F2+SqVY2Y4eMknRVYhqssGXfFzkmjNSuxdOeUyugTQgghphpvkdYHxdohKDX+INDAm66RWWfgu+yz9EQSfO/x4Qe/nCpKOStpBebk/b8ZODJgmQ3AnUqp/cCbgO8opa4rxw4Ke+RstmnoQFIOJsTQApkL7GxK6fxaL7Mr3Ty+6wShxrPwtL2ESkaH3YZl9fc8yfYB6mu200WdI/QFGioIdKAjzBx1ArAvErOmeiYQwNkLajgQcaMXyQQCiI5yQlhfNIlbxUjrLpQaPigylLizBrAnlkXiyVzQzgwdRU/YY+PN8LFJnxAWjqUIECblsJscKgX+Yfo9OTLZbAlfE45Q/8euUorTu//Iu499mUuWN/Cuc1r41tvWkbIsfvfq0UHbGaovUDKVzk3Am2iJMvYFKiUTyHvkKbxHnix47P6tx9h5PMh7zp2Pz2VghI6RzEzuMsuQqaOK3jMjs/2p/7MthBBCTCXFrn/LkQBR7DN/Ub2Py1bO4q7nWtl5vG/crzHVlXJW8hywWCk1XynlAN4G3Je/gGVZ8y3LarEsqwX4BfAhy7LuLffOzmSzKlxFx8FLJpAQI3OZ9sW0UorzFtfy6uEejlVtyPQFeqnk7Th77abQfc0XACNnAg11sXqwI0SD6gIg4anv3/40CAJtWlRLuxXASPShUoN7yURH2RfILgeLkzLc+JzGmO7uKFcFSXSMSAeReDrX+8XZvSu3jBE6SiQ+fH+ciRaKJwmoEGmHnWfsdRrDlr4ppXAaGnFvI3q8Fy3en+VTufseKvfcix7tJpmymFfjZWNLNc/u6xgUfAxnxrgP1B1JUOIE+XErZxbWSI2h9WgnZuQEZuRELljZFY7zo6f3s7q5gvOX2JnIzt59xH2z0TVVltLq4TZRjiCTEEIIMZN4HEauND6rHEORhsq8f+dZ87h0ZQMex9TOzC+HEa84LMtKAh/Bnvq1Dfi5ZVmvK6U+oJT6wETvoLCZukZ9wDnocYkBCTGy7MU0wHmL67CAP/bNx1Ia3qNP9y9oWZjBwwx1ZezosfsBxSoXkvDMGrE59FAjyQ90hJlt9GApg5SrOrOP0yNbYFVTBWGjEqB4c+hRTggLRu2eQJbhpsI9+iwgAK/LQa9WgREtzE5ydtlBoLi3ETN0jGgiPe4x8bFkaszZM+F4igoVIe20M4G8zpFPMpyGTiIzZcrMZgNZFu72VwByf4OdpdUbTbL1aG/BNizL/joP1D3BDaHzlasfUzKVHjFw5era2f/vzu0A/ODJfcQSaT54/kKUUhjhNlxdOwnNOqNsAZrhbsqY0yDAK4QQQkw1A7OByhEEchha0WvoCrfJF69dSXPVyBO6p7uSzkosy/qdZVlLLMtaaFnWlzOPfdeyrO8WWfZmy7J+Ue4dFVDnc9IQcBZ800omkBClyTZ+nVvtYXG9j5+/1kukegWVe+4lsO93uNu20PL7d7DszrMJHLi/6DacvfuJ++eCZhALtAyZCeTs2sGyn26Atq1Fnz/QGWau2WtnASn71/B0yAIC+2K2srYRAK0MzaH7YklcKg6me1BT41L5XAZdVGBEOgoed3XvIumqJlqzEjN0FMsafZAqmkhxoCNEa1eYgx1hdh0Pcqxn+BLCoYRiSSq1MKlMJlApzYgdhkbCa3+9zeCRzN+tGLFuoDAItH5uFbV6iPpnvkxg/x8LttMTKQxcRRMpIvGxBWbM4GHm//atuDq2Dbucs2sHWPZrlKsUr5RSMOeAINDLrd08uuMEN65vzp3Y+Q4/AUBw9nllC74Omwkk08GEEEKIUavyFE7KLkcQCOwqgZlsZr/7aUYpRX3AZY+2zdy5LNcPghCnOndeaudfnjmPtr4Yv6/6S7REiHkPfYBF912Du+M10roT3+HHi27D0bOPeKAFgHigJdcjaKC6l7+DGW5DP1H8IvlQZ5gmvZtkQSnY9Eg91RTMarLbxLUfPzzo+XgyPWK5Tr5QZjqY5vSM+feZ32XSSQAjWhgEcnbvIla5iIRnFmboGMCQo9SHcqQ7Qm8kSVcoQU+mfCqWSOf6Do1GKJbET4RUppG1q4RjbuiKhLcJAEewFQB3+6sApDUz92+AWa2/40HnJ7mk607qX/x6wXZ6o4mCLKixjoVXqThzH/ogvqNPU7n7l0Mu5z/4IEvuvpTAgQeA8mUClbIdV9dOUqaPhLsOZ8dW/uvRPcwKuHjzhubcMr4jj5N0VhGtWZn7PB2vYTOBpBxMCCGEGDVT13IDXgCMMl37Tpfz7okiQaBpyGXqNFbYk3QkEUiI0rjzsi7Wza1kVVOAf9mzkJdufIq9V97BkbO/yI63PE5o1hl4jj83eANWGmfvfmIVCwCIVbRgRtvR4oXN48y+Vir3ZNqmRfrLpSzLnpyVTlsc7o5QRxcJT0Pu+enQFBrswPP8ufMA2Lv/QNFlRhMgscvB4mjm2FNvfU6DE2l/YbNqy8LZvYto5WKi7gaMWBcqGSUyiiBQdzhOKFZ8+b4i5VUjCcZS+AmRcvhRqrRjbuoaCV8TCXcd3iNPAXb2T1oz6ZtzcS4TyNm9m7kPf5iop4k7kxfg7tyGkQl8gV0S1hfr3+fu8NhK2mY9+yU8J7aQcNfhb320+ELpBLOe/bK9rye2AJRtDH0p23F27SRatZRo9TIira9yuDvCB85f2H/CZ1n4Dj9OsGkTKK18mUB5/84/YVUKjGlQ6imEEEJMRYG8z9TheimOxnTJwJ8oM/vdT2OVHgduhy7lYEKUKL/0RinFu85uoTuS4L7X2gjNPo+OlTeTdlYQnnUGrs7taLGegvX37t2Flopy1LCzMrIZQQNLwmpf+19yl4ORrtzj8VSaYz1RjvdFSaQsKlMdJPOCQNPlw0hTCnfdPJLoRA+/SjA2OBgyMEDSHoxhDdHIJRhL4lZxlGPsQSC/y6At7S/IBDIi7RixHl4K1/PN5zITwkLHCJXYHDqVtjg6TNnXWPoChWJJfIRJOwIlpyGbugKl0TvvUvytj6CSUdztrxKrWkq4YQOO4GH0SDsVe36FpTQOXPZ9fpS+AgB/658K9zlTEtYXTYwpKONrfYzarbfRvuo9tJ/2PlxdOwoCTVnV2+/E1bOHtO7C1Wlnw1lWebKBRiwHsyxcXTuIVS3mgN5CbWQvly2r5fR5VblFnN07McNtBGefB5SvF1f2xFTXFDW+/vT16dDrSwghhJiq8s/hy5YJVEJJ/qlMzkymsaZKlwSBhCiRrqmCzItljQE2tlTxqy2HSeZdnIYaNqKw8La9ULD+/p122c1/vJRm+7HeXBAovzm0Hu2mesfP6F54DSlHAC2vcXI8maYnkmDX8T6cxHEnewsmg02XTCClwDLcdFev4Qxe5Q+vDQ4CtAdjxDKj4lNpi7beGLEhRoT3xewR8ZbpHvM++ZwGbakAeiKESkYAOzMG4L6jfo5bdvPtXz/5ApF4ingJ48qPdEeGDZSEY6mC75tSxGNhHCRIOQIlpyEbmV4yvfMuR0+E8B15Enf7q0RqTyNStxoAT/srVO65j1DjWXiqZ5OsWU67VoO/9ZGCbfVGE1iWNeYsoKqdPyfpqubYxn/ITcgbGGjS4n00vPh1grPOomf+lbg7+vtilScINPw27OBfF+2ehfzsgB+XSvDRdYU/W/n9gICylYOB/fPhdxkFmYdSCiaEEEKMXf5narmufafLzdeJMrPf/TTncRgF6XFCiOENzL64fOUs+qJJXjrUnXssXLcWSxl4jhWWhKmuPQB0OJv57L2v8YejduZK9dYfU/fSt5j92CdZctf5aMkIJ1Z/gKSzEi0vEygbBHn1cC91yn695HQsB8t8+KZazuc0bR+Pbtk+6OLessg1T24PxkilrSFLxLLlYBjjywRqx+6zk20OnR0P/+e+Oi46Yx0Ah/bv4ou/2UpHMDbs9rrD8ZICJb2jLAlTUXtqV8oRGDTydCjZAEKo6RxSppea176PEeu2g0A1K7FQVG3/Kc7efXQvuAaAOTVeHrfW2sGOdP8+ptPQG0kOahJd0r4no/gPPUTvvMuwdAexqqUkPA34siVhloX/wAMsuvdq9Ggnx878DNHqFZjhY+hR++cgkRx/SdhIGUzObrsp9F0HfWxLzwUg0LOzYBnf4ceJBVpI+O0eQeVs2qwUBNwmpq7lelxJJpAQQggxdlrejdzy9QQqPiFsppAzk2lO+gwIUTr3gNTP9XOr8DkN/rTzRO4xy/QQqV2FN68vUCptURXcQ1S5+dsbL2RRvY//+2grzzg34ezYyqwXvkbFvt8SbD6ffVf8hFj1MlKuKrRod24b2eyTncf6aNLtUrNsTyBNmz4Xitk7MMGmc9GwWB57hUd3tA1arjeSpDsc50SfHXAZampYKJrATQzGmQnUYWWCQJmSMFf3LiLKQ5+zjtUrlgHwpkUar7R2c8uPnhsyEBRPpjncHSnpdbvD8VGNnDfidhAo7fCXnAmklMLQFZbupK/5QvxH7CyWSO1ppB1+YhULqThwP2nNpLflKgCaq9zcH1uFHu/F0/ZSwfaO9ERGHLFejO/Ik+iJED0tV2Z3jL7m8/EdeQKVjDLn0b+m5YH3YCmd/Vf8mEjdGqLVywFyJWHlmBA2UjaRq3MHAE/01FHdchqW0nFnxsQDqGQE79FncllAUN5MIEPT8DvtmzPZoPN0CfAKIYQQU1X2M7VcPYGUUjP683nmvnMhxIzjG5A5Z+oamxbV8szejoKGwaGGjbhPvIxK2YGCoz0RFlkH6fIupMrr4l+vP433nbeAm0IfZXX0f/jXdY/yyl+8xKELv0WweTMAKWcVeqwrNykrmwn00qFuTq+2t5udDjadJhRomkIpCNevJWV6ucqznV++dJh0kcjCoc7+gMNQo9mjsbD9j3EEgfwugw6rArDLgQD0zl3sTDVy4dIGTHcFKdPPcl+Qf7xqOXvaQrz5u0/T2mW/diyZ4lBnmN1tQXa3BRmh4ignFEux43gfnaHBk7aKlYoZCbuJuF0OVvrHbzYbqLfF7vWT1kyi1XZgK1J3GgDB2ZtJuSoBmFPl4cn0KtJKH9S8eahMGnfbFubdfwtG+ETR5wP7/0DK9BNq2pR7LDh7M0ash4X3XUvlnl9x/PS/Y9eNf8z9DPQHgeySsHKUg400ec7ZvZOks5IdITe1lQFiFfNxdvUHgSr33IeeDNMz/2rAztwpZwDW7zJyJ6jZiYTlumsphBBCzFTZG7nlnIxd7FxMnyHpQRIEEkLMGB6HgWkU/nK/YEkdsWSaZ/f1NxUOz9qIlorlxm/vbQuyVDtIrMa+8NaU4po1Tdz69vWsbArwvaePcOP3nuO67zzJe370HPvbQySdVejR/iBQPJmmPRjjYGeY1QE7+JDNBKrzOSf8vZeTUoBmEpp1FpvNrbR2RXhuf+ew6wxVDpaM2E2bGdd0MDNXDqZn+jCpzj3ssRq5fMUsABJee0z8mfNr+OK1KzneG+WG7zzFs/s62N0WpDucIBJPjWq8PdhBlcNdkYJG0ZZlsbc9NKj3kJm0g0Bpp3+UQSB72b45F5DWTGJVS7F0J26HTqTW7gvUvfDa3PJzqjz04uWo/zT8hx4pus0CVprZT/4jgYMPMvvxTzIoVSidJHDgfnrnXoKl9zc8Ds4+D0tpuDq303ruV2lb9zHQzNzzSU8dCXcdrg47Eyg/ANU9xhH1iRHKwVxdO+n1LyZtKRorXESrluHOvD6WRc3WHxGtWkKo8SygvFlAABXu/vfvygR3zRl8p1EIIYQoh2wj53LeWCl2E9bvMosseeqRMxMhxIySf5EGsKIpQK3PWVASFmrYCIDn2J8BOHH8INUqiD5rZcG6sypcfO7qFXzu6hXcuL6ZG9bNJpW2+My9r9Jl+TBi3aTSFpZlkUileemg3RtlkTtEWjNJuarwOnUqPNPrAyd7FyY4+1wqIwc5y3ecpY99hJbf/+WQ6yRTVtHsmFQsGwQabyZQtidQOyTCVMSP0+eZR0utF8gEgcJHAVjZVMG/3bCaZMrirf/9DJ/4+cvc9cIh7nv5MH947diYMlbaevvLy7rCCWKJdC7TCOwsGHfafq+6uxI1ijtN2bLftCPAiXV/TfvKd6OUXQbXs+AaTpz2/lyWENjfl4ameN2xFlfnVrREaNjtV+y5D3fHa/Q1X0Dg0MNUb7u94HnvsWcxYl0FrwGQclVx5Ox/5sBl36dr2duLbjtavRz3gHKwjmCMQ50R9rWHRtVc27KswiCdZUG6P7ioxftwde7guKsFgFkVbsKzzsARPETlzrtwn9iCu+M1OpbfRLYRgFHGfkAAXmd/tmE2E8gxTUo9hRBCiKkqVw5WxkydgTfkPE59xpSISVdhIcSMUuE2ae/rz0LQlOL8JbXc89JheiIJKtwmKXcN0YpF+I4+Q/uaD2Edz5SzZDKB8iml2NhSzcYWewLVJcsb+My9r/L7vVE+TC/JZJyYcmBZdilYtcdBjdVJ0l2H0jSaKsce/Jgs9gewRXD2uQD8KP0ZnOkwHAYt1kPaWVF0vWgyjW/ABXEqngmUjGNE/MJ6H5heYsqFEe2g/YAddKiaszy3TMLbiKurv0Hw/Fov33zbWh7a1sbDO9q4/ekD/ftkWbzhtMbiL2ZZOLt3EqtcQn5HwUg8RV80gd9l0p7pNxSKpWgPxqj1OQnHUwSU/V4Nb1XRTQ/FzLvr1bbuY/ZjusJt6pzw1HHszM8ULK9risZKNy+kFnCZlcZ94hVCTWcX3bZKxZj1/L8TqVnJ/st+yLwH3kPjs1/C3/onVDqJHuvG0XuAtO6ib84Fg9bvXPGuYfc9Wr2cmq23QTpJIqVIpNIc67WbhgejSQ53R5hX4y3p65AdD1+5625qtt6Os3s3lmbQev7XCc4+j7kPvh8tGeF538UANFa46Gj4SwL7/8DsJ/+RSN0aUqaP7kU35LY5kQGabNPJ6dLvSwghhJiqnIaOppU5E2jAkI5K9/S6KTsecmYihJhRipWEnb+kjrQFT+xuzz0Wmr0J77FnIRnDl5kuFK0aHAQaqKnSzb9efxphzc5MeWHrXuKpNKm0xZaD3aydW4kZPk7S00Clx8RlTp9+QFnZz99Y5RLi3kZ0w+AHlj2ZKn8k+EDFSsLSmSCQGlc5mMFVpzXSlvZD8AT7dr4MwLwldqmUw9BIeBsxwm2Q7i/bqvI4eNPpzdz69nX87H1n8bP3nsXCOi+/e/Uo1hDdk2te/yFL7r60fypWnra+GD0ROwsoqz8glMSP/V5Nb+Wo3l+xIIKpa8NOGJtT5eax8DwA3CdeGnK56m0/wRE8xNEz/hE0ncPn/TuhWWdiho6hx7pJOQL0zbmQw+d+BcsYfcAyWr0cLRXD2bOHZMqitStS0HOpL5oc8ms9ULacrGbr7ZjBVroXXU/C18S8+29h4X3X4T/yBK3nfZXnrGW4TM0+mdMMDl34n6SclXiP/ZnuxTeSdvhy2yx3OVg+pRRuh17W/gVCCCHETOU29bI1hgY7sJS9n6fU4GqBU5kEgYQQM87AX/ItNV7mVnsKSsKCTZvQkhESB5+jJbmfoFlNyl0DMCiINFBjhZs3nGmXjv3rL5/ip88eZHdbkL5YkvVzqzAjbSQ8DYOmlU0XWt4n5r6r/h+7bnyQI8vfA0Dk0ItDrpfffBvshsxGys4KUY7xZUS9dWMzHVaAno4jhI7YE6KMusWA3RA86WlAYWEWaXyslMLnNPC5DN5wWiMHO8O8fqR30HKujq3M+vO/AlC551eDng/HUhwZMFkskbSIxFOE40kCKkwaDac7MKr3VixQ4dA1XKY+5HjTOVUedvSaRP0tgyaE5VgWNdt+TKhhI6HMtKykp479V/6E3df/jj3X3sf+K39C6wXfpHvxDcW3MYJIzQqAXF+gYDRZ8LxlQTCWHLReMaG4vZwRPk6w+XyObPoSe954D92Lrsfd8RrHTv8E3UvezJHuCI0V7lzJXdJTx8GLv0uo/nTaV72nYJsTGQQCu1RRCCGEEOPnc5b3M1XXFC213lyJ/Uyauj1z3qkQQmQEBjR9U0pxwZI6th3t5Xi2VKXxLCylwb5HWaK1EqxYMuT6xbgr7MlfZzUqvvL77fzzr19HAWvnVGKEj5P01E/bD5v8eux4RQtJ7ywuPH0VbVYV3XteGHK9WLIwCBSKpXCrTGneODKBAFbNriDmqCLWc5zG1GGCznrSphfTULgymUAARvjYsNs5b3EdXqfO7147WvC4lggx55GPkHJV0jPvMgIHHkAlo4PWLzZ9qy+aIBRL4SdMwvDhGGXwr1gmUDZ44RoiG6i5yk3agvbK0/C0vTi42TPgPrEFZ89eupa8ZVT7k5W2LPa1B3l0Rxt3PneQx3cNDrDFKxaQ1szcmPhi+qKlBYF6Iwmw0pjhtlxTdctw0Xr+N9j+1ic5sfajABzrjTIr4CpYN9xwOnuvuYd4oKXgcbPMPYEGKuV3hRBCCCFG5ilzEAjs4M/8Wi9VXsfIC59C5BaVEGLG8TjsuuL8spTNS+q4/ZkD/GnnCd6yYQ5pZyWR2tOoOf4U9aqVnroLcsv6XQadoXix6+qcZGZc98fOqaGxbynfeWQPyxsDVJopjFgPCU8DnmkaBCpW3hJwm5zwLaW2bwcHe6LMqnANWiaaSGNZVi5Doy+awI1dLqWNoycQ2IEpX3Uj1cf3skg7hlW1ELBTfQ1dIx6wS6NcnTuI1K8fcjsuU+eSZQ385tWjdIXitBz7PTWv34a74zVUKs6+K3+CstJUHLgf3+HH6Jt32Yj71htNEspkAiVMP8NUcRU1VDlYdn8j8cHNlZur7K/nPudymiO/xgwdIeGbXbBM1a67SetOeuZfVfK+HOmO8HJrNy8f6uaVwz0FARxN2cGn+bX95VaW7iAemIezZ++Q2ywlCJRKW4TjKYxIB8pKkvDO6n9SKRL+ObnljvVEOSPTo2skEz25azqWewohhBBTkdcxMZ+p3gkILk110/MKRAghxkEphddR+Au/IeBieWOAR3eeyPUoCTZtYl74NdwqTrK2v8mww9BGvLhLu+zmvyrSxYXL6vnxjU386/kejEgbAElvA+YEl6JMlKFKkLzz1rNQHeZXz+8p+rxlQSivJKw9GMONnQk03nIwXVNU18+mVvWyWD9GvHIBYDfndegasYqFJNx1+I4+NeK2rlzVaPdwevoB5jz6N+jxXjpW3My+q+4kNPs8gk3nkHRWUbn3NyXtWySeoi+SwE+YpOlHH+VkC11Tg77m2QyWob4Pm6vsr+erys5gcw8oCVOpGBV776O35QrSDn9J+/Hk7nbe/5MX+M6je9hxvI+NLdV8/JLFfPvt67jt5o34XSa3PrKHdObnJzthIx6Yj7N335DbjSfTRftF5euLJrAsuxQMIJnJBBqoIxQjmbZorCjt+6mcDSaFEEIIMXFGM1lVDG/mhb2EEAJ7DOTADITzl9Tx3T/tYV97iAV1Ptprz6Ke7wAQrbabQiuV7ceiDepxk89fZZeDWeFOEkmLhc/+A54TL3P0jH8A7IvY6VoONlSjW9W4BmNrmtbtz/GW3b0YmuIfrlzGac2VuWWO9URYVG8HHY73xnApOxNIjTMTSFcKvHWYJDHTvfRW2EEgl6nbwTalCDWdg/fIU3Y0apgTidlVbq5c5OG6fX9DxNvAvjf+snDimWbS23IFFXvvQyWjWMbgrKeBOkJxFqowKWdgTI2CTV0jnuzP+Mn2pcoPAmUnUWVLxer9Tp6PVpLWnXjaXqJ3wdW5Zf2HHsGIddO16MaS9+EPrx+jIeDkn9+4iqZK16CTsfeeO5//+8BO/vDaMd64pomGgJNDnRFiFfPxHX4MrDSo4t/zfdHksIHV7M+qmQkCJYYIAh3rsUv0GotkohUjk7uEEEIIMdPI2Y8QYkYq1lzuvEW1mLriD6/bfWMeCs0nZplYKKKVdpNhQ1f21J9hLlgdhobXX4mlDKxwJwCurh3o8V5mP/lZeyF/8YvY6UAbIoASqbWbYb+jpYfLVjSQSKd5PG/iGkAknqYrZGf/HO+N9mcCjbMnkKYpkpnG3QCxivmAnQlk6Pao7mDTJszICZx5o+KLsiz+Wf8+TbTzBePjpByDGzl3L7gaPRHCf/DBkvavMxQnQBjLGRjTnayBWWO5crC8cqa5NR6WzvKzsM6HoSuaq9zs70oQqVmFZ8CEsMpdd5Nw1xGcfW5Jr98VivNKazcXLKlndpW76Hs4f0kda+dU8qOn9+Nz6bmgTjzQgpaKYYaODlonqycS50RfjKM9kUFZQZZl0Ru1p7qNlAl0NBMEKlaOOJChK5ncJYQQQogZR4JAQogZyR4zWfhYwG1y/pI6Ht7eRjCa5E/7gmzRlhOrWICVCVJkL77dw9QlV3pMDF0j6apCRbvQ4kHMcBvd868mrTvthfyNE/K+ToahgkAJ3xxSjgAXVRzlvectYFVTBa+09gxa7nhflHTa4nhvDG+mMbQ+zkwgAMtTm/t3rKK/HAzs4xZs2gSA78iTw26n/sWvU3/g1zw19/38vG02P3r6AA9uPc7rR/rfS6jxbGKBeTQ9/XnM4JER9607nMCvwuCqGHHZYvIzVrIZPwBGJvOn2ucoaELscxqsml3B3vYQe53LcLe/Cmk7kKLF+/AfeoSehdeAVlpC8BO720lbdu+soSiluHzlLMLxFL3hZK7UKhuQc/QMXRIWiac51hOlvS/Owc4w6XR/w61QPJXr32WGjmGhSHiK78fRniiGpqj1OUd8T+WeMiKEEEIIMR1IEEgIMSMppfA4Bl8EXr26iVgyzb1bDrPlUDe/X/BZDl7yvdzzjlwGxtBBoAq3ia4pUs5KjGgXjl67KW7Pgqs5cOn/0rH8JnRvzZDrT3VDJk8oRaRmFe6O1wFYM6eSw90R2oOxgsUSSYu97SH2t4eodthlPpo5vp5AAJbXDgxYyiDun4OuqVzJnanbzYNj/rnDBoFqXr+Nhpf+g84lb6Pi0k+xqinA3S+28h8P7+LTv3yVP++zM7vQDA5c+r9oyQjzHngPKhEedt/C8RQBwmhlCAINHGte4TZpHDANy+s0uG7tbBbUefnBoVloqRjeo88A4D/0MFo6Tk9L6Q2hH9t1gpYaD3Orhw/WZadyHeoK5zKw4oFMVtYwfYHyxRJpDndHAHt8/LGeSO45M3ycpLsWtOJTt471RGgIuHCa2ohZPjK+XQghhBAzkQSBhBAzltc5OJCzsM7HyqYAd71wiGTaYtXylcSqFueezza71TSFs8iYJ5dpN402NEXKVYUe68bZbQeBYhULCc0+lyObvjTqMeFTyVCZQACRmpW4OrdDOsGaZjvgYT7zH/gOPVK4XDzF0Z4IlWaStO5CK0NvlnQmEygemAuaWTA+PRtECTVtsoMh6cJ+UGbfQZof/Rsan/48vXMv5fC5/4qmaXzputP4/k0b+J93bmBBrZdvPrgzF9SKVS3l4EW34urcRtPTnx9232LxBD4iqDEGgfIDP8aAFLbGChfagICHx6Fj6hqfuHQpDyTW0Kd8VG2/E4CKfb8j4a4j3HB6Sa99vDfK9mN9bF7cn30zu6p40G7JLHsy2IFOOyjmMDQS3lmkdSeOnv0lvR7YmVO72/rYdyJUMP3MCB8fshQM4GivPZnOaWhFfz7zzcRpIEIIIYQQEgQSQsxYxcpBTEPxxtVNpC2o8ztZ0uArfD4vWFGsL1CF285QMHSNpLMKPdqFs2cPFio3phym91SigQGHfOH6dWipGIED9zOvxst5rj2cu//b1L72/UHLdobiBIwkaWP8WUAAeOzsqlg28yTv+GSPW7BpE3qizy6Pyqje+iOW3HUhFft+S/tpf8XBi27NlUnpmqI+4GJWhYu/v3wZybTFv/9xB6lMuVJwzoV0Ln0blXvvQyX7M1YGSsf60JSF5RrcX6gU+d93jgEBs2L9eVymjqEr5lR7+Mtzl/KLxCZ8+35PpP0A/tZH6W25YsgmzQM9tusEAOdlSsEqPSbVXgeeAUFUt0Nj+awA1V4HBzrC/futNOKBlpIzgbLygz9ZZriNhKe+6PJpy+Jod5TGChcuU8+VAhbjMjVpCi2EEEKIGUnOgIQQM5bb1HPZAkrZ2Q3zqr2ctaCGedUeLlvRMOgC25F3YTlwmlHAbVCT14sk7arEiHXh7NlHwt9cMEXKHOYCdaobLn7V23IFkaplND77JfRUlM84/h8Ars5tg5btDMUJ6AmsMgWBdMNJtGIh4fr1AAVBgGxj5WxfoPqX/gMjdJSaV/+X2U/9E8HZm9nxlsc5duZnhpz2NbvKzQcvWMjWo708vP147vGe+W9AS0bwtz5mP5BO4j/wACoV79+3eK/9D+fYMoH8TiM30GxgOdhQvJlyxzec1oh2+k2YJNF+9QG0ZISelitL2kYoluRXW45w2uwKZgVcaFr/5K1qjyO3nK4p5tV40TTF3GoPBztD9r5m+wIF5o8qE2gow2UC7ToeJJJIsbjeb2cCDVOy6ZNSMCGEEELMUNP3KkQIIcZJKcWSBj8rmgIsneWn2uvAZdqNdr/9F+t528a5g9bJn9Lkceg4MmUnDQEn82q8BX1ILHemHKxnL7GKhQXbGZjNMZ0M22tFMzh6zhdxBA/T8sebWRZ/jW3puZiRExjhE7nFookUoXgKn5YgXYZ+QACaBrtv+CMn1nwIKAzSZXsDpdw1HDv9k/gOP8HSn2+m6dkv0tNyJQcu/R5J76wRX+OCJXUsqPVy94uHSVt2NlCo8SySzkoC+38H2H2FWh54D3Me/lAuEKTH++wNjDETSNNUrvFzqRks+eWO6zeeR2flaWywXqfL8vE/hxpJpgZn2gx053MH6Y0kuGWTnV1V73flvpYVbjPXXL252p3br3k1Hva395eDAcQrWnD0HYR0ijFLJzAi7UOOh396bzu6pjijpdrOBBqmHEyaQgshhBBippq+VyFCCFEmuqZyF7BKqSF7hShVGLzxOg2WzvKzpMFPfWBw9ojlrkZLxXB27cxNSMqazqUow/UEAjso0r3gGnxHnybka+Ffk38BFGYDdWbGxHtUvHyZQJrC0h2g2cGP/Eyg/ON2Yt1H2fnmR+hZ8EY6lr2Dgxd9e8hGwwNpmuID5y/gcHeEZ/d2ZB406Z17KYGDD6HFe6l75b+Ie5uoOHA/cx7+MKQTuUwg5R5bJhD0lxqWGkAc+H0cXvUOAF73b+Jnzx/lXT/8M1+7fwe/fLGVX7zQyt0vtvLw9jZebe2mL5rgUFeYX79ylEtXNLCo3odSUOXp/zppmqLK46BmwGSyedUejvZEiCfTue/zWGA+WjqOGTo85vdvhk+gsEgUCdZZlsVTezpYPbsCn8sYthxMKQkCCSGEEGLmkrMgIYQYwOvQCUaTgx43dFW0/8qQ3FUAaOl4QSaQUiNk00xxIwWBAI6e+Rkcvfs5fvonOfJgElLg6txOsHkz0B8EcqtY+YJAefuVP0YdCjO4ABL+ObSe//VRv0bAZXLD+ma+/uAufvFiK2ctqEEpRW/LFVTvuou5D38UM3KCPVffhbtjG01Pf47a176PkcgEGcfYGBrsaVZKlV4O5jJ1e0pdpn9Rz4JrCBy4n4bTP8rnQ808tvMELx3s5k87TxRd323quAyNd55l97LyOPRcFlBWrc85qL/V3BovaQtau8LU+e3yyHgmCOrs2U/CPzjDrhRG2C7BK1YOdqAjzNGeKNevm42hK3RNoWs6SoFlFS7rcxqj+zkWQgghhDiFSBBICCEG8DgNIDbo8dFm71ju6ty/YxULcv92TON+QDB8T6CspLeRPdf9BoCF83ZxfE8Vzo6tuec7MkEgFzEsc+yBkYL9ytuxgYGS7LjygQGB0arxOTB0jZvPaeErv9/Oa4d7OK25kuDs80iZXvytjxBsOofwrDMJzzqTyl13EThwP4nQWaDGFwTKloSN5vvQnRfQTDt8HLj8NgA21MKGedWkLYtoIoWmFGnLoiuU4HhflN1tQXa3BTl3US2Vmd4/AffgbKli38vzauwx8gc6wzRV2gG+WKDFXr53H7C55P3PZ2aCQMXKwZ7e24ECzlpQU1AG6DQ0oonCsrcqrwMhhBBCiJlqel+JCCHEBPCYOsUSBUbbx0dlplUBxCr7M4GmcykYjD6L6fR5VWxNz0W1vZZ7rDNkB9kcVgzKlAmUn5EycIw6jP/r7nZouRKrvzxzLn6Xwf1b7cCEZbjom3MRAMfXfTy3TrD5QjxtL1KbPAaMrxwMoMJjDspqGo5rhDHpmlJ4HAZuh05TpZvZVW7Wz63iLRvm8I9XLWfzkv6x8BVFgkDFzKu2g0AHO8K5r3nS00DK8ODs2YdKxdGj3SW/h6zhMoGe2tPOiqYAVR5HQRnYwObQpqEISFNoIYQQQsxg0/tKRAghJoCmKdyOwZOFRpvBozx2OVjacJP09Pcxmc7j4cHumzQwSOY0tSEDDmuaK9nOPPzBvblGyZ2hOE5Dw0hFsUxPWfYrPxOoWMBuNMGTgZSCOl9/3yefy+T8JXU8u6+TaMJudty2/uMc3vSvhBvPzC3XN+cClJXmKv1ZAPRxBoECrtGVMg03IStLKWip9dJc5cbtKH4M3Q695CBand+J29Q50BFG15TdPFop4oEWKvf8iuV3rGf5Heuof/GbkB5cdjkUM3QcS+kk3f3B1UQqze9ePcr+jjBnL7AfL8gEGvA9WeVxSCmYEEIIIWY0uR0mhBBFeB0G4VjhJKPRZwLZ5WCxigXkR02mezkYUFBapRTMrfbQEYoTTcQHLet1GvQFlmKE7sPZvYdozXI6Q3GqvQ60ZATKNB0svydQsb45dhBj9NOpAm6DhoCrILgAcO3aJn7zylFeONDFpkW1xCoXEatcVLBMuG4dET3Acg6R0l3opnPUr59vtAGMkTKBAOZUe3KNkmdXethzIjiobK7ULKDsPs6r6R8T79A1ouk0oaZzqNx9Dz0tV6AlIzS8+HV8hx9n/2U/IO0cOTgW7jhEr1HDtx7eQ18sAcDeEyHa+mIsbfBz4dJ6gAGZQP3/VgqqpRRMCCGEEDOcBIGEEKIIj1OHvsLHhhs5XYzmtTMTsv2AAm6D3khy2peDgV0Sls40HJ5d6cZl6rjNobNO3HPWwHZIHn0VapbTkQ0CBSNY5QoCDdMTCMZWDlbndzKrYvDkN4CLljVQ5TF5bNcJNi2qLb4BTed19+lsCD5C2hkoqal2OY2UCeQytYIAj9uh0xBwEYrZGTpaJutrNEEgsIOCe9vtIJCha5BIc/Ssz3H0rM/llulrvoA5j/0dVbvupmPVLcNuLxhN0nNwL10EeO5AJ5WZ/WmqdPPBCxZy+tyqXICssCdQ/7/9LuOU+NkTQgghhBgPCQIJIUQRXkfhr0elGDbIUYxhOgnNOoO+5gtwGBrzary50qHpzg5mWLhMLddod7ivT8uS1cS2mYQObsG56i10huIsrvehuqOoMgWB8gMsZpGeQKVkxeSr9JhDBoDADjpduaqRX7zQSjiexOMo/pH6hLWWDTxCygxgnuRSQF1TmIYikSzeEbvCMzi4U+d35qZ6jdW8Gg+P7jxBOm0NWYbXveTN1L3yX/gPPjhiEOjP+zu4gi48jUv58RvPHHK57GSwrGwmkMPQaKwoz/eZEEIIIcR0JrfEhBCiCF1TBUEDl6mPuhRH1xR7r/4F3UvenLsYdZn6oLKi6SgbcMnvneQytaINtQHm1VWwV83B2bEVy7LoDMWp9Who6XjZegKNlAnkd5lD7t9AAbdBc9XIQYMb1s8mnkrz532dQy7z6/AKANLOwKibapeDa5hsoEr3xJRHza3xEk+mOd4XHbaMsnfupfiOPoMW7x12e0/uaqdJ68RdPXvY5QZOMNM0hdepM7/We0qUYQohhBBCjJecEQkhxBA8zv7MjmKNokeS3wB6tKVkU132reVnvyilhsy2UUrRFljFkuirHNn9MrFkmoZMjKVcmUD5AZZiZT+6pnK9b4bTEHAyr8ZbUtBv/dwqGitc3PncIfZlyp/y9UUT7Il4OeBdQ8LfPOL2JsJQ33sepz5hgZHshLBXWnuGLcHqm3cpykriP/TokMuE40k8hx/DT5hI/fqC5/IPkcvUaAwMztxqqZEAkBBCCCFElpwVCSHEEDx5GTueMWTvGHp/ZkwpU5qmk2zAZWAJ2HBZTs6LP01EOWn+09+hk6LOlbafKFMmEEC2CmyowMNwvW2Ugrk1HuqLBBKGfj3FV29cTSie5OM/38Ktj+zm9qf3c++Ww8STaQ51RQB4bOOtHL/ga6W/kTIaKhOoyjNxTZLXNFdS73fy4Tte5HuP7SGRShddLly3jqSrhsDBB4fc1vP7u3in+gMRRw09C94AQGOli6Wz/Cyb5afCbWd4zan2FEyIyyr2mBBCCCHETCU9gYQQYggeZ//F81gygcAum0pZVsGUolNBtmHwwMwft6nTRaLoOt6aZp5d/hku3/YP/JPxY8497AdAlTEIpGsKy7KGLLsKuE1Ud2TQ9KvsmPRSMoUG2rykjp+85wy+dv9OHtx2HAtIpS0SyXSuPGlWfT2as3zvczSKBebG0ux5NCo8Jn/4m8188dev819/2svPn2/lDasbuWLlLPyuvNfVdHrnXkzF/j9AOgFKt8fOaf37vGfHy3xYf4ljK/4GS3eia4paX3/Pork1HuLJtGT7CCGEEEKUQIJAQggxBKehY+iKtGWNuY+PoStS6VMvCKSUHRgbWDI1VHPkrMZz/oKn9v+RmyP3kzrsoHvBG9EXXVK2/dKVQg3RiBjsIJHXaRCMJnOPKQXza714xxAAyppd6eHvLl3K3126FIB/+c1W7n6xlTMX1OAwNOr9TvQizapPhmLfe16nMeH9iaq9Dr75tnXceHoz//f+ndz+9AF++uxBTp9XxebFdZwxvxqXqdM391Kqd/6c5sc+ge/IUyRdNey76k5SrkqiiRRrj/6cpGbQteIvAXAYg/dbAkBCCCGEEKWRIJAQQgzD6zBIpouXspRC1+xpRcYpNppa1xSeItlR2ebQAzNtspRS6Nf+J398+Tc0b3gDaWcl833esu7XSF/pCrdZEARqrnKPKwAEDFr/prPn8dGfvcTD29tYUOdFUwr9JI+Hz9I0hcPQiCf7v4/9rpP38X/e4jpmV7p5/XAvD21v4/FdJ3h2XycuU+PM+TW8bc16mg0PlXt+RbBpE96jz9Jy/83svfKnbHvuCa5Xf+JQ0xUkPfXA0KV+QgghhBBiZCWdBSqlrgD+A9CB/7Us6ysDnr8W+BcgDSSBv7Es64ky76sQQpx0HqdOMjX2i05DU3CKNYUGuxysWK+ZbHPoSHzowJnHV4Fn0zvILlHOhBRdUwWj4oup8phYlkV7ME7AbVBZht44DkMrGMU+r8bLhUvreXhHG3Or7DKwSUoEAuzg3GQFgcDOGmup9fKec+fz7k0tvH6kl8d2nuDxXfaf9y79DpevX4Sjei6B/X9g7kMfYNnPzmRVvIeg5iV+5l/ntiVBICGEEEKIsRvxTEoppQO3AlcCK4C3K6VWDFjsIWCNZVlrgVuA/y3zfgohxKTwOPRBzY9Hwx41f2o1hYZMEMgxxNSpASVhI/VTGiloM9r9KjYePp9Sihqfk6Wz/DRWlGcyGdhZY1lzazx8+KKFOA2NxQ0+gEkZD5+V3//HaWonvVF5/s+QphSnza7gwxcu4r/fuYHLVszif7Y7eM89R3lg6zG6511O6+avc8Scy2cT7+b3lzxEvGZZbn0JAgkhhBBCjF0ptwLPAHZblrUXQCl1J3AtsDW7gGVZwbzlvcAQhQBCCDG9uE0dUx/7rzRD00YMSkxHDmPoQEK930lXOE62iq65ys2+9hDJVPGvYzmDQLqmMCYp5cbj0OkOJwi4DSrcJqfPq+aBvz2fzmA8t2+TpcJtctyIEU+mT3oWEAw9Na7CbfLhCxdx+cpZfO+xPXzr4d3cs+UIFy09g1+Gmlg828db5zUVrOOQIJAQQgghxJiVciY1GziU9//WzGMFlFLXK6W2A7/FzgYSQohpTyk1rswDXVOnXFNoAO8w2T2GrjErM2a9ymviMofPpip3OZg5SUE3r9NAKWjIGzE/t9qTa1o8WT2BwP4+rvPbE7UKpnOdJC5TH7YcblG9j6/euJq/u3QJXofOj57eT180yV+eOW/QsmaRxtBCCCGEEKI0pdwOLHa2Neh2rmVZ9wD3KKU2Y/cHGjTuRSn1V8BfAcydO3d0eyqEENOQoamTXnpzMozU6Lra66A7ksgFRFymTl9eM+Z85S4Hm6xyIZepU+tzDsp68TkNeiKJSc0EArsXUnswNmwAbyK5TJ1wLDXk80opLlhazwVL6znSHaEjGGNxg3/QcpOV6SWEEEIIcSoo5UyqFZiT9/9m4MhQC1uW9RiwUClVW+S571mWtcGyrA11dXWj3lkhhJhuTEObkeOrlVLMr/HmAjJDZQIpZU+vKhd7EtvkBVsaAs5Bj2XLr8r5PsdCKcXcag9qkjKSRtNbq6nSzWnNlYMeV4pJy/QSQgghhDgVlHJl8hywWCk1XynlAN4G3Je/gFJqkcqcVSql1gMOoKPcOyuEENON5xRsCl2q/KCHc4gJaeWOR+hKYU5ipkixAIsvEwQyJjkIBEP35jkZxtNgPcvQ1aQFsYQQQgghTgUjloNZlpVUSn0E+CP2iPgfWJb1ulLqA5nnvwvcCNyklEoAEeCtlmVJc2ghxIw32dkfU4XL1FEKBn4ylLMUDOyG1VPta27qGk5TK/t7nW5GmhJXCpkMJoQQQggxPiWNCLEs63fA7wY89t28f38V+Gp5d00IIcSpxGXqROKFPWHKHRiZqk24/S5j0nsCTTanoaFrilR67PeIZDKYEEIIIcT4yNmUEEKIk8JVpCSs3HGRqZYFlOVzGlOiHGwyKaVYUOcd13QvyQQSQgghhBgfOZsSQghxUhTrCTNVgzbl5nMa0ssGOxtsQa1vyB5RI5nMpt9CCCGEEKcCCQIJIYQ4KYo1JZ4pfXIkANTPYWgsqvNR7XOMel3JBBJCCCGEGB85mxJCCHFSFA8CTcKOiEmnaYrZlW5mVbhGtZ70BBJCCCGEGB85mxJCCHFS6JrC4ywMBM2UTCBRXKXHHNXyppSDCSGEEEKMiwSBhBBCnDRzqz25xsC6pqj1OSd5j8RkMnVtUGBwKEqBIZlAQgghhBDjImdTQgghThpT12ip8eJ26Cyst/8WM1vAVVo2kMOQUxYhhBBCiPGSMyohhBAnlcvUWVTvw2lIAEhAwG2UtFyle3SlY0IIIYQQYjAJAgkhhBBi0jgNfcSR8V6nTn1gdE2khRBCCCHEYBIEEkIIIcSkCrhMdE0xp9rNnGo3+f3CDV0xp9ozeTsnhBBCCHEKKS0HWwghhBBiglR5TWp8DsxM42eHoXG8N4bPaVDhNnOPCyGEEEKI8ZEgkBBCCCEm1cD+UB6HwfxaOUURQgghhCg3ubUmhBBCCCGEEEIIMQNIEEgIIYQQQgghhBBiBpAgkBBCCCGEEEIIIcQMIEEgIYQQQgghhBBCiBlAgkBCCCGEEEIIIYQQM4AEgYQQQgghhBBCCCFmAAkCCSGEEEIIIYQQQswAEgQSQgghhBBCCCGEmAEkCCSEEEIIIYQQQggxA0gQSAghhBBCCCGEEGIGkCCQEEIIIYQQQgghxAwgQSAhhBBCCCGEEEKIGUCCQEIIIYQQQgghhBAzgLIsa3JeWKkTwIFJefGxqQXaJ3snRMnkeE0vcrymDzlW04scr+lFjtf0Isdr+pBjNb3I8Zpe5HhNTfMsy6or9sSkBYGmG6XU85ZlbZjs/RClkeM1vcjxmj7kWE0vcrymFzle04scr+lDjtX0IsdrepHjNf1IOZgQQgghhBBCCCHEDCBBICGEEEIIIYQQQogZQIJApfveZO+AGBU5XtOLHK/pQ47V9CLHa3qR4zW9yPGaPuRYTS9yvKYXOV7TjPQEEkIIIYQQQgghhJgBJBNICCGEEEIIIYQQYgaQIJAQQgghhBBCCCHEDHBKBoGUUlcopXYopXYrpT494LmPZp57XSn1f4ZY/82Z59NKqQ0DnvuHzHZ3KKUuH2L9j2SWsZRStQOeu0AptSWz/T+N971Od1PgWN2Ref41pdQPlFJm5nGllPpWZv1XlFLry/Wep7OJOl5KqRql1CNKqaBS6tvDvP58pdSzSqldSqn/p5RyZB6X41XEVD1eec9vVEqllFJvGu97PRVM1eOllKpQSv1aKfVyZvvvLtd7nq6mwLEqep6hlHpH5nfgK0qpp5RSa8rxfqe7qXq8Ms/JeeEAU+B4ybnhKEzg8bpUKfWCUurVzN8XDbH+UJ9dcrwGmKrHKu95OS88WSzLOqX+ADqwB1gAOICXgRWZ5y4EHgScmf/XD7GN5cBS4FFgQ97jKzLbcwLzM6+jF1l/HdAC7Adq8x6vBLYCc4d7/ZnyZ4ocq6sAlfnzM+CDeY//PvP4WcCzk/31muw/E3y8vMC5wAeAbw+zDz8H3pb593fleE3P45W3fw8DvwPeNNlfr8n+M5WPF/CPwFcz/64DOgHHZH/NZvixGuo84xygKvPvK+V34ZQ/XpXIeeFUPF5ybjg1jtc6oCnz71XA4SHWl3PDaX6s8vZPzgtP0p9TMRPoDGC3ZVl7LcuKA3cC12ae+yDwFcuyYgCWZbUV24BlWdssy9pR5KlrgTsty4pZlrUP2J15vYHrv2RZ1v4i6/8F8EvLsg4O9/ozyFQ4Vr+zMoA/A81569+eeeoZoFIp1Tj2t3pKmLDjZVlWyLKsJ4DoUC+ulFLARcAvMg/9CLgu8285XoNN5eMF8FHgbmCm/x7MmsrHywL8mWV82EGg5Oje3illUo9VZrmi5xmWZT1lWVZX5r/P0P+ZNpNN2eOFnBcWMxWOl5wblm4ij9dLlmUdyfz3dcCllHLmLyPnhqMylY8VyHnhSXUqBoFmA4fy/t+aeQxgCXBeJg3tT0qpjWXcdimWAFVKqUczqXI3jfL1TzVT5lhlUn3fCfxhLOvPEBN5vEpRA3RblpW9+Mx/fTleg03Z46WUmg1cj30XSNim7PECvo199+8I8CrwMcuy0hOwD9PFZB+rUr0H+y74TDeVj5ecFw42ZY6XnBuW5GQdrxuBl7JBijxybli6KXus5Lzw5DMmewcmgCrymJX52wCqsFMCNwI/V0otyET6x7vtUhjA6cDFgBt4Win1jGVZO0exjVPJVDpW3wEesyzr8TGuPxNM5PEa7+vL8RpsKh+vbwKfsiwrZd8YEkzt43U5sAX7Dt5C4AGl1OOWZfWW8fWnk8k+ViNSSl2IHQQ692S+7hQ1lY+XnBcONpWOl5wbjmzCj5dSaiXwVeCyUb6+HK9CU/lYfRM5LzypTsVMoFZgTt7/m7HvXmaf+2UmLfDPQBqoVUr9UNlN+X43jm2Xum9/yKSjtgOPAWtGsf6pZkocK6XU57H7XPztWNafQSbyeJWiHTuVNxu8Hvj6crwKTeXjtQG4Uym1H3gT8B2l1HVleM3pbCofr3fnvf5uYB+wrAyvOV1N9rEallJqNfC/wLWWZXVM9OtNA1P5eMl54WBT4njJuWHJJvR4KaWagXuAmyzL2lNkETk3LN1UPlZyXniSnYpBoOeAxcruPu4A3gbcl3nuXuw7mSillmA3xWq3LOvdlmWttSzrqhG2fR/wNqWUUyk1H1iMXStcql9hp9oZSikPcCawbRTrn2om/Vgppd6LfZf77QPKG+4DblK2s4Aey7KOjvmdnhom8niNKHM34hHsDweAd2H/TIEcr2Km7PGyLGu+ZVktlmW1YNeGf8iyrHvH+5rT3JQ9XsBB7EwFlFIN2E0h9473NaexST1Ww1FKzQV+CbxzhmeT5Juyxws5Lyxm0o+XnBuOyoQdL6VUJfBb4B8sy3qy2DJybjgqU/ZYyXnhJLCmQHfqcv/B7ga/E7sD+mfyHncAPwFeA14ELhpi/euxI6Ix4Djwx7znPpPZ7g7gyiHW/+vM+knsCOf/5j33SexJEK8BfzPZX6vJ/jMFjlUys8yWzJ/PZR5XwK2Z514lrwP+TP4zwcdrP3bD2WBmmRVF1l+AHczbDdxF/xQDOV7T6HgNWOY2ZArElD5eQBNwf+Zn6zXgLyf7azXZf6bAsSp6noGdAdRF/2fa85P9tZoKf6bq8co8J+eFU+94ybnhFDhewGeBUN5x2EKRqVXIueG0P1YDlrkNOS+c8D8q88UWQgghhBBCCCGEEKewU7EcTAghhBBCCCGEEEIMIEEgIYQQQgghhBBCiBlAgkBCCCGEEEIIIYQQM4AEgYQQQgghhBBCCCFmAAkCCSGEEEIIIYQQQswAEgQSQgghhBBCCCGEmAEkCCSEEEIIIYQQQggxA0gQSAghhBBCCCGEEGIGkCCQEEIIIYQQQgghxAwgQSAhhBBCCCGEEEKIGUCCQEIIIYQQQgghhBAzgASBhBBCCCGEEEIIIWYACQIJIYQQQgghhBBCzAASBBJCCCGEEEIIIYSYASQIJIQQQgghhBBCCDEDSBBICCGEEEIIIYQQYgaQIJAQQgghhBBCCCHEDCBBICGEEEIIIYQQQogZQIJAQgghhBBCCCGEEDOABIGEEEIIIYQQQgghZgAJAgkhhBBCCCGEEELMABIEEkIIIYQQQgghhJgBJAgkhBBCCCGEEEIIMQNIEEgIIYQQQgghhBBiBpAgkBBCCCGEEEIIIcQMIEEgIYQQQgghhBBCiBlAgkBCCCGEEEIIIYQQM4AEgYQQQgghhBBCCCFmAAkCCSGEEEIIIYQQQswAEgQSQgghhBBCCCGEmAEkCCSEEEIIIYQQQggxA0gQSAghhBBCCCGEEGIGkCCQEEIIIYQQQgghxAwgQSAhhBBCCCGEEEKIGUCCQEIIIYQQQgghhBAzgASBhBBCCCGEEEIIIWYACQIJIYQQQgghhBBCzAASBBJCCCGEEEIIIYSYASQIJIQQQgghhBBCCDEDSBBICCGEEEIIIYQQYgaQIJAQQgghhBBCCCHEDCBBICGEEEIIIYQQQogZQIJAQgghhBBCCCGEEDOABIGEEEIIIYQQQgghZgAJAgkhhBBCCCGEEELMABIEEkIIIYQQQgghhJgBJAgkhBBCCCGEEEIIMQMYk/XCtbW1VktLy2S9vBBCCCGEEEIIIcQp54UXXmi3LKuu2HOTFgRqaWnh+eefn6yXF0IIIYQQQgghhDjlKKUODPWclIMJIYQQQgghhBBCzAASBBJCCCGEEEIIIYSYASQIJIQQQgghhBBCCDEDTFpPICGEEEIIIYQQYrIlEglaW1uJRqOTvStCjIrL5aK5uRnTNEteR4JAQgghhBBCCCFmrNbWVvx+Py0tLSilJnt3hCiJZVl0dHTQ2trK/PnzS15PysGEEEIIIYQQQsxY0WiUmpoaCQCJaUUpRU1Nzagz2CQIJIQQQgghhBBiRpMAkJiOxvJ9K0EgIYQQQgghhBBCiBlgxCCQUuoHSqk2pdRrQzz/DqXUK5k/Tyml1pR/N4UQQgghhBBCiFOTUop3vvOduf8nk0nq6uq4+uqrJ3GvRubz+UZc5gtf+AJf+9rXhl3m3nvvZevWreXaLTGMUjKBbgOuGOb5fcD5lmWtBv4F+F4Z9ksIIYQQQgghhJgRvF4vr732GpFIBIAHHniA2bNnT8q+JJPJk/6aEgQ6eUYMAlmW9RjQOczzT1mW1ZX57zNAc5n2TQghhBBCCCGEmBGuvPJKfvvb3wLws5/9jLe//e2550KhELfccgsbN25k3bp1/OpXvwJg//79nHfeeaxfv57169fz1FNPAXD06FE2b97M2rVrWbVqFY8//jhQmLnzi1/8gptvvhmAm2++mb/927/lwgsv5FOf+hR79uzhiiuu4PTTT+e8885j+/btAOzbt4+zzz6bjRs38k//9E9Dvpcvf/nLLF26lEsuuYQdO3bkHv+f//kfNm7cyJo1a7jxxhsJh8M89dRT3HfffXzyk59k7dq17Nmzp+hyojzKPSL+PcDvy7xNIYQQQgghhBBiwv3zr19n65Hesm5zRVOAz79x5YjLve1tb+OLX/wiV199Na+88gq33HJLLnjz5S9/mYsuuogf/OAHdHd3c8YZZ3DJJZdQX1/PAw88gMvlYteuXbz97W/n+eef56c//SmXX345n/nMZ0ilUiUFUXbu3MmDDz6IrutcfPHFfPe732Xx4sU8++yzfOhDH+Lhhx/mYx/7GB/84Ae56aabuPXWW4tu54UXXuDOO+/kpZdeIplMsn79ek4//XQAbrjhBt73vvcB8NnPfpbvf//7fPSjH+Waa67h6quv5k1vehMAlZWVRZcT41e2IJBS6kLsINC5wyzzV8BfAcydO7dcLy2EEGIGiyZS3HLbc/zV5gVcsLR+sndHCCGEEGJMVq9ezf79+/nZz37GVVddVfDc/fffz3333ZfrrRONRjl48CBNTU185CMfYcuWLei6zs6dOwHYuHEjt9xyC4lEguuuu461a9eO+PpvfvOb0XWdYDDIU089xZvf/Obcc7FYDIAnn3ySu+++G4B3vvOdfOpTnxq0nccff5zrr78ej8cDwDXXXJN77rXXXuOzn/0s3d3dBINBLr/88qL7UupyYvTKEgRSSq0G/he40rKsjqGWsyzre2R6Bm3YsMEqx2sLIYSY2X7+/CGe2tPB8saABIGEEEIIMS6lZOxMpGuuuYZPfOITPProo3R09F9aW5bF3XffzdKlSwuW/8IXvkBDQwMvv/wy6XQal8sFwObNm3nsscf47W9/yzvf+U4++clPctNNNxWMFI9GowXb8nq9AKTTaSorK9myZUvRfSxlLPlQy9x8883ce++9rFmzhttuu41HH310XMuJ0Rv3iHil1Fzgl8A7LcvaOf5dEkIIIUqTSKX57z/tBeBId2SS90YIIYQQYnxuueUWPve5z3HaaacVPH755Zfzn//5n1iWnUvx0ksvAdDT00NjYyOapvHjH/+YVCoFwIEDB6ivr+d973sf73nPe3jxxRcBaGhoYNu2baTTae65556i+xAIBJg/fz533XUXYAegXn75ZQA2bdrEnXfeCcAdd9xRdP3Nmzdzzz33EIlE6Ovr49e//nXuub6+PhobG0kkEgXr+/1++vr6RlxOjF8pI+J/BjwNLFVKtSql3qOU+oBS6gOZRT4H1ADfUUptUUo9P4H7K4QQQuTc+9JhDndHCLgMCQIJIYQQYtprbm7mYx/72KDH/+mf/olEIsHq1atZtWpVrinzhz70IX70ox9x1llnsXPnzlw2z6OPPsratWtZt24dd999d26bX/nKV7j66qu56KKLaGxsHHI/7rjjDr7//e+zZs0aVq5cmWtE/R//8R/ceuutbNy4kZ6enqLrrl+/nre+9a2sXbuWG2+8kfPOOy/33L/8y79w5plncumll7Js2bLc429729v493//d9atW8eePXuGXE6Mn8pGEk+2DRs2WM8/L/EiIYQQYxNLprjoa3+iymuyqqmCB7e18fxnL5ns3RJCCCHENLNt2zaWL18+2bshxJgU+/5VSr1gWdaGYsuPuxxMCCGEmAw/e/Ygh7sj/P3ly5hd6aY9GCOaSE32bgkhhBBCCDFlSRBICCHEtBOKJfnPh3dz9oIazltcS1OlG4BjPdER1hRCCCGEEGLmkiCQEEKIaecHT+yjIxTnk1csRSmVCwIdlr5AQgghhBBCDEmCQEIIIaaVrlCc7z22l8tWNLB+bhUAzVUSBBJCCCGEEGIkEgQSQggxbaTSFp/8xSuE4kk+cfnS3OMNARdKyZh4IYQQQgghhmNM9g4IIYQQpfrSb7fy4LbjfPHalSxp8Ocedxga9X6nBIGEEEIIIYQYhmQCCSGEmBae3N3OD5/cz7s3tXDT2S2Dnm+qdHOkWxpDCyGEEGL6OX78OH/xF3/BggULOP300zn77LO55557Jvx1n3/+ef76r/+6LNu64IILWLp0KWvWrGHTpk3s2LGjLNstp3Lu42233cZHPvIRAL773e9y++23D7ns/v37+elPf5r7fzm/7qMlQSAhhBBTXjSR4h/veZX5tV4+dcWyosvYQSDJBBJCCCHE9GJZFtdddx2bN29m7969vPDCC9x55520trZO+Gtv2LCBb33rW2Xb3h133MHLL7/Mu971Lj75yU8Oej6VSpXttcZqIvbxAx/4ADfddNOQzw8MApX76z4aEgQSQggx5f33n/ZyoCPMl69fhcvUiy4zK+DieK9kAgkhhBBienn44YdxOBx84AMfyD02b948PvrRjwJ2AOG8885j/fr1rF+/nqeeegqARx99lKuvvjq3zkc+8hFuu+02AD796U+zYsUKVq9ezSc+8QkA7rrrLlatWsWaNWvYvHnzoG38+c9/5pxzzmHdunWcc845uSyZ2267jRtuuIErrriCxYsX8/d///cjvqfNmzeze/duAHw+H5/73Oc488wzefrpp/n617/OqlWrWLVqFd/85jdz69x+++2sXr2aNWvW8M53vhOAEydOcOONN7Jx40Y2btzIk08+CcCf/vQn1q5dy9q1a1m3bh19fX0cPXqUzZs3s3btWlatWsXjjz8+5n38yU9+whlnnMHatWt5//vfnwsM/fCHP2TJkiWcf/75uX0B+MIXvsDXvvY1AHbv3s0ll1zCmjVrWL9+PXv27OHTn/40jz/+OGvXruUb3/hGwde9s7OT6667jtWrV3PWWWfxyiuv5LZ5yy23cMEFF7BgwYKyBY2kJ5AQQogpra03yn8/toerTpvFOQtrh1zO7zIIxVOk0ha6pk7iHgohhBDilPH7T8OxV8u7zVmnwZVfGfLp119/nfXr1w/5fH19PQ888AAul4tdu3bx9re/neeff37I5Ts7O7nnnnvYvn07Sim6u7sB+OIXv8gf//hHZs+enXss37Jly3jssccwDIMHH3yQf/zHf+Tuu+8GYMuWLbz00ks4nU6WLl3KRz/6UebMmTPkPvz617/mtNNOAyAUCrFq1Sq++MUv8sILL/DDH/6QZ599FsuyOPPMMzn//PNxOBx8+ctf5sknn6S2tpbOzk4APvaxj/Hxj3+cc889l4MHD3L55Zezbds2vva1r3HrrbeyadMmgsEgLpeL733ve1x++eV85jOfIZVKEQ6Hh9y/4fZx27ZtfPWrX+XJJ5/ENE0+9KEPcccdd3DppZfy+c9/nhdeeIGKigouvPBC1q1bN2i773jHO/j0pz/N9ddfTzQaJZ1O85WvfIWvfe1r/OY3vwHs4FvW5z//edatW8e9997Lww8/zE033cSWLVsA2L59O4888gh9fX0sXbqUD37wg5imOez7GokEgYQQQkxp33hwF4lUmr+/vHgZWJbfZX8gBmNJKtzj+3AUQgghhJgsH/7wh3niiSdwOBw899xzJBIJPvKRj7BlyxZ0XWfnzp3Drh8IBHC5XLz3ve/lDW94Qy7jZNOmTdx888285S1v4YYbbhi0Xk9PD+9617vYtWsXSikSiUTuuYsvvpiKigoAVqxYwYEDB4oGgd7xjnfgdrtpaWnhP//zPwHQdZ0bb7wRgCeeeILrr78er9cLwA033MDjjz+OUoo3velN1NbaN/yqq6sBePDBB9m6dWtu+729vfT19bFp0yb+9m//lne84x3ccMMNNDc3s3HjRm655RYSiQTXXXcda9euLfr1GWkfH3roIV544QU2btwIQCQSob6+nmeffZYLLriAuro6AN761rcOOhZ9fX0cPnyY66+/HgCXy1V0H/I98cQTuWDbRRddREdHBz09PQC84Q1vwOl04nQ6qa+v5/jx4zQ3N4+4zeFIEEgIIcSUlUiluW/LYa5bO5uWWu+wy/qd9keaBIGEEEIIMWbDZOxMlJUrV+aCAAC33nor7e3tbNiwAYBvfOMbNDQ08PLLL5NOp3OBBcMwSKfTufWi0Wju8T//+c889NBD3HnnnXz729/m4Ycf5rvf/S7PPvssv/3tb1m7dm0u2yTrn/7pn7jwwgu555572L9/PxdccEHuOafTmfu3ruskk8mi7+WOO+7I7XeWy+VC1+1yfsuyiq5nWRZKDc7kTqfTPP3007jd7oLHP/3pT/OGN7yB3/3ud5x11lk8+OCDbN68mccee4zf/va3vPOd7+STn/xk0T49pezju971Lv7t3/6tYJl777236D4OfB+jVWyd7OuU+nUfDekJJIQQYsp66WA3oXiKi5fXj7isz5UJAkXH/+EohBBCCHGyXHTRRUSjUf7rv/4r91h+KVNPTw+NjY1omsaPf/zjXH+aefPmsXXrVmKxGD09PTz00EMABINBenp6uOqqq/jmN7+ZC/bs2bOHM888ky9+8YvU1tZy6NChgv3o6elh9uzZALneQuW2efNm7r33XsLhMKFQiHvuuYfzzjuPiy++mJ///Od0dHQA5MrBLrvsMr797W/n1s9/L6eddhqf+tSn2LBhA9u3b+fAgQPU19fzvve9j/e85z28+OKLY9rHiy++mF/84he0tbXl9uXAgQOceeaZPProo3R0dJBIJLjrrrsGrRsIBGhububee+8FIBaLEQ6H8fv99PX1Dfk1ueOOOwC7TKy2tpZAIDCmfS+FZAIJIYSYsh7fdQJNwdnD9ALK8uUygRIjLCmEEEIIMXUopbj33nv5+Mc/zv/5P/+Huro6vF4vX/3qVwH40Ic+xI033shdd93FhRdemCulmjNnDm95y1tYvXo1ixcvzvWn6evr49prryUajWJZFt/4xjcA+OQnP8muXbuwLIuLL76YNWvW8Kc//Sm3H3//93/Pu971Lr7+9a9z0UUXTch7Xb9+PTfffDNnnHEGAO9973tz+/2Zz3yG888/H13XWbduHbfddhvf+ta3+PCHP8zq1atJJpNs3ryZ7373u3zzm9/kkUceQdd1VqxYwZVXXsmdd97Jv//7v2OaJj6fb9iR7cNZsWIFX/rSl7jssstIp9OYpsmtt97KWWedxRe+8AXOPvtsGhsbWb9+fdFJYj/+8Y95//vfz+c+9zlM0+Suu+5i9erVGIbBmjVruPnmmwt6CX3hC1/g3e9+N6tXr8bj8fCjH/1oTPtdKjWWdKVy2LBhgzVcMyshhBDiulufRFPwyw9tGnHZFw92ccN3nuK2d2/kgqUjZw4JIYQQQgBs27aN5cuXT/ZuCDEmxb5/lVIvWJa1odjykgkkhBBiSnnpYBedoTiJVJpXWrv56EWLS1ovvyfQdLLtaC+L6n2YulRoCyGEEEKIiSVBICGEEFPGr7Yc5mN3bil47KJlpWX1ZKeD9U2jnkDP7O3gbd97hi9fv4p3nDlvsndHCCGEEEKc4iQIJIQQYkqIJlL8nz/sYGVTgH+74TQAPA6DRfW+ktafbo2hLcvi336/HYDn93dJEEgIIYSYRENNpxJiKhtLex8JAgkhhJgSfvTUfg53R/j3N61mdXPlqNf3mDpKQd80KQf7xQutvHyom4DL4KWDXZO9O0IIIcSM5XK56OjooKamRgJBYtqwLIuOjg5cLteo1pMgkBBCiEnXFYrz7Ud2c+HSOs5ZNPIksGI0TeFzGNMiE+jbD+/i/z6wk9PnVXHRsnr+/Y876AzFqfY6JnvXhBBCiBmnubmZ1tZWTpw4Mdm7IsSouFwumpubR7WOBIGEEEJMum8/sptQLMmnrxzfZA6fy5jyI+J/teUwX7t/J9etbeIrN65my6FuALYc6uKiZQ2Tu3NCCCHEDGSaJvPnz5/s3RDipJBRJEIIISbV4e4Itz+9nzefPoels/zj2pbPaUzp6WCtXWE+e+9rnD6viq+9eQ0uU2d1cwW6pnjpYPdk754QQgghhDjFSRBICCHEpLrt/7N33mFyneX5vs+ZXna2r7aod1my5CLcu8EYTAfTQ8cQQiAhlCQkoQUCAQLJjxBKaAFMN2Djjo1x77Z6l1ba3menz2nf748zMzszO22btLK/+7p8WTtz2uyeOec7z/e8z/vQMSwBH3phba3gK1HndZ7U7mCWNbMwvk/fvBfLEnz9DWfhzLSE97udbGyv42mZCySRSCQSiUQiWWCkCCSRSCSSU0Y0pfPzx3u47swOuhp8c95e0Os6KSLQ4eEo1379fm748ZM1r/PgoVH+uG+ID161jmVN/oL3NneGODgUm+/DlEgkEolEIpFICpCZQBKJRCI5ZfzyyV6iaYP3XDo/dfh1Hif94eS8bKscv3+2j3+4aRcJzaR7LI5hWjlXTyW+cNs+ljX5eOfFK6e919XgZySaJm2YeJyOBThqiUQikUgkEolEOoEkEolEcgr5494hzugIzaolfCmCnoXrDpbSTf7xt7v48M+fZXNniE9cu5GUbnFkJF51Xd202DsQ4TVnL8Xrmi7ydDXaLqiBcGrej1sikUgkEolEIskiRSCJRCKRnBJ00+LZnjDnrWqat23a3cHmXwR6snuc13zzYW587ATvv3wNP3vvBbxwUxsAu/smq64fSdody8q1gO9s8AIsuItJIpFIJBKJRPL8RpaDSSQSieSUsG8gQlI3OXdF47xtM9sdzLQEDlWZ8/bCCY1P3byH3z/bT1udh/9923ZeeIbdxn11axCfy8Hu/klee+7SituZzIhA9T5XyfeXNtgZQb1SBJJIJBKJRCKRLCBSBJJIJBLJKeHJbrsb1vaV8ycC1Xnt21pcMwh5SwsutXLv/iE+8ZtdTMQ1PnT1Ot5/+Wr87qnbpkNVOKMzxJ6+SNVtVROB2uu9KIp0AkkkEolEIpFIFhYpAkkkEonklPDk8XG6Gnx01M+9K1iWrAgUS81NBLp5Rz8f+tkzbGyv4wfveAFbuupLLrelM8Svn+rFsgRqBedRVgQKlRGB3E6VtjoPfRNSBJJIJBKJRCKRLBwyE0gikUgkJx0hBE92T8xrKRhA0GOLLHPNBXqye5w6r5Pff/DisgIQwOaueuKaydHRyuHQ1ZxAAJ0NPvonpQgkkUgkEolEIlk4pAgkkUgkkpNO70SS4Wh6XkvBwA6GBojOsUPY4GSKjnpv1Xbt69qCAHTPgwjU1eCjX3YHk0gkEolEIpEsIFIEkkgkEslJ58nj4wAL4ATKlIPN0Qk0FE2zJOStulxL0APAeFyruNxkojYRqC+cxLLEDI5UIpFIJBLJyWAirlW930skpwNSBJJIJBLJSefJ7gmCHicb20Pzut26nBNIn9N2hiOpmkSg5qDd8n00nq643GRSx+dy4HaWv+12NvjQDIsxOcCUSCQSiWTRYFqCY6NxeieS9IeTJDXzVB+SRDInZDC0RCKRSE46Tx2f4OzlDfPSxj2frAg0l5k60xIMR9MsCXmqLut3O/G5HIzHqjiBknpFFxDYTiCAnokErXXV9y2RSCQSiWR+MS3BUCRFQjPQDJEbp2iGBYAQ0D0Wx+tysCTkKegaKpGcLkgnkEQikUhOKpNJnQND0XkvBQNYUudlRbOfW3b0z3obY/E0piVqcgKB7Qaq5t6pRQRa1RoA4C3ffYy//tkz/HHvUG7QKZFIJBLJcxHDXFz3uWhKZyymkdQsTEugGda0e7FhCmIpg7EqE0ASyWJFSpcSiUQiOak8c2ICIWD7iqZ537aqKrz1/BV8/rZ97BuIsKlj5uVmwxG7tKt2EcjDaKx6OVi9v7IItKY1yK/ffyE3PdPHbbsGuGVHP/U+Fy/ctITL1rfw4s3teF2Vg6olEolEIjldSGgGKd2iKeA+1YeSI5KsPVNwMqnTZQnUeXY1SyQLjXQCSSQSieSk8ujRcVQFzlresCDbv377UjxOlW/ce3hWZWFDEbtDV60iUEvAXXU2sBYnEMD2lU184dVn8sQnX8j337GdKze0cs/+IT7882e54N/u4Y7dgzUdk0QikUgki52RaHpROV6FEETTtWcKCjHV/VMiOZ2QTiCJRCKRzBnNsCqGHmdJ6Sa/fLKHKze05Tp5zTcNfjdvOX8F33/oGLfvHuCc5Y28+5JVvOTMjprWH8yJQLXl8jQH3ezun6y4TKRGESiLy6Fy1cYlXLVxCZYlePTYGP9w0y6+c/8Rrt3SXvN2JBKJRCJZjCQ1k0jSoN63eFw0sbSBNUNNKpY2aFxETiaJpBakE0gikUgkc6ZaOVSWm57uYzyu8Z5LVy/o8fzTdZv4/V9dzAevWsd4QuPDP3+WoyOxmtYdiqRRlKn279VoCngYj2sIUb61e61OoFKoqsJFa+xysN19EdKG7EoikUgkktOXlG5ybDQOgLaIMoFi6dpLwbKYVvl7v0SyWJEikEQikUjmTDihV7R0P3x4lBv+70n+4+6DbOkKccHq+c8DykdVFbYta+AjL1rPz2+4AI9T5VM376ko1GQZjqRoCXpwOWq7RbYE3eimIJIqPXjUTYu4Zs5aBMpy9rIGNNNib39kTtuRSCQSieRUYZgWx0bjOfFkMZWD6cbMBR2rhnGFRLLYkCKQRCKRSOaEbtodNKKp0nXx9x8c4R0/fIJnesJ01Hv5+Is3oignz/7dVuflI9es54FDo3zuD/uqdiIZjKRqLgUDuxwMYKyMGyqSyQuYqwh0Tqab2tMnwnPajkQikUgkp4reiSSGOSWcmJbAWiRumtm4khbJoUskM0JmAkkkEolkTqR0uzwpmjJoLiqheuDQCO/9vydZ0xrkxvecf8rq5t924UqOjyX4/kPHGIwk+e83n1NWiBqKpOmsry0UGqA5YH/msbjG6tbp74fnSQRaEvLS1eDjmRMTwKo5bUsikUgkkpNNLG0QLeGa1UwLr3rqu1/qsypNkyqQ5PRDOoEkEolEMidSuj1oKq6lf/ToGO/50ZOsagnw01MoAAE4VIVPv2Izn7h2I7ftGuR7Dx4ru+xwJMWSmYhAVZxAk/MkAoHdUe0Z6QSSSCQSyWlIOFG6k2Z6EZSECSFmle8jnUCS0xEpAkkkEolkTmSdQEKQCy0+NBTlhv97kmVNfn76nvNpWiSdM95/+WquOWMJX7x9P0+fmJj2fiSlMxbX6Grw1bzNrBNotEyb+KwIFJoHEejsZQ30hZOMRGsL4pZIJBKJZDEghCCSLJ+dd6rRTcFs4n1kJpDkdESKQBKJRCKZE/ndqlK6xXAkxTt+8AQel4MfvvMF00rETiWKovDl122jvd7LX9/4zLRZyUNDUQA2ttfVvM2swDUeLy0CzVcmEMCqlgAAfeHknLclkUgkEsnJIq6ZZZ02iyEc2phpb/gMs1xNIjmlSBFIIpFIJLNGCJErBwMYj6d514+eYCKh8f23v4Cljf5TeHSlqfe7+O83n8NwNMXf/XJHQSDlgUG7jfz6JbWLQG6nSsjrPCnlYO2ZMrXBSSkCSSQSieT0wLIEoxUcrItBBJpNZzCQTiDJ6YkUgSQSiUQyazTTytmnR6Jp3vt/T7FvIMp/v/kczlxaf2oPrgLbljXwyZdu4p79w3z3gaO51w8MRgi4HTMqBwNoCXoYLeMEGpxM4VSVeSmJ66i3j2tgMjXnbUkkEolEstDE0wYHh6MlA6GzzNaFMxssS5DQDESReKPP8hikBiQ5HanaHUxRlO8DLwOGhRBbSryvAP8JvBRIAO8QQjw93wcqkUgkksVH2rAYj2v8+5372TcQwety8P13vIDL15dok7XIePtFK3m8e5x/v/MA565oZPvKJg4MRVnfXoeqzqyF/bImP091T5DSTbyuwg4nPRNJuhp9OGa4zVI0+l24nSqDUgSSSCQSySJnPK7RH05WFUp0c+GVFCEEw9E0I9E0QoCqQleDjwa/O3MMsxeiLEvMeNwgkZxKanEC/RC4tsL7LwHWZf67AfifuR+WRCKRSBYjQgj+9Q97+eivdgC2hfvWXQPsG4hw/bnL+Nrrz+KydS2n+ChrQ1EUvvjarSxt9PHBG59hPK5xYDDKhhmUgmV53+WrGYyk+PEjx6e9d2I8wbJ5KotTFIWOeq90AkkkEolkUZPSzZoEIGBWXblmSv9kiuFIOnc8lgU940kmMi7e2ZaDgSwJk5x+VBWBhBD3A+MVFnkl8H/C5lGgQVGUjvk6QIlEIpEsHn786HH+98Fj/PqpXp4+MUFSN7l3/zBnLWvkrResoLPBtyhavdZKyGvnA43HNd77f08ykdBnlAeU5aI1LVy6roX/vu9wLgMoS+94gmVNMysvq0R7yCudQBKJRCJZtAgh6KtRALKXB2OeOoRlO5YWvzZRVLL9k8eO88U79tMXTmJZYtblYCDbxEtOP+YjE6gL6Mn7uTfzmkQikUieQxwcivLZW/Zy+fpWGvwu/ue+Izx2dJzRWJqrN7blljudRCCALV31/PPLz+Cp43bL+A0z6AyWzyeu3UgkqfMfdx3IvRZPG4zFtXkNyG6v9zIYkSKQRCKRSBYfKd3kyEiMRHq6GFMJY56UlKFIapqgNBRJFQhSumnxhx39PHR4lJ89foKJhDa3cjDpBJKcZsyHCFSqALLkN0FRlBsURXlSUZQnR0ZG5mHXEolEIjlZ/Out+/C7HXz19dt42wUruHvvEJ+/dS8Bt4PzVzfllkto5cMfFytvPX85L9vagUNVZtQePp8tXfX8xQUr+PGjx9nVOwlA74TdxWtZ0zyLQJOpaaGWEolEIpGcSixLcHwsQVKbuaAyHyKQblpEUwaJPDdQQjOIJAvHJTt6wsQ1k2VNfn72+AkePTqOMYdcInk7lpxuzIcI1Assy/t5KdBfakEhxHeEENuFENtbWxd/aKhEIpFIbO47MMz9B0f40NXriKYMXnV2Fy/f2sG6tjredckqPM6pMORKHUAWK4qi8B+vP4tbP3QJzUHPrLfzdy/eQHPQwyd/twvTEvSMJwBY1jh/5WAdIS+aaQdySyQSiUSyWBiJpWfd7n0+ysHCCR0hIKlNiUClMvQeOjKK3+3g3159Jh6ng9883TsnIWexOIGSmnlS8pUkpz9Vu4PVwM3ABxVF+TlwPjAphBiYh+1KJBKJZJHwnfuP0tXg47qtHYxGNXxulS9fv41DQ7Fpy6Z1i7RhFghDpwNup8rG9tCcthHyuvin6zbx4Z8/y42PHc/NbM6vE2iqTfxcBCuJRCKRSOaLSEpnJJqe9fpz7RCW0s3c/hMZEWgyqZNIm1hCcM++odzkySNHxzh/VRP1PhdXbGjlj/uGePfFqwj5XJn1Dfb2RzCFIOR1Ued1MhbTGI6mGI6mGY9rvGJbJyuaA8DiEIEmEzo9Ewm8LpUVzQFcDhUhBLG0gWkJvC7HtO6lkucvtbSI/xlwBdCiKEov8CnABSCE+BZwG3Z7+MPYLeLfuVAHK5FIJJKTT184ySNHx/ibq9fn7NJJzSJSFICcTzRl4Ak+Pwcbr9jWyS+f7OHf7zzAlRva8LkcNAfc87b9jnovAIOTKbZ01c/bdiUSiUQiqRUhBIpip4JMxLUZBUGXwphDMHNKNzk2Gs+5YBKagWUJBibtkuwfPtzNb5/pyy3vUBWu3rQEgOvO7OD23YN89e6DeJwqummxpz9CskTANNg5KIoChin42xetB05tMLRmWBwejuU+e1KzODAYxe92kNKtAmeQqoLf7WRpow+XYz4KgiSnK1VFICHEm6q8L4C/mrcjkkgkEsmi4nfP9CEEvOacrtzsGti273JEUwYtz1OXiqIofPaVW3jJ1x/g5h39bFhSlxsozwdZEWhAhkNLJBKJ5CSSFX4M0+LoaBwAVWFWGUAA3tGdhI7fzfA5H5l1Jk84odE7UShAWZadyacbgpue7uW3z/Rx3ZkdvPfS1bllHKp9X17RHOCc5Q3s7A3TUe/F5VC5cE0zV21sI+B2Ek5oRFI6LUEPbXVemoNu/t+9h3i8exzDtHBmHDenCs20ppWACQHxEsHclgWxlMGRkRgNPjcCQUf9/JWrS04f5qMcTCKRSCTPUYQQ/ObpXs5b1URng4+9/ZHce5Um7eJpo2CW8PnGmtYg77t8Nf/v3sPz2h4eoDnowakqDIST87rdLJYlSBsWPvfz08klkUgkktIMRlJEUwYKdun3XFD1OCvu+Uvc0R5Gt7wHw9c8423E0sY0ASjLZFLnBw8d46Zn+rh4bQvvvXR1Tvgp5lMv34xpiZrdMReubuZPB0bYMxBh29KGU+4Emim6IXKlc3VeF0GPlASeb0gfmEQikUjKsqN3kqMjcV57TldZa3QphDj9WsXPN3915Vo2d4Y4b1VT9YVngENV2NQR4q69Q1jzMPJM6SbR1FRp32AkRTRdvtRPIpFIJM8/TEswHtdI6xapOQpAAEue+BLuaA8AruTIjIOhLUtwYixRtgRtd98kNz3Tx4s3t/OxazaUFYAAVEWZUXnU2csbcTtVHj0yZh/LqXQCzXGsNTi5MBNKksWNFIEkEolEUpabnu7F41R5yZkdM279nt+d4/mI1+Xg1g9dyg2XrZn3bb/n0lUcHo5x196hOW8rmjI4PpZgJJqmL5xkLKbNOaBTIpFIJM8txuNaRQfwTGje/b+07P0hidZtADgTwzNuEa9b08ugsggh+Mljx2n0u3jvpasqCkCzwetycPayBh7vHgdObxEoqZX/PUqeu0gRSCKRSCQl0QyLm3f0c83mdkJeF6kZ1vzPxDkkmRnXndnB8iY//3Pf4TlnEdile3bQ9HjM7pwy10GlRCKRSJ5bRFLz4BC1dJY88e90PvpZDrdczY5zPg+AMzmCYYoZ3c/KCVI3Pd3Ll+48wJ7+CNefu2zBOpUub/IzGktjCTGnQOy5os3QQVUKKQI9/5AFgBKJRCIpyZ8ODBNO6LzmnC5g5qJO4nnuBFpInA6VD1yxhr+/aRe37Rrkuq0ds95WvITDS4pAEolEIslnPoSClXe9m7re+7jHew3v730r1/gMLgRciWEADEvgctTm2inVTaxvIskPHu4m5HWyuTPEize3z/gYvaO7CfY9gDM1hlDdRJdeTqLjfPtNIVDMNMLppc7rxBK26/l0dgLB4mhxLzm5SBFIIpFIJNMQQvDd+4/SHvJy6doWLEuUHWg4UmGWPPklBs/7JJY7mHs9pZvP63Doheb67cv40SPH+fyte7lqY9usgpyTmllyNlWfh5lFiUQikTx3mMt9wTAt+vc9ypm99/Hf6pv4WuQVNIfcPD1kYjk8ODMiUEo3a87mKXXv+tOBYVQF/uuNZ9M8yw6ly+/9AJ5IN5bDi2LptO34BpMrriGxZDsNh3+HK97P4VffQZ3HBdjh1KfKSGNaYl7EOekEev4hy8EkEolEMo37Dozw5PEJPnjVWpwOlZRR3tUT7Luf5v0/Jdj354LXZTj0wuJQFT7zis30T6b46WPHZ7WNWLp0zpMQ0g0kkUgkEhshxKzzgHTT4t9u38/kg98mKdz81vFSvvy6bbx0SwcDkTSatxVn0haBsvl0tVDsBLKE4E8HhjlrWcOsBSBVj+OJdDN0zt+y550H2fP2fQyd/TcEhp6i4/EvoBpxVDNN50P/SMBjT7xEU8a8NGmYDfM1YSOdQM8/pAgkkUgkkgKEEHzlrgMsb/Lz+u3LACp2AnHF+gDwjeyc9t7zPRx6oTlvVRNrWgM8enR8VutXyhKYj5wBiUQikZz+zDS0OYslBF+6Yz97u3t5nftRhpZfx7+9+RLWtgXZ0F4HwKSzKVcOls2ni9aQP2QWCRd7+iYZjqa5ckPbrI4VwDNxCIBU0xn28Ti9DJ/7Efa95Wn2vfkpDr7uTwye+zFCPffysl1/zSvUh4llcvVOBfM10TZfgd+S0wcpAkkkEomkgGd6wuzpj/CXV6zB7bRvE6kKeUDueD8AvtFd096TTqCFZ9vSBnb0hmcVEF1p9lI6gSQSiUQCYMyyY+Rvnu7lmWND/Krjp7itJMbZ78Drsh00a9uCOFWFIaseZ3KkYL3eiWTVEqXi9+89MIzP5eCC1c2zOlYA78R+AFKNGwrfUBQMfyuoTsY2v5ORM2+gIdHN113/jTp++JQ5aebrPl0sqEme+0gRSCKRSCQF/PbpPjxOlZflhQ1XEnNc0V4A/KM7KZ4OS1coI5PMD1uX1jMSTTMYSc3rdqUIJJFIJBIoHcJcjn0DET75u128+X8fZf+jd3Jb6N/YNPEnBs7/Z5JtZ+eW8zgdrGkNckIL5TKBcvszBWPxymVh+SJQSjd56PAYl6xtyYlMs8E7cQDL4UULLS+/kOpg8Px/4plrfo2Oky3Hf3TqRKB5cuzKTKDnH1IEkkgkktOIhb5Rpw2TW3b28+LN7dR5XbnXKzmBXBknkEOL4I4WZtNUKiOTzA/bljUAsKNncsbrVhq4ynBoiUQikUBtY4/JpM5X7z7Ax3+zk57xBJ9uvodfej7Lcsc4J678BqNnvnfaOhva6zic8ONMh1HMQtFnPK5VdLjmH9OjR8dI6iZXbpx9KRiAd3w/qcb1oFR/RPY0tPMr8zI2j9yGGh+uunw1Ko2zypEs0d1zNszGSSw5vZEikEQikZwG6KbFwaEoh4djGEUP55YliNRQP18L9x0YIZzQeXWmLTzYXT0qWcHdsT7ibecC00vCdNOSg4sFZlNHCKeqsLM3PON1K/1ppItLIpFITj8SNQoDM5lU0quUgw1GUnzkl8/y4KFR3nRuB7dse4zXjn2b8KqXcfANDzC55hUl11vW6GfAagDAmRwt3KchiKTKf5bs8cfSBrfuGqCtzsPmzlDNn6kUnvEDpJo21ras08GN4lqcQsffffec9htPGzUHYk/ENcAe+83XRJssB3v+IUUgiUQiOQ1IGxZp3UIzLE6MJwoGb9GUQSI9Pw/su/smURW4dG1Lwb7LoWoRHFqE6PKrsVT3tHBo2SFs4fG6HGzsqGPHLESgSk6glG6dso4nEolEIpk5Cc0gXsN4wDAtDg/Hai77rSQY9YeT/MNNu0hoJv95XTuf6n0PS5/5CpOrXkrPlf+JcPrKrtta52FE1APgTIxMe793IsHBoWiBS0YIwaGhKLv6JvnZ4yd4/0+e4sBglOvPXYaqKCimVnmGowyO5Ciu1Cjp4jygCiQ9mbGSnpzx/vIZj2tEUnrVSTPdtBiYTCGEIKmb8xZILcvBnn84T/UBSCQSiaQ6+QO1eNrk0HCUFU0BfG4Hk0l93mZxxuIajX43TsfUHMFksrzLyBWzS8G00ArSDWvwhA9PWyatW3Oq0ZdUZ+vSBm7Z0Y9lCVRVqXm9SuM+ISCpmwQ8cqggkUgkpwPhRG2u4P5wCs2w6AsnWdUSqLp8uUygnokE//Tb3RiWxedftYVLdvwd7lgv3S/6HtHlLwSl8v2orc7DsGgAyLWJz8eyIG1ZjMU1uhpsMemxY+O88TuPAqAAZy9v4G0XrmRNaxDFSLL+V1cwtvmdjG59f9XPlY934iBQIhS6Ah6PF5KAqc1oX/nopsVkUkcIiKQM6n2ussuGEzqmJUhoJol57L4qu4M9/5AjO4lEIjkNKM5n0Q3BsdE4q1sDRFI6apWBFlCTQDAR12gMuHM/m5ZgIlF+cOPOtIfXgksxvU040uFpy9hlReUHNZK5c9bSBm587ATdY3FWtwZnsGZl8TChSRFIIpFIThcmkzp+d+VJF8sSucmdWMpANy1cjsrFIaVKwsdiaf7l97uxEHzh1WeyJfYQ9d23M/iCTxBd8aKajtd2AjUA5NrElyKc0OgIeVFVhUNDUQA+es16NraHWBLy5pZrOHIz7vgA/pFnp21DMVII1QVq6d+PKzueqRQKXYTb67NFIKN2EUg3LVRFwaEqpA2TE2OJnKNnNJZmLJbG5VBZ1uQvWO9/HzhK70SC156zjFjaID2PmYunKthacuqQIzuJRCI5DShl2TYtwZGRGELY9dyVBnKmJTg8HKOr0UewwkP9eFyjKU8EGo9rFWeIsoMmPdiJ4WnAGz8wbRkZDr3wbF1m2+l39k7OSASyBDTt/THuSDexpZcT67y4YICcnMeZxlOBEAKlBoFUIpFITmfCCY1I0sAwRdVQ/+ISbc2oQQQqso2mdJPP/GEv8bTJF19zJpv0vSy778MkmzYxcuYNNR+31+VA8zZjoeBMDJVdzrJsgasx4KY3nMTtULl0XWvhBJgQNO/9IQDuSGGTimDPn1hxz/sRKMS6LqP/4s9h+JcULOPK7F8ver0SPo8HC2VGTqDjY3GSmpUzSeXrL1Ol/SYBz9R4bCiS4t/vOAAKXHdmJ9GUMaOObdWQmUDPP6QIJJFIJKcB5XJ18scASd0sO5DTTTtPqHs0zprWIL4yM4XjcY01eSJCpVIwsEUgS3Vj+FoxPQ0VnECShWRtaxCfy8GzPWFedXZX1eV/8NAx7t0/jCXgP/u/Ros1Suvu75IOdKI1rMHwt9F72VdJ6PPTeeRUkdRN/G451JFIJM9twgmdaCZEuVqIc/E9OW1YBDyVt1+cGfOd+4/QOf4Yn7hwJdsGbqTt6f/ACLTT/eIfgToz529zXYDJeAOueHkRCGAiYTuV+yaStNd7pzmgAwOP4hvbg+Ftxh3pttUVRcE/8Bgr/ngD6Ya1JJZsp/HAL1h304sZ3fwuJja8EcNvdxRzJoYx3aGKGUbF1PlcaLimdTYrh2FaJDV74FZNd4mljJwI9N9/OpxrB7+zN8x5q5prPsZakPl/zz9kMLREIpGcBtTSrjtVwbWRXV8IOD4eLxs+OJHQaPBPDeCqzTS5Y33owQ5QVExPA850eNrIJm3IDmELjdOhsqUrVHOHsB8/epydvZP0jCfwWglucb2Yv9Q+TJ9rJZ5IN42HfoMzMYxuVJ9VXig0w5rzvuczM0EikUgWK/lOHcMUFe+5xe7cWsKhs9diSwhuerqXlQe/z0/dX+Dap26g4/F/Jd5xAUev+wVGoH3Gx95a52FINOFKDFZcLp420U2L3olkLh8oi2fiAMvv/Uu0YBejZ74Hhx7HmbSDpjue+DcMXxvHXnIj/Rd9jsOvupVU00ban/oKq257Iwj7s7kSQ+j+mbWYD3pc6MKBYulYVvX7ZS2h3Vmy7pzxuMYvn+zh0nUt+N0OHjs2PqNjnMm+JM8fpAgkkUgkixzLEhVbtGdJ6uUHF/nr64Ygkpzu8LAswURcLygXq7ZfV2IQ3d8BgOlpRBEGqh4vWEYIWRJ2Mti2tIE9/ZGahJORSJpXn93Ft95yNgGSnLdlI/ubruKd2sfpu+AzALji9oA8nj75bqC0YXJ0NMaJ8cScBMTTvZxNIpFIKmFZgl8+0cNf3fg0b/nfR7l99wBAzjVSimInUCURSAiBZQmEsCeJ7v75f3HmEx/nk64bmVh5Hceu/QlHXvZrjr/4h9PKq2qltc5Dn9WAM15ZBALbndwXTtLRMJUD5J48xqrb3oxQnRx7yY0kmzbbr0e68Y3swD/8NKNb3o3pbQQg3biOYy/9OT2X/wfe8GGCfQ8Atgg0088Q9DpJ48LS0yR0k6Mj8YrLx7Ta76dZ99X3HzxGWrd40wuWc+6KRh7vHp/3DJ9q3cFiaYPEDI5dsviRIpBEIpEscioN5vKpJLToRY6e8RJhz0dH45hC5DpTCCGq2pUdqfHcwMr0NtivlSgJqyRQSeaHrcsaSBsWBwajFZdLaibRtEFrnQe0GAoCy1XHy7d2cHw8wd643SnGFbcfJrIlBieLeNrgyHAc3RAk0iZj8dJZC6kq55RliarLSCQSyenMB376NB//zU4M08ISsKMnDFQuCSseK5Qr2c5mCSZ0k+Njcf7pl4/x0fhXeYlnF+NrX0vfFV8jtvQyEu3nzekztNV56DcbaxKBhiNpRqJpOuptEciZGGbVbW9CESbHXnIjWv0qtNBKwM4Fat77Q0xXgIn110/b1uTql6N7W2je+6PctmaSBwRQ53Gi4cTUU5wYS6AZVsWJk9gM7qdC2AHeP3q4mys2tLKsyc/5q5oJJ3QOD8dmdJzV91X5/YFwkqMjcTmx8hxCikASiUSyyKlVBNIMq2xdd7GjJ5Yy0AyL4UiKoyMxDg1FOTxkDypCPtsJVBwEWQpHehIjIwIZnobMaxPTlpMP4wvPtqV2OPQzmYeAcgxHU4A9++rQbMHIdNdx+fo26rxO/nDMzlnIWvMjKf2klPOldJOe8QTHRuMFs5LlZqlHopUzGCwhZCmiRCJ5znJiLMEdewa54bLVfP0NZ7F+SR1DEfu6aJQZN5QqWSqXOTgWS5PSLW56upeP/2YnTeYYAKMXf5q+K76GcHpLrjdT2uo8DIomXFoYxUhVXPbEWAKA9kxHsFD3nbjj/XRf8wPSjesB0Oq6EIqDwNCT1B+5hfC612G566ZtSzg8TGx4I3Un7sEV7cGZGJq5COR1ognbCZS9b4XLZCmmDbOm0rssphB878FjRNMGb71gBQBbu+z7/N7+yIyOsxpCFOYC5Y/ZwgmNlG4hRPWcSMnpgxSBJBKJZJEzk0FDucFcqbKuw8MxhiJp4mmTlG4RSdk39zqv7QSqZg9GCJypCUxPxgnksQcn0gl0alje5Gdls5/bdw1UXC4rnrQFPSgZEchyB3E7VS5Z28I9PSaW6s45gSwL4jOY/dNNi/Ey7p1KTCQ0wgl92oxk/rmbPSd102IyqVcMszQzTrZy3wmJRCI5nbllZz8Ab7twBaDQXu9lMGKLKOUmjzTTmnaNFcIeZ5iWIJLSSekmSc1kNGZfx79610Fagh4+dXkDAHqgY14/R1u9lyHscUS1XKDsJEZbRgRyR7qxHB6SrdumFlJdaHVLaTz4K1RLY2zT28puL7z21SgI6o/dimrpMy8H8zjRM06gLJOJ0vemycTMBJSdvWH++0+Hefm2Tta22Q07GgNuloQ87BssLQL5Bx/DFeuf0X6yZHOBhBAcG40zEdcIJzT6wsncMnFZEvacQYpAEolEsgjJn22ZSThuOcdNqQFhsciT3WeoRhFI1WMowsDMOICy/3eWEIGkE2jhURSFV5zVxSNHxxicLD+bOpwRgVoKnEAhAC5f34pmCKLu1lwmEEA0VdvgVQjB8bEEkRpnC/NdOuVs5vmljNlzNKWbCFE5XyG7aSkCSSSS0418EaHctfHmZ/vZvqKRJRlBZEmdh1jaIJY2ypaDVRojDEZSHB9NcGgoxuHhGKYlSGgGk0mdqze20SJGgfkTgRQFljb6WN0cYFA0AeCs0iEse/9q9Nlds9zR42ihFaAUPtJqoVUowiDaeQnpxnVlt5duWIPpChI6fjcAemDmIpCGE2FMTXyYluDgcJRYUVlYOYdQKXTT4ku3H2BZo4/Pv3pLwXhsY3uI/YPRaS7Xxv03suYP17P6lldPCUFC4J7sJtj7ZzwTh3Ih2KXI5gxFUgaGKeidSNIznizsQquZ0l37HEGKQBKJRLLISOlmwYyRbtR+wy3rBKrS5QvIOYECntrKwbJlX7lMoFw5WHjaspYlW8WfDF51VidCwC07ys8EDmdmiluDbtSsE8hlzzJu6gjZIZ1mI874lKOoVgv4WFwjqZk1d+WK5OUjlHOL5Q9+wwkNIURu2Ur5CtkBbVoKkBKJZJFT7BzJFwxKXX8PDkU5MBTl5ds6c9fI9kxOzlAkhV5mLFAsTOT2l9AYj013cE7E7X03Bdy5iQF9Fh3ASrG00UdjwE1T0E1rp13u9NTuPRXXGY6mURVwO+1HWE+kG61uxbTl0plcoLHN76h8EIpKsnkL/uGnAGbsBKrz2i3iLb2wPFk3BP15DpqUbpKeQYOMkWiasbjGX16xhpDXRf7psam9jvG4xkjM3meg70FW3PUulj7498Q6LsShxVj9h9fR/ujnWHvTNWz41WWsuuMvWP+bq9n0g40su/EyRh/7GaOxwmPODhMrOZaEkF03nytIEUgikUgWGeNxrcD9UGsmEJSf5aulu1i2Y1id1wFUdwJlxZ5sFpDpzpaDTZY5NunIWGhWtwbZtrSe3z7TV3a2bjiaxqkq1PvcBZlAAKqicNm6Vg6nQijRKRFIN0TVLmGWJXKlZqYlaipjTOmmPTg2TMrplPlOuLRhkcwbTFc6puz5K887iUSymLEswUReswbLEozHpx7Qk5nrZD67eu377CXrWnKCd9YRNBRJlXUQlxOBsmJPMWOZ48iKQIanHuH0lVy2FhyqQlPQzfImPw1+283jcqi848UX2cd+5FlW/vgFhI7dWnL94WiK5qAHh6qAsHBHTuQEn3wmV13HxLrXEl12ddVjSrZuRck4ZGaaCdRa58FS3UTj07uCpXUr56It1+CgHFmhJevMzu8GtqHddu7uH4gymdTpuP/juAae4o9Nb+GfA5/mM/Wf4WAiSNPu73FiPMk/6e/kDel/5mP6DfxAu4qeGFy56xN4f/YaVv/qKrxjtvBmCpErCaxErSVh1Uq2JacWZ/VFJBKJRHKyyA4GHaqSe21G5WAZt81kUs91+TJKZACUYjKp43aqOB32/EA1EciZCtvLZUQg4fRiOX0lnUBgP/Bnj0mycLxu+zL++Xe7eaYnzDnLG6e9PxxN0xL0oKig6oUiEMCrz+7i0N4WXPEn0A0Tl9MWBcNJPecSK8VoPF0gNiZ1MzdbWw7dtIimDNyO8stZ1lTZmGEKYmkj5wTKBj8rijJ9vcyhyAwDiUSymEnoJrG0QXPQA0A0bRSI17ppkdRMvC5H7rWsaNQS9Ew5gTIi0OBkqsAVPJnQ7QBj05qRsxjI5bvZItAAun9upWBtIQ8tmc+ZRVUUVG89ptPPW5T7qEuHmXjgq9wRO4cXb2kvuL4PhFMsqbPXdyaGUc2UXQ5WRKLjfBId59d0TMmWM3P/NvxtM/o8DlUhFAowEQ5zeCDCGR2hgvfH4xq6KUq6rCoeU+a+5fdMn5Rb1RLA41T55p8Pk06nOeDp4xvmq/jvxMtxjoZpDqxib+vXcCsGzXUBOhr8nKMqNAXcNAXcHDbTuHd8jrbex3BGxmjZ/b/0Xv41WwBKTs/lKyaRNmF6znYBw9EUQ5Np1rYF8bkdlReWnBKkCCSRSCSLiImEVvDQK4SoycWTRTdExkacnhKBapyJiaR0Ql5Xbn/VnUCZcjDPlNBgeBrKikCytejJ4TVnd/Hvt+/nRw93lxWB2kIehACHZneEs1xTI7p6n4sN6zbgPnQztz+xh1dcuBWwHyQ6670lBZdISmc4Umgtr0X0M0yBbhr4XJUHifn5FtFMZzvIBJqaFh7n9PXzhaO0YZZcRiKRSE418UyOT5bsg7hhWjgdKrppEdcMGgPu3DLZyaKQ15krFwt4nAQ9Toai6VzYs9upEteMAnfxTMgXgZyJQYw55AG5nArNeZ8hi1NVQFEwAu00TR4FYLl2mMfvv5WEfi2vOWcpYIthR0ZivHxbJ2C3gAdyLeFnS7LFvscZngaEw1Nl6ek0hepIRUb5yl0HWN7k532Xraaj3nZLRZIG0Rm0hc8dU2aiI+C2H9XznUAOVeGC1c0cHIpy/Rng2Cc4/6yzufy8CwsmEMtTh9b5n/zo8RNsevrTvPnIH1Av+BSW5aup9DuWNnLnZjlSmn2+pXRTikCLFFkOJjmlyHAxiaSQrGVYCHvAM5NSsCyDkyl0Q+RaxNbqJIokdep9zlyr0Go5Qs6ULQJlW8SD7QoqKwLJbJaTQsDj5HXbl3LbroFcJ5V8hiMp2uqyIlAUgYLl8hcs07V8DQCPP7s7123GtERJS3tKNzkxlpg2e1hLboBhWcTTRlW3jpl3PibSZsG+yuVgmTUEq0okEsmpJpoysCz7WprtfAi2+G1aAsuafj0di2nU+1woilJwrWsPeXONAbLjh7RhMRpLz0qMGItr+FwO/G4nrvjgnPKAltSVnkRwOOzXdL+97bGNb8Zw1/Oxhnv5wcPd3Lt/GIAjIzEMS7Cx3Z608ES6AUiXcALNBC20AtMdmnEeUBbF6aHNr9Ia9PDMiQnu3FMYbj2bR53s39ufEVCKh2MfvWYD3/mL7bxqpf03bVu+oUYBaIqXbGnnZ+ZVOKw0jYduQressuWC+QgB44nKzqasK102Zli8SBFIcko5MhKfUamLRPJcRAjBUCTFWCxNIm3mvhO2S2L2QmkiI7rUuo2sEwhs91C1icOs2JMtB8v+u1R3MMh+Hvl9Pxm8/cKVGJbgxsdOTHtvNJa2cwyEQNWjWO66aZ1Vst1f2tUx/veBoznBfnAyNU1Q6QsnSw5yE5pR9e+tm3Yb90S6skijW1bZ87hc2Ga+kW0mLe4lEonkZGFaIpf3E0sbDIRTueupZlq5a2hat3JZLUnNpGciQchru0TMvAvwi9w7+eeRvwPLzIXipw0T3RAVg/TLMR7XaAq4UUwNV3Jk1p3BmoLuAidTPs6MeJEVmMJrX8PE+tezPf0YF3aq/Ne9h3jq+AT7B+zy5Y2ZTBx35DhCcaIHu2Z1TDkUlejSK0i0njWr1YXDTZ3T4kuv3cpZyxp46PDonCe5syKQ1+Wo6Mp2R3sA0OqWzngf9T4X3a41nPCso/7YrYQT1UvBsoxXyDgSYioTUHaGXbxIEUhyysjWOA+Ey7cylkieDyR1k+FImj/uG+a9P36SL9y2D7AHgMYcRJNUZhBRqwMnkjQI+aZCCKs5gRzpCUxXHahTlcWVnEAzORbJ3FjZEuCK9a389LETBQHNhmkxFtdorfNiCYFDi2JmOoPlkx3ov2ylwmPHxrnv4AhgzwAeG40zOJliMqEzMJksK+BYFvROJEu+l6VayeHUcYuy34Vybrn8QXiihtlNiUQiOdkk9Sln42gsXVCOo+eJQAAnxhIMR1IcGYkxmdCn7td5l8AXsIezxV6U9CSaaWFaYsY5QPlkRSBnwna3zFQECvmcdDX66Mx0LitF1sESbz+PROs2Eku2M7nmFaiWzuc3dLO8yc9X7z7AUycmWBLy0JQRk9yRblv8UOeebtJz1Tfou+zLs1rXUt0oli2KXLSmhcFIiqOj04OiZ8KUE8hZUApWjDvag1AcsxLnFEWhs8HHcTpxJkdn1L2sUrMIO6vP/ndKdoVdtEgRSHLKyN7YomldloVJntfEUgZ7+if5h5t2MhZL80xPmJRuYsyyHCxLQrO3MVFDVwpL2IHUDXk5QqUe0N3hI4SO3Y53bB+OVBjT21DwvumprygCpZ6njoxTcY17+0UrGYmmuX33VJev0ZiGENjlYICqxbDcddR5nbSFprIQDF8rQnFwXmOcTR0hvvXnI7l2t2amC9iJ8QSj0crnVixl5EoTiqk1sBzssrHyTqAyreXzNp7SrZoFJ4lEIjlZ5IvbxWKNLQJNvSYEDEXsvJ9oyqCuhBOoGbtrWDo+iWZYpOf4EJ4Vgabaw9cmNtR5naxpC7CiOWA7iUqUgWVxqvbj6MTGN3PklbfYbdtbtpKuW05rz+18+Op1xFIGz/aE2dQ+Fbzsjh4vGQp9shEOF4pp3wsvWN2MqsBDh0fntM2EZqAq4HIolZ1AsV70YOeshbCuBh+DevmGHpUoV+qV7/7RDSE7hC1SpAgkOWVkb3alap0lkucTI7E0X//jIdrqvHzsxRsxLcHe/gj6HMvBkrrJWFyr6UF7OJombVgsa7KzYUxTFAwsATzhw6z/9VWsuOd9LL/nfTjTYYxMKLTXleko5mmwW8SX2enz1Ql0sj53/uDrsnWtrGoJ8P2HunMiVDYjqK3Og7DAoUewPCFWtgRYEvLS0ZCZrVUdaKEVeCNH+ciL1qMqCh//zU729E/O+JhGomkGJqc7gmoNLIfKpYTlBqLFm49WaXsrJyMkEsnJptJ1UDfKX/ciKT0XGmzmjRPqLTurL52YJG1YM3J3FCOEyBOB7MkEPVA9N2d5s5+VLQH87tqECYeqME0jUhQmV7+MYN+DrK/TuHKj3bUrmwcE4I71o821FGweEHlOoHqfi61LG7j/0EhFB081krqZcQFR1Qmk1S2b9X46670Mal4c2iSImZ0rWlkRqPB1mQu0OJEikOSUke9wmE1YnUSyGNEMq+ZZj+FIild+40He9J1HGYqk+PDV69i+ohGnqrCzL2zPAs7h5mmYtmOjFroz1uWVzQF7Xcua1pUs1H0HCoLx9W/AE+nGHTmaywPyZ1qHG54GVDONYpZ2f0RTxvPOkWFa4qQFE+eHOqqqwrsuXsmOnjBPdNsPBgeH7G5gK5oDCASqFkO4p8rBWoIeGvy2GyxdvxrP5FHaQ16+/LqtBD1OPnXzHvqqlHiVYjSqTcsGmEk+lB0MXfq8MczSrrXi72G1+0xCM6UQJJFITiqVun9qReVgWYQQRFIGIa8L3bQKJmyChn2t13JOoNmPIeJpE820Cp1A/srB0CGfs2pXyFKoJZxCk6tfiSJMOh75DG8/fymvXK5xwepmABQjhTM1hh7onPG+5hvh8KCaU67YF25awlAkzY6e8Ky3mdDsrlpCiGkTGvm4oj1oweWz3k9ng4+wCKIIC1WLzmjdci6z4nu9zAVanEgRSHLKyL+xxdLVWxJKJKcDSd0s+bB5fCzOI0fG6BlP5F77zB/2sm8gyvmrmvnbF61nS1c9XpeDDe117OidnJYHMBtqfaY9PmaLQMszTiDDEtPWDR2/k0Tr2YTXvhoAT+Q4ZqYzWDA7I5lxBmU7h5U6nokqXSWea6R0c5qraqEoDv583bnLaAq4+fafjwDw+LExGvwu1rUFsTLdwSx3qGCdrgYfbqdKun4N7kg3WCZLG/18/lVbcDtUvnLXgVmdl8WdxSo9/BSjV8nHys5IWtZUTkHx7Gk1EShtzK38UiKRnF4sBtG30rW0uBwsS1I3MS1Bnddpi0B5KkFAGwPASEYzZWPTx9c37+jj+w8dq+pUGYvbk0jNATcObRKhOKbdL/JxOuyMmdngdEwXgVLNmxjc/nEaj/yWS256Af85/A5WhB8DmHF52kxwORXWLQmypi1AV6Ovatct4XDnysEALlzdTJ3XyZ17Bmd9DEnNxO9yYIrSkxwAipHElRyZkxOoKyMCATMuCSvlBLIsMS0HqFr3T8mpQYpAklNG/gNAUrPKBoxJJKcTacMsCHYEGIqkuOZr9/Om7z7KVV+9j6dPTHDnnkFu3TnA2y5cwYeuXseVG9pyy2/tqufoSIxwQp/xQ6kQ5QN0K3FsLEF7yIsv04602ELujA/gH9lBZOU1JFvORGAPinLlYG4VRcGuTQfck0fL7quWjKLnEkndrNppbT5I6ea088XndvD2C1dyz/5hDg5FefzYOC9Y2YSqKgghUPUYlrswGFpVFfxuB+mGNahmGlesF4DmoIe/vmoth0difO/BYzM+vom4VjCY1WfwSzEtUfG7kO2aE00ZU4JQ0bjZtMoHWYI9oC1nb5dIJM8tjDICy8mmkjPWMEXJa1IkaV/HQj6X7T7OijnCwqON29tNRYDppTm37Ojnuw8c47fP9PHDh7srHlu2A1RTwI2qRTHdQabXbdk4HQqrWwO4HLN7tCwntIxs+ysGt3+cWNclmE4/oe47AHDF+4HSIlDA45jVMWRxOVS8Lgd+t5OmgJvVrYGKQpBQXSjCBMsWP9xOlas3tvHosfFZj3cSmoHfbXcGK+cuz3YG02fRGSxLZ4OPMLYDvFxn13JiYbHLbCKusW8wMi3bajKpy1ygRYgUgSSnjOIB/YnxhGwfLTntybZxzb/hfef+oxiW4FtvPYeOeh/v+uETfOCnT7OhvY7rtk4fwGzsCGEJ2D8YmZF4IITgK3cd5C9/+jThGbptjo/FWdnin/ocRTM5oeN3AxBZ8WIsdx3phjWAHQQN4FJVvC4112LVP/x02X2ldOuklUctBpKaOadsgFpJlNnP2y5cgc/l4PO37qN7LMH5q5oAMk6gCMIzfWbX6VBI168GwDt5JPf6hWtaeNVZXdy6a6AgcLoWhJjKJIKZOYE006r4XRiPawghmEzqOXGp1O8iJkUgiURCpvvmyVDnq1DtGEqKQBnRO+R15TqAge3kUIV9b7VShaU9Sc3km/cd5jsPHOWC1U1cd2YHv32mjyePj5fd91jMHkc0+t049CiWq67gfVW1BY+su9TjnL344iwnsigKI2d9kBMv/Dbxzoup670PhJgSgYKdxYvP2o2UxV0kZHldDpY3+8vpX1gOu1tZNhcI4NrNHViW4A+7ZnafzGKXgzkRgrJOYndmgmYuTqCAx4npbgCw8xyLuO/AMK/5n4f56K92cPvugQLRUogpJ5thWvRPJkvepy2LaZOjklOPFIEkp4xiwccwRdkuMhLJ6ULaMHOdOwDGYmlufOwEr9zWybVbOvj2X5yLZQlesqWdb7zp7FxXjHya/PaAIjvbVyu/faaP+w+NMBRJ8ZW7DtScvZM2TPrDSVZk8oDs1wq/n/6hp9ACnaQb1gKQbN0G2OVfimK7RzxOB5annlTjegJDT1Xc5/MpIDqVse4vNPG0UXIA1hhw8/rtS/lzps37C1baIpAw0qhmGuGum7aOU1Vzf2t3uNDV9Y6LVrJ9RSPf+vMRHj06NqNjHI1qOSFmJiJQtWc1wxRMJHQiKT233VIzj5WyCTRzupNKIpE8N7FDl0+9O2EmAflZpkQgJ3peJpozMTK1ULpQBLrx8RPcsXuQV53Vxceu2ch7LllFg9/FHbvLlyztHYgQcDtYEvKiajHMvHuFqsKa1iAb2utY1uTHOUsHUJZqJVcA0WVX4o714gkfLlsOVu9z4XU5ygo2teB2Tv8sQY+Tjnq7eUJ+J02wy8GAgpKwrkYfF65p5tad/SRmUQ5lB0NnnEBlRCDnPJXEeULNmZ0WlvFrhsWPHummrc6DYVl8874jfOSXzxaUGGZFyqFouuJ9+vkWA3A6IEUgySnBLlmZflGbTOqzKmWRSBYLWfEklrnpf/+hY6QMkw9caTtnNnWEePqfX8R/vfHssg+coUyoYqRKN6N8dvVN8qNHurloTTMfvGotO3oneeDQSPUVgZ7xJJaAVXkiUPGYw5UYRM/rwpFsyYhA3sac/Ts7cEq0nYt/+KmKnSaeLyKQZQnS+Xb9BSSuGWX3855LV6Mq4Hc72NyZcf5kQiCFp5QIpGB6mzA8DXgmDxe851AVPv7ijaxtC/KlO/bzvh8/yY8fPV7zcZ4YS9AXTs77OfDwkVGSmjklApX4VVQKSU1LJ5BE8pxlMlF4P02bJ0ecr0bxWHgyqdM9GseRHCsb6pdfDpbSzdxizmTePV+LFazTM5FgTWuQd1+yCrdTxelQuWpDG090ly5ZEkLw1PEJzlreiENVMk4gu3RYUWBZkx+va25lV/mUmhArJrrsSgDqev6EK9aP4WlEOKdcPy6nwpKQ3eFytmVpldZtDnpoCXpoDXoKhCKh2qJQfjg0wOvOWUpcM7lt18yzgbLB0JYQZcUVV2IYAMPXOuPt53PRZnvC56kDRzMTmfYJdduuAUZjGh+8ci1fe/1ZfPzFGzgxnuArdx3MfXfShkVKN6uWvcXTpny+W2RIEUhySij38CsEjEu1WHKaYncGs/+dSBtMJnR+9PBxXrqlg7VtUw/aTodKOKmXvbHXee2Q5UiNXfPG4xr/fud+Oup9fPjqdbxw0xICHge7+6q387aE4I/7hgBY0ewvu5wrPojun2oNG+u4EKGopEOrcjN4nsygKL5kOw4tgid8uOS2gOdNOVjasGw79wI/bKR0c1odfj7Lmvy8+5JVvH77sqkZ20xmRLlyMIB0/Ro8RU4gsLOGPvWyzVyzuR2HQ+XWnf01f0bTEozHtHkVXHrGE3zoZ8/ww4e7K5aDaYZVMgzWyJSbSRFIInluMpEovOZoRuWw+ZOBWdSAQQjB52/bx//85nY2/uw8QsfvKrle1olR53UWuBudydHcvx1FItBoNE1LnbvgtReesQRL2C6hhw6PsqtvMle2c2w0znhCY/sKO/cv6wRyORXWtgUJeWfeAawStTiB9GAXqcb11PX+CVe8v8AB43QorGoJ5MQZV4mg6Vqptq6qKnQ1+nL7Eg77d5FfDgawbkkdW5fWc9vugRlPBGWDoS0hypaDORPDthDmcJd8v1bO3bgKgGM9fbzuW4/w6Vv2cHwszs+eOMFZyxrYurQBRVG4dF0rN1y2mqdPTHDT05lSNMNiKJKqqQlJPP38GPedLjhP9QFInp9UsuBOxHXa6rwn8WgkkvkhP0cnpVv84OFjxNIGf3Xl2tzrQggURWE8Xr51u8uh4nM5iNRYQ33Ljn6iKYN/feUW/JkuXZvaQ+wdiJRd55kTE/z66V7CCZ0T4wlevLmdrnJ19ELgSgwSXX711Gdt2sDetz6L5Wkg5MiKQPasYKLtHMAuIUs3ri+5yedLy9Cs22WhnUDZ8kMhps6xYj553RmFL2TKBUqVg2VnQtMNa6g7ca+94aJthnwu/vLyNdx3YJiv3n2QY6Nx1rYFp23rZPDjR49jCbhn/xDvvsQe0JYSpYSwhbniGeysQ2gu7ZQlEsniJaGZRFM6zUHbtaGbAkU5tU6g4liEPx8cYd9AhH903oNq6XgmDsLKF09bL5IyUBU7zyV/MsmVcQKlceHQi0SgWJozu+oLXlvW6OfMrnru2DPIHZlOVqoCWzrraamzf0/nLrdFIIcWRatfhc/lmFcHUJaymUBFRJdeSfOe76MHOkg3rAOmnEn5mUT2PWxqnNEW8uBxqvSHU1UnLGpxEQU9Tja019E7kUCo08vBsly7uZ1/v/MAO3snOWtZQw2f0L53TZWDlS5tBnAmhzH8bSXfmwnC4cF0+rmiw0lffRe/e7aPXX3P4nE6+Ou88SvYn+fZnjA/f6KHS9e34nGp0xqJlCOa1qn3z694KJk90gkkOSXoFQbamjH3ttgSyakg/wEyqZn84KFuXripjbVtQYQQDEVSHBiKMhxNkdQqn+Mhn7PmcrDBSIoldZ6CTJ8zOkP0TCQLwvhGY2m+c/8Rvnznfj59yx4GJ1M0+u0H+b+6Yk1J4QBA1aOoRhLd317wuuVpAMg5S7KzYlr9agxPA/6RZ8oesxDPDyEo+xkX+pKWX6Nfq+lISWecQN7pTqDsrGyi7RxcqVF8ozvLbif7YFGL82w+EUJw555BvnnfYR45OsaFq5tJ6VauLW853a2U0JN1COQHXUokkucGacMu/YrmuWsXixMoS0o3+eHD3WxocXO98wEAXPHSocLRlE6d14VadM92JkewVDdjajNOM5F7PaEZxDUzJ+zk88/XncH/e+PZ/Ncbz+Jzr9zC67cvo2ciwb37h1nTGqAxYAscqh7DdAWn7XO+cNTo3Ikuu9IWyKIncqHQLUEPQU+hryG/5bzHpbIk5KXB72ZVS4BqlWfFwdCVaA95wWX/XoudQADnr2om6HFy997aS8Ky4wa/22mXg5W5mbkSw+jzIAIBmJ4G1gR13n3JKt5x0UqEgI+8aD1tocJJeUVReO+lq1FV+Pafj5Cagau7UmMGyclHOoEkp4RElYe/lG7OqZ5XIjkV5D9c3r57gMmkfUM9OJRxXGTu40OT5V1AWUJeV83B0CPRNK1Fg7szOuwH+/2DEc5f1UzPRIJ/+f0eJpMaIa+LKze08f7L19Q0ozcVwLik5PvZGbzcRJ6ikK5fg3uyu+J2U7q5IDOKi4mT4QQyLUEibyBmCYGDGgbUGSeQ4p7u3nE5VBQFJle9lM6H/4WGwzflwsCLaQ566Kz3sqtvkled3VVymYXgl0/18pNHj+N1qaxfEuRvXriO8d9r3LZrgI++eEPZ9WzHXuFsZH6JsmZY8v4jkTyHyJYfx9IGliVQFFvsdc6hZGg+yOYBORNDPPvQ/YzFO/ivbUM0Ph1BFw5EpK/kepGknisbz8eZHMXwtZBOe3Eb8dzr2S5fLcHpIpDP7WBly9QE0lnLGnj51k5+/sQJzlzakHvdodmZQLWUbc0GVw2ZQACJJdsxXUEceixXDuYrMY7Iv4Y3+Kau9z63g7Y6b9lGNA5VQZ3BZ3Q6VEIB+/dXygnkdqpcsb6VO/cOEknquczHSmTHDb5MMHQ555IzMZzr1DpXTE9DrkX8a89ZynVndhSMz5Y8+WVULUp43Wtpad3GW85bwfceOsY9+4Z54Rmlx4bF6IYgbZhz6iInmT/kKEdySkhUUYNTNVoLJZLFRHagmTZMfvtsH+csb6Ax4M6U6MxsWyGfq2Yn0GgsPW1wt66tDqeqsKc/wsGhKJ/4zU4M0+LLr9vGD995Hn/zwvU1CzA5EajICZQlKwIpipKrGNJCK3BHK4cFPx++51NOoIUTgZJ5waBQu+CkGBkx0lm6DNChKlieBqLLr6bhyM1glT8fz+yqZ0//5EkLWt3RE+Ynjx7nivWt/OKGC/nq9Wfhdzs5a3kDvRPJirOTpazr+Vkh2XbzliXKutUGJ1P0hZOz6voikUhOLlmRPJs7qZt2Fs9MOhQuhEMwm1/mffq7vPf43/GhZUc59+g3Sfg7ecjagjVZRgRKGSUzeZzJEVsEcgRwW1NOoJGYfa1vCdaWHRPyubjhsjVcuDrTNcrSUc0Uprtu4USgGgU54XAT67wEAD1gO4FKuYjyRaVi4aUl6MbjKv0IXKozWDWcbtstUxwMneXaLe0YpuB3z5b+exaTPV/9bgdCFN7TXZHjrL751bhifTiTI+i++XMCOTIiEFA4PrR0Wnd8k5a9P2TNza9G0RO8fFsnWzpDfOeBozPq7CxzgRYPUgSSnHQM06r68Pd8KBORPLcQYuqB8WePnyCc0HndOUsrhvVWos7rLCjxKYdhWkwktGlOILdTZd2SOm7e0c/Hfr0Dv9vBl167lTWtM89scSbs4GjDX84JNHUryVrFtdAK3PEBFKP84CA/Q+m5SH5QeDarZyEwix5kat2NMO3zS3GWnpnMinsT616LMzVGXe/9Zbe1paueuGbSPRYvu8x8cnjEzrv4yyvWFJQnBD1OBJXb0ZZqTJA/yA4ndI6MxDkwFOXwcKygpBJsQW8kmmY8pnFkOM7RkdjzJuhcIplvZtIFc7bkOyVHouncvWcmwk4ibZbNZpkttovT4OBhu4nC345+Cm/4EL0XfYE+0UIgNVxyvcmkTshX3glkOAJ480SgsZwINDVOcKTCLHn833JtxiuRDZm23HULVg7mzLhPgZIup3yyXcK0TMfSUnlCWZeXz61Om/BSFIXlTX4aA65preRnUgqWJRcMXUYEWtEc4LL1rdy8o79qFy0gN7ngc9vHnZ+j2rL7ewSGn6L+yM2olj4vmUAApqe+QATKxx3tQxEmsc6LUYSBKz6AQ1X42xfZmY/fuv9IzeMbOXGyeJAikOSkEy8xWBZC8ET3ON+49xDxtPGcfziUPPfIdoG6Z98Qv3m6j5dsaS+wUs+UWsvBxuMaliht8377hSt46ZZ2XnP2Uv79tdvobPBVFGXK4cqIQHqgjBMobxYuqwdpoZUAuKMnym7XWATteReS4hboC+WSKe4cUnPpWWbAKhylB9zZrKfY0iswPI00HPpN2U2tzoiLJ8YTZZeZT6IpHaeqTCsDyOZCjMbKD7RLOYGKz8WkZjIW03iye4Le8UTBALd4kiKeNmVXS4lkFiQ1k8QCOwNSulkg0hqmYChiiyJClA/dLUYzLVLzPDbVTYsv33kAV3qClKseEIxveBPplVcxqjYTMMMl79nhhEajv9DVoxhJXLE+DF8rhiuAXyRy94LRmIYCNGXyfbB0lt/7ftp2/g8r/ngDilm5RF3V7dJh0xWsOcB5NmRdOEGvE28Zpw5AeN1r6L30yySWbAdKdxbLloOVK7/yuhwsbfTnhJbces6Zfz7FWT4TKMubz1uOYQm+88DRqmOBKSeQfT/LOtZULUrjoV8BUNd7n/3ePGYClRWBIt0AxDsuAKbGhG11Xt583nKeOj7BE90TNe1HTvIvHqQIJDnp5KvAQgie7QnzsV/v5LN/2Mude4d4tif8vCgTkTy3SGY6j3z7/qOc2VXPDZeuntP2Qj4XSd2sOlOZtXm3lhCBNnfWc8Nla3j7RStpCrhp2fVdNv/oDJr2/nhGx+KKD2J46hHO0l378gdg2VnCdGgFAO5I+ZKwk1U6dKpIFw12FurjGlbhOVLrfkSmvEst0142O9gXDjeTa15B6MTdqFrpjnMd9V5UBfomkjUedbWDEwR7/4x/6KmSb0dSBiGfa1qYeSAjAo1VmG01LTHte1V8Lk4mdf7+pp18+pY9fPv+o4Tz3EClBrHFbiyJRFKd2EmY9BuNTRc48kUh3aptvGlY1rw7/sIJnSePT7A2mEJv28aB1z9I38VfACDith/us07c3HGYFpGUUSgCWQbL7/0rHOlJJle/DNMVJKikcgLbSCxNg9+VE0banvl/BPsfZnzd9fhHnmXJk1+peJwFTqCFFIEyx+dxqhWzc4TDw8SGN4BqCzilhKlseVl9lQye4kDpWeXBOct3B8vS2eDjLect58HDo3zpjv3c9HQvNz3dy/0HR6Ytmz3Piic5Gg7fhEOPY3ibCQw+ATBvwdCGpwGHFilpJfZkRaD284GpiACA67Z2sLTRx/8+eLSgrLocKd1aMFe0ZGZIEUiyYJS7scczeUB7+if5m18+yz//fjdj8TTvu2w1CtAzkci08ZVqseT0Iamb3LKjn6RucsOlq3MuitkSytihq7WJH4lmRSBb5HHFStecN+6/kY7HPofhaaDr4U/ScPBXNR+LMzFUthQMCgdNuXKwuowIVCEXaLGKQPNl+S8WsxcqHLr4GabmTCDTvhYrjjLlYHkOr4m1r0E109Qfu63ksi6H3X2lNzx3EcgzcZDVf3gdq+74C1be8Rclz+lIUs99R/LJDugnEpVntouFnPxskFja4F9u3s1wNM2l61q4eUc/33vg2NS6JQa6xUKcRCKpju38XrjvjmFahBOV76G15gIZppjm7pwtKd3k6EiME2O2c7JeRDC8zeh1S3PCRtJrO29dReVa2fLUhrxW2/XHbiN04o8MXPgZYksvR7iDBEjlujGNFeUGBvseIL5kO32Xf5Xo0isI9v654vGq2pQTaKEygQBczqlOo6Uyj0oem0rJzqaKohD0OquGEAeKRaAaA6oL9pWZIKvkBAK4fvsy3nrBCh47NsYPHu7mBw938+W7DkzL1EnmZQJlUbUIbc9+g0Tr2Uyuug5F2H9bw1dbKHM1TE8DqplGMac7z9zR45hOP8nmLUChMOlyqNxw6WoGJlP8vobMI/v5Tt4vFwNSBJLMC6VU3ezDaRbLEnSPxklqdgv4r9x1kGjK4K+uWMu337qdl23tpC3koSdTTiDdQJLTidFYmpt39nNT/dc4/9j/m/P2sgOg/Ja2pfdrDzqWWn10PPY5mvf8oORyTftvJNFyJgfe8CCx9vPpeOxfUfRM6Y4Q1B2/i5W3v4WORz6FWmQJdiUGy4ZCK0qxE8j+v+ltwnQFcUfKl4MtVhEoPk8165p5csrBigUIUeulM5sJpJbLBJoaIiRbzyJdv7piSVhXg4++idmXg9X13EvnQ59k7e+uwxM+zMAL/gGERdcDH582O+lIjPA2cfO0UomsCDQer/zgV06gS+kmn71lDyfGEvzjSzbxsWs2sK4tyO27B3J/v1JOoIXs/iaRPBcRQhDXDDRj4ZwBiaLQ/FLUWpasm9acS1ksS3B0JMahoRjxtJlz8vqNMKavqWBZLTPxUtwmfiIjauU7gZwJOztoYu2rAVA8IfxKmnjSvj6OxLQpEUgIPJOHSTVutPdTtwxXonIukCNTDma563AsUCYQ2O4dRQGP04HP7aipe5uzgmjTXEMQdsDtKMgFqrVVfQGZe2i5YOh83rB9Gb9834X88oYL+er1dsfNPf2TBcskdHsMki8CtT/+BZzJEfov+izJ5k251+evRXw9QMmSMPdkN1poBZY7iOkKTjtfzl7eyIWrm/nFkz0lnXfFyAy9xUFNIpCiKNcqinJAUZTDiqL8fYn36xVFuUVRlB2KouxRFOWd83+oksXMcDRdEHaW0k0mk3rBjX0wkso90N65Z5DRWJoPXbWOa7e05+qAlzX6c5kSMjxMcjrxx31DxNMmZ5r7aDj825m3Aysi5wSqEpo5GksT8DhoiOwHINj/cMnl3LFeki1bES4/Qy/4BM70BE0HfkbdiT+y9nfXsfLu9+CdOETz3h+x9vevLFASXPHBsnlAxePBXGikoqCFVuCpUA4mxOIUgmJVuhfWSrHQUJzdM1/M1gmU7fZVzglU0K1FURhf/3qCg4/hHd1dcvmuBh/9k6kZCSJZ+7x3dCcr73wHDYd+Q2T5izj02rsZ3faXDL3gE9T1PYB/6MmC9V4V+wXvSnyfVbe/uUC0zIpAsSriab7T1LTsTkGaYfH52/ZxYCjKR6/ZwLkrGlEUhUvWtnBkJM7OXns/pR4En+v5VhLJfJPUTSxrYZ0BtQjiRo3h0KYl5lTKIoTg+HiioDvSaCyNGx2XEcfwFIpAZp3d+Wq6CGRfM/NFINWwx82Wyw+A01cHQCphl++ORtO5zmCO1BjO9CTpBrtkXfcvwZkunT2U236mHMx01zELo0zNeByOgu5c1QKiASqZrmtxEymKUuAGmk3mkeLKZALVIALBlMi1ti1IwONg70AELDPnuEoUlYO5oj0077+R0c3vJtm6jVTTZsB2ZonM3zxLc4XOZ5UwPQ0AOFNh+wVr6h7qjhzP5Tzq/vZcJlA+77hoJWnD4uEjY1X3NV+OOsncqHqWKIriAP4beAlwBvAmRVHOKFrsr4C9QohtwBXAVxVFqa0PoeS0J22YjETT9E8mczkLCc2+uWdDoHXTYjwjEmmGxa+e7GVzZ4htS+sLtrW8yU9fOIlpiZpCcSWSU4VhWrn654Rm8FT3BF1+C5cRwx0fwBM+PKftZ+vhI1UeZkeiaVqDHrxjewDwju3BkSoM6FP1OM7UuG01BxJLtmfcQJ9n5V3vQtVj9Fz2Vfa/8SGGzvkInsgx1KxLyDLttrNlysGKreH5nUO0uuVV28QvxjIa+/o1t4d63bSm6YDz3Vkmy/RMoMr7yc3UZUUgV5lMoKLR9fjGt2C6grTu+nbJ5bsafWiGRWSkh45HPlU1hFzV42z66Tk07v8ZoeN3IxSVA294iJ6rv0nM1cwT3ePsrb8cAO/43qkVhcUV5kMMupbhH36WJc/8V+6trAgUryLk5Qt0ZqYV/Bfv2MezPWE+dNU6Ll7bkns/++/fPdvHE93jPHMizL37h/jGvYf4wE+f4r/uPTSjVtMSiaQwoL1UWPt8UIsgrdf43c22lZ+tYNU7kZwmTo/FNJqwH/yNIieQL1BPRPhxxApFoHBGBMovB1ONBJbqzjlSXP4QAFoiwkRCI6mbuQ6invARANL1a+39ZiZ4irOH8sk5gVzBhXUCORU8+SKQp7qI45gHVSqQ57iZVSaQo3owdClURWFTe4g9/RFadn2HDb+4CEdqgoRm4naquXuwMzUOQLzzIgBSTRsQijotFLop6KazwcfyJn9OrHM6FFrrPCxv9tPV6KO1zlNw7mTRM53Wmg7cSNvTX2fzjzbZ+ZGWiTt6Ai2T82gE2nDGp58rHfVeQl4nJ2roEJrU7QzNWjqlSRaO6hIrnAccFkIcBVAU5efAK4G8ERkCqFPsoswgMA7IJ/jnAaYl6BlPZtofw1AkxdJGf87FE0nqBNwOhqPp3APRjt4w4wmNv75q7bQ63mVNfnRTMBRJ0dngI6Wb01o7SiSLgWxQbEvQw0RC49neMK9cZkGv/X6w78+kG9fNevvZGayCTCDLxBM+RLphHaoexTe6m03hnXjrzsU3vhfL4UU1UwQGHiWy6iW51Vwx+6C04LLca0PbP8rS+z/K2BnvYOyMt+UGj1lLsF0XHsQV60URVq4VazHF7WLzx2NaaAV1J/4IlpnLOShmEWpApHQTwxK455B9UOpBYaFcT8UPOpV2E08bjETtfAhRLROo6PNbnnrGN76Flt3fZfDcj6JnBoVZuhp8AAT3/pyWwz8guuxqYksvK3ss7kg3Di1C8+7/RRMuhkJb+fneBHv7B9nZO4lmWqxp8XOlO4R3/EBuPd/gE7QxwU+WfIhXGXcUhEd7XSoOVanq5sp380zENf7+pp0cG43zgSvWcPWmQsFzScjL2rYgP37kOD96eErUDHgceBwOHjs6hrhqHZYlFjQ0VSJ5LpF/jbSdebVlwMyEUiLQcDTF3/1yB//40k1s6gjV5EoQQhSUg850XNoXTpbMJhqJpVnhS4AA09tc8F6D38WAaKIpWpizki0HKxCB9ASWy5f72ROw7+NGYpKHD48CcPayRvu9yYwI1LAGsJ1AYHd8Kr6m57afzQRy1y1sJpBDLXACBb1OFKWysXo+upVl91lc3l4r2e5gjtQEq257E/0Xfpp044aa1t3cWc+Txyfwd/8RZ3qSpn0/JhE+n7N9U0JLNqfHyohNwukjXb8Gw99q71dVWNMWyOUfeV0ONraHSOkmPpej5H2p3j8lwkSSBsmWrYxseS+tu78LgBbsouvhT+IffgrV0nLNPnR/O4HBx6b/DhSFFc0BjtfQITSRNulOJ3A5FRr80xs8SE4OtYhAXUBP3s+9wPlFy3wDuBnoB+qANwhRcyqB5DQlW9ucP6MaTui01U11UBiPa4zHtYIL+OPHxvG5HGxb1jBtm8sabVvjifEEnQ0+IildikCSRYNmWFhC4HU5CCc0FEWhJejhiWPjxNMm57WkoRcECnW9DzC25T2z3lfWBh3NKwdre+brLHnmPzHdIVQ9jiJMPgM84L4Ob3QPkytfQuj4nTTv+QHNe39E/4WfId20AXc0IwJlnEAAifbzOfj6B6btVzjsgEPVSGEC/pEdACRbzix5nNNEoCInkGrp9uAy2FlyfdvFsni+42nDdjEaloV7DrF5pbpkLFx3sMINVypXGImmMUzb+aJYOkJRUcsIdO4SM6KjW95N074fs+y+v+HYdb9A5HUWy4pATUMPAeAd211RBFIn7bwoX/gQPuBb+hv5v6HjtIe8vHjzEkZjGk90j5NYthHvxJQIFDx8M0nhprflMpLmAM17f2S7mlR7MBlwO6qKQNnmAx6ng3v2D3FkJM4nrt3IJXkOoHxed85Sbt89wBXr22iv91LndbKsyc9vn+njhw93E08bmEKgIgezEkkt5JdkLlQGZO5KaJl0PPZZRje/i8e7XYSTOqFHvkhnu4OhS/616nby3UK1OoGykwljsXRZZ/toNM16XxISYHgbC95r8LsZFE20xaaXgwXcjoLAY9VIYDmnyoJ8wQYAtMQkfz4xwoomPytbAoDtBLIcnpzzI5v3VxxAnY9DiyEUJzi9C/rA7nKoePM+l0NV8LocU92y3CpJrfD3Px+iVFYEmpULCCAzkeIb3Umw/yGa9/6Y/ourn1cAmztDeNAIjD6LQKFlz/f5TOqH1CtxjhjXIpw+VMN27wrHVLh37+X/gchM3nlc6rQAbIeqTAu9zifkdRHyumz3bjIKisLg+f+EcPqwHB5Gtv0lnY98iuZ9djfZXDlYoN3OoBIWKIW/rxVNfu7ZP4wQoqbzRDfsqo/6Es4kycJTiwhU6q9YPMJ8MfAscBWwBrhbUZQHhBAFvWQVRbkBuAFg+fLlMz5YyeIiqZvTbtxZN1D29eJnESEET3SPc9ayhpIX22VN9kNEz3iCC1Y3E0katNUtzPFLJDMhqZl0j8VRFYWuRl9uIJLQDB49Oo6qwBlBewYk1nkxgYFHUIxU2bbq1XA6VPxuR64czBXro3Xnt4h1XoQWXI7ha2ak9QIO3/k/vCx6Jw5hkGzdhjM9QV3vfQDUH7uV4aYNOSeQHlxabnc5sjNNimkPOnyju7AcnrKzWsXjr3wRKCv8uOIDZUWgxZYJlL12zTXjpVR3w4UKDy7+HZY7dN20crlsCc0EU0eormlCXhZVVXCoSsH2jUA7vZd9hRX3foD2x/6VgYs+m3uvKeCm2aXRFd0FgK9MdlDueEa7AUgrHjwizdkvehM/X3ZmbuD6wKERHjk6xqhvNcv7bwMhUCyNpu5buds6C28gRNK9FdVM4x0/QKrF7lwS9DhrynVK6RYepyMXIn1WiYmJLBevbSkoEcvSUW9/vwcmU5iWQM5ZSCS1kS+m1NqmfaZkr7nuSDcte36A5QzwzNDLAFg/8WeChpN+S+QE4XLkXwOrtcG2LMFAJMV4rHqpy2gszVUeWwQqdgI1+lwcF0u4IPaIPZjOXKcnEjoN/sISXlWfEoEUBTwBuxzsiQM97Ov66JUAAQAASURBVNNDvO2CKYePZ/II6fo1uQf4bKl3Nlw6H8VM4xvdjarHMN1BnM4FDATKECzKAQp5nTkRaEnIS/doodNkPpxA2eeR2QpK2Uwgd6aTZf2xW+m/8NOgVn/MXtsW5CL3EZxC57vmy3hv6g/UCzc+NIJ9DxBdcU1uPGY5p0SgZOu23L9LTdjUitupTolrisLQ9o/m3uu/6HM4tAj1R2+xzxns80W1dBypcUxf4T1xebOfpG4HnrfV1Tb2HYunpQh0iqjlrOkFluX9vBTb8ZPPO4GbhM1h4BiwsXhDQojvCCG2CyG2t7a2zvaYJaeAUlkW5TroVGrHeWQkzlhc47xVTSXf97udtATdnJjIdgiT4WGSxcHAZBLDFGiGRffoVM1zfzjJMyfCrGuro063bdeTa16BaqYK3AuzIeR15crBljz5ZQB6L/0KfZf9O0Mv+AS73GfxP8YrcGRahSZbNjO4/eP0XfR5UvVr8I3uBMAd7cVyeDB81a+7WdFKzdiPfSM7SDVtKnB85DMtEyjvrqL7OwBwFgVb5rPYAnXTmWuOOceMl1IPCgsheAkhppXUiWnzNDb5pYWxlIFiGQjVOS3cOx93iUF/ZPXLGDvj7TTv+z/cmXwJsO3g19UdwYmB7mvFN1ZZBGLyODHh5fDKt5Bs3kLHmrMKZi5XtwQBOKosx6FFcCYGqT/6B9zpcX5mXk2d10UiMxD2je7IrRf0OguyN5yJkZL1BNm/9URCQ1UKO7HUSke9PXExMJlcdOeyRLJYEUIUXCMXKi8t+7V3pux7s2/wcXb1TRJ0K3Rag6iJEaCwW5FliWluynyRqpTAnyWlmxweidUkAAkhGI1pdLjs0GVjWjmYm4NiKR4jhjOvG1M4odFY9NCsGgmE074WqYoCHnv2tMFp38cvWz917/eED5OuX5372fTUYzk8JTuENe39MWtuebU9GeRa2M5gWYoniBsDbhTFdgHVeV3Txhzz4QRyOVQUpagZwgxQVBdCUXFlRCBnaqxsk45S+/6XM8NYqPyX/iq+3fwJrtO+gOasI9R9p719c7oTKJ9S9+mZUDZAW1HpufzrHHzdn3LZUTnnWIkMqeVNmWqOsdq7hMqQ6FNHLWfNE8A6RVFWZcKe34hd+pXPCeBqAEVRlgAbgKPzeaCSU0uixJc0kZ75F/fxY2MowAtWlhaBwFb6RzPt5bMdW4qJp40FaykqkRST0IyCjh75p95EXOfwSIytS+txJoawHB7i7RcA4B3fN6f9djb4eOr4BEORFMG+B5hcdV0u3Bnsssn9YjkTrS8AINV0BqmWLYyf8RckW7fhG7UdGe5YD1pw6fRWXiWw8srBsEx8Y7sKZpyKqVQOpgdsEaiSzXyhBv+zJesEmuvM9MnKBCq1zXK7ieYJI7G0AbWIQGVmGIfO/jDC4aEtL5QZ4LrgfpLCTffK6/FEulG1SMn1AdzRHnpEK73nfJzDr75t2vnZ0eDF61LZqdtlC97xAzTv/RFh/0oetLYQ8jrR65ZjeBrwj9iCJ8KiwS1ykxSuWD8bf3Y+oe7bpu0/+zeaTGgEPM6yjqhKtIfynEALEA7dF07SU0PGgkRyOqEVBecvWOfEzHadSbtjkX/kWUw9xbu3evAqOi4jhmKkcg+iw9EU+wYj7B2I0DOeyAk++cHvlUrXRqLpmkOuE5pJUjdpc8QQiprL48vSHHRzwLLn4L3j+3OvhxM6jYEiJ5CRxHTZ5V4OdUoEets5zXzi2o0syVynFCOFO9abywOyX1TQ/UtKPtQH+x8EIDD8VKYz2Mkvd3U5VBr8rpxQESwqcarUIn4m5AcxzxRFAaG6cabDCBRMV5CORz7NirvejbNo/ONIjtL2zH/iyIQ9A7SOPUGqZTMOfz1f7NvGMdFJZPnVhE78ESwDtYoINOsytgzZRiQlUR1o9atyP+qBTIZUiXHdiib7HKwlFyiLZS0+R/jzhapnjRDCAD4I3AnsA34phNijKMr7FUV5f2axzwEXKYqyC7gH+IQQYnShDlpy8inVrr2cE6gcpiW4Z/8wW5fWs3T4T4S678CRnH6ahLyugo5Ieon2nfG0UbVrkkQyX4xkRMlSHBiMYlqCMzpDuBLD6P4laKHlmK7AnEWg9122GksIvnjbHru7V0ZUyXJ8LIHP5WDk4s/Qf+FnsdxTtZPJlq24kiM444O4or0F4lElsk4gxUzhmTyCQ4+TaNladvmyLeLJzDA6fdNa3Oaz2NwTCd2+rsxlUFI8y51lIcrBSv3+SglrliUKSqRMS2QygcqXg4HdraUUpq+FsU1vo+Ho72k4/FsQFqoW46zIfTxibea+uD1o9I3uKbttf6KfXtFKc13pga2qKKxqDvBI1B50tu76Nv6RZ3mm/XpAsQeuikKyZWvO9db2zH/yjfH35ZxAnomDKMIgdOKeadvPPuCFkzp1FbITKuFzO2j0uxicTM17p7u0YTIR1wgndDlIljynKBbJF+r8zl5ylYQ91nRYGlvVY1zbHsst40yNkdBMJpM6Q5NpLMt+MA0ndA4NxdAMq6CNfLnJSSgU2quR7dLYpEQxPY3T8lWWN/s54bSjM/JdxRMJjYaih3ZVjyMy5WCqAorbdlG2uvWCnDN3tMdu9JDnBAK7xGdaxyfLJDD4xNSP7oXtDFaJ1jpPTqjwe4qyb2bp3inG7VBxzbYcDHJuacPbzOiW96AInbqee2jZ/b2CZVv2/IAlT32VdTddQ+PBX9K8+38JDD1OrOtSzl/ZhMBukhNf9RKc6QkCg49PlYM5SpdYzdUJ5HU5qFVLM/zlu8kFvU6aA26O19AhLJ9qJZaShaGmP7kQ4jYhxHohxBohxOczr31LCPGtzL/7hRDXCCHOFEJsEUL8ZCEPWnJyEUIUWGXBtrzOdLz7zIkJhqNp3rwyysq738OKP97A2t9dN62NcMjrJJIXhlvq4pDSrVybTIlkIZmIa2VDHQH29E+iAJvaQzgTQ3Z9vaKSatyId2zuTqC/u2YDE+OjKMKkTwsUvH98LM6KZj/pli2MbX5HwXvZIGff6E7csd6CzmCVyHcCZR+sKzmBpreIz/tBUdADHRVFoMX0cKsZFrphH89cWn4blijZzWQhPmspYanUvqNpY9rrimWA6qwYZVxphnFk2wdINZ3Bsvs+zOpbX0/745/Hkxrh7ta38fNe2+1p9D1TemUhaEj3M+xYUjGLY3VrkF3jCpq/nWD/QyRaz+Lx+muBqfD0ZOtZeMf340yM0LT/Z7SZg5hp+yHPHbW7eQX6H572i8nO6E8mderK2eFroKPeR/9kct7/vqOxqaYKi+l7IpHMlWK3zEJ1icxeH8eGpzpsvX3pAKHEVL8bZ3KUpGbSN5Gctr4QtjtIL/r+aSUmJxOaMaPv6UhGBKoXEQxvoTu+we8i6HGi+JqYcDTnRKCUbpLQTBqLM4GMqe5gqqqA184EUrVYwXLZe7FWlNGnB9qnlYN5x/fi0KMYngYATFdwQTuDVcLjdOSaxATcxU6geRKB5uQEUrDUjAjkb2X43I9w8PUPEFnxYhoP/hzFmDq3QsfvJNm4EdPTyNL7P0rno58lsvyFjJz115y/2i4JXNcWJNF2NmAHeVd3As1fLlI1dH8rQlHxTJYu+FnRHOBPB0a4/tsPc3AoWtM2pQh0alj4hC/JokcIwcDk9JtfFktMr9mM1xC6WcwdewZp8Lm4WLFLVPou+hzu+ABNB35WsFzI5yKamir3KnWzTRkm0ZRR0iUkkcwX8bRBX7j8dwNgz0CEVS0BAh6n3QUrE7KYatqId2Jf5d6mNfCClU3824ttB9D/7Yzxiyd7MDOZBcfHEqxoDpRcL9m8GaGoBAYfx5kaL+gMVgkrzwnkHT9gh0LXrym7/PQW8YU/64H208YJlC92Z49rNoOTcg8CC/EgX9IJVOKcy88DyqJYlYOhofLA0PQ2cvhVf6D30i/jG9lJ8/6fMrH2Naw9+wqOJHwct9po3fktQsdunbauIx3GK5JMejqmbziP1a0BkrrJ/s1/S/+Fn+HIy29iXHejKuTyg8JrXwXCYtl9f517kPGlxxBC4InYIpA73o870l2w7eyMfiRpTAsjnQkd9V67HGwenV4Jzci174WFCxWXSE4GQoiCjMdSuToLk5lm/z86NsCECJIMreJyz2E8kWO5ZZzJEYQov/9wQidRNOZN6/nl4fZ6M3EBAYxG7e930AwXiECKYjtfnKrdPvuYshzP+AGEEIQz1/HpIlAyFwztUBRUpxvL4cWhTRYs54rbka56oFAEMrLlYHnXmcCA3QZ89MwbALBOUTlYMV6XWuBAnk0ZbylcDnXWIpeq5DmB8sKSxza/E2d6kua9PwbLwD3ZjXfiIBMb3sCh19zF4Vf8juNXf5sTL/wOlivAtqUNbGyv4+K1LViujLPLTOU5gcpkAs2xHAxmIKapLqLLrqbx0G+mTeID/MUFK3j99mUYpuCBQ7UVBZV6zpMsPFIEktA/mWKyxANCFksIdEMU3CBnUoqV1Ey+/ecjPHZsnBedsYT6gYdI1a9lfNPbiLefR+uObxZcSEJeF6Yl7O41TH8Iy5ZaCAGHh2OMRNP0jCcYi5Uv2ZFIZspoLM2x0XhFDccwLQ4MRjmj0551cyaGMAJZEegMnOnJigJIrawJ2EJUZ+cyfvLocf7l97s5MhInmjZY0eQvuY5w+Uk3rKXpwM+B2jqDQWGLeFWPYbrqoEwLcaicCQScVk6g/BJXMzM1HU2VvzaWo9wDe9qw5j3LrGTpV9E+LEuUvMbXFAxdbXCpqExseANHXn4TE+tex+B5/8h5q5r58bvO43cbvswJs4kV9/wlnvHCkHRXzJ6Jj/sqn5drW+2yhj97r2Zs8ztBtZ2i+Rk+6Ya1RFZcUxDE2UyYpG7ijhzHdNvfz2D/Q9O2nzJMIqnZl4OBLQKNx7WCMOpaKCcwJjVz2rVnMX1PJJJqCCGIpnQ0w2IslubgUIzDwzHGYmmGI6mSDUQWUgTSI8PEnY0kui4hOPAwvtGdJFT72pLNC6q0jeIcoLRhEUnpHByKsqc/wnAkNeN7xWAkiVNV8OphzDwRqL3ei9flwOlQaQ66eSrVgTp6gFf99wN8+Oe2s7IhUFwOlsDKZAKpioKiKBjeJhypiYLlXLF+BEquI1gW3d+OaiTxjewg2Hs/gYFHqe++nXRoJeG1rwbAPEnB0NVQFAVfXoj/fDqBZh0MrSh5ItBUCHe8/XwSLVvpePxf2fTTc+h49NMARFZcY5cyt51DZNVLcqWAbqfKl1+3jResbMqNxRQjlecEmt6gw+VUamrHXo2Z5AqNbnkXztQYDUeLI4Ltbmd/ccEKtnTV89Tx8RJrT0eKQKcGKQI9z8lmDlS6+WYfKLJuIN20anYCJTSDT928m1t3DfDyrR288ZwlBAYfI951sd2K8Oy/wZUYovHgL3LrhHz2YDxbElZcO542pgIFDVMwOGkPKAYmU7KbmGReEMI+r6o9rx8YipI2LDZ31qNqMRx6vMAJBHMPhwZwJu0b6Ssv2sqHr17HgaEof3+TXaq1orm0CAQQXv1KDF8L4xveRHTp5TXtK98JpBoJRMZiXo7pLeILf9b9HfYMo1X6u7mYHm4TJZxAtbQaL6bcZxKidGD0XCjtBCr82XZWTl/XdgI5Kw4gax0Up1q20Hv5f2D42wC7s8328y7hBvPvMXDSlHeNBzubAkALVS5TXNEcwOtSOTA4ZSuPpoxp3UxGt9oRhcmmTQC0KWFiaQN39ATx9vPR/e3UH70FV7SnYL20bhFN2U4gT/hwQVhnrWQ7hM00wDlVpsvQaCw9rTxmMTnmJJJqpA2L7tEEBwaj9IdTuYm7/nCKoUi65PVoIdxulhD0h5P49TCWr5nxDW9ANZIEBh/nuH8LYDuBZko4oXN8NEFatz/XUCRtt9ieAT3jSTobfLhS47nOYA1+Fy3BKbfHuy5exZI1Z+NVdL6y+lletzzJRWuauTR2N8He+3PLqUYCK9sdTLXvw6a3EWdqHISg7an/wB3pxhUfwPC1TBMTsmG/a29+BavueCurb309gaEniC67Cj3YxdjGtxJdftUpKwcrJtvJUVGmu49ni9uhzilkupQIhKJw7CU/5cSV/490wzpCPfeSbDoDva56eb5QXQjFgWokUYw0QnGWbDk/11DoLM4ZCGDxjotINW6gec8Pyi5z7opGeiaSDEWmu4WKkeVgpwYpAj3PGYnaN+NK9djZ+3K2VCKc0Ks+HHsmDtDyyL/yuVt2c2Aoyieu3cgNl62hYWInqpEk1nkxAPHOi4m3nWu7gTJKdzabIZvDUlzyVU7oEcLu0CKRzJW4ZtZUxXXbrgH8bgfnLG/AmRwGwPDZD8FZEahqm+xy5B2AM2XPVJr+Fl64aQlfeu3W3CCoXDkYwMjZf83B6++j79IvYRV1Him724zd2HYCTVnMyzE9E2i6E0gRZtmB9nyH6c6W4nIFwxRYlijoClcrlT7SfAvVpZxAxW6jcLJ0fppiGQhH5Swcp0OtpalcSUI+F1vWreaP4lzqD92EYk4dh2MikydQv7ziNhyqwvq2OvbniUCRlE6oqHwrseRcei/7Cn2XfBGAViVMPGWLQFpoBeMb3khw4BE2/OISfMNTOUUJzSCWNqhzO1h125tYecfbygqW5WgL2d+Zmd5/dMMq+fcrVVay2LroSSSVqFXsVrUovpEdwMJlpj15fIJmZRJ3/RJSLVtJZDLuRvxriQlvLjR6JszHsfZOJFjR4MSRnsDwNRPyOVnaWDjpsrIlwMZz7Qmc1/R/hU/3v5dvqV9i7SMfo/XZb9gLWSaqmZ4qB1MzTiBPI450GGdikCXPfJ3Gg7/CFR9AL8oDAki0nUOqcT3DZ32II9f9imPX/oQD19/HwAX/AkD/JV8guvyFi0YE8mXygfzu8i7lmTIXJxDY3cGgSAQCLE89k2teydHrfkHfRf/KwIWfrm2DioLl9ObKwSznwpWCwQy7rCkKkyuvxTe2B6zSE2XbVzQC8NTxiZLv5yOjPU4NUgR6HqObVoElt9xNLResF08TTmhMlnigqDtxD95MiOxEXEM8+UM69nyHwNCTfPSaDVy8tgVnYojWnd9BKCqxDruFNorC8Dl/izs+QOOBXwLkZnizTqDsw1iWSu05YylDKsqSOVNLWcdINM2Dh0e55ox2/G4nrkxnjeyMmuWuI77kBbTs+i6uTC5JrQR772fTT7bhnrRzC7LuhKxlfE1rkP94/Vl85uWbqa/U2nMWZJ1AasYJVE0EKnaRTBOBgtk28aVLwixrumhxKkgUCX9CQGyGQZ9ZKmXDVLp+zYZqTiDTEmWzKrLB0NXwzKHzyEvP7ODn+uW40uOEum8H7PO7fcc32GutoK6hueo2NrTXcXQ0lhPQoimjZJDzxPrXk2zZiqU4aFUmMSKDqEaSdGgFw+d+hEOvvgMFgX/46dw6ozH7ftbhCONKDOEf3Unzvh/P6DNms4lmmgliCjHNBl8uXHahWmhLJAtBukaxu+uhf2T1La9B0RMLco5bAh4/NkarGsUVsidoxje+FYCIfwWjoh4lPnMn0FzRTYvBSIqz/OO5bl1tdd5p91OXqpJu2sjB19zN4VfeQnTZVYR67sV01eGO22HXqmE7EK1cdzClwAmUnYDxju/DFe+flgcEoNct49Br/8jQ9o+S6Dif2NLL7A5iRR3LFkM5GJArB5vP8U9WPJstOSeQv7X0AqqT8TPeRjz7/FMDlsOHYiRRzXTZUOi5dgbLMlMBzMwEhjuKwsezdDX4WBLy8IOHj/H+nzzFYIVJEvncdmqQItDzmMlkoaOn3Ix8djyqG4Ke8eQ0y6sr1sfyP76PZX/6GyYTaT5w49Mkjz0KwD+sOMCl61pxxgdZ/+urqev5EyPbPoiVuXgAxLouJd52Lm3PfB01HZ4qB8vLsMgfKFebSZ+QXcMkc6RSbX9CM/j6Hw/yr7ftBeDlW22RIzBon/NaaFVu2Z4rvgbA8nv/CkRtNzlHaoKl938EZzqMP+NYcKbGMF11BYOAlqCHczIzLfNJdh+KkULV47mOI2WPt1J3MMi1tV/suUD5eUBZstcgY4azVJU+T3HI/myxLFscL7Wv/LKK4ut84YJ2MHQ1QnMYaK9fUsdA84UcV7pY+ue/Y+Udb2flHX9BxL+ct2l/X1D6UI6N7SEsAYeG7XbNQ5EUTYHp2QgAqA7S7ibaCOOY7AZAq7PdRqmmTRieRjzhQ7nFs22aV+n2a1pwGUue/FJBqUU1st1qoumZZYIIMX0GtJyQJJ1AktOJWpxAnokD1B+5GdXS8YYPLcg5Hklq7O0bp55oruQqvPZVDJ37d/QsuYoxQjhmUQ42V/rDSSwBm5x2UHOqYV1Jx6XLmck9a9pAsnUbJ174HQ5cfz9jm96KMz5ou4CyIlC2O5iioCoKprcJR3oCVyIrAu23nUCBymH8lZhDtdS84nE6cKjKnO5N801WBNLzgqHnvE2nb8oJVEYEmq9MpJmWlWWz9tSi8PEsiqJww6WruWRtC4ORFLfvLj8GLHUvlCw8i+TrLDkVFAfzlSthqFan3fbMf6JaGt7Jw+y87zcYWoIzHbbzYfPkfSAsljz5ZRQjxaFX38bQ9o8WbkBR6L/oczhT43Q89oVpTiCYEoEsS1TN6BiPa4vCWSA5PdFNq6Jb4979w9yzfxjLMLj+7HbaQl4UM03Tvp8QWXYVVqhralt1yxl8wSfwj+7EWxSMm0/o2K207PgmAJ2P/AuO1AQCJdfNyJkax/A1lV1/XlFULIcH1UxnOo6ULzeDUplA08vBoLIItBjyTvI7g2XJPpDPdIa60vVnvsrB4prB/sFoSfEq/5pdSRSv1QnUEvTMafB/7dalvDL5L/S1XEJg4GFGtr6fn53xLUappyVYRszJY0N7HQD7ByM80T1OQjO5cE15B5Hub6NVCecceFpohf2GopBuXId3YkoEimbKjpemDiFQ6L72R+jBpay8822svvnVdDz8L2Xt7lmyJQmxlDkjQdO0BLpZuHw5EWgxfEckklop1f2rmLanv47IXH+84/ty352xWJo9/ZPzcq185Og49SKGisDw2dcM4fAwfPaHUf2NjIp6XKnKwdALQU+mHf0qehEopBvWlCy1mlaioyho9SvRg0tRLR1ncgRVt7eVvVfbjhYwPA040pM4E7ZL2R3rtXMLSziBamW+OnHNBy1B97zl4cwHU5lAbfO2TcvpQa3iBJqvEr2ZZAIBmJmIAYcWKbvMZaFB/n5rkvNWNnHv/uGKQo90A518Fs+3R3JS0Qxr2kNPuQedSgYGz8QhGg/+iqdaX0PY0cyW3ht55+ooDmEQXnUdrsQQ7U98kcZDv2Zs8ztJZ3JSikm1bGHkzBtoOvhzWkcfxaEquUwggMmMYBVJVc8jMkwx7+GrktlTS8eM4ejiyXJKVMiAEUJwx+5B1rYG+X3bt/mnyU8DUH/0VlzJEcY2vwu3U8Hrmrq0RpddBUBg4OFSmwTLoPORz9DxxBfpePSzNBz5PSNnfRA92IUnKwIlRzG91ctm5gvh8NhOICORa1NajlIt4vNfMj2NWA7PoheBSmX/GJkH9JnGFlUSjQxTzNhZVIq0YdkiglEqEyi7jFnxfFYsHWpwAjlUhdYaHDvluHRdC4ankU96/oG9b9vD0Hn/QH/K3m8tTqB6n4uuBh/3Hxzhrr2DNPndbFvaUHZ5EWij3TFJz+E9CNSCzniphvV4wgdzv6Sse6ctfoB0wxrSDWs58orf2Z3IFJWWvT+kee//VTw+j9NuLZzQjAIHazUsUXguJDWz4L5sCcHuvkksUdrxJZEsVqqVvSpmmlD3HfSvfTOm02+LQJnvpG4KLKu0MD9THjo8muuuaRTdQ30uB6OiHneNIlDHI58m0P/InI8JpkLk21LdaHXLbMdHCYGlXIlONtfHFe9HNeIAUy3FFVCwnUAKAk/4SOG6gfZZH/fiEoFmf09aEEq0iJ8rltOHYthOoHIi0HwFY7tmONNjuquLQF0PfILl93yAaza1EU7qPNFdvvGCfG47+UgR6DlIpdkTw7SIpY2SQaHVMoGKUfU4nXe/j0kR4H09L+KH5jVcpu7kXeofABja/jFMV4DWnd9Cr1vK8FkfrHjcw+f8LenQSpY+9A+0ecwC8WAyabcardTKPp/5GDxI5k5KN6uGpaZ0k6HJ9KKZBSjlrAD7uzP27B/YFL6PN61JU3/8LoJ9D+BIjdO890ek6tcS67oUh6riz2s3rQe7SNctJzDwaMnt1vX8CVdiENMdomX3/5IOrWJk2wdIh1bijkxlAhnek+QEglwYYX7HkSzFY8BSg8KClxQFLbg01w2qFKZ5ah9wU3plB8dMw6urPbDPx2Cn0vdFCFuwnCzRhjkfRVQPhs7SGHDPOiDa43Rw2fpWHj06Rsywhx2HhmJ01Htrnsl9x0Ur6R5L8PSJMJdvaK04+2n621jtjbGWHnppJWlNhYemG9fhTE/mcjKy+V9NkX2kmu1uQZYrwMAFn+Loy35NdOnlLHnqK3bpRRkURcHvdhDXzJrvUWCLi/mlztnStCw/ffAAR2/+N2KP/R9K1BZRpctVsthJG9UbK7jDR1GFyR/Gl5Ju2oh3fH9ObM+6BeZaOqubFk8dn+CidvtgzKKHc5/bwSghPNpE1TB4RU/Qsuf7tO74xpyOKUvvRIK2Og/+yBHSDWuB6a5asIP5S6EFbcexO9aHqhdlAql2JpDhscvFveGDCKY2XioYulYWkQY0b+LHfCEcboTiwPTOX5m+cHhRjZNTDqaqSkXHr6JAY8CFJzPJaWXKwRzpMuVgRgrf2F7csR4uqB+nOeDm9t3l76O1uAcl84sUgZ6D9IeTZd+bSOgcG4kzNJme9t5MRaCORz6DP3KUvzU/xAdediEvfPunSNctp7XnTrRgF1r9ag695m4OXH8/B1/3p6rdiYTTS98lX8QTOc5fOn5PJM8Wb7fgTPH4sXE+9usd/N2vnuWrdx3gt8/08ueDIzx6dIwnu8fZ1RvGtETZ1ruSk0t/OJlzU5Qj++CTL0za7WRPzcNOooSA2Ds6Sf8P3sqVT/0V33T9J6/v+xIACoKWXd/FP/IMExvfBIqCU1UIFHWsiHdcaGcGlbDVNR34GbqvlWMv+Smp+rX0XfJFhMODVr8Kz+QxEAJnagzDO3+zS9WwHF4UIz2tO5iiwOrWAA3+KeGg1MP4tJKwusoikH6KO4RVE41nenjVlp8P51M1IckSEK4iSNRaDgZ2XkDAU9uypbh6YxuaafHg4VFMS7C7f7Kim6eYC1Y389YLVuB2qFy9sbLd3vC34UmPcYlrP48aG/j9s32591IN6wDwTBwE7PKrZibxJQdJZkSgHJlSZdVI0bL7exX36Xc7SKTtTmO1unYsMVUOVjzJcfvuAUK7f8QnXTdy8e5/pukeu4xazpZKFju1nKPKqF0efc9YI8nGjZlyMHu9rAg013KwSFInbVis8NoiSbETyO922sHQCLuVegVcmZKqYP/DuUYNs8USguNjCZY3ePBMHiWdyQMqFUpc1QkU60c1suVg9oSNIy8TCOxrnRZagemyy2rnUg62WLqDLUaE02e7gJT5e7S2MplAqpkq7wSaR2Wu0qSMz+1gaaM/15nN9GREoDJOIO/4XhRhP8fV9/2Zl57ZwbM9YY6PxUsuP99NMyTVkSLQSSZRxmUwn9uPp82yimqlfIjyIlCJF4VF4Oht3GRewsoXvJQXrGxCuPz0XWo/HCdazwLshz+tfmWuVrYa8c6LiHVexEXi6YJMILAzjP50YIQjIzEuFc/Q19PN9x/q5it3HeDzt+3jM3/Yyz/+bjd37R2UTqBFgGkJEppZNVMqm4GR71qYSGin5GGnuE042J9j353f5joe5P4lb2Oybg11I08SXvNKO3tk5/8gFAfhNa8C7NkUv7vwYTnecSHO9CTe8X0FrzsTQ9T13MvE+utJtm7j0PX3Eu+8EIB0aBUOLYIjNY4jNXHyMoGwBdlS3cHa6jz43U6WNflzgZWlxoTFgxItuAxXrIIT6BSXupRzf2WZsROoyjk/H5+32qxZQjNIVyvJqLEcLEvDHEI417UFWdro4979wxwejpHQTLYurTwxUMwbti/jJ+8+nxXNlXOqDF8rirDw6JOMtJzHb57uI5y596Ub1wPgzYRDx9IGm9VuAJItW6ZtSwutJNZ5IaETd1fcZ8DtzHWYq6UEFuzzJPvAOxZP59wTv3u2j+/ft5cPum/lIWszhwPnoCbtkpV0mbbyEsliodp1B8AxdgBTKOxMttDrXo0zHc653bIi+VydQNn8yAYRBsAKFDmBMuVgYJdcVyIrAinCJNR956yPaf9ghL//zU6Ojye4rDWOaqZJNa4v+yBfrkTHcocwXXW4Yn15wdBTLeJVVcHwNgDgjg9g+FpJNa5HKCq6f/aZNYupHGyxMXHW++i99N/ndZuW04tiJFGM8k6g+RTmKrmKsu9l92fmnEClRaBsYxPd10pd75+4dnM7bqfK75/tL7m8dAKdfKQIdJIZj2tVLfpzIRv2nJ9vYVr2g20sXfmhoNzDeilHhnP8EB4jwkHvVl6+bWpWId55MSeu/AbD5/zNLD8BpBo3stTqJZqY7lY6MhxjW5uTf4p+hl+v+A03vud8vvnmc/ja68/iK6/bRme9l4ePjElFeREQSxuZspTKnW2yD8Qp3WIyoSOEYDx+akSgpD7dxn7L091cH/8Fw3Vn0PiyzzFy7XeIdVzI8LYPEl12FYqwiC67MtcW1KkquJ1qTiQBiGWEnWB/YS5Q/dFbUYRFeO1rpx2LVr8SAN/oLlRLP6mZQJbDi0ObRBFmQSZQY15HJrdDLTt7WTyZpNUtw5meRC0zY3Squ0KUygPKZ6bB0NVEnpmKSsUIUToLKJ/i4P9SKKYOjtrdPSGfa9blAIqi8KJNS9g7EOHGx+3A5jO7ZiYCwVRr4EroeS16N114HWnD5LfP2G4gw9eK4anHkwmHjqZ0NrjsB7xsWUYxkRXX4Jk8irsoWyMfuxzMfuis5XcP9t9Ry4g6E3H72vd/j3TzvQeP8oXWu2kQYb7nfCMThFC0KGA7hmS7eMlippbrmyd8iONiCWncPJm0mwc4RuyOm9lSV8uaW1hsttQzZIYRigNfqCgTyO1gXGQeZKvkAmXDlS2nj/pjt874WJKayRdu28fHfr2T/skUf/vCdbyi074fphvWlX2Qr1Siowc77UygXDmYLY5nr9FWXgm54W8l3nkRqaYzanZ/ljweqQGVRW85g9iyK+d1m8Lpqx4MfZKcQI4iEchyBRGKWtYJ5B/Zge5vJ7z21QQGHmX7zVfyq/r/x30HBnn/T57i5h2FYpBuyOy7k40UgU4ySc1kaIFCcIUQdI/G+X/3HmJf/9SXciyW5tBQLBdEV4wjOcbK296M8+BtJd8v9Z0c2P1nAFadffW0i8bkmleQbtwwy08B6YY1eEUab2q44HXTEhwbjXNRaBRFWIS676Q5dYJlTX7WtgXZ0F7HxWtb2NkbZiKuLZqMmecr+bPhZUPHhSgQXXomEgxF0himWLC/X6Uys+JSsOFICvOpH7FMHSF+wUft7kINazl23S9IN20gsuIaACbWvz63TvYG6XdNDbSMQAephrUEe+8r2H79sT+QbNxIunHdtGPRQivt7Qw/ZW/jJGYCCYcHR2oCoMAJlD9L5HE5ys4KFgtDWt0yANzR3pLLn8obv2ZYVc+1mWo21UoZ5/p5axFIa8mmscvBanf3OFSFOu/sHyCu29pBV4OPp0+EWdnsp8Ffm0N0pmS7s6RDK2npWsNl61q5bfeAHdqsKKQb1uMb2wNANG2w0jGO5fBg+FpLbi+6/IUAhI7fVXafAY8zd/2IpY2awr9NyxbJx+IahmnxnQeOcvNTR7mj4cu8JnojkyteTG/dNsKmG1WPAbZgKgfKksVMtRJwgEDkCIdFFw5V4a5RW5xxjB3AtArHBHNxA2VdxnXGBIa3CY/LVSC2+FwOomRKqDLfr3K4MplgE2tfTbD/YRRz+iRlOSYSGv/42108dmyMt16wgu/+xXau7UzS/tRXsBwe0g1rK4or5QQiLdiFO5YfDD1VDgZg+aayaQxfK0Pn/h2HX3lLzcddTLlJH0mW+f/dWHmZQMI5XQRSlPnNRqrUISzbqS53PioKpjtUdnLPN/IMidaziKx8CYplIJw+tsUf4mstt+JyKPz40e6cQzeLdAOdXKQIdBKxLLtrVVq3GIvVfgOplcFIik/dvIe79g7xD7/dRUKzswlGY/aXrNSN2ZEKs+r2N1PX/yDu3tLdi4odQpYQpI4+TJg6zthy9rx/jnQms6FdO1Gw757xBJppsdWdUY8Vhdad/wNC0HDwV7Q9/TUuXNWIJeDx7nGZC3SKyW91XGupoRAwErW/GwtxM4imdPYPRhmOpkq6k+LpwrKgu++9k79Xf8xE2/nEll89fXvLrubwK35HZMWLc69lhRKPS522bGDgUVTNHmy6Yv0Ehp5kcvXLSx6rVrccoagEhp4E5rfjRDUspzeXkZB1AhUPAN0OtewM5fRMoKwIVLokrLhN9skklq5eorvYysFqEYFqMYsoll5zMHSWBt/shRuP08EHr7TdNjPJA5opWVdevMN24F2/fRkp3crNPMY7LsQ3ugM1HSaWMliqjqIHu8qmnurBLpLNWyqKQH63I3f9EKI2ES57fxuJpvnRI8f5w84BPrHmBBtTzzJw3j9x4oXfpjngYdzw5q4bumlVLbGVSE42+cJ31cwzS6cufpxDooutXfU8MWQiFBUlHZnmCp1LLlAs0/mvThtGD3SgqoVOQpdTIe0IAqBmnHblcCWGMJ1+4u0XoAgD92R3TcfQH07yid/s5MREgk++9AzecO5Suo78jLW/fSnOxBDHX/Q9LHew4oN8OaeHHui0y8FyLeKnysHsgw7kSohyWTVqdSdlOaT+U5mF+P1YTh+KmSwbDD3fGU3uWpxAeR/UdIdwaNODoR2pCTyR4yTbtpFYci5737abQ6+9m/ENb+RlkRv58lkjXGY9zoqbriPY++fcerWUkkrmDykCnUTyS00GI6l5LYEwLcHHfrWDw8MxXnvOUnrGE/z9b3bRM56o+MCx5Omv4gkfti8uWumZkOIB58NHxtig72Oi+WzUGbYUrIV0/RoAVit9BQ/lh0fs41sjTmA5vIxvfCtNB3/Jxp+9gGX3/x1Lnv4alx/+Ei0BN48cGSNVYy5QfAZBnpLaSOlmgehY7qGl0u99Nk4gIQSxtEFCMxiPa5wYK3S/hRM6hikYmkxzYCjKRHxqFmI4miKSnDrfnjrcy1+PfJqUp4mBF/1P6Tu8opBsO6fgveyN0uMsEoGWX41q6QT7HwQgdMx23k2uflnpz+Jwowe7CAzYLWmLQy0XEuHwTnMCFc8QuZ1q2cFp8bgk6wRylRGBTuX3r1j4K8WMW8RX+TxzF4HmSSC1DJQa89qy1Hmdcxrsbumq54uvOZM3vGDZ7DdSBS3YRWT5Cxnf8AYAljf5uXhNMzfv6GcioRFdejmKsAj2P0Q0ZdDJaK7bTjlinRfjH9lRtouQ3+0scBJWC+WGqfNgcDLFb57u5UWblvCqwB5Md4jRLZkW9UE3Y7oLh5HAMAy7HEzerySLjHwx3axywfRMduMQBoespaxvr8MSCqbTj6LFpo2LSzVqqJVsc5FAegg90IFDUXKhtmCL0qbLFoEcVUQgZ3wQw78k59r1TBzk6RMT3LlnsKxQ9eeDI3zkl88SSxt8/lVbOG9VEy27vk3XQ/9IsnUbh191K7GllwGVs3bKuW/0YCfO9ESulM1y+gsmaxRVwfQ02MuWcTnOBJkHVJmF+O0IhwfVSJUtB5tvEahSuXV2gjNfsLTcoZLdwbLj1viS7Znl7FDy/gs/S6pxPWc9/Y/8l/ubdCQPs+qOv6DxwC8A5OT9SUaKQCeR/JuZZdndruaLz/1hLw8eHuM9l67iHRet5MqNbfxx31DFbAJHcoz6/b/gidCL0IJLUcqIQPnP75YQ3PH4btaoA3hWXTTr4y12SeRj+FpIOetYo/QXtMw9MhzD61JpThwl1biegQv+md5LvkiqcSP9F3yKka3vp3n/T/hE3W0cG4szFtdqGiwnNNMuE5DMG/kuIJh55zmYeReclG6ydyDCsZE4R4bj9E0kiaT03AylaYmC2XnDFPROJNk3EOHgULSgY15KN+l74Md0KWOMXPW1aa1lKzElAhV1CFtyLqY7RN2JewAI9j9IqmEtWv2qstsaOucjTKy7nsHtHyfVtKnmY5grltOLammZf9sW8+LAQI9TLTs4LR4smp5GTFcAd/REyeVPZSZQLU6gmWawLHR3sJQ2P78vReiIGeZDqKpCyDv7gGiAzZ311P1/9t4zQJKzvvb+PZU7Tk8OO5uTVrvKEkhCQhJRElmAwWAwyTa2uThjm/tiAw7X2IB9L8Y5YLKxwWSQRBCgnPNKm3dn0+TpHCq9H6qrp/N0z/TMzq7m6IN2uquqq0PV83/Oc/7nLPEYTSGpHH3Zv3kEbRFvu3ITBdvhi/cdIzNwiXctjv2EiWSOAWfCUwI1QSGyHuFaKLn6BrJBTSZTsEr3m0zebjr+lLfCHiu2ar9op2egmVz3wlKbXl/YUwIB2PkkBdtpm5RcwxqWG+Vjaz1lp5I+TfczXwLHxJh9BoD97jo2F03eC1IQYaZr9k3nrZJqt11VkE/wG9nTHgkkiYpJrq5IoBeVQAu1g2XGMUND5KJbcBH87O47+eNvPsXf/vgA7/6PB3jq5PxEeDZd4M+/u5eP3/Ys63uCfPKNF3PeUBQ1dZLBh/+axIaXcvimL5YUstDca6fRRN+/Zxmz+7yFXKmyRVsSotRG3gkl8RoJ1BzL0SrnpYPlkawsjmzUPN/p78RQ5IaLPP5CYHktaOvRup5AkWM/xNaiZAYuq3jcVQzGrvsb5PwcjhrmRYWPkwhtoqu4KLqmBFpZrJFAK4jqASyeNTuS8jGRyPGZu4/w8t1DvPoib1C4bEM3mYLNwcn6A1syZ+Le/48oTo4Pjt9AQQo0JIHKJ+r3HZpm09y9AGSHn7foc+4JNVl9FoJ811a2y6f497uOlIrqg5MptvSFCcw9S657J66sM3veWzhy0+eZ3vNuTl/xh8xteTWvn/sM5+UexbQcJlrwX8pbdtPUtDW0j3Te4uBkin+98xCO6zactDSbJFm22/T6KFhO6ZqyHS9ytfp1XBfSRfI1kTXrtshYtlsz8Hz1oTFuMb/DbGQHuXUvaHgO9eAXbFqVEghJJTl6HZGxH4HrEJx4hMzA5U2PNbf99Zx44V8xefH7liTjbhflxcZ84kjl+9EVqWFxWtNXLgSF8Hq0VH1PoIXMw5cLmYLVkn/FQivbldu2crzFvVfbcTkxl22p1agVCMdCtNkOBhALLSOBs0xY1x3gpj1D3Pb0acbiBVIjLyB0/A4ymTRdzhyF8GjT/c3QEABq6hT67H76H/s0PXs/X4qLDukKjltJXjdLAy3/CYzNeiTQeeIoamaCZJm5aG9YJ413PVqZBI7TPim5hjUsJ2zHrQkjkXNzqImjCCtHbP9/s/1rL2P0zt9n0/d/keF7P0JS6eEg69jQ440veclAFDI1CwKuC5niOH9sJtOS15aPVN4iRBbVTGKGhhFVSiBDldF0gzzawkqgzDjTooc/+NZ+jjoDDBaO8GvXb+UvbrmAkK7wV7c+y2y6wA/2jvNrX3yYB4/O8ParNvIXt1zIUJd3/Q7f+xFwXU5e9ZEaZXGzyXwjgihX9N4MTjxUUuyWD9OS8BZggIZ+Z+1gzRS6OZbj43EU77cjFZIrogSSJFGjYvdR4wkE2FpXLQnkOkTGfkxy9Pq6JuS5vj0cvvlLPPriLzLmDnI0uBtj6glw3TMSCPNcxuIdHtfQNqol/I7jKSa6gksrqE/Mef3Az9s0bxzrp648cSLOjsFIxfZfeXCML917kPv0L/AD9zIOuuvIiADRhiSQ9/+pVJ5/+tlh/la/m0JolEzZKms7kIsryadoTNDYPdvZnfgxj4zN8b0nT3PRaIx9Eyl+fncIdf9EfeNpIThx7cewTjzKH2f/lRnzXUynCvSG9NoJeRlypkO2YGPaTlNn/DW0Btd1OR3P8Wff3ctkMs+Nu4dZ3xOsu+1C3hYF28Eokh+TyTyzmQI9IY2ooXJoKrVgQhJ4CSEhTWYi2ZoP12ymwPHHfsgu+RjHL/pY243e5QOlIosKkiG5/sXEDn2LrkPfRsnPkhm4uK1jrxRcpYwE8tvBqooNIQRGA0WfodQSVmZkfUMlEIDpOOgrSHQBTCRa+020I1Rqxa+lXRLIdV32T6Q6vkrWrjG0j6ihYqjSqkhhFKI1/yOAN1+xgdueGucbj57kwtHr6TryPa6XHgNYUAlkhrwUTDV9iq7D3yZ2yDNYHXrgLxi/9LcIqZ4vWDpvYRQnmpmC3VDxVP47OT6bJWIoDE/8FIDU6PWl5/rCGs+6nhovn06AEltrB1vDqkK6YJXIG9/Yef2Pfo3IyTtxhYxwbTJ9FzC15z0MPvQJrEAfnxz5OOqxIP0Rb2KbJUDYTNe9x/kpX3nTYTpdYDBaq4ioh1TeYkh4JK2vBNKKixe246KrEiFNISOCSGYKfeZZNt36dgrRTaRGX8jc1td69wXXRc2c5vb4RZxScpg927mGSYb2eKlmf/TCGO//zine8Zn7cVzYNRzl/S/axmj3fN0TPv4Tuo58j9OXfwAzUks4N/MEakQQ5bq348g6Sn6u1M5aWcMKLKNzJNCaKXRzLMfH4xaV2AK3LgnULNJ9sTBUue7YXp0OBkUSqCoiPjD5OGpuimQdH00fmaHnEXZdAuosz7CFC3LfQcmMUwgN4bru2m9thbA2411B1JtIdEKB4k9uy9U13SGN9d0BHj/uSVRn0wW+9+QpPnP3YT5371HeNXKcXpFEvfztAKTc5kqgVM7ij7/5FMH8BM93H2du2+s8k7lFIGIoaIrU9IaZj20jYk7xgnUq//yzQ/zlbc+gKxJv3OCt1uR66qePOWqIp4ZexzbpJNnZE7guNe7zNa9VJOcmWyQJ1tAc6YLNp358oPR5js029qVaSGDhF4TJnMnpeI686XBqLsf+iWRLBBB4heBUqvW0uK88OMYbuR1TjTK37bUt7eNDiMoBspp8TK6/HhfBwMN/DbBoIrXZ6y+EZoSojwolUGmFsfbg5auqFY/X6SsvREY9T6BF+EMtB7IFu6ZtsRHaMYZeDiXQbMZcFpm0cNqLiC9HX7h+XG0nENBkNvYF2TkUIbxAGtn67mDLq6FdAZUbdvbz42cnONXntTO/RfbaMxdUAoV9EugkevwQyXUvZP/rvkdm4BJG7v0Ib937qwTJVbR9N/Obsm2H4bv/iMDkYxyfzbAhptO97z9JD15eMrYG6A3ppIoJRmbGG8/XjKHXsBqQLf7WswXP79KyndK9MjD9FOmBy5ja/S4O3fQFDr76m0xe8n4Ovvp/OPDab3PQHSWsKxiqTMRQSLkGkpmu6wmSypulOm46VSi97kJI5W3WK3MAJU8ggGjAu6foikRIV0gRRC4kCUw9jpY+hZKdZOiBj7HzP69h5M4/REscQbILnLRj/PILt9C14QL0xCGUzASjd/wmN93+In448H9501abv7ohyH8G/4rnP/Hh0nkIO8/I3X9EvmsLUxf8Ut1zbRbz3ZAgktRSm7jftt1bNg+oVAJ1oh1syYc4pyGWKR1s/t/zY25P2PueO5kM5qORL5BPOFUYQ+u16WDRo7fiCslTAjWBEIL1PQEeKGzwXnfqcaB9K4g1LB5rJNAKol7h5pvYLgU+CdRdpSi6YDTG06fi/ONPD/Kezz7I391xkK8+fILLNnbzy72PYasRuna/HElAwjGQzVTdaONcweJPvvM0k3NJ/m77gwgcZrfdUrFNvfGru0HLgB8x3CyKMB/zzKH/4AqZgYjOock0P3/FBvpTz3rn1L2j4b7xgSsA0E/cB3gTqEYwy/wVZtKFJSVRrMHDQ0dnuOvAFK+92Js0HZ/NNjaGrno8njX51I/2l9pdJlM5plP5ktrNRzueGNmC3VJbIHiT83ueOsRNyoMktr22tArTKqpX7KpltbbRQ2bgUoz4QWw1VErC6xQihtL0ugLY1BdkJFa7kqoqolRYVCiB1PpKIKCkeKiGXofkLUTWI1uZUvtMNVY6IWyqjYTGdn5vrUzQXbd1Iihv2R31j5s/CQfhOrCIdjCAWFBd8LfWCsrbF0ZiBrtHomwbCBM1VDRFYrjLaEhuhnSZrqBamtS1glddNELBcvjWUYmT2kaulZ4AFlYC2Xo3jqyjpk+hxQ+Tj20l17ubIy//LCev+igjice4RnqCdNl4ninYdcdUACefoO/pz9Cz9/OMzWR4pf4IevIYU3veU7FdT0gjVVQCmVmv2D6TSiDTdtbGyXMEk8k8z55OttVi5SNVbPk+OZctkZ2W42LZLnJuFiU/S2LTTZy+8kOk111bamfODlyKFRomlbcI69512x/WSTo6kpWuu1iTLTilmsB2XA5OpphJL7yAmsqZbFC8gAMzNFS618SCGkJ4vn1hXSFFAMlMoeTnADj4qv/hmZ/7GdO73kbPs//JplvfAcC4282W/hD57u1IjsnWb76OrkPfZnb7GxhNPs7/Of423njPa4me+Ak9+76MmjgKwMDD/xc9cZiTV320rpoDFvAEakIQZfsuALzFGk2R6ArM388lIUitewGJDS+tGNPLEdRbV992uvXoXMNypYP5cIshDtGAUvqem/02Fot6i3vlUfSSJErv1daiyFYGnGIS39iP6H/8H0lseAl2UYXWDOu7g/w0MYQrJAJTTwJrJNBKYo0EWkHUqwVdFw5Npok3ISoWwmQih8Ab2Mpx4boucqbD9548zXU7+vnbn7+Eb99s8ok9R4kd+z6JjS9F1j057qytI5npGsPSbMHmw996mslTYzwQ/h32HPpXkiPXUCiSND76I3pFa4gsCQajlcV7xFDY3B8q3byatV7lY16McCxzmD+7cT2f2LmXV+4ZoOeZL5Lt3YMVHGq4rzVwAWlXJzpxP+B5x6TyFpPJfE3xXF7Mui4cn80wmy40LYrOhHfJ2YR/u/MIQU3mzVdsoCekcXwm2XDSUv345+45wm1Pj/P9p04DXvF3ci7XsuqnEVqdxM9mCtzIXWhugdkdb2z7deolaFXDl8hm+y/quM+PKksleX09hHQZXZHpDeslwge8QnDHQIR1sQAhXa6rBKpXADbqHReitq+8EPFWexr5Aq3kxLbaJLzVfTq5XSvqopl0gf3jqZZ8i9qFKBZtYhHtYOB9xyFt6R3lvSGdWFAlpHu/y+qVTUOVGYwaNb+/WFAttZlGA62/h429IS5eH+O7T5ziHnEJknBxhVzy/GkIITBDwwQmH0e2MhSim0uPxzfdCECfSJDJV44pjVrm3LynvDVOP0AiZ/HK1H+Tj2wgsfHlFdtpioQomtc6q4AEmkjmz6iR+xo6h6lUnoLllDx3WsVsusCRqTSu6ylzfD+ggu1gOS5a4jAA+diWhseoIIEiOnFbQzIzDVs7y2+XrktLJFC6YDMqeSSQFRwsLdKEdaX02mFDIeEGkAtJ5PwcrpBxtChmdCOnrv4opy//PfTi+5lTehmMGqXFGy01xtiLPs3x6z7J/ltu5eRVH+X0Fb/PgVd/A1dI9Dz7JYLjD9H/+N8xs+PNpSSwemjeDtb4PWb7LvQ+HyVIb1iraKORhCCx+RUcfdm/1t13IKqztT/MYLQ1VeeaMfTKo5y88wnEgYhRinJfhoBmAqpcU8tW/+2Px44W9f7OJ1CTx9jwg/eS6zmP49f9dUuvtaEnyOmsTDa6lcCUtyDTsfTTNSyINRJoBdFohdh1YbxFpUI9jCfyxIJqTZF85ZZe3nfDNv7pFy7j/S/ezqYuiV0/+zU2/fC9KPl4KZp6MGowXdCQzHRFcek4Lu/8zP08eGSWj+4+RbgwwdgLP8HRl/1bxesI4UlQy1cggpqMKntSW/BuGKPdAcK6Uhqk1CZ3r0JkA46koscPct6pb/D6o3/Cth+8AyN+wJPTNhmMoqEADzk7GJh5sPTYkak0p+O5molfNeOcLTgcn82ybzzVsI1suoXi47mKgxMpfrZ/kpv3DBPSFS7syvIXx95K4JH6RUj5KvnhqTS37x1HEvCjveMNV9CXE1PJPG+Uf8JMeHupuGoH1ddgdUIYeL5AAJn+SxZ3kgu8fm9IozesEaqzwtddRhQPRQ1URRALqmzqDZWK0N6wXrFa2UwJ1Kxvu1olZIa9JJRGvkCLWY1eLOINTMKbodWWsFYJx1a2a2Rm3gkIx1u9bzcdrBz1fmPtwlAl1sUCrOturLrrj+icNxSp2Gd9T7C0kBDRlUpD1AUqm1ddOMJUqsDXk+cBRdPnFj4HMzRMcOJhAPJlqX5WoBeAPuIVSiCg5m8fTs4jgYKJQ1wjPcH69JNM735XDTHcE9YIRLwVVb9leyntYKm8tWgSJ2/ZzKYLa+lk5wCSObNELjdqr3Jdl7GZDCfnsqXxeCqV5/hstmHIgu246HMHAch3NSGBclZJFd4f1pmxVGQz3fL5+z6OzZDOW4xIM1hGL65iVKgmfF+hsK6QcAJIhSRybtaLVC/bbnr3OzCDAwAY3euQhCAX246tRpi88L0kNnmkbaFrM9O738HkRb9OduASkutfTO/ez7Pp+2/HDI1w6soPNT3XpsbQTVigkhJIDdYsrDbjbISAgeKC0UDUaIlMWOOAmmO5lUCOrBMNKAQ0uWSpoSwDCyRJgq394YqF/er6z691bZ8EKiQYfPATABx52b+WIuEXwoZer76cCO0kMF0kgVaB1+BzBWsk0AqiWd2WL5oTLwanEzm666RtyZLg5buHGCgOdtGjtyObacYv+Q0mLnofydHrAG8yOFFQkew8jjXfInF8Nsu9h7yEg+dLe7H0bua2v75GVtod0lBkqWI1NljsKe0JaQR1mXWxAErVAKUqTe6YkkIhugl97kCpTzRy4meYwSHmiuRVI3QFVO5zdtGXOYic81aB/M++2oOpkazddlzGZrIcnU7XrLrOZlr3l3mu4e9/chBZErz6ohFwHf4g+zf0u1PIM/vrbm+7LsIu0PvQ/+ULP3yAkKbwzhdsZkfyXmae/OEKnz2kZk5ysXSQ8Q2vWtSIXj1Q1jNOzvWcx/Fr/oLp839x0efZCJIQCCEYiQVKiSQ+hKCCqJUlwc7BCOt7Kj1VooaC0Lx9XQRuURXUrhS8mgQqFM0w1eRY3e2XGpveDlpZRa5GItta226ryU2tkErZ5Wy7KSqBFtsOBpRI/nrQG5iGV8NQ5WIiSXNCSSoarUOtilQIUfptBzRpQYXS5Zu6Ge4yuN85D1PSF2wF82GGhpEc77eTj24qOzkVU4vRJ+IVnkBAY9+pMjPNjyifwZFU5qrarFVFMNJlEIp4QQ9yMcZ6MUogv76YTRcWrSTKmY7n/bLGAp31mCtTn1fXnhPJHI7jMp0uMJcxmU4VGE94qqHT8coFS8d1S6SkZTtYtoMeP4wrFAplEejVSOWt0v2jL6KTsHXEAjHt1VjI0y2dtxhkupgMVkmm+L4nUUMh4Xp2CHJ+FkuvbGFxlQAnrvj/2OeOEh3c6D2mBtn71gc5/bwPNnztqd3vQC4kyAxexuGbv7jgpLipJ1CT53xzaEcJ1pQszUoYj0SY36AVMmFNCdQcyxMRX6kEKjdF1xRpWdrB/GNvG5hXiVWnw/q/BVv3xqbQqXuIHfw6U3vehRUabvl1/HTAI8om1MwEUiGx1g62glhLB1shtNJCNJctENCae5AULKemxWQimaMn2CRyvYjYwa9jBgeZuOQ3K1Ybh6IG06YKKhTSCYIB76L0VzBHYgHCB+4lPfT8GjNoSZpfTTBUuZQY4w+wXQG1YuJZjoWSuPKxbeiz+xCuQ2L9i7D1GIkNL1kwzcZQZR4VnllecOLhCof6TN4mb9mlCUd5rGk9JLIWccMsmW7bjhcnnsyZ9C6jMerZhlTeIpO3+MajJ3jJrkG6Qxqx/f/N+uxDOK7wUm3qwHZcooe/w8gjn+A99qUcfNE/c+m6ADsf+DTTj24gfcFLVvR9hE4/4J3XhoVj4QOa5EVCl61a1HoCyTUJYQjB7Hlv6cwJV6GcqDEUuSI5SVOkmhXFekWLEAJF8+4BjhIoVZLtk0CV17ejRbD0GFoDEqh68rxcSObMRRHup+M5XFwGIs2TaVpVaSw0ETdtZ1nawHz4SqDFtoOBd6/1k3aqEQuojJvNfZc8X47W16JUWcKybdQ6+/RHdOYyJt1BbUHyTBKCV104wj/9LMeT236VvuENLb2+WSxuHUmtIY6sQB992ThHqpVAecuLzK66fpzcfCT1VukUcxtuxjZiFdsMRgyEEMiGt9oqFZUSi1ECnZjLsL4nSDxr0hteuF6oB18NUo/odBwXIdYShM4WJHLzJFD1vXcqWSCVsyquo8lknmSuVpn46R8f4Mh0mk+88WJMx0UAofhBCtENDWs113VJ5S16Qhq7R6I8eDRIEgPZzJA3LR4ei3PJ+lhDz7nSe8iaFYEo1UjnLfrdaczQ1oaESMRQSLhBpEISJT9bcw0CPNnzUt6X7+O3BuYJooX8AtPrruXptz6MbfS2tKDULGel6URfUpm4+P3ku7fT20bsvFZVf7cyvq+RQM2xHJ+OW9aabwRDFdeEJkvL0g7mQwjBQNRgLmvWLHAqVUqgoQf/EluPMnnhr7b1Gv1hnYAqczTvHUfJTpEvjndrWH6skUArhFaKtrmMyVDUaFpEHZ/NsKEnWKGqmUzmGd1QP4Lbh5KZJDJ2B1N7auXmQ10Gh/EjaOPQ53kj+GZ/PfYkWnKMqd3vqjnuUNSoIHOGYwGOTqcJtuAVsSAJ1LWV6NHbEK7N7PY3MHnJ/1rwmD6mjI1ggVY05ivHbNpkqEsmZ9otKXrmirHkQMnEO5GzFk0COY5bMRm3bAdJiGVx+V8pHJ/N8J8PjGE7Lq+7xJscRY/cSsoYYSyjEEnP1d3PcUB67AtYrsRL5YfZKd2NOGHSJdKQP07r4vDOoH/2YbKuBsMX1TwX0DxFWyJnMpHI0x8xSOct8ua8qqSeUW5IU9r2n1ksygs5T10xH+NdL7a9EVzVKzx8P6DqY7eCegV8IbK+oSdQzrTrTpY7CdN2GJvJLrxhA4zH8+RNh9HuQMP7dKueYQspn5bbfNcngZaiBAKvnaLe7zsaUBlPNCeBDFVqizTQZIksNmqd60xXZHpCGrGghtWC6fdNe4boDWtIW17AXIvn4MfEFyIbatrH7GAf/bOzpKsm1K7rtb50VQU3UPQEShMgRJa5HW8oPdUVUOmLaKVx1DACmChIJSVQS6db+XKWw6HJdFum5NXwy5h6+6cLVl0viTWsPuRMu6Klz3bc0uJY3vLuw/UWyKr9rfaNJ7nt6XHAI2QihuLFsMcPk/c9s+oga9o4rqcUlyTB+p4gD7oGAodf/+zd9OTG0HYqXHXF8yl0bWp4nFQDgtVHumDT50yRD13TcJtoQGWiaAwt5+ZKKYDlODTlVSJb+0MNz6Ue7DYSuZoRLAsF8fq1cX/VIZqSQFVEeitR42dxiboiWO52MFmrnHNoirQiZt2xgFpTr5TawfQieZOb4dQVf4hTVAa1Cj8h7EC2aDuQmaTQtQXLdmq6R9bQeax9wiuEVmouy3abtikkcybpvF0xONuOt08zJVDk2A/Y/rWXAS6z22vNbgejRil9pJCdV2z4xez6uOeBkB6+smI/RRY1REhYV9jaH27pxlSvkC9HPrYV4RYjSIt9zz4WOr4T6CWHXnfCOZ3O4zguieLERc7NIOzGn3umYJf8SvyVsXTeWpSHSTJn8szpJE+fTHB8NkMqb3Foqn4s6mpAK5OFnGkzmzL58v1jXLOtj+GuAMIuED55F4nR60gQxM7WVwJZM0cZmX2Az6tvIN1/CaM/+wADj/xfALpIIuXmOvl2FsTG9GPslXeWUhh8CAGj3QECmpdW1x3yFG5+fLXvrVNPUt0J35RWUX1dlEd9ttqeA0Cx8HDV+QKk3d5zpSxBwocZWd9QCeS6jf1TOgHXdTk2k1myqe5cxuTwVLoh2VNo8b6wEFm0rK1gzBtDLzYi3ke9CHdNkUoqoWZYqAWsGn4LcfUqto/hLs9AupXxR5Elrt7a19bqtm8eXeiqneBaRh/9IkGmTix8ueqihKK/z7es5zOljZbas8FL1ixfSAkHVNKugVxYfDuYF+Ht7bfYbi5/Mave66fyVsutkGs4s8gWbKT8HBtvexc7v3Qlw/d8uCLuvRW4rsu/3XW4dK3tG09iOQ6mZaEnDpcSXushVWzj8hfXNvYGSeMtPFwSTfAd/YO848jvsen7v7DAOdB0gcXOpQk7SczgUEM1TVhXSbkBJNdGTZ+saQcDeOpkgoAqM9rdfLF1KVhsO1iz7ZrtVq3AbOWeuabya45liYgvt9+QK1XImiKtiDqrq04S6LwnkEf6mMEhpne/c1HH39ATZG/Se29KdhJYuEtjDZ3BGgm0QnBprTgaT9QmWE2l8uw9lSjFZKfKJkrTqTyOS8kTSEmf5vzP7iF4+r7SNkP3/RmWHuPAa75BvmdnzWuO9gRKA7CZKSOBisXsUPxRbC1Krvu8iv2CWv0CfiEJr49W2sF8VJNAC8UCdwU1TkmDdf1HHMczd45nTXBdtv3PTYzc/f81PFZ5oeEXSK4Lk21ETHv7zE9CbcdlNm1yeDJN3nRWrRFaKxPRZM7iu0+eImvavP5Sz/clOPEwspmisPF6MgQQhWTdfU/85N/AhchV7+TYS/+FfGQjeuIoYxFPiZObONC5NwMY008RHrujLuknFZJsNA9xMLCn5rlYUC39roUQpWIwrCkI4Ula1/cE6yZzNfNN6TSqC8nyqM922m583y9b8VY+hWhfCSRE7WS8EF6PmjwObv3fe7rOBLpTOBnPVSQ3LQXpvM2R6VqdWjxjMptuTfW1oBKosLz3hJISaAntYOCpVqrrUP+3FmgwRvhodazw4ZM/jcaOVkIHWkEsWPuegJJKoJ7KwQr00SviNUog8EigGtKv6An0cetN/Pgl3y19D0JQSi7yEdEVkm6gpARaTDtY+S6LJWv8veqRQMmctWwm5mvoLDKmTdfh7xE99gMAug5/u+QR1Gpb7lceOs5TJxO84+pNGKLAjkf+BDdxCpE4gWTnK4zTq5Eq3ud7fRKoJ8S6fk818weXS0i4PO1sRE8eQ2pQO/jwfR4zdRYQFLOYpmd0NyQwQrpMqqiEV/JzdWOtHxub48LRrmVVXTSbyy/W92UhT6BytKLgW1MCNcdy8DGuXNZ2qFaSQLoitaTgWip0RSaiV9YJ/rVgBXrJ9pzPqSs/VOMX2yo29AQ5lPUSMNUiCXQ6kTsj4TDPNayRQCuEVn/LtuMymZwnFxzHZSKRx7LdUkx2qswMb6K4bU9Rah6Yfgq5kKDr8HcBkAop9Pgh4tteS65B2tGF67ooSN6kVuRTpXg+f0IWyo8X5e+VBftCBf5CUGWp6U0z3+WtJBVCI9jF9BUfhiIx1DUfQd8VUNnQGywNZLGgypjb31B1MJnMkzMd5HwcLX2K7n3/jZo62fBcTidyHJ/NVLDT06nmUfLVSOWthiuwq1EJZNnOgu1yx6YzfPvxk3zzsZNcuqGbLf3ejTx8/Ce4QiG97gXk5SCaXb+xS5vey5g0wo6du7GC/Rx+xVc4eeUf8eTu3wMgO94mCeQ6BCYeRU0cpfuZL7H9qy/FmN5bem7jbe9m861v57wvXkH3M1+quDCDEw8j43AieknFIRVZVJjxlUOSPEPaZr4Exgq2SFTPfcuv0XYm3P5g7qqN4+FbQfVkvRBZj+QUUDITdbdfDhLIdV1OzGWZSXU21S+dt5kqI4LTeYux2UzL+y+k5lg5JdDSSCBZEkSNymP4qrN6xujlaHcM8b2AFlpAWMr1JoTng7e1P1wzUSpENmCrETKDl9bsZwX6iZDBzNf+BhynUrHgum7JE8hSw2wbnPdAiBhKzYQ1bCikMCCfLO5PWwVyNQG1WDVcPSVQpmDx4W8+xXg8t6TUsjWsHLIFm8jYDymE1zF1wXtQMxNkZ06Qzlt1yZRq3H94hs/fe5TrdvTzmotGuKXrAC+Y/iqBoz9GzB4BoFBunF4FnwTqKyrJNUXi1c/zYtf1Ys32M9erV/W55jVAJm+TylscmcpU1GOW7WDYReWcFm04hm3tD2Op4dLfj01LFcmwp+M5TidyXDQaa3oeS0WzMbZVcqFaFdJMJVKtwlzzBFo6/E+naehNm6hUAp2ZdjCoHatLvwVJ5cAt3ye+5VWLPvb6niCzhHGEjJKdAjz/2/K58BqWB2sk0AqhneJoKpUvRV9OpmqVQQXLIVOwmE7leXRsDphXAvkeOOGTdwFgzDyFwCXbW6tuAK/gDGgKru4NgpKZKq1A+ytCupko9X2WY6EEllbQbJLgaGEK4VGy/bX+LLoqoysyOwYjrO8JsL4nQFdA5byhCOePROkN6xy2+jwSqM5n73+mWtL7vIRr0ffkPzc+F8fzEir/Llx3noSrPna2YJcSNnwkmiRZrEYlkGm7TVNgbMflbf96Hx/51tPEsyY/d/lo6bnI8Z+QHrwMR4uSl0PodqZu+4tmpchK8wWYbcSY3vMeAuuKsaczh1o+3+Dp+9n+tZez7Zuv5ryvXMvonb+PMfssXYe+5T0//gBa+iSTe36JXPdORu/8fTZ/501ocweRs9MM3ftRkm6ARN88CSQEbOoNNZ10jsQa+8OUzm2JhGmrqG7Z8s2hoXELTV2UPIG8VajFk0BVSqBI85j4bMEpTRA6hZPxXMcJIB+n4zmmUnkyBYuj05m2lBCZBhHHjuORVsudQNgpTyCAWKjyGL7/VKAJ8agpUo3iZSFoxYWDanKmGtUkUEBr/bdvqF5hHdBktg+ECZa1czpahL2/8DCJTTfX7GcV/T+c1GTd486UTSz/84ExvnTnXixXYttwb4X3QcSo/T7CuuqpFQrz6UntEDnVWy66JbKOJ9C3HjvJZ+4+woNHZltqe1/DmYXruuSzacIn7iS5/kUllXVg+ilOxbM1vj/VSOUsPvXj/WzuC/G/XrQNIQQ3GPsAT4kup04D8ybqdY9RvMfHymwMlIBXY/oLdzN9VwBgzO5b8D0dmfJSXH3iPJW3SOdtokVXQVuPNVTTrO8J8hs3X1b6+4dHTd75mQf45O3PcmI2y2PH5wC4eH1swfNYCpoRLK2Ov9WbNdqr3j20pXSwNSlQc5QtSnfKsLkiHUytJIF0RT5jLXqdVCBt6AniIpFRulEy8+PnTGZ56rY1zGPNGHqF0E5x5JMLuiIx0cBY8+CEN7j5cZ2+J5A/uTJm96FkJghMPQlAtq8+CdRXbF8RehQyIJtpsqZNF2ppoFbNBIXIUMV+QjQv8FtF1FDJFhqzvUde9m+lCMJyGMUBTFMkNGW+kBBCIAvPG+KY04dsJpHz8bqJDzBPmmX6LqTnmS8yfslvtmVsNp0qEDaU0kr46Xiugr22bJeRmDeRTtbzhShiNUYiFmyn6WThB3vHOTqT4b3XbeWyjd0MFdUyUj6OMf0UE5f+FgCmHCJgpb04eLeyr1yz0xTUSE2x0h2LMe52o8ePtHSuavIYG29/N44W5cELP8qP9p4iK4X53egPCJ26B4DYgW/gyAYTl/02jhKke99/Mnzfn7Lzv2/AFTKOUHin+Xtc1RWbP4+QtqBaoZUCbaFJa6dQfS6+UilTsNsr4JRKY+jFkkDVxn5miQQ6TmboeXX3OTyZJmIobOgJNjznuUyBqVSejQsQdJmCtWwEEHj36lNzuYU3rIOC5XBwMsWGniBBTSGeMTkxl8Vx3RVpqykpgaSllwERXalIwfOVQAFNpiugkrfsmsllvdbJhaDKUksqn+oJTVhXKVheNHosqFbEY1ejvH1TkgT9EZ2jZeoeV65/3j4JlJw6yXgiV6MezORtEjmTguXw+PE4O8mSJsALtvWXthHCW5ipRthQSLuVbbW267ZcwFWrhhbbDuYPB+X7f+3hEwCMJ9eUQKsV5WEUOdMheOo+ZCtDcsOLyfXsBsCYepLJ9S9a8Fj/fvdhElmTP37lbqKJA+RjW7nA8urM/OwJtKKfnhUcbHgMv7YsN0tXA16Euk8C2cOXkptRUWaeWfCc/J9d1rSJGCpzmQIFy/ECJvCUQM1EiVpovuZ74zUXkpod4tanx/nJvkl6Qjq9IY3R7uZpYEtFszG2VQVONSHQaL96reGtKYFaOo3nLHxPIF8d22ycaRmSiisUhGvVeAKdSXSSEPQTwmalGF3ZeRLItFxypt122/hS4C9WP1cIzzUSaIXQbnHU6sTF74fePHEbWeMGtMRRHNlAsnOETt5NYPpJzEB/3QHZUOdXYiUjApmiEqi4mpIpWMiSQCnEyWpdNft24iJZKEEm33NezWOKLBZ0jV8XC/ADdwAANXWsMQlUJM1OXfkhtn77jcQOfp2Z83+xxbP3cHwmS3/EQRLUyBenUwVkSSAJUWrnq4eC5dSkhp1pLBRR/a93Hma4y+DG3UMVBURo/EEELumh53vHUcIY+Tw5y+R02mZ9z7y5YsBJM6MMUz2tkoTglDxCNDuGrwuRs9N07/8qmf6LKHRtYf0d/wthF8hHNxMavx8chw93/Tlful9GV3eQMx1ePzLD7iP/gZSfo+vwd0hsfBmO6vnczO58M8n1NxA78A2U7AQPBa7h3p8qvLrM7DzcAbUbLNy+sqRjK95vq9HK03CXwal4e0SFKBpCO8V2sMWu+tQogcKjuEJCjx9sul8y5xmm90d0JAFTxfthWFdI5y2SRVXdgYkUEUMhrCulVWXTdsiZNqbtMt2mb9dKw7RcDk6k6QqoJOrELy8nOqkEEsIzRp9Ket+T32qgKzIbeoNMpfIVZJkiC7qr07JagCyJllLu5KIpuf95SpJHrqTyVilKvhGqPbyihoqmSAsqs6yAR+b0iTh3PDvBm66ojZ0/OuWRSYemUlyrmQSMLl5y/vzY3BVQ694rIrpCigByYbz0WDvmztVcfqsJdtXwvQ39ceH4bIb7Ds8A3sLVYo+7huVFMmcRDXhthumCReTYD3Fkg9Tw1biKQb5rS2nBsBnuOTjFbU+Pc8sl63j+xFcYuffDzOx8M7H0swAUZk8QCgax1UhpnK2HY9MZVFmUPIEAtKBHAqnJMVwh0907yAF3HQOTz7b8Pn3PxlTeIpE16Sopgbqap2+VRVLHeof45Qu28sbL1/O5e49y+9PjvPT8QYSovKd0EgtxPItVAjV6z/UWpVpLB1s99elqhP/xyELQFVSJZ02ihrrkdFhHCSCbSSR19ZBAbSnLF4AQgg09QSYyXfRmK5W0yZy1oiRQMmfh4laoFM9lrJFAKwTXAVyX7me/SGLjy9uKjmyGyWSeXcYMW+54H6cv/wBa8ijJ0RcSPnUv4ZN3Eph6ssZU2UflKow3CEpmutSikM7bBDUJOR/H0mMV+7YSAd8KDFXGUKUFJcjV+yyE/ojOmOsV5VpyrKEfkpY4ihnoJzP0fDJ9F9Cz9wvM7Hp7Ww5vtuOWFFn10EjNVY2C7WBIK3ezWwim7TQ0r336ZIL7D8/wGy/eXlOghE7fhyOpZAa8tiq72G8/MzvDnBVkIOpF0TqOQ8hNM6lG6r7GnDHKnsx9nAJCJ+9h061vR7LzuELGDA2j5KbJ9ewicuKnpLV+/rfzi9x6SOE1F4/w+kvX8WtfeJhvJbexx7UY/ekHUPKzzG19TcVrWMFBpi78ZQD27h0H9pfUcdC5ZK/lUgIpsjd4HpxINywUFVliuKvN4qHYBua3gy2WxKo26HUVg2zvHkJlxvWNkC3YHJuu9FdJVbVUWrZnsD6bNplK5bEdlr2Najmw1CJxUSiSQKIDJBBAd1BjKlkoxUSXo7p1uCekLVrGHmzxmlTleeJGEt7KrCwJdEVqOpmr1+bcE9Ka3uPBM8gEuLi7wJefmeDnLl/f8D3Opk1icq5motwXrq8yChsK466BbJW1g7UxG60Opli8J1DxeEVPom886vnoDUR0JhK5tXawVYq8ZZMuCMK6wlzGZGTqcTIDl5S837K9ewhOPNz0GIen0vzND/dzaZ/DB9SvMHTvp7H0Lnqe/TIAKYKQPI2ajmCGGquAXNfl3sPTXLWlt6KWE5pXJ2ipMSyjh5HuEPvcUTbGW/cFzJo2ecvGtFymkgWiwhs/mnkCAbj6fA1iFY2hu4Ma73/Rdm65ZB3dxQlhxFAI6cqi1Z+N0Aq5shABJUStEqhRtHy9RdRmn4+uSuRNZ40EWgD+pyMJQURX2DYQRpMlknlz0YmM4LWEyWaypNBeDQhoMgFNItuhAIv1PQFOxMNckN1f8bi/cLNSmM0UcNznDgm05gm0QnBcF31uH6N3/iEj9360Y8c9NpPh4oiXgBA6fT9acoxCdDOJjS+le/9/o8/ua0wCBeaL/2DAII+KXEiWJv7pvEWPaiE5hZqWrGigMxMHoKmpbj0sZDYKMNRlMFZUAjUyhwaPBCpENwIwc95bCMw+Q/D0/W2dT6ew2nyBTMvFrjNyOY7Lfz80hioLXrJroOb54OkHyPZdWCownWJxl5j1Vox9c+141iRCFkevTwJlwhvpYw4rm6TvwY9j6j08euP/MDNyHUpmgsde8Hfcdd2X+fieb3D1zIe4y72Av3rDRbz7ms3Eghov3jXA508O40gqXUe/T3L0OpIbXtzw/e495cXA+hMxXZUWVJy1ik6umvgQwovWDaie70+zlby234da2Q62WBKrXutOevgqAhOPIKzsoo7ZCNnCwkbmZwpK+jQ9ez9/pk+jAvPtYJ25lxuqTEiXWVenbcJTjhZfV1CaVC0GrXrRlU9qZCEIG0qJfGo0hgS0+rH2XS2Md74S6NJei5PxHE+dTDTcdjpdICLlcbT5e19Qlxu2noaLSiDFmjfYb8sTqGrTRaeDle1n2Q5fe/g4l2/s5vyRqKcEWmsHW5WwXZdE1iRn2mTzFvrsfmaCm/mVzz/I2GyaXN8etNRx5NxsaZ9Dkykef/ge3G+9n7u+9mk+8J/3EZOyfMn6TYYe/zRzW1/Dgdfd6ql+JJUDXVcTtaYQyVN1leddAZXtg2GOz2UZT+S56YJKzyDh+1LaeWyjh3WxAAecdUTyp0sJYZJZP2DCh2m5JUJ9Jl0oUwJFmyuByjwv7aoFz9HuYEkdqMoSfWG9aTLtYtCK0mcxLdmN9qhXKzRb6PHtDtY4oObwSThJEsVxRkaSRFtznJGYV3uFDaXUGlxK3VJWjgxpBf3hzpFSW/vDnLCiyNnJigErnbdWTGFq2U7JT2y11pKdxhoJtEJwXJfA5OMAdB38xnxiUYu488AUf/SNJ3EnnkYqeMWl67ocnc6wKxgHIHTyLiQ7TyG6gZNX/ynp4Ss9U+g6JFBAkyrSASKGQoYAkpnGsl1c1yVTsBlQvRWPchJIVUTbhp7N0BvW2dwfatlIrZV2gJ2DEfr6+kmKMFryOMLOE9v/VQJVq11a8piXfAbEt7wGy+hh8/fewtB9fwrOyq7O51dZQlihgRIokTP51uOnuG7HAFrVdyGsHIGpx8kMXVF6zJ/o+PHGfgLUVDxNUOShjuk4gN3jpcPt/ez7iU48wMfiL+G1X89y2cF3c0Hm73ndrTq/9LkH+cefHmL7QJiPv+Eitg3Mm0zftGeYrKuxXzsfy+jh+As/3nBpzLQd7jo4xZVbekrFUCej3ZeDBBqMGgQ1T+KvylJnV+l8Aq+oVFgsCVSvsEyNXI3kmIROP7D48zvL0PPsl1l31weRc3PL+0Kuw9D9f47egplqpyLiy9HIo0kIUVKPhnVlScq4Vr3oylsRJSG8VjJ1vk2tHhqRPZ73XPNzdhUDWw2zLZQlYih8/dETdbdzXJe5TIGwyGGXKYGaEWNhXSFNAM3OFGXFSyOBFt0OVrbbo8fjHJxMc/MFwwxEDKZSeQr26hrD1uDBsl0SOZPZTAElM45sJrk/NcDJuRwfv20fuaJnpDH9JNrcQfq++Tb+/r++wyUPfoALx7/Oe2c+xhf6/oMvXLIXPTfFoVd8hbEbPoUZHuH4tR9j4pLfJDi0nT7iiMQJktoAk6kcLl4tORjVWd8TwFBlnjmdQAh4cdUCkk8CgaeqC2gyJ/VNAOhz+wlMPMyuz11Iz9Ofa/pep4utw6m8RVSkseQgSGpTPxtRthBVTQKVw7+3dbo9pRV+Z6Hxvd7zjYijeo/7LbT1HvcV0WtKoOaYVwJVPt4b0lsi0CTJmw8NRnXWdwdKiwJO0QtIrKJ2MIBoQOlYEtq12/uZETFkx0QqxEuPuy4klyE1th4SOas0xiWaeLieS1hrB1shuEBw8jGv6BMygw9+jKMv/0xL++4bT/LJ25+l357k/KnfYXb3Ozh95YeYTObJmjabVW/1RiqSFoXIRhw1xJGXfYbwiZ+S3PCS0rHChkJ/RK+JNo8YKknXIFJcabEc15PhKd5qffnAuJRV3EYI6955jcebt04psmhJhSSE4A2XjXLkx33sPPANoke+h5qdJNe1jf1v+CEIgbDzqOlTJSWQo4XZ/7rvM/jQJ+l/4p8wZp/l2Iv+vqRk8Tay6HnmC8xuf2MpPrtTMFeZlt5sYAx914FpJpN5Xn3RcA1bHpx4BMkxSZeZ/voFlpP1yEvfFDI+5ymDhFHfiLv34lfx5LGv8ZbMD8nJYYxLfpFfVsIljyVZ8gqU3rDOheu6aqTQI7EAr7l4Hb/4yHv4vRdvZpPWT6Nf7oNHZkjnba7bMV+YdsoPCLyVoXLj3KVACK/dsVwiq8qis1Ghis70rreTXH8DsHgSqx4hkBm8AlfIhE7dQ2r0hUs6zbMFWuIIAJKVwSa2fK+TPEb/4/+ApcfId+9ouq1wvMmSUDr3O2/2GwxpMum8VdFuuRi06ptWrn6r5n69SVxtkddM8RM2lAW9+qxAH0Z+ildcMMyXHxhjbDbD+u7KcSKZs7AclyBZnGKrrBAQrWMIXXptXSHpegoryUzjaJGmyY3VKFfoKJlxJEwY3N3y/j7KSaBvPHoCTZG4bkcfM+kCjgvj8TwjXZ0dF9ewdNiOi2m5TKcKBIuR67eOR9ncF+LQZJr/PN7D7wOBqSfRTtzH8MRP+IZ2Nzomj175/xjO7uOyx/4W+8kHSY1cTXr4ytKxE1teCUD3059DFi4Rc5LPHbD5y2cerDgHVRZEDJVMweLSDd0MRContJIawBUSwnWwDK+1Mh49H+YgcuJnKJlJJMdk5J4/Jh/bRnrkqrrv1R9js6bNKGkszVtkahrBLqul1me3ScuNTyy3shDZDlpTAlX+Xd0eVm8RtRFp0ygpTZZqaxRdnSfAV5Fl5aqE/3lXf5+a4inIFoo898nFgWKogP+3owRwhYzo4IJNJyCEQJMlzCUuYA91GQgBfYPrYQqs+GmkgVjp+UTWbDo25y0bWSzsFbsQyuczzxVV6xoJtEJwXJfw1GNk+y4iuf56hu//c6KHv0tic23UbDlm0gX+7Lt76Q5qfFB8D6VgEiz6aRyd8fqdR8Q0jqwj2d4NJl8kNVzFILnxZRXH6wqodVU8EUMh5QboKqo1LNslU7BYL/npCt5EXQiILcLQsxX0hXRm0oW6BsqGKpG3HEa7Ay1Pdl93yQif+uHLeLv6MMNDI9hahN5nvoAx8wy53l04M0cRuOTC8waeVmiIEy/8SzKDl7Luzj9k423v4siNny0VBuETd7Lu7g8h2QWmLvilJb1f13U5ncgxFDUQQqwqU03XdUvFgO24FZ/5tx8/iaFKXLW1r8YnIzR+Py6C9ODlpcd800Uz47H7lu2SLdikEh55KQfqK4Ei4TC86QtM3fen5Hp3c9PO5pPaenjL8zZw14EpfueHCfjh3QRUme6gSk9IK70nVZaYSuXpCqilGFhdlTou+VZlCasDK+Ube4M1MdKaInXUsFIIiZMv+NPS3/XSRFpBtUEveGRrtv8iwqfuYbzxrucU/BRCycossOXSoM96/fSSvXCwwLwSaGV63yOGSkhXOqqwawa1qh2sHPXawQJac7VPWF+YBDJDI8QOfYsPdT1DQXk533xkkF9/0faKbWbS3jECTgarqAQK6UrTAjakK6Qppi/6JFAbhLKLl6j3tz8+wKfcvyDsJmHHj1re34dfGJu2w3ceP8VLdg2gynIpCe3kXJZLNnS3fdyzCa7rnrFY5sXCV/S6Lhhz3j3i0dwgf/nm8/nCfcf4ytOz/GZ4lMDUkxw9eQrJ7aFHh/i6K5H3vJZJK0fs0DfRk8eYuuCX679GmQ/Qzm07+MDGncSCGmaxxSKVt0jmTNJ5mzdcNlqzvyQJHCWEbCZLJJDeu557Z/dw6bNfQdg5kqPXoSZPsPH293D4pi+QHbi44XvOFGyiIlNSsTcjjyUhsNUw7gKTbH9RQ2/BkqBVKLJgtHth4tQ3pjZUmZxps6E3WDKah/qET0MSqEHColKHBDJUuRhFvqYEWhDFj6fe5zQQ0YlnzaZtRtUKM1/16ioGjqw37u87g1jqb2IkZtAb1slbNru2b4UpeHLffi4cmA8F8kIzGt9348Wgh4Ho0pRS7SysnCtYI4FWCK5VwJjey/TudzK15z3EDn6Tkbs/RHr4KmyjftFk2g5//t29DOSP8WfPt7j44dvJuhrG9FMIK8fRomlqrzVBrnsnSnYSNTOJGV5X93jNVhsjhkoKA/Je77XpOKTzNj1S0VivOJAOdxkNpfRLhSR5JrfHZjI1RNBA1CCiK22lZ/WGdaZ2vIlXPXMDn775UtbrGXqe/TJdh75JrncXjz/xKBcC//CEzWs2WhWTk9mdb8aRDdbf8RuM/uS3GHvx3wOUzBNj+7/aNgmUt2zuOzTDsZkMecvhqZNx9k+k+D+XZ7hy1MDetnA860qhUKYUsxwHuWhYPZcp8ONnJ7hmW1+prascwdP3k+s5D6dMORYIe78dKxsv3XCOz2ZIxz0lkBqK0QiurHHq6sV7aBmqzMdefyEPHZ0lnjWJZ01m0gVmMwUKxWJnLpNnbDbD6y4ZLRFDI7FAxwt9XZFK6SWLhSzVb8XUZGnRPh/1UH6ZqYpY0mdRbtDrIz14Bb1P/ZtnTtyBiPLVDj+FUCw3CVRc5Rf2wmb0PgkklJVZXWzkd7NcKCeuqwvVeu0cCylMw7qyoDnr8Ws/Rtfh7xA79C0+qfwtXzp0APv6f6w4F58E0u0M+aISaCHPIU2RyEkeYSQXklihobZIIMd1+ey9R7nv8Axa9BkUXV0UmeG/4pfuP8ZsxuStz99I1rQZKKq7TraZQni2YTKZx1ClGhJ+taNc0avPHSAlwhAa5IU7+knkTH6wd5zJvvMInXqUDblZDvVdz8yrPoFbJIhdxeD49X9D1+HvkBy9vu5rlPsAbdu2g1171jESaz1W3SNigshmEtvoAbyU1y+a13Fl6tMAnNr+RjKDl7P5Oz/H5u//AvtefztWaLju8bKmTZdI4xRr10bqF/CUgo4WKamBGqFEApWZywvhtWbPZQptBZyAd11v7A221B4rF73Mtg2EsWwHRa40uK/37hqGRbTRJuYvAOlKZxKBz2WIJiSQ7w3ULGDAqPodaIqELAlPCSS31lK20lgKCWSoEr1FD87ekE562FuQf3r/AXZfPb/47DheS1i0wX13Lmti2S79EX1JtepzkANaI4FWCvLEU0hOgUz/RSApHL/2L9n6zdey8fZ3c/imL+BWDT6u6/J3dxzg2Pgkj4Q/jPFQAluL8k/izfxG/p8wJh/j6HSMvrCOkTlFvns7ud7dBKaeaDipCmpyw9XGiKGQdg1EYV4JlC5YxAzvb1uPEQuqpQt2uRDUFLb1h3nmdLKi2JYl0fYAJAvBLzx/I3fun+Jf7jzEH71yN6mRq+k69C3GL/8A8sQTANw+HuH7X3iI1168jrChcMG6Loa7AsS3vRZj9lkGHvs0p1MnMMPrCE4+CkBg5mmM6b3kene1fD6fuG0f9xya4hrpKfJSADu8gxtCR3ndk3+MdGSAsa0LJyatFMonGOUF5FceHCNnOty0Z7gU0w0U42JsguMPMbfjjaWHA5pMf7/XYuW3gwHkTIfZ2SkA1GCM6ntvQPMS4zrBa/SFdV6+e6jpNqbtlAqjcDFyvNPoREKYH/Nb79idNLIrf42lxtursqBQxRfmY1uRHBM1dQKzqFw8VyGZadRi7KnUYTPsavir/FJLJFBnjaFXG8rHuupWCVWWiAXVUlR8K2bVfrJYs4meGd3I1EW/xtQFv4L2nfdxy+nb+M6xMbZvmlebzqYLgItip5EDEbYPhltS2plqBByQ83Pe321UrE+dSPCDp8cxyBMrnMYSMWzHrWvc3hCOzeA3fp5jI7/AVx8O8ZqLR7hsYzf7x1Ol1tRTc8v7+z6TSOZMTsdzrO9pndhYLShf4ZannuVZe5jXXLYOWRK86LwBNFninuwob8z9AAQMnPcC5qpq0szg5WTKFL7VMMtIIDM4SLjN8U6SBGZRGecrgdZ1B/i8cwVpKYyOSXLDiz2rgxs/x47/up7evV9g/PLfrXu8VM6iS2RwdU911NQYGrCMHpwGSaXg3SP8djAh5u8F62IBukMavSGNfRPJukr2eghoMpt6gy23sEhCECi2qPv7lLdv1asLGpXMjT4LRZKAyoUq/960kjHdZysaeQL5WChttt5nHNBkHNkjgVajEmsppzRYllob0GTUmFen67kpfrp/kht2ztszTKcKRPTa+jdbsEuhOnMZk+42g4bK8VxUAq0ZQ68QlNOPApDtvwiAXN8exq7/G4LjD7H5u28hOP4QAJmCxdcfPcGnfnyAH+yd4E+2PothJTh2w9/yzJvuwrjoDQDE993F0ZkMG3sCaGmPoDh51Uc49Ir/bHgOzYrcqOGlj0glEshTAkVL6Qpdi24JaReKLNVMPJut4jQ7Tk9I481XrOeBI7M8eGSG+JZXoyePERh/gAtTP+Ogvos/fP01DEQM/v3uI3zqRwd47+cf4i++t5d940lmd/wcAF2HvwuuS2DyESbXvRRXKMQOfLXlc3l0bI6HD53iq0Of5fPan/Nfyof4Ye7N/Ivz/2FQQEsdx82nFj7QCqHcENr/d860+MJ9x9jWH2bH4HyxFJh4mPM/u4eeZ76EbGVID86bQg93GQQjMQCcfGVajpmeA0CrowTqCekr9nsDb1LoDy7LQQD5r7FUNFIraB1epSs/0lJNreu970J0EwB6sU3qXIZW9h4lc3knyXqRBGpHCeR2KCJ+taGZEghgtDtQipsP60pL12fLvluSTOGKX0UXJjxeOSZPZwromEiujdAiGKrc0uplXPMKZC11HKAtJdB/PjBGUJN5yYCn9JULibrJj02RTxIc+wn5x79GLKDxGy/ezmzGUzWpssRvBb7DZYf+ob1jrgKkWjQd9f086oUlrGa4rluxwq3M7ueAs443P88jJiOGytXbevnO5PyEKzdwSduvYwX6cYvmW2ZoaFGLHn4QgRXwlEDb+sMoeoA/zb+JT5qv52jKu04KXZtJrr+B7n1fbhjgkciaxEQauxg80Sx4RBKC49f+FSev/gixoFr3OlfkSkWsocqEDaU06ZQk0bJCLKTLbO4LteVhIkmer1o5Ku9xtfv4LWTev+cfb6gEqkMK+8TEGgm0MPzfR6Nxwk9yhfothXVJIFXGCg1iBgdWYzfYouvOgCbVKHuUYC+2FuUy4yT/9eAYZllHQipncWgqXWOb4acBQuv38kZoJ2zhXMEaCbRCkGf2Y6thzPB8L3Riyys5ft1foycOs/VbryP27Ff4v7c/wx133cntT49z3Y5+bs5/j1z3DuJbXoWjd3HF7h0cY4jUwXs4NpNhV5eFZGUphEe8vlGt/kpGQJObMqQRQyXlBpCKEbSm45LOW0RJ4woJRw131nh2AVQXEK0mh1VDkuBVF42wLhbgn352iKmNN2NrUXru/Qt2c4ixwZdwwWgXf/2mi/jMO67gH956GbdcMsqjY3P8zn89xn88K5Pt3UPXoW+jJQ6j5ON8/MgmbncuJfjkF3n2yHFOzGbJVEsdypApWPzTTw/yweA3uWzuVsYv+U2OvvgfmLj0Nxnf+Xb+j/02AJSZ/Yt7k8uAyihgF8dxuX3vBEenM9y4p1JV03XoO8hmkpF7/higZAotSZ76LBrpwnFFqdWw9BpFUsjRokQMhd6wViy0IBZQO0KaLAbLRQItVQkkBEQanJsqS4siSpu9lo+lknH17hv5IgmkJQ4v6dhnAypIoOVsB3PdNtvBiioY+dwUBJdPdOpdG0IINvZ4rRithh0o7QxEQxeyX9nBxZNfZ9/pBDnTW2GfTRcY1L3P3i1LRFoIKcNre1GTHglk2q2TOLOZAgNRgyu75gAQroOTa3PRwfLaGAbT+7h+Zz+GKpeUVLgOv8i3OT95Z3vHXAWIZ826rc3lyJk26bz3/a0m775WUD6xEdkZwtYs6ejWiiTNG3cP8aSzGfBMaHMLmMrXhSR7RBACK9C/JBLILiqBukMaX3rPldz49j/kc9Jr+Zsf7OPug1NMp/LM7HobamaC6NEf1D1WPGcSJVPys2x27UpCUIhtpRDdREhX2DoQIhZUq4iTyv0NVWaoyoOkldpBCFjfE2y7nvaUQHLNY/PHrX88f5tygqHRa0cNpeI5RRalOmyl23nPRgi877fRdyGK36EQsKUvVOFNpyr1wz0MVeL0FX/AkRs/u0rbwRa3X1+drhJJFiTXXcv18mOMzWb4wn2Vi4SZvE2qaq6VNeeVa5kl2i2cbQR/J3BuVn+rEKKQxtYiNdq5ue23kNj0cjbe/m6G7/wgH7DXc7F+kONXfphCt0vwe49z8qqPlvZTZYmZ7ovZPXM3l6yL8OrNFuwHM1TfB8jHugV6syOGZzypFEmgvGmTNW2ibtIbRIXUXgG8RFQXEIud4CqShCPDL127hQ9/6yn+56k4ozt+jr4n/wUAe8crMBSZ7i4Dv6b+xas38cbLR/n7nxzki/cf46Yd13Ptsb8ltu+/ADga2MX9Q5fxsuPv5ej3Psmn7FuQBGzoCaIrMrGgyoaeIBt6gnSHNL58/zFOzGW4JXY/yd4bmLjstwFKpuCnp26Fqc+hzOwDrl3U++w0yu+FluMwlzV54LDn4fO8TT0V20aO34GtRZELCfKRDVghjySK6CpCCLpCOikMRKGSBBJFEsjWwgxEdYKawkBEJ5mzkCTRkfapdiFLtYVWp6C203pRB5oiNSwuVFlC7eDnJcrWnJb6PdRbdbSCgzhKAL2YmnUuQ0uuDAmkpk8hF9MdW2sHK3oCrZAx9EqjYpW8kTeGLLGpL9iy2q3dIfDgxp/jxoN/yh997QsEdr6E9794OzPpAiMBC3KVsdgLQQ2EmY3H0JJjgNeBW23a3wjpgkVAldmhnC495uTiUFRptoQiCbRTHOO6bd3Eiz4MAIGpJ4i5cVL22ZcM5jgu44kcW/obfxdTqfnr6WybKJSf7/FHbmcP0Lfj+RXbvO7SdWTNqyjcNei15y7Cp02Sii1hroOQlUUpSN1SO9h8jSGE56Xyq9dv5a9ufZb/871n6Alp/M0brmYkPErvU/9GYtPLWX/Hb5Jcd22pHT2ZyREiQ6qVdLCypyQBuiKzvifIoOVwOp4jnjVr3k95uISPVnzDYsHFLXDpilTjx7mQEsjfxnZcDNXzJJSkxiRFxFDZMSiTs5ySB5GPar+aNdTCI4CabxPSFHRFQpElNvQGGZvJkDMdhqP152gC4ZGjaqiiLlstWEyLmqqIuj54siRIrn8R6w9/h/dsS/IvD5/gik097B6ZTxBO5Sq9gcp9NguWU/LLWgzWlEBrWDYIM42j1C+QHDXEsRf9HZNulG3yadL9l7Duvj9h023vIh/dxOz211dsH7vkNfSJBJ/cc4QB1/NVMcMjDV9bkRee2EYMlYQbQrMzCLtQktWF3FRZukLLb3fJqFYfLFaF5O932cZurtjUzX89NMbRLW/BQfCMu4HeDbtQFU/GW54GFdQUfuNF27lotIs/OrQDWzYYfOzTpFyDq553Na+58WZmR1/C+wK38sHrh3jjZevpC+sENZnxuRSPPnI/kz/6FP/+jVt56mSCP71aIZI9TnzTy2rOMRPagImCtoqUQOU3Q9txmU7leXRsjk29wQpFmZo6iTG3n4mL30di/YuY2/a60nPhogl51FBJEUAuVK48+62HUiBKsKzX3T9+J0igurGpTQ67XCog8NqqlrKSs9Bg29EireyllkwC1RuQhSAf3YQWf24ogfw2ieX0BPJbwQCEtTAJhJ8Odq62gxWvl4XGLS/5prULs91xaPiat5PWB/jD0Le47/A0tuMyky4wbBQ/e72xB0k1IrrCSTGIljpWeqxVD4P16Sd5uf0TRu3jpcec7FzLr+29mPebMoTJecrpina08PGfAKC5LfzuVhlsxyWdtxtOABzHrWg5ONsmCnapndvG3PsdEoTZc9XLK7bRFZnXXLyOEy/8BKee/6FFvU5XQCXXs4tcz66K9up24GiVnkDluHZ7P//y9sv5yKt2k8pb/OXt+5nc/S7Cp+9j+N6PEDv4dXqf/o/S9nY27v1f71rwHlB+quXnrSneRN1QJVSl8v3Uuxf4i0jN3no9BUQrCNcJdZEqyKtGZs/e/7WimfVCi7mKLBHWleL7EBWPr6E5BPXVPOUI6nJJeaorMtsGIuwYjNDVIHVZlH3sq1EJtJhz6gvXN3D2SKAbcBG8o+9ZAqrMT/ZNVmxT3vJl2k7N/Ti9SDWQ47i4Lqz/4a+x/sfvX9QxzkasKYFWCMLM4KiNV8lOmyF+PvfnvO3Kjdx04Xo2f/dNOFqUYy/6dE2LV3LzTeS6dzDwyN8wc95bACg0SASD1iZxEUNhkqJsNjvFtNIHQNhJYheTns6UEqiZvHIhlN+Qf/GqTfyvLz3Cpx6zuVj6BVLhLbxGmpe7Rg2VRHb+BqPIEu+7YTvv/UKC3+n7e543/hUSWj/XnefJ8qeu+B22ff2V/Nz4Jxh70d8hrCybb307oez9UORJEsGN3PXir3HJyS8BkNzwktr3qmkccYcZnNvf8srucqO8HSyRtUhkTZ4+meCVF1aSjX7xn1x/A1MXvrfyuSKhEtRkTrgBZLOSBFLNJAVUouH6K7CLIR9kSTAY1bFdF1Xy1DGHJ9Ol50O6zJb+MKm8xdhMpsZXYyHjvqVACIEii4bGkQutIC70u+hkkSZaKC5bRaPzLkQ3oc/uW9KxzwZoiaPko1sw4geW1RPIj4cvhNe3ZQx9rraDSZLoeKxxu4pUSTWIX/rr7L7nj9mVf4L9E+czkykw2FMkFRq0b9dD2FA4QT/by5Rllu3SCm99c+ZbvNi+E8sexHRlVGHjFifJrSKfy+BPX4MzT1LonY/wjYz9GADDPfvSwfxUxaxp110ESOasCk+ds1UJ9I2Hj/LbzoPMjF5PwKglIlRZkBp9YVvHjhgKyZzltXAHNY684M8Al9AiFw5cNYiLKNWc1RiIGgxEDd53wzY+efs+/l//1fyZ3k3fU/8OeIo0OTuNHeiF3BwoeCrlBcbO8ntEvU0HokbL7Zd9Yc/P8Oh0piasIRpQFu2tUy+Vt7IdrP5+JZ8a4dW6a1zO8qGV8Sas1aYcN6t1z/xsoDnaHROjAaUhESoLgR3oI9t/ET3Hf8Ce4Rfz+PHKcSpvOhQsB02RKlrBfGQKFhFdIWvaFYnPC8FyXIypx4kd/jaOkHnv59/Cx95+w5KMps8GrN0OVgjCzDRUAgE8dTJOnDBbN6zH0cIcfM23OXzzl0pRmZUHk5i45Dcw5g4w9MBf4sh6qYe6HlqR5UYMhXG3GwAlM0Eq511cQTtZUgKtJDlRrgRaShFf3oqysTfEDTsHuOPZSf7VfhVbX+CZbPskUMRQagbSoS6DG3cP8fWjOn9iv4P1r/pg6XPI9e7m9OUfIHb4Owzf91HW3/GbBMcfZPLC93L8mo9x7Ia/JZo5ylVPfZjYga+TGbi0IkbVh6HK7HPWoRdJoNWA8tMoWA5Pn0xgOS6XrI9VbBc58RPM4BD5WKWHgK5KpYFNCEFWCqJYlSSQZqXIyaHGZsdtViuaIrFjMExvWGcgYtAd0ghVrcr5EtSwrrBtIEykbHUtbCj0LPMNv9F7GozqC8ZEd9LzZyG0Uly2ikYmlPnoJi863Vmamd9qh548Sq5nJ7C87WCBqScwgwOY4WGE00Y72DmqBAJvzOrkuLUYE8yZnT9Pwejl3cp3+dL9Y0wl84wEvfFVGG0ogQyFY04faupU6Zpp1RxadvJIOGjpUxxStgDg5tojgdLp+ft3YPqp0r+l/BzByUewhIJB/qzzzPEXPHJ1JhRQaTwKtG+ofYZhWybDP/4N9jzx5/SIFGLnzXXHoXZalISAvojGpr4QmiIR0GR0RcKVNVxZX7R6tNB/gZdAJjUnSm7YOcDNFwzzn4/N8MDgmwA4fdnvIXCJHr2NTd+8hbfyfcBTAi00dpY/W6/e7AqoFbVCM3QFVAxVrmil8tHpdN3ye1ujhVL/vcuSQJUF8kpK+p+DWGi+0u4Y0slabDnQzvxMlgSj3Y3nwf7veXb76wlOPcHHM/+b7Nw406nKesZXA+XqqH7SeYujMxlm0oWWzws8xWT3w5+mgIrk2mye+hFHptML73iW49xcAlyFEGYGV69D6BTx9KkEAdVLDPB2aH5hxTe/gskLHkMuJEkPPb/p9q0M7roiMyu881Mz42TYBoBhJ7E179+NJnPLAb91xnWXRj5V7/uOqzfRG9Z4xQXDpQHZL4gU2StmMvnKG8ubLl/Pkek0b7h0lA09lTewqQt/hcDMXvqe/FcATl3xh0xd9Kul5yennqD/iX8E8Lyd6iCgSuxz1nFz4j5y+QworftELBfsKknK3QenUCTB+SNRlMwkwjExwyMEJh4lPVz7+wtUrXZlRYiQlcbXQbiui26nyGthuhsUjO2QQELAxjpxq74RXyZvIwQVRIsqS2zqC5HKW+RNm+6gtmjFWavQFKlkMOojbCgMRA1SeatktCpLAk0RZAtl0b5L9BRqB6Li30t73UYx1IWuzed+TLxjoqZOUtj6OhxJW1YSKDTxIJmBy5AKyaZtZ2rqBBtv/yWyfXsAEPK5u9KlSKKjhfNiiFhXMYhvfz03PPFvfODYMbaGda5ep8BhkNppBzNUDlt9CMVCTZ/GjIy2HBMvO4XSRX0ssIudqf3QphIom/EKYgcZY2qeBApOPoZwHcYil7A5+RCJbJZo6OzxBvIFHtk6EwrHcUnkqkmglTirzsGdO0bfwf/hzYAtFFKj19FTZ8xtdbztCqiMdgdKk9mekIbrusUWMK9mW2yiZOrCd3J6x9u8tiXZiz9vpI59zzWbOTqd5m37rub9513E9Re+nL4n/4WRez+MZGV5a1HhaGtdC068K5VA9betp8RpBkOVK5TlAU3qeLt5q55A/v9VWWqqNl7D0uApgTp/zNK/V6EuqB0SKFJlPF4N/7mZXW/HUSOs/+nv8svKd3jixOVcXxEXn6c7qJIrRsMP3f/nWHo3Uxf9arFmdmraNxdCeuIQPce+zz/ar+HN4Yf57b4n0Dd0t3WMsxFrlPAKQZhp7CbtYE+eTLBreGHZaumHLSROP///48S1H2Nu+y0V21SvwrRqSJvWvRYwJTNRktkZVgJbj3k3txUkgYSYb9Nainy1+vPsDmm8/apNFSsy5ZPUeqs93SGNv7jlQi7fVF+VNXbD/2Pvz9/H4Rs/X9MSdfr5/5u9P38fT//CY0zvfkfdczRUmf3uOgQu7vTq8AUqX839yb5Jbn16nJftHsJQZUZ/8ltsvO2dyLk5tPRJsj27avavlmHm5SC6M8+qZwo2YTKYSuPUOUkSFd+Nv/qoq16xuaE3yPbBMJv6guwcijSUWZe3pdVrmQrrCr1hfUV+3/WK41iZOklTJGJBlfOGIvRHKpNHVlIJVG2UuRQ0aiN9LsTEa8kTCNcmH92IowYQ1vK0yyiZcbTkGJnBy3FlvWk7WOjk3QSmnyQ4/iCukFfn8mKH4LWEdbAdbJFE7Ny2W1Cx+E3lq3zP/TU23+8lKbajBArrCkedfoCSObSvBErm6sdkg3cvV5wCk9p6UsNX83jXDQDYmbm23kMu5xGYM5HtBGaeLvWuBqaeAOB018UApFLJuvuvVpR75lQja9o1k+ZWfZhWC5zkBABfU27mxLV/haNF6i4MSmWqOf+SURXBecMRBrvm66XukFoxVnYH1VI0ur//YpVA/mG9MTDatHVKlSU++uo93LBrHZ98posnT6dJjb4QycqS03rQhUfA2HrXgguY5e+nU7cLo4o06g11VgUErZFX/sM+CbSSi0nPNbTiCdQuFmpVPNMQbVzqC5Ggpc9OCOa230J66Pm8VH6Yx0/EKywqcqbD6UTOm6e6Dj17P8/Ao39bUV+ZllvTjtkMh/Y+ioTL8GWvpHDe69CO3wPJ8dbf3FmKNRJohSBZjdvB4lmTsZkMe0aiCx5nJBZYcJDqClRGW7Y6IJt6Lw4CJTtBzrQROGim1w52Jnxq/PNeSjvYQuctRKVSqieo1ZXxLgQrNOz109c5Vys0jG00ZpQNVWbM9Vhud26s7ddeDrguTCRy/PXt+/jrH+xj90iU91yzGWHlCJ2+j8DMXkKn7wUg13N+zf7BKiNyUwlhOPMqiMlknojI4miRppO08t/uxt4gw10BtvaH2dgbLMmuI0bztI1gsSVssCrO9Uyg3rVYbvi4vifA+p4gkiRqPsOVVHGXrzgtdRItN1Bj5Ivqn/L0rHMNWjH9rBDdgKMEl00JFBx/GID04GW4it40Il6PHwI8U3dXUlbh2mLnoEiio+TpYo+V6z2fbPd5vEO5DRkHueAlI7aTDhYxFMZcjwRSU/Mx8cmcWWGWWY10wUIXJkl9iMOv+DKT0QsBsLOz7b2HrEfiJ7rOQy4kkHNeWqQx/RSFyHrMgNfqnErGsR23omhfzXCK55m3nJpzrucD4zicNe8N4OQJz0g8uetNxHd4ISPVwRs+tOIi44beIEFdZiQWQJUlBiIGYUNBkUXNRM5XUMP8gmOj4y8Ev9bz67aFjqMpEr/8wi0EVJkfPzPBzI6fIzX0fG676P+VtnG0aEs1pL9JpzzEDG3+3P3FnU6joh1sgW0k4bWDraSi/7mGTnvQ1R5/9X137SqB2jlWcuNL2CpO8Ozex7nl7+/msbG50nNTyQIFy0GPH0I2U8hmkujRWyv2TzcZF6sxN3kCgNH1m4hveSV2z3ZIHF9gr7MfayTQCkEy017MXx347ucXV/mtVCOoy0QNte7AWD651BWpIg2s1V7vYEAnLsVQM+NkCzYRsggcbG3hlZTlgP8+l0JALXTe1Z+NIkts7Q8vq0FwNQxVJo1HULj59npQWzUrbBc5y+axr3+Cdx3+LW7aPcT/vtlL/AiOP1BSGfTs/by3bW+lEkiSqFnBs5QwgTIS6OhMhjBZlGCs6XnMt+qJitXGiNF6QRXSFDb0BtsyiVsuVP/edFWqeMxPSfO3LZe0nq1KIKh/Ddu6R4z6E+JzET7BVYhsxFUCSOYykUATD+HIOrne3ThyaySQbGVwJfVcFgIhS6KzxtBLuBhmdr0VR1I58vL/YGbHm7H0GHKbSqCTbh8uwvPSwjOznMuY5M3G40A6b6NTwJE9JUIgECDraljpOazi+NHID6cchaz3283EPENo/3cUmH6KbO8eJN1b5EonExQsh3wbq7BnCq47327kupTaC3yY1cEBJ35G/yP/76wyhz545AgAu7dtBTx1T6PJpN/SFdYUtvSFKqKYh6JGcYFxYeuBxbaDlatWoDUyyVBlXrCtlzsPTDE9cDWHX/lfHNR28rTjLTK0uog5TwIt6tRr4KUOev/uj9RPQ1oqymuCVjyBFFlaVpLiuQ5B5zsmKjyBOnrkzmChtyuEpx4MaNKC4SXV12miGKTzgU2HUWTBvYema/YJTD4GgK0E6d7/3xXPVS+OZAoWmUJ9Yig756l+jNgg+e6dzLzjp7Dusqbney5gjQRaIQgzi6MEah43bYf/eeQ4u0eibB9sXBCGdJnhLo8oqCeRLVcNyLIgUjbhbXVAjhgK06K71A7WI7zJmWV0nxElkN8KtJRBy78hBzSZDT3BmvdRr1VOkgQbe0MEtJW5PAKqRNotkkBVMeoLYTbTnvlZq/js3Yd5Q+5rXCM9wa9eNVgiXcIn7sQVCq6QiZz4KZbRixUYqNi3nMjwUdBihMmgpE8BcGwmQ1RkMMKxpufhO/MvZRVNkkRFMXsmUa0EWkgeG1Tnnz8T1+BSkvnKUY+MdWUdVyhIbf7mzyboiaM4soEVHCwqgZYnHSw4/hDZvgu8z3SBdjB97kDp366krMrVxU5BlkRHFXRLGYtmdr2dvW99iPTIVZy49mM8+6a7kRYwwC1HxFAxUcgaAxjFVL28ZRPPmhSaLAak8hY6JigeCRTSFRIEcXOJYruTy+n4wm2KZt777eb7POWnnjiMVEigJ46Q7d2DrHuLXJlM6qwhgaqDGKrJsPJFlsCJu9h027sYfOgT2NbZYWbvui6Tp73VbCPmKbWa1YOqLKErUt02yoAmL6imVWQJRRaLngiXlEDCJ4Fauz5etHOArGmXJomJrMmX7BvIhT0FZkskEEuvN6thqBKGKtG9DCogqGzFafQW/e9RkQSaLK0pgZYRQojl9QRahV/dQteLKkuMdgcZidXOf6tR/ds0oxvJde/geh5k11CUJ07Ea/YJTD2OowSY3v1Owid+hpKZb+FK5a2SajOeNTk4kWYqWX/O5KQmKKDgagt35JxLaKk8EkLcKIR4VghxQAjxBw22uV4I8agQ4ikhxE86e5pnOWwTySnUVQLd8ewEU6kCP3fZ+oa7RwMKW/rDpcl1QKsdGMsfUyRRajHxiuDW7hwRQ2XS7UYtkkDrxBQAZnh0RePhfWhy55RA62IBuoK1CQ+NVFJykQiq99qdvhEbqkymqASi0J4SaDbd2AtischbNvsf/AEbJE+hVt6uEz55F5mBS8j2ehOBbM+umg8kVOf3+VTfyzFdmYFH/xaAo9NpoiILRvMbblhXiAXVBZOzzhb4K60+wgvIY8uv65X15Ors8equAAmBrYWRzXOXBNISRylEN4AQOEpgeUgg1yUw/STZ/osBcGSjsRLIsdDKPJhc6dy4rhphOZVAWwdCbOgJtm5AKQSOH30tBI7W2A+tHq7Y1I2uSNytX0P0yPcJjj+EaXlKlkKdViYf6RIJ5I0xYV0h4YYgFydr2qQLNsmcVVIFNUIh7ymB3J4duEJBix/CmN4LQK5vN4rhtbblMinytk3eWlhddKZRHYBQbbTtey5l4lMMfe/dYFsIXOw2TbXPFB4/HkfLz5CTw7hFJVgzewBVlurWlz4W9KyUxKL9gKBOO1iLrfm713UxENH50TOe/1E8a/JlXsa+n/spiNZ8WvwSt5PjbMRQ2dgbWjaivVwJ1Og+57djC+F5LK55Ai0fBJ1XbFemg62+726hU/IX8+stDtceq9Y6YG7LqwmfupsbYyc4OpOpSWsMTD5OtncP8c03I1yH8Mm7S89Ztksi5xH2U8WEsUTOrDvWydlpUnL36mTalhEL3mGFEDLwaeAm4Hzg54UQ51dtEwP+Dni167q7gTd2/lRXJ1rpfffVHdWeQMmcyefuPcq2gTCXbIg13D8WqExvqU5eqn5MkSSCmoKqiFKPdyvwYuJjKJlxcqbNaJEEKkRGz8jAoXSABJIlga7OFzbVceQLFUQjsdqVr74Ox3z2RXQyFI/ZhioiZ9oULGfB4r1dzGVMXiN+Vvrb9zXR4kcITD1Bat01ZAY8mWSud3fN/vWKSKVnM1+xr6f7mS8xfM8fc9PEPxMkCy2k44zEAi0NIGcLyn9zwSbGl0BFW+KZiIjv1AS60eqjo0aQzvF2sHzRANtRl8cTSFhZJDuPGfD8YpopgbTkcSSnbCVMOneuq3qQW5wAtny80oTKK2q7gio7BiKLJqnbObVYUOMluwb5velXUggOse7O3y9FxbsuDZU3qbznCVRBAhFE5ONkCzaJYlHdzFcIwC4qgbRQhHx0I3r8MIHpJwHI9u5GM7xFrnw26SmBmrSorRZUl27VyiBfYXX6J/9MmAzfD78WACdd25awGvHDveP0iThusK/0WKjJWKrJUt36slUosrToVjCYvx5KBtMtHksSght2DvDY8TmmU3niWZOugIYoMjutjJ1SnQnoUjEYNZZEii2Eyoj4BtuU3QPVNSXQsmI5AnT8o61WbmKhGrHd+0H1eD29+12YRh+3TP8D4PLUyTIC3jGLC2AXkus5H1uLEjp1T+X+qTzZgl1KfXZdmMkUSOWtknF0MmcStmbJar1tneu5gFa+necBB1zXPeS6bgH4MvCaqm3eAnzNdd1jAK7rTnT2NFcvXNctJWk1glP0eXFUTw6XKVg8eSLOp398gETO4n03bGvI8ApRa6ZVb5DWFKl08fg3+eGuAJrc+oAeNVRO2jGU3DSFQp6N0iSukDFDwys6AfXhv48lGUMLUdFKFNGVipvpQn5JsaBGsMofKBZUiQYWP3kqf/2gLrOpJ4iNjCnpbSmB/KK92rdgqZhL5XiFfC+He68HQE8cwZh6gq3feh22HmVu62vIDBZJoDrJYPUImzdcPsqXA28i5yp07/0C77C/ioQLeteC53Mm2qCWE77PgSQ1UMiUoTxhZCU/h04XHo3O3dYiyOdqO5jroiWOUYh43hSOHFgWEsj3VHI0j1B1m3gC6fGDAKVEP/ccJ4EUSep48SyJSrWDJAk29AbbblldTKvlLZesY9bSubX/nRiz+ypa+xq1hPntYJLqLTREAyoJN4hc8NrB/Aj0ZG4BEsj0SCChBih0bUaLHyY48TBmoB8rOIgW8JRAZjbdsB2sXgz7mYTtuCUirfR3GSzHYSqe5rLx/+JeZxc/zHl+SE5mZkXPc7E4MZdlSEnhBPtLjzXzxlMVsaQFF0VemhLIvx5KZsaSqPTFazIGvui8ARwX7tg3WSSB5q/HVibmguU19V0OtKISEVLl51adWraGzsFrB+uwEmiV17+ttIO1g+pr3NHCTFz22/TPPMRHtc+xb+xU6bnE0SeR7DxfOt7Hzw7OkB56PqFT9yCsHMHT9wGeJ96peKUCezye5/Bkmomk1wZ9eCpNn4hjB9dIoHpYB5RHFh0vPlaOHUC3EOIOIcRDQoi31zuQEOKXhRAPCiEenJycXNwZr0JkFihsSiSQEmLfeJJf/+Ij/OH/PMFdB6d50+Xr2drfOCEkaqg1NwGpqG7x4SdcqbKoYKK7AirdodYL05GYwUk7inAd0jPjbFKmMUPDIClnJh2sE+1gslShpKr2h6lOYKqHymLCa99arBpIUyS2D4bZPRJl13CErf1hwsXjm1IQ8q1PiH3n+2oJ+1KRSs7RJTJM912BGehHix9l8KFP4AqJg6/6OoWuLSTXv5ip3e8kseHFFfvqqlT3++oKaLzrpmu4tvApbgx8kV8rvJ+CHMTu2drRcz8b4PsctOJ3UB7bu6Ik0EopgbQw0jnaDqZkxpHsHIViCpqjLk87mN9OZxdJIEfWEK5TMbn1oc95JFB6+CrgOdAOJnc2HQy867De6uZC/l71jtMudgxF2NYf5o6ZbgDU9OnSc42UN347mFA9JVAsoJAkiGomMS0X0/Jj5puTQE4hh4UEkkK+awt64jDRo7eR2HSj936KnkBmLkXBdmrawSzb4ch0uoZoqUY7sb5LhTvxNLv/43xiRUPR8qHUdV0s2+XRH32JUTHFw8Nv5lDaG/fds4QEmkwV6BdxrICnBNIUqSlJo8nSotJRy/dfihJIrrPwVz5OjvYEOG84UvccR2IBdg1F+OEzE8xVkUCtGUN31j9sJVD+vhq9RbmKmFjtpMLZjuWo03z16WrEQm+3nu9q8+PVbj+z881M73obvyDdytsP/g6O67L3VILbfvBdAG6bW8c//vQQ8aEr0RNH2fiDX2brt9+IFj8CeERQPcxlTEzb4eBkil6RQAr1193uXEYrt7x632D1KK4AlwGvAF4OfEgIsaNmJ9f9J9d1L3dd9/L+/nPnw15odcstqjsOzDr8wdceRxLwwZvO4+NvuIg3X1HrBaSVpWL1RbSa56Gq/at4kSmyVMO6tpOi9MoLh5lwYwCcOH6YncYchfCod+wzMHBIRVPPpb50ddETKxJjuirVNdmuRnkx4a+ShXRlUQlim/qC6IqMVExqgHkPnbwcQJitK4F800qzw0VzKjEHgGyEKUQ3oscPEjr9AImNL6MQ80gbRwtz6qqP4FQpeRpJyWUh2DYQ5sYrdrF/usB3nSv50avvx9r28o6e+9kAv4BtNUbXb+lc0XQw//8deslGiidbDSMXkp15kVWGUjKYTwIpQYTZeRJIKn5+5UogoG5LmB4/iGX0kOvxFA3nuhKoegLUkWNKoNa5dus91vw47Z+XJAkuGO3iwWnvO1bT86uijTx40jkTnQKyTwKFNBJuEM2qvO5sx21ay7hmjgJePVKIbkKy80h2npmdbwYoBV/Y+Qym5eI4lcbKp+I5LNtdMIlsPJHDWaH0LTF9AMnOMfrT3yVy9DasMhbIclzuOzTN1ZNfYVYbxtj9CmYoLtidJSTQdCpPtxvHMrwV7oVqFkWWluQ7oizZE2j+OD784/mpZaossb4nWHdsunHPMGMzGQ5MpCpa/1trBzv7lECV7WCNPYHWWsBWDstFAq3W32Y9H59yLKR2r9m+3ucnKZx8wZ9x36Zf4yL3Ge5/5GH+/Ht7uVg+jKlGeMNLryWeNbnT9OqayPE7AAifvLPiMGrqBJGxH5X+dl04NZfjyeNx+kigRgfbOtdzAa18O8eBcqZiFDhZZ5vvu66bdl13CvgpcFFnTnH1Y6F2MJ8E+o+HJtnQE+KTP3cxV23tY+dQpO6Ne2NvkC39IbYNhBtKc8slvT7xo0hL8z8YiQWJDXpfda87ywiTmBGPBDpTZnKqLHV85SKie35Jrfo4qLJUagkrVw4NLJCUUY2AJtVVf/geOnkRaKsdzK+vOx1Xm07OAaAGIhSimwhOPIRsJkkPX9lwH79lsZGyyk+xeP2lo2zoCaLJEkPdkVU7sC0n5pVArQ2Ovpn0mTCG7tRLNrovOVpkVSqBBh/4i5KceLHQEl6MdyGyAcCLiF+WdjBvMm+rlSRQvZYwLX6IfNcWzKBX7JzzSqA2ghFahSRE3dXN9lc8239tWQjOH45yyol5r5kpUwI1WAxI53LIwkUqkkBdAZUEIXQ7VWOKk8w3CRqwcpjC+73ku7YAkO3dQ67vAgBczfM8tPPzv3H/nCzbKRl6LlQvJXNWqUVtuRGf8RTpBb2X/sf/Aafs8zBth5/+9Ic8X3qG9EXvZlN/F3NukQTKzq7I+S0Vc8ksETeJFfBIoHbVau1CKaaLLRbV7WAw75sXMZTStWyoMgPRWjX2DTv7ee3FIwDEFqMEOgvLkYXGaiHOvZb61YzlINwEnfer6iSandtSPYHK0XWZZzd88r6vkcia3BA5Tr7/Qi7e0MNwl8F/HAxT0GLkol6NEyoziQYYvufDbLztXShlCtp41uToydPowsQJ9tMdUpekhjzb0Mo7fQDYLoTYLITQgDcD36za5hvAtUIIRQgRBJ4P7O3sqa5e5E2nqcR5/5gXWRcMRfmnt1/G+p7GUXma4qlTQrrSdEWlfLLtX2SKvHTGf/cOT8B1WTSJkR0/o0og8CbAnVZACCHoCWptxYb3hjSEqDQ9DrepBmqkyvJjO3PCQLRFAnm/uU7L57Npz2NEDUbIRzd5rSVAeuj5DfcZ7Q4Q0KSGpKX/HaqyxIdecT4fvHnXc3aFyi+SW42/VWVpxckyvxjvVBpFo+95NSqBpEKSgcf+jq7D313ScbSUF81shr1JSSkifoEggXbhG2vbxWhTpwkJpM8dJN+1FSs4UNz5HFcCSZ2f2MmSQK/jtae22UuymGtaEnD+cBQThaTSU6EEyhbsuiEBuZxHykiaRwJpikRODqO4FsKujIZvJJsH7/dkCu+3leveiSPrTO1+Z+n5QNAjSNyyMcxXFs1lzdLPvpnaKFuwsR23JgFmufDsYY+ofVS/DGPmWewyf72pVIFX5b5JQQoQP+9N9IU1XD2KgwTZ1acEqg4ocV0XJzONhIsV6POUNMtMAkH7K//lkEStV1Z3SCNsKDX1Wn9Yr7BF0BRPxfSuF2zmvddt5eW7h0rPtZQOtgiPrtWAei10Fc+LzhPha2iM5ajVJMkjglYrmr3nthdHmvxW7e4tTAc281LpIW65oJeuxD4yfRciS4JXXjjMMxNp3pD8HX4/+GFSIy8gfOqeUr2lZCaIHvsBwnWIHfx6xXGT08VxNNzHSFegJkDoXMaCd2vXdS3gfcCteMTOV1zXfUoI8V4hxHuL2+wFvg88DtwP/Ivruk8u32mvPmQKVl0Jc860+Pc7vI/iPS++gJGuAINNFCStqlMMVS71L88rgaRSa9hiceGu80gR4vXaPQhcChFPGXSmFBtLVTc1Qm9YbxqFWo1YUGP7YLgmWWMkFqg0mla8Fr7hmMHWgVCFqWEj0kkIQVCTyUnBttrB/FXLTiuBCkUSSDGipVaWfHQTVmio7vYBTUaRJYa7Ag0Z9PLvcKjL4LKNnqfFc7E4kYqS+Vbjb1W5vs/SckOI+r3Ai0Gj+9JqVAJpicMAyPm5JR1HTZ3ADA6UlDmOGkDgNo5vXyTkUjtYcRLut4NZla8j5edQc1PkY1ufU0ogpcNGH3KVWa0Pqc2xajHXtBCCaEBlfU+QCXpQ0+Ol51yXuuRJIVckemSv7lAkCbOoGpPz8Ypt0/n6dQwAVg5L8trB7EAve9/6MHM75oNgw+GiSqas5XE8kSOdt5jLzCfSNWsH88MOkjlrQe+gTmBi4hR5V+X7s6PIZhKRmLe/PDCe4Ebpfg4P3YijdyGEYFN/hKQIrUolUK7KEyqVt4g6cwBYgT66Q9qSCJqVgFSMMa/GaHegJiBFCMFIbH5BtT+i0xVQEULwiguGGe2eT+NtjQTqfOvoSsB/bw3TwZ6ji21nCs9FJVCj60uIDrWDlcHacTNXKs/yKxtOIVyLbP9FGKrEGy4b5Q9uPI/B867mG0cUDoUvQ8lNo8/uAyC2/78Rrk0+soHu/f9dIodypo2T8rKsArGhGt/Ycx0tfTuu637Xdd0drutudV33z4qP/YPruv9Qts1fua57vuu6e1zX/ZtlOt9Vi6PTGZ46mSCe8Yqwk3NZnjwR5/anJxCmtxIXjkQxij40jbx+2kmd8gkJn2lV5aUXvEHDIH/eaxhKPA6AGR5FiPYlfZ3CcqkgFlOA64pcs5+hyox2e4WIELCpN8RwV4C+sE5QU0qFiKZITUmnkK6QxWh5Quw4bmll1exwRHwh66cNhSkU463TQwu3goV0pWnKXT08V2XKhtq6gaYmS5yp2r1T114jlYStRpDsfMeJkaVAj/skUHyBLZtDSx3HLCopwVMCAR1vCasxhlbqK4H0+CHAa+WxjR5coeDK536x0+5K5EKQJdEw8aSd11qsEghg93CUo2YXuZkxplPz3/NcHRIoX1QC+QoxVRbYqqca85Pl5JynbHFdSBfqG0Qrdh5bmm/B8T2ofEQCGjmhV5ifu66XvJItzI9RecupUa348Ekg121OFnUCYzMZ7PQMGTnC46aXdaJNP1N6/sSpU4RFDrfvvNJjm3pDzDohxCokgarb7KZTBXpFUSUY6GMgsrgwi5WEJOobuauyVHcyGdYVukMqkuS1f9Wrq9spic/GcsS/jzRSigixPAupa6iP5VjYlDq4ILccaPSW200G847V/J0mNt+M5NpsvOeDAGT7L0KTvbCeF2zr4z3XbiaiK/zzce+eHj55J7guPc9+mdTQ85m68L0Ys/sIjj8AwLGZDD1490kp7HkVBzT5jM15VxrPjXe5AvBrmrHZDCfnskynCrguHJpME8RbiVOD0dIkeTBioKsSsaDKSMygO6Qy2h1oK57T96lRSu1gS1cMSALmts+v7hUiowQ1+YwpNlR59Q9gsaDGecMRtg2Ea4ymw7rC9sEwOwYbJ8CBd9PJCgPJzNSV9FfDrvIu6CTsXFFZoIbIx7aR69pGfMsrK7Ypv0+3IjFv1NK3kmbHqwlhXWn5mlKVM7NCKS1g+NfWsaT6x/LVK1IbCrjlhk+WKB1QAhXC80GavnGuZHaWBJIKCVwEjlqlBKpq9fGTwfKxbSAkzOAAnONKIFhae0rd40m1AQw+yh9vpBjysZgx1b8PXLaxmxN2N0r6NP961+HS85m8XdMeXMh5pIz/u1BkCdeYJ4GCp+5j1xcuxZh+Gmjs2SM5BRxZrzsea4rnd2cKA8WuND8v53vW/fR36dr/PzWqFfDGMT/xEpafBLr1qdPERBo13EM25rXBGzPPlBRIc6e8z1Xv21DaJxpQmXHDiOxsQyLrTCFTRd5Np/P04RHZRtfgoiZkK43F+Nf46npJ8uLtqxdSWz2eJJ3dSqBmb/Ns+O7X0BirOR0MGrdRLmYBZqHrNdd3ARMXvx8tfRLL6MUMjaCrUqmFK6gp3HLpKN8/rhEPbyV26FsET92DnjjCQz2vZGbTK7GMXjZ/7630PP05jkynS2S5FBkovU47oUpnM9buDB2G63orMD6OTqcJC+9vv2cevAFnW3+Y9T1BesM6o91BukP11UGNEAtoDHbppUQmRapvWNkOJEmQGbiUfHQzrpAxQ8MVJtQrDVU5M60w7UKVGyeNGaq8YK95SFNIuwaSmW5o8FkOv1DtOvQtpOTpjqapOGUkkKOG2P/GH5EafWHpeU/N5t06JKmxGXQ5Gn2HZ8N3uxxop+f4TLaDdbIorleI2kXiQlpFvkDzSqC5xR/EdVBTpzArSCBfCdTZhDC5kPQIoKL7eiNPID1+EFcopRbfXO/uivNbQ2toZhpZnhA23GWwYyBCb7j+uL4YAty/Hq/c0ss1l15It0ixd2yiwtC42lTZKho1+woxRRKYhhcZrmQmCEw/iXAdoke+D9SPmnccF8XJ48h63XadcFENasoBlCry0YeSPkXPvq/Q/cyXODKd5th0poLomUl7C2dqcgxch9wyR8X/bP8UQ2oWEeimu6ePU/RjzD5bSgjLTx8FwI7Mq/mCqsycG0bKzVLo8OLLUlFNmk2nCvT5k5vo2ZHGKy1CtSJJgr7wvMppY2+IwTLT6FavM2mVT7Qbwf+4mo3VzxVVw7kKb/6wen+cjX57iyEfW7lexy/7babPeyuzO94IQqAVk7H9boubLxgirCt8XbyY4MTDGHd8hIQb5FceHuV1//4UL8n+KcejlzByz4fInXiSQblogRGZv08+V+Yma3eGZcbRmQxDARsXgRGoVIMsVV2jKRIDEaNkIN0J/xy5SDmPX/Y7zOz8eZCUM0oCPVcGr6Amk3J1JCvTMgkkZ6fY8KNfp/fp/+hsQVrw2kscJVT36bChlAivVgguaBwj+Vy50VajncGxkRR+udHp1ad6k0e/pUReRb5AWlEJtBQSSMlOIjmFkrE+lCmBOtwOJhWS2Nr82NIoHUyfO0Q+urGk/jn6kn9k4vqPdfRcngtoRPYDqMX7WVCX6Q5pSJLnW+K3DJdjMZ3bomwfJeYReKH8BIen5pV0iaqWMLNQpQSSBPliYp2WOIqW9MyRI2M/BOqnjGVMG12YuIpR954dKhbflmygudm6fj7hE15cb3DyEexCjnjW5MBEitNxLxJ+OlVAix9i51deSOzA15ddCXRyLkuvnMbWY/RHdPY669FnnsFPiZcSJwAwQyPz71NXmCWMnJ/DtFePEsiynZrvbTpdoFfEcYSCHOg+Q2fWHjoV0z4QNUpkbas1huDsVAL559xsPtHpltg1rCwEq5ugrJvqLkFPm8IG8Oa1clE53lBJKyROXvN/OP28D5b2gXk7laCm8MoLh/nrycswhcq6zF7uDb2Y37rpIl590QhydIQ3Tb0HSwnx0pP/wGYjg6V3oWrtJT6fC3huzLDPII5OpxkwbBw1iNFGq9dioMiNZeqtwh8w41tfzclr/hwh5iM6zwSWEjd6NiGkKyQdA8nOU8gv7I9iuy6BKc9wXEscYbbMeHOphppSMd3FUYN1nw/p8yRQKyqg0nHrjGLPVRKoXRhn4DrwzAg7qASqM+v1fWxWTUKY65baweT8HLiLI1fVVHECGZ6fQPrXU8eVQGaqwp9lvh2sULGdHj9APrZ1/gFJQYjnxv21k2g2xvrPVfuvdIe0khG8fxksRglUvo9ZNOr/Rfk2rrzt1QjLU+BkiglbPuyC97gj6yWjTiPczYwbQUseRUt4JFBw6gmU9Om6aZOpnIVBAaHoda9jfzxwZIMAhbotZZETP/Pev50vjV2uC5PJPM+OJ7Edl65D30a4NsHxB5edBJpI5om4aawSCTSKPncQ28qTMy1CudNYQi3Fq8uSYHNfkDk3gpKfbalte6VgOS6OUzn2T6fy9JLAMnpQW0yiPNNoZAy9GPjqoFiwtYlopwiolUZAkxckCFa7IfgammO1m5ZXn5sQsKUvvCgBQUCTOX8kyvnDUbb1h1siv/x5YkSfV9i/6sIR8mqM71jPA2D4hl/m6q19vPf6rXzwpl3MEeEz4nU8z7yfVxS+jxUYeE7OR9buDMuIVM5iKlWgT7dwlOCK/MCWSppUn+OZ9AOCszOyczEIaDIJxytWzKIxczM4jktg2iuk9cRRplMF8pbNVCrP0ycT7D2VKEXxWrbTNJa3GpKVIS+MymXnIoSAsDZPAgXaIAir5w4dDu05p9FMfbBc8NrBOnc8uZ4SaJW1gynZSWQzRSG8HuE6i04u05JePHw9JZDoeDtYAludJ4HqtoM5FlriKIWuLRX7PkdurysGVZFQFVHXT8BP/hyKGgR1eZHG0PP7WEGPBHqX8n2GsgfQEkcAj1hJlrWE2UUlkGYEShPsroDKEXcQNX4ELXmMfHQzAJGxH2M7bg3BkcyZ6JigBmquY0kqI4GUIAEKZPJV5tKuS+jEnSRHrgEgePr+iqetoqqm6/B3AQhMP4HjUJeQ6gRypk08axJykp4SKKyzzxlFci3cqUMcmkwzLKZI6YOlcbAvrNET0plzQ6hWmkJh8Wb2nU4+849X7g84lSowICexg/1nDQkgSfWNoReDWFBlsEtvWY0ghDgrjaF7gtqa5885jk4mtS4Hqi/ZvjbTl+tBkgSKLC240CxJ8yRnQJsP7+kJa3zq5y9h+HX/h7EXfgKGL0KSvAWagajBb710B/+Qfxn/br2c+4ffwuR1f7Gk8z1bsXbnWEYcnfEUFd1KAUddGRJoqaRJvfSrNSw/QppM3PYmb2Zu4Ymn5bgEpp4APEm/67gcnc5was5b9bVsl0NTKQ5MpNh7KsmBiVQpeaXpcW0HzU6Tl+u3gvmkYKCsHaxVVBd3z0XWfbE4IyQQjRNHFgO1zvdtr7J2MK3oB5QZuARYfEvYvBKonidQ59vBHC1a+nteCTQ/SdWSY0iOSb5ra83+a+gcFEnQ00B50BXwUoy6g1rJyLZdlN9CfSVQ6bVnD5X+nczN3+sd0xsTouFIKX63K6hy1B1Eix9GS46R2PASCqFhwifvAmpbwpJ5Cx0TSTFqInzLFwJcNUBA5EhXLTqcPvAQam6KbznXkA5vIlRMZimHFj9MYOZpLD2GMfMMOCY5a3nUQBOJPCoWupMptoMZTNHlvYfsNM+OJxkR06XrVwhPzRU2FGbx7ll2evEJYfGs2VEiyCoeq/x7m0rlGZASWEbvWRUR3ilCQwjBQKT19g6v/fns+Zx8SJKg/yxIflvD4tHJkI7lQPnihCKLjiYRLuSfWS18iBgKhioxGDUYjBoEBzYxt8MLOwpqClFDRQi4aksvn3rbVUxe81Hkl34Uc7RxAvK5jDUSaBlxdNor9qOyiaMEz4pVhurVybUVhpVBUFOYs73Jg51NLpg8Uq4Eks0kcm6mxtDTcahQAM2mK9tD6iGRswiJPJZc62GhKRIjMe9xWRLoamMz7HqoLrDOpsL0TOPMGUN37nj1VqPnlUCrgwTS416CVmbgYgCU3CyDD/4V+uyzbR1HS53A1qIVbVrLlQ4mt+AJZEw/BUCu57zKnVf1+uLZB02WGrafGKrMSFcASRKEdaXko9MOysdnR4tgq2GSukcGxU/O/0b9mHfXdXFN73cQDoVK9+tYUOOoO4iROYVk5yhEN1Do2oKW8hRs1SRQKmdhiAKyVusJVJ5oKrQQAQpMJCvNoZOP/A8Af3dslO8mNqGduJeu/V9FlF0LXYe+DcDkhb+KZOcxZvfXNanuBMaTObrwFulsPUZfWGPOLabrZWZ5fCzOOjGF6PKUfBFDQZUlwrpS2s7JzCz69dN5q/QddQL1lUB5+kQcK9B7VtVxnWoHaxfSWaoEAugOPjeSjJ7L6OSCXKdRPi4NRPSOdo90LUACaXJtIvNA1KibWuwvYkeLSt2IoXLTnmECmnxW3SM7iefmu14h7BtPEjUUDDeLowbPilWG6om59hzx5DnTCOkyc6Y3eRBmZkGjZyc7i5YcIz14BQBa8uiCrxHPmhUpYvUSxeYyBUJkseqYQm/pD1WQPrE2C49qk+/V3OO8Bt/Mu3PfUb3i3lcCSebqaAczZp7BVkNkey8AQJ/dx8Cjn6Lr8PfaOo4XDz9a8ZhbMobubDuYZwzdvB0sMPUEjqTWkEBrl2BnIUmi6ZhZngC6mBad6tr61PM/xLHr/y/TboTCxIHS46blYhbNglXXI/8l1SgpBrqDKkeceSVRIbKBQmgENXUSgHyVAieZ85RAshZoqgSKRCJEpAL/eudhrMRp+h/7NNnkLFfGv8ve4OX86dtfzgM9ryZlSWz4yW+x+euv8tR3jknPM58nNXwViY0v84479UTNeXQKE4k8XcIjnm29i66ASloqXkPZWR46MsmAmMOOetdwb9FfJmIozOGTRdOLfv2saZPJd+69+e175STQdKpAzI1jB/rOKtXtmZqMCc7emuRsmFusYfGQpNWuBPL+r8iC7hY9uFqFKksMdukN379eldYZDah0BVQ0Rap5zm8t6w7Vzl3WSKA1dBxPn0pw/kgU2criNjDZXW2oZnCfK+lcZxpBTSHheNJlyUwtmBAmj3utYPHNrwA8X6CF4Lowlc6TLdicnMsyNlurSJjLmoTIgxaquOkqsqi5SbZ7sze0+f39ldU1rF50OpGinvLLlQ1coSCvEiVQYOoJcr27sY3u0t8AkplutlsN1PTJClNoWMaIeDOJo9YxhrYqSaB8987Scz5WcV25hjqonqTOnvfzOOuvYlxZh161EJAp2B55I4r+QIqOXjQI3jYQ5oQYLG1biGzADI+gZCfAsWq8eFJ5zxNINYI15FW594Osh+jWLCbjKcLfeBdDD3yMzd+8hRExTeL8X2AgavDW17+ef7j8e7zb/ACFudNs+Nqr6Hngk2jpU0zteQ+Frs3YapjA1BMlr6B2UG9xoxrjiRwxfBIohhACJdQDgJmaZub0MWQczNAwsaBaWlUO6wqzvhIovTglkGU75E2no0ogvx3MtOYVQclkHMPN4wb7OvY6K4EzVResdvPdNTx3sdp/lT4J2RvWlsVDdiBicN5QhOGYUeMlWt2NUE54V6uBfNVqxFCJGJXPnSkF4pnG2ixsmTCTLnAqnmP3cJc3gThLSKDqFaM1JdDKIKjJpClO3sz0gjJ4ZcJrBYtvvgkXUTIFXQjj8TwHJlJMpwoksrXFfjxjEhJZ0CMVhmz12r7aLdb8Y0gSbOwNsr7n7LgmnqsQHS6KlXpO4EJga2Hk1aAEcmwCM0+T7d2DrccACE4+BrSvVJLz8dIxSodfhoh4YReQ7Dx2mSeQo1QpgVyXwPQTZPsu6NjrruHMoFGBnY1sZMA8QbrM9y1n2kyn8+gU24CVeX+U0e4gl19yGQAuAjO8DjM0jHAd1MwEmYJdQaYksya6MNH0SiVQ2FAqawQ1iObm+afRW9mef5JH9OfRnz3INDECF7ySsK4Q1GRec8l6Xv+md/G7sb8mbsmse+LTTGjrmRy+HoREtne3RwItwjenXjJZNcaTOfpkj9gNdPUy1GUQisSwkZieHGfInQTAjqwrtUCDN07Hi0ogKTe3YNt2PWSK55ct2Ivavx78drCMaTE2k2HvqQRazlMquaH+jrzGSuFMqZaEVDcLYw1rOONY/Z5AHonSG1o+bypFlugL6zXtYc3aqsNlRI+uShX3luGYUfGZPlcXpZ+b77qTsPLI2VpZ8NOnvISn80eiSFYGR61vtLvaUF7gSdKaee9KIaQpZPCVQJmKYr4eRHoSR9axQsOYoWG0FpRA9TCd9iaKjuMSz5rMZgqEyCHr4QpDNkNd+q3CUOYTxdbky6sfgs6uQKkNVlocNbIq0sH0+EEkK0u2bw+27pnEGjNPA7StVJKsNLYarnpQxtK7UVOnOnK+MJ+q5pR5AiEUXCGVjKHV5DGUfJxM/4U1+69dh2cf6n1lat82RsQ0e8fGS49lCjYTibyX6gWgVBbor7n6AlIEmaCbgtAwQ8PesdInsWyXk/F5xVom4xEmmlEZcFGTvKQGkcwM12Z+wGPha7kl/n6+rL6OZy/8fYSsYahSKTltfU+Q33jDS3n0us9wUlnPR1Kv4399+TFOxrPkenahzz6LZbffMpVpIQlzMpFn1PCuj0C0j/6IzmBXgDhh4jMTjEpeTSd3b6h4v0IICrqnEpSz0wu2bdeD79PnutQYaC8W0qmH2fT9t2Plc8xlTKaSBXoopoyGBjryGuc6zuZ2sDWc2/D8GVfvb1OWBIPRWr+45UC5556uSk3bqsOaUlIOVSt/dEWuMLBuVJ+e61gjgZYCx0H+5+sYueePa5566mQcXZHY0hfyjEDPEhKo/Eaz1gq2cgjqMmm3SAJZaVJ5q+kqocjPlVb/C9FNiyeBUgX2jSd5+lSCY9MZjs1kCIkcciBSMk8DSm0ES4GmeEx8qI5h2xpWHzpdeAgh6hYJthZedBR7JxGY8tR12d4LcGUdWwmWiJS2zs91kQvpusR/ZuBSguMPduR8wTOFBio8gRACV9JKSiC/pa2eEui5Wfac3fCvoXIFTmTdDgBOHt5beixTsJhI5tEoLigolUlJmqqQi27hkD3E9548jRny2hd9X6DZtEk84xFIswnvdybUeSWQqgiiVYU1agCBi5oZp2/Pi/mXX3we57/9b4g8762AN45EA2VG0kKwbsclTL/jLq55zS+RKVj8wVcfZ8LYjGxlEPHjbX8+OdNesCVsPJljSPNILqnYBjbUZTDnhEjHJzk/7JFeIjpcs6+shcgLHSU3Q66weBIIYCKRa7Jl69CP/pTI8TvQ4ke84yZz9Io4ACJ8drWDnSmczcbQazi34SXXnemzaAxDlWsXBJYJYV1BVbwPI7BAMI0kiRJpVM++oj+iY6gSkrSmBFrDYiBJuNtfTtfhb7N/76P86JkJvv7ICT5/31HuPzTNC/vThOf2evJ/7ewggcqVQGutYCsHrx3MK9LlQhrXpSLSvZoQErkEtuapFQrRjejxAwh74fSvargu5E0H//Cn4jlC5FADETRFIqj7UfCd+S0YqlTRZraG1QuB6Lg8vl7ftaOGV4UnUGD6SRxZJx/zYtTL27naibAXdh7hWnVJoPTQFRjxA3XVo4uB36ZW3g4GXkuYTwIFpx7HkVTy3Ttrz3UVF5ZrqA+fmC0vgO3YFgBSp/aXHnMcODmXRRcFXCGBVEnYyJJg+iV/zWd7f4P/fmiMlO4pRtT0vFLtxFwWy3aI+ySQYnhtohIMRwO1SjJtvsU3O3AxAxGjYhtdlQhq80V8Ofas6+Kv33Qx8azJT+Y84kKf3dd2lHrBdjCd5uTMeCJPv5LBFRJq0BtH13UHmCOEUkhweU8eWw2hhrpq9g0bKgkphpKbaqn1rBrlfn/pvE0iZ2LaTk1rdjuQMl77mpYaAzzPoz7hKYFE+OxqBztTWPMEWsNqhSj+t1rRTkpwJ+ATOq0sKHcHVYK6XPcchRBs6Q9z/nB0jQRaw+LwyweuJO/IGD/9U5Q7Psqhe77G9x7Yy78Vfpd/nn032//nJs8I9CzxBCp3oX+uXhRnAsHydjDLW4UsJ4Fm0gVyZQWnm50lQQjbcYlvfgVKPk7P058lMPkYfY/9PdFD365IB2oVk4kcQZFH6J6yoK/Y42t0QAkEnoloeaTwGlYvhOi8UqSeObStRVZFOpgx9SS5nvNLk2W/JQzai7D3TaTrKoGKaX7BiYeWcqol+Eogp6r1zJX1koopOP4gud7dNabQazg74V9C5Ub7+ehGAMLpo0yn5u/7x2czhGXb++6rJriyJCj07OTaq65mNmNy1wkTWw2jpk+WtrEdlxNzWabjRUJB9caodbEAXfXSIYt1jisU71oqgxCgFxeWNvWG6ItoNSTkJRu6uWBdF3fMeOocfXZfReJVKzBtZ0HiaDyRo0fKYGtdKMWI4ZfsGkSP9HFBj8MWI4kVGKirhg4bCrOiCyU73TYJ5Lpuzfs5MZvl2dNJJpKLVwXJmQkAtKRPAuXpxVMCyeG1drBWsNrVFmt47kJa+21WYCCiEwuqLS0oBzWFoajR8HlZ6mwK7tmGtdnYErFnx3YedV/NzVNfBcARCrme8zBmT3Dyij8CSSa2/78xR593hs+0dUhCYLvumhJoBTEYNXCQMCXdax8EUjkLivPQ2YyJabsMdXk3veTcNPtTOn/0pYe5+YJtvGfwWgYf+jiSXUC4HnmUGnkBp6/4AyJjP0affZb0yNXM7Hpb0/NIJBPIOCXlWjSgENLljjn+dwXUNZ+pswTL0YfuEcuVEydHiyDHD3X0ddqG6xCYfoq5ba8tPVSpBGqdpPJJ3BpPICDbfyGOrBM6fT/JYhT2UlC3HQyPBBJ2HqmQIjjxKJMX/krd/Vfz6uIa6sMvWMtXNh09Riq0gRuTD3DXiTg37PQm/qfiOa5U7boEoH8f3j0SZShqcM/BaX4pNFzjWZXIWiSTfjuYV0zHGiRDiqISKNdzHm51+5kiVZz7cFeAgCpzfDaL6/rxwipXbu3l3+5MUIj2o8/ub8sc2nVdTMvFbJIqli2mpsVEGlvvQi8SPcNdBvnhYYLjJzCzE5jBwbo1UFhXmCXK+uxURWtXK8hb86pbH34C2lzGZLjLbXt8tB0XOTMFgJr02ufGEzn2aGlsJYKiB5rtvoYiVrvvyhqeuxBCIOiMify5ACFEW8EyaxYUjbE2y18i3veibURu+mNOXvlH7Hv97eR6dxGcfpJTV32E6Qvew/Tud3Lwtd/B3nTDmT7VluEXIWtKoJXDpt4gg1GdLEZJSZAzHaZSeXKmTbZgM5sp4LoutuOimgnSUhhZEvzjTw/xlmOvwjJN7nQv4HXGv/Jx/dcJnLyHbd94Ff0P/w3hsTsYfPCvwDGbnkcmWfQRKCqBhBAV6ShLxZoK6OxBp9PBoH47mK1FkfPxjr5Ou9ASx5DNJNnePaXHfBLIMnraUgLJhcZKIFfWyfZdSOj0A0s74SKkgqfQcKpIIKdIAoVO34dwLVLrrqm7/9qc5+yDzxFU+yHEL/j/2bvvMEnKcm/836eqOk+OmxMsC5t32SWzJMlINCEvQQwvoh7P8SdHFNOL+r54zB45BzkGUFFEkKCIKCA5yAK7y7J52TQbJ0/nrvD8/qjOXT3TM9MT+/u5Li52qquqq6d6Ktx13/dzI45XtiO4/eX0tM5QAtWaWRCQAQA1ufMVIXDB4la8vrsLMf/UnEwgIDmkeTzZP8fV/7lAJDOBIs3LC15zyiat87vRmnxK21jlhhACJ81rhG5KdPrmwduzDcYgMoFSjZr7WyaVcVMr+2B569LTPZoK01MHNd4LLXIYRqDV8Rqo2quhQ9ZCjXXCtCTiRumBoP4aSUsJdEcGX9JtWBa0qB0ESmUCHQnGMVULwfA18jquRCwHo/FKKfcoHURJvCMrA8tTh87FHwMA7Lrwt/B1bEB4+uk585Qrk2I0pIJAHmYCjRohBE45qgl9mz0IJINAAHCwJ5buy2OY9ghefrcGnxmC5anFbz9+Etbv68GWQ/PxnZ5HsS/qgTdm4DVrGr4RnYop+j7c07cSV9Xtwy0930Tg4KsF380US0rEwn2AGxCezA3saNf70vggUP4ggdMw8aanHmqiF5DWmI3R6+ssbJ6cKgeLNixE4NBrJa8r1UQ6v0QrJdKyEk0bfz7szzv3L1fDd+Qte1vzegJJ1QvFjKPqwIuwVA8iLccP+X1ofEkNF+xS7Ub7qdKnngUfRO1r38OJh34LKS+DEALdkQT8quGYCZQdHHjvsum45+U9aDPrsSC8OWe+rkii6Ahj+VKZQNHmZQWveYr0lWuu9iCSMNLDC6+aXQ9VCOwUM3Fy918QGcQIYam+Ov2Vg20/bP99NiQOwmzKbKeqCEhfPdREH4QZR3C2cxCoyqOh3aqGFu0EpEQsYSGWsBDRDUyt7T9IFtft7VOjHbDc1QX7pSucQFPV4Mo2TUvCE02Wg2X1BGpR+mB4G+GZQNeeY8keHWyst4Ko0HjvCUQTF4NAZWZ5ah1vstUJ9IRBTfYFYhBodJ18VCOC73ihRfpypkfimYvgtu4omgJuNEk7COR1qTi6pQoz6v0AWvPWuAgA0P7Wfvz8JTf+1e9F7a4nigaBusMJeKVdipbKBKLKNRI9Epx6bBjeOghpQUn0wcoqwRpN3o6NyebJx6SnpTKBYo2LUH3gRQgzXlJfnUxPIOd0ZcPXBCENKHq4IIOnVMKIIXDgZcQaFyHcugpmctjqlFQmUNX+FxFuXe2YCUITk6qIrBHCBKIJO+BhuQLYNO1KnNX2KzyxaztmzZ2PrnAC/jrDMXiTysoTAlg5qw7T63x4J1SNxdH2nO96VygBr0hmqAzwPZJTl6N37kXom3VOwWv99W+Y1eBPl4pVe104dmo13oxOwWlGBLJ7H1B9TNFls6XKwPR+gkBv7O2GRzERiB5AsO7ynNcUX539fzMOq3qK4/JVHhcOm9VQlAQUPYieqAuhuAHLsq/zmqs9EEJAN62CIFLcMAFpYf4fz0fvUZfh4ElfzX1dtxCKG6gaRPmCkYjBn8wIdAf3wbQkOkJxNNT0wvTN73cIZcqo9N4gNH4JBVCG3jeeqCieHUbJRMoE0hQBr0vlCXGUnXJUI8LwIhbqKTqPlEBHZyc0WIC3Fh5NGTBT573LpqG1oR4vYgVq9jwJWPaFqJZsJpnSHowjADtVXkyQ0exo5IzE0yfHcrBkAEOL9ZT1vQbD1/E24vULINVMr5OeeZfgyPLPIFE9A0DpzaFTmUBOPYGATNZOqp/PULiD+yAg0bHk4zh4yu0F0TqpeuAO7oO3eyvC008tuh4e4iceITIN1vODDO4TboAqJIx19yOqm4gbFvxK/5lAmmrf/F6ydCr+2Wt/N30db6fn6wxnZwL1HwRS/A3Ye85dMH326F6pxD+3pqDa69BIOv2Zcr+Ix7RWY100+VCjYysAIJw1UEIxegnlYG/s6cYpjVEo0oBVP7dg+9Oq8h+qJCd7NRw07OCtFu1EX9QOAAF2Q+ath4PYeiiIbYeDBaViCcOCp2cnXNF21Ox+AgUNgmAH3QbDCtojg8Vr50FN9KG7qx2WBGqsHph+Dg9fKl7v0nhlZ2Xz+0nlxyDQKJlIzXAVRcDHYbxH3Yx6Pw5pM9AU2gpYxS94o8EuAIDqr4dHUwbcV6oicPny6XggdgJc0XbMe/z9mP/H83Ds706Ep2tLer4jwTgCwg4CKV5mAlU6u1FmedfpGATy2kEgNd5d3jcrlZTwdW5EtGlxzuRY01IcXnVLurdPqc2hVcPOpnPqCQRkmjin+vkMhbtvNwAgXjPH8XWpeuBJzhOcUbwfHS8sJx5FiPRDpfwgkNp4FLZ4lmBZ5+M40msfy32KDumQCZQOAiXXdfHSqfircTxiWg2a1/9Xer6cIJBrgCBQ3tdpSo0XmirQEHBuJF1MU5Ubu+LJc1DYDnK0dUexryvS73IJw0LNu3+G7GlzfF03Lazf14MTanvsCQ3zcl4XvkxGnaiZ6riOao+GTtjBslQvnpz3MCQShgXLAvZ2RnJG9YwbFnwd6wEA7tB+eLq3FSzfF9MH1QcJocMAgEjLCgBA9Mi7aEE3fHoPZIBBIKKJThEsBqORwSDQKJlQ5WBCFDSdpNHRN+NMVMkQ4rtfLTpPqMe+8PRWNUBTlZL21Wnzm/CcdjJ+1fBZuEIHAGlBKhoaN/8mPc+RrEwgxeOcxUCVw+6RUObRwRx6AhmpTKAxCgK5QvuhxXsQbVzi+LrlSgVtSswESvTfE8hKZwINIwgU3AMASCSHBi94j2RGUyIwDbGG44quZ+KclShFEaIgEyj7z6r9qKswVxzEtjefAQB4oTuWg6XKvtXkwkum16Kmth4Pey5Fzd6n4O18BwDQFY4joJRWDpZ/vPC6VEyv9w06CNRc7UGHZf/9iGg3ogkTCcNCT0TvtxGzEY9g1jOfQvXbvyx4zbIkNh3oQ9ywsNhrn0NFfhDInwkCKUWCQFVeDZ0yGQSKdfb7OWK6he2HQ9jdEUYkYcAwJXztG2AlM7Oq9z1dsIyUQHgQo47JsJ3RG2leaf/csQ13u78PS/UisuDKktdDROPTSJTmEwEMAo0ah3ufcUtVGAQaK8edehkMqaB3/V+KzhPpsy9gq+oaAZTWuNnrUnHGMS345uGT8ddzn8b29z2D3rkXoW7HwxB6BGqsC8v23oNTXfaTSWYCkUg2oC0nRREFx8JU7x01NjZBoFTpS7RpkePrptu+GVX1UsvBio8OZq+vDEGgvr0wXdUFvYBSUuU/wVnn8OpxklFEJrPYrSoIeFTUZw3ZXnv8+6FDQ/Xuv9rzQAdU5+CNS1XSASUhBM5c0Iw7us6A7qrG1Fe+DlgmOsMJNHiSZUsDNYbO+6q5VAU1XtegM6EbAx4E4YMlVCDahb5YZlTL7B55BUKHISChBg8WvLS3K4K1e+xjzBzlMEzND7Umt++PyCoHy38tpcpjjw4GOGcCOQnGDOw8Yh8X/O3rEGlegWjDQtTse8Zx/uzsoQGFkkGgZCbQOdu+geXKTuw94/uQjaX1UiKi8cvOBOJ5nMpvAoUmJraJlAnkUgW8RUbyoJHV3NKC7Z5FmN7xQtEnnrGgfSFb39ACwL4hKDbySrZLl02DR1Pwr79/Cz/4+za81nAZVD2IuX96H469/2Rc2Xk3PizsGwe4mQlU6RQxMuVC+SUsqUDGWJWD+Y+8CUtxI9aw0PH1VEaPUnIQKARLceX0F8qWKgcbTk8gT98eOwuoyP6xsoNA/ZhApyVKEiLTGNrjUjCtzgd31iAOwlONjurjsELYAX03Eo7lYIB9rs8u0bxq5QwIXx2+Zd2AqkOvoXn9negKJVDvTpYnaQMMEZ8XOHY5lH+WoqHKDUAg4aqFEu1GbzQTBAon+ukNFLRLo7TIYVhZzaEjCQPBmIGnNh1Ga40HtdF9SNTMgStv2HolmQlkuqqh+XJH3Eup8mjoRrIn0ACZQPmEmYC3cxOizcsQnPUe+A+vhbfzHQQOvILW1++AEu8BAEQHkQkkkkGgeN3R6NCm4KBVhycXfx/heRc5lt8S0QTEP2UaAbzTHyUTqSeQ362xV8QYUYRAfM7ZOFbswRtvv+M4jxG2b5YbmprT05pLGFZ2Rr0fP732eFy8ZCpeebcTNz3vwnPmUhzo7MFz3rPxaeXL6FaSmQUMAlW8cpeCpWh5x0LTUwMplDFrDO0/vBbRpiVFR9DK9PApLQikGpGiWUBAphxMGU5j6L7diBcpBbPfoxqm5kdo6in9rodPFyee7Ewgr0uF16XmBIEAQJ19EpYquxBQTahWomgZV2qY+ZQptV589eKF+F38FPxdPQOtb/4A04LrUetKBiUGyAQCMoHFVMPpoWhIZjbFtFoo8Z700OoAEOknQKKGDwEAXJHD0K3MMu3BOHYcCeGVdztxweIpcCeDqPnHIjUZBNL9LQWvpVR5NejQENdqoEYHFwTydm2GYiUQaV6GjsUfheFtxKynP4k5T16PlvX/hWMePAe+9vX9fsZ8ItwO012DJ7b04LTQ/8Ndi3+HaSe9DwCgTaQUdCJypIxAVjYRwCDQqBAj9ER9pORfUNLoUYSAf9GFAIDet5+AdBg9xIz2AAA8NY3pafUBN7wuBZoqUOd3Fc0Mqva68Ik1R+Gej6zG/3nvYmw79158f/6v8Km+6/DnyEL89+wf4tAZ/wFog+vhQJPPSI1omJ8JBKHAdNeOSSaQMGLwdWxAZMrqovMMtjG0ooeK9gMCsjOBhlgOZplwhdqK9gMCgPZlN+PdSx4YcGj4CXRaoiRVEQU39+68v6lo6yp4oOOrKxMQZrxo8MYuB8ssqykK5rdW48sXL8K/x65Dm2zCV+Lfx7FyZ3KG/r9PQCZ4XPB3PgipHkJhtbqgV1hctxwbJxtmZsRLLXwIiWRJVSRhYENbL+57bQ8CHhUXHtcCd3AvErVzCoZPVzUXTFc1DH9r8SBQcvj2iKuh5HKwlHTpafNSmN567D/tDnj6dkMPTMWuC34DqWiY8fznYRoJJIzSmkMrkSMIuxrw0+d3YuGsKbj6pKPSrw01E4uIxg97kA7+LVP5aWO9AZVgImUB0dhSBBBvOA5BdwsWR1/H2j3dWDK9NrfvTzII5MpLV5/V6IdLUaAoAlJK7OuKoi+mo9bnQpVHw8HeGMxkirzfrWHlbPup50nzGnHjqXOxbl8PFkypRqiu/5R/qgwjddwqNkKYmiyFGE2+jvVQLB3h1lVF5zEH3Rg63G8mkNS8sFTPkINArvABKJaORHXxIJDhb4HhbxnS+ml8E0IgvwtcfhAo0no8AGCNbxcUMwGrSPBGyysHS/3NL59Zh3+9eBX+a+0X8c2u/w/Tg/+A3nAMXOrAl4z2zYos2KbBaKyyg0BBUYMGh+BwOGGi1pe7fsOS0CJ2OZhqRNDX241qXyu+8edN+N0/9wEAPnzCLNQZR6BYOqy6uQXr1RSBePUMJGrnoqrI9qeCQGGtFnWDLAfzdG+DqfmhV820P9/sc7Hrgl8j1nAcDH8LDpzyDcz5+8fQtPHniDZ/rqQHcrGeQ9gT8mJqrRefP++YnOM2rz2JJj6ODkYjhUGgUcATMZVKJIcBiM0+C6dvfwwr/rwBQnXhlxfXoqF5CkxfE9REH8IiADXvgtyT1d9ACIGZDT6Yljf9tDMUN9AT0eHE61Jx0jw7s4jfVwJGro+ZU4mC4akfk8bQgUOvAwAi/QSBpOaDFMogGkOH+g0CAXZgaahDxLv7+h8ZbDD4lz7xKAIQecdoRbGDOYZpB/kNfwvi1bPgP/IGhBmHKJYJpCg5GS/Zx/6Vs+qxctaV2Nm1EBAqfNOOxcwStw9wDvaWyu/W4HUp6BVVUGPvFrweSRio9blyppmWhCsZBAKASFcbZGsLXt7ZiWOnVOP9x8/Eill18LY9BQCwmgqbJiuKwJ4Lfw3h9qOh4FVbfcANlyqwJxZAg9I+qM/l6dmBeN3RMCWwrzOMdztC2NUxEx0bu9AbPYxwohm/aT4NzRvuRvsp/2L3Z9TUfrMyI10H0aPOxl3/63hYeYnDw8nGIqLxQYBZuzQyeIYYBUzjo1KlrvUis89BNaL42rIgvDKGlU99ADOe/zx004Jb70Ncqx4wWCOEyEl3r/aWFvOdSE3MaeSM1NfAqUTB9NRBG4NMIP/htYjVHg3TW+yWD4AQsFxVJTeGVo0IzAGCQJanZkiNoZVEEK1v/RBSqIjXzR/08gX4pz7hZA8Rny0/ayTSugqBQ/+EYsSKlgW6NDFg5ki84VjE6+dDUUsbMVSUoRwMsPsC9cqqgnIwAAg7jBBmZwIdgRT2+6rBQ3i3PYw9nRGcMLcBJ8xtgEtV4D+yDlKokFOXOb6vrGqFWqQpNGBnAn3nfUvxTrQeWu8uRHsOQUn0QUv2I+qPu3sH3oy04Or/eRWfuf8t/OCp7fjL24ewqyMM05Jo647iBWspXLEO9LQfwM4jYRzojRZdn2laqLF64a9twZymwmMOH+gQTXyKwtHBaGQwE2iEeF0KptR64dYUhGL9jGZBlCUVMAxNOxVSaLjAtQ56awD+7hDkvn+gs20HqhCG6a4t2rOgmFQa+0AYAyJg5G4gnEocTG89vN1bRuT9itEiR1C1/0V0HXfNgPOarqrSy8H0EHR/a//rc1cPKgjk6d6OGc/9Gzy9u6AYUew768cw/M0DLzgAXlhOPIoQjg+W3KqCCDLBkb7Z56N+xx8BoGgmkKbkNobu75xS6uEgNd9wysEAe4SwzkQVFCMKkRfIiukmLEvmZMiYloQnchjxuqPh7d4GV+Qwntxq9whaNK02PZ+//S3EGo6D2+scqNUUAXWAhsqXr5iBB4/cCPcrj2Pjo9/HBwLr4IscwM5LH0G87mjHZZREEJ7oIbxinIHTjmnC0um1mNdchel1vvQ++Objm/BCexM+CMDbvQ1hXxO6wzpqfTqqva6CdR7pi6AVYUh/o+NxdbDXCEQ0PvG6nEYCM4HKqD7ggs+tQFHs/izVXhc8morGEkZuIgIyQSDLXY2+2eeicdO9+GDsAeyz7Bu+2i2/Ra0IQ/HXDrrZuKYq8LkHfprLp4cEjFxGmFcr/A6ORTlY46Z7ISwdnQs/MuC8lrtqEOVg/fcEAuxysMH0BJr66v+Bp283eo66FLsuvA+9895b8rI0uQjhfHPvyQsCBGedA8Nj930TrmKjgw2cCZRSakZzar7hDk/eEPCgw/Tb25WXJShl4VDxhmU3ho42LQUAuCKH8HZbL1yqwPyWKsAyAWnB174BkeblRTOV7MbbA2/7kmUn4mDjSbgh8XtU9WyBZZmY/eQN8HRvB6QFJd6bM7+nx26uHa87Gv9y9nycuaAFsxr8Ob/zZTPq8FrIDiB7u7emp+/uiGDj/l7E9NwMqMNHDkERElpVI1yqknOjqCpDH52NiMYXXpfTSGAQqAxURWBGvQ8z6v2Y11SFOY2BnP4sRKUSWX+R+0+7A4a/FYHoATzguRJrXcdjwYFHMEV0Qwv0U77Sj1KGkufJhoCRGx1MUUTB6HWmtx6qEbFHMhoFQo+gYfOv0Tf7fCRq5ww4v93DZzCjgw1cDlZqT6DA/hdRvf95HFnxWRw47f8hPO3kkpYrBe8RJx5NEY5/m/mZIFJ1o+eoy5ILOQeB8oME/R37S/2ulGN0MABoDLhxKOEcBAIKS8KMeBRavAfxmrkw3TXQwofxzsE+HNNaDX/0EBb+eglaX/82VD2IaMvygqBZiqYoJQWwVAWIr/w4FCHxd+VUfMT4ItRYF+b/8Vwc95tlWPTrJWhef2dm+w7bmY7VMxehWKLRspl1aEcdoloNPN3bcl6TEugKJ3KmdXfYPZC8tfZDouzvAEcGI5o82FaERgKDQMOkKgILplSjPjmkqaIIBEosuyHKl32gN7312H3eL9B53HXoOOpyfDdyMfxmH2aJI4C3tp+1FFfrd2FGvQ8NVW7U+QvTy/O3gWgk5GcDmZ46ABi1bKC6XX+GFu9Bx5KPljT/4DKBBu4JZLpK6wlUu+MRzHz2s0gEpqHzuGtLev/B4F/6xJM/rHlKzgiSSd3HvD/5Ymnni/7LwUr7tiTHNhh2EKLe78aBuB28cuoXlp8JhKAdEDH8LdD9LZDBg3i3PYRF02pRt/NhqHoILRv+GwD6zQRSFOfm9flURUFw1nuw5z13I3b+D/BibB5un/tbtC+9GX2zL0Tv7PMw5fVvY9pLt0FJ9CHYthEJqWLu0YtR43UVBMIBYGa9Dw1+D/aos3IygVJ6IjqkzHR/DnXZnzlQZ48EmF2CV8rIYkQ0MfDhLI0EniWGSQjBP04qm/yvUrxhAQ6c+k0snTsDr5kLcFPis9Dhglk1ZcjvUR9wY3qdD83VzllB/DrTSPO684Z39tplK6M1THzdjocRr5mNSOsJJc1vuQIlNYYWZtweftpV1e98pqdmwHIw/+G1mPXsv0APTMGec39WtLkvEWAHgfID+7GmJdhx6aOQiy4vaR1CiKIZP6WeFhRFoMbrGnYpUmOVG4eNZCZQrBM1u56AoofTr0cTdl+gtJDdmNmqaoXhb0XwyD4IIXDOgmbUbf8jYnVHw1K9MF1VMOqPLnrdpuWNmFaMmox29c25AHOmT8FZC5rxu3fCeG7GTdi/5j+w95yfomPxx9Cw+Tc45oEzMePw09gnpmJOSy18bhX1fnfO+oQA5jQHcPzsemyIT4e3e5ud/pPFtCQ6w4l0WVi01x6drLYxGQRKBn6EAFpreLwgIqLiGAQiGkeKPW09bmoNAh4VT1vH43+WP4jQ6n8Z9nt5XWpOj6DUWzOoSSMtP2shlQmkjUImkBY+hMCBl9Fz1BUl17jYPXwGztxJ3aQOWA7mroZiRAFLLzqP78g6AMDu8+9FrGlxSds5WOwZMrlMrfUWHL+jLSuguHwlr0NT7eHm878apfcEQtEHDIPREHCjW1bb/976e8x++n/j6IcvgrdzE4DCvkAidBAAEHQ1Yb9ZB0/sCC5eMhXzrF3w9mxH56KPoO2M7+Hw8Z+H2+2cBQskewKVUg6WN8/1J89Bnd+NL/xxA37z6h6YUHDwpK9ix+V/RrxmNqYa+9HlnwchBHzJgF32r3RGvQ81XhdOOqoRG/RpUBN90LKGvE852BPD9sMh9EQS0EOdAABXVW45WH3A7ZgZRkRElMIgENE4Uuw6W1UEVs6ysyWaph8F4fKX5f0aAm4oiv3U9bipNWiqdo9YLxiiFF9BECiVCdQ14u9dt/MxCEj0HH1FycvE646CK3IYje/8st/5UtlCAzaGdttDUPcXWPJ2bYbua4bpayp5OweLf+mTi6YqjgGYwZT4aopAU5WnYD2lrqPKo5U0AMFAGgJu9MD+O6ra/wLMZDbetJduS88TimeCQPv37gIAXPvAXjy534VW0YUPL61D3fY/wlJc6J17CXrnvRedi2/sd+QyTRGllYPl/T4aqzz4zw+twFkLWvD7tfvwzcc3IaabiDUtwROr7sFHErdg6+LPQQj7+OdSlXTmVo1PQ10yM2jh1Bpst2YAsI8BxRzsjcEK20EgpaoRgB0EqvFpmMosICIiGgCDQETjSH8X2uce14p5TQHMbQqULVun3u/Cwqk1mJYcpnZqrQ9Vbva0opHlUnOHpo7XzIEUGnwd74zo+yrxHjRu+iUizcuRqJ1b8nIdiz+G3tnnY9orX0P9lt8VX78eAQDHnkDZ2QWm285w6K8kzNe1GbGG40rexqFgItDk0xhwF2SyDGY3a4qCer8LLdWe3EzREq8WnYYyH4qGgBtReGAqbghpIjz1FHQf837429dDJP/OwllBoO72/TCkghvPXYlFZ7wPGixMP/w06nY+guDMs2AmS04BOPbjSVHVEjOBHM7BAY+Gf33PMbjpjKPwxp5u/PR5e0SwN/b14Dm5AvOOWQKPpqQftEyv89lBm9pMptbCqTV4W85FTAmgfvuDRd/fMCXUWBcMaHD77KBylVvD7MYAH+QQEdGAGAQiGkf6CwKtmFWPH31oBbwutaSeBaWwe0DkrosXkDQasm/EpMuPaNNiBA7/c+TeUErMeOELcIUP48DJtw9uWUXDvrP+E8EZZ2LGi19A48afOc6mpjOBCnsCZY9GlMoEKjrimGXA071tSEGgEpIYaBJTkpk8+dNK1VDlhqYqEEJgdqMfLs1edrQHDJjfUgWXqiCk2AHT0PTTEJ5yEoQ0EDi8FgAQTVgwTAuWJeGKdKBb1OLDJ83FvOVnIhGYhilrvw1XtB09R1+Zs+7+MpW0EoeI72+ei5dMxQdWzcRTm4/gyXcO4c293TimtRrVXldOmZb9Ow7kNHGu9btQW1uHpwIXo3bX43D17Sn6Pm69B2G1Jt0snOduIiIqFS8XicYRRZT2dJ4XezTR5ZdkhFtXw9e+fsSGiW/Y/BvU7n4Ch1Z/AdGW5YNeXmpe7Dn3Z+idcyGmvXo7Wt78YUHjVjXeC8C5HCx7NCIrXQ7mnAnk6X0XipUYUhCo2NDXTgQLwialWl8mG2ewsZuarEwel6pgblMAc5r88I9yj5k6vxvnHNuKI8nm0KFppyLSugpSqAgcfDU9X2c4gYRpwZPoQlCth6YKuDQVvXMvhityBKa7BsGZZ+esu7/P4k4GwAYy0Dn46hNmYcXMOtz5jx3YfjiULucupVTuuKk1+Jl+PqRQ0fz2/zjOo5sWqswgoq66oiPGERERFcMzB9E4IoTAcVNrig7fnpLfj4Booskfojky5QQoZhy+9g1lfy9v5yZMfe12BGechY4lHx/yeqTqxt6z70T3/Peh9c3vo35rpjRMjXZg6mvfgOmuQbx2Xs5ympo7imSmHMw5EyjVC2RoQaBB3KzzMDIpuTUlnV0y3Awej6ai2usakwcP7zt+BjqtKoTdTYjXzYflrkK0aSkChzJBoCN9cew4EkKV0YWouwGaIuBWFfTOuwQA0Dv3opyR9dya0m/QpNSAykDZQqoi8KWLjsOKWXWQAFbPaQBQ2BTfycKpNdjQ60PH0e9Hw5b74GtfXzBPZziBehGEkWyqT0RENBgMAhGNM6oi0Fjl7n+eEnoWEI1nrrzvcLh1FQDAf/j1sr6Pt2MD5vz1WpieWuw743ulNzcpRtHQtua7CE07BVNf+yZcoQMQRgxz/vYRuEIHsPu8X8L0NuQs4lJFzs34QOVg3q7NsBQX4nVHDXrz3IPJBOJhZNLyJzNOJvI+PmNBM36hvh8/CXw6/UHCU0+0MwaNaHq+hGGhXvYg7mmEqgi4VAXR5uU4cNLXcGTFZ3PW6S9D02qgtFE0vS4VX754IX78oRU4usUuEfWW8Pe5eHotLAm8Mvcz0P0tmPHsv6J+y+/g6dmRnqcrnEA9gpBZvY6IiIhKxSAQ0Tjkd2v9NqdkJhBNdK68myHT14hY7dGo3f0E1GhH/wtbJrTwoQHfw92zE/P+/AFI1YNdF/62fCNtCQVtp30bQpqY/eQNmP3UJ+Br34C9Z/8EkSmrC2Z3qQqy7xlTQSBfx9uZkjIpoUWOoKrtedRvfxDx+gWQav/BYCellIOl+rzQ5FXlsRv8j3Yvn3JyqQqalpyLuw4eg31ddjPo0NSToVg6/IffSM/X3hdDI/og/U3QFMU+tgiBzsUfhV41HUCmV1Y5Ri4DSgsCpT7D3Ca7PFRTRUmZRitm1UFTBH700hFsPuHbcIfaMOPFL2D23z6aPl60B+OoFyEogZEbPZCIiCYvBoGIxqlqb/FRuso1OhjRWHE5dDDuXHQDfB1vY8EDp6N6z98zL1iG/R/s7Jk5f7sBx/7uRNRvua/4G0iJ6S/dBigadr73IcTrjynr9us1s7HvzB9DMSKobnsWh1fdguDs8xzn1VQlp/TK8tSi++gr0LTpHkx7+StQY12Y+8TVOO63qzD3r/8LlhZA2+n/MaTtKqUcLDUPjyKTVyAdBBrjDRmm9x0/Ex6Xggfe2AcAyb5ACqqy+gJ193TDJxJQqluSmUCFH3parQ+tNR4EyjT6ZXY5mM+toqXG08/ctlJKwQCgtcaLO65cggO9Udz0chVeuvwV7D/lG/D07YI/2Tx/x+E+1CEEf13z0D4AERFVNI4FTTROVXtd6A7ryX9riCRMmJb9FJBBIJronG7UuhZeh9C0UzHzuX/F7Kc+gfalN0GqHjS+8wtAqAhNPx2Bg69Ci3Yg2rQEM178Iuq3PYho81K0L/0kLJcf/iPr4OnZAW/XZlQdfBn7T/kWjMDUEfkMfXPOR9+s98DT+y7idUcX/6yKKMjIaDvjBzB8LWh++6eo33o/hDRweOW/IVE9C31zLnBsLj0QVREljQ7m0RSEgJIa4NLE5NYUuLTC0R8nmoaAGxcunopH1+3H1atnYVpdNaJNSxA4+Ep6nnD3QQCAt64VQGHTeSHsc2g5GyjbI2vaiTlTa70IeDTEdQu9Ub3oMt5+hqbPt+aYZnzjssX46qPv4It/2YP/uPRyTHHdgfqtDyAy5UTsO3wELmFCCTSW4+MQEVGFYRCIaJyq9mhwaQK6IdFS40Ff1EB70B45ieVgNNHZw1AXDLCFRN1R2HXh7zDrmZvRsv5OAEBwxhmwVA+q2p5FpHUVOpZ8AuHW49H65g/hP/Q6Gjbfh4Ytv4WwDAhpAgAsxYXe2eej69gPj+wHUVTE6+f3O4tLVSDzJwoFh068DaHpp6P1ze+jffHH0JdsZjtUbk0pacSvVMkYjyKTW63PhUjCHOvNGBZVEbhi+XT8ecMBPPhmG/7l7PkITzkJje/8EsKIQmo+JHrs0tBAwzQAdoBGUwUM0/6r87vVERlBy+dWUeXR0llXsxr96I3qiCTsrMXOUCLn+OYdRNN2j0vFsVNq8LX3LsRXHt2IO57ei1/OfS/q330UptCwsCMAaIDwMwhERESDxyAQ0TilKAIz6/041BezewQpCjpC8fRrRBOdW1MQ162C6Za7Crsv+BWEHoGa6C2ayXN41S32evp2o2nD3TC9DQhNPQnx+gUwfE3jpitu9g1pvtCMNQjNWFOW93Hn9R4qxjPKw33T2Kj3uxHTY2O9GcOiKAL1ATfOXzgFT7xzCB9aNRPVU09C89s/hf/ImwhPOxVm8AgAQK1pTS/n1hQYph0Aq/H1P9rmUB3VXFUwrdbnQm3y/RoCbuzriiKaDMSVWg4GAIFk76JF02rxqTOPxg+f3o473Wfhi+rfUL/zEXxDSzbG9jf0sxYiIiJn7AlENI4FPBrmNNplIW5NQZ3fxVIwmjTyh4nPJ13+kkq5EjVzcOC0/4vDqz6P8PTTYPibx00ACEg1hh757XFryoDlP0JkSvHG0a+IRoDXpaaDCRNVKuv1ypUzIAA8+GYbwlNWQwoFgWRfIBGxG8mLQKY/TnZPvdoRCgINxKOpOKo5gJYaD4QorWl7iqYq6ZH+zjmuFe8/fgZ+8W41znP9Ev937r0ISXvYe4WZQERENAQMAhGNc9lBn+l1PtT5x+aClqjcnPoCTUYuVRn2yPSlvc/AxWAuVUnfWJdSOkYTW31g8CPMjSepHlfN1R6cu7AVf9t0GAeibkSblqBq/4sAAFcsGQSqyoyUVeO1z5NVXm3AYPNIEkKgtcaL+a1Vg87gzR7O/rqT5+ArFy/EkWAMv9ho4PvKDbAUN0TD7HJvMhERVQAGgYgmECEEptb6xnoziMpiLG/ORosQyYbNo5B249KUAW80NVWkA8vMBJr8JvrfWHb/uw+umglVEbjvtT0ITV8Df/s6WJFueBOdiKjVUF2ZEbq8LhUel4IG//gIgpUyal8+f14W1wlzG3DHFUvR4Hdjz+z3YdN1G6HWTCnXJhIRUQUp6epACHGBEGKrEGKHEOLWfuZbLYQwhRDvK98mEhHRZDTRb1BL4R7FJszphs/9vJlLUdIjGxGNd6mAZUOVG3ObA7h06TQ8t60du2pPgpAmEtufRSN6Efc0QssbGq8h4EaNb+K2vvQ7DGc/pymAn1+/Cp8662hIzcvycCIiGpIBr8CFECqAOwFcCGAhgKuFEAuLzPdtAE+WeyOJiGjyqYQbGC35GUc6E0hRSss20JIleJXwu6eJL5XZVu93YXZjAJetmAYJ4PGeGTBdVfDtexZNog+Wr6ngO91U5RmwR9Z45nUpjn+nmqqkA+ga/46JiGgISnkMewKAHVLKd6WUCQD3A7jMYb7PAHgIwJEybh8REU1SlXD/krpZG+l70eyRh/p7r9RNo6YwG4jGPzWZteZLfr/nNAZw7JRqvPhuD0LTTsWMjhcxU7RDqW6ddD3GhBCYVuct+rqiYEIHuYiIaOyUEgSaDmBf1s9tyWlpQojpAK4AcFd/KxJCfEIIsVYIsba9vX2w20pERJNIJWSjpIJAI50J5MsKAvX3XlpqexTBxtA07qmKgM+tpoMdAY+GU45qxLvtYbQ1n4k6ox3TRCf0mlkF5WCTQZ3fjeZqD6q9WkHQdjJ+XiIiGh2lnEGcrhJl3s8/BPAFKaXZ34qklHdLKVdJKVc1Nzf3NysREU1yo9EseayN1nDsJWcCpcrBKuB3TxOfIkROg+SAR8UpR9mjgD1ono6rte/ja60/wZHjPzfpMoFSptR6MacpgCpPbo+gSgiiExHRyCilY14bgJlZP88AcCBvnlUA7k8+qWkCcJEQwpBSPlKOjSQiosmnEuIQLm30M4HsDJ/8ZzXJ7UlmD6gsB6MJQFNEToNkj6ZiRoMPi6bV4I/rDqI3OgVHL54NxeWd9KVR9QE3gjEj/TODQERENFSlZAK9DmC+EGKuEMIN4EMAHsueQUo5V0o5R0o5B8CDAG5mAIiIiPpTEZlASioINHLvIYTdRDalv/dKZQLZ5WBE45uiiIKh0gNuDR87bR6CMR0AMLvRP2mzgLLVeLWcwA+bQhMR0VANGASSUhoAPg171K/NAB6QUr4jhLhJCHHTSG8gERFNTpVQkpQpBxu5z+rRlJz1l94YevL//mniS/XVSqnyaDi6pQoXL5kKAJjbGEj3uprMhBCYWutFa40HqiKYCURERENWSjkYpJR/AfCXvGmOTaCllDcMf7OIiGiyUyb5TYwQyLk5FQKQzlVaw1J4A+z8e9XUTOCnErKwaHKq8tqXrjeeOhdnLWhBS423YrJi6gNuAIDHpSJu9NuGk4iIqKiSgkBEREQjYaQCI+NBfgaDIgTMEfiw+fe/xe6Hs0tmVJaD0QTlUhV4kuWP81ur09MqSa3PhYShDjwjERGRg8o6axIR0bgymTNS8vuUjNRHzf8dFivzyh5SWhVsDE0TVyBvpCytAnoC5XNrvIQnIqKh4RmEiIjGzGTua+GUCTQS8svqir1L9o2yqrInEE1c+cOluxRezhIREZWKZ00iIhozkzgG5BAEGpn3yW+wXSzYlL09ldCUmyavKo+Wk8lWiZlAREREQ8UgEBERjZnJnI1SWA42QplAeast9jY5QaDJHH2jSU/NGzqeQSAiIqLSMQhERERjZjwGI8oVq8kftWvEegKV+DvMvlGulNGUaPKq9rrS/9ZYDkZERFQynjWJiGjMjMdYhKdMDVfzM4FGrCdQfjlYkV9qdt+UUgNHRONVdXKoeCHGZzCZiIhovGIQiIiIxsx4HB3M6yrP0Mtj1ROolMbQRBOd16XCpQl4XbyUJSIiGgxt4FmIiIhGxjiMASWDQPqw15NfcjVSAS+Rdw/s9DZCFAaliCa6uU0BuPm9JiIiGhQGgYiIaMyMxzIOr0uBEICUQ1+HNopDsBdmAhW+73j8PRMNl0crT9YeERFRJeHjEyIiGjPjsRzMpSrD3q78fkDAyPXhKegJ5PA2TttDRERERJWHQSAiIhoz4zAGBLeqDDtzxmm0opFKxil4K4f34ehJRERERAQwCERERGMov5RprGmqgKIIDLfNiFMT5pHKeiqlHMxVphHPiIiIiGhi41UhERGNmfFWDpZqnjzc7XJqVjtSn5TlYERERERUKgaBiIhozIy3IJAnmTEz7HIwpyDQCHxWIQp7DTm9j0dlA10iIiIiYhCIiIjGUP7w5mMtPxNoqK10nMvBhrxZRTkOB+8wn8c1zn7RRERERDQmeFVIRERjZrz1BHLnZQINdQhql0P0aCQygZwyqZymOZWnEREREVHl4VUhERGNmfFWDlYYBBraadJxiPgR+KiOZWt5k1LNromIiIiIGAQiIqIxM85iQOmgTyo45R5CEEiI0esJ5BgDyps2lM9ARERERJMTrwyJiGjMDLcBczmpikj3BBpOJlCxzzQSH7WUcjCWghERERFRCq8MiYhozIyncrDs5snqMDKBin2mkcgEcgo45U8ZakkbEREREU0+vDIkIqIxM44SgXKCJWqyp89QsmiKLTISGTlOAaf8SUNtbk1EREREkw+DQERENGaEEOOmL5DXlQmWqMnt0lRl0MPEF8v4cWsKfO7ynnadGj4XlIMxE4iIiIiIknhlSEREY2q8BIGyM4EUxR5VCxh8yVp/89f63EPbuKLvNfA8LAcjIiIiohReGRIR0ZgaL82h8zOBNCV3pLBSqf0GgVxD27hBvFf2JK9L4fDwRERERJTGIBAREY2p/oImo0VRkB4ZDEiNFCaS/x7cuvr7OOUuCXMqPcsOWmUHtoiIiIiIGAQiIqIxNR4yVfKDJUJkhosf7KheA30ebbBNhvox0OhgfjeDQERERESUwSAQERGNqfGQCeSUMZPqpVPOcrChrK//dRVOyw5a+RgEIiIiIqIs2lhvABERVbbx0BPI69A82ZMMDA02SDXQxylHIpAQQI3X5Ri8Sr2/EICP5WBERERElIVBICIiGlPjIgjUTybQYBN3BiofK0cmkN+tYlajv9/397qUQZeyEREREdHkxnIwIiIaU+M1CJTqCTTYnkUDfZ5yfF7XAN2qhQD8bj7nISIiIqJcDAIREdGYKmePnKFwa0q/gZmyl4OV4fN6HMrX8gU8DAIRERERUS4GgYiIaEyNdSaQ19X/qXCwmzdwOdjg1ufEPUAQSBECVQwCEREREVEeBoGIiGhMjX0QqP/myYPtqzMeysECHnXMf69ERERENP4wCERERGNqrIMVAwWBBrt9A81ejmbNA2UCVXtdw34PIiIiIpp8GAQiIqIxNdieO+Xmd/cfBBpsjGqgnj/DDXoJMXAmEEvBiIiIiMgJg0BERDSmlDE8E7k0UcJIW4PNBBogCDTMoNdAWUClzkNERERElYdXiURENKa0MYwC+V0DZ8yUvxxsUKsrMFDQioiIiIioGF5JEhHRmBrLnkC+AUrBgPFXDsYsHyIiIiIaKl5JEhHRmBurZKDSgkCDzAQaIMgz2PXlczMTiIiIiIiGiFeSREQ05sYiG0gIwD/AyGDA4II2pQSzhvNZNVWgxsemz0REREQ0NLySJCKiMacKAR1yVN8z4NEGzNoBBlcOVmrASFEAyyp9vZoq4HWpmFrrhUcbOHBFREREROSEQSAiIhpzY5EJ1BBwlzTfoDKBSg0CCQGrxKCXEMC85gCDP0REREQ0bCwHIyKiMTfaQSCXJlDjLe05SCnZQimltusZzOetD7gZACIiIiKismAQiIiIxtxwmyUPVoPfDVHmXj8ASl5nqTEgVRFoqfaUNjMRERER0QBYDkZERGNutDOBav2uQc1favnWYMrBBlLt1TCzwT8mpXJERERENDkxE4iIiMacNoqBDp9bGXR5VanBHbXU+Ur4vHV+FwNARERERFRWDAIREdGYG0zfneGq9ZXWEDpbVYn9g0qtMCslqOQtYfh6IiIiIqLBKCkIJIS4QAixVQixQwhxq8Pr1wghNiT/e1kIsaz8m0pERJOVRxu9ZxK1vsGVggHAtFov/J6BgzKlBrMGmk+I0f2dEBEREVFlGPAKUwihArgTwIUAFgK4WgixMG+2XQDOkFIuBfANAHeXe0OJiGjy8rtHp0VdY5Ub7iEEV4QQmNMYgM/d/7KlJjQNNJ9bUwbVuJqIiIiIqBSlXAmfAGCHlPJdKWUCwP0ALsueQUr5spSyO/njqwBmlHcziYhoMlMVAY9rZDNf3JqCKTXeIS+vKgJzm6r6DQSV3BNogPm8HBKeiIiIiEZAKVfc0wHsy/q5LTmtmI8CeMLpBSHEJ4QQa4UQa9vb20vfSiIimvR8I9gDRwhgZoNv2L2HVMXOCPIWCVi51NICWQNtR7H1ExERERENRylXmU5Xqo7j5AohzoIdBPqC0+tSyrullKuklKuam5tL30oiIpr0Ap6RKwlrrfGWreRMUxXMavQXNIFurHKjPlBa0+mBGkN72BSaiIiIiEZAKUGgNgAzs36eAeBA/kxCiKUAfgbgMillZ3k2j4iIKoXfPTKBj+ZqD5qrPWVdp0dT0VKTWWeNT8O0Ol/Jyw9UDsam0EREREQ0Ekq5ynwdwHwhxFwhhBvAhwA8lj2DEGIWgD8CuFZKua38m0lERJOd16UO2Hh5sJqrPZhSO/Q+QP2uu8oOLvncKmbU+we1rNetQC1SEtZU7ebw8EREREQ0IgbMjZdSGkKITwN4EoAK4BdSyneEEDclX78LwFcBNAL4r+RoJoaUctXIbTYREU1GR7dUoyMUx8GeWNF5fG4F9X43DvbGIB2Lk21uTUFrTXkzgLIJIYYcYPJoKuY1B7C7MwzdkPC5VUyp9UJTBANARERERDRihOzvCnoErVq1Sq5du3ZM3puIiMa3nkgCh/pisCw7MwYAgjEDVR4NzVUeKIpAOG6gO5JAJGEirlvpZVVFwKXaAZpqr2usPkJJTEuiIxRHU5WnaGYQEREREdFgCCHeKJaYM3JdOImIiIaozu9GnT+3yXJLde48AY+GgEeDlBLdER2qEPB71JJH6BoPVEWgdRjD1hMRERERDQaDQERENKEJIdBQ4qhcRERERESVbOI8LiUiIiIiIiIioiFjEIiIiIiIiIiIqAIwCEREREREREREVAEYBCIiIiIiIiIiqgAMAhERERERERERVQAGgYiIiIiIiIiIKgCDQEREREREREREFYBBICIiIiIiIiKiCsAgEBERERERERFRBWAQiIiIiIiIiIioAjAIRERERERERERUARgEIiIiIiIiIiKqAAwCERERERERERFVACGlHJs3FqIdwJ4SZ28C0DGCm0Plwf00/nEfTQzcTxMD99P4x300MXA/jX/cRxMD99P4x300MUyG/TRbStns9MKYBYEGQwixVkq5aqy3g/rH/TT+cR9NDNxPEwP30/jHfTQxcD+Nf9xHEwP30/jHfTQxTPb9xHIwIiIiIiIiIqIKwCAQEREREREREVEFmChBoLvHegOoJNxP4x/30cTA/TQxcD+Nf9xHEwP30/jHfTQxcD+Nf9xHE8Ok3k8ToicQERERERERERENz0TJBCIiIiIiIiIiomFgEIiIiIiIiIiIqAKUPQgkhLhACLFVCLFDCHFr3mufSb72jhDiP4os//7k65YQYlXWdLcQ4pdCiLeFEOuFEGcWWf7TyfeWQoimrOm1Qog/JZd9RwjxkfJ84omnDPvoO0KILUKIDUKIh4UQdVmvfTG53q1CiPOLLD9XCPGaEGK7EOL3Qgh3croQQvw4ufwGIcTKMn7sCWe87qfka2cKIdYl3/+5Mn3kCWkc7Kdix7xrkuvcIIR4WQixrEwfecIZx/uI56UsI7WfhBCNQoh/CCFCQoif9PP+PDcNYLzuo+RrPC8ljYP9xPPSAMbxPuJ5KcsI7qdzhRBvCPu+9g0hxNlFlud5aQDjdR8lXxu/5yUpZdn+A6AC2AlgHgA3gPUAFiZfOwvAUwA8yZ9biqzjOAALADwLYFXW9E8B+GVqWQBvAFAcll8BYA6A3QCasqZ/CcC3k/9uBtAFwF3Ozz8R/ivTPjoPgJb897ezfq8Lk+vzAJibfB/VYfkHAHwo+e+7AHwy+e+LADwBQAA4CcBrY/374n5y3E91ADYBmNXf+1fCf+NkPxU75p0CoD757wsr9e9pnO8jnpdGZz8FAJwG4CYAP+lnG3humrj7qA48L42n/cTz0sTdRzwvjc5+WgFgWvLfiwHsL7I8z0sTdx/VYRyfl8qdCXQCgB1SynellAkA9wO4LPnaJwHcIaWMA4CU8ojTCqSUm6WUWx1eWgjg6axlewCsyp9JSvmWlHK306oBVAshBIAq2Ac1o/SPNmmUYx/9TUqZ+t29CmBG8t+XAbhfShmXUu4CsCP5fmnJ3//ZAB5MTroXwOVZy/9K2l4FUCeEmDqsTztxjef99GEAf5RS7u3v/SvEmO6n5PKOxzwp5ctSym6H9VaacbuPwPNSthHbT1LKsJTyRQCxYm/Oc1NJxvM+4nkpY0z3U3I+npf6N273EXheyjaS++ktKeWB5PR3AHiFEJ7sZXleKsl43kfj+rxU7iDQdAD7sn5uS04DgGMAnJ5Ml3pOCLF6kOteD+AyIYQmhJgL4HgAMwex/E9gZxkdAPA2gM9KKa1BbsNkUO59dCPsSPRA605pBNCT9ceWPU8py1eK8byfjgFQL4R4NpkeeV1Jn2hyGuv9VKqPZq230oznfcTzUsZI7qdS8Nw0sPG8j3heyhjr/VQqnpcyxtM+4nkpY7T201UA3koFK7LwvDSw8byPxvV5SSvz+oTDNJn1XvWwU9ZWA3hACDFPSikdlnHyC9gHpbUA9gB4GYOLTJ8PYB3saN1RAP4uhHhBStk3iHVMBmXbR0KI22Dvg/tKWHcp71/K8pViPO8nDXYQ9hwAPgCvCCFelVJuK/JZJrOx3k8Db6AQZ8G+2D5tsMtOEuN5H/G8lDGS+2m4789zk2087yOelzLGej8NvIE8L43nfcTzUsaI7ychxCLYJUjnDfL9eV6yjed9NK7PS+XOBGpDbnbODNiR5NRrf0ymrf0TgAWgSdjNntcJIf7S34qllIaU8t+klMullJfBrrPbPoht+0jW++8AsAvAsYNYfrIoyz4SQlwP4BIA12T9MfW37pQO2CmLmsM8pSxfKcb7fvprMuW4A8DzAJYN47NOZGO9n/olhFgK4GcALpNSdg5m2UlkPO8jnpcyRnI/lYLnpoGN933E85JtrPdTv3heAjC+9xHPSxkjup+EEDMAPAzgOinlTof353lpYON9H43f85Isb3MmDcC7sBtkppozLUq+dhOA25P/PgZ26pboZ13PIrcxtB9AIPnvcwE8P8C27EZuo7P/BvD15L9bAezPfr1S/ivHPgJwAexGV8150xcht0nqu3BukvoH5DbQujn574uR2+Tsn2P9++J+ctxPx8Huz6Ul/y43Alg81r+zSt1PWfPnH/Nmwe5Rc8pY/564j4ruI56XRmE/Zb1+A/pvlMpz08TdRzwvjaP9lDVf/jGP56Xxv494XhqF/QQ7mWE9gKsG2AaelybuPhrX56WR2BkXAdgGu1P3bVnT3QB+k/wFvAng7CLLXwE7chYHcBjAk8npcwBsBbAZdqfv2UWW/5fk8gbsSNzPktOnAfgb7PrWjQD+11j/8sdspw9/H+1I/iGtS/53V9ZrtyXXuxXAhUWWnwfgn8n1/AGZru0CwJ3J5d9GVhCwEv8br/sp+dotyQPmRgD/Ota/qwrfT8WOeT8D0J213rVj/bviPuJ5aQz3027YDU5DyX2x0GF5npsm6D5Kvsbz0vjZTzwvTdx9xPPSKOwnAF8GEM6avg4Oo0cVO+aB56Vxv4+Sr43b85JIbiAREREREREREU1i5e4JRERERERERERE4xCDQEREREREREREFYBBICIiIiIiIiKiCsAgEBERERERERFRBWAQiIiIiIiIiIioAjAIRERERERERERUARgEIiIiIiIiIiKqAAwCERERERERERFVAAaBiIiIiIiIiIgqAINAREREREREREQVgEEgIiIiIiIiIqIKwCAQEREREREREVEFYBCIiIiIiIiIiKgCMAhERERERERERFQBGAQiIiIiIiIiIqoADAIREREREREREVUABoGIiIiIiIiIiCoAg0BERERERERERBWAQSAiIiIiIiKF/fnEAAEAAElEQVQiogrAIBARERERERERUQVgEIiIiIiIiIiIqAIwCEREREREREREVAEYBCIiIiIiIiIiqgAMAhERERERERERVQAGgYiIiIiIiIiIKgCDQEREREREREREFYBBICIiIiIiIiKiCsAgEBERERERERFRBWAQiIiIiIiIiIioAjAIRERERERERERUARgEIiIiIiIiIiKqAAwCERERERERERFVAAaBiIiIiIiIiIgqAINAREREREREREQVgEEgIiIiIiIiIqIKwCAQEREREREREVEFYBCIiIiIiIiIiKgCMAhERERERERERFQBGAQiIiIiIiIiIqoADAIREREREREREVUABoGIiIiIiIiIiCoAg0BERERERERERBWAQSAiIiIiIiIiogrAIBARERERERERUQVgEIiIiIiIiIiIqAIwCEREREREREREVAEYBCIiIiIiIiIiqgDaWL1xU1OTnDNnzli9PRERERERERHRpPPGG290SCmbnV4bsyDQnDlzsHbt2rF6eyIiIiIiIiKiSUcIsafYaywHIyIiIiIiIiKqAAwCERERERERERFVAAaBiIiIiIiIiIgqwJj1BCIiIiIiIiIaa7quo62tDbFYbKw3hWhQvF4vZsyYAZfLVfIyDAIRERERERFRxWpra0N1dTXmzJkDIcRYbw5RSaSU6OzsRFtbG+bOnVvyciwHIyIiIiIioooVi8XQ2NjIABBNKEIINDY2DjqDjUEgIiIiIiIiqmgMANFENJTvLYNAREREREREREQVgEEgIiIiIiIiojEkhMC1116b/tkwDDQ3N+OSSy4Zw60aWFVV1YDzfP3rX8d3v/vdfud55JFHsGnTpnJtFvWDQSAiIiIiIiKiMRQIBLBx40ZEo1EAwN///ndMnz59TLbFMIxRf08GgUYPg0BEREREREREY+zCCy/E448/DgD43e9+h6uvvjr9Wjgcxo033ojVq1djxYoVePTRRwEAu3fvxumnn46VK1di5cqVePnllwEABw8exJo1a7B8+XIsXrwYL7zwAoDczJ0HH3wQN9xwAwDghhtuwOc+9zmcddZZ+MIXvoCdO3figgsuwPHHH4/TTz8dW7ZsAQDs2rULJ598MlavXo2vfOUrRT/Lt771LSxYsADvec97sHXr1vT0//mf/8Hq1auxbNkyXHXVVYhEInj55Zfx2GOP4ZZbbsHy5cuxc+dOx/moPDhEPBERERERERGA//Ond7DpQF9Z17lwWg2+9t5FA873oQ99CLfffjsuueQSbNiwATfeeGM6ePOtb30LZ599Nn7xi1+gp6cHJ5xwAt7znvegpaUFf//73+H1erF9+3ZcffXVWLt2LX7729/i/PPPx2233QbTNEsKomzbtg1PPfUUVFXFOeecg7vuugvz58/Ha6+9hptvvhnPPPMMPvvZz+KTn/wkrrvuOtx5552O63njjTdw//3346233oJhGFi5ciWOP/54AMCVV16Jj3/84wCAL3/5y/j5z3+Oz3zmM7j00ktxySWX4H3vex8AoK6uznE+Gj4GgYiIiIiIiMYJy5JQFI5UVYmWLl2K3bt343e/+x0uuuiinNf+9re/4bHHHkv31onFYti7dy+mTZuGT3/601i3bh1UVcW2bdsAAKtXr8aNN94IXddx+eWXY/ny5QO+//vf/36oqopQKISXX34Z73//+9OvxeNxAMBLL72Ehx56CABw7bXX4gtf+ELBel544QVcccUV8Pv9AIBLL700/drGjRvx5S9/GT09PQiFQjj//PMdt6XU+WjwGAQiIiIiIiIaJzpCcbTUeMd6MypWKRk7I+nSSy/F5z//eTz77LPo7OxMT5dS4qGHHsKCBQty5v/617+O1tZWrF+/HpZlweu1vztr1qzB888/j8cffxzXXnstbrnlFlx33XU5Q4rHYrGcdQUCAQCAZVmoq6vDunXrHLexlGHJi81zww034JFHHsGyZctwzz334Nlnnx3WfDR47AlEREREREQ0DkgpEYqPflNeGj9uvPFGfPWrX8WSJUtypp9//vn4z//8T0gpAQBvvfUWAKC3txdTp06Foij49a9/DdM0AQB79uxBS0sLPv7xj+OjH/0o3nzzTQBAa2srNm/eDMuy8PDDDztuQ01NDebOnYs//OEPAOzv5fr16wEAp556Ku6//34AwH333ee4/Jo1a/Dwww8jGo0iGAziT3/6U/q1YDCIqVOnQtf1nOWrq6sRDAYHnI+Gj0EgIiIiIiKicSBuWDAtOdabQWNoxowZ+OxnP1sw/Stf+Qp0XcfSpUuxePHidFPmm2++Gffeey9OOukkbNu2LZ3N8+yzz2L58uVYsWIFHnroofQ677jjDlxyySU4++yzMXXq1KLbcd999+HnP/85li1bhkWLFqUbUf/oRz/CnXfeidWrV6O3t9dx2ZUrV+KDH/wgli9fjquuugqnn356+rVvfOMbOPHEE3Huuefi2GOPTU//0Ic+hO985ztYsWIFdu7cWXQ+Gj6RiiQWnUGIXwC4BMARKeVih9cFgB8BuAhABMANUso3B3rjVatWybVr1w5po4mIiIiIiCab3qiOg71RHDulZqw3paJs3rwZxx133FhvBtGQOH1/hRBvSClXOc1fSibQPQAu6Of1CwHMT/73CQD/XdKWEhERERERUVqCmUBENMIGDAJJKZ8H0NXPLJcB+JW0vQqgTghRPK+MiIiIiIiICkgpMUChBhHRsJSjJ9B0APuyfm5LTiMiIiIiIqISWRKQ0h4mnohoJJQjCOQ09pvjUUsI8QkhxFohxNr29vYyvDUREREREdHEIqVE2GEUMJm8jTLz0oEG6uNKRFSqcgSB2gDMzPp5BoADTjNKKe+WUq6SUq5qbm4uw1sTERERERFNLLop0R1JFExPJQBl9wXSTQu7OsJIGBZ6o/pobSIRTVLlCAI9BuA6YTsJQK+U8mAZ1ktERERERDTpGJaFkEMmUKoMLDsIFImbCMdN7O4M41BvbNS2kYgmpwGDQEKI3wF4BcACIUSbEOKjQoibhBA3JWf5C4B3AewA8D8Abh6xrSUiIiIiIprgdFNCNySiCTNn+oa2Xry8syNdDhY3TBzsi9r/1i0kDIulYZPU4cOH8eEPfxjz5s3D8ccfj5NPPhkPP/zwiL/v2rVr8S//8i9lWdeZZ56JBQsWYNmyZTj11FOxdevWsqy3nMq5jffccw8+/elPAwDuuusu/OpXvyo67+7du/Hb3/42/XM5f++DpQ00g5Ty6gFelwA+VbYtIiIiIiIimsQM0wIA7O2K4JjWKghht1n91G/fBAB8cLXdbaMvakA3coM+ccOC16WO4tbSSJNS4vLLL8f111+fDhTs2bMHjz322Ii/96pVq7Bq1aqyre++++7DqlWrcPfdd+OWW24p+AymaUJVx/b7OxLbeNNNN/X7eioI9OEPfxhA+X/vg1GOcjAiIiIiIiIqUVS3M4AShoVwMhsobmSyglL/jiQKS8bihjUKW0ij6ZlnnoHb7c4JJMyePRuf+cxnANgBhNNPPx0rV67EypUr8fLLLwMAnn32WVxyySXpZT796U/jnnvuAQDceuutWLhwIZYuXYrPf/7zAIA//OEPWLx4MZYtW4Y1a9YUrOOf//wnTjnlFKxYsQKnnHJKOkvmnnvuwZVXXokLLrgA8+fPx7//+78P+JnWrFmDHTt2AACqqqrw1a9+FSeeeCJeeeUVfP/738fixYuxePFi/PCHP0wv86tf/QpLly7FsmXLcO211wIA2tvbcdVVV2H16tVYvXo1XnrpJQDAc889h+XLl2P58uVYsWIFgsEgDh48iDVr1mD58uVYvHgxXnjhhSFv429+8xuccMIJWL58Of73//7fME37b/KXv/wljjnmGJxxxhnpbQGAr3/96/jud78LANixYwfe8573YNmyZVi5ciV27tyJW2+9FS+88AKWL1+OH/zgBzm/966uLlx++eVYunQpTjrpJGzYsCG9zhtvvBFnnnkm5s2bhx//+McD/t5LMWAmEBEREREREZWHZUn0RDINnk3TzvR5Y3d3elp7MI6GgCcdLMpfnkbQE7cCh94u7zqnLAEuvKPoy++88w5WrlxZ9PWWlhb8/e9/h9frxfbt23H11Vdj7dq1Refv6urCww8/jC1btkAIgZ6eHgDA7bffjieffBLTp09PT8t27LHH4vnnn4emaXjqqafwpS99CQ899BAAYN26dXjrrbfg8XiwYMECfOYzn8HMmTML1pHypz/9CUuWLAEAhMNhLF68GLfffjveeOMN/PKXv8Rrr70GKSVOPPFEnHHGGXC73fjWt76Fl156CU1NTejq6gIAfPazn8W//du/4bTTTsPevXtx/vnnY/Pmzfjud7+LO++8E6eeeipCoRC8Xi/uvvtunH/++bjttttgmiYikUjR7etvGzdv3oxvf/vbeOmll+ByuXDzzTfjvvvuw7nnnouvfe1reOONN1BbW4uzzjoLK1asKFjvNddcg1tvvRVXXHEFYrEYLMvCHXfcge9+97v485//DMAOvqV87Wtfw4oVK/DII4/gmWeewXXXXYd169YBALZs2YJ//OMfCAaDWLBgAT75yU/C5XL1+7kGwiAQERERERHRKLGkRHZbH8OyM3seXZcZYPlQbwz1AU9BKRgAMAQ0+X3qU5/Ciy++CLfbjddffx26ruPTn/401q1bB1VVsW3btn6Xr6mpgdfrxcc+9jFcfPHF6YyTU089FTfccAM+8IEP4MorryxYrre3F9dffz22b98OIQR0PROsPOecc1BbWwsAWLhwIfbs2eMYBLrmmmvg8/kwZ84c/Od//icAQFVVXHXVVQCAF198EVdccQUCgQAA4Morr8QLL7wAIQTe9773oampCQDQ0NAAAHjqqaewadOm9Pr7+voQDAZx6qmn4nOf+xyuueYaXHnllZgxYwZWr16NG2+8Ebqu4/LLL8fy5csdfz8DbePTTz+NN954A6tXrwYARKNRtLS04LXXXsOZZ56J1EjnH/zgBwv2RTAYxP79+3HFFVcAALxer+M2ZHvxxRfTwbazzz4bnZ2d6O3tBQBcfPHF8Hg88Hg8aGlpweHDhzFjxowB19kfBoGIiIiIiIhGSX4Qx7QkEoaFf+7uQlOVGx2hBA72xjCl1ue8PBtDj6x+MnZGyqJFi9JBAAC488470dHRke4Z84Mf/ACtra1Yv349LMtKBxY0TYNlZcoDY7FYevo///lPPP3007j//vvxk5/8BM888wzuuusuvPbaa3j88cexfPnydLZJyle+8hWcddZZePjhh7F7926ceeaZ6dc8Hk/636qqwjAKSxWBTL+dbF6vN91jp9j3V0qZ7o2VzbIsvPLKK/D5cv8ebr31Vlx88cX4y1/+gpNOOglPPfUU1qxZg+effx6PP/44rr32Wtxyyy247rrrhrSN119/Pf7f//t/OfM88sgjjtuY/zkGy2mZ1PuU+nsfDPYEIiIiIiIiGiVW3g2fYUl0hGLY1xXBipn1AICOUBzF7iUZApp8zj77bMRiMfz3f/93elp2KVNvby+mTp0KRVHw61//Ot2fZvbs2di0aRPi8Th6e3vx9NNPAwBCoRB6e3tx0UUX4Yc//GE62LNz506ceOKJuP3229HU1IR9+/blbEdvby+mT58OAOneQuW2Zs0aPPLII4hEIgiHw3j44Ydx+umn45xzzsEDDzyAzs5OAEiXg5133nn4yU9+kl4++7MsWbIEX/jCF7Bq1Sps2bIFe/bsQUtLCz7+8Y/jox/9KN58880hbeM555yDBx98EEeOHElvy549e3DiiSfi2WefRWdnJ3Rdxx/+8IeCZWtqajBjxgw88sgjAIB4PI5IJILq6moEg8Giv5P77rsPgF0m1tTUhJqamiFteykYBCIiIiIiIhol+cEd05LYfCgIw5I4qsUukYkkCnsBFVueJj4hBB555BE899xzmDt3Lk444QRcf/31+Pa3vw0AuPnmm3HvvffipJNOwrZt29KlVDNnzsQHPvABLF26FNdcc026P00wGMQll1yCpUuX4owzzsAPfvADAMAtt9yCJUuWYPHixVizZg2WLVuWsx3//u//ji9+8Ys49dRT04Gmclu5ciVuuOEGnHDCCTjxxBPxsY99DCtWrMCiRYtw22234YwzzsCyZcvwuc99DgDw4x//GGvXrsXSpUuxcOFC3HXXXQCAH/7wh+km1z6fDxdeeCGeffbZdKPohx56CJ/97GeHtI0LFy7EN7/5TZx33nlYunQpzj33XBw8eBBTp07F17/+dZx88sl4z3veU7SP069//Wv8+Mc/xtKlS3HKKafg0KFDWLp0KTRNw7Jly9L7I+XrX/96+jPeeuutuPfee4e03aUSY5VOuGrVKtlfMysiIiIiIqLJJqab2H44lP454FHxjy1H8I3HN+OOK5fg1j++jRtOmYOrVjr3/Wit9aCleuA+I1S6zZs347jjjhvrzSAaEqfvrxDiDSml4xj0zAQiIiIiIiIaJfnP4CMJM535U+OzR/3RzX6GgWcmEBENA4NAREREREREZRZzGN4dAGReFEdKIG7YQR+fIvEl7T4EIvuLrpcxICIaDo4ORkREREREVGad4QSm1xWO8OXUjSMVBGru/CfO0h7H+oNBACc7rje/sTSVR7HRqYjGs6G092EmEBERERERUZklDOeSLqdbttS81ZG9AICwEii6XsaAys/r9aKzs3NIN9REY0VKic7OTni9g+sRxkwgIiIiIiKiMivW18cpkydu2KVj/uAuAECvqEV11utPbT6MP761H8fPqsPnz19Q9m2tdDNmzEBbWxva29vHelOIBsXr9WLGDOcm8sUwCERERERERFRmCcNyLDEqVg7m0RR4+nYDAFxWFFJKPP72QRy99uu4zFiPBxO34pGuCFbMqsf1p8wZ+Q9QQVwuF+bOnTvWm1E2obiBKg9v9ckZy8GIiIiIiIjKyLIkpCxSutVPEMgVOgAAcJsRrN3TjZ8+vxPvt/6KecpB/GnuQ6h2SWxo6xnRbaeJIRQ3HKfv74lCL1KKSAQwCERERERERFRWumXfhDuVfuWPDgYAcd2Ex6XCHbaDQF4zjMN9McwXmVHCGg4+j+tcTyOm8wafgEO9sYIeRqYl0RVKcAQ56heDQERERERERGWUavRsOdyNFysHq1PjUBN9AACPFUEobuBEZTMAYOclDwEAFot3EUk4Dz1PlcW0JPqiudlAkUTmZza5pmIYBCIiIiIiIiqjcNwO1Dhl/TjdmscNE9OV7vTPHhlFKGbgVHUzEoFpiLSuQnD6Ghwl9yGqO5cB0fhUrEH4cElI7O2KwDAt9EZ0AEA0GSCUUkI3GQQiZwwCERERERERlVEqI8MpGcOSErU7H8P05z8PNdoJwM4EqldjAIAYPKiyQlAi7ThR2YTw1JMAIRBrOBZzrL3wRw+N2ueg4YuPUH+e1HfrUF8M+7ojMC2JqJ4KPo5c8IkmPgaBiIiIiIiIyshM1oE5BYGkBBrf+SUatj2A6jf/C6YlEdcteFX7pj2sVGGGtR8/2Pd+NKAP4aknAwC6jv0wFFg4L/ynUfscNHxxfWTK91L9prrDOqS0SxDTQSAJGMwEoiI4bhwREREREVEZmckb9GKNobVYFwBg6qaf44XoPMSN4+D12vOGlWo0Wp3p+UPTTgUAJGrnIajUwm/2jvTmUxklRqocLO+rFdNN6EZmYqo5+XBZloSiiLKsi8YHZgIRERERERGVUToTyOlFCWjRdmyqPweb5GxcuudbiOsmvKo9d0wNpGf9Tc1HoVfPSP8cV/3wWJGR3HQqs/gojeaWPWS8hCxbOZjh1N2cJjQGgYiIiIiIiAYhFDdyRmLKl0rCcMwE0sNQ9RDe1Gfhr+YJqJIhmHoMXtV+PaZUAQCi8ODZxqtzlk0ofnitaHk+BI2KcmYCGVnryv9qBWNZ38cyloM5fYdpYmMQiIiIiIiIaBCCMR27OsLoCMWxsz2U85qZlTnhdP+shNoBAFtCPkThBgAIIwpfMhMoofrTy9b53DnLJrQq+GSUw39PEIZp5Xwfhr2+5Losh3XmfO+AdJ+g4Srn9tP4wCAQERERERHRIBimhGUBB3tiiCbMnKCMaUlASsz6+8fhevMXBcsqoQMAgH2JakThsafp0XRj6ESyHExAorEqNwhkaH5UITpiI05ReRmWdAwEDlWqxKuUVZarJMxkwHHSYRCIiIiIiIhoEIy8bJ/soIwlJfxH3kDtnifh//u/Fyzr2vsCLCh425qLpvp6AIBPxNM9gapq7GkCEo2B/CBQAAFEEY4XL0Wj8SNhWpAlhWxKkyrxGqhES9pxyPIEgUZxlDFmuI0OBoGIiIiIiIhKkLqpNvNGXsru+2JaEv7Da+35Z51esA7P3hewVTsG1Q1T0FhXBwDwIQFv8s6ssbEJACAANAQ8OcsaWhUCIjZiI05ReRlmeTOBUsHHgdYpk6GnspSDjVJgRkoJVp6NDgaBiIiIiIiIBqCbVjoIpOdlR2Q34TVMCS1i9/2xXP6CG3EZD2JPogar5zTA47NLv7yIw5MsBxOe6vS8heVgAVQjWramvzRyEob9fSlvEChVDlZKJpBEVDeH/Z5O/YdGCptQjw4GgYiIiIiIiAYQSZjp4E9+s9zsm9eDfVFEuw/a8xk62kPxnBvpWDwBQyo4fnY9PH57JDC/iKd7Allue5oigHp/bhBI1/zwCB16Il7mT0fl1hNNZHr4lCm4kQr+lbI6CXsUOynlsN5/9DKBGAQaLQwCERERERH1g30qyLIkogkzPdpT/lci+2cpgViPHQSKJ3REEwb2dkXSr+t6AiZUzG+tgjdgZ/1UI4LZ3a8CAEyXHQRSFUBVRM77mC57fiseLOvno/LrixrpoGG5DiGll4PZLAsIJ8xhNRIfrdHBUiOa0cjTxnoDiIiIiIjGs7hhwa0qUPJuyKly6JZd2iOEki7JyZZdniMl4I11AABMI4GYbgGwg0emJWEaOnxeNzyaCr/fDur8l/vHgB03gpUMAonkHbEQgEtVkDAsWKrXXm88E1Si8Semm4jpJtyanXNRjtiGacl0pszA5WCZQGUwpsPv1uB1qQO+R0w3C+azLHt9Qozs8c/uCcQo0GhgJhARERERUT/ihsVGvBVONyXihgXDsoeGL5CdCQSJarPL/rehp0dqCsUMHOyNwjIN1AV8AIBAVXXBqixPVc7PXpeK6fX2/FDtZ/iWkRj+h6IRE02Y9qhxerLErwzBDTsDLTU6WP/z2rPJ9LbES+wNFE2YiBu580oMv2FzKX2FJAb+XFQeDAIREREREfUj1eCVKlN3OIFDvVFEEyb6orpjJlD2zWtvbx/qYZdrSSszlHtfTMc/thyBChPNtXZDaH9VTcG6VG9qmr3SgEdFlUeDSxOAavcIMvOCQAa/n+NKKG7k/FyOBJfsYEwpJaqpWVJB7FICMVHdRG9UL1jPcINYRilBIPYEGjUMAhEREREROUj1wkiYVsFoUFQ5IrqJaMIOshimdOyRkl2e077/3cwLZuaGujeq4629PdBgodpvl3VB8xWsS/PlBoE8ml2eM7XWB6G67O3Qc4NAUd0sy3DgQzGao0dNBIZpFQZSylAQlh0kKWVtqXkMUyJhWOiL6QMGj3TTQl/UQDSRyQayM3SGt/2l9hWSjGWOCgaBiIiIiIgcpG6qLUsyE6iC6XnBFaeshux75OBhOwjUK/2ApefMs2F/L9yKBSh2WZdUPQXrcvlrclaqqXYvFreqpJfLDwIZpkQkkZt9Mlp68gIelU43+28cPlRS2v15Yro5YLAk//0iCRPBmDHgkPFGsgF6diNzS8phNZYG7J5aA7EznRhQHA0MAhEREREROUj1xpASY5ZlQWMvvx+UcyZQht65BwCwR7YCVu5Nd0coDk1YkCI5Pk+y2W60cVF6HrevGqFpp2DPuf9j/6zat2yqIiCS5WCWkRt40S1r2DfqQ9ERiqMrzOHqe6N6Onsme0j1HUdCePKdQ2UJAlnJxsnhuFE0s8jbsRGz/3YjGv72aUgzExSU0i5Ry87wcZIagj5VAqubFqTEgMsNxCwhk5LlYKOHQSCiEaaXWINLRFQpDNNCrMQmlU5Ga7haIjOZAWRJycbQFSh1/ZYdAFSjnTBjoYJ5U2U2UkogdAgAsF82Q1i5wRrDlFClCSiZEZjevnEX9p35o/TPHo8buy66H6E55wGwRwYDAE0R6XKw/MbQuinTTYhHk85SSQB2kCRVApYd8Ljn5V24+/l3YZWhzslKjvgVSZjO50EpMeeJ/4WavU+hautDUCNHcl42TDngvsper25aiMRNAHLYQaBSegIBbAw9WhgEIhphMd1EpISbHTb0I6LJLPsYF4wZw3rax7IcGi2WtG+cLMlysEqUMK3kiEz2zzHdxML7VqD5vvcUzJtuwqtbiEUjMKBBV7wQVm6Jlm5aUKWRyQQCAEWFlVUW5tbs16o8GhTFzgACAEURUDTnIJBhWgWjOo2G1LD3lc6wLHSE4ogkjHTj8N6ojrf39yLh0CNoKCSA3R1hbD8Sysk2StH2vghXvCszv0MJ1kDHsZwgkCERThiQcvjn3VK+I/YoevwujQYGgYhGWMKwEEmOENDfga3UCDkR0UQUNzJZkcO9mByLkgeqTJaU0C0LlrRviPjAprIk8gIrd/5jBwDA1burYN7UJd7O9hAUaUAqKqBoUGRWg10pYVgWVJj269nLJ8u8AEBJlojV+92o9rhy5lPdmXKw7BtrS2aOs6N5I50KklV6IMhI9gGKJsx0gOaVnZ3pzJbsHjtDJS3gM/e/hRvveR1OLXZiL/032mUNvqR/1J5gFQYF+8tozD++HQ7GENNNWLL/5UrhNKJevnIMRU+lYRCIaISlhmUE+g/0VPrJk4gmN8PKlNMkkj0GhooZGTRaLCmTwUv7C3uwNza2G0Sjysgrsdp8sLfovKkeLZsO9kGD3fhZKhoUmckEMiwJJdXLRdFyl1eygkCKgBB2Q+jW2tzG0S4tM0R8dpmaJe0RoH73+t5R7V+VurYt5SZ/Mkv9HuKGlb6mf2lnR/r1Az3DP3Zk9wHKz6bdf+gwFoZfxabG81FVnWosXtgovL/zZ352UVxPZsJBwrKGNwpcqfc5lf49Gi0MAhGNsOxa6f4OgE5pnUREk4VpSRiWRNww7Semw1iXZUn0RBIDz0g0DFJK/PzFXdhyKJh+Os2+QJXFMK2cfa4Z0aLzpi7jthwKwiVMCEWDlZcJpJsWNCSbjQs11RPa/lnNzfgRwv4vNTx8SpXfDwCwTCM3CGRJfPGPb+O2hzdi7Z6uUetHmXofo8L7AqWCFwnDgmFK9EZ1bGjrwdIZtQDs0rDh7pNgLCugmHcs2rF9MzzCQNNxa6CpyQCjLMwEMkxZdDuc7lOMrHLI4Rz/rBKyxdiAf/QwCEQ0wgxLpg9o/WYCVfjJk4gmN8OyEIoZ2NcVTY42MvRjngTQ1h1laQ6NGNOSCMYM/OyFXfjYvWvTT915g1JZEqaVkwnkscJF5019R7rCCfg1QCouCEWDisyNu25KqKkgkKJhep0PNT4NQuRmAgF2SZiAQL6qgNd+PyORU6r25w0HsPVwEAAQiZujVjaburat9L+NVBAsGDPQG9Xx6rt2KdhFi6cCAPqixrAf+O7vzpSUhRO5WT67D9lZR4GqamiuZEDRLAwCSYmiw8Q7BWmye2INp3VFamSz/kgw0D5aGAQiGmGpkUVS/y6GPYGIaDIzLYn2YBzRhH1zMqxMoOQIKcUuZImGqz0Yx95O+4YrFDfS/Tf6e4pOk08obuQEWrxm4ahgKalvhW5acAnLHv1LcUHLysYwTMsuFQMghYY6vwuzGwPwu1VIJa/3T7IkLJ+a7B0kzQT05HfxQE8Udz+/Cw1++7Wobo7a8TF1bVtJvdoGOgZICby8sxNTa71YNrMOANAX1UsuiSq2/n3dmUy0I33xrPeT6Oq1SxUt1QeXy84EEg6ZQEBhACnFafuyh20fzgNrWUoQSMpkbyUeY0cag0BEIyzVKC6RVSPshD2BiGgyyy4VGO71XTo1vYJuOmh0xQ0T+3syN1zZBYx8Ul0ZYroJ3ZDp4EbjWz/BX7TPF50/dVwyLQlNWJCpnkDILgfLZAIJVYNIRnkUIXKGjLenOb+PK9kYWhqZ8qK/vH0QUd3EZ98zH4A9hHhsFIJAelZ/t0o6Hjtl9GRPsqTElkN9WD6zDn6Xglu136Gub3PRTJtS1g/YTcdTOsOZIFBXOAErYQetLc0HLdk3SlrOwZ6+IiOVFbsXyWQCDX0fm5bEp+57E09tOlx0Hpl8r4GGsafhYxCIaARJKbOekJj9HjzZCI2IJrP8bMfhBIIyT9x5oUjlp5sW4oaFg31ZQaCsr9po3FzT2EuVgaX2/bQ3/iPndS1yJO9AlumN44Jp9/xRNbhgpOfTszKBVDXTGNop4wdwzgRyuexG0dJMFGThzKjzpX8udkOvm1bZstmymwzrFXIdm10elZKfudLWHUUkYWJBazU8kYO4SfsTPrjn647BnVIDQwCw40gmCNQdyQRy2nqi8ML+2dK8cGt2Vpkosk+iCaugnDphWOgeoNfecMrZ9nZF8NTmI/jYr9YOOC8fjI88BoGIRlB6xATTQjgrndwJD3hENBlFE/YNc0H/nuEEgdifhUbQns4IEoaF3qybrOx7n0oqe6lk2WVgABBVAjk/H/fbVZj+wi3pn1OXcbppQROmPfpXqsQrWZaTGh4esDOBUpx6/yjCebrmTgWB9PRNeSrT0u+21xnVjaLXlVHdzGkwPBzZx+BKKeFJjZaVLf+jbztk92Y6Zko1vN1bAQBBrd4x+OZUIlWsbGpXRxhTa+2eUNGEBW/HRsz567V4/1On4i73D+1t0bxwJXsCmaZzxg9QmNF4uC+GaKL/Y9tw7lXebsuMrFesn185Mo6oNAwCEY2g1MHyU799E5fd+RKsrMygbLLIdCKiiS6SMBCOG+kLTiklnt16BH2xoY/ulbpQjOgGIkV6GxANRcKwEE2YkNIezSclO+Mhu1EwTV75wb78IBAANGx7AFVtzwPIvYF1JYeITwV6RLIsRzdlenQwVcv0AHLK+BHCORPInSwHg2lkRuayLAgAXpd9axdNWEWzNqRVvhFpc4NAZVnluOcUoMmfsvVwEAG3iul1Pni67CDQEdeMoqNv5St2TxCKG2iutoOArR2v4Kg/XYHqtufgMYKZ7VO96Z5AsXjx82z+Q5T+ho4faLsGkjAsvLm3J/3z3q5Mg+uYbqI3qttBxOTqGQMaeQwCEY2g1IXigd4YDvfFIVHk5CEzT5CIiCYTU0qEE5lMyPVtvfje37fhrufeHfa6dUMyG4jKKvvpeF80E2DMDgjwKXVlyM+UCMPnON+spz+Jmf/4DKDbI4fppoSaagytpspyUkEgy34NeZlADsEeOxPIYXqy3wusRCYTyJJQFQFNVaAqAlHdLD4MuJRl+w5nBzAq5Tq2lHKwLYf6cExrNRQh4OndCQCIK96Sy8GK7Z6EYaHaY39v5nQ8BwgFW9//LH563L2ZZbN6AhlG8Yck+VlcpQxQM5jStWyhmI61e7owv6UKQKasTUqJrnAC+7uj2N0ZSWdY8Rg78hgEIhpBcdNEKJ41NKhhFU37LKVjPhHRRGNaMudm+p0Ddkq4VqzraQmyD4c8NFI56Vk3Rr0x50wgZu5WhvzMCNWyvw+dalN62r4134NUFNTtfBRNr38XgB0YccEEFBeEkh8EysoEUrMzgQqPhwLCcXq6xMy0S75iumkHl5LHVI+mIK6bRW/qLSnLlmmRfe2aXyI1WTk2hc76d29Ux+7OCBZNqwEAuPv2AgAUS3f8vRcrEXO67k8YFqo8qewyHaarConaeWi3ajLbonmhavY8hlG8HCw7sB2MGyU9UHE69pUyCt2WQ0HEdAuXr5gGAPjEr9/Ayzs70BFKoDc5alokYeQ0Vy+HuGHyeF0Eg0BEIyiuWzkpj93hhOMNS36GUFc4ke6jkcKDGBFNRKYlc45nqSeAVV5XsUUGlH2zwSMjlVN2c9u+IuVg5SqlofHNyGs8X2X14a/+92Jj4OT0tJ6jL8fma99Gz1GXo27z/UAiYgdk8srBII3kOpOvIausC84jgYkimUCp7CKYdlAhkjBhmDIdWHdrCqJ68Ztfy5Jl+w5nBzUq5c/CcswEyvx7Q1sPAGD5zHoAgDuYCgIZjhkuTsE6OwhU+N4J00IgGQSCmYBMBgQ7jUyWmlTcUDV7pDnTLJ4JlD1MfLH7k3xO36lSSrK3HbHL1Ra0ZoJV331yqz1ojinRGYpjy8Fg+nxeSlZSKXTTzjTK3sbUaM1rd3eV5T0mKgaBiEaQblrY0xlO/3w4GHM8gOqmhZ6sBpShmIGOUDxnHsaAiGgiyr1JkNh62L4YjA2jl09uJhAPjlQ+2SPOZQeBsgMCfCgz+WUPfQ4AsExUIYyEqxZqcnQu01UFKC50hOLYFDgBqh6E7G2zAzLCBFQNwqEcLJUJ5HZnZQI5hHuEKDJqmKLCgkivMxQzoJsWlKxMoGh6ZDOnAANglmlkxewHmANltE8Wjr09sx5H7DgSgqYIHFMdx5y/Xgd3+AAAQJEJ50ygIplF+VN1w4RuSrg1BW5VgTB1yOT3q1vPuqUXAlpyen/lYLoh0yMdRrIe1Hh6dgCWgbrtD8F3ZF3OMk7BmVJ6pL3bHoamCDQG3Hjh38/CNSfOwpt7e3D38+/icw+sww33vI7/7w/rcaQvBqB8x1jTkugMx7GvK4ojfTGE4gZ6ogn82+/X4X13vYKd7aGBVzJJMQhENIIMS2JvZyYTqD0YL3iyBADf/usWfOjuV9MH45hD+mKlnFyJaHLJfvK5tyuSHpUmMoxhtnk0pGzFRpoZiuyb476Ykb41z84EYruKyS+1v119e6CFD8EVPgAFEnFPI1SXncETUqpxxxOb8ZF7Xsdv1h4CACQScRimCRcMCEWD0ArLwVKjgylZ5WDOmUBFysEAGFCBZHlaOGHkZAJ5NBVx3W5u7thvRpYvEyh7PZVymWrJwtK37M++uzOMWQ1+TN34U1S3PZuerlpG6T2BHNpE9CTLqt2qAo+mQFiZTKBwXvVAqhzM6qccDAAO9sbQF9PT2+AK7sUxD56N1rXfwfSXvoS5f/kglvxsFjzd24tua37vLCcHeqJorvZAUxXU+V049Wi7pPJXr+yBJWV6xLODvbH05y8Hy5Lp3oGH++LoCiVwoCeKx9bbgbnsB/CVRht4FiIaKsOU2NsVgd+tIpIwkTCdm/H99jU7VfTd9hCm1/kR162CfhmVcnIlookvppvwaEqy6X3m4PXyzk4I2EGc2DBGWMp+us1DIxmWRLL6Ydiyb+56ozoaq9zoCCXQuucxVIdbEJx1DgD7ZkgdRl8rGt9SGWHHPnA6ACA45UQAQFvDSZgb/hsAYF/Ug9f3dGNKjRdGyP4C6noC/yf8TRxnbkRCOR2KkrzVSgZsDMuCliwHg5J1G+bwVVKLBIAAQIcGkVynaUnoVqYnUKocDHDOIjet8o1IKyswCOTUGBoAAgdexqb1r+LNvSfg7AUtdkZNFkUa/TZWDseNTKmXLMx4Dcbt/e1SFXhcCoSlQyru5LK5QSBNS2UC9f+wJRQz4E6eqwHA07sbANCy4b9zP9uh1xCvnw8p7aC7pmbySHTTQsKw4NaK55aE4ka6l5FhSpwxvxlfuvBYzG+tRlOVB1sPBfH5B9ejIxRHU5WnbN/P/GDSu+0hfOb+t9I/V/LooswEIhpBlpTY0xXBvCZ7WFHdtBxTKVPHqHfbwwglD0j5c7EHARFNFDHdRNywsP1IKKf55Is7OrBwWg2m1HhLaibpSEpUb/wVlORIPDw0UjnLs7Ibk4biOn4lb8N5yutY/eYXMOdvHxmR96TxJz+7rPrQa2iXtZANR6G22h7hyFvdgAc+cTK+cfliJJLP1cORGE42XwcACNUFJXkznsrIyM4EgpKJXKbKwXZe8gf0fOgx++V+YoxmVhBIyuR6c8rBUkEg52vOUr6/pcyTP0sllOeasrAFtpRAzbqf4qK2H2FpdQjnLWqFpzcTBOoQ9VClXnxwGEtiX3cka1puQDoYNxCM2PcHrmQ5mGLZ5WD7u6PpXnspqSHiLXPgTJdw1gA27uAe58/szvTyyb+PMUyJeAnBplSAS7csSAGcfFQTmqrs0so6f7K3Udge0r5ch9f8e6ffr92HaMLEpcvsBtX5wbNKwiAQ0QgxLYnusN31fl6zfcFgmLJgtAmZlZb7bkconYqef55gORgRTRQx3e5zljCsdOnMns4w9nZFcPrRTfC6lHT566C1rUXzc1/E9BdvBVA5I9JQcU5l1kOVWtPPX3wXAcSw0NyKH7t+kpkheePNc/LkZloSQo/kTPtY4v/DrIYAmmvta7qWxkaoikBzlSc9YlcokllGKFp6OHczHQRyzgRKBXwiU06EOeMke1o/USBTaDD1RPpn3bSgKfZtnUdTEEsUDwKZMpMJFE2YRcsp869XHbfDknhg7T584KevYN2+nooIyjuN5gUA7u7tUITEt+asw+IWD9zBfenXjohmqJZecKyyLGn3aJJ22VKqj2h+Y+iEYaErYu9vlyrgcal2EEhx4cE39xX0jkplAvXXGDolu6ePO5kJVEDP9DfNDw5KmdtTyEkobsDnUtPL56+j1mdvb1fY7odaruNrfjbVG3u6sWpOPa49eRaA3EygYvt1smIQiGiEGJaFPcmRwbIzgfIPfNFk3TYA7OuOpsvF8p+mSPYgIKIJQjctdEcSOdPeOdAHAFg1pwGzlA4cE3xtaCtP3lTV7XwU/3inDbs7wgMsQJOdU5n1UEkpEYzpePKdwziqxr6xiSPTu8XbT28Mmjx0S8IVOZwz7bCsx8wGH0TyGGS57Gs7VRFwJUf6SvX+sV/INIY2dfvmVjctqCKVCZQJAjn1/lH6KQeTioZEIisIZGQaQ7tUJV3OpjsESJ/92yMwfncNLMNAVySBQ8lmvPlKywSS+OeuLkR1E1sP9VVEcNSwCodvl3oYVdH9AID5Bx5F3Y6HILIu3HXhgiqNgt9PqvdP6ncdimeqAbJnNS27r81XtF9j1aEH4NEUKFJHX0LgmS1HcO7CVmy/4knsuPRRAJkgkNVPY2gn2YGre41z8Z2jfwUAiIV6M58/6zuV+j0MFAQKJ0wEPGp6+fzfn9elwudS0ZXOBCpfY+iUjft7cSQYx6rZDYgl7H2TnQVVrhHJJoqSgkBCiAuEEFuFEDuEELc6vF4rhPiTEGK9EOIdIcRHnNZDVElMS2JfMgg0NysIlH9Czu6L0RlKpA98+YeiSjixEtHkkf/Ec3dnGAG3ipZqD34V/Bi+1PXloa046ybLfP57+PwfNgxnM2kSKGs5GIBNB/uQMC188kS7eWkcmaG8fZ0b7ffkOXlSM00JV/hQ+mcLAjLQAr9bSw/Rbrr8mQWU3AbQNgElOZKYNOyb27iRGR3MKRMIyASE+m05pbhg6IlMP5mEme4lqalKOosnnpdx2RvRcf3WT2Fp8Hms37odhmk5ZmXaGSoDf8elRHo0266IPunzMlMPcws+Z/ceKJB4B0fDG96PGS9+EQCw/Yon8c71m2EKF1RZWJplB3syv2vLssupLUvmZLkall1J8FHtCZzx7ndRrSaQiMexo0vHrAY/rj95DmKNxyHasgIAoCUbQ2t6b8F79keLtqf//fuGmzFlzkIAQCzcl56e3Qg6deiNJIx0YMcpgywcN+y/neRncTpm1/pc6A7r6d9DOaSyjh5dtx9femQjvC4Fp89vgjeZlZTdULvSAvsDBoGEECqAOwFcCGAhgKuFEAvzZvsUgE1SymUAzgTwPSGEG0QVTDcl9vdE4XOpaK72JKdZBXWz2SffrnAiHYnOP/nygpOIJgqZdWH4lUc34pkth/HExkOY0xSAFusc3sqz0ttPU9/utxklVYZyP8Hd3RGGDzHM9idv3KULCdW+4Z/x/OehRdqZnTvJ6ZYFdyiTFRGUfiye2QgAUFIlgVog/bpMDwWfdaMvTQiXPeqRpUcBJJvmK6lysMKeQNn6KwcTmgsqjHTmhDBiOMqyBxlxKSJ9o57dkw0AdnWGoQj77+WVzbuhm9IxW8juU1P07e2PJyUicTPdx6U7nJj05WBR3YT74Fqo25/MmS4iHQCAPb7j0tN651yIWONxsFwBGNCgwYCUuZn+qbKv7ABE6veZkwlk2plAKXU979gj0GlufPWSRemgRpVXg8+twOW2v4/n7/0+fO3rS/58rugR7HYdjc8lbsL5S2fC7/MhLl0QiUzPoewgj8wKXqU+Qn4QyLIkIgkDZ4T+AjXWBdOyHO9pvK7+e1kNhWVJ3PXcTvzsxV1YMr0WX3/vIvjdmp1JJYBITiZQZR3US7lyOgHADinlu1LKBID7AVyWN48EUC3s0HUVgC4Aldtumwj2if5ATxTT63zpZn2GaZ9UddNCX8y+UMg+QXeFE3hpRwdu/eMG3PPS7pz1MROIiCaK1BPMP204iHX7evCDp+wSmtOObsp5ul6KgqdzyZusKLw4RrRhXqPfYSmqJGXtCSSB2KGt2Oj9GBY++SEAdjmYkpXhUfvun3hOnuRMS6Jq/4vpn6NwY+WsegBIN6W3HDOBMkEgYZlQU0Egw86WiSRM+FIJQHmjg/ncKur8rnQ4qL9yMFVRISDRnszC+WTv9/GzyGegxHuhqSKTCZT34HFXezD973BvZ9GRwiw58HWnaUnc8dct6Z+7wolJ/3cR003MevgyBB66Jme6EbKDQL31izPzNmQCQtmZQNm/bnsEzdxpPRE7wyv7d2nK3J6iK6p74YaOY6c3ph80A3Y/qKOaq9BamwlQBg79E5ASLW/9CN7OTcU/nJRQI+34W3QBuuZfhbOPbbFH+QSwZM89qGp7DgByglHZ253aXt3I/Q6EEgaOFftw1f7/wPQXvoB4Vq/AbB5NTT8Yzw+WDdWfNhzAX985hKtWzsC3Ll+MRdNqAdjZdl6XilBWY+gKiwGVFASaDmBf1s9tyWnZfgLgOAAHALwN4LNSFj4jEUJ8QgixVgixtr29Pf9lokklppvY3xPFWd5tqO7ZCiBzMxM3LBzqjcGyZPqA1xhwY29XBN/+61a8c6APf92Ye6M0yc+rNEpKafRINFyp49XOrBFLvu/7Ba7TnoYW6xrUugqeziVHO3naXI5aEYHPGNz6aPIp9gR3aI0+JRo634SKzDoTcEGTCXQfdQUAwNOzfdLf7FY605IIHHgp/fMOaxqWz6wDACjJhtGpnkAA0r1/imUCSd3uuxPVTfi15Hcnrxys2qtBUzOBn/6GiFdVBQosdCezRhYl3rbXY0ShKcV7Au1uz5T1yFgvDMtKji5m4UBPNP1aqldNf0wpcbA3imqPhlOPbiroAzcZpXrJ5OvpsK/ZzdZl6Wmmpzb9b0tRocpUgCO7p479Xcs+VlmW3Rso+7dvWhZkItP/7uae7+EYZT80lwfZhLADHPVVmQClooeg6CG0vvE9zH/4Arh7djp+BkUPQTVjaJe1OGmunfXm0VR4hf2dnvvXa+Hp2pKbCYTczwLklosBQDBmoFHYZWlqIgjLAoKxwtI4lypyAkxDKc/K/j0e6YvhFy/txrFTqnH9ybML+m55XWpeT6DKuj4uJQjkdATK3yvnA1gHYBqA5QB+IoSoyZsHUsq7pZSrpJSrmpubB7mpRBNLKGbgSF8Mt7V/HgsfuxBApqSrPRhHXLcQThjpIFBqmERVCKyZ31QwfHJ/J2MpM/2HiPrTFx14uFCicukLR/A71zdxurIBV8qnMP3l26AOMghUcF2WzMh4V04BANTGDpRjU2mCkv3crObfjJTk0Nv4knFnziQreSkcr5+P0JQT4e3aUrYhjGl8ktEeuKLtiDbamR3r/KegxueCEIBiJINAWlYmkOrQE8gyMbO5DgCw7YBdBhtNmPClqsDyGkMHPBoERHqkp35iQFBUDQpkOvAik99RYSVyMoHyb6S3Hcgcf0WsL2v0xgiCsdwijoHaEMR1E33BPvxPw69xlvwnotHwpA+OxooMhR7qPgIA8E1dADMZHDTdmSCQIVzQHDKBUiO1FY4cnPvwN2FIIB5EPktxFUwDALcrM11JhHIycBc8eBaEES1YJtUIXVS34tSj7X5onrxy64Ztv88JLGZvY2rf24HFzAuhmIFq2O9nuu2R9bL7oaa3WVNy1l3KMdZMPkxPvV/cyAzA89t/7kV3OIGbzzzKsfG6z6UilDU6GHsCFWoDMDPr5xmwM36yfQTAH6VtB4BdAI4tzyYSTUxtPREcJfbnTEv1LQglT7SRhJk+EAY89sXAR0+bixn1fsQNK2fYzvyDU3Yzv3DCTA/HTFSMPeoNK3Vp5KWOVlr4EE5WN+HX7jvSr2nRjqwZB77oKpYJtA/TAAD18f35i1AFsUfqKZxuWXJIvYLiO54v+ppUPYg1LoSva1O60S9NPoZpwdW3BwDwXOt1uDHxeWyddTUAO3vAWmhnhIWmn55eRqjJVqhm5nshLANzWhsAAOt2HcL6fT2I6iZ8amEmkCoEAm41J/Cj9tMTSFVVKJDpnkCpIFD1vueSmUCpkWaR9W+JLW1ZQfh4JisomjBzrjPzhyh30tYTxVJsx0ndf8LH9n8ZH8LfJ33WerFAQSLYgT7pQ0tdNfSqGfa82ZlAwgUt2SklO1CW+nf+g18gkzGUSAY2svvypOdRc4NA6d5SSuYWX9WD0CK51QX+I+tyftYiRzDr6ZtgQkFndab1r8eVWU+45Xj4D/0zZ/tzh2DP/D/72NsVTqBR2N81y1VV8BlS3JqSU75YSkAxqpvQTSsd8E8YVvqaYV9XFI1Vbsxtcn5Pn0tN348BHB3MyesA5gsh5iabPX8IwGN58+wFcA4ACCFaASwA8G45N5RoomnrjmKFsiP9c6vSCzMvLdewJGKGiRPEZvzY+r/44vnzcd7CVvjcya71WWmK+cfCYMzA/p4ojvTF0B60a8KjAwzRSJUtYVqIJMyy1FkT9UdKewhYES3M+pn22u2ZH6yBj1nFegLFauYCABr1g0PfUJrwHEfqQfERaAYS67a/T/+44Kn0NB/sc6ylehBuXQ3FiEI98vaQtpfGv5hhwdO7GwDw/bcknrFWYsFU+4be51bhOmoNtty0D4nauZmFkgEdy8wtB4NqZ3nXuiUeXrcf0YSJKjV5badlSnm8LgVC2LfwqRv5/noCCaHAoyIrE8g2/eXbMNVoy8moSP0ddEd09IUzJUUeIzezxJIy/fCxlJ5Au9vDaEBmHTUITvpMoOySuWxWuBO9qEatz4VEtZ07kR0EMoUGTRY+hEuVLzkHgez/p6/tk+Vgm5Z+KTOPkjsOU/orkxVgdPfuxrwncnsYNW+4K2ekzar9L8LbvQ334r0I1RyVnu7RMs3Lw1NPgq/zHUjTSH+nso++6RHOpMzp09YejKEJdjlYv0EgNT8TaODvUky3g5eph+BxIxPMPNATRUu1t+iy5Sg/m8gGDAJJKQ0AnwbwJIDNAB6QUr4jhLhJCHFTcrZvADhFCPE2gKcBfEFK2eG8RqLKsK8rihki82dwtHKoILXWsiTiuokfue/EjI4XcMaUBIQQ8CW7/PflZW1k17qG4gYicRO7OsK49+Xd+NpjG/HiDvbaouJ0074p6o6wJIxGloR9/KqWhenrOfNZA38X85/OyeRNVlNTE9q0WViSKH3kE5p8zCKZQPl9Nkol+vZhr2xB/bT52PoBOyuoRtjlP1L1INK6CgCgHXxj6BtN41pMN+EO2iNt7ZUtOH/RFKyeYzeFrvJo0FSlYDSvTCZQ1jHNMtKBnuOn+fDGnm5sPxJCQE3Oo/kyyzsEfPodIl4oqFXjaOp9G5BWumQRABrM9pzGwqlMoJhuwpU1bo/HDOes0s4aytzID3RT/MKODkxVe9I/BxCDYcmcLPbJIlVytOtwj+PrSrQbYbUaQggkUplA7kxnFEtxpX/3OQ2fLedmykDm3NcRtoPQim5nApm+xvQ8UsnPBEr9IxO8qTr0avrfWz7wAgCguu0faH3zh+nprlAbAOA78StQ68usU1UEbtS/gN9M/xr0wFQIaUGLdaW326kxtJS5pbiHg3E0i57kBhfPRnepSs5gOaUEZexSOjsIFEkYeH57e/r3tr8nmm614URVRE6mMYNADqSUf5FSHiOlPEpK+a3ktLuklHcl/31ASnmelHKJlHKxlPI3I7nRRBPB/p4o5miZp+DNSl/BAcaSEjHdwmFpX1y4g3YPdn8yEyi7cZrMeyoTjBnojiRwy4MbcM/Lu/Hm3h68sJ2xV8rIz/hJff9YNkgjTo/iR09uRD0K09ezReO5JTVON+35x83OPvvGZXpDDd7yn4ql5juOvRKoMhimiYY3fgAED+dOLzIM8UDHP3/kIDq1VqiKQKJmDnpnn4dqpIJAbhj+VkihQoT50GWyiukmtGg7IkoAfn81Pn3W0fC77cyK6mTpfn7MRmh2ECgnE8iy0kGgZVN9qPHay/pFYSZQZkVI38k7BYZSpBBYYb6NO7r+DYEDL8HKuqWrM+1rz3SAIRnYMS0Jl8jchPusYMF1QurvQ1oDj5b08o5OLKqOwlJc6HZNQa0IwTCGVoY53ummhbhhIdLn3NNOsRIwFHt/JmrmAAAMbyZYYwktqxwss1x/fZcSpoW4YSKSHMEqFQSS2UGgvHIwOGQCpd/LVQW9ZjYOnPQ1AEDDlvvsHQ3AHWpDwtuIqHSj1pe77GvaSrwWOBNG8n3VrCBQTpPr1P9l7iAkR3ojOFV9x94sI1b089o9gZxHHismNbqd0XcY33p0PT7/hw3YsK8HlmU3LT9HvgxP93bHZVVF5GQeVdrAKSUFgYho8PZ3RzFb60aiyk4LbVSCBSfGVEOzg9KuGXf37QaAdDlYKJ4bMU9F1iMJA8GYjq8+uhGH+2L4xmWLUed3Da0JJk1aBUHH9AUhvyc0sub+fBH+p+MaHO/ZV/Ba38yz8UrLBwEAwWg85zXd4a4j/7i5v8PuLTCjqQY97in2KE7x/oNNNHkp+15F8+vfA/78bznTnTKB7D5B/R//GvRDCHmnpn+Wqic9Oo6legAhYHrqIKLdZfoENN7EdAtapB1doh6NVZlyGyEAJZmekx+eEWryxjm7V5Q00uVgmpXAGcc0J/+dPO65fMiXn2FUlMjcwrnCh3Ky4WqTQaDUuT7VWkA3LbizMoHqEMrJvACAuGmmm633xfSiWT29UR17uiKY4wnC8DUjqtWiDmHEDXNSXmNY0h7UJRZ0DgKplg5T2AGZ7gUfxK4LfpOTsWNmZQJlB076OxzFdTOnZ40Vsx92qNWZwZUKM4FSPYEymUCGqwo7Ln0Em67bCADoXPxR7FvzPWixTni6t0FJBNGw9X7E3fa9SI03d51eTUXMsGB47WbRWrQjHbzKGe4++Vnyy8G0jq2YK+yeRIrZTxBIVWAaOprX/QRKIlRSJqdpSeiGgda7l+CkDXaZ3Fv7etAeikM3Ja5v+xqOeegcx2VVRcn5fscNq6LaJTAIRDQCLEviQE8UU0UHoo2LAABNog9m3onRzgQy0SXtlFF3shFh6olTdhNfCYlowkR3OIGOYAL/+cwO7O2K4EsXHYflM+vg1VT2BKIcBUFHySAQjQ7FjKMOIVwvH82Zvv/Ub2HPuT9Dn8e+yY7G4jnfR8MsvADL76V2sNu+EJ7eWANFTV7oSh77KpUVSQZjZO5xLaqbBU+SjQGaRfcEQ2iS3TBrMuOhSNVT8G/DUw8lxiDQZBU37EygdlmbU07SX48eJZkJJPPLwVTNzhwzEzj72FYAgJmI2DfvWTfqKfYQ3yVsZFa5jxLtgpkVPKo27e9m6nia6jdjWhIuZI6V9Qji/T99BXc8sTn90FE3ZbofkJRAV9aw79k3yBv32z1eWkU3DH8LYloN6kUQcdN0PI5PdFJK9ER06OEimUDSSAeBLFcAoRlrcl63RDIIJGXJmUBxw0JnOPP790btbEeluiWzXXk9gdKygoSPXvAaoi0rc6aFp50CAKg68CLqtz8IAOjyJh9aB3LX6dEUxHULptcOEmmxzsxDRpnpAZgZHSx3tLNE1u9MDJAJtMDagSlr/wM1u58YcHQ6wP5Oh3rsrMyLlNcAAG+39WJ/kd5N2VTF3tbsYFP26GKTHYNARCOgN6ojFg2hST+EeN1RMDx1aERfYU8gaR9wtORJWYvbJ+5UT6D8TKCOUAJt3VG8tqsTL+7owNUnzMLKWXYpmUdT0qOFEQGFTfVSJ7pypWozmESD1bXgw4CiQSRT1aNxfcAgUH7mRkevnfWjam6oqVR4q3ifAZrkUqWAnkzDUSklusO6wzm3/z5Bu9/dBkVIqA2zMstkBYGsZN8X01sPJdpZjq2ncciyAC3ajgNGDZqrM/s/e7Su/ECNkjoWZQWBRLLxvZAmWtb/BMe5j+Bjp83Fquk+SK14w9qSZN3QG6HO9OhgAFBj2N9NIy/7VzdlJhsFAo0iiGOnVOPVXV34/x5Yh53tIejJbIjUn0l3WIdM9gfqyeonuKczAkCiKbwNsfoFiLlqUYswEoblmNE5GkbyGjh1KDHCPY6vq1KHJQqDeinpodylkRNM6wrFHa+l3D07IcPdiGcNpX5C15+wAcfA8GUFgfJHBxP5/3BuZq1XTUe8Zg7qdjyCxnd+CQB4oPVzAIDZjYGceT0uFXHDhOFLZQJ1ZvUEknj9hb/if935JCIJA3/ecAAX/PB5vJDsURrTTcQjwfTvYKBysAbZY79n786SMoEMS0KE7PfSVR9OnNuAbYeD2N8dhYL+v4eaYt83pc4TUgJ9MT3dbH2yYxCIqB9DaSoJAO92hLBC2QEVJsJTToDhbUIjeouUg1lwJ1PNFcM+UKd6AmWngUqZqdVev68HAHDpsmnp1z0uxXF0Aapclsx9cicOrcesp2+CHi9+Eh4MBoFoIPuOuQ6R5hWZCckn3yL5/3ginlOT71TSmv9UTtft46VUNCiaHUwyDAaBKpVMB4Gq09PCyeGu88/hA2UCde3fCQAINGdGfZJq5qn4hoP2sdPwMhNoskqdM7XIERy2ajGjPlOypebcNYmcQJBLU6FLNT16IYCC4PSxD56JD8yJolozczLMctdaWGrmPGNmY2ZvvguzkRklsUq3My+MrGHigVQmkL1NRmAK5vmj+M77luFbly9Gb1THlx/ZmM6gS436lDAsHO6L449vtmF9W0/6PXTTwnR0wB3vRrRpKeKuWtSJEOK6NWaZQCMZBEo3PY72OL6uwcgEehyYyX5BjZvuhcw6Br33Jy/h//5lc8H8Cx48C0c/fIH9g5SY+urtaDX24x+u03MCPEUbQ2cpNqJZaMYZ8HdsgKdvNxK+Zrx2REVDwI2aZGNoRQGaqt12JpBhwfTUQgrVLgdLBYFMAx/d9r/xa/cdONgXw+9f3wfDknhy42FEEnbvUj1qH6NNb8OA5WBNws4w8/TsLAjiO5Vq1b/2Hzj24XPtbXEFMLsxgH1dUezuCMODTDCnacPdBcvajaFlMuvNXvfh3vikH+EuhUEgon4MNWPi3fYwlgv7YjLSejwMXyMa0FtwM2NaEpGEAV8qCKTbzSe9yUygcCK7HCxjV0cYU2u96bIxIFmzq/OmnDLs0UEyP9f84zbU7voLvIffKsv62WCaHCWfAt8p34fu07+BtjXfKZwnnQmUyM0EKqEnkJXquaFoUFPBJL0yntyRA4cgUCSZRev04KW/hzupEXJQm8kEyr5Zf2KrHfgxWQ42aUkJCCMKTQ+hXdZhdqM//Vp2o2YhgMYqN5TknZRLVWBAzR0dzKFMtWnD3VDMGKwimUD9NYPOnbH4LVxAz80EkskHQrplwZ1sDG1VT4U70Q1IiUXTanHNibMRihs43BeDhF0K1hvV8eQ7h/Cp376JWx7cgC/+8e30e+imhfnKfgBArOFYRFyNaBRB6InomJTTGKaF8Ai2REh9JCXe6/i6KjM9gZwkVPt7NO3V24G9r6A3mvmerN3jfCxxhw8AsHvwNG38GQDggOeonHkKh4gv/P4c6HUOvBxZ/unM9kc6sHZPN1bPaUhP82gqqr0uBNya3TtKKNCrpsEd3Js+V6/baff9W6a8i6rXfpRuY7GhrQeRhIlIwoSM2/c2hrex33Iwl6qgEXbPP0/vTsd7pnyNb/wo8xk8Acxu8MOUEj9+ZjuaPJnriZY3v1+wrKqI9OiSFRL3ycEgEFE/hhoN3tURRoMIwtR8sNw1MH2NaEBfwdMRKe1Ajyd5UlYM+0DpUu2DeLGb7F0dYczJS9d0sxyM8sispxuA/eQPADx9u4ac5ZaNQSBy/A6kgtn+GgghYLqrC2ZJZwLFEznHRcOUBU/7Chqcm9mZQK7kegYeap4mJ5EKArkz5WCpr0x+U1szLxMo/5yp6PbIc8Kb+c5ml4Pt7jHw0JttMD11UBkEmrS0qF1e0o5azG2qSgd61OwgEOzMhcaA/f1waQp0qDCzGkPLpgU56+2dfQFqd/0Zaqy7aDmYQImBoP6CQAk7CDRl5++hhe2GvKlRlNLlYFVToVg6FN3++2mpsT9HVygBKYHH1h3Ax3+1Fj/5xw7s7ggXvEfCtOCD3eDadNegz2cPi47u3aOeSWFZElsOBUf0mkRKCfXw2/8/e+8db+tV1/m/13rKrqefc3tNctNJgASC9NAUkCKCSHPwZ0MHRcVxLKOOw4hl1MEZdRwbiiACI02QjoC0QBLSSL+5vZ3ednnaWr8/1lN3Oefc5Ca5ZX9er+Tus5+6917PWuv7WZ/v58tvir/KXzh9aesI3aMiV4LQzshEf3WOYwut1LB7PVjeYvp6tnZJYVsnmdir5Ryeb6K15p3/eg83HcjSWMPqZr77I6Zq1wJD/N6rnsDPPDcjmWwpqDoWE3WXk0uG3GuP7qO0cH9a0v4fv3xXuv/ld78rrWq81ApYaQWcWmpTxiiRovLY2kogO1MCucuH0FHx+1nPI0i4Va7dOcpT94zzQ9fv5D8/fw8A3tAurLCJ1ZHCWyCB1jzz+YkBCTTAAGvAdA6n3zXMrfpM2k2UOwJAWJ5kVC/1HBgXmwGVlAQyHWWSd+6HudKL8bHtIOLEUpu9k905u/l0sAvJ4X6A3lAdA1tUNv5R9eNfOyMDXmdVkQEuPPSsSOibgMGpmEBaOfWuXZJKOlEUdZSELarXVDxBy5OWycRQSwcpk/MMSKALDckYNzdvJvb5Pi1NZelon6HKTD+XWkHB4wQygjEhF6GoBPJw+NDNRwidOjLyiqqPAc4LaMBpGhJoSY6zdaSUzslcOwubhBDYUjJecxECHCkIsIl8M487Of4U1A8UU1Dmrv7/sIJVho98Ma0a9rAh+4dwlXCRKRa59ju/yd5Pvwkw84EgUhkJNGTM+e22SR0bqxpFyULTeE++81/vYd+mOv/rh5/Iu9/8FJ532abCHDaMNCViQt4qsVI1psLW4qENlfY+k/AjlaqdHi1oYPiuv+t408y520GETYCSDkPl3kRQYGdz9sAzhMpcw+u5b2caoRX7hX5dPAldGS9si0qj6977obkGMyse33hojv/+yXsKCyvKHeJvJ36Jt1i/zVXbRgrm57YlkFLwwis3s9AMuP3IIt7YpZSWHiIIfeYbPsdPnSpcazlWAikNp1Y85hs+1ZgsDMvjiLC/YbMhgYwSSKoAsXio+LV0TDeU0uicD5MSDiMVh3e88mp+/gWXsm/C9OOr241Jd+3UzaA1+z50I2P3fxA7JoGUfnix3rmOAQk0wABroDMgyWOtSlztMGJUNIlKpupXWJlghJVi1YgY8w2fsjSdpohX0JPVpl6pEYfmmmhgTycJZEu8HAl0objbD9AfyQpHgmTFfHT/x1DT9z7ic18oedMD9EfQgwiM4nLtGQlU69pHxiSQisIOEqjYd6XpDLljdRSgkGYlPFYURQNPoAsOSTs5ciIOQlTRQw9M0JBvXyYFO2K5HXByqd3la6bDhATKUiyUla20//hzr6DhR3z+wVh9FKxfgWaAcwta61QJJIc249pWOidLUvXBKC6kjM1sa26aDqZjEnxm0zMgngMmaGy5gebkE8x1+vjHCLExTyARK4FC0bs61L+X3gaAu3QAMPPZvBKIqilfnqjfxuOKUHMNn5NLLTTwg0/ewd7JOkIIhso2y63sGQsiRTm2MlB2idWYBCqvHH7M5wY9FyPOMJTWHGt3fNex8bcXKmwdoqXL5FAfr6dcuqqIfYWml3uTQJ3myYkS6H/4r2G4g2RKFvfSc/doPErDNw9kFbo+eeeJwvaPcCONkX1dx9kx0ficS6eol2y+cO8p2qP7kMpHLByi6YcM0cyug2C5FTAaewottwIWmgEV4aERRKXRtY2hLckYK0Rxipu18GC6LV99LEEYKSIk31RXsGJPpARTpDR+pNJrNbY8FWWVqJ78FnZrmvLSfnZ85ZcyJRADJdAAA1wQOJ00GE3/lLDOyl15+KFimAZRqgQyg2016s4lbvpR5gkUdSqBsoEtuYv9MybA6lQClZ2iJ9CAAxqgc9AU+Vz2+f2P6NxBvPI2wIULpXTPKjBLS2bV0q3Gk14hmb/sdRz43r9P9xGpgicsGEN3kovJ69SUU2tQAZGw2TpaLiiKBriwkBCEth/3a7k2kO+aple8NC0sUho/VMysePih6g4eE1Nfq7cS6KqdUwyVbO6bi/dbI6AZ4NyFHSuBSmNbcSyJlAkJlFcCZUHyttEKE3WXABsRE4O2U+pO6xKC+SuMMkfmUnwKu3QYTvdFTAKd2HIj/x5dbV6XLuLUk3/B3Gsyr1QmPU1pTRhp3IQEqowCsO8jL6YyczujFQcBLDR8WkHEDeIeLjv5L+nlhioOrSDCC81z5keKqsyUQL47RqQFTnvuMVdVJIsRj+ZVlYZbT3R4z8XEsxdG2Jh0sKpj9fz9RK56od026sV+Pp4iKpJDomkInDld53mXbypsC0uGBBqtmj5L9KAQpYDPfNekBQ6VbT5085FCKuyp5Tabc+RVKW7nSSxSciyec+kU33xonsXaRWbb7L0EkWZYZCTQihxhOJznNv0ani9vYaUdMrfqUaNNZFVQdjXNeOiFsmNRFj7LNWPMby8dTrdp3Z0OplqL2Drgc9F1tHY9GxETmkqbfj75HlVpmObUk5i666+47J+eAZgUxqIxdN/bOm8xIIEGuOBwOisGWvUmgdpB1FOlk8ALFSNilagUk0AVQwINhYtd+za8MJXUJsbQQggsKQoBltbmXj511wm2j1YKHTYYJVA+HWyg0riw8fm7T/HUd34hLXWptUZ4yxwvxVVvFo88ovMHkbogV04GyBAo1XPWvbhoSKByLVsFP/as32d1543p34knkA6LJeKTUsQJktdJd+ZHCkuHKGEzWS+l51HhIC3nQkOSrl2OjCpHF5RAWRtaaPi047LXSXtqemas7KpwmHhQiGy1PV8dzC1X+aXvvYyWjsffoMkA5xc0QOMUkRYMjW+h6hol0EjFKRTjEIhCyfjJeolQW1y++GUArJyabP457+T49/w2AEHNVHW1Wpkyo4AN+kInJJDr2CxiCIb9Y89g7oof6bm70oY4TZRAopIpSMbu+ydsS1Ir2ay0Q7xQ8YHSO3janf8l3SdRoCQplEGoUysDbZWwEiWUih7zgDpZSHi4190IaRUphR12PO9xOpgXxGl2louUoqgYE+Y/pzKSvpeQQGFHKnSCTt+cm+81i3avfeYT2DtZTK9O0sGmhkrUSlbP9nPF1mEOz5t7/7nn7WOxFfC3XzvAobkG7SBidtVj60imeNw0VMKxBW5cDk8KeN7lm/AjxZfmTbspLTxA0ysqgeb0EFdIk8L1ZuszLLcCZlc9qnhop0rkDiGjNiLqXcjhoqkaJQJmxTgagcw9IxoTk+Vx4rghiZ5w2T7qQ6PIoEn9yJeoHL+Jlh+l36OySsxe+xbzWWJSNHKHsUTeE+jCm9EOSKABLjicTlnrpEJCJ9pxCc1+8EPFkG5kJFB5EoChaKGr82v6Uc4YOmPILSlS47UE33xojoNzTV77lJ1dK0xJCcdE6TQggS5svOsL9wNwcNYM0EGkiZqL3N6cxNMOLB19ROfvZeA7wIUFP1Q9+8GlpUUAqrXh7o0xktLuURwwJKvLUbxanSDqUAIdXWilK64ArmtWP8NokA52oSFUmoVmwLA26lidK82d75q0Nunbp5bb/Njf38yRhSxo6SrWEAUEWBCnvwgBwskWXLTlcummIdqYAF95AxLofIPW4C9Ps0idXZNDlB0LS4qCCghMYJ8ngfZM1tgjM38Uyy2l8fjqNT/K3FU/CkAQF2iQ/nLfe+il5ujeydyPY9s0tAngw/p2osoER7e8sGt3YwytcITpa/Mk0MS976N64iZcW+JFinYPu4Ohsulr52MfmyBSVGSsMrKMb5JCgl57fvxo4HTm9b1gPIXWvun5VZ86Hc97nA7W9KOYBDLfUVLcBYxCp+xYbN88mb6XGBTnTeoTYhqKSqC7Tyxz6tQJIiye/YSLuu4rKo1QcSVlx6Ie91mduGa7iUUEcMPeca7fPcan7jrJW9//HX7mH29FabhoypBLUhpFTs21Ga6YcVYKwb5NdUarDt85GeLXt1NaepBVP2QoVgIdd3bRiiQ+5jtwRchyO2Rm1WfE9lFOFeWaOYH0V3p+x2NVl6oV8cBCROAOFyow9koHm5mZBmBkbBKrVMf2Ftj7mR/h4k++hkjp9HvUVpmVnc/j0PP+PDufdLAtkS4mXIjT2QEJNMAFhyDa+JPe6U+RoBVEPQeMhIDxwoi6ztLBEqb+Fxrv4up3X1Kgsxt+iIsZSGXYTGevthQdXhmK93/rMNtHKzx731TXtUt2XG0nzGTvA1y4SMp0tgPzbxApVGuJZV3jmJ7Amz34iM4fqIES6EJHK4h6ks3LMQlUH4onnj0mpYmhs4qSdmr6rTDSeLm0nqRPbXghy+2AQ7NNHCJUrNRw4tX2gRLowkOkNEcXmowIkwKwli9UO4j40n0zPDi9ynu/mZmNat0RQKrAlPkGJodKVFwL6VTSzcJ2qZUsvNiHRT1MT6ABgX52I2gssqKrXDRl0u6lFNjW2iTQ1duLpHdJRIV903PXtq557Y1WiE/80IS0+NPolfyi/xZOXPzawrY8tNYEUU4JVB0tbB859BlKtsQPFe0wRwLF89XE8HhmxcxXQ6WoiNAY80rbpNbESqDHehEym++e/nW9MCKM9Lpz5ukVj2HRYKG6l/dN/Kx5M1YfrrQ8bKEQMQmUtBUpYaTiUHYke7ZtSc+VVALOk9DNIMxtz5RA7/r8/WxzmqjyaJ/B1GbnuKk8JvrQh5dtMW1zpOIghOC/vPRKfvcHnsAPXb+TmRVDlCRtvWRLHMv8lyw2SyEQQnDFlmHuOblMWJnCbs3R8EKG4spf8+XdlPGxMW2nRMD//Pz93HF0kVE7QNlVopgEstYgQMdchYfDqhzpUgJ1tqvV5Vh1XB9F6u7+P/kekwqPy3tezKknvY3mpidjt+ewpCRaw/v1fMeABBrggkNnydi1oLXGC1XX4NAOevuhNIOIMFKEgU+NZqoEUvEkckob9t9ZOYLVXmDbV38Fx1vCiTsvobMcVkuIQsrZHUeWODjX5NXX7ShMPBKU4qoVSUrYhdqpDWCwGpNAiy0THLeCCDdcYYUKcwwTNebWOnxD5x/EMRc22r7qOdlfiEmgoSEz4au43QFJouBJKn15YZSuxgWRph2YqmHJSunxxTZH51txFZZMCeQ4A0+gCxWhUhyeazCCUQIFQa40d0ezbPpRGtCcWjaBwbcOzHN8sVUkgaKQCJvxukvVsaiXbCzXjN/KKrF5pEKtbCMcE3Rp//SVQEvN4LQWowZ4bKHRqPYyq1TS1Btbiq55V75SGJiFuF8e/WM+EhnPkdLq0d4mva7xStOyt6GzKRG/gRtNSsQLyVG9iQ+rZzNar8RvFftcu3EyLRGfeALZ1Y4qU+5wrCiPaOW8amSwGn8+c73leE7hh5qyCNIS5UYJJECFjzkJFCrF8cUWdxzp9t1cC0GkODLfIozWJwKaMweYEkuo0nBK9qgoNPYQftz3xIsSTuKlExMqZcdi88Roei4Rqxbzc3zPj6gd/wZohcilg51abvP00Xn8kb0970vKbBG4MzRY+d4/4aGXvJ+rtg1z1bZhfvUlVwDmt7p6+whvetpu/stLr+DGy6aYqpfiezbKt2IlPPPv5VuGOLHUpm2PYHmLNL2IIdEklCV0aYiSCKhh7n1rXVJ1LU4stRmSvkkHK2UkkIg8E++oiN2f/TEu/cAzKc/eQc2KCHBYFkNpVTRILDE6fpMV83vv2TZVUF+l950ogeI2irSYvu7tLO98Ppa/TFmbKm1KKf7kI1/h4Jf/4YIi6HvXsRtggPMUWmuC02BHlIYwiggiCys3qLaDiJrb/fg0vRBLOGxtm/xdb/QScx67WtjPnb+Pyu1/z8TMv/M9ehxHZ5NXGbaI7DKWJQoTxU/eeYKaa/GsfZP0gh13gMmE9nQMsAc4P6C1TgOdRAm00DCeK989ssBzaDMyOkG4dKhnpbqNIlKahhdRcQfrCBcqlpoBy+2AkUp3hZuFZaPMIPZSqbk2Lb/oE1EuxUqKWE7f8qOU8PFDRcuPOLnc7vIHagcRtsjJ7p14Mj5QAl1wiJTmxOxCmk4d5tpAp7+DMYM2wcmJpTZ3HVviHZ+8m6u2DfO0iyYgicdjJVDdtZFSUCvZtF0TQGirxFjVpV6yEW4FfNAPQwk0s+qxY6yy/o4DPC7Q2lTSbFs1NsXpMCVbYndE2Engncdl19/I331ylR+wvoY/dnHfaxz4vn+gsukitvTY1mUm3Q8xCZQvkZ1U+LKs4vy0fuIbqG17CiXiZS0jgSK7itWep2RbeIEqmAZb/grKHU79YVa8TF1cFkFqnG4JQYSEx8ETKFSav/nqAY4sNHnVdTs2fFzTj2j5Ec0gTM2Q++GVX/o+kDBXfjYyVguutjzmgjZRaMgGGY95iRLIsSRuTAJZOSVZYguRn+OPH/40F93yCxx/2m/RHr8yff+NT93F+L37Wdr8/YX7ue/V/4btLRb8hxLFTgL/Ca+jsdimDPzeq67p+blu2DvBDXsn0r9rJdN2Kh3nBeMtBDCn6uz2HqLhh4yyiu+MUK7WKeNTicvBj7ia//26J/Hl+2bYdcAjLG1JlUDSX+ayDzwDLWz84d3UT3wDgH0fNZ9ROk9kQQ+xub2Y3oOmOx3MaxpF0eTYBOz+FeYCh4lb/iQ+QOc8gcqF4xpbngrA907/De/hFSy1Qr73rl/kifIhnn9wJ9XhCf7g1dekn/d8xWAGP8AFBcP4nk51MI0XKJNKEx8XRCpeNeg+jxeawfMy/24AGpuvN+exixO+pQe/xdaZf0//tnWQOvwnMtF8Oth9J1f48v0zvPDKzT0nHsn+yf3BwBPoQkTStNtBhB8pSvisNJosNH2+9YAxgt6xeZIACx0FhYneRpCskHhhxNs/dBs/9Xc3ndH7H+DcwYnlVmpW34mF1djg3naQ0vgjdPpp2FaRvGn6UUr4NLyQVS80Uvmgze7PvJnS/H2AadsOESSeQAkJpAaeQBcawkizMJt5sERBb0+gBCeX2rzW+jd+Xr2HX/3InYBpT14U0Q4iFho+OgqIsLHiRZWqY+G4JsjVse9J2bGwSyZ14nRJoFUvpNXDb2WAswtWsErkDFGyzHyr7FjpQluCkt0dQj3j4klu15fwTO9PWLr89WlA3snrrO54DtF4f5JoQ0iVQIKrtplgtRqrLhOlZYLK9HdSJVCSrpMvXx9Wp7C9RZMOFqlC1arEv8WJSYxGngQiSFNtLCmIsLjlwAx/9Nn7HlNFRRAq7jmxTPM0n61kvrzYDNaeM+cUO1Z5BCHN9+sFPg0vTPseaSfpYALbElQcCymFqRgG/MXQW2lQQeaUQBLFFItsPvF5ALbe9N+pzN2VXu+HL5fY3hLe2GWFW/JHL6a5+bqCobMQG/cV74WJustYXGUsP2Yn/OfFU3VsKTjqlbDai7T8iFHRIHBHGB0aoozPsGUILqECNg2Vec31O6mGi0TlsdQiw/KXcZrTuI3jKQF06klvS69nuxVmohpWez6NvXrNN/yYBLKrw1AeYeGG/8SJp/66ueeggQgTT6BiIZ3m1htY2PeDPGPmA+wTR2n4IWOxovSJYwEV1+pS+p2POP8/4QAD5BDp7rxfL+w/aOgowgtMCePpFY+WH6WBc6/hQmnNUitgZ3SEFTlMGOd+d7LQTzr4l+nrccfD0V6aOibiHNakdCHAO//1HsZL8MOX2VRmbqe0cD/bvvpryLgcotnfPM5JjnFnKcUBzn8kA+T+GTOY3Vd+M6/7zhuIlGZ5OV4xGR8znhdRwKp3eoFz0h6DUBNN38cXmj8I9/zLOkcNcK5gowS51jo1re/VzQSxNH7HxDCT9RK2lOlKYgI7TuPSsRIojFPAknMmFWiqp25m+MgX2faN3wRMyq1NlCqB3DhAVwNj6AsOQaRYWZxJ/45ybUAD277+G2k5YIDldsjvO3/FT9qfpGRLLp6qsdQKmFv1ObrQ5MRSG6ECQmGliypSCsqVmPDJBRKVqnmPjnLHa/mKKKU5vmj2HyzSnL0wFedWoTSEY+fSemRn+ld3CDVeN0qQo3oKmSONNqzu4TSKg+WUQP/1ZVfxNz9yfToPJKcO8mtbcVePESpFoDSuCNGItA8FiErjWK1ZnqTuxPGXO5RAZu6QkEBekFTW00UlkDRKIIni3+6becwsCYw3WIsVL8QPN2b3kNhCJPuv6wmUK+iyuv2ZWHFhg0azbUqXx2SDiNPBbClwLMFEnGIlpVHo3Dr1A9zMlakSKIw0b7H+hW+Xf4YtM18359ARY/d/ML3e5H3vB2Bl+7PM9o4Gkh9bhRCF7afT7oDYDD8hLrNjk2u4tuSGiya4e8HGClaIQp9RsUrgjqDtClUZ8KbrjGdpWgRHa+z2HGF5IksH84qeQHNX/gemr3s7zalrzXVKZU4GVWxvodBXKl2M2aK2ISiFW0/vMyyPx9eYz5RAdjEGA5i9+scBuEQco+GFLGDSNH/mKcP86eufxMVT9a5jzjcMSKABLiiouOS7ihVBQaQKjvyd2PyubWz75JtMekIQsdwO0lW8XpO4UGlWvZCSbuHJXAqYtPBF7/zvt1w/CpCSQEmnZUuZEjr2ylG+Kn6Up33smVzysZdx6T+/gIl738vYve9Pz5Pkqyc5xoM55oWHpE0+cGo1fW9T+4CpkuAbwrBcGybARkfBaa9IJ+2x4Qc8U8YrVfu/eAbufICzAUutjaVU+X3K2iYQ2pynVikzUjEVODpJoETBo3OB+0rTY+cXfprKzO3pe1bsR6EcMyFreEYJJJN0sHgy3vZ6l5wd4PxFpDSNpczbrJAOpjUTd/897uqR9L2Vdrb9vT96PU/dM87cqk/Lj2j5xvtPqBCFVfR/sRMlUDaGl6uxr4tfJIHyHh9QNJ2ea/h4wWB8Ptsxs+JTo4VVGUnbgRAC2ZEO1ivAFgh+7nmX8JPPughrnQC839akpPi6yHkClR2LTcNlUp5KZOGdN3IxTuOEUQLF6WDacgsXCctjDB3/Kr+98Cu8pv0hPD+rTpX0wYnnih9lqvgSfoEECrGwxekVJ3mklb0ipbn3hCED1lrUTdDyI44vmnl2njRa63ZbLfOcz5Z2snDZa5Fxul0rHndUaP617Oy7kKLoIyWAiZpLM5IpqRQqzZOlqeRaCRZYvPgVtMavpLxwX3rc6P6Psrr16fijRjnW6bGXbytSFCvLna4qqJ/6JX+Np180wcnQxDeWt8wIq4TuCMouI3XEcFwtLDFlFmELGXmE5XGUY/rNTmPo6Se+FcgWzEvlKieCGjJsoeI+1iwO+Tw002ApXiSK2iumIl3su2pJQVQ2WRV2eyFdVO9UAgH4Q7sB2C1OsdIOmdfm3pzW9Ma+rPMAAxJogAsKoTJGps0g4thii1acNrMWho5+mbmGR9MPmW/4aaDUaxJnSg2Cqz18Wex0kpSwZXczN9Vu5B3iLQCUlh4EwB/aBYCzeoxL/vlFPEXfkQ6OI8E0Ze3RiZEDn0xfJyuXySTzdFcaLyQztPMVyU94z4nlgn+BUiBi1VipOmxKIKtgQxOmPJIA59B8i80iNuwbWrvSyQDnDppBtCFiMO9j0GvibOn4HJYpjVuyZVdQY9vdaVze/GFGD3ySXZ//qfS9JBUhis1Um36ITYiIA/JkRdYLBiTQhYjEEwKKvlCFZhl3jIlPGkA9WmDTUBkNzK1mbUeokEjYRf+XeBVZ23klULxKHBSNoTsD33x6ylIrZ1y99sca4HHE8cUGQzSxK8Nd6p/1IAS88MotvOzabQWS6HSC8Q2Vh4esAliO8EmIp8QnKNSSZn0nzuoxQqUJlaaC1xUUJ4EzwPeFX2Tb0neyy3SkgyXzBkMC5dLBhEBpgeT05qAnl9rr77QGIqW556TpBy7lMKG3tln7Uiub++SroK2lhD21sAjAnTteD0KmJFCiPlRB7AkUK4Es0W0kLgRM1EtmES5MlECKgzpzhoqcIZqbnlw4zl05QmPrDenfea8eKLYX2aEEOh0IQer71L0tO++20QqLOjZM9xYYE6sEpTF0TODY7fl0W2X6O2z75n81f9enUE4NLWzsZpFoCStxxeM4zbtcqbKAuYZqGqJfo1HKLEaeXG6b38tbxZOVlKWSQmQpZ94SdnuWyBkqEPgJlFunYY+xW5yi4WdKoM57O58xIIEGuLBw36fZ9Z6nsbK6ymLTlBveiHxUKdLOp52u5HUPGMkEsKQ9Aln0ARKuYc5n1RB/UP9lvlx/CZFdpbzwAADeyEUA7PriW6ks3Mu7vN9CRm1TMSceaCKnztFn/i7Hn/Zfmbn6J6jM3ZVKLpMBJxnUtD49c+hBSflzH0mTvOPoEpdNZfLXUKnUa8qpDBFiIaKwZ+W7tWBITs2Dp1YyEqjW26h8gHMPfqg2lEaa7zN79YNpqdZ4QmdbJh0sv8roxMb6P3T/2xm/+z1AJtEXOp+KYAKQpKJOwwspEyDjik1WrkrLABcWmkGE9GOlmBbFdLBcs0zSppMUQzAT/VrJBFMNPztOaEMCFQJ4OzOGTlCvmQClUwnUWfWrGZ/bmJqvraDrBz9UG05zGeCRY25hCVsonNpol/pnPeT3zh/aKzBfK1jfCBGUpYPlvFuSi8YEUYsSM3KzSavxGoRKMyZWUDnSB2Dh0tcSVDcDMMESP3PoF9JtpaUDQEYCJW3RDxWljnSwEIstzPMO+29TomM9eKF6RIVMIq2558Qye8UJPl36FdQX37nm/qtemPp3JmnNsPYzeWrekEzVODU0Md5WYUwCxQS0Hacn25bsQQIJhisOPg7EVasCpU16fvJZ3CHmrvrRrus3N12Xvi47VkfKV+/Xvf5eC2axpv8BQphKZDvHKyxhvgfbX2KUVaLSaFYlrp2Vdb/k469g/L5/AsAZnsRxJGFlktLS/o6Tx205njNUqlUWYqKJpplr6qCNiEn3IFKcXG5R1m1Cu5aexrYEKq7cKMMWdnOaqDrV9zMtl7exXczS8EJWtJlTDEigAQY4D6GUZuXDb8NdPcrS9LH0/Y2oIY4tdJs/arKgpR2niuVJoFCaDrEaTzSTCmGLgWB6uc1o1UE5NUoLRgrqjRipp8yVhryh+RVzzjioOviid7Nw+RuYu/r/o7n5OmTkUZ6/B8iUQMnKo+b0JpoDD6FzH0mq413HlrhmUhTet1Il0BAhNkIHKAULzY0rKLQ28uV7T66wCTMwh49Qyj3A2QM/7F3yvRPzDdNmbjow13MVVyYkjswq1AhBQRFUcszKnEAzdMSkFCbycVSOBIpLxEZx/9nwI2rSS0l1KzbKV4MS8RccTi21qQszNi9S66h4mLVjy19Ga83xpWwcd5qnqMREZF79JnWEEsXKSsLJjKET2CUTMEReo7BvPyXQqhcWiCmtN77wsuqF6TM3wKOP+YVZAKr10Yd9DpPStV46WO/tGw3cdbJjngRKlUDmvTYuB9kGgD19J2GkGGM1JYEWX/jHHHr+/6Gx9Wnc+/pvc2/1+q7rjN3/AdA6JfETEiiIFK7uLBEvebp1N2+yPw8PfGZDnyNR6D9czDd8jiy0uLFsFlTV8rG++6q4wqTWcGS+qBha63GcXTClyGs1M+4kStZUCZSmg2WKk16qmqGyja+trER8pKiSqfyVO4Q3tq/ruKSalW0JRipO0Qcot19n2vVaZOLmkVKhSmGvSp95SCHYMlxm83AZHS/KlLx5yiJAlUbTMux2jgQqoL6JeskmqE5RWnoIgNVtT+fEU38t3SVRsNVrdRbi9CzdNM9j5S+fxtV/f7l5T8OB2SY10UI7GQlkCYGKsy5E2MJpThPVNvd9pny7Tl20aHgRVqxgK60cQi4dXvO7OF8wIIEGuGBwcrmdylRFLgXBD/v0/LlB6cGZ1a7NSuuspHGkWGoGqXt9CY8wlkZuGjIVRZJ0MF/bHFlosW20gnLqSBWXihzdm557/tLXAjAczRNpjU4CnFyZ+oQ0cpcPAZkSyMsplU5nWFWDWP6ch9Ka2VWPFS/k4qGsjYdKY8dKIDdWAsn4GVg8HRIIQ4i+76bDqRLI97vTFAc4NxEqhV6nH4iUjj1UIv7uX7/Cgx/89UJfaarPhERYhWhGCJFWTKmXbVwnmywnq4IyNtnNK4HslpGCJ3120wupCQ+cZEU2LjU/UAJdcDi13KaGIQ6XdA3yFeJyVbve8c/fYLEZFFKznMZJNrcP8GfOu/DbuQILOkSJjnQLu5sEch2LlnYJ/WIg2UmKJyndeT8iMOPzRkkgpXVBrTTAo4uVJTO2VYbH1tmzG/lqYAUl0Gm6s2yECBI9SsSnPkRJOhgW39RXohFUj36VINKMilV0xXy29tVvYHnvS7OTymLbX9nxHNzVY9jNU7HPjfEEMp6aussTKMqFlXoDFRu11nG13fU/bz/cdniBKRZ5q/x/AF1VtPLwQpUOV3llHqy9aDq3bGKAWjVZfEgUqOa5VrExtJ0b13r569RLNj4OIkqqg2mqIptDJSXUP/49/48/DV/BanUHy7teiLbLCGGOt6RAyqyNFFSLG/WTwiiKhisOQpjfLikN3w9SmLHbsSRWxdxnvX3CfP7yCH59u3nvxDfSFME81JYnUS/ZhJUpSssHAZi96seYveYt6T46rrpWKVdoOyati6YhleTSkcL5ZlY86rTRbo4EkiJNS5NhC7s1Q1Tb1FXZL0FgVanRZtULseKqeSMH/pWJv7kB9v/bmt/H+YABCTTABYMDs42U6U1SY4C0bGYXcgOYmr63e7PKJnhaZX4DQaSo4KckUMUxpQaT1ZIA08l939VbUHEgE1Q3YVdH0nNPP+lnAXCUh1KZearOrVAGcYfrrB4FMiVQIcd5oAS6oKA0HIlVa5vdTKERKY0Vmfetch0lHWRs3ns6Qh6tNf96pxn0t8hFAHx/sEJ9PkBrnRrnr4VkFfjgXIO/cf4HPxp+AHKTs1ApbCKULE4opTBm97YUjFfdQgljd+UIIvJSE8cCCeTFE8CYLG/4EVU8tJusyJqgpagC6f8ZBzh/ML3ipUqgZWqZgqy1yJbPZoFFe3WRT8T9VqLycVcO87yvvY6XWt+isvhAuq+lQ5TsWBHv4QnkWhIPhygoKuHC3FwiCXCh6EdktmXKzfWQFLIYYOPYKMHWa7/msiGBZHm4a9t6EOm/omjQexrpYBtO4UnJn5wnTBzVJcSQljYPLNt4IxdRXriPph8xJlbQlfGe13Ip9qPNqScBZIpzSxJERrljPIG8rhLxKTbwG4Sxj+YjUQLddmSR/+78LeORUYwEqn9o20v5f/OheV72p1/l8Fx/L6HEnFg4ZUqOTL3oojQdzBA5pVKmrHH6KIEC7HQ8CyNFOa8EigsgHCtdxB+Gr+XLL/xXDr3AVBMeLjtUY1NoWwo2D5t+Kf8Tdra7ftxjosy1pGDrSJnJutvlNdQJKQwRZFuCKL7PmmeqM4pSncbWpzN3+esBWN71gvS4Y8/4He55/bexLJNmG1Y2pdsS0itBkg6mLZfqiNlPN+fohZPLbXaKaaJ65ktpS5kqgWTYxF05TFTdjN3H2yu0q9SEIYFscum61UnY/fQ1v4/zAQMSaIDzHsnK3EOzjVQJlC+tDvTOtw+zyd3P3fuG4jYVMPzgRwjDrFJYMpkIImO8F1nleOVbUrJlmg52+fYJ/vwNT2bnWDXtSNvjV+CUMjZbOUN4lHBU2yiBYkJK5zoy5dYJS6O4K4YEsjrytbXeeAUSrfWgZO15AK01RxfMRGazk7VfpcCJzPuiNATSSc17T8cTSAP3nlxhpCwZxjxDwcCQ97xAEryuSwLl+tOtIp6c5eRDkdI4RESikwQyk0dLSjOJzpUnFlrhLh9OlUD581neotknnmQ3vJCK8CDO+7ecxGD69AytBzj3MbPiMUSLyK7iY2cK3yM3UT/0hXS/IdHkgzcfYbIsUr+q4YOfSdWRdq4ajNRhGogkEJaDFlbBXNS1LTwcVIcSMozyJJD5r+GFhfchmzNsZPFF6Q3F0wMQp7Qqzdzq+gpVrTV+7A2TR2vFkECiMtLrsDWRqTM6vFpO9zwb2SmeD0o7a6+d6WBS2hyZb6LcIWTQYKkVFNLBOq/jUCQrm5sMCVSdvQPpr/JT1ifAbxEqjR8phtUSUXmCiiuxhCDKnXEjc4PkuXgk88/bjy5xuXOSI+NPj8/ZX4HUqf4B+H+3mDn0vSdX+h6nYg8fLV3KtoXjFNPBXnyrIZ3d0tpKoOGyQ4CNpXNKoDwJFBPODc+ct1qppOosxxaMVs35XcsqtLUEsrPd9WhItiXYM1lL09Um6iXGau66/ldCCCwhcCyZpoNVfUMCWeUhEILjT38HB1/41xx9zv9Mj2ts/R7C6maENPcXVjMSKPH6yz6A+V6FVoxOGo8qf3m2uE/cVlqrS+wVJwmmnpAdLklJoM23/DFCK4LJy9PKdp0I7Rp14nQwkfUDKy/8o7Qq5PmMAQk0wHmPJLh5aHo1VQKF7WJnf2i+0ZUWk5SE7IWt33wHO774c3DwK0BRRROEiorwUVaF8VrcYdsZO+2WyuwcMwFMkkPbHrsct5Ingap4okRJeyit0UmA0xFYheVJJu59L8MHPsUlRz8M6EK5zVPL7dSYci2o0yCMBjh7oTQcjZVAE1ax/SYkEE4VpJ0GQ6cz+dIaHpxe5dqR7NzBQAl0XiCKFJtv/kNYONB3HxWnggHce3KZ4ViFoXLmuKHSRgnU6asCOFLiWIKSLbMl6xilpYd6poNZnjHkFMpMlFe9kIrOSCA7NujUG0gHG5jfn1+YXvGYcAKUUzMKhA4icH7sWgCGabFzvMr/eEXmtVFaztq5myOBrF4kEKCsUiEdrGRLfO2gw6ISqJcSt5efj9KGVN9Im4wGizQbxlzDY6Hpc3J5/YpTWhvjbq9jEdBvLgIPVwmUpYOJokSjx75rn2P9i5k+1LGs7mvGSiBpO5xcNua50l8lDHyGRCtVAnVeKrLKhb/D6iYam65j8y1/xFXvuZK3i/dyUeNWDsw2UL5HXa0QVqcYrbpdSiCv1Z9USa+nExJoYx85j3YQcXyxxanlNpv0HI3qDgCCoP9Y0KkEipTmVNxWQqX6ehwmixDKLlF2JLadG3e0xtaxJ9DojvSYXkqgsiMJhYOlzXFBVEwHCz1zL6sxCVRzs77IklnFMccWKeGXTweTYv3WM15zqZeK5ve97rUTUhjj8bIjESWzgD0Uk0B2ecikXEmHld0vQtvl1McvMRw3lcsEYWUiPWfUQQLpmPASOmSsXqWlXYJWsZy8iAm54aX7kUKjt2QkkC1llp4YrNAeuYTmFa9lqNzb7yiya1Rp0/BCHCKa9T3c+f89hH/xi9b9Ps4HDEigAc57JCvX+2dWUyVQp5ljEGqOzLcKhMnx2cW+50zc7kNtOtH8BM2kg3lEVoV6nGMrReYJlF9NnL/sdUR2lZWdz8UtZzJSLV18YZRASuk0NU135Gsv7nsVALu/8FNcd/tv8jL5DbOy4jfZ/P4XERz6dpcMvReU1oOatecBjBKoxXjNpRwuAsaDCqAUtVAIcCpgxZMQTo/802iOLDS5prqYvjdQAp0fiBYOsem2/8Xoh17dfx+tmVnx0Fpz59Gl7P2c/0oUGU8g3UkCCYFlCbaOVMzksyPQdpf2Z6b4eSWQb64zu7jCe75xkAenlynRrQTqJAB6IRgYn51XmFnxGLM9lFMn1BKRVKWLUwPfWzLeem97xib+/PVPZks1LpoQB88Pft/7UFpQyZNARD3abjxu59PBbJMOpsOi4iSvLEkC26VWlmLzrQPzvP+D76Nx8/s3rMBVakACbRRKw6v/4hu8/E+/toF9NU0/Kiycaa2J4qBTPAwSKInABaKjRPzGWaCNmEqbHU07tm079iDKUoGSuaJlOygNK7qMDBqUAtOfJp5AnUbC33niOwp/K6vMzLU/XXhPhm3CSDMcmVTdoGIMfzcPlwueQH5zAyRQrAR6OAT9StsYpgtvhYpu0aoaA+xwjdTgVk71FSnNW957C7OrcaqxF/Uno8JECVSi7FrYOSVQoiT87eBNlDZ1mzrnIaVAxDGAUD5hHC8k+J93ldBas9gMcG1J2cm+Tyv3W7mWRNCt9JGys90VUXIkk/WHp3BJCKiSbTFSK9OkzFBgVDp2eahAWAHsf8XHOfHUX0vVPpYwnlJ54qeLBEr6XhVSLzs0KRG2i56sMjB/l9unzLXHdxfvMWcO3dx8HUJKRmPvo06ETg1XRPhe03gCSatrbnI+Y0ACDXDeI5Gb5j2BtNdt9AzFydqxuaXixkRqrqI0WNFBPDDkBo6WH1KJPSuSTtOWWQ6tkhkJtLz3xdz95ntpbHsGVuxxAYAQeNIogYJIIVIlUJEEmnniW1m45FXp36+0vmYmNCfvxJ25k23f/O2CGWY/DCaY5weMEqjJ1pEyTlzmchnTrsb1HMv2BAiBsBxsorThbtRvYmHVZ6Ud8jT9ndQ8dUACnR/Qy2ZCZS0f6b9P3Ey+tn+OuZy6QXcpgVS3EkiYSWBaNrejLystPYRIlEA5Qkd6ph8+eGqeD91ylKfvihWTiSdQnFa2ISXQIB3svMLMiseo1Ua79VgJlIzRZhw/0B4iQlIPTdqijMsLH3vm73HP675Fa8ezmGM4TWkAsHWYmpMmEEIwc+1/pHHpD6TvubbEx0nnAAmS9C8wpHnyHphqRO/45N28c/lX2fPlt8UVPNf/nCr26xpgfSilOTDbWH9HzHe/6oUFEmjFCylH5ni7/PDTwaQ4/RSw9Bxs7Ngk2Hdsm6prpWbBQpASRG7smbYYulhBI1UEa7eeXiuPLTv38XvBD6d/a7vCyu4X8eAr/oUHX/5Rc734+xlRceXG6hSuJRmu2oVy57pDwdELocoKmZwuWr6p8jUSmuc3qBlvmDDsPRaEkSqUhP/u8SVOLre5Ye84f+f8Pjfe/ev0K6eSqE+0VaJkSxw7K0hQWjKqwgf0Diru2r46AoGMjxVRQKiMfcTC7hfzh0/9Kp84OcI/ffsIi02fsapTIHTyvjZOrtJmJ9bK6qo4Vlfp+o0if9xoxWFVVxgODQmk3Sr1cnHM98YuLZg+J0Rl3gdIOR0kUJwdIbRiqGzTooTyGgWS0PJN/CZ9QzLm0zbd+HtJVMXtcWMSLqXomZ4X2XEZem8VG4W21q6Qdr5hQAINcN4jiBReGHFssYUl4o7EjycJKkJEWTCz3MoGj9nF4gCWlD0sxyXdAYgHhqSD2vuvP8wVt/4WltAIp5qusliWICqZjqpfJyM60iN8UcbVHkGoUgVT5wolwLFn/i73vP4WDl30er5H3k0U+hBfQ0R+V757Lxgh0CBAOtehtebYQovNQ2XspgnqJYpIabbqaZbcLQCM1E0APb1oBtGNmoIfmDPPzRWNm5ifvB5PO6hwfUPeAc5+6JUTuT96tweNRmvN+791mIvHs9VElauQFCqFLXoZQ4tiBlhuu0JQWtyfSweL+2GtsOKJ3p5Rm/f92A38+gvNqp9O0sGcWJa/jhIoGqgpzisoZSohDgnPkEDCQiZphLES4GRTsCTH2fydP2Hq9j9Dhqb/CsvjhDXTF86KcWp+5jlhEXWlgwHMXvNTeDufmf6dKIGSOQBkgWzDixVHHc3to7cdYytzuf03poBIdhmYQ6+P6DTYMhUbd+f9mk4ttalj+iFZfQTG0BvwZjndimH9YNs29bKdzjcdS6bG0LZlMVpxOLQqkcFq6oOV9J+diqN62UaWs8A88ahpTV2LP2wq2CYk0GhkSKDS2FakFJQsC6Vz1cH8M58OlhRyCSOVpkylhtC1rURapGbNnfA7Ur2++dAcJQt+8eljPNe6natmP91XGZ2QQMpysYTIpYMFlOfuBmC/2mZSndeAFFCuxCXMVWBKxAsP7VR50RN28ux9U3zg5iM8ML3KWNUtHGvlfG2MEkj0MRwXPV9Db5+ijSJPQo1UXVZ0mbJKSMUatdLaBFhCIkVujlztyG449eS3M3f5G1jY92rqJZuGLqO91QJRKwPTrqxYESRKxed0OJf65Q/tSr2OehlfR0l5eX8ViwhxAamAYEACDXABIIiUMcbTYMVEh4hXBHd+6W1c/e5L0n39UKWeF1HHCl9Sqrgy853szdAQSEprSosPUj/+dS4+/CEApFtJOz1LZCSQ6CNV7ZTlBrESqB2aoAq608HArNSE1Smao5dRFR6yvQAFuanum+ecQGk98AQ6DxAqzdHFFhN1N1UCOUS0g4htzLJcMitlT73Y5Gjfc8wQmxsNjpMV1uH2cZoj+wiRGyoDO8A5gNVT2es+fZTWcGiuyeH5Jm+4NCNd2q1s5T2MNA7dvipJdbDsjawvOyK2FTyBzMUU0l9GxH321ppguOJklR3dDk+gddqh0gOa+1zDWqTHbMMjVJphvYSqjKOElXlJxe13uqXShZ8t3/791F9K5Vai5+U4w3FKQ+S32cZMulKfR2ewVbKkMaMO8ySQ+bcZdKfaHpht8Nm7T/ETm+8rnkivT+6oNFAetOD1MN/I+q715j0J8kTccjtgSDQJZBnbPn1VQBZ0i8Kcrhfd0786WO/gvu81pWS47KTqI9sSqRIIIXj5tds4nJBAKlaxx2W1e12mNjSWvlY5j6Ckmq0bq4lG9CIAzrCZT7h20Rha+OsrspLvfqNtO4gU8w2fe0+uECnjgbkJM4+J6luJkERR7wWBpDDA7UcX+fr+Wb55YJ7fGvssN/zzDek+/UkgM9fXVsl486Ql4iNqJ77BrLOVBWdq3TQ+IWBsyKhPfK+FHylT7dI2adI/+ow9CODYYqubBOpIB0N0xw1d1+v4eyPeP/2QL7M+XLZZIbOwoFSnZGdm1b1KskthnokuM+gcovIox5/5u2i7zFDJKIFE0Cw8o05rBrTGSUmg4vlGa9lzG1Y2pd9BL4IuUcRpbxVHRBdUKhgMSKABLgBoDQ+cWkWgsJLKB3F1sNGHPg6QliaGXEpYR65//eiXEEGTynRGAqUSUQ2VmdsK+1u5dDBLipT9LgQ6a8AXZUp4tMMoTWPrTKEoXjBJi/DTCUBCOHUaHxauEypTpnNDdzXA2YzZVQ8/VEzWS6kSyCFkpeWxVcyxUjE582NDZjJ3csGsqGw0tjgw22DCbuMEK3jV7Ub6vYHS3AOc/RCNHAnUp4/SGo4utrCI+IGDmXeElyOBotgYuqcnUF6GniOB7gh3YXsLOI1MjXTxx1/B7s/9ZLZ7PAmXif9QHJCIpN8bKIHOK7SDqFBuvRMnFs2YXY+W0NVJFDkSKE4HawSCujLphH59e+ovlV+JXrImGQ5nGX7oEzzxPZdSEx6W1XuczSs3XFviaQcReSnZkNxtEOqCj0/TD3n7h24D4GX2TebzyZohgNYhJ70wSkmijSo2L2Qcms/6ouY6Kujk98l/q0GkqdMicIbWDbB7oaAEyr9/Guc67asKi7JjmWsIY8Cvc+XjL90yxKouI1VAOYoV7qkSqJuMGhkdT18n6TlgfLECbEpR03jZ6HjeHJsEu7ZVMIYWHUqgXqq3tDrYBqVAfqQ4tdxO5yxeoNiMUSTpoa0oJFGfOUnynP7OJ+/hdz91LzMrHj/Y+lBhn/XSwYTjIoRICcLhlfsZOvpl7qk8mbK9thImPhNTo+b78h74Ik0/oiI8VPx7TNZLvOAKQ6qNVoskZL7ClfH+6U8k9kO/KlkbgZ0bv2slm0N6S+7E8Xgc79JLcWRKzHeXhe8FKaFWtmlqQwLlx4I9n3kzuz/34wyFszQpI63iXGOolP0dVjel99SLAHMr5l785hKOULnn5sLAgAQa4ILA/plVxlhFxh289FcLka+7ejR9ncgOVUwCfXzHLwGw9du/yxX/+BScE7dwj9oJZKsDkdLYrfnCNf1NV6avbZkpgfIkULG0Y7FzDmMlkB/ozMuohxIoRRIMhUHqjSDU+iTQQtOn4YU9c7JXvXAgQT+HcHzRtK1NwyWcHAnUPvwdY343cjEAVrzSfSpJB9vgb3xwrskTh83qi1/fRoA9IIHOE4i8EijoXVlHozmx2OLN1qcZW7wzfT/yuquDdSqB7E4fgtxk67vKpHhV5r6bvleduZ36yW8CJl0smYQnSiARr2Qn5xEqWrOvGpjfn1toB9GapN3xmIwsB4uo6oRRAqmiMXSIzX2bv9+8Lk9gxf5SyVgMUBrbxqhaYvcXfyZ9rx51+AHSHSyX4hLxUvlpgKKPfpvJO/4CMGOuXjnBE/56Fwe+/SmCSPPnV97N1Ny3AbB0YNIrWdsP5dSSl5I/Aw5ofRyZz1JTW+v4ISbdRf77DyPNkGgR2rWH5Z2Slu1O/5f7u3PfNc5xOqRRsuhXc20EIlYCZf3rluEyDQyZU/PjeWoStNPtlbJly9aucydoiSquMgqWxNA46YstKbhs22i6b5KukyBSuquPTp7xoE/f3bl/GBVV6+0wYquYo2mPYLkVIiSqTzpYMs9J5vh1mpSiolqp3zMm4z7Fco36JSkRf9mxj4KO+MjQmyj3SDfqhBCwbcL0Pzfc9ms47Tkq+AVi+tXX7cCWgi3DGQEnJdgdJEbeCHyt6yWwLUHVffhKl/zzUC/Z/GX40uw68ZwyiWPcznuVicJNdJlB90LJthgq2TQpYYWGdMx7tQ0f/hwvaH6Kpqh1NtHCsxNWJtPvyMm182SXSt2QQNpvGhJIDjyBBhjgvILW8NBsg4sqWWd/+cF/4Al/kznKOysZCZROPGMSqFXJBkQrWGF45UG+pS4v7KO0xmpnuf73qJ2w7frsOClQsTF0ngRye3RKCQJZpoyHH0XGtR7WZKmTFXFVIIEMSRWsIYsOlaa1cAp56o6ubX6oWN1AifkBzg4kq+PbKgq7PU8oXCyhufyed+FrC33Zi82O8crJ9JJ5JqZXvJ7n68ShuQZX1cxKYjgUK4EG6WDnBWQzR2KvoQQ6vtTiRudugsoUH7/qTwCIcp5AkdI4RF2TqS55eI4kulMbr4ny7J104n3i+7m98rSUcE8I+0TGjZQoLUB3K0fy5KZRAvX8WAOchfAjtSbpcTwmIwGoTqKFnXoC6ThgC7D47pN+i5Vtz6Q6ewdbv/VOoEgCTW3bgxTFC+U9ghJ0BlvGGNpGRl7a7uy/faG5htZ4YYQ8bCpUbXvgvTxlrMn3HfwDmpPX8A/6JTjah7g6WL92qZRmuR2kZrYDJdv6ODKf9V2JQXc/6F5KIKVwCVBWaU2D3X5I2klngH5anM7pyjvixcHxmosQpq/VceqtFoLJeommMORFNYjnqSmJ3q2Q2LljV9/79kWJl/ufRK3OGAULFiLX11fLmVdcXmEPZhGhs0Jj0qRbPeaZYaS6fHw657JeoNgsFmiUNqcl6rXukw6mNMutIH1edwuTMh9UM0VLvi3kxw+pzBwpIXDsWPUz5J3AG7mYk4xRctYPqQUwNlxP/371nCGNo/Jo+t7m4TJ/8cbreNm129L3eqUyCdZvV/k2OFJxHrYpNHR6Ajnco7MYKiVaLEnFlV33m7QxKVgzHSxB2ZGpMbQVGiVQUJkCYPHiV9AaMzFYU9bWVOxpy02f47wKKqm65pbMc+ES4ArV5VF0vmNAAg1w3kOjOTjb4NJ6d2Dj13cA4K5kFXGSjj9V+ZQnuo67SV0R72wGhuHv/F823fF/0u0fiZ6ZlocHM6ir2MMiTwLlO0opBCde8m72v+zDgCGBStqjHShTyQlA2P3zyBMfg8hPyyUn6WD+GkqgKNLs/OD3MvYPL+japrRe89gBzi6cWIpJIGGCmKWqGaT3rXyL90UvYHuywhdP2uaXG8ZgsR3ihWuvmraDiFPLHntLMQlU20KIlQZcA5zbEO2F7I++SiA4udRmjzxFY8tTmRl7EgBRoTqYMiXiO5RATofxfX6ydZAdBMJFqoDDaip9/4FXfoL/Hr7JpGZEHiP7P86uL/5HvOE9sOO6dL9ISIQKu4LkSOk00FN6EESfS9Dr/F7HF1v8hvM+s2910iiBUCil00pxIRbjw7W0apDlL6OFnanIgKEpo+r95/Kr+NSzzNhb9mbohfzYa4yhXSzld1Wdk2HTmNZ6McnuOfzc+DcRKuDw8/8Pq5YJJHUUrFmUoRWY6kdj9/0TlZnbByTmBnBkISOk16uMmimBsvcyTzP39MkY8tXBxLok0sM5f+8TJZXAzL+OlDklkEnDteNy9/XAkP2JJ5AU3ak7+Tlv57ZJZZ6NHbe9iyoegVVG5D6oyPXrIiouLvUyQg8ixZ3HlmgHqlv1o/S6JFA7jNgi5mmVNxnvTST9SumFkeL4Yot32H/L1yffyTtvMHOXQy/4Sw5au1EIVO7YIFLp+CHjBdVqJfZFcjOyK6xtwQtVT+PhTgghcHQ2Z3p26wsARKXRwn6bh8tUc0bLpR6pZp0ph+thI0qltZAnkK7ZPoIiH7+Yfx1LMFx2utpNogQ2KYvrUw+uJdk1UcMTFWzV5rvHl1hYbXLLxMs5cuP/xh8xC0dtq9bzOSssQonsnAmS70Jb5nd0CXGF6lkU4HzGgAQa4ILAgdkGF1XM5GBZGzJm/rIf5r7XfhUlXdzVjARK88RjlY9dyiSZfmUTAN+OlUAi8kEpJr/+38yxdoU/3fku3iNfXpAeQiaZTY1NKXbKAmhf9L00NxsFUWglSqCsOpjl2GzOSUQL50/TwfzTVAIpnObJntuUGpBA5xJOLLUYqzoMtY4B0Bjak267vfK0bFIRG4f/uf3HtA5+G+mvpBVt+mF62TwPU9JIvHV1klAPSKDzBbK9gJIxkdxXCaSZW26yRU3jD+9GOKYvypNAXhBh95hMyc6ZmpWZXo6MjnHMMoT8CSb46OV/zOq2p9Mc3kcriJCWg7t6hF3/9lazz9N+E2Flk/AIC7TqUgIprdOgQw+Moc8pKL22h1Nr9nD2R6mOiquDBUqlnkCRsBivuriNY+muUWmESm6BprH9mXx628/wG4vfz23LZoXa9XKEaIzOFB3XlvjajtPBEk+g2APQW2TVC9MUS1+4PLn5NZqbryMY2pkGHjryTbvs8zGbfoTdOMmOf/9lLvnYy4iai32/jwEMji+201X+9UigLA0snw6mDAn0CEpFj1QcSo4sVmnqEa4/UgooPV4U55G2JTLVeJKeUzc+P5NhPNfLVQdzLVlQsUS5akv9jIQXA0kFj9CqFBVPORJI5irvJgg6CNObbr2VnZ94Hermd3cRPlGP+WcnidQOIsbEKn5pPFYC9S5W0Q4iVtoh03NzvMn+PNtW7+LyA38PgDd6MV8u3YhEo3MLIEGUjSl25Jn093gxY9PU5nS/5a1Ppx1E61YGg/j3aXaTzGFprOu9vPImv6icnWt9A/H89vIGlEprIZ/SPVEvsXeyxlv9n+Wj4z+WNkbbklRLdg8SqJj10Jx8Aqee9LY1bhzGqg6hXcGNWpxc8rCJuPtUkzuPLtIeMgucyu6tBJr+iVu594e/EZ8qI6BGqw5SkppY63ge4hLgStWzAvP5jAEJNMB5j+VWwEIzYKdjgteHtFkVjNwREJKgvr2QDpaMQyKWf5bLmQP+f976N7zK+6/YcTUEEfngZ3nPMmxxp/MEKo7dtfIdjV1Ma/wKjn/Pf03fyxvJSVlcOQplmSoenh9hxyTQlpEaEzWXibpLxS2y+mlFE5VLB4sH4bUMNteaaCu9topogLMLp5Y9poZKOHHKTG3r5em2Nz/3qmywjNPBniAP8vR/ew07vvx2VttrS+dPrZjJ0TjLRE4Nyy0bJdAgHeych9Ya2V4kqsdKsT5KoCBS3ND6MjYh/tBuLKdEqCXKy4htL4yVi+utqAnB7Ks/zPylP8zk+CT3Rebap/QY75m/ggMv+ScaypyjRnb+49/z31jZ9YLC5FZhlECdigyjJon32UAVpscKa3nADGCQ/+16obR4f/pabboKLSwsHRFG2qREA/VKBduSLF78ynTfsDRKNTd2artM7bm/iC8r/N+bZgi1ZOYp/6nrep2r7q5lSsRbys8C09gg1/IWCUJNe+YAAC9w7qS2cA+LF7/C7BcTDCLyY0+g7s+30g5oB1FqZg1g3fcv/b+QAdBac/3y53lb/Qu83voCwcr0mvv3UgIFSuOKMFXLPhxUSxYlWxZJnh7B+iMWAiU33lES3JYyp7aI03TGjeJtpzJzAxEr0wWG0Byp5JUT2dy1y8stxom2Q0XEJFB+qpvr962oexzp8h986Es8y7qLHfe/By+nBtJaEypN04u60nrz8ALFMA2UO2xsF/oogbzQpJeOHPtS+l5p6SH82jaUO4Rvxd+HXyxykFxPKp9QZN+RqI7xoRfdxFPaf84fLj2PmRVvw55AwbWv58EtL+VXgh/PrlXuJoGsnPnzcKW7PYpO46l10OnTc7roXMh50s5RPqG+h5t3/X+5dDBB1bFS5ZIQiZ9RMTVy/ys/yfR1b+97LUNwCZRdpaRbNNsBNhEhFr/20bv49IwhNf3qlp7PkahtIqhvT6+XYMdYhaGSg2tJpBAZCSTCnotX5zsGJNAA5z2OLphV6i3WEko6TOtRIPMF8Id2GCVQPKCm6WBx+ffJ0WxV5CN3ryB33cAz903haRvCNnjFCghL7YCqazNU7qiO41R48FWfobHtGYDp4JOOMS8hTtCubMYVId7iydQTaKhaRkrBttFK9/mTlaucEkjGK6L9lEBh1LF63plOobvluAOcvZhreIzXXJzGKbSwECPb0221+kjWvjomuOWFe1huB2saRJ9aNhO6Yb1EVB6n7FiEWIhoQAKd62j5IZa3gB6KPQj6KIFOLXm8yfosnlVjae+LcaSgjYsKsv39SGOzsSAq2Pl0jj37D9g9WeO7viGBGrLO7UcXWW2HNOKV/G/t+WnmLn89c5e/kbkrfwQoTn0VEnTUVT0pryZ5vFLBehFPGzViv5ChtF6TLCvHKdz3vP7byOHtaGEhMb5QOvJRCKZGjPp24bIf5lQccGir1LViP1p1ec6lJg3xEu+9+E//xa7rda66G08gBztnDI2bkECGuDl02JBAm6JThKVRFva9xuxnx0qg0KP2lXcg7/144Vp+qFhuh3ihQgZZUCrmHuz7fTwcrKUQPlux1rMzfXQ/f2z/KT/d+ive6fwNI/vXJs16eQKFkcIlLCgVTwdCmHQsU62r+H7Xvo9YC5SdKf9KCCCucGdJyWjVoT5llBN7OEEg3NTHRwgzF+2lNDHHF+/x4LP+CIDVpXmqeERWpfAp8pWaLNWdDtbZ5oIFQ0p52mbVD9k/s8pi02d6xSNSmqVWwD0nlk16Jd2/vx/4DIsWujRsKk/FY0Fn35H8fcnsF5lnxKQUA42tpjy8L81ir/ayRd0gykggW/sEotgmnnbFLnbt3stH7phmdtXjiTtHWQ8CgayOM/2C/8Vdak/6fmc6GCTVtIxxdz8vn40QiY4tYq+oMxvyP3nXKABT9ZzvjpRIaVIQpYSKa7FpqFxQlG2k6l6yi3aqWCga7SY2Ec+4dAubhkr8t4NX8GLvd7nrut/ueb68Ck92kKT1sk3ZlbF3lnkOSgQ4RANPoAEGON+Q5IhvDo/Tru9MJdtJmUJ/aCfVmdu5+F9+gG1f/bUsWIhVNHu3jnPLyz7DrS/6MP/nDU/mN77/SiqOhY9jUsZiJdDyzufx6Rv+gZsemueaHSNdSp3OTty1Zdo5pRUl8kqgUZPz6s08mFYHE7kBtovVTyYtKiSKijJopXqvPs81/LREp9mx8zgjxw0jdU5OGC80zK36jFZdLG+esDyO5Wapg5FTzZRmHVL3oLoVrWGx2S3fTnAqTgerhYuE5XFKtjQkkB6kg53raK4sIVTIN2ZNcJo3es7j+FKLnWKGw1teiCqN4liSNi7kSaAgMpMpa/0VtSQI2j1RZQZDyl85aRMpzU0H5lJ1mje2j+PP/D2OP/Od6Sp1fpKnhEUYhmlaTvp+jgTSYQCt7jSfRxu9SPS1lJlnE9bzCXs0sZ4SKIrbnLKrCAlK2tjaENlHZ5cJtMULrtiU7h+WzcpxMLyrZzD0H2+8JH3ducAC3cFWye5WAmk3UwIByJwx7vzlb0QnKTgxCUToUfnuPyIf+Ezh3KFS+KH5z8opjenzXD5crLZD2uuUUT/bsNY8ZP6hWwt/h97a31f1s7/E7s+8uacn0MMmgRA4tkmxKqaD9dz5zKAQ5Cb/ZulgU0Mltk6NM69N+wxkOb22wCjQ+5EMnUqglctew6yYIGouUsFD2ZViwJ2j1LpIIIrpXfMNn0rbqLV06LPQ8GkHiiPzLVa9rD/XGk4umee9K+W3bRZhVXnUKEeQXfNYyPqSi9t3cmf5ulTxsbzrhea8Vqz4D4pKoDQdTAcFJRCAJQS/8dIr+aPXXMt7f+wG3vQ9u1kPiaJwqOwQjOxJ3++VDiaFIVP6eQ0Z8/H1r1d17L5pfY8Ez9g3xfMv38STdo6lbSCv+LGkwJaC4YrNWK7c/YZIoPjfpE+NWivYKKqVMv/lpVcSYXGP3s3FW8b6kEDd50owXnMp2ZZRjqXpYCEW0SAdbIABzjccmW8iBYy0juAP70lJoMShvj1uSrlXp29l4t73Uj/0BZTSqamd45QZ3XU1zq7r2TFWRQpBxTXlYaPAS5VAs1e8id++rca20Qo/+vS9XYNq5xhbsmWSXlzIWU1gTZpy3swfwBYxCZRjqTs9h7TM0sEOTC/RiV6Bx9yqz8HZXIlMVQzotTb/LbYCji30VgcMcHYgiBSLrYDxqovdmicqjyHtbODVdjVrXx2SVxWvhiyvkRI2vdzGsQQlf4GwPIFjSePF0mPCNcC5BW/FVIy5p2EmXKpPsHlydoFNYhE9Yia7dkwCibCdBmdepOIS8RtPp7hkqs7tyvR3Q5c9lx1jFf7xW4c5MGsC4C3Dpa5j8t2pFpIo7FayqZwR6dCnf46df3XlY15n2+uRTnuuKIHaweNH/Juxp//3ZGnTV2npYAmBkg6WNoHjPcfmiYTNjZdlJNDy7u9l7oo3ceK5/6MQ2CZdomNJnrrHEEW9yigLisoN15L42sEiIoxLUneSQLbKSPVEwWZ2SLy3fJOy3UN51w5MGozOKY2j1nL6eqn1yMl3zblDSCZYkwRaWATgxOTTAfC93mmtCSp3vIfhI19k6+fekp1fGU8g7IeXDiaE8T+RUnQogdYOVB8eun+7RLGWLRgKSrZk51iVE9oYPgdWZnEgRGJiXbyZu994G8d+/M6e5FDoDjEkWlSFh7Krhblt8lxCsf2DeabzpPgthxbYKoxRtRW1Cl1zy4+Yb2THJ+20yxMoHrucmiFRVKoEKt6z0pqgscCUnqcxeinHn/47HL/hN1nea8qch3E6WN7eIVQqvZ6lfMIOJVCiorp08xBDZWdDRt9JepcQsGvrVv4i/H5OunvQdqXnvpbsb+ic/HbrIVG9nGkMl21+/gWXMlZz054xTzbZ0iiYSrZVIN430u6T71KUzeIQ7SVsQhzbYe9kjQ/85NP4jZdeyWWbh3q20aL6p/c1HClzxtABQnUXtDjfMSCBBji/ceIO3nHbM7luaIHS8sFUXQOkDPD8FW/iwZd/lAde+Um84T3s/tyPo47dgowNb91KpWs1pOxY+NiowAPPTMy+O6c5sdTmDTfsouJaXZ1z598lJ1MCdRbOAahO7SXSgtLKISQKJaxCb9apBEo6LxH5/P6/3pW+P373eyBnkJogjMwAN7eaG6g7TH6T9IrFZsBKOxx4WZzFmInLvI9VXWxvnrA8gWXnzHOdXBWFeKKzf+xZfD26EuLy4A0v7Oub0vQjnuHcT3XuLqLyGK4tiYSFUAMl0LmOsGkUMtM6nkj7vQnf5sxBAJyJPeZfS+BpBxm1CSOTvhPGJJDYAAmUdGcT9RJ36z08tf1n6Ce+gbfeeAnTKx7/64sm/eXiqXrXsXl/ghG1xMuCT6NnHyrso3Plt8v3/rN50cOs9NFCpHTPoPVcCby9x1Elslbp9EhpnIQEslykEETCxSEgihStdhstzOp30sbC6iaOP+N3oDyWBipCwGhuhfpXX3w57/nRp/YNrPJvSykI4zaugljx0EkCaY/j9g4OvujdhLWsDHWULNhEnkk77/Dg0ppUobuwYILcVV3Ga5q5xvHFFtPLaxMcG4Fex3z7bINSek2z54Uls/h17BnvNPuH/oY8DYf3fyJ9HSmjBBIPWwmUlaJeV6XxsK6wPqQQ2YKhMN4qYzWX29VFAATOcFeqWmcgHZXHEfUpSj0ICFkeYVwsc7k4jHKqRWPo+Llc1WXsLiVQ0WPy4GyDLTEJVFLdz0AQ5g27tan8l2uuIvKpzJq5rl0bY7zuGn84rbroMaU1MwfuAMDdfAWNbd/D3BN+PH2og5iE0bkFkCR9bakZGBKoY0zr1OFspPq6ECI97urtI/xe+Hp+duzPezIVCTlXdfuQQKxPqEhhlESP1A+o37k7X+djJdeSBUPobN/1z53sIipmTiK9RSyhsRzzXFZdm6fuHe8uONFxPPQmYAGGK3a6eO4SIvUGvAzPMwxIoAHOSwQxwcEdHwDgTfYXkFGbaHRPNjjkTPVam55Me/IJHH32HyF0hJq+DxkPYK5b6RogK46Frx1U0IY4h/hz+xtM1ks8/eJJoHtQTf7eOV5h10SVyVoJK2G76Z40jA3VmGOEUnvarKyL4kDgWMWVprSahQrT9DGA7V//LzirR7sCj5Tgya8odpj8JhPEVjzx6qzsMMDZg+mYBBqvuViJEsjJJrLaLmeDdttMlnV1guNMUl49ZExKtSm52guhUjxd3AnA4kUvp+paRMJG6vCcUTYM0Bs6ltTPaaOOVP1KxM/vN9tHjRIoSQeTURs/UsZIPq6us7F0sGwS++Krt3DlpZdiW5Krto3wIzlp/VSHEqjfxFd3eKb0VJMEj56iMf8czDd89s+s9gyyz5Xn5XFVAtFfCRRECkeERokojKI2ki4STRgEEPlEsay/syJOEvAKAbWSXSi9bFvSrGr3aF+9yjEnq8iJJ1aifquduhkAR/scK13Cyq7ndxyXI4GUD2ExWM5jZckEyaf0GGFrhUhp5uO0mVOPkAhSGvQ5lOX9Kx++gxve+YW+21dXzLjmVur42jIk0EbT2KPEP1HjiChL2TtN2Lk0sPXSwc5YifjCSc21ZIe3ScmW3Lz5h/C0wz1XvT29n4RoSJ6J/POSeAU5dvE+3fooT5X3UROmYlPhY8TK4GVq2DoomDSbRQKdLjT5Xos9wlQrK+m123Knigit2fOpN/CTp37bXLY0wvbRSpoO1u0JBO1jhjAa2/2ErvNHtvEPyyuBlNbMrHgcXWziap9IrN0mNuLxlIx5QmSeOk/ZO9FzXxmbfPdLB8sTSv3gxETMo5EOViDL45d5xY+by3bIY6OKKcgUXqIxa/7tmFdYfc61nh8XmCp+9WoJLSwum3QZcsFxH74h/LmIAQk0wHmJ+YbP0YUm2jaeKLulKcmo6tv4Ok8EwBu9hKMLTW4+OJ8e543GvgDtJUTkEyEpuU4Xm50ogXSYpYPddiri+ZdvSgfTTiQkUFKJQUqRstgJX5Q/zpKCBTFGxZ/HQnWRQEKIgsQzmYDKyKdqmwFwproPMKlukepttDm7mpuAdpJAneohpVhpD5QfZyOSleHxmovdniMsTyDzq5kiU56x/XoA5va+HIHGDVfZ+s3/BvQP/MJIM0yTyB2msetG6iWbCNuUZR74RZ2z0Fqj44ooc7Evj+6jBBpZvAeFoD1mqs7ZljGGtiKPMFJGch9pLKEyo/p1UIpNL3/muZfw9hddlvaTr7luJz/xrIv4hRfsKwTq0H9St9oqBhJJifhCv/cokkCtnHLmxFILr9+z1KN6zUax0HhslExKafzo7FQChUrjEhAlY16cDgaxKkeFKGljSYHVMXYnY61rSybqbqrayKN3kNLNAjllo/zRSeAYqyLrR7+CCJq4OkBZ3YFjQh6JWHUgOtLB8gtVe058CjAqPeWv0g6yVJeZFY+m//CN+TXnlhLogzcbE+F+5GCraeZiwq0RYKOjYOPVTWO/sMQYWtgPTwmUh1wnEH2kFFBvYikmBxJFQ+yhVi1Z/MgrXsJ33ng3o9e8JEdUZcG8FIKd49Uuj8pyR/9bXdqfvh5euKuwLVEGr2BIlfyCQvKrJQtNI0v3UhIhh+09lPDWTdVNzKEBDh+8n/rJm7KNcdqQEnE6WMexSmtGZ29hgWHcqYu7zh3FKXIipwRSsR2CUmDn+pv0sxaUgfTsSzqRfrcIRqsuH/npp/Piq7em2/Ol1YWAySF3TbXLRnhES4ouj9IzgaQqXL+Yx7FEHyXQRsgys099zCyqhysmhpMdCr3+qs1ulVKvfWolC225PHVXHYsIx3nkz/25hAEJNMB5h3YQsdIOaQeK1cgMhFuUWW3Q9U18zHoBPzH1fj55aoyfft+t/PYn7ubWQ2YCEMU+QbQWsZRPgMnz7ezHXFvg4xjfoHgCuKLLaXWAtXJUO5l7Sxq3+l7bVuwxxvWCUfb0cK3Ps/sJCSRUyFjFvP/r9i8S2ZWUBMr7U2htjD8/8O0j2Qlz6WDtIOpaRfNDVUwfG+CswakkHawssTxj3mzFqygJ0lKuW67mwH88hrjoRu5TOwCYuOc9AH2NQkOlGRENIncE1zarnUpYSBUOSKBzFFprji+1aTXMCvqiMGb5ug9RsrV5Lyft7ag47cWxJG1tlEBBZAJKY6wadZmP90QcsOTl7vlJ48uv3cbzr9jcw1+t+Pf8sCGl2svzhLm2qGJz4dl8n9Wn8tnpoG8QGismw0hlC+A9dn0kSqDFM+AFsxEkJZUfL9jzD2KduKXntiRQj2KjVktkpX7DoI1QQZwOJrpSuZPgYN+mOsNlp6tt9YtPjBKoI2WmthkAuXrKtIm0KqdPZeZ2XHy0Ve4+V0wwCD/2+wl7qyBGH/wwe9r3ALAsakh/lUaO9DHpKhv/kdpBRMMLs2BaP35V8x4J+ql7onbsb+hUDAkU+muam/sTV2R/NE3aXfgI08HyKKRJ9aBsHh1PoPi/ZG4YXyRp67VKKd0v+Td5BIbKNmXHol6ykTJTWXT6TzY3X5++bo1dUeyP42cgIYGiHmNJQo6PL5u2fX/lGiQa0aOkfB7f3D/HJ/7iV/nk3/43PvkpU/ntdvdJ5psYMkSKSQfr9gSKlGZv604eql7T84tPlEAiZwyd7+ddHRDJDkVq7nXJtpior68ek0KkZdOhu2LXpqFS2icJ0dufLL2+6G/onYdjCWqPAgmU/O4V1+pJSNZKdp9YaAMnj/eZnDR9bLQak0B28fvopTSC4k+8ViqcIyXKchGRj1Ah0nJwbclw+cJQBA1IoLMA/Tw4Bnh4OLXcpuUbU8U5zzTxMf+E2VjfTCtQfO6I5k++8AB7J2vYUvDurx8wkwVpEzl1aC8ilU8gspXGPGolGx/bpNC0TZ6+XRnmsi2GRDqdjm/TcIlaXJ6zc2xquRNMimVTIr5HrqrbgwRyg8XUqPKemTbHSxdRnruHMFJd+fT/dst3eb/1G9kbOX+X5VZA54J1vmLDAGcXZpbbSAGb1AwCTVjfhrX5isI+naUyK67Fv429hn8s/RAApYX7+gaoodIM0SAqjaSBVSQspA4HaYLnKJZbIfOrPrNzRg25a9s2Qi17kkAtP2JzeIKF6t70vbJj0cbFVh5BpFIPBRszmdoIhKCwSillsR+0re7wqbM/vvN5fw9Ae3W+g+g2SqB80Kj81iNST0Cm+NFaF5SRfqTQuni9Xk9GeJrPSxKMGLPgx6b/9cNuX43HCg0vZPf7n8PUP72k5/YkUFdxypeUAhV7O6w2mqkxuW3JrlX0rCJnHOB2BAh9SaAe28TINnOOxkmTbq1CmpPXAFA6eTMlfHSPtCLLSZRAsYKoyxPISBDG7v9g+p4vKzhRq2sR5nTmj8cWW5xabtOMSaCEJD3X0G+8EWETT5RBSEJsUH5fNR4AUZBWjUtIoCBOZxVnQBGwXkrKGSsR3zGuSykKpdqhu50nkLFnEMDOcWOOXI/JoGQe26lwOfqsP+AnNv0Tz/P+kMPP+7Oe6WANYUiVoF302IFMCWTFhMuSY/yyZLB2NbdvPDTHr9rv41fUX/PO2j+hpIv1hg9x15vvR1TN76iEFXsCFdvIsfkGW/UsfqL270Bkx8bQORIo/2w4BJmXVw+U7I2F04ak65/GVS/b7J4w97KeYkYIsaE0L5M18Gikg5l/y07vEvZlx2K4R6XF0ykRv32LIYFGtFmoEpaDbQlKcdpiv3Ml71tSFNRVnXBsiZYuMvIg9gTaPlbpa8Z9vmFAAp0FmG/6AyLoDGKlnUxwNC0dm36F8WSrvok/fM21vOU5F/PfX3k1f/6GJ/PbL7+Kg3NN3vQ33+K7x5dM6fj2Epb205KQnXmnIxUHT5uO48DxaXxt8fLr9qZS2l6ET2c5+AST9RLVuMPpPCyoTDLFIo6IQGxMCfTG5b/i4tDIdTUW90Q7KS/cy3LLL6QrABx/4Faukw9kb0RZcBT0aJNNPzpnTE0vNIQzD/JQ6fWMH/g4AMHYxalEOkGv/OmnXbKZP1x6Hkq6TN75V31X/8NIMUyDyB1O250SNpJBOti5itWYDJlfNErIy3ZtpUWppzH0/plVSgRpCgxAzZW0cbByJJAfKUoE4HQrIDqRTIXzE2hTsjhrp3YPqXln/7p9s6kC5a0sFJRsKialWjnyO/QanFh6ZF4qCZne9KNClSatTUnhNQNPMiXQRis8Jdc7vth6zNQ5Xti9mv5YoaBO7YFEbRZJJ10JTgw+2+2WIYEsB8cSXX1eZw/YpQQ6jcC8NGZUlNbqCfObRgFhZZL26CVUTt5sngO7+zlwXPOeiFPJO9PBAOrH/p36iW9kn9mqUlLNLgIxOo0fSSlNw4vS4FbTO0X8bESeuO2V4tX0Q0qqTRgrrwJhI6IAL1S0gz5jlAoIKnEFuUQJFJ05JdB6eJQsgQAYihU/5ILhXtfulWqUKIIScqirCIld5qdf+jR+/UdeDpXR4hMTK4Ea0pBAoZcjduKmlvSPOq7A6ztGgSrDtUmgh6Yzv57RYJrZa96Ctly0Xc7mJH2qgz1w6CiOiKhPbKUn3NgY2stVy80RSY4O0mIyKXIffKMkkFG/9iCU4/ccy3gA5dP01sJaBMejjaSvtKToq7bplVrbL72teG6DzeNj+NpmQpi+Ulo24zWXPROmffX1BIr/nayv/RzbUqCtEkIZJRDSpl66cMyhByTQ4wytNbOr3mkN5AP0R37iqjX4ZKvRYWkE263w4qu38tInbOXaHaNUXYsXXLmZ33jplYxUHH79o3expGuI9hKWCtKSkJ2d8XDZYYYRKu1TTC+uEGDzsmu2UXKMAVuvznutDj1l6Tt20dUpSiJkhNWeSqD8wJ4vbXi5NlVynnX5Vr7V3ILtLRIsnigESG0/wlvJ/JAAdJLP3Q4IQkVl+lambvvTdLsXqHQSmqyyD3B2YNvs1wDYcsv/AECPmxWv1ubraE4ZyXRnvjnAk3eNMc8wt219LeP3fxD72Dd7nj+vBErOo4SFpcON+y4McFYhqf60srwIQLk2TBunZ4n4A7MNXBFQLmelbGslxyiBIo9QacRdH+L53/1VSgSIHsFvJxL/ivyqm8xJ5c3f3eWLO7vSieEaDV0ibC4UiG4x9wBq4XCh3/NaDZpetGaayFoII5W291YQdbX9SGmauev1GtoTIn2h4fcMwv1QcXyxlfavq55JuWx43V4Xjxa8sHs1/bFCP3P6BIkxtJKZX18SoAV+C4cIYdlsHi6vm0rYnS7W+5rGhLWIkfHNeNpBLx03v2kUgLBobrqe4dlbKYkQ0UGGWlJgxyRQ4ifYaQytgfKc8Vq50fsj3v3kfya0a5RUN1l0OmNwnvwB+MTtJ/hP/++ODR//eOLIfAvQHCy/Hvcrv9e1fXq5TUV4hLG3S4SNVMYTaHrZ65nmLCKfME7p041ECRRREiGcARKos61tJHXnTF3TSUvcZ9fs7Ff7oWRbhkCN77eXKsKxJJuGYjIzr0SKSaCmNIsFgZe1WeuBT1GZvjVTa8a+m4kNg+hQAjkrh3GXDgJxrDRzMt128vpf5tR1b8/OHd+rFhLZw+381AlDLA+Nd5NAQoDrOjR1KfP3Ive8aONBpjqUQPkeobZB4iBZ+Oj89u3c9y2lSZHeSHN5NKp+bRTJz26dptIo+VyWFF2m49k+McFkWyyLISYxSqByqcxQ2Y4tCfoTSkna3dTQ2il6riXRlouIgpQEupAwIIEeZ3ihIgjPzmD6XFkhguxeOyfk+dSloLq1YGBWcSW7xqvYUvDUveP8l5deQaQ0x9oueEvYOkiVQFKaUrLVkmHoh8s296mdDLeP4wRLRMLkvjpS4ljdQQuwIRfAzmmmPWIGrK1ivqcnUH4Cq3OTluSX27d5lAfDKQDc1aOF3/T+6RWGyK96gOcZqflCIyAM2lzy8Vey5eY/QBbypM3Ec7kddimLBnj8sBhkg1dYGkHUzO9+9FUfY/8rPhabpOYma3Fb2ztZY6Ti8L/UqwlLowzf/jc9zx9Giro2SqCk3SnhDIyhz2EoDUpFXLP6NSIktlPCw02rHeWx6oWUCLDcLKituBY+JRzt4YeK8sd/istmPostVFfw2w+JEihdmRZF9UYvY8nO1UUpJE1ZR7eXC8bmm9/zTHb/ww00vUxxM7do0nfb/sNrs4041RjMeJP3VNHaEDx55VEvIiU5vulHLLe7U9PmGz5zqz73nlxmqRXQDqI0iH2shmU/evw8gaJwbYVUYgythJv1aYknkNfGJgTp4FjdaQrdK/CmX7QtweSQy1CP9AVI0sGKB28eqXBSj6FXjhOEiigM0NKmufnJOP5SfFvZcyClMXpNK0/5iRKoW5lWmr+fU3qcI2IbF112Lcqp4hIUUrbhdEkgHf9r/v6df72HL98/c07M9Y7MNxmO5yu1b/+vru0PzTSp4KPiUt+hMCQQED9D3c+7jgK+eix+rmJzfJW0vQ2ms66FznSwybrLvs31LuPlh40ev1t6ztgAsJ9B7nrkgSNl2g+XHSutGrau1UFMArViEijMLSjUP/ImLvn4K2PVqEaEnknbi1OxlFecj17+gWdy2YeezX/8x1t5+Z99DadxHIDjN/wmM098a+ELTOckfTyBVuaMJYSqThbvXcL20Qpl26JJCe0Vq4OB6W9KorfJO5hS4xsmgeKFj87f3o5jhwTbxyobqqL1eCqB8ilXD/e4qmO+t1rJYqSSPXP5jz5vT7FLnALAtp3UJ2kts2shknnF2vcmpUBLx3gC6air+tj5jgEJ9Dgj8Q44G835zkZiqh/agUJ1GB9DbkDHVP6ypVHpSAkXT9VNTm3cie6eqPH912xlPqog2sYYOsp5AiVmYVXXouRY3Kd3ArC5+QAhpgOzLdFz4mnOsf7n6OyvavGqxWax0FUdDMDqUR0sj0u3jnJcm0HPWT1OPla/7ciiURjl0Gy3iI59B+/UfeiVU+n7zuqxwn7LLbPC1vIHJNDZgqbOSMD2+JXYdjIJNO91ThbSVRwpuPGyTfz7oSYz215A+fg3ek4uQ6UZ0quxJ1CWDmbpEC9UhJEqVpob4ByA5uDn/4prxYNYKFzHoq3dntXB/NCY8SbpLbvGq6ZKojCeQJ1NZkNKIDJPimS1OVndS7yBpOxete5FsretOtJfjqsnFW/Gby2nr1WcnvBwCexVL0zH6yBSdPKfUaRTwmalHfRUHAWxmihSmqVmN+GRHKMUHJ5rEiqdBrGPlTrHfxyNof3FU2tuj5Rpi0YJFAd/MQnke21Tttrqncrda+XYsQST9RJbR/p7QRhFWvG9raNlTjKO0zhBww9pe21CYdPcdF127lI1fT01VGLTUBkRewLh9SaBtAYxex/3qe38/AsuZaLuomK1hJWYSaffxcZ/pGRfpYoLj/0qQp5NODzfMIthQFjd1LX9+FKLKh7armBbgkg4qSoFugseREoTBT6LQTxvSopiJKqsM2IMnX9tyMayYzFWc9P3zgx6ED1pFYhsWzIvtXKVafvBtopExc7xKldsHeqprCgE2vF33pam3R+bWezaX2vT/+ooIMBBu2bfyFvp2heg4lhsH62wxzXnam5+ctc+yfxGx55AnQiXTZ8SVookUM21zQKva9HUJZTXSBe1yiduSX0SSwSFhVbzuc2/66lNCseQ/CKdY1rR3qFkWwxtgFh6LNRl/ZBceiPpXXlkc0/jJ+TakvGay9bRMpuHE+Py7Jwz9hYukrEKLEfOTq5jxL1RXx8RtRk59GmgmFFxIWBAAj3OSFJrzkbC5VzyfgmVwgtVtzQ/V+LWG70kDiiKZnj5FZFNQyUWVBndXjZKoFj+aUmj7hmu2FRdG8eSHNFGaTHuHyfCplaysKVgvOamBnt59PMEWgv1ie0AbGG+dzpYYakp6/AqxJWihip41cS88niBbPzG/jm2lTy0sPnYVWZlrdVuY/3Vc9n3weemOfLQTQIdX2oRKtW3ktQAjz1aOhsc2xNXphOKpJ2vtWry4qu3ECnNzd4O7NYcrJzo2keEHmU8otJoSj6G0sXRAWFklGGnlh+Z18oAjy2UhuNHD6R/lyxJGxflt7r8avxQUcJH2C5CwEjVYbhsE8gSjuom/9JAdx0kXVhSIUwI4y9QcSx2jFWYGiqt6wmEgNAdphIuE0a6ayxorGQkUBCTQPlyw6eDlh8SKV0gcgrb4xLeWmte/9c38asfLpZQ1lqjdeYHFPQweu5czDCVHR+7vjaMTNqvVv5jJz3KX38p1/+oXiRabAwtnW4lkN/GERkJ5NhFY9Bew69ry9Q7ot/KuhDdQfvm4TIn9Tjl1jRH5pssrbb4ztFVvNGsBHWlUkuPn6iZZ0I7RiUhWobUEFG7+D1rRW1lPw/oHTxx5yijVQcqY+ZjekuFezidBcR8qnyesG88QqP0xwIPTmckUNCDBFps+lSEh12uc+nmIaPO1lkf1kn6Kq2ROqBF/JtEfvxvogQ6s+lgQmQB+5bhMhVXPnIlUA9COOsbdXbhjvvZiHqkczGz7FjYllw/fTImga65xCySzs3P0wtLrQCpfEJhE5QNMSPiClCd+MOX7+Uv3ngd//mZEwCEle7fPwn4FRJBMZW15UdYrVkAovJE4bik0uloxaFBGeWtshgT83s+9kou/ecXpsrDLhIoOcdppUKJnp5AvQyMT5dceawhhUnn6ufL0w/J/jI2th6tOoxUjHJzPCFIc6ectrblLprNY/PKoV73Zlsbu6/S8qH0tXBrGzrmfMGABHqckTDOZyMJdDbeUz8oFZc0X0sJNLYPxzIdfj9Z7KahMp520YGHrQOipOy6MHLTkm0xXnNxLJH6DbmqTSSMHFQI0VcWuiFH/M7PFaf02KJ3ifjCKkDu/HXMSr4WNhMTE6xSjZVA2W/6wPQqOys+UWkExzUToVYrmxg6zen0tbtytHhfyhCYg3SwswcqF0y2xy5PJ2tJqxhdY8DcNlrhiTtH+eipeIJ08s6ufUYCM0ELqpvTQTyQZVxt2sxC00epcyuN9EJAuEaqXhhplv1cGVzbkEAibLPcRQKFuCJC2KU0NUAIQShLJv2mI1i33ArrIb+CnEzipTCvS47FaNWlZFvrKoGEgLA8yQRLTK+0afpRwUh2fikLnKOYBGoH0cMqyND2ApyTtzK94uH1SAdLAuqjC6YPvmf/wcLxye7LcVWxXuNsV1pzlFMCPcqPV2IeLMIWV/31xfCVPzyj59/IvMJfzQWOPVITE/NeHZfzBdBxqkYYeNhEyLgMu2vJlGCE3ivnQ2WnrwluAR2HTtZLnNJj1P1p5lY8bBEx19LMNgKWS6bi0fBQHSmNkiL1LXFrKC2Qzdnch8rGXrF4BFe1WapfxEjFEF3lYRMof/HWewr3sNF5WtLW51Y9ltvFqllN7+wfxw/ONdgSk0B+DxJgesWjShu3UseKq8XJXOqcFxQJW6U1UoWG9EamSiAdxtXXzoQSKD89IwvqjZFu77LajxRp35h2FN1KoI2QFrbsbWuwLjERjwN79xpPwnB1tsc+galyF5niK37VPCvW6vH43hXeqfvT3curRxGRR8mPlWCVIpGTpP6A8QTqTAfbP7PKlFhEYRGWxwskTNJ/lByLJmVk0GSuUVzU8IKop8m7iLMKTscPJ00H63hfiv7mymcrpBRsHalsKLYpHJdLB0uyJ0TuvU7suuTK3MEbT7t7OCopPdG7etz5inOrxZ2HSCZ7ZyPhslEl0NmgBgmVohlEhdK8AConB17ZcWPayeb7Whl3RCMVh+v2jOHhQNjG1sZzAGIpeDKA2ka+6GvTGdlERMJaV3qYqnTXGPo781ej0miWBraOJ1AeQ6KZHrNzrMpxPY7dOFEYGP1QMYRJ73HduLKKlyk56se+mr4ee/CfGT7wqUIE4kfdyqsBHj/kpe9+fXs6MTHEpNVFTiZNLVktecnVW3iwGa+CNLtX70ZDI6cO6tvSwTWUJUp4oHUaSAw4oLMLnaqSPKZX2oySSfBdW9LWDjJqd6kDoiCeGNtlRipZgKTiajwyKqrA5Iaqg3VPxoUQVFyro2LY+tBDm5kSixxbaJl01dxY0GpkXhNR7DuhdW8VzlrwQ8Wmm/+Qnf/8MqLjd8SKn2KZ7pZvFiPe+v5b+Q/WZ7it/FMw/1C6PSGNkuels9pTohTKQ+lMCfSok0Bac2qlTWkpvue7/vmMnn8jiiY7yKUp9/DLCZTCEaYMfLIaXK+ZvmtltYFNiIyNcW1LFvq+XgFL3geoXyAmZXc6mCUFy84UjvaJmvM4RIRY/PVXD7BkmUB1eHiIbSOVwqq1bdusUka2MrUtuQph3onvAlDadpW5jhBcf6VRF33rnv385Vf2p9/jhkmguOG8+e++zU/9w634OZV0Mzj7lUCH55vstc335ZcmurZPr3iMyhaibCpNdSqBoKh40kpjERJgEWFBogRSMQlknwkSqNhg8oqJhAw408hIml5KIPPvRhQSdh9bg3U9tmLirT5hKueJZjcJZLdm0ZpYCeRgVYZZ1hUuv+sPueQjL2HnF9/K9f/ygnT/PZ9+E1e/ex+bbvljlFVG28UFBpO6FhOswkJqVdBI7Z9ZZauYo13ZBNKiXjKm8ZCNO64taeoSMmgQhBqdW9Ro+iEuYVrVL4+SfXqlxJP77PK1W6eU+dmK4bL9sD2BEiVQvj0mfkn5r2fb3ityB2/Mq6vTW3Cj0BOXnvYx5zLOvRZ3niEp/Xo2VgfrN7noDPxXehhbPtaItKbpdVcpUnHJ8/tv/EtkZSi3ElNs+vWSzabhEpuHyni4SOXhEBAl6WBCFAgXx5L4ZBNHJdZnpzfSH3XtImSWw9zjGv063+GcEmjneJVFXUO1zGp4ErCESlNTq0RuRgIFjYX0HNWZ28x+5Qmq07ey+ws/xeQd/yfd3g4evxLCA3RD5FY9g/q2ghKoVypYMgkZrjiM1RxuuGiCcmUoPkGja/+J0CjDglqOBLLKWChEMnHm7PQ3u5CxFgl0cqmdll5dfMXfU7IlLUqIsN1VsEAFJhiXTqnggbBt0qSpqPlD5GFvQAkEWTtMSB8pTH88UcuCsM7V586/BVAZ286oaHDw1ByrXli4d52rOhPl/I5Ot6n6kcI++CUAFuaz4CZp86bkNnz1wVmUhtdZXzQ7tBaza3acs3Oc7bX4Yoim5PhH9/lS2qgm3EQiP7bnjJ5/IwsHTpTrf3qQQGGUeXQkiy+XbRsH4IYDf4ZLhOtmbXSobBc80LqulyN++ikdDGHZvc2rmOpS1soJbCLGh2t87cFZDnimL63mPGDS60nBKhWTepsgyD6nd/M/sKrLbL7kyek9bdpk/AGvHA158M5vcuLv3szNt95CEOk11X4JlIaZFUPkHlts4bcbfNn9eZ4h76RxliuBgkhxYqnNs+x7AYh60MLTSy2mWEAn1b6k8avLo5FLAV1teUg0gbYJhJ2mgxErgYR85CRQHokBeQIpz5wjUM/Jpe7elgTfG02T6YXOwLrzeYqueR0A7qaL8bWN3eomgRJluVQBkXDYMlLipDbPb2XuLkYPfCI7n11LPX6kCrpUQNBRIEXE6WC5zv3B6VW2iznUkLFXGKu6qZq1EvcfjiVpUsaKy9T7ublw22sjhe5St/abW60FKzcvK7wfEyLnGoQ4ffIqsauypImrnI54rDP1NhrdnW3cqBKI3kUl1j1udOdpH3Mu49xrcecR8ulLp7kg+Zgg7HNTnZWAVtprV/J4LBDFxpmdk3odk0CNHc8urCx3DmQ7Y5PTkYqDh4OtfFztp2aTsqOykmtJgtMkgTbiCdRrm1/fEZ+gdyA/Wu1mxksi/k2EZPNwmVVdQbeNL0Za8SBSjEWzhJVJyqV4wryapYBVp28FYNHJpNfDhz6Xvk6ax8NJqRjgzEPkJrxBbWs22RBrpyK6lmTbSIXxmsvFO8xvrXuUCB8LTTpYWN+aUwLFJWJzq9iD5nB2YS3lxcG5BhMssTx2FcElL8a1pSHBY1VPvq/XsRJIdnj9XL7TtJkn/Mv3Fd6XG0oHy1anjSQ8m/x1Btz5PzvjdCEEYsgEfzMnjpgqXX5GTJJrz/nKZ6dLWIaRIlg1gfv+45l/RbKIk3gBffz2Y+wYKXG5NGWJ86kl+Wv6oaLph4UgvpMU+sI9p7jtyGL692OhBAIyJdAZJoHWIiUTlPIkUNCDBFIqTgfLvtdLd5jg8BL1EJfIY4jYQwcorDY/nNVhSAKTbughk8oiG6ewibhq+zjbRsoc8mLfn9yYmsC2JCu6iu3lFJe5PnTTqa/yMfUMLtq+Jb1nWTOf72eqX+RTpV/lZXyZ1W/9PV/fP0sriNZVBCmtufdkziB9dY7dcpqrxMFC6uTZiMNzTUqqxeXRfQCoqLtPa6wsUsZH100/oKSDrbt9zRJ894ghJ0IsAuwsDSwhg+xHXh0sD0GRMJFi7bnghrBmZ9A/Hawz6D4ddB7aSVyoZ/0yd/3oA8jyCAtiBNfrVhVX5ozSzYpJoEs21ZkVhgR6X/QifiX48XTfQy/6a+5543doTRhVXFge776n3BdplEBRgSpfaPpsl/OEQ9uR0lTzShT9yf27lqSRI4HC1YygDZtmAdUpFZVA9bJNfYNVwbJ7Nf/28rkrnYNKoIeDvBLItopV0YBCFWcAXc95Am2wepeUolA4Zy0c+ZFvcej5/5dDz/+/iB5x1vmMC6PFnaXIy9XPRiVQP2IqCQzaQWQmxVH3vXvhY1s2ujABUhHbv/JLjD7wYXScImPZTmGw6tc5DJVtkw4G1GihcqtBbsdqYX6b2gA7nZJAa+wjEJScojzSH45Z8D6d03it94qVljZCCjYNlVilgvSNxD4NWFTIJv8o7dFLKCUkUKPbmG92yRwXlsaw/OWu7QPlx9mBvBJI25XcilPvFcckFce1JVIKtoyU2TZlAg2v2V2lY1gt0hA1hJMF9wkJJHOr9Y9V9aIBNgZvjco/J++7iRut26E2iRSmj2vjYkWG8MmPUSr+jS2nSO7sLXerxoANVQeD4oqfa/c3Sy2SQN07JRWD5k8dwQujQmli18spLvKE0Gk21SDS1JV5NpYXckqg3Fd857Elds19lS/5r8ve1LmS8blr/tL/u53X/uU3C+qffH8aKc27vvAAv/Gxorn0o4nk+ktHjPdMpxnqI8VGlEBllSOhw/6eQOTG4FolK8bgEqJjUjBBohZ4uPGvFL09Upxho9CxWjM4hJTKJX78WRfxnuhFhFrCvhd2H2MZJVChilGO7BIqRJSG0jmLlAKrMopGUJu9Pd3vLda/cOLw/jQFcS0orTkwa57VybpL4JvrDYvmWa8Euu3IAtvFLJLYF6vDf0xrjWzEFeWGEiWQi+xQAuXnqt/ab/bfPjmCr2183zdkWGoMvfGKTxuBEEUC0soVJzkDZ+9+K36O89dISIYzqQTqSp8UAm2VkFKwbI1QCRYK9wNQmb3D3If2iaTD3sk6m171uxx+6m9y7Y++i2f+0Nv57aHf4pbx76c19UQgM4PuNHaGouIjUwJl26MwYgtz+LVtlB0rLT4wXMnm7U6cDpaQQNFK1r9fd9fvmI82WfSLcSy5pjlxL2RxQLe69dFIDzwbkRpDxz9bp6eS7PBMElYu9pm6go2in11GJ9TIDpb3vpjlvS/e8LnPFwxIoMcRUaS54+giL/vTr3J0vnvl/XHF0lHqn/2FVBqbRzKQNv2IUOmeQd9qO3xM08TyJNDogx9m/P4PsvPLP8+O5dsAENIukED9OgcpBdhm8B+imZpNptvyyE2OtVh/INhQdySMge+eiVoa9KQkUI8qKWCq6qT71rbmzmXenxoqmVXH0JA5yeC4LTqJTYg3to9K2QRssycPF879R8Gr+d3ojRxSm7ir/KQ+JNBGPtgAjzZkTHgm5KSdUwL1mlwIAbsmqqlpqmNJnrxngrZ2WFpe6trfUgGhcAoTyMhOSKCHn2IzwKOLTp+0BF4Qcf2ckd0v7nuNMaaMPYEsZQLEfGCpc+lgeeiLntvz/BupDiYorvg5luwriS+QRR37CCComr5vIprh1kMLNBqZr0zZz1ajnRwhdLpefPLYzdS0CaSby7nzpOlg8JHvHOOH3K9j69zYqbpJIJ0LyvO+egkhpLTmGw/lyKuO4x8tJF9J40RsQKzO3Diutd7Q4lBZbUwJlC8X3Bm0J2lBCfJmpA8HCWneicqEaXfh0gksFK7rct3uMR7QO3j5+Mdh4uKuY2wpWdUdSrkckS5Q1CslaiWLsmO8WaRloeP+dvqJPwuAIyJ+8Mjv0PS7/RA7oXRmVt4OFFFMAg3RPOuVQA/NZqbQAKpjLrTUChgOY7KhnpBADvs4zNCRL6b75Z/32w6ZBa96pYyvbaLQY6UdIqKkRPwZVgKJYln2M1v5qVen0O0JVHVjH8tHoASypKCe99DqUK/k/Vwa9hhD4TyR0vg5ZWZCAlk6RFkujiUJNl3L0jU/jnbr7J6o8arX/hjuq/4c5Rivr6BqiqT0SgfLfxyN8QTKK9Rl0MAhJCpPpESYEIJNQ9lChWMJmpSxozgdLEcCXTzzOT4YPgdx2Us2/kX1QeoN2hlOXCAEEGS/V7/PLDsIUikEh5/3Z5z4vr+C4a09j+mFjZJAxSp+F87vAAMS6HFFqDQfu8244efl3mcDoo+/jfp3/xEOfLlrWzKJa/ohDS/sUgy1g2hD8uQzifJ9H6M8eyeVmdvZ+ZW3p+9fsvItIm1GpaIUt/+DLuOV7mHRxForkMnJEvVGlEBpUN7/2kIYVrziWqnvhj+8x1xu6WCfYwTbRitUSxb3ve4mVmq743uymKqX2DRcIrTrlKJYCRT/Lvsw5/NG92HHn9NePQnAqfGn8GD9ev539Cp+5sd+gp+dejf3N4cNCdQxARsogc4OJOlg97zh5i7ip9dYaEvJcLmokNs9UaNJieZqN9kndUgkbMaqGfkZWeZZKS0+kL43aA5nF8JId6Vsaq3ZP73Cc+V3eGjiOSxd/PLUmDKvBCqkg4VJOliHwmf7dXzr2t/puu6GlEAdKTY11+obpEsJZcf0jb1SYL2YLL9InuS+U6t88pYD6bZqTAIt6hp7Fm9i34duxFk9dvqV7PZ/IXvdXqJ053sZ+czPmj4wCpn7zie4+dA811RmWNn+bP585BfNvro7QD++2O75WsXl4H/vU/fy+5++N33/sQrUVex2fZEwZdrTktlnAFqbec96c4OiEqiHMXSkcURUrODUqViK07QSJP3W6VaySdHnsMmxMVZ0BVZO4YiIarmMJQX/9BNP43d+4Oqex9iWYIVq8c08CaQVZddl22iFbaOVNFiK4tLyrfErWNnxHAB2e/f19EPsxEMzq3zjoTmuEIcY9U+kSqAh0aLhn91KoCPzTXY5i+nfnelgxxZbbBIxCZSk58W/157PvJldn/8ptn/lPxUsDry2+fyVSoUACxV4NLwQmZBAGzC2fyR41IP+HtXByo5kqGw/IgNiIURBfd7LSD35aAvVveyODhMFPh+4aT9g1MOlxQfBb5h0Pcs1JOc634fTNMqtxuandm3LjxlaSCSqoK5MFkAjt14o4JI/rmRLmpSwozaoiKBRTGP7k/BVDJ1m6lcv9PucD7tfOgeRLxHfC7JjXiCFYOmil9G46PRIuI1WbcsTshfOr2CwoW9ICPF9Qoj7hBAPCiF+pc8+zxVC3CaE+K4Qops5GKCAMDLlKtuxX8P0irfOEY8tVNh/wpkEBmGkmVn1upRAMysei83gMSUHNn/2p9n30Zcydv8HATj1pLfh143BV0SidMge77UY4rz5m9WjGkAC17YI4tSxjZBAsH4OuCCbvCQKjdWt3wOA9LoD8wTjNZctcbUDu2wmikibkarDUMlBVIZwtY+IfJQ2QeEzxR20ZJ3WxFWp3PJG6zaWdJVnHv9ZXrb0n9g2Uqbq2ly6eYijLQcZtnjC3+5l7N73M/rA/zOffRD0nxWwknQw6RQmN/08gTrzsAGGyw5NyiivO8XHikmgxFARQMWB/p7P/XiqGBiQgmcXlNaFdOMkhff4A7eyQ8yysuv5QOZJ0MY1E2GKlasSzwyrR3A0vuOy7gtvMB0sP+saXkNab0tJvWyzd7LW0y9IO1WC6hauKs9yYHa1EFSXfKOoOaI3MRTOUV7az/g97z1tFWNjYZplXcXD4VnB17j0pl9j15GPwco03PZerv/aT/LGyjfYEhzDG7mIFTc29c+paZLx8p4TWX9+aC5XvUxp/vcXH+QbD83x3EuneO1TzDiWJ4pOm7w6DWgF/so0o8LcUxSeQRIIM39orVNRtKIzZWHUw58sMYYuVHDqrOZU7yCBau7DLhsM/dPBto6UmdajVNpmAcVxXYbKNrWSnSovOuFYwhBHeSReVVpjCY2UpuJoxcmI0RM3/k+CyhSNrU/j8PP+jM9WX0ZNN9F+I52X9fMAe983DvGHzl/wqdKv8tXS21hdMe1viCZN7+xWAh1daHFJ2dzvST3WlQ52fLHNJrEIgIhJoLrKnq+Rg59i/P4PoKJMISJictNxS/jaQocBTT9KqwcSK1AeLZxZJVCPc7mGZNS1zNNRCMGeydrDfgYSpKbKruwyRjZzWHP+xfFrqQifpUO30WiZ/utOcSlCK+SpO3AIsWLl/Xq3tHjxKwFY3p2lV7q2ZHLILX6e2BMoT/jZoflNlVOn1ueZ3D5apaEzZXMyBzrwve/hz/b9DceYYug0U796ISFAOitgPQJx1jmHvF9lv+29PAAfLZ6s0HwuMBZo3WYnhLCAPwNeDFwJvE4IcWXHPqPAnwMv11pfBbzmzN/q+YWFZkAQRRxbaFGnyanZbtn344VIaaJ05bL7iQjigTRUypRSzM1Hl5oBy+0ArR/Dsve5CUF1+jusbH8209e9ncg11TkikeRBr18BBIpVbXqVhEy3WZIoNoTWG5QO9zOXLO5TlK2HtS0oq0Sw7fo1j0vSwpLVQoRNybaolizK9TEArn73JYjDXydQiqfI+zhYfyLVSgmRK7vo7X0BATatIOKSTeY7vGRTnUWdrVzu+Op/ZueXf5HtX/kl1BlcKR7g4UFrjYx9R7S0CySn6BO89FolqboWLV2CoDvwSkiggsdAOZsoO6vHgAEJdDZBKZ32xdMrbbwwU2k6h74CgNz3IvOvELiWRVu7SCJQQbFSVUyqSLeojpRCEAzv6r64vYF0MFFM88qv0nZi22iZsarbM4BJzuGN7GWfdYJbDy/ynYdOpNtHfBOge0NZlZHaiW+e9hj14KHDLOg6JQKeIA+m78vDX2Vu1Szk/Fj1a1hhA2/0EmSyONAjlfeenElvkqYDRrHxlftnuGHvOD//gkt52l6T/jCzkieBTuu2TwtK69QPCCDskRL+cKG1RinWJR2qumkUvIDf7kECxelgoqAE6kgH61HlxbYeXtlg6J8Otnm4zCwjTEQmvUhablpxqN80w5bGhLaA+PlKCI7EoDRfOrq9+7nc+4ZbiCqTKHeYmSFDvlreUkrYLjWDnsUa/EM38WrrK+nfzslbgNgT6CxXAs01fHZaCwSlMVra7UoHO7bQZEosoaSDqIwCME73oll57u6sT4sXTRzHJcBGRWbeasUEuHCrXcefSTxSIsZgjY5gz7OYfu7v037hO8/AdYpwpKRaspisl3qaGSfzDbX5GgBmHrwVO/6+/619KRpB+ehXcQmQTlZ8ZS0s7vtB7vyxg0RJtVyMwfOmoXKhTLuWFgJVWMBwYiUQ5eG+1bw2D5eIbPOby7DJ3KJpP9/09/KgfQklu3+q8ukg+Zy2lEzWsz7rzLSHcwNZGfjenznxbcoOKPxzxnEhqbA6sZEW/VTgQa31Q1prH/gn4BUd+7we+LDW+jCA1rq7HMIABSy1fA7NNZlr+NxV/nF++chPP963lGK5FaATFr3HsxEpODTf7FnloxVEaXrYY0YCtTP/ktLCfXijxrxNuYYMSZRA+cB4LSWQU8qRQOX+EwHXloRJVbANKoHW62xMwN69790/chfLP/wv6x5bdS2C+vb4BJnXy/DIWLqfffdHCCNNWfi07WGTEpQL7Ca27eX/vvE6AK7fY46bqLks6e6VsfH7P4g49LU172uARx+h0jjCBFZaOt3y1p7pYN1v1ko2TUrIPiSQEnYhsNm5OcvPd1eMn9SAAjp7oKKQLd98B3r2AVbaIbOrvlnt1hrpLZqdhkyOfeoJRDwpD9tE+VzfPulgUhhTZtVZUrnDQLofNjr3rbr2miQRgDd2KbujQwhUgTzYGpgqXVfuyPrB8swdqc/RRrDQ8LHaCyyJoa5t/vR+jrZNH7q38R0AWpPXYCUpwzljaHn3R3nCX+/ixPEjXL7FnGt2NVMC/8M3D+PYkrfeeAmWFEwNlbCImFn1QWsm7/gL9HRG0pxpKK3xT92X/h0GZ1YJBLC8RkVRrTU1mswzYq7v9VYCOYSIvPrHKTP31F/m4Ivezf0/+DkY3t51XNm2HrYCQ4jeBvtlx2JRjrNNxAt5lkM5DjT7BTm2JfApLhypuC0GsQq7YIYao3P+IGPCI2rOp55AXtittPJDxe7FbwKgE8I09rQaorWhEvOPFyKlWWj47FWHaI1cjEJ2karHl9pslouElU3IWFIxortJoPqJb2QprvHile2W4upgcf+WjH32xvqvh4szkg42fpH5d6iHT4oQLF/5RkQ8Dz6TkFIwVnUZqTh9/QYBRjeZyrarC6fw4uqSq84EDziXMXHks7iEqbJ0Q4G4kDi2wLHNvlXXxpKiaM4cp4PlU5nd2OfHKnf33dk9C+pDps+RQZPZRRNX/NdP7ecj3zl2xokC15aM1bL7vpBIIOhW++RR60i7yyorPzrfUYFvusAIoY2QQNuBI7m/j8bv5XEpMCaE+JIQ4hYhxI/0OpEQ4ieFEDcLIW6ememuQnQhwQsVtxxa4GJhVs93RUfWOeKxw/SKl63m91gFVFqz2s68gPKrkvmO97FSBKjVzMBNqiAlgSInVgKRkSEJ1upwx0aGs/1GtvXdz7FkNpGTG1MCSdG/44OilLaQ52yVEBsojehYEn8oXgHNff+TE9nqSTS8gzDS2EQgzSBaq2SBnVUe5pn7Jvnb//AUnnupMeMbrbp49KlC1lpc974GeHSR/J4Rlpko5bTFJh2s+5heufwlW9KihAy7Ay9JrATKhUJ7t05lxy4fAnranwzwOEFN383UXX+F8/GfIYgUS82AuVWfSGl04NHWTuqXJqWZmB7Tpq8oz99TrPwY9U4HE0KAkITVqcL7G0kHE5yZSVdyitbkE7DDJs8cXaQkMqJhhzBjRPuaN9Eau5zfET+JpQPkyTs2fI2HZhuMilXGJrcwe90vFLZ5jUWinE+Jki7tiSuQSUXHXNBq3/5eACaWv8t1uw0ptRKTIivtgHtOLHPl1mFGYw+b7dNfZn/5TVhz9zHy0L+w9VvvRHzlDzZ836cLpcGefxBPOxxRU0RrpIafLpIhyQ/7zw0ipSnhsyJM8Br0IoESJVCH2mzxKW9jZdfz8cYu6znOjvWppLkRyD5ptUIIWqVJpkS8GCXtVAnUr2mbuUNxPE/S3sI4/a5XqeLOflxWTfvxVubTuZcfFf1QAFp+xBBN2laNzzztPQBpkYdh0Sikiz6WXo4bQTuIaLbb7PIepDV5LQqJ6jCiPL7YYpu1TFjdlP1GTUNy/Ujwa9xlXUnTHqF09Gs0Em+tWJlScssEmHQwIKtG5z66JNAZSf95+s9x8mX/CJd9X99dHq2gtj8BlL23eXKCQFsEK7P4sQfTvm3j/G3zWYwu38fF8kS6ALlRDsSxJDXXZrzu9vToMSXii8+AE6eDyfJw1/55TI6b50l5K6lx+s88/ypuvGyKV1+3Y2M3uEGUbEnJtlKV34VkDA2s6QNV7VjseayUOhfYTwBsjATq9bV0jhI2cB3wUuB7gd8QQlzadZDWf6m1vl5rff3U1FTn5gsGShlJ9OH5Fq+yjYpilepZM/hGSmeeAz3Ks/Yid5L98x3vY/V5osZs4W9vxKyORK7p8BWmukaeVFmLBLp0W0aYuGPdkvJ0myUJ4omcOEOVJPL+LZ2Dwkb7J3/IpGbIVva9bL7oCelrHfkESmGh0NLCEoJqjgSiNIRtmRVoIcyqy0jFQfTReIils4fAPBvQz5Ph0USgFDYRSsSEp51XAvUebHutiAsh8EQZK+p+7m0doYRdGCh3bsqUQCMP/Qt7Pv0mWB60h7MFOja31GjCyBjyJv+JsI0vTFBcL9mpEujf1ROIhM32r/0aymukhrNJ1Rzb7VYCAQTVogfLRqrr2FKeUYl3c9KkH1zvHqJMcQEjFC7hrmfw4A9+luq1ryLSgqU7P7nhcx+cbTDGCrI2gfes/5y+v6rLBM2lgoFye/wytFXCsruVQIlHx5RY4qqtw1Rdi1UvQmvNfMNndmmVX2m/i6v+9hKGD/wrk/eYoH373DfZetM7zDlGulUuZwqRUrhL+zmgt+Bjo6IzmA5GVvmsH4JI4xLRknFVIL/bLzEIFa6IkB1tTBRed7es0y3nXDx37wUcAVy5b1/2xvwBHEtiW/2DHFsKfF28lygmuxIlkOxBAnVWdbKr4+aYVVOB6aGZVdodRTm0NkbjQzTxrRoyVrgkKTJDNIlyZO/Zls47t+qxR5zE0T7tqatRiG4l0GKLzXKRoLop7Y/0E98AwJOf80peG/wWH2o/leqxr9FYXkRrnXoCuaUSgbZTklvE3kzy0U4HOxMRp7Ro735u380bsR94uFhrDp1sqZVdlkQd3ZzHj5/jK7aP88HoOdwqrgKyxaiNBvquJdk8XGb7aKW3qk9Yxhg616bduCiKKK+titqzzVSW+8TND6L8Jm1cnnfFZn7xhZfx+ht6pDw/AiTkT1Jt9YJUAvXZ1vm7pp5Aj9K99L+T8x8bIYGOAvlIeAdwvMc+n9ZaN7TWs8BXgGvPzC2efwjiVYyTSy1eYpu87JZ2mDlLzKFNdZD4jx5y+V5zhGTOET4OSiDdKPop+UOGsU/SwZSwuqohrDUAX7ojI4GqU7v77ufaEl8nJNDGjaHXrA6Wm2jKDrnkhtSyIiOB8ihvu4r/4P6x2cdrZEogYRsFgJNbIS0NpZNNKaHm2lRciy/JG/jwprdy4qm/RlDOvqMBCVTEelVaHg2Y9AhD0kC36u10VlJ8WcbuQQLJOB0sDzuXRlg/8Q2Gjn6Z8r//7une/gCPEvSyUZpGVq3Qb0dKQ+Thx+q+WslCCkHJlqxS5Uub/wPlhfsZOvR5Ti3HHhkJGdDhvZL0Z0sXfT8Ad4y9kAeveCtsIA3BsdZWRp4OpARv9BKUVeZyvT8lgVplQ04pu5z2+5ddvIeb9WWMHP3yhs9/aK7BmFjFqU+kSg+AGT2Cbi0RRZliJowJMRmn9OSNbHXNLIBdKQ7x8lvezBXuNKteSKg0i82Arf5BnrbyWaTy2f2FtzB09EsAvGnp/6QVch7NnMs7jy6zIzpKY2gPIdaZNYZePom7fBBTgKz3h/BDo/LxpAnCVxvNLmJdx22xMzUxP7ae6VVdIXuP3VIIKuM5xfCTjRC+6lp91Q2OJfE6lEBeO1ECmc8qe8wpOtUjzpAhgaLmPFpDwzPp+KFStOOUsKVWQDtQ1EUL365jxenu5TgwrtNK0z611mcdCXRq2UtNn63RHSgkukNuemKpzbheIqpMpr+Rfukfc9eb7+f5V27hH37sBg5ufTFlPKz9n2e5FWZKoJJJByPyTdtT8ZzXORc8gdbHY61uELlrSgENOYzlLRDEJeLHhutcvnWU93imul3Fm17zPjvfty2xZnUzLU06WL4dJ+lg6ymBLttp+u27Dh4n8ttp4RfzWc7sF5nM0Rwp140LzkdYfbwqeyH5bh6tr+gC++oL2AgJ9G1gnxBirxDCBX4Y+HjHPh8DniWEsIUQVeAG4NFLWj/HkTDUJ5ZabIvtk4ZoppLwxxNaa+zlI9RPfN280aEE0jozghZhm4WGRxCpdEKXTx94rNLMveViamFY3cLh+SYPLpvmrZBd5nVr+QLUqpn3TWWyP/vvWpJ2TAJZnZVJ+mC9vqazYkChytMG2GohBK2pa3rea2v8ShYZBm+ZIDJKIKRtCB+rSAIlyqmqm5UTHaqU+Hj5Fcxe8xbufeOt3P+DnyOoTCGXj657XxcSenllPdoII4VNiJLdJNDpBtqhrOBEbVodZqE2YZcSiOokJ53iMyIXD532/Q/w6KA5Y36LoMPfQmmNDD0CYSa5ibeCHRPPn5t4E2F5nKEjX0gD8LR0co++TgiYu/LNHHv6O5h49f9EPfdXNjSzsi15RoIhIQxZjbT5/9l77zBZrrvM/3NOpY6T5+akLCvakgM2zgkbR8CGNdjYZFgMLJnlWfZH8hIXWBZYgsHsrtcGJ8CAcY44S7JkW7LCla5ujpM7Vjjn98epqq4OM9Nzpyfce/t9HulOV1dXV3dXnfCe9/u+9cmbubn5FV5gxd48h54PGOVDMugsuTZH1U685oVlj5lFECnmFhcpizru6A5sSzB/9StZmLqDCnl0c6kttjpJzUs8gcJMSZWOS4e/z/4QpfP38Do+RLUZEinNiblW1HV9oi1/ow1abdxY4fiZs1wtz6AnryfEQg2QBMr98U3c8K5nc2ahsWwymx8ZEiiwzDXrN+ss1sM2dYuK/UVEx7WYvZIGPWlb7niuLRExKbFw7athp/ndRvPO8kqgHp5AjZopWUmulV7lYJ1KoFzJKDF1ba5texhplhohShl1WaIECu1SGnyRkECW0FiBeW9DzvU85S3D+UqTqdjk2SrvQIt2T6BIac4uNsjrWhoGAiCERMf3oWNJnPh3YfEUfhTxSvEZADwvZ0rzVEilGVIQTULh9L2wd7EY1KR/NXuBrYRAUHfG8PwFgri8SkuHn3rBdTyuDeHiVIymoNe9YsluwmdVc2ZhYRGhdWtR2ktJoOU9gQDyRfN8kTqNepVAthY8NooosC1xxamAYHVrjPZ9zb8brdi5EsmgVUkgrXUIvBn4EIbYeZfW+n4hxI8KIX403ucbwAeBrwJfAt6qtf76xp329kU/0a1hZFZblhbm8GhSt0bIiYClSncs82YjUppDH8xYOnUogZJxmF07zy1/ez0f/T+/yV98+rF0YVJtQW35J+99sO3xmarix99xD598PC5fIEoll30hY2iaJE30Qs61aKiYzXf7JIH6OI1sZ9gWZ9mPEgjQPQwNHVtQztlUyINfIVRGCaSlUQKRHfB4piMcyRtvg6TTnSx53HtinrseNyUmzfEb8EcOIvzK6id2BWErlECBalcCZUlP25Jr6twCK4+r6lQyCT4qvl6UbPcEwnZ551Pfy1fVVa1tYf9mu0NsDJJ0oI9+0RAhialzglBphGoSxOVgSfsohOD6HWU+dXiW6tTt5OYeTkt8k9ScXtHJQgDSYvamNyJLU337OwBtyS7rQSlnrv369G3s84+kSUjzN77O/PusX0vb1qJnUyWHE3X7zfTCfC1ALJm0sfzEfmwpOP78P+Hhl72XJV3ACpbaEosq+8wqd1KulCWBVNC+sFKyfKqxEujEXC1VPRx90Vs5/Mp/orL76em+nxh5NbO6BNHgfHo68fIvvd6c+9R1hFjoDXivX3rfV5dVnASRwhUBoW2uszBostQIODZbS8dXS7XY6NXpIIGyytkBn/Ny6uFyzmZp33MIc5PMPrEV8GE8U3ofy5atUnKASIvU+yjxBJI9jKE7J4uF8hihltCYb9seRIqaHzIfq4CaoaIs6gR2CdszCpeCao037cD04Urr7UcCLTWZEIYEkqVpYwydKa8MIgVa4Wgf3Fbb1PndF0cnCLUkqMzQCCKeI40fmDN1daoEWmoE5PAJrdxlUyKy2Z/DfO8t5UbojlGMFmk0Y0Wp5bBnLM+ttz7JPK6ahfDeCaaiy7vQWc1MKS4HA1KvK09V8XFwnFV86jyjFPoz94/5dj5GmAk72Cie5oolgWT/pEvLGHpjzuXK+/Zb6MuaTGv9Aa319Vrra7TWb4m3/bnW+s8z+/ye1vomrfUtWus/2qDz3fZoBGpVIihUiuOzNUZCswo5XzQTqMri3Eov2xQo3Ur5AbqUQMnAzV18HIBfd/4333P4Z9BRGHsJde+70Zg9f8YYnMZ4+xfN6vcS8YqXbqytkc2aTa7Q6lw9VUwHco6zehyyOdzK55H1BALYNZoj58jVTqXt9QAPfM89LPzQXel2x5KUcw6LOo/0K4SRwiJCxJ5AbYhJoPGCS9610gni9zztAPO1gD/4yMPpb6ucIgRbT15uJ2yFt5dRArU8e7IDJ3uN5WCRncfTjbYSjBZp2D2xuX5nifvVIcCoF8SQBNpyJCXHhWgJANExSWwGETJqpoPcbFLcL770Bk4vNHg8msKpnEiVq46KiaQeA+nsIG0tMm9gRWl/v7CESUYEqE+1V6IHO27j6298kNodP5SW07i2pC7ypkygj35KaY0bl2KJ0b3p57OlYIkCblhNFTNf+5Z3M3fda815xZ5AQSZha2GpnTS/Wh2j6kfU/YjTCw12YsYBYWGa+o4nceRlf5/uWy8fJBpwiVYnJpumvLey79lGCRQN/r1mq/6yZHlSDqbtnCE4Qp9qM6LSCFOlsR9PKK2Ofjc74R30hGG5uWfesQiLu/jG67+CP3Vz5v2XL1txLJGWkgM0cYmaZqyVEIZWDyVK5zimlHOYo8Q3n/7f7P/Yf0y3V5sRNT/izEKDSGlqsTF06JRwYiVQkVa/7cb+QJqWb9N2wfmlBpNiES0ksjBhlEAdi40Fklj3LAnU/l1NlnPMU0JVZ6j7CoXgaxPfQmH6ICEW0/XH+J3330WeJsrKXzKqgJVIniSKe7ORvKcQoAqT7BIzzM6Zdi0hbr/z2bcz84Q3wOv+Duh9f9lS4MT3UKeHzrLvLY0xNLTGYp5qGK/D1RaDx9rNn5XM9nUb80XacjBq2EsNUoi+CcqNvobTcrMrkA4ahD/9EBlEWq9aDqKBB04vpit+1bIxMm5UZjf47FaH0hqZlZp3KIGSvteun0u3PVvci1o63TX5zcoxNwqR0pSiBeYo8+6JH+HRp/4mX3hshj2jOaraNOAu/tpM+OJa8MreZ6642w27yqmk2+1XCbTq86JtxcG1JYU4AaGfT5A0YlF+Cj3e8jOyhGAkZ7Okc0SNRYJIY6PQcTpYG+LVkKJnU/JsXEuScySv/6aD/NQLrmOpGXLv8XkAlF1A+EMSaKsRRBpbRCjp4NqyrdxxrSSQsgu4BDT9liFsqBQuoVGOdRzrqqkib1Fv5I/2/iGN8RuGSqAtgOpoexPiJpkc0ZHgV/MjpPIJhdeV8vK8G3ZwYKLAF2YK2M0FRHOJSGlsFS8I9FAaZgf9Um7+yqZtyVSxWJtuJ4GkZaGdQle6U2AXzYpx0O1/1QmlNYW6UQIxuiclzSwpqJDHiyqp7084eij9QqxYzRFmSJu5haW2Yx8Ij1JtBMxWfc4sNNjnLBJ642ire2FhoXjVwH16OjEjxvlE4cXI8s5YCTT49/oZ+13UTnyt53NBZNoa6SReLS0VW6Q0QaRQQZxUZ3f6U2X/3pxysOz13rlLzumtcrOzyaJAAwflm+twpYj4zvvKkoJ5OQ7A2JF/SbdHqmUEDyZ1riTqRG4ZO2/GNyO0VHBuTBZvx3Kwc0s+u+0lwtwkjm2hO5RAodIUiK8Rt12lmP09Josu87oE9VlqQYgnApSVY6zg8sSDxuPwveFPkBc+ys5vWiLRerHdTrPdl0twYf9LGBU1XhJ9Emi/Z08/8y2Iq54FtEodTR9ilJ2OJcnZiRLdjLFX61u0tIzVAa2gGqkCQuGsOg8QQuJnAw4cr83faCNgW2J1ddNlCONV2d++w3SwjcOVd+VtAjq9NDqhNTx6vsohZwGAYNxEmi8tbD0JJL76zrbHumOArNF4sw9SPvbx9tctnU3VIY+dr/D59/8FZw9/pS16dCPwwKkFRvQic7rM/xGv5FdPP5Uw0rz+mw5Sx3Q2Fmptk5LiFOdf+XZOvuSvV9zthl3ldDXPdQenBOrcJ+kE+xnUZj9mltWWUlDK2VR0Ht1YotrwkUIjLLv7uBlDV0sKco5FPl5lv23fKAC/+v778UOFcoqIoL+SiisFW2GsmUQma2F3+V/ZllzTAEbF5ZC62SL3giijBOrY37UtnnztXv7kyC4emvGHSqAtQGc7mwx+iyJWTPgL6XN27Rz24jFs5RNJl+lyt9HzK2/fw1cr5l53KifN9RU1CIXTXjoaIxmkyVgFtBUTKCcue/RHr8Ivt7IsEkJUinZyKik3CuqLqx5bayj5cdnCyF5sSzJVdhFCUKGAG1VTT6CsgiP5O8iUgy1VWkqg87f8EDldx62e5Hv/5ot85pHz7LNN1HUvnB27g1BvHAkUKU1BVZG5UXKOJNLt/iuDwk/Y/8jIP/9gz+eMJ1CE4xivlnqtNQZphhG1ZoSKyxs7lUAbiZUmkK6drCS3I7dMqWPJtdsi4hu4aZlgFF8rdg8SyJYCKeHq6WI6KZ6eXD1pd7ERUKaOcsrYlkOkBSXRaqedwJBASm83HZBRAu20KoS5SSwpYiVQJoBE6bSdE153qWqCkmczRwnHX2CxHuIRoGJPqT05cz/tEPM8r3wCyyteFuoMwdZMbEXmX32VKY29ShgS3V5mrGzFqqXrdpY4MFFgouhiScFE0eXgVIGpkiFkVvMEEkKmJFCSeid1SCSsZdV8rdcKHnvlP7YeO/m2UumNgBsnCV5pWIsZduJVuNHlYEMSaIh1Q2uN34f65cRcjTtzp1DSwd5zCwALs/2ZVG4k5MMfbN/QOaGbeZTr3/diJh55d9vmYOEMkdLMVJr87r98hR8+9xZe+MlXpbGnG4XPPTbDuKgQeGN87eQC//7IBb7tSXt5zg3TNMjU866xQ29e9YKe3hdZXLejlJaDuV6fJNAqz/caaHrLrCau+gYdhxrNO1TJIfwlmnFcZzbavnnVC+M37DbPGyuY73LveJ7ve8YhNHD30VmjBBqWg7VhK1ZSg7Dl2dPLY2VNA5j4utcZhVekdG9jaEzH+YanH8SxJN+4EKJ6JAoOsbHoVGEmCsxirATygqX0wnzCO57MjX//TBztE0mvizQEQ3Cf0sZ01q2cJIw0lmrii97tXNK8SiGwxNZ5HHi2BCF57FtbixlJmypEe9mbikmgqN6uzOkFpTXlcJa6KCA9Q5KnyiNRIBdV0SqO9o5LwCZLLqW8+b5UxlenWqty3D7E137wGItXvRSAN11T4wm7RrhmR4mD+TphbqLt/c/f+sPMX/Mq7FyRELlhJNDJmQol0cApjuFYkhALsUEm1InpaqdaOCkHcz0PH4dHTs+mxPpCPWC25hMlxtDLeAJtxGB+pTGEGxM2Xespy5SDjeQ7SCDtpqX3iWrMsbvj7JOwhqJnM1E0n92RrXt/OQK+WmtSEE2UW0ZI2TY2AvDCFjG53dLBLlR8JkWFKDeOY0k0ErGMEsjy2hMJs79H3rWY1yW8YJ4w0uTwUfE1KGotZftI7VjPktdLEUJsTYmLyCwK7B4vUdcuo3H5YS4zVm4LQbEERc+MX8o5h5JnMxKrVEdy5l7w7NVLp6RbwBMBjaaflkULHaHoYX3Qed5AUNrDB6KnAmC7+bTP2Kgu7UolgUzZeH/72pbsUiwPElci+ZNgSAINGBpoBquVg2mOzdZ4mr6P2s6noMsmXrSxcG7F120GtHQICjtbjzuUQOJsu4RbxR1Mc/4Ukdb82Ue/xmej70mfjxZOD/wcG0FEzTeD6o89cI5pq4JVakWWf9dT9rNvrJAqGqB98N8PRB8NVDnnIOOVJLvPdLDVVsh7DTSTSdpaysF6YTTvUNE5rKCKH5f6ZGNol17xV5x/3QfB6452LsUlaVIIXvXEvYzmHT7x0HmUUxgqgTqwFYPoQBlPIC3sdXuslEqmHDCotyYGYaRwRARWd0csgB3lHL/y8pto4iCHSqBNR9s1N/MohQ/8BKHfoIhpvyURO+/6Hbz5w+lujvbRttuzzdk9muMC5jqwGrM0wghHNQmt3pMjx5J4jlGcSbl58cedSK79yGuRKFZGCZSYpFtSoOLSEb+20H2gDmgNTlSjaRXS7yuZUATCQ6IQcdmSkIYo3T2aY6Js+qAokxwmoiY6LolojlwFwLfua/CzL76Bt7z6VqasGpE31vb+Z572Xzj+vP+JZ0sirDZSqV/0Y1h/7MwZAHLFcXJOTALpwSuBAJZco3aqNs3x04TRMMIREYVCHh8bl4DT86ZNWWqEVBphSgJJq5ME2hoC0rGz2ofVIUR7OlgTN11wS+LaPbebBMo5FlOxAsi1pDFXzapiZh5l72d+AW/u4bbX+THRqWOVry86SKA4KWw7loNVmiFlKkTuKLYUqE4lkM54AnUogZLxkGMLxgsOC5TIB4uEUYRHkN6HsmoSZuuTxtNJFVZXV10q2EolUNGz2D2ao47HiDAkUCHf8lvKjodtKVL/SzBtdDLuTJCY/6+E3Ihp+xfmL6QeYpY2C1irtQ3J6VQdswDieAUs2QpG2QhIKcivZaH3MoFJB+v/4sy71obTmUNPoCEGAj9aedD0laNzVBs+e/0j1HbcQZiPSZfKmU04u1XQXCLMT3PPQSPV9uvtKg/hmwn/a93/xY3Nv+X3n/hhlBaEC6f5ly8/wrsufHvb/rWluS6/ivUiiBRLjZBziw3uPjbHlKwgioYEesETdnD7/jFGCw4i9vaBtdeUGhnt6q/Je/FgyuoesPU87kW0MU68UrAWY+he7zWSd2jgGUPYIEkgaXWqwi0S7XrSiseX8QTqm6+d4vOPzfCVM4GJjt7AtJpLDVvgC00YmXQwLddPAk1NGI+J8zOtezcxhkZ2D8KS+yTvWDRxsVRz+80kLnO0KYHe/5PkH/h7qoc/S1E0ibT5fXbc92cc+tAb091cHYDdm9QZyTs0XDOYtusXWKoH5EWTSPbe37YkecdCCIFjyS3z00hUcCqj4syWg4Fpv3aP5tIJcZBMkLVetq+KlMZVDYLM57csU5oTxpHvVqzk0MIyseFC4DjmuSjTPrraeDEBRJ4pubOaLSLKas4T5sZ7nkfOsYwn0EW0t0uN1RU9tTicwimO4dkWkbARau3vlSzSrHg+wihOK37IfM3nfMUQO2FM8HhenolyCVeEHD7fIikAotgTSHYZQ0POkQMxG18LElXYWi77rDF0lRxWvODWq2/OohyrIqQUHJwsojNEWOXrH2Diob/j4Ed+oO01YSMueYzHRH6sBGrG/7pRKx1su9WDBZGipCsobxTbMkq/LPEVKk1BJEqgdhVz8ns4lmS86LEkRyhEC0SRKYfXCakdk0CPf8v/4ZFX/ytzL/zDjf9gA8JK11z/1ruDRXJOJc+MR6rkUiWQZbsUE5/LrBJIilWTInePdvvRdaI4auYCi3MzKfFtysF6WB90IOkjbn/CjQC4UqXkVCchNUgU3I079nbFqibdHfDstaXcrgXJXXIlKoKGJNCAoTWrGkO/7ysn2Z9rIlGEhWkibxQfh9Fo6z2BaC4RuWX+0/mX84A6SKODBNIxCfTYIrzu6dczOTnFHCWonOPuu76Y7nfaPQRAdWl+4L5AYWTMIb94ZAZHNShES+zbe4Bff+XN/KcXXp8OyKTbIoHWujrY6R+xHA7snIxfsLGNeMG1+urOszXgnXuPFxxqeNiqThAmSqAWedWP+inpJL/ryfvZUfa495wZsEbNYUx8C5s7ir5QacbpYCFaOl2RqmvFzikz+b8wN5feu/UgwiZKlW9ZJJdMwbVMWQN0RZIPsbFo4y7iyWOlVqdAg9NMpk+5S8fTv8uihrVM2YMAyuVRmniMHP0wlWqNPD5qGdLIsQSeYwZp/Uj2NwppaZsQBIVdLN7545lSNfNvybMZL7po10wYg/qiMdJVmgvV3tdtzQ8p0CC0M32KEJQ9hyhWVVhRTAJJKz0PJy4Ny8asexgvJnNSNpE7gtWcN4+1xm7MdSmBsp8vQqZJZGtBpbk6MaMahozSuTKeI1FCIvTaSKBmGPHY+eqqiz+Rb9Qbfqg4PltnoWY+UxiXk0rHw/ZyjFBj4ezj7ecZ91+iSwlkiLKNnLD1QkoCreE1EyMtwqKi89hhhSBShPEiYq+I+E6UPJuZF/4B8wdfAkDx1OcB8BaPtu8Ym07jFY1vVnzN1q0yERIvMuM6zfYrBwsiZeLs82MAaNFeDqYy6WCyUwkkwHMkriUZyztU5QiubiLr8XUet2fRHW8CIMxP0Zi6FVlsL8fczljdZ3ILysHSSbVZFMgXyrgi/s0sh50jHuWc3abQt1ZI01sLRsYMCVRbvEAQl5pa2pTK9wt3720AOHOH8RzJ1AapgBJcDv5Ta8VaqzNWIwjXhWXmTFcChiTQoKFBqZVTsWbm5vkUZqUmzE2AECxaE0yorY+IF/4SyilxdrFBgAWdq4Cx/0sNj5v3jJJ3bep4RH4df9FE6B59/p/xb9f8CgD1pYWBR2abgZLmvhMLXCdOItDYu2/mpbfuTlcYgDZPn7WXg5mJzWooHIiTaBZP9n3ci4HbJwuedLrJ31mM5B3q2jMdYjwobFMCpf9bHjI279s1muM/f+sTmAsMiVRdWt1c9UrBZiuB5qo+gdI4YjBKoF1ThjTYf/Q9REqjtWapHuAQYvUigeKBdt61aCYlDuHqiUtDDA5tE+5YmXJhfomSaKTePmAmUAmmxQKW23tlVQgjf/doUjx3NyN3/bGJTu6RDAbgSEnOsVKJd1bWv5nwMu/74Hd/icVn/pdM6oxp3FIvlZyZhEf1RWp+iNI6LR/oxEI9oEATZbcvLOQciYqJiEQJhGgZ6Sftq4rNfiOl8QgIZes+irzRVAkkgwpCh0RebyWQZ5sSLX0R6pxKM1yVmNENo4oS3iiuJVHYyDW+V7UZoTU9vRHn7UyZTWiIh2R80AiUIeNivzppuyAdnmfdyy8+9J3IjPecjtVCWN3tUd6x0t94s+Au0+euhF/79jvSv5OEuUYQpcbQvSLie2L8ao6/8M/xhcsTGl9pbc+oZZKSba9QYrzoEglz7Eg6RFjImOjT29AYWoc+nm6kJJCivRwszBhDy05PIAT7xwumVFUKGk5sdl81qnsRl4OpF/03vvb9j6YDtLWOF7crjCfQ1rxvAscSFEqjrQ1uiYJrc2iqyEi+tQgppUhDUNaDsQnTxtSXZlMlkBX7GfZ73vUpQwJZi8fZUc4xvsntyZWAtRJfri2XNdof4uIxJIE2CCuZQzcz3j+JAeS8PcmU3nolkPArRE6JZqjMimOn7DxWAmk7xzXTRQquha9tmo0Gnm/Ovz51KzJn/CRUY2ngK0uB0oRKcf/JRZ5Rij2Hdt4cy0lbl7T0WhOWta6GCOhLURHujEmgWE68Gi62TKLfiHvB8uRVwbVTM06aZrAv7awSaPXzs6RguuyRcySHJgtUtVlJq1bm+zq/KwEbvZCqM2+gtaYZKppBhEPYZvR9sXDzZiD91Pl/I6rOsVAPODFXxyHCdroHQ1KYmvaCa7UMR9dpDt0I2ktqB11SermhTW0ZXwNzs6afOS9bE+8H3vBVTn7zf0sf295y8nrBeCFjrL94Ek8E4PTe37YEOdtK1TZbNVjrXC0UmdXl5NyShQIvnpioZoWFeoDWrTSZTpxdbFAQjTalgSUN4a5iQseOEhJIUozl/XZSDhYTKaFSeAREsrWyHHpjaXqb1TQLQcspgXKORYRsUxb1g0hplOpOketCrASSuRFcWxKJtXsCVRrm3HopokMt+KD9PO5W12PFHjjZ8UEjiAiahuCxHRcRmX1sInIz94MKQIX8YPXPzQs6SGmBoOBZy0azbxSSPndtSqDWtVQVJmGuEai01K9fEsiyBAiJFLKltgCs5iK5mfu59a0H2LX4VQCKxVF2j+Q4pIwi8OtT30pIq+RP6fb+ZTugoGJiMh8TCR3lYJHS5GNj6E4SyLXN4sR0rORoumMAOHWzYJmUw0opUvIctkY9c7FY7Uy3+qMIIdBxGWJz95Oh1OqPih1lUPY6VcwATtEQ6LWFGbQ2i8ZSR2ixepuQKJjCwjTN0aupPu831n0+Q/SGvVpUWw+M5tc/vu2FjQwU2O4YkkADRrKO0ghUz860GUbUa600kig3gRAwZ+/goD6ZxsxuFURziShW0IS9DCiDGnU8btw9hm1JQwLhUKnVmMSoQaL8VCthqrk4cGWEHyr8UPHA6UWenDuNsvNYk1d1yUl9Vq8fXg5ZRc1KCPc9nfNP/SV48Vv6PO7Fn08/r5VZJVDXc6Qr2SImgawsCcTq0c5SCqZLHqN5h71jeWqYQVS9MlQCJRgk6dlLUehHKt3uRwqtYb4W4BEMJtUko6BTp+5hqRGy2AiwCXuSQGAmp64lW2an6zSHXmq0tzsn54fKopXQRpLFJFB91hDkjfyu1n7uCH5pX/rYWYYESsjeBBXyZqK1nBLIMj4sKeGyRSvplhQZk17T5nkpCdR+TsXyGACqUWG+FsQlYb0XlYGxPgAAtU1JREFUb84uNSnQxM61JplJf5OQQFbUIIyHVInRZ1IOFrYpgXwiq/XdRt4YdlwOlpSFLecJlCiB1moMnZRFrNo0xWW9MlfGsy20sLHWUA4WKc1i7D3Uy4jaGLQ6NIWHHTXS1yQII43fNPe64+Xb0q6u+ZfXsO/TP0/5+Mc5oE7EB+wuB9sKF5TEcHxNizx26xpoyCK5qEozjAhTEqi/4XmiWrlw+48BpB5gBz7+Y0w89HcA3Db3YQAKxXLbvXnvoR8iFDZSx+WF288SiD/SvweAyI0BxnOLDhIoSUG0c+3lYAU3SW2LJ/cxCeTVYv/N+DfoJH0up/KcLSkH63hL2zXjkuaBZ7VtT36fgSJWjNWXzKK0HyqjBOqjHCx73g+/9pMET/nRwZ/fEMDF3WMbNa4QPf66UjAkgTYIp+brzFT9ru1nFhqUaA1swtwkIzmH+4rPZAez6COf2czT7IL0KwS2GehGunuw6deXqGqPm/eMIESsLsGiUa8xKRYJrZwhGmISSPhLAy8H80PFqfkGC/WA68VRGuM3YlsWUpqyhARNcfGssRDg9CFNlZZk7s43w9j+/o57kY2MJfu0+BPLm1RKIRCxT5JsGtLGzsbQ9iEdztlGVj1WcJkqeTQTo1S/umIJ5JWEgZJAPe6dMNI04glWMtGarfrk8BHLKDXWhMwxlg5/kSBSVBoBrohw3O7a+KQcTAiReiyslwQKIpVOJs8vNfnA106jlpmgD9Gu8Hh8Lp7QLRkSaMnb1b6v15Lmu7kCvVB0La6eLvLtzV8FTEJYHj9tPzqRtDm7RrY+WjmbtCKFSBWdnRN0r2D6KN1cQmtzry3XVxklUJNccaR17Fh5mhjzOlGdCGMKnQxW7Q4SKIg0nmhXAim7SOHcPYwd/gemv/qXAPjlAz3Pw3MsIm2ho7V5AiWfa7m2KXle+6bkSnrFWAlkr0kJ1AyjlGgKevQHUpvJmC88bNUg6vjOA6Voxkogz80hOtJJRx/7F8onPt3a0EkCsXFRzqsh51hrW6nOqJiaVgFPN4jCIF0IXM4YuhPJZOr8nT/N137wGL9c+K8AlE59lsJp49NYDi6YtyyYsd37rv9dftz/SaqRWexLgh00ett5Aj1RPGL+iNUkIlYCJYuskdKMiSqRcNp8IIEuRVhCruZiJZCI+6vOS6Zf5fV2wIrG0Fv0MTrbWjv2nFKlPW3bN4Sgypn+Tdfn8ENFEClsHaH7mA90nvelpAgbYn1wt9DLcCsxJIEGjKT/1BrqfvfgqdqMKInWwCbKjVPO2TxeNDWoev7xzTjN3gibCOWnSqAIgVbtg835+Xnq2vgBFT07VQL5zQaTYoEoNwlCIN0iSgvwKwMt5dDamEI/dGYJ0OxqPEpj4kZsS2JLk6KVQK3j8u63HEyKtdE6F9vGWH0qgbJeRp1nJqXA9uKBVGBWfEt5r+21q61kZlMMpBQU4kmRDGurGqJfKRjkGLrXpDRUOm1bGoH5zpcaITnhYy0zSV8TCpOpce3SheP4kaLSMBMzx+3lCSTS5AaZeMwE61PuPHJ2iaMzNc4tNnjKWz7Kb/3bgzxwamn1F16hSCfxWvPl4+betivGp6yaM+mT9XGTeJItNXLLvQ1QPcdiz2iee/T1zE48Ea85Q140uyZZCZLB03YYNGdJIIFpp3p5qhXzOeraTX1wwkj1JF0BnvfIb7FPXEh9hBLYlkQn5WCqgUIyXmhNNhKSPYqNnBNPIJUhL3KzDwCw/5M/xdhj7wegOX5D2/sk526UQHLNnkBhlFwfvZ8/fK7CfM1HxD49Tt6MAbSwkH2QQEkfn22verVdFhFa2Pgyh6MahEq1nVMYaYLYMNrxcojYZ+lhDgJwwdqBu5QxPe4sfxVbdw2WczblPiKsEwirRZj6liFnVGMpJYEsu08SqJPcHN2Z/p2fexCAicAoX6RrftenvvQNWLd+O6+5Yz9RRu2lNNtKCtQ2dpy4ymwTEkHruomUZowlU+rV8V10epPpvCGBbjvyVwDpokmnwuAiKlW2DCuNQLcqpbHzbUViOF/avfFv7pYIpMdt4lFmqz7NIMIiRPejBOp4fAVyAlckhBAUPYuid+V5Dl1CTd2lgWz/2bMmXimKmIHN0p5noi2PUs5GxEkQa631HyhiKXjTSkig1gpRgsWlRep4XL+zRNG1cCxJgINNwE6rSpQ3JqSuY1Ehh/QrA00HS8pfHjq7xO3WcTx/nub0LYDpuLMlXOt5V1v2FzNry/7ImRQXWw4m+3upYHkFU9G1Ur8XyzcTHzuzGmkmTCsfv3NQ5RZiEiioUutBel5pGLSfQq97J1Kas4tmFT0hg2p+SA4/JfnWBSfHkR99jMfVTpqLF2gGimrNkEBuLyUQRoFX9OxW2lSPdLB+yeC7j87xxrd9mW//s8/y1P/2sXR7P+lGVyoSkdRs1U/bo4P6FADN/A5+wP5vHHmZKQ3xyy3VYu7QN/U8Xs6R7B4zE6Q5Rsk1ZyjQWMFDaPsgnykxSAiBqZLbReoXXNNH4Zt+r1OVkuDCYo1nLfwz0J0+BKSJaW5MAk1mkmTScrB4Yh9GCidO8Utw+pv+a9vxjj7/z7CsdtIq+UyOFfv0rJUEii+Q5Wx/g0hxYq6ObholUEJ2aWlhsfp7BfHxs2K9Xk2hrc1kLBAermoQNBtMfv1vjNdPfB7NZkwCuV6LTP62v+BTY99OyT9PNHOkdcAuJdDqCZcbhXLOXlO5gsiocMN44U03l1LVmN1nmlFn1PJN11zd9lhlTMiTcsaCa/NDz7qaiZK7rY2hA6U4p8f46tiLYOfNgFECSa1SxVKkNeOiQtMZ7Xp9l0dYvp30lm7WN7K1/XJRBGwVJ99JTInY+F6P7Om1+4DfXPDQge/mZdaXqM6doupH2Ki+Enx7qeeHuPwhMGOF/CZ7yW0HDEmgDUQvOXQQacqxEujks34b15Y4lmxFdastnEjXTQ3tgm55AumO82lUF9FOget2lCl4rYQJl5BJu07kGlLAtSQV8ljBYJVAYaTJn/sK6uRX+Inih4mcEtXrXwUY4iZriryeCbnXZ7qNGSysYeB3seVgcerOqscXIi2J69x9rOBSLsflDKknUKtjLLg25dzKktmu2vl4UCmDWk/l22Zg0OWG68VAlUA9jGqT1fOqH1L1zeC9HkSDI4EwMvqaNYKqz/NTf/cVPvylewFwve5yHyHMfyXPbilFwnrX/ddvmcE7vniUomvx0lt28/PfcgM/9+LrAVNqMkRvRLFC8thcDQ9ThnyVMKv/dW8HH6sc4v75+F6XNgu2idH19t7e83iebXHb3lEOTBR4aCnHjvqjTIgKcvetG/9h1omia6dtXzKXmyx5XRP0kmdT1XlETAIFSqdGoll84fOtEm3p9/A+i4kIVzVQwmqbQCblYFFCAimNjWozKV06+GJmr/8PZj93hMWrX8540eHaHaX0WOVM6qXiYkigpBys+7ko/txag/JrhEjKRXMfK2H3pQRKlEZZ0roXgW0RgeUQWnlc3YC73saeL/wqkw/8n/Q8I7+V/CViSkJ5o1x39dUURJOx+rHMAdtJabmFSqCC278KCGjzBComirzGYlqC368SqDPJ6pbr2kmgs0/+ufRvKyYxk1dYQhAJG6lD/FDx1n8/QiOIto0RfxBpXAIazkj6ObWwjBIo3idSijFRIYj9flbC7qkx/iB4TfpYOL2jvy+lyf9Kp7pdlEAJ0a42QwkE1PY83fxx4VFqfoRN1J8SqOPEL6XrYIj1QYru8tErAUMSaMDITnzCSHd1plkTO+WU0vIlITdfCdQ5SQsWTZrMn34pNnhGdpFSMqyjnTyjBYeiazFWcNgzOcpUHvZ4PsqLSSBbUtWGBBqkEihUmqv/+Tv4k8pP80L/4ywceikylvhasjdR0szv7Nq2GvptDGzZX3R7govtU4wnUB/Hx5SDLafouXrvDgAW5w3hl8u1BkEXs/rl5BMSqLpiIt5GYjuRQK1y0MGcU2d5ymIjSD/vucVGOvmqNY0SaDnPlrVCCkHgjeL4Cxya+yyf8X4aaFeOZfcVQlDO2YhYCaT8RpcSst+f6UuPz/KkA+P80LOu5rV37mPfhPlM9WBIAi2HSGkaQcSpuboxCAccEaERTO3cC8Cv/vP91P2ISGm+1/4d/mPhd7F6KLsSSCl4yS27uK/WWj23nvCyjf0gA4CUgpxjrVreWvRsauQQcfR4QrjO1dq9/L5+5Hj6t6ic6TpO4gnk6kZXCbITp4Ml/XqkNBIFsr1/aY6ZiXtqMh1/hht2lRkrOKkq1bbERSV2tUig3qRyAiuq08RjrGiui36NoVMSSGns6hkOfPRHur8rrWMVlE1k5fB0kyAmx7z5R5D+EmGk0nKwrMonckfRvcyyO8rBLqVJm5AOoTdG81t+n+lpQ8rWF2cz6WD9jUEsKdr6bm3n+MeJH+T9+ll89En/k6/kntbaOfbVSb4nKQURNrYOePddx/lfn3yUt332cZZ6qC57GX1vNIIwUc65rc8ordgTyDyMFIyzhN8HCfTUQxN8TN2RPhaZIIWc0yJwL6XraCVsnRKoHep17zJEd6F3+fGg4Uyb9tRaeJyaH+IQdpeOLoPsd3aZXAZDrIIkUKCfMKDLDVfeJ95gdA6xOidxqlnl15z/bf52iunqRhLtvNZa//Wg89xqc/GgrTjJr7z8JmNM2HE+Od0gkEZCK4RgquQxPVZmOg8FXUmVQJ5tUSGPHVYHOniIIpVKlwGWDjwfbxnCRgO3N/6Se1/10YG9fyf6JWcSXOzgIlFb9HP8JLK7F24+YExiq4uGBHJ6TOrXAidRAoW1nsq3zTCLVlpvu1jbQZ1OJ8F1ZsEYogPU/dZ36wdNLKHbBrXrgRAgcuMUoyW+3/pga3uPgVRyTeccCyteWdWR3x3z3seXcmahwfHZOtfuMCvWZxeb2PHxh55Ty0NpjR8qzi42UxIITFLjm551Lf/fK26i2ox4+xeP8ovv+yr3zed54tNeuOpxn3XdFA/qlkmx2Aw5/wBg6vvtrlKZzn0q5LCCRAlkrq+FWrsPXlCvtB7suYNO6FjR4epmVwyxY9koLdJ+PYgUVg8SqLrbrFw7jdjAN2bxLSnYN56PFzjg0GQRdTEkUJIO1uMWyrYxTlSnIVptiJK2Ue+sguS7i5Rm4sF3MPr4vzH577/WvlMylpAOys7jEhDE5NHkg+/gxnc8hahyniBoKYHSlzpFehZ4d5SDbVUq3cVASMk33vBVoju/j917zD02e+5EiwSy+5u0OnHpetYP8cgTfoSfbP4YP/j5Sf7jhzPXb3zdiXjkLwSEwsbSUTq+OL3Q6Gq7tdZcqHSX+A4SvfrwIFK4hCirRQJpIZC0ysFCpRgXFYKM19lyuHXfKBfkVPp4tNRK+8u7FrtHzbV/KZWDrXSmW5GUF79xG+SBp3Hy2b+L3CSzJW/6EJEW5CrH8EONHSsQ14ohCXRlQLBGW4/LCEMSaMBwH/kATuUkD59d4rv/6gscPtduZurNPJD+rS0PO0kuiZMgNpME6pxgLlwwHhIvePLN/MAzrwJpIzpWAT2aBFarjjrvWgjbQ0Q+lr/UKgezJUs6z6H5L+A89P6BnfOXjpxve9wcvTaNAO7Ey2/bwwIl9uyY6vn8IGAvoz5aDhfbzvRfDhYbNmdKIrLYMTkGQE4ZA9DOychakcsVCbVEBrWu60lrvSnqIKV13yqTjYbu+He96Iys9kNFELYf3a6dS40XB5IORpyqVJ5gh5jnKfKh1vYepGF2wCzjCHkVNnsogZb/VpJr53v/xqTZXDvdMuBNfB22qtzwUkCkNJHWVCoVrpUn0+1hcSeebfG8G6cZzTu8/75THJ2p8po79/GMaydXPe5Nu0e4ULwWgKXc7ktmcjRecMk5sqtUJotyzqGqc1hhrARSGlRII1BtpYcyNid+/EV/Dc/62a7jiLgkydPNbiWQLYiQaVl1FCmk0DiWjWMLpsvmtfUpU2ZX2WVUG9nvWQiRhh7kXRPb3k+JVhYJ2dLL8SW7GOSoBs0MCYSwDGm1CoHbVg72+L+bY80dbt8pTjQTlkPVNX2yfb41HrLCGpNf+bNMOZhDeNN3xOchmLv+Oznz5F/gsW/9+9YxO0mgS+PyBFpjASkEB6+6DoDGzLGWJ1CfSqAkpS7rYfjMa6cy46LuLyX73pGwsQhTU+uFut/V1gaRZr4WbOhiSy9Frx+GOCICy0sNsIUwSqB0nyBilP7KwTzbYteuFpGdG28lJzpSMF50mSy5l0w7B6w4qNyqj9HlCSQEOUd2eUpuFKTtcVZMUaqdQCmNLaK+PIHAeHsl53m5KMKGWBlGCXRlYkgCDRgj//Qmrn/Xs/n9Dz/EUjPknmPzbc/7on3QkgxSrYQE6igH28hSl85J2dx5Eyn8hGtMCgPSRnSUgxljx46JoO0hgxoybHkCTRQdqpjB5J4P/+jABg8PPX6y7XFQ3rcsCfT933yIj/3Mc9g1unGxxVKKNcWJXmyfYvcpU2ypMmTPVSDhmcn1d9mfjF+wRh+DDpTzTlpS0emnESq9bNrOIGE8LTaHBar2aU48qPPJ3v8q9u7IQvpLPOEdT+aNs/8DGBwJJIDi2DQF0SQvMuUx44e69s1e/zI2yVVBAz9UbUqwlS6FpUaAH0Q8fqHGDTvL3LovE2Me39+NoSdQT2htrotmGHHws7/AXjGTPqeKpvzTsy3+4g138EsvuZH3/tgz+LHnXoPVx6qsbUl++tXP5gvX/TynXvF3l0x0clLasdJkbrrkURd5ZByL7h79JLf+zdXkZu6n1mxda0m8cWPiht6x3TEx6uGjupRA0hBDcT8aJBN822aq5DGSj48nJN943Zc4+uK3med7pBUlUnUVJ3b1MzZIytHf+oHPMvF/nwdzR5fdBwwJFGTj6xMD61Ui6VPj6foCk7P3AGA15jreKD6G5XCuZJLqSqc+C8Dx5/4P5q96GRMP/z2Fponvxi0SvOov+Nr3P4prS7Sd4/wT30x1z9OJnJgk7ljEuJQm79lbacf0Tup46IWT6TVi9RkRD8bDMDsOyjkWf/76O/nVV9xM0bN4YfN3ec91v5s+n5aDCeP7ZOkwbQ8qjZBKM2y7vkKliJSmuoFEfK+xQhiXBmrLbam8hGxTAjUbNVwRoeKx52q4bf84P+L/ND9k/zesYmuBMLm/9oxtf/P7frFV/li93jbvWmv3zbrY90cwZ09TbJ6Lfdj6J4H2jxdSc/8hCXQF4Qr9qYck0AZAqoBzC1W+RX6JZrNdQqs6BlPJYE8mBpJha5Kpde+0kkGh89j1+TMs6AI37jUdo7DsLtm5Tdg18BKWi90wEw/ljZB3LcYLLhXd6kwTRUgQqXVNkBdnz7U9Vk5xWf8eIYRJXrvod+sPObf/22ijO+VkEOzZVm/CKT/Ofd6drcfrJYFyNg1cph94G7K5kK4IQ6xO6GFsPGgovXmptkkp1nJIru1BnU/2Hg1Ut6pq5HFTqvXE5l0ACHdAJJAQOKUeSpEdT+jalOUS7NhjRoU+UQcJuFJb5keKB84s4UeK1946xtUffD3enFEgJalOw3Kw3uSi1obQvzAzw6usz7U9FxWNH5oUgtv3jfPcG6fZN16IlYWrv59jCXaN5Sk+5ycIxq66pMptHCnTsqpekFIgvDJOZEigqXv+BIDczAOp4TqAHSuBtFPo3X5nDH47y8Fs2a4Eypr+ThbbE8vC4i6UG6c3dnzPtpTpvoYECvsaGyRtxugj/8De5qN4d/9l1z5ZtaarGviy1YZEyYJP/B0sB63N/e0//AlsobhXXY1szrfvFH92YbnMla4lwMKtnCAo7GT+2m/jwq0/jOUv8n2Lf46PCxNXI6TEcd2u6PXD3/avzL/kT7tmm5fSpE2kRIxAWhaz1hRe7Qx+kJTN9a/SzTlWSpYnMcdTJY87D47zHXfs47Dex9LBF6f7J9+TIFECRWnZftWP0uCBBImSrBFEXaVig0JPv6oe/lAIC0FrQaTZMPevtvtb7Hv+jdN8SD2FTzeubiNb7RVKR7czVo6I38QTyaDX2/aTtjtIVL0djIYXCJXCJkLI/srBpBSM5c2+l1B3N8Q6sWWlk1uMIQk0SGQmaQ96b+Iv3D/iqsfe0b5LTPJ88RlmMJbEeTu28Q7IkkRaLx/pOuDTBcBbOsacnEjjaDtl51ovU1trt1I8cuVx9o3nmSq7VGgNJpNBhB8qFhtrL3lLJj/V+XYSyLZWNvMSm5AWMlVc3ly1Exs9Rm2RQHLZJu3R8WdmXrD2OuksSp7NDjEPwK67fq+NqAgitSlKIKV038lT60W1Ga6cnFKfx114DK0ZyGC5bTW2B6Fmn74bgFkxBoAcWDkY5KYOdT9R7C6tzE68koh4HTQJVfvvvxL5G0Sa73vblwC4XTxC+eRn2PvvvwxklECZVejtZAa+mehFhCXfxMF/e1PXc6owDZh2x5KCXSM5RnI2lhR9TZgtKShk4skvJTi2XFUZIosTFNUSI0f+jdKZL5htYYO5apCq/hzVIoF6IjP51KL9OxJCoJBpmXeYEiG2KfOyZE8T/87ztqRgoujG72GUQP20eUGkaQYRAfEik19re15r3aZ68nSDQLY+T2TFfweNFd9HxQtWzaNfpKltPqWeiBXW0JnX6cgoCoXlkMvlOa1NW5Kohx+0rufMyK04hBz3rk37ppxtdU3Qo7Gr8G96DZ24lEigBMkpL7k7GQvO0fTjMaDo/37LOxZeXD5Wzjlt19Rr7tjHH37nE3nBE3Z0vacQhlS0dUgQKV4pP8fLa/8IGFPmBImis+5HVJvhhpTm9horBM1YCZQhWpHtSqCoGV/TfZJA1+4o85o79vH/veKmNs+wS6196wdbNbHtNeb2+ixvHMz7Q1DYxbSeZbbSxCHCcvr3v5SxinSrlFRDbC769Vy9HHH5tXpbiQxh4gjz96ELn2zbRcWDQRErMAqxiiVnW4TIdhKIwcZNd6Ittau5xE3Ne3mo9JTWNmm1kUBBpI1JZId6RGQ6X5kfJedY5By7bTCZDCiSKOO1IhkgBEtGcXTimb/NI9/2wVVTvKTY+G5wLavjm9XOSCmWLSHzSmOZHdfXMZcyK7QyqHQrgTIDu9VUNBcLpbvLpDbkfZSmGaoVJ1/W376UG979XPxIUVvnQNmQW63HnSTQTKXJIw8bT41dynhlDYoEsqQgt+uG9PFj3/pOzr/oT5bdN/07VgJFoU8jUO3lbCv8RtVmwFwt4JrpIrtGzDGcmjGqd6xuY+hOr6QrBctNvrSGiZm7u5+IJ0+WMIPasYKLiP/up9mypaQYx5OPF9dHGG82lisTziLcfQceAQc/9iPpNjs2Z076HEeZiehypZaW3a5S6IRJ2Yz7v9C0gTLTh7o92uleXkbJ76CFjaS/crAgVJyYrzEmjDdhbWmh7fnTCw2qjSYiJmg81SC0skqguA9fRQmktLknvfNf5UF9gHN6zGyvtUrCgsC8h7Qd8q7FeW3In8AZ4TOPnOfN7/wKv3DhWzmupjm8+xUAacKb20GWlXN2z870Ulu5zybYLZav5hqOU6nHxNka+mbHknixj4nnyLZxkRCCa3eU2gI0siRQJBxsDAn0x+6f8LPKlCS2qTjjPq/SDFlshNT8wXtX9lpcSZLiRNs9JpFELf+9ICGK+uv7hIA3PuMQ33T1ZNt9dqmSQCtNXtfAIw4Uve5Db5P8gFKUd1MQTU6eOYNNhOOuLQTFtS+xxmSIdeFK/bUvzVZvuyImeO5S1wMwT5myf7ZjF7OPtGw8R6YT9ZxjvANU1K682UiFQ3YiVTv+FTwCLuz85tYO0kISpZ1zEMWyyg71iMhIdcXIvvRvV2ZUIbGfRy9fk36QEAo69hmo7n46jcmbKHkrlzNtt5XB7XA+xZFMmc+6y8Gy14Juu6aMJ1DsFaE1c1WfjcBmiUIaYRSX3iy/j7jwoNm3Vln3vas67v9O4uMj3zjLHm2UcVLE+w0oHcyzLeTk1elj/8Azqd347T33zV7TTvz+gV83SkadJYGW/z5OzpmB/H94ygFEYx4Au2pIIBFPAhtBxl/oCuSAtNY9fZFWUlglbbMt21Ux5u/+lEApCVRYX5LgZqOfSd3e21/Qtc2uGxIo6fdcVacpcshlJuUiWw7WYx8lMsbQ8e8nM6vinWS9lCurV7WwsHTUvojTA4lZ+InZBrsw/aa1aOLuzyw04gl9wI4v/Q63vO1aiqc+ZxLOMpPpMDa97kcJVG1GTFUP84A6yJw2ZW2q2vKn8mPDZ8t2mSp5nI+Joi+fifjdDz3EjbvKvOY738TsD9/Fi9/4n813EZctOpZk33ghnfCWPLunyuFS8gRKkJxxY/ImSqKBt/BY/MTaFmhcSzJWcHCtdkP0ZKGmLfo6fldbSpMAp0P8jkWGbKprcqmFkabSCFe99i4GvZRAfsOQj20kkLSRWqdJd6narM++r+WHJNrKRS/Fa2c1bNUn6nVv9iK7N+79wZ7YD0Dl9GEsItw1KIEA3E1ULg2xtTDpYJff/d8PhiTQIBEP9L7kPZ0HXv9V/t15OnbUPnjSKknIsNoaRduShFht6WCajZ3gZidS506ZweH4zkPpNiHttsGmHypsVDcJFHfQ9clbYNet6fZchgTyG60ElospcYuU5vxSkyltBrNh3kjJU2PNZSC3mcxvO5zLyNjgSKCrJos8qnYD4FROEUaaxUaAikm7RL1SD6KBqjeUaicXNqMcLEnlWum9Ek8QtXh63eokpekggczf1/zTK9n3sR/nw/efYb+80P6iPldDV4NnS2zXDKoXD7yQott70gXtg2c3VgI1Go30MyRYqYzu1IIZ7D8h+Dr7PvbjgPFWcxeOAHDAvkAzaLWNGzEJ2e7wI7VsfxB0kEPqxlcCEB4wpZ9Ox6pmv0oggKJrtRkTX044dOBg17aEBIq0MZz3lCmRWu77sm0bXyfR272UQFaashnFSt+swbTTUeq0ko8RgJZ22+LMcoiURinNifkaO4XpN21/IY37PjZTIwg1uQtfB2DfJ3+KQ+I0UW48PYaykvLO1TyBNAs1n6JaQpZ3MI8hgRqLrfbp/LwZA9iOy+ueeoDrrzYkc3HHIZ5xzST/6QXXc9VUkZt2j6QDcoHpMwuuxWjeSSfwedfq+XtcagP5JM0TQO6+DYCDfpyqtkaVrpSC/ROF1BQ9wXjBjNfaDPwF5F1DDGthYxN1KbSDNlP/jmttA5rfXtdzs5kogVoEj4iNoQOlODpTTUkg0Wffl3w3QvRW3F1qWOkTbNmiYy+V3iZ/1/YBU9UwPnM3zkUogQrekAS6UmAUmVt9FluDzbFqv1IQEzi7x0tEuTG0nccN20mgZCXQsp2uldkI2ZYOpvXKE851n248yBVCMHv2BIeAPfsOtHaw4sGmbimBioSIjtQK6cQTv4kb2oitvFQQjyOWFuZ5TOYoefZFjR8irTk5X2e3mMW3Sii3jGvLND56OYg+o9U3C9vBfGxicrr1YJ0k0P6JPE+Rv8dfFf6cm5ceJYw0ZxcaBEWXSLVK/6rNCD9sXW/rRaQ1EmEmOptUDpYYqK54T5Z2wNJpWDyFHr9qXe+ntEYp0u8sIYEK5++lcP5eZONb8HId6io9GKItGbB9/QceRWOxP2eztIyXV7Yd8xyLprZRQTP9DK3P0/u9lNL89Qc+x7+4v80tn3m87bmRox+iPnkLHxVv5svHXgKYeOjNMBzfbggi3XOipIFjJ09xB/Cu3Gu56Xt+h1v2T/L1x8+ye2oM6CZwHCn7JnVMvO/lOSC2pKDi7qDkt7zm7Jr5Oyn/zIsmgZVftt1yLUGVPC6VnuoNlS0Hi5W+WVVR5++wmkGtlrESaBUSyJDjcGKuzh0xCSSjBrXY+DchUq2ggkbg1oxqeXHyttYx0rS/OitdAUrDhQsXuBbF6PgkiwuGBFqaO0c+UtiWZLFqvFtsxyXnWEy4pj3Z/4Sn8J9vNIbzOaf9uhRCxGog8504lkCjsS8Tv47sJH10l+kvdopZs2EdtTy2lDi2IIw0IzkHIept7bQUIlXxKulgxeVgKbQiVK3377zUNmJxsqcSKCaBZJsSSCIxXlaL9bBVquj2582YfOVSiEvK6H45rHQfbBkHtMVfqxDgThzkODt5QuMrSEunC1T9YrUqgyEuL2yHudlW4PJb2ttChHGpl5MkfdkFPN1AZxQQOl4J9BynbbBnS0GI1eYJpDKS141AVmlUmz1NpAXXZFZGhbSxUK0UhiDCFT3KweKTDHNTbQON7GBSBhXqQRSvrq79XJXSnJqvs0fM0CjsouhZaQrGSthuffxWd44ATrG10rteEkgIwTW7p/hCdD1u9TTBwkkagcKPVEwCGUVQI4jSSckgkEyAGkHEfC3YlHSwZJC80uRLl0wa02++8+P87oceWna/sI+UPK00Vn0m9cIJI9VmEvbMnCkbOPqCP+f8bT9Kdf9zYfftfX2WfmE7LpZlkXetvkiDnGPh46B7kkC9P+/h8xV+X/8+t8jH27ZH7ghu5SSFC/cBsKt+uPXcSmqsmNy+3BAu46WmNcydPwnAjbc/DZm0z04uVZV0/nYFz0rLvPrBpVYK1i+kEHziqX/Vtq1w/l6cpWMoDc1AUaBJIPOpQXYn9ozlOalbiZqdUMjULzBNB8vs16lGWE2doOM0p9VIoDAuBzs5V2dXTAJZUYMLlfbEUqsxy/w1r2Zm0qRGNnc9uXXuqTH0ap5AmoeOnQJgx9R0mnIWNSrM1wO01tTj0h47LsvQXhzzPnV9epxOslHQYTwvTRDEWpRs2xnZ8VJpbAdKC6aJfZvWWA7WedySZxvFVPx3liwQglbimjRKoGz7ov1qWzlYJ/m8EYuTXWm1fkTgx+VgTlYJZCFR1GJlqFyjEihNRrsMrp/VsFVKoK3/as0ZPODexjOlUTp63tpIoMt14WOIboj0f1cehiTQAOGHSamX6VyVlcNGUW+21ECJMbTjdiuBVCZKNt1/I5VAqjVZipbOsiBGKBczna1lBpupEijxM7I7jKFrsZFmvt1oT932On49eIN5TVBBKTOovphysDAmgXaLGfTIPkbzzqoqINh+dd7bYeChvZHWg3UaQwPctHuEj1TMKqZ9wiQ8hZGJB4+UphmaWNlOj5j1IBkwhpEpOduMcrCktG2luZeO05h2iDnec/eJZfe7UPE5Nltb9nkAed/buen/PYng5NdQcdy69BfT5/87fwBAZe+zOPPUX+bUy98OXqnfj9MXLCEo52wcKdPUwJWQcyQ+dpoElP1ZrJNfSktms/jykRnukIe7tvulvTiVU3jzjwLQpDWIW2kCHMUKjssNphys9+eenTPqgVJ5PCXHpRDLqkocSzKa79/oOUmmutwghUBMX89nolsA+F/hK1AIpr72ViJt2q4CTUI732aCn8WTDoxzQscpbD3aUy1ket1nI+ITdHoCLWfo3zppq2vS3gtJOdj5uQXGRcW8b9Q06ons+zXmiHLjfOL2P+An/TeT23Vd+lz/5WBw9ORpACYmpnHypo+RQZXFekDVj1JT7IQEuvC0X+L4c/4IcaiVVtlpHtsp0/cci4JrGYXQNuvbLwbZjyAti0VRZjpO2+wZG9cnXFtSdO2UuBwrtI83hRAU3NhoXDo4OkwTXAHC+qJRiyW+WCe+wNjD706fH0R/29mGdz5eqAc0aua6s9rSwQwJ5McecTI2bpdr9AS6HJRksD3nrtvlu13a9XTywoxFbPvy7MOGWD9E7D13JWJIAg0Qvt+e/JGkbETNarpPQvK4jtfhCWSUQJtZDgatCa1dv8CSM9H2nIhXiFJj6Hh1X1rtjamommSiMDfZNtB4ylUTfEOb8jLLN4PQehBdlBpEKbOiuUfMwugeXFum0dErYTsYMWexHSSHIlduPVinEgjglr2jfD0yv3Nu/hHAkHb2qS8z8vgHman46aR8UEqgNC0uNZ4ezHFXQpAxuV4WcYJQkcaKv3SoVNuguxfkYx8HIDr3DS5UmzRqFYpnvti2j1/ej3LN77kRA68kIjxZTV4Nnm2ZOOqwQwl04i52vvuV8Mnf7nrNqZPHex4rKO7BqZ7Cm3sYIPVVaTtuB+ZrPqHSaene5QRDdnZv1zriznPvNQ/cUqrwseKY2+Ww3QjyrYAQMJIhw46xm487z2Xqgb8l//V30gwVOeGjrBxFt/f1f+2OEsdjEqiXebQAnln7KERhqxwsowTq/B2c1ZRA0pxvFK2cPpgES/jzhpw5q8dwVLsKSERNrGCJMDfBuajE+9Uz2gg/FU++dbAyYa205tRZU06mvRGcgmmTZFCl2ow4MVdDN80YQMREtfBKzF/37eRdGyEMUdG5sNNJ9ozlHSaLcXrgOkiS7YJsmy2FoGKPURTxb7QOJVDBtXBsyUhc8lXy7DZPoCxUPM7LKn8Kxz4BtNSvO9/3bez/9M8im0alNIj+ttMjsFPdWQ8iVBSbibvdnkBJWyjjfZZL7+tEcjldCc3flaoESj721I3PaG0cwFh3iMsXW33NbhUu/V50G8EP2pVAyYRQZUmgmORxHLtNbiiF8QRSWRKIwZXP9EJCMgWRohDMEuSm2p5Pyr5UTFyFify2oxxM3/QqAGq7n9Y2qLl6uohyRwGwmkaO/tefOcKnHjpHv0gIKKXh5FyNMVFB5SdNJOqlSAJtg9OR2cHzOgaaCZ50YAwfh/N6FKtiJhxhpBi758/Y87n/asq14ut4UKRmsmqYDFI3o/wnec+VyzDMcznhM1pYXmmh1GrHAR13S0EU0QwUu77wFg595AcBeJf1cgAWD7443X8jBrWOJXHi+6wf0iDnSHxtp2Wv6UesxCmJZ77W9ZpizSimjj/nD9NtJ5/xmwSlveRn7qdw4atmY0fyXC8s1kMipdsmNJcLgmVKCOV97+S59Y8A4BZH0tV/eZkYn24kpBCUPTu91556/X5+d8ncUxMf/WmazQY5fLSdW/b6t6RIlUBesND1/K44wY/73oGK1TBZJVB2cp53ZRsp1fukze8bZUrHl4MfKqyqaZMf17uQRKBar7PitM0oN87RWJk4XcqoLpISm6BBpDTztR4Jj/U5bv7LAzyzbogDnRuhVCyjEMjQHDMINVZMIJBPypHN5/Zsi/3jBfZPFHqq07LfTzEucYLLg8TMfjYhoOFmFuLWodJ1LEnRbZV82pYkt0xEt44j4v2MufyNX/plRNRMyfTk/hg5+mHGHnkPzqkvXfS5Jcj2f4kq3YRJKJphRLUZposJTqaUR0gLC5WSSFZMAkm3TxJICgqete3GhheLlT7GVt0i2+Wrndx3Q+uB1b/ydYgrCyaAYJtctJuMIQk0QAS+GSAlq3zSKwKgmq1VNJWuBDptJIYtJaHuVgJt5OQ2MdQ9OlNlWswjSjvank/ILB2XgSVKIMtpb0zlE17O137wGHq8PWnFlpLCblPv782bco/33HOCX/6Hr6/pHMEQYufnF7CJ0G4Zz5Z9RU5ut4Hidhh4SCE4e+fPmge5kZV37gM7RnL8/Itv4JSeJJozqo4g0sjGLHbtLCIafDR8MoBsBorD5yqbogTqpxwsISpy+CuW2xglULvnQkJ4dt7zQWg8lpJ7CODI3pdz9AX/izNP/sV020ZcW26f91mCxBNIxAPz1EsiXoXLph8mKNeNn0198pZ02+xN30t98ub08T3OHWYCG2O5ZCRTwqNoBCurJC5FVJthb3Kr1orhHhkZS9UUUorVS4uucEjRXn5186Hd7L/hDv4uej4AQW0BjwDslUtNZrRpR51wafmdhCSKF1SynkBSmjIoKWHXaH51LwoRew6GvY3aE2htouCn40TNY8r07zJslXa5S8cAOBmUee/dJ3jaVRPsKLc+q4pJIB0YL6FOPyEAZow32ffahojMl8eZKueokcMKKq396uY8nKIhOlJFhmRFwny5sq/LgeCUHUqgKJ8hgda5QNM5qVlukqNjJZDuCDHJn7+XhZohDMPiLgDGHv0n9n/qZ9j1nlet69ygnchP/CmVNirOSiM05Wix308+V2i9UFpYQjP+8LsAsCJzPfdLApXiMrltMBQbCFZSl2/VxHarFe/pu0uLekKsDpVAQywDIYZKoCEGgMQTKCWBXNNxKT8zEIonQbbttDXQSToYqjXQlw/9C+4D71m19v9iYTpezf0nF5higfz4rrbnk8/hx6sxCclldZaDxZ+jU24sheDafbs4pqYR575BI4j4fefP+V7rQ2s6Rx2TVUsLZhCJN9K3J8B2Gyduh9MRwLkn/RSnf/I4uMV1H88Sgpv2jHBaTyKXjDlopDRWfQ6Bxq6expt7mEP/9npUbXbd7wetZLu3ffYIP/2ue/nG6cXVXzSA94RViNnYAPYGcZxf8v8Uot4TtYSATUyzj87WOB9PsKq+OUay+hqFRgkU5cYAWNQFCjuvZfGql6HtXOr7shHjPdeSa5ps5RwZl4P5oEJ0MtBPJjQ9SKDRprlm/JEDbdsXrjEx5zM3fg9NmUfqMCV/llNRaa2pBxGV5soT5EsRP/+er/Knn+j2TsqiNDKWEt/9KCWvdCST8Ot2GhInn3P56RdezyO5WwGIqnN4+G3GtL0QekbxavsrkEBuKV3kyXoHWUKQdyzGC25/v1niORiuTq6fmKun8fDHxW4AZDzZz5/7Ctf8y2sA+O2vj1LK2fzk869r61d1Qn6FdUKlaQTdajTdkV5RLE8wXfaoag/ht1TQsjkPgDcyaf6NyS57lbKu5RZyLgtPoMxHt6RAlDJjsAH49fUDJR1sIoTf7vtUPv4pFuoBWkVYNVPyXz756dYOjfX1uVkiX+lWyqcfqrQ0TAXmGi8WWyRQomS+5nO/iF07z0uO/XcAhJshilaAlALXkltOVGwGtuoTbjXBlp1bNQ4+P9447A+HWB5bfc1uFYZ3xQARxJ5AlhWvxMa17369RQIlxtC6Y+BjpyRQlEpw8+97I2Mf/PFVvUMuFkobU90HHj9FTgSMTO1rez7xNvKb5nMlxo6dSiCIDRxl58oT3Lp3hIf0fqyZB1msB7zG+jS/7vzvvs/RqKGg6ofQNIOONFWkD2w3id92OJ3kOxHWYIzyhICpkse8M02peTbdbsclgLu/+Jtc/94XUj75aewv/flA3jNJGrvvxAJvsf+aybv+YCDHXQ6RaqXarXg3xiv9z7Ae4KXBR2DuSM/dwkw5WzMwK59hXMZU903yT0ICiciUYti185weu5Pbmn/Frh2tyUKiONoIJVDOsdakJtlRztHERvk1bv2bqxn5/G+ZJ+TyJFDRv0CFIqVS6752bIFyitz/vV/n1DN+Ay0shFZxuuDyRuBKm8S4INTtkceXOBp+xNkzJ3n10bdAs9L+XNj6LmTG76sfz7QrHUmflZg+5+LvzC2Z1eOwNo8ngj5IIFPiJKPG8vv4DaIextCWNAbe5ZzdVwJf32bNwLmlJjvFLJF0mZWGfBFRA7RmPDb6XbCnuGfW4cefe22XIkekSqB6XLIDSx0Eq2q0E19OcYypkkdV51CZa9VqLtDQDsWiGRcV+yzrWs7L5nJAPqP6sqXAmriq9eRmTVqljSMiCNt9n0aP/DNaac6cPonUIV9QT2h/3fzRdb1tmxJIGxGt0qYPTCp/RbyAmsu3FMvFXOsadSotPznb7c8YGsCx5bZbILxorFQOdtl8yLUh+6lPPOt3OPPs34InvGLLzmeI7Q0hxLao0tgKDEeJA0TiCSQtB8cWWDmjsvDr1XTlWmfKwbIwSiALVHfqx0aZQ2sNzShi7pzx5HDHeiuBmvFqTBj/a9m9SaDOwZoQgmt2lDgjd1Kqn2KhlpGSr+EzaeDcYpMScVxorn8SaLthO5BSybhgUKeSNJ5yZDd5XePex06CVqkP1OjRlvJLnvnqQN4zUdH4oeJ77I9xw4N/OpDjLofk/t3/8TeTu/svVzixzjKk3l9ycjyldWo4reIktUgZNUtyjyS+Gnb9AhcYAwQHJlurnomHyEZcWv0kgmWxdyxPJBy8uiEDR++Jf5d4QtOZfggglU9TeOwY8Vh60e9z9AX/i4ITqx3cEZA2WlhIHaVk3PIleTotBduMxLjNwkNnl/gmvs4Lmh/t8lWqVzIr8k5L2ddPeuIQ5r6JXDPJTGKE87FapbE4g0eAWKUc7M0ve8qyzy3lTL9arVXbysFb72+UCeVcf54VSeCEbq5s1qy15txSg51ijrC4i1CazyaDOru/+BtMPvh2AJ5b+y2ed8M033T1ZNdAWDoOoZZov5522fPVdi+i0+cvpH8H+Wm8QpnpskeNdhLI9udZoJj61BQ9u69y7cvA/3lZZE24c46FNbX5JJCOr0UnMGTeX4Yv498P/QTe4lGs5gKPHzXlfuK6F7e/MFie8OwHWTWn+MKfctNf7ofGIoHSqRKo3DxDgIU1sjPdd9prkZBWRmXfqVBfCXnHStPRhhg8ttWEWjos3PQGKEysvu8QQ1xhuIy7181HkDF9nCi4WLE8NaxXWKzHA6fElLFD6mtJQYhE6LDL9HTjJjOazx+e4bHHjVrB6vAESqLgg6BDCdSLBKJ3Eo1nSxjZR07XCeYzkdmLJ/s8Q7Pyf2ahTknEJJC3fh+bKxmD7qClMKqDgwfMAPaeBx6mWZlD6B5KjFVSZvpFUsq4WSlQkdKIsM7YY+9n9FO/svyOnSRHDz+kIGqtdEaqpVgJ42jzSGuaQYROyLV4xd+uX+BUWGZH2WsbwOZsaWqat8HAS0qBdDxGA0MCpddA0u71UAJZUZNAOOQdi/CJb6RyzcsoeB0EhrCQRKmZ/XIlecmKcvL35YJvnFlkl4hLKaN2X5ZGZa71IDNjHpaD9QcpBKee8RucveOnca59HgC7d5pJ5/1HjpHDx8mt7DdyYN/+ZZ/77PNixc3SUksJZLVf32tRbUW2GVfIsLaqufy5xSZ7rQXCwk4iy5BA01/9X0x9/a0A/IX+NoqjU/zMi4x3XyfhUvJsGriEs8cY/9jP4Cwd70p1OnnufOvccuNIKZgquVTJtanWXH+BeV1KUwYdSzJd9lgNl7MSKNtme7bEH8n4Km5SOZgWsZLUN2Ty1+2b+MejcQJb5QQL8/PmXHfdQnXXU7nPu8O8MFxZibYasteudc/bzLlUzhBFLX+8Uf8055jEdlr93ahojSHsRssPzV4D6e1Ycs0LHNsV2/H22Opz6nz/rT6fIbY/thVxuYkYjhIHhCBSKVniOA7TZS8tB6vXllqT1XiSKDtMyuyMJ1DnwE5t0DxXafj8YzPsij0DrNHdbc8nq5V+XOYWhokSqHvFRcre0lNLSsb2GHJg8fH7Wk/0WU+utZnwn1lsUibu/C9hJdB2gBSGsBtUkyeFKWXYsTueCM08wrHHH+m986BIoJgA2qwUqEhrCufuXX3HDiWQjrqNVE/NtwbPSrUMpyOlaIYqVgSpNGFLhlVE2MAKljjaLHJgoqUCErGxrRRi28jbbTdHQXdMEBJvpKQcNsPQWKpJINzU56vg2nEqWcabRFpIrQwBRHeccIJs03k5KYEePN0igaIO745GpbfP1pAE6g9SQpSbYObJP4MbTzavOWBKo4+eOIVHQKGwsneaXMFbbXLU9FeVSjVVwmUj4mFtqq3ErHk1EkgDZ5ca7JZzBIWd6Ph144ffx2G9l6sab+fvR97Er77iZq7bac6x0wT+xl0jVMnhHP0k5QfeybX/+PKu9zx3oTURTzzm9o8XTDlYotTQipHmaRYptl2XU6XV1RvbLdxho2BbEjWWIYEGkNzZFxIlUEwC3XnNHh5qjAHgVk4yvzAPQL44wmMvfw/vn/h+87pVyhFXQ/t1ZH5jpYwyNnluPDjLObmjzTdKNloJfFbDtH1H1E6sK+My6cJ2/NhbfU6do9utPp8htj+ukG6mC8NR4oAwU/EJYxLIdYzpsy6a2Fi7cqoVZR3LwUXHIDAtB9Nq05RAWpsJ6a35eCVv/Kq25xPfAj8tB1teCSSF6Gkga0vBNdeYmMbZI/e2nugxOV7pPM8tNigPlUADQTln0jEG1TNKKRjJO4T5KQD+MPhNnnf3m3vuKwZGAsEDpxY5NltdfecBIIo0xbMmFtefvHH5HTsYW9/vvs4bQSYVTGuqzRCtdWy8GqX/Jt+VDGrYdXOPHq4VeOL+sfT1iYLAtrZPTbNlt6/u+6FKyR8VhQSR4siF1u9mKT8tVbGloOhaWFJQzKidtLCxiFBac/1/+Tfee3dvJaFGY1fPYFfPrJzidhHYSo+hh89WUrK+Um2/5qPqfM/XbAdl2KUAKUS8iNHy50k8gcpqEVsocrmVSSCxQunOxJjpr6q1amoMbXX0/2tRAqlECRSsTAKFkeYbpxcZpUKUmwCnpWa6u/gcfuElN/EHr30ie8dNItlU2e1KJnvC7jILuojXNJNtuzlHFHYo0aqGPDhz589x7oV/DMC+8TyRU2C0dozxh9/FLX9zLfsaj/BR8fS267Kfa/RKuo5z+VLrwSYpgaKYHCwE8wA886aDjOy6GjBKoHrVlIl5BUMUOl68CLFOEig7zj05b0rLoqBJlCkHmwrPct7e2U4EZkigPV/4NQBeFPzBFet/sx2x1ffsUAk0xFqx1dfsVmFIAg0IlWZIPU7P8jyzumUXxjiupinNPZiu9msdr4jLbhIoxEKokKjDCFqF/RMma4FGc2qhwQ32WYLSHuhIV0jInmo97phjJZDdyxgaekZiW1JQ3nM9TeHxi87fpdvDoL/PlJR/PD5TY1cuVkYMINb8SoaUiRJocI1e0bWICtPp4/HwXM/9wkZ15XStNeCf7j1p4ps3AYFSFM582TxYwXtAdZQ7NeqNjueNj1H56IfZ/flf5cN33c9L/sdneNfdJwgj81ykFNVmhI6TdWRYYyb27Rqb3scrbt+THi8xkh3NO9tmxVx0qCIqjSAtB1NhyKPnK9T8lmLK1j6hNN+pJQVFzzZkkJdpI6WFRWQUUhr+6jOPdb/x0c9xzdu/iSe886k84Z1PHRh5nky0t5IEeux8hd3SkEBLlQ7iM54U1a975Waf1mUB15LkHCslUQ9MFMjlCwQ4abKWtVr8tDAKHXX9t3Y9NT1SRmlBo15tlVRbF+9HopxECVRfVhEH8LefO0IQafK6jnKLNGm1Wze/5r/wzGunDOkVtxu7R/NdffhkyaMm25W37vmvtz12oioKwfkn/gR64hrADKgXp59KQdfY9+mfQ+iQJTnKP7ovv+jPfSWgrURpk5RAkRMbdYeG6FN2noP79lPXLswfJ2iY9kY7Znxoe6Z9j1bxpFr1fRNfPKWph0kaWD0ul9aIyGdczTLntHtVJgEhWQgp1xRgcDlhO05et8MZtZf7bYczGmI7Y5sMnzcdV2arOWBobVbum804zjI2l/RsyTf0AUYWHkwnECKeJAqr2xMo0hKho66ae93cGLWDUprT83UOcZpg7Oqu561YJuydvYeaH6YR8Y7TXcfvxAPpTthSQGGKDz3lbW3bG/X+VpEST6D7Ty1wVclMHO3CkARaLywpBro6IoTALk93bb9w8/cTemN84I6/4uPRE1F+FT9Sq3pZrAat4fhsnWtGNmdiHoYRhXP3xA/aiZ1GEKUeBmfm2+9V32/ft+KHoEL2f/KnmLr/b6h+5X2AKffR2qzeN5MSt3ilVQY1PnGXmXi95Km3tSl+EgXBRNFNvTa2Gs2srwUmPejsvCkLUSokCHWbX4+tfKJYCeRakrxjlEDZshFjDK1a3w3tEcMA3P+POJWWQqiXJdXFICk53KzSw04s1gPOLDbZZxlCwm+0T76ssMY97p0sveKvtuL0LnlMlb2YBDKPi57NNTvKVAp7uVEeMxtXMYYWAu5/00Oo7/p/Xc+5jkVTONRrNZqB6f+ldfETfJ31BFohOfSRcxVcAmwdoN0yhy+Y9qSa24l2W4qTLHlc7NGGqA7lrTN7uI3Id6I6DXLQkbDypNf8PN/n/QGv02/hy898K78y9YcUvP7Mr69UtJVwbpISyInL6wtBiwS6dd8YJ/UUlXNHUnPvRIHmxKq4Rib1dq3IJjw2Q5UmYapm1ZRIK41TPYVEs+C12xSwr9uEPUtmDrH12A68VDnXasu2w/kMsb2xHcnUzcCQBFonIqU5MWeSM5IUrXLBrLh5tuSI3kWhfir1+kg9gTrSwWwpiWJj6M4Jsg42hgRarIc0/SZ7gyOEPUpckij4p93zC/ih4sKSmXw4bvdAzllGzm5J4/Ox68ant22v1/tfRTqz0ORCxWdvIURZHvYqcb1DrI5BegIlKOTzzNzw3fyefn267eydP8M33vBVdt3+Ih7Te5BhnWaoqPrdBsFrgUZzar7OofLm+L7oheNYgRn0ig4SaLbqs9gwK/xJuWcCFbYrlWYqPoXz92HF93Rzzih87jo6x/FZc0+kptEN837Hz56nOnsKgMLEbhxbpAauSaT1ciTsViBRA6Twq/zxR75hnota30fSzjnaR8WmtTJuLxxLtiubpCkHawYRN4vH+U37r4k6TbjHDrQ9VJmygfUg8XPbLBPyTnzt5AICxaQyk7SwI5VHoNDCumIHMetF0bUoulYbgSGEQO68mdvFo2aDvbKBcfLK5X6DAJcoqKcJop1K4LVAJ2VdQW1FJdDzTv01D+feaB54ZR7Tu/lY9CSOfUv7goy9SvyWLIy3PXarp9rGKG5UpS4NQZC9Z8cKLt/9qpfzgLyen/jSBF+tTaax8EP0hm1JLtzyA+bBJqWD5UqG5CulJFCBG3aVOcUUjQuPs7C4EG83152bj0mg2sWTQEqTIYEiVHwHVSrmmGEYcfBDxnsoSddL8aLfYPbgSwD4wo7v4leufjeWEKkq9krDdmz1t7ovEsIogZLT2I7f0RBDbAdcma3mAKG1Zr5mBnZBbKCcyxmSIudYLOgitmpC0KAWROhECSR6KIGwEKrbEygpCxk0Ti3UuUkcxVFNwr1P7Xp+93hrtbDajAhifxPH6S6HcZZx5TOmtd1R00EPr5Re0BrOLJoVzDHZJHLKy77XEP1DCjHwjrro2px61m/z6dJL023KiX0ELImVK+KoBtVGQLBOVUWkNKcW6hwobs7EXJ57AID6+I2IjBdCcv+fTMyeO+QnKmylg9X9iGozxK61SuUmoxl2jnjcKI7xp//w0bbX+vFKa6FyjDc6HwcgzE9iS6OWAbYN8ZOFO93uLaaCKmFMkJ9fqPEf33EPP/fu+6jHRKCLj7a6J9nZlV3btrFQNAPFc+R9vN7+GFFlpv0FHT5jYvbRQXwclNJEcRnfVuD+UwtMsISN+b46jaGljlDCumLlzOuFEILRvNM1ibR234InYrJ6FSVQQiAt9xOE0kUFDYJYCbSuUh8nLrcMal2q4Sxe33xn+rfwyvzV9z+Th17wVsLpW9r2s1fpT/Mjk+nfYW4Sp3KqjXxyVZ2GMN9PlgSSAnaN5PiVl93EbNXnsQvVvtLArmTYUnD6af+VuZ87t2nyhUJ5DIByNA+AsnM4lmR09zXsFRew4hSwxBPIi0mgsHnxnkCRaqlBjUee+azu4X+jeOrz5M/fS27hMAD1/N72F9suTBjl+r3RVcxZpqxxu5RDD7H1ELEqMVFKbzUpNcQQ2xVDEmiASNLB3NhQ2XMkCxgixWrOc3q+jkjTwdoHgbbViojvKpXxB2Om23nMb3//zfyR86cAqD13du0yWmgNfBcbAVH8+YTsoQRaZjXRliKNeD1758+m26OO1ezloIG5mGQr6hrKLQ0b9AHA3gAlUNLhfsfTb063ycwEQztFJJpatbJuVcXJ+TqNQPEi/6Or7zwAWDMPA1Cfvg0Rta7dqh8RKY1SxjNGsDwJdHK+htZgNy4AcF5Oc8CZ58efcw0f9H6Jf9XtZtoiHnxfI09zI0cA0JaHYwmmyx6e0yKDthPKh57Mh6In8z/CbwdA+zUOjhniuOAY9dJDZ5d49Lwht129DAlkyXQeZDsOFhFVP8QTseqq1k4C6cx3DWCf+vJAPo/SmlBtXhJdFlprHjpT4YAzn26L/EabsbaMlUDbxRj8UoQQ3ZPI8MA3tx6spgRa5auPpIcOGoSJMnAdpT6JNwt+bdnk0KV6ByGaK/Ps66d58U0727bblqCUW1mVND29A4BAuASlPTgdSiBHNfFjEqhTTQVww64yb3n1LXzLzbv4+W9ZwVR/CENECoHYREKjGJNAk8J47SQpcjv2XcukWOKF1t1EwmKkZLbnPI9IC/Q6Qh5UWzlYSwm06/Dfc/UHvouxR/8p3Xdk56Gu18/e8ZP8n9IP8O7GU6n6Yc8yxisFw2a/NwSmJEzKoRJoiCGWw5AEGiCCMPassZNyMIt5HZNA/gKNQKFVRIiF3VE+JUWsBNKRMUPODLLGPvxTgz/ZuFTiannGvP/I7u59MqUbMxUflTy21lYOlgyuzz3xJ3nf040HiurbGFozt1TjV+2/Zax2BO0O4+EHATlgTyBoqcHuPDSRbksSnjxHpuk0zVpl3RPqw+eMSubOM3+/ruP0C1E9T2QXCPNTyEw5WFbRFEQK0RkRnzF1T3gvO461vS/Yz1XuPC8982fpPlb9Qvp3TjeZsVuTtmPP+xOzjxSUcw4HJwvbMhFlx8Qo/+/Qb3GPus5s8KtpGdioK/jhZ5tV3FPzdbTWuARpOVgnkrbDshwsFJVmiEtCAnVEo0ftpXfuIx8YyOeJtFECBSv4r2wUHj5b4ZFzS9xabk24oqBBpRFSi5VUQkcg5JAEWie6FDH7n9b621nZGDopqer1EwgBynKRURM/TJRAFz/0cr0cgbbQfnVZJVBj/mz7htjXp3MBZe94nvIqE2inZMrBhI4IS3twKidpZhIObR2g4vK2LJGW/fvG3SO8+XnXsn9iFYPtKxyD9urrB+WRUQCmxAIREh2b9Nd2fxMAT5SPEcqWabjn2NTx0OtIBws7lECqY5o+8dDf8Y2pl3B14+085Zod3QfwSty19w0cX/BZaoSM5K5cr6nBL+dd+hCYdnf3aJ5dI7khUTbEEMtgSAINEEFc8pAYdkyXPSrCSGd3f/EtoDU6ClDILhM7W4rYE8hMIrMlYe7MgwM/1+wqTuSO4Ho9JmGZlfa7Hzvb8jfpsYq5bDmYFK2SFSEQ8Spm1C8JBHhn7uFN9ocZmX8A7ZVWfc0Qq8OxBl9Db1uSTkFYUgZYcC1knBolwzpLjZBGEHUeom88cq7CiGhfiQw3yLMliBSiMU/NKvP2u84hVABx1HM2MSoINaKjHExHLXVKsvJp1WeoW2VO6Ckmohmmv/aX6T65+cPxCxUF0eRI8bb0ucqeb6bgWemE07O3nwoowR0HxqjquE3xq6j4+0JHTJfM9hNzNfxI4eHDMj5fjiXIORJpWdhCUW2EaSKcrs217Zv9rgHk4vGBfBat4cKST7W5Ph+rtSIpQTs6U+P6wlJre2w2nvQREoXG2iwLkcsWnWpWy7IIvdgPZxUlkGtLPEf2VKkKBFg5XAIWq/HEeR1KoJ0jHnU8/HplWSVQ0OFFJuN+M0sU5hxJybVXVdbqnPkObCKC0UO4S8dp+q3jWzogFHG6X+ZYvfjpYcnO6nAsuakT+5ER8/tOiUWawgMhKHoWtV1P4fHdcWm3W8SzLfKuJO9aNHDXFRHfXg4WoTqmIjKs83H9ZEYKHtfu6D3m2zeexw8Vh89XGMlfuUqgIbohRIscy7vWkCgbYohlMBw2DhBBssoXr4qVPJt9e0w9c/nEJ7EaM6goRPUw8bRiEmiy9hjuwuPrTk9aDTOzrQlUmBvvTeJkJrRnL5xvKYHWUg7WYVibkE39loMBXAhaHfxQCTQYFFx7QyTUbkwsPfidn+Gx7/kcOdtCSkzik5eQQKYsqrkONdDYsY/wf/N/kD6OkGnZ4KBRDyLs5jwnmznqScxyXKqVLWtrRhFCR3zSfiZ//6yPAKCCDhJIRZRO/juzuozIj+GERtF0ztkHgPSX4teZ++NCvmWyHOUmGM07q3p4bDWEgPGiSx1D7Gi/mqp0nPp5bnzoz7AlnJxvsFSPSR2rNwmUcyx2juYQsfqw1mhmSKB2JVBWdRUUdiHW0MashEhpnv17n+An3/mVgRyvXwSRYrEesFAPOOjMo4WkonOoePKVqEUtHaHksBxsvbA67ivHkjRH49TMThPyHlixNNPx8AhYrMXX5Do8gXaP5lmkgL10sk0J1Axb56jCdsJS5o3aI8vBXDVV7E9JWGoZ857zDiKjJtHskXSbrQJUPCbIfoe9rsfhNbo6Ntvz0M23xlSBzCEl7Bwx7XF+1w0AWLHFQcG1yTuSBm5arnwxyMbDZ9PBsvjc6Yjb940te83sHzcLivO1gPKVrAQa3lI9kXwvOdsafkdDDLEMhiTQOqC15m8+e4SPP2ik11Gy+pYZ4N12fcsk1ameIopJoE6M5B3ymEnMNe9/FVHnEt8KBpCrIVFIZFeyT51rlZ1EuYl08t6GO96IH6eGzc7MrFgOttJg0pICxzbP264ZXPStBNJQqbcm97ojrnaI7QU7vo6CkYOo0YN4jsS1JI4tsXLxanQ8eLxoolNrfmHu17hdGbPm+3JPwUKxVLv4QelKCEKF1ZxnNiqaFVCAmGAIMyVCzUAhtEILiYzN07PpYFrDyOP/Rm7hMHvVKaanptPn7pl6JQBjD74TEfkE9Vj54RaoTd1G6I2CEIwXXMby23vAKxBMFl1qJEqgGqjW97DrK3/IYfe7qc6cYLbmG1JnGePdqZLHSM5BWmYSUg/81BMo6DKG9gm9cR5/8dtYOPQSRNRfG7Ma/DjxbW5+dsPJ+SyCSHFqwVzTO5nDz++gjoeMP1eUUQIxNIZeNzoXMlxLMn/dd5gHhcker+h4/TLKSiFA2DlcEdL02xeKLga7x3J8IHoaBy58Ciqtsq9GpkQr7CCBrHiin0yox4tO2lavBlXek/79iDJl4+LCw61jE6KEg2MLChkirN0fKN53eJGuCtfeZBMTKanFhH0oc3i2RdGzcWxBc8wsQthLJwHjsTKSc2jo9SuBwCyMNILItGEdWNBFvuWmnctcM4Kb9oywd8yUF45u8z5xiM1FVvkjpRga0g8xxDIYkkDrgBCCD99/lvfccxKtdcb0sTXAe/rNV6d/u5VTaBWi6UEC5Wx2SGPMZzfniGIFQeTGpMc6Vl0aYYsESkpwTp9vkUDaKfaWhNsui0/7OQAuzF7IlLutfQCbDJBtzww2sgqJFaGh3sikMQ2VQNsabYlOUuDZklLONqsx+TEAyo9/iLFH3rdiss1KmDnbXuZzwTGTlEZzMMqPTkRKIxrzzFNqkUDx/VjPlLRVmmFq0uu4ZtChM0SE1pCf+ToAvx68gZ07Wn4/S2Uz2B47/lFuedu1TH/9rQAIp8ijr/wHHvzuu1J/rX4nb1sFIWC84FKLy8FE0E4CJXjWuXcyu1jFFgrpLq8EAhAJCdRopp5AUbWbBFJ2nqUDL0DbOUQ4mOvhzHyTF8svc3/uBwhP3D2QY/aDMNKcXjCfYTw6T1DYSRMHGZe9JQlN5pobegKtF50KOykFlVu/lxNv+hLseeKqr1+J4LDdPDl8rGSyu45ysKmixxf0LUgU1sLRdHsz0xYl5ZfHx5+Gsjyc0hQQE1KxV0a/0OWWX+C9VUOGifnH022ODtCWy9VTpbbFoOT7EMKQuTBUAvUDbwuUC3URx78TkHNM/1JwbCp7nwNAOHE9AOWcg2NL6gNSAkUxCeTSXWr73c+5jVv3jS3b30kh+Jabd8Z/X/SpDHEZImnnEmzHFNUhhtgO2N6ziUsAr3riHqy5R7ntrw9yY+M+szEzwNsxtYN/d58FmNUUHRnpfieEECkJBBDVjXGzSkigi0wI07oVbVz1o5QEmp1vlYN5c48s+3oVky5WUOX8fJxIcxEkUKI0cuPJnu5zlV6j2xKWGHoCbWtkV8ONyaVguuTh2pKlydtY1Hl23vcn7P/Uf0JdpNHu4ZPtpqdzrilX0IHfVhIxKIRKQ32OeV2kqWPTzFqFs4uNNiVQGGlj7C4klhOTQPG1m5Tu5OYe4Zx3iLdFL2V0fCp9bX30urb3PPiNvwDAyhVBOmkq2KWCcs6mKc3EQgdVUMb34RvffTeHX/XPzMpJRv3TLCwZxZPjrTwplTIhgfy0HEx1eAIRBehYpaisnFECrUNBmeDEXI3nynsBWHpsMIlj/SBQyiRKAiX/PGFxF03tIFVyTZn9pDbE43B+vT50+vQBeLZElff39frl7k8BUN7J7fIxbpFxGdU6DJykFET5uO2oXkh9ybLltYkq+aE938b93/dIqsCVQnBoqrgmRY7MqG/vPW9eJ5uLaZtmE6ItJ02HTF8Xv0U5Z1P0zPU5VAKtjs7vcTPwIe/FAJSDCylh59qSKDfGN777y8y/9t3pvraUBNhdRvxrQUJgK2WuW4/uRcHbrj0E9L6vkrZuvBD3x/7g+/1LBcN2vxuCoWH2EEP0gyEJtB6oiO9Y/L+81/01AF7c/LDZniF5HNviy0/+79S0x/zpw6BC9DJ+ABN6Pv1bL502b5EMwIJqj1f0cYoa/FDRDCMqjTBNuNF+63j+rict+3rtGRLoO7wvYou4o12HEshxXJQWbf4dK0Fr0mQhALyhEmg7I5tukqysJyt5+Xyez6tWfLyqnO16fT94/HS7AiSK/WSECjYkwSmKFE6wwAKl1BNocXGJc4vd17DUcWlOXA6WmBUnptDe3EMckfvZNZpDxsooAEb39XxvK0N6bncFUAKTzCHIF8y9GjUqOEQoYRMWpqlP3868uxs3rLBUMe2QlyuseMy0HKzZIoHoTAcLmwgr/t6T8rIBqIFOzizhEJeE1TfPHFprOL3QYEfJwa2eIizuponbKgdLjMaJhhHxA0AvNWze7Z9cW+n+jKZuAuCH7X81G9ahBAIQJZOYZNUvcKFirgc/UikxkyiBpDTnn5ybJQVFd43vHRM3gXB54GyNyClh+Yvp+7mxEqjrHIXpC0qeTdG12T+x8j0+hEHOkZs+fX1f6XWZ9zfXR0JGhYWdkFGDubYgwDYBCReJJFUzUQIlJb5ZJKX/Pa0KYpRiX8PqFUwCDdEbw+5wiCFWx6Uxq9iuEJLc2XuYFEbBk0q9MySPJQXffN0UD+n9VB6/G6mjZU0hkzIHAL14CgCVM4aOqlm9qPQjpTU1P2S22j4ZtUMz+Xr0Ff/A0kv/dNnX66IZbL6ODzGKMbFdLS63F5LVHM+x8LFThcRq0LRIoAu3/CDN296w5vceYvPgWIL94wVyjuxa9S26Fg/q1qq6nHvsot7j9IWOVKg40lZGPtEGkECqWcHRAfmRKaI4ytyv9yZlBQqkhWs7RFpAvCKvNNi183hLx7g7vJqDEwVKYy2fkZzXPYkCcHPF9O9eSoXtiGQyPVLME2Cjm1VswjRGGiBySuR1jfl5o3j0CsWex0ogY2PSpt8igWRjvm0fHflI28WSAp2kOQ2ABPqpzz+d19qfNofbxLlGQgI9qTyHFVRpTN5EIBws1a4uk/E1Zw1HvQNH3rX6M09m+ftTCIHccUPHxvWRQN6Y8ROz6zMsxsRkpHRKDEZRy3soW+bmWL0TzFaCFPDgd/07//qCD1EPIny7hGwuEiqNHykcEUIPEgjM9zead5BSDH1b+oRnW5uumMrnC5zXo5yaeFq6LatIyrYttpSE2gJ18YR41Q9xF44QxcbQHj0IJSGxLbFM4p7BrftGef6NO/ivL3/CRZ/LpY6h4qUHxObaag0xxKWKIQm0HgiBeuWf8pW938Nnolta2zuUMiN5h8aOJ/E0+SC7xCx6GSXNfeMvSv8O5gwJFDpmNUT5VU7Mrb0GW2lNtRkxUzEThyRW2I7M5Kg+eRN2fnl1TTSyj5kbvxuAX3beyUmxC4pTy+6/HMYLLhMlF8+W+NjQpxIIQMQk0Pw1r0JexHsPsXlwbUk5Z1PK2WmUeYKiZ3NCt8yQ5dyRzpf3BZXxIqiP35hOQITyCQZQ/tOJ5vlHAXCnrsLxzGp2uEx5ZqIEsqVZLdXxaqlGUzh3DwCfrF3FVdNFiqMtEmi5ZCGnkFUCXRrDmuQsp8ouNfKI5iJ2rARKoL0SJRrMnT8BQG5kZ48jtZAogaYXv4YnTFtmNbvLwYTtcd+JOf740+a46yaBdDupqC6yLPei3hrNqYU6T3aOAdCcvhVfuNiqZQyttW4ZQ18iJOGlhLxj9T2ZWI4EkgLEwad3bFwfCTReLrOoC1j1mbQcLIx0usiTlIMJy2o7L+8iSo2EENiTV3HdVca3rCaKWP4SdT/izEIDhxCs3sarByYKl4yCcTshZ2+uh8mPP+9afv3697Hw2vek27IKnKzK0LYEIRYiCtJrr1+EkeLIhSojD/8DN7z7OVhHPmGUQL1IIJY3WweQEvaO5/mz77mDa3cMFeJDtCDoTR4OMcQQ7Rj2zutFeRf+C36Du8msRHQM8GwpyN/6CgCeZX0dsYwfwF13/DYvav4uAMePmonng/Nm30ZtiaVG2Jbw1Q+SOUzyb6KUsMMaCoG2cl2T9SwEsLT/+enj/xO9eE3vn0BKwY6y8YbxcSDqUwmkdaoE0tIZTnS2OQqujZQCx5JdyoSRnMNjqiUrd87ed1HvIWMC8eydP8uRb31nSgKp0G/z6BkEgkixdMp4ZrnT12DHJJDMkgsqSFdFJVGsBErITnOdaw3uglE+3R/t5/odZezCaHqI/DIlGrlCa3B7qfhpJD/7znKOr0cHGDl/NzYROtMuFstjHBJn+Pnj/xGA/MTuXodKkZBAP376v6Qmoo6/kJbCQBwRb7n84UceMek1sK4EG4CFhfm2x6K52HvHDcBCPWCpEXITj6GkSzR1Iw2RpxAuUDh7F+LCQyhtFKhinaTCEL3hWLJv8nU5skMIgeWVeOcN/7O1cR3pYAA7yh4X9Ai6eh4dl3wrrdN+XsWR9kLabZOhi/GbkcKkL127s4QUsEgRy19ksRFweqGOS4iwe6t8VprED7E8NnucM1l0+eHnXEch0w+5tkzb8uwQ0bEkIRboqC0YoR/M1wMqjTBdEBEXHu5SAlV33Mnpp/5y/F7Lq+tcS7KznLvir7Eh19ENMVQCDTFEX7iyW88BoeDaOJOtKPjOAZ4lJfLq5/A1dajn8wmu2THCGT0BQN4/D8B9cYjX4qIpmzi31GSh1n8tdmekcSIXd1WdBjkQghU4IIQAv3wAAIXgttf8577fuxOOJSl5tjEVDP20nGElaEhrz7V0hikQlwgcKbE6BnA37RnhHn0Df3n1n1DZ8wzypz6/auS2jq/Xeqbm34o9URb3v4AoP5n670RBc80rk6thtuoTXDCEbG7ntQjXlC3JWEmXm7mfm//2Cez60m+Z7fGE3LFi88y4dIcjn2L3l3+LprapkuOWvSO4xQn80j6OP/d/LFsqkc8ogTojrLcrkknnnrE8n1BPpLz4CHvEDFo4aVvjFUexReu38kZXUwK1vp9kwuD585xdbKTXCJFPXUnOLTVpEu9/EUogP2Ow++7PPdj+2fzKmo93sXj0nHmvQ8EjNCZuxHJcKqLM3uBxrvnnb2ff+15JGEXYKLDWRyoMsTyWU+mtBUKCM743s2F9x9w1mmOGEXTFjBPqQYTWmdSlWAkkO8oEL2bC7NkWJc/Gsy0OTRaZU3ksf5FaM6IRqJgEGkYwX8pILpHOhYbkepEd11CIhVRBW7/cDyqNeBEzXjRRwqLRbOCI1nHmrv9OLtz2o23v3wuuLZFxYuaVjCv70y+PITk2xBCr49KYVVwC2HnwxtaDDqWPHacknSEu/1hmwH71dIkl8kTCJlczprmL2kw6w9iDpNIIman2X0qlOsoZorhcxo7qNIQZuK3UiQoE/shBAM48/dd48qGJvt+7F0ZyDr62UWGT04urT9C0bieBrvQO/1KBbYmu8ojRvMO1O0p8YOlqqjufQm7uYRqNla+BSqx8a4ZROjmXyrxGxyUIwjYk0P4v/yYsXZzZ9HJoBgpn/jFmdJk9O3diucYPK4kf33HPHyGVz8RD74CkNEdaOLaRzCcJKrl3fBsANXL8ystu4todZYRl89jrP8/8td/GeNHhmc0/6nr/QrmlFuok1bYzhIDXPnkfx7TxFNstZkDayJh0jpz2lD9RWpkEcp0sCWSINUfV0UGzZQYeBRydD7GloBEbeOtg7SRQzW+pLSuL7ebT0t88JdADpxYZocKOyjeoT92KLQUVK6MM85cIGjVDPK6TVBhieQwiXlgKgTeRSRlbJ6F7YKLIjB7FqptVomQynvT3Ooon1Za97j7TkiKNDb92R4nzQQ7LN4tSQWhMfYck0KUOc410ki6JMih7DdmWIMBCqHDNJFAjNlUTOr5esajX2tWaicm4ECuTQFe6AmiI5ZGEUwwxxBArY9iKDgjXXNdKPepWApnGyIrTgNQyX/uuEY+y57AoRynESqAwjoiXYcuLws+oHbReWUlhf+FP2PfJn0ofJ55AlvIJhZlYrZYqo+08X/vBY8zc/KZ1rzrkXQsfBxH5zFb8VcvbNDqdSOt4EjnE9odt9V6hu/PgOA+eWSTwDJkYVOe69gHjHRApzWK8chhEOh1A2rESSDtx7HE8ARk983kmP/5zA/0coVKMLD7CY+Ige8byKQkkwwYi8hk59lGTlhNUyc1+A4lCSgsnjtEVcdlj4gPmScVTr5psJafF31HRszkjdvKVkeejrBz//ab38uvBGxif2mOkzWLllJTtiLGCy9X7jfphUiyBtNlR9pgseqgOEoj4t1z2WKWWGX02ScZqzqcT32qtxsmliB9+9tUQp4NFF+HhU/Ujzi018EOFX2snfexg85RA508e5qu5H8YOKtR23IFtSWrWaNs+zeq8KQezhiTQRmEQk01LCMbGxlsb1kna7RnLMUsZr2lIympMXCaWaFGUKIHsgZQWJROq63aWOOt7yLgssuU91NsYeohLA2nZV8f4at94HinbVRWONEogoUL8uJ8OM8l0vZAo1NJy7bhcsRrChYWl9p0d058fmiriOb3vPdeWQ6PxGEOyoxvD72SIIfrDpTWr2Maws+UMHf4MlhTkXclV+/YAkM/1XjUTQnDDrjIXVJlyTAKNjBsjZJmJiA9CE6sJpDXZy3XA+U/+KuOH/yF9nHTGQkcozHmuRKyUc3a7rHKdbasQxjA3Sbg5vbC6Z0eqBLKcIQl0icCRsqdR6p2HxmkEilNNM0nX9d4kkNLQCKJUPh4qlfpZWbExrkhS6pxMgtb8owP7DABnF2rs9Y/QmLiRUs5GurEnUNTAqZ5C6IhzT/pJtLAYffSfUn8Wz5b42oZ4tbRpmXN0Y9m7k0Y2S/KuGdAWPIu37vwVvvrGhzgSTPD31sspeDauLZksuQNRJGwWzCquoBSbX0+wiLAcJkseI3kbvLUZeRYybWaeJue1Icet5jyh0jx4ZpHZxQq5XI6fesF1qXeTughPIKU0ZxeaZnJT7ySBlpZ51eAxOtPyzKrsfRa2FNSskbZ9gsocUmisoSfQtoYQhhRNsc7fy7UlTXeCYrQAKqLuR1z37udjf9H4DiVKIGHZA02Nu3ZHifNqBNtfQAQ1olhpJ52hEuhyQOfCjRACz7Z6GEPbSB3ih4ogUjRDxUJ9eZuCC5UmNT9MPauEjknLKMJvtLfRlp2j4JkSxJFcb6InZ0uK3rAEdojeGBYMDDFEfxiSQINCtgRMdBtDlzyHwoiZENnLrNoK4PqdZc6GJUYiMzm+5qDx4zl//nzbvo/PGFKo7keoOKp1RaiAqz7wOqbu+iMApA6J4rSeleTiRa89YnYQcZRN4aUJN364spLJuvAwB/RpYOgJdClByt7pDE+7yiiADlficp3abNc+YMoaFhtBz+SbhASyXUMkBcVd6evs2rkBfQKDI4cfpCCaFPeZchwrJhdE2MBZMglU9anbqU0/kcL5e5HakEA5x4rLwXweu1ChgnmdpUPKOTslgWwpcC2LgmtTdG3+9Wun+YH//WWOzFSZKJrvKO9Yl5wKyJaSnG0xOhFHWQuFjM1jC65NebSlijjxpi+terys8fGIqHNOm9dbjXmiSPPP953CUgFPPLQDz7FwPEMQ6qD/0tlOBEqhGob0OXrLm/n36GacsLrKqwaHXbWHAZOKGBZ3YUlBIy4HU9JcG0HV3D+OO1RibGd0LV6s0xhaCEGYn0KisJrzaKXILRym+KlfA0CpRKFjr7fyrA3X7ShzWBt1n7fwKFEQJ/XZw+vvUkZydfYiDHOO7IiIFwTaQqgArU1fHWmdqsx7QWmdlnYDiFgJJKMmQYda03LcVX24Lsbg/HLFcEjcjaESaIgh+kNfLakQ4iVCiIeEEIeFEL+0wn5PEUJEQojXDO4UL0F0DPByjkXOkURevIqbG+3xIoN943lmaK32PufmAyzpPBcunGnbL1ED+ZEiUGYlZiV4849SOvVZdt7zB6goQqr+SCCgLT1sEG1rQ3g4sa9LpPSKMuLJ//0s3iT/FTAlNUNPoEsbe0bzHJgo8LVZc00tpwTS2qQjJWanodIkl0lCICaqnKjYUuGJYLAR3qdPnwRgdHqv8cbwPEIkTvU07tJxAPzyPsL8NHZjBluY0pyiaxFiQxSiFNRFTB7piJ0jufQ6llLg2ObvxH9hpupz/6lFJktmYpVzrEtu0HtoqoCUgumpHek2y2lNFL19twPgl/ahyvu7Xt+Fjjb1gjBkot2cI1SKSiPEkxHFgvme3ZxRXl1MpHuyWh1GGt005V+z17yaOh4yunhSaS2o+SFXR0c4nbuW488z6g5HSvaPG8VFzTZ9iKrOAKbsZ4jti65ua53lYFJAmIsXlRozyI4yRRUrgSx7sCXU1+4o8bgw92tu/jCRHyuB3JXLOYfY3kgmzb0Iw71j+baSQiEESljIWM0TKY1W3f6TWSgN1WbGPyj2BBJhg6jZrgSyheqpIs7Cs4fKxwRDvqMbw2nCEEP0h1VnFsI4Tv4p8FLgJuB1Qoibltnvd4APDfokLzl09KT5eBKXGNlS2tXjRaZz3TOWZ1a3SiVcr0DDHqG51K2YWGoYOW4Y6bZEm14on/hk+nc0ewRLhyhh99WBOG1KoPWjIfK4qtXxr6piSmC5Q4b/EodtSe44MMaXz8YDxtoyJBCaIFaJNcPISMkxj23VRCGxY1Ihq4IQaAgHM1E/s9BgYS5W4OXHsIQg51rYKCYffDv7/v0X0cIiKO4izE9g182EXEgbz7EIsNIUlFpMAkVOMTVZBbOqmpCsMxW/7f0TtdBo3rnkSKBkkL5nxzSRTqJnWiUj1o4bOfyqf+boi97an1Khg+SYkaZM1mrOEylNpRmZ6PhYkZCQQBdjDJ0giBQyLv8SbpkmLrZaX+R8vzg5V+cqcYalUit10rIEL33ONwPw/roh0YhJ1KEn0PZGQsRU9jwj3rC+30sgECWjspP1C1jNhbbndewJNJLPDbTtyDkWkwduJETizR/Gj0kg1x2Wg13KSJVAPWbPvcZcStjIxNxZsboSSOk2/0cR94syaqYlhTo+C4to1cW+S60/HGJzMZwnDDFEf+inJX0qcFhr/ZjW2gf+DnhVj/1+AngvMNh6jG0O25Jtk7pekNLUVdsNQ+ToFZJwdo/mmNEZ34fcCCo3hhsscKHSPrmdqTZZrIeEkaYZrpzSMHL0I+nfqjaP0CFKWH0pa2wrqwRaf+PaEHk81dvoekUMY5AvCzzj2inOhYYUoTHfUwmWbBJhgzMLDZRqKTQc1cQXDo5tkXetbul4bWYg59kMI8LYuFrlxpBSUHDar8HmyFUgHaLcJHYjIYEsbEsQISEuy0Cba/zEt/1j2z0khUhLvZ59/TRlz+bXX2lM5hPjS9eWl+zK546xPEtxKRy5VrsmpaCx43YakzddlPFuEKuHrMYckTYTDJcgNaj18jEJ1Fx7+VZCNs7XfOzYi03mRqhrNzUl32jMLlbYL87RHG2RQLYUOAeeyhdf9hH+JHil2Vg3fYocegJtayRKiuMv+Vvmvu+z616+lwKsklHZ+QtnsZrz6XNaa1RkJtnlQo6SO9h+8xnX7+aMniCcO4bvm/vB8/KrvGqI7YzljKGXg5I2VqIE0npVRbfWrf4bQIaGTBdRIyWBEp84h6hNfT7EyhgSHt0YKoGGGKI/9NPS7gWOZx6fiLelEELsBb4N+PPBndqlg2umS+wZy/Hwd3yEygt+u+c+lhRUbn4dlV1PI3rqj/TcR2D8MupOJkXEG8EtjjMqqnz1RPtqX6KUmKv5rZjkDijXdKzFs19ubWxWsHREJPorrzIR961zXC98mcNVrRX6cJlz74Q1JIEuCzzvhmmWKKAQiPoci41uQ0mlNe7i49zyt9dj3//edBuArX0C4WFJgWdLdo54/GX4MgIZlyRULwzkPOt+hGzESqXcGAB5t9VkVnc+mePP+x8AhLnWPSukhR2ng8l4xdNWTb5oPxl2ZlIEMfdWPi4D+41X3czbf/BpPOnAOL/3Hbfx48+7diCfYythS8miNiSQdjti4YUhuFaT/gNd6q7J3cYrbfeXf4uwtkQlJoEStZHImXZP+xdv5LxYDylTJRQ2wi3QEB62unhl0VogFo5hCU2tdDDd5lgSKaCw+wbCuF0X9Xnz5LAcbNsj71rkCiX01PXrP5gALw6jePTxx9uUQKY8xywKlfLeQNLBsnjODdOc1hMEs8cJmuZ+8HLDcrBLGYnXY7/l9lklUKQ0OiaClt2/o1QsCToRYQMdq8nqL/49Fq//DrjhpVjWcBY/xMVjGCAzxBD9oR8SqNfd1Nna/xHwi1rrFeUoQogfFkLcJYS4q9Po+FKGlIKCa9Mcv4Hmk75/2f3GdhzgyMvfDeXe5WDmWFB3x1obciN4I5PsFAvMP/rlnq9ZaoTL12NnvAfeGr4UANVcRMblYIn57EoYKzjpRHUQjWtT5PF0q6wi7EMJFAoHOVwduiwwXc6xf6LEvJzAWjzOXK2bBNIKche+DsD44X9g76d/AffwBwFwlI8vPCxhSKA7D07wN8Uf4D8XftW8uDYYEujUQp0R4sFqfgyAfGZV/chL30Fj6lYAotifAwwJJAVEWiLiJtHRTQLhdil6inH6FxjFXRKJe+PuEcYLl77ZqiUEY5Ox8rHDC82SgoJrtSkNl0WHAmd6ajr92/vGu2g06oYEileTXS9PoC1orj3SPWlKF+sBO8Q8NWcShMAXLo7yV37xgCAqZwEICqavEMJ8X8mqb644ikIgG/MAyGE52LbHvvF8W2n1eiAQ7Nm9h0gLLpw90aYEClVLCWTZgycHr54qMWfvxKud4tUP/wIAudxQCXQpIxnW9Zskp4WNRZzwtYIxtI4b0+VIIB00cDBtqh4/xPkX/TFurtDfwsAQQwwxxBDrQj+z6hNA1rlzH3CqY58nA38nhHgceA3wZ0KIV3ceSGv9l1rrJ2utnzw9Pd359CUNL57IrSTNTAiXlRK2iq5NlJtobXAKkBvngDjL/3f6x8idu5exR96LiNonI8tJcXVQ5Qh7+CeexwdzhgSK6ktYGBKonFt9kOjZJp1ICCh6659s+FaenG6mJTL9lIMpMViDyyG2FtfvLHN/uAd75iGqzTAdLCZQWuPUjBm6CGtMPPx3TP7zmwBwtE8oXKQUuLbEkoLveNJe7pmJr+XqYMrBjs/WGRVVIukhXTPJyZaeabu1+h1mSCApLYQQRMJOzTNd1SSUubSdSJD1NsiWhkH/q7LbGVIIRNH49+C2x8JbwpBAfU2Mw/b2bmpiqnWc+WPoOMVL5g3RlPccquRQzbUrgZIrcaEesIM5Grm47EbkcHSjva5hgxDGqWbSMddYktCYXBKTpRw1CljN2BNoqATa9sjFKX+DuKulgJ1jRULp8X3huymeuyd9LqsEsqzeEdvrem8JYnQvu6IzTDZNQqIrN/6eGGLjIIT5r1/VmJI2Eg0qMqVgurcxdCMwY7vO4anlG+Vas17FwywCSTuHwCgehyTQEOvBcK4wxBD9oR8S6MvAdUKIq4QQLvAfgPdnd9BaX6W1PqS1PgS8B/iPWut/HPTJbmdkU36WgxDCDKCW2S3piL/rOXe2bdSFFil03ftfyf5P/TQT33h722t7cUD1RhNLBfxD8AzmX/RHeCVTshLWF7B1iJY2Tp/qGteWXD1d7G/VfrVj5U1ZSFIX3k85mCGB1v3WQ2wT3L5vlIfUPpzZh9FKda0iKq3xFo4AkDt3X9tzlg6IhE3esRjJmUnOc2/c0fLSGoASyA8VJ+fqjFIl9MbwYvInSfDq2r/UqpAV8T0VCSuVzDvaJ7K8FWXuUoLnWGnJ2eUwjpESIs8QMzrjCQSmPcy7VhvxtSzC9jKsiclJ3hD8MgDe+a+Bv2ieiJVARdeiQh5VX7zoc19oBOwUc0RFQwIFMmcmPgMyHl8JUWAmRkmiWuKblCwy7BzJsUQeOyGBhqWylwTseDFlvUiuA0+b+2Lq628FQEmHSGvYQCWQJQSFXa2Stvfo5yGue9HA32eIzYOIVbX9QsXJskIFKG38gMLIJNZmkTzuXOSxY+VavV5LSSDh5NLJ+yDGmUNcuRjOFYYYoj+s2tJqrUPgzZjUr28A79Ja3y+E+FEhxI9u9AleSnD6WOWz5Eo6oFjmvW9f27bG7d/HIzf9JB+MnpJuS0ymE3SuwlSbIT/5fz8HwPNvPcgdB8dTT46osYREoaXV98pP0bMpDMhgcmzUkFF+3azS96UEkjbT5WECyeWCH37O1Zx29uPqJnbtbBcRqAFv4TGAdh+WKDTJdtKUUSXX70TBgUSZE1xcglNWTVcPIk4t1NlrzaNyY5Q8c+2P5h0+Hd3K2XK7t48/0vJuSVQZEa0YXQ9DAq20QiXjgXjRM6l9l8NqlhQClaSCdSqB4mS0vgb8N7+asLi79dr8KI+Vn8K/RE9DVE4j/bjsKyaBCq5FRefTiPe1IJmwJOVglHdhSUEozedQ/sYnhKmYaLLitLOsAk0IODhZYEHlsWMvmGE52KUBxxIrKoH7xXJHEDoiChUqVgLZ9uCVQJYUFG97efr4d5w3gzMsB7uUITBKtb4R93G52QdQoVEDRUozW20pNsNIEUTdSiARNdMFwGPnZsjLODXMyV0WCx9DbD2GZtlDDNEf+qLbtdYf0Fpfr7W+Rmv9lnjbn2utu4ygtdZv0lq/Z9AneinA7WOVzxJi2QZKCGPAbOXH258Y3UvjGT/H73lvZk4aVZCz1PLqDiLFv3z1VFtM/CcePMdXHj0NwM4p8xrbLRAi0Y1FLB2iRf8DxGQSPAhMTZjzOXvBKDb8UK2YLAGG2S/nBj+gHWJr4NkWB/buAUA2FghUOxGotMaaP8Jhvbf9hZWzWETpSmQCKSVTo7HxsFo5KW85JGSk1pqaHxLMHOUZ4qtU9j+PYqwAetpVE/yX8m/w2ugt7UaY0sb3zHWdTMgjYVOIFjnw0R+hRA1l5VZcoUo8jmwpybv9Jfdtd1hSoGXsbdRRsmQJ0b/sPz/Oqdd/Kn0oc2Ve/aQ9LOoiorGA1UEC5V37osvBAErHP8mh4//IuKhgje4h71qEliEZlb/2xLG1IorLwSzHEE9ZEsi2BEXPZpECTlxWIYbpYJcEHEsOJF0hIYg/dNUvtW0XWhH69TSVcCPCFIQQ2CO7+L8TP8F3+79MqPpM9xxi20KKVkBBP9DSjMWuff+ryX3hD6j6hsjJjkH9SBlVGrT1lVkTc0/7XD9pjiXt3GWx8DHE1uMyGDoNMcSmYKi5HCCMEmjl1mdVJZAAu2NVN+kYd+3cxbdaf0llzzMYf/QfcBcew5t9iLsfeIQ//cSj/MknDqevOTlfJy+MgsLyTDpP3rWpYVbHbSL0FpUQ7Jo2k+Xbv/hzOEvH0NooL7qQUTfJlT3Hh7gEMTlhymwq8+e7lEDeA+8hXzvFP4VP5x1PegfvsuNI7KBulEAdJJAAdo3GUeSq22i6HzSCiEozpNIMqTZDJpYexkJRvfZlqVrFtiQ/9KyrODZb4wuPGe+hJMq9WjpkziUmO5SwGQ/PM/r4vwHGQ2hFJZAUeLaFHaeeXQ7jYdeS6FjNIlR7GVXR61+JaA7WUhLJ3Aive8oBFiniBosUYwNvPFNyVnQtqjqH8Ct9Gc+nUApr8QRXfeh7edXRt5j32n07O8oeUaIECmr9H+8ioWIPpKQcLDtBs6Uk71gs6gJuYCZUw+TESwMD8zqJjcIfPfBa/j58bttTurmEToiZDfKKkkJQeuaP8Tl1S09j/yEuLQjRvyk00HZdFU5/geRyCzJtbaIOgnaletbEPCd8nnuNabMtd6j0HmIwGCqBhhiiPwxJoP+/vfuOs+Ss73z/eZ4KJ3UOk2c0M8pCQgFJIIJEkjFggwNggkUwmMXYGO/64rDe6/VlbV9je1mzi22cAwaDjbFh94IxS7DxmiSQ0CihLI1Gk3tmOp5QVc/9o+qk7tMz3T3dfTp836/XeU2fqjrVNd1P1zn1q9/z+y0jfwEFTn179os7Y0yjbkiSTW+pXyjtH+3h8ESVB6/8WQCG7/swl3zyVl5111sB+Pw9Rxr7OXymTK+tz7UuAWkQaMIVMJUJAiKw3cmsqWcCbZ+6l9Hv/D4wTxAoa68NNKbVyMbRN5gW950aH5tzod7/2Z8EYOueS7jyuufw3dyV6YpoBp+IZNbYtcawpb9ADQ8XL+2ipBIlnJ6uUo0SZqoJPbW0g6HXt6NtuxdfvpXR3hyfOXCYQmjZNVjAGJgo7QUgsFkKPO3B3NC6cwZ2Ai/9+88H3oa4K2qtwZayJgBeexvpxXY/a/1x2LBIIfSIc/34RIya7O5yFgQqhF5aM6c2uaDppg3f+Wsu+PAzG08TDMnuZ1LK+UReOuUlqa58m/iklgaBgjCHZ03bVI2cb8mHHhMUCeOse52CQOuC79llyfAzJh3jpZzPo25Wt9ETDzTPgSuUIeZZw4Wj6eeKxdSSkbXJsLgadIV8e8Bm57+8h9E7P9h2rk3iuNHlsFU9CFQ2efptmWI2HcwLCou7KSAiIudF797LaCGp3sWcd9YotTXp3cL7Xv9Njr417fhR/9B4ze4BrIH/dHuO8Z23MPjdvwFgcOYJXu19mUOnmtMUjo6X2V5M777YLBOolPOYdHlMbRLPJF3rKGO3XcWD3oUADN//EfInDswpKAhAy8W8SRQE2mgGh9MgUGXyVFth6ErUHAuXP+eVaUH1oF7vp4zfKRPIpBcjNee3jZvFiBPH6eka5SjBOUdvdDJtw923tW0737N8/9O3c9ehM9xzaBxrDfnAMlFK6wL1zRxK9zfrGHMmPmdgx2QdwvKBt7g7s2tY+YZ3cviGXyC57ra25Uv5wH/02nenRbiNwbMGW0ynzu40WTHwRk0gnylXwIummKkuIotw4nDb08f8/ZAVtI6zoLxboelgrcVTXdb9sa+nNKcjY+ClmUATrthYZtUdbN1Yjjbx1qTnnJ6cz6MurZX1j/ENJFjCJ74C9czZFQwCGWP4o9uu58NvvXFFvoesIrO47Im+nmLb86EHPs62238Tb/wQB8fSTMn8F/8TO//kGpLp020NFetBoKfMVgbtDDbOMkT9nLqCiYisIgWBllHgmXPeTek7R10bm13cRMWtuEJWyyd7Y7xkay/vfP5F3PPUOHcXb8SrNetd/Fbwh7wk+iLjM1WccxyfqLCtkH4QtGH6ht1fCJikAOUJAmLMChSNXAjTu5X37/sjfjX5sfS4Hv3sPEGgZpHBDXI9LC1GR9LpYPue+l94T369sfxL9x/ntCtx7+7XsWXHHgBMkI5hV5vGI27UJGgV+pYYi1vidLDEOZxLp4VNV2NG3Smm/KE5bZatgVdcvZORnhwf+peHcc5RCH1O9KQdczyTfuJ12QXY5PBVvLn6Hr61+y0Lyu7J+ZZS6C2uUOca5od5Tlz9Tox3/un+x57xszz4+q8CaRDplqdfDHQKAqXdwYLaFBPlRQSQe7e3PT3Ye00jGOe8emHolZkONl2NG7XRkigdw6VCgeGe9p9b6GdBIJrFeK0ygdaNBXXDOwdDWieqrxDwSBYEetRt4yG3E+/43RDXg0ArMy7q/4dt/Xm29ako9HpnjVlUHZWBnlLja6/S7MDoTx9rZAOFd30EgGjsUS76+5cRnnkMgGD6GAAP1LbQyxS2Nk3iFxqBfRERWR0KAi0j3567O1h4jtRpY9L91L8G2t4YX3z5VvryPr/2wM45r81T5c4nTjM2VWVsqsqWfPpmbHPpG3Zfwc/qZEzgE2G87gSBrIG9wyX+uPpiZoo7CaYOUY06FIZuyeiojj59FY9QVkPPQJoJdNHENxj5zNsay89MV+hhhkLvAL35tAuYl6tPxZkhIMbZuZlAoWez6WBLyxqr360s12LGyzW2mzGmc6NzPph61rB9IM+bn30B9x2e4O/vOEQp9Dg49GzeU3s7R6799+mxZplAVb+HLyfXEvYMLOhDrsmKxy+mUOda5nvt57Olqr++0UbYGvJ9wwDsMsdxxmt0KSqGHqddD2E8yXS53Far4qyyDIpvP+uDHHMDHN1xa+N3tn0k/V5HTpw6v/9Ip2/rHGdmao1psfVMIC8I5xTlD31LIbSMu+aFmLqDrR/LUa8izQTyGO3J8bjbyhPJKEdKl3EkGaB25iiunglkVmZc5IPm5xjdoFn/DIvrRjnY0wz8heOPN772yycbxaFNvXbagU9QOHk3W+78ALY2xfA9f8pMMMD9bjf5ZJpg6jBxMb0hFFhdkoiIrBadcZeRb+fv/LVQBpOlWtMoMt2aIutZw8uv2s49lVH+59Bb2l477fJ88/FTPHpiikOnZ9iRXSME+fSL/kLIBAVsbQqfuGtBIGMM+7N6AmfCLQSTT81pcQ+0FfitXv/21To8WSVB2FITJmoWDY4rU/gmgbCX0LfsHCzghemHzqg6jU80JxPIGEPoWyJ8XLS0TKD6EEwScMfu57n2AJO9++YEbowxWGP44et2ce3uAX7+7+7iXx48Ti12/G38fPzSAACFfDp9qOzSYx3t3ZyFL+u10s73WrF+brUt/5rCAJBmAiVhb+OKtL8QMEaaFWSmTzJViRZWIDqbdvoddxE3Vn6P3EU3N6atvfp5VwFw90OPnef/pMO3dTA2VW1006lnQQZhfs62QVYz6gzNIFAYLK6+kqxv9emvvmeoEnBz9QPsee7rOUE/Zuo41APhK5QJlPObwSUFgda/emfahdq3tb/xdWtGul8eI4pd29TWyEuzeMPxJ9jzhZ8gf/ohnvD3Mm3T83PuzMPEpXTKtbcMUyVFRGRhFARaRtaa867jYVvudtd3ZYyh9QbJ6595Ac+/ZAs/d/x7eeK6ZovYkaLH//jiQ7zqQ1+lEiVcMpS+KMynrbOHSyFTLi2W6tO9mkAAe0fSDwZHzBbCyUM4x9w28dmF0O+Y24gu/8HVPkRZYa3TImw0Tb3FSFLOPlTm+wi8dGpUoZSO4ZnpqbSoeYcpWvVMoKRlGuFitAYiC8fuwDcJj1z643P+put1u7YPFPiTN99AMfT59J1PNdLg64VSL942AMDhqXS/oz2bNAiUndSWIwOiHiCv77dvJM2I3M5YGgTKDPfkyPWlBam98ikmylFb3al5JWkGxce/dYjQs+wZKjbuTg9vSb/XkcNPtl3kLIcoSXAOXBancll3sLBDx5wwqwl02vU0l4XdCehLdwSeTZtItHQbveXSLVTCYYq1MVy9ht4KZVbk2jKBdOG+3i02E6ivWOy43CuPAbQViK5OpF00S0e/Se+TXybK9fN+bqOnP82szJ96kKQnLW6umkAiIqtHQaBldr5FHxtTHbz2VvL+rA9zL71qOzO1mK8cbX74/9Hrhnnn8y/kuj2DGGBff7avfImtfTkGiiGTFPDjqXQ6WJdqAgH05AK29+d5LBoimDoMSTw3Gyi7mzkRjixqvrqsD8YYPjN4G/ewPy38PZN+gCSrMWByvY2LndGB9M7j1NQkgekwHQxDGFhiZxv1VBardfRF0+mUn3Bo75zrKM+aRnbIUCnkWfuHePTEFFHSHgTaM5oe88HxdPmWvs0aBMqmg53nfgwQ+s3aFb5nKY3sIvFCrHG4liAQwN49aaHuZPI4E+Wo0a641ZxgThaFOTpZ48LREr5nm92Pwh5qJsRNHefYeIXlVG+x7GhmAsXYjtO8jOmUCaSaQJtJPTsx8Azvf801vPuFF1PKeVTyw+RcBb82QcTKTREMWqZ46sJ9/bOLzASaL8PMn0kDPpXWGo/TJ9q2eeiV/4tvR3sx+fT90biokQkULEO9LBERWRidcZeZf55vYq11gFq757QGl4yBy7f18pwLh3n/w8321UFS5qVXbuf/ecXT+Njbn0UpaxFPUGBLX56enM8kefLxFKGJ8f3uTSGwxrB3uMQDM/0YFxNMH21OhajLMjrCIIc570tIWYu+tf+dfLD6/emTememyiQAXqGvsV2+mGY9lKc7T2Vs1gTyl9wivjUIWZscI3aGgcHBOQHYevH2ur0jJQ6OzTRqIeSygs5eVqy3Ph1ssxZQrRfMP9/2v541eNa2ZR6Evk+1Jy0e7nI9bdvvy4JATz31JHHiiGLX+B3VzckOyjKBYizvfeWV5ALbPG5jqOaHGTHjfOuJ5a0LVD/3JS7tjufiGjXmD+zMzgTKBcoE2owCz3LRlh5efMVWPGOo5dM6a6XKMZIV/HiXfj6BUs5nsKipiOueWVwmEC3FoFuNHvgDbHWSamWmsczLAkMAUX6YWt8FlKsxcdh8f69nAqkwtIjI6lEQaI2pX+D4s6aWDffkGq2C+/IBxhje9rz9jNHP30Y3A2BrzdbFe+7/U8w9f58+yTor9eR8Jl3zQtTvYh0Ja2DfSIl7ptO7QcHkocbd8DqXtQ7t7SmdfxqBrElb+3MccwPpk4mjAJhqlgmUb9YdCHLpGJ6ensQnhlk1gXK+zWoCeSTnWRg6N/ZdXnLyw0ybItZ6czKBjKHtb3PfcIlqnHD4dBloTnNzWaAqNj6FwKMnvzmzNer1ms6Xl50TW3/21hpq/VnGz6xMoEsu3AvAl++4l0oUEyUJp7PuiXVRPDsTKA0C7RjsIR94FGZ3aCuOMMwZnji5vG3i61lKiXOUawnENSIzf2CnELYHgWyX6rtJd7XedDLG4ErpFMiB+CTxChWFrgs9SynnLcvftnRXWoNyEWbSIPhhN9RYlPhZUf5j36JabgaB/HJLECg3kL68FhPlm6+t7r918QctIiLnRe/ea4ydJxOovxCwYyB9k+0vph/4R3pyXLmzn/dE76Di9zaDQM6x/Ru/ij18R9rWOGtVXcp5TLW0FQ66ePfYGMOFoyUOuXReeDB5aM50sKdOprVhtg70ajrYBnXhaA+nSS9mXfbB0lbTTCCbb17U5wtpEKg8PdmxJlBvPiDve0R4S84EqgcHdn/pXek+Sf+eZtcE8mbV6Kr/XR4eT4NA9XoZ9WylbYMldg0WNvW0ibx//hek9Z/77LvFUV8aBCLX17Z8cHgbCZZRc4YjZ8pESZoJVGnJBqrNijzHWQDxoqzw6ewObUlxlGEzznQ1ZjklLUGgSi3GJFViM3/QMB94nG6ZDlY/x8vmErT8LVgDtjftsjQYn8St8Me70LdzOtfJ+rTYmkBc/VqOXfRq/kvtRxuLDt7yOwAEk09SKzeD5K1BoGr/PmpxQpQ4Jvsu5PEX/T6PveTPiYcvPd//goiILJKCQGtMMxPIzrlozAceW/ty9Ob8xoXQiy/fimcNLihho/Tuiz99tPEa5zeDPqWcT9JyvyfoUHR0tViTBgCecmn6ejh1aM50sMePnQZg62CPik9uUJfv6CUK0mCPK58BwFTTD5A238x0yIcBFRfgajNpJtCsIJBnDbkgywSKllYYuj76WusNWTt3iqedlY1S7/p1tB4Eyu6M1wuv37h/lPf/yNWbegznw/N/q7HWZFPCZgWBBupBoPZMIOv5zBR3sMcc46kzZapRQhS7tilgtVnTw54aSwOQV1+QBqdLYftFrisOMWQmljUIFCeuUUjVufQuOXGN+GyZQIHHDC3n7xXO+pC1qbWGimcNuf50Ws1wMkaywmNiuCc3N1NO1iVrzOKm6+Z6OXPrf+MpRhqLKv37cMYnnDjUlgnklU8R5Yc5+oyf5dBz30ellp7rSvmA8X0vZ2L3C9VhTkSkCxQEWmOaRU/nXuwAbOnLY61hx0DaOvgFl47yp2+6AcJSIxMod+bhxvYuaHZxyPmWETvZeH6+RazPhzWGoVJIUOhl3A4Qnn5kTnewcjWdDpbLF5QJtEHlPI8LdqZ1rWpTp9OF2TTAIGyO3WLoUSaAWpmAaE5NIEgviCI8arW5QaCFdHNKnCMcf4ziybubx9dhqoO1pi0w1AwCpccdzgoaBX7AQGFz183IL8PFop8FgGYHx6P+vQC4WUEgzxpq/Xu5wBzhaw+f5Mh4mg1Un3oVJ25OTaDx6TSQt2+kD98z5IP236XLD9DPVBqoWSaPnpjk5z5xF2/806+TOMdkJcLE1bMGgQLPELYWjV6hLlCytgW+besiWhzYSuIMgYlJzpJJthx6cv6mDmxvJEupxeN7Fq9lynbkF6mVthNOPomrNYNANqkRh70cu/bdRMXRxrmztyWLTMNIRGT16ZPjGlNPyQ2sPesbcz0N22TBlCQopm22gfypBxrbuaCZCWSM4YvecxvPc3HzjXq1pd0oDPtHStxnLqRw4gCt12PT1YhqJb0g87xAhaE3KM8artm3larzGDt5PF0Ypb/3Qqk53SUNAoUQzRCauYWhoRkEclFtTkCxMivjo5MkgUv/5ua2ZbkFTGMaLIZYA2dmaoR+S+HirE2z8fw504o2m+XIGKjXBJp9xzoZ2Jt+MSsIBBAP7GOfPcoXv3uMX/7U3URJ0ggClWsxtXhWoego/Z31FHIMl8I5F7ku7KPXzDBTWVy2WafOZABRnDBTTXjqwTu4ovxt4sSltamSCGfnDwIZY7h6d/MCbL5uPbKxBZ6hv5COE88adg73cao+vdbo450szKKmgrUISs0puJ88MEZlYD99j36G3OmH2rZLguZ7eT0I1JNvnt/0+U5EZPXpU8Ia5XtmTi2S9vWWXGDxs2yexC/hVdMaOoXjdzY3DNo7Ep3O7+LXa69LVyXTy3vQi1D/r+0f7eEb1QvIn36AqDLRWF+pJYxPpsfnBaHuFG1Q1hqeuX+EcUqcOJEGgUyUZtQUCs1MoHzgMeNyePW6Vx2DQIaa8yCJ5mRq1FPQz3osM+2tbA9f9uaOmUCzedYw3JNmA7VlAWWdpoznU9zkQaDlaP3rZRlYszOBkoG9TG6/iWTnjXNeUxu4kH6mePZomfsOj/OGP/o6B548g3OOSjY9rFUURSTO0F8KGCzNzd5K8gPpF+XO3XHmU4k6Zw7Vp8D+tP9Jfj/4AGemKjiX3j135wjs3LR/mCez6bQsINNNNp7QswxkNQJ9a9g7UuKES4ODTlMEZYGWkglkgFxpsPH8/rGEY9e+G5tU6X3iC23bJn7zvbxcDwIpE0hEpKsUBFpjGplAnj3nHO3+QtB4I60MXETp6De54HNvYeDhTze2aa0JBNCb9xvFob2oi5lANu0YdOFoiTvjfRiXwOEDjfW1JGkU+PWCnD4kbFCeMVy0pcS0KTI5nhaQtHGaCWT8fGO7YugxSYF8La0bZP25F+ihZ4nwOweBovjsU8JOPc5lH7628XTCH+LEc9+74M43W7IpYW3bZ52mrPVVO2MZeMZQCr05FyxekOPRl38ct+/mOa+Z2fksAD468WN8aeDXOTlV5fbHx5ipxY2OYa3iOCLGMlAMOwauXDb9waucWdSxV6Ok4/hzLs0SGmacPjPN+KF7qcUJnqs1usvN56pdA/x19ML0yaxgv2wOxhh68wHWpp8ZRnpCjrnswlxBIFmgJQWBDFy4cwv/d+0t/E3yQp6ccEyPXoszPvnTD7ZtG7d0bmxMB2vplrnUTCQREVk6BYHWmPp78UIuPgeLIb15H2Pg8E3/mWPXvIu+g1/AuJYL4JYLaYCn7+pnyqXL6gV4u8G3ht1DBS4c7eFAsh8Ae/hOomx6RhQ7yDJCPD/Uh4QNyrPpRYzL9RNNpxkaNq5Qw2/reFQMfcZdkWJ0GoAgmBsECnxLhMUktcbdxrrWWjAdnXqs7WnBpQHShQaBnn9p2pr51FTLNKGW6WCqnXH+6rWYZgfU6hcwnS5kopErGm2J95XvoSfnc3BsmslKRKWWUJuVCVQPAhWDzlk4SS4NAtlamgk0e5zNpxZ3Hn+Jc5ycrDBk0ixIc/CbzFRjQiKwZ68jdenWXn43fiXPr/xXGFV3nc2sGPqNTLlH7W4AysFAdw9KNjSD4c3P3ser3/ErfOOqX+GxsRkSY6n27iQ3KwgUFbY0vi53CALp3VFEZPUpCLTGLOZiMfTTO9aeNeDnOHr9ezhy/c9RK4wyPXp1upHXfiHxvItHucNdlD657OXLddiLNlgMKYY+V+7qYzwY5ow3jHfsAE+eSi++o9hh6hkhYVEfEjaowLPpBUyxn0IyxcGxGWxcITLt4zbnW85Qoi85nb4unD8TyCTRnBpAs7tC1dVrB8Vx+8W8n9XLml3keT6vu3EP0Owwlu48mw6m9t3LqlO3ttZ/29Z5HtXe3Y3nd5vXMHrknylXE6pxMicwE0c1EpNOte2kngn0vhPvolyLma7GZw8u1vfboQg1QOLg4KkZhk0aVCod/zYztZiAGDpku7XaNVgADI+57ef8/rKxtU6tOeRnQaDccLcORzaJfJjWwNs9mGYifvCLD1Ht3dOctp2Jis0g0ExV08FERNYCBYHWmKV0wfKtadQuOX71T3L/675BHGYF+7z2O9rPuWiEx9029pY/Ak/7gfM82qWrZ1iM9OTY2ptnzAzgzZxiohzx5KlpKlGMzbpEuaCwpHRlWfvqv9dC7xCDTHDHwVN4SZXarCCQtYYpU2LAnQYgCPOzd9UoDG1dNKcGUJQkHS/Ca9l0IFdL60/9u+rP8I3cTTz6kr/A98ycgMN8dg0W2TdSYs9Qs/ZBYzqYp6K9K6ne5bDTOSKwFue1j5WXjH2E7//gv/K/v/MYQwf+mDgrBg2QxDEJ3ry1oFy9JhAwWa5xYrKyoCBQLU5IOkwHS5zj8RMTDJJmAm05c4DpakxgIox39iCQtYb3vORSPvSjzzjn95eNrTWr4slCmhX2xPZbu3U4sgkYk9bqMwZuvWIrvjU8emKKat++OdvWWoJAp2fSaf6tNddUGFpEZPUpCLTGLGXaiJfV18l2kE6jydrDzu6iNNR4410bb7qhZ9nSl2M8yTda3J+aqlGuJY2aRTYsaDrNBlfY/XT2mSPc/8jjeEmFyObmbDNje/CyXJuww3Sw0DfU8DBJlHVZal50J67zdJz6dKCkmgaBHnI7Of7yP2Ny9wsaXXcW6p/+/c185MdbihNnmUDq3LSy6u3nOxXS9z2DmxVM2Z2boRol7L33d9nxtfcSH/hEY10cRyTY+c83hWYh1DMT41RqnYM7s8XzTEdMEsfRY0fxTULZBWwtP0LpyNfpZwpyPefc7/c9fTtP39V/zu1kY8u3TJGMtl7NM8sf5MHtr+ziEclmEFhL4Fl6cgGvuX43T52ZYWb4isb6eofDpGdrY9mRM2VKOY+hYksQSFciIiKrTqfeDcDP3ohbufoUlA5thn//Ddfx3197zSoc2bkZY9jWl+dUnMOrTbat87PpYGG+1OmlspHsfwHWONyjX8FPKkQd6qHM+M3ikmFubpAo8CwxHsalmR31i+4oTogT5rSNr2+TJA6XBYFmXJ7t/WnmyGKLOQferFoy2dQhWrJHZPnlfJvGvjtkAvme4dg172pbNmzH2dqXI6yeBiCZaRZ5TuL4rK21Xc927sunBcQr02nQ+myZQPUW9K2t6VslDo4dPQTAUya9W/6ir72Zi+0hooEL591vnTVGUymkzdO293GUIU5PV8+9sch58D2DZ9N7j/tHS0xXYx72L2qsj7ZfB4CXbwa0j4yX2dHfnt2tU5iIyOpTEGgDyAV2TgFbU5+C0qHDzCXberlix9q5e7xjoMB4koNqexDIS8pUCOgvzr3gl43FbrkcgOT0ExBVcN7c37nLNcdsGHYOAtWch80KMkdZNlCUuDQTqGN3pnT9oWNpe/hiT28joOp5i/9oGrT+HT7n3Rx73q/CNa9f9H5k4YwxFMPOAbvAWqZ2PJtHXvrRxjIbVegrBFSirB5US3AmiSOSs3RVMgZu70un2dQzFzuNq7pmEKhzJtDBsWmeNvMtAO7z2os7e1svm3e/jW2s0VQKafMjN+zhNdfv5rZnXdDtQ5ENzJi0FIE1BmsNV2xPSxD8xrea56MTt36A41f9O5I9zwbg5GSFx09Os3Ow0FbDTZneIiKrT0GgDaCU8+cEgWw9+NOhKK1nzJJqD62Ubf15Jl1+TrcyL65QIbfoaTmy/th8H4nx6HMT5KiBPzfIs7tldky9XlSr1ppA0CzGGyeOQ6dmmK5Gc15Tb9F98Fjanv4XX3FdY52/hD+StkLSfo7xq97S8W9Qlld+nqwtPwvklYeaARWTVOnPeVTjehCoWT8qSWLcOYJAfpaZGJUns9d0DgIl2firRDFR7Oi02YPfPcAv+H/Nmf7LeShoD/oMXnDVvMfR+P+tpRO5rAmlvM9tz7qAPr1vygryrMEYkwWi4aYLh7lyRx9Hp5snuld/9CB/Vvox8EL+9aETvP3D3+LkZIWbLx5py9zUaUxEZPUpCLQBlEJvTj2MeibQ7JpAkGYrzJ4+1k1benNMUcCPJtqWB8kMFZNTUehNwPcsUdjHAJPkqGGCuYWfza6WArjl8Tnrw1lBoChry/0Pdx7inX/5Vf7664/PeU09Q+jkqdMkGLYMptlGnjVLGnezCwrrBufqmG/qXv08FxdGGsuMS7jEO8wPxp8DYKpca2TpuDg663SwvnzA0FBaF+jE2BiQZvl0nGro0uUT5QjnwNGhJtWjX6Vgqhx/9n/Ghe3TXt22cweB0guxc24mm0i9ULrGhayk+vujNSablmq45dJRTk01pyEO9Rb5vS8/zEt/5yu87x/vZ99IiT+47Rl839U70tfa9n2JiMjqWTuRAFmy+t2YVo1MoA5BoGLgNe6QrwVb+/JMukJaAyhptur2kwpVc/YOObIxWGtw+SEGzBQ5U8UGhTnbDD7tRVxa/nN+qfZjcP1b5qwv5jwS45GPJwnHHyNKEmpxwv954CgP5N/E9ff/9pzXJA7i2BFVpqmaXOPKqRB6+Hbxp8fZae2d2pbL8psvE6heLwjgxBVvbix/55Ffam5Um6YaJZRrMe4cmUD5wGPrcNp6+8TYKQBOT9eoxsmcbeuZaBPlNCjZadZY5eRBAMpbrqFC81x36Nm/2pzSexb1u/AidfVsRI0MWUn190drm5nluweLOOAV0fv4q8Gf5C/feiP/5ZVXcvmOPp62o4//+LLL2d5faNy0rH9uXcp7rYiInB+deTeI2deanp8GfzplAi31AnelbOvPM0ma+WGj5pSwIKlQNXMzQmRjivMDDDBBnhp+bm4Q6LJtvVQI+Uj8YugQJAo8y5ZcGkTc95k3NDoyTY0dBuBFZ/5uzmucc5SjGFubbhtrxdBblruTugxbHfmg8/nMGNPIBjr87Pfy+Iv+AIDh6lONbbzaFNUoYWyqmgahzxIEAtiSBYFOnU6DQDPVeJ6iz45qlHB6usrBsek5QaBqlOBPHWba9uKCIo+caW4wdsUbF3QRrzvoMpsxhsA3miooK6p+7vGyLCCAXYNFAO6KdnP3rtfiWcM1uwf4q7c+k/e/5ppGd9p60N7PMhl1HhMRWX1rJxIg56W1S4wx4NeDQB26g+UDr5EyvhZs6c1RNulFfb3YKkDoylQ7tAqXDaowmGYCUSXsEARaSG2o68z9AISTB4myTAx35kkAqsx9vQPGZ2rYaIbIS4NAxqR1tpaDMoFWx9kKi7bWS4tzcwvi29okM7WY6WoM7uzdwaBZE2jb2DcIJtNgUhR37vxViRI+9OWH+duP/QlTB+9qW3//kXG2MMZMIW2f/IobLp71fzrrYQDZxZOGmMxSCv2O3fJElks9yGhts6bPhVuaU1q39ecb52XPmsZ52LPNQv62Qxa7iIisDgWBNgjPGLb05Qj9tFPY2WoCQVqDZa0IfQ+XS9t/ey0dwoKkSmQUBNosbHGQPYUKBRuRy5fmrDfG8NMvvIife8mlHV6d+td9PwOAMx5xrcLETESpfBSAKnMDO4lznJiskqNC7BUaAaDSPN2mFksxoO4rhl7j9+DyfXPW29o0k5WIKEnAxecs5G1zaYXy75/5FJf87S2QZK+dJc6KQv/bwyf5s/C3uPATt7atv//wBNvMGK53O541POvSXe3fZwGDx7dW035kjr68ikLLymqtCVQP9mzvb968ee5FI40zk2cNgWco5Twu29bb2N63VhlrIiJdsnYiAXJerDX05gIGigE9Ob85pWG+INAae+PN9aRTLPzyyeYyV6bmaTrYZmFKI/RVDrPdnMLLxsNsL7lyGy+7avv8O7n4xfx09acwLsaefIBHT0yyw6RjquJ8yrW4bfPEpZlABaokfoGenE8h8JatZa2CQN1XyvnkfIu14JcG56y3tUnKtZhKLcG65Kw1gQBsrhmgtHGFC//nDxN1mg6WOGqRwyVzu9IBTFYiBpgkKQwT+oaw0NO2fiFDJ/R1ESVz9eSXJ5NRZD5+y3Sw1lPQ/3jdtbz+xj3sH+3BmGbx59C39BeCtgw1zzNr6oakiMhmorPvBlIIPUZ6cgz3tBRT7jAdDFhT3cEAcjufBsD+/+81hGceo//hT3Gpe4TIKgi0aYymLbKNi+DGH++4Sb0TyXz2j/Zwj7sAAHf4Lt71sTvYYtLaLT4xU5X2C/IkcZzJgkDOL5AL7Lz1ZZZC08G6L+9bfM8SepawQ3DRq6X1eiq1BI9zZwL19bVPKSsev6NjECh2jlqcUIxOz1mXJI6ZWkzBVDBBgdDz8HLt2W8LHTrF3PJkrcnGoSk2stIamUDWtN00+f6rd/D6Z+7BmvT9r15/cqgYMlBsb/ThGbOmShOIiGwmaysSIOfNs4ac70G9HfE8HWbW2ofE3Xv2N77e/rVfYc+X3gVAjlq3DklWmdn+9OaTwb0dtzlXS+wLR3t41G2navNMP3EHU5WYXmYA6DfTTM9Mz3nNmZkaBVOGoEDo2Xk7TS2FYkDd53tpYM/3LPmeQR556Ufa1nvVMwBU4wSPBHOOTCA/zBP17GhbFneoCeQcPHx8kiHG56w7PVNjuhpRoApBkdC3ePnZQaCFDZ70fC8isnrq56dS6DU60tUVQq8xTbXeidb37JzPnb5nKIXKWhMR6QYFgTaqeiuaeTKB1prnXTzK7cklAPQd/CIAJ10f9w69qJuHJavI23oFAKeu+NF5tzlX7HKoFFLKhxzzd5CffJKrzUP8kPeVxvqZ8RPt+xt7kPLEGAWq2FyJ0LfkfGUCbTTF0Me3hsC3lHffzIPPeT8PJDsB8GeOA2m3Lo/knJlAAIdu+1f++bkfBWAqHOlYE6iWxPz2P32XEXOmbXmSOE5PV5mpxBSp4IIShcDDzzWng2nYiMh64HuWwqwaemlJgnom0Pwns8FiqKmLIiJdoiDQhlXPBFofQaDdQ0X+08D7+MXSexvLnlP5AA9vf3kXj0pWkxfmufeNdzF2y6/Pu01rF7z57BoscsL1ElbG+FTul8mbZjZZZeJU42vnHDv/6mZec+BtFKjg5Urkl7EeEOhifq3oyfmN+jmBZ5i+7Id5SfW3+Mroa/Gnj0M2dcuSYBYQBLJBAe+CZ/Jn0UuwcaVji/gHjkxydLzC5b3ltuW1JKEaJ1Qr01jjSIIChdDDC9Ii+Kf3vXxZA5EiIquplPOxJq0DdLbSA2nBaJ3rRES6QSH4jaqeCXSOdsdrhTGGS3cM8nd3X8Jbv++jlCtlyp/N0btMrbplncgP0lecvyNc4FkK55iutWuwwJFTPVzgPTFnXTTZLDz+0NEJLga2lh/luOmnUOxZ9g+k6ty0NnjW0JcP8KzB2rSuVCH0GDOD2LiMrU1QjTz6cAvKBDIG+vI+M7ZILp4iiudmAt3zVDoN7NWX5eE72cK4RhQbapGjVk47IQb5UqN98gNv/A5x2EPvMnWnExFZbYXAazRh0HQvEZG1aX1ECGQJ5t6ZXusu2tJDNUq4v3AtT408B4C+wvrIZJLl4XuG3rOkh+cD75zp47sHCxyOeshXm1k/1SBtDR5NjTWXVZsZGkVTgaDZ3na5rLHSW5taIfQIPIuXpWcVQ58TpN3C/OnjVOMEaxKMPfdFS70tsgt7sSQcOnZ8zjZ3PnGagULAgGuZDlYeJ8rqB0XlKQDCYm9jtSkNUywUdOEkIuuWZ02jtp4K14uIrE0KAsmaccX29EL9wKEzTFXSu0iaL7659OWDsxZmzgf2nIVwdwwUGHO9FJLJxrIoSC+03cwpnHMkiYPaTHO/VCEszdnX+VrOqWWyPOrFSUd7czxaTn/nwfQRqlGCT7yw6WDZ73XfzrRA9OGDj7ZNCTszU+OfHzzOy/bEDD70ieYLy6cb9YOq0xMAmKCl5bxNM5TOFggVEVnr6udZTfcSEVmbdHbeqBrTwdbPReieoSK7Bwt89eGTjVbefXllAm0mW3rnnwoGLKhz1/b+PGP0tS2Lg6zo7sxpJisRUeKwUTMTyCNRJtAmYbNfyoWjJf759AixX2TkwB81uoNZbyFBoPTfy/emxaVv+9ar2opDP35yimqU8PPH3kMwfaz5wtoMcXZuNrW0U53NFRurPZNOW/N14SQiIiIiK0SfNDes+l3p9XMVaozhpgtHuPupMxw+k16gD2g62KZizxE1WchdxW39eU669iAQYZHEGWz5FOPliChJsNFM2yYmKLLclAm09njG4HuGS7b2crDay6Hdr6Dv4Be54cu3ERAtaDqYyQqUt7Y8bm0QVstqBPXPHGx/YVRpNm6M0/Fnwua4W0jhcxERERGR86Eg0Ea1DjOBPGu4af8wiYPf/fJDAPQWNC1CFmekJ8e039+2LLAwThFbOUMtSpgsR3OCQORWIgi07LuU8+RZQyn0eea+IQC+W07HyhXVu3iafXxBmUBeNm1ravtNjWVRHDe+rkbp+bccDra/MK7gJo6SP3EAr5EJ1JwOZkxzqpmIiIiIyEpQEGjDWn+ZQNakUzRec/3uxrKhYtjFI5L1qJTz8Xu3tC3zSTjtegiqZ4idY6ISNabj1K1EJpAu6Nee0LfkAsv+0R6eccEg/3Yi37beLqgwdNoBJ+kZ5WMDbwcgKbfUoMrSgiqzg0BRhdGP3srF//BybJJmO9qWWlRe1rlMRERERGSlKAi0Ua3DTKB6x53bnnUBH3/7s/jQG55Br2oCySKFvqV3eFvbMjN6KeOUCGtniBPHTDWmPDPZvs2KBIGWfZdynvKBJfTSxw9du5N7J9unDlpvYdPBcr4l8Cy1/DAAyeTRxvpanJCjSr6SdqP74y2/BEBUK+NNpdsNROk6L9fT/N7GaMyIiIiIyIpSEGjDWoeZQC1XP8XQZ+dgYT3FsGSNCD2LKTQzMJ583m8Sv+z9TJhecrW0RbdzMD4+3vY6Ey5/YWizjv7+Nouc71EIPXzP8PxLRzlO+9TBhQSBPGso5XzyvocrpkGg6sSxtOsc6XSwPw9+k1ztNCeueDPHC/sAiKrNYuT7ksfT75fva9uv6kiJiIiIyEpSEGijasSA1s8FRdDhFrin2+KySKFnue6C4cbzUxe/Ci/fw5TtIR+Nk2RZcpNTE22va63NslzW0Z/fplLP4tkxUOARt4N3VH+GA73PBSAIzh0EKoUe+cBjuCfElEYAmBo7wnQtrQsUJQk3efcC4FXP4AfplLOoWmns4wr7WPpFYaCxzNf5TkRERERWmIJAG9b6ywQqhB65oH1Iqj6GLJa1hldfv6tlgY81kOsdJqyNU4vSei3TWRDo8Wf8ItNbrsMOX7Tsx6LhuzYZYwi8ZtbNPyY30rPrynTdAs6Z9deVcj5B7ygAM6ePMVNNg0D17mAAUXErXpgGgeLJ443lTzOPU/F7wTYLUfueBoyIiIiIrCwFgTaqHdem/w5f2N3jWIRi6LN7sNh24awb47IUOb95YW1tetE+smUr/Uxy4MlTDD7wN/zA478OwNRlr+HhV/wDdlYx6eWgIObaVQ/kXLN7AABvWxoE4tDti9pPYSANApXPnGgEf6JaldgZTmy7maPX/Qe8IAdAfOqJxusCE1MNB9r25Vu9JYuIiIjIylL/7Y3qhrcxsf0mendf2e0jWbB62+VSzmeyHGEMqo8hS2Kt4b7b7sI5RyFIA0Lbt27He8jxxs9fSzU/2tg28Veu9pSCQGvf//tDVzE+U2PCpFO1TLC42lB9vQNUnI+bHiOK0wzMYOownnGc2PO9OD9PkGUCJZMn2l4b5wbanisTSERERERWmoJAG5UxMHppt49iSYZKIdUoIU7cuTcWmYctDVGLE/JZEMjvadYJCsvNaTnOz+OtULBGl/RrXzH0iGJHgs9Dr/gHLtq/uGmB/cWQ0/TgV05Ry1rDezOnAEgKab0gL5cGgezMWPuLWwqYg2oCiYiIiMjKU+75BrZesxD6CwH7R0sMFNUeXpbOswbPGkI/Pc3Z4lDb+m/61/H6oY+BsazULByri/o1r7X4fHnrdTCwe1Gv7yv4nHK9BNXTVGppEMglNQCsn57DgqzznF9Og0APJTsAMLPGpDIfRURERGSlKQi0ga3XIBDQ6NwjslT+rCAQpdG29SeTXrxSehG+nv9W5PwE3vm9DeZ8j3HTS652hjhx1OKEJKoCYL0w3SYXEjuDX0kzhB4L9gNgered1/cWEREREVksTQfbwHRdK5uZ7xmixBBmF/mmZ6Rt/eFaoZFtpoSdzas+XXCprDVM2l52RkeYAWZqMUmUZgKZLBNopCekQtjIBLp915u4dO8PYy/7XvrO67uLiIiIiCyOMoE2MGU3yGbmW4tvDbksE8ibFQQKXI2BQpqpoWk4m1d/IWhkiy1lGPTmfaa9fkrxOABTlQgX14NAIcbACy7dSmQDwngKgIEdF3H64h/GzKoJJCIiIiKy0pQJtIEpu0E2M98zeLFpBHhsrj3nYnd+htIFA+k6BYE2tcAzJM7gllCLvi8fUA766ZkZB+eYKEckcTodzFmfQugR+pYoyEN1EoBLd6c1gTTuRERERGS1KRNoA9MFhmxmvjVthZn9WbVf9rz4J7hx3zDWKmC62QWeZddgYclTaGvhAD4xtjZJNUpwUZSuMAF9+XRKWJh1CJtyOS7clgYkNe5EREREZLUpCLSBqTORbGaeNQRe82+g9e/hwNueYHLXLViTBksVMN3ciqFHKfSXHASK8+m0rkPf/BTOgYuamUB9hTTh1p94EoCSqTSmKOocLSIiIiKrTUEgEdmQfGvJee1Ffx96w1e573XfaDz3TNpBTDGgza0n72Nts4j4Yt1wxUUAfM99/xETV0jiZmHonD+38HS9Lb2CjyIiIiKy2hb0idcY873GmO8aYx4yxvxCh/VvMMbclT3+zRhz9fIfqojIwvleS3v4uv7dRKVmW26TZQHpYnxzqwdqSrmllcnbsnV742t/5kRLYeigsTwppoXJK3tfiJ8FgTyNOxERERFZZef8xGuM8YDfBW4FngS+aYz5tHPu3pbNHgVucc6dMsa8FPhD4JkrccAiIgvh27nBHc9a8gGUawnGkE0HU0aGpEZ7ckt6nSkON772p4/hshbx1msGgcbe9g2OnKmyZWSQQj0I5GnciYiIiMjqWkgm0I3AQ865R5xzVeBjwCtbN3DO/Ztz7lT29GvAruU9TBGRxTHZVK9WvjXkgzTrY9dgAc+m26g0i8DSa/TYllbv/szxRncw64fNbXK9uKCIZwy+Td96lQkkIiIiIqttIUGgncDBludPZsvm81bgs51WGGPeboy53Rhz+/Hjxxd+lCIiy8D3DMUwDQL15gOsNQz35OjNB+d4pcj8TM8I3+65BYBg+iiuEQRqjqt6uMcag59lAM0OUoqIiIiIrLSFBIE6fUp1HTc05gWkQaCf77TeOfeHzrnrnXPXj46OLvwoRUSWgWcNucBrZACVQp+enE8hnFu8V2ShPM/yj5f9Kokz1E4fxiRpi3g/aE4vqyf9WGsIPIsxNGoDiYiIiIisloUEgZ4Edrc83wU8NXsjY8zTgT8GXumcO7k8hycisnwCa/GtaQR9lIkhy8Gzhsu2D3HIjRAd+24jCBS0BYHas38Cz6pFvIiIiIisuoUEgb4JXGyM2WeMCYHXAp9u3cAYswf4JHCbc+6B5T9MEZHz53tpsehCoMwfWT6eMewbKXEXFzF06i7IuoOFQbMmUCMTKPs3HyytHb2IiIiIyPk456dQ51wE/BTwOeA+4G+cc/cYY95hjHlHttkvA8PA7xlj7jTG3L5iRywiskSBl2UCKQgky8izBt+zPFZ4GkPRUYaiY0R4BC2BntaaQABb+/JdOFIRERER2ezO2SIewDn3GeAzs5Z9qOXrtwFvW95DExFZXvUpOKoBJMvJGIMxcGroajgMV8X3khifvN8cZ3bWdLC8ApEiIiIi0gXKRxeRTaN+AR76OvXJ8vKsga1XUXE+uzlCbPy2mj/GwGApUDFoEREREekqXQmJiIicJ98ado4M8LDbCYAz7Ym2hnQaYr1AtIiIiIhINygIJCIicp58z7JnqMgxNwBAYmcFgQz4Vm+5IiIiItJd+kQqIiJynnxr2NafZ8wMAOBs0LbeGPA8ZQGJiIiISHcpCCQiInKefM9QyvlU8iPpAtte+NlgVA9IRERERLpOQSAREZHzlPe9tONXz1YAgnimbb0xzcLkIiIiIiLdoiCQiIjIeSrmPDxrCPq2AZCrnmpbb40ygURERESk+xQEEhEROU853yPwDAO7rwDA4NrWe9aoM5iIiIiIdJ2CQCIiIsvA9yxbL76u24chIiIiIjIvBYFERESWQeAZyFrDu1x/l49GRERERGQuv9sHICIishHk/LQu0D1vvIfdw0X6un1AIiIiIiKzKBNIRERkmRRDjyTsxeR6u30oIiIiIiJzKAgkIiKyTIqhB6Ai0CIiIiKyJikIJCIiskzy9SBQl49DRERERKQTBYFERESWSd6vZwJ1+UBERERERDpQEEhERGSZBF4a/THKBRIRERGRNUhBIBERkWVijMGzRplAIiIiIrImKQgkIiKyjHxPESARERERWZsUBBIREVlGygQSERERkbVKQSAREZFlFFirmkAiIiIisiYpCCQiIrKMPE+ZQCIiIiKyNikIJCIisoxCz2IVBRIRERGRNUhBIBERkWWUC6wmg4mIiIjImqQgkIiIyDLK+56mg4mIiIjImuR3+wBEREQ2ktDX/RURERERWZv0SVVEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBNQEEhEREREREREZBMwzrnufGNjjgOPd+Wbr08jwIluH4RsOhp30i0ae9INGnfSLRp70g0ad9INGner4wLn3GinFV0LAsniGGNud85d3+3jkM1F4066RWNPukHjTrpFY0+6QeNOukHjrvs0HUxEREREREREZBNQEEhEREREREREZBNQEGj9+MNuH4BsShp30i0ae9INGnfSLRp70g0ad9INGnddpppAIiIiIiIiIiKbgDKBREREREREREQ2AQWBlsAYs9sY8yVjzH3GmHuMMe/Olg8ZYz5vjHkw+3cwWz6cbT9pjPlgy356jTF3tjxOGGN+Z57v+QxjzAFjzEPGmP9ujDHZ8v/W8voHjDGn53n9zcaYbxtjImPMqzqs7zPGHGo9Pll7NtrYM8bELfv49PL8lGS5bcBxt8cY80/Z/+deY8zeZflBybLbSGPPGPOCWcdQNsb8wLL9sGTZbKRxl637zez/cV/rvmXt2YBj733GmLuzx48sz09Jlts6HXf/waSf4e4yxnzBGHNBy7o3Zcf8oDHmTcv3k9pAnHN6LPIBbAeuy77uBR4ArgB+E/iFbPkvAO/Lvi4BzwXeAXzwLPv9FnDzPOu+AdwEGOCzwEs7bPMu4E/nef1e4OnAXwKv6rD+A8BHz3Z8enT/sdHGHjDZ7Z+pHpty3H0ZuDX7ugcodvtnrMfmGHst2wwBYxp7a/OxkcYd8Gzg/wBe9vgq8Pxu/4z12BRj7+XA5wE/O87bgb5u/4z12DDj7gX191DgJ4CPZ18PAY9k/w5mXw92+2e81h7KBFoC59xh59y3s68ngPuAncArgb/INvsL4Aeybaacc/8KlOfbpzHmYmAL8JUO67aTnjS/6tLR/Zf1fc/yOuCv5znmx5xzdwFJh/0/A9gK/NN8xydrw0Ybe7I+bKRxZ4y5AvCdc5/Ptpt0zk3Pd5zSXRtp7M3yKuCzGntr0wYbdw7IAyGQAwLg6HzHKd21wcbeFcA/O+ci59wU8B3ge+c7TumedTruvtTyHvo1YFf29UuAzzvnxpxzp0gDkRp3sygIdJ5MOo3gWuDrwFbn3GFI/5hIB/5CvY40gtmpUvdO4MmW509my1qP4wJgH/DFRXxPjDEW+K/AexbzOum+9T72MnljzO3GmK8ZTYtYFzbAuLsEOG2M+aQx5g5jzG8ZY7xF7kO6YAOMvVavZZ4PtrK2rPdx55z7KvAl4HD2+Jxz7r7F7EO6Y72PPdKgz0uNMUVjzAhp5sbuRe5DVtk6HXdvJc0mqu/74Nn2LWl6niyRMaYH+DvgZ5xz4+c5xfq1wG3zfasOy2b/Qb0W+IRzLl7k930n8Bnn3EFNEV8/NsjYA9jjnHvKGLMf+KIx5oBz7uEl7EdWwQYZdz7wPNIPOE8AHwfeDPzJIvcjq2iDjL30G6R3QK8CPreU18vq2QjjzhhzEXA5zbvknzfG3Oyc+5fF7EdW10YYe865fzLG3AD8G3CcdCpitJh9yOpaj+POGPOjwPXALYvY96anTKAlMsYEpH8kH3HOfTJbfDT7cFf/kHdsgfu6mnR6wrey515LQaz3kkYwd7W8ZBfw1KzdtN1VNMb8Wn0f5/j2NwE/ZYx5DPht4I3GmN9YyHFLd2ygsYdz7qns30dI67Rcu5DjltW3gcbdk8AdzrlHnHMR8A/AdQs5bumODTT26l4D/L1zrrbA7aULNtC4+0Hga9nU10nSu+XPWshxS3dsoLGHc+7XnHPXOOduJb04f3Ahxy2rbz2OO2PMi4FfAl7hnKtki5+kPeOs0743PQWBlsCkYdE/Ae5zzr2/ZdWngXoF8jcBn1rgLtvmOzrn4uyEeY1z7pez9LsJY8yzsu/9xtZ9G2MuJS189dWWffxSfR9n+8bOuTc45/Y45/YC/xfwl865X1jgccsq20hjzxgzaIzJZV+PAM8B7l3gccsq2kjjDvgmMGiMGc2evxCNuzVrg429jscga88GG3dPALcYY/zsIu8W0nofsgZtpLGXXfgPZ18/nbR4tOqPrkHrcdwZY64F/oA0ANQanPoc8D3ZdcYg8D0o83YutwaqU6+3B2k1dAfcBdyZPV4GDANfII1yfwEYannNY6SdQCZJI5RXtKx7BLjsHN/zeuBu4GHgg4BpWfcrwG+c4/U3ZN93CjgJ3NNhmzej7mBr+rGRxh5px5IDpHPGDwBv7fbPV4+NP+6ydbdm/5cDwJ8DYbd/xnpsmrG3FzgE2G7/bPXYHOOOtCPYH5AGfu4F3t/tn68em2bs5bMxdy9p4d5ruv3z1WNDjbv/TVrkvn68n25Z92PAQ9njLd3++a7Fh8l+UCIiIiIiIiIisoFpOpiIiIiIiIiIyCagIJCIiIiIiIiIyCagIJCIiIiIiIiIyCagIJCIiIiIiIiIyCagIJCIiIiIiIiIyCagIJCIiIiIiIiIyCagIJCIiIiIiIiIyCagIJCIiIiIiIiIyCbw/wMCZxsDGLw/TgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "nb_plts = len(dfs_test)\n", - "\n", - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_test):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m_best.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " #plt.title(f\"Model Performance on test data: {test_exps[idx]}\")\n", - " plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6.816164274131061" - ] - }, - "execution_count": 75, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.log10(np.linalg.cond(m_best.kernel(np_input_train)))" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 76, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m_obj_value(m_best)" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
time_htime_h_1time_h_2time_h_3time_mtime_m_1time_m_2time_m_3SolRadSolRad_1OutsideTempOutsideTemp_1SimulatedHeat_1SimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-06-01 20:15:00+02:000.8695650.8695650.8695650.8695650.2727270.1818180.0909090.0000000.0701930.0521750.5294120.5294120.2099430.4529970.4615550.500451
2017-06-01 20:20:00+02:000.8695650.8695650.8695650.8695650.3636360.2727270.1818180.0909090.0722660.0701930.5294120.5294120.2099430.4336600.4529970.461555
2017-06-01 20:25:00+02:000.8695650.8695650.8695650.8695650.4545450.3636360.2727270.1818180.0617550.0722660.5294120.5294120.0479300.4102200.4336600.452997
2017-06-01 20:30:00+02:000.8695650.8695650.8695650.8695650.5454550.4545450.3636360.2727270.0443500.0617550.5294120.5294120.0479300.3958730.4102200.433660
2017-06-01 20:35:00+02:000.8695650.8695650.8695650.8695650.6363640.5454550.4545450.3636360.0332650.0443500.5294120.5294120.0479300.3888660.3958730.410220
...................................................
2017-07-10 05:35:00+02:000.2173910.2173910.2173910.2173910.6363640.5454550.4545450.3636360.0000000.0000000.2941180.2941180.1295600.2335370.2716850.284230
2017-07-10 05:40:00+02:000.2173910.2173910.2173910.2173910.7272730.6363640.5454550.4545450.0000000.0000000.2941180.2941180.1295600.2274940.2335370.271685
2017-07-10 05:45:00+02:000.2173910.2173910.2173910.2173910.8181820.7272730.6363640.5454550.0000000.0000000.2941180.2941180.1295600.2234030.2274940.233537
2017-07-10 05:50:00+02:000.2173910.2173910.2173910.2173910.9090910.8181820.7272730.6363640.0000000.0000000.2941180.2941180.1295600.2137530.2234030.227494
2017-07-10 05:55:00+02:000.2173910.2173910.2173910.2173911.0000000.9090910.8181820.7272730.0000000.0000000.2941180.2941180.1295600.2272320.2137530.223403
\n", - "

2616 rows × 16 columns

\n", - "
" - ], - "text/plain": [ - " time_h time_h_1 time_h_2 time_h_3 time_m \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.869565 0.869565 0.869565 0.869565 0.272727 \n", - "2017-06-01 20:20:00+02:00 0.869565 0.869565 0.869565 0.869565 0.363636 \n", - "2017-06-01 20:25:00+02:00 0.869565 0.869565 0.869565 0.869565 0.454545 \n", - "2017-06-01 20:30:00+02:00 0.869565 0.869565 0.869565 0.869565 0.545455 \n", - "2017-06-01 20:35:00+02:00 0.869565 0.869565 0.869565 0.869565 0.636364 \n", - "... ... ... ... ... ... \n", - "2017-07-10 05:35:00+02:00 0.217391 0.217391 0.217391 0.217391 0.636364 \n", - "2017-07-10 05:40:00+02:00 0.217391 0.217391 0.217391 0.217391 0.727273 \n", - "2017-07-10 05:45:00+02:00 0.217391 0.217391 0.217391 0.217391 0.818182 \n", - "2017-07-10 05:50:00+02:00 0.217391 0.217391 0.217391 0.217391 0.909091 \n", - "2017-07-10 05:55:00+02:00 0.217391 0.217391 0.217391 0.217391 1.000000 \n", - "\n", - " time_m_1 time_m_2 time_m_3 SolRad SolRad_1 \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.181818 0.090909 0.000000 0.070193 0.052175 \n", - "2017-06-01 20:20:00+02:00 0.272727 0.181818 0.090909 0.072266 0.070193 \n", - "2017-06-01 20:25:00+02:00 0.363636 0.272727 0.181818 0.061755 0.072266 \n", - "2017-06-01 20:30:00+02:00 0.454545 0.363636 0.272727 0.044350 0.061755 \n", - "2017-06-01 20:35:00+02:00 0.545455 0.454545 0.363636 0.033265 0.044350 \n", - "... ... ... ... ... ... \n", - "2017-07-10 05:35:00+02:00 0.545455 0.454545 0.363636 0.000000 0.000000 \n", - "2017-07-10 05:40:00+02:00 0.636364 0.545455 0.454545 0.000000 0.000000 \n", - "2017-07-10 05:45:00+02:00 0.727273 0.636364 0.545455 0.000000 0.000000 \n", - "2017-07-10 05:50:00+02:00 0.818182 0.727273 0.636364 0.000000 0.000000 \n", - "2017-07-10 05:55:00+02:00 0.909091 0.818182 0.727273 0.000000 0.000000 \n", - "\n", - " OutsideTemp OutsideTemp_1 SimulatedHeat_1 \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.529412 0.529412 0.209943 \n", - "2017-06-01 20:20:00+02:00 0.529412 0.529412 0.209943 \n", - "2017-06-01 20:25:00+02:00 0.529412 0.529412 0.047930 \n", - "2017-06-01 20:30:00+02:00 0.529412 0.529412 0.047930 \n", - "2017-06-01 20:35:00+02:00 0.529412 0.529412 0.047930 \n", - "... ... ... ... \n", - "2017-07-10 05:35:00+02:00 0.294118 0.294118 0.129560 \n", - "2017-07-10 05:40:00+02:00 0.294118 0.294118 0.129560 \n", - "2017-07-10 05:45:00+02:00 0.294118 0.294118 0.129560 \n", - "2017-07-10 05:50:00+02:00 0.294118 0.294118 0.129560 \n", - "2017-07-10 05:55:00+02:00 0.294118 0.294118 0.129560 \n", - "\n", - " SimulatedTemp_1 SimulatedTemp_2 SimulatedTemp_3 \n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 0.452997 0.461555 0.500451 \n", - "2017-06-01 20:20:00+02:00 0.433660 0.452997 0.461555 \n", - "2017-06-01 20:25:00+02:00 0.410220 0.433660 0.452997 \n", - "2017-06-01 20:30:00+02:00 0.395873 0.410220 0.433660 \n", - "2017-06-01 20:35:00+02:00 0.388866 0.395873 0.410220 \n", - "... ... ... ... \n", - "2017-07-10 05:35:00+02:00 0.233537 0.271685 0.284230 \n", - "2017-07-10 05:40:00+02:00 0.227494 0.233537 0.271685 \n", - "2017-07-10 05:45:00+02:00 0.223403 0.227494 0.233537 \n", - "2017-07-10 05:50:00+02:00 0.213753 0.223403 0.227494 \n", - "2017-07-10 05:55:00+02:00 0.227232 0.213753 0.223403 \n", - "\n", - "[2616 rows x 16 columns]" - ] - }, - "execution_count": 77, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_input_train" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Multistep prediction" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [], - "source": [ - "df_input = dfs_gpr_test[0].drop(columns = dict_cols['u'][1] + dict_cols['y'][1])\n", - "df_output = dfs_gpr_test[0][dict_cols['y'][1]]" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [], - "source": [ - "idx = 1\n", - "nb_predictions = 10\n", - "N_pred = 8" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 80, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAFlCAYAAACqbgrWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABFc0lEQVR4nO3deXyU5b338e8vGxAgLLJJyAKIIIqKRhRE3NkVqFoXrEuXHPTUanva6il9upwenqe2nqJ1OZpjldZyRGvZhARwqwJCJaCIgmxZ2QMIAULIdj1/ZBKzmoEkc89kPu/XK6/M3HPfM7+5DHG+ue77+plzTgAAAACA4BfhdQEAAAAAAP8Q4AAAAAAgRBDgAAAAACBEEOAAAAAAIEQQ4AAAAAAgRBDgAAAAACBERHldQEN69OjhkpOTvS4DAAAAADyxfv36g865nnW3B2WAS05OVmZmptdlAAAAAIAnzCy3oe1+nUJpZuPNbKuZ7TCzxxp4/BozO2pmn/i+flHjsa5m9oaZfWFmW8xs5Jm/DQAAAAAIX03OwJlZpKRnJd0oaZekdWa22Dm3uc6uK51zkxt4iqckLXPO3WpmMZJim1s0AAAAAIQjf2bgRkja4ZzLcs6VSJonaYo/T25mcZLGSPqTJDnnSpxzR86wVgAAAAAIa/4EuHhJ+TXu7/Jtq2ukmW00swwzO9+3bYCkAkkvm9nHZvaimXVs6EXMLNXMMs0ss6Cg4HTeAwAAAACEBX8CnDWwzdW5v0FSknPuIklPS1ro2x4l6RJJ/+2cGy7phKR619BJknMuzTmX4pxL6dmz3mIrAAAAABD2/AlwuyQl1LjfT9Kemjs45wqdc8d9t9MlRZtZD9+xu5xz//Tt+oYqAx0AAAAA4DT5E+DWSRpkZv19i5DcIWlxzR3MrI+Zme/2CN/zHnLO7ZOUb2aDfbteL6nu4icAAAAAAD80uQqlc67MzL4vabmkSEkvOec+N7MZvsefl3SrpAfMrEzSSUl3OOeqTrN8SNJcX/jLknR/K7wPAAAAAGjz7KucFTxSUlIcjbwBAAAAhCszW++cS6m73a9G3gAAAADQmLlzNys5OU0REU8oOTlNc+cG/1VToViz5McplAAAAADQmLlzNys1dYWKisokSbm5hUpNXSFJmj59qJelNSoUa67CKZQAAAAAzlhycppycwvrbe/Vq4PmzJngQUVNu+++DB04cLLe9qSkOOXkpHpQUX2NnULJDBwAAACAM5aXVz+8SdKBAyc1ceL8AFfTPI29l2BCgAMAAABwRsrLK9SpU4yOHSup91ifPrFauHCaB1U1berUBdq3r6je9sTEOA+qOT0EOAAAAACn7eTJUt19d7qOHStRVJSprOyrS7NiY6P0xBPX6PLLz/awwsY98cQ1ta6BkyprnjVrtIdV+YdVKAEAAACcloKCIl133etasGC7Zs++VnPmTFBSUpzMKq8jS0sbG9SLgUyfPlRpaWNDquYqLGICAAAAwG/bth3WxInztXv3cc2dO1Hf+Ma5XpfUJrGICQAAAIBmWb16t26+eYEiIkzvvfdNXXFFX69LCjucQgkAAACgSX/721Zdf/3rOuusDlq7djrhzSMEOAAAAACNcs7p97//SN/85ptKSemjDz+8UwMHdvW6rLDFKZQAAAAAGlRWVqGHH35Xzz33iW677Vz95S8T1b49EcJLjD4AAACAek6cKNEddyzRkiVZ+slPLtNvfztGERHmdVlhjwAHAAAAoJZ9+05o8uT5+vjjA3r22ev14IPDvS4JPgQ4AAAAANW2bDmkCRP+roKCIi1aNFWTJw/0uiTUQIADAAAAIEn6xz/yNG3aIrVrF6n3379DKSl9vC4JdbAKJQAAAADNnbtZY8e+obPP7qi1a6cT3oIUAQ4AAAAIY845zZq1Vnffna4rr4zX6tV3KTm5i9dloRGcQgkAAACEqdLScj344Nt68cVNmj79PP3pT+PUrh0RIZjxXwcAAAAIQ4WFp/TNb76p5ctz9POfX6H/+I8rZUabgGBHgAMAAADCzO7dxzRp0nx99tlBvfjiOH3nO8O8Lgl+IsABAAAAYeTTTws0adJ8HTlSrKVLv6Fx4/p7XRJOA4uYAAAAAGHirbdyNHr0q3LOadWqOwlvIYgABwAAAISBl1/epIkT56t//y5au3a6Lrqol9cl4QwQ4AAAAIA2zDmnX/xilb797eW69toErVx5h/r16+x1WThDXAMHAAAAtFElJeX67neX65VXNuv++y/QCy/cqOjoSK/LQjMQ4AAAAIA26MiRYt1yy2K9+26efvObKzVz5hW0CWgDCHAAAABAG5Obe1STJs3Xtm1f6i9/maBvfet8r0tCCyHAAQAAAG3Ihg37NWnSfJ08WaZly27Vddclel0SWhCLmAAAAABtRHp6lsaMmaeYmAitXn0n4a0NIsABAAAAbcALL2zUTTct0ODB3bV27XSdf34Pr0tCKyDAAQAAACGsosLpscc+0IwZb2n8+GS9//7tOvvsTl6XhVbCNXAAAABAiCouLtP99y/TvHlfaMaMi/T009crKoo5mraMAAcAAACEoMOHT2rKlIVatWq3Hn98jH7yk8toExAG/IrnZjbezLaa2Q4ze6yBx68xs6Nm9onv6xd1Ho80s4/NbElLFQ4AAACEq6ysIxo16lV99NE+zZs3WT/96QjCW5hocgbOzCIlPSvpRkm7JK0zs8XOuc11dl3pnJvcyNM8LGmLpLjmFAsAAACEu48+2qvJk+ervNzpnXdu0+jR/bwuCQHkzwzcCEk7nHNZzrkSSfMkTfH3Bcysn6RJkl48sxIBAAAASNKiRTt0zTWvqVOnGH344V2EtzDkT4CLl5Rf4/4u37a6RprZRjPLMLOard6flPRTSRVf9yJmlmpmmWaWWVBQ4EdZAAAAQPj44x83aNq0hRo2rIfWrr1Lgwd397okeMCfANfQybSuzv0NkpKccxdJelrSQkkys8mSDjjn1jf1Is65NOdcinMupWfPnn6UBQAAALR95eUV+uEP39PDD7+rKVPO0Xvv3a5evTp6XRY84s8qlLskJdS430/Snpo7OOcKa9xON7PnzKyHpCsl3WxmEyW1lxRnZn91zt3d/NIBAACAtmfu3M2aOXOV8vIK1a9fZ/XuHavMzP16+OFL9F//dY0iI2kTEM78+a+/TtIgM+tvZjGS7pC0uOYOZtbHfMvemNkI3/Mecs79u3Oun3Mu2Xfcu4Q3AAAAoGFz525WauoK5eYWyjkpP/+YMjP36+67z9OTT15HeEPTM3DOuTIz+76k5ZIiJb3knPvczGb4Hn9e0q2SHjCzMkknJd3hnKt7miUAAACArzFz5ioVFZXV275y5W4PqkEwsmDMWSkpKS4zM9PrMgAAAICAioh4Qg19PDeTKip+HPiC4BkzW++cS6m7nTlYAAAAIEgkJjbcNrmx7Qg/BDgAAAAgSMyaNVoxMZG1tsXGRmnWrNEeVYRgQ4ADAAAAgsT06UN12WW9FRFhMpOSkuKUljZW06cP9bo0BAl/2ggAAAAACICKCqdt277UnXcO0V//OsnrchCEmIEDAAAAgsT69ftUUHBSEyb097oUBCkCHAAAABAk0tOzZSaNG5fsdSkIUgQ4AAAAIEhkZGTrssv6qEePWK9LQZAiwAEAAABB4ODBIn300V5NnDjA61IQxAhwAAAAQBBYsSJXzonr3/C1CHAAAABAEEhPz1KPHh2UktLH61IQxAhwAAAAgMcqKpyWL8/RuHHJiogwr8tBECPAAQAAAB7LzNyngwdPcv0bmkSAAwAAADyWkVHZPmDs2CSvS0GQI8ABAAAAHktPz9KIEWfTPgBNIsABAAAAHiooKNK6dftYfRJ+IcABAAAAHlqxIkfOSRMnEuDQNAIcAAAA4KGMjGz17NlBl15K+wA0jQAHAAAAeKS8vELLluVo3Lj+tA+AXwhwAAAAgEcyM/fr0KGTXP8GvxHgAAAAAI9kZGTJTBo3LtnrUhAiCHAAAACARzIysnX55WfrrLM6eF0KQgQBDgAAAPAA7QNwJghwAAAAgAeWL69sH0CAw+kgwAEAAAAeoH0AzgQBDgAAAAiw8vIKLV+eo/HjaR+A00OAAwAAAAJs3bp9tA/AGSHAAQAAAAGWkZGtiAjT2LHJXpeCEEOAAwAAAAKM9gE4UwQ4AAAAIIAOHDihzEzaB+DMEOAAAACAAKJ9AJqDAAcAAAAEUEZGtnr1itUll/T2uhSEIAIcAAAAECBftQ9Ipn0AzggBDgAAAAiQdev26fDhYk2YMMDrUhCiCHAAAABAgKSnZ/naByR5XQpClF8BzszGm9lWM9thZo818Pg1ZnbUzD7xff3Ctz3BzN4zsy1m9rmZPdzSbwAAAAAIFVXtA7p3p30AzkxUUzuYWaSkZyXdKGmXpHVmttg5t7nOriudc5PrbCuT9G/OuQ1m1lnSejN7q4FjAQAAgDatsn3Afv3mN1d6XQpCmD8zcCMk7XDOZTnnSiTNkzTFnyd3zu11zm3w3T4maYuk+DMtFgAAAAhVy5fnSKJ9AJrHnwAXLym/xv1dajiEjTSzjWaWYWbn133QzJIlDZf0z4ZexMxSzSzTzDILCgr8KAsAAAAIHenple0Dhg+nfQDOnD8BrqH1TV2d+xskJTnnLpL0tKSFtZ7ArJOkv0t6xDlX2NCLOOfSnHMpzrmUnj17+lEWAAAAEBrKyyu0YgXtA9B8/gS4XZISatzvJ2lPzR2cc4XOueO+2+mSos2shySZWbQqw9tc59z8FqkaAAAACCEffVTZPmDiRNoHoHn8CXDrJA0ys/5mFiPpDkmLa+5gZn3MzHy3R/ie95Bv258kbXHO/aFlSwcAAABCQ0ZGZfuAG2+kfQCap8lVKJ1zZWb2fUnLJUVKesk597mZzfA9/rykWyU9YGZlkk5KusM558xstKRvSdpkZp/4nvJnvlk6AAAAICykp2friitoH4DmazLASdWnRabX2fZ8jdvPSHqmgeNWqeFr6AAAAICwsH//Ca1fT/sAtAy/GnkDAAAAODNV7QO4/g0tgQAHAAAAtKL09Cz17h2riy/u5XUpaAMIcAAAAEArKSur0IoVuRo/vj/tA9AiCHAAAABAK/noo7368stiTZjQ3+tS0EYQ4AAAAIBWkpGRrYgI09ixyV6XgjaCAAcAAAC0kvT0bI0c2VfdurX3uhS0EQQ4AAAAoBXs23dCGzbs5/RJtCgCHAAAANAKli/PliQCHFoUAQ4AAABoBRkZ2erTpyPtA9CiCHAAAABACysrq9Dy5TkaPz6Z9gFoUQQ4AAAAoIX98597deTIKU6fRIsjwAEAAAAtrKp9wI03JntdCtoYAhwAAADQwjIysjVqFO0D0PIIcAAAAEALon0AWhMBDgAAAGhBy5bRPgCthwAHAAAAtKCMjGydfTbtA9A6CHAAAABACykrq9CKFTkaP76/zGgfgJZHgAMAAABayNq1e2gfgFZFgAMAAABaSEZGtiIjTTfemOR1KWijCHAAAABAC6lsHxCvrl1pH4DWQYADAAAAWsDevcf18ccHOH0SrYoABwAAALQA2gcgEAhwAAAAQAuoah9w0UU9vS4FbRgBDgAAAGimsrIKvfVWriZMoH0AWhcBDgAAAGgm2gcgUAhwAAAAQDOlp1e2D7jhBtoHoHUR4AAAAIBmon0AAoUABwAAADTD3r3H9cknBzRxIqdPovUR4AAAAIBmoH0AAokABwAAADRDenq2+vbtpAsvpH0AWh8BDgAAADhDVe0Dxo9Ppn0AAoIABwAAAJyhNWv26OjRU5o4cYDXpSBMEOAAAACAM5SRka2oqAjaByBgCHAAAADAGUpPz9KoUX3VpUs7r0tBmPArwJnZeDPbamY7zOyxBh6/xsyOmtknvq9f+HssAAAAEIr27DmujRsLWH0SARXV1A5mFinpWUk3StolaZ2ZLXbOba6z60rn3OQzPBYAAAAIKVXtA7j+DYHkzwzcCEk7nHNZzrkSSfMkTfHz+ZtzLAAAABC0MjKyFR/fScOG9fC6FIQRfwJcvKT8Gvd3+bbVNdLMNppZhpmdf5rHAgAAACGjtLRcK1bkaPz4/rQPQEA1eQqlpIZ+Il2d+xskJTnnjpvZREkLJQ3y89jKFzFLlZQqSYmJiX6UBQAAAHhjzZo9Kiws4fo3BJw/M3C7JCXUuN9P0p6aOzjnCp1zx3230yVFm1kPf46t8RxpzrkU51xKz550sQcAAEDwon0AvOJPgFsnaZCZ9TezGEl3SFpccwcz62O+uWMzG+F73kP+HAsAAACEmoyMbF15Je0DEHhNnkLpnCszs+9LWi4pUtJLzrnPzWyG7/HnJd0q6QEzK5N0UtIdzjknqcFjW+m9AAAAAK1u9+5j2rixQL/97VVel4Iw5M81cFWnRabX2fZ8jdvPSHrG32MBAACAULVsWY4kacIE2gcg8Pxq5A0AAACgUkZGFu0D4BkCHAAAAOCn0tJyvfVWriZMoH0AvEGAa4Pmzt2s5OQ0RUQ8oeTkNM2du9nrkgAAANqEDz+kfQC85dc1cAgdc+duVmrqChUVlUmScnMLlZq6QpI0ffpQL0sDAAAIebQPgNcIcH6YO3ezZs5cpby8QiUmxmnWrNEtHoaccyouLtOJE6UqKqr6Xvt23cca2nf58mwVF5fXeu6iojL94AfvKiGhs849t7t6945lyh8AAOAMZGRka/ToeMXF0T4A3iDANaGhGa3vfne58vKO6dprExoIVI0HraYec+70aouOjlDHjtGKjY32fY+qF96qHD5crKuvfk2S1LlzjM49t1uNr+4699xuGjSoG71MAAAAGrF79zF9+mmBHn98jNelIIwR4Jowc+aq6vBWpbi4XD/72comj42NjaoXsDp2jFaPHh2UlBRX6/H6+9Y+pub9qv2joyPrvWZycppycwvrbY+P76SXXhqvbdsOa9u2L7Vt25dau3av5s37olZw7N07tjrQ1fwaOLCr2rXjxwUAAISvjIxsSeL6N3iKT+RNyMurH4YkyUxKT7+l0ZDWvn2UJ6cpzpo1utaMoVQZJB9/fIzGjk3W2LHJtfYvLi5TVtaR6lBX9bVkyU7t319UvZ+ZlJzcpVaoGzSo8ntiYpwiI1kPBwAAtG0ZGdmKj++kCy6gfQC8Q4BrQmJiXIMzWomJcRo/Pvj++lJ1bZ6/1+y1bx+loUN7aOjQ+r+Ijh49pe3bq0LdVzN3H364R8eOlVTvFxMTqXPO6VrvlMxzz+2mXr243g4AAIS+0tJyvf12rm6/fQifbeApAlwTGpvRmjVrtIdVfb3p04e2yCIrXbq0U0pKH6Wk9Km13Tmn/fuLaoW6bdu+1Nath5Wenq2Skq+uw4uLi6kX6qpm72pe/BuIhWIAAADOFO0DECwIcE043RmtcGBm6tOno/r06agxYxJqPVZeXqG8vMJ6p2R++OFuvfrqllrX2/Xp01HnnttNERHS6tV7VFpaIYnWBwAAIPikp2cpKipC11+f6HUpCHPmTnfpwwBISUlxmZmZXpeBFlZcXKadO49Un5K5dWtluFuzZo8qKur/HPbuHatdu2YoKorr6wAAgLcuvHCOzjqrg95773avS0GYMLP1zrmUutuZgUPAtG8fpfPP76Hzz699vV1ExBMN7r9/f5F69XpOEyb01+TJAzR+fH9169Y+EKUCAABU27XrmDZtOqjf/Y72AfAeAQ6ea2yhmB49OmjSpAFKT8/S//7vFkVGmq68Ml6TJw/Q5MkDNWRIdy4iBgAArW7ZMtoHIHhwbho8N2vWaMXG1v5bQmxslJ588lrNmTNBe/c+oDVr7tJjj12uo0dP6ac//UBDh76sc855UQ8//K7eeiun1sIpAAAALSk9PVv9+nWudxYR4AWugUNQOJ1VKPPzC7V0aZaWLMnSO+/kqbi4TJ06RWvcuGRNnjxQEyf2V69eHQP8DgAAQFtUUlKuHj2e1R13DFFa2livy0EYaewaOAIcQlpRUanefTdPS5ZkacmSndq9+7jMpBEjzq4+1fKii3pyqiUAADgj//hHnq699nUtWDBFU6cO8rochBECHNo855w2bizQkiU7tWRJlj76aK+ck+LjO2ny5IGaPHmArrsuUbGx0V6XCgAAQsSjj76v2bPX69Ch76tz5xivy0EYIcAh7Ozff0IZGdl6882dWrEiR8ePl6p9+yhdf32iJk8eoEmTBighIc7rMgEAQBAbNmyOevbsoHffpX0AAos2Agg7vXt31H33XaD77rtAp06V6YMPdmnJkiy9+eZOLV2aJUm66KKe1bNzI0acrYgITrUEAACV8vML9dlntA9AcGEGDmHHOacvvjhcfarl6tW7VV7u1LNnZduCyZMH6sYbkxQX187rUgEAgIf+538+VWrqCn322X2sQImA4xRKoBGHD5/U8uU5WrIkSxkZ2fryy2JFR0fo6qsTqhdCGTiwq9dlAgCAAPvGNxYpM3OfcnNTWRANAUeAA/xQVlahNWv2VM/Obd58SJI0ZEj36jA3alRfRUdHnlbrAwAAEFpKSsp11lnP6K67ztMLL9A+AIFHgAPOQFbWkeqec++9l6fS0gp17dpOQ4Z014YN+1VSUlG9b2xslNLSxgZ1iCN0AgDgn/fey9N119E+AN4hwAHNdOxYid5+O1dvvrlTf/7z56qoqP9vJzo6Qpdc0lvt2kXW+YpqYFtj209n38rtUVERTdY/d+5mpaauUFFRWfW2UAidAAB44ac/fV9PPkn7AHiHAAe0oIiIJ9TYP51x45JVXFymU6fKG/iqvb3l6rHqQNe+fcOhMDNzX4OvmZQUp5yc1BarBQCAtmDYsDnq1StW77zzTa9LQZiijQDQghIT45SbW1hve1JSnJYtu9Wv53DOqbS0osFg11jga2xb/cDY8PM1JC+v/vsAACCcVbUP+P3vr/a6FKAeAhxwBmbNGt3g6YizZo32+znMTDExkYqJiQzIqRnJyWkNhs6EhM6t/toAAISSjIxsSdKECf09rgSor+kLZwDUM336UKWljVVSUpzMKmfegv1aslmzRis2tv7fbAYP7q7y8ooGjgAAIDxlZGQrMbGzhg49y+tSgHqYgQPO0PTpQ4M6sNVVVWvVKpQJCZ01bFgPLV2arWnTFunVVyepY0cu0gYAhLeSknK9/Xaupk8fSu83BCUCHBBGGgqdzz33sR566F1dc81revPNb6hPn44eVQcAgPdWrdqt48dLOX0SQYtTKIEw9+CDw7Vo0VRt3nxIV1wxV5s3H/S6JAAAPJORkaXo6Ahdd12i16UADSLAAdDkyQP1wQd36NSpco0a9areey/P65IAAPBERka2xozpR+83BC0CHABJ0qWX9tHatXcpPr6Txo17Q6+88rnXJQEAEFB5eYX6/PNDnD6JoOZXgDOz8Wa21cx2mNljX7PfZWZWbma31tj2QzP73Mw+M7NXzax9SxQOoOUlJXXR6tV36qqr+umeezL0m9+skWusYzkAAG0M7QMQCpoMcGYWKelZSRMkDZV0p5nVW3rPt9/jkpbX2BYv6QeSUpxzF0iKlHRHy5QOoDV07dpeGRm36J57huoXv1it73xnuUpLG24CDgBAW1LVPuC882gfgODlzwzcCEk7nHNZzrkSSfMkTWlgv4ck/V3SgTrboyR1MLMoSbGS9jSjXgABEBMTqTlzJuiXvxypl1/+TBMnztfRo6e8LgsAgFZTUlKud97J1cSJA2gfgKDmT4CLl5Rf4/4u37Zqvpm2aZKer7ndObdb0hOS8iTtlXTUObeiOQUDCAwz069+daXmzBmvf/wjX6NHv6r8/EKvywIAoFXQPgChwp8A19CfIOpeFPOkpEedc7XOszKzbqqcresvqa+kjmZ2d4MvYpZqZplmlllQUOBHWQAC4d57L9CyZbcoL69Ql18+Vx9/vN/rkgAAaHHp6VmKiYmkfQCCnj8BbpekhBr3+6n+aZApkuaZWY6kWyU9Z2ZTJd0gKds5V+CcK5U0X9Kohl7EOZfmnEtxzqX07Nnz9N4FgFZ1/fVJWr36TkVHR+iqq+YpPT3L65IAAGhRGRnZuuqqeHXqRPsABDd/Atw6SYPMrL+ZxahyEZLFNXdwzvV3ziU755IlvSHpQefcQlWeOnmFmcVa5cnE10va0pJvAEBgXHBBT61dO12DB3fXzTcv0AsvbPS6JAAAWkReXqE2bz6kiRMHeF0K0KQmA5xzrkzS91W5uuQWSa875z43sxlmNqOJY/+pykC3QdIm3+ulNbtqAJ44++xOev/92zVuXLJmzHhLjz32gSoqaDMAAAhttA9AKLFg7PGUkpLiMjMzvS4DQCPKyir00EPv6PnnN+r22wdrzpwJat8+yuuyAAA4I1OmLNDGjQXKzv4eK1AiaJjZeudcSt3tfjXyBoCaoqIi9NxzN+h3vxuj117bqhtu+JsOHTrpdVkAAJy2U6fK9M47eZowoT/hDSGBAAfgjJiZfvKTEXr99ZuUmblPI0f+r3buPOJ1WQAAnJZVq3brxIlSrn9DyCDAAWiW224brHfe+aYOHy7WFVfM1dq1dRepBQAgeGVkZPvaByQ0vTMQBAhwAJrtyivjtWbNXerSpZ2uvfZ1/f3v27wuCQAAv6SnZ2nMmH7q2JH2AQgNBDgALWLQoG5as+YuDR/eS7fdtlh/+EOmgnGRJAAAquTmHtWWLYdZfRIhhQAHoMX07Bmrd965Tbfccq7+7d/+oR/84F2Vl1d4XRYAAA2qah8wcSIBDqGDAAegRXXoEK3XXrtJP/5xip555mNNm7ZIJ06UeF0WAAD1ZGRkKzk5ToMHd/e6FMBvBDgALS4iwvT731+jZ5+9XkuXZunqq1/Tvn0nvC4LAIBqtA9AqCLAAWg1Dz44XIsWTdWWLYd0xRVztXnzQa9LAgBAkrRyZWX7gAkTaB+A0EKAA9CqJk8eqA8+uEOnTpVr1KhX9d57eV6XBACAMjKyaB+AkESAA9DqLr20j9auvUvx8Z00btwbeuWVz70uCQAQ5jIysnX11bQPQOghwAEIiKSkLlq9+k6NHh2ve+7J0G9+s4Y2AwAAT+Tk0D4AoYsAByBgunZtr2XLbtU99wzVL36xWt/5znKVlpZ7XRYAIMxUtQ8gwCEURXldAIDwEhMTqTlzJqh//y769a/XKD//mN5442Z16dLO69IAAGEiIyNb/ft3oX0AQhIzcAACzsz0q19dqTlzxusf/8jX6NGvKj+/0OuyAABhoLJ9QC7tAxCyCHAAPHPvvRdo2bJblJdXqMsvn6uPP97vdUkAgDbugw92qaiojNMnEbIIcAA8df31SVq9+k5FRUXoqqvmKT09y+uSAABtWEZGtmJiInXttbQPQGgiwAHw3AUX9NTatdM1eHB33XzzAr3wwkavSwIAtFEZGdm65poE2gcgZBHgAASFvn076f33b9e4ccmaMeMtPfro+6qooM0AAKDlZGcf0Rdf0D4AoY0AByBodOoUo0WLpmnGjIv0u9+t05VXzlVi4guKiHhCyclpmjt3s9clAgBCGO0D0BbQRgBAUImKitBzz92gI0eKNW/e1urtubmFSk1dIUmaPn2oV+UBAEJYVfuAc8/t5nUpwBljBg5A0DEzrVmzt972oqIyzZy5yoOKAAChrri4TO++m6eJE2kfgNBGgAMQlPLyGu4L19h2AAC+zsqVtA9A20CAAxCUEhPjGtyekNA5wJUAANqC9PRstWsXqWuvTfS6FKBZCHAAgtKsWaMVG1v/Mt0hQ7p7UA0AIFTNnbtZyclpevLJ9TKTFizY7nVJQLMQ4AAEpenThyotbaySkuJkJiUlxWn8+GStWJGrp55a73V5AIAQMHfuZqWmrlBubuXp98XF5UpNXcGqxghp5lzw9VlKSUlxmZmZXpcBIMiUl1fottve1MKF27VgwVRNmXKO1yUBAIJYcnJadXirKSkpTjk5qR5UBPjPzNY751LqbmcGDkDIiIyM0F//OlGXXdZHd921RJmZ+7wuCQAQxFgQC20RAQ5ASImNjdbixdPUq1esJk+er9zco16XBAAIUo0tiNXYdiAUEOAAhJzevTtq6dJvqLi4XJMmzdfRo6e8LgkAEIRmzRqtiIjaPd9iY6M0a9ZojyoCmo8AByAkDR3aQ/PnT9HWrV/qllsWqaSk3OuSAABB5uKLe6miwqlLl3bVC2KlpY3V9OlDvS4NOGP11+gGgBBx3XWJevHFsbrvvmWaMeMt/elP42RmTR8IAAgLTz65Xu3bR2nHju+oR49Yr8sBWgQBDkBIu/feC7Rz5xH95jdrNXBgV82ceYXXJQEAgkBBQZFeeWWz7r33fMIb2hQCHICQ9+tfX6msrKP6+c9XacCALrrzzvO8LgkA4LH//u9PdOpUuR555FKvSwFalF/XwJnZeDPbamY7zOyxr9nvMjMrN7Nba2zramZvmNkXZrbFzEa2ROEAUMXM9Kc/jdOYMf10333LtHLlLq9LAgB4qLi4TM8++4kmTOiv8847y+tygBbVZIAzs0hJz0qaIGmopDvNrN6Vn779Hpe0vM5DT0la5pwbIukiSVuaWzQA1NWuXZQWLJii/v27aOrUhdq27bDXJQEAPPLqq1t04ECRfvSjej2QgZDnzwzcCEk7nHNZzrkSSfMkTWlgv4ck/V3SgaoNZhYnaYykP0mSc67EOXekuUUDQEO6d++gpUu/oYgI06RJ83XwYJHXJQEAAsw5p9mz12vYsB66/vpEr8sBWpw/AS5eUn6N+7t826qZWbykaZKer3PsAEkFkl42s4/N7EUz69iMegHgaw0c2FWLF09Tfv4xTZmyUMXFZV6XBAAIoHffzdOmTQf1yCOXsjIx2iR/AlxDP/muzv0nJT3qnKvbiClK0iWS/ts5N1zSCUkNXkNnZqlmlmlmmQUFBX6UBQANGzmyr155ZaI+/HCP7rsvQxUVdX9lAQDaqj/8IVO9esXqrrtY0Aptkz8BbpekhBr3+0naU2efFEnzzCxH0q2SnjOzqb5jdznn/unb7w1VBrp6nHNpzrkU51xKz549/X8HANCA224brMcfH6PXXtuqmTNXel0OACAAvvjikNLTs/XggxerfXsWW0fb5M9P9jpJg8ysv6Tdku6QdFfNHZxz/atum9kcSUuccwt99/PNbLBzbquk6yVtbpnSAeDr/eQnl2nnziP67W8/0oABXfW9713odUkAgFb01FMb1K5dpB544CKvSwFaTZMBzjlXZmbfV+XqkpGSXnLOfW5mM3yP173ura6HJM01sxhJWZLub2bNAOAXM9Ozz96g3NxCPfDAW0pKitPYsclelwUAaAWHDp3Un//8ue6+e6h69WLJBbRd5lzwXRuSkpLiMjMzvS4DQBtRWHhKo0e/qpycQq1efaeGDeM0bQBoa/7v/12rmTNXadOme3XBBfyeR+gzs/XOuXq9MPxq5A0AoSwurp2WLv2GOneO0aRJ87Vnz3GvSwIAtKCSknI988zHGjs2mfCGNo8AByAsJCTEacmSaTp8uFg33bRAx4+XeF0SAKCFvPbaF9q794R++MNLvS4FaHUEOABhY/jw3nr99Zv0yScHdOedS1ReXuF1SQCAZqpq3H3eed01blyy1+UArY4AByCsTJw4QE8/fZ2WLMnSI4+8p2C8DhgA4L/338/Xxx8f0A9/mELjboQFGmQACDsPPjhcO3ce0R/+sF4DB3bVI49wyg0AhKrZs9erR48OuvtuGncjPDADByAs/f7312jatEH60Y/e08KF270uBwBwBrZv/1JvvrlTM2ZcpA4dor0uBwgIAhyAsBQRYfrrXyfqssv66K67lmrdur1elwQAOE1PPbVe0dGR+td/He51KUDAEOAAhK3Y2GgtXjxNvXvH6qabFign56jXJQEA/PTll8V6+eXPdOedQ9SnD427ET4IcADCWu/eHZWefotOnSrXpEnzdeRIsdclAQD8kJa2UUVFZbQOQNghwAEIe+edd5bmz5+i7du/1C23LFZJSbnXJQEAvkZpabmefvpjXXddoi66qJfX5QABRYADAEnXXpuo//mfsXr33Tz9y7+soL0AAASxN97Ypt27jzP7hrBEGwEA8Ln33guUlXVU//EfazRwYFf9/OcjvS4JAFCHc05/+EOmzj23myZOHOB1OUDAEeAAoIZf/WqUsrKO6v/8n9UaMKCr7rqLvkIAEExWr96tzMz9eu65GxQRQeNuhB8CHADUYGZ68cWxyssr1P33L1NCQmdddVU/r8sCAPjMnr1e3bq11z33DPW6FMATXAMHAHW0axelBQumqH//Lpo6daG2bTvsdUkAAElZWUe0YMF2zZhxkTp2jPG6HMATBDgAaED37h20dOk3FBFhmjhxvgoKirwuCQDC3h//uEGRkRH613+92OtSAM8Q4ACgEQMHdtXixdO0e/dxTZ26UMXFZV6XBABh6+jRU/rTnzbpjjuGKD6+s9flAJ4hwAHA1xg5sq9eeWWCPvxwj+69N0MVFbQXAAAvvPjipzp+vJTWAQh7BDgAaMKttw7W7343Rq+/vlU/+9lKr8sBgLBTVlahP/5xg8aM6adLLuntdTmAp1iFEgD88OMfX6adO4/q8cc/0sCBXfW9713odUkAEDbmz9+mvLxj+uMfr/e6FMBzBDgA8IOZ6Zlnrldu7lE98MBbSkzsrHHj+ntdFgCEhdmz12vgwK6aPJnG3QCnUAKAn6KiIvTaazfp/PN76Lbb3tSnnxZ4XRIAtHlr1uzR2rV79fDDlygyko+uAP8KAOA0xMW109Kl31DnzjGaNGm+9uw57nVJANCmzZ6dqS5d2un++y/wuhQgKBDgAOA09evXWUuWTNOXXxZr8uT5On68xOuSAKBNysk5qr//fbtSUy9Up0407gYkAhwAnJHhw3vr9ddv0saNBbrjjiUqK6vwuiQAaHOefnqDzKSHHhrudSlA0CDAAcAZmjhxgJ555notXZqlRx55V87RIw4AWsqxYyV68cVNuu22wUpIiPO6HCBosAolADTDAw9crJ07j+i//itTAwd21Q9/mOJ1SQDQJrz00iYVFpbQuBuogwAHAM30u99drezso/q3f/uHkpO7aNq0QV6XBAAhrby8Qk89tUFXXhmvESPO9rocIKhwCiUANFNEhOmVVybqssv66PbbF+vss59TRMQTSk5O09y5m70uDwBCzqJFO5SdfZTZN6ABBDgAaAGxsdG6997zVVbmtG9fkZyTcnMLlZq6ghAHAKfpD39Yr+TkOE2deo7XpQBBhwAHAC3kd79bp7rrmBQVlelnP1vpTUEAEILWrdur1at36+GHL6VxN9AA/lUAQAvJyytsZPsx3XdfhhYu3K6iotIAVwUAoWX27PXq3DlG3/42jbuBhhDgAKCFJCY2vMx1bGyUFi3aoWnTFqlHj2c1depCvfzyJhUUFAW4QgAIbvn5hXr99a363veGKS6undflAEGJAAcALWTWrNGKja29uG9sbJTS0sbqwIEH9fbbt+k73xmm9ev369vfXq4+ff5bV189T7NnZyor64g3RQNAEHnmmY/lnPTQQ5d4XQoQtCwYG8+mpKS4zMxMr8sAgNM2d+5mzZy5Snl5hUpMjNOsWaM1ffrQWvs457Rhw34tWrRDCxfu0KZNByVJw4b10NSp52jq1EEaPryXzMyLtwAAnjh+vEQJCS/ohhuS9Le/3ex1OYDnzGy9c65eg1m/ApyZjZf0lKRISS86537byH6XSVor6Xbn3Bs1tkdKypS02zk3uanXI8ABCCc7dx6pDnOrV+9WRYVTQkJnTZlyjqZOPUdjxvRTdHSk12UCQKt65pkNeuihd/Xhh3dp5Mi+XpcDeO6MA5wvfG2TdKOkXZLWSbrTObe5gf3eklQs6aU6Ae5HklIkxRHgAKBxBQVFWrJkpxYu3KEVK3JVXFymrl3bafLkgZo69RyNG5esTp1ivC4TAFpUeXmFhgx5SWed1UFr1073uhwgKDQW4KIa2rmOEZJ2OOeyfE80T9IUSXUbGz0k6e+SLqvzwv0kTZI0S9KPTr90AAgfPXvG6v77h+n++4fpxIkSvfVWrhYu3KE339ypv/51s9q1i9QNNyRp6tRzdNNNA9W7d0evSwaAZluyJEs7dhzRf/7naK9LAYKePwEuXlJ+jfu7JF1ecwczi5c0TdJ1qhPgJD0p6aeSOn/di5hZqqRUSUpMTPSjLABo2zp2jNHUqYM0deoglZVVaNWqXVq4sPJUy6VLs2QmjRoVrylTBmrq1EEaNKib1yUDwBmZPTtTiYmddcst53pdChD0/FmFsqGr6Oued/mkpEedc+W1DjSbLOmAc259Uy/inEtzzqU451J69uzpR1kAED6ioiJ0zTWJevLJ65Sd/T198sk9+uUvR+nEiVL99Kcf6Nxz/6Tzz39ZM2eu1Ecf7VVFRfAtUAUADdmwYb/ef3+XHnroEkVFsUA60BR/roEbKelXzrlxvvv/LknOuf9XY59sfRX0ekgqUuVs2uWSviWpTFJ7SXGS5jvn7v661+QaOADwX07OUS1evFMLF27XBx/sUnm5U9++napn5q65JkExMSyCAiA4fetb6Vq4cLvy8/9FXbu297ocIGg0ZxGTKFUuYnK9pN2qXMTkLufc543sP0fSkpqLmPi2XyPpxyxiAgCt59Chk1q6NEuLFu3QsmXZKioqU1xcjCZNGqApU87RhAn9aY4LIGjs2XNcSUlpevDBi/XUU9d5XQ4QVM54ERPnXJmZfV/SclW2EXjJOfe5mc3wPf58i1cLADgjZ53VQffcc77uued8nTxZqrffztPChdu1ePFOvfrqF4qOjtD11ydq6tRBuvnmgTr77E5+9a4DgNbw7LMfq7y8Qj/4AY27AX/RyBsAwkB5eYXWrNlTvQjKzp1HJEkDB3ZRXt4xlZZWVO8bGxultLSxhDgAraqoqFQJCS/o6qsTNH/+FK/LAYJOYzNwXCkKAGEgMjJCo0f30xNPXKPt27+jTZvu1X/+52jl59cOb5JUVFSmn/70fQXjH/gAtB1/+cvnOny4WD/84aVelwKEFGbgACCMRUQ8ocb+N9CrV6xGj47XmDH9dNVV/XTRRT0VGcnf/QA0X0WF03nnvaTOnWO0bt3dMmto0XMgvDWnkTcAoI1KTIxTbm5hve3du7fXuHHJWrlyl+bP3y5J6tw5Rlde2VdXXVUZ6C67rI/at+d/IwBOX0ZGlrZt+1Jz504ivAGnif/zAkAYmzVrtFJTV6ioqKx6W2xslP74x+uqr4HLzy/UypW7tXLlLn3wwS7NnLlKktSuXaRGjDhbV11VOUs3cmRfVrgE4JfZs9crPr6TbruNxt3A6eIUSgAIc6e7CuXBg0VavXpPdaDbsGG/ysudIiJMF1/cqzrQjR4dr169OgbwnQAIBRs3HtDFF/9Fv/3tVXr00cu9LgcIWmfcB84LBDgACB3Hj5do7dq9+uCDfK1cuVtr1+5VcXHljN7gwd1919BVhrqkpC4eVwvAa/ffn6HXX9+qXbtmqFs3GncDjSHAAQACoqSkXJmZ+7Ry5S6tXLlbq1bt1tGjpyRJCQmdfdfQVQa68847i+tfgDCyb98JJSWl6bvfHaZnn73B63KAoMYiJgCAgIiJidSoUfEaNSpejz5a2YPus88OVge6d9/N0//+7xZJlY3Hv1rpMl7Dh/dWVBQrXQJt1XPPfazS0nI9/DCNu4EzxQwcACCgnHPaufNI9TV0K1furm4s3rFjtEaN6ls9S3f55WerQ4foes9xutftAfDeyZOlSkxM08iRfbV48TSvywGCHjNwAICgYGY655xuOuecbrr//mGSpD17jvtm6CoD3S9/uVrOSdHREbrssj666qp+GjOmn0aN6qulS7NqrZyZm1uo1NQVkkSIA4LYX/+6RQcPnqRxN9BMzMABAILOl18Wa/Xq3dWBbt26fSorq5CZFBUVodLSinrHJCXFKScn1YNqATTFOacLLpijmJhIbdjwLa59BfzADBwAIGR069ZekycP1OTJAyVJRUWl+uc/92rlyl365S8/bPCY3NxCPfPMBg0b1lPDhvVQ9+4dAlkygK+xYkWONm8+pD//eQLhDWgmZuAAACElOTlNubmF9bZHREgVNSbm4uM76cILK8Nc5feeGjKku2JiIgNYLQBJGjfuDW3aVKCcnFT+DQJ+YgYOANAmzJo1utY1cJIUGxultLSxuvbaRH36aYE2bSrQp58e1KZNBXr77dzqUy6joiI0ZEj3OsGuh/r168ysANBKPv/8oFasyNF//udowhvQAghwAICQUrVQSWOrUPbt20njx/ev3r+0tFzbtn3pC3YH9emnBVq1ald1KwNJ6tq1nYYN66kLL+zh+95TF1zQQ507xwT2zQFt0JNPrlf79lH6l3+50OtSgDaBUygBAGHpyJFiffbZwVrBbtOmgzp2rKR6n/79u9Saqbvwwp4655xu9KoD/HTgwAklJqbpvvsu0PPP3+h1OUBI4RRKAABq6Nq1vUaP7qfRo/tVb3POKTe3sEagK9CnnxZo6dIslZdX/sGzXbtInX9+j3rBrnfvjo2+Fn3rEK6ef36jTp0q1yOP0LgbaCnMwAEA0ITi4jJt2XKo1kzdp58WaN++E9X79OzZoXqxlKpTMYcOPUsLFmxv9Jo9QhzasuLiMiUlpenSS3srPf0Wr8sBQg4zcAAAnKH27aM0fHhvDR/eu9b2goIibdp0sHqmbtOmg3rhhY06ebIyrEVEmCIiTGVltfvWFRWVaebMVQQ4tGmvvrpFBw4U6Uc/qvf5E0AzMAMHAEALKi+vUFbW0epTMH/96zWN7nvTTQM1ZEh3DR7c3fe9m3r0iA1gtUDrcM7poov+LEnauPFeVnkFzgAzcAAABEBkZIQGDeqmQYO66ZZbztWcOZ832LeuQ4coZWUd0fLlOSopKa/eftZZHTR4cDcNGdK9Vrjr37+LoqNZgh2h4Z138rRp00G99NI4whvQwghwAAC0oq/rWzd9+lCVl1coJ6dQW7ce1hdfHK7+vnRpll566bPqY6KiInTOOV1rzdYNGXKWBg/upu7dO3jx1oBGzZ6dqV69YnXnned5XQrQ5hDgAABoRU31rYuMjNDAgV01cGBXTZw4oNaxR44Ua+vWL/XFF4d84a7ydnp6VnVzcqlyAZWqYFdz1i45uQstDxBwW7YcUnp6tn71q1Fq356PmkBL4xo4AABCTFlZhbKzj9abtdu69bAKCk5W7xcdXXk6Z0Ozdl27tv/a16D1Ac7UjBlvac6cz5SXl6pevRpvrwHg63ENHAAAbURU1FfX2U2ePLDWY4cPn6w3a7d58yG9+ebOWqth9u4dWyPYffU9OTlO8+Z9Ueu0z9zcQqWmrpAkQhy+1sGDRfrLXz7X3XcPJbwBrYQABwBAG9K9eweNHNlBI0f2rbW9tLRcWVn1Z+3eeGObDh8urt6vXbtIVVS4WqdoSpWtDx599APddttgxcSwmAoa9sILn+rkyTIadwOtiFMoAQAIcwcPFvlm7SqD3e9/v+5r9+/Wrb16945V796x6tUrVr17d/Tdr/29V69YxcZGB+hdwGslJeVKTk7TsGE9tXz5rV6XA4Q8TqEEAAAN6tEjVj16xOrKK+MlSa+/vrXB1gfdu7fXww9fov37i7R//wnt31+kjRsLtH9/ro4ePdXgc3fqFN1AwKu8XRn+vtreuXNMs5ac57o9b7322hfau/eEXnppvNelAG0aM3AAAKCWuXM3f23rg4YUF5fpwIGvgl3l7a/u19x+8ODJBp+jffuoJmb2vgp+3bu3rxX2zqRmtBznnC655BWVlJTrs8/uo/cb0AKYgQMAAH5pqvVBQ9q3j1JiYpwSE+OafP6ysgoVFNQPeF+FviLl5x9TZuZ+FRQUqby8/h+bo6IiaszgxWrlyt21wptUed3ez362kgAXAO+/n69PPjmgtLSxhDeglTEDBwAAglZFhdOhQycbndGrCn6ZmfsbfY74+E5KSOhc4yuu+nZiYpx69YpVRAShozluvnmB1qzZo7y8VHXowHWPQEtgBg4AAISciAhTz56x6tkzVuef3/h+yclpDV6316VLjG68MUn5+ce0cWOBlizJ0smTtWfqoqMj1K9f5zohrzLcVd3u1q09M0uN2L79Sy1ZslM///kVhDcgAAhwAAAg5M2aNbrBa+CeffaGWqdQOlc5o5eff6zBr9Wrd2vXruO1euZVPVfNmbu6AS8hobM6dYo57brbwsIrTz21XtHRkXrwweFelwKEBQIcAAAIef5et2dm1atuDh/eu8HnKi+vqL4OLz+/sF7IW748R3v3Hlfdq1C6dm1X6zTNxMTap23269dJ7dp99dGr7sIrodgw/fDhk3r55c90551D1KcPjbuBQPDrGjgzGy/pKUmRkl50zv22kf0uk7RW0u3OuTfMLEHSXyT1kVQhKc0591RTr8c1cAAAIJiVlJRrz57jNYJd/aDX0GqbvXrFVoe6d97J1bFjpfX2SUqKU05OaiDeRrM9/vg/9dhjK/XJJ/fooot6eV0O0Kac8TVwZhYp6VlJN0raJWmdmS12zm1uYL/HJS2vsblM0r855zaYWWdJ683srbrHAgAAhJKYmEglJ3dRcnKXRvcpKirVrl0NnapZqO3bv2wwvEmVM3Fjx/7N9/xxSkqKq7599tmdgmbBldLScj399Me67rpEwhsQQP6cQjlC0g7nXJYkmdk8SVMk1Q1hD0n6u6TLqjY45/ZK2uu7fczMtkiKb+BYAACANiU2Nlrnnttd557bvcHHG1t4JTY2SkePntKiRTt04EBRrceioyOUmFgV6iqDXdXtpKQ4xcd3VlRURKu8n7r+9rdt2r37uF544caAvB6ASv4EuHhJ+TXu75J0ec0dzCxe0jRJ16lGgKuzT7Kk4ZL+2cjjqZJSJSkxMdGPsgAAAEJXYwuv1Gw+XlRUqry8QuXkFCon56hycytv5+YWKiMjW3v3nqj1nJGRpoSEzrVm7apuJyVVLroSHR3Z7Nqdc5o9O1ODB3fXhAkDmv18APznT4BraJ6+7oVzT0p61DlX3tASu2bWSZWzc4845+r/qUmScy5NUppUeQ2cH3UBAACELH8WXomNjdaQIWdpyJCzGnyO4uIy5ecfU07O0epgV3X7nXfytHv3sVqLrUREmOLjOzUa8BITO9daaKWumqtmOifdd9/5QXNKJxAumlzExMxGSvqVc26c7/6/S5Jz7v/V2CdbXwW9HpKKJKU65xaaWbSkJZKWO+f+4E9RLGICAADQfCUl5crPP1Yd7GoGvNzcyoVXKipqfxbs27dTrdMyq4Lep58W6Je//LBWH70OHaL0P/8zNmRWzQRCSWOLmPgT4KIkbZN0vaTdktZJuss593kj+8+RtMS3CqVJ+rOkw865R/wtlgAHAADQ+kpLy7V79/F6wa4q7OXlHavXE6+uUFo1EwglZ7wKpXOuzMy+r8rVJSMlveSc+9zMZvgef/5rDr9S0rckbTKzT3zbfuacSz/dNwAAAICWFR391WqaV1+dUO/x8vIK7dlTGfCuumpeg8+Rl9fg1TEAWolfjbx9gSu9zrYGg5tz7r4at1ep4WvoAAAAEOQiIyOUkBCnhITK0ykbWjUzMTHOg8qA8BWYdWYBAAAQ0mbNGq3Y2Np/+4+NjdKsWaM9qggITwQ4AAAANGn69KFKSxurpKQ4mVVe+1az5QGAwGhyERMvsIgJAAAAgHDW2CImzMABAAAAQIggwAEAAABAiCDAAQAAAECIIMABAAAAQIggwAEAAABAiCDAAQAAAECIIMABAAAAQIggwAEAAABAiCDAAQAAAECIIMABAAAAQIgw55zXNdRjZgWScr2uow3oIemg10WEAca59THGgcE4tz7GODAY59bHGAcG4xwYwTrOSc65nnU3BmWAQ8sws0znXIrXdbR1jHPrY4wDg3FufYxxYDDOrY8xDgzGOTBCbZw5hRIAAAAAQgQBDgAAAABCBAGubUvzuoAwwTi3PsY4MBjn1scYBwbj3PoY48BgnAMjpMaZa+AAAAAAIEQwAwcAAAAAIYIAFyTM7CUzO2Bmn9XZ3t3M3jKz7b7v3Ro5fpmZHTGzJY08/rSZHW/ksYvNbI2ZfW5mn5rZ7TUe629m//S9/mtmFtOc9+k1j8c5yczWm9knvrGeUeOxNjPOXo5xjX3izGy3mT1TY1ubGWPJ+3E2s3Lfz/InZra4xvY2M86tNcZmNsfMsmuM38WNHH+v7zW2m9m9Nba3mTGWgmKcGzu+zYyzl2NsfMYI1DjzGSMAvy98+3r+GYMAFzzmSBrfwPbHJL3jnBsk6R3f/Yb8XtK3GnrAzFIkdf2a1y6SdI9z7nxfDU+aWdX+j0ua7Xv9LyV952vfRfCbI+/Gea+kUc65iyVdLukxM+vre6wtjfMceTfGVX4j6f0629rSGEvej/NJ59zFvq+ba2xvS+M8R600xpJ+UmP8Pqn7oJl1l/RLVf6uGCHplzU+kLSlMZY8HOcmjm9L4zxH3o0xnzECM858xgjM7wspGD5jOOf4CpIvScmSPquzbauks323z5a09WuOv0bSkjrbIiW95zv2uJ91bJQ0SJKpsqlhlG/7SEnLvR6ntjDOks6SlCepb1scZy/HWNKlkuZJuk/SM75tbW6Mg2Cc6z3WFse5lcZ4jqRbm3jdOyW9UOP+C75tbW6MvRznxo5vi+Ps9RjXOIbPGK08zuIzRquNsYLkMwYzcMGvt3NuryT5vvc6zeO/L2lx1XNUMbMUM3ux7s5mNkJSjKSdqvwFcMQ5V+Z7eJek+NN8/VARkHE2swQz+1RSvqTHnXN7FD7j3OpjbGYRkv5L0k/qHBsuYywF7ndGezPLNLO1ZjbVty1cxrm5YyxJs3ynk802s3ZSvTGOV+XviSpVYxkuYywFZpwbEy7jHNAx5jNG644znzFad4yD6TMGAa4N802d3ybp6bqPOecynXPfrbP/2ZJekXS/c65ClX9RqHdoa9Qayk5nnJ1z+c65CyWdI+leM+stxrlJpzHGD0pKd87l19mNMfbDaf7OSHTOpUi6S5WnRA0U4+yvf5c0RNJlkrpLelSqN8aNjSVj7D9/xrkxjLN//B5jPmM0i1/jzGeMZvFnjIPmMwYBLvjt9/3Sq/rld+A0jh2uyn/EO8wsR1Ksme1oaEczi5O0VNLPnXNrfZsPSupqZlG++/0k7Tn9txASAjLOVXx/Fftc0lUKn3EOxBiPlPR93z5PSLrHzH6r8BljKUA/y76fYTnnsiT9w3dsuIxzc8ZYzrm9rtIpSS+r8hq3unZJSqhxv2osw2WMpcCMc2PCZZwDMsZ8xgjszzKfMVptjIPmMwYBLvgtllS1+ti9khb5e6Bzbqlzro9zLtk5lyypyDl3Tt39fCvlLJD0F+fc32oc71R5LcytZ/L6ISYQ49zPzDr4bneTdKUqz9EOl3Fu9TF2zk13ziX69vmxKn+mHwujMZYC87PcrcbpJT1U+bO8OYzG+YzHWKr+cCEzM0lTJX3WwG7LJY31jXU3SWNVeU1FuIyxFJhxblAYjXOrjzGfMSQFZpz5jNHKYxxUnzFcEFyMyJeTpFdVuYJQqSr/8vod3/azVLmaznbf9+6NHL9SUoGkk77jxzWwz/Eat1Mkvei7fbfvdT+p8XWx77EBkj6StEPS3yS183qsQnicb5T0qSov4P5UUmqN/drMOHs5xnX2uU++C4zb2hh7Pc6SRkna5PtZ3lT12m1tnFtrjCW96xu3zyT9VVKnhn6WJX3bN447VHnaWZsb4yAZ58aObzPj7OUYi88YgRpnPmME4PdFjee5Tx5+xjDfiwIAAAAAghynUAIAAABAiCDAAQAAAECIIMABAAAAQIggwAEAAABAiCDAAQAAAECIIMABAAAAQIggwAEAAABAiCDAAQAAAECI+P+hDR+F30mlLwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "plt.plot(df_output.iloc[:nb_predictions + N_pred], 'o-', label = 'measured', color = 'darkblue')" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
time_htime_h_1time_h_2time_h_3time_mtime_m_1time_m_2time_m_3SolRadSolRad_1OutsideTempOutsideTemp_1SimulatedHeatSimulatedHeat_1SimulatedTempSimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-07-13 20:15:00+02:000.8695650.8695650.8695650.8695650.2727270.1818180.0909090.0000000.1555800.0964420.6470590.6470590.1247620.1247620.4462600.4501210.4543070.496151
2017-07-13 20:20:00+02:000.8695650.8695650.8695650.8695650.3636360.2727270.1818180.0909090.0855680.1555800.6470590.6470590.1247620.1247620.4417460.4462600.4501210.454307
2017-07-13 20:25:00+02:000.8695650.8695650.8695650.8695650.4545450.3636360.2727270.1818180.0707320.0855680.6470590.6470590.1247620.1247620.4366200.4417460.4462600.450121
2017-07-13 20:30:00+02:000.8695650.8695650.8695650.8695650.5454550.4545450.3636360.2727270.0665490.0707320.6470590.6470590.1247620.1247620.4314790.4366200.4417460.446260
2017-07-13 20:35:00+02:000.8695650.8695650.8695650.8695650.6363640.5454550.4545450.3636360.0673850.0665490.6470590.6470590.1247620.1247620.4263770.4314790.4366200.441746
.........................................................
2017-07-20 05:35:00+02:000.2173910.2173910.2173910.2173910.6363640.5454550.4545450.3636360.0030980.0029940.5294120.5294120.7094650.7094650.7390070.7402680.6884900.661305
2017-07-20 05:40:00+02:000.2173910.2173910.2173910.2173910.7272730.6363640.5454550.4545450.0030890.0030980.5294120.5294120.7094650.7094650.7378290.7390070.7402680.688490
2017-07-20 05:45:00+02:000.2173910.2173910.2173910.2173910.8181820.7272730.6363640.5454550.0030790.0030890.5294120.5294120.7094650.7094650.7372960.7378290.7390070.740268
2017-07-20 05:50:00+02:000.2173910.2173910.2173910.2173910.9090910.8181820.7272730.6363640.0031740.0030790.5294120.5294120.7094650.7094650.7372960.7372960.7378290.739007
2017-07-20 05:55:00+02:000.2173910.2173910.2173910.2173911.0000000.9090910.8181820.7272730.0032120.0031740.5294120.5294120.7094650.7094650.7370930.7372960.7372960.737829
\n", - "

1845 rows × 18 columns

\n", - "
" - ], - "text/plain": [ - " time_h time_h_1 time_h_2 time_h_3 time_m \\\n", - "timestamp \n", - "2017-07-13 20:15:00+02:00 0.869565 0.869565 0.869565 0.869565 0.272727 \n", - "2017-07-13 20:20:00+02:00 0.869565 0.869565 0.869565 0.869565 0.363636 \n", - "2017-07-13 20:25:00+02:00 0.869565 0.869565 0.869565 0.869565 0.454545 \n", - "2017-07-13 20:30:00+02:00 0.869565 0.869565 0.869565 0.869565 0.545455 \n", - "2017-07-13 20:35:00+02:00 0.869565 0.869565 0.869565 0.869565 0.636364 \n", - "... ... ... ... ... ... \n", - "2017-07-20 05:35:00+02:00 0.217391 0.217391 0.217391 0.217391 0.636364 \n", - "2017-07-20 05:40:00+02:00 0.217391 0.217391 0.217391 0.217391 0.727273 \n", - "2017-07-20 05:45:00+02:00 0.217391 0.217391 0.217391 0.217391 0.818182 \n", - "2017-07-20 05:50:00+02:00 0.217391 0.217391 0.217391 0.217391 0.909091 \n", - "2017-07-20 05:55:00+02:00 0.217391 0.217391 0.217391 0.217391 1.000000 \n", - "\n", - " time_m_1 time_m_2 time_m_3 SolRad SolRad_1 \\\n", - "timestamp \n", - "2017-07-13 20:15:00+02:00 0.181818 0.090909 0.000000 0.155580 0.096442 \n", - "2017-07-13 20:20:00+02:00 0.272727 0.181818 0.090909 0.085568 0.155580 \n", - "2017-07-13 20:25:00+02:00 0.363636 0.272727 0.181818 0.070732 0.085568 \n", - "2017-07-13 20:30:00+02:00 0.454545 0.363636 0.272727 0.066549 0.070732 \n", - "2017-07-13 20:35:00+02:00 0.545455 0.454545 0.363636 0.067385 0.066549 \n", - "... ... ... ... ... ... \n", - "2017-07-20 05:35:00+02:00 0.545455 0.454545 0.363636 0.003098 0.002994 \n", - "2017-07-20 05:40:00+02:00 0.636364 0.545455 0.454545 0.003089 0.003098 \n", - "2017-07-20 05:45:00+02:00 0.727273 0.636364 0.545455 0.003079 0.003089 \n", - "2017-07-20 05:50:00+02:00 0.818182 0.727273 0.636364 0.003174 0.003079 \n", - "2017-07-20 05:55:00+02:00 0.909091 0.818182 0.727273 0.003212 0.003174 \n", - "\n", - " OutsideTemp OutsideTemp_1 SimulatedHeat \\\n", - "timestamp \n", - "2017-07-13 20:15:00+02:00 0.647059 0.647059 0.124762 \n", - "2017-07-13 20:20:00+02:00 0.647059 0.647059 0.124762 \n", - "2017-07-13 20:25:00+02:00 0.647059 0.647059 0.124762 \n", - "2017-07-13 20:30:00+02:00 0.647059 0.647059 0.124762 \n", - "2017-07-13 20:35:00+02:00 0.647059 0.647059 0.124762 \n", - "... ... ... ... \n", - "2017-07-20 05:35:00+02:00 0.529412 0.529412 0.709465 \n", - "2017-07-20 05:40:00+02:00 0.529412 0.529412 0.709465 \n", - "2017-07-20 05:45:00+02:00 0.529412 0.529412 0.709465 \n", - "2017-07-20 05:50:00+02:00 0.529412 0.529412 0.709465 \n", - "2017-07-20 05:55:00+02:00 0.529412 0.529412 0.709465 \n", - "\n", - " SimulatedHeat_1 SimulatedTemp SimulatedTemp_1 \\\n", - "timestamp \n", - "2017-07-13 20:15:00+02:00 0.124762 0.446260 0.450121 \n", - "2017-07-13 20:20:00+02:00 0.124762 0.441746 0.446260 \n", - "2017-07-13 20:25:00+02:00 0.124762 0.436620 0.441746 \n", - "2017-07-13 20:30:00+02:00 0.124762 0.431479 0.436620 \n", - "2017-07-13 20:35:00+02:00 0.124762 0.426377 0.431479 \n", - "... ... ... ... \n", - "2017-07-20 05:35:00+02:00 0.709465 0.739007 0.740268 \n", - "2017-07-20 05:40:00+02:00 0.709465 0.737829 0.739007 \n", - "2017-07-20 05:45:00+02:00 0.709465 0.737296 0.737829 \n", - "2017-07-20 05:50:00+02:00 0.709465 0.737296 0.737296 \n", - "2017-07-20 05:55:00+02:00 0.709465 0.737093 0.737296 \n", - "\n", - " SimulatedTemp_2 SimulatedTemp_3 \n", - "timestamp \n", - "2017-07-13 20:15:00+02:00 0.454307 0.496151 \n", - "2017-07-13 20:20:00+02:00 0.450121 0.454307 \n", - "2017-07-13 20:25:00+02:00 0.446260 0.450121 \n", - "2017-07-13 20:30:00+02:00 0.441746 0.446260 \n", - "2017-07-13 20:35:00+02:00 0.436620 0.441746 \n", - "... ... ... \n", - "2017-07-20 05:35:00+02:00 0.688490 0.661305 \n", - "2017-07-20 05:40:00+02:00 0.740268 0.688490 \n", - "2017-07-20 05:45:00+02:00 0.739007 0.740268 \n", - "2017-07-20 05:50:00+02:00 0.737829 0.739007 \n", - "2017-07-20 05:55:00+02:00 0.737296 0.737829 \n", - "\n", - "[1845 rows x 18 columns]" - ] - }, - "execution_count": 81, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_iter" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Prediction over 8 steps')" - ] - }, - "execution_count": 82, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAF1CAYAAACpuAhNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACjbklEQVR4nOzddXSUVxPA4d+NQoBAgODu7u5S6u4tX72l7l7qLXV3d+rugltwd3dJQox4Nnu/P2aXCAECJHnfTeY5Z09Ws5ONvbNz74yx1qKUUkoppZRSyv2CnA5AKaWUUkoppVTxaAKnlFJKKaWUUgFCEzillFJKKaWUChCawCmllFJKKaVUgNAETimllFJKKaUChCZwSimllFJKKRUgNIFTSilVqowxnxhjnvSdH2yMWXOUn+cdY8xDJRudUkopFVg0gVNKKYUxZrMxJsMYk2qM2WOM+dgYU7Wkn8daO91a27YY8VxujJlR6LHXWWufKOmYnGSMaWaM+dMYk2iM2W2MecMYE3IUn8caY1qVRoxKKaXcRRM4pZRSfqdZa6sCPYDewIOF73A0yYUCI4r6n/sWEAvUB7oBQ4EbyjA0pZRSAUYTOKWUUgVYa3cAfwGdYH9150ZjzDpgne+6U40xi40xScaYWcaYLv7HG2O6G2MWGmP2GWO+ASrlu22YMWZ7vsuNjTE/GmPijDF7fRWo9sA7QH9fRTDJd9/9SzF9l68xxqw3xiQYY341xjTId5s1xlxnjFnnq269aYwxRX29xphwY8wrxpidvtMrxphw322rjDGn5rtviDEm3hjTw3e5n+/rTzLGLDHGDMt33ynGmHHGmJlAOtCiiKdvDnxrrc201u4G/gY6HiTOVsaYqcaYZF8M3/iun+a7yxLf63VBMb5Hm40x9xtjVvpen4+NMZV8t9U2xvzue1yCMWb6QZJPpZRSDtA/yEoppQowxjQGTgYW5bv6TKAv0MGXvHwEXAvUAt4FfvUlQmHAz8DnQE3gO+CcgzxPMPA7sAVoBjQEvrbWrgKuA2KstVWttTWKeOwI4GngfKR6tQX4utDdTkUqiV199zvhIF/yWKAfUgHrCvQhr/r4FXBRvvueAMRbaxcaYxoCfwBP+r7Wu4AfjDHR+e5/CTAGqOaLsbBXgQuNMRG+z3cSksQV5QngXyAKaAS8DmCtHeK7vavv9frmUN+jfJ9vtO/raQm0yfc13wlsB6KBusADgD1ITEoppcqYJnBKKaX8fvZVu2YAU4Gn8t32tLU2wVqbAVwDvGutnWOtzbXWfgpkIUlQPyAUeMVam2Ot/R6Yd5Dn6wM0AO621qb5qlAzDnLfwkYDH1lrF1prs4D7kYpds3z3ecZam2St3QpMRhK0g32ux621sdbaOOAxJPEC+BI43RgT4bt8se86gP8Bf1pr/7TWeq21/wHzkeTX7xNr7Qprrcdam1PEc09FKm4pSNI0H0mAi5IDNAUaFOO1OtT3yO8Na+02a20CMI68RDUHSYqb+r6H0621msAppZRLaAKnlFLK70xrbQ1rbVNr7Q2+ZM1vW77zTYE7fUvsknxJX2MkGWsA7Ch0wF9U5QnfY7ZYaz1HEWuD/J/XWpsK7EWqeH67851PBw7WlKXA5/Kdb+D7vOuBVcBpviTudPISuKbAeYVeh0FI8uOX/3UrwLcs8R/gR6AKUBuprj17kIfcAxhgrjFmhTHmyoN9bg79PSoqti35bnseWA/8a4zZaIy57xDPo5RSqoxpAqeUUqo48idk24BxvmTPf4qw1n4F7AIaFtpv1uQgn3Mb0OQgjVEOV/HZiSQpABhjqiBLBXcc7gs53OdC4t2Z77J/GeUZwEpfUgcS/+eFXocq1tpnivl11ESSqjestVnW2r3AxxSs4OV9Imt3W2uvsdY2QJZGvnWIzpOH+h75NS7qa7bW7rPW3mmtbQGcBtxhjBl5iK9DKaVUGdIETiml1JF6H7jOGNPX112xijHmFGNMNSAG8AC3+Bp+nI0slSzKXCThe8b3OSoZYwb6btsDNPLtqSvKl8AVxphuvn1dTwFzrLWbj+Lr+Qp40BgTbYypDTwMfJHv9q+B44Hryau+4bvPacaYE4wxwb74hxljGhXnSa218cAm4Hrfa1UDuAxYUtT9jTHn5fvciUhymOu7vIeCTVIO9T3yu9EY08gYUxPZ5+ZvinKqr2GKQZZ25uZ7HqWUUg7TBE4ppdQRsdbOR/ZYvYEkEuuBy323ZQNn+y4nAhcgSwSL+jy5SIWnFbAV2QN2ge/mScAKYLcxJr6Ix04EHgJ+QJLAlsCFR/klPYnsPVsKLAMW+q7zP9cuJDEdgC/J8V2/DanKPQDEIVWvuzmy/61nAyf6Hr8eSX5vP8h9ewNzjDGpwK/ArdbaTb7bHgU+9S2XPP9Q36N8vkSaomz0nfxfc2tgApDq+7rfstZOOYKvSSmlVCkyui9ZKaWUqliMMZuBq621E5yORSml1JHRCpxSSimllFJKBQhN4JRSSimllFIqQOgSSqWUUkoppZQKEFqBU0oppZRSSqkAoQmcUkoppZRSSgWIooanOq527dq2WbNmToehlFJKKaWUUo5YsGBBvLU2uvD1rkzgmjVrxvz5850OQymllFJKKaUcYYzZUtT1uoRSKaWUUkoppQKEJnBKKaWUUkopFSA0gVNKKaWUUkqpAKEJnFJKKaWUUkoFCE3glFJKKaWUUipAaAKnlFJKKaWUUgFCEzillFJKKaWUChCawCmllFJKKaVUgNAETimllFJKKaUChCZwSimllFJKKRUgNIFTSimllFLKbeJiYMXT8lGpfEKcDkAppZRSSimVT1wMTBwO3hwIDocREyG6v9NRKZfQCpxSSimllFJusuN38GYBXvBmQ+wUpyNSLqIJnFJKKaWUUm7hzYFdf/ouBENQGNQZ5mREymV0CaVSSimllFJusehuSFwMnR6R5ZN1hunySVWAJnBKKaWUUkq5waYvYM2r0PZW6PKo09Eol9IllEoppZRSSjktcTHMHQN1hkL3552ORrmYJnBKKaWUUko5KSsBpp0NYTVh4DcQFOp0RMrFdAmlUkoppZRSTvHmwsyLIGMHHDcdKtd1OiLlcprAKaWUUkop5ZSlD8Huf6HP+1C7j9PRqACgSyiVUkoppZRywrYfYeXT0GoMtLra6WhUgNAETimllFJKqbKWvBJiLoNafaHna05HowKIJnBKKaWUUkqVpexkmHYWhETA4O9l3ptSxVSsBM4Yc6IxZo0xZr0x5r6D3GeYMWaxMWaFMWZqvus3G2OW+W6bX1KBK6WUUkopFXCsF2ZfBqkbYdB3ENHI6YhUgDlsExNjTDDwJjAK2A7MM8b8aq1dme8+NYC3gBOttVuNMXUKfZrh1tr4kgtbKaWUUkqpALTiKdj+C/R8FeoMcToaFYCKU4HrA6y31m601mYDXwNnFLrPxcCP1tqtANba2JINUymllFJKqQC38y9Y+jA0+x+0udnpaFSAKk4C1xDYlu/ydt91+bUBoowxU4wxC4wxl+a7zQL/+q4fc7AnMcaMMcbMN8bMj4uLK278SimllFJKud++9TDzYojqCn3eBWOcjkgFqOLMgSvqp8sW8Xl6AiOBykCMMWa2tXYtMNBau9O3rPI/Y8xqa+20Az6hte8B7wH06tWr8OdXSimllFIqMHnSYPrZYIJg8I/SvESpo1ScCtx2oHG+y42AnUXc529rbZpvr9s0oCuAtXan72Ms8BOyJFMppZRSSqnyz1qYfRUkr4CBX0HV5k5HpAJccRK4eUBrY0xzY0wYcCHwa6H7/AIMNsaEGGMigL7AKmNMFWNMNQBjTBXgeGB5yYWvlFJKKaWUi61+GbZ+A13GQf3jnY5GlQOHXUJprfUYY24C/gGCgY+stSuMMdf5bn/HWrvKGPM3sBTwAh9Ya5cbY1oAPxlZ4xsCfGmt/bu0vhillFJKKaVcY89kWHwPND4HOtzrdDSqnDDWum+7Wa9evez8+ToyTimllFJKBai0rfB3T6hUB46fDaHVnI5IBRhjzAJrba/C1xdrkLdSSimllFKqmHIzYfo54M2GwT9VnOQtdgYsHwdxMU5HUq4VpwulUkoppZRSqjishXk3QMJ8GPILRLZxOqLSZy2seh4W3yeXg8fBiIkQ3d/ZuMoprcAppZRSSilVUta/Axs/hk4PQ6PTnY6m9O2ZCv8NhMX3IpPGrFQeY6c4HFj5pQmcUkoppZRSJSFuFiy4FRqcDJ0fcTqa0pWwCCafBBOHyX6/9vdBcGUwwRAUBnWGOR1huaVLKJVSSimllDpWGbtgxrkQ0QQGfCFDu8ujfeth6UOw5WsIi4Luz0PrGyGkslQcY6dI8qbLJ0uNJnBKKaWUUkodi9xsmHEeZCfDCf9KYlPepO+E5U/Ahg+kwtZxLLS/C8Jq5N0nur8mbmVAEzillFJKKaWOxcI7IG4mDPwGanRyOpqSlZ0IK5+FNa+B9UDr6yR5q1zP6cgqLE3glFJKKaWUOlobP4V1b0o1qun5TkdTcjzpkrStfBZykqHZaOjyGFRt4XRkFZ4mcEoppZRSSh2NhAUw91qoOwK6Pu10NCXDmyPLJJc9Dpm7ocGp0HUcRHVxOjLlowmcUkoppZRSRyozDqadDZXqwsCvISjAD6utF7Z8Iw1KUjdA9CAY/D1ED3Q6MlVIgP+kKaWUUkopVca8Hph5EWTugeNnQqVopyM6etbCzr9gyQOQtARqdIGhf0CDk8AYp6NTRdAETimllFJKqSOx5AHYMxH6fQw1ezodzdGLmwmL74e46bK3bcCX0PSC8jsCoZzQBE4ppZRSSqni2vItrHoeWt8ALS53Opqjk7QMloyFHb9BpXrQ+y1ocRUEhzkdmSoGTeCUUkoppZQqjqTlMOdK2RfW42WnozlyqZtg6cOweTyERkLXp6DtLRBSxenI1BHQBE4ppZRSSqnDyU6CaWdJ4jPou8CqVmXsgRVPwvp3wQRDh3ug/T0QXtPpyNRR0AROKaWUUkqpQ7FemDUa0rfAyClQub7TERVPdrIs91zzCuRmQsurodNDENHQ6cjUMdAETimllFJKqUNZ9hjs/BN6vQnRA5yO5vA8GTJcfMXTkJ0ATS+Ezo9DZGunI1MlQBM4pZRSSimlDmb7b7D8cWlY0vp6p6M5NK8HNn4Cyx6FjB1Q/0TZ51azu9ORqRKkCZxSSimllFJFSVkLMf+TUQG933bvXDRrYdsP0lly31qo3R8GjIe6Q52OTJUCTeCUUkoppZQqLGcfTD8LgsJg8I8QXMnpiA5kLeyeAEvuh4QFUL0jDPkFGp7m3mRTHTNN4JRSSimllMrPWph9JaSshuH/QZUmTkd0oPi5krjtmQRVmkK/T6HZaAgKdjoyVco0gVNKKaWUUiq/Vc/Btu+h+wtQb4TT0RSUvEqWSm7/CcKjoedr0GoMBIc7HZkqI5rAKaWUUkop5bfrP1jyADS5ANrd4XQ0edK2SnOSTZ9CcBXpKtnuNgit5nRkqoxpAqeUUkoppRRA6maYeSFEdoB+H7pjH1lmHKx4Cta9BRhoezt0uA8q1XY6MuUQTeCUUkoppZTyZMD0s2Vo95CfIKSKs/HsngArnoH4WeDNghZXQKdHoEpjZ+NSjtMETimllFJKVWzWwtxrIXExDP0dqrVyNp7dE2DS8YAFEwz9v4BmFzkbk3INTeCUUkoppVTFtvYN2Py57CtreLKzsXhzYf7NgM27Lm2zU9EoF9IETimllFJKVVyx02HhHdDwdOg01uloYOlYGV9gQgGvzKGrM8zpqJSLaAKnlFJKKaUqpvQdMONcqNoC+n8GJsjZeDZ+BiufhdbXQ7NLIHaKJG/R/Z2NS7mKJnBKKaWUUqriyc2C6eeAJx1GToaw6s7GExcDc6+BuiOg56sQFKqJmyqSJnBKKaWUUqriWXAr7J0Dg76H6h2cjSVtK0w/EyIaw6DvJHlT6iA0gVNKKaWUUhXLhg9h/bsyT63JOc7GkpMKU0+H3EwYOQXCazobj3I9TeCUUkoppVTFET8X5t0A9Y6HLk86G4v1QsylkLwMhv4B1ds7G48KCJrAKaWUUkqpiiEzFmacA5UbwMAvISjY2XiWPgLbf4IeL0ODE52NRQUMTeCUUkoppVT5582BGedD1l44fhaE13I2ns1fwYonoeXV0PZWZ2NRAcXhXqlKKaWUUkqVsrgYmDAMYqdCn/cgqpuz8cTPhdlXQJ0h0OtNMMbZeFRA0QqcUkoppZQqv+JiYMIQsB4wwVC1pbPxpO+QjpOV68OgHyA4zNl4VMDRCpxSSimllCq/VjwjyRuAzYVNnzkXiycdpp0BOftg6G9QqbZzsaiApRU4pZRSSilVPiWvhl1/Ox2FsBZmXw4JC2Hor1Cjk9MRqQClCZxSSimllCp/MmNhyklAru8KIwOym1/qTDzLH4et30G356Dhqc7EoMoFTeCUUkoppZwUFwOxU6DOMIju73Q05YMnHaaeBulbpfLV7XmwOc69xlu/g2WPQvPLoP1dZf/8qlzRBE4ppZRSyilxM6U7ovVCcDiMmKhJ3LGyXph1CeydK5d7vQltbnAunoQFEHMZ1B4Afd7VjpPqmGkTE6WUUkopJ3hzYcFtvgYbXvBmSyVOHZtF98D2H+V8uzudTd4ydsHUMyA8Gob8JEm6UsdIK3BKKaWUUmXN6/E1tJgPJgSwEBQmS/zU0Vv7Jqx+Uc43Pge6P+dcLJ4MmHYm5CTBqJlQqY5zsahyRRM4pZRSSqmylJsNs0bDtu+hy5NQd4TugSsJO36H+bcAQVCzN/T/HIxDi82shTlXyzLOwT9BVFdn4lDlkiZwSimllFJlJTcTZpwPO36DHi9Bu9vlek3cjk3CQnldTRBENIJhv0JIZefiWfk0bPkSuj4Fjc90Lg5VLmkCp5RSSilVFjzpsqRu93/Q+y1ofb3TEZUPaVthysngzYGQKjD8b2eXK277CZaMhWajocN9zsWhyi1tYqKUUkopVdpy9kmSsXsC9P0wsJO3uFkQc4V8dFp2sryuWfFyeeivENnWuXgSl0DMJVCrD/T9QDtOqlKhFTillFJKqdKUnSwDpffOhQFfQLOLnY7o6MXFwISh0jlzy5cwcopzyz+9OTD9XEheCVgYMB7qDHEmFoCMPTJ7LiwKhvwMwZWci0WVa1qBU0oppZQqLVl7YdJI6TY58JvATt4AVozzjT0AbK5zYw+shbnXwZ4JgIWu45x9bXOzYPpZUgkc8gtUru9cLKrc0wqcUkoppVRpyIyFScdBylrpRNjwFKcjOjYbP4Odf4AJlstOjj1Y+TRs/EjOt7wKOtzvTBzgSybHQHwMDPoOavZwLhZVIWgCp5RSSilV0tJ3SuUtbQsM+x3qHed0RMdm+y8w50r5Ojo+CPGznBt7sPlLaRKCgbojoffbzu41W/UCbPoMOj8GTc51Lg5VYRRrCaUx5kRjzBpjzHpjTJHtdIwxw4wxi40xK4wxU4/ksUoppZRS5UbaFpgwBNK3S0fEQE/e9kyGGRdAzV5SSaw7FDre70zyFjtNBqCbYKjeAQZ/D0GhZR+H3/bfYPG90OR86PSQc3GoCuWwFThjTDDwJjAK2A7MM8b8aq1dme8+NYC3gBOttVuNMXWK+1illFJKqXJj3waYOAJykmHEf1C7n9MRHZu982Hq6VCtFQz7A0KrOhdLyhqYeoYsWQyvDcP+grDqzsWTtBxmXSxLJvt9rB0nVZkpTgWuD7DeWrvRWpsNfA2cUeg+FwM/Wmu3AlhrY4/gsUoppZRSgS95tVTePKkwclLgJ2/Jq2DKiZIsDf8Xwms5F0tmHEw+SV7boFBJ3qo0djaeqadBaDVpWhIS4VwsqsIpTgLXENiW7/J233X5tQGijDFTjDELjDGXHsFjATDGjDHGzDfGzI+Liyte9EoppZRSbpC0DCb62usfNyXwG1mkbYHJx4MJkUpiRAPnYvFkSLKUtkU6Xw76Hmp2dy6e3GyYfg5k7pbkLaLIQ1ulSk1xmpgUVQ+2RXyensBIoDIQY4yZXczHypXWvge8B9CrV68i76OUUkop5ToJC2HSKJn7NWIiVG/ndETHJjNWvp6cVDhuqiyfdIr1ymDsvXPkcu+3oeHJDsZjYf4NEDcdBnwFtXo7F4uqsIqTwG0H8teoGwE7i7hPvLU2DUgzxkwDuhbzsUoppZRSgSl+Nkw+EUKry7LJai2djujYZCfD5BOkAcuICRDVxdl4Ft8L236Q8+3vhtbXORvPmldhw4fSibPZhc7Goiqs4iyhnAe0NsY0N8aEARcCvxa6zy/AYGNMiDEmAugLrCrmY5VSSimlAk/sNKlUhdeGUdMDP3nzL1VMXiHdJqMHOBvPurelRT9Ao3Og2zPOxrPzL1h0JzQ+G7o85mwsqkI7bAXOWusxxtwE/AMEAx9Za1cYY67z3f6OtXaVMeZvYCngBT6w1i4HKOqxpfS1KKWUUkqVjV3/wbQzoEpTWTbp5B6xkuDNgRnnQdwMGPgVNDjB2Xh2/AnzbgKCoFYfGPA5mGJNvyodyatg5oVQowv0/8zZWFSFZ6x133azXr162fnz5zsdhlJKKaXUgXb8DtPPhcg2ssywUh2nIzo21guzLoEtX0Lvd6D1tc7Gk7AI/hsE3iyIaAInzIFK0c7Fk7UX/ukrHTBPmAtVmjgXi6pQjDELrLW9Cl9fnD1wSimllFIKYNuPeZWY4f8421q/JFgL82+R5K3r084nb2nbYMpJ4M2GkGoyCN3J5M2bI8l6+jYYOUWTN+UKWv9VSimllCqOzV/CjPOhZi+pvAV68gaw7FFY96Y0COlwr7Ox5KTAlJMhK14uD/1NqpxOsRbm3wyxU6DvBxDd37lYlMpHEzillFJKqcPZ8DHM+h9ED5LKW1gNpyM6dqtfgeWPQ8uroNuzYIqa/lRG/JWu5BUy663/51BnkHPxAKx9E9a/K4lt80ucjUWpfDSBU0oppZQ6lHVvw5wrod4oGPYnhFZzOqJjt/FTWHg7ND4Her/rbPJmLcy7AXb/B1hZyul0i/5d/8HC26DhadD1KWdjUaoQTeCUUkoppQ5m9cuSXDQ8DYb+AiERTkd07Lb/AnOugnrHwYDxEBTsbDwrn4ENH8j5ltc4v5QzZa0sla3eQV4f7TipXEZ/IpVSSimlirJ8HCy8Q6pUg76H4EpOR3Ts9kyGGRfIPr7BP0FwuLPxbP4KljwAGKh3PPR+09lqYHaizMILCoEhv5aPaqsqd7QLpVJKKaVUftbC0odhxZPQbDT0+0QO6APd3vkw9XSo1sq3FLSqs/HEzoCYy4BgqN4eBn8HQaHOxeP1SOUtbROMmARVmzkXi1KHUA7+GimllFJKlRBrYdHdsPpFae7R+13nlxiWhORVMOVECK8Nw/+F8JrOxpOyVipdWBkTMPwvCI10NqaFd8DuCdD3Q+cbqCh1CJrAKaWUUkqBDLSef4u01W99I/R6rXzsf0rbApNGgQmV8QcRDZyNJzMOJp8Inn0QFC7JW0QjZ2Na9y6sfR3a3QEtr3Q2FqUOQxM4pZRSSilvLsy7FjZ8CO3vgm7PObsXq6Rkxkry5kmD46ZCtZbOxuPJkGWcaVvk8uDvIaqboyGxZzLMvwkanCzfd6VcThM4pZRSSlVsXg/Mvhw2j4dOD0Hnx8pH8padDJNPgPTtUnmL6uJsPNYre972zpbLfd6FBic5G9O+9TJ/LrINDPyqfCyXVeWeJnBKKaWUqrhys2HWxbDtB+g6Djo+4HREJcOTLnvMklfAkN8geoDTEcHi+2Hbd3K+w73Qaoyz8WQnSzUQfB0nHd6Dp1QxaQKnlFJKqYopNxOmnwc7f4ceL0G7252OqGR4c6SbYtwMGPg1NDjB6Yhg3Tuwyrc8sfF5zg/H9ubCzAth3zoY8Z/zS0uVOgKawCmllFKq4vGkw7QzYfd/0PstaH290xGVDOuFmMth5x+yRLHp+U5HBDv+hHk3AkFQqy8M+Mz55jCL7oZdf8trVHeYs7EodYQ0gVNKKaVUxZKzT5YXxk6Dvh9ByyucjqhkWCtdNLd8CV2fdn6JIkDiYqkGGgMRTWHor84PRN/wIax5Gdrc4o7XSKkjpAmcUkoppSqO7GSYchLsnQsDxkOzi5yOqOQse0RGILS/W/aYOS19O0w+CbxZsr9s+N9QqbazMcVOg3nXQ73joceLzsai1FHSBE4ppZRSFUPWXunKmLQUBn0Ljc92OqKSs/oVWP6EDB/v9qzzXTRzUmDyyZAVBwTB0N8gsrWzMaVugunnQJXmMOgbCNLDYBWYysF0SqWUUkqpw8iMhYnDIWk5DP6pfCVvGz+FhbdD43Oh97vOJ2/eHGkOk7wcbC4M+AKiBzob0+4J8E9/8GRKMhlWw9l4lDoG+taDUkoppcq39B0w6TgZHj3sd6h3nNMRlZxtP8Ocq6DeKEmUnJ5jZq00LNn9r1zu9qzzjVT2TINJJwBeCAqXSqxSAUwrcEoppZQqv9K2wIShsh9r+D/lK3nbPQlmXgA1e8HgHyE43OmIZFTAhvflfKtrZT+ek6wX5t8EeH2XPRA7xcmIlDpmWoFTSimlVPm0bwNMHAE5yTLrq3Y/pyMqOXvnwbQzoFobGPYnhFZ1OiLY8g0svg8wUO8E6PWGs8s5/V05k5eBCUUqcGFQZ5hzMSlVAjSBU0oppVT5k7waJo2UDogjJ0HNHk5HVHKSV0knzfBoqSqG13Q6IoidATGXAkFQoxMM/tb5JiHLn/B15bwLGp0tlbc6wyC6v7NxKXWMNIFTSimlVPkRFwNbvobNn0NQKIycIglFeZG2BSaNkorSiP8gooHTEUHKOpmrZ3Ohcl1fRbCaszGte1vGKrS4HLo9J5VATdxUOaEJnFJKKaXKh7gY6TTpzZLLA74sX8lbxh5J3jxpcNxUqNbS6YggMx6mnAiefRBUCYb9DRENnY1py7fSSKXhadDnfee7cipVwjSBU0oppVT5sOblvOSNYEjb7GQ0JSs7SRKl9B1SeYvq4nREkJsJ006H1M1yeciPzse16z+I+Z+MLRios95U+aQ/1UoppZQKbLmZsOA22Pod0mDbQHA5albhSZcliskrYMhvED3A6Yiku2PMZRAfI5f7vA/1j3c2pvi5MP0siGwvs95CKjsbj1KlRBM4pZRSSgWu1E0w4zxIWAAd7oUGp0DcjPLTrMKbI19f3EwY+DU0OMHpiGSp6pL7IHaaXO74ALS62tmYklfD1JMhvA4M/1sHdatyTRM4pZRSSgWmHX9AzCVSDRryCzQ6Xa6vM9jZuEqKv8q180/o867zA7FBkrcJQ2SeGkDd46DLE87GlLYNJh8PJgRG/AuV6zsbj1KlTAd5K6WUUiqweHNhyViYeipUaQYnLcxL3soLa2H+zbDlK+j2DLQa43REYvG9eckbQNXmYBw8nMzaC5NPkFl/w/+Gaq2ci0WpMqIVOKWUUkoFjow9MOti2DMJWl4DvV6D4EpOR1Xylj4M696C9vfI0lA32PgJxE0veJ0JdiQUAHJSYcopkLpR5uFFdXMuFqXKkCZwSimllAoMsTNg5vmQnQj9PoEWlzkdUelY/TKseBJaXi3VNzfY/DXMvgpZvOUFjMzZa36pM/HkZsP0cyBhHgz6AeoOdSYOpRygCZxSSiml3M1aWP2SLN+r0hyO/9v5dvWlZeMnsPAOaHwu9H7HHTPMtv0krfmNgcqNoNerkLzSuUYx1guzL4Pd/0LfD6HxmWUfg1IO0gROKaWUUu6VnQxzroRtP0Ljs6HvRxBW3emoSse2n2HOVVBvFAz4AoIcXJ7ot+NPmHE+YKBSXThuClRtBo3OcCYea2HBrbDla6lOtrzSmTiUcpAmcEoppZRyp8QlMP1cSNsE3V+Edre7oyJVGnZPgpkXQM0+MPhHCA53OiLYPVHmqgGE18pL3py0/ElY+wa0u1P2BypVAWkCp5RSSin32fgJzLsewmrCyClQZ5DDAZWiDR/CvBtkeeKwPyC0qtMRQex0GR5uvRBaHUZOdr7D47q3YdnDsu+u+3PlN5lX6jB0jIBSSiml3MOTAXOugdlXQO0BcOLC8p28rf8Q5lwN3mzI2Akpa5yOCOLnwOSTZIh4SFUYOQmqt3c2pi3fwrwbocGp0PcDZ0cXKOUw/elXSimllDukboT/BsKGD6DjWBj+L1Su63RUpWf3BJh/fd5lmwOxUxwLB4CERTJXzZsl4xlGTnC+YczuCdJEJXogDPpGul8qVYHpEkqllFJKOW/7rxBzqVRWhv4ODU9xOqLStfUHmWcX0Vgqb94cCAqTzo5OSVoOk44DT5rEMvxfqNnTuXgA9s6DaWdCZDsY+huERDgbj1IuoAmcUkoppZzj9cCSsbDqOUkWBn3vfKOM0rb+fZh3HdTuL0lJ8mqpvDnVlh8gZS1MHAk5KTKce/hfzsXil7wappwE4dEyqDushrPxKOUSmsAppZRSyhkZu2HmhRA7FVpdBz1flmV75ZW1sPJZWHI/1D8JBn8vFaXo/s4mS6kbYeJwyE4ADAz7HeoMcS4egPTtMPl4SSZH/AeV6zsbj1IuogmcUkoppcrenqmSvOWkQP/PoPklTkdUuqyFxffAqheg6cXQ/xN37OVK2wYTRkBmrFwe8hPUO87ZmLL2wqTjITsJjpvqfPdLpVxGEzillFJKlR1rYdXzsOQBOTAf8R/U6OR0VKXL64G5Y2Djx9DmJuj5qju6KGbskspbxnb5vgz+zvm9h540mHKqVAWH/w01uzsbj1IupAmcUkoppcpGdhLEXAY7foUm50HfDyG0Wsk+R1yM8/vJ8svNhJkXwfafofOj0Olhd8wvy4yFiSMgbTPYXBjwJTQ+29mYcrNh+jmQMFf2QtYd5mw8SrmUJnBKKaWUKn0Ji2DGuZC2FXq8Am1vKflEJm4WTBgG1iN76UZMdDaJy0mBqWdIQtnzNWh7s3Ox5JeVABOPk8YleKHfx9DsImdjsl6YfTns+gf6vA+Nz3I2HqVczAX1e6WUUkqVaxs+hH/7y7Dq46ZBu1tLPnnLTpIB4DYHsPJcTs5Uy4yTClfcDOj/hXuSt+xkaQ6SvALwQu+3ocXlzsZkLSy4DbZ8BV2fhlZXOxuPUi6nCZxSSimlSocnHWZfCXOulq6GJy4snYpYwiL4uyekrAETKp0LnZyplrYV/hsEySthyC/QfLQzcRSWkypt+RMWAl7o8TK0vs7pqGDFOFj7OrS9HTrc63Q06iiNH7+SZs3eIyjoBZo1e4/x41c6HdJhBWLMoEsolVJKKVUaUtbJksmkZbLvq9PDEBRcss9hLWx4H+bfAuG1YdQ0wDi7By55lVS4cvbJIOw6g8o+hqJ4MmDq6RA/G7DQ7Rlod5vTUcG6d2DpQ9DsEujxgjv2B6ojNn78SsaM+Zf0dA8AW7akMGbMvwCMHt3BydAOKhBj9jPWWqdjOECvXr3s/PnznQ5DKaWUUkdj248w+wowITBgPDQ4seSfw5MGc6+DzV9AveNhwBdQKbrkn+dIxM+FqSdLFXD4PxDVxdl4/HKzZC/e7n/kcqdHoMujjoYEwNbvYcb50OBkGV/ghrEK6qg0a/YeW7akHHB9VFQ4jzwywIGIDu+xx2aRmJh1wPVNm0ayefMYByI6kDFmgbW2V+HrtQKnlFJKqZLhzYHF98PqF6FWHxj0HVRpUvLPk7xKqnvJq6DzY9BxbMlX947U7okw7QyoVFcqb9VaOhuPnzcHZlyQl7x1uBc6P+JsTCCv16zRED0ABn2ryVsAy8ryFJm8ASQmZnHbbZPLOKJjs3Vr0V+Lm2gCp5RSSqljl74TZl4gTTta3wg9XoTg8JJ/ns1fyky1kCoyQ67eyJJ/jiO19QeYdTFEtpXKW+X6TkckvB6Y9T/Y8YtcbnOLNAlxepni3vkw7Uyo1gaG/gYhEc7Go45KZqaHDz9cxjPPzD3ofRo1qsbSpZeVYVTF16XLp2zfvu+A65s0iXQgmiOjCZxSSimljs2eyTDzQlnWOODL0mlJn5sJC26H9e9A9GAY+DVENCj55zlS69+HeddBrX4w7HcIi3I6ImG90kBm67dyudW10PMV55O3lDXSSCW8tiS7bnm9VLFlZOTw3ntLefbZuezalcbAgQ0ZPbo9r7++cP9+MoCIiBCeeWYwUVGVHIz24J55ZnCBPXAgMY8b55J9q4egCZxSSimljo71wspnpAlFtbYwcjJUL4XN/6kbYfp5kLgQ2t8DXcdBkAsOYVY+C4vvg/onweDv3VNJsta3P/Bzudz8Muj9lvPJW/p2mHQ8YGSZqRsScFVsaWnZvPvuUp57bi579qQzdGgjxo8/hWHDGmOMoXPn2owdO4OtW1No0iSSceMGuboZiD+2QIrZr1hNTIwxJwKvAsHAB9baZwrdPgz4Bdjku+pHa+3jvts2A/uAXMBT1Ea8wrSJiVJKKeVy2Ykw61LY+Ts0vVCGL4dWLfnn2fazDHjGQP9PodHpJf8cR8paWHwPrHoBml4M/T9xzx4ua2HBrdKWH+R70/8L5/cIZiXAhMGQtg2OmwI1ezgbjyq21NRs3nprMS+8MI+4uAxGjmzCQw/1Z+jQxk6HVu4ddRMTY0ww8CYwCtgOzDPG/GqtLTwoYbq19tSDfJrh1tr4Iw1aKaWUUg6KmwnbfoLG5xRsyZ+wAKafCxk7oNcb0PqGkq/u5G+IUrOnNESp2rxkn+Oo4vLIHryNH0Obm6Dnq2BcMlbXWqkI+pO3hmdC/8+cT948aTDlFNi3Hob/rclbgEhJyeLNNxfz4ovz2bs3gxNOaMZDD/Vn4MCGTodW4RVn/UEfYL21diOAMeZr4AwgMCbdKaWUUurIbfsZpp8DeGHdWzBiItTuB+vfgwW3SLfF46ZD7b4l/9zpO3wNUWZKctjjpdJpiHKkcjNh5kWw/Wfo/KjMtnN6WWJ+yx6DVc/J+fonwaCvna8MenMk2U+YK0l43eHOxqMOKykpk9dfX8TLLy8gMTGTk09uzsMPD6BvX5c051HFSuAaAtvyXd4OFPXXur8xZgmwE7jLWrvCd70F/jXGWOBda+17RT2JMWYMMAagSZNSaDmslFJKqcOzFjZ9LlUmvHKdNxt2/Qvr3pZ9VfVPlLlr4bVK/vl3/ScdHXMzYMBX0OzCkn+Oo5GTIp0T90yGnq9B25udjqiglc/C8sfkfN2RMORH55Ne64WYy2HX39DnPWh8trPxqENKSMjg1VcX8uqrC0lOzuL001vy0EP96dWrntOhqUKKk8AV9dZS4Y1zC4Gm1tpUY8zJwM9Aa99tA621O40xdYD/jDGrrbXTDviEkti9B7IHrrhfgFJKKaVKSGYczL0Wtv8ENbpAylqwOTKQe/NnkLoJOj8OncaW/LJBby4sfwKWPy6NUAZ9D9XblexzHK3MOOmcmLhE9pM1H+10RAWtflWWTmKg9kAY+gsEO9z5z1rpGrrlS+j6FLS6xtl41EHt3ZvByy8v4LXXFrJvXzZnn92aBx/sR/fudZ0OTR1EcRK47UD+XYqNkCrbftbalHzn/zTGvGWMqW2tjbfW7vRdH2uM+QlZknlAAqeUUkopB237WapuOcnQ/Xloezts+BDWvSmt33NSpO17/VEl/9yZsTLUefcEaH6pdEwMqVLyz3M00rbCpFGQvg2G/AINT3Y6ooLWvQsLbwMM1OwNw/90x2u34ilY+xq0vQ063Od0NKoIcXHpvPjifN58cxFpaTmce24bHnywP126RDsdmjqM4iRw84DWxpjmwA7gQuDi/HcwxtQD9lhrrTGmDxAE7DXGVAGCrLX7fOePBx4v0a9AKaWUCgRxMRA7BeoMK9gQxGnZydK1cNOnENUd+k+CGp1g9ySYfyNYDxAkXSZLI3mLnSH73bL2ynO0vMo9+8qSV8Hk4yFnn7S9r+Oy+VAbP5UZdARJxXTEPxBazemoJKlc+iA0+58MdHfL91MBsGdPGs8/P4+3315MRoaHCy9sx9ix/ejYsbbToaliOmwCZ631GGNuAv5Bxgh8ZK1dYYy5znf7O8C5wPXGGA+QAVzoS+bqAj8Z+cUNAb601v5dSl+LUkop5U5xMTBxOHizZGnbiEnuSOJ2T5IW/Rk7oeOD0OkhCA6D+Dkw43xf8oYcgKesAs4suee2VjpMLr4PqjSDE2ZDVLeS+/zHau88WTZpQuC4aRDVxemICtryjQzqJgiqt4eREyCshtNRwdbvYd710OBk6PeRezp0KnbuTOX55+fxzjtLyM7OZfTo9jzwQF/atSuFvayqVBVrCqa19k/gz0LXvZPv/BvAG0U8biPQ9RhjVEoppQJX6kaYc7UkbwC5OVKJczKB86RLi/61r0G1NjBqpnST9ObA0odl+VtYbQgKlyQuKEwqhyUlO0kSx+2/yIiCvh9CWPWS+/zHavdEmHYGhNeBEf9BtZZOR1TQtp9lySlAtVbSIbQ0Gsocqd2TJK7a/aXjpNMdMBUA27fv49ln5/L++0vxeLxcckkHHnigH61bRzkdmjpKxUrglFJKKXWEPGmw4mkZ9mwMmFDAW/LJ0JGKnwuzL5V9bW1uhm7PQEiELBeMuURmvDW/TOabJa8s+WWfCQtg+nmyp6zHK9D2Fnctsdv2o4wKiGwre/4qu6x1+s6/YMZ5cr5KUxg5CSq7oNlEwgJJequ1hqG/yc+UctTWrSk8/fQcPvpoOV6v5fLLO3L//X1p0aKG06GpY6QJnFJKKVWSrIUtX8Oiu2XQdbPR0O1ZaYbh5B643GxY8aRU1yo3gBEToN5IafW++lVYch+EVIXBP0Ljs+Qx0f1LLlZrYf27st+uUl0YNV3myrnJ+g9g3rVQqx8M+x3CXFah2D0Jpp0FWPkeHjcFIlwwVDllLUw+SaqAw/+B8JpOR1ShbdqUxNNPz+WTT5YDcOWVnbn//j40beqiKrc6JprAKaWUUiUlYZEMuY6bATV7wqBvIXqA3BbR0Lllk0krpLqWuCivuhZWXZLK2VfAnknQ4FTo+z5ULoWZTzmpMp5gy5cyQ67/51DJZQ0TVj4r+/HqnwSDv3NHJ8f8YmfA1FNlSWt4bRg5Gaq4YG5u+g7p0gnS6MUNCWUFtX59Ik89NYfPPltBcHAQY8Z04d57+9C4caTToakSpgmcUkopdawy42DJWNjwgRxc93kfWlwBQcHOxuXNhTWvSGyhkXnVNf+w7vk3g80t3e6PySth+rmwbw10eRI63u+uxhbWwuJ7YdXz0PRi6P+J+/Zuxc+FKSfKHsWwKDhuqjv25WUlwOQTIDsRjpsMkW2cjqhCWrs2gXHjZjN+/CpCQ4O56abu3H13bxo2dEFHUlUqNIFTSimljpY3B9a+BcsekT1vbW+Dzg+7oxtg6iaIuQzipkOjM6DPe1CpDmTGS+v5bT9A9CDo/ylUbVE6MWz6QipvoVVh+H9Qb0TpPM/R8nokvo0fQesboddr7kouARIXw+RRkJslr+PIybI/z0lxMbD7X+k4uW8dDPtLKs6qTK1atZcnn5zN11+vJjw8mFtv7cHdd/ehXj2XVY9VidMETimllDoau/6TAcrJK6He8dDzFWnn7jRrpRK48A5JRvp9IsOxjYEdf8KcqyB7r+zLa3dn6VQJczNlr9v696DOEBj4tfuageRmSrOS7T9Dp0eg8yPuaqYCsvR14gjpGhocId0ma3RyNqa4GJg0EnIz5HKXce5LzMu55cvjePLJ2Xz77RoiIkK5665e3HlnL+rU0cStotAETimllDoSqRth4Z1y4F+1BQz5BRqe5o6D/4xdMrJg559QdwT0+1j2SeWkwqI7JaGq0RmG/w1RpTTlZ98GmHGuVI463AddnoAglx1u5KTAtDNhz2To+Rq0vdnpiA6UslZmB+akQFAlGPEv1OzhdFSwe0Je8kaQO37uy6Hx41cyduwMtm5NoUmTSMaNG0SnTrV54okYfvhhHdWqhXH//X25/fae1K6tHT8rGpf9RVVKKaVcKicVVj4Nq16UhKTrU9DudhnM7QZbvpUByrnpkpS0uVEqcHGzIOZSSTzb3wNdHofg8NKJYduP0hTFBEsr+Yanls7zHIvMOBnQnbgE+n8BzUc7HdGBUjdJ8padIOMnhv8lc/qc5kmHHb/5LgTJz5GTIzHKqfHjVzJmzL+kp3sA2LIlhcsu+4vcXEtkZBgPPdSP227rSc2alR2OVDlFEzillFLqUKyFLV/Bont8YwH+J7PT3NJtLysB5t8kMdbsDf0/g+rtZGzAskdh1bMQ0UQaX9QZXDoxeHNg0b2w5mWJYdC3ULVZ6TzXsUjbCpOPl49DfoGGJzsd0YHStsGEYZC5BwiScQal9X07Ejn7YOppkDAfOjwg+/GcGolRzo0dO2N/8uaXm2upXj2czZuvoUYNl7xppByjCZxSSil1MAkLfWMBZh44FsANdv4te9oyY2WpYof7pDqYtNw3NmCxdJfs8TKEllJHurRtMPMCiI+BNjdB9xdKr8J3LJJXSfKWs0/a3dcZ5HREB8rYJZW3jB2AgaG/yKw+p2UnyZy3hHkwYDw0u8jpiMq1rVtTirw+JSVLkzcFaAKnlFJKHajwWIC+H8hYALd0KMxJhUV3yWDs6h1luWLNHjKUe9WLsOQB6YQ55BdodHrpxbHzH4gZLR0SB34NTS8ovec6FnvnybJJEwLHTYOoLk5HdKDMOGlYkroJMDDke2hwktNRQdZemHQ8JC+TNzAan+10ROVekyaRbNlyYBLXpInOc1NCEzillFKBafNX0gGywcklt4zLmwNr35Slh24bC+AXN9O3p20TtL9LKm/BlSB1M8y+HGKnQqMzfWMDoksnBm8uLH8Mlj8pXREHfed8a/uD2T1RGpaER8OI/9wxP62wXf9AzOW+ZZPAwK9k9IPTMvbApONkVMDgn9255LQceuyxAVxxxd9Ym3ddREQI48a5sGqsHKEJnFJKqcBhLez6V+au7Z0DGFj9orRXP9Ykbtd/0vo+ZRXUP0GWHbphLIBfbhYsfVgGTldpBsdNkRb91sLGT2D+LXK//GMDSkPGHpg1GvZMlKpkrzcgxKVd8Lb9KKMCItvC8H/cN8oAYMdfMPUUwHe03ukhaHq+oyEBkL5DxgWkbYNhf7hjKWcFkZaWg7VQp04EcXHp+7tQjh7dwenQlEtoAqeUUsr9POmw+QtY/YokWCFVAQNY8GZD7JSjT+BSN8rMtO2/QNWWMORX6Z7opvboiYul6pa0DFpeAz1elD1tmbEyiHr7z1BnqCRvpdk8JHa67HfLToS+H0LLK0vvuY7V+g9g3rVQq580AgmLcjqiA+3bADMvZH/yBrKU0mmpmyV5y4yTkRNuaKJSQWRmenjqqTkMHNiQ6dMvxLjp75ByDU3glFJKuVf6DlnSuP5daake1V26LEY0kT1N3mwICju6Vub7xwK8AEGh0PVp31gAFzXg8Hpg1XOypDOsFgz9I28Z2/ZfYe41kJ0M3V+EdreV3h4965XXackDMvtu2F+lN0fuWMXFwPLHYdffUP9EGPw9hLhwwHH8XKm8efY5HUlBKeskecvZByMmQO0+TkdUobz//lJ27Ejls89O1uRNHZQmcEoppdxn7zyptm39Fmyu7OlqdztED8qrjI2YKJW3I21lbi1s/hIW3wMZO31jAZ6FiAYl/3Uci5R1UnXbOxuanA+934LwWnJgveA22PgRRHWT16FGp9KJIS4Gdv0FuydB/ExofC70+xBCXdpMYc80ST6sR2bRdbjfncnb9t9g5vmyl9A/DNvmyhsJzS91Lq7klbLnzZsDx02Wny9VZjIycnj66TkMGdKI4cMbOx2OcjFN4JRSSrmD1yNLAVe/DPGzIKQatLkZ2t4kVZ/Covsf+bLJA8YCfO++OVbWC+vehkV3S3OSAV9BswvlttjpktSlb4WOD0CnRyA4rHTiiIuRlvbeLLnc9jbo8ZK7lpbml7oRZl0syZtf/EyoO8S5mIqy7m2Yd5NUS4MjYOivUkU+mjcjSlLiYpg0Sjp1jpwCNTo6E0cF9u67S9m1K42vvjpVq2/qkDSBU0opJc0eYqdLpaesDyCzk6Rd/5rXJTGp2gJ6vAItryi5Sk9mrG8swIfSmbHvh9DicveMBfBL3w6zr4Td/8nyv74fSmUwNwuWPiTLGKu2gOOml+48utwsWS7pT94Ihkp13Ju8bf5K9gJaK8mQzT36pbWlxXrlZ3DlM1IdrFQPRvwD1X2NKZx8I2HvPBkVEFoVRkyCyNbOxVJBpafn8Mwzcxg+vDFDh2r1TR2aJnBKKVXRWAupG6TdfOw06eqYuVtuW/9uyXR0LI6UdbD2Ndj4sbTsrzMUer0GDU6FoOCSeY7CYwHa3Q6dHoaw6iXz+UuKtdKkZf7NUkHq/Q60GiMJU+ISGcqdtAxaXSuDskOrll4siYsh5jJIWiqJhkWqfG5Khvw8afKabfwYogfKkOn0nc5XswrLzYY5V8Lm8YCB6p1h+J/u6IoZOwOmnCzzDkdOhKrNnY6oQnr77cXs2ZPOd9+V4txGVW5oAqeUUuWdtZCyxpew+U4ZO+W28GiprGTuoUQ6OhYnlj2TZZnkzj8gKASaXgxtb4Wa3Uv2uXb9K3vF9o8FeAWqtyvZ5ygJmXEw7zqpgkYPhH6fyqwyb65U3JY+dGADk9Lg9Uh1aNljcjA/9Dd5XrclQ36Ji6WDY8paab3f6WH5earS1F2xZifBtLMhdrJcrnc8DP5Ouog6bfckmHoaRDSS5C2ikdMRVUhpadk8++xcRo1qyuDB+j1Qh6cJnFJKlTfWC8krYI8vWYubJksIQd7xrzPUdxoCke0hfrY0fjiWjo6Hk5spjUPWvCKVpPBoOehufT1Urleyz7Vvg4wF2PGre8cC+O3vJJkkjVTa3SnVx9SNstctztc4pPfbUKl26cWRvFKqbgnzoelF0Ot1aZgC7kqGQN4EWPu67BH0V43qDnc6qqKlbYPJJ0LKarnc8ir5XgaFOhsXwM6/YPrZ8jsyYkLJ/x6qYnvzzcXExWXw2GMDnQ5FBQhN4JRSKtB5cyFpiSyH9C+LzE6Q2yIayzv+/qStWqsDE5no/kff0fFwMnZL04Z1b0NWHNToLPu6ml0sDTpKUk4qrHhKBnsHhUG3Z6TxhpvGAvjlpPg6SX4MNbrKAXSNzpKcrH8fFt4uzST6fyGvVWkln95cSaqXjJVlmYO+hSbnlc5zlYTMeFmKuOM3WWrb7+PSTWyPReJSSd6yYgEvdH4cOj3ojjcStv0k8/yqd4Lh/7r3NawA9u3L5rnn5nHiic3o399lnXCVa2kCp5RSgcbrkW6K/uWQcTMgJ1luq9oCGp2Rl7AVd6jz0XR0PJSERZIYbPlK4m14qiRTdYeX/AGstbK3aPG9sjS0+aUy081tYwHiYiRJDq0mSyPTtxXsJJmxB+ZcDTt/h7ojZCh3lVJsZrBvPcy+XKp8jc6UfXeV65be8x2rPVNg1v/kjYCer0qHUjckQ0XZPQGmnSWVZ4t8L1tc5nRUYvPXEPM/qNlLhnSH1XA6ogrtjTcWsXevVt/UkdEETiml3C43GxLmSbK2Z6q02Pekym2RbaHpBXlLIp3cw+LNlcrImlck1pAq0nSjzS2l09UuLkYaf8ROg+TlckA6+Aeo3a/kn+tYxcXIMtXcTMDK92nUzLxYt/0oXRQ9qb7k5KbSHcq97h1ZghgUKoPRm/3PvcmQ1yODuZc/CdVay968kt4vWZI2fgZzrpLzQeEw5CeoP8rZmPw2fiKxRQ+Cob+7Yx9eBZaSksULL8zjlFNa0KePCxraqIChCZxSSrlNbqbsS/MviYyPgdwMua16J6kw+RM2N+xbyUmBDR9LR8nUjRDRBLo/Dy2vLr139zd/JZ0Zba5c7vAAdH3CfWMBQBKmNS/nfQ8x8trU7gfZyTKXbtNnMpeu/+dQvX3pxZK2VcYU7JkojV36fuDuxhVpW2HWaKkyt7gcer5euh04j4W1soR36YPSvTM8WipcUV2djkysewfmXQ/1RsGQnyEkwumIKrzXXltIQkImjz5aiiNBVLmkCZxSyt38y87c2AWvpHjSJEnzNx3ZO0caimDk4K/VGEnYoge7a69K6iZY85rMVvPskw6K3Z6V5XhBpfDvxXql8cKa12D3v/luCJaDejcmb3ExsPA22DsXMHIKDpd9iXsmQ8zlkLFDOih2erD0mltYK9WXhbfJ69jnXWh5jXurbiD7tOZcJRW4/l9A89FOR3RwXg/MuwE2vA8YqNZWkrfSXAJ7JFa/IvsqG5wqHTBLev+pOmJJSZm8+OJ8Tj+9Jb16ueCNOBVQNIFTqqKwFnKSpLV6XAzU6gU1uiAbNKzcnv+89R78tkOd9z/uSB5T1OOshX1r5B1tr0cSgh4vQq2+EFJVTqHV5GNpJAulKSdF9h35K2x758nsLxMMUT2g7S2+hG0ghEU5HW1B1kLcdDkg3PELECTDv9veCrX7lM5z5qRI8rHmdUhdD5UbQMsxsPkzmfPmtoHNIN0HF98rewAr188bDRA7DWr1h63fSVWuWhsYNav0XjuAjF0wZ4zsraszVBp/uHnWlycDFt0pjW9q9oKBX8tr51Y5qdIQZOefcrnOMBjyo3v2lq14SprUND4HBnwp+y2V4159dSFJSVlafVNHJcCOepRSBVgvZCXIDK/DnmJ9VZ0A5c2Wgb1FCQqXCkxIVQjxJXX5L+8/Xyjx23+/wo8p4aQwO1GG5fqbjiQulO+dCYFavaH9XXkJm1v3pORmw9ZvJHFLXAhhNaH9vdDmRohoWDrPmbIW1r7hG/SdCrX7Q5cnoMk5Uqlqcbn7qrOeNFj5HKx6HrDQ8UHocK/8bMXFyJDp9VdA2mbZ59bt2dJbymYtbPkG5t8gyzd7vAJtb3ZnpdIveaXMdktaJr8XXca5O+HI2A1TToHERXK52f+ky6obYrYWlj4MK56EZqOlkUqgvdlVTiUmZvLSS/M566zWdO/u4sZByrX0N1kpt/HmQlZ8MZOyOKncFGZCoFLdvFONzvIxaRns/BvwAkHQ9EI5GPYv7TIm3/mgIq4r6n7FfMwhHx9U9P0SF8t+HW+OrwL3kgzpzdknB/T+08EuZ+6Rd8c9qbLELzez+N+H4EoHT/oOmvj5ksW0Lb59a9mwby0kLQWsJJq1+0LHsZKw1e7v/n0omXGyd2bdW5C5W+bG9XlXDlRLI3brhV3/yX66nX9KotbkAqlK1upd8L4l3TnzWFivzLlbfJ8siWxyAXR/Vn5eQb6mKSfn/b72eBna3VZ68WTGyZK+bd9DrX7Q/xNpeONW1sKGD2DBrfK7NuwvaHCi01EdWsoamHQCZGxHkvUHoMuT7liWaq00qVn9om/23LsyX1C5wssvzyclJVurb+qoaQKnVFnweqQCVpykLCvet5ywkKCwvISsckNpeJA/Sct/Cosq+iAiLkb23fgHNre5yT0HwEWp3h6qNCu5KovXIxWSIpM+X5K3/7zvck6hxDBjV8HHHS4pjOoFnR+DukOhVp/A2XuStAzWvAqbvgBvFtQ/UcYA1D++dA5Qc1Klkcfa12XocaW60PlR6WLphkYthxI/W2a67Z0jv5eDvpFqKsgbMps+kcRk/5stwfkampSCbT/DvGul8tv1aalkubnykp0Ec8fIstJ6x0kjF7d/z+NmwpTT5G+EtfKmRqsxTkclrFdWK6x7S/7G93zV3VXXCiYhIYNXXlnIuee2oUuXaKfDUQHKxX/RlQoAO/+RtulVmkN4zULJ2O58Sdneoh8fXDkv6arSXN4p35+kFUrKQqsf+4FzaQ5sLi0lWWUJCoGw6nIqKd6cfElhqiQg694BvLKnrcnZ0PH+knu+0uJP7oPCYPc/MscquLIsU2x7a+l1RkzdCGvegI0fySy7mr3kAL7Jee4cwJ1f+napuG0e79vn9gk0vyTvYDl2hiRuiQulCp6yVpK40tqzl50E82+BzZ9DVPe84eBuFhcDsy6C9B0yeL393e5PNrZ+L50x/cugh/wADU92OirhzZVkeONH8lp2e9YdFUG134svzic1NZtHHgmA/7/KtTSBU6q4rJWlcXEzpInDrn9lH0thIVXzkq5qbSF6SNEJWaW6ct+y/ufqpmVn5UFQqDQr8DcsaPY/2bPlr3K6rblGYblZsPFTmH8T2By5Lqy2VG5aXQPhtUr+Oa2FPZOkm+SO33yJ7rkyL652P/cfcHrSZY/bymflIL7jWOhwX157+/wNTCIawYCvZFZf/OzSe/Nk5z/SsTFzt3S07DjWHfuwDsZ65fVb+hBENIZRM2R5sdutfhkW3ilJZliULPWs1cvpqIQ3B2Iuk5+7Tg9LBdvtv0sVTHx8Oq+9tpDzz29Lp05afVNHTxM4pQ7GeiF5BcROl4Qtboa84w4QGgmV6iF7tiwQBO3vkKVybt/TpEqX26uc2YkQN0uWgMXNkPb23qx8dwiCdrdCx/tK/rk96TJ4e81r8rsVHi2JRuvrSq8RSkmyVg6OF98rfwuanC8VjqrN5HZPOqx6AVY+A1jo9Ah0uFsGmkPpvHmSsw8W3QXr34PqHWS+l1sSioPJ2AWzLpFZdE0ukOWHJVkVLw3WK4nbmlcAA1VbwPB/3NPNMzdbmr9s/0nefCmN3191zF54YT5paTk88ojufVPHRhM4pfxysyBhvhzUxk6XA9ycJLmtcgOZwRU9COoMlmHKe+fCpJF5lZZGZ2vypoRbqpwFqsYz5Gc6ebncZkKgZg/pIhkeDcsfy2vJX3dkycaRtgXWvilNKrITIaqbtLJvemHg7AmMnyvLIffOllEPA76UvwUgr/PW76RpRPpWSey6P5fXwKS07JkCs6+Q17f9PdDlMfe/njv/kiqRJ1WGiLe40v1VotxMSTi3fS+Xaw+Aob/Ksnk3yM2E6edI058er8gbMMp1YmPTeP31hVx0UXvaty+FlQ2qQtEETlVc2cnSKTBuuiRs+SsRke1kSVf0YDlIq9LswIMMt1daVMXj9UjHS391LW4GZOyU20Ij5cCz6QXyRkStPgXfcKgztGR/lq2VmWdrX4PtPwMGGp0l++miB7r/oN0vfQcsvl/2lVWqB30/ghaX5e3TSlgkiV3cdElMB3wOdYaUbkyedFjygDSZqdoKRk3Pa5riVrnZsOR+WP2SzJ8c+HXp7assSVl7YerpED9LLjc5D/p/5p5E2ZMGU8+QJcluaqSiDvD88/PIzMzl4Yf1WEEdO03gVMWRsavgcsikpb5N6L7hyW1u9FXZBkKlYq5Nd0ulRVVMOanS+dBfXYuPkcoGyL6iOkMlWYseKFXjQ7URL6mfZU+GLDNc8xokLfHNi7sHWl8PVZoc++cvK/uXQz4LNhc63C/NaPxz+jJjYcmDUlUMrw193pNqUmm3ao+fLRWsfWuhzc3Q7em8JZpulbJOGpUkLIDWN0KPF9yTAB1K6iaYfCLsWy+X290plVW3NFnJSZEZdPGzpIFOi0udjkgdxO7dabz55mJGj25P27YuqdyqgKYJnCqfrJUDnNjpeU1HUjfKbcERMn+r08NycFu7n/sPgJQCeRMif3UtcbEkFxjpNtj80ryErayTpfTtsO5tWP+uVC2qd4I+70OziwNrabF/+PXieyB9GzQ+Vw7a/XudcrNluPjyxyTJa3c7dHoor4lNacnNgmWPwqrnoHIjqf7XG1G6z1kSNn0u8+iCQmHwT9D4TKcjKp6982HKSbLkFy/0fE2GoLtFdqIklwkLfU1yznc6InUIzz03l+zsXB56SN/wVSVDEzhVPng9kLgo3/61GZAVJ7eF15bKWusbZTlkVDc5mKio4mJ02WcgsF6Zh+avrsXNyPcmRGWo1Vc6H0YPkjcknGgCYa28+7/mNdj2g8Tc6AwZul1nWOAsk/TbO0/mucXPkr8T/T+X+X1+O/6EhbfLm0MNTpbB8mUxHDthEcRcKvsXW14lzxsaWfrPeyxy9sG8G2XpafRgGDAeqjR2Oqri2fEnzDhX9oSaYBj0HTQ+y+mo8mTGweTjIXklDP5efueUa+3cmcrbby/hkks60Lp1lNPhqHJCEzgVmDxpED8nbzlkfIxcB9IdrMFJeU1HItsG3oHk4VgrG9dzkmT2U3aSzNDKTsq7LidJ9vnlv0/GLkjf4vskRpqzhFaThNaEFPx4sPOlcfuhHpO0VA6s6x8PdYeV/WtdVnIzZYlZ3AyZHxY/C7IT5LbwaPlZbn2jVNeiujvbIj43S6pUa1+TmEOry5DvNje6pyvfkUjfKfuzNn0GlepIc43ml+cth0xeDQvvgF1/QbU2MPSPspn75c2BFU/D8idkWXdZPe+xSlgAMy+C1A3Syr7jWHcPEs9v/fsw73o5Hxopr7mb3ujK2AWTjpM3c4b8Cg1OcDoidRjPPDOHnBytvqmSFSB/UVWFlxmfr5PedFk2Yj3I0rEu0OIK39KxQYHTjtyTduQJWE6++3qzD/0cQaEypyi0OoTWkCVenlTyRh8g1cnINlLB9ObIa+rNkXlgnvS8815P3sf81xW+3XpL/rXyW/m0dEgMryVfV1hN38eiTkXc5rah0Fl7pZ1/vL+d/7y872lkW2h0Zt7PdLVW7ngTImNX3jLJzFiIbA+935bZd/4ZaIHEkwGrX5QkyXqgw73Q8YG86lZ2Eix7XIazh0RI5av1jWWTPCetgNmXSTLUbLQs4XNL18ODsVba7C++F8LrwMjJpd/QpaRYC0sfhhVPAkHSQXT4PxDZ2unI8qRtk87HGTth2J9Qd7jTEanD2L59H++9t5TLL+9EixY1nA5HlSOawCn32L+0byhUrl9wOWTKKrlPULh0z2t/tyyHrD3A2flBO/6Sd+Uj28nA3vxJlv+8PzErnIDZ3EN/7uDKknSF1pAkLLwWVGuZl4yFVs+7PayI64IrHXjQHxdTcPRB77dL9t1l6z14smdz5HJxk0GvB7b9KEvzsICRZYORbWT/R1YCpG2FxCVy2bOvGK/nIRK8QyWAx3rAbi2kbZLKmv+NiP0/06EQ1VOWHdYeeGRNdMpK/BxZJrn1W/m5bXCKxFvvOHcklkfKWvlaFt0jbf8bnw3dn5fqPYA3FzZ+BEvGQlY8tLwauj4p1bnS5s2VTo1LH5REctD30OSc0n/eY5UZB7Mvl1b2jc6Avh+WzhD40pCbDXOvkQosyHiNYX+Uzfe7uFI3wcQRUpUf/i9E6xyxQPD003PIzbU8+GA/p0NR5YwmcMp5njTY9AXMv1kO3PNXiEKrywFt80slYavZ07nuZRm7pfKXsAASF0gylBV78PuHVC2YYFWuL22zD5Zw7f9YXa4vjYpRaY8+MEG+ZKeEKhRVmsHOP/ISzm7PHjxmr8eXKCfmOyUUupzvlLZF9k1mJ+Z1bjyY4IiCCV24L8ELPUgCmL5F3nwwoZCxQxK2zN3yuUKryxsPzf8n1bWavSGkcsm8XiUpN1vmXq15TTpdhlSTJZJtbpKKYKDaOx8W3ib7Cmt0hf6fFlyaGztNxgIkLpZl2D1fhZrdyya2lHWSBMXPkpELfd5xVxJxMLsnQcz/5E2VXm9A6xsCJ7HPTpYZansmyuWGp8PAr9zVeCdlrSRvueny99vtg9oVAFu3pvDBB8u48spONGvm8kH1KuBoAqfKliddDowSFsjQ7IQFUokovPSu4enQ5Qmo0ansWzZbK0tU/MlawgJIXJg3TwsjVaDK9X2NUiwQJG3S29/hq5hFunfPRyCNPjiShDMoBCrVltOR8uYUkfwdIgFM3QTZC+V2/97Lg6lUD+qNlDciogdB9Y7uaUOen78CXr2L/Lyvf1uWTFZrDT1fl9ln/hb6gSh9JywdCxs/kT2Fhdv+p22RitzWbyGiCQz8RmZ+lUUiYr2w9i3pfBkUDv2/kO6dbk+CvDnSGXPF07Lsd9hfENXV6aiKL30HTD4pb7h96xslYS/tURBHImm57HmzXhg5BaK6OB2RKqannpqDtZaxY7X6pkqeS48wVbngyZA5UHvnS8Vq73xIWZmXrFWqCzV7SZvukKqw7CE5IAgKk+56ZfGPylppFb6/sub7mLlHbjdBsjyy7gip/tXsKd3pQqsduByx2ei8JViq5JRFwhkUKssWj2bpYm62b2msL7lb9460TscLBMtSw473l3DAJWz3ZGmZ7h9kD1D/RFkGV/8EdyacxeXJgDUvw4qn5He1/d3SVMO/9NqTBiufk/b8GOj8GLS/q+wqMGlbYPaVMoi5/knQ9/3A2MebuhlmXSwNpFpeJYlPII1jSVoOk0/w/a230O05+b67KWlOWASTR8n/l5GTA2PwuQJg8+ZkPvpoGddc04UmTVzeMVYFJE3gVMnIzYTEpXlVtYT5kLwib59XpTq+ZO0s+Vizp3RAzP/PMnpg6ba3t1YOlvJX1RIWyB4X8CVrHeTAtWZP2QcR1e3gByWlvRxRBYbgMAiuk7fUzb+/yp/Y1xnmaHgHsFY62MXHyFDovbPlQBF/FdxIR8meLzkYZAmwVpaALrpbfu8bnSn73PzLP62FLV/75r1th6YXyRLdsmp1b63ss1twO2BlZl7Lq9yVQBzM1u9gzjWAlRlkzS50OqIjs2cyTD0DcjMA486vIX62zHkLrQ4jJwb2suUKaNy42RhjuP/+vk6HosopTeDUkcvNgqRlvmTNl7AlLfd1hUQ6G9bsBQ1Py0vWIhod/sCkJCst/oPU/IlawsK8tuwmRJayNTw9L1mr0eXI33UPpOWIqmy4LbHPSYW9cyVRi/ed/DMSQ6pIU6Bmo2HrN9JAIzhMlg4GsoSFMs8tbrr8Xhceep2wQPa5xc2EqB5yAF9nUNnFl75Tmmbs9HUS7PsRVG1Wds9/tDzpMgdv/XvyczPwq8BbdbBpvOwzBNnbOvTXgrP+3CB2Gkw5RVapjJwoHTFVwNi4MYlPPlnB9dd3pVGjAF52rlxNEzh1aLnZkLxMDnj2+pK15GWy1BGkW1/NXtDhHl8i1AsiGpftu8jWC/vWy0Fb4oK8ZC0nWW4PCoXqnaHxOZKo1ewJNTo71wxFlX9OJfbWC/vW5VXX4mNkf49/2XJkWxlAXbs/1O4nb2L492q2vt49SefRytgNSx7w7XOrDX3ehRZX5e1pytgtnSU3fizLZft+CM0vK7s9T3GzYM2rsPMvecOr52vSGCYQlqgmLYeZF8jw6A73yh7loFCnoyo+a2HlM/LzYYKgUgMY8Q9U7+B0ZAXtngBTT5ekbcREiGjgdETqCD355GxCQoK47z6tvqnSowmcypObLcse8y+DTFqWN5sqLEqSn3Z35iVrVZqWbbLmzYV9awt2g0xYlNdCPihc3nFvemHenrXqHd03A6wsWCt7mnIzpWrqzZTze+dJVbLOUJnRFBwhS/0CYemWKig7WTpE+pO1vXNkHx5II51afWXpYO1+UjE5VFv3QK4m52bCav8+tyxodwd0eihvn1tulnTTXP6E/B60v1NuDy3DvSkbPoE5VyFLVYOketX0/LJ7/qMVN0v2CO76S/4HDP8X6o9yOqoj4/VIl+P17wBG3tAb/pc0onKTHb/D9HPljZYR/wVGB1JVwPr1iXz22QpuvrkHDRoE4GxMFTA0gauovDnyTqo/Wds7H5KW5jUxCK0uCVrb26Rlcc2eUKV56R7k758DN0wOJL0eSFlTcM9a4qK8rn/BlaBGN2h+Sd4yyOody/Zd4cIx+3lz5bXcn0D5TgUu50uqCpw/1G2+xx/stgLnsw4WtVj9ct55EyzL6YIj5KP/VOByBARXKXg5pIrvukM8Ljji2OaoHew1rmisV35n/fvW4mMgeRX7Z+RV7yBV5tr9oFY/aXgQCJWdYxE3C9a+KXuaMnfJ/LFuz+cNX7ZWDooX3gGp66HBqdDjRekiW1bSt8OSB2HTp3nXGQOpG8ouhqO17UeYfh77k84+HwZe8uZJg5kXwY7f5HK942Hwd+7rqLr8KWnkVbW1NCxx+9B2VaQnnoghLCyYe+/t43QoqpzTBK68yn/QW6u3L1nL17o/cXG+ZC1SEqC2N+ftWavasmwrMrsnypp/b7YkE5Ht5AAnN0NuD46QWUwtrsxL1iLbl22rfk+GLE/bt0YSy9gZsPs/5ODGyOto/YlbzrE/nwmS4dNB4ZKsBlc68Hx41YPfVtT5Xf/A1u/Zf0DW4CRZTudJkxlDnrQDz2fF+65Ly7vucEPID/haQg6eFO5PAgslgsERsuRtzcuSzAeFQv/PocGJ0rW0vFcMsxIKJmt750JOitwWFiVJWpML86prTg60L2teD6x6XhIj/+9fz9fkb5hf8kppELL7X/l7Muwv+dkpKzn7pHK1+kVJvpuOhu0/ure5TX5ej1QsF9/H/uY2xkDyUmh0iqOhHZHMWPm/krBALre8Cnq/7a6ln9bCvBt81UFksHzKmor9ZlWAWrs2gS++WMXtt/ekXr0A6siqApImcOVNZrx0CFtwq6+piJEkx78MMqSqJEBtbvQla72gWsuyeafeWhlqnLIaklfLR/8pY0e++3lksHKra/OStWpty2afivXKO+YpviTNn6ztWwtpW9k/YBx8y6/yza+LbCcDmoOLkUgVJ+EqjeQ0sr28E+0/iOw49ugOFHKzfQndQZI+T3rBhM9/v8KP8aTJQVbhxxeVIHqzYKZvyVlwZVleFO7r/ug/FXk52l0HbEXxemSvmn8pZPxs+ZkD+d2s3hmaXizJWu3+MputvCewRUnfARs+kCYa++cyIq+Rfxh7diIsewzWviF/73q8Am1uKLufAa9HuksufVha1De9CLo+JU1KAqGanLAA5oyRFQ+1B8plm+P+pDO/uBjpQLr5S/n7goXOj0OnB931e5OzT0ZIbPs+7zpvtvyMuPXnQx3U44/HUKlSMPfc09vpUFQFoAlcILJWBuymrJJ3mZNX5p33d5fLuzPU7C0NCmr18h34lXKylpsplaqU1b5EaHXeef9BFkgCFNlOhhwHR8hBj78L3oAvS/cfWE4KpKwtmKT5EzV/1Q/kADCyrRzItLgSqrWRy5FtZGxC/jlwPV52/z/dkuqQGBwmp7CokoxOWCsVzNw06cY240LffMAQmeEVGglZsXJglhkrvwtJS+S8/42KwsJqHibJy3cKrVH6B3mZsQWTtYR5eUuDw6MlSWtxuXys2QtCK/BeCmtlRtq6t2D7L5Lc1z8B2t4qQ6T9v3/Rg2UG39IHJYlrOQa6PH50s/2O1s6/YdFdspc4ehAM+QVq52tk4OZ9hjmpsPQhWPua/E4M+k6W5MbPdn/SmV9cDEwYKkknAEHQ7xMZRO8mKetg+pnyv7HNTbDhw8CozqoirVq1ly+/XMXdd/emTh2tvqnSZ6y1h7+TMScCrwLBwAfW2mcK3T4M+AXY5LvqR2vt48V5bFF69epl58+fX/yvoryyXqn65E/Q/Of9HRZBDjird5A9L5G+jlpLxua9azpiYsn/47VWltblr6L5T6mbKFCpqtJUErX9p7bysVK9ggfKJf3utNcDaZsLVdPWyseMXXn3M0FQpZlU+SLznaq1lU3uhzqYD4R31ANdcV9jayUxz4zNl+DtyUv08id9WbGQtbfozxMUKklUpTrSxvtwCV9R3UwLLGHuBYlL8jUamS0jLkCWlkZ1y9u3Ft2/9PeaBorsROkmue4deWMlrCa0vFIq8/6ZWP7XOaQabHhf9vHWGSpDpaO6ll2siUtl3tzuf6FqK+j+LDQ6K3C+jzt+h3k3yvK9VtdBt6chrIbTUR05bw7801+aW/k1OAWG/e5cTEXZ8QfMGi1vSg38Rt7E1P8lAe2ii37nt982sHnzNdSufYTjiJQ6BGPMAmttr8LXH7YCZ4wJBt4ERgHbgXnGmF+ttSsL3XW6tfbUo3xsxeb1yAFd8kpIWSmNCZJXSjKUm553v0p1JEFrNlqWwvmTtsKJEMg79yXxz8AfW4EkzVdV889UA1nSVq2NVPuaXSIJWvV2UvE72CDswo723emsvQcueUxZI00L8u9FC6spiVn9Ewoma1VbHn2XSje/o15eFPc1Nkb2gYVVB1of/v7eHPnZOVjC578+ZY1cn78ym19ItYIJnQV2/uFbBlpoCXPl+vK72eo6X3Wtx5HPHizv9s6DdW/LkO3cDEls+38ms+kKJ8sZO2HzeKl4VWkKg76HxmeXXeKUvhOWPQwbPpKEp8crstrhWJr2lKWMXTD/FlnCV70jjJoJ0QOcjuroJK+EmEsLJm8gY23cwnph+ZNSOY7qBkN+ypvxpv9LAtaKFfF8881q7ruvryZvqswUZwllH2C9tXYjgDHma+AMoDhJ2LE8tvzJzZJ3kvcnaL5kbd/agku/IhpLgtZqjCRpke0lUTtUC/DCjvSfQXZyoeWO/mpaoSSoUj1Jzpqcn1dRq97ON/utFJdm5mZJU5Oiqmn5KylBofIOeGRbaHS6L1FrIx8r1S69+FTgCQqFyvXkVBz+/XoFKnqFEr7UjVKB9g+1x/q6ud4qVbaynpEYKDzpkrCte1saLYVUke6yra+XA938rJUB3MsehT0T5ToTAn0/gXrDyijeNFj1gjQpsTnQ7nbZX1UaS4pLg/XC+nelSUluFnR5UpYnB0rimZ/1wupXYMn9efMO8f2OBYVC80udiqyg7GRJMHf8Km9y9nkXQio7HZUqAY89NouqVcO4884DiiRKlZriJHANgW35Lm8HippO2N8YswTYCdxlrV1xBI/FGDMGGAPQpEmTYoTlYp40X6MOX4LmT9RSN+RrzmCgagtJ0Bqc7KumdZCEqCTaGxe1HMN6IX3bgQ1EUlZD5u68x5oQqZxFtpMZUvuXPbYt3WU1cbNkKU9EQ4khf0UtbVO+f85IJaNaG9mjkb+aVqVZ2XamVBVHSBWo2lxOhxIXU3BvZPcX9J31g0lZI0skN34COUnyN7Dn65K8Fe6q6UmTatvaN2WpZFA4cqBu5bQ3pvQTOG+ujANY+qBUr5qcB12flkZQgSJpOcy9FuJnQd0R0PudvLELgSZ1M8y+HGKnSvfioErQ6135nxU71T3LEZNXwfSzYN963/D2m/SNnHJi6dI4vvtuLQ8+2I9atTQhV2WnOEe6Rf2VKbxxbiHQ1Fqbaow5GfgZWcNUnMfKlda+B7wHsgeuGHGVraISouykggmav6qWtiXvcf5kqEZnaHpB3tLHam1K7923uBiYOMLXkj8I6g7z7VdbU3AZWFiU/KNrcFLBPWpVm5d91764GJgwpGD3wf3LMntCs4vzJWptynYAr1JHoqQaxZRX3hzY/qtU2/ZMlL81jc6WTpHRgw88sE1ZKw1MNn4ie39rdIU+78nS56mnll3jh90TYOGdkjzW6ifLNQNpuaEnA1Y8KVXDsOrQ71NJlAMxkbBWml4tuFUqiAC1B0H/T6TbJ7jne7PtJ6m8hUTI34W6Q52OSJWgxx6bRWRkGHfcodU3VbaKk8BtB/IvIm+EVNn2s9am5Dv/pzHmLWNM7eI8NiDsngJTTsybUVajG2TuKNgII7hSXhv5llfnLX2s1qrsk6HYKb4Zb1aqVgkLZL9N3REFE7Xw2u755x07Rf4pAxAE7e+SjfTlfRCxKp90P8uB0nfA+vdhw3vytzOiCXQdBy2ugsp1C97Xmws7f5dq2+7/5G9o43Nl/EntAXl/t8oiUU5aIQ1Kdv0lDWYGfiOVN7f87SyO3RNh7nWyJL75pdD9xcBdUp6xG+ZcLftMTYj8j+j+iswAdNP/C28uLHsEVoyTOY2Df4CIRk5HpUrQ4sWx/PjjOh55pD9RUUU0s1KqFBUngZsHtDbGNAd2ABcCF+e/gzGmHrDHWmuNMX2AIGAvkHS4xwaEnb/nDb22HsjaLY0w9jcS6QARTctmTlkxjJ/egbEP3c/W+Bo0qZ3MuCd6M/rcM5wO69DqDJNGIv530xud6a5/xkqpI2e9MgJg7Vuy98d6of6J0PtdWTpe+G9mZpzMeVv3jnRErNxQ5ne1uqbovYqlmShn7JED8A3vS6Oa7i/I0rejbXjkhMx4WHQnbPpM9gaPmCAdDwPV1u9l+ae/C3NUd2lwU72ds3EVlp0IM0dL0t/yKuj1RtHdalVAe/TRWdSoEc5tt/V0OhRVAR02gbPWeowxNwH/IKMAPrLWrjDGXOe7/R3gXOB6Y4wHyAAutDKfoMjHltLXUmrGzxnI2IfDCyZEZ7ozIRo/fiVj7txEerpspt8SX4Mxd26CaisZPbqDw9Edgi47U6r8yEqQJY/r35GZkOG1od2d0Ppa2fubn7Wwd65U27Z+I2/i1B0OPV6CRmeU/Z5WTzqsfhlWPiMzLVvfBJ0fPrImUk6zVpK2RXdK84yOY+UUqE0zshNh3k2w5UswobIRo8sT0OE+9+15TloG086SNyB6vyPNyAKpWquKZcGC3fzyy3oef3wgNWpocq7KXrHmwJU1N82BGz9+JWPG/Et6umf/dRERIbz33vFHlBDl5nrJzs4lO9v/UU45OUVdX/A+/st59z34fT7/fCVpaTkHPH9UVDhvvz2KOnUiiI6uTJ06EdSqVZngYK1yKaVKyN55sl9ty9eS/NQeIJ0km5x7YAXCk+HrPPmmLPMOqQrNL5O9cNUdeLPJeqVJypIHIH27zHHr9ozsuQ0kKetg3nVS+aw9QLod1ujkdFRHb+c/MPsKX6MtC5EdYcDnULO705EdaMu3EmtYdRj0g74RWY6ddtqPzJy5k82bryEyMoCq8irgHGwOnCZwh9Gs2Xts2ZJywPWVKgXTu3f9A5KonJyikzGvt3Re55CQIMLCgggLCyYsLJjY2PTDP8jHGKhVq/L+hC46OqJAglf4cs2alQkK0ncSlVL5eNJhy1e+EQALpFtns//5RgAUMUw7daPcd8NHMksysr3sbWt+iXPNifZMkQYliQtl7EOPF6HOEGdiOVq52bDqeVj+hCzz7Pasr/oToG/SedJk7+G6t31Vtxxofw90edx9y1i9Hkn8Vz0vSfPg76VTsiqX5s7dRd++4xk3bhAPPNDP6XBUOXfUg7wruq1bD0zeADIzcwkJMUREhBMWFkxoqD+JykumDrycdz7v/sV7TMH7y/WhocEHJFQHSzgbNarKX3+dQ1xcBrGx6cTFpfs+Zuz/uGxZPHFx6SQkZBb5NQcFGWrXLpjwHSr5i4qqVOyEb/z4lYwdO4OtW1No0iSSceMGuXvJp19R3UmVqgiSV8sSyY2f+kYAdIReb0Lz/x2YiFkv7PpHlknu/FOSikZnSuJWZ5hzS8ySV8Pie2DHb9JUZcB4aHph4CU9cbNg7hgZaN7kPOj5amAnEHEzpXNj6ka5HNFIqm7RA52NqyhZe2HmhdKltPUN0OPlwJynp4rt0UdnUatWZW6+uYfToagKTBO4w2jSJLLIhKhp00gmTbrAgYgObdy4QUUu+XzmmSF06hRdrM+Rk5PL3r2ZByR6hZO+xYtjiY1NJykpq8jPExwsCd/hqntz5uzioYdmkpEhMW/ZksKYMf8CuDuJi4uB/wYBXsBAVE+o0lgOXkOry8cw38eQfOfz3x5SzTXNb5Q6LG8ObP/FNwJgUl53yNbXQ/SgAxOxrATY+LHcP3UDVKorA69bjXG2I19mHCx7TBLQ4AiZ5db21sDbI5adBIvvl68jojEM/Q0anup0VEcvN0sax6x8Xjo+g/xsdXsOQqs6G1tREhbB9LOlq2rfj6DlFU5HpEpZTMxO/vprE888M5hq1TRRV87RBO4wDpYQjRs3yMGoDs6f8BxLNSs0NJh69apQr16VYt0/OzuX+PgDE7zCl+fP301sbDopKdmH/Zzp6R5uvXUSbdvWpH37mlSp4sI/lLFTyBtraCErFrwZkJOSdyp67GFBIVUPTOyKe35/gli1+FUDrRqqI5W+3TcC4H05WK3SFLo+BS2uPHAEAEDCQqm2bflKZk9GD4QuT0Ljs52tTuRmwppXYcVTskSv1bXQ+RGoVMe5mI6GtbDte5h/i/zdaXu7LC10Y5JTXIlLYNb/IHk5YKTxTf9PoP7xTkdWtE1fwNxrJM5R06FWb6cjUmXgkUdmEh1dmRtvdOEeTFWh6B64YgjY5X0ulZXlKVDRO/HEHw77mObNq9OxYy06dqy9/2O7djWJiCjjGXv5xcXApJF5ow9GTCyYEFmvHCTmpEjb6/2JXb7z2b7znnznC9/Hs68YwRgIrXaYhK+6VETWvyUzioJCZTZRg5MCb8mYKn3WK/PD1r0lSwytV35WWl8P9U86sHKcmyVt3te9CfExUtlqNlqWSRa1F64sWa80TFl8v3QHbHia7BGr3t7ZuI5G2laYd6OMt4nqDn3fh5oB3Mbc65G9Y0sflsvWI3soe70GYVHOxlYUb47szVvzKtQZCoO+Dbw3ANRRmTFjO4MHf83zzw/lrrs0YVdlQ5uYKNc62L69Bg2q8PrrI1mxYi8rVsSzYsVe1qxJICfHC8hqrRYtahSZ2FWqVEbF5bKoZnlzwZN66ESwOOc9aUV//qBQqFQfKjeAiAYye6tyg3yXfdeFRmo77PLM/7Mc1V32Uq17RwY/h9eWWVatroWqzQ98XNpWWP+uVOiy4qBaa9kL1OJyCKtRxl9EEWJnwMI7IGGefG3dX4B6I5yO6sh5PbD2dVj6kFTgujwBbW9xXxv9I5GyDmIugb1zgCD5een7vlRq3SgzFmacD7FTZclt9+fl76eqEEaO/JYVK+LZuPEaZ988VhWKNjFRrnWwZarPPTeUs89uw9n5/pfn5OSyfn3S/oRuxYp4li+P588/N+HxSGIXFGRo2fLAxK5t2yjCw0v4R740Bwn7BQXLUsmw6kDjo/88Xg/smQhTz/RVDUOg9Y3S0S1jp5ySV0nVxT8oN7/giKKTvMoNICLf5UDbR6Rg598w7Uzw5tvPGj0IujwGjc85sOuftb4B3W/IgG6ABqdKta3ece6o6KasgyX3wbYf5ee13yfS6dINsR2phIUw5xrpktngFOj9pixjDVTWyr7IRXdJRQtk716f94pekusGe+fJfreseOj/uTTrURXG1KnbmDRpKy+9NEyTN+UKWoFTrnCsy1Szs3NZuzahQLVuxYq9rF+fSG6u/IwHBxtatYryJXR5yV2bNjUJC6tAjUSKUzX0pMlep/Qdecmd/7T/uh2yp6iw0BoFE7rCCV7lBlC5nr5z7QRrIW0LJC6CxMV5H9O35buTgTY3Q69XD3x8drIMiF73FqSsluHWLa+GVtdB1WZl8zUcTtZeaaW/9k1JPDvcB+3ugJAIpyM7cjmp0tRjzSsQXke6SzY5L7Ar4enbYfaVsPs/aVQSXBl6vQHNL3Xv17XhI5h3g/zdGvyTO2fQqVI1bNjXrFmTyMaNV1O5sv7vUmVHl1CqCikry8PatYmFErt41q9P2j+bLyQkiNataxSo1nXsWIvWraMIDT14Ylfh90ZaK5W6QyZ5OyURtJ5CDzayb+RQSV5EQ1m+Fz9Hm64cDW+OVFTzJ2qJi6XlP0glKrKdLCsMqwHrP5AqbXAR+zmTlktCtPlzSe5r9ZHqbdPzDxzQ7ZTcLKkILn9S9pS2vBo6PyYH3YFoxx+SNKRvleWr3Z5xx5LUo2WtDEqfdyPkpoHNhTojoP/HUKWJ09EVLTcbFt4m1cJ6x8GAr6BSbaejUmVs8uStjBjxLa+9NkJHB6gypwmcUvlkZnpYs6ZwxS6eDRuS8P9KhIYG0aZN1AGJXatWUXzzzeoil32+997xrk7iHEk6rVfath8yydsp+0sO6NoZjIxpsPJufbP/yYDlqi3kVLmhjmEAyNknXfzyJ2vJy2WpLEiVo0ZXiOom1YMa3aBG54LLXQtXZr05sO0naUoSOw2CwqHZRZK41Trgf4lz/B0ZF98nc8Pqnyh7k2p0cjqyo5OxCxbcClu/g+odZFmhG+efHYnMOJh3PWz7QX6PTYjsRWxzg3uXtGbsgunnQvwsGSDedVxg7zdUR8Vay5AhX7NpUzLr119ddvvrlfLRBE6pYsjIyGH16gMTu02bkvcndmFhwVhr9zdTya927cq89dZxhIQEERISRHCw2X8+JCT/+SO9LqjYQ9EPZvz4le5OOr05kLG7YFK39TtpGLCfoUCSFxQKVZrlJXRVmuedr9rCt2+wnMnYVTBRS1gkzUb8wmtLVS2quyRsUd2lscjhEl1/Ale9k+y1Wv+ub2RAM+k82eJK91Uf1r0rIwHSt0pC2v0F97adPxzrlUYwi++VpcmdHoL2dwf+UOjtv8Kcq2VpK16o2RcGfAaRbZyO7ODiZsGMc2XJcL+PpdKsKqQJE7YwatR3vPnmSG64QZfOqrKnCZxSxyAtLbtAYvfcc/PKPAZjOKYEcO7cXWRl5R7weZs2jWTz5jFl/vUUS+FRDcP/kQHQqRuLPmUnFHx8WM2CCd3+U3MZfOzmfXjWC/vWH7hfLXNP3n2qtiiYqEV1k+WnR7qXaPsfMOPsvIodSCWrzY1FjwxwUlaCLMVb+zrsWyfXBYXCiElQx53zOQ8raQXMuxbiZkLd4dD7HXcnOMWRkwILbpNB7sZXtejyuCSlbq1kWQvr34MFN0NEExjyk7wxoCokay0DB37F9u37WLfuqpJvgqZUMWgXSqWOQZUqYfTsWY+ePWU/zTffrDno6IN//z0Pj8frO9l8572Huf5Y73voxxeVvAFs3Xrg1+Ea0f1lP1bhPXBVmwMjD7x/dhKkboK0TQUTu8RFsP2nvI53IEu5IpocJMFrITOoyqqpQm6m7DPLv1ctaUne6IegUKjeUeaw+RO1Gl2PvMJorVTVEhbIKXGhfMzYme9ORpp+9HihZL62kmC90vVyw4eyrNObBZUasL8ia70QNz3wErjcTFg+DlY9K2M6+n3i7mYexbVnCsRcltccJ7IdDPjC+XmAh5KbCfNvkp+x+ifBwPHunEOnysy//24mJmYn77wzSpM35Tr6E6nUUTjU6IOOHV22zMznYPP2goIMb7+9mCuv7OTOf1JHMqohrIbs8SqqS5w3VzpnFlW52/6zzDDLL7R6XrVu/xJN/8emR7+0LSshL0nzJ2wpq6SpA8iBfFQ3aHGVfB1R3SCyw5E/n7XS8S9/opawIF8Fz8iBdd0RUqlc/640mwkKk9EBbpC2FTZ+IlWctM1yQN3qGplL58koWJ2tM8zhYI/Q7kkw7zqpIja7BHq8CJWinY7q2HgyYMkD0jXTX3XrcD90fuTAURRukr4dpp8De+dCxweh86PuqjqrMmet5eGHZ9K0aSRXXBGg+2lVuaZLKJU6SoHWhbKoPXDh4cE0blyN9euTaNiwKvfc04drrunsrjbJsdOliUbdEaXbhTIn9cDK3f7TpoIz0kwQVG5U9NLMqi1k6eOeKVC9nVT6EhZB0mL5mL417/NUblhw+WPN7rLn7EgbO/jHAxRI1hbmJaUmSJLAmj2hZg/5WKMrhFbN+xxlMZS+OHKzZLbchg9h17+AlQ6ALa6CxmcW7HrplpiLKy4Gdv4h35tdf0HVltDnHfn6At3eeTDrEti3Ri5XbSnz0tz+fYmdBjPOA0869P8MGp/ldETKBf78cyOnnPIj779/PFdf3cXpcFQFpnvglFJFJp0XX9yeSZO28vjjMUybtp26dSO4554+XHttF6pUcbiBQlwMTBzm25tloEYXOVVpKnPHqjSFiKbShrw03+G3Xll6WDix8yd8GbsO8wkMRLYttF+tq4xSOOJYrDxn4WTNv//PhMhyywLJWhf3z0FLWiZJ2+YvpOFFRGNocYWc3DJj7ljsngSTTwTrW8bb/FLZ6xbog++9ObIMdMWTgJEqbpubZOxBSBWnozs4a2Uf5cI7oVpLme9Wvb3TUSkXsNbSu/cXJCRksmbNlYccJ6RUadMETil1WFOnbuPxx2OYNGkr0dGVueuu3txwQzeqVnUokVvxNCx5EBklYCRhs17I2C4f86tcX6pXVZoW8bFp6SYwnnRZ4pe6UToj7vwD6ZYZBK3GyH6yozmY9TcySVgIiQvykrWcZLk9KBSqdy6UrHV2z2y2w8lOhi1fS+KWME++nkZnSrWt3nHlYxlbTopvPt04yE33XRkMXZ+Ajvc7GtoxS14pVbfEhYCRBjr9P4V6RexPdRNPBsy9VuYaNjxdKm/lsWOtOiq//rqeM874mY8+OoErrtAmNspZmsAppUQxlp3NnLmDJ56I4Z9/NlOrVmXuuKMnN93UncjIMt7HUrgLpX/AtDdH5silbZHEqcDHLbJMMX/DEoDw6KKTO38lLzSydGM+HG8u7FsrCVrCAl/Ctgg8++T2oHCppOVP1qp3dPfeoqJYKw1HNnwoYyJyM2R0QcurZM6f20YVHK2sBFjzKqx5TYan1+4v31v/PsPi/ly4kfXC6ldgyf2yd9PmQvPLoOer7k+EUjfD9LNl72nnx6DTWPfOolNlzlpLjx6fs29fNqtXX0lIiP5sKGdpAqeUgj3TYNIIOQALCpU9Ko3POWilY86cXTzxRAx//LGRGjXCue22ntxySw+iosqwwnM0+5y8uZC5u+jkzn8+N7PgY8Ki8qp1RVXyjqQr5eFi9nogZXXBZC1xcV7XyeBKMmy7QLLWwd1jDw4nfSds+hQ2fCRz60IjoelFkrjV7BX4nRf9MmNh9Uuw9k3wpEKjsyRJqNkz8PbsFSV1s3SYjJsGGAivBX0/gEZnOB3Z4e2eCDMvkN+/AeOh4SlOR6Rc5qef1nH22b/w6acncemlHZ0ORylN4JRSwKJ7YdVzBa8LjoAanfL2l0V1lWV4+VpoL1iwmyeemM0vv6wnMjKMW27pwW239aRWrQDdv2OtHGinbYH0LXJQWria50kt+JiQqgdP7qo0lf1s/iQk/4F6rV6y1Gx/srZQkrXcDLlvcISv22S+ZC2ynXtnZR0Jbw7s+MPXkOQvqdTUGSJLJJuc6/59eUcifQesekG6eeZmQtMLoONY+d0qD6yFjR/B/FvBmynfy0ZnQZ933d8901pY/aIMSY9sB4N/hsjWTkelXMbrtXTv/hmZmR5WrLhCq2/KFTSBU0oVXN5nQqDdnbIvJ2kJJC4pOAg7onGhpK4LSzbW4Mmn5vH992upWjWUm27qzh139CI6uhwdiIMc8GUnHmSJpu9jdmLBxwRX8u21qy4VNevbt2eC8xpXhFQ7MFmr1qZ87PXKL3m1HOxv+kzGFlSuL0vsWlxZ/g6cUzfDymfl67W50PwS6HCfNK0pD+JiYMdvEDsV4mcBQbKfs/db0Gy0+yunnjSYfRVs/QYanwv9Pi7YfVUpn++/X8N55/3GF1+c7OqO0qpi0QROKSUOtozLP+Q5aWneKXGJLPWzvtEDQeFQvSPLE3oz7svWfPOXpXLlEK6/vht33dWbevVc3HWupOWk5C3LTN2cV8mLj5F5c37Rg6H19b5krVX53W+Tkyp72jZ+CHEzJXFteKpU2xqcVD4qivmlrIOVT8OmzyWJaXEldLjXN2S+nIibCROG5f3+A9QdBf0/gohGjoVVbPs2wPSzIHkFdH0K2t/j/oRTOcLrtXTp8gm5uZblyy8nOLic/p1WAUcTOKXU0cnNkiQuf1KXtBQy97B6ZzTjfh7JlzHdCQuxXHtOFvfc0owG7bpDtbZHP+w6kB1tE5NAZC3Ez5akbcs3suw0sq0kbc0vgcr1nI6w5CWtgBVPwdav5fvbcgx0uDswEpojsWcqTD8XsuPzroseDMdNdX8SFBcD69+Drd9DcCgM/BrqH+90VMrFvvlmNRde+DtffXUqF17YzulwlNpPEzilVMnK2APJyyBxKeuWreLpD0L4bGIzQoK9XD1sLveeMYPGzRvIwOioLnnLMSvVdf8B4LEqD80qDiUzVipPGz+S/X3BEbLnq+VVUHtA+fz+JiySWWfbfpQlhK1vkCXIles6HVnJSlkne8W2/wQYZByGT6vroM/bTkVWPLunwORRvqqhgUHfyn5LpQ4iN9dL586fEBRkWLLkMq2+KVc5WAJXzta0KKXKTOW6cqp3HK3bw0fnw4Pr43nmyYm8Oz6U9yYP4MqTdnLfKf/QrNrneY8Lj96/p27/qXr7wJldVhzR/ctf4ubNhV3/SLVt+69ygFyrH/R5X5K30GpOR1g64mfD8idltl9odej0ELS9VbovlidZCbD8CZlZ50/aKtWHrFjZ2xcUKsPH3cpaSa7nXJ235NMEwb51zsalXO+bb9awalUC3357miZvKmBoBU4pVeK2bEnm2Wfn8uGHy/F6LZeObskD14fTssbavGWYycvzWvmbYOkOlz+pi+oClRvKAXR5rma5XepGaf2/8RPZ2xdeWw7kW14low3Kqz1TpeK2e4Ika21vhzY3QlgNpyMrWbnZsO5tWPaob0C8lUS18yPQ+kbpnOr237+kZbDgVtgzGaq0kJ/T8jBvT5U6j8dLx44fEx4ezOLFlxEUVA5XD6iApksolVJlbvv2fTz33Fzef38ZOTm5jB7dnrFj+9GmTU2p6KSu9yV0/sYpS6QpiF9INd9sNCtNMHq/B80uCrzh1YHGkwHbfpD2/7FTpJJR/0Rp1NHwtPK7t9Fa2P2fVNzipsty3/Z3ydLB8ta50FrY8SssvEt+D00QEARtbpIqY3hNpyM8vKwEWPowrH8bQmtAlyeg1RjYO8/9Sadyhc8/X8Gll/7FDz+cztlnt3E6HKUOoAmcUsoxu3al8sIL83j77SVkZeVy4YXtGDu2Lx061D7wztnJ8o560lLY+CkkzC14uwmRyk9Ut7xTja6BccDpZnGzYPOXkLET9kySakzVFpK0tbis/DXpyM9a2PG7VNz2zpXKb4d7oeXVEBKgsw4PJWERLLzDl5yHSLWq0VnQ/TnplOp2Xo80KVn6EOQkQavroctj5W9ZqypVHo+X9u0/omrVMBYsuESrb8qVNIFTSjkuNjaNF1+cz5tvLiY9PYfzzmvLgw/2o3PngwwCLjC3LhQ6PShz6xIWQdJiGXvgF9EkX1LXXT5WaVo+G2ocC+uVodP71kDKGkhZC3vnSOLi3/tU73joeB/UGVp+xx6AvBbbfoDl46T6W6UZdLxfZtaVxypv+g5Y+qC8MWKCJXGL6gU9X4I6g52Ornj2TJHlkklLoe5w6Pkq1OjsdFQqAH3yyXKuuOJvfv75TM44IwDeuFAVkiZwSinXiI9P55VXFvLaawvZty+bs85qzUMP9aN79yI6+h2qo2PGHt8Q8sV5p31rfEO0kb08+St1Ud0gskP5XQKYX3Yy7FvrS9LW5J3ft06SYL+QqhASCZk7fVcEQ9cnJJEpr7we2PK1jANIWSXD1DuOleW5QaFOR1fyPGmw6gUZOJ6bBXilytjtWfmaAyFJT9siyz23fS9vzHR/ERqfrW/QqKOSk5NL27YfERVVifnz/4fRnyPlUprAKaVcJyEhg9deW8grrywkOTmL005ryUMP9aN37/pH/0k96ZC0XCp0+xO7JXlJS1CoJHEFEruuEBZ1rF9O2fPmSJORlLV5FTV/opa5J+9+JhiqNIfINjKfL7Jt3vnK9aVRTEWYXZebDZs/hxVPQ+oGqN5JqrqNz4WgYKejK3nWK+MeFt8HmbsBIyMfOo2FtrcFxvJQT7oknqueAwx0uF/2JQZC7Mq1PvxwGVdf/Q+//XYWp57a0ulwlDooTeCUUq6VnJzF668v5KWXFpCYmMlJJzXnoYf6s3FjEmPHzmDr1hSaNIlk3LhBjB59FJ0P/Q1T8lfqEhf7Dmp9qjT17afrJh9rdpdlmU6/M2utJGP5kzP/+dSNeS3TQUY0RLaVilJk27zzVVsevupYnmfX5WZKJ82Vz0L6VqjZEzo+CI1OD4zq09HYM0X2uSUu8i2X9EKra6Hzo4Exu85a2PotLLob0rdB0wuh23NQpbHTkakAl52dS5s2H1KnTgRz5ozW6ptyNU3glFKut29fNm+9tYgXXphPfHwGQUEGrzfvb1RERAjvvXf80SVxRcnYLdW5/NW6lDXs3wsWWqOIJZjtS2cJpidNljcesORxLeSk5N0vuBJUa+2rpBWqqAViFbE0edKk2cWq52W/ZO3+0mGx/onOJ+alJWUdLL4Htv/sS9xyod6J0OMFqNHR6eiKJ3Gx7HOLnSa/cz1fC5w9esr13ntvCdde+x9//XUOJ57Y3OlwlDokTeCUUgEjLS2bRo3eJSkp64DbmjaNZPPmMaX35J40WYKZuCgvqUtaCrkZcntQKFTvWLBaF9W1ePPBvLmQvkWWPKas8S179C1/TN9e8L4RTQpW0fznIxqX36pRSclJgbVvwuqXICteml10ekiqi+U1cds/iPt1wErFrXpH6PEy1B/ldHTFkxkvTVY2vA9hNaHrOGhxVflc3qockZXloXXrD2nYsCqzZl2s1TflegdL4EKcCEYppQ6lSpUwkpMPTN4Atm5NKfL6EhNSBWr3lZOfN1eqY4mL86p1O/+U4dZ+VZrlVemCK0HqJhl6bXPzKmn71oM339cVWl2SsjrDpYIW2VYqatVaQUhE6X6d5VFWAqx5Dda8Ku3l658k+72iBzodWenZP4j7EV+l1spS2m5PQ/PLAyP58ebI17D0EfDsgzY3yyBxrSirEjJ+/ErGjp3Bli3y/+Pii9tr8qYCmiZwSilXatIkcv8/2/xCQoJYtGhP0R0rS0tQMFRvJycuzLs+Y3fBPXVJi2XpWgHBENlKErMGJxespoVHl9+KUFnKjIXVL0vVzbMPGp0pXSVrHfCmZflhLWz/BRbdKXshMdKApsO90P7uwBk8vnuCLJdMXgn1RkHPV2TOo1IlZPz4lYwZ8y/p6Xn7hV9/fSGdO9cuueX4SpUxXUKplHKlov7phocHEx4eTFpaDvfd15eHHupHeLjL3oda+qgsZcMLBMuA4U5jnY2pvNr+K6x8DhLmSRWnyfnQ8QGI6uJ0ZKUrYSEsuB3ipuXtc2t+mSw5jGjodHTFk7oRFt4pb3hUbQE9XoKGp+sbGqrENWv2XpFvBpb6cnylSoAuoVRKBRT/O6OFu1CefHIL7rxzCuPGzebHH9fy0Ucn0q9fA2eDza/+CdLy3N+Sv+4IpyMqP6xXkpedf0mHwuTlcr0JhgHjZaZZeZa+A5aMhU2f5e2DjB4k+9xqdnc2tuLKSYWVT8OqFyEoBLo+Be1ul2XHSpWCgy27L/Xl+EqVIk3glFKuNXp0hyKXuHz00YlccEFbxoz5lwEDvuT223vyxBODiIhwwRDm6P4yR628tuQva1l7Yde/krTt/keWS4IMosawv2No2maHAiwDnjRY+Tys8g/itlC1OXR/CRqeGhhVK2th85fSITNjJzT7H3R7JnAqhipgNWhQlR07Ug+4vkmTSAeiUapkaAKnlApIJ5zQnOXLr+C++6bx0ksL+OWXDXzwwfEMG9bE6dAkadPE7ehYLyQskIRt51+QMFeuC6sp1c0GJ8nHfRsKDh+vM8zpyEue9Uq1bfF9eYPZw6KgyxPQaox0RA0ECQtg/i0QPwtq9oJB3+vvhyoT2dm5VK584KFuREQI48YNciAipUqG7oFTSgW8qVO3cfXV/7B+fRLXXdeVZ58dQmRkuNNhqeLKjIdd/8Cuv+RjVjxg5GC/wUlyqtn7wI6K5Xn4+J7Jss8taQlgZJlouztkj19YdaejK57MWFjygAxRrxQNXZ+GFpfrGAxVZm66aQJvvrmYm2/uzq+/biiwHF8bmKhAoHPglFLlWnp6Dg8/PJOXX15Aw4ZVeffdUZx0Ugunw1JF8eZCwnypsO36C/bOQ9rf15bqWv2ToP7xctBf0aSshUV3w45f8xqUND4fuj8jyyYDQW42rH0Dlj8GnnRoe6vM4QuUxFOVC59/voJLL/2LO+/sxQsvDHM6HKWOiiZwSqkKYc6cXVx55d+sXLmXyy7ryEsvDaNmzcpOh6Uy46S65t/LlrUXMFCrj29Z5ElQs2dgzC0rDVkJsPxxSXysBbzy2vR8FWr3czq64tv5Fyy8XWYf1j8Jer4sIzOUKkNLlsTSv/+X9OlTjwkTzickRKu+KjBpAqeUqjCysjw8+eRsnnlmLrVqVeLtt0dx1lmtnQ6rYvHmSnv//XvZ5rN/yLR/L1u946FSbacjdVZuNqx7K98gbiCiCfR4ARqfGxgNSgBS1knitvMPqNYaerwCDU92OipVASUmZtKr1+dkZuaycOEl1K1bxemQlDpqmsAppSqcxYtjufLKv1m0KJbzzmvDG2+MpE4d/WdeajL25NvL9i9kJ8h+p1p9of6Jvr1sPXUPFOQN4l54B6RtkutCqkLnR6DNzRAcIHs4c1Jg+ZOw5hUIqgSdH4Y2t0BwmNORqQrI67WcdtqP/PffFqZOvZD+/V00Ykapo6Bz4JRSFU63bnWYM2c0L7wwn0cfncWkSdt47bURXHRRO0ygVDbczJsLe+fk7WVLWCDXV6oj7e3rnwT1R0F4LWfjdAt/05VK9WDjRxA3AwiSU5sbodPDgVOR3N8h837I3A0trpCZbpXrOR2ZqsCefDKGP//cxJtvjtTkTZVrWoFTSlUIq1bt5cor/2b27F2cemoL3nlnFA0bVnM6rMCTsQd2/e3by/YvZCf6qmz98jpGRnXXKlthcTEwcZiMPQD2z7BreBp0fwEi2zgY3BGKnwMLboG9c+X73us1qNXb6ahUBffXXxs55ZQf+d//OvDppyfpm3SqXNAllEqpCi8318vrry/igQemExoaxIsvDuOqqzrrP/pD8XogfrZU2Hb+DYkL5fpKdfOWRdYbBeE1nY3TrXJSYMvXsORByIrLuz6sJgz+AeoOcyy0I5axS2bSbfoMKteHbs9Cs9GarCvHbdyYRM+en9O0aSSzZl1MRESAzEhU6jA0gVNKKZ8NG5K4+up/mDJlG8cd15T33htF8+Y1nA7LWflnqlVtJsnarr9g13+QkyQt7Wv3z+sYGdVVD9wPxlpZHrnhQ9j6DeRmHnifltdC33fKPrYjFRcDuydA5i7Y9LlUEP3z6EK1gq2cl56ew8CBX7F5czILFlxCixY1nA5JqRKje+CUUsqnZcsaTJx4Pu+/v5S7755K586f8vTTg7nxxu4EBZVANe5oB0xbK3uL8Mr8r/0n70HOH+I2vLJHLf/lg32O5FXSBdGb4w9EPlSuD43P8lXZjoOwqGN/bcqzjN1SnVr/HqRuQPa3ecGEQp2hEDsVrAeCQqHFZU5He3h7psDkE/KWfdYeBP0/hmqtHA1LKT9rLddf/x9LlsTy++9na/KmKgxN4JRSFVJQkOHaa7ty8snNufba/7jllkl8++0aPvzwBNq0OYblgHExMGGIHKhjpG1+UMjhEzG8vuTNBeodD92fhRpdA6eNvVO8HtkTuP4D2Pmb73voe82iukKra6DphZL8Hm1iX9bStsC6d2DNa/n27AXJWABN3pSLvPPOEj77bCWPPjqAk09u4XQ4SpUZTeCUUhVa48aR/PHH2Xz++Upuu20yXbp8yuOPD+SOO3od3fDX2Cm+hMwnojHU7C5LEE2Q72MwECRDq/Nf9p83R3je/9igQ32eQzw+aRnMvU4qcMFh0PlRiOpWAq9uObZvg3SS3PAhZO5hf7UttIZU11pcIQlcftH93Zu4Wa8sl133psxyA6m47Z3jqxqGSeKplEvMnr2TW2+dxMknN+ehh1z6e6VUKSnWHjhjzInAq0Aw8IG19pmD3K83MBu4wFr7ve+6zcA+IBfwFLWOszDdA6eUcsLu3WnccMMEfvppHb161eWjj06kc+foI/skcTEwaaRULoLCYMRE9x605xco1SEneTJg24+yRDJuWsHb6h0v1baGpwXODDeQLqIbP4G1b0HqeqkYt7oGWl0LVZroz4VypT170ujZ83PCw4OZP/8SoqIqOR2SUqXiqJuYGGOCgbXAKGA7MA+4yFq7soj7/QdkAh8VSuB6WWvjixusJnBKKadYa/n++7XceOMEkpKyGDu2H/ff35ewsODifxI96C1fEhbBhvdh0xfg2cf+altEE2g1BppfClUaOx3lkUlYJNW2zV9CbgbUHiCz6BqfE1gJqKpwPB4vo0Z9x+zZu4iJuZhu3eo4HZJSpeZYmpj0AdZbazf6PtHXwBnAykL3uxn4AdBhMEqpgGWM4bzz2jJ8eGNuu20yjz46ix9+WMtHH51Ir17FHFLs5qVyqniyEyW5WfcuJC9j/9y2oDBofD60ugrqDAmsTpy5WbD1O1j3FsTHQHBlGQPQ5kZdMqsCxv33T2PKlG18+ulJmrypCqs4CVxDYFu+y9uBvvnvYIxpCJwFjODABM4C/xpjLPCutfa9op7EGDMGGAPQpEmTYgWvlFKlpXbtCL744hQuvLAd1177H337jueuu3rx6KMDqFxZZwyVS9YrnSLXfwDbvs/XwAMZTt76WmhyAYRVdy7Go5G2RRLRDR/ILLpqraHHy9Dicgir4XR0ShXb99+v4YUX5nPDDd249NKOToejlGOKk8AV1YKs8LrLV4B7rbW5RQzEHWit3WmMqQP8Z4xZba2dVvhOvsTuPZAllMWISymlSt2pp7ZkxYqG3H33VJ57bh4//7yeDz88gUGDGjkdmiop6Tth0yeS5KRvZX+1LbQGtLxSGpLU6ORsjEfKemV+2//bu/foqMpzj+PfN/c7SbiZAAkQIojGWrUeQaq0CNpqPa1arYLVIkbbY+0fPad11a6269h01VO66qrWc0DbalsQl6WKV6hFPQfviFWu1QRLwk0gkPv98p4/9p5kJpmEAJnZc/l91tpr9rx778w7zxqG/cz77md/9Bs48JzTNulLUPpvcNqC6Bo5FAF27TrKN76xngsvLOBXv/qc190R8dRIErh9gP/k/snAgQH7nA+scZO3ccAXjTHd1tqnrbUHAKy1h40xT+FMyRyUwImIRKrc3DQefvgyrr9+FrfdtoGLL17DnXd+mp/97LNkZaV43T05Gb1dsP95pyDJwfX0/y5poOAyp5BH4ZVOVc5o4itKUvnf0FTpFCU54/vO6GFmsde9EzkpjY0dfOUr68jISObPf77qxK5JFolBI0ngNgOlxphpwH7ga8CN/jtYa6f51o0xjwLPWWufNsZkAgnW2iZ3fRHwn6PVeRGRcLr00mK2bbuFH/xgEw8++HeefXY3Dz98GZdeqhPjqNH4oVP6f/dvofMYfaNtmcUw4w6nIElGode9PHF17zujbXtWuUVJ5sBZP4aia1WURKKatZalS9dTVVXH3/72VSZNyva6SyKeO24CZ63tNsbcCWzAuY3A76y1O4wxd7jb/2eYwycCT7kjc0nAamvt+lPvtoiIN7KyUvj1rxdw3XUzufXWDSxc+CTLlpWxfPl8xozRiXJE6m6Bmj87o1JH3+5vT0iF4uuhZBmMnxd9Ny3v6XDf10NQ+0Z/UZLSbzn3HhSJAb/4xWbWrq1k+fJLmD9fNRJEYIT3gQs33UZARKJBW1sXP/nJGyxf/i6nnZbJihULaWjo4J57XqOmppGiohwqKuaxePFsr7saf6yFo5ud8v++USmf/POg9JtQdB0kR+Gv+S01UOUWJWk/DFkz4PRvuUVJ8rzuncioefnlGhYufJJrrinliSe+RJA6CyIx7aTvA+cFJXAiEk02bz7I0qUb2L69lsREQ09P//dqRkYSK1cuUhIXLh1Hnfu1VT4ETR/1t6fkwvRlTlGSMWd41r2TZnvhk43Ovdv2P+u0FV7p3ALgtEtVlERizt69jZx77h8ZPz6dt99eQnZ2lF2PKjIKlMCJiIRQZ2cPEyY8RENDx6BtxcU57NlT7kGv4oQvualaAfvWge12NxgouNwp4FH4RUiIwts/dNbDx4/1J6Sp45wpn6V3qCiJxKyOjm4uvngNu3Yd4513FjNr1livuyTiiVO5kbeIiBxHSkoijY2DkzeA6upGbrzxOcrKxlNWNo6ysnEUFeVoOtCp2vFzdxrhEehu7G/PLHbK5U+7CdJHePP1SFP3gV9RklYYeyHM+SMUfVVFSSTmfec7r/DOO5+wdu1VSt5EglACJyIySoqKcqiubhzUnp6exBtvHODxx//R15aTk8JZZ40LSOrKysaTl5cWzi5Hn+4WaNoNO/8Lqlf5bUiEaUtgRrlTgTEak+OeTucG4pUPwZHX3aIkN7pFSc71unciYfH7329jxYoP+P73L+Dqq0/3ujsiEUlTKEVERsmqVTspL/8rra3dfW3+18A1NnawfXst27bVsm3bEbZudR7r6/tH7iZPzg5I6MrKxjFrVj6pqXH0e1tXEzTvhqYqd6mEZne9beBtSF0TPw8LNoa3n6OlZa9blORhFSWRuPbee4eYO3c1F100iQ0briUpSdd2SnzTFEoRkRDzFSoZqgplTk4qc+dOYu7cSX3HWGvZv7+ZbduOuImdk9Rt3FhDZ2cPAElJCZx+eh5nnz0+ILErLo7iaZhdjf0JWrObpPmet38SuG/aaZA9AwoWQXapk+DUbYWdFf37FF0f3v6fKmvh0EZnmuT+Z5y2wiud0baChSpKInHn6NE2rrlmHRMmZLBmzZVK3kSGoRE4EZEI1NXVQ2VlXd8onS+x27Onf4pmdrZvGqazOAleBE3D7KwPnqQ1VzkjTf7SC50kLWuGk6Rlz3Cflwxd6r9yJexdC1OugdIoKBJz5E04+CJ0NsIn652bivuKksy4HbKmet1DEU/09PRyxRV/4ZVX9rJp09e44IICr7skEhFUhVJEJAY0NnawY8fRvqRu61bnsa6uvW+fSZOyAkbqysrGc8YZQ0/DXLVq58nfu67jmF+CNiBJ66gN3Dd9UmBy5htNyy6BpMyTDUl0OPImbJwPvZ3O85wz4cy7oehaSIyQhFvEIz/60Wvce+9brFixkPLyT3ndHZGIoSmUIiIxICcnlTlzCpkzp7CvzVrLgQPNfaN0vqmYL7/8Xt80zMRE4zcNs79wyuuvH+D22/uv26uubqS8/K+AOyXUWufeasEStKYq6DwW2MGMKU5iNuXqwNG0rOmQlBGeIEWiw69Cb4/7JBGmLXaKrojEuWef3c29977F0qVncdttZ3vdHZGooBE4EZEY1d3d607DPBKQ3P3znw19+xjj5GgDTZnQQc1jTztJWle93xYDmUWDpzpml0LmNEhKD/Xbik5H3oSXFzgjcAkp8PmNMH6O170S8VRVVR3nn/8nSkpyee21r5GeHoX3ahQJIU2hFBERAJqaOtmxwxml8422BXNafgclUywlU9OZXpJPyczJlMwuZXrpeCZMyIjeAipeOfKmMxI3Yb6SN4l7LS2dzJmzmv37m9my5SamTh3jdZdEIo4SOBERGWTq1JVB7103Zkwq11xTyu7d9eze3cD+/U0BI3VZWclMn55LSUku06ePoaSkf724OIfk5MQwvgsRiSbWWpYseYHHH9/F+vXXsmjRVK+7JBKRdA2ciIgMUlExj/Lb1tPa1tvXlpGewG9+syCgkEl7ezd79jSwe3c9H3/c4CZ29Xz44TFefPGftLf33/suMdFQVJQzKLHzrefkpIb1PYpIZHnwwb+zevUufvrTeUreRE6CRuBEROLcqlU7uefujdTsb6doUhoVP18w8iqUQG+v5eDB5oDEzn+9trYtYP+xY9MpKRnjJna5AeuFhVkkJBx/auYpVc4UEc+8/vp+5s9/gi98YRpPP/3lEf17F4lXmkIpIiKeaGzs6EvoPv7YmZLpW6+ubqSnp///obS0JKZNy+mbnuk/ejdt2hjS0pJYtWon5eX9lTMBMjKSWLlykZI4kQj2ySctnHvuH8jMTGbz5iXk5uoWGiLDUQInIiIRp6urh5qaJjexGzx619zcFbD/pElZ1Na20dHRM+hvTZ6cRU3N7SquIhKBurp6WLDgSbZs+YS33lpMWdl4r7skEvF0DZyIiESc5OTEvpG2hQsDt1lrqa1tG5TYPfbYjqB/a9++ZtLT76ewMIuCgkwKC7MGrRcWZlJQkEVubqoSPZEw+t73/o9Nm/axevUVSt5ETpESOBERiUjGGMaPz2D8+AwuvLD/xuWvvro3aOXMvLxUli07m4MHWzhwoJnt22t56aVqGho6Bu2blpbUl8wVFg6V7GWRk5OiRE/kFK1Z8w/uv38Ld911LjfccIbX3RGJekrgREQkqlRUzAt6DdwDDwQvvtLS0tmX1PkenaWFgweb2bq1lvXr99DU1Dno2PT0pCDJXab7vH89O3v4RE9FVyRebd9+hFtvXc9FF01i+fJLvO6OSEzQNXAiIhJ1QpEQNTd3BiR4gcme83z//mZaWroGHZuZmTzktM2dO2v55S/fpb29/7o9FV2ReNDQ0MFnPvMnmpo6ee+9mygoyPK6SyJRRUVMRERERkFTU6eb0DmjeAPXfYv/CGEw6elJLFkym4kTM5gwwVn81/Pz01ViXaJWb6/l6qvX8fzzH/PKK9cxb95kr7skEnVUxERERGQUZGenMHNmPjNn5g+5j7W2L9GbPfv3BPuttK2tm2eeqeLIkTZ6ewfvkJjoXAM4MLELXM/sW09L03/pEjnuu+8d1q2r4v77P6fkTWSU6dteRERklBljyMlJJScnlaKinKBFV4qLc9izp5zeXsuxY20cOtTK4cOtfY/OekvfelVVPYcPtwadwgmQk5MyKKkbKvHLy0s7bnEWXbcnJ+ull/bwwx++xo03nsFdd53rdXdEYo4SOBERkRAaquhKRcU8ABISDOPGZTBuXAZnnnn8v9fS0ukmdW2Dkjxf8ldZWcdrr+2jtrYt6OhfUlLCsEnejh1HeeCB9/qu26uubqS8/K8ASuJkWNXVDdxww/PMnj2WlSsXqoqrSAjoGjgREZEQ82o0q6enl9ratkEJXrDE79ChVtrbh79uLzHRMGtWPtnZKWRnp5CVlUJ2dnLf86GXZL/9U0hJSQzJ+9Woobfa27uZN+9xKivrePfdmygtzfO6SyJRTdfAiYiIeGTx4tmeJBKJiQlMnJjJxImZx93XWktLSxeHDrVSWvpI0JG7nh7LzJn5NDV19l3j56x30dTUSXd374j6lZKSGJDYDbVkZQ21PTkgiUxKSmDVqp0BI50aNQy/b397I1u2HGLdui8reRMJISVwIiIigjGGrCwnIRruur21a/91yL/R0dHdl9z5krpgS3Pz4G11de3U1DQGHBesuEsw6elJdHT0DNq/tbWbb37zb1RV1ZOXl0Zubmrfo/96Zmaypvqdokce2cojj2zjnnsu5KqrZnjdHZGYpimUIiIiEmDgaBaE/9511lra2rppbh4+GfQty5ef/HlDUlJCQEI3+DGV3Nzg23JzU0lOPvkpobEw7XPz5oPMm7eG+fOn8MILV5OYmOB1l0RigqZQioiIyIj4EggvEwtjDBkZyWRkJDNhwvH3f/LJj4YcNayqWkZDQwf19R3U17dTV3f8x+rqRurq2qmra6era/ipoZmZySeU9PkeX3qpmrvu2hjV0z5ra1u59tpnKCjIZPXqK5S8iYSBRuBEREQk6oVq1NA3Ejiy5K+Durr2gMeGho4Tfs2MjCSWLi0jPz8tYMnLC1w/lZG/0dDT08vll69l06Z9vP76DZx33mme9kck1mgETkRERGJWqEYN/UcCCwuzTvj4np5eGhs7gyZ5y5ZtCHpMa2s3q1btor6+PWgxGZ/s7JRhk7z8/PRB2/Pz00hPTz7h9+HjP+UzOzuFxsZOfvvby5S8iYSREjgRERGJCV5V+xxOYmICeXlOYjVtWuC2e+99c9ibvPf09NLQ0EFdXQfHjrVx7Fh7kKW/ffv2Wo4da+fo0fZhK4KmpSWRl5c6bJIXLBl87rndAaOcjY2dJCUZUlO9HQkUiTeaQikiIiLigVBO+2xp6Roy0aurC5YIOvv492WkfAmniIwuTaEUERERiSChnPbpf0uIE9He3t1XvGVggvfd774a9JiamsGjiCISOhqBExEREZHjmjp15bBTPkVkdA01AqdaryIiIiJyXBUV88jICJy8lZGRREXFPI96JBKflMCJiIiIyHEtXjyblSsXUVycgzHOyFs4b+4uIg5NoRQREREREYkwmkIpIiIiIiIS5ZTAiYiIiIiIRAklcCIiIiIiIlFCCZyIiIiIiEiUUAInIiIiIiISJZTAiYiIiIiIRAklcCIiIiIiIlFCCZyIiIiIiEiUUAInIiIiIiISJZTAiYiIiIiIRAljrfW6D4MYY44A1V73IwaMA2q97kQcUJxDTzEOD8U59BTj8FCcQ08xDg/FOTwiNc7F1trxAxsjMoGT0WGMeddae77X/Yh1inPoKcbhoTiHnmIcHopz6CnG4aE4h0e0xVlTKEVERERERKKEEjgREREREZEooQQutq30ugNxQnEOPcU4PBTn0FOMw0NxDj3FODwU5/CIqjjrGjgREREREZEooRE4ERERERGRKKEELkIYY35njDlsjNk+oD3fGPOSMabSfcwb4vj1xph6Y8xzA9qNMabCGPORMWaXMeauIMeeY4x50xizwxiz1Rhzvd+2acaYt93Xf8IYkzJa79kLHse52BizxRjzvhvrO/y2xUycvYyx3745xpj9xpgH/dpiJsbgfZyNMT3uZ/l9Y8wzfu0xE+cQxniTX+wOGGOeHuL4m93XqDTG3OzXHjMxhoiI81DHx0ycvYyx0TlGuOKsc4wwfF+4+3p+jqEELnI8ClwepP1uYKO1thTY6D4P5hfATUHabwGmALOstWcAa4Ls0wp83Vp7ptuH+40xue62+4Bfua9fB9w6kjcTwR7FuzgfBOZaa88B/gW42xhT6G6LpTg/incx9rkX+N8BbbEUY/A+zm3W2nPc5Sq/9liK86OEIMbW2s/6Yge8Cfxl4D7GmHzgxzjfFRcAP/Y7IYmlGIOHcR7ueGIrzo/iXYx1jhGeOOscIzzfFxAJ5xjWWi0RsgBTge0D2j4ECtz1AuDDYY6fDzw3oO0dYMYJ9uMDoBQwODc1THLb5wAbvI5TLMQZGAvUAIWxGGcvYwych5N03AI86LbFXIwjIM7NQdpiLs6hiLHftmyc/+hzgmy7AVjh93yF2xZzMfYyzkMdH4tx9jrGfvvqHCPEcUbnGCGLMRFyjqERuMg30Vp7EMB9nHCCx5cA1xtj3jXGvGiMKQUwxpxvjHlk4M7GmAuAFGA3zhdAvbW22928D5h0ku8j0oUlzsaYKcaYrcBe4D5r7QHiJ84hj7ExJgH4JfAfA46NlxhD+L4z0tx93jLGfNlti5c4n2qMfb6C84txIwyK8SSc7wkfXyzjJcYQnjgPJV7iHNYY6xwjtHHWOUZoYxxJ5xhK4GJfKtBunbvLPwz8DsBa+661dpn/jsaYAuCPwDestb04vygMpLKlwY0oztbavdbas4EZwM3GmIkoziM1khh/C3jBWrt3wLGK8ciN9DujyN3nRpwpUSUozifqBuBx35MBMR4qlorxiRsuzkNRnE/McWOsc4xRMWycdY4xKoaLccScYyiBi3yH3C8935ff4RM8fh+w1l1/Cjg72E7GmBzgeeCH1tq33OZaINcYk+Q+nwwcOMHXjxZhibOP+6vYDuCzxE+cwxHjOcCdxpg9wHLg68aYnxM/MYYwfZbdzzDW2o+BV4FPEz9xPtUYY4wZi3Nt2/ND7LIP51pEH18s4yXGEJ44DyVe4hyWGOscI7yfZZ1jhCzGEXOOoQQu8j0D+KqP3QysO8HjnwY+765fAnw0cAe3Us5TwB+stU/62q0zkfcV4NpTeP1oEY44TzbGpLvrecBFOHO04yXOIY+xtXaxtbbIWjsV+Hecz/TdcRRjCM9nOc8Yk+quj8P5LO+MozifaowBvopzDUb7ENs3AIvcWOcBi3CuqYiXGEN44hxUHMU55DHWOQYQnjjrHCPEMY6oc4xQXmCnZeQLznDtQaAL55fXW932sTjVdCrdx/whjt8EHAHa3OMvc9tzcX5J2IZTVedTbvv5wCPu+hL3dd/3W85xt03HKWpQBTwJpHodqyiO80JgK84F3FuBcr+/GzNx9jLGA/7OLbgXGMdajL2OMzDX3f6B+3hrLMY5VDF2t70KXD5g/4DPMrDUjWMVzrSzmItxhMR5qH8LMRNnL2OMzjHCFWedY4Th+8Kv/RY8PMcw7ouKiIiIiIhIhNMUShERERERkSihBE5ERERERCRKKIETERERERGJEkrgREREREREooQSOBERERERkSihBE5ERERERCRKKIETERERERGJEkrgREREREREosT/A7B58nGyYzNqAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "\n", - "y_name = dict_cols['y'][1][0]\n", - "for idx in range(nb_predictions):\n", - " df_iter = df_input.iloc[idx:(idx + N_pred)].copy()\n", - " for idxx in range(N_pred - 1):\n", - " idx_old = df_iter.index[idxx]\n", - " idx_new = df_iter.index[idxx+1]\n", - " mean, var = m_best.predict_f(df_iter.loc[idx_old, :].to_numpy().reshape(1, -1))\n", - " df_iter.loc[idx_new, f'{y_name}_1'] = mean.numpy().flatten()\n", - " for lag in range(2, dict_cols['y'][0] + 1):\n", - " df_iter.loc[idx_new, f\"{y_name}_{lag}\"] = df_iter.loc[idx_old, f\"{y_name}_{lag-1}\"]\n", - " \n", - " mean_iter, var_iter = m_best.predict_y(df_iter.to_numpy())\n", - " plt.plot(df_iter.index, mean_iter.numpy(), '.-', label = 'predicted', color = 'orange')\n", - "plt.plot(df_output.iloc[:nb_predictions + N_pred], 'o-', label = 'measured', color = 'darkblue')\n", - "plt.title(f\"Prediction over {N_pred} steps\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "name": "Untitled3.ipynb", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Notebooks/36_gp_with_trieste_from_data-Copy1.ipynb b/Notebooks/36_gp_with_trieste_from_data-Copy1.ipynb deleted file mode 100644 index 8345cd3..0000000 --- a/Notebooks/36_gp_with_trieste_from_data-Copy1.ipynb +++ /dev/null @@ -1,3197 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Bayesian Optimisation of starting Gaussian Process hyperparameters" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "Aovwtky_5Cao" - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "from shutil import copyfile\n", - "import pickle" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a517af1c-4204-45c9-aae4-865a2cb259e9" - }, - "source": [ - "Data manipulation" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "62628e60-28c6-4a9a-8a81-22e5bfd74722" - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "acb33a41-06b9-4a1d-9ea7-6a2d87b1f4fb" - }, - "source": [ - "Plotting / Visualisation" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "bVyvgbND5642" - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "id": "E9mmvHyH57RO" - }, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "plt.rcParams[\"figure.figsize\"] = (15, 6)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "90fdac33-eed4-4ab4-b2b1-de0f1f27727b" - }, - "source": [ - "Gaussian Process Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "3Z6cHHaD6EkP" - }, - "outputs": [], - "source": [ - "import gpflow\n", - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[name: \"/device:CPU:0\"\n", - " device_type: \"CPU\"\n", - " memory_limit: 268435456\n", - " locality {\n", - " }\n", - " incarnation: 6682909200786859820]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from tensorflow.python.client import device_lib\n", - "device_lib.list_local_devices()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "id": "-fqvYTly6E9D" - }, - "outputs": [], - "source": [ - "from gpflow.utilities import print_summary" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "id": "VpKUUEvC6F7i" - }, - "outputs": [], - "source": [ - "gpflow.config.set_default_summary_fmt(\"notebook\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Input scaler:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.preprocessing import MinMaxScaler, RobustScaler\n", - "from sklearn.exceptions import NotFittedError" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Bayesian optimisation based on gaussian processes:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "import trieste" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0aba0df5-b0e3-4738-bb61-1dad869d1ea3" - }, - "source": [ - "## Load previously exported data" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "id": "wuz33V9a6W-a" - }, - "outputs": [], - "source": [ - "#dict_cols = pickle.load(open(Path(\"dict_cols.pkl\"), 'rb'))\n", - "dfs_train = pickle.load(open(Path(\"dfs_train.pkl\"), 'rb'))\n", - "dfs_test = pickle.load(open(Path(\"dfs_test.pkl\"), 'rb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd.read_csv(\"../Simulink/Exp1_table.csv\")\n", - "df.rename(columns = {'Power': 'SimulatedHeat'}, inplace = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "train_exps = ['Exp1', 'Exp3', 'Exp5', 'Exp6']\n", - "test_exps = ['Exp2', 'Exp4', 'Exp7']" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "t_cols = ['time_h', 'time_m']\n", - "t_cols = []\n", - "w_cols = ['SolRad', 'OutsideTemp']\n", - "u_cols = ['SimulatedHeat']\n", - "y_cols = ['SimulatedTemp']" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "t_lags = 1\n", - "w_lags = 0\n", - "u_lags = 2\n", - "y_lags = 3" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "dict_cols = {\n", - " 't': (t_lags, t_cols),\n", - " 'w': (w_lags, w_cols),\n", - " 'u': (u_lags, u_cols),\n", - " 'y': (y_lags, y_cols)\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create the scaler and set up input data scaling:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7uZWtjPo6XhD", - "outputId": "e0c4a8be-881e-4adc-a344-0b7e4ee9bc75" - }, - "outputs": [], - "source": [ - "scaler = MinMaxScaler(feature_range = (-1, 1))" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "def get_scaled_df(df, dict_cols, scaler):\n", - " \n", - " t_list = dict_cols['t'][1]\n", - " w_list = dict_cols['w'][1]\n", - " u_list = dict_cols['u'][1]\n", - " y_list = dict_cols['y'][1]\n", - " \n", - " df_local = df[t_list + w_list + u_list + y_list]\n", - " df_scaled = df_local.to_numpy()\n", - " \n", - " try:\n", - " df_scaled = scaler.transform(df_scaled)\n", - " except NotFittedError:\n", - " df_scaled = scaler.fit_transform(df_scaled)\n", - " \n", - " df_scaled = pd.DataFrame(df_scaled, index = df_local.index, columns = df_local.columns)\n", - " \n", - " return df_scaled" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "df_train = pd.concat(dfs_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Condition number of the raw input data:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "279119.2189692174" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(df_train.to_numpy())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fit the scaler and scale the data:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "df_train_sc = get_scaled_df(df_train, dict_cols, scaler)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "pickle.dump(scaler, open(Path(\"scaler.pkl\"), 'wb'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Check the condition number of the input data:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4.482732755981847" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(df_train_sc.to_numpy())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "NOTE: Condition number of scaled data is much smaller. This makes sense." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Scale the data for each experiment individually. Used for validation graphs:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "dfs_train_sc = []\n", - "dfs_test_sc = []\n", - "for df in dfs_train:\n", - " df_sc = get_scaled_df(df, dict_cols, scaler)\n", - " dfs_train_sc.append(df_sc)\n", - " \n", - "for df in dfs_test:\n", - " df_sc = get_scaled_df(df, dict_cols, scaler)\n", - " dfs_test_sc.append(df_sc)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[,\n", - " ],\n", - " [,\n", - " ]], dtype=object)" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAF1CAYAAABsypLcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7HUlEQVR4nO3de7hkZ12n/ftrDhISCIkhmyYEGjUiaMvBFlBw3BjBHNAEX+AFQ+gATnsKgtMeGsZX4qAz0YsAKh6mEUirCGYgmEwAJQaKDArRJAY6sYFAbEJIkyackp1BpMPv/aNWh6KzD7V3nVbtuj/XVVdVrVN9n7VX1dq/Ws9alapCkiRJkjRZ3zLpAJIkSZIkizNJkiRJagWLM0mSJElqAYszSZIkSWoBizNJkiRJagGLM0mSJElqAYszqU9JNiapJIeOaPmV5DtHsWxJktoiybuTbFli3Ej3tVLbWZxpJiV5cpJ/TPLlJF9I8g9JfmCVy+gk+fckC0luT3Jxkg2jyixJ0iglOSfJriT/N8lnk/xJkgf0Oe+eJD/Wz7RVdWpV7Rww68ub/e9Csy++u+f5DYMsW5okizPNnCT3By4D/hA4FjgB+C3gq2tY3LlVdRTwncBRwKuGlVOSpHFJsg34XeBXgaOBJwIPAy5Pcvgksy2mqv57VR3V7IN/DvjggedV9T2TzietlcWZZtF3AVTVW6rq7qr6SlW9p6o+kuRbkvxGkk8l2Zfkz5McvdICq+pLwN8AjzkwLMkLkuxOcmeSm5L8bO88SX41yd4ktyZ54VBbKElSn5ovLX8LeHFV/W1Vfa2q9gDPplugPS/JhUl+u2ee+SS3NI//Ango8L+bI1e/luQ+Sf4yyeeTfCnJPyeZa6bvJPmZ5vEhSV7V9EC5CTj9oGxHJ3lDs7/8TJLfTnLICu357iSXNz1jPpbk2T3jLkzyx03XyoWm58yDkrw2yReTfDTJY3um35PkZUn+tRn/piT3GWiFS8uwONMs+jhwd5KdSU5NckzPuHOa21OAb6d7NOx1Ky0wybcBPwV8omfwPuDpwP2BFwCvSfK4ZvpTgF8BngqcBPTVFUSSpBH4IeA+wMW9A6tqAXg33X3VkqrqbOBm4CeaI1e/B2yhewTuRODb6B7d+sois/9nuvvKxwKbgWceNH4nsJ9uD5XHAk8DfmapLEmOBC4H/go4Hngu8MdJeo+mPRv4DeA4ur1mPghc2zx/G/DqgxZ7FvDjwHfQ/YL3N5Z6fWlQFmeaOVV1B/BkoIDXA59Lcmnzjd5ZwKur6qZmp/Qy4DnLnJj8B0m+DNxO90P9xT2v886q+mR1vR94D/DDzehnA2+qquur6i7gvOG3VJKkvhwH3F5V+xcZt7cZv1pfo1uUfWfTS+WaZv97sGcDr62qT1fVF4D/cWBEs18+FXhpVd1VVfuA1wDPWeZ1nw7sqao3VdX+qroWeDvfXPS9o8nz78A7gH+vqj+vqruBv6ZbBPZ6XU++36Fb8EkjYXGmmVRVu6vqnKp6CPC9wIOB1zb3n+qZ9FPAocDcEov6pao6Gvg+4BjgIQdGNEflPtR0q/gScBrf2ME9GPj0Qa8jSdIk3A4ct8QXkRua8av1F8DfAW9tuu//XpLDFpluuf3hw4DDgL1N18gvAf+T7hGxpTwMeMKB6Zt5zgIe1DPNbT2Pv7LI86MOWubB+R68zOtLA7E408yrqo8CF9It0m6l+8F+wEPpdqe47d5zftMydgG/DfxRur6V7jd1rwLmquoBwLuANLPspdvVo/d1JEmahA/S7d73U70Dmy6CpwJXAHcB9+0Z3VvsQLc3yjeedM9b+62qehTdbpNPB56/yGsvtz/8dJPruKp6QHO7/woX/Pg08P6e6R/QdLX8+WXmWcnB+W4dYFnSsizONHOaE4W3JXlI8/xEul0UPgS8BfjlJA9PchTw34G/XqKrx8F20v027yeBw4FvBT4H7E9yKt1+8gdcBJyT5FFJ7gu8YkjNkyRpVarqy3QvCPKHSU5JcliSjcD/Am6hexTsOuC0JMcmeRDw0oMWcxvdc7UBSPKUJJuai3fcQbeb492LvPxFwC8leUhzDvj2nlx76Z4ScEGS+zcX7fqOJD+yTHMuA74rydlNOw5L8gNJHrmKVXKwX2zyHQu8nG7XR2kkLM40i+4EngBcleQuukXZ9cA24I10d0JXAv8G/Ds955Etp6r+A/gD4P+rqjuBX6K70/ki8NPApT3TvptuN8r30r2IyHuH0C5JktakuYjHy+n2+LgDuIruUaiTq+qrdPeNHwb20C2YDi5Q/gfwG01Xwl+he2Ttbc2ydgPvB/5ykZd+Pd3ujx+me1GOiw8a/3y6X3j+K9396dvodrVcqh130v0y9Dl0j3B9lu5PBHzrCqtgOX9Ft803NbffXn5yae1SVStPJUmSJM2YJHuAn6mqv590Fs0Gj5xJkiRJUgtYnEmSJElSC1icSZI0IUlOTPK+JLuT3JDkJc3w85J8Jsl1ze20SWeVZlFVbbRLo8bJc84kSZqQJBuADVV1bZL7AdcAZ9L9Yd6FqnrVJPNJksZrsR8blCRJY9BcKnxv8/jOJLuBEyabSpI0KWM9cnbcccfVxo0b1zTvXXfdxZFHHjncQCNk3tGZpqwwXXmnKStMV95pygpwzTXX3F5VD5x0jlnS/K7UlcD3Av8FOIfuZcivBrZV1ReXm3+QfWybTNt7ZTm2pZ1sSzvNUluW28eOtTjbvHlzXX311Wuat9PpMD8/P9xAI2Te0ZmmrDBdeacpK0xX3mnKCpDkmqraPOkcs6L50fv3A79TVRcnmQNuBwp4Jd2ujy9cZL6twFaAubm573/rW986xtSjsbCwwFFHHTXpGENhW9rJtrTTLLXlKU95ypL7WLs1SpI0QUkOA94OvLmqLgaoqtt6xr8euGyxeatqB7ADul+ATtMXAEuZti8ylmNb2sm2tJNt6errao1Jfrm5itT1Sd6S5D5Jjk1yeZIbm/tj1pRAkqQZlSTAG4DdVfXqnuEbeiZ7BnD9uLNJksZvxeIsyQnALwGbq+p7gUOA5wDbgSuq6iTgiua5JEnq35OAs4EfPeiy+b+XZFeSjwBPAX55oiklSWPRb7fGQ4EjknwNuC9wK/AyYL4ZvxPoAL8+5HySJK1bVfUBIIuMete4s0iSJm/F4qyqPpPkVcDNwFeA91TVe5LMNZcApqr2Jjl+sfkPOlmZTqezpqALCwv84ZsvWdO8w7bphKNXnGZhYWHNbZ2Eaco7TVlhuvJOU1aYrrzTlFWS1C4bt79z0eHbNu3nnCXGDdue808fy+vMuhWLs+ZcsjOAhwNfAv5Xkuf1+wLDOlm50+lwwQfuWtO8w7bnrPkVp5m2kxqnKe80ZYXpyjtNWWG68k5TVkmSNBn9XBDkx4B/q6rPVdXXgIuBHwJuO3DCcnO/b3QxJUmSJGl966c4uxl4YpL7NleVOhnYDVwKbGmm2QK0o8+hJEmSJE2hfs45uyrJ24Brgf3Av9DtpngUcFGSF9Et4J41yqCSJEmStJ71dbXGqnoF8IqDBn+V7lE0SZIkSdKA+voRakmSJEnSaFmcSZIkSVILWJxJkiRJUgtYnEmSJElSC1icSZIkSVILWJxJkiRJUgtYnEmSJElSC1icSZIkSVILWJxJkiRJUgtYnEmSJElSC1icSZIkSVILWJxJkiRJUgtYnEmSJElSC1icSZI0IUlOTPK+JLuT3JDkJc3wY5NcnuTG5v6YSWeVJI2exZkkSZOzH9hWVY8Engj8YpJHAduBK6rqJOCK5rkkaZ2zOJMkaUKqam9VXds8vhPYDZwAnAHsbCbbCZw5kYCSpLGyOJMkqQWSbAQeC1wFzFXVXugWcMDxE4wmSRqTQycdQJKkWZfkKODtwEur6o4k/c63FdgKMDc3R6fTGVnGcVlYWFgX7QDb0lbT2JZtm/YvOnzuiKXHDduo19k0/l2WMkhbLM4kSZqgJIfRLczeXFUXN4NvS7KhqvYm2QDsW2zeqtoB7ADYvHlzzc/PjyPySHU6HdZDO8C2tNU0tuWc7e9cdPi2Tfu5YNd4/p3fc9b8SJc/jX+XpQzSFrs1SpI0IekeInsDsLuqXt0z6lJgS/N4C3DJuLNJksbPI2eSJE3Ok4CzgV1JrmuGvRw4H7goyYuAm4FnTSaeJGmcLM4kSZqQqvoAsNQJZiePM4skafLs1ihJkiRJLeCRM0mSBMDGJS46ME4XnnLkpCOoRUaxTW7btH/JC2wsZs/5pw89g7QUj5xJkiRJUgv0VZwleUCStyX5aJLdSX4wybFJLk9yY3N/zKjDSpIkSdJ61e+Rs98H/raqvht4NLAb2A5cUVUnAVc0zyVJkiRJa7BicZbk/sB/ovs7LFTVf1TVl4AzgJ3NZDuBM0cTUZIkSZLWv34uCPLtwOeANyV5NHAN8BJgrqr2AlTV3iTHLzZzkq3AVoC5uTk6nc6agi4sLLBt091rmnfY+mnDwsLCmts6CdOUd5qywnTlnaasMF15pymrJEmajH6Ks0OBxwEvrqqrkvw+q+jCWFU7gB0Amzdvrvn5+bXkpNPpcMEH7lrTvMO256z5FafpdDqsta2TME15pykrTFfeacoK05V3mrJKkqTJ6Oecs1uAW6rqqub52+gWa7cl2QDQ3O8bTURJkiRJWv9WLM6q6rPAp5M8ohl0MvCvwKXAlmbYFuCSkSSUJEmSpBnQ749Qvxh4c5LDgZuAF9At7C5K8iLgZuBZo4koSZIkSetfX8VZVV0HbF5k1MlDTSNJkiRJM6rf3zmTJEmSJI2QxZkkSZIktYDFmSRJkiS1gMWZJEmSJLWAxZkkSZIktUC/l9KXJEmaCRu3v3Moy9m2aT/nrHFZe84/fSgZJE0Xj5xJkiRJUgtYnEmSJElSC1icSZI0IUnemGRfkut7hp2X5DNJrmtup00yoyRpfCzOJEmanAuBUxYZ/pqqekxze9eYM0mSJsTiTJKkCamqK4EvTDqHJKkdvFqjJEntc26S5wNXA9uq6ouLTZRkK7AVYG5ujk6nM9CLbtu0f6D5h2FhYWHgdgxqWOth7oi1L2vS6wBg12e+fM/juSPgD998ydgzbNs0/GWu9u/Shr/FUnkH2cZWa9TroQ3v/WEZpC0WZ5IktcufAK8Eqrm/AHjhYhNW1Q5gB8DmzZtrfn5+oBde62Xfh+nCU45k0HYMaljrYdum/Vywa23/au05a34oGQbRux4GaUvbrLYtbftb9Brn32XU66HT6Uz8vT8sg7TFbo2SJLVIVd1WVXdX1deB1wOPn3QmSdJ4WJxJktQiSTb0PH0GcP1S00qS1pf1cXxakqQplOQtwDxwXJJbgFcA80keQ7db4x7gZyeVT5I0XhZnkiRNSFU9d5HBbxh7EElSK1icSZIkSVrWxhFfMGjbpv0rXoxnz/mnjzRDG3jOmSRJkiS1gMWZJEmSJLWAxZkkSZIktYDFmSRJkiS1gBcEkSRJaplRX3xBUjt55EySJEmSWqDv4izJIUn+JcllzfNjk1ye5Mbm/pjRxZQkSZKk9W01R85eAuzueb4duKKqTgKuaJ5LkiRJktagr+IsyUOA04E/6xl8BrCzebwTOHOoySRJkiRphvR75Oy1wK8BX+8ZNldVewGa++OHG02SJEmSZseKV2tM8nRgX1Vdk2R+tS+QZCuwFWBubo5Op7PaRQCwsLDAtk13r2neYeunDQsLC2tu6yRMU95pygrTlXeassJ05Z2mrJKkb/DKme3Rhr/FnvNPH+ny+7mU/pOAn0xyGnAf4P5J/hK4LcmGqtqbZAOwb7GZq2oHsANg8+bNNT8/v6agnU6HCz5w15rmHbY9Z82vOE2n02GtbZ2Eaco7TVlhuvJOU1aYrrzTlFWSJE3Git0aq+plVfWQqtoIPAd4b1U9D7gU2NJMtgW4ZGQpJUmSJGmdG+R3zs4HnprkRuCpzXNJkiRJ0hr0063xHlXVATrN488DJw8/kiRJkiTNnkGOnEmSJEmShsTiTJIkSZJawOJMkiRJklrA4kySpAlJ8sYk+5Jc3zPs2CSXJ7mxuT9mkhklSeNjcSZJ0uRcCJxy0LDtwBVVdRJwRfNckjQDLM4kSZqQqroS+MJBg88AdjaPdwJnjjOTJGlyVnUpfUmSNHJzVbUXoKr2Jjl+qQmTbAW2AszNzdHpdAZ64W2b9g80/zAsLCwM3I5BDWs9zB3RjnU6DLalnWzL+PXz+TTI55jFmSRJU6qqdgA7ADZv3lzz8/MDLe+c7e8cQqrBXHjKkQzajkENaz1s27SfC3atj3+1bEs72Zbx23PW/IrTdDqdNX+O2a1RkqR2uS3JBoDmft+E80iSxsTiTJKkdrkU2NI83gJcMsEskqQxsjiTJGlCkrwF+CDwiCS3JHkRcD7w1CQ3Ak9tnkuSZkD7O3ZKkrROVdVzlxh18liDSJJawSNnkiRJktQCFmeSJEmS1AIWZ5IkSZLUAhZnkiRJktQCFmeSJEmS1AJerVGSJLXGrs98mXO2v3PSMSRpIjxyJkmSJEktYHEmSZIkSS1gcSZJkiRJLWBxJkmSJEktYHEmSZIkSS1gcSZJkiRJLWBxJkmSJEktsGJxluTEJO9LsjvJDUle0gw/NsnlSW5s7o8ZfVxJkiRJWp/6OXK2H9hWVY8Engj8YpJHAduBK6rqJOCK5rkkSZIkaQ1WLM6qam9VXds8vhPYDZwAnAHsbCbbCZw5ooySJEmStO6t6pyzJBuBxwJXAXNVtRe6BRxw/NDTSZIkSdKMOLTfCZMcBbwdeGlV3ZGk3/m2AlsB5ubm6HQ6a4gJCwsLbNt095rmHbZ+2rCwsLDmtk7CNOWdpqwwXXmnKStMV95pyipJkiajr+IsyWF0C7M3V9XFzeDbkmyoqr1JNgD7Fpu3qnYAOwA2b95c8/Pzawra6XS44AN3rWneYdtz1vyK03Q6Hdba1kmYprzTlBWmK+80ZYXpyjtNWSVJ0mT0c7XGAG8AdlfVq3tGXQpsaR5vAS4ZfjxJkmZTkj1JdiW5LsnVk84jSRq9fo6cPQk4G9iV5Lpm2MuB84GLkrwIuBl41kgSSpI0u55SVbdPOoQkaTxWLM6q6gPAUieYnTzcOJIkSZI0m/q+IIgkSRqrAt6TpID/2ZzD/U2GddGtA7Zt2j/Q/MMwd0Q7cgyDbWkn29JO09KWUV8Y0OJMkqR2elJV3ZrkeODyJB+tqit7JxjWRbcOOGf7Oweafxi2bdrPBbvWx78ntqWdbEs7TUtbRn1hwFX9zpkkSRqPqrq1ud8HvAN4/GQTSZJGzeJMkqSWSXJkkvsdeAw8Dbh+sqkkSaPW/mOHkiTNnjngHd1fs+FQ4K+q6m8nG0mSNGoWZ5I0RBuXOGdn26b9YzufZ8/5p4/ldTQ6VXUT8OhJ55AkjZfdGiVJkiSpBSzOJEmSJKkF7Na4Bkt1W+o16i5MdluSJEmS1hePnEmSJElSC1icSZIkSVILWJxJkiRJUgtYnEmSJElSC3hBEEnrRj8X65EkSWorj5xJkiRJUgt45ExaB4Z1xGjUPwExbNOWV5IkaTkeOZMkSZKkFvDI2ZQa9rk1azkC4Q9hd630t/DojiRJkvrhkTNJkiRJagGLM0mSJElqAYszSZIkSWoBizNJkiRJagEvCKKp5o8OS5Ikab2wONOaTaow8uqHkiRJWo/s1ihJkiRJLTBQcZbklCQfS/KJJNuHFUqSpFnnPlaSZs+ai7MkhwB/BJwKPAp4bpJHDSuYJEmzyn2sJM2mQY6cPR74RFXdVFX/AbwVOGM4sSRJmmnuYyVpBqWq1jZj8kzglKr6meb52cATqurcg6bbCmxtnj4C+Ngasx4H3L7GeSfBvKMzTVlhuvJOU1aYrrzTlBXgYVX1wEmHmFUT2Me2ybS9V5ZjW9rJtrTTLLVlyX3sIFdrzCLD7lXpVdUOYMcAr9N9seTqqto86HLGxbyjM01ZYbryTlNWmK6805RVrTDWfWybrKf3im1pJ9vSTrala5BujbcAJ/Y8fwhw6wDLkyRJXe5jJWkGDVKc/TNwUpKHJzkceA5w6XBiSZI009zHStIMWnO3xqran+Rc4O+AQ4A3VtUNQ0t2b9PWbcO8ozNNWWG68k5TVpiuvNOUVRM2gX1sm6yn94ptaSfb0k62hQEuCCJJkiRJGp6BfoRakiRJkjQcFmeSJEmS1AKtKs6SPCvJDUm+nmTJy08mOSXJx5J8Isn2nuHHJrk8yY3N/TEjzrvi6yV5RJLrem53JHlpM+68JJ/pGXfaJLM20+1JsqvJc/Vq5x9n3iQnJnlfkt3NdvOSnnEjX7dLbYc945PkD5rxH0nyuH7nHYU+8p7V5PxIkn9M8uiecYtuFxPMOp/kyz1/39/sd94J5f3VnqzXJ7k7ybHNuLGuW6ltVrN/SXJIkn9Jctk4M/Zr0H1XGwyyb2ubQfZ7bdPvvi3JDzT7mGeOM99q9NOWZj9/XfMeef+4M/arj23s6CT/O8mHm7a8YMWFVlVrbsAj6f6IZgfYvMQ0hwCfBL4dOBz4MPCoZtzvAdubx9uB3x1x3lW9XpP9s3R/eA7gPOBXxrRu+8oK7AGOG7St48gLbAAe1zy+H/Dxnm1hpOt2ue2wZ5rTgHfT/b2iJwJX9TvvhPL+EHBM8/jUA3mX2y4mmHUeuGwt804i70HT/wTw3kmsW2/e2nhbzf4F+C/AXy32/m/DbdB916Rvg+zb2nYbdL/Xplu/+5lmuvcC7wKeOencA/xdHgD8K/DQ5vnxk849QFtefuBzAHgg8AXg8OWW26ojZ1W1u6o+tsJkjwc+UVU3VdV/AG8FzmjGnQHsbB7vBM4cSdBvWO3rnQx8sqo+NcpQSxh03bRu3VbV3qq6tnl8J7AbOGHEuQ5Ybjs84Azgz6vrQ8ADkmzoc96x562qf6yqLzZPP0T3d5UmYZD108p1e5DnAm8ZcSZpmvS1f0nyEOB04M/GE2tN2r7vWskg+7a2mab93kr63c+8GHg7sG+c4Vapn7b8NHBxVd0MUFVtbU8/bSngfkkCHEW3ONu/3EJbVZz16QTg0z3Pb+EbH2pzVbUXuh9+wPEjzrLa13sO9/6n7NzmcPobl+vKMQT9Zi3gPUmuSbJ1DfMPy6peL8lG4LHAVT2DR7lul9sOV5qmn3mHbbWv+SK634wesNR2MQr9Zv3BppvAu5N8zyrnHaa+XzPJfYFT6O48DxjnupXaqN/P+9cCvwZ8fUy51mIY+65JGmTf1jaD7vfaZMW2JDkBeAbwp2PMtRb9/F2+CzgmSafZNz5/bOlWp5+2vI5uz8BbgV3AS6pq2c+wNf/O2Vol+XvgQYuM+q9VdUk/i1hk2Mh+D2C5vKtczuHATwIv6xn8J8Ar6eZ/JXAB8MK1JR1a1idV1a1JjgcuT/LRqrpyrZmWM8R1exTdf3ZfWlV3NIOHum4Xe9lFhh28HS41zVi34RWy3HvC5Cl0d1JP7hk8tu2C/rJeS7d78EK65xP+DXBSn/MO22pe8yeAf6iqL/QMG+e6lSZi0M/7JE8H9lXVNUnmhxht1Ua875q0QfZtbTPofq9N+mnLa4Ffr6q7uwdpWqufthwKfD/dHmdHAB9M8qGq+viow61SP235ceA64EeB76C7n/8/y73nx16cVdWPDbiIW4ATe54/hG41CnBbkg1Vtbc5xD7wYdDl8iZZzeudClxbVbf1LPuex0leDwx0gvMwslbVrc39viTvoHvI9kpaum6THEZ35/bmqrq4Z9lDXbeLWG47XGmaw/uYd9j6yUuS76PbZejUqvr8geHLbBcTydr7oVZV70ryx0mO62feEVjNa97r6PmY1600EUP4vH8S8JPNlzH3Ae6f5C+r6nkjirykUe67WmCQfVvbDLTfa5l+2rIZeGtTmB0HnJZkf1X9zVgS9q/fbez2qroLuCvJlcCj6Z6f2Sb9tOUFwPnVPensE0n+Dfhu4J+WWug0dmv8Z+CkJA9vjkY9B7i0GXcpsKV5vAXo50jcIFbzevc6z+SgPtrPAK4farpvtmLWJEcmud+Bx8DTejK1bt02/XffAOyuqlcfNG7U63a57fCAS4Hnp+uJwJebbi79zDtsK75mkocCFwNn9347tcJ2MamsD2r+/iR5PN3Pss/3M+8k8jY5jwZ+hJ5teQLrVmqjFT/vq+plVfWQqtpI9z323kkUZn0YaN/VAoPs29pmzfu9FlqxLVX18Kra2LxH3gb8QgsLM+hvG7sE+OEkh6Z7OsAT6J6b2Tb9tOVmukcASTJH98KHNy271GrB1U4O3Oj+E30L8FXgNuDvmuEPBt7VM91pdKvnT9LtDnlg+LcBVwA3NvfHjjjvoq+3SN770v3H8eiD5v8Luv1PP9L8MTdMMivdq818uLnd0PZ1S7f7QTXr77rmdtq41u1i2yHwc8DPNY8D/FEzfhc9VyBdahse8TpdKe+fAV/sWZdXr7RdTDDruU2WD9M9ifuH2rxum+fnAG89aL6xr1tv3tp26+fz/qDp52nv1RoH2ne14TbIvq1tt7Xu99p462c/0zPthbT0ao39tgX4VbpXbLyebtffiede4zb2YOA9zXvleuB5Ky0zzYySJEmSpAmaxm6NkiRJkrTuWJxJkiRJUgtYnEmSJElSC1icSZIkSVILWJxJkiRJUgtYnEmSJElSC1icSZIkSVILWJxJkiRJUgtYnEmSJElSC1icSZIkSVILWJxJkiRJUgtYnGmqJDkryXtGtOwLk/z2KJa9yGudk+QD43gtSZKW475Vag+LM7VSkicn+cckX07yhST/kOQHqurNVfW0FuTrJPmZIS6vknznQcPOS/KXQ1j2xmb5hw66LEnS9JqVfWuShyZZ6LlVkrt6nv/wMPJKo+A/a2qdJPcHLgN+HrgIOBz4YeCrk8wlSdK0mqV9a1XdDBx14HmSAh5dVZ+YXCqpPx45Uxt9F0BVvaWq7q6qr1TVe6rqIwd3WWi+DfuFJDcmuTPJK5N8R5IPJrkjyUVJDm+mvVd3h8WOWDXDj0lyWZLPJfli8/ghzbjfobtDe13zDdzrmuHfneTy5tvIjyV5ds/yvi3JpU2mfwK+Y7UrZYXln57kX5rlfzrJeT2zXtncf6nJ+4OrfW1J0tRz39qd51uTvCrJzUluS/KnSY5oxs0nuSXJryXZl2RvkjOTnJbk402Gl/cs67wkb0vy1816ujbJo1f1V5EOYnGmNvo4cHeSnUlOTXLMCtOfAnw/8ETg14AdwFnAicD3As9dQ4ZvAd4EPAx4KPAV4HUAVfVfgf8DnFtVR1XVuUmOBC4H/go4vnnNP07yPc3y/gj4d2AD8MLm1rc+ln8X8HzgAcDpwM8nObMZ95+a+wc0eT+4mteWJK0L7lu7fpduofoY4DuBE4Df7Bn/IOA+PcNfDzyP7rr4YeA3k3x7z/RnAP8LOLbJ+TdJDutvdUj3ZnGm1qmqO4AnA0X3Q/FzzTdjc0vM8rtVdUdV3QBcD7ynqm6qqi8D7wYeu4YMn6+qt1fV/62qO4HfAX5kmVmeDuypqjdV1f6quhZ4O/DMJIcA/w/wm1V1V1VdD+xcZBnXJvnSgRuwvZ/lN3k7VbWrqr5eVR8B3rJCXknSDJnhfes9kgT4z8AvV9UXmgz/HXhOz2RfA36nqr4GvBU4Dvj9qrqzWRc3AN/XM/01VfW2ZvpX0y3sntjvOpEO5jlnaqWq2g2cA90uDcBfAq8F/m6RyW/refyVRZ4/aLWvn+S+wGvofnN44NvF+yU5pKruXmSWhwFPaIqqAw4F/gJ4YPP40z3jPrXIMh7X2x++6Zp4oFvIcssnyROA8+l+m3k48K10v8mTJAmY2X1rrwcC9wWu6dZp3VjAIT3TfL4ny1ea+4PbflTP83tev6q+nuQW4MEr5JCW5JEztV5VfRS4kG7hMYi76H4oA5BkuR3LNuARwBOq6v58o2vggU/zOmj6TwPvr6oH9NyOqqqfBz4H7KfbFeSAh64y+3LLh25XikuBE6vqaOBPl8kqSZpxM7pvvZ1ucfU9Pcs7uqqOWmG+5dzz+km+BXgIcOsAy9OMszhT6zQn/27rOUn4RLr9zD804KI/DHxPksckuQ9w3jLT3o/uB/iXkhwLvOKg8bcBvX3OLwO+K8nZSQ5rbj+Q5JHNN3AXA+cluW+SRwFbVpl9yeX35P1CVf17kscDP90z7+eArx+UV5I0Q9y3do9s0e3S+ZokxwMkOSHJj/ff3Hv5/iQ/le7P1byU7tUvB12nmmEWZ2qjO4EnAFcluYvuh9z1dL9xW7Oq+jjw34C/B24ElvuhytcCR9D9lu1DwN8eNP736fZ5/2KSP2j6rT+Nbr/1W4HP0j3p+Fub6c+l2w3is3S/qXzTKrOvtPxfAP5bkjvpnsB8Uc+8/5duv/5/aM5nsy+8JM0e961dvw58AvhQkjua3I/oY76lXAL8v8AXgbOBn2rOP5PWJFX2eJIkSZJW48C54VX1vEln0frhkTNJkiRJagGLM0mSJElqAbs1SpIkSVILeORMkiRJklpgrD9Cfdxxx9XGjRvveX7XXXdx5JFHjjPCmpl1NKYl67TkBLOOyqxlveaaa26vqgcOKZLG4OB97LBM07Y/iFlpJ9jW9WhW2gnro63L7WPHWpxt3LiRq6+++p7nnU6H+fn5cUZYM7OOxrRknZacYNZRmbWsST41nDQal4P3scMyTdv+IGalnWBb16NZaSesj7Yut4+1W6MkSZIktYDFmSRJkiS1gMWZJEmSJLWAxZkkSZIktYDFmSRJkiS1wFiv1ihp/dq4/Z2rnmfbpv2cs4b5lrLn/NOHtixJmqS1fKb2q9/PXj9TpfFb8chZkhOTvC/J7iQ3JHlJM/y8JJ9Jcl1zO230cSVJkiRpfernyNl+YFtVXZvkfsA1SS5vxr2mql41uniSJEmSNBtWLM6qai+wt3l8Z5LdwAmjDiZJkiRJs2RVFwRJshF4LHBVM+jcJB9J8sYkxww7nCRJkiTNir4vCJLkKODtwEur6o4kfwK8Eqjm/gLghYvMtxXYCjA3N0en07ln3MLCwjc9b7PerLs+8+XJhgE2nXD0kuOmdb222bTkhMll3bZp/6rnmTtibfMtZZTtdhuQJEmj1ldxluQwuoXZm6vqYoCquq1n/OuByxabt6p2ADsANm/eXPPz8/eM63Q69D5vs96sw7y63FrtOWt+yXHTul7bbFpywuSyruV9sW3Tfi7YNbyLxi73vhiU24AkSRq1fq7WGOANwO6qenXP8A09kz0DuH748SRJkiRpNvTzlfWTgLOBXUmua4a9HHhuksfQ7da4B/jZEeSTJEmSpJnQz9UaPwBkkVHvGn4cSZIkSZpNq7paoyRJkiRpNCzOJEmSJKkFLM4kSZqQJPdJ8k9JPpzkhiS/1Qw/NsnlSW5s7v0tUUmaARZnkiRNzleBH62qRwOPAU5J8kRgO3BFVZ0EXNE8lyStcxZnkiRNSHUtNE8Pa24FnAHsbIbvBM4cfzpJ0rhZnEmSNEFJDml+qmYfcHlVXQXMVdVegOb++AlGlCSNST+/cyZJkkakqu4GHpPkAcA7knxvv/Mm2QpsBZibm6PT6Qw938LCwkiW2zZta+e2TftHtuy5I/pbfpvWx1q17e86KrPSTlj/bbU4kySpBarqS0k6wCnAbUk2VNXeJBvoHlVbbJ4dwA6AzZs31/z8/NBzdTodRrHctmlbO8/Z/s6RLXvbpv1csGvlfwH3nDU/sgzj0ra/66jMSjth/bfVbo2SJE1Ikgc2R8xIcgTwY8BHgUuBLc1kW4BLJhJQkjRWHjmTJGlyNgA7kxxC9wvTi6rqsiQfBC5K8iLgZuBZkwwpSRoPizNJkiakqj4CPHaR4Z8HTh5/IknSJNmtUZIkSZJawOJMkiRJklrA4kySJEmSWsDiTJIkSZJawOJMkiRJklrA4kySJEmSWmDF4izJiUnel2R3khuSvKQZfmySy5Pc2NwfM/q4kiRJkrQ+9XPkbD+wraoeCTwR+MUkjwK2A1dU1UnAFc1zSZIkSdIarFicVdXeqrq2eXwnsBs4ATgD2NlMthM4c0QZJUmSJGndW9U5Z0k2Ao8FrgLmqmovdAs44Pihp5MkSZKkGXFovxMmOQp4O/DSqrojSb/zbQW2AszNzdHpdO4Zt7Cw8E3P26w367ZN+ycbBpZdb9O6XttsWnLC5LKu5X0xd8Rw309/+OZLhrasg80d0d/yN51w9Mgy9GuatldJkvQNfRVnSQ6jW5i9uaoubgbflmRDVe1NsgHYt9i8VbUD2AGwefPmmp+fv2dcp9Oh93mb9WY9Z/s7JxsG2HPW/JLjpnW9ttm05ITJZV3L+2Lbpv1csKvv74gmqt+sy703x2WatldJWs7GAf/n2rZp/8D/t+05//SB5pdWo5+rNQZ4A7C7ql7dM+pSYEvzeAswuq+sJUmSJGmd6+cr6ycBZwO7klzXDHs5cD5wUZIXATcDzxpJQkmSJEmaASsWZ1X1AWCpE8xOHm4cSZIkSZpNq7paoyRJkiRpNCzOJEmSJKkFLM4kSZIkqQUsziRJkiSpBSzOJEmSJKkFLM4kSZIkqQUsziRJkiSpBSzOJEmSJKkFLM4kSZIkqQUsziRJkiSpBQ6ddACtzcbt71xy3LZN+zlnmfHDsuf800f+GtK0We69OS4XnnLkpCNIkqQ18MiZJEmSJLWAxZkkSZIktYDFmSRJkiS1gMWZJEmSJLWAxZkkSZIktcBUXa1xkldBG9cVECVJsyPJicCfAw8Cvg7sqKrfT3Is8NfARmAP8Oyq+uKkckqSxmPFI2dJ3phkX5Lre4adl+QzSa5rbqeNNqYkSevSfmBbVT0SeCLwi0keBWwHrqiqk4ArmueSpHWun26NFwKnLDL8NVX1mOb2ruHGkiRp/auqvVV1bfP4TmA3cAJwBrCzmWwncOZEAkqSxmrFbo1VdWWSjWPIIknSzGr2tY8FrgLmqmovdAu4JMcvMc9WYCvA3NwcnU5n6LkWFhZGsty2aVs7t23aP7Jlzx3R3/LbsD4GXQ/9tnU5bVgPK2nb9jtK672tg5xzdm6S5wNX0+2SYV94SZLWIMlRwNuBl1bVHUn6mq+qdgA7ADZv3lzz8/NDz9bpdBjFctumbe0c5Xnu2zbt54JdK/8LuOes+ZFl6Neg66Hfti6nDethJW3bfkdpvbd1rVvrnwCvBKq5vwB44WITLvet3mor31F+i7SSYXzzMi7jyjqMby2m5duPackJk8u6lm3O99VoTNP2KkhyGN3C7M1VdXEz+LYkG5qjZhuAfZNLKEkalzUVZ1V124HHSV4PXLbMtEt+q7fayneSV0scxjcv4zKurMP4Jmlavv2YlpwwuaxreX/6vhqNC085cmq211mX7iGyNwC7q+rVPaMuBbYA5zf3l0wgniRpzNb0n8aBb/Oap88Arl9uekmStKgnAWcDu5Jc1wx7Od2i7KIkLwJuBp41mXiSJvlTTgfsOf/0SUfQmKxYnCV5CzAPHJfkFuAVwHySx9Dt1rgH+NnRRZQkaX2qqg8AS51gdvI4s0iSJq+fqzU+d5HBbxhBFkmSJEmaWdNxAoWkZfV2udi2af9Ez8+UJEnS2vTzI9SSJEmSpBGzOJMkSZKkFrA4kyRJkqQWsDiTJEmSpBawOJMkSZKkFrA4kyRJkqQWsDiTJEmSpBawOJMkSZKkFrA4kyRJkqQWsDiTJEmSpBawOJMkSZKkFrA4kyRJkqQWOHTSASRJktQ+G7e/c9IRpJnjkTNJkiRJagGLM0mSJElqAYszSZIkSWqBFc85S/JG4OnAvqr63mbYscBfAxuBPcCzq+qLo4spSZI0Hp5rpbZZaZvctmk/54x4u91z/ukjXb66+jlydiFwykHDtgNXVNVJwBXNc0mSJEnSGq1YnFXVlcAXDhp8BrCzebwTOHO4sSRJkiRptqz1nLO5qtoL0NwfP7xIkiRJkjR7Rv47Z0m2AlsB5ubm6HQ694xbWFj4pucr2bZp/5DT9W/uiMm+/mqMK+tq/nZLWe02MCltz9n793ZbHY1pytr27VWSJC1urcXZbUk2VNXeJBuAfUtNWFU7gB0Amzdvrvn5+XvGdTodep+vZNQnOi5n26b9XLBrOn6ze1xZ95w1P/AyVrsNTErbc/a+N9xWR2Oasl54ypGt3l4lSdLi1tqt8VJgS/N4C3DJcOJIkiRJ0mxasThL8hbgg8AjktyS5EXA+cBTk9wIPLV5LkmSJElaoxX76FTVc5cYdfKQs0iSJEnSzFprt0ZJkiRJ0hBZnEmSJElSC1icSZIkSVILWJxJkiRJUgtYnEmSNCFJ3phkX5Lre4Ydm+TyJDc298dMMqMkaXym4xdV1Uobh/Cj4Ns27R/ox8X3nH/6wBkkaYIuBF4H/HnPsO3AFVV1fpLtzfNfn0A2SdKYeeRMkqQJqaorgS8cNPgMYGfzeCdw5jgzSZImxyNnkiS1y1xV7QWoqr1Jjl9qwiRbga0Ac3NzdDqdoYdZWFgYyXLbpred2zbtn2yYEZs7Yv238YBZaes42tmWz4H1/plkcSZJ0pSqqh3ADoDNmzfX/Pz80F+j0+kwiuW2TW87B+luPw22bdrPBbtm41/AWWnrONq556z5kS6/X+v9M8lujZIktcttSTYANPf7JpxHkjQmFmeSJLXLpcCW5vEW4JIJZpEkjdH6P84rSVJLJXkLMA8cl+QW4BXA+cBFSV4E3Aw8a3IJx28YVwJei0GvHixp9DZuf+fE36ujvlK4xZkkSRNSVc9dYtTJYw0iSWoFuzVKkiRJUgtYnEmSJElSC9itUZIkAYuf7zXp8zskaZZYnGmqjevE8eX+ORn1iaGSJEmaDQMVZ0n2AHcCdwP7q2rzMEJJkiRJ0qwZxpGzp1TV7UNYjiRJkiTNLC8IIkmSJEktMGhxVsB7klyTZOswAkmSJEnSLBq0W+OTqurWJMcDlyf5aFVd2TtBU7RtBZibm6PT6dwzbmFh4Zuer2Tbpv0Dxl27uSMm+/qrYdbhWy7narbhUenNNi3rFMw6Kqv9bJUkSe0wUHFWVbc29/uSvAN4PHDlQdPsAHYAbN68uebn5+8Z1+l06H2+kkleynfbpv1csGs6Lm5p1uFbLuees+bHG2YRve+NaVmnYNZRufCUI1f12SpJktphzd0akxyZ5H4HHgNPA64fVjBJkiRJmiWDfA08B7wjyYHl/FVV/e1QUkmSJEnSjFlzcVZVNwGPHmIWSZIkSZpZXkpfkiRJklrA4kySJEmSWsDiTJIkSZJawOJMkiRJklrA4kySJEmSWmA6flFVarGNE/xxdEmSpHHw/53x8MiZJEmSJLWAxZkkSZIktYDFmSRJkiS1gMWZJEmSJLWAxZkkSZIktYDFmSRJkiS1gMWZJEmSJLWAxZkkSZIktYDFmSRJkiS1gMWZJEmSJLWAxZkkSZIktcBAxVmSU5J8LMknkmwfVihJkmad+1hJmj1rLs6SHAL8EXAq8CjguUkeNaxgkiTNKvexkjSbBjly9njgE1V1U1X9B/BW4IzhxJIkaaa5j5WkGTRIcXYC8Ome57c0wyRJ0mDcx0rSDEpVrW3G5FnAj1fVzzTPzwYeX1UvPmi6rcDW5ukjgI/1jD4OuH1NAcbPrKMxLVmnJSeYdVRmLevDquqBwwij1RvSPnZYpmnbH8SstBNs63o0K+2E9dHWJfexhw6w0FuAE3uePwS49eCJqmoHsGOxBSS5uqo2D5BhbMw6GtOSdVpygllHxawas4H3scMyK9vTrLQTbOt6NCvthPXf1kG6Nf4zcFKShyc5HHgOcOlwYkmSNNPcx0rSDFrzkbOq2p/kXODvgEOAN1bVDUNLJknSjHIfK0mzaZBujVTVu4B3DbCIkXbFGDKzjsa0ZJ2WnGDWUTGrxmoI+9hhmZXtaVbaCbZ1PZqVdsI6b+uaLwgiSZIkSRqeQc45kyRJkiQNyciLsyTPSnJDkq8nWfLKKklOSfKxJJ9Isr1n+LFJLk9yY3N/zAizrvhaSR6R5Lqe2x1JXtqMOy/JZ3rGnTbJrM10e5LsavJcvdr5x5EzyYlJ3pdkd7OtvKRn3MjX6VLbXs/4JPmDZvxHkjyu33knkPWsJuNHkvxjkkf3jFt0W5hQzvkkX+75u/5mv/NOIOuv9uS8PsndSY5txo1tnTav98Yk+5Jcv8T41myrml6Dfm633SCf+dNmkH3GNOn38y3JDzSf4c8cZ75h6qetzT72uua9+f5xZxyWPrbfo5P87yQfbtr6gknkHLqqGukNeCTd317pAJuXmOYQ4JPAtwOHAx8GHtWM+z1ge/N4O/C7I8y6qtdqcn+W7m8VAJwH/Mqo1+lqsgJ7gOMGbesocwIbgMc1j+8HfLzn7z/SdbrcttczzWnAu4EATwSu6nfeCWT9IeCY5vGpB7Iuty1MKOc8cNla5h131oOm/wngveNepz2v95+AxwHXLzG+Fduqt+m+Dfq53ebbIJ/503YbdJ8xLbd+P9+a6d5L9zzOZ0469wj/pg8A/hV4aPP8+EnnHmFbX37g8wl4IPAF4PBJZx/0NvIjZ1W1u6pW+lHMxwOfqKqbquo/gLcCZzTjzgB2No93AmeOJOjaXutk4JNV9akRZlrKoOtlXOt1xdepqr1VdW3z+E5gN3DCiPIcbLlt74AzgD+vrg8BD0iyoc95x5q1qv6xqr7YPP0Q3d9GGrdB1kvr1ulBngu8ZYR5llVVV9Ld+SylLduqplvbP7cHMchn/rSZln3GoPr9fHsx8HZg3zjDDVk/bf1p4OKquhmgqqa1vf20tYD7JQlwFN394/7xxhy+tpxzdgLw6Z7nt/CND/m5qtoL3Z0BcPwIc6z2tZ7Dvf9RO7fpHvDGxbqCDFG/WQt4T5Jrkmxdw/zjyglAko3AY4GregaPcp0ut+2tNE0/8w7Tal/vRXS//T1gqW1h2PrN+YNNV4R3J/meVc47LH2/XpL7AqfQ3bkfMK512q+2bKuabsP43G6rQT7zp82g+4xpsWI7k5wAPAP40zHmGoV+/qbfBRyTpNPsm54/tnTD1U9bX0e3h96twC7gJVX19fHEG52BLqV/QJK/Bx60yKj/WlWX9LOIRYaN5DKSy2Vd5XIOB34SeFnP4D8BXkk3+yuBC4AXri3p0LI+qapuTXI8cHmSjzbfvg/NENfpUXT/8X1pVd3RDB7qOl3sZRcZdvC2t9Q0Y9tuV8hx7wmTp9Dd0T65Z/DIt4VV5LyWbnfghXTPI/wb4KQ+5x2m1bzeTwD/UFW9R67GtU771ZZtVS034s/tNhvkM3/aDLrPmBb9tPO1wK9X1d3dgyxTq5+2Hgp8P93eXUcAH0zyoar6+KjDDVk/bf1x4DrgR4HvoLsf/j9T8lm0pKEUZ1X1YwMu4hbgxJ7nD6FbBQPclmRDVe1tuhUMdHh2uaxJVvNapwLXVtVtPcu+53GS1wOXTTprVd3a3O9L8g66h4mvZIjrdRg5kxxGdwf/5qq6uGfZQ12ni1hu21tpmsP7mHeY+slKku8D/gw4tao+f2D4MtvC2HP2fnBW1buS/HGS4/qZd9xZe9zrSPkY12m/2rKtquVG+bndcoN85k+bgfYZU6Sfdm4G3toUZscBpyXZX1V/M5aEw9Pv9nt7Vd0F3JXkSuDRdM8LnSb9tPUFwPlVVcAnkvwb8N3AP40n4mi0pVvjPwMnJXl4c0TqOcClzbhLgS3N4y1AP0fi1mo1r3Wvc08O6pP+DGDRK6oNyYpZkxyZ5H4HHgNP68k0rvXaT84AbwB2V9WrDxo36nW63LZ3wKXA89P1RODLTVeffuYda9YkDwUuBs7u/ZZshW1hEjkf1PzdSfJ4up9Fn+9n3nFnbTIeDfwIPdvvmNdpv9qyrWq6DfS53XKDfOZPmzXvM6bMiu2sqodX1caq2gi8DfiFKSzMoL/t9xLgh5Mcmm53/CfQPSd02vTT1pvpHiEkyRzdCxDeNNaUo1Cjv9rKM+hWv18FbgP+rhn+YOBdPdOdRreq/yTd7pAHhn8bcAVwY3N/7AizLvpai2S9L91/JI8+aP6/oNvn9SN0N6ANk8xK9wo3H25uN0xivfaZ88l0D1V/hO7h6euA08a1Thfb9oCfA36ueRzgj5rxu+i56uhS2+0I/+4rZf0z4Is96/HqlbaFCeU8t8nxYbonof9QW9dp8/wc4K0HzTfWddq85luAvcDX6H6uvqit26q36b0N+rnd9tsgn/nTdlvrPmPabv18jvdMeyFTerXGftsK/CrdKzZeT7fL8cRzj6KtzWfSe5r36fXA8yadeRi3NI2TJEmSJE1QW7o1SpIkSdJMsziTJEmSpBawOJMkSZKkFrA4kyRJkqQWsDiTJEmSpBawOJMkSZKkFrA4kyRJkqQWsDiTJEmSpBb4/wFhAcE8nHawqwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "dfs_test_sc[0].hist()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Set up the function which generated the GPR input matrix from the experimental data (including all autoregressive inputs, etc.):" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "def data_to_gpr(df, dict_cols):\n", - " \n", - " t_list = dict_cols['t'][1]\n", - " w_list = dict_cols['w'][1]\n", - " u_list = dict_cols['u'][1]\n", - " y_list = dict_cols['y'][1]\n", - " \n", - " df_gpr = df[t_list + w_list + u_list + y_list].copy()\n", - " \n", - " for lags, names in dict_cols.values():\n", - " for name in names:\n", - " col_idx = df_gpr.columns.get_loc(name)\n", - " for lag in range(1, lags + 1):\n", - " df_gpr.insert(col_idx + lag, f\"{name}_{lag}\", df_gpr.loc[:, name].shift(lag))\n", - "\n", - " df_gpr.dropna(inplace = True)\n", - " \n", - " return df_gpr" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SolRadOutsideTempSimulatedHeatSimulatedHeat_1SimulatedHeat_2SimulatedTempSimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-06-01 20:45:00+02:00-0.9708070.0588240.4380900.4380900.4380900.2480810.2335350.2143390.153839
2017-06-01 21:00:00+02:00-0.9800630.0196080.4380900.4380900.4380900.2168760.2480810.2335350.214339
2017-06-01 21:15:00+02:00-0.989906-0.058824-0.4700640.4380900.4380900.0627670.2168760.2480810.233535
2017-06-01 21:30:00+02:00-0.991909-0.058824-0.470064-0.4700640.4380900.0910340.0627670.2168760.248081
2017-06-01 21:45:00+02:00-0.992483-0.0588240.577419-0.470064-0.4700640.2033060.0910340.0627670.216876
\n", - "
" - ], - "text/plain": [ - " SolRad OutsideTemp SimulatedHeat \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 -0.970807 0.058824 0.438090 \n", - "2017-06-01 21:00:00+02:00 -0.980063 0.019608 0.438090 \n", - "2017-06-01 21:15:00+02:00 -0.989906 -0.058824 -0.470064 \n", - "2017-06-01 21:30:00+02:00 -0.991909 -0.058824 -0.470064 \n", - "2017-06-01 21:45:00+02:00 -0.992483 -0.058824 0.577419 \n", - "\n", - " SimulatedHeat_1 SimulatedHeat_2 SimulatedTemp \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.438090 0.438090 0.248081 \n", - "2017-06-01 21:00:00+02:00 0.438090 0.438090 0.216876 \n", - "2017-06-01 21:15:00+02:00 0.438090 0.438090 0.062767 \n", - "2017-06-01 21:30:00+02:00 -0.470064 0.438090 0.091034 \n", - "2017-06-01 21:45:00+02:00 -0.470064 -0.470064 0.203306 \n", - "\n", - " SimulatedTemp_1 SimulatedTemp_2 SimulatedTemp_3 \n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.233535 0.214339 0.153839 \n", - "2017-06-01 21:00:00+02:00 0.248081 0.233535 0.214339 \n", - "2017-06-01 21:15:00+02:00 0.216876 0.248081 0.233535 \n", - "2017-06-01 21:30:00+02:00 0.062767 0.216876 0.248081 \n", - "2017-06-01 21:45:00+02:00 0.091034 0.062767 0.216876 " - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dfs_gpr_train = []\n", - "for df_sc in dfs_train_sc:\n", - " dfs_gpr_train.append(data_to_gpr(df_sc, dict_cols))\n", - "df_gpr_train = pd.concat(dfs_gpr_train)\n", - "df_gpr_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "dfs_gpr_test = []\n", - "for df_sc in dfs_test_sc:\n", - " dfs_gpr_test.append(data_to_gpr(df_sc, dict_cols))" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "#df_gpr_train = df_gpr_train.sample(n = 500)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "id": "eZAetwUd6YuE" - }, - "outputs": [], - "source": [ - "df_input_train = df_gpr_train.drop(columns = dict_cols['u'][1] + dict_cols['y'][1])\n", - "df_output_train = df_gpr_train[dict_cols['y'][1]]\n", - "\n", - "np_input_train = df_input_train.to_numpy()\n", - "np_output_train = df_output_train.to_numpy().reshape(-1, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "data_train = (np_input_train, np_output_train)\n", - "pickle.dump(data_train, open(Path(\"data_train.pkl\"), 'wb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SolRadOutsideTempSimulatedHeat_1SimulatedHeat_2SimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-06-01 20:45:00+02:00-0.9708070.0588240.4380900.4380900.2335350.2143390.153839
2017-06-01 21:00:00+02:00-0.9800630.0196080.4380900.4380900.2480810.2335350.214339
2017-06-01 21:15:00+02:00-0.989906-0.0588240.4380900.4380900.2168760.2480810.233535
2017-06-01 21:30:00+02:00-0.991909-0.058824-0.4700640.4380900.0627670.2168760.248081
2017-06-01 21:45:00+02:00-0.992483-0.058824-0.470064-0.4700640.0910340.0627670.216876
\n", - "
" - ], - "text/plain": [ - " SolRad OutsideTemp SimulatedHeat_1 \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 -0.970807 0.058824 0.438090 \n", - "2017-06-01 21:00:00+02:00 -0.980063 0.019608 0.438090 \n", - "2017-06-01 21:15:00+02:00 -0.989906 -0.058824 0.438090 \n", - "2017-06-01 21:30:00+02:00 -0.991909 -0.058824 -0.470064 \n", - "2017-06-01 21:45:00+02:00 -0.992483 -0.058824 -0.470064 \n", - "\n", - " SimulatedHeat_2 SimulatedTemp_1 SimulatedTemp_2 \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.438090 0.233535 0.214339 \n", - "2017-06-01 21:00:00+02:00 0.438090 0.248081 0.233535 \n", - "2017-06-01 21:15:00+02:00 0.438090 0.216876 0.248081 \n", - "2017-06-01 21:30:00+02:00 0.438090 0.062767 0.216876 \n", - "2017-06-01 21:45:00+02:00 -0.470064 0.091034 0.062767 \n", - "\n", - " SimulatedTemp_3 \n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.153839 \n", - "2017-06-01 21:00:00+02:00 0.214339 \n", - "2017-06-01 21:15:00+02:00 0.233535 \n", - "2017-06-01 21:30:00+02:00 0.248081 \n", - "2017-06-01 21:45:00+02:00 0.216876 " - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_input_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "import scipy.io" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "scipy.io.savemat(\n", - " f\"dfs_datasets.mat\",\n", - " {'train0': dfs_train_sc[0][t_cols + w_cols + u_cols + y_cols].to_numpy(),\n", - " 'train1': dfs_train_sc[1][t_cols + w_cols + u_cols + y_cols].to_numpy(),\n", - " 'train2': dfs_train_sc[2][t_cols + w_cols + u_cols + y_cols].to_numpy(),\n", - " 'train3': dfs_train_sc[3][t_cols + w_cols + u_cols + y_cols].to_numpy(),\n", - " 'test0': dfs_test_sc[0][t_cols + w_cols + u_cols + y_cols].to_numpy(),\n", - " 'test1': dfs_test_sc[1][t_cols + w_cols + u_cols + y_cols].to_numpy(),\n", - " 'test2': dfs_test_sc[2][t_cols + w_cols + u_cols + y_cols].to_numpy(),\n", - " 'cols': t_cols + w_cols + u_cols + y_cols, \n", - " })" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "np_export_train = df_gpr_train.to_numpy()\n", - "np_export_test = dfs_gpr_test[0].to_numpy()\n", - "scipy.io.savemat(f\"gpr_export.mat\", {'train': np_export_train, 'cols': df_gpr_train.columns.to_list(), 'test': np_export_test})" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "id": "l_VzOWL66aD3" - }, - "outputs": [], - "source": [ - "## Define Kernel" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "id": "oBHgoYNf6b6t" - }, - "outputs": [], - "source": [ - "nb_dims = np_input_train.shape[1]\n", - "rational_dims = np.arange(0, (dict_cols['t'][0] + 1) * len(dict_cols['t'][1]), 1)\n", - "nb_rational_dims = len(rational_dims)\n", - "squared_dims = np.arange(nb_rational_dims, nb_dims, 1)\n", - "nb_squared_dims = len(squared_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "_WagEJum8uUG", - "outputId": "c65ec503-b964-49f6-fe3a-51c57a175f9b" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rational: 0\n", - "squared: 7\n" - ] - } - ], - "source": [ - "print(f\"rational: {nb_rational_dims}\")\n", - "print(f\"squared: {nb_squared_dims}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "id": "kTIQlLIP6dJz" - }, - "outputs": [], - "source": [ - "squared_l = np.linspace(10, 10, nb_squared_dims)\n", - "rational_l = np.linspace(10, 10, nb_rational_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "id": "MEGkQJvY_izQ" - }, - "outputs": [], - "source": [ - "#variance = tf.math.reduce_variance(np_input_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "variance = 1" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "id": "WZfssVHG6edn" - }, - "outputs": [], - "source": [ - "k0 = gpflow.kernels.SquaredExponential(lengthscales = squared_l, active_dims = squared_dims, variance = variance)\n", - "k1 = gpflow.kernels.Constant(variance = variance)\n", - "k2 = gpflow.kernels.RationalQuadratic(lengthscales = rational_l, active_dims = rational_dims, variance = variance)\n", - "k3 = gpflow.kernels.Periodic(k2)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "k4 = gpflow.kernels.Linear(variance = [1]*nb_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 169 - }, - "id": "vo8rcdBm6fuc", - "outputId": "75485dcd-961c-40d9-cf1f-d10516e2b80f" - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
Linear.varianceParameterSoftplus True (7,) float64[1., 1., 1....
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "k = (k0 + k1) * k2\n", - "k = k4\n", - "print_summary(k)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4af25a43-15c9-4543-af73-3c313b5fc7af" - }, - "source": [ - "## Compile Model" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 190 - }, - "id": "PC4cbp926j29", - "outputId": "72c9441d-2657-4e0f-de70-11a197d07ad3" - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
GPR.kernel.variance ParameterSoftplus True (7,) float64[1., 1., 1....
GPR.likelihood.varianceParameterSoftplus + Shift True () float641.0
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "m = gpflow.models.GPR(\n", - " data = data_train, \n", - " kernel = k, \n", - " mean_function = None,\n", - " )\n", - "print_summary(m)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "#m.likelihood.variance.assign(0.5)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "#gpflow.set_trainable(m.likelihood.variance, False)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "08f41235-12df-4e9c-bf63-e7a4390cf21a" - }, - "source": [ - "## Train Model" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "id": "Pn5TwPPT6ogs" - }, - "outputs": [], - "source": [ - "opt = gpflow.optimizers.Scipy()" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "id": "slQg9Ohv6oxR" - }, - "outputs": [], - "source": [ - "from datetime import datetime" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 212 - }, - "id": "GhsxZhc56p43", - "outputId": "778ec150-cfc3-44b7-9e21-e52bf69d494a", - "scrolled": true, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished fitting in 0:00:04.616717\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
GPR.kernel.variance ParameterSoftplus True (7,) float64[1.88404972e-05, 2.35199453e-04, 4.70785497e-02...
GPR.likelihood.varianceParameterSoftplus + Shift True () float640.0011367938506279384
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "start_time = datetime.now()\n", - "opt.minimize(m.training_loss, m.trainable_variables)\n", - "print(f\"Finished fitting in {datetime.now() - start_time}\")\n", - "print_summary(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Export model parameters:" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "m_params = gpflow.utilities.parameter_dict(m)\n", - "pickle.dump(m_params, open(Path(Path.cwd(), 'gp_params.pkl'), 'wb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "pickle.dump(m, open(Path(Path.cwd(), 'gp_model.pkl'), 'wb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "m = pickle.load(open(Path(\"gp_model.pkl\"), 'rb'))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7dd49280-bb3f-4903-a339-b7225a56ae16" - }, - "source": [ - "## Evaluate performance on training data" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "id": "I62Aw_Cs6tv6" - }, - "outputs": [], - "source": [ - "nb_plts = len(dfs_gpr_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "wp3fsnyb6uE6", - "outputId": "2bc7a0c3-0160-4857-d205-9b00dda6bf0e" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIoAAARuCAYAAAC8xNxhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iUxfbA8e9sSTa9JwQSIIQeIPQqXUQQVMCCIojYey/X/vNer/WKDcWOIkUQASmiFOm9l9BrQkiA9LbJlvn9sQEBASmbbELO53l4YN933pnzbpYke3bmjNJaI4QQQgghhBBCCCGEwdMBCCGEEEIIIYQQQoiKQRJFQgghhBBCCCGEEAKQRJEQQgghhBBCCCGEKCWJIiGEEEIIIYQQQggBSKJICCGEEEIIIYQQQpSSRJEQQgghhBBCCCGEACRRJIQQQlR4SqnaSimtlDJdQNvhSqml5RRXJ6XUbqVUvlLqxvIYU/xFKVWz9Lk3urOtG+Iqt9egEEIIIdxPEkVCCCGEGymlDiilSpRS4Wcc31ia7KntodBOTTjll/45oJR64TK6fAP4VGvtr7We5qYwqwR3JFO01odKn3uHO9uWJ6XU60qpH93Y33CllOOU1/iJP9Xd0PeXSqmdSimnUmq4G8IVQgghKiRJFAkhhBDutx+47cQDpVRTwMdz4fxNsNbaH1eMryqlrr2Yi0+Z2VQL2HYpAVzI7Kiqrjxm/1yhVpQmxU79k+qGfjcBDwHr3dCXEEIIUWFJokgIIYRwv7HAsFMe3wn8cGoDpVSQUuoHpdQxpdRBpdTLSilD6TmjUup9pdRxpdQ+4LqzXPuNUuqIUuqwUuo/l5JU0FqvwJXoaVLa7wil1HalVJZS6nelVK1TxtRKqYeVUruB3UqpvUAdYEbpjA1vpVR1pdSvSqlMpdQepdS9p1z/ulLqZ6XUj0qpXGC4UmphaezLS/uYoZQKU0qNU0rlKqXWnDoDSyn1kVIqufTcOqVU5zP6n1T6nOYppbYppVqfcj5WKfVL6fOdoZT69JRz57zvMymlri/tO7s0/kannDuglHpGKbVZKZWjlPpJKWU5Sx+NgNFAh9L7zi49PkYp9blSarZSqgDorpS6Tim1ofSek5VSr5/Sz2lLEkvj+bdSalnpc/CHKp3ZdjFtS88PK31dZiilXim9t6vP8ZyElX7dc5VSq4H4M86f9eumXAnKF4FbS5+HTaXH7yr9euQppfYppe4/19fjYiil4ktfmy1LH1dXrv9j3U55Tt5SSq0u/fpNV0qFnrheaz1Kaz0fsLojHiGEEKKikkSREEII4X4rgUClVCPlSuDcCpy5vOYTIAhXsqUrrsTSXaXn7gX6AS2A1sBNZ1z7PWAH6pa2uQa452ICVC6dgARgg3LVGHoRGAhEAEuACWdcdiPQDmistY4HDgH9S2dsFJe2TwGql8b8X6VUz1OuvwH4GQgGxpUeGwwMBWrgSjCsAL4DQoHtwGunXL8GaF56bjww+YxEzPXAxNL+fwU+Lb1XIzATOAjULh1rYum5C7nvE89Z/dJzT5S2nY0rUeZ1SrNbgGuBOKAZMPzMfrTW24EH+GvmS/App28H3gQCgKVAAa7XRjCuhOGD6vz1oG7H9TqKBLyAZy62rVKqMfAZMASIxvU6rXGefkbhSp5EAyNK/5zqrF83rfUc4L/AT6XPQ2Jp+6O4Xv+BpfGNPJHcKY0vWyl11XniOSut9V7geWCcUsoX1+tsjNZ64SnNhpXGXx3X/7GPL3YcIYQQorKTRJEQQghRNk7MKuoF7AAOnzhxSvLoX1rrPK31AeB/uBIm4Eo2fKi1TtZaZwJvnXJtFNAHeEJrXaC1PgqMxJVwuVDHgUzga+CF0lkS9wNvaa23a63tuN7ANz9jds1bWutMrXXRmR0qpWKBq4DntdZWrfXG0v6HntJshdZ6mtbaeUof32mt92qtc4DfgL1a63mlMUzGlQgDQGv9o9Y6Q2tt11r/D/AGGpzS/1Kt9ezSOjxjgROJh7a43vg/W/qcWbXWJ+oDXch9n3ArMEtrPVdrbQPex7WksOMpbT7WWqeWft1m4EqQXIzpWutlpc+RVWu9UGu9pfTxZlyJqq7nuf47rfWu0ud30j+Mf662NwEztNZLtdYlwKuAPlsHpa/lQcCrpc/tVlyJzJMu4OvGGe1nlb4mtNZ6EfAH0PmU88GnfP3Opn1pMunEn72nXPsVsBtYhSux9dIZ147VWm/VWhcArwC3KFkCKIQQooqRRJEQQghRNsbimrExnDOWnQHhuGZwHDzl2EH+mrVRHUg+49wJtQAzcOTEG2HgC1yzQi5UuNY6RGvdSGt9YsZELeCjU/rMBBSnzyRJ5tyqA5la67xz3NO5rk8/5d9FZ3nsf+KBUurp0iVJOaUxBuF6Lk9IO+XfhYCldKlVLHCwNBF0pgu571Pv8eTXQmvtLL2nU9ueGYM/F+e050gp1U4p9adyLZnLwTUTKfzsl170+Odqe9rrT2tdCGSco48IwMS5X68X8nXjjPZ9lFIrS5eJZQN9z9f+LFaWJpNO/Ik/4/xXuJZbflI6E+5UZ96H+SLHFkIIISo9SRQJIYQQZUBrfRBXUeu+wC9nnD4O2HAlKU6oyV+zjo7gSm6ceu6EZKAYV7LnxBvhQK11wmWGnAzcf8YbbB+t9fJTb+s816cCoUqpgDPiPnzK4/Ndf16ldW2exzXbKqR0uVYOrqTOP0kGaqqzF9C+kPs+IZVTvmZKKYXr63T4LG3/ybmeizOPj8e1jC5Wax2Eq7bRhdzz5TgCxJx4oJTyAcLO0fYYriVaZ329XsDX7bT7VUp5A1NwzdaKKm0/Gzfds1LKH/gQ+AZ4/dQaRKXOvA8brv+vQgghRJUhiSIhhBCi7NwN9ChdxnJS6dKoScCbSqmA0mVOT/FXHaNJwGNKqRilVAjwwinXHsG1FOd/SqlApZShtEjv+ZYjXYjRwL+UUglwsmD2zRd6sdY6GVgOvKWUsiilmuG6/3Hnv/KCBeBKSBwDTEqpV3HVsLkQq3ElP95WSvmVxtep9NzF3Pck4DqlVE+llBl4GlfS7mxJpX+SDsScUd/obAJwzdSyKqXa4pqlVtZ+BvorpTqWxvd/nCNRU/pa/gVX0sW3tL7Rnac0+aevWzpQW5UWcsc10867tL1dKdUHVw0ud/kIWKe1vgeYhevrf6o7lFKNS2sYvQH8XHqPKKW8SmtiKcBc+jqS36WFEEJcceSHmxBCCFFGSuusrD3H6UdxFSreh6to8Xjg29JzXwG/49qOez1/n5E0DNcb6iQgC9cb++jLjHUq8A4wUbl2JduKqxbSxbgNV7HoVGAq8JrWeu7lxHWK33HVMNqFa0mQlfMvhTup9I1+f1zFvw/hKrh9a+m5C75vrfVO4A5chciPl/bZv7SOz8VagGvHuTSl1PlmrDwEvKGUysNVK2jSJYx1UbTW23C9PifiSrDl4SowfeYyrRMewbVsLQ0Yg6tI9An/9HWbXPp3hlJqfenSxcdw3WcWrsTYr6cOplw7pHXm3E7sJnfqnzZKqRtwFRp/oLTdU0BLpdSQU64dW3oPaYClNJYT/sC1HLIj8GXpv7ucJw4hhBCiUlJaX/IscCGEEEIIcYUrXa6VDdTTWu/3cDhlRim1EPhRa/21p2MRQgghPElmFAkhhBBCiNMopfqXLiXzw1UvaAtwwLNRCSGEEKI8SKJICCGEEEKc6QZcSwhTgXrAYC3T0IUQQogqQZaeCSGEEEIIIYQQQghAZhQJIYQQQgghhBBCiFKSKBJCCCGEEEIIIYQQAJg8HcD5hIeH69q1a3s6DCGEEEIIIYQQQogrxrp1645rrSPOdq5CJ4pq167N2rVrPR2GEEIIIYQQQgghxBVDKXXwXOdk6ZkQQgghhBBCCCGEACRRJIQQQgghhBBCCCFKSaJICCGEEEIIIYQQQgAVvEbR2dhsNlJSUrBarZ4ORYiLYrFYiImJwWw2ezoUIYQQQgghhBDirNySKFJKXQt8BBiBr7XWb5+lTTfgQ8AMHNdad72UsVJSUggICKB27doopS45ZiHKk9aajIwMUlJSiIuL83Q4QgghhBBCCCHEWV320jOllBEYBfQBGgO3KaUan9EmGPgMuF5rnQDcfKnjWa1WwsLCJEkkKhWlFGFhYTITTgghhBBCCCFEheaOGkVtgT1a631a6xJgInDDGW1uB37RWh8C0FofvZwBJUkkKiN53QohhBBCCCGEqOjckSiqASSf8jil9Nip6gMhSqmFSql1SqlhbhjXY5RSDB069ORju91OREQE/fr182BU/8zf3/8f27z++uu8//77520zbdo0kpKS3BWWEEIIIYQQQgghKgh3JIrONk1Cn/HYBLQCrgN6A68opeqftTOl7lNKrVVKrT127JgbwnM/Pz8/tm7dSlFREQBz586lRo0zc2Plw263l/uYkigSQlyJ7IU5ng5BCCGEEEIIj3NHoigFiD3lcQyQepY2c7TWBVrr48BiIPFsnWmtv9Rat9Zat46IiHBDeGWjT58+zJo1C4AJEyZw2223nTxXUFDAiBEjaNOmDS1atGD69OkAHDhwgM6dO9OyZUtatmzJ8uXLAThy5AhdunShefPmNGnShCVLlgCnzwD6+eefGT58OADDhw/nqaeeonv37jz//PPs3buXa6+9llatWtG5c2d27NgBwP79++nQoQNt2rThlVdeOee9vPnmmzRo0ICrr76anTt3njz+1Vdf0aZNGxITExk0aBCFhYUsX76cX3/9lWeffZbmzZuzd+/es7YTQohKZf9ijO/FwfE9no5ECCGEEEIIj3LHrmdrgHpKqTjgMDAYV02iU00HPlVKmQAvoB0w8nIH/r8Z20hKzb3cbk7TuHogr/VP+Md2gwcP5o033qBfv35s3ryZESNGnEzwvPnmm/To0YNvv/2W7Oxs2rZty9VXX01kZCRz587FYrGwe/dubrvtNtauXcv48ePp3bs3L730Eg6H44ISLbt27WLevHkYjUZ69uzJ6NGjqVevHqtWreKhhx5iwYIFPP744zz44IMMGzaMUaNGnbWfdevWMXHiRDZs2IDdbqdly5a0atUKgIEDB3LvvfcC8PLLL/PNN9/w6KOPcv3119OvXz9uuukmAIKDg8/aTgghKgv7pkmYtAOO74Twup4ORwghhBBCCI+57ESR1tqulHoE+B0wAt9qrbcppR4oPT9aa71dKTUH2Aw4ga+11lsvd2xPatasGQcOHGDChAn07dv3tHN//PEHv/7668laP1arlUOHDlG9enUeeeQRNm7ciNFoZNeuXQC0adOGESNGYLPZuPHGG2nevPk/jn/zzTdjNBrJz89n+fLl3HzzXxvJFRcXA7Bs2TKmTJkCwNChQ3n++ef/1s+SJUsYMGAAvr6+AFx//fUnz23dupWXX36Z7Oxs8vPz6d2791ljudB2QghRITkdqJ2zXf/OO+LZWIQQQgghhPAwd8woQms9G5h9xrHRZzx+D3jPHeOdcCEzf8rS9ddfzzPPPMPChQvJyMg4eVxrzZQpU2jQoMFp7V9//XWioqLYtGkTTqcTi8UCQJcuXVi8eDGzZs1i6NChPPvsswwbNuy0XbLO3Fbdz88PAKfTSXBwMBs3bjxrjBey09a52gwfPpxp06aRmJjImDFjWLhw4WW1E0KICil5Fcai0u/heWmejUUIIYQQQggPc0eNoiprxIgRvPrqqzRt2vS047179+aTTz5Ba1dN7w0bNgCQk5NDdHQ0BoOBsWPH4nA4ADh48CCRkZHce++93H333axfvx6AqKgotm/fjtPpZOrUqWeNITAwkLi4OCZPngy4klSbNm0CoFOnTkycOBGAcePGnfX6Ll26MHXqVIqKisjLy2PGjBknz+Xl5REdHY3NZjvt+oCAAPLy8v6xnRBCVAb2bb+ijd5oS7AkioQQQgghRJUniaLLEBMTw+OPP/6346+88go2m41mzZrRpEmTk4WkH3roIb7//nvat2/Prl27Ts4KWrhwIc2bN6dFixZMmTLlZJ9vv/02/fr1o0ePHkRHR58zjnHjxvHNN9+QmJhIQkLCyeLZH330EaNGjaJNmzbk5Jx9N5+WLVty66230rx5cwYNGkTnzp1Pnvv3v/9Nu3bt6NWrFw0bNjx5fPDgwbz33nu0aNGCvXv3nrOdEEJUeFqjdszEXrsLOrg2Tll6JoQQQgghqjh1YtZLRdS6dWu9du3a045t376dRo0aeSgiIS6PvH6FqGDStsDoq3D2/xh2zIKcwxgeWubpqIQQQgghhChTSql1WuvWZzsnM4qEEEJUWY6kGWhlwNCgL4bAaMiXpWdCCCGEEKJqk0SREEKIKktvn4mjRlvwj4CAaAyFx8Fe4umwhBBCCCGE8BhJFAkhhKgy0nKsdHxrPtM2HIbM/ZiObcPQuL/rZEA119/56Z4LUAghhBBCCA+TRJEQQogqQWvNy9O2kJpj5Zul+3FunwmAoVE/V4OA0k0DZOczIYQQQghRhZk8HYAQQghRHmZsPsK87UdpUiOQLYdzKDBOwyciAVNIbVeDEzOKZOczIYQQQghRhcmMIiGEEFe8jPxiXv91G4mxwYy5qy3Rxlz8jq5DNer/VyOZUSSEEEIIIYQkii5Feno6t99+O3Xq1KFVq1Z06NCBqVOnlvm4a9eu5bHHHnNLX926daNBgwYkJibSqVMndu7c6ZZ+3cmdMY4ZM4ZHHnkEgNGjR/PDDz+cs+2BAwcYP378ycfufN6FEJ7xxswk8qw23h3UjHB/bx6psRsDGkeD6/5q5BuOVkaZUSSEEEIIIao0SRRdJK01N954I126dGHfvn2sW7eOiRMnkpKSUuZjt27dmo8//tht/Y0bN45NmzZx55138uyzz/7tvMPhcNtYl6osYnzggQcYNmzYOc+fmShy9/MuhCgfWmu01szfns70jak83L0uDaoFAHCNYQ2HnBH8cTzsrwsMBrR/FFoSRUIIIYQQogqTRNFFWrBgAV5eXjzwwAMnj9WqVYtHH30UcCUZOnfuTMuWLWnZsiXLly8HYOHChfTr1+/kNY888ghjxowB4IUXXqBx48Y0a9aMZ555BoDJkyfTpEkTEhMT6dKly9/6WL16NR07dqRFixZ07Njx5GybMWPGMHDgQK699lrq1avHc88994/31KVLF/bs2QOAv78/r776Ku3atWPFihV88MEHNGnShCZNmvDhhx+evOaHH36gWbNmJCYmMnToUACOHTvGoEGDaNOmDW3atGHZsmUALFq0iObNm9O8eXNatGhBXl4eR44coUuXLjRv3pwmTZqwZMmSS47xxx9/pG3btjRv3pz777//ZPLou+++o379+nTt2vVkLACvv/4677//PgB79uzh6quvJjExkZYtW7J3715eeOEFlixZQvPmzRk5cuRpz3tmZiY33ngjzZo1o3379mzevPlknyNGjKBbt27UqVNHEktCVACFc/6PY5MeY+SUP2kQ5c9D3eq6TlhzCT+6kmXm9vy09owkf0A1dJ7seiaEEEIIcTZFGck4HE5PhyHKWOUuZv3bC5C2xb19VmsKfd4+5+lt27bRsmXLc56PjIxk7ty5WCwWdu/ezW233cbatWvP2T4zM5OpU6eyY8cOlFJkZ2cD8MYbb/D7779To0aNk8dO1bBhQxYvXozJZGLevHm8+OKLTJkyBYCNGzeyYcMGvL29adCgAY8++iixsbHnjGHGjBk0bdoUgIKCApo0acIbb7zBunXr+O6771i1ahVaa9q1a0fXrl3x8vLizTffZNmyZYSHh5OZmQnA448/zpNPPslVV13FoUOH6N27N9u3b+f9999n1KhRdOrUifz8fCwWC19++SW9e/fmpZdewuFwUFhYeM74zhfj9u3beeedd1i2bBlms5mHHnqIcePG0atXL1577TXWrVtHUFAQ3bt3p0WLFn/rd8iQIbzwwgsMGDAAq9WK0+nk7bff5v3332fmTNeOSAsXLjzZ/rXXXqNFixZMmzaNBQsWMGzYMDZu3AjAjh07+PPPP8nLy6NBgwY8+OCDmM3m896XEKJs2HYtwG/VSPyAKXo8qaE3U5RRC6+o2rBnLspZgmp6PUvXHudwdhE1gn1cFwZEQ+Y+T4YuhBBCCFEh2VZ+jc+cpykOrEVB/esxNB2IX2xzlEHmn1xpKneiqAJ4+OGHWbp0KV5eXqxZswabzcYjjzzCxo0bMRqN7Nq167zXBwYGYrFYuOeee7juuutOzlzp1KkTw4cP55ZbbmHgwIF/uy4nJ4c777yT3bt3o5TCZrOdPNezZ0+CgoIAaNy4MQcPHjxromjIkCH4+PhQu3ZtPvnkEwCMRiODBg0CYOnSpQwYMAA/Pz8ABg4cyJIlS1BKcdNNNxEeHg5AaGgoAPPmzSMpKelk/7m5ueTl5dGpUyeeeuophgwZwsCBA4mJiaFNmzaMGDECm83GjTfeSPPmzc/6/PxTjPPnz2fdunW0adMGgKKiIiIjI1m1ahXdunUjIiICgFtvvfVvX4u8vDwOHz7MgAEDALBYLGeN4VRLly49mZDr0aMHGRkZ5OTkAHDdddfh7e2Nt7c3kZGRpKenExMT8499CiHczF4Cvz1Lvm8s/bOe4L/VFtL+wGT0F1PIbnw7PvmHMPuG06lrH/Saxfy8NoXHr64HgCEwGufB5R6+ASGEEEKIikVnHcA47xWsUS2wmwMIWPcZau0nFAfFUdLgBiyt78AcWc/TYQo3qdyJovPM/CkrCQkJJxMFAKNGjeL48eO0bt0agJEjRxIVFcWmTZtwOp0nkw8mkwmn868pelar9eTx1atXM3/+fCZOnMinn37KggULGD16NKtWrWLWrFk0b9785KyVE1555RW6d+/O1KlTOXDgAN26dTt5ztvb++S/jUYjdrv9rPcybty4k3GfYLFYMBqNgKu+x9lorVFK/e240+lkxYoV+Pj4nHb8hRde4LrrrmP27Nm0b9+eefPm0aVLFxYvXsysWbMYOnQozz777FnrBl1IjHfeeSdvvfXWaW2mTZt21hjPvI+LdbZrToxzoc+7EKJsWZd9hiVrD0/xAjo0nsQHhpOTcQAWv0/QtrEo7cDefCix4QF0qhvG5HXJPNqjLgaDAv9qGKxZYLOC+Z+Tx0IIIYQQVzytsU19FJNSeN/2A5bgmhRlH8W2dTqmHdPxX/MxeuM38NQ2sAR5OlrhBjJH7CL16NEDq9XK559/fvLYqcumcnJyiI6OxmAwMHbs2JP1cmrVqkVSUhLFxcXk5OQwf/58APLz88nJyaFv3758+OGHJxNCe/fupV27drzxxhuEh4eTnJx8Whw5OTnUqFED4GStI3fr0qUL06ZNo7CwkIKCAqZOnUrnzp3p2bMnkyZNIiMjA+Dk0rNrrrmGTz/99OT1p95L06ZNef7552ndujU7duzg4MGDREZGcu+993L33Xezfv36S4qxZ8+e/Pzzzxw9evRkLAcPHqRdu3YsXLiQjIwMbDYbkydP/tu1gYGBxMTEMG3aNACKi4spLCwkICCAvLy8cz4n48aNA1xL0sLDwwkMDLyk2IUQ7nfs8AH0wreZ72hBSmQXvrurLb7eJoKr1yXo1s/JuWcl2a0exdT5SQBuaR1LSlYRK/a5vp8RUM31d36ah+5ACCGEEKJisa35Dq9Dizne4WVeXZjL6EV72ZJlwtx2BL73zMR+5xwMJXk4N070dKjCTSr3jCIPUEoxbdo0nnzySd59910iIiLw8/PjnXfeAeChhx5i0KBBTJ48me7du59cthUbG8stt9xCs2bNqFev3sl6OXl5edxwww1YrVa01owcORKAZ599lt27d6O1pmfPniQmJrJo0aKTcTz33HPceeedfPDBB/To0aNM7rVly5YMHz6ctm3bAnDPPfecjPull16ia9euGI1GWrRowZgxY/j44495+OGHadasGXa7nS5dujB69Gg+/PBD/vzzT4xGI40bN6ZPnz5MnDiR9957D7PZjL+//3m3qz+fxo0b85///IdrrrkGp9OJ2Wxm1KhRtG/fntdff50OHToQHR1Ny5Ytz7pD2tixY7n//vt59dVXMZvNTJ48mWbNmmEymUhMTGT48OGn1TZ6/fXXueuuu2jWrBm+vr58//33lxS3EMK9tNZM23gY8/SHuUbbONbxNX7u3RGj4a+ZhUopgmvUhxr/OXmsd0I1Ai0mflqTTKe64a4aRQB5aRBSu5zvQgghhBCiYtHZyRjnvkJh9Y4MXteQQ1mHsDtdqyxMBkWj6EBa1Azm6ZAm+K/5GtrdB/+wskNUfOpSlt+Ul9atW+szC0Fv376dRo0aeSgiIS6PvH6FcL9jecX865ct5O5YyCTvf5Oe+ChRA/7zzxeWenX6ViauSWbNi1cTlLsTRneCm8dAwoCyC1oIIYQQoqLTmuLvB2JOWcEjwaOYl+bL+HvaERfux4ZD2aw/lMWGQ9lsSsnmev0nbxtHw/BZUPsqT0cuLoBSap3WuvXZzsnSMyGEEJWW1eZg+HerWb47jU9DJmDzr0HUdS9eVB+3tI6lxO5k+qbDp88oEkIIIYSowmzrfsT7wAJ+Drmb2SkW/ndzIq1rhxLm783VjaN47tqGTLivPe/fnMg0Wzts5kDsq772dNjCDSRRJIQQotL6vxlJbEvNZVKrJCIL96B7vwlevhfVR5MaQTSODuSnNcngG4o2mCHvSBlFLIQQQghR8encVAxzX+KAXyLPJ7fn+Wsb0j+x+lnbJsYGY8WbndHXY9w5A/LSyzla4W6SKBJCCFEp/bI+hQmrD/Fkh2Aabf+E4ppd8Gpy4yX1dWubWLal5rL7aD7avxo6VxJFQgghhKiitMb265Nom5XhmcMY3LY2D3Stc87m1YMshPt7McN8Lcppx7FO6rhWdpUyUVSR6yoJcS7yuhXCfXam5fHS1K10qB3IPRnvY7AXYu73/iUXT2wbFwrAjrQ8CKiGlk/ChBBCCFFVpa7Ha88c/lcykFr1mvHvGxJQ5/kdSylFYkww848FYq/VBdaNAeffNxISlUelSxRZLBYyMjLkTbeoVLTWZGRkYLFYPB2KEJVefrGdB8etw9/LwCi/r/E7tABrz7cwRDa45D7jwl07VO4/XuCqUyRLz4QQQghRReWv+I5C7c3q8AGMGtISk/Gf0waJscHsPZaPreUIjHmHYdfv5RCpKCsmTwdwsWJiYkhJSeHYsWOeDkWIi2KxWIiJifF0GEJUalpr/vXLFg4cz2d+o9mE7p1G/lUv4t/pvsvq12I2UiPYh33H8jEERqP3L3RPwEIIIYQQlUlJAaakKcx0tuPdIZ3w976wlEGzmCC0hg2+HWjnXw29+mtMDfuWcbCirFS6RJHZbCYuLs7TYQghhPCAsSsPMmNTKuPiFxC3bxz5rR7Ev+dzbuk7LtzPNaOoRjVUcS6UFICXn1v6FkIIIYSoDPLW/UyAs5DDcTdxU4T/BV+XGBMMwKbDBbRrORzj4ncgcx+Enru2kai4Kt3SMyGEEFXT2gOZ/HtmEv+OWkynw99QkHA7/v3euuS6RGeKC/dj3/ECdEA114G8NLf0K4QQQghRWWQv+5q9zmj69h1wUdeF+HlRM9SXTcnZGFvfCcqAY823ZRSlKGuSKBJCCFHh7UzLY8SYNdzlt5yhOaMprNsPv0Gfui1JBK5EUZ7VTq4pzHVAEkVCCCGEqELyUpKIzd/MxvD+1KsWeNHXJ8YGszklGwKr46jfB7VhHNis7g9UlDlJFAkhhKjQUrIKGfbtKjobt/Iv2yiKYrvgc+s3YDC6dZw6Ea5lZodKglwHpKC1EEIIIaqQnbNHYdNGEvref0nXJ8YEkZpj5WieFVO7ezFYM9FJ09wbpCgXkigSQghRYWXkFzPsm9V4lWTzP/Pn2ILr4j1kPMrs/h0E64S71uHvtpbWJZIZRUIIIYSoIvILC6mT+iubfDvQsG7dS+ojMTYYgM3JORDXFUdIHZwbxrsxSlFeJFEkhBCiQsovtnPXmDUczi5kcswkvEuyMdz0NQZLQJmMVyPEB7NRsTPbiDZZZEaREEIIIaqMZbPGEkouoZ3vueQ+EqoHYjQoNqVkg1Ko+tdgSFkN9hL3BSrKhVsSRUqpa5VSO5VSe5RSL5ynXRullEMpdZM7xhVCCHFlKrY7uH/sWral5jKp/QGqpfxOcZd/YaqRWGZjGg2KWmF+7D9eiPavhlNmFAkhhBCiCigqceC3bQIZhnDqtL/+kvvx9TJRL9KfTSk5ABhqX4WyF0HqeneFKsrJZSeKlFJGYBTQB2gM3KaUanyOdu8Av1/umEIIIa5cDqfmqZ82sWxPBp9cG0KTTW9SXKM9li5PlPnYdcL92H+8AAKqQa7MKBJCCCHElW/64tV01BspShh82TUgm8cGsyk5G6011OoEgN6/xB1hinLkjhlFbYE9Wut9WusSYCJww1naPQpMAY66YUwhhBBXIK01r/+6jVlbjvByn/r03PEqKIV50JduL159NnERfhzMcM0oIl9mFAkhhBDiyma1OchZ/h0oiOlx32X3lxgbTE6RjYMZheAbiiOiMc79S90QqShP7kgU1QCST3mcUnrsJKVUDWAAMNoN4wkhhLhCfTR/N2NXHuT+rnW4wzkd79TV2Hu/gyG0VrmMXyfcjxKHkwLvCJQsPRNCCCHEFW7ymoNc55hPZlRHCLn837eaxbh2j92Ukg2Aqn0VhpRV4LBddt+i/LgjUaTOckyf8fhD4HmtteMfO1PqPqXUWqXU2mPHjrkhPCGEEJXB2BUH+HDebm5uFcMzTYrwXvwW1vrX493y9nKLIa5057NjhKBsBVCcV25jCyGEEEKUJ4dTs27hNGLUcUKvGuGWPutHBWAxG9iUXFqnKO5EnaINbulflA93JIpSgNhTHscAqWe0aQ1MVEodAG4CPlNK3Xi2zrTWX2qtW2utW0dERLghPCGEEBXdjE2pvPrrNq5uFMV/r6uN/uU+HL7heN/4EaizfR5RNuLC/QBIsbs+DUNmFQkhhBDiCrVgx1GuLppDsTkIQ6P+bunTbDSQUD2IzaUzik7WKTogy88qE3ckitYA9ZRScUopL2Aw8OupDbTWcVrr2lrr2sDPwENa62luGFsIIUQlt2T3MZ6atJE2tUL5dHBT7D/dhTl7H84bP0f5hpZrLOH+XgRYTOyzBrgO5ElBayGEEEJcmeYsWc61xjUYWgwBk7fb+k2MCWZrag52hxP8wnGEN8SxTwpaVyaXnSjSWtuBR3DtZrYdmKS13qaUekAp9cDl9i+EEOLKtSk5m/vHriM+wp+vhrXCOetZfA7Op6jXu3jV61Hu8SilqBPuR1Kea2aRzCgSQgghxJVo77F8Wid/D8qEufPjbu07MTYIq83JrvR814HanUrrFNndOo4oO+6YUYTWerbWur7WOl5r/WbpsdFa678Vr9ZaD9da/+yOcYUQQlQeJXbnaY/XHcxi2LerCfP34ocRbTGt+hTfzd9T0OYRfDve46EoXcvPNmZbXA9kRpEQQgghrkC/LlrFIONiCpvcDgHV3Np3Ykww8FdBa2PtqzDYCuDIJreOI8qOWxJFQgghxPnYFo/E/mUPjq+eRInNzp87jzLk65WE+JoZf097/PfNxG/R/1FY73r8+vzbo7HGhfuzOwecZl+ZUSSEEEKIK05BsZ2oLV9gUIrAns+4vf9aYb4E+ZjZlJztOlD7KgCc+2X5WWUhiSIhhBBly+nAsOozfI5tJnz2veR+2J5JP3xOnTA/fn6wI5HZG7HMeAhrtdb43PIlGDz7oykuwg9QlPhE4syVGUVCCCGEuLLMWbGRQSzgeN2BEBz7zxdcJKUUzWKC2JTi2vkM/0gcofVwSkHrSkMSRUIIIcrWweUYC45iu2E0v9V7g9y8PD43f8Bkw/OYNv6IcdIQ7P7RmO/4CWX28XS01Cnd+SzfHIGWRJEQQgghriBaa5zLP8akHET1fbHMxmkeG8yu9DyKShyuA7WvwpC8QuoUVRKSKBJCCFGm7Fum4DT58PmR+jy4pS7v1PmB9B4fYrIXEDzvKUDDkJ8x+od7OlTAVaMIIMMQisqXpWdCCCGEuHKs276b64rncKB6X1RoXJmNkxgTjMOp2ZbqmlVkjLsKQ0k+pG0uszGF+5g8HYAQQogrmMOOYfuvJAV0ZOSiw9zaOpY3BzTBZGyHtd3tHN8wFf+YBCyR9Twd6Ul+3iaiAr054gimfn46aA1KeTosIYQQQojLduyPD7CoEmL6v1ym4zSLDQJgY3I2rWuH/lWn6MBSDDValunY4vLJjCIhhBBl58ASDEUZfJLelKHta/H2oKaYjK4fPRZvb8LbD8YS09TDQf5dXLgf+0sCUPYisOZ4OhwhhBBCiMuWlp7KVVnTSArugXd0ozIdKzLAQvUgC38kpWO1OSCgGo6QeJz7pKB1ZSCJIiGEEGUmfcV48rWFkrievNa/MaqSzMypE+HPzgJ/1wPZ+UwIIYQQV4C9v/6PAFVEeBnWJjrV/V3jWb0/k9u/WsmxvGJ0rU4YUlaC01Eu44tLJ4kiIYQQZSI1IxfvPbNZbmrLyCHtT84kqgzqhPuxzxrgepAnBa2FEEIIUbkVF2TR9PAE1vl0oFr91uUy5p0da/PZkJYkHcnlxlHLSA9tjaE4F9K2lMv44tJVnt/ahRBCVBpFJQ6+GPMtweTTpNdwgn29PB3SRYkL9yOdENcDmVEkhBBCiEpu14wPCaQAOj9bruP2bRrNpPs7YHc6uWOeGXDVKRIVmySKhBBCuJXWmuembKZJ9nxsJn+qt+7n6ZAuWly4H0d1sOuBzCgSQgghRGVmLyF65w+sMSTSon2Pch++WUww0x++ioDImhxwRrF/3R9orU+e11qTZ7VxPL/4tOPCcyRRJIQQwq0+X7SXOZsO0d9rPYZG/cDk7emQLlpsqC82gw9Woz9aEkVCCCGEqMT2Lx5PuM4kK/FeDAbP1IusFmThp/s6kBLUirDjaxn+7SrWHcwk+Wgmyct/wvHTnQSObkXGoi9wOpweiVH8xeTpAIQQQlw5luw+xnu/7+T5+BQsh/Oh6SBPh3RJzEYDNUN9ySoOJSo3jcpRglsIIYQQ4gxao1Z9xn4dTcfet3o0FB8vIx179McwfTb1Dv7E/q/30Ni8Dh9nAXZLGCX+NQhf+Dx5yUuxDPwEs1+IR+OtymRGkRBCCLew2hy8OHULceF+3BW0Aad3MNTp5umwLllcuB9pzmCZUSSEEEKISitz51JqF+8kqebt+Fs8XzPSENcZgJcN39LXvI6Zttbc43yRD5vPoHDY72R0eBH/fbPRX3TBenCth6OtuiRRJIQQwi0+XbCH5Mwi3uxfD/Oe33A2vA5Mnv+F5FLFhftxyBaIzpVEkRBCCCEqp7Q/RpKjfWnS5wFPh+ISHEtu74842Osrjt2/hfr3/YCO78GnCw9w4+crWRE9lJxbp4PDjtf312Jd8glI3aJyJ4kiIYQQl23P0Xy+WLyXAS1q0MGxAUNJPqZKuuzshLgIP5KdYRjy0yjOPebpcIQQQgghLkpxxkHqZ/7JssB+1Koe6elwTvJpO4wa7W+iVlQYibHBfHNnG8bd0w5/bxOPjN/AiAUGtl4/i+JaPbDMf5niH27CmbHf02FXKZIoEkIIcVm01rw8bQs+ZiMv9m2EY8sUnJZQiOvi6dAuS1y4H9MdnTBoO9blX3g6HCGEEEKIi7J31kjQEN7zEU+Hchqz0YDJeHoqolPdcGY91pl3BjUlOauIgd9t5wWvFzja8XXMycvgs3ZY57wGxXkeirpqkUSREEKIyzJt42FW7svkuWsbEuHtQO2eg27UH4xmT4d2WeIj/NmtY9gX0gm/jd9isxZ4OiQhhBBCiAuii/OJ3TeJpeYOtEls5ulwLojRoLi1TU3+fKYbj/aoy5xt6XRe3JDPm/xEfnw/LCs/xP5RS0rW/ABO2RmtLEmiqKqzF2P/9Sk4vtvTkQghKqGcQhv/mbmd5rHBDG4eQf5vr2GwFWJsOtDToV22yABvfL2MzAu5FZM1g8LVP3o6JCGEEEKIC3JgwTcEUIC11X0oVbn2b/X3NvH0NQ3485lu9G0azfur8mm7/WZG1/sKq18MXrMepWR0F0q2zQKb1dPhXpEkUVTFOdf/iGn9N7B5kqdDEUJUQu/+voOswhLean4M52cd8N/wJdaEW6F2Z0+HdtmUUsSF+7HM1pCiiEQsaz/DYbd7OiwhhBBCiPNzOrGs/4qtxNOlx3WejuaSVQ/2YeStzZn7ZFeuT6zO/5L8STz8DGOiX8GZdwyvybfjfCcO69jBFK/+HvKPejrkK4Ykiqoyhw29dCQAziObPByMEKKy2XAoiz9Wb2ZK5Lc0mnsnKEXB4ClYbv4SDEZPh+cWceF+7M8opKT9Y3jnHiB/83RPhySEEEIIcV7HNs4m2pbMnjpD8fWu3KUAAOpG+vPuTYksfq47d3WM493DTWiW9Q4fRP6Xo3UGYkrfhPfsx+D9epR83g37xp9kp7TLJImiKsy5eTLG3GR0YAxIokgIcRGK7Q4WTXifBd7PkJi3mLz2T2N6eAV+Da/2dGhu1bh6IIcyCzlW/WqKA2vhtfITtKyJF0IIIUQFlrPwY9J1MK363OXpUNwqOsiHl/s1ZvkLPXj46gS+O1qXDlv68nSNcSTf+gfWq/4FdiumafdRMuZGdKbslHapJFFUVTkdOBf/D3tEY1T7BzDkp8lUPSHEBckuLOE/n3/LE0Wfkh+SgO2+JQRc+yoGLx9Ph+Z2t7SOxdtk4Ktlh7C2fhCfoxvI373E02EJIYQQQpyV9fBW6uauYnnoQGIjgj0dTpkI9vXi8avrseS57jzQNZ7fk9LpPjaDN/KuI/OO+diueQdT6hr0Z+2xLR4JDikdcLEkUeQBujCLonlvYV/zXbmOu+ZAJgeOu3btcSb9iilrD8Yuz0B0c1eDI5vLNR4hRMViT92M/eCq87Y5lFHIwM+X0+TYLGxGH6IfnI53tYblFGH5C/f35tY2sfyyIYW8Bjdjt4Siln/i6bCEEEIIIc4qeeY7FGkvYq5+0NOhlLlgXy+ev7Yhi5/tzu3tajJ5bTJd/7eYqebrMDyyGlvtbpgXvI5tdFecyes8HW6lIomiMlZU4mBuUjoAuiCDojmv4xzZBJ+lb2Oc+zI4bOUSx9QNKdzyxQpu+WIF6TlFOBe9hz0kHpVwI1Rr6mqUJsvPhKiyCjNRYwdgmDD4nLtHbEzOZuDny8jLy2eg91oMjW8AL79yDrT83du5Dk4N3689SkHiCPwPziU/ZaunwxJCCCGEOI0z8yBxR2Yx26s3rRvX83Q45SYy0MIbNzRhwdPdaF07hBd+2cyfaV543/ET9pvHogqPo769Gg4s9XSolYYkisrYZwv38MIP89ky5gn0yCZYVn6IrXZ3HN1eQpXkQ8raMo9h+sbDPD1pEy1rhpBfbOerb0ZjOrYNQ+enXAVnfYJxBtfGmSqJIiGqqpKZz2AsOo7BmolOmva383O2pjH4yxX4epmY0TsPsy0PY/PB5R+oB8SG+tKvWTTjVx2iuOUInEYLzmUyq0gIIYQQFcvR39/DqaG47cMopTwdTrmLDfXly6GtaVgtkEfGrScpNRdTwvWYHl2N9gnDseRDT4dYaUiiqIw9FrKCZZYnSNg/hkMRXXHcvwzLkB8xtrsPrQywd0GZjv/rplSe/Gkj7eLC+PHudnxwczP6Zv9IhikK1eyWvxpWayZLz4SoohxJM/FKmoLtqmdxhNTBsfqb085/u3Q/D45bR8NqgfzyUEfC903D4V8N4rp4KOLy90DXeApKHEzaVkh+41vx3/kLhceTPR2WEEIIIQQAjtw0wnZNZKruwrUdW3k6HI/x8zbx7fA2BFjM3P39GtJzrWAJQrUegXHvXDi+x9MhVgqSKCpj5sj6OBv247Gw0fQ6NIxleZGuEz7BOKu3wrlnfpmNPXNzKk9M3ECb2qF8M7w1Pl5GevvtoqVhDyOL+jJ2TerJtobqiRiy94M1p8ziEUJUQIWZMPNJbBEJmLs9h2o9AtPh1ZC2Fa017/2+gzdmJtG7cTUm3teecJWPce88aHqTa0ZiFdEoOpDuDSL4btkBbG0eQmk7Jcs/93RYQgghhBAA5C/8CIPTzo46dxPq5+XpcDyqWpCFb4a3JqfIxt3fr6GwxI5qczfaYMa5arSnw6sUJFFU1mp1xHfwt7x57yDqRQZw/9i1rN6fCYCxbk/UkQ2uN2puNnvLER6fuJHWtUL5dngbfL1MANgWvo/DL4pj8TfzxowkVu7LcF0Qnej6O22L22MRQlRcJbOex2DNxDTwczB5YWgxBG20YFv1FS9N28qoP/dyW9uajBrSEovZiN46BeW0Y0y8zdOhl7sHusaTUVDCrMMW8uP7EbDle4pyjns6LCGEEEJUcfb8DHw2jWGmswO9OnfwdDgVQkL1ID69vQVJqbk8NmEjDr9IdMJA2DheJkdcAEkUlZMgHzM/3N2WGsE+jBizhs0p2RDfA6WdsH+xW8eauiGFRydsoEVsMN/d1QY/b1eSSB9ahdehJegOD/Pe7W2pGebLw+PWczi76K9E0RGpUyREVeHYPhuvbZNwdHwSdeJ7gG8otkY34tj4E9NX7eShbvH8d0ATjAbXOnfHxok4IhKgWhMPRu4ZbeNCaVkzmC8X78Pe6UmMtnyKl0qtIiGEEEJ4VtGyz/FyFDLN/xY61AnzdDgVRo+GUbzWP4F529N5c9Z2DB0exGArQG/40dOhVXiSKCpH4f7e/HhPO4J9zQz7djU7TfXRXgFoN9UpyrXaePKnjTz50yZa1QxhzIi2J5NE1vxsrL+9gsMSgqnN3QRazHw1rDUldif3/bCWIq8wnP5ROCVRJETVUJQFM5/AHt4IU7fnTh4uLLHz32MdsegiRjfbw3PXNvyrGGLGXkxH1qESb/VQ0J6llOLBbnVJySpiUXYkeXX6ErDxG6y5GZ4OTQghhBBVVElhLt7rvmSuoxXt2nepkkWsz+fOjrW5q1Ntvl22nz+yonHEtMO56ktwOjwdWoXmlkSRUupapdROpdQepdQLZzk/RCm1ufTPcqVUojvGrYyig3wYd087vIwGnv1lGzquC3rPAtD6svpdcyCTPh8uYfrGwzzesx7j722Hv7cJrTWZe9agvuyGJW0Nzp7/B97+AMRH+PPh4OZsS81l/OpDUC0RZOezMld8YCXkpv5zQyHKUO60ZzEUHuf41SNJzrWTnFnI3mP53PH1Kn44FEZGQEM6ZE4/7XuTc9NENApDs5s9GLln9WwYSb1If0Yv2oej87MYbXkULx3l6bCEEEIIUUUVrvgar5IcRusbualVjKfDqZBe6tuIOuF+fDB3F6rdAxizD8Cu3z0dVoV22YkipZQRGAX0ARoDtymlGp/RbD/QVWvdDPg38OXljluZ1Qrz46ZWMWxLzcUR1x1DbjJk7rukvmwOJ+//vpNbv1iB0aCY/EBHnuxVH5PRgLXEzvEFowge3xeDvZCcW6ZibnPnadf3bBRFg6gA5m9Px1C9OSpjF5QUuuM2qyynU/P7tjQGfraM279aiS59o20/vo+iH27Ge0xv9NxXPRylqMomT/iWwJ2T+cTWn/ZjMun87p90fvdPev5vEVsP5/LZkFaEdn0Q0/EkSF7lukhr9KZJOGp3gcDqnr0BDzIYFPd3jWdHWh7rrTXIi7sW/41fYc1zf605IYQQQojzKbYW4Lf2M1bSlKhGnQj39/Z0SBWSyWjgsZ712JGWxx/O1jgDquNY8Zmnw6rQTG7ooy2wR2u9D0ApNRG4AUg60UBrvfyU9iuBKp/qTKgehMOp2RvYloYAexdAWPxF9XEsr5jh361mW2ou/ROjeb53QwJ9zRQU2ynKzcQ86zEiDvxGXmx31MDRBIdUO2s/PRpF8tXifRS2TcBXO+FoEsS0vvybrGJsDifTN6YyetFe9hzNJ9BiItdqZ83uwzTd/x3eqz/BWxlx+Eejju1CJoUKT1ix4xAddrxJqldNavR5lfeMp++K0aRGEI2iA6HkZpx/vIxz1deYaraH5FUYcw5A9+c9E3gFcn1idT74YyevzdjG6B6PkLB/DvnLPsNy7csX3Ifd4cTu1BgNCrNRVoELIYQQ4uJZV48lqOgYH5Xcx0Nta3o6nAqtf2J1Pl6wm5ELDnBNm3swLngD0rdBVIKnQ6uQ3JEoqgEkn/I4BWh3nvZ3A7+5YdxKrUmNQAA25IdQP7g2es98jG3vvag+Ji/fQeP0X3mhaSjxobth9Z8UOJ2g7YRtH4e54AjHO7xMYI8n8TKf+0vdo2Ekny/cy8qiGHoAHNkoiaKLUFBsZ9LaZL5avI/UHCsNqwXw0eDm9GwYyctvv0PcT0/i40inqMEAvPq8iXHZB+jNk1xLemQNsShH2YUl7J70Ch3Ucay3zmRQ3fMkp7380M0GY9zwPRS8jWPjRAwmH1Sj/uUXcAXlZTLw6ZCW3D92HTf/WsBvkd2oseFLSjo/gpdf8N/a2xxO0nMKseVnQF4aKi8NU0E6psKj4OVHUNeH8LHIJ4BCCCGEuAgOOz5rPmWHqSEpllZ0ig/3dEQVmtGgeLxnPR6fuJF5Pn3oZXoPvXI0hhtkY5KzcUei6GzvdM9acEcp1R1Xouiqc3am1H3AfQA1a165WdHYEF8CvE1sS81BxfdAbf4JHDYwmi+4D/O2ybxn/hJ24/pzipKAWI7eNI2IRldhMJw/GdEiNphgXzMzDxrpZglGHdkss10uwOHsIn5YfoAJqw+Ra7XTtnYo/+1bi7ZqG3rfB5gWLeZDdrHTFot90M9EJ/ZyXRhaB1Wc6yom7Bvq2ZsQVYbWmk8nTud5xwyO1buZiLqd//EaY9u7Ye1XONd8i0qairPBdRi9A8oh2oqvZc0QZjxyFQ/8uI6HU65mpvdCspd+hlfvF09rt3LPUQ7+NpJ+Gd/ih/WsfeUdXkL+LWPw9w8sj9CFEEIIcQWw7l6AJS+ZkSVPMLhXrX98zyegX7PqfLJgD+8vPUbPJjdj2DwJrn4d/GSnuDO5I1GUAsSe8jgG+FulXqVUM+BroI/W+pxbxGitv6S0hlHr1q0vr8JzBWYwKBpVD2Rbai6qew9Y9y2krIFaHS/o+sISO6asPRSbLOy7bRnaYASDAaPRhNFoIigwkKhAnwvqy2Q00K1+BAt3HUfHNkOnbsR4OTd3BdNas/5QFt8uPcCcbWkA3FYf7vZZTHTGKrynbUJpJ06jheLqbTnSZDj95sVwf1pNnjlRwj0kzvV35n5JFIly8/PaQ/Q58A42rwAiBr57YRdFNsIe2wHj4ndRThs0H1y2QVYy1YIs/HR/e16dFsC8TS1ot/IzMtrcT3BwKLO3HGHawpWMOP4+txq3sc7cihmFCRR5R9KxRQJNG9THEBiN77aJRCx5icKxN5J7y0QCwyLPOZ7DqTEoZDcTIYQQQuDcOhWrwZfFtODfUsT6ghgNisd61uOxCRtY2noQXR0/4Fw3BkOXpz0dWoXjjkTRGqCeUioOOAwMBm4/tYFSqibwCzBUa73LDWNeERKqBzJxdTKOWldhUEbYMx91gYmi1fsziSWN4oCaxMXFYTIoTJdR56JHoyimbUzluH9DIpPHXPTspqpg+Z7jvPv7TjYmZxNoMfFIuxCG2iYTmjQWpR0UR7WgsN0TGOO74V27HT5mCz5A15S1TFh9iEd71sXbZITQ0kRR1n6IaeXRexJVw8GMArbN+ISbDbux9Rl1UQlKU9t7YMoKnL4RGOp0L8MoKydvk5G3BzVlmuVpAtbeweefvcoPhgG0y5/Ph15j8DZr9rd7i7qd76FXai5vzEzip2V5dDlWyOv9vQnv/hBH/cKJ+OMRSsb2JevWyYREx53sX2tNntVG4b5VeG2ZgMPLH0ftrhhrdyIgIACLWdL6QgghRJXjsOG1ezZ/OFvSuWEMkYEWT0dUaVzXNJpP5u/mP2ugU60uqNVfQdt7wBLk6dAqlMtOFGmt7UqpR4DfASPwrdZ6m1LqgdLzo4FXgTDgs9JPQu1a6ypfBCehehBFtgPszzcRV6MV7FmAsecrF3Tt8r0Z3GI4iiWqOV5ueKPQtV4ERoNiTXEs/RwlcGwHVGt62f1eCfYey+et2duZt/0oNYJ9+G+/OvQrnI7f2k8x2AqwJgzG++qXsQTXOOv1d3asxbzt6czecoQBLWIgpLbrxCXudCfExbA7nLw+4U8+VOMpiO6AX8shF9dBo+txBNWEpjeD0R2fLVx5lFIM6NeftEOdue3odJp4HaCz11LyI1uRds3HxMQ1xmw00KluOLMevYqxKw/ywR+7uPbDJdzZsRb9ml2DvmE8ETPvwvBjXzJu+gm/mASyc7LQm38meNsPVMvYhsPki3LaMGz+AqfRm8Ko1qTHdIb4HoTXbYNRimILIYQQVULxnsV4F2czvaQNt7aJ/ecLxEknZhU9OmEDKxPvpVPyXdh+GIT5zmng7e/p8CoMt/zWr7WeDcw+49joU/59D3CPO8a6kiRUd9Wj2JaaS926PdEL34bCzAv6tH/ZrqM8o45iDq/jlliCfM20rhXC9PRw+gEc2VzlE0VZBSV8NH83P648iMVs5JUe1bjZdx2+Kx7AVJBOUZ3emHu9hk/0+Svld4oPp06EH98vP+hKFJl9cPpXQ2Xuk1pQosx9+ucerk//DH9TMcaBH198AXWTF4ZH16EMkiT6J/69X8Z/bG862VeR1uZ56Pg4scG+py0VMxkN3NUpjuuaRfP27B18vXQ/Xy3ZT7i/FwOr/4/H0/5F4IT+5NbpS8TeGRhteRSFNiK9y1uYmt+KE4Vj/3JMBxbil7KEqNVvw+q3ya17I+YbPsInINhzT4AQQgghyoVj2zSsysIWS2s+rR/h6XAqneuaRvPJgt28tlHz241fYZ56NyXjBuM1dDKYL6x8y5VOPn70oLqR/niZDGxLzYX4Hig07F/0j9dlFpSQmXYQL2yo0Lh/bH+hejaKZP7RAJwmX/SRjW7rt7KxOZx8s3Q/3d6bz4aVC/ikxlxWRr7NiBVXEzjvWRwBMZQMm4XPsEmY/iFJBK56VMPa12JjcjabkrNdB0Pi0Jn7y/ZGRJW37mAm6/6cygDjMnSnJyCi/iX1o0xeYJAfF//EP749ab1GsX/ATHx7Pku1EL9z1hOKDLDwwa3NWfvS1Yy8NZGO8eH8lBzCtXkvc9jqTeCOSWz2a8+iq8ZSeNdCono8RFhoGBGhoVRr1Y+wge/heGAZR+/bwvHWTxGw91cMX3cna//6cr5rIYQQQpQrpwPzrlnMd7TgmuZxmGVG8UUzGBSP96zP3mMF/OZsh+P6zzAfWkrJ+CFgL/Z0eBWCfETsQWajgQZRAWxLzYHerXF6B8KeBRgSBpz3uhV7M6hlSHc9CHXPjCKAHg0j+e/sHRzzq0d46uYqWdB61b4M/jttLQMzv2KxeTVBXjnoY4riyEQK2z2BqcE1eNduf9GzMga1iuG933fyw4qD/C82GENYPM49c8voLoSA7MISnhm/mh+8vqMksDZeXZ/1dEhVQmCbwYQaDHiZLuyXtjB/bwa0iGFAixgcTs3G5Cx+2pjI2n3prEvXONPAZ9FCWtcOoVPdcK5rGk1sqGuWkr+3Cf/qNdHRr5IZ15nAWfcT9OO1ZHR9k+BOd8tSNCGEEOIKVLJvKV7WDGba2/Jgy7OXvhD/rE+TajSsFsCH83bT+cFBBFxnxWvWE5T8dBdeg7+v8vV6JVHkYQnVA5mzLc21a1ntLrB3AWh93kTE0j3HaWA+5nrgxhlF8RH+1Az1ZYuzNj3T54LTWWVmERzNs/LW7B1s3biKr7w/oqbpCEX1rqewfm+8G/TCEnB5UzoDLGYGtYph4ppkXuzbkLDQ2hjy06GkELx83XQXQrhorXl+ymZuLpxArPEIzn5TwSxFDsuDr9el/1g1GhStaoXSqpZr+XFOkY2V+zJYvuc4y/Zm8PZvO3h3zg56NY5iRKc42saFopRCKUVYQg/yqy2EX+4nbMEz5CYvw+vGj7D4SWFGIYQQ4kpi3zIVJ94cDO1I0xryc/5SGQyKF/s24p7v13Lth4v53y39aH+NFa8/XqBk8r143fINGKri1AmXqpEFqMASqgeSXWgjNceKoW4PDLkpkLHnvNcs33ucdsE5aIMZAt23FaJSih4NI1mQXQ1lK4TMvW7ru6KyO5x8u3Q/Pd9fhHHLT8yyvEoNnxIcd0zD7/bv8W19O8bLTBKdMKxDLUrsTn5amwwhJ3Y+O+CWvoU41diVB0lOWsUDxhnYmgzGUK+Hp0MSlyDIx0zvhGr83w1NmPdUV5a90IMHu8Wzan8mt365kn6fLGXKuhSK7Q4A/MNq4D18KpltnyFgz3QMX/cEa66H70IIIYQQbuN0YNo5kwWORPq2jD/nEndxYbrUj2Dqwx0J9DEz9JvVvJvVlaKur+K1YyrWb66j4Lf/o3DdTxSnbEbbijwdbrmSRJGHNa7uygJvPZwD8aVv5vYuOGf75MxCDmYU0tDrOM6gWLfvQtSzUSQb7bVcD45scmvfFU16rpVbvljBOzM38qHfd7xv+gxdvQWmB5dgrtvV7ePVjQygU90wflxxEHtwbddB2flMuNm21BzemrmVUf7fon1CMPd9y9MhCTepEezDs70bsuKFnrw1sCkldidPT97EVe/8yeJdrlmmZrOZkD4vkz1gPOasPVjnvunhqIUQQgjhLsX7V+BlPcZsRztuaC7LztwhoXoQMx65ijva1+SrJfsZtLktqe1fwVBwFN/VH+E74z68v+4M/62ObWQLWPKBp0MuF5Io8rBG0QEo5dr5jNA4nIExOA+tOmf75XuPA1DNecSt9YlOaBsXSqq5FnZlQl/BiaL1h7Lo/8lSrGk7WR7xFj0Lf8Pa/gm8R8xEBUaX2bjDOtQmNcfKomOlWy9mSUFr4T4FxXYenbCBB73nEGfbA9e9f0G7KIrKxcfLyG1ta/LHk10Ye3dbwvy8GDFmDdM3HgZcs0NDmvXB2vQOvNd/hSNtm4cjFkIIIYQ7OLZOpRgvcmK6ERsq5SvcxcfLyH9ubMpXw1qTlmulx7IExraeQvGzyRTfu5TC67+isO0TOCIag5efp8MtF1KjyMN8vUzUCfcjKTXHdaBaU0jfes72y/ZkEOnvhSXvINTp6PZ4vE1G2teLZs++mtRL3XRFFrSeuPoQo6Yv4iXv6fQ3LkCX+GO7dSKWRn3KfOyeDSOJDPBm6o5CengHoWTnM+FGr07fhvP4Xh72mYStbh/MCTd6OiRRhpRSdK4XwaQHgrn3+7U8PnEjGfkljLjKtbTVcu3rOHfNwD7jaYz3/HbRRfivSFpTkn0Ex9EdOI/ugOO7MGbswuRlwTRkkttn6QohhBBu43Sits9goaMZfVtf2k624vx6NY4iMaYzz/68mX/PTOLLxXu5v0s8t7cbhKXllfjO+NzkN6IKIKF6EGsOZAJgqNYEvfsPsFn/VnxWa83yvce5Ns6MYXc+hMWXSTw9GkWycWdN4lM3YvyHwtqVSb7Vznu/LKZW0hcsMM/DiIGixOH49HgOc2C1conBZDTQLCaIXel56NA66Mz9Mq1PuMUv61OYsj6ZRRE/ooq9MF//wRXzf1ecX6DFzPcj2vLExI28MTOJ4/nFPNu7AcovHHu3l/H+/RlKNk3Gq/ktng7VI2wOJ4UH12HYMBafXb/iVZx18pzDKwCnbwSm7H1weB3UbOfBSIUQQohzKzm4Eh9rOn/om3i1admtgKjqIgMtjLmrDSv2ZvDR/N28MTOJzxbu5f4udRjSvuZlbVxSmVSNu6zgmtQI5NdNqWQWlBAalYDSDji2A6o3P63dzvQ8jueX0D3SCrv5qyCym3VrEMHHOo7BJQvJ3zYH/yZlP9OmrCWnHWXFmH/xfNEMvE128hrejKXni/hF1Cr3WOpFBbBo1zF0Ym1U6sZyH19cefYdy+flaVt5IXIVtXLXY7/uQwyB1T0dlihHFrORUUNa8vK0rXy2cC8Z+SW8OaAJ3u1GULL+ewxzX4FGfcA7wNOhlosSu5PszGOwdTIB2yYQlLEVp9Gbovi+WGPaYoxqgDmqIaag6hit2eh366D2zJNEkRBCiAqrZMs0wISj/rUE+VTtrdvLmlKKjnXD6Vg3nFX7MvhkwR7enL2dzxft5cle9RnavvzfQ5Y3SRRVAAmlBa23pebQOaqp62D6tr8lipbtyQCgpX+260Bo2SSKIgMsHIjqxYGc+dSaMoSczLcI6nJ/mYxVHnYeSqP4u+u5ybmLPVHXENbvdUJjG3lsl4D6Uf7YHJocSwwhuTPAYQOjfLMXl6bY7uDRCRuoYczmnqLvsMV2wtx6uKfDEh5gNCj+O6AJEQHefDx/N1mFJYy+oxWGfu9j+q43xfPfxrvvlV/c2lqYT9GM5wnfNRmDo5iisASyur2Fb+vB+PmfpWaXTwi6eiv07nkYerxU/gELIYQQ/0RrVNJ0Fjma0beVLDsrT+3qhNGuThjrDmbx6YLdFBbbPR1SuZBVLxVAQvVA4K+C1trkc9Y6Rcv2HKdOuB8hxYfRKAguu0xmm8b16V/4KtnVOxO04Dlyf3kSh91WZuOVlfV7j5D17U0kOHexvt1Iat47gbCajT26lWS9SNcn+imqGspph5xkj8UiKr+3Zu8gKTWbH6ImYnDaMN/4iSw5q8KUUjzVqz7PXduAP5LSWbEvA1Ot9lib3IbX2tE403d4OsQyVZSXhWPsIIK3jyO73kCO3vY7xgeWENLtIbzPliQqZajXC3VkAxRklGO0QgghxIWxJ6/Fz5rGQmNHujWI9HQ4VVKrWiF8d1db7uvi/g2lKiJJFFUAwb5e1Aj2cSWKDEZ0ZCMcaacnimwOJ6v2ZdCxbhiO43vRAdX/VsPInQa0qEGxwZ83/F8ht/n9BG7+Fuv3g7DmZZbZmO62KOkw2T8MoT1b2N3hHVr1GY7F7PkiZPER/igFO0vCXAekoLW4RH9sS+P75fuYVP0notP+xNnjlTKrXSYqlxGd4gjwNvHLetdOaN7XvoHT7Idt1rOgtYejKxuFWWnwfX9809ZyvPenBNz8GZEN2uN1Id/3616NQsO+P8s+UCGEEOIiWTf9Qok24pPQFy+TvIX3JE9OOChP8iqrIBpXD2Rb6c5nKqoJKn3rab/Mb07JpqDEQaf4cMjajy6jZWcn1Azz5f6udZi6KZ3tzZ4n++r/4ZuyDPVNL4rTd5fp2O4wbf0hcifcTQ+1jv1t/4/619xXYf5T+3gZqRnqy4b80k+3syRRJC5eanYRz03eyOjA72mTOYPijk9j6viwp8MSFYTFbKRv02jmbD1CYYkd5R+Jo+u/8D60GNvWaZ4Oz+0Kjx3E+P11eGftIvP674jocAdm40X8ilO9OU6fUJy755ZdkEIIIcQlcmyfyXJnE/q0bezpUEQVIYmiCiKheiD7jxdQUGxHVWuCoSgT8tJOnl+6OwOloEN8GCprPyq07Ke8PdStLjWCfXh1+jb8Oowg75afMRYdx/TjDeCouGszv12yl+JfHqW/cQWHWz9PzWsfx2CoGEmiE+pFBrD2uBfaZJEZReKi2R1Onpiwjlf15/QumUtxp2fw7vWKLDkTpxnYsgYFJQ7+2JYOgFe7eykJT8Aw7zVwOj0cnfsUpO7A9H0fTAVp5Nz0E2Etrv9bG5vDyaS1yYwYs4ak1Ny/d2IwQp1usHfBFfXcCCGEuAIU5xNUeIhd3gm0rBns6WhEFSGJogoioXoQWsOOtFyIauI6mL7t5Plle4/TpHoQwQYrhsLjGMLKPlHk42Xk1f6N2Zmex/fLDxDYqDu2vh9izDsM+xeW+fiX4vetR+D3F7nVtJD0Fo8R1ecFjBUsSQRQL8qffRlFOINq4ZREkbhIH8/bwc2H32GgWoj1quckSSTOqk3tUGoE+/DLBtfyM4wmjJ0exZhzEJJXejY4N7Ed3oT32Osw2IsouG0aIY26n3beanPww4oDdHtvIc/9vJklu48x5OuVbD/y92SRoV4vDAVHz1ojUAghhPCU/FTXe8LwOs0rzAoJceWTRFEFcVpB66jSKYXpWwDIKihhw6EsOtYN+2uZUkjZLj074ZrGUXRrEMGH83ZzNNeKT0JfnF6B2Db+VC7jX4ycQhu/TP2JEaY5HG8ygpC+r2O6mKUH5ah+lD92p6bQP1ZmFImLsnxXOrWWPsfNpsVYr3oey9WyS5M4O4NBMaBFDZbuPsbRXCsAxoTrcZp9sa0f7+Ho3EBr1NT70AYT1qGzCKzT5uSpgmI7Xy7ey1Xv/Mmr07dRLcjCd8PbMPfJrnibjAz5epXrg5lTxfdw/b1nXjnehBBCCHF++5PWAxDfuKWHIxFVScV8F10FRQdZCPE1s+1wLviE4AyMwZm2lYz8YoZ8vQqFon+z6n8lFcph6Rm4inW93j+BEruT/87eDiZvnI2ux7hzFpQUlksMF+rN2Ul0KlmG3WjBv+8bF1bA1ENO7Hx2zFwDlX3gii0uK9xLa03a5KcZZFxCXsfnsVz9oqdDEhXcgJY1cGqYvjHVdcDLD0fD6zFunwa2Io/GdtnSNmM6vgPd+Rn8a/xVs2HBjnS6vvcn/529g4bVAphwb3t+fqAD3RtGUjvcj4n3tcdsVNz+1Sp2puX91V9ANZxRTXHulkSREEKIiiPrwGaKtZlGjRM9HYqoQiRRVEEopUioHsS2I66C1kQlYE/dwq1frmTvsXy+urM1TWoEQeY+1/kyLmZ9qtrhfjzQtQ7TNqaycl8Gpua3YrAVoHf+Vm4x/JOlu48zaW0yN1g24ozrjsU3wNMhnVfdSNfOZwedkShbIeSnezokUQls2L6LfiWz2VVjEAHXSJJI/LP4CH8SY4P/Wn4GmFvcjqEkD+f2WR6M7PLZNkxEG8x4NRsEQFGJg1embWXEmLVEBFj45aGO/HhPO1dtv1Om6ruSRR0wGRS3f7WSXel/JYtU3Z6olFVQnPe38YQQQghPMGXsJN0rFi8vL0+HIqoQSRRVIAnVA9mVlk+J3Ul+cEMMmbs5np3L9yPa0rV+BADOzP04fSPAu3wTIQ92q0tMiA+vTt+KLaYDDr9q2DdVjOVnhSV2XvhlM9eGHCHIdhRj4/6eDukfWcyunc+SrOGuA7L8TFyA1AVf4KUc1Oz3nKdDEZXIwBY12H4k96+lVrU74wiogWNjJV5+5rBj2Poz9vhe4BvK1sM59PtkCWNXHuS+LnWY9nBHWtYMOeflceF+TLivPcbSZNHu0mSRqns1ymmH/YvL606EEEKIczqUUUis/RAlofU9HYqoYiRRVIE0rh5IicPJ3KR03t1gwoSTiQNCaF8n7GQbnbEPHVK73GPz8TLyWv8EdqXn8/3KZHSTQZj2zYfCzHKP5Uzv/76LlKwiXqyzD60MGBv28XRIF6ReZABrcoJcD7IkUSTOLyuvkFbHprLbvzWW6IaeDkdUIv0Tq2MyKKauL51VZDCgm96Caf+fkFc5ZzPq/YswFh7FkHgroxftZcBnyygodjDunna82LcR3qZ/XnocH+HP+Hvbo5RiyNeryC+2Q2w7tNkPLcvPhBBCVADLdxwk1nCM4FpNPR2KqGIkUVSBJFR3JQ0enbCeJGdNABqqQ6e1UVn7UeW47OxUVzeKpHuDCD6avxtHwk0opx3ntmkeieWE9Yey+G75foa2r0X1tPnYYjqAb6hHY7pQ9aP8WZXlh1YGmVEk/tHaP8YTrTLx6XS/p0MRlUyonxfdGkQwbeNhHE5XPTRTi9tR2olj8yQPR3dp7Bsm4PAO4qHVEbz92w56NY5izhOd6VQ3/KL6qRvpz+g7WnI0r5iJqw+ByQsd1xW9Z57UjhNCCOFx+5I2ABBWWxJFonxJoqgCiQv3I8BiItzfm3fvuxFtsqDTTtmm12ZF5aViCIv3SHxKKe7tXIc8q505GZHYQ+vh3OS5NxnFdgfP/7yZ6EALz7c1YcrYiaFRxV92dkL9qACKnEZK/KrjlESROA+tNaFJ33PMEEFM24GeDkdUQgNbxpCeW8zyvcddByLqY6vWEufGCZ4N7FIU52PcOZOVls78viub1/s3ZtTtLQn2vbTaDa1qhdIuLpRvlu6nxO7EUK8nhpxDkLHXzYELIYQQF87ucFJw2LULtops/A+thXAvSRRVIEaDYtL9HZj52FXUrRaMM7whzvRTEkXZB1FoCPHMjCKA9nXCqBHsw5QNqahmt2BKWQHZyR6JZdSfe9l9NJ83BzTFsncOAKbG13kklktRN9IfgBxLzF9FyoU4i00b19DKsZm0ereB0eTpcEQl1KNhJAEW01/LzwBD88GYj22DtC0ejOziOXfMwmAv4qOjLXiqV32Gd4o7rVj1pXigWzxHcqz8uikV4nu6Du6R5WdCCCE8Z1NKDrH2ZBzK7NH3f6JqkkRRBdMoOpDIAAsAKropKn3bX9PfT8w6Ca3joejAYFAMaFGDpbuPkVXnegCcW6aUexzFdgejF+2lf2J1ujeMRG+fiS2yGQTXLPdYLlXdSH8MCtKM0VKjSJxX9qLPKMFEvT4PezoUUUlZzEb6NYtmzrY0CortABib3oQ2mLFtqFyzipIXfkeKDqdem1482qOuW/rsVj+ChtUCGL1oL87g2jhD43HsnuuWvoUQQohLsWT3MeqpFByhdeWDQlHuJFFUgRmimmAoPA75R10HTsw68VCNohMGtqyBU8PP+83Yq7fG6YEaF7vTXbvD9U6Igrx0TKlroWHlmU0Ef+18tscRgaEoE6w5ng5JVECZWZm0yprD9pAeWIKreTocUYkNaBFDYYmD37eluQ74hWGP74Vhy2Rw2D0b3AWau3oTMZkr2RR8DW/c2OyyZxKdoJTiwW7x7Dmaz/wdR1F1r8ZwcBnYrG7pXwghhLhYS3cfJ8GciiFSNjER5U8SRRVZVILr73TXsgCduQ+nVwD4hp3norJXJ8KfljWDmbIuBUPTmzEd2wbpSeUaQ9IR1zbPjaMDce6YjUJjTqg89YlOqBcVwJaC0uLbUqfoHzmdmsW7jvGfmUmsO5h1+kmtcVjzPBNYGUqa8xUBqoiQbjKbSFye1rVCiA31YcLqQzhLi1obW9yGsfAoeu+Ci+qrsLikLEI8rxV7M1g94yuMSnP14EcxGtyTJDrhuqbRxIT4MHrRXlTdq1H2Iji0/OR5a1EBWbuWk7H4S4qPy/drIYQQZSfXamNHchrVnOkYohp5OhxRBUmiqCI7mSjaBoAzYx86JA7c9Anq5RjUKobdR/PZGXY1WhnLfeecpNRcfL2M1Arzw7F9Bvag2lAJi7zVi/RnTW6w64EsPzun1OwiPpq3m87v/smwb1fz9dL9DPp8OU9P2sTR7ALy103COqoT6v26kHXA0+G6jXY6qb7rR/aa4qnZrKunwxGVnMGguK9LPGsOZPG/uTtdx+r3xmEJwbZ+/AX3k7/0C7z/F0/eltllFerf7ErP474f1nKzeTnWiGZ4R7v/+73JaODeznVYdzCLdaox2uhNyZKPyf/5YYo+vQrvd2sSMr4PYQuexfhtb+wZB9wegxBCCAGuD0dqa1ddQZlRJDxBEkUVmW8ozoDqOE/sfJa136P1iU7Vr2l1vEwGftpRjKN2V9jyc7luJZx0JJeG1QIwluRhOrAE3fC6CpFAu1j1owLY74hwPajCM4pKju6mcP/q045ZbQ5mbT7Cnd+uptM7Cxg5bxdx4X58clsLNrzSi4c7x+K1+UcKR7bCf8a9KFsRymnHsfJLD92F+21bOYc6+hDZCXdWyte3qHjuaFeT29rGMurPvUxZlwImbxyNB2Da/dsFLX8tTJqD3/wXUHYrftOGk5c0vxyihlF/7iFepVDfuRdzi9vKbJxbWscS6ufFZ8uO4IzriteBP/HZ9StO7yByWjxAVr+vybnlF5TdinPsAJx5x8osFiGEEFXXkt3HaGpOdT2IkBlFovxJVawKTkc1gbSt4LBjyDmESrjB0yEBEORrplejKKZvPMxL/W7G9OuDkLwKarYv87G11mxPzeWGFtXRu+einCWYG1e+ZWcA9aL8KcAHq1co3pn7qYqpgKJNv+A94yG87EXkx/VmQ/3H+eWQH39sS6OgxEG1QAuPdq/Lza1jiQ31xZafiXXN5zyR9Dlm0xH2meJ5sPBxDuhufB/7NeEbx0KPF8Hb39O3dtmKl39BDn4k9B7h6VDEFUIpxRs3NOFgRiEv/LKZ2FBf2rYcAuu/JXvVeIK6PHDOuj/FqVvxnnoPJaENYfB4GH8Lfr8MIc80iYD6Xcos5hK7kwU7jjIybB0604ix2U1lNpaPl5E7O9Rm5Lxd7HvoI2peU4hXeBx+BuNp7Yq9J2AePwDb2EF43T0L5R1QZjEJIYSoepbsPs7zwRnofDPKw/VpRdUkM4oqOEO1JhgydkHWfpTTXqG2RhzUqgZZhTYWGdriNPlg3/hTuYybklVEXrGdxtFB2JNm4PANh9i25TK2u8VHuHY+y/CKwXmiWHlV4XRS+Pu/8Zl6F9kB9fktfDhq/yI6zOlHu+1vcktjC+PuaceyF3rwZM94QtOWkj9uGMaRDQlY+Cr2oFoU3DyJuBfXcuOQh8gtgQf3tMNQnItz44Uvo6moMtIO0SxvCdsi+2PxlTehwn3MRgOfD2lFbIgv949dy0FLQ2yRiQQtfJnMP97DZv97YWtH3lEMEwbjNPugbv8J74g49LBfsflVx3fybeTtWVFm8a7cl0G+tYQOhQuw1+4G/pFlNhbAsA618DEb+XzlUbwj66LOSBIBeMd3omTAN3gd20rxuNvBXv41m4QQQlyZDmUUcjCjkARzaumOZ2ZPhySqILckipRS1yqldiql9iilXjjLeaWU+rj0/GalVEt3jFsVqGpNXAmiXXNcByrI0jOALvUiCPf3ZtLmbJwNrsOwbQrYisp83G2prkLWCVHeGPfOxVmvD5zlF/nK4MTOZ8kqClWFlp7p4jyyf7gN3xXvM8vYg/ZHnuLpo314M34CB2rfwq1qPi/vHULivi8p/P3/sI9sit+km7EcWkhBwu0UDZ+Pz32/45fQG2Uw0DuhGtMe7sQW6pPs0wi9cjQ4nZ6+zcuya9YnmJWD6ldLEWvhfkG+Zr4Z3gYN3P3DOrJvmkxu7WsIW/EmxWMGUJCZerKtthVhGzcYY+ExHLdOwCusJgCWkGj0sOnYfcLwnXQLefvWlkmsv29Lo7PXbvyKjmBsPrhMxjhViJ8Xg9vG8uvGVA5nn/tnmqVJf6zXfoDl0GKsk++r9N9zhBBCVAxL9riWNVcrOQgRDTwcjaiqLjtRpJQyAqOAPkBj4Dal1JlVJvsA9Ur/3Ad8frnjVhlRTVx/b5/h+rsCTT00GQ3c2Lw6f+48SmHC7RiKc9BJv5b5uElHcjEoaFi0EUNJPqbG/cp8zLJULyqAnSXhqLxUsBd7OpwyZXc4mb98DQff60zA/t95wzaUsZHP8vYtrVn3ci/+O7QHde/6gpL7llEc0wn/5e/gv+pDbKH1ye//JYandxIw8EN8arf+W98RAd5c1yyaTwp7YczaC3vLp3ZKWdifnkXdQz+xxacdtes383Q44goVF+7H6DtacTCjgKdmHMBr8A8c7/YOvkdW4fVVF7K3/gFaU/Tzg1jS1mHt/xmWWqf/37OExeIc+isOr0B8frqJ43vXU2x3uC1Gp1MzNymdBwOW4TT7YWh0ndv6Pp97Ors+lPl43m70eerv+bQbjrXLK1h2TsU66/lyrdUnhBDiyrRk13HqBBnwykvGECn1iYRnuGNGUVtgj9Z6n9a6BJgInFlI5wbgB+2yEghWSkW7YewrX2g82uiNTl6NNnpDQHVPR3SaQa1isDk0U7PicATVxLHuhzIfMyk1lzoR/hh3zcZp9kPV6VbmY5al+lH+bC4IQaEh66CnwykzVpuD/341lua/DyDUfpTJDT/kzqfeYeL9HRnYMgYfr79mhXlHN8L3zklY711GyaOb8B0xHf9Wt2Lw8jnvGMM61GJqcWsKvMKxL/+srG+pTDidmpkTPiNC5RDb5ylPhyOucO3rhPHmgKYs2X2c4WPWsiV6INlD5uDwDiLo51so/KoPvjunUtD5JXybDzprHz4RtbHdMQ1t8iZ0/LUUjb+TI2tnkJVXhNN5eYmTjSnZ6Lw02hYuxNbsdvDyu6z+LlSNYB/uaF+Ln9YmM2LMGo7nnzuJb+n+NNZW92NZ9yWFs1+SZJEQQohLZnc4Wbb3ODfG5qPQsuOZ8Bh3JIpqAMmnPE4pPXaxbcTZGE04Ixqi0DiDa4GhYpWVahQdSOPoQKZsSIUWQzEdWgplXGtn+5FcGlcLwLBrNo74q8FsKdPxyppr57PSmhtZV+bys/xiOy9/MYnHj7yAwRKE5cGFDL5tOLXCzv+mz1KjCd5htS54nOaxwTSKCeMnemPavwCO7brc0MvdpLXJdM6cQrZfHMFNe3s6HFEF3NI6ln/f2IT9xwu467s13DQ1l0ktx5LV4FZ8U1dQ2OgW/Ho8e94+/KrVo3jobLIa3Ib/4SVEz7wD/8+bkTntedL2bMBxiQmjP7alM8w8H4N24N3xwUvq41K91r8xb9yQwLK9GVz74RIW7jx69oZKYbnubYoSh+O7ZhSFUx4Gp/tmVYmKw5aWJF9bIUSZ2pSSQ57VTpfgDNcBmVEkPMQdWYezbY9y5m+EF9LG1VCp+5RSa5VSa48dk21nAdSJ5WcVqD7RqQa1imFzSg6HYm9AKwPO9T+W2VjZhSUczi6idXgJhoKjmOI6ldlY5aVupD97dXU0ClvKek+H43Y5hTaeHD2dZ479C5O3H0H3z8Irqn6ZjKWUYliH2nya2xmHwQv7isq1yvVorpVfZ/9Kc8Negro+DOfYfUoIdxvavhZLn+/BR4Ob4+9t4tXZ++m2cyCfNh5PVq+RF/Ra9K8WT9CgkWQ/uIUjvb+iKDyRsC3fUO3HbhSOvxOH7eIKPmut+XPrIYaZ5lMSfw2ExV/q7V2SE99Pfn2kE2F+Xgz/bg1vzEg6+9I6gwGfGz+ksP1T+G4dR+H4YWibtVzjFWXLsXUa5tEdsP/xmqdDEUJcwZbsPoZSUN+QgjaYK+z7P3Hlc0eiKAWIPeVxDJB6CW0A0Fp/qbVurbVuHRER4YbwKj9DdFPX3xWoPtGpbmheHaNBMWGnE0ednuiN48Dx911z3CHpiKuQdXNLGgDqCsiyx0f4k6f8SfFvAjt/83Q4bnUsr5h7R//GS5kvEmx24HXXNAyhtct0zH7NosEvnBW+PTBsngBFWWU6nju99us2Bjtn4zAHoBJv83Q4oorxMhm4oXkNpj/ciSkPduCqeuF8sAG6vL+Yh8evZ93Bf/6/ZDIaCA8OJLrDLXgN/Ylj92/keMtHCdgzncJJ9+C02y44nr3H8mmWPZcgnYO5w0OXc2uXpWG1QKY/0ok7O9Ti22X7uXHUcnan5/29oVL4Xvsahd3/je+emVh/uBmn9SztROWTlw4zn0ArI8bVn8OxnZ6OSAhxhdqSkkODqAC8MnfjCI2XHc+Ex7gjUbQGqKeUilNKeQGDgTMrGv8KDCvd/aw9kKO1PuKGsauGqAQAVDl/mnqhwv296ds0mh9WHCC7wa0Y89PKrJBwUumOZ3V06UrGiMq/btdiNlIrzI81Xu0wp2+CnMOeDsktUrOLuPPzebyW8woxxmzU7T9hjm5S5uNazEYGt4nlv5ldMdiLyqVuljvM2ZrGuq3buc64EkPLoeDt7+mQRBWllKJVrVA+G9KKxc915+6r4li86xiDPl/OjaOW8eumVGyOf97hy2I2ElktlvDr/0P2Va8QsHs6BZPvx2m/sA8Sft+axl3G3ykKaYAhvuvl3tZlsZiN/N8NTfjmztak51rp98lSflx58KyFrn27PkZh30+xpCyj5Lv+2PMzPBCxcButKZn6MMpWBHfOQJv9sM98RmpRCSHKxOHsImJCfFHHd0C47HgmPOeyE0VaazvwCPA7sB2YpLXeppR6QCn1QGmz2cA+YA/wFeC5jwYro5i22JrfCQ36eDqSc/pXn4YoFC9vj8HpE4Z97fdlMk7SkVwiA7zxy9mD0xICflfGrLN6kf7MLG4BgOMKmFV0OLuI2z9fyOsF/6GRIYXigWPwrtOx3MYf0r4WO3QtDvi3gNVfldkMN3fJKbLx6vStPB68FIN2otrd6+mQhAAgJsSXF/s2YuW/evLGDQnkFNl4bMIGOr/zJ58t3ENWwYUtJwu++hly2j9HwM4pFPzyCPoC6rwc3jiXxoaDmDs+VGGWYfZsFMWcJzrTNi6Ul6dt5b6x68g8y3Pg23YoRQPH4HU8Cf1dXygp9EC0wh3sa8bgtW8uzp6voWp3Qvd4GdPBxTi3TvV0aEJULfrK3vTlhNTsImoHgiH7IIaoyr9yQlRebqmMrLWerbWur7WO11q/WXpstNZ6dOm/tdb64dLzTbXWa90xbpVhtmC64SMIivF0JOdUPdiHx3rWY872TA7F3oBxz++Qf47Cn5chKTWXxtUDcR7dgQ5vUGHePFyuelH+LM4KwRYUh2P7bE+Hc1kyC0q486vlvGz9H21VEnnXfoRfk/JNctYI9qFX4yg+LuiJMTcZvXNWuY5/sd6Zs4Pc/Hxu5g90vd6yHl1UOH7eJoZ1qM38p7ry7fDW1I305905O+nw9nxenLqFPUf/eYlV0LUvkdP2SQKSJpD/yxNo57lnJR3JKaJr1hQKTUGYmt/qzlu5bJEBFr6/qy0vX9eIRTuPce2Hi1m25/jf2vk2vZ7iAd9hztiBvZLMbBRnyNyP4Y8XKanZGVN712efxjZ3Y49siv79RSjO93CAQlQdeu138FEz7L8+CY4LX8ZcmeRZbeRa7TQ0p8uOZ8LjKtYWWuKcVCVIiNx9VRzxEX68dKgFymnHuXGCW/svtjvYczSfxtUCUMd3XFHfPOtHBWB3QlZsT8wHl0Bx5axrUVBs567vVnNb7tdcrdaQ1eXfBLW7wyOx3NmhNtOKmpNnqY596ccVdpnAb1uOMH7VId5ttA8vawaG9g/880VCeIjBoOjRMIof72nHnCc6c2PzGvy8LoWrP1jMsG9Xs3zv3xMmpwrq8xq5rR4mYOsP5E9/Buc5lrCtWLuOXoZ15De5A8w+ZXErl8VgUNzTuQ6/PNSRAIuJO75ZxVuzt/9tSZ5Pk+uw1WgHyz8G+8UV8xYe5nRgm3IfGEx4DRr9166zBiPGfv/DmH8E+6J3PRujEFWFNQe94D84/SIxrf8W+5j+UHD+nzeV0ZEc1yYIf5XYkBlFwnMkUSTcxstk4N83NGFZdhgp/k3R639w65vz3en52J2a5mE2DNbsK6KQ9Qn1IgMA2BXcBeUswbmnbGo8laUSu5MHx62n/pFfuds4m+ymIwjq9qjH4ukQH0adyEDGGAdiTl2LfYN7E5fu8Pu2NB6dsIGWsUH0LZiGM6w+1Onm6bCEuCANqwXy9qBmrHihB89cU58dR3K5/atVPPfzJnKt5/i0VykCrvsPuc3vJWDTN+SPH0ZB1t9nn1rWf41TGYjs8UgZ38XlaVIjiJmPdua2tjX5YvE+/m/Gtr+1MXZ9FlPeYRybJnogQnEpjuZa2THlTcyHVzOjxhM8NvsYN49eTq8PFjFlXQqqZjvszW7HuHIUHNvl6XCFuOI5F/8PVZSJYchknAO+xJC6AccX3SBti6dDc6vU7CIAqhUfQBtMMsNceJQkioRbdawbTv/E6nya0wlj5h5IXuW2vk/seNbEXLphXsSVU+CtXpQ/1QItfL43HIclBHslW37mdGqe/XkT+buX8ZbXtxTUuAq/69/BYPDcTDilFHd2qMUHGe3JCWuB+uNFKKg4RWXnJaXzyPj1NKkRxNjeClP6Jtdsokowe1CIU4X5e/NIj3oseb47D3eP5+d1KfQeuZhFu46dtb0yGAi4/l2y279AwL7f8PqyI5kbZ54sDJ2TlUnn/DlsD+kBgdXL81YuiY+Xkf8OaMr9Xevw48pDjFt1eg0NQ72rsUU2Qy8ZCRdQm0l41s60PB784AfqbP2Q2Y62PLurERuTszEohZfJwNOTN/HJ/N0Yr/k/V2HrWVLYWogylXUAtepzdLNboXpzDIm3YhgxGxw2nF/3Qm+b5ukI3SY12zWjKDB/L46QeDB5eTgiUZVJoki43cvXNWK+6kCR8nFrUeuk1Fx8vYxUKy79JfwK2PHsBLPRwN1XxbFsfzYZ0V0x7vmjwhdgPkFrzX9mbWfVxi187/cJjoDqqJu/w2z2/A+3AS1j8PP2YqTPQxiK8yiZ87KnQwJgwY50Hhy3jsbRgfxwd1t8NnyN9g6ExMGeDk2IS+ZtMvJs74ZMfagT/t4m7vx2Nc//vPmss4uUwUDwtf8i+47fcVhCCZ02hNxJD2LNz2bf3C8IUEV4XfWwB+7i0j3XuyFd60fw2vRtrN6f+dcJpTB0fRpT9j6cV9AbmoqqqPjSf3am51oZ9c2XfMR7OC0htHlkDDv+3YfFz3Xnp/s7MPWhTgxoUYP/zd3Fi3+k4ej6L0wHFqGTpl/wGLajuyhJXg826yXHKURV4pj7Oigjhp6v/nWwRiuMDyxCRyagJt+Jc/EHHovPnVKzizAaFJbs3VfUB+KicpJEkXC7qEAL9/dqxjRbe9g2Fay5buk36UguDasFoI7vdL2pDqjmln4ritva1STAYmJaUSJGa5ZbZ2OVpdGL9jFu2U4mBX2Cr7JiHfQjvsGRng4LAH9vE3dfFceYPX5MNN+A15bxOPYt9mhMf+48ygNj19M+0s747vn4rvoItf1XaDkMvPw8GpsQ7pAYG8yMR6/iwW7xTF6XTO+Ri1l8jtlFIfGtUfcvJKvlwwTu+AnD6KuI3fkNm6lPvRbdyjXuy2U0KD6+rQWxob48+OM6DpcuIQAwNroee2h9HIvel9knZSk3Fe/3Y+HQyou+NCt1N7s+vpGPbW8Q4mfBfPs4IqJqnDYz1stk4INbEnm4ezwTVifz4M4WlEQ0wTH7eYrWjkNbc87eudOJNWk21m/6Y/6sDV7fdEf/tzolH7XCOn4o1vlv4dg2A4qyL/HGhbhCJa/GmDQVOj4KQTVOPxdQDeNds3DU74P68z9gKzp7H5VIanYRNQMUxuwDGK6gEhuicpJEkSgTd3aszcqgvpgcRRSt+u6y+9Nas710xzN9dAfOK2jHsxP8vU0MbV+Ljw/WxGkwY0uq2Dt1Aazal8G7v29nTOj3xBbvJrvP5wTVaubpsE7zZK/6fDm0FV9yE4ecERyf+BDZueVYLFxryEnBtmUqe8c/g2ncIFZ6PcDYrKH4Tb4V05//xhlaF9X+wfKLSYgyZjEbef7ahkx5sCO+XkaGfbuaF6ZsJu8ss4u8Lb6EXP9fcgb/ilMZCHccI6nmEI8uXb1UQT5mvhrWmhK7k/vHrqWopHSpmcGA6vwk5uNJOHf85tkgr2Tp2zDYCnHs/OOCL3EUF5Lz2xv4ftmRVrb1JDV6HN8nVmOs1f6s7ZVSPNu7If+5sQkLdmXwvO0enBjwmfkQ+t26HPtqIKt/Hc2YBVt4b8Y6fh79Gkf+2xTLpNvIS9nGF+ahvOn7PNMDBrPLHk3RwfV4L3kH4+Q7cL5Xj5IfB+PY8ssV8aZXiMuiNc45/8LpF4Xq9PjZ25gtGJvfhtIOOLq9fOMrA6k5RbT2Py47nokKweTpAMSVyWw0MGTQIBZ+9yMdF/4HZ4OeGKo1ueT+UrKKyCu20zg6CHbtxNCgrxujrTju6hTH10v3s9OnBfV2zYY+b1bYhFhhiZ1nf97Mc36/0aHwTzLav0Boi+s9HdZZXZNQjU51r2H6z//i9t1P8fnIp4js9xoDW9Yokx0FnUe2UJw0i+KDazCnbcSv5DhmIFYbcZpqYa5/DbbY5phrJEJUAkafELfHIERF0KJmCLMe68zIebv4avE+Fu86xjs3NaNzvYjT2lltDn7PrcU49R4hJeu4v/MQD0V8+epG+vPh4Obc88Nanp+ymY8GN0cphbHZzdj//C968fsYGvapsN/bK7XsQwA4U9ZivIDmOnk1jkkjCMpLZoajPSXd32BQj3YXNNQd7WtRLdDCIxPW86dxJE3YRY+SZfRJWU3bw/NJ1GZKMBGgithuqMc4/2fZFtIDXx8LhcV2FmUXcTi7iIISBz5YSVAHGB6yiWsOL8e45zecZj9s9fpibjkEQ93ul/GkCFFJbfsFw+G1cMMoUgoNjJy+iXnb0xl3Tzua1Aj6q11U6fuLtC1Qo6VnYnWT1GwrfYOOuB5cQSU2ROUkiSJRZtrWCePTNm+RsG4w6odhhD+57JK3Od6W6lq+1jTEhqHwOFyhWfaIAG9uahXDxPVN+D/jt3B8V4Vdo/zunJ2YsvZwv/d4cuL7E3j1c2WSdHEXP28Ttw+5m+NjFnDPgV+45ud2jJxXhw51wugQ7/oTHXTp23A7nJrd6bnkLvyIljs/xAcHqc5oNuqG7DTWxxndkugGbbipbTwBvmY33pkQFZvFbORffRrRO6Eaz0zexNBvVnNb25q8dF0jCovtjF15kHGrDpFZUELDagHcePMwOp6RSKpsejaK4plrGvDe7ztpXD2QB7rGg9GMuuoJTLOfRu9bhIrv5ukwrzw5ri2ljUfWg9P515b25+Cc9wZWaxF3lrxEiy7X81yPi/vd4urGUUy8rwPfLt1PqF8szpB+bAr2JqdwG5HJv+HtyKe47V00qt2BRmf5+ai1JqfIRkpWEesPZfH8bwm8bLiNz68qolXufEw7Z2BImgy3jIXGFfODGCHKhM2K84/XsIc34Z3kRMb+vAgUeBsNvDp9Kz8/0PGvWachcWgvf1T6Vs/GfJmcTs2RnCLqBqeglREVVtfTIYkqThJFokw91K8jn6a+wGNpL3JgwtPUHvbZJfWTdCQXg4L66rDrQAVNnrjDvZ3rcPvqFvyfEWxJszB3rXj3umJvBmOWH2Bq5Gx0oQVzv/cwmy7k81vPCx/0AY5PFjM+ZCKvh7zFH0npTF6XAkDtMF86xIeRGBNMQvUg6kX5YzH//b4cTk1yZiG70vPYmprLhkNZ7DqUymvOz+hrXM2ftGFm7RdIqBtPuzqh3FgtEGMlXEYjhDu1rBnC7Mc688HcXXy1ZB9zk9LJKSrB7tT0bBjFiKtq06FOWIVOOF+Mh7rFk3Qkl3fm7KBDnTASY4MxtrgDx6J3cS56H7MkitzOmXUIA2AoyYOMfygGay9BJ6/h55JuRDbrxTPXXNrP2uaxwXx8W4szjtaAdtf847VKKYJ9vQj29aJJjSC61o/g8YkbuW2ek5tb3cfrj72LZczVqDkvYqjX65I/bBOisileNgrv3GQe0Hex8PAhbmoVwxNX12fZnuM8+/NmftlwmJtaxbgaGwzoyMaQtoXK/NPjeH4xNoemuj0FZ3BtjLLjmfAwSRSJMmUwKO4ZcT9T/7eKAfvGcXB5T2p1HHTR/SSl5lInwh/v7F2uA1fwdMy4cD9aNElg26444rfPwtz1KU+HdJqCYjvPTdlEj+B0WuQuIL/t4/iHRHs6rAsXEIWz5+tE//YU70V9ia1rC44YqrE+L5jF6V7M3HyECatdn0qbDIr4CD8Sq1mIDfFhX46TXel57DmaT7HdCYBBQe+IDGZ4v0N4yRGOdXiZbr2epvs/fJItRFVkMRt5sa9rdtHIubuoG+nPnR1rExd+5RVyV0rx1sCmrNmfyUvTtjD94aswmi3oDo9gnvcKOnk1Kratp8O8ouicFLR/NVR+GjplDeo8iaLlS+fT0WklO6I1797UrELUxKoV5sfkBzrw0bzdjFq4hzUHMvm6yyvU/e02nMs+xtDteU+HKESZS03ZT+DC91jsaIm5flf+6N2AupEBAAxqGcOE1Yd4+7ft9GocRZCPa4a2oVpT9JZJrrqQlfTDhtQc106Iwbaj6OCaHo5GCEkUiXLg62Wiw32fsOuTTUT88QQZcW0Ii764b4Dbj+TSqlYI+ugO8PJHBdb454sqsQe6xvNHUkueSPsF8o+Bf8VZhvH2bztIySpicq1fcWQG4tP1SU+HdNHMbe7Cum8R/runY9gxiTCgCTBUGbD5VcPho8FehNFuxZRTjCHHtUtRClEkW+qTF9sYY0xLIuq1JT5rKT5zn8XpHYS+bQYRcZ08em9CVAataoXw4z0XVgumMgu0mHm1f2MeGb+BsSsOMLxTHKY2I3As/QDnwvcwD53s6RCvKConGR3XFb3rN5yH1mJqccdZ2/2xLY31836lownuHzoE7wo0I9ZsNPBM7wZ0rhfOkz9tpPd0mBTSheZLPoAWQyAoxtMhClFmrDYH+79/iNbaTrWb3+eLZq1OO28wKN64oQn9P13KyLm7eP36BNeJak1Qa7+B7IMQUrv8A3eD1NKdMn3/n737jo6qWvs4/t0zk14hkBB6770XQYoVsWJXFLH37rXr9eq1vnau2CuKFUSxU6QqvfcOSYAQSK8zs98/ZsCIlEDKJOH3WWtWMufss/dzJpsweWaX/B04YjoFOBoRJYqkgtSJiyFz+LuEfnU6q98bQcS9vxEaXLJ1WtJzC0lKz2NEn0Z4N63B1GpVbaYmHErH+rF8VncwJvVrClb+QEjPKwMdEgCz1+/m4z+28FDHLOqsnUp2v/uJjKiCCzE7HIRc/CH5hW6K0lPw7tmE3bMR0jfjyNju619B4RQFhWGCwzBBYXg9HuJ2ryBh51KCUmZACjDPV11hg34EX/g+RCUE9LZEpPI5o0MiX7Tczgu/rOX0DokkREfi7Xk9QdOfgdQ11XoqdYXyFGGyd2BqNqaoThdM0ryDFpu8aic3f7qQsRHrKYpoRkTNuhUcaMn0ahrHj7cPYPS09Tww9yIm2jnMHn0je894k9Pb1yHIqVGrUv18/vEbXFk0m7Ud76bDAUmifdrXi+GyXg35aM5mLurRgDaJ0VDHv+PujuVVOlEUhJugvN0YJYSlElCiSCpMyw7dWbLhIbosfoxv3nqQc29+rkQJn5UpvoWs2yZGY+auxrQ4ubxDrRROO+kUkj6Nwz3vGxpVgkRRdoFvl7MmtSK4NOcN3KE1Ce9/S6DDOmbGGMJCgghLaAgJDYETS35x7h4KkxbjSVqEMziC4F7XgFO/TkXkn4wx/Ofsdpz80nSe+H4loy/tSlCva/HOehnPzNcIOvf1QIdYPWQmYawXYhrgqO/GMftlKMyF4PD9RX5fm8qNnyykbZ1IumWvxTQ6M3DxlkBMeBAPDm3D7UNasPrzJfTf+BYXjvuU/0Z14cLu9enZJI5ODWKICtUGCVL1fTVrBadueYGdES1oec4Dhy17zymtmLQ0hce+XcHn1/fGxLfBYnwLWrcZVkERl62k9DwaB2dgsBBTvWdOSNWgjyOkQnU6+3bW1RzEmanvMv/D+7EFWUe8ZqV/x7O2sR4cObsw1Xh9ouIGtKzNgpDeJKTOJj87M9Dh8OIva0nOyOPV3llEJM0gv/ftOEKjAh1WYITXJLjFYMIG3k1w3xuUJBKRw2oUF8Gtg5ozaWkK09bsgohaeDpejGv5F5C9K9DhVQ/pvrXliKmPs2EPjPVAyuL9p2et3811H82neXwkH58Vg7MgHUejPoGJ9ShFhLjofPG/8UTV4+34L2lRO4xXp6zn8nf/pOO/f+HUl6Zz/9dL+XzeVhZs2cvWtFxyCtyBDlukxBZvS6fgp8eINxnUuuRNcB4++RkbHsx9p7Vm7uY9TFySDMER2JrNsClLKyjispeSnk/7yGzfk+jKOdJRji9KFEnFMobm17zP/NDe9Ng8hqKXOpE3awy4Cw95ycrkTOKjQqiVt8l34DhJFBljiO11KaEUsunLw3+yUhF+XbWDU9rE02L5yxSFJxDR97pAhyQiUmVcd2JTmtaO4NFvV5Bf5CGo363gKcT9x5uBDq16yPAnimIbQr3uAHi3zQdg4da9XP3hPJrUimDsNb2I3uWfllZFEkUABIfjPPU/xGSs5qPOq1ny2Cl8NKondwxpSWJsKD8u38G/vl7G8DdmM+D5qbR77GfaPPITJzw7hXNGz+I/369k3uY9eDxeyEmDHcux2+aC1xvoO5Pj3O7sAt746BMuc/5KQbdrcTY4+JSzA13UvQGd6sfw1KRVZOUXYRI7YHcuL+doy09yRh4tw/wfDEdr6pkEnj4GlwpnwmtQ97ovuejld3nc+wVtfv0XRX++gXfww4R0HA7FdotasGUP3y1N5owOiZC62HfwOFrPoc/AoXwx63Qu3PIJGSvOJqbdkbfbLQ8ZuUVs25PHPY23ELpxPjknP09QseH8IiJyeCEuJ0+e3Z5L3/mT0VPXc/cprXA3PxXH/PdgwN1/myIlxyBju+9rdD0ICsUT0xC7fR5ZeUXc+uki4qNC+eSaXtSICMazeQ4mIgFHjSaBjflotTsPz5/vYCb/h5j25zKgZW0GtPRtdmGtZUtSMruSNpKXtp2ivcmQvYOg3F2EZKYSMncXteftxWPSceIbbWSAoiZDCDr/LYioFcAbk+OV2+PlzrF/8njhaAoi6xF2yqMlvtbhMPz77Pac+79ZvDp5HQ8ltMesGA/5mRAaXY5Rl4/k9Dwa10r3PdGIIqkElCiSgGgUF8HJpwzj9ElN+aR/Bj03vkbIhGtwL3gP11Xfg8PJjox8bvhkIXVjw3y7Gvz+OTYoAhPTINDhV5ggp4Os/g+zfuoS6n53C/kNZhMaXfFv5lYkZ2DwMmD7mxRGNSS8V+DXTBIRqWr6Nq/FuV3qMeb3DZzduR7NTrgN88FQPIvG4ux1baDDq9Js+lZsRDyOoFAAvHW749j+J49MWM6OzHy+uqEPtSJDfIW3zsE27FP1ttE2BucZz2HfHEDR1zfgqdEM9m7GkbEFZ+Y2Ghdk0PiASzwhsXgjEiiqXYcdtjWTcyJZuCeE7e4YmgWnc8fmz3D/7wScF76HadQ3EHclxylrLU//uJpu296nmSsZzvkaQiKPqo7ODWIZ3rU+H87Zwr2XtiMYYOeKqjVaEN9ub7uzC6kbvwcbHIWpgokuqX6UKJKAuapfE75fmsJtC0P49fYpRC16k+Cpj8Pq78lvMYzrP55PboGbsdf0IjY8GO+uVVCrJcZxfM2YvKhva0ZNu41P8x8ib+KdhFz6YYW/BsuTMzjNMY8amavIHTqaYFdIhbYvIlJdPDi0DZNX7eSeL5fw0agehNXpgpnzP+hx9d9G1MrR8aZvhWIfJDkbdMex6hvmLFnBHSf3oktD/w6d6VtxZiVB4zsCE2hp1emAt/vVBM17G6czBE90AzyxjfHW70lRbCMcNRrgiq6LIyYRIhNwBoXhBIKApv7HoCIPM9bt5qM5mzlrfSve4jXqfjAMz8CHcPW/U/1Qyp21lud+XsP0WTP4MXQi3nbn42hx0jHVdUaHRL5asJ2lnkZ0B9ixrMolilIy8gGI86Tija6HM8DxiIDWKJIAcjoMz53fkaz8Iv49aQ3B/W/DE9MI96zXeGj8cpZsz+DFizrTMsG/YPLuNZjjaNrZPpEhLrr2HsTL7uFErZ9I5rzPKjyG5UmZXB0ymcKYJoR3v6TC2xcRqS5qR4Xw7PCOLE/K4KK3/iSn6w240jfiXfNDoEOr0kz6Nkxsw/3Pd0V3AODCOju5aVDzvwpumeP7WsX+kCzOefqzcM96HA/tIOj2BYRe+TWhZ79E6Il3ENxxOI7GfXxbhAeFHfT60CAnJ7dN4KNRPbntsvMYGfQ8k9w9cE19gtwPzoOc3RV7Q3Jcsdby1KRVLJr+HWOjXscRGo3j9GePub7ujWvgMDA92YUNq4ndsawMo60YKel5AEQX7tK0M6k0lCiSgGqZEMUtg1owcUkyv63ejaPPjbiS5rFx0VTuOKkFp7ar4yuYl44jKwUTf3wsZH2gkX0b8449i41h7YmcfD95qZsrtP3lyRm0MEnQqC849DmHiEhpnN4hkXdH9mBLWg5nT4mjIKIenpmvBjqsqsvrxWQm4Yj1LQBb5PFy2+8eiqyTa5vuwen4a4qZZ/MsvMFREN82UNGWnsMJkbVLPfLHGMNp7ROZeM/prOr7Mo96RuHcMpOcl7qz9Yv7yEpaU0YBi/hYa3n1q1/o/udtjAt+krgQL44L3i/VGllRoUF0qBfDH5v2YhPaY3dUvQWtk/yJorD8nThitJC1VA5KFEnA3TiwGa3rRPHwhOX8FnoymTacB2tO5rbBLf4qtHut7+txsuPZgerEhHJGp4Zcn3MdeD14x9+I1+OpkLZzCtyk7k4lxruX4NrNj3yBiIgc0YktazPuut5kF8GruScTlPQnbJ//j3KeokKy1/5+2N1Bj3s5qRhPAcT4RhS9Nnkdc7flkhXbmsjdi/9eduscvPV76UOPYsKDXdx3ehuuuPU//DvhVWYXNKXuireJersn8/7dj9df+S9PfbuIrxZsZ0taDtbrgcwU7LZ5FC2bAHs2BvoWpArw5qYzY/QN3Lj8EgYFLccz8CGct82HpgNLXXfvZnEs3paON74dJnUleNylD7gCJafnE2KKCMpLxShRJJWEEkUScMEuB88O78iurHyuHbeGH0NOo3vuTBwZW/8qlLra9/U4TRQBXDugCesKa/FTgzuISJ5N/ozXKqTdVSmZNGSn70lcswppU0TkeNCxfixf39iX30JPJdOGk/zj8/vP5ezaTMakx/C+2JbIT8+iYPzNYG0Ao63E9u14FtuAuZv28PrU9ZzfrT7RzfvgSFkEXv8HKzlpONPW4mysRZsPpnl8JE/deAlt7vqeP8+ZzpxGN9HYmcYte5/l5oVn0ODb4ZhXOuF+Ih5ebI159ySCvr4SXu1C4Qfn4ln901+vtUgxnkWfkfN/nTgh9XNW1T6N4DsW4Rx43yGnRx6t3k3jKPR42eRqinHnw54NZVJvRUlOz6N1RI7viaaeSSWhxaylUujUIJZbBrfgs7lb6Xvpg/DRRDx/vIHz9Gd8BVLXYF1hf1t/4HjTuk40A1rW5rGtnenf8CQiZz4Dfa+F4IhybXd5UgZNTYrvSU0likREylLjWhF8fNNgfn79dM7b/g3Txr1I99xZRGybAtaS22gw7sjahK0YR1GjvgT1vCrQIVc+/g+WcsPrcufYxTSoGc7jZ7XDtboHLHjH92FTQjvY6lufSLt7HZoxhvo1wqlfowN0eRq8T+HdOJ3Q+R/Ses82dpkmTCmswdKsKFbmRrPbxnBK0BIu2zqZmpsvIie8PnQfRUTvqyC85uEbcxfgXvkd3vkf4Ny9GusKwwaF+7+GQVA4rm4jcLY/p0LuXcpBQTbZ4+8gcvWXrPG2ZHWX17jsnDMxZbzjYPdGNXA6DHNyEmkBvgWtq9C6pskZebSNyIIMIKZeoMMRAZQokkrkrpNbcvuQFjgdBk/bczELP4JBD0BojG/Hs7gWmON8qPh1/Zty+bt/MjfhYk7a+huetb+W+xuo5cmZtA3dDV6gZtNybUtE5HgUHxXK0Gsfx74+gYGr/02GowZ7Ot9CWJ9RRMQ3Aa+HwuwUXD//C0/9rjjrdgp0yJVL+jYAvtvsJCk9j8+v601kiAvqdQfAbp+PSWiHZ8scHM4QTL2ugYy2anE4cDQfSGjzgYQCMUAL4FRgR0Y+87fsYf7mwVy1+TLq75zCFdm/0Gv6ExROf5o1rtasDm7LmqC2rA1uQ47DtzlJojuJIbk/Mjj/V2JsJjsdCayN6E6jaBe1Qz043PlQlIszbS2Or0bidb+Bo7M20qhqbMpSMj8eQVTOFl6zw4k59SGu6Fc+HzhGhQbRvl4MP+5wM8IRhNm5HDqcXy5tlYfk9DwGh2f4EkXRmnomlYMSRVKp7Ftw0tn3Flj+Jd75H+I44TZIXY1p1C/A0QVev+ZxtEmM5rnVYQwKq4Vn2dflnyhKyuDc0N14nXVxBIeXa1siIseriFoNyT33fb5duo37VzagycZY/tenNs0BHE6CL3wP9/9OwH5+Bc4bfoew2ABHXIlkbMOGRPPx4r20rhNFzyb+kSxxzfCGxOLdNg9XtyuxW2bjSeyCyxUS2HiriToxoQzrWJdhHesC7cgu6M+irbfx0Yp51F7/FS3yl3Je7pc48eLFsM3ViFwTQZuiFXhwMD+0D1Mjh7I8pCurduSQllpIXEQwZ3Wuy/Cu9WlX24Vn7EU4v70Jr3Hi6HRhoG9ZSsJa0n9/g/Bpj5JnI3mx5jOMvGwETWqV7wj4Pk3jeHfmRjx1W+JIWVpl1lex1pKcnk/D6HTfAU09k0pCiSKpnOp2xt2wH+bPMdD1chyZSVVqCGl5McZw3YAm3Pn5Era3OYkGGyZAYU65TT/LL/Kwblc2jWvswGramYhIuQrvdDbDO0H8ulRuH7eYs16fydPndeDszvV8uwJd8B6uj86k4OsbCLnsMyjj6RtVlXfvVvLDE1melMm/z2r317QWY/DW7QrbF0BhDs6dS7F9bg1ssNVYZIiL/i1q07/FUGCo72BhDt5t83Bv/oM62/7Akb2TonYPE9R9BL2i6tDLf22Rx8vva1L5euF2xv6xlfdnbaZVQhSntXqSy3Puo9aE6/EaB46OVWeUyHHHWuzO5Wwd/xiNdk7md9uFpIH/x2MndsXhKP/fVb2b1mTM7xtIi2xJ7Z2zy729spKeW0RekYdEk4YNicGERAY6JBFAi1lLJebqdyvOrCTs78/5DsS3CWxAlcSwjnWpEx3Kh5ldcLjz8a79pdzaWrMjC4/XUqtwOw4tZC0iUiH6t6jND7f1p21iNLePW8zDE5aRX+TB1bgvhYMeI2T9jxTM/OeGBl6vJTt1K1nbVuDxeAMQeYBkbGOLO44Ql4NzOv99fQ9Hgx4401bDxmkYrxtHY41OrlDBETiaDSR4yP2EjJxA0C1zCBp0L0TV+VuxIKeDk9om8Mbl3Zj70BD+c057IkNdjJ6ZzIDt1/OnpxX2m2t5d8z/8f6sTeQVatHsSqEwF8/qHymYcDuFL7TBjDmBxB3T+CjqWhrf+h2XDupWIUkigO6Na+J0GFZ6G+LI3gk5uyuk3dJKzsgDoKYnFavRRFKJaESRVF4tTsVToxmOuW/6nh/HO54VF+R0cE3/Jvx3Ui73xcThXPYNjvbnlktby5MziCGbkKJ07XgmIlKB6sSE8tl1vXn+5zW8NX0jv67cyR0nteSCPjdTsGUOwVMep6h+dwpjmlC0YTpm83RCt88mMsO3VXlhZAOym54CrU4nrPkAgkOq8XSrjO0szq/P0A6JxIQH/e2Uo0EPsF68c/6HwWAa9AxQkFJSseHBjOjdiBG9G5Ff5GF5UgbLN7Wi5p83cOWOJ7l1awZrd5zP06fXh8xkPBlJeDOSMQ4Hrm5XaKRdRchLp2j8zTg3/IbTk4/HGc7v7vb8bs+m4+ALuHxAxSWI9okMcdGhXgy/Z9ZhEPgWtG42qEJjOBbJ6fkARBXswtbQQtZSeShRJJWXw4HpczPmh7uwzhBMbKNAR1RpXN67Ee/O3MRkenP6hl/KbfrZ8qRMOoT6P5FRokhEpEIFOR08OLQNQ1rH8+xPq3ngm2W8PX0j9w/+N4NSV+L85BwiPAUAeIIiyUvsRV7HERAciWv9L0St+ATH0nfxBEeT1XAQ3g4XEtX+dBzOarQxRH4mjoIMNrlrcnGPBv88X68bAI4tM3HHt8cVGlPBAUpphAY56d64Jt0b14S+P+L+aDijk16jcOn/YFkRAE7/A4CEttCgR6DCPT543Li/GIlry0z2th3Bmzta8v72RLo1rcOzwzvSMC5w61n2aRbHVzPieDyIKpQo8o0oCs1LwdG4e4CjEfmLEkVSqTk6X4J3ypMQnYhxqrvuExrk5M6TWvLRN105I2QS3jU/4+hwXpm3szI5g1NqpMNeIK55mdcvIiJH1qtpHF/f2JdfV+7k+Z/XcN0X6xiWcC//qj2BqCbdMU1PJKxRNyKDg/+6qP915Odmkb/mNxxrfiJ886+41n9L/rQWFPS4hfDuFxMUHBq4myorGb4dz4oi6/+1iHVx4TXxxDbBmb4JGvWt4OCkTIVE4bria3J+fYYJi7aR4Ypj1Gn9CKlZDxMcDm8OgC0zlSgqZ56fH8a1aSpz2j3GNUvbAvDoOW24tGfDCh9FdKDeTeN4Y1ok+dEJBO9YViXWWElOzyPS5caZlwYxGlEklUdV+Pcjx7PgcOzwd+HU/wY6kkrnvK712BPXhT0mlqJlX5d5/UUeL6t2ZNExLA1rHFCjcZm3ISIiJWOM4ZR2dfjpjgE8f35HFuYn0n/zVVy6uh8/Z9THa/45Sig0PIrYLucSffGb2LtWkXH6aHAEEfPL7fBKJ9J/+z/ys/cG4G7KTvLmtQB0bNf+r0WsD2D9o4pcjZUoqvJCoogY9hR1zn+e5zJO4t30zphGfSCxE95arfBumhHoCKs174IPcc59g+/CzuaSBa3o0rAGP985gMt7Nwp4kgige6MauByG7SHNYcfyQIdTIknpeXSMyvE9iVaiSCqPUiWKjDE1jTG/GmPW+b/WOEiZBsaYqcaYVcaYFcaY20vTphx/nC0G42g2MNBhVDoup4O7T2vLd0U9cK7/FQqyy7T+9buyKXR7aWxSsNH1QdsJi4gEnNNhuKB7A6bcM5D/ntsBt9fLfV8tpd8zU/i/X9awMzP/oNcFBYcQ0+tygm+aRcb5n1MY25zYmU8Q9EoH8hZ/VcF3UXaWrFgGwICeXQ9ZxtnsRLzOUGioRFF1MaRNAkM71OHVyevYvNv3R7Zp3B+z7Q/wuAMcXfWUu2463u/vYoa3A/8puJT/u6ATH1/dk/o1AjfV7EARIS461o9hSVF9TNpacBcEOqQjSsnIp01Elu+JRhRJJVLaEUX3A5OttS2Ayf7nB3IDd1tr2wC9gZuNMW1L2a6IAKe2q8PquJNweQsoXPVjmda9PCkDgFoF27A1m5Zp3SIiUjqhQU4u7dWQn+8YwCdX96JLw1hen7qefs9M4fZxi1i8Lf2g1zmcDmLan0b4Nd+TdcVvFMa1IvTb68hb9m3F3kAZKHB72Ll1HUUEERdf/5DlTOfLyb95IUQlVGB0Ut4eO7MdQU4Hj3y7HGstpnE/TGEOpCwJdGjVirWWX2fPo2DsZWz11Ob3js/y6z1DGN6t/iFH8QVS76Zx/J6RgPG6IXV1oMM5ouT0PJqFZPqeaESRVCKlTRSdDXzo//5D4JwDC1hrU6y1C/3fZwGrAP0rECkDxhjOPONcdtlYts38tEzrXpGcSUSwg5DMzThqtSjTukVEpGwYYzihRS3eubIHU+8eyIg+jZi8ahfnjJ7Fuf+bxcQlyRR5vAe9LqppD0JHjqcgvjMh468mf9VPAbiDY/fLip3EeXZRGFkXHId5S+twEF5Tbz2rm4ToUO47rRUz1u1m4pJkaHyC78RmTT8rK6lZBVz37nTq/zSKIDwUXjCWh8/v94/dBSuT3k3jWO5p6HtSyaefFXm87MzMp4Fzj++AEkVSiZQ2UZRgrU0BX0IIiD9cYWNMY6AL8OdhylxnjJlvjJmfmppayvBEqr++LRNYFDmAertnkJVZdmtNLE/KoHeCxVGYhdGOZyIilV7jWhE8dmY75jwwmMfObMvenEJu+2wRJzw7hdenrGNvTuE/rjGh0QRf+TVFca0J/uoKCtZODUDkx+bzedto4tpDaK3GgQ5FAuSyXo3o1CCW/3y/knRHLN64Fng3zwx0WNXCHxvTuOKVb7li68O0cmwn7LKPad2hW6DDOqJujWqw3SRS6AilKHlpoMM5rJ2Z+Xgt1CENb2gNCK480/hEjpgoMsb8ZoxZfpDH2UfTkDEmEvgauMNam3moctbat6y13a213WvXrn00TYgct5oNGkEoRUz//pMyqc/jtaxMyaRvDd/0M2oqUSQiUlVEhQZxVb8mTLl7IO9e2Z2WCVG88MtaTnrxd35anvKP8o7wGgRd+S1FMU0I+uISCjbOCkDUR2drWi4z1++msWsPzhoNAh2OBIjTYfjvue3Zm1vEsz+t9q1TtHWO1ikqBa/X8sbkVUx+7xG+dt9KP9cqGPYSzhZDAh1aiUSEuOjQoCarnS1xLPmU7NWVN/mdkuFbUy7WnQrRdQMcjcjfHTFRZK09yVrb/iCPb4GdxphEAP/XXQerwxgThC9JNNZa+01Z3oCIQPOuJ5HujCN4zbfszi79wn2bdueQW+ihQ9hu3wGNKBIRqXIcDsOQNgl8fHUvJt12AnViQrnhk4XcPm4R6bl/H13kiIzDNXIi7si6uD67kILNcwMUdcl8Pn8roaaIyKLdENMw0OFIALWrG8Oofo35bO42Umv1wBRmw47KPZKkstqTU8izY95hyO/Decg1FkeTfjhu/hNH95GBDu2o9G5ak5tzrqUwPIHwLy4kY27ZLs9QVpLT8wCILNiphayl0int1LOJwJX+768E/rESovGtcvYusMpa+2Ip2xORg3E48LQ+k/4sZvRPi0td3Ypk30iipiYFa5wQqzfhIiJVWbu6MUy4uR+3D2nBpKUpnPLSdKas3vm3Ms7oBJwjv8MbFofr0+Fkzv0U6/3n+kaB5vFavlqwnXP27bMQc+iFrOX4MKJ3YwCm5PnXVNT0s6Ni8zNZ9Mdk5v/fuTyw6x7qhFu8F40l9Iqvq+SHhb2bxrHNG8e8wZ+SX6crMT/cSPovz+E9yHptgZTkTxSF5Kbg0PpEUsm4Snn9M8AXxpirga3ABQDGmLrAO9baoUA/YASwzBiz2H/dg9baH0rZtogUE9fzYljxAWkLJzKzUzNOaFHrmOtakZxJsMtBjfxt2NhGGGflXbRQRERKJsjp4M6TW3Jy2wTu/mIJoz6YzwXd6vPImW2JDvX9nnfG1sNeOZGiz68g+ocbyV38MWbYC4TVbRfg6P8ye8NudmYWcF4vLyQBsZp6drxrGBdO01oR/LjZcmHN5rB5Bo5+twU6rMDK3UPej4/iLciCkChMcKTva2gUBiBtAyZtHZ7UdYQX7KILUEAQKZ1vJ/GMByAoLMA3cOy6NapBkNMwJ9lLv5HfkvXl9cTOfoqMjG2En/MiQUGV431tcnoeCWFeHHl7NKJIKp1SJYqstWnAPyasWmuTgaH+72cClW/vRJHqpkEv3BF1uM7xK9d/eSI/3DHomHelWJ6UQZs6UZg9G6vkJ0kiInJo7evFMPHWfrzy2zrG/L6BWet38+z5Henfwrc2pCuuMY7rppD5x3uEz3gSxzsnktnleiJOfgBnaGSAo4fxi5KICnXRJSbNdyBGiSKBE1vV5tM/t+Lt3g/nym/A6wGHM9BhBYz7+3sJXT2BoqgGOIpycBRm4XDn7T9f4Ipmo01kRWFrUoNPpk37rvQ+8TQSa1b9EXrhwS56NK7JZ3O3clH3BjS8+D0yJtUjZuFosnJ2YC5+H1cl+F2Wkp5P+6hcyASiq/7rLtVLaaeeiUhl4XBghzxGe+8aLswdx6MTj21LUGsty5MyaFc3GrN3E4645mUcqIiIBFqIy8l9p7Xm6xv7EhrsZMS7c3lo/DJyCnyLADtcLqJPuA7PTfPIaXUe0Qtex/N6TwpW/hTQuHML3fy8fAfDOiYSlJWExWhLaQHgxJa1KXB7WRvWCVOYdVyvU+RdORHXyq/wnHA3wXcuxnXfOhwP7yDzvp18dfJsLogeS6vsN7g+5Fk8Z43m6gdeZ+C51xBaDZJE+zx9XgcArv5wHlmFXqLPfIq9J/6XyC2/UfDpCKynKMAR+qaetQ737/GkxaylklGiSKQaCep6KXltL+RW13h2LJnMxCXJR13H9r15ZOa76RFXiCnK0YgiEZFqrEvDGvxwW3+uOaEJn87dymmvTOePjWn7z4fEJBB10VvkXPY9NiiS4K8uh6ydh6mxfP26cic5hR7O6VwPMrZho+qAKzhg8Ujl0btpHCEuBz9m+9+3bK78u/eVi5w07Pd34o5vj+vEe/F4LdPXpnLbZ4vo8d+p3PPdZjJMFC9e2Jkpd5/IRT0aEuyqfn8SNoqLYMzl3diSlsutny3C47XUGHQzGYOfI2LrFHIm3A3WBjTG5PQ8mgan+55orTWpZKrfbwWR41zY2S/hjmnE6NDRvDB+Fjv8W2+W1PIk30LW+3c8q9n0MKVFRKSqCw1y8vCwtnx+XR8cxnDJ23/wxHcrcRdb+DWiRX+CLvkE4y3Cs/DjY2onPzudzKU/kDn1ZdwZKcdUx/hFSdSLDaNH45p407dq2pnsFxrkpHfTOCZtAm+NZng3zQh0SAHhnnQPjvwMcoe+zvO/baDfM1O44r25/L42lYt6NODbm/vx8x0DOK9rfVzO6v2nYO+mcTx1bnumr03lyUmrAIjtfy2Z3W4mctmHZP/+asBiy8ovIjPfTX3nXt8BjSiSSqa0i1mLSGUTEonjgg+o+d5JPOEdzb1fNuDDUb1wOEq2VNjUNbsIchoa4R+NpKlnIiLHhZ5NavLj7f15+ofVvDdrEyFBDv51Wuv95x3xLXE37IdZ+CH0vwsch/8j052XRe6GWdhNMwjeNovQ1KWEWg8Anj9eJGfwk0T0HAGmZP8/pWYVMGPdbq4f0BSHw+BN34ap3+3Yb1iqnYGtavPv71aS07U3kRu+O+7WKfKumIBr5TcsaX4zIz9KJSOviEGt4nn0zLYMaRNPiOv4eS32uahHQ9btzOadmZtokRDJZb0aEXXGf8hJ30LEtMfIq9GIsE7nVHhcKf4PchPYjTesJo4qvHi4VE/VO40scpxy1e9M0ZAnGGgW0WLTJ3z8x5YSXbciOYMvF2zn8t6NCErfhHUGayisiMhxJDzYxX/Oac8lPRvwxrQNTFuz62/nnT1G4czYChunHL6ivL3weg+iv7qI6IVjsMZJVrebybrgK/JGTaOwZksifryV3PfOpmD3phLF9v3SZDxey7ld6oHXi8lMwmhEkRRzYkvfguxLnO0wBZmw89jWa6yScnbjnngn653NGL68F81qR/L9rf15d2QPhnZIPC6TRPs8MLQNg1rV5rFvVzB7/W6Mw0nYhW9TkNCZkInXU7BlXoXHlJzuW1g8tnCX1lmTSkmJIpFqKqTvjeQ3PZUHgz7j2x8msX5X1mHLW2t54ruVxIYFcceQlnjTNmBjGx9Xn8SJiIjPY2e2o3WdKO76YsnfpjCbNmfiDYvDPfe9w17vnvEKrpwUUk4ZQ8E9Gwm/cTLRw/5DVLuTCWvYhbBrfyF7yDOE7JiPa0xfsn4fjfW4D1vnhEVJtK8XTYuEKMjeifEWQawSRfKXJrUiaFgznG/Tm/gObJ4Z2IAqSEZuEUvfuhbyM3iIm3j2gm58eUMf2taNDnRolYLTYXj1ki40qRXBjWMXsn5XNo6QcFyXfY47PB7nuEvw7NlcoTFt2+tLFIXl71SiSColJYpEqitjCD1/DN7w2rzseoW7P565fzebg/lx+Q7+3LSHu09pRUx4EKRt0ELWIiLHqdAgJ69f2pX8Ig+3fbbor/WKXCHYzpfiXPcTZB5inaGsndg/3mCipy99v4vmgveW8exPq5m9fjcFbt/UMxwOIvvfiOeGORTU603U1AcpeOc0vFm7DlrlhtRslmzP8C1iDZCxzfc1pmEZ3rVUdcYYTmxZm0lbHHhim+DdVP0TRet3ZfHsi8/QMWMKv9e9mrfuuZLh3epjSjil83gRFRrEu1f2IMhpGP7GbGau240rOgEu+wLjKcT98QXkp22rsHimr02lTnQoQTkpOGKUKJLKR4kikeosvCaOC96hPqn8N+NfPPPpD9iD7PCQX+Thvz+sonWdKC7p2dA3pH/vJhxKFImIHLeax0fy5Dntmbt5Dy//tm7/cWf3qzDWc8hFrVd/9TjGU8hvda7mzpNaEhbk5O3pG7n0nT/p9O9fGPn+XOZu2gNAcFwjwkd+Q/bQ0QTvWobn7ZPx7N74jzonLErCYeCsTv4FX9O3+r5qRJEcYGCr2uQWetgV1x22zgav98gXVVErt+7g5zfu4WH362TX7MDJ1zxNTFhQoMOqtBrGhTP+pn7UiQ7lyvfn8uHszQQltMZzwUcEZW4laEwfsme/W+67oeUUuJm+NpUz28biyN8LShRJJaREkUg152pyAoUXfErToD3cu/l6Jn317j/KvDNjI9v35vHomW1xOgxkbsd4CrSQtYjIce68rvW5sHt9Rk9bz/S1qb6Dcc0oanQiLPjQt1hwMd9MnUOTzV8wPeIUnr32XG4b0oIvbujD4sdO4d0ru3Nxj4asSsnkwjfncPPYhWzbkwvGENnzcopGfIspzMC+cxLubQv212mtZfyiJPo1r0V8dKjv4P4RRVpHT/6uT7M4gp0O5nrb4shPr57rFHk9bPhlDHHv9uZmO46ChicSeeU4cGqfoiNpUDOcr2/qy6BW8Tw2cQUPTViOaTqAwmtnUlC7PZG/3EXeu8MoKuHaacfi97WpFLi9DG3kT2Jq6plUQkoUiRwHQtudjuOG6aQF12XYirvZ8Nk94F8LYkdGPqOnbuC0dnXo26yW74K0Db6vGlEkInLc+/dZ7WkRH8mdny9mZ6ZvvSJXz1E4s7bD+sn7y70zYyNFk5/BYQx9r36OsOC/1riLDHExpE0Cj5/Vjmn3DOLOk1oyefVOhrz4O8//vJqcAjchjXvDVT9jg8JwfDiMojW/ArBgy162783zLWK9T/o2bGgshERVyGsgVUd4sIueTWryxW7/tMQtswIbUBkrWvMbGS/3odnsf7HbUZsd542nxqgvlDQ9CpEhLt4a0Y2bBjbj0z+3cvk7f5Ib1YiwayaRfdJzBO9cjHNMH/JmjC6XEWk/Ld9BzYhgOkZl+w4oUSSVkBJFIseJkNpNqXX7NCa6TqHZmrfJfHsYnsydPPfTajzW8uDQNn8V3uNPFNVUokhE5HgXFuxk9KVdyS30cOV7c3np17X84ulKUWgtiub6Rqm+PmUdn/4wmQtc0/F0G0VoXKPD1nf7SS2Yes9Ahravw+ipGxj0wjQ+n7cVT1xznNf8hju2Ca7PL6Zw4ad8syiJsCAnp7ars78Om74Nqx3P5BBObFmbWalhFEY3wrNxRqDDKRvWUvTNjQR9NpzMjL08EXovte6YTp2OgwMdWZXkcBjuO601L1/UmUXb0jl79Exmb9xL5AnX471xDgX1+hA2+UEK/ncC2d8/RM6Sbyncm1zqdgvcHqau3sXJbRJwZvvXedPUM6mElCgSOY5ERUbR9rr3edB7EyE7FlD4vxNYsngu15zQhIZx4X8VTNuIdYVBVGLgghURkUqjRUIUL13UiUK3l1enrOP6T5fxVnZfHOt+5rL/+4YXflnL83HfgyuU0EH3lqjOxJgwXr64C9/c1JfE2DD+9fUy+jw9hedmZ7Br+HgK6/UheOKN9F1yPy/WmoiZ8zq5cz8if/l32N3rMFqfSA5hYKvaAGyJ6Y7ZNBUyS/8HfqAV/f4CQUs/5U3PWdxc401uvuVeEmLCAh1WlXdOl3p8cX0fAC5750+u+XA+271xhI38hrxh/8M6gghf+CYR468g+JU2FL3QlpxPLqdwzc/H1N7sDWlkFbg5rX0dyEjyHYyqW1a3I1JmzMEWtq0sunfvbufPnx/oMESqnZ+Wp/DK2PF8GPws1jiIuHEykQlN95/3jr0QMrbjuGl2AKMUEZHKKK/Qw7pdWWzbsIrTp57ON5GXkdXkVK5aNgJ3v7txnfzoUdfp9VpmbdjNx3O28NuqnVhgcItYbs55g0a7p1HD5ODggCkgfW+DU/5TNjcl1Yq1ln7PTGFQQg7/SboWd7OTCL50bKDDOmZ7F31LzLdXMtHTh48TH+a9q3pq0eoyll/k4b1Zmxg9ZT2FHi9X9WvCLYObEx0ahLcwj4Jti3Fv+xPH9vkEJ/+JK38v9qqfcTTodlTt3P/1Ur5fmsKCR04i5Me7sau+w9y3oZzuSuTwjDELrLXdD3pOiSKR49OzP61m6u9T+Tb8SRxR8biu+RkTGQ+A99WumIR2mIsOvqONiIgIgPvDczGpq/DWboMjeSHOO5ZAWGyp6kzJyOOzudsYN3cru7IKqBUZzB/3D8JZlI0nZy/evD2Ql0Fww+4QGl02NyLVzgPfLOO7JcksOHEJIdOfwnPxOJytTw90WEfFWsu0GTPoMeVCNnnrMLP/x1wzuB1BTk0KKS+7MvN54Zc1fLlgOzXDg7n31FZc1KMBxpi/CuXuwf1GfwBcN86A8JolqtvjtfR46jf6Na/Fa5d0wX5yATZ7J44bppfHrYgc0eESRfotI3KcuveUVrxy++U4Lv8CZ3YyRR+dB/mZ4HFj0rdgtJC1iIgcgbPHVTizUwjaNAXb7/ZSJ4nANyXtrpNbMuv+wbw5ohtjLu+Gy+XChMXiqtWE4AbdCG45WEkiOawTW9Ymu8DN4gYjKKrZEjvpHijMCXRYJZaaVcDdH06jyW/XUGhCCL/ic248uYOSROUsPjqU587vxMSbT6BZ7Uju/2YZd36+mLzCYjs8htfEceGHOHN2UvjV9SVe8Hre5j3sySnkNP96azZzOyZa086kctJvGpHjlMNhaFUniqAm/fCc/yFBu1dR8MlFkLYO43VrIWsRETki0+p0PBEJeMLjcfW+vkzrDnI6OLVdHbo3Ltmn9SLF9Wseh8thmLYhA+eZL+PK2k7B5KcDHVaJfL80mdNenMLwjY9Q37mHyCvG0ax5q0CHdVzpUD+Gcdf15u6TW/LtkmTOHzOb7Xtz9593NOiO+6QnCd74C4UzXipRnT8t30Gwy7F/DS2TmYzRbnVSSSlRJCIEtT6NojP/R/D2OXg+vdh3UCOKRETkSJxB2IvG4r14HARHBDoakf2iQoPo1qgGk1ftxDTuS2GHywie9wbelOWBDu2QMvOLuPPzxdzy6SIeDfmMfo5l2DNeJLhJn0CHdlxyOAy3DmnBu1d2Z2taLme9PovZG3bvPx/U53oKW51N0LQncR9hdz1rLT+v2MGAFrWJCHFBYQ4mP107nkmlpUSRiAAQ3OUiik55Gmf6Zt+BuOYBjUdERKoGV8MeBDU8ugVdRSrC8G71Wbszm++WphB8+pN4g6NxT7y9xFOFylLO/HFkJq895Pk/NqZx+sszmLgkmTFtlnJ2/rcUdLuOoO5XVGCUcjCDWycw4ZZ+1AgPYsS7c3lv5iastWAMweeNxh3TBL4ahc3accg6lm7PICUj37fbGfy141m0EkVSOSlRJCL7Bfe9kYKBj+Ku3xsiagc6HBEREZFjNrxrfdomRvPMD6vIc8XgPfk/BKfMp2je+xUbSN5eIr6/nrBPziBr28q/nSpwe3j6x1Vc8vYfBDkN3w/axambniW/8WBChlaNqXLHg2a1I5lwcz8Gt47nie9XcvOnC31T0UKicF70EY7CTAo/H0VRUdFBr/95xQ6cDsNJbXwbx5CpRJFUbtr1TEREREREqqU/N6Zx0Vt/cOdJLbl9SHMK3x2KM3UFzlvng3+313K3ZQ68fxrWuHCH1ST/km+JatCW5UkZ3PfVUlamZHJJz4bc22QTNSZeRUFiN0JGjsdoOmel4/Va3vh9A69OXocFrurXmJsGNid8xTiCvr+ForDaFEXWxRNRB29kHWxUIkTU5oPfV5EYnM9pzUIw+ekE7V1HWOpSuH0J1Ggc6NuS49Thdj1TokhERERERKqtm8YuYOrqVKbccyIJBVsxY/pR1P5Cgs/7X8UEMO9dmHQXWcM/I2zSLXiNk9cbvczrS6BmRAhPn9eBvq5VhH1+IYU1WxE86nscYTEVE5sck+T0PF74ZQ3jFyURGxbE7UNacJ6Zit36B87sFFw5O3Hl7sBVkPG36zxBUXhCYvCExOCMb0XwBe+Awxmgu5DjnRJFIiIiIiJyXNq2J5chL/7OGR0SeemizhROvJugxR9i7lgG0Ynl3r6ddA8s/hQe2M6v03+n+7QrKLIOPmw5muvPOxXnjoWEfXou7si6OEf9iCtK0/+riuVJGfz3h1XM3pBG47hwruzbmMGt42lYMxy31+LOz+HjyQsYMyeFCXcPJbFGFE5jcDhMoEMXOWyiSGsUiYiIiIhItdWgZjjXnNCE8YuSWLh1L8En3AzWg/uPMRXSvnfXavJrtGTUh/O57qdc/hX5X2JCHNyZdBd21XeEjrsQT2gcZsQEJYmqmPb1Yhh7TS/eH9mDsGAX//5uJSc+P40hL/7Osz+uZlFKAeM3OWncoCENa8UQ5HQoSSRVgkYUiYiIiIhItZZd4GbQC9OoFxvG+Jv64h53Bc7Nv+O4ayWERJZr257nmvFdbgce9N7AXSe3ZGTfxuRtX07YZ+fgyk+jKDwe78ifCIlvVq5xSPnbkpbDlNW7mLJ6F39u3EOhx7fD3oNDW3PdAP18pXI53IgiV0UHIyIiIiIiUpEiQ1zce2or7vtqKd8uTuac/rfDmol4Fn6Ms8+N5ddwzm6cubtZVlSXd67qTt/mtQCIatSRrEsm4J32X4KGPEy4kkTVQqO4CK7q14Sr+jUhp8DN7A1pLN2ezkU9GgY6NJGjoqlnIiIiIiJS7Z3ftT4d6sXwzI+ryY3vTFG9Xtg5o8HjLr9Gd60CIC28Kb2bxv3tVFSjjoRf/inh9duXX/sSMBEhLk5um8Ddp7QiJiwo0OGIHBUlikREREREpNpzOAyPntmWHZn5jJ66HucJt+HK3IZ35cRyazM3aTkATdt2P+jaNEFO/TkmIpWPfjOJiIiIiMhxoUfjmpzXtR5vTNvA3OBeuGOb4p31KpTTuq1JaxeRacMZ2L1TudQvIlIelCgSEREREZHjxhNnt6dRXAS3f76E3G7X49qxCLbMLpe23DtWsMXZkA71Y8ulfhGR8qBEkYiIiIiIHDciQ1y8fmkX9uYWcc/atnjCalI089Uyb2dXZh51CjbjrdUGY7QluohUHaVKFBljahpjfjXGrPN/rXGYsk5jzCJjzPelaVNERERERKQ02tWN4ZFhbfllXRYL488naP1PsHtdmbYxdf5yaphsElt0LtN6RUTKW2lHFN0PTLbWtgAm+58fyu3AqlK2JyIiIiIiUmqX92rI0A51uHldVzyOEIpmvlam9a9aOheA+Gady7ReEZHyVtpE0dnAh/7vPwTOOVghY0x94AzgnVK2JyIiIiIiUmrGGJ4+ryMhsQlMNCfiXDYOslPLpO7te3Mxqf7PyGu3KZM6RUQqSmkTRQnW2hQA/9f4Q5R7GbgP8B6pQmPMdcaY+caY+ampZfOLWkRERERE5EAxYUG8fklX3sg/FTxF5H0+CgpzS13v90tTaGG24w6pAZGH+hNJRKRyOmKiyBjzmzFm+UEeZ5ekAWPMMGCXtXZBScpba9+y1na31navXbt2SS4RERERERE5Jp0axHLhaYO5t/A6QrbNJP+Dc7H5maWqc+LiZLqE7sCR0Aa0kLWIVDFHTBRZa0+y1rY/yONbYKcxJhHA/3XXQaroB5xljNkMjAMGG2M+KcN7EBEREREROWZXn9CEwg4Xc1vhzQQnz6Pw/bOxuXuPqa71u7JZmZJBU7sVE69pZyJS9ZR26tlE4Er/91cC3x5YwFr7gLW2vrW2MXAxMMVae3kp2xURERERESkTxhheuKAje5oM46aiO3DtWkbRe8Owx7Bm0XdLkkk0ewjx5ChRJCJVUmkTRc8AJxtj1gEn+59jjKlrjPmhtMGJiIiIiIhUhBCXkzdHdGNr/CCud9+Dc886it4bis1MKXEd1lq+W5LMWYn+qWtKFIlIFVSqRJG1Ns1aO8Ra28L/dY//eLK1duhByk+z1g4rTZsiIiIiIiLlISo0iA9G9WBNVE+utw/gyNyO+93Tce9aW6LrVyRnsnF3DqfG+6etacczEamCSjuiSEREREREpNqIjwrlo1G9WOhoz82ORyA/HfPOYAqWf3/Ea79bkozLYWjrSsIbXhsi4iogYhGRsqVEkYiIiIiISDFNakXw/sgezMhvyjUhL1AY3ZiQry4j76fHwes56DWbd+fwyR9bGNw6nuA9a7CadiYiVZQSRSIiIiIiIgfo1CCW/13WlZm7w7kr8jly219K2B8vkf/hcGxO2t/KFrq93D5uES6ng8fPbItJXYMjvnWAIhcRKR0likRERERERA5iYKt4Hhzahh9X7+XNmDvJP+1FgrfNwj3mRNzbF+0v9+Kva1myPYNnh3egrtmNKdKOZyJSdSlRJCIiIiIicgij+jVmeNf6vDJ5HdMiz8Bz5Q/gdeP4cBikb2PW+t28OX0Dl/RsyGntE2HXKt+FWshaRKooJYpEREREREQOwRjDU+e2p1P9GO7+YjGbQlvjuvpHwEvuN7dw57hFNKsdyaPD2vou2Jco0tQzEamilCgSERERERE5jNAgJ2NGdCMs2MW1H80nM7Q+nkGPEb51GgPzf+PVi7sQFuwEwO5ahTeyDoTVCHDUIiLHRokiERERERGRI0iMCePNEV1JTs/jls8W8rHnZOZ6W/FEyFjaRuXuL2d3rda0MxGp0pQoEhERERERKYFujWryxNntmbFuN09MWs039e8nmEKKvr0DrAWvF7N7DY6EtoEOVUTkmClRJCIiIiIiUkKX9GzINSc0oXFcOPdcegbegQ8StP5HPMu+hvTNGHee1icSkSpNiSIREREREZGj8PCwtky9ZyC1IkNw9buVojpd4Yd7YfNMXwFNPRORKkyJIhERERERkaNkjPF943ASdN7/cBRmYX+833esdqvABSYiUkpKFImIiIiIiJRGfBvc/e/FFOXgja4PodGBjkhE5JgpUSQiIiIiIlJKQQPuoiihMzToFehQRERKxRXoAERERERERKo8ZxCua3/FOPQnlohUbfotJiIiIiIiUgaMKzjQIYiIlJqmnomIiIiIiIiICKBEkYiIiIiIiIiI+ClRJCIiIiIiIiIigBJFIiIiIiIiIiLip0SRiIiIiIiIiIgAShSJiIiIiIiIiIifEkUiIiIiIiIiIgIoUSQiIiIiIiIiIn5KFImIiIiIiIiICADGWhvoGA7JGJMKbAl0HFKhagG7Ax2EVAnqK1IS6idSEuonUlLqK1IS6idSEuonUlLl1VcaWWtrH+xEpU4UyfHHGDPfWts90HFI5ae+IiWhfiIloX4iJaW+IiWhfiIloX4iJRWIvqKpZyIiIiIiIiIiAihRJCIiIiIiIiIifkoUSWXzVqADkCpDfUVKQv1ESkL9REpKfUVKQv1ESkL9REqqwvuK1igSERERERERERFAI4pERERERERERMRPiSIREREREREREQGUKJJSMMacZoxZY4xZb4y5/4Bzt/rPrTDGPHeI62saY341xqzzf63hP36yMWaBMWaZ/+vgQ1zfxBjzp//6z40xwf7jxhjzqj+upcaYrmV971JylbWf+M8NNMYs9rf/e1netxydStBPbvG3bY0xtYodv8z/e2SpMWa2MaZTWd63HL1K3FdijDHfGWOW+Nu/qizvW45OOfaTnv7/Nxb7f9bnHuJ6vUepAiprP/Gf03uUSqQS9BW9T6kCKnE/Ofr3KNZaPfQ46gfgBDYATYFgYAnQ1n9uEPAbEOJ/Hn+IOp4D7vd/fz/wrP/7LkBd//ftgaRDXP8FcLH/+zHAjf7vhwI/AgboDfwZ6NfreH1U8n4SC6wEGh6ufT2Om37SBWgMbAZqFTveF6jh//50/T5RXzlMX3mwWF21gT1AcKBfs+PxUc79JBxw+b9PBHbte37A9XqPUskflbyfxKL3KJXmUUn6it6nVPJHJe8nR/0eJeAvqB5V8wH0AX4u9vwB4AH/918AJ5WgjjVAov/7RGDNQcoYIG3fP6oDju8u9g9mfzzAm8AlB2tHD/WTYv3kJuDJQL9GegS+nxxQ5m//sR5wrgaHSB7oob7ij+V//mubAOsBR6Bfs+PxUYH9pAmwkwPerOs9StV4VPJ+ovcolegR6L5yQBm9T6mkj8rcT47lPYqmnsmxqgdsK/Z8u/8YQEugv38o7e/GmB6HqCPBWpsC4P8af5Ayw4FF1tqCA47HAenWWvdB2j9cbFKxKnM/aQnUMMZMM75pJlcc1Z1JWQp0Pympq/GNBJDAqcx95XWgDZAMLANut9Z6j+J6KTvl2k+MMb2MMSvw/ZxvKPZ/zD56j1I1VOZ+ovcolUug+0pJ6X1KYFXmfnLU71FcR1G5SHHmIMes/6sLX0a7N9AD+MIY09T605klbsCYdsCzwClH2f7hzknFqsz9xAV0A4YAYcAcY8wf1tq1R9O+lIlA95OSXD8I3xuwE47leikzlbmvnAosBgYDzYBfjTEzrLWZR1mPlF659hNr7Z9AO2NMG+BDY8yP1tr8Erav9yiVR2XuJ3qPUrkEuq8cOUC9T6kMKnM/Oer3KBpRJMdqO9Cg2PP6+DKU+859Y33mAl6gljHmff8CXD/4y+00xiQC+L/u2leZMaY+MB64wlq74SDt7wZijTH7kp0Htn+o2KRiVfZ+8pO1NsdauxuYDnQq5f3KsQl0PzksY0xH4B3gbGtt2tFeL2WqMveVq4q1vx7YBLQ+yjqkbJRrP9nHWrsKyMG3plVxeo9SNVT2fqL3KJVHoPvKYel9SqVRmfvJUb9HUaJIjtU8oIXx7dYQDFwMTPSfm4AvW4kxpiW+xbx2W2uvstZ2ttYO9ZebCFzp//5K4Fv/NbHAJHxzOmcdrHF/9nUqcP6B1/vrvcL49AYy9g3hkwpXmfvJt/iGgLqMMeFAL2BVqe9YjkVA+8nhGGMaAt8AI/RJbqVQafsKsBXfp/8YYxKAVsDGY6hHSq88+0mTfX/YG2Ma4fs5by7euN6jVBmVuZ/oPUrlEtC+cjh6n1KpVNp+wrG8R7GVYOEnParmA9/OHWvxre7+ULHjwcAnwHJgITD4ENfHAZOBdf6vNf3HH8aXJV1c7PGPleHxrSg/F99iXF/y1yryBhjtj2sZ0D3Qr9Xx/Kis/cR/7l58u4osB+4I9Gt1PD8qQT+5Dd+nPW58n/684z/+DrC32LXzA/1aHe+PStxX6gK/+P/fWQ5cHujX6nh+lGM/GQGs8PePhcA5h7he71GqwKOy9hP/Ob1HqUSPStBX9D6lCjwqcT856vcoxn+hiIiIiIiIiIgc5zT1TEREREREREREACWKRERERERERETET4kiEREREREREREBlCgSERERERERERE/JYpERERERERERARQokhERERERERERPyUKBIREREREREREUCJIhERERERERER8VOiSEREREREREREACWKRERERERERETET4kiEREREREREREBlCgSERERERERERE/JYpERERERERERARQokhERERERERERPyUKBIREREREREREUCJIhERkUrPGNPYGGONMa4SlB1pjJlZQXH1M8asM8ZkG2POqYg25S/GmIb+195ZlmXLIK4K64MiIiJS9pQoEhERKUPGmM3GmEJjTK0Dji/2J3saByi04gmnbP9jszHm/lJU+QTwurU20lo7oYzCPC6URTLFWrvV/9p7yrJsRTLGPG6M+aQM6xtpjPEU6+P7HnVLWW8tY8wsY0yaMSbdGDPHGNOvrOIWERGpTJQoEhERKXubgEv2PTHGdADCAhfOP8RaayPxxfioMea0o7m42MimRsCKYwmgJKOjjncVMfqnmprjT4oVfySXss5sYBRQG6gBPAt8p34sIiLVkRJFIiIiZe9j4Ipiz68EPipewBgTY4z5yBiTaozZYox52Bjj8J9zGmNeMMbsNsZsBM44yLXvGmNSjDFJxpgnjyWpYK2dgy/R095f7yhjzCpjzF5jzM/GmEbF2rTGmJuNMeuAdcaYDUBTfH8sZxtjQowxdY0xE40xe4wx640x1xa7/nFjzFfGmE+MMZnASGPMNH/ss/11fGeMiTPGjDXGZBpj5hUfgWWMecUYs81/boExpv8B9X/hf02zjDErjDHdi51vYIz5xv96pxljXi927pD3fSBjzFn+utP98bcpdm6zMeYeY8xSY0yGMeZzY0zoQepoA4wB+vjvO91//ANjzBvGmB+MMTnAIGPMGcaYRf573maMebxYPX+bkuiP5z/+kS9ZxphfjH9k29GU9Z+/wt8v04wxj/jv7aRDvCZx/p97pjFmLtDsgPMH/bkZX4LyQeAi/+uwxH/8Kv/PI8sYs9EYc/2hfh5HwxjTzN83u/qf1zW+f2MDi70mTxtj5vp/ft8aY2oCWGvzrbVrrLVewAAefAmjmmURm4iISGWiRJGIiEjZ+wOINsa0Mb4EzkXAgdNrXgNi8CVbTsSXWLrKf+5aYBjQBegOnH/AtR8CbqC5v8wpwDVHE6Dx6Qe0AxYZ3xpDDwLn4Rs1MQP47IDLzgF6AW2ttc2ArcCZ/hEbBf7y24G6/pj/a4wZUuz6s4GvgFhgrP/YxcAIoB6+BMMc4H18f4CvAh4rdv08oLP/3KfAlwckYs4Cxvnrnwi87r9XJ/A9sAVo7G9rnP9cSe5732vW0n/uDn/ZH/AlyoKLFbsQOA1oAnQERh5Yj7V2FXADf418iS12+lLgKSAKmAnk4OsbsfgShjeaw68HdSm+fhQPBAP3HG1ZY0xb4H/AZUAivn5a7zD1jAby/WVH+R/FHfTnZq39Cfgv8Ln/dejkL78LX/+P9sf30r7kjj++dGPMCYeJ56CstRuAfwFjjTHh+PrZB9baacWKXeGPvy6+f2OvFq/DGLPUf68TgXestbuONg4REZHKTokiERGR8rFvVNHJwGogad+JYsmjB6y1WdbazcD/4UuYgC/Z8LK1dpu1dg/wdLFrE4DTgTustTn+P1RfwpdwKandwB7gHeB+a+1k4HrgaWvtKmutG98f8J0PGF3ztLV2j7U278AKjTENgBOAf/lHXyz21z+iWLE51toJ1lpvsTret9ZusNZmAD8CG6y1v/lj+BJfIgwAa+0n1to0a63bWvt/QAjQqlj9M621P/jX4fkY2Jd46InvD/97/a9ZvrV23/pAJbnvfS4CJllrf7XWFgEv4JtS2LdYmVettcn+n9t3+BIkR+Nba+0s/2uUb62dZq1d5n++FF+i6sTDXP++tXat//X94gjtH6rs+cB31tqZ1tpC4FHAHqwCf18eDjzqf22X40tk7leCnxsHlJ/k7xPWWvs78AvQv9j52GI/v4Pp7U8m7XtsKHbt28A64E98ia2HDrj2Y2vtcmttDvAIcKEpNlrPWtsRXwLrUnyJPBERkWpH86pFRETKx8fAdHwjSz464FwtfCM4thQ7toW/Rm3UBbYdcG6fRkAQkGKM2XfMcUD5I6nlT4oU1wh4xRjzf8WOGX9M+9o/XBt1gT3W2qwD4u5e7PnBrt9Z7Pu8gzyP3B+MMXfjGzlVF1/iIhrfa7nPjmLf5wKh/qlWDYAtB7lnKNl971O3+DFrrdcYs42/j7Y5MIajXUT5b6+RMaYX8Ay+6YHB+JIsXx7m+gPbjzxUwcOU/Vv/s9bmGmPSDlFHbXzvJw/VX0vyc+OA8qfjG0nWEl/fDgeWHeY+DvSHtfZwI47exjci6Dr/SLjiDryPIH+s+/ultTYf+Mw/PW6xtXbJUcQmIiJS6WlEkYiISDmw1m7Bt6j1UOCbA07vBorwJSn2achfo45S8CU3ip/bZxtQgC/ZE+t/RFtr25Uy5G3A9cXqjLXWhllrZxe/rcNcnwzUNMZEHRB3UrHnh7v+sPzr2vwL32irGv7pWhn4kjpHsg1oaA6+8HBJ7nufZIr9zIwvU9eAv99jSR3qtTjw+Kf4khoNrLUx+NY2Ksk9l0YKUH/fE2NMGBB3iLKp+KZoHbS/luDn9rf7NcaEAF/jG62V4C//A2V0z8aYSOBl4F3g8X1rEBVz4H0U4fv3ejBB+KaOioiIVCtKFImIiJSfq4HB/mks+/mnRn0BPGWMifJPc7qLv9Yx+gK4zRhT3xhTA7i/2LUp+Kbi/J8xJtoY4/Av0nu46UglMQZ4wBjTDvYvmH1BSS+21m4DZgNPG2NCjTEd8d3/2MNfWWJR+BISqYDLGPMovpEpJTEXX/LjGWNMhD++fVubH819fwGcYYwZYowJAu7Gl7Q7WFLpSHYC9Q9Y3+hgovCN1Mo3xvTEN+WpvH0FnGmM6euP798cIlHj78vf4Eu6hPvXN7qyWJEj/dx2Ao2NfyF3/ho1lQq4/aOLTim7W+MVYIG19hpgEr6ff3GXG2Pa+tcwegL4ylrrMcb0NsacYIwJNsaEGWP+BSTgm8ImIiJSrShRJCIiUk7866zMP8TpW/EtVLwR31onnwLv+c+9DfwMLAEW8s8RSVfg+4N6JbAX3x/2iaWMdTy+Lb/HGd+uZMvxrYV0NC7Bt1h0MjAeeMxa+2tp4irmZ3xrGK3FNyUonxJOt/MnM87Et/j3VnwLbl/kP1fi+7bWrgEux7cQ+W5/nWf61/E5WlPw7Ti3wxhzqBErADcBTxhjsvCtFfTFMbR1VKy1K/D1z3H4EmxZ+BaYPnCa1j634Ju2tgP4AN8i0fsc6ee2bxpdmjFmoX/q4m347nMvvsTYxOKN+XdI68+h7dtNrvijhzHmbHwLjd/gL3cX0NUYc1mxaz/238MOINQfC/iSV6OBNHwjyIYCZ1hrkw8Th4iISJVkrD3mUeAiIiIiUs35p2ulAy2stZsCHE65McZMAz6x1r4T6FhEREQCSSOKRERERORvjDFn+qeSReBbL2gZsDmwUYmIiEhFUKJIRERERA50Nr4phMlAC+Biq2HoIiIixwVNPRMREREREREREUAjikRERERERERExM8V6AAOp1atWrZx48aBDkNEREREREREpNpYsGDBbmtt7YOdq9SJosaNGzN//qF2FRYRERERERERkaNljNlyqHOaeiYiIiIiIiIiIoASRSIiIiIiIiIi4qdEkYiIiIiIiIiIAJV8jSIRERERERGRQCsqKmL79u3k5+cHOhSRoxIaGkr9+vUJCgoq8TVKFImIiIiIiIgcxvbt24mKiqJx48YYYwIdjkiJWGtJS0tj+/btNGnSpMTXaeqZiIiIiIiIyGHk5+cTFxenJJFUKcYY4uLijnoknBJFIiIiIiIiIkegJJFURcfSb5UoEhERERERERERQIkiERERERERkUrPGMOIESP2P3e73dSuXZthw4YFMKoji4yMPGKZxx9/nBdeeOGwZSZMmMDKlSvLKiw5DCWKREREytuO5bjfOwPy0gMdiYiIiFRRERERLF++nLy8PAB+/fVX6tWrF5BY3G53hbepRFHFUaJIRESknBX9/CiurTNhl97ciIiIyLE7/fTTmTRpEgCfffYZl1xyyf5zOTk5jBo1ih49etClSxe+/fZbADZv3kz//v3p2rUrXbt2Zfbs2QCkpKQwYMAAOnfuTPv27ZkxYwbw9xFAX331FSNHjgRg5MiR3HXXXQwaNIh//etfbNiwgdNOO41u3brRv39/Vq9eDcCmTZvo06cPPXr04JFHHjnkvTz11FO0atWKk046iTVr1uw//vbbb9OjRw86derE8OHDyc3NZfbs2UycOJF7772Xzp07s2HDhoOWk7LhKotKjDHvAcOAXdba9gc5b4BXgKFALjDSWruwLNoWERGp1LbNJWjTZN/32TsDG4uIiIiU2r+/W8HK5MwyrbNt3WgeO7PdEctdfPHFPPHEEwwbNoylS5cyatSo/Qmep556isGDB/Pee++Rnp5Oz549Oemkk4iPj+fXX38lNDSUdevWcckllzB//nw+/fRTTj31VB566CE8Hk+JEi1r167lt99+w+l0MmTIEMaMGUOLFi34888/uemmm5gyZQq33347N954I1dccQWjR48+aD0LFixg3LhxLFq0CLfbTdeuXenWrRsA5513Htdeey0ADz/8MO+++y633norZ511FsOGDeP8888HIDY29qDlpPTKJFEEfAC8Dnx0iPOnAy38j17AG/6vIiIi1VrR5KdwBkXgKMqB7NRAhyMiIiJVWMeOHdm8eTOfffYZQ4cO/du5X375hYkTJ+5f6yc/P5+tW7dSt25dbrnlFhYvXozT6WTt2rUA9OjRg1GjRlFUVMQ555xD586dj9j+BRdcgNPpJDs7m9mzZ3PBBRfsP1dQUADArFmz+PrrrwEYMWIE//rXv/5Rz4wZMzj33HMJDw8H4Kyzztp/bvny5Tz88MOkp6eTnZ3NqaeeetBYSlpOjl6ZJIqstdONMY0PU+Rs4CNrrQX+MMbEGmMSrbUpZdG+iIhIZVLo9uIw4EqaS9DmaXgGP4qd+iQmZ1egQxMREZFSKsnIn/J01llncc899zBt2jTS0tL2H7fW8vXXX9OqVau/lX/88cdJSEhgyZIleL1eQkNDARgwYADTp09n0qRJjBgxgnvvvZcrrrjib9up5+fn/62uiIgIALxeL7GxsSxevPigMZZkS/ZDlRk5ciQTJkygU6dOfPDBB0ybNq1U5eToVdQaRfWAbcWeb/cfExERqVbyizyc98Ysbhq7EPfkp/CE18LZ+wYIrwXZShSJiIhI6YwaNYpHH32UDh06/O34qaeeymuvvYZvfAYsWrQIgIyMDBITE3E4HHz88cd4PB4AtmzZQnx8PNdeey1XX301Cxf6VodJSEhg1apVeL1exo8ff9AYoqOjadKkCV9++SXgS1ItWbIEgH79+jFu3DgAxo4de9DrBwwYwPjx48nLyyMrK4vvvvtu/7msrCwSExMpKir62/VRUVFkZWUdsZyUXkUlig6WKrQHLWjMdcaY+caY+ampGqIvIiJVy7+/W8nypEwy10zHtWU69L0dgiOwEbWxGlEkIiIipVS/fn1uv/32fxx/5JFHKCoqomPHjrRv337/QtI33XQTH374Ib1792bt2rX7RwVNmzaNzp0706VLF77++uv9dT7zzDMMGzaMwYMHk5iYeMg4xo4dy7vvvkunTp1o167d/sWzX3nlFUaPHk2PHj3IyMg46LVdu3bloosuonPnzgwfPpz+/fvvP/ef//yHXr16cfLJJ9O6dev9xy+++GKef/55unTpwoYNGw5ZTkrP7Ms2lroi39Sz7w+xmPWbwDRr7Wf+52uAgUeaeta9e3c7f/78MolPRESkvH27OInbxy3mxJa1uX7T7XQJ20nYPcshOBz70TnYgiwc104OdJgiIiJylFatWkWbNm0CHYbIMTlY/zXGLLDWdj9Y+YoaUTQRuML49AYytD6RiIhUJxtTs3nwm2V0b1SDtwfk09e5kknRF0Kwb5FGExmvXc9EREREpNIrk8WsjTGfAQOBWsaY7cBjQBCAtXYM8AMwFFgP5AJXlUW7IiIilUF+kYebP11EsMvBq4OD4fubyXDW5L+7+nKm20OIywkRtTE5qWAtlGCBRxERERGRQCirXc8uOcJ5C9xcFm2JiIhUNk98v5JVKRl812M5db54EW9wNBv6v8yen5zM3pDGoFbxEBmPcedDQRaERgc6ZBERERGRg6qoqWciIiLV0jszNvLLn8v4ufZrdFj2NAUN+mNumk27E4YREezklxX+6WaRCb6vOdqoQUREREQqrzIZUSQiInK8yc/aw+QfviR02c9MCZ9PZG4+uSc9Q3i/G8AYnMDA1vH8unInT57THmdEbd+F2bsgrllAYxcRERERORQlikRERI6Ce80vFE55htCdizgDL7lB4Xgb9cd98iOE1+3wt7KntE1g0tIUFm/bS7fIeN/BnF0BiFpEREREpGQ09UxERKSkCrIwE66nIH0Hr7nP5uk6L2Hu20jklV8QfECSCGBQ63iCnMY3/SzCnyjKVqJIREREjt7OnTu59NJLadq0Kd26daNPnz6MHz++3NudP38+t912W5nUNXDgQFq1akWnTp3o168fa9asKZN6y1JZxvjBBx9wyy23ADBmzBg++uijQ5bdvHkzn3766f7nZfm6Hy0likRERErIPft/OPP2MDLzela0vIW7rxlJWFjYIctHhwbRu2kcP6/YgQ2vicUoUSQiIiJHzVrLOeecw4ABA9i4cSMLFixg3LhxbN++vdzb7t69O6+++mqZ1Td27FiWLFnClVdeyb333vuP8x6Pp8zaOlblEeMNN9zAFVdcccjzByaKyvp1PxpKFImIiJRE7h7srFf5xdOdmi378PqlXQl2Hfm/0VPa1WFzWi7rd+dDeJymnomIiMhRmzJlCsHBwdxwww37jzVq1Ihbb70V8CUZ+vfvT9euXenatSuzZ88GYNq0aQwbNmz/NbfccgsffPABAPfffz9t27alY8eO3HPPPQB8+eWXtG/fnk6dOjFgwIB/1DF37lz69u1Lly5d6Nu37/7RNh988AHnnXcep512Gi1atOC+++474j0NGDCA9evXAxAZGcmjjz5Kr169mDNnDi+++CLt27enffv2vPzyy/uv+eijj+jYsSOdOnVixIgRAKSmpjJ8+HB69OhBjx49mDVrFgC///47nTt3pnPnznTp0oWsrCxSUlIYMGAAnTt3pn379syYMeOYY/zkk0/o2bMnnTt35vrrr9+fPHr//fdp2bIlJ5544v5YAB5//HFeeOEFANavX89JJ51Ep06d6Nq1Kxs2bOD+++9nxowZdO7cmZdeeulvr/uePXs455xz6NixI71792bp0qX76xw1ahQDBw6kadOmZZZY0hpFIiIiJZDx2wtEuXMYF3UFr1zSpURJIoCT2yTwyITl/LJyJ80iakP2Lkw5xyoiIiLl6Mf7Yceysq2zTgc4/ZlDnl6xYgVdu3Y95Pn4+Hh+/fVXQkNDWbduHZdccgnz588/ZPk9e/Ywfvx4Vq9ejTGG9PR0AJ544gl+/vln6tWrt/9Yca1bt2b69Om4XC5+++03HnzwQb7++msAFi9ezKJFiwgJCaFVq1bceuutNGjQ4JAxfPfdd3To4Ju6n5OTQ/v27XniiSdYsGAB77//Pn/++SfWWnr16sWJJ55IcHAwTz31FLNmzaJWrVrs2bMHgNtvv50777yTE044ga1bt3LqqaeyatUqXnjhBUaPHk2/fv3Izs4mNDSUt956i1NPPZWHHnoIj8dDbm7uIeM7XIyrVq3i2WefZdasWQQFBXHTTTcxduxYTj75ZB577DEWLFhATEwMgwYNokuXLv+o97LLLuP+++/n3HPPJT8/H6/XyzPPPMMLL7zA999/D/gSdPs89thjdOnShQkTJjBlyhSuuOIKFi9eDMDq1auZOnUqWVlZtGrVihtvvJGgoKDD3teRKFEkIiJyBPl7kghZ+DaTbD8eHHke0aEl/8+3TkwonRrE8suKHdwYlYBVokhERERK6eabb2bmzJkEBwczb948ioqKuOWWW1i8eDFOp5O1a9ce9vro6GhCQ0O55pprOOOMM/aPXOnXrx8jR47kwgsv5LzzzvvHdRkZGVx55ZWsW7cOYwxFRUX7zw0ZMoSYmBgA2rZty5YtWw6aKLrssssICwujcePGvPbaawA4nU6GDx8OwMyZMzn33HOJiIgA4LzzzmPGjBkYYzj//POpVasWADVr1gTgt99+Y+XKlfvrz8zMJCsri379+nHXXXdx2WWXcd5551G/fn169OjBqFGjKCoq4pxzzqFz584HfX2OFOPkyZNZsGABPXr0ACAvL4/4+Hj+/PNPBg4cSO3avt1uL7roon/8LLKyskhKSuLcc88FIDQ09KAxFDdz5sz9CbnBgweTlpZGRkYGAGeccQYhISGEhIQQHx/Pzp07qV+//hHrPBwlikRERA7DWsu8jx+it/UQc/qjNI+POuo6Tm2XwHM/raGgcxwhezeVQ5QiIiJSYQ4z8qe8tGvXbn+iAGD06NHs3r2b7t27A/DSSy+RkJDAkiVL8Hq9+5MPLpcLr9e7/7r8/Pz9x+fOncvkyZMZN24cr7/+OlOmTGHMmDH8+eefTJo0ic6dO+8ftbLPI488wqBBgxg/fjybN29m4MCB+8+FhITs/97pdOJ2uw96L2PHjt0f9z6hoaE4nU7A997rYKy1GPPPj9u8Xi9z5sz5x7qR999/P2eccQY//PADvXv35rfffmPAgAFMnz6dSZMmMWLECO69996DrhtUkhivvPJKnn766b+VmTBhwkFjPPA+jtbBrtnXTklf96OhNYpEREQOY8LUOfTaM5HlCWcxoHevY6qjc4NYAPaaWEz2LjiGNwgiIiJy/Bo8eDD5+fm88cYb+48VnzaVkZFBYmIiDoeDjz/+eP96OY0aNWLlypUUFBSQkZHB5MmTAcjOziYjI4OhQ4fy8ssv708IbdiwgV69evHEE09Qq1Yttm3b9rc4MjIyqFevHsD+tY7K2oABA5gwYQK5ubnk5OQwfvx4+vfvz5AhQ/jiiy9IS0sD2D/17JRTTuH111/ff33xe+nQoQP/+te/6N69O6tXr2bLli3Ex8dz7bXXcvXVV7Nw4cJjinHIkCF89dVX7Nq1a38sW7ZsoVevXkybNo20tDSKior48ssv/3FtdHQ09evXZ8KECQAUFBSQm5tLVFQUWVlZh3xNxo4dC/impNWqVYvo6Ohjir0kNKJIRETkENbvysYz7RlwOOh46ZPHXE9ijO8TrjRiqOvOg8JsCDn6kUkiIiJyfDLGMGHCBO68806ee+45ateuTUREBM8++ywAN910E8OHD+fLL79k0KBB+6dtNWjQgAsvvJCOHTvSokWL/evlZGVlcfbZZ5Ofn4+1lpdeegmAe++9l3Xr1mGtZciQIXTq1Inff/99fxz33XcfV155JS+++CKDBw8ul3vt2rUrI0eOpGfPngBcc801++N+6KGHOPHEE3E6nXTp0oUPPviAV199lZtvvpmOHTvidrsZMGAAY8aM4eWXX2bq1Kk4nU7atm3L6aefzrhx43j++ecJCgoiMjLysNvVH07btm158sknOeWUU/B6vQQFBTF69Gh69+7N448/Tp8+fUhMTKRr164H3SHt448/5vrrr+fRRx8lKCiIL7/8ko4dO+JyuejUqRMjR47829pGjz/+OFdddRUdO3YkPDycDz/88JjiLilzLMOeKkr37t3t4RbgEhERKU8PvPsdT24dQV7Xa4k8+/ljriev0EObR3/inU5rOWnN43DrQohrVnaBioiISLlatWoVbdq0CXQYIsfkYP3XGLPAWtv9YOU19UxEROQg5m/eQ+Kmr3AYiBx4e6nqCgt2EhseRFKRfxRRTmoZRCgiIiIiUvaUKBIRETmAtZZnJi3nItd0CpsMhpjS7RwBvulnm/N9w8DJ3lXq+kREREREyoMSRSIiIgf4ecUOopN+J4E9hPS8qkzqTIwJZV1uuO9JjhJFIiIiVU1lXrZF5FCOpd8qUSQiIlJMkcfLcz+tYVT4DDzhtaDlaWVSb52YUNZmhmAxGlEkIiJSxYSGhpKWlqZkkVQp1lrS0tIIDQ09quu065mIiEgx4+ZtI2v3dvqGzYdON4MzqEzqTYwOZVeuB1ujJkaJIhERkSqlfv36bN++ndRUrTMoVUtoaCj16x/dMgpKFImIiPhlF7h55be13FlrHo5sD3QfWWZ1J8aGAVAUWovg7F2YMqtZREREyltQUBBNmjQJdBgiFUJTz0RERPzenr6RtOx8zmMK7gZ9y3QL+8QY35DfvJCaWK1RJCIiIiKVlBJFIiIiwK6sfN6esZHbm+0kLHsrrjIcTQS+NYoAspw1IFvD1kVERESkclKiSEREjlu5OVlk5xcC8Mpv6yh0e7kqbAbekBhoe1aZtlUn2pco2mNqYHKUKBIRERGRyklrFImIyPEpJ42QV7vidQSxPXEQu9Y05LpOfYle+yPerldAUFiZNhcR4iI61MVObzSmKAcKsiEkskzbEBEREREpLSWKRETkuFQ46zWCCjLIaXQKNTd9z9tBudhVBoPF2e3KcmmzbmwYSUX+5FDOLiWKRERERKTSKZOpZ8aY04wxa4wx640x9x/kfIwx5jtjzBJjzApjzFVl0a6IiMgxyduLa97bFLY6i9UD36BT3hjGtX6F7I5XUdjzJqjToVyarRMTypZ8f3JI6xSJiIiISCVU6hFFxhgnMBo4GdgOzDPGTLTWrixW7GZgpbX2TGNMbWCNMWastbawtO2LiIgcrcLZbxBclE3QwHt4dsIaakRFcNZ5ZxAePLJc202MCWXd9nDfE+18JiIiIiKVUFmMKOoJrLfWbvQnfsYBZx9QxgJRxhgDRAJ7AHcZtC0iInJ08jNxzh1DQfPT+CUtngVb9nLnyS0JDy7/2dh1osNYn+Nf+yhbiSIRERERqXzKIlFUD9hW7Pl2/7HiXgfaAMnAMuB2a633YJUZY64zxsw3xsxPTdWwfBERKVtFf7yFsyADM+A+nvtpNc1qR3BBt/oV0nZibChpRPueaOczERGRUsnML2JXZv7+54WZu8lbOh48GpMgUhpl8fGpOcgxe8DzU4HFwGCgGfCrMWaGtTbzHxda+xbwFkD37t0PrEdEROTYFebg+GM0hU2G8L+1UWzcvYP3R/bA5SyTJfuOKDEmFDcuioJrEJS9s0LaFBERqY5mrtvNnV8spqjIzYShXmqtG0f4hh8J9haCeRc6nB/oEEWqrLJ4Z7wdaFDseX18I4eKuwr4xvqsBzYBrcugbRERkRIr+vMdnPl7SO54K6OnruesTnUZ1Dq+wtpPjAkFIDe4JlZTz0RERI5akcfL05NW8sR7X3MjXzHR3kbjHy4hdMtUcjqMwBsUjt36R6DDFKnSymJE0TyghTGmCZAEXAxcekCZrcAQYIYxJgFoBWwsg7ZFRERKpigPx5zXKWhwAnfOCSYypIjHzmxboSHUifGtT5TlqkFU9q6DDskVERGRg9u0ch5/THyLC3Nn8EBICrbIsCuuG3fuHA7Nz+LFc3rjTV+D3T4fZ6CDFanCSp0osta6jTG3AD8DTuA9a+0KY8wN/vNjgP8AHxhjluGbqvYva+3u0rYtIiJSYsu+xJm7i59aP8Wi2em8fFFn4iJDKjSEyBAXUSEu9hJL3ewNFdq2iIhIVbZ6zg+0+OlSGgI74rqT0eU2gtqfRULN+rSctoFnf1pNmxkbua5BD+zs16AoD4LCAh22SJVUJlu8WGt/AH444NiYYt8nA6eURVsiIiLHwrt5Np6w2twzL4qBreI4u3PdgMSRGBvKLhtN+zxNPRMRESmJles3U/Onm0ly1MF9xQ80bdL0b+dvOLEpy5LSeebH1Zxwcivaet2QshQa9gpQxCJVW8Ws3ikiIhJgNmUJK2xjHMbw1LkdMCYwE7/qxISRVBSFKcyBwpyAxCAiIlJVrEzKIOWTa4gzmQRf9ME/kkQAxhieP78TzeMjuXWG/0/cpPkVHKlI9aFEkYiIVH9F+Zjda5iRXY/7TmtNvdjADUVPjA5lc0Gk74kWtBYRETmktTuzGP/OfxjCPPb0eYA6rXsfsmxEiIs3R3RnW1E0aa4EvNvmVWCkItWLEkUiIlL97VqBw3rYGd6KEb0bBTSUOjGhbMoP9z3JSQ1oLCIiIpXVxtRsHn7rS+62H5JRdwAJJ991xGua1IpgZN/GzCloQtGWPysgSpHqSYkiERGp9rI2LQCgUbveOByB3WssMSaUVG+M74lGFImIiPxDkcfLXWP/4CnPizhCooi+5B1wlOxP1xtPbMZKR0tCcpIha0c5RypSPSlRJCIi1V7Sqj/JsOGc2Kt7oEMhMTaM3dafKMpRokhERORAo6eu56zdb9OCbZjzxmCiEkp8bY2IYJp2GQTA+oXTyilCkepNiSIREan2nDuXstHVnJZ1ogMdCokxoaSxb0SRpp6JiIgUtyI5g3lTJzLK9RMFXa8hqNXRb5499JRTKMLFsrm/Ya0thyhFqjclikREpFpLSsukYdEmSOwY6FAA3xpFRbjId0Xj0ZB4ERGR/QrdXh7+fA7PBY2hILoxIac9cUz1hIdHkh7dijqZK5i6RqN3RY6WEkUiIlKtzfpjFiGmiAZt+wQ6FACiQlxEBDvZHVQXm7o20OGIiIhUGq9PXc/5aW9Rl904z3sDgiOOua4aLfvRybmRF35cicerUUUiR0OJIhERqda2r/TtelKrRc8AR+JjjCExNox1Qa1wpCwCryfQIYmIiATc8qQMlkz7hstckynseROuxn1LVZ+rYQ/CycfuWsX4RUllFKXI8UGJIhERqbY2pGZTI2MlRY5QiGsW6HD2S4wJZYltjqMoB1JXBzocERGRgHJ7vDz2+SyeDXqLgtjmhJz8aOkrre/bwGJYXBL/+nopT3y3ksz8otLXK3IcUKJIRESqrYmLk2nv2Iwnvj04nIEOZ7860aHMym8CgN0+P8DRiIiIBNZnc7dy0Z4xxJt0XOe/DUGhpa+0RhO8YXFc3TiNi3o04P3Zmxj8wjS+WrAdr6aiiRyWEkUiIlItWWv5fsl22ju3EtKgS6DD+ZvEmFAWZNfAE1oDz9a5gQ5HREQkYDLyihj/6zQudP1OUa+bcdbvWjYVG4Ot142gHQv577kdmHjzCTSoGc49Xy7hvP/NYPyi7eQUuMumLZFqRokiERGpllYkZ+JN20iYzcMkdgp0OH9TJyYMrzXk1e4ESQsCHY6IiEjA/G/qes4q/AGvI4iQE24r07qdDXri3L0G8tLpUD+GL0d1YWKLH/hs9/ks/Op5uj35C7d+tojJq3ZS5PGWadsiVZkSRSIiUi19tySZjs7NvieVLFGUGOsbUp9esxPO3auhICvAEYmIiFS8rWm5fD5rNRcFz8Tb5myIrF22DdTv5vuavJDcbUvxvDWIjts+wVGjEf8J+oD348YyZ20yV384n1Nfms6Mdall275IFaVEkYiIVEs/LE/h1Jo7sc5gqN060OH8TWKML1GUHNEeg4WkhQGOSEREpOI9+9NqznHOJMybg6v39WXfQL1uWAyFvz1J6PtDcOSlkTP8M0Ju/YOcnrfRJ/17ZiS8zDvnNcJrLSPencvNYxeSkpFX9rGIVCFKFImISLWTll3Atj15dHBswVurNbiCAx3S3yRGhwGwxtUCAM+2eYEMR0REpMLN37yHScuSuSliKu6EjlC/R9k3EhqDt1ZLglMWkNdoEPaG2UR0GAoOJxFD/0PuWW8RkrqUE6dfwDf9tvBU91wWr1rDkP+bxpu/byC/yFP2MYlUAa5AByAiIlLWViRnApaE3DWYJmcFOpx/iA5zERbkZHNuCO4azbDb5lF59mQTEREpX16v5T/fr+TUyA3E523Ae9JrYEz5NHb6C2TsSSG62wUYx9/HSYR3vYjC2i0wn19GzV9u5zLgMhcUEMLyyQ05f8bdnHNiLy7t1ZDwYP3pLMcP9XYREal2lidnUI/dBBemQ93KtT4RgDGGRnHhrN2Zha3bDcemqWBt+b1JFhERqUR+WrGDJdszeLXxTLx7Y3F0OL/c2nI2G0BMs0OfD27QFe9ti8jdtR7v3s3YvVsx6ZvpsPRT3rT/4axJD/PGtA1cO6Apl/RoSEx40BHbTM0qYOb6VGavTiIrfQ8xtevRMC6cRnHhNKwZTmiQE4cxOB0GpzE4HOB0GBzG7D/u8VqstXisxWshISoEl1MTgqRiKFEkIiLVzorkTE6MToFCoE7lSxQB9G4ax+fztmGH9sC54gvI2AaxDQMdloiISLn7afkOWkfk0HDXFDw9r8cRHB7QeBzBoYTXbw/12+8/5u14DomfnMvUOq9xb+R/eebH1bzw8xr6NIvjlHZ1OLVtAvHRoeQWulm/K5t1O7NZvSOTWevTWJmSSTTZjAt9mmYk8ULqVTyfOwA49g+E2tWN5pOre1EjonJNp5fqSYkiERGpdlYkZXBvRBK2yIFJaBfocA6qd9M4Ppi9mXVBrWgHsH2eEkUiIlLteb2WWet382TsTEjz4Op5TaBDOihH4754LviIqM8v5fXIZ1l744dMXLmHX1bs5JEJy3n02+UkRIWyMysfa33XBDsddG4Yy0ND6nLxqluISE/CndCRh1Le5I4OKWw/4Rm2ZDsp9HjxeC1ea/F4fa+Jd9/oIa9vBJEDiwMPQcZDXm4+b0xdxW1vTeLl89sQHQyO4HCcNfS+QcqHEkUiIlKtZOUXsTktlzaJm/DGtcQZ4E8pD6V305oYA1P3xtPGGYp36zxc7YcHOiwREZFytTIlk4ycXE50/oC76RCCajYNdEiH5Gx1Ku6z38A1/jpaTL+FBy79lPtPa826Xdn8vHwHG1KzaVo7kpYJkTSPj6JxXDiuwkyKPjgbV/oavBd8RHCr0yj4/f8In/40TXctpdkF7+Oq3/XvDRXlUbj5T9wbZ+DYOpvgnYtxuHP/VuRKF5ABvOt7bo0DbpwN8W0q5LWQ44sSRSIiUq2s9C9kXTdvDTQfFOhwDik2PJi2idHM3JTO9XU6wvb5gQ5JRESk3M1cv5uTHQsIL0yF3tcHOpwjcnW6kKL8DIJ/vAf3i+0obHgiDZoN5Kbug3HGtPh74fwMij46F1fqCrwXfIizzVAAQgbdi7tJP8xXo3C+exLu0JpgHL5kj3HgzE0l2FtIkHFQWKsd+e0vwYbGgjMYnEH7v25IK+CTeTuoHR3CPfmvYRd/hjnliYp/UaTaU6JIRKSqKMzBk7MHZ40GgY6kUluRnEl9s5vQ/FRo2DPQ4RxWn6ZxfPTHFty9uxK66H1wF4JLaw+IiEj1NWNdKiMjluJ11sTRfEigwymRoF7XUhheG/fSrwne9CuuVV8AUBRVH29QBDhDsK5QnLm7cGVtx3v+hzjbnPG3OlyN+8JNs8n9/WVs7l6wXrAejPVSGF4LZ9MTCGnSl5Cw2EPG0REY2noX1328gAFhM+m+9AucJz0GDu2dKmWrTBJFxpjTgFcAJ/COtfaZg5QZCLwMBAG7rbUnlkXbIiLHCzv1acySz+CedeDQrheHsjw5g0HhG8EDNOgV6HAOq2/zON6ZuYktYW1p7SmAncuhXtcjXygiIlIF5RV6mLd5D/8LW45tMqBKJTiCO5xDcIdzwOulMHkJ7nVTYcdScBdg3PkYTwGeiDqY0/6L64Ak0X7hNQk/vXQjgAa2iud/l3blo0/60KvoVdg8A5oOLFWdIgcqdaLIGOMERgMnA9uBecaYidbalcXKxAL/A06z1m41xsSXtl0RkeON3T4PR+5uSN8MlXg+f6CtTM7k3rCNeAsicMS3DXQ4h9WjcU2cDsP03Ma0Brzb5uFQokhERKqpuZv3UN+TRExRKjQbGOhwjo3DQXD9LgTX7xKwEE5qm8CnTU4mK+ltghd+RogSRVLGyuIj6Z7AemvtRmttITAOOPuAMpcC31hrtwJYa3eVQbsiIscPazE7V/i+37E8sLFUYvlFHtbtyqa9ZzXeet3BWblnWEeFBtGhXgy/bHPhiUjAs21eoEMSEREpNzPXpXKiy/9+pqkmmJTGrad24Ad3L8zKiVCYe+QLRI5CWSSK6gHbij3f7j9WXEughjFmmjFmgTHmikNVZoy5zhgz3xgzPzU1tQzCExGpBjK2YQqzfN/vVKLoUNbsyCLMm0PtvA04G/YOdDgl0qdZHIu3Z1BYpwsmSQtai4hI9TVj3W5OD1+DN6Yh1GgS6HCqtC4Na7C53jCCvbnkLZ8Y6HCkmimLRJE5yDF7wHMX0A04AzgVeMQY0/JglVlr37LWdrfWdq9du3YZhCciUg34RxNZhwtvyrIAB1N5LU/OoItjPQ68mEZVI1HUt1kcbq9le3g7XOmbIHdPoEMSEREpc7uy8lm7I4OO7mW+0UTmYH9GytEYOux8kmwcKdM/CnQoUs2URaJoO1B8C576QPJByvxkrc2x1u4GpgOdyqBtEZHjg38UkW06SCOKDmNFcib9gtf7tput3yPQ4ZRI90Y1CXIa5rr9604lLQhsQCIiIuVg1vrdtDebCPVk4dCaOmWiQ4MaLIk9hYZ755C5OynQ4Ug1UhaJonlAC2NME2NMMHAxcODYt2+B/sYYlzEmHOgFrCqDtkVEjgveHSvwxjbG0agPjoytkJce6JAqpRVJGfQN3oC3djsIiQp0OCUSFuykc4NYJu5KwBoHnq1zAx2SiIhImZuxdjcnhfr/BGwyILDBVCMtT7kGl/Gy4Pt3Ah2KVCOlThRZa93ALcDP+JI/X1hrVxhjbjDG3OAvswr4CVgKzAXesdbqI3ERkZLauRwS2kFCB//zFYGNpxIq8nhZuyOdVu7VmIa9Ah3OUenTrBbzkgsprNkK73YtaC0iItWLtZaZ63dzSuhqPLXbQqQ2wS4rzdt1Z0twC2pvmsDenMJAhyPVRFmMKMJa+4O1tqW1tpm19in/sTHW2jHFyjxvrW1rrW1vrX25LNoVETkuFOVh9mzAUac91GnvO6bpZ/+wITWbpp4thHjzcFSRhaz36dM0Dq+FlKj2OJMXgtcb6JBERETKzNqd2WRkZdG8YAWOZgMDHU61E9b9Utqbjbzy+SRyC92BDkeqgTJJFImISDlKXY2xXt+IoqhEvGE1sTu0oPWBViRl0s2xxvekio0o6tIwlhCXg6W2OY6CDNizIdAhiYiIlJkZ61Lp6liHy1uA0fpEZS6+z2V4cTBg08tc8cr3rN2ZFeiQpIpTokhEpBJye7w88M1S3pu5Cfe+Xc4S2oMx2IT2eJUo+oflyRn0cq7DE5kIMQ2OfEElEhrkpFujGkzaWx8Aq+lnIiJSjcxYt5thkWuwDhc06hvocKqfqAQ8Qx7jRNdy3s+5gS9ff5Av524KdFRShSlRJCJSCX2/NIXP5m7jie9XMvHnX3A7w6BGYwAcddrjSF0NHg0tLm5FciY9XOugQa8queVu32Zx/LorBk9QJG4taC0ix5PsVArfOgnW/RboSKQcbN6dw6z1uxnoWomt263KbDZR1QT1vwN74xxsvR485PyI9t+fyej3P8RaG+jQpApSokhEpJLxeC2vTllH6zpRvDmiG43cm1heVJcbP13M9r25mDodMO58TU8qxuu1pCVvIt6birNRn0CHc0xObVcHLw6SI9pikhYEOhwRkYrhcVP4+ZUEJ8+DTdMCHY2Ugxd/XUtNZx5181ZrfaJy5opvSfQ1E8k790MSQgq5ecttpLw/Am9GSqBDkypGiSIRkUrm+6XJbEzN4bYhLTi1bQJdgpNxJXZg6ppdXDBmDt74dr6Cmn6239Y9ubQpWul7UsXWJ9qnRUIUbRKj+aOgMc5dK6AwN9AhiYiUu4JfHid42yysMxibsT3Q4UgZW5GcwcQlyTzQdrdvvUWtT1T+jCGs0zmE3D6fMfZcam/9Cft6d/J+fxU8RYGOTqoIJYoqmrsQ99snw4oJgY5ERCohj9fy2pT1tEqI4rR2dSBrB478PbTv2pf/ntuBlIx8VrkTfXP8tfPZfku2p9PNsRaPMwwSOgQ6nGN2due6/JzRAGM9kLIk0OGIiJSJ/OmvsnfGW7iLfFt3/7AshRs+XkD+km8I+fM1CrpchW3YB5u+LcCRSll7/uc1xIQFMTRiDTYoHOp1D3RIx42IyGg2dbiLs7zPk5/Yg7Cpj1A0uh+kaUS6HJkSRRVt7U+4kubCxqmBjkREKqEflqWwflc2tw5pjsNhYOcK34mEdvRrXguAWZuzsHEt8aRoRNE+3y9NobdrHbZeN3C6Ah3OMTuzU10We5sD4NmmBa1FpBoozCVkyqPUmHwvntF92TjzK+75cjHrVi7AMfEWCut0JeSMZ3HENACNKKpW/tyYxrQ1qTzQw4FrzffYhn3AFRzosI4rF/aoz6rCeCZ1eJWC8z/GmbEF5r4d6LCkClCiqIK5F3wEgHfP5sAGIiKVitdrKXJ7eW3KOprHR3J6+0TfiX2jhhLakRAdSrPaEcxanwaJHTAaUQTA3pxC5q7ZSku24GzUO9DhlEq92DCaNG5MionHu00LWotINZC6CoMlp9MosB6a/nY1H5gneDf0ZXK9LlwXfwSuEIipj8neCe7CQEcsZcBay3M/r+GyiHlcsOgK8BThGPhAoMM67nRtWIOmtSP4csF2QtqfBfFt8O5aFeiwpApQoqgiZabg3DjZ9336lsDGIiIBZa0la/c20ud+TvrXd1Iw+gRyX+zCrp0p3Dq4OU6Hb9cu784VeKPrQVgNAPo1r8W8zXvwxrfHkb0DctICeRuVwqRlKbS163HiwTSsmgtZF3dW53rMczfDs21+oEMRESm9nb714yIG3MKYtp/wSNFIOgQn09CmcGPBLSxMj/CVi6mPwUJWcgCDlbIyZfl2zk56kac8L+Gp3Q7nTbOgQY9Ah3XcMcZwYfcGzNu8l42p2Zj41pC6OtBhSRWgRFEF8iz+1LeIW9uzMRnbwOsJdEgiEgjWUvTxBUS93p7YH64jetVneIKjiMzdyhOR3zCsY92/yu5YBvsWr8a3hXpuoYcNjv9n767D46ryP46/zx2Pu3uTursrhRYrpUWLu+vCssvuAgss7u5aKFKgtFiNurtLGnf3ZOze3x+T8kPqneQm6Xk9T55m7ty55xNaMjPfOed7kjwHiuXys+8253Oh31Y0gwXiB+sd56Sd1SuabVoq1oZCqJG7lEiS1L5pxTvQTD5srgvi5aXZ1Pa6CtPdW6m5Zhm7LH15f2Wm58TAOM+fcvlZu+euLSH22/O4wriAxkG3YL72RwiIOfoDpRZxfr9YDIrgq415iPCung8aG6v0jiW1cbJQ1Fo0DTZ/iituKKSMQ6guqMnXO5UkSTpoylqLOWMB8yyTuSvgeaYFzuKCpgf50HUG57jmIwo2e0502RHl+1Giev722KEpoQgBS6ujPAeKTu3lZznlDWzJLuV0dSWutElgDdA70kkL8TVDnKfZp5on+xRJktS+qUU7cYV15e4vtxEVYOWRKT0x+gQRlNCLSwYn8POOInIrGiAw3vMAWShq1xwula3v3UKyO5u1g1/GdtYTYDDpHeuUFhFgZWzncGZvzMMd2tlzsGyfvqGkNk8WilrY/J1FXPL2GpyZqzBUZmAYcDkEJ3nurJTLzyTpVNPocLPiq5do0CzMCbuRyqBeBPj6EOFvIbfPHbh9wnHPuwdUFcr2eYrKkf8/oyjIx0yPmAAW5rhR/SJRi07tGUXfbclnpLIdX1clpr4X6x3Ha3oPHI1DM1Cwc4XeUSRJkk6cpiFKdrK5KYbsigaeu7APgbb/LxpcMSwRIQQfr86CwFjPwWq581mbZq/F/uvTh1z6XlzTxMOvvU//qgVsiJnB4MlX6BBQOpQLBsZTUmtnbX2E54DsUyQdRfvdGqadMCiC1RnlpP8yiy4mX5Tu50F9iefOqmxglJ7xJElqRQ0OFze/v4JX6n+lOO4M3rl+3F/OcW3+L6Y5N+Hc+BEms81zMLLnH84Z3imMD1Zm4u7cA+UULhRpmsZ3m/P5b8B6VIJRUk/TO5LXTOiVwJ65SfhmrtU7iiRJ0omrK0ZprODHmlCuGZHM0JTQP9wdE2TjzF7RzFqXy52ndcbXJwwhZxS1aeqKl7AsfwZn1gpMV34LigGADVkV3PLpBt53vkaDNYIRV/8PhNA5rXTQ+K4RhPqa+XS3xjCjDVG6V+9IUhsnZxS1sAndIjmriz8JRb9Qn3ouWPwgMB5NKHJGkSSdQhocLq7+YD0hub8QIBpJPu2GQ55n7HsxjtihKIsegczlaAYzhKb+4ZzhnUJxujWKbKkoZftO2R1ituVVU1xWxhDHatTuUzvUlru+FiPlQb2JbtiN03lq/v1KktQBNO/OuV8kctOYToc85ZoRSdTaXXy9IRctIA61Ss4oarMaq2Dtm6iBiZiyl+Ja+BiapvHJ6iwufnsN05Ul9BQZ2M56HMy+eqeVfsdsVJjaL5YFe0pxhqShyobW0lHIQlEreKTTfnyFnbfrhnsOGExo/jFolVm65pIkqXU0OFxc9cF61mdV8PeojbgDEyBxxKFPFgLTOc+h2Gtgy6doYV3B8MfJn4OSQjAqgk32OITqhLJT81Ohbzfnc5ZpIybVjrEDLTs7KKzrcHyws3nDar2jSJIknZC6nK0AdOk9lHB/yyHP6ZcQTP+EID5YlQVB8bJHURumrnkDxVGLcslMnH0ux7jqeT54/zX+PWcnZ6TauMfwBa64IYheF+gdVTqECwbG43Rr5CjxcumZdFSyUNQKAvd+Qbk1kVf2h7AqvcxzMDhJFook6RTxr293sCGrgrfOjSCyfB30nQHK4X/9iqieOAfe0Px9j7/c72sx0i8hiPnl4QA49y1qmeBtmNOtMndrAVf6rfMU3jrAbmd/1mXAeAD2blyscxJJkqQTk71rPYVaCJeN63PE864ZmUx2eQN57lBETZ5nExipbWmqhjVv4O58FkT1onjkf9lnSGV6zmM8NNzCS9HzMTSWYzzzKbnkrI3qEuVPSpgvW5qiUGoLoKlG70hSGyYLRS2tLB1T/lr8hl5JfIgP//l+Jw6XihKc1NyjSJKkjuzbzXl8szmf28enMaFpEQINQ99Ljvo484R/4ozsi+gy+ZD3D+sUxk/FATTGj8aw/GnUilPr98mK/WUo9cV0a9wEvS7qkC9KzeGdqDBF07NkHqU1TXrHkSRJOi4NDheGsl2U+aSSEu53xHPP6BGFQRGkO4IQjnpoqmqdkNIxU9e8hWKvxjD2flall3Humxu5zXU3FrOZKzLvx7D+bdS+MyCmn95RpSMY2imUJZXNvcLkzmfSEchCUUvb/iWaMGAZMIOHz+lBekkdH67KhOBElLpicDbqnVCSJC9T7Q2oLifZ5fX869sdDEwM5vZxKWhbZuJKHAXBiUe/iDUA081LofuUQ949olMoqiZY1+sh0DQcc+48pT6B/XZzPhdZ16GgYuh7kd5xWoYQ1A2+k35KOqt/+VzvNJIkScflq7UZpGh5hKf2P+q5JoNCpL+FHHeI54Bcfta22GvRVr9KdthoLprbyIz31hLqa+at26divugDlMoMNKMNw2kP651UOoqhKaFsd0R5bsjlZ9IRyEJRSxv1N9QrfwD/KCZ0i+S0bhG8uHA/VZYYz/1VOfrmkyTJu1Q37ncn4nqxH2999CEGRfDixX0x5q7GUJ2Dof9lXhmmb0IQVpPCr0U2nOP+gzX7V+wbPvHKtds6TdNYvr+UCy2rcEX2hbA0vSO1mLix11KoRNF518toqqp3HEmSpGPicqssXLESs3ATlTbgmB4TGWjlgCPIc0MWitqMxXuK+fSVf2OwV3N7/kQqGxzcOSGNb28dQXKYLyJ1Au7pH8GFn4BfuN5xpaMYmhJCrhaBS7GAbGgtHYEsFLU0oxlD0rDfbv7n7B40Od38nN/c0E/ufCZJHYq641tMpTtwNNbwv5p/8lXCN8TY3Lg3fYpq9kd0O9cr41iMBgYlhbDqQBmWYTdijxmCccG/UKsLvXL9tiyzrJ7QxkwS7PsRfTrobKJmislMZvdb6aplsGPxZ3rHkSRJOiY/7SgiuDbdcyPyr732DiU60Mqu+kDPDVkoahPWZVZw9ycrObvuazKDh/P83dcw/+4x3HVaZ/ws/7/RhrHnFJTUcTomlY5VhL+VlIgA8gxxcucz6YhkoaiVJYT6EB1oY1djsOeAbGgtSR2H6kZd8hS1AWkMaXiBJcHT6JzzBa7XhiN2z0HrMRXMPl4bbninMPYV11FS78A49TWEuwn79/d0+CVoG7MrOc+wEk0YMPSernecFtf/nBvJ1KIJWvssyFlFkiS1cZqm8fayDIb4FqIpJgg9tlmfUQE29tSa0QwWqM5t4ZTSITVW4vxoKvZ3JlH17hQqP7qUDyzPE0Qtyec/QmrEkXtNSe3DsJRQdjii0EpkoUg6PFko0kF8iI1dNTY0o1U2tJakDkTd8Q3Gin08VH02UWGhDL75bZoumwtCoLgaMfS/wqvjDe/kaUb41E97aQpIxj7y79gO/Ej52s9pcrq9OlZbsimnisnGDbgSRoFfhN5xWpzVYmFd4vXEOzOp2PCl3nEkSZKOaG1mBdvzqxkTWIIW1hmM5mN6XFSghXqHhts/Bq1KzijSg7r8BYyZv+JW3RQV5JJGDj2sZbh7Xdwhdxc9VQ3rFMpuosUOPwABAABJREFUVyyGmjyw1+odR2qjvFIoEkJMEkLsFUKkCyEeOMJ5g4QQbiFEx/8I+Ajign3IrWpEC0xAkzOKJKlDUF0uKn58lL1qHOmh4/nk2iH4mI3YUkdhvGUVTVcthPhBXh2zd1wgN4xO4ZvNeUx+aTnbEy7HHtGX0J9vxvX+WZSs/oy6hgavjtkW7M7KJ5kCDMnD9Y7SavpNvpZ9aizqr0+A2vpFQKdbpbLeQU2Ts9XHliSpffl6Yx7+FiPR9gzEMS47A4gKtAHQ5BONJmcUtb6aAsTat3D3mM6Nxsc4u+kxii5fhuX+PRimvaV3OsmLhiSHsF+L9dyQO59Jh3HShSIhhAF4DZgMdAcuEUJ0P8x5TwG/nOyY7V1csI3iGjtqUAKa7FEkSe1edaOTd958jrCmbNYmXMeXN48gJsj22/2K1Q9rkneLRABCCP55ZjdmXT8UgIveXc8LUU9SMPB+zLV5RPxyM5aXe1E1919o9jqvj6+HmiYnlrIdKGgosUffSaej6BwdxJygKwhrzMKxpXVmFamqRmF1I/sLKsjZvBDn/IfhmxvA0fGKj5IkeUeT080vO4qY0tUXQ23+8RWKAqwA1FmiZI8iHbiXPAmam5e1C1m+v4zHzuvJ8E5heseSWkConwVXSBfPDbn8TDoMb8woGgyka5qWoWmaA5gFHGo/59uB2UCJF8Zs1+KDPT1KGnziEFVZHb6fiCR1ZKW1ds5/dRkTSj+kwqcTl19zB1aToVUzDEkJ5ac7R3HZkETeXFfBpbuHs2TSfEqnfEZj5AACN75K02eXg7sFZ4NoGk0bPqVp3t9bdMbLlpwqeooMz43ovi02TluUPPpSdqsJOBa1zqwi1/5F+Hx7NSkf9qHTvAsI3/YGAfu+oWnzrBYfW5Kk9mnJ3lJq7S4uiK/2HIjsecyPjQ70FIrKjRGIuqKWfc6S/qhsP8rmT1keeA4vb3Jy/ahkLh6coHcqqQUlpXXHoRlxl+zWO4rURnmjUBQL/H5+aF7zsd8IIWKBqcCbXhiv3YsL9sw0KDVGI+y10FipcyJJkk7Uu8sz6Fm1mFRRQPCZ/0YorVskOsjXYuTR83oy87ohANzw6WYe3xtD4/kfU3fa09iyF9P4ze0tUpjW6stpnDkD67xbsW54E/f6970+xkGbcirpo2Ti8o895bbhPat3LO8o0/Grz8a1c06Lj2f85X58C1dTnXwm2RPeYt+V22kK7YGy7h35AYckSYf0/dZ8wvzM9DQ2zwg6jhlFEQGeHYELCUNoKtR2/F0824r6nx+hSTNxd+FE7jotjX9M7qZ3JKmFDe4UyQEthuqcHXpHkdoobxSKxCGO/fkV5IvA3zVNO+pHoEKIG4QQG4QQG0pLS70Qr+2JD/HMKMon0nNANrSWpHappsnJ52uzeMDne1xh3RDdDzWZsnWNSA3j57tGc8f4VH7YXsjEF5Yyx3gGNYPvxrbzcxoXPH7YxzqdDuoL91GzdS7Vi1+g+teXqdnyHbVZm2isLsfl+uuvcMfehbhfG4YlYz6NY/6DM2EUYtF/oba4RX6+jdmV9DdlIWL6tcj12zKb2UBgv6lkalHYlzzfssUaTUOrzmdD0GR+Sv4nhTETCQkNh8HXYS7fhStrZcuNLUlSu1Tb5GTR7hLO7BWNUrILzRoM/lHH/HiL0UCor5lsl2ejBrn8rHXs2rAE3/S5fKCdxf8uH89dp3VGUQ719k7qSIamePoUKWVy6Zl0aEYvXCMPiP/d7Tig4E/nDARmCSEAwoAzhRAuTdO++/PFNE17G3gbYODAgR3yI8vIACtGRZDhCmU0QGUWnIJveiSpvft8bQ4jnKuJFjloYz8EpW1sJGk1Gbjn9C6c2zeWf323nX99t4P/Ggbzhv9EJqx6hgw1mMTTbwG3k8b05Wh7f8SUvRxzdSa+quOw13UbfXDYQnHbQlFtoQjFgE/mfBzBaWiXfoktri/0Ohft9eE4f/onpgvf8+rPpaoa6TkFxIkCiL3Wq9duL24Ym8brG87m0fJ3UTOWonQa2zIDNVVhcDexIM/Ae9n//2ljrG8Ev5oCUFe/hTF5ZMuMLUlSu7RgVzF2l8qUvjFo83dAZA+aX/sfs6hAK+n2QM8NWShqcT9sKyTo+wepUgI4/brHSI0/9sKe1L4F+Zip9k0hqGk1OOrB7Kt3JKmN8UahaD2QJoRIBvKBi4FLf3+CpmnJB78XQnwIzDtUkehUYVAEMUE2djY2/+eXDa0lqd1xuFTeX5nJR74LcPskYuh+rt6R/iI1wo/Prx/KyvRylu4r4fl9t6DUlzB69YMsXPkNwwy7CKABByb2WPtQEjSNBv9k3CFpGCI6E2wzEOosJsBRhG9jAaImn/rKYpw1xYjKLCyuGlYHTCXknP/RLy7GM2hYGu4Rd2Fa/jTagcsQncZ57efZX1JHknM/mDlli+vRgTaCh19B6ZovMSx4lpAWKhTVlGQTAPTv2Z0Lxo0iv7KR/KpG3l2eyecNo7l8/49oNQWIgJgWGV+SpPbn+60FxAbZ6B8fCCW7Ef0vP+5rRAVY2V0V4Lkhdz5rUVmltSz7+hWeUnbQOP5RUuPl7/NTjSWmB2SAvWgPloQBeseR2piTLhRpmuYSQtyGZzczA/C+pmk7hRA3Nd8v+xIdQnyIjfQaN6o1GEUuPZOkdmfOlnwia3fR1bILdegToFNvoqMRQjAyLYyRaWFwVndKy/tQ/tEURtSns8N3DBusQ1lDb4qaDFRUO6gsdDSvaPr97yV/oAtGpSsu1TPRMzLAQveEADZkV1L79mb6xmdy7chkJveMwjj6Xlzbv4K592C8dTWYrF75WTZmV9LrYCPrU7RQBHD9uO58tO4sbiv6HLVgK0pMH6+PkZ+dQQAQm5BK16gAukZ53riN6xLB3W8WcLnjB4oXv0XUeY/84XGO1W/DurdxJYzE2HUS5k6jwezj9XySJLUt5XV2lu8v4/pRKYiqHHDWH1d/ooOiAq1sytFQbaEockZRi3AV76Vp40x81s/kKaUMe1AqtuE36h1L0kFs536QAbl7N5EqC0XSn3hjRhGapv0I/PinY4csEGmadpU3xmzv4oJ8WLSnBMISUSuyvNIsSpKk1qGqGu8sz+DvfotQhR9Kv8v0jnTMwkND0e5ahqrBUIPCUOC2393vVjUqGxxU1Dsor/P8WVFvp6zOgdOt0jM2kH4JQUQHepry19tdzN6Uxwcrs7j9882kRfjx3a0j8DnnBcQn5+Fa9hzGCQ96JfumnEpON2fjDkjA4BPilWu2R/5WE+HjbqFu0bdU/vgU8dd95vUxygszAYhLSvnD8fgQH56+fgorX3uXbls+JHfE3cSHBwHQuO5jbL/chzOoE9ads1C2foBqsOCMH4mh/wyMPaaAwSsvOyRJamN+3FGEW9WY0jcGV+Z3njcYESdQKAqwUtngRA2Phapc+frYm9wunDMvxJSxCB8U1rt7kT3kHww6YwYYLXqnk3TQs2dfHD8ZqMzapncUqQ2Sr9h0Eh9io6zOjpqagFK8U+84kiQdhyX7SqgqzmWcbQXa4OvBGqB3pOMiFIXDzX8yKIIwPwthfhYO9ts/El+LkSuGJXHZkETmbivgzllbeGnRfv555jic3adhXPkiWu/piPAuJ517U3Yl9xmyEDGDTvpa7d35I3ryzbLTmZY3D1d5FsbQJK9ev6EsFxVBWGTiX+5LCfdDnHEHYb9cxUNvv8SYaTcRkfcLPVbcSV3sKEyXf4nJoODIWI66bz7G/T9h/OYaXAsT0YbdhmnAZXKWkSR1MHO3FJAW4Uen0gUYfrgHV0RPjFG9jvs6UYGeGahNPtH4VOd4O+apLWcVpoxF5HS+mgu2D2Rkv148d7b3Z6RK7Uegnw9ZxlhE2V69o0htkCzU6yQu2PMiudYWh6jJBVXVOZEkScfqraUZ3Oz7K0JzYxgip2sDKIpgSt9YLh4Uz3srMtlTVINp8hOoZl9cn1yAVnNy2xxX1DsoKysm0lWAEtPXO6HbMZNBIeqMe9A0wd5vn/T69bWafGqUIDCaD3l/8pAp1PsmcK7jRz78+D06L7+LjWoqgw5cTddHfmXUC6u4cVUgzylX8+3IeVSe8z6qTyimX+7D/XwPnMtfatld205hDQ4Xz/6yl//O3aV3FOkUUVDVyLqsCv4ethLTN9fijO6P8eofDvv740gOzlattUQj5NIzr9J2z0M1WLk6+3QswbE8fG53vSNJbUBDYBoRTZkU1zTpHUVqY2ShSCdxwZ4nwhJDJMLtgNqTexMlSVLr2JJbxZbMIi4WC1A7nwkhyUd/0Cnk75O6Emgz8eC3O1B9I2DG1xgaSnF+dB40Vp7wdTfnVNJL8SyHOpX7E/3e6IF9WW4bR0reN1SWFXntui63irWxhAbrEaaUKQqGIdczQOzhA+sL1AWkUnT2xzx43kDuGJ9Gn7ggCqub+Gh1Nvd9s5Nh3/nwdOyrlF8wB3dUX0yL/oNr0aNeyyyBpmn8tL2Q055bymu/7mPZquWUbPiWuiUvU/ft3TR9djlUZOgdU+qA5m7J51bDd5yW8RSOlNMwX/kd2IJO6FpRgZ4lUOWGcISjFpqqvRf0VKZpaHt+YKe1P1m18MJFffG3mvROJbUBkb0mkCBKWPLjLL2jSG2MXHqmk/gQz4yiXC2CLgCVWRAYq2ckSZKOQtM0Xlq4j4utq7G5qmH4LXpHanOCfc08MLkr93+9ja825nLRoIE4L5yJcdZF2D++AMvVc05oC9ZNOZX0/a1Q1Ne7odspIQTRk+/H8s0iyt87F+OlH+Iff/KfEGeW1RNBOZp/6hHPsw66HHXZE7h8o/C5+nvODvrrtspuVWN/SS1vL83g/VVZfLJWYcbgx7jb51X8VzyH2+KPYdTdJ535VJdZVs9D3+9k2b5Shkc4+SLsOeLrtsE8z/1uky8GZz2kjYGQlCNfTJKOQ6PDjc/KJ7nR9BX27tOxTHsTDCdegIhqnlFUQBg9AarzwBronbCnsqJtKDV5fOw8k1vHdmJAYrDeiaQ2InTUdZSueIk+e56nwX4pPpbjnwkodUxyRpFOwv0smI0K6c5Qz4Hj3PlMVTXSS2ppcrpPOouqyun/knQsvtmUz697S7jDZwHuiF6QOELvSG3S9P5xDE4K4Ymf9lBR78DUeTyuqW9jLtpI02czwOU47mtuzK5kuE8ualAy2OQL3IO69RnCG5EP4dtQgM+HY6lc8iqq++SWMu8qrCFKVGILjT/yibZgqq9YhP3q+VgPUSQCT8+rrlEBPH9RXxbdO5aze8fw0ZpsBm49iw3+4zEsehj32ndOKu+pbuGuYia/tIzN2ZW8PMLOx677iWnazyOuK/mg27u47k3H8Pcsz8kNFbpmlTqeF7/8mUsdX5OXeB6W6e+cVJEIwM9ixM9iJNvVvGGBXH7mFdrueagorDUO5vrRslgs/Y7RQuWwB+hKNhvmvqV3GqkNkTOKdKIogrggG7vrrWgIROXRC0WaprGzoIbvtxYwd2sBhdVNmA0KfROCGJocwtCUUFIj/bCZDNhMBowGBU3TqGxwkl/ZSF5lA/lVjeRVer483zegCMGCu0cTEeCdLawlqSMqqGrk4bk7uSY6m9DKDDj9DRBC71htkqIIHpvakzNfWs6TP+3m6el9MPeair2xCuuPd9Hw8YWoY/+BX8qQY7qey62yNbeabrYMiBnawunbnzOmX8+kF8L5wO9jui95kPoD8zFPewNT0InNUt2fX8oUUYcrIuGo5wYnHPsMpuQwX567sA93TEjlg5VZXL/xOp5Wq5j4099YXeCg95k34muRL0uOx6x1Ofzz2+30igng/Z7bCFn+EC7/WMQV37Lp60p2VRm42j8cAM3ij5CFIsmLvlyfS6c9b6GaTMRNfxoU73z+HBVoZX9T8/Nrda5Xrnmqs++cyza1M5OH9ZRLzqS/SBt/JftXv0aXnS+innsditmmdySpDZCvyHQUG2wjq9qJ5h8NlZkc6S3nsn2lPPjtdnIrGzEqgjGdw7ltfCpZZfWszazg1V/TeW/xdpwYceB5AjAqAkUROFx//HTZz2IkNshGXLCNQbEWMjYtZsOcbUyIVdFqC1HqSzEPvxmS5GwJSQJPkfbvs7ch3A7uNX6F6hOG0nOa3rHatM6R/lw7Kpm3lmYwIDGYCwbEYxl8NY3OJixLHsXw8ek0hffB2f8afPtfiGI5/C5YW3KrsDorCTEUQqzsT/RnqRF+jBnQi/M238WC0enEr3sc9YPJcMfGE/p0vzjPs8TPGBTn7agAJIb68vC5PbjvjC58vzGNzYuuZdCWf7FkyzfURgwiqd8Eeg8ag8Ekp78fjqZpvLI4necX7GN85xBe8f8Y36WfYU8+DcuF74EtiP6JO/l8XQ5Ot4rJoIAtFBrK9Y4udRC7Cmp4a85i5huXow68HvyPYZvMYxQdaGVfvYKmmGRDa2+oyMRavpuF2mVcM1z2VZT+SigGSoY8SNqqq9kz9zm6TvuX3pGkNkAWinQUF+zDLwVFEJOIVpl9xELR0jnv8fem1bh6TyZp6LmkxUbgazHiVjVqszfjXvMJgfu/pcngx6IeT5Dj359Gpxu3qhERYCUu2EZskI34YB8CLAI1czmuzW9j2vsDirkeDgAHwG0JQnHWgc1PFookqdln63JYvr+U+Umz8C3ajDr9QzBa9I7V5t05IY11mRX8ffZ2Zq7N4cEzuzFkxM04+l5C/cbPsGz+AP9f7sS15D80xI9BTRyJodMobJFdUQyeT6adbpWHvt/JCJ88UJGNrA/jztM6892WAl6rHcPDU1Pw+XoG7q1fYug/47ivVVvSPMM1INrLKf/I12LkkuGd0Qb8SOHX99MnawnhpW/A/DdomG8lz683SpczSBo6FWN4pxbN0p64VY3/zNnBzLU5TOsXy+PGt7Fu/4ymYfdinfiv32Z1DEgM5oOVWewurKF3XBCaTwg0lB/xtYYkHYvaJie3fraJO0zfIxQTJi/3GYsMsLK/uA4tIBatKk/2yThJDdvn4gPQ5SyiAuXqAenQhkw4j1VrXqH3jjdg8i3gE6J3JElnslCko/gQGxX1DtyBiRiylhz2vIKqRsbUzGO0YTvsW4I74xFq48dTGjcUW/oPBBWuRjVYqe86DUvBGs7dejPOsf/CPP7uPy6NqczGvuw53Nu/wFhfBOYAnN2msidkPLf/Us2900YzZWAq2odno5btl0/MkgTklDfw+A+7eTJiEZ2L5uEc/QCmnlP1jtUu+JiNzL5pON9tyeeZX/Zy0dtrOL17JPdP6krq6FvQRt5E/f6laJs+xZK7HFP697AInLZwGrtfgM/kh3n112x2FtTw4sA62AFE99H7x2qTYoNsXD40kQ9WZnLDqNEkhvdArHgB+l5yXMtByuvsWBqLwQwEtM4GC8LiT8yMNwBoqshjx+qfqdq9lJTa9aRsfBQ2PkqRKZ76hHEk9h2PMWGQJ9spuPTT5Va5+8utzN1awC1jO3GX9inmtTNxjPgb1on//sO5B5vVbsyupHdcEMInFK2+TBaKpJNycIatqyKbKZalaP2u9HpROTrQSkltE2pULKJKLj07WRUbvyFbjWfaaaP0jiK1YUaDQsHABxi69iKKfnicqAue0zuSpDNZKNJRXLBnqUW1NZawuiJwNoLpr2tCF+0pYbQopiB2Ek29ryAw80cCsn7GlDkPh18slSP+hXXw1fgHhqE1VWOffSvWXx/BmbsO07Q3cOdtxrXmLcwZ8zEjcCRPgH5PYOx6JgaTlV6qhnHjUt5fW8yUgamIsDTYMRs07ZR8IS5JB7lVjb99vZWJYj0X17yPs9tUTOMe0DtWu6IogvP7xzG5ZzTvrcjgjSUHOO35pQxODmH6gDjO7DUKvy7j0FSVhuJ0XAeWomQuxm/j61RlrmR20fVM7deLTs501OAUFLn7zWHdMrYTs9bl8NyC/bw2+l6U2dfg3j0XQ48px3yNPUW1RIvmPjb+LTuj6FCsIXEMPOs6OOs66uwulm7aQNnmeUSVLGNg+mcYD3wMgNsnAld0fyzDrofU01o9px5cbpV7motE/5jclWvE95gWv4Kj/zWYT/vrMoHoQBsxgVY2Zldy9YhkhE8olO7VIbnUkcxan8uP24uYm7wMUQxKC+xaGBlgRdXA4RuDNW+V169/KmmqKia6Zisbgi7lvCh/veNIbdzp48fz3doxnLPzIzjtDghO1DuSpCNZKNJRfLCnKFRkjCUMoCITIv/aGHTJrnwuUcoQyT1w9JuEo9fpVDocUJFOQGxXgi3/vwRGWAOxXvoJjpWvYVr8ENoznTGoDrCF4hx2F+Yh12IJ/GPfCUURXDU8if/M2cnmnEr6haYhmqqhvgz8wlvyP4EktVluVeOeL7dQn7WJZ22v4ozoj+l82cD6RNnMBm4bn8ZFgxL4ckMuszfmcf/X23j4+51M7hnN9aOT6RrdGaI7w8jrqd34Nea5tzLH/CD0eB/mb4Z42cj6SEL9LFw3KoWXFu1nx+ixdA9KRlv2PIbu5x7zv9vdhTVEikrc5gAMFr8WTnxkfhYjY4YNhWFDcblVznx+Ef0seTw20I6atxFjxgLUxSUop0ChyK1q/O2rrXy/tYAHJnflGp/lmH54GEfXqZjPfu6wf7/9E4PZmF3pueETAo2ymbV04nIrGnhs3i7OTlLpWfw97j4zMAZ6v5dZdPPyqCpbPNG1BeBoAPPh+9hJh7d10SyGoJI88kK9o0jtQIDVRHbvu1G3raBm8QsETHtR70iSjuTqIh0dnFGUpTVvK1xx4C/nNDhcZGfsxYiKISwVm9lAoI+JiCBfIlL6YLUcok+KEJhH3oZ2xTwcXafgOvcNDPfuxnz6Q3CYJ/Tz+8fhbzHy4aosCEvzHCxP98aPKUntzsEi0bot2/nc/0UUnxBMMz4/5Iw/6fiE+1u4dVwqi+4dw+ybhzGlbww/7yhk8kvLuf3zzRworQPg9dKenGN/FKNvCCGzL0CpyUeJ7a9z+rbvulHJBPuYeGZBOoy8C1PxFtT0X4/58bsKa0gyVSFauD/R8TIaFC4c2okvCiLYl3QJlgvfwdDnIkTpXs/s1w7sYJFo3ZZtvNFrP5eXPIvxx7txJI3DPP3tIy4tHJgYTGF1EwVVjeATgnDUgcveiumljkJVNe7/ehtCCB4PXwyoGEff0yJjRTbvwltsSkCgHfL1sXR0qqrh3jWXYhFO74Fy2Zl0bKaPG8w8dTjmHZ9DY5XecSQdyUKRjsL8zFhNCrvtYZ4D5X99Ilyxv4xYtdBzI/j4dipQkoZhufBdjP0vPWrjXT+LkQsGxvPDtkLKLfHNefYf13iS1BF4lndsYfWWnfwQ+BR+NGKY8QX4R+kdrUMRQjAgMYQnzu/NygfGc/OYTizcVczE55dy86cbeWvpAQYMGIL/bcto7HSm50GJw/QN3Q74W03cOi6V5fvLWO8/EbdvFK5lx95nYHdhLQmmqlbrT3Q8LhgQj9Wk8Oma5mbb4V0QzvoOvX22q76SZS9dxb27prHKegeT9z+Edf887F3Pw3zpTDAeeWe4AYmeZqQbsyvBJ9RzsEHOKpKO3ydrstmUUcgrvTPx3zUTd6+LW2xZysEZRdmi+fdQ2b4WGaejcRfvxp69AeyeD1yWbM9kgGsLdclnII6jV510aosP8aGh3/VYtSb2/fy63nEkHcnfGjoSQhAX7MOBWiOqLRStIuMv5yzaXUIXU6nnRkhKi+a5Ylgibk3jkz0amsEMZbJQJJ1aXG6Ve7/ayootu/kp6BmC1EqYMRuie+sdrUML8jFz/6SuLP/7OK4ZkcziPSVEBVj519ndUWwB+Mz4FMft2yB2gN5R24XLhiYSE2jlyYVZqMNuxZy7Ai133VEf53SrpJfUEq6Vt7kZRQCBPiam9Inlu80FVDc6Ibyb544O2nencc9Cap4fxKiq76kN7kn9+P9hv24ZhgeysF70AZh9j3qNrtH+2EwGT6HI1ryDTUN5CyeXOhLN5SBr1TcE/3wrW2w3M27731FtoRjH3t9iY4b4mjEbFPa5ItAQaKWyUHRUjVWId8dj+WACPBGL89nuxMy5AItwkjRCLjuTjs+F557FFkNP/La+T21Do95xJJ3IQpHO4oJt5FU1oIWkoP5pRpGqaizaU8KQ4BpUkw/4RbRolqQwX8Z1ieDTdfmoQcloslAknUKanG5u/3wzS7fs5aeQ5wh2FcGlX6IkDtE72ikjzM/Cv87uzqoHxjP39pEEWE2eO4TAHCobKh4rq8nAnaelsTW3iqX+Z+G2BuNcevRZRQdK61DdLvycFYg2OKMI4PJhiTQ63czemAfhXTwHS3brG8rLNEc99d/dg23WNCqdRr7s8z7d7pqD7+hbscT1AcVwzNcyGRT6xAeyKed3M4pknyLpGKn1FTjeGk/S/KsZIzZTnzaFxku+xXjPjhZtciuEIDLQQn6dhhqUiCoLRUelbZ2F4myg6bQnaBj5D7J8e+NyuSgL7oshaYTe8aR2xmI04D/mNmIo5fsv3tU7jqQTWSjSWXywD7kVjYjQTog/FYq25VdTVmenq7kULSi5VZroXjU8ibI6O0WmeDTZo0g6RVTWO7js3bWs3bGPX0JfIMyei3bxLJTkkXpHOyWF+lkI9TvyclnpyKb1jyMl3JenFuXhGngD5vSf0Yp2HPExuwtrCKcKBdXr2117S8/YQPolBPHpmmw0WzCabySU7tE7lvdUZuN8fRS+W97jfdckfhrxJZeeP/WkLjkgMZidBTU0moI8B+SMIukYuOoqcHx4LoayPdzluIVFZ68g7NK3sHUZf1zFyhMVHWCjsLoJQtPkDPej0TTUDR/gjuqLdeQtaKP+xoyK6/hP1OuE3rEEDHLvIun4dRp5IRXmaFIzP2XVgTK940g6kIUincUF26hudOIITEKpK/Ts7NBs0e5iFAHhzgIIOb7+RCdqVFoYYX4W9jgjEZWZ4Ha2yriSpAd3eSb5i99mxfOX8r+i69lovZmIxgNoF36CIXWc3vEk6YQZDQp/O70L+0vq+MX3XFSTH87FTx7xMbsLa4k3VnlutNEZReBZJp1RVs/K9HK0iK6oHWhGkfPXp6A6j0scD1I15lFuO+Pkl70OSAzGrWrsrGqeoScLRdJR2OsqcH50Hqay3dzouIvGbtOYOrB1XoceFBlopbimCSUsDaUiHVS1VcdvV3LXYSjbgzLoGgDeWZ5BSa2dB8/qjpA7tUonSjHgO/JWhih7eP+rb2lwuPROJLUyWSjS2cGdz8pMzbuRVWb+dt/C3SUMTAjEVJOD0sL9iQ4SQtA1yp8d9nCE6oLK7FYZV5JalctO00//RnmlP7HL7mO0exVBUck0jrgf97WLMHQ5Q++EknTSJveMoldsIE8vK8Ex8AbM++aiFW0/7Pm7C2voG9T8YYV/25xRBDC5ZzQhvmY+WZOFEt4VUdZBdj6rL4ftX/OVcyQDx07h7tPSvHLZ/gnBAKwvbv5vJJtZS0fQVFuJ+tFULOW7uFu7l5zQUTx7QZ9WLzhEB1o9M4rCOyNcjVCT16rjtyeu9e+jmv0QPadRUtPEW0szOLNXFAMSg/WOJrVzlsFX4DL6MLn+O579RS4BPdXIQpHO4kM8223nKs0vypuXn+VXNbK7sIZzUgTCbUeEtk6hCCA1wo+1Nc29DOTOZ1IH48rbhOP1UVjXvsxX6lhmWF6m7JY9RNw8D5+J/8QY20fviJLkFUII7jujC3mVjXxjOQ/V7I9z0ROHPX93YS09/Dy75bTlGUVWk4GLBsWzYFcxVX6dEI56qG7/byKLl7yJSbOTnnwp90zs7LU35kE+ZlIj/FifW4dm8ZeFIunwXHbEzOlYynbwsPk+loqBvHPFQPwP9otrRVEBVhwulVq/5plMcuezQ2usxLDrO7SeF4DFjxcW7sOlqtx/Rle9k0kdgTUQ+l3GFMMa5q7czNJ9pXonklqRLBTp7OCMonRXc6Pq5p3PFu8pAWB8RK3neCstPQNPoWinI9JzQ/YpkjoKtxP7gkcxvHcajTXlXOW4ny+j7+PF2y6mU0SA3ukkqUWMSgtjaEoIz68ooXHAjZj3/4BWuPUv55XW2imrs5NiqUEzWMAnRIe0x+7SwQlowE/FgZ4D7bxPkep0oGx8n9X04uYLz/b67I0BCcFsyqlEs4XKpWfSYal7fsJStIG3Q+5hZk0vXru0P0lhR99dryVEBVoBKDQleA7IPkWHpG75HOFuwjDoGvYW1fLF+lwuH5qk29+b1PEYh96EATd3Bizlni+2UFLTpHckqZXIQpHOgn1M+JoNZNQaUH3C0JpnFC3aXUxiqA8xarHnxFZaegaQFuFHNX44zMHyiVnqMLQlT2FZ+SzLrWMZVfc/Ygedy2fXDyXcXzZNljouIQT3T+pKWZ2DLw3noJoDDjmraE2Gp3gQIyrQ/KNbZfOEkxEf4sPQ5FC+L/D3HGjnhaIlcz8gXC3DPehGIvytXr/+gMRgqhqc2E2BaLJQJB2Ga+cc6o1BPJPfiwfP7MbItDDdshwsFOU7fFCtQbhL9+qWpc3SNNQNH+KK7o8a2YvHftiFn8XI7eNT9U4mdSShnXB1PpMZjq+43fkeD3y+GrfaAZZ7S0clC0U6E0IQF+xDXmUjWkgK9pL9vLX0AKvSy5nQNRLKM9AUU6suA0iL9LzwrrAmoMpCkdQRqCrOTZ+yRunPtTXX8cDUYTw+tRdmo/wVKHV8/ROCGZkaxutry7APugVz+k9oBZt/u1/TNN5ceoDkMF+C3eVtuj/R7/WICWBTqYLqGwEl7bdQlF/VSMDW9ykyRDFi0iUtMka/hCAAqghAk0vPpENx2RH75zO3qS/nD0jk6hFJusaJCvAUiopqHGihaWjy9ehf5azBWL4XZeBV/HfeLpbvL+O+M7oQ7GvWO5nUwZjOf5P63ldwpfIzjxZcy7yv3tM7ktQK5LukNiAu2MaO/GrWVAZRlbeHJ37aQ6+4QK4ekYRakYEalNgqW5EeFOJrJtTXTJ4hVi49kzqEqt2/Yq4vZI42ms+vH8qlQxL0jiRJreqWcZ0orbXzve1c3JagP8wqWrK3lJ0FNdwythOitgAR2Hb7E/1e1+gA7C6VxqA01JJdesc5IZqm8easbxgo9mAYciOihbaxTgj1LHOvEv5y6Zl0SOqBJZhcday1juC/U3rqvltWuL8FRUBRdSOEdUaRhaK/cK57D9XszzuV/flwVRbXjEjmsqGJeseSOiJrAH7nv4T98h/RzP5M2X0vxe9eCE3VeieTWpBXCkVCiElCiL1CiHQhxAOHuH+GEGJb89cqIYTsFvs7KeG+FFY3sb0xlChRyaLbBzH75uHEh/hARSYEt+6WpODpU7TbGYlSXyJ/CUjtWqPDzYbv36BOs3HplTcxMKlt916RpJYwLCWUvvFBvLqqGNfgWzAf+AUtbyOapvHy4v3EBtk4r28MorYQEdA+ZhR1jfLMfi21Jrfbnc++25JPn/xZOBQb4aOuabFxLEYDYX4WylVfRKOcUST9VdbKL6jVbIw4bRo2c+t9OHk4JoNCuL+FwuomDOGdUeqL5evR32uowLjne/ZHnskTC3M4r28M/zqrm+4FPqljs3YaTsBdq3jbeCmheQtp/PwqUN16x5JayEkXioQQBuA1YDLQHbhECNH9T6dlAmM0TesNPAq8fbLjdiS3jkvlixuGcv15pwHQyeBpZI2mISozWnXHs4PSIv3YUNe881mZnFUktU+qqnH/52sY0rSCqqRJ9EpqH2+AJcnbhBDcOi6V3IpGFvhPxW0NxvXrU6w+UM7mnCpuGtsJk70K4ba36R3Pfi81wg9FQLoW2y53Pmtyunl93hrONazC1etisAW16HgxQVYKnb4IRx247C06ltS+OBxOgnMWsM40iKmDW/815+FEBVgpqmmCsDTPAfl69DeuzZ8j3HbuPtCXsV3CeeaCPiiKLBJJLS/A15chVz7BQ86rsGUvxjn/Ib0jSS3EGzOKBgPpmqZlaJrmAGYBU35/gqZpqzRNq2y+uQaI88K4HUaQj5khKaEYwpqbz1V4GlpTX4birEdpxUbWB6VF+LPDfnDnMzndV2qfnvp5D9ren/AXjcSNuVrvOJKkqwldI+gc6cfLKwtRB1yH8cB8Zs1fQYS/hQsGxEFtgefEdtKjyGoykBTmy6bGKM+Bdtbs9rO12ZzR9DNmXFhG3Nzi48UE2size5agIfsUSb+zeP4cgqkhYvB0DG2o2BAVaKWougnCOnsOlO3TN1BboWnY177LFjUVS1wfXp/RH5NBdhORWk+f+CAcfa/kE/fpmNa8gmvTZ8f0OK0qVz7/tCPe+K0SC+T+7nZe87HDuRb46XB3CiFuEEJsEEJsKC0t9UK8duRgQagi449/6lIo8iNHi0QVBrnzmdQuzVybzVvLMrgtdCOqfwwkjdI7kiTpSlEEt4xNZV9xHauDz0ETCl0LZnPD6BSsJgPUNBeK2smMIoBuUQEsr26e/Vq6W98wx6G83s7uJbO4zTSHxsTxGCK6tPiYMUE2chqad3mUfYqkZrVNTio2fI0dMz3HnK93nD9ICvUlu7yBWlssmmJELZWFIgA1awW+NRl8bzqD968chI+5ZXqbSdKR3D2xM09oV7DX1g/DvDvRctcd+QGqivb+JNS5d7VKPunkeaNQdKiPHg7ZKEAIMQ5Poejvh7uYpmlva5o2UNO0geHh4V6I145YA1B9wlHLm2cUVWZ6/gzRoUdRpB9OjNRaY9BkQ2upndmSW8VDc3ZyTqqRLnVrEb0vBEV+2iZJZ/eOJj7ExvNr69hkGcLFxiVcOqB59uhvhaL2MaMIoEuUPzsqjbh9wtFK2kehqKzOzvZvnuVJ59PUBHRGnfJ6q4wbE2Sl0OXruSH7FEnN3lpygLHaWuriRiMs/nrH+YOJ3SNxuFUW7atEDUpGbWezBltK3sI3qNF86HralXKHM0k3MUE2Lh+eysVVN9HkE4n6+Qyozj/8Awq3oNTkITJ+Bber9YJKJ8wb75zygPjf3Y4DCv58khCiN/AuMEXTNPlR1mFoISloZc2FoooMNKFAUOvv0BTuZyHAaqTQGCe3JJXaldomJ3d8vpnIACtPdzmA0NyI3hfpHUuS2gSjQeHG0Z3YklvFSzWjCaEGa/qPnjtrCjzPOX6R+oY8Dl2i/NE0qA9IRSvZo3ecoyqrbUSd/xBjDzzNKuMgGi75Dt+Q1inMxQTZqNCaCwFyRpEEFFU3sWblQmJEBcED2tZsIoD+CcFEB1qZt60QwjojZCsEXLVlROX/wmLzWM4fnKZ3HOkUd/PYTrgtwTzm/x+Esx73nNsPe6625wcAhL0GCre2VkTpJHijULQeSBNCJAshzMDFwPe/P0EIkQB8A1yuaZqcN3oEIrQTotKz5MxdnoEaEAdGS+vnEIK0SH/2q9GIigxQ1VbPIEnHS9M0/vXdDvIqG3jp4r6Yd32JO7IXRP65v74knbqmD4gj3N/CVnNfnAFJuNe+47mjtgDNNxwMJn0DHoduUQEAFFmS2v7OZ24Xtrk3EbHtDT5xnca+Ma+TGBXWasPHBNmo1Pw8N2ShSAJeX5LOBNahCQNKl8l6x/kLRRGc2SuaZftKcQR3QqnMBLdT71i62jzvdcy4iBh3E0bZl0jSWZCPmVvGpTIz05e8rteiZCz+/9nJf6Lu/Qk1vJvnRuaS1gspnbCT/g2jaZoLuA34BdgNfKlp2k4hxE1CiJuaT/sPEAq8LoTYIoTYcLLjdlRKaApKXRE46j09ioKTdMuSFuHH1oZwhKsRatrXbjLSqembTfnM2VLAXad1ZqBfOYbCzRj6XKx3LElqU6wmA2/M6M+blw1CGXwNpvy1ULwTtboA/NtPfyKAuGAbPmYD+9Q4z25eNUeY9q63A4vw3fcdn1hn8JrtZq4Y0alVt7KOCbRSxcEZRZVHPlnq8Jqcbr7dnMdU60ZcCSPBJ0TvSId0Vu9oHG6VHfZIhOqEymy9I+mmwe4kfO/n7DZ2Zdiw0XrHkSQArhqeRFSAlf/l9UKgoW376q8nVWZhKNmJ0u8y1PDuuA8sbf2g0nHzSila07QfNU3rrGlaJ03THm8+9qamaW82f3+dpmnBmqb1bf4a6I1xO6SQTp4/KzIQlVkIHRpZH5Qa4ccOe3OfKLn8TGrjMkrr+PecHQxODuHWcaloW2d5ltH0mq53NElqcwYmhTA8NQxD/8vRDBZca9+DmgJEO+pPBJ4ZB50j/dnQEOE50JaXnzX3V3mmagw3je3U6rsUhflZwGCiyeArZxTppaGChi+uo+aX/9Gwfxmas0m3KAt2FRNpzybKmYfS/RzdchxNv/ggYoNs/FLsmT14qux8ph1iduRP874miQIsQ65t1SKzJB2J1WTgnomd+bnQl0L/XtSun8nSfaUs3VfKtrwqz7/lvT97Tu4yGZEyBiVvLej4+086NnLOYlsT2lwoKtiM0liOEqpfoSgt0p8DavObBtnQWmrDHC6Vxz/9kUnKel6LmY/z88vR1r6FljwG/KP0jidJbZdPCK5uU1B2fIGoyUUEtq8ZRQBdo/xZUnFw57O2Wyhyl6dTqwRg9A3hokGt33tQUQRRgVbqlABZKNKJa9Vr+Oz+ioDVT+Ez8xy0JxNoemfy/7+JakWzN+Vxgc9mNASGNlwoEkJwVu9ovsmxAZwafTM1jZL0jRRW1uFWPQWj8jo71m2fUC98SRlzmc4BJemPpg2Io1t0AK9XDCCgei9PfPA1V76/jnNfXckna7Jx7/kRd1gXCO2ESBmLcDVB7lq9Y0tHIQtFbc3BGUTpC/94WwdpEX6UEoTD4CtnFB2OpqEV7dA7xSltXWYFM5+9k/eqr+d5niVs4wsYSnbgTBiFMukJveNJUptnGnI9iqMO4agH//Y1owg8haKsRisuW1ib3vmsoXAf+10RXD08CZvZoEuGmEAblZo/qiwUtT5nI2LD+zjTJtN0zwHqpn5MQ5+rMFXsRV3+XKtGKalpYtm+EqYZV+CKG9LmP1A5q1c0FW4fGsyhuE+Fnc8ylhA5cwIhH4ykaOm7lFXX8d78DZzGWhq7XQBmH70TStIfGBTB7JuHMe2KO1CFkQ8HZDD75uGM6xLOi/PWI7JXonQ503Ny4nA0YUDLkMvP2jqj3gGkP7H4o/qEIzKWIACCk3WLEh1oxddspMQcT0zZfllVPAT34icwLH8Krl8MsQP0jnNKKahq5Imf9lC2fQGfmj8lN/p0oiY/gCmqGyb5IkqSjl3cIFzhPTCW7oSA9jejqEtzQ+sa/04EleymrS7IcJcdIJsuXDY0UbcMsUE2yor96NRQoVuGU5Vry+cYmyowjLgdU0AY9Jni+VLr0Q5+ONhKvtuSzwD2EmbPxdXvH6069onoHRdIXLCNLHcsnU+FDy6bi2GawUzs0r/RuP4F+tVFY1FcWMbcqHM4STo0H7ORvl064U49jYisuUSd/yQvXtSPF174CcXpoiZxIgEA1gDU2AGQ8SsG/qN3bOkI5Hv/NkgL6YRoqvbcCNGvUCSEIDXSnyxi5IyiQ8lehbLiGc/3GUt0jXIqUVWNN5ceYMJzS9m4cw9v+7yJGpxC/FUfYEoYID9pk6TjJQTK4Os83wfF65vlBHSN8jRoLjC33Z3PnE11BDlLMIR2ItjXrFuO6CArRU4fufSstakqrHoNZ2QfNoluqOrv/o0GJyLqisDZ2CpRNE1j9sZ8bgpYiWr2x9jrvFYZ92QcXH62pTG8zf4/7lVVOWhGGzVXLyF38kfkOv2ZqGygIWqg3MVVavMMfS9GqSuErOUE+pi4M24fZVogty1TfltKaUgZi1K4BRqrdM0qHZksFLVBorlPkeobAWZfXbOkRfix1R6NUpsPdaW6ZmkLvt9awE/bC6GxEvfX16EGJqAGp6BmrdQ72imhst7B1R+u58mf9jA6NZj5iTPxpR7TxZ+AxU/veJLUbin9r8B54UyIH6p3lOMW7GsmMsDCHleMZ+ez6ra3S+fGzZsASOrSW9ccMUE2KjR/kDOKWpV733yMleksDbmQ899YzSdrfrdz18HdbatyWiXLzoIaCoqLGe1cgbPb+bq/zjxW5/SOIV2NwWCv7vCFTrUyGzUogYgAH/LCRnJ67b/5oNvbmC/8QO9oknR0nSehmv1Rt34BLgeB+Uupih/PsvQKXlrUPPEgZQxCUyFbvn9qy2ShqA062MBaC9avP9FBqRF+/NzYzXPjwGJ9w+jI5VZ5+Pud3PH5Zm6euZH0965FqS/GcMH7iE7jELlrwO3UO2bHpKo4s9ayNT2Hs19ZweoD5Tw+tSevxv+KX/5ytElPy0/YJOlkGYyYup8NSvt8WdAlKoDl9c2zofLW6RvmELZt2whAtx79dM1xsFCkOOvAZdc1y6nEveoV7D5R3LE9ESHg1V/TaXS4PXcGNS9FbKVt37/emMdU0ypMqh3z4KtaZUxv6BETQK2fZ5Z9U2Hb7UXmDVpVDgQloKoaj/2wm9ggHy45fzrGkNZvgi9Jx81kg+7nwa45kL4QxVFLp5EXMH1AHK8s3s+SvSUQNwjNaEOTKzLatPb5irCja55RJHRcdnZQWoQfO7Qk7JZQ3Pt+0TuOLqobnFz1wXo+XJXFtSOTeSx+E6lli1gefxNaTH9E0khPE9jCrXpH7ZCcCx/B9OHp9PykN+/Y/8ai3gu4wDUP4/KncPW4AMOAK/SOKEmSzrpG+TO/MhLV7IeasUzvOH9Q3eCkOs/Tc8QUnqprlphAG1U0z76Us4pahVqwFXPOCj4XZ2IyWXjt0v6U1tr5aHWW54Tgg4WirBbP4nCpfL+1gKttK3CGdUfE6Fu4PB5CCJJ7DEbVBNVb5ugdp0WJ6hyUoES+2ZzPzoIa7p/UBatJnwb4knQilD4XoTjr0X7+O5rRhkgZx6NTetIl0p97v9xKaSOoCUNRZUPrNk0WitqiEE+hSGkuGOkpLcIfDYW80GGIA4tBdesdqVUdKK3jvNdXsjaznKen9+bfQ4xcWvk6e30HcOXeoTz2w260xOGek7NW6Bu2A6rc8gOmVS8y1z2UOQEzSIgMI3bvJ5gX/BN3UArGc18E0VZb10qS1Fq6RPrT6BLURw5Gy1qud5w/mLutgHitEIc1FKwBumaJCbJ6lp4BNMpCUWtwrHgVh2Lj+fJhPHROd87sFc2YzuG8ufQANU1O8ItEM1qhquVnFC3ZW0Jkw36SHfug/xXt7vlz7MA+fKuOIGTXxzSU5eodp2U0VaM0VeEMiOOZX/bQNz6Ic/vE6J1Kko5P4ghU/1hEVQ5qylgw+2AzG3j5kn7U2l08MHsbSspYDGV7obZI77TSYchCUVsU3hVH1/Og65l6JyE22IbVpLDVMgilqRLyN+kdqVU0Od28tyKT815bQWhDBj8P3sa5225FfXMkmHxIu2EmVw5P4b0VmfxjfglqSCqqLBR5jaZpzF+9Eb67kT1aAmUTXuC8u1/F76b5KP/IwX75PIzX/CD7EkmSBEDXaE/xIydwIIaKA1BTqHOi/zd7Ux7dLKVt4sMff6uJJlOQ50YH7/PSFmg1BZj3fMss1xgGdU1maj/ProJ/O70LVQ1O3lueCUKgBSWgtcKMotmb8rjCugzVYMHU96IWH8/buscEsCD8aoTqwvHrM3rHaRlVngLY/HwLxTV2/n12N0Q7K+hJEoqC6H0hAIbfvZ/tHOnPPyZ3ZdGeEn5u6OI5mNm2ZgFL/08WitoioxnDhR9CZA+9k2BQBJ3C/Vjo6IkmFNT98/WO5D32ur/snOFWNb7akMuE55by649fsNBwJ1+rd9Np8xModUU4+l2LuPoHlMBoHjqnOzeOSWHW+lxKQwcictaccjOuWkJ5nZ3bZ64j5KebsODC57JPuXpsdxSl+YWSyYal0yjwj9I3qCRJbUZqhB8GRbBJND9vtpHCfUZpHZtzquikFCNC9V12dpDZP8zzjSwUtbimlW+C6uJz5Swen9rrtzf8veICmdwzineXZ1BR70AEJaFVZLVoljq7ixV78piirMDZ+SzwCWnR8VrKeeNH8rlrHP67ZlJX1AF35G1uav7hLpWzekczILF9/j1Jkhh8Pa6eF0K3c/9w/MphSYxKC+Pe5SoucyDqgV91SigdjSwUtVEGpe18epAW4ceWMoE7uj/qvgV6x/GOyizUZzphf+9M1OI9ACzbV8qkF5dx/9dbuEnM5hPzk4QEBmCf/ALaXTsw37EO69lPICI8zb2FENw2LhWDIlivdUc4aqFom54/Vbu3v7iWc19dSZ+9LzNQ2YfpvJdJSOujdyxJkto4i9FAcpgvy2qjUS2BqG3kE8pvNuXjJ5rwc5ZhCNN/RhGALTDc843sUdSymmoQG97jZ/cgrjl7HFGB1j/cfc/EzjQ43by59AAiJAlRnd2i277vL65lgrYeH3ctpgFXttg4LW1i90i+8bsUl6agLn5S7zje17wEMcMZyp0T0nQOI0knITAW4/R3wBb0h8OKInj2gj6YTSbW0hMtY2mL/u6TTpwsFElH1TM2kILqJipjxmAo2gL1ZXpHOmnquvcQbifGkp2IN0ew+NVbuPH9ZdjcNayMf4vLGz/F2X0appuWYBlyDSIo/pDX8bea6B0XyLeVSZ4DWXKbxxO1LrOCaW+sYqhzDdcb5uHqfzWmvhfqHUuSpHaia5Q/e0rq0RKGo2Xq36dIVTW+3ZzPeYnNu4u1gaVnAP4hkZ5vZKGoRTWsfgeru46lETOYPiDuL/enRfoztV8sH63KotYWi7DXQmNli+VJL6njIsOvNPnFo6SMbrFxWppBEZw/diAfuE7Hf99s6nK36x3Ju6pysAsr+ISSFiGX10sdU2SAlSfP78Xc+m4YavNx75qrdyTpEGShSDqq8/vHYTYqfFXdDYEG6Yv0jnRynE2w+VPUzpPZPnUhPyqjGV82k1X+/2C28g+iy9fgnPws5gveBbPvUS83olMYSwpNuIKSZZ+iE/TT9kKuem8l95pm86z6LK6IXhgnd8BPCiVJajFdo/zJrWjElTACQ1UmVOfrmmdNZjn5VY1MiW/0HAhpG4WiqJAAajUbrrpSvaN0XM4mxJrXWe7uyagxpx+2x8xdEzrjVjV+yDV7DrRgQ+v8ggJGGHZCn0tAad8v/6f3j+Nz0/k0Chv8+rjecbxKrcymUITTLyFY9iaSOrRJPaOh9yXsUJNwfncH1JXoHUn6k/b9TCG1ihBfM1P6xPDqHl9ctjBc+9p3nyJt13coTRV8pUzi/I/384T5dnac8QV+gSEIVLSrfsI05Ppj3g1keGooblWjOHgAInuV7FN0nD5cmcmzn89jjuURrnR+gbP7NE+japP16A+WJElq1isuCICNSk/PAZ13P/tucz5+FiN9fZpn7oSk6JrnoOhAK5WaH43VslDUUuwbP8VmL+Nj4/lM7B552PMSQn0Y3TmcJSU+ngMt2NC6vrmfjzWhf4uN0VpsZgNThvfiLcdk/DJ+oj5zrd6RvMZdkc0BZxj9EoL0jiJJLe4/U/vyTvgDCEcdJTNvkEvQ2hhZKJKOyZXDk2hwahwIGIJyYFG7LoY0rHyLPCWWBzYHc8GAeH6+azQ9h03CdOtqjHdtQ0kYdFzX658QjMWosE7rhrBXQ/HOFkreseRXNXL9h+s48OOL/Gh5kGRjKa5pH2K+4B2wBuodT5KkdmZEp1AiAyy8u9eGag1CzdC3T9Huwlr6JwZjqMpA9Y1sM7s0xgTZqMAfR237X0beJrldsPIltqqdiOt3Bhaj4Yind43yZ01F87+NypabUeQqz/J8E3jopfTtzRXDEvlYnEWdEoD49X96x/GeqhzytDD6JwTrnUSSWpyP2ch/r53Oe7YriSj8lawFr+sdSfodWSiSjknP2EAGJQUzq7ILSlMl5G/SO9IJWfTrAnxLNvGZOpE3LxvAU9N742cxeu4UAgzG476m1WRgUFIIs8uTPAeyZZ+iI3G5Vd5dnsHfn3+LOzNv5FHTh5A4AuNtazH2mqp3PEmS2imjQeGigfH8ur+cxuihaDovBS6sbiI6wIpWfgCtjSw7A4gNslGl+UO93PWsJTi2f4OlNofXXedy0eCEo57fJcqfKtWGyxLUYkvPHC4VS33zUszD9Fxsb8L8LEzqn8brzrPxyVlCU9Y6vSOdvMYqTM4a8gmnd3yQ3mkkqVUE+piYfvOjbFB6E7HqETL2yo2B2gpZKJKO2ZXDk/i2pgsqCmo7W35WZ3dx16zNFC96DTsWLr/pAc/aWC8ZnhrKilIbTv941EzZp+hwtuZWcf1Ls4mafxOfKg/R2bcB57lvYLnyG7ndvSRJJ+3CQZ43wevogaE6+7etplubw6VSXm8nKtCKqMhAtJFG1uBpIlqJPwa7bGbtdZoGK14gW8RRHD2erlEBR31Ilyh/AGqssagVWS0SK7u8nhhKsZsCOtSM3WtHpvCRcwINhgC0pc/oHefkVecCoAYk/P+HmJJ0CogI9CHmyvdxY6Du82vZliNnvLYFslAkHbMzekRhDQgn3dQFdf8CveMcM03TuPPzzfy6NZ3p5tWI3tOJjvJekQg8Da0BCoMGQM4qUFWvXr+9q2ly8ti3G1j+1p28WXMzk0xbsY+8H/NdmzD1v/SY+0FJkiQdSVywD6PTwnkvr3mXKZ12PyupbULTIN7HhdJQihLWdgpFZqNCkykIq7Na7ygdjnPvfMxlu3jFcRYXDE48psekhPlhVAQlhqgWm1F0oLSOWFGGy/+vu6+1Z6kRfgzvnsS7zknYMufjzNuqd6STojYvPQyKSdU5iSS1vpjENGrGP0lv9lH8zoXc/NxHvLMsg5KaJr2jnbJkoUg6ZiaDwmVDE5jb0AND0Raobx/V3tmb8lm0p4TXe+7DrDZhHnqD18foGRtIgNXIWrUrSmMFlO7x+hjtkaZp/Li9kEeeeZartlzEbcbvcHU5B+Odm7Cc9uAx7SonSZJ0PC4ZnMDK2nDs5mDcOhWKiqo9L2yTlCLPgTa09AxAtQZjVRvAZdc7Ssey4nkqjBHMV0Zzbp+YY3qI2aiQEu5LpisMUZ3bIj0g00vqiBOlmEOTvH5tvf3n7O7MZBL1wgfX0qf1jnNSyvM8DcfjU7ronESS9BE76gpqhj/AaPMe3qi9g6QF13Ljk29x3UfrySit0zveKUcWiqTjcsngBFaKfgg0nLt/1DvOURVWN/LI3J0MTgxmcNk3OKP6Q0xfr49jUARDU0L5SvYp+k1ueT3/eHcO5i8v4Tn3kwQFBuO+8gd8L/kAAmP1jidJUgc1oVsEoX42thl7enY+02EXlaLmT0Cj3c19YdrQ0jMAxTfU802DXH7mNZVZmPLW8K7zdCb2isffajrmh3aJCmBHYzDC7YDaQq9HO1BSR5xShink2GY5tSfxIT7cNnkA7zlPx7r/B9zFu/WOdMIqCw5Qr1no0SlZ7yiSpA8hCDj9H1j+tpOmkX9nrC2Db83/4aaM25j78p189dWnNNXX6J3ylCELRdJxCfWzkNJrBOlaLOqKFz27e7RRmqbxwOztuNwaj/ctw1SZjjL4uhYbb0RqGOuq/HH4xeJOX9xi47RZ6YuwvzsZ+8uDqX28E5EvJ/Bk/pWMMu3FPu4R/O5cjSF5pN4pJUnq4EwGhQsHxjGvuhOGmrwW3XL8cA7OKAptyvMcCG5bb/xM/uEAaA2yobXXNP872+RM4qJBx9cwumuUP9vqg5qv4/3lZ8XFhfjSBEFHb67dHs0Yksj22Eto0MzUzH9C7zgnzFGWRaGIICW8beyQKEm6sQVjPe2fmO7dgX3cw/QIgdsNs7lg560Yn0mk8sUR2Bc/DdV5eift0GShSDpuV41M4RnnBViqDuDc/JnecQ7ri/W5rNxXyJvJy+m06AbcPhEYep3fYuONSA0FBFkho1AyfgVHfYuN1Ra5Fz0KpXtYXxPED409WRh4PqXD/oXlzg1YxtwFhmP/dFWSJOlkXDwogZVqdwC0rNZfflZY3YTNZMBUnYnqHwNmn1bPcCQ+QREA1FaW6JykA6nyNCJWghIYlHR8W5t3jvQnVwtvvo53C0WapuEoz/Lc6KCFIkUR/PvC0XyunU7Agbmopfv1jnRCbPV51FpjUBTZt1GSALD4YxlzN7Y716I8kM3WMe8x03g+GRV2LMseR3uhJ/b3zsKx8VOwy6Vp3iYLRdJx6xkbSF3yJHaQCkuebJM9DrLK6pk37xsW+v6bMTmvUhc7CsfVC8Bka7ExO4X7EeFv4WdtCMLVCOkLW2ystqYxfweGws08XX8m9xn+Tsglb3HmPe8QfsZ9cpmZJEmtLiHUh+hOfSgjCMf2Oa0+flF1E1GBVig/gBaS0urjH01AqKdQVFXm/WVOp6rqwgzcmmDMwD6I49ygoWuUP/laOBrC6zPgCqubCHUVe24EHd9Mp/YkIdQH/7F34tQMpH/7qN5xjlttk5NwdzEiuOMtD5Qkr7AG0mfcdC76+9t80v0dRtlfYHPKjSjVuZjn3or7zdFt8j1pe+aVQpEQYpIQYq8QIl0I8cAh7hdCiJeb798mhOjvjXEl/dx5WheecFyAqS4fx5p39Y7zB5qqsuu9G/lUeYgoi4Oiye9juXwWtvCkFh1XCMGI1DBmFsSg2kJw72z9Nyd6WJNRzncfPINTM2DtdzEL7hnD6T3kVveSJOnr4sGJvO88HUvmQtScda06dlFNE1EBVkRlBiK07e1gFBLu2fmzTs4o8pqi3P0UE8yZfY9/1k5skA2T2UK1KRzNy4WiA6WeRtZAh51RdNAFYwey0Gcyyfnz2LP4U5wu7zcGbyk7M3IJEA34R7W9wrIktSVWk4FnLuhDSlpPpu8eza+n/4J76jsYKg+gbfxQ73gdykkXioQQBuA1YDLQHbhECNH9T6dNBtKav24A3jjZcSV9DU4OQUsaw3p6oqx4rk1N9/vlx285s3EuWyPOo/H6VUQNmYbFaGiVsYd3CqW43k11wumI/b906Mp2g8PFw9/vZMbbKzndtYSa+HHcN20Ufhaj3tEkSZKY2D2SudZzqFKCcC38b6uOXVTdRIqfE6WxAqWNNbIGCI/w7MhlrynVOUnH4SjPptIYSXzI8S8zVBRB50h/CkQkmpd7FB0oqSNOlKGa/MAa5NVrtzWKIuhz8SNkixi6LruV+tfHUbV7KdpRGtrXFeyhZtYNNKyf2UpJ/yorfRcAUYlyxzNJOhqTQeH1Gf3pFRvI7bO2sDlgAu6EEWhLnznlWn+0JG/MKBoMpGualqFpmgOYBUz50zlTgI81jzVAkBAi2gtjSzq687TO/M9+AcamchwrX9U7DgC5FQ0Y179OjQig29WvEhwc0qrjj0gNA2CdbQSKow4ylrTq+K0lt6KBs19ewYersvhvjyJCqSJ0xNV6x5IkSfqN2ahw0YhuvGw/B3POctwHlrbKuKqqUVzTRBdz82ydNlgoCg3wo06z4aot0ztKh1BaayfQUYgh+MRn7HSN8ifdGer1pWfppXUkGcs9s4mOc0lcexSfmELDNUt4RNyEoyKHoC/Opf7D6VTuWEhdbTWq+v9Fo8aKfGq+vh3fd0YQsOcLbD/ehn33L7rkLs1NB8A3om01vpektsrXYuT9qwYRE2Tj2o83kt//bygNpahr39Y7WofhjUJRLJD7u9t5zceO9xwAhBA3CCE2CCE2lJbKT7rasiEpoViSh7BEDMKw+lXdt9lVVY1nZ/3EeDbi6HcVZpt/q2eICbLRJdKfR3aE4zb5o+76vtUzeJtWU4B97v04PzgHGivZW1TLtDdWUdHg4LPrh3CJeQWqLRTSTtc7qiRJ0h9cPiyJ74xnUGEIR134XzjKzAJvKKu341I1kkWR50BI2ysUKYqgRglA0/l5u6NYtKuAaCoIizvxZYadI/1Jd4Sh1BWBs8lr2Q6U1JNkKO/Q/Yn+rHdCGDNu/jfnG1/jJS7Fkr+W4K+n4ft8MvbXRlD91W1Uf3sfltcH4L/zM2p6XkbjzRtwhHbF+O21OAt3tmpeTdNoKsv03AiSPYok6ViF+ln4+JrBmI0K035QqYobBytfhKZqvaN1CN4oFB3q44k/vxI7lnM8BzXtbU3TBmqaNjA8PPykw0kt684Jnflf03QUZx32pc/rmuWTNdn0K5iFqhgJG3ebbjlevbQfTZqRBe6+qLt/ALdLtywnQ63Ko3HOPWgv9cW86V2MOSsp/+x6LnxzFULAlzcOY3i0gtj3E6L3hWA06x1ZkiTpDwJtJi4alsazTediKtyAe+/PLT5mUbXnTX6Mu8DTnDg4qcXHPBGNxgAMTbJQ5A1rtu3GJNyExp54UbBr1O92PqvOPfLJxyG9tI4orRTlFGuSnBrhx6c3jeULy3TGul5h3bA3qRxwG25rCH77viNw69vUJ59Bw41rCJz2ErbINIwzvkQz+sBnF6HWtl7/rqzyBkKdRTgNPmA7vh3zJOlUFx/iw8zrhmBSBNfmnIHSVIW68hW9Y3UI3igU5QG//5giDig4gXOkdmhYp1CCk/rwkxiFaeM7UK/PNPassnpe/2kDF5uW4up+PvhH6pIDIC3Sn0+vHcJ8dQhGeyWlu37VLcsJ0TQc8x+Gl/th3foRju4XwO0bOdD3fkJzF3CNeT5f3zSczpH+sP1rhNuB6DdD79SSJEmHdM2IZOaIcZSaYlAXPQaq2qLjFTYXioKbctEC4sBkbdHxTpRqDSXAUUxFnfdmr5yKapucFGbvA0CcRLPozr8vFHlp+Vl1oxN7bQU2ta7DN7I+lKQwX764cRiKTyAX/hrARfsm8FmXlyi8aTd1dx3Af8ZH+Eal/Xa+ITge9eLPMDSU4ph5sVdndh3J5pxK4kQproD4U2J5oCR5W+dIf767dQSO8F786B6Ma9Vrur0n7Ui8UShaD6QJIZKFEGbgYuDP622+B65o3v1sKFCtaZrck7WDuPO0NJ5rOgfhsuNc+Xqrj6+qGvd9vZWLDYuwanbMI/SbTXRQ95gArrnyOho1MyvmvEdxTft5IV6//jPMq15gmXEYNwa9w8VFlzL18wImr+vFGuMgbnd9THzTXgDcmz9FjewFUb10Ti1JknRo4f4Wpg9K5snG8zCV7sC987sWHe/g73vfxny0NjqbCEBNO4M0kceBH1/Crbb8kryOasneUiLV5lYJgSe+vCvMz0KdT5znhpcKRQdK64gVzW+WTiJbexYf4sNPd47mqWm9CLCZ+N+Pexj73HLunZtFRulfN2IxJwzEce4bWIs2Uv/VjWhuZ4tn3JxTRYJShjk0qcXHkqSOKiLAyhc3DmV1wo0YXI2s/uhB+dx2kk66UKRpmgu4DfgF2A18qWnaTiHETUKIm5pP+xHIANKBd4BbTnZcqe0YlhJKaGIvFouhKBveafV1oXO25rM5q5TrLQuxx49CiendquMfTs/kaBoSxzHCuYYZb6+itqnlX2ycrKwDe1F//Bsb1C68H/EATX5xBNhMBNhMTO0XR/dbZqL5huP+4irIWYOhaCuKnE0kSVIbd/3oFOaqIyiyJKH9+j9QW27b7MLqJkwGgamuECXwkO0Y24SEM+5gidqXPrufpfTAZr3jtFu/7CwizVrpuREYd1LXCouKx4EJqryz85lnx7PmItYpOKPoID+LkYsGJTD75uEsvGcM145KZtWBcia9tJxXFu3H4frjLENrn/NpGP1vfPd9R+MH5+GsbbmeqZqmsWx/KfFKGYaQpBYbR5JOBT5mIw9fO41toZPoXzybf7/wGtty5RLrE+WNGUVomvajpmmdNU3rpGna483H3tQ07c3m7zVN025tvr+XpmkbvDGu1DYIIbh5bCeebzobg6MG19p3WnX8DVmVTLduwM9egmHEra069tGEDryACFFJYMVWnvxpj95xjmjx7kKKPr4GA25M097i4+uG8/E1g3/7enp6HwJCIjFc8D5KTS7ap9PQFBP0ulDv6JIkSUcUF+zDuf3iebzhfIwV+3FtmdViYxVVNxHlZ0LUFSFOsnDQkmwWIzOjHqBW8yHoxxupqpbNP4+X3eVmyd5SBgXVoVmDweJ3UtdLiwokTwtHLc/0Sr700joSDOWeG6dwoej3UiP8+Mfkbiy6ZwwTu0fy3IJ9nP3KcjZmV/7hPJ/xf6PmjJexFq5He2ssTTktU0zdmldNZXkpvlq9/DuSJC8wKIJ+lz+FZvbjf7UPEvjOEBa+cQ+1xRl6R2t3vFIokqQxncNpDOvJemN/xJrXwdHQamPvL6rlWuOPOIM7Yex8RquNe0w6n46mmPhb/F5mrs1h1YEymhrrqc/dBs5GvdMBnk+zXl+SzvKZjzNU7KBx3GP06dPv8A9IGIo27l8IRx1a2hngG9p6YSVJkk7QTWM6Mc81gAKfrrDkCXA5WmScouomuvk3IjQ3BMS0yBjeMrhnZ+523Ii1ch/qL//6y8wK6chWHSinzu4i1VyJ5oWlXV2j/MlWw3GUZ518ODw7nnW3VaGZfMBHPlf/XkSAldcu7c97Vw6krsnF9DdX8fD3O2l0/P9sw4BhV9J02TyE5sb80STq1n+Ow6XicKk43Z4v9SSXtny3OZ9kY/PyQFkokiTvCE7Eet9Oaia/hsM/jtOK38P/jX6UvDgG+4LH0LJXQSssK23vZKFI8gpFEVw7Mpmn6s/G0FiOe+NHrTKupmn4lqwnzZUOQ28FpY39k7YGoiaPZVDtIt7xeZ2oT8dieToe3/dG4V7wkN7pAHj6l73M/mUx/zB9QVPKREJHX3/Uxygj78I98XGU0//bCgklSZJOXmqEH5N7RvPfhvMx1uTiaqHnqaKaJtJsNZ4bbXhGEcDYLhEsU/uwIfpSQnZ9TO3WP7eYlI5k/s4ifM0Ggl0lCC9sP9850p9cLQKlOscL6SCjtI4UU7mniCWbJB/ShG6RLLhnDFcOS+LDVVmc9cpytuZW/Xa/T/JguHEp9si++P1wE4anEzE8nYh4OgnxdDLOF/tQ8+UtVG/8isbq42ue63KrzNtWyOS45qK1LBRJkveYfQkYchlp9/3KnotW8YltBgUVNZhWPov4YDLqk4k4PrkQrUAuvT6cNvauWmrPzu8XR7qtF3stvWDlyy32ae3vldbZ6evcgobA1O/iFh/vRBj6XYqxoYRhlkwOuCJYGDoDe+xQxPavda9mf7Y2h3eW7OXDwHcxWHyxTn3t2F5MKgqGEbdB6IlvBSxJktTarhuVws9NPSgM7ItY9qzXZ3ZqmkZhdSPJpirPgTY+oyg1wo+YQCvvWC6jMbQnQQvugrqW68fSkbhVjQW7ihnbJRylJvekdjw7yFMoCsfsrDnuosOfOVwq2RUNRGulXsnWkflajDx8bg9mXjeERoeb899YxQsL9uF0e2bYmQIisV4zl5rRj1DX9QLqukynvvM06jtPxRnSFd/93xM49zqsL6bR8NoYqr+9l6pVH1GbvRW7w37YcVcdKKeszs6YiObfQ/LvSZJaRNduPbj0vtfYNvlbRmnvcZv7HrYET0Ip2AjvTMD187+OfTVMRYbu799aiywUSV5jMxu4bEgi/6s9E0NdAerWz1t8zP3FdURRgd0aBmbfFh/vhPQ8H+c/S/C9fycrBr7MDfmTyOlyNUpjOWQs0S3Wr3tL+PecHbwUPs+zi9k5L4J/pG55JEmSWlq/+CC6RwfynPsiDPVFuNa+7dXr1zS6aHKqxBmam2cGtN1m1uDpMTimSzirMuuoOu1ZDE2VqPt+0TtWu7App5KyOgdnd7YhHPXghRlFvhYjRX7dAVA/v4SyohOfWZRdXo9b1Qh2FslC0TEakRrGz3eN5tw+Mby0aD9TX1/Jsn2laJqGMJoJGH8Xgec/T+C0F5q/XsTvqi9R78+g5tIfqBl0NxhM+O+cSdD8O/D/YDSmp+JpeHMi1QufpS5/F5r2/0vV5mwpwN9qJM1SgWb2A1uwjj+9JHVsBkVwxbAkvr33LJTu53J+zjSmKi9R0mk6xjWv4HptKGr6kiNfpL4c9YMzYY7+O2y3BlkokrzqimGJrBJ9yLN2Rlv+QovuLAOwr7iWaFGOaMM7ywCYzBaEENw/qStxwTZuXRuKagnEve0rXfLsLKjmtpmbuCpkB2fVfomz31UYepynSxZJkqTWIoTgsqGJfF2WSEXUSMSKF8Fe67XrF9Z4ZgZEaOVoRlu7eOM3Oi2cWruLHHMqbrM/7tz1ekdqFxbtLsFkEIwOb54N4qXt5xtjhvG45W5spdsI/HgCBduX/Daz5Xikl9ThSyMWZ7VXilinikCbiRcu6svrM/pTXufgivfXMe2NVSxtLhgdislkJqDzSALP/A8+Ny3EeX8Otdeuonry69T2ugrhbCBwxaP4vTMMx4v9qPnmbiq+vofROx9kps9zsH02WlCCXB4oSa0gIsDKy5f049Nrh1Dh9mHk7vP4eeA7IAwon07B9dM/4FD/r6sq7m9uQDRUwLBTYwN3WSiSvCoiwMo5fWJ5puFsDFWZsOeHFh1vX3EdcYYKTMHt40WQr8XIk+f3Zl+5g3XWkYg981q18TdAQVUj13y4nu7WMv5hfxlnZF9MZz3dqhkkSZL0MqVvDH4WIx9YLsPQVIFr1Wteu3ZhdRMAga5StICYdvHGb3hqGAZFsDy9AjWqHyJ/o96R2oV9xbV0CvfDt7HQc8BL/ai6Rvnzfu1gSi76AdVoI/qbaZQvfhWH8/g+eNtXXEeskE2ST9SZvaJZct9YHjuvJ0XVTVz5/jrOf2MV328t+EPD60OxmM34x/cgcMgMAs97GuttK2i4ZSvV45/AFZCA386Z+O7+gv7aHmKNtdjDenj6bEqS1GpGpoXxwx0jGZUWzk0rfLk//A0a+16Nce3rnj6yfyoWqStfwnBgIdoZT0B0H51Sty5ZKJK87tqRycx19KfOFIZ7S8suP9tfVEO0KEdp4w1Df29Eahh3jE/lpdK+KM56tH0/t+r4d83agtveyIe+ryIUA6aLPwajpVUzSJIk6cXXYuT8/rG8lR5EfcoklNWvQkOFV65d1Fwo8m0qavPLzg4KtJnonxDE0n2liLiBGEp3tZldOduyzLJ6ksN8oTrXc8BLxZiesQGe/kflYTReuYja+DFErfw3DXPvO64dtubvKmJEWPMHUYGyUHQiLEYDlw1N5Nf7xvL41J6U1Ni54/PNDHxsAfd8sYWl+0pxHcNsLyEEPhFJBI6+Bd9rv8f9j0JuS5jDNMubBN21Ct/r5qL0v6wVfiJJkn4vyMfMu1cM5L4zuvDdjnLOSp/C/oSLMKx6iR1f/Ic5W/I9swmzVyEWP4q7+1SUQdfoHbvVyEKR5HU9YgIZkhLO9+pwlPQFXnsB/meaplFYUoxNa4I2vvTsz+6e2Jkug8+gWAsiY/GHrTbuvuJa1mVV8En0l/hW7obz34bgxFYbX5IkqS2YMSQRh1vlx7BrEI46VC/1KiqqbkIIMNUXtfkl0b83pnM42/OraYjoi9DcULhV70htmsutklvR0FwoyvMsM/TS9vMTu0cxvmsEj8zdxe4qBcOlsyjveQ1B296jeunrx3SNvUW17Cyo4fTY5kbKckbRSbEYDcwYksjy+8fx+fVDOadPDAt3F3Pl++sY9PhC7vh8M19vzKOktumYrtfgUFm6r5Rz+sRgUNr+rENJ6sgURXDruFQ+vW4INU1uTt93DrPdo+i552W2fvUEd7+/kOpPrkANTMBw7svtYqawt8hCkdQirhuVzKcNQxGqE3Z+2yJjlNTa8bMXe2608Z1l/kwIwX/O7c3ukNOIK1/JrGXbWmXcrzbkcrFxCd2Kvsc14l4MXc5olXElSZLaki5R/gxKCubVnWbc8cPQdn7nlesWVTcR4WtEqStCtJMZRQBjOkcAsLLR88GB7FN0ZHmVjbhUjaQwX7SqHLTAOK+9eTAogpcu7ktSmC83z9xIeb0Lv3OfojbxNIKW/ZuaHUefhfzN5jwMiqCPXw2a0Qp+EV7JdqpTFMGwTqE8Oa036/91Gm9eNoBxXSJYdaCcv321lcGPL2LyS8t58qc9rDpQhsN16NlGP+0oxOFWmdK3fb12laSObHinMJbdP5ZF946j322fUpN8Jv8xfcIvgU9gc1bxWti/UM3+esdsVbJQJLWIcV0iMMf24QDxODbPapExDjayBiCg/Sw9O0hRBCPPvxmLcLHpl4/5bnN+i47ndKt8uzmfe63f44wZhHHCgy06niRJUlt22dBEsssbyAofj6FsN5Sln/Q1C2ua6Obf6JmV045mFPWICSDU18z8HHD7x6HmbdA7UpuWWV4PQHKYL1pVrtdn7PhbTbx7xUA0Da79aD0OVWC68H3swZ3xnXMdjQU7D/tYt6rx3eZ8xnYOx9ZQgBbgvSKW9P8sRgOTekbx/EV9WffPCcy7fST3T+pCgNXIu8szuPSdtfT973yu+2g9by87wIJdxaSX1GJ3uZmzpYCUMF96xQbq/WNIkvQ7PmYjKeF+pEQGETDjI1wppxFuz2Zpyj08v8PG377aekzLTTsKo94BpI5JUQSPTOnJ12+N4O8Fs6AiE0KSvTrGvuI6YkTzsrZ29IL894xxA3AFJXN5w3qmfLmF2iYnlw9LapGxft1TglZXSri1CHrcCoqhRcaRJElqDyb1jCLU18y7Zd15EtB2z0WMuvukrllc3cRY3xqopN30KALPc/aotDCW7SvFndofg2xofURZZZ5CUVKoL6I6FxHj/camSWG+vDGjP5e/v467Zm3h7SsGYr94FuoHp2GYdTGu6xdj9A//y+NWHyinuMbOf86OQ1uTg5DLzlqcogh6xgbSMzaQW8amUmd3sfpAOUv3lbB0XykLd5f8dq4Qnh65d52WhpAFPElqu4xmjJfMhMKtnB4/mHsXp/Pcgn043CovXNQXk6Hjz7fp+D+hpJs+8UGo3acDUL76U69ff39xLcnmKjShgF+U16/fKoTA0Hs6PR1bmZpq4N9zdvK/H3cfV8PKY/XVxjzG+GZ7bsQN8vr1JUmS2hOL0cAFA+P5cj80hffBvXvuSV+zsLqRFHO150Y7WxI9pks45fUOSv17YqjJhbpSvSO1WVll9fhZjIRZXIiGMq/tePZnw1PDePic7izaU8J/5+7EFp6IfdonGOuLcX1+Gbidf3nMN5vy8LcamdAtwlPECmofu8J2JH4WIxO7R/LYeb1Yfv94tvxnIt/eMpwXL+rLHePTuHRIAjOGyP6QktTmmayQMASE4PYJafxjclfmbSvkn99s1ztZq5CFIqlFXX/uaNbRA/vmWWiqd6fq7SuuJc1ajeYXBYb2OzlO9LoAgcYz3Q5wxbBE3l6Wwa2fbaLpOLfCPZLSWjuL95QwLaIQTRhOmW0dJUmSjmTGkAQ0YJVpKMaCjVBTcMLXanC4qGlyEWtonunajmYUgadPkSJgRVOS54CcVXRYmeUNJIX5IKqbl4y34K5ilw9L4vpRyXy0OpsHv9uBT8pQ6s94AWvBGpoWPfmHc+vtLn7aUcTZvaOxanZEfalsZN0GBPmY6ZcQzHn9Yrl7Ymf+N7UX4f5yt1lJam9uHNOJR8/ryZXDk/SO0ipkoUhqUWF+FuzdphPjymPtyoVeu66maewvriPeUNnuPrX9i/AuuCN7o278iH/1qOChSSn8vLOIS95ZQ055w7Ffp74Mx+ybcS945C93fbc5H7eq0Uc5gBbZE8w+XvwBJEmS2qf4EB8uGhjPE1lpAGi7553wtYqqPTseRVLu2QXLFuyVjK0lxNfMwMQQPssNRhMG2dD6CDLL6kgK9YXqHM+BFp61888zu3HL2E58tjaH+77ehs/AS2nsdiGW1c/jzl7z23m/7Cyi0elmar84qM5tziYLRZIkSd5y+dBEep4i/cVkoUhqcUPPvhoHJnKXfOi1WTJFNU3U2l2EqaWIFpry3ZoMI27HUL4P86fncOXyMayOfoFxhe9z4bOzue6jDaxML0PTDrMcTdNwb/0K9yuDMG//DGXtG+Bs+t3dGl9uyGVAvD++pVsQcQNb6aeSJElq+/4xuRuVPsnkKPG4dn5/wtc5WCgKdpaiBcS0ywbCE7tHsrXYSVNwF9nQ+jAcLpX8ykZSwnyhOs9zMLBlC0VCCO47owv3TOzM7E153DlrM4azn8blH4c2+3qw1wLwzaZ84kNsDEwMhipZKJIkSZJOnCwUSS3O5BtMVfwExrmW89bivV655r7iOkDDz17cIQpF9L4Q8fdMHBd8hr3v1YQYmrjdMJultvvolvUxV7y7itNfWMZz8/fy0sL9v319umANDR9fhOHb61CDktAmPopwNULOqt8uvTWvmv0ldVzT1YVw1MlCkSRJ0u8E+pj475QefO/ojyFnFTRUnNB1CpsLRT724na37Oygid0jAci0dsVQuAm8vGS8I8ipaEDVPM2mqcr1LOf2j27xcYUQ3PG7Hhk3fZVO4bgXMdTm4Zx3H4XVjaw8UMbUfnEoioCq5p6EslAkSZIknQBZKJJaRcSIKwgTNWxe+g3vr8g86evtL64liDoMbnu7fUH+F7ZgzD3OwnbOU5hvXYG4cwsicQT3ah+xLuxR+rCXVxan89nCNeT9+jadlt7KeSumYMj8FceE/2K6YSFi0LVoBgukL/rtsl9uyMVqUhjv1zxFXjayliRJ+oPJPaOoTJiEgpvyTXNO6BpFNZ5CkaW+ENFOd+JMCvOlc6QfyxoSUew1UHFA70htzm87noX5QnWuZ/ZYK/ZJvHFMJ/47pQcr9pcx+osm5vhdjGn752z95SM0Daanatjn/xf3r0+gmf3a72YfkiRJkq5koUhqHakTUa3B3Bu4hCfmbeOFBfsOv5TqGOwrrqW7b43nRjt9QX5UwUmYr/ga9/SPCaSOZ2vuY3/Uv1hrvY1nTG8zKSCbgthJTLI/wSuNkzzb3Zt90RKGoe739INqdLiZu7WAM3tGYy3ehGYJhJBOOv9gkiRJbYsQgusuPI8CLYys5bNO6PmpqLqJUJuCUl+MaMcfYEzsHsl3pc0zZOTys7/IKvcUipJDfVGrclpsx7MjuWJYEisfGM89EzvzVOMUtqidGLrzv3zh/yLxHw/FvOp5XFF90S79GhT5Ul+SJEk6fvLZQ2odRjPaiDvp1bie+YH/Y/biVTwyd9cJbwO/r7iOfoHNjZ7b8QvyoxICQ88pGG9fh2Po7aiBCTjGPYR20wqMf9tD2vUfMrD/IF5ZnM6i3cUAKKkTUMr2UF6QyZXvr6O2ycXFgxPQ8jagxQ6ULxolSZIOITrIh6rE0+nZtJE56/Yd9+MLq5vo6t+E0Nzt+gOM07tHsc8dg8Pgg0s2tP6LzLJ6Am0mgn3NUJWLotPSrnB/C3dMSGPZP06n4oxXsSgqvUU69qF3Iu7ahuWKr1GShumSTZIkSWr/5DtGqdUYRt2NfeoHJGj5zLc9SP6ar/nb11txuVVwNuHY8wuN39+He8e3R7yOpmmkl9TRzad5RlFHLhQdZPHHPOkxLFfPwTzmHkRULxACIQSPnteTHjEB3P3FFs8uaakTAHjr/bfZmlfFSxf3ZXCMGVG6GyVe9ieSJEk6nK5jL8UinKz4aRa5Fcex6yRQVNNIV59qz412/LzUKzaQ8AAbB0ydIX+j3nHanKzyes+yM7cLUVvY4o2sj8ZkUBg/Yji2+3Zhu38v1jMeln2JJEmSpJMmC0VSq7L0OR9xwzKMYSm8Y36e4dv/zf4Xz0J9KhHzrAuxbXob8f1tR2wmWlDdRJ3dRZK5Ck0xgl9EK/4EbY/VZODNywYghODGTzfyRbYfxVowQ9QtzL55OFP6xkLBZoSmyv5EkiRJR6AkDcdpDeV0VnL3h0uorK7F7T62hs5F1XZSzO2/UKQogondI1nRmIihZOcfdtGUILO03rPjWW2hZ/ZYkL6Fot/4hIDRrHcKSZIkqYOQhSKp1SlhKZhvWIi9//VMNyzDr3o/+6LPw3HRF3DDEoSjHnX584d9/L5izzawUZSj+Ud7evOc4uJDfHjxor7sKarh79/sYJfPIMaadtEzytdzQl7z8oHYAfqFlCRJausUA0rXszidtXxdcwnBL8ShPBaG64kE7MtfPezDHC6Vsjo78YZKz4GAmFYK3DImdo9igzMFoTqhaJvecdqMJqebguomkkI9jawB3WcUSZIkSVJLOKlCkRAiRAixQAixv/nP4EOcEy+E+FUIsVsIsVMIcefJjCl1EEYLlnOfxfn3XO6N+Zjzss5jX8AwiOmH2utCxLp3oKbwkA/d31woCnCUtOtPbb1tXNcIHj+vF3eMT2XU5Isw2KugYBMAat4G1OBOnk8cJUmSpMMyTHyImonPMT/+Tp52Xsi62CtwRfTBsuhBmn76Nxyi0XVx845nkZSjmXzA9peXQ+3K0JQQ9pm6AJ7nD8kju9yzHDEpzAeqmgtFcpmXJEmS1AGd7IyiB4BFmqalAYuab/+ZC7hX07RuwFDgViFE95McV+ogTLYAXr9sAME+Zm78ZCMV9Q4M4/8Jmhv30qcP+Zh9xXWE+1sw1hW02y2IW8qlQxK45/QuGFPHowkF0hd53tTkrUfEydlEkiRJR+UbRsCI6zjt6kfY1/lGLs04na1j3sPe5yqsa1+mafYt4Hb94SHztnk+2IgWzTNdhdAjuddYjAZ6dOlCEaG4stfpHafNyCxr3vEszBeqczwH5QdWkiRJUgd0soWiKcBHzd9/BJz35xM0TSvUNG1T8/e1wG5APqtKvwnzs/DW5QMorbNz22ebcAUkoPa7AmXzx1CR8Zfz9xfX0jnCF1Fb0K63IG5RPiFo0f1Q0xdCdR5KfQlC9ieSJEk6ZooieP6iPiSG+HDrrK1UjnuSpuF/w7rjM+yfzQBnI+BZdvbBykxGpYXh14Fmuk7sHskadxe0zGWgHlufpo4uq9xTKEoK80Ut2onqFwVmH51TSZIkSZL3nWyhKFLTtELwFISAI3YVFkIkAf2AtSc5rtTB9I4L4n9Te7HqQDnPL9iHYez9aIoJ9+In/nBebkUDOwpqGBalIdwOCIzTKXHbp6SdhijYBOkLPAfi5I5nkiRJxyPAauLtKwZQb3fz8NxdWE//N/aJT2I+8AvOWZcD8P3WAkpq7Vw/KgWq81E6yPPS2C4RrND6YLGXQ/F2veO0CVll9YT6mgkwapC+EFIn6h1JkiRJklrEUQtFQoiFQogdh/iacjwDCSH8gNnAXZqm1RzhvBuEEBuEEBtKS0uPZwipnZs+II5p/eN4d3kmea4AtEHXo+z4Cop3/XbO60vSMQjBxV2aG1h3kE9uW0TqaZ6dzla8iGawQGRPvRNJkiS1O6kR/tw2PpWfdxaxYn8ZlhE34xrzT0wHFqAV7eCdZRl0jfJnVKcgRF1xu29kfVCgzYSaPA6A2p0/65ymbcgsqycpzBcyl6E4alG6n6N3JEmSJElqEUctFGmadpqmaT0P8TUHKBZCRAM0/1lyqGsIIUx4ikQzNU375ijjva1p2kBN0waGh4cf/08ktWt/O6MzCHhx4X4Mo+5GM/vhWvQoAPlVjXy9MY+LBsUT5m4uIsoeRYcX0x/NEghV2WjRfeS2uZIkSSfoulHJJIb68PDcnTjdKqbB16IZzOQtepO9xbVcPyoFUVfi2S69Az0v3XjWcHaoSZRu+kHvKG1CVnk9yWG+qLvnopl8IXmM3pEkSZIkqUWc7NKz74Erm7+/Epjz5xOEEAJ4D9itadrh9zyXJCA60MaVwxL5ZlMe+2pNaMNux7jvRyjZw5tLDgBw09hOUJPveYCcUXR4BiNaylgAFNmfSJIk6YRZjAb+c3Z30kvq+GhVFviGonY5m+D0b0n0F5zTJwZqCjwnd6DnpS5R/pRFjiK+fgfpOfl6x9FVvd1FcY2dlFAr7P0RLXUimKx6x5IkSZKkFnGyhaIngYlCiP3AxObbCCFihBA/Np8zArgcGC+E2NL8deZJjit1YLeMTcXXbOTZX/ZiGHgVmlCo3TiLL9bnMn1APLFBNqjJRzOYwSdM77htmpJ2mucb2Z9IkiTppEzoFsm4LuG8uHA/JbVN5CRdgJ9Wx0Op6ZiNSof9AKP/hOmYhJt5c2ahaZrecXRzsJF1X5GOUl8il51JkiRJHdpJFYo0TSvXNG2CpmlpzX9WNB8v0DTtzObvV2iaJjRN661pWt/mrx+PfGXpVBbsa+aG0SnM31XMpkozasIImrbMxq2p3DK2EwBadT6afwwoJ1vr7OB6nI865gHoPEnvJJIkSe3ef87pgd3l5qmf9vLSgUhytEhG1DQvy/qtUNQxehQdFJA2ArvBl4jiFSzec8gOA6eErLIGADpXLkVTTJAmG1lLkiRJHZd8ly21SdeMTCbMz8xTP+2hPu1cwu053NqtifgQzza0WnVeh+oD0WIsfijj/iG375UkSfKC5DBfrh2ZwuxNeczdXsz+uPOx5K+Bsv1QU4Bm8gFbsN4xvctgQiSPZrxpO4/N24XDpeqdSBeeGUUaQdm/oCWPBmug3pEkSZIkqcXIQpHUJvlajNw+Po21mRXcuTUOl6ZwdeCm/z+hpuNsQSxJkiS1H7ePTyUywAJA9zNvRlOMqBs/RKvO88x0FULnhN5n7HI6UVopSsV+Pl6ddfIXdDbhKEk/+eu0osyyeob5FWOszkLpJpedSZIkSR2bLBRJbdYlgxOIC7bxa67Gft/+BGT8AJoGqoqoLexw0/slSZKkts/XYuT1Gf15/sI+RMcm4k49A7Z8jlaZ1WFnuiqpEwC4JjKDlxbtp7TWflLXc865HdMbg3HuXXDoEzQN56L/4XhjDPZv78SxcSaUpXteA+gkq6ye86yb0RDQRbbalCRJkjo2WSiS2iyzUeEfk7vhYzYQMvhiDFWZULgF6ksQqqvDNQyVJEmS2ocBiSFM6et5DjIOuhqlsRylcAtKR31eCk7EFZLGuX67sDtV/jtv14lfqywd486vQRgwfH0l7oJtfznFtegxTMufQqhOTLtnY557C7w6APdTyTh+ehBqi07ihzkxWeX1jHCtQYsbBP6RrT6+JEmSJLUmWSiS2rSzekez/eEziBw8DU0xom3/BqqbG4bKpWeSJEmS3jqNx+3f/HzUQWcUAZA6Ab/Ctdw5Jo65WwtYtLsYAE1VjzrTZ+7WAhbsKqbJ6ca19BnPrqXXzUc1+6PNvMDTd7CZc+nzGFc8S3bidL4f8gWZ1+1Cu3k1zrNewpUwEtO619Fe6IX929uhIqNFf+SDvt2ch7U+n7im/XLZmSRJknRKMOodQJKOxqAI8AlBTR6L2PktIm6A546O+smtJEmS1H4oBkT/y2Dpkx16SbQxbSKse5MbEov4PtKff323g37OLfwfe/cdHlWxPnD8O1uSTe8NQugdQui9ClKkiQVRUewN67WXq9drveLP3huIIKhIExEpIh3pvbckBEhISG9b5vfHLhgwQIBNNgnv53n2IeecOTPv2Qk52TczcwJ+fxRdvw9eV39Y6nkbkzJ58PsNADQypzHX+AN76t6Ej3djHIO+peb0q8n+6mrW9J5E8fopDEp6m5n2Ljy6aziOXc7RRsG+ZlrXakbb2l3p3vwxGu39GsuWKejN31Fcpw+qfm+8GvaGyGZuXyPqrwMZPPXTFp6P2A7ZQJOr3Fq/EEIIURlJokhUGcaW18CM+2DHbOcOSRQJIYSoBAxtx2DfPQ9jXGdPh1J+6nRFGy0Y9i/k9SEPsmX8I4T+/Dt2rwCMmyZibzoYY5MB/zjt7d93Eernxbjr4gmY9xi2E0Zu3tGJtB1/ANDN8BDfWP9H3PThNDIc5i/vThxq+zZTGkYT4mtmQ2Im6xNPsO7QCf7YlcY4wGK+iitiB3Krmkvz1D/xO7AAFoDdJxxbbCewBILRC4xeKKMZjGYwmMHk/Fd5+WEMq4choiEE1QKD8Z/Xayvm0JFjvPTtYnoE2RnltxaHd1MMYfXL+Y0WQgghPE9pDy4MeD7t2rXTa9eu9XQYorIoyESPawgOu/Nxvc8drZZPlxFCCCEqI9uEqyFtJ3ajBe+s/XxlG0jr0a8T//tIKMrGNHb1aY+NX7U/nRs+X8Vzg5pyV0sj+oM22FrfxtZWz7H7WA4+Xib8vIzUPDiNJqufoSC2Gz63TgOzpdT2s/KtrD6Qzqr9Gazan86Oo9loDfXM6YwMO0B34zZqF+7ArIsxais4bCh7McphQzmspdapDV7YgmujDV4YinNQxbkYinNRjuJ/Fu71DPR62i3vpRBCCOFpSql1Wut2pR6TRJGoSuyTRmLc8xuO0PoYHlrv6XCEEEKIy4Ze+RFq3rNY/WqQM+B9hswx4uNlZM4IC14TBmCNv+nUFDStNdd9upKkE/n8+URvTL8+hnHTZNTDG0tdy6koeTPeUY3OmiQqTWZ+MasPZLByXzqr9qez82jOqWNKQZifF5EBFqICvYkK8CY6wEx0gIFobyshhcn45R7EN2c/PtmHUDhwmP3RXv44vPxZsC+PPVmKUd2aUbdmNAZLEIbanS8oPiGEEKIyO1eiSKaeiSrF2PIa2PObTDsTQgghKphqcys5VoV3m1GE+ofwqlcqY75Zw8sbQnmxw/14rf4QR8trMTToxeLdaaw9dIL/Dm+BJS8FvWkS9oTRmM6y4Ld3bPwFxxPs60X/5tH0bx4NwIm8YjYmZXI0u5Bj2YUcyy4iNbuQYzmFbE3J5nhu0Rnrbse5XqV774YEGibI7xtCCCEuP5IoElVLowFokwVD8Nl/sRNCCCFEOfD2J6DH/ac2ezWO5O4e9fh8yX7yWgzmreA5qFkPoh5Ywdu/7yI2xIcRLcMo+u0JvABTj8fKNbwQPy96N4k863Gb3cHx3GKO5xZRYLVTUGyn0GqnwGrHccYI+9gQX9rXCS3XeIUQQojKShJFomqxBOK48SeMIbU8HYkQQghx2XtmYBPC/b147dedBNR4gJcznyBp/B0MPWZiSEgSPm/vxOAoxtbmNkzBnr13m4wGooMsRAfJ9DEhhBDiXCRRJKocY73ung5BCCGEEIBSirt71Cc6yIfHfzDQ2ncQI47M4VaTGbtvArkN78RYuyN+LeSx8kIIIURVIYkiIYQQQghxSYa2qkGEvzf3TdR8UdSN+68dyJC2dT0dlhBCCCEugiSKhBBCCCHEJetcP4yf7u/Osj1Nuap1HU+HI4QQQoiLJIkiIYQQQgjhFg0iA2gQGeDpMIQQQghxCQyeDkAIIYQQQgghhBBCVA6SKBJCCCGEEEIIIYQQgCSKhBBCCCGEEEIIIYSLJIqEEEIIIYQQQgghBCCJIiGEEEIIIYQQQgjhIokiIYQQQgghhBBCCAFIokgIIYQQQgghhBBCuEiiSAghhBBCCCGEEEIAkigSQgghhBBCCCGEEC5Ka+3pGM5KKZUG5AHHPR2LKJNwpK+qCumrqkP6quqQvqoapJ+qDumrqkP6quqQvqo6pK+qhqrcT7W11hGlHajUiSIApdRarXU7T8chzk/6quqQvqo6pK+qDumrqkH6qeqQvqo6pK+qDumrqkP6qmqorv0kU8+EEEIIIYQQQgghBCCJIiGEEEIIIYQQQgjhUhUSRZ97OgBRZtJXVYf0VdUhfVV1SF9VDdJPVYf0VdUhfVV1SF9VHdJXVUO17KdKv0aREEIIIYQQQgghhKgYVWFEkRBCCCGEEEIIIYSoAG5NFCmlBiildiml9iqlnj7j2IOuY9uUUv87y/nXuY47lFLtzjgWr5Ra6Tq+RSllKeX8sa62tVIqvMT+IKXUbKXUJtf5t7nrmquq8uorpdRNSqmNJV4OpVRCKefXVUqtVkrtUUpNVUp5ufYrpdT7rrg2K6XauPnSq5TK2k+uY71c525TSv3pxsuukipBX53t599Nrv9Lm5VSK5RSrdx42VVSJe4ruVedoRz7yqyUmqCcv0/sUEo9c5bz5V5VRpW1r1zH5H7lUgn6Se5VZVSJ+0ruVWcox77yUkp94+qrTUqpXmc5X+5VZVRZ+8p1rHLdq7TWbnkBRmAfUA/wAjYBzVzHegMLAG/XduRZ6mgKNAYWA+1K7DcBm4FWru0wwFjK+a2BOsBBILzE/meBN11fRwAZgJe7rr2qvcqzr84o0xLYf5ZjPwA3uL7+FLjP9fUgYC6ggE7Aak+/X9JPpfZTMLAdiDtX+5fLq5L01dl+/nUBQlxfD7yc/09Vgb6Se1UF9RVwIzDF9bWvqy/qlHK+3Kuqfl8FI/erytRPcq+q+n0l96qK66sHgG9OngusAwylnC/3qqrfV8FUsnuVO0cUdQD2aq33a62LgSnAMNex+4A3tNZFAFrr1NIq0Frv0FrvKuXQlcBmrfUmV7l0rbW9lPM3aK0PllY1EKCUUoA/zh9otgu6uuqlPPuqpFHA92fudPVDH+An164JwHDX18OAb7XTKiBYKRVT5iurXipzP90I/Ky1TjxX+5cRj/aV6/xSf/5prVdorU+4NlcBsee7mGqu0vYVcq86U3n2lQb8lFImwAcoBrJLFpB71QWpzH0l96u/ebSfXOfLvapsKm1fIfeqM5VnXzUDFpY4NxM4c9aN3KvKrjL3VaW7V7kzUVQTSCqxnezaB9AI6O4aZvWnUqr9BdbdCNBKqXlKqfVKqScv8PwPcWb/UoAtwMNaa8cF1lGdlGdflTSS0j8ohQGZWuuTN5WS7Z8rtstNZe6nRkCIUmqxUmqdUuqWS2i/OvB0X5XVHTj/snQ5q8x9Jfeq05VnX/0E5AFHgERgnNY644wycq8qu8rcV3K/+pun+6ms5F5VuftK7lWnK8++2gQMU0qZlFJ1gbZArTPKyL2q7CpzX1W6e5XJjXWpUvadfKSaCQjBOeStPfCDUqqe1rqsj1wzAd1c5+YDC5VS67TWC8t4fn9gI84MXn1gvlJqqdb6H9nzy0R59pWzAaU6Avla660X2P65jl1uKnM/mXD+ALwC51+jViqlVmmtd19I+9WIp/uqLOf3xvnLd7eLOb8aqcx9Jfeq05VnX3UA7EANVz1LlVILtNb7y9i+3KtOV5n7Su5Xf/N0P50/QLlXnVSZ+0ruVacrz776GmdSbi1wCFjBP0dvyb2q7CpzX1W6e5U7RxQlc3rWLBZnpvnksZ9dw97+AhxAuHIu+LRRKfVrGer+U2t9XGudD/wKXMhiXLeVaH8vcABocgHnVzfl2Vcn3cDZ/5p+HOfQx5OJyjPbP1tsl5vK3k+/aa3ztNbHgSVAqzK2WR15uq/OSSkVD3wJDNNap19MHdVIZe4ruVedrjz76kacP8OsruHdyzljiDhyr7oQlb2v5H7l5Ol+Oie5V52mMveV3KtOV259pbW2aa0f1VonaK2H4VzHZs8ZxeReVXaVva8q1b3KnYmiNUBD5VzJ2wvnL8qzXMdm4Mw6o5RqhHPxqONa69tcb+ag89Q9D4hXSvm63tieOBd7KqtEnNk5lFJROBeguqC/cFQz5dlXKKUMwHU4533+gysz+wdwrWvXrcBM19ezgFuUUycgS2t95CKusTqozP00E+fwTJNSyhfoCOy48EusNjzaV+c5Nw74GRh9mf4F/UyVtq+Qe9WZyrOvEoE+rnuNH86/IO4sWUDuVRekMveV3K/+5tF+Ohe5V/1Dpe0r5F51pnLrK9dnXz/X1/0Am9b6tM/Acq+6IJW5ryrfvUq7dyXxQcBunKuJP1divxfwHbAVWA/0Ocv5V+PMphUBx4B5JY7dDGxz1fG/s5z/kOt8G87s3Jeu/TWA33HOo90K3OzO666Kr3Luq17AqvO0Xw/4C9gL/MjfK8wr4CNXXFs4yxOFLpdXZe0n17EncCZstwKPePq98vSrEvTV2X7+fQmcwDlMfCOw1tPvladflbiv5F5VQX2FcwHWH3H+XrEdeOIs58u9qor3leuY3K8qTz/Jvarq95Xcqyqur+oAu3AmDBYAtc9yvtyrqnhfuY5VqnuVcgUlhBBCCCGEEEIIIS5z7px6JoQQQgghhBBCCCGqMEkUCSGEEEIIIYQQQghAEkVCCCGEEEIIIYQQwkUSRUIIIYQQQgghhBACkESREEIIIYQQQgghhHCRRJEQQgghhBBCCCGEACRRJIQQQgghhBBCCCFcJFEkhBBCCCGEEEIIIQBJFAkhhBBCCCGEEEIIF0kUCSGEEEIIIYQQQghAEkVCCCGEEEIIIYQQwkUSRUIIIYQQQgghhBACkESREEIIIYQQQgghhHCRRJEQQgghhBBCCCGEACRRJIQQQgghhBBCCCFcJFEkhBBCVHJKqTpKKa2UMpWh7Bil1LIKiqurUmqPUipXKTW8ItoUf1NKxbnee6M7y7ohrgr7HhRCCCGE+0miSAghhHAjpdRBpVSxUir8jP0bXcmeOh4KrWTCKdf1OqiUevoSqnwZ+FBr7a+1nuGmMC8L7kimaK0TXe+93Z1lK5JS6iWl1HdurG+MUspe4nv85KuGG+rWSqm8EnV+6Y6YhRBCiMrmvH+ZFEIIIcQFOwCMAj4AUEq1BHw8GtHpgrXWNqVUZ2ChUmqj1vq3sp6slDJprW1AbWDbxQRQog5xFkopY2VL7FQRK7XW3cqp7lZa673lVLcQQghRKciIIiGEEML9JgK3lNi+Ffi2ZAGlVJBS6lulVJpS6pBS6nmllMF1zKiUGqeUOq6U2g9cVcq5XymljiilDiulXrmYKUVa65U4Ez0tXPXerpTaoZQ6oZSap5SqXaJNrZR6QCm1B9ijlNoH1ANmu0ZXeCulaiilZimlMpRSe5VSd5U4/yWl1E9Kqe+UUtnAGKXUYlfsK1x1zFZKhSmlJimlspVSa0qOwFJKvaeUSnIdW6eU6n5G/T+43tMcpdQ2pVS7EsdrKaV+dr3f6UqpD0scO+t1n0kpNdRVd6Yr/qYljh1USj2ulNqslMpSSk1VSllKqaMp8CnQ2XXdma7945VSnyilflVK5QG9lVJXKaU2uK45SSn1Uol6TpuS6Irnv0qp5a734HflGtl2IWVdx29xfV+mK6VecF1b37O8J2Gufs9WSv0F1D/jeKn9ppQaADwLjHS9D5tc+29z9UeOUmq/Uuqes/XHhVBK1Xd9b7ZxbddQzv9jvUq8J68rpf5y9d9MpVSoO9oWQgghqhJJFAkhhBDutwoIVEo1Vc4EzkjgzOk1HwBBOJMtPXEmlm5zHbsLGAy0BtoB155x7gTABjRwlbkSuPNCAlROXYHmwAblXGPoWWAEEAEsBb4/47ThQEegmda6PpAIDHFNaSpylU8Garhifk0pdUWJ84cBPwHBwCTXvhuA0UBNnAmGlcA3QCiwA3ixxPlrgATXscnAj2ckYoYCU1z1zwI+dF2rEfgFOATUcbU1xXWsLNd98j1r5Dr2iKvsrzgTZV4lil0PDADqAvHAmDPr0VrvAO7FOfLFX2sdXOLwjcCrQACwDMjD+b0RjDNheJ8693pQN+L8PooEvIDHL7SsUqoZ8DFwExCD8/u05jnq+QgodJW93fUqqdR+c41iew2Y6nofWrnKp+L8/g90xffOyeSOK75MpdQFjxjSWu8DngImKaV8cX6fjddaLy5R7BZX/DVw/h97/4xqliiljrqSjnUuNAYhhBCiKpBEkRBCCFE+To4q6gfsBA6fPFAiefSM1jpHa30QeBtnwgScyYZ3tdZJWusM4PUS50YBA4FHtNZ5WutU4B2cCZeyOg5kAF8CT2utFwL3AK9rrXe4poS9BiScMbrmda11hta64MwKlVK1gG7AU1rrQq31Rlf9o0sUW6m1nqG1dpSo4xut9T6tdRYwF9intV7giuFHnIkwALTW32mt07XWNq3124A30LhE/cu01r+6pmtNBE4mHjrg/OD/hOs9K9Ran1wfqCzXfdJIYI7Wer7W2gqMwzmlsEuJMu9rrVNc/TYbZ4LkQszUWi93vUeFWuvFWustru3NOBNVPc9x/jda692u9/eH87R/trLXArO11su01sXAvwFdWgWu7+VrgH+73tutOBOZp5Sh3zij/BzX94TWWv8J/A50L3E8uET/laaTK5l08rWvxLlfAHuA1TgTW8+dce5ErfVWrXUe8AJwvfp7tF5PnInGJkAK8IsqwwLzQgghRFUjiSIhhBCifEzEOWJjDGdMOwPCcY7gOFRi3yH+HrVRA0g649hJtQEzcOTkB2HgM5yjQsoqXGsdorVuqrU+OWKiNvBeiTozAMXpI0mSOLsaQIbWOucs13S284+V+LqglG3/kxtKqX+5piRluWIMwvlennS0xNf5gMX1Qb4WcOgsayKV5bpLXuOpvtBaO1zXVLLsmTH4c2FOe4+UUh2VUn8o55S5LJwjkcJLP/WC2z9b2dO+/7TW+UD6WeqIwLnm5dm+X8vSb5xRfqBSapVrmlgmMOhc5UuxypVMOvmqf8bxL3BOt/zANRKupDOvw3yyba31Eq11sdY6E3gY56ixpgghhBDVjCSKhBBCiHKgtT6Ec1HrQcDPZxw+DlhxJilOiuPvUUdHcCY3Sh47KQkowpnsOflBOFBr3fwSQ04C7jnjA7aP1npFycs6x/kpQKhSKuCMuA+X2D7X+efkWtfmKZyjrUJc07WycCZ1zicJiDvL6I+yXPdJKZToM6WUwtlPh0spez5ney/O3D8Z5zS6WlrrIJxrG5Xlmi/FESD25IZSygcIO0vZNJxTtEr9fi1Dv512vUopb2AaztFaUa7yv+Kma1ZK+QPvAl8BL5WyBtGZ12HF+f+1NNpdcQkhhBCViSSKhBBCiPJzB9DHNY3lFNfUqB+AV5VSAa5pTo/x9zpGPwAPKaVilVIhwNMlzj2CcyrO20qpQKWUwbVI77mmI5XFp8AzSqnmcGrB7OvKerLWOglYAbyulLIopeJxXv+kc59ZZgE4ExJpgEkp9W+ca9iUxV84kx9vKKX8XPF1dR27kOv+AbhKKXWFUsoM/Atn0q60pNL5HANiz1jfqDQBOEdqFSqlOuAcpVbefgKGKKW6uOL7D2dJiLi+l3/GmXTxda1vdGuJIufrt2NAHeVayB3nSDtvV3mbUmogzjW43OU9YJ3W+k5gDs7+L+lmpVQz1xpGLwM/aa3tSqnmSqkE5Vxo3h/nVNHDONfREkIIIaoVSRQJIYQQ5cS1zsrasxx+EOdCxftxLlo8GfjadewLYB6wCVjPP0ck3YLzA/V24ATOD/YxlxjrdOBNYIpyPpVsK861kC7EKJxruKQA04EXtdbzLyWuEubhXMNoN84pQYWceyrcKa5kxhCci38n4lxwe6TrWJmvW2u9C7gZ50Lkx111DnGt43OhFuF84txRpdTZRqwA3A+8rJTKwblW0A8X0dYF0Vpvw/n9OQVngi0H5wLTZ07TOmkszmlrR4HxOBeJPul8/faj6990pdR619TFh3Be5wmcibFZJRtTziekdefsTj5NruSrvVJqGM6Fxu91lXsMaKOUuqnEuRNd13AUsLhiAYgCpgLZOP/P1gEGu9aqEkIIIaoVpfVFjwIXQgghhBDVnGsETSbQUGt9wMPhlBul1GLgO631l56ORQghhPAkGVEkhBBCCCFOo5Qa4ppK5odzvaAtwEHPRiWEEEKIiiCJIiGEEEIIcaZhOKcQpgANgRu0DEMXQgghLgsy9UwIIYQQQgghhBBCADKiSAghhBBCCCGEEEK4SKJICCGEEEIIIYQQQgBg8nQA5xIeHq7r1Knj6TCEEEIIIYQQQgghqo1169Yd11pHlHasUieK6tSpw9q1az0dhhBCCCGEEEIIIUS1oZQ6dLZjMvVMCCGEEEIIIYQQQgCSKBJCCCGEEEIIIYQQLpIoEkIIIYQQQgghhBCAm9YoUkoNAN4DjMCXWus3zlKuPbAKGKm1/skdbQshhBBCCCGEEOXJarWSnJxMYWGhp0MR4oJYLBZiY2Mxm81lPueSE0VKKSPwEdAPSAbWKKVmaa23l1LuTWDepbYphBBCCCGEEEJUlOTkZAICAqhTpw5KKU+HI0SZaK1JT08nOTmZunXrlvk8d0w96wDs1Vrv11oXA1OAYaWUexCYBqS6oU0hhBBCCCGEEKJCFBYWEhYWJkkiUaUopQgLC7vgkXDuSBTVBJJKbCe79p2ilKoJXA186ob2hBBCCCGEEEKICiVJIlEVXcz3rTsSRaW1qs/Yfhd4SmttP29lSt2tlFqrlFqblpbmhvCEEEIIIYQQQoiqTSnF6NGjT23bbDYiIiIYPHiwB6M6P39///OWeemllxg3btw5y8yYMYPt27efs4xwD3ckipKBWiW2Y4GUM8q0A6YopQ4C1wIfK6WGl1aZ1vpzrXU7rXW7iIgIN4QnhBCiQuSlYz+wzNNRCCGEEEJUS35+fmzdupWCggIA5s+fT82aNc9zVvmw2WwV3qYkiiqOOxJFa4CGSqm6Sikv4AZgVskCWuu6Wus6Wus6wE/A/VrrGW5oWwghRCVhn/MvDBOHQWG2p0MRQgghhKiWBg4cyJw5cwD4/vvvGTVq1KljeXl53H777bRv357WrVszc+ZMAA4ePEj37t1p06YNbdq0YcWKFQAcOXKEHj16kJCQQIsWLVi6dClw+gign376iTFjxgAwZswYHnvsMXr37s1TTz3Fvn37GDBgAG3btqV79+7s3LkTgAMHDtC5c2fat2/PCy+8cNZrefXVV2ncuDF9+/Zl165dp/Z/8cUXtG/fnlatWnHNNdeQn5/PihUrmDVrFk888QQJCQns27ev1HLCPS75qWdaa5tSaizOp5kZga+11tuUUve6jsu6REIIUd1lJWPYMQul7XB4HdTv7emIhBBCCCHKxX9mb2N7inv/MNasRiAvDml+3nI33HADL7/8MoMHD2bz5s3cfvvtpxI8r776Kn369OHrr78mMzOTDh060LdvXyIjI5k/fz4Wi4U9e/YwatQo1q5dy+TJk+nfvz/PPfccdru9TImW3bt3s2DBAoxGI1dccQWffvopDRs2ZPXq1dx///0sWrSIhx9+mPvuu49bbrmFjz76qNR61q1bx5QpU9iwYQM2m402bdrQtm1bAEaMGMFdd90FwPPPP89XX33Fgw8+yNChQxk8eDDXXnstAMHBwaWWE5fukhNFAFrrX4Ffz9hXaoJIaz3GHW0KIYSoPByrP0eh0ShU8hpJFAkhhBBClIP4+HgOHjzI999/z6BBg0479vvvvzNr1qxTa/0UFhaSmJhIjRo1GDt2LBs3bsRoNLJ7924A2rdvz+23347VamX48OEkJCSct/3rrrsOo9FIbm4uK1as4Lrrrjt1rKioCIDly5czbdo0AEaPHs1TTz31j3qWLl3K1Vdfja+vLwBDhw49dWzr1q08//zzZGZmkpubS//+/UuNpazlxIVzS6JICCHEZaw4D9ZPwNF4MOr4bnTiKrfMaxZCCCGEqIzKMvKnPA0dOpTHH3+cxYsXk56efmq/1ppp06bRuHHj08q/9NJLREVFsWnTJhwOBxaLBYAePXqwZMkS5syZw+jRo3niiSe45ZZbTntK1pmPVffz8wPA4XAQHBzMxo0bS42xLE/aOluZMWPGMGPGDFq1asX48eNZvHjxJZUTF05+lxdCCHFJ9KYpGAozMXZ5ABXXEZW8FhwOT4clhBBCCFEt3X777fz73/+mZcuWp+3v378/H3zwAVo7H0K+YcMGALKysoiJicFgMDBx4kTsdufDyA8dOkRkZCR33XUXd9xxB+vXrwcgKiqKHTt24HA4mD59eqkxBAYGUrduXX788UfAmaTatGkTAF27dmXKlCkATJo0qdTze/TowfTp0ykoKCAnJ4fZs2efOpaTk0NMTAxWq/W08wMCAsjJyTlvOXHpJFEkhBDiomxPySYtuwDHyk+wRydArY6oWh1QRVlwfLenwxNCCCGEqJZiY2N5+OGH/7H/hRdewGq1Eh8fT4sWLU4tJH3//fczYcIEOnXqxO7du0+NClq8eDEJCQm0bt2aadOmnarzjTfeYPDgwfTp04eYmJizxjFp0iS++uorWrVqRfPmzU8tnv3ee+/x0Ucf0b59e7Kysko9t02bNowcOZKEhASuueYaunfvfurYf//7Xzp27Ei/fv1o0qTJqf033HADb731Fq1bt2bfvn1nLScunTqZbayM2rVrp9euXevpMIQQQpxh97EcBr23lCvMW/hMvYZt2GeYWt8Ax/fAh+1g6AfQ5hZPhymEEEII4RY7duygadOmng5DiItS2vevUmqd1rpdaeVlRJEQQogLorXm+Rlb8beYeMDnd47pYAYtDGPJ7jQIa4DDEoJOXO3pMIUQQgghhBAXQRJFQgghLsiMjYf560AGr3Y1E1+4lpyWt1GsTdzy9V889uMmiG2PTpJEkRBCCCGEEFWRJIqEEEKUWVaBlVd/2U73moorMyajjRYaDBzLvEd7MLpTbX5ef5jMsNYY0vdAfoanwxVCCCGEEEJcIJOnAxBCCFH52Y/tpGDB62QnbmeRLZnA9HxIB3ub2zD6heMN3N2jHhNXHWKVtQGDAJLXQqMrPRy5EEIIIYQQ4kJIokgIIcQ5OU4kor8dhldxPvuL6mAM609CQhtM4fWxNPk7EVQr1Jd6EX78nOrPQGVEJf8liSIhhBBCCCGqGEkUCSGEOCudn4Ht2xEYrfk84f86y3U0C+/uib+PudTyvRpF8t3qQ9hrNseQuFrmNwshhBBCCFHFyO/wQgghSmctoPi7kZiyDjGvxdvMPBLCc1c1IegsSSKAXo0jKLY5OBrQEnV4HdhtFRiwEEIIIUT1dezYMW688Ubq1atH27Zt6dy5M9OnTy/3dteuXctDDz3klrp69epF48aNadWqFV27dmXXrl1uqded3Bnj+PHjGTt2LACffvop33777VnLHjx4kMmTJ5/aduf7fqEkUSSEEOKfHHYKpt6BV8oaknq9w6N/BdCzUQTDE2qe87QOdUPxMRtZaW2AsuZB6vYKClgIIYQQovrSWjN8+HB69OjB/v37WbduHVOmTCE5Obnc227Xrh3vv/++2+qbNGkSmzZt4tZbb+WJJ574x3G73e62ti5WecR47733csstt5z1+JmJIne/7xdCEkVCCCH+wTrvBXz2ziGv98vcsz6OAIuJcde1Qil1zvMsZiNd6ofx47Eazh3Jf1VAtEIIIYQQ1duiRYvw8vLi3nvvPbWvdu3aPPjgg4AzydC9e3fatGlDmzZtWLFiBQCLFy9m8ODBp84ZO3Ys48ePB+Dpp5+mWbNmxMfH8/jjjwPw448/0qJFC1q1akWPHj3+Ucdff/1Fly5daN26NV26dDk12mb8+PGMGDGCAQMG0LBhQ5588snzXlOPHj3Yu3cvAP7+/vz73/+mY8eOrFy5kv/7v/+jRYsWtGjRgnfffffUOd9++y3x8fG0atWK0aNHA5CWlsY111xD+/btad++PcuXLwfgzz//JCEhgYSEBFq3bk1OTg5HjhyhR48eJCQk0KJFC5YuXXrRMX733Xd06NCBhIQE7rnnnlPJo2+++YZGjRrRs2fPU7EAvPTSS4wbNw6AvXv30rdvX1q1akWbNm3Yt28fTz/9NEuXLiUhIYF33nnntPc9IyOD4cOHEx8fT6dOndi8efOpOm+//XZ69epFvXr13JZYkjWKhBBCnM5WhGndVxQ1u45xWVew8+hBvhnTnogA7zKd3qtxBC/sPIY1JAJj4moM7e8s54CFEEIIISrQ3Kfh6Bb31hndEga+cdbD27Zto02bNmc9HhkZyfz587FYLOzZs4dRo0axdu3as5bPyMhg+vTp7Ny5E6UUmZmZALz88svMmzePmjVrntpXUpMmTViyZAkmk4kFCxbw7LPPMm3aNAA2btzIhg0b8Pb2pnHjxjz44IPUqlXrrDHMnj2bli1bApCXl0eLFi14+eWXWbduHd988w2rV69Ga03Hjh3p2bMnXl5evPrqqyxfvpzw8HAyMjIAePjhh3n00Ufp1q0biYmJ9O/fnx07djBu3Dg++ugjunbtSm5uLhaLhc8//5z+/fvz3HPPYbfbyc/PP2t854pxx44dvPnmmyxfvhyz2cz999/PpEmT6NevHy+++CLr1q0jKCiI3r1707p163/Ue9NNN/H0009z9dVXU1hYiMPh4I033mDcuHH88ssvgDNBd9KLL75I69atmTFjBosWLeKWW25h48aNAOzcuZM//viDnJwcGjduzH333YfZfPalIspCEkVCCCFOd3g9ylbI7tBejF9wkNu61qF3k8gyn96rcSSgSPZvSe0kGVEkhBBCCOFuDzzwAMuWLcPLy4s1a9ZgtVoZO3YsGzduxGg0snv37nOeHxgYiMVi4c477+Sqq646NXKla9eujBkzhuuvv54RI0b847ysrCxuvfVW9uzZg1IKq9V66tgVV1xBUFAQAM2aNePQoUOlJopuuukmfHx8qFOnDh988AEARqORa665BoBly5Zx9dVX4+fnB8CIESNYunQpSimuvfZawsPDAQgNDQVgwYIFbN/+93IH2dnZ5OTk0LVrVx577DFuuukmRowYQWxsLO3bt+f222/HarUyfPhwEhISSn1/zhfjwoULWbduHe3btwegoKCAyMhIVq9eTa9evYiIiABg5MiR/+iLnJwcDh8+zNVXXw2AxWIpNYaSli1bdioh16dPH9LT08nKygLgqquuwtvbG29vbyIjIzl27BixsbHnrfNcJFEkhBDiNI6DyzAAj6z0oUl0AE8NaHJB59cK9aVehB+rrA2om7kIclPBv+yJJiGEEEKISu0cI3/KS/PmzU8lCgA++ugjjh8/Trt27QB45513iIqKYtOmTTgcjlPJB5PJhMPhOHVeYWHhqf1//fUXCxcuZMqUKXz44YcsWrSITz/9lNWrVzNnzhwSEhJOjVo56YUXXqB3795Mnz6dgwcP0qtXr1PHvL3/Hn1uNBqx2Up/qMmkSZNOxX2SxWLBaDQCzvWYSqO1LnUZBIfDwcqVK/Hx8Tlt/9NPP81VV13Fr7/+SqdOnViwYAE9evRgyZIlzJkzh9GjR/PEE0+Uum5QWWK89dZbef31108rM2PGjPMu1XC267vQc062U9b3/ULIGkVCCCFO4ziwjCRzHZKLfHl/VGssZuMF19GrUSQzjrsWvk5a7eYIhRBCCCEuL3369KGwsJBPPvnk1L6S06aysrKIiYnBYDAwceLEU+vl1K5dm+3bt1NUVERWVhYLFy4EIDc3l6ysLAYNGsS77757KiG0b98+OnbsyMsvv0x4eDhJSUmnxZGVlUXNms7f8U6udeRuPXr0YMaMGeTn55OXl8f06dPp3r07V1xxBT/88APp6ekAp6aeXXnllXz44Yenzi95LS1btuSpp56iXbt27Ny5k0OHDhEZGcldd93FHXfcwfr16y8qxiuuuIKffvqJ1NTUU7EcOnSIjh07snjxYtLT07Farfz444//ODcwMJDY2FhmzJgBQFFREfn5+QQEBJCTk3PW92TSpEmAc0paeHg4gYGBFxV7WUiiSAghxN/sVlTyXywqaMhDVzSkUVTARVXTq3EEG2x1KDYHYtvwvZuDFEIIIYS4vCilmDFjBn/++Sd169alQ4cO3Hrrrbz55psA3H///UyYMIFOnTqxe/fuU9O2atWqxfXXX098fDw33XTTqfVycnJyGDx4MPHx8fTs2ZN33nkHgCeeeIKWLVvSokULevToQatWrU6L48knn+SZZ56ha9eu5fZ0sjZt2jBmzBg6dOhAx44dufPOO2ndujXNmzfnueeeo2fPnrRq1YrHHnsMgPfff5+1a9cSHx9Ps2bN+PTTTwF49913Ty3M7ePjw8CBA1m8ePGpxa2nTZvGww8/fFExNmvWjFdeeYUrr7yS+Ph4+vXrx5EjR4iJieGll16ic+fO9O3b96zrSk2cOJH333+f+Ph4unTpwtGjR4mPj8dkMtGqVatT/XHSSy+9dOoan376aSZMmHBRcZeVuphhTxWlXbt2+lwLcAkhhHCzpDXwVV8edTzCS888T5DPxS2EV2i10/rl+XxS41d6HvsW9eA6CKvv5mCFEEIIISrGjh07aNq0qafDEOKilPb9q5Rap7VuV1p5GVEkhBDilOxdiwGo0arvRSeJACxmI53rh/FOdm8wmLEt/8BNEQohhBBCCCHKkySKhBBCnHJs8yL2OmowslfbS66rV+MINp3wIrPRNRg3fQ95x90QoRBCCCGEEKI8SaJICCEEAHkFRURnbeBwUBviwnwvub7ejZ1POnszqy/KXoh99eeXXKcQQgghhBCifLklUaSUGqCU2qWU2quUerqU4zcppTa7XiuUUq1Kq0cIIYTnLPpzIQGqgFpt+rmlvlqhvvx3eAumJfqyzNAex6rPoTj//CcKIYQQQlRClXl9XyHO5mK+by85UaSUMgIfAQOBZsAopVSzM4odAHpqreOB/wLyZ2UhhKhE7A7NobXzAKjX9kq31Tu6U22m3tOZ74zDMBefYO3Mj9xWt6g8Cq125mw+wu3j1zDovaVk5Vs9HZIQQgjhVhaLhfT0dEkWiSpFa016ejoWi+WCzjO5oe0OwF6t9X4ApdQUYBiwvURwK0qUXwXEuqFdIYQQbjJ/+zEaF20hJ6AWAYE13Fp3m7gQXn3oLva8P5HwLV/wpL6Cl4bH4+vljluQ8KRtKVlM+SuJWZtSyCqwEh1oITWnkP/N28mrV7f0dHhCCCGE28TGxpKcnExaWpqnQxHiglgsFmJjLywF447f0msCSSW2k4GO5yh/BzDXDe0KIYRwk6+W7OUr4y686g8tl/rDAiwED30G47QxZG+ayeDEbN67oTUtY4PKpT1Rvval5fLeb1sI2PkD4YY8noyuSbOG9Whcty6T16Syb+03JOYVEZG/F3PmAUxX/Q+aD/d02EIIIcRFM5vN1K1b19NhCFEh3JEoUqXsK3U8nlKqN85EUbezVqbU3cDdAHFxcW4ITwghREkOhyYjv5hwf28ANidnkpu0mUDvXBz1updbu8bmQ7EvqM07Bd/yV94y1n8WxvG6jWnXth0BLa4Co4wwquyOZhXy3oJdpK2fzQumidQ2H3UeSHO9VsCdAGbI32uBqOYYrHnonXNQkigSQgghhKgS3PFbeTJQq8R2LJByZiGlVDzwJTBQa51+tsq01p/jWsOoXbt2MgFUCCHczHZ8PxnHMsiMakrNYB9+Xn+YLqadABjqnjWPf+kMRhj+CfbFb9M+K4n2WdvxTZwHiXBi01BCbp4ABnkYZ2U1bV0yX0yfxzOGCfQ0b6IwqB7FA3/Eq0FPbDmp2HOPo3OPo+3FrM6N5LYZR3m6WTPuSn4GnbKx1L8qCSGEEEKIyscdiaI1QEOlVF3gMHADcGPJAkqpOOBnYLTWercb2hRCCHGRjLPH0jB5FenNb2Nvm3/xy+YUPvHfh80Uiym4fEdyGut2xb9uVwCKrTZ+WLWDo/Pf56H9P7Dq4ztpctsnBPt5l2sM4sJ9tewAB+a+xy/mb8HsQ2H3l7F0uQ9MXgCYQmphCvn7b0a9gL671/LOgt3c0LkFgXt+h6Jc8Pb3zAUIIYQQQogyu+Q/3WqtbcBYYB6wA/hBa71NKXWvUupeV7F/A2HAx0qpjUqptZfarhBCiIujclKwewcTvvUr6v7Qlxb5q2lh24ojrmuFxuFlNnF995bc8K/3WRw6kk7HpzHprbF8uXQ/RTZ7hcYiSqe15u15O8n/7SVeMX+DtU5vjA+tx9Lj4VNJorP5z9DmGJRi/MFgFBqObqmgqIUQQgghxKVwyxh/rfWvWutGWuv6WutXXfs+1Vp/6vr6Tq11iNY6wfVq5452hRBCXDiVl0ZuoxHsG/wTOXYT473ewseaiaFeOU47O4fIIB96PfgZxxtcwwP8wMHf3qfPuD/5duVBCq2SMPIUh0Pz4oyNxC59igdNM8hvcRM+o6eiAqLKdH6NYB8e69eISYmhzh1HNpZfsEIIIYQQwm1kMQghhLicWAtR1jyCwmPwadiVwdbX+TnwZopCGmFqdKXn4lKK8FGfY20wgP+ax3OHaS7/N3MV3d78g8+X7COvyOa52C5DWmue/WEVvdY/wkjTYvI7P47vNR9d8ILjY7rUocASQbYpDH14fTlFK4QQQggh3EkeMSOEEJeT/OMAKL8I9h7LI71QkXPlE6Q2iaRWgK9nYzOaMI8cj+2767j90OfcZjGwUzVl5ryW3LSoIwltOnJt21ia1whEKVkauTx9tGAnV29/hPbG3eT1G4df17suqh6T0UDT6EB2ZdSnrSxoLYQQQghRJUiiSAghKpDWmtUHMpi6JomrWsbQt1kUDoemIDsdMza8gqPLN4C8NOe/fuH8sjmFAG8TI9vXwlBZEi9mH0y3zkIf2Yh1+6802PMbT1unAFPYsrYuU1b3YmfYlQxo34Rr2sQS4nfudXLEhZu75QiWP/9DR9NO8q76GL/2N11SfU1jAlhzJI52xWtkQWshhBBCiCpAEkVCCFEBCq12Zm9K4evlB0k8coxuhq1kHjxM3up0zMd34JeXgjb7wZP7wWwpv0Dy0gGweofy29aj9GsehcVsLL/2LobBgKrZBq+abaDf85B1GNu2mTRcN5FX0r+hKHsSc39vxxuLOtC/T196d+mEMpo9HXW1sPVwFnN/+Iz3TXPJaXU7AZeYJAJoEhPIAmttlJdrQevand0QqRBCCCGEKC+SKBJCiHJktTuYtOoQPy5cSZui1fzHsok2PlsxaSvWfCO27AYU1eiIzV6A7/7fIC8VyvMR9a6pZ2vSDGQX2hgSX6P82nKXoJqYutyPqfN9cGQTau23XLXlR4ZbV8DCdyleaMYW2hBT7Y54DXhFRqxcpNTsQl4aP5Pxxs/IC29FwJA33VJvk+gA3nHUc24c2SiJIiGEEEKISk4SRUIIUQ601izelcYrv2xj4IlJzDH/CGYo8q9HQf072OLfhTG/a8Zf1Y0uDcJh12+w/zfITSvfRJFr6tmsPcUE+5rp2iC8/NpyN6WgRgJeQxNg0OvYju1k8dLFHNi2hqYZSXTJmIAt5wimGyeDoZKNkqrkCq12HpiwnFeK38LL24xh1Ldgcs+0vsbRAaSpEHLN4fimbJCnaAghhBBCVHKSKBJCCDfbm5rDy7/sYMnuVF7z/5EbzTPIa3w1qudT+MQ0wVspWhZasS+Yz4p96c5EkV+E8+STawiVl7zjaIOZ2btyGdKqJl6mKvqx3eSNqWYr+t7Qin1puTz102Z+T57Cy3snkPzjE8SO/D9PR1ilfLFkP9cee58mpkQKr56KV1gdt9Xt62WiTpgf+x0NaJ6y0W31CiGEEEKI8lFFPyEIIUTlo7Vm8upEBr2/jI2J6cyq+zM32mZQkHAbfiO/xrdG01NP6wqwmGlZM4iV+51rBuF/MlGUWr4x5h2n0CuEvGIHQ1pVgWlnZVA/wp+p93QmfsST/GAYROyOr5jwwYvsPpbj6dCqhGPZhaxZPIuRpsXkdXwUS9MBbm+jSXQA6621MRzf7VzQWgghhBBCVFqSKBJCCDfIKbTy0JSNPDt9C53rBLGk4Y/EH5lGQYcH8Rn2Dhj++eO2S/0wNiVlkltkq7ARRTrvOGmOQML9vehYN7Rc26pIRoPi2raxDH1qPAdDunDT8ff573sf8cbcndgd2tPhVWr/+20XfVmN3WjBr+9T5dJG05hAluXHonAtaC2EEEIIISotSRQJIcQl2no4iyEfLGPO5hSe7lubT73fJ3jPNAq6PY3PwP8619YpRZf64dgcmjUHM8Dsg/byd65RVI4cuWkkFfkyoEU0JmP1uwVYvL2pc89U7OGN+czyPpuWzuLO8avJLrR6OrRKaUtyFtPWJzHEZxO6bi8w+5RLO02iA9hsL7GgtRBCCCGEqLSq36cEIYSoIMU2Bx8u2sOIj1dQaHXw4031uW3Pg1j2/UbBFa/i0/eZsyaJANrWDsHLaGDlPuf0M+0XUe4jigqzjpHm8GdQy5hybcejLIF4j/4Rbx9/vvd6ldcOjeL3cWNI3rQIHA5PR1dpaK15+ZdtdPQ7SkjxUYxNB5VbW01jAkklhDyvCBwpG8qtHSGEEEIIcelkMWshhLgIaw9m8MzPW9iTmstVLWN4uYuRwJ+vxZifRvE14/FpOfy8dfh4GUmICz6VKMIvAkdeWrlm8I0FGeSZWtGxblg5tlIJBNfC+OBairfPwbD2R4akzMN7+i/kzq+L/72/g3+kpyP0uF+3HGXNwRPMiD8Iu0E16l9ubcWG+ODvbSLJ0pCGsqC1EEIIIUSlJiOKhBDiAmQVWHn2581c++lK8optfHFLW95pn0nw94NRtkLst87BuwxJopO61A9ja0oWWflWlH8E5JbfYtaFBXn46HzCo2piNJx9pFO1YQnEq80oou7+mbR7tvGW76OYcpJJ/nIU2n55T0UrtNp5fe4OmkQH0CJnBbbo1hAQXW7tKaVoEh3AFntdDOl7ZEFrIYQQQohKTBJFQghRBgXFdj5bvJd5b47i2U392OVzO8uKb+CKn1rgNflq7P4xqLsWYo5rd0H1dqkfjtaw6kA6yi8SlXe8nK4AVm3ZDUD92rXLrY3KKjYmivsffp6pkY8Sm7mWBR8/TKHV7umwPOab5QdJPlHAf6+IxHhkPYYmA8u9zaYxgfyZVxOlHbKgtRBCCCFEJSZTz4QQ4hyKbQ6mrk3ig4V76Jk/j7fM80mt1R+fyHoUKwNaKQyWQPy63oPyCb7g+lvVCsJidq5T1N8/AgrSwWEHg9Ht1/LXtt30AurWruP2uqsCP28To+97ls2f7qJf6iRe/aABd915P5GBlr8L2W1gKwRvf88FWgF+2ZxChzqhtLeuATSqSfmtT3RSk5gA3ltVGyw4F7Su3bnc2xRCCCGEEBdOEkVCiPOy2R1kFlgJ9/f2dCgVaktyFg9MXk9iRj7DYvN43TERa83uRI6ZUurj7i+Gt8lI+zqhznWKukY6R1vkZ4B/hFvqP6nQamffgQNgAKOb665KDAZF/F2fkfnBLsZmjeO2D6J47Pr+dKtlxrpmPOqvz1DWfIy3zoSYVp4Ot1wU2ezsPpbDnd3rYds5BxVQE2NUi3Jvt0m0c0HrQu8IvA5vkCHNQgghhBCVlPyeJoQ4K601v209Sv93l9DptYV8s/wAWmsAik4cdo6+qKZ+2ZzCdZ+twO7QjL+lFeMMH6DMFszXfu62JNFJneuHsetYDtnGYOeOPPevU7Rkdxq+tkznhl+42+uvUsw+BI+Zgp+Xgddt49g1YSwFbzbGvPDfOILrgNkP+4RhcGSzpyMtF3uO5WK1a1pGeWPcvxgaDTjn0/ncpUl0AAApvo3R8uQzIYQQQohKSxJFQohSrdqfzohPVnDvd+vQOJMZ/5m9nTe+nkL2+Ovxfq8ZjqX/5+kw3U5rzbsLdjN28gZa1Ahi5tiudE38FHPqZhjyAQTWcHubnes5n0C2NcvLuSMvze1t/LrlCDW985wbl3uiCCC0LsZrPqOx3s8Y8+8s0O25qvg1ng54jbRrp4HZF/uEodVyLZ1tKVkAtLVvQdkKMDYt/2ln4Jz6VzvMl62GxhjTd0M5rsclhBBCCCEuniSKytnWw1m8PncHqdmFng5FiDLZm5rLbd/8xQ2fr+JIZiFvjGjJ74/04JOeduZHfcAzSfeiDi6j0K8GevNUcI0wqg4KrXYe/H4D7y7YwzVtYpl0V0dCj67AvOoDrK3HYGw+pFzabVkzCH9vE6uPudYlynVvoqjIZmfBjlTahtnQBjN4B7q1/qpKNbkKx23zMD66lR5P/ky37n34ZfMRenxxgM/rvo/DaME+figc3erpUN1q6+Fs/L1NhB9eiMPsB3W6V1jbTaIDmJvf1Lmxf3GFtSuEEEIIIcpOEkXl7K8DGXyxZD/d3vyDZ37ewsHjeZ4OSYhSZRVY+e8v2xnw7hLWHjzB0wOb8Ps9zRhUMBvrp73w/24gdQt3sr3pwwxSH/FW7iCMGXshbaenQ3eLvCIbt3z1F3O2HOGZAY14paMd6+JxOKbdiS20EeaBr5db2yajgY51Q/kj2ZV0c/OIoqW7j5NbZKNJQDHaN6xCphlVFYbanSCwBkG+Zp4Z2JQ/Hu/FkPga/G9NEcPzniXfYcI+fgiOvYs9HarbbEvJollMAGrPPHS93mCquLXHmsYE8ntmNHZLCPY9CyqsXSGEEEIIUXaymHU5u71bXfo0ieTzpfv5aW0yU9ckMqhlDPf2rE+LmkGeDk8I7A7N1DVJjPt9Fyfyi7mhfS0ern0Q/y1P47d4EUrbKAxrTk6v/+Lb6TaaWQL4/kQ+t39gxeH4CrbNwBDZ1NOXcUnyimzc9s0acpI2Mb/OUuqsXo1psTNZUxTREq9rPwMv33KNoX3dUN7YeQzta0K5eY2iX7ceIcjHTKQpF/wu34Wsy6JmsA9vX9+KO7vX5Y25Oxm852kmef+P2O+GUdhoKJZBr0FwLU+HedHsDs32I9k82qIAw9EjUAFPOyupSXQgdm0gK7oLwfv/cI5IlMSlEEIIIUSlIomiClAn3I/Xrm7JI1c05OvlB/lu1SHn9IZGEdzXsz6d6oWi5Bdl4QEpmQU8OnUjqw9k0KFOKC8OqE2dNS/jN/t7rL6R5LS+G1PrUfjWiqfEA8SJDfGlbYsmrNvUhNZbZ2Do/YzHruFS5RXZuG38GnYnJrM88P+wpBdQWOcKiupfgVeTvngHxVRIHHXD/QCF1RKGlxtHFBXZ7Mzffoz+zaNRJ9LAV9YnKoumMYFMuL0DK/bW45G5del8dBIP7J6Fde/v2Ls+hqXHw2C2nL+iSmZ/Wi6FVgfd7X+hUahG/Su0/aYxzgWt9wZ0oMPBOc4RiVU80SyEEEIIUd24ZeqZUmqAUmqXUmqvUurpUo4rpdT7ruOblVJt3NFuVRMZaOHpgU1Y/nQfnhzQmO0pWYz6YhVXf7yCX7ccochm93SI4jLyy+YUBry7hK2Hs/jfNfF8O8iLhtOvwnfbFPI6PIzx0W0EDn0d31rxpZ7fr1kUv9g6YErfCWm7Kjh698gvdiaJ1h7MYGbdGfgWHcdwywz8bhyPX8fRmCsoSQQQF+ocsZRvDkW7cY2irYezySm00bdpFOSno2Qh6wvSpUE4P47tTdtbXuehsM9YYG2JZelr5LzVkoL5r0HOUU+HeEG2pWQDUDtrDY4abSp8YfNaIb74eRlZrlsCoPcurND2hRBCCCHE+V3yiCKllBH4COgHJANrlFKztNbbSxQbCDR0vToCn7j+rf7++gL7otewewehLSFonxC8fEK4TRm5tb6VlIxcktJzODQ1kKGmISS0aMWwhBp0rBeG0SCjjIT75RbZeHHmNqatTyahVjDvXh9P5Lav8Rr/X+w+YRTdOB2/Rr3PW0+X+uG8ZOjEf5iAY9tMDL2erIDo3Sctp4gHJq9n7cEMvu92jNprfsHa/SnMsW09Ek8tV6IoyxBMYG4a7vrff8y1kH5cqC8q/7gkii6CUopejSPp2ehqlu3tzn/m/EDv9O/psfxN7CvGUdRgEJbOd2Oo273ST6PaejgLP5MD3/Rt0HZMhbdvMCgaRwewKt2APbQheu8iTF3GVngcQgghhBDi7Nwx9awDsFdrvR9AKTUFGAaUTBQNA77VWmtglVIqWCkVo7U+4ob2K7fwRtiaDsOedwJDQQYqPw1jxh7QDlBG6hiM1A4y0jNrHaMdC5m65QoeXjsUFRDNlc2j6Ns0is71w/A2GT19JaIaWJ94gkembCT5RD4P9WnAA50jcPx8Bz4H5pFfbwDeIz7G7B9WprosZiNNGzVi4/4mtNw2A6pQomjB9mM8NW0zOUU2Ph5Wk3aLH8AWlYC51xMei8nf20S4vxfpBFErf5vb6k3LKQIg0lejinMrfARJdaKUonvDCLo9fD8r94/kkXmLaZbyMyP3LMJ3z2yKolpj7vMMhkZXVtqE0baUbPpFnECdKICankmKNq8RxM/rk7G264X35u/AWlglp/EJIYQQQlRX7kgU1QSSSmwn88/RQqWVqQlU/0RRvZ541+t5/nJZhyla9AY3bp7MSN/FzPcZyqR1zXl4VQ2sXkH0aBhB90bhtKgRROPoACxmSRyJsrPZHXz0xz7eX7SH6EALU+/pTILXYfSXvbFkJ5Pf51V8uz9wwR9u+zWLZtbO9iSkTYT0fRBWv5yuwD3yi228MmcHk1cn0jQmkMnXt6Le/NtQ1gKM134BRrNH46sV6ktKvj+tC9Pctshvak4hRoMiVDunHEmi6NIppehSP5wu91/L6v29eWThNqIPzuDBY7Oo8f31FEclYOz9DMbG/StVwkhrzdaULK6LTYITQE3PzAK/rl0sE1cd4g9bCwbaCiBpFdTr5ZFYhBBCCCHEP7kjUVTab8H6Iso4Cyp1N3A3QFxc3KVFVpUE1cT76g+g56M4Fr7OgG0/MtD4Ixgh2xjCrv2xbNoVy0eOJqyjKRGRMSTUCuZfVzYmIqDiHm0sqp6kjHwembqRdYdOMDyhBi8Pb4HX9p8x/vowDq8AikfPwrde14uqu0+TSN51tOffTHROP+vxmJujd4/U7EKW7j7GjwtXkpRZxKMd63J3r4Z47ZqMcf8C7P3fhIhGng6TuFBfDmX4oWyFUJwL3gGXXGdaThHh/l4YCtKdO2Qxa7fqWC+MjvV6sHp/cx6ZO5S6Kb/wSOpMYqaMxFqjPeZh70FUc0+HCUBSRgE5hTZaqn04LMEYQut5JI742GC61A/jzR0OBhjM6D0LMUiiSAghhBCi0nBHoigZKPms4Fgg5SLKAKC1/hz4HKBdu3alJpOqtdB6eF33BfR/GfuRzdiO7cQrdSetju+kTdoi7rTPBeBQbl1WbKzPkn0hDGxVC6PRDEYT3g37QGw7D1+EqCxmb0rh2Z+3APDeDQkMa1WDwrkvYPnrAwpjOmC+4dtLeqpXqJ8XNWo3YkdaIxptmw6VJFGkteavAxks3JnKkt1phKSu4t+miUwxJII3sMn1Aqy1e2LueLcnwz2ldqgv+wt8wAzkprolUZSaU0RkgAXyjzt3+EVccp3inzrWC2Pq/T2Zv70Jt/02kISMX3k65QcCP+lOYbt78b3yOfDy82iM21KyAKiRtwNiEjw62unenvW55et0jsW0InzfIgz812OxCCGEEEKI07kjUbQGaKiUqgscBm4AbjyjzCxgrGv9oo5A1mWxPtGlCIzBGBjjnLpwkq0IR/I6rAeWEX1wOSMOr4a8Aswr7RhcA7Qcm7/H8ND6SjXdQVS8Qqud/8zezvd/JdK2dgjvjkygVqgvhQtexfLXBxTE34LPsP9zy1Srfs2i+HleO547NhkyDkBoXTdcwcWx2R3M3XqUz5bsY+vhbOoZj/Oa/1Q6eS2nwLcGeZ1fQ5l90HY7ymFDGQz4tLkeDG55AOQlqxXqy0Yd5NzIO+6WqXxpOUVEBVogL9m5Q6aelRulFFc2j+aKplFM39CYe5f2Yfjxz7lh7UdkbPyJnF4vU7vjcI+tx7M1JQtfgxXfE7tQzQd6JIaTujcMp3mNQGbnNuWu4onOxKh/pEdjEkIIIYQQTpecKNJa25RSY4F5gBH4Wmu9TSl1r+v4p8CvwCBgL5AP3Hap7V6WTN4Y6nTBu06XU7temLGViasO8elNCQzIn4Nh7hPOR5VHNvFgoMKT9qbmMnbyenYezeG+XvV5rF8jzEYDRcs/wbLsfxS1GIXP1e+7LZnYr1kUN8/twHNMxrF9FoZuD7ul3gtRUGznp3VJfLH0AIkZ+bQMhxmNFxCf/B3YjRR2fxafHg+B2afCY7sQcaG+pJ9KFKW6pc7UnCJa1gxyJp4AfMu2WLm4eEaD4tq2sVzTpiabk7vy8aJZ9Nv/Jg0X3IN9wf3YI5pCTGsMsW0xtRgGvqEVEte2lGz6hx5D5do9tpD1SUop7ulZn8+nNOYub2D/Yoi/3qMxCSGEEEIIJ3eMKEJr/SvOZFDJfZ+W+FoDD7ijLXG65wc3ZfPhLB7/aStNx/SmNsCuOZIoukxtnP0Ru9YsJMzYj/G3XUOvxs6/0BdvmIr3/Kcpqj8A76s/dOuIszrhfvhE1GNffkNqb51eoYmiE3nFfLvyEBNWHiQjr5gOtXz5sM4Gmu37AtOhTAqaXot3/5exBNessJguRe0wP9JOJYrSLrk+u0OTnlvkXMcs/zjaYEZZgi65XlE2Sila1Qqm1a23kJV7DRN++Ibc/avpnp1Ms+xZmDZPxL7+G4x3LayQhdS3Hs7m+bAkyAVqeGYh65IGtYjm7eBmZBUG4rdnASZJFAkhhBBCVAqVY76FuGjeJiMf39QGs1Fx94wj2KJb49jxi6fDEh6w92gmsWvfZKRhIZP003RceD05qydSvHUW5tn3UxTbBe8bJoDRLfnh0/RtFsUPhR0wHd0AqTvcXv+ZUjILeGnWNrq8sYh3Fuymbawfc3scZFL+fcRvfwtbdALWO//EZ+RXGKpIkgggMsCbXJMrkZN76Ymi9LwiHNpZL3lpaN8wmZbqIUH+ftx6+1hCh77KtblP0tvwDcm938d4dBOOZe+Ve/up2YUczy2ihdqHwz8aAi9+bTJ3MRkN3NmzAUtszbDtWeR80p8QQgghhPA4SRRVAzWDfXjvhtbsTs1hEe0wpKyHbFkC6nJSbHMwftK3hKssTvR7l+zer2IoziZg7li8fhqNNawp3jdPLbe1Ufo1i+JHW3fsyoxtzdfl0sZJR7IKGPLBMn5ctYfHau1mdZOpfJpyPU3/ehaHfzTFN83EcttMzLEJ5RpHeTAYFDEhAeQaAtwyoigtpwiAiABvHLnH5YlnlcCoDnFMvacTVjv0XRBJco3+qCVvlnuCdWvJhawrwWiik65rG8sGc2sshWmQut3T4QghhDiD3aGxOySRL8TlRhJF1USPRhHc1DGOd5Ncj/je9eu5TxDVyjsLdtPyxEKsJj9COowisOdYvB5aS+7IaeS2vRfzrT+DJbDc2k+IDcbgH8E6v24YNk2B4vxyacdqd/Dg5A3ca5vIJp/7uCvlBcKPLKaw4VUUjvwB73v/wKthr3Jpu6LUDvMjgyB07qWvUZR6KlHkeuqZPPGsUmgdF8LsB7sRXzOYYfuHU6B8sU+/H+y2cmtz6+FsAsnDN+cAhljPrk9UksVspFb7Idi1IuXPbzwdjhBCiDNYZ/8L/dMdng5DCFHBJFFUjYzuVIft9hpkWWJx7Jzj6XBEBVm5L52v/9zJUK+1GJoOOTVqSBkM+Dfti/+QN1Hl/DQhg0FxZfMo3svsjqE4G8fWn8ulnXHzduGbtJi71EysdXtTOOonjE/uw+/6z7A07V8tplXFhfpyzB6AdseIomxnosg59ew4yl9GFFUWEQHeTLyzA53jm/Bk/miMR9ZjX/5BubW3LSWLfsEpzo2alWdEEcCInh2YZ+hG8PaJ5GYc9XQ4QgghTirMxmvzJAyJyz0diRCigkmiqBppHB1A29qhzLO3RR1YAoXZng5JlLOsfCv/+mEj1wbtwseRizH+Wo/F8sSVjcmN7sheRw3S//zM7fXP336Mr5fsZpz/99iD6+BzwzdYGverkEWAK1KtUF+OOQKx51z6iKK03L+nnqn84yiZelapeJuMvH9Da2p2u5Hf7O2xL3qVwpTymYK29XA2Pf2TnBs1WpdLGxcryNdMjcHPYdFFLJ7wH7SsVSSEEJWCbetMDPZCVF5quY56FUJUPpIoqmZGdYjjx9xWKIcV9i7wdDiiHGmteX7mVlJzingsZisOn1Co18tj8YT4eTHprk6sDBlCRNZmps/9zW11J2Xk868fNvJkyJ9EFidiGPgGmLzdVn9lEhfqS7oOdMsaRanZhQRaTFiwoopzwU8SRZWNwaB4ZlAzsq94gzztTeqX13Hkq5somnANxZ/3w/phF6y/PQ+FWRfdRkZeMYczC2jBPhwh9cAnxI1X4B4JbTuzN7wPPTKn883CTZ4ORwghBODYPAUApR2Qe8zD0QghKpIkiqqZwfEx7PFuRo4hSKafVXOTVicye1MKT/SpRWjSfHTToR4fXePvbeL6O5+kGDO5y7/g7d93XfLogPxiGw9MXk8omdxum4qtXl9UowFuirjyqR3my3EdhLk4C2zFl1RXWm4REQHezvWJQBJFldj1vdpxsOubmB0FFB1aQ1LiATKLwOEbhmnVh9jfS8C++ouL+ovuewt2oxTE5u9E1aw86xOdqf6IFwlUBWQu/oDle497OhwhhLi8ZR3GnLgce3SCcztHHpQjxOVEEkXVjMVsZHibOObZWsPu38Fu9XRIohysOZjBS7O20adJJHdF7UbZCjC29Ny0s5K8A8Kh+dVc67WCrxZtpe0rC7h34jq+WX6A7SnZOMr45AytNXM2H6Hv23+yOTmLibV/w2AvwjTozWqxFtHZ1ArxJZ0g50b+pX1YTs0uIjLAAnmuemTqWaXW+sqbCXluN0sHzWeM1zg6HH6EoVlP8FuXKVhDG2Oc+zi2j7vg2D6rzCOMVu9PZ8LKQzzQzh+v/COoSrY+UUnGmq3Ir9uPO0zzeGryClIyCzwdkhBCXLasG39AoTF2f9S5I/uwZwMSQlQoSRRVQ6M6xDHP1gZDcTYcXObpcISbHckq4L7v1lMr1Jd3Riagt/yEwz8aanfxdGineHW8Ax9HPpM6JdOrcQRbDmfxn9nbGfT+Ulq9/Ds3f7macfN2sWD7MVJzCv+RPNp5NJtRX6zigcnrCfb14tdrfKh16GccHe+D8AYeuqqK4eNlpNgS5ty4xOln/xxRJE89q+wsZiOjO9Vm8eO9eGdkK5SC+xbZiT/0EJ/H/IfCgnwMP4xGv1Eb64edKZ75MI6N30PGfjhj9F5BsZ0np20mLtSXBxu71qyrxIkiAEufpwkih6vtc7n3u3UUWu2eDkkIIS5PW6ZSHNMW6nRzbmfLiCIhLicmTwcg3K9xdAC5sd0pTP0Qrx2/YKjf29MhCTcptNq597v1FBTb+P6ujgSRh963AN3uDjAYPR3e32p1xBbWhJZHf+b/7n0YgOQT+azen8HaQyfYlJTJZ3/uYQhL8TEuZZauzUpzRw75tsTPx5utKdkEWEy8MrwFo9pEor8ZhN0vEmOvJz18YRXDOzAKTgC5F58o0lq7RhR5Q166c6dMPasyTEYDV7eOZXhCTbYczuLn9Yf5ZKOJt/JfpZ/vHoaEJtNG7SJ82zQMG8YDYPeNwFazPYZaHTE16su4tQYOpecz+a6OeB/6FK2MqOh4z17YeRhqtaOodi/uP/IbXx7ux5M/bea9GxJQ1XgUoRBCVDb66BbMx3dg7f8W+IahjV4oGVEkxGVFEkXV1LUdG7FkRkt6bPsFy1XjqvVUncuF1pp/z9zqTLKMbkvDqADY8B3KXoxqeZ2nwzudUhja34bht6c48dvr6Ib9CI2NZ0SbmgxPiCF3/Y94L/sflqx9nPCuScfi3dypfyWnIJB19g5QM4o2vqlYVu7BMC8RpR3o4Z+Ad4Cnr6xC+IbGOBNFlzCiKK/YToHV7hxRdLIe3zD3BCgqjFKK+Nhg4mODeXZQU/7YlcqczXE8uTOVnKJ++JkV19fOZVhYMo2Kt2FOWYt5z6+w6EXa29sTGP8gXeqH41ixHiKaorx8PX1J52Xu/RSG8QP5uOF6btvkTePoAB7oXb1HEgohRGViXf89ZoMJc/w1oBTaPwayjyCfJoS4fEiiqJq6Kj6GV2Z35MqCj7H99SWmjnd5OiRxkYptDlYfSGfGhhSmrU/moT4N6N88GgD75p8gqDbGSjidxJAwiuJ1EwlZ9QasegObdxA50R0x5yQRlLGDopDG5F09gZD4YeiiHAp2zse481e675+PIT0fq70e9siW2JpdiymuPV5N+nv6kipMUHgN2Ae2nKMX/UM6NbsQgMhAb0g/jjaYUZYg9wUpKpyXyUD/5tH0bx5Nsc3Bqv3pzN9+jDnbjvLNXj+CfVswPOExrm1sZs20/+O64pn0330rxVOvxnx4LarZME9fQpkY6nShuFY3eid+wKLA3/lqQVcWBN1H3zaNPB2aEEJUfw47hm3TKK57Bd5+rj8wBdZAZ6dIokiIy4gkiqopi9mId8JIFq9fQa+5j2NFYe54p6fDEmVktTtYuOMYc7ceZdHOVHIKrVxp3sK3NfbS5riD/K9PYCjMwDttC3R5pHKOGLMEYbh3KZmpB7HvX4oxaQU+KSvRRm+yBn1CYNvr8TY6fwQpSyA+CddAwjXgsIPWeBkv3x9PNSLDKdBeFKUfJfgi60jNKQIgwt8CicfRvmEyfaca8TIZ6NEogh6NInhpaHOW7knjx3XJTF6dyPgVDmAIjW96jPYp32Fa8znKVgCV+IlnZzKOmkT68q+J3j6FV4u/pnDmRNK2DCLi2nfAT0bGCSFEeXHsX4op7ygq4fW/dwbWgMPrPReUEKLCXb6fxC4DN3dryJC1/2Kizwe0nvsvrNqBudPdng5LnEN6bhFT1iQxceUhjmYXEuJr5s46x7kh6yuiTqzDnu2L3RqOwxKMwxJCYdNr8elQeROAJqOB4Jh6EFMPuJVCqx2jQRFkPMc6+pVprSUPiQvzI51ATJlHL7qONFeiKDLQG52XJk88q8aMBkWvxpH0ahxJZn4xszalYDIY6NIyDlq+DF3HYt82E2PL6z0dapkZfYMJ6/cYjj6PkLRzFSunvcfwA3PI/z4d39tmwmWcSBZCiPKSml3IX5Pf5UqTP15NBp7abwiMQe864nxogvzRSYjLgvymVY3VDffjqaviGTnzAebV8Kbub084k0Wd7/V0aOIM21OyGb/iADM2plBsc9CtQThv9bLQZt+H+O37FZtPBPn93sS30x0YjWZPh3vRLGZJApVFXKgvKTqI8JzUi67j5IiiyABvdN5xWcj6MhHs68UtneucvtM/EmMVnX5sMBqo1bwLmUHNeenz13gt+VPyf3sR36te9XRoQghR7fy+6SDD7KuYp7rQDy8sJw8E1kTZCqHgBPiGejJEIUQFkURRNXdzp9r8ufs4g3ffw9J6FkLnPYXDywdD21s9HVrlUpRD4cafMAdGYWw6qEKatDs087cf45vlB1h9IAOL2cB1bWpwe8whaux6C8vvC3CYfcnv+hQ+PR7E9zJZyFlARIA321QQkScfa38R0nKK8DIaCPIxo/PTUaF13RihEBWrZWwQmaMf5/tv9zBqzYcU1GyLT8IIT4clhBDVysGNiwlQBUwraEvisgN/P0ggMMb5b3aKJIqEuExIoqiaU0rxv2vjGfBuJqNO3MOs2DzMv/8bmg0Dn2BPh+dZWmNNWof1r6/x3jUDizUPh380lHOiKCvfytS1iUxYcYjDmQXUCjLxSncLA3y2E7j5Obw278PmE05+p0fx6Xo/vgER5RqPqHyUUhR6heFTfOii60jNKSQiwNu5LlFeGkqmnokqrnvDCOZd8w4bfh5Bk5n3UxzdFK/opp4OSwghqoWMvGJ8j63BYVIENurKx3/s5bq2sUQGWiCwprNQdgpEt/BsoEKICnGOhUJEdRHq58U7IxPYnV7M5z53YijKxLH8A0+H5VmFWVg/vwLz11dg2TmN4kZDsLe4DkPuUbAWlkuTe1NzeG76Foa8/hMFv7/Ce/ZX2RTyFEuKR3HzmhGEL3keh1cg+YM/xvjYNvwGvIhBkkSXLYdvOAH2TOd6ABchLaeI8ABvsBWhinNlAWBRLfRPqE1y30/JdZhJ/+o67AVZng5JCCGqhQXbj9FW7aYguBGPDm5Psd3BW/N2OQ8GuEYU5aR4LkAhRIWSRNFlomuDcO7uUY+3t1g4FH0lrP4YctM8HZbHpM7+D8Yj69nf7gXUv3bhc91nGBtd6TyYmejWtrYkZ3HTl6u4+50ptNrwAguND/KQaQYtA/Mx1Uwgr/2D5A78gKI7l2C5fzG+7W5CmS3nr1hUa6aASEzY0QUnLur8tJwiIgO8Ic81fc1Pko6iehjSoz2r24wjovgw294dzqodB9FnS6i6nqIohBDi3H7bcpi2xr141+1M3XA/butal5/WJ7MlOQsCotEo54giIcRlQRJFl5F/9WtMu9oh3H6oH1gLyZz/pqdDqnBaa2YvWETI1vFMsfXi5bQeqJNT8ELqOP89cdAtbRVa7bwxdycPfDSD25NfYIH3E1xjXkFhyxux3r8W7wdX4nfzd/gP+g/+HW/BO7aVW9oV1YMlOBqAzLSL+6UsLaeIiABvyHMtiC1Tz0Q1MnjYSJY1fYFmRRvx/34YI8f9zDfLD5BVYD1Vxr5zLra3m2P9tBeOwxs8GK0QQlRu2YVWUvdtwp98THU6AzC2TwNCfb14+ZdtaIMJ7ReBlkSREJcNSRRdRrxMBr6/uxOjBvVlhu6Bz8bxfDZrCQXFdk+HViFyCq08OHk9wX++QJHBh+TWj7N4Vxr703KdBdyYKFp7MINB7y/lzyWLmO37Ej3N28ls+yCFD2wi4Jr38Yqsf8ltiOotMNw5zDvtaNIFn2u1O0jPK3aOKMrY79wZUtud4Qnhcb1ueAzb9d/T2HSMD/Of4vtf5tH65d/p/NJ0Zv3naoxTbuBwgYnC9ETUl30onvM0FOV6OmwhhKh0/tiZSjyuaWa1OgAQaDHzrysbs+bgCX7dchQCakiiSIjLiCSKLjNmo4E7u9ejx13jMCpNwF//x5Xv/klqtmtdnqxkiuc8BYdWejZQN9t5NJshHyzDvv0Xuhu34nPlC9x2ZXu8jAYmrDjoLOQXgTb7QubFLyCsteateTu57rOVNCnYxEy/V/G1eJN381xCh/wXv9AY91yQqPbComIBSE89fMHnpucWA86np5G2G60MENbArfEJURlYmg3AdOdvhPoameP3X75quIq5picYrBczN+Qmno/6mK65bzLbdCVeaz7B9kF7bDt+9XTYQghRqczbdpSuXnux+0ZAyN9PSR3ZvhaNowL4fMk+CKwhU8+EuIxcUqJIKRWqlJqvlNrj+jeklDK1lFJ/KKV2KKW2KaUevpQ2hXuExzZEtb+dG8xL8M1J5JkpKyic9xKO99vgteZTHAv/6+kQ3WbdoRNc/+lKHMX5vB00FVtYE4wd7iQiwJvBrWL4aV0y2YVWUAodHIfOOHDRbX217AAf/bGPZ2rv5kPHKzj8oym69TeCase78YrE5SAyphYAx5IPkpVvPU/p06XmOBO/kQEW7Gm7cATVBrOP22MUojJQNRIw3b0QFRRL78T38QsIhjvmM/Dhj5l4Tw/eG9OL19TdXGf9D+k2C6apo7AufE3WLhJCCJxLJfyxM42Opj3oWh1BqVPHjAZF5/ph7E/LQwXWgJwjHoxUCFGRLnVE0dPAQq11Q2Cha/tMNuBfWuumQCfgAaVUs0tsV7iBscfjKKMX34V8wRuHx2BZ+Q7WRoPR7e5AJa6ArOTSTyzIxPF/zWHzjxUb8EVYtuc4o79aTaifFzNbb8A3/zCmwW+B0QTAbV3qklds58e1zmtVIXXQFzn1bNHOY7z66w5erLmWu47+h8KIltjH/IZ/ZB03XY24nFgCIzhujKT/sc/IXvoJSel52B1l+2Cbml0E4Jx6lrYLwhuVZ6hCeF5QLKa7fsc2/HPM9y/DUKvdqUO9m0Qy79Ee1G3dm26ZL/G7uQ/mpW9SPP0BsF9YElYIIaqbJbvT8LemE25NwRDX8R/Ha4X6klNko9AnCkNhJhTnV3yQQogKd6mJomHABNfXE4DhZxbQWh/RWq93fZ0D7ABqXmK7wh0CotAd7yUieyuZlliutv6XrZ3GoTo/gELD1mmln7d5KobsZBxrv67YeC/QvG1HuX38GuJCfZl6bQRB6z/A1mQY1O1xqkzL2CDa1Q5hwoqD2B0aFVIHlXnwgv/SvPNoNg9O3kD3KCu3Zn5IXs1ucMsM/ILlSVPiIhmMrO4zhb/sTai18gWCp4/iwIG9FNsc5z01LdeZKIrwM2LI2IchsnF5RyuE51mCMCWMhFKeGhnkY+Z/17bi01s7MTb/Ln4OuAmvzZMonngdFOV4IFghhKgcftt6lO4W53qGhrjO/zheO9QXgFQV5twho4qEuCxcaqIoSmt9BJwJISDyXIWVUnWA1sDqS2xXuImhz/M47vyDqEcWkx7Ukoe+30iWTxyOGm1xlDZiSGvsa74CQCWuhOzKebOYtWwdCye/w4d+XzHd8RBRE7oCYBrwyj/Kjulah8SMfP7YmQohdVDFeZCfXua2jucWccf4tfhbTLwTuwTlsGMe9h6+foFuux5xeerTPoGHjM/zTdBY/I6sps4PfcnfPOO8550cURRuO4qyF6EiJFEkBMAVTaN4eVgLHku7ijl1n8N8aAnWLwdAzlFPhyaEEBWu2OZgwY5jDAlNRBu9IeafSyXEhTkTRYcdrhVGsi987UQhRNVz3kSRUmqBUmprKa9hF9KQUsofmAY8orXOPke5u5VSa5VSa9PS0i6kCXExjCYMsW0I9PHig1GtOZZdyFPTNqPir8NwbAuk7jy9fOJKjMd3QZcHnaOOts/0TNxnkV1o5aXvF9Nr/mD+Z/6UPvyFI7QBuT3+jeOuPyE47h/n9G8eTUyQhfErDpZ48lnZFrQustm5+9u1pOcV8fU1cYTs+I7CZtfhLU81E27g42Xkmra1eDWtK5uu+gWrfyyBc+477wiItNxCQnzNeGXsce4Il0SRECfd0CGOUR3ieGBHc/7q8inGE/uwzy1t5rwQQlRvq/ank11oo5XehT2mNZi8/1GmVogzUXSgyPUH0Er6R2IhhHudN1Gkte6rtW5RymsmcEwpFQPg+je1tDqUUmacSaJJWuufz9Pe51rrdlrrdhERMm2nIrWqFcyTAxrz27ajXLc0GjsGJn/1fwx4dwl3fbuWE3nFONZ8hcM7EHo9gyOiGY6t5+zOCrVsz3EGvLOEyG1f4a8KyB41G+PTB/Ab8xP+ff6FKapJqeeZjQZu7lSbZXuPc9Dh+p47UbYFredvP8b6xEzevCaeuru/RjmsePV6wl2XJATXt4/F5tCsywsjq+fLGOyF2HbPP+c5qdlFRAZY4LjrUbcRskaRECW9NLQZCbWCuX1pICea34Jhx0y4yPXphBCiqlq0M5Vgs52QrO2oWh1KLePjZSQiwJuduf7OHTKiSIjLwqVOPZsF3Or6+lbgH8NLlFIK+ArYobX+v0tsT5SzO7vV46E+DQiNqsVOS2v62pdQK8SHP3encd/nv8P2WdDqBvDyw9ByBIbk1Wdf9LqCFFrtvDBjKzd/tZowcwF3+SzC0XQYgY17oAzGMtUxqkMc3iYDX29zrf9Sxg8MW5Kz8DIaGFDHiGXTeAqbXIMxQh5DLtynSXQgLWsG8fP6w0S36IXdJwz7tlnnPCctt4iIAG8cabtw+EWBJaiCohWiavA2Gfnk5jb4eBm5b09HUEbsKz7ydFhCCFGh9h/Po3/IEZTDirH2P9cnOql2qC97sjTaO1DWKBLiMnGpiaI3gH5KqT1AP9c2SqkaSqlfXWW6AqOBPkqpja7XoEtsV5QTg0Hx2JWN+fyWdjTvfweRtiN80Qc+H92W1hm/YnAUk9N8tLNw8xHOfz08/ez9hXuYuOoQd3Sry09ttmO25mLq8a8LqiPUz4v+zaP5dWc2Dr/IMieKtqZk0SQmAPvyD1G2QswymkiUg+vbxbL9SDZbj+RiazAA8775YCs6a3nniCJvdNoudETpI+mEuNzFBPnw4Y1tWJfpwwJTD9gwEfIzPB2WEEJUmOSMfDqZXdPUzzKiCCAu1JekjAJ0QAyOrJQKik4I4UmXlCjSWqdrra/QWjd0/Zvh2p+itR7k+nqZ1lppreO11gmu16/nrllUCk0Ho43e6C0/0KthOGMDl7JGN2HUjCxO5BVDWH3sUfE4tpzl6WgVoMhmZ8qaJPo3j+KFK+tgXvMptvp9S12M73ziY4M4nluELTAORxnWKNJas/VwNu0jHFg2fEVh4+GYomQtGOF+Q1vVxMtk4Kd1yZiaD8VgzcW+789Sy2qtnSOK/L0wHN+NQaadCXFWneqF8fnotnxcPBCjrYD9c9/zdEhCCFEh7A5N8okCmtl2YA+pD37hZy1bK9SXlKwCHAE1IFsSRUJcDi51RJGozixB6EYD0Funw76F+OUl4t/1bvam5XLTl6tJyynC2OJqDCnryrz4s7vN3XKUjLxibu5UG8e6CRgK0jH1vLhRPc1inIv0ZXrXKNOIosOZBWQVWLkqbzrKVoBJRhOJchLka6Z/82hmbDyMrU4PHGb/s04/yy6wUWxzUNsrG1WcK088E+I8rmgaxTtjb2SNqQ2Bm7/m4/lbcTi0p8MSQohydSy7kGK7nbi8LehaHc9ZNi7UF62hwDsSciRRJMTlQBJF4pwM8ddhyE9Dz34Eh08YTfvczBe3tGNfWi793vmTOY5OzoLbZ1xcA1nJOJLXY9u3hOLtv1K04Qf0BSwoOnHVIeqG+9G1TiB6+fvYanWGuE4XFUrj6AAADhOJyk4Gu/Wc5bceziaIXOJTplLQcDDmmOYX1a4QZXF9u1gy860s2J2FtV5fjHt+BYf9H+VScwoBqKOTnDskUSTEedUJ96Pl9S8QrrJJWvw1Y79fj9aSLBJCVF9JGfnUU0fwsWVhqn3u351rhzmffJZuDEflpYLdVhEhCiE8SBJF4twa9MPhHYjKTkYl3AQmb3o2iuCXB7vRMNKfB+aeYK+pIfkbfrrgqgtXfAbvNMfwZW9ME4fg9cMovGfeheOT7jgOrT7v+dtSslh36AQ3dYxDbZmKMTcFU8/HL+YqAQjz9yYywJtdxeEo7YCspPO239u0GZMtD3O3hy+6XSHKokv9cGoEWfhhbRLG5kMwFqSjE1f9o1xajnPtopjiROeOcEkUCVEWloa9sUXF83jAfOZuSWHhjlIf5CqEENVCYkY+bQ27nRvn+SNrXKgzUXRUhzh/R849Vt7hCSE8TBJF4tzMFmg6FADVbsyp3Q2jAph6d2fevKYlM22d8D2+mS9nLSS/uGx/Ydi/fBrm35/mD3sr7rT+i9ci/seSXlMpunUe2jcMJg7HvvePc9bx3apELGYD17WugWPpO9giW0L9Ky76UgGaxASyIcf1hKjzjGzaejiLTn7H0AYT5pqtLqldIc7HaFCMbB/Hn7vT2BvYGW3wwrpt9j/KpboSRaH5B3B4B4F/ZEWHKkTVpBSmbg8TVpjIjUFb+b/5u52jiopycRzfDw6HpyMUQgi3STpRQLxhPw6vQAhreM6yEQHeeJsMHLIGO3fIOkVCVHuSKBLnZej7Eo6bpkNY/dP3uz643nbXIwBkrJ7K9eOms2zejxQt/ZCiOU+jk9eedo7doZk6czZRv9/HblUX64hvaNZzJLOzG3DLb3Y6f5fD9NZfYQ+KQ02+Huv2X0qNKbvQyowNhxnaqgZBh37DeGI/xp6Pg1KXdK1NowNYleGcgna+dZe2pmTT3JyCI6Q+mLwuqV0hymJM1zoEWkyM+zMFa52eGHb9AmdMjzk5osgnex86vNEl/58Q4rLSbDj2oDie4WveTB9L0Wt14PWaGD5sDRu+9XR0QgjhNkkZ+dQ3Z6BD64Lh3B8JlVLEhfqyK9/1O7KsUyREtSeJInF+/hEYGvY56+HQmg2w12zHk+ap/FJ8J91W3on3wucwr/0c9eUVZE6+k11797J873HGfjKLXuvHUmgOouZ9M7mydX0eu7Ixy57qw/jb2tMkOoAn5h5lfsevsUU0w/TjLRRvmPqPNn9el0yB1c7oTnWwrx2PPTAW1XTIJV9qk5gAkuzBOAzmc44oSs0uJC2niDjbIYiUx4+LihHkY+aenvVZsCOV5Og+mLKT4Ojm08qk5hRiMRswZezBIOsTCXFhjCYMfV/E7BdKnimE3+lEXvfnsftH49iz0NPRCSGE2yRl5FPTkIEKrFGm8rXDfNmW4+fckBFFQlR7kigSbmHs9x8KEm4nv+/rzG//BX0NXxJf8Bmf2obgu+tnakzsxvJvnuXR1OcIMdkIvWsGgZG1/j7foOjVOJJvbmtPh7qhPDIzkc1XTKS4ZgfMM++BY9tPldVa893qRFrVCqZlYB6Gg39iaDUKDMZLvo4m0YE4MJDnU+Oci2pvTcnCQhGBhYcxRDa95HaFKKsxXeoQ7u/F/w7UQysD1q1/P/3M4dBsPZxNPf9iDPlpKEliCnHBVMtr8X5oNceGTuKhnFv4I+ImDPV6QeKKf4zgE0KIqioxI58Ix3EMQbFlKl8r1JetmSa00UsSRUJcBiRRJNyjTjd8hr+Db7f76XfV9Ux7YjiPDW6Hqf/LLOg9i5yoDjxpnkpDwxHMN36Hiir9CWHeJiOfj25LbKgPd07ZyZH+n6NN3thWfnyqzKr9GexNzWV0p9roTVNR2oFKGOWWy6gf4Y/JoEgzxaAzDp613LbD2dRXKSi0fBgXFcrP28R9vRrw2wE7J8LawM6/p2e+PncHK/enc29T19PQZCFrIS7a4PgaNIz0590Fe9C1u2LIPw7H93g6LCGEuGSFVju5OVn4OnIhqGaZzokL9SWv2IHNLxqdfaScIxRCeJokikS5CPIxc3u3utzZvR6DenWjxv2zcIyeib55Gqp+73OeG+zrxfgxHTAqxa1T9lHY5FqMW34k98QxVuw7znsLdxPkY2Zwy2gcGyZhj+34j/WTLpaXyUCDSH8OOcJRmWdfo2hrShbdAtOcGxEyokhUrJs6xhETZGF6QRvM6Tuxp+3ly6X7+WLpAW7tXJshNXOcBSMaeTZQIaowo0HxaL9G7E3NZWF+A+fOQ8s8G5QQQrhB8ol8YlS6cyOwbCOKTj75rMAShc4+XF6hCSEqCUkUiQpjqN8LQ/1eZSobF+bLF7e242hWIWP3dUDZC/n47Re48YvVrNqfwf296mNJ3YQxYw/G1je6Nc4m0QFsyw9FFZ6AgsxSy2w9nE0732Nog9ltSSohyspiNvJgn4Z8ld4CBwb2zXyNV+bsYGCLaP49pDnq+G60yQeC4jwdqhBV2oDm0TSJDuC1VUU4/KJwHFzh6ZCEEOKSJWbkU+NkoqiMI4pqhzkTRVnmcJARRUJUe5IoEpVWm7gQ3h/VmkOm2mz1bs29PouYcGsCG17oxz096+PYOAlttEDzq93abpOYQLYWhDo3ShlVdCKvmMOZBTRQyThC64PR7Nb2hSiL69rFYgqN4wfjIBolT+OmmCO8MzIBo0HhSN2BI6zBeZ9iIoQ4N4NrVNGB9HwSA1s7RxTJOkVCiCouKaOgxIiisiWKYkOciaI0wlE5KfKzUIhqTj5FiEqtf/NoFv6rFy1GPEWgNY2e9lWE+HmBrQi2TsPR5CqwBLm1zSbRASTpCOdGKQtab0vJBiCq6ABEyPpEwjPMRgOP9G3Iy3kjOKbCeV5/hkW51iZK242SJ54J4RZXNouiQ51QvjsSiyHnyDmfiCmEEFVBYkY+ccYMNArK+NQzi9lIVKA3SfYglL0ICk6Uc5RCCE+SRJGoGhr2xx5cB9vKT5zbu3/DUJjp9mlnAE1jAknSkc6NE/8cUbQ1JQsfCvHJO4wxqpnb2xeirIYl1OSFEe1xDHwLn8zdFCx5F4rzMGQnYZBEkRBuoZTitREtWGF1/Z86JNPPhBBVW1JGPvW9s9D+kRc0Mj4u1Jd9hYHODVmnSIhqTRJFomowGFAd78F0eA0cXod9/SQc/tFQ79wLY1+MyABvjL7B5BsCSv3L8dbDWXQOzEChQZ54JjzIaFCM6hBHTIcR5De4Cu/l43Ds/t15MFwWshbCXRpEBnBlrx5kaH+ObF7o6XCEEO5kt2Jd+i4cWunpSCpMYkY+tYwZZZ52dlJcqB+b80KcG2m7yiEyIURlIYkiUWUYWt+Ew+yHfeErGPYtgPgbwGB0eztKKZpEB5JiiMKRcfAfx7enZNM9WJ54JioX78FvORdXn/Wgc4eMKBLCre7r3ZBt5hY4Di4jv9jm6XCEEO6QdxzrhOGYF76IY96zno6mQmitScrIJ1Kno4LK9sSzk+JCfVmWG43D7ItNFvcXolqTRJGoOixB6ISbMO5fhNJ2DOUw7eykJjEB7LWGwYkDp+3PKbSy/3geLb2OoI1eEFqv3GIQ4kIYg2ti7fUChuIctDJCqDyNTwh38jYZiUvoS019jK9/XX76QWsB1j/+B/kZnglOCHHBdMpGbJ/1xHh4DY56fTCkrC91yYHq5kS+lbxiGyHW1AtPFIX5YNNG8iLbyTRcIao5SRSJKsXY6V40CntM63IdMdE0OpCD9kjISgKH/dT+HUdyAIizJ+IIbQBGU7nFIMSFsnS+i6Lotjgim4HJy9PhCFHt1G7TD4C9a39n6+GsU/ut81/G/OersOE7T4UmhLgA9k0/oL/uj3I4ULf/hmHIO84D22d4NK6KkJiRTyB5mB0FFzH1zPnks9SQ1piO75DkuBDVmCSKRNUSVh/bgHEYB75Rrs00iQkgUUdicFgh58ip/Sc/GITk7pMnnonKx2DEdOsMuPlnT0ciRPUU3RKHVwDdzbt4dvoW7A6NTlyF6S/ngxbsu+d5OEAhxPlk/zUZ4/S7KI6Ix3jvn6iabSCkDo6YNji2Tvd0eOUuKSOfGsqV4CnjE89Oigv1A2CPpZVzR+Iqd4YmhKhEJFEkqhxzpzshrlO5ttEwMoBk15PP9PG9p/ZvTs4kzt+BOSdJnngmKiWjTyDGgEhPhyFE9WQwouM60c9vH5uTs/hu6U7s0+/HHlgT3f4uDEmroDDr/PUIITxi5/4D2H99ig2OBnQ7+ggTNudjtTsAMLS4GsORDZBx4Dy1VG2JGflEq3TnxgVOPQv398LHbGS9ox7a6IXtwLJyiFAIURlIokiIUvh4GTkR2oIiZcG6YTJaa95fuIcZG1MYUSvPWUieeCaEEJcdY52uBObuZ2gDE45Fr2A6sQ/D0I9QLUagHDbYv9jTIQohSjFn8xF2jn+IAPLI7vc2DWPCeHHWNga+t5TFu1Kh+XBnwWo+/SwpI5+G3q6E9gVOPVNKERfqy4FMO/aYNlVmnSKttadDEKLKkUSREGcRF1OD2YYrMG//mX9/t4D/m7+b4Qk1eKC51VlAnngmhBCXn9pdAXglYiG3ModF/leh6veE2A44vANxyPQzISoVh0Pz9u+7mDxlAsMNSyjsMJae3Xsx+a6OfD66LTa7gzHfrOHx+Sew12hb7aefJZ3Ip6FPlvPBFwHRF3x+rVBfEtPzUbW7Yjy2GYpyyyFK9ype+DrWRa97OgwhqhRJFAlxFk2iA3gvvy8Oh52YXd/yRP/GvDMyAVP6LrTRG0LrejpEIYQQFS0mAW32JXDDZ+R6R/Hg8RHM3XrU+XCD+lfAnvngcHg6SiEEkFtk457v1vHFom285zcBW3A9/Ps9CzhHx1zZPJrfH+3J2N4N+GldMjOKO2A4ugnS93k48vKTmJFPbVMmOiAaDMYLPr92mC+JGfkY6nZFaTsk/1UOUbqRtRDz6g8wbpjo6UiEqFIuKVGklApVSs1XSu1x/RtyjrJGpdQGpdQvl9KmEBWlSUwgSTqKBY523GH5gwe6RKOUwpG6A0dYw4u6uQohhKjiTF44arYHwOfaj6lbM4oXZ20jq8CKoVF/DHmpcHSTh4MUQiSm53PNxytYtDOVHxr/Sbg1BdOw98FsOa2cl8nA4/0b89ygpryd7BwtbjtzVFFBJsVTbqV44etVYgTN2djsDlIyC4nm+AVPOzspLtSXAqud9JAEtDJW/nWK9v+BwZqPIeewPKVNiAtwqSOKngYWaq0bAgtd22fzMLDjEtsTosJ0qR/GjR3jqDfsGbxtOVjXOf8SodJ2yhPPhBDiMmbs8yxFg97D3OgKXr86nvTcIt78bSc06ItGOUcVCSEqltbYD66g8PeX2TPjdT744C0iszYxY6CNlokTsSeMhrrdz3r6XT3qcd+wnqxzNCR52WQKiu3OAwUnsI4fhnnXbLyWvoH9vQRsq78Cu62CLsx9jmQVYndoQmxpqAtcyPqkuFBfALalO7BHxaMPVu51imzbZv69cXSL5wIRoooxXeL5w4Berq8nAIuBp84spJSKBa4CXgUeu8Q2hagQft4mXru6JQDF69pjWPUxtB6FITsZomR9IiGEuGzFdcLb9fTNlrFB3N61Ll8uO0DfppH0jGkNu+dh7Pmkh4MU4vLgSN1N8YYpmLb9gCk7CSPQEHjrZIGF4PANx3jly+eta3TnOmxIGkGd7W9y7yc/0aZxPa7b/iBBuXspvvY7zP5h2Oc9j9fcx7Ct+hhDzycw1OsJgTHnrthWDEe3YE/6C318H6YOt4MHnp6blJEPaPyKjqGCLm5EUYe6oUQFejNu3i661O+Cad2XYC38x0itSsFuw7D7N+x1e2M88IczUVSvp6ejEqJKuNREUZTW+giA1vqIUupsz2R+F3gSCLjE9oTwCGOXBzH+dAv2JeMwAkRKokgIIYTTY1c2YuX+dO77bj3z23Sn1ub3Ie84+IV7OjQhqi9rIcU/3Y3Xrpl4KwMHA9sz2WsEk7Jb0bthKP/rF4ql4CiOzGTMce3AN7RM1bbufytsf5M+ObNpsWIzviqF262PsmwS1AzJp1bwf+lXex2Dj31G2Ix7AMj3iSEvojW2mNYU26E49wS2/BNQkEVQYTJReTsxOooxAtpgQm+ciB74PwxtbwGlyvFNOl1iRj6h5GC0F0HgxY0o8vM28eygpjw8ZSPLazeil70IUtZD7S5ujtYNDi3HUHgCOtyBI20HHNksC/QKUUbnTRQppRYApS2J/1xZGlBKDQZStdbrlFK9ylD+buBugLi4uLI0IUS5MzYbjC2oDsZVHzt3yNQzIYQQLr5eJibe0ZEbv1jFYxui+MmoYe9CaDXS06FVbw6H80N2BX7QFpVEYRbWSTfglbSCOSGjeS21C4ePBdGhTiivDYxjSKsaGA0KaMUFrygZVBNHbEeuT56Nw+zNwb5fMczSluapuRxKzyfpRAHvH23Ey3mv0ErtI8Gwj9b2PbTO/4vYxF8BcGhFDj5kaz+SCWW2ox+bdEOyw1rRPDaUR3PGYfnlIez7F2Mc+h5YAt39DpUqMSOfWGPGqeu8WENb1WDy6kRe3FDIn4DtwHJMlTBRZNs2C4PJB0P9K9BRLeHoVk+HJESVcd5Ekda679mOKaWOKaViXKOJYoDUUop1BYYqpQYBFiBQKfWd1vrms7T3OfA5QLt27XRZLkKIcmcwojvdj5r3JNpkQYXU8XREQgghKpFQPy8m3tGRUZ/ZOJ4ThNowizBJFJUfrbFOGonBy4JxpDzN6LKSm4b126sxpG7nUdtYFp7owTWdYrmxQxwNo9wzecHQ/nYcqdvh+onUa9CbeqWUySuykZpTRF6RjdwiG7uKbGzLOY6vjxeBgaGEBvgQ6ueFd7GN7KQs8pIz2ZScxZcbj1PU4VVeqD8Pw5+vY09Z7/wejol3S+znknSigBZ+OVDMRS9mDc4nxr08rAWD3j9BSkBdIg4uB55wW5yX6lB6HrHBFtSuX3DU64PByxdDTDwc+ANsRWDy9nSIQlR6lzr1bBZwK/CG69+ZZxbQWj8DPAPgGlH0+NmSREJUZua2N2Nf/BoEx2GUJ54JIYQ4Q0SAN5Pu7sKa99vS5cAf/D979x2XVfUHcPxznsFeCoIgKrgHCu5t7l2OtLRyZNnS9rA9f+29bdiwzLJM07QsNTN37r0FZIiCstczzu+P59HQUDHGA/p9v1684Ln33HO+9x7g8nw559zt8Wm0qBPo6rCqBMvuXzDX6wruJXujb981H/PB39BuPo6RRQaZUHJZOBlH/udDUZlJTCq8H5+ogfw1vAX+nuaybSd6NIaokWA891slb3cTke5n7w8ptlyfZh70aebY9/CcbXzzdyKTHryTWpFd4fuJ2GeNwXDXpnJPYMSfyGW4V4YjUfQfF7M+pXFNX8Z3imDp+gaMSVjlWNz7PNerouxOzmTg238xoc5xns4+im5+FQAqtAXYrXB8D4RGuzhKISq/0t5VXwL6KqX2A32dr1FKhSmlFpU2OCEqFTdvCoZPR/d73tWRCCGEqKRC/Dzo0G80/iqHt778hqT0PFeHVPmdjMP83Wjsq94tWXlLHnrxY2iDCVWYDWn7yzc+UTlkJpEzrQ8FGceYaH+MK68ez7tjWpV9kuiUckp6TOnVAI3m/T8OQN3OGId/6HhQysYvyqW9ohJO5BJpTkcb3cCr9Guo3dO3IbvMUZisudiStpZBhKW3Me4kAKHJS7BiZId3J8eOms4RW/LkMyFKpFSJIq11mta6t9a6ofPzCef2JK31oGLKL9daDylNm0K4kleTPpjqd3d1GEIIISqx6i0HoJWRgdalPP/ZbLJTYtEF2aBlRn2xkh1vMO37fytRcduqdzFmHoFT/7hJ3FRekYli2HNOuKBRG0emj0XlZ/BU9Vd44e6bubpNOKoKrk8VXs2La9vVZvbfRxxPIavXA1vdrtj/fBUKc8qt3dTsAtJyCglTJ9C+oWUyCs/Pw0y3Po4RO38t/YnY1ByOZeWTW2hFu+j33c6kDAI8TYzz38YG1YKrP9/FN+vi0dUi0GYv7MnbXBKXEFWNjNMVQgghhChLHv7Y63ZlpPqD9zPvwufDaNSLtbC90kD+m10c5zUxJW+G7OKWu3TILrBCRiJq5RtYGw9BtZ+ENnujEzdWVKSXPfvOn1Cv1Ycj6yu03b++fJLaGRv4seZdvDrlOuoGeldo+2VtSs+GGAyKd5ftB6Uw9n4SQ+5x9Npp5dbm4p1HAQg1nECVYn2isw3s1IpEYxidDn9AtVkDMf7yEGkrv+Bo7O4ya+Ni7EjMZEDwSTyz42jR5wY61g/k0bnbefW3/diDm6OT5XewECUhiSIhhBBCiDJmvHYGedf9xE+NX2aqZRJ/1Z0CaKw/3y8ji85iT96GNjvf+B9YWmyZb9bF0/Lpxez+6l6UtmMa8LzjQROh0WgZUVQxbFbsS55BaTvWtR9VSJNaa76eM5eOsR+y2bcHY255FLOx6r99qenvwfUd6jBnUyKxqTlQpwO2hv3Rq96GvPRyaXPR9mQig7zxyjuKKuX6REUppSi4chozdT+OZNoJ2P8DtVfcT80Z3bAmVOzPZqHVzt6jWQwy/Y1G4R09lM8ntOOq6DCmrzyMpUYUKmW7/A4WogSq/m9aIYQQQojKxjMAz0Y9uGr0rWQ3u47x+zqzP+o+TAnr0Nt/cHV0lcvR7ehG/bF7B2Pbt/hfu79aG8ejc7fTw/MQTVMXsytyPDifPmqo1RqVsgOshRUc9OXHtnkmppMHsQdHYdwzH3JSy7U9rTVv/LyRrlunkm0OJPq2LzBeAkmiU27vUR+zUfHOUscaW8Zej2MoyECXdK2ui5CWXcDaQycYFBWMykoG/7IbUQQQ0bI7Bb2eZUjWI7zRZgn7r/4du9kL6/JXy7SdC9l/LItCm50WmX9hC+8APsEYDYpbutejwGpnS2E4hsIsSI+r0LiEqIound+2QgghhBCVjFKKV0e1pFGIL9f+XZ/8Gi2x//YEFGS7OrTKIfcEhqxEDGEx6AZ9UIf+cDw9yenL1bE8MW8HfZsEMS1oNmmGIEbv6sSKfccdBWq1RtkK4NguF53AZcKSD3++jCW0DYaR01G2QuybvirXJt9ZeoC665+hjuE4/td/gcG7Wrm2V9GCfT0Y1ymCeVsSOXAsG0JbYms2HL3uA8g+/k/BnDQK13yMdftcsNv+U1u/7UrBZtdc1cCEslugDKeeARgMituuqE+PxjWYvioOFdKUgtY343FgETql4n42dyZlEq6OUy1rL4ZmV57eHlXLn+ZhfnyXEODYIFOAhbggSRQJIYQQQpQjLzcTr42KJiPfzppGD2HMTsa24nVXh1U5HHUuLFuzJcZG/TDkp0PiBgA+W3mYp+bvpG+zED5onYjbsW14DnyW8JAa3P71RnYkZkBYa8fxSTL9rDzZ/p6OMSsRU98nIbgJ1tqd0Bs+A7u9XNrbHH+S/X/MYKRxBfau92OI7FIu7bjard3r4WE2MuWbTcz++wh5XaeirAXY/3wF697fyP/mBvTrjXFb/CCmOROwvNcR29bvLzphtGh7MnUDvWjkkenYUIZTz05RSvHK1S3xMBu5f/ZWzJ3vwG7ywvJnxf2u25mYQWezY4SWoV6PM/aNblebX45VRysDWha0FuKCJFEkhBBCCFHOmoX64etuYkl2BNaoazCseQ9OHHJ1WK536j/7NVtAvZ5oZcSy51deW7yXZ3/eRf/mIbw/phWGlW9gq1Yfrzaj+eLGdgR4uTHh8785ooOxe1aXdYrKyeHUHGav2k3BH6+SUK09X6VE8MPGBAztbsaYEQ8Hl5V5m3mFNh79bj1Pmr+mMLglpp4Pl3kblUWgjzsvX92SPIuNh+Zso/UHsazy6Yvh748xzRqFOX4lha0mom9biXXEdACMc2/G+l5HbFu+O2P03bmczClk9cE0BrUIRWUmOjaW8YiiU4L9PHh+WAu2JmTwwfp0LK0mYN79Y4X9rtuRlEl3nwS0yRNqNDlj31UxtdAmT4651cYuC1oLcUGSKBJCCCGEKGcGgyKmTgCb4tMx9XsWbTRh/eVRV4flcvbkbdh9Q8E7CDwDyKzRmti183jvjwNc3Tqc965rjVvcHxiPbcfQ9W4wGAnx8+DLie2w2Ow8OGcbhLaSRFE5OJaVz9UfrubIotfwspxk8tEhPPnTTh74fivf58Rg9wzEuv7TMm/35V/30DN9DsGcwG3QS2A0lXkblcmV0WEsf6AH8yZ34br2dXgu92q+sfbkbts93BX2DQtr3UWGX2NMLUdinrIO24jP0CiM827B+nYM1tUfQGHOOev/bddRbHbN4BahkOFMFJXDiKJTBrcMZWhMGO8s28/fYdeBMmFZ8Wa5tXeKza7ZlZRJC3UIe80W//q+8fc0M6hFKBsLwtFHZUSREBciiSIhhBBCiArQqk419h7NJNu9BrrbA5j2/3LOp3xdNpK3Qc2WZBdYeXr+TqYl1aeh/TBfX1ub16+Jxmw0YP3zdWw+oajoMacPaxDsy8Qukaw7fIK84GjU8T1QmOvCE7m02O2aB77fhrngJHd5/kp25AA+efRW/n6sDzG1A3h7eRzWmBswHlgMGQll1u7qA6nMX72Nu9wXYGs4ECIuzSlnZ1NKEVM7gKevas7CR0dSZ/yn+LUZxYaEXO6bvZU2/1vC+M/W89O2ZAqbDMM8ZS22a75G+9TE9Nsj2F5vRuFvz0D2sX/VvXD7UWpX96R5mB9kJjpG23iW73pPzw2LolmoHxN/SOBIxAhM22b9k6QqJ4dTsym0FFIrbx+GWq2LLXNN29pstdTBlJUIuSfKNR4hqjpJFAkhhBBCVIA2dath17D1SDrGzlOw+dbCvm6aq8NyHUseKm0/edWbMeCtFXy5Jha/qEEAdNVbHWWOrMd0ZDWq8xQwuZ1xeL/mIWgNGy0RKG37Z70jUWpfrollxb7jTI9Yhsmag8+Apwj29aCGrzv392tEUkY+P5v6gdbYN3xZJm1m5lt48IdtPO67AHddgLHfs2VSb1VjMhro2jCI54ZFsebh3sy9ozM3d4tkf0oWd3+7hXbPL+GhH7fzt0dnTJN+R09cjK1OF8yr38T+ZhSFP06G4/sASM8tZPWBVMe0M6UgIwHtVwuUKtdz8PMw89VN7WkQ7MON+zqjtR3bqnfKtc0diZk0UImY7PmoWm2KLdOxXnXSfBo5XqTsPGOf3a7LNT4hqhpJFAkhhBBCVICY2gEAbIo7CSZ3DHU7/evNymXl2C6UtjFtrzdp2YXMvrUTt197FXafUGz7FgNg+fN17B7VMLSZ8K/Dm9T0pXZ1T+amhDg2yPSzMrH3aBYv/rKH52uuICphFpbWN0JIs9P7uzYIon1EdV5am48lshd605dgs5SqTa01zy7YhUfmIYZZF2NvNQ5qNCrtqVR5BoOiVZ1qPDKwKSun9mLWpI4MjKrJwm3JjP54Lb3f+JPpccHkDv8CNWUDtpZjMO38Ad5vR+HX17J5xQJsdptj2hmgMxJR/uWzPtHZArzc+PrmDpiDIplv6wIbvzjzaW5lbGdSBm1Mhx0vwloVW0YpRfM2jlFqaQc3nt6en3WCnJk3kPnDXVhy08stRiGqEkkUCSGEEEJUAH9PMw2DfdgUfxIAFdIcQ2Yi5KW7NjBXcS5kPS8lkOeHR9EuorpjpEPDvqhDyyF5G+YDv6Lb3wruPv86XClFv2Y1WRirsfmEYpdEUanlW2zc/e1mxpqXc336NPIbDsFt8KtnlFFKcV+/RhzLKmC575UYc1LQexaWqs37Z2/lh40JvB/yM5jcMPZ8pLSncskxGBSd6gfy6qhoNjzel9dHRRPgaeZ/C3fT4YWl3L8sh63RT6Hu3Y6l64MYE9bRc+1E/vaYQuMNT2M/sBwyE1DluD7R2ap7O5JF831Ho6wFnPzsagrWf1Eu0752JGbSzfsI2s0Xqtc/Z7nBHaM5pgNI3LMOgMzEvTC9Lz6HfsV351fwQWfy9pb9Iu1CVDWSKBJCCCGEqCCt61RjU3y6Y5pDSHPHxmO7XRuUiyTsXkem9qRrm9aMaP3Pm1dDo34YCrOw/3ATdrMXxo63nrOOfs1CKLTaOebbTEYUlYFXF++l0bHFPK4/Ij+iFx7Xfl7sYtId6wXSpUEgj+0IxeobjnXZC2DJu+j2ktLzGDVtDT9uTuTVDnk0OfkHdL4bfEPK4nQuWZ5uRq5uE86Pd3Rh0V3dGNkmnF93JDNy2hp6TdvFx8bRHLh+Hfdap5DiH4N5xywMXw9FZSWDX1iFxhrk485Lt13N2x63kpV2FPdFd6Nfa0T+l1dj2T6vTNrQWrMjKYModQh7WCswnPstbrCfB0e9GuKeuov4LUvxmtEfU14q2df+QM51P6MNZjxnDSd33n3oguwyiU+IqkgSRUIIIYQQFaR13QAy8iwcSs2BYOd0nmOX3/SzpPQ8Ug9sJNZUj6eGtjhzZ+QVaIMJQ9o+7K0ngFf1c9bTpm41qnu7sdESieHkwct3dFYZWLQ9mbjVP/Cm2wcU1uqIx/Xf/GtdqKLu69uY47k2FkVMxZy2l8KFD11Ue+sPn+Cq91YSn5rJd/1tDEt+G5t3MIbOU0p7KpeVZmF+PD+8Besf68Nro6IJ9nXn1cV76f/+BuZaO2MZ+SWGhw5jGzmDwtYTocWoCo8x2NeD0Xc8zRiPD7mOlzjadAKm1N2Y54zHtuGLUtd/5EQeBfl5hOUfwFir+GlnRQVEtKa+jqfm3Gs4oX2IHz4f3yY98WnYBePk1WTH3IzXlulYP+iGPnG41PEJURVd2s+bFEIIIYSoRNrUdTxtaFP8SRq0CUe7+6FSdrk4qoplsdm5a+bfzNCxWJrfgIfZeGYBDz/stTtiOLIOU5c7z1uXyWigd5Ng5u+syRCApM1Qv2e5xX5J0ZrMowexxa/n5N5V1Dqwho/cDmMJbonHuO/B7Hnew9vUrUbPxjV4YoeZXm2n4LPhPayRV2CKHvmvsnmH1nIy+TCJWTbiM6zEpls4ciSWF9y30dN9K+Y/M9AGMwz/qNhphuLCvN1NjGwTzsg24cSn5fLDpgQy8yxEh/uDUhijhmKMGuqy+EL9Pfnmlo6Mmqa5al9Dvp/0BOG/TMC46AF0UANURNf/XPeOpAwaqyMYtRXCin/iWVF1ojrD7o/Y5d6CG7KmkDEjkQFRNm7rXp8W4f74DHudgmZDMM0Zj+3zwRhvXIiqHvmf4xOiKpJEkRBCCCFEBakX5IOfh4nN8Se5pm1tdI2m6JSdl9UQ7w+XHyQtYR9e7gUQWfybOuPAlylMi8OtBNNk+jWvyf0b64AHkLRJEkUlVLDgAfw2fQqAB25kGLaZxWQAAQAASURBVBtwIvp2gvo9CO6+Jarjvr6NufK9lVx/qA+vuy+j1rw7eWePD5metTmRU0hWZjojjn/IldbFeAJhQLtTB5vAaq6Opd4A7E0G4t6oN3j4lcepXnbqBHpxX9/Ktxh43UBvvr65A9d+tIbrP9vInBs/JOjbQajvxmK85Q+oFvGf6t2RmEEr4yHHi1oXThTR9CpSh35NZJM+LCiAL1fHMmt9PAu3JdOnaTD39GlEVKOe2MbNR80Yiu2zQZhu/BkCz732kRCXmsvp7xIhhBBCCJc69RSjTXHpjtc1m6OO7QJ9eTyaOT23kI9XHGJMnXTHhpotiy9YMwq35oNLVGe3hkFYzP6kuoVjT5B1ikrClrgZt03TOVl/OBM9XqermkG1yUuoMewFlFe1EtfTItyfB/o1AoOZp8z3YdGK/rsfYf6mw1hi1/J8yu0Mtv7GssAxfNf2OzYNmMfJ0YsoGPsz1puWYXroAJ7XfIx7y+GSJLpMNArxZcbEDmTkWbju6z1kj5iJstuwzhwNBVn/qc4dSZl09YrH7hkI/rUvfIDBQFCrK/H09KRWgCePDmrK6od78UC/Rqw/fIIh767klhkb2KMiUeMXoKx5WD8bDGkH/1N8QlRFMqJICCGEEKICta5TjbeW7iMz34JfcDNUQSZkJkIFPo3IVT5ecYicQitXh51AHzejajQpdZ0eZiNXNKrBxsMR9E2SRNEFaY110SMYPapxd+Z1rM22MWtSByKCvP9TdVN6NWRKr4YAWHd60Pz7G1hT8w3cUjZj9QnDMnQBvRp0K8szEFVci3B/PpvQjhumr+Pmn0/yzYjpmL+9Fsv3N2O+btZ5F6M+m9aanYkZRJkOQVgrx5MT/wNfDzNTejVkXOcIPlt5mOkrD/PbOyk0C/VjfNSHjNh+B7bPBmLp9hDKsxoGz2oYvAIw+oWCX+h/alOIykxGFAkhhBBCVKA2dauhNWyJT//nyWeXwTpFadkFfLE6liEtw6iWuQcd1Pi8iyVfjH7NQ1hfEIEhKwkyk8ukzktVwY75uCeu4Ue/saw4YuHNa2JoU/fcC4ZfDFPzKyloMwn3oxvJbTIS4x2rcZckkShG+8jqvHlNDBviTnLvhkCsfZ/HfOBXrMuev6h6UjILyM3JpGZBLIaSTDu7AD8PM/f0acTKh3rxxJBmuJsNTF1pZ3DmVNJzLXj8ej/ucydi/mY4xk97whtNKHynHfk/P4L1wB9gLSh1DEJUBjKiSAghhBCiAkXX9kcpx4LW3bs0dWw8thMa9XNtYOXsoxWHyLfYuLt3Q/hyB6ph7zKru1eTYD6mJTaMWH+8A/ex3xf7WPfLnrUQ9fuTpHlG8kh8W+7v24jBLct2NIT74FcoaDcJ75qNy7RecekZ3DKUxPQmvLBoD7UCruChlmMwrnwde51OGBr1KVEdOxIzaK5iMWAv2fpEJeTvZeamrpHc1DWSIydy+XlbMjduacSxown4qVyiqmu6hJtp65tGSMpK3DZ9imHDB9jN3hQ2HISp7XhMkV3/8wgnIVxN7qBCCCGEEBXI18NM4xBfNsWnQ59G2H3DUCm7qOxvJ+yHV2GddwdW/0jsNVtiCIvBHN4Ks38oGN3OO13kWFY+M9bEMiymFg08cyAn5dzrE/0HAV5uVI+I5q3U27g/9n3yFzyAx9A35U3aWXJWfoB3ZiwPWadyRZNQJvdsUPaNGAy4S5JIlNCkbvU4ciKPj/86TMSQu7kmaAtq7iS4bSX417rg8TuSMmhpdD7CPqxVucRYu7oXt/eoz+096nPkRC6Ldx7lt10pPLjtBHYdSr0aHRjZoRpX+e8nKPEPzHt/wrjreyz+kdhirsej3XjwCS6X2IQoL5IoEkIIIYSoYK3qVOPnbUnY7RpCmqFTdro2UWTJJ/uPN3DvfCtmn8Bi99t/moLBkosxJwXPv99HaesZRbQyoA1m7GYvbH51sVWrB9UjUYH1WbBXE2Yr5O7ubeHoVscBNVuU6Sn0axbC0wu6MKxlPvW3TCc/sAEe3aaUaRtVmTXrOO6rXmONimGvb0cWXhODwSCJNOFaSimeurIZyRl5PL7wEF69X+KqdddhnT0B08RFYDSf89iMXAvfb0jgea947O6hGHxrlnu8tat7cXO3etzcrR5p2QUs3pnC/K2JvLo8gVe0J9HhY5g6/GHa5q5Ab5qBx5//w/b3RxgnrwXvoHKPT4iyIokiIYQQQogK1rpOALPWx3PgeDaNQpqjD/0JNst53xSVq/2L8Vn9MrlH1mKa8CPqrGlbhctfxS39EPYb5mFq0BNtySM9dhtHdq0hN+M4hQX5FBQWYC0swN2WS4PC4wQnrsdt71wUmpuAm9yAj+7FbnBzLJJZxomi4a3C+WZ9PIN29WZpeCy1lj5OYfXIEj897VKXv+QFPC05PGe5jg9vaoO/l4u+14Q4i8lo4J0xrbhlxkbuWZLKnsDJPJz4Ctbfn8E04H+OQvmZ5G+fiz7wB6aYazA1GcjDP24jJTOfDoFxEFZ2085KKtDHnes61OG6DnVIzsjj563JfLM+nutnbOPOXu24+6br0EkbMXw2AOvPD2C69osKj1GI/6pUiSKlVHXgOyACiAWu0VqfLKZcAPApEAVoYKLWek1p2hZCCCGEqKra1HU8gnxT3EkaBTdH2S2QdgCCm7okHnvcGgyA15E/yfrtBXwHPnl6ny1lN+Y1b5PXZCTL85qwbv5O/o49we7kTOy6IeB44pWfh4kgH3fyLTaSUvMxKOgS4UuI7SjHkg7zYt8aBFhTISsZt2rhmD38y/Qc/L3MfHdLJyZ88Tf948eyPDCZwLk3k+8zH4+67cq0rarGlnYYz61f8q21J2OHDqRFeNleeyFKy8vNxFc3tWfBtmReWOhBmLUv49a+y0m88TixG/eDv+JhK8Bu8sKwdy5bI25i8Z6ePN6nNp4rY6HWWJfGH+rvyaTu9bihY12e+GkH7yzdz4bYE7w1OobA7g9hWv48eucwVPNhLo1TiJIq7Yiih4GlWuuXlFIPO19PLabc28CvWuuRSik3wKuU7QohhBBCVFmRQd5U8zKz7vAJRl9x6slnO12XKIpfi712Z/K9a+Gz7g2ya7fDJ2og2O3kzpmCUXkyeO8ADm/ZhIfZQKva1ZjSqyHtI6rTMMSHal5uuJkcaxRprdmZlMmvO47y686j/HXMm7EdB1PriqhyP49q3m7MvLkDt8zYwKCDk1nq9yw+MwaT1XkqPj3u/tdIqcvFsd9eJ1DDgSa38WS72q4OR4hiKaW4KjqM3k2Cmba0BtvXHqDF2pfINfmTFzUG99bXYQpryfHZ9xC9fzrz/DYRFXKn4+ByWp/oYnm6GXltVDTtI6vz5E87GPzOSt4ceQOdQhbAwvsxRnQD72Km9wpRySit9X8/WKm9QA+tdbJSKhRYrrVufFYZP2ArUE9fZGNt27bVGzZs+M/xCSGEEEJUVo/8uJ05mxJYeX8XarwbiepyN/R+8sIHlrXCHPSLtdFd7kV3uw/Lx70xZSez68oFbF4+l/GpbzDVcgsZTUYztlNd2kVUP50UKomEk7kE+3pc1DGllW+xceeszWzetY9ZYd/R8MRy8kNaoYZ9gHtoswqLozKwZ6dieb0Zi+wd6Tn1BwK83FwdkhAlEncknpnzFvB5YjjNagfx4vAW1KvhzVXvraRL5i88oaajtBWl7fDQYfCq7uqQz7D3aBa3z9zIoeM5DAs7yesn78bedCjmaz5zdWhCAKCU2qi1blvcvtLesUO01skAzs/FLedeDzgOfK6U2qyU+lQp5X2eYG9RSm1QSm04fvx4KcMTQgghhKicbruiHlabnU/XJKKrN8B+dIdrAknciNI2DHU7YnT3hlEzsFktGGaPZdjxjzjkHcOd9z/NtLFt6NIg6KITPuHVvCo0SQTgYTby4fWtadKgPtemT+bkwA8xpR/G/GkP8le8XaGxuFri7+/irgs4GXObJIlElVK3dh0emXIHr41uS8KJXK58byWjpq1hX0o2Pcfcj77pN2y+tbAFR1W6JBFA45q+LLyzG89c1ZyN+WG8WTgc8645/PnTdDLzLY5CWkNmMjo9Hux21wYsRBEXHFGklFoCFLeE/GPAl1rrgCJlT2qtq511fFtgLdBFa71OKfU2kKm1fuJCwcmIIiGEEEJcyu75djO/7Uphc7NvMSdtwHBfxSeL9PKXYfmLqKmx5Jt8eWLeDtI3z+MTtzewG9yw37oSU0jVfNz56gOpXPfpOl4d2ZJhDc1Y5k7GK3YJTNkAQQ1dHV75K8wl86UmbLLVJ2bqYkkUiSorPbeQl3/dw6z1R7j1ino8MtA5TddagLbkoTwDXBrfhdjsmsXbjtBowTD8rcdZbm9FtEcKde0JuNuyAbCbPLAG1MdWvQEEN8Wj7fWogDoujlxcys43ouiCE7W11n3OU3GKUiq0yNSzY8UUSwAStNbrnK9/wLGWkRBCCCHEZe32Hg2YtyWJv3ND6Zp5BPIzwcOvQmOwxa1F1WhKSoE7t01fw7aEDO7qPYY09zDMXn74VdEkEUCn+oE0CvHhyzWxjGzTFfPAZ+HDJZC0+bJIFMUt/YS69gySmt9CD0kSiSoswMuNF0e05N4+jajh6/7PDpM7yuR+7gMrCaNBMSimDrrml9g+6ccAtZ291jC+s3TioA4jPMiPLgEnqUsSbke3YNo3H1a/Rn7TkbhdcR+G4Kr7e1hUTaVd0W8+MB54yfn5p7MLaK2PKqWOKKUaa633Ar2BXaVsVwghhBCiymtc05d+zUKYfciXrgDHdkOdDhUXgN2GIXE9R+tcxZXvrqTAaufjsW3o17wmdntDlKq4UMqDUopxnSJ4fN4ONsWfpE14I7TRHZW8FVpe4+rwypfNiseGD9miGzJo8AhXRyNEmQj283B1CKWiarbA9FgivgYDbbTGIymTYzuOMmNrIs/vzcPH3cSgFjW5romBxodm4L5tBmrnd+Q3GIRbn8cw1Gzu6lMQl4nSThh/CeirlNoP9HW+RikVppRaVKTcncBMpdQ2IAZ4oZTtCiGEEEJcEib3bMCmgjDHi2M7K7Rt+9GdGAqzeWV3ANW83Zg3uQv9mjtWHDAYFKqqZ4qA4a1q4eth4vNVsWA0o4ObY0ve5uqwyt2hv2YRYkvmUKObCPCu/CMuhLhsGBxvwZVSRNXy54H+jfnzgZ58d0tHBkbV5OdtyQz7Op4bj45g97WrKeh0H+YjK+HT3th2L3Rx8OJyUapEkdY6TWvdW2vd0Pn5hHN7ktZ6UJFyW7TWbbXWLbXWw7TWJ0sbuBBCCCHEpSC6dgCR9ZuQjSfW5Ipboygtu4CvZn8HQPXG3fhpchcaBPtUWPsVxdvdxDVta/PrjqOkZOajQltiSN7qWET2UqU1avXbHNah9B56o6ujEUJcgMGg6FAvkFdHRbPh8T48c1Vz9qdkM3j6Hh48cSVHb1iBLbAxhu+ux7L6A1eHKy4DFfsICiGEEEII8S+TezVkrz2c4we3VEh7OxIzGPzOSqqf2ES2ezBP3DAAb/fSrkhQeY3rVBeb1sxcG4cKbYkqyID0eFeHVW7iNv5KZOF+dkeOx9+nak/VEeJy4+VmYnznCJY/2IM7ezXg911H6TFtF+/WeYuC+gMw//YIhQseALvN1aGKS5gkioQQQgghXKxDZHXSvBrglb6XAou13Nt76Zc9WO2afj6H8azXGWW4tP8krBvoTa/GwXyzPp7C4BaOjclbXRtUOUr+awYZ2psuI6a4OhQhxH/k62Hm/n6NWf5AT4bG1OKdv5IYkXorR5vfjNvGTyiYMZLC3b9CQbarQxWXoEv7rwIhhBBCiCpAKUW9Fh3xJ5ufvnqrXNvSWrMtIZ2RDTTuuckYIzqXa3uVxfjOEaRmF7LoWHW0MsLRS3Odoqx8C2HpG4jza42/n6+rwxFClFJNfw9eGxXN5xPakZpro9uW3iyrNxVzwmrcvrsW/VJd8j/uR+7vL5C/42csiVvRuScv7em1otxdumOMhRBCCCGqkAZ9buLAzrlcE/8cO2el03z0c5THY8fiT+SSmW+lm/sRx4baFfiUNRfq2iCIejW8+XzdUa4KaoRO2nJJ/sf0j3WbuEodg2a3uzoUIUQZ6tkkmMX3dOeJn3YwcVs0bcK+4ZaI47Sxb8U3aRWeq15B8U9yyGb2xhbcErcxX4FPDRdGLqqiS/H+KIQQQghR9bj7EjZ5Eb+brqD53ndJ+2YS2lpQ5s1sS8gAoFHhTuxmbwiJKvM2KiODQTG+UwRbEzLI8G96yY4oOrxhMQC1Y/q4OBIhRFmr5u3Ge9e15t0xrUgtMHDral/aru3K1bbnmdZhCQkjfyZv+Ofk9nyOgqjrMKVsxjLzWijMdXXoooqRRJEQQgghRCXh5e1NxM1f8579agL3f0/+58Ox5pTtw2J3JGbgZjRQLW0TulZbMF4+A8yvig7DZFBsLKyDITsFslJcHVKZOnAsi5onN5Jn8kNdJglAIS5HV0aHsfyBHvx+b3ceGtAYd5ORV1ak0PvbbD48FoXqNBmvoa+hR3yKKXkTlh9ulsWvxUWRRJEQQgghRCXSsKYfgUOe5v7C23BLXIv+oCM5W+eVWf3bEzOICTZiPL4LQ91OZVZvVVDN240rGtXgx+RAx4ZLbFTR9xsS6Gjchb12Z7jEFygX4nKnlKJhiC939GjAnNs7s2pqL/o3r8k7S/fT540/WbQ9GUPTIdj6PY9530Isvz52wTptRzZS+HYbCl9vQf6HPcn98hpy5tyJZc+vFXBGojKRO4gQQgghRCUzul1t8ptfyyjL0+Qa/fGeO57cGaOxnEwoVb1aa7YnZjCg2hGUtqPqdCyjiKuOq2LC+Csr1PHiEnrymcVmZ+XGrdRVx/BsdIWrwxFCVLCwAE/eGdOK2bd2ws/TzB0zN3HdJ+vYVed6LO1uxbz+QyxrPjzn8db9S1FfDkFZ87GEtUGbvTBmxOKxdx6m78dC1tEKPBvhapIoEkIIIYSoZJRSvDCiBSm+UQwt/B9pHR/FI24Zhg86kL/20/9cb1xaLln5VtqpvWhlgPC2ZRh11dC3WQhWsy+pbrWwJ106iaI/9x6nYZ7jfAyR3VwcjRDCVdpHVmfBlC48N7Q5e45mctV7q7g3fRQZdftjWvwIeb/9D3vmmUkfy5bZGGddiy0gAvMtS/Ee8wWeNy/E/a71GG9dDnYr9jUfuOaEhEtIokgIIYQQohLy9zTzzpgYjmRaeeZkPyy3rqIwJAaPX+/Htuvn/1TntkTHQtZ183Zhr9Ec3C+/x6d7uZno1zyEzYW10ZfQiKLZG47Qw30vNvcACG7u6nCEEC5kMhoY2ymCFQ/15K5eDVi6J40u+8ew07cLnqtfRb/ZnMPTrmX5b/PY8v2LmOdN4ph/S35r/xmLYjU5BdZ/Kgusj73pUNjwGeRnuO6kRIWSRJEQQgghRCXVpm517undkPlbk1hwxBPPCXOx1GgOC+6C7OMXXZ9jIWuFz4kdqFqtyiHiqmFoTBibLXUxZsRBXrqrwym141kFLNtzjG7mPdjrdJL1iYQQAPh6mLmvX2P+fKgHw9o3YFjaZHoWvM7nlr5UT15Bj9Xjidn5EottbemefCeTfzzEHTM3cdV7KzlwLOt0PcZu92IozMK+froLz0ZUpMvnMRdCCCGEEFXQHT0bsPJAKk/+tIPWdboSOfIT9Mc9KZw3BbfrvwWlSlzX9oQMugXnYzh5EsJiyi/oSq5bwxrMcasPGji6Har4VK15mxOpYU8lsDARe+RkV4cjhKhkgn09+N+wFtzbpxHpeRZgNGmWPDJ3/4gpP40Gbe9gkcGRGohNzWHqnG0MfW8Vr4yMZnDLUAiNxhrZC8Pa96HT7WD2dO0JiXIn/24QQgghhKjEjAbFW6NjcDMZuHPWZgoDm2Dr+ThuB37FsnFGieux2zU7EjPo5Zfk2BAaUz4BVwFmo4FaTR0LeRckbHZxNKX3/cYjXBscB8j6REKIcwv0cad+DR/q1/ChXlgNave+ldDBj1I/JOD09t5NQ/j5zm40runL5G828b+fd2Gx2TF1vw9Dbir2zTNdfRqiAkiiSAghhBCikgv19+SVq1uyMymTl3/Zi7nzFAprd8W4+BH0icMlqiPuRC5ZBVaiTbFoZYSQy3sdmz7tWnBUVyNl73pXh1IqmfkW9qVk08drP3b3AAiJcnVIQogqrqa/B9/e0onxnery6crDjJu+nuzQjljD2qJXvQ0264UrEVWaJIqEEEIIIaqAfs1rMqFzBJ+tOszj83fCsA/QyoDlh1vJStxN+uZ5pP/2CpmzbqLgt2f+dfy2hHQA6uTvwx7UBMweFXwGlUvbutU4YKyPIWWbq0Mplfi0XADqZm7GJusTCSHKiJvJwDNDo3htVDTrY08w/vO/Kex4F8aMePTOua4OT5QzWaNICCGEEKKKeGJIMzzMRqb9eZC9R6vxUc/nqb74Ltw+6Xi6jM3khXFvLnSZDN5Bp7fvSMzAzeRYyJpGA1wRfqViMCgIbUlowuecSE+nekCAq0P6T2LTcqhJGr658dgjb3V1OEKIS8zINuF4uxm5c9ZmrltRndnVGmL8602MLUZe1Bp5omqRfzkIIYQQQlQRRoPi4YFNeGdMK7YnZjBoWS32d3yZ9H5vknH9r+Tcexg9dp6j8OEVZxy7PTGDrjUKMeSlYbiMF7Iuqm7zThiVZs2qP10dyn8Wl5ZLB8NuQNYnEkKUj4EtQvnwhjbsSs7mvcIhGI/vxLrxK1eHJcqRJIqEEEIIIaqYq6LDmHN7Z4xGA4NX1mV7jSvxb9gJb//qmMLbYHfzxX5w+enyjoWsM+kVkOzYIIkiAMKbdgBg0/rlHDqe7eJo/pu4tBx6uO/D7u4v6xMJIcpN32YhfDSuDZ9ktGWTMRrDovuwx652dViinEiiSAghhBCiCmoe5s+CO7sSXs2Tp+bvxGqzO3YYTeiIbujD/4ySiU3LIbvASowpFq0Ml/1C1qeogDpYfGpxl/qOz6e/T05B1VugNS4tl/aGXdhqdwKD0dXhCCEuYT0bB/Ph2PZMyJlMhnso+tvr4WScq8MS5UASRUIIIYQQVVR1bzemDmjCoeM5fL8x4fR2Y/0eGNNj4WQs4Jh2BlA7fz/2wIbg5u2CaCshpWDcT9j86vBc/gusfW8i9sJcV0d1UY6mnqSWLQlj7bauDkUIcRno0TiYoKAQXvR/CrQNy9fXQH6mq8MSZUwSRUIIIYQQVVi/ZiG0rhPAW0v2kVdoc2ys18Px+ZBjVNH2hAzcTAZ8TuxAhca4JM7KyhzckIApy1lfczS9s34i9a1uFB7d5eqwSiTfYsOU7UgQGqpHujgaIcTloleTYOYd8SZ/2GeYTuyncPZEsNtcHZYoQ5IoEkIIIYSowpRSPDywKSmZBXy++rBjY1Aj7N4h2A7+AThGFHUOtmLMSZGFrIthcPOg7S3TeDP4f45r9HFPcpa/Venf+MSfyKW2Ou544V/btcEIIS4bvZoGU2iz85ctCuuAl3E79Dv2ZS+4OixRhkqVKFJKVVdK/a6U2u/8XO0c5e5VSu1USu1QSs1SSnmUpl0hhBBCCPGP9pHV6d0kmA+XHyQ9txCUQtfrgTr8F3abjZ1JmfT2l4Wsz8dgUNw08TZu9nqb1fbmeC9/ivyP+lTq0UVxabmEn0oUBdRxbTBCiMtGu4jq+HqYWLYnBXOHSVgbDoTNM0BrV4cmykhpRxQ9DCzVWjcEljpfn0EpVQu4C2irtY4CjMDoUrYrhBBCCCGKeGhAE7ILrHyw/CDgWKfIkJfKE5/MJrvASlv3eDQKarZwcaSVl5+HmVcm9OMuNZVnzPdgPHkI08dXkLP0FbBVvoWu49JyqKVS0QY38AlxdThCiMuE2WjgikY1WLbnOHa7xtTsSgw5xyBlp6tDE2WktImiocCXzq+/BIado5wJ8FRKmQAvIKmU7QohhBBCiCIa1/Tl6tbhfLE6lvi0XL48WhcA/6RVPHVlMxrZD2CvXh/cfV0caeXWMMSXz29sz3cFnbje/W2y6vbG+6/nyZ81FmwWV4d3hri0XCJMaWj/WmCQFSWEEBWnd9NgUrML2JaYAfV7OjYeXObaoESZKe0dJURrnQzg/Bx8dgGtdSLwGhAPJAMZWuvfzlWhUuoWpdQGpdSG48ePlzI8IYQQQojLx719GwHQ760/eWp5Osmm2kyJSOTGLpGo5G2o0GgXR1g1tKpTjU/GtWXLCXcm5NxJxhXP4nFgEfnf3VSpRhbFpuUQaUxDy7QzIUQF69EoGIOCZbtTwC8MW1ATbAeWujqsMpWbtIfM/WvI3LOcjB2Lydr2Mxzd7uqwKsQFE0VKqSXOtYXO/hhakgac6xYNBSKBMMBbKXXDucprrT/WWrfVWretUaNGSc9DCCGEEOKyVyvAk8k9GlDTz4OPx7YhJKY/HslrITMJQ1YihlqtXB1ildGlQRDvjGnF1iPpTDnUkZwrnsZj30/k/3BLpVnkOv5ELqEcxyCJIiFEBavm7UabutVYuucYAIb6vTAcWQuWPBdHVjYKl7+G18cd8Js5AL9vh+L/wzX4/ng9/P2pq0OrEKYLFdBa9znXPqVUilIqVGudrJQKBY4VU6wPcFhrfdx5zI9AZ+Dr/xizEEIIIYQ4h7v7NOTuPg0dLww9YcOn8Pd0x2sZUXRRBkTV5OWrW/LgD9t4xKsHr3R/DI8Vz5M/x4zH1R+6dLqXxWbn+MkM/N1OQEBdl8UhhLh89WoSwsu/7iE5I4/QBr1h3QcQvwbq93J1aKVii/8b858vkFd/IIUtx4LJDWVyx24wY/CriZ+rA6wApb27zQfGO78eD/xUTJl4oKNSyksppYDewO5StiuEEEIIIS4koitaGdCn/gNas6Vr46mCRrWtzUMDGjN/axIfWIeS33UqHju/pWD+vS6NKyk9j5panngmhHCdPk0dK88s23MM6nZGG93QB6r4OkUFWegfbsLmE4rnyGnkRvRiUU5jHlzvRdevM3lzfa6rI6wQFxxRdAEvAbOVUjfhSAiNAlBKhQGfaq0Haa3XKaV+ADYBVmAz8HEp2xVCCCGEEBfiGYC9ZgzG5E3YAiIxega4OqIq6fYr6hOXmss7yw5QZ+RYrmyfg/v697BGdMYUc61LYopNy6WWSnW8CKjtkhiEEJe3BsE+1K7uybLdx7i+Q13s4R3hwDKM/V0d2X9XOP8+zFlHWNBqOu9P28belCwAQv09uDI6lD5NL48nTJYqUaS1TsMxQujs7UnAoCKvnwKeKk1bQgghhBDi4hnq9YDkTaiwGFeHUmUppfjf8CgS0nN5ZO52wibcSbsjazEsegAiOrskUROflkO4khFFQgjXUUrRu0kIs9bHk1dow7NhL1jyNGQdBd+arg7voiWv/IrQnbN5X4/k1dXutKlr4tFBTejROJiGwT44JkhdHuQ5mkIIIYQQlzBVvwcAhjBZn6g0zEYDH1zfhrqB3tw2cyuJvd5GaRuFc24Fu73C44lNyyXCmIo2mMA3tMLbF0IIgN5Ngymw2ll9MPWftYkOLXdpTBdLa81r3/2G9+8PstHeiMNNb2fBlK7Mub0zt3SvT6MQ38sqSQSSKBJCCCGEuLTV7Yyly/3QcrSrI6ny/D3NfD6hHW4mAyO/O8qaxg/hdmQVllXvnFFOF2SRveRVCla+X26xxKXl0tA9He1bCwzGcmtHCCHOp31kdbzdjPy+KwVCWmD3CsJWxdYp+vG3ZQzZeR9mo4E6N3/Fa6Pb0iLc39VhuZQkioQQQgghLmVGM+a+T4KfjDopC7Wre/HVTR2oG+jF9RsasNzYEcOy57AlbkVbC8lZOQ3bW63wWfk/3Jc8im33onKJIy4thzqGVJl2JoRwKXeTkUEtQpmzKYFdR7PRkVegDi4DrUtfecpOsn9/qfxGbWrN/l/eZdDq0YQZMzBc+yU16jQpn7aqGEkUCSGEEEIIcRGahvrxw22d+HRcO973mkKq3Yej068l9822eC+ZirVaPQrG/oylRhTMnwJZKWXavt2uiT+RS7A9BVVNEkVCCNd6dFBT/D3duG/2FnS9Xhhyj0PKzlLXa1/9Hj6rXiR38TMlP8ZmJzf1CIUFBectZ8tOI/PL0TRc9zjbDE2w3PIX7o37ljbkS0Zpn3omhBBCCCHEZUcpRZ9mIfRsMoTVi3Ppsu5W9meHk9LufboPvh6UQo+ajv7oCgp/vA23cT9CGa1xkZKVj7YW4GtJQ8mIIiGEi1XzduPFES2YNGMDnybW5TZAH1yGqhlVqnp17Cq0wQ2vdW+RH9IMj9bFP2Uy50Qylv1/YDj8Jx5HVuCVk4Td6E5uYHOsIdEQ1go8A9Dp8ZBxBGPGEdyT/8Yr7yQvWq+n/6TnCAwNLFWslxpJFAkhhBBCCPEfGQ2KbgOvJaVFW55ckMS6lZncatzDQ/2bYAxugrXvc7j9+iCWNR9h7nxbmbQZl5ZLqEpDoWXqmRCiUujbLISRbcJ5ZU0CY4Mb4nFgKcYud/33CjMSMGbEofs8S/6uhbgtvBNLjYaYa7c+XST/eBzWRQ/hc/hXAGxufuTV6kJe7VtRmUmYUjbjvfs7jNs/P32M3eiOxSecOPfG3JM+gGGDBtO6riSJziaJIiGEEEIIIUopJLw+X02K5Nmfd/LRn4fYnZzFu6Nb4d9hEoX7fsO09El0/e6okGalbisuLYdwddzxQhJFQohK4skrm7HqQCq/5DZlRPZi7PnZGDx8/ltlcasBx5M73aKvw/ZxD/h2DPZb/0R7BZL957v4rHkVN20no+3d0GQQXnXb4GM2n1GN1WIhO2UvuiCbdLdQVibBXwdS+W1nCr2aBnNT18hSnvWlSRJFQgghhBBClAE3k4H/DWtB8zB/nvxpB2M+WcvcyZ1xH/EBtvc7Yfv+Jsy3LQeTe6naiUvLpY4hzfHCv3bpAxdCiDLg52Hm5atb8u7nMYx0n0/+9IGoUZ/jHtzgouuyH14J7n4YQqIwGIzYRn+D8fP+FH59DXarBf8Tu0is0Z3VjadyzFgTjgBH4gDH4+4LrHbyCm3kW23kFdrZc9TCzqQdAIT4uXNtu9o8NKDJZffY+5KSRJEQQgghhBBlaEz7OgR6u3HLVxt5Z+l+HuzfBIZ9gHnWNRT+9jRug14sVf1xJ3Lp4JmOthpRfrXKKGohhCi97o1q8FuHftyyPot3TnyK6ZMeZA98E5/Woy6qHh27Eh3egTWHTrI/JYv9xwxU87mPB449T7Kuzr2We1h8pB0cyQAy/nW8QYGH2Yin2YiH2Uitap48NKAxPRsH06SmrySILkASRUIIIYQQQpSxfs1rMqpNOB8uP0ifpiG0atyfwtY34bb+A2wN+2Js2Os/1x2XlsN15jS0ZyjKKH/OCyEql0cHNWVS6gB6H4jg+6CPCZt/M9mH/8J9yEuY3b0uXEHWUYwnDzLP1Jd7Pl0HgJ+HiQbBXXg18lO8QxoyMKQGk6p5UquaJ9W93VCcmfgxG5Ukg0pB7ixCCCGEEEKUgyec63Xc//1WFt3VDY+Bz2OJXYGadztMXgNe1S+6Tq01cWm51PJOlfWJhBCVkpebienj23HnLBNX7JrKV3V/oeP2L7Hu/5nMRkMxRI/GO7IdymAovoK4VQB8nhDGHT3qM6FLBDV83CXxU4HO0TNCCCGEEEKI0vDzMPPKyGgOHc/h1cV7weyJadR0jHlpFM6dAlpfdJ0ncy1k5VsJtB5FVZNEkRCicvIwG/nw+tZc2aouo+Ou5PMG75AX1hGfnTPx+aofhW+3IW/5W8X+HkzfvZwc7YFPRFvu79eYYF8PSRJVMEkUCSGEEEIIUU66NgxibMe6fLbqMOsOpaFCo7H2fBy3/QuxbPjyouuLS8vBhBWfguMof0kUCSEqL5PRwGujohnfqS7P7AjireqPU3jPHjL6voHNMxDP5U+h9yw845gCq42M3X+wRTXm9dFtMBokQeQKkigSQgghhBCiHD08sAl1qnvxwA9bycq3YO5yF4V1umFc/Ag69cBF1RWXlktNdQKFXaaeCSEqPYNB8fRVzZnQOYLpKw+z+GAe/l1uwmvSr1j9I7D98dIZo4reW7CWuvYjBLfoTU1/DxdGfnmTRJEQQgghhBDlyNvdxGujoklKz2fSjA3k2zRuV3+ENrph+XYcFGSXuK4/9x2nkdsJxwtJFAkhqgClFI8Nbkq7iGo8PGc7+1KywGjCcMWDmI5tR+9dBMDyvcfY//dvADRsN8CVIV/2JFEkhBBCCCFEOWsXUZ03rolm3eETTJ65CYtPKPYRn2JO20PBdxPAbrtgHRm5FhZtT2ZIHYtjQ0Dt8g1aCCHKiNlo4P3rWuPtbuK2rzaSlW/BED0am39drMte4ocNR7hz1mYG+BzAbvKAsFauDvmyJokiIYQQQgghKsDQmFo8NzSKpXuOcf/srRga9sHS7yXcD/1OwcKHL3j83M0JFFjtdK2Rh0aBX3gFRC2EEGUj2M+D969rRdyJXB76YRvaYCSj7d2Yj21j0Y9f0KSmLwN8D6HDO4DJzdXhXtZMrg5ACCGEEEKIy8UNHeuSlW/l5V/34ONh4vlhkyhIPYD7xo8oDKyPW+fbij1Oa823fx8hqpYfNWwpaN9QlLyREkJUMR3qBTJ1QGNeWLSHO2dtZuXemiwgmBcDF1Fj7GTUq7uhxTBXh3nZk0SREEIIIYQQFej2HvXJzLfw4fKDmAyKJwY9T0F6LG6/P4KlegTmJv9em2NrQgZ7jmbxv2FR6F3x4C/TzoQQVdOkbvXYFJfOz9uS6Vw/EM9GDxL0x4PoZc+h0BDR1dUhXvYkUSSEEEIIIUQFe6h/YyxWO5+uPMyupEzeH/kh1WZfhemHCWQ1GYVqMQqvBl0wGI0AfLs+Hk+zkaExYbDmCKpORxefgRBC/DdKKd4aHcPm+HQ61quOsrXGtvEdjBs/QxvdUbXauDrEy56sUSSEEEIIIUQFU0rx+JBmvD06hl3JmQz+aBObu31MXr0BeO/5Hp9ZV2J9I4rMBY9yMnEv87cmMaRlKL5mhcpMRMkTz4QQVZiH2Uin+oEopRzrEXW7DwB7rbZg9nBxdEISRUIIIYQQQrjI0Jha/DS5CwFeboyZFctnIY9ReO9eMgd9iCWwCb6bpuH7aVcm2WZzbatgyEpCaZs88UwIcUkxtroBS2hbDC1HuToUQSkTRUqpUUqpnUopu1Kq7XnKDVBK7VVKHVBKXfiRDkIIIYQQQlwmGob48tPkLlwZHcbrv+9j3Fe7SK8/DO+JcymYspWVpg7ca55Dy/n9yV//heMgGVEkhLiUmNww3bIE1fZGV0ciKP2Ioh3ACGDFuQoopYzA+8BAoBkwRinVrJTtCiGEEEIIccnwdjfx1rUxvHFNNLuPZjLg7RXMXBfHoQJ/JmTdzk8tPwBlxGP1644DAuq6NmAhhChjSilXhyCcSrWYtdZ6N1ywQ9sDB7TWh5xlvwWGArtK07YQQgghhBCXEqUUI1qH07FeIFPnbOOxuTsI8DLjZjTQvf8oTOaryfrzLdyPb8dNRhQJIYQoJxXx1LNawJEirxOADucqrJS6BbgFoE4duQEKIYQQQojLS1iAJzMmtufrtXG8sGgPV0aHUc3bDQDfvrKKgxBCiPJ1wUSRUmoJULOYXY9prX8qQRvFDTfS5yqstf4Y+Bigbdu25ywnhBBCCCHEpUopxdhOEQxtVQt3kzx/RgghRMW5YKJIa92nlG0kAEUfyxAOJJWyTiGEEEIIIS55fh5mV4cghBDiMlMR/574G2iolIpUSrkBo4H5FdCuEEIIIYQQQgghhLgIpUoUKaWGK6USgE7AQqXUYuf2MKXUIgCttRWYAiwGdgOztdY7Sxe2EEIIIYQQQgghhChrpX3q2VxgbjHbk4BBRV4vAhaVpi0hhBBCCCGEEEIIUb5kZTwhhBBCCCGEEEIIAUiiSAghhBBCCCGEEEI4SaJICCGEEEIIIYQQQgCSKBJCCCGEEEIIIYQQTpIoEkIIIYQQQgghhBAAKK21q2M4J6XUcSAHSHV1LKJEgpC+qiqkr6oO6auqQ/qqapB+qjqkr6oO6auqQ/qq6pC+qhqqcj/V1VrXKG5HpU4UASilNmit27o6DnFh0ldVh/RV1SF9VXVIX1UN0k9Vh/RV1SF9VXVIX1Ud0ldVw6XaTzL1TAghhBBCCCGEEEIAkigSQgghhBBCCCGEEE5VIVH0sasDECUmfVV1SF9VHdJXVYf0VdUg/VR1SF9VHdJXVYf0VdUhfVU1XJL9VOnXKBJCCCGEEEIIIYQQFaMqjCgSQgghhBBCCCGEEBVAEkVCCCGEEEIIIYQQAijjRJFSaoBSaq9S6oBS6uGz9t3p3LdTKfXKOY5/Tim1TSm1RSn1m1IqrMi+R5z17lVK9T/H8VOcZbRSKqjIdn+l1AKl1FZn+zeW1TlXVefqK6XUd87rv0UpFauU2nKO46srpX5XSu13fq7m3B6olPpDKZWtlHrvPO1HKqXWOY//Tinl5tyulFLvOOPappRqXcanXqVU1n5y7uvhbH+nUurPMjztKqkS9NW5fv9d7/xZ2qaUWq2Uii7D066SKnFfyb3qLOXYV32VUhuVUtudn3ud43i5V5VQZe0r5z65XzlVgn6Se1UJVeK+knvVWcqxr9oXOX6rUmr4OY6Xe1UJVda+cu6rXPcqrXWZfABG4CBQD3ADtgLNnPt6AksAd+fr4HPU4Vfk67uAac6vmznrcwcine0Yizm+FRABxAJBRbY/Crzs/LoGcAJwK6tzr2of5+urs8q9Djx5jjpeAR52fv1wkevrDXQFbgPeO08Ms4HRzq+nAbc7vx4E/AIooCOwztXXS/qp2H4KAHYBdZyvi/2Zvlw+Kklfnev3X2egmvPrgZfzz1QV6Cu5V1VcX7UCwpxfRwGJ5zhe7lVVv68CkPtVZeonuVdV/b6Se1XF9ZUXYHJ+HQocO/X6rOPlXlX1+yqASnavKssL3wlYXOT1I8AjRS5In4us7xHgw7Prcr5eDHQ6z7Fn/0J7BPjA+UMSCRwADK6++C7r9PP0VZFtCjgCNDxHHXuBUOfXocDes/ZP4BxvlJx1pxb5YTodD/ARMKa4di63j0reT3cA/3P1NaosH67uq7PKnfH776x91TjHH4SXy0dl7iu5V1V8XxWpIw3nP7PO2i73qqrfV3K/qiT9dFYZuVdV0b6Se5XL+ioSSOGs5IPcqy6Zvqp096qynHpWy3lRT0lwbgNoBHRzDrP6UynV7lyVKKWeV0odAa4HnixB3SXxHtAUSAK2A3drre0XcfylpiTXsxuQorXef446QrTWyQDOz8EX0X4gkK61thbTfmn7+lJSmfupEVBNKbXcOWx53EXUeylydV+V1E04/rN0OavMfSX3qjNVVF9dDWzWWhectV3uVSVXmftK7lf/cHU/lZTcqyp3X8m96kzl2ldKqQ5KqZ04rvVtRX7PnSL3qpKrzH1V6e5VpjKsSxWzTRdppxqOIW/tgNlKqXramT474wCtHwMeU0o9AkwBnrpA3SXRH9gC9ALqA78rpf7SWmdeRB2XkpJczzHALBe0X9q+vpRU5n4yAW2A3oAnsEYptVZrva+cYqnsXN1XF6SU6onjj++uroqhkqjMfSX3qjOVe18ppZoDLwP9LrJ9uVedqTL3ldyv/uHqfirJ8XKvcqjMfSX3qjOVa19prdcBzZVSTYEvlVK/aK3zS9i+3KvOVJn7qtLdq8pyRFECULvI63AcmeZT+37UDusBOxCklPrcuWDTomLq+wZHlvtCdZfEjUXaPwAcBppcxPGXmvNeT6WUCRgBfFdk29l9laKUCnXuOzUPs6RSgQBnO2e3X9q+vpRU9n76VWudo7VOBVYA0RdR96XG1X11XkqplsCnwFCtdVpZ1VtFVea+knvVmcq1r5RS4cBcYJzW+mAx7cu9quQqe1/J/crB1f10XnKvOkNl7iu5V52pQv6u0FrvBnJwrCtVlNyrSq6y91WluleVZaLob6ChcyVvN2A0MN+5bx6OrDNKqUY4Fo9K1VrfqLWO0VoPcu5rWKS+q4A9zq/nA6OVUu5KqUigIbD+ImKLx5GdQykVAjQGDl38KV4yztdXAH2APVrrhFMbzu4rZ/nxzq/HAz+VtHHnSLI/gJHFHD8fGKccOgIZp4b3XYYqcz/9hGM6qUkp5QV0AHZf1NldWlzaV+ejlKoD/AiMvUz/g362SttXyL3qbOXWV0qpAGAhjrUJVhXXuNyrLkpl7iu5X/3Dpf10PnKv+pdK21fIveps5dlXkaeSCkqpujiudWzRxuVedVEqc19VvnuVLtsFogYB+3CsJv5Yke1uwNfADmAT0Oscx89xltkGLABqFdn3mLPevcDAcxx/F45snBVHdu5T5/Yw4Dcc8wV3ADeU5XlXxY9z9ZVz3xc45lWe7/hAYCmw3/m5epF9sTiegJDt7I/iVpOvhyPZdwD4nn+eiKeA951xbQfauvpaST/9u5+c+x7EsTr/DuAeV18rV39Ugr461++/T4GTOIaJbwE2uPpaufqjEveV3KsqqK+Ax3H8t29LkY9/PWHkXL8DkXtVlekr5z65X1WefpJ7VdXvK7lXVVxfjQV2OvtoEzDsHMfLvaqK95VzX6W6VylnUEIIIYQQQgghhBDiMleWU8+EEEIIIYQQQgghRBUmiSIhhBBCCCGEEEIIAUiiSAghhBBCCCGEEEI4SaJICCGEEEIIIYQQQgCSKBJCCCGEEEIIIYQQTpIoEkIIIYQQQgghhBCAJIqEEEIIIYQQQgghhJMkioQQQgghhBBCCCEEIIkiIYQQQgghhBBCCOEkiSIhhBBCCCGEEEIIAUiiSAghhBBCCCGEEEI4SaJICCGEEEIIIYQQQgCSKBJCCCGEEEIIIYQQTpIoEkIIIYQQQgghhBCAJIqEEEIIIYQQQgghhJMkioQQQohKTikVoZTSSilTCcpOUEqtrKC4uiil9iulspVSwyqiTfEPpVQd57U3lmXZMoirwr4HhRBCCFH2JFEkhBBClCGlVKxSqlApFXTW9i3OZE+Ei0IrmnDKdn7EKqUeLkWVzwLvaa19tNbzyijMy0JZJFO01vHOa28ry7IVSSn1tFLq6zKsb4JSylbke/zUR1gZ1G1USv1PKZWklMpSSm1WSgWUQdhCCCFEpSKJIiGEEKLsHQbGnHqhlGoBeLounH8J0Fr74IjxSaXUgIs5uMjIprrAzv8SQElGR13uKmL0zyVqjTMpVvQjqQzqfQboDHQC/ICxQH4Z1CuEEEJUKpIoEkIIIcreV8C4Iq/HAzOKFlBK+SulZiiljiul4pRSjyulDM59RqXUa0qpVKXUIWBwMcdOV0olK6USnaMcLjqpoLVegyPRE+Wsd6JSardS6qRSarFSqm6RNrVSarJSaj+wXyl1EKgHLHCO2HBXSoUppeYrpU4opQ4opSYVOf5ppdQPSqmvlVKZwASl1HJn7KuddSxQSgUqpWYqpTKVUn8XHYGllHpbKXXEuW+jUqrbWfXPdl7TLKXUTqVU2yL7ayulfnRe7zSl1HtF9p3zvM+mlLrKWXe6M/6mRfbFKqUeUEptU0plKKW+U0p5FFNHU2Aa0Ml53unO7V8opT5USi1SSuUAPZVSg50jVzKd5/50kXrOmJLojOc5pdQq5zX4TTlHtl1MWef+cc7vyzSl1BPOc+tzjmsS6Oz3TKXUeqD+WfuL7TflSFA+ClzrvA5bndtvdPZHllLqkFLq1nP1x8VQStV3fm+2dr4OU46fsR5FrsmLSqn1zv77SSlV3bmvGnAPMElrHacddmitJVEkhBDikiOJIiGEEKLsrQX8lFJNlSOBcy1w9vSadwF/HMmWK3Aklm507psEDAFaAW2BkWcd+yVgBRo4y/QDbr6YAJVDF6A5sFk51hh6FBgB1AD+AmadddgwoAPQTGtdH4gHrnSO2Chwlk8Awpwxv6CU6l3k+KHAD0AAMNO5bTSOkRm1cCQY1gCfA9WB3cBTRY7/G4hx7vsG+P6sRMxVwLfO+ucD7znP1Qj8DMQBEc62vnXuK8l5n7pmjZz77nGWXYQjUeZWpNg1wAAgEmgJTDi7Hq31buA2/hn5ElBk93XA84AvsBLIwfG9EYAjYXi7Ov96UNfh+D4KBtyABy62rFKqGfABcD0QiuP7tNZ56nkfx8iaUGCi86OoYvtNa/0r8ALwnfM6RDvLH8Px/e/njO/NU8kdZ3zpSqmu54mnWFrrg8BUYKZSygvH99kXWuvlRYqNc8YfhuNn7B3n9hbO1yOVUkeVUvuUUpMvNgYhhBCiKpBEkRBCCFE+To0q6gvsARJP7SiSPHpEa52ltY4FXseRMAFHsuEtrfURrfUJ4MUix4YAA4F7tNY5WutjwJs4Ei4llQqcAD4FHtZaLwVuBV7UWu/WWltxvIGPOWt0zYta6xNa67yzK1RK1Qa6AlO11vla6y3O+scWKbZGaz1Pa20vUsfnWuuDWusM4BfgoNZ6iTOG73EkwgDQWn+ttU7TWlu11q8D7kDjIvWv1Fovcq7D8xVwKvHQHscb/wed1yxfa31qfaCSnPcp1wILtda/a60twGs4phR2LlLmHa11krPfFuBIkFyMn7TWq5zXKF9rvVxrvd35ehuORNUV5zn+c631Puf1nX2B9s9VdiSwQGu9UmtdCDwJ6OIqcH4vXw086by2O3AkMk8rQb9xVvmFzu8JrbX+E/gN6FZkf0CR/itOR2cy6dTHwSLHfgLsB9bhSGw9dtaxXzlHCuUATwDXOM8xHEfCrBGOJOBI4GmlVN/zxCGEEEJUSZIoEkIIIcrHVzhGbEzgrGlnQBCOERxxRbbF8c+ojTDgyFn7TqkLmIHkU2+EgY9wjAopqSCtdTWtdVOt9akRE3WBt4vUeQJQnDmS5AjnFgac0FpnneOcznV8SpGv84p57XPqhVLqfueUpAxnjP44ruUpR4t8nQt4OKda1QbinImgs5XkvIue4+m+0FrbnedUtOzZMfhwcc64RkqpDkqpP5RjylwGjpFIQcUfetHtn6vsGd9/WutcIO0cddQATJz7+7Uk/cZZ5QcqpdY6p4mlA4POV74Ya53JpFMf9c/a/wmO6ZbvOkfCFXX2eZidbZ9KbD6rtc5zJu2+dcYmhBBCXFIkUSSEEEKUA611HI5FrQcBP561OxWw4EhSnFKHf0YdJeNIbhTdd8oRoABHsufUG2E/rXXzUoZ8BLj1rDfYnlrr1UVP6zzHJwHVlVK+Z8WdWOT1+Y4/L+e6NlNxjLaq5pyulYEjqXMhR4A6qvgFtEty3qckUaTPlFIKRz8lFlP2Qs51Lc7e/g2OaXS1tdb+ONY2Ksk5l0YyjhE0ACilPIHAc5Q9jmNKVrHfryXotzPOVynlDszBMVorxFl+EWV0zkopH+AtYDqOEUHVzypy9nlYcPy8bisuXiGEEOJSJIkiIYQQovzcBPRyTmM5zTk1ajbwvFLK1znN6T7+WcdoNnCXUircuYjuw0WOTcYxFed1pZSfUsrgXKT3fNORSmIa8IhSqjmcXjB7VEkP1lofAVYDLyqlPJRSLXGc/8zzH1livjgSEscBk1LqSRxr2JTEehzJj5eUUt7O+Lo4913Mec8GBiuleiulzMD9OJJ2xSWVLiQFCD9rfaPi+OIYqZWvlGqPY5RaefsBuFIp1dkZ3zOcI1Hj/F7+EUfSxcu5vtH4IkUu1G8pQIRyLuSOY6Sdu7O8VSk1EMcaXGXlbWCj1vpmYCGO/i/qBqVUM+caRs8CP2itbc71jf4CHlOOhdub4piK+HMZxiaEEEJUCpIoEkIIIcqJc52VDefYfSeOhYoP4Vi0+BvgM+e+T4DFwFZgE/8ekTQOxxvqXcBJHG/sQ0sZ61zgZeBb5Xgq2Q4cayFdjDE4FotOAuYCT2mtfy9NXEUsxrGG0T4cU4LyOf9UuNOcyYwrcSz+HY9jwe1rnftKfN5a673ADTgWIk911nmlcx2fi7UMxxPnjiqlUs9T7g7gWaVUFo61gmb/h7YuitZ6J47vz29xJNiycCwwffY0rVOm4Ji2dhT4Asci0adcqN++d35OU0ptck5dvAvHeZ7EkRibX7Qx5XhCWjfO7dTT5Ip+tFNKDcWx0PhtznL3Aa2VUtcXOfYr5zkcBTycsZwyBseIsjQcSaYnnOt7CSGEEJcUpbWMoBVCCCGEEMVzTtdKBxpqrQ+7OJxyo5RaDnyttf7U1bEIIYQQriQjioQQQgghxBmUUlc6p5J541gvaDsQ69qohBBCCFERJFEkhBBCCCHONhTHFMIkoCEwWsswdCGEEOKyIFPPhBBCCCGEEEIIIQQgI4qEEEIIIYQQQgghhJPJ1QGcT1BQkI6IiHB1GEIIIYQQQgghhBCXjI0bN6ZqrWsUt69SJ4oiIiLYsOFcTxUWQgghhBBCCCGEEBdLKRV3rn0y9UwIIYQQQgghhBBCAJIoEkIIIYQQQgghhBBOkigSQgghhBBCCCGEEEAlX6NICCGEEEIIIYRwNYvFQkJCAvn5+a4ORYiL4uHhQXh4OGazucTHSKJICCGEEEIIIYQ4j4SEBHx9fYmIiEAp5epwhCgRrTVpaWkkJCQQGRlZ4uNk6pkQQgghhBBCCHEe+fn5BAYGSpJIVClKKQIDAy96JJwkioQQQgghhBBCiAuQJJGoiv7L960kioQQQgghhBBCCCEEIIkiIYQQQgghhBCi0lNKMXbs2NOvrVYrNWrUYMiQIS6M6sJ8fHwuWObpp5/mtddeO2+ZefPmsWvXrrIKS5xHmSSKlFKfKaWOKaV2nGO/Ukq9o5Q6oJTappRqXRbtCiGEEBXNZinAkp/j6jCEEEIIcZnx9vZmx44d5OXlAfD7779Tq1Ytl8RitVorvE1JFFWcshpR9AUw4Dz7BwINnR+3AB+WUbtCCCFEhbLOuQ319XBXhyGEEEKIy9DAgQNZuHAhALNmzWLMmDGn9+Xk5DBx4kTatWtHq1at+OmnnwCIjY2lW7dutG7dmtatW7N69WoAkpOT6d69OzExMURFRfHXX38BZ44A+uGHH5gwYQIAEyZM4L777qNnz55MnTqVgwcPMmDAANq0aUO3bt3Ys2cPAIcPH6ZTp060a9eOJ5544pzn8vzzz9O4cWP69OnD3r17T2//5JNPaNeuHdHR0Vx99dXk5uayevVq5s+fz4MPPkhMTAwHDx4stpwoG6ayqERrvUIpFXGeIkOBGVprDaxVSgUopUK11sll0b4QQghRIbKP47ZvPigj2G1gMLo6IiGEEEJUsGcW7GRXUmaZ1tkszI+nrmx+wXKjR4/m2WefZciQIWzbto2JEyeeTvA8//zz9OrVi88++4z09HTat29Pnz59CA4O5vfff8fDw4P9+/czZswYNmzYwDfffEP//v157LHHsNlsJUq07Nu3jyVLlmA0GunduzfTpk2jYcOGrFu3jjvuuINly5Zx9913c/vttzNu3Djef//9YuvZuHEj3377LZs3b8ZqtdK6dWvatGkDwIgRI5g0aRIAjz/+ONOnT+fOO+/kqquuYsiQIYwcORKAgICAYsuJ0iuTRFEJ1AKOFHmd4NwmiSIhhBBVhmXLt5jtVsAKGUegWoSrQxJCCCHEZaRly5bExsYya9YsBg0adMa+3377jfnz559e6yc/P5/4+HjCwsKYMmUKW7ZswWg0sm/fPgDatWvHxIkTsVgsDBs2jJiYmAu2P2rUKIxGI9nZ2axevZpRo0ad3ldQUADAqlWrmDNnDgBjx45l6tSp/6rnr7/+Yvjw4Xh5eQFw1VVXnd63Y8cOHn/8cdLT08nOzqZ///7FxlLScuLiVVSiqLjnseliCyp1C47padSpU6c8YxJCCCFKTmvYMhO7mw+GwmxIOyCJIiGEEOIyVJKRP+Xpqquu4oEHHmD58uWkpaWd3q61Zs6cOTRu3PiM8k8//TQhISFs3boVu92Oh4cHAN27d2fFihUsXLiQsWPH8uCDDzJu3LgzHqeen59/Rl3e3t4A2O12AgIC2LJlS7ExluSR7OcqM2HCBObNm0d0dDRffPEFy5cvL1U5cfEq6qlnCUDtIq/DgaTiCmqtP9Zat9Vat61Ro0aFBCeEEEJciE7ajDl1N/aOUxwbUg+4NiAhhBBCXJYmTpzIk08+SYsWLc7Y3r9/f959910cK77A5s2bAcjIyCA0NBSDwcBXX32FzWYDIC4ujuDgYCZNmsRNN93Epk2bAAgJCWH37t3Y7Xbmzp1bbAx+fn5ERkby/fffA44k1datWwHo0qUL3377LQAzZ84s9vju3bszd+5c8vLyyMrKYsGCBaf3ZWVlERoaisViOeN4X19fsrKyLlhOlF5FJYrmA+OcTz/rCGTI+kRCCCGqEsvGr7AbPTB1uh27ux86db+rQxJCCCHEZSg8PJy77777X9ufeOIJLBYLLVu2JCoq6vRC0nfccQdffvklHTt2ZN++fadHBS1fvpyYmBhatWrFnDlzTtf50ksvMWTIEHr16kVoaOg545g5cybTp08nOjqa5s2bn148++233+b999+nXbt2ZGRkFHts69atufbaa4mJieHqq6+mW7dup/c999xzdOjQgb59+9KkSZPT20ePHs2rr75Kq1atOHjw4DnLidJTp7KNpapEqVlADyAISAGeAswAWutpyjGm7D0cT0bLBW7UWm+4UL1t27bVGzZcsJgQQghRviz52F9rhLVeb9yu/RzbRz3B3RfjhPmujkwIIYQQFWD37t00bdrU1WEI8Z8U9/2rlNqotW5bXPmyeurZmAvs18DksmhLCCGEqGj2PQsxFGRgaj0WABXUAGJXuTgqIYQQQgghyl5FTT0TQgghqizrxq+w+tbCUP8KAAxBjTBkJUJhjosjE0IIIYQQomxJokgIIYQ4j/3792KOXY5uORoMRsfGoAaOz2kHXReYEEIIIYQQ5UASRUIIIcQ5bEtIZ+4Xr6HQ2KOv+2dH4KlEkSxoLYQQQgghLi2SKBJCCCHO4Zu1cVxjWsE6exNuXXiCAqvjcbJUr+/4LCOKhBBCCCHEJUYSRUIIIUQxsvItHNi2igh1FHvLMSzfe5zJMzdRaLWDmxd2v3Dsx/e5OkwhhBBCCCHKlCSKhBBCiGL8tCWJLrYNaBSdBt7Ac8OiWLL7GHfO2oTFZkcHNkCnytQzIYQQQlSMlJQUrrvuOurVq0ebNm3o1KkTc+fOLfd2N2zYwF133VUmdfXo0YPGjRsTHR1Nly5d2Lt3b5nUW5bKMsYvvviCKVOmADBt2jRmzJhxzrKxsbF88803p1+X5XW/WJIoEkIIIc6iteabdfEM8tiGLbQ1eAcxtmNdnrqyGYt3pvDEvB0YghpiOHEQtHZ1uEIIIYS4xGmtGTZsGN27d+fQoUNs3LiRb7/9loSEhHJvu23btrzzzjtlVt/MmTPZunUr48eP58EHH/zXfpvNVmZt/VflEeNtt93GuHHjzrn/7ERRWV/3iyGJIiGEEOIs2xIyOJ4cT2PbflTjAae339glktHtajN3cyK26g1QhVmQfcyFkQohhBDicrBs2TLc3Ny47bbbTm+rW7cud955J+BIMnTr1o3WrVvTunVrVq9eDcDy5csZMmTI6WOmTJnCF198AcDDDz9Ms2bNaNmyJQ888AAA33//PVFRUURHR9O9e/d/1bF+/Xo6d+5Mq1at6Ny58+nRNl988QUjRoxgwIABNGzYkIceeuiC59S9e3cOHDgAgI+PD08++SQdOnRgzZo1vPHGG0RFRREVFcVbb711+pgZM2bQsmVLoqOjGTt2LADHjx/n6quvpl27drRr145Vq1YB8OeffxITE0NMTAytWrUiKyuL5ORkunfvTkxMDFFRUfz111//Ocavv/6a9u3bExMTw6233no6efT555/TqFEjrrjiitOxADz99NO89tprABw4cIA+ffoQHR1N69atOXjwIA8//DB//fUXMTExvPnmm2dc9xMnTjBs2DBatmxJx44d2bZt2+k6J06cSI8ePahXr16ZJZZMZVKLEEIIcQmZtT6evm6OG7CxycAz9vVoHMy3fx/hkL0mjcDx5DPfkIoPUgghhBCu8cvDcHR72dZZswUMfOmcu3fu3Enr1q3PuT84OJjff/8dDw8P9u/fz5gxY9iwYcM5y584cYK5c+eyZ88elFKkp6cD8Oyzz7J48WJq1ap1eltRTZo0YcWKFZhMJpYsWcKjjz7KnDlzANiyZQubN2/G3d2dxo0bc+edd1K7du1zxrBgwQJatGgBQE5ODlFRUTz77LNs3LiRzz//nHXr1qG1pkOHDlxxxRW4ubnx/PPPs2rVKoKCgjhx4gQAd999N/feey9du3YlPj6e/v37s3v3bl577TXef/99unTpQnZ2Nh4eHnz88cf079+fxx57DJvNRm5u7jnjO1+Mu3fv5uWXX2bVqlWYzWbuuOMOZs6cSd++fXnqqafYuHEj/v7+9OzZk1atWv2r3uuvv56HH36Y4cOHk5+fj91u56WXXuK1117j559/BhwJulOeeuopWrVqxbx581i2bBnjxo1jy5YtAOzZs4c//viDrKwsGjduzO23347ZbD7veV2IJIqEEEKIIrLyLczfmsS3/ruw6TCMIVFn7G8fWR2AtZmBjkRR6n6I6FrxgQohhBDisjV58mRWrlyJm5sbf//9NxaLhSlTprBlyxaMRiP79p3/gRt+fn54eHhw8803M3jw4NMjV7p06cKECRO45pprGDFixL+Oy8jIYPz48ezfvx+lFBaL5fS+3r174+/vD0CzZs2Ii4srNlF0/fXX4+npSUREBO+++y4ARqORq6++GoCVK1cyfPhwvL29ARgxYgR//fUXSilGjhxJUFAQANWrO/4mW7JkCbt27Tpdf2ZmJllZWXTp0oX77ruP66+/nhEjRhAeHk67du2YOHEiFouFYcOGERMTU+z1uVCMS5cuZePGjbRr1w6AvLw8goODWbduHT169KBGjRoAXHvttf/qi6ysLBITExk+fDgAHh4excZQ1MqVK08n5Hr16kVaWhoZGRkADB48GHd3d9zd3QkODiYlJYXw8PAL1nk+kigSQgghivhpSxKWwgKa5W1EtxgFSp2xv7q3G41CfFiSaGKsyQPSDqDOUZcQQgghLkHnGflTXpo3b346UQDw/vvvk5qaStu2bQF48803CQkJYevWrdjt9tPJB5PJhN1uP31cfn7+6e3r169n6dKlfPvtt7z33nssW7aMadOmsW7dOhYuXEhMTMzpUSunPPHEE/Ts2ZO5c+cSGxtLjx49Tu9zd3c//bXRaMRqtRZ7LjNnzjwd9ykeHh4YjUbAsR5TcbTWKPXvv7rsdjtr1qzB09PzjO0PP/wwgwcPZtGiRXTs2JElS5bQvXt3VqxYwcKFCxk7diwPPvhgsesGlSTG8ePH8+KLL55RZt68ecXGePZ5XKzijjnVTkmv+8WQNYqEEEIIp1OLWI8MisdkzcHUZECx5TpEBrIhPgNbQCR2efKZEEIIIcpZr169yM/P58MPPzy9rei0qYyMDEJDQzEYDHz11Ven18upW7cuu3btoqCggIyMDJYuXQpAdnY2GRkZDBo0iLfeeut0QujgwYN06NCBZ599lqCgII4cOXJGHBkZGdSqVQvg9FpHZa179+7MmzeP3NxccnJymDt3Lt26daN3797Mnj2btLQ0gNNTz/r168d77713+vii59KiRQumTp1K27Zt2bNnD3FxcQQHBzNp0iRuuukmNm3a9J9i7N27Nz/88APHjh07HUtcXBwdOnRg+fLlpKWlYbFY+P777/91rJ+fH+Hh4cybNw+AgoICcnNz8fX1JSsr65zXZObMmYBjSlpQUBB+fn7/KfaSkESREEII4bQtIYNdyZlcX2032ugBkVcUW65DverkFtrI9I5wTD0TQgghhChHSinmzZvHn3/+SWRkJO3bt2f8+PG8/PLLANxxxx18+eWXdOzYkX379p2etlW7dm2uueYaWrZsyfXXX396vZysrCyGDBlCy5YtueKKK3jzzTcBePDBB2nRogVRUVF0796d6OjoM+J46KGHeOSRR+jSpUu5PZ2sdevWTJgwgfbt29OhQwduvvlmWrVqRfPmzXnssce44ooriI6O5r777gPgnXfeYcOGDbRs2ZJmzZoxbdo0AN56663TC3N7enoycOBAli9ffnpx6zlz5nD33Xf/pxibNWvG//73P/r160fLli3p27cvycnJhIaG8vTTT9OpUyf69OlzznWlvvrqK9555x1atmxJ586dOXr0KC1btsRkMhEdHX26P055+umnT5/jww8/zJdffvmf4i4p9V+GPVWUtm3b6vMtwCWEEEKUpWcW7OSbdfHsCHwEAutjHjen2HLHsvJp//xSfmy8hFbxX6IeTwFj6RYNFEIIIUTltXv3bpo2berqMIT4T4r7/lVKbdRaty2uvIwoEkIIIZy2JWTQv2YW5ozDGBsXP+0MINjXg3pB3mzKCUJpG5yMrbggqzhrbgaZCbtdHYYQQgghhDgHSRQJIYQQgM2u2ZWUySD3bQAYGvc/b/kO9aqz7LjjyR4y/axkbDknsH3aD9/pncn4aSrW/JwLHpORZ2HFvuN8tTaOfEv5DHEXQgghhBD/kKeeCSGEEMDh1GzyLDai89ZhDWqKKaDOect3iAxk4foa4AGkSaLoQmx5GeR9NhSPkwfZ6tudmM3TSN+3mGO93qROy+5k5FlITM8jyfmx92g2W46c5ODxf5JJqVkF3Nu3EQAWmx2zUf7fJYQQouKc66lbQlRm/2W5IUkUCSGEEMCOxEx8ySXk5CZ0pykXLN8+sjqZ+JBrroZH6gEZonsOCSdzWbz5EB1WT6KxZS+3Wu7hL0s72ts78bL+mPrzh/PJ3CG8YR1JIf+s8xTk40ZM7QCGt6pFTO1qfL02jo9XHGRY6AkCDi3A68DP2JoMwDjoZReenRBCiMuFh4cHaWlpBAYGSrJIVBlaa9LS0vDw8Lio4yRRJIQQQgDbEzPoad6BQVvhPOsTnRIW4Ent6p4k2GpRX6aeFeu3nUe5b9Y6PlSv0NS4h4WNnuORvuP5tIYPqdm9iE28lsw/n+G25LlcVS2OfT0+ILRWBKEBHvh5/JM0KsxJp47PAh4wfEfkD0loZcTm5ovasxAkUSSEEKIChIeHk5CQwPHjx10dihAXxcPDg/Dw8Is6RhJFQgghBLAjMYMJ3vuwaz8M4e1KdEyHyEB27AymQdq2co6u6pm3OZFnvl/FdK+P6GDdQfbAd7mqw7jT+2v4ulOjSSQ0+YKsTYOpuehOaiwbhXXU13h6OB7AobUmc/NcvJY8TO3cYxzwasnjmQO4dvxkolIWoJY+DXknwbOai85SCCHE5cJsNhMZGenqMISoEDJSXgghxGXP7lzIuqnhCLpGMzCW7P8oHSKrs9cSgiE3FfLSyzfIKuSL1YeZ//3nLHF/mPa2zWT1eRWfIkmis/m2HkXB+F9AGXD/ahDZG74jPzWOnBnX4j//RmyegWTdsJhqd/zOT6YBvL0mHVWzhePgozsq6KyEEEIIIS4PkigSQghx2Ys/kUtWgYXQwlgMIU1LfFzHeoEc0qEAZMdtKq/wqpT3Fm3Ae9FdfOb2Kl7+QWRc/yu+XW+54HGetVvBLX9QEByDz8+34PZhe7zi/ySj25OYb1+BX4MOBPm6c3vP+izZncKmQucQ6hRJFAkhhBBClCWZeiaEEFWV1uSt/pi8AgsqoBaGgHCMAeF4B4SgDPJ/gIuxIymDYNJxt2ZBcMkTReHVPDniE02GtRqeCyaTE7QY76DzPy3tUmW32/ly1jdcve8Jgk3pHG91J779HiXA06vEdZj9QjBOXEDWwsdQGQkYBz6Pf3D9M8pM7BLJV2vieOaPVOZ61YDkbfJfLyGEEEKIMiSJIiGEqKqObsPz94fwPGuzrUF/jDfMdklIVdWOxEyamRIcL2o0KfFxSima1KvL7fse4avCZ7DPHEnujb/g5RdYTpFWTjabnR9mvMN1sc9x0q0mx0fMJLhxJwyGi38qjMHsju+w1875CGIPs5H7+zXmge+3crx2Q4KObi+LUxBCCCGEEE7yTzghhKiqjqwHIHvsb6Tf8Bsnr/ycglqdMCRvdnFgVc/OpAw6+6U6XlzEiCKADvUCWZ0bzs5uH+CWcQg9awz5eTnlEGXlZLHa+HX641wb9xRxnk3xuG0ZNZt2/k9JoqLO9+jh4a1q0TDYh1XZYRhS94K1sFRtCSGEEEKIf0iiSAghqih7/Frs3iH41GtPQIMOVGszAvf6XSE3Few2V4dXZWit2ZGYQYx7MnbP6uBd46KO79UkmAAvM+OXe7G5zYt4J6+jcPZN5OQVlFPElUehxcK6D29lcNL7bPTuTtiUXwgIDCn3do0GxcComvyZWRNlK4TUfeXephBCCCHE5UISRUIIUVUd+Rtqd4CiIy98QlDaDrlprouriklMz+NkroW69nh0UJMzr2cJhPh5MO+OLgT6uHPtqlqsqHcffod/wTL7RpIS47HZdTlF7nq7PxpP17TvWRZwNc3umoOPj2+Ftd21YQ122p3rQcmC1kIIIYQQZaZMEkVKqQFKqb1KqQNKqYeL2e+vlFqglNqqlNqplLqxLNoVQojLVtZRDBlx/Jhai93Jmf9sPzUaJvuYa+KqgnYkZgKawNxDF/XEs6Iigrz58Y7OdG0YxLhdbfm5xiT8YxcT8mUXji15h/Ts3LINuhJYvX0/LY4v4g//YXSd/Ame7m4V2n6rOgEcM4djUW7o5G0V2rYQQgghxKWs1IkipZQReB8YCDQDxiilmp1VbDKwS2sdDfQAXldKVexflEIIcSlxrk80M7EmM9bE/bPdJ9jxOTvFBUFVTTuTMqhlOInJko26yPWJivLzMDN9fDsmdYtkypGeTPJ+h6M+TQld/STun/UiaetScgutZRi562TlW/jppx8wKE3nKyfhZjZWeAxmo4G29YI5oOpilwWthRBCCCHKTFmMKGoPHNBaH9JaFwLfAkPPKqMBX+VYmdIHOAFcGn8tCyGECxzZtpwCbeaQuT6/7zr6z/QmH+f6MDnHXRdcFbMjMYMrApxT9S7iiWfFMRoUjw1uxtujY9htDaVL0l084/kwtpyThM0dge3L4Rzd+jv5VTxh9MKiPTTO34rN6IF7RDuXxdG1QRBbCsPRydtBX7pT/IQQQgghKlJZJIpqAUeKvE5wbivqPaApkARsB+7WWtvLoG0hhLjsZOVbOLl3JfuN9XlyaCtSswvZEHvCsVOmnl20HUmZdPB1Xq9SjCgqamhMLZY/2INXro5mmepIu4wXmGYeByk7qDl3JPZP+3F840+k5+STU2ClwGpDV5FEx8r9qcxaH89A3wPo8HZgcndZLF0bBrFL18VUcBIyk1wWhxBCCCHEpcRUBnUUt+rn2X/t9ge2AL2A+sDvSqm/tNaZZx+olLoFuAWgTp06ZRCeEEJcWl5duI3H7AdJb3EjEVE1eWTudn7ZcZQO9QLB3Rdt8kDJ1LMSOZaZz/GsAprWSMTuFYTBO6jM6jYbDVzTrjYjWtdiwbYkPlsZwpuJvRhl/JMpx3+m5oJx2BeasXrXxOJVkzzvmtiqN8C98634VA8tszjKUla+halzthEdZKdm9gF05CiXxtMw2IejHg3ABhzdDv5n/59KCCGEEEJcrLIYUZQA1C7yOhzHyKGibgR+1A4HgMNAseP7tdYfa63baq3b1qhxcY8oFkKIS93qA6ns2LACd2UlpPkV+Lib6N6wBot3HsVu16AU2jtYpp6V0I6kDABqFsSiSznt7FxMRgPDW4Wz4M6uLJ3an4gBd3Fn0HTuLJzCx4UDWGdpQHahxjN1O9U3vo3nh+04sfhl8nOzyyWe0njxlz0kZ+TxRodcFBpDZDeXxqOUIqh+awBZp0gIIYQQooyURaLob6ChUirSuUD1aGD+WWXigd4ASqkQoDFwqAzaFkKIy0ZuoZWpP26jj2+sY0N4ewAGRtUkOSOfbYmOpAc+wdhl6lmJ7EjMRCmNT9YBDGU07ex8wqt5cXO3enw/+Qoem/oEud2f4B7LZDok38eV6h3mdfyBnNAOVF/zAob323FyzVdgrxwztTfGneCbdfHc3K0eEVmb0UYPqNXG1WHRrkldYu0hZB7e5OpQhBBCCCEuCaVOFGmtrcAUYDGwG5ittd6plLpNKXWbs9hzQGel1HZgKTBVa51a2raFEOJy8v4fBzhyIo9rQpKxBUSAr2Ph6j5NQzAZFL/sSAZAedeQp56V0PbEDDpUz8NQWLonnv0XNf09uK9fY1Y93ItXRrbEaDBw7x/5TAt7nhMjf8DmWZ1qi6dQuOTZCo3rXJbsPobJoLi7d0N07F/YXLw+0SldGwSxW9dxTD0TANgykrHErXd1GEIIIYSoospiRBFa60Va60Za6/pa6+ed26Zprac5v07SWvfTWrfQWkdprb8ui3aFEOJykVdo4+u18QxsHkL1E5tR4f88acrfy0yn+oEs3nEUrTXKNwSVLVPPSmJn0SeeVXCi6BQPs5Fr2tZm4Z1dGdO+Nh8sP8hXRyMw3fYnuQ2HYlr/YaVYnHxz/EmahfnhbcvEeGyny6ednRLs58Exr4b45SdAQZarw3G9vHTsnw/C+PUwsFlcHY0QQgghqqAySRQJIYQoX/O3JpKRZ+GWaDOGnGMY6nQ4Y//AqFBi03LZczQLvIMhLw3sNhdFW7YKU2PJmD2ZEz/cQ+qi/3F8+Ucc//tHstNK95SrzfEnScrIp523c/RVOa1RVFIGg+L5YS24unU4by7Zx6cr4/Dq/yTKVkjhijddGpvVZmdbQgatagdA/JpKsT5RUe7hMRjQFCRdfqOK8gptvPHbXrYeSQe7jYLvbsScfgiDJQeSt7o6PCGEEEJUQWXx1DMhhBDlSGvNF6vjaFLTlxj2OjbWPjNR1LdZCI/Nczz9rKl/MErbISf19PS0qqrw2EHUjCvxzUtFG90xFv7zsEyb2YeTnR7Ct9vtmMxuF133e8sOUM3LTLRbMnbvYAxe1csy9P/EYFC8MrIlFpudl3/dg9nYlHHNRmHa9Bl0u8dl/bkvJZvcQhut61bDdvhrDEYPVCVYn+iU2s3aw0FI2LWe+pGdXR1OhUnLLuDmGRvYHJ/O9JWH+aXZ79SJXUZht4dx++sliF8D4W1dHaYQQgghqhgZUSSEEJXc37En2Z2cyfjOEXBkPdrsDcHNzihTw9eddhHVWbzjKPgEOzbmuH66UmkUpuxFfTEQZcklb+wi8u4/TPp9CaRN2szxaxaQV7Mt1VY8iWVaDzL3r76ounckZrB0zzFu6hqJMW0vuoZrpp0Vx2hQvHFNNAOjavK/hbv5LWgcymah8M/XXRbTpviTALSqXQ19uPKsT3RKTPMo0rU3mbGbXR1KhTmcmsOID1ezKymTF4a34DqP1dTZ8ykJDa7Drfcj2AIiscVe3M+FEEIIIQRIokgIISq9L1fH4udhYmhMGPYj67HXagvGfw8IHRhVk70pWSRafB0bKsG6Nv+VJXknhi8Go7QN27gFeEe0xcfdRICfL4G16lGjWXe8Jszl5JBPMeWn4TtzEJnfT8aSm16i+t//4wC+HibGdaqDSt2LMaTyJIoATEYDb49uRfdGNbh3SSZHI4Zh2vwFZCa7JJ7N8ekEertR2zO/Uq1PdIq3h5kjbg3wOrHL1aFUiI1xJxnxwSqy8q18M6kj14Sm8Ij1QzYZohi0bzBrD6Wh6nZCHVlbaZ6aJ0SpZR/H9n5HSNjo6kjEBeQWWvlj7zGW7Eo5/bF0dwoZebJumhBVhSSKhBCiEkvOyOPXnUe5tl1tvHQ+hpQdGOu0L7Zs/+Y1AfgjUTk2VNFEkSVxK+rLIWilsI9fgHutFv8qY7XZQSmqtR2F7fZ1ZMbcgu+ub9AfdiP70Lrz1r8vJYtfdhxlQucI/PKPoiw5Ll+fqDhuJgPvjm5FWIAnt8X3ArvNZaOKNh85Sas61VCVcH2iU6w1mlHHGsux9BxXh1Ku5m5O4LpP1uLvaebH2zrR+PhvMGs0du9gat86m+AAX278/G8OebXEkHcCUve5OmQhyoTe9i3G47shcYOrQxHnkJKZzyu/7qHTi8u48fO/uXnGhtMfN325gas/XE16bqGrwxRClICsUSSEEJXYN+visWvN2I4RkLQBpW3/Wp/olLAAT6JrB/DzwVxugCo59UxnH0d9cw3a6I4evwC34IYcy8rnm3XxxKXlknAyl8STeRzNzMfH3USbutVoG1GddtEP06DRYHwW3Y73V4PI7PQQvr3vRxUz8ur9Pw7g5WZkYpdISPzDsdFFTzy7EH8vM5+Ma8uw9wv43bMXfbfMgCvuA7+wCoshPbeQQ8dzuLp1OLbDP1S69YlOCWvWEc+kWSz97F563/YWnl5erg6pTGUXWHly3g5+3JxI+4jqvNvLiN+PI/BMXkdBUHNMo6ZTI6QWsyYFcd0na7lvrRfzAeJXQ3DlS4QKcbHsW77FCFX2nyCXsr1Hs/hoxUEWbE3CZtf0b16TMe3rEOBlxlKQh+nYdvLjN/HiNh9umeHGjJva42E2ujpsIcR5SKJICCEqqQKrjVnr4+ndJJg61dzJ/2MWHnDexWmjw/2ZuykLbfZEVYI/prXWKKVKVthuo3D2TZjzT2Kf+DvGoAZ8vTaOl3/dQ06BlVB/T2pV86Rj/UBqBXiSml3A37En+WOvY4Fvd5OBYU2mMSX3PWqvfoHc2D8wDP8Ijxp1TzdxODWHBVuTmNStHtW83eDYbseOSjii6JRGIb68cU00z80cTB/3pRT88SruQyvuKWibj6QD0KpOACxeiS28HaZKtD7RKSEdx7B1y28MSf2O1Pc3kTt8GtXrtyn5918ltvVIOnfN2szxkyd5po2d4WomvrNmYnMPIKvva/h0vPF0UrSGrzuPDm7KjZ9nke8fiFvsagxtJ7r4DIQopaM7MB7b4fi6Cv4T5FKVcDKXN37fx9zNiXiajVzfoS4Tu0RSxzOfzN9exJS4Ho+0nRjsjilnc9yMvHTkWu7/zsS717XFYKj6v5+FuFRJokgIISqphduSSc0u5KYoRf4n/fFI/htLzHjMntXOeUztal5kFdiw+dfAmH0MV/8Jln5gPX51W2J087xg2fylL+ER/ycFA9/ksDGSR6atZnN8Op3rB/K/YVHUq+FT7HEncwrZGHeSP/YeY/7WJL7LH8ckn0Y8cPRTjNM6cLL9Pfj2uBuTuycf/HEAs9HAzd3qAaCP7Ub71MTgGVCWp13mBkSFsrNnJ75bcQXXbpmBrcPNGGs2r5C2N8enY1AQHQiGYzvQPR6pkHYvmsmdJrd+xdNvvcnknHepPrM/J9rdQ/V+U1Gmi38qXmWgtebX2R9h2fETnxvjiXBPwrDTjlZGcqJvwqPPo/j6/PtpfV0bBBHg5cZucxTR8WtcELkQZcu+dRbKYAKfEMg57vJ72+XuZE4h7/9xgBlr4kDBLd3rcfsV9QnwcgOtKfhqHL6H/yC3ZhsyYyZBrbaYajZFLfsfjx38hqV7d/PK3OeZOqLzJZHMF+JSJIkiIYSohLTWfLHqMHf4r6H9r5+BMpI75EO82ow573G1qzsSMvnugXi5OlGUkUjANwPIa3sHXoOfP2/Rwn1LcV/1KvnNRvFFXndefWcl/p5m3rgmmuGtap33D8lq3m70afZ/9u47TIoqa+Dwr6pz9/TknBgGhpxzEiSICAoIZswR05r3c91VV13Drusa1oCCOQcQBQFFQYLkPEMOM0zOuXs6Vn1/9OCqZOiennDf5/FZqrrq3tOrzHSfOvfcOMZ1i+PRC7uxJKuYLzZFM/ZQR/6m/YgJa5+lYMP7LEt7gK93J3L1kHbEWH0VMWrpHmhGO56dyH3jOnFf3h2cn7sR+wc3kXDfKrQ6XcDn3ZpbRef4UIwFq5FQkZphf6IjDDoNM669jUmvpPJi6CcM3/BvHA1FGKe/HuzQTpvLo/Dipwt56MDD1OgikJL6UZdwGcT3xNBuICFRKce9V6eRuaBHAou3taevvAKq8yD8+NcLQrOmeGHHlygdzkP2OnxLlIMdUxuyfG8pP+8ppcLmoqLeRXm9k4IqGw6PyvR+ydx3XicSw//3MMi94R0Mh5biGPs0lnPu+v1gV39M/ao3GLX8MbruuJp5mueZPvWSJn5HgiCcCpEoEgRBaGZUxcsXX37KvaWzGaPZRkPScLTT38Ac2e6k9yZH+Pqy1GsjMdcHZ4esI5TsVciqgmH7h6jj/oJkOHZFkFJdgDzvFtyRnZgbfz/PLdrLpJ4J/GNqD9/ysNNg1GmY2jeJqX2TyK/qxYbscczevpgJuS9yzcEH6KHLIC0/CvvrLiRPA8aqfUiDb/PH2w04WZb457VjmPv+fczIf5L3Xn6Y82/5BwlhJ6/WOlOKorItr5qLeifiXfMPsCahSR4YsPn8ISPOyk3j+zNjsYXvMhLolvUp6sh7kWI6BTu0U1Ztd3Hbh5u5LP9NPDoDofeuQxMad1pjXNQ7gac3dgIDkLtOJIqEFkdVVQCkQz8j20qg75Ww5zvUioNBjqxtqGlw88SCnazaksWF+i2cqyuig1RAOyUPq7aOomGPkHrBpN/do1YcRLP0r7hSR2IcfsfRg0oSISPvoCFlINqPrmbS1pnUnTMMa1TT9d0TBOHUiF3PBEEQmglHZQG1P/yTuud7c/nuOxmsO0D9qCcw3bQQ3SkkicC39AygSgpHCnIfB2/2KlRZh8ZVg2PTx8e5yIP7ixuQPQ2s7vsCf1uczXnd4nj5ij6nnST6o+QIM9P6JXPLDbeQ+MhWKob+lY7RZvSSF0VnwROaij1jMvS9+qzmaUpGnYYZN91PXsworqh7n9te+oLlewL37/lgWT11Dg/jLIfQF6xDGXoXaAJfxXS2bj4nnb6p4dyZNwZFY8T507PBDumUZZfbuPj1NVTm7uZizRrkgTeddpIIYHD7KMotHbFLZpTDawIQqSAE1jOLdjPhpVV4tn6CYgiDThPAEoNkLw92aK3eqv1lTHhpJYu3HWZx2D95XH6bi+UVdI6Q0GaMxZ08lNT1T2Bf8DAoiu8mrwf3lzejavTopr8B8vG/ZpraD2TPqDcwSm7qtn7dRO9KEITTISqKBEEQmgF19wIMX1yHUfWyQe3Gz5YHuOP2ewmxhp7WOGFmHVajlmIllC72CvB64Bg7fzUFKWc1nvSxKLVFaDa9BUNvOeqDo3PNLAyF68ka/Dy3LaljYLtI/ntlX7Qa/z7H0OgMRJ3/Z9TxD7X8fgiSRPLVb+B9dRBPKW8x9b1ILh2QyoPjOxMbavTrVFtzqwHol/suXmMkugHX+3X8QNHIEv++tDcTX65lcehkJu35HKX4IeT4bsEO7YSyCmq4+u31yJLEos6r4LAe7Tn3ntFYGlnigl7JbNqUwdCcX8STQaFF2VdSx9urszGpDUj136H2vhy0Bl+iyG0HZz0cp0pVOHMuj8JTC3fx4brDdIwN4cuuW4nelot9+odoukzErGv8PKF4sX/zIObNb2CvLcB02Vu4V76MvngL7otnowlLPulcEe37cUiJJ2TPtzDuzgC/M0EQTpf43CAIgtAMeH95FZc1hRmm17hD9yRX3/rQaSeJjkiJMJPnCkFCBXuFnyM9RTUFaGtykNNHogyeib7qAM69S393ibemEO3KZ6lIGMnla1PoEBPC7OsGBHTL3BafJGokhSXhPe8f9PZm8Wqn7Xy9tYBz//0zLy3dR1mNDZu9wS/zbMmtYpAxn/D85XgH3w76lrPlfIeYEB46vzN/Kx2NW2PGveyZYId0QmV1Tm75YBMWvZYFM5KIy/4Gb7/rIST2jMe8qHci672d0VXsBXul/4JtYzxehZX7yqhzuIMdSpvx9He7sRi0XKjbhMbbgKbPVb4Xjvx9EDuf+V2Dy8stH2ziw3WHuXlEe76bkUhi5uu4ukzF3HMyBt1vHjrJGsxT/4N91N8x7/8W11vj0a3+F86u09D1vuyU5kuKNLNIGUx0+QawiSoxQWhuRKJIEAQh2Kpy0Oav41tpNBtqI3nj6v6/awx5upIjTGQ3WHwH9SV+CvL0KDmrAdC0H4Gp9yV4zHEo69743TXORY8geZ3cWHIp4WYD7984iDBT81/W1FwYBl6PM2UEE4reYHm3hXxiep7Jqy4i/MVUdC+kU/PxDVRuW0hDg+OM59iaW839poUoeiv6Ibf6MfqmccPw9mSkpfKOZwKGfQtQCncEO6RjcnsV7vx4C1V2F29e05+Yba+iylp0Z1hNdES/1HCyLb18B7nrzj7QNqbO4WbOqkOMev5nrn1nA498nfW714/00BH86+e9pazYV8Y9YzO4zrKOPOJRkhp7o1kaE0X1ZcELsBWqc7i57p0NrNxfxj+n9+Rvk7oiLX4QZB36ic8d+yZJwjz6PhqmzEZXsQevJRbD5P+c8pwRZh3L5GHIKKi7F/jpnQiC4C8iUSQIghBkyvYvAHippA9/n9ydgWlHb3d9OlIizeytb0w0Bempq/fQKl9PibgeoNXj6nsDpsPLcZfsAcC+dxnmvV/zgXwxh4nng5sGEefnZVOtniShm/oqSBoScr6lc4gDTWIvvtRPYZ5zEPpDS4mcPwPdS12o+epPqKdZUVLncOMu28eghlV4+t8EpvDAvI8A0sgSz1/Sm3eVidgkS7OtKnpq4S425FTyz+m96GGuRpf1OZ4+10JowlmNK0kSab3PwalqaTiwyk/Rtn4Hy+p5+rtdDHt2Gf/4bjdJESYu6p3Igu2FbD5ciat4Nw2zJ6LMGR/sUFsdj1fhmUW7aRdl5pruWro6tvGVezib86p9F1iiff9rE4kif6m0uZgxZz1bcqt45Yq+XD4wFU/mXPQ5P+Md/beT/hwy9b0M9y0r4IYlYIo45XklSaI+vAvF2iS8WaJPkSA0N6JHkSAIQjCpKq6tn7FD6Urvnj2ZMfjUmlafSEqEiR89VtAQtKeu0uHVeFOGIsu+ZWTGITejrHsR9y9vIF/0L+TFD1Esx/GC40LevXkAHWJEr4kzIUe1x/HAATyqhEGnoZ1GJt7j5f7Pt/NYZi6Pdy3iQnkN1l2f4KzLxXjdvBM2GP2tHfk13CYvQJH16IffdfIbmqm0aAt3XDCAWd9dwAMHvkLJ34qc3DfYYf3q8425fLD2MLec054pfZJwzv8TemT0I+/zy/gT+7Rnx/p00vavInD747V8B0rrWZRZxKLMIvYU16GRJSb1TODmc9rTKzkcm9PD1kPF7Pn0Efq65qJXXL4b7ZVgPrvkvvA/n23MY19JPbOu7odm27tIqCyURlKzo8j3EEUsPfOropoGrn17A7mVdt66tj9jusSBowbp+0dwx/VGd4qVpIaEM+v/lhxp4WfXMC4/PNe3/OxIIlAQhKATFUWCIAhBpBZswVhzkO+kkTx+UXe/jJkcYaZMDfcdBGPpWW0h2ups5Pbn/HpKtsbg6DIN467PqV/yJMbqAzziuIbnLhvEgLOsoGrrjAY9IUYdusYG4Aathleu7Mslgzvw192pPGd5CPuYf2A8vBzHzy+c8rj79u1mmmYVjp4zICQmUOE3iWuGtCMr5UpqVAv13z8Z7HB+tSW3ikfn72REx2j+b0IXbMUH0O/4BHfvGRCW5Jc5uieGss/Qk4iaXeCy+2XM1sDtVVh3qIJnF+9m/IsrGPefFbz44z6sRi2PX9SNNQ+P4ZUr+9IrORwAKfcXFugeZobjUw7FjME7uXEpbemu4L2JVqbW4ebFpfsY1D6S8RHFaFa/iKfTJDI69+S7zCK8igrmxkSCWHp2VuqdHv6zdB9jX1hBYXUD790wyJckAlxLn0K2laKd/BLIgesZCJAUbmKuYyCSKpafCUJzIyqKBEEQgujgT2+TomrpOvZqvy29Sok0Y8eIR2NCG4TyfCV7NTK+/kS/pRt2B/LOTwnb/CpLvf0ZfP5VTOp1dktrhGPTyBJPT+1BhFnHa8sPUttjIP/KmIJ51TO42g1B3+GcE96vKCpxWW8hSRAy2j+VLcEkyxJPXjaMOS9N5oG8T3HvX44uY3RQY8qvsnPbh5uJCzPw3yv7UrvnZ6wLb0XRGNCPesBv80iShLnjOWh3z6Vyzyoie53vt7Fbot1Ftby6/EBjc2oP3TT5PGn5mpCUSMKG30hK76FwpOm9qmLfuwxWvYC54Be01lQeC3mCH6p6srxdJ1+FVskuSBtxoimFU/T68oNU2Fx8cF4qypeTwByFduqrXHjAwZKdxWzMqWRIehSqMRxJLD07I26vwmcbcnn5p/2U17uY1DOBh87vTFq0BRQv9cuex7J5Du5+N6JP6hfweJIjTHzoSMId1x4p62u0A24I+JyCIJwakSgSBEEIkuo6G5HZC9hsGMylI3r6bdzkCN8CE5s2gtD6Upp6ny9v9irQhyLH96TK5mJfSR25lXZyKw1cYOhNumMXW7v/mYdGpjdxZG2LJEk8dH4Xwk16nl60m9KEGbwfsh393JtQbl+NbD32blo2p4e33pnNPbYFZMZNpnd4ahNHHhgpkWbix99L7g8/EvrNA4Tftx40wWmeXtPg5oZ3N+Jwe3n/+gEoa14lcs0/cIW2w3X1fCzhKX6dr9fwC6jc9TcqFj1JePdxyJrAVgk0R4qi8u6aHP65eA8Wg4Yp3SK4yvEpXbI/QJFCkKo9aOZ/h3N5Oq5eVyNHpaNZ+wrmki24zbHUjXoCy7BbmFzk5INZa5m12c49xgikkqwm/xnbGm0+XMU7q7OZ1jeRjM2Poak5jHrtQjBHMqaLB6NO5rsdRb5EkSUGbE3/u60lK61zMHdzAZ9uyCW30s7g9pHMua4rfVLCAXBXF+D56lZC8ldj7zQV84SnmiSu5AgzIFHVfiIx22eBrQIsUU0ytyAIJyYSRYIgCEEyf+5HXE8tyefegEb230dei0FLpEVPlRyBta6kyT9MSzm+/kRb82qYMWc9DrcCgCzBqrC7GdFe4f5Lx7eareqbu1tGppMWbeHBL7dzjXIHn2sexfXlTRivn3/UsoLcCjuPvvstr9Q9SbmlA71uej04QQfI5UM78djqW3im/hkcv7yBceSfmjwGp8fLbR9uIqfCxuzLu5D0012EHVpAXfsJ6KbPwhJy6s1gT1WH5HiWdrqf8/Y/yXcfPs+k6x/2+xzNWUmtgwe/3M6q/eWM6xrH0z0Kifj5RvR1edi6XYFx4tOgNVK/bS6abR9iXeVbnuiyplA/7l+YB12LVe9LwA9Is3BhrwTeXHWImaldMJTsFAmLs+SrrttEfJiRx1O3o//+K9wj/4Ku/XAAzHotY7vEsTiriMcv6oYcEosahIcgzV2N3U2l3fW7cwdL6/l8Ux7L9pTiVVQGpkXw+EXdGNMl9tffwfadi9AvuBODpwHbhJewDL7+f1V1AZbU+GDrYMx5xKqvoe5egDTg+iaZWxCEExOJIkEQhCDYmFNJxMH52PWhpA6a4vfxUyJMlNeHkdrUDT9ri9BWH6K82wxu+WAz8aFG/j65O2lRFpIiTOg0Ml5F9WtiTDi587rF8d2fRnD3pxb+VnANz+XOoWr+/2GZ9A/0Bt+SxzUHyrn/ozV8wNMY9VosN36JZGhdTca1GplhF1zN8q++Y/iK56Dv5WCNa7L5VVXl4bmZrDtUyX9GGxiy7DIMNQepGPoIYWMfRKsNXKXPuCvv48Dz3zAi+2XmrRzPtJGBX1bSHPy0u4QHv9xOg9vL0xf3YFrdJ5gWPIczvCMNMxZgyRj567UhQ66DIdfhKNyFp+IQlq7j0Wv1R4358AVd+GFXCRvtCZxj+x4U5ZSbxAu/V+/0cPP7m3B6FOZeEob1q4dxp45Ad+5Dv7vuwl4JfJdZxIbsSoZaYlBLdgYp4ubH41V495ccXli699cHMwBXa5YyTt7CQf293HxOVy4bkHLUxhGOZf/GvPIpnFFd8V7yDpYzbEp9po5UQO9R2zEovD1q1jy0IlEkCM2CSBQJgiA0MUVReebrDXyq2YTUawYc44vI2UqONFNYbaWfbZ/fxz4RJcfXn+hv28LxKirvXD+Q9D98MBVJouBIjjDzxW1DeX5JBB+vzWbGjtkc3LaQxz3Xs1rpCai8Y5lFhjcf1/Qv0Ea3zqWBE3smctuyOxhecycNi/6K6fI5TTb3f5bu4+utBbzUeSeTN7yAVxdC+dRPie51fsAr7CRZpt11byLNGoG89G8sj32P0V2OvfywtfhiYx4Pz9tB14RQXr6iL8kHP8G4+jkaulyCcfprSLpj94UzJnaDxON/YU6OMDNjcCrfr49kpNYG1Ychsn2g3kar5VVU7vl0K/tL63l/RjcSf7wCVWdGd8mco6odz+0ci1mvYWFmEcNCYuHQ8iBF3bzsLKzh4bmZZBbUMK5rLJN6JSCpkJ71Er0OvQvAkJjXMI5bCLrf73vo3PA+xpVPYe98McbpbyDrm35fxCiLHqNOpqDagdR9KvKaV8TyM0FoJsTjD0EQhCa2cn8Z6WXLMeLC0PfKgMyREmEmxxmCZK8ArycgcxyL++BKbJKZ5TXxvHlN/6OSREJw6TQyj0zqRtr1b/FpxxcIM2r4SP8s38W9yRcdvmeM9xcco/6Goct5wQ41YGRZYsbEMbzlmYRp95d4c9Y0ybybD1cxZ1kWn0S/y9TDT2OP7Uf9DcuJ6T2hyZZh6uK74hxyD1M1v/DRJ++RVVDTJPMGw7u/ZPPnuTsY3jGaL2cOJaVwMYbv/4yj/XmYLp113CTRqRqZEcNOb2P/LrHz2Rl5bvFuftpTyhOTOjFo84NoK/bCtNkQevQmBya9hrFd41iSVYzXHIPkqAGPMwhRNw92l4d/LtnD5Fd/oaimgVev6svsawdwce8Ezs/5J70OzcbeYwauKbMxFG/G8flNoHh/vd+1ewn6xffhSD0X82Wzg5IkAl8vveQIM/lVDcg9piGpXtizMCixCILweyJRJAiC0MTe+SWHyw2/4A1rBymDAjJHcoSJUiUUCRXs5QGZ449UVaV613LWejrzzLQ+DEkXTwSbq+Edo7ny6psJvX8T1UP/QlfbBgYVfEBDp8mYzr0/2OEF3KhOMaxPuoFiovAseOB3X6ACZeveQ3yrf5Sh9T9SMeA+tNd/Q0Rc0zcKt4z9M47Q9vxdfptr31zB+2tyUBS1yeMIFFVVeXXZfp5YsIvzu8cx57oBaA8tQ//t7bgSB2G86kO/NDHvnxbBfpJ9ByUiUXS6Plibw+xV2Vw3JJXLKl5Df2gpnvOfR5Mx9rj3TOqZQKXNxSF7Y1LD1jS/25qTmgY3//1pP8OfW8YbPx9kWt8kfrx/FBf2SkTyumj49DpMOz7APuhPmKe/hr7vZTjHPoXxwHc4Fv4ZVBVP3ma0c2/AHd0V44yPgtbU/4ikcBP51XaI74mqDxGJV0FoJsTSM0EQhCa0v6SOXfsOMMC4E6nX/QFrGJkSaWaVGuY7qC8Fa3xA5vmtRWu2Msmdx672U5nePzng8wlnT280oT//YWz9rsSd+TVhw29usiamwSRJEvdO7M2Tb87g9YpXUDZ/gDwwsNsye/YvI0MuoHzibCIHXIocrCWYOiO6yS+R8tEUHg9dyD3favh2eyH/nN6TjrHW4MTkJ6qq8s8le5m14iAX903i+Ut64c3bgPara3FHZqC/5vOjlt+cqVCjjrSEWIprEogtzhJPXk/DJ+tzeeybnYzrGssjkcvQL3sH1+C70A+5+YT3DUmPBCDbYSYDwFYKYUmBD7gZqKh38vbqbD5ce5g6p4cxXWK5a0xH+qX6mt87Sw+gfHMXpoK1NJz7BOZz7/31XuM5d+OoKcC46Q2cGj2arC/wmiLRXfMVGIL/dz45wsT2/GqQJNSQBKgrFo3KBaEZEIkiQRCEJvTOLzlcqNuIjAI9pgVsnpQIE2VquO+gvmkaWlft9vWMGDU+cO9LCAxLTDsYc2+ww2hS/dtF8nrGRew6vICO695CP+D6gCXJVFXFVZ4NQHSvCb4tAINI0/FcnD2vYkrmJ8QM7MUdO3VMfHk1t41Kp0t86O+u7dcunIQwX3LFk7cZ74a3MVz4z2bxBfOPfthVwqwVB7lqcCr/mNwd+5pZmH9+Aq8lHu21XyOZ/Luj3MC0SDI3JzNGNFY+ZZ9tyOWRrzMZ0yWWV/vkof/6cdydLkJ//sm3Yw8z6bDoNeQ6G5c015cFONrgy8yv4f21OXy7vRC3V2FijwTuGN2B7om+B0GK04592b8xb3oVVdbScOHrmAbMOGoc48RncNQWYNz4Ol5DONI185COscQvGJIjzFTb3dQ7PZhD41Fri0SiSBCaAZEoEoQWalFmEU8t3MXrM/rR98gTpcMb0ake5LShQY5OOJYqm4t5W/L5LmwrXkMGmtjA7S6SGG6inMaKoiba+cxamYULHfqEXk0ynyCcrQcndOGTV8/lqYp3oWgbJPYNyDz5VQ1EuotxGMMwGkNPfkMTMEx5CUdVLkOzHmPphe/y1L5U/rvswFHXRVn0zLtjGEkNe5E+nIrBVQsdR0LvK4IQ9Yl9vjGP+FAjj42KwPH+xYTk/ow9dTSG6W8gh/q/qnJw+0h2bUhmXNVmcDf4rVqpNfKUZ7N65ffs3LyHf8V4mRCmQ//tR3gS+qG7dPYp7RonSRJJESYOHtkC3tY6E0Uuj8LirCLeW5PD1txqzHoNlw9I4bphaXSM9SXJVEXBnvUduqWPEFKXi63TxegueBpTxHEqrGQZ46WzsX2fir7XxehiOzfhOzqxIzufFVQ10NmagJK3PsgRCYIAIlEkCC2Oqqq8/vNBnv9+LwBLd5XQNzUCT+EOdB9OhuiOMHNVkKMUjuWTDblYPVV0sG+H/g8EdImPUadBDokBN01WUWS0F1OjiyVGI361CC1D14RQGjpPw3HwI5T172O+ODCJoi25VaRIZXjDmr4n0XFpDRiu/hTX25OIWnQrz8+Yx0Pnj6bB/b9+TZU2FzM/2sxTsz9jlvIEiiEMSWtA3bUATTNLFJXUOvh5byn/6paD9s0bkT0O6sc+R8iImQH7WTsgLZIFSgqSqkDZXkjsE5B5Wjx7JcobwznXa+NcHVAH3l0WPLG90M/49LQSbMkRZvZUH0kUNc3vtqZSUuvg4/W5fLI+l/J6J+2jLTx+UTem908m1OjrI+SoLsG19VP0mZ9iqdyDM6IT9ivnY+k8+uQT6IxYLnw6wO/i9CU1Joryq+x0tsYj1RWDqraJZdCC0Jz55dO8JEkTgJcBDTBHVdXnjnHNucBLgA4oV1V1lD/mFoS2xOVR+Mu8TOZuyeei3onsL6ljW141al0J6idXIHvsqPaKYIcpHIPbq/DB2hzuStiFVKVA94sDPmd0ZBQNpUZMTZAoqrG7iVTKcZoD3wtJEPzphnG9WbJ/IOdnfQUXPhuQqpCtudVcK5djjO7v97HPhmQMRXftXDxzxqP97Erir1+ELrHH7675cJKZ5G8fo0Jjwnrjt2g2vYq87dNmV0Ezd0s+A9nNJQefwhHTG2n6W4TEdwnonDFWA7aIzmDD14BXJIqOKevbl+jhtfFs1DPcfeUULOExaLQGNGcwVlK4iU05lag6C1IrWHrm9HhZf6iSzzfl8X1WMV5VZXTnWK4blsY5HaN/7WXWsO9nvGvfwJLzI0bVQ0NMb+rO+zchg69D0uqD/C7Ozq8VRdUNYI1H8jqhoQrMkUGOTBDatrNOFEmSpAFeA84D8oGNkiR9q6rqrt9cEw68DkxQVTVXkqTYs51XENqaKpuL2z7azIbsSu4dl8E9YzN49JssFm3NwfnRI+gdlSjtRyHlbwp2qMIxLMosoqTWyUVhG/BGBXbZ2REpkWYqSsJIqi8N+Hr/7AobCVIlUlhgv5gJgr91TwxjUeLFTC1Zg2PHfIz9r/T7HNtyq/iLVI4mKs3vY58t2RqLfO181LfHw4dTqUmfgBoSj2SNR2O00u3Hh3EYLUytfZiM7yt4c9gk5E1vw6GfofMFwQ4f8FXafrUpn/sjMlGdRgy3LEbSW5pk7qT07jh26NCLhtbHtGBzNkN2v8dW4wDuvW0mJv2ZpIf+JynCRK3DgxIWhWwra5G9bAqrG1i+t5Tlu0vIO7SLvt5MNLoIrh96MdcMS6Nd1G/+21W82H74B5Z1/8Fjiqauz81o+1+DObnH8SdoYWJCDBi0MvlVDZDa+LCpvkQkigQhyPxRUTQIOKCq6iEASZI+A6YAv93b8CpgnqqquQCqqrauWlFBCLAlWcU8+k0WNQ1uXr6iD1P6+Nag90kOZ8Dm1zGWbMY57X0MVfshewV4nKA1BDlq4QhVVXlndTb9I91Elm+EcwK77OyI5AgTJUoo8XXFAV9nnFNWR3eqqI9KCfBMguB/YydOJ/ftfyGteocUPyeKnB4vZUW5GHQuCG/n17H9RRuVhvvqeXjm34XlwEK0zqpfX/NY4jFd/x037tfy+Lc7eSIkgb8bQmHXAuRmkijafLiKQ+U2RkRtR0kdiqaJkkQAA9rHsG97Mmm5O2ge3aeajwXbC1k973Uu0tVgnfYIxrNMEsH/qk8chihMTfAQxJ9UVeXtVQfZ/v17jJS285R2FwlyOUcyjA2FK5Dqn4MoX+WhUl+O84sbseSuwNb9SoyT/0OowRzEdxAYkiSRFG4iv8oO3RsbbNcVQWzX4AYmCG2cP747JAF5vznOBwb/4ZpOgE6SpJ8BK/CyqqofHGswSZJuBW4FSE1tRmv5BSEIyuqc/P3bnXyXWUS3hFDevX4gPZLCfn19WOG7JGrWsKXj3fTrNRU2zPa90FAN1rigxCwcbfPhKrbn1/B5331Iu5tm2RlASoSZMjUcb21JwBNFxUV56CQvIXHN84uwIJxIv3ZRfBF2AZdVf4Cz7BCGmHS/jb2zsJY4pcR3EN58P9foEnugmbkct6LgdjlR6ktQa4swJ3RBtkRyXQwU1jTw5opDTIwawMC9i8DrgWbQk+yLTXl01FcSbsuGTrc06dyD2keyVkmhQ/muk1/chny3o4j7Pt/CctNi3JE9MHYa45dxk8J9iSKbNhKTrcgvYzYFl0fh7/O2MDTzr/xXtw6XPgxX8nBq249C22Ek6uG1GFY8jebdsdi6XYGmx8VoFt2HoaEc+/kvYhl6Y7DfQkAlRZh8FUXWRN+JuuLgBiQIgl++Oxwrma8eY57+wFjABKyVJGmdqqr7jrpRVd8C3gIYMGDAH8cRhDZBVVW+3lrAkwt3YXd6eej8ztw6Mh2dxvfYSfW4sC1+nMQtr/OtOpJ15svoB3Bk69+GKpEoakZe/mk/kRY9/epXNNmyM4DkSBOH1FAk29E7GflbXelhAHThyQGfSxACIf28W1DmfsjuxW/Q59rn/Tbu1txqkqVy30EzrSg6QpYlDLIGtGYwt4fY9r97/eEJXYi1Gvl4SU+GaJexb/OPdBo0IUjR+ticHhbuKOKp5BwoBDqOa9L5kyPMFBnTsbhWgq0cLNFNOn9ztHp/OX/6bCs3xR0gpSoPznnMb1W0RxofV0vhxNTv8MuYgVZpc3H/Byu4rfAxhmp2YTvnb5jOvR+95jcVVond8Paeju2n5zBvnYO861Pc1mTc1y7C3G5A8IJvIskRZnYVFkNI49KzupaTBBSE1sofy6nzgd+uNUjG96v6j9csUVXVpqpqObAS6O2HuQWh1dlXUscVb63j/i+20yEmhEX3nMOdozv+miRyVeTimHMBIZtfx9brOr5O+TPb8mp8Nx9JFDmqgxO8cJRNOZWs2l/OfUPD0OavQe4+tcl28kiJMFNOGHpXFXjdAZ3LVZnv+0NoYkDnEYRA6d+zJ9v0fYk/NA+3239/X7blVdPNVOk7CG/ZSzMlSeKmEe259YZbcaJj9YL3eXPFQRQleM/1FmUWYXd5OVezA8WaBNGdmjwGbYKvX4xaktXkczc3tQ43D321nfbRFh4M+QGvNdGvVbTRFgN6rUypGgoNFaB4T35TEB0orefW/87nL8X3MUi7D8fkN7GMfQhZc/QyPI05nJCLnsMzcw31wx9Gc9tKDG0gSQS+JYUVNhd29KjGMFFRJAjNgD8SRRuBDEmS2kuSpAeuAL79wzXfAOdIkqSVJMmMb2nabj/MLQitRr3Tw9Pf7WLiy6vYW1LHMxf35IvbhtIxNuTXa+w7FyO/NRJ9xW7qL3wLy7RX6JEay96SOhpc3t9XFAnNwos/7iM6xMDllu1IqoLURMvOABLCjJQT7juwlQdsHlVVobbx+UBoUsDmEYRAkiQJ3YBriaectT/O9du4W3Or6G6pQTHHQBP2zgmknh2Sof0oLjJs4dnFuxn3nxU8uWAXK/eV4XA37Rf3LzflkxFlIKJkra+aKAhbasdn+HrKVGZvb/K5m5t/LNxFSa2D10bL6PN+QRp8O2h0fhtfliWSw00Uuq1IqgL2Sr+N7W8V9U4em/MVrzn+j3RdFd4rv8TY74qT3qeP7UTIeX9BDolqgiibh193PqtqQLXEodaKiiJBCLazThSpquoB7gK+x5f8+UJV1Z2SJM2UJGlm4zW7gSXADmADMEdVVfHYRRAaLc4sYuwLPzN7VTaXDkhm2QPnctXgVDSN26J6Gmqpm/8Q5i+vwGuJw3PTMkIGXA5A7+RwvIpKZkGNSBQ1M+sOVfDLgQpuP7cDmj3f4I3KgCZadgag1ci+L6eAWl8SsHnK611EesvwSlowi2UXQsvVY8yV1EpW3Js+xOk5+4RHWZ2T/KoG0jTlLb6a6I8MPSYT4ylm9vkmkiJMfLT+MNe+s4G+Ty7lpvc28uWmPGrsga1kPFRWz4acSu7MqEJ21SFnjA3ofMfTq0sG5Woo1dlbgzJ/c7F8TylfbMpn5qgOdDzwHoo+BHnAdX6fJynCRI6jsamzrXnuj+P2Ktz5yRbudc4i3CDBDYvQ+6lPU2t0JFGUX9UAoQmooqJIEILOLx0IVVVdBCz6w7lZfzh+HvDfon9BaAVKah089k0Wy3fmMyrGxq23ns/A9N9/0a7PXIj++z9jrS+gvud1mC98Dvk3u170SQ0HYHteNYPiG7cSFYmioFIdtTjKDzNv4RbGWOq5LExCzv2lyXY7+53QRCgHW952QhL7BGSK7HIb8VIlTlMcZllsEC20XJLOSHXHqYzY9ymzvlvHPVOGn9V42/KqAYj2FCOF9/NDhM1I5wtQF0iMkzZy3k0P0+Dysu5QBT/vLeXH3aX8tKeURzSZDO8YzcSeCaRG/n63poQw4++2AVdqCpFDE07rZ+QXm/KRJRinz0SVNEjtR/nt7Z2ODjEhbJDaEV/edovlaxrcPDxvB53iQrijmxv53a9RB98OxrCT33yaksJNHCj0JRawlfl9fH94+rvdlGVnMsiwG++Iv6NJEh03TiQ5wvfzIb+6Ackaj3p4TZAjEgQh+FtVCEIbpKoqn2/M4+lFu3F5FL5IX0yfws/wfBFFbfIIlPTRaJN6I618gZCDC3FGdMI2YyEhGeccNVZ0iIHkCJPvC8mINFRJRhKJouBRvHjnnIepfA//OnLuyCqWHtObPBxPbG8OlqeQvO6/qAOvRpLPfnviP8opt5EqVSKJZWdCK5A6/k+w/0PcG99jQ6+uDGofecZjbc2tQierGG2FSBFNt+y0SYTEoiQPgl0L0Zz7MCa9htFdYhndJZa/T1bZnl/Dkm3ZeLZ/RdKh5exVE3nDM5lifMtpNLLE4xd1Y0YXDa7vH8O0Zx7Kef9AHn73KU2/9mAFc1Yd4oIeCZhyf0ZJGojGFB7AN3x8kiRRH9aJuJoFvp45Afg525ypqspj32RhqctlTvwqLO9+g6ozIQ+9PSDzJUeY2Gg3gwGob36Joi825fHemhw+Tt2CWq5F03dGsENq9mJCDOg1MvlVdiRrgq9HkaoGZSmpIAg+IlEkCE3M4fZy64ebWbmvjMHtI/nXBQmkvH89DSkjcZuiMeWtQnfgGwAUjYG6YQ9jGX0/Bp3huGP2SQlna241yDIYw0VFURCpuxegLd/DZ+ar2OhM5fGpfTAYTGhDY9HEdm3yeJKjQnjRNZVXq/5L3bZ5WPtd6vc5DpXbGCxVoo9s+vcnCH4X0wlH6kiuzf2Jy77YxMJ7xxBiOLOPS1tzqxke60GqdkN4qp8DDT6564VISx+FqsMQ8b8d3bzVBWRkzabHzg/Qeiqxh6Yy1L6cq3U/k582neLed/D+1lrKFz6F94cFGGTwWJOQ1r0OQ2aetKdNdrmNmR9tJi3awrPnx6N5dTuM/lug3+4J6RJ7YqyZS2nuHmLTugc1lqb205oNjNz5FP8xrEEq0FLf+wYsox+AsMBsbpAUYaJcbaxUamZLz7bmVvG3r7MY1cHKkIoleDIuQBcSG+ywmj1ZlkgMN/qWnqUnICluX/8pS9vp0yQIzY1IFAlCE1IUlfs+38aq/WU8Mbk71wxph/LjE0heJ6Yp/8EUnYHb46U2fwdK7gZMncdgjcs46bh9UsJZuKOI0joH0aYIUVEULKqKd+ULOCzteKRiIk9M7UVoz+Buh50SaeIlZTD11u/Qrf43ap9pfq8qyimrJ0GqRBMuKoqE1sEwbCaxuVfRvXY1/1gYz3PTe532GF5FZUd+Nfd1tkE1v0uktBZSl0mw9FEcX96GR29FYy9FYy9HZyvCrCo0pI/HM2Qm5ozReKsO41z+b1J2fkbK4bn0N0ag1ZWy0DOYJfG38+wIDdavr4HdC6DHtOPOWWN3c9N7G5EleOe6gYQWLPS90DE4/YmOSOzcH3bDzp8+Ifamp4MaS1PKL6+h29KriNTUUtn9eoyj78MaHdh+XEnhZmqwoEg65Ga09KzK5mLmR5uJDTXwcp9CNN9VIQ+8IdhhtRjJEWYKqhrAGuc7UVckEkWCEESimYQgNKGnF+1mcVYxf53YleuGpSG7apE3zcHT+SKI9iWEdFoNoWl9CR95G4ZTSBIB9G3sU7QttxpMEah2kSgKioPL0Jbs4B2mEB9m5rIBycGOiNRIMwoymem3YKzcQ/32P25KefYqyorQ4xY7ngmthtRpAt7QFB6KWMFnG/P4cdfpN4PfX1qHzeWlj7XWdyK89SWKiOqAu/1YNJX70dbmoRrCcCUNwT74Pjx3bcV87RcYO40BSUITmYZ5+quod23G0XMG7uhuuK5ZiGfau/xQZGTSYhPVxiSqlr9CSa3Dt5viH7i9Crd/vJn8qgbeunYAqVFmlP1LUUxRkNCn6d//b3ToOYxM00BG573K9rn/OvkNrUC908MHb79MIuUcGPkKEdP+HfAkERxpfCzRoI9oVkvPnlq4i4p6F7Ou7o9px4d4QlOQ0kcHO6wWIznC5Ksosib4ToiG1oIQVKKiSBCayDurs3l7dTbXD0vjphHtAfCsn4PWVYc86oGzGrt7YhhaWWJ7fjXnmSJQbeWIVd1Nz7Pi3zTo4/hvxQD+fUUXDNrg96nonRxOrNXA21V96RfWHt3q51F7T0HyU9NpRVFxVeX7fpuEBmaZgSA0OVkDg24h7cfHuCCmnIfn7WBRyjnEWo2nPMTW3GoAOugqfCfCWteuZ0forpuHqqroTrGXiCayHeaLX/71eCqQFm3hvs+38UrVGB5zfMhFz84mz9SZDjEhJIabSAw3khRuYsvhKtYcrOCFS3szMC0SFAUOLocOo31Lr4NI0mhpd8d8Vr88jRGZT3NY56Hd5EeCGlMgeRWVez7Zwj22r6m1ptHj3Mub7N9BXKgRrSxRpwnHVF8S1KfeLo+CXiuzfE8p87YWcPeYjnQzVCDnrcY16pGg/3fZkiSFmyivd+I0pWMAqBeJIkEIJvHTSxCawJKsYp76bhfju8Xx6IXdkCQJ3A1I69/AnXYunOVuVEadhi4JVrblVSOZIkSPomDIXY82bw2vOc5naKcEJvduHkkTrUbm0gHJLNtfSVmfuzBW7KQ+8zu/jV9U6yBKKfcdiIoioRXR9LsGRWvkqcS11Dk8THx5FYszi075/q25VYSbdYQ7i1BC4kB36kmmlkY6y4azfVLCWf7gudz9wN/xaM38p91aLuiRgE4jsSO/mndX5/DKN2sYnvUYb3bcwNQOjfMV70C2lyFnnOeHd3H2Qq0hpN76BYsZTrst/6Ts28d9DXlboecW76Zm3yp6yYfQDb+jSRMiGlkiPsxIpRQOtvImm/dY9pfWcbC0nke+ziQjNoS7xnTEueFdVEmDvv+1QY2tpUmO9O1kl+8O9Z2oO/Wft4Ig+J9IFAlCgC3dVcI9n22lT0o4L1/RF43s+4Dr3fIRGnsZ2rOsJjqiT0o4O/JqUE3hSA6RKGpqnpUvUCeH8rk6hqen9jjrL07+dPmAVBQVvnYPw2VNRbv6X6iK4pexs8tsJEiVvgORKBJaE3MkSo9LiTz4Nd/e1I34MCO3f7yFOz/eQnm984S3VtpcLMosZmRGDGrVYQhrfY2sAyEiMhqp79V0LP2BZ8+L4bNbh7LiodHseWQIqxNf4RLdas7PfwnNS91wvDkW949P+m7sMCa4gf9Gamw44Ve9y5feUcRseYnaBY+0umTR5xtzmb0qm8eif8ZrCMPYv+l39UqOMFHiDQ1qM2v3hrfJ+HQ4y+a9SXFNA09O6YFBUtBlfoor/TwITQhabC1RcoQZgPx6FdUYIZaeCUKQiUSRIARIlc3FvZ9t5ZEPfuRBy2JeOS8Eo67xr5zXA2tewZ3QHynt6C3vz0SflAjqnB4qFQuSo8a3Ra/QNIqz0B74njed5zNzXC9SIs3Bjuh3UqPMjOgYzWdbimkYci+msh007P7eL2NnV9iIlypRJQ2InV2EVkY75DZkj4OOBfP5+o7hPHR+Z5buKmH8iyv5fufxv8S8ufIgNpeHu8d0hJpcpMi0pgu6hdMMmQmKB2Xj274TLhvejy5BX30Q5aqvcN++Hvvwh5FcNnSHfsKb0LfZ/ewZ2ikO58SX+NAzjtAtr1O39Llgh+Q3Owtr+OvXWVyc5qZn/Wocva9FMoQ0eRxJ4WYK3CFItrLgJeL2LEZfl8ctxU/ybfTrRHjKKNs0H21DGfKA64MTUwvm6z0F+VV2VGs8aq2oKBKEYBKJIkEIgCVZxZz34koW7ijivaRvuMX5Pikfj8T+1vlUr/0Q9+YP0dTkoh15P/ip8qRPSjgAuQ0G3wlHjV/GFU7Osfzf2DCyPno6Nzb2n2puLh+YQkF1A9sizscVkoy85hW/jJtdZiNZrkINiff1dRGE1iS+J+7kIbBxDjpJ5c7RHVn4pxEkhZu48+MtZBX4fs66inbSsPAvUF9GaZ2D99fkMLVPEhnRJqTaAqRwUVF0yqI6oHQcD5veAUctro+vRFu8BWXaHDQZY9HFdcF83l8w3L0Oz52bka/6LNgRH9PVQ9M5OOBx5nlHYF3zHPWrZgU7JL94bfkBTHoNj8asBGQMQ2cGJY6kCBOHnRYkrwuctUGJQSrJ4gd5BK9orqNbw2YyvhpL6C9P4wlJQNd5fFBiaslirUZMOg27CmshJB5VLD0ThKASiSJB8CNVVXl47g5mfrSZuFADS2bE0a3iBxp6X0fVsEfQ2koI//4udIvuxRPVGanzRL/NnR5twWrUsr9O5zsh+hQ1jcps9Hu/4UPPefz1kqHoNM3zx+r47nFEmHV8vrUEV68ZGAvWoFbnnfW4ORU20vTVopG10Gpph8xEU5NL3dx7qM/LpFOclQ9uHESkRc9jn66kdu496N46B9Om11E2zuH15Qdxe1XuGZsBdYVIigdEoui0aIbejmwvxztrJPrDK/BMehltjylHXaeN6YhkjQ9ChKfm8Sk92TngGX709sX808PUb/o82CGdlZxyG4uzirmxfyRhez7D3mky2ojg7O6ZHG6iTAnzHQRj5zNbOVpbERuc7Ui76P/YP30p9ti+GGqzcfW6Rjw4OQMaWeLczjEs3VUC1nix9EwQgqx5fqMRhBZq9qpDfLYxj9tGpjP/zuGkZr6CqjNjGv84EeP/D82ftlBz+Xxqu1+NPOnffm3+KMsSvZLD2FPd+OFEJIqaRMnKd1BVFVufm3+t6mqODFoN0/sls3RXCY7OFwPg2PbFWY+bXd7YoyhM9CcSWiep64U0dL2UkF2fEvL2CBpeG4l2yzu803k979XdiiXzA+y9rsGT2B/39rl8sv4wl/ZPJi3aAtW5vkHC2wX3TbQ06efije6Cpjob93nPoBvQMpsCS5LE3yb3YsfQl9iodMa48HbqsxYHO6wz9taqQ+g0MpdpfkbjtqEdflfQYkmOMFFOY6IoCH2KiveuByC64wAm90kiuUM3ii/6hIOTv8Yw+qEmj6e1mNAjntI6JyVEINlKfTsbCoIQFCJRJAh+su5QBf9cspeJPeN5+IIu6Cr2otvzDd6Bt4IlCgCtVkNY19GEXvoacvpIv8eQGmnmkE3vOxCJosBTFDRZX7CWntw8aXiwozmpKwal4PaqzDusxxnXD03mV2c1nturkFdpI9JbjiwaWQutlUaH6fI52O/OonrkE0heJ9af/o8eWf+iwNKdC1zPsaPXY2j7XoWhej+dyOPusRm+e39NFImKotMiScjT3sQ19W10w+8MdjRnRZIk7p/Yh20jZrFXSUY39zps+38JdlinpdLmYltuFV9uymNsp0hidr1HQ8JgDKn9gxZTUoSJCrVxdyxb01cUrVy5DIBLJvkqw0MMWjrGWYnpdg4anb7J42ktRneJ9e12WGPyVWPaK4IdkiC0WSJRJAh+UFLr4K5PttIuysw/p/dCkiRcPz2LqrOgG/GnJosjMczEYXtjjyKRKAq4qr0rifYUU5o2lTCTLtjhnFTHWCsD2kXw2cY8lJ6XoK/YhVK884zHy69qwKzY0CsNYumZ0OpZIhMIH3MvhrvWUn/9T9iuXkS7e5fgjuzMg19uZ3fEaLyqxEPJO0kK9zVlpeowKhKEpQQ3+BZISuyDvs8lwQ7Db24b35dtI9+m0BuO/NlluAt3BDukU6IoKoWlFWxb+jFPS7N4qeAK9PX5KEOCm8BLCPtNRVF901YULdtTgrFiJ7WGeKJj/7f0UZIkQo3N/7NAcxZq1DG8YzSrirS+E6JPkSAEjUgUCcJZcnsV7vpkCzanh1lX98dq1EFxFvq93+AdeBuYI5ssloRwE9WqxXcgEkUBl7vsbWyqgX4TWs6yiCsGpXKozMauiHGokgbXtjPvmZFT7tvxDBCJIqHNkGSZkLQBWDoOx6zX8sJlvSmqaeCSD/azXu3OUMeKX3dhUqsPo1oTQCsqDASYMW4gH2a8TLVHj/eDi1HKDwU7pJNSVr9It496c33eX5mk20RD8jnknz8bc6/JQY1Lr5XRh8SgIDVpRZHT4+XJBbvoo83FkNKnyeZtSyZ0j2dnXePusaJPkSAEjUgUCcJZem7xHjbmVPHc9J50irMC4F72LIreim5E067fTwwzUotIFDUFZ0M96WU/sjVkJGkJMcEO55RN7BmP1aBl1uY6nKkj0e6ce8Y9AA4d6U8EIJaeCW1Uv9QI7hzdEZvLS3X6hehrcqDYVy2iVh0Wy86E37ln+jju1T2G0+HE+8HUZv9FWN6zgApdPFe5HuGHib9Qct5rWHtfjOSnHVvPRnxkCPWStUkrit5ZnUNJRSUpaiGaxD5NNm9bMq5bHGWE+w5ERZEgBI1IFAnCWfhuRxFvr87m+mFpTOnT+EW5aAe6fQtRBs1s0moi8FUUedHg0lpFoijANi/9FCt2woZcE+xQTotZr+X20R1YuquE5fpz0dbl4zm89ozGyi6vp72+2ncgKoqENuxPYzN46fI+nDv1JlRJg5I5z/dCdS5ShGhkLfxPmFnHrdMncq3zIZT6UtzvTWnWv69VWwUbnak4U85hfK8UOsdbCTM3j+VVSeG+5WfeJtr1rKTWwX+X7efa9HokVLSJvZpk3rYmOsRAu3btfQfNPJEqCK2ZSBQJwhk6UFrHn7/aTr/UcB6e0IXasjyq1ryHY+4dKPrQoOwGkhBmBKBBIxJFgaSqKvKOzymTougxbFKwwzltt4/qwLS+STyQmYJbNuI5w93PcsrtdDbX+XqwNOMtqgUh0HQamal9kzCHx6K0H4W6cx54XEh1hUhixzPhD8Z2jaND31Hc7LwPueog3m/uDnZIx+WtL6fYbeGesRlYDNpgh/M7yREmir2heGqaJpnw3OI9eBSVWzPqfSfiRaIoUMb1TKVCtVJTlhfsUAShzRKJIkE4Azanh5kfbSFS6+K1+IWos0YQ+loPIn64B42tGM/5z4EpvMnjMuo0RFn01ElWVLtIFAXKtj376e/eQlHqZCRN8/rgfCokSeLZ6T3pkZbIEk8/5F1fg8d12uNkl9tI01WjhsSCpnk8YRaEYNP0nI6mJhf2LEBSFRAVRcIxPH5hd/aa+/Olbgry3kVQ2wyX2Hic6L02JEs052REBzuaoyRFmMhU0tCVbMNbUxjQuVwehW+2FXDVoFTCavagGCMgLDmgc7Zl53ePp1SNoKL4cLBDEYQ2SySKBOE0qarK/83dwaGyOj5P+Jj4zFkohlCqhv6FmmuXod6/B33/GUGLLyHcSDUW1IbKoMXQ2u358T10kpdO428OdihnzKDV8OY1/VltGoPeXUPhloW/vqaqKg6394T351bYKahuIElTBVbRn0gQftVlEqqsQ139ku9Y9CgSjiHMrOPZaT15o3YYkupF2fpxsEM6WuPW5JbIuGbRk+iPksJNfOwdh6R6caydE9C5SmodKCp0SwiF4h14Y3tAM/z/pLVIDDdhN8TgrW6GCVRBaCNEokgQTtN7a3JYuKOIt7rvJLFgCY5zHsF86xIizn+YsPT+6HXBrTBJCDNR7rVAQ3VQ42itCqob6F62mAJTJ4xJPYIdzlmJsOi57YabqcTK7u/fZld+JYczV1Gy6Bnc703FvfG949777fYCAOKoRAoT/YkE4VemCJT00UiNDa1Fokg4nrFd4xg2cBBrvN2oX/fuGW8sECiuWl+TaFNYbJAjObbkCBO5ahx5USMwbP8A1eMM2FxFNQ4AEkM1aMp2IyWIZWeBZo5Kwuopp6C6IdihCEKbJBJFgnAaNuVU8vR3u7km3c6Y7Bdwpo7EdO4DzepJW1K4iWKXCUn0KAqIBT8up5d8CH3fq4Idil+kx0dQ3+EizvGsJe2dnrSbeyHxG/+FuXQL8vKnjrsk7dvthQxMi0BvK0ISO54Jwu9oek4HQJU0ECqWpwjH9+SU7mTGTSG0IZ8Ny+cHO5zfqSj1LecKjUoIciTHlhTu20J9U9ylaBvKaNg2N2BzFdX4khWpSgGS14k2qU/A5hJ84pPSiKGapVkFwQ5FENokkSgShFNU0+DmT59uJT1c5q8N/0LRW9FfOhvk5vXXKCHMSJnXDI6qZvd0sqVzuD3osz7Di0zMsOAtL/S3pPPuosSYzgLXANb1/ReFN+/ANXUOGns5yu6FR12/p7iWfSX1TOsehuSsFTueCcIfdZ6IqjGghiZCC+xjJjQdnUbm2hvvpk4KoXTFbNYdqgh2SL+qKvMt+4mKaZ6JIpPe15dxk6YPrvB05I1vBWyuIxVFsbZ9vhOikXXARcSlopFU1uzYE+xQBKFNal7fcAWhGXtiwU5K6py8lzAPY9U+lKmzkJrhTk8J4SaqVYuviaqrLtjhtCo/rFjNVeoiihLGQUjzLMU/E5r47nhv/ZkXLX/ibwe6EBWfjKnreDyhKXg3HN334ZtthWhkiQmpqu+EqCgShN8zhuLtPQPSxwQ7EqEFMJktaPpcwXh5Aw++v5xdhbXBDgmA+qoSAOISmu/P+KQIE3nVDjz9b8ZYshVHzsaAzFNc48Bq0KIty0TVGCGqY0DmEX7D6ktQFubnkFdpD3IwgtD2iESRIJyCJVlFzNtSwH+6Z5N48HMcg+9G3/m8YId1TIlhRmqx+A7E8jO/sTc00GXdQzgkI+HTXgx2OH6XFhXCs9N6cqCsnteWHwRZA/1vQJf3C5Tt/fU6VVX5dlshIzpGE+Ep850UFUWCcBTt5BeRp7wS7DCEFsI8+Ab0eLhEu5rr3t3A2oONlUX2SpzvTsG1+K+gqk0ak7O2FEWViI6Oa9J5T0fHmBCyCmqQ+1yFV2fBu25WQOYpqmkgIdwIhTvwxnYTlYJNoTFRFC9V8cmG3CAHIwhtj0gUCcJJlNU5eeTrLIYkSEzKex5nXF+M4x8PdljHlRhuoloN8R2IRJFfKIpKyaJn6OTZxw/t/4+QmNbZc2R051im9knkjZ8PsLe4Dm3/a1FlHe71/6sq2pJbRUF1A1P6JEJt43bEIlEkCIJwduJ74E3ox23WXzDrZK6cvY7nvlyOc/YE9Lkr0a9/FdeC+5s0WaTUl1MrW5GacVJkcp9Equxuluc4cHS/HNO+b3HXlvh9nqIaB/GhRuTSLLHsrKk0Vu2PTPDyxcY8nJ4T78YqCIJ/iUSRIJyAqqr8Zd4O6p0eXolZgMZZi27qq6DRBTu044q1GqhFJIr8qWL/OlIzX2O+dzhDLrwx2OEE1KMXdiPEoOX/5u7Aa47G3flCNDs+A5ev7PvbbYUYtDLju8f/L1FkbZ79KwRBEFoSzYDrMFXv4/tLzdw/0MjlmbfhrTrM9tHv4x5yN/ot7+BuwmSR3FCJTRPeJHOdqXMyYogPNfLFpjx0Q29DVlw4173t93mKahx0M1UjO2vQJIpEUZMIiUVFYlS8hwqbiyVZxcGOSBDaFJEoEoQT+HJTPj/uLuWfQzzE7PsUV/9bkBOa95boWo2MxhLpOxCJorNmq6/DuuhOygljcer9pEZZgh1SQEWFGHj8ou5sy6vm9eUH0A2+GdlVizfzKzxehe8yixjbNZYQgxZqC1DN0aAzBjtsQRCElq/HdBSdGf3qf3FH9l0kGRr4s/lJpi7S8Ne6S7D1vx3dlndwL3gg4MkiVVUxuKpwGyICOs/Z0sgS0/snsWJfGZXGNOwpozBsew+8br/N4fIolNc76SbnACAl9Pbb2MIJaHSo5mhSdLW0izLz0brDwY5IENoUvySKJEmaIEnSXkmSDkiS9PAJrhsoSZJXkqRL/DGvIARSfpWdJxbsZEhaGJNyn8drjsUw7q/BDuuUmMJifH8QiaKz99OTGGsO8oDrNqYPa95JQn+Z0ieRC3sl8MLSfTydGYE7shPKhrdZc7CC8noXk3v7GpuqtYWoVrHsTBAEwS8MVtTu05EP/uTbgv2Ghfz7vpu549wOzN1ayJgdYzmUcQO6LW/j+vY+vyZD/qjK7iZMrUU1RwVsDn+5tH8KigrztubD4FvR2Utw7jx6x84zVVrnQFWhvecgqiRDbDe/jS2chDUe6ouZMTiVjTlV7CluHo3eBaEtOOtEkSRJGuA14AKgG3ClJElH/QRtvO6fwPdnO6cgBJqqqjzydRYq8EqnHehLt6OM/wcYQ4Md2imxhkf7/iASRWenKgfL1rdYYr6IfZYBjOnSenY6OxFJknj5ir5cPyyNOb/k8JU0Hl3JNrasW4bVoOXczr5EpFpTgBQmEkWCIAj+ohlxD84OE5BuWIyc2BujTsOfJ3Rh/h3DibAYGJM5jh8jLke/9V1cs87FW7A1IHHkVtqJlGrRWWMCMr4/pUVbGNQ+ki835WPqej4ecyzK9s/9Nn5RjQOAONs+vJEZoDf7bWzhJKzxKLVFXNo/Bb1W5uN1oqm1IDQVf1QUDQIOqKp6SFVVF/AZMOUY190NzAVK/TCnIATUvC0FrNxXxmNjYola/xzOlOHoe18a7LBOWWxkGHbVgGoXiaKzUpwFwKzqQVw6IBmtpu2s1tXIEo9f1I1HL+zGs4V9cGAg7eDHXJlaRd2ad6j64i6o2I8U2ny3TRYEQWhxojMwXPM5cmzn353umRzGt3eN4N5xnZhZMpWH5AdR60qQ54zFseQxcDf4NYzcinoiqMcU3nx3PPutS/snk11uY1NeHa6u0zFm/4hqq/DL2EcSReE1eyC+p1/GFE6NZE2Amnx0ssKFvRKYtyWfeqcn2GEJQpvgj289SUDeb47zG8/9SpKkJOBi4KR7VkqSdKskSZskSdpUVlbmh/AE4fSU1Tl56rtd9G8XwZTyt5DdNnQXvgCSFOzQTllCmJFqLDjr/PMhqa1Sy/cBcEBJ4PIBqUGOpulJksRNI9rzrxkj+FYZzlRpBY/k3UbM8gcJ3T8fR1w/6H1FsMMUBEFoE/RamXvHdWLB3SNYox/OGMc/KUq7GOO6l3G/NvzXhxv+UFpaglZSsEa2jETRxJ4JWPQavtiYh67flUiKG+f2r/wydnFNAwZc6O1FyLFd/DKmcGqkDueidVTinv8nLu2XjM3lZf7WgmCHJQhtgj8SRcf69vzHDnsvAf+nqupJ9zVUVfUtVVUHqKo6ICam+Ze7Cq3P3xfsxO708u9+5ZiyPsU14HbkuK7BDuu0JIabqFFDRKLoLHlK91FKJH06ppIa1XZLzSf0SKDHVc+wPO4Gisa9RsUNa2l44BDGmxdDyqBghycIgtCmdE0I5YuZQzGERDHmwCVsGfUukqsOz+fX+q2yqKqsCAB9aMtYcm0xaLmwVyLfZRbhiu6OK6ob0vbP/DJ2YbWDdIOvN44cJqpom1SP6VQOuIeIvZ+TseN5usZb+WjdYdQm2vlPENoyfySK8oGU3xwnA4V/uGYA8JkkSTnAJcDrkiRN9cPcguBX3+8s5rsdRfxlqInUZXfjiuyCYdxfgh3WaUsMM1GthuC1VQY7lBbNVribA954LhuYcvKLW7luXboy+vaXSBhxNVHtuhFi1CPLLafKThAEoTVJCjfxxcyhpEeHcPmPRjb1exZt1UE8Pz7pl/HrK0t8f2gBzayPuGxgMnaXl+8yi/D2vAxDyRaUsv1nPW5xjYPOFpvvwBp/1uMJp8c8/jEqu15N9I5ZPBy+lD3Fdaw9JB6ECkKg+SNRtBHIkCSpvSRJeuAK4NvfXqCqantVVdNUVU0DvgLuUFV1vh/mFgS/qWlw8+j8LHrGGbgy52+gKkhXfgz6lrcdekK4b+mZ5BA9is6YqqKvOkCOlMS4ri3jiaogCILQdkSHGPj01iH0Tg7nqp9M7Em+DM36N+Dw2rMe21nb2FK0BSWK+qVGkB5j4ctNeRj7XY4qybi2fHrW4xbVOuhoqvMdWBPOejzh9Bj1WgyT/0NN+oWMynmFGy2/8KdPt5FbYQ92aILQqp11okhVVQ9wF77dzHYDX6iqulOSpJmSJM082/EFoak8u2g35fUO3oz8FGN5Ju7Jb6CL6RjssM5IlEVPnWRF6xLbiJ4ppa4Us1KPJqYzZr022OEIgiAIwlHCTDo+vGkwIzvFMO3ABKr18Xi+vh1ctjMe0+VRwN5YsWGJ9lOkgSdJEpf2T2FjThXZzlCcKSPR7vwCFOWsxi2uaaCdrvHzlKgoCgqLyYA07U3qk87hb8osenkyue7dDVTaXMEOTRBaLb9s4aOq6iJVVTupqtpBVdWnG8/NUlX1qObVqqper6qqf7rLCYKfrDlQzmcb83i543YSs7/CPuR+jD0uDHZYZ0ySJDyGMIyeGhDruM/Ivl2bAUjp3DvIkQiCIAjC8Zn0GuZcO4DJAzO4vf4mtNXZOL9//IzHK6xuIJLGxEgLqigCmNYvCVmCr7cWIPe5Em1tHt7Da854PLdXobTOSYJchao1gTHcf8EKpyU0JAT3JR/gMcfyfPRCCqsbuPG9jTS4TtoCVxCEM9B29noWhOOod3j481fbmR66m0kFL9GQei7m8X8LdlhnzxiBTnX7fcvctuLArq0A9Oo9MMiRCIIgCMKJaTUyz07ryYhxU3nXcz6GzbOp37P8jMbKrbQTKdXi0ZpBZ/JzpIEVF2pkREYM87YUoO12IYrWjHvLJ2c8XmmdE1WFaLUSNSS+Re2A2xpFRETiHDCTqPJNvDsOduRXc/enW/B4z65qTBCEo4lEkdBm1Ts9HN67jTWz7+Nj+0xecD2FJyQBw+XvgqwJdnhnTRsS6ftDg+hTdLoURaWuYBdOyUBITLtghyMIgiAIJyVJEneNySBy8j84rMbR8PnNuAu2n/Y4uZV2IqQ6VFNkAKIMvOn9kiiobmB9gRNX54vQ7/32jB+aFdf47gv1VIhlZ81EyLCb8BrC6Jf3Pk9M6cGPu0t5auGuYIclCK2OSBQJbZPLjub9C2n36SjGln+IzZJC6dgXUW9biWxpmR+M/sgY6usr4LGJnSFO1/b8ahJcedhC2oMsfkwKgiAILceUQZ3YP+o1vIoX6e3xuLee3jbxeZV2oqU65BbUn+i3xneLx6LXMG9LPrq+VyK76vDu/u6MxiqsdgBgdpaJRFEzIRmsuPrdhOHgEq7u4ODqIal8tD6XklrHr9eoiliOJghnS3wDEtok7+7vMBWu5T3d5UzSzibmjkXEnnMjBkt4sEPzG3NYDADVFaVBjqTlWZJVTAe5EFNi12CHIgiCIAin7dxRY7nZ8G/2ajqi++Y2XAseBM+pNf7NrbQTp7UhhbTMRJFJr2FizwQWZRbhSh6OJyQBJfPM2qMW1zgAFb29GDksyb+BCmfMOPx2VI0e18qXuGlEOl5F5ctNeQC4dn6H+mwq5G0McpSC0LKJRJHQJnl2fEmtLoYn6i7iwekjibEagx2S34VG+hJFNZUiUXQ6VFXlp8wckqRyjAldgh2OIAiCIJw2rUZm0rC+TKn7M8XdbkK/eTbudyeBvfKk9+ZV2YmS6pBaWCPr35rWLxmby8sPe8rwdhyP5vBq8HpOe5yiGgexeheyp0FUFDUjUkgsrp5Xod/5Je31NQxNj+KzjXk49v2Mdt4NyO56yFkZ7DAFoUUTiSKh7bFXojv0E587BnNh72TGdYsLdkQBERXt+0BTX10W5Ehalp2Fteiqs5FRkaI7BTscQRAEQTgjVw5KQavT86J8PZ6L56Ar2ACb3zvpfbkVdsKUGiRLTOCDDJDB7SNJCjcxd0sB+o7nIrvqoOj0+zUV1TTQPcTmO7Am+DlK4WwYRt4DqhfXL69x5eBUwqt3ovn8Kjxh7VCsiSiFx//3vT2vmlH/Ws70N9bw4JfbeW35ARZlFlHvPP1koiC0ViJRJLQ57qyvkVUPSxjOo5Na79Ki2FhfAqyhpjzIkbQsi7OKyNAU+Q5EokgQBEFoocLNeqb1S2b+tgJqO05BiUhHLdh8wntq7G5cDht61QHmltuzUZYlpvVLYvX+MsqiBwHgPXj6u8AV1TjoZK73HYiKomZFimyPq/MUtFve4zxrLh8Y/kk1IWivnQ/JA4+bGFQUlVlzFzPHfjfT6j5h095cnv9+L3d8vIUb392IqqpN+0YEoZkSiSKhzanf9DkHlQSGjRhDbGjrW3J2hNUahkvV4rGdvMxc8FFVlcWZxYyMqEJFgqgOwQ5JEARBEM7YDcPScHoUPt2Qi5TUD7Vgywmvz620E0md78DcMnsUHXFx3yQUFebvc+KJ6YZy6PSXIhXXOEgz1PoOREVRs6MfeS+yux7jhxPRanRc0fAwFZpo5MTeyNU50FB91D1fbc4nrexnMshjhv1DftTczcZRWTxyXiobcir5fmcJiqLiVVQURSSNhLZLJIqENkWtySesdAPfa87h1lGtPAkgSdTJVhR7VbAjaTH2ldRzqNxGX0sZSlgq6EzBDkkQBEEQzlhGnJVzMqL5cO1hlIS+yHWFUFdy3OtzK+1ESEcSRS23RxFAekwIfVPDmbu5ANJGos1fD27HyW9s5PEqlNY5SNbU+E6IiqJmR0rsgyv9PBSdhbKpn3JQiWPulnxI6O27oDjzd9fXOtz86/s9jLbk4I3oQO3VP+CI7U3M+me4YeNUPjS/SNzci3H+dwje/3RHeW0wOOuC8M4EIfhEokhoU/Yv+wAZldihM7AadcEOJ+AaNKHIDpEoOlWLs4qQJEj25KNGZQQ7HEEQBEE4azcMT6O41sFaR6rvROHW416bW2knSmqsoLG07Ioi8DW13ltSR0HEQCSvA/JPfSes0jonigqxUhWqIRT0lgBGKpwp3RXv47lrCx16DmFgWgSfbchFje/le/EPy8/++9N+KmxO+kr7kFIGEdpxMJYb51Nz5UKcMT3pZq7B6VXJJxZ3VBe0FXshb30Q3pUgBJ9IFAlthqKokDWXXVIHLhpzTrDDaRJufRgGd22ww2gx9hTVkR5lQl99EDlG9CcSBEEQWr5zO8XSPtrCq3ssqJIMhcdffpZbaSfV0OA7aOFLzwAu6pWAXiPzSWkqqqTBe2jFKd9bVOOrPorwlKOGiGqi5krSWzCE+hqvXzkolZwKO2tLZJSQBJTfJIoOlNbz7i853NFTRuesRE4d7LtfkgjrfA7mG77Geu86Xkp+kStq/4QybY7v70uuSBQJbZNIFAltxrLVv9DJewBX1+kYtJpgh9MkFGM4FqUOh9sb7FBahOJaBz1CbEieBpEoEgRBEFoFWZa4bmg71uU5aAjriHKChtZ5lXbamxuXZ7XgZtZHhJv1nNc9js+2V+OO64166OdTvre4MVFkcZVBqOhP1BJM7JlAqFHLZxvyIKEXamOiSFVVnlq4C5New8wOjZu8pAz63b2yLKHXavjrxG5U2FzMWleKEtsDb+66pn4bgtAsiESR0CY4PV4Or/gABYle598Q7HCajMYcSZhU/+uHHeHESmoddNMX+w6ixdIzQRAEoXWY3j8ZnUbigK4TFGyF4+zslFtpJ9lgR5U0YAxv2iAD5LqhadQ0uNlr6oumaOsp95wpqvFVVhkcpUiikXWLYNRpuLhvEkuyitnhTUMq38+iLQeZsyqbFfvKuGdsBpbSrSh6K8R0OeYYPZPDmNInkTmrsmmIH4BcsAm8niZ+J4IQfCJRJLQJn2/I5Vz3SiqiByGHJQY7nCZjCI0inHoOltUHO5Rmz6uolNY56SgX+k5Ei4oiQRAEoXWwGnX0Sg5nbUMqckMF1OQddY3Hq1BQ3UC81gamSJBbx9eEgWkRdIm38nFpeyTFA6dYIVJU48Csk9DYSpBERVGLcfWQdgC8tseCjMLsLxfw9KLddI6zct2wNNTc9ahJ/UE+/uqCB8d3RlVhfkUyktsOJVlNFb4gNBut4zeAIJzE9o0r6CAXET7oymCH0qSiY+KxSE427C8KdijNXnm9E6+ikuTJQzGEgSUm2CEJgiAIgt8Mbh/J4qrGh2UFR/cpKqx24FVUIqVa1Ba+49lvSZLE9cPS+LoiGa+sw3vw51O6r7jGQRery5dcEhVFLUZGnJUdfx/Pc3deDcCb47R8c+dwvr5zGDp3PXL57l/7Ex1PSqSZ64a1442DjX268jYEOmxBaHZEokho9YprHKSX/YRX0qLrOTXY4TQpXYivv8DWfTnU2N3YnB5cHiXIUTVPR5bnRTtyUaIyQJKCHJEgCIIg+M+Q9Ch2eVNQJN0xG1pvyKkEIII6sLSeRBHAlD5JGE0W9uu7oZ5iQ+uimgY6W2y+A5EoalGMOg1Riekopkii6/fSOyUcs14LBZuRVAXpD/2JjmV0l1gK1GgaTPEouWubIGpBaF5Eokho9X7YVUxPKRtHZFcwRQQ7nKbV+H6rK4rJLKjhUJmNvcV1vh3ghN8prvUliqy2bCTRn0gQBEFoZfq3i8Ar6ykxd0TJPzpRtHxPKbFWA2ZPFZKl5e949lsmvYYrBqawqL4TmtIssFee9J6iGgfpxsZ+RiJR1PJIEmr8/xpaA6h5G1CRIGnASW/vFGcFoNDaS1QUCW2SSBQJrd6SzCJ6anMxpvQOdihNr3H51GL9w/T7YhAd500gbck1uLO+CXJgzU9JrQMrdgwNpWhiOwc7HEEQBEHwK4tBS8+kMHYo7ZGKtoHyvwpjt1dh5b4yRneORbJXIJlbV6IIfL1r1ijdkVAhZ9UJr/V4FUrrnKTqanwnrPFNEKHgb3JCb+TSXeBxAaDkrkeJ7gym8JPeG2XRE2HWsUvbFbk2H2oKAhytIDQvIlEktGqVNhfZOQeJUGvQJLTBRFHqUMrHvsCbTGOzcQjukERMZdvRrP1vsCNrdopqHGRoGns5iUbWgiAIQis0JD2Kn+uSkVx1UHnw1/Mbcyqpc3oY0yUKGqqgFfUoOiIl0kx056HYMOLa//MJry2vd+FVVOLlKt+JkLjAByj4nZTYG0lxQ9keUBSkgk1IKSfuT/TrvZJERqyV1Y5034m8U2uCLpwGZz3evT8EOwrhOESiSGjVftxVQmdyfAfxPYMaS1BodCh9rmZl0i086LyRw+PfoabDFOSKvcfdGretKqlx0Mdc7jsQiSJBEAShFRqcHskWb+MX3980tF6+pxS9RmZEksZXcdPKlp4dcc3wjqz3dsG+b/kJryusaQAgWqlEMceAVt8U4Qn+ltDH979F26F8H7KzBjn15P2JjsiIC+HHylhUrRk1d31gYmzD3PPvRPPppVCTH+xQhGMQiSKhVVuys5ih5sbtzuO6BzeYIIm1GpnQPZ6SWicmvQZrSk9kVx3UihLa3yquddBNV4wqayEiLdjhCIIgCILfDWgXQbaUjEs2ov6mofVPe0oZnB6JxdO41KoVVhQBDOsQxT5zX8Jt2SjlB4973ZENLqzucrHsrCWLaI+qD/H1Kcpv7DOUfBqJotgQKhwqzvi+KLmiosifvDvno9s933dQmR3UWIRjE4kiodWqc7hZvb+c4SFFeMPTwBga7JCCZnhH35PBjTmV6BO6+U6W7g5iRM1Pca2DNKkEJSwVNLpghyMIgiAIfmc16uiaGMFBTTpqY0XR4Qobh8psjOkSC7bGytpWmiiSJImYIVfSoOopnf/Ica/bU1QLgMlZKhJFLZkso8T1RCnajpK7AcUYAVEdT/n2jMaG1mXhvZFLssBlC1SkbcLXW/PZfLgKbBWw8H68oSm+F6oPBzcw4ZhEokhotZbvLcPlVUj3Hmqby85+o2NsCLFWA78cKIfYrgAoJSJRdISqqhTXOIhTSyA8NdjhCIIgCELADE6PYp2jHVJxJng9LNtTCuBLFNkrfBe10kQRwAXD+/OuNJX4/CV4Dh3d1Nrh9vLJhlzO7RyDxlaCHCp2PGvJ5IReyCVZqLlrUZMGgHzqX38z4kIA2KPrhqR6oWBzoMJs9d5ccZD7Pt/OvZ9vxbXgfmRnLZorPkKVZKjODXZ4wjGIRJHQan2fVUyqRcFUdxg5oVewwwkqSZIY3jGatQcrUIwReC2xKCW7gh1Ws1Hn9GB3eYl0lyCJRJEgCILQig1Jj2SrNx3J0wBlu1m2p5QOMRbaRVnA3lhR1Ep7FAGY9Vo8g++iUI3EsfD/QPH+7vW5W/Ipr3dx24gUJFsZWBODFKngD1JiHyS3HU3lATTtTq2R9RExIQbCTDrWujv4Tog+RWfk4/WHeXbxHrrEW+levQL9nvl4R/4ZEvugWhOgSlQUNUciUSS0Sg63l+V7S7mqfR0SKlIbrygC3/KzCpuLPcV1KNFdoUxUFB1RUuPAgAuLuxJZJIoEQRCEVmxAWiRZ+BpaO3M3s/5Qpa+aCHxLQqBVVxQBXHVOF15QriKkcifuzR/9et6rqMxeeYheyWEMifH4GnuLpWct2293PT6N/kTge9DaKS6ErHIJb3QXvKJP0Wn7ZlsBf5ufxZguscy/oQvP6t/hgKYDmhH3+i4Ib4ciEkXNkkgUCa3Sqv3l2F1exkWU+E6IRBHDO/o+9K05WI4U1wW5fC8oSpCjah6KahwkSY1PUcNTghuMIAiCIARQqFGHOb4TNslCyZ41uLwKY7o0bv9ur0DVh4DWENwgAyw6xICh7+VsUTJg2ZPg8PUkWrqrmJwKO7eN7IBU3/gZ0iqWnrVo0Z1QNQbfEqek/qd9e8dYK/tK65BSByPlbxSfnU/DDzuLuf+L7QxuH8nrl2Qgf3MHoZKdO+23sCm/HgA5oh3UiKVnzZFIFAmt0pKsYkKNWtLch3yN60KTgh1S0CWEmUiPtrD6QDnauG7IngbRPK5Rce1vE0WiokgQBEFo3YakR7Pd2x5d3jpCjTID0iJ8L9jLUc2td9nZb90ysgNPeK5F11CO8+fnUVWVN1YcIjXSzIQe8VBX5LtQVBS1bBqdr6F1bA8whJz27RmxIVTb3dTH9kd21kD53gAE2foszizirk+20iMpjNljJTSzR6E79COusf+g1NSBt1Ye8l0Y3g6pthA8ruAGLBzFL4kiSZImSJK0V5KkA5IkPXyM12dIkrSj8Z81kiT1PtY4guAPiqLy4+4SxnWNQyrJRI3rAZIU7LCaheEdo9mQXYk7qovvRNme4AZ0Kqrz8K55He/aWSib30fd8SXs+Q7qS/02RclvK4rCREWRIAiC0LoNTo/iK88IEtyHeTRqOTqN7yuBaqto9cvOjmgfbSG+6zC+ZRS6DbPYtmMr2/OquWVkOhpZgrpi34WhokdRi3fxm6jT3z6jWzs17nx2wNDdd0IsPzshVVV5+cf93P7xFnomWni/4wpCPpqI5HXhuWYBphG3c82Qdvy4u4RDZfUQnupb4lmbH+zQhT/Qnu0AkiRpgNeA84B8YKMkSd+qqvrbTrnZwChVVaskSboAeAs4vW5ignCKimod1DS4GZBqRd6/GwbcFOyQmo3hHaP4cN1hMl3x9AOUkl3InS8IdljHVr4fz8r/oMn6Ao3iOeplxRCGdME/kXpfcdaJwOJaBx10laiSBkmUmAuCIAit3KC0SG5Vz2GCdyPTKt9BKb4OOb47qr28Tf0evHVkB27feRkTzBtwLfk7kZa7ubR/su/F2kLf54I2UmHVmmliOp7xvUd2Psu0R9HHFIlUsAVpwA3+Cq3V8B5YTt3OH1h7sBxTpY058WaGa7Ixrd2Eo/MUjFNfAVM4ANcMTWPWykO8vTqbp/u28w1QdRgi04P3BoSjnHWiCBgEHFBV9RCAJEmfAVOAXxNFqqqu+c3164BkP8wrCMeUXWYDoKu+FMnjgDa+49lvDUmPQpJgxWEXva1JqCW7m9/607J9uH/6B9o93yJrDXj734h26O1gCAO3HdwNYK9AWfo42vkz8e76Fs3klyEk9oynLK5xMFZXiWpOQtL448eiIAiCIDRfYWYdXePDeKT4ZtZaHoWvbkGe+TOSrRwprkeww2sy/dtFkNounY9KJ3C9fT739bsDo07je7GuGDUkDuk0tlMXWp9Yq4FQo5b9ZfUQ2w21dDdincIfuGyoX96A1VnDuaoWjV5GY9OgukNwXfQ6xn5X/e6hbozVwPR+SXy1OZ8HB2UQAVAt+hQ1N/74RpQE5P3mOJ8TVwvdBCw+3ouSJN0K3AqQmip6hQinL7vClyhK8zSufRWNrH8VbtbTKzmcn/eWcndMl+a381l9Gcq7E9F4HHiH3Yt22J3srNazdHMJHm/Zby6MYML4T+mR+zHy8n+gvDoYefJL0G3KGU17pEeRKpadCYIgCG3EdcPasbsoEqnjy2i/mIHzp6fRN1SCpW0sPTvi1pHp/N+H53O5YTHT6j8GJgCg1BWJ/kQCkiSREWdlf0k9cnJX1O2fgaqKtha/UbbiLWKcVVytPsUNV1zO2K5xJ73nphHpfLohjw92ufiTpEESfVObHX8kio71t0Q95oWSNBpfomjE8QZTVfUtfEvTGDBgwDHHEYQTyS6zYdJpCKvejarRI0V3CnZIzcqE7vH8c8ke6od0JOzwalC8IGuCHRaoKt75dyA7a3Hd+BMLiiP48P19bM+rRpJAK//vR41HUVmys5il992N3Gk8yrxbUb+8Hun+3Wf0oa6k1kEspUjhbecpqiAIgtC2XT7wyAPZ7jh7zkC/9mVfr5A2ttRqXNc40tu1Y7vmcobu/wBK90BsF6gtQoo+8yVLQuuRERvCD7tKoF8XJFcd1BZAmFggA7C3oILQX15lM135y23X0T0x7JTu6xgbwtgusby/roC7QpORq3NFpVYz449aynzgt4/hk4HCP14kSVIvYA4wRVXVCj/MKwjHlFNho12UGbU4EyW6C2h0wQ6pWZnU09d7YKsjAcnrhMrsIEfko258G82BH1jR7m4Gv13Eg19up97h5u8XdWP74+PZ//TEX//575V9OVRm44edxRDbBc2EZ5BUBUqyTntel0ehut5OmKccWex4JgiCILRBhgv/iTe08eN8G2lmfYQsS8y9fRjDZjyOqjPhWvYcAFJ9UZvq1yQcX0aclUqbixprhu9EaQvYDKYJZBXU8PGcf5NAOXET/3LKSaIjLuydQKXNhcOShFqVE5gghTPmj0TRRiBDkqT2kiTpgSuAb397gSRJqcA84BpVVff5YU5BOK7schvp0Wakkiwk0Z/oKKlRZnokhbKwqPGHeemuE99wFhpyN6O4nSe/sGwv6vePsEnbn+t39WVgWiSf3DKYH+8fxfXD2xNq/H2y74IeCbSPtvDazwdQVRViuvpeOINf3CW1DuKlSmQUEIkiQRAEoS0yWJGmvYWiD4HYrsGOJjgsUXgH3IJuz3wo3IrkqBFLzwTAV1EEsE9prCIK4GfnlmJLbhVXzV7Djeo32CO7kTxw8mmPER9qAqDelCR6FDVDZ50oUlXVA9wFfA/sBr5QVXWnJEkzJUma2XjZY0AU8LokSdskSdp0tvMKwrF4vAp5lXa6hzqQ7eXIIlF0TJN6JrK4xJcoUkoD1KeoOhfTO2NwfDwD1eM67mVel4Oy966h2qPnEWUmb14zgNnXDmBYh2ik46z/1sgSt4/qQFZBLSv3l4MlCjUkDs7gvZTUOkiWyn0H4aJHkSAIgtA2adKGIv3fYUgeEOxQgkY34h5UnQnPggd8J0RFkQB0irMCsKdGgxIShxqoz84txIHSOq6Zs56L9NtIowDj6AfPqGdTXKgBgAptHHJ9Cbgd/g5VOAt+aeOvquoiVVU7qaraQVXVpxvPzVJVdVbjn29WVTVCVdU+jf+03d9AQkDlVzXgUVR6aRuz0qKR9TFN6pmAHSM1hkSUkgD9sivcBoA5Zyn2L2eiKt6jLimobmDBS3cSY9vLpwl/5pP7p3B+91N7eje1bxIJYUZeW37AdyKmK8oZPOEprnWQRGOiSDSzFgRBENqwNr/zZ2NVkbZos+84VCSKBF9Cw2rQsr+0HmK6oLbhpWdeReXPX+1Ap5H4a9hiPGFpyGe4mUxcqBGAQqmx+XVN3gmuFpqa2O9RaFWyy307nrU/suNZXPcgRtN8HVl+tldJQgrUzmfFmaiSBtvg+7HsnUv9/Ad9u0Q0WrNjD7+8dC1T7V9xsN3l3HHb3USHGE55eL1W5taR6WzIrmRjTiVSXDeksj2gKKcXZo2DZKlxRzXRmFAQBEEQ2jTdiHtQdGbfgagoEvDtfNYxLoR9JXXIsd2Qyk//82ZLpyi+z/Afrs1hS241rwyuw1y2HUbcA2eYYLYYtFgNWnKVxgb6YuezZkUkioRW5UiiKKp+L97wNDCeXlO1tmRizwQ2NSQgVxyAEywNO1Peou0oURlYJjxGfb+ZWHe8Q92SJ3E0NLD07UfpMXc00/mRyh430uHql4+7zOxErhiYSqRFz+vLD0BsVyS3/bR/yRTXOEjVVKCExIP21BNVgiAIgiC0QpYovANvRdXoITQp2NEIzUSnWCsHSuv/93mzpu301FFy1lD59Z/Z/81zbF3yHlcmljEw72285li0fa46q7FjQw3sc0X6DqpEoqg5aeP1pUJrk11uw2rUoi/bCXFiq/MTmdQzgRd/SEZSPVB50O/NK6XiTGg3HCSJkIueo95Ri3X9f6jY+D7nKRVkmQeRfvVLRCadedWXSa/hxuFp/PuHfRzqm0o6+PoURbY/5TGKax1coK1AFcvOBEEQBEEAdOMew933WnTG0GCHIjQTGXEhfL4pj1prR0LB93kzIi3IUTUN9ednic5ZSTTwsgao9J13j/k7Gp3xrMaODzOy36ZBlXVIoqF1syIqioRWJafCRtcoDXLVITSikfUJtYuyoMR09h34uymfrQK5rvDXZuJ7S+p5RnMr3yojKPOYWdL7Fbr/+QfMZ5EkOuKaoWmEGLS8mtWY9z7NPkUltQ4SpXIkseOZIAiCIAgAsgZdTIdgRyE0IxmNDa33KY1VZm2lobWqIhXvYG/SNHo73uKjPh9TOPFdKsa9jG7YHWc9fJzVSHGdGzUsBVVUFDUroqJIaFUOldm4OK4MqUJtu9u7nobuvQbgXSlRf3gHYT2m+W/g4h0AbHYl8++31rH2UAUGrYynzzN0GJbGhET/LQkMM+m4ekg73lx5kH/FpKAp3c3pLGIrqbET4y1DjhCJIkEQBEEQBOFoGbEhAOyulugXmgSlu9tGxUX1YWRHNV8URJPRLoWrJg9Flk+/XcTxxIYaKa1zQEIqavXh0/oMLwRWm/jvW2gbHG4vhTUN9NIX+k7EdgtuQC3AhD7tOazGUZ693a/j2nO3AXDz905yK+08fEEX1v1lLP+6pDfd/ZgkOmJMl1hUFapCOqKeRkWRqqqotSVo8YgdzwRBEARBEIRjSggzEm7WsWpfWePOZ22koqhxF+OtnnY8N72XX5NEAPGhBtxeFZc1BcTSs2ZFJIqEViO30o6qQns1D1VjOK0+NW1VuygLxYY09JX7/Dbmqv1lrFi1jCI1kpkXDGLFQ+cyc1QHIix6v83xR90TQ5EkyJHbIZXvB6/7lO6rtLmIUUp9B2LpmSAIgiAIgnAMkiRx7dA0fthVQqWlI3L5PlC8wQ4r4HJ3rsGtahg98lw6NlZV+VNcqK/HUY0hEdleDi6b3+cQzoxIFAmtxpEdz2IbDqFEdwJZE+SIWgZdQncSvQVkF5Wf1TgOt5enFu7imrc30IUczKl9uW1UB7SawP+YsRi0dIwJYZszAUlxQ8XBU7qvuNZBslTmOxAVRYIgCIIgCMJx3DSiPVajlgVFoUheJ1RmBzukgHJ6vJTsWUe2nMotowPT0iO2MVFUro3znajOC8g8wukTiSKh1TiSKLLU7EcS/YlOWac+I9BIKt8v+vqsxnnlp/28vTqbm4ckkKYWENa+n58iPDU9k8L4uSrKd3CKy89Kah0kS40JsnCRKBIEQRAEQRCOLcyk46YR7ZmX39hGoax1Lz+bveIgHbwHCWnfH6MuMA/g48N8iaJCYn0nqptvQ2unx8s32wpYd6gi2KE0CZEoElqNnHIb7SxutPWFyCJRdMrCek7EpgklJedLDlecebnnLwfKGdQ+kr8NVJFUL8Q37a5zPZPD2FQfjSrJp7wTRVGNgySpHI8xEvSWAEcoCIIgCIIgtGQ3jmhPqaGxXUHpnuAGE0B5lXbmLl9HpFRPYtehAZsnJsQAQI432neiGfYpOlhWz9Pf7WLIMz9xz2fb+GJj26h6ErueCa3GoXIbI0LLoQrRyPp06Iw4u13KeTve47mlm3jsilGnPUSDy8vOwlpuHZkOxet8J+N7+jnQE+uVHIYTPTZLOyylu05p14SSGgf95HIkUU0kCIIgCIIgnESoUcfV53Qjd0UMITnbiDz9j80twt+/3UlPuXFpXULfgM2j18pEWfQcarCgao1IVTkBm+tY6hxu9pXUsae4jr3FddQ0/L7PaVG1gw05lWhlifHd47hyUCrDO0Q3aYzBIhJFQquRU27j0uhi30Fsl+AG08KEj7gFOfNtdFmfk1c5kJRI82ndvz2/Go+iMiAtAvVAJuitSOHtAhTtsXVLCEOWoFDfno6lu08pUVRc66CdXI4U3rTL5ARBEARBEISW6frhaWxelUqH/Cwigx1MACzdVcJPe0qZ17kaNVeDFBfYB/BxoUZK65yoYb6dz/y7r5qPx+Ukf98WCgoOU1FSgL2yEFddJcUOLbVYqFZDcOqsJBldJCsFpCoFpCiFRFBLZXJf4vpOJKpXf7DGBCC65kkkioRWod7pobTOSafYPFSdGSlM7GB1OuS4rtTH9ueykuW8vvwAz04/vWVjmw9XAdA3JQJ11XaI74kkN+3KVpNeQ6c4K7u8SWTULAd3A+hMJ7ynqLqBBMqRI5o2qSUIgiAIgiC0TFajDmtKT+JyP2RrTil902KDHZLfuDwKf/92J53iQuilOYwS3QXNST5Pn624UAMldQ4IT0WtOuy3RJGqqmzPr+HbLYe5cOtt9GM3ab953YMGre4PO9c5G1+zJuGN6Ihq7EZM3ho0S7+Hpffgju6GbvBNMPBmP0XZfIlEURNQVRVJCkRuVDgip7GRdaIzGyWmC5omTlK0BobBN9BhwV0c3rqUgrEZJIWf+i+FLYer6BBjIcKkQS3dBX2vDmCkx9czKYy1u2OZigpleyGxzwmvd9SUYsQpdjwTBEEQBEEQTln3PoPR573HW18vpX3X/ngVFbdXRZJgxuBU0mP8v5V8U9hXUkdBdQMvX94beel2yDg/4HPGhRrJLKhFbp+GUrDlrMersrn4YO1hvt6aT06FnT/pvqGfZjfbO92DtfM5JKe0Qx+WgFYfAh4nOKqhoRrFXolksCBFdUSrt/wvUaIoqMU7cO37EengcmioOusYWwKRKAq0gs3YV71Ow+gniIpNEgmjADmy41l4/UHkLoH/gdYa6XpOw7PkYS7zLmPWz+fz1NQep3Sfoqhszq3i/G7xUJmN5LZBQtM2sj6iV3IY722JBwNQtuekiSJNXb7vD6JHkSAIgiAIgnCKjIm+z8ly+R5mr4pAI0toZRmXR+G7HUXMu2MYiafx0LW52FdSB0DvUBuyvRySAtef6Ii4UCMVNifesBQ0jipw1IIx9LTHqbG7mbP6EO+szsbu9jI0PYqH+7g4f81cPF0upvflTx59k84Iuniwxh9/ly9ZRkrsgyGxD5z74GnH1VKJRFGgFWdi3vcNhuyllA19BOvQmzAZdMGOqtXJKbcRQS06R7loZH2m9Ba8PS5l4raP+cfG3dwxugMJYSf/BXeo3Ea13U3/dhFQvMF3sokbWR/RIymMHDUer6xDU7rrhNfWOtxEuIpBD4SLpYqCIAiCIAjCKYruhCrJvDbOBKMn/np6V2Etl725luvf3cCXM4cRZmpZ3/v2ldSj18gkO/b5TiT0DviccaFGVBVqjYlEgG/ns/hTe2ANUFZVyzvLd/Lh9lrqnR4m9UrgnrEZdIrU4X7jHBRzNNqL/hOw+FsrsT4n0PpfT+W1y3BGdiX25/9Deft8Sg9sQVHUYEfWqmSX2xhqLfMdxHYNbjAtmGHQDehVFxdJq3hzxaFTumdLY3+ifu0ioDgTVdZBTHD+HXRNCEWStZQb01BKTpwo+ml3CUlSue9ALD0TBEEQBEEQTpXOiBLRHqVkN6qq0uDyUlXvJEop4+XzQlDKDvDX2fOoOLwTT0NtsKM9ZftK6kiPsaAt2YEqyRB36gmbMxUXagCgVI7znajOPaX7duRX8+evtrPmxSu5d/uFPGv9ks+u7cKrV/alU5yVhu+fQFe5D6a8BubW2HY8sERFUROISutFw/XfUbL+A6J+eRLzx+dROeAeQs57GINeH+zwWoXsChuTzcVQg0gUnY2E3rjjenNz1SrGbpzAn8ZmEGk58X+jmw5XEm7W0SHGglK0A6I7I2mD89+1UedraH3AmUJM6e4TXrtwexETjFWoGiuSKbxpAhQEQRAEQRBah5iuePM2UvXNo5jKd2At24HWWUUcMFYPVALvgsccB7evAmtckAM+uX0ldfRNjcBbsBWiO6PRn95OyGciLtQIQD6xdAaoPnzC6xdlFvHGzwfJLKihq66E5zS/YLO258K6r/B+8yOlRQ9giu+MddMbOPvcgKHTuIC/h9ZIVBQFWI3dzcp9ZZgMWuJG3kjtzWup6XARURtfwPPuZGpLTy1jKpxYdrmNbpp8VEMYWBOCHU6LJve/jiTXIbp49vPB2pyTXr/5cBX9UyN8/beKM5ESgrPs7IheyWFsbohHrs33rXE+hpoGNyv3l9E7pNa3FacgCIIgCIIgnAZNUl90tiJitr+O1l5GbbvzKTnnaUrOe5Wy8a/ybYcn+T/3LSgN1Ti/vBkUJdghn5DN6SG/qoHOsRak4u1ICX2aZN4jiaICpwlVZzlhRVFprYM7P9mCzeXhicnd+bTrGtAYkG9YRMFlS3BEdiVu1d8I/fJSPGHtMUx8ukneQ2skKooCbM7qQ/x32QEm9UrgsQu7EReTgPvKdyhbM4qoFX9BeWcUlRNeIaL3haLR9RmqsrmotrtJseaixnQR/z+eJU2vS1GWPspszau8uLoM24hHsRgNx7y2yubiYJmN6f2Toa4E2VbaJGuZT6Rnchg/bU709R4q2wMpg4665oedxbi9KklyOYSnNXmMgiAIgiAIQgs39C5K40eiRmVgsoQQqtOg1fyvDuOioSqZi3bz2BqV53LnkPvdc6Re9EgQAz6x/aX1APQIa/B9pj/JpjD+EmXRo5UlimudqNYE1NrC41azbM+vQVXhX9N70dNSg37p19j73IAlMgFLZAK29G8p3rEAy473MIx/DPSWJnkPrZGoKAqwu8Z05P7zOrF0VwljX1jBu79kIwEx59xAzTU/4jbHETn/auxL/h7sUFus7AoboBJtP4gUJxpZnzVjKO4rvkRrieIZ/kv9KyOw7frhmJduyfX1J+qf6utPBAStkfURvZLC2af6qoTU4/QpWrijiJRIEyZ7IXKEaGQtCIIgCIIgnCadkdhOg4iLiiDUqPtdkghAkiT+Oqkb4656iB+loSRs+jfvfv4lDS5vkAI+sX3Fvh3PuqoHfSeaKFEkyxKxVgMltU4ITYKaguNem5lfjSxB98QwXCtfRJUkDCPv+fV1i1FH/KBpGK6fjz51QFOE32qJRFGAGbQa/jQ2gx/uHUm/dhE8sWAXU177hQOldUS064F0y0/Udr4Ey/qX8B5ed9xxXOU5lGf9hNvTPH+wBFNOuY0YqtG7a5HEjmd+YegwnLB7fuGFkIfw2quxfHEprg8vA+X3//1tPlyFVpbolRyOWrTdd7IJmt6dSKf4EErlaGzacNy/vIpqq/jd61U2F78cKOfOhL3IzlqITA9SpIIgCIIgCEJrN657PIPu+YhaXTRjd/6FS15azKacymCHdZR9JXUYtDIxdXt8jayb8OFvbKiR0joHUlgi1BUe97rt+TV0irNCXSGWXZ9h73YZ2oij20jotSLNcbbE/4NNJC3awvs3DOS1q/pRUutgxpz15FfZMZosWKe9jMccg/eHv4N6jN3QPE6kjy4m+qtpuN8cTcWWb3C5//eF3auo1NbXUZH1I5V7VuF0u5vujTUDP+0ppa+xyHcQ2yW4wbQiskZD74m3cK7jeXak34L+4PdwcNnvrtl0uIruSWGY9Bq8uxfgje0OQW4MbdBq6Bwfzn/CH0Fbm4vzg0tRnfW/vr5kZzFD2MGl2Y/ijOsLfa8OYrSCIAiCIAhCaxcaHk34NR+QrKnkHscsZr75PbPmL8OevwNXzjrUuuJgh8jekjoy4kJQi7ahRGU06bKtuFADxTUOpNAkpLriox5OA6iqSmZBDT2TwnCt+i+S4kE38oEmi7GtEYmiJiRJEpN6JfDxzUNocHm59p0NVNpcSIYQ1HMeQl+wFu++pUfd51jxIrrqQ+R3vQm5oZKob6/FO2sk5b+8T/miZ2iYM4mQFzsQ9dV0Ij+7EPnFblR/9Seqdv6I2+0KwjttOkU1DSzJKubSVF+pJKKiyK/GdImlXWwEj1RcgGKKxLvp/V9fc3sVtudVNy47y0JbtBW5mSRdeiaH8UV5Gu6pszGUbsXx8QxUjxOA3eu/Z7b+P3giOqK9dh4YrEGOVhAEQRAEQWjtNO2G4B35MOOVVWwyzGTmtosxzzkH/Xvno77cB9eaN4Pa8Hp/ST2dYq1IRduQmrjnaHyokZJaB4QmIqleqC896pqC6gYqbS76RHmwZn2ArdNUDLEdmjTOtkQkioKgc7yVt68fSEFVAze8txG7y4Nu4A14QlNRfnzidz8glPJD6H55gR/lYYzYOpYe5U/zV/UOKioriF76J6I3/BN3XRmVXa+mYvIHVEx4g4a4AYTu/pyIL6fDf7rj2P9z8N5sgH207jCqqjI0pBTFHA2W6GCH1KrIssRtozqQVeIgL2Uy8v4lYCsHYFdhLU6PQv92EXi3fICq0SP1viLIEfv0SgqjzuGhKGEcDef/B1Puz9g+v4WCrNU8VP4o9fpY5Gvno7FEBjtUQRAEQRAEoY3QjXoA+6TXqRv9DBt6PcUD3Mftyp8pDOuL/oc/43r3ItSqE28PHwg1DW6Kax30jnAi15cgN1F/oiNiQ43UOjw4zY27V9cevfwsM78GgBEVXyJ5HEgj72/KENsckSgKkoFpkfz3yr5k5ldz+0dbcEta1NGPoCvLwpM5DwCX28vB92/H7tUwy3ATz07ryf0TuqPpN4O/p77H3abn6O+YRd+yvzN823nctSmOhcow9Fd9hOO+fVRNmoNiCEX/6aXYt80N8jv2P4fbyyfrcxnXNQ5z9T6I6RrskFqlyb0TSQgz8mLFECTFjbL9M8C37AxgQLIZaccXKJ0ngfn/27vz8KjK8//j73uW7GQBIUDYCUZZBAUBLYh7Ff02arVaFCnSWqxLbdXWLlYvrf6q1n5b2/6s1hbEqm2hFtAqVq1ad8UqS0AIBcRACLJllWzzfP+YA4aQQDCTzEzm87quuWbmnPOcc5/cME9yz3OeExuFl1H9sgBYsbmctIkzqZr8YzKKF9FnwZfY7TLY/uX5BLN6RzlKEREREUkoPj9px19KtylXM/6C67jxO99nV79TmbT5av6V/yMCW9/H/f8TqX9nTstTknSQ4rLw1RmjgyXhBZ18c5remSkA7PD1CC+oOHBC62Ul5aT5G+lf/BhVQ84mPS+686J2dYFoB5DIzhzRm7vOH8XNT67girnvMnnoWC7KyCf5+dtZnXMyT/319/yw6i3+3vtaHrniPNKTm6drIrtr6nhnw07eWr+TN/67nVsXF/Hrf61j9pQhTJtwPoGjT6XuTxeRunAW1ZXbSJ98VTROtUMsXraFXTX1fO3EgdhfP8TGxMZlT11NUsDHdacN4wdP7uFryfnkvvx7yvpdynsf7SQvO5XcLS/Anl0w9vJoh7rPkbnd6JYc4I6nV7G7po6LT/ouFbVVVCxdwA/Sf8yjR2ouKxERERGJrj5Zqcy7YgI3zl/GFcuMmyY8yjd23kfSM9fT2PAp/hO/1SlxrPEKRYNC3mimXiM65bh75XqFolLXnb7Q8oiizbuZ3LMa3+4KfEed06nxJaKIjCgys7PMbI2ZrTOzm1tYb2Z2v7d+uZkdF4njdgWXjB/Aj885muUl5dy1pJibdhaSVvURix78CbOqHmRn5lGcf+VtLRSJwrLTkjhzRG9+8j/DWXL9Sfz5yokU9M7gp/9YzeS7X+LBpbvY9eX5fDr4TNJfvJnqZ35CbX0De+ob93vU1NZTXV1N1e5PqN6+qcUJxGKJc465r2+kILcbJ/SoweqqNZF1B/rq+AE8fe0k1vc7nz51G7ntgXk8u3IrYwfm0LD0ERoz+8Pgk6Md5j5Bv49Hvz6BQT3SuWVREaf+4hUWZH6NyZ/ew7hjx2Jm0Q5RRERERISkgI9fXjyG6RMHcu/be7gl807q8s/C98It8PG7nRJDcVkV6Ul+MsvXEMrIhfQenXLcvXIzkwHYXJeG8ycfMKLIOcfyknJOyAkXtNJ653dqfImo3SOKzMwP/BY4AygB3jWzxc65VU02OxsY5j0mAA94zwJ8ffIQvj55CBV76inZMYnt81/gx7sfw2E0Xjgf/G1P08QhPZg4pAdLN+7kVy8Wc8+SNdyzBMb2v4af9Eph9Du/omHZPDAfuBAQwkKN+Bo+DU8c5mk4fjaBc+7ugLONjHc37mJVaQX/74JRuLJVGGgi6w42Mi+LkdOvI/Tz33B33gfcEhrPtAIILH6F0JSbwRdbV7KO6Z/NX745kVfWfsK9z63h9qfDH0nnHtM3ypGJiIiIiHzG5zNuLxxBdlqQX/9rHfVHXcU9GUXYX2fgv+q1Dp/eYc3WSobldoOyVZ0+mgggNys8oqisohbXrS+uYst+I1o27qihck8DI1PDU19YzuBOjzHRROLSs/HAOufcegAz+zNQCDQtFBUC85xzDnjLzLLNrI9zrjQCx+8yMlOCDM/LovFLd8K8c6kd8zVSBhz/ufY1blB3Hp01gXXbKnmuqIxnV5ZSuPkrXOrvwVhfCZmpSWSmJZGZmkxORgpJqRkQTIekNFI+fpWU9/4Ik66FrH4RPsvImPv6eialrGfqxn/gihfjAilYT40o6nApmYSGn8ewD5/irzf+htBrv8RhMXO3s+bMjJMLenHSsJ4sKdpKafke8ntlRDssEREREZH9mBk3nFlAdloSdzy9iqS8m7hr1400LPgGgcvmd+iXssXbKjm9oDv24Rps6JQOO05ruiUHSA369935jPL9RxQtL9kNwEArwwVSsYxenR5joolEoSgP+LjJ+xIOHC3U0jZ5gApFLfAPmUz1Fa+Qntf+am5+r27k9+rG1afk8/HOGv65agQvbtpF0eZyNn5cA0CS38ed54/konH9w412X4C7/1jqX76XYOGv2h1DpLhQiD0ff8DuZU9x49onGOIrJbQ2lU/zzyV4wjdISs2OdogJITB2Bix/Arfyb7j3HyM0+BQC2f2jHdZB+XzG1FF9oh2GiIiIiMhBzZo0mCMykrhp/nL6ZMzk2+sfpPHV+/BPualDjrejqpbtVXWM67YLa6yNyogiMyM3M5myylosKw+36e391q8oKSc54CO7bguh7EH4NY1Eh4tEoailLDWfor0t24Q3NLsSuBJgwIAB7YssjqUPGBPxffbvnsasSYOZRXioXuWeelaXVvKrF9dy04LlrPukiu9/8Sh82f1pGDOdwAePwknfhZyBEY+lrRpqytnz4Quw7nmSN75Ias02UoF3KSBp8nfoc+JXSU/NjFp8CWnARBpzhmLP34r/051w1p3RjkhEREREpMsoHJNHbmYKV84zjrKVnPnSXYT6HY9v6Mlt3kfjykWE1i4hWHg/+IOtbre2rAqAEX7vjme5nV8ogvCE1mXle7ChfaGqFEKhfaOolpeUM7xvJr7dH+Gi+LdpIonE+LUSoOlwgn5A82nK27INAM65h5xz45xz43r27BmB8KQ13VKCjB/cnbkzx3PphAE8+Mp6vvmn96iubSA45UYwH/Uv39Ppce0p30bFm3OpnvtlfPcNI2PxFQTXPsUK/wjuCFzLuD0PMKfgAfqd9k38KhJ1PjPsuOn4Pt1JKKU7FEyNdkQiIiIiIl3KxCE9WHDVF7g3+C3Wu96EHvsK9Uvntalt/ZsP4Fswg+Dyx2HjqwfdtnhbeILo/g0bcOaHngXtjv3zyM1MoaxyD2TmYY11ULMDgMaQY+WWco7pm4nt3oh11/xEnSEShaJ3gWFmNtjMkoBLgMXNtlkMXO7d/WwiUK75iWJH0O/jp+eN5Nb/Gc6Lq8u46HdvUkp3Go+dQWD5E7BzfccH4RxVa16mes75JP+ygMznvk1tyQoWB77ItPpbGF71ANPLZ7NpwHlcf94XuOfC0R0fk7TKN2Yazp+EGzMNAsnRDkdEREREpMs5Mrcbj11zOj/OuZe36vMJPn0t2x6fDQ21LTdwjoZ/3kbwuZtpGHYWLphGqGjRQY+xZmslmSkB0nZ+iOuRH7Xf7XMzkymr2IPL9KaL8O58tv6TKmrqGjm+VwhffQ1+FYo6RbsvPXPONZjZNcBzgB/4o3OuyMxme+t/BzwDTAXWATXAzPYeVyLLzJj5hcEMOiKdax9/n5lz3uXJ6d8m5f15NLx0N8EvP9j+gzQ2UF2xE396DgG/n4DfxycVNWx4fQF9VvyO/jVF7CCLuQ3n8mzjeIobhjK6fw5jj83h2mE9GTswh6RAbN1ZK2F1yyU0+0382bE52bmIiIiISFeQm5nCvGun8sSbR7HmhTuYtfYJNt77PmmXPUbPfkM/2zDUQMOi6wguf5z6MTMIful/CS2YBR8+Defc1+qdtIvLqijo3Q22rcL6jeukszpQbmYKe+pDVCflkgFQsQX6jmFZSTkAo9PDdzwjZ1C0QkwokZijCOfcM4SLQU2X/a7JawdcHYljScc6paAXv730OGbOeYcbni3j/rGzCLz7AEy5CY7Ib9e+6x//Kun//SchfFT7u7EjlIGvsY7xvk/YFOrJfcnfZPPA8xk+MJefDurO8D6ZKgzFMH/P9v17EBERERGRQwv6fVw+KZ/ysQ8zf8EEzl53O/6HT2AzmdS6IHUESaGWwb4y6id9j+BpPwQzfCPOg1V/h01vwOCTDtivc441ZZVcMCIT38pNMHZG55+cJzczBYAyXw+vUBQeUbSiZDdpSX7y2BbeUIWiThGRQpF0LVOO7MkPzj6aO59Zzdwphczy/5H6F+8k6eI5n3+nJUsJ/vefLGw8kY9cLr1CVQxK28MRySGWH3UzAydP44aMtMidhIiIiIiISBeSlRrkounfYsu6yWx94Vf466sJuDoCoTpq6mq5Yff5dKs5j1vx7iY17ExcMA2KFmEtFIo+qayl/NN6jk/bGl4QpYms4bNC0Zb6DIb4AlhFeErj5ZvLGZmXhe1eHt4wO3FveNWZVCiSFn198mBWl1Zw5yubOWX05eSvfpDq+cmkFf4CSzr8gs7Wp24nyWXw1ohbuOiEozmmXxZBv0YLiYiIiIiIHI6++aPom//wfsucc+T8YzUPv7aB7LQg159+JCSl4fLPgNWLsan3gM+/X5s1ZeGJrAtsU3hBFAtFvb1C0daKOlxGH1zFZhobQ6zaUsH0iQMJ7ViPZfTGF0yNWoyJRH+pS4vMjLsuGMXofllcsHoKm0d9i/SiJ6h78DTqthUf1r6qNr5L77JXWJhyHrdfOJGxA3NUJBIREREREYkQM+NH5xzNhWP78csXipn7+gYAfCMK8VVvg4/fPqDNmq3hQlFe7XpccjfI6n/ANp2lV2Z4Eu1Xi7dTk5JLaPdm1pZVUtsQYlS/LNyujYSyB0UtvkSjv9alVSlBPw9OH0dycjJfKT6D1ac+jL9qC/7fn0z1B0+2eT8b/nYb5S6N479ys+YcEhERERER6QBmxs8uGMWZw3O57alVLHx/c/jys0AKrmjhfttW7Kln7hsbGdIznaQdq3E9h4NZdAIn/LfnyLxMFi/bwkulAT7+aB1XznsPgNH9srHdH2G641mn0V/tclC9s1L4w4xxOOc4d0k6fxw5j7qcYaQvnEnVo5dSs3nlQdu//86rjKp8jWV50xg1NHoVahERERERka4u4Pdx/1eP5YQhPbhx/jJe2vApbuhpuFWLIRQCwpep/fDJFZSW7+HnFx6DbVuFr3f0Ljvb66lrJvHyjSczvOBo8ny7GNg9lVMKejIwy4evshRf90HRDjFhqFAkh3RMv2yevf4kCkf35a7Xq7i04VZKjrmW1E0vkfr7SVQ9/jU+LV19QLvq2gZ2LbmTKtIYf8kPoxC5iIiIiIhIYkkJ+nno8rEc3SeT2X96jw29TsdXVQqblwIw/70Snl5eynfPOJLjsqqx2oqozk+0l5kx6Ih0hg49kiRXy+OXFTBn5nisvATDYTkaUdRZVCiSNslKDfKLi8fwwKXHsWF3Paf95wv8/tiF7D72KtLWLyHloROpemwGlUXPE2psBOCRhc9wauhNdo2cSUpmjyifgYiIiIiISGLolhJk7szjyctJ5bJXcwj5knBFC/nvJ1XctriIE4b0YPaUoVBWFG7QK/qFon0y+4afvTufsWtj+DlnUDSiSUi665kclrNH9WHsoBxuXVTEz/69lTmZp/G9ky7i9J1/JmPVE/iLF1KZnMsS/8kUVK5lTzCV/lNvjHbYIiIiIiIiCaVHRjKPzprAhQ+8wWt1o5iwYiHXrTmL5ICP/714DH6fwTavUJQ7PLrBNpWZF36u2AK9R6pQFAUaUSSHrVe3FB64bCzzZ59An6xUbnimlIs3nssdBX/ne1zP0preXFAzn9P872Pjr4S07tEOWUREREREJOHkZafy6KwJPM8JJFdvJrD1fe7+8jH0zgrfjt6VFRHK7AcpWVGOtIl9I4o2AxDauQEXSIWMXlEMKrGoUCSf2/GDuvP3b53Ib6YdS3VdA4/9Zxs1RxaSPONJ6q5ZTs3U35J86vejHaaIiIiIiEjCyu+VwcWXXUktQX6d/QRnDk7at86VFWExMD/RfjJycebbd+mZ27mBUPbAqN6VLdHo0jNpFzPj3GP6ctaI3tQ1hkhLavJP6ojLoheYiIiIiIiIADBy6ED2XPAH+i36Bg1/OIvAjEWQ1h3bXowVTI12ePvzB3DpubiKzeGRLbs24nTZWafSiCKJiIDft3+RSERERERERGJGyjGFuGnz8VWU0PDwmbD2Ocw1xsQdz5pzmX1x5ZvBOXy7N+LrrjuedSYVikREREREREQSgH/oFGzGU1hdJW7+jPDCGCwUWWZe+NKz6u1YfY0KRZ1MhSIRERERERGRBGH9xuKf9Ryh9FxcMA165Ec7pAP4svLwVW7RHc+iRNcKiYiIiIiIiCSSngX4Z/8bV7kV/MFoR3OgzL5YXRVsXR5+r0JRp1KhSERERERERCTRZPTCYvWW85l9w88fvRF+zh4QvVgSkC49ExEREREREZHY4RWK3EevE8roDcHUKAeUWFQoEhEREREREZHY4RWKrLKUUPag6MaSgFQoEhEREREREZHY0a3PvpemO551OhWKRERERERERCR2BJIJpfUEwNd9UHRjSUAqFImIiIiIiIhITHF7Lz/L0YiizqZCkYiIiIiIiIjElr13PssZFNUwEpEKRSIiIiIiIiISU3yZeeEXKhR1ukC0AxARERERERERacryT6V++zqCGb2iHUrCUaFIRERERERERGLLUecQyj8LzKIdScLRpWciIiIiIiIiEnOSA/5oh5CQVCgSERERERERERGgnYUiM+tuZs+bWbH3nNPCNv3N7CUzW21mRWb27fYcU0REREREREREOkZ7RxTdDLzonBsGvOi9b64BuME5dzQwEbjazIa387giIiIiIiIiIhJh7S0UFQKPeK8fAc5rvoFzrtQ59x/vdSWwGshr53FFRERERERERCTC2lsoynXOlUK4IAQc9L51ZjYIOBZ4u53HFRERERERERGRCAscagMzewHo3cKqHx3OgcwsA/gbcL1zruIg210JXAkwYMCAwzmEiIiIiIiIiIi0wyELRc6501tbZ2ZlZtbHOVdqZn2Aba1sFyRcJHrMOffkIY73EPAQwLhx49yh4hMRERERERERkcho76Vni4EZ3usZwKLmG5iZAX8AVjvnftHO44mIiIiIiIiISAdpb6HoZ8AZZlYMnOG9x8z6mtkz3jZfAKYDp5rZB95jajuPKyIiIiIiIiIiEXbIS88Oxjm3AzitheVbgKne69cAa89xRERERERERESk45lzsTsNkJl9AlQD26Mdi7TJEShX8UK5ih/KVfxQruKD8hQ/lKv4oVzFD+UqfihX8SGe8zTQOdezpRUxXSgCMLOlzrlx0Y5DDk25ih/KVfxQruKHchUflKf4oVzFD+UqfihX8UO5ig9dNU/tnaNIRERERERERES6CBWKREREREREREQEiI9C0UPRDkDaTLmKH8pV/FCu4odyFR+Up/ihXMUP5Sp+KFfxQ7mKD10yTzE/R5GIiIiIiIiIiHSOeBhRJCIiIiIiIiIinSCihSIzO8vM1pjZOjO7ucnyv5jZB95jo5l90Er77mb2vJkVe8853vJLm7T/wMxCZjamhfbXeMd2ZnZEk+VZZvaUmS0zsyIzmxnJ845HHZiroJk9YmYrzGy1mf2glfaDzextr/1fzCzJW25mdr8X13IzO64DTj9uxGqevHUne8cvMrNXInzqcScGctXa59+l3v+l5Wb2hpmNjvCpx50YzpX6qmY6MFdJZjbHy9UyMzu5lfbqq9ooVnPlrVN/5YmBPKmvaqMYzpX6qmYikKuLvJ9lyMzGNVv3A2+/a8zsi620V1/VRrGaK29dbPVVzrmIPAA/8F9gCJAELAOGt7DdfcBPWtnHPcDN3uubgbtb2GYUsL6V9scCg4CNwBFNlv9w776AnsBOIClS5x5vj47MFTAN+LP3Os3LxaAW2v8VuMR7/TvgKu/1VOBZwICJwNvR/nkpTy3mKRtYBQzw3veK9s9LuWr18+9EIMd7fXYi/5+Kg1ypr+q8XF0NzPFe9wLeA3wttFdfFf+5ykb9VSzlSX1V/OdKfVXkc3U0UAC8DIxrsny4t79kYLB3HH8L7dVXxX+usomxviqSI4rGA+ucc+udc3XAn4HCphuYmQFfAZ5oZR+FwCPe60eA81rY5quttXfOve+c29jSKqCbd/wMwh9oDQc7mS6uI3PlgHQzCwCpQB1Q0cK+TwUWtNC+EJjnwt4Css2sz+c4x64glvM0DXjSObcJwDm37fBPr0uJaq6g9c8/59wbzrld3tu3gH5tP60uKWZzhfqq5joyV8OBF2Hf59duoPk3g+qr2i6Wc6X+6jNRzZO3Tn1V28RsrlBf1Vy7c+WcW+2cW9PCqkLCX0DVOuc2AOu84zXft/qqtonlXMVcXxXJQlEe8HGT9yXesqYmA2XOueJW9pHrnCsF8J57tbDNxbT+gdia3xCu/m0BVgDfds6FDnMfXUlH5moBUA2UApuAnzvndjZr2wPY7Zzb26k0PX5bYksUsZynI4EcM3vZzN4zs8sP79S6nGjnqq1mEf5mKZHFcq7UV+2vI3O1DCg0s4CZDQbGAv2btVVf1XaxnCv1V5+Jdp7aSn1VbOdKfdX+IpGr9uxbfVXbxXKuYq6vCkRwX9bCMtfsfaujgdp0ALMJQI1zbuVhNv0i8AHhCt5Q4Hkze9U5d8A3vQmiI3M1HmgE+gI5wKtm9oJzbn0bj9+W2BJFLOcpQPgXi9MIj5x408zecs6t/RyxdAXRztWhAzQ7hfAv35M+RwxdSSznSn3V/joyV38k/IfOUuAj4A0O/EZcfVXbxXKu1F99Jtp5OiT1VfvEcq7UV+2vI3PVln2rr2q7WM5VzPVVkRxRVML+1eh+hCvNAHhD8S8A/tJk2RxvwqZnvEVle4fDec/Nh1xdwudL3EzCQ7mcc24dsAE46nPsp6voyFxNA5Y45+q9IXOvc+Bw1u2Ehz7uLVQ2Pf5BY0swsZ6nJc65aufcduDfwOh2nW18i3auDsrMjgEeBgqdczsO68y6nljOlfqq/XVYrpxzDc657zjnxjjnCgnPDdD820P1VW0X67lSfxUW7TwdlPqq/cRyrtRX7S8Sufpc+/aor2q7WM9VTPVVkSwUvQsMs/BM3kmEizqLm6w/HfjQOVeyd4Fzbqb3ITXVW7QYmOG9ngEs2rutmfmAiwhfS3i4NhGuzmFmuYQnoDqsb+O7mI7M1SbgVAtLJzxx2odND+6cc8BLwIUttF8MXO61nwiU7x02m4BiOU+LgMnesOU0YAKwut1nHL+imquDMbMBwJPA9AT9Br25mM0V6qua67BcmVmalyPM7AygwTm3qunB1VcdlljOlfqrz0Q1TwejvuoAMZsr1Fc1F4lctWYxcImZJVv4MsFhwDtNN1BfdVhiOVex11e5yM4kPhVYS3iW7x81WzcXmH2I9j0IT65W7D13b7LuZOCtQ7S/jnA1roFwde5hb3lf4J+Er6NdCVwWyfOOx0dH5YrwpHbzgSLCM7ff1Er7IYT/86zztk/2lhvwWy+uFTSZTT4RH7GaJ2/dTV7blcD10f5ZRfsRA7lq7fPvYWAX4WHiHwBLo/3E+9eLAAAAvUlEQVSzivYjhnOlvqrzcjUIWEP4l7AXgIGttFdfFee58tapv4qdPKmviv9cqa+KfK7O937WtUAZ8FyTdT/y9rsGOLuV9uqr4jxX3rqY6qvMC0pERERERERERBJcJC89ExERERERERGROKZCkYiIiIiIiIiIACoUiYiIiIiIiIiIR4UiEREREREREREBVCgSERERERERERGPCkUiIiIiIiIiIgKoUCQiIiIiIiIiIh4VikREREREREREBID/A2j+H7AhLF1JAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_train):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " plt.title(f\"Model Performance on training data: {train_exps[idx]}\")\n", - " plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 855 - }, - "id": "OPB0DbY_6wyj", - "outputId": "e29accbe-4029-45b5-cbe1-0e216325d2b0" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJAAAANSCAYAAAA6VzQYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXyV5RvH8c99at0BC2B0DRijuyQElEZRQcTun4HYYneCihgoSiipAoLS3Z0bNdiIse6Tz++PMxCQZtvZxvV+vXjNPXE/3+dswnad+74epWkaQgghhBBCCCGEEEJcjM7VAYQQQgghhBBCCCFE6SYFJCGEEEIIIYQQQghxSVJAEkIIIYQQQgghhBCXJAUkIYQQQgghhBBCCHFJUkASQgghhBBCCCGEEJckBSQhhBBCCCGEEEIIcUlSQBJCCCFuIEqpKKWUppQyXMGxw5VSK0soVxulVLxSKkcp1bckrimKRuH3Uw1X5xBCCCFE8ZICkhBCCFFKKaUOK6UsSqng87ZvLfylPcpF0c4uROUU/jmslHr+OoZ8AxiraZq3pmmziyjmDaEoC32FX8ebimKsC4x9xcXLqxhTU0rlnvV9mKOUeq4Ixv2osKCZrZTaq5QaVhR5hRBCiLKsyP4BF0IIIUSxOAQMAcYAKKUaAB4uTXQuf03TbEqpVsAipdRWTdPmX+nJSimDpmk2oAqw61oCnDWGuDE10jRtfxGPmQvcAsQBzYD5Sqn9mqatLuLrCCGEEGWGzEASQgghSrefgbNnP9wNTDz7AKWUn1JqolLqlFIqQSn1slJKV7hPXzibIkUpdRDodYFzv1dKHVdKJSml3lJK6a82pKZpa3AWgKILxx2hlNqjlEpXSi1QSlU565qaUupRpVQ8EK+UOgBUA/4snEHippQKV0r9oZRKU0rtV0rdf9b5o5VS05VSvyilsoDhSqmlhdlXF47xp1IqSCk1SSmVpZTacPaMLaXU50qpo4X7Niml2p03/m+Fr2m2UmqXUqrpWfsrKaVmFr7eqUqpsWftu+h9n08pdWvh2BmF+euete+wUupZpdR2pVSmUupXpZT7BcaoC4wDWhXed0bhdrfCr/sRpdRJpdQ4pZRH4b5gpdScwuumKaVWKKV0SqmfgcpnfR0uOJNHKTWy8PvlmFJqxHn7eimlthS+rkeVUqPP2r288GNG4fitlFLVlVKLC1/HlMKvl//FXrOroZSap5T6+KzPf1VK/VD438OVUquUUmMKX9+9Sqkup4/VNO01TdP2aprm0DRtHbACaFUUuYQQQoiySgpIQgghROm2FvBVStUtLOzcBvxy3jFjAD+cRZgOOAtO9xTuux/oDTQGmgIDzzv3J8AG1Cg8phtw39UEVE5tgPrAFuXsYfQi0B8IwfnL95TzTusLtADqaZpWHTgC3FK4hM1ceHwiEF6Y+Z2zf8EH+gDTAX9gUuG224GhQARQHVgDTAACgT3Aa2edvwGIKdw3GZh2XoHmVmBq4fh/AGML71UPzAESgKjCa00t3Hcl9336NatVuO9/hcfOw1m4MZ112GCgB1AVaAgMP38cTdP2AA8BawpfO//CXe8DtQrvsUZhzlcL9z2D87UNASoUZtY0TRvKuV+HDy6QuwfwLNAVqAmcv9wtF+f3nz/OYuXD6t+eVu0LP/oXjr8GUMC7OL/OdYFKwOizrveVUuqr83NcoRHAUKVUZ6XUnThnEj151v4WwEEgGOf3xkylVOD5gxQW3ppxjTPkhBBCiPJCCkhCCCFE6Xd6FlJXYC+QdHrHWUWlFzRNy9Y07TDwMc5CCjiLEJ9pmnZU07Q0nL+snz63AnAz8D9N03I1TUsGPsVZiLlSKUAa8B3wvKZpi4AHgXc1TdtTuLTsHSDmvNk472qalqZpWv75AyqlKgFtgVGaphVomra1cPyhZx22RtO02YUzRE6PMUHTtAOapmUCfwEHNE1bWJhhGs4CGQCapv2iaVqqpmk2TdM+BtyA2meNv1LTtHmaptlxvv6NCrc3x1nsGFn4mhVomna6/9CV3PdptwFzNU37R9M0K/ARzqWJrc865gtN044Vft3+xFkMuiyllMJZOHyq8DXOLsxy+utqBcKAKpqmWTVNW6FpmnYlY+P8fpqgadpOTdNyOavYA6Bp2lJN03YUfl224yySdbjYYJqm7S98Dcyapp0CPjn7eE3THtE07ZHLZNpcOJvq9J/uheeewFlc+wn4HBhW+Fqclozz/w2rpmm/Avs4b4ZeoXHANmDBZXIIIYQQ5Zr0QBJCCCFKv59xLv+pynnL13DOnjDhnBFzWgLOGSfgLHYcPW/faVUAI3DcWXMAnG8unX385QRfoP9QFeDzs5cP4ZxpEnHW9S91jXAg7bxf9hNwzqA67ULnnzzrv/Mv8Ln3mTBKPYNzplU4oAG+OF/L006c9d95gLtyNn+uBCRcpOfSldz3aeFnb9M0zaGUOsq/X7cLZQi/wDUvJATwBDad9XVVwOmliR/iLPz8Xbh/vKZp713h2OHAprM+P+e+lFItgPdwLmU04SzMTbvYYEqpUOALoB3gg/P7L/0Ks5wWe4keSHNwzh7bd1ah77Sk8wpnCZz3GiulPsR5L52uosgmhBBClEsyA0kIIYQo5TRNS8DZTLsnMPO83Sk4Z5ScPculMv/OUjqOs+hx9r7TjgJmnEUg/8I/vpqm1b/OyEeBB88a01/TNI/zGhBf6pfxY0CgUsrnvNxJZ31+zb/MF/Y7GoVzNk1A4bKvTJxFlss5ClRWF36S2JXc92nHOOtrVjhrqBLn3uOVOv+1SMFZMKt/Vg4/TdO8AQpnqj2jaVo1nI2inz5reeDlXtdLfT+BczngH0AlTdP8cM7eOf26Xmjsdwu3N9Q0zRe4iyv7Olypt3EuXwxTSg05b1+EOqvChvNejp3+RCn1Os4Zet00TcsqwkxCCCFEmSQFJCGEEKJsuBfoXLhs6IzCJVa/AW8rpXwKl0s9zb99kn4DnlBKRSqlAoDnzzr3OPA38LFSyrewkXJ1pdRFlxxdoXHAC0qp+nCmUfegKz1Z07SjwGrgXaWUu1KqIc77n3TpM6+YD86+T6cAg1LqVZwzkK7EepxFlPeUUl6F+doU7rua+/4N6KWU6qKUMuLsS2TGed9X6yQQebp/kqZpDuBb4NPCGT4opSJOL+1SSvVWStUoLJ5kAfbCP6fHqnaJa/2Gs2l5PaWUJ+f2lQLna5umaVqBUqo5cMdZ+04BjvPG9wFycDbWjgBGXuW9X5RSqj3OXmDDCv+MKbzGaaE4/98wFn6d6uLsRYVS6oXC7F01TUstqkxCCCFEWSYFJCGEEKIMKOzts/Eiux/H2bz4ILAS5yyQHwr3fYuzd8s2YDP/ncE0DOdSo904lw5Nx9kf53qyzsLZxHmqcj4lbSfOmRxXYwjOJtXHgFnAa5qm/XM9uc6yAGePpDicy5YKuMJle4UFu1twNqY+grMZ9W2F+674vjVN24dzts0YnDOGbsHZvNpyDfezGGeD5xNKqZTCbaOA/cDawiwL+bfHU83Cz3NwNhr/StO0pYX73gVeLuwl9OwFcv8FfFZ4zf2FH8/2CPCGUiobZ9Pu3846Nw/njKBVheO3BF4HYnHOAJvLed+fyvn0uHGXuf9thU91O/3nM6WUL87lno9pmpZUuHzte2DCWbOO1hW+FimFuQaeVSx6B+eMpPizxn3xMjmEEEKIck3Jcm4hhBBCCHEjUUoNB+7TNK2tq7MIIYQQZYXMQBJCCCGEEEIIIYQQlyQFJCGEEEIIIYQQQghxSbKETQghhBBCCCGEEEJcksxAEkIIIYQQQgghhBCXZHB1gGsRHBysRUVFuTqGEEIIIYQQQgghRLmxadOmFE3TQi60r0wWkKKioti48WJPMhZCCCGEEEIIIYQQV0splXCxfbKETQghhBBCCCGEEEJckhSQhBBCCCGEEEIIIcQlSQFJCCGEEEIIIYQQQlxSmeyBJIQQQgghhBBCuJrVaiUxMZGCggJXRxHiqri7uxMZGYnRaLzic6SAJIQQQgghhBBCXIPExER8fHyIiopCKeXqOEJcEU3TSE1NJTExkapVq17xebKETQghhBBCCCGEuAYFBQUEBQVJ8UiUKUopgoKCrnrmnBSQhBBCCCGEEEKIayTFI1EWXcv3rRSQhBBCCCGEEEIIIcQlSQFJCCGEEEIIIYQoo5RSDB069MznNpuNkJAQevfu7cJUl+ft7X3ZY0aPHs1HH310yWNmz57N7t27iyqWuARpoi2EEEIIIYS4pHyzDWvmCWzphyHjKKQnoMs6gj7zKB51umBo9z9XRxTihuXl5cXOnTvJz8/Hw8ODf/75h4iICJdksdlsGAwlW2aYPXs2vXv3pl69eiV63RuRzEASQgghhBBCXFBBWhLZU+7F7YMIfL+qT+CUXgT+9RCBa9/F++B8PFK2o1v/jatjCnHDu/nmm5k7dy4AU6ZMYciQIWf25ebmMmLECJo1a0bjxo35/fffATh8+DDt2rUjNjaW2NhYVq9eDcDx48dp3749MTExREdHs2LFCuDcGUPTp09n+PDhAAwfPpynn36aTp06MWrUKA4cOECPHj1o0qQJ7dq1Y+/evQAcOnSIVq1a0axZM1555ZWL3svbb79N7dq1uemmm9i3b9+Z7d9++y3NmjWjUaNGDBgwgLy8PFavXs0ff/zByJEjiYmJ4cCBAxc8ThQNmYEkhBBCCCGEOIfdaiFnxVd4r/kQo83Mgci+BFVtBAGVUQFR6AMrY/LwxbT2C3SLRkNBJrj7uTq2EC71+p+72H0sq0jHrBfuy2u31L/scbfffjtvvPEGvXv3Zvv27YwYMeJM4eftt9+mc+fO/PDDD2RkZNC8eXNuuukmQkND+eeff3B3dyc+Pp4hQ4awceNGJk+eTPfu3XnppZew2+1XVICJi4tj4cKF6PV6unTpwrhx46hZsybr1q3jkUceYfHixTz55JM8/PDDDBs2jC+//PKC42zatImpU6eyZcsWbDYbsbGxNGnSBID+/ftz//33A/Dyyy/z/fff8/jjj3PrrbfSu3dvBg4cCIC/v/8FjxPXTwpIQgghhBBCiDOy9yyBv0bilxXPKtWYlwru4sj+MP6+pQM1Qs/rWVKhcMlI8l6o3KLkwwohAGjYsCGHDx9mypQp9OzZ85x9f//9N3/88ceZXkIFBQUcOXKE8PBwHnvsMbZu3YperycuLg6AZs2aMWLECKxWK3379iUmJuay1x80aBB6vZ6cnBxWr17NoEGDzuwzm80ArFq1ihkzZgAwdOhQRo0a9Z9xVqxYQb9+/fD09ATg1ltvPbNv586dvPzyy2RkZJCTk0P37t0vmOVKjxNXTwpIQgghhBBC3CBsdgd2TQNA4XyEs1KggJTjh0if9Tx1U//mqCOEZ+3PYK3Rg8cbhvPq7zv55J99fHVnk3MHDK3r/Ji8WwpI4oZ3JTOFitOtt97Ks88+y9KlS0lNTT2zXdM0ZsyYQe3atc85fvTo0VSoUIFt27bhcDhwd3cHoH379ixfvpy5c+cydOhQRo4cybBhw8557HtBQcE5Y3l5eQHgcDjw9/dn69atF8x4JY+Ov9gxw4cPZ/bs2TRq1Igff/yRpUuXXtdx4upJDyQhhBBCCCFuBCd34/giFvVZA9RnjdC+iEH7IhbLZ01Ifi8G329bUS1lCRNNt/N3p9956/lR/HBPcwY0ieS+dtWYt+MEOxIzzx3TrxKa0QstWZ6AJISrjRgxgldffZUGDRqcs7179+6MGTMGrbB4vGXLFgAyMzMJCwtDp9Px888/Y7fbAUhISCA0NJT777+fe++9l82bNwNQoUIF9uzZg8PhYNasWRfM4OvrS9WqVZk2bRrgLF5t27YNgDZt2jB16lQAJk2adMHz27dvz6xZs8jPzyc7O5s///zzzL7s7GzCwsKwWq3nnO/j40N2dvZljxPXTwpIQgghhBBC3ACsi95Bn5dCXkRr8sJbkBUYw06qsSSjAtvMFdni35X4QYsY9uI33NupPiE+bmfOva9dVQI8jXz4975zB1UKLbQujpN7SvhuhBDni4yM5Mknn/zP9ldeeQWr1UrDhg2Jjo4+08D6kUce4aeffqJly5bExcWdmUW0dOlSYmJiaNy4MTNmzDgz5nvvvUfv3r3p3LkzYWFhF80xadIkvv/+exo1akT9+vXPNO3+/PPP+fLLL2nWrBmZmZkXPDc2NpbbbruNmJgYBgwYQLt27c7se/PNN2nRogVdu3alTp06Z7bffvvtfPjhhzRu3JgDBw5c9Dhx/dTpKmRZ0rRpU23jxo2ujiGEEEIIIUTZkLwXvmqBrc0z5LZ5gW+WH2DCqsNY7A4GxkbyxE01ifD3uOQQ3y4/yNvz9jD1gZa0rBZ0Zrv2++No++ahe+5Acd+FEKXOnj17qFu3rqtjCHFNLvT9q5TapGla0wsdLzOQhBBCCCGEKOcsyz7CYfDkR8fNtP1gMV8tPUDXehX456n2vD+w4WWLRwBDW1Whoq87H8zfy9lvQqsK9dDlpUDOqeK8BSGEEC4mBSQhhBBCCCHKMXPyfgy7ZvCL/SbeWpJMi6pB/PVkO74Y0phqId6XH6CQu1HPE11qsvlIBov3Jv+7I6RwiYj0QRJCiHJNCkhCCCGEEEKUQ1a7g8nrjvDXuFFYNT3rKw5h1iOt+e7uptQN872mMQc1jSQqyJMPF+zD4SichRRaz/kxWfogCSFEeWZwdQAhhBBCCCFE0bE7NP7YlsRnC+OxpB5luftSTta6jbF39rzusY16HU93q80TU7bw5/Zj9ImJAO9QHB6BqOTdXP4B3UIIIcoqmYEkhBBCCCFEObHrWCY9P1/BU79uw8tkYEr9dRh0ENnrhSK7Ru8GYdQN8+WTf+Kw2h2gFITUxSEzkIQQolyTApIQQgghhBBlnKZpTFqXQL+vVpORb2HsHY2Zc08tKh+eji36NvCvVGTX0ukUI7vXIiE1j982HgUKG2kn74Ey+IRnIYQQV0YKSEIIIYQQQpQhBWYLmUf3YLcUAJBjtvHk1K28NGsnLasFMe+JdvRuGI5jzViUw4KxwzNFnqFT7VCaVAngi0XxFFjtqNC6KEs2ZCUV+bWEEJd28uRJ7rjjDqpVq0aTJk1o1aoVs2bNKvbrbty4kSeeeKJIxurYsSO1a9emUaNGtGnThn379hXJuEWpKDP++OOPPPbYYwCMGzeOiRMnXvTYw4cPM3ny5DOfF+XrfrWkB5IQQgghhBCllM3uID89CfuRDWiJmzAd34T7qW242/Iw+1UjvvX7PLLCxOHUXEZ2r83DHaqj0ynIS0O38XtsdftiDKpe5LmUUjzXvTa3jV/LT6sP82DUWY20/SKL/HpCiAvTNI2+ffty9913nykyJCQk8McffxT7tZs2bUrTpk2LbLxJkybRtGlTxo8fz8iRI/9zD3a7Hb1eX2TXuxbFkfGhhx665P7TBaQ77rgDKPrX/WrIDCQhhBBCCCFKmfzkg2RNewzHp9H4jI3G/4978N8yDmXLI7vubaR3eIuCgnxqzRvMfbnjmXx3Ax7tVMNZPAJsa75CZ83F2GFksWVsUS2IltUCncvYQus4NybvLrbrCSH+a/HixZhMpnOKEFWqVOHxxx8HnMWHdu3aERsbS2xsLKtXrwZg6dKl9O7d+8w5jz32GD/++CMAzz//PPXq1aNhw4Y8++yzAEybNo3o6GgaNWpE+/bt/zPG+vXrad26NY0bN6Z169ZnZuf8+OOP9O/fnx49elCzZk2ee+65y95T+/bt2b9/PwDe3t68+uqrtGjRgjVr1vDJJ58QHR1NdHQ0n3322ZlzJk6cSMOGDWnUqBFDhw4F4NSpUwwYMIBmzZrRrFkzVq1aBcCyZcuIiYkhJiaGxo0bk52dzfHjx2nfvj0xMTFER0ezYsWKa874yy+/0Lx5c2JiYnjwwQex2+0ATJgwgVq1atGhQ4czWQBGjx7NRx99BMD+/fu56aabaNSoEbGxsRw4cIDnn3+eFStWEBMTw6effnrO656Wlkbfvn1p2LAhLVu2ZPv27WfGHDFiBB07dqRatWp88cUXl33dr4TMQBJCCCGEEKKUyE89SvY/7xG0byoGFFs9WnEw8FYSPOpxzKMWmsENZYWUAxa2ZIbxUcBs7sj/E8u8HeSoMXjX7ggFWejWj8dasyfGCvWKNW/LakF8viieXJ0PHt5hcHK3vEMtblx/PQ8ndhTtmBUbwM3vXXT3rl27iI2Nvej+0NBQ/vnnH9zd3YmPj2fIkCFs3LjxosenpaUxa9Ys9u7di1KKjIwMAN544w0WLFhARETEmW1nq1OnDsuXL8dgMLBw4UJefPFFZsyYAcDWrVvZsmULbm5u1K5dm8cff5xKlS7el+3PP/+kQYMGAOTm5hIdHc0bb7zBpk2bmDBhAuvWrUPTNFq0aEGHDh0wmUy8/fbbrFq1iuDgYNLS0gB48skneeqpp2jbti1Hjhyhe/fu7Nmzh48++ogvv/ySNm3akJOTg7u7O+PHj6d79+689NJL2O128vLyLprvUhn37NnD+++/z6pVqzAajTzyyCNMmjSJrl278tprr7Fp0yb8/Pzo1KkTjRs3/s+4d955J88//zz9+vWjoKAAh8PBe++9x0cffcScOXMAZ+HutNdee43GjRsze/ZsFi9ezLBhw9i6dSsAe/fuZcmSJWRnZ1O7dm0efvhhjEbjJe/rcqSAJIQQQgghhItomkZCah6bdu/Df9NY2mb+gb/mYLK9E9+q/igVDmacfzLygXwAdErxcLdGdOs4gJz4ZZjmPoH3lD5kNxiOu08QRnMmuo7FN/votOhwPzQNdh/PIja0rnMJmxDCZR599FFWrlyJyWRiw4YNWK1WHnvsMbZu3YperycuLu6S5/v6+uLu7s59991Hr169zsx0adOmDcOHD2fw4MH079//P+dlZmZy9913Ex8fj1IKq9V6Zl+XLl3w8/MDoF69eiQkJFywgHTnnXfi4eFBVFQUY8aMAUCv1zNgwAAAVq5cSb9+/fDy8gKgf//+rFixAqUUAwcOJDg4GIDAwEAAFi5cyO7d/86KzMrKIjs7mzZt2vD0009z55130r9/fyIjI2nWrBkjRozAarXSt29fYmJiLvj6XC7jokWL2LRpE82aNQMgPz+f0NBQ1q1bR8eOHQkJCQHgtttu+8/XIjs7m6SkJPr16weAu7v7BTOcbeXKlWcKdZ07dyY1NZXMzEwAevXqhZubG25uboSGhnLy5EkiI69vibEUkIQQQgghhChhVpuDOduPMnvxGlpkzGW4fgEmrKz0uomE+o/SsEEjFkX4YdRffj6Pd+2O2KusJnv+aLy3fodCw1q1E8aIi89KKCoNIp2/FO5MyqRpaF3Y+D047KBzbZ8SIVziEjOFikv9+vXPFBAAvvzyS1JSUs70yPn000+pUKEC27Ztw+FwnClKGAwGHA7HmfMKCgrObF+/fj2LFi1i6tSpjB07lsWLFzNu3DjWrVvH3LlziYmJOTPL5bRXXnmFTp06MWvWLA4fPkzHjh3P7HNzczvz33q9HpvNdsF7Od1f6Gzu7u5negppF3nKo6ZpKKX+s93hcLBmzRo8PDzO2f7888/Tq1cv5s2bR8uWLVm4cCHt27dn+fLlzJ07l6FDhzJy5EiGDRt2TRnvvvtu3n333XOOmT179gUznn8fV+tC55y+zpW+7ldDZpgKIYQQQghRDBwOjXyzjcxTiaTtWkTa8vGkzXqOQ2NuJentBvT8PZafch7kYcOfZFXpRsEDq+n43DTu7tWRxpUDrqh4dJre3Rufvh+Rf9cc8qp0xtDtjWK8s3+F+rgR7O3GzqQsVIV6KFsBpB8ukWsLIZyzTgoKCvj666/PbDt7+VVmZiZhYWHodDp+/vnnM/14qlSpwu7duzGbzWRmZrJo0SIAcnJyyMzMpGfPnnz22WdnCkUHDhygRYsWvPHGGwQHB3P06NFzcmRmZhIREQFwppdSUWvfvj2zZ88mLy+P3NxcZs2aRbt27ejSpQu//fYbqampAGeWsHXr1o2xY8eeOf/se2nQoAGjRo2iadOm7N27l4SEBEJDQ7n//vu599572bx58zVl7NKlC9OnTyc5OflMloSEBFq0aMHSpUtJTU3FarUybdq0/5zr6+tLZGQks2fPBsBsNpOXl4ePjw/Z2dkXfU0mTZoEOJe2BQcH4+vre03Zr0Sxz0BSSvUAPgf0wHeapr133n4/4BegcmGejzRNm1DcuYQQQgghhChK2SmJWI/vRkvegz41DmNaHG7pcXiYM84cY8bIKUcFThgiyKhyE5VqRONWvQ0VI4qmV5FnjbZQo22RjHUllFI0iPBlZ1ImtKnr3Ji8G4rhyW9CiP9SSjF79myeeuopPvjgA0JCQvDy8uL9998H4JFHHmHAgAFMmzaNTp06nVn+ValSJQYPHkzDhg2pWbPmmX482dnZ9OnTh4KCAjRN49NPPwVg5MiRxMfHo2kaXbp0oVGjRixbtuxMjueee467776bTz75hM6dOxfLvcbGxjJ8+HCaN28OwH333Xcm90svvUSHDh3Q6/U0btyYH3/8kS+++IJHH32Uhg0bYrPZaN++PePGjeOzzz5jyZIl6PV66tWrx80338zUqVP58MMPMRqNeHt7M3HixGvKWK9ePd566y26deuGw+HAaDTy5Zdf0rJlS0aPHk2rVq0ICwsjNjb2TDHvbD///DMPPvggr776KkajkWnTptGwYUMMBgONGjVi+PDh5/ROGj16NPfccw8NGzbE09OTn3766ZpyXyl1LdOkrnhwpfRAHNAVSAQ2AEM0Tdt91jEvAn6apo1SSoUA+4CKmqZZLjZu06ZNtUs1/hJCCCGEEKIkmVd/g9vf/z5dyObmh9m/FpbA2uyzhzEtwZO1mYF4hlThsS616N0wHL3u0ssZyoqP/97Hl0v2s+uldnh8VAk6vQzF+PQ3IUqTPXv2ULduXVfHEOKaXOj7Vym1SdO0phc6vrhnIDUH9muadrAwyFSgD3D28z01wEc5F+p5A2nA9S/OE0IIIYQQogQ4Tu7FuOgV8iq1p6D5E+gr1MHoW5HVB1L5+J849p7IpnYFH17qXZMe9SuiKyeFo9OiI/xwaLAnzU4j/yg4uQvpgCSEEOVPcReQIoCzF0cmAi3OO2Ys8AdwDPABbtM0zXHeMSilHgAeAKhcuXKxhBVCCCGEEOKq2K3YZj6A3uiFx+Dv8PSpwKr9KXw4bT1bj2YQFeTJ57fHcEvD8HJXODotOsLZSHtXUiaNQuRJbEIIUV4VdwHpQv9Knr9mrjuwFegMVAf+UUqt0DQt65yTNG08MB6cS9iKPqoQQgghhBBXx7zkQ9xObsMy4Ee2ppn4aMpa1hxMJdzPnff6N2BAk8iraoZdFoX7uRPoZWJHUia6CvXgwD9gs4DB5OpoQpSIiz0FTIjS7FraGRV3ASkRqHTW55E4Zxqd7R7gPc2Zfr9S6hBQB1hfzNmEEEIIIYS4ZvbELZhWf0x+nQG8e7AmE9esJtjbxKu963FHi8q4G2+MhVxKKeqH+zqfxFa7HjhskLofKhRNY3AhSjN3d3dSU1MJCgqSIpIoMzRNIzU1FXd396s6r7gLSBuAmkqpqkAScDtwx3nHHAG6ACuUUhWA2sDBYs4lhBBCCCHEtbMW4Jj5AHb3YB5IGcyKxATua1uVp7rWwsut2B90XOo0iPBj/PKDmANr4wbOJ7FJAUncACIjI0lMTOTUqVOujiLEVXF3dycyMvKqzinWf900TbMppR4DFgB64AdN03YppR4q3D8OeBP4USm1A+eSt1GapqUUZy4hhBBCCCGuh/mf13FLi+NR3ctsyoEv74ilV8MwV8dymegIP2wOjThbBaJ1Bkjec8FeFkKUN0ajkapVq7o6hhAlotjfHtE0bR4w77xt487672NAt+LOIYQQQgghRFGwHViOaf3X/GK/iT3ezfh9aBNqVvBxdSyXalDYSHv7iXzqBVSDk7vlSWxCCFHO3Hjza4UQQgghhLhGednp5E65n1xHKGur/4/fb2+Jj7vR1bFcLjLAAz8PIzuTsiC0Lhzf7upIQgghilj5fiSEEEIIIYQQReRkVgFLv3iAQOtJNjZ+hy+GtZXiUSGlFNERvuxMykRfoT66jMNgyXV1LCGEEEVICkhCCCGEEEJcRo7ZxtffjKGn9W8S6tzHwH4D0emky8/ZosP92HciG2twHRQanNrn6khCCCGKkBSQhBBCCCGEuASr3cFLP87nyZzPyPCrS7VBb7s6UqkUHeGHxe7gkKrs3HBqr2sDCSGEKFJSQBJCCCGEEOIiNE3jlZnbuCPpTbz0dvyG/gwGN1fHKpWiCxtpb831R9O7oZ3c7eJEQgghipIUkIQQQgghhLiIsYv3U2HrGFro9kKvj1HBNV0dqdSqEuiJj5uB7cdycATXwiEFJCGEKFekgCSEEEIIIcQFzNiUyIqFv/OkcRbmeoMwNbnT1ZFKNZ1OUS/ct/BJbPVQp/a4OpIQQogiJAUkgfnIZkhPcHUMIYQQQpQTliMbwGZ2dYzrsmp/Cu/OWMVXHl9j96uMW59PXR2pTGgQ4cee41kQWhdd9jHIz3B1JCGEEEVECkg3MHt2Mnm/3ofbD51wzHnK1XGEEEIIUQ5oR9Zi+uEm2DrZ1VGu2b4T2Tz080Y+9/yOQDLRD/oR3HxcHatMiI7ww2xzcMxU1blBGmkLIUS5IQWkG5HDQd6a72FsU9z3zcbuEyn/uAshhBCiSFiXfQKAdnKXi5NcmyOpeQyfsJ6h+r9pY1uPrfNr6CIbuzpWmXG6kfY2SziANNIWQohyRApINxjLsR0UjO+K54KnsQbXw/bACvRN70aXlQSWPFfHE0IIIURZdnI3pgMLANBOxbk4zNXbn5zNoG9WU9m8n2eZiKVaV0xtHnN1rDKlarAXniY9G9M8cZi8sR7f4epIQgghiogUkG4QaWlpJM94DuO3HTBkHCSv51jc7/sLU8W6EFS98KCDrg0phBBCiDLNsvxjHEYvtFo9ILVsFZB2JmUy+Ju1BNlT+cHnaxzugZgGjAOlXB2tTNHrFPXDfdlxLAtHpVbo9v0FDrurYwkhhCgCUkC6ASQe3k/qFx0I3fENmbUHo3tsI57Nh/77A1FQ4eNoU+NdF1IIIYQQZVv6YYy7Z2GPHY6q1AJd9nEoyHJ1qiuyKSGNId+upYNuK7MNo/DIPwkDvwevYFdHK5Pqh/ux+1gWWqM7MOQex75/iasjCSGEKAJSQCrnjsVvRf9jd8K1ZO62jOJr3yfReQede1BgNefH1P0lH1AIIYQQ5YJ1xeegdBjbPAbBtZwby8CbUyvjU7j7uzU8Z/iVT61voXlVwHbfEgzV2rk6WpnVIMKPfKudhOD22N38sW6e5OpIQgghioAUkMqxE7uW4TWpF0bNypE+0wmO6cWEVYc5mnZeryM3bxw+YWhSQBJCCCHEtchJRr9tMrYGt4NvOITUdm4v5X2Q/tl9khd+/IvJxrcYaptBbvRdmB5agqliHVdHK9NON9LecbIAW73+mOLnQn6Ga0MJIYS4blJAKqdObZyF/7SBpGveHBv4B3Vj2/Fs91ooBR/9ve+/JwTVRDtV+t8lFEIIIUTpkJZrwe7QALCt/gplN2Ns/5RzZ0AUms4AKaW3gPT71iSmTPqeOaYXqK87TG6vr/Ea+CXK5OnqaGVe9RAv3I06diRmYWwyFJ3djGX7DFfHEkIIcZ2kgFQOpS4fT+CcEcRplTg16A8aNogBIMzPg/vbVeP3rcfYdjTjnHN0wTVQqftB00o+sBBCCCHKlB2JmbR5bzH/+3UrFGSi2/gd1tq3/vtgDr0RLaAajlMXeNPKxfIsNl6euZXE6c/zg/F9TP4R2O5bglezO1wdrdww6HXUDfNl57FMdBGNsQbWRts62dWxhBBCXCcpIJUnmkb6vDcJWjySlY6GZN82k2bRtc855MEO1QjyMvH2vD1oZxeLgmqizJmQl1bCoYUQQghRlpzMKuD+iRuxOzT+3HaMPX9+hs6SjanD0+ceGFwLrZTNQNp6NIPBn/1F1y2P86jhDzLr3oHbQ0twkyVrRa5BhLORtkMDR8wduB3fiCO5dH0/CCGEuDpSQCpH8leNI2D9R8ywt8dx+yTa1Iv6zzE+7kb+17UW6w+l8c/uk//uCKrh/FgGml0KIYQQwjUKrHYemLiRrAIrMx5uTUxFN0J2/UB+pQ4QHnPOsbrQ2ujSD4Hd6pqwZ7HZHXy+MJ5RX//GV3nP0tawm6yuH+F329fo3GTJWnGIjvAjx2zjcGoubo1vR1N6LJt/cXUsIYQQ10EKSOWEw+4gY+lYNjlq4TV4PJ3qRV702NubVaJ6iBfvzd+L1e5wbjw95VwaaQshhBDiAjRN49lp29ielMlnt8XQINKPsfV2E0wGP+r7/feE4Foohw3SDpV82LMcSsml/9er2bl4MrPdXqWiu43c22fj2+Z+l+Yq76LDCxtpJ2WCT0UsUZ0w7PgNHHYXJxNCCHGtpIBUTvw+dzZhtkTyou+gR4OwSx5r1Ot4/ua6HDyVy9T1R5wb/aug6YxSQBJCCCHEBX2xaD9zth/nue516Fa/IthtVNz1LYle9Xl/bwhL9yWfe0JwLefHFNf0QdI0jV/WJtDz86V0O/UT35o+QQuuhXnEYnxrt3NJphtJzQremAw6tidmAqAa34kh9zjW+CUuTiaEEOJaSQGpHFh3MBXLhokUKHfa9rnvis65qW4oLaoG8tnCeLILrKA3oAVE4ZAnsQkhhBDiPHO3H+fThXH0j43goQ7VAHDsnIkh8wghPZ6nRqgPL87c4fyZ4rTgms6PJdAHKSPPQkqOmROZBSSm57H2YAr9v17Nu7M38IPHWB5Tv5FRcyDcMw+f0CrFnkc437BsXzOY3zYcJTmrAFO9Xtjd/LHLMjYhhCizpIBUxp3KNjNy8hpu0a+Bev1Qbj5XdJ5Sipd61SU118K4ZQecG4NqyAwkIYQQQpxjR2Imz0zbSpMqAbzbvwFWi5nMjb9hW/gmtqDauNXvzfsDGnI8q4D35+/990Q3Hxw+4cX+JLb8k/HkrhyHY+FbGOf9j/yfBuP+U3fGnLybrR6P0NK6lpOtX8N90Dd4enoXaxZxrpd61cNsc/D2vD1gcMNatz+m/fMgP8PV0YQQQlwDKSCVYXaHxpNTt9DSvApPCnBvPuyqzm8Y6U+fmHC+W3GIYxn56IJrotIPydp0IYQQQgDOJ67dN3EDgV4mPu3mR/68V1Gf1sdvzv2g2VE9PwSdjiZVAhjRpiq/rD3C2oOpZ87XgmuinSreGUj62Q8TsfoVQraORRf3F7a0BDD5oI9qRUb03ST2mU5gl//hbjIUaw7xX1WDvXioY3V+33qM1ftTMDYdis5upmDbDFdHE0IIcQ2kgFSGfbYwjtUHUnk6eD12/6pQudVVj/Fst9powNgl+yGoBspuhsyjRR9WCCGEEGXKzqRM7vpmJS3yV/G778dU/rk1flu+oqBiLJn9JqN7chv66h3OHP9st9pUDvRk1Izt5Fucb0bpQmqjS40HTSuekBlHMB3fwIqI+6hn+4U29m9Y1HEmgQ/NRfX/FtX9LcIbdsaolx95XeWRjtWpHOjJy7/vxF6hEZbA2qitk10dSwghxDWQt2LKqKX7khmzeD8PNtBRMX4jjk4vg1JXPU6lQE861ApxvlvYuIZzY+p+CIgq2sBCCCGEKPUsVjvZx+NYt3AGusPLmKHbha8+F2tuGBnNn8HQ9O6L9hDyMOl5b0AD7vh2HZ/8s4+XetVDBdcCSw5kHwff8CLPm7XpN3yBFw/Wp3nNEN7t34Bwf48iv464du5GPa/fWp97ftzAtysPMaLhEDyWjsaeHIc+tJar4wkhhLgKUkAqg45l5PPUr1upU9GHZ0KWocUrdDF3XPN4DSL8WLjnJLm+jfECSD0ANW4qsrxCCCGEKL0cBTlkbJ+D7tAyTAnLCMpLoieQYgzFXK0X6fVvwavezfibjJcdq3X1YO5oUZnvVx6iT0wE0SG1nTtO7SvyAlJSRj65qyZzyFGdB/t04c4WlVHX8GaaKH6d6oTSvX4FxiyOp+8DfQhf9ibmTb/gefMbro4mhBDiKsh83jLGYnPw6OTNWO0aXw1phH7HFOxVO4FfxDWPGR3hi6bB7kw3NJMPWoo8iU0IIYS4ITjs2Cb2I3Deg7jH/c6qnHDe4l7+bD8H3+f3EnLntwTE3IrpCopHpz1/cx10SvHXzuMQXDjDpIh/ttiemMHjY6dRy3EAj9hB3NWyihSPSrlXb6mPQvHa4jTMUZ0w7vwVu83m6lhCCCGuQrEXkJRSPZRS+5RS+5VSz1/kmI5Kqa1KqV1KqWXFnaks+2JRPFuOZPD+gIZUy9mEPjsJQ5O7rmvM6HA/AHYey0ILqiEFJCGEEOIGYVkzHtOx9Xzv+wj1c8cxqeo73P/0O9zSuR0mo/6axvR1N1I/3JdNCengXQGHmy9aET6JbcGuEwz+Zg09WA1ArU5X9xAR4RoR/h48eVNNFu45ya7Q3hhzT3ByyxzsjmLqjyWEEKLIFWsBSSmlB74EbgbqAUOUUvXOO8Yf+Aq4VdO0+sCg4sxUlu1MyuTrZQcYEBtJr4Zh2Df/gsPdH2r3uq5xQ33dCfFxY0dSJgTXdC5hE0IIIUS5pqUnoFv8BquJ4eOM9rzZL4YJw5tRwdf9useOrRLA1qMZWB0aWlBNHEXwJDZN0/huxUEe+mUTtSv6MtRnM5bwFtc1C1uUrBFtqlIz1JtntoZj8QondOH/SNqzVopIQghRRhT3DKTmwH5N0w5qmmYBpgJ9zjvmDmCmpmlHADRNSy7mTGWSxeZg5PTtBHqZeKV3XchPR7d3Dlr0QDBe/w960eG+7ErKQhdUA5WVCNb8IkgthBBCiFJJ00ie8jBmm52P3B7m90fbckcR9hBqWiWQAquDPcezUCG1USnXNwPJZnfw6u+7eGvuHnrUr8jUPr54pO+D6P5FkleUDJNBx5t9ozmcaWNc1Gc4DB5E/D6YY7tWShFJCCHKgOIuIEUAZz8TPrFw29lqAQFKqaVKqU1KqQvOQ1ZKPaCU2qiU2njq1Kliilt6jVt2gD3Hs3i7bzT+nibYOQNlN6OPvb7la6dFR/gRn5yNxa8qCg3SDhbJuEIIIYQofVbOHEuF5FVM9BzOuEf7UrOCT5GOH1vFH4BNCenoQmqhyz0JBZnXPN5XSw/w89oEHuxQjS/viEXtmoWmdJgaSgGprGlZLYj+jSMYs9XO5k6TsLv5Ef7H7RzfsVSKSEIIUcoVdwHpQm9jnf8vgwFoAvQCugOvKKX+80xPTdPGa5rWVNO0piEhIUWftBTbdyKbMYvjuaVRON3qVwTAvvkX7CH1ISymSK5RP9wPhwYHCXNuSN1fJOMKIYQQovRwODTG/rma+tvfI85Ul2FPvEloESxZO1+YnwcR/h7OPkjBhU9iu44eiwt2naB5VCAv3FwXnQL9nllYItuAd2gRJRYl6YWedfEw6nlnbR5JfWdg8wgh7M87OL7tHykiCSFEKVbcBaREoNJZn0cCxy5wzHxN03I1TUsBlgONijlXmWGzOxg5fRu+7kZev7W+c+PJ3eiPb0EXeycU0VTzBpHORtpbcoOdG6SRthBCCFGumG12nvptK1XWv463MlP1nu/x8nArtuvFVgkoLCCdfhLbtfVBOpVtZtexLDrUdr6B6Di2FWPGQVSDAUUVVZSwEB833h/QkO2JmUzd5+DUwFlYvSMInzOUE1vmSRFJCCFKqeIuIG0AaiqlqiqlTMDtwB/nHfM70E4pZVBKeQItgD3FnKt0K8gkb/bTZC0dw29z5rEzMZ3X+9Qn0MsEgGPLL2g6A6rhbUV2yXA/dwI8jWw7acXhXRGHzEASQgghyo3MfCt3/7CenO1/cot+LY52z2AMq1+s12xS2Z/jmQUc01VA0xmv+UlsK/c7Wxe0r+ksIFm2zUDTGTBFn99WU5QlNzcI444Wlflm+UEOFniTNmgmZr+qhM27h+RNv7s6Xulit5KWGEd6chKZWVnkFlgpsNqx2h1o2vUX2xx2B+acNPKSdpKzZxH522aB3VoEwYUQ5Y2hOAfXNM2mlHoMWADogR80TdullHqocP84TdP2KKXmA9sBB/Cdpmk7izNXaWdd/B6eW78HnB3Gb/XwRre5JTkpbTBWa41x+684avZA7xVcZNdUShEd4cfOY5loQTUhRQpIQgghRHlgtTt4YOJG4o4ksdLnZ6zedXDr8EyxX7dpVCAAm45m0zOwGpyKQ38N4yyPSyHIy0T9cF/QNAx7ZmKp0hE3z8CiDSxK3Cu96rHxcBpP/7aNv55sR+bgGfhOv40Kf91HppcvfvU6uzpiqWCe+SiBu34987mmDNhNXjiM3piNXtgiW+Le4w0MXgEXHcPu0EhMz+PAqRySjhyixu6x1FSJ+NpSMeSdxM1uPud4R+7b6Fo/Vmz3JIQom4q1gASgado8YN5528ad9/mHwIfFnaVMSD2AYeO3WBrexSOJNxGStpFna6bgc3I9psMLnQv8AGKHFvml64f78f3Kg2jNq6PbI+/8CCGEEOXB63/uYt2hNP6pOR/PxBS0vlPAYCr269ap6IOHUc+mhHR6BteC5N1XPYbDobEi/hRtawaj0ynsCeswZCfh6PhSMSQWJc3DpGfMkFhuHbuSZ6dtY8LwZqQOnoH+l254zHsCS9RqTJ6+ro7pUlryXky7fiO35q3khzVHZ8kBSw46Sw7KmouuIB3vnZOwHVpIbu8xuNfqwpG0PPadyGLP8Wz2n8rhQHIOB1Nysdjs9NOtZLTxJ9ywstlRE6/g2kQ1uBmdXzh4V0D5huG27C10a7+Blg+D7lrKvkKI8qrYC0ji6pjnv4JRb2SG33AWrk/mk8EPExQbCYAt4xiWQ6sw5CZjqtm1yK8dHeGL1a5xylSJsIJ0yEsDeXdPCCGEKLMmrUvgl7UJfFBnPzUPT8PS7GFMlZqWyLUNeh0xlfzZlJCOvl5ttH3zwGa5quLV7uNZpORYzixfs26fjtK7Yarfu7hiixJWu6IPL/euxyuzd/L9ykPc374a6Td/jv+vfcn+6xVMAz53dUSXsix6F4PRk/imozEb/bE7NGwODZvDgc2uYXdo5Aetp9WOlwmbOoBJjm68ZbmdfNxRCioHelI9xJselR30TfyQqLSV5FRoiuWWscxcY2H6pkSamgL4rEMMkQGezos6suHXu2DvHKgnS0WFEP+SAlIpYju4Arf4uSQ1fobXl6bQuU4o/RpHnNlv8A/H0HhQsV0/OtzZSDveXtH5LLbU/eDZvNiuJ4QQQojis+5gKr//MZO/fKZR9/AuLMH1MHV9pUQzNKkSwNfLDmBuUwM3zQ5pByG0zhWfvzze2f+oXa1gcNgx7PkdS9UuuLv7FVdk4QJ3tajMyvhTfLBgLy2qBdKwbkcyG92L37bvyK7XF5+6nVwd0SUcx3di2vc70z0HM3LC3kscaSDM411e8JzBkLxZ9PLfTVKHj6nWpCseRh25637CffErKLuF3E5v4t3uUdDp+WgQtKsZzEuzdtLz8xW8P6AhNzcIg9o9sftVQVs1FoMUkIQQZ5ECUmnhcOCY/yL5HmH02dyYIC833unXAFVET1m7EpUDPfFxM7ApN4j24CwgVZICkhBCCFHWHNi5nvzpz/ObcRMWQwhZ7T/Au+U9YCz+pWtnaxIVgH2Jxj5bGA3B+SS2qykgxZ2ibpgvoT7u2A6uwJB3EkeD/sWWV7iGUor3BzSk5+creGLKFuY80Q6P7qMxH/oHt3lPYItajcHDx9UxS5xl8TtoyoO30rrwau961Knog16nMOgVep0Og06h1ymCvE2EeLuhVG/y4u/B849HqbfgdnKTHyAvNQ6vI0vID2uBvt9XeIXWOOcafWIiiKnkzxNTtvDwpM3c0aIyr/auh6nlw+gXPA+JmyCyiYteASFEaVPcT2ETV8iyZQqm5O28ljsAXx8fpj3Uiop+7iWaQadT1Av3ZVWKJ5rOACnxJXp9IYQQQlyfnJMHSZs0gqrTuxGr7SEh5lnUE1vwbfcguhIuHgHEVnI29V2bVbgkPuXKn8SWa7axKSGd9rWcDw2xbZuGw+CBqW7PIs8pXM/f08RntzfmSFoer87eicnTB0vPLzBlHyH/r9dcHa/E2Y9twz1+LuOtPbi7cwwj2laldY1gWlQLokmVQGIq+RMd4XemwHr6TWfPmu3RP7qa3AZD8d7yDe7H1pLT+R087p+P6bzi0WlVgryY9lBrHmxfjcnrjnDr2JWcrD4Qh8kH2+qxJXnbQohSTgpIpYElF9vfo9muVWe7f1emPtiScH8Pl0SJjvBj54k8HP5ROORJbEIIIUTZkbAGz29a4B3/J9/aerGx7xKq9H0Fowtnbvh5GqkZ6s2aowU4fCKwJ8dd8blrDqRitWt0qBkCdhvGfX9iqd4NTF7FmFi4UvOqgTzRpSYztyQxdf0RfOp0JKvhCHy2f0/OvqWujleikv8YTZbmycHqd/O/m2pd1bl6dx+8B4whd9jfWB9ai3f7R0F36V/7TAYdL/Ssy8QRzTmWUcDD0+KwxQxDv+d3yDh6HXcihChPpIBUCuyc/jae5mR+9n2AKQ+2JtSnZGcenS06wpcCq4Nc7yi0VCkgCSGEEGWFffPPWJSJ9gUfo3V9g86Nr3ypWHFqUiWAzUcycATXuqoZSMvjT+Fh1NMkKgDr/qXoC9LQNxxYjElFafB455q0qxnMK7/vZN3BVDxufgOLT2VMc5/AXpDj6nglImHnKsJOLGame1/euaMtOt21tbTwqtYCt+Coqzqnfa0QPhjYkK1HM/g6rwsA9nXfXNP1hRDljxSQXGze6s1U2/cdK01tePmRewnwKvnp5Wc73Uj7uDESXfpBcDhcmkcIIYQQV0DTsOxdwEJLNC1jGvBg+2quTnRGkyoBZOZbyfaqii41HjTtis5bHneKVtWDcDPosW37DbvJB2OtbsWcVriaXqcYe0cslQI9eeiXTRzP02PpNQZTVgJ588v/UrasAitJM18lEy9uGj4aL7eSb1nbs0EYw1tH8enGApLCuqI2/wTmG6N4J4S4NCkgudCU9UfImTcao7ITM/wz/DyMro5EtRBv3I064qwVULYCyEp0dSQhhBBCXMbm9UvxMKdw0L817w1oWKIP4bicJlWcfZAOEIGy5kFW0mXPOZKax+HUPNrXDAZLHm7xc7DUuhWMrpulLUqOn4eR7+9uhkODe3/agBbVhuyGI/De+j15+1e6Ol6xsTs0Pp0wmdaOjZxq8CCRYRVcluXFnnVpVMmfUUlt0ZmzcGyZ5LIsQojSQwpILnLwVA6TZv/JQMNyCmLvxzv86tY2Fxe9TlEvzJeNOUHODbKMTQghhCjVNiWks3LuZBwohg+7H3ej3tWRzlE12IsATyMbcpzNsEm5fB+kZfGnAOdyGvOuP9BZczE0HlKcMUUpUzXYi6/vjOVQSi5PTNmCW4/XsfpUQv/Ho+Rlp7k63jWzOy4+A++DBXvpeOw78gz+1Oj9dAmm+i+TQceXdzRmp642u/V1cKz5Chx2l2YSQrieFJBcpFqwFz9F/I7DPQDvrqNcHecc0RF+LE1xLmVDGmkLIYQQpdae41ncM2E9nQ3bsITG4BsS7upI/6GUokmVABae8nduOHX5AtLyuFNEBnhQNdgLbetUrN4RGKu2Kd6gotRpXSOY0bfWZ8m+U3y4JBFr7y8wZSfCxH7kZJxydbyr5rAUcGLlRA7s2sCRlFxSc8wUWJ1FmQmrDrFx+V900G9HtXkS3FzX/P60yABPPhnciLH53TBkHoa4+a6OJC7CcXAF1j+evuIlwkJcKykguUraQQIzdmJpNwrlEeDqNOeIDvcjweKN3eiNlhrv6jhCCCGEuIBDKbkM/X49EaZc6jviMNXt7upIF9WkSiCbUg3Y3fxwnLp0I22r3cGaA6m0rxUCOSdxO7IMW/Sgyz5FSpRPd7Wswt2tqvDtikPMza5BWu/vcU/djX7ireSkHnN1vKuSv+h9IhY/QfVpNxH2fSP0M+8jeel43pg4h9f/3MXrvr9j8wjGo82Dro56Rpe6FajS9jYStWBOLvjE1XHEhdhtOP58EuPm7yEv1dVpRDkn/xK7SlB1zI9sxLPlva5O8h/REX6AItOzMg6ZgSSEEEKUOscz87nru3U4NI0f22Wh0NDVKs0FpABAkelVFe0yM5A2J6STY7bRvmYI5i2/ojQHptg7SiaoKJVe6V2PtjWCeWnWDg4Etie9z8+4ZR7E8PMtZCUfcXW8K2LLSMJj09dkVelGYrsPyQlvi+fxtVRe9TyvHryTrd5PEm3eirXlk2DycnXcczzTvR6LfPtRIX0jR3auvuAxmqbhuMTyPFF8HFsnYUg/4PwkRd78F8VLCkgu5B4QDnrXN84+X80K3pj0Oo7pI6UHkhBCCFHKpOaYueu7dWTlW5k4ojnBx5fh8AyBsBhXR7uohpF+GHSKo7pIVOqlC0jL40+h1yla1whCt/03LKGN0IfWLqGkojQy6HV8eUcslQKcT2azRHUgvf+vGHNP4P5zL7KOH3B1xMsyL3wbHDbce79PaIf7SO76Bb0M39LF8hELqoxEVWpObmR7PFrf7+qo/2HQ67h52HPk4s6+2e+zbf8Rsg6sJ2PtL2TMfY2siXdSMKYVli9bl+sm56WStQBtyXvY/So7P5ff3UQxkwKS+A+jXkedMB/22SqgyzwK1gJXRxJCCCFuHOYc8ifdiZa46T+7csw2hk/YQGJ6Pt/d3ZToil6oA4tw1LipVC/xcjfqqR/hx3ZzBXS5yZCfcdFjl8elEFvZH6+MOEwpO3E0vK3kgopSy8/TyLd3NyXfYufFmTsIrNeBzIHT0JszcP+lN5lH97g64kWZj+3Ec9cU8mNGYAqpxv7kHIZP2MCxzAJeHtaHDne9gKX/j9jvmglGD1fHvaDQkFDSa99OV9tSGv3SAN+fu+I//1H8Nn6BW8oO7N5h6Cw5eEy6hZz5b6LZra6OfEOwr/8Ofc4xdLd8jqY3gbQfEcWs9P6kIVyqfrgf67MCUWiQfsjVcYQQQogbhmXph3jEz8G24NVztmuaxrO/bWP38Sy+viuWFtWCIHEDOnMmhto9XJT2yjWpHMDKjEAAsuMvPEshNcfMzmOZtK8ZgnXzFDSdAbeYQSUZU5Ri1UO8GdWjNkv2nWL6pkQCa7cm6/bZ6OxmPCffQvaR7a6OeEH2Ba/iMPrg3uV5luxNZtC41WgaTHuoNZ3qhOJu1BPi44ave+lbmXC2yFteIi36HhZFPMxTPMtN5g+4M3Q2a3otxOuemegfWUVe7QF4r/2Igu9uxpp62NWRyzdzNqz8GGuVDqgandECquI4JQUkUbykgCQuKDrCl53mUAC0K3jcrhBCCCGun5Z6AMO6r7B7hWI8uhLtyLoz+75aeoD5u07wws116FynAgCOuAVoOgNU7+SqyFesaVQAS631yfOqjGnhi1jyc/5zzMr9KWgatK8RiGHXNMxVOqG8Q12QVpRWw1pF0TwqkDfm7OZEZgEB1ZqQc8efoHR4TO4DeWmujniO/H2L8UxYRHLMI7y8IJF7f9pAVLAXsx9tQ71wX1fHuzreoQQO/Iwu97/H2y++wJBe3TiY7pwVeevYVSw5lI/X7d+R23scppS96L5pR96W31ydutyyrfoSfX4axm6vAaCCa8oSNlHspIAkLig63I/DWkUAco+V3inBQgghRHlinfci6I3oR8zH7h6AddnHACzZl8xHf++jb0w497ateuZ4LW4B9sgW4O7nqshXrEmVAMyYWFD9RdyyEshf8MZ/jlkWd4oATyN1CrZhyD2BrtHtLkgqSjOdTvHBwIZY7Q5enLUDTdPwr1yfgkFTMBSkUbDqK1dH/JfDgX3+y6QaKnDTqjrM2JTE0JZV+O3BVlT0c3d1uuviaTJwb9uqLHuuI+/1b0B2gZX7Jm5k2sajeDUdgv2BFVgDauD5+/3k/fYAmjnb1ZHLl9xUdGvGYK3VCyKaAKCCaqDSD4Hd5uJwojyTApK4oNoVfSjQeXLcoxZuW36kICfd1ZGEEOK65B9aT/7Kr0GTp8SI0ske9w+mA/Oxtx0JQdVxtHgY04EFJO3dwJNTtlC3oi/v9m+IUsp5QmYi+lO70ZeB5WsAFXzdifD3YGF+bbLq34Xvtm/J2r/2zH6HQ2N5XArtaobg2D4Vu8kHU/1eLkwsSquoYC+e616HxXuTmbk5CQCfqk0oqN4D48bxzqU9LnYsI58p33+Md/ou3ikYSP9mNVj2XEde7xONl5vB1fGKjJtBz+3NK/P3Ux1oVzOY52fuYMm+ZEwhVXF/4G9yWz6Nx55p2CfcIv/+XqdtRzN45rdtZOZbsS3/GGXLw3jTWUudg2uiHFbILBtPJhRlkxSQxAW5G/XUDPVmnPejGHJPYP7rVTT5S18IUcptPpLO6D92sSL+1Jm/szSHneyFH+I+8WY8Fj4PR9a4OKUQF2Cz4PjreWz+1TC2eQQAY8sHsBu92Tv9DXQ6xTdDm+Bh0v97TvzfAKia3VyR+Jo0qRLAxoQ0TD3exOYZimnu46RkZrPneBbTNh0lJcdMp2reuMXNwVLr1lLbUFi43vDWUTSLCuD1P3dxMsv5wBdDx5HozZmY14x3WS67Q+P1P3fR7cO/aZ84jiNuNXnmmZd4s280YX7l9/vZZNDx9V1NqFPRh0cnbWbb0QzQG/Hq8RrW7h9hOLEFDi13dcwy68CpHIZPWM+MzYl8P28l+o3fYYseDKF1/j0oqIbzY4osYxPFRwpI4qKiI/yYkxZBVqN78ds1kcy98pe+EKJ0KrDaeWfeHgZ+vZqf1hxm6Pfr6fHZCmYs20Tu933wWfkWedW643Dzx7pmnKvjCvEf1jVfY0zfj+rxLhjcANDc/fnHqzcdrSv4rncglQI9zznHtm+B89HNIWXnEfdNowI4mWXm3l/jeNV+P+7pcfzy4RPc/PkKRs3YgZtBRzv7OnTWXIyxQ1wdV5RizqVsjTDbHLw407mUzVCpKebKHdCv+xqs+S7JtWRvMhNWHebNsFVEqBRC+n9AeICXS7KUNG83AxPuaUagl4kRP27gcEouAKYmd+JwD8S2znWFvbIsOauAu39Yj04putWrQPjWL9A0B8bOL557YFBN50fpgySKkRSQxEVFh/uSmmshq/ULWLwr4TH/fxTk57o6lhBCnGNTQho9P1/B+OUHub15ZTa+dBMfDmxIE+tGOizuiyFpLfOqjCKvzw84Gt+FYd8cyDrm6thC/Cv7JPrlH2CpehP6Ov8uR/t62QFePtEBh85Ew4QJ555jLUB/aBnU6Aqnl7SVAZ1qh1ItxIvsAhvpER3Z5NeVxw2/8003d2Y90pq1L3TBe990bD4RGKLauDquKOWqBnsxsnttFu1NZvZW51I2fceRGPJPYV7/o0syzdtxnMruBdyaNYW8Kl3wqN3ZJTlcJdTHnYkjmuPQNO6esJ6UHDMY3dEa34U+7i/ITHR1xDIlq8DK3RM2kJZrYcI9zfigsxcDdUv5x+NmNP/K5x7sGYjm7o+WIk9iE8VHCkjioqIjnA0596Xaye3+MW6ZB8n75x0XpxJCCKd8i5035+xm4Lg1mG0Ofrm3Be/0a0CAG3Q/9iXv5L2O0SeUNyp+xSP7GtHm/SWMze4ImgP7+u9dHV+IMyx/j0bZzZh6vX9m29J9yXy4YB+tG9VFa3wXxh2/QmbSvyclrETZ8stM/6PTKgV6sviZjvzxWFvGDW1KvXu+QnP3p/2e0USHeeFvT8XtyDJs9QeBTn5MFZd3T5uqNKkSwOg/dpOcVYChalvM4S3Qr/kCbJYSzWK22fln90le95+HzpqDvvt/G8XfCKqFePP98GaczCpgxI8byDXb0De/z/nv74YfXB2vzDDb7Dz08ybiT2bz1Z2xNIz0x3vVB2h6Ey+l3sw/u0+ee4JSaEE10GQGkihG8i+zuKi6Yb4oBRsOp+Ef3Y2s2oMJ2PI1aQc2ujqaEOIGt+FwGjd/vpzvVx7irhZVWPBUe9rWDIacU1i+7Ybv5q/Jjh6G9+MreOehwSx+pgO9Gobx2SYLp8I7weYfwWZ29W2IG1hWgZW+X65i8CtjMe2YzPe2m6n7+X7qvjKfuq/MZ8SPG6hT0Zf3BzTE1P5/gIZ15RdnzrfvW4Cmd4eq7Vx2D0XBwz+UnM7v4HFqOzlLP8e89TeU5sAUe4ero4kyQq9TfDiwIQVWu/OpbICuw7MYco5h2Ty5RLOsiEvBy3yS9pmzyas/BLfw6BK9fmkSWzmAsUNi2ZmUySOTNmP1rYS9RnfU5p/k39/LcDg08sw2/jd1KxsPnODjdoqGp/4ka8YTGPbMRGv5MAGhEbw1dw8FVvs556qgGpAqM5BE8ZECkrgoLzcDPepXZMLqwxw4lYuh5zvY3APx+OtJCszyF78QohhpGnm75kFe2jmbT2YV8Mxv2xg0bg12TWPy/S14s2803oVPtLH89SKmlN1k3/o9PgPHoHdz9oypFuLNu/0bEORl4hdHd/R5KTh2zirx2xICQNM0Rk7bxs6kdD7y/oUsQyAZzZ5kaKsqZ/480rEGPwxv6mya7V8Za72B6Lf8BLkpzicZxf2NPapduWgy7dtkMNlR3fFb+yG6jd9jrhCDLrTs9HUSrlctxJuR3WuzcE8y3604hLFWVyyhDVGrPivRR5rP23GcO9xXoddsuHV8tsSuW1rdVK8C7/RrwLK4U7z6+y4MLe9Hl5eCtvt3V0crtew2K6eWfcOOL+/k8bh72O1xL33W3U7gwqfx2judgqpdMLX7H6/dUp8jaXl8v/LQOeer4Jroso+DOcdFdyDKOykgiUt6vU99PE16npu+DTefYLI6v4NHyk5yl35x+ZOFEOIa5S96D89pQ7D8Ohw0jQKrnS+X7KfTR0v5c9sxHuxQjflPtqd19eAz5ziObMC06zeszR/GJ3bgf8Z0N+q5vXklxiZEUuBXHce6b0rwjoT41/crD7Fg10m+bRhP5fw9ePZ8m2dvacqLPeue+fNs99rnPLHJ1OFplK0A2+qvIHU/+szDGGp3d+FdFB2dXoeu98doejdMWQloDW5zdSRRBt3btio3R1fk3b/2sDw+Bdo9gzHzEJYdM0vk+s7laye4zbgKS0QrDMHVSuS6pd3tzSszok1Vpqw/wiG/Ftj9q2Jf962rY5VaOX8+T4Vlo6iWuRq8Q8lo9AApPb4h6761aKOO4H73TPDwp23NYLrVq8CXS/ZzIrPg3wGCCxtppx1wzQ2Ick8KSOKSQn3cGX1LfTYfyWDCqkP4xw4kO6o7Aes/JO3IHlfHE0KUQ/nLPsdj5XtYg+pgSljG5j+/5qZPlvHhgn20rRHMP0+354Wb6+JVOOsIAIcD+7yR2Lwq4NZp5EXHvrNFFUCx3L8vhuObIXFT8d+QEGfZlJDOe3/tZUBtE+0SxmINa4Ih5vbLnxhSG1ut3ug2fIu2Y7pzW81uxRu2BHkFVyKj0ztYvcJwbzzY1XFEGaSU4qNBjahVwYfHp2zheFgXLIG1YMXH4HAU+/VXxKVQw7KXCtajqMbyBMGzPdSxGka94qc1R1DN78OQtB6Ob3d1rFInddUE/LZ9xw+2HrxQdQZRT84nuO+7BLe8Hd/IuhgMhnOOf7lXPWwOjff+Out3sqAahYNJHyRRPKSAJC6rT0w4N9WtwIcL9pGQlod280fOdwn/eooCS8lNCxZClD8ZeRZ2H8s68+fwgrF4LHmVU5V6sLHHbPYa61J109tEGHOYfF8Lxg9rSpWg/z4O2bZlCsYTW6DLaHDzuej1wv096FavIq8faYTD6I117bhivDshzpWWa+GxyZsJ93PnTb5CZ8nG0OeLK24Wbez4DDpLFqz4CHtQbQioUsyJS5Z/i7vIfHgbeAVf/mAhLsDLzcD4oU1RCh74eQvmlv/DlLoX6565xX7teTuOM8RtJQ6DO8bofsV+vbIk1Med3g3Dmb4pkdx6t+EweGBbN97VsUqVhG3L8PlnJKvs9Ylr9Bxf3tUETzfDJc+pHOTJA+2qMXvrMTYlFC75D6yGhoIUKSCJ4iEFJHFZSine6ReNm0HHc9O34xVSifQ2r+B9fA3Zq+QvfyHEtVl7MJV2Hyyh5xcr6PnFCr4Z+y6VV7/MYnsMrePvYMj3m3nJdj8+OjMTw2fQusZFfqk0Z6MWjcZaMfaKZnLc3TqKpHwD8eG3YNg9G3JOFe2NCXEBDofG/37dSmqOhV8absEzYTH2Lm+gKl5Fk93wxlijOqEcNlSt8jP76DS9ThHs7ebqGKKMqxzkydghscQnZzNqb02svlXQln/k7B1WTMw2O8t2H6W3bg3Wmr3A3bfYrlVW3dMmihyzjWk7c3BED0K3czrkp7s6VqmwZNN23GcNJ1nz51SPcbw3qAluBv0VnftIp+pU9HVn9B+7cTg0MHqg+UbikBlIopgUewFJKdVDKbVPKbVfKfX8JY5rppSyK6X+27hCuFyorzujb63PxoR0flx9GN/W95IT0Y6gVW+QKkvZhBBX6a8dxxn2w3oq+Lrz1Z2x/NY+hU/dviE5qCm2gT8x5q4WjB/ahB9GDsPR9hnc9s7GvmfeBceyLPkAfV4y+p4fXNFMjpbVAqlVwZuPMzqgHBbsGycU9e0J8R9fLtnP8rhTfNxBT+SG97BU64ax1YNXPY6h8/Noejd0MsNBiItqWzOYF3vWZd7uUywNuRPTya1Y4hYV2/VWxKXQwroeT0cOhtg7i+06ZVnDSH+aVAngpzWH0TW/H50tH8fmX1wdy6Vsdgcfzt2Bz+/34ksuOf0m0rdNw6saw9Nk4IWeddiRlMm0TUedG4NrQIo8iU0Uj2ItICml9MCXwM1APWCIUqreRY57H1hQnHnE9enXOIIudUL5cMFekjILsPQeg6Yz4jHnUXkqmxDiiv28NoFHJm+mQYQf0x9qxU3G7TTb+AzWCjFUeGAm3RpF0SO6It3qV8TP04ipwzNYg2qjzX0GCrLOHSz1AMb147BE346ucrMrur5SimGtovj7pC9pFdvCxh9K9Ck94sazen8Kny6MY2DDQHrsfQmHuz+mAV+DUlc9lqrcEsfziRDRpBiSClF+3Nu2Kv0aR/DortrkuYViX/g6mWkpxXKteTuOc5tpJTaviuirdyyWa5QHw1tHkZCax5LMCtgiWqBt+K5E+lOVRicyCxjy7Voi1rxKU10c2d0/p05M62sa69ZG4TStEsCHC+Kw2R3ogmuiUvcX66w7ceMq7hlIzYH9mqYd1DTNAkwF+lzguMeBGUByMecR10EpxTv9G2DS63hu+jb8K0SR0uEdPJM3kbv4Y1fHE0KUcpqm8fHf+3hl9k661Anll3tb4Hl8HYZpQ7EE1sI0bAbqQtP+DSb0fcaizzmO5e/Xztll+etFNL0RU/fXrypLv8YR+LgbmK7viT7nONreOddza0JcVHJWAU9M3Uq1EG/ecJ+MMS0O1W/cdfX50RtNRZhQiPJJKcW7/RtQJzKYVwqG4JayG48JHUnZtxqtCH+xNtvsbN69j7ZsxdFgMOiubOnRjahHdEUq+rozYdVh9C0fQJ9xGA4sdnWsEpeUkU/vMSuof2wGdxgWkxH7GKGtrr3xulKKoa2qkJJjZs/xbAiqibJkQ478ai2KXnEXkCKAo2d9nli47QylVATQD7hkJ1Ol1ANKqY1KqY2nTkm/Clep4OvOq7fUZ8PhdH5ac5jAFneQWa03ges/Jn3/RlfHE0KUUja7gxdm7mDM4v3c1rQS4+5qgj5xLYYpg7H5VsY0/HeUZ8BFz9dVbo616QOYNv+A4/AaABzxizDtn4+97bPgU/Gq8ni5GRjUpBIfH66CxacStjXSTFsUvXyLnYcnbSbXbGNCy5N4bp+IpcXj6Gt2cXU0IW4I7kY94+5qwjJjOx42vYXDbifw11tJXfQFVpu9SK6xIi6FLrZl6HFganJXkYxZXhn1Ooa2qsLK/SnEB3XC7hmCbe03ro5Vomx2B09M2UJdy05e1f9ITqVO+PS8ujfBLqR51UAA1h9Og6Dqzo2psoxNFL3iLiBdaG72+SX/z4BRmqZd8m9xTdPGa5rWVNO0piEhIUWVT1yDAbERdKodwvvz93I0PR/V+xNsHoF4zH2YgvxcV8cTQpQy+RY7D/2ymakbjvJ45xq8N6ABjoTVGCYPxOYdhmH4Hyjvy/+9bur6KjafSOy/Pw7mHBx/PY/NLwpjm0evKdfQVlUw2xVrg/phTFwDJ3Ze0zhCXIjV7uCxyZvZfCSdMb0rEr7sOayhDTF1fdXV0YS4oYT7ezB+WFOW51XlLv1HZIS3J3jlq+T/cgc5manXPf68HccZbFyJpUIMhNS+/sDl3JDmlXEz6Phx3TFoMhz9gX8g/bCrY5WYTxfGEZeQxDduY7D6VMIw+Af0hks/be1KhPl5UCnQg/WHUiG4pnOjNNIWxaC4C0iJQKWzPo8Ejp13TFNgqlLqMDAQ+Eop1beYc4nr4JwS3BB3o54RP27AavIns+snuKfHkT//+ivoQojyIzm7gDu+W8uivSd5s099nulWG+vBlRgmD8LmE47hnrno/MKvbDA3b9Qtn2FMj8f+XTcMaXGoHu+A4dqe2lQ12IsOtUJ4IzEWh8Ed6w32LqgoPg6HxnPTt7NobzJv3VqX9jtfQtkLMAz+AQyy/EyIkhZbOYDxw5qwPU3HvQVPc7zFK/gkLMT0XQfS4tZc87hmm52E3euoTQKq8R1FmLj8CvQy0TcmgpmbE8mJHgpKh23dt66OVSJWxqfw1dIDvFtpHZ7WVKx9vsHdJ7DIxm8WFcjGw+lovhFoBndppC2KRXEXkDYANZVSVZVSJuB24I+zD9A0raqmaVGapkUB04FHNE2bXcy5xHWq6OfOd8OacjyzgBE/bsC9bg8y6g3Ff9t4MnYvcXU8IUQpsOtYJn3HrmLv8Wy+vjOWoa2isBxYjmHK2cWjsKsaU1+rK5Z6g9Cf2oU1qiP6Oj2vK+Pw1lHszzFxOOIW9Dt+hcyk6xpPCE3TeGPObmZtSWJk1+r0z/gR09GVOHp8gDr9rrAQosS1qxnCF0Masy0pk2eT2nJy4GzQHPhPvYW0xWNw2K++mfOKuBRuti/BrgwYGw4q+tDl1D1toyiwOpiy14a9bl90G78v9//+nso2879ft1I/2ECP7BnkR3XBu3qLIr1Gi6qBpOZaOJCSjxZQDUeKzEASRa9YC0iaptmAx3A+XW0P8JumabuUUg8ppR4qzmuL4tc0KpAvhjRmR1Imj0/Zgr77W1h8K+M57zEKctJdHU8I4ULzd55g4Ndr0IBpD7WiR3QYlv3LnD2PfCKdxSPfq+tbdJqp9wfkNxiK8dZPr+kpVmfrUCuEyoGefJzbC6U5sCx5/7rGE2Ls4v38uPowr9ZP4b5dd+Ox7nMs9QdjaDLU1dGEuOH1iK7IBwMbsWp/Kq9t9iBv+GJyIzsQuPxlsqc/gsVccFXjzd9+lH6G1VirdwfPoptJUt7VqehLq2pBTFx9GDq/ApoDy9+jXR2r2DgcGk//tpXsAitf192OoSANQ4eRRX6dZlGFfZAOpUFQDemBJIpFcc9AQtO0eZqm1dI0rbqmaW8Xbhunadp/OpZqmjZc07TpxZ1JFJ3u9SvyRp9oluw7xZv/JJDb80uMuccwzxmF3SGPjhTiRqNpGl8u2c9Dv2yidkUffn+0DdERflj2L8UwdTA230rXVTwCwDMQjwFjIbDadefV6RTDWlVhbqKJU7Vux7h9EqQduu5xxY3p57UJzFi4jNmBYxlx4AmUNZe8vhMwDRx/3cVOIUTRGNgkktG31GPBrpO8segEprumkt7kCfz2TME64RZy009c0Thmm538PX8TRCamJncWc+ry5542URzLLOCf4+7YWzyCaddvaEc3uDpWsRi3/AAr4lN4vWcNwnZ+S0FkG4xVWxX5daoGexHsbWLD4TR0ITVRGQlgtxb5dcSNrdgLSKL8u6tlFR7vXIPfNiby45FQMmIfxW/vr6QtH1+kj0kVQpRuBVY7T/26lQ8X7KNvTDhTH2hJqK87lvglGKbehs23Mobhc9D5VnB11HMMalIJD6Oeb+mPpjNgWfSOqyOJMmjuhr3kz3mBhW6jaGDdRk7blzE+sQHPmP5SPBKilBnepirPdK3FzC1JvPPXPvx6vU5qj6/wOLUN4/ddyDy05bJjrIhLoadjCWZTALpa3UogdfnSpW4FKgV6MGHVYYwdnsHuGYpt3igoZ787bEpI4+O/4+jVMIy+LMaQdxJdMcw+Amef2uZVA8/MQFIOG6QnFMu1xI1LCkiiSDzdtRaDm0byxeL9zA28m+xKnQheOoq0Nb+4OpoQogQkZxdw+/i1zN56jJHda/PpbTG4G/XYjm7E8Osd2HyrYBwxt9QVjwD8PI30bRzBxJ1mchreg3HXNEje6+pYohSz2BzkpJ8ka99yMld+x76JT9ByTlfuM8wjr84AtEc34n3TSJTRw9VRhRAX8VjnGjzQvho/rUngzbl78Gk6hKzb/0A5rHhP6knaxpmXfCN06dZ9dNVvRmswEPTGEkxePuh1irtbRbH+cBo7UxxoXV7FeHwTtm2/uTpakcnIs/DElK2E+7vzbp866Fd/jrliU0w1OhbbNZtFBZKUkU+yW2XnBnkSmyhiUkASRUIpxdv9GtCpdgivzoljaczH5Ia1IvCfJ0nbNMPV8YQQxWhnUiZ9xq5i34lsxt3VhEc71UAphf1UPGrSIOweQRiH/47yDnV11Iu6t21VzDYHkwz90YxeWBa+6epIopTR0g6R+etD5H7dGd2HVfH+vBa+U27Bb+EzRB2YzGFDVTLu/Bvf28dj8L/CJwsKIVxGKcULN9dheOsoJqw6TN8vV3HCpx7mexZiDqhF4Jx7yJj/Dmk5ZjLzreSYbRRY7ZitdqZvPIpx72xM2HBvcperb6XMGtS0Ep4mPeOWHcDQ+E6soQ1h4Wiw5Lk6WpF4afZOTmYVMGZILG67p2HMSUJ1GFmss1JP90HakBXg3CB9kEQRkwKSKDJGvY4v74ylQaQ/z86KY1Prr8gPicF/7oNk7vjL1fGEEMVg/s7jDBq3BgVMf7gVPaKdvY0cmcdwTOyLphS6YbNRvlf3tLWSViPUm5vqVmD8xgzMTR/GFDcH7djllzCIG4dt3ih84maCzkhu9d6ktxvNwsZf0sH8OUNCZlLjmUUE1mzu6phCiKuglGL0rfUZP7QJydkF3DpmFT/vssLwOWTV7EfAug/wHVsHt29aon7oTtp3/Vn2wUAyZo9khGE++QG1IayRq2+jzPLzMHJfu2rM2X6cWduOob/5PQw5x7Cu+NzV0a5bVoGVv3Yc5962VYmJ8EG38jMsIdGY6nQv1uvWDfPFx83AqmMOHB5BaPIkNlHEpIAkipSnycAPdzelUqAnD0/bx5b232IOqI3P7LvJ2bvU1fGEEEVE0zTGLIrnoV82UyfMh9mPtaF+uJ9zX346ton90Reko905HX1IDRenvTIPdqhGep6V3z37YncPwPqPzEIShTKTMBz4B3uLh/F6cAF+g79kjmc/7lsTQES1Ovx8f2v8PGUJixBlVbf6FVnwv/Z0rhPK+/P3MmziDk51HcOpzh+RGdWDLJ8aJGTayDh+iAbW7QwzLaWSIwljywekx9l1eqJzDZpHBfLSrJ0c9GqEpfat6Nd8DplJro52XTYeTsOhQYfaIVi2z8CYeRDaP1vs3y96naJJVAAbDqWhBVVHS5EZSKJoSQFJFLkgbzcm39+Cin7uPPBbPDs6TcDiWxmPGXeQf3CNq+MJIa5TgdXOk1O38vE/cfRrHMGU+1sS6uPu3GnNx/LzbRjT92Mb9DPGyFjXhr0KTasE0LiyP1+vPYW91ROYDi3CcXi1q2OJUsC6aSJKc2Bsdg8AXy3dzyu/7+KmuhX4YXgzvNwMLk4ohLheQd5ufH1XLJ/e1oh9J7PpPWYV841dmRz6NB0T7qFP9ihmtpiK48kdZD6VQOrTxzC0uM/Vscs8g17HF0Ma427U89jkzWg3vQ6aA8uC11wd7bqsO5iGSa8jtpIfrPgYS0BNTPX7lMi1m0UFEp+cg8WvuvRAEkVOCkiiWIT6uDt/qfR1Z8S0Q+zqPBG7RzCmqYMxH93q6nhCiGuUnFXAbd+s4c/tx3iuR20+GdwId6PeudNuo2DqcEzH1mO99WtMtbq4NuxVUkrxYPtqJKTmsdi3r/OJMAvfKHdPhBFXyWFHbfkZa1RHNP8qfDB/Lx/M30efmHC+viv23+9/IUSZp5SiX+NI/n6qPU2jAnjl9118/HccbWsEs+jpjrzcqx4RAZ6E+LgR5Ovl6rjlRkU/dz4Z3Ii9J7IZvSIHe4uHMe2ehuPIBldHu2brDqXRqJIf+vi/MKXuhXbPgq5kfvVuUdXZB+moLhxd7kkoyCqR64obgxSQRLGp4OvO5PtbEOhlYviMo+zp9gsOkzf6Sf0wJ25zdTwhxFXan5zDrWNXEZ+cwzd3NeGRjs5m2QBoGvmzn8T9wHzMXd/FFDPItWGvUdd6FYkK8uTr1cdxtH0aU+Ia7PsXuzqWcCF73D8YspPQNbmH1/7YxVdLDzCkeWU+GRyDUS8/RglRHoX5eTBxRHM+vz2Gyfe3YPywplQO8nR1rHKtY+1QHulYnSnrj/J3wJ3YPUOx/zWqTL6Jk2u2sSMpkxZRgWjLPsTqF4Wp0cASu36DSD9MBh3b8oKdG9IOlNi1RfknP/mIYhXm58GUB1ri52Fk2IwTxHWbhKZ3w/DzLRQcXu/qeEKIK6RpGi/N2oHZZmf6Q63pVr/imX3mtKPkTBmBx45fKGj1NO5tHnZh0uuj1ynubVeNbUcz2BLSB5tPBA6ZhXRDs22YgN0zhHcPVWPimgQeaF+Nd/pFo9dJ3xMhyjOlFH1iImhdPdjVUW4YT3etRbOoAJ778yDJzZ7DeHwTli1TXR3rqm1KSMfu0LjJbQem5O042jwF+pJb6uxm0BNTyZ+lqf7ODdJIWxQhKSCJYhfh78GU+1vi7WbgztkpxPeaht3NH+OkvuTHL3N1PCHEFVi4J5l1h9J4ultt6oX7AmAvyCb7r9cxftUMz/1zyG35NO7dXnVx0us3qEkkgV4mvlmVBB2fx3hyK9reOa6OJVwh6ximg3+zp+KtfLf6KMNbR/HCzXX+nXknhBCiyJzuh2Qy6BixtSbmCo3RLxiFVsYaaq87lIpep6i7/zts3uG4xd5R4hlaVA1kcbIXmtJJHyRRpKSAJEpEpUBPJt/fAg+jnrtmnOBk/1nOv1CnDiJ/9wJXxxNCXILV7uDdv/ZQLcSL25tVQrPbyFn9HdrnjfFZ9wl5VbtieXAtXj1eKxdPo3E36hnWqgqL9iZzOOIWbP5Vcaz+ytWxhAsUbPgJpTl4cl9D2tQI4uVedaV4JIQQxSjMz4NPbothz8lcxvo9i7JbsEx/EBwOV0e7YusPpdE8zIgpaR2OmLvAYCrxDM2iAsl3GMj3jMCRElfi1xfllxSQRImpEuTFpPtaYLE5eOqvk2jD5mANqIHb9DvJ2zbb1fGEEBcxdcNRDp7K5YUedbDt+wfLl63x/vsZrH5VyBs2H+87f8a9QnVXxyxSw1pF4W7U8e3Ko+jq9ER3bBPYzK6OJUqSw47aPJG1qiEWv8qMHRKLQXoeCSFEsetUO5SHOlRnzHbF8mpP43Z0BeaVY1wd64oUWO1sO5pJ75CTKDRMVVq4JEdslQB0Ck4YItFkCZsoQvKTkChR1UK8eatvNBsT0vlqYxaGEXOxhDTAY/YI8jZOcnU8IcR5sgusfPZPHC2qBtIlbx4evw1G2QrI7fMDHg8uxLNaK1dHLBaBXiYGNanErC1JZIc0QdnNcFya/99I8nbPxy33GFPtXfh2WFMCvEr+HWQhhLhRPdOtFp1qhzB8ez3WGFthWPom9mPbXR3rsjYfScdid9DC7ZBzQ0SsS3J4uxmIjvBjr7UCurT90stRFBkpIIkS17dxBP1jIxi7OJ6NJxyY7vmDgvCWeMx5lIJ1P7g6nhDiLOOWHSA118JLPWujrfoCa8VYjE9swKvxgHKxXO1S7m1bFavDwc9JhQ3Dj6x1bSBRYjRNI/6vLzml+XHzwBHUqejr6khCCHFDMep1/DC8GR8NiuEl+/2k2L1I+WkouTnZro52SesOpqFTUClvD3b/KPAMdFmWZlGBbMgORFnzIPu4y3KI8kUKSMIl3ugTTeVAT/7361ayHG643z2dgiqdcJv/LKQddHU8IQRwPDOf71Ycok9MOA3zN6LPOISx7WMog5uro5WIqGAvetSvyPjNOdj8orAnSAHpRvHronXUz1lDfHgfujes7Oo4QghxQ1JKMbBJJDOeuYU/ol6hgvkw8z65n793nXB1tItadyiVeuG+GE9shYgmLs3SLCqQffbCN8HKcCNta+JWTiz7jpS0VOwOmUnlalJAEi7h7WZgzJBYUnLMjJqxHYweuA/4Ck1nwLr8U1fHE0IAHy2IQwOe7VYb25qvsXtXhLq3ujpWiXqgfTWyCmwc9IhGJa6TKeA3gNX7Uzi+9DsMykHzfv9zdRwhhLjhBXiZuP+e+zhaaziDHH8xedJ33PfTRpKzCs45Lv/UIbL+eAHLp42xHVxR4jnNNjtbjmTQJUJDl52EPrJpiWc4W7OoAA45wpyfpMS7NMt1+fMJKi55hoBxMaTPGsmJhL0UWO2uTnXDkgKScJkGkX48170OC3adZNK6IyjfMOwxd2HYPgUyjro6nhA3tF3HMpm5JZF72kRRyZGE4dBiVNMRoDe6OlqJalw5gJhK/vydHYUuL0VmSJZzSRn5PDZpA0OMS8mNbIchtHw1hxdCiLKs0qD3sQTV5UvP79iz/wD9vlpN3PEssvctI2fiENy/isVnyzfoCtJg5gOQn16i+bYnZmK2OejgU/h7jItnIAV5u+EdUokC5YZWVmcgpcRjPLmN7OhhZEd2IGjnD1SY0BLzL7dzbMsCMvMsFFjt5FlsZOcVkJ20j+xtf5Kz6CPyZz4GRze4+g7KHYOrA4gb271tq7JifwpvztlNs6hAard7Cm3LT1hXfIbxlo9dHU+IG5Kmabwzbw/+HkYe6VgD++IX0elN6Jre4+poLtG6ehBzV1TmMSPOPkhBUlQor97/ay9NbVupqD+FudkHro4jhBDibEZ39IO+x/BtJ36vNIUxx+tjG/c0PuoQNjc/smMfwdTqAUz5KagJ3bD88TSm2yaUWLx1B1MBqGuPR1N6VFjDErv2xTStGszhbRWpejKOstiAwLbtN/QofLq/hNkjhOQTh9Ft/AG/3b/gl/A3B3RVyPSMoq7xJF5Zh9DZ/31iroZCs+eiKpXc98CNQGYgCZfS6RQfD2qEj7uBJ6ZsocArHFuD2zFs/RmyT7o6nhA3pKVxp1i1P5UnutTET+Wjtk3GUbcveIe6OppLNK4cwF57OFajLw5ppF1u7TqWyR/bjvFkwCpsHsG41e/t6khCCCHOo69YH2un1wg+toTXtbF46Gy8YruPBV0X43vL27gHV0FXqQnWtiMx7ZmJdeuvJZZt3aE06lT0wXRyC46QemD0KLFrX0yLqoHsdUSgEteTn1rGVnhoGuyYjq1yO/CpSIHFwaIkI4+e6E2DrM8YaX0Ai2YgMGsvybpQMqOHk971E3Lu+gv7yMNQ91a0xI2uvotyRwpIwuVCfNz4eHAM+05m88ac3RjaPw0OK9aVX7g6mhA3HJvdwTtz9xAV5MmdLaqgbZ2MzpKDvuVDro7mMjGV/NHQccynAVrCGlfHEcXkwwX7qOaeRb3s1ZijbweDydWRhBBCXIBbm0fI6fwumYOm4fv0RnZHDOCxGfv4fuWhM8eYOjyLJbwZunnPomUcKfZMVruDTQnptIzyRx3bgoqMLfZrXolmVQMZa+sLdivatHuwWcyXPafUOLYFQ8ZBjkb25MGfN9Ls7YW8OGsHqblmHu8WzRPPvE7oM2t4IOBbBmY+ier+FgFt7sW7Rmv0XgGoyKboMo9AzilX30m5IgUkUSp0qBXCg+2rMXndEV5anoelbn/0m3+A3NSSD2Mzk77iW1IPbsFskwZt4sZhsTl4bsZ24pNzGNWjDiYdONaNxxbeBCJdu47flUJ83KgU6MFW6qBPi4e8NFdHEkVs9f4Utuw7xM+enwMKU/MRro4khBDiYpTCu/0j+NXvRpCPO5Pua0G3ehV4c85u3pqzG4dDA70B48BvUZod6/QHwVG8P9PvTMokz2KnY0gOOnMmOhc30D4twt+DfL+aTAh8Cs8TG8id94qrI10x65ZfsSkj/ZYEsSkhg6GtqjDn8bYsfLoDj3WuSaVAT4K83fj0thjS8yy8MWf3uQOc/hokySykoiQFJFFqjOpRh4c7VmfyuiO8mXEzypqPbfWXJZ7DvOQDAhY9S9DEjmhftiJ13tukJe7FaneUeBYhSkpWgZURP25g5uYknu5aix7RFeHgYvTpBzDcwLOPTmtcKYAF2VHOT46uc2kWUbQsNjtj/lzDNPe3CSs4QHLP7zCGSJ8rIYQoK9yNer66swnDW0fx3cpDPDF1CwVWOyqwKvbu72FKXI2lmFc2rDvkfHMp1lD4sA0XN9A+W5saQXx2shHHag/Fb+s3ZGyc5upIl5WenU/O5t9YaIuhXYMaLB3ZkVd61yM6wg+l1DnH1g/345FONZi5OYlFe85qgRIWg6b0IMvYipQUkESpodMpRvWow5t9o5l8yINVxtao9eMhP6PEMmhphzCuHUNe9Z6ktH8bu8mXoPUfEPhdC6zjOpK68FPSEveRnp5GZk4B2QVWcs02Cqx2zDY7VruDAqudfLON3OwMck4cIPvQBnJ2LcCaerjE7kOIq3Eis4DB49aw9mAqHw1qxBNdaqKUwr72GxyeIVCvr6sjulzjyv4szo5EUwa0BOmDVF5Y7Q5+X76Rt9JHUlV3goTuP+Dd8BZXxxJCCHGV9DrFa7fU44Wb6zBn+3EGf7OGpIx8jE2GYq7ZC+PSt3Ec21Zs1193MJXqIV74pG5HM3pCSJ1iu9bVeqprLQw6xbOZg8kLbYzPgifJSdp9+RNdZOvRDF774hsCHGm4Nx7MmCGN8Xa79LO/HutUgzoVfXhx1g4y86zOjSZPtNB6OKSAVKTkKWyi1BnasgoVfd35aMotzNavInnxGEJ7lcx0S8vc5zEqPR63foSnXwS2Do+QfvIQ9p2z8No3i6CVo2Hl6DPHO/RuOIxeOAyeOAwe2JUOvTkdfUEGOoflnLEdBk9sd83AENW6RO5FiCux90QW90zYQHaBjQn3NKNdzRDnjtQD6Pb/g9Z+pPSCwdkHqQA30vzr4XdkrfzjWQ6YbXaO7N9DmxVD8dNlkdDzF8IadMbrMj+kCiGEKJ2UUjzYoTpVg7145rdt9P5iBWOGxNK27xhsX7ZCm3E/uoeWFXlza7tDY+PhdG6JCceRuAkqxqDX6Yv0GtcjzM+DV3rX47kZ25nd+R0Gb74Tw/S7Md+/CDdPX1fHO0PTNH5afZi35+3hE/fl2AxedLxlKJw34+hCTAYdHw1qRJ8vV/Hm3N18NKgRACqyKeycDg4H6GTuTFGQV1GUSl3rVWD0A0NYRhNMG8axZX/xN7+z7Z2P24H5WNs+S3yBL9sTM9h3MptT+lAyGz/EsdsXEDdoKUdavc3Jli+R2uxpMqKHk12tF3lhLTAH1MDiG0Vu5c5kNrqPjDYvk9H1E7L6/kTObTOxe1dETRqE7cj6Yr8XIa7E6v0pDPp6DQ5N47cHW/1bPAIc678FnR5dU+kFA1Av3BeTXke8qT7641vAVoaaUIr/MNvsJO7fQcWZ/fF05DA/9hvCG0rxSAghyoNu9Svy+2NtCPFxY9gP6/hqQzpan7EYU/dRMP/VIr/e7mNZZJtttKzije7kDnSlsG/koKaRtK8Vwlsrszjc4XPc0uOxzHoCRylp0ZFjtvHY5C2M/nM3nav70VO/Aa3uLVdV7IuO8OORjtWZvimRJXuTAWcBSZmzITW+uKLfcOQnJVFqxVTy5/ig1/Gf1pt/fnqPpEEv07thePFczGZG++t5rP7V+DjrJsZ/uvwSB1cFwMOox9/TiJ+HEV8PI/4eRqqEenJ788pUD/H+z1la+J/Yvu+J7pcB2If9gT6ycfHcixAXYbM7yDXbyTZb2bA7nlHzjhIV7MOP9zQn3P+sf6DNObDlFxx1+6D3DXNd4FLEzaCnfoQvK83VaWk3w/FtUKm5q2OJa5R+aBuVfx9ElsXK817v8Fm3Xnia5EciIYQoL6qFeDPrkTaMmrGdD+bvY1v9Cnwccy/em8aTk5GIoesbuFesWSTXWnfI+dCf1t7JKLu5VD54RCnFe/0b0P3T5by8I4SvW4wkYN0HpK1oQWDHh10dj7GL9/PXzuOM6lGHB0J2oZ+Whb7R4Kse57HONfh710lemLmDBU+1xy+isJF24kYIqV3EqW9M8tOSKNXC6rcjb0177k+aS8vJXZm7vTKjb61PBV/3Ir2OZeUXmDIP8UPVjxm/OpE7WlSmS51QrHYNu0PD5nBgszs/mm0OsvKtZOZbychzfszMt3IkLY+l+07x7YpDdKgVwj1tomhfMwSdzjntUvlFYhgxx1lE+rkv9rv/QB/eqEjv43K0oxsoWPYpbr3eQxdQuUSvLUqGze5ge1ImK+JSWH0ghVM5ZnIKbGQX2Mi32mms4nncMIt++q10cAvEUKk3Hiet4N3+36Vq26eis2SDNM8+R+NKAcxaH8mzetCOrEVJAalsyj5JyPR+5DmMDDa/zAu33YyXu/w4JIQQ5Y2Xm4ExQxrTuHIA78zbQ//Am/m+kQ/hu8ajxrciu8Ew3G96AaNPyOUHu4R1h9KoEuRJcOYO54ZS1ED7bOH+Hrzcuy6jZuzgj/pDGFB5I/7LXyGnUize1Vu4NNuSvcm0qh7Ewx2rY50yGjyD0VftcNXjuBn0fDioIf2+Ws3bc3fzQf8GaCYfSNyIanxn0Qe/AclPTKLU87hpFJ4/9uKnqov4bl8Eb3w8n971gmkR5YvOYUM5LOgCquBevQ1Gt2tY05yZiGHlx2z1bscbe8J4qEN1RvWo/Z8O/1ciJcfM5HVH+GVtAsMnbKBaiBfDW0fRPzYSbzcDyr8yhnv+xP5DT9TEPjiGz0VXsf7VZ74Wdiv22Y/hkboX23cbcdw5A0N4gys7NXkfSnOgq1C3mEOKa3E0LY8V8SmsiD/Fqv0pZBXYUAqiw/2oF+aLj7uBWuZdtD8+gepZ68g3+BFX9T4iHcdx3zsN3c6J2E2+WKt1RVf/FvTrxkPFRugjm7n61kqVxpX9+WGVL/l+lTElrEXf5glXRxLXwBH/N3pzBg/wHsFRDehSJ9TVkYQQQhQTpRT3tq1KdLgvj07eQo8trfiyz0CaHPoG7+0TcOyZRnaLJ/Fq9yg609X/HuFwaGw4nEa3ehVwJP4GnsHo/CoVw50UjcFNKzF3xwneXxBHu/s+J/K3mzH9/gCOR9egc/N0SaYTmQXsO5lNv9g6UJCFYf8C7I3vBv21lSoaRvrzYPtqfLX0AL0bhtM2PBaSNnH1v9mJC1GaphXvBZTqAXwO6IHvNE1777z9dwKjCj/NAR7WNO2SLfKbNm2qbdwo3dRvJNbvbsaYuPqSx9gNnuRXaoe92k0YanfDM6TKFRWBCiYPRRc/n84FHzKoSxue6FLjmopHZ7PYHPy18zgTVh1m69EMfNwM3N06ise71MDNoMeRcgDHhJ7gsKEbPhddheJ/UoN9zdfoFzyPrdOrsH48ypqH/bbJGKq2JTE9n7iT2Xia9LSuEfzvSQ47BUs/xm3l+2ju/uie2gXGop39Ja5cgdXO/uQc4k5mE3fS+XHfiWySMvIBCPNzp33NENrVCqZN9WACvEzYDq7AvuT/7N13eJRV2sfx75mZNFKBFFLohN67gFhAUcHee29Y19Vdu66vrrrq2hV1VSzYFURFEUGkV+m9Q2ghCaS3mTnvHzNgxNAzmQR+n+uaK5mnnHPPnECe3HOe+zxD2KYpeCLq4+59B2G9b4Qw/22W5cWUrRyPZ+l3hK7+CWfpLt/2c96EzpcF54XWUBk7i+j37K+Ma/oJzXfNwPGP1QdV2FFqlrJvhuJeMpp2hW/yzdB+dGlUN9ghiYhINdiWW8L1H8xm+bZ8/n1ue85KycM77jEi1/9CeVQqnoH/R3jn8w+pzWVb8zj95ck8f2Enzp1+HsQ1xnnFlwF6BVVjy65iTn1xEu1TY3irbwGxX15Afs+7iT7jX0GJ58s5m7jvq4WMufN4Wm//Dse3Q+GG8ZDW/bDbLHV76PvMr/RrUZ+XEr7DTn0Z80BGlRdQP1oZY+ZaaysdgIDOQDLGOIHXgVOADGC2MWa0tbbiuoHrgBOstTuNMacDbwPBnUMnNY7rsk/YuX4+OEPB6WLq2jzenZ5Bbimc060RlzUpIHTdeMLXjyd03VgYfx8ldVtS2nQAjrZnE9m0Fw7nX2vGl6yYQPjK0fy3/AKuOv14burfvEriDXU5OLtzKmd3TmXexp38b8o6Xvt1Nb+uyOTlSzrTIrE5XP0d3uGD8X5wJua6MZj4qrkPu1KFWZiJT1PW+ASmN7iSjI69OHnOrdT/6Fzu9tzB6PI//n+4sFsaT5zdntD8jbi/upHwrbMpSzuO0Izp2AWfYrpfG7g4ZY+Scg9LtuSxYH0mxcvHUZq9kbWFYWTbaHbaaPId0dSLT6Zb43rc0KchJ6WUk0om3p3zsFs3YJdtpCxrOaE7FkGdREoHPElYr+txhu716VJIBKHthkC7IeBx414/Fbt9KSEdLgzOC6/BUuMiSIgOY55tRXrx95CzFupXzf8ZUn3sxpnMcqdzartkJY9ERI4hDWLD+fzm4xg64nf++fUitgxI5+6rv6Jw5a84xz1K+Kjr8MY2wNG070G3OXOtr/5R79RQHFkrMe0PLQEVDClxETw8uA33f7OI0R3acW6rC4ia/RqlnS8kLKV9tcczaVUWCdFhtEmOxv3zF9jYxjiP8DbAMJeTLo3iWLg5Fzp3x3jdvvqVjXpXUdTHroDOQDLGHAc8bq0d5H/+AIC19ul9HF8XWGytTd1fu5qBJAA7C8v495hlfDk3gwYx4dx2cgsu7JKKe8cKPCt/xrXmFyK2zsThLac0thklbc7H2fkSIpOaY4yhuLiErBd6YMuKmXLq91zWL7CzgMYt3c4/v15IUZmbhwe35fJejbCZy7HDB2NdEbhumgDRSQHp2/3tXTjnf8S98W/w9aZoANKjynjNPEt6+XJmtnmQ0N438tuKTF79dRW3xU7nbvd7GIcLz+nPE9r5IjxvnQClBTjvmKNlMAMgu6CUKauzmLdxF/M25BC6fS5nMoUhzunUMwX7PM8bEolxl2CsZ882axy4I5PxxjbEtD2L0J7X6ROXKnLjh3Nwb13K+8V3wNlvgO6nr12KcuA/TfmP+2LOveMF0pOigx2RiIhUs3KPlwe/WcSXczO4sFsa/z6vAyGeYtyv9oSQCFxDp4Ir7KDaun64b0bT1ItD4IMhcPnXkD4wwK/gyFlrueq9WczdsJMxN7QhbcQJlNdtTsRN46r1Ot/jtXR/chwntU7kv6cnY//bGm/fe3AOfOSI2351/CpeGLeSxfd1JurVtnDqU9Dn9iqI+ugXtBlIQCqwqcLzDPY/u+h64MfKdhhjbgJuAmjUSMV/BepGhvLchZ24sHtD/vPTch4ZtZi3flvDnQPSOe+Eu3Cd/DdKCnZSunAUrsWfEzvjOZjxHPlJPVgSfzpr1q3lcvdGJvV4JeDJI4BT2ibRKe14/v7lAh4etZiJK3bw7PkdqHv515jhp1P+8YWEXDfmj1uLqsrWBTjnfcDXrsF8tyWWZ85rx+ntk4mtEwJlgyj59CqOW/YUJXEldDnuZi5d+z+St/3KdNuO7IEvMaSLr1Cws99d8NV1sGIMtBlStTEeo6y1TF+TzSezNjJ2yTZSvVu4IGQ6w1xTSXZtxe0Io6jpINw9LseV0glvUY7vUZiFtzAbCrOxRdmY0EhM3SY46jYmpH5jTEwqIbsLYkuV6tIojueW1sUTEwsbpuNUAqlW2bViMnFAeLM+Sh6JiByjQpwO/nNBR1LiInh5/Cq255fyxuVdiRjyIs5PL6R80ouEnHz/Adv5Ys4mxi/P5PaTWsBm/5+wqV0DHH3VMMbwzPkdGfTiJP4xZgv/O/FfxIy9k8Lp7xLZ98Zqi2PJllx2FpXTPz0B7+JvcFjvYa2+Vpn2abEALM4Np2dMQ8iYgz4CP3KBnoF0ITDIWnuD//mVQE9r7R2VHHsS8AbQz1qbvb92NQNJ9mat5beVO/jvuJUszMilaXwkdw9MZ0jHFJwOw/qsQibP+R2z+Ct65/9MC7MFgC0J/UgZ+n211jHxei3vT1vPsz8uJ7ZOCC9c2Ik+ntk4v7ic8mYDCb3s08MuGvcX1rLr9QF4s1ZytnmV/159Aj2a1PvzMR43JSPvIHzxJ3hd4WAt2b0f4M61PZm+bhcXdEvjibPbUccJnle6QFQDnDeOq5r4jlFZBaV8PTeDT2dtJC97GxeEz+LyiBk0Ll6KxVDeqB+OTpfiancmhMcEO1ypYPqabC59ZwazmrxF/fKtOO+YHeyQag3r9VJc7qZOWPCSm5PfuI1e2z9ly60radIg/sAniIjIUe2zWRt5aNRiWjeI5v1rehA35mZcq37Eces0iG+xz/PmbtjJpW/PoGfTegy/tgeOL6+GbYtw3D2/+oKvAl/PzeDvXy7gbwPSuWn9XYTuWIwdOhNXXEq19P/ahFU8//NK5jw8kLgRp4On1DcDrApkFZTS/clfeOiMNly/7QlfAumexVXS9tEumDOQMoCKZejTgC17H2SM6Qj8Dzj9QMkjkcoYYzixVSIntExg3NLt/HfcSu76bD6vTliNtZY1OwoBSE88j009b2Zg3BbSc6eS3Pf6ai+C63D4VoPo07w+d346j6vem8XF3Rtyb/+nSPjtAcq+v5fQs16skrhmjH6b3llzeSHsNj6+6VQa14/860FOF+Hnv0FJbEPs+sm4hjxHQnJ7PvZaXh6/ilcnrGLBpl28cXlXWhx3G+anf8LGmdBIpcoO1Zz1Obw/bT2/LdnIiXYO/4mcSbeIuTith/Kodrj7PIGr04WExlTPL205dB3TYnEYWBHaluO3/ea7JapOvQOfKJRMfo2w2W/A3xZXXZL8EGzLLSFi22w212lJUyWPREQEuKRnI5Jiwhk64nfOfWMa71/4CM3X/Ur5t3cRcl3lHzJvyy3hlo/n0iA2nNcu64LL6cC7eW6trK9zXtdUJq/awcsTVtHvwifo8sNgSn/4J67LP6qW/ietzKJ9agzxZZth61w8A6qukHd8VBipcREs3JyLo3F3WDoSCjIhSquvHolAX8HNBtKNMU2BzcAlwJ+W9THGNAK+Aa601q4McDxylDPGcGq7Bgxsk8SYxVt5Z/I6osNcXNG7MQNaJ9Go/u4Cwm2B4N6f3CY5hu/u6MdzY1fw0fQNfEMT3k6+lJPmvU953caE9P/bYbft9VpeHbuAC39/hrUhzbnhjkeJjdrP6mnGEH7Kg3/a5HQY7jmlJT2b1OPuz+dxzfuzmXDnZYRMfAY75WWcl31y2PEdS7xeyy/LtvPOb6twZUznotCpvBA2i3BvEe7QZNxdh+LseikhSe2CHaochMgwF60axDCpuDnHA2yaBa1OC3ZYNZ+7lJCZr+IsyoScNZDQqtpDGDZ+KQ+YtRS20kIAIiLyh5NaJ/L5zb258cM5nPPBaj7rdg8d5z2Ge94IXF2v+NOxJeUebv5oDkWlbkbc0Iu4OqGQvw1H/uYjWjUsWIwxPHluB+Zt2sUdY/P4rtsd1J/1PCVLfiS83ekB7Tu/pJzfN+7kpv7NsItHYgBnxwuqtI8OqbEsytgFffxFuTPmQOszqrSPY01AbwO01rqB24GxwDLgC2vtEmPMLcaYW/yHPQrUB94wxsw3xujeNDliDodhSMcUvr2tLx/f0Itr+zatkDyqOcJDnDwypC0T7zuRS3o04patZ/K95zhCJjxO5rTDS9BkF5Ry52fzMFNfJMXk0PCyV/efPDqAfunxvHRxFzbvKubTednQ43ocK8dA1urDbvNYUOr28OmsjVz/3HDWfnovr2dexaehT3FWyBxsm7PxXPEtrr8vIez0J0HJo1qlS6M4Ru1IwjpceDdMC3Y4tULp/K9wFWX6nmxfUu39b95VzNLfJxFmyqnb6vhq719ERGq2jmlxjL69H+lJ0Zw9vTmbojpixj4MhVl7jrHW8sA3i1iQkcuLF3em5e5aept/9309wpXDgiUqzMWrl3YhM7+UR7IGUlo3HedP92JL972IS1WYviYbt9dyfHoC3jW/4klsB7FpVdpHh7RY1mcXkVu3LdY4YbNSDUcq4HWkrLVjrLUtrbXNrbVP+bcNs9YO839/g7W2rrW2s/9R+1K3IkcoJS6C/zunPb/edzJzuzzFbG8r4sbewVsffcSSLbkcTK2yNTsKeHDkIvo8M4EFixYwNGQM7rbnE9Ls4Jci3Ze+LerTq2k9Xvt1DaVdbgBnKJ5prx5xu0ejnYVlvDl6Em8+dRedvx/M+8V3c2PIGCKbdKXk7P/h/MdqIi4chrPFieBwBjtcOQxdGsaxo8RJUb12eDfODHY4NZ+1mJlvUB7XDGuc2CAkkF6bsIpuZgUAphbeYiAiIoGXFBPO5zf15twuDbk2+wpsaT7FP/xRTPvdKesYOW8z95zSklPbNfjjxM1zfcmJ5I5BiLpqdEyL4x+ntWLM0hx+af4gIfkZFI17KqB9Tlq1g8hQJ91S6+DYPBvTtH+V99Eh1VdIe0lmOd7Edng2KYF0pKq/CIGI7FNKXASPndeNrX1GsfO9QVy8+p88u3wexRENaNqkBZ3atqZ3+3TCQ0MA3ychM9fl8L/Ja/llWSahLgfndUrmgcLhODKcOAb9X5XEZYzh3kGtuHDYdD5YVMSNHS/BseBTOPlhiEqokj5qM4/XsnNnNvN//ojoFV9zs12Mw1h21O3Arq7/JqLzBUTGJgU7TKkiXRrFAbApuhOtNn4O7tKDXu73WFS+biqhOxZTctoLOGa/DduWUJ2p043ZRXw5J4Nv4zfidjTFpdoHIiKyD+EhTl64qBPvJEcz7Odp3L70SzIXXMjyiK78e8wyzujQgDtO/nNxbW/GHEhsiwmJCFLUVeOGfs2Ysjqbe2Zk0631xSTNfYvyzhcTktY5IP1NWpnFcc3rE7ptLrhLAppAWrg5l+PSusOiL8HrBYfWYztcSiCJ1EDJDVKwt4ym/H+n83TRu+AGVvseZd86yXLWozQ8nsLScuLLi3jCUcbLkW7CKcG5pAQAz4kPQWxqlcXUo0k9TmiZwLDf1nDF9bcQOe9DvDPfwjHg4Srrozbxei35hcWUrhhH0dxPaLB1AgMpY4sjmRXpt9Kg31XUT22Nw1G9Rdol8JrFRxEd7mKutxWtPaWwdQE07BnssGos97Q3cITFEd71Mjwbp/wx1b+avDx+FU4HtCxbhrfFKdXat4iI1D7GGG7q35zf6v0fG76cgRl5J3/neVomxfLcBZ0wFQtrW4vZMg/anRu8gKuIw2F44cJOnP7yZIZuP5vPwyfg/e5uuHl8lc+a35BdyMacIq7v1xS77hMwDkzjPlXaB0DdyFAa1otgUUYupm13mPseZK2ExNZV3texQgkkkRrK1GtKyD0LKcvdijdvC6U7t7Bpw1oyN6+nOGczUfnZhIREkpDYhOj4ehAWSYkrAkLr4IxNIbz7lVUe072ntuLM16bwv2Uu7mh5Omb2/+D4v0FoJau7Hc085RSMeYzwxZ8SW5rDThvFd86TqdP9Uk48+QxSwoO3TLkEnsNh6Nwwju93NeJywLNhOk4lkCrlzV5H+JofKel5BxGhdXAktcMsHQml+RAWHfD+1+4oYOS8DO7t5iRkcTbeJscFvE8RETk6nNC+ERklL5H2/SXcxwd0P++/RIbt9edzzlpMaS6k1c76R3tLiA7jvxd14qr3ZvFli5u5LONJSma+R/hxN1ZpP5NW7gCgf8sEvN9OhqQOOCPiqrSP3TqmxrFw8y441V8pZ/McJZCOgBJIIjWYcYUSWr8x1G9MeFOI7erbbq0lM7+UhKiwap3h0iEtlkHtknh38jquu2woMSvHYOd9jOl1c7XFUBOU/P4ZMXNfZ5y3OyPt9bTsew43n9yaiFD9l3qs6NKoLq9NyKK8QQvsynE4+90V7JBqpNJpwwjHQdhxNwFgdheMz1wODXsEvP+Xx68izOXkipStsBgcqn8kIiKHIK376RRvvIqLFn6Ifb8LRWl98bQ5m/AOZxMSHQ+b5/oOrKUFtCvTv2UCN5/QjAd/s5yY3JOkX/8P2/4sTHTVlWP4bWUWDetF0CTGwJY50DNwf0u0T43lh0Vb2VWnMTFhMZiMOZguVxz4RKmUbv4TqYWMMSTFhAfl9qh7TmlFQZmbN9Ym4EntgXfa6+BxV3scwVJUWsaOsc+xzNuQcR1e4PF/3Mvdp7VX8ugY06VRHF4LW1IHEbJpKuRvD3ZINU9pPqGLRlDS8kwccf5VVXYnkLYvDnj3K7fnM3rBFq7u04SI7XPwhsVBfMuA9ysiIkeXiHNfofCa8eR3uwXXrnVE/3wPrv+2pPjdMymf9R42JBISjq4ZLfee2oqeTepz9faLoLyQ0h8fqrK2yz1epq/Jon96AiZjFsZTFpD6R7t1TPPVQVq0JR+b0sVXs0oOmxJIInJIWjWI5qxOKQyfto78bkNx5m7Au/TbYIdVLXKLy3nxjddp6N7Ari638p8LO5MYHR7ssCQIOqfFATAt4kSM9eJePDK4AdVAxbM/wlmWT0jf2/7YGNcIb2gU3mpYie2lX1YSGeri5v7NMJtm4k7toaKZIiJy6Iwhskl3YoY8Reg9Cym+dgKF3X3XwCEZ0/GmdjvqVtYNcTp4/9oexDfpwJvlQwhf+iWeNZOqpO3fN+yksMzD8ekJ2HWTfSvYNQ7cLebtU/yFtDNycab1wJG5FMqKAtbf0U5XUiJyyP42sCXlHsvLm1rgqd8S+/3fcK+fHuywAiqroJRL357BqTs/pSA8mePOuinYIUkQ1Y0MpWl8JL9m16M8vg120dfBDqlm8XpxzX6L0gbdcTWqcKuaMdiENtjtSwPafXZBKWMWbeOq4xpTl3xcOatwBPDiVEREjhHGENG4G1GDnyT0bwsovWEyzvPfCXZUAREZ5uL9a3swv8kNbPQmsOurO8FddsTtTlq1A6fD0KdFfbxrJ+FN7hzQuoixdUJoUr8OizJyIa07xnpg6/yA9Xe0UwJJRA5Zk/hILuyWxohZm8k862O84fVwfHwO5ct/CnZoAbF5VzEXDZtObNZcejhWEHb8HeAMCXZYEmRdGsYxb9MuaHceIVtmQW5GsEOqMcqW/UhI7npM71v/ujOpLSZzKVgbsP5XbM8HoE/zeNg0EwCXCmiLiEhVMoawtI4Q3SDYkQRMeIiT16/pw6iUu6lfvI5pHz9+xG1OWplF10ZxxJhSHFt/xxHA29d2a58ay6LNuZDqL6St29gOmxJIInJY7hiQDsArc0sJufFn3HXTcX1xOWXzPg9yZFVr7Y4CLnxzGjvyS3ml0SQ84XUJ6XFNsMOSGqBLozh25JeS1WQIAG7NQtrDO/0NyqNSCO1wzl/2OZPa4yjZCflbA9b/mswCAFokRuHeMB3rCIGULgHrT0RE5GgV5nJy641DmRfZjy7r3uHd737FHuaHQNkFpSzekkv/9ATYNAPjdWOaHl/FEf9Vx7RYNu8qJpsYvLGN8GTMDnifRyslkETksKTGRXBZr0Z8MSeD9SWRhF7/A+UpPQn59mZKp74Z7PCqxNIteVz01nRK3V6+ubA+CZvH4+12PYRGBjs0qQG6NKoLwJy8OMqTOmMXfRPkiIKvqMzNr79NIDxjCu5uN4CzkuLyewppB+42tlWZBUSHuUiKCcNunIE7qSOERASsPxERkaNZiNNBxxuGYRwOGs/6F8/8uOywkkhTVmdhLRzf0l//yBEC1bBCaofUOAAWbc7FpnbDZMwNeJ9HKyWQROSwDT2pOSFOwyPfLqY8JJrQq0dS1nwQYePup2TckwG9RSXQSso9XPnuTEKcDr645Tgar3wPrzOckD6V3JIjx6RWDaIJD3EwY202psN5hGyfDzlrgx1WUL30yyoyx71MiQnD0e3qyg9Kauv7mhm4QtqrthfQPDEK4ynDtW1BtVycioiIHM2cdRviOOkBBjrnsW7KF/xn7IpDbmPSyizi6oTQITXWV/8opWu1fDDbPjUGgEUZuTgb9sCRvxnytwW836OREkgictgSo8N5/Mx2TF6VxX1fLsDrDCPsshGUtLuE8KnPUTL6HvB6gx3mYZm5LofswjKeOrc9zcPyCFn8Be5Ol0FkfLBDkxoixOngjPbJfPP7ZgqanwVA+cJj9za2rIJSvp++gHNcU/my/HiGfrOOknLPXw+MqIs3KhnPtsAlkFbvKCA9MQq2zMd4SnE1VgJJRETkSIX2vY3y+q15ts4IRkxcyAfT1h/0udZaJq/aQb8W8TjL8nFsW4CjGm5fA4gOD6FZQqTqIFUBJZBE5Ihc0rMR9w1qxaj5W3ji+6VYh5PwC4ZR0uM2wue9h3v8k8EO8bD8ujyT8BAHfZrHUz71dbAeQvvdGeywpIa59cTmFJd7eG9RGeUpPWHxsZtAenvSWm60IwnFTfQJtzN+eSY3fjiH4rK/JpFsYlvYHpgEUm5ROTvyS2mRGIVng291SKMZSCIiIkfOGYLrrJeo685kTvhQGv54NXO+eoHynQdeSGTp1jwy80t99Y82TsdYT7XUP9qtw+5C2smdsK4IPGsnVVvfRxMlkETkiA09sTnX92vK8GnreW3CajCG8MH/pqz9xTinvwI7VgY7xENirWXC8kz6NI8n3J2P8/fhlLc6G+o1DXZoUsOkJ0UzqF0Sw6etp6z1uYRkLYPM5cEOq9plFZQyY/pkrnL9TFGHKznnlJP4z/kdmbI6i2uHz6Kw1P2n4x0N2uPIXgme8iqPZfUO3wps6UlReDfOwB3XFKISq7wfERGRY5FpfByl14yluONVtAnZSvfFTxDycjtKXj+ewp+fonzzwr+cM3V1Fte8P5uIECcntvLXP3KGQsNe1RZ3h9RYtuaWkFkCnkZ9YfUv1db30UQJJBE5YsYYHjqjDed1SeWFcSv5aMYGAEJPewobUofy7+6pVfWQ1uwoZGNOESe1TsQ9610c5QWEnvC3YIclNdRtJ7Ugr8TNVyXdsMZB+cKvgh1StXv7tzU8YN7HExpD6KmPAXBRj4a8dHFnZq/fyVXvzSKv5I9kkUlqh/GUQfaaKo9l1XbfCmzpCVE4MmZiq/HiVERE5FgQ1qQ3sef9l4i/L+K6Oq/yor2MEq+TOtOeI+Sd4/Eu8K3K7PZ4eW7scq54dyaxESF8M7QPiTHheNdNwpvSvVoXuOiYFgfA4s25OFsOxLlzDeSsq7b+jxZKIIlIlXA4DM9e0JEBrRN59NvFfL9wC0QlYE9+mJCNk/HWoiXOf12eCcDJLWIwM9+kvPGJkNwpuEFJjdUxLY7j0+N5dVY+pal9MEu+qVUJ0yOVVVDKjpmfcpxjKSX9HyQk+o86YWd3TuXVS7uwYNMurvzfTHKL/EmkABbSXp1ZQHiIg1TPZpzFOTgb96nyPkRERATiIsP4v5su5LOw8zkt/xG23LDQd0v/D/eyZdMaLn57Bq//uoaLujVk9O19aZMcA8W7cGxfhKNZ9d2+BtAuJQZjYGFGLqbFKQDY1eOrNYajgRJIIlJlQpwOXr+8K90b1+Vvn89n0sodOHtcjzupI3bsg1CaH+wQD8qE5Zm0SoqmwbpROIt24Oqv2Ueyf7ed1IKsglLmRp+Ea+ca2LYo2CFVm3cnLOY+8zF5cW2JPu76v+w/o0Myw67oxrKt+Vz13kzfsr/xLbHGiQ1AIe1VmQU0T4iCTTMAcKiAtoiISMCkxkXwwXU9KSx1c80X6yge/CpeTxlr372OFdvyeOXSLjx7QUfqhLp8J2yYhrFeTNP+1RpnZJiL5glRLN6cC/Wb44lthGfVuGqN4WigBJKIVKnwECf/u7oHzROiuOXjuUxYmYVzyH9xFGbinvDvYId3QHkl5cxen8NJrRJg2quUJ3bENDsh2GFJDderaT26Na7Lk2tbYB0uyhd+GeyQqkVWQSmxc14hxeTgGPwcxumq9LiBbZP4x2mtWJCRS8bOYnCF4a2fjjcAhbRXZxb4C2jPwBteF+qnV3kfIiIi8ofWDWJ4+6rubMguYtCHm3mi5GL6MZ8JJ23grE4pfzrWrpuEdYVDWo9qj7NjaiwLM3LBGGzzgTjWTwJ3WbXHUZspgSQiVS42IoQPr+tJSlwE1w2fw1U/e8lueTHOWW8FbOWlqjJlVRZur2VIUjbOnWtw9roBjAl2WFLDGWO47aTmLMsNYXO93sfMbWyf/DiRa833bGtyDlHp/fZ7bI8m9QBf7QEAEttC5tIqjaew1M3mXcWkJ0ZhMmbiSe0BDl3qiIiIBNpxzevz34s7kV1YRnifmylr2I/4qf+CnRv+dJx33WS8aT3BFVbtMXZIiyUzv5TteSW4Wp6Co7xoz4xlOTi6qhKRgEiMCeeHO/vxyJC2LMzI5ZRFJ1FoIikadXeN/sN6wvJMYiNCaJPvW/7b0fK0IEcktcVJrRJp3SCaj/K74crLgIw5wQ4poLLyS+i46Gm8jlDizjrw7MJWDaJxOgyLt/gSSM4G7XDmbqzSW1vX7PAV0G4T58aVsxpHIxXQFhERqS5DOqaw5F+DeHBwO0LPewOA8pFDwev1HVCUgzNzMc5qvn1tt45psYCvDhJNj8c6QvCs1G1sh0IJJBEJmDCXk+v7NWXSfSdxQb+O/LvsYupsncWYES9SsNey3jWB12uZuCKT/i0TYNXPuBt0guikYIcltYRvFlILPsntgMcRetSvxvbTyA840TGP7V3vIrxe6gGPDw9xkp4YxaLNeb4NSe18XzOXVVlMqzN9CaRWjs0AOFM6V1nbIiIicmAhTn+KoW5j7KB/E7JxCp5Zb/u2rZ/i+9q0egto79Y2ORaHgUWbcyEsGk9aL+zqX4ISS22lBJKIBFxsnRAeGtyWW+5+nLVhbeix6kWG/OcHRs7L8BXUrcjrhdKCoMS5aHMuWQVlnNYsBMeWOTjTTw1KHFJ7ndEhmfj4BGY6u+JYOhK8nmCHFBDbcnZy/JoX2BzSiIan3XPQ53VIjWXJ5lzfv/tE/0ps2xdXWVyrMgsIcRqSS9f6NiS2qbK2RURE5NA4u11NebOBmF8eh+w1vvpHIXUgpWtQ4okIdZKeGM2ijF0AONJPwbVjKeRtDUo8tZESSCJSbRrFR9Hs6mHEmwLuDfmCv30+n7vf+pZNUz6h6IeHKfnfYDzPNMY+nUb5hGeq/Va3CcszMQZOcCzyrQ7RSrevyaFxOgy3ntCcTwp74Czcjnv9tGCHFBCLv/g3jc12Ck/+N86Q0IM+r31qLNmFZWzLK4G4RnhDo7Dbq64O0urMAprUj4Qdy/GGRkNMyoFPEhERkcAwhpBzXgVnKOXf3IJd+xvehr3AdfDXDlWtQ1osi/wfZjnSBwJoFtIhUAJJRKpXSmc83a5jcOkYlkYN5eVtV9Pwl1sJm/MmlOZT2vpcytIHEzLpacq+vAHKS6ottF9XZNKlYRwRG8bjjagPKV2qrW85epzTJZUlUcdRYCJxT30t2OFUuV2Zm+mz9QPm1DmelsedeUjntk+NAWDx5jzfCigJbfFuq7rC+qszC0hP8iWlvAltVABfREQk2GJS4PRnCdk8C0f2yqDVP9qtY1osWQVlbM0tgaR2eCKTcK9SAulgKYEkItXONfARypoPwrYazLb+T/Ov5DdoU/wu57qfYlWPJwi77GPKT3iI0KVfUf7eYCjYEfCYMvNLWJiRy4BW9TFrxmNbDASHM+D9ytEn1OXgqhPaMqzsDMLX/IR74+xgh1SlVs+fRB1TSmi/2w/53DbJMRjzx0pspkE7zI6lVTLbsKTcw4bsQlrER+LYsRyj29dERERqBEenSyhPP933JMgJpA6pvkLaCzbt8n2Y1XwAzrUTwVPz6rPWREogiUj1i4gj7IrPiLzwTRqcPJRHb7qMV67oRXZBKee+MZUnvl+Gp9/fcZ8/HOeOxbjfOhG7vepmKVRm4gpfkur0eltwFOfgbKn6R3L4LunRiLHR55JDNAU//SvY4VSpnRkrAGjV7tBn6NUJddE8IYol/pXYHEntcJTsgrwtRxzX+uxCvBbaxZXiKNmJM6ntEbcpIiIiVcAYQs57E/eZb0Bqt6CG0jYlhvioMIZPW4+1FlfLgThKd8GW34MaV22hBJKIBJ0xhtPaJ/PL30/gsl6NeG/qOi5+ewZZjU6Hq8dgPGXY/52KZ8XYgMXw6/JMGsSE0zR7CtY4oMWAgPUlR7+IUCfDrj+B9zmXuC2T2bF4fLBDqjLurDUUmjqExSQe1vntU2J8t7BBhZXYjrwO0qrtvuL7rR0Zvg2agSQiIlJzRNTF1e3yoN9eHuZycvtJzZm5Lodpa7Kh2UlY48CzclxQ46otAp5AMsacZoxZYYxZbYy5v5L9xhjzin//QmNMcEqyi0jQxYSH8OQ5HXjrym6s3p7PWa9NYb5thvPmX/HENcHx2SWUT3ujyvstc3uZvCqLk1on4F31M97UnhBRt8r7kWNL84QoBlz1INttXbaNfJiCkvJgh3TE3B4vkYUb2RWedtgXgO1TY9mWV8KO/NI/kjxVMMNwdWYBDgMpZet8G5RAEhERkUpc2qsRKbHhPDd2BTaiLp4GXfGqDtJBCWgCyRjjBF4HTgfaApcaY/aeU346kO5/3AS8GciYRKTmG9SuAd8M7Ut4iJNL3prBF6ssITeMpbz5IEJ+fgD39GFV2t+c9TkUlLo5rZHFuX0RjlaDqrR9OXZ1bpZMZpc76OBZymvvvEWZ2xvskI7IqswC0uw2vHFND7uN9v7aA0u25EJEXbzRKXirKIHUqF4dHDtW+IrgRyYccZsiIiJy9AlzOblzQDrzN+3yrcKcPhDXtnlQmB3s0Gq8QM9A6gmsttautdaWAZ8BZ+91zNnAh9ZnBhBnjEkOcFwiUsO1ahDN6Nv70rNpPf7x1UL+9fMGHBd/SHmL03COvR/vom+qrK8JyzMJdTro7Z0HgElX/SOpOh2G3EFeeAqn73iXe7+Yj9d75AWjg2XBhiwamh1EJ6cfdhttU3avxOarg2QT22KrYCW2VZn5tEiMwmYuxZvQOuhT5EVERKTmOr9bGo3r1+H5n1diWgzEYLFrfw12WDVeoBNIqcCmCs8z/NsO9RiMMTcZY+YYY+bs2BH4FZlEJPji6oQy/NoeXNe3Ke9PXc9Vw3+nYMjbeFJ7YEbejHfNb1XSz4QVmfRqVo+QNePwRqf8UZdFpCq4Qgkb8ACdHGspXTyaJ39Yhq2CVceCYeO6lYQYD7FprQ67jZjwEJrUr7OnDpKjQXsc2SvBc/i3+Lk9XtZlFdIiIQpHllZgExERkf0LcTr428CWLNuax487k/GG18WtOkgHFOgEUmUf/+191Xwwx2Ctfdta291a2z0hQdPSRY4VLqeDR89sy3MXdGTO+p2c+dZc5vcbhqduU/j8cuzWhUfU/obsQtbuKGRgy7qYtb9Cy0GauSBVLqzrZZTFNefx6FEMn7qGtyetDXZIh2VXxnIATL1mR9ROu9RYFvtXYjNJ7TDecshefdjtbcgpotxj6RCdj6OsQCuwiYiIyAGd2SmF9MQo/vvLatxNTsSxZjx4a3e5gUALdAIpA2hY4XkasPdavQdzjIgc4y7s3pDPb+6Nwxgu+GA5ryQ/gzckCu9H58PO9Yfd7oTlmQCcFr0WU16IQ7evSSA4XdgTHyC5dB0PNV7G0z8uZ/yy7cGO6pAUlrpx7lrve3KECaT2KbFk7CxmV1EZJPqTPUdQB2l1pm8FtjbO3SuwKYEkIiIi++d0GP5+akvW7ChkQVh3nEU7YPviYIdVowU6gTQbSDfGNDXGhAKXAKP3OmY0cJV/NbbeQK61dmuA4xKRWqhLo7r8dPfxXNOnCa/MKeY6zwN4yktwf3AuFGYdcnser+XHRdtolhBJ4rZJWGcoNDshAJGLQFjH8ymr35Yri0fQLimCB0cuIq8Wrcy2aHMujcx23M5wiGpwRG21T/XVQVqyJQ/iW2IdripJIKWWb/BtSGx9RPGJiIjIsWFQuwa0T43hqZW+axvdxrZ/AU0gWWvdwO3AWGAZ8IW1dokx5hZjzC3+w8YAa4HVwDvA0EDGJCK1W51QF4+f1Y7Pb+rNBmcjLi34G97cDEo/vADKCg+6nZJyD3d8+juz1udwRa/GeFeOxdu4L4RGBjB6OaY5HHDyQ4TmreeVtsvZkV/Kv39YRrnHS0m5h6IyN/m5OZTkbA52pJWav2kXTcx2vHFNfK/lCLRP8a3EtnhzLrhC8dZrgecICmmvziwgJTYcV9ZyvFENIKLuEcUnIiIixwZjDH8/tRXzd0aQFdUKu+qXYIdUo7kC3YG1dgy+JFHFbcMqfG+B2wIdh4gcXXo1q89Pd/XnubFJ3DajgGHbXyRn2BCiBz1ASPoAcDj3eW5eSTk3fTiHGWtzeGRIW65ra+GX1dDzxmp8BXIsCm07mNKkLjRc+CrPN76QrHkj2JpZQoJ7O6EFm3CV5mKNA26eBA06BDvcP5m/cReDXJk46x95XHUjQ0mNi2DxFl8hbdOgA3bdb2DtYdUgW5WZT4ukaMhcijehTcCnV4uIiMjR48SWCXRrXJcfdrTlqsLv8Bbn4oiIDXZYNZKusUSk1ooIdfLomW256cbbeSb0Dmz2KkI+vZCS59tTMu4p7K6Nfzlne14JFw2bztwNO3n5ks5c368prPJPVU0/pZpfgRxzjMEMfJTQwi2ct+1lrnaNw7t9OaXh8eQ3P5udfR7EOkNxz3wn2JH+xcJNOaSyHUf9I6t/tFv71BiWbPYV0na0OBlnYSZsW3TI7Xi9ltWZBaTHR+DIXoVDK7CJiIjIITDGcO+prRhd3BFj3RRMfTvYIdVYSiCJSK3Xo0k9/n7fY3zR/2f+5r2bWQXxhE59Dl7qSOnwcylfNBLcZazdUcB5b0xjY04R717dg7M7pwL4bl+r1xzqNw/yK5FjQWj6yWRdO53N1y/g1/MXcmLJc7ya/DR1L3qVuqf+E2/b83As/hJK8oId6h7b80rw5m0l1JYd8Qpsu7VPiWVtViH5JeXQYiAAnpVjD7mdzbuKKSn30jk6F+MuxqEV2EREROQQHde8PuHN+zCBHkRNf46SbauCHVKNpASSiBwVwkOc3DqgLQ/e9yA/dXmDE0pf4i17HqWbFxHy9TWUPteG8a/fSWzZdj67qTf9Wyb4TiwrxKyfgtHqa1KN4hu3JbVhE07rkMzlvRrx/tR1zNu4EwBXzxtwlBfhXfB5kKP8w7yNu2ji8K8aV69plbTZPtU3NXzpljyISsTdoDN2xaEnkHYX0G7t0ApsIiIicvjuG9Sah0qvpsTrxPvdXVivN9gh1ThKIInIUSUhOox/n9uBd+8+nxlNbqFz/ovcF/oQ00oacT3f8IMdSsuJt+JZNcFXb2XdZIynFNNyULBDl2PU/ae3JikmnH98tZBStwdSu+JO6oh39ru+n9EaYP6mXTR1ZPqeVNEMpHb+ldh210FytByEc+tcKMo5pHb+WIFtvW9DQqsqiU9ERESOLZ0bxnH9GX15suxS6myeSv7MD4MdUo2jBJKIHJVaJkUz/NqefHB9b5ZEHseLCf9HzvWzKO15ByEZM3COOJfyl7vh+e0/2JBIaNwn2CHLMSo6PISnzm3PqswC3vh1DRiDo8f1uLKWwaZZwQ4PgAWbdtEteifWEQIxaVXSZmJ0OInRYX/UQWo5CGO92NXjD6mdVZn5xEeFEZazAk9sIwiLqpL4RERE5Nhzfb+m2C5XMdPbmtDxj1C2a2uwQ6pRlEASkaPa8ekJjLnreL69rS/xDVsSfvoTOP++jLKzhmEj6uLcMhfbYiC4woIdqhzDTm6dxDmdU3j919Us35aHo8MFeEOja0QxbY/XsjBjF61Dd+CNawTOqlvAtX1qLIu3+BJIpHTBG1Ef94qfDqmN1ZkFtEiMhMxlkKAC2iIiInL4jDH865yOfJL4dxzlRWR9eXewQ6pRlEASkWOCqbg0eEg4oV0vJfTm8dihM3Gc+VLQ4hLZ7dEz2xEbEcI/vlqI21UHb4eLcS4fDYXZQY1rdWYBhWUeUrzboG7V1D/arX1qLKszCygu84DDgaf5QJxrJoDXc1DnW2tZlVlAq4QIHDmrtQKbiIiIHLFQl4PHrz2H4SEXkbL5JzZO+zLYIdUYSiCJyDHNJLaGOvWCHYYI9SJD+dfZ7ViYkcvbk9fi6nk9xlOKZ97HQY1rwaZdgCW2JANH/aqpf7Rb+5QYvBaWbfPVQXK1GoSjJAc2zz2o8zPzS8kvcdMlMhvjLcdoBTYRERGpAnUjQznp2idZYRsRMe6f7NoZ3A/0agolkERERGqIwR2SGdwhmRfHrWS5TaM8tRd2zvsQxFVA5m3aRZPwIpzlBZh6zau07d0rse2ug2RanIw1TtzLD+42tt0FtNs4d6/AphlIIiIiUjXSU+uzc+AL1PfmMOt/d+Hx1ozFTYJJCSQREZEawhjD/53TntiIEO75fAG2+/W4dq2DdRODFtP8Tbs4OdGXqKmqFdh2S44Np15kKIs3+2YgEVEXd2oP7KpxB3X+qu35AKSWrccaB8S3rNL4RERE5NjW+/hTWZB6MacWfsf7n34a7HCCTgkkERGRGqReZChPn9eRpVvzeHN7WzwR9Sif+W5QYikqc7Nyez49Ynb5g6vaGkjGGNqlxLDIPwMJwNHyVEIyF0L+tgOev3pHATHhLiJ2rcQb1xRCwqs0PhEREZGOVz1PjiuJk1Y8waejv6fUfXC1Go9GSiCJiIjUMKe0TeL8rmm8MmkTmc0uwLXqR8jbUu1xLN6ch8draRWW5ZvhE9eoyvtonxrLyu35ey7GnK1OA8C78ucDnrtqewHpSdGwY7luXxMREZGAcIZH4zzvDZKdu7j098vZ8eaZZC0ej/sYTCQpgSQiIlIDPXpmWxKjw/jHhm4Y68E954Nqj2H+pp0AJHu2YmPSwBVW5X20T4nF7bWs3Oa/TS6xLZ6oFNwrxu73vIJSN8u25tEmPgTHzrU4kpRAEhERkcCIbTuQzOvn8k7olYRnLSb+q/Moe3sgufNGYQ9y9dijgRJIIiIiNVBsRAjPnt+RyVnRrI7uifn9A/C4qzWGBZtySasbQVjeemzdqr19bbcO/kLai7f4b2MzBm+LU3Ctmwjusn2e9/IvK8krcXN5i1KM9WIStQKbiIiIBE6TtFQG3/oc54W+ydOOGzGFmcR+ezVlr/bCPfdj8JQHO8SAUwJJRESkhurfMoErejfiPzl9cRZsxa48uNXJqsr8Tbvo3DAOctbhqF+1BbR3a1gvguhwF4sr1EFytR6Eo7wAu3F6pees2JbPe1PXc0mPhrRx+m/tUwJJREREAiylbgRvXXc8IzyncJ7rNbaf8jrW4cL5y8Pg2fcHX0cLJZBERERqsAdOb8OqmH5kUo+S6e9UW7+Z+SVs3lVMzwYOHCU7MVW8Attuxhjap8Qye33OnuVxTdMTsI5Qylf8tQ6StZZHvl1MdLiLf5zWGrt9KdYRAvWbByQ+ERERkYraJMfw5hVdWbWjmPtWtMR561S4YQKERgY7tIBTAklERKQGiwxz8exFXfnIPYCIjRMpXfxdtfS7YJNvRlD3PSuwBSaBBHB+tzRWbi/gyR+W+jaEReFu2AfHqr8mkEbN38ysdTn887TW1IsMxbt9Kd56LcAZErD4RERERCo6Pj2Bp85tz6SVO3jk2yVVvlJtTaUEkoiISA3Xs2k93L1vZ5G3CZ5vbqF0++qA9zl/006cDkMLV6ZvQwAvjC7olsZ1fZvy/tT1fDRjAwCm1SBcOSth5/o9x+UWl/PUD8vp1DCOi7s39G3csRwSWwcsNhEREZHKXNyjEbef1ILPZm/izd/WBDucaqEEkoiISC1w7xmdmNjpBco9Xja/czEFhQUB7W/+pl20bhBNaK4voUPdJgHt76HBbRjQOpHHRy/ht5U7cLUaBPCn29heHLeS7MJSnjy7PQ6HgdICnLkbcCSp/pGIiIhUv7+f2pKzO6fw5sQ1ZBeUBjucgFMCSUREpBZwOgx3nD+Q2Z3/TTP3an596Xo27yoOSF9er2Xhplw6N4zD7lyLN6pBwO/rdzoML1/ahfTEKG4f8Tsr3Ym445piV4wFYMmWXD6cvp4rejWmQ5pv5TZ2rADQCmwiIiISFMYY/nNBR769rS/1o8KCHU7AKYEkIiJSiww891pWp1/PmeU/8eYr/2Zhxq4q7+PnpdvJL3XTt0U8NnttQOsfVRQV5uK9a3oQHurkuuGzKWp8Mq6NU/CWFvHIqMXUrRPKvae2+uOEHct8XxPbVEt8IiIiInsLczlplhAV7DCqhRJIIiIitUyLS/5DbkIPHvK+xQNvfclPi7dVWdvWWt6YuJrG9etwatskyFmLqcbCkClxEbxzVXd25Jfy4vqmODwl/Pj9V/y+cRd3D0wnLMSBtb7V2uz2pVhXeMBvrxMRERERJZBERERqH6eL6Cs+xBUexZshL/P3EVMZ9tuaPYmVIzF1dTYLM3K55YTmuNxFOAozMdU0A2m3zg3jePHizozY3pBSE0aTRS/ybNxITs4bzbZZ37B6wRRWr11D8eZFeOu3BIezWuMTERERORa5gh2AiIiIHDpHbAru89+l4Sfn8V69j7j4xzCWb83j6fM6YKyX8ux1eLYvhR0rCWvUlYjWpxxUu6//upqkmDDO65oKWf5bxKo5gQRwRodk1g1qz1vjT+cC52QuLB2JY/qXfznO0+Hiao9NRERE5FikBJKIiEgtFZp+EiX97qfX5H8zMi2KtUt2smnlVpqbzYR7Sv44cBoUnfA4dU68G4zZZ3u/b9zJ9LXZPDy4DWEuJ+Ss9e2oxlvYKhp6YnOeK32Aj3mAwe0TcRRlEVK4DVfRdkIKtxJavIOE3pcGJTYRERGRY40SSCIiIrVY+En3UZIxmy7rvqNlnUTmlTRglhlA527H0bB1N0Ljm8OYe6nz2+MU5W6kzlnP7/OWrzd+XUNcnRAu7dnIt2F3AqlucBJIxhj+cVrrClvq4fGm4/Z68XrBYiFUlzIiIiIi1UFXXSIiIrWZw0HYFZ+SV5BPeGQcSdmFPPzhHDbPKObJBmlcnJ4El35A4ZiHiJzzBkV5W4i45D1MaOSfmlmxLZ9flm3n7oHpRIb5Lw9y1uKNqI8jIq76X9c+OB0Gp2oeiYiIiFQ7FdEWERGp5YwzhJjYeoS6HKQnRfPtbf3o3aw+//x6EY99u5hyC5FDnqZo4NNErB1L6buD8eTv+FMbb05cTZ1QJ9f0abJnmzdnXdBuXxMRERGRmiVgCSRjTD1jzDhjzCr/17qVHNPQGPOrMWaZMWaJMeauQMUjIiJyrIitE8L71/TgxuOb8sH0DVz93ixyi8qp028oJed/QGjWUjzvDKAscxUAG7OLGL1gC5f3akRcndA/GspZW+0rsImIiIhIzRTIGUj3A+OttenAeP/zvbmBv1tr2wC9gduMMW0DGJOIiMgxweV08NDgtrxwYSfmrN/JuW9MZV1WIREdzqb8ytE4yvJxvHcqpetn8takNbgcDm44vkKyyF2KydusBJKIiIiIAIFNIJ0NfOD//gPgnL0PsNZutdb+7v8+H1gGpAYwJhERkWPK+d3SGHFjL3YVl3PuG1OZsTabsCa98V43Dm9oNM4R57Fq7njO75ZGUkz4Hyfu3IDBghJIIiIiIkJgE0hJ1tqt4EsUAYn7O9gY0wToAszcx/6bjDFzjDFzduzYUdkhIiIiUokeTeoxamhf4qPCuPLdmXwxexOhiS1wXvcjO00c7zmfZmizvX637l6BTTWQRERERIQjTCAZY34xxiyu5HH2IbYTBXwN3G2tzavsGGvt29ba7tba7gkJCUcStoiIyDGnUf06fH1rH3o3q88/vl7I02OWkReSwEUlD1EQEk/KD1dQvnbqHyfsSSBpBpKIiIiIHGECyVo70FrbvpLHt8B2Y0wygP9rZmVtGGNC8CWPRlhrvzmSeERERGTfYiN8xbWv6N2Ityat5YxXJrOuLJbci77BE5mE85ML/kgi5azFhkVDnfrBDVpEREREaoRA3sI2Grja//3VwLd7H2CMMcC7wDJr7X8DGIuIiIjgK679f2e35/Ez27I9r4SBbRJp1bIVrmvH4IlKxvnJBbjXTcHmrMPWbQbGBDtkEREREakBjLU2MA0bUx/4AmgEbAQutNbmGGNSgP9Za88wxvQDJgOLAK//1AettWP213b37t3tnDlzAhK3iIjIsWJ1Zj6JMeHEhIcAYPO34X5vMM78LRhXKDQ7EXPRBwdoRURERESOFsaYudba7pXtcwWqU2ttNjCgku1bgDP8308B9NGmiIhIELRIjP7TcxPdANd1P+B+bwghO1ep/pGIiIiI7BHIW9hERESkltmdRCpLHwytBwc7HBERERGpIQI2A0lERERqJxOdROjlnwQ7DBERERGpQTQDSURERERERERE9ksJJBERERERERER2S8lkEREREREREREZL+UQBIRERERERERkf1SAklERERERERERPZLCSQREREREREREdkvJZBERERERERERGS/lEASEREREREREZH9UgJJRERERERERET2SwkkERERERERERHZL2OtDXYMh8wYswPYEISu44GsIPQrR0bjVvtozGonjVvtpHGrnTRutY/GrHbSuNVOGrfaR2NWczS21iZUtqNWJpCCxRgzx1rbPdhxyKHRuNU+GrPaSeNWO2ncaieNW+2jMaudNG61k8at9tGY1Q66hU1ERERERERERPZLCSQREREREREREdkvJZAOzdvBDkAOi8at9tGY1U4at9pJ41Y7adxqH41Z7aRxq500brWPxqwWUA0kERERERERERHZL81AEhERERERERGR/VICSURERERERERE9uuoTSAZY04zxqwwxqw2xty/1747/PuWGGP+s4/zL/Tv9xpjuu+17wF/uyuMMYP2cf7t/mOsMSZ+r30nGmPm+9v/7Uhf69GiBozZCP/+xcaY94wxIf7txhjziv/8hcaYrlX1mo8GgRo3Y0x9Y8yvxpgCY8xr++m/qTFmpjFmlTHmc2NMqH+7xm0/auq4VdjfwxjjMcZccKSv9WhRU8fMGBNrjPnOGLPA3/61VfWajwY1YNwqvR4xxlzu/79xoTFmmjGmU1W83qNFTR03/z5dR1aiBoyZriMPQwDH7RRjzFxjzCL/15P3cf6+frdp3Pajpo5bhf26jgwUa+1R9wCcwBqgGRAKLADa+vedBPwChPmfJ+6jjTZAK2Ai0L3C9rb+9sKApv5+nJWc3wVoAqwH4itsjwOWAo321/+x9qghY3YGYPyPT4FbK2z/0b+9NzAz2O9XTXkEeNwigX7ALcBr+4nhC+AS//fDNG61e9wqxDcBGANcEOz3qyY8avKYAQ8Cz/q/TwBygNBgv2c14VFDxm1f1yN9gLr+70/X/5G1Ztzi0HVkTR0zXUfWrHHrAqT4v28PbN7H+bqOPIrGrUJ8uo4M0ONonYHUE1htrV1rrS0DPgPO9u+7FXjGWlsKYK3NrKwBa+0ya+2KSnadDXxmrS211q4DVvv72/v8edba9ZWcfxnwjbV24/76PwbVhDEbY/2AWUBahfM/9O+aAcQZY5IP/6UeVQI2btbaQmvtFKBkX50bYwxwMvCVf9MHwDn+7zVu+1aTxw3gDuBrQP8//qEmj5kFov3HROFLILkP7eUdtYI6bv7jKr0esdZOs9bu9D+dwR+/86QGjxu6jtyXmjBmuo48dIEct3nW2i3+p0uAcGNMWMVjdB152GryuIGuIwPqaE0gpQKbKjzP8G8DaAkc75/y9psxpkcVtn0wWgJ1jTET/dPyrjrE/o9WNWbM/FOOrwR+OpzzjzGBHLeDUR/YZa3d/cdqxf41bvtWY8fNGJMKnIvv0yT5Q40dM+A1fJ8kbgEWAXdZa70BiKE2Cva4Hazr8X3SLj41edx0HVm5GjNmuo48JNU1bucD83YnNSrQdeThqbHjpuvIwHMFO4AAMZVss/6vLqAuvqmIPYAvjDHN/J8WHGnbB8MFdAMGABHAdGPMDGvtykNo42hUk8bsDWCStXbyYZ5/LAnkuB1p/xq3favJ4/YS8E9rrcf3AZP41eQxGwTMx/dpYHNgnDFmsrU2rwr7r62CPW4HZIw5CV8CqV919lvD1eRx03Vk5WrSmOk68uAFfNyMMe2AZ4FTD7F/jdu+1eRxewldRwbU0ToDKQNoWOF5Gr5PRnfv+8Y/HXEW4AXijTHvG19BwjFH0PbBxvaTfzpsFjAJ6HQI5x+tasSYGWMew1fD457DOf8YFMhxOxhZ+KYU706G792/xq1yNXncugOfGWPWAxcAbxhjzqmCPmu7mjxm11bofzWwDmhdBX0eDYI9bvtljOkI/A8421qbHej+apGaPG66jqxcjRgzXUcesoCOmzEmDRgJXGWtXVPJIbqOPDw1edx0HRlgR2sCaTaQbnzV2UOBS4DR/n2j8H1KijGmJb7CX1nW2muttZ2ttWccoO3RwCXGmDBjTFMgHd99zgfrW3zT+lzGmDpAL2DZIZx/tAr6mBljbsD3Sfqle91+MRq4yvj0BnKttVsP+5UeXQI5bgfk/zTjV3y/IACuxvdvDDRu+1Njx81a29Ra28Ra2wTfve1DrbWjjrTPo0CNHTNgI77ZEBhjkvAVxVx7pH0eJYI6bvtjjGkEfANcqdkrf1Fjxw1dR+5L0MdM15GHJWDjZoyJA34AHrDWTq3sGF1HHrYaO266jqwGtgZU8g7EA1/l/JX4KsQ/VGF7KPAxsBj4HTh5H+efiy+DWgpsB8ZW2PeQv90VwOn7OP9O//lufBnR/1XYdx++FTQWA3cH+72qKY8aMGZu/zHz/Y9H/dsN8Lp/3yIqrBSgR8DHbT2+grwF/mPaVnJ+M3wJwdXAl/yx6oPGrRaO217HDEerZ9T4MQNSgJ/9/84WA1cE+72qSY8aMG6VXo/gm3m0kz9+580J9ntVkx41ddz8+3QdWTPHTNeRNWjcgIeBwgrjMZ9KVgRD15FH1bjtdcxwdB1Z5Q/jf3NFREREREREREQqdbTewiYiIiIiIiIiIlVECSQREREREREREdkvJZBERERERERERGS/lEASEREREREREZH9UgJJRERERERERET2SwkkERERERERERHZLyWQRERERERERERkv5RAEhERERERERGR/VICSURERERERERE9ksJJBERERERERER2S8lkEREREREREREZL+UQBIRERERERERkf1SAklERERERERERPZLCSQREREREREREdkvJZBERERERERERGS/lEASERE5hhhjmhhjrDHGdRDHXmOMmVJNcfU1xqwyxhQYY86pjj6lavh/nloEOw4REREJLCWQREREaihjzHpjTJkxJn6v7fP9f7Q3CVJoFRNRBf7HemPM/UfQ5BPAa9baKGvtqCoK85hQlYk+/zgOrIq2Kmn7oJOXh9CmNcYUVvg5LDDG/KMK269njNlRXYlUERGRmqzKfoGLiIhIQKwDLgVeBTDGdAAighrRn8VZa93GmOOA8caY+dbanw72ZGOMy1rrBhoDSw4ngAptyLGpk7V2dYDafhZYhj50FRER0S9DERGRGu4j4KoKz68GPqx4gDEm1hjzoX+mxAZjzMPGGId/n9MY87wxJssYsxYYXMm57xpjthpjNhtjnjTGOA81SGvtdHwJoPb+dq8zxiwzxuw0xow1xjSu0Kc1xtxmjFkFrDLGrAGaAd/5Z5CEGWNSjDGjjTE5xpjVxpgbK5z/uDHmK2PMx8aYPOAaY8xEf+zT/G18Z4ypb4wZYYzJM8bMrjhjyxjzsjFmk3/fXGPM8Xu1/4X/Pc03xiwxxnSvsL+hMeYb//udbYx5rcK+fb7uvRljzvK3vcsff5sK+9YbY+41xiw0xuQaYz43xoRX0kYbYBhwnP917/JvD/OP+0ZjzHZjzDBjTIR/X7wx5nt/vznGmMnGGIcx5iOgUYVxqHQmjzHmPv/PyxZjzHV77RtsjJnnf183GWMer7B7kv/rLn/7xxljmhtjJvjfxyz/eMXt6z07FMaYMcaYFyo8/9wY857/+2uMMVONMa/639/lxpgBe51/HL6f5/erIh4REZHaTgkkERGRmm0GEGOMaeNP7FwMfLzXMa8CsfiSMCfgSzhd6993IzAE6AJ0By7Y69wPADfQwn/MqcANhxKg8ekLtAPmGV8NoweB84AEYDLw6V6nnQP0Atpaa5sDG4Ez/bewlfqPzwBS/DH/e68/8M8GvgLigBH+bZcAVwKpQHNgOr4//uvhm0XyWIXzZwOd/fs+Ab7cK0FzFvCZv/3RwGv+1+oEvgc2AE38fX3m33cwr3v3e9bSv+9u/7Fj8CVuQiscdhFwGtAU6Ahcs3c71tplwC3AdP97F+ff9SzQ0v8aW/jjfNS/7+/43tsEIMkfs7XWXsmfx+E/lcR9GnAvcAqQDux9u1shvp+/OHzJylvNHzWt+vu/xvnbnw4Y4Gl849wGaAg8XqG/N4wxb+wdx0G6DrjSGHOyMeZyoAdwV4X9vYC1QDy+n41vjDH1/P06gdeB2wF7mP2LiIgcVZRAEhERqfl2z0I6BVgObN69o0JS6QFrbb61dj3wAr5ECviSEC9ZazdZa3Pw/bG++9wk4HTgbmttobU2E3gRXyLmYGUBOcD/gPutteOBm4GnrbXL/LeW/RvovNdsnKettTnW2uK9GzTGNAT6Af+01pZYa+f727+ywmHTrbWjrLXeCm28b61dY63NBX4E1lhrf/HH8CW+BBkA1tqPrbXZ1lq3tfYFIAxoVaH9KdbaMdZaD773v5N/e098yY77/O9ZibV2d32cg3ndu10M/GCtHWetLQeex3drYp8Kx7xird3iH7fv8CWDDsgYY/AlDv/mf4/z/bHsHtdyIBlobK0tt9ZOttYebJLkInzv82JrbSEVkj0A1tqJ1tpF/nFZiC9JdsK+GrPWrva/B6XW2h3Afyseb60daq0deoCYfvfPptr9GOQ/dxu+5NoHwMvAVf73YrdMfP82yq21nwMr+GOG3p3ATGvt3AO9ISIiIscK1UASERGp+T7Cd/tPU/a6fQ3f7IlQfDNidtuAb8YJ+JIdm/bat1tjIATY6ss5AL4PlyoefyDxldQfagy8XPH2IXwzTVIr9L+/PlKAnL3+2N+AbwbVbpWdv73C98WVPI/aE4wxf8c30yoF3wyTGHzv5W7bKnxfBIQbX/HnhsCGfdRcOpjXvVtKxW3WWq8xZhN/jFtlMaRU0mdlEoA6wNwK42qA3bcmPocv8fOzf//b1tpnDrLtFKBiUuVPr8sY0wt4Bt+tX6H4EnNf7qsxY0wi8ApwPBCN7+dv50HGslvX/dRA+h7f7LEVFRJ9u23eK3G2AUgxxqTgSyB1O8Q4REREjmqagSQiIlLDWWs34CumfQbwzV67s/DNKKk4y6URf8xS2oov6VFx326bgFJ8SaA4/yPGWtvuCEPeBNxcoc04a22EtXZaxZe1n/O3APWMMdF7xb25wvPDvq3IX+/on/hm09T13/aViy/JciCbgEam8pXEDuZ177aFCmPmnzXUkD+/xoO193uRhS9h1q5CHLHW2igA/0y1v1trmwFnAvdUuD3wQO/r/n6ewHc74GigobU2Fl99pt3va2VtP+3f3tFaGwNcwcGNw8F6Ct/ti8nGmEv32pdqKmTY8L2WLfhmmSUDS40x2/DNXuppjNlmDqM+mIiIyNFCCSQREZHa4XrgZP9tQ3v4b7H6AnjKGBPtv13qHv6ok/QFcKcxJs0YUxe4v8K5W4GfgReMMTH+QsrNjTH7vOXoIA0DHjDGtIM9hbovPNiTrbWbgGnA08aYcGNMR3yvf8T+zzxo0fjqPu0AXMaYR/HNQDoYs/AlUZ4xxkT64+vr33cor/sLYLAxZoAxJgRfXaJSfK/7UG0H0nbXT7LWeoF3gBf9M3wwxqTuvrXLGDPEGNPCnzzJAzz+x+62mu2nry/wFS1va4ypw5/rSoHvvc2x1pYYY3oCl1XYtwPw7tV+NFCAr7B2KnDfIb72fTLG9MdXC+wq/+NVfx+7JeL7txHiH6c2+GpR/YivvlVn/+NRYB7Q2f/vTURE5JikBJKIiEgt4K/tM2cfu+/AV7x4LTAF3yyQ9/z73gHGAguA3/nrDKar8N1qtBTfrUNf4Zt9cSSxjsRXxPkz41slbTG+WkuH4lJ8f8RvAUYCj1lrxx1JXBWMxZckWInvtqUSDvK2PX8C4Ux8hak34itGfbF/30G/bmvtCnyzbV7FN2PoTHzFq8sO4/VMwLcC3jZjTJZ/2z+B1cAMfyy/8EeNp3T/8wJ8hcbfsNZO9O97GnjYX0vo3kri/hF4yd/nav/XioYCTxhj8vElXr6ocG4RvhlBU/3t9wb+BXTFNwPsB/b6+TS+1eOGHeD1L/Cv6rb78ZIxJgbf7Z63W2s3+29fexd4v8Kso5n+9yLLH9cF/rpYpdbabbsf/tjK/d+LiIgcs8zB10wUEREREan9jDHXADdYa/sFOxYREZHaQjOQRERERERERERkv5RAEhERERERERGR/dItbCIiIiIiIiIisl+agSQiIiIiIiIiIvvlCnYAhyM+Pt42adIk2GGIiIiIiIiIiBw15s6dm2WtTahsX61MIDVp0oQ5c/a1krGIiIiIiIiIiBwqY8yGfe3TLWwiIiIiIiIiIrJfSiCJiIiIiIiIiMh+KYEkIiIiIiIiIiL7VStrIImIiIiIiIgEW3l5ORkZGZSUlAQ7FJFDEh4eTlpaGiEhIQd9jhJIIiIiIiIiIochIyOD6OhomjRpgjEm2OGIHBRrLdnZ2WRkZNC0adODPi+gt7AZY94zxmQaYxbvY78xxrxijFltjFlojOkayHhEREREREREqkpJSQn169dX8khqFWMM9evXP+SZc4GugTQcOG0/+08H0v2Pm4A3AxyPiIiIiIiISJVR8khqo8P5uQ1oAslaOwnI2c8hZwMfWp8ZQJwxJjmQMYmIiIiIiIiIyKEJ9ipsqcCmCs8z/Nv+whhzkzFmjjFmzo4dO6olOBERETmwsp1bwOsJdhgiIiLHJGMMV1555Z7nbrebhIQEhgwZEsSoDiwqKuqAxzz++OM8//zz+z1m1KhRLF26tKrCkv0IdgKpsjlTtrIDrbVvW2u7W2u7JyQkBDgsERERORg2cxmu1zpT+vk1YCv9Fb6Hx2tZvDmX96euY+iIuTz947LqCVJEROQoFhkZyeLFiykuLgZg3LhxpKZWOi8j4Nxud7X3qQRS9Qn2KmwZQMMKz9OALUGKRURERA6F10P5yNsJ8ZYTtmI05b+PIKTbFX86ZGtuMb8sy2TCsu3MWb+T/FLfhWV0uIv8EjcXdkujRWI0Hq/FustwhYYF45WIiIgcsX99t4SlW/KqtM22KTE8dma7Ax53+umn88MPP3DBBRfw6aefcumllzJ58mQACgsLueOOO1i0aBFut5vHH3+cs88+m/Xr13PllVdSWFgIwGuvvUafPn3YunUrF198MXl5ebjdbt58802OP/54oqKiKCgoAOCrr77i+++/Z/jw4VxzzTXUq1ePefPm0bVrV4YOHcptt93Gjh07qFOnDu+88w6tW7dm3bp1XHbZZbjdbk47bd+lkp966ik+/PBDGjZsSEJCAt26dQPgnXfe4e2336asrIwWLVrw0UcfMX/+fEaPHs1vv/3Gk08+yddff82ECRP+clydOnWOdCiE4CeQRgO3G2M+A3oBudbarUGOSURERPbDWkteiZuC314jdescprT/P5puGknCD/cxOr8pJVGN2LKrmPHLMlm0OReAJvXrcFbnFHo2rUePJvUI2TiFCV+9Q9nwFykJ3UVI4Vac7mK4YRykdgvyKxQREaldLrnkEp544gmGDBnCwoULue666/YkkJ566ilOPvlk3nvvPXbt2kXPnj0ZOHAgiYmJjBs3jvDwcFatWsWll17KnDlz+OSTTxg0aBAPPfQQHo+HoqKiA/a/cuVKfvnlF5xOJwMGDGDYsGGkp6czc+ZMhg4dyoQJE7jrrru49dZbueqqq3j99dcrbWfu3Ll89tlnzJs3D7fbTdeuXfckkM477zxuvPFGAB5++GHeffdd7rjjDs466yyGDBnCBRdcAEBcXFylx8mRC2gCyRjzKXAiEG+MyQAeA0IArLXDgDHAGcBqoAi4NpDxiIiIyJH5aPp6/jN2BbGlWxkb+jS/ejtx7ZxmpHI1P4Y9QMqEu7m47BG8xknXRnX552mtOaVtEs0TIves9lE8833Cf/o7Q1x1WFuYQHF8OuVpvYle/BFsmq0EkoiI1EoHM1MoUDp27Mj69ev59NNPOeOMM/607+eff2b06NF7agmVlJSwceNGUlJSuP3225k/fz5Op5OVK1cC0KNHD6677jrKy8s555xz6Ny58wH7v/DCC3E6nRQUFDBt2jQuvPDCPftKS0sBmDp1Kl9//TUAV155Jf/85z//0s7kyZM599xz98wYOuuss/bsW7x4MQ8//DC7du2ioKCAQYMGVRrLwR4nhy6gCSRr7aUH2G+B2wIZg4iIiFSNj2Zs4JFvl9C3eT2eKnyBkHwn8ee+xrS0dEJdDsoWOek+9nZm9l+I68R/EFcn9M8NWEvRL09TZ+qzFDc6kU0nv8GZw+Zzf/PW3NK/GXbVt5js1cF5cSIiIrXcWWedxb333svEiRPJzs7es91ay9dff02rVq3+dPzjjz9OUlISCxYswOv1Eh4eDkD//v2ZNGkSP/zwA1deeSX33XcfV1111Z+WfS8pKflTW5GRkQB4vV7i4uKYP39+pTEezNLx+zrmmmuuYdSoUXTq1Inhw4czceLEIzpODl2wi2iLiIhILfD57I08MmoxA1on8r/Oa2iyayYMeIwO7TuSEhdBfFQY8cddSVmb86g/+79EZy/8cwMeN0Xf3OFLHrW5iIirv6J1k1T6NK/Ph9PW4/ZabL0WeLNWBecFioiI1HLXXXcdjz76KB06dPjT9kGDBvHqq69i/YtdzJs3D4Dc3FySk5NxOBx89NFHeDy+FVU3bNhAYmIiN954I9dffz2///47AElJSSxbtgyv18vIkSMrjSEmJoamTZvy5ZdfAr7k1YIFCwDo27cvn332GQAjRoyo9Pz+/fszcuRIiouLyc/P57vvvtuzLz8/n+TkZMrLy/90fnR0NPn5+Qc8To6cEkgiIiKyX1/PzeD+bxbRv2UCz54URegvD1KW0pPQ3jf95djQs17EE5mE+WAIJS91o2jYKRR8cDHF7wyizqKPKOp1NxEXvQ3OEACu7duULbkljF2yHZPQAjQDSURE5LCkpaVx1113/WX7I488Qnl5OR07dqR9+/Y88sgjAAwdOpQPPviA3r17s3Llyj2ziCZOnEjnzp3p0qULX3/99Z42n3nmGYYMGcLJJ59McnLyPuMYMWIE7777Lp06daJdu3Z8++23ALz88su8/vrr9OjRg9zc3ErP7dq1KxdffDGdO3fm/PPP5/jjj9+z7//+7//o1asXp5xyCq1bt96z/ZJLLuG5556jS5curFmzZp/HyZEz9gBL7tZE3bt3t3PmzAl2GCIiIke9b+dt5pEvpnFLwmKurDOD6G0z8LrC4aZJOBJbVXqOZ+tiiqa+hSnOxhTn4CzOwVFehKfPnUT0+XPSyeO1nPzCROKjwvi67RT49Sl4cCuEarUUERGp+ZYtW0abNm2CHYbIYans59cYM9da272y44O9CpuIiIjUUKN+38Sub/7O7LBfCcsro5Sm5PS6j4julxOR0HSf5zmT2xN9wat/2matJbSSmgZOh+Hq45rwxPdL2dA2mcYAOWuhQfsqfjUiIiIiciR0C5uIiIj8xVdzM9j+zf1c4xpLYfrZ5FzyA9wxh3qnP7zf5NG+7K9o5oXd04gKc/HFujDfBt3GJiIiIlLjKIEkIiIif/L57I3M/eZFbnZ9T16Ha6h32TvUa92PsJDATFyODg/hwu5pfLjS3362CmmLiIiI1DRKIImIiMgeH8/YwOiRn/BkyHsUNjyRmHNegINYcvdInd81jXxvGEXhSdgszUASERERqWmUQBIREREApqzKYvi3P/F22CuU100n4rIPwVk95RIb1fcVzc4Jb4TN0gwkERERkZpGCSQREREB4LsZixge9jyh4XVwXvEFjojYaus7OsxFnVAn20IaYrJXQy1cJVZERETkaKYEkoiIiFBY6iZu1dekkYn3oo8Iqd+kWvs3xtAgNpz1NhlTmgtF2dXav4iISG21fft2LrvsMpo1a0a3bt047rjjGDlyZMD7nTNnDnfeeWeVtHXiiSfSqlUrOnXqRN++fVmxYkWVtFuVqjLG4cOHc/vttwMwbNgwPvzww30eu379ej755JM9z6vyfT9USiCJiIgI45Zup5ddRGF0U8KaHheUGJJjw1lenuh7opXYREREDshayznnnEP//v1Zu3Ytc+fO5bPPPiMjIyPgfXfv3p1XXnmlytobMWIECxYs4Oqrr+a+++77y36Px1NlfR2uQMR4yy23cNVVV+1z/94JpKp+3w+FEkgiIiLC9/PW09u5nPCWA4IWQ4OYCBYUJ/ieKIEkIiK1zY/3w/uDq/bx4/377XLChAmEhoZyyy237NnWuHFj7rjjDsCXfDj++OPp2rUrXbt2Zdq0aQBMnDiRIUOG7Dnn9ttvZ/jw4QDcf//9tG3blo4dO3LvvfcC8OWXX9K+fXs6depE//79/9LGrFmz6NOnD126dKFPnz57ZucMHz6c8847j9NOO4309HT+8Y9/HPBt7N+/P6tX+64DoqKiePTRR+nVqxfTp0/nv//9L+3bt6d9+/a89NJLe8758MMP6dixI506deLKK68EYMeOHZx//vn06NGDHj16MHXqVAB+++03OnfuTOfOnenSpQv5+fls3bqV/v3707lzZ9q3b8/kyZMPO8aPP/6Ynj170rlzZ26++eY9SaX333+fli1bcsIJJ+yJBeDxxx/n+eefB2D16tUMHDiQTp060bVrV9asWcP999/P5MmT6dy5My+++OKf3vecnBzOOeccOnbsSO/evVm4cOGeNq+77jpOPPFEmjVrVmUJp+qpjCkiIiI1Vk5hGYVrZlAnpARanBS0OBrEhvF9QQw2PASjQtoiIiIHtGTJErp27brP/YmJiYwbN47w8HBWrVrFpZdeypw5c/Z5fE5ODiNHjmT58uUYY9i1axcATzzxBGPHjiU1NXXPtopat27NpEmTcLlc/PLLLzz44IN8/fXXAMyfP5958+YRFhZGq1atuOOOO2jYsOE+Y/juu+/o0KEDAIWFhbRv354nnniCuXPn8v777zNz5kystfTq1YsTTjiB0NBQnnrqKaZOnUp8fDw5OTkA3HXXXfztb3+jX79+bNy4kUGDBrFs2TKef/55Xn/9dfr27UtBQQHh4eG8/fbbDBo0iIceegiPx0NRUdF+3/d9xbhs2TKeffZZpk6dSkhICEOHDmXEiBGccsopPPbYY8ydO5fY2FhOOukkunTp8pd2L7/8cu6//37OPfdcSkpK8Hq9PPPMMzz//PN8//33gC9xt9tjjz1Gly5dGDVqFBMmTOCqq65i/vz5ACxfvpxff/2V/Px8WrVqxa233kpISMh+X9eBKIEkIiJyjBuzaCu9zSKscWCa9AtaHA1iIyj1OiiPbYIra7WmSYuISO1y+jPBjoDbbruNKVOmEBoayuzZsykvL+f2229n/vz5OJ1OVq5cud/zY2JiCA8P54YbbmDw4MF7Zrr07duXa665hosuuojzzjvvL+fl5uZy9dVXs2rVKowxlJeX79k3YMAAYmN9C3O0bduWDRs2VJpAuvzyy4mIiKBJkya8+uqrADidTs4//3wApkyZwrnnnktkZCQA5513HpMnT8YYwwUXXEB8fDwA9erVA+CXX35h6dKle9rPy8sjPz+fvn37cs8993D55Zdz3nnnkZaWRo8ePbjuuusoLy/nnHPOoXPnzpW+PweKcfz48cydO5cePXoAUFxcTGJiIjNnzuTEE08kIcE30/riiy/+y1jk5+ezefNmzj33XADCw8MrjaGiKVOm7EnUnXzyyWRnZ5ObmwvA4MGDCQsLIywsjMTERLZv305aWtoB29wfJZBERESOcaPnb+Gx0KV4krrgiogLWhzJMb4LpaLoJsRkawaSiIjIgbRr125PAgHg9ddfJysri+7duwPw4osvkpSUxIIFC/B6vXuSEi6XC6/Xu+e8kpKSPdtnzZrF+PHj+eyzz3jttdeYMGECw4YNY+bMmfzwww907tx5zyyX3R555BFOOukkRo4cyfr16znxxBP37AsLC9vzvdPpxO12V/paRowYsSfu3cLDw3E6nYCv3lNlrLUYY/6y3ev1Mn36dCIiIv60/f7772fw4MGMGTOG3r1788svv9C/f38mTZrEDz/8wJVXXsl9991XaV2ig4nx6quv5umnn/7TMaNGjao0xr1fx6Gq7Jzd/Rzs+34o9OGeiIjUSGUTn4d5I4IdxlFvy65ilq3PoI13Nc4g3r4G0CDWd1GbE94Is3MdeINfLFNERKQmO/nkkykpKeHNN9/cs63i7Ve5ubkkJyfjcDj46KOP9tTjady4MUuXLqW0tJTc3FzGjx8PQEFBAbm5uZxxxhm89NJLexJFa9asoVevXjzxxBPEx8ezadOmP8WRm5tLamoqwJ5aSlWtf//+jBo1iqKiIgoLCxk5ciTHH388AwYM4IsvviA727eC6+5b2E499VRee+21PedXfC0dOnTgn//8J927d2f58uVs2LCBxMREbrzxRq6//np+//33w4pxwIABfPXVV2RmZu6JZcOGDfTq1YuJEyeSnZ1NeXk5X3755V/OjYmJIS0tjVGjRgFQWlpKUVER0dHR5Ofn7/M9GTHCd708ceJE4uPjiYmJOazYD4YSSCIiUuPYtRMJnfh/eOcOD3YoR73vFmyht2MpDjyY5jUjgbTVlYbxlMGujUGNR0REpKYzxjBq1Ch+++03mjZtSs+ePbn66qt59tlnARg6dCgffPABvXv3ZuXKlXtu/2rYsCEXXXQRHTt25PLLL99Tjyc/P58hQ4bQsWNHTjjhBF588UUA7rvvPjp06ED79u3p378/nTp1+lMc//jHP3jggQfo27dvwFZL69q1K9dccw09e/akV69e3HDDDXTp0oV27drx0EMPccIJJ9CpUyfuueceAF555RXmzJlDx44dadu2LcOGDQPgpZde2lMQPCIigtNPP52JEyfuKar99ddfc9dddx1WjG3btuXJJ5/k1FNPpWPHjpxyyils3bqV5ORkHn/8cY477jgGDhy4z7pVH330Ea+88godO3akT58+bNu2jY4dO+JyuejUqdOe8djt8ccf3/Ma77//fj744IPDivtgmcOZJhVs3bt3t/sr/CUiIrVYeTHu14/DtWsdNiYNc8+SYEd0VDvj5ckMLR7GYPd4zP0bwBV24JMCxOu1tH7kJx7tuIsrlt0Cl38N6QODFo+IiMiBLFu2jDZt2gQ7DJHDUtnPrzFmrrW2e2XHawaSiIjUKO6Jz/mSR2k9oWAbVLg/X6rW6sx8lm7No69jMd5GfYKaPAJwOAxJsWEsL0/ybcheHdR4REREROQPAU8gGWNOM8asMMasNsbcX8n+WGPMd8aYBcaYJcaYawMdk4iI1FDbl+Kc/jLuDhdjOl6E8bqhcEewozpqjZ6/hRSTTd2i9UGvf7RbckwEqwvDsWEx2CwV0hYRERGpKQKaQDLGOIHXgdOBtsClxpi2ex12G7DUWtsJOBF4wRgTGsi4RESkBvJ6cX97J97QGFynPQ0xKb7teZuDG9dRKr+knE9nb+LqBht8G5rVjARSUmw42/JKsfVa4NVKbCIiUgvUxrIwIofzcxvoGUg9gdXW2rXW2jLgM+DsvY6xQLTxrTUXBeQAR76+nIiI1BqZeSV8+fYTuLbMxgx6CiLrQ3Syb2f+1uAGd5R64eeVZBWUckHd1XjrJEDi3p/vBEdybDhbc0sgvgVGt7CJiEgNFx4eTnZ2tpJIUqtYa8nOziY8PPyQznMFKJ7dUoGK6/tlAL32OuY1YDSwBYgGLrbW/qXghTHmJuAmgEaNGgUkWBERqX7WWl754kf+sXUY62K707Tzpb4dMb6lYMnbErzgjlKLN+fy4fT1XNGzEXVXTcU27Q+OmlEWsUFMOKVuL6UxzYjI+wLKiiC0TrDDEhERqVRaWhoZGRns2KFb7qV2CQ8PJy0t7ZDOCXQCyVSybe/U7CBgPnAy0BwYZ4yZbK3N+9NJ1r4NvA2+VdiqPlQREQmGKZN+4e5Nd1JOCHcXXsOXHkuoy0BkAtbhwiiBVKU8XstDoxZTLzKUf3SzOBbsgOY14/Y18M1AAsiOaEQaQM4aaNAhqDGJiIjsS0hICE2bNg12GCLVItAfN2YADSs8T8M306iia4FvrM9qYB3QOsBxiYhIDbBryS90/fUK3I5wlp/+BQsK6zF2yTbfTocDG9VAM5Cq2GezN7Jg0y4eGtyG6M1TfBubnRjUmCpK8ieQtjr9M9B0G5uIiIhIjRDoGUizgXRjTFNgM3AJcNlex2wEBgCTjTFJQCtgbYDjEhGRICtb+A2R39zEWm8DvJd/zXHpLWk46Vc+nrGBMzv5C2jHpODN2xz4JUOPAWU71pH7y3+IX76Wr6LdtJkVgnvXKkzdZjjjGh64gWqyewbSWm8DeoASSCIiIiI1RECvya21buB2YCywDPjCWrvEGHOLMeYW/2H/B/QxxiwCxgP/tNZmBTIuEREJLs+8Twn55jrme5sypvu7tGnVCofDcHmvxsxcl8PK7fkAmJgUyFMR7SNVtGg0znf6E7PyG5qzifTIYrAeSuq3xZz4QLDD+5OEqDAcBjYXGrzRKdgsrcQmIiIiUhMEegYS1toxwJi9tg2r8P0W4NRAxyEiIjVEeTH8/BCLHK14MOJfjD6t+55dF3VvyH/HrWTEjA386+z2mJhUWPUzWAumsrJ6sj/WXUbhj48RNfcN1oWmc1XJUM46sQ/3Daq5d4q7nA4So8PZlleCrdccstdWWlBRRERERKqX7goQEZFqZRd8jrM4m6dLzuex87oTEercs69eZCiDOyTz9e+bKSx1Q0wKprwISnYFL+BaqihrI9tfPZWouW/wofsULix7jMH9+3DHyenBDu2AkmLD2ZpbgiMuFfJVA0tERESkJgj4DCQREZE9vF5KJr3MGm9TUjufSr/0+L8cckXvRoyct5lv52/hsphk38a8rRBRt5qDrb2WTB5F6vg7iLalPBF+D00HXc1vXdOIDKsdv/aTY8JZs6MA0yQV8reB1wMO54FPFBEREZGA0QwkERGpNp6VY4nIW8unzrN4aHDbSo/p2qgubZJj+GjGBmy0v5i2VmI7KKVlZfw67G+0+eUasohjzqkjefifj3LlcU1qTfIIoEFsONtyS3wz0KwHCjKDHZKIiEitUDT3M7IX/oTb7Ql2KHIUUgJJRESqzbYfn2OLrUfvs66nbmRopccYY7iidyOWbc1jcUGUb2Pe5mqMsnZatHwVi54ZyEnb3mNW7Kkk3DOZE/r2xeGofRWEGsSGk1/qpjhi9ww0JRBFREQOKHczdb67mfrfXEzZ2wPYOX80Ho832FHJUUQJJBERqRbblk8nNXcuk+pdwJDOjfZ77DmdU4kKc/Hx4lLfhnytxLYvJWVljBz+PImfDqS9dxkLujxJ73u+IDYmLtihHbbk2HAAdjjq+zYogSgiInJA3mXfA7Cr5704i3ZQd9SVrPt3Nx7691PsyCsOcnRyNFACSUREAs5ay9pvn6XARtD/knsxB1hRLTLMxfHp8UzfkI+NTFQCYR+WTvuBjc/05tz1/0dxWCJFV/5Ep7PvCHZYR6xBjC+BtMVTz7dB4y8iInJA3mXfURrXgnddF9G/6Hn+XnYLod5inir7DyWv9GLXzE9wl5cHO0ypxZRAEhGRgPt52hx6Fv3Gusbnk5KUdFDndEiLZWNOEe7IBnhzlUCoKH/LCpb9dzBtf76MaG8uc7o+S+P7Z1Cvebdgh1YlkmMjANhUEo51himBJCIiciBFOTg2TmP4zg689utqOjSO56xr7iX5gUX82OpJisvcxP14K57XepI/4wPw6tY2OXS1p6KmiIjUSrlF5WSOewljoO25/zzo8zqlxfnOD0mgnm5hA8B6vWz6+VUSZjxFmnUwMv4GTrjyUbrHxQY7tCqVGBMGwPb8Umx0CjZ3iz7xEhER2Y+MmV+TZj3MjejLhDtOpGl85J59gy6+nWve607shrE8ZX4i5qc7IcRCt2uCF7DUSroeExGRgPpi/DTOsePJbTYEZ9391z6qqH2KLymy1dbDqIgyJdkb2fzq6TSa8Shzac3MM37k3DteoN5RljwCCA9xUi8ylK25JRCbqhlIIiIi+7Fyez6rf/uMbcTz6E2X/Sl5BOBwGJ6/qAtTQ/tyMc/ijkrBs2ZicIKVWk0JJBERCZjcjBUMnnMdDoeDeqc9dEjnxtYJoUn9OqwpicaU7IKyosAEWQvkzvoE7+u9qZczjzcib6fpXT8xsFeXYIcVUA1iwtmWW4KJSdEqbCIiIvuwLquQG96ZyHEsIKzDWaTVi6z0uMSYcJ67oCPLthWwPKQNZtPMao5UjgZKIImISEC4ty3DDD+dcErYfu4XkNj6kNvomBbHwjz/hdAxehtb6fZVRI8ZyjJ3Ch92HsFN9/wfqXXrBDusgEuODWdbXgkmNhWTv1W1GkRERPayZVcxl78zg17eeYRRTt2u5+33+AFtkriyd2O+ykzFkb8FcjOqKVI5WiiBJCIiVa588wLs8MGUlbt5vdHLNOvY77Da6ZgWy7KiGN+TY/Q2pqVj3sBayDvzf9xy7im4nMfGr+6kWN8MJGJSMd5yKNwR7JBERERqlH+PWcbOonLub7Iab0R9aHTcAc958Iw2LDStfE82zQpwhHK0OTauQkVEpPpsXYjjwzMp9Di5sOxRLhx86mE31SE1lu22ru9J3rE3A6mopJTUDSNZEN6dk3p0DnY41So5JpzswjLK6jTwbThGE4giIiKVWbw5l+8XbuWmvmnUzZiAt+Vp4DzwGlkRoU7K49tRasKwuo1NDpESSCIiUqW8k17Ai5OLyx6lbfuutG4Qc9httU+NZTv1fE+OwQTCbz9+TiI7iTnu2mCHUu0axIYDkO2M921QHSQREZE9nv95BbERIdzUMANHWT6utmcd9LktU+qx2DbHu1EzkOTQKIEkIiJVx1rYOJ2V0T1ZUVqPOwekH1FzkWEuUhLiKTRRx1wCobDUjWvBCPIcsbTod2Gww6l2ybERAGy19X0bjrHxFxER2ZdZ63KYuGIHt57YnLDVY/CGREKzEw/6/DbJ0cx0t8CxfSGUFwcuUDnqKIEkIiJVZ+d6HIXb+WZHGoM7JNOqQfQRN9khLZZtti7eYyyB8Plv8zjBzqao1fngCg12ONWuQWwYAJtKI7DO0GNyBpqIiMjerLU8N3Y5idFhXN2rIY4VP+BtcQqEhB90G22SY5jrTcd43bBlXgCjlaONEkgiIlJ1Ns4AYGp5iyOefbRbp7Q4Mjx1Kd957KwUkl9STta0jwk1HhqceEOwwwmKBv4ZSNvyyrBRycdcAlFERKQyE1fsYPb6ndwxIB1HxgwcRVm42p55SG20SY5hntd/naZC2nIIlEASEZEqU7xmKnm2Di3a9aiS2Ufgm4G01dbD5h47M1CGT1nHmd7x5NfrAEntgh1OUESFuYgOc7E1twRiUrTUsIiIHPO8XstzY1fQsF4E5zQuwzHqZjwR9SD90BYsqRcZSkhMApkhaXg2qpC2HDwlkEREpMrkr5rC79507j6ldZW12TY5hh2mHmGl2eApr7J2a6rc4nKmTBlPG8cmonpfE+xwgqpBbDjb80ogNlU1kERE5Jj3w6KtLN2ax/29wgkfcRamvAj35aMg/NAXLGmTHMN8WmI2zfLVsBQ5CAFPIBljTjPGrDDGrDbG3L+PY040xsw3xiwxxvwW6JhERKTqZW7fSmLJOoqSe9IiMarK2g0PceKNTsFgIX9blbVbE3m9ln+NXsJg93g8zjBMhwuCHVJQNYmPZNHmXExMKiZ/iy5wRUTkmFVU5ua5sSvoF1/IKbNvwJQXUn7FKMLSOh1We22SY5hU3AxHcRbkrK3iaOVoFdAEkjHGCbwOnA60BS41xrTd65g44A3gLGttO+DYW2pGROQoMPan0QB073dalbcdndgYAHsUz0Kx1vLwt4v5Yd46LgybAW3Ogoi4YIcVVAPbJJKxs5ht1MN4yqAoO9ghiYiIBMVTPyzDu3MDb3kew1FeQPnlI4lo2OWw22uTHMNsTwvfk4zZVRSlHO1cAW6/J7DaWrsWwBjzGXA2sLTCMZcB31hrNwJYazMDHJOIiFSxTTlFFK2egtvlIrF1nypvPym1KayH7K3riW/Uq8rbrw7W66Vw1WQ8K36CskKMuxhTXoxxF4PXzaacQk7LK+GWuh4iivOh65XBDjnoBrZJwmEWMTsngrPAtxJbZHywwxIREalWv67I5MuZa5gS8wLhngLKLh9FRKNuR9RmmwbRrLJplLmicG6cgbPTJVUUrRzNAp1ASgU2VXieAex95d8SCDHGTASigZettR/u3ZAx5ibgJoBGjRoFJFgRETk8r05YxUWOFbgTO+EKrVPl7Tdr1hKmQmbGWuJrWf7IU1pI0ZzPCPn9HaKyl+F1hOANjcbrisA6w/G6wthR6KW0qJzGkWHER4dT2uQCwpocH+zQg65+VBg9mtRj3Kat/gTSFkg+vKn6IiIitdHOwjL+8dVC7o8dR2LpRkou/pKIxkeWPAJoGh+Jy+ViY0Rbmm7USmxycAKdQDKVbNu7gIEL6AYMACKA6caYGdbalX86ydq3gbcBunfvriIIIiI1xNodBXz3+3qeCltHSLObAtJH80ZplNgQ8ndsDEj7Vc3j8VK8biZ28ddELPuC6NJcSuq3Ie+UFwjrejGlhLFpZzEbs4uYtGoHn87axNXHNebxs9phTGW/Oo9dg9o14M3v10A4WolNRESOKdZaHh61mIiiLVwd/hUl6YMJb3NoK67ti8vpoFVSNAvKW9E8awSU5B1WMW45tgQ6gZQBNKzwPA3Yu4BFBpBlrS0ECo0xk4BOwEpERKTGe3n8Kjo71xNiy6DRcQHpIzTEyRZnPJ5dm/ds83gt21bOpkFqU5zRCQHp91AVrJmJZ9HXRKz+nqiCzXgdoRQ2OYW1zS5nlqc1s9bsZOFvM9meV/qn8646rjGPnankUWUGtW/Ak9/H4jFOnEdxDSwREZG9fTt/Cz8s2srYlG8weRA2+Jkqbb9NcjQTljbmfOuFzXOh+UlV2r4cfQKdQJoNpBtjmgKbgUvw1Tyq6FvgNWOMCwjFd4vbiwGOS0REqsDG7CJGL9jCe+mZsBFoGLj7y0oiGhBesA2v1+L2eMn99WVSpj1BeYvTcF7xWcD6PVil098hauy9eB0hFKX1Z3Gr23k3sw0TVpVSvNQDLKdJ/Tr0bR5P88QoGtevQ5P6kTSuX4fo8JBgh19jpcZF0C61Llk765OQtznwy8eKiIjUANvzSnjk28Vc22AtrXJ+pbT/g4TFVW0plzbJMfx3ThNsuMFunIlDCSQ5gIAmkKy1bmPM7cBYwAm8Z61dYoy5xb9/mLV2mTHmJ2Ah4AX+Z61dHMi4RESkanw8cwMOY+jtXIm3XnMcUYGbCeSMTSEhfxZTV26j3cJ/k7D0Q9xhdQlZ+wsU74SIugHr+0DcGb8TMu5BChqexKhm/+L933eyZmUh8VEeLu7RkB5N6tGjSV0SY8KDFmNtdlr7Bmz8NY7YnAz0DoqIyLHg+4VbKSkp4T7ve5THNiWs/91V3keb5BjyqUN+TDp1Ns3ShzRyQIGegYS1dgwwZq9tw/Z6/hzwXKBjERGRqlNS7uGLOZs4rW0CYZvnYFqdEdD+khs1x2wZy5YvL6eeZy7ZnW4hssv5uIafgmfpdzi7XRXQ/vepeBf2i2soCa3HGZuuZOOqDDqkxvLfizoxuGMyYS5ncOI6igxql8SyCfVIz96kBJKIiBwTpq/J5p7oX6iTt5bySz4HV1iV99Gmga/m0YaojrTb9CO4SwPSjxw9lGQUEZHD8t2CLewqKufGtl4cxTmYRr0D2l9o3YaE4Kabex6/NH+AmLOeJrxxD9yxTfAu/Cqgfe+TtZR+fSvO/M3cUHwbYTHxfH3rcYy+vS/ndU1T8qiKtEiMpji8ARHF28FqHQ0RETm6ebyWtetWcZ37C0qbDyKk9WkB6Se2TggpseFMc3THUV4I6ycHpB85eiiBJCIih+WjGRtIT4yik13u2xCgAtp7pHWjPLYJT8Y9wb1ru1JQ4gZjsO3Px7VxMuRvD2z/lSib+gZhq8fwkrmc9eHt+PD6nnRrXE/FsAOgfkoTwiglN6f6x1lERKQ6Ld2SR5/ymYTZEkIHPRHQvtokxzA6rwVeVwTupT8EtC+p/ZRAEhGRQ7Zg0y4WZuRy5XGNYeN0vHXioX7zwHaa2o2yoXO57LJryC9185+xKwAI6XQRxnrxLBkZ2P4rsNZStGoSrvGPMtnZkw+8g/nw+p4kx0ZUWwzHmubNWwIwa4HKJIqIyNFt+tosOpq1uMPrYxJaBbSvNskxLM8qp7zJSZiVP2qmr+yXEkgiInLIPpy+gbhQyzkpu/Cun+pbfa0aZt1EhrlomRTNNX2a8NnsjSzM2AWJrSlPaBvw29istRRsX8euX16g5I3+1BlxJpmmHveU3sR71/agRWJ0QPs/1jVu6ksgLVu5PMiRiIiIBNb0Ndl0D1mHSe0a8OurNskxeLyWHakDcBZsha0LAtqf1G5KIImIyMHLWk3ux9dw05LLmeu4ipj3T8CZu7Hal329a2A69SPDePTbJXi9FtP+fEK2zIZdGwPTYVEOpe8OIerNzsRNeYJyj+W9OtdzZvG/+Pdl/enWuF5g+pU9TGwqAFmb11FY6g5yNCIiIoHh9nhZvH4rTWwGzrRuAe+vTbLvA7C5oT2wxoF7mW5jk31TAklERA6Otbi/vZ3wtWPJ8Mazrf2NlJz1Nt5bpkOPG6o1lJjwEB48ozXzN+3ijYmrcbQ/HwDPoq8D0p97xluEZ0wht/d9jB3wI8fvfJQXCk7lsUtP5JS2SQHpU/YSlYTXOIm3WXw2e1OwoxEREQmIRZtzaVK2GgdeSO0a8P4a148kIsTJgpwQ3Ck9YMWPAe9Tai8lkERE5OCsm4Rr03TedF7GW2lPk3rBs4R3vRhHg7bVcvva3s7tksopbZN4/ueVXPLVNgoSumAXBeA2trIizKy3KWl2Ks8UncXNP+ykSf06/HDn8QzpmFL1/UnlHE6ISqJjdCFv/Lpas5BEROSoNH1tNh0da3xPUgKfQHI6DC0bRLNsax6O1mfgylwEuRkB71dqJyWQRETkwKzFPeHfFIcn8WZ+P646rnGwI8IYw9tXduPZ8zuwfGseL23rgCtzMWXbfDVyvOVl5E96g/L/pFM2/unD7sc772OcJTncv+1kPpu9iVtOaM6Xt/ShSXxkVb0UOUg2JoXOsYVkF5YxfNr6YIcjIiJS5WaszaFfxEa8MWkQlVAtfXZrVJe5G3aytYGvJIFn+Zhq6VdqHyWQRP6fvbuOr7L8/zj+uu4T6+6xkRsxGkaDUiKghCiIgdgdWF+7vn7t7sJGxUBFFFHp7m4YI8e66+T1+2PozwAkNu6NfZ6Pxx7bfc517vt9OLr4nOv6XEKIf7drLtb9S3nTPZyY8FAGpcSanQioKiJd2KUhM+88k7Lk4Xi04ssPX2Lngq9xvd6doNn3oZSBfcHTeLbOOP4LeNx4F73GNlsrZpQ04tMru3HvkJbYrfLj0wwqOIEgZzb9W0bzzrw0iipcZkcSQgghqo3L42Xl7nzaGrtOyeyj311/ZlNsFsVjS1y4w5rh3SIFpOPh9dafnevkN2AhhBBHd2j2UYElkonlvXl5bIdaV0CJDvLlqcvOIj+qK2MdX5M062ocLjdloyZhnbAWV1Qb+O56KDy+3jl681SsxXt5oWww/x3elt7JkTX0DMSxMEIaYJRkcOdZyRRXupm4YJfZkYQQQohqs35/ITZnEZHOAxgJp66AFB3sy039k/htcxYHovti3bsQKotP2fXrujfm7KTHU7Nwur1mR6lxtesvACGEELXPrjlYDyznhcph3HxWGzo1DDM70RFF9L8Fd0Acr/lcS2rB43xR1Bpt9cU69hPQblyTx4HbeWwn05qS2S+wyxuHf9thjE5NqNnw4t8Fx6Nc5URaHQxpE8sHC9PJK3WYnUoIIYSoFkvS8mhnHHpz5BTOQAK4qncTGkX489K+ZJTXhXfnrFN6/bpsa1YJNotR695grQmn/zMUQghx4rSm7JfHydAR7G00iuvPbGZ2oqMyUoZhvWMDV97xFANaJ/C/n7Zw51frqAhqhB7+BrbMNTh+vv+P8RUHNlLy/R04X2hD2fd3oB0lf9xXvGUWwQWb+MZ3FP8b1R5lQqNw8TchDQCwzH+KC1r5UuHy8ObcNJNDCSGEENVjya48BgQfamAd3+GUXtvHauGBoa34IT+BCmsI7i0/ndLr12XbMktoERtkdoxTQgpIQgghjsi5/TcCslfzoTGK58Z2xWLU/iKKzWIQ4GPljYs7ccdZzfl2zQG6PTGLh7Y34UCLy/FZ9R7lPz1AxTtn4fdeLwLWf4InOAH/tR/gfq0blVt+xevV7PnhSbJ1KOdcchuBPlazn5YAaD6EshajiNj0EX1/HsgbUd/z05L1pOeUmp1MCCGEOCkOt4eVuwvo5rMHT3gz8A055RnOSomhV3I0v7o7YOz4FTyy4+m/cbg9pOeW0VIKSEIIIeo1rcmc+igHdATdR91GTLCv2YmOi2Eobh2QzJQbejKodSzfr8mg77r+bDRa4L/idVRpFiV9HsYzYTN+18zAOe4ntNUP3y9Hs+nFc2hbuYq9yZfRulGM2U9F/M7mS8Wwt9kxehbFjc5mcPE3zLbeyuyPHiE9p+TfHy+EEELUUmv3FuJwe2lcuRV1ipev/U4pxcPnpjDD1Qmrs4iyzb+YkqMu2ZldiseraR4jBSQhhBD12MF1v9KwfBMrEy5nQNtEs+OcsM6NwnhhTHtWPDiQJy7oxPORTzDK8SidCp/m+dKzyXAFAFASk8pLSe/ztvc8WpYspdLwo/P5d5icXvxdZKAPjVp0oPScN9kxehYZ4d24qmwis1+7gYnz0/DUo51QhBBCnD6W7MojVuXj58jBSOhsWo7kmCAadBnObm8MavqduMoKTMtSF2zLrHoDq77MQJI5+UIIIQ6r5NdnsOhQelxwq9lRqkWgj5UxqYmMSU1ka2Y3Ji5I5/Ple/lk6R56NI1gzd5CHG4Pw9rfxp42N9Eo2ED51d6G4fWZj9VCYrg/juD25MR9wd7p93DVzkl89WsxF6y/k6cu6EjL2GCzYwohhBDHRGvNnK3ZnBt5EEo45Q20/+6WQW25Y+PtvFNxP8Xf3k74uI9MzVObbcsswW4xaBwZYHaUU0JmIAkhhPiH3G2LaF6+ilXxFxMdFmp2nGrXMjaY50e3Z9E9/bmxbzP25pczuE0sv91xJq+M7UhSmy7YGpr37p84Nj5WCwnhgYSd/xLZnW5njHUet+Q+zgWvz2HLQdl+WAghRN0wb3sO6/YXMSIqC60sENvW1Dwh/jYmXH4xb3jOJzztOwpXTDY1T222NbOEZtGB2Cz1o7RSP56lEEKI45L901MU6gDajrjd7Cg1KjrYl7vPbsnCe/rz0oUdaBYVaHYkcQKC/OyEnfMwuX0epz8r+ND6DI9/ORe3x2t2NCGEEOKotNa8+Nt2EsL8aOXdiTeqFdj9zY5F24QQGo54kNXeJOw/34kjf6/ZkWqlbZkl9Wb5GkgBSQghxN8U7l5HSvEClkReQEJstNlxhDgmNotB5IBbKRryBh3VDl4ruJEfv3zH7FhCCCHEUf22OYv1+4u4rX8SRuZajAbmLl/7s/NSG7Ow7ZNoj4vsT65Eez1mR6pVispdZBZX0kIKSEIIIeqrfdOepEz70Hz4XWZHEeK4hXS7FOfVcyiyxzJy+71kfjReGoAKIYSolbzeqtlHTSMDOK+xE6OyEFWLCkgAN446i0mh15NYuILt3z1ldpxaZWtm1XJ5KSBVI6XUYKXUNqXUTqXUvUcZ10Up5VFKXVDTmYQQQhxeaeZOWuX+ysKQYTRr1NDsOEKcEP8GbQi4YQ5vcwFRu39Av9kTz/7VZscSQggh/uKnDQfZmlnCbQOTsWaurbqxlhWQrBaDC699gDlGd5LXP8+C72R27++2Z9WvHdighgtISikL8AYwBEgBLlJKpRxh3DPALzWZRwghxNGlff8kHgwSht5tdhQhTkpMeBBxI//LKMejVDrdeL+9Fjwus2MJIYQQALg9Xl6auZ0WMUEMaxePZ/8qtNUXov/x57LpQgN8SL7uMzbbUui+9j7e/+BtKl2ynG1rZgnBvlZig33NjnLK1PQMpK7ATq31Lq21E5gMjDjMuFuAKUB2DecRQghxBJX5B2iZ+QMLAs6idcuWZscR4qQNbx9PVMue3Ft5Gbb8HbiWTzQ7khBCiHrO7fZQWVbEz3Pn0z5vBq8GT8L5Zh+M5e/gjW0HFpvZEQ8rISaSJrf8SJZfMy7Z8yAPvfI26bllZscyVVUD7WCUUmZHOWWsNXz+BsC+Px3vB7r9eYBSqgFwHtAf6HKkEymlrgWuBWjYUJZVCCFEddv2w/O00W7CzrrT7ChCVAulFE+c15azXsxjpdGODnOegvYXgn+42dGEEELUI47lH+Fd+SGW8lysFbn4eioZBgyzgyczEEd0B0q63EJQ5wvNjnpUASHh2G+aTtnbg3i09L9c+ZrmvqsvpUNiqNnRTjmtNduyShjRId7sKKdUTReQDleK0387fhm4R2vtOVrlTmv9LvAuQGpq6t/PIYQQ4iR4HWU03v01S+zd6dUh1ew4QlSbmGBfPryiK4+/P44p3nso/vm/BJ//stmxhBBC1BOeHbOwT59AQVBzdhopbMePvS5/8gjj/HOH0L1LT/ytNf1nefWxBUURePU03O8P5oPS/5H+/gcURYVhs/ugLT74dL4Ya/vRZsescRlFlZRUumkRG2x2lFOqpv9L3Q8k/uk4Acj425hUYPKh4lEkMFQp5dZaf1/D2YQQQhyy5Zf3aE0J3q431KtpuKJ+6NwonPuvuICvP/yVCzZ8TH6nywlv0sHsWEIIIeo6r5eyVZPRBbsJ7H8XWO1/3FXh9LB49Vq6/HoFmboBI3LuQdkD6Nkskr4tohjXPIrEcH8Tw584a1gC6oppFP3wEAW79+HMd9I8AnwKdmJMvwtanA2+p3dhZduhcRUbkgABAABJREFUHdjqUwNtqPkC0gogWSnVBDgAjAUu/vMArXWT379WSn0E/CjFIyGEOIW8XkLWTWSzakaPfueanUaIGtG1STjG2Ccp//JM0ibdhp7wCxFB9afppRBCiOpVuWsJzLiPgOw1Vce752Ib+ylrC2x8smQPczfv52MewTCc/NTqWSamdiO1cRg+VovJyauHJaIJMVdMYsu2bC74aAX9G8bwznADY2I/PMvfw3LG6d0SYWtm1Q5szWOCwFkOFjtY6s5MshNVo020tdZu4GaqdlfbAnyltd6klLpeKXV9TV5bCCHEsUlfNpUEzz72t7gc22nyS40Qh5Oa0pzsThPo4lnLq2+/TrnTbXYkIYQQdYwrfw9ln1+O7yeDsZRmUDb0DUrPeQtr5lpyX+rFQ29/wZyt2bwZ8Q0djDRso97i9rHn0Csp8rQpHv1Z3xbRPHxuCjO3ZPHsej/cTQeglrwBztO7wfa2zBLiQ3wJ8bOhl76FfrkNVBabHavGKa3rXjuh1NRUvXLlSrNjCCHEaWHLswMIL0vD965NhAQFmB1HiJrldlLyUhe8pdkU+8QSGeSLQoFhxWfI46imZ5qdUAghRC3krSxh/49PE7vpXdDwU/AYZoaPxWX4sfFAEeHFm3nf5yXCjVKcrS8kYMMnOLvehH3ok2ZHr3Faax6euolPl+7hgwGa/osuwTPwcSy9bzU7Wo0Z/PJ84kJ8+fDyLnhf7QhBcRhX/mx2rGqhlFqltT5sU9QanYEkhBCidstNW0Or8pWsjRstxSNRP1jt+F/0EXtDu7KlIoxMonAHNcBamoFn+r3g9ZqdUAgh6hSvV1NSUkz+1gV4SnLMjlPttNfDpulvU/BsexpufJ1fPV24Mugt3jEuJK1Qsze/nKSYICaMG0PEhMV4YtpVFY8a9MB+9n/Njn9KKKV4ZFgKPZpGcMsCK2UNesPiV8FVYXa0GuHyeEnLKa1qoL13CUZBOkancWbHOiVO/0V6Qgghjmjvzy8SoO20Ouf0fYdIiL+zJHSk1a3f8fh7y9iYUcS0sb1pevBn1LdXozd9h2p7vtkRhRCidvN6KFz3A3r3YnwOriQgdwOG14Uzqg2W6+eCxWZ2wmOitT7i5iFOt5dFSxYRP/d2Wnt2sJFm/Nb2GYYMHcm5fkd+ftarfqJ85Wf4tx1RL3ri/M5qMXj2gnac/fJ8XnaN5IHyu/Cu+hij++nXuWZXThkuj6ZlbBDeNa+ibAGolBFmxzolZAaSEELUUxUFWbTO/ZmlQWfRMDHx3x8gxGnEajF45aIO+FgNbvpsNY6WI3FHtMQz5ynwesyOJ4QQtZfHRfkXlxM69XJCNn6MVgZF7a+mqPvd2HM24pjznNkJj4l32y+4n2+FY9vsv9y+L7+c537ZyuinPidl5qVEebKZ1eq/JN2/jLHnjybkKMUjAKw++He/EgIiajB97ZQY7s89g1vy3t54ssI6oRe+DG6H2bGq3dbfd2CLMFCbvkO3GQX2+jGTv/6URIUQQvzFlp9eoRMuwgdMMDuKEKaIC/HjxTEduOKjFTz+01b+1/8+1Nfj8a7/CqPDRWbHE0KI2sftpGLy5fjv/ImS3g9g9LgJPz9/AoyqWTyVhWn4LH4BT8o5WOLbmxz2KLTGO/NRbGUH8X41lvKR77PI0pXPlu1h3vYcYijgB//HCbFr1BXTGRDfxuzEdca47o34cX0GD2Wew7s8jnf1JIyuV5kdq1ptyyzBaiiSsmeiXOWojvVj+RrIDCQhhKiXtNZEp33LKmtH2nXoYnYcIUzTr2U0153RlM+W7eU33RV3dBv03KfB4zI7mhBC1C5uBxWfX4Lfzp8o7/8/ggb+h4CAAAzj/5eA+Q5/AY9PGJ5vbwC308SwR6e3z8Cas5nCPo9y0Kcp9injmTrpNTZnFHN37yhmx7xCpFGCZdwU7FI8Oi6GoXj6/HbMdaew06cVesGLtfq/hROxPauEJpEBGOsm4Q1PgsSuZkc6ZaSAJIQQ9dCWtL0k6IOoJmccce2/EPXFXWe3ICk6kOd+3YHqdz+Wwt1413xudiwhRHUpz8f59VWwZpLZSeouVyWVk8bit+tXKs56Fv8zbjn8OP9w9LkvYc/dhGPOM6c247HSGs/c5ynxjaPbrGacnX8n222teM3+OrPP2M5Ve+/Bt3g37jGfYW0ob7KdiGZRgdw+sAX/KxmGpWQ/3tWfmh2p2mit2XKwhD7hhRj7lmJ0uhTq0e/SUkASQoh6aNWyqvX+zTvJluVC2CwGtw5IZkd2KT87O+CO64Se9+xp2bdBiHoneyvud/ph3/QN3kWvmZ2mTvKW5FD50Xn47J5DxeAXUV2v5ovle7n+01W8OXcnmzOK0Vr/Md7WehiOlAuwL3kZ74E1JiY/PJ0+H+vBlTxXOpjUptH8dPdQWt39K5UNzyRw1n3Ys9fhHvU+9uR+Zket067p04Tc2D6spQXeec+eNjuyvfjbdg4UVnCBZT5aWaB9/VryLgUkIYSoZ9weL0VpywEIbNzJ5DRC1A7ntI0jOTqQV2btrJqFVLIf76pPzI4lhDgJnq0z8L43AOUqQ7cdg5G7FYoOmB2r9tG66uMwnPtW43nnTOyZq8g961XeLulDr6dnc9+3G1i9t4BnZ2xj6KsL6PbkLO7+eh2bM6qaC/uc+xwe3wjc395Q64rxxb8+TY4OZV3kMN6+tDONIgJQ9gD8LvuK0k7X4Rg5EXub4WbHrPOsFoMHzmnN087RWMsy8Sx/3+xIJ23S0j28NnsnF3eJp2XWj+ikgRAUa3asU0oKSEIIUc8s2JlLM9cOSgMagl+Y2XGEqBUshvpjFtL08hTcCd3QC1+UHdmEqIu0xj3/JYzJY/GENcVy3VxU7wlV96XNPupDT3taU7nhB0p/foyyz8ZT+UYfPE8m4nquOWXT7sNxYMMfQytXfY71o8F4tebtpm/Q6+coXpm1gw6JoXxxTXeW3T+AZfcP4NkL2tGlSTgzNmVyycSl7Mkrq1rKNuwV7HlbcMx42MQn/FfZWxYSkrmYybbhvHtlL4J8/7SjmtWHwOHP4tt+lHkBTzNdm4Sz078jm/06wcIXwVFqdqQT9uumTB6eupH+LaN5vE02RmkmRsdLzY51ykkBSQgh6pnvVh+gvSUdn4adzY4iRK0y9NAspFdn78Todj2WkgxIn292LCHE8XBV4vrmWqyzH8XVYji2q3+BkASITsEbGIN35yyzE5pHaxw/3YPvlHEELH8ZW+ZqvL5hVKRcgCumI/6r38Xnvd5Uvt6T8i8ux3faDWQEtmZI+X95fqM/53dqwKw7z+T9y7vQo1kESilign0Zk5rIGxd34oebe6OBKz9aQVGFC1urITg6XonPyrdxb/vV7GdPUbmLHd88RpEOYPDlDxAT7Gt2pNOexVCc3TqGx0pHYanIw7PkTbMjnZBVewq45Ys1tE0I5fWx7VCrP8brFwHNB5sd7ZSTApIQQtQjpQ43KzZvJ55cbIlSQBLizyyG4raBh2YhuTrg9QnGs3ay2bGEEMeq+CCu9wdj2/QVzjPuwz72Y7D7V92nFKpZf9SuufVzZqHWOH78Dz4r38HR+Rr0fQex37kB/6t+IPC8l/Ef/xXeO7dR1v9JUFb8t33Hd/bh9M2aQGRsAj/d2oenRrWjWVTgES/RJDKAty/tzN78cm76bDUujxefoU/iCm8B398IpTmn8OlqSkpLKa10UenycKCggoff+5JenuUUtLuK5IT6tezITIPbxLLM1ZSDsf1Qi1+DigKzIx2zffnlfLliL1d9tJwBgbuZFD8Fn9faYmz7CdXxUrDazY54ylnNDiCEEOLUmbExk+aeNLAA8R3NjiNErTO0TRzNY3bw8tx9DG41AmPTFHC+CPYAs6MJIY7Cs28VevLFWBzFbOz9BreuSWC0sYvLezbGz24BQCUNhHVfQMZaSKj7b6IUbpgB6fMJPvsBDJ+jfI/yenFMuxOfNR/g6HIDPkOfOuyuUbneQKapIfyg27O1MpcweyAvXpTCsHZxx7xja/emETxxXlv+8816HvlhE0+MbINl9AcwsT+OKdfjc9k3NbpjVUVFBRUbp2Ff+wlBBxaglZVKWwiVTj/u0ZW4rP40HnJ7jV1f/FP3phGE+NmY5Hcpdzvn4Fn4KpazHjEli2f5+3iLMrClXgZhjf56n1eTllPKun2FLN+VR3raVhJL1tLF2MoM6wZiK3PRG31wNR2Aans+RusRpjwHs0kBSQgh6pHv1xygb8A+cAGx7cyOI0StYxiK2wY056bPV7O0/SB6uz6FLT9C+wvNjiaEOALv5h9QU65G+0eRPWYa4ybn4/Y6eGbGVj5anM5tA5ozOjUBW9N+aBQqbVadLiC5K0oo/+kBQjd+DEDFwRX4jPsKw/8wfQ29XhxTJ+Cz7mMc3W7GZ/D/KHVWzcjJLK4kq6iSzOJKlqXnsTgtD62hTYNg/nNOOy7q2pAAn+P/c3FMaiK7csp4e14azaICuap3G5wD/ovPr/fgXPw29l43nOw/wT+4CvZTOv8NArd8RXhlLs6AePI73simg6XsO7CfeHsFbcPckDoW/MOr/friyGwWg7NSYvhkk+a2liOxLn8betwIgVGnNIfeMRPL9DuwAHrRCxQn9GVT3PnM9LRn9779GJnrSfam09rYzZ2WHcSSB3Zw2YLRDXvibTsSo+U52H2DT2nu2kbpI3Tcr81SU1P1ypUrzY4hhBB1SmZRJT2ensWvsW/TVGVguXWV2ZGEqJW8Xs3gV+bjdnv41XIrKrwZlsunmh1LCHE4Xi/el1rj8Q1HX/odYybtYGd2KT/c3IvcUifPztjKyj0FNIkM4IUx7enw83lgsWNcbX5PnhNRlrYE29TrsRXvobjDtai4tgT+cjuu8OZYL/sOS3DMH2NdBzfh/vl+/PbOpaLbrSxIvJGvVh1gzrZsPN6//g3YJDKAYe3jGd4+nqToIy9TO1Zer+aGz1bxy6Yszmkbx72DWxD902XY9iygZOib+LQchG9ANf0h7qrE9UYPrEV7yInrS1rDC9gV0o1ftuQxf3sOIzrE8+R5bU+oGCaqx6wtWVz18Uq+PD+CrtOHQK/bUQNPXXP1oux9+Ew8gyIjhCeDHqBF9s+czyxiVCEV2o6fcv4xtjIgAZWQiqVJT6yNe0F0Chj1q/OPUmqV1jr1cPfJ/0Wi+mldo1NThRAnZuraA2gNjRzboWkfs+MIUWsZhuKRYa25ZOIy5jfsT789n0JxBgTHmx1NCPF3GWswSjIwBjzMI3OzWbuvkLcv7UTTqECaRsHX1/dg9tZs7vt2A8/O2MrkpAHohS9BZRH4hpid/rhUzn4W/wVP4QqIp/TC7whp1Q+A8qAofKeMx/3+2TB+Ktqw4Zj5BP6bPkdZA/g58XYeWtmL3HmriQz04areTWjTIITYYF9ig32JDvbB12ap1qyGoXhlbEfenpfGO/N28dvmLG7qdhc3ZG8lZNpVeKf7UBrXDXezszCanoElohl2vwBsluP/Q7181lP4F+5inPNeFuxqB7sAtuJrM3h8ZBsu7dbwmJfgiZrRKymSALuF7/b6k9qoD2z9CUsNF5AOFFbw3vxdLEvL4b78B+lqlHCF+z7sQfGEdrqDBXEP0t21gsicxbijkrDGd4DYNvjKDsVHJQUkUW1c2TvwTLkOq82O9aqfpYgkRC3z3ZoD9G/gxZ6XCQ06mR1HiFqtV1Ik153ZlMfnt6O/jxe9/mtU79vMjiWE+Bu95QcwrPzsbMfHS3ZzTZ8mDG4T98f9SikGtIphZMd8Plq0G0f/vvgseB52zYOU4SYmPz7eXQvwnf8EZUnDsI96nSD/0D/u808ZjMP3W6yTx6LfG4ByleHndbEg7HzuzDqL/LQg+rcMY0xqIn1bRJ1QkeZE+NosTBjYnLFdGvLsL1t5afEBPvd/jttb5XImawjPmEfgvIdgXtV4l38sZcENcYc0xhOehI5qiSWmFbaIxvjZbRjGP/+2cGesx2fpa3zjOYNm3YdzXkIIDUL9iA/1IzbE95Q9V3F0vjYL/VvF8OvmLJ7oNwDLzIehaH/VDonVzOXx8v7CdF6ZuQOv1jwa8RtnWDaQ1vVxvj3rqr8VS5sCskT9eEgBSZw8rSlf9hG+M+/D6nWjvC7YOQuSB5qdTAhxyLbMErZmlvCfHvmQhzTQFuIY3HlWC5ak5bE+N5kWqz/Dp9et8uaIELWJ1ng3T6U8rgd3TttHl8Zh/Gdwy8MO7ZUUybvzd7Hc3Yze9kBIm42qKwUkjwvvT3fhDUogYMy7/7+z3J/4NO2Fa/yPeCdfyg57G+7MH8nOzGjGpCZw64Bk4kL8TAheJTbElxfHdODyno15ZsZW7l2jUWogPZtdyIUdPXS3pWEv3osq3I21cDf+e+dg2/bVH4/3WnypSOyD7bw3sIf8/xI9vB6yP7sOuw4go+uDPDqstQnPThyrIW1imbYug/V+XegIsHMmdL682s7v8Wrmbc/myZ+2sjOnlLNSYni8cyUxUz7G1XwYzYbcIj/Dq4EUkMRJ8ZTm4fjuZvzTplOZ0Afbea/Bh0PQ81/AKgUkIWqNdfsKAeho3Y1WBiq2rbmBhKgD7FaDV8d25NNX+/BQ/gd4Dq7HEt/e7FhCiN9lb8FSkM6HlUMI8LHy+sWdjjjjpEvjMGwWxcJdRfRqfAbsnIWqI20X3EvfxZq3Fc+YSYctHmUUVjB3Ww5ztrlYVPQc5U4P57aL462zmtM06uT7GVWXdgmhfHZ1d/bmlTNl9X6mrN7PrTsr8LNF07NZK/q2iOLM5lHEhPhSVFKAJ2sLZG/FyNlE8ObP8bx7JmUXfExAk24ArJnyLB3LNvNR3APcfE5Xk5+d+Dd9W0ThYzX4fl8Q7YMawPbfMKqpgLRj1y7Kvr6e1PL1fKBCsMfE4u+NxW/6OjwBMVV/o9aB/9frAikgiRPmzUtHfzAY34o8yvs+hv8Zt4Jh4O15M5ZfH4B9yyFRvpkLURuk55VhsyiC8jfgjWiOxaf2/EIpRG3WODKADkOuwjnjYzb8+Dadr33L7EhCiN9tmYZG8WlBa54Y14aYYN8jDvW3W+nUMIyFO3O5r8cA2D4d8tIgMukUBj4BJVkY857C1aQ/tlbn/nFzXqmDr1buZ+raA2zNLAGgQagfozo1YGyXhrRpUHv7OzWM8Of2s5pz24BklqXn8/PGg8zdlsOsrdkANI0K4MLURC7u1p2gllU9G8tTx2H9+jL8Jg2jeOCzbPfvRKuNL7HapzMXXXXHYZe3idrF327lzOZRzNicxcOtB2JsmgJuJ1jtJ3zOg0UVTJkymdF7HiWRMtaFDyYpFHwq87AWpuG1+WM97y2QvkbVpsYLSEqpwcArgAWYqLV++m/3XwLcc+iwFLhBa72upnOJk1RRQNkH56HLy3in4Ru0jTyDM9xe/O0GRufL8c5/Hu+8F7Be+qXZSYUQQHpOGYlhfhgH16KTZHagEMfj3O6tWb+wB4kHprN4RyY9k2PNjiSEABwbvmejbk67li0YlBLzr+N7J0Xy4sztFMafQShA2qxaX0By/fIgVrcD27nPo4HVewqYtHQPP60/iNPjpUvjMO4f2pJ+LaJJig6sU82iDUPRo1kEPZpFoLUmPbeMudty+GVTJk/9vJXX5+xkXPdGXNGrCVGNOpN5yS94vrycBr/cRoIOx1CQdMW7+NhkTkRdMaRtLL9uziI9rCdJzo9h3zJocvwbu2itefbnLdiXvMStxtfk2hPIOe9ruqVUTV7wejUerVGARfpgVasa/b9NKWUB3gDOAvYDK5RSP2itN/9pWDpwpta6QCk1BHgX6FaTucQx8HqpnP0sKjEVnxZ//WOzoqKCA6+fR8PSvUzweYxFe8Mo2rYaH6tBn+QoLuvRiF5dr8M6/2nI2gwxKSY9CSHE73bnldExtBJjfw40kP5HQhwPpRTNB12N33eXM3fSTWwf9xTNk5qbHUuI+i1/Fz55m/lNj+PR4a2PqXDSMymSF37bzqK8IIaENoGdMzG6XXcKwp4YvWcxto1f4e55B/m2Btz0zhJW7C4g0MfKRV0TubR7I5JjgsyOWS2UUod2zgvkyt5NWL+/kHfm7eKteWlMXJhOk4gAtmWVYOFWHvb9kvHqR3J7P0pkXO0uAIq/6t8yBptF8U1+M+4xrLDjN9QJFJDW7Mmjy5Ib6G9ZS07j4YSOfg2fgNA/7jcMhUHdKabWJTVdru0K7NRa7wJQSk0GRgB/FJC01ov/NH4pUP2t2MVxcy2fiO/CpwAob3MJfuc8ifILZd3eAg58chVD3Wv4ptHDvHDpjdgsiuW78/l1Uxa/bMrkqo9XMPWKi2lpexW94CUsF7xn8rMRon7zejW788q4MmJP1Q3SQFuI4+bX5lzyt1zCqK1f4J7Ui5y244kY9B+MoGizowlRL+2YP5lkIL77aBLD/9kX6HDaJ4QQ6GNl4c5chiYNgHWfg6sSbEde+mYajxvPj3dCUAO2t7iWq95YRFGFi/+OaM35nRII8Dm9Z920SwjljUs6kZ5bxnsLdrEvv5zhHeLpkxxJ6/hhlBccIDJC/mysa0L8bAxKieWLdbncmdANY8dvWAb997jPs2PDMi60rCW78x1EnfMQypBZRqdKTf9LNwD2/el4/6HbjuQq4OfD3aGUulYptVIptTInJ6caI4p/KNqPZdajlCf0Ia35Nfhu/ILCF1J59vXX+fXdexjqnkVayk1ccOWd+NktWC0GPZtF8ujw1ky/tQ+RgT7c+N0uHO3HV61tLdht9jMSou7SGr3pe6goPOFTZBZXUuny0oqdaGWBmDbVFk+IesNiI3zsm+wYPYcZujvhG95Hv9KOyllPgddrdjoh6pUKp4fKdd+zw2jK2EHHPnvBajHo3jSCxWm5qJThKFc5bPquBpOeOOfMx7HmbGZjm3u54P2q7h7fXN+Ty3o0Pu2LR3/WJDKAJ89ry6dXdeOmfkm0SwjFYij8pXhUZ43r0YiiChebA7phydkMRQeO+xyZ6VsAiE4dKcWjU6ym/7UPN29MH3agUv2oKiDdc7j7tdbvaq1TtdapUVFR1RixfnI6KnG5Pf+4Pb/Uwe5PrsfpcnN22vkMWN+P8xyPkuvy4T+5D3C39UvKmp9Hs9FPHPa8YQF2Xhnbkb355Txd0B+UgWfhqzX9dIQ4bel1X6C+Hg+rPz7hc+zOLQMgvnwb3siWh93BRQhxbFq17kDUuA8Z4nqOpZbO+C54GsekMVBZZHY0IeqND39ZTFu9DZ+2I7Fbj+/Pmd5JEezJK2dfSCqe8GQ8y96poZQnzrXsfexLXmZT7HmcNzec5OhApt7Ui5T4YLOjCXHSujUJp3lMIO8dbFZ1w86Zx/V4h9uDMzet6iCsSTWnE/+mpgtI+4HEPx0nABl/H6SUagdMBEZorfNqOJPwejHe7onrvbMoz6la0rLxQBHjP1jOo0//j8Z5C/jAfgnnD+jFZ1d34617rqXZA6so634HlS3PJ2D020fdBrFrk3AmDGzOx5tc7Iofhlr7GZ7sbafq2Qlx+ijNRs+4DwB98MT3FkjPKwM0IQUbUdL/SIiT1ispkhsvGMIlRTfwWeSt2NPn4HqnP96cnWZHE+K0tyevjKzlUwBo2OvC4358r6RIABal5WF0uxbLwTWwf1W1ZjwZ7m2/YJ1xN9uDezB89yiGtIlj8rU9iD7KDnNC1CVKKcZ1b8SPWaE4/GLx7ji+AtLavYU08GbisIeBrxRVT7WaLiCtAJKVUk2UUnZgLPDDnwcopRoC3wLjtNbbaziPAMjehLUgDf+sVdjf78vS377mwneWcCDjAE/6fEJJeDtuuOc5JgxsTq+kSOJD/TDsvgQMfgTfsR8c0zrxm/ol0b1pODfsOROPxQf17hk4Fr0l0/yFOA6en+5CuSrQsW3RB9ef8HnSc8poYs3HWpmPIQUkIarFyI4NeOjc1jywvzvPRT+NqshHT+yPa9tvZkcT4rT25pw0zlYrcIY2g6gWx/34pOhAooN8WJSWh+pwEV57IJ6lb9dA0uPnObAG4+vLOeiXxMjsaxjbrQmvX9QJP7vF7GhCVKuRHRsQYLey2qcz7JoDHtcxP3bJrjwaGlmocJl9ZIYaLSBprd3AzcAvwBbgK631JqXU9Uqp6w8NexiIAN5USq1VSq2syUwCdNocAMou+o5iSxhdF17DXb7f83WTaQToUgJGv4mynNzaaouhePnCjuTY4rnc7xUq43vg89u9OD4agbdg37+fQIj6bss0LFumos+8B9XyXFTeTnCWndCpdueVcWbwwaqDuA7Vl1GIeu6q3k14fERr3twTz12hL+MObIB18hgcv/0PPG6z4wlx2jlQWMH6NUvoZmzB1mbEUWfEH4lSit5JkSzemYvXFohufzHGlu+hNLv6Ax8HXbAH/dkYSoxgRuTfyjmdk3h8RBsMQ3aSEqefIF8bozol8FleCwxnCexbfsyPXZKWR5I1F1tksxpMKI6kxjtOaa2na62ba62baa2fOHTb21rrtw99fbXWOkxr3eHQR2pNZ6rvPGlz8UQ054eiJPrkP8Acn75c4fyCsB1TcHS7FSOubbVcJzbElxfGtGdxtp0RBRPY1+tJbBkr0W/1wL3x+2q5hhCnpYoCvD/egSe6LUavWyG2HQoNWZtO6HTpuWV08M2qOjiBd2uFEEc2rkdjnrugHT/ssXK15UnKWpyPz6LncHxwDrrw2N4wcc1+Go5zCr8Q9Y23spTtk+5gqvU+tD0A1eGSEz5Xr6RI8sqcbM0swdLtWpTHiWflR9UX9jh5C/bi+ngkbkc555fcQa8OrXn6/HZSPBKntXE9GjHPlYJHWdA7jm32bqXLw8a9uUR7c2QGkkmkZXl943Zg2buYjT4due/bDXRpnkiPO76mYMBzlCaPxLf/YXuYn7D+LWP49MpuFFS4GDS/GT/3/gZPWBKWb69B71tRrdcS4nThmfEAqjwPy8jXwWKD2ENF3czjX8bm9njZm19OktqPN7gB+ARVc1ohxOjURF4Z25El+yu4JPdyige/ji1rPd63euPa/OPRH7x/Fbb5T+GZffjNKYSo97SmZPUUXK+m0i/3c1aHnIX11tUQmXTCp/yjD9LOXIhMxt2kH6z84LiW0VQXd+ZmvBPPwluSzSXld9K8TSrPj26PRYpH4jTXPCaIlCYJrKcF3h2/HtNjVu0pIMqbhYEXpIBkCikg1TPevctQ7gpe253AyA7xvHdZKv6+NsL6XIv/RR8dU3+j49U7OZLpt/ahQ2IoN80o5PGQ/+IOiMH75TjTpwsLUevsmotl3WfoHjdDfIeq20IS0H5hcAJ9kDIKK3F5NHGuvRDZvHqzCiH+MKx9PG9d2plNGcXcvLkF7mvm4QlOxPbVJbjnPnfEx7nnPQuA5eBqKNp/quIKUWe4f3uMoB+uJM/rz2jnI8Rc9gEEntyOzLEhvjSLCmBRWi4A1u7XYSk9iN7yLwXfaubeuxz14RBcbjejKh4ktEUfXhnbEatF/kQT9cNlPRozw9keS/YmyEv71/FL0vJoYhz6+1F2YDOFfHeqR1weLzN/+gq3NmjW5WxeHNMB259+QNXkNNnoYF8mXd2N2wYkM2lDCY/534+qLMA1eZwp7/YIUStpjeeXh/CENMLod9//364UOqYt3swNx33K9LwyFF5Cy9IxoltVY1ghxN+dlRLD/0a2Yf72HJ5c5sJ+3SycLUZgmfcUZG3+5wOyNmHdMQNv6/Orjk/xH69C1HqOUowV71LSdCiDyx8ntm0/mkQGVMupeydFsmxXPrtzyyB5EJ6QhniWvlMt5z4Wzm2/YXwyAqctiAscj+KOSuHVizr+5XdzIU53g1rHsMivH14MvGs+/9fxi9Ny6RFWXHUgM5BMId+h6okKp4frP11FVM4SsoLbcO/Irqd8XbXFUNx+VnMeGNqKSXtC2NrlCWz7l+L++f5TmkOIWmvLNCxZ61nQ4Crchs9f7jLi2qGyNx93Y970nFIaqDwsnkqZgSTEKTC2a0Ou7t2Ejxbv5tOVmdhHvIzXJwT3tNtB67+M9cx7Hq8tAOOc5/FEtsSz+YcjnFWI+klv+g7DVcb0wFEUO+GmftXXNHd0aiI2i2LoqwuYvPIApF6Fdf8SipZ+SuHaaRSu/pbilV9RtnUmeD0nlr+8gMotMyib8Rhln4+n4v1zqXy9J67nWmKbPAZnSGOutjzJXqJ5Z1wqAT4nt4mNEHWNzWIwoFtH5nna4l496aj/r5U53KzfX0SnwAK0zR8CY05hUvE7+S5VD5Q63Fzx4XK27dlPe59dqI53oU5g14rqMq5HIz5avJu7t7Xg+y43YFvxFp74jlg6XWxaJiFM5/XgnvUEB1QCV65uSr/yVbx2cUf87Ye+Tce2Q7krIW8HHMdMot155bSxHdqBLaplDQQXQvzdfUNbsSu3jEd/2ESTiK70POtRLNNuxbv2C4yOh37W5aVhbPkeb/ebwT8cI2U4LHgeSnNOenmOEKcLz8qP0WHJPLk+mIGtImgZG1xt527TIIQZE87grq/Xce+3G1jSoh0vWv0JmXHzP8Y6gxvhTr0G/67jwffoGXR+OpXzXsKydzH2gh34AlpZcAUn4vWLwBsYjzuqLY7gOJ7I78/ijSW8P75Dtc2sEqKuGds1kf/NPZN+5a/CrjmQNPCw41bszsft1TS2ZKNDG5n692x9JjOQ6oEpq/azYncBE8+oxMCLatbP1Dw+Vgt3DWrBpoxifo67AVdiL4yfbofiDFNzCWGqTd9hzdvKc47zGJ3aiDnbsrno3aXklDiq7o9rV/X5OPsgpeeWkRpwaK247MAmxClhMRSvjO1AUlQgN3y2itm+gyiM6IhrxoOs2LKLbZkluOe/AIYdS69bAFApw1HaC9t+Mjm9ELVE9hasGStYHnYuRZVubu5/4k2zjyQ+1I9JV3XjwXNa8fNOB6P0s0zt9D5ZY6ZTMn42ZVcvomz4RLwB0fjPfhDPC62o/OEuPAfW/GNGIY5SKn95DP1GN3w2fYUnpBHlfe7HeekPqPv2Yb99Hb7Xz8b/8m8IvPAdvgoazxcbSrhjYHP6t5SZFKL+igvxw5M8mEICca385IjjlqTlYbMoQisPyA5sJpICUj2wem8BMcE+pHrW4rX5Q4NUsyMxvH08reKCeW5mGgx5FuWphJ2zzI4lhDk8bpwzn2CbboizxXCeuaAd74xLZVtWCaPeWkRaTilEJKOtvse9E1t6bhkptoN4/aPAP7yGnoAQ4u+CfG1MHJ+Kj9Xg6k9Xc3HGaKyV+Wz57D9c8fK3qPWT8XYcB4HRVQ+IaYMntAmeTVPNDS5ELeFe9TFew8Y9O1Po1yKKDomhNXIdw1Bc3acpU2/uhSe0Mbct9mPgl6U8t96H/dZGBHQaje91M3FdORtn0mB81n6E5b2+uF9IoWLqnbh2zMW5ZjLuV1PxXfIizhbDULeswu/yKfgPuAd70plg///ZRVsOFnPftxt4YvoWBqXEcFO/6i+MCVHXjO6WxHfuXhjbp0N5/mHHLNmVR6eEECxFe1DhTU9xQvE7KSDVA2v3FdIhMRSdNhfdsBdY7WZHwjAU9w5pyb78Cj7b5Y83IBpv+nyzYwlhjvVfYi/axaveC3hoWBugqhnv5Gt7UO7wcP5bi9mRW4GOSsF7HDOQnG4v+wvKaeTdL/2PhDBBYrg/v0w4g8+v6caDV1/IwRaXMs46k/dCP8LrhZ9Dxvz/YKUwWg3D2D0fKgpNyyxEreB2YKz7kpW+PcjTwfx3RJsav2SruGCm3dybb67vwcCUGCYv38fZL89n1JuL+GhROgWhrfG78H3UndtwnPsa7ph2+Kz/FNtnI7BPvQ5vYDTuy2fgO+Z9VEiDP86rtaak0sUP6zIY/fZihryygO/W7GdMagIvjGl/ynuSClEbndk8itl+g7B4XegNX//j/qIKFxsPFDEgUVe1dJAZSKaRHkinufwyJ3vyyrm6rQ1LWhp0vdrsSH84IzmSns0ieHVOGhc37401fV7VdGBZzyrqE4+L8plPkuZtTPIZY0kM9//jrg6JoXx7Y08GvjiPb1bv5764tujNU4/5/5N9BeV4tSaqcjcqesy/jhdCVL+IQB96Bh5qit/gCTyvzqB1+WrmBpzNrdNzMEIPMrRtHACq9QhY8ipsnwHtx5qYWghz6a0/YVTm85qzJ3cOaf6Xn401SSlFauNwUhuH89C5KXyzah/frj7Ao9M289iPm+naOJxz2sUREzwI3fEsVJtyQjIW4nS5WRfYm6y1TrLnryS7xEFhuZOiChfFlW483qrlbo0i/HnwnFaM7pxIiL/tlDwnIeoCq8WgU9cz2LigMc2Wf4Jft+v+cv/y9Hy8GnpFlFTdECYFJLNIAek0t25fIQA91MaqG5r2NS3L3ymluGdwS0a8sYi5zlYMKv0WcndAlMyUEPWHe9Un+Jft5xO/B3m87z+nsTeKCKB9QijL0/OhSzvU6o+haD+EJv7rudNzyoiiELu7RPofCVEb+Iagznkez4z76XbJ/+j4XS63TV6Dv91C3xbREN8Jb2AcetNULFJAEvWYY9mH5BNFcVwvLu/Z2JQM4QF2rj2jGdee0Yyd2SVMW3eQH9dn8PDUTX8bGXno805C/W3EBPkSHexDYrg/IX5WQvxshPjZaBkbTO+kSJlxJMQRjOmSyLtzz+SxvI/h4DqIaw+Ax6v5fNkefG0GzW05VYNlBpJppIB0mluzrxBDQWLhMrz+URjHsXvTqdA+MZRz2sXx/NZcBhlA+jwpIIn6w+OiYtYz7PAmMWj4OHxtlsMO69IknPfm76JySGt8oaoP0jEUkHbnlZFsHKg6kAKSELWC0XokpIzATyk+uLwJF727lOsnreLTq7rRpXE4pAzDWP0JOErBJ9DsuEKcegW78d03ny/do3nq/A5YLeZ33EiKDuL2s4KYMDCZPXnllDndGEod+gBfm4WoIJ8j/hwXQvy7BqF+5DcdgXPfZxirPsV6bnu01jz4/QbmbMvh0WEp2IpWopUFFfLvvweLmmH+d2RRo9buK6R5dCC2PQvQTfvWyuVh15/RjO3OCEp94/GmLzA7jhCnTNGa7wlyZDE/5jIGphx5B5auTcJxezVrHQ3QKMjccEznT88to609s+ogUgpIQtQah34Wh/jZ+OSqrsSH+HH9p6vIKKzAaDW8qr/Dzt9MDimEOfbMfAePVvh0GUdKfLDZcf5CKUXjyABax4fQKi6YFrFBJMcEkRjuL8UjIarB8B5t+NWTimfdV+B28OJv2/li+T5u6teMy3s1Qeeno0MSwSJLQM0iBaTTmNaadfsKGRyVh1GegyWpv9mRDqt1fDCRgb5ssLeD3QvA6zU7khCnRO7s19mnoxh+weWooxR3OzcKQylYsq8SHZGEPrjumM6fnltGB98stE8wBMVWV2whRDWKDPTh3ctScbi9XD9pFZXx3fD6ReLZ9IPZ0YQ45RyOSvw2fclySyeuHNrb7DhCiFOsX4sofvUZiI+riDk/fMRrs3cytksidw2qeiNU56fL8jWTSQHpNJaeW0ZRhYszrYfWajc509xAR2AYijObRzGtJBmjIh+y/762XIjTT9rG5TQrX8u2hDE0jQk56thgXxspccGs2J2Pim2HPsad2HbnlpGkDqAjm9fK2YdCiCpJ0YG8MKY96/cX8fC0LeiWQ1E7fjniVsZCnK62fv0Y0eTh3+cGmdEjRD1ktRg06XIOmToM95ovGZQSw/9GtvnjjVZVkI4hBSRTSQHJLFrjXvwmntLcGrvE2kMNtJsVL8MT0QL+tKVobdO3RRSzKg4tsUmfb24YIWqY1ppd01/BgY2u5916TI/p2iSc1XsL8MS0xSje/69/WFa6PGQUVRLv3oOKalkdsYUQNejs1rHc0j+Jr1bu52f/4SiPE+fUCVW7LgpRD7j2raL1znf4zXom7fpeYHYcIYRJxnRrwo/envS1rOPVkY3/vw9aRSGqskB2YDOZFJDMkpeGZdajeN/pi+PAsfUzOV5r9xUSYXcTlLUclTSgRq5RXc5IjiJHhZPn2wjPrnlmxxGiRs1dl0bPst/YGzeY4MhjW1rWtXE4lS4vu6xNq274lz5Iu/PKCKWEAFcBShpoC1EnTBjYnL4torh9rou97W7Dvm0qnnVfmh1LiJrnqqTyq2vI1cHkn/G/oy7rFkKc3hqE+jHkoluw4cZ3+7T/v6MgveqzzEAylRSQzBKZhOuyH8HjwPrhIMrXfVftl1i7r5DRkXtQHgdG8sBqP391CvG30alhGEt1a4w9i8DjNjuSEDXC6fayYfrbBCgHTYZOOObHdWkSDsDisviqG/6tgHRo+RoAMgNJiDrBYiheubAj8aF+jN7QlZKozqjpd0PRfrOjCVGjKn79L0ElaTzCDZzbLcXsOEIIkzVo1R1PeBKe9V///435hwpIMgPJVFJAMpG9UVfUtXNxRbTA/7vLKfvl8WprIF3p8rDlYDEDbBvRVl9o1LNazluT+raI4seSZJSzFA6uNTuOEDXik8XpDK38icKwdlgTU4/5cZGBPjSNCmD+AfAGxv5rI+303HKSjIyqg6jmJxNZCHEKhfjbmHhZKhgWLswZj9fjwjXl+n/8fqArCvEWHjAppRDVx5G2EN8Vb/K5ZwANUocR4GM1O5IQwmxKodqNwdi7+P/fRPl9BlJYY9NiCSkgmcbr1dz37QYWZNmwXTmdslZjCFjyPBVvnkHJpHEUfXsHhb88ScmyT8HtOO7zb8ooxuXRtChbgbdhT7D51cCzqF59W0Sz1Nuq6iBdlrGJ009BmZNls78jycgg5Mwbjvvx3ZqEs2J3Pjq2Hd4Dq47aGyU9t5R29ky01Q9CGp5MbCHEKZYcE8SUG3pSGdSIR52XYtu7AM/St0FrnOmLKf/qOvQLLeDNblBRYHZcIU6coxRj6o0U2ON4wn0Jl/VoZHYiIUQtYbS9AIVGb5hSdUN+Ot6AaPAJNDdYPVfjBSSl1GCl1Dal1E6l1L2HuV8ppV49dP96pVSnms5UGxworOC3zVlc8eEKBry6jC/i7iX3jCfQFjv27A0EbvmK0CXPEPTzzTin3Xnc51+7r5B4cgku3YWlli9f+11KXDCWwCj22ZtJHyRxWnru121c4JmByycc1XrUcT++a5NwSirdZMf2xZKfBhlrDjvO69Ws3F1Aiv0gOiIZDHmvQIi6JjHcnynX92RT7EhmeTqiZz6K87Vu2D8egs+OaTiShmI4S/Auf9/sqEKcuCVvYC3ey38819OtRUMaRwaYnUgIUVtENMMT1wnvoWVs3vx0mX1UC9ToXxVKKQvwBjAESAEuUkr9fWHzECD50Me1wFs1mam2SAz3Z/G9/XllbAciA3343/St9J7TjGcbvIb35pV4791L5T0ZVHa9Gfu6T3Gv++a4zr92XyHDArdUHTSr3Q20f2cYijObRzHX2RJj37ITmnklRG21em8Bc5et5izLKqypl4HN97jP0aVxVR+k2dY+aKsfnlUfH3bcb1uy2JVbRrI6gIqW/kdC1FVhAXY+v6YHPza6jyxPILkOCxVDXsK4axt+Yz/E03QALHsLXJVmRxXihHgz1lIU0ISZZUmM79nY7DhCiFrGaD8GS/YGyN4KBekoaaBtupp+W7orsFNrvUtr7QQmAyP+NmYE8ImushQIVUrF1XCuWsFuNRjRoQHf3NCTn27tzfD28Xy0eDfnvbmYffnl+PoF4Hv2ozjjOqN+moD+vXHYMVi7r4BBPhvxBsVDHdqBqV/LKOY4W6HclbB/hdlxhKgW7sIDbP/sLmb43ocyLKjUK0/oPAlh/jQI9WPRARfelJGojd+As+wvY7TWvDU3jeZhEFCZiZL+R0LUaX52C89dcRZPtviGnnkPMstvMMonCABLnwkY5bnodV+YnFKIE5S/i62uaJpGBdAnKdLsNEKIWka1HoVWBt7Vn6KKM1DhTc2OVO/VdAGpAbDvT8f7D912vGNQSl2rlFqplFqZk5NT7UHN1jo+hGcvaM+HV3Qhq7iSYa8tZNq6DLDYsI2ump7u+upK8Lj+9Vx5pQ4y8ktpXbmmavZRHdoKtU9SFCt1S7xYcG//zew4QpwUnbMdxzfXoV5px+jKKRTH9UZd/RuEnXiPhy6Nw1ieXoDRaRyGsxS96a87OC5Lz2ftvkImtD/UH0l2YBOizrNaDF4Y3Z4ujcO446t1rNydX3VH4z64YzvgXfQqeD3mhhTieHm96IJ01pdHML5HYwyj7vy+KoQ4RYJi8DQ+E7XqAxRadmCrBWq6gHS4nwR/7/p6LGPQWr+rtU7VWqdGRUVVS7jaqF+LaH66tQ8t44K55Ys1PPj9BpzBDfGe+yr2zNU4Zz7+r+dYu6+Q9ioNX08pRnLdWL72uxB/G80bNmCZrQvGsrfQWZvNjiTEicnajH63L9YtU5nsHcB9DT6iwbVfQnzHkzpt1yYR5JY6SPdvhyesGZ5Vn/7l/rfnpRERYGdgVFHVDZF1ZwaiEOLIfG0W3h2XSoNQP67+ZCXpuWWgFNY+E7AU7IKtP5kdUYjjU5KBxeMgw4jj/M4JZqcRQtRS1vZjUK7yqgNZwma6mi4g7QcS/3ScAGScwJh6JT7Uj8nXdufaM5oyaelexk1cTkmzc3G2H4dtyau4ts866uPX7iukr3U9WhnQtO+pCV2N+raI4paS8XhsQbi/ugJcFWZHEuL4lOXi/mwM2h7IQwkf8l/PFdx8/iBUNcwG7Nqkqg/S8t0FqM7jse5fCjnbAdicUczcbTlc0asx9vztaMMmP2iFOI2EBdj56IouGEpx+YfLySt1QKvheEIa41nw0lF3ZhSi1snfBYBPdDKBPlaTwwghaq2W56Ith3qHygwk09V0AWkFkKyUaqKUsgNjgR/+NuYH4LJDu7F1B4q01gdrOFetZ7MY3D+0Fa9d1JG1+ws5781F7Ov6CO7wZIxvLse5e8lhH6e1ZumuPAbZN+KN6wR+Yac4+cnr2yKaXEJY0u5/2PK24vz5frMjCXHs3A5cn1+MUZbD6p5v8vk2L7cOSKZhhH+1nL5ZVAARAXaW787H6HAR2rD+0Uz7nflpBNgtjOsSj3PnPHR4U7DYquW6QojaoVFEAO9dlkpmUSVXfrySggoPRq9bsBxcDXsWmx1PiGPmyNoBQGRDWWothDgK32C8zQfj9Q2FAOmVZrYaLSBprd3AzcAvwBbgK631JqXU9Uqp6w8Nmw7sAnYC7wE31mSmumZY+3gmX9udMoebke+tZnWfiXj8wrFOGoVz51+3uvd6NQ9N3ciO3Xtp4dmBkTzQpNQnJyUumOggHz7KTsLZ9Sbsqz/AvflHs2MJ8e+0xvH9rdgOLKN48CvcNl+RFB3INX2qr+GfUooezSL4cd1BnpyfR2WTQah1X7Avp5Bp6zK4tEsM9imXYc9aAz1uqrbrCiFqj86Nwnjtoo5sOVjMeW8uYnfiCLx+EXgWvmx2NCGOWe7erTi0jaRkKSAJIY7Ocu4L6HFT61Rv39NVTc9AQms9XWvdXGvdTGv9xKHb3tZav33oa621vunQ/W211itrOlNd06lhGN/d2Iv4ED8u/voAX7Z+B1dQAtYvRuPc+itQVTx6cOpGJi3dy6NtclBoVFLdLCAZhuLibg2ZvTWbvR3vwhXdDjX1Zig6YHY0IY7KMf9lfDZOpqLXf7h2dSPyypy8OKY9dmv1fqt9ZFhrhrWP570Fu7gzrR1GRR5zp31KgOHkxoMP4bd7JhWDX8DoPL5aryuEqD0GtY7li2u6UVzp5rz31rC/+WVYdv5K+dIP8JYVmB1PiH9VmbWDvTqajo3CzY4ihKjtAiKxNOhgdgrBKSggieqRGO7PNzf0oG/zKB6ancd55feR59sI61eXULb2W56YPJN1y+fzRJsshrhnV03xa9DJ7NgnbFz3RvhYDd5fcgDrmA9QHgeub66R/g6i1tK7F2Kf8xiOliN5vGQYy9PzefaCdrRLCK32a0UF+fDCmPZMv7UPFQ37clCH0yz9c74JfpngjIVUDH0Vv+5XV/t1hRC1S+dG4Xx3Y0/CA+ycv7IVRf4N8Z9xO+r5ZlROHEr5/NfQJZlmxxTisHyK08mxxRPqbzc7ihBCiGMkBaQ6JMjXxsTxqXxyZVdswTEMyLuLLboRAd9fwUPbL+Ann/u5ZOft+OyejU4eDIbF7MgnLCLQh1GdEvh29X7yfRviGfAwtn2L4OBas6MJ8U9a4/71UTyBcUxJvI/Pl+/jhr7NGNGhQY1etlVcMB9e2QNX24voadlM88r1VAx7E7+uMvNIiPqiUUQA393Qi6RGjeiQ/yRz+3xBeZebMMpy8J/9IN73B4PXa3ZMIf5Cez1EuDJwhkhDXCGEqEukgFTHKKU4o3kU39/Yk5fG9+WR0Cd42DWeHxveQ+HwDym5+EfKrl2GZeQbZkc9aVf1boLD7eXTpXuwtRuNRqG3/2J2LCH+QafNxpaxgt2trufhn3YxoGU0dw1qccqu3/CsG3FEt6dyxET8O198yq4rhKgdQvxtfHxlV1LiQ3lwpS/WQY9iv20FnmGvYylMh90LzI5Yr3k9HrTXY3aMWuXAvl344cQ/NtnsKEIIIY6DFJDqKKUUA1rF8NUtg7j6jqc598r7Ce00iqDmfQiIbwmWur8dalJ0IANaRvPpkj1U2sPwxnfCu00KSKKW0RrPrCdxBjTgopVJNI4M4OWxHbAYp7DJX0gC9hvm4dfh/FN3TSFErWK3GtwzuCX7Cyr4fNleACztLsBrD8Kz5nOT09Vv3q/G451yjdkxapX07RsAiGnS2uQkQgghjocUkOo4w1DVtj14bXR1n6bklTn5dvUBjOZnYxxcA6U5ZscS4g96x29YD67kK/8xlHksTLwslSBf2ynPoWRXCiHqvT7JkfRsFsHrs3dS6nCDzQ9aj8LYMhUcJWbHq5+8Xoz0uag9i8xOUqvk7d0KQEIzKSAJIURdIgUkUat1bxpO2wYhTFy4C518NgoNO38zO5YQVbTGM/tJyv3jeWxfR27qVzUDSQghzKCU4p7BLckrc/Le/F0AGB0vQbkrYPNUk9PVUwXpGM4SjNJMKM83O02t4c7ZiQsbltBEs6MIIYQ4DlJAErWaUoqr+zRhV04Zc4pi8QbG4tn2s9mxhABAb5+BNXMNb+tRxIQFcVVvaQYqhDBX+8RQhraNZeKCXeSWOiCxK56wprKMzSwZa/7/65yt5uWoRcqdbgLL91HkG1+nN3wRQoj6SApIotYb2jaO+BBf3luYDsmDUGlzwOMyO5ao77TGM/spinwb8GZBVx48pxW+NvlFWAhhvrsGtaDS7eX12TtBKYwOF2PZuwgKdpsdrd7RGWvRHFpinL3Z3DC1xIb9RTQiEx3W1OwoQgghjpMUkEStZ7MYXNm7CUt35bM1qAeGswT2LjE7lqjn9LbpWLPW8WLlCLo2i+Hs1rFmRxJCCACaRgUyJjWRz5btYW9eOar9WDQK79ovzI5W73gz1uCNbY/XJxhv1haz49QKq/cU0EhlERTf3OwoQgghjpMUkESdcGn3RjSO8Oeu1WFoix0tu7EJk3kXvUauvQGfO3rw8LAUaWIthKhVJgxMxlCKF37bBqGJeBv3Qa/9Arxes6PVH1qjMtejGnRER7VCZ8kMJIC09J34Kwe+MclmRxFCCHGcpIAk6gRfm4VHhrdmc66XfUEd8W6XApIwkasCdWAlUyo6cVH3prSMDTY7kRBC/EVMsC/X9GnK1LUZLNuVh6XjJViK9sgM3lOpIB3DUYwR3wEV3QqVswW0NjuVqbTWFB3YVnUQLkvYhBCirpECkqgz+rWIZlBKDJPyW2LJ3wH56WZHEvVVxhoMr4tNllbcPlCm4Ashaqeb+iWREObHg99vxJl8Dl5bAJ41n5kdq/7IWFv1Oa4DRkwKRmUBlGaZGsls+wsqCKvcV3UgBSQhhKhzpIAk6pSHzk1htrdj1cGOX80NI+qt7E3zAGjfcxBhAXaT0wghxOH52S38d0RrdmSXMnF5FjplJGrz9+AsMzvav9ManZ+Oc93XOJa+j3PD93jSF0HOdijLA0cJuCrB6zE76RHpjLVoix2iUyC6VdWN9byR9uq9BTRWWXgNG4Qkmh1HCCHEcbKaHUCI45EY7s+Ifr1JmxdHyJppRHa7zuxIoh7K2TyPEh3P+b3bmx1FCCGOqn/LGM5uHcOrs3Zw/pgLiFn3GZ6VH2HpeZPZ0f6popDKJe/C3iXYMtdiqcznWEr0Whm4Yzpg7Xs3qsUQqCU96bwZayGqFRbroSISQPYWaNbf1FxmWrO3kB6WLAhtCBb5M0QIIeoa+c4t6pxrzmjK1CVdOC9zOs7yYuz+0n9GnDrZxeU0KFnPzoh+NPOX2UdCiNrvkWGtGfjiPO5bGcg7jftimfcMdLgI/MPNjlbF66Vi5afY5jyGT0U+rogWOJsNQiWkYk9MxQiKRpfl4CnNxVuWC+V5aI8L5XGB1w2ucowt36MmX4Q7ui2WfvegWp5rbiFJa1TmOkgZWXUcEInXPwqyNtfr6f+r9xZwuS0HFSENtIUQoi6SApKoc3xtFpr3uQD7nB/4/KtJjL3sBgyjdrzbKE5/02fP43JVRqMO9fcdZCFE3RIf6sftA5vzxPQtLBt2J732jMA9+yms5z5ndjQqdq9E/Xw3flmrccR1QV36LfYGHQDIKXGwcnc+27eWklFokFEUxIFCK7klYUQG+dAg1I/4ED/iQ/04Z+wdND34I8x7HvXlpXjiOmG54kewB5jzxAp2Y1QWQnyHP27SUS2hHu/EVlThYnNGEfG+B1HhZ5sdRwghxAmQApKokzr2GkLpgjDOSH+Bpz5vzD0XDcZqqc/v6YlTodLlYe+6OQBEpZxpchohhDh2l/dqzJTV+7l7vovZ7cbhu+p96HY1RLUwJY/2uCj7+RECVr6Jxy+CinNeR7Ufy7RN2SxZsp4Vu/PZlfv/vZqignyID/WjVWww4c3s5JU5OFBYydbMbHJKHExesZdZd16Ef/uL8C55E8vMh2DPYkg+65Q+L69X8+2aA3QsWUQz+EsByYhJgTWfgtcLRv37neWXTZmEeQuweyukgbYQQtRRUkASdZPVjs/l3xH+4XCu3HETD3/4Ig+PH46vzWJ2MnEa+3b1AVq7N+P0D8ce0czsOEIIccxsFoMnzmvLBW8v5mXPaO6xfYtnxv1Yx02psWuWO9342Syovy0lc5fk4vxyPIH7F1La5lLKz3yEz9YW8ukzc8kvcxLiZ6NL4zAu7JJIlybhpMQFH/Xn+4rd+Yx+ewlvzNnJ3We3xOhyJXrWo6h9y055AWn57nzu+nod91hncLXVwt2zHfRquY/BbWIJikkBVzkU7YWwxqc0V20wbV0G3UIKwQFESAFJCCHqovr39oc4bdgSOmK/6idC7Jrb9k3g3nemUFzp+ssYb2keaG1SQnE68Xo17y/cRQ/bTqyNe9SaJq1CCHGsOjcK48peTXhnZTG7W9+INW0mesfMmrnYzpnw4VByfnmO3ANpuD1eACr3rcP7bl98M5az/4znecK4nt6vrOKVWTvo1DCUL67pzpqHzmLi+C5cd2YzOjUM+9c3h7o0DmdUxwa8Nz+d9Nwy8AlEx7TBu3dpzTy3o9iRXQrA8OhsMn2bsXhPKXd/s54Jk9f+tZF2PZNT4mDRzlzOSaioukFmIAkhRJ1UYwUkpVS4Uuo3pdSOQ5/DDjMmUSk1Rym1RSm1SSl1W03lEacna3w7fK7+mSAfCw/m3Mkzr79J3vx3KZt8Fa7nW2M83xT3PPN7PIi6b972HIpyMoj3HsRo2N3sOEIIcULuPrsFTSMDuHJzZ1whjfHMuB887uq/0PZf8D+4jOilTxDxXmccE4dQ9OPD2D8aBB4Xk9u8y4DZCUxZvZ/zOyUw844zmTi+Cz2aRZxQX8N7h7TEbjV4bNomtNYYDbujDqwCj+vfH1yN0rJLCbAbxJVvo0FKD5bdP4CLuzVkcVoerojmVYOy618fpOkbDuLV0DW4EG1YIaSh2ZGEEEKcgJqcgXQvMEtrnQzMOnT8d27gTq11K6A7cJNSKqUGM4nTkCWmFb5Xz8Df15cnSh8mYvbd2HfPwRXTHmdCTyzzn4WsTWbHFHXcxIW7GBiYXnUgBSQhRB3la7Pw/Jj27C1280XINVjztuFZ+UG1X0cXZ+COaEHm5UvI7XIXlvJcQla+Qn5IChcbz3D/cjv9W0Yz/+5+PDWqLUnRgSd1vehgXyYMTGbuthxmbsmGht1QrnLI2lhNz+jYpOWU0jOiDKOyECO+A0opejaLoMLlYWu+whOcgCez/hWQfliXQcvYIMId+9GhjcAiXTSEEKIuqskC0gjg40NffwyM/PsArfVBrfXqQ1+XAFuABjWYSZymjOjm+N4wh2Udn2GA83muivoC60WTsF80Ca9PMO5vb6iZd1hFvbAzu4RFO/O4KPYA2uIDce3NjiSEECesU8Mwrj2jGQ9vb0xuVHfUzEchd0e1XkMXZ2AExxPbOIWocx7Eed0S/pv8Nd0ybuegO5j3x6fy1qWdiQ3xrbZrju/ZmOToQP774yYq41Krbty7rNrOfyx2ZpfSy39/1UFcB6Bq6SDAqj35ENWq3i1h219Qzqo9BQxrH4/O34WS5WtCCFFn1WQBKUZrfRCqCkVA9NEGK6UaAx2Bw/6kV0pdq5RaqZRamZOTU91ZxWnACE2g24jrue68wczfkcvtX67F4xcO57yANWsd7oWvmB1R1FGLduYB0MK5GR3fCaw+JicSQoiTM2FgMsnRQVxReCVeiw/uyZeCs7z6LlByEBUSB0B+mZMrPl7JBxtcXHVGMr/dcQYDWsVU37UOsVkMHhvemn35Fbyzxok3uAH6FPZBKnW4OVhUSVsjvWqZVkxrAOJC/IgP8WXV3kKMmBSM/B2nfGmdmaatOwjAeU29qLydUkASQog67KQKSEqpmUqpjYf5GHGc5wkEpgATtNbFhxujtX5Xa52qtU6Nioo6mdjiNDemSyIPntOKnzYc5IHvNmC0HomrxTAs856GnG1mxxN10PLd+TQNMfDJ3YDRSJavCSHqPl+bhRfGtGdzWRBvR9yHJXcbrmm3V8/GE14PqjQbFRRPem4Zo95cxMYDRbx5SSfuH9oKf3vNLV/qmRTJOe3ieHPuTpyxqeh9p24G0q6cqgbaiZXb8Ua1+subDZ0ahbF6TwEqJgXlcUL+rlOWy2zT1u7n3shFxE7qiwZoPdLkREIIIU7USRWQtNYDtdZtDvMxFchSSsUBHPqcfbhzKKVsVBWPPtNaf3syeYT43dV9mnJzvyQmr9jH0zO2Yhv2Il57AK5vbwCvx+x4og7RWrNydz4jYzJRXjckSgFJCHF6aJcQyoQByTyf1oDVTa7FtmEy7lWfnPyJS7NR2sMeVwij3lxEcaWbz6/pztC2cSd/7mNwa/9kHG4v642WGCUZULjvlFw3LacU0IQXb0bFd/jLfZ0bhXGgsIIc/0Ozb+pJI+3d29bxSP5/uL70DTzxXTBuXAqNepodSwghxAmqySVsPwDjD309Hpj69wFKKQW8D2zRWr9Yg1lEPXTnoOaM696Id+bt4s2Vxaghz2I7uArXotfMjibqkP0FFWQVO+jjs7PqhsSu5gYSQohqdFO/JAa2iuGibWeQH9MT4+f/oA+uP7mTlmQA8NSiIkL97Xx7Q88/+gCdCs1jAmkWFcB3uYlVN5yiWUg7s0tpaORhdVQ10P6z35//ytIotDLQWXW8gFRRiHPJO3j2rwGv96/3eb14dy/B8f0EGkweSCu1l4KBL2K7/HsIa2RKXCGEENWjJgtITwNnKaV2AGcdOkYpFa+Umn5oTC9gHNBfKbX20MfQGswk6hGlFI8Nb82IDvE8O2Mbn5d3xZU8BOvsx3Cu/sLseKKOWJ6eD0BS5Sa8kS3AP9zkREIIUX0MQ/Hihe1JCA/kwtyrcPuE4PnyMijLPfGTFlf1vKnwiWHKDT1pHBlQTWmPjVKKc9rG8c2BELw2/1NWQErLLuOMkMyqg9h2f7mvVVwwvjaDFfsr8IY2wVvHC0ien+7G/st/sEzsi+e5JConX4Fr5SdUzngE90ttMT4ajG3jF8w2enB//PuE9b4KlDI7thBCiJNUYwUkrXWe1nqA1jr50Of8Q7dnaK2HHvp6odZaaa3baa07HPqYfvQzC3HsDEPx/Oj29G8ZzUM/bOLXlo/jSuiB7YcbcC2v/m2Lxeln5Z58QnwNArJXoxrK8jUhxOkn2NfGO+M6k+EK5BH7XRglGbjeHYjOO7E+PY6Cql3I2qa0JDzAXp1Rj9mQtnG4tIWsoDZ495yaRto7c0rp7HuogBTV8i/32SwG7RJCWbW3AKLr+E5s6fOxbPwKT7cbcAx/G1fjftj2zMP24y34LHsVT3gyruFvsXrMCq4ru44zOrU1O7EQQohqUpMzkISoFWwWgzcv6USXxuHcNmUHS7q9jbNJf2zTb8e58A2z44labsXuAkbGF2E4iqSAJIQ4bSXHBPH86PZ8kdmAdxq/jOEoxDtxIJ79q4/7XHt3p+HSFvq0b1UDSY9Ny9ggmkYGsMyVhMreCI7SGr2ey+NlT14ZzY39eIMTwDf4H2M6Nwpj04EivJEtMQrTwVVRo5lqhNuJZ9odeEIaYhn4CD6dLsL3wvex3L0Tff0i1J3b2DrwI27f2pILP9pIsK+Vs9vEmp1aCCFENZECkqgXfG0W3h+fSsu4IK7/cjO7+r+DI3ko9pn345z7vNnxRC2VX+ZkZ3Ypo9RctGGDpIFmRxJCiBozpG0c15/ZjGc2hTCt80domz/qo3Nwb/vluM6Tn7mbXBVGapPIGkr675RSDGkby9T8RJT2woGVNXq9vfnluDyaeOfuqhlGh9G5YRhur2a3rSlKeynZUPcm3XsXvYolfweWc14Am98ft1d6ND/nRDBmUhoj3ljEvG05XNW7CTMmnEGIn83ExEIIIaqTFJBEvRHka+OD8V0I8bNx9WcbKBk2EUer87HPfRzv6klmxxO10Mrd+fhRSUr2j3hbDYfAaLMjCSFEjbr77Bb0bxnNnXPKWTnwK9xhzbBMvgjX6s+O6fGVLg/eogycfjFYDHN73gxtG8cqTxIaBXtrtg9SWnYpFjyElO3GOEIBqdOhRtqzvZ1wRrTC97d7cBafRK+pU61gN2r+c3haDoPmg6hwepi+4SA3f76aTo//xo2freZAYQUPnZvC4vv6c//QVsSH+v37eYUQQtQZUkAS9Up0sC/vXtaZ3FIHN36+HnXeO7gSesCM+6A4w+x4opZZuaeAUbal2FwlWLpeY3YcIYSocRZD8epFHUmODuSab/exb8TXuBJ7Yf3hJlzLP/zXxy9OyyVK5+MXkXAK0h5dSlwwYRFR7Lc2wlvDjbR35pTSWGVieJ0QnXLYMeEBdppGBrByfxnO4W9irSzAOe3OGs1VbbTG8+NdaMOCMeRpPlyUTuf/VRWNFqflMaJDAyZd1Y15d/flqt5NCPKVWUdCCHE6kgKSqHfaJYTy7AXtWL47n0d+3IL1vDfA68Q19TbQ2ux4ohZZkZ7HVT4z8USlgPQ/EkLUE4E+ViaOT8XHauGKz7dSev5nuJr0xzZ9Aq6l7x31sTM2ZhKrCgiPM3+7dqUUQ9rEscDRDPYtB6+nxq6Vll1G14CsqoPolkcc16lRGKv3FBDQsCPF3W4ncMf3lKz+psZyVZvN32NJ+w1H73u4cVoWj03bTLcm4Xx+dTeW3z+Ap0a1pXdyJFaL/GkhhBCnM/kuL+qlER0acFO/ZnyxfB+fbLOg+z2ELe1XvOu+NDuaqCUqnB6sB1fS1L0LS7drZPthIUS9khDmz3uXdSazuJLrv9iEvnASzmZnY5txF85Fbx32MW6Pl8Wb9xCoKrCGNDjFiQ/vnLZxrPQkYzhLIGdrjV1nZ04pnf2yqpbLRbY44rjOjcLIK3OyJ6+coAH/oTKqHX6/3o2rOOuo53fvXYHzjV443zyDihmP4E6bD25HdT+N/6c1OmsTjllP4XyjF3x9OWVhrTh3WWt+3ZzF/UNb8sHlXeiZJEUjIYSoT6xmBxDCLHee1YJtmSX898fNxF88in7x36N+vgea9YOgGLPjCZOt3VfIReo3XNYAbG3HmB1HCCFOuY4Nw3hhdHtu+WINL8zew/0XTcLx5Xh8frsXl3Zh633rX8av2F2AT0Um+ADB8eaE/ps2DYLZH9QOHODdvRgjpnW1X0Nrza7sUlqG7keHNUHZ/Y84tvOhPkir9hTQuHMC3hFvYXzQj4rvb8O45HMsfy/GeL1UzH8V33mPQ2AMnqAG+C57DbX0ZbxWP5zR7cA3BG0LAHsA2h6A8g9HBUZjBEZjDYrGCGlQ9Xoc6Y0QtxPyd+HO2oInawvkbMPIXIutaDd2FK74Lixvfie3bG6B8ld8eW13UhuHV9c/nxBCiDpECkii3jIMxctjO3LJe0u58Yu1fHDOY/SadR6uabdju+gzmXFSz23cnsZlxlI8bcdj8wk0O44QQphiWPt4ftmUyVcr93HXoBb4jP0Ex+TL8Jn5ELS74C+Fol82ZZJgLaw6CIozJ/DfKKXo2K4je5bHkPjLfZRnbMan/3+whFRfvpwSByUONw1cuyHh8A20f5cUFUiQr5VVews4v3MC/gltKOl5D0ELHyf3uztxNe6PrWEqgWHRWCvzcU25Hr/dM6lMGorv+W9i9QuDymKcafPx7JyNkbUBVXwA5SpDuSowXKUYrrJ/XNfjE4Y7qhXEtEFFtUAXZ1QVivK2YS1MR3ndWAELCk9wQzxRLXH1uIXSJoO455dsfl2fRZ/kSF6+sAMRgT7V9m8nhBCibpECkqjXAn2sfHp1N8Z/sJwrfizih443k7LpBVxrJ2PreJHZ8YSJgrdOxke5oed1ZkcRQghTjerUgB/XH2T+9hwGpsTg0/sW2DEdMjf+UUDSWvPLpkyuiXVDDrVmBhLAkHbxXLjgQT5qNpcW6z9Bb/yMsg5X4dfvTozAyJM+/87sUuy4CKnYixFz/lHHGoaiU8OqPki/C+w3gdIDy4nY+CFq4wcAOIIboV3l+DiKqBj4NH69rv//N7Z8g7G3Phdan3v4i7gqoTwXb0kOntIsvHnp6KxNGFkbsa77BMNdiVYG7pDGeCOa42h+DkZ0S2yxLVGRLbDa/bECC3bkcOfEdRSUO3lgaCuu6t0Ew+Sd9YQQQphLCkii3gv2tfHJlV254sMVjFzTkcXR7Yicej0V237FPvhxLKHm7yQjTi2P203vwh9IC+xEs6gj97IQQoj6oE9yFOEBdr5be4CBKTHw+zb12Zuh+SAA1u8v4mBRJV2bOKoKSLVkBhJA+4QQ/CIbcl3hOKZdfQ/Whc/iv+otvJu/hJtXQEDESZ0/LaeUpuoghvb8/7/NUXRuFMZLM7dzsKiCuBA/lMWK9eIvyMjLxchchzVzNfbMtVhdJVgH/w+/xI4AZBdXUuJw42M1sFsNfKwW/GwW7Na/LXuz+UJIAkZIwj+bnXo9UHwAFRCNzeb7j2xlDjc79hXyw9oMPliUTlJ0IB9e0YXW8SEn+K8jhBDidCIFJCGAIF8bH1/ZlSs+WkHf3RP4pPlCOuz4DHZOp6Lrrfj1vR1sfnjK8nHl78FbuA+/xA6oMPN3mRHVb//yqTRSOSxPuZ9mZocRQgiT2SwG57aL48sV+yipdBHkF4Y3KA6VtYnf56PM2JSJxVAk+xWjfUOO2gfoVFNK8fSotox9bylPLHHwzIXv49pzHdYPB+FZ+DKWsx8/qfPvzC6lrT2j6uAYCkgDW8Xw+uydDHpxPncMas647o3wtVloEBsDsYOAqqKc1ppKl5fv1uzn65X7WZyWd9jzBdgthPrbCfGzEepvIyrIh9hgX2KCfYkN8SXUz1Z1vkPjvdqPor35FJQ5KSh3kV/mZH9BOduyStiXX/HHecd1b8T9Q1vhZ7ec8L+NEEKI04sUkIQ4JMDHykdXdOG6T1cxattABsT25n8BXxG3+Fk8K98BrwuLu5zff41yhydjvXExWO2m5hbVLGcbIfMfJlOHkdD9ArPTCCFErTCyYwM+WbKHGRszGZ2aCNEp6OwtKMDj1fy84SA9mkZgL89CB8ZR2xY6dWsawQ1nNuPNuWn0axnN4DZdcbe+AGPFe9DrFgiMPuFzp+WUMcI/E11pQUUk/ev4lPhgZkzow6PTNvPYtM18uWIf/x3RhtRGYWSXONiTV8ae/HLW7C3gx3UHKXG4aRjuz+0Dm9M40h+H21v14fJQ7vRQVOGisNxFUYWT/DInq/cWkFXkwOnxHlP+IF8rcSG+tE8IZUznRJrHBpESF0xieO0pAgohhKgdpIAkxJ/42618fEVXpq47wLMzttEj8zJubHI2V/gtwC8kEkITUSGJ2JyF2KdPwL3wFax97zY7tqgm3m2/wJSrwGXhYZ97eDci2OxIQghRK3RMDKVRhD9T12YwOjURIyYFvXsheNx8tnw/u/PKufvsluglB2tV/6M/mzCwOQt25HLvt+vp2DCUmP73oTd/i2f+i1iGPn3C592ZXUpLewY6vBnKemwNpptGBfLxFV34ZVMWj/+4mTHvLMHHauBw/3/Rx89mYWjbOEanJtC1cfhx9R/SWlNQ7iKzqJLiStcfBT2lFErxx2ylUD/7P5fACSGEEEcgBSQh/sYwFOd1TGBw6zjeX7iLt+ZaeM8zmudHt2dEhwZ/jHPvmo2x4PmqXWjCm5iYWJw0rXEvfAXLrEfJDmjByOKbuOnsM81OJYQQtYZSihEdGvDa7B1kFVcSE90a5XGQt28Lz/2SQe+kSIa2jUX/moERk2J23MOyWw1eurAD5762gLu+XsfHV3TF2/ZCLKs+gN63nlDhq9ThJrO4ksTQ3aiGqcf1WKUUg9vEcmbzKD5cnE5BmZOGEQE0CvenUYQ/8aF+2CwnVtxRShEeYCc8QGZJCyGEqD7yloMQR+Bnt3Bz/2Tm3N2Xzo3CmPDlWj5duueP+61DnwHDguvHu0Dro5xJ1GoeF64p12Kd9Qh5jYYwoOBeOrRpzSXdGpqdTAghapWRHeLRGn5Ym/FHr58ffp2Jw+XlvyNao7weVFk2BNeeBtp/lxQdyIPnpLBgRy4fL9mNtd89oD145j1/QudLyy7FFwchlQdQx9D/6HD87BZu7JvEA+ekMK57I85oHkWjiIATLh4JIYQQNUV+MgnxL6KDfPnoiq4MaBnNQ99v5I05O9FaQ3A8ut8D2HbNxLt5qtkxxYnwenBPuRbbxq8o73UPo7KvISQ4hKdHtUOp2tbBQwghzNU0KpD2CSF8v/YARLVAK4Piveu57symNI0KhLJslPbWqh3YDueSbg0Z0DKap6ZvZX5OAN4Ol2Ks+QQK9x73udJySklSB1DoY2qgLYQQQtRlUkAS4hj42iy8dWlnRnaI57lftvHUz1vRWmPpdh3u6Dbon+8FR4nZMcXx0Br3tNuxbv4Wd/9HuTd3CAeKKnllbAdC/G1mpxNCiFppRIcGbMooZlOOk/3E0sF+gJv6HWocXXyw6nMt7YH0O6UUL4xpT7PoQK75ZCVrGl8FSuGZ+9xxn2tndimtLPurDqKkgCSEEOL0JgUkIY6RzWLw4pgOXNajEe/O38Xd36zHqQ2sw17GKM3EPesJsyOKY6U17l8fwrrmYzy97uA7/wv4YV0GEwYkk9o43Ox0QghRaw1rH4/FUFz7ySo2uBNI9c/E13Zof9KSQ1vZ1/IZSACh/nYmXdWVRhH+jPs6g8yksRjrPoO8tGM+h8ermbMth64B2WiLHcKb1mBiIYQQwnxSQBLiOBiG4rHhrZkwMJlvVu3nsg+WURjRHk+Hy7CseAf35h/NjiiOgWf+81iXvIa789XMjLuWh6duonvTcG7s9+/bLwshRH0WFeRDr6RIDhRW4I1siX/pXnCWV91ZR2Yg/S4i0IfPru5OfKgvY7f0xGP44Jk4CPfG74/p8d+u3s+Wg8X0CclBRzQHi+xNI4QQ4vQmBSQhjpNSigkDm/PyhR1YvaeQ895czL4u9+OObofxzRV4dswyO6I4kooCXD/fj2XO/3C2Hs0z6gqum7Sa5JhAXh3bEctxbJEshBD11fgejUgI86Nnzz5VvX9yt1XdUZKBNmzgH2luwOMQFeTD59d0xwiO40L3o5TYo7B+Mx7nF+OgNOeIjyt3unn+1210SAwlujIdFSPL14QQQpz+auytEqVUOPAl0BjYDYzRWhccYawFWAkc0FqfW1OZhKhOIzs2ICHMj+s+XcXIiet5b/T7dJw9DsuXF+O5ZAqWJr3Njih+5yjFteQtLItfxeosoSTlIq7KuYTle/cwrnsjHjy3FT5Wi9kphRCiThjQKoYBrWIgd0fVDdlbIL4jFB9EB8agjLr1/mRMsC+fX9ONSyZCatZ9PBs3h5E7JuF5fSGeLtfiLS+A4v0YRfswKvLQna/kXde5ZBU7eHt0MsZn+6WBthBCiHqhJn/C3wvM0lonA7MOHR/JbcCWGswiRI1IbRzO9zf1IjrIh4smbeejZi/jCWyA+nwM3n0rzY4nKgpwLXwVz8vtsc39H+6GPVk1+Af6bjufjZllvHpRRx4f2UaKR0IIcSLCmqAtPpC1CQBvcQYE1/7+R4cTF+LH9Fv7cPvZrXkwbzDnOp8k04jBvuBp7Os+xpK7De0XgTesKba5j9N54bVc2MqPjr7ZVSeQBtpCCCHqgZpcrD0C6Hvo64+BucA9fx+klEoAzgGeAO6owTxC1IjEcH+m3NiTB7/byBPzMljW4BFe93kA26RRlPf7L5b4dthjW6Ls/mZHrR+0xpu+ENfKj7Ftm4bNU4kzsTfuAQ/y7MYQ3v8+neYxgbx5SSeSooPMTiuEEHWXxYqObIHO2lL1jmTxQVRMitmpTpivzcJN/ZI4v1MCz8zYSq818SQHebh5aGeGd2iAUgq05ut3H2d4xqt0y7wevfpsFMgMJCGEEPWC0lrXzImVKtRah/7puEBrHXaYcd8ATwFBwF1HWsKmlLoWuBagYcOGnffs2VMjuYU4GVPXHuDB7zcS681iiv9TBFdW7UijlYEruDHuuE7Y+tyKrUF7k5Oehkqzca6ahFrzKbbCXXjtQbhSLsDedTw7LUnc8sUatmaWML5HI+4b2ur/dw0SQghxwvS316J3zcO4axv6yXhUx8tgyNNmx6oWq/bk8+gPm9lwoIgujcN4ZFhrlIJzX1vI/Z3cXJHxGNaCNLTNH3XfAahjS/eEEEKIw1FKrdJapx7uvpOagaSUmgnEHuauB47x8ecC2VrrVUqpvkcbq7V+F3gXIDU1tWaqXkKcpBEdGtClcTh3frWOjrueYVSjSm5u7SKyPA2VswWfXb9g2foNFU3PxtrvXmyJncyOXLd5PXh2zMS98mPsab9g97pxxHfD2ecu7G3Pw7D48vHSPTz180ICfax8cHkq/VvGmJ1aCCFOGyqmNWr9l1C4F+Usq7NL2A6nc6OqZepfr9zHc79sY9jrC4kO8iHUz8aYcwdhNfrjnH4vFpsfFikeCSGEqAdOqoCktR54pPuUUllKqTit9UGlVByQfZhhvYDhSqmhgC8QrJSapLW+9GRyCWGm+FA/Pru6G58s2c0Lv27n+/0eru4zhpvHJGF4Syhf+BY+K97G8n4/KhoPxDrwIWwJHcyOXfeU5+P+YCjW3C3gF4Gz83XYu47HJ6oFDreHz1bt5625aewvqODM5lE8N7od0UG+ZqcWQojTS/ShJWs7D+1AGhRvXpYaYDEUY7s2ZEjbOF6ZuYNPluzm8ZFtCPGzATbs571hdkQhhBDilKnJJWzPAXla66eVUvcC4Vrr/xxlfF+OsoTtz1JTU/XKldKgWNR+OSUOnpmxlW9W7Sc22JcHzmnFue3iwFFM5aK3sS9/E8NRRGXKGHwGPYIR2uBfz6ldFeCqRPn/Y0Vo/eF24P5oOJaDa/Cc+yrWtqPAaqfS5eHLFft4e14aB4sq6ZAYyq0DkujXIrqqd4UQQojqVXQAXkqBlufC1h/h8p+g8em7C2mlyyNLoIUQQpzWjraErSYLSBHAV0BDYC8wWmudr5SKByZqrYf+bXxfpIAkTlOr9hTwyA8b2XigmO5Nw3lseBtaxAahKwqomP0cvqveA8OgMvVG/PrdgfI5QnNnRymudwdgKLDctBTqY1FEa9zfXI110zd4z/8Ao+35lDvdfL5sL+/M30VOiYOujcO5ZUASvZMipXAkhBA1SWv00w0BUI5iuGU1RDQzOZQQQgghTpQpBaSaJAUkURd5vJrJK/by3C/bKKl0M75HYyaclUywrw1PXjrOXx7Bb/tU3MGJWC6fhgpv8tcTaI1z8njs26ZWHV/5KzTsduqfiMk8s57AsuBZPP0eoqL7BD5ZspuJC9LJL3PSs1kEtw5IpnvTCLNjCiFEveF9/2yMfUurDh7IBJufuYGEEEIIccKOVkCSjn9CnCIWQ3FJt0bMubMvF3ZJ5MPF6fR/fi4zNh7EEtEEv4s/wXnZTyhHCZ4Pz0Hnp//l8a6Fr2LfNhV3rzvRVj88az836ZmYx7vmcywLnsXZ9hI+sYyizzOzeXbGNto2CGHKDT34/JruUjwSQohTTB3qg6R9Q6V4JIQQQpzGpIAkxCkWFmDnyfPa8sNNvYkL8eP6Sau5/7sNVDg92Jv2Rl02FeUsw/PB0D+KSJ60uVhnP4qr+TCsAx/C23IYatN34Ko0+dmcIh43rqUTUdNuJSuyO2fvPI/HftxCSnwwU2/qxcdXdqVzo3CzUwohRL2kYg4VkIJOnx3YhBBCCPFPUkASwiRtE0KYckNPrj+zGZ8v28vw1xey5WAxRoMOqPE/oFzlVUWk9AXw9RW4w5phO/8tUApLx4sxHEWw/Wezn0aN8+ycg+ut3thm3MkGoyVn7b8KHx8fPr6yK5Ou6kb7xFCzIwohRP32+05swafXDmxCCCGE+Cur2QGEqM/sVoN7h7Skd1Ikt3+1lhFvLOLyno0J9vUnIuUNRqy/Af+PzwVbINaLPoffm2s3OQNvYBx6zRdYWp9n7pOoCc4ydNZmXHOfw572C5X+CfyHO1ige/DQBa0Y1SkBiyHNsYUQolaIbgWAESwzkIQQQojTmRSQhKgFeidHMuO2PtwzZT3vzt916FbFJ+o+nra9x5eWi7nFnsgfv5obFmh3IcaS16A0GwKjTUp+ErSGshzc2dtwZ29DZ29D5e3Amr8da8kBFGC1BbK+5e1cvKEjsRGhfH9FFxLC/M1OLoQQ4s/8w3F3GIe15b9upCuEEEKIOkx2YROilnF5vH85Xr2ngKs/XkmIv43Pr+5Ow4hDBZTsrfBmN/TZT6J63FSzoTwuPMWZeEoy0WX5aI8T7XGB2wEeF3gcaLcTPC60x4lyO8DrArcTvC6UxwGOUpSjGOUsQTlKsZRmYHEU/nEJr9UPd3gy3ohkVGRzVFRzJmUm8t/Z2XRrEs6741IJ8bfV7PMUQgghhBBCiHrsaLuwSQFJiDpgw/4ixn2wDB+rwWdXdyMpumopm+ftM0F7sNyw8J8P0hrH/nW4tv2KJe037DkbcQcl4olIRkc0R0W1AN9AtMsB7kpwV6KdZVCShSrLwijNwijLxlKejbUy/7gza8OKNmxoix1t2NH2QLw+QWifYLAHQWA0KqoF1piWWKJbQFA8GAYVTg8Ld+by7er9/Lwxk2Ht43l+dDt8rJaT/WcUQgghhBBCCHEUUkAS4jSwLbOES99fhser+eiKLrRLCEUvewf183/ghsUQ0xoAXV5AxaxnsG35Flt5FgCVkW3wxKeiSjKw5m/HVrwXpb2HvY7XsOHxj8IbEIM3IBoCY9CBsRAUgyUoBgIiMKy+YLFh2HxRFhuG1QcsdrDYwOoDhg2Mf+/R7/FqsoorOVBYwfasEuZszWbBjlwcbi9BPlau6N2ECQOSMaTfkRBCCCGEEELUOCkgCXGa2J1bxiUTl5FRVMHg1rHc0DWUtpO7ortdjzHwMcqXTsS+4GkslYVUNBsCzc9GNxvAF1tc/Lj+IGH+NuJC/UgIUjRRWYTbvQQEBBIY4E9QYCCBgcFYAsJAGWiq2hQBaPQfX3u1xun24nR7cbi9OD3eP47//PWf76t0ecgvc5Jb6qj6KHGSWVxJRmEFbu//fw9KCPNjYKsYzkqJoUvjcOxW2ShSCCGEEEIIIU4VKSAJcRrJK3Xw/sJ0Ji3dQ3Glm69CXqOd3or2j8avcBuVDXpiGfo0OqYtX67Yy2uzd5Jd4qBdQggeryajsIKCcpcp2YN9rUQG+RAZ6ENMsC+JYX40CPMjIcyfhuH+NI7wRymZbSSEEEIIIYQQZpACkhCnoVKHmy9X7GP7vMk843qafd4oXrFcxu6oATSJCmRxWh4HCivo0jiMOwe1oHvTiD8eW+H0cLCogvwyJ4XlLooqXBRWuChzuAH4vYSjFH8p6CgFhlLYLQZ2a9WHj9X4y7HdYmA79NnnjzEWwgJs0sdICCGEEEIIIWoxKSAJcRpzuT2sXTSdDd5m7Chwk5ZTxq6cMhLD/ZgwsDlnJEfKrB4hhBBCCCGEEP/qaAUk66kOI4SoXjarhS5nDqOL2UGEEEIIIYQQQpy2pEOtEEIIIYQQQgghhDgqKSAJIYQQQgghhBBCiKOSApIQQgghhBBCCCGEOCopIAkhhBBCCCGEEEKIo5ICkhBCCCGEEEIIIYQ4KikgCSGEEEIIIYQQQoijqrECklIqXCn1m1Jqx6HPYUcYF6qU+kYptVUptUUp1aOmMgkhhBBCCCGEEEKI41eTM5DuBWZprZOBWYeOD+cVYIbWuiXQHthSg5mEEEIIIYQQQgghxHGqyQLSCODjQ19/DIz8+wClVDBwBvA+gNbaqbUurMFMQgghhBBCCCGEEOI4WWvw3DFa64MAWuuDSqnow4xpCuQAHyql2gOrgNu01mV/H6iUuha49tBhqVJqGxAJ5NZIelHd5LWqG+R1qjvktao75LWqO+S1qhvkdao75LWqO+S1qjvktao76upr1ehIdyit9QmfVSk1E4g9zF0PAB9rrUP/NLZAa/2XPkhKqVRgKdBLa71MKfUKUKy1fugYr79Sa516wk9AnDLyWtUN8jrVHfJa1R3yWtUd8lrVDfI61R3yWtUd8lrVHfJa1R2n42t1UjOQtNYDj3SfUipLKRV3aPZRHJB9mGH7gf1a62WHjr/hyL2ShBBCCCGEEEIIIYQJarIH0g/A+ENfjwem/n2A1joT2KeUanHopgHA5hrMJIQQQgghhBBCCCGOU00WkJ4GzlJK7QDOOnSMUipeKTX9T+NuAT5TSq0HOgBPHsc13q2mrKLmyWtVN8jrVHfIa1V3yGtVd8hrVTfI61R3yGtVd8hrVXfIa1V3nHav1Un1QBJCCCGEEEIIIYQQp7+anIEkhBBCCCGEEEIIIU4DUkASQoj/Y+++w+OorgYO/+72Ve+yinvvBRtjDDaYYorpJRA6oQdCICGQQAghIQX4QgkkhFBD76aYXgzuuPduS7bc1Ov23fv9MStbtlVW0spa2ed9Hj3enbkzc3dH1uyeOfdcIYQQQgghhBDNOiQBJKXUaUqp9UqpTUqpew5Yd1t43Wql1MNNbH9ReH1IKTW2wXKbUupFpdRKpdRypdQJTWx/a/jYWimV0WB5slLq4/C2q5VS10TnFXddUThXjyil1imlViilPlBKpTRY99vwftcrpaY2sX1vpdQCpdRGpdRbSilbeLlSSj0Z3n6FUmpMFF92lxSr5yq87gSl1LLw8b+P0kvusmLgXDX1N/Cy8D5XKKXmKqVGRukld0kxfJ7kWnWAjjpXSql0pdR3SqlapdRTzRxfrlURitVzFV4n16oGYuBcybUqQjF8ruR61UAHnqdTlFKLlfEdeLFSakoT28u1KkKxeq7C62LrWqW17tAfwAxsBvoANmA5MCS87kTga8Aefp7VxD4GAwOBmcDYBst/DrxYvy2wGDA1sv1ooBdQAGQ0WP474O/hx5lAOWDr6PckVn+idK5OBSzhx39v8P4OCe/PDvQOH8fcyPZvA5eEHz8D3Bx+fAbwGaCAY4AFnf1+yblq8lylYMym2KO54x8pPzFyrpr6G3gskBp+fPqR/P8qxs+TXKsO3bmKB44DbgKeaqYPcq3q+ucqBblWxdq5kmtV1z9Xcr06NOdpNJAbfjwM2NHE9nKt6vrnKoUYu1Ydigyko4FNWustWmsf8CZwTnjdzcDftNZeAK11cWM70Fqv1Vqvb2TVEOCbBttWAmMPbKS1Xqq1Lmhs10CiUkoBCRh/5AKRv7TDTjTO1Zda6/r3cD6QH358DvCm1tqrtd4KbAofb6/weZgCvBte9DJwboPt/6cN84EUpVROu15t1xbL5+qnwPta623NHf8I0qnnKrx9o38DtdZztdYVjez3SBSz5wm5Vh2ow86V1rpOaz0b8DR1cLlWtUosnyu5Vu2vU89VuJ1cqyITs+cKuV411JHnaanWemd4+WrAoZSyN9xWrlWtEsvnKuauVYcigJQHbG/wvCi8DGAAcHw4Xet7pdS4Vu57OXCOUsqilOoNHAV0b8X2T2FkN+0EVgK3a61DrezD4STa5+pajOh2S/uulw5UNvjP17BNJNsfSWL5XA0AUpVSM8OpmldG9IoOX519riL1swb7PRLF8nmSa9X+OvJcRUKuVZGL5XMl16r9dfa5itSRfq2C2D5Xcr3a51CdpwuApfUBjgbkWhW5WD5XMXetshyCY6hGlukGx0/FSJ0bB7ytlOqjtdaNbNOYFzD+SC0CCoG5tC7KPRVYhhHx6wt8pZSapbWubsU+DidRO1dKqXsxzsVrEew7kuNHsv2RJJbPlQUjmHsS4ATmKaXma603NPFaDnedfa5a7qBSJ2J8KD+utdseRmL5PMm1an8dea7ae3y5Vu0vls+VXKv219nnquUOyrWqXiyfK7le7dPh50kpNRRjuNSprTy+XKv2F8vnKuauVYciA6mI/bOC8jGi0vXr3g+nz/0IhIAMZRTGXqaU+rS5HWutA1rrO7TWo7TW52CMEdzYir5d0+D4m4CtwKBWbH+4icq5UkpdBUwDLmvwn6u5fdcrxUihtDTSJpLtjySxfq4+D6dBlwI/ACPb8Vq7us4+V81SSo0AngPO0VqXtWbbw0wsnye5Vu2vI89VJORaFblYP1dyrdqns89Vs+RatZ9YPldyvdqnQ8+TUiof+AC4Umu9uZHjy7UqcrF+rmLrWqU7viiVBdiCUTi0vijV0PC6m4AHw48HYKSOqWb2NZP9i2jHAfHhx6cAP7TQlwL2L/T2b+CB8ONsYEfD9UfaTzTOFXAaRqGvzAOWD2X/IrJbaLyI7DvsX0DslvDjM9m/2NuPnf1+yblq8lwNxqhNZgn/H10FDOvs9+xIPlcN2h/4N7AHRj2eYzv7fersnxg/T3KtOkTnqsH6q2m+gKxcq7r+uZJrVYydqwbtDvwbKNeqrnOu5Hp1CM4TRtLEcuCCFvog16quf65i7lp1qE7KGcAGjOrm9zZYbgNeDb8RS4ApTWx/Hkb0zQvsAb4IL+8FrAfWYlRH79nE9r8Ibx/AiOY9F16eC3yJMUZ3FXB5Z/8Cd/ZPFM7VpvB/rGXhn2carLs3vN/1wOlNbN8H+DG8n3fYV/FeAU+Ht19Jg0DikfoTq+cqvO6u8B/RVcAvO/u96uyfGDhXTf0NfA6oaLDfRZ39Xsl5kmtVDJyrAozCr7Xh8zGkke3lWtXFz1V4nVyrYutcybWq658ruV4dgvME3AfUNVi+jEZm52rq7x9yreoy5yq8LqauVSrcKSGEEEIIIYQQQgghGnUoaiAJIYQQQgghhBBCiC5MAkhCCCGEEEIIIYQQolkSQBJCCCGEEEIIIYQQzZIAkhBCCCGEEEIIIYRolgSQhBBCCCGEEEIIIUSzJIAkhBBCCCGEEEIIIZolASQhhBBCCCGEEEII0SwJIAkhhBBCCCGEEEKIZkkASQghhBBCCCGEEEI0SwJIQgghhBBCCCGEEKJZEkASQgghhBBCCCGEEM2SAJIQQgghhBBCCCGEaJYEkIQQQgghhBBCCCFEsySAJIQQQgghhBBCCCGaJQEkIYQQQgghhBBCCNEsCSAJIYQQRxClVC+llFZKWSJoe7VSavYh6tdEpdRGpVStUurcQ3FMER3h36d+nd0PIYQQQnQsCSAJIYQQMUopVaCU8imlMg5Yviz8pb1XJ3WtYSCqNvxToJS6px27fBB4SmudoLWeHqVuHhGiGegLn8eTo7GvRvYdcfCyFfvUSqm6Br+HtUqp30Rhv6sP2GdAKfVxNPoshBBCdFVRu4ALIYQQokNsBS4F/gmglBoOODu1R/tL0VoHlFITgG+UUsu01p9HurFSyqK1DgA9gdVt6UCDfYgj00it9aZo7lBrPbT+sVJKAZuBd6J5DCGEEKKrkQwkIYQQIra9AlzZ4PlVwP8aNlBKJSul/qeUKlFKFSql7lNKmcLrzEqpR5VSpUqpLcCZjWz7vFJql1Jqh1Lqz0opc2s7qbWehxEAGhbe77VKqbVKqQql1BdKqZ4NjqmVUj9XSm0ENiqlNgN9gI/D2R52pVSuUuojpVS5UmqTUur6Bts/oJR6Vyn1qlKqGrhaKTUz3Pe54X18rJRKV0q9ppSqVkotbJixpZR6Qim1PbxusVLq+AP2/3b4Pa0JZ6OMbbC+u1Lq/fD7XaaUeqrBuiZf94GUUmeH910Z7v/gBusKlFK/VkqtUEpVKaXeUko5GtnHYOAZYEL4dVeGl9vD532bUmqPUuoZpZQzvC5DKfVJ+LjlSqlZSimTUuoVoEeD89BoJo9S6q7w78tOpdS1B6w7Uym1NPy+bldKPdBg9Q/hfyvD+5+glOqrlPo2/D6Whs9XSlPvWWsopT5VSv1fg+dvKaVeCD++Wik1Ryn1z/D7u04pdVITu5oEZAHvRaNfQgghRFclASQhhBAits0HkpRSg8OBnZ8Arx7Q5p9AMkYQZjJGwOma8LrrgWnAaGAscOEB274MBIB+4TanAte1poPKMBEYCixVRg2j3wHnA5nALOCNAzY7FxgPDNFa9wW2AWeFh7B5w+2LgNxwn/9ywBf8c4B3gRTgtfCyS4ArgDygLzAPeBFIA9YCf2iw/UJgVHjd68A7BwRozgbeDO//I+Cp8Gs1A58AhUCv8LHeDK+L5HXXv2cDwut+GW77KUbgxtag2cXAaUBvYARw9YH70VqvBW4C5oXfu5Twqr8DA8KvsV+4n/eH1/0K473NBLLDfdZa6yvY/zw83Ei/TwN+DZwC9AcOHO5Wh/H7l4IRrLxZ7atpNSn8b0p4//MABfwV4zwPBroDDzQ43r+UUv86sB8Ruha4Qik1RSl1GTAOuL3B+vHAFiAD43fjfaVUWiP7uQp4V2td18Z+CCGEEIcFCSAJIYQQsa8+C+kUYB2wo35Fg6DSb7XWNVrrAuD/MAIpYAQhHtdab9dal2N8Wa/fNhs4Hfil1rpOa10MPIYRiIlUKVAOPAfco7X+BrgR+KvWem14aNlfgFEHZOP8VWtdrrV2H7hDpVR34Djgbq21R2u9LLz/Kxo0m6e1nq61DjXYx4ta681a6yrgM2Cz1vrrcB/ewQiQAaC1flVrXaa1Dmit/w+wAwMb7H+21vpTrXUQ4/0fGV5+NEaw467we+bRWtfXH4rkddf7CTBDa/2V1toPPIoxNPHYBm2e1FrvDJ+3jzGCQS1SSimMwOEd4fe4JtyX+vPqB3KAnlprv9Z6ltZaR7JvjN+nF7XWq8IBlQcartRaz9RarwyflxUYQbLJTe1Ma70p/B54tdYlwD8attda36K1vqWFPi0JZ1PV/0wNb7sbI7j2MvAEcGX4vahXjPF/w6+1fgtYz8EZenEYAcyXWuiDEEIIcdiTGkhCCCFE7HsFY/hPbw4YvoaRPWHDyIipV4iRcQJGsGP7Aevq9QSswC4j5gAYN5catm9JRiP1h3oCTzQcPoSRaZLX4PjNHSMXKD/gy34hRgZVvca239PgsbuR5wl7O6PUrzAyrXIBDSRhvJf1djd47AIcyij+3B0obKLmUiSvu15uw2Va65BSajv7zltjfcht5JiNyQTigMUNzqsC6ocmPoIR+PkyvP5ZrfXfItx3LrC4wfP9XpdSajzwN4yhjDaMwFyTtYOUUlnAk8DxQCLG719FhH2pN6aZGkifYGSPrW8Q6Ku344DAWSEHv8fnYwRIv29ln4QQQojDjmQgCSGEEDFOa12IUUz7DOD9A1aXYmSUNMxy6cG+LKVdGEGPhuvqbQe8GEGglPBPUsMCwm20HbixwT5TtNZOrfXchi+rme13AmlKqcQD+r2jwfNIM2YOEq53dDdGNk1qeNhXFUaQpSXbgR6q8ZnEInnd9XbS4JyFs4a6s/9rjNSB70UpRsBsaIN+JGutEwDCmWq/0lr3Ac4C7mwwPLCl97W53ycwhgN+BHTXWidj1Geqf18b2/dfw8tHaK2TgMuJ7DxE6iGM4Ys5SqlLD1iXpxpE2DBey84D2lwF/K8VGVpCCCHEYUsCSEIIIUTX8DNgyoF1WMJDrN4GHlJKJYaHS93JvjpJbwO/UErlK6VSgXsabLsL+BL4P6VUUriQcl+lVJNDjiL0DPBbpdRQ2Fuo+6JIN9ZabwfmAn9VSjmUUiMwXv9rzW8ZsUSMuk8lgEUpdT9GBlIkfsQIovxNKRUf7t/E8LrWvO63gTOVUicppawYdYm8GK+7tfYA+fX1k7TWIeC/wGPhDB+UUnn1Q7uUUtOUUv3CwZNqIBj+qd9Xn2aO9TZG0fIh4eFdfzhgfSJG9phHKXU08NMG60qA0AH7TwRqMQpr5wF3tfK1N0kpNQmjFtiV4Z9/ho9RLwvj/4Y1fJ4GY9Siqt8+HzgRYwicEEIIccSTAJIQQgjRBYRr+yxqYvVtGMWLtwCzMbJAXgiv+y/wBbAcWMLBGUxXYgw1WoMxdOhdjPo47enrBxhFnN9UxixpqzBqLbXGpRhFqncCHwB/0Fp/1Z5+NfAFRo2kDRjDljxEOGwvHLA7C6Mw9TaMYtQ/Ca+L+HVrrddjZNv8EyNj6CyM4tW+NryebzFmwNutlCoNL7sb2ATMD/fla/bVeOoffl6LUWj8X1rrmeF1fwXuC9cS+nUj/f4MeDx8zE3hfxu6BXhQKVWDUbT77QbbujAyguaE938M8EdgDEYG2AwO+P1Uxuxxz7Tw+peHZ3Wr/3lcKZWEMdzzVq31jvDwteeBFxtkHS0Ivxel4X5dqLUua7DfKzBqbW1u4fhCCCHEEUFJRq4QQgghhDiSKKWuBq7TWh/X2X0RQgghugrJQBJCCCGEEEIIIYQQzZIAkhBCCCGEEEIIIYRolgxhE0IIIYQQQgghhBDNkgwkIYQQQgghhBBCCNEsS2d3oC0yMjJ0r169OrsbQgghhBBCCCGEEIeNxYsXl2qtMxtb1yUDSL169WLRoqZmMhZCCCGEEEIIIYQQraWUKmxqnQxhE0IIIYQQQgghhBDNkgCSEEIIIYQQQgghhGiWBJCEEEIIIYQQQgghRLO6ZA2kxvj9foqKivB4PJ3dFSFaxeFwkJ+fj9Vq7eyuCCGEEEIIIYQQjTpsAkhFRUUkJibSq1cvlFKd3R0hIqK1pqysjKKiInr37t3Z3RFCCCGEEEIIIRp12Axh83g8pKenS/BIdClKKdLT0yVzTgghhBBCCCFETDtsAkiABI9ElyS/t0IIIYQQQgghYt1hFUASQgghhBBCCCGEENEnAaQoUkpxxRVX7H0eCATIzMxk2rRpndirliUkJLTY5oEHHuDRRx9tts306dNZs2ZNtLolhBBCCCGEEEKIGCEBpCiKj49n1apVuN1uAL766ivy8vI6pS+BQOCQH1MCSEIIIYQQQgjRPoENXxF4birUFnd2V4TYjwSQouz0009nxowZALzxxhtceumle9fV1dVx7bXXMm7cOEaPHs2HH34IQEFBAccffzxjxoxhzJgxzJ07F4Bdu3YxadIkRo0axbBhw5g1axawf8bQu+++y9VXXw3A1VdfzZ133smJJ57I3XffzebNmznttNM46qijOP7441m3bh0AW7duZcKECYwbN47f//73Tb6Whx56iIEDB3LyySezfv36vcv/+9//Mm7cOEaOHMkFF1yAy+Vi7ty5fPTRR9x1112MGjWKzZs3N9pOCCGEEEIIIUTjAotexvzGT7AUzYedyzq7O0Lsx9LZHegIf/x4NWt2Vkd1n0Nyk/jDWUNbbHfJJZfw4IMPMm3aNFasWMG11167N/Dz0EMPMWXKFF544QUqKys5+uijOfnkk8nKyuKrr77C4XCwceNGLr30UhYtWsTrr7/O1KlTuffeewkGgxEFYDZs2MDXX3+N2WzmpJNO4plnnqF///4sWLCAW265hW+//Zbbb7+dm2++mSuvvJKnn3660f0sXryYN998k6VLlxIIBBgzZgxHHXUUAOeffz7XX389APfddx/PP/88t912G2effTbTpk3jwgsvBCAlJaXRdkIIIYQQQgghDuCtQX36Kzxpg3GWrYKanZ3dIyH2c1gGkDrTiBEjKCgo4I033uCMM87Yb92XX37JRx99tLeWkMfjYdu2beTm5nLrrbeybNkyzGYzGzZsAGDcuHFce+21+P1+zj33XEaNGtXi8S+66CLMZjO1tbXMnTuXiy66aO86r9cLwJw5c3jvvfcAuOKKK7j77rsP2s+sWbM477zziIuLA+Dss8/eu27VqlXcd999VFZWUltby9SpUxvtS6TthBBCCCGEEOJIt2nBp/QL+fmX5XLu5LeoagkgidhyWAaQIskU6khnn302v/71r5k5cyZlZWV7l2utee+99xg4cOB+7R944AGys7NZvnw5oVAIh8MBwKRJk/jhhx+YMWMGV1xxBXfddRdXXnnlftO+ezye/fYVHx8PQCgUIiUlhWXLljXax0imjm+qzdVXX8306dMZOXIkL730EjNnzmxXOyGEEEIIIUTn0VpH9P1AdBxfIMTaWe/TTTt4dlsut6dmYane0dndEmI/UgOpA1x77bXcf//9DB8+fL/lU6dO5Z///CdaawCWLl0KQFVVFTk5OZhMJl555RWCwSAAhYWFZGVlcf311/Ozn/2MJUuWAJCdnc3atWsJhUJ88MEHjfYhKSmJ3r1788477wDGRWH58uUATJw4kTfffBOA1157rdHtJ02axAcffIDb7aampoaPP/5477qamhpycnLw+/37bZ+YmEhNTU2L7YQQQgghhBCx4YXZWxn356+o2LQIKrd3dneOPKEgga2zee6HDYz2LaIsawI+LJSqNHT1rs7unRD7kQBSB8jPz+f2228/aPnvf/97/H4/I0aMYNiwYXsLWN9yyy28/PLLHHPMMWzYsGFvFtHMmTMZNWoUo0eP5r333tu7z7/97W9MmzaNKVOmkJOT02Q/XnvtNZ5//nlGjhzJ0KFD9xbtfuKJJ3j66acZN24cVVVVjW47ZswYfvKTnzBq1CguuOACjj/++L3r/vSnPzF+/HhOOeUUBg0atHf5JZdcwiOPPMLo0aPZvHlzk+2EEEIIIYQQne/7DSW88+nnvOa/g9RXT0J/JPVKDzX/l3/A8vKZjPj+BvJVKT3Hn8Px/TNZ705EV0kGkogtqj4bpisZO3asXrRo0X7L1q5dy+DBgzupR0K0j/z+CiGEEEKIQ6m01stJj87kf+r35IV2YYtPJTExCXXz7M7u2hEjuOoDzO9ezW5HX7p5NhsLf7mKGdsslL59G5c552O5t6hzOymOOEqpxVrrsY2tkwwkIYQQQgghhDjC/PObjRzrn89IvZ7/C1zMzriB4K/r7G4dUdTnd1OXOYqTa//IjPRrCYy4FFK6M7ZXKrt1OhZ/DXhrO7ubQux1WBbRFkIIIYQQQgjRuILSOt5csJVZCe8QSBjAAs/pTPO/AEEJIB0ynipMtXt4zX8aymJjxGUPYUkzZsDOSrRTY8sCDdTsAnv/zu2rEGGSgSSEEEIIIYQQR5BHvlzP2Zb5ZPm2Yz7lfrpnJFHstUq2y6FUUQDAiro0nr1iLN3DwSMwZsN2pucZT2QmNhFDJIAkhBBCCCGEEEeI5dsr+XTFDu6K/5RAxiDUwDPpnRHPLrcZ5a+DUKizu3hEKNm2HoDjjx7LhL7pB61P6dYbgGDlzkPaLyGaIwEkIYQQQgghhDgCaK3562drOTduJVnuLZiPvxNMJnpnxFMZsBmN/K6O7URtMcH3b4K60o49TozbvH4lABPHNVqrmLzufQCo3FPQIccPFS0h8Pl9EjAUrSIBJCGEEEIIIYQ4AsxcX8L8LWXcE/8JweQeqGEXANArI546nEYjX8cNY9uwp4a6GfdhXvEGbP+xw47TFVTt3EiVSiI/p1uj6wf2yKZSx1NdXBj1Ywe3/AAvT8My/59QGf39i8OXBJCiaM+ePfz0pz+lT58+HHXUUUyYMIEPPvigw4+7aNEifvGLX0RlXyeccAIDBw5k5MiRTJw4kfXr10dlv9EUzT6+9NJL3HrrrQA888wz/O9//2uybUFBAa+//vre59F834UQQgghhOhI/kCIv322jnNTNpNdsxo18ZdgNuZU6pMRT512GA19HVNIu8bj5/f/epX4tW+Fj3Pk1lvaVeUmrm477oTuTbbpm5nAbtIIVES5BlLpJtTrF4FSxvPaPdHdvzisSQApSrTWnHvuuUyaNIktW7awePFi3nzzTYqKijr82GPHjuXJJ5+M2v5ee+01li9fzlVXXcVdd9110PpgMBi1Y7VVR/Txpptu4sorr2xy/YEBpGi/70IIIYQQHUlrzcfLdzLl0Zl8sXp3Z3dHHEpBP8X/Op1pZc/z2/gZBOOzMI2+bO/q3BQnPlPHZiC9vaiIX4RewU04UOWt6ZDjdAWfr9pND1VMQrd+TbaxWUzUWLPIrl6B+4VzYNPX7T9wKETV2zdTFzCz8tjw95iaXe3frzhiSAApSr799ltsNhs33XTT3mU9e/bktttuA4zgw/HHH8+YMWMYM2YMc+fOBWDmzJlMmzZt7za33norL730EgD33HMPQ4YMYcSIEfz6178G4J133mHYsGGMHDmSSZMmHbSPH3/8kWOPPZbRo0dz7LHH7s3Oeemllzj//PM57bTT6N+/P7/5zW9afE2TJk1i06ZNACQkJHD//fczfvx45s2bxz/+8Q+GDRvGsGHDePzxx/du87///Y8RI0YwcuRIrrjiCgBKSkq44IILGDduHOPGjWPOnDkAfP/994waNYpRo0YxevRoampq2LVrF5MmTWLUqFEMGzaMWbNmtbmPr776KkcffTSjRo3ixhtv3BtUevHFFxkwYACTJ0/e2xeABx54gEcffRSATZs2cfLJJzNy5EjGjBnD5s2bueeee5g1axajRo3iscce2+99Ly8v59xzz2XEiBEcc8wxrFixYu8+r732Wk444QT69OkjASfRdfjd6KWvgtad3RMhhBBRsKvKzfX/W8RtbyxlS2kdCzftIrR9cWd3Sxwi3h0ryCufz22W6WSXLUBNuBWsjr3rzSZFfFJKuHH0A0jBkOb1OesYb1rLW8ETwsc5cgNIX64sIt9USkK3/s22K0k/Ch0MYN8xn+CC/7b5eHrdDPz/GEHZ06eQXPwjD/ov47lNScbKGgkmi8hZOrsDHeKze2D3yujus9twOP1vTa5evXo1Y8aMaXJ9VlYWX331FQ6Hg40bN3LppZeyaNGiJtuXl5fzwQcfsG7dOpRSVFZWAvDggw/yxRdfkJeXt3dZQ4MGDeKHH37AYrHw9ddf87vf/Y733nsPgGXLlrF06VLsdjsDBw7ktttuo3v3ptMmP/74Y4YPHw5AXV0dw4YN48EHH2Tx4sW8+OKLLFiwAK0148ePZ/LkydhsNh566CHmzJlDRkYG5eXlANx+++3ccccdHHfccWzbto2pU6eydu1aHn30UZ5++mkmTpxIbW0tDoeDZ599lqlTp3LvvfcSDAZxuZov4tdUH9euXcvf//535syZg9Vq5ZZbbuG1117jlFNO4Q9/+AOLFy8mOTmZE088kdGjRx+038suu4x77rmH8847D4/HQygU4m9/+xuPPvoon3zyCWAE7ur94Q9/YPTo0UyfPp1vv/2WK6+8kmXLlgGwbt06vvvuO2pqahg4cCA333wzVqu12dclRKdb+S7qo1sh7yjIGtzZvRFCCNFGoZDm9R+38ffP1uEPhbjvzMG8N38j5669E9PSJXDnWkjK7exuig724+wvOR5YP/K39PSuxzHu2oPaxCckgYsOGcL21Zo9JFWux2IPMTc4mKvMX6CO0CFsJTVedhRuxGwPQWqvZtvmTruXkU+fwKd57zK48CsIBvYOO4xYzW709J/jVU7cVQXMto4nMOinfL5yJ9puRUkGkmiFqASQlFKnAU8AZuA5rfXfDlh/F1CfI2kBBgOZWutypVQBUAMEgYDWuvEy9F3Mz3/+c2bPno3NZmPhwoX4/X5uvfVWli1bhtlsZsOGDc1un5SUhMPh4LrrruPMM8/cm+kyceJErr76ai6++GLOP//8g7arqqriqquuYuPGjSil8Pv9e9eddNJJJCcnAzBkyBAKCwsbDSBddtllOJ1OevXqxT//+U8AzGYzF1xgFNmbPXs25513HvHx8QCcf/75zJo1C6UUF154IRkZGQCkpaUB8PXXX7NmzZq9+6+urqampoaJEydy5513ctlll3H++eeTn5/PuHHjuPbaa/H7/Zx77rmMGjWq0fenpT5+8803LF68mHHjxgHgdrvJyspiwYIFnHDCCWRmZgLwk5/85KBzUVNTw44dOzjvvPMAcDgctGT27Nl7A3VTpkyhrKyMqqoqAM4880zsdjt2u52srCz27NlDfn5+i/sUolOVrDP+9VR3bj+EEKIzeWsJfngb5uNuh9xRnd2bVvEGgny1Zg8vzN7Kkm2VHNs3nb+dN5ycmhUc53uAQf7wZzN3pQSQDnOVLh8VG+ZSZUph4Ll376t9cwCzI8F40AGBnVfmFzApfjsEYHmoLwFLPNYOyHTqaKF5/8aUkAnDL2zzPr5cYwxfAyCtd7NtR3VP4di+6by2uxcPBWtg13LIPwr8boLPT8U88RfN90VrvO/dgsnr4lzvfcTnDealq8cRV1bHB8t24rJnEi8ZSKIV2h1AUkqZgaeBU4AiYKFS6iOt9d6Igdb6EeCRcPuzgDu01uUNdnOi1jp68zg2kynUUYYOHbo3gADw9NNPU1paytixRjzsscceIzs7m+XLlxMKhfYGJSwWC6EGUyd6PJ69y3/88Ue++eYb3nzzTZ566im+/fZbnnnmGRYsWMCMGTMYNWrU3iyXer///e858cQT+eCDDygoKOCEE07Yu85ut+99bDabCQQCjb6W1157bW+/6zkcDsxmM2CMn2+M1hrVyAUpFAoxb948nE7nfsvvuecezjzzTD799FOOOeYYvv76ayZNmsQPP/zAjBkzuOKKK7jrrrsarUsUSR+vuuoq/vrXv+7XZvr06Y328cDX0VqNbVN/nEjfdyFiiS5ZjwLwHbnp5UKII1QohC5Zh8oaTODrP2JZ8z5kD+4yAaTiag8PfrKGwvXLiPeXsSfpKB6+YAQXjc7G/851WNd/SHdTAp+oE5imZ4Lf3dldFh3sme+3cFFoI/QY22TwCMDiMG40RzsDqaC0jjmbyrivxy5CdVlU+NNxKyfWrvYZw+dCffNHdO4oVDsCSJ+v2s2YxErw0mIGEsDNJ/Tll8/35yEHsPV7yD8KveJtzLuXQ9GigwNIoRB1O1YRlzeMPd/9m24F33C//yqGDD+Kv5w/nAS7hZQ4K7nJDnaFUuhbvYvmvx0JsU80aiAdDWzSWm/RWvuAN4Fzmml/KfBGFI4bU6ZMmYLH4+Hf//733mUNh19VVVWRk5ODyWTilVde2VuPp2fPnqxZswav10tVVRXffPMNALW1tVRVVXHGGWfw+OOP7w0Ubd68mfHjx/Pggw+SkZHB9u3b9+tHVVUVeXl5AHtrKUXbpEmTmD59Oi6Xi7q6Oj744AOOP/54TjrpJN5++23KysoA9g5hO/XUU3nqqaf2bt/wtQwfPpy7776bsWPHsm7dOgoLC8nKyuL666/nZz/7GUuWLGlTH0866STeffddiouL9/alsLCQ8ePHM3PmTMrKyvD7/bzzzjsHbZuUlER+fj7Tp08HwOv14nK5SExMpKam8QvdpEmTeO211wBjaFtGRgZJSUlt6rsQsUCXhGc37IJ3B4UQol0WPY/69wR8z5+OZeGzxrLqnZ3bpwiFQppfvbOc79fu4EXbo7xu+wszz6zh4jHd8L9/M7b1H+I57je8cPQMXvUeZ2zkb75cgOj65q3eRF/TLpL7HdNsO2tcx2QgvfHjNswmRd/ARsgdTb+sRGq1o9NqIJXX+ahy+VtueKDN36ACbqhq+6xoRStmcnvhbdwUeBVttkNiy9l/x/XLYOiAfqwLdads1dfsrnQTmPO0sdJVdvAGq94l/vnjKfvveSTP+iPzGMEZ1/6eJy8dTYLdyB9RSnH68Bw2uRMIhjOQQuUFEOr8yZK6Co8/iC8QarnhYSYaAaQ8oGEUoyi87CBKqTjgNOC9Bos18KVSarFS6oamDqKUukEptUgptaikpCQK3Y4upRTTp0/n+++/p3fv3hx99NFcddVV/P3vfwfglltu4eWXX+aYY45hw4YNe4d/de/enYsvvpgRI0Zw2WWX7a3HU1NTw7Rp0xgxYgSTJ0/mscceA+Cuu+5i+PDhDBs2jEmTJjFy5Mj9+vGb3/yG3/72t0ycOLHDZksbM2YMV199NUcffTTjx4/nuuuuY/To0QwdOpR7772XyZMnM3LkSO68804AnnzySRYtWsSIESMYMmQIzzzzDACPP/743oLgTqeT008/nZkzZ+4tqv3ee+9x++23t6mPQ4YM4c9//jOnnnoqI0aM4JRTTmHXrl3k5OTwwAMPMGHCBE4++eQm61a98sorPPnkk4wYMYJjjz2W3bt3M2LECCwWCyNHjtx7Puo98MADe1/jPffcw8svv9ymfgsRC5Zt3oGpapvx5AitTyCEOHIFV08n5MxA7VqOKy4fnd4f3UUCSK/ML2TWxlKeH7aGDP8OdFI+5unXE3y4H7Y17+I/4T4cJ99LZloabm0zNpIMpMNaWa2XxPJVxpO85iuF2OOMDKSgJ3qBHW8gyDuLizhzYCLW8o2Y8o5iULdEyoMO9CG+SbWn2sONryzi6Ie+5rx/zcEbiPy70u4qD4Vz3jae1OxsdaAlUFvOzBd/T9Z755OjyqjteQrB0x8BU8tfx5VSPP3T0ax1jCZu90KefeQurOXr0Sh0IwGkUOFcgiYbSTtn48NK9hXPc0zfzIPaTRmUxa5QKrp6F1TvQj01Fla83arXdaTaWlrH8Q9/x93vrejsrhxyqi3DdfbbgVIXAVO11teFn18BHK21vq2Rtj8BLtdan9VgWa7WeqdSKgv4CrhNa/1Dc8ccO3asPrAA9dq1axk8WAq9iq5Jfn9FrCiv83H1X/7LR9bfGQtO+zscc1PzGwkhxOHCVY5+pB8lI2/mrIUjiLOZ+brv26ianZhunt3ZvWvW5pJaznxyFif0iuNfZdeiMwZivuRVfG9eRTAuA/PoS7ANnArA9xtKeOjF9/jSfjdc9DIMPbdzOy86zBerd7Py9fv4lfVd1D2FUD9MrREvzN7KZV+NRR9zC47T/9TuY2ufi3umr+WtJbv5+GwTw7+8BH76Ds/u7suQr65gfPc4rDdEYWr6CN30ymJmbijmjGE5vL+0iLumDuLnJ/aLaNsbX5rPw1vPI8ESxBz0wp3rICknom1rZv0bxzf3YSXACufRZF39P7plR7ZtQxUrvyD1vYsBKNYppPQcjtVXjbpp/6/OVY8dw6oKM/9OuJWHzhlEz4EHTxgERgbNUw/+nF+b34Dz/gMf3Ajjb+6UcjBdyY5KNxc/M48dlW76m3fzUf8ZOM9+FNL6dHbXokYptbip2tTRKKJdBDSsxJwPNHWb5hIOGL6mtd4Z/rdYKfUBxpC4ZgNIQgghOsasjSX01kX7FnS1+gRCCNEeG75A6SD3re1JjTmZPe4gRcFUetQ0PXNuLPAHQ9z51jKcVjMPD9yA6etSOPk1iEvDdu3HB7XPTXbgRjKQjgSLCso5wbyOYPqAfTWOmpDosODCgcVdQ8tTyLRAa0qemMzPayqYOOx2BmwPl6XIHcVAFHU48bmq6Kh5ibXWVHsCJDuNIywsKOfz1bu58+T+3FL8Bx50zmLuzMHs7v0k3Xo1fxN3/bxPGL3pDZItLr60TuXU4BdQVRRRAKlo5fd0++Ze5oWGUj3xd5xxylRUBFlHjUkdPhVfznJWr1vDbTP28Lbpe3JcW/drs2bbHvpXbmBH/AU8fduFe19/YxxWM860PKgC1s0AIFS6ISpDlA5XpbVernhuAdVuP/86M5ORX9+Gs6AMCuceVgGk5kTj92Mh0F8p1VspZcMIEn10YCOlVDIwGfiwwbJ4pVRi/WPgVGBVFPokhBCitXwuflyzmf6mHQQwoU2WDpnKVwghYlVo3SdUmNP5riaXl645mtxkB4vKHShXGfg9nd29Jn004yN67vyUh84bTnzBF4SSe0L38U22z0lx4tHhST4OlxpIpZvkmtWITZs3coxpNWrw2S22TXRYqcNBIApD2Io2rSCrbgOZ5lrO3nQftrUfEBhxKSRkkZfioBZnh9VZrKjzcctrSxj14Jc88MrnzJi1kPs+WEV2kp0bczdj2fApOnsoJ7GQgq//0/zOtv7AwC8u4ybLJ9TYsvl31bHG8uqi5rcDFqxaD+/9jD2kkXj5K5w59fQ2B4/q2TJ6MejoqexS2ezwxoF737xUwZDmiVffw6qCnHrK6c0Gj+rl5vcCILQpnAlW2vxM4UeiUEjz3Kwt/PLNpVz8zDx2Vrl54ZpxTF19F8kqfF3oIsOco6HdASStdQC4FfgCWAu8rbVerZS6SSnVcNzDecCXWuuGf9mzgdlKqeXAj8AMrfXn7ehLWzcVotPI762IFaFP7+JXGy7jOPNqCkLdCFkTpYi2EOLI4a0huOFrPvGO5q7TBnN07zQuPCqfeaXhQEvNrs7tXxOCIU3O0id4zPZvzsgsw7T1e9TgM5udbSvBbsFsjzOeHA4ZSEWL0P8aD3OfarltO4S2/AC+rhNwc/kCDCr+DDMhzKMvbbF9ksNCnXYQ8rT/2j/vc2PQievqr/Fd9Dr6l6uwnG/UQc1IsFOrHZj90Q/4fb+hhKmP/8CStRt5Pf1F7tt0KcO/upSdFbX86awBWL66l2BqXxKv+5htll5Y9zRfw2bXJw9RrFN4bdK3OH6zBk9KOMukqvkA0nuzV5D09oVkUoXl4pcYNaBXlF4hOG1mBucksqnOjvK79v5O7qn2kFO3FoCUfhMi2le/vv0BMPldaGXGVLW9S/2Od7Rql4c7XviKP89Yy8KCCqxmE89eMZZxccWYdy9j5YBbKNVJVO4p6OyuHjJRyVDTWn+qtR6gte6rtX4ovOwZrfUzDdq8pLW+5IDttmitR4Z/htZv2xYOh4OysjL5Mi66FK01ZWVlOBztThQWot3c25aQRjWj1CY26Ty8ZqcU0RZCdAnBko24F71GcPP3bd5HzbwXsYY8bOt+Dtcfb3xJvGhsd3brtHCD2AwgzdlUSt/QFsyE0G9djgr6UIPPanG71OTwbLFdPIC0bedO3G9chQoFjOLGHWXHEkz/OwtWf9Bxx4iyZdsqOM/0A2VpoyG9b4vtEx1WXLS/uPXCgnJyi3+g1Nmb9J7DsA09E1NK/t71yU4rbuXEGqyDKH138/iD/OHDVVz1wo/kOb18k/UE490/4O09hR6mEpb91MTJNR9hrtiM6bS/gMVGXfowevo2UlnnbXSfG5bMJKdsPl+nXMhPJo/GarEwun8vXNjRTQSQgiHNM+98wrAvL6WvaRf+i18je8hxUXmNDY3unsraynA1mnAW0s5KNyNNm/E4siKuzzSw/4C9j1XfKcaD8s1R7WtX9sWLf+KJootYkvpbvhryOR9PCzCpfwZ69ftoFDnHXspunYa7dHvLOztMRKMGUkzIz8+nqKiIWJyhTYjmOBwO8vPzW25Yb9V7hJa8hunK9zuuU+LIEwphq9zMotAAjjJvYY3uyVG6nLhOmmJXCCEi4nfj+vDXxK16FSegE3PhV2tbv59ggNC8f7EwNIBLzz8fFc7e6Z4WR1pOLygjZocofLFgBZNUJdqehKrYSiguA1Mzw9fqZaUk4q+2YO2ALJBDacUr93CaeyfanohyV3bYcQIr3jW+OLlKO+wY0Va9dRHHmnZQNjKyWY0THBZ2aHu7bx69O2cNfzavg5G3NLpeKYW2JWAOBiDgBWv7bqRuL3dxzUsLOaXsdeYnLyA95MNSW4y+5E3i+04m9I8hqDmPQ/FqAr2nYBlgFJNP6n0UGcUf8+2qNUwZv3+haX8wxI4Zf6cb8Zx+9b1YzEbexegeqexYlkFOcQEJB/Sjzhvg+ef/xQ17HsRvjYeL3yJh4Entem1NGdMzhc9+jAcb4CqD5Hx2VLoZobbgyx4VcQ0rW0IqPmXDpn0Ehl2MZdNXxjC2bsM7pN9dyeerdpOyey61jnTisvpgW/4SpiX/IXDsHaj1M6DHsWTk9GSjTqNbXWzeYOgIh00AyWq10rt3787uhhAdKxQi+M2fMFdshaAfzB1VelAccaqLsIa8LEg6lbHXXsc3L27kbN8aMny1ND0IQgghOpGrnPJnTieteh3PBKZxXn8rWYWfGBkNzQzfakxo7Ucke3cxM/167src/2vh+BFD4Tso2bmVzBj7TlXl9rNrw0Iwgzr1z+hPfgkDTweTucVtc1MceLbZsHbhDKTVO6voW7eE2Xo445LNxLkrOuaaFQqh6jOPPFUdcYQOYS01gqkJg0+OqH19EW2Tv+03jwLBEP6N32IlCINOb7KdsieCCyNY1Y4AktsX5IZXFjO4ejZ3W9/ElzqakC2R0JmPYh5gvG415krUrEfRyozl9L/u/fuQO2QCLICiNXPhgADSmwsKOTOwgpo+p5OXmrZ3+egeqezUaaSVb98vgFTnDfCzf33O05UPU53Yh8wbP0Ildmvz62rJ6O6pvKYTjSeuMgD2lJRwjmkXvp5XR74jpQjEZeOvLeZr3yjORqFKN0a/w11MnTfA76ev5CvLZpyDz8B8/jPgc+GfcRfWuY8ZjY65kQS7hVJTOk7PkZO1JUXWhehKNn5pBI9ACkWKqPLsXg9ASvehkNab/nmZlPps0auBpDUEfNHZlxDiiBesq6DoyanEV23mgYT7eTj4U9bp7qiQH1qbOak1Nd8+xtZQNn2Pu/Cg1aeM6U+NdrK9YBPB924k8OaVURt2017vLymif6jAeDL4LPRVn2I6+YGIts1JduLSNoLervt54u056xigilim+1IaiIMOykDS2+djrg1noHmqO+QYHSHgMoJd9sS0FloaEh0WanG2qzbR4sIKpga/x2NLbbaQu9kZHkLZzkzne6evpHx3IY/aniWQNQzbdV9gv/ZjzIPP2NtGjb0GbbISGnsdZA3au9ySM4IQJgJFy/Yrg1LnDfD2N3NJU7XkDjl2v+P1yYinxJyJrXb/jMTPV+3m0vKnSTG5ybry5Q4NHgH0TI/DZ081nriMIWyhPasBsOWNatW+HN0GssYyhP/M24NO6YmWQtp8tHwnjrrtpOgqzD2ONhba4rCe9RiBvKPRJisMPgeAWlsW8cGqLj8cOFISQBKiCwnO//e+J0fIHylxaBRtXA5An0HGHbihuclUBKwEozATCwAr30H/JQfvh3dAXVl09imEOPKEQlTNfZGq/zuKLPdm3u33F+674w6G5CaxujKcldvaIUbb5pNcvoLXTNM4ffjBQ8qzEh1UWzMw71mBadXbWNZ9iF7xdhReTPsEQ5qX5hYwMWEnoaR8iEvD1GsCxGdEtH23JAdubcfj7pq17mo8fraunINZaUoSh7HdYwdPRYccK7jyfUJmBzo+q0tlIAXd4WCXLTGi9naLGY9yYAm2vYjyouXLONm0GMZcBeamB7tY49ofQFq1o4r3l+zgpW7vYQt6sFz8EljsBzdMzkfduhDzaX/Zf7ktjuqE3vT0beT/vtywN4j05LcbyXcbN9ZU7v6ZSSaTguR8EoMV+83MuGrRD5xjnos+/leQNbjNrylSSimS0sNBqnAGkrNsnfE8e2ir9mW68Hm2n/QUa3ZVUxnXE10iAaQ3f9zGmSnhOlf54/atsNiwXDUdfeNsSMgEwBuXbayL0WHO0SYBJCFiWV0pwQ1fAVC8fRPmrTPxpPQz1h0u0+6KmFC9fTVVOp6Rg4zfr57pcdThjMpMLABsXwCAbdnL8NlvorNPIUTXU1fa5i+M/l2rqX7mVJK//CXbAil8fcxLXHbFDVjMJsb1SmNZWXjYlqu8+R0d2KWZj1GuE1CjLsNpa3zolzUln5GhNSgdIpjaB/35bzs9GP7tumIKy1yMsm5HtaFeSZLTghsbQW/X/Dzx6cpdDAoaX3ST+41nS621wzKQVOFsgj0nQmJOlwog4a3Bg73ZQM6BAuY4rO0IIKWv+R8ohWPCDc22s8enAKDbEUB6cU4BU20rGFzxLXrSryGjf9ON03o3+j4k9RnHOFshT323kT9+vIbZG0v57w9b+EleqZFl0kgwJiGzFwB1pdsAYyhpetFXhDBhGX9jm19Pa2VnZRNC7Q0gpdVuwKXiIbkVtVUBnCmcMW4wyU4ry91ZqLJNEAp1QI+7hjU7q1leVMXZGTvQ1njIGrJ/A1s8pux9mWyhhFzjgQSQhBCdbvFLmN64GLy1LF66GIBNCWONdRJAElFkKd/Eblt34uzGHfwkp5Va7UD5oxNAqtu5nt3OAdDrOHTlkTNThRBif6GXz0F/elfrNiqYjf/x0Vj/cywUr+F+bsJ1xReccfrZe5sc3SuN4kC4IomrFYGdss04t37Ja8GTuey4QU02y8zrBcCqUC/+FP87lLscveDfTbbvaOV1Pp7+bhO9kxSJdQWonJGt3ke83YIHO7oLTtkd+s+JMOv/ONZRQCilFyMH9aM8FIfyVkMoGOWDhTBVbMWcNRgcSeguNITN5KvBY4pv1TZBazw27YVgoNXH27qzhNN9X7I162RIzmu2bVxCMgCumrYF5IprPMxYXsRDjlcIpvXHNPEXbdqPqecEkoLlLEy8i7oFL3H58wvISXYy0bkNnT200Yym7O7GjHbud27E/78L+HbldqaoxdRmHQXx6W3qR1v0yUqmUsfjqylBa02ebwvFcf1aXQMOwGE1c/bIXD4rzUQF3LBnVQf0uGt448dt2Cwm+vvWonPHtFhTTtX/rksASQjR6dwVKB2C6p1s3mzcZduiw9NydsEPfCI2Vbn9ZPu34U/tt3dZosNCHQ6jDkIUan24dm9gfnUqLuUEn8zsJsQRyV2BqXgVes+aVm0WmvMEQXcVfw5exdVx/+KaW+/n2P6Z+7UZ1zuNMsLDdOoiH8LmX/k+JjQFvS+lV0bTX7RVkvEFoXbg+by0KY4dacegl73RKXfp319SxORHvqP/zg95KekZ43NCGzKQ4u0W3NrW9QJInipMu5ZwXtUrjGcVKu8ojumTTlV9SeNoZwhV70AFPGxXOShHMngqo7v/DmT21+KzxLVqm5A1/P+gDXWQVi38jmTlIuWYK1tsm5CYAkBN9f7DDuu8AWauL+avn67lkmfnMfmR73j0i/WU1Hj3a/fMzC2M1qvJ8O3APOW3jQ9di8ToK/Gc+RRJ6Tk8Yn2W3+ct5omfjMSyZzmmvDGNbjJg6FH4sWAp34h1y9dYv3uAIaZCEkee3Wj7jtI3M54KnYiropjKOi/92Y4rtelAeEsuGpvPd/5wxtWmr6LUy65l2fZK3vhxGxePSMdSshpT93EtbmNPMzK+/JU7Orp7MUECSELEsnBab3VxIa4yYxzuGk+4toFkIIkoWbJhG9mqksS8fWP2kxxW6rQTkw5PsdsO67bvIT1QzNZQDhUBe7sLZgohuibfdiOTVlUWRL5RKESwcD4feUbxQ9oFPPfzM+jdSKAnI8FO8gH1QCJRvvIr1oZ6cMHksc037DYMbUtg/Fk3MGVQFv9XMg5TdRFs/X5fm8rtHR5QemnOVu58ezlXp6zgEet/yPNswN9vKvQ6rtX7SrRbcGPvejUVKwoBsKkgzmANKv8okp1WgjYjowV3lOsglW0C4NHFQbQjGbxdJwPJGqwjYDlwsvnm6foAUhsma9m9eQUAGX1Ht9ASElOMwt6umkoASmu9/OQ/85j8x/f4+0vv8uKcArSvjp+bP2D47Fv44pHLuff9FfywoYTHv97AC3O2ckf2cqO/A89o5kgtMJlwjLsC+3Wf4+91IteWP8ao9Y8Z2Wy5jb+OuIzurL98CeMD/2FWaDjT3B8CoAad2fZ+tEHfzATKScRXU0Lx9o0kKjehrNbVP2poeF4yadk92GLuQ3DD1/tWBAPomj1R6HFsq/MG+OWbS8lKtPPb9O9RoQD0a3kGw9SUVKp0HO6ybYegl51PAkhCxLLwF+11G9aRRTm1xLOu2maskwCSiJLCDcsAyOk7Yu+yJKeVOsLT6vraN4xt+rezMSlNAd0o8dkkgCTEEejZHzbzn9ffAUB5qiL+kl9RuAKrr5qN9mG8+rPxpMXbmmw7qEcuPiyRF9H2u0ktW8Jy60gm9G1h2MmQc1G/3ohKyuGRC0ew1Hks1cRTOe8lAELL34LHh8HKdyI7dht8vmoXD3y8mqv6ufml+ymCOaOx3LES6+VvgzOl1fuLtxs1kFSgqwWQCgD4zDLFeN7jGOPfuPBMY1Gug+QvMQJIC6tTKfbZu8wsbG5fkDjtImRrXQCJ+vatnIW10uXDVrEBrykOkpofvgaQkmLMIOauMzLGZm8sZcHWcp7PfocZ9ntZdmEdryY+zUXV/+OExB1cbvoSz5K3uPKFH3n8641cMCKDsa5Z6EFngtXZutfYGIsN609fw9/nZCzz/2ksayKABDCsX0/+7+LRfJl7CwCh9P6Q3rf9/WiFHulxVJIErjLqthuToTjzR7SwVdOUUlx4VD6feYdhKlqwL5tv4X/hiZFQvSsa3Y5Z0195gt9U/4XnJlbhnP8Ygf6nQa+JLW6XmWhnt04jWCEZSEKITlZfWHBH4WZ626rwOLPYVhse19zV7hiKmBXYtggAW+6+IRCJdktUAkglNV4KN6w0dpPch50eqxFAipEpsIUQHc8XCPHsD1sZGNy4b2E4CHCgQNFSfEvfAiAU0kz/6D0ALj7/IrKSHM0ep09WAuU6EX9NZAGkyg1zsOHH2v8EVEs1Q5QCmzEUKD3Bzks3TOJL03HEbfyYWX8/Dz3d+BKpN38T0bFbq8rl57/Tv2Kh83b+WPQzVMiH+cLnwWxt8z7rayCZulgAqbTIGNJfMPY+uHke5B0FgCU+PKV5lDOQKravwaXt7CGVVWWgfDXRr7PUAcrqvCTiBntkM7DVMznCAaRWXvtnri+hL0XGcPgIavCkpRoBP184gLR2VzUOMwx3LUShifvwZ1i3fos+6wnsv15NMHcsDye8zrtXDuC5K8fy8OhSTN4qTCMublU/m2WLx3b52wTOfILAiJ9CZvOzqU0bkcufbvopgVMeQp10f/T6ESG7xYzPloLNW4HebdQsSu3d+npoDZ0xIofvgyNROghbjAzL0Lb5qICb0I/PtbvPMUlrtrx8I5cVPchU82KGfHsNKujHcuCsfU3ISnSwW6dBjdRAEkJ0tnDk31exnT72akLx3XDr8BjvNqQWC3Egjz9In6r5lNvzjBlKwkwmRdASTmNv5V3IhmZtLKEXxh2r+NyBbKs1Gx9KJAAqxBHjs1W7KK31cKyjgHW6h7GwkQDSzjlvYHpxKrYPb4DitbyxcBsppYtx2TLpP3BYi8fplW7UA3FXFUfUr8JFnxLQJkZNbP3wl14Z8Rx9zaMsSzmFce7ZbA7l4O4+CV0wp9X7isSfZqzhHO/HpKtqfFMfRt00u93ZDvE2M25twxz0tNw4hmxct5IKncBFxw2D7H2zI9kTwllkUa5R5CveRKHOZmT3NBbvCQ9R7ALD2MrrfCTgxuRIatV25r0BpNZ9zvx67R4GmHfhzItsCFVqgpM6bSfgNm6WrtlVzelpuzB5K1FnPoq3xyT8J/4B01FXgcmM+ZwnMfmqGfPBCRw/92rUez8jFJcBfU5oVT9bpBSWcVdjOf/fEc9eZ5l4K2rIoa1/VE/FpRMfrCJj1w8U6m6khjO72iovxYk/dyx1Ko7QRqMOkt5pZDex+EXwd62/F5Go2b6SPlvfZIb9dIJ3rMU99maCpz8c8d/YrCQ7u3QadtfuDu5pbJAAkhCxLJyBlBEqI11XYEnNw0U4gCRD2EQUrN5WzHi1mtr8yQevtIXvWrYjA2nWxlIG2fYQSsimT143drjDH8ZkGJsQR4yX5hYwLs1Dgr+MXfmnA1C9a9Pe9Vpr/vfu++R+dRPL/N3xYKP4y//jkS/WM9G2EUffYyPKaOiRFkeZTiRQUxJRvxzbZ7PBMoC+3XPb9Lp6dO/B0Xe8RcXNq7lUP8S7tcONukiV0auDEVr4IoVPnslXi9dxkW0eDD4L24QbUVEYKmMxm/CbHFhCXecL4Z5qD/7SrdTF5ZORsH/RZGeyEUDSrvKoHtNetYVtKofbT+pPsT98zGgX6u4A5XU+EpQbizO5VdtZwgGnkKd11+lVm7eTRTnmrIERtTebFG7lJBQeErh2Vw2nOVahUTD0fOzXfox18p37Nsgeir7qU/yDz0V5KvENuwR15fR2ZeEdDuzJWVgJ0NO9mvfif9JyNmUEThmez+zAEIIbvyXkrsZcuZW5wSGY3GWEVrwNgN61HM9XD0GU/791hiULfgBgwLQ7sSVn45z2Nyzjrol4+7Q4G3tUOoQCXSI7sb0kgCRELAvPVpWnSnF6S4jLMD5YAxJAElGxY8VM4pWXlOGnHbzS3rY6CPV8y94led3bDHOUoNL7MTgnkRodrlMgASQhjgivzt3M0B3v8IeUzwAYMvFsynQiWzauBoxhan/8eA1Jy/+L2xTP8hNe5CN1IskbP+AE3/dkBYsx9ZwQ0bF6psdRQSLK3fIXmrq6Ovr5N1CXc0zbX1xYTnYWPz91BK/t7m4siFIWkq+6lMDn99KzfDafJj6EM1hjZGNEUdDswBbydJlhxa/MK6Q7e0jNG3DQusQUY2Y+b00Uv9AG/aT6dlEb34vRPVKo1uEZzbpAHaTyWi8JuLHFty6AZIszbh553JG/xuJqD2muLcaTzMhnAfOY4sBXS0mNl9JaLyO8iwnljtlXz+oApp7jsZ//NLZb5+E493FUG2YfPNwkpGYB8I3pWE796Z0ttI7M6cNymBMairW2iM/fex6AGfHnsTrUE/en97F98WeEXrkQx5yHCT55FMG1M6Jy3M6gtWbPhoX4sNJ/SOOz7rXEZFK84biEPwz8CEzmKPcw9kgASYhYFv6S3d+0A6WDOFLziI+LJ4QJutq0uyIm2Qq+xY+FpMFTDlpnctRnILUt2BP87i88oJ+mt2cdKr0fg7olUUt9ACn2P3wLIdrn3cVFbJzxBH+2vsiwne8SsieR3X8sVY483Hs2s239Uj5+5rd8PW8hZ5kXYBt7BddMGcHxV9yPVQV53PIUwfhsGDQtouMlOqy4LKnYvS0HEHbv3IZZaWyZfdr7MgH4ybjurNf5eCxJ6ILZ7d7ftjIX7zz5K8wBF3Mdk8jzFxJK6QW9jm9/ZxvQlvDf5EDXyEKas2E3+aZS4rsdnIGVlhRPnbbjibAGViRC5YVYCKLS+5LosFJDfQAp9jOQqmpqsKogjoSUVm1nDweQvHWRX6dX7ayirylc/yUzsgwkAL85DpO/lrW7qkmmlm7VqzD1O6lV/T3SjZh0DmtyzmPcbS8zLD8lKvvsnRHPngwjuN5rw4sA3H/DJbzf7yHcAU33jy/B66rmq2F/J5iYi3rvWgjXYOpq5m4uI9ezkdrkAREPWWxMRpKTktr2zVrcVUgASYhYpTV4a/BpM2bCY+6TcumVEY9XdcFpd0XMCQRD9K5aQGHc8EaLbFrqA0htyUDye7BXFVCjnZh0ANL7kZPsQNcPi5MMJCEOa0UVLp6Y/gO/sb2Dv9cJ8OuNmH65AqwOknL6kRPaw7ZXf845xf/m67h7MRHCPP4GAHL6DCM49WHcpz6M+ZfLIaV7xMfVcenEhWoh6G+2XcUeY5hZQkZ+m19jQ/F2CylxdrY4R7S7DpLWmv+++TYX+Gewu9e5TPj1ewSGX4LplD+CKbof3UP1s1d1gc8Udd4AJbsKsRKA1F4Hrc9MtFNJAr7a6GUglW5bC0BC3iDMJkXIFs7m6QI3QeqqjWLi9tZmICVlAxCoiryey6od1fRXO9BmO6T0jHi7gDUBq7+OtbuqmWJaiiKE6n9qq/p7pHNm9GTIjS+RFM5EipaHrjsfjyOLIaZCQs507Knd+f2VZ6Euf5+S+P48nnw31y/qzvWh3xKwJhN44zK8675sV93MzvD6/EKGmreR1Ltt2Uf1shIdFFdLAEkI0Zn8LpQOsVXn7FuWmEOv9Hhc2g5+KaIt2mfFsh8ZSCGBfo1/WLM66zOQ2vC7VrYRE0Geib+JwMl/hhEXo5QiOSVc5LQddZWEELHvT5+s4TfqVZymANaz/gEJWeA0irtm5A+gp7mE48yrKe42GZsKEhpw+n4FS60TbsB57I2tnp7bmphhPGhhJq6a0iIAUrMjD061JD81jlWmgZgqt7ZriNPStx/iD8V34Hekk3fen1AWG5YL/gNDz41aX/faG0CK/azmpdsqyWeP8aSRAFJWop1qHU+wLooBpO3rAcjtYxTrVs5wQeoukIHkrq0EQNlbV0Q7Pj6OEp2MriqKeJvVO6sYYd9lTGXfiiE8trgkrME6npu9lYvs8wkmdYf8sa3qr+gYGYkObP1PNJ50G763Dl16/3Fk3rWI391xJ0/9dDRLyqxcUXMLwZo92N+8iOC/JkLA14k9j1wgGGL9xvWkUoMlt32z12Ul2imukQCSEKIzhTM0Num8fcuScslPi6M2ZCMkQ9hEO9XOexG/NtNryrWNrt9717INQ9i2r1sMQO9hE7EcdxskdgPA5JQMJCEOd99vKGH3mjmcZZoDx/7i4JlsUnuhdAhttpF1xQtw+0rMF0ZnemhnspE94a3a02w7b4Ux3CY1K5oBJCebvOEv67XNH78pFVuXMWrtoyy2H0387fNblX3VFiZreEhWF8hAWlhQTk8VnmGvsQykBAeVOgHclVE7Zl3FbkJa0bu7MXug2ZlirOgCNZC8deEgVyMZxs1JsFvYqdMxVe+IeJtVRVUMogCyhrTYtqHu3bLJtPkJ1pQwXi+HYRdEVDBfHBqmvicY/+Y0Xmtq2ohcvrlzMj1Hncho19N8lnc75qoCKGz/MN5DYeWOKnr4NxtP2llPKzPRTq3XTzDUNerJtYcEkISIVeEv2CWOXgBoZYb4TJIcFtzYCXokA0m0XcDnYVjpDNYkHosjpVujbeLjnHi1Be1pfbbQ2uUL8Gszp04+dr/lZrsEkIQ4nHkDQR74cBUPOt8kGJeB6bhfHtwo/OU/NOR8iM/AlJgJtvioHD85wwgglezZ2Ww7XbOHICZUQvSGfeSlOFlfF34dNbvatI9t7/6OOu0g47L/Yopr33TckVC2+gBS7N+UWlhQzujEKuPzUNLBQw+TnBZqVDxmX/SygwK1pVSreOKdxuxr1vgUY8UhykDy71qFdjWfTdfktq62BZASHVZ26XSsdZH9DlfU+XBUbyYlWI65T+tqdJkciaSrah7Om4WZEOYRF7Vqe9HB+k5B2xKgzwlNNslKcvDwhSM5b/wA7twymqDZie4iRbXnbi5jiCo0nmQPbde+fnFSf9Y+eBpm0+EfAJUAkhCxKjy+3p8WLkaYkAUmM4n1AaS2DCsSImzDD++QRg2BUZc32SbJaaUOB/5W3mndUenGXLaOcmdPkuL3/1Jork//7wL1I4QQrffcrK0MrJjJyNAaTCf+rvEvr7mjCfY9BfOkX0X9+OlZRtZu1e6teNZ+0eTsYpa6PVSbUqI6Y05+qpOiQDhzsyby+jH1ls75gpF1c1je8yr69uwRtX41x2wP/42O8QwkfzDE0m0VTFJL0ZmDGi12q5TCa03G5o/e9UW5yqkz7RsClhTnwIXj0ASQQkHML51O4M3L2zRLXrB+FrVWBpCSnVZ26TSc7l0RHXf1zmqONRmzKtJ7Uus6OewCAE4ue41A+sB2f4kXUZbYDfXbIuh3cotN7zl9EMmJScxTo9DrZkAodAg62D5zN5cyPm4HodQ+rf5/ciCr2YQ6QrLnJIAkRIzy1hofTpKz8tGOZHRiLmDcGXJrm2QgiXZRy15ht05j6PHnNdkm0WHBhQO/q3Ufxmes2MkAthPf/eB0YLsjDj9myUAS4jC0o9LN29/+yCOOFwhmDUeNaWLKeUcS5ivehcyDp2Jvr5wc41rZb/GDON66GL3ynUbbOb2luGzpUT12fmoce3Q4a6iVASStNTXf/5NKEhl3ye+i2q/mmO1dIwNpRVEVo4MryHVvwDT+xibb+W3JxAWiF0Cy+CrxWvcVoU6Js1JNPHg7LoCk64M2pRsxeauxbptNaNUHrd+Pt20BpIwEGxXWLGxBV0SBsrW7jACSP7F7o0MLm9XrOOp+NouqfuegJt8tw9diUYTnJNFh5Rcn9ed910hMtbtg19IO7lj7ePxBlhaUMia0WuputZIEkISIUTuLjfoJednZ6MzBqKxBQP2Xejs6xj/sidjlr9jOgNofWZFxBg67vcl2SQ4rtdpJyNO6YM/G7bvpbiohoZEAUoLDSo12olu5TyFE7PvLJ6t42PRP4kwBzBe/2K4pkdsqOc0YkmsP1hF0pBH84bGDsijcviDJoXL8zsyoHjsv1UktTgJmZ6sDSAvWFnC0dz67u5+BPa51s2a1h8VhZCAFvbH9mWL60h3cZJlBMC4TRvykyXbakYINX1QyqrTWxAWqCDjS9i5LcVqpCjnR7g4KINWVEnj1QqjeCTuNL+DBhG6EPv8tNR/cSfXXD+Ovbrm+ljcQxFQ/WUUri2grpbClhWdSi6AOUmmNmwmmNag+rcw+Ckvq1oeky17GPOKCNm0vYsfJg7P4NjSaEGZY92lnd6dZS7ZVMCy4jvhgFaZBZ3Z2d7oUCSAJEaOKS0oA6JWbjemyd1BnPAoYxQ092FESQBJtVPTtc5jRxI+/utl29UPYgq2sgeTascp40EgxzXi7hVrtJNgFZrARQkRu1sYS/GtmMF6twXTaXyGjf+d0xGJjc85Z3OW/gTUj7sZSugY2fLFfkx2VLrJUJSqx8fpvbZWX6gQUtbaMVtdAWvrVqziUnz4nXRPVPrXEFg4ged2xOzOme8mbnLD0l0wyLTeyj6yOJtvurRsVhULapbU+kqnBFL8vUy05zkY1cQRcHXQN27UM6+avCa18F71zKQGzk9LT/wtA3Np3SJr9EOYnhhNY/Gqzu9lSUkci4SBaG4bmpOb0AsBXvr3FtvGVa0lRdZj7TG71ceodKUN/DndZSQ7y8/JYbR1KaO0nnd2dZs3dVMZUy2K0yQb9Turs7nQpEkASIkaVl5cBkJOVBY4kCBe6THRYcWk7KsbrFYgYFQqRtO5NFuihjB0zptmmSQ4rddoBvsi/WLh8ARKqNhpPsgYftD7BYaGWuH21GYQQXV4gGOKPH6/hVsfnBJO6o0Y3XVvtUOhx3f9YmHIG96wfQDCpO8FZ/9hvfVFZLRlUYU3JiepxkxxWkp1WKkzp6FZkIK3bXc3Q0i+otOdi63lMVPvUErszAQCfO3aHxVtm3MFwNrKjz09Qx9zUfNtwsCdYXtDu4xZVuEilFmvCvgBSitNKjY4jGMWZ3vYTHt4d2vAlu9fNZ6m/O3fOs2G5az2m327DfcM8fNmjMH1+F1Rua3I363fXkKDcaJMVLE1nGjclt4cRAN69fVPLbSuWAKB6t66Atjg8TRmUzQfukZhK10HZ5s7uTpPmbirhDOsSgr0mtbv+0ZEmKgEkpdRpSqn1SqlNSql7Gll/glKqSim1LPxzf6TbCnGkqq4sB4wZKhoyimjbMAclgCRaz79lFun+3WzMPw+7pfnisYkOC9XEY/JURrz/tbtqGKCKCJgdkNLroPUJdjM1OAnFQADJ7QsSCMZ+kUchYt07i4tIKlnCiNBazMfe2ilD1xqymk3cccoAVu9xs677JZiLFkDJhr3rS4t3YlaahPSDZ/Jqr/xUJ8U6pVUBpJmL1zDRtArLyIsPeQ2YvQGkNsy2eUh4a7AGXbxnO4fcK/7T4he9uvzjqNJxuGf+o9l2kdhVVkGc8uJM2TdTn1EDKQ5aOblExMIBJNO2eaRUrWWzpT9zNpWxcU8NSimcuUNwXPwcAL7ptxNqYujh+j01JCm38X614XdqYL9+BLSJyt0FLba1ecsIYIbE6AZkRdc0ZVAWXwbDNYXWxeZsbDUeP+6dq8kJ7cYyRIavtVa7A0hKKTPwNHA6MAS4VCl18LgFmKW1HhX+ebCV2wpxRNFa46qtxK9sYLHtt84IIDkwBySAJFpvz7zXcWk7ece0PFVuktPKbp2K07Mn4hlg1uysYoDaTiBtIJgOvsTE24whbNrbuV9W3l60nVEPfslLcws6tR9CdHUur585X7zDI3GvELInQydnH9U7a0QuA7MTuX/rULQyE1r2+t51NaVFACRk5EX9uHkpxkxsqjbyv5vFq783AlrDp0W9Py1xxBkBJH+MTszhKd8JQPcevSMa5pSansV/AtNIKPgSXbSoXccuKzaCgElpBwSQdDwmXwcNYasPIOkATuXj9FNPx2Yx8fK8AkIhjT8YgpQe6Cl/wFbwLTzcG8+/JuF+5mRqP74bb9FywMhA6ubwtzmzIic1nhKVires6SynesrvwqscUgBbADAiLxlPfD6F1r4E18ZmAOnHreWcygI0Cgac3tnd6XKikYF0NLBJa71Fa+0D3gTOOQTbCnHY2l3twRaoI2BNOGid02rGgw2L9kEo2Am9E11WMEBKwWd8z1EcO7h7i80THRZ26XSsIQ+4KyI6xOqd1QwyF2HLbXwqXmMImxPlO3RFtEMhzfZyF9+tL+bp7zZx8X/m8Zt3V+ANhHBvXUDwuVMifn1CiP0tfP1PPBV8kHxLFWraP8B+8HWrM5hMijtOGcDichs7MibC8jf2XjNdZUYAyZQU/YyJ/NQ4tnoSUP66iGab3FbmIrl6LSFMnTKFuTPOqIEU8MZmAKlw2xYAsvN6RdS+b2Y8LwVPw21NITTz7+06dnW5UazakbSv2Hqy00oNTiy+mogDhK0Szmyq1k7jeH2P5uyRubyzqIij//INQ+//ggv+PZe/l09i7sTnKB90KSFHKigT8Uuew/7cJLz/PIZuO74k2972AJJSihpbNtbanS22NQVc+E3ONh1HHH5MJsWVE3ryvmsUpqIFUFvS2V06yNxNpZxjmYu/+wTogOvA4S4aAaQ8oGGFtaLwsgNNUEotV0p9ppSqv0JGui1KqRuUUouUUotKSmLvF1GIaNpaWkeCcoPt4Au/UoqgpWtMuytiS3DrLBKCVRTlTm1x+BoYw0DKzRnGk+qWP0QCbC/aTiaVmLIbTyZNCBfRNrWirlJbeQNBfj99FYPv/5zjH/6Oa15cyCNfrKfa7ec3pw1keLad87c9hLnoRyjf0uH9EeJwU7R9G0cVPMuquPHY71qDGn5hZ3dpP1OHZjMiP5mnK8Zjqt2N3vQN/mCI4p3hrIqE7Kgfs29WPNsD4VnUIhjG9uWa3QxRhfhS++6tdXgoJThsuLWtyaFQnW13UQEAPXv2jqh9z/R4fCYnG5KPQ+1Z2a5j11UUGw/iGhTRdtqo0vGYdKBV9QEj5q3Bb47jh9BI4yZiej9umNSH/FQnE/qmc+WEnmiteWluIT/9Jo6xi0/hnMo7eaLHkyy9eD7VU/6CDni5x/dPMkw17artEkzMJyVQjNvX/M1KS9BlDFsXIuzqib34wToBhSb443Od3Z2DFK+fTx+1C8vISzq7K11SNAapN5aveGBIfgnQU2tdq5Q6A5gO9I9wW2Oh1s8CzwKMHTu2A0L+QsSO7eUuMnBjcjY+9aq2xoEfY5paKfwmmuJzEfz+Ycwn3A1WJ6U/vkWCtpMz7uyId1Fty4YAxlS+3YY129YfDEHJOuPK0kgBbTBmYavBidnfsQGk8jof1728kCXbKrliVDLn+T7B0edYckafRmq8DbSm+6K/kxcI38MIeDu0P0Icjta/9Tsm4yX7on+0qVBvR1NKcf+0Ifz0mVLuScwkfsZdLDrlPRL9ZWClQwJIE/tm8AnhmcBqd0PmgGbbf7lmD09btmHLOyHqfYlEgt2CCztBX2wGkKqKjWyxzJyeEbW3mk30yohnlz+eEa4yI0uojUOrfDWlxgNn2t5lyU4r23V4SFv5FsgZ2aZ9N8lbTY128nLiDZxycT4Wk5kB2Yl886sT9mvm8QdZtaOKRYUVzNpYwnOztvDM95rc5EE8MvIuJv54M4nVq1DZp7S5K7b07uSUfsfG4hqG5ac02kZrjTXoIeA89MFPEbuSHFYmTZzMZz+M45S5/4Tx10N8Rmd3C4Bqj5+RlV8RsFqxDI3887DYJxoZSEVAw7EQ+cB+t6q11tVa69rw408Bq1IqI5JthTgSFZa5SFRurHEpjTewhlOFfbGZci5ixLZ5mOc8BgVzAIjb8iXf6TFMHtLy8LV6dY7wNNdVRS22Lav10UeH7+xnNZ+BZAl5IOiPuB+tUenycflzC1i9s5q3p9TywNbLGLPl3wz+5iqc8x7B9dVf8T05jrNq32az6mFsFPB0SF+EOFytWL2KyTUzWJt3IZm9mw8ud6axvdI4d2xvrnPdiql6B+mf3cBYy2ZCjpRmp4Nvq57pcajE8N/NCDKQSvfsJFOXYop2ICJC8XYzbuwQowEkb+VOfFhRzpSIt+mflUCB24kK+iIaRtgYrTXBOmM2XOL2BZBsFhM7LeHi66Ub27Tv5vhc1ZQH7YwZPgR7r/FNtnNYzYztlcZNk/vy2nXHsPi+U3jiklG4/EFumJNAjXaiCLXrJmNC3hDsyk/lvJeabOPxh3BoDyGLBJDE/n52fG9edlyBCrjxfPVQxwz5bIPiShdnmeexO+t4cKZ2dne6pGgEkBYC/ZVSvZVSNuAS4KOGDZRS3VS48p1S6ujwccsi2VaII9G2chepZg8mR+MZSMpm1CzAL4W0RTPqA4yuUnTAS2KgDG/qABId1oh3EYzLJIgpoiFs1R4/A9V2fJakJmdjSbBbqCP8pa2NH+yb4/EH+c8zj6GK1/LsFWM4au3f0PGZBK/5An/f03DMfhjnnL+jrfFM7/V7fuu/zthQMpCEaJXCb5/HokL0PSf2J9C95/TBbHUO5e+m6+hXt4QT1BJI7tEhx1JKMaCfMQV6sHpXs22DIU2uJxyEyBnRIf1pSbzdgkfb0DH4ecLjD2JxFeOyZ7Qqi6h/VgKb6sLXGVdpm45d5fYTHwzPtNYgAwmg2tnDqFlVuqGRLduntqqcWu1k8oDMlhs3kBxn5ZxReTx8wQjqgma+Z4yxoh0BpLRjr2RuaCjj1zzUZEHyKrefOOXtlOGXIrYlOazcfsk03gyeiGPZC3j/MwX2rOnsblFTuoNsVYmnx+TO7kqX1e4AktY6ANwKfAGsBd7WWq9WSt2klLop3OxCYJVSajnwJHCJNjS6bXv7JERXt63cRbLJ0+SF32STGkgiAvW/H3WlFBYZQ7Xy8iLPPgJIcNopU+no6pYzkKrcfgaYiqhL6d/kh/04m5lawhl0HRBA+scHs/lV1d94M/mfTA79iLliC5YT78Hc8xhsP32NwA2zUPcUYr/le4r7nEdlMDzsRjKQhIhYUXkdw0tnUJA4hrjsvp3dnRalxdv437XjeVtPYZznX8yc8CLqJ//rsOONHdADl7ZTuquw2XYVLh9DVIHxpFvnBJDsFhMe7KgYDCCt3VVNJhXo+NYNNeyXnUipDn9+qs8iaqUaT4BUVYvPHH/QbLjOuHhKLN0IlUQ/gBT0GEPYeqbHt2n7U4d24xdT+lHbOzyzVDsCSFarjUeTfkuNSkR/95dG21R7/MTh2XdjU4gGJvRNZ/v4B/it/2eYyjcT+voPnd0laquNvwmOxPQWWoqmRKMGUv2wtE8PWPZMg8dPAU9Fuq0QR7rCMhcJJleTF36zI3yhliFsojkNMpCWrNlIL6Bf716t2kVuipOdhalkVO1stGhdQ9UuH2PVdnwZ5zXZRimF3xKepSnKAaQPl+0guPwtLNYQia5t6PdvQCd0wzQkPLmnyYQld9+XtIwEO17C2ViSgSRExL78fDrXqj1UTLi3s7sSsSG5Sbx+/TG8vWg7408chLK1PJFAW03sl8kenYJ/12aaC32U1foYaiqkztGN+Li0Zlp2HKUUPpMdZyD2AkirdlQxXlViT23d8L5+mQmU63AGdxszkOp8AVJVDX57CrYD1qXEWdlel09GB2Qg4a2hlgyyE9teU+zOUweCN4/QE09gSuvTru7k5OSxYssAJlVub3R9tdtPN+XFFCOzL4rYc90JAzl2/imcl1jKuMJvIBgAc1RCEG1SV23Muhuf3Dl/cw8H0RjCJoSIoiqXnyq3D3uo6QCS1SFD2GJR6MNb0e9d39nd2Kc+gFRXyoYtxixjGVn5rdrFkNwkioJpBCoa//DYkKemlGTlwpzRfNHYkDX6AaRqj58/fbKGyx1zCeaMJjjkfJTfhRr3MzA3PmQvI8GOV9cHkCQDSYhIPP3dJpLXvoHH5CR1bGzNutaSwTlJ/OGsoTg7MHgEkBpvY23cWHqVz4aqHU22K6v1Mkhtw5PW+KQDh4rf5MAciL2M5hVFVWSbKnGmNTpBc5P6ZMZTQTiAVNfGAJI3QCo1BO0pB61LibOyhVxM5ZshFGrT/pti8dcStCZgMbfzK5o9AdOdq+Goq9u1m/7ZCRT6EqF2T6Prqz1+nHgx2yUDSTQuI8HOuaNyebOkF8pXC7uWd2p/PLWVACQkSQCprSSAJESM2Vbuwo4fsw40GUCyhO/0aMlAih1aw4YvoDiGRuGGh7AFaoop2R3+EhPfuroKQ3OT2anTMdfsbLEAojt8V8eW2PxFOWiLfgDpya83kuXaQO/gVsyjL8N8xsMEx16POrrpgJ5kIAnROh8sLeKbLz/mPPNsLGOvAhm20iTXuJ+jtKbki0eabFNa5yNTVWJOaV1gP9qqzWkk+Us6tQ+NWVG4h2TqUImtG8LmsJqJTw1v09YMJG+QVFVLyHnwMJdkp40NgW6ogAeqWr650hq2YB04ojS7rsXe5hno6vXPSmRPKBWTt6rRm5bV7gBxeLE4JANJNO3a43rzg2+Q8aTgh07ti7+uEgBrXHKn9qMrkwCSEDFmW7mLRMIX6SYCSPY440Id8EoAKWZU78RUVwzejp2evlXCAcaa8t2k6CpjWXzrxnwPzE5kD2mYQ15wVzR/OJdxDEdCSvM7tYV/r33RCSCtLKripbkFPJj5PdpkhWEXQEIm5mmPNjvDRkaiDW/94ATJQBKiWVprnp+5nv9zvoBOzMVy0n2d3aWYdvKEcXyojyNl7WtQW9xom/IaD0m4Wgy6d7QSWx5pwdKYmomtos5HbWl48oaEbq3ePj87Ew+2dmUgpVCLamRoYUqcldW+cIAqmjOxaY1TuzA3MYFKZxiQnUAxKcaTRmYVrHF7cCofNqcEkETTBnVLYnD/vmwmn8Dm2AggEUP/z7oaCSAJEWMKy+sYZdpkPEls/ENTfQDJ44qhYMWRbudS498OKAzdZuEMpGBtKTmWWrTJAo6UVu3CaTMTSgwPH6hqvpC232XMWGNp6e6pM3zXx13Zqr40Zmd5Dde9tIDz41cytuoL9DE/32/K5eakxdnwKclAEiIS87aUcULpG/QObcM87R/tKs57JEiJs7Gqz3UoHcD71Z8abVNTXYFFhTq9mGuFIzwjXfmWTu1HQ0u3V5ClKo0nTXwWas6gbomU6SSCtW2tgRQkTdVgijv43KTH21gfMGYa1aXr27T/xmhvDSY0tviUqO2zvXplxFNK+JraSADJVWt85rHFyZdx0bxbTujHrMAQdOFcCPg6rR8hT3h2Rbv8zraVBJCEiDFFpdX81vYWobS+MOC0Rts444wP7n6PBJBigTcQZPvqOcYTXwydk3AGksNXwYAED8RltimdPSEz/OWiemez7QLu+otyC18s62tKeCpb3Ze9akuofffnJD/Zny/81/AXniSYNQzTlMiL+lrMJpLjnAQxSwaSEC347Lsf+IX1A3yDzoGBjV+bxP5OmHAMLwWmYlv+CuxYctB6V3U5ACZnyiHu2f58yb2MB+WbO7UfDS0urKCbKZw5m5DV6u0H5SRSphNxVTReu6clLreHJOXCnHDwDYmpQ7tRoRJxmZOoXf89VZVtm+ntQBUVxu+DMyF2htZYzSasKUawjJpdB62vv5FpcchwVtG8Y/qksSdtHNaQh8Dm7zqtH8pbTQgFNsmaaysJIAnR2Vzl+Kf/Av8HP2fXhw8wdv2j9KUI0yl/bLL4b1w4A8nvjqFgxRHslXmFbFk+GwAV9MVONks4gJSAi162SnQrh6/Vy8w3pul2lTY/JfW+uzrNB5DsznhjaEELQ+KaPdb3f8ex6g2+DI6lptdUdMZAzBf896DplluSkWDHr6yxc86EiEG7t67m3G1/IWh2Ypv2aGd3p8s4vn8mrzsvo8qUQuCTXx1UR85bYwQM6OQAkjXD+BsfLN3Uqf1oaHFhBSNSwsP52zCEbVC3JMp1Er6axocPtiTgMq5P1oSMg9Z1T4vjxIHZLAgNIrHgCxL/ORiKFrXpOA2VlhrZUrFW3Dc3vzcAoUYykLyucNa1VQJIonlKKY459RK2hTKp+OBuCPo7pR8mXw0+UxyYJAzSVvLOCdGZ6koJvjgN84o3qFv1KTlLH+N8/wxK08bAoGlNbpbgtOHSdgIeqYEUC75fX8wI0xZCKjyzT4zUQdL+ffUssr0FqFYW0K7Xq2dvarSTyi2Lm29Y/7pbuKsTb7dQTXy7hrDtWL+Y5aE+eM76F92veQHrjd9C9pBW7yc9wYYPm2QgCdEE/cOjdHv5WEaqzdRO+WubskGOVGaT4vSx/XnUex6WXUsOykIKhoMUrR1aHG0ZGZmU6CTcu2MjgBQIhli+vYohiW60MkH8wUGclvTOiKdSJWF2ty07KOg2AiMWZ+M3RK6Y0JOfuX/BR0e9CIBe+V6bjtNQWbnR16SU2AogjejfG6+2ULFn20Hr/J5wAMkWd4h7JbqiSUO783XPO8j0bGXrO7/Dv3nWIf3MHApprIE6fBbJPmoPCSAJ0YlC029GlW/il6a7Ged5mqeOnUvtjQvJuOmTZocaJTosuLERlCLanc7tC7KjYD2pqpYiZ3iGiSgVh263BrP02V272xxAGpqXwvzQYOJ2zGnheOHX3UIGUoLDQoVOQLcxA6nG4yeuejOe5H5cenSPNu2jXkaCHQ9WCSAJ0QS9+gPWmftzQ8bLZE68orO70+VcdFR3PgpOIKBshJa/sd+6UP3fwE7OQMpJcVKguxGMZkHoA1UUQF1kwZzPV+8m4PcyuvZ7dMYAMJlbfTizSUFcBg5/264z9SUClL3xL5qT+2eSn5bAqzty0LlHEdo2r03Haah+KFxaWufWxDrQ+L7plJBCZSMBpEB9JrzMyCgioJTi0stvZL5lHL3XPYv1lWmEPr/nkB2/2uMnARcBqwSQ2kMCSEJ0loAPtfUHZtim8q1/OB/cMpFbTx1KQs6AFi/EiXYrbuwEY2jGlCPVjwXlDAkZH7rnhcIZMDGSgYSvjlrV4HepjQGk9AQ7axyjSPEUQeXBHyDrmf3hgFULGUgJdguVOp6Qq7xN/Xln1krSqaLP4DFt2r6hjAQ7npBFhrAJ0QRdsY353t6cMHZEZ3elS+qVEc+gXt2ZZRoLq97ff9hGfR24Ts5Ayk12UBDqhrWqoGMOsGcNoX9PRM+4s8Wmn67cxR1vLeP3ad+QVLsV06l/bvNh7clZOLQX7Wv9zbaQt/mhWSaT4vJjevBjQTkVGWMw7V7R7mt/bbUR7EpMbnr20M6QnxpHhSkdX+XBNZD2ZsLLEDYRIafdgu2nr3KJ7z62pk9GrfkQAj70yncJfNqxwaTSWh+JuNA2mQSiPSSAJERn2b0CFfDwWVUv/nbBcIblRV40MdFhoVQnY607+GIuDq0fNpQwxbIclzmRL2uMOgGxMhNbyFtHYbBB6n8bayABuPOPB0BvmdlkG0ugFq/J2eK48nibmSodT8hV2ep+ePxB5syfC0BOv5Gt3v5AGYk23NpK0Odu976EOOy4KzH7qtlJJmcOz+ns3nRZF47N51X3BEzuMtj0NQC+QAi7P3ytiIEMpK26G3HekqjfANm2rYDqF87H5KuF7QuabLepuJbrXl7Ev15/l78lvcvlvrcIDToL+p/S5mMnphu1k8pKmp8AojG6PjDSzA29i47qjt1i4pPKXigdhKKFbepnPXdNJQAqBmeH0gnZ2Nx7CIX2r+MVqp84RIawiVYY06cb1r6TeLxiIspbDetnoD+7B8uP/4Y9qzvsuOV1PhKUG+WInUL1XZEEkIToJDUbjaLL2UNPYNqI3FZtm+CwsD7UndSaDkw3FxGZs2E3p5iXUpE3hfJQ+INmjMzEFvDUUqQbZB21MQMJIG/AGIp1CrVrvm50fSiksQVd+M0t34VMcFip1AltKqL99do9ZHgKjCcZA1q9/YEyEux4seLzSgDpsOJ3E6prW4abaCCccRif3Yf0BHsnd6brOnN4DgstY6g1JxNc8ipgfJFJVnWEMEEn3w1PsFvYY80znpRvidp+tdZsfP3X2DylfG4+EVWza7+p4LXWrN5Zxb0frGTq4z8Qt+UzPnT8gfO9HxHKH4/pjIfbdfyMLOM1bdu2vfV997ccQEqNt3HWyFye3pxu1GraNh//rlXoytYfD8BXf1OlpZlMO4EzPZ8MXcGG4gNukPkiyzwW4kC3n9SfT12DcJkS8H/4S0yuEoKY8Mx9tsOOWV7nJREXZmfsBWm7EgkgCdFJdqz4jm06k6tPO6bV21rNJjabehAfqIDats0wItqvsKyOlNLFJOoaEkaeTS1OY0WMZCDhd7FLp6Hri3u3I4A0tlcac0JDsWybddBMQgA13gAJuAlYIggg2c1UkoDJW9mqPmitmbFiF8Ntu9EWB6S0r/4RQFqcDS9WAhJAOrx88yC8fGZn96LLK99hFFXu0WdQJ/eka4u3W5g6vDtvBSZj2vAZVBVRWuslmToCtsSYmA3IndDTeFC+OWr7/H7Rco53f8vSzHOYYZsKwOzvv2TBxp0899E3nPR/33PWkz9QsOgLXsj7hCdMj0POaNRdG7Fc/REkte7m2oHy8rsDULxjM4HN37dqW+VrOYAEcOWEnpT47Oyw9yW06EUs/51M8KWzwN/6unp+V2QzmXaGzJweJCsXP24o2rtMa42qn6zDKhlIonXG9krjmkkDmOE/CquvkiUM5MPQRPSKtwi6q/drG9q2EN+PL+Ff8lq7Sg6U1vpIVC6s8Snt7P2RrfOvWEIcgarqfGSUL2V38mh6prdt3HiRNTxcqgNTPUXzpi/dySmmxYTMdpKHnUZiUoqxIkYCSJaAC68pDh0XHroW1/qZbOoNyE5kiWk4Tl85lG44aH212088boIR3IWMt1uo0vGYA+5WfRCo/fxBEje8y9EJJej0fm0qrHqgRIcFr7YSasOHfRG7QsXrUJWFnd2NLq9wyzoAhg2V+kftdfG47rzoOwmtNaEfn6esPgPJntLZXQMglBr+TFFREJX9BYIh9nz5GGalGXfp7/nzzT8liIkl879h3cu/4Lol5/Mf729YlnI3r1n/xKTSNwn2PQnzle+DMzo1gBLTjCFsx635I5ZXzoaSg69dTaoPjLQQQBqRn8JNk/vyVW0fTHV7CGQOw1K5leD3j7aqr9UeP8pXg99kB7O1VdseCilZxg2btRv2Zb67fEHsOnztlCFsog1+d8ZgJl14GxpF3wsfJOG4m3BqNx89/xdqPEa9uNCyN1AvnILt09uxfnQL/udPh6pwILNmD8HVHzZ6Y7Mx5XU+EnFjT0jpoFd0ZLB0dgeEOBJ9+sMcLlVVBEad2OZ9lDj7Qi1QvAb6tn0/om201kxfWsRb9iXQZzLYE8jOzIQiYmMIW8CHmSCOuESIS4e64jZNhVzPbFIEco6C3RhTUWcO3G99tcdPgnKDreUP/vF2C1WEP5S7KyExu+UOuCuI//EJ/qjMWHzxmHpOaf2LaESCw8JubDIL2+GmeqeRQRAMgFk+6rRV5a5N1OGgX4/8zu5Klze2Zyqm1J4s1ccwesnLVKZeTjJ1nV5Au15qajqu7Xbiakuisr+vlm7iDN8X7Op+BvnpvUgGgpmDucy/leSajfgyx9Ar4AFnL0LjHsQ04FQsjigPKwnfNEkIhW/qlG+BzMiGPpsDkWUgAfxm6kDu2X09d23qyWnH/5LJa+/HPPdxfCvfAZMVNe0xrH2Pb3Yfm4trScRNyBp72UcAJBrBuKLtBfiDIaxmE9UeP3GEbwJJEW3RRtkjT4G+G0lOyOTUoZqtayYwreRZ7n0kkcHOSq6sfY7lluF80P23nJZSxPiVD6CfGIU/fwKWnQuNm5E/eRUGn9Xisapq6nAoPzilBlJ7SAaSEIeY1po9K74CoNvQE9q8n+TMXCpUMqHdkoHUGZYXVTGs4muygnswDbsQAIsz/MEvFmZhC9dviEtI3Bc4ascQNoDcfiOo03a82xYdtK7K7ScBT0TFPxPtFqMGEkRcB0lv+gaTDmJTAazeCsgY2PJGEUhyWPFilVnYDjOqNjzBgLe6+YaiSaGQhoptVNlzUDEwxKqrU0pxXP8M/uM6EZO7DOe2mSSrOsxxsTHjVm6yg+JQCoHq3S03jsCq798jUbnJPfnne5eZ88eQXrkcS9CF7ex/YL11HtaffYppxIUQ7eARgD2RTVmn8Bf/pcbzZmYRPZA5EB7WHMHQLJNJ8cfLprA+5xxue3slG0b9Dl/3iQQyh6NCASyvno3rzWtxLXiZuu/+Qe2M+6j97nGCpfuGC24qriVRuVCO2A4gHRNcxIptRpBxR4WbeOUlaLJJoF60T0L486lS9L7pbTyp/Xk4+DDX1D7LattIns19iM+KbPx0Xh4n1v2ZV0NT2bVtI2uTjiOY1J3gnH9GdJi66nBtxBgsVN+VyCcCIQ6xtUVlnFf3DuUJAyCz7XUlemfEszbYnZAMYesUHy/azD3WN/FlDoPhRgApzm7Hgw18nT+Eze8xgliJSSmo+Ey0xRnRndTmHNUrg1W6N+6Cg2eaqXYbNZBMjpaHsCXHWakk3K5+GusW7F78EeU6ge/ybjYWZEWnJkuC3YIXKyooAaTDhs+F8lQZjyP8/RIHW7OrmuxQMSoKtcaEYXzvNOZ4+wAQKl5PiqrDkhAbAaScFCelJDc6VXtrLS6soHflXDyWZEw9xu9bkXcUAKG8sZA7ut3HaZFS1J31HM8GpxE02aEVw1otQRd+ZY94qLTTZua5K8eSGmfj/P9t4K1BT+C87BWst8zCM/IqbFu/Ie6zXxD//R+JX/RvEr7/A/z3RAKF8wHYXFJHkvJgiYvRzIj0/rhzJ/Bzy0d0f+cMCPjYsKcWJx6pfySiy5FE4s8+xHfMbYSu+YIRv/2Of187iR9/dxKf3X48l502mbUj7+FPvV/hzJ3X8KqahrloAWz/scVd19WEb1pKAKldJFwsxKGy9FUCe9ZSXBTgBFMxNVMfb1fhzN4ZCawNdeeYku8gFIxKPRgRGY8/SNLy58hTpXDGi3vf+3i7hVrtxNHWGkh+D74Zv8F2wl2Q0r1dfdxTWk4+kJKcgupxMkGTDbNS7drnqB4pvK77MKbiawj696vTUO3xE6/cmCNIC86It1Nnqh/C1nIGUlWtB0fBdyyyHMXEK/6A3jIeNfCMNr+OhhLCNZBMEkA6fNQ0+AJcH0gSrbZwaxkXqGIsOSd1dlcOG0f3TqMOJ7W2DLx7NpBhcaNiZAhbbrKDEp1MqD0Tc2yZSXDev3k19AvuMy/H3H/K/p9Neh6LRmGa8POm9xFlg3OSsFnMlNu6kVG5jUiugsasom781jhaU40oK8nBB7ccy13vruD+D1fzzdpiHrlwBFnnPg5n/x++4vWYE7thjkslULIJ/dpFmF85h7ox11O6ayLpVi/K3r5M4Q5jseG8/jOeeeRubnL9B7YvYMOeNEaafZjsMnxNRFliN2yn/Xm/RUopBuckMThnX/DnnUXb+ct0H+dZ/oeefjfJlz0PaX2a3G15WanxoCMyHo8gkoEkxCGi5z2NZf5TnFD0DOvtw0kc1r4vwL0z4lmnu2MKeqJW9FJE5qsVBVyuP6YsZzL0nrR3eYLdTI12oNs6hK1wDrZlL8OKt9rdx10lxkUyIy0FRl+G6fxn2r3POJuF8uRhWLUPitfut84oou3BGtfyRdlkUljjw4W9Iwggffz5x6RSzYDjzyfOYUcNOSdqRUatZhNBk00CSIcTCSBFRcGOnSQpN3FZTX8YF62Tk+ykR1oc631Z5AV3EB+qA2dKZ3cLMDKQSnQKVnc7aiCt/wzzxs85bcP9pFOFddBp+6/PHIj61ToYdn77OtsKNouJ4XnJbA9loiMcwubyB4lTHgIWZ6uPl5Xk4KVrxvHgOUOZv6WMk/7xPU98vZEKdxBbtyGY49NAKSxZ/bFc9wXeXicRt/Bp/rj9GnrpHahY/mKrFO6hP8GvzfjWf8mGPTVk2oNS/0h0movGdufVW6bwL9s12EpXEXhyLN5HhxJ4bip49h/CXlrrJVT/mSAGZzrsSiSAJMShoDVUFLKr24m8FTiBssl/gXZmg/TJjGdDKFzY9IAv86Jj7fzhZdJVDamn/Hq/5QkOC3U4CXraloEUCqffBrcfPESstfaUGuO8M9PSAOPOTTQ4eowFILBjyX7L6+rqsKsAtgjT7+OSw3dZ3ZUttjVv/Z4Qip5Hn92qvkZKWxxYQr4O2bfoBNUSQIqGql3h+iwpPTu3I4eZo3unsSGQzWDTNkzaHzNFtHPCGUh2f1Wba8Lp8q0ATDUvQqOgbyPZa+FaOofS6O4prPekRFwDyeUNEIeXoKVtQ7OUUlw5oRczfnE8x/RJ57GvNzD2oa+5+D/zePaHzRSWGTUKVWI2zstfx33jAraHMkgIVcf8F9ujB/ZksR6Ae+1XbNhTS7rN3+7h8UK0x9DcZG791R95c8JHPK/PZqG3B5ai+bDuk/3abdhdQwLh2mYyhK1dJIAkxKFQW4zy1/FuRT9eSP8VxxzT/GwckchKtFNszTWetKIwZDAU2VSXonFbS2qZUvEue+IHYuq9/3mMt1uoxUnQ3bYvrXWb5wGgt/8Y8ZSkTSmrNDJ7kpJS2rWfA/UZOIwqHUflxvn7Lfe6jDs9pggLgKakphFCtZiB5PEHsdZsp9aaDnFpbet0S8x2LNrX7vdcxIianfseSwCpTQLBEP6yAuOJ1ECKqqN7p7FVdyOe8MyPMZKB5LCacdvCmaF1bctCCpZtYaXui0/Z0Lmj9xXG7WRje6VSGMzA5C6HCIaY13oDxOMh1M7Mmn5ZCfz3yrF8dvvx3Dy5L9VuP3/5dB2TH5nJNS/+yOyNpWit2U4OF/vup7DbVOh3cruO2dGO6pnKbD2K5Kq1qNo9JJv9YJMaSKJzJdgtXHPaBHpe9Dcur/k5lbZuhFa9v1+b9XtqSMRlPInlTL8uQAJIQhwK4SFmi2tS+MVJ/TGZ2p8NopQiNS0bj3JEFEDSPhd1b90Af80j+Lfe+N+9HqqK2t2PI82S76fT37QDx/G3HZRFlmC3UNvGIWxfrtqJ3r6Qau3E4ik3phtuSdlmQmtnNLqqstL44qyifGdwbK90lof6QtHi/Zb76sJf1G0tF9EGyE6Jo0rHo1sIIK3cUUWWLiMU34F3ra0OTIQgFOi4Y4hDYktJLW9/txCtwnVXJIDUJgVlLrqHwoG41F6d2pfDzQkDMnEn9tq3IEYykABCCVnGg7bUQQqFoKKQucFBbDv1BUzTHotu59ph0oBMis3ZxpPK7S22d/mCxClv1IpDD85J4tdTB/L5Lycx++4TuePkAazcUcXlzy/g9Cdm8fqCQqqJp+as/+6dlCNWOaxmKnKNofvHm1aQYPJF/XOGEG112rBuXHp0T95yjYXN34GrfO+69btryLaHs80lA6ldJIAkxCGgw8EAldqb04dF74tw76wEdpJFqKUAkqca/3NTiVv7Nu5+0/D3PRXL2g8J/XMsFMyOWn+OBIGN3+LHQvJRB3/Ii7cZQ9hoQwDplU++Ikm5+NAUvvtY1MIwtrLNBJ+finr3mkYzZ2qr6wM60b0z2C3ZwQb7UNLqNu6XPeR3h8eaR5h+n5vspFLH460pa7bdwoJyslQljvT8Nve5JcpqNx4EPB12DHFoLNhaTpy3mBJrDlqZohdA8nuMnyPE2l3V9DcV4YvrFjMZMoeLrCQHf7r23H0LYuj9NdcPL2tDAKm6ZDsW7cOe2Yd+E86C3FHR7Vw7xNksdO89EAB/eUGL7evCQ9g6YmhWfmoct5/cn9l3T+GRC0fgC4R4eV4hSkHfzMhuwHS27oOPpkQnM9m8QmZhEzHn/mlDWJN2EiYdoGThviyk9Xtq6JkQNJ5IAKldJIAkxCFQtGUNIa048/hjopJ9VK9PRjwFwXRCFS1MTbv2Y2zFK5gz6mFuc13HuTsu48+9X8Ybl0PorSukCHeENhXX0tu9ivKkwWA9uLhm/SxsJn/raiCV1/nIqVkJwKrss3HhbHI60uD0W/E/PZHgc6dgdpUY08+7K8BdSejdn0FtCb5ACK873IcOKG7pzz8WExrvlrl7l9VUhe/y2CP7AJyT7KCKeHwtBJAWF1SQa6rAkZrX5v62xFx/LttY90PEji0ltXRTFWz2JKNtSVELIIXevZbQG5dGZV9dwbrd1QxSRZi7Densrhye0nobNYIgpjKQnKn1AaQ9rd72o++Mm1FTJoyPZpeiZtzo0QBsWr+6xbZ1vgBxeFARXs/awmE1c9HY7nz2y+O5+7RB3Dy5L05b15hN97j+mcwJDWWCaS2WgCvizGMhDgWnzcxdV/+E7WRT/t1TfLN0PVprNu2uIt/pR1scYLF1dje7tKgEkJRSpyml1iulNiml7mlk/WVKqRXhn7lKqZEN1hUopVYqpZYppRZFoz9CxJqiLWvYo9KZdlSvqO63d0Y820MZLQ5h8274hkpTKlfMz6GgzEV2koM3NijOKP05wWCQ0HvXR7Vfh6svVxQyUm0hod/ERtcn2C3U4sDsr2vVfpdtr2CM2ojPlkxC3lCW6b57C2rvZ9dyzMtewROENfSlduytxvLaYihaiGnVu7D5W3ZWunESDoZ0wB3UMRNPwautFC7+EjDqFFWFay5FelcnN8VJlU4g6Gp6CFsopFlZsJskaiEpp939borJVh9AOnIyTA5XW0rqyDVVsEunUk1cdAJI3lrUpq9Q2xdAKNj+/XUB63ZW0s+0E3O2BJA6hMWOrq8tFUMZSInpRl1Fb9XuVm1XWutl9arlAPToNzTq/YqG8cMG4sHKzsL1Lbat8waJVx7Mh2B6ervFzM0n9OU3pw3q8GNFy5CcJFZahpGlKoxZL6UGkogx+WnxcMqf6MN2en1wDtv/ehRz1bUM8K+L+UL1XUG7A0hKKTPwNHA6MAS4VCl14CeOrcBkrfUI4E/AswesP1FrPUprPba9/REi1mwrc2GrLsSf1BOHNbp3l/pkJrBDZ2DxVTf9RSkUIrDxG77zD+HeM4fyzZ2Tefnao5l7zxTK7T34KuEc1I5F4HNFtW+Ho03L52BXfuKbCCDF283UaSfmoAeCkdfTqZ3/Muea5xDqcRwDuyUxPzAItWcVvqVv7dcuNP/f+M1OppTcwVkVv+Qr//DwDvbsm7q8dD3bK1z8f3v3HR7XVSZ+/Hvu9FHvXZYt23LvTpwep4d0EpIAgVBDFlg6LLvsb1lggUDovUNooYZ0SO/djh33IjdZlqxep8/c8/vjjlwleSSNZlTez/PMo7nt3CPpjjT3nfe8x6tC1ifcg2RKjdVps8vYZpuL7eALAOxq6cOj4zNbJPhJZGmOm24yUcHuIffZ3+HDFYoXc80qH0uXh2V3uK0nkoE06e1t7aWYLhy5FbSG3ehhrq9EaK1p2/wYKhZGRXwQn2VqquttrsdFGIomz03tpJNfa32dQBlIxfk59Ggv/s6mU+98jOd3t1NOi1V7LKdqnHo3Ng67jR5nGaprP7Ho8IFgXyiKhxA2t2TWDMYwFGdfdC0ACi1D2MSEVHXWTfCOf5Dv0nQEFSEcFHe9LsPXkiAZGUinAfVa671a6zDwJ+CaY3fQWr+otR74mPllYPyKWQgxwfxrazPVqoXC6rqkt72gLJu2UxSGbK1fT0a0G3/lubzvnFlHhtDlep3cuKqSh1ryUdqEth1J799U0tjlp6Bzg7VQvWbQfTLd1ixsAIQTHMa29R9cvf/LbLHNw3n1t5lbmsUvYm+ivWAVjvtvJ/DjC4jeORf/vR/H3PQ3/hg6mxnl5cwpzuSZQ/E2fG3QZ31irNt2cbAzgJcg2uE5qdB3MiilCFeeSU24nsbmw2xr6iVTDUyNmtgnOwUZTvpVJs7w0BkibX0hSon/6xjHqZ8dLut3ZoYD43YOMf7CURNfdyt2ojjzKug0PTDKGREH/PqF/Tx67++OrmjZPMZeTnzt/SHy+uuthWLJQBovRuEcK+AygW5mynM9tOlcIiPMQHqhvp3Z9jZ0ThXYHOPUu7GL5dZwAa+h76iCHQ8PuZ8vFMFLCHuCs4pOR2vPPBMzI150XYawiQnKUXsueZ/byZbL/87P8z9lrZQZ2MYsGQGkCuDYO9fG+LqhvBf45zHLGnhUKbVeKXXbUAcppW5TSq1TSq1raxvd9KJCpMOug4cpUr14S2YnvW2n3aCgcg4AunvwOkivPP5XAC644qaTtt2yZgbbdfzTwtZtSe/fVPLUjlZWGbsIZc+AgZlqTjAwhA1IvJB22y4AfjPrmxjZJcwpzsSPm7/VfZtA3ZtBKULFy3Bt/A12HSG2+jbuvm0Nly0q5elD8eDQMRlIOp6BlKFC4zozyqzVl2JTmrZ7PoNj0x8osMezdxKsGaGUIurKwR3rs2bvGURPIEKJigeQsscvA8nhtgJIwaBk4U1mDZ0+CrVVi8vMLKXb9GKOIYAUisb46TP1XOR4g2f0MqLY4PDUDyC9vLeDOSoenS5K/gcfIu7MD6Pf8hswJk450rIcN206F92XeA0krTUv7ulgnqt9ws/YF7v4//i/yNvRZgz2Pj3kfuGAD0NpHB4JjAxJKag5x3ouQ9jEBPeOM2r4z49+lNgFn4fFN6a7O5NeMv5rDfbx9slTAgFKqbVYAaT/OGb1WVrrFVhD4D6klDp3sGO11j/TWq/SWq8qKioaa5+FSJnuRitAQN7McWm/rs76hLijsf6kbVprClteoNk1k7LKk88/oyCDGbMXEsSJbjl1Ycnp7Knth1lt242z5owh9/E4bFYBbIBwYgEkn6+XkLazbIb1dy3DZacq38OW9gjem39J+J3/4pPGf3BZ6A5eWPMT3nPNJThsBufXFdGtM4gZDuhvRccDSKpzH02dfRQ4o+NS/2hA0byzaTcKWd52H9c33sGlri3WhhF8Eqk9BRiYx83mdiwrgBQvzj2OGUhOt/Xm1+8fWe0qMbHUt/o4x7ACPDq/ll7tHd0QNtPEjIS55/VD5PTvoUS301dzOXt0ObHm6RFAWmhvxMypTjggLEYhtxpjwdXp7sVxSrLdtJONI9ie8DEHOvwc6g5QZrZg5I/P+5xkqZy9hH+4r6PVUYEeZjhqOGhlENvk+h+WURMfzi9D2MQkYTv3E6gzPpjubkx6yQggNQLHDniuBE4aPK2UWgL8ArhGa31k2h2tdVP8ayvwD6whcUJMCX3BCLaeeGbQOL2xOn1hHQHt5HDD7pO29QajLGAvnQUrhzz+wgXl7DQrCTRO/Ruj0QqEY8T2PUc+PajZFw25n1KKqD3+hjPBDKTOnl6COFlSmXtkXV1JFhsOdPGZv73Bmq8+wb+2HuamN13MWZcdnQVqWVUeuV4nvUaeFUDqtYYcKDNCpG0v+Y7o+L6pc3h44apnWBL8OQHtZEl4A9qRAcYI6nxlxQtjD9RvOoEVQOrGtLvHtU6Iy2X9nEIByUCazA41NfFB+334Z1yAUbqQXryoUO+I2zHv+zDRH53J3U9v4IuZ96ANB7a6S9hqziDWtGkcej6xvLSng8XOZlTx/HR3RaSYw2bgcxTgDQ8/O+axnq9vp4wO3JHucXufkyxKKVbMyGNPtAjdNXQAKRaI//+WoVnDq12LNuyQI5VJhJhOkhFAeg2Yo5SaqZRyAjcD9x+7g1KqGrgHeIfWetcx6zOUUlkDz4FLgC1J6JMQE8LWpl4WGAfQGFCQ/CFsANWFGbQYxQTbTn4z1NzeSY7yY8sdelTpGbUF7DSrUK2SgTSUl/a2cwOPE3bkwPyrht3XdMSzfhK8ce3r6yOIk/llR2stLCjPoaknyMObD3PV0jIe+sjZvO+cWccdZzMU58wp4lA0C39XM6r/MBRbs994eurJsYXBMb4zyFy6qAztzuExMx6gHOGntfb4dRnrGbxga28wSqnqtAJN41DLaYDbYwWQZAjb5DZjx8/IUgGcl/yvFVzVGdaMiCMoaA9Aw8s4u3bzc99HWBN5BX3xl6itncN2sxqn/zD4Er+5nmxae4M0tnVRHj2IKpYC2tNRxFOE2/QnPLFG4+ZnuN/9P1agf9bace7d2K2akcf2UAGqu2HI4dOx4EAASTJrhpU/C/WJ7TDMB2tCiKlnzAEkrXUU+DDwCLAd+IvWeqtS6nal1O3x3f4HKAB+pJTaqJRaF19fAjyvlHoDeBV4SGv9r7H2SYiJYsuhHlarHUSKFo7rtJGhzEo8/kPEzONHj3a2NALgzhs6gDSrMINDzpl4wp3QL/XFBvPi5l1caqzDWHYzDMzYNQQ98IllgkPYzLCfIC6y3EcLj77/nJn88f2ns+6/L+LrNyxlYXnOoMd+eO1sOsil6eBeqw7STGsEcHGogUxbCDXOb37dDhtXLy3nvtiZ1grnyK7xgtIZALQ3Df5JcG8gQrmt+2im0jhxeyWANBWs6nqYl11nYa9YSn6Gk17i1/9IspAiQVTXPjaYsylR3UTnXo6x5nZmFWaw24hnV0zhQtov7+vkCuNlbDoKtRekuzsiHTLjE3P0n7qQdjAS49rGb2DYHfTd8giULRnnzo3dqpo8GnQJKhaCvsE/vDAH/n+P4zDwKSOzeFw/4BFCTDxJqdyntX5Yaz1Xa12rtf5yfN1PtNY/iT9/n9Y6T2u9LP5YFV+/V2u9NP5YOHCsEFPF9sZ2Vtjqcc4afNr3ZLHlVTOHBvp+cgnseuTI+t42qxBqdtHQBYiVUjjKFwFIHaRB9AYjODf/GaeKYl/97lMfMDBrS6JFtCMBIsp13Kost4MzawtxO4YfDlZXmsWSujnM0I0obeLLnkXEW0Kt0YSXUErS7z+0djZLzrse05034gykWbOsaaw7WgYvAN8TiFCqulDjWEAbwOu1bhIiQZmFbdLSmgzdTyjHCvLkeh306ngAaQR1kAKHt6MweSjjzQTf/wL2G+8CpbDbDGLF1t9JDk/dROmX9nTwbsdjxPLnwMzz0t0dkQa2bCtgr3sHH1p8rGe3H2I2B+mufTM5NcvGuWfJsagih8NG/EOJrv2D7qND8Xp4MoRNCCFOMnGmfhBiCgof3ICbMFQPXXg5GaLL3smj5mq8HVth4x+OrA90WQGknKKqoQ4FoKLOGoLUvvf18evkJPWX1w6yllfwFSyCBGqCGAOZZglmPahokIjhOvWOQ8grrsRBDIDvv9pPd8ZM5qkGPKYvJen35bkePnrpQrjk/2DVe0Z0bG1pHh06m0B746Dbe/xhCnUnahwLaAN4PFYAKSwZSJNWLBLCQQy7x3r95Xmd9BLPHggmPhPbE08/DcC1l1yIu2IR2I++Nqsqq2ghD314atZBisZMmrY+z2K1B+P090tWwTTlKrDq2fg6Bv+7fKyNr7+MXZnULFw93t1KGpfdRvEMa3im7tw76D7+/vjfDCkOLYQQJ5EAkhDjpK0vRHnvBmthxpnjeq7KhWfw4chHaMmcj+47mnYe67Ge27KHvwFfNr+OvWYpatNfQQ86ieK0FI2Z/OH5nSwz9pIx78KEjlHu+HCzBG9abbEAMdvww+KGNTDcAHixzcFDrQUsMvbj6m9Mafq9seIW1MpbR3SM3WbQYy88MoPciaL+LisAO84ZSJkZ1s8pGpYMpMmqv9eayc8eD+A6bAZRRzyYm+BrcX+7j8ZdrxPFzqLFK07avrA8m62xGYQPTc0A0ot7Orgi9E8iNi9q6VtPfYCYkgrLrKHFXYcbht0vGInRvdd6j2ObBEPXjrVs0UKi2qDj4E5iO/5FbPM/jmyLmRpff/wDIBnCJoQQJ5EAkhDJ1teC+cL3WP/Xr3GGsY1wzkxrjPg4ynTZqcj10GLmQH/rkfXK10IMAzKKhj2+psDL393XU9i3DeqfGNe+TiZP7milpG8LDqIwI7FhiF63i368EOhOaH8jFhpjAOno7/YTbz6X75g382HzU4TP+hSsft/o202RiLcEb7AV0zw5cOnwx6/lY4Jk42FgCFs0FBzX84jx09drBYkc3mPqcHlGFsx9aHMztTRi5teC3XnS9oXlOWzX1Tg6d0M0NOY+TzT3bzjIxbbX0XVXgDs73d0RaTKjvJyAduLvODjsfs/samOmuZ+Y4YKC2hT1LjnWLqjgkC6k5+BW1H0fQj34EYhYf/+bugO4dfx/gQxhE0KIk9jT3QEhppQDL6LvuhrDjHAZWCHaWbek5NR1pVk0NGeyMng0gOQMtNFvyyXnFFOrK6UoPPtdND7xZ3If+wqZsy+U4QvAfRubON+9G20qVNXpCR2T4bLTQwaZga6E9nfEgvjdYxiiFQ+uaGVw/vKF/K26lra+s3DWFoy+zRSy51aQ37uN/R0+ZhUd/2bdHuy0nnjH93sxHB4AYhHJQJqs+vusIJEr42jgw+bJhSAJB5Be3tvBdfYm7KWDDzmeV5rFHx21GDpK5PAOHJVLx9rtCSMYidG87QXyVB/Mvyzd3RFpVJnv5RB5xLoHLzA9YNfhPparA+ii+XCK9xgTTXG2mw2ucpa0P4NBfCa2Xf+EhddxoMOPh3iAWGZhE0KIk0gGkhDJtOnPaLuLr876Le+OfBp/6WpI0VCAOSWZ1PszUBEfhPoxTU1mpIOAK7Gb7+tPm8mv9dVktq6HhpfHubcTX38oyuPbW7jIW48uWQSe3ISOy3DZ6dYZ6GBiASS7DqHjAYxRySg++tVmZ3ZxJmdMkuARQFZRJQX0suVg+0nbbOH4MIIEf/ajZrMTxcAMSwbSZOXr76huLHIAAF9WSURBVAbA7T0aQLJn5FlPEsgGjMRMth1oplwfxhii1pnbYeOqSy4B4NEnHxtTfyeap3e2cXpsHaaywezEhuuKqWlgaLHN1zLsfj3+MAuMBoyyxSnqWXLZC2ZhwySUU4uZWUZs45+Ite/BWPdzslT8wwSpgSSEECeRAJIQyaI1oZ2P83x0Pj/dZqfu7Bvw3v441JydktPPLc6iORYfstHfQrsvRCFdRD2JDZ/LdjtQy95Gn/bge/Hn49jTyeHxbS2Y0TAzA1sxahKfRS/TZaPbzMD0nTqApLXGpUMYjrEMYbN+v3qcC02Pl/yyGgylaTiw77j1wUgMr9lnLXjyxr0fEZyYUQkgTVbBeM0Sb2bOkXUZmTnWEN4EZmHbcqiH8kh8yE7xvCH3O+f00wkrN4d3reO/792MLxQdU78nihf3tHORbSOxitUpeb2JiS3kKSYj3DbsPmbfYfJVH0bpohT1KrmqZi8E4JGMq2DJjRh7HodfXMiZO+/gItsGtMM76TKrhBAiFSSAJESStDfswNXfyDpjGX+9/Qw+e/nQNyHjoa40izZyrYX+Fpq6gxSpnhHNYHXr+Qt5kHNw7LyfUN/JGSHTyf1vNHFp1j5ssWDC9Y/AqkfVTQZmAkPYghETN2HUWNLkXVlou3vcZyobL/acCgAONx4fQOoNRMghPpWyO3fc+xFRzilZ12a6CPmtAFJmdu6RdTkZLtp0LmbPqWeTemVfJ0uNPdZCyTA3xIYNW9lCLsxt4Q+vNHDmHU/y3/du5sdP7+H+5zYQvu9jmC/+cCzfSlrsrt/NArUfW50MXxOgssspMDsIRYYOkGb37rKeTNIAUu7Sq9iUcwH/vX8JTTOuQZlRTGc2AeVhodon2UdCCDEECSAJkQSRmMlf//o7AK65/hZW1+SnvA+1RZm0czQDqbmrn0J6cOaWJdxGVb6X6os/iJMIb9z1KaIPfAqaNoxTjyeuwz1B9u7aylf094hllMDMcxM+NsNlp0dnoBKou9IbjOAmhG0sASSl0FVrUFWnjb6NdIoHvvrbDhI7ppB2TyBCtvKhUeAa/4K+UcMJ0SCRmDnu5xLJFw5Y2WoZx2Qg5Xmd7DbLMVt3nfL4V/Z2cJX7DWK5MyF/1rD72sqWMCO0gw2lX+Vp43betuEWznryetY+fjnODb+Gx/6Hfz37Ioc2PkrsHx9MuKD+eAmEY8Nu7/KFKe14BQBjzkWp6JKY4Fx5FXhUmMbmw0Puk+ePB/2LBh/yOeEV1VH6vruJ2DL4z+ej9N30d+y3PcHz9jXWdpmBTQghBiUBJCGS4K4X9zOz51X8njJq56WnsKrHaSMj38rmoL+VzvYW7Moko6BiRO2cdfZaDngWcFr7P7Cv/zls+P049HZi+8Nz2/iV/Q68RhTbO+8dUQ2eTJedHjIxgt2gT55Z7Fg9vgBOFcPuGtsnncat98E5nxxTG2mTXQ5ATqyDPW39R1b3xDOQos5sMMb/X1XMcEIkSPT+j0sNsEkoGg8g2T1HZ2HLy3CyR5djdOwe9rWotWb7/kOsNDfDvCtOPYFA9RpUxI/XrvHMu5ja2jnMrZ1F94zL+IDtiwRNG1mPfYrMf9yK7Y0/0Pj9y2g8dCgp3+dIRGImX/7rs9z/f9cTunMB5t1vG3S/V/d3Ms9osF4DkzUYIJIqp7gagOaDe4fcxwgPDDHOTUGPxkdxlpvPXTGfF+rbuf5fDhrDGfw5GJ8wQwJIQggxKJmFTYhRMF//HbHG9eDrIBSNUVd/iNNt23DMuymts5etWTSb6EsG4c4mWtv3A+DJLx9xO+0XfZev/f0B7ih6hKzOfUyn+dh8oSjl6+6gxjiMeuv9ULJgRMcPZCAZZhgigWFncenvt96AO9zT+I2qJx/TcFCqOtl4sJu5JVYAoCcQIUf5iLlycKSgG9ruptZfj+eNZ8GbCdVrUnBWkSw6FL+ZPeamL8/r4BVdjhHph77mI8HKE/UEIqyMvI7dGYH5V576ZItvhJnn4cw+PruzCvhuJEbo0Q7Oeu27BBy53JX5Pt7a+UOcP19ALLsK21v/AGXj/yFDKBrjtt+8wu0H/oMVxi6ikTycja8Ouu8reztZazSiC+vAJm8LBRRV1ADQcbhhyH2MiI+wcuGc5HWCblkzg5qCDP7tD+u59dev0hBZQMCdh9sxjf8vCyHEMCQDSYiRatmGcf+HsW29B7NlK537N5FHL6GatajTb09r165aVkk7Oezbt4etu6xhG6OpjbNo6Uqetp/Ffiqgc9+pD5hCnn30Ht7KI7TOfxdqBEPXBmS47PQQf+N5ijpIPp+VceOczgEkw4DMUtbYdtKw640jq3uD8RpIKah/BGA43MxS1rTV2j+9639NRmaoHxN1XN2SPK+Teh3PwGwfehhbe3+IS2zrCDrzIJGhoIYB2YMPDXY7bORc+EliC96M55a7ufWjX+LxM3/HtyPXY+s9CHueGtH3NRpaaz7/t1e4cP+3OMO2ja/YbuelrEusv0eDZGK9sq+DBfZGjNKF4943MTl44tnM/vaDQ+5ji/qJ2MYwg+gEcvacQr5y3WL2tvmIYmfP6V+Esz6S7m4JIcSEJAEkIUZIr/sV2uZk+1ue5hzf17kkfCd73/wQWe/6S9qLSdaVZNFjy6e1uYFcMx68yExsFrZjuew2zp5dyMb+XOhpgNjUmGkoEZVvfJfDRgml131lVMdnuux060xr4RSzPwXiASSXZxoHkABz0Q0sUfV8YtctsP8FAHr8VgaSkaLhEQ7n0Rsh7ZMA0qQT9hFSnuMyQPO8TvaY8ayj9t1DHtrWG2StsZGuyguTM+uSOwfbjb+GGWcCcPZ5l/Az40Z67fnD9iNZHv3Lj/nv7dfxTvtjmKtvo6nmOnb3OVFmFAYyteLCUZOm5iYKzA6MEgkgibgsK0Aa6moadHMkZuI0A0RsU6fQ9FVLy7l6qfX3In/VW1ALrk5zj4QQYmKSAJIQIxH2waY/0151OTf9bjdOu8G9HzrryJuOdFNK4cgpo0j1cHZJvHBq5uhm57pgXjFbgwXWTUdv6ut3pMOhvTtYHN3CwZobhh16NpxMd+IZSAG/FUByezNHda6pwrjo83xn0T+IaoPozkcA6AlEycGHPSM1Bemd7mM+Sfd1pOScInlsET8h4/hsiLwMB63kErZlott2DnlsT08X2cqPrWR86v9kux1cuaSM7ZFSoq1D9yO68c+Ye5+zFtp3o9/484jP9dCmZmq2/pBeVyn6PY9ivOnrLK/OZa8vPhD0hL9JPYEIc4lnmYxwuK6YwhweArYs7L5mgpGTi7D3BaNkEMScYsO8vnb9Eu5+/xrKc6dGZpUQQowHCSBNRdEQ7H4cEpi6WIzQlntQoV4+vncFpTlu/nb7mcwrHf8ZokaipLyaMlsv5+W1o915ow6ErJ1XTIOOZy91TY9hbIee/TUAlee9a9Rt5Hgc9AxkIJ1i9qWBDCS3d2q9CR8pw1Asmj+P7XoGvn3WbFA9gQi5yofhzU1JH1we63XS7ygAvwSQJht71Ef0hOE0eV4noOj0zMBsG3oIW2+39fv2ZuWOW/9uWl3F7lgZZtvOIQt6G498Fv3wp+jxhTEf+RzqH7eNaAjxjsO9fPcv/6TOaKTo/A+gqk8HpVhelXc0K/KkAFKYOiNe56ZYMpDEUZGMUoroYntz70nbegIRPITQU2yqe4/Txhm1BenuhhBCTGgSQJpi9NZ7id05F/5wPTz11XR3Z8ox3/gTTfYqXqeOu95zGqU57nR36SQZ+eXk003u/n+hF1476nZKst0UVM4DwOyYBgEkralouJ9N9sWUzZg76mYyXXZy8guthVMMYQsFfQA4XNM7gASwvCqXTeYsPG2bwTTp8YfJVimsgWR3E8LBRu9ZKAkgTSqmqXHE/MTsx7+O3A4b2W47B+1VqPahM3/8fVZQxZs1ftluc0uz2KPLcUZ6Bw9Q+jowAp3Y2nfwkS9/A3P3YwC0P/8r9ClmcwTrZ/Cf92zmCsd6ABwLrjqybUllDj0MBJA6jzuu2x9hnjpI2JEDo6iXJ6Yue0ENdeogmw52n7StJxAhQwXBOb2zZ4UQYjqSANJU0l5P9J7bOUgJOqvslDevYoQCXdDwEvcEV/CJi+uomKgpzpklKG2iYkGMVe8ZU1NXnrOCkLZzoH5Lkjo3cR3e8RIVZhMds68bc1uzqysB0P7OYfeLBKwAEo4Jei2lUHG2m/3ueThjPujYTcDfh5No6qaIXvY27s5+D/uieaiIz5pBT0wKfaEoXkKYg0y7fV5dMS/1FGD0H4bgyZkUAIF4AMlwj182aZbLzkFjmILeHUdrI33X/VPsmOw2Kwiv/z1f/+e2U7Z/92sNbGjo5u05mzBLl0Fu1ZFtGS47eYXx4NAJGUjd/gh1xkGC+XVpnUFUTDye+ZdRY7TQvPeNk7b1BCJ4CWK4JIAkhBDTjQSQpopYBN/d76I/auPmng9jZpbJDVCy7X4cQ8fYmX0W7zqzJt29GVq8aHa0fCWULRlTUxctKOewUUxrw9Cf3k8V+7a/DkDtyovH3NaimVVEtUFXZ9uw+0VCfuuJBJAAMMtWWE8Orcf0x290U5SBRN3lbK++hf3++O9CCmlPGj3+CBkqMGg2xBWLS9kYsgoCRw+8NOjxwf4e68k4BpCUUvRkzLQWBgkgPfWCVTy+wTmbXLObWNlyiq/+AuWqk94Xf0XLvi1DDn2rb+3jiYf/wtcKH6awexPGMdlHA0pL43X6Tghqd/lCzFWNUCz1j8TxVN3lABQ0PnnStp5AhAyC2NwSQBJCiOlGAkhTRGj3U2R0bOZ/I+/kMAWElAsd8ae7W1NK76YHaNPZLF1zIXbbBH7pxD95tq0eW/YRYH2feTVk+A6yrWnwT++nio4Wq5BsVfXMMbe1oiafXrx0trUMu18sHM9AsksACaBk1mL6tZvg/teI+uI3uqnKQAJmFHppCMVrevglgDRZdAfCZBBEDTIU9Py6Ytbbl9FjKyD2wg8GPT42UKvMNb717HR2JWGcJ83Edt/GQ+zc+joR5aDims8DYFv+dnKWXU3Unc+X7b+g5K6z4MALJ7XZ7Q/z7795lh+rr3FT/+8xvUWw6PqT9vPmWHVd9AkZSL7+XrJUAEfBjGR9m2KqyKmgOWMeKwIv0h86fibWnkAErwph92SlqXNCCCHSZQLfBYuR2Pnig4S1jdnn3gxAAJdkICVTLIJz3xM8bS7n6uWV6e7N8MpXEHvXP1HL3p6U5kprFjDDaOFr/9yelPYmqkBnE0HlRrnG/oZ4VmEGfSqL/p7hgxCxIxlIE6+WVjosqc5nszmLnj2v0NsV/9mlKgMJqM730qnjv3+ZiW3S6PLHb2bdJ7923Q4b58yr4DfmZbgankU3bTxpH3NgaFsSXvvDKczy0GBUoE8o6P3a/k7m2ZsxCmdjW3AVkRt+ByvfBXYX9vc/zh9rvgJA785nT2rze0/UM6f3ZVxE4F0PYXymHvJPDoLnZ2XSpz1E+o7/mxSMD99zZ+Yl6bsUU4l/5qUsV/XsrK8/bn1vPAPJ6ZUAkhBCTDcSQJoCgpEYzoZn2e1awHWnzwHAZzokgJRE5oGXccf6aSo5n+KsCX6zrxS2mjOTVs/CVVRLFgGMPY/x8o74zH7BHvTmv4N58vS+k1GXL4wz2E7QVZiU9gxDEXXmEOkfvgaSDsdfo1NsJpvRWlyRwxu6lrzeHZTa+qyVqcxAys+gk3gWimQgTRrdfisDaahsiCuXlPPLwPlEbF7Cz3335B2C8WttHIewARRnu9hjlp40hK2lN0StcRijcA4ohWPR1WBzWBsLajn9ilvZY5bRu+eVk9rc0tTDWzLewPQWQvUZQ567INNJDxmE+47/mxSKDxVV4/y9i8mpYMU1GErT+8b9x63v9QfxqDB2qYEkhBDTjgSQpoAHXtrMPPaROf8iSrLdGAr6Yg6ISgApWZq2PA3A7NWXpbcj6VC5Cm3Y+bXzTir+fBGvbNmJec/tqL+/Bzb8Pt29S4oNB7sopAcjqzhpbdoz8nBEemju7CUWjQy6jx54jdoneFAyRbLcDtqyF+BUMW4o3G+t9KQuM6I630vHQAaSzMQ2afT4w2QQwOkdPAhy0fxiCouKucd2Kc4d90Lr0WxKfziKy/ShUeAY39kQizJd7IiWQvcBiIaPrO/s6aPcbEYVDj7746zCDLYbs8nq3HzStgMtXayOvGbVqzFsQ567INNFl84kekJmXdQXr//kyhnFdySmutyZKzhoVFC87/gAUqA/HnQdpHC9EEKIqU0CSJOcaWq2vPAgANWr3oTDZlCc5aY3apcMpCTy71/Hfl3KuUvnpLsrqVd1GurTe9hz/g8p1u1U/fUyjF0PE3ZkYz7xpSFnNppM1h/ookh1k5FfnrQ2s/OKyMWH+bvr0X+59aTtWmvUwGtUimgfYVSsAmB1bIO1IoVD2HK8DgxPLjFsUkR7Eunr78emNK4hhtPYbQYfvXAOd/ReSsTwEHnsi0e2tfeFycZPxJ4Jxvi+JSrOdtGq81Do4zLc7L0N2DChcPD/L0opuvMWkxPtgN6mI+s7+kPUBTfiNv2oeVcOe+6CDCfdOvOkmSFjgdQM3xOTlFLsLbuChZHN+Fr3H1kd8sevGwkgCSHEtCMBpEnu+fp25vteI2zPRJVbMxiV5brpikgAKZnyurdywF1HltuR7q6khyeX2vNvQV33Y8pVJ68ZS3hL/6cw/G0E//5BqH8cYtFTtzNBvX6gm1JbL7bs0qS1mZtfTI3RQkXXqxj7nj7p5+MLx3ARJqYcw2YOTDeXn72KPns+nr4DVlbIOBc2PtHMokx6jWwZwjaJBPqtm1nbMEGQq5aUU1RSzu9t1+DY/TA0rgOgrT9ElgpgDjKDW7IVZblo1/FMn/5WAGKmJs+/31o3RAAJwF65EoDAgdeOrNvd2s9aYyNRmwdmnTfsuQszXfSQiRE8voi2HvgAQIawiSFkrbbqKR569q4j68KBgQwkGcImhBDTTVICSEqpy5RSO5VS9Uqpzw6yXSmlvhffvkkptSLRY8XQ9P4XmP2Xtdxsfxpj9oVgswNQnuuhI2SDiH/IaX9F4vydTRSZbURLlqW7K2nnXPoWeN+TrPj0Q1x9xdX8InYlzt0Pwu+vh9d+ke7ujYrWmu2NbWTrPsgsSVq7ynt06JUR8UHr1uO2d/vDuAkTs8nwtWOtmJFPxszTrAV3zrhnhZxoZmEG7ToLLRlIk0ZPbzwoMkw2hGEoPn7RXL7ZeyEBRx7RRz8PWtPRHyKTADoFgcriLDdtJwSQOnwhaohnFRXMHvLYsrrVRLVBx86Xj6yrb+2nVjURy59zyizG/AwnXToTR7jnuPVqYDnFgVoxeSxatIT1eh45u/9+5D1lNCBD2IQQYroa8ztzpZQN+CFwObAAeKtSasEJu10OzIk/bgN+PIJjxWBiUcL3/js6EuDhyk9gv+Z7RzaV57hpCxoobUIsPEwjIhF733gegIK5a9LckwmiciU2TzbvPXsm3Wf/D8vDv0A7MqBrf7p7Niq9gSiecPwGNDN5NZAGhl79JHqVtXzw1eM2H+4J4iaMtsvwtRMZ8WyLVA5fG1BblElbNJNYX1vKzy1Gp6srPizrFAV9L11YSnVZCb9Qb8be8DzsfYr2/jBZ+DFSkIFTlOWijXgAyWcFkFp7Q1SqNsLOXCtgOoTFM8vYpavQh9YfWVff2k+N0YqzuPaU53baDQL2bNzRXjDNI+tVuN96IhlIYghOu8GmoispCR0gtuUfAMRC8etGAkhCCDHtJOOj3dOAeq31Xq11GPgTcM0J+1wD/FZbXgZylVJlCR4rBhF7/Xe4uvfwhcg7mH/tp46bqagsx0O/6bQWUj2M7eCrEOw59X6TSHf9K8S0Ys7SM9PdlQln9cx8ekwPAXcR9B9Od3dG5XBvkEIVv2YzkhhAmnMJPYveyff1W+h1FGI2vHzc5qaeIB4VQjklgHSSCitJVadwBrYBMwutmdii/ZKBNFn09HRbT05xM2sYik9cPJfv955Lv7uM2GP/S3tfkEwVwO4d/yLSBRlOOjg+A6m1L0ip6iSSUTbssfkZTvY451LYvRniN+97WropV+2ovJkJnT/izMXAhJA1bC0aM3FG+1NSQFxMbrZlb2WLWYP58Ges93hHAkgyhE0IIaabZASQKoCDxyw3xtclsk8ixwKglLpNKbVOKbWurW2afzIcCWI+9VU26jkY865kZuHxb/zKc90ESEMAac+T8MuL4dWfpe6cKeBqe4ND9moysnLT3ZUJZ0V1LoaCTpWH7pu8AaQi1W0tJHEIG0VzyXzz91hZW8b62Bz0CRlITd0B3ESwOb3JO+dUEa/nptKQgTSzMIMOnYURkFnYJoMefwTCPmshgZvZi+YXU5iTxQNZN2M7/Ab2tq3kGAFsKcjAsdsMvBnZhAwP+Kz3MS29IcpUJ7acQd/6HGd3+bV4tB9z/W8A6GvZh50Y5CcWQDIHXk8BK+OyNxglGz9he0bKh4qKyWV+ZT7/GXkftkAH5lN3oCJ+a4NkIAkhxLSTjHcMapB1JxbeGWqfRI61Vmr9M631Kq31qqKiohF2cYpp2YrD38LPo5fzqcvmnbS5PNdDUA8EkPwp6ZLp6yL2jw9aCx17UnLOcReL0PPqH6kLbaUvf1G6ezMhZbkdzCvNpjGSBf0t6e7OqLT0BCkayEBK5hA2wGYo3ry8gudCs7H1NEBv85FtTd0BsmxhDAkgncybj1k0H5VbmfJT1xRk0KmzcUZ6IRZJ+fnFyDR0+vEStBYSuJlVSrFiRh6Pd1sF82NdB8lWgZQN4SrKctNj5B7JQGrptTKQHPmnvtbnrLyAl835hJ77Hj19PjL8jdaGBDOQlDffehKwhvx1+8NkqQBRh8zAJoY3tySLzXoWjbmriO1/Aa9K/DUnhBBiaklGAKkRqDpmuRJoSnCfRI4VJ+hu2gXA7AUrmV188ieuZTkeArishWRmIJkmsUMbTlqtteb5n3wI3d+Kzq5AT9JaOCfSj3yOnIf/jXadjfecD6W7OxPWaTPz2eXPmLQBpMO9QYrothaSHEACq+7KNvt8a+Hg0WFsTd0Bsu1RcEgR7cGod94Hl34l5ef1OG3EPAXWwglTnouJp6HTT+aRAFJiw2lWVOexqc8KmvS27CMLf8qmsS/KctFBLnqgiHZ3LwWqD1sCwdJLF5bye/v1eAIt7H/qV8xQVhuJZiDZM+PXdTwDqcsfIZMAplMCSGJ4OR4HZTlumnQhZm8zXkLWBhnCJoQQ004yAkivAXOUUjOVUk7gZuD+E/a5H3hnfDa2NUCP1ro5wWPFCep3bgHgmrWD1+QpyHASNcYhgFT/OLafnw/7nj1u9VOb9rKq93H+Gj2X3Rkrx62YsvmXd8FTKbqh1Bq9/QHWuU7nAzk/oWax1D8ayqqaPJqiOaiw72hdhEmkpTdIpaMX7c4Fuyvp7XucNmYtPoN+7SG868kj6w91B8kwoiiHZCANRmWVDFtUeDw5suNDGSdpXa8pzzQJ/et/CL74Uw509B2TDZFgAGlGHu1kE1V2SmLNOHQYXKm51oqzXLSY2UcCSNGueBZR9qmHsDntBtWrr6TeLCfw+p9YkdmFtrkgqzyhc7uyCgEwfVZgtCdgFRBXMgObSEBdaRZ7g1k4Au1kMzBsVDKQhBBiuhlzAElrHQU+DDwCbAf+orXeqpS6XSl1e3y3h4G9QD3wc+CDwx071j5NdV2HdtGpcplVPni2hGEo3N74G+lkDmHrPgBAbP1vj6wKRmK89tAv8aoQuyqu5ZEmN6qvGSLB5J0XwNeO2nYvNL6W3HaH0rkXo6+Jf/Qv5IqlFSg12GhLAbBqRj6tOtdamIRZSC29QSocfcktoH2C61fX8Ly5iPDOx45Mg9zUHSDDCEsG0gTkKLQyOnTXgTT3RAwm+sT/4Xr5u7gf/QwXvvYBap3xWRQTvJldUJaN026n2cynzjhkrUzZEDYXTZEsVHwWNvri589OLAj01tNn8Li5kpVs54ridsidkXD9Ik+OFUAK9FgF4rv9EbKUH8MjASRxanWlWezwZ2JgsjijC23YweZMd7eEEEKkWFKqJmqtH9Zaz9Va12qtvxxf9xOt9U/iz7XW+kPx7Yu11uuGO1YMrbHLT4avkVBm9bD7OTzxN9LRJAZy4sEBY/sDEOwhsvNx/vroM1wYfIz+rFreecMN7ItZb1DpbkjeeQF2P4ZCo4N9yW13KHufBuBFcyFXLknsjf10VZLtos8R/71PwkLah3uDFBu94zJ8bcCK6jx2Z51OZrAZs3UHvlCUnkAEN2GQDKQJJ7tsNgD+lilSz20q2f4A9he+SWTpLQQv/zaz/Jt4h34ArQxwJDajodNusKQyhyadz0J7PICToiFs88uyadXZqEAnxCI4fPG6aNmJ1fuqyvey4LwbcBDDc/DZhIevAWTlWn+ngz3W//Juf4Qs/Ng96cn0E5NLXUkWTbFcAOY5Wq3/XfLhmhBCTDsy7cYk89CmZqqNVrLKZw+7n90VDyAlMwOpvwWtbKhYkN6fXYnj7ut526tvZpWxi8w1tzKzKBNn0Sxr3+7kfnKvd/3LehJOTQAptvcZWlUBWeV1g9aZEkcppazhRjAph/wc7glRoLuOfg/jQCnFvHOuA2DXi/fS3GMNLXXpENglA2miqSwvo0d76W+pT3dXxLG0Jvb4F4kWLsBx1bdxn/4evuL4d2yYVvbRCG5mV1TncUgXkm/GZ9tL0TCuc+cU0qGtgE20r5XMUDwTKbss8TYuuBIdH96pRhBAys/KoMEswmyz6ih2ByJkqQD2jNyE2xDTV11pFi06D4CSSKPUPxJCiGlKAkiTzGObD1KmOsksGT6A5HIPBJCSVwNJ97Wgixew36gmu3MTf1GX8ivzSnxFy2Hp2wCYUbsAgEBr8j657+rtJ7rrcWshlIIAkmkSqX+GZ6ML+djFc8f/fFOAIzeepdU3uYawRWImHb4gOdEOyBy/ABLA2tNWsE9VEdz2CI1d1uvSboYkA2kCmlWYSYMuJta+L91dEceqfwJbxy7s53wU7E4iMZPf+k7j0eqPE5t3zYiaOq+uiFZVcHRFijKQcr1OMgutekddbYcopZOQPXtktWRsdqi9yHqe4AxsAIWZTrbrGbg6tgPQE5+FzUjR8D0xudUWZdKurACSK9wl9Y+EEGKakgDSJOILRels2mt92ppXM+y+Tk/yM5B0fyudRj4fCbyfnxd/ji/p9xC+4H/J+NDTkFkEwLJ5dQS0k9YDO5J23gceuAdHtJ9YTnVKAkjBQ5twR7ppzlvN2rrxG9Y0lWTnFRPGPukykFr7QlTQhsMMQuGccT2X3Wbgrz6fBeFNhP/1/yimC1ssKDWQJqCKPA+NlODsO5jurohjxF78PmZGCXtLLuHLD23jf+7bQszUdC9+L/brfjiits6sLeS9bzrn6IoUBlFm1lhBnwdffIMy1UksK/HsowFq7qXWk/xZCR+Tn+Fku64m03cAwn76+n24iKQseCYmN7fDRmZ+GbGBWwcJIAkhxLRkT3cHROLeONhNBfEMj1MEkNze+BvCJGYgqf7DbI4W0Za9kFtvW8t7DYVhHD9kYEVNHg0UE01i7RD7gaeJaBuHSy+kcudvrCLE4zjufvezf2ahVpx56Y1SPDtBFXkeWnUuZb2HsaW7MyNwuCfIAhUfblmyeNzPV3vtf/Hcd3dyQedf+IPzOZQZkQykCchmKHrcFeSEXgfTTLhIsRgHWhPb9xyRdXfh3vc0z8/4ILd85yUcNnXk7/P8stEFfxx5VUcXUjgT2ZK6OfAGbN21m4sze/EUJJ5FdMTC66wPiGrXJnxIrtfJLmowMKF1O42H4wH/FM1AJya//7xyEZF7C7EFWyWAJIQQ05QEkCaR1/Z3Uq3i9RJOEUDyxmdhi4X8ybmhN010fxtbIx7ed9ksnPbBb6hcdhv9ngqykvTJ/cFOPzMD29mqZtAfzqIKDWEfuMZv7H3O3gfZbF/AigV143aOqaY810ObziW/q4nJFA5p7Q0yTx1Eo1AlC8b9fO68crad8yP++sTv+YnzO9ZKqYE0IUWzq3G0R6CvGXJOPcW6SL7YlnvRj30ee89+cGazo+om3r9zFdcuK+dzVywg1+ugyxemOHuUr6Fjf68pDCDNnWVlDdW4fJQbnaics0beiN0Jq949okNshoKSRdAB/oMbaWkHXKQ0+0pMbhfMK8HMq4DmVpTUQBJCiGlJPladLBpeYdW6T3G29yDa5oRTpLxnet2EtY1w0Jec8we6MHSULpXHjauGny3GXjCT0lgz69e9PObZ2J7d0cwSYw9bjbns7Y1fruMxjK1pA+brv+fgztepjjXQO+sKyT4agfJcKwNJT7JZ2A73BplvHCCWOzNln6a+44wZPGtfw3bHfGtFgjNHidSyFVpZIbFOqYOUcrEokX/+F7a/3Yp2ZRO95se8fsNLXLX3WlbMruDOtyylKMuFw2aMPngEkHPM/7IUDuMy3FnE7B7ePt/ACHRAduoClLPmLKBPe2jZvY4s4kPcZQibGAGVXWo9kQwkIYSYliSANEmY9Y9zVvAZLo88hs6pPuWQimyPgyAuIkkKIOl4bZv8kkqy3I5h951dt5BMFWTlg5cS+tE50DH64Wz1W9eRoULEylaxuzu+MtkBpEgQ80/vwLj/Q7juez+mVsxbe0tyzzHFVcQDSHZ/a7q7MiKHe4MsMBqwlS1K2TlzvU6+c9NyIhd80Zp6PFPqbE1E2aXWRAXdh3anuSfTjK+dyF3X4njlh0RXvg/HbU9wqPoa3v+nbVTle/nR21bisCXprYs7F+3IsD6USXEtMpVZQs6OP1sL2eUpO++a2iJ26Cp8DRvJNeJD3FOYfSUmP5UVv14lgCSEENOSBJAmia6uTiLaRkw5oKD2lPvneBwEcSYtgNR40KoTM7d2+NnfADyLr6Z/7pv5seu9+MIxwr+9HvydIz5nOGqiD75qtTlzDY2BeOAqyQEk/erPMHoPEitfRbG/nl3uRRSVz0jqOaa6kmw3beTiivRANJTu7iRs14FmZqgWVOn41z861iULS1lyxiWoj26CeVem9NwiMSVVs4lpRV+zBJBSxtdO7OcXYT/0KuY1P0K/6U7ufv0wN/70JQB+detqcrzDf4AxIkqhs8vTkoGjL/h/+OuuJ7j0VphzacrOu3JGHjv1DKoj+1iQH18pQ9jESAxkwMsQNiGEmJakBlI6+dqt+icJ1PPp6uogTA791/6ROdWnnrEl2+MgoJ14QsmZhW377t1UQWJ1gfJqyHzbr7m4tY9/+141f+z5Arz4fbjo8yM65wt72llo7iLkKWDmnAX4nnrF2hBOYgDJ34l+9k7M2Rfzp1lfJdDw/1h5oWQfjZTTbuB3FUMM6GlMKMiZbvvaffQceMOqAVKSugyk4+RWnXofkRY1JXk0U0C0Y3+6uzI9RILE/vhWjL4m1DvvY4dzIZ/8wQtsa+5lWVUuX7pmETWFyc94UDmVYEaT3u6p2JbcQOaSG1J+Xo/Thi9vHtm9j3F2xiHoQzKQxMhkyRA2IYSYziQDKV269qO/OQ+96c8J7R7x9+LDw+wla05ZQBsg2+0ggAsznJwAUuPB/QAUlCZ+wzu7OIuz1l7BC7GF9G/4mzV72gg8sLGJVfZ6bNWrWVCRg0/Fa8UkMwNpz5MYoV6iZ3+K7z19gEcqP8Kys69IXvvTSFvOQutJPGtsovvTqw0sssVrdJWmKYAkJqyCDCeHVAmO3gPp7srUFg0RefQLRL+zBNuhV+G6n/KXtkqu/sHztPYF+fHbV/CPD57J4srxmSlMnX47+qyPjUvbE5W99nwAVvY+bq2QAJIYieyBDCQJIAkhxHQkAaR0yZ2BWTAX8/XfJbS7Ee4jaHgTLuyc7bETxIlOQgApEI5h9h4mbLhHnLJ8+3m1vJF9Hpm+Bpp3rhvROV/eWs9MmrBXn4bXaScvr8DamMwAUstWtGHnt/tyaekN8clL6qR49ijF8ufRSyb6wIvp7sophaIx/raugbdkbUG7cyBHMoHE8ZRSdLmryA+ObSIAMYxoiOjdb8fx4reIlSwl9ra/881DC/jM3zZx+swCHv34eVy+uGx8/ybXXYax6l3j1/4EdN4Zp7PPXkuGv9FaIUPYxEhkSQBJCCGmMwkgpYtSGCtuwda8AVq2nnJ3W6SfiC3xf9bZbgcB7UJHAmPpJWAN9SlU3YTdRTDCN/JOu8Gb3/oBYiievvfn1Lf2J3TckztaWRTdYi1UnwGAJzPXWk5iAEkf3kIwZzZ3PrGPi+YXs2ZWQdLanm7K8rysM+vQB14Y/5OZMSJbHyDyt9ugt3lEh3b6wnzgd+t5f/h3LA68ij77UyO+rsX0EMyuJcvsBV9Hursy9Zgm0b+8G/uex4hd8W2c7/gLX9lVzg+equemVVX8+t2ryc9wpruXU9Ls4ixmnPM2ALTdA7Yk1pUSU19+LeastVB1erp7IoQQIg0kgJRGByuvRBsOzNd/f8p9HVEfUUfi2T9ep42gcqKiYw8g7W3vp4geVFbJqI6vqKymp/h01gSe5ZJvP81PntkDXQfAjJ28s7+T0LZ/cv8bh7jQtcN6c1uxCgBXRnwIQ6h3tN/KSXTLFl7sLyHb7eCO65ckrd3pqDzXw0uxOozOPdDXMq7nit39dhx/vQXHlj/D63cd3RDqJ/bij6z6Yifo8Uf4xXN7ueTbzzJ/72+43f4AsZXvxjjr38e1r2LyshVbNd/8zdvT3JOpJ/b4F7DveojYJV/FWPVuvvDANn75/D7edWYNd1y/OHkzrYlBGQuvtZ6koYC4mOQcbox33gvly9LdEyGEEGkg79DS5GCnn3N/uJm9BefCpj9DNDzs/q6YDz2C4WNKKWKGCyMZAaQ2H0WqG1fuqYt3DyV/zS3MVM3clftLcp76L/juEnjjTyfv+MbduP5yM607X2Ktcztm9Zlgtz6FzsrMIIQjeRlI/k6MviZe8ZfztesXU5jpSk6709TMwgxeM+dZCw0vjd+J/J0Yu//F09nXsMmYT//rfwOg/nA3e358I7ZH/5PO757N/Y8/yY+f3sMn/ryRC77xNGd/8V6e/+cf+V/XH/gP2x+ILXgztjd9Q7KPxJByqhcA0LF/c5p7MsXseAjbi98huvxdqNNv5//dt4XfvLif9549k89ftUCGEadC4WxiRQutIbxCCCGEEAmSWdjSpCrfy9LKHH7rP5MvBJ6Afc/AnIsH3VdrjVf7USOsUxCze7CbwTH3dW9bPyVGD/bs0tE3suztmL1NnP30V1HEi2m37zx5v2APAB9Vf6U4tB9q33NkU47HiU+7cYb6ScrtRXzoYGfmXC6YV5yMFqe1utIstugaIoYb+4EXUAOfcCeZb/ezZKD5vW8V840iPtn7C/7w4KPoV37GLbYX+IvjOtaGnuTc527hbeHPEfKW8x8ZD3K+92Fcph98EFt8E7ZrfwQ2+RMohlY5Yy5B7SDQtCPdXZlSYs9/D3JnYrzpTj5331bufrWBD5w7i89ePk+CRylkXP0dTH9XurshhBBCiElE7p7S6IaVlXzpvtn8v6xMjK33YgwRQPKFomQSwOYZWQDJtHmwR8YeQGpubSOHfsguH30jhoFx/n/QV3oat//2VX6YdRe5PYdO3i/sA+B82xvW8szzjmzK9Tro0x6yAz1JuXD7DmwkC5iz+HS5aUmC0mw3XrebBs98ZjauT06QbxD1r/6LudrJp979VrLMPsxf/ZIVr36S+bYG+lZ+kBuv+irh9v2o31zOA9E7QRkYfd1EF1wHq94FRfOwZRaNU+/EVFJdmMVuyrB37Ep3Vya96AOfxFQ2nGvej63xZbjoC/y/h3Zx96sNfPD8Wj59qUxgkGqq6jRs6e6EEEIIISYVGcKWRlctLQebi61ZZ8GOhyAWGXS/js4uDKVxeEaWaq4dHhw6NKY+aq2Jdey1Fgpqx9QWQNa8tfRXnM0hMw/de3IAqaenm7C23tKa7jwoPVqXKM/roB8PEX9yaiA17VpHu87mwtVS+ygZlFLMK81mX6wY1XNwXM4RjZl4m15kt2sB8yqLqKiehb9kFfONBiJ1V5N1xZcBcBbW4Hj3g+DwonOqUR94BsdbfgkzzwEJHokE2W0GLc5qsn37092VyS0SwLbxdzjX/RT99/ehlY3HXRfwu5cP8P5zZkrwSAghhBBikpAAUhrlep1cvKCEX3cvwwh2WcPYBtHd0wmAM3NkASTl8ODSIdB61H1s6wtRHIkHevJnjbqdY503t4jdwRzMQTKQWjs6aNKF9M28HHPRDWAcvURzPE768RALJCeAZLRspdExk9klUkQ0WeaWZrIzmI3ytUJ0bMHLwTy9YQdz9AE8c88/si7zks8RXXoLjht+dtz1QkEtto+9gf0DT0Hp4qT3RUwP/qxZFEYPQxKyOaethpdQsRCmtxDVvJHAzIv51D8Ps7Qyh89cJsPWhBBCCCEmCwkgpdlVS8v5p38+UXsGeuu9g+7TGw8geTPzRtS2cnixYQ6Z2ZSI+rZ+alR8Rq2kBZAKadb5qN4mMM3jtsWCPoLKTcY77sZ+5TeO2zYwhE0nYRa21q5eqqP7oXTRmNsSR9WVZrM/Er9Oe5uS3v7e9Y8CMGvVZUdX1q7Fft0PweE5+QCbQ4pki7EpnIsNk1Dr7nT3ZNLSe55GGw6Md95HtHQ5PwpfSTAS49s3LZPZ1oQQQgghJhF555ZmZ88pxLS52JO5En3gxUH38fV0A5CZPbIAks0Vv6GO+Efdv71tPmrUYaLeEnBmjLqdYy2qyKFZ52PoKPhPmG494iNi82AYJ9/053md+PCgwv1j7sOm9c/jUhEK5p095rbEUfNKs2jWBdbCIEMUxyJmauY034/fyMBWuTKpbQsxlIyK+QC07tuS5p5MXnrPU+jK06B0Eesu+Ts/qM/ng+fPZlZR4jOLCiGEEEKI9JMAUppluuysrsnnxcAMjM49EOg+aR9/nzVLSmbOSANIVsAnHPSNun9723zMsrWgkpR9BOCy2+hzllgLJwQZjIiPmN076HG5Xgf92oMtMvoAko5FAeja+QIAlYvPHXVb4mRzi7No1vnWwmBF0sdg58sPsZb11M99P9idSW1biKGUzlqMqRW+Q6cIIJkmocf+D7M1PrtkbzP0tYx/Byc6XwdGyyaM2WuJmZovPLCNilwPt52bvP8pQgghhBAiNSSANAGsrSvmyb4Ka6H5jZO2h3zdADi8I6uB5HBbASRf/+iHfO1q6WOm0YpRmNw3++GMMuvJCUEGeyyAdgye6ZTjcdCHB0d0lAGx9nr4agXRAy+T0baBbnsRKqdydG2JQeV4HZhZ8Ws5mYW0TZO857/IIV1I1WWfSF67QpxCTVkhBylGH942/I7NG3C9cCexP9yEPvgasR+dgfmbK8CMpaajE9VAbb9Za3lwUxPbm3v5zGV1uB0y/5cQQgghxGQjAaQJ4Py6IjabM62Fpg0nbY/4e6wnrpEVe3Z64gEk3+gCLlpr9ja1UqA7k5qBBEB2ufX1hDo5TjOA4Ro8gOR22AgZXuxmCKLhkZ+zfRcqGqTrqR+w2NyFv3jFyNsQpzSzvJgespI7hK11G2X+ndybdTN5uSMLpAoxFi67jWZ3LVm9u4bfce/TANh7G+CXF2NEgxgdu2HbvePexwmtaQPa5sQsXcoPn6pndnEmVy0pT3evhBBCCCHEKIwpgKSUyldKPaaU2h3/etIYK6VUlVLqKaXUdqXUVqXUR4/Z9r9KqUNKqY3xx5vG0p/JanZxJhm5xbTaSzEHCSAdmXXMObIAkstj1ZcI+PpG1a+GTj/ZgUZroaB2VG0MxZtbQhg79DYeWReMxHDrIIZ76LoYMUf8ZzCaOkj+DgDy9z9MldFG3twzR96GOKU1s/I5ZOYT7GhIWpt9bQcAKJglQT+RetHC+ZRFDxHwDf13J7L7KVq9s/mW7d206Fx+MusHRPLnYD5z50mTBUwnun0XOn8Wj+5oZ1dLPx9eO3vQGndCCCGEEGLiG2sG0meBJ7TWc4An4ssnigKf1FrPB9YAH1JKLThm+7e11svij4fH2J9JSSnFJQtLWBeuwWx8/aTtOhQPALlGVnDU7bX29/tHEUDydRC5/5Ocbmy3lpOcgVSc4+Gwzkf3HM1AausLkUEQxzABpCM/g9Aovqd4AMmGNaTEM2vNyNsQp3RmbSFNOp9ge/ICSAcP7AWgbvacpLUpRKJya5ZhU5pdW14bdPuOgy2YDS9zX+9cNpXfxLcW3cudmz18vutyjLbthB76NPjarSHK/s4U9z69dHs9qmAu332inpoCL1cuKUt3l4QQQgghxCiNNYB0DXBX/PldwLUn7qC1btZavx5/3gdsByrGeN4p56ql5bwRm2kNfzjhBkOF+ogoJ9hdI2qzuKgYgI6WUQwlOvgKsw/czeftv7WW82aOvI1hlGS7adb5RLqOZiC19frxqDAub/aQx6mBYXyjDCDFbG7Wm3MwlR3Klo68DXFK88uy6bAV4fQ1J63NzhYrGDVv9uyktSlEomoWrgbg8O71g27/+71/x0WEsy6+nrvecxpff8syHvrIOewrvZQ/RtfiWv8LuLMWfnou+oGPpLLr6RUNo7r2sVuXsb25l49dNBe7TUbOCyGEEEJMVmN9J1eitW4GK1AEFA+3s1KqBlgOvHLM6g8rpTYppX412BC4Y469TSm1Tim1rq2tbYzdnniWV+XS5J1nLRwzjC0aM3FE+4nYBq8LNJz8mqUEcKEaXh55h6IBAEylMDOKwD10UGc0irOsAJLuORpA6ujqBsCdMfS5DE9826gCSJ30Gdl80Xwv/su/Bw7PyNsQp2QzFM78KrxmH4RHPwPgsYKdh+hR2Xi8g8/QJ8R4yiydSxAn0eatg26v6n6VKHYWrLnsyLr5Zdn88bazqLr153y54kd8I/IWggULoetAqrqdfl37UDrGX/e5mVeaxdVLpfaREEIIIcRkdsoAklLqcaXUlkEe14zkREqpTODvwMe01gPTgv0YqAWWAc3AN4c6Xmv9M631Kq31qqKiopGcelJQSlGz5Gx82kXgtd8dWd/pC5OpAkQdIxu+BoDNwT7vYqp716O1Htmx0RAAPyj8POGrfzLyc59CSbaLw7oAh//wkfogPT3dAGRkDh1AOjIT3SgCSDFfO4cjXqoWnE7maW8f8fEicYUV1pDH5ob6MbcVMzWqvwW/a+q97sUkYdjo8M4ir28Xoejxs6qFojHmRnbQkjnvpGHGSinOmVPEO6+/jh/EruOgey70t6ay5+nVvhuAV/oK+cxldVL7SAghhBBikjtlAElrfZHWetEgj/uAFqVUGUD866DvjJVSDqzg0R+01vcc03aL1jqmtTaBnwOnJeObmqwuXTGH38Quxb3zXmixPune0+Yjg+CIZ2AbEKg4k1oO0nRoZFOqBwNWsdjs2afjmnvhqM49nJJsN006H8OMgM/KKOvttWabGzaAlGElqel4PaOR8HW10BbLlE/BU2DmrLkA7Ny1fcxt1bf2WzMBZpWOuS0hRq1kIXNUA8/uaj9udXN3kCK6MbOGHpldmeehNNvN3kCG9fduuhTVbrdmrtMFs1lbN2yCshBCCCGEmATGOoTtfuDW+PNbgftO3EEppYBfAtu11t86Ydux1TSvA7aMsT+T2sLybP6VcxN+5SX2xP8BsONwL1kqgDtjdFOX5y20gj9Nbzw2ouPaOq1gTm1ZIdavMLkKM1006nhGSbdV36a/zzqnzT1MsCx3BhFtI9KyY+Qn9XfQRRaLKmQa+PFWMcMqdt3TuHPMbW1o6KJEdZNRUDnmtoQYrdI5KylSvWx65p7j1h/s8lOkerDnDB3gVEqxemY+W3qcKB2DQNd4d3dC8Ddtp0XncvHyOePyf0QIIYQQQqTWWANIdwAXK6V2AxfHl1FKlSulBmZUOwt4B3CBUmpj/PGm+LavK6U2K6U2AWuBj4+xP5OaUoq1S+fws8jl2HY9DB172N7cS44RxDHKAFL1gjPwaTfm3mdHdJzfb9WuKS3MHdV5T8VpN+hzxz+x77Zqgvj7u+Mbh65zk5OZwT5dOmQtkuE4Ql30qmxKs90jPlaMjMqtpsE+g/Obfw5d+8fU1hsNnRSpbjILJYAk0se25EZa3TV89PB/0X7PZwjvegLMGE3t3WQrP9784TMbT6vJY28gPsStvyUFPU6/vsZt7DHLJetTCCGEEGKKGFMASWvdobW+UGs9J/61M76+SWv9pvjz57XWSmu9RGu9LP54OL7tHVrrxfFtVw8U5J7Orlpazl+j51oLW//B9uY+8mxBlGt0RaztThe73Iup7HyZWDiQ8HGRkB9TK7K8Iy/enfA5squsJ/EAUtAXr2vkHLreU47XwS5dhdE+wsyWWBRPrA/tLZA6HKlg2Hh4wZ1gmkT/+FaIRUfdVENjA3ZMVLZM/y3SKLOIwDsf4RFzFfmbfobzj2+Gdb+iq9WaCCAzf/jr87SZBbTr+AcBvmlQB0lrvP376M6YSU3h+P0fEUIIIYQQqSPz6U4wc0qyyCqZyQ7HfGKb72FnSx9ZavQ1kAAaZlxPhT5M4K63QNif0DGxsJ8gTrK9zlGf91Ryc3LoUrlHZiUK+wcCSEPfbOR5new0K3H3N4xshq/4kBFHVuFouytGqKJ2MV+L3oy9bRt07rFWRkMwwoLuDl88WyOzJMk9FGJkZpSXclflF7k+5260MwM66vF1NAFgyx6+Rtec4kwCrgJrYRoU0m7cv4ss7SOvakG6uyKEEEIIIZJEAkgT0NXLyvmTfzW2tq1UxQ7iNn1jCiBlr7yeT4Zvx3voBfST/5fQMWYoSAgHGU7bqM97KiVZbg5RhO46gNaaaDAeQHIMPYQtP8PKQAKgLfE6SJF+q/CtN0cKuabK4oocdpjx31XnPgh0o++shR0PjqgdTzhetDhLMpBE+p1ZW8DGVpNYVhW6u4FQz2FrQ8bwswQahqKkPP56mAYBpPYXfgNA5enXprUfQgghhBAieSSANAHdvLqKJ401mChutD2NzQyPKYC0oiqPv5vncihrCfrQ+oSOMaMBwso5roVPS7Jd7IsWoLsO0O2P4NQha8MwQ9hqCjI4aK+2FloTDyC1tVqjI3MKZSavVJlR4KXDFa9z1bUfWrejQn3Qsi3hNmKmJjsan3FPZmETE8Cyqly0hl5XKbqn8Wg9owQy5Aryiwhjn/o1kMwYVfv+ymvGUiprF6a7N0IIIYQQIkkkgDQBFWS6uGD1Mp6ILecD9oeslWMIIOV4HcwpzqReV1hZOwkMIdKRIGHlGvU5E1Ge6+GgLkb1NrL7cA8ZBK0NwxTRttsMimbMJ4wDWhMPRLS3HgKgqFiyWFJFKUVZWSUB3FYAqWO3tWEEN8/9wSjFxGeskiFsYgJYVpULQJMugO6DuILxAOcpMpAAqgoyaNW5RPumdgApuutRCmJt7K66QWZfE0IIIYSYQiSANEG9/9xZfCz2Ue5zxiesy50xpvZWzsjjlf4SjGB3QsMnVDRIzBi/+kcAC8tzOKiLUGaE/fvr8aogGgV2z7DHrZ5ZyC6zglBT4jOx9bRbN2xl5TKTVyotrszlgC4m1rEX2ndZK0dQQLg3GKFEdRF05IF9fK9HIRKR63UyqyiDncE8jGAXM4xWQo6chK7Pqnwv7TqbUPfhFPQ0TWIRfE98kzadQ8HK69LdGyGEEEIIkUQSQJqgKnI9fObKZejLvwGf2g1zLx1Teytm5LEpHB8C1Lb9lPsb0SBRY3wzkOaWZtKsrKyS9oO7KHBErQLaxvCX5eqafHbqSswRDIXyd1tBi9x8qYGUShfMK+GAWUz7wZ3odisDSY8g+8IKIHUT9pw6u0OIVFlWlcvrPdZQ26VqDzFvYtdnVZ6Hdp1DrHeKZiBpTezeD5PT9hp3xm7mjLky7FQIIYQQYiqRANIEduuZNVy7vAIyi2GMwwBWzshjtxnPvmnbecr9VSyEaXOP6Zyn4rLbcBXVABBo3Ud5hjlsAe0BS6ty2cEsPMEW6Nyb0Lmi/W0EcKOGGR4nku+M2gJyK+aQEzxEf2M84OdrS/j4vmCUItVFzCuBPzFxLK/OY0cgB4Ba1YQ9O7HhlVX5Xtp0LvZA+3h2L31e/Tm2zX/il863s6/yWrLdjnT3SAghhBBCJJEEkKaJWYUZRDyF+IwsaD11BpLdDKLt4xtAAiiunI2pFY6+Bkpc8QykU3A7bBwquQAAc+v9RzdEgtBzaPCD/J0E7DnJ6LIYoVXLV+BWEbL8DdaKEcxA1RuIkIMPlVEwTr0TYuSWV+VySBcCYCiNMyexTJuCDCc9tlzc4U4wY+PZxdSLBDCfvZOW/FV8qfdNvPfsmenukRBCCCGESDIJIE0TSimWVuWxV1VhJhRACkEKAkgLq4o4TB4VtFLgTCyABFA7dwGbzFmEN//jyDr95JfQ319x0ixfrX1BPJFuYp78pPZdJMaWP+vI81jhfFTEB6H+hI7tC0bxqhA2V2LXhRCpMK80i3NXLMJUdmtFggXelVLEPMUYmODvHMcepsH6uzB8rXyp7xoWV+Ry6UIZviaEEEIIMdVIAGkaWVqVy+Zw2SlnYovETJw6DI7xDyAtrsyhQZcwUzWTYwuBI7FAwZtXVPJw7DTcrRuhuwFME73lHqv491/fA5HAkX03N/aQr/pwZEkdnbTIP5qJcCh3hfUkwULavcEIHkI4PJnj0TMhRsVuM/j6jSsgu9xakcAMbAOM7PhwzBHMRjjh+Town/sWjTkrebCvlk9fWiezrwkhhBBCTEESQJpGllbmsMusOOVMbH3BKC4VwXAMPxtaMswtyWIHNcxXDbhiPlSCmSYzCzNoq7IKi0c23wuH1mP0NcGSm7G1byf64CePBMk2H+ykWHWRmSd1dNIipwqtrD816/V8a12Cw9j6AhEyCOLwZI1X74QYvdwq62uCGUgA7lwrM0ePYCjnhBboInbXNehgNx/tuJbLFpZyzpzCdPdKCCGEEEKMAwkgTSNLKnPZpQcKae8Ycr/eQAQ3YWzO8c9ActgM+vIW4lFhVOu2hIewAVx6zplsMGcTee476HW/RBsOuPxrxM7+FPY3/kDsyS8DMHPrDyhXndjnXjxe34YYjt0J2RV0GXk82xmvQ5XgzbPP78OmtAxhExOSkTMQQEo8OJ1ZaB3jbx76b/CkEewl9tvrUO07+U/nZznkXcgd1y+W7CMhhBBCiClKAkjTSFGWi/6sWmthuABScCCAlJoZy95+3bWANfNbokPYAC6cX8L3Mj6MLdSLeuNuDuaeRtCehe3C/ya69O3YnruT6LcWc03P73kl5zJYctM4fQfiVHTZMlpzlvByi81a0d+C+eIP0et+PexxYX+8VtIIrgshUiZ35AGk3Io6tpkzYN2vhh1KPKFpDW27iP7+BoyWzfyu+ov8tbuOb920lFyvM929E0IIIYQQ40QCSNNMZVUNvWQOOxNbbyCKiwh2V2oCSPnVC9ADAYIRZCDZDMWdH3obm+Z/HIDvtyzkom89w7oDXdiv/h7Ry7+FP3cOj8eWU7/6CyCfiqeNccMvab7oB7SaWWgU9B2GZ+9Er/vVsMeFAn3WkxQFM4UYkdLFaLsHBjKRElBdkMEvopeT0bMb6p8Yx86ND3PP00S/tQh+uBrboXVsXP0NPr+jmg+cW8uZtTJ0TQghhBBiKpMA0jSzpCqPHWYF4cNDB5D6/H7sysTpTtFNu2FDly62no8wUFCY6WL1Tf8Ftz7Idbd+EkMpbvrZy3z10d34lryTF0/7Ee+LfJoF1YnXKBHjwO5iRW0ZHpeLHpWDufcZjGAXqmvfsFkY0aDPeuKQAJKYgOZfjfrENvAmPsPjrKIMHredQ4+9kNgL3xvHziWffu1XqN9dC3Y3kTd9h/qbn+MdL5ezpDKHT1w8N93dE0IIIYQQ40wCSNPM0spc6s0KaNs+5I27r98aNpSyABJglC+3njhHMduWUjDzHM6cW8pDHzmbNy+v4KfP7OWMrz7Bx/68AYdNMb8sO7kdFiOW7Xbw5esW0RzLwjj0GgAq1DfsdObR4EAGkgxhExOQUiMKHoFV921RdSEP2i/Gtv+ZYa//iUa/8hPMsuXY/+1Z2ubezC1/bybLbedn71iF0y5vJ4QQQgghpjp5xzfNLK7MYTeVOMM94GsbdJ9AwAoguTwpvGkvX2Z9HWOgIMvt4M63LOXBfz+ba5dX8PbTZ/C9m5fjdtjG3kcxZtcsq8CWdUI2WNe+Ifc3Q/EMJAkgiSlkdU0+j/cNTGiwM72dSVSwF9W+C9u8ywkqNx/43Xp8oRi/efdplOaM/4QLQgghhBAi/SSANM1kuuz4smdbC0PUQQr4/UBqM5AoX2F9dSUnU2hRRQ5fuW4x/+/KBVy+uCwpbYrkKK2oBqA9Z5G1ovNoACm69QF8T36TcOMGAHR4YAibBJDE1HH6zHx2xQYCSEMPJ55Qmjei0Ojy5fzXPzaz+VAP37lpGXWlWenumRBCCCGESBEJIE1D3grrxl0PEUAKBqybdsPhSVmfKJqLvun3sPC61J1TpEVWQQUAD9kusFYMZCAFezDuvY2MZ7+I8xfno3f+C8JWMFOKaIupZHl1Hi1GESHDO+yEBhPKofUA/KmxkHteP8THLprDRQuktpwQQgghxHQiAaRpqHbmLLp1Br5DWwfdHooHkLCndliCmn8VuKVW0VSncqzMi9+0zsbMLDuSgaQ3/AEj4id27c8AiHY24NQB6yApoi2mEI/TxqKKXA4YVZiTJICkG9cTyKzmvx9r5qL5JXzkgjnp7pIQQgghhEgxCSBNQ0uq8titKwg1DR5ACgfjWR8OqWshxsHyW9h40d3sixbS7a7A7NwLpon5ys+IVZyGbdG1AIR8nXgJWcdIDSQxxZw+M583wmXolkkSQDq0nheDNVTlefjWTUsxDJXuLgkhhBBCiBSTANI0NK8si3pdjbd716AzsUVC8QBSijOQxDThymTBmsvIdNmpjxajuvZD/WPYuvdhO+N2sLvQdg+R/m4JIIkp68bVVewyK7EF2sHXAYGuIWfGTLveZoy+Jl4IzODjF88l2+1Id4+EEEIIIUQaSABpGnLZbbTnLMAT64OO+pO2x0LxYUP2FNZAEtOK025wzbJynmvPRPUfJvbo54nlVMP8q60d3DnE/N14VBCNkmCmmHJqizIpm7McgJ5nfoj+ei3UP5HmXg2h4UUADmUs4AqZlEAIIYQQYtoaUwBJKZWvlHpMKbU7/jVviP32K6U2K6U2KqXWjfR4kXyqag0AoX0vnrQtFpYhbGL8febSeXS4rILatvbttK78FLvbgwQjMXDnoANdeAlh2r2gZLiMmHquuuhCAHJe/SZKx6BlS5p7NIhIkMC/vsBes5Qzzr4Iu00+dxJCCCGEmK7G+k7ws8ATWus5wBPx5aGs1Vov01qvGuXxIonWnHY6PdrLoc3PHrdea00kPJCBJAEkMX5yvA6uPO9MALaYNZz5cD4Xf/tZPv23TVYx9WAPXkJoKaAtpqii8hr8hjU8UxsO6G5Ic49OZj73LTz9B/iSfi83nD4r3d0RQgghhBBpNNYA0jXAXfHndwHXpvh4MUorawrYZpuHo+m149Z3+SPYYvG6MxJAEuPszDPOoavsbHrWfoXvv20lp83MZ+PBLnDnokK9eFVQAkhi6lKKA5XX8L3otYTy69ATLYDUXo96/ts8rM7BO+8iMl32dPdICCGEEEKk0VgDSCVa62aA+NfiIfbTwKNKqfVKqdtGcTxKqduUUuuUUuva2trG2G2hlEJXrqYi0kDz4cNH1jd1B3ATthYcUgNJjDOHh7wPPMRZa6/gyiXlnDO7kIOdAWLObOyRXryEMFxSQFtMXa6r7uRb0RtptZWguw+kuztHaU3k/o8Rtbn4n8DbuGKJ1D4SQgghhJjuThlAUko9rpTaMsjjmhGc5yyt9QrgcuBDSqlzR9pRrfXPtNartNarioqKRnq4GETtigsxlKb77x8j+t2V0LGHxq5jAkiSgSRSbG5pFgBd2os93Eu2LSwBJDGlzSzMoDjLRX04H9XTOGFmYjM3/QVHw3M8VPwB/M581tYN+fmOEEIIIYSYJk4ZQNJaX6S1XjTI4z6gRSlVBhD/2jpEG03xr63AP4DT4psSOl6Mj5L5ZxLDYH7bP7F31cPmv9HUHcBFxNpBAkgixepKrABSW9iNO9ZPoSsGTgkgialLKcUZtQWs78lCRfzg70h3l8CMoZ/6CuHiJfxf82lcOL8Ej9OW7l4JIYQQQog0G+sQtvuBW+PPbwXuO3EHpVSGUipr4DlwCbAl0ePFOHJlsbHu43wyfDv9RSswdzxEU3eADFsEbXOCIbPtiNSqyvfidhjU99mwE6NI9aAcEkASU9sZswrYGYxPQjoRhrHtegRb935eKnsH7f4oN66qTHePhBBCCCHEBDDWCMEdwMVKqd3AxfFllFLlSqmH4/uUAM8rpd4AXgUe0lr/a7jjRerMue4/edA4n5ccp2McfgN/2wEKXKZkH4m0sBmKOcVZvNocAyAr3AZOKaItprazZhfSqONDsydAIe3oiz8gmlXB57bXsHJGHmfPLkx3l4QQQgghxAQwpilVtNYdwIWDrG8C3hR/vhdYOpLjRepkux1csrCUH+2q42JgRvsz5DtjoKSAtkiPuSVZdDZ7wAaGGQaZhU1McVX5XgoraqEddFcDKp2dObwFe8MLvDbn4zRujnDHW+aiVFp7JIQQQgghJggZoyR48/IKNgSK6c+sYanvBXIcJthd6e6WmKbqSjPp5Zhha87M9HVGiBS5bFUd3TqDzqb69HZk79MAfKFhCStn5HHW7IL09kcIIYQQQkwYEkASnFFbgNth8IZ7Ncv0drJtYbBLBpJIj7klWfTqY7KOZAibmAauXFLGIYroaNyd1n7ols0EXEVs6XHx/nNmSfaREEIIIYQ4QgJIArfDxukzC3iwrQS3ilAa2A0OqYEk0mNZVS65BUVHV8gQNjEN5HqdhDMrsfUeJGbqtPVDH97Kdl1Ndb6XixeUpK0fQgghhBBi4pEAkgDgnDmFrAtXA5DpbwSbBJBEeuR6nfz23y45usIps7CJ6SG7tJYq3UzjXz4NfYdT34FYBNp28oq/nHedWYPNkOwjIYQQQghxlASQBADnzS1iry4jqB0AKMlAEunkzj76XDKQxDRRfN57eUUvoHLHr9APfTL1HWjfhWGG2a1mcMOqytSfXwghhBBCTGgSQBIAzC7OpDgngx3aykLCITWQRBrZHGhHPPNIMpDENJFVvZTvV9zJU45z0Y2vpfz8+vAWADKrl5HtdqT8/EIIIYQQYmKTAJIAQCnFpQtLOeiaY62wSwaSSDN3jvVVAkhiGrlgXjHP+6sw+lugtzml526tX09I21m2bFVKzyuEEEIIISYHCSCJI/7rTfO5+MJ47RkJIIk00wPD2GQIm5hGLpxXzCZzlrXQtCGl5+4/sJF6XcmFC2X4mhBCCCGEOJkEkMQRTruBu2q5tSA1kESaqSMZSBJAEtPH7OJMenLmYWKkNICktSa3dxedWXPI8crwNSGEEEIIcTIJIInjFS9AG3ZwZqa7J2K68+RaXx0yhE1MH0opVtSWU08l5qHXU3be3s5WCujCUbYoZecUQgghhBCTiwSQxPEcbrjp93Da+9PdEzHNKXeu9UQykMQ0c/qsAjZGZxI7tAG0Tsk5W/dZBbSdJXUpOZ8QQgghhJh8JIAkTqLqLoe8mnR3Q0x3R4awSTacmF5On5nPJj0LR7ADehpTcs7+ph0A5FYtSMn5hBBCCCHE5CMBJCHExDSQgSRFtMU0U5XvpSljIQCxzX9PyTnNtl2EtY3SGslAEkIIIYQQg5MAkhBiYlr+dswrviMF3cW0lFu7imdYiXr6q9CxZ9zP5+zZwyFVitctrzchhBBCCDE4CSAJISamvBqM1e9Ody+ESIs1tYV8OvgeYjYnsfv+fdzPl+s/QJuzatzPI4QQQgghJi8JIAkhhBATzJm1BbSSx4bKd2JreAH628bvZGaMkmgT/Zk143cOIYQQQggx6UkASQghhJhgKvO81JVk8XBPjbWi6fVxO1eofR9OokTzZ4/bOYQQQgghxOQnASQhhBBiArpwfjF/ay5AKwMOrR98p679RL+7kuDT34RYdFTn6TywFQBn8dzRdlUIIYQQQkwDEkASQgghJqAL55fQb7rozazFHCqAtOtR7F31uJ/+IuEfnkXgxZ8R2vci0cPbEj5Pf9MOAHKrFySj20IIIYQQYoqSAJIQQggxAS2ryqUw08k2NRsOvQ5an7SPPvgKZmYpoet+jTZseB79NK67Lsf+kzOIvfoLax9/J5ixk08QCRB49vvk7vor3TqD8rLK8f6WhBBCCCHEJGZPdweEEEIIcTKboVhbV8xjWyo4Q3VCxx5iHXuxzbkQDBtgBZCoXoNr6ZthyXVEmjYR62vB9vIPsT/yX0S6DmB79adESpfjfMdfwJ1zpP3oY5/H8+pPCdmL+JO+mA9ku9P1rQohhBBCiElAMpCEEEKICep958xiXXQWALHfX4/t7rfAht9ZG3ubMHoOYlSvsZaVwlGxFPe8S3C85VeYnnwcL32PaOkyHM3rCP/yTUT2vWhlMh3ejO21nxNd8W7eV/BbHih8H0qpNH2XQgghhBBiMpAMJCGEEGKCqivNYs3p5xBa78DVvR/TlY1+/Q/YVr4LDr5i7VR12skHZhRg3Hof4cM7cC66mtiuR7Hdcxu2uy4nnD0DIxbCcOfRtOJTrHvxDT5zWV1Kvy8hhBBCCDH5jCmApJTKB/4M1AD7gRu11l0n7FMX32fALOB/tNbfUUr9L/B+oC2+7b+01g+PpU9CCCHEVPKRSxfw/Y3vwMgo4GOnebE98QXo2AMNr6DtHihZzMEOP7tb+2juCTK7OJPTavIxiupwFlmBIVvdpfDJbQRe+x1633MYvhac53yEv23zYSh483KpfySEEEIIIYan9CBFORM+WKmvA51a6zuUUp8F8rTW/zHM/jbgEHC61vpAPIDUr7X+xkjOu2rVKr1u3bpR91sIIYSYTP70agOfvWczv7mhkvMeOh9z8c3ohpdpI48r+/6TDl/4uP0r8zx89c2LOWdO0ZBtmqbmnK8/RW1xJr99zyBZTEIIIYQQYtpRSq3XWq8abNtYh7BdA5wff34X8DQwZAAJuBDYo7U+MMbzCiGEENPGDSsr+flze/nSM12cXXM+9k1/JISLL4evYN6sLK5YXE5daRalOW7W7e/kB0/W885fvco718zgwvklrJiRR6br6L/8nYf7+OmzezjUHZDha0IIIYQQIiFjzUDq1lrnHrPcpbXOG2b/XwGva61/EF/+X+BdQC+wDvjkiUPgjjn2NuA2gOrq6pUHDkgMSgghxPTxyNbDfOB36/m3hVHm+dfz+X0L+PR1Z/C206pPKoDtD0f5wv3b+NvrjcRMjc1QLCrP5rSZ+RzqDvDw5sO4HQY3raric1cswGmXOTWEEEIIIcTwGUinDCAppR4HSgfZ9DngrkQDSEopJ9AELNRat8TXlQDtgAa+BJRprd9zqm9IhrAJIYSYbrTWfO+Jer79+C4A3nPWTP7nqgXDHuMLRXm9oYtX93Xyyr5ONh7sxmkzeM9ZNbz7rJnkZThT0XUhhBBCCDFJjGkIm9b6omEablFKlWmtm5VSZUDrME1djpV91HJM20eeK6V+Djx4qv4IIYQQ05FSio9eNIfCLCevH+jms5fPO+UxGS4758wpOlILKRiJAeB22Ma1r0IIIYQQYuoZa876/cCt8ee3AvcNs+9bgbuPXREPOg24Dtgyxv4IIYQQU9rbT5/BN29cOqphZ26HTYJHQgghhBBiVMYaQLoDuFgptRu4OL6MUqpcKfXwwE5KKW98+z0nHP91pdRmpdQmYC3w8TH2RwghhBBCCCGEEEIk2ZhmYdNad2DNrHbi+ibgTccs+4GCQfZ7x1jOL4QQQgghhBBCCCHGn0y7IoQQQgghhBBCCCGGJQEkIYQQQgghhBBCCDEsCSAJIYQQQgghhBBCiGFJAEkIIYQQQgghhBBCDEsCSEIIIYQQQgghhBBiWBJAEkIIIYQQQgghhBDDkgCSEEIIIYQQQgghhBiW0lqnuw8jppRqAw6kux8TWCHQnu5OiGlJrj2RTnL9iXSRa0+ki1x7Il3k2hPpItfe+JuhtS4abMOkDCCJ4Sml1mmtV6W7H2L6kWtPpJNcfyJd5NoT6SLXnkgXufZEusi1l14yhE0IIYQQQgghhBBCDEsCSEIIIYQQQgghhBBiWBJAmpp+lu4OiGlLrj2RTnL9iXSRa0+ki1x7Il3k2hPpItdeGkkNJCGEEEIIIYQQQggxLMlAEkIIIYQQQgghhBDDkgCSEEIIIYQQQgghhBiWBJBSQClVpZR6Sim1XSm1VSn10fj6fKXUY0qp3fGvefH1BfH9+5VSPzimnSyl1MZjHu1Kqe8Mcc6VSqnNSql6pdT3lFIqvv7bxxy/SynVPcTx5yqlXldKRZVSNwyyPVspdejY/omJZ6pde0qp2DFt3J+cn5IYD1Pw2qtWSj0a/362KaVqkvKDEkk3la49pdTaE/oQVEpdm7QflkiqqXTtxbd9Pf59bD+2bTExTcHr72tKqS3xx03J+SmJ8TBJr71PKOv93Cal1BNKqRnHbLs13ufdSqlbk/eTmiK01vIY5wdQBqyIP88CdgELgK8Dn42v/yzwtfjzDOBs4HbgB8O0ux44d4htrwJnAAr4J3D5IPv8O/CrIY6vAZYAvwVuGGT7d4E/Dtc/eaT/MdWuPaA/3T9TeUzba+9p4OL480zAm+6fsTymx7V3zD75QKdcexP3MZWuPeBM4AXAFn+8BJyf7p+xPKbN9XcF8Bhgj/dzHZCd7p+xPKbUtbd24P8p8G/An+PP84G98a958ed56f4ZT6SHZCClgNa6WWv9evx5H7AdqACuAe6K73YXcG18H5/W+nkgOFSbSqk5QDHw3CDbyrD+yL6krVfCbwfaPsFbgbuH6PN+rfUmwByk/ZVACfDoUP0TE8NUu/bE5DGVrj2l1ALArrV+LL5fv9baP1Q/RXpNpWvvBDcA/5Rrb+KaYteeBtyAE3ABDqBlqH6K9Jti198C4BmtdVRr7QPeAC4bqp8ivSbptffUMf9PXwYq488vBR7TWndqrbuwAply7R1DAkgppqxhD8uBV4ASrXUzWC88rBdJot6KFSkdbBq9CqDxmOXG+Lpj+zEDmAk8OYJzopQygG8Cnx7JcSL9Jvu1F+dWSq1TSr2sZBjHpDEFrr25QLdS6h6l1Aal1J1KKdsI2xBpMAWuvWPdzBBvhMXEM9mvPa31S8BTQHP88YjWevtI2hDpM9mvP6yA0eVKKa9SqhArW6RqhG2INJik1957sbKYBto+OFzb05093R2YTpRSmcDfgY9prXvHOJT8ZuAdQ51qkHUnvvhuBv6mtY6N8LwfBB7WWh+UofCTxxS59gCqtdZNSqlZwJNKqc1a6z2jaEekyBS59uzAOVhviBqAPwPvAn45wnZECk2Ra886gfVp62LgkdEcL1JrKlx7SqnZwHyOfir/mFLqXK31syNpR6TeVLj+tNaPKqVWAy8CbVhDKKMjaUOk3mS89pRStwCrgPNG0Pa0JhlIKaKUcmC9oP6gtb4nvrol/qZw4M1ha4JtLcUaTrE+vmw7pljYF7EipZXHHFIJNJ3QzHGfZCqlvjzQxilOfwbwYaXUfuAbwDuVUnck0m+RHlPo2kNr3RT/uherJs3yRPot0mMKXXuNwAat9V6tdRS4F1iRSL9Fekyha2/AjcA/tNaRBPcXaTKFrr3rgJfjQ3b7sT6dX5NIv0X6TKHrD631l7XWy7TWF2Pd1O9OpN8iPSbjtaeUugj4HHC11joUX93I8dlug7U9rUkAKQWUFX79JbBda/2tYzbdDwxUdr8VuC/BJo8bz6m1jsX/wC7TWv9PPEWwTym1Jn7udx7btlKqDqso2EvHtPG5gTaGO7HW+u1a62qtdQ3wKeC3WuvPJthvkWJT6dpTSuUppVzx54XAWcC2BPstUmwqXXvAa0CeUqoovnwBcu1NWFPs2hu0D2JimmLXXgNwnlLKHr8xPA+rromYoKbS9RcPGBTEny/BKrQttVcnqMl47SmllgM/xQoeHRvYegS4JH7fkQdcgmT/Hk9PgEreU/2BVWVeA5uAjfHHm4AC4AmsiPoTQP4xx+zHmm2lHysSuuCYbXuBeac45ypgC7AH+AGgjtn2v8Adpzh+dfy8PqAD2DrIPu9CZmGb0I+pdO1hzQizGWtc/Gbgven++cpjelx78W0Xx7+XzcBvAGe6f8bymDbXXg1wCDDS/bOVx/S59rBmXvspVtBoG/CtdP985TGtrj93/LrbhlXgeFm6f77ymHLX3uNYEwMM9Pf+Y7a9B6iPP96d7p/vRHuo+A9JCCGEEEIIIYQQQohByRA2IYQQQgghhBBCCDEsCSAJIYQQQgghhBBCiGFJAEkIIYQQQgghhBBCDEsCSEIIIYQQQgghhBBiWBJAEkIIIYQQQgghhBDDkgCSEEIIIYQQQgghhBiWBJCEEEIIIYQQQgghxLD+P0qaObalqA7aAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_test):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " plt.title(f\"Model Performance on test data: {test_exps[idx]}\")\n", - " plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "MG8l9PhX6yhz", - "outputId": "db07cfa0-0e64-4725-8697-1a2b70beafec" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "64.26510397973743" - ] - }, - "execution_count": 73, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(np_input_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "0xkmBo0X9uCr", - "outputId": "13b9f9b6-01c4-45d6-ce49-995f4c8be04a" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "1.2399082841705338e+22" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.cond(k(np_input_train))" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "ylag1_idx = df_iter.columns.to_list().index(f\"{dict_cols['y'][1][0]}_1\")\n", - "ylags = dict_cols['y'][0]" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [], - "source": [ - "#@tf.function\n", - "def multistep_prediction(m, tf_input):\n", - " N_pred = tf_input.shape[0]\n", - " for idxx in range(N_pred - 1):\n", - " mean,_ = m.predict_f(tf.reshape(tf_input[idxx, :], (1, -1)))\n", - " tf_input[idxx+1, ylag1_idx].assign(mean[0,0])\n", - " tf_input[idxx + 1, ylag1_idx + 1 : ylag1_idx + ylags].assign(tf_input[idxx, ylag1_idx : ylag1_idx + ylags - 1])\n", - " mean, _ = m.predict_f(tf_input)\n", - " return mean" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [], - "source": [ - "#@tf.function\n", - "def multistep_error(m, data):\n", - " tf_input = data[0]\n", - " tf_targets = data[1]\n", - " tf_outputs = multistep_prediction(m, tf_input)\n", - " err = tf.sqrt(tf.reduce_mean((tf_targets - tf_outputs)**2))\n", - " return err" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "id": "uBB14WZQz0r7" - }, - "outputs": [], - "source": [ - "def m_obj_value(m):\n", - "\n", - " tf_errs = 0\n", - " tf_vars = 0\n", - " tf_multi_err = 0\n", - " for idx, df_iter in enumerate(dfs_gpr_test):\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - "\n", - " err_iter = tf.reshape(mean - np_output_iter, (-1,))\n", - " tf_errs += tf.tensordot(err_iter, err_iter, 1)\n", - "\n", - " var_iter = tf.reshape(var,(-1,))\n", - " tf_vars += tf.tensordot(var_iter, var_iter, 1)\n", - " \n", - " # Get n random points at which to compute multistep error\n", - " n_multi = 10\n", - " idx_multi = np.random.choice(len(df_iter), n_multi)\n", - " for idxx in idx_multi:\n", - " tf_input_multi = tf.Variable(df_input_iter.iloc[idx:(idx + N_pred)])\n", - " tf_output_multi = tf.Variable(df_output_iter.iloc[idx:(idx + N_pred)])\n", - " tf_data_multi = (tf_input_multi, tf_output_multi)\n", - " tf_multi_err += multistep_error(m, tf_data_multi)\n", - " \n", - "\n", - "\n", - " obj = 5 * tf_errs + 0 * tf_vars + 1 * tf_multi_err\n", - "\n", - "\n", - " return obj" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "id": "xVrIALdM2Hrr" - }, - "outputs": [], - "source": [ - "def get_gp_from_hyperparams(tf_params):\n", - "\n", - " print(\"Training a GP\")\n", - " squared_l = tf_params[0]\n", - " variance = tf_params[1]\n", - "\n", - " k0 = gpflow.kernels.SquaredExponential(lengthscales = [squared_l]*np_input_train.shape[1], variance = variance)\n", - "\n", - " k = k0\n", - "\n", - " m = gpflow.models.GPR(\n", - " data = (np_input_train, np_output_train), \n", - " kernel = k, \n", - " mean_function = None\n", - " )\n", - "\n", - " opt = gpflow.optimizers.Scipy()\n", - "\n", - " opt.minimize(m.training_loss, m.trainable_variables)\n", - "\n", - " return m" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7" - ] - }, - "execution_count": 69, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np_input_train.shape[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training a GP\n" - ] - } - ], - "source": [ - "m_test = get_gp_from_hyperparams([0.1, 1])" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'.kernel.kernels[0].kernels[0].variance': ,\n", - " '.kernel.kernels[0].kernels[0].lengthscales': ,\n", - " '.kernel.kernels[0].kernels[1].variance': ,\n", - " '.kernel.kernels[1].variance': ,\n", - " '.kernel.kernels[1].lengthscales': ,\n", - " '.kernel.kernels[1].alpha': ,\n", - " '.likelihood.variance': }" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gpflow.utilities.parameter_dict(m)" - ] - }, - { - "cell_type": "code", - "execution_count": 762, - "metadata": { - "id": "aJSky20pFHdI" - }, - "outputs": [], - "source": [ - "def gp_cost(tf_params):\n", - "\n", - " try:\n", - " m = get_gp_from_hyperparams(tf_params)\n", - " obj = m_obj_value(m)\n", - " except tf.errors.InvalidArgumentError:\n", - " obj = np.nan\n", - " \n", - " if obj == np.inf or obj > 1000:\n", - " obj = np.nan\n", - "\n", - " return obj" - ] - }, - { - "cell_type": "code", - "execution_count": 763, - "metadata": { - "id": "BNL_0TyS8GYW" - }, - "outputs": [], - "source": [ - "def gp_cost_map(tf_params):\n", - " obj = tf.map_fn(gp_cost, tf_params)\n", - " obj = tf.reshape(obj, (-1, 1))\n", - " return obj" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "bl = [100] * nb_rational_dims + [1.0] * nb_squared_dims\n", - "bu = [250] * nb_rational_dims + [2.5] * nb_squared_dims" - ] - }, - { - "cell_type": "code", - "execution_count": 839, - "metadata": {}, - "outputs": [], - "source": [ - "bl = [0.1, 0.1]\n", - "bu = [10, 10]" - ] - }, - { - "cell_type": "code", - "execution_count": 840, - "metadata": { - "id": "ycO8i7gYICgS" - }, - "outputs": [], - "source": [ - "search_space = trieste.space.Box(bl, bu)" - ] - }, - { - "cell_type": "code", - "execution_count": 842, - "metadata": { - "id": "QEhgf703Nbbl" - }, - "outputs": [], - "source": [ - "init_X = search_space.sample(25)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0te5Vr_0wkTr" - }, - "source": [ - "### Optimization with failure regions" - ] - }, - { - "cell_type": "code", - "execution_count": 843, - "metadata": { - "id": "UDqwUp2OQ-Ar" - }, - "outputs": [], - "source": [ - "OBJECTIVE = \"OBJECTIVE\"\n", - "FAILURE = \"FAILURE\"\n", - "\n", - "def gp_observer(x):\n", - " try:\n", - " y = gp_cost_map(x)\n", - " except:\n", - " y = np.nan\n", - " print(y)\n", - " mask = np.isfinite(y).reshape(-1)\n", - " return {\n", - " OBJECTIVE: trieste.data.Dataset(x[mask], y[mask]),\n", - " FAILURE: trieste.data.Dataset(x, tf.cast(np.isfinite(y), tf.float64))\n", - " }" - ] - }, - { - "cell_type": "code", - "execution_count": 844, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "_WHmvaLbRwRd", - "outputId": "a92663ab-e4d7-4c50-9b5b-d7cf316e9578", - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "Training a GP\n", - "tf.Tensor(\n", - "[[49.68307447]\n", - " [48.17950289]\n", - " [52.46541048]\n", - " [52.67746495]\n", - " [48.04459403]\n", - " [ nan]\n", - " [52.87997034]\n", - " [48.88740409]\n", - " [52.81439254]\n", - " [ nan]\n", - " [52.30934785]\n", - " [39.64154545]\n", - " [ nan]\n", - " [48.25223144]\n", - " [52.57604174]\n", - " [ nan]\n", - " [47.52992461]\n", - " [49.17097817]\n", - " [52.07901221]\n", - " [49.65099421]\n", - " [ nan]\n", - " [ nan]\n", - " [30.41374006]\n", - " [ nan]\n", - " [51.19509676]], shape=(25, 1), dtype=float64)\n" - ] - } - ], - "source": [ - "initial_data = gp_observer(init_X)" - ] - }, - { - "cell_type": "code", - "execution_count": 845, - "metadata": { - "id": "pj2PYA-gZD_Z" - }, - "outputs": [], - "source": [ - "def create_regression_model(data):\n", - " variance = tf.math.reduce_variance(data.observations)\n", - " kernel = gpflow.kernels.Matern52(variance=variance, lengthscales=[0.2]*2)\n", - " gpr = gpflow.models.GPR(data.astuple(), kernel, noise_variance=1e-5)\n", - " gpflow.set_trainable(gpr.likelihood, False)\n", - " return gpr\n", - "\n", - "\n", - "def create_classification_model(data):\n", - " kernel = gpflow.kernels.SquaredExponential(\n", - " variance=100.0, lengthscales=[0.2]*2\n", - " )\n", - " likelihood = gpflow.likelihoods.Bernoulli()\n", - " vgp = gpflow.models.VGP(data.astuple(), kernel, likelihood)\n", - " gpflow.set_trainable(vgp.kernel.variance, False)\n", - " return vgp\n", - "\n", - "\n", - "regression_model = create_regression_model(initial_data[OBJECTIVE])\n", - "classification_model = create_classification_model(initial_data[FAILURE])" - ] - }, - { - "cell_type": "code", - "execution_count": 846, - "metadata": { - "id": "LFPOK1Yrbgmr" - }, - "outputs": [], - "source": [ - "class NatGradTrainedVGP(trieste.models.VariationalGaussianProcess):\n", - " def optimize(self, dataset):\n", - " gpflow.set_trainable(self.model.q_mu, False)\n", - " gpflow.set_trainable(self.model.q_sqrt, False)\n", - " variational_params = [(self.model.q_mu, self.model.q_sqrt)]\n", - " adam_opt = tf.optimizers.Adam(1e-3)\n", - " natgrad_opt = gpflow.optimizers.NaturalGradient(gamma=0.1)\n", - "\n", - " for step in range(50):\n", - " loss = self.model.training_loss\n", - " natgrad_opt.minimize(loss, variational_params)\n", - " adam_opt.minimize(loss, self.model.trainable_variables)" - ] - }, - { - "cell_type": "code", - "execution_count": 847, - "metadata": { - "id": "slD_7rh0b4T9" - }, - "outputs": [], - "source": [ - "from typing import Dict\n", - "\n", - "models: Dict[str, trieste.models.ModelSpec] = {\n", - " OBJECTIVE: {\n", - " \"model\": regression_model,\n", - " \"optimizer\": gpflow.optimizers.Scipy(),\n", - " \"optimizer_args\": {\n", - " \"minimize_args\": {\"options\": dict(maxiter=100)},\n", - " },\n", - " },\n", - " FAILURE: NatGradTrainedVGP(classification_model),\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 848, - "metadata": {}, - "outputs": [], - "source": [ - "class ProbabilityOfValidity(trieste.acquisition.SingleModelAcquisitionBuilder):\n", - " def prepare_acquisition_function(self, dataset, model):\n", - " return lambda at: trieste.acquisition.lower_confidence_bound(model, 0.0, at)\n", - "\n", - "ei = trieste.acquisition.ExpectedImprovement()\n", - "pov = ProbabilityOfValidity()\n", - "acq_fn = trieste.acquisition.Product(ei.using(OBJECTIVE), pov.using(FAILURE))\n", - "rule = trieste.acquisition.rule.EfficientGlobalOptimization(acq_fn)" - ] - }, - { - "cell_type": "code", - "execution_count": 849, - "metadata": {}, - "outputs": [], - "source": [ - "nb_optimization_steps = 50" - ] - }, - { - "cell_type": "code", - "execution_count": 850, - "metadata": {}, - "outputs": [], - "source": [ - "bo = trieste.bayesian_optimizer.BayesianOptimizer(gp_observer, search_space)" - ] - }, - { - "cell_type": "code", - "execution_count": 851, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[48.49316661]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.73941858]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.53105]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.81369458]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.80402914]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[48.96366872]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[48.93070182]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.74872954]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[49.99420801]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.95142066]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.95569493]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[49.98487867]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.88252083]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.80064534]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.91044925]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.89272017]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.75757517]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[48.0571689]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[44.40234229]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[47.85692281]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[nan]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[50.32359746]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[52.74704816]], shape=(1, 1), dtype=float64)\n", - "Training a GP\n", - "tf.Tensor([[48.76249199]], shape=(1, 1), dtype=float64)\n", - "Optimization completed without errors\n" - ] - } - ], - "source": [ - "result = bo.optimize(nb_optimization_steps, initial_data, models, rule)" - ] - }, - { - "cell_type": "code", - "execution_count": 852, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "query point: [5.40174621 5.07058858]\n" - ] - } - ], - "source": [ - "result = result.final_result.unwrap()\n", - "\n", - "arg_min_idx = tf.squeeze(tf.argmin(result.datasets[OBJECTIVE].observations, axis=0))\n", - "print(f\"query point: {result.datasets[OBJECTIVE].query_points[arg_min_idx, :]}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 853, - "metadata": {}, - "outputs": [], - "source": [ - "best_params = result.datasets[OBJECTIVE].query_points[arg_min_idx, :]" - ] - }, - { - "cell_type": "code", - "execution_count": 854, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training a GP\n" - ] - } - ], - "source": [ - "m_best = get_gp_from_hyperparams(best_params)" - ] - }, - { - "cell_type": "code", - "execution_count": 855, - "metadata": {}, - "outputs": [], - "source": [ - "#m_best = m" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'.kernel.variance': ,\n", - " '.likelihood.variance': }" - ] - }, - "execution_count": 83, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gpflow.utilities.parameter_dict(m_best)" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIoAAARuCAYAAAC8xNxhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iUxfbA8e9sSTa9JwQSIIQeIPQqXUQQVMCCIojYey/X/vNer/WKDcWOIkUQASmiFOm9l9BrQkiA9LbJlvn9sQEBASmbbELO53l4YN933pnzbpYke3bmjNJaI4QQQgghhBBCCCGEwdMBCCGEEEIIIYQQQoiKQRJFQgghhBBCCCGEEAKQRJEQQgghhBBCCCGEKCWJIiGEEEIIIYQQQggBSKJICCGEEEIIIYQQQpSSRJEQQgghhBBCCCGEACRRJIQQQlR4SqnaSimtlDJdQNvhSqml5RRXJ6XUbqVUvlLqxvIYU/xFKVWz9Lk3urOtG+Iqt9egEEIIIdxPEkVCCCGEGymlDiilSpRS4Wcc31ia7KntodBOTTjll/45oJR64TK6fAP4VGvtr7We5qYwqwR3JFO01odKn3uHO9uWJ6XU60qpH93Y33CllOOU1/iJP9Xd0PeXSqmdSimnUmq4G8IVQgghKiRJFAkhhBDutx+47cQDpVRTwMdz4fxNsNbaH1eMryqlrr2Yi0+Z2VQL2HYpAVzI7Kiqrjxm/1yhVpQmxU79k+qGfjcBDwHr3dCXEEIIUWFJokgIIYRwv7HAsFMe3wn8cGoDpVSQUuoHpdQxpdRBpdTLSilD6TmjUup9pdRxpdQ+4LqzXPuNUuqIUuqwUuo/l5JU0FqvwJXoaVLa7wil1HalVJZS6nelVK1TxtRKqYeVUruB3UqpvUAdYEbpjA1vpVR1pdSvSqlMpdQepdS9p1z/ulLqZ6XUj0qpXGC4UmphaezLS/uYoZQKU0qNU0rlKqXWnDoDSyn1kVIqufTcOqVU5zP6n1T6nOYppbYppVqfcj5WKfVL6fOdoZT69JRz57zvMymlri/tO7s0/kannDuglHpGKbVZKZWjlPpJKWU5Sx+NgNFAh9L7zi49PkYp9blSarZSqgDorpS6Tim1ofSek5VSr5/Sz2lLEkvj+bdSalnpc/CHKp3ZdjFtS88PK31dZiilXim9t6vP8ZyElX7dc5VSq4H4M86f9eumXAnKF4FbS5+HTaXH7yr9euQppfYppe4/19fjYiil4ktfmy1LH1dXrv9j3U55Tt5SSq0u/fpNV0qFnrheaz1Kaz0fsLojHiGEEKKikkSREEII4X4rgUClVCPlSuDcCpy5vOYTIAhXsqUrrsTSXaXn7gX6AS2A1sBNZ1z7PWAH6pa2uQa452ICVC6dgARgg3LVGHoRGAhEAEuACWdcdiPQDmistY4HDgH9S2dsFJe2TwGql8b8X6VUz1OuvwH4GQgGxpUeGwwMBWrgSjCsAL4DQoHtwGunXL8GaF56bjww+YxEzPXAxNL+fwU+Lb1XIzATOAjULh1rYum5C7nvE89Z/dJzT5S2nY0rUeZ1SrNbgGuBOKAZMPzMfrTW24EH+GvmS/App28H3gQCgKVAAa7XRjCuhOGD6vz1oG7H9TqKBLyAZy62rVKqMfAZMASIxvU6rXGefkbhSp5EAyNK/5zqrF83rfUc4L/AT6XPQ2Jp+6O4Xv+BpfGNPJHcKY0vWyl11XniOSut9V7geWCcUsoX1+tsjNZ64SnNhpXGXx3X/7GPL3YcIYQQorKTRJEQQghRNk7MKuoF7AAOnzhxSvLoX1rrPK31AeB/uBIm4Eo2fKi1TtZaZwJvnXJtFNAHeEJrXaC1PgqMxJVwuVDHgUzga+CF0lkS9wNvaa23a63tuN7ANz9jds1bWutMrXXRmR0qpWKBq4DntdZWrfXG0v6HntJshdZ6mtbaeUof32mt92qtc4DfgL1a63mlMUzGlQgDQGv9o9Y6Q2tt11r/D/AGGpzS/1Kt9ezSOjxjgROJh7a43vg/W/qcWbXWJ+oDXch9n3ArMEtrPVdrbQPex7WksOMpbT7WWqeWft1m4EqQXIzpWutlpc+RVWu9UGu9pfTxZlyJqq7nuf47rfWu0ud30j+Mf662NwEztNZLtdYlwKuAPlsHpa/lQcCrpc/tVlyJzJMu4OvGGe1nlb4mtNZ6EfAH0PmU88GnfP3Opn1pMunEn72nXPsVsBtYhSux9dIZ147VWm/VWhcArwC3KFkCKIQQooqRRJEQQghRNsbimrExnDOWnQHhuGZwHDzl2EH+mrVRHUg+49wJtQAzcOTEG2HgC1yzQi5UuNY6RGvdSGt9YsZELeCjU/rMBBSnzyRJ5tyqA5la67xz3NO5rk8/5d9FZ3nsf+KBUurp0iVJOaUxBuF6Lk9IO+XfhYCldKlVLHCwNBF0pgu571Pv8eTXQmvtLL2nU9ueGYM/F+e050gp1U4p9adyLZnLwTUTKfzsl170+Odqe9rrT2tdCGSco48IwMS5X68X8nXjjPZ9lFIrS5eJZQN9z9f+LFaWJpNO/Ik/4/xXuJZbflI6E+5UZ96H+SLHFkIIISo9SRQJIYQQZUBrfRBXUeu+wC9nnD4O2HAlKU6oyV+zjo7gSm6ceu6EZKAYV7LnxBvhQK11wmWGnAzcf8YbbB+t9fJTb+s816cCoUqpgDPiPnzK4/Ndf16ldW2exzXbKqR0uVYOrqTOP0kGaqqzF9C+kPs+IZVTvmZKKYXr63T4LG3/ybmeizOPj8e1jC5Wax2Eq7bRhdzz5TgCxJx4oJTyAcLO0fYYriVaZ329XsDX7bT7VUp5A1NwzdaKKm0/Gzfds1LKH/gQ+AZ4/dQaRKXOvA8brv+vQgghRJUhiSIhhBCi7NwN9ChdxnJS6dKoScCbSqmA0mVOT/FXHaNJwGNKqRilVAjwwinXHsG1FOd/SqlApZShtEjv+ZYjXYjRwL+UUglwsmD2zRd6sdY6GVgOvKWUsiilmuG6/3Hnv/KCBeBKSBwDTEqpV3HVsLkQq3ElP95WSvmVxtep9NzF3Pck4DqlVE+llBl4GlfS7mxJpX+SDsScUd/obAJwzdSyKqXa4pqlVtZ+BvorpTqWxvd/nCNRU/pa/gVX0sW3tL7Rnac0+aevWzpQW5UWcsc10867tL1dKdUHVw0ud/kIWKe1vgeYhevrf6o7lFKNS2sYvQH8XHqPKKW8SmtiKcBc+jqS36WFEEJcceSHmxBCCFFGSuusrD3H6UdxFSreh6to8Xjg29JzXwG/49qOez1/n5E0DNcb6iQgC9cb++jLjHUq8A4wUbl2JduKqxbSxbgNV7HoVGAq8JrWeu7lxHWK33HVMNqFa0mQlfMvhTup9I1+f1zFvw/hKrh9a+m5C75vrfVO4A5chciPl/bZv7SOz8VagGvHuTSl1PlmrDwEvKGUysNVK2jSJYx1UbTW23C9PifiSrDl4SowfeYyrRMewbVsLQ0Yg6tI9An/9HWbXPp3hlJqfenSxcdw3WcWrsTYr6cOplw7pHXm3E7sJnfqnzZKqRtwFRp/oLTdU0BLpdSQU64dW3oPaYClNJYT/sC1HLIj8GXpv7ucJw4hhBCiUlJaX/IscCGEEEIIcYUrXa6VDdTTWu/3cDhlRim1EPhRa/21p2MRQgghPElmFAkhhBBCiNMopfqXLiXzw1UvaAtwwLNRCSGEEKI8SKJICCGEEEKc6QZcSwhTgXrAYC3T0IUQQogqQZaeCSGEEEIIIYQQQghAZhQJIYQQQgghhBBCiFKSKBJCCCGEEEIIIYQQAJg8HcD5hIeH69q1a3s6DCGEEEIIIYQQQogrxrp1645rrSPOdq5CJ4pq167N2rVrPR2GEEIIIYQQQgghxBVDKXXwXOdk6ZkQQgghhBBCCCGEACRRJIQQQgghhBBCCCFKSaJICCGEEEIIIYQQQgAVvEbR2dhsNlJSUrBarZ4ORYiLYrFYiImJwWw2ezoUIYQQQgghhBDirNySKFJKXQt8BBiBr7XWb5+lTTfgQ8AMHNdad72UsVJSUggICKB27doopS45ZiHKk9aajIwMUlJSiIuL83Q4QgghhBBCCCHEWV320jOllBEYBfQBGgO3KaUan9EmGPgMuF5rnQDcfKnjWa1WwsLCJEkkKhWlFGFhYTITTgghhBBCCCFEheaOGkVtgT1a631a6xJgInDDGW1uB37RWh8C0FofvZwBJUkkKiN53QohhBBCCCGEqOjckSiqASSf8jil9Nip6gMhSqmFSql1SqlhbhjXY5RSDB069ORju91OREQE/fr182BU/8zf3/8f27z++uu8//77520zbdo0kpKS3BWWEEIIIYQQQgghKgh3JIrONk1Cn/HYBLQCrgN6A68opeqftTOl7lNKrVVKrT127JgbwnM/Pz8/tm7dSlFREQBz586lRo0zc2Plw263l/uYkigSQlyJ7IU5ng5BCCGEEEIIj3NHoigFiD3lcQyQepY2c7TWBVrr48BiIPFsnWmtv9Rat9Zat46IiHBDeGWjT58+zJo1C4AJEyZw2223nTxXUFDAiBEjaNOmDS1atGD69OkAHDhwgM6dO9OyZUtatmzJ8uXLAThy5AhdunShefPmNGnShCVLlgCnzwD6+eefGT58OADDhw/nqaeeonv37jz//PPs3buXa6+9llatWtG5c2d27NgBwP79++nQoQNt2rThlVdeOee9vPnmmzRo0ICrr76anTt3njz+1Vdf0aZNGxITExk0aBCFhYUsX76cX3/9lWeffZbmzZuzd+/es7YTQohKZf9ijO/FwfE9no5ECCGEEEIIj3LHrmdrgHpKqTjgMDAYV02iU00HPlVKmQAvoB0w8nIH/r8Z20hKzb3cbk7TuHogr/VP+Md2gwcP5o033qBfv35s3ryZESNGnEzwvPnmm/To0YNvv/2W7Oxs2rZty9VXX01kZCRz587FYrGwe/dubrvtNtauXcv48ePp3bs3L730Eg6H44ISLbt27WLevHkYjUZ69uzJ6NGjqVevHqtWreKhhx5iwYIFPP744zz44IMMGzaMUaNGnbWfdevWMXHiRDZs2IDdbqdly5a0atUKgIEDB3LvvfcC8PLLL/PNN9/w6KOPcv3119OvXz9uuukmAIKDg8/aTgghKgv7pkmYtAOO74Twup4ORwghhBBCCI+57ESR1tqulHoE+B0wAt9qrbcppR4oPT9aa71dKTUH2Aw4ga+11lsvd2xPatasGQcOHGDChAn07dv3tHN//PEHv/7668laP1arlUOHDlG9enUeeeQRNm7ciNFoZNeuXQC0adOGESNGYLPZuPHGG2nevPk/jn/zzTdjNBrJz89n+fLl3HzzXxvJFRcXA7Bs2TKmTJkCwNChQ3n++ef/1s+SJUsYMGAAvr6+AFx//fUnz23dupWXX36Z7Oxs8vPz6d2791ljudB2QghRITkdqJ2zXf/OO+LZWIQQQgghhPAwd8woQms9G5h9xrHRZzx+D3jPHeOdcCEzf8rS9ddfzzPPPMPChQvJyMg4eVxrzZQpU2jQoMFp7V9//XWioqLYtGkTTqcTi8UCQJcuXVi8eDGzZs1i6NChPPvsswwbNuy0XbLO3Fbdz88PAKfTSXBwMBs3bjxrjBey09a52gwfPpxp06aRmJjImDFjWLhw4WW1E0KICil5Fcai0u/heWmejUUIIYQQQggPc0eNoiprxIgRvPrqqzRt2vS047179+aTTz5Ba1dN7w0bNgCQk5NDdHQ0BoOBsWPH4nA4ADh48CCRkZHce++93H333axfvx6AqKgotm/fjtPpZOrUqWeNITAwkLi4OCZPngy4klSbNm0CoFOnTkycOBGAcePGnfX6Ll26MHXqVIqKisjLy2PGjBknz+Xl5REdHY3NZjvt+oCAAPLy8v6xnRBCVAb2bb+ijd5oS7AkioQQQgghRJUniaLLEBMTw+OPP/6346+88go2m41mzZrRpEmTk4WkH3roIb7//nvat2/Prl27Ts4KWrhwIc2bN6dFixZMmTLlZJ9vv/02/fr1o0ePHkRHR58zjnHjxvHNN9+QmJhIQkLCyeLZH330EaNGjaJNmzbk5Jx9N5+WLVty66230rx5cwYNGkTnzp1Pnvv3v/9Nu3bt6NWrFw0bNjx5fPDgwbz33nu0aNGCvXv3nrOdEEJUeFqjdszEXrsLOrg2Tll6JoQQQgghqjh1YtZLRdS6dWu9du3a045t376dRo0aeSgiIS6PvH6FqGDStsDoq3D2/xh2zIKcwxgeWubpqIQQQgghhChTSql1WuvWZzsnM4qEEEJUWY6kGWhlwNCgL4bAaMiXpWdCCCGEEKJqk0SREEKIKktvn4mjRlvwj4CAaAyFx8Fe4umwhBBCCCGE8BhJFAkhhKgy0nKsdHxrPtM2HIbM/ZiObcPQuL/rZEA119/56Z4LUAghhBBCCA+TRJEQQogqQWvNy9O2kJpj5Zul+3FunwmAoVE/V4OA0k0DZOczIYQQQghRhZk8HYAQQghRHmZsPsK87UdpUiOQLYdzKDBOwyciAVNIbVeDEzOKZOczIYQQQghRhcmMIiGEEFe8jPxiXv91G4mxwYy5qy3Rxlz8jq5DNer/VyOZUSSEEEIIIYQkii5Feno6t99+O3Xq1KFVq1Z06NCBqVOnlvm4a9eu5bHHHnNLX926daNBgwYkJibSqVMndu7c6ZZ+3cmdMY4ZM4ZHHnkEgNGjR/PDDz+cs+2BAwcYP378ycfufN6FEJ7xxswk8qw23h3UjHB/bx6psRsDGkeD6/5q5BuOVkaZUSSEEEIIIao0SRRdJK01N954I126dGHfvn2sW7eOiRMnkpKSUuZjt27dmo8//tht/Y0bN45NmzZx55138uyzz/7tvMPhcNtYl6osYnzggQcYNmzYOc+fmShy9/MuhCgfWmu01szfns70jak83L0uDaoFAHCNYQ2HnBH8cTzsrwsMBrR/FFoSRUIIIYQQogqTRNFFWrBgAV5eXjzwwAMnj9WqVYtHH30UcCUZOnfuTMuWLWnZsiXLly8HYOHChfTr1+/kNY888ghjxowB4IUXXqBx48Y0a9aMZ555BoDJkyfTpEkTEhMT6dKly9/6WL16NR07dqRFixZ07Njx5GybMWPGMHDgQK699lrq1avHc88994/31KVLF/bs2QOAv78/r776Ku3atWPFihV88MEHNGnShCZNmvDhhx+evOaHH36gWbNmJCYmMnToUACOHTvGoEGDaNOmDW3atGHZsmUALFq0iObNm9O8eXNatGhBXl4eR44coUuXLjRv3pwmTZqwZMmSS47xxx9/pG3btjRv3pz777//ZPLou+++o379+nTt2vVkLACvv/4677//PgB79uzh6quvJjExkZYtW7J3715eeOEFlixZQvPmzRk5cuRpz3tmZiY33ngjzZo1o3379mzevPlknyNGjKBbt27UqVNHEktCVACFc/6PY5MeY+SUP2kQ5c9D3eq6TlhzCT+6kmXm9vy09owkf0A1dJ7seiaEEEIIcTZFGck4HE5PhyHKWOUuZv3bC5C2xb19VmsKfd4+5+lt27bRsmXLc56PjIxk7ty5WCwWdu/ezW233cbatWvP2T4zM5OpU6eyY8cOlFJkZ2cD8MYbb/D7779To0aNk8dO1bBhQxYvXozJZGLevHm8+OKLTJkyBYCNGzeyYcMGvL29adCgAY8++iixsbHnjGHGjBk0bdoUgIKCApo0acIbb7zBunXr+O6771i1ahVaa9q1a0fXrl3x8vLizTffZNmyZYSHh5OZmQnA448/zpNPPslVV13FoUOH6N27N9u3b+f9999n1KhRdOrUifz8fCwWC19++SW9e/fmpZdewuFwUFhYeM74zhfj9u3beeedd1i2bBlms5mHHnqIcePG0atXL1577TXWrVtHUFAQ3bt3p0WLFn/rd8iQIbzwwgsMGDAAq9WK0+nk7bff5v3332fmTNeOSAsXLjzZ/rXXXqNFixZMmzaNBQsWMGzYMDZu3AjAjh07+PPPP8nLy6NBgwY8+OCDmM3m896XEKJs2HYtwG/VSPyAKXo8qaE3U5RRC6+o2rBnLspZgmp6PUvXHudwdhE1gn1cFwZEQ+Y+T4YuhBBCCFEh2VZ+jc+cpykOrEVB/esxNB2IX2xzlEHmn1xpKneiqAJ4+OGHWbp0KV5eXqxZswabzcYjjzzCxo0bMRqN7Nq167zXBwYGYrFYuOeee7juuutOzlzp1KkTw4cP55ZbbmHgwIF/uy4nJ4c777yT3bt3o5TCZrOdPNezZ0+CgoIAaNy4MQcPHjxromjIkCH4+PhQu3ZtPvnkEwCMRiODBg0CYOnSpQwYMAA/Pz8ABg4cyJIlS1BKcdNNNxEeHg5AaGgoAPPmzSMpKelk/7m5ueTl5dGpUyeeeuophgwZwsCBA4mJiaFNmzaMGDECm83GjTfeSPPmzc/6/PxTjPPnz2fdunW0adMGgKKiIiIjI1m1ahXdunUjIiICgFtvvfVvX4u8vDwOHz7MgAEDALBYLGeN4VRLly49mZDr0aMHGRkZ5OTkAHDdddfh7e2Nt7c3kZGRpKenExMT8499CiHczF4Cvz1Lvm8s/bOe4L/VFtL+wGT0F1PIbnw7PvmHMPuG06lrH/Saxfy8NoXHr64HgCEwGufB5R6+ASGEEEKIikVnHcA47xWsUS2wmwMIWPcZau0nFAfFUdLgBiyt78AcWc/TYQo3qdyJovPM/CkrCQkJJxMFAKNGjeL48eO0bt0agJEjRxIVFcWmTZtwOp0nkw8mkwmn868pelar9eTx1atXM3/+fCZOnMinn37KggULGD16NKtWrWLWrFk0b9785KyVE1555RW6d+/O1KlTOXDgAN26dTt5ztvb++S/jUYjdrv9rPcybty4k3GfYLFYMBqNgKu+x9lorVFK/e240+lkxYoV+Pj4nHb8hRde4LrrrmP27Nm0b9+eefPm0aVLFxYvXsysWbMYOnQozz777FnrBl1IjHfeeSdvvfXWaW2mTZt21hjPvI+LdbZrToxzoc+7EKJsWZd9hiVrD0/xAjo0nsQHhpOTcQAWv0/QtrEo7cDefCix4QF0qhvG5HXJPNqjLgaDAv9qGKxZYLOC+Z+Tx0IIIYQQVzytsU19FJNSeN/2A5bgmhRlH8W2dTqmHdPxX/MxeuM38NQ2sAR5OlrhBjJH7CL16NEDq9XK559/fvLYqcumcnJyiI6OxmAwMHbs2JP1cmrVqkVSUhLFxcXk5OQwf/58APLz88nJyaFv3758+OGHJxNCe/fupV27drzxxhuEh4eTnJx8Whw5OTnUqFED4GStI3fr0qUL06ZNo7CwkIKCAqZOnUrnzp3p2bMnkyZNIiMjA+Dk0rNrrrmGTz/99OT1p95L06ZNef7552ndujU7duzg4MGDREZGcu+993L33Xezfv36S4qxZ8+e/Pzzzxw9evRkLAcPHqRdu3YsXLiQjIwMbDYbkydP/tu1gYGBxMTEMG3aNACKi4spLCwkICCAvLy8cz4n48aNA1xL0sLDwwkMDLyk2IUQ7nfs8AH0wreZ72hBSmQXvrurLb7eJoKr1yXo1s/JuWcl2a0exdT5SQBuaR1LSlYRK/a5vp8RUM31d36ah+5ACCGEEKJisa35Dq9Dizne4WVeXZjL6EV72ZJlwtx2BL73zMR+5xwMJXk4N070dKjCTSr3jCIPUEoxbdo0nnzySd59910iIiLw8/PjnXfeAeChhx5i0KBBTJ48me7du59cthUbG8stt9xCs2bNqFev3sl6OXl5edxwww1YrVa01owcORKAZ599lt27d6O1pmfPniQmJrJo0aKTcTz33HPceeedfPDBB/To0aNM7rVly5YMHz6ctm3bAnDPPfecjPull16ia9euGI1GWrRowZgxY/j44495+OGHadasGXa7nS5dujB69Gg+/PBD/vzzT4xGI40bN6ZPnz5MnDiR9957D7PZjL+//3m3qz+fxo0b85///IdrrrkGp9OJ2Wxm1KhRtG/fntdff50OHToQHR1Ny5Ytz7pD2tixY7n//vt59dVXMZvNTJ48mWbNmmEymUhMTGT48OGn1TZ6/fXXueuuu2jWrBm+vr58//33lxS3EMK9tNZM23gY8/SHuUbbONbxNX7u3RGj4a+ZhUopgmvUhxr/OXmsd0I1Ai0mflqTTKe64a4aRQB5aRBSu5zvQgghhBCiYtHZyRjnvkJh9Y4MXteQQ1mHsDtdqyxMBkWj6EBa1Azm6ZAm+K/5GtrdB/+wskNUfOpSlt+Ul9atW+szC0Fv376dRo0aeSgiIS6PvH6FcL9jecX865ct5O5YyCTvf5Oe+ChRA/7zzxeWenX6ViauSWbNi1cTlLsTRneCm8dAwoCyC1oIIYQQoqLTmuLvB2JOWcEjwaOYl+bL+HvaERfux4ZD2aw/lMWGQ9lsSsnmev0nbxtHw/BZUPsqT0cuLoBSap3WuvXZzsnSMyGEEJWW1eZg+HerWb47jU9DJmDzr0HUdS9eVB+3tI6lxO5k+qbDp88oEkIIIYSowmzrfsT7wAJ+Drmb2SkW/ndzIq1rhxLm783VjaN47tqGTLivPe/fnMg0Wzts5kDsq772dNjCDSRRJIQQotL6vxlJbEvNZVKrJCIL96B7vwlevhfVR5MaQTSODuSnNcngG4o2mCHvSBlFLIQQQghR8encVAxzX+KAXyLPJ7fn+Wsb0j+x+lnbJsYGY8WbndHXY9w5A/LSyzla4W6SKBJCCFEp/bI+hQmrD/Fkh2Aabf+E4ppd8Gpy4yX1dWubWLal5rL7aD7avxo6VxJFQgghhKiitMb265Nom5XhmcMY3LY2D3Stc87m1YMshPt7McN8Lcppx7FO6rhWdpUyUVSR6yoJcS7yuhXCfXam5fHS1K10qB3IPRnvY7AXYu73/iUXT2wbFwrAjrQ8CKiGlk/ChBBCCFFVpa7Ha88c/lcykFr1mvHvGxJQ5/kdSylFYkww848FYq/VBdaNAeffNxISlUelSxRZLBYyMjLkTbeoVLTWZGRkYLFYPB2KEJVefrGdB8etw9/LwCi/r/E7tABrz7cwRDa45D7jwl07VO4/XuCqUyRLz4QQQghRReWv+I5C7c3q8AGMGtISk/Gf0waJscHsPZaPreUIjHmHYdfv5RCpKCsmTwdwsWJiYkhJSeHYsWOeDkWIi2KxWIiJifF0GEJUalpr/vXLFg4cz2d+o9mE7p1G/lUv4t/pvsvq12I2UiPYh33H8jEERqP3L3RPwEIIIYQQlUlJAaakKcx0tuPdIZ3w976wlEGzmCC0hg2+HWjnXw29+mtMDfuWcbCirFS6RJHZbCYuLs7TYQghhPCAsSsPMmNTKuPiFxC3bxz5rR7Ev+dzbuk7LtzPNaOoRjVUcS6UFICXn1v6FkIIIYSoDPLW/UyAs5DDcTdxU4T/BV+XGBMMwKbDBbRrORzj4ncgcx+Enru2kai4Kt3SMyGEEFXT2gOZ/HtmEv+OWkynw99QkHA7/v3euuS6RGeKC/dj3/ECdEA114G8NLf0K4QQQghRWWQv+5q9zmj69h1wUdeF+HlRM9SXTcnZGFvfCcqAY823ZRSlKGuSKBJCCFHh7UzLY8SYNdzlt5yhOaMprNsPv0Gfui1JBK5EUZ7VTq4pzHVAEkVCCCGEqELyUpKIzd/MxvD+1KsWeNHXJ8YGszklGwKr46jfB7VhHNis7g9UlDlJFAkhhKjQUrIKGfbtKjobt/Iv2yiKYrvgc+s3YDC6dZw6Ea5lZodKglwHpKC1EEIIIaqQnbNHYdNGEvref0nXJ8YEkZpj5WieFVO7ezFYM9FJ09wbpCgXkigSQghRYWXkFzPsm9V4lWTzP/Pn2ILr4j1kPMrs/h0E64S71uHvtpbWJZIZRUIIIYSoIvILC6mT+iubfDvQsG7dS+ojMTYYgM3JORDXFUdIHZwbxrsxSlFeJFEkhBCiQsovtnPXmDUczi5kcswkvEuyMdz0NQZLQJmMVyPEB7NRsTPbiDZZZEaREEIIIaqMZbPGEkouoZ3vueQ+EqoHYjQoNqVkg1Ko+tdgSFkN9hL3BSrKhVsSRUqpa5VSO5VSe5RSL5ynXRullEMpdZM7xhVCCHFlKrY7uH/sWral5jKp/QGqpfxOcZd/YaqRWGZjGg2KWmF+7D9eiPavhlNmFAkhhBCiCigqceC3bQIZhnDqtL/+kvvx9TJRL9KfTSk5ABhqX4WyF0HqeneFKsrJZSeKlFJGYBTQB2gM3KaUanyOdu8Av1/umEIIIa5cDqfmqZ82sWxPBp9cG0KTTW9SXKM9li5PlPnYdcL92H+8AAKqQa7MKBJCCCHElW/64tV01BspShh82TUgm8cGsyk5G6011OoEgN6/xB1hinLkjhlFbYE9Wut9WusSYCJww1naPQpMAY66YUwhhBBXIK01r/+6jVlbjvByn/r03PEqKIV50JduL159NnERfhzMcM0oIl9mFAkhhBDiyma1OchZ/h0oiOlx32X3lxgbTE6RjYMZheAbiiOiMc79S90QqShP7kgU1QCST3mcUnrsJKVUDWAAMNoN4wkhhLhCfTR/N2NXHuT+rnW4wzkd79TV2Hu/gyG0VrmMXyfcjxKHkwLvCJQsPRNCCCHEFW7ymoNc55hPZlRHCLn837eaxbh2j92Ukg2Aqn0VhpRV4LBddt+i/LgjUaTOckyf8fhD4HmtteMfO1PqPqXUWqXU2mPHjrkhPCGEEJXB2BUH+HDebm5uFcMzTYrwXvwW1vrX493y9nKLIa5057NjhKBsBVCcV25jCyGEEEKUJ4dTs27hNGLUcUKvGuGWPutHBWAxG9iUXFqnKO5EnaINbulflA93JIpSgNhTHscAqWe0aQ1MVEodAG4CPlNK3Xi2zrTWX2qtW2utW0dERLghPCGEEBXdjE2pvPrrNq5uFMV/r6uN/uU+HL7heN/4EaizfR5RNuLC/QBIsbs+DUNmFQkhhBDiCrVgx1GuLppDsTkIQ6P+bunTbDSQUD2IzaUzik7WKTogy88qE3ckitYA9ZRScUopL2Aw8OupDbTWcVrr2lrr2sDPwENa62luGFsIIUQlt2T3MZ6atJE2tUL5dHBT7D/dhTl7H84bP0f5hpZrLOH+XgRYTOyzBrgO5ElBayGEEEJcmeYsWc61xjUYWgwBk7fb+k2MCWZrag52hxP8wnGEN8SxTwpaVyaXnSjSWtuBR3DtZrYdmKS13qaUekAp9cDl9i+EEOLKtSk5m/vHriM+wp+vhrXCOetZfA7Op6jXu3jV61Hu8SilqBPuR1Kea2aRzCgSQgghxJVo77F8Wid/D8qEufPjbu07MTYIq83JrvR814HanUrrFNndOo4oO+6YUYTWerbWur7WOl5r/WbpsdFa678Vr9ZaD9da/+yOcYUQQlQeJXbnaY/XHcxi2LerCfP34ocRbTGt+hTfzd9T0OYRfDve46EoXcvPNmZbXA9kRpEQQgghrkC/LlrFIONiCpvcDgHV3Np3Ykww8FdBa2PtqzDYCuDIJreOI8qOWxJFQgghxPnYFo/E/mUPjq+eRInNzp87jzLk65WE+JoZf097/PfNxG/R/1FY73r8+vzbo7HGhfuzOwecZl+ZUSSEEEKIK05BsZ2oLV9gUIrAns+4vf9aYb4E+ZjZlJztOlD7KgCc+2X5WWUhiSIhhBBly+nAsOozfI5tJnz2veR+2J5JP3xOnTA/fn6wI5HZG7HMeAhrtdb43PIlGDz7oykuwg9QlPhE4syVGUVCCCGEuLLMWbGRQSzgeN2BEBz7zxdcJKUUzWKC2JTi2vkM/0gcofVwSkHrSkMSRUIIIcrWweUYC45iu2E0v9V7g9y8PD43f8Bkw/OYNv6IcdIQ7P7RmO/4CWX28XS01Cnd+SzfHIGWRJEQQgghriBaa5zLP8akHET1fbHMxmkeG8yu9DyKShyuA7WvwpC8QuoUVRKSKBJCCFGm7Fum4DT58PmR+jy4pS7v1PmB9B4fYrIXEDzvKUDDkJ8x+od7OlTAVaMIIMMQisqXpWdCCCGEuHKs276b64rncKB6X1RoXJmNkxgTjMOp2ZbqmlVkjLsKQ0k+pG0uszGF+5g8HYAQQogrmMOOYfuvJAV0ZOSiw9zaOpY3BzTBZGyHtd3tHN8wFf+YBCyR9Twd6Ul+3iaiAr054gimfn46aA1KeTosIYQQQojLduyPD7CoEmL6v1ym4zSLDQJgY3I2rWuH/lWn6MBSDDValunY4vLJjCIhhBBl58ASDEUZfJLelKHta/H2oKaYjK4fPRZvb8LbD8YS09TDQf5dXLgf+0sCUPYisOZ4OhwhhBBCiMuWlp7KVVnTSArugXd0ozIdKzLAQvUgC38kpWO1OSCgGo6QeJz7pKB1ZSCJIiGEEGUmfcV48rWFkrievNa/MaqSzMypE+HPzgJ/1wPZ+UwIIYQQV4C9v/6PAFVEeBnWJjrV/V3jWb0/k9u/WsmxvGJ0rU4YUlaC01Eu44tLJ4kiIYQQZSI1IxfvPbNZbmrLyCHtT84kqgzqhPuxzxrgepAnBa2FEEIIUbkVF2TR9PAE1vl0oFr91uUy5p0da/PZkJYkHcnlxlHLSA9tjaE4F9K2lMv44tJVnt/ahRBCVBpFJQ6+GPMtweTTpNdwgn29PB3SRYkL9yOdENcDmVEkhBBCiEpu14wPCaQAOj9bruP2bRrNpPs7YHc6uWOeGXDVKRIVmySKhBBCuJXWmuembKZJ9nxsJn+qt+7n6ZAuWly4H0d1sOuBzCgSQgghRGVmLyF65w+sMSTSon2Pch++WUww0x++ioDImhxwRrF/3R9orU+e11qTZ7VxPL/4tOPCcyRRJIQQwq0+X7SXOZsO0d9rPYZG/cDk7emQLlpsqC82gw9Woz9aEkVCCCGEqMT2Lx5PuM4kK/FeDAbP1IusFmThp/s6kBLUirDjaxn+7SrWHcwk+Wgmyct/wvHTnQSObkXGoi9wOpweiVH8xeTpAIQQQlw5luw+xnu/7+T5+BQsh/Oh6SBPh3RJzEYDNUN9ySoOJSo3jcpRglsIIYQQ4gxao1Z9xn4dTcfet3o0FB8vIx179McwfTb1Dv7E/q/30Ni8Dh9nAXZLGCX+NQhf+Dx5yUuxDPwEs1+IR+OtymRGkRBCCLew2hy8OHULceF+3BW0Aad3MNTp5umwLllcuB9pzmCZUSSEEEKISitz51JqF+8kqebt+Fs8XzPSENcZgJcN39LXvI6Zttbc43yRD5vPoHDY72R0eBH/fbPRX3TBenCth6OtuiRRJIQQwi0+XbCH5Mwi3uxfD/Oe33A2vA5Mnv+F5FLFhftxyBaIzpVEkRBCCCEqp7Q/RpKjfWnS5wFPh+ISHEtu74842Osrjt2/hfr3/YCO78GnCw9w4+crWRE9lJxbp4PDjtf312Jd8glI3aJyJ4kiIYQQl23P0Xy+WLyXAS1q0MGxAUNJPqZKuuzshLgIP5KdYRjy0yjOPebpcIQQQgghLkpxxkHqZ/7JssB+1Koe6elwTvJpO4wa7W+iVlQYibHBfHNnG8bd0w5/bxOPjN/AiAUGtl4/i+JaPbDMf5niH27CmbHf02FXKZIoEkIIcVm01rw8bQs+ZiMv9m2EY8sUnJZQiOvi6dAuS1y4H9MdnTBoO9blX3g6HCGEEEKIi7J31kjQEN7zEU+Hchqz0YDJeHoqolPdcGY91pl3BjUlOauIgd9t5wWvFzja8XXMycvgs3ZY57wGxXkeirpqkUSREEKIyzJt42FW7svkuWsbEuHtQO2eg27UH4xmT4d2WeIj/NmtY9gX0gm/jd9isxZ4OiQhhBBCiAuii/OJ3TeJpeYOtEls5ulwLojRoLi1TU3+fKYbj/aoy5xt6XRe3JDPm/xEfnw/LCs/xP5RS0rW/ABO2RmtLEmiqKqzF2P/9Sk4vtvTkQghKqGcQhv/mbmd5rHBDG4eQf5vr2GwFWJsOtDToV22yABvfL2MzAu5FZM1g8LVP3o6JCGEEEKIC3JgwTcEUIC11X0oVbn2b/X3NvH0NQ3485lu9G0azfur8mm7/WZG1/sKq18MXrMepWR0F0q2zQKb1dPhXpEkUVTFOdf/iGn9N7B5kqdDEUJUQu/+voOswhLean4M52cd8N/wJdaEW6F2Z0+HdtmUUsSF+7HM1pCiiEQsaz/DYbd7OiwhhBBCiPNzOrGs/4qtxNOlx3WejuaSVQ/2YeStzZn7ZFeuT6zO/5L8STz8DGOiX8GZdwyvybfjfCcO69jBFK/+HvKPejrkK4Ykiqoyhw29dCQAziObPByMEKKy2XAoiz9Wb2ZK5Lc0mnsnKEXB4ClYbv4SDEZPh+cWceF+7M8opKT9Y3jnHiB/83RPhySEEEIIcV7HNs4m2pbMnjpD8fWu3KUAAOpG+vPuTYksfq47d3WM493DTWiW9Q4fRP6Xo3UGYkrfhPfsx+D9epR83g37xp9kp7TLJImiKsy5eTLG3GR0YAxIokgIcRGK7Q4WTXifBd7PkJi3mLz2T2N6eAV+Da/2dGhu1bh6IIcyCzlW/WqKA2vhtfITtKyJF0IIIUQFlrPwY9J1MK363OXpUNwqOsiHl/s1ZvkLPXj46gS+O1qXDlv68nSNcSTf+gfWq/4FdiumafdRMuZGdKbslHapJFFUVTkdOBf/D3tEY1T7BzDkp8lUPSHEBckuLOE/n3/LE0Wfkh+SgO2+JQRc+yoGLx9Ph+Z2t7SOxdtk4Ktlh7C2fhCfoxvI373E02EJIYQQQpyV9fBW6uauYnnoQGIjgj0dTpkI9vXi8avrseS57jzQNZ7fk9LpPjaDN/KuI/OO+diueQdT6hr0Z+2xLR4JDikdcLEkUeQBujCLonlvYV/zXbmOu+ZAJgeOu3btcSb9iilrD8Yuz0B0c1eDI5vLNR4hRMViT92M/eCq87Y5lFHIwM+X0+TYLGxGH6IfnI53tYblFGH5C/f35tY2sfyyIYW8Bjdjt4Siln/i6bCEEEIIIc4qeeY7FGkvYq5+0NOhlLlgXy+ev7Yhi5/tzu3tajJ5bTJd/7eYqebrMDyyGlvtbpgXvI5tdFecyes8HW6lIomiMlZU4mBuUjoAuiCDojmv4xzZBJ+lb2Oc+zI4bOUSx9QNKdzyxQpu+WIF6TlFOBe9hz0kHpVwI1Rr6mqUJsvPhKiyCjNRYwdgmDD4nLtHbEzOZuDny8jLy2eg91oMjW8AL79yDrT83du5Dk4N3689SkHiCPwPziU/ZaunwxJCCCGEOI0z8yBxR2Yx26s3rRvX83Q45SYy0MIbNzRhwdPdaF07hBd+2cyfaV543/ET9pvHogqPo769Gg4s9XSolYYkisrYZwv38MIP89ky5gn0yCZYVn6IrXZ3HN1eQpXkQ8raMo9h+sbDPD1pEy1rhpBfbOerb0ZjOrYNQ+enXAVnfYJxBtfGmSqJIiGqqpKZz2AsOo7BmolOmva383O2pjH4yxX4epmY0TsPsy0PY/PB5R+oB8SG+tKvWTTjVx2iuOUInEYLzmUyq0gIIYQQFcvR39/DqaG47cMopTwdTrmLDfXly6GtaVgtkEfGrScpNRdTwvWYHl2N9gnDseRDT4dYaUiiqIw9FrKCZZYnSNg/hkMRXXHcvwzLkB8xtrsPrQywd0GZjv/rplSe/Gkj7eLC+PHudnxwczP6Zv9IhikK1eyWvxpWayZLz4SoohxJM/FKmoLtqmdxhNTBsfqb085/u3Q/D45bR8NqgfzyUEfC903D4V8N4rp4KOLy90DXeApKHEzaVkh+41vx3/kLhceTPR2WEEIIIQQAjtw0wnZNZKruwrUdW3k6HI/x8zbx7fA2BFjM3P39GtJzrWAJQrUegXHvXDi+x9MhVgqSKCpj5sj6OBv247Gw0fQ6NIxleZGuEz7BOKu3wrlnfpmNPXNzKk9M3ECb2qF8M7w1Pl5GevvtoqVhDyOL+jJ2TerJtobqiRiy94M1p8ziEUJUQIWZMPNJbBEJmLs9h2o9AtPh1ZC2Fa017/2+gzdmJtG7cTUm3teecJWPce88aHqTa0ZiFdEoOpDuDSL4btkBbG0eQmk7Jcs/93RYQgghhBAA5C/8CIPTzo46dxPq5+XpcDyqWpCFb4a3JqfIxt3fr6GwxI5qczfaYMa5arSnw6sUJFFU1mp1xHfwt7x57yDqRQZw/9i1rN6fCYCxbk/UkQ2uN2puNnvLER6fuJHWtUL5dngbfL1MANgWvo/DL4pj8TfzxowkVu7LcF0Qnej6O22L22MRQlRcJbOex2DNxDTwczB5YWgxBG20YFv1FS9N28qoP/dyW9uajBrSEovZiN46BeW0Y0y8zdOhl7sHusaTUVDCrMMW8uP7EbDle4pyjns6LCGEEEJUcfb8DHw2jWGmswO9OnfwdDgVQkL1ID69vQVJqbk8NmEjDr9IdMJA2DheJkdcAEkUlZMgHzM/3N2WGsE+jBizhs0p2RDfA6WdsH+xW8eauiGFRydsoEVsMN/d1QY/b1eSSB9ahdehJegOD/Pe7W2pGebLw+PWczi76K9E0RGpUyREVeHYPhuvbZNwdHwSdeJ7gG8otkY34tj4E9NX7eShbvH8d0ATjAbXOnfHxok4IhKgWhMPRu4ZbeNCaVkzmC8X78Pe6UmMtnyKl0qtIiGEEEJ4VtGyz/FyFDLN/xY61AnzdDgVRo+GUbzWP4F529N5c9Z2DB0exGArQG/40dOhVXiSKCpH4f7e/HhPO4J9zQz7djU7TfXRXgFoN9UpyrXaePKnjTz50yZa1QxhzIi2J5NE1vxsrL+9gsMSgqnN3QRazHw1rDUldif3/bCWIq8wnP5ROCVRJETVUJQFM5/AHt4IU7fnTh4uLLHz32MdsegiRjfbw3PXNvyrGGLGXkxH1qESb/VQ0J6llOLBbnVJySpiUXYkeXX6ErDxG6y5GZ4OTQghhBBVVElhLt7rvmSuoxXt2nepkkWsz+fOjrW5q1Ntvl22nz+yonHEtMO56ktwOjwdWoXmlkSRUupapdROpdQepdQLZzk/RCm1ufTPcqVUojvGrYyig3wYd087vIwGnv1lGzquC3rPAtD6svpdcyCTPh8uYfrGwzzesx7j722Hv7cJrTWZe9agvuyGJW0Nzp7/B97+AMRH+PPh4OZsS81l/OpDUC0RZOezMld8YCXkpv5zQyHKUO60ZzEUHuf41SNJzrWTnFnI3mP53PH1Kn44FEZGQEM6ZE4/7XuTc9NENApDs5s9GLln9WwYSb1If0Yv2oej87MYbXkULx3l6bCEEEIIUUUVrvgar5IcRusbualVjKfDqZBe6tuIOuF+fDB3F6rdAxizD8Cu3z0dVoV22YkipZQRGAX0ARoDtymlGp/RbD/QVWvdDPg38OXljluZ1Qrz46ZWMWxLzcUR1x1DbjJk7rukvmwOJ+//vpNbv1iB0aCY/EBHnuxVH5PRgLXEzvEFowge3xeDvZCcW6ZibnPnadf3bBRFg6gA5m9Px1C9OSpjF5QUuuM2qyynU/P7tjQGfraM279aiS59o20/vo+iH27Ge0xv9NxXPRylqMomT/iWwJ2T+cTWn/ZjMun87p90fvdPev5vEVsP5/LZkFaEdn0Q0/EkSF7lukhr9KZJOGp3gcDqnr0BDzIYFPd3jWdHWh7rrTXIi7sW/41fYc1zf605IYQQQojzKbYW4Lf2M1bSlKhGnQj39/Z0SBWSyWjgsZ712JGWxx/O1jgDquNY8Zmnw6rQTG7ooy2wR2u9D0ApNRG4AUg60UBrvfyU9iuBKp/qTKgehMOp2RvYloYAexdAWPxF9XEsr5jh361mW2ou/ROjeb53QwJ9zRQU2ynKzcQ86zEiDvxGXmx31MDRBIdUO2s/PRpF8tXifRS2TcBXO+FoEsS0vvybrGJsDifTN6YyetFe9hzNJ9BiItdqZ83uwzTd/x3eqz/BWxlx+Eejju1CJoUKT1ix4xAddrxJqldNavR5lfeMp++K0aRGEI2iA6HkZpx/vIxz1deYaraH5FUYcw5A9+c9E3gFcn1idT74YyevzdjG6B6PkLB/DvnLPsNy7csX3Ifd4cTu1BgNCrNRVoELIYQQ4uJZV48lqOgYH5Xcx0Nta3o6nAqtf2J1Pl6wm5ELDnBNm3swLngD0rdBVIKnQ6uQ3JEoqgEkn/I4BWh3nvZ3A7+5YdxKrUmNQAA25IdQP7g2es98jG3vvag+Ji/fQeP0X3mhaSjxobth9Z8UOJ2g7YRtH4e54AjHO7xMYI8n8TKf+0vdo2Ekny/cy8qiGHoAHNkoiaKLUFBsZ9LaZL5avI/UHCsNqwXw0eDm9GwYyctvv0PcT0/i40inqMEAvPq8iXHZB+jNk1xLemQNsShH2YUl7J70Ch3Ucay3zmRQ3fMkp7380M0GY9zwPRS8jWPjRAwmH1Sj/uUXcAXlZTLw6ZCW3D92HTf/WsBvkd2oseFLSjo/gpdf8N/a2xxO0nMKseVnQF4aKi8NU0E6psKj4OVHUNeH8LHIJ4BCCCGEuAgOOz5rPmWHqSEpllZ0ig/3dEQVmtGgeLxnPR6fuJF5Pn3oZXoPvXI0hhtkY5KzcUei6GzvdM9acEcp1R1Xouiqc3am1H3AfQA1a165WdHYEF8CvE1sS81BxfdAbf4JHDYwmi+4D/O2ybxn/hJ24/pzipKAWI7eNI2IRldhMJw/GdEiNphgXzMzDxrpZglGHdkss10uwOHsIn5YfoAJqw+Ra7XTtnYo/+1bi7ZqG3rfB5gWLeZDdrHTFot90M9EJ/ZyXRhaB1Wc6yom7Bvq2ZsQVYbWmk8nTud5xwyO1buZiLqd//EaY9u7Ye1XONd8i0qairPBdRi9A8oh2oqvZc0QZjxyFQ/8uI6HU65mpvdCspd+hlfvF09rt3LPUQ7+NpJ+Gd/ih/WsfeUdXkL+LWPw9w8sj9CFEEIIcQWw7l6AJS+ZkSVPMLhXrX98zyegX7PqfLJgD+8vPUbPJjdj2DwJrn4d/GSnuDO5I1GUAsSe8jgG+FulXqVUM+BroI/W+pxbxGitv6S0hlHr1q0vr8JzBWYwKBpVD2Rbai6qew9Y9y2krIFaHS/o+sISO6asPRSbLOy7bRnaYASDAaPRhNFoIigwkKhAnwvqy2Q00K1+BAt3HUfHNkOnbsR4OTd3BdNas/5QFt8uPcCcbWkA3FYf7vZZTHTGKrynbUJpJ06jheLqbTnSZDj95sVwf1pNnjlRwj0kzvV35n5JFIly8/PaQ/Q58A42rwAiBr57YRdFNsIe2wHj4ndRThs0H1y2QVYy1YIs/HR/e16dFsC8TS1ot/IzMtrcT3BwKLO3HGHawpWMOP4+txq3sc7cihmFCRR5R9KxRQJNG9THEBiN77aJRCx5icKxN5J7y0QCwyLPOZ7DqTEoZDcTIYQQQuDcOhWrwZfFtODfUsT6ghgNisd61uOxCRtY2noQXR0/4Fw3BkOXpz0dWoXjjkTRGqCeUioOOAwMBm4/tYFSqibwCzBUa73LDWNeERKqBzJxdTKOWldhUEbYMx91gYmi1fsziSWN4oCaxMXFYTIoTJdR56JHoyimbUzluH9DIpPHXPTspqpg+Z7jvPv7TjYmZxNoMfFIuxCG2iYTmjQWpR0UR7WgsN0TGOO74V27HT5mCz5A15S1TFh9iEd71sXbZITQ0kRR1n6IaeXRexJVw8GMArbN+ISbDbux9Rl1UQlKU9t7YMoKnL4RGOp0L8MoKydvk5G3BzVlmuVpAtbeweefvcoPhgG0y5/Ph15j8DZr9rd7i7qd76FXai5vzEzip2V5dDlWyOv9vQnv/hBH/cKJ+OMRSsb2JevWyYREx53sX2tNntVG4b5VeG2ZgMPLH0ftrhhrdyIgIACLWdL6QgghRJXjsOG1ezZ/OFvSuWEMkYEWT0dUaVzXNJpP5u/mP2ugU60uqNVfQdt7wBLk6dAqlMtOFGmt7UqpR4DfASPwrdZ6m1LqgdLzo4FXgTDgs9JPQu1a6ypfBCehehBFtgPszzcRV6MV7FmAsecrF3Tt8r0Z3GI4iiWqOV5ueKPQtV4ERoNiTXEs/RwlcGwHVGt62f1eCfYey+et2duZt/0oNYJ9+G+/OvQrnI7f2k8x2AqwJgzG++qXsQTXOOv1d3asxbzt6czecoQBLWIgpLbrxCXudCfExbA7nLw+4U8+VOMpiO6AX8shF9dBo+txBNWEpjeD0R2fLVx5lFIM6NeftEOdue3odJp4HaCz11LyI1uRds3HxMQ1xmw00KluOLMevYqxKw/ywR+7uPbDJdzZsRb9ml2DvmE8ETPvwvBjXzJu+gm/mASyc7LQm38meNsPVMvYhsPki3LaMGz+AqfRm8Ko1qTHdIb4HoTXbYNRimILIYQQVULxnsV4F2czvaQNt7aJ/ecLxEknZhU9OmEDKxPvpVPyXdh+GIT5zmng7e/p8CoMt/zWr7WeDcw+49joU/59D3CPO8a6kiRUd9Wj2JaaS926PdEL34bCzAv6tH/ZrqM8o45iDq/jlliCfM20rhXC9PRw+gEc2VzlE0VZBSV8NH83P648iMVs5JUe1bjZdx2+Kx7AVJBOUZ3emHu9hk/0+Svld4oPp06EH98vP+hKFJl9cPpXQ2Xuk1pQosx9+ucerk//DH9TMcaBH198AXWTF4ZH16EMkiT6J/69X8Z/bG862VeR1uZ56Pg4scG+py0VMxkN3NUpjuuaRfP27B18vXQ/Xy3ZT7i/FwOr/4/H0/5F4IT+5NbpS8TeGRhteRSFNiK9y1uYmt+KE4Vj/3JMBxbil7KEqNVvw+q3ya17I+YbPsInINhzT4AQQgghyoVj2zSsysIWS2s+rR/h6XAqneuaRvPJgt28tlHz241fYZ56NyXjBuM1dDKYL6x8y5VOPn70oLqR/niZDGxLzYX4Hig07F/0j9dlFpSQmXYQL2yo0Lh/bH+hejaKZP7RAJwmX/SRjW7rt7KxOZx8s3Q/3d6bz4aVC/ikxlxWRr7NiBVXEzjvWRwBMZQMm4XPsEmY/iFJBK56VMPa12JjcjabkrNdB0Pi0Jn7y/ZGRJW37mAm6/6cygDjMnSnJyCi/iX1o0xeYJAfF//EP749ab1GsX/ATHx7Pku1EL9z1hOKDLDwwa3NWfvS1Yy8NZGO8eH8lBzCtXkvc9jqTeCOSWz2a8+iq8ZSeNdCono8RFhoGBGhoVRr1Y+wge/heGAZR+/bwvHWTxGw91cMX3cna//6cr5rIYQQQpQrpwPzrlnMd7TgmuZxmGVG8UUzGBSP96zP3mMF/OZsh+P6zzAfWkrJ+CFgL/Z0eBWCfETsQWajgQZRAWxLzYHerXF6B8KeBRgSBpz3uhV7M6hlSHc9CHXPjCKAHg0j+e/sHRzzq0d46uYqWdB61b4M/jttLQMzv2KxeTVBXjnoY4riyEQK2z2BqcE1eNduf9GzMga1iuG933fyw4qD/C82GENYPM49c8voLoSA7MISnhm/mh+8vqMksDZeXZ/1dEhVQmCbwYQaDHiZLuyXtjB/bwa0iGFAixgcTs3G5Cx+2pjI2n3prEvXONPAZ9FCWtcOoVPdcK5rGk1sqGuWkr+3Cf/qNdHRr5IZ15nAWfcT9OO1ZHR9k+BOd8tSNCGEEOIKVLJvKV7WDGba2/Jgy7OXvhD/rE+TajSsFsCH83bT+cFBBFxnxWvWE5T8dBdeg7+v8vV6JVHkYQnVA5mzLc21a1ntLrB3AWh93kTE0j3HaWA+5nrgxhlF8RH+1Az1ZYuzNj3T54LTWWVmERzNs/LW7B1s3biKr7w/oqbpCEX1rqewfm+8G/TCEnB5UzoDLGYGtYph4ppkXuzbkLDQ2hjy06GkELx83XQXQrhorXl+ymZuLpxArPEIzn5TwSxFDsuDr9el/1g1GhStaoXSqpZr+XFOkY2V+zJYvuc4y/Zm8PZvO3h3zg56NY5iRKc42saFopRCKUVYQg/yqy2EX+4nbMEz5CYvw+vGj7D4SWFGIYQQ4kpi3zIVJ94cDO1I0xryc/5SGQyKF/s24p7v13Lth4v53y39aH+NFa8/XqBk8r143fINGKri1AmXqpEFqMASqgeSXWgjNceKoW4PDLkpkLHnvNcs33ucdsE5aIMZAt23FaJSih4NI1mQXQ1lK4TMvW7ru6KyO5x8u3Q/Pd9fhHHLT8yyvEoNnxIcd0zD7/bv8W19O8bLTBKdMKxDLUrsTn5amwwhJ3Y+O+CWvoU41diVB0lOWsUDxhnYmgzGUK+Hp0MSlyDIx0zvhGr83w1NmPdUV5a90IMHu8Wzan8mt365kn6fLGXKuhSK7Q4A/MNq4D18KpltnyFgz3QMX/cEa66H70IIIYQQbuN0YNo5kwWORPq2jD/nEndxYbrUj2Dqwx0J9DEz9JvVvJvVlaKur+K1YyrWb66j4Lf/o3DdTxSnbEbbijwdbrmSRJGHNa7uygJvPZwD8aVv5vYuOGf75MxCDmYU0tDrOM6gWLfvQtSzUSQb7bVcD45scmvfFU16rpVbvljBOzM38qHfd7xv+gxdvQWmB5dgrtvV7ePVjQygU90wflxxEHtwbddB2flMuNm21BzemrmVUf7fon1CMPd9y9MhCTepEezDs70bsuKFnrw1sCkldidPT97EVe/8yeJdrlmmZrOZkD4vkz1gPOasPVjnvunhqIUQQgjhLsX7V+BlPcZsRztuaC7LztwhoXoQMx65ijva1+SrJfsZtLktqe1fwVBwFN/VH+E74z68v+4M/62ObWQLWPKBp0MuF5Io8rBG0QEo5dr5jNA4nIExOA+tOmf75XuPA1DNecSt9YlOaBsXSqq5FnZlQl/BiaL1h7Lo/8lSrGk7WR7xFj0Lf8Pa/gm8R8xEBUaX2bjDOtQmNcfKomOlWy9mSUFr4T4FxXYenbCBB73nEGfbA9e9f0G7KIrKxcfLyG1ta/LHk10Ye3dbwvy8GDFmDdM3HgZcs0NDmvXB2vQOvNd/hSNtm4cjFkIIIYQ7OLZOpRgvcmK6ERsq5SvcxcfLyH9ubMpXw1qTlmulx7IExraeQvGzyRTfu5TC67+isO0TOCIag5efp8MtF1KjyMN8vUzUCfcjKTXHdaBaU0jfes72y/ZkEOnvhSXvINTp6PZ4vE1G2teLZs++mtRL3XRFFrSeuPoQo6Yv4iXv6fQ3LkCX+GO7dSKWRn3KfOyeDSOJDPBm6o5CengHoWTnM+FGr07fhvP4Xh72mYStbh/MCTd6OiRRhpRSdK4XwaQHgrn3+7U8PnEjGfkljLjKtbTVcu3rOHfNwD7jaYz3/HbRRfivSFpTkn0Ex9EdOI/ugOO7MGbswuRlwTRkkttn6QohhBBu43Sits9goaMZfVtf2k624vx6NY4iMaYzz/68mX/PTOLLxXu5v0s8t7cbhKXllfjO+NzkN6IKIKF6EGsOZAJgqNYEvfsPsFn/VnxWa83yvce5Ns6MYXc+hMWXSTw9GkWycWdN4lM3YvyHwtqVSb7Vznu/LKZW0hcsMM/DiIGixOH49HgOc2C1conBZDTQLCaIXel56NA66Mz9Mq1PuMUv61OYsj6ZRRE/ooq9MF//wRXzf1ecX6DFzPcj2vLExI28MTOJ4/nFPNu7AcovHHu3l/H+/RlKNk3Gq/ktng7VI2wOJ4UH12HYMBafXb/iVZx18pzDKwCnbwSm7H1weB3UbOfBSIUQQohzKzm4Eh9rOn/om3i1admtgKjqIgMtjLmrDSv2ZvDR/N28MTOJzxbu5f4udRjSvuZlbVxSmVSNu6zgmtQI5NdNqWQWlBAalYDSDji2A6o3P63dzvQ8jueX0D3SCrv5qyCym3VrEMHHOo7BJQvJ3zYH/yZlP9OmrCWnHWXFmH/xfNEMvE128hrejKXni/hF1Cr3WOpFBbBo1zF0Ym1U6sZyH19cefYdy+flaVt5IXIVtXLXY7/uQwyB1T0dlihHFrORUUNa8vK0rXy2cC8Z+SW8OaAJ3u1GULL+ewxzX4FGfcA7wNOhlosSu5PszGOwdTIB2yYQlLEVp9Gbovi+WGPaYoxqgDmqIaag6hit2eh366D2zJNEkRBCiAqrZMs0wISj/rUE+VTtrdvLmlKKjnXD6Vg3nFX7MvhkwR7enL2dzxft5cle9RnavvzfQ5Y3SRRVAAmlBa23pebQOaqp62D6tr8lipbtyQCgpX+260Bo2SSKIgMsHIjqxYGc+dSaMoSczLcI6nJ/mYxVHnYeSqP4u+u5ybmLPVHXENbvdUJjG3lsl4D6Uf7YHJocSwwhuTPAYQOjfLMXl6bY7uDRCRuoYczmnqLvsMV2wtx6uKfDEh5gNCj+O6AJEQHefDx/N1mFJYy+oxWGfu9j+q43xfPfxrvvlV/c2lqYT9GM5wnfNRmDo5iisASyur2Fb+vB+PmfpWaXTwi6eiv07nkYerxU/gELIYQQ/0RrVNJ0Fjma0beVLDsrT+3qhNGuThjrDmbx6YLdFBbbPR1SuZBVLxVAQvVA4K+C1trkc9Y6Rcv2HKdOuB8hxYfRKAguu0xmm8b16V/4KtnVOxO04Dlyf3kSh91WZuOVlfV7j5D17U0kOHexvt1Iat47gbCajT26lWS9SNcn+imqGspph5xkj8UiKr+3Zu8gKTWbH6ImYnDaMN/4iSw5q8KUUjzVqz7PXduAP5LSWbEvA1Ot9lib3IbX2tE403d4OsQyVZSXhWPsIIK3jyO73kCO3vY7xgeWENLtIbzPliQqZajXC3VkAxRklGO0QgghxIWxJ6/Fz5rGQmNHujWI9HQ4VVKrWiF8d1db7uvi/g2lKiJJFFUAwb5e1Aj2cSWKDEZ0ZCMcaacnimwOJ6v2ZdCxbhiO43vRAdX/VsPInQa0qEGxwZ83/F8ht/n9BG7+Fuv3g7DmZZbZmO62KOkw2T8MoT1b2N3hHVr1GY7F7PkiZPER/igFO0vCXAekoLW4RH9sS+P75fuYVP0notP+xNnjlTKrXSYqlxGd4gjwNvHLetdOaN7XvoHT7Idt1rOgtYejKxuFWWnwfX9809ZyvPenBNz8GZEN2uN1Id/3616NQsO+P8s+UCGEEOIiWTf9Qok24pPQFy+TvIX3JE9OOChP8iqrIBpXD2Rb6c5nKqoJKn3rab/Mb07JpqDEQaf4cMjajy6jZWcn1Azz5f6udZi6KZ3tzZ4n++r/4ZuyDPVNL4rTd5fp2O4wbf0hcifcTQ+1jv1t/4/619xXYf5T+3gZqRnqy4b80k+3syRRJC5eanYRz03eyOjA72mTOYPijk9j6viwp8MSFYTFbKRv02jmbD1CYYkd5R+Jo+u/8D60GNvWaZ4Oz+0Kjx3E+P11eGftIvP674jocAdm40X8ilO9OU6fUJy755ZdkEIIIcQlcmyfyXJnE/q0bezpUEQVIYmiCiKheiD7jxdQUGxHVWuCoSgT8tJOnl+6OwOloEN8GCprPyq07Ke8PdStLjWCfXh1+jb8Oowg75afMRYdx/TjDeCouGszv12yl+JfHqW/cQWHWz9PzWsfx2CoGEmiE+pFBrD2uBfaZJEZReKi2R1Onpiwjlf15/QumUtxp2fw7vWKLDkTpxnYsgYFJQ7+2JYOgFe7eykJT8Aw7zVwOj0cnfsUpO7A9H0fTAVp5Nz0E2Etrv9bG5vDyaS1yYwYs4ak1Ny/d2IwQp1usHfBFfXcCCGEuAIU5xNUeIhd3gm0rBns6WhEFSGJogoioXoQWsOOtFyIauI6mL7t5Plle4/TpHoQwQYrhsLjGMLKPlHk42Xk1f6N2Zmex/fLDxDYqDu2vh9izDsM+xeW+fiX4vetR+D3F7nVtJD0Fo8R1ecFjBUsSQRQL8qffRlFOINq4ZREkbhIH8/bwc2H32GgWoj1quckSSTOqk3tUGoE+/DLBtfyM4wmjJ0exZhzEJJXejY4N7Ed3oT32Osw2IsouG0aIY26n3beanPww4oDdHtvIc/9vJklu48x5OuVbD/y92SRoV4vDAVHz1ojUAghhPCU/FTXe8LwOs0rzAoJceWTRFEFcVpB66jSKYXpWwDIKihhw6EsOtYN+2uZUkjZLj074ZrGUXRrEMGH83ZzNNeKT0JfnF6B2Db+VC7jX4ycQhu/TP2JEaY5HG8ygpC+r2O6mKUH5ah+lD92p6bQP1ZmFImLsnxXOrWWPsfNpsVYr3oey9WyS5M4O4NBMaBFDZbuPsbRXCsAxoTrcZp9sa0f7+Ho3EBr1NT70AYT1qGzCKzT5uSpgmI7Xy7ey1Xv/Mmr07dRLcjCd8PbMPfJrnibjAz5epXrg5lTxfdw/b1nXjnehBBCCHF++5PWAxDfuKWHIxFVScV8F10FRQdZCPE1s+1wLviE4AyMwZm2lYz8YoZ8vQqFon+z6n8lFcph6Rm4inW93j+BEruT/87eDiZvnI2ux7hzFpQUlksMF+rN2Ul0KlmG3WjBv+8bF1bA1ENO7Hx2zFwDlX3gii0uK9xLa03a5KcZZFxCXsfnsVz9oqdDEhXcgJY1cGqYvjHVdcDLD0fD6zFunwa2Io/GdtnSNmM6vgPd+Rn8a/xVs2HBjnS6vvcn/529g4bVAphwb3t+fqAD3RtGUjvcj4n3tcdsVNz+1Sp2puX91V9ANZxRTXHulkSREEKIiiPrwGaKtZlGjRM9HYqoQiRRVEEopUioHsS2I66C1kQlYE/dwq1frmTvsXy+urM1TWoEQeY+1/kyLmZ9qtrhfjzQtQ7TNqaycl8Gpua3YrAVoHf+Vm4x/JOlu48zaW0yN1g24ozrjsU3wNMhnVfdSNfOZwedkShbIeSnezokUQls2L6LfiWz2VVjEAHXSJJI/LP4CH8SY4P/Wn4GmFvcjqEkD+f2WR6M7PLZNkxEG8x4NRsEQFGJg1embWXEmLVEBFj45aGO/HhPO1dtv1Om6ruSRR0wGRS3f7WSXel/JYtU3Z6olFVQnPe38YQQQghPMGXsJN0rFi8vL0+HIqoQSRRVIAnVA9mVlk+J3Ul+cEMMmbs5np3L9yPa0rV+BADOzP04fSPAu3wTIQ92q0tMiA+vTt+KLaYDDr9q2DdVjOVnhSV2XvhlM9eGHCHIdhRj4/6eDukfWcyunc+SrOGuA7L8TFyA1AVf4KUc1Oz3nKdDEZXIwBY12H4k96+lVrU74wiogWNjJV5+5rBj2Poz9vhe4BvK1sM59PtkCWNXHuS+LnWY9nBHWtYMOeflceF+TLivPcbSZNHu0mSRqns1ymmH/YvL606EEEKIczqUUUis/RAlofU9HYqoYiRRVIE0rh5IicPJ3KR03t1gwoSTiQNCaF8n7GQbnbEPHVK73GPz8TLyWv8EdqXn8/3KZHSTQZj2zYfCzHKP5Uzv/76LlKwiXqyzD60MGBv28XRIF6ReZABrcoJcD7IkUSTOLyuvkFbHprLbvzWW6IaeDkdUIv0Tq2MyKKauL51VZDCgm96Caf+fkFc5ZzPq/YswFh7FkHgroxftZcBnyygodjDunna82LcR3qZ/XnocH+HP+Hvbo5RiyNeryC+2Q2w7tNkPLcvPhBBCVADLdxwk1nCM4FpNPR2KqGIkUVSBJFR3JQ0enbCeJGdNABqqQ6e1UVn7UeW47OxUVzeKpHuDCD6avxtHwk0opx3ntmkeieWE9Yey+G75foa2r0X1tPnYYjqAb6hHY7pQ9aP8WZXlh1YGmVEk/tHaP8YTrTLx6XS/p0MRlUyonxfdGkQwbeNhHE5XPTRTi9tR2olj8yQPR3dp7Bsm4PAO4qHVEbz92w56NY5izhOd6VQ3/KL6qRvpz+g7WnI0r5iJqw+ByQsd1xW9Z57UjhNCCOFx+5I2ABBWWxJFonxJoqgCiQv3I8BiItzfm3fvuxFtsqDTTtmm12ZF5aViCIv3SHxKKe7tXIc8q505GZHYQ+vh3OS5NxnFdgfP/7yZ6EALz7c1YcrYiaFRxV92dkL9qACKnEZK/KrjlESROA+tNaFJ33PMEEFM24GeDkdUQgNbxpCeW8zyvcddByLqY6vWEufGCZ4N7FIU52PcOZOVls78viub1/s3ZtTtLQn2vbTaDa1qhdIuLpRvlu6nxO7EUK8nhpxDkLHXzYELIYQQF87ucFJw2LULtops/A+thXAvSRRVIEaDYtL9HZj52FXUrRaMM7whzvRTEkXZB1FoCPHMjCKA9nXCqBHsw5QNqahmt2BKWQHZyR6JZdSfe9l9NJ83BzTFsncOAKbG13kklktRN9IfgBxLzF9FyoU4i00b19DKsZm0ereB0eTpcEQl1KNhJAEW01/LzwBD88GYj22DtC0ejOziOXfMwmAv4qOjLXiqV32Gd4o7rVj1pXigWzxHcqz8uikV4nu6Du6R5WdCCCE8Z1NKDrH2ZBzK7NH3f6JqkkRRBdMoOpDIAAsAKropKn3bX9PfT8w6Ca3joejAYFAMaFGDpbuPkVXnegCcW6aUexzFdgejF+2lf2J1ujeMRG+fiS2yGQTXLPdYLlXdSH8MCtKM0VKjSJxX9qLPKMFEvT4PezoUUUlZzEb6NYtmzrY0CortABib3oQ2mLFtqFyzipIXfkeKDqdem1482qOuW/rsVj+ChtUCGL1oL87g2jhD43HsnuuWvoUQQohLsWT3MeqpFByhdeWDQlHuJFFUgRmimmAoPA75R10HTsw68VCNohMGtqyBU8PP+83Yq7fG6YEaF7vTXbvD9U6Igrx0TKlroWHlmU0Ef+18tscRgaEoE6w5ng5JVECZWZm0yprD9pAeWIKreTocUYkNaBFDYYmD37eluQ74hWGP74Vhy2Rw2D0b3AWau3oTMZkr2RR8DW/c2OyyZxKdoJTiwW7x7Dmaz/wdR1F1r8ZwcBnYrG7pXwghhLhYS3cfJ8GciiFSNjER5U8SRRVZVILr73TXsgCduQ+nVwD4hp3norJXJ8KfljWDmbIuBUPTmzEd2wbpSeUaQ9IR1zbPjaMDce6YjUJjTqg89YlOqBcVwJaC0uLbUqfoHzmdmsW7jvGfmUmsO5h1+kmtcVjzPBNYGUqa8xUBqoiQbjKbSFye1rVCiA31YcLqQzhLi1obW9yGsfAoeu+Ci+qrsLikLEI8rxV7M1g94yuMSnP14EcxGtyTJDrhuqbRxIT4MHrRXlTdq1H2Iji0/OR5a1EBWbuWk7H4S4qPy/drIYQQZSfXamNHchrVnOkYohp5OhxRBUmiqCI7mSjaBoAzYx86JA7c9Anq5RjUKobdR/PZGXY1WhnLfeecpNRcfL2M1Arzw7F9Bvag2lAJi7zVi/RnTW6w64EsPzun1OwiPpq3m87v/smwb1fz9dL9DPp8OU9P2sTR7ALy103COqoT6v26kHXA0+G6jXY6qb7rR/aa4qnZrKunwxGVnMGguK9LPGsOZPG/uTtdx+r3xmEJwbZ+/AX3k7/0C7z/F0/eltllFerf7ErP474f1nKzeTnWiGZ4R7v/+73JaODeznVYdzCLdaox2uhNyZKPyf/5YYo+vQrvd2sSMr4PYQuexfhtb+wZB9wegxBCCAGuD0dqa1ddQZlRJDxBEkUVmW8ozoDqOE/sfJa136P1iU7Vr2l1vEwGftpRjKN2V9jyc7luJZx0JJeG1QIwluRhOrAE3fC6CpFAu1j1owLY74hwPajCM4pKju6mcP/q045ZbQ5mbT7Cnd+uptM7Cxg5bxdx4X58clsLNrzSi4c7x+K1+UcKR7bCf8a9KFsRymnHsfJLD92F+21bOYc6+hDZCXdWyte3qHjuaFeT29rGMurPvUxZlwImbxyNB2Da/dsFLX8tTJqD3/wXUHYrftOGk5c0vxyihlF/7iFepVDfuRdzi9vKbJxbWscS6ufFZ8uO4IzriteBP/HZ9StO7yByWjxAVr+vybnlF5TdinPsAJx5x8osFiGEEFXXkt3HaGpOdT2IkBlFovxJVawKTkc1gbSt4LBjyDmESrjB0yEBEORrplejKKZvPMxL/W7G9OuDkLwKarYv87G11mxPzeWGFtXRu+einCWYG1e+ZWcA9aL8KcAHq1co3pn7qYqpgKJNv+A94yG87EXkx/VmQ/3H+eWQH39sS6OgxEG1QAuPdq/Lza1jiQ31xZafiXXN5zyR9Dlm0xH2meJ5sPBxDuhufB/7NeEbx0KPF8Hb39O3dtmKl39BDn4k9B7h6VDEFUIpxRs3NOFgRiEv/LKZ2FBf2rYcAuu/JXvVeIK6PHDOuj/FqVvxnnoPJaENYfB4GH8Lfr8MIc80iYD6Xcos5hK7kwU7jjIybB0604ix2U1lNpaPl5E7O9Rm5Lxd7HvoI2peU4hXeBx+BuNp7Yq9J2AePwDb2EF43T0L5R1QZjEJIYSoepbsPs7zwRnofDPKw/VpRdUkM4oqOEO1JhgydkHWfpTTXqG2RhzUqgZZhTYWGdriNPlg3/hTuYybklVEXrGdxtFB2JNm4PANh9i25TK2u8VHuHY+y/CKwXmiWHlV4XRS+Pu/8Zl6F9kB9fktfDhq/yI6zOlHu+1vcktjC+PuaceyF3rwZM94QtOWkj9uGMaRDQlY+Cr2oFoU3DyJuBfXcuOQh8gtgQf3tMNQnItz44Uvo6moMtIO0SxvCdsi+2PxlTehwn3MRgOfD2lFbIgv949dy0FLQ2yRiQQtfJnMP97DZv97YWtH3lEMEwbjNPugbv8J74g49LBfsflVx3fybeTtWVFm8a7cl0G+tYQOhQuw1+4G/pFlNhbAsA618DEb+XzlUbwj66LOSBIBeMd3omTAN3gd20rxuNvBXv41m4QQQlyZDmUUcjCjkARzaumOZ2ZPhySqILckipRS1yqldiql9iilXjjLeaWU+rj0/GalVEt3jFsVqGpNXAmiXXNcByrI0jOALvUiCPf3ZtLmbJwNrsOwbQrYisp83G2prkLWCVHeGPfOxVmvD5zlF/nK4MTOZ8kqClWFlp7p4jyyf7gN3xXvM8vYg/ZHnuLpo314M34CB2rfwq1qPi/vHULivi8p/P3/sI9sit+km7EcWkhBwu0UDZ+Pz32/45fQG2Uw0DuhGtMe7sQW6pPs0wi9cjQ4nZ6+zcuya9YnmJWD6ldLEWvhfkG+Zr4Z3gYN3P3DOrJvmkxu7WsIW/EmxWMGUJCZerKtthVhGzcYY+ExHLdOwCusJgCWkGj0sOnYfcLwnXQLefvWlkmsv29Lo7PXbvyKjmBsPrhMxjhViJ8Xg9vG8uvGVA5nn/tnmqVJf6zXfoDl0GKsk++r9N9zhBBCVAxL9riWNVcrOQgRDTwcjaiqLjtRpJQyAqOAPkBj4Dal1JlVJvsA9Ur/3Ad8frnjVhlRTVx/b5/h+rsCTT00GQ3c2Lw6f+48SmHC7RiKc9BJv5b5uElHcjEoaFi0EUNJPqbG/cp8zLJULyqAnSXhqLxUsBd7OpwyZXc4mb98DQff60zA/t95wzaUsZHP8vYtrVn3ci/+O7QHde/6gpL7llEc0wn/5e/gv+pDbKH1ye//JYandxIw8EN8arf+W98RAd5c1yyaTwp7YczaC3vLp3ZKWdifnkXdQz+xxacdtes383Q44goVF+7H6DtacTCjgKdmHMBr8A8c7/YOvkdW4fVVF7K3/gFaU/Tzg1jS1mHt/xmWWqf/37OExeIc+isOr0B8frqJ43vXU2x3uC1Gp1MzNymdBwOW4TT7YWh0ndv6Pp97Ors+lPl43m70eerv+bQbjrXLK1h2TsU66/lyrdUnhBDiyrRk13HqBBnwykvGECn1iYRnuGNGUVtgj9Z6n9a6BJgInFlI5wbgB+2yEghWSkW7YewrX2g82uiNTl6NNnpDQHVPR3SaQa1isDk0U7PicATVxLHuhzIfMyk1lzoR/hh3zcZp9kPV6VbmY5al+lH+bC4IQaEh66CnwykzVpuD/341lua/DyDUfpTJDT/kzqfeYeL9HRnYMgYfr79mhXlHN8L3zklY711GyaOb8B0xHf9Wt2Lw8jnvGMM61GJqcWsKvMKxL/+srG+pTDidmpkTPiNC5RDb5ylPhyOucO3rhPHmgKYs2X2c4WPWsiV6INlD5uDwDiLo51so/KoPvjunUtD5JXybDzprHz4RtbHdMQ1t8iZ0/LUUjb+TI2tnkJVXhNN5eYmTjSnZ6Lw02hYuxNbsdvDyu6z+LlSNYB/uaF+Ln9YmM2LMGo7nnzuJb+n+NNZW92NZ9yWFs1+SZJEQQohLZnc4Wbb3ODfG5qPQsuOZ8Bh3JIpqAMmnPE4pPXaxbcTZGE04Ixqi0DiDa4GhYpWVahQdSOPoQKZsSIUWQzEdWgplXGtn+5FcGlcLwLBrNo74q8FsKdPxyppr57PSmhtZV+bys/xiOy9/MYnHj7yAwRKE5cGFDL5tOLXCzv+mz1KjCd5htS54nOaxwTSKCeMnemPavwCO7brc0MvdpLXJdM6cQrZfHMFNe3s6HFEF3NI6ln/f2IT9xwu467s13DQ1l0ktx5LV4FZ8U1dQ2OgW/Ho8e94+/KrVo3jobLIa3Ib/4SVEz7wD/8+bkTntedL2bMBxiQmjP7alM8w8H4N24N3xwUvq41K91r8xb9yQwLK9GVz74RIW7jx69oZKYbnubYoSh+O7ZhSFUx4Gp/tmVYmKw5aWJF9bIUSZ2pSSQ57VTpfgDNcBmVEkPMQdWYezbY9y5m+EF9LG1VCp+5RSa5VSa48dk21nAdSJ5WcVqD7RqQa1imFzSg6HYm9AKwPO9T+W2VjZhSUczi6idXgJhoKjmOI6ldlY5aVupD97dXU0ClvKek+H43Y5hTaeHD2dZ479C5O3H0H3z8Irqn6ZjKWUYliH2nya2xmHwQv7isq1yvVorpVfZ/9Kc8Negro+DOfYfUoIdxvavhZLn+/BR4Ob4+9t4tXZ++m2cyCfNh5PVq+RF/Ra9K8WT9CgkWQ/uIUjvb+iKDyRsC3fUO3HbhSOvxOH7eIKPmut+XPrIYaZ5lMSfw2ExV/q7V2SE99Pfn2kE2F+Xgz/bg1vzEg6+9I6gwGfGz+ksP1T+G4dR+H4YWibtVzjFWXLsXUa5tEdsP/xmqdDEUJcwZbsPoZSUN+QgjaYK+z7P3Hlc0eiKAWIPeVxDJB6CW0A0Fp/qbVurbVuHRER4YbwKj9DdFPX3xWoPtGpbmheHaNBMWGnE0ednuiN48Dx911z3CHpiKuQdXNLGgDqCsiyx0f4k6f8SfFvAjt/83Q4bnUsr5h7R//GS5kvEmx24HXXNAyhtct0zH7NosEvnBW+PTBsngBFWWU6nju99us2Bjtn4zAHoBJv83Q4oorxMhm4oXkNpj/ciSkPduCqeuF8sAG6vL+Yh8evZ93Bf/6/ZDIaCA8OJLrDLXgN/Ylj92/keMtHCdgzncJJ9+C02y44nr3H8mmWPZcgnYO5w0OXc2uXpWG1QKY/0ok7O9Ti22X7uXHUcnan5/29oVL4Xvsahd3/je+emVh/uBmn9SztROWTlw4zn0ArI8bVn8OxnZ6OSAhxhdqSkkODqAC8MnfjCI2XHc+Ex7gjUbQGqKeUilNKeQGDgTMrGv8KDCvd/aw9kKO1PuKGsauGqAQAVDl/mnqhwv296ds0mh9WHCC7wa0Y89PKrJBwUumOZ3V06UrGiMq/btdiNlIrzI81Xu0wp2+CnMOeDsktUrOLuPPzebyW8woxxmzU7T9hjm5S5uNazEYGt4nlv5ldMdiLyqVuljvM2ZrGuq3buc64EkPLoeDt7+mQRBWllKJVrVA+G9KKxc915+6r4li86xiDPl/OjaOW8eumVGyOf97hy2I2ElktlvDr/0P2Va8QsHs6BZPvx2m/sA8Sft+axl3G3ykKaYAhvuvl3tZlsZiN/N8NTfjmztak51rp98lSflx58KyFrn27PkZh30+xpCyj5Lv+2PMzPBCxcButKZn6MMpWBHfOQJv9sM98RmpRCSHKxOHsImJCfFHHd0C47HgmPOeyE0VaazvwCPA7sB2YpLXeppR6QCn1QGmz2cA+YA/wFeC5jwYro5i22JrfCQ36eDqSc/pXn4YoFC9vj8HpE4Z97fdlMk7SkVwiA7zxy9mD0xICflfGrLN6kf7MLG4BgOMKmFV0OLuI2z9fyOsF/6GRIYXigWPwrtOx3MYf0r4WO3QtDvi3gNVfldkMN3fJKbLx6vStPB68FIN2otrd6+mQhAAgJsSXF/s2YuW/evLGDQnkFNl4bMIGOr/zJ58t3ENWwYUtJwu++hly2j9HwM4pFPzyCPoC6rwc3jiXxoaDmDs+VGGWYfZsFMWcJzrTNi6Ul6dt5b6x68g8y3Pg23YoRQPH4HU8Cf1dXygp9EC0wh3sa8bgtW8uzp6voWp3Qvd4GdPBxTi3TvV0aEJULfrK3vTlhNTsImoHgiH7IIaoyr9yQlRebqmMrLWerbWur7WO11q/WXpstNZ6dOm/tdb64dLzTbXWa90xbpVhtmC64SMIivF0JOdUPdiHx3rWY872TA7F3oBxz++Qf47Cn5chKTWXxtUDcR7dgQ5vUGHePFyuelH+LM4KwRYUh2P7bE+Hc1kyC0q486vlvGz9H21VEnnXfoRfk/JNctYI9qFX4yg+LuiJMTcZvXNWuY5/sd6Zs4Pc/Hxu5g90vd6yHl1UOH7eJoZ1qM38p7ry7fDW1I305905O+nw9nxenLqFPUf/eYlV0LUvkdP2SQKSJpD/yxNo57lnJR3JKaJr1hQKTUGYmt/qzlu5bJEBFr6/qy0vX9eIRTuPce2Hi1m25/jf2vk2vZ7iAd9hztiBvZLMbBRnyNyP4Y8XKanZGVN712efxjZ3Y49siv79RSjO93CAQlQdeu138FEz7L8+CY4LX8ZcmeRZbeRa7TQ0p8uOZ8LjKtYWWuKcVCVIiNx9VRzxEX68dKgFymnHuXGCW/svtjvYczSfxtUCUMd3XFHfPOtHBWB3QlZsT8wHl0Bx5axrUVBs567vVnNb7tdcrdaQ1eXfBLW7wyOx3NmhNtOKmpNnqY596ccVdpnAb1uOMH7VId5ttA8vawaG9g/880VCeIjBoOjRMIof72nHnCc6c2PzGvy8LoWrP1jMsG9Xs3zv3xMmpwrq8xq5rR4mYOsP5E9/Buc5lrCtWLuOXoZ15De5A8w+ZXErl8VgUNzTuQ6/PNSRAIuJO75ZxVuzt/9tSZ5Pk+uw1WgHyz8G+8UV8xYe5nRgm3IfGEx4DRr9166zBiPGfv/DmH8E+6J3PRujEFWFNQe94D84/SIxrf8W+5j+UHD+nzeV0ZEc1yYIf5XYkBlFwnMkUSTcxstk4N83NGFZdhgp/k3R639w65vz3en52J2a5mE2DNbsK6KQ9Qn1IgMA2BXcBeUswbmnbGo8laUSu5MHx62n/pFfuds4m+ymIwjq9qjH4ukQH0adyEDGGAdiTl2LfYN7E5fu8Pu2NB6dsIGWsUH0LZiGM6w+1Onm6bCEuCANqwXy9qBmrHihB89cU58dR3K5/atVPPfzJnKt5/i0VykCrvsPuc3vJWDTN+SPH0ZB1t9nn1rWf41TGYjs8UgZ38XlaVIjiJmPdua2tjX5YvE+/m/Gtr+1MXZ9FlPeYRybJnogQnEpjuZa2THlTcyHVzOjxhM8NvsYN49eTq8PFjFlXQqqZjvszW7HuHIUHNvl6XCFuOI5F/8PVZSJYchknAO+xJC6AccX3SBti6dDc6vU7CIAqhUfQBtMMsNceJQkioRbdawbTv/E6nya0wlj5h5IXuW2vk/seNbEXLphXsSVU+CtXpQ/1QItfL43HIclBHslW37mdGqe/XkT+buX8ZbXtxTUuAq/69/BYPDcTDilFHd2qMUHGe3JCWuB+uNFKKg4RWXnJaXzyPj1NKkRxNjeClP6Jtdsokowe1CIU4X5e/NIj3oseb47D3eP5+d1KfQeuZhFu46dtb0yGAi4/l2y279AwL7f8PqyI5kbZ54sDJ2TlUnn/DlsD+kBgdXL81YuiY+Xkf8OaMr9Xevw48pDjFt1eg0NQ72rsUU2Qy8ZCRdQm0l41s60PB784AfqbP2Q2Y62PLurERuTszEohZfJwNOTN/HJ/N0Yr/k/V2HrWVLYWogylXUAtepzdLNboXpzDIm3YhgxGxw2nF/3Qm+b5ukI3SY12zWjKDB/L46QeDB5eTgiUZVJoki43cvXNWK+6kCR8nFrUeuk1Fx8vYxUKy79JfwK2PHsBLPRwN1XxbFsfzYZ0V0x7vmjwhdgPkFrzX9mbWfVxi187/cJjoDqqJu/w2z2/A+3AS1j8PP2YqTPQxiK8yiZ87KnQwJgwY50Hhy3jsbRgfxwd1t8NnyN9g6ExMGeDk2IS+ZtMvJs74ZMfagT/t4m7vx2Nc//vPmss4uUwUDwtf8i+47fcVhCCZ02hNxJD2LNz2bf3C8IUEV4XfWwB+7i0j3XuyFd60fw2vRtrN6f+dcJpTB0fRpT9j6cV9AbmoqqqPjSf3am51oZ9c2XfMR7OC0htHlkDDv+3YfFz3Xnp/s7MPWhTgxoUYP/zd3Fi3+k4ej6L0wHFqGTpl/wGLajuyhJXg826yXHKURV4pj7Oigjhp6v/nWwRiuMDyxCRyagJt+Jc/EHHovPnVKzizAaFJbs3VfUB+KicpJEkXC7qEAL9/dqxjRbe9g2Fay5buk36UguDasFoI7vdL2pDqjmln4ritva1STAYmJaUSJGa5ZbZ2OVpdGL9jFu2U4mBX2Cr7JiHfQjvsGRng4LAH9vE3dfFceYPX5MNN+A15bxOPYt9mhMf+48ygNj19M+0s747vn4rvoItf1XaDkMvPw8GpsQ7pAYG8yMR6/iwW7xTF6XTO+Ri1l8jtlFIfGtUfcvJKvlwwTu+AnD6KuI3fkNm6lPvRbdyjXuy2U0KD6+rQWxob48+OM6DpcuIQAwNroee2h9HIvel9knZSk3Fe/3Y+HQyou+NCt1N7s+vpGPbW8Q4mfBfPs4IqJqnDYz1stk4INbEnm4ezwTVifz4M4WlEQ0wTH7eYrWjkNbc87eudOJNWk21m/6Y/6sDV7fdEf/tzolH7XCOn4o1vlv4dg2A4qyL/HGhbhCJa/GmDQVOj4KQTVOPxdQDeNds3DU74P68z9gKzp7H5VIanYRNQMUxuwDGK6gEhuicpJEkSgTd3aszcqgvpgcRRSt+u6y+9Nas710xzN9dAfOK2jHsxP8vU0MbV+Ljw/WxGkwY0uq2Dt1Aazal8G7v29nTOj3xBbvJrvP5wTVaubpsE7zZK/6fDm0FV9yE4ecERyf+BDZueVYLFxryEnBtmUqe8c/g2ncIFZ6PcDYrKH4Tb4V05//xhlaF9X+wfKLSYgyZjEbef7ahkx5sCO+XkaGfbuaF6ZsJu8ss4u8Lb6EXP9fcgb/ilMZCHccI6nmEI8uXb1UQT5mvhrWmhK7k/vHrqWopHSpmcGA6vwk5uNJOHf85tkgr2Tp2zDYCnHs/OOCL3EUF5Lz2xv4ftmRVrb1JDV6HN8nVmOs1f6s7ZVSPNu7If+5sQkLdmXwvO0enBjwmfkQ+t26HPtqIKt/Hc2YBVt4b8Y6fh79Gkf+2xTLpNvIS9nGF+ahvOn7PNMDBrPLHk3RwfV4L3kH4+Q7cL5Xj5IfB+PY8ssV8aZXiMuiNc45/8LpF4Xq9PjZ25gtGJvfhtIOOLq9fOMrA6k5RbT2Py47nokKweTpAMSVyWw0MGTQIBZ+9yMdF/4HZ4OeGKo1ueT+UrKKyCu20zg6CHbtxNCgrxujrTju6hTH10v3s9OnBfV2zYY+b1bYhFhhiZ1nf97Mc36/0aHwTzLav0Boi+s9HdZZXZNQjU51r2H6z//i9t1P8fnIp4js9xoDW9Yokx0FnUe2UJw0i+KDazCnbcSv5DhmIFYbcZpqYa5/DbbY5phrJEJUAkafELfHIERF0KJmCLMe68zIebv4avE+Fu86xjs3NaNzvYjT2lltDn7PrcU49R4hJeu4v/MQD0V8+epG+vPh4Obc88Nanp+ymY8GN0cphbHZzdj//C968fsYGvapsN/bK7XsQwA4U9ZivIDmOnk1jkkjCMpLZoajPSXd32BQj3YXNNQd7WtRLdDCIxPW86dxJE3YRY+SZfRJWU3bw/NJ1GZKMBGgithuqMc4/2fZFtIDXx8LhcV2FmUXcTi7iIISBz5YSVAHGB6yiWsOL8e45zecZj9s9fpibjkEQ93ul/GkCFFJbfsFw+G1cMMoUgoNjJy+iXnb0xl3Tzua1Aj6q11U6fuLtC1Qo6VnYnWT1GwrfYOOuB5cQSU2ROUkiSJRZtrWCePTNm+RsG4w6odhhD+57JK3Od6W6lq+1jTEhqHwOFyhWfaIAG9uahXDxPVN+D/jt3B8V4Vdo/zunJ2YsvZwv/d4cuL7E3j1c2WSdHEXP28Ttw+5m+NjFnDPgV+45ud2jJxXhw51wugQ7/oTHXTp23A7nJrd6bnkLvyIljs/xAcHqc5oNuqG7DTWxxndkugGbbipbTwBvmY33pkQFZvFbORffRrRO6Eaz0zexNBvVnNb25q8dF0jCovtjF15kHGrDpFZUELDagHcePMwOp6RSKpsejaK4plrGvDe7ztpXD2QB7rGg9GMuuoJTLOfRu9bhIrv5ukwrzw5ri2ljUfWg9P515b25+Cc9wZWaxF3lrxEiy7X81yPi/vd4urGUUy8rwPfLt1PqF8szpB+bAr2JqdwG5HJv+HtyKe47V00qt2BRmf5+ai1JqfIRkpWEesPZfH8bwm8bLiNz68qolXufEw7Z2BImgy3jIXGFfODGCHKhM2K84/XsIc34Z3kRMb+vAgUeBsNvDp9Kz8/0PGvWachcWgvf1T6Vs/GfJmcTs2RnCLqBqeglREVVtfTIYkqThJFokw91K8jn6a+wGNpL3JgwtPUHvbZJfWTdCQXg4L66rDrQAVNnrjDvZ3rcPvqFvyfEWxJszB3rXj3umJvBmOWH2Bq5Gx0oQVzv/cwmy7k81vPCx/0AY5PFjM+ZCKvh7zFH0npTF6XAkDtMF86xIeRGBNMQvUg6kX5YzH//b4cTk1yZiG70vPYmprLhkNZ7DqUymvOz+hrXM2ftGFm7RdIqBtPuzqh3FgtEGMlXEYjhDu1rBnC7Mc688HcXXy1ZB9zk9LJKSrB7tT0bBjFiKtq06FOWIVOOF+Mh7rFk3Qkl3fm7KBDnTASY4MxtrgDx6J3cS56H7MkitzOmXUIA2AoyYOMfygGay9BJ6/h55JuRDbrxTPXXNrP2uaxwXx8W4szjtaAdtf847VKKYJ9vQj29aJJjSC61o/g8YkbuW2ek5tb3cfrj72LZczVqDkvYqjX65I/bBOisileNgrv3GQe0Hex8PAhbmoVwxNX12fZnuM8+/NmftlwmJtaxbgaGwzoyMaQtoXK/NPjeH4xNoemuj0FZ3BtjLLjmfAwSRSJMmUwKO4ZcT9T/7eKAfvGcXB5T2p1HHTR/SSl5lInwh/v7F2uA1fwdMy4cD9aNElg26444rfPwtz1KU+HdJqCYjvPTdlEj+B0WuQuIL/t4/iHRHs6rAsXEIWz5+tE//YU70V9ia1rC44YqrE+L5jF6V7M3HyECatdn0qbDIr4CD8Sq1mIDfFhX46TXel57DmaT7HdCYBBQe+IDGZ4v0N4yRGOdXiZbr2epvs/fJItRFVkMRt5sa9rdtHIubuoG+nPnR1rExd+5RVyV0rx1sCmrNmfyUvTtjD94aswmi3oDo9gnvcKOnk1Kratp8O8ouicFLR/NVR+GjplDeo8iaLlS+fT0WklO6I1797UrELUxKoV5sfkBzrw0bzdjFq4hzUHMvm6yyvU/e02nMs+xtDteU+HKESZS03ZT+DC91jsaIm5flf+6N2AupEBAAxqGcOE1Yd4+7ft9GocRZCPa4a2oVpT9JZJrrqQlfTDhtQc106Iwbaj6OCaHo5GCEkUiXLg62Wiw32fsOuTTUT88QQZcW0Ii764b4Dbj+TSqlYI+ugO8PJHBdb454sqsQe6xvNHUkueSPsF8o+Bf8VZhvH2bztIySpicq1fcWQG4tP1SU+HdNHMbe7Cum8R/runY9gxiTCgCTBUGbD5VcPho8FehNFuxZRTjCHHtUtRClEkW+qTF9sYY0xLIuq1JT5rKT5zn8XpHYS+bQYRcZ08em9CVAataoXw4z0XVgumMgu0mHm1f2MeGb+BsSsOMLxTHKY2I3As/QDnwvcwD53s6RCvKConGR3XFb3rN5yH1mJqccdZ2/2xLY31836lownuHzoE7wo0I9ZsNPBM7wZ0rhfOkz9tpPd0mBTSheZLPoAWQyAoxtMhClFmrDYH+79/iNbaTrWb3+eLZq1OO28wKN64oQn9P13KyLm7eP36BNeJak1Qa7+B7IMQUrv8A3eD1NKdMn3/n737jo6qWvs4/t0zk14hkBB6770XQYoVsWJXFLH37rXr9eq1vnau2CuKFUSxU6QqvfcOSYAQSK8zs98/ZsCIlEDKJOH3WWtWMufss/dzJpsweWaX/B04YjoFOBoRJYqkgtSJiyFz+LuEfnU6q98bQcS9vxEaXLJ1WtJzC0lKz2NEn0Z4N63B1GpVbaYmHErH+rF8VncwJvVrClb+QEjPKwMdEgCz1+/m4z+28FDHLOqsnUp2v/uJjKiCCzE7HIRc/CH5hW6K0lPw7tmE3bMR0jfjyNju619B4RQFhWGCwzBBYXg9HuJ2ryBh51KCUmZACjDPV11hg34EX/g+RCUE9LZEpPI5o0MiX7Tczgu/rOX0DokkREfi7Xk9QdOfgdQ11XoqdYXyFGGyd2BqNqaoThdM0ryDFpu8aic3f7qQsRHrKYpoRkTNuhUcaMn0ahrHj7cPYPS09Tww9yIm2jnMHn0je894k9Pb1yHIqVGrUv18/vEbXFk0m7Ud76bDAUmifdrXi+GyXg35aM5mLurRgDaJ0VDHv+PujuVVOlEUhJugvN0YJYSlElCiSCpMyw7dWbLhIbosfoxv3nqQc29+rkQJn5UpvoWs2yZGY+auxrQ4ubxDrRROO+kUkj6Nwz3vGxpVgkRRdoFvl7MmtSK4NOcN3KE1Ce9/S6DDOmbGGMJCgghLaAgJDYETS35x7h4KkxbjSVqEMziC4F7XgFO/TkXkn4wx/Ofsdpz80nSe+H4loy/tSlCva/HOehnPzNcIOvf1QIdYPWQmYawXYhrgqO/GMftlKMyF4PD9RX5fm8qNnyykbZ1IumWvxTQ6M3DxlkBMeBAPDm3D7UNasPrzJfTf+BYXjvuU/0Z14cLu9enZJI5ODWKICtUGCVL1fTVrBadueYGdES1oec4Dhy17zymtmLQ0hce+XcHn1/fGxLfBYnwLWrcZVkERl62k9DwaB2dgsBBTvWdOSNWgjyOkQnU6+3bW1RzEmanvMv/D+7EFWUe8ZqV/x7O2sR4cObsw1Xh9ouIGtKzNgpDeJKTOJj87M9Dh8OIva0nOyOPV3llEJM0gv/ftOEKjAh1WYITXJLjFYMIG3k1w3xuUJBKRw2oUF8Gtg5ozaWkK09bsgohaeDpejGv5F5C9K9DhVQ/pvrXliKmPs2EPjPVAyuL9p2et3811H82neXwkH58Vg7MgHUejPoGJ9ShFhLjofPG/8UTV4+34L2lRO4xXp6zn8nf/pOO/f+HUl6Zz/9dL+XzeVhZs2cvWtFxyCtyBDlukxBZvS6fgp8eINxnUuuRNcB4++RkbHsx9p7Vm7uY9TFySDMER2JrNsClLKyjispeSnk/7yGzfk+jKOdJRji9KFEnFMobm17zP/NDe9Ng8hqKXOpE3awy4Cw95ycrkTOKjQqiVt8l34DhJFBljiO11KaEUsunLw3+yUhF+XbWDU9rE02L5yxSFJxDR97pAhyQiUmVcd2JTmtaO4NFvV5Bf5CGo363gKcT9x5uBDq16yPAnimIbQr3uAHi3zQdg4da9XP3hPJrUimDsNb2I3uWfllZFEkUABIfjPPU/xGSs5qPOq1ny2Cl8NKondwxpSWJsKD8u38G/vl7G8DdmM+D5qbR77GfaPPITJzw7hXNGz+I/369k3uY9eDxeyEmDHcux2+aC1xvoO5Pj3O7sAt746BMuc/5KQbdrcTY4+JSzA13UvQGd6sfw1KRVZOUXYRI7YHcuL+doy09yRh4tw/wfDEdr6pkEnj4GlwpnwmtQ97ovuejld3nc+wVtfv0XRX++gXfww4R0HA7FdotasGUP3y1N5owOiZC62HfwOFrPoc/AoXwx63Qu3PIJGSvOJqbdkbfbLQ8ZuUVs25PHPY23ELpxPjknP09QseH8IiJyeCEuJ0+e3Z5L3/mT0VPXc/cprXA3PxXH/PdgwN1/myIlxyBju+9rdD0ICsUT0xC7fR5ZeUXc+uki4qNC+eSaXtSICMazeQ4mIgFHjSaBjflotTsPz5/vYCb/h5j25zKgZW0GtPRtdmGtZUtSMruSNpKXtp2ivcmQvYOg3F2EZKYSMncXteftxWPSceIbbWSAoiZDCDr/LYioFcAbk+OV2+PlzrF/8njhaAoi6xF2yqMlvtbhMPz77Pac+79ZvDp5HQ8ltMesGA/5mRAaXY5Rl4/k9Dwa10r3PdGIIqkElCiSgGgUF8HJpwzj9ElN+aR/Bj03vkbIhGtwL3gP11Xfg8PJjox8bvhkIXVjw3y7Gvz+OTYoAhPTINDhV5ggp4Os/g+zfuoS6n53C/kNZhMaXfFv5lYkZ2DwMmD7mxRGNSS8V+DXTBIRqWr6Nq/FuV3qMeb3DZzduR7NTrgN88FQPIvG4ux1baDDq9Js+lZsRDyOoFAAvHW749j+J49MWM6OzHy+uqEPtSJDfIW3zsE27FP1ttE2BucZz2HfHEDR1zfgqdEM9m7GkbEFZ+Y2Ghdk0PiASzwhsXgjEiiqXYcdtjWTcyJZuCeE7e4YmgWnc8fmz3D/7wScF76HadQ3EHclxylrLU//uJpu296nmSsZzvkaQiKPqo7ODWIZ3rU+H87Zwr2XtiMYYOeKqjVaEN9ub7uzC6kbvwcbHIWpgokuqX6UKJKAuapfE75fmsJtC0P49fYpRC16k+Cpj8Pq78lvMYzrP55PboGbsdf0IjY8GO+uVVCrJcZxfM2YvKhva0ZNu41P8x8ib+KdhFz6YYW/BsuTMzjNMY8amavIHTqaYFdIhbYvIlJdPDi0DZNX7eSeL5fw0agehNXpgpnzP+hx9d9G1MrR8aZvhWIfJDkbdMex6hvmLFnBHSf3oktD/w6d6VtxZiVB4zsCE2hp1emAt/vVBM17G6czBE90AzyxjfHW70lRbCMcNRrgiq6LIyYRIhNwBoXhBIKApv7HoCIPM9bt5qM5mzlrfSve4jXqfjAMz8CHcPW/U/1Qyp21lud+XsP0WTP4MXQi3nbn42hx0jHVdUaHRL5asJ2lnkZ0B9ixrMolilIy8gGI86Tija6HM8DxiIDWKJIAcjoMz53fkaz8Iv49aQ3B/W/DE9MI96zXeGj8cpZsz+DFizrTMsG/YPLuNZjjaNrZPpEhLrr2HsTL7uFErZ9I5rzPKjyG5UmZXB0ymcKYJoR3v6TC2xcRqS5qR4Xw7PCOLE/K4KK3/iSn6w240jfiXfNDoEOr0kz6Nkxsw/3Pd0V3AODCOju5aVDzvwpumeP7WsX+kCzOefqzcM96HA/tIOj2BYRe+TWhZ79E6Il3ENxxOI7GfXxbhAeFHfT60CAnJ7dN4KNRPbntsvMYGfQ8k9w9cE19gtwPzoOc3RV7Q3Jcsdby1KRVLJr+HWOjXscRGo3j9GePub7ujWvgMDA92YUNq4ndsawMo60YKel5AEQX7tK0M6k0lCiSgGqZEMUtg1owcUkyv63ejaPPjbiS5rFx0VTuOKkFp7ar4yuYl44jKwUTf3wsZH2gkX0b8449i41h7YmcfD95qZsrtP3lyRm0MEnQqC849DmHiEhpnN4hkXdH9mBLWg5nT4mjIKIenpmvBjqsqsvrxWQm4Yj1LQBb5PFy2+8eiqyTa5vuwen4a4qZZ/MsvMFREN82UNGWnsMJkbVLPfLHGMNp7ROZeM/prOr7Mo96RuHcMpOcl7qz9Yv7yEpaU0YBi/hYa3n1q1/o/udtjAt+krgQL44L3i/VGllRoUF0qBfDH5v2YhPaY3dUvQWtk/yJorD8nThitJC1VA5KFEnA3TiwGa3rRPHwhOX8FnoymTacB2tO5rbBLf4qtHut7+txsuPZgerEhHJGp4Zcn3MdeD14x9+I1+OpkLZzCtyk7k4lxruX4NrNj3yBiIgc0YktazPuut5kF8GruScTlPQnbJ//j3KeokKy1/5+2N1Bj3s5qRhPAcT4RhS9Nnkdc7flkhXbmsjdi/9eduscvPV76UOPYsKDXdx3ehuuuPU//DvhVWYXNKXuireJersn8/7dj9df+S9PfbuIrxZsZ0taDtbrgcwU7LZ5FC2bAHs2BvoWpArw5qYzY/QN3Lj8EgYFLccz8CGct82HpgNLXXfvZnEs3paON74dJnUleNylD7gCJafnE2KKCMpLxShRJJWEEkUScMEuB88O78iurHyuHbeGH0NOo3vuTBwZW/8qlLra9/U4TRQBXDugCesKa/FTgzuISJ5N/ozXKqTdVSmZNGSn70lcswppU0TkeNCxfixf39iX30JPJdOGk/zj8/vP5ezaTMakx/C+2JbIT8+iYPzNYG0Ao63E9u14FtuAuZv28PrU9ZzfrT7RzfvgSFkEXv8HKzlpONPW4mysRZsPpnl8JE/deAlt7vqeP8+ZzpxGN9HYmcYte5/l5oVn0ODb4ZhXOuF+Ih5ebI159ySCvr4SXu1C4Qfn4ln901+vtUgxnkWfkfN/nTgh9XNW1T6N4DsW4Rx43yGnRx6t3k3jKPR42eRqinHnw54NZVJvRUlOz6N1RI7viaaeSSWhxaylUujUIJZbBrfgs7lb6Xvpg/DRRDx/vIHz9Gd8BVLXYF1hf1t/4HjTuk40A1rW5rGtnenf8CQiZz4Dfa+F4IhybXd5UgZNTYrvSU0likREylLjWhF8fNNgfn79dM7b/g3Txr1I99xZRGybAtaS22gw7sjahK0YR1GjvgT1vCrQIVc+/g+WcsPrcufYxTSoGc7jZ7XDtboHLHjH92FTQjvY6lufSLt7HZoxhvo1wqlfowN0eRq8T+HdOJ3Q+R/Ses82dpkmTCmswdKsKFbmRrPbxnBK0BIu2zqZmpsvIie8PnQfRUTvqyC85uEbcxfgXvkd3vkf4Ny9GusKwwaF+7+GQVA4rm4jcLY/p0LuXcpBQTbZ4+8gcvWXrPG2ZHWX17jsnDMxZbzjYPdGNXA6DHNyEmkBvgWtq9C6pskZebSNyIIMIKZeoMMRAZQokkrkrpNbcvuQFjgdBk/bczELP4JBD0BojG/Hs7gWmON8qPh1/Zty+bt/MjfhYk7a+huetb+W+xuo5cmZtA3dDV6gZtNybUtE5HgUHxXK0Gsfx74+gYGr/02GowZ7Ot9CWJ9RRMQ3Aa+HwuwUXD//C0/9rjjrdgp0yJVL+jYAvtvsJCk9j8+v601kiAvqdQfAbp+PSWiHZ8scHM4QTL2ugYy2anE4cDQfSGjzgYQCMUAL4FRgR0Y+87fsYf7mwVy1+TLq75zCFdm/0Gv6ExROf5o1rtasDm7LmqC2rA1uQ47DtzlJojuJIbk/Mjj/V2JsJjsdCayN6E6jaBe1Qz043PlQlIszbS2Or0bidb+Bo7M20qhqbMpSMj8eQVTOFl6zw4k59SGu6Fc+HzhGhQbRvl4MP+5wM8IRhNm5HDqcXy5tlYfk9DwGh2f4EkXRmnomlYMSRVKp7Ftw0tn3Flj+Jd75H+I44TZIXY1p1C/A0QVev+ZxtEmM5rnVYQwKq4Vn2dflnyhKyuDc0N14nXVxBIeXa1siIseriFoNyT33fb5duo37VzagycZY/tenNs0BHE6CL3wP9/9OwH5+Bc4bfoew2ABHXIlkbMOGRPPx4r20rhNFzyb+kSxxzfCGxOLdNg9XtyuxW2bjSeyCyxUS2HiriToxoQzrWJdhHesC7cgu6M+irbfx0Yp51F7/FS3yl3Je7pc48eLFsM3ViFwTQZuiFXhwMD+0D1Mjh7I8pCurduSQllpIXEQwZ3Wuy/Cu9WlX24Vn7EU4v70Jr3Hi6HRhoG9ZSsJa0n9/g/Bpj5JnI3mx5jOMvGwETWqV7wj4Pk3jeHfmRjx1W+JIWVpl1lex1pKcnk/D6HTfAU09k0pCiSKpnOp2xt2wH+bPMdD1chyZSVVqCGl5McZw3YAm3Pn5Era3OYkGGyZAYU65TT/LL/Kwblc2jWvswGramYhIuQrvdDbDO0H8ulRuH7eYs16fydPndeDszvV8uwJd8B6uj86k4OsbCLnsMyjj6RtVlXfvVvLDE1melMm/z2r317QWY/DW7QrbF0BhDs6dS7F9bg1ssNVYZIiL/i1q07/FUGCo72BhDt5t83Bv/oM62/7Akb2TonYPE9R9BL2i6tDLf22Rx8vva1L5euF2xv6xlfdnbaZVQhSntXqSy3Puo9aE6/EaB46OVWeUyHHHWuzO5Wwd/xiNdk7md9uFpIH/x2MndsXhKP/fVb2b1mTM7xtIi2xJ7Z2zy729spKeW0RekYdEk4YNicGERAY6JBFAi1lLJebqdyvOrCTs78/5DsS3CWxAlcSwjnWpEx3Kh5ldcLjz8a79pdzaWrMjC4/XUqtwOw4tZC0iUiH6t6jND7f1p21iNLePW8zDE5aRX+TB1bgvhYMeI2T9jxTM/OeGBl6vJTt1K1nbVuDxeAMQeYBkbGOLO44Ql4NzOv99fQ9Hgx4401bDxmkYrxtHY41OrlDBETiaDSR4yP2EjJxA0C1zCBp0L0TV+VuxIKeDk9om8Mbl3Zj70BD+c057IkNdjJ6ZzIDt1/OnpxX2m2t5d8z/8f6sTeQVatHsSqEwF8/qHymYcDuFL7TBjDmBxB3T+CjqWhrf+h2XDupWIUkigO6Na+J0GFZ6G+LI3gk5uyuk3dJKzsgDoKYnFavRRFKJaESRVF4tTsVToxmOuW/6nh/HO54VF+R0cE3/Jvx3Ui73xcThXPYNjvbnlktby5MziCGbkKJ07XgmIlKB6sSE8tl1vXn+5zW8NX0jv67cyR0nteSCPjdTsGUOwVMep6h+dwpjmlC0YTpm83RCt88mMsO3VXlhZAOym54CrU4nrPkAgkOq8XSrjO0szq/P0A6JxIQH/e2Uo0EPsF68c/6HwWAa9AxQkFJSseHBjOjdiBG9G5Ff5GF5UgbLN7Wi5p83cOWOJ7l1awZrd5zP06fXh8xkPBlJeDOSMQ4Hrm5XaKRdRchLp2j8zTg3/IbTk4/HGc7v7vb8bs+m4+ALuHxAxSWI9okMcdGhXgy/Z9ZhEPgWtG42qEJjOBbJ6fkARBXswtbQQtZSeShRJJWXw4HpczPmh7uwzhBMbKNAR1RpXN67Ee/O3MRkenP6hl/KbfrZ8qRMOoT6P5FRokhEpEIFOR08OLQNQ1rH8+xPq3ngm2W8PX0j9w/+N4NSV+L85BwiPAUAeIIiyUvsRV7HERAciWv9L0St+ATH0nfxBEeT1XAQ3g4XEtX+dBzOarQxRH4mjoIMNrlrcnGPBv88X68bAI4tM3HHt8cVGlPBAUpphAY56d64Jt0b14S+P+L+aDijk16jcOn/YFkRAE7/A4CEttCgR6DCPT543Li/GIlry0z2th3Bmzta8v72RLo1rcOzwzvSMC5w61n2aRbHVzPieDyIKpQo8o0oCs1LwdG4e4CjEfmLEkVSqTk6X4J3ypMQnYhxqrvuExrk5M6TWvLRN105I2QS3jU/4+hwXpm3szI5g1NqpMNeIK55mdcvIiJH1qtpHF/f2JdfV+7k+Z/XcN0X6xiWcC//qj2BqCbdMU1PJKxRNyKDg/+6qP915Odmkb/mNxxrfiJ886+41n9L/rQWFPS4hfDuFxMUHBq4myorGb4dz4oi6/+1iHVx4TXxxDbBmb4JGvWt4OCkTIVE4bria3J+fYYJi7aR4Ypj1Gn9CKlZDxMcDm8OgC0zlSgqZ56fH8a1aSpz2j3GNUvbAvDoOW24tGfDCh9FdKDeTeN4Y1ok+dEJBO9YViXWWElOzyPS5caZlwYxGlEklUdV+Pcjx7PgcOzwd+HU/wY6kkrnvK712BPXhT0mlqJlX5d5/UUeL6t2ZNExLA1rHFCjcZm3ISIiJWOM4ZR2dfjpjgE8f35HFuYn0n/zVVy6uh8/Z9THa/45Sig0PIrYLucSffGb2LtWkXH6aHAEEfPL7fBKJ9J/+z/ys/cG4G7KTvLmtQB0bNf+r0WsD2D9o4pcjZUoqvJCoogY9hR1zn+e5zJO4t30zphGfSCxE95arfBumhHoCKs174IPcc59g+/CzuaSBa3o0rAGP985gMt7Nwp4kgige6MauByG7SHNYcfyQIdTIknpeXSMyvE9iVaiSCqPUiWKjDE1jTG/GmPW+b/WOEiZBsaYqcaYVcaYFcaY20vTphx/nC0G42g2MNBhVDoup4O7T2vLd0U9cK7/FQqyy7T+9buyKXR7aWxSsNH1QdsJi4gEnNNhuKB7A6bcM5D/ntsBt9fLfV8tpd8zU/i/X9awMzP/oNcFBYcQ0+tygm+aRcb5n1MY25zYmU8Q9EoH8hZ/VcF3UXaWrFgGwICeXQ9ZxtnsRLzOUGioRFF1MaRNAkM71OHVyevYvNv3R7Zp3B+z7Q/wuAMcXfWUu2463u/vYoa3A/8puJT/u6ATH1/dk/o1AjfV7EARIS461o9hSVF9TNpacBcEOqQjSsnIp01Elu+JRhRJJVLaEUX3A5OttS2Ayf7nB3IDd1tr2wC9gZuNMW1L2a6IAKe2q8PquJNweQsoXPVjmda9PCkDgFoF27A1m5Zp3SIiUjqhQU4u7dWQn+8YwCdX96JLw1hen7qefs9M4fZxi1i8Lf2g1zmcDmLan0b4Nd+TdcVvFMa1IvTb68hb9m3F3kAZKHB72Ll1HUUEERdf/5DlTOfLyb95IUQlVGB0Ut4eO7MdQU4Hj3y7HGstpnE/TGEOpCwJdGjVirWWX2fPo2DsZWz11Ob3js/y6z1DGN6t/iFH8QVS76Zx/J6RgPG6IXV1oMM5ouT0PJqFZPqeaESRVCKlTRSdDXzo//5D4JwDC1hrU6y1C/3fZwGrAP0rECkDxhjOPONcdtlYts38tEzrXpGcSUSwg5DMzThqtSjTukVEpGwYYzihRS3eubIHU+8eyIg+jZi8ahfnjJ7Fuf+bxcQlyRR5vAe9LqppD0JHjqcgvjMh468mf9VPAbiDY/fLip3EeXZRGFkXHId5S+twEF5Tbz2rm4ToUO47rRUz1u1m4pJkaHyC78RmTT8rK6lZBVz37nTq/zSKIDwUXjCWh8/v94/dBSuT3k3jWO5p6HtSyaefFXm87MzMp4Fzj++AEkVSiZQ2UZRgrU0BX0IIiD9cYWNMY6AL8OdhylxnjJlvjJmfmppayvBEqr++LRNYFDmAertnkJVZdmtNLE/KoHeCxVGYhdGOZyIilV7jWhE8dmY75jwwmMfObMvenEJu+2wRJzw7hdenrGNvTuE/rjGh0QRf+TVFca0J/uoKCtZODUDkx+bzedto4tpDaK3GgQ5FAuSyXo3o1CCW/3y/knRHLN64Fng3zwx0WNXCHxvTuOKVb7li68O0cmwn7LKPad2hW6DDOqJujWqw3SRS6AilKHlpoMM5rJ2Z+Xgt1CENb2gNCK480/hEjpgoMsb8ZoxZfpDH2UfTkDEmEvgauMNam3moctbat6y13a213WvXrn00TYgct5oNGkEoRUz//pMyqc/jtaxMyaRvDd/0M2oqUSQiUlVEhQZxVb8mTLl7IO9e2Z2WCVG88MtaTnrxd35anvKP8o7wGgRd+S1FMU0I+uISCjbOCkDUR2drWi4z1++msWsPzhoNAh2OBIjTYfjvue3Zm1vEsz+t9q1TtHWO1ikqBa/X8sbkVUx+7xG+dt9KP9cqGPYSzhZDAh1aiUSEuOjQoCarnS1xLPmU7NWVN/mdkuFbUy7WnQrRdQMcjcjfHTFRZK09yVrb/iCPb4GdxphEAP/XXQerwxgThC9JNNZa+01Z3oCIQPOuJ5HujCN4zbfszi79wn2bdueQW+ihQ9hu3wGNKBIRqXIcDsOQNgl8fHUvJt12AnViQrnhk4XcPm4R6bl/H13kiIzDNXIi7si6uD67kILNcwMUdcl8Pn8roaaIyKLdENMw0OFIALWrG8Oofo35bO42Umv1wBRmw47KPZKkstqTU8izY95hyO/Decg1FkeTfjhu/hNH95GBDu2o9G5ak5tzrqUwPIHwLy4kY27ZLs9QVpLT8wCILNiphayl0int1LOJwJX+768E/rESovGtcvYusMpa+2Ip2xORg3E48LQ+k/4sZvRPi0td3Ypk30iipiYFa5wQqzfhIiJVWbu6MUy4uR+3D2nBpKUpnPLSdKas3vm3Ms7oBJwjv8MbFofr0+Fkzv0U6/3n+kaB5vFavlqwnXP27bMQc+iFrOX4MKJ3YwCm5PnXVNT0s6Ni8zNZ9Mdk5v/fuTyw6x7qhFu8F40l9Iqvq+SHhb2bxrHNG8e8wZ+SX6crMT/cSPovz+E9yHptgZTkTxSF5Kbg0PpEUsm4Snn9M8AXxpirga3ABQDGmLrAO9baoUA/YASwzBiz2H/dg9baH0rZtogUE9fzYljxAWkLJzKzUzNOaFHrmOtakZxJsMtBjfxt2NhGGGflXbRQRERKJsjp4M6TW3Jy2wTu/mIJoz6YzwXd6vPImW2JDvX9nnfG1sNeOZGiz68g+ocbyV38MWbYC4TVbRfg6P8ye8NudmYWcF4vLyQBsZp6drxrGBdO01oR/LjZcmHN5rB5Bo5+twU6rMDK3UPej4/iLciCkChMcKTva2gUBiBtAyZtHZ7UdYQX7KILUEAQKZ1vJ/GMByAoLMA3cOy6NapBkNMwJ9lLv5HfkvXl9cTOfoqMjG2En/MiQUGV431tcnoeCWFeHHl7NKJIKp1SJYqstWnAPyasWmuTgaH+72cClW/vRJHqpkEv3BF1uM7xK9d/eSI/3DHomHelWJ6UQZs6UZg9G6vkJ0kiInJo7evFMPHWfrzy2zrG/L6BWet38+z5Henfwrc2pCuuMY7rppD5x3uEz3gSxzsnktnleiJOfgBnaGSAo4fxi5KICnXRJSbNdyBGiSKBE1vV5tM/t+Lt3g/nym/A6wGHM9BhBYz7+3sJXT2BoqgGOIpycBRm4XDn7T9f4Ipmo01kRWFrUoNPpk37rvQ+8TQSa1b9EXrhwS56NK7JZ3O3clH3BjS8+D0yJtUjZuFosnJ2YC5+H1cl+F2Wkp5P+6hcyASiq/7rLtVLaaeeiUhl4XBghzxGe+8aLswdx6MTj21LUGsty5MyaFc3GrN3E4645mUcqIiIBFqIy8l9p7Xm6xv7EhrsZMS7c3lo/DJyCnyLADtcLqJPuA7PTfPIaXUe0Qtex/N6TwpW/hTQuHML3fy8fAfDOiYSlJWExWhLaQHgxJa1KXB7WRvWCVOYdVyvU+RdORHXyq/wnHA3wXcuxnXfOhwP7yDzvp18dfJsLogeS6vsN7g+5Fk8Z43m6gdeZ+C51xBaDZJE+zx9XgcArv5wHlmFXqLPfIq9J/6XyC2/UfDpCKynKMAR+qaetQ737/GkxaylklGiSKQaCep6KXltL+RW13h2LJnMxCXJR13H9r15ZOa76RFXiCnK0YgiEZFqrEvDGvxwW3+uOaEJn87dymmvTOePjWn7z4fEJBB10VvkXPY9NiiS4K8uh6ydh6mxfP26cic5hR7O6VwPMrZho+qAKzhg8Ujl0btpHCEuBz9m+9+3bK78u/eVi5w07Pd34o5vj+vEe/F4LdPXpnLbZ4vo8d+p3PPdZjJMFC9e2Jkpd5/IRT0aEuyqfn8SNoqLYMzl3diSlsutny3C47XUGHQzGYOfI2LrFHIm3A3WBjTG5PQ8mgan+55orTWpZKrfbwWR41zY2S/hjmnE6NDRvDB+Fjv8W2+W1PIk30LW+3c8q9n0MKVFRKSqCw1y8vCwtnx+XR8cxnDJ23/wxHcrcRdb+DWiRX+CLvkE4y3Cs/DjY2onPzudzKU/kDn1ZdwZKcdUx/hFSdSLDaNH45p407dq2pnsFxrkpHfTOCZtAm+NZng3zQh0SAHhnnQPjvwMcoe+zvO/baDfM1O44r25/L42lYt6NODbm/vx8x0DOK9rfVzO6v2nYO+mcTx1bnumr03lyUmrAIjtfy2Z3W4mctmHZP/+asBiy8ovIjPfTX3nXt8BjSiSSqa0i1mLSGUTEonjgg+o+d5JPOEdzb1fNuDDUb1wOEq2VNjUNbsIchoa4R+NpKlnIiLHhZ5NavLj7f15+ofVvDdrEyFBDv51Wuv95x3xLXE37IdZ+CH0vwsch/8j052XRe6GWdhNMwjeNovQ1KWEWg8Anj9eJGfwk0T0HAGmZP8/pWYVMGPdbq4f0BSHw+BN34ap3+3Yb1iqnYGtavPv71aS07U3kRu+O+7WKfKumIBr5TcsaX4zIz9KJSOviEGt4nn0zLYMaRNPiOv4eS32uahHQ9btzOadmZtokRDJZb0aEXXGf8hJ30LEtMfIq9GIsE7nVHhcKf4PchPYjTesJo4qvHi4VE/VO40scpxy1e9M0ZAnGGgW0WLTJ3z8x5YSXbciOYMvF2zn8t6NCErfhHUGayisiMhxJDzYxX/Oac8lPRvwxrQNTFuz62/nnT1G4czYChunHL6ivL3weg+iv7qI6IVjsMZJVrebybrgK/JGTaOwZksifryV3PfOpmD3phLF9v3SZDxey7ld6oHXi8lMwmhEkRRzYkvfguxLnO0wBZmw89jWa6yScnbjnngn653NGL68F81qR/L9rf15d2QPhnZIPC6TRPs8MLQNg1rV5rFvVzB7/W6Mw0nYhW9TkNCZkInXU7BlXoXHlJzuW1g8tnCX1lmTSkmJIpFqKqTvjeQ3PZUHgz7j2x8msX5X1mHLW2t54ruVxIYFcceQlnjTNmBjGx9Xn8SJiIjPY2e2o3WdKO76YsnfpjCbNmfiDYvDPfe9w17vnvEKrpwUUk4ZQ8E9Gwm/cTLRw/5DVLuTCWvYhbBrfyF7yDOE7JiPa0xfsn4fjfW4D1vnhEVJtK8XTYuEKMjeifEWQawSRfKXJrUiaFgznG/Tm/gObJ4Z2IAqSEZuEUvfuhbyM3iIm3j2gm58eUMf2taNDnRolYLTYXj1ki40qRXBjWMXsn5XNo6QcFyXfY47PB7nuEvw7NlcoTFt2+tLFIXl71SiSColJYpEqitjCD1/DN7w2rzseoW7P565fzebg/lx+Q7+3LSHu09pRUx4EKRt0ELWIiLHqdAgJ69f2pX8Ig+3fbbor/WKXCHYzpfiXPcTZB5inaGsndg/3mCipy99v4vmgveW8exPq5m9fjcFbt/UMxwOIvvfiOeGORTU603U1AcpeOc0vFm7DlrlhtRslmzP8C1iDZCxzfc1pmEZ3rVUdcYYTmxZm0lbHHhim+DdVP0TRet3ZfHsi8/QMWMKv9e9mrfuuZLh3epjSjil83gRFRrEu1f2IMhpGP7GbGau240rOgEu+wLjKcT98QXkp22rsHimr02lTnQoQTkpOGKUKJLKR4kikeosvCaOC96hPqn8N+NfPPPpD9iD7PCQX+Thvz+sonWdKC7p2dA3pH/vJhxKFImIHLeax0fy5Dntmbt5Dy//tm7/cWf3qzDWc8hFrVd/9TjGU8hvda7mzpNaEhbk5O3pG7n0nT/p9O9fGPn+XOZu2gNAcFwjwkd+Q/bQ0QTvWobn7ZPx7N74jzonLErCYeCsTv4FX9O3+r5qRJEcYGCr2uQWetgV1x22zgav98gXVVErt+7g5zfu4WH362TX7MDJ1zxNTFhQoMOqtBrGhTP+pn7UiQ7lyvfn8uHszQQltMZzwUcEZW4laEwfsme/W+67oeUUuJm+NpUz28biyN8LShRJJaREkUg152pyAoUXfErToD3cu/l6Jn317j/KvDNjI9v35vHomW1xOgxkbsd4CrSQtYjIce68rvW5sHt9Rk9bz/S1qb6Dcc0oanQiLPjQt1hwMd9MnUOTzV8wPeIUnr32XG4b0oIvbujD4sdO4d0ru3Nxj4asSsnkwjfncPPYhWzbkwvGENnzcopGfIspzMC+cxLubQv212mtZfyiJPo1r0V8dKjv4P4RRVpHT/6uT7M4gp0O5nrb4shPr57rFHk9bPhlDHHv9uZmO46ChicSeeU4cGqfoiNpUDOcr2/qy6BW8Tw2cQUPTViOaTqAwmtnUlC7PZG/3EXeu8MoKuHaacfi97WpFLi9DG3kT2Jq6plUQkoUiRwHQtudjuOG6aQF12XYirvZ8Nk94F8LYkdGPqOnbuC0dnXo26yW74K0Db6vGlEkInLc+/dZ7WkRH8mdny9mZ6ZvvSJXz1E4s7bD+sn7y70zYyNFk5/BYQx9r36OsOC/1riLDHExpE0Cj5/Vjmn3DOLOk1oyefVOhrz4O8//vJqcAjchjXvDVT9jg8JwfDiMojW/ArBgy162783zLWK9T/o2bGgshERVyGsgVUd4sIueTWryxW7/tMQtswIbUBkrWvMbGS/3odnsf7HbUZsd542nxqgvlDQ9CpEhLt4a0Y2bBjbj0z+3cvk7f5Ib1YiwayaRfdJzBO9cjHNMH/JmjC6XEWk/Ld9BzYhgOkZl+w4oUSSVkBJFIseJkNpNqXX7NCa6TqHZmrfJfHsYnsydPPfTajzW8uDQNn8V3uNPFNVUokhE5HgXFuxk9KVdyS30cOV7c3np17X84ulKUWgtiub6Rqm+PmUdn/4wmQtc0/F0G0VoXKPD1nf7SS2Yes9Ahravw+ipGxj0wjQ+n7cVT1xznNf8hju2Ca7PL6Zw4ad8syiJsCAnp7ars78Om74Nqx3P5BBObFmbWalhFEY3wrNxRqDDKRvWUvTNjQR9NpzMjL08EXovte6YTp2OgwMdWZXkcBjuO601L1/UmUXb0jl79Exmb9xL5AnX471xDgX1+hA2+UEK/ncC2d8/RM6Sbyncm1zqdgvcHqau3sXJbRJwZvvXedPUM6mElCgSOY5ERUbR9rr3edB7EyE7FlD4vxNYsngu15zQhIZx4X8VTNuIdYVBVGLgghURkUqjRUIUL13UiUK3l1enrOP6T5fxVnZfHOt+5rL/+4YXflnL83HfgyuU0EH3lqjOxJgwXr64C9/c1JfE2DD+9fUy+jw9hedmZ7Br+HgK6/UheOKN9F1yPy/WmoiZ8zq5cz8if/l32N3rMFqfSA5hYKvaAGyJ6Y7ZNBUyS/8HfqAV/f4CQUs/5U3PWdxc401uvuVeEmLCAh1WlXdOl3p8cX0fAC5750+u+XA+271xhI38hrxh/8M6gghf+CYR468g+JU2FL3QlpxPLqdwzc/H1N7sDWlkFbg5rX0dyEjyHYyqW1a3I1JmzMEWtq0sunfvbufPnx/oMESqnZ+Wp/DK2PF8GPws1jiIuHEykQlN95/3jr0QMrbjuGl2AKMUEZHKKK/Qw7pdWWzbsIrTp57ON5GXkdXkVK5aNgJ3v7txnfzoUdfp9VpmbdjNx3O28NuqnVhgcItYbs55g0a7p1HD5ODggCkgfW+DU/5TNjcl1Yq1ln7PTGFQQg7/SboWd7OTCL50bKDDOmZ7F31LzLdXMtHTh48TH+a9q3pq0eoyll/k4b1Zmxg9ZT2FHi9X9WvCLYObEx0ahLcwj4Jti3Fv+xPH9vkEJ/+JK38v9qqfcTTodlTt3P/1Ur5fmsKCR04i5Me7sau+w9y3oZzuSuTwjDELrLXdD3pOiSKR49OzP61m6u9T+Tb8SRxR8biu+RkTGQ+A99WumIR2mIsOvqONiIgIgPvDczGpq/DWboMjeSHOO5ZAWGyp6kzJyOOzudsYN3cru7IKqBUZzB/3D8JZlI0nZy/evD2Ql0Fww+4QGl02NyLVzgPfLOO7JcksOHEJIdOfwnPxOJytTw90WEfFWsu0GTPoMeVCNnnrMLP/x1wzuB1BTk0KKS+7MvN54Zc1fLlgOzXDg7n31FZc1KMBxpi/CuXuwf1GfwBcN86A8JolqtvjtfR46jf6Na/Fa5d0wX5yATZ7J44bppfHrYgc0eESRfotI3KcuveUVrxy++U4Lv8CZ3YyRR+dB/mZ4HFj0rdgtJC1iIgcgbPHVTizUwjaNAXb7/ZSJ4nANyXtrpNbMuv+wbw5ohtjLu+Gy+XChMXiqtWE4AbdCG45WEkiOawTW9Ymu8DN4gYjKKrZEjvpHijMCXRYJZaaVcDdH06jyW/XUGhCCL/ic248uYOSROUsPjqU587vxMSbT6BZ7Uju/2YZd36+mLzCYjs8htfEceGHOHN2UvjV9SVe8Hre5j3sySnkNP96azZzOyZa086kctJvGpHjlMNhaFUniqAm/fCc/yFBu1dR8MlFkLYO43VrIWsRETki0+p0PBEJeMLjcfW+vkzrDnI6OLVdHbo3Ltmn9SLF9Wseh8thmLYhA+eZL+PK2k7B5KcDHVaJfL80mdNenMLwjY9Q37mHyCvG0ax5q0CHdVzpUD+Gcdf15u6TW/LtkmTOHzOb7Xtz9593NOiO+6QnCd74C4UzXipRnT8t30Gwy7F/DS2TmYzRbnVSSSlRJCIEtT6NojP/R/D2OXg+vdh3UCOKRETkSJxB2IvG4r14HARHBDoakf2iQoPo1qgGk1ftxDTuS2GHywie9wbelOWBDu2QMvOLuPPzxdzy6SIeDfmMfo5l2DNeJLhJn0CHdlxyOAy3DmnBu1d2Z2taLme9PovZG3bvPx/U53oKW51N0LQncR9hdz1rLT+v2MGAFrWJCHFBYQ4mP107nkmlpUSRiAAQ3OUiik55Gmf6Zt+BuOYBjUdERKoGV8MeBDU8ugVdRSrC8G71Wbszm++WphB8+pN4g6NxT7y9xFOFylLO/HFkJq895Pk/NqZx+sszmLgkmTFtlnJ2/rcUdLuOoO5XVGCUcjCDWycw4ZZ+1AgPYsS7c3lv5iastWAMweeNxh3TBL4ahc3accg6lm7PICUj37fbGfy141m0EkVSOSlRJCL7Bfe9kYKBj+Ku3xsiagc6HBEREZFjNrxrfdomRvPMD6vIc8XgPfk/BKfMp2je+xUbSN5eIr6/nrBPziBr28q/nSpwe3j6x1Vc8vYfBDkN3w/axambniW/8WBChlaNqXLHg2a1I5lwcz8Gt47nie9XcvOnC31T0UKicF70EY7CTAo/H0VRUdFBr/95xQ6cDsNJbXwbx5CpRJFUbtr1TEREREREqqU/N6Zx0Vt/cOdJLbl9SHMK3x2KM3UFzlvng3+313K3ZQ68fxrWuHCH1ST/km+JatCW5UkZ3PfVUlamZHJJz4bc22QTNSZeRUFiN0JGjsdoOmel4/Va3vh9A69OXocFrurXmJsGNid8xTiCvr+ForDaFEXWxRNRB29kHWxUIkTU5oPfV5EYnM9pzUIw+ekE7V1HWOpSuH0J1Ggc6NuS49Thdj1TokhERERERKqtm8YuYOrqVKbccyIJBVsxY/pR1P5Cgs/7X8UEMO9dmHQXWcM/I2zSLXiNk9cbvczrS6BmRAhPn9eBvq5VhH1+IYU1WxE86nscYTEVE5sck+T0PF74ZQ3jFyURGxbE7UNacJ6Zit36B87sFFw5O3Hl7sBVkPG36zxBUXhCYvCExOCMb0XwBe+Awxmgu5DjnRJFIiIiIiJyXNq2J5chL/7OGR0SeemizhROvJugxR9i7lgG0Ynl3r6ddA8s/hQe2M6v03+n+7QrKLIOPmw5muvPOxXnjoWEfXou7si6OEf9iCtK0/+riuVJGfz3h1XM3pBG47hwruzbmMGt42lYMxy31+LOz+HjyQsYMyeFCXcPJbFGFE5jcDhMoEMXOWyiSGsUiYiIiIhItdWgZjjXnNCE8YuSWLh1L8En3AzWg/uPMRXSvnfXavJrtGTUh/O57qdc/hX5X2JCHNyZdBd21XeEjrsQT2gcZsQEJYmqmPb1Yhh7TS/eH9mDsGAX//5uJSc+P40hL/7Osz+uZlFKAeM3OWncoCENa8UQ5HQoSSRVgkYUiYiIiIhItZZd4GbQC9OoFxvG+Jv64h53Bc7Nv+O4ayWERJZr257nmvFdbgce9N7AXSe3ZGTfxuRtX07YZ+fgyk+jKDwe78ifCIlvVq5xSPnbkpbDlNW7mLJ6F39u3EOhx7fD3oNDW3PdAP18pXI53IgiV0UHIyIiIiIiUpEiQ1zce2or7vtqKd8uTuac/rfDmol4Fn6Ms8+N5ddwzm6cubtZVlSXd67qTt/mtQCIatSRrEsm4J32X4KGPEy4kkTVQqO4CK7q14Sr+jUhp8DN7A1pLN2ezkU9GgY6NJGjoqlnIiIiIiJS7Z3ftT4d6sXwzI+ryY3vTFG9Xtg5o8HjLr9Gd60CIC28Kb2bxv3tVFSjjoRf/inh9duXX/sSMBEhLk5um8Ddp7QiJiwo0OGIHBUlikREREREpNpzOAyPntmWHZn5jJ66HucJt+HK3IZ35cRyazM3aTkATdt2P+jaNEFO/TkmIpWPfjOJiIiIiMhxoUfjmpzXtR5vTNvA3OBeuGOb4p31KpTTuq1JaxeRacMZ2L1TudQvIlIelCgSEREREZHjxhNnt6dRXAS3f76E3G7X49qxCLbMLpe23DtWsMXZkA71Y8ulfhGR8qBEkYiIiIiIHDciQ1y8fmkX9uYWcc/atnjCalI089Uyb2dXZh51CjbjrdUGY7QluohUHaVKFBljahpjfjXGrPN/rXGYsk5jzCJjzPelaVNERERERKQ02tWN4ZFhbfllXRYL488naP1PsHtdmbYxdf5yaphsElt0LtN6RUTKW2lHFN0PTLbWtgAm+58fyu3AqlK2JyIiIiIiUmqX92rI0A51uHldVzyOEIpmvlam9a9aOheA+Gady7ReEZHyVtpE0dnAh/7vPwTOOVghY0x94AzgnVK2JyIiIiIiUmrGGJ4+ryMhsQlMNCfiXDYOslPLpO7te3Mxqf7PyGu3KZM6RUQqSmkTRQnW2hQA/9f4Q5R7GbgP8B6pQmPMdcaY+caY+ampZfOLWkRERERE5EAxYUG8fklX3sg/FTxF5H0+CgpzS13v90tTaGG24w6pAZGH+hNJRKRyOmKiyBjzmzFm+UEeZ5ekAWPMMGCXtXZBScpba9+y1na31navXbt2SS4RERERERE5Jp0axHLhaYO5t/A6QrbNJP+Dc7H5maWqc+LiZLqE7sCR0Aa0kLWIVDFHTBRZa0+y1rY/yONbYKcxJhHA/3XXQaroB5xljNkMjAMGG2M+KcN7EBEREREROWZXn9CEwg4Xc1vhzQQnz6Pw/bOxuXuPqa71u7JZmZJBU7sVE69pZyJS9ZR26tlE4Er/91cC3x5YwFr7gLW2vrW2MXAxMMVae3kp2xURERERESkTxhheuKAje5oM46aiO3DtWkbRe8Owx7Bm0XdLkkk0ewjx5ChRJCJVUmkTRc8AJxtj1gEn+59jjKlrjPmhtMGJiIiIiIhUhBCXkzdHdGNr/CCud9+Dc886it4bis1MKXEd1lq+W5LMWYn+qWtKFIlIFVSqRJG1Ns1aO8Ra28L/dY//eLK1duhByk+z1g4rTZsiIiIiIiLlISo0iA9G9WBNVE+utw/gyNyO+93Tce9aW6LrVyRnsnF3DqfG+6etacczEamCSjuiSEREREREpNqIjwrlo1G9WOhoz82ORyA/HfPOYAqWf3/Ea79bkozLYWjrSsIbXhsi4iogYhGRsqVEkYiIiIiISDFNakXw/sgezMhvyjUhL1AY3ZiQry4j76fHwes56DWbd+fwyR9bGNw6nuA9a7CadiYiVZQSRSIiIiIiIgfo1CCW/13WlZm7w7kr8jly219K2B8vkf/hcGxO2t/KFrq93D5uES6ng8fPbItJXYMjvnWAIhcRKR0likRERERERA5iYKt4Hhzahh9X7+XNmDvJP+1FgrfNwj3mRNzbF+0v9+Kva1myPYNnh3egrtmNKdKOZyJSdSlRJCIiIiIicgij+jVmeNf6vDJ5HdMiz8Bz5Q/gdeP4cBikb2PW+t28OX0Dl/RsyGntE2HXKt+FWshaRKooJYpEREREREQOwRjDU+e2p1P9GO7+YjGbQlvjuvpHwEvuN7dw57hFNKsdyaPD2vou2Jco0tQzEamilCgSERERERE5jNAgJ2NGdCMs2MW1H80nM7Q+nkGPEb51GgPzf+PVi7sQFuwEwO5ahTeyDoTVCHDUIiLHRokiERERERGRI0iMCePNEV1JTs/jls8W8rHnZOZ6W/FEyFjaRuXuL2d3rda0MxGp0pQoEhERERERKYFujWryxNntmbFuN09MWs039e8nmEKKvr0DrAWvF7N7DY6EtoEOVUTkmClRJCIiIiIiUkKX9GzINSc0oXFcOPdcegbegQ8StP5HPMu+hvTNGHee1icSkSpNiSIREREREZGj8PCwtky9ZyC1IkNw9buVojpd4Yd7YfNMXwFNPRORKkyJIhERERERkaNkjPF943ASdN7/cBRmYX+833esdqvABSYiUkpKFImIiIiIiJRGfBvc/e/FFOXgja4PodGBjkhE5JgpUSQiIiIiIlJKQQPuoiihMzToFehQRERKxRXoAERERERERKo8ZxCua3/FOPQnlohUbfotJiIiIiIiUgaMKzjQIYiIlJqmnomIiIiIiIiICKBEkYiIiIiIiIiI+ClRJCIiIiIiIiIigBJFIiIiIiIiIiLip0SRiIiIiIiIiIgAShSJiIiIiIiIiIifEkUiIiIiIiIiIgIoUSQiIiIiIiIiIn5KFImIiIiIiIiICADGWhvoGA7JGJMKbAl0HFKhagG7Ax2EVAnqK1IS6idSEuonUlLqK1IS6idSEuonUlLl1VcaWWtrH+xEpU4UyfHHGDPfWts90HFI5ae+IiWhfiIloX4iJaW+IiWhfiIloX4iJRWIvqKpZyIiIiIiIiIiAihRJCIiIiIiIiIifkoUSWXzVqADkCpDfUVKQv1ESkL9REpKfUVKQv1ESkL9REqqwvuK1igSERERERERERFAI4pERERERERERMRPiSIREREREREREQGUKJJSMMacZoxZY4xZb4y5/4Bzt/rPrTDGPHeI62saY341xqzzf63hP36yMWaBMWaZ/+vgQ1zfxBjzp//6z40xwf7jxhjzqj+upcaYrmV971JylbWf+M8NNMYs9rf/e1netxydStBPbvG3bY0xtYodv8z/e2SpMWa2MaZTWd63HL1K3FdijDHfGWOW+Nu/qizvW45OOfaTnv7/Nxb7f9bnHuJ6vUepAiprP/Gf03uUSqQS9BW9T6kCKnE/Ofr3KNZaPfQ46gfgBDYATYFgYAnQ1n9uEPAbEOJ/Hn+IOp4D7vd/fz/wrP/7LkBd//ftgaRDXP8FcLH/+zHAjf7vhwI/AgboDfwZ6NfreH1U8n4SC6wEGh6ufT2Om37SBWgMbAZqFTveF6jh//50/T5RXzlMX3mwWF21gT1AcKBfs+PxUc79JBxw+b9PBHbte37A9XqPUskflbyfxKL3KJXmUUn6it6nVPJHJe8nR/0eJeAvqB5V8wH0AX4u9vwB4AH/918AJ5WgjjVAov/7RGDNQcoYIG3fP6oDju8u9g9mfzzAm8AlB2tHD/WTYv3kJuDJQL9GegS+nxxQ5m//sR5wrgaHSB7oob7ij+V//mubAOsBR6Bfs+PxUYH9pAmwkwPerOs9StV4VPJ+ovcolegR6L5yQBm9T6mkj8rcT47lPYqmnsmxqgdsK/Z8u/8YQEugv38o7e/GmB6HqCPBWpsC4P8af5Ayw4FF1tqCA47HAenWWvdB2j9cbFKxKnM/aQnUMMZMM75pJlcc1Z1JWQp0Pympq/GNBJDAqcx95XWgDZAMLANut9Z6j+J6KTvl2k+MMb2MMSvw/ZxvKPZ/zD56j1I1VOZ+ovcolUug+0pJ6X1KYFXmfnLU71FcR1G5SHHmIMes/6sLX0a7N9AD+MIY09T605klbsCYdsCzwClH2f7hzknFqsz9xAV0A4YAYcAcY8wf1tq1R9O+lIlA95OSXD8I3xuwE47leikzlbmvnAosBgYDzYBfjTEzrLWZR1mPlF659hNr7Z9AO2NMG+BDY8yP1tr8Erav9yiVR2XuJ3qPUrkEuq8cOUC9T6kMKnM/Oer3KBpRJMdqO9Cg2PP6+DKU+859Y33mAl6gljHmff8CXD/4y+00xiQC+L/u2leZMaY+MB64wlq74SDt7wZijTH7kp0Htn+o2KRiVfZ+8pO1NsdauxuYDnQq5f3KsQl0PzksY0xH4B3gbGtt2tFeL2WqMveVq4q1vx7YBLQ+yjqkbJRrP9nHWrsKyMG3plVxeo9SNVT2fqL3KJVHoPvKYel9SqVRmfvJUb9HUaJIjtU8oIXx7dYQDFwMTPSfm4AvW4kxpiW+xbx2W2uvstZ2ttYO9ZebCFzp//5K4Fv/NbHAJHxzOmcdrHF/9nUqcP6B1/vrvcL49AYy9g3hkwpXmfvJt/iGgLqMMeFAL2BVqe9YjkVA+8nhGGMaAt8AI/RJbqVQafsKsBXfp/8YYxKAVsDGY6hHSq88+0mTfX/YG2Ma4fs5by7euN6jVBmVuZ/oPUrlEtC+cjh6n1KpVNp+wrG8R7GVYOEnParmA9/OHWvxre7+ULHjwcAnwHJgITD4ENfHAZOBdf6vNf3HH8aXJV1c7PGPleHxrSg/F99iXF/y1yryBhjtj2sZ0D3Qr9Xx/Kis/cR/7l58u4osB+4I9Gt1PD8qQT+5Dd+nPW58n/684z/+DrC32LXzA/1aHe+PStxX6gK/+P/fWQ5cHujX6nh+lGM/GQGs8PePhcA5h7he71GqwKOy9hP/Ob1HqUSPStBX9D6lCjwqcT856vcoxn+hiIiIiIiIiIgc5zT1TEREREREREREACWKRERERERERETET4kiEREREREREREBlCgSERERERERERE/JYpERERERERERARQokhERERERERERPyUKBIREREREREREUCJIhERERERERER8VOiSEREREREREREACWKRERERERERETET4kiEREREREREREBlCgSERERERERERE/JYpERERERERERARQokhERERERERERPyUKBIREREREREREUCJIhERkUrPGNPYGGONMa4SlB1pjJlZQXH1M8asM8ZkG2POqYg25S/GmIb+195ZlmXLIK4K64MiIiJS9pQoEhERKUPGmM3GmEJjTK0Dji/2J3saByi04gmnbP9jszHm/lJU+QTwurU20lo7oYzCPC6URTLFWrvV/9p7yrJsRTLGPG6M+aQM6xtpjPEU6+P7HnVLWW8tY8wsY0yaMSbdGDPHGNOvrOIWERGpTJQoEhERKXubgEv2PTHGdADCAhfOP8RaayPxxfioMea0o7m42MimRsCKYwmgJKOjjncVMfqnmprjT4oVfySXss5sYBRQG6gBPAt8p34sIiLVkRJFIiIiZe9j4Ipiz68EPipewBgTY4z5yBiTaozZYox52Bjj8J9zGmNeMMbsNsZsBM44yLXvGmNSjDFJxpgnjyWpYK2dgy/R095f7yhjzCpjzF5jzM/GmEbF2rTGmJuNMeuAdcaYDUBTfH8sZxtjQowxdY0xE40xe4wx640x1xa7/nFjzFfGmE+MMZnASGPMNH/ss/11fGeMiTPGjDXGZBpj5hUfgWWMecUYs81/boExpv8B9X/hf02zjDErjDHdi51vYIz5xv96pxljXi927pD3fSBjzFn+utP98bcpdm6zMeYeY8xSY0yGMeZzY0zoQepoA4wB+vjvO91//ANjzBvGmB+MMTnAIGPMGcaYRf573maMebxYPX+bkuiP5z/+kS9ZxphfjH9k29GU9Z+/wt8v04wxj/jv7aRDvCZx/p97pjFmLtDsgPMH/bkZX4LyQeAi/+uwxH/8Kv/PI8sYs9EYc/2hfh5HwxjTzN83u/qf1zW+f2MDi70mTxtj5vp/ft8aY2oCWGvzrbVrrLVewAAefAmjmmURm4iISGWiRJGIiEjZ+wOINsa0Mb4EzkXAgdNrXgNi8CVbTsSXWLrKf+5aYBjQBegOnH/AtR8CbqC5v8wpwDVHE6Dx6Qe0AxYZ3xpDDwLn4Rs1MQP47IDLzgF6AW2ttc2ArcCZ/hEbBf7y24G6/pj/a4wZUuz6s4GvgFhgrP/YxcAIoB6+BMMc4H18f4CvAh4rdv08oLP/3KfAlwckYs4Cxvnrnwi87r9XJ/A9sAVo7G9rnP9cSe5732vW0n/uDn/ZH/AlyoKLFbsQOA1oAnQERh5Yj7V2FXADf418iS12+lLgKSAKmAnk4OsbsfgShjeaw68HdSm+fhQPBAP3HG1ZY0xb4H/AZUAivn5a7zD1jAby/WVH+R/FHfTnZq39Cfgv8Ln/dejkL78LX/+P9sf30r7kjj++dGPMCYeJ56CstRuAfwFjjTHh+PrZB9baacWKXeGPvy6+f2OvFq/DGLPUf68TgXestbuONg4REZHKTokiERGR8rFvVNHJwGogad+JYsmjB6y1WdbazcD/4UuYgC/Z8LK1dpu1dg/wdLFrE4DTgTustTn+P1RfwpdwKandwB7gHeB+a+1k4HrgaWvtKmutG98f8J0PGF3ztLV2j7U278AKjTENgBOAf/lHXyz21z+iWLE51toJ1lpvsTret9ZusNZmAD8CG6y1v/lj+BJfIgwAa+0n1to0a63bWvt/QAjQqlj9M621P/jX4fkY2Jd46InvD/97/a9ZvrV23/pAJbnvfS4CJllrf7XWFgEv4JtS2LdYmVettcn+n9t3+BIkR+Nba+0s/2uUb62dZq1d5n++FF+i6sTDXP++tXat//X94gjtH6rs+cB31tqZ1tpC4FHAHqwCf18eDjzqf22X40tk7leCnxsHlJ/k7xPWWvs78AvQv9j52GI/v4Pp7U8m7XtsKHbt28A64E98ia2HDrj2Y2vtcmttDvAIcKEpNlrPWtsRXwLrUnyJPBERkWpH86pFRETKx8fAdHwjSz464FwtfCM4thQ7toW/Rm3UBbYdcG6fRkAQkGKM2XfMcUD5I6nlT4oU1wh4xRjzf8WOGX9M+9o/XBt1gT3W2qwD4u5e7PnBrt9Z7Pu8gzyP3B+MMXfjGzlVF1/iIhrfa7nPjmLf5wKh/qlWDYAtB7lnKNl971O3+DFrrdcYs42/j7Y5MIajXUT5b6+RMaYX8Ay+6YHB+JIsXx7m+gPbjzxUwcOU/Vv/s9bmGmPSDlFHbXzvJw/VX0vyc+OA8qfjG0nWEl/fDgeWHeY+DvSHtfZwI47exjci6Dr/SLjiDryPIH+s+/ultTYf+Mw/PW6xtXbJUcQmIiJS6WlEkYiISDmw1m7Bt6j1UOCbA07vBorwJSn2achfo45S8CU3ip/bZxtQgC/ZE+t/RFtr25Uy5G3A9cXqjLXWhllrZxe/rcNcnwzUNMZEHRB3UrHnh7v+sPzr2vwL32irGv7pWhn4kjpHsg1oaA6+8HBJ7nufZIr9zIwvU9eAv99jSR3qtTjw+Kf4khoNrLUx+NY2Ksk9l0YKUH/fE2NMGBB3iLKp+KZoHbS/luDn9rf7NcaEAF/jG62V4C//A2V0z8aYSOBl4F3g8X1rEBVz4H0U4fv3ejBB+KaOioiIVCtKFImIiJSfq4HB/mks+/mnRn0BPGWMifJPc7qLv9Yx+gK4zRhT3xhTA7i/2LUp+Kbi/J8xJtoY4/Av0nu46UglMQZ4wBjTDvYvmH1BSS+21m4DZgNPG2NCjTEd8d3/2MNfWWJR+BISqYDLGPMovpEpJTEXX/LjGWNMhD++fVubH819fwGcYYwZYowJAu7Gl7Q7WFLpSHYC9Q9Y3+hgovCN1Mo3xvTEN+WpvH0FnGmM6euP798cIlHj78vf4Eu6hPvXN7qyWJEj/dx2Ao2NfyF3/ho1lQq4/aOLTim7W+MVYIG19hpgEr6ff3GXG2Pa+tcwegL4ylrrMcb0NsacYIwJNsaEGWP+BSTgm8ImIiJSrShRJCIiUk7866zMP8TpW/EtVLwR31onnwLv+c+9DfwMLAEW8s8RSVfg+4N6JbAX3x/2iaWMdTy+Lb/HGd+uZMvxrYV0NC7Bt1h0MjAeeMxa+2tp4irmZ3xrGK3FNyUonxJOt/MnM87Et/j3VnwLbl/kP1fi+7bWrgEux7cQ+W5/nWf61/E5WlPw7Ti3wxhzqBErADcBTxhjsvCtFfTFMbR1VKy1K/D1z3H4EmxZ+BaYPnCa1j634Ju2tgP4AN8i0fsc6ee2bxpdmjFmoX/q4m347nMvvsTYxOKN+XdI68+h7dtNrvijhzHmbHwLjd/gL3cX0NUYc1mxaz/238MOINQfC/iSV6OBNHwjyIYCZ1hrkw8Th4iISJVkrD3mUeAiIiIiUs35p2ulAy2stZsCHE65McZMAz6x1r4T6FhEREQCSSOKRERERORvjDFn+qeSReBbL2gZsDmwUYmIiEhFUKJIRERERA50Nr4phMlAC+Biq2HoIiIixwVNPRMREREREREREUAjikRERERERERExM8V6AAOp1atWrZx48aBDkNEREREREREpNpYsGDBbmtt7YOdq9SJosaNGzN//qF2FRYRERERERERkaNljNlyqHOaeiYiIiIiIiIiIoASRSIiIiIiIiIi4qdEkYiIiIiIiIiIAJV8jSIRERERERGRQCsqKmL79u3k5+cHOhSRoxIaGkr9+vUJCgoq8TVKFImIiIiIiIgcxvbt24mKiqJx48YYYwIdjkiJWGtJS0tj+/btNGnSpMTXaeqZiIiIiIiIyGHk5+cTFxenJJFUKcYY4uLijnoknBJFIiIiIiIiIkegJJFURcfSb5UoEhERERERERERQIkiERERERERkUrPGMOIESP2P3e73dSuXZthw4YFMKoji4yMPGKZxx9/nBdeeOGwZSZMmMDKlSvLKiw5DCWKREREytuO5bjfOwPy0gMdiYiIiFRRERERLF++nLy8PAB+/fVX6tWrF5BY3G53hbepRFHFUaJIRESknBX9/CiurTNhl97ciIiIyLE7/fTTmTRpEgCfffYZl1xyyf5zOTk5jBo1ih49etClSxe+/fZbADZv3kz//v3p2rUrXbt2Zfbs2QCkpKQwYMAAOnfuTPv27ZkxYwbw9xFAX331FSNHjgRg5MiR3HXXXQwaNIh//etfbNiwgdNOO41u3brRv39/Vq9eDcCmTZvo06cPPXr04JFHHjnkvTz11FO0atWKk046iTVr1uw//vbbb9OjRw86derE8OHDyc3NZfbs2UycOJF7772Xzp07s2HDhoOWk7LhKotKjDHvAcOAXdba9gc5b4BXgKFALjDSWruwLNoWERGp1LbNJWjTZN/32TsDG4uIiIiU2r+/W8HK5MwyrbNt3WgeO7PdEctdfPHFPPHEEwwbNoylS5cyatSo/Qmep556isGDB/Pee++Rnp5Oz549Oemkk4iPj+fXX38lNDSUdevWcckllzB//nw+/fRTTj31VB566CE8Hk+JEi1r167lt99+w+l0MmTIEMaMGUOLFi34888/uemmm5gyZQq33347N954I1dccQWjR48+aD0LFixg3LhxLFq0CLfbTdeuXenWrRsA5513Htdeey0ADz/8MO+++y633norZ511FsOGDeP8888HIDY29qDlpPTKJFEEfAC8Dnx0iPOnAy38j17AG/6vIiIi1VrR5KdwBkXgKMqB7NRAhyMiIiJVWMeOHdm8eTOfffYZQ4cO/du5X375hYkTJ+5f6yc/P5+tW7dSt25dbrnlFhYvXozT6WTt2rUA9OjRg1GjRlFUVMQ555xD586dj9j+BRdcgNPpJDs7m9mzZ3PBBRfsP1dQUADArFmz+PrrrwEYMWIE//rXv/5Rz4wZMzj33HMJDw8H4Kyzztp/bvny5Tz88MOkp6eTnZ3NqaeeetBYSlpOjl6ZJIqstdONMY0PU+Rs4CNrrQX+MMbEGmMSrbUpZdG+iIhIZVLo9uIw4EqaS9DmaXgGP4qd+iQmZ1egQxMREZFSKsnIn/J01llncc899zBt2jTS0tL2H7fW8vXXX9OqVau/lX/88cdJSEhgyZIleL1eQkNDARgwYADTp09n0qRJjBgxgnvvvZcrrrjib9up5+fn/62uiIgIALxeL7GxsSxevPigMZZkS/ZDlRk5ciQTJkygU6dOfPDBB0ybNq1U5eToVdQaRfWAbcWeb/cfExERqVbyizyc98Ysbhq7EPfkp/CE18LZ+wYIrwXZShSJiIhI6YwaNYpHH32UDh06/O34qaeeymuvvYZvfAYsWrQIgIyMDBITE3E4HHz88cd4PB4AtmzZQnx8PNdeey1XX301Cxf6VodJSEhg1apVeL1exo8ff9AYoqOjadKkCV9++SXgS1ItWbIEgH79+jFu3DgAxo4de9DrBwwYwPjx48nLyyMrK4vvvvtu/7msrCwSExMpKir62/VRUVFkZWUdsZyUXkUlig6WKrQHLWjMdcaY+caY+ampGqIvIiJVy7+/W8nypEwy10zHtWU69L0dgiOwEbWxGlEkIiIipVS/fn1uv/32fxx/5JFHKCoqomPHjrRv337/QtI33XQTH374Ib1792bt2rX7RwVNmzaNzp0706VLF77++uv9dT7zzDMMGzaMwYMHk5iYeMg4xo4dy7vvvkunTp1o167d/sWzX3nlFUaPHk2PHj3IyMg46LVdu3bloosuonPnzgwfPpz+/fvvP/ef//yHXr16cfLJJ9O6dev9xy+++GKef/55unTpwoYNGw5ZTkrP7Ms2lroi39Sz7w+xmPWbwDRr7Wf+52uAgUeaeta9e3c7f/78MolPRESkvH27OInbxy3mxJa1uX7T7XQJ20nYPcshOBz70TnYgiwc104OdJgiIiJylFatWkWbNm0CHYbIMTlY/zXGLLDWdj9Y+YoaUTQRuML49AYytD6RiIhUJxtTs3nwm2V0b1SDtwfk09e5kknRF0Kwb5FGExmvXc9EREREpNIrk8WsjTGfAQOBWsaY7cBjQBCAtXYM8AMwFFgP5AJXlUW7IiIilUF+kYebP11EsMvBq4OD4fubyXDW5L+7+nKm20OIywkRtTE5qWAtlGCBRxERERGRQCirXc8uOcJ5C9xcFm2JiIhUNk98v5JVKRl812M5db54EW9wNBv6v8yen5zM3pDGoFbxEBmPcedDQRaERgc6ZBERERGRg6qoqWciIiLV0jszNvLLn8v4ufZrdFj2NAUN+mNumk27E4YREezklxX+6WaRCb6vOdqoQUREREQqrzIZUSQiInK8yc/aw+QfviR02c9MCZ9PZG4+uSc9Q3i/G8AYnMDA1vH8unInT57THmdEbd+F2bsgrllAYxcRERERORQlikRERI6Ce80vFE55htCdizgDL7lB4Xgb9cd98iOE1+3wt7KntE1g0tIUFm/bS7fIeN/BnF0BiFpEREREpGQ09UxERKSkCrIwE66nIH0Hr7nP5uk6L2Hu20jklV8QfECSCGBQ63iCnMY3/SzCnyjKVqJIREREjt7OnTu59NJLadq0Kd26daNPnz6MHz++3NudP38+t912W5nUNXDgQFq1akWnTp3o168fa9asKZN6y1JZxvjBBx9wyy23ADBmzBg++uijQ5bdvHkzn3766f7nZfm6Hy0likRERErIPft/OPP2MDLzela0vIW7rxlJWFjYIctHhwbRu2kcP6/YgQ2vicUoUSQiIiJHzVrLOeecw4ABA9i4cSMLFixg3LhxbN++vdzb7t69O6+++mqZ1Td27FiWLFnClVdeyb333vuP8x6Pp8zaOlblEeMNN9zAFVdcccjzByaKyvp1PxpKFImIiJRE7h7srFf5xdOdmi378PqlXQl2Hfm/0VPa1WFzWi7rd+dDeJymnomIiMhRmzJlCsHBwdxwww37jzVq1Ihbb70V8CUZ+vfvT9euXenatSuzZ88GYNq0aQwbNmz/NbfccgsffPABAPfffz9t27alY8eO3HPPPQB8+eWXtG/fnk6dOjFgwIB/1DF37lz69u1Lly5d6Nu37/7RNh988AHnnXcep512Gi1atOC+++474j0NGDCA9evXAxAZGcmjjz5Kr169mDNnDi+++CLt27enffv2vPzyy/uv+eijj+jYsSOdOnVixIgRAKSmpjJ8+HB69OhBjx49mDVrFgC///47nTt3pnPnznTp0oWsrCxSUlIYMGAAnTt3pn379syYMeOYY/zkk0/o2bMnnTt35vrrr9+fPHr//fdp2bIlJ5544v5YAB5//HFeeOEFANavX89JJ51Ep06d6Nq1Kxs2bOD+++9nxowZdO7cmZdeeulvr/uePXs455xz6NixI71792bp0qX76xw1ahQDBw6kadOmZZZY0hpFIiIiJZDx2wtEuXMYF3UFr1zSpURJIoCT2yTwyITl/LJyJ80iakP2Lkw5xyoiIiLl6Mf7Yceysq2zTgc4/ZlDnl6xYgVdu3Y95Pn4+Hh+/fVXQkNDWbduHZdccgnz588/ZPk9e/Ywfvx4Vq9ejTGG9PR0AJ544gl+/vln6tWrt/9Yca1bt2b69Om4XC5+++03HnzwQb7++msAFi9ezKJFiwgJCaFVq1bceuutNGjQ4JAxfPfdd3To4Ju6n5OTQ/v27XniiSdYsGAB77//Pn/++SfWWnr16sWJJ55IcHAwTz31FLNmzaJWrVrs2bMHgNtvv50777yTE044ga1bt3LqqaeyatUqXnjhBUaPHk2/fv3Izs4mNDSUt956i1NPPZWHHnoIj8dDbm7uIeM7XIyrVq3i2WefZdasWQQFBXHTTTcxduxYTj75ZB577DEWLFhATEwMgwYNokuXLv+o97LLLuP+++/n3HPPJT8/H6/XyzPPPMMLL7zA999/D/gSdPs89thjdOnShQkTJjBlyhSuuOIKFi9eDMDq1auZOnUqWVlZtGrVihtvvJGgoKDD3teRKFEkIiJyBPl7kghZ+DaTbD8eHHke0aEl/8+3TkwonRrE8suKHdwYlYBVokhERERK6eabb2bmzJkEBwczb948ioqKuOWWW1i8eDFOp5O1a9ce9vro6GhCQ0O55pprOOOMM/aPXOnXrx8jR47kwgsv5LzzzvvHdRkZGVx55ZWsW7cOYwxFRUX7zw0ZMoSYmBgA2rZty5YtWw6aKLrssssICwujcePGvPbaawA4nU6GDx8OwMyZMzn33HOJiIgA4LzzzmPGjBkYYzj//POpVasWADVr1gTgt99+Y+XKlfvrz8zMJCsri379+nHXXXdx2WWXcd5551G/fn169OjBqFGjKCoq4pxzzqFz584HfX2OFOPkyZNZsGABPXr0ACAvL4/4+Hj+/PNPBg4cSO3avt1uL7roon/8LLKyskhKSuLcc88FIDQ09KAxFDdz5sz9CbnBgweTlpZGRkYGAGeccQYhISGEhIQQHx/Pzp07qV+//hHrPBwlikRERA7DWsu8jx+it/UQc/qjNI+POuo6Tm2XwHM/raGgcxwhezeVQ5QiIiJSYQ4z8qe8tGvXbn+iAGD06NHs3r2b7t27A/DSSy+RkJDAkiVL8Hq9+5MPLpcLr9e7/7r8/Pz9x+fOncvkyZMZN24cr7/+OlOmTGHMmDH8+eefTJo0ic6dO+8ftbLPI488wqBBgxg/fjybN29m4MCB+8+FhITs/97pdOJ2uw96L2PHjt0f9z6hoaE4nU7A997rYKy1GPPPj9u8Xi9z5sz5x7qR999/P2eccQY//PADvXv35rfffmPAgAFMnz6dSZMmMWLECO69996DrhtUkhivvPJKnn766b+VmTBhwkFjPPA+jtbBrtnXTklf96OhNYpEREQOY8LUOfTaM5HlCWcxoHevY6qjc4NYAPaaWEz2LjiGNwgiIiJy/Bo8eDD5+fm88cYb+48VnzaVkZFBYmIiDoeDjz/+eP96OY0aNWLlypUUFBSQkZHB5MmTAcjOziYjI4OhQ4fy8ssv708IbdiwgV69evHEE09Qq1Yttm3b9rc4MjIyqFevHsD+tY7K2oABA5gwYQK5ubnk5OQwfvx4+vfvz5AhQ/jiiy9IS0sD2D/17JRTTuH111/ff33xe+nQoQP/+te/6N69O6tXr2bLli3Ex8dz7bXXcvXVV7Nw4cJjinHIkCF89dVX7Nq1a38sW7ZsoVevXkybNo20tDSKior48ssv/3FtdHQ09evXZ8KECQAUFBSQm5tLVFQUWVlZh3xNxo4dC/impNWqVYvo6Ohjir0kNKJIRETkENbvysYz7RlwOOh46ZPHXE9ijO8TrjRiqOvOg8JsCDn6kUkiIiJyfDLGMGHCBO68806ee+45ateuTUREBM8++ywAN910E8OHD+fLL79k0KBB+6dtNWjQgAsvvJCOHTvSokWL/evlZGVlcfbZZ5Ofn4+1lpdeegmAe++9l3Xr1mGtZciQIXTq1Inff/99fxz33XcfV155JS+++CKDBw8ul3vt2rUrI0eOpGfPngBcc801++N+6KGHOPHEE3E6nXTp0oUPPviAV199lZtvvpmOHTvidrsZMGAAY8aM4eWXX2bq1Kk4nU7atm3L6aefzrhx43j++ecJCgoiMjLysNvVH07btm158sknOeWUU/B6vQQFBTF69Gh69+7N448/Tp8+fUhMTKRr164H3SHt448/5vrrr+fRRx8lKCiIL7/8ko4dO+JyuejUqRMjR47829pGjz/+OFdddRUdO3YkPDycDz/88JjiLilzLMOeKkr37t3t4RbgEhERKU8PvPsdT24dQV7Xa4k8+/ljriev0EObR3/inU5rOWnN43DrQohrVnaBioiISLlatWoVbdq0CXQYIsfkYP3XGLPAWtv9YOU19UxEROQg5m/eQ+Kmr3AYiBx4e6nqCgt2EhseRFKRfxRRTmoZRCgiIiIiUvaUKBIRETmAtZZnJi3nItd0CpsMhpjS7RwBvulnm/N9w8DJ3lXq+kREREREyoMSRSIiIgf4ecUOopN+J4E9hPS8qkzqTIwJZV1uuO9JjhJFIiIiVU1lXrZF5FCOpd8qUSQiIlJMkcfLcz+tYVT4DDzhtaDlaWVSb52YUNZmhmAxGlEkIiJSxYSGhpKWlqZkkVQp1lrS0tIIDQ09quu065mIiEgx4+ZtI2v3dvqGzYdON4MzqEzqTYwOZVeuB1ujJkaJIhERkSqlfv36bN++ndRUrTMoVUtoaCj16x/dMgpKFImIiPhlF7h55be13FlrHo5sD3QfWWZ1J8aGAVAUWovg7F2YMqtZREREyltQUBBNmjQJdBgiFUJTz0RERPzenr6RtOx8zmMK7gZ9y3QL+8QY35DfvJCaWK1RJCIiIiKVlBJFIiIiwK6sfN6esZHbm+0kLHsrrjIcTQS+NYoAspw1IFvD1kVERESkclKiSEREjlu5OVlk5xcC8Mpv6yh0e7kqbAbekBhoe1aZtlUn2pco2mNqYHKUKBIRERGRyklrFImIyPEpJ42QV7vidQSxPXEQu9Y05LpOfYle+yPerldAUFiZNhcR4iI61MVObzSmKAcKsiEkskzbEBEREREpLSWKRETkuFQ46zWCCjLIaXQKNTd9z9tBudhVBoPF2e3KcmmzbmwYSUX+5FDOLiWKRERERKTSKZOpZ8aY04wxa4wx640x9x/kfIwx5jtjzBJjzApjzFVl0a6IiMgxyduLa97bFLY6i9UD36BT3hjGtX6F7I5XUdjzJqjToVyarRMTypZ8f3JI6xSJiIiISCVU6hFFxhgnMBo4GdgOzDPGTLTWrixW7GZgpbX2TGNMbWCNMWastbawtO2LiIgcrcLZbxBclE3QwHt4dsIaakRFcNZ5ZxAePLJc202MCWXd9nDfE+18JiIiIiKVUFmMKOoJrLfWbvQnfsYBZx9QxgJRxhgDRAJ7AHcZtC0iInJ08jNxzh1DQfPT+CUtngVb9nLnyS0JDy7/2dh1osNYn+Nf+yhbiSIRERERqXzKIlFUD9hW7Pl2/7HiXgfaAMnAMuB2a633YJUZY64zxsw3xsxPTdWwfBERKVtFf7yFsyADM+A+nvtpNc1qR3BBt/oV0nZibChpRPueaOczERGRUsnML2JXZv7+54WZu8lbOh48GpMgUhpl8fGpOcgxe8DzU4HFwGCgGfCrMWaGtTbzHxda+xbwFkD37t0PrEdEROTYFebg+GM0hU2G8L+1UWzcvYP3R/bA5SyTJfuOKDEmFDcuioJrEJS9s0LaFBERqY5mrtvNnV8spqjIzYShXmqtG0f4hh8J9haCeRc6nB/oEEWqrLJ4Z7wdaFDseX18I4eKuwr4xvqsBzYBrcugbRERkRIr+vMdnPl7SO54K6OnruesTnUZ1Dq+wtpPjAkFIDe4JlZTz0RERI5akcfL05NW8sR7X3MjXzHR3kbjHy4hdMtUcjqMwBsUjt36R6DDFKnSymJE0TyghTGmCZAEXAxcekCZrcAQYIYxJgFoBWwsg7ZFRERKpigPx5zXKWhwAnfOCSYypIjHzmxboSHUifGtT5TlqkFU9q6DDskVERGRg9u0ch5/THyLC3Nn8EBICrbIsCuuG3fuHA7Nz+LFc3rjTV+D3T4fZ6CDFanCSp0osta6jTG3AD8DTuA9a+0KY8wN/vNjgP8AHxhjluGbqvYva+3u0rYtIiJSYsu+xJm7i59aP8Wi2em8fFFn4iJDKjSEyBAXUSEu9hJL3ewNFdq2iIhIVbZ6zg+0+OlSGgI74rqT0eU2gtqfRULN+rSctoFnf1pNmxkbua5BD+zs16AoD4LCAh22SJVUJlu8WGt/AH444NiYYt8nA6eURVsiIiLHwrt5Np6w2twzL4qBreI4u3PdgMSRGBvKLhtN+zxNPRMRESmJles3U/Onm0ly1MF9xQ80bdL0b+dvOLEpy5LSeebH1Zxwcivaet2QshQa9gpQxCJVW8Ws3ikiIhJgNmUJK2xjHMbw1LkdMCYwE7/qxISRVBSFKcyBwpyAxCAiIlJVrEzKIOWTa4gzmQRf9ME/kkQAxhieP78TzeMjuXWG/0/cpPkVHKlI9aFEkYiIVH9F+Zjda5iRXY/7TmtNvdjADUVPjA5lc0Gk74kWtBYRETmktTuzGP/OfxjCPPb0eYA6rXsfsmxEiIs3R3RnW1E0aa4EvNvmVWCkItWLEkUiIlL97VqBw3rYGd6KEb0bBTSUOjGhbMoP9z3JSQ1oLCIiIpXVxtRsHn7rS+62H5JRdwAJJ991xGua1IpgZN/GzCloQtGWPysgSpHqSYkiERGp9rI2LQCgUbveOByB3WssMSaUVG+M74lGFImIiPxDkcfLXWP/4CnPizhCooi+5B1wlOxP1xtPbMZKR0tCcpIha0c5RypSPSlRJCIi1V7Sqj/JsOGc2Kt7oEMhMTaM3dafKMpRokhERORAo6eu56zdb9OCbZjzxmCiEkp8bY2IYJp2GQTA+oXTyilCkepNiSIREan2nDuXstHVnJZ1ogMdCokxoaSxb0SRpp6JiIgUtyI5g3lTJzLK9RMFXa8hqNXRb5499JRTKMLFsrm/Ya0thyhFqjclikREpFpLSsukYdEmSOwY6FAA3xpFRbjId0Xj0ZB4ERGR/QrdXh7+fA7PBY2hILoxIac9cUz1hIdHkh7dijqZK5i6RqN3RY6WEkUiIlKtzfpjFiGmiAZt+wQ6FACiQlxEBDvZHVQXm7o20OGIiIhUGq9PXc/5aW9Rl904z3sDgiOOua4aLfvRybmRF35cicerUUUiR0OJIhERqda2r/TtelKrRc8AR+JjjCExNox1Qa1wpCwCryfQIYmIiATc8qQMlkz7hstckynseROuxn1LVZ+rYQ/CycfuWsX4RUllFKXI8UGJIhERqbY2pGZTI2MlRY5QiGsW6HD2S4wJZYltjqMoB1JXBzocERGRgHJ7vDz2+SyeDXqLgtjmhJz8aOkrre/bwGJYXBL/+nopT3y3ksz8otLXK3IcUKJIRESqrYmLk2nv2Iwnvj04nIEOZ7860aHMym8CgN0+P8DRiIiIBNZnc7dy0Z4xxJt0XOe/DUGhpa+0RhO8YXFc3TiNi3o04P3Zmxj8wjS+WrAdr6aiiRyWEkUiIlItWWv5fsl22ju3EtKgS6DD+ZvEmFAWZNfAE1oDz9a5gQ5HREQkYDLyihj/6zQudP1OUa+bcdbvWjYVG4Ot142gHQv577kdmHjzCTSoGc49Xy7hvP/NYPyi7eQUuMumLZFqRokiERGpllYkZ+JN20iYzcMkdgp0OH9TJyYMrzXk1e4ESQsCHY6IiEjA/G/qes4q/AGvI4iQE24r07qdDXri3L0G8tLpUD+GL0d1YWKLH/hs9/ks/Op5uj35C7d+tojJq3ZS5PGWadsiVZkSRSIiUi19tySZjs7NvieVLFGUGOsbUp9esxPO3auhICvAEYmIiFS8rWm5fD5rNRcFz8Tb5myIrF22DdTv5vuavJDcbUvxvDWIjts+wVGjEf8J+oD348YyZ20yV384n1Nfms6Mdall275IFaVEkYiIVEs/LE/h1Jo7sc5gqN060OH8TWKML1GUHNEeg4WkhQGOSEREpOI9+9NqznHOJMybg6v39WXfQL1uWAyFvz1J6PtDcOSlkTP8M0Ju/YOcnrfRJ/17ZiS8zDvnNcJrLSPencvNYxeSkpFX9rGIVCFKFImISLWTll3Atj15dHBswVurNbiCAx3S3yRGhwGwxtUCAM+2eYEMR0REpMLN37yHScuSuSliKu6EjlC/R9k3EhqDt1ZLglMWkNdoEPaG2UR0GAoOJxFD/0PuWW8RkrqUE6dfwDf9tvBU91wWr1rDkP+bxpu/byC/yFP2MYlUAa5AByAiIlLWViRnApaE3DWYJmcFOpx/iA5zERbkZHNuCO4azbDb5lF59mQTEREpX16v5T/fr+TUyA3E523Ae9JrYEz5NHb6C2TsSSG62wUYx9/HSYR3vYjC2i0wn19GzV9u5zLgMhcUEMLyyQ05f8bdnHNiLy7t1ZDwYP3pLMcP9XYREal2lidnUI/dBBemQ93KtT4RgDGGRnHhrN2Zha3bDcemqWBt+b1JFhERqUR+WrGDJdszeLXxTLx7Y3F0OL/c2nI2G0BMs0OfD27QFe9ti8jdtR7v3s3YvVsx6ZvpsPRT3rT/4axJD/PGtA1cO6Apl/RoSEx40BHbTM0qYOb6VGavTiIrfQ8xtevRMC6cRnHhNKwZTmiQE4cxOB0GpzE4HOB0GBzG7D/u8VqstXisxWshISoEl1MTgqRiKFEkIiLVzorkTE6MToFCoE7lSxQB9G4ax+fztmGH9sC54gvI2AaxDQMdloiISLn7afkOWkfk0HDXFDw9r8cRHB7QeBzBoYTXbw/12+8/5u14DomfnMvUOq9xb+R/eebH1bzw8xr6NIvjlHZ1OLVtAvHRoeQWulm/K5t1O7NZvSOTWevTWJmSSTTZjAt9mmYk8ULqVTyfOwA49g+E2tWN5pOre1EjonJNp5fqSYkiERGpdlYkZXBvRBK2yIFJaBfocA6qd9M4Ppi9mXVBrWgHsH2eEkUiIlLteb2WWet382TsTEjz4Op5TaBDOihH4754LviIqM8v5fXIZ1l744dMXLmHX1bs5JEJy3n02+UkRIWyMysfa33XBDsddG4Yy0ND6nLxqluISE/CndCRh1Le5I4OKWw/4Rm2ZDsp9HjxeC1ea/F4fa+Jd9/oIa9vBJEDiwMPQcZDXm4+b0xdxW1vTeLl89sQHQyO4HCcNfS+QcqHEkUiIlKtZOUXsTktlzaJm/DGtcQZ4E8pD6V305oYA1P3xtPGGYp36zxc7YcHOiwREZFytTIlk4ycXE50/oC76RCCajYNdEiH5Gx1Ku6z38A1/jpaTL+FBy79lPtPa826Xdn8vHwHG1KzaVo7kpYJkTSPj6JxXDiuwkyKPjgbV/oavBd8RHCr0yj4/f8In/40TXctpdkF7+Oq3/XvDRXlUbj5T9wbZ+DYOpvgnYtxuHP/VuRKF5ABvOt7bo0DbpwN8W0q5LWQ44sSRSIiUq2s9C9kXTdvDTQfFOhwDik2PJi2idHM3JTO9XU6wvb5gQ5JRESk3M1cv5uTHQsIL0yF3tcHOpwjcnW6kKL8DIJ/vAf3i+0obHgiDZoN5Kbug3HGtPh74fwMij46F1fqCrwXfIizzVAAQgbdi7tJP8xXo3C+exLu0JpgHL5kj3HgzE0l2FtIkHFQWKsd+e0vwYbGgjMYnEH7v25IK+CTeTuoHR3CPfmvYRd/hjnliYp/UaTaU6JIRKSqKMzBk7MHZ40GgY6kUluRnEl9s5vQ/FRo2DPQ4RxWn6ZxfPTHFty9uxK66H1wF4JLaw+IiEj1NWNdKiMjluJ11sTRfEigwymRoF7XUhheG/fSrwne9CuuVV8AUBRVH29QBDhDsK5QnLm7cGVtx3v+hzjbnPG3OlyN+8JNs8n9/WVs7l6wXrAejPVSGF4LZ9MTCGnSl5Cw2EPG0REY2noX1328gAFhM+m+9AucJz0GDu2dKmWrTBJFxpjTgFcAJ/COtfaZg5QZCLwMBAG7rbUnlkXbIiLHCzv1acySz+CedeDQrheHsjw5g0HhG8EDNOgV6HAOq2/zON6ZuYktYW1p7SmAncuhXtcjXygiIlIF5RV6mLd5D/8LW45tMqBKJTiCO5xDcIdzwOulMHkJ7nVTYcdScBdg3PkYTwGeiDqY0/6L64Ak0X7hNQk/vXQjgAa2iud/l3blo0/60KvoVdg8A5oOLFWdIgcqdaLIGOMERgMnA9uBecaYidbalcXKxAL/A06z1m41xsSXtl0RkeON3T4PR+5uSN8MlXg+f6CtTM7k3rCNeAsicMS3DXQ4h9WjcU2cDsP03Ma0Brzb5uFQokhERKqpuZv3UN+TRExRKjQbGOhwjo3DQXD9LgTX7xKwEE5qm8CnTU4mK+ltghd+RogSRVLGyuIj6Z7AemvtRmttITAOOPuAMpcC31hrtwJYa3eVQbsiIscPazE7V/i+37E8sLFUYvlFHtbtyqa9ZzXeet3BWblnWEeFBtGhXgy/bHPhiUjAs21eoEMSEREpNzPXpXKiy/9+pqkmmJTGrad24Ad3L8zKiVCYe+QLRI5CWSSK6gHbij3f7j9WXEughjFmmjFmgTHmikNVZoy5zhgz3xgzPzU1tQzCExGpBjK2YQqzfN/vVKLoUNbsyCLMm0PtvA04G/YOdDgl0qdZHIu3Z1BYpwsmSQtai4hI9TVj3W5OD1+DN6Yh1GgS6HCqtC4Na7C53jCCvbnkLZ8Y6HCkmimLRJE5yDF7wHMX0A04AzgVeMQY0/JglVlr37LWdrfWdq9du3YZhCciUg34RxNZhwtvyrIAB1N5LU/OoItjPQ68mEZVI1HUt1kcbq9le3g7XOmbIHdPoEMSEREpc7uy8lm7I4OO7mW+0UTmYH9GytEYOux8kmwcKdM/CnQoUs2URaJoO1B8C576QPJByvxkrc2x1u4GpgOdyqBtEZHjg38UkW06SCOKDmNFcib9gtf7tput3yPQ4ZRI90Y1CXIa5rr9604lLQhsQCIiIuVg1vrdtDebCPVk4dCaOmWiQ4MaLIk9hYZ755C5OynQ4Ug1UhaJonlAC2NME2NMMHAxcODYt2+B/sYYlzEmHOgFrCqDtkVEjgveHSvwxjbG0agPjoytkJce6JAqpRVJGfQN3oC3djsIiQp0OCUSFuykc4NYJu5KwBoHnq1zAx2SiIhImZuxdjcnhfr/BGwyILDBVCMtT7kGl/Gy4Pt3Ah2KVCOlThRZa93ALcDP+JI/X1hrVxhjbjDG3OAvswr4CVgKzAXesdbqI3ERkZLauRwS2kFCB//zFYGNpxIq8nhZuyOdVu7VmIa9Ah3OUenTrBbzkgsprNkK73YtaC0iItWLtZaZ63dzSuhqPLXbQqQ2wS4rzdt1Z0twC2pvmsDenMJAhyPVRFmMKMJa+4O1tqW1tpm19in/sTHW2jHFyjxvrW1rrW1vrX25LNoVETkuFOVh9mzAUac91GnvO6bpZ/+wITWbpp4thHjzcFSRhaz36dM0Dq+FlKj2OJMXgtcb6JBERETKzNqd2WRkZdG8YAWOZgMDHU61E9b9Utqbjbzy+SRyC92BDkeqgTJJFImISDlKXY2xXt+IoqhEvGE1sTu0oPWBViRl0s2xxvekio0o6tIwlhCXg6W2OY6CDNizIdAhiYiIlJkZ61Lp6liHy1uA0fpEZS6+z2V4cTBg08tc8cr3rN2ZFeiQpIpTokhEpBJye7w88M1S3pu5Cfe+Xc4S2oMx2IT2eJUo+oflyRn0cq7DE5kIMQ2OfEElEhrkpFujGkzaWx8Aq+lnIiJSjcxYt5thkWuwDhc06hvocKqfqAQ8Qx7jRNdy3s+5gS9ff5Av524KdFRShSlRJCJSCX2/NIXP5m7jie9XMvHnX3A7w6BGYwAcddrjSF0NHg0tLm5FciY9XOugQa8queVu32Zx/LorBk9QJG4taC0ix5PsVArfOgnW/RboSKQcbN6dw6z1uxnoWomt263KbDZR1QT1vwN74xxsvR485PyI9t+fyej3P8RaG+jQpApSokhEpJLxeC2vTllH6zpRvDmiG43cm1heVJcbP13M9r25mDodMO58TU8qxuu1pCVvIt6birNRn0CHc0xObVcHLw6SI9pikhYEOhwRkYrhcVP4+ZUEJ8+DTdMCHY2Ugxd/XUtNZx5181ZrfaJy5opvSfQ1E8k790MSQgq5ecttpLw/Am9GSqBDkypGiSIRkUrm+6XJbEzN4bYhLTi1bQJdgpNxJXZg6ppdXDBmDt74dr6Cmn6239Y9ubQpWul7UsXWJ9qnRUIUbRKj+aOgMc5dK6AwN9AhiYiUu4JfHid42yysMxibsT3Q4UgZW5GcwcQlyTzQdrdvvUWtT1T+jCGs0zmE3D6fMfZcam/9Cft6d/J+fxU8RYGOTqoIJYoqmrsQ99snw4oJgY5ERCohj9fy2pT1tEqI4rR2dSBrB478PbTv2pf/ntuBlIx8VrkTfXP8tfPZfku2p9PNsRaPMwwSOgQ6nGN2due6/JzRAGM9kLIk0OGIiJSJ/OmvsnfGW7iLfFt3/7AshRs+XkD+km8I+fM1CrpchW3YB5u+LcCRSll7/uc1xIQFMTRiDTYoHOp1D3RIx42IyGg2dbiLs7zPk5/Yg7Cpj1A0uh+kaUS6HJkSRRVt7U+4kubCxqmBjkREKqEflqWwflc2tw5pjsNhYOcK34mEdvRrXguAWZuzsHEt8aRoRNE+3y9NobdrHbZeN3C6Ah3OMTuzU10We5sD4NmmBa1FpBoozCVkyqPUmHwvntF92TjzK+75cjHrVi7AMfEWCut0JeSMZ3HENACNKKpW/tyYxrQ1qTzQw4FrzffYhn3AFRzosI4rF/aoz6rCeCZ1eJWC8z/GmbEF5r4d6LCkClCiqIK5F3wEgHfP5sAGIiKVitdrKXJ7eW3KOprHR3J6+0TfiX2jhhLakRAdSrPaEcxanwaJHTAaUQTA3pxC5q7ZSku24GzUO9DhlEq92DCaNG5MionHu00LWotINZC6CoMlp9MosB6a/nY1H5gneDf0ZXK9LlwXfwSuEIipj8neCe7CQEcsZcBay3M/r+GyiHlcsOgK8BThGPhAoMM67nRtWIOmtSP4csF2QtqfBfFt8O5aFeiwpApQoqgiZabg3DjZ9336lsDGIiIBZa0la/c20ud+TvrXd1Iw+gRyX+zCrp0p3Dq4OU6Hb9cu784VeKPrQVgNAPo1r8W8zXvwxrfHkb0DctICeRuVwqRlKbS163HiwTSsmgtZF3dW53rMczfDs21+oEMRESm9nb714yIG3MKYtp/wSNFIOgQn09CmcGPBLSxMj/CVi6mPwUJWcgCDlbIyZfl2zk56kac8L+Gp3Q7nTbOgQY9Ah3XcMcZwYfcGzNu8l42p2Zj41pC6OtBhSRWgRFEF8iz+1LeIW9uzMRnbwOsJdEgiEgjWUvTxBUS93p7YH64jetVneIKjiMzdyhOR3zCsY92/yu5YBvsWr8a3hXpuoYcNjv9n767D46ryP46/zx2Pu3uTursrhRYrpUWLu+vCssvuAgss7u5aKFKgtFiNurtLGnf3ZOze3x+T8kPqneQm6Xk9T55m7ty55xNaMjPfOed7kjwHiuXys+8253Oh31Y0gwXiB+sd56Sd1SuabVoq1oZCqJG7lEiS1L5pxTvQTD5srgvi5aXZ1Pa6CtPdW6m5Zhm7LH15f2Wm58TAOM+fcvlZu+euLSH22/O4wriAxkG3YL72RwiIOfoDpRZxfr9YDIrgq415iPCung8aG6v0jiW1cbJQ1Fo0DTZ/iituKKSMQ6guqMnXO5UkSTpoylqLOWMB8yyTuSvgeaYFzuKCpgf50HUG57jmIwo2e0502RHl+1Giev722KEpoQgBS6ujPAeKTu3lZznlDWzJLuV0dSWutElgDdA70kkL8TVDnKfZp5on+xRJktS+qUU7cYV15e4vtxEVYOWRKT0x+gQRlNCLSwYn8POOInIrGiAw3vMAWShq1xwula3v3UKyO5u1g1/GdtYTYDDpHeuUFhFgZWzncGZvzMMd2tlzsGyfvqGkNk8WilrY/J1FXPL2GpyZqzBUZmAYcDkEJ3nurJTLzyTpVNPocLPiq5do0CzMCbuRyqBeBPj6EOFvIbfPHbh9wnHPuwdUFcr2eYrKkf8/oyjIx0yPmAAW5rhR/SJRi07tGUXfbclnpLIdX1clpr4X6x3Ha3oPHI1DM1Cwc4XeUSRJkk6cpiFKdrK5KYbsigaeu7APgbb/LxpcMSwRIQQfr86CwFjPwWq581mbZq/F/uvTh1z6XlzTxMOvvU//qgVsiJnB4MlX6BBQOpQLBsZTUmtnbX2E54DsUyQdRfvdGqadMCiC1RnlpP8yiy4mX5Tu50F9iefOqmxglJ7xJElqRQ0OFze/v4JX6n+lOO4M3rl+3F/OcW3+L6Y5N+Hc+BEms81zMLLnH84Z3imMD1Zm4u7cA+UULhRpmsZ3m/P5b8B6VIJRUk/TO5LXTOiVwJ65SfhmrtU7iiRJ0omrK0ZprODHmlCuGZHM0JTQP9wdE2TjzF7RzFqXy52ndcbXJwwhZxS1aeqKl7AsfwZn1gpMV34LigGADVkV3PLpBt53vkaDNYIRV/8PhNA5rXTQ+K4RhPqa+XS3xjCjDVG6V+9IUhsnZxS1sAndIjmriz8JRb9Qn3ouWPwgMB5NKHJGkSSdQhocLq7+YD0hub8QIBpJPu2GQ55n7HsxjtihKIsegczlaAYzhKb+4ZzhnUJxujWKbKkoZftO2R1ituVVU1xWxhDHatTuUzvUlru+FiPlQb2JbtiN03lq/v1KktQBNO/OuV8kctOYToc85ZoRSdTaXXy9IRctIA61Ss4oarMaq2Dtm6iBiZiyl+Ja+BiapvHJ6iwufnsN05Ul9BQZ2M56HMy+eqeVfsdsVJjaL5YFe0pxhqShyobW0lHIQlEreKTTfnyFnbfrhnsOGExo/jFolVm65pIkqXU0OFxc9cF61mdV8PeojbgDEyBxxKFPFgLTOc+h2Gtgy6doYV3B8MfJn4OSQjAqgk32OITqhLJT81Ohbzfnc5ZpIybVjrEDLTs7KKzrcHyws3nDar2jSJIknZC6nK0AdOk9lHB/yyHP6ZcQTP+EID5YlQVB8bJHURumrnkDxVGLcslMnH0ux7jqeT54/zX+PWcnZ6TauMfwBa64IYheF+gdVTqECwbG43Rr5CjxcumZdFSyUNQKAvd+Qbk1kVf2h7AqvcxzMDhJFook6RTxr293sCGrgrfOjSCyfB30nQHK4X/9iqieOAfe0Px9j7/c72sx0i8hiPnl4QA49y1qmeBtmNOtMndrAVf6rfMU3jrAbmd/1mXAeAD2blyscxJJkqQTk71rPYVaCJeN63PE864ZmUx2eQN57lBETZ5nExipbWmqhjVv4O58FkT1onjkf9lnSGV6zmM8NNzCS9HzMTSWYzzzKbnkrI3qEuVPSpgvW5qiUGoLoKlG70hSGyYLRS2tLB1T/lr8hl5JfIgP//l+Jw6XihKc1NyjSJKkjuzbzXl8szmf28enMaFpEQINQ99Ljvo484R/4ozsi+gy+ZD3D+sUxk/FATTGj8aw/GnUilPr98mK/WUo9cV0a9wEvS7qkC9KzeGdqDBF07NkHqU1TXrHkSRJOi4NDheGsl2U+aSSEu53xHPP6BGFQRGkO4IQjnpoqmqdkNIxU9e8hWKvxjD2flall3Humxu5zXU3FrOZKzLvx7D+bdS+MyCmn95RpSMY2imUJZXNvcLkzmfSEchCUUvb/iWaMGAZMIOHz+lBekkdH67KhOBElLpicDbqnVCSJC9T7Q2oLifZ5fX869sdDEwM5vZxKWhbZuJKHAXBiUe/iDUA081LofuUQ949olMoqiZY1+sh0DQcc+48pT6B/XZzPhdZ16GgYuh7kd5xWoYQ1A2+k35KOqt/+VzvNJIkScflq7UZpGh5hKf2P+q5JoNCpL+FHHeI54Bcfta22GvRVr9KdthoLprbyIz31hLqa+at26divugDlMoMNKMNw2kP651UOoqhKaFsd0R5bsjlZ9IRyEJRSxv1N9QrfwD/KCZ0i+S0bhG8uHA/VZYYz/1VOfrmkyTJu1Q37ncn4nqxH2999CEGRfDixX0x5q7GUJ2Dof9lXhmmb0IQVpPCr0U2nOP+gzX7V+wbPvHKtds6TdNYvr+UCy2rcEX2hbA0vSO1mLix11KoRNF518toqqp3HEmSpGPicqssXLESs3ATlTbgmB4TGWjlgCPIc0MWitqMxXuK+fSVf2OwV3N7/kQqGxzcOSGNb28dQXKYLyJ1Au7pH8GFn4BfuN5xpaMYmhJCrhaBS7GAbGgtHYEsFLU0oxlD0rDfbv7n7B40Od38nN/c0E/ufCZJHYq641tMpTtwNNbwv5p/8lXCN8TY3Lg3fYpq9kd0O9cr41iMBgYlhbDqQBmWYTdijxmCccG/UKsLvXL9tiyzrJ7QxkwS7PsRfTrobKJmislMZvdb6aplsGPxZ3rHkSRJOiY/7SgiuDbdcyPyr732DiU60Mqu+kDPDVkoahPWZVZw9ycrObvuazKDh/P83dcw/+4x3HVaZ/ws/7/RhrHnFJTUcTomlY5VhL+VlIgA8gxxcucz6YhkoaiVJYT6EB1oY1djsOeAbGgtSR2H6kZd8hS1AWkMaXiBJcHT6JzzBa7XhiN2z0HrMRXMPl4bbninMPYV11FS78A49TWEuwn79/d0+CVoG7MrOc+wEk0YMPSernecFtf/nBvJ1KIJWvssyFlFkiS1cZqm8fayDIb4FqIpJgg9tlmfUQE29tSa0QwWqM5t4ZTSITVW4vxoKvZ3JlH17hQqP7qUDyzPE0Qtyec/QmrEkXtNSe3DsJRQdjii0EpkoUg6PFko0kF8iI1dNTY0o1U2tJakDkTd8Q3Gin08VH02UWGhDL75bZoumwtCoLgaMfS/wqvjDe/kaUb41E97aQpIxj7y79gO/Ej52s9pcrq9OlZbsimnisnGDbgSRoFfhN5xWpzVYmFd4vXEOzOp2PCl3nEkSZKOaG1mBdvzqxkTWIIW1hmM5mN6XFSghXqHhts/Bq1KzijSg7r8BYyZv+JW3RQV5JJGDj2sZbh7Xdwhdxc9VQ3rFMpuosUOPwABAABJREFUVyyGmjyw1+odR2qjvFIoEkJMEkLsFUKkCyEeOMJ5g4QQbiFEx/8I+Ajign3IrWpEC0xAkzOKJKlDUF0uKn58lL1qHOmh4/nk2iH4mI3YUkdhvGUVTVcthPhBXh2zd1wgN4xO4ZvNeUx+aTnbEy7HHtGX0J9vxvX+WZSs/oy6hgavjtkW7M7KJ5kCDMnD9Y7SavpNvpZ9aizqr0+A2vpFQKdbpbLeQU2Ts9XHliSpffl6Yx7+FiPR9gzEMS47A4gKtAHQ5BONJmcUtb6aAsTat3D3mM6Nxsc4u+kxii5fhuX+PRimvaV3OsmLhiSHsF+L9dyQO59Jh3HShSIhhAF4DZgMdAcuEUJ0P8x5TwG/nOyY7V1csI3iGjtqUAKa7FEkSe1edaOTd958jrCmbNYmXMeXN48gJsj22/2K1Q9rkneLRABCCP55ZjdmXT8UgIveXc8LUU9SMPB+zLV5RPxyM5aXe1E1919o9jqvj6+HmiYnlrIdKGgosUffSaej6BwdxJygKwhrzMKxpXVmFamqRmF1I/sLKsjZvBDn/IfhmxvA0fGKj5IkeUeT080vO4qY0tUXQ23+8RWKAqwA1FmiZI8iHbiXPAmam5e1C1m+v4zHzuvJ8E5heseSWkConwVXSBfPDbn8TDoMb8woGgyka5qWoWmaA5gFHGo/59uB2UCJF8Zs1+KDPT1KGnziEFVZHb6fiCR1ZKW1ds5/dRkTSj+kwqcTl19zB1aToVUzDEkJ5ac7R3HZkETeXFfBpbuHs2TSfEqnfEZj5AACN75K02eXg7sFZ4NoGk0bPqVp3t9bdMbLlpwqeooMz43ovi02TluUPPpSdqsJOBa1zqwi1/5F+Hx7NSkf9qHTvAsI3/YGAfu+oWnzrBYfW5Kk9mnJ3lJq7S4uiK/2HIjsecyPjQ70FIrKjRGIuqKWfc6S/qhsP8rmT1keeA4vb3Jy/ahkLh6coHcqqQUlpXXHoRlxl+zWO4rURnmjUBQL/H5+aF7zsd8IIWKBqcCbXhiv3YsL9sw0KDVGI+y10FipcyJJkk7Uu8sz6Fm1mFRRQPCZ/0YorVskOsjXYuTR83oy87ohANzw6WYe3xtD4/kfU3fa09iyF9P4ze0tUpjW6stpnDkD67xbsW54E/f6970+xkGbcirpo2Ti8o895bbhPat3LO8o0/Grz8a1c06Lj2f85X58C1dTnXwm2RPeYt+V22kK7YGy7h35AYckSYf0/dZ8wvzM9DQ2zwg6jhlFEQGeHYELCUNoKtR2/F0824r6nx+hSTNxd+FE7jotjX9M7qZ3JKmFDe4UyQEthuqcHXpHkdoobxSKxCGO/fkV5IvA3zVNO+pHoEKIG4QQG4QQG0pLS70Qr+2JD/HMKMon0nNANrSWpHappsnJ52uzeMDne1xh3RDdDzWZsnWNSA3j57tGc8f4VH7YXsjEF5Yyx3gGNYPvxrbzcxoXPH7YxzqdDuoL91GzdS7Vi1+g+teXqdnyHbVZm2isLsfl+uuvcMfehbhfG4YlYz6NY/6DM2EUYtF/oba4RX6+jdmV9DdlIWL6tcj12zKb2UBgv6lkalHYlzzfssUaTUOrzmdD0GR+Sv4nhTETCQkNh8HXYS7fhStrZcuNLUlSu1Tb5GTR7hLO7BWNUrILzRoM/lHH/HiL0UCor5lsl2ejBrn8rHXs2rAE3/S5fKCdxf8uH89dp3VGUQ719k7qSIamePoUKWVy6Zl0aEYvXCMPiP/d7Tig4E/nDARmCSEAwoAzhRAuTdO++/PFNE17G3gbYODAgR3yI8vIACtGRZDhCmU0QGUWnIJveiSpvft8bQ4jnKuJFjloYz8EpW1sJGk1Gbjn9C6c2zeWf323nX99t4P/Ggbzhv9EJqx6hgw1mMTTbwG3k8b05Wh7f8SUvRxzdSa+quOw13UbfXDYQnHbQlFtoQjFgE/mfBzBaWiXfoktri/0Ohft9eE4f/onpgvf8+rPpaoa6TkFxIkCiL3Wq9duL24Ym8brG87m0fJ3UTOWonQa2zIDNVVhcDexIM/Ae9n//2ljrG8Ev5oCUFe/hTF5ZMuMLUlSu7RgVzF2l8qUvjFo83dAZA+aX/sfs6hAK+n2QM8NWShqcT9sKyTo+wepUgI4/brHSI0/9sKe1L4F+Zip9k0hqGk1OOrB7Kt3JKmN8UahaD2QJoRIBvKBi4FLf3+CpmnJB78XQnwIzDtUkehUYVAEMUE2djY2/+eXDa0lqd1xuFTeX5nJR74LcPskYuh+rt6R/iI1wo/Prx/KyvRylu4r4fl9t6DUlzB69YMsXPkNwwy7CKABByb2WPtQEjSNBv9k3CFpGCI6E2wzEOosJsBRhG9jAaImn/rKYpw1xYjKLCyuGlYHTCXknP/RLy7GM2hYGu4Rd2Fa/jTagcsQncZ57efZX1JHknM/mDlli+vRgTaCh19B6ZovMSx4lpAWKhTVlGQTAPTv2Z0Lxo0iv7KR/KpG3l2eyecNo7l8/49oNQWIgJgWGV+SpPbn+60FxAbZ6B8fCCW7Ef0vP+5rRAVY2V0V4Lkhdz5rUVmltSz7+hWeUnbQOP5RUuPl7/NTjSWmB2SAvWgPloQBeseR2piTLhRpmuYSQtyGZzczA/C+pmk7hRA3Nd8v+xIdQnyIjfQaN6o1GEUuPZOkdmfOlnwia3fR1bILdegToFNvoqMRQjAyLYyRaWFwVndKy/tQ/tEURtSns8N3DBusQ1lDb4qaDFRUO6gsdDSvaPr97yV/oAtGpSsu1TPRMzLAQveEADZkV1L79mb6xmdy7chkJveMwjj6Xlzbv4K592C8dTWYrF75WTZmV9LrYCPrU7RQBHD9uO58tO4sbiv6HLVgK0pMH6+PkZ+dQQAQm5BK16gAukZ53riN6xLB3W8WcLnjB4oXv0XUeY/84XGO1W/DurdxJYzE2HUS5k6jwezj9XySJLUt5XV2lu8v4/pRKYiqHHDWH1d/ooOiAq1sytFQbaEockZRi3AV76Vp40x81s/kKaUMe1AqtuE36h1L0kFs536QAbl7N5EqC0XSn3hjRhGapv0I/PinY4csEGmadpU3xmzv4oJ8WLSnBMISUSuyvNIsSpKk1qGqGu8sz+DvfotQhR9Kv8v0jnTMwkND0e5ahqrBUIPCUOC2393vVjUqGxxU1Dsor/P8WVFvp6zOgdOt0jM2kH4JQUQHepry19tdzN6Uxwcrs7j9882kRfjx3a0j8DnnBcQn5+Fa9hzGCQ96JfumnEpON2fjDkjA4BPilWu2R/5WE+HjbqFu0bdU/vgU8dd95vUxygszAYhLSvnD8fgQH56+fgorX3uXbls+JHfE3cSHBwHQuO5jbL/chzOoE9ads1C2foBqsOCMH4mh/wyMPaaAwSsvOyRJamN+3FGEW9WY0jcGV+Z3njcYESdQKAqwUtngRA2Phapc+frYm9wunDMvxJSxCB8U1rt7kT3kHww6YwYYLXqnk3TQs2dfHD8ZqMzapncUqQ2Sr9h0Eh9io6zOjpqagFK8U+84kiQdhyX7SqgqzmWcbQXa4OvBGqB3pOMiFIXDzX8yKIIwPwthfhYO9ts/El+LkSuGJXHZkETmbivgzllbeGnRfv555jic3adhXPkiWu/piPAuJ517U3Yl9xmyEDGDTvpa7d35I3ryzbLTmZY3D1d5FsbQJK9ev6EsFxVBWGTiX+5LCfdDnHEHYb9cxUNvv8SYaTcRkfcLPVbcSV3sKEyXf4nJoODIWI66bz7G/T9h/OYaXAsT0YbdhmnAZXKWkSR1MHO3FJAW4Uen0gUYfrgHV0RPjFG9jvs6UYGeGahNPtH4VOd4O+apLWcVpoxF5HS+mgu2D2Rkv148d7b3Z6RK7Uegnw9ZxlhE2V69o0htkCzU6yQu2PMiudYWh6jJBVXVOZEkScfqraUZ3Oz7K0JzYxgip2sDKIpgSt9YLh4Uz3srMtlTVINp8hOoZl9cn1yAVnNy2xxX1DsoKysm0lWAEtPXO6HbMZNBIeqMe9A0wd5vn/T69bWafGqUIDCaD3l/8pAp1PsmcK7jRz78+D06L7+LjWoqgw5cTddHfmXUC6u4cVUgzylX8+3IeVSe8z6qTyimX+7D/XwPnMtfatld205hDQ4Xz/6yl//O3aV3FOkUUVDVyLqsCv4ethLTN9fijO6P8eofDvv740gOzlattUQj5NIzr9J2z0M1WLk6+3QswbE8fG53vSNJbUBDYBoRTZkU1zTpHUVqY2ShSCdxwZ4nwhJDJMLtgNqTexMlSVLr2JJbxZbMIi4WC1A7nwkhyUd/0Cnk75O6Emgz8eC3O1B9I2DG1xgaSnF+dB40Vp7wdTfnVNJL8SyHOpX7E/3e6IF9WW4bR0reN1SWFXntui63irWxhAbrEaaUKQqGIdczQOzhA+sL1AWkUnT2xzx43kDuGJ9Gn7ggCqub+Gh1Nvd9s5Nh3/nwdOyrlF8wB3dUX0yL/oNr0aNeyyyBpmn8tL2Q055bymu/7mPZquWUbPiWuiUvU/ft3TR9djlUZOgdU+qA5m7J51bDd5yW8RSOlNMwX/kd2IJO6FpRgZ4lUOWGcISjFpqqvRf0VKZpaHt+YKe1P1m18MJFffG3mvROJbUBkb0mkCBKWPLjLL2jSG2MXHqmk/gQz4yiXC2CLgCVWRAYq2ckSZKOQtM0Xlq4j4utq7G5qmH4LXpHanOCfc08MLkr93+9ja825nLRoIE4L5yJcdZF2D++AMvVc05oC9ZNOZX0/a1Q1Ne7odspIQTRk+/H8s0iyt87F+OlH+Iff/KfEGeW1RNBOZp/6hHPsw66HHXZE7h8o/C5+nvODvrrtspuVWN/SS1vL83g/VVZfLJWYcbgx7jb51X8VzyH2+KPYdTdJ535VJdZVs9D3+9k2b5Shkc4+SLsOeLrtsE8z/1uky8GZz2kjYGQlCNfTJKOQ6PDjc/KJ7nR9BX27tOxTHsTDCdegIhqnlFUQBg9AarzwBronbCnsqJtKDV5fOw8k1vHdmJAYrDeiaQ2InTUdZSueIk+e56nwX4pPpbjnwkodUxyRpFOwv0smI0K6c5Qz4Hj3PlMVTXSS2ppcrpPOouqyun/knQsvtmUz697S7jDZwHuiF6QOELvSG3S9P5xDE4K4Ymf9lBR78DUeTyuqW9jLtpI02czwOU47mtuzK5kuE8ualAy2OQL3IO69RnCG5EP4dtQgM+HY6lc8iqq++SWMu8qrCFKVGILjT/yibZgqq9YhP3q+VgPUSQCT8+rrlEBPH9RXxbdO5aze8fw0ZpsBm49iw3+4zEsehj32ndOKu+pbuGuYia/tIzN2ZW8PMLOx677iWnazyOuK/mg27u47k3H8Pcsz8kNFbpmlTqeF7/8mUsdX5OXeB6W6e+cVJEIwM9ixM9iJNvVvGGBXH7mFdrueagorDUO5vrRslgs/Y7RQuWwB+hKNhvmvqV3GqkNkTOKdKIogrggG7vrrWgIROXRC0WaprGzoIbvtxYwd2sBhdVNmA0KfROCGJocwtCUUFIj/bCZDNhMBowGBU3TqGxwkl/ZSF5lA/lVjeRVer483zegCMGCu0cTEeCdLawlqSMqqGrk4bk7uSY6m9DKDDj9DRBC71htkqIIHpvakzNfWs6TP+3m6el9MPeair2xCuuPd9Hw8YWoY/+BX8qQY7qey62yNbeabrYMiBnawunbnzOmX8+kF8L5wO9jui95kPoD8zFPewNT0InNUt2fX8oUUYcrIuGo5wYnHPsMpuQwX567sA93TEjlg5VZXL/xOp5Wq5j4099YXeCg95k34muRL0uOx6x1Ofzz2+30igng/Z7bCFn+EC7/WMQV37Lp60p2VRm42j8cAM3ij5CFIsmLvlyfS6c9b6GaTMRNfxoU73z+HBVoZX9T8/Nrda5Xrnmqs++cyza1M5OH9ZRLzqS/SBt/JftXv0aXnS+innsditmmdySpDZCvyHQUG2wjq9qJ5h8NlZkc6S3nsn2lPPjtdnIrGzEqgjGdw7ltfCpZZfWszazg1V/TeW/xdpwYceB5AjAqAkUROFx//HTZz2IkNshGXLCNQbEWMjYtZsOcbUyIVdFqC1HqSzEPvxmS5GwJSQJPkfbvs7ch3A7uNX6F6hOG0nOa3rHatM6R/lw7Kpm3lmYwIDGYCwbEYxl8NY3OJixLHsXw8ek0hffB2f8afPtfiGI5/C5YW3KrsDorCTEUQqzsT/RnqRF+jBnQi/M238WC0enEr3sc9YPJcMfGE/p0vzjPs8TPGBTn7agAJIb68vC5PbjvjC58vzGNzYuuZdCWf7FkyzfURgwiqd8Eeg8ag8Ekp78fjqZpvLI4necX7GN85xBe8f8Y36WfYU8+DcuF74EtiP6JO/l8XQ5Ot4rJoIAtFBrK9Y4udRC7Cmp4a85i5huXow68HvyPYZvMYxQdaGVfvYKmmGRDa2+oyMRavpuF2mVcM1z2VZT+SigGSoY8SNqqq9kz9zm6TvuX3pGkNkAWinQUF+zDLwVFEJOIVpl9xELR0jnv8fem1bh6TyZp6LmkxUbgazHiVjVqszfjXvMJgfu/pcngx6IeT5Dj359Gpxu3qhERYCUu2EZskI34YB8CLAI1czmuzW9j2vsDirkeDgAHwG0JQnHWgc1PFookqdln63JYvr+U+Umz8C3ajDr9QzBa9I7V5t05IY11mRX8ffZ2Zq7N4cEzuzFkxM04+l5C/cbPsGz+AP9f7sS15D80xI9BTRyJodMobJFdUQyeT6adbpWHvt/JCJ88UJGNrA/jztM6892WAl6rHcPDU1Pw+XoG7q1fYug/47ivVVvSPMM1INrLKf/I12LkkuGd0Qb8SOHX99MnawnhpW/A/DdomG8lz683SpczSBo6FWN4pxbN0p64VY3/zNnBzLU5TOsXy+PGt7Fu/4ymYfdinfiv32Z1DEgM5oOVWewurKF3XBCaTwg0lB/xtYYkHYvaJie3fraJO0zfIxQTJi/3GYsMsLK/uA4tIBatKk/2yThJDdvn4gPQ5SyiAuXqAenQhkw4j1VrXqH3jjdg8i3gE6J3JElnslCko/gQGxX1DtyBiRiylhz2vIKqRsbUzGO0YTvsW4I74xFq48dTGjcUW/oPBBWuRjVYqe86DUvBGs7dejPOsf/CPP7uPy6NqczGvuw53Nu/wFhfBOYAnN2msidkPLf/Us2900YzZWAq2odno5btl0/MkgTklDfw+A+7eTJiEZ2L5uEc/QCmnlP1jtUu+JiNzL5pON9tyeeZX/Zy0dtrOL17JPdP6krq6FvQRt5E/f6laJs+xZK7HFP697AInLZwGrtfgM/kh3n112x2FtTw4sA62AFE99H7x2qTYoNsXD40kQ9WZnLDqNEkhvdArHgB+l5yXMtByuvsWBqLwQwEtM4GC8LiT8yMNwBoqshjx+qfqdq9lJTa9aRsfBQ2PkqRKZ76hHEk9h2PMWGQJ9spuPTT5Va5+8utzN1awC1jO3GX9inmtTNxjPgb1on//sO5B5vVbsyupHdcEMInFK2+TBaKpJNycIatqyKbKZalaP2u9HpROTrQSkltE2pULKJKLj07WRUbvyFbjWfaaaP0jiK1YUaDQsHABxi69iKKfnicqAue0zuSpDNZKNJRXLBnqUW1NZawuiJwNoLpr2tCF+0pYbQopiB2Ek29ryAw80cCsn7GlDkPh18slSP+hXXw1fgHhqE1VWOffSvWXx/BmbsO07Q3cOdtxrXmLcwZ8zEjcCRPgH5PYOx6JgaTlV6qhnHjUt5fW8yUgamIsDTYMRs07ZR8IS5JB7lVjb99vZWJYj0X17yPs9tUTOMe0DtWu6IogvP7xzG5ZzTvrcjgjSUHOO35pQxODmH6gDjO7DUKvy7j0FSVhuJ0XAeWomQuxm/j61RlrmR20fVM7deLTs501OAUFLn7zWHdMrYTs9bl8NyC/bw2+l6U2dfg3j0XQ48px3yNPUW1RIvmPjb+LTuj6FCsIXEMPOs6OOs66uwulm7aQNnmeUSVLGNg+mcYD3wMgNsnAld0fyzDrofU01o9px5cbpV7motE/5jclWvE95gWv4Kj/zWYT/vrMoHoQBsxgVY2Zldy9YhkhE8olO7VIbnUkcxan8uP24uYm7wMUQxKC+xaGBlgRdXA4RuDNW+V169/KmmqKia6Zisbgi7lvCh/veNIbdzp48fz3doxnLPzIzjtDghO1DuSpCNZKNJRfLCnKFRkjCUMoCITIv/aGHTJrnwuUcoQyT1w9JuEo9fpVDocUJFOQGxXgi3/vwRGWAOxXvoJjpWvYVr8ENoznTGoDrCF4hx2F+Yh12IJ/GPfCUURXDU8if/M2cnmnEr6haYhmqqhvgz8wlvyP4EktVluVeOeL7dQn7WJZ22v4ozoj+l82cD6RNnMBm4bn8ZFgxL4ckMuszfmcf/X23j4+51M7hnN9aOT6RrdGaI7w8jrqd34Nea5tzLH/CD0eB/mb4Z42cj6SEL9LFw3KoWXFu1nx+ixdA9KRlv2PIbu5x7zv9vdhTVEikrc5gAMFr8WTnxkfhYjY4YNhWFDcblVznx+Ef0seTw20I6atxFjxgLUxSUop0ChyK1q/O2rrXy/tYAHJnflGp/lmH54GEfXqZjPfu6wf7/9E4PZmF3pueETAo2ymbV04nIrGnhs3i7OTlLpWfw97j4zMAZ6v5dZdPPyqCpbPNG1BeBoAPPh+9hJh7d10SyGoJI88kK9o0jtQIDVRHbvu1G3raBm8QsETHtR70iSjuTqIh0dnFGUpTVvK1xx4C/nNDhcZGfsxYiKISwVm9lAoI+JiCBfIlL6YLUcok+KEJhH3oZ2xTwcXafgOvcNDPfuxnz6Q3CYJ/Tz+8fhbzHy4aosCEvzHCxP98aPKUntzsEi0bot2/nc/0UUnxBMMz4/5Iw/6fiE+1u4dVwqi+4dw+ybhzGlbww/7yhk8kvLuf3zzRworQPg9dKenGN/FKNvCCGzL0CpyUeJ7a9z+rbvulHJBPuYeGZBOoy8C1PxFtT0X4/58bsKa0gyVSFauD/R8TIaFC4c2okvCiLYl3QJlgvfwdDnIkTpXs/s1w7sYJFo3ZZtvNFrP5eXPIvxx7txJI3DPP3tIy4tHJgYTGF1EwVVjeATgnDUgcveiumljkJVNe7/ehtCCB4PXwyoGEff0yJjRTbvwltsSkCgHfL1sXR0qqrh3jWXYhFO74Fy2Zl0bKaPG8w8dTjmHZ9DY5XecSQdyUKRjsL8zFhNCrvtYZ4D5X99Ilyxv4xYtdBzI/j4dipQkoZhufBdjP0vPWrjXT+LkQsGxvPDtkLKLfHNefYf13iS1BF4lndsYfWWnfwQ+BR+NGKY8QX4R+kdrUMRQjAgMYQnzu/NygfGc/OYTizcVczE55dy86cbeWvpAQYMGIL/bcto7HSm50GJw/QN3Q74W03cOi6V5fvLWO8/EbdvFK5lx95nYHdhLQmmqlbrT3Q8LhgQj9Wk8Oma5mbb4V0QzvoOvX22q76SZS9dxb27prHKegeT9z+Edf887F3Pw3zpTDAeeWe4AYmeZqQbsyvBJ9RzsEHOKpKO3ydrstmUUcgrvTPx3zUTd6+LW2xZysEZRdmi+fdQ2b4WGaejcRfvxp69AeyeD1yWbM9kgGsLdclnII6jV510aosP8aGh3/VYtSb2/fy63nEkHcnfGjoSQhAX7MOBWiOqLRStIuMv5yzaXUIXU6nnRkhKi+a5Ylgibk3jkz0amsEMZbJQJJ1aXG6Ve7/ayootu/kp6BmC1EqYMRuie+sdrUML8jFz/6SuLP/7OK4ZkcziPSVEBVj519ndUWwB+Mz4FMft2yB2gN5R24XLhiYSE2jlyYVZqMNuxZy7Ai133VEf53SrpJfUEq6Vt7kZRQCBPiam9Inlu80FVDc6Ibyb544O2nencc9Cap4fxKiq76kN7kn9+P9hv24ZhgeysF70AZh9j3qNrtH+2EwGT6HI1ryDTUN5CyeXOhLN5SBr1TcE/3wrW2w3M27731FtoRjH3t9iY4b4mjEbFPa5ItAQaKWyUHRUjVWId8dj+WACPBGL89nuxMy5AItwkjRCLjuTjs+F557FFkNP/La+T21Do95xJJ3IQpHO4oJt5FU1oIWkoP5pRpGqaizaU8KQ4BpUkw/4RbRolqQwX8Z1ieDTdfmoQcloslAknUKanG5u/3wzS7fs5aeQ5wh2FcGlX6IkDtE72ikjzM/Cv87uzqoHxjP39pEEWE2eO4TAHCobKh4rq8nAnaelsTW3iqX+Z+G2BuNcevRZRQdK61DdLvycFYg2OKMI4PJhiTQ63czemAfhXTwHS3brG8rLNEc99d/dg23WNCqdRr7s8z7d7pqD7+hbscT1AcVwzNcyGRT6xAeyKed3M4pknyLpGKn1FTjeGk/S/KsZIzZTnzaFxku+xXjPjhZtciuEIDLQQn6dhhqUiCoLRUelbZ2F4myg6bQnaBj5D7J8e+NyuSgL7oshaYTe8aR2xmI04D/mNmIo5fsv3tU7jqQTWSjSWXywD7kVjYjQTog/FYq25VdTVmenq7kULSi5VZroXjU8ibI6O0WmeDTZo0g6RVTWO7js3bWs3bGPX0JfIMyei3bxLJTkkXpHOyWF+lkI9TvyclnpyKb1jyMl3JenFuXhGngD5vSf0Yp2HPExuwtrCKcKBdXr2117S8/YQPolBPHpmmw0WzCabySU7tE7lvdUZuN8fRS+W97jfdckfhrxJZeeP/WkLjkgMZidBTU0moI8B+SMIukYuOoqcHx4LoayPdzluIVFZ68g7NK3sHUZf1zFyhMVHWCjsLoJQtPkDPej0TTUDR/gjuqLdeQtaKP+xoyK6/hP1OuE3rEEDHLvIun4dRp5IRXmaFIzP2XVgTK940g6kIUincUF26hudOIITEKpK/Ts7NBs0e5iFAHhzgIIOb7+RCdqVFoYYX4W9jgjEZWZ4Ha2yriSpAd3eSb5i99mxfOX8r+i69lovZmIxgNoF36CIXWc3vEk6YQZDQp/O70L+0vq+MX3XFSTH87FTx7xMbsLa4k3VnlutNEZReBZJp1RVs/K9HK0iK6oHWhGkfPXp6A6j0scD1I15lFuO+Pkl70OSAzGrWrsrGqeoScLRdJR2OsqcH50Hqay3dzouIvGbtOYOrB1XoceFBlopbimCSUsDaUiHVS1VcdvV3LXYSjbgzLoGgDeWZ5BSa2dB8/qjpA7tUonSjHgO/JWhih7eP+rb2lwuPROJLUyWSjS2cGdz8pMzbuRVWb+dt/C3SUMTAjEVJOD0sL9iQ4SQtA1yp8d9nCE6oLK7FYZV5JalctO00//RnmlP7HL7mO0exVBUck0jrgf97WLMHQ5Q++EknTSJveMoldsIE8vK8Ex8AbM++aiFW0/7Pm7C2voG9T8YYV/25xRBDC5ZzQhvmY+WZOFEt4VUdZBdj6rL4ftX/OVcyQDx07h7tPSvHLZ/gnBAKwvbv5vJJtZS0fQVFuJ+tFULOW7uFu7l5zQUTx7QZ9WLzhEB1o9M4rCOyNcjVCT16rjtyeu9e+jmv0QPadRUtPEW0szOLNXFAMSg/WOJrVzlsFX4DL6MLn+O579RS4BPdXIQpHO4kM8223nKs0vypuXn+VXNbK7sIZzUgTCbUeEtk6hCCA1wo+1Nc29DOTOZ1IH48rbhOP1UVjXvsxX6lhmWF6m7JY9RNw8D5+J/8QY20fviJLkFUII7jujC3mVjXxjOQ/V7I9z0ROHPX93YS09/Dy75bTlGUVWk4GLBsWzYFcxVX6dEI56qG7/byKLl7yJSbOTnnwp90zs7LU35kE+ZlIj/FifW4dm8ZeFIunwXHbEzOlYynbwsPk+loqBvHPFQPwP9otrRVEBVhwulVq/5plMcuezQ2usxLDrO7SeF4DFjxcW7sOlqtx/Rle9k0kdgTUQ+l3GFMMa5q7czNJ9pXonklqRLBTp7OCMonRXc6Pq5p3PFu8pAWB8RK3neCstPQNPoWinI9JzQ/YpkjoKtxP7gkcxvHcajTXlXOW4ny+j7+PF2y6mU0SA3ukkqUWMSgtjaEoIz68ooXHAjZj3/4BWuPUv55XW2imrs5NiqUEzWMAnRIe0x+7SwQlowE/FgZ4D7bxPkep0oGx8n9X04uYLz/b67I0BCcFsyqlEs4XKpWfSYal7fsJStIG3Q+5hZk0vXru0P0lhR99dryVEBVoBKDQleA7IPkWHpG75HOFuwjDoGvYW1fLF+lwuH5qk29+b1PEYh96EATd3Bizlni+2UFLTpHckqZXIQpHOgn1M+JoNZNQaUH3C0JpnFC3aXUxiqA8xarHnxFZaegaQFuFHNX44zMHyiVnqMLQlT2FZ+SzLrWMZVfc/Ygedy2fXDyXcXzZNljouIQT3T+pKWZ2DLw3noJoDDjmraE2Gp3gQIyrQ/KNbZfOEkxEf4sPQ5FC+L/D3HGjnhaIlcz8gXC3DPehGIvytXr/+gMRgqhqc2E2BaLJQJB2Ga+cc6o1BPJPfiwfP7MbItDDdshwsFOU7fFCtQbhL9+qWpc3SNNQNH+KK7o8a2YvHftiFn8XI7eNT9U4mdSShnXB1PpMZjq+43fkeD3y+GrfaAZZ7S0clC0U6E0IQF+xDXmUjWkgK9pL9vLX0AKvSy5nQNRLKM9AUU6suA0iL9LzwrrAmoMpCkdQRqCrOTZ+yRunPtTXX8cDUYTw+tRdmo/wVKHV8/ROCGZkaxutry7APugVz+k9oBZt/u1/TNN5ceoDkMF+C3eVtuj/R7/WICWBTqYLqGwEl7bdQlF/VSMDW9ykyRDFi0iUtMka/hCAAqghAk0vPpENx2RH75zO3qS/nD0jk6hFJusaJCvAUiopqHGihaWjy9ehf5azBWL4XZeBV/HfeLpbvL+O+M7oQ7GvWO5nUwZjOf5P63ldwpfIzjxZcy7yv3tM7ktQK5LukNiAu2MaO/GrWVAZRlbeHJ37aQ6+4QK4ekYRakYEalNgqW5EeFOJrJtTXTJ4hVi49kzqEqt2/Yq4vZI42ms+vH8qlQxL0jiRJreqWcZ0orbXzve1c3JagP8wqWrK3lJ0FNdwythOitgAR2Hb7E/1e1+gA7C6VxqA01JJdesc5IZqm8easbxgo9mAYciOihbaxTgj1LHOvEv5y6Zl0SOqBJZhcday1juC/U3rqvltWuL8FRUBRdSOEdUaRhaK/cK57D9XszzuV/flwVRbXjEjmsqGJeseSOiJrAH7nv4T98h/RzP5M2X0vxe9eCE3VeieTWpBXCkVCiElCiL1CiHQhxAOHuH+GEGJb89cqIYTsFvs7KeG+FFY3sb0xlChRyaLbBzH75uHEh/hARSYEt+6WpODpU7TbGYlSXyJ/CUjtWqPDzYbv36BOs3HplTcxMKlt916RpJYwLCWUvvFBvLqqGNfgWzAf+AUtbyOapvHy4v3EBtk4r28MorYQEdA+ZhR1jfLMfi21Jrfbnc++25JPn/xZOBQb4aOuabFxLEYDYX4WylVfRKOcUST9VdbKL6jVbIw4bRo2c+t9OHk4JoNCuL+FwuomDOGdUeqL5evR32uowLjne/ZHnskTC3M4r28M/zqrm+4FPqljs3YaTsBdq3jbeCmheQtp/PwqUN16x5JayEkXioQQBuA1YDLQHbhECNH9T6dlAmM0TesNPAq8fbLjdiS3jkvlixuGcv15pwHQyeBpZI2mISozWnXHs4PSIv3YUNe881mZnFUktU+qqnH/52sY0rSCqqRJ9EpqH2+AJcnbhBDcOi6V3IpGFvhPxW0NxvXrU6w+UM7mnCpuGtsJk70K4ba36R3Pfi81wg9FQLoW2y53Pmtyunl93hrONazC1etisAW16HgxQVYKnb4IRx247C06ltS+OBxOgnMWsM40iKmDW/815+FEBVgpqmmCsDTPAfl69DeuzZ8j3HbuPtCXsV3CeeaCPiiKLBJJLS/A15chVz7BQ86rsGUvxjn/Ib0jSS3EGzOKBgPpmqZlaJrmAGYBU35/gqZpqzRNq2y+uQaI88K4HUaQj5khKaEYwpqbz1V4GlpTX4birEdpxUbWB6VF+LPDfnDnMzndV2qfnvp5D9ren/AXjcSNuVrvOJKkqwldI+gc6cfLKwtRB1yH8cB8Zs1fQYS/hQsGxEFtgefEdtKjyGoykBTmy6bGKM+Bdtbs9rO12ZzR9DNmXFhG3Nzi48UE2size5agIfsUSb+zeP4cgqkhYvB0DG2o2BAVaKWougnCOnsOlO3TN1BboWnY177LFjUVS1wfXp/RH5NBdhORWk+f+CAcfa/kE/fpmNa8gmvTZ8f0OK0qVz7/tCPe+K0SC+T+7nZe87HDuRb46XB3CiFuEEJsEEJsKC0t9UK8duRgQagi449/6lIo8iNHi0QVBrnzmdQuzVybzVvLMrgtdCOqfwwkjdI7kiTpSlEEt4xNZV9xHauDz0ETCl0LZnPD6BSsJgPUNBeK2smMIoBuUQEsr26e/Vq6W98wx6G83s7uJbO4zTSHxsTxGCK6tPiYMUE2chqad3mUfYqkZrVNTio2fI0dMz3HnK93nD9ICvUlu7yBWlssmmJELZWFIgA1awW+NRl8bzqD968chI+5ZXqbSdKR3D2xM09oV7DX1g/DvDvRctcd+QGqivb+JNS5d7VKPunkeaNQdKiPHg7ZKEAIMQ5Poejvh7uYpmlva5o2UNO0geHh4V6I145YA1B9wlHLm2cUVWZ6/gzRoUdRpB9OjNRaY9BkQ2upndmSW8VDc3ZyTqqRLnVrEb0vBEV+2iZJZ/eOJj7ExvNr69hkGcLFxiVcOqB59uhvhaL2MaMIoEuUPzsqjbh9wtFK2kehqKzOzvZvnuVJ59PUBHRGnfJ6q4wbE2Sl0OXruSH7FEnN3lpygLHaWuriRiMs/nrH+YOJ3SNxuFUW7atEDUpGbWezBltK3sI3qNF86HralXKHM0k3MUE2Lh+eysVVN9HkE4n6+Qyozj/8Awq3oNTkITJ+Bber9YJKJ8wb75zygPjf3Y4DCv58khCiN/AuMEXTNPlR1mFoISloZc2FoooMNKFAUOvv0BTuZyHAaqTQGCe3JJXaldomJ3d8vpnIACtPdzmA0NyI3hfpHUuS2gSjQeHG0Z3YklvFSzWjCaEGa/qPnjtrCjzPOX6R+oY8Dl2i/NE0qA9IRSvZo3ecoyqrbUSd/xBjDzzNKuMgGi75Dt+Q1inMxQTZqNCaCwFyRpEEFFU3sWblQmJEBcED2tZsIoD+CcFEB1qZt60QwjojZCsEXLVlROX/wmLzWM4fnKZ3HOkUd/PYTrgtwTzm/x+Esx73nNsPe6625wcAhL0GCre2VkTpJHijULQeSBNCJAshzMDFwPe/P0EIkQB8A1yuaZqcN3oEIrQTotKz5MxdnoEaEAdGS+vnEIK0SH/2q9GIigxQ1VbPIEnHS9M0/vXdDvIqG3jp4r6Yd32JO7IXRP65v74knbqmD4gj3N/CVnNfnAFJuNe+47mjtgDNNxwMJn0DHoduUQEAFFmS2v7OZ24Xtrk3EbHtDT5xnca+Ma+TGBXWasPHBNmo1Pw8N2ShSAJeX5LOBNahCQNKl8l6x/kLRRGc2SuaZftKcQR3QqnMBLdT71i62jzvdcy4iBh3E0bZl0jSWZCPmVvGpTIz05e8rteiZCz+/9nJf6Lu/Qk1vJvnRuaS1gspnbCT/g2jaZoLuA34BdgNfKlp2k4hxE1CiJuaT/sPEAq8LoTYIoTYcLLjdlRKaApKXRE46j09ioKTdMuSFuHH1oZwhKsRatrXbjLSqembTfnM2VLAXad1ZqBfOYbCzRj6XKx3LElqU6wmA2/M6M+blw1CGXwNpvy1ULwTtboA/NtPfyKAuGAbPmYD+9Q4z25eNUeY9q63A4vw3fcdn1hn8JrtZq4Y0alVt7KOCbRSxcEZRZVHPlnq8Jqcbr7dnMdU60ZcCSPBJ0TvSId0Vu9oHG6VHfZIhOqEymy9I+mmwe4kfO/n7DZ2Zdiw0XrHkSQArhqeRFSAlf/l9UKgoW376q8nVWZhKNmJ0u8y1PDuuA8sbf2g0nHzSila07QfNU3rrGlaJ03THm8+9qamaW82f3+dpmnBmqb1bf4a6I1xO6SQTp4/KzIQlVkIHRpZH5Qa4ccOe3OfKLn8TGrjMkrr+PecHQxODuHWcaloW2d5ltH0mq53NElqcwYmhTA8NQxD/8vRDBZca9+DmgJEO+pPBJ4ZB50j/dnQEOE50JaXnzX3V3mmagw3je3U6rsUhflZwGCiyeArZxTppaGChi+uo+aX/9Gwfxmas0m3KAt2FRNpzybKmYfS/RzdchxNv/ggYoNs/FLsmT14qux8ph1iduRP874miQIsQ65t1SKzJB2J1WTgnomd+bnQl0L/XtSun8nSfaUs3VfKtrwqz7/lvT97Tu4yGZEyBiVvLej4+086NnLOYlsT2lwoKtiM0liOEqpfoSgt0p8DavObBtnQWmrDHC6Vxz/9kUnKel6LmY/z88vR1r6FljwG/KP0jidJbZdPCK5uU1B2fIGoyUUEtq8ZRQBdo/xZUnFw57O2Wyhyl6dTqwRg9A3hokGt33tQUQRRgVbqlABZKNKJa9Vr+Oz+ioDVT+Ez8xy0JxNoemfy/7+JakWzN+Vxgc9mNASGNlwoEkJwVu9ovsmxAZwafTM1jZL0jRRW1uFWPQWj8jo71m2fUC98SRlzmc4BJemPpg2Io1t0AK9XDCCgei9PfPA1V76/jnNfXckna7Jx7/kRd1gXCO2ESBmLcDVB7lq9Y0tHIQtFbc3BGUTpC/94WwdpEX6UEoTD4CtnFB2OpqEV7dA7xSltXWYFM5+9k/eqr+d5niVs4wsYSnbgTBiFMukJveNJUptnGnI9iqMO4agH//Y1owg8haKsRisuW1ib3vmsoXAf+10RXD08CZvZoEuGmEAblZo/qiwUtT5nI2LD+zjTJtN0zwHqpn5MQ5+rMFXsRV3+XKtGKalpYtm+EqYZV+CKG9LmP1A5q1c0FW4fGsyhuE+Fnc8ylhA5cwIhH4ykaOm7lFXX8d78DZzGWhq7XQBmH70TStIfGBTB7JuHMe2KO1CFkQ8HZDD75uGM6xLOi/PWI7JXonQ503Ny4nA0YUDLkMvP2jqj3gGkP7H4o/qEIzKWIACCk3WLEh1oxddspMQcT0zZfllVPAT34icwLH8Krl8MsQP0jnNKKahq5Imf9lC2fQGfmj8lN/p0oiY/gCmqGyb5IkqSjl3cIFzhPTCW7oSA9jejqEtzQ+sa/04EleymrS7IcJcdIJsuXDY0UbcMsUE2yor96NRQoVuGU5Vry+cYmyowjLgdU0AY9Jni+VLr0Q5+ONhKvtuSzwD2EmbPxdXvH6069onoHRdIXLCNLHcsnU+FDy6bi2GawUzs0r/RuP4F+tVFY1FcWMbcqHM4STo0H7ORvl064U49jYisuUSd/yQvXtSPF174CcXpoiZxIgEA1gDU2AGQ8SsG/qN3bOkI5Hv/NkgL6YRoqvbcCNGvUCSEIDXSnyxi5IyiQ8lehbLiGc/3GUt0jXIqUVWNN5ceYMJzS9m4cw9v+7yJGpxC/FUfYEoYID9pk6TjJQTK4Os83wfF65vlBHSN8jRoLjC33Z3PnE11BDlLMIR2ItjXrFuO6CArRU4fufSstakqrHoNZ2QfNoluqOrv/o0GJyLqisDZ2CpRNE1j9sZ8bgpYiWr2x9jrvFYZ92QcXH62pTG8zf4/7lVVOWhGGzVXLyF38kfkOv2ZqGygIWqg3MVVavMMfS9GqSuErOUE+pi4M24fZVogty1TfltKaUgZi1K4BRqrdM0qHZksFLVBorlPkeobAWZfXbOkRfix1R6NUpsPdaW6ZmkLvt9awE/bC6GxEvfX16EGJqAGp6BmrdQ72imhst7B1R+u58mf9jA6NZj5iTPxpR7TxZ+AxU/veJLUbin9r8B54UyIH6p3lOMW7GsmMsDCHleMZ+ez6ra3S+fGzZsASOrSW9ccMUE2KjR/kDOKWpV733yMleksDbmQ899YzSdrfrdz18HdbatyWiXLzoIaCoqLGe1cgbPb+bq/zjxW5/SOIV2NwWCv7vCFTrUyGzUogYgAH/LCRnJ67b/5oNvbmC/8QO9oknR0nSehmv1Rt34BLgeB+Uupih/PsvQKXlrUPPEgZQxCUyFbvn9qy2ShqA062MBaC9avP9FBqRF+/NzYzXPjwGJ9w+jI5VZ5+Pud3PH5Zm6euZH0965FqS/GcMH7iE7jELlrwO3UO2bHpKo4s9ayNT2Hs19ZweoD5Tw+tSevxv+KX/5ytElPy0/YJOlkGYyYup8NSvt8WdAlKoDl9c2zofLW6RvmELZt2whAtx79dM1xsFCkOOvAZdc1y6nEveoV7D5R3LE9ESHg1V/TaXS4PXcGNS9FbKVt37/emMdU0ypMqh3z4KtaZUxv6BETQK2fZ5Z9U2Hb7UXmDVpVDgQloKoaj/2wm9ggHy45fzrGkNZvgi9Jx81kg+7nwa45kL4QxVFLp5EXMH1AHK8s3s+SvSUQNwjNaEOTKzLatPb5irCja55RJHRcdnZQWoQfO7Qk7JZQ3Pt+0TuOLqobnFz1wXo+XJXFtSOTeSx+E6lli1gefxNaTH9E0khPE9jCrXpH7ZCcCx/B9OHp9PykN+/Y/8ai3gu4wDUP4/KncPW4AMOAK/SOKEmSzrpG+TO/MhLV7IeasUzvOH9Q3eCkOs/Tc8QUnqprlphAG1U0z76Us4pahVqwFXPOCj4XZ2IyWXjt0v6U1tr5aHWW54Tgg4WirBbP4nCpfL+1gKttK3CGdUfE6Fu4PB5CCJJ7DEbVBNVb5ugdp0WJ6hyUoES+2ZzPzoIa7p/UBatJnwb4knQilD4XoTjr0X7+O5rRhkgZx6NTetIl0p97v9xKaSOoCUNRZUPrNk0WitqiEE+hSGkuGOkpLcIfDYW80GGIA4tBdesdqVUdKK3jvNdXsjaznKen9+bfQ4xcWvk6e30HcOXeoTz2w260xOGek7NW6Bu2A6rc8gOmVS8y1z2UOQEzSIgMI3bvJ5gX/BN3UArGc18E0VZb10qS1Fq6RPrT6BLURw5Gy1qud5w/mLutgHitEIc1FKwBumaJCbJ6lp4BNMpCUWtwrHgVh2Lj+fJhPHROd87sFc2YzuG8ufQANU1O8ItEM1qhquVnFC3ZW0Jkw36SHfug/xXt7vlz7MA+fKuOIGTXxzSU5eodp2U0VaM0VeEMiOOZX/bQNz6Ic/vE6J1Kko5P4ghU/1hEVQ5qylgw+2AzG3j5kn7U2l08MHsbSspYDGV7obZI77TSYchCUVsU3hVH1/Og65l6JyE22IbVpLDVMgilqRLyN+kdqVU0Od28tyKT815bQWhDBj8P3sa5225FfXMkmHxIu2EmVw5P4b0VmfxjfglqSCqqLBR5jaZpzF+9Eb67kT1aAmUTXuC8u1/F76b5KP/IwX75PIzX/CD7EkmSBEDXaE/xIydwIIaKA1BTqHOi/zd7Ux7dLKVt4sMff6uJJlOQ50YH7/PSFmg1BZj3fMss1xgGdU1maj/ProJ/O70LVQ1O3lueCUKgBSWgtcKMotmb8rjCugzVYMHU96IWH8/buscEsCD8aoTqwvHrM3rHaRlVngLY/HwLxTV2/n12N0Q7K+hJEoqC6H0hAIbfvZ/tHOnPPyZ3ZdGeEn5u6OI5mNm2ZgFL/08WitoioxnDhR9CZA+9k2BQBJ3C/Vjo6IkmFNT98/WO5D32ur/snOFWNb7akMuE55by649fsNBwJ1+rd9Np8xModUU4+l2LuPoHlMBoHjqnOzeOSWHW+lxKQwcictaccjOuWkJ5nZ3bZ64j5KebsODC57JPuXpsdxSl+YWSyYal0yjwj9I3qCRJbUZqhB8GRbBJND9vtpHCfUZpHZtzquikFCNC9V12dpDZP8zzjSwUtbimlW+C6uJz5Swen9rrtzf8veICmdwzineXZ1BR70AEJaFVZLVoljq7ixV78piirMDZ+SzwCWnR8VrKeeNH8rlrHP67ZlJX1AF35G1uav7hLpWzekczILF9/j1Jkhh8Pa6eF0K3c/9w/MphSYxKC+Pe5SoucyDqgV91SigdjSwUtVEGpe18epAW4ceWMoE7uj/qvgV6x/GOyizUZzphf+9M1OI9ACzbV8qkF5dx/9dbuEnM5hPzk4QEBmCf/ALaXTsw37EO69lPICI8zb2FENw2LhWDIlivdUc4aqFom54/Vbu3v7iWc19dSZ+9LzNQ2YfpvJdJSOujdyxJkto4i9FAcpgvy2qjUS2BqG3kE8pvNuXjJ5rwc5ZhCNN/RhGALTDc843sUdSymmoQG97jZ/cgrjl7HFGB1j/cfc/EzjQ43by59AAiJAlRnd2i277vL65lgrYeH3ctpgFXttg4LW1i90i+8bsUl6agLn5S7zje17wEMcMZyp0T0nQOI0knITAW4/R3wBb0h8OKInj2gj6YTSbW0hMtY2mL/u6TTpwsFElH1TM2kILqJipjxmAo2gL1ZXpHOmnquvcQbifGkp2IN0ew+NVbuPH9ZdjcNayMf4vLGz/F2X0appuWYBlyDSIo/pDX8bea6B0XyLeVSZ4DWXKbxxO1LrOCaW+sYqhzDdcb5uHqfzWmvhfqHUuSpHaia5Q/e0rq0RKGo2Xq36dIVTW+3ZzPeYnNu4u1gaVnAP4hkZ5vZKGoRTWsfgeru46lETOYPiDuL/enRfoztV8sH63KotYWi7DXQmNli+VJL6njIsOvNPnFo6SMbrFxWppBEZw/diAfuE7Hf99s6nK36x3Ju6pysAsr+ISSFiGX10sdU2SAlSfP78Xc+m4YavNx75qrdyTpEGShSDqq8/vHYTYqfFXdDYEG6Yv0jnRynE2w+VPUzpPZPnUhPyqjGV82k1X+/2C28g+iy9fgnPws5gveBbPvUS83olMYSwpNuIKSZZ+iE/TT9kKuem8l95pm86z6LK6IXhgnd8BPCiVJajFdo/zJrWjElTACQ1UmVOfrmmdNZjn5VY1MiW/0HAhpG4WiqJAAajUbrrpSvaN0XM4mxJrXWe7uyagxpx+2x8xdEzrjVjV+yDV7DrRgQ+v8ggJGGHZCn0tAad8v/6f3j+Nz0/k0Chv8+rjecbxKrcymUITTLyFY9iaSOrRJPaOh9yXsUJNwfncH1JXoHUn6k/b9TCG1ihBfM1P6xPDqHl9ctjBc+9p3nyJt13coTRV8pUzi/I/384T5dnac8QV+gSEIVLSrfsI05Ppj3g1keGooblWjOHgAInuV7FN0nD5cmcmzn89jjuURrnR+gbP7NE+japP16A+WJElq1isuCICNSk/PAZ13P/tucz5+FiN9fZpn7oSk6JrnoOhAK5WaH43VslDUUuwbP8VmL+Nj4/lM7B552PMSQn0Y3TmcJSU+ngMt2NC6vrmfjzWhf4uN0VpsZgNThvfiLcdk/DJ+oj5zrd6RvMZdkc0BZxj9EoL0jiJJLe4/U/vyTvgDCEcdJTNvkEvQ2hhZKJKOyZXDk2hwahwIGIJyYFG7LoY0rHyLPCWWBzYHc8GAeH6+azQ9h03CdOtqjHdtQ0kYdFzX658QjMWosE7rhrBXQ/HOFkreseRXNXL9h+s48OOL/Gh5kGRjKa5pH2K+4B2wBuodT5KkdmZEp1AiAyy8u9eGag1CzdC3T9Huwlr6JwZjqMpA9Y1sM7s0xgTZqMAfR237X0beJrldsPIltqqdiOt3Bhaj4Yind43yZ01F87+NypabUeQqz/J8E3jopfTtzRXDEvlYnEWdEoD49X96x/GeqhzytDD6JwTrnUSSWpyP2ch/r53Oe7YriSj8lawFr+sdSfodWSiSjknP2EAGJQUzq7ILSlMl5G/SO9IJWfTrAnxLNvGZOpE3LxvAU9N742cxeu4UAgzG476m1WRgUFIIs8uTPAeyZZ+iI3G5Vd5dnsHfn3+LOzNv5FHTh5A4AuNtazH2mqp3PEmS2imjQeGigfH8ur+cxuihaDovBS6sbiI6wIpWfgCtjSw7A4gNslGl+UO93PWsJTi2f4OlNofXXedy0eCEo57fJcqfKtWGyxLUYkvPHC4VS33zUszD9Fxsb8L8LEzqn8brzrPxyVlCU9Y6vSOdvMYqTM4a8gmnd3yQ3mkkqVUE+piYfvOjbFB6E7HqETL2yo2B2gpZKJKO2ZXDk/i2pgsqCmo7W35WZ3dx16zNFC96DTsWLr/pAc/aWC8ZnhrKilIbTv941EzZp+hwtuZWcf1Ls4mafxOfKg/R2bcB57lvYLnyG7ndvSRJJ+3CQZ43wevogaE6+7etplubw6VSXm8nKtCKqMhAtJFG1uBpIlqJPwa7bGbtdZoGK14gW8RRHD2erlEBR31Ilyh/AGqssagVWS0SK7u8nhhKsZsCOtSM3WtHpvCRcwINhgC0pc/oHefkVecCoAYk/P+HmJJ0CogI9CHmyvdxY6Du82vZliNnvLYFslAkHbMzekRhDQgn3dQFdf8CveMcM03TuPPzzfy6NZ3p5tWI3tOJjvJekQg8Da0BCoMGQM4qUFWvXr+9q2ly8ti3G1j+1p28WXMzk0xbsY+8H/NdmzD1v/SY+0FJkiQdSVywD6PTwnkvr3mXKZ12PyupbULTIN7HhdJQihLWdgpFZqNCkykIq7Na7ygdjnPvfMxlu3jFcRYXDE48psekhPlhVAQlhqgWm1F0oLSOWFGGy/+vu6+1Z6kRfgzvnsS7zknYMufjzNuqd6STojYvPQyKSdU5iSS1vpjENGrGP0lv9lH8zoXc/NxHvLMsg5KaJr2jnbJkoUg6ZiaDwmVDE5jb0AND0Raobx/V3tmb8lm0p4TXe+7DrDZhHnqD18foGRtIgNXIWrUrSmMFlO7x+hjtkaZp/Li9kEeeeZartlzEbcbvcHU5B+Odm7Cc9uAx7SonSZJ0PC4ZnMDK2nDs5mDcOhWKiqo9L2yTlCLPgTa09AxAtQZjVRvAZdc7Ssey4nkqjBHMV0Zzbp+YY3qI2aiQEu5LpisMUZ3bIj0g00vqiBOlmEOTvH5tvf3n7O7MZBL1wgfX0qf1jnNSyvM8DcfjU7ronESS9BE76gpqhj/AaPMe3qi9g6QF13Ljk29x3UfrySit0zveKUcWiqTjcsngBFaKfgg0nLt/1DvOURVWN/LI3J0MTgxmcNk3OKP6Q0xfr49jUARDU0L5SvYp+k1ueT3/eHcO5i8v4Tn3kwQFBuO+8gd8L/kAAmP1jidJUgc1oVsEoX42thl7enY+02EXlaLmT0Cj3c19YdrQ0jMAxTfU802DXH7mNZVZmPLW8K7zdCb2isffajrmh3aJCmBHYzDC7YDaQq9HO1BSR5xShink2GY5tSfxIT7cNnkA7zlPx7r/B9zFu/WOdMIqCw5Qr1no0SlZ7yiSpA8hCDj9H1j+tpOmkX9nrC2Db83/4aaM25j78p189dWnNNXX6J3ylCELRdJxCfWzkNJrBOlaLOqKFz27e7RRmqbxwOztuNwaj/ctw1SZjjL4uhYbb0RqGOuq/HH4xeJOX9xi47RZ6YuwvzsZ+8uDqX28E5EvJ/Bk/pWMMu3FPu4R/O5cjSF5pN4pJUnq4EwGhQsHxjGvuhOGmrwW3XL8cA7OKAptyvMcCG5bb/xM/uEAaA2yobXXNP872+RM4qJBx9cwumuUP9vqg5qv4/3lZ8XFhfjSBEFHb67dHs0Yksj22Eto0MzUzH9C7zgnzFGWRaGIICW8beyQKEm6sQVjPe2fmO7dgX3cw/QIgdsNs7lg560Yn0mk8sUR2Bc/DdV5eift0GShSDpuV41M4RnnBViqDuDc/JnecQ7ri/W5rNxXyJvJy+m06AbcPhEYep3fYuONSA0FBFkho1AyfgVHfYuN1Ra5Fz0KpXtYXxPED409WRh4PqXD/oXlzg1YxtwFhmP/dFWSJOlkXDwogZVqdwC0rNZfflZY3YTNZMBUnYnqHwNmn1bPcCQ+QREA1FaW6JykA6nyNCJWghIYlHR8W5t3jvQnVwtvvo53C0WapuEoz/Lc6KCFIkUR/PvC0XyunU7Agbmopfv1jnRCbPV51FpjUBTZt1GSALD4YxlzN7Y716I8kM3WMe8x03g+GRV2LMseR3uhJ/b3zsKx8VOwy6Vp3iYLRdJx6xkbSF3yJHaQCkuebJM9DrLK6pk37xsW+v6bMTmvUhc7CsfVC8Bka7ExO4X7EeFv4WdtCMLVCOkLW2ystqYxfweGws08XX8m9xn+Tsglb3HmPe8QfsZ9cpmZJEmtLiHUh+hOfSgjCMf2Oa0+flF1E1GBVig/gBaS0urjH01AqKdQVFXm/WVOp6rqwgzcmmDMwD6I49ygoWuUP/laOBrC6zPgCqubCHUVe24EHd9Mp/YkIdQH/7F34tQMpH/7qN5xjlttk5NwdzEiuOMtD5Qkr7AG0mfcdC76+9t80v0dRtlfYHPKjSjVuZjn3or7zdFt8j1pe+aVQpEQYpIQYq8QIl0I8cAh7hdCiJeb798mhOjvjXEl/dx5WheecFyAqS4fx5p39Y7zB5qqsuu9G/lUeYgoi4Oiye9juXwWtvCkFh1XCMGI1DBmFsSg2kJw72z9Nyd6WJNRzncfPINTM2DtdzEL7hnD6T3kVveSJOnr4sGJvO88HUvmQtScda06dlFNE1EBVkRlBiK07e1gFBLu2fmzTs4o8pqi3P0UE8yZfY9/1k5skA2T2UK1KRzNy4WiA6WeRtZAh51RdNAFYwey0Gcyyfnz2LP4U5wu7zcGbyk7M3IJEA34R7W9wrIktSVWk4FnLuhDSlpPpu8eza+n/4J76jsYKg+gbfxQ73gdykkXioQQBuA1YDLQHbhECNH9T6dNBtKav24A3jjZcSV9DU4OQUsaw3p6oqx4rk1N9/vlx285s3EuWyPOo/H6VUQNmYbFaGiVsYd3CqW43k11wumI/b906Mp2g8PFw9/vZMbbKzndtYSa+HHcN20Ufhaj3tEkSZKY2D2SudZzqFKCcC38b6uOXVTdRIqfE6WxAqWNNbIGCI/w7MhlrynVOUnH4SjPptIYSXzI8S8zVBRB50h/CkQkmpd7FB0oqSNOlKGa/MAa5NVrtzWKIuhz8SNkixi6LruV+tfHUbV7KdpRGtrXFeyhZtYNNKyf2UpJ/yorfRcAUYlyxzNJOhqTQeH1Gf3pFRvI7bO2sDlgAu6EEWhLnznlWn+0JG/MKBoMpGualqFpmgOYBUz50zlTgI81jzVAkBAi2gtjSzq687TO/M9+AcamchwrX9U7DgC5FQ0Y179OjQig29WvEhwc0qrjj0gNA2CdbQSKow4ylrTq+K0lt6KBs19ewYersvhvjyJCqSJ0xNV6x5IkSfqN2ahw0YhuvGw/B3POctwHlrbKuKqqUVzTRBdz82ydNlgoCg3wo06z4aot0ztKh1BaayfQUYgh+MRn7HSN8ifdGer1pWfppXUkGcs9s4mOc0lcexSfmELDNUt4RNyEoyKHoC/Opf7D6VTuWEhdbTWq+v9Fo8aKfGq+vh3fd0YQsOcLbD/ehn33L7rkLs1NB8A3om01vpektsrXYuT9qwYRE2Tj2o83kt//bygNpahr39Y7WofhjUJRLJD7u9t5zceO9xwAhBA3CCE2CCE2lJbKT7rasiEpoViSh7BEDMKw+lXdt9lVVY1nZ/3EeDbi6HcVZpt/q2eICbLRJdKfR3aE4zb5o+76vtUzeJtWU4B97v04PzgHGivZW1TLtDdWUdHg4LPrh3CJeQWqLRTSTtc7qiRJ0h9cPiyJ74xnUGEIR134XzjKzAJvKKu341I1kkWR50BI2ysUKYqgRglA0/l5u6NYtKuAaCoIizvxZYadI/1Jd4Sh1BWBs8lr2Q6U1JNkKO/Q/Yn+rHdCGDNu/jfnG1/jJS7Fkr+W4K+n4ft8MvbXRlD91W1Uf3sfltcH4L/zM2p6XkbjzRtwhHbF+O21OAt3tmpeTdNoKsv03AiSPYok6ViF+ln4+JrBmI0K035QqYobBytfhKZqvaN1CN4oFB3q44k/vxI7lnM8BzXtbU3TBmqaNjA8PPykw0kt684Jnflf03QUZx32pc/rmuWTNdn0K5iFqhgJG3ebbjlevbQfTZqRBe6+qLt/ALdLtywnQ63Ko3HOPWgv9cW86V2MOSsp/+x6LnxzFULAlzcOY3i0gtj3E6L3hWA06x1ZkiTpDwJtJi4alsazTediKtyAe+/PLT5mUbXnTX6Mu8DTnDg4qcXHPBGNxgAMTbJQ5A1rtu3GJNyExp54UbBr1O92PqvOPfLJxyG9tI4orRTlFGuSnBrhx6c3jeULy3TGul5h3bA3qRxwG25rCH77viNw69vUJ59Bw41rCJz2ErbINIwzvkQz+sBnF6HWtl7/rqzyBkKdRTgNPmA7vh3zJOlUFx/iw8zrhmBSBNfmnIHSVIW68hW9Y3UI3igU5QG//5giDig4gXOkdmhYp1CCk/rwkxiFaeM7UK/PNPassnpe/2kDF5uW4up+PvhH6pIDIC3Sn0+vHcJ8dQhGeyWlu37VLcsJ0TQc8x+Gl/th3foRju4XwO0bOdD3fkJzF3CNeT5f3zSczpH+sP1rhNuB6DdD79SSJEmHdM2IZOaIcZSaYlAXPQaq2qLjFTYXioKbctEC4sBkbdHxTpRqDSXAUUxFnfdmr5yKapucFGbvA0CcRLPozr8vFHlp+Vl1oxN7bQU2ta7DN7I+lKQwX764cRiKTyAX/hrARfsm8FmXlyi8aTd1dx3Af8ZH+Eal/Xa+ITge9eLPMDSU4ph5sVdndh3J5pxK4kQproD4U2J5oCR5W+dIf767dQSO8F786B6Ma9Vrur0n7Ui8UShaD6QJIZKFEGbgYuDP622+B65o3v1sKFCtaZrck7WDuPO0NJ5rOgfhsuNc+Xqrj6+qGvd9vZWLDYuwanbMI/SbTXRQ95gArrnyOho1MyvmvEdxTft5IV6//jPMq15gmXEYNwa9w8VFlzL18wImr+vFGuMgbnd9THzTXgDcmz9FjewFUb10Ti1JknRo4f4Wpg9K5snG8zCV7sC987sWHe/g73vfxny0NjqbCEBNO4M0kceBH1/Crbb8kryOasneUiLV5lYJgSe+vCvMz0KdT5znhpcKRQdK64gVzW+WTiJbexYf4sNPd47mqWm9CLCZ+N+Pexj73HLunZtFRulfN2IxJwzEce4bWIs2Uv/VjWhuZ4tn3JxTRYJShjk0qcXHkqSOKiLAyhc3DmV1wo0YXI2s/uhB+dx2kk66UKRpmgu4DfgF2A18qWnaTiHETUKIm5pP+xHIANKBd4BbTnZcqe0YlhJKaGIvFouhKBveafV1oXO25rM5q5TrLQuxx49CiendquMfTs/kaBoSxzHCuYYZb6+itqnlX2ycrKwDe1F//Bsb1C68H/EATX5xBNhMBNhMTO0XR/dbZqL5huP+4irIWYOhaCuKnE0kSVIbd/3oFOaqIyiyJKH9+j9QW27b7MLqJkwGgamuECXwkO0Y24SEM+5gidqXPrufpfTAZr3jtFu/7CwizVrpuREYd1LXCouKx4EJqryz85lnx7PmItYpOKPoID+LkYsGJTD75uEsvGcM145KZtWBcia9tJxXFu3H4frjLENrn/NpGP1vfPd9R+MH5+GsbbmeqZqmsWx/KfFKGYaQpBYbR5JOBT5mIw9fO41toZPoXzybf7/wGtty5RLrE+WNGUVomvajpmmdNU3rpGna483H3tQ07c3m7zVN025tvr+XpmkbvDGu1DYIIbh5bCeebzobg6MG19p3WnX8DVmVTLduwM9egmHEra069tGEDryACFFJYMVWnvxpj95xjmjx7kKKPr4GA25M097i4+uG8/E1g3/7enp6HwJCIjFc8D5KTS7ap9PQFBP0ulDv6JIkSUcUF+zDuf3iebzhfIwV+3FtmdViYxVVNxHlZ0LUFSFOsnDQkmwWIzOjHqBW8yHoxxupqpbNP4+X3eVmyd5SBgXVoVmDweJ3UtdLiwokTwtHLc/0Sr700joSDOWeG6dwoej3UiP8+Mfkbiy6ZwwTu0fy3IJ9nP3KcjZmV/7hPJ/xf6PmjJexFq5He2ssTTktU0zdmldNZXkpvlq9/DuSJC8wKIJ+lz+FZvbjf7UPEvjOEBa+cQ+1xRl6R2t3vFIokqQxncNpDOvJemN/xJrXwdHQamPvL6rlWuOPOIM7Yex8RquNe0w6n46mmPhb/F5mrs1h1YEymhrrqc/dBs5GvdMBnk+zXl+SzvKZjzNU7KBx3GP06dPv8A9IGIo27l8IRx1a2hngG9p6YSVJkk7QTWM6Mc81gAKfrrDkCXA5WmScouomuvk3IjQ3BMS0yBjeMrhnZ+523Ii1ch/qL//6y8wK6chWHSinzu4i1VyJ5oWlXV2j/MlWw3GUZ518ODw7nnW3VaGZfMBHPlf/XkSAldcu7c97Vw6krsnF9DdX8fD3O2l0/P9sw4BhV9J02TyE5sb80STq1n+Ow6XicKk43Z4v9SSXtny3OZ9kY/PyQFkokiTvCE7Eet9Oaia/hsM/jtOK38P/jX6UvDgG+4LH0LJXQSssK23vZKFI8gpFEVw7Mpmn6s/G0FiOe+NHrTKupmn4lqwnzZUOQ28FpY39k7YGoiaPZVDtIt7xeZ2oT8dieToe3/dG4V7wkN7pAHj6l73M/mUx/zB9QVPKREJHX3/Uxygj78I98XGU0//bCgklSZJOXmqEH5N7RvPfhvMx1uTiaqHnqaKaJtJsNZ4bbXhGEcDYLhEsU/uwIfpSQnZ9TO3WP7eYlI5k/s4ifM0Ggl0lCC9sP9850p9cLQKlOscL6SCjtI4UU7mniCWbJB/ShG6RLLhnDFcOS+LDVVmc9cpytuZW/Xa/T/JguHEp9si++P1wE4anEzE8nYh4OgnxdDLOF/tQ8+UtVG/8isbq42ue63KrzNtWyOS45qK1LBRJkveYfQkYchlp9/3KnotW8YltBgUVNZhWPov4YDLqk4k4PrkQrUAuvT6cNvauWmrPzu8XR7qtF3stvWDlyy32ae3vldbZ6evcgobA1O/iFh/vRBj6XYqxoYRhlkwOuCJYGDoDe+xQxPavda9mf7Y2h3eW7OXDwHcxWHyxTn3t2F5MKgqGEbdB6IlvBSxJktTarhuVws9NPSgM7ItY9qzXZ3ZqmkZhdSPJpirPgTY+oyg1wo+YQCvvWC6jMbQnQQvugrqW68fSkbhVjQW7ihnbJRylJvekdjw7yFMoCsfsrDnuosOfOVwq2RUNRGulXsnWkflajDx8bg9mXjeERoeb899YxQsL9uF0e2bYmQIisV4zl5rRj1DX9QLqukynvvM06jtPxRnSFd/93xM49zqsL6bR8NoYqr+9l6pVH1GbvRW7w37YcVcdKKeszs6YiObfQ/LvSZJaRNduPbj0vtfYNvlbRmnvcZv7HrYET0Ip2AjvTMD187+OfTVMRYbu799aiywUSV5jMxu4bEgi/6s9E0NdAerWz1t8zP3FdURRgd0aBmbfFh/vhPQ8H+c/S/C9fycrBr7MDfmTyOlyNUpjOWQs0S3Wr3tL+PecHbwUPs+zi9k5L4J/pG55JEmSWlq/+CC6RwfynPsiDPVFuNa+7dXr1zS6aHKqxBmam2cGtN1m1uDpMTimSzirMuuoOu1ZDE2VqPt+0TtWu7App5KyOgdnd7YhHPXghRlFvhYjRX7dAVA/v4SyohOfWZRdXo9b1Qh2FslC0TEakRrGz3eN5tw+Mby0aD9TX1/Jsn2laJqGMJoJGH8Xgec/T+C0F5q/XsTvqi9R78+g5tIfqBl0NxhM+O+cSdD8O/D/YDSmp+JpeHMi1QufpS5/F5r2/0vV5mwpwN9qJM1SgWb2A1uwjj+9JHVsBkVwxbAkvr33LJTu53J+zjSmKi9R0mk6xjWv4HptKGr6kiNfpL4c9YMzYY7+O2y3BlkokrzqimGJrBJ9yLN2Rlv+QovuLAOwr7iWaFGOaMM7ywCYzBaEENw/qStxwTZuXRuKagnEve0rXfLsLKjmtpmbuCpkB2fVfomz31UYepynSxZJkqTWIoTgsqGJfF2WSEXUSMSKF8Fe67XrF9Z4ZgZEaOVoRlu7eOM3Oi2cWruLHHMqbrM/7tz1ekdqFxbtLsFkEIwOb54N4qXt5xtjhvG45W5spdsI/HgCBduX/Daz5Xikl9ThSyMWZ7VXilinikCbiRcu6svrM/pTXufgivfXMe2NVSxtLhgdislkJqDzSALP/A8+Ny3EeX8Otdeuonry69T2ugrhbCBwxaP4vTMMx4v9qPnmbiq+vofROx9kps9zsH02WlCCXB4oSa0gIsDKy5f049Nrh1Dh9mHk7vP4eeA7IAwon07B9dM/4FD/r6sq7m9uQDRUwLBTYwN3WSiSvCoiwMo5fWJ5puFsDFWZsOeHFh1vX3EdcYYKTMHt40WQr8XIk+f3Zl+5g3XWkYg981q18TdAQVUj13y4nu7WMv5hfxlnZF9MZz3dqhkkSZL0MqVvDH4WIx9YLsPQVIFr1Wteu3ZhdRMAga5StICYdvHGb3hqGAZFsDy9AjWqHyJ/o96R2oV9xbV0CvfDt7HQc8BL/ai6Rvnzfu1gSi76AdVoI/qbaZQvfhWH8/g+eNtXXEeskE2ST9SZvaJZct9YHjuvJ0XVTVz5/jrOf2MV328t+EPD60OxmM34x/cgcMgMAs97GuttK2i4ZSvV45/AFZCA386Z+O7+gv7aHmKNtdjDenj6bEqS1GpGpoXxwx0jGZUWzk0rfLk//A0a+16Nce3rnj6yfyoWqStfwnBgIdoZT0B0H51Sty5ZKJK87tqRycx19KfOFIZ7S8suP9tfVEO0KEdp4w1Df29Eahh3jE/lpdK+KM56tH0/t+r4d83agtveyIe+ryIUA6aLPwajpVUzSJIk6cXXYuT8/rG8lR5EfcoklNWvQkOFV65d1Fwo8m0qavPLzg4KtJnonxDE0n2liLiBGEp3tZldOduyzLJ6ksN8oTrXc8BLxZiesQGe/kflYTReuYja+DFErfw3DXPvO64dtubvKmJEWPMHUYGyUHQiLEYDlw1N5Nf7xvL41J6U1Ni54/PNDHxsAfd8sYWl+0pxHcNsLyEEPhFJBI6+Bd9rv8f9j0JuS5jDNMubBN21Ct/r5qL0v6wVfiJJkn4vyMfMu1cM5L4zuvDdjnLOSp/C/oSLMKx6iR1f/Ic5W/I9swmzVyEWP4q7+1SUQdfoHbvVyEKR5HU9YgIZkhLO9+pwlPQFXnsB/meaplFYUoxNa4I2vvTsz+6e2Jkug8+gWAsiY/GHrTbuvuJa1mVV8En0l/hW7obz34bgxFYbX5IkqS2YMSQRh1vlx7BrEI46VC/1KiqqbkIIMNUXtfkl0b83pnM42/OraYjoi9DcULhV70htmsutklvR0FwoyvMsM/TS9vMTu0cxvmsEj8zdxe4qBcOlsyjveQ1B296jeunrx3SNvUW17Cyo4fTY5kbKckbRSbEYDcwYksjy+8fx+fVDOadPDAt3F3Pl++sY9PhC7vh8M19vzKOktumYrtfgUFm6r5Rz+sRgUNr+rENJ6sgURXDruFQ+vW4INU1uTt93DrPdo+i552W2fvUEd7+/kOpPrkANTMBw7svtYqawt8hCkdQirhuVzKcNQxGqE3Z+2yJjlNTa8bMXe2608Z1l/kwIwX/O7c3ukNOIK1/JrGXbWmXcrzbkcrFxCd2Kvsc14l4MXc5olXElSZLaki5R/gxKCubVnWbc8cPQdn7nlesWVTcR4WtEqStCtJMZRQBjOkcAsLLR88GB7FN0ZHmVjbhUjaQwX7SqHLTAOK+9eTAogpcu7ktSmC83z9xIeb0Lv3OfojbxNIKW/ZuaHUefhfzN5jwMiqCPXw2a0Qp+EV7JdqpTFMGwTqE8Oa036/91Gm9eNoBxXSJYdaCcv321lcGPL2LyS8t58qc9rDpQhsN16NlGP+0oxOFWmdK3fb12laSObHinMJbdP5ZF946j322fUpN8Jv8xfcIvgU9gc1bxWti/UM3+esdsVbJQJLWIcV0iMMf24QDxODbPapExDjayBiCg/Sw9O0hRBCPPvxmLcLHpl4/5bnN+i47ndKt8uzmfe63f44wZhHHCgy06niRJUlt22dBEsssbyAofj6FsN5Sln/Q1C2ua6Obf6JmV045mFPWICSDU18z8HHD7x6HmbdA7UpuWWV4PQHKYL1pVrtdn7PhbTbx7xUA0Da79aD0OVWC68H3swZ3xnXMdjQU7D/tYt6rx3eZ8xnYOx9ZQgBbgvSKW9P8sRgOTekbx/EV9WffPCcy7fST3T+pCgNXIu8szuPSdtfT973yu+2g9by87wIJdxaSX1GJ3uZmzpYCUMF96xQbq/WNIkvQ7PmYjKeF+pEQGETDjI1wppxFuz2Zpyj08v8PG377aekzLTTsKo94BpI5JUQSPTOnJ12+N4O8Fs6AiE0KSvTrGvuI6YkTzsrZ29IL894xxA3AFJXN5w3qmfLmF2iYnlw9LapGxft1TglZXSri1CHrcCoqhRcaRJElqDyb1jCLU18y7Zd15EtB2z0WMuvukrllc3cRY3xqopN30KALPc/aotDCW7SvFndofg2xofURZZZ5CUVKoL6I6FxHj/camSWG+vDGjP5e/v467Zm3h7SsGYr94FuoHp2GYdTGu6xdj9A//y+NWHyinuMbOf86OQ1uTg5DLzlqcogh6xgbSMzaQW8amUmd3sfpAOUv3lbB0XykLd5f8dq4Qnh65d52WhpAFPElqu4xmjJfMhMKtnB4/mHsXp/Pcgn043CovXNQXk6Hjz7fp+D+hpJs+8UGo3acDUL76U69ff39xLcnmKjShgF+U16/fKoTA0Hs6PR1bmZpq4N9zdvK/H3cfV8PKY/XVxjzG+GZ7bsQN8vr1JUmS2hOL0cAFA+P5cj80hffBvXvuSV+zsLqRFHO150Y7WxI9pks45fUOSv17YqjJhbpSvSO1WVll9fhZjIRZXIiGMq/tePZnw1PDePic7izaU8J/5+7EFp6IfdonGOuLcX1+Gbidf3nMN5vy8LcamdAtwlPECmofu8J2JH4WIxO7R/LYeb1Yfv94tvxnIt/eMpwXL+rLHePTuHRIAjOGyP6QktTmmayQMASE4PYJafxjclfmbSvkn99s1ztZq5CFIqlFXX/uaNbRA/vmWWiqd6fq7SuuJc1ajeYXBYb2OzlO9LoAgcYz3Q5wxbBE3l6Wwa2fbaLpOLfCPZLSWjuL95QwLaIQTRhOmW0dJUmSjmTGkAQ0YJVpKMaCjVBTcMLXanC4qGlyEWtonunajmYUgadPkSJgRVOS54CcVXRYmeUNJIX5IKqbl4y34K5ilw9L4vpRyXy0OpsHv9uBT8pQ6s94AWvBGpoWPfmHc+vtLn7aUcTZvaOxanZEfalsZN0GBPmY6ZcQzHn9Yrl7Ymf+N7UX4f5yt1lJam9uHNOJR8/ryZXDk/SO0ipkoUhqUWF+FuzdphPjymPtyoVeu66maewvriPeUNnuPrX9i/AuuCN7o278iH/1qOChSSn8vLOIS95ZQ055w7Ffp74Mx+ybcS945C93fbc5H7eq0Uc5gBbZE8w+XvwBJEmS2qf4EB8uGhjPE1lpAGi7553wtYqqPTseRVLu2QXLFuyVjK0lxNfMwMQQPssNRhMG2dD6CDLL6kgK9YXqHM+BFp61888zu3HL2E58tjaH+77ehs/AS2nsdiGW1c/jzl7z23m/7Cyi0elmar84qM5tziYLRZIkSd5y+dBEep4i/cVkoUhqcUPPvhoHJnKXfOi1WTJFNU3U2l2EqaWIFpry3ZoMI27HUL4P86fncOXyMayOfoFxhe9z4bOzue6jDaxML0PTDrMcTdNwb/0K9yuDMG//DGXtG+Bs+t3dGl9uyGVAvD++pVsQcQNb6aeSJElq+/4xuRuVPsnkKPG4dn5/wtc5WCgKdpaiBcS0ywbCE7tHsrXYSVNwF9nQ+jAcLpX8ykZSwnyhOs9zMLBlC0VCCO47owv3TOzM7E153DlrM4azn8blH4c2+3qw1wLwzaZ84kNsDEwMhipZKJIkSZJOnCwUSS3O5BtMVfwExrmW89bivV655r7iOkDDz17cIQpF9L4Q8fdMHBd8hr3v1YQYmrjdMJultvvolvUxV7y7itNfWMZz8/fy0sL9v319umANDR9fhOHb61CDktAmPopwNULOqt8uvTWvmv0ldVzT1YVw1MlCkSRJ0u8E+pj475QefO/ojyFnFTRUnNB1CpsLRT724na37Oygid0jAci0dsVQuAm8vGS8I8ipaEDVPM2mqcr1LOf2j27xcYUQ3PG7Hhk3fZVO4bgXMdTm4Zx3H4XVjaw8UMbUfnEoioCq5p6EslAkSZIknQBZKJJaRcSIKwgTNWxe+g3vr8g86evtL64liDoMbnu7fUH+F7ZgzD3OwnbOU5hvXYG4cwsicQT3ah+xLuxR+rCXVxan89nCNeT9+jadlt7KeSumYMj8FceE/2K6YSFi0LVoBgukL/rtsl9uyMVqUhjv1zxFXjayliRJ+oPJPaOoTJiEgpvyTXNO6BpFNZ5CkaW+ENFOd+JMCvOlc6QfyxoSUew1UHFA70htzm87noX5QnWuZ/ZYK/ZJvHFMJ/47pQcr9pcx+osm5vhdjGn752z95SM0Daanatjn/xf3r0+gmf3a72YfkiRJkq5koUhqHakTUa3B3Bu4hCfmbeOFBfsOv5TqGOwrrqW7b43nRjt9QX5UwUmYr/ga9/SPCaSOZ2vuY3/Uv1hrvY1nTG8zKSCbgthJTLI/wSuNkzzb3Zt90RKGoe739INqdLiZu7WAM3tGYy3ehGYJhJBOOv9gkiRJbYsQgusuPI8CLYys5bNO6PmpqLqJUJuCUl+MaMcfYEzsHsl3pc0zZOTys7/IKvcUipJDfVGrclpsx7MjuWJYEisfGM89EzvzVOMUtqidGLrzv3zh/yLxHw/FvOp5XFF90S79GhT5Ul+SJEk6fvLZQ2odRjPaiDvp1bie+YH/Y/biVTwyd9cJbwO/r7iOfoHNjZ7b8QvyoxICQ88pGG9fh2Po7aiBCTjGPYR20wqMf9tD2vUfMrD/IF5ZnM6i3cUAKKkTUMr2UF6QyZXvr6O2ycXFgxPQ8jagxQ6ULxolSZIOITrIh6rE0+nZtJE56/Yd9+MLq5vo6t+E0Nzt+gOM07tHsc8dg8Pgg0s2tP6LzLJ6Am0mgn3NUJWLotPSrnB/C3dMSGPZP06n4oxXsSgqvUU69qF3Iu7ahuWKr1GShumSTZIkSWr/5DtGqdUYRt2NfeoHJGj5zLc9SP6ar/nb11txuVVwNuHY8wuN39+He8e3R7yOpmmkl9TRzad5RlFHLhQdZPHHPOkxLFfPwTzmHkRULxACIQSPnteTHjEB3P3FFs8uaakTAHjr/bfZmlfFSxf3ZXCMGVG6GyVe9ieSJEk6nK5jL8UinKz4aRa5Fcex6yRQVNNIV59qz412/LzUKzaQ8AAbB0ydIX+j3nHanKzyes+yM7cLUVvY4o2sj8ZkUBg/Yji2+3Zhu38v1jMeln2JJEmSpJMmC0VSq7L0OR9xwzKMYSm8Y36e4dv/zf4Xz0J9KhHzrAuxbXob8f1tR2wmWlDdRJ3dRZK5Ck0xgl9EK/4EbY/VZODNywYghODGTzfyRbYfxVowQ9QtzL55OFP6xkLBZoSmyv5EkiRJR6AkDcdpDeV0VnL3h0uorK7F7T62hs5F1XZSzO2/UKQogondI1nRmIihZOcfdtGUILO03rPjWW2hZ/ZYkL6Fot/4hIDRrHcKSZIkqYOQhSKp1SlhKZhvWIi9//VMNyzDr3o/+6LPw3HRF3DDEoSjHnX584d9/L5izzawUZSj+Ud7evOc4uJDfHjxor7sKarh79/sYJfPIMaadtEzytdzQl7z8oHYAfqFlCRJausUA0rXszidtXxdcwnBL8ShPBaG64kE7MtfPezDHC6Vsjo78YZKz4GAmFYK3DImdo9igzMFoTqhaJvecdqMJqebguomkkI9jawB3WcUSZIkSVJLOKlCkRAiRAixQAixv/nP4EOcEy+E+FUIsVsIsVMIcefJjCl1EEYLlnOfxfn3XO6N+Zjzss5jX8AwiOmH2utCxLp3oKbwkA/d31woCnCUtOtPbb1tXNcIHj+vF3eMT2XU5Isw2KugYBMAat4G1OBOnk8cJUmSpMMyTHyImonPMT/+Tp52Xsi62CtwRfTBsuhBmn76Nxyi0XVx845nkZSjmXzA9peXQ+3K0JQQ9pm6AJ7nD8kju9yzHDEpzAeqmgtFcpmXJEmS1AGd7IyiB4BFmqalAYuab/+ZC7hX07RuwFDgViFE95McV+ogTLYAXr9sAME+Zm78ZCMV9Q4M4/8Jmhv30qcP+Zh9xXWE+1sw1hW02y2IW8qlQxK45/QuGFPHowkF0hd53tTkrUfEydlEkiRJR+UbRsCI6zjt6kfY1/lGLs04na1j3sPe5yqsa1+mafYt4Hb94SHztnk+2IgWzTNdhdAjuddYjAZ6dOlCEaG4stfpHafNyCxr3vEszBeqczwH5QdWkiRJUgd0soWiKcBHzd9/BJz35xM0TSvUNG1T8/e1wG5APqtKvwnzs/DW5QMorbNz22ebcAUkoPa7AmXzx1CR8Zfz9xfX0jnCF1Fb0K63IG5RPiFo0f1Q0xdCdR5KfQlC9ieSJEk6ZooieP6iPiSG+HDrrK1UjnuSpuF/w7rjM+yfzQBnI+BZdvbBykxGpYXh14Fmuk7sHskadxe0zGWgHlufpo4uq9xTKEoK80Ut2onqFwVmH51TSZIkSZL3nWyhKFLTtELwFISAI3YVFkIkAf2AtSc5rtTB9I4L4n9Te7HqQDnPL9iHYez9aIoJ9+In/nBebkUDOwpqGBalIdwOCIzTKXHbp6SdhijYBOkLPAfi5I5nkiRJxyPAauLtKwZQb3fz8NxdWE//N/aJT2I+8AvOWZcD8P3WAkpq7Vw/KgWq81E6yPPS2C4RrND6YLGXQ/F2veO0CVll9YT6mgkwapC+EFIn6h1JkiRJklrEUQtFQoiFQogdh/iacjwDCSH8gNnAXZqm1RzhvBuEEBuEEBtKS0uPZwipnZs+II5p/eN4d3kmea4AtEHXo+z4Cop3/XbO60vSMQjBxV2aG1h3kE9uW0TqaZ6dzla8iGawQGRPvRNJkiS1O6kR/tw2PpWfdxaxYn8ZlhE34xrzT0wHFqAV7eCdZRl0jfJnVKcgRF1xu29kfVCgzYSaPA6A2p0/65ymbcgsqycpzBcyl6E4alG6n6N3JEmSJElqEUctFGmadpqmaT0P8TUHKBZCRAM0/1lyqGsIIUx4ikQzNU375ijjva1p2kBN0waGh4cf/08ktWt/O6MzCHhx4X4Mo+5GM/vhWvQoAPlVjXy9MY+LBsUT5m4uIsoeRYcX0x/NEghV2WjRfeS2uZIkSSfoulHJJIb68PDcnTjdKqbB16IZzOQtepO9xbVcPyoFUVfi2S69Az0v3XjWcHaoSZRu+kHvKG1CVnk9yWG+qLvnopl8IXmM3pEkSZIkqUWc7NKz74Erm7+/Epjz5xOEEAJ4D9itadrh9zyXJCA60MaVwxL5ZlMe+2pNaMNux7jvRyjZw5tLDgBw09hOUJPveYCcUXR4BiNaylgAFNmfSJIk6YRZjAb+c3Z30kvq+GhVFviGonY5m+D0b0n0F5zTJwZqCjwnd6DnpS5R/pRFjiK+fgfpOfl6x9FVvd1FcY2dlFAr7P0RLXUimKx6x5IkSZKkFnGyhaIngYlCiP3AxObbCCFihBA/Np8zArgcGC+E2NL8deZJjit1YLeMTcXXbOTZX/ZiGHgVmlCo3TiLL9bnMn1APLFBNqjJRzOYwSdM77htmpJ2mucb2Z9IkiTppEzoFsm4LuG8uHA/JbVN5CRdgJ9Wx0Op6ZiNSof9AKP/hOmYhJt5c2ahaZrecXRzsJF1X5GOUl8il51JkiRJHdpJFYo0TSvXNG2CpmlpzX9WNB8v0DTtzObvV2iaJjRN661pWt/mrx+PfGXpVBbsa+aG0SnM31XMpkozasIImrbMxq2p3DK2EwBadT6afwwoJ1vr7OB6nI865gHoPEnvJJIkSe3ef87pgd3l5qmf9vLSgUhytEhG1DQvy/qtUNQxehQdFJA2ArvBl4jiFSzec8gOA6eErLIGADpXLkVTTJAmG1lLkiRJHZd8ly21SdeMTCbMz8xTP+2hPu1cwu053NqtifgQzza0WnVeh+oD0WIsfijj/iG375UkSfKC5DBfrh2ZwuxNeczdXsz+uPOx5K+Bsv1QU4Bm8gFbsN4xvctgQiSPZrxpO4/N24XDpeqdSBeeGUUaQdm/oCWPBmug3pEkSZIkqcXIQpHUJvlajNw+Po21mRXcuTUOl6ZwdeCm/z+hpuNsQSxJkiS1H7ePTyUywAJA9zNvRlOMqBs/RKvO88x0FULnhN5n7HI6UVopSsV+Pl6ddfIXdDbhKEk/+eu0osyyeob5FWOszkLpJpedSZIkSR2bLBRJbdYlgxOIC7bxa67Gft/+BGT8AJoGqoqoLexw0/slSZKkts/XYuT1Gf15/sI+RMcm4k49A7Z8jlaZ1WFnuiqpEwC4JjKDlxbtp7TWflLXc865HdMbg3HuXXDoEzQN56L/4XhjDPZv78SxcSaUpXteA+gkq6ye86yb0RDQRbbalCRJkjo2WSiS2iyzUeEfk7vhYzYQMvhiDFWZULgF6ksQqqvDNQyVJEmS2ocBiSFM6et5DjIOuhqlsRylcAtKR31eCk7EFZLGuX67sDtV/jtv14lfqywd486vQRgwfH0l7oJtfznFtegxTMufQqhOTLtnY557C7w6APdTyTh+ehBqi07ihzkxWeX1jHCtQYsbBP6RrT6+JEmSJLUmWSiS2rSzekez/eEziBw8DU0xom3/BqqbG4bKpWeSJEmS3jqNx+3f/HzUQWcUAZA6Ab/Ctdw5Jo65WwtYtLsYAE1VjzrTZ+7WAhbsKqbJ6ca19BnPrqXXzUc1+6PNvMDTd7CZc+nzGFc8S3bidL4f8gWZ1+1Cu3k1zrNewpUwEtO619Fe6IX929uhIqNFf+SDvt2ch7U+n7im/XLZmSRJknRKMOodQJKOxqAI8AlBTR6L2PktIm6A546O+smtJEmS1H4oBkT/y2Dpkx16SbQxbSKse5MbEov4PtKff323g37OLfwfe/cdHlWxPnD8O1uSTe8NQugdQui9ClKkiQVRUewN67WXq9drveLP3huIIKhIExEpIh3pvbckBEhISG9b5vfHLhgwQIBNNgnv53n2IeecOTPv2Qk52TczcwJ+fxRdvw9eV39Y6nkbkzJ58PsNADQypzHX+AN76t6Ej3djHIO+peb0q8n+6mrW9J5E8fopDEp6m5n2Ljy6aziOXc7RRsG+ZlrXakbb2l3p3vwxGu39GsuWKejN31Fcpw+qfm+8GvaGyGZuXyPqrwMZPPXTFp6P2A7ZQJOr3Fq/EEIIURlJokhUGcaW18CM+2DHbOcOSRQJIYSoBAxtx2DfPQ9jXGdPh1J+6nRFGy0Y9i/k9SEPsmX8I4T+/Dt2rwCMmyZibzoYY5MB/zjt7d93Eernxbjr4gmY9xi2E0Zu3tGJtB1/ANDN8BDfWP9H3PThNDIc5i/vThxq+zZTGkYT4mtmQ2Im6xNPsO7QCf7YlcY4wGK+iitiB3Krmkvz1D/xO7AAFoDdJxxbbCewBILRC4xeKKMZjGYwmMHk/Fd5+WEMq4choiEE1QKD8Z/Xayvm0JFjvPTtYnoE2RnltxaHd1MMYfXL+Y0WQgghPE9pDy4MeD7t2rXTa9eu9XQYorIoyESPawgOu/Nxvc8drZZPlxFCCCEqI9uEqyFtJ3ajBe+s/XxlG0jr0a8T//tIKMrGNHb1aY+NX7U/nRs+X8Vzg5pyV0sj+oM22FrfxtZWz7H7WA4+Xib8vIzUPDiNJqufoSC2Gz63TgOzpdT2s/KtrD6Qzqr9Gazan86Oo9loDfXM6YwMO0B34zZqF+7ArIsxais4bCh7McphQzmspdapDV7YgmujDV4YinNQxbkYinNRjuJ/Fu71DPR62i3vpRBCCOFpSql1Wut2pR6TRJGoSuyTRmLc8xuO0PoYHlrv6XCEEEKIy4Ze+RFq3rNY/WqQM+B9hswx4uNlZM4IC14TBmCNv+nUFDStNdd9upKkE/n8+URvTL8+hnHTZNTDG0tdy6koeTPeUY3OmiQqTWZ+MasPZLByXzqr9qez82jOqWNKQZifF5EBFqICvYkK8CY6wEx0gIFobyshhcn45R7EN2c/PtmHUDhwmP3RXv44vPxZsC+PPVmKUd2aUbdmNAZLEIbanS8oPiGEEKIyO1eiSKaeiSrF2PIa2PObTDsTQgghKphqcys5VoV3m1GE+ofwqlcqY75Zw8sbQnmxw/14rf4QR8trMTToxeLdaaw9dIL/Dm+BJS8FvWkS9oTRmM6y4Ld3bPwFxxPs60X/5tH0bx4NwIm8YjYmZXI0u5Bj2YUcyy4iNbuQYzmFbE3J5nhu0Rnrbse5XqV774YEGibI7xtCCCEuP5IoElVLowFokwVD8Nl/sRNCCCFEOfD2J6DH/ac2ezWO5O4e9fh8yX7yWgzmreA5qFkPoh5Ywdu/7yI2xIcRLcMo+u0JvABTj8fKNbwQPy96N4k863Gb3cHx3GKO5xZRYLVTUGyn0GqnwGrHccYI+9gQX9rXCS3XeIUQQojKShJFomqxBOK48SeMIbU8HYkQQghx2XtmYBPC/b147dedBNR4gJcznyBp/B0MPWZiSEgSPm/vxOAoxtbmNkzBnr13m4wGooMsRAfJ9DEhhBDiXCRRJKocY73ung5BCCGEEIBSirt71Cc6yIfHfzDQ2ncQI47M4VaTGbtvArkN78RYuyN+LeSx8kIIIURVIYkiIYQQQghxSYa2qkGEvzf3TdR8UdSN+68dyJC2dT0dlhBCCCEugiSKhBBCCCHEJetcP4yf7u/Osj1Nuap1HU+HI4QQQoiLJIkiIYQQQgjhFg0iA2gQGeDpMIQQQghxCQyeDkAIIYQQQgghhBBCVA6SKBJCCCGEEEIIIYQQgCSKhBBCCCGEEEIIIYSLJIqEEEIIIYQQQgghBCCJIiGEEEIIIYQQQgjhIokiIYQQQgghhBBCCAFIokgIIYQQQgghhBBCuEiiSAghhBBCCCGEEEIAkigSQgghhBBCCCGEEC5Ka+3pGM5KKZUG5AHHPR2LKJNwpK+qCumrqkP6quqQvqoapJ+qDumrqkP6quqQvqo6pK+qhqrcT7W11hGlHajUiSIApdRarXU7T8chzk/6quqQvqo6pK+qDumrqkH6qeqQvqo6pK+qDumrqkP6qmqorv0kU8+EEEIIIYQQQgghBCCJIiGEEEIIIYQQQgjhUhUSRZ97OgBRZtJXVYf0VdUhfVV1SF9VDdJPVYf0VdUhfVV1SF9VHdJXVUO17KdKv0aREEIIIYQQQgghhKgYVWFEkRBCCCGEEEIIIYSoAG5NFCmlBiildiml9iqlnj7j2IOuY9uUUv87y/nXuY47lFLtzjgWr5Ra6Tq+RSllKeX8sa62tVIqvMT+IKXUbKXUJtf5t7nrmquq8uorpdRNSqmNJV4OpVRCKefXVUqtVkrtUUpNVUp5ufYrpdT7rrg2K6XauPnSq5TK2k+uY71c525TSv3pxsuukipBX53t599Nrv9Lm5VSK5RSrdx42VVSJe4ruVedoRz7yqyUmqCcv0/sUEo9c5bz5V5VRpW1r1zH5H7lUgn6Se5VZVSJ+0ruVWcox77yUkp94+qrTUqpXmc5X+5VZVRZ+8p1rHLdq7TWbnkBRmAfUA/wAjYBzVzHegMLAG/XduRZ6mgKNAYWA+1K7DcBm4FWru0wwFjK+a2BOsBBILzE/meBN11fRwAZgJe7rr2qvcqzr84o0xLYf5ZjPwA3uL7+FLjP9fUgYC6ggE7Aak+/X9JPpfZTMLAdiDtX+5fLq5L01dl+/nUBQlxfD7yc/09Vgb6Se1UF9RVwIzDF9bWvqy/qlHK+3Kuqfl8FI/erytRPcq+q+n0l96qK66sHgG9OngusAwylnC/3qqrfV8FUsnuVO0cUdQD2aq33a62LgSnAMNex+4A3tNZFAFrr1NIq0Frv0FrvKuXQlcBmrfUmV7l0rbW9lPM3aK0PllY1EKCUUoA/zh9otgu6uuqlPPuqpFHA92fudPVDH+An164JwHDX18OAb7XTKiBYKRVT5iurXipzP90I/Ky1TjxX+5cRj/aV6/xSf/5prVdorU+4NlcBsee7mGqu0vYVcq86U3n2lQb8lFImwAcoBrJLFpB71QWpzH0l96u/ebSfXOfLvapsKm1fIfeqM5VnXzUDFpY4NxM4c9aN3KvKrjL3VaW7V7kzUVQTSCqxnezaB9AI6O4aZvWnUqr9BdbdCNBKqXlKqfVKqScv8PwPcWb/UoAtwMNaa8cF1lGdlGdflTSS0j8ohQGZWuuTN5WS7Z8rtstNZe6nRkCIUmqxUmqdUuqWS2i/OvB0X5XVHTj/snQ5q8x9Jfeq05VnX/0E5AFHgERgnNY644wycq8qu8rcV3K/+pun+6ms5F5VuftK7lWnK8++2gQMU0qZlFJ1gbZArTPKyL2q7CpzX1W6e5XJjXWpUvadfKSaCQjBOeStPfCDUqqe1rqsj1wzAd1c5+YDC5VS67TWC8t4fn9gI84MXn1gvlJqqdb6H9nzy0R59pWzAaU6Avla660X2P65jl1uKnM/mXD+ALwC51+jViqlVmmtd19I+9WIp/uqLOf3xvnLd7eLOb8aqcx9Jfeq05VnX3UA7EANVz1LlVILtNb7y9i+3KtOV5n7Su5Xf/N0P50/QLlXnVSZ+0ruVacrz776GmdSbi1wCFjBP0dvyb2q7CpzX1W6e5U7RxQlc3rWLBZnpvnksZ9dw97+AhxAuHIu+LRRKfVrGer+U2t9XGudD/wKXMhiXLeVaH8vcABocgHnVzfl2Vcn3cDZ/5p+HOfQx5OJyjPbP1tsl5vK3k+/aa3ztNbHgSVAqzK2WR15uq/OSSkVD3wJDNNap19MHdVIZe4ruVedrjz76kacP8OsruHdyzljiDhyr7oQlb2v5H7l5Ol+Oie5V52mMveV3KtOV259pbW2aa0f1VonaK2H4VzHZs8ZxeReVXaVva8q1b3KnYmiNUBD5VzJ2wvnL8qzXMdm4Mw6o5RqhHPxqONa69tcb+ag89Q9D4hXSvm63tieOBd7KqtEnNk5lFJROBeguqC/cFQz5dlXKKUMwHU4533+gysz+wdwrWvXrcBM19ezgFuUUycgS2t95CKusTqozP00E+fwTJNSyhfoCOy48EusNjzaV+c5Nw74GRh9mf4F/UyVtq+Qe9WZyrOvEoE+rnuNH86/IO4sWUDuVRekMveV3K/+5tF+Ohe5V/1Dpe0r5F51pnLrK9dnXz/X1/0Am9b6tM/Acq+6IJW5ryrfvUq7dyXxQcBunKuJP1divxfwHbAVWA/0Ocv5V+PMphUBx4B5JY7dDGxz1fG/s5z/kOt8G87s3Jeu/TWA33HOo90K3OzO666Kr3Luq17AqvO0Xw/4C9gL/MjfK8wr4CNXXFs4yxOFLpdXZe0n17EncCZstwKPePq98vSrEvTV2X7+fQmcwDlMfCOw1tPvladflbiv5F5VQX2FcwHWH3H+XrEdeOIs58u9qor3leuY3K8qTz/Jvarq95Xcqyqur+oAu3AmDBYAtc9yvtyrqnhfuY5VqnuVcgUlhBBCCCGEEEIIIS5z7px6JoQQQgghhBBCCCGqMEkUCSGEEEIIIYQQQghAEkVCCCGEEEIIIYQQwkUSRUIIIYQQQgghhBACkESREEIIIYQQQgghhHCRRJEQQgghhBBCCCGEACRRJIQQQgghhBBCCCFcJFEkhBBCCCGEEEIIIQBJFAkhhBBCCCGEEEIIF0kUCSGEEEIIIYQQQghAEkVCCCGEEEIIIYQQwkUSRUIIIYQQQgghhBACkESREEIIIYQQQgghhHCRRJEQQgghhBBCCCGEACRRJIQQQgghhBBCCCFcJFEkhBBCVHJKqTpKKa2UMpWh7Bil1LIKiqurUmqPUipXKTW8ItoUf1NKxbnee6M7y7ohrgr7HhRCCCGE+0miSAghhHAjpdRBpVSxUir8jP0bXcmeOh4KrWTCKdf1OqiUevoSqnwZ+FBr7a+1nuGmMC8L7kimaK0TXe+93Z1lK5JS6iWl1HdurG+MUspe4nv85KuGG+rWSqm8EnV+6Y6YhRBCiMrmvH+ZFEIIIcQFOwCMAj4AUEq1BHw8GtHpgrXWNqVUZ2ChUmqj1vq3sp6slDJprW1AbWDbxQRQog5xFkopY2VL7FQRK7XW3cqp7lZa673lVLcQQghRKciIIiGEEML9JgK3lNi+Ffi2ZAGlVJBS6lulVJpS6pBS6nmllMF1zKiUGqeUOq6U2g9cVcq5XymljiilDiulXrmYKUVa65U4Ez0tXPXerpTaoZQ6oZSap5SqXaJNrZR6QCm1B9ijlNoH1ANmu0ZXeCulaiilZimlMpRSe5VSd5U4/yWl1E9Kqe+UUtnAGKXUYlfsK1x1zFZKhSmlJimlspVSa0qOwFJKvaeUSnIdW6eU6n5G/T+43tMcpdQ2pVS7EsdrKaV+dr3f6UqpD0scO+t1n0kpNdRVd6Yr/qYljh1USj2ulNqslMpSSk1VSllKqaMp8CnQ2XXdma7945VSnyilflVK5QG9lVJXKaU2uK45SSn1Uol6TpuS6Irnv0qp5a734HflGtl2IWVdx29xfV+mK6VecF1b37O8J2Gufs9WSv0F1D/jeKn9ppQaADwLjHS9D5tc+29z9UeOUmq/Uuqes/XHhVBK1Xd9b7ZxbddQzv9jvUq8J68rpf5y9d9MpVSoO9oWQgghqhJJFAkhhBDutwoIVEo1Vc4EzkjgzOk1HwBBOJMtPXEmlm5zHbsLGAy0BtoB155x7gTABjRwlbkSuPNCAlROXYHmwAblXGPoWWAEEAEsBb4/47ThQEegmda6PpAIDHFNaSpylU8Garhifk0pdUWJ84cBPwHBwCTXvhuA0UBNnAmGlcA3QCiwA3ixxPlrgATXscnAj2ckYoYCU1z1zwI+dF2rEfgFOATUcbU1xXWsLNd98j1r5Dr2iKvsrzgTZV4lil0PDADqAvHAmDPr0VrvAO7FOfLFX2sdXOLwjcCrQACwDMjD+b0RjDNheJ8693pQN+L8PooEvIDHL7SsUqoZ8DFwExCD8/u05jnq+QgodJW93fUqqdR+c41iew2Y6nofWrnKp+L8/g90xffOyeSOK75MpdQFjxjSWu8DngImKaV8cX6fjddaLy5R7BZX/DVw/h97/4xqliiljrqSjnUuNAYhhBCiKpBEkRBCCFE+To4q6gfsBA6fPFAiefSM1jpHa30QeBtnwgScyYZ3tdZJWusM4PUS50YBA4FHtNZ5WutU4B2cCZeyOg5kAF8CT2utFwL3AK9rrXe4poS9BiScMbrmda11hta64MwKlVK1gG7AU1rrQq31Rlf9o0sUW6m1nqG1dpSo4xut9T6tdRYwF9intV7giuFHnIkwALTW32mt07XWNq3124A30LhE/cu01r+6pmtNBE4mHjrg/OD/hOs9K9Ran1wfqCzXfdJIYI7Wer7W2gqMwzmlsEuJMu9rrVNc/TYbZ4LkQszUWi93vUeFWuvFWustru3NOBNVPc9x/jda692u9/eH87R/trLXArO11su01sXAvwFdWgWu7+VrgH+73tutOBOZp5Sh3zij/BzX94TWWv8J/A50L3E8uET/laaTK5l08rWvxLlfAHuA1TgTW8+dce5ErfVWrXUe8AJwvfp7tF5PnInGJkAK8IsqwwLzQgghRFUjiSIhhBCifEzEOWJjDGdMOwPCcY7gOFRi3yH+HrVRA0g649hJtQEzcOTkB2HgM5yjQsoqXGsdorVuqrU+OWKiNvBeiTozAMXpI0mSOLsaQIbWOucs13S284+V+LqglG3/kxtKqX+5piRluWIMwvlennS0xNf5gMX1Qb4WcOgsayKV5bpLXuOpvtBaO1zXVLLsmTH4c2FOe4+UUh2VUn8o55S5LJwjkcJLP/WC2z9b2dO+/7TW+UD6WeqIwLnm5dm+X8vSb5xRfqBSapVrmlgmMOhc5UuxypVMOvmqf8bxL3BOt/zANRKupDOvw3yyba31Eq11sdY6E3gY56ixpgghhBDVjCSKhBBCiHKgtT6Ec1HrQcDPZxw+DlhxJilOiuPvUUdHcCY3Sh47KQkowpnsOflBOFBr3fwSQ04C7jnjA7aP1npFycs6x/kpQKhSKuCMuA+X2D7X+efkWtfmKZyjrUJc07WycCZ1zicJiDvL6I+yXPdJKZToM6WUwtlPh0spez5ney/O3D8Z5zS6WlrrIJxrG5Xlmi/FESD25IZSygcIO0vZNJxTtEr9fi1Dv512vUopb2AaztFaUa7yv+Kma1ZK+QPvAl8BL5WyBtGZ12HF+f+1NNpdcQkhhBCViSSKhBBCiPJzB9DHNY3lFNfUqB+AV5VSAa5pTo/x9zpGPwAPKaVilVIhwNMlzj2CcyrO20qpQKWUwbVI77mmI5XFp8AzSqnmcGrB7OvKerLWOglYAbyulLIopeJxXv+kc59ZZgE4ExJpgEkp9W+ca9iUxV84kx9vKKX8XPF1dR27kOv+AbhKKXWFUsoM/Atn0q60pNL5HANiz1jfqDQBOEdqFSqlOuAcpVbefgKGKKW6uOL7D2dJiLi+l3/GmXTxda1vdGuJIufrt2NAHeVayB3nSDtvV3mbUmogzjW43OU9YJ3W+k5gDs7+L+lmpVQz1xpGLwM/aa3tSqnmSqkE5Vxo3h/nVNHDONfREkIIIaoVSRQJIYQQ5cS1zsrasxx+EOdCxftxLlo8GfjadewLYB6wCVjPP0ck3YLzA/V24ATOD/YxlxjrdOBNYIpyPpVsK861kC7EKJxruKQA04EXtdbzLyWuEubhXMNoN84pQYWceyrcKa5kxhCci38n4lxwe6TrWJmvW2u9C7gZ50Lkx111DnGt43OhFuF84txRpdTZRqwA3A+8rJTKwblW0A8X0dYF0Vpvw/n9OQVngi0H5wLTZ07TOmkszmlrR4HxOBeJPul8/faj6990pdR619TFh3Be5wmcibFZJRtTziekdefsTj5NruSrvVJqGM6Fxu91lXsMaKOUuqnEuRNd13AUsLhiAYgCpgLZOP/P1gEGu9aqEkIIIaoVpfVFjwIXQgghhBDVnGsETSbQUGt9wMPhlBul1GLgO631l56ORQghhPAkGVEkhBBCCCFOo5Qa4ppK5odzvaAtwEHPRiWEEEKIiiCJIiGEEEIIcaZhOKcQpgANgRu0DEMXQgghLgsy9UwIIYQQQgghhBBCADKiSAghhBBCCCGEEEK4SKJICCGEEEIIIYQQQgBg8nQA5xIeHq7r1Knj6TCEEEIIIYQQQgghqo1169Yd11pHlHasUieK6tSpw9q1az0dhhBCCCGEEEIIIUS1oZQ6dLZjMvVMCCGEEEIIIYQQQgCSKBJCCCGEEEIIIYQQLpIoEkIIIYQQQgghhBCAm9YoUkoNAN4DjMCXWus3zlKuPbAKGKm1/skdbQshhBBCCCGEEOXJarWSnJxMYWGhp0MR4oJYLBZiY2Mxm81lPueSE0VKKSPwEdAPSAbWKKVmaa23l1LuTWDepbYphBBCCCGEEEJUlOTkZAICAqhTpw5KKU+HI0SZaK1JT08nOTmZunXrlvk8d0w96wDs1Vrv11oXA1OAYaWUexCYBqS6oU0hhBBCCCGEEKJCFBYWEhYWJkkiUaUopQgLC7vgkXDuSBTVBJJKbCe79p2ilKoJXA186ob2hBBCCCGEEEKICiVJIlEVXcz3rTsSRaW1qs/Yfhd4SmttP29lSt2tlFqrlFqblpbmhvCEEEIIIYQQQoiqTSnF6NGjT23bbDYiIiIYPHiwB6M6P39///OWeemllxg3btw5y8yYMYPt27efs4xwD3ckipKBWiW2Y4GUM8q0A6YopQ4C1wIfK6WGl1aZ1vpzrXU7rXW7iIgIN4QnhBCiQuSlYz+wzNNRCCGEEEJUS35+fmzdupWCggIA5s+fT82aNc9zVvmw2WwV3qYkiiqOOxJFa4CGSqm6Sikv4AZgVskCWuu6Wus6Wus6wE/A/VrrGW5oWwghRCVhn/MvDBOHQWG2p0MRQgghhKiWBg4cyJw5cwD4/vvvGTVq1KljeXl53H777bRv357WrVszc+ZMAA4ePEj37t1p06YNbdq0YcWKFQAcOXKEHj16kJCQQIsWLVi6dClw+gign376iTFjxgAwZswYHnvsMXr37s1TTz3Fvn37GDBgAG3btqV79+7s3LkTgAMHDtC5c2fat2/PCy+8cNZrefXVV2ncuDF9+/Zl165dp/Z/8cUXtG/fnlatWnHNNdeQn5/PihUrmDVrFk888QQJCQns27ev1HLCPS75qWdaa5tSaizOp5kZga+11tuUUve6jsu6REIIUd1lJWPYMQul7XB4HdTv7emIhBBCCCHKxX9mb2N7inv/MNasRiAvDml+3nI33HADL7/8MoMHD2bz5s3cfvvtpxI8r776Kn369OHrr78mMzOTDh060LdvXyIjI5k/fz4Wi4U9e/YwatQo1q5dy+TJk+nfvz/PPfccdru9TImW3bt3s2DBAoxGI1dccQWffvopDRs2ZPXq1dx///0sWrSIhx9+mPvuu49bbrmFjz76qNR61q1bx5QpU9iwYQM2m402bdrQtm1bAEaMGMFdd90FwPPPP89XX33Fgw8+yNChQxk8eDDXXnstAMHBwaWWE5fukhNFAFrrX4Ffz9hXaoJIaz3GHW0KIYSoPByrP0eh0ShU8hpJFAkhhBBClIP4+HgOHjzI999/z6BBg0479vvvvzNr1qxTa/0UFhaSmJhIjRo1GDt2LBs3bsRoNLJ7924A2rdvz+23347VamX48OEkJCSct/3rrrsOo9FIbm4uK1as4Lrrrjt1rKioCIDly5czbdo0AEaPHs1TTz31j3qWLl3K1Vdfja+vLwBDhw49dWzr1q08//zzZGZmkpubS//+/UuNpazlxIVzS6JICCHEZaw4D9ZPwNF4MOr4bnTiKrfMaxZCCCGEqIzKMvKnPA0dOpTHH3+cxYsXk56efmq/1ppp06bRuHHj08q/9NJLREVFsWnTJhwOBxaLBYAePXqwZMkS5syZw+jRo3niiSe45ZZbTntK1pmPVffz8wPA4XAQHBzMxo0bS42xLE/aOluZMWPGMGPGDFq1asX48eNZvHjxJZUTF05+lxdCCHFJ9KYpGAozMXZ5ABXXEZW8FhwOT4clhBBCCFEt3X777fz73/+mZcuWp+3v378/H3zwAVo7H0K+YcMGALKysoiJicFgMDBx4kTsdufDyA8dOkRkZCR33XUXd9xxB+vXrwcgKiqKHTt24HA4mD59eqkxBAYGUrduXX788UfAmaTatGkTAF27dmXKlCkATJo0qdTze/TowfTp0ykoKCAnJ4fZs2efOpaTk0NMTAxWq/W08wMCAsjJyTlvOXHpJFEkhBDiomxPySYtuwDHyk+wRydArY6oWh1QRVlwfLenwxNCCCGEqJZiY2N5+OGH/7H/hRdewGq1Eh8fT4sWLU4tJH3//fczYcIEOnXqxO7du0+NClq8eDEJCQm0bt2aadOmnarzjTfeYPDgwfTp04eYmJizxjFp0iS++uorWrVqRfPmzU8tnv3ee+/x0Ucf0b59e7Kysko9t02bNowcOZKEhASuueYaunfvfurYf//7Xzp27Ei/fv1o0qTJqf033HADb731Fq1bt2bfvn1nLScunTqZbayM2rVrp9euXevpMIQQQpxh97EcBr23lCvMW/hMvYZt2GeYWt8Ax/fAh+1g6AfQ5hZPhymEEEII4RY7duygadOmng5DiItS2vevUmqd1rpdaeVlRJEQQogLorXm+Rlb8beYeMDnd47pYAYtDGPJ7jQIa4DDEoJOXO3pMIUQQgghhBAXQRJFQgghLsiMjYf560AGr3Y1E1+4lpyWt1GsTdzy9V889uMmiG2PTpJEkRBCCCGEEFWRJIqEEEKUWVaBlVd/2U73moorMyajjRYaDBzLvEd7MLpTbX5ef5jMsNYY0vdAfoanwxVCCCGEEEJcIJOnAxBCCFH52Y/tpGDB62QnbmeRLZnA9HxIB3ub2zD6heMN3N2jHhNXHWKVtQGDAJLXQqMrPRy5EEIIIYQQ4kJIokgIIcQ5OU4kor8dhldxPvuL6mAM609CQhtM4fWxNPk7EVQr1Jd6EX78nOrPQGVEJf8liSIhhBBCCCGqGEkUCSGEOCudn4Ht2xEYrfk84f86y3U0C+/uib+PudTyvRpF8t3qQ9hrNseQuFrmNwshhBBCCFHFyO/wQgghSmctoPi7kZiyDjGvxdvMPBLCc1c1IegsSSKAXo0jKLY5OBrQEnV4HdhtFRiwEEIIIUT1dezYMW688Ubq1atH27Zt6dy5M9OnTy/3dteuXctDDz3klrp69epF48aNadWqFV27dmXXrl1uqded3Bnj+PHjGTt2LACffvop33777VnLHjx4kMmTJ5/aduf7fqEkUSSEEOKfHHYKpt6BV8oaknq9w6N/BdCzUQTDE2qe87QOdUPxMRtZaW2AsuZB6vYKClgIIYQQovrSWjN8+HB69OjB/v37WbduHVOmTCE5Obnc227Xrh3vv/++2+qbNGkSmzZt4tZbb+WJJ574x3G73e62ti5WecR47733csstt5z1+JmJIne/7xdCEkVCCCH+wTrvBXz2ziGv98vcsz6OAIuJcde1Qil1zvMsZiNd6ofx47Eazh3Jf1VAtEIIIYQQ1duiRYvw8vLi3nvvPbWvdu3aPPjgg4AzydC9e3fatGlDmzZtWLFiBQCLFy9m8ODBp84ZO3Ys48ePB+Dpp5+mWbNmxMfH8/jjjwPw448/0qJFC1q1akWPHj3+Ucdff/1Fly5daN26NV26dDk12mb8+PGMGDGCAQMG0LBhQ5588snzXlOPHj3Yu3cvAP7+/vz73/+mY8eOrFy5kv/7v/+jRYsWtGjRgnfffffUOd9++y3x8fG0atWK0aNHA5CWlsY111xD+/btad++PcuXLwfgzz//JCEhgYSEBFq3bk1OTg5HjhyhR48eJCQk0KJFC5YuXXrRMX733Xd06NCBhIQE7rnnnlPJo2+++YZGjRrRs2fPU7EAvPTSS4wbNw6AvXv30rdvX1q1akWbNm3Yt28fTz/9NEuXLiUhIYF33nnntPc9IyOD4cOHEx8fT6dOndi8efOpOm+//XZ69epFvXr13JZYkjWKhBBCnM5WhGndVxQ1u45xWVew8+hBvhnTnogA7zKd3qtxBC/sPIY1JAJj4moM7e8s54CFEEIIISrQ3Kfh6Bb31hndEga+cdbD27Zto02bNmc9HhkZyfz587FYLOzZs4dRo0axdu3as5bPyMhg+vTp7Ny5E6UUmZmZALz88svMmzePmjVrntpXUpMmTViyZAkmk4kFCxbw7LPPMm3aNAA2btzIhg0b8Pb2pnHjxjz44IPUqlXrrDHMnj2bli1bApCXl0eLFi14+eWXWbduHd988w2rV69Ga03Hjh3p2bMnXl5evPrqqyxfvpzw8HAyMjIAePjhh3n00Ufp1q0biYmJ9O/fnx07djBu3Dg++ugjunbtSm5uLhaLhc8//5z+/fvz3HPPYbfbyc/PP2t854pxx44dvPnmmyxfvhyz2cz999/PpEmT6NevHy+++CLr1q0jKCiI3r1707p163/Ue9NNN/H0009z9dVXU1hYiMPh4I033mDcuHH88ssvgDNBd9KLL75I69atmTFjBosWLeKWW25h48aNAOzcuZM//viDnJwcGjduzH333YfZfPalIspCEkVCCCFOd3g9ylbI7tBejF9wkNu61qF3k8gyn96rcSSgSPZvSe0kGVEkhBBCCOFuDzzwAMuWLcPLy4s1a9ZgtVoZO3YsGzduxGg0snv37nOeHxgYiMVi4c477+Sqq646NXKla9eujBkzhuuvv54RI0b847ysrCxuvfVW9uzZg1IKq9V66tgVV1xBUFAQAM2aNePQoUOlJopuuukmfHx8qFOnDh988AEARqORa665BoBly5Zx9dVX4+fnB8CIESNYunQpSimuvfZawsPDAQgNDQVgwYIFbN/+93IH2dnZ5OTk0LVrVx577DFuuukmRowYQWxsLO3bt+f222/HarUyfPhwEhISSn1/zhfjwoULWbduHe3btwegoKCAyMhIVq9eTa9evYiIiABg5MiR/+iLnJwcDh8+zNVXXw2AxWIpNYaSli1bdioh16dPH9LT08nKygLgqquuwtvbG29vbyIjIzl27BixsbHnrfNcJFEkhBDiNI6DyzAAj6z0oUl0AE8NaHJB59cK9aVehB+rrA2om7kIclPBv+yJJiGEEEKISu0cI3/KS/PmzU8lCgA++ugjjh8/Trt27QB45513iIqKYtOmTTgcjlPJB5PJhMPhOHVeYWHhqf1//fUXCxcuZMqUKXz44YcsWrSITz/9lNWrVzNnzhwSEhJOjVo56YUXXqB3795Mnz6dgwcP0qtXr1PHvL3/Hn1uNBqx2Up/qMmkSZNOxX2SxWLBaDQCzvWYSqO1LnUZBIfDwcqVK/Hx8Tlt/9NPP81VV13Fr7/+SqdOnViwYAE9evRgyZIlzJkzh9GjR/PEE0+Uum5QWWK89dZbef31108rM2PGjPMu1XC267vQc062U9b3/ULIGkVCCCFO4ziwjCRzHZKLfHl/VGssZuMF19GrUSQzjrsWvk5a7eYIhRBCCCEuL3369KGwsJBPPvnk1L6S06aysrKIiYnBYDAwceLEU+vl1K5dm+3bt1NUVERWVhYLFy4EIDc3l6ysLAYNGsS77757KiG0b98+OnbsyMsvv0x4eDhJSUmnxZGVlUXNms7f8U6udeRuPXr0YMaMGeTn55OXl8f06dPp3r07V1xxBT/88APp6ekAp6aeXXnllXz44Yenzi95LS1btuSpp56iXbt27Ny5k0OHDhEZGcldd93FHXfcwfr16y8qxiuuuIKffvqJ1NTUU7EcOnSIjh07snjxYtLT07Farfz444//ODcwMJDY2FhmzJgBQFFREfn5+QQEBJCTk3PW92TSpEmAc0paeHg4gYGBFxV7WUiiSAghxN/sVlTyXywqaMhDVzSkUVTARVXTq3EEG2x1KDYHYtvwvZuDFEIIIYS4vCilmDFjBn/++Sd169alQ4cO3Hrrrbz55psA3H///UyYMIFOnTqxe/fuU9O2atWqxfXXX098fDw33XTTqfVycnJyGDx4MPHx8fTs2ZN33nkHgCeeeIKWLVvSokULevToQatWrU6L48knn+SZZ56ha9eu5fZ0sjZt2jBmzBg6dOhAx44dufPOO2ndujXNmzfnueeeo2fPnrRq1YrHHnsMgPfff5+1a9cSHx9Ps2bN+PTTTwF49913Ty3M7ePjw8CBA1m8ePGpxa2nTZvGww8/fFExNmvWjFdeeYUrr7yS+Ph4+vXrx5EjR4iJieGll16ic+fO9O3b96zrSk2cOJH333+f+Ph4unTpwtGjR4mPj8dkMtGqVatT/XHSSy+9dOoan376aSZMmHBRcZeVuphhTxWlXbt2+lwLcAkhhHCzpDXwVV8edTzCS888T5DPxS2EV2i10/rl+XxS41d6HvsW9eA6CKvv5mCFEEIIISrGjh07aNq0qafDEOKilPb9q5Rap7VuV1p5GVEkhBDilOxdiwGo0arvRSeJACxmI53rh/FOdm8wmLEt/8BNEQohhBBCCCHKkySKhBBCnHJs8yL2OmowslfbS66rV+MINp3wIrPRNRg3fQ95x90QoRBCCCGEEKI8SaJICCEEAHkFRURnbeBwUBviwnwvub7ejZ1POnszqy/KXoh99eeXXKcQQgghhBCifLklUaSUGqCU2qWU2quUerqU4zcppTa7XiuUUq1Kq0cIIYTnLPpzIQGqgFpt+rmlvlqhvvx3eAumJfqyzNAex6rPoTj//CcKIYQQQlRClXl9XyHO5mK+by85UaSUMgIfAQOBZsAopVSzM4odAHpqreOB/wLyZ2UhhKhE7A7NobXzAKjX9kq31Tu6U22m3tOZ74zDMBefYO3Mj9xWt6g8Cq125mw+wu3j1zDovaVk5Vs9HZIQQgjhVhaLhfT0dEkWiSpFa016ejoWi+WCzjO5oe0OwF6t9X4ApdQUYBiwvURwK0qUXwXEuqFdIYQQbjJ/+zEaF20hJ6AWAYE13Fp3m7gQXn3oLva8P5HwLV/wpL6Cl4bH4+vljluQ8KRtKVlM+SuJWZtSyCqwEh1oITWnkP/N28mrV7f0dHhCCCGE28TGxpKcnExaWpqnQxHiglgsFmJjLywF447f0msCSSW2k4GO5yh/BzDXDe0KIYRwk6+W7OUr4y686g8tl/rDAiwED30G47QxZG+ayeDEbN67oTUtY4PKpT1Rvval5fLeb1sI2PkD4YY8noyuSbOG9Whcty6T16Syb+03JOYVEZG/F3PmAUxX/Q+aD/d02EIIIcRFM5vN1K1b19NhCFEh3JEoUqXsK3U8nlKqN85EUbezVqbU3cDdAHFxcW4ITwghREkOhyYjv5hwf28ANidnkpu0mUDvXBz1updbu8bmQ7EvqM07Bd/yV94y1n8WxvG6jWnXth0BLa4Co4wwquyOZhXy3oJdpK2fzQumidQ2H3UeSHO9VsCdAGbI32uBqOYYrHnonXNQkigSQgghhKgS3PFbeTJQq8R2LJByZiGlVDzwJTBQa51+tsq01p/jWsOoXbt2MgFUCCHczHZ8PxnHMsiMakrNYB9+Xn+YLqadABjqnjWPf+kMRhj+CfbFb9M+K4n2WdvxTZwHiXBi01BCbp4ABnkYZ2U1bV0yX0yfxzOGCfQ0b6IwqB7FA3/Eq0FPbDmp2HOPo3OPo+3FrM6N5LYZR3m6WTPuSn4GnbKx1L8qCSGEEEKIyscdiaI1QEOlVF3gMHADcGPJAkqpOOBnYLTWercb2hRCCHGRjLPH0jB5FenNb2Nvm3/xy+YUPvHfh80Uiym4fEdyGut2xb9uVwCKrTZ+WLWDo/Pf56H9P7Dq4ztpctsnBPt5l2sM4sJ9tewAB+a+xy/mb8HsQ2H3l7F0uQ9MXgCYQmphCvn7b0a9gL671/LOgt3c0LkFgXt+h6Jc8Pb3zAUIIYQQQogyu+Q/3WqtbcBYYB6wA/hBa71NKXWvUupeV7F/A2HAx0qpjUqptZfarhBCiIujclKwewcTvvUr6v7Qlxb5q2lh24ojrmuFxuFlNnF995bc8K/3WRw6kk7HpzHprbF8uXQ/RTZ7hcYiSqe15u15O8n/7SVeMX+DtU5vjA+tx9Lj4VNJorP5z9DmGJRi/MFgFBqObqmgqIUQQgghxKVwyxh/rfWvWutGWuv6WutXXfs+1Vp/6vr6Tq11iNY6wfVq5452hRBCXDiVl0ZuoxHsG/wTOXYT473ewseaiaFeOU47O4fIIB96PfgZxxtcwwP8wMHf3qfPuD/5duVBCq2SMPIUh0Pz4oyNxC59igdNM8hvcRM+o6eiAqLKdH6NYB8e69eISYmhzh1HNpZfsEIIIYQQwm1kMQghhLicWAtR1jyCwmPwadiVwdbX+TnwZopCGmFqdKXn4lKK8FGfY20wgP+ax3OHaS7/N3MV3d78g8+X7COvyOa52C5DWmue/WEVvdY/wkjTYvI7P47vNR9d8ILjY7rUocASQbYpDH14fTlFK4QQQggh3EkeMSOEEJeT/OMAKL8I9h7LI71QkXPlE6Q2iaRWgK9nYzOaMI8cj+2767j90OfcZjGwUzVl5ryW3LSoIwltOnJt21ia1whEKVkauTx9tGAnV29/hPbG3eT1G4df17suqh6T0UDT6EB2ZdSnrSxoLYQQQghRJUiiSAghKpDWmtUHMpi6JomrWsbQt1kUDoemIDsdMza8gqPLN4C8NOe/fuH8sjmFAG8TI9vXwlBZEi9mH0y3zkIf2Yh1+6802PMbT1unAFPYsrYuU1b3YmfYlQxo34Rr2sQS4nfudXLEhZu75QiWP/9DR9NO8q76GL/2N11SfU1jAlhzJI52xWtkQWshhBBCiCpAEkVCCFEBCq12Zm9K4evlB0k8coxuhq1kHjxM3up0zMd34JeXgjb7wZP7wWwpv0Dy0gGweofy29aj9GsehcVsLL/2LobBgKrZBq+abaDf85B1GNu2mTRcN5FX0r+hKHsSc39vxxuLOtC/T196d+mEMpo9HXW1sPVwFnN/+Iz3TXPJaXU7AZeYJAJoEhPIAmttlJdrQevand0QqRBCCCGEKC+SKBJCiHJktTuYtOoQPy5cSZui1fzHsok2PlsxaSvWfCO27AYU1eiIzV6A7/7fIC8VyvMR9a6pZ2vSDGQX2hgSX6P82nKXoJqYutyPqfN9cGQTau23XLXlR4ZbV8DCdyleaMYW2hBT7Y54DXhFRqxcpNTsQl4aP5Pxxs/IC29FwJA33VJvk+gA3nHUc24c2SiJIiGEEEKISk4SRUIIUQ601izelcYrv2xj4IlJzDH/CGYo8q9HQf072OLfhTG/a8Zf1Y0uDcJh12+w/zfITSvfRJFr6tmsPcUE+5rp2iC8/NpyN6WgRgJeQxNg0OvYju1k8dLFHNi2hqYZSXTJmIAt5wimGyeDoZKNkqrkCq12HpiwnFeK38LL24xh1Ldgcs+0vsbRAaSpEHLN4fimbJCnaAghhBBCVHKSKBJCCDfbm5rDy7/sYMnuVF7z/5EbzTPIa3w1qudT+MQ0wVspWhZasS+Yz4p96c5EkV+E8+STawiVl7zjaIOZ2btyGdKqJl6mKvqx3eSNqWYr+t7Qin1puTz102Z+T57Cy3snkPzjE8SO/D9PR1ilfLFkP9cee58mpkQKr56KV1gdt9Xt62WiTpgf+x0NaJ6y0W31CiGEEEKI8lFFPyEIIUTlo7Vm8upEBr2/jI2J6cyq+zM32mZQkHAbfiO/xrdG01NP6wqwmGlZM4iV+51rBuF/MlGUWr4x5h2n0CuEvGIHQ1pVgWlnZVA/wp+p93QmfsST/GAYROyOr5jwwYvsPpbj6dCqhGPZhaxZPIuRpsXkdXwUS9MBbm+jSXQA6621MRzf7VzQWgghhBBCVFqSKBJCCDfIKbTy0JSNPDt9C53rBLGk4Y/EH5lGQYcH8Rn2Dhj++eO2S/0wNiVlkltkq7ARRTrvOGmOQML9vehYN7Rc26pIRoPi2raxDH1qPAdDunDT8ff573sf8cbcndgd2tPhVWr/+20XfVmN3WjBr+9T5dJG05hAluXHonAtaC2EEEIIISotSRQJIcQl2no4iyEfLGPO5hSe7lubT73fJ3jPNAq6PY3PwP8619YpRZf64dgcmjUHM8Dsg/byd65RVI4cuWkkFfkyoEU0JmP1uwVYvL2pc89U7OGN+czyPpuWzuLO8avJLrR6OrRKaUtyFtPWJzHEZxO6bi8w+5RLO02iA9hsL7GgtRBCCCGEqLSq36cEIYSoIMU2Bx8u2sOIj1dQaHXw4031uW3Pg1j2/UbBFa/i0/eZsyaJANrWDsHLaGDlPuf0M+0XUe4jigqzjpHm8GdQy5hybcejLIF4j/4Rbx9/vvd6ldcOjeL3cWNI3rQIHA5PR1dpaK15+ZdtdPQ7SkjxUYxNB5VbW01jAkklhDyvCBwpG8qtHSGEEEIIcelkMWshhLgIaw9m8MzPW9iTmstVLWN4uYuRwJ+vxZifRvE14/FpOfy8dfh4GUmICz6VKMIvAkdeWrlm8I0FGeSZWtGxblg5tlIJBNfC+OBairfPwbD2R4akzMN7+i/kzq+L/72/g3+kpyP0uF+3HGXNwRPMiD8Iu0E16l9ubcWG+ODvbSLJ0pCGsqC1EEIIIUSlJiOKhBDiAmQVWHn2581c++lK8optfHFLW95pn0nw94NRtkLst87BuwxJopO61A9ja0oWWflWlH8E5JbfYtaFBXn46HzCo2piNJx9pFO1YQnEq80oou7+mbR7tvGW76OYcpJJ/nIU2n55T0UrtNp5fe4OmkQH0CJnBbbo1hAQXW7tKaVoEh3AFntdDOl7ZEFrIYQQQohKTBJFQghRBgXFdj5bvJd5b47i2U392OVzO8uKb+CKn1rgNflq7P4xqLsWYo5rd0H1dqkfjtaw6kA6yi8SlXe8nK4AVm3ZDUD92rXLrY3KKjYmivsffp6pkY8Sm7mWBR8/TKHV7umwPOab5QdJPlHAf6+IxHhkPYYmA8u9zaYxgfyZVxOlHbKgtRBCCCFEJSZTz4QQ4hyKbQ6mrk3ig4V76Jk/j7fM80mt1R+fyHoUKwNaKQyWQPy63oPyCb7g+lvVCsJidq5T1N8/AgrSwWEHg9Ht1/LXtt30AurWruP2uqsCP28To+97ls2f7qJf6iRe/aABd915P5GBlr8L2W1gKwRvf88FWgF+2ZxChzqhtLeuATSqSfmtT3RSk5gA3ltVGyw4F7Su3bnc2xRCCCGEEBdOEkVCiPOy2R1kFlgJ9/f2dCgVaktyFg9MXk9iRj7DYvN43TERa83uRI6ZUurj7i+Gt8lI+zqhznWKukY6R1vkZ4B/hFvqP6nQamffgQNgAKOb665KDAZF/F2fkfnBLsZmjeO2D6J47Pr+dKtlxrpmPOqvz1DWfIy3zoSYVp4Ot1wU2ezsPpbDnd3rYds5BxVQE2NUi3Jvt0m0c0HrQu8IvA5vkCHNQgghhBCVlPyeJoQ4K601v209Sv93l9DptYV8s/wAWmsAik4cdo6+qKZ+2ZzCdZ+twO7QjL+lFeMMH6DMFszXfu62JNFJneuHsetYDtnGYOeOPPevU7Rkdxq+tkznhl+42+uvUsw+BI+Zgp+Xgddt49g1YSwFbzbGvPDfOILrgNkP+4RhcGSzpyMtF3uO5WK1a1pGeWPcvxgaDTjn0/ncpUl0AAApvo3R8uQzIYQQQohKSxJFQohSrdqfzohPVnDvd+vQOJMZ/5m9nTe+nkL2+Ovxfq8ZjqX/5+kw3U5rzbsLdjN28gZa1Ahi5tiudE38FHPqZhjyAQTWcHubnes5n0C2NcvLuSMvze1t/LrlCDW985wbl3uiCCC0LsZrPqOx3s8Y8+8s0O25qvg1ng54jbRrp4HZF/uEodVyLZ1tKVkAtLVvQdkKMDYt/2ln4Jz6VzvMl62GxhjTd0M5rsclhBBCCCEuniSKytnWw1m8PncHqdmFng5FiDLZm5rLbd/8xQ2fr+JIZiFvjGjJ74/04JOeduZHfcAzSfeiDi6j0K8GevNUcI0wqg4KrXYe/H4D7y7YwzVtYpl0V0dCj67AvOoDrK3HYGw+pFzabVkzCH9vE6uPudYlynVvoqjIZmfBjlTahtnQBjN4B7q1/qpKNbkKx23zMD66lR5P/ky37n34ZfMRenxxgM/rvo/DaME+figc3erpUN1q6+Fs/L1NhB9eiMPsB3W6V1jbTaIDmJvf1Lmxf3GFtSuEEEIIIcpOEkXl7K8DGXyxZD/d3vyDZ37ewsHjeZ4OSYhSZRVY+e8v2xnw7hLWHjzB0wOb8Ps9zRhUMBvrp73w/24gdQt3sr3pwwxSH/FW7iCMGXshbaenQ3eLvCIbt3z1F3O2HOGZAY14paMd6+JxOKbdiS20EeaBr5db2yajgY51Q/kj2ZV0c/OIoqW7j5NbZKNJQDHaN6xCphlVFYbanSCwBkG+Zp4Z2JQ/Hu/FkPga/G9NEcPzniXfYcI+fgiOvYs9HarbbEvJollMAGrPPHS93mCquLXHmsYE8ntmNHZLCPY9CyqsXSGEEEIIUXaymHU5u71bXfo0ieTzpfv5aW0yU9ckMqhlDPf2rE+LmkGeDk8I7A7N1DVJjPt9Fyfyi7mhfS0ern0Q/y1P47d4EUrbKAxrTk6v/+Lb6TaaWQL4/kQ+t39gxeH4CrbNwBDZ1NOXcUnyimzc9s0acpI2Mb/OUuqsXo1psTNZUxTREq9rPwMv33KNoX3dUN7YeQzta0K5eY2iX7ceIcjHTKQpF/wu34Wsy6JmsA9vX9+KO7vX5Y25Oxm852kmef+P2O+GUdhoKJZBr0FwLU+HedHsDs32I9k82qIAw9EjUAFPOyupSXQgdm0gK7oLwfv/cI5IlMSlEEIIIUSlIomiClAn3I/Xrm7JI1c05OvlB/lu1SHn9IZGEdzXsz6d6oWi5Bdl4QEpmQU8OnUjqw9k0KFOKC8OqE2dNS/jN/t7rL6R5LS+G1PrUfjWiqfEA8SJDfGlbYsmrNvUhNZbZ2Do/YzHruFS5RXZuG38GnYnJrM88P+wpBdQWOcKiupfgVeTvngHxVRIHHXD/QCF1RKGlxtHFBXZ7Mzffoz+zaNRJ9LAV9YnKoumMYFMuL0DK/bW45G5del8dBIP7J6Fde/v2Ls+hqXHw2C2nL+iSmZ/Wi6FVgfd7X+hUahG/Su0/aYxzgWt9wZ0oMPBOc4RiVU80SyEEEIIUd24ZeqZUmqAUmqXUmqvUurpUo4rpdT7ruOblVJt3NFuVRMZaOHpgU1Y/nQfnhzQmO0pWYz6YhVXf7yCX7ccochm93SI4jLyy+YUBry7hK2Hs/jfNfF8O8iLhtOvwnfbFPI6PIzx0W0EDn0d31rxpZ7fr1kUv9g6YErfCWm7Kjh698gvdiaJ1h7MYGbdGfgWHcdwywz8bhyPX8fRmCsoSQQQF+ocsZRvDkW7cY2irYezySm00bdpFOSno2Qh6wvSpUE4P47tTdtbXuehsM9YYG2JZelr5LzVkoL5r0HOUU+HeEG2pWQDUDtrDY4abSp8YfNaIb74eRlZrlsCoPcurND2hRBCCCHE+V3yiCKllBH4COgHJANrlFKztNbbSxQbCDR0vToCn7j+rf7++gL7otewewehLSFonxC8fEK4TRm5tb6VlIxcktJzODQ1kKGmISS0aMWwhBp0rBeG0SCjjIT75RbZeHHmNqatTyahVjDvXh9P5Lav8Rr/X+w+YRTdOB2/Rr3PW0+X+uG8ZOjEf5iAY9tMDL2erIDo3Sctp4gHJq9n7cEMvu92jNprfsHa/SnMsW09Ek8tV6IoyxBMYG4a7vrff8y1kH5cqC8q/7gkii6CUopejSPp2ehqlu3tzn/m/EDv9O/psfxN7CvGUdRgEJbOd2Oo273ST6PaejgLP5MD3/Rt0HZMhbdvMCgaRwewKt2APbQheu8iTF3GVngcQgghhBDi7Nwx9awDsFdrvR9AKTUFGAaUTBQNA77VWmtglVIqWCkVo7U+4ob2K7fwRtiaDsOedwJDQQYqPw1jxh7QDlBG6hiM1A4y0jNrHaMdC5m65QoeXjsUFRDNlc2j6Ns0is71w/A2GT19JaIaWJ94gkembCT5RD4P9WnAA50jcPx8Bz4H5pFfbwDeIz7G7B9WprosZiNNGzVi4/4mtNw2A6pQomjB9mM8NW0zOUU2Ph5Wk3aLH8AWlYC51xMei8nf20S4vxfpBFErf5vb6k3LKQIg0lejinMrfARJdaKUonvDCLo9fD8r94/kkXmLaZbyMyP3LMJ3z2yKolpj7vMMhkZXVtqE0baUbPpFnECdKICankmKNq8RxM/rk7G264X35u/AWlglp/EJIYQQQlRX7kgU1QSSSmwn88/RQqWVqQlU/0RRvZ541+t5/nJZhyla9AY3bp7MSN/FzPcZyqR1zXl4VQ2sXkH0aBhB90bhtKgRROPoACxmSRyJsrPZHXz0xz7eX7SH6EALU+/pTILXYfSXvbFkJ5Pf51V8uz9wwR9u+zWLZtbO9iSkTYT0fRBWv5yuwD3yi228MmcHk1cn0jQmkMnXt6Le/NtQ1gKM134BRrNH46sV6ktKvj+tC9Pctshvak4hRoMiVDunHEmi6NIppehSP5wu91/L6v29eWThNqIPzuDBY7Oo8f31FEclYOz9DMbG/StVwkhrzdaULK6LTYITQE3PzAK/rl0sE1cd4g9bCwbaCiBpFdTr5ZFYhBBCCCHEP7kjUVTab8H6Iso4Cyp1N3A3QFxc3KVFVpUE1cT76g+g56M4Fr7OgG0/MtD4Ixgh2xjCrv2xbNoVy0eOJqyjKRGRMSTUCuZfVzYmIqDiHm0sqp6kjHwembqRdYdOMDyhBi8Pb4HX9p8x/vowDq8AikfPwrde14uqu0+TSN51tOffTHROP+vxmJujd4/U7EKW7j7GjwtXkpRZxKMd63J3r4Z47ZqMcf8C7P3fhIhGng6TuFBfDmX4oWyFUJwL3gGXXGdaThHh/l4YCtKdO2Qxa7fqWC+MjvV6sHp/cx6ZO5S6Kb/wSOpMYqaMxFqjPeZh70FUc0+HCUBSRgE5hTZaqn04LMEYQut5JI742GC61A/jzR0OBhjM6D0LMUiiSAghhBCi0nBHoigZKPms4Fgg5SLKAKC1/hz4HKBdu3alJpOqtdB6eF33BfR/GfuRzdiO7cQrdSetju+kTdoi7rTPBeBQbl1WbKzPkn0hDGxVC6PRDEYT3g37QGw7D1+EqCxmb0rh2Z+3APDeDQkMa1WDwrkvYPnrAwpjOmC+4dtLeqpXqJ8XNWo3YkdaIxptmw6VJFGkteavAxks3JnKkt1phKSu4t+miUwxJII3sMn1Aqy1e2LueLcnwz2ldqgv+wt8wAzkprolUZSaU0RkgAXyjzt3+EVccp3inzrWC2Pq/T2Zv70Jt/02kISMX3k65QcCP+lOYbt78b3yOfDy82iM21KyAKiRtwNiEjw62unenvW55et0jsW0InzfIgz812OxCCGEEEKI07kjUbQGaKiUqgscBm4AbjyjzCxgrGv9oo5A1mWxPtGlCIzBGBjjnLpwkq0IR/I6rAeWEX1wOSMOr4a8Aswr7RhcA7Qcm7/H8ND6SjXdQVS8Qqud/8zezvd/JdK2dgjvjkygVqgvhQtexfLXBxTE34LPsP9zy1Srfs2i+HleO547NhkyDkBoXTdcwcWx2R3M3XqUz5bsY+vhbOoZj/Oa/1Q6eS2nwLcGeZ1fQ5l90HY7ymFDGQz4tLkeDG55AOQlqxXqy0Yd5NzIO+6WqXxpOUVEBVogL9m5Q6aelRulFFc2j+aKplFM39CYe5f2Yfjxz7lh7UdkbPyJnF4vU7vjcI+tx7M1JQtfgxXfE7tQzQd6JIaTujcMp3mNQGbnNuWu4onOxKh/pEdjEkIIIYQQTpecKNJa25RSY4F5gBH4Wmu9TSl1r+v4p8CvwCBgL5AP3Hap7V6WTN4Y6nTBu06XU7temLGViasO8elNCQzIn4Nh7hPOR5VHNvFgoMKT9qbmMnbyenYezeG+XvV5rF8jzEYDRcs/wbLsfxS1GIXP1e+7LZnYr1kUN8/twHNMxrF9FoZuD7ul3gtRUGznp3VJfLH0AIkZ+bQMhxmNFxCf/B3YjRR2fxafHg+B2afCY7sQcaG+pJ9KFKW6pc7UnCJa1gxyJp4AfMu2WLm4eEaD4tq2sVzTpiabk7vy8aJZ9Nv/Jg0X3IN9wf3YI5pCTGsMsW0xtRgGvqEVEte2lGz6hx5D5do9tpD1SUop7ulZn8+nNOYub2D/Yoi/3qMxCSGEEEIIJ3eMKEJr/SvOZFDJfZ+W+FoDD7ijLXG65wc3ZfPhLB7/aStNx/SmNsCuOZIoukxtnP0Ru9YsJMzYj/G3XUOvxs6/0BdvmIr3/Kcpqj8A76s/dOuIszrhfvhE1GNffkNqb51eoYmiE3nFfLvyEBNWHiQjr5gOtXz5sM4Gmu37AtOhTAqaXot3/5exBNessJguRe0wP9JOJYrSLrk+u0OTnlvkXMcs/zjaYEZZgi65XlE2Sila1Qqm1a23kJV7DRN++Ibc/avpnp1Ms+xZmDZPxL7+G4x3LayQhdS3Hs7m+bAkyAVqeGYh65IGtYjm7eBmZBUG4rdnASZJFAkhhBBCVAqVY76FuGjeJiMf39QGs1Fx94wj2KJb49jxi6fDEh6w92gmsWvfZKRhIZP003RceD05qydSvHUW5tn3UxTbBe8bJoDRLfnh0/RtFsUPhR0wHd0AqTvcXv+ZUjILeGnWNrq8sYh3Fuymbawfc3scZFL+fcRvfwtbdALWO//EZ+RXGKpIkgggMsCbXJMrkZN76Ymi9LwiHNpZL3lpaN8wmZbqIUH+ftx6+1hCh77KtblP0tvwDcm938d4dBOOZe+Ve/up2YUczy2ihdqHwz8aAi9+bTJ3MRkN3NmzAUtszbDtWeR80p8QQgghhPA4SRRVAzWDfXjvhtbsTs1hEe0wpKyHbFkC6nJSbHMwftK3hKssTvR7l+zer2IoziZg7li8fhqNNawp3jdPLbe1Ufo1i+JHW3fsyoxtzdfl0sZJR7IKGPLBMn5ctYfHau1mdZOpfJpyPU3/ehaHfzTFN83EcttMzLEJ5RpHeTAYFDEhAeQaAtwyoigtpwiAiABvHLnH5YlnlcCoDnFMvacTVjv0XRBJco3+qCVvlnuCdWvJhawrwWiik65rG8sGc2sshWmQut3T4QghhDiD3aGxOySRL8TlRhJF1USPRhHc1DGOd5Ncj/je9eu5TxDVyjsLdtPyxEKsJj9COowisOdYvB5aS+7IaeS2vRfzrT+DJbDc2k+IDcbgH8E6v24YNk2B4vxyacdqd/Dg5A3ca5vIJp/7uCvlBcKPLKaw4VUUjvwB73v/wKthr3Jpu6LUDvMjgyB07qWvUZR6KlHkeuqZPPGsUmgdF8LsB7sRXzOYYfuHU6B8sU+/H+y2cmtz6+FsAsnDN+cAhljPrk9UksVspFb7Idi1IuXPbzwdjhBCiDNYZ/8L/dMdng5DCFHBJFFUjYzuVIft9hpkWWJx7Jzj6XBEBVm5L52v/9zJUK+1GJoOOTVqSBkM+Dfti/+QN1Hl/DQhg0FxZfMo3svsjqE4G8fWn8ulnXHzduGbtJi71EysdXtTOOonjE/uw+/6z7A07V8tplXFhfpyzB6AdseIomxnosg59ew4yl9GFFUWEQHeTLyzA53jm/Bk/miMR9ZjX/5BubW3LSWLfsEpzo2alWdEEcCInh2YZ+hG8PaJ5GYc9XQ4QgghTirMxmvzJAyJyz0diRCigkmiqBppHB1A29qhzLO3RR1YAoXZng5JlLOsfCv/+mEj1wbtwseRizH+Wo/F8sSVjcmN7sheRw3S//zM7fXP336Mr5fsZpz/99iD6+BzwzdYGverkEWAK1KtUF+OOQKx51z6iKK03L+nnqn84yiZelapeJuMvH9Da2p2u5Hf7O2xL3qVwpTymYK29XA2Pf2TnBs1WpdLGxcryNdMjcHPYdFFLJ7wH7SsVSSEEJWCbetMDPZCVF5quY56FUJUPpIoqmZGdYjjx9xWKIcV9i7wdDiiHGmteX7mVlJzingsZisOn1Co18tj8YT4eTHprk6sDBlCRNZmps/9zW11J2Xk868fNvJkyJ9EFidiGPgGmLzdVn9lEhfqS7oOdMsaRanZhQRaTFiwoopzwU8SRZWNwaB4ZlAzsq94gzztTeqX13Hkq5somnANxZ/3w/phF6y/PQ+FWRfdRkZeMYczC2jBPhwh9cAnxI1X4B4JbTuzN7wPPTKn883CTZ4ORwghBODYPAUApR2Qe8zD0QghKpIkiqqZwfEx7PFuRo4hSKafVXOTVicye1MKT/SpRWjSfHTToR4fXePvbeL6O5+kGDO5y7/g7d93XfLogPxiGw9MXk8omdxum4qtXl9UowFuirjyqR3my3EdhLk4C2zFl1RXWm4REQHezvWJQBJFldj1vdpxsOubmB0FFB1aQ1LiATKLwOEbhmnVh9jfS8C++ouL+ovuewt2oxTE5u9E1aw86xOdqf6IFwlUBWQu/oDle497OhwhhLi8ZR3GnLgce3SCcztHHpQjxOVEEkXVjMVsZHibOObZWsPu38Fu9XRIohysOZjBS7O20adJJHdF7UbZCjC29Ny0s5K8A8Kh+dVc67WCrxZtpe0rC7h34jq+WX6A7SnZOMr45AytNXM2H6Hv23+yOTmLibV/w2AvwjTozWqxFtHZ1ArxJZ0g50b+pX1YTs0uIjLAAnmuemTqWaXW+sqbCXluN0sHzWeM1zg6HH6EoVlP8FuXKVhDG2Oc+zi2j7vg2D6rzCOMVu9PZ8LKQzzQzh+v/COoSrY+UUnGmq3Ir9uPO0zzeGryClIyCzwdkhBCXLasG39AoTF2f9S5I/uwZwMSQlQoSRRVQ6M6xDHP1gZDcTYcXObpcISbHckq4L7v1lMr1Jd3Riagt/yEwz8aanfxdGineHW8Ax9HPpM6JdOrcQRbDmfxn9nbGfT+Ulq9/Ds3f7macfN2sWD7MVJzCv+RPNp5NJtRX6zigcnrCfb14tdrfKh16GccHe+D8AYeuqqK4eNlpNgS5ty4xOln/xxRJE89q+wsZiOjO9Vm8eO9eGdkK5SC+xbZiT/0EJ/H/IfCgnwMP4xGv1Eb64edKZ75MI6N30PGfjhj9F5BsZ0np20mLtSXBxu71qyrxIkiAEufpwkih6vtc7n3u3UUWu2eDkkIIS5PW6ZSHNMW6nRzbmfLiCIhLicmTwcg3K9xdAC5sd0pTP0Qrx2/YKjf29MhCTcptNq597v1FBTb+P6ujgSRh963AN3uDjAYPR3e32p1xBbWhJZHf+b/7n0YgOQT+azen8HaQyfYlJTJZ3/uYQhL8TEuZZauzUpzRw75tsTPx5utKdkEWEy8MrwFo9pEor8ZhN0vEmOvJz18YRXDOzAKTgC5F58o0lq7RhR5Q166c6dMPasyTEYDV7eOZXhCTbYczuLn9Yf5ZKOJt/JfpZ/vHoaEJtNG7SJ82zQMG8YDYPeNwFazPYZaHTE16su4tQYOpecz+a6OeB/6FK2MqOh4z17YeRhqtaOodi/uP/IbXx7ux5M/bea9GxJQ1XgUoRBCVDb66BbMx3dg7f8W+IahjV4oGVEkxGVFEkXV1LUdG7FkRkt6bPsFy1XjqvVUncuF1pp/z9zqTLKMbkvDqADY8B3KXoxqeZ2nwzudUhja34bht6c48dvr6Ib9CI2NZ0SbmgxPiCF3/Y94L/sflqx9nPCuScfi3dypfyWnIJB19g5QM4o2vqlYVu7BMC8RpR3o4Z+Ad4Cnr6xC+IbGOBNFlzCiKK/YToHV7hxRdLIe3zD3BCgqjFKK+Nhg4mODeXZQU/7YlcqczXE8uTOVnKJ++JkV19fOZVhYMo2Kt2FOWYt5z6+w6EXa29sTGP8gXeqH41ixHiKaorx8PX1J52Xu/RSG8QP5uOF6btvkTePoAB7oXb1HEgohRGViXf89ZoMJc/w1oBTaPwayjyCfJoS4fEiiqJq6Kj6GV2Z35MqCj7H99SWmjnd5OiRxkYptDlYfSGfGhhSmrU/moT4N6N88GgD75p8gqDbGSjidxJAwiuJ1EwlZ9QasegObdxA50R0x5yQRlLGDopDG5F09gZD4YeiiHAp2zse481e675+PIT0fq70e9siW2JpdiymuPV5N+nv6kipMUHgN2Ae2nKMX/UM6NbsQgMhAb0g/jjaYUZYg9wUpKpyXyUD/5tH0bx5Nsc3Bqv3pzN9+jDnbjvLNXj+CfVswPOExrm1sZs20/+O64pn0330rxVOvxnx4LarZME9fQpkY6nShuFY3eid+wKLA3/lqQVcWBN1H3zaNPB2aEEJUfw47hm3TKK57Bd5+rj8wBdZAZ6dIokiIy4gkiqopi9mId8JIFq9fQa+5j2NFYe54p6fDEmVktTtYuOMYc7ceZdHOVHIKrVxp3sK3NfbS5riD/K9PYCjMwDttC3R5pHKOGLMEYbh3KZmpB7HvX4oxaQU+KSvRRm+yBn1CYNvr8TY6fwQpSyA+CddAwjXgsIPWeBkv3x9PNSLDKdBeFKUfJfgi60jNKQIgwt8CicfRvmEyfaca8TIZ6NEogh6NInhpaHOW7knjx3XJTF6dyPgVDmAIjW96jPYp32Fa8znKVgCV+IlnZzKOmkT68q+J3j6FV4u/pnDmRNK2DCLi2nfAT0bGCSFEeXHsX4op7ygq4fW/dwbWgMPrPReUEKLCXb6fxC4DN3dryJC1/2Kizwe0nvsvrNqBudPdng5LnEN6bhFT1iQxceUhjmYXEuJr5s46x7kh6yuiTqzDnu2L3RqOwxKMwxJCYdNr8elQeROAJqOB4Jh6EFMPuJVCqx2jQRFkPMc6+pVprSUPiQvzI51ATJlHL7qONFeiKDLQG52XJk88q8aMBkWvxpH0ahxJZn4xszalYDIY6NIyDlq+DF3HYt82E2PL6z0dapkZfYMJ6/cYjj6PkLRzFSunvcfwA3PI/z4d39tmwmWcSBZCiPKSml3IX5Pf5UqTP15NBp7abwiMQe864nxogvzRSYjLgvymVY3VDffjqaviGTnzAebV8Kbub084k0Wd7/V0aOIM21OyGb/iADM2plBsc9CtQThv9bLQZt+H+O37FZtPBPn93sS30x0YjWZPh3vRLGZJApVFXKgvKTqI8JzUi67j5IiiyABvdN5xWcj6MhHs68UtneucvtM/EmMVnX5sMBqo1bwLmUHNeenz13gt+VPyf3sR36te9XRoQghR7fy+6SDD7KuYp7rQDy8sJw8E1kTZCqHgBPiGejJEIUQFkURRNXdzp9r8ufs4g3ffw9J6FkLnPYXDywdD21s9HVrlUpRD4cafMAdGYWw6qEKatDs087cf45vlB1h9IAOL2cB1bWpwe8whaux6C8vvC3CYfcnv+hQ+PR7E9zJZyFlARIA321QQkScfa38R0nKK8DIaCPIxo/PTUaF13RihEBWrZWwQmaMf5/tv9zBqzYcU1GyLT8IIT4clhBDVysGNiwlQBUwraEvisgN/P0ggMMb5b3aKJIqEuExIoqiaU0rxv2vjGfBuJqNO3MOs2DzMv/8bmg0Dn2BPh+dZWmNNWof1r6/x3jUDizUPh380lHOiKCvfytS1iUxYcYjDmQXUCjLxSncLA3y2E7j5Obw278PmE05+p0fx6Xo/vgER5RqPqHyUUhR6heFTfOii60jNKSQiwNu5LlFeGkqmnokqrnvDCOZd8w4bfh5Bk5n3UxzdFK/opp4OSwghqoWMvGJ8j63BYVIENurKx3/s5bq2sUQGWiCwprNQdgpEt/BsoEKICnGOhUJEdRHq58U7IxPYnV7M5z53YijKxLH8A0+H5VmFWVg/vwLz11dg2TmN4kZDsLe4DkPuUbAWlkuTe1NzeG76Foa8/hMFv7/Ce/ZX2RTyFEuKR3HzmhGEL3keh1cg+YM/xvjYNvwGvIhBkkSXLYdvOAH2TOd6ABchLaeI8ABvsBWhinNlAWBRLfRPqE1y30/JdZhJ/+o67AVZng5JCCGqhQXbj9FW7aYguBGPDm5Psd3BW/N2OQ8GuEYU5aR4LkAhRIWSRNFlomuDcO7uUY+3t1g4FH0lrP4YctM8HZbHpM7+D8Yj69nf7gXUv3bhc91nGBtd6TyYmejWtrYkZ3HTl6u4+50ptNrwAguND/KQaQYtA/Mx1Uwgr/2D5A78gKI7l2C5fzG+7W5CmS3nr1hUa6aASEzY0QUnLur8tJwiIgO8Ic81fc1Pko6iehjSoz2r24wjovgw294dzqodB9FnS6i6nqIohBDi3H7bcpi2xr141+1M3XA/butal5/WJ7MlOQsCotEo54giIcRlQRJFl5F/9WtMu9oh3H6oH1gLyZz/pqdDqnBaa2YvWETI1vFMsfXi5bQeqJNT8ELqOP89cdAtbRVa7bwxdycPfDSD25NfYIH3E1xjXkFhyxux3r8W7wdX4nfzd/gP+g/+HW/BO7aVW9oV1YMlOBqAzLSL+6UsLaeIiABvyHMtiC1Tz0Q1MnjYSJY1fYFmRRvx/34YI8f9zDfLD5BVYD1Vxr5zLra3m2P9tBeOwxs8GK0QQlRu2YVWUvdtwp98THU6AzC2TwNCfb14+ZdtaIMJ7ReBlkSREJcNSRRdRrxMBr6/uxOjBvVlhu6Bz8bxfDZrCQXFdk+HViFyCq08OHk9wX++QJHBh+TWj7N4Vxr703KdBdyYKFp7MINB7y/lzyWLmO37Ej3N28ls+yCFD2wi4Jr38Yqsf8ltiOotMNw5zDvtaNIFn2u1O0jPK3aOKMrY79wZUtud4Qnhcb1ueAzb9d/T2HSMD/Of4vtf5tH65d/p/NJ0Zv3naoxTbuBwgYnC9ETUl30onvM0FOV6OmwhhKh0/tiZSjyuaWa1OgAQaDHzrysbs+bgCX7dchQCakiiSIjLiCSKLjNmo4E7u9ejx13jMCpNwF//x5Xv/klqtmtdnqxkiuc8BYdWejZQN9t5NJshHyzDvv0Xuhu34nPlC9x2ZXu8jAYmrDjoLOQXgTb7QubFLyCsteateTu57rOVNCnYxEy/V/G1eJN381xCh/wXv9AY91yQqPbComIBSE89fMHnpucWA86np5G2G60MENbArfEJURlYmg3AdOdvhPoameP3X75quIq5picYrBczN+Qmno/6mK65bzLbdCVeaz7B9kF7bDt+9XTYQghRqczbdpSuXnux+0ZAyN9PSR3ZvhaNowL4fMk+CKwhU8+EuIxcUqJIKRWqlJqvlNrj+jeklDK1lFJ/KKV2KKW2KaUevpQ2hXuExzZEtb+dG8xL8M1J5JkpKyic9xKO99vgteZTHAv/6+kQ3WbdoRNc/+lKHMX5vB00FVtYE4wd7iQiwJvBrWL4aV0y2YVWUAodHIfOOHDRbX217AAf/bGPZ2rv5kPHKzj8oym69TeCase78YrE5SAyphYAx5IPkpVvPU/p06XmOBO/kQEW7Gm7cATVBrOP22MUojJQNRIw3b0QFRRL78T38QsIhjvmM/Dhj5l4Tw/eG9OL19TdXGf9D+k2C6apo7AufE3WLhJCCJxLJfyxM42Opj3oWh1BqVPHjAZF5/ph7E/LQwXWgJwjHoxUCFGRLnVE0dPAQq11Q2Cha/tMNuBfWuumQCfgAaVUs0tsV7iBscfjKKMX34V8wRuHx2BZ+Q7WRoPR7e5AJa6ArOTSTyzIxPF/zWHzjxUb8EVYtuc4o79aTaifFzNbb8A3/zCmwW+B0QTAbV3qklds58e1zmtVIXXQFzn1bNHOY7z66w5erLmWu47+h8KIltjH/IZ/ZB03XY24nFgCIzhujKT/sc/IXvoJSel52B1l+2Cbml0E4Jx6lrYLwhuVZ6hCeF5QLKa7fsc2/HPM9y/DUKvdqUO9m0Qy79Ee1G3dm26ZL/G7uQ/mpW9SPP0BsF9YElYIIaqbJbvT8LemE25NwRDX8R/Ha4X6klNko9AnCkNhJhTnV3yQQogKd6mJomHABNfXE4DhZxbQWh/RWq93fZ0D7ABqXmK7wh0CotAd7yUieyuZlliutv6XrZ3GoTo/gELD1mmln7d5KobsZBxrv67YeC/QvG1HuX38GuJCfZl6bQRB6z/A1mQY1O1xqkzL2CDa1Q5hwoqD2B0aFVIHlXnwgv/SvPNoNg9O3kD3KCu3Zn5IXs1ucMsM/ILlSVPiIhmMrO4zhb/sTai18gWCp4/iwIG9FNsc5z01LdeZKIrwM2LI2IchsnF5RyuE51mCMCWMhFKeGhnkY+Z/17bi01s7MTb/Ln4OuAmvzZMonngdFOV4IFghhKgcftt6lO4W53qGhrjO/zheO9QXgFQV5twho4qEuCxcaqIoSmt9BJwJISDyXIWVUnWA1sDqS2xXuImhz/M47vyDqEcWkx7Ukoe+30iWTxyOGm1xlDZiSGvsa74CQCWuhOzKebOYtWwdCye/w4d+XzHd8RBRE7oCYBrwyj/Kjulah8SMfP7YmQohdVDFeZCfXua2jucWccf4tfhbTLwTuwTlsGMe9h6+foFuux5xeerTPoGHjM/zTdBY/I6sps4PfcnfPOO8550cURRuO4qyF6EiJFEkBMAVTaN4eVgLHku7ijl1n8N8aAnWLwdAzlFPhyaEEBWu2OZgwY5jDAlNRBu9IeafSyXEhTkTRYcdrhVGsi987UQhRNVz3kSRUmqBUmprKa9hF9KQUsofmAY8orXOPke5u5VSa5VSa9PS0i6kCXExjCYMsW0I9PHig1GtOZZdyFPTNqPir8NwbAuk7jy9fOJKjMd3QZcHnaOOts/0TNxnkV1o5aXvF9Nr/mD+Z/6UPvyFI7QBuT3+jeOuPyE47h/n9G8eTUyQhfErDpZ48lnZFrQustm5+9u1pOcV8fU1cYTs+I7CZtfhLU81E27g42Xkmra1eDWtK5uu+gWrfyyBc+477wiItNxCQnzNeGXsce4Il0SRECfd0CGOUR3ieGBHc/7q8inGE/uwzy1t5rwQQlRvq/ank11oo5XehT2mNZi8/1GmVogzUXSgyPUH0Er6R2IhhHudN1Gkte6rtW5RymsmcEwpFQPg+je1tDqUUmacSaJJWuufz9Pe51rrdlrrdhERMm2nIrWqFcyTAxrz27ajXLc0GjsGJn/1fwx4dwl3fbuWE3nFONZ8hcM7EHo9gyOiGY6t5+zOCrVsz3EGvLOEyG1f4a8KyB41G+PTB/Ab8xP+ff6FKapJqeeZjQZu7lSbZXuPc9Dh+p47UbYFredvP8b6xEzevCaeuru/RjmsePV6wl2XJATXt4/F5tCsywsjq+fLGOyF2HbPP+c5qdlFRAZY4LjrUbcRskaRECW9NLQZCbWCuX1pICea34Jhx0y4yPXphBCiqlq0M5Vgs52QrO2oWh1KLePjZSQiwJuduf7OHTKiSIjLwqVOPZsF3Or6+lbgH8NLlFIK+ArYobX+v0tsT5SzO7vV46E+DQiNqsVOS2v62pdQK8SHP3encd/nv8P2WdDqBvDyw9ByBIbk1Wdf9LqCFFrtvDBjKzd/tZowcwF3+SzC0XQYgY17oAzGMtUxqkMc3iYDX29zrf9Sxg8MW5Kz8DIaGFDHiGXTeAqbXIMxQh5DLtynSXQgLWsG8fP6w0S36IXdJwz7tlnnPCctt4iIAG8cabtw+EWBJaiCohWiavA2Gfnk5jb4eBm5b09HUEbsKz7ydFhCCFGh9h/Po3/IEZTDirH2P9cnOql2qC97sjTaO1DWKBLiMnGpiaI3gH5KqT1AP9c2SqkaSqlfXWW6AqOBPkqpja7XoEtsV5QTg0Hx2JWN+fyWdjTvfweRtiN80Qc+H92W1hm/YnAUk9N8tLNw8xHOfz08/ez9hXuYuOoQd3Sry09ttmO25mLq8a8LqiPUz4v+zaP5dWc2Dr/IMieKtqZk0SQmAPvyD1G2QswymkiUg+vbxbL9SDZbj+RiazAA8775YCs6a3nniCJvdNoudETpI+mEuNzFBPnw4Y1tWJfpwwJTD9gwEfIzPB2WEEJUmOSMfDqZXdPUzzKiCCAu1JekjAJ0QAyOrJQKik4I4UmXlCjSWqdrra/QWjd0/Zvh2p+itR7k+nqZ1lppreO11gmu16/nrllUCk0Ho43e6C0/0KthOGMDl7JGN2HUjCxO5BVDWH3sUfE4tpzl6WgVoMhmZ8qaJPo3j+KFK+tgXvMptvp9S12M73ziY4M4nluELTAORxnWKNJas/VwNu0jHFg2fEVh4+GYomQtGOF+Q1vVxMtk4Kd1yZiaD8VgzcW+789Sy2qtnSOK/L0wHN+NQaadCXFWneqF8fnotnxcPBCjrYD9c9/zdEhCCFEh7A5N8okCmtl2YA+pD37hZy1bK9SXlKwCHAE1IFsSRUJcDi51RJGozixB6EYD0Funw76F+OUl4t/1bvam5XLTl6tJyynC2OJqDCnryrz4s7vN3XKUjLxibu5UG8e6CRgK0jH1vLhRPc1inIv0ZXrXKNOIosOZBWQVWLkqbzrKVoBJRhOJchLka6Z/82hmbDyMrU4PHGb/s04/yy6wUWxzUNsrG1WcK088E+I8rmgaxTtjb2SNqQ2Bm7/m4/lbcTi0p8MSQohydSy7kGK7nbi8LehaHc9ZNi7UF62hwDsSciRRJMTlQBJF4pwM8ddhyE9Dz34Eh08YTfvczBe3tGNfWi793vmTOY5OzoLbZ1xcA1nJOJLXY9u3hOLtv1K04Qf0BSwoOnHVIeqG+9G1TiB6+fvYanWGuE4XFUrj6AAADhOJyk4Gu/Wc5bceziaIXOJTplLQcDDmmOYX1a4QZXF9u1gy860s2J2FtV5fjHt+BYf9H+VScwoBqKOTnDskUSTEedUJ96Pl9S8QrrJJWvw1Y79fj9aSLBJCVF9JGfnUU0fwsWVhqn3u351rhzmffJZuDEflpYLdVhEhCiE8SBJF4twa9MPhHYjKTkYl3AQmb3o2iuCXB7vRMNKfB+aeYK+pIfkbfrrgqgtXfAbvNMfwZW9ME4fg9cMovGfeheOT7jgOrT7v+dtSslh36AQ3dYxDbZmKMTcFU8/HL+YqAQjz9yYywJtdxeEo7YCspPO239u0GZMtD3O3hy+6XSHKokv9cGoEWfhhbRLG5kMwFqSjE1f9o1xajnPtopjiROeOcEkUCVEWloa9sUXF83jAfOZuSWHhjlIf5CqEENVCYkY+bQ27nRvn+SNrXKgzUXRUhzh/R849Vt7hCSE8TBJF4tzMFmg6FADVbsyp3Q2jAph6d2fevKYlM22d8D2+mS9nLSS/uGx/Ydi/fBrm35/mD3sr7rT+i9ci/seSXlMpunUe2jcMJg7HvvePc9bx3apELGYD17WugWPpO9giW0L9Ky76UgGaxASyIcf1hKjzjGzaejiLTn7H0AYT5pqtLqldIc7HaFCMbB/Hn7vT2BvYGW3wwrpt9j/KpboSRaH5B3B4B4F/ZEWHKkTVpBSmbg8TVpjIjUFb+b/5u52jiopycRzfDw6HpyMUQgi3STpRQLxhPw6vQAhreM6yEQHeeJsMHLIGO3fIOkVCVHuSKBLnZej7Eo6bpkNY/dP3uz643nbXIwBkrJ7K9eOms2zejxQt/ZCiOU+jk9eedo7doZk6czZRv9/HblUX64hvaNZzJLOzG3DLb3Y6f5fD9NZfYQ+KQ02+Huv2X0qNKbvQyowNhxnaqgZBh37DeGI/xp6Pg1KXdK1NowNYleGcgna+dZe2pmTT3JyCI6Q+mLwuqV0hymJM1zoEWkyM+zMFa52eGHb9AmdMjzk5osgnex86vNEl/58Q4rLSbDj2oDie4WveTB9L0Wt14PWaGD5sDRu+9XR0QgjhNkkZ+dQ3Z6BD64Lh3B8JlVLEhfqyK9/1O7KsUyREtSeJInF+/hEYGvY56+HQmg2w12zHk+ap/FJ8J91W3on3wucwr/0c9eUVZE6+k11797J873HGfjKLXuvHUmgOouZ9M7mydX0eu7Ixy57qw/jb2tMkOoAn5h5lfsevsUU0w/TjLRRvmPqPNn9el0yB1c7oTnWwrx2PPTAW1XTIJV9qk5gAkuzBOAzmc44oSs0uJC2niDjbIYiUx4+LihHkY+aenvVZsCOV5Og+mLKT4Ojm08qk5hRiMRswZezBIOsTCXFhjCYMfV/E7BdKnimE3+lEXvfnsftH49iz0NPRCSGE2yRl5FPTkIEKrFGm8rXDfNmW4+fckBFFQlR7kigSbmHs9x8KEm4nv+/rzG//BX0NXxJf8Bmf2obgu+tnakzsxvJvnuXR1OcIMdkIvWsGgZG1/j7foOjVOJJvbmtPh7qhPDIzkc1XTKS4ZgfMM++BY9tPldVa893qRFrVCqZlYB6Gg39iaDUKDMZLvo4m0YE4MJDnU+Oci2pvTcnCQhGBhYcxRDa95HaFKKsxXeoQ7u/F/w7UQysD1q1/P/3M4dBsPZxNPf9iDPlpKEliCnHBVMtr8X5oNceGTuKhnFv4I+ImDPV6QeKKf4zgE0KIqioxI58Ix3EMQbFlKl8r1JetmSa00UsSRUJcBiRRJNyjTjd8hr+Db7f76XfV9Ux7YjiPDW6Hqf/LLOg9i5yoDjxpnkpDwxHMN36Hiir9CWHeJiOfj25LbKgPd07ZyZH+n6NN3thWfnyqzKr9GexNzWV0p9roTVNR2oFKGOWWy6gf4Y/JoEgzxaAzDp613LbD2dRXKSi0fBgXFcrP28R9vRrw2wE7J8LawM6/p2e+PncHK/enc29T19PQZCFrIS7a4PgaNIz0590Fe9C1u2LIPw7H93g6LCGEuGSFVju5OVn4OnIhqGaZzokL9SWv2IHNLxqdfaScIxRCeJokikS5CPIxc3u3utzZvR6DenWjxv2zcIyeib55Gqp+73OeG+zrxfgxHTAqxa1T9lHY5FqMW34k98QxVuw7znsLdxPkY2Zwy2gcGyZhj+34j/WTLpaXyUCDSH8OOcJRmWdfo2hrShbdAtOcGxEyokhUrJs6xhETZGF6QRvM6Tuxp+3ly6X7+WLpAW7tXJshNXOcBSMaeTZQIaowo0HxaL9G7E3NZWF+A+fOQ8s8G5QQQrhB8ol8YlS6cyOwbCOKTj75rMAShc4+XF6hCSEqCUkUiQpjqN8LQ/1eZSobF+bLF7e242hWIWP3dUDZC/n47Re48YvVrNqfwf296mNJ3YQxYw/G1je6Nc4m0QFsyw9FFZ6AgsxSy2w9nE0732Nog9ltSSohyspiNvJgn4Z8ld4CBwb2zXyNV+bsYGCLaP49pDnq+G60yQeC4jwdqhBV2oDm0TSJDuC1VUU4/KJwHFzh6ZCEEOKSJWbkU+NkoqiMI4pqhzkTRVnmcJARRUJUe5IoEpVWm7gQ3h/VmkOm2mz1bs29PouYcGsCG17oxz096+PYOAlttEDzq93abpOYQLYWhDo3ShlVdCKvmMOZBTRQyThC64PR7Nb2hSiL69rFYgqN4wfjIBolT+OmmCO8MzIBo0HhSN2BI6zBeZ9iIoQ4N4NrVNGB9HwSA1s7RxTJOkVCiCouKaOgxIiisiWKYkOciaI0wlE5KfKzUIhqTj5FiEqtf/NoFv6rFy1GPEWgNY2e9lWE+HmBrQi2TsPR5CqwBLm1zSbRASTpCOdGKQtab0vJBiCq6ABEyPpEwjPMRgOP9G3Iy3kjOKbCeV5/hkW51iZK242SJ54J4RZXNouiQ51QvjsSiyHnyDmfiCmEEFVBYkY+ccYMNArK+NQzi9lIVKA3SfYglL0ICk6Uc5RCCE+SRJGoGhr2xx5cB9vKT5zbu3/DUJjp9mlnAE1jAknSkc6NE/8cUbQ1JQsfCvHJO4wxqpnb2xeirIYl1OSFEe1xDHwLn8zdFCx5F4rzMGQnYZBEkRBuoZTitREtWGF1/Z86JNPPhBBVW1JGPvW9s9D+kRc0Mj4u1Jd9hYHODVmnSIhqTRJFomowGFAd78F0eA0cXod9/SQc/tFQ79wLY1+MyABvjL7B5BsCSv3L8dbDWXQOzEChQZ54JjzIaFCM6hBHTIcR5De4Cu/l43Ds/t15MFwWshbCXRpEBnBlrx5kaH+ObF7o6XCEEO5kt2Jd+i4cWunpSCpMYkY+tYwZZZ52dlJcqB+b80KcG2m7yiEyIURlIYkiUWUYWt+Ew+yHfeErGPYtgPgbwGB0eztKKZpEB5JiiMKRcfAfx7enZNM9WJ54JioX78FvORdXn/Wgc4eMKBLCre7r3ZBt5hY4Di4jv9jm6XCEEO6QdxzrhOGYF76IY96zno6mQmitScrIJ1Kno4LK9sSzk+JCfVmWG43D7ItNFvcXolqTRJGoOixB6ISbMO5fhNJ2DOUw7eykJjEB7LWGwYkDp+3PKbSy/3geLb2OoI1eEFqv3GIQ4kIYg2ti7fUChuIctDJCqDyNTwh38jYZiUvoS019jK9/XX76QWsB1j/+B/kZnglOCHHBdMpGbJ/1xHh4DY56fTCkrC91yYHq5kS+lbxiGyHW1AtPFIX5YNNG8iLbyTRcIao5SRSJKsXY6V40CntM63IdMdE0OpCD9kjISgKH/dT+HUdyAIizJ+IIbQBGU7nFIMSFsnS+i6Lotjgim4HJy9PhCFHt1G7TD4C9a39n6+GsU/ut81/G/OersOE7T4UmhLgA9k0/oL/uj3I4ULf/hmHIO84D22d4NK6KkJiRTyB5mB0FFzH1zPnks9SQ1piO75DkuBDVmCSKRNUSVh/bgHEYB75Rrs00iQkgUUdicFgh58ip/Sc/GITk7pMnnonKx2DEdOsMuPlnT0ciRPUU3RKHVwDdzbt4dvoW7A6NTlyF6S/ngxbsu+d5OEAhxPlk/zUZ4/S7KI6Ix3jvn6iabSCkDo6YNji2Tvd0eOUuKSOfGsqV4CnjE89Oigv1A2CPpZVzR+Iqd4YmhKhEJFEkqhxzpzshrlO5ttEwMoBk15PP9PG9p/ZvTs4kzt+BOSdJnngmKiWjTyDGgEhPhyFE9WQwouM60c9vH5uTs/hu6U7s0+/HHlgT3f4uDEmroDDr/PUIITxi5/4D2H99ig2OBnQ7+ggTNudjtTsAMLS4GsORDZBx4Dy1VG2JGflEq3TnxgVOPQv398LHbGS9ox7a6IXtwLJyiFAIURlIokiIUvh4GTkR2oIiZcG6YTJaa95fuIcZG1MYUSvPWUieeCaEEJcdY52uBObuZ2gDE45Fr2A6sQ/D0I9QLUagHDbYv9jTIQohSjFn8xF2jn+IAPLI7vc2DWPCeHHWNga+t5TFu1Kh+XBnwWo+/SwpI5+G3q6E9gVOPVNKERfqy4FMO/aYNlVmnSKttadDEKLKkUSREGcRF1OD2YYrMG//mX9/t4D/m7+b4Qk1eKC51VlAnngmhBCXn9pdAXglYiG3ModF/leh6veE2A44vANxyPQzISoVh0Pz9u+7mDxlAsMNSyjsMJae3Xsx+a6OfD66LTa7gzHfrOHx+Sew12hb7aefJZ3Ip6FPlvPBFwHRF3x+rVBfEtPzUbW7Yjy2GYpyyyFK9ype+DrWRa97OgwhqhRJFAlxFk2iA3gvvy8Oh52YXd/yRP/GvDMyAVP6LrTRG0LrejpEIYQQFS0mAW32JXDDZ+R6R/Hg8RHM3XrU+XCD+lfAnvngcHg6SiEEkFtk457v1vHFom285zcBW3A9/Ps9CzhHx1zZPJrfH+3J2N4N+GldMjOKO2A4ugnS93k48vKTmJFPbVMmOiAaDMYLPr92mC+JGfkY6nZFaTsk/1UOUbqRtRDz6g8wbpjo6UiEqFIuKVGklApVSs1XSu1x/RtyjrJGpdQGpdQvl9KmEBWlSUwgSTqKBY523GH5gwe6RKOUwpG6A0dYw4u6uQohhKjiTF44arYHwOfaj6lbM4oXZ20jq8CKoVF/DHmpcHSTh4MUQiSm53PNxytYtDOVHxr/Sbg1BdOw98FsOa2cl8nA4/0b89ygpryd7BwtbjtzVFFBJsVTbqV44etVYgTN2djsDlIyC4nm+AVPOzspLtSXAqud9JAEtDJW/nWK9v+BwZqPIeewPKVNiAtwqSOKngYWaq0bAgtd22fzMLDjEtsTosJ0qR/GjR3jqDfsGbxtOVjXOf8SodJ2yhPPhBDiMmbs8yxFg97D3OgKXr86nvTcIt78bSc06ItGOUcVCSEqltbYD66g8PeX2TPjdT744C0iszYxY6CNlokTsSeMhrrdz3r6XT3qcd+wnqxzNCR52WQKiu3OAwUnsI4fhnnXbLyWvoH9vQRsq78Cu62CLsx9jmQVYndoQmxpqAtcyPqkuFBfALalO7BHxaMPVu51imzbZv69cXSL5wIRoooxXeL5w4Berq8nAIuBp84spJSKBa4CXgUeu8Q2hagQft4mXru6JQDF69pjWPUxtB6FITsZomR9IiGEuGzFdcLb9fTNlrFB3N61Ll8uO0DfppH0jGkNu+dh7Pmkh4MU4vLgSN1N8YYpmLb9gCk7CSPQEHjrZIGF4PANx3jly+eta3TnOmxIGkGd7W9y7yc/0aZxPa7b/iBBuXspvvY7zP5h2Oc9j9fcx7Ct+hhDzycw1OsJgTHnrthWDEe3YE/6C318H6YOt4MHnp6blJEPaPyKjqGCLm5EUYe6oUQFejNu3i661O+Cad2XYC38x0itSsFuw7D7N+x1e2M88IczUVSvp6ejEqJKuNREUZTW+giA1vqIUupsz2R+F3gSCLjE9oTwCGOXBzH+dAv2JeMwAkRKokgIIYTTY1c2YuX+dO77bj3z23Sn1ub3Ie84+IV7OjQhqi9rIcU/3Y3Xrpl4KwMHA9sz2WsEk7Jb0bthKP/rF4ql4CiOzGTMce3AN7RM1bbufytsf5M+ObNpsWIzviqF262PsmwS1AzJp1bwf+lXex2Dj31G2Ix7AMj3iSEvojW2mNYU26E49wS2/BNQkEVQYTJReTsxOooxAtpgQm+ciB74PwxtbwGlyvFNOl1iRj6h5GC0F0HgxY0o8vM28eygpjw8ZSPLazeil70IUtZD7S5ujtYNDi3HUHgCOtyBI20HHNksC/QKUUbnTRQppRYApS2J/1xZGlBKDQZStdbrlFK9ylD+buBugLi4uLI0IUS5MzYbjC2oDsZVHzt3yNQzIYQQLr5eJibe0ZEbv1jFYxui+MmoYe9CaDXS06FVbw6H80N2BX7QFpVEYRbWSTfglbSCOSGjeS21C4ePBdGhTiivDYxjSKsaGA0KaMUFrygZVBNHbEeuT56Nw+zNwb5fMczSluapuRxKzyfpRAHvH23Ey3mv0ErtI8Gwj9b2PbTO/4vYxF8BcGhFDj5kaz+SCWW2ox+bdEOyw1rRPDaUR3PGYfnlIez7F2Mc+h5YAt39DpUqMSOfWGPGqeu8WENb1WDy6kRe3FDIn4DtwHJMlTBRZNs2C4PJB0P9K9BRLeHoVk+HJESVcd5Ekda679mOKaWOKaViXKOJYoDUUop1BYYqpQYBFiBQKfWd1vrms7T3OfA5QLt27XRZLkKIcmcwojvdj5r3JNpkQYXU8XREQgghKpFQPy8m3tGRUZ/ZOJ4ThNowizBJFJUfrbFOGonBy4JxpDzN6LKSm4b126sxpG7nUdtYFp7owTWdYrmxQxwNo9wzecHQ/nYcqdvh+onUa9CbeqWUySuykZpTRF6RjdwiG7uKbGzLOY6vjxeBgaGEBvgQ6ueFd7GN7KQs8pIz2ZScxZcbj1PU4VVeqD8Pw5+vY09Z7/wejol3S+znknSigBZ+OVDMRS9mDc4nxr08rAWD3j9BSkBdIg4uB55wW5yX6lB6HrHBFtSuX3DU64PByxdDTDwc+ANsRWDy9nSIQlR6lzr1bBZwK/CG69+ZZxbQWj8DPAPgGlH0+NmSREJUZua2N2Nf/BoEx2GUJ54JIYQ4Q0SAN5Pu7sKa99vS5cAf/D979x2XVfUHcPxznsFeCoIgKrgHCu5t7l2OtLRyZNnS9rA9f+29bdiwzLJM07QsNTN37r0FZIiCstczzu+P59HQUDHGA/p9v1684Ln33HO+9x7g8nw559zt8Wm0qBPo6rCqBMvuXzDX6wruJXujb981H/PB39BuPo6RRQaZUHJZOBlH/udDUZlJTCq8H5+ogfw1vAX+nuaybSd6NIaokWA891slb3cTke5n7w8ptlyfZh70aebY9/CcbXzzdyKTHryTWpFd4fuJ2GeNwXDXpnJPYMSfyGW4V4YjUfQfF7M+pXFNX8Z3imDp+gaMSVjlWNz7PNerouxOzmTg238xoc5xns4+im5+FQAqtAXYrXB8D4RGuzhKISq/0t5VXwL6KqX2A32dr1FKhSmlFpU2OCEqFTdvCoZPR/d73tWRCCGEqKRC/Dzo0G80/iqHt778hqT0PFeHVPmdjMP83Wjsq94tWXlLHnrxY2iDCVWYDWn7yzc+UTlkJpEzrQ8FGceYaH+MK68ez7tjWpV9kuiUckp6TOnVAI3m/T8OQN3OGId/6HhQysYvyqW9ohJO5BJpTkcb3cCr9Guo3dO3IbvMUZisudiStpZBhKW3Me4kAKHJS7BiZId3J8eOms4RW/LkMyFKpFSJIq11mta6t9a6ofPzCef2JK31oGLKL9daDylNm0K4kleTPpjqd3d1GEIIISqx6i0HoJWRgdalPP/ZbLJTYtEF2aBlRn2xkh1vMO37fytRcduqdzFmHoFT/7hJ3FRekYli2HNOuKBRG0emj0XlZ/BU9Vd44e6bubpNOKoKrk8VXs2La9vVZvbfRxxPIavXA1vdrtj/fBUKc8qt3dTsAtJyCglTJ9C+oWUyCs/Pw0y3Po4RO38t/YnY1ByOZeWTW2hFu+j33c6kDAI8TYzz38YG1YKrP9/FN+vi0dUi0GYv7MnbXBKXEFWNjNMVQgghhChLHv7Y63ZlpPqD9zPvwufDaNSLtbC90kD+m10c5zUxJW+G7OKWu3TILrBCRiJq5RtYGw9BtZ+ENnujEzdWVKSXPfvOn1Cv1Ycj6yu03b++fJLaGRv4seZdvDrlOuoGeldo+2VtSs+GGAyKd5ftB6Uw9n4SQ+5x9Npp5dbm4p1HAQg1nECVYn2isw3s1IpEYxidDn9AtVkDMf7yEGkrv+Bo7O4ya+Ni7EjMZEDwSTyz42jR5wY61g/k0bnbefW3/diDm6OT5XewECUhiSIhhBBCiDJmvHYGedf9xE+NX2aqZRJ/1Z0CaKw/3y8ji85iT96GNjvf+B9YWmyZb9bF0/Lpxez+6l6UtmMa8LzjQROh0WgZUVQxbFbsS55BaTvWtR9VSJNaa76eM5eOsR+y2bcHY255FLOx6r99qenvwfUd6jBnUyKxqTlQpwO2hv3Rq96GvPRyaXPR9mQig7zxyjuKKuX6REUppSi4chozdT+OZNoJ2P8DtVfcT80Z3bAmVOzPZqHVzt6jWQwy/Y1G4R09lM8ntOOq6DCmrzyMpUYUKmW7/A4WogSq/m9aIYQQQojKxjMAz0Y9uGr0rWQ3u47x+zqzP+o+TAnr0Nt/cHV0lcvR7ehG/bF7B2Pbt/hfu79aG8ejc7fTw/MQTVMXsytyPDifPmqo1RqVsgOshRUc9OXHtnkmppMHsQdHYdwzH3JSy7U9rTVv/LyRrlunkm0OJPq2LzBeAkmiU27vUR+zUfHOUscaW8Zej2MoyECXdK2ui5CWXcDaQycYFBWMykoG/7IbUQQQ0bI7Bb2eZUjWI7zRZgn7r/4du9kL6/JXy7SdC9l/LItCm50WmX9hC+8APsEYDYpbutejwGpnS2E4hsIsSI+r0LiEqIound+2QgghhBCVjFKKV0e1pFGIL9f+XZ/8Gi2x//YEFGS7OrTKIfcEhqxEDGEx6AZ9UIf+cDw9yenL1bE8MW8HfZsEMS1oNmmGIEbv6sSKfccdBWq1RtkK4NguF53AZcKSD3++jCW0DYaR01G2QuybvirXJt9ZeoC665+hjuE4/td/gcG7Wrm2V9GCfT0Y1ymCeVsSOXAsG0JbYms2HL3uA8g+/k/BnDQK13yMdftcsNv+U1u/7UrBZtdc1cCEslugDKeeARgMituuqE+PxjWYvioOFdKUgtY343FgETql4n42dyZlEq6OUy1rL4ZmV57eHlXLn+ZhfnyXEODYIFOAhbggSRQJIYQQQpQjLzcTr42KJiPfzppGD2HMTsa24nVXh1U5HHUuLFuzJcZG/TDkp0PiBgA+W3mYp+bvpG+zED5onYjbsW14DnyW8JAa3P71RnYkZkBYa8fxSTL9rDzZ/p6OMSsRU98nIbgJ1tqd0Bs+A7u9XNrbHH+S/X/MYKRxBfau92OI7FIu7bjard3r4WE2MuWbTcz++wh5XaeirAXY/3wF697fyP/mBvTrjXFb/CCmOROwvNcR29bvLzphtGh7MnUDvWjkkenYUIZTz05RSvHK1S3xMBu5f/ZWzJ3vwG7ywvJnxf2u25mYQWezY4SWoV6PM/aNblebX45VRysDWha0FuKCJFEkhBBCCFHOmoX64etuYkl2BNaoazCseQ9OHHJ1WK536j/7NVtAvZ5oZcSy51deW7yXZ3/eRf/mIbw/phWGlW9gq1Yfrzaj+eLGdgR4uTHh8785ooOxe1aXdYrKyeHUHGav2k3BH6+SUK09X6VE8MPGBAztbsaYEQ8Hl5V5m3mFNh79bj1Pmr+mMLglpp4Pl3kblUWgjzsvX92SPIuNh+Zso/UHsazy6Yvh748xzRqFOX4lha0mom9biXXEdACMc2/G+l5HbFu+O2P03bmczClk9cE0BrUIRWUmOjaW8YiiU4L9PHh+WAu2JmTwwfp0LK0mYN79Y4X9rtuRlEl3nwS0yRNqNDlj31UxtdAmT4651cYuC1oLcUGSKBJCCCGEKGcGgyKmTgCb4tMx9XsWbTRh/eVRV4flcvbkbdh9Q8E7CDwDyKzRmti183jvjwNc3Tqc965rjVvcHxiPbcfQ9W4wGAnx8+DLie2w2Ow8OGcbhLaSRFE5OJaVz9UfrubIotfwspxk8tEhPPnTTh74fivf58Rg9wzEuv7TMm/35V/30DN9DsGcwG3QS2A0lXkblcmV0WEsf6AH8yZ34br2dXgu92q+sfbkbts93BX2DQtr3UWGX2NMLUdinrIO24jP0CiM827B+nYM1tUfQGHOOev/bddRbHbN4BahkOFMFJXDiKJTBrcMZWhMGO8s28/fYdeBMmFZ8Wa5tXeKza7ZlZRJC3UIe80W//q+8fc0M6hFKBsLwtFHZUSREBciiSIhhBBCiArQqk419h7NJNu9BrrbA5j2/3LOp3xdNpK3Qc2WZBdYeXr+TqYl1aeh/TBfX1ub16+Jxmw0YP3zdWw+oajoMacPaxDsy8Qukaw7fIK84GjU8T1QmOvCE7m02O2aB77fhrngJHd5/kp25AA+efRW/n6sDzG1A3h7eRzWmBswHlgMGQll1u7qA6nMX72Nu9wXYGs4ECIuzSlnZ1NKEVM7gKevas7CR0dSZ/yn+LUZxYaEXO6bvZU2/1vC+M/W89O2ZAqbDMM8ZS22a75G+9TE9Nsj2F5vRuFvz0D2sX/VvXD7UWpX96R5mB9kJjpG23iW73pPzw2LolmoHxN/SOBIxAhM22b9k6QqJ4dTsym0FFIrbx+GWq2LLXNN29pstdTBlJUIuSfKNR4hqjpJFAkhhBBCVIA2dath17D1SDrGzlOw+dbCvm6aq8NyHUseKm0/edWbMeCtFXy5Jha/qEEAdNVbHWWOrMd0ZDWq8xQwuZ1xeL/mIWgNGy0RKG37Z70jUWpfrollxb7jTI9Yhsmag8+Apwj29aCGrzv392tEUkY+P5v6gdbYN3xZJm1m5lt48IdtPO67AHddgLHfs2VSb1VjMhro2jCI54ZFsebh3sy9ozM3d4tkf0oWd3+7hXbPL+GhH7fzt0dnTJN+R09cjK1OF8yr38T+ZhSFP06G4/sASM8tZPWBVMe0M6UgIwHtVwuUKtdz8PMw89VN7WkQ7MON+zqjtR3bqnfKtc0diZk0UImY7PmoWm2KLdOxXnXSfBo5XqTsPGOf3a7LNT4hqhpJFAkhhBBCVICY2gEAbIo7CSZ3DHU7/evNymXl2C6UtjFtrzdp2YXMvrUTt197FXafUGz7FgNg+fN17B7VMLSZ8K/Dm9T0pXZ1T+amhDg2yPSzMrH3aBYv/rKH52uuICphFpbWN0JIs9P7uzYIon1EdV5am48lshd605dgs5SqTa01zy7YhUfmIYZZF2NvNQ5qNCrtqVR5BoOiVZ1qPDKwKSun9mLWpI4MjKrJwm3JjP54Lb3f+JPpccHkDv8CNWUDtpZjMO38Ad5vR+HX17J5xQJsdptj2hmgMxJR/uWzPtHZArzc+PrmDpiDIplv6wIbvzjzaW5lbGdSBm1Mhx0vwloVW0YpRfM2jlFqaQc3nt6en3WCnJk3kPnDXVhy08stRiGqEkkUCSGEEEJUAH9PMw2DfdgUfxIAFdIcQ2Yi5KW7NjBXcS5kPS8lkOeHR9EuorpjpEPDvqhDyyF5G+YDv6Lb3wruPv86XClFv2Y1WRirsfmEYpdEUanlW2zc/e1mxpqXc336NPIbDsFt8KtnlFFKcV+/RhzLKmC575UYc1LQexaWqs37Z2/lh40JvB/yM5jcMPZ8pLSncskxGBSd6gfy6qhoNjzel9dHRRPgaeZ/C3fT4YWl3L8sh63RT6Hu3Y6l64MYE9bRc+1E/vaYQuMNT2M/sBwyE1DluD7R2ap7O5JF831Ho6wFnPzsagrWf1Eu0752JGbSzfsI2s0Xqtc/Z7nBHaM5pgNI3LMOgMzEvTC9Lz6HfsV351fwQWfy9pb9Iu1CVDWSKBJCCCGEqCCt61RjU3y6Y5pDSHPHxmO7XRuUiyTsXkem9qRrm9aMaP3Pm1dDo34YCrOw/3ATdrMXxo63nrOOfs1CKLTaOebbTEYUlYFXF++l0bHFPK4/Ij+iFx7Xfl7sYtId6wXSpUEgj+0IxeobjnXZC2DJu+j2ktLzGDVtDT9uTuTVDnk0OfkHdL4bfEPK4nQuWZ5uRq5uE86Pd3Rh0V3dGNkmnF93JDNy2hp6TdvFx8bRHLh+Hfdap5DiH4N5xywMXw9FZSWDX1iFxhrk485Lt13N2x63kpV2FPdFd6Nfa0T+l1dj2T6vTNrQWrMjKYModQh7WCswnPstbrCfB0e9GuKeuov4LUvxmtEfU14q2df+QM51P6MNZjxnDSd33n3oguwyiU+IqkgSRUIIIYQQFaR13QAy8iwcSs2BYOd0nmOX3/SzpPQ8Ug9sJNZUj6eGtjhzZ+QVaIMJQ9o+7K0ngFf1c9bTpm41qnu7sdESieHkwct3dFYZWLQ9mbjVP/Cm2wcU1uqIx/Xf/GtdqKLu69uY47k2FkVMxZy2l8KFD11Ue+sPn+Cq91YSn5rJd/1tDEt+G5t3MIbOU0p7KpeVZmF+PD+8Besf68Nro6IJ9nXn1cV76f/+BuZaO2MZ+SWGhw5jGzmDwtYTocWoCo8x2NeD0Xc8zRiPD7mOlzjadAKm1N2Y54zHtuGLUtd/5EQeBfl5hOUfwFir+GlnRQVEtKa+jqfm3Gs4oX2IHz4f3yY98WnYBePk1WTH3IzXlulYP+iGPnG41PEJURVd2s+bFEIIIYSoRNrUdTxtaFP8SRq0CUe7+6FSdrk4qoplsdm5a+bfzNCxWJrfgIfZeGYBDz/stTtiOLIOU5c7z1uXyWigd5Ng5u+syRCApM1Qv2e5xX5J0ZrMowexxa/n5N5V1Dqwho/cDmMJbonHuO/B7Hnew9vUrUbPxjV4YoeZXm2n4LPhPayRV2CKHvmvsnmH1nIy+TCJWTbiM6zEpls4ciSWF9y30dN9K+Y/M9AGMwz/qNhphuLCvN1NjGwTzsg24cSn5fLDpgQy8yxEh/uDUhijhmKMGuqy+EL9Pfnmlo6Mmqa5al9Dvp/0BOG/TMC46AF0UANURNf/XPeOpAwaqyMYtRXCin/iWVF1ojrD7o/Y5d6CG7KmkDEjkQFRNm7rXp8W4f74DHudgmZDMM0Zj+3zwRhvXIiqHvmf4xOiKpJEkRBCCCFEBakX5IOfh4nN8Se5pm1tdI2m6JSdl9UQ7w+XHyQtYR9e7gUQWfybOuPAlylMi8OtBNNk+jWvyf0b64AHkLRJEkUlVLDgAfw2fQqAB25kGLaZxWQAAQAASURBVBtwIvp2gvo9CO6+Jarjvr6NufK9lVx/qA+vuy+j1rw7eWePD5metTmRU0hWZjojjn/IldbFeAJhQLtTB5vAaq6Opd4A7E0G4t6oN3j4lcepXnbqBHpxX9/Ktxh43UBvvr65A9d+tIbrP9vInBs/JOjbQajvxmK85Q+oFvGf6t2RmEEr4yHHi1oXThTR9CpSh35NZJM+LCiAL1fHMmt9PAu3JdOnaTD39GlEVKOe2MbNR80Yiu2zQZhu/BkCz732kRCXmsvp7xIhhBBCCJc69RSjTXHpjtc1m6OO7QJ9eTyaOT23kI9XHGJMnXTHhpotiy9YMwq35oNLVGe3hkFYzP6kuoVjT5B1ikrClrgZt03TOVl/OBM9XqermkG1yUuoMewFlFe1EtfTItyfB/o1AoOZp8z3YdGK/rsfYf6mw1hi1/J8yu0Mtv7GssAxfNf2OzYNmMfJ0YsoGPsz1puWYXroAJ7XfIx7y+GSJLpMNArxZcbEDmTkWbju6z1kj5iJstuwzhwNBVn/qc4dSZl09YrH7hkI/rUvfIDBQFCrK/H09KRWgCePDmrK6od78UC/Rqw/fIIh767klhkb2KMiUeMXoKx5WD8bDGkH/1N8QlRFMqJICCGEEKICta5TjbeW7iMz34JfcDNUQSZkJkIFPo3IVT5ecYicQitXh51AHzejajQpdZ0eZiNXNKrBxsMR9E2SRNEFaY110SMYPapxd+Z1rM22MWtSByKCvP9TdVN6NWRKr4YAWHd60Pz7G1hT8w3cUjZj9QnDMnQBvRp0K8szEFVci3B/PpvQjhumr+Pmn0/yzYjpmL+9Fsv3N2O+btZ5F6M+m9aanYkZRJkOQVgrx5MT/wNfDzNTejVkXOcIPlt5mOkrD/PbOyk0C/VjfNSHjNh+B7bPBmLp9hDKsxoGz2oYvAIw+oWCX+h/alOIykxGFAkhhBBCVKA2dauhNWyJT//nyWeXwTpFadkFfLE6liEtw6iWuQcd1Pi8iyVfjH7NQ1hfEIEhKwkyk8ukzktVwY75uCeu4Ue/saw4YuHNa2JoU/fcC4ZfDFPzKyloMwn3oxvJbTIS4x2rcZckkShG+8jqvHlNDBviTnLvhkCsfZ/HfOBXrMuev6h6UjILyM3JpGZBLIaSTDu7AD8PM/f0acTKh3rxxJBmuJsNTF1pZ3DmVNJzLXj8ej/ucydi/mY4xk97whtNKHynHfk/P4L1wB9gLSh1DEJUBjKiSAghhBCiAkXX9kcpx4LW3bs0dWw8thMa9XNtYOXsoxWHyLfYuLt3Q/hyB6ph7zKru1eTYD6mJTaMWH+8A/ex3xf7WPfLnrUQ9fuTpHlG8kh8W+7v24jBLct2NIT74FcoaDcJ75qNy7RecekZ3DKUxPQmvLBoD7UCruChlmMwrnwde51OGBr1KVEdOxIzaK5iMWAv2fpEJeTvZeamrpHc1DWSIydy+XlbMjduacSxown4qVyiqmu6hJtp65tGSMpK3DZ9imHDB9jN3hQ2HISp7XhMkV3/8wgnIVxN7qBCCCGEEBXI18NM4xBfNsWnQ59G2H3DUCm7qOxvJ+yHV2GddwdW/0jsNVtiCIvBHN4Ks38oGN3OO13kWFY+M9bEMiymFg08cyAn5dzrE/0HAV5uVI+I5q3U27g/9n3yFzyAx9A35U3aWXJWfoB3ZiwPWadyRZNQJvdsUPaNGAy4S5JIlNCkbvU4ciKPj/86TMSQu7kmaAtq7iS4bSX417rg8TuSMmhpdD7CPqxVucRYu7oXt/eoz+096nPkRC6Ldx7lt10pPLjtBHYdSr0aHRjZoRpX+e8nKPEPzHt/wrjreyz+kdhirsej3XjwCS6X2IQoL5IoEkIIIYSoYK3qVOPnbUnY7RpCmqFTdro2UWTJJ/uPN3DvfCtmn8Bi99t/moLBkosxJwXPv99HaesZRbQyoA1m7GYvbH51sVWrB9UjUYH1WbBXE2Yr5O7ubeHoVscBNVuU6Sn0axbC0wu6MKxlPvW3TCc/sAEe3aaUaRtVmTXrOO6rXmONimGvb0cWXhODwSCJNOFaSimeurIZyRl5PL7wEF69X+KqdddhnT0B08RFYDSf89iMXAvfb0jgea947O6hGHxrlnu8tat7cXO3etzcrR5p2QUs3pnC/K2JvLo8gVe0J9HhY5g6/GHa5q5Ab5qBx5//w/b3RxgnrwXvoHKPT4iyIokiIYQQQogK1rpOALPWx3PgeDaNQpqjD/0JNst53xSVq/2L8Vn9MrlH1mKa8CPqrGlbhctfxS39EPYb5mFq0BNtySM9dhtHdq0hN+M4hQX5FBQWYC0swN2WS4PC4wQnrsdt71wUmpuAm9yAj+7FbnBzLJJZxomi4a3C+WZ9PIN29WZpeCy1lj5OYfXIEj897VKXv+QFPC05PGe5jg9vaoO/l4u+14Q4i8lo4J0xrbhlxkbuWZLKnsDJPJz4Ctbfn8E04H+OQvmZ5G+fiz7wB6aYazA1GcjDP24jJTOfDoFxEFZ2085KKtDHnes61OG6DnVIzsjj563JfLM+nutnbOPOXu24+6br0EkbMXw2AOvPD2C69osKj1GI/6pUiSKlVHXgOyACiAWu0VqfLKZcAPApEAVoYKLWek1p2hZCCCGEqKra1HU8gnxT3EkaBTdH2S2QdgCCm7okHnvcGgyA15E/yfrtBXwHPnl6ny1lN+Y1b5PXZCTL85qwbv5O/o49we7kTOy6IeB44pWfh4kgH3fyLTaSUvMxKOgS4UuI7SjHkg7zYt8aBFhTISsZt2rhmD38y/Qc/L3MfHdLJyZ88Tf948eyPDCZwLk3k+8zH4+67cq0rarGlnYYz61f8q21J2OHDqRFeNleeyFKy8vNxFc3tWfBtmReWOhBmLUv49a+y0m88TixG/eDv+JhK8Bu8sKwdy5bI25i8Z6ePN6nNp4rY6HWWJfGH+rvyaTu9bihY12e+GkH7yzdz4bYE7w1OobA7g9hWv48eucwVPNhLo1TiJIq7Yiih4GlWuuXlFIPO19PLabc28CvWuuRSik3wKuU7QohhBBCVFmRQd5U8zKz7vAJRl9x6slnO12XKIpfi712Z/K9a+Gz7g2ya7fDJ2og2O3kzpmCUXkyeO8ADm/ZhIfZQKva1ZjSqyHtI6rTMMSHal5uuJkcaxRprdmZlMmvO47y686j/HXMm7EdB1PriqhyP49q3m7MvLkDt8zYwKCDk1nq9yw+MwaT1XkqPj3u/tdIqcvFsd9eJ1DDgSa38WS72q4OR4hiKaW4KjqM3k2Cmba0BtvXHqDF2pfINfmTFzUG99bXYQpryfHZ9xC9fzrz/DYRFXKn4+ByWp/oYnm6GXltVDTtI6vz5E87GPzOSt4ceQOdQhbAwvsxRnQD72Km9wpRySit9X8/WKm9QA+tdbJSKhRYrrVufFYZP2ArUE9fZGNt27bVGzZs+M/xCSGEEEJUVo/8uJ05mxJYeX8XarwbiepyN/R+8sIHlrXCHPSLtdFd7kV3uw/Lx70xZSez68oFbF4+l/GpbzDVcgsZTUYztlNd2kVUP50UKomEk7kE+3pc1DGllW+xceeszWzetY9ZYd/R8MRy8kNaoYZ9gHtoswqLozKwZ6dieb0Zi+wd6Tn1BwK83FwdkhAlEncknpnzFvB5YjjNagfx4vAW1KvhzVXvraRL5i88oaajtBWl7fDQYfCq7uqQz7D3aBa3z9zIoeM5DAs7yesn78bedCjmaz5zdWhCAKCU2qi1blvcvtLesUO01skAzs/FLedeDzgOfK6U2qyU+lQp5X2eYG9RSm1QSm04fvx4KcMTQgghhKicbruiHlabnU/XJKKrN8B+dIdrAknciNI2DHU7YnT3hlEzsFktGGaPZdjxjzjkHcOd9z/NtLFt6NIg6KITPuHVvCo0SQTgYTby4fWtadKgPtemT+bkwA8xpR/G/GkP8le8XaGxuFri7+/irgs4GXObJIlElVK3dh0emXIHr41uS8KJXK58byWjpq1hX0o2Pcfcj77pN2y+tbAFR1W6JBFA45q+LLyzG89c1ZyN+WG8WTgc8645/PnTdDLzLY5CWkNmMjo9Hux21wYsRBEXHFGklFoCFLeE/GPAl1rrgCJlT2qtq511fFtgLdBFa71OKfU2kKm1fuJCwcmIIiGEEEJcyu75djO/7Uphc7NvMSdtwHBfxSeL9PKXYfmLqKmx5Jt8eWLeDtI3z+MTtzewG9yw37oSU0jVfNz56gOpXPfpOl4d2ZJhDc1Y5k7GK3YJTNkAQQ1dHV75K8wl86UmbLLVJ2bqYkkUiSorPbeQl3/dw6z1R7j1ino8MtA5TddagLbkoTwDXBrfhdjsmsXbjtBowTD8rcdZbm9FtEcKde0JuNuyAbCbPLAG1MdWvQEEN8Wj7fWogDoujlxcys43ouiCE7W11n3OU3GKUiq0yNSzY8UUSwAStNbrnK9/wLGWkRBCCCHEZe32Hg2YtyWJv3ND6Zp5BPIzwcOvQmOwxa1F1WhKSoE7t01fw7aEDO7qPYY09zDMXn74VdEkEUCn+oE0CvHhyzWxjGzTFfPAZ+HDJZC0+bJIFMUt/YS69gySmt9CD0kSiSoswMuNF0e05N4+jajh6/7PDpM7yuR+7gMrCaNBMSimDrrml9g+6ccAtZ291jC+s3TioA4jPMiPLgEnqUsSbke3YNo3H1a/Rn7TkbhdcR+G4Kr7e1hUTaVd0W8+MB54yfn5p7MLaK2PKqWOKKUaa633Ar2BXaVsVwghhBCiymtc05d+zUKYfciXrgDHdkOdDhUXgN2GIXE9R+tcxZXvrqTAaufjsW3o17wmdntDlKq4UMqDUopxnSJ4fN4ONsWfpE14I7TRHZW8FVpe4+rwypfNiseGD9miGzJo8AhXRyNEmQj283B1CKWiarbA9FgivgYDbbTGIymTYzuOMmNrIs/vzcPH3cSgFjW5romBxodm4L5tBmrnd+Q3GIRbn8cw1Gzu6lMQl4nSThh/CeirlNoP9HW+RikVppRaVKTcncBMpdQ2IAZ4oZTtCiGEEEJcEib3bMCmgjDHi2M7K7Rt+9GdGAqzeWV3ANW83Zg3uQv9mjtWHDAYFKqqZ4qA4a1q4eth4vNVsWA0o4ObY0ve5uqwyt2hv2YRYkvmUKObCPCu/CMuhLhsGBxvwZVSRNXy54H+jfnzgZ58d0tHBkbV5OdtyQz7Op4bj45g97WrKeh0H+YjK+HT3th2L3Rx8OJyUapEkdY6TWvdW2vd0Pn5hHN7ktZ6UJFyW7TWbbXWLbXWw7TWJ0sbuBBCCCHEpSC6dgCR9ZuQjSfW5Ipboygtu4CvZn8HQPXG3fhpchcaBPtUWPsVxdvdxDVta/PrjqOkZOajQltiSN7qWET2UqU1avXbHNah9B56o6ujEUJcgMGg6FAvkFdHRbPh8T48c1Vz9qdkM3j6Hh48cSVHb1iBLbAxhu+ux7L6A1eHKy4DFfsICiGEEEII8S+TezVkrz2c4we3VEh7OxIzGPzOSqqf2ES2ezBP3DAAb/fSrkhQeY3rVBeb1sxcG4cKbYkqyID0eFeHVW7iNv5KZOF+dkeOx9+nak/VEeJy4+VmYnznCJY/2IM7ezXg911H6TFtF+/WeYuC+gMw//YIhQseALvN1aGKS5gkioQQQgghXKxDZHXSvBrglb6XAou13Nt76Zc9WO2afj6H8azXGWW4tP8krBvoTa/GwXyzPp7C4BaOjclbXRtUOUr+awYZ2psuI6a4OhQhxH/k62Hm/n6NWf5AT4bG1OKdv5IYkXorR5vfjNvGTyiYMZLC3b9CQbarQxWXoEv7rwIhhBBCiCpAKUW9Fh3xJ5ufvnqrXNvSWrMtIZ2RDTTuuckYIzqXa3uVxfjOEaRmF7LoWHW0MsLRS3Odoqx8C2HpG4jza42/n6+rwxFClFJNfw9eGxXN5xPakZpro9uW3iyrNxVzwmrcvrsW/VJd8j/uR+7vL5C/42csiVvRuScv7em1otxdumOMhRBCCCGqkAZ9buLAzrlcE/8cO2el03z0c5THY8fiT+SSmW+lm/sRx4baFfiUNRfq2iCIejW8+XzdUa4KaoRO2nJJ/sf0j3WbuEodg2a3uzoUIUQZ6tkkmMX3dOeJn3YwcVs0bcK+4ZaI47Sxb8U3aRWeq15B8U9yyGb2xhbcErcxX4FPDRdGLqqiS/H+KIQQQghR9bj7EjZ5Eb+brqD53ndJ+2YS2lpQ5s1sS8gAoFHhTuxmbwiJKvM2KiODQTG+UwRbEzLI8G96yY4oOrxhMQC1Y/q4OBIhRFmr5u3Ge9e15t0xrUgtMHDral/aru3K1bbnmdZhCQkjfyZv+Ofk9nyOgqjrMKVsxjLzWijMdXXoooqRRJEQQgghRCXh5e1NxM1f8579agL3f0/+58Ox5pTtw2J3JGbgZjRQLW0TulZbMF4+A8yvig7DZFBsLKyDITsFslJcHVKZOnAsi5onN5Jn8kNdJglAIS5HV0aHsfyBHvx+b3ceGtAYd5ORV1ak0PvbbD48FoXqNBmvoa+hR3yKKXkTlh9ulsWvxUWRRJEQQgghRCXSsKYfgUOe5v7C23BLXIv+oCM5W+eVWf3bEzOICTZiPL4LQ91OZVZvVVDN240rGtXgx+RAx4ZLbFTR9xsS6Gjchb12Z7jEFygX4nKnlKJhiC939GjAnNs7s2pqL/o3r8k7S/fT540/WbQ9GUPTIdj6PY9530Isvz52wTptRzZS+HYbCl9vQf6HPcn98hpy5tyJZc+vFXBGojKRO4gQQgghRCUzul1t8ptfyyjL0+Qa/fGeO57cGaOxnEwoVb1aa7YnZjCg2hGUtqPqdCyjiKuOq2LC+Csr1PHiEnrymcVmZ+XGrdRVx/BsdIWrwxFCVLCwAE/eGdOK2bd2ws/TzB0zN3HdJ+vYVed6LO1uxbz+QyxrPjzn8db9S1FfDkFZ87GEtUGbvTBmxOKxdx6m78dC1tEKPBvhapIoEkIIIYSoZJRSvDCiBSm+UQwt/B9pHR/FI24Zhg86kL/20/9cb1xaLln5VtqpvWhlgPC2ZRh11dC3WQhWsy+pbrWwJ106iaI/9x6nYZ7jfAyR3VwcjRDCVdpHVmfBlC48N7Q5e45mctV7q7g3fRQZdftjWvwIeb/9D3vmmUkfy5bZGGddiy0gAvMtS/Ee8wWeNy/E/a71GG9dDnYr9jUfuOaEhEtIokgIIYQQohLy9zTzzpgYjmRaeeZkPyy3rqIwJAaPX+/Htuvn/1TntkTHQtZ183Zhr9Ec3C+/x6d7uZno1zyEzYW10ZfQiKLZG47Qw30vNvcACG7u6nCEEC5kMhoY2ymCFQ/15K5eDVi6J40u+8ew07cLnqtfRb/ZnMPTrmX5b/PY8v2LmOdN4ph/S35r/xmLYjU5BdZ/Kgusj73pUNjwGeRnuO6kRIWSRJEQQgghRCXVpm517undkPlbk1hwxBPPCXOx1GgOC+6C7OMXXZ9jIWuFz4kdqFqtyiHiqmFoTBibLXUxZsRBXrqrwym141kFLNtzjG7mPdjrdJL1iYQQAPh6mLmvX2P+fKgHw9o3YFjaZHoWvM7nlr5UT15Bj9Xjidn5EottbemefCeTfzzEHTM3cdV7KzlwLOt0PcZu92IozMK+froLz0ZUpMvnMRdCCCGEEFXQHT0bsPJAKk/+tIPWdboSOfIT9Mc9KZw3BbfrvwWlSlzX9oQMugXnYzh5EsJiyi/oSq5bwxrMcasPGji6Har4VK15mxOpYU8lsDARe+RkV4cjhKhkgn09+N+wFtzbpxHpeRZgNGmWPDJ3/4gpP40Gbe9gkcGRGohNzWHqnG0MfW8Vr4yMZnDLUAiNxhrZC8Pa96HT7WD2dO0JiXIn/24QQgghhKjEjAbFW6NjcDMZuHPWZgoDm2Dr+ThuB37FsnFGieux2zU7EjPo5Zfk2BAaUz4BVwFmo4FaTR0LeRckbHZxNKX3/cYjXBscB8j6REKIcwv0cad+DR/q1/ChXlgNave+ldDBj1I/JOD09t5NQ/j5zm40runL5G828b+fd2Gx2TF1vw9Dbir2zTNdfRqiAkiiSAghhBCikgv19+SVq1uyMymTl3/Zi7nzFAprd8W4+BH0icMlqiPuRC5ZBVaiTbFoZYSQy3sdmz7tWnBUVyNl73pXh1IqmfkW9qVk08drP3b3AAiJcnVIQogqrqa/B9/e0onxnery6crDjJu+nuzQjljD2qJXvQ0264UrEVWaJIqEEEIIIaqAfs1rMqFzBJ+tOszj83fCsA/QyoDlh1vJStxN+uZ5pP/2CpmzbqLgt2f+dfy2hHQA6uTvwx7UBMweFXwGlUvbutU4YKyPIWWbq0Mplfi0XADqZm7GJusTCSHKiJvJwDNDo3htVDTrY08w/vO/Kex4F8aMePTOua4OT5QzWaNICCGEEKKKeGJIMzzMRqb9eZC9R6vxUc/nqb74Ltw+6Xi6jM3khXFvLnSZDN5Bp7fvSMzAzeRYyJpGA1wRfqViMCgIbUlowuecSE+nekCAq0P6T2LTcqhJGr658dgjb3V1OEKIS8zINuF4uxm5c9ZmrltRndnVGmL8602MLUZe1Bp5omqRfzkIIYQQQlQRRoPi4YFNeGdMK7YnZjBoWS32d3yZ9H5vknH9r+Tcexg9dp6j8OEVZxy7PTGDrjUKMeSlYbiMF7Iuqm7zThiVZs2qP10dyn8Wl5ZLB8NuQNYnEkKUj4EtQvnwhjbsSs7mvcIhGI/vxLrxK1eHJcqRJIqEEEIIIaqYq6LDmHN7Z4xGA4NX1mV7jSvxb9gJb//qmMLbYHfzxX5w+enyjoWsM+kVkOzYIIkiAMKbdgBg0/rlHDqe7eJo/pu4tBx6uO/D7u4v6xMJIcpN32YhfDSuDZ9ktGWTMRrDovuwx652dViinEiiSAghhBCiCmoe5s+CO7sSXs2Tp+bvxGqzO3YYTeiIbujD/4ySiU3LIbvASowpFq0Ml/1C1qeogDpYfGpxl/qOz6e/T05B1VugNS4tl/aGXdhqdwKD0dXhCCEuYT0bB/Ph2PZMyJlMhnso+tvr4WScq8MS5UASRUIIIYQQVVR1bzemDmjCoeM5fL8x4fR2Y/0eGNNj4WQs4Jh2BlA7fz/2wIbg5u2CaCshpWDcT9j86vBc/gusfW8i9sJcV0d1UY6mnqSWLQlj7bauDkUIcRno0TiYoKAQXvR/CrQNy9fXQH6mq8MSZUwSRUIIIYQQVVi/ZiG0rhPAW0v2kVdoc2ys18Px+ZBjVNH2hAzcTAZ8TuxAhca4JM7KyhzckIApy1lfczS9s34i9a1uFB7d5eqwSiTfYsOU7UgQGqpHujgaIcTloleTYOYd8SZ/2GeYTuyncPZEsNtcHZYoQ5IoEkIIIYSowpRSPDywKSmZBXy++rBjY1Aj7N4h2A7+AThGFHUOtmLMSZGFrIthcPOg7S3TeDP4f45r9HFPcpa/Venf+MSfyKW2Ou544V/btcEIIS4bvZoGU2iz85ctCuuAl3E79Dv2ZS+4OixRhkqVKFJKVVdK/a6U2u/8XO0c5e5VSu1USu1QSs1SSnmUpl0hhBBCCPGP9pHV6d0kmA+XHyQ9txCUQtfrgTr8F3abjZ1JmfT2l4Wsz8dgUNw08TZu9nqb1fbmeC9/ivyP+lTq0UVxabmEn0oUBdRxbTBCiMtGu4jq+HqYWLYnBXOHSVgbDoTNM0BrV4cmykhpRxQ9DCzVWjcEljpfn0EpVQu4C2irtY4CjMDoUrYrhBBCCCGKeGhAE7ILrHyw/CDgWKfIkJfKE5/MJrvASlv3eDQKarZwcaSVl5+HmVcm9OMuNZVnzPdgPHkI08dXkLP0FbBVvoWu49JyqKVS0QY38AlxdThCiMuE2WjgikY1WLbnOHa7xtTsSgw5xyBlp6tDE2WktImiocCXzq+/BIado5wJ8FRKmQAvIKmU7QohhBBCiCIa1/Tl6tbhfLE6lvi0XL48WhcA/6RVPHVlMxrZD2CvXh/cfV0caeXWMMSXz29sz3cFnbje/W2y6vbG+6/nyZ81FmwWV4d3hri0XCJMaWj/WmCQFSWEEBWnd9NgUrML2JaYAfV7OjYeXObaoESZKe0dJURrnQzg/Bx8dgGtdSLwGhAPJAMZWuvfzlWhUuoWpdQGpdSG48ePlzI8IYQQQojLx719GwHQ760/eWp5Osmm2kyJSOTGLpGo5G2o0GgXR1g1tKpTjU/GtWXLCXcm5NxJxhXP4nFgEfnf3VSpRhbFpuUQaUxDy7QzIUQF69EoGIOCZbtTwC8MW1ATbAeWujqsMpWbtIfM/WvI3LOcjB2Lydr2Mxzd7uqwKsQFE0VKqSXOtYXO/hhakgac6xYNBSKBMMBbKXXDucprrT/WWrfVWretUaNGSc9DCCGEEOKyVyvAk8k9GlDTz4OPx7YhJKY/HslrITMJQ1YihlqtXB1ildGlQRDvjGnF1iPpTDnUkZwrnsZj30/k/3BLpVnkOv5ELqEcxyCJIiFEBavm7UabutVYuucYAIb6vTAcWQuWPBdHVjYKl7+G18cd8Js5AL9vh+L/wzX4/ng9/P2pq0OrEKYLFdBa9znXPqVUilIqVGudrJQKBY4VU6wPcFhrfdx5zI9AZ+Dr/xizEEIIIYQ4h7v7NOTuPg0dLww9YcOn8Pd0x2sZUXRRBkTV5OWrW/LgD9t4xKsHr3R/DI8Vz5M/x4zH1R+6dLqXxWbn+MkM/N1OQEBdl8UhhLh89WoSwsu/7iE5I4/QBr1h3QcQvwbq93J1aKVii/8b858vkFd/IIUtx4LJDWVyx24wY/CriZ+rA6wApb27zQfGO78eD/xUTJl4oKNSyksppYDewO5StiuEEEIIIS4koitaGdCn/gNas6Vr46mCRrWtzUMDGjN/axIfWIeS33UqHju/pWD+vS6NKyk9j5panngmhHCdPk0dK88s23MM6nZGG93QB6r4OkUFWegfbsLmE4rnyGnkRvRiUU5jHlzvRdevM3lzfa6rI6wQFxxRdAEvAbOVUjfhSAiNAlBKhQGfaq0Haa3XKaV+ADYBVmAz8HEp2xVCCCGEEBfiGYC9ZgzG5E3YAiIxega4OqIq6fYr6hOXmss7yw5QZ+RYrmyfg/v697BGdMYUc61LYopNy6WWSnW8CKjtkhiEEJe3BsE+1K7uybLdx7i+Q13s4R3hwDKM/V0d2X9XOP8+zFlHWNBqOu9P28belCwAQv09uDI6lD5NL48nTJYqUaS1TsMxQujs7UnAoCKvnwKeKk1bQgghhBDi4hnq9YDkTaiwGFeHUmUppfjf8CgS0nN5ZO52wibcSbsjazEsegAiOrskUROflkO4khFFQgjXUUrRu0kIs9bHk1dow7NhL1jyNGQdBd+arg7voiWv/IrQnbN5X4/k1dXutKlr4tFBTejROJiGwT44JkhdHuQ5mkIIIYQQlzBVvwcAhjBZn6g0zEYDH1zfhrqB3tw2cyuJvd5GaRuFc24Fu73C44lNyyXCmIo2mMA3tMLbF0IIgN5Ngymw2ll9MPWftYkOLXdpTBdLa81r3/2G9+8PstHeiMNNb2fBlK7Mub0zt3SvT6MQ38sqSQSSKBJCCCGEuLTV7Yyly/3QcrSrI6ny/D3NfD6hHW4mAyO/O8qaxg/hdmQVllXvnFFOF2SRveRVCla+X26xxKXl0tA9He1bCwzGcmtHCCHOp31kdbzdjPy+KwVCWmD3CsJWxdYp+vG3ZQzZeR9mo4E6N3/Fa6Pb0iLc39VhuZQkioQQQgghLmVGM+a+T4KfjDopC7Wre/HVTR2oG+jF9RsasNzYEcOy57AlbkVbC8lZOQ3bW63wWfk/3Jc8im33onKJIy4thzqGVJl2JoRwKXeTkUEtQpmzKYFdR7PRkVegDi4DrUtfecpOsn9/qfxGbWrN/l/eZdDq0YQZMzBc+yU16jQpn7aqGEkUCSGEEEIIcRGahvrxw22d+HRcO973mkKq3Yej068l9822eC+ZirVaPQrG/oylRhTMnwJZKWXavt2uiT+RS7A9BVVNEkVCCNd6dFBT/D3duG/2FnS9Xhhyj0PKzlLXa1/9Hj6rXiR38TMlP8ZmJzf1CIUFBectZ8tOI/PL0TRc9zjbDE2w3PIX7o37ljbkS0Zpn3omhBBCCCHEZUcpRZ9mIfRsMoTVi3Ppsu5W9meHk9LufboPvh6UQo+ajv7oCgp/vA23cT9CGa1xkZKVj7YW4GtJQ8mIIiGEi1XzduPFES2YNGMDnybW5TZAH1yGqhlVqnp17Cq0wQ2vdW+RH9IMj9bFP2Uy50Qylv1/YDj8Jx5HVuCVk4Td6E5uYHOsIdEQ1go8A9Dp8ZBxBGPGEdyT/8Yr7yQvWq+n/6TnCAwNLFWslxpJFAkhhBBCCPEfGQ2KbgOvJaVFW55ckMS6lZncatzDQ/2bYAxugrXvc7j9+iCWNR9h7nxbmbQZl5ZLqEpDoWXqmRCiUujbLISRbcJ5ZU0CY4Mb4nFgKcYud/33CjMSMGbEofs8S/6uhbgtvBNLjYaYa7c+XST/eBzWRQ/hc/hXAGxufuTV6kJe7VtRmUmYUjbjvfs7jNs/P32M3eiOxSecOPfG3JM+gGGDBtO6riSJziaJIiGEEEIIIUopJLw+X02K5Nmfd/LRn4fYnZzFu6Nb4d9hEoX7fsO09El0/e6okGalbisuLYdwddzxQhJFQohK4skrm7HqQCq/5DZlRPZi7PnZGDx8/ltlcasBx5M73aKvw/ZxD/h2DPZb/0R7BZL957v4rHkVN20no+3d0GQQXnXb4GM2n1GN1WIhO2UvuiCbdLdQVibBXwdS+W1nCr2aBnNT18hSnvWlSRJFQgghhBBClAE3k4H/DWtB8zB/nvxpB2M+WcvcyZ1xH/EBtvc7Yfv+Jsy3LQeTe6naiUvLpY4hzfHCv3bpAxdCiDLg52Hm5atb8u7nMYx0n0/+9IGoUZ/jHtzgouuyH14J7n4YQqIwGIzYRn+D8fP+FH59DXarBf8Tu0is0Z3VjadyzFgTjgBH4gDH4+4LrHbyCm3kW23kFdrZc9TCzqQdAIT4uXNtu9o8NKDJZffY+5KSRJEQQgghhBBlaEz7OgR6u3HLVxt5Z+l+HuzfBIZ9gHnWNRT+9jRug14sVf1xJ3Lp4JmOthpRfrXKKGohhCi97o1q8FuHftyyPot3TnyK6ZMeZA98E5/Woy6qHh27Eh3egTWHTrI/JYv9xwxU87mPB449T7Kuzr2We1h8pB0cyQAy/nW8QYGH2Yin2YiH2Uitap48NKAxPRsH06SmrySILkASRUIIIYQQQpSxfs1rMqpNOB8uP0ifpiG0atyfwtY34bb+A2wN+2Js2Os/1x2XlsN15jS0ZyjKKH/OCyEql0cHNWVS6gB6H4jg+6CPCZt/M9mH/8J9yEuY3b0uXEHWUYwnDzLP1Jd7Pl0HgJ+HiQbBXXg18lO8QxoyMKQGk6p5UquaJ9W93VCcmfgxG5Ukg0pB7ixCCCGEEEKUgyec63Xc//1WFt3VDY+Bz2OJXYGadztMXgNe1S+6Tq01cWm51PJOlfWJhBCVkpebienj23HnLBNX7JrKV3V/oeP2L7Hu/5nMRkMxRI/GO7IdymAovoK4VQB8nhDGHT3qM6FLBDV83CXxU4HO0TNCCCGEEEKI0vDzMPPKyGgOHc/h1cV7weyJadR0jHlpFM6dAlpfdJ0ncy1k5VsJtB5FVZNEkRCicvIwG/nw+tZc2aouo+Ou5PMG75AX1hGfnTPx+aofhW+3IW/5W8X+HkzfvZwc7YFPRFvu79eYYF8PSRJVMEkUCSGEEEIIUU66NgxibMe6fLbqMOsOpaFCo7H2fBy3/QuxbPjyouuLS8vBhBWfguMof0kUCSEqL5PRwGujohnfqS7P7AjireqPU3jPHjL6voHNMxDP5U+h9yw845gCq42M3X+wRTXm9dFtMBokQeQKkigSQgghhBCiHD08sAl1qnvxwA9bycq3YO5yF4V1umFc/Ag69cBF1RWXlktNdQKFXaaeCSEqPYNB8fRVzZnQOYLpKw+z+GAe/l1uwmvSr1j9I7D98dIZo4reW7CWuvYjBLfoTU1/DxdGfnmTRJEQQgghhBDlyNvdxGujoklKz2fSjA3k2zRuV3+ENrph+XYcFGSXuK4/9x2nkdsJxwtJFAkhqgClFI8Nbkq7iGo8PGc7+1KywGjCcMWDmI5tR+9dBMDyvcfY//dvADRsN8CVIV/2JFEkhBBCCCFEOWsXUZ03rolm3eETTJ65CYtPKPYRn2JO20PBdxPAbrtgHRm5FhZtT2ZIHYtjQ0Dt8g1aCCHKiNlo4P3rWuPtbuK2rzaSlW/BED0am39drMte4ocNR7hz1mYG+BzAbvKAsFauDvmyJokiIYQQQgghKsDQmFo8NzSKpXuOcf/srRga9sHS7yXcD/1OwcKHL3j83M0JFFjtdK2Rh0aBX3gFRC2EEGUj2M+D969rRdyJXB76YRvaYCSj7d2Yj21j0Y9f0KSmLwN8D6HDO4DJzdXhXtZMrg5ACCGEEEKIy8UNHeuSlW/l5V/34ONh4vlhkyhIPYD7xo8oDKyPW+fbij1Oa823fx8hqpYfNWwpaN9QlLyREkJUMR3qBTJ1QGNeWLSHO2dtZuXemiwgmBcDF1Fj7GTUq7uhxTBXh3nZk0SREEIIIYQQFej2HvXJzLfw4fKDmAyKJwY9T0F6LG6/P4KlegTmJv9em2NrQgZ7jmbxv2FR6F3x4C/TzoQQVdOkbvXYFJfOz9uS6Vw/EM9GDxL0x4PoZc+h0BDR1dUhXvYkUSSEEEIIIUQFe6h/YyxWO5+uPMyupEzeH/kh1WZfhemHCWQ1GYVqMQqvBl0wGI0AfLs+Hk+zkaExYbDmCKpORxefgRBC/DdKKd4aHcPm+HQ61quOsrXGtvEdjBs/QxvdUbXauDrEy56sUSSEEEIIIUQFU0rx+JBmvD06hl3JmQz+aBObu31MXr0BeO/5Hp9ZV2J9I4rMBY9yMnEv87cmMaRlKL5mhcpMRMkTz4QQVZiH2Uin+oEopRzrEXW7DwB7rbZg9nBxdEISRUIIIYQQQrjI0Jha/DS5CwFeboyZFctnIY9ReO9eMgd9iCWwCb6bpuH7aVcm2WZzbatgyEpCaZs88UwIcUkxtroBS2hbDC1HuToUQSkTRUqpUUqpnUopu1Kq7XnKDVBK7VVKHVBKXfiRDkIIIYQQQlwmGob48tPkLlwZHcbrv+9j3Fe7SK8/DO+JcymYspWVpg7ca55Dy/n9yV//heMgGVEkhLiUmNww3bIE1fZGV0ciKP2Ioh3ACGDFuQoopYzA+8BAoBkwRinVrJTtCiGEEEIIccnwdjfx1rUxvHFNNLuPZjLg7RXMXBfHoQJ/JmTdzk8tPwBlxGP1644DAuq6NmAhhChjSilXhyCcSrWYtdZ6N1ywQ9sDB7TWh5xlvwWGArtK07YQQgghhBCXEqUUI1qH07FeIFPnbOOxuTsI8DLjZjTQvf8oTOaryfrzLdyPb8dNRhQJIYQoJxXx1LNawJEirxOADucqrJS6BbgFoE4duQEKIYQQQojLS1iAJzMmtufrtXG8sGgPV0aHUc3bDQDfvrKKgxBCiPJ1wUSRUmoJULOYXY9prX8qQRvFDTfS5yqstf4Y+Bigbdu25ywnhBBCCCHEpUopxdhOEQxtVQt3kzx/RgghRMW5YKJIa92nlG0kAEUfyxAOJJWyTiGEEEIIIS55fh5mV4cghBDiMlMR/574G2iolIpUSrkBo4H5FdCuEEIIIYQQQgghhLgIpUoUKaWGK6USgE7AQqXUYuf2MKXUIgCttRWYAiwGdgOztdY7Sxe2EEIIIYQQQgghhChrpX3q2VxgbjHbk4BBRV4vAhaVpi0hhBBCCCGEEEIIUb5kZTwhhBBCCCGEEEIIAUiiSAghhBBCCCGEEEI4SaJICCGEEEIIIYQQQgCSKBJCCCGEEEIIIYQQTpIoEkIIIYQQQgghhBAAKK21q2M4J6XUcSAHSHV1LKJEgpC+qiqkr6oO6auqQ/qqapB+qjqkr6oO6auqQ/qq6pC+qhqqcj/V1VrXKG5HpU4UASilNmit27o6DnFh0ldVh/RV1SF9VXVIX1UN0k9Vh/RV1SF9VXVIX1Ud0ldVw6XaTzL1TAghhBBCCCGEEEIAkigSQgghhBBCCCGEEE5VIVH0sasDECUmfVV1SF9VHdJXVYf0VdUg/VR1SF9VHdJXVYf0VdUhfVU1XJL9VOnXKBJCCCGEEEIIIYQQFaMqjCgSQgghhBBCCCGEEBVAEkVCCCGEEEIIIYQQAijjRJFSaoBSaq9S6oBS6uGz9t3p3LdTKfXKOY5/Tim1TSm1RSn1m1IqrMi+R5z17lVK9T/H8VOcZbRSKqjIdn+l1AKl1FZn+zeW1TlXVefqK6XUd87rv0UpFauU2nKO46srpX5XSu13fq7m3B6olPpDKZWtlHrvPO1HKqXWOY//Tinl5tyulFLvOOPappRqXcanXqVU1n5y7uvhbH+nUurPMjztKqkS9NW5fv9d7/xZ2qaUWq2Uii7D066SKnFfyb3qLOXYV32VUhuVUtudn3ud43i5V5VQZe0r5z65XzlVgn6Se1UJVeK+knvVWcqxr9oXOX6rUmr4OY6Xe1UJVda+cu6rXPcqrXWZfABG4CBQD3ADtgLNnPt6AksAd+fr4HPU4Vfk67uAac6vmznrcwcine0Yizm+FRABxAJBRbY/Crzs/LoGcAJwK6tzr2of5+urs8q9Djx5jjpeAR52fv1wkevrDXQFbgPeO08Ms4HRzq+nAbc7vx4E/AIooCOwztXXS/qp2H4KAHYBdZyvi/2Zvlw+Kklfnev3X2egmvPrgZfzz1QV6Cu5V1VcX7UCwpxfRwGJ5zhe7lVVv68CkPtVZeonuVdV/b6Se1XF9ZUXYHJ+HQocO/X6rOPlXlX1+yqASnavKssL3wlYXOT1I8AjRS5In4us7xHgw7Prcr5eDHQ6z7Fn/0J7BPjA+UMSCRwADK6++C7r9PP0VZFtCjgCNDxHHXuBUOfXocDes/ZP4BxvlJx1pxb5YTodD/ARMKa4di63j0reT3cA/3P1NaosH67uq7PKnfH776x91TjHH4SXy0dl7iu5V1V8XxWpIw3nP7PO2i73qqrfV3K/qiT9dFYZuVdV0b6Se5XL+ioSSOGs5IPcqy6Zvqp096qynHpWy3lRT0lwbgNoBHRzDrP6UynV7lyVKKWeV0odAa4HnixB3SXxHtAUSAK2A3drre0XcfylpiTXsxuQorXef446QrTWyQDOz8EX0X4gkK61thbTfmn7+lJSmfupEVBNKbXcOWx53EXUeylydV+V1E04/rN0OavMfSX3qjNVVF9dDWzWWhectV3uVSVXmftK7lf/cHU/lZTcqyp3X8m96kzl2ldKqQ5KqZ04rvVtRX7PnSL3qpKrzH1V6e5VpjKsSxWzTRdppxqOIW/tgNlKqXramT474wCtHwMeU0o9AkwBnrpA3SXRH9gC9ALqA78rpf7SWmdeRB2XkpJczzHALBe0X9q+vpRU5n4yAW2A3oAnsEYptVZrva+cYqnsXN1XF6SU6onjj++uroqhkqjMfSX3qjOVe18ppZoDLwP9LrJ9uVedqTL3ldyv/uHqfirJ8XKvcqjMfSX3qjOVa19prdcBzZVSTYEvlVK/aK3zS9i+3KvOVJn7qtLdq8pyRFECULvI63AcmeZT+37UDusBOxCklPrcuWDTomLq+wZHlvtCdZfEjUXaPwAcBppcxPGXmvNeT6WUCRgBfFdk29l9laKUCnXuOzUPs6RSgQBnO2e3X9q+vpRU9n76VWudo7VOBVYA0RdR96XG1X11XkqplsCnwFCtdVpZ1VtFVea+knvVmcq1r5RS4cBcYJzW+mAx7cu9quQqe1/J/crB1f10XnKvOkNl7iu5V52pQv6u0FrvBnJwrCtVlNyrSq6y91WluleVZaLob6ChcyVvN2A0MN+5bx6OrDNKqUY4Fo9K1VrfqLWO0VoPcu5rWKS+q4A9zq/nA6OVUu5KqUigIbD+ImKLx5GdQykVAjQGDl38KV4yztdXAH2APVrrhFMbzu4rZ/nxzq/HAz+VtHHnSLI/gJHFHD8fGKccOgIZp4b3XYYqcz/9hGM6qUkp5QV0AHZf1NldWlzaV+ejlKoD/AiMvUz/g362SttXyL3qbOXWV0qpAGAhjrUJVhXXuNyrLkpl7iu5X/3Dpf10PnKv+pdK21fIveps5dlXkaeSCkqpujiudWzRxuVedVEqc19VvnuVLtsFogYB+3CsJv5Yke1uwNfADmAT0Oscx89xltkGLABqFdn3mLPevcDAcxx/F45snBVHdu5T5/Yw4Dcc8wV3ADeU5XlXxY9z9ZVz3xc45lWe7/hAYCmw3/m5epF9sTiegJDt7I/iVpOvhyPZdwD4nn+eiKeA951xbQfauvpaST/9u5+c+x7EsTr/DuAeV18rV39Ugr461++/T4GTOIaJbwE2uPpaufqjEveV3KsqqK+Ax3H8t29LkY9/PWHkXL8DkXtVlekr5z65X1WefpJ7VdXvK7lXVVxfjQV2OvtoEzDsHMfLvaqK95VzX6W6VylnUEIIIYQQQgghhBDiMleWU8+EEEIIIYQQQgghRBUmiSIhhBBCCCGEEEIIAUiiSAghhBBCCCGEEEI4SaJICCGEEEIIIYQQQgCSKBJCCCGEEEIIIYQQTpIoEkIIIYQQQgghhBCAJIqEEEIIIYQQQgghhJMkioQQQgghhBBCCCEEIIkiIYQQQgghhBBCCOEkiSIhhBBCCCGEEEIIAUiiSAghhBBCCCGEEEI4SaJICCGEEEIIIYQQQgCSKBJCCCGEEEIIIYQQTpIoEkIIIYQQQgghhBCAJIqEEEIIIYQQQgghhJMkioQQQohKTikVoZTSSilTCcpOUEqtrKC4uiil9iulspVSwyqiTfEPpVQd57U3lmXZMoirwr4HhRBCCFH2JFEkhBBClCGlVKxSqlApFXTW9i3OZE+Ei0IrmnDKdn7EKqUeLkWVzwLvaa19tNbzyijMy0JZJFO01vHOa28ry7IVSSn1tFLq6zKsb4JSylbke/zUR1gZ1G1USv1PKZWklMpSSm1WSgWUQdhCCCFEpSKJIiGEEKLsHQbGnHqhlGoBeLounH8J0Fr74IjxSaXUgIs5uMjIprrAzv8SQElGR13uKmL0zyVqjTMpVvQjqQzqfQboDHQC/ICxQH4Z1CuEEEJUKpIoEkIIIcreV8C4Iq/HAzOKFlBK+SulZiiljiul4pRSjyulDM59RqXUa0qpVKXUIWBwMcdOV0olK6USnaMcLjqpoLVegyPRE+Wsd6JSardS6qRSarFSqm6RNrVSarJSaj+wXyl1EKgHLHCO2HBXSoUppeYrpU4opQ4opSYVOf5ppdQPSqmvlVKZwASl1HJn7KuddSxQSgUqpWYqpTKVUn8XHYGllHpbKXXEuW+jUqrbWfXPdl7TLKXUTqVU2yL7ayulfnRe7zSl1HtF9p3zvM+mlLrKWXe6M/6mRfbFKqUeUEptU0plKKW+U0p5FFNHU2Aa0Ml53unO7V8opT5USi1SSuUAPZVSg50jVzKd5/50kXrOmJLojOc5pdQq5zX4TTlHtl1MWef+cc7vyzSl1BPOc+tzjmsS6Oz3TKXUeqD+WfuL7TflSFA+ClzrvA5bndtvdPZHllLqkFLq1nP1x8VQStV3fm+2dr4OU46fsR5FrsmLSqn1zv77SSlV3bmvGnAPMElrHacddmitJVEkhBDikiOJIiGEEKLsrQX8lFJNlSOBcy1w9vSadwF/HMmWK3Aklm507psEDAFaAW2BkWcd+yVgBRo4y/QDbr6YAJVDF6A5sFk51hh6FBgB1AD+AmadddgwoAPQTGtdH4gHrnSO2Chwlk8Awpwxv6CU6l3k+KHAD0AAMNO5bTSOkRm1cCQY1gCfA9WB3cBTRY7/G4hx7vsG+P6sRMxVwLfO+ucD7znP1Qj8DMQBEc62vnXuK8l5n7pmjZz77nGWXYQjUeZWpNg1wAAgEmgJTDi7Hq31buA2/hn5ElBk93XA84AvsBLIwfG9EYAjYXi7Ov96UNfh+D4KBtyABy62rFKqGfABcD0QiuP7tNZ56nkfx8iaUGCi86OoYvtNa/0r8ALwnfM6RDvLH8Px/e/njO/NU8kdZ3zpSqmu54mnWFrrg8BUYKZSygvH99kXWuvlRYqNc8YfhuNn7B3n9hbO1yOVUkeVUvuUUpMvNgYhhBCiKpBEkRBCCFE+To0q6gvsARJP7SiSPHpEa52ltY4FXseRMAFHsuEtrfURrfUJ4MUix4YAA4F7tNY5WutjwJs4Ei4llQqcAD4FHtZaLwVuBV7UWu/WWltxvIGPOWt0zYta6xNa67yzK1RK1Qa6AlO11vla6y3O+scWKbZGaz1Pa20vUsfnWuuDWusM4BfgoNZ6iTOG73EkwgDQWn+ttU7TWlu11q8D7kDjIvWv1Fovcq7D8xVwKvHQHscb/wed1yxfa31qfaCSnPcp1wILtda/a60twGs4phR2LlLmHa11krPfFuBIkFyMn7TWq5zXKF9rvVxrvd35ehuORNUV5zn+c631Puf1nX2B9s9VdiSwQGu9UmtdCDwJ6OIqcH4vXw086by2O3AkMk8rQb9xVvmFzu8JrbX+E/gN6FZkf0CR/itOR2cy6dTHwSLHfgLsB9bhSGw9dtaxXzlHCuUATwDXOM8xHEfCrBGOJOBI4GmlVN/zxCGEEEJUSZIoEkIIIcrHVzhGbEzgrGlnQBCOERxxRbbF8c+ojTDgyFn7TqkLmIHkU2+EgY9wjAopqSCtdTWtdVOt9akRE3WBt4vUeQJQnDmS5AjnFgac0FpnneOcznV8SpGv84p57XPqhVLqfueUpAxnjP44ruUpR4t8nQt4OKda1QbinImgs5XkvIue4+m+0FrbnedUtOzZMfhwcc64RkqpDkqpP5RjylwGjpFIQcUfetHtn6vsGd9/WutcIO0cddQATJz7+7Uk/cZZ5QcqpdY6p4mlA4POV74Ya53JpFMf9c/a/wmO6ZbvOkfCFXX2eZidbZ9KbD6rtc5zJu2+dcYmhBBCXFIkUSSEEEKUA611HI5FrQcBP561OxWw4EhSnFKHf0YdJeNIbhTdd8oRoABHsufUG2E/rXXzUoZ8BLj1rDfYnlrr1UVP6zzHJwHVlVK+Z8WdWOT1+Y4/L+e6NlNxjLaq5pyulYEjqXMhR4A6qvgFtEty3qckUaTPlFIKRz8lFlP2Qs51Lc7e/g2OaXS1tdb+ONY2Ksk5l0YyjhE0ACilPIHAc5Q9jmNKVrHfryXotzPOVynlDszBMVorxFl+EWV0zkopH+AtYDqOEUHVzypy9nlYcPy8bisuXiGEEOJSJIkiIYQQovzcBPRyTmM5zTk1ajbwvFLK1znN6T7+WcdoNnCXUircuYjuw0WOTcYxFed1pZSfUsrgXKT3fNORSmIa8IhSqjmcXjB7VEkP1lofAVYDLyqlPJRSLXGc/8zzH1livjgSEscBk1LqSRxr2JTEehzJj5eUUt7O+Lo4913Mec8GBiuleiulzMD9OJJ2xSWVLiQFCD9rfaPi+OIYqZWvlGqPY5RaefsBuFIp1dkZ3zOcI1Hj/F7+EUfSxcu5vtH4IkUu1G8pQIRyLuSOY6Sdu7O8VSk1EMcaXGXlbWCj1vpmYCGO/i/qBqVUM+caRs8CP2itbc71jf4CHlOOhdub4piK+HMZxiaEEEJUCpIoEkIIIcqJc52VDefYfSeOhYoP4Vi0+BvgM+e+T4DFwFZgE/8ekTQOxxvqXcBJHG/sQ0sZ61zgZeBb5Xgq2Q4cayFdjDE4FotOAuYCT2mtfy9NXEUsxrGG0T4cU4LyOf9UuNOcyYwrcSz+HY9jwe1rnftKfN5a673ADTgWIk911nmlcx2fi7UMxxPnjiqlUs9T7g7gWaVUFo61gmb/h7YuitZ6J47vz29xJNiycCwwffY0rVOm4Ji2dhT4Asci0adcqN++d35OU0ptck5dvAvHeZ7EkRibX7Qx5XhCWjfO7dTT5Ip+tFNKDcWx0PhtznL3Aa2VUtcXOfYr5zkcBTycsZwyBseIsjQcSaYnnOt7CSGEEJcUpbWMoBVCCCGEEMVzTtdKBxpqrQ+7OJxyo5RaDnyttf7U1bEIIYQQriQjioQQQgghxBmUUlc6p5J541gvaDsQ69qohBBCCFERJFEkhBBCCCHONhTHFMIkoCEwWsswdCGEEOKyIFPPhBBCCCGEEEIIIQQgI4qEEEIIIYQQQgghhJPJ1QGcT1BQkI6IiHB1GEIIIYQQQgghhBCXjI0bN6ZqrWsUt69SJ4oiIiLYsOFcTxUWQgghhBBCCCGEEBdLKRV3rn0y9UwIIYQQQgghhBBCAJIoEkIIIYQQQgghhBBOkigSQgghhBBCCCGEEEAlX6NICCGEEEIIIYRwNYvFQkJCAvn5+a4ORYiL4uHhQXh4OGazucTHSKJICCGEEEIIIYQ4j4SEBHx9fYmIiEAp5epwhCgRrTVpaWkkJCQQGRlZ4uNk6pkQQgghhBBCCHEe+fn5BAYGSpJIVClKKQIDAy96JJwkioQQQgghhBBCiAuQJJGoiv7L960kioQQQgghhBBCCCEEIIkiIYQQQgghhBCi0lNKMXbs2NOvrVYrNWrUYMiQIS6M6sJ8fHwuWObpp5/mtddeO2+ZefPmsWvXrrIKS5xHmSSKlFKfKaWOKaV2nGO/Ukq9o5Q6oJTappRqXRbtCiGEEBXNZinAkp/j6jCEEEIIcZnx9vZmx44d5OXlAfD7779Tq1Ytl8RitVorvE1JFFWcshpR9AUw4Dz7BwINnR+3AB+WUbtCCCFEhbLOuQ319XBXhyGEEEKIy9DAgQNZuHAhALNmzWLMmDGn9+Xk5DBx4kTatWtHq1at+OmnnwCIjY2lW7dutG7dmtatW7N69WoAkpOT6d69OzExMURFRfHXX38BZ44A+uGHH5gwYQIAEyZM4L777qNnz55MnTqVgwcPMmDAANq0aUO3bt3Ys2cPAIcPH6ZTp060a9eOJ5544pzn8vzzz9O4cWP69OnD3r17T2//5JNPaNeuHdHR0Vx99dXk5uayevVq5s+fz4MPPkhMTAwHDx4stpwoG6ayqERrvUIpFXGeIkOBGVprDaxVSgUopUK11sll0b4QQghRIbKP47ZvPigj2G1gMLo6IiGEEEJUsGcW7GRXUmaZ1tkszI+nrmx+wXKjR4/m2WefZciQIWzbto2JEyeeTvA8//zz9OrVi88++4z09HTat29Pnz59CA4O5vfff8fDw4P9+/czZswYNmzYwDfffEP//v157LHHsNlsJUq07Nu3jyVLlmA0GunduzfTpk2jYcOGrFu3jjvuuINly5Zx9913c/vttzNu3Djef//9YuvZuHEj3377LZs3b8ZqtdK6dWvatGkDwIgRI5g0aRIAjz/+ONOnT+fOO+/kqquuYsiQIYwcORKAgICAYsuJ0iuTRFEJ1AKOFHmd4NwmiSIhhBBVhmXLt5jtVsAKGUegWoSrQxJCCCHEZaRly5bExsYya9YsBg0adMa+3377jfnz559e6yc/P5/4+HjCwsKYMmUKW7ZswWg0sm/fPgDatWvHxIkTsVgsDBs2jJiYmAu2P2rUKIxGI9nZ2axevZpRo0ad3ldQUADAqlWrmDNnDgBjx45l6tSp/6rnr7/+Yvjw4Xh5eQFw1VVXnd63Y8cOHn/8cdLT08nOzqZ///7FxlLScuLiVVSiqLjnseliCyp1C47padSpU6c8YxJCCCFKTmvYMhO7mw+GwmxIOyCJIiGEEOIyVJKRP+Xpqquu4oEHHmD58uWkpaWd3q61Zs6cOTRu3PiM8k8//TQhISFs3boVu92Oh4cHAN27d2fFihUsXLiQsWPH8uCDDzJu3LgzHqeen59/Rl3e3t4A2O12AgIC2LJlS7ExluSR7OcqM2HCBObNm0d0dDRffPEFy5cvL1U5cfEq6qlnCUDtIq/DgaTiCmqtP9Zat9Vat61Ro0aFBCeEEEJciE7ajDl1N/aOUxwbUg+4NiAhhBBCXJYmTpzIk08+SYsWLc7Y3r9/f959910cK77A5s2bAcjIyCA0NBSDwcBXX32FzWYDIC4ujuDgYCZNmsRNN93Epk2bAAgJCWH37t3Y7Xbmzp1bbAx+fn5ERkby/fffA44k1datWwHo0qUL3377LQAzZ84s9vju3bszd+5c8vLyyMrKYsGCBaf3ZWVlERoaisViOeN4X19fsrKyLlhOlF5FJYrmA+OcTz/rCGTI+kRCCCGqEsvGr7AbPTB1uh27ux86db+rQxJCCCHEZSg8PJy77777X9ufeOIJLBYLLVu2JCoq6vRC0nfccQdffvklHTt2ZN++fadHBS1fvpyYmBhatWrFnDlzTtf50ksvMWTIEHr16kVoaOg545g5cybTp08nOjqa5s2bn148++233+b999+nXbt2ZGRkFHts69atufbaa4mJieHqq6+mW7dup/c999xzdOjQgb59+9KkSZPT20ePHs2rr75Kq1atOHjw4DnLidJTp7KNpapEqVlADyAISAGeAswAWutpyjGm7D0cT0bLBW7UWm+4UL1t27bVGzZcsJgQQghRviz52F9rhLVeb9yu/RzbRz3B3RfjhPmujkwIIYQQFWD37t00bdrU1WEI8Z8U9/2rlNqotW5bXPmyeurZmAvs18DksmhLCCGEqGj2PQsxFGRgaj0WABXUAGJXuTgqIYQQQgghyl5FTT0TQgghqizrxq+w+tbCUP8KAAxBjTBkJUJhjosjE0IIIYQQomxJokgIIYQ4j/3792KOXY5uORoMRsfGoAaOz2kHXReYEEIIIYQQ5UASRUIIIcQ5bEtIZ+4Xr6HQ2KOv+2dH4KlEkSxoLYQQQgghLi2SKBJCCCHO4Zu1cVxjWsE6exNuXXiCAqvjcbJUr+/4LCOKhBBCCCHEJUYSRUIIIUQxsvItHNi2igh1FHvLMSzfe5zJMzdRaLWDmxd2v3Dsx/e5OkwhhBBCCCHKlCSKhBBCiGL8tCWJLrYNaBSdBt7Ac8OiWLL7GHfO2oTFZkcHNkCnytQzIYQQQlSMlJQUrrvuOurVq0ebNm3o1KkTc+fOLfd2N2zYwF133VUmdfXo0YPGjRsTHR1Nly5d2Lt3b5nUW5bKMsYvvviCKVOmADBt2jRmzJhxzrKxsbF88803p1+X5XW/WJIoEkIIIc6iteabdfEM8tiGLbQ1eAcxtmNdnrqyGYt3pvDEvB0YghpiOHEQtHZ1uEIIIYS4xGmtGTZsGN27d+fQoUNs3LiRb7/9loSEhHJvu23btrzzzjtlVt/MmTPZunUr48eP58EHH/zXfpvNVmZt/VflEeNtt93GuHHjzrn/7ERRWV/3iyGJIiGEEOIs2xIyOJ4cT2PbflTjAae339glktHtajN3cyK26g1QhVmQfcyFkQohhBDicrBs2TLc3Ny47bbbTm+rW7cud955J+BIMnTr1o3WrVvTunVrVq9eDcDy5csZMmTI6WOmTJnCF198AcDDDz9Ms2bNaNmyJQ888AAA33//PVFRUURHR9O9e/d/1bF+/Xo6d+5Mq1at6Ny58+nRNl988QUjRoxgwIABNGzYkIceeuiC59S9e3cOHDgAgI+PD08++SQdOnRgzZo1vPHGG0RFRREVFcVbb711+pgZM2bQsmVLoqOjGTt2LADHjx/n6quvpl27drRr145Vq1YB8OeffxITE0NMTAytWrUiKyuL5ORkunfvTkxMDFFRUfz111//Ocavv/6a9u3bExMTw6233no6efT555/TqFEjrrjiitOxADz99NO89tprABw4cIA+ffoQHR1N69atOXjwIA8//DB//fUXMTExvPnmm2dc9xMnTjBs2DBatmxJx44d2bZt2+k6J06cSI8ePahXr16ZJZZMZVKLEEIIcQmZtT6evm6OG7CxycAz9vVoHMy3fx/hkL0mjcDx5DPfkIoPUgghhBCu8cvDcHR72dZZswUMfOmcu3fu3Enr1q3PuT84OJjff/8dDw8P9u/fz5gxY9iwYcM5y584cYK5c+eyZ88elFKkp6cD8Oyzz7J48WJq1ap1eltRTZo0YcWKFZhMJpYsWcKjjz7KnDlzANiyZQubN2/G3d2dxo0bc+edd1K7du1zxrBgwQJatGgBQE5ODlFRUTz77LNs3LiRzz//nHXr1qG1pkOHDlxxxRW4ubnx/PPPs2rVKoKCgjhx4gQAd999N/feey9du3YlPj6e/v37s3v3bl577TXef/99unTpQnZ2Nh4eHnz88cf079+fxx57DJvNRm5u7jnjO1+Mu3fv5uWXX2bVqlWYzWbuuOMOZs6cSd++fXnqqafYuHEj/v7+9OzZk1atWv2r3uuvv56HH36Y4cOHk5+fj91u56WXXuK1117j559/BhwJulOeeuopWrVqxbx581i2bBnjxo1jy5YtAOzZs4c//viDrKwsGjduzO23347ZbD7veV2IJIqEEEKIIrLyLczfmsS3/ruw6TCMIVFn7G8fWR2AtZmBjkRR6n6I6FrxgQohhBDisjV58mRWrlyJm5sbf//9NxaLhSlTprBlyxaMRiP79p3/gRt+fn54eHhw8803M3jw4NMjV7p06cKECRO45pprGDFixL+Oy8jIYPz48ezfvx+lFBaL5fS+3r174+/vD0CzZs2Ii4srNlF0/fXX4+npSUREBO+++y4ARqORq6++GoCVK1cyfPhwvL29ARgxYgR//fUXSilGjhxJUFAQANWrO/4mW7JkCbt27Tpdf2ZmJllZWXTp0oX77ruP66+/nhEjRhAeHk67du2YOHEiFouFYcOGERMTU+z1uVCMS5cuZePGjbRr1w6AvLw8goODWbduHT169KBGjRoAXHvttf/qi6ysLBITExk+fDgAHh4excZQ1MqVK08n5Hr16kVaWhoZGRkADB48GHd3d9zd3QkODiYlJYXw8PAL1nk+kigSQgghivhpSxKWwgKa5W1EtxgFSp2xv7q3G41CfFiSaGKsyQPSDqDOUZcQQgghLkHnGflTXpo3b346UQDw/vvvk5qaStu2bQF48803CQkJYevWrdjt9tPJB5PJhN1uP31cfn7+6e3r169n6dKlfPvtt7z33nssW7aMadOmsW7dOhYuXEhMTMzpUSunPPHEE/Ts2ZO5c+cSGxtLjx49Tu9zd3c//bXRaMRqtRZ7LjNnzjwd9ykeHh4YjUbAsR5TcbTWKPXvv7rsdjtr1qzB09PzjO0PP/wwgwcPZtGiRXTs2JElS5bQvXt3VqxYwcKFCxk7diwPPvhgsesGlSTG8ePH8+KLL55RZt68ecXGePZ5XKzijjnVTkmv+8WQNYqEEEIIp1OLWI8MisdkzcHUZECx5TpEBrIhPgNbQCR2efKZEEIIIcpZr169yM/P58MPPzy9rei0qYyMDEJDQzEYDHz11Ven18upW7cuu3btoqCggIyMDJYuXQpAdnY2GRkZDBo0iLfeeut0QujgwYN06NCBZ599lqCgII4cOXJGHBkZGdSqVQvg9FpHZa179+7MmzeP3NxccnJymDt3Lt26daN3797Mnj2btLQ0gNNTz/r168d77713+vii59KiRQumTp1K27Zt2bNnD3FxcQQHBzNp0iRuuukmNm3a9J9i7N27Nz/88APHjh07HUtcXBwdOnRg+fLlpKWlYbFY+P777/91rJ+fH+Hh4cybNw+AgoICcnNz8fX1JSsr65zXZObMmYBjSlpQUBB+fn7/KfaSkESREEII4bQtIYNdyZlcX2032ugBkVcUW65DverkFtrI9I5wTD0TQgghhChHSinmzZvHn3/+SWRkJO3bt2f8+PG8/PLLANxxxx18+eWXdOzYkX379p2etlW7dm2uueYaWrZsyfXXX396vZysrCyGDBlCy5YtueKKK3jzzTcBePDBB2nRogVRUVF0796d6OjoM+J46KGHeOSRR+jSpUu5PZ2sdevWTJgwgfbt29OhQwduvvlmWrVqRfPmzXnssce44ooriI6O5r777gPgnXfeYcOGDbRs2ZJmzZoxbdo0AN56663TC3N7enoycOBAli9ffnpx6zlz5nD33Xf/pxibNWvG//73P/r160fLli3p27cvycnJhIaG8vTTT9OpUyf69OlzznWlvvrqK9555x1atmxJ586dOXr0KC1btsRkMhEdHX26P055+umnT5/jww8/zJdffvmf4i4p9V+GPVWUtm3b6vMtwCWEEEKUpWcW7OSbdfHsCHwEAutjHjen2HLHsvJp//xSfmy8hFbxX6IeTwFj6RYNFEIIIUTltXv3bpo2berqMIT4T4r7/lVKbdRaty2uvIwoEkIIIZy2JWTQv2YW5ozDGBsXP+0MINjXg3pB3mzKCUJpG5yMrbggqzhrbgaZCbtdHYYQQgghhDgHSRQJIYQQgM2u2ZWUySD3bQAYGvc/b/kO9aqz7LjjyR4y/axkbDknsH3aD9/pncn4aSrW/JwLHpORZ2HFvuN8tTaOfEv5DHEXQgghhBD/kKeeCSGEEMDh1GzyLDai89ZhDWqKKaDOect3iAxk4foa4AGkSaLoQmx5GeR9NhSPkwfZ6tudmM3TSN+3mGO93qROy+5k5FlITM8jyfmx92g2W46c5ODxf5JJqVkF3Nu3EQAWmx2zUf7fJYQQouKc66lbQlRm/2W5IUkUCSGEEMCOxEx8ySXk5CZ0pykXLN8+sjqZ+JBrroZH6gEZonsOCSdzWbz5EB1WT6KxZS+3Wu7hL0s72ts78bL+mPrzh/PJ3CG8YR1JIf+s8xTk40ZM7QCGt6pFTO1qfL02jo9XHGRY6AkCDi3A68DP2JoMwDjoZReenRBCiMuFh4cHaWlpBAYGSrJIVBlaa9LS0vDw8Lio4yRRJIQQQgDbEzPoad6BQVvhPOsTnRIW4Ent6p4k2GpRX6aeFeu3nUe5b9Y6PlSv0NS4h4WNnuORvuP5tIYPqdm9iE28lsw/n+G25LlcVS2OfT0+ILRWBKEBHvh5/JM0KsxJp47PAh4wfEfkD0loZcTm5ovasxAkUSSEEKIChIeHk5CQwPHjx10dihAXxcPDg/Dw8Is6RhJFQgghBLAjMYMJ3vuwaz8M4e1KdEyHyEB27AymQdq2co6u6pm3OZFnvl/FdK+P6GDdQfbAd7mqw7jT+2v4ulOjSSQ0+YKsTYOpuehOaiwbhXXU13h6OB7AobUmc/NcvJY8TO3cYxzwasnjmQO4dvxkolIWoJY+DXknwbOai85SCCHE5cJsNhMZGenqMISoEDJSXgghxGXP7lzIuqnhCLpGMzCW7P8oHSKrs9cSgiE3FfLSyzfIKuSL1YeZ//3nLHF/mPa2zWT1eRWfIkmis/m2HkXB+F9AGXD/ahDZG74jPzWOnBnX4j//RmyegWTdsJhqd/zOT6YBvL0mHVWzhePgozsq6KyEEEIIIS4PkigSQghx2Ys/kUtWgYXQwlgMIU1LfFzHeoEc0qEAZMdtKq/wqpT3Fm3Ae9FdfOb2Kl7+QWRc/yu+XW+54HGetVvBLX9QEByDz8+34PZhe7zi/ySj25OYb1+BX4MOBPm6c3vP+izZncKmQucQ6hRJFAkhhBBClCWZeiaEEFWV1uSt/pi8AgsqoBaGgHCMAeF4B4SgDPJ/gIuxIymDYNJxt2ZBcMkTReHVPDniE02GtRqeCyaTE7QY76DzPy3tUmW32/ly1jdcve8Jgk3pHG91J779HiXA06vEdZj9QjBOXEDWwsdQGQkYBz6Pf3D9M8pM7BLJV2vieOaPVOZ61YDkbfJfLyGEEEKIMiSJIiGEqKqObsPz94fwPGuzrUF/jDfMdklIVdWOxEyamRIcL2o0KfFxSima1KvL7fse4avCZ7DPHEnujb/g5RdYTpFWTjabnR9mvMN1sc9x0q0mx0fMJLhxJwyGi38qjMHsju+w1875CGIPs5H7+zXmge+3crx2Q4KObi+LUxBCCCGEEE7yTzghhKiqjqwHIHvsb6Tf8Bsnr/ycglqdMCRvdnFgVc/OpAw6+6U6XlzEiCKADvUCWZ0bzs5uH+CWcQg9awz5eTnlEGXlZLHa+HX641wb9xRxnk3xuG0ZNZt2/k9JoqLO9+jh4a1q0TDYh1XZYRhS94K1sFRtCSGEEEKIf0iiSAghqih7/Frs3iH41GtPQIMOVGszAvf6XSE3Few2V4dXZWit2ZGYQYx7MnbP6uBd46KO79UkmAAvM+OXe7G5zYt4J6+jcPZN5OQVlFPElUehxcK6D29lcNL7bPTuTtiUXwgIDCn3do0GxcComvyZWRNlK4TUfeXephBCCCHE5UISRUIIUVUd+Rtqd4CiIy98QlDaDrlprouriklMz+NkroW69nh0UJMzr2cJhPh5MO+OLgT6uHPtqlqsqHcffod/wTL7RpIS47HZdTlF7nq7PxpP17TvWRZwNc3umoOPj2+Ftd21YQ122p3rQcmC1kIIIYQQZaZMEkVKqQFKqb1KqQNKqYeL2e+vlFqglNqqlNqplLqxLNoVQojLVtZRDBlx/Jhai93Jmf9sPzUaJvuYa+KqgnYkZgKawNxDF/XEs6Iigrz58Y7OdG0YxLhdbfm5xiT8YxcT8mUXji15h/Ts3LINuhJYvX0/LY4v4g//YXSd/Ame7m4V2n6rOgEcM4djUW7o5G0V2rYQQgghxKWs1IkipZQReB8YCDQDxiilmp1VbDKwS2sdDfQAXldKVexflEIIcSlxrk80M7EmM9bE/bPdJ9jxOTvFBUFVTTuTMqhlOInJko26yPWJivLzMDN9fDsmdYtkypGeTPJ+h6M+TQld/STun/UiaetScgutZRi562TlW/jppx8wKE3nKyfhZjZWeAxmo4G29YI5oOpilwWthRBCCCHKTFmMKGoPHNBaH9JaFwLfAkPPKqMBX+VYmdIHOAFcGn8tCyGECxzZtpwCbeaQuT6/7zr6z/QmH+f6MDnHXRdcFbMjMYMrApxT9S7iiWfFMRoUjw1uxtujY9htDaVL0l084/kwtpyThM0dge3L4Rzd+jv5VTxh9MKiPTTO34rN6IF7RDuXxdG1QRBbCsPRydtBX7pT/IQQQgghKlJZJIpqAUeKvE5wbivqPaApkARsB+7WWtvLoG0hhLjsZOVbOLl3JfuN9XlyaCtSswvZEHvCsVOmnl20HUmZdPB1Xq9SjCgqamhMLZY/2INXro5mmepIu4wXmGYeByk7qDl3JPZP+3F840+k5+STU2ClwGpDV5FEx8r9qcxaH89A3wPo8HZgcndZLF0bBrFL18VUcBIyk1wWhxBCCCHEpcRUBnUUt+rn2X/t9ge2AL2A+sDvSqm/tNaZZx+olLoFuAWgTp06ZRCeEEJcWl5duI3H7AdJb3EjEVE1eWTudn7ZcZQO9QLB3Rdt8kDJ1LMSOZaZz/GsAprWSMTuFYTBO6jM6jYbDVzTrjYjWtdiwbYkPlsZwpuJvRhl/JMpx3+m5oJx2BeasXrXxOJVkzzvmtiqN8C98634VA8tszjKUla+halzthEdZKdm9gF05CiXxtMw2IejHg3ABhzdDv5n/59KCCGEEEJcrLIYUZQA1C7yOhzHyKGibgR+1A4HgMNAseP7tdYfa63baq3b1qhxcY8oFkKIS93qA6ns2LACd2UlpPkV+Lib6N6wBot3HsVu16AU2jtYpp6V0I6kDABqFsSiSznt7FxMRgPDW4Wz4M6uLJ3an4gBd3Fn0HTuLJzCx4UDWGdpQHahxjN1O9U3vo3nh+04sfhl8nOzyyWe0njxlz0kZ+TxRodcFBpDZDeXxqOUIqh+awBZp0gIIYQQooyURaLob6ChUirSuUD1aGD+WWXigd4ASqkQoDFwqAzaFkKIy0ZuoZWpP26jj2+sY0N4ewAGRtUkOSOfbYmOpAc+wdhl6lmJ7EjMRCmNT9YBDGU07ex8wqt5cXO3enw/+Qoem/oEud2f4B7LZDok38eV6h3mdfyBnNAOVF/zAob323FyzVdgrxwztTfGneCbdfHc3K0eEVmb0UYPqNXG1WHRrkldYu0hZB7e5OpQhBBCCCEuCaVOFGmtrcAUYDGwG5ittd6plLpNKXWbs9hzQGel1HZgKTBVa51a2raFEOJy8v4fBzhyIo9rQpKxBUSAr2Ph6j5NQzAZFL/sSAZAedeQp56V0PbEDDpUz8NQWLonnv0XNf09uK9fY1Y93ItXRrbEaDBw7x/5TAt7nhMjf8DmWZ1qi6dQuOTZCo3rXJbsPobJoLi7d0N07F/YXLw+0SldGwSxW9dxTD0TANgykrHErXd1GEIIIYSoospiRBFa60Va60Za6/pa6+ed26Zprac5v07SWvfTWrfQWkdprb8ui3aFEOJykVdo4+u18QxsHkL1E5tR4f88acrfy0yn+oEs3nEUrTXKNwSVLVPPSmJn0SeeVXCi6BQPs5Fr2tZm4Z1dGdO+Nh8sP8hXRyMw3fYnuQ2HYlr/YaVYnHxz/EmahfnhbcvEeGyny6ednRLs58Exr4b45SdAQZarw3G9vHTsnw/C+PUwsFlcHY0QQgghqqAySRQJIYQoX/O3JpKRZ+GWaDOGnGMY6nQ4Y//AqFBi03LZczQLvIMhLw3sNhdFW7YKU2PJmD2ZEz/cQ+qi/3F8+Ucc//tHstNK95SrzfEnScrIp523c/RVOa1RVFIGg+L5YS24unU4by7Zx6cr4/Dq/yTKVkjhijddGpvVZmdbQgatagdA/JpKsT5RUe7hMRjQFCRdfqOK8gptvPHbXrYeSQe7jYLvbsScfgiDJQeSt7o6PCGEEEJUQWXx1DMhhBDlSGvNF6vjaFLTlxj2OjbWPjNR1LdZCI/Nczz9rKl/MErbISf19PS0qqrw2EHUjCvxzUtFG90xFv7zsEyb2YeTnR7Ct9vtmMxuF133e8sOUM3LTLRbMnbvYAxe1csy9P/EYFC8MrIlFpudl3/dg9nYlHHNRmHa9Bl0u8dl/bkvJZvcQhut61bDdvhrDEYPVCVYn+iU2s3aw0FI2LWe+pGdXR1OhUnLLuDmGRvYHJ/O9JWH+aXZ79SJXUZht4dx++sliF8D4W1dHaYQQgghqhgZUSSEEJXc37En2Z2cyfjOEXBkPdrsDcHNzihTw9eddhHVWbzjKPgEOzbmuH66UmkUpuxFfTEQZcklb+wi8u4/TPp9CaRN2szxaxaQV7Mt1VY8iWVaDzL3r76ounckZrB0zzFu6hqJMW0vuoZrpp0Vx2hQvHFNNAOjavK/hbv5LWgcymah8M/XXRbTpviTALSqXQ19uPKsT3RKTPMo0rU3mbGbXR1KhTmcmsOID1ezKymTF4a34DqP1dTZ8ykJDa7Drfcj2AIiscVe3M+FEEIIIQRIokgIISq9L1fH4udhYmhMGPYj67HXagvGfw8IHRhVk70pWSRafB0bKsG6Nv+VJXknhi8Go7QN27gFeEe0xcfdRICfL4G16lGjWXe8Jszl5JBPMeWn4TtzEJnfT8aSm16i+t//4wC+HibGdaqDSt2LMaTyJIoATEYDb49uRfdGNbh3SSZHI4Zh2vwFZCa7JJ7N8ekEertR2zO/Uq1PdIq3h5kjbg3wOrHL1aFUiI1xJxnxwSqy8q18M6kj14Sm8Ij1QzYZohi0bzBrD6Wh6nZCHVlbaZ6aJ0SpZR/H9n5HSNjo6kjEBeQWWvlj7zGW7Eo5/bF0dwoZebJumhBVhSSKhBCiEkvOyOPXnUe5tl1tvHQ+hpQdGOu0L7Zs/+Y1AfgjUTk2VNFEkSVxK+rLIWilsI9fgHutFv8qY7XZQSmqtR2F7fZ1ZMbcgu+ub9AfdiP70Lrz1r8vJYtfdhxlQucI/PKPoiw5Ll+fqDhuJgPvjm5FWIAnt8X3ArvNZaOKNh85Sas61VCVcH2iU6w1mlHHGsux9BxXh1Ku5m5O4LpP1uLvaebH2zrR+PhvMGs0du9gat86m+AAX278/G8OebXEkHcCUve5OmQhyoTe9i3G47shcYOrQxHnkJKZzyu/7qHTi8u48fO/uXnGhtMfN325gas/XE16bqGrwxRClICsUSSEEJXYN+visWvN2I4RkLQBpW3/Wp/olLAAT6JrB/DzwVxugCo59UxnH0d9cw3a6I4evwC34IYcy8rnm3XxxKXlknAyl8STeRzNzMfH3USbutVoG1GddtEP06DRYHwW3Y73V4PI7PQQvr3vRxUz8ur9Pw7g5WZkYpdISPzDsdFFTzy7EH8vM5+Ma8uw9wv43bMXfbfMgCvuA7+wCoshPbeQQ8dzuLp1OLbDP1S69YlOCWvWEc+kWSz97F563/YWnl5erg6pTGUXWHly3g5+3JxI+4jqvNvLiN+PI/BMXkdBUHNMo6ZTI6QWsyYFcd0na7lvrRfzAeJXQ3DlS4QKcbHsW77FCFX2nyCXsr1Hs/hoxUEWbE3CZtf0b16TMe3rEOBlxlKQh+nYdvLjN/HiNh9umeHGjJva42E2ujpsIcR5SKJICCEqqQKrjVnr4+ndJJg61dzJ/2MWHnDexWmjw/2ZuykLbfZEVYI/prXWKKVKVthuo3D2TZjzT2Kf+DvGoAZ8vTaOl3/dQ06BlVB/T2pV86Rj/UBqBXiSml3A37En+WOvY4Fvd5OBYU2mMSX3PWqvfoHc2D8wDP8Ijxp1TzdxODWHBVuTmNStHtW83eDYbseOSjii6JRGIb68cU00z80cTB/3pRT88SruQyvuKWibj6QD0KpOACxeiS28HaZKtD7RKSEdx7B1y28MSf2O1Pc3kTt8GtXrtyn5918ltvVIOnfN2szxkyd5po2d4WomvrNmYnMPIKvva/h0vPF0UrSGrzuPDm7KjZ9nke8fiFvsagxtJ7r4DIQopaM7MB7b4fi6Cv4T5FKVcDKXN37fx9zNiXiajVzfoS4Tu0RSxzOfzN9exJS4Ho+0nRjsjilnc9yMvHTkWu7/zsS717XFYKj6v5+FuFRJokgIISqphduSSc0u5KYoRf4n/fFI/htLzHjMntXOeUztal5kFdiw+dfAmH0MV/8Jln5gPX51W2J087xg2fylL+ER/ycFA9/ksDGSR6atZnN8Op3rB/K/YVHUq+FT7HEncwrZGHeSP/YeY/7WJL7LH8ckn0Y8cPRTjNM6cLL9Pfj2uBuTuycf/HEAs9HAzd3qAaCP7Ub71MTgGVCWp13mBkSFsrNnJ75bcQXXbpmBrcPNGGs2r5C2N8enY1AQHQiGYzvQPR6pkHYvmsmdJrd+xdNvvcnknHepPrM/J9rdQ/V+U1Gmi38qXmWgtebX2R9h2fETnxvjiXBPwrDTjlZGcqJvwqPPo/j6/PtpfV0bBBHg5cZucxTR8WtcELkQZcu+dRbKYAKfEMg57vJ72+XuZE4h7/9xgBlr4kDBLd3rcfsV9QnwcgOtKfhqHL6H/yC3ZhsyYyZBrbaYajZFLfsfjx38hqV7d/PK3OeZOqLzJZHMF+JSJIkiIYSohLTWfLHqMHf4r6H9r5+BMpI75EO82ow573G1qzsSMvnugXi5OlGUkUjANwPIa3sHXoOfP2/Rwn1LcV/1KvnNRvFFXndefWcl/p5m3rgmmuGtap33D8lq3m70afZ/9u47TIoqa+Dwr6pz9/TknBgGhpxzEiSICAoIZswR05r3c91VV13Drusa1oCCOQcQBQFFQYLkPEMOM0zOuXs6Vn1/9OCqZOiennDf5/FZqrrq3tOrzHSfOvfcOMZ1i+PRC7uxJKuYLzZFM/ZQR/6m/YgJa5+lYMP7LEt7gK93J3L1kHbEWH0VMWrpHmhGO56dyH3jOnFf3h2cn7sR+wc3kXDfKrQ6XcDn3ZpbRef4UIwFq5FQkZphf6IjDDoNM669jUmvpPJi6CcM3/BvHA1FGKe/HuzQTpvLo/Dipwt56MDD1OgikJL6UZdwGcT3xNBuICFRKce9V6eRuaBHAou3taevvAKq8yD8+NcLQrOmeGHHlygdzkP2OnxLlIMdUxuyfG8pP+8ppcLmoqLeRXm9k4IqGw6PyvR+ydx3XicSw//3MMi94R0Mh5biGPs0lnPu+v1gV39M/ao3GLX8MbruuJp5mueZPvWSJn5HgiCcCpEoEgRBaGZUxcsXX37KvaWzGaPZRkPScLTT38Ac2e6k9yZH+Pqy1GsjMdcHZ4esI5TsVciqgmH7h6jj/oJkOHZFkFJdgDzvFtyRnZgbfz/PLdrLpJ4J/GNqD9/ysNNg1GmY2jeJqX2TyK/qxYbscczevpgJuS9yzcEH6KHLIC0/CvvrLiRPA8aqfUiDb/PH2w04WZb457VjmPv+fczIf5L3Xn6Y82/5BwlhJ6/WOlOKorItr5qLeifiXfMPsCahSR4YsPn8ISPOyk3j+zNjsYXvMhLolvUp6sh7kWI6BTu0U1Ztd3Hbh5u5LP9NPDoDofeuQxMad1pjXNQ7gac3dgIDkLtOJIqEFkdVVQCkQz8j20qg75Ww5zvUioNBjqxtqGlw88SCnazaksWF+i2cqyuig1RAOyUPq7aOomGPkHrBpN/do1YcRLP0r7hSR2IcfsfRg0oSISPvoCFlINqPrmbS1pnUnTMMa1TT9d0TBOHUiF3PBEEQmglHZQG1P/yTuud7c/nuOxmsO0D9qCcw3bQQ3SkkicC39AygSgpHCnIfB2/2KlRZh8ZVg2PTx8e5yIP7ixuQPQ2s7vsCf1uczXnd4nj5ij6nnST6o+QIM9P6JXPLDbeQ+MhWKob+lY7RZvSSF0VnwROaij1jMvS9+qzmaUpGnYYZN91PXsworqh7n9te+oLlewL37/lgWT11Dg/jLIfQF6xDGXoXaAJfxXS2bj4nnb6p4dyZNwZFY8T507PBDumUZZfbuPj1NVTm7uZizRrkgTeddpIIYHD7KMotHbFLZpTDawIQqSAE1jOLdjPhpVV4tn6CYgiDThPAEoNkLw92aK3eqv1lTHhpJYu3HWZx2D95XH6bi+UVdI6Q0GaMxZ08lNT1T2Bf8DAoiu8mrwf3lzejavTopr8B8vG/ZpraD2TPqDcwSm7qtn7dRO9KEITTISqKBEEQmgF19wIMX1yHUfWyQe3Gz5YHuOP2ewmxhp7WOGFmHVajlmIllC72CvB64Bg7fzUFKWc1nvSxKLVFaDa9BUNvOeqDo3PNLAyF68ka/Dy3LaljYLtI/ntlX7Qa/z7H0OgMRJ3/Z9TxD7X8fgiSRPLVb+B9dRBPKW8x9b1ILh2QyoPjOxMbavTrVFtzqwHol/suXmMkugHX+3X8QNHIEv++tDcTX65lcehkJu35HKX4IeT4bsEO7YSyCmq4+u31yJLEos6r4LAe7Tn3ntFYGlnigl7JbNqUwdCcX8STQaFF2VdSx9urszGpDUj136H2vhy0Bl+iyG0HZz0cp0pVOHMuj8JTC3fx4brDdIwN4cuuW4nelot9+odoukzErGv8PKF4sX/zIObNb2CvLcB02Vu4V76MvngL7otnowlLPulcEe37cUiJJ2TPtzDuzgC/M0EQTpf43CAIgtAMeH95FZc1hRmm17hD9yRX3/rQaSeJjkiJMJPnCkFCBXuFnyM9RTUFaGtykNNHogyeib7qAM69S393ibemEO3KZ6lIGMnla1PoEBPC7OsGBHTL3BafJGokhSXhPe8f9PZm8Wqn7Xy9tYBz//0zLy3dR1mNDZu9wS/zbMmtYpAxn/D85XgH3w76lrPlfIeYEB46vzN/Kx2NW2PGveyZYId0QmV1Tm75YBMWvZYFM5KIy/4Gb7/rIST2jMe8qHci672d0VXsBXul/4JtYzxehZX7yqhzuIMdSpvx9He7sRi0XKjbhMbbgKbPVb4Xjvx9EDuf+V2Dy8stH2ziw3WHuXlEe76bkUhi5uu4ukzF3HMyBt1vHjrJGsxT/4N91N8x7/8W11vj0a3+F86u09D1vuyU5kuKNLNIGUx0+QawiSoxQWhuRKJIEAQh2Kpy0Oav41tpNBtqI3nj6v6/awx5upIjTGQ3WHwH9SV+CvL0KDmrAdC0H4Gp9yV4zHEo69743TXORY8geZ3cWHIp4WYD7984iDBT81/W1FwYBl6PM2UEE4reYHm3hXxiep7Jqy4i/MVUdC+kU/PxDVRuW0hDg+OM59iaW839poUoeiv6Ibf6MfqmccPw9mSkpfKOZwKGfQtQCncEO6RjcnsV7vx4C1V2F29e05+Yba+iylp0Z1hNdES/1HCyLb18B7nrzj7QNqbO4WbOqkOMev5nrn1nA498nfW714/00BH86+e9pazYV8Y9YzO4zrKOPOJRkhp7o1kaE0X1ZcELsBWqc7i57p0NrNxfxj+n9+Rvk7oiLX4QZB36ic8d+yZJwjz6PhqmzEZXsQevJRbD5P+c8pwRZh3L5GHIKKi7F/jpnQiC4C8iUSQIghBkyvYvAHippA9/n9ydgWlHb3d9OlIizeytb0w0Bempq/fQKl9PibgeoNXj6nsDpsPLcZfsAcC+dxnmvV/zgXwxh4nng5sGEefnZVOtniShm/oqSBoScr6lc4gDTWIvvtRPYZ5zEPpDS4mcPwPdS12o+epPqKdZUVLncOMu28eghlV4+t8EpvDAvI8A0sgSz1/Sm3eVidgkS7OtKnpq4S425FTyz+m96GGuRpf1OZ4+10JowlmNK0kSab3PwalqaTiwyk/Rtn4Hy+p5+rtdDHt2Gf/4bjdJESYu6p3Igu2FbD5ciat4Nw2zJ6LMGR/sUFsdj1fhmUW7aRdl5pruWro6tvGVezib86p9F1iiff9rE4kif6m0uZgxZz1bcqt45Yq+XD4wFU/mXPQ5P+Md/beT/hwy9b0M9y0r4IYlYIo45XklSaI+vAvF2iS8WaJPkSA0N6JHkSAIQjCpKq6tn7FD6Urvnj2ZMfjUmlafSEqEiR89VtAQtKeu0uHVeFOGIsu+ZWTGITejrHsR9y9vIF/0L+TFD1Esx/GC40LevXkAHWJEr4kzIUe1x/HAATyqhEGnoZ1GJt7j5f7Pt/NYZi6Pdy3iQnkN1l2f4KzLxXjdvBM2GP2tHfk13CYvQJH16IffdfIbmqm0aAt3XDCAWd9dwAMHvkLJ34qc3DfYYf3q8425fLD2MLec054pfZJwzv8TemT0I+/zy/gT+7Rnx/p00vavInD747V8B0rrWZRZxKLMIvYU16GRJSb1TODmc9rTKzkcm9PD1kPF7Pn0Efq65qJXXL4b7ZVgPrvkvvA/n23MY19JPbOu7odm27tIqCyURlKzo8j3EEUsPfOropoGrn17A7mVdt66tj9jusSBowbp+0dwx/VGd4qVpIaEM+v/lhxp4WfXMC4/PNe3/OxIIlAQhKATFUWCIAhBpBZswVhzkO+kkTx+UXe/jJkcYaZMDfcdBGPpWW0h2ups5Pbn/HpKtsbg6DIN467PqV/yJMbqAzziuIbnLhvEgLOsoGrrjAY9IUYdusYG4Aathleu7Mslgzvw192pPGd5CPuYf2A8vBzHzy+c8rj79u1mmmYVjp4zICQmUOE3iWuGtCMr5UpqVAv13z8Z7HB+tSW3ikfn72REx2j+b0IXbMUH0O/4BHfvGRCW5Jc5uieGss/Qk4iaXeCy+2XM1sDtVVh3qIJnF+9m/IsrGPefFbz44z6sRi2PX9SNNQ+P4ZUr+9IrORwAKfcXFugeZobjUw7FjME7uXEpbemu4L2JVqbW4ebFpfsY1D6S8RHFaFa/iKfTJDI69+S7zCK8igrmxkSCWHp2VuqdHv6zdB9jX1hBYXUD790wyJckAlxLn0K2laKd/BLIgesZCJAUbmKuYyCSKpafCUJzIyqKBEEQgujgT2+TomrpOvZqvy29Sok0Y8eIR2NCG4TyfCV7NTK+/kS/pRt2B/LOTwnb/CpLvf0ZfP5VTOp1dktrhGPTyBJPT+1BhFnHa8sPUttjIP/KmIJ51TO42g1B3+GcE96vKCpxWW8hSRAy2j+VLcEkyxJPXjaMOS9N5oG8T3HvX44uY3RQY8qvsnPbh5uJCzPw3yv7UrvnZ6wLb0XRGNCPesBv80iShLnjOWh3z6Vyzyoie53vt7Fbot1Ftby6/EBjc2oP3TT5PGn5mpCUSMKG30hK76FwpOm9qmLfuwxWvYC54Be01lQeC3mCH6p6srxdJ1+FVskuSBtxoimFU/T68oNU2Fx8cF4qypeTwByFduqrXHjAwZKdxWzMqWRIehSqMRxJLD07I26vwmcbcnn5p/2U17uY1DOBh87vTFq0BRQv9cuex7J5Du5+N6JP6hfweJIjTHzoSMId1x4p62u0A24I+JyCIJwakSgSBEEIkuo6G5HZC9hsGMylI3r6bdzkCN8CE5s2gtD6Upp6ny9v9irQhyLH96TK5mJfSR25lXZyKw1cYOhNumMXW7v/mYdGpjdxZG2LJEk8dH4Xwk16nl60m9KEGbwfsh393JtQbl+NbD32blo2p4e33pnNPbYFZMZNpnd4ahNHHhgpkWbix99L7g8/EvrNA4Tftx40wWmeXtPg5oZ3N+Jwe3n/+gEoa14lcs0/cIW2w3X1fCzhKX6dr9fwC6jc9TcqFj1JePdxyJrAVgk0R4qi8u6aHP65eA8Wg4Yp3SK4yvEpXbI/QJFCkKo9aOZ/h3N5Oq5eVyNHpaNZ+wrmki24zbHUjXoCy7BbmFzk5INZa5m12c49xgikkqwm/xnbGm0+XMU7q7OZ1jeRjM2Poak5jHrtQjBHMqaLB6NO5rsdRb5EkSUGbE3/u60lK61zMHdzAZ9uyCW30s7g9pHMua4rfVLCAXBXF+D56lZC8ldj7zQV84SnmiSu5AgzIFHVfiIx22eBrQIsUU0ytyAIJyYSRYIgCEEyf+5HXE8tyefegEb230dei0FLpEVPlRyBta6kyT9MSzm+/kRb82qYMWc9DrcCgCzBqrC7GdFe4f5Lx7eareqbu1tGppMWbeHBL7dzjXIHn2sexfXlTRivn3/UsoLcCjuPvvstr9Q9SbmlA71uej04QQfI5UM78djqW3im/hkcv7yBceSfmjwGp8fLbR9uIqfCxuzLu5D0012EHVpAXfsJ6KbPwhJy6s1gT1WH5HiWdrqf8/Y/yXcfPs+k6x/2+xzNWUmtgwe/3M6q/eWM6xrH0z0Kifj5RvR1edi6XYFx4tOgNVK/bS6abR9iXeVbnuiyplA/7l+YB12LVe9LwA9Is3BhrwTeXHWImaldMJTsFAmLs+SrrttEfJiRx1O3o//+K9wj/4Ku/XAAzHotY7vEsTiriMcv6oYcEosahIcgzV2N3U2l3fW7cwdL6/l8Ux7L9pTiVVQGpkXw+EXdGNMl9tffwfadi9AvuBODpwHbhJewDL7+f1V1AZbU+GDrYMx5xKqvoe5egDTg+iaZWxCEExOJIkEQhCDYmFNJxMH52PWhpA6a4vfxUyJMlNeHkdrUDT9ri9BWH6K82wxu+WAz8aFG/j65O2lRFpIiTOg0Ml5F9WtiTDi587rF8d2fRnD3pxb+VnANz+XOoWr+/2GZ9A/0Bt+SxzUHyrn/ozV8wNMY9VosN36JZGhdTca1GplhF1zN8q++Y/iK56Dv5WCNa7L5VVXl4bmZrDtUyX9GGxiy7DIMNQepGPoIYWMfRKsNXKXPuCvv48Dz3zAi+2XmrRzPtJGBX1bSHPy0u4QHv9xOg9vL0xf3YFrdJ5gWPIczvCMNMxZgyRj567UhQ66DIdfhKNyFp+IQlq7j0Wv1R4358AVd+GFXCRvtCZxj+x4U5ZSbxAu/V+/0cPP7m3B6FOZeEob1q4dxp45Ad+5Dv7vuwl4JfJdZxIbsSoZaYlBLdgYp4ubH41V495ccXli699cHMwBXa5YyTt7CQf293HxOVy4bkHLUxhGOZf/GvPIpnFFd8V7yDpYzbEp9po5UQO9R2zEovD1q1jy0IlEkCM2CSBQJgiA0MUVReebrDXyq2YTUawYc44vI2UqONFNYbaWfbZ/fxz4RJcfXn+hv28LxKirvXD+Q9D98MBVJouBIjjDzxW1DeX5JBB+vzWbGjtkc3LaQxz3Xs1rpCai8Y5lFhjcf1/Qv0Ea3zqWBE3smctuyOxhecycNi/6K6fI5TTb3f5bu4+utBbzUeSeTN7yAVxdC+dRPie51fsAr7CRZpt11byLNGoG89G8sj32P0V2OvfywtfhiYx4Pz9tB14RQXr6iL8kHP8G4+jkaulyCcfprSLpj94UzJnaDxON/YU6OMDNjcCrfr49kpNYG1Ychsn2g3kar5VVU7vl0K/tL63l/RjcSf7wCVWdGd8mco6odz+0ci1mvYWFmEcNCYuHQ8iBF3bzsLKzh4bmZZBbUMK5rLJN6JSCpkJ71Er0OvQvAkJjXMI5bCLrf73vo3PA+xpVPYe98McbpbyDrm35fxCiLHqNOpqDagdR9KvKaV8TyM0FoJsTjD0EQhCa2cn8Z6WXLMeLC0PfKgMyREmEmxxmCZK8ArycgcxyL++BKbJKZ5TXxvHlN/6OSREJw6TQyj0zqRtr1b/FpxxcIM2r4SP8s38W9yRcdvmeM9xcco/6Goct5wQ41YGRZYsbEMbzlmYRp95d4c9Y0ybybD1cxZ1kWn0S/y9TDT2OP7Uf9DcuJ6T2hyZZh6uK74hxyD1M1v/DRJ++RVVDTJPMGw7u/ZPPnuTsY3jGaL2cOJaVwMYbv/4yj/XmYLp113CTRqRqZEcNOb2P/LrHz2Rl5bvFuftpTyhOTOjFo84NoK/bCtNkQevQmBya9hrFd41iSVYzXHIPkqAGPMwhRNw92l4d/LtnD5Fd/oaimgVev6svsawdwce8Ezs/5J70OzcbeYwauKbMxFG/G8flNoHh/vd+1ewn6xffhSD0X82Wzg5IkAl8vveQIM/lVDcg9piGpXtizMCixCILweyJRJAiC0MTe+SWHyw2/4A1rBymDAjJHcoSJUiUUCRXs5QGZ449UVaV613LWejrzzLQ+DEkXTwSbq+Edo7ny6psJvX8T1UP/QlfbBgYVfEBDp8mYzr0/2OEF3KhOMaxPuoFiovAseOB3X6ACZeveQ3yrf5Sh9T9SMeA+tNd/Q0Rc0zcKt4z9M47Q9vxdfptr31zB+2tyUBS1yeMIFFVVeXXZfp5YsIvzu8cx57oBaA8tQ//t7bgSB2G86kO/NDHvnxbBfpJ9ByUiUXS6Plibw+xV2Vw3JJXLKl5Df2gpnvOfR5Mx9rj3TOqZQKXNxSF7Y1LD1jS/25qTmgY3//1pP8OfW8YbPx9kWt8kfrx/FBf2SkTyumj49DpMOz7APuhPmKe/hr7vZTjHPoXxwHc4Fv4ZVBVP3ma0c2/AHd0V44yPgtbU/4ikcBP51XaI74mqDxGJV0FoJsTSM0EQhCa0v6SOXfsOMMC4E6nX/QFrGJkSaWaVGuY7qC8Fa3xA5vmtRWu2Msmdx672U5nePzng8wlnT280oT//YWz9rsSd+TVhw29usiamwSRJEvdO7M2Tb87g9YpXUDZ/gDwwsNsye/YvI0MuoHzibCIHXIocrCWYOiO6yS+R8tEUHg9dyD3favh2eyH/nN6TjrHW4MTkJ6qq8s8le5m14iAX903i+Ut64c3bgPara3FHZqC/5vOjlt+cqVCjjrSEWIprEogtzhJPXk/DJ+tzeeybnYzrGssjkcvQL3sH1+C70A+5+YT3DUmPBCDbYSYDwFYKYUmBD7gZqKh38vbqbD5ce5g6p4cxXWK5a0xH+qX6mt87Sw+gfHMXpoK1NJz7BOZz7/31XuM5d+OoKcC46Q2cGj2arC/wmiLRXfMVGIL/dz45wsT2/GqQJNSQBKgrFo3KBaEZEIkiQRCEJvTOLzlcqNuIjAI9pgVsnpQIE2VquO+gvmkaWlft9vWMGDU+cO9LCAxLTDsYc2+ww2hS/dtF8nrGRew6vICO695CP+D6gCXJVFXFVZ4NQHSvCb4tAINI0/FcnD2vYkrmJ8QM7MUdO3VMfHk1t41Kp0t86O+u7dcunIQwX3LFk7cZ74a3MVz4z2bxBfOPfthVwqwVB7lqcCr/mNwd+5pZmH9+Aq8lHu21XyOZ/Luj3MC0SDI3JzNGNFY+ZZ9tyOWRrzMZ0yWWV/vkof/6cdydLkJ//sm3Yw8z6bDoNeQ6G5c015cFONrgy8yv4f21OXy7vRC3V2FijwTuGN2B7om+B0GK04592b8xb3oVVdbScOHrmAbMOGoc48RncNQWYNz4Ol5DONI185COscQvGJIjzFTb3dQ7PZhD41Fri0SiSBCaAZEoEoQWalFmEU8t3MXrM/rR98gTpcMb0ake5LShQY5OOJYqm4t5W/L5LmwrXkMGmtjA7S6SGG6inMaKoiba+cxamYULHfqEXk0ynyCcrQcndOGTV8/lqYp3oWgbJPYNyDz5VQ1EuotxGMMwGkNPfkMTMEx5CUdVLkOzHmPphe/y1L5U/rvswFHXRVn0zLtjGEkNe5E+nIrBVQsdR0LvK4IQ9Yl9vjGP+FAjj42KwPH+xYTk/ow9dTSG6W8gh/q/qnJw+0h2bUhmXNVmcDf4rVqpNfKUZ7N65ffs3LyHf8V4mRCmQ//tR3gS+qG7dPYp7RonSRJJESYOHtkC3tY6E0Uuj8LirCLeW5PD1txqzHoNlw9I4bphaXSM9SXJVEXBnvUduqWPEFKXi63TxegueBpTxHEqrGQZ46WzsX2fir7XxehiOzfhOzqxIzufFVQ10NmagJK3PsgRCYIAIlEkCC2Oqqq8/vNBnv9+LwBLd5XQNzUCT+EOdB9OhuiOMHNVkKMUjuWTDblYPVV0sG+H/g8EdImPUadBDokBN01WUWS0F1OjiyVGI361CC1D14RQGjpPw3HwI5T172O+ODCJoi25VaRIZXjDmr4n0XFpDRiu/hTX25OIWnQrz8+Yx0Pnj6bB/b9+TZU2FzM/2sxTsz9jlvIEiiEMSWtA3bUATTNLFJXUOvh5byn/6paD9s0bkT0O6sc+R8iImQH7WTsgLZIFSgqSqkDZXkjsE5B5Wjx7JcobwznXa+NcHVAH3l0WPLG90M/49LQSbMkRZvZUH0kUNc3vtqZSUuvg4/W5fLI+l/J6J+2jLTx+UTem908m1OjrI+SoLsG19VP0mZ9iqdyDM6IT9ivnY+k8+uQT6IxYLnw6wO/i9CU1Joryq+x0tsYj1RWDqraJZdCC0Jz55dO8JEkTgJcBDTBHVdXnjnHNucBLgA4oV1V1lD/mFoS2xOVR+Mu8TOZuyeei3onsL6ljW141al0J6idXIHvsqPaKYIcpHIPbq/DB2hzuStiFVKVA94sDPmd0ZBQNpUZMTZAoqrG7iVTKcZoD3wtJEPzphnG9WbJ/IOdnfQUXPhuQqpCtudVcK5djjO7v97HPhmQMRXftXDxzxqP97Erir1+ELrHH7675cJKZ5G8fo0Jjwnrjt2g2vYq87dNmV0Ezd0s+A9nNJQefwhHTG2n6W4TEdwnonDFWA7aIzmDD14BXJIqOKevbl+jhtfFs1DPcfeUULOExaLQGNGcwVlK4iU05lag6C1IrWHrm9HhZf6iSzzfl8X1WMV5VZXTnWK4blsY5HaN/7WXWsO9nvGvfwJLzI0bVQ0NMb+rO+zchg69D0uqD/C7Ozq8VRdUNYI1H8jqhoQrMkUGOTBDatrNOFEmSpAFeA84D8oGNkiR9q6rqrt9cEw68DkxQVTVXkqTYs51XENqaKpuL2z7azIbsSu4dl8E9YzN49JssFm3NwfnRI+gdlSjtRyHlbwp2qMIxLMosoqTWyUVhG/BGBXbZ2REpkWYqSsJIqi8N+Hr/7AobCVIlUlhgv5gJgr91TwxjUeLFTC1Zg2PHfIz9r/T7HNtyq/iLVI4mKs3vY58t2RqLfO181LfHw4dTqUmfgBoSj2SNR2O00u3Hh3EYLUytfZiM7yt4c9gk5E1vw6GfofMFwQ4f8FXafrUpn/sjMlGdRgy3LEbSW5pk7qT07jh26NCLhtbHtGBzNkN2v8dW4wDuvW0mJv2ZpIf+JynCRK3DgxIWhWwra5G9bAqrG1i+t5Tlu0vIO7SLvt5MNLoIrh96MdcMS6Nd1G/+21W82H74B5Z1/8Fjiqauz81o+1+DObnH8SdoYWJCDBi0MvlVDZDa+LCpvkQkigQhyPxRUTQIOKCq6iEASZI+A6YAv93b8CpgnqqquQCqqrauWlFBCLAlWcU8+k0WNQ1uXr6iD1P6+Nag90kOZ8Dm1zGWbMY57X0MVfshewV4nKA1BDlq4QhVVXlndTb9I91Elm+EcwK77OyI5AgTJUoo8XXFAV9nnFNWR3eqqI9KCfBMguB/YydOJ/ftfyGteocUPyeKnB4vZUW5GHQuCG/n17H9RRuVhvvqeXjm34XlwEK0zqpfX/NY4jFd/x037tfy+Lc7eSIkgb8bQmHXAuRmkijafLiKQ+U2RkRtR0kdiqaJkkQAA9rHsG97Mmm5O2ge3aeajwXbC1k973Uu0tVgnfYIxrNMEsH/qk8chihMTfAQxJ9UVeXtVQfZ/v17jJS285R2FwlyOUcyjA2FK5Dqn4MoX+WhUl+O84sbseSuwNb9SoyT/0OowRzEdxAYkiSRFG4iv8oO3RsbbNcVQWzX4AYmCG2cP747JAF5vznOBwb/4ZpOgE6SpJ8BK/CyqqofHGswSZJuBW4FSE1tRmv5BSEIyuqc/P3bnXyXWUS3hFDevX4gPZLCfn19WOG7JGrWsKXj3fTrNRU2zPa90FAN1rigxCwcbfPhKrbn1/B5331Iu5tm2RlASoSZMjUcb21JwBNFxUV56CQvIXHN84uwIJxIv3ZRfBF2AZdVf4Cz7BCGmHS/jb2zsJY4pcR3EN58P9foEnugmbkct6LgdjlR6ktQa4swJ3RBtkRyXQwU1jTw5opDTIwawMC9i8DrgWbQk+yLTXl01FcSbsuGTrc06dyD2keyVkmhQ/muk1/chny3o4j7Pt/CctNi3JE9MHYa45dxk8J9iSKbNhKTrcgvYzYFl0fh7/O2MDTzr/xXtw6XPgxX8nBq249C22Ek6uG1GFY8jebdsdi6XYGmx8VoFt2HoaEc+/kvYhl6Y7DfQkAlRZh8FUXWRN+JuuLgBiQIgl++Oxwrma8eY57+wFjABKyVJGmdqqr7jrpRVd8C3gIYMGDAH8cRhDZBVVW+3lrAkwt3YXd6eej8ztw6Mh2dxvfYSfW4sC1+nMQtr/OtOpJ15svoB3Bk69+GKpEoakZe/mk/kRY9/epXNNmyM4DkSBOH1FAk29E7GflbXelhAHThyQGfSxACIf28W1DmfsjuxW/Q59rn/Tbu1txqkqVy30EzrSg6QpYlDLIGtGYwt4fY9r97/eEJXYi1Gvl4SU+GaJexb/OPdBo0IUjR+ticHhbuKOKp5BwoBDqOa9L5kyPMFBnTsbhWgq0cLNFNOn9ztHp/OX/6bCs3xR0gpSoPznnMb1W0RxofV0vhxNTv8MuYgVZpc3H/Byu4rfAxhmp2YTvnb5jOvR+95jcVVond8Paeju2n5zBvnYO861Pc1mTc1y7C3G5A8IJvIskRZnYVFkNI49KzupaTBBSE1sofy6nzgd+uNUjG96v6j9csUVXVpqpqObAS6O2HuQWh1dlXUscVb63j/i+20yEmhEX3nMOdozv+miRyVeTimHMBIZtfx9brOr5O+TPb8mp8Nx9JFDmqgxO8cJRNOZWs2l/OfUPD0OavQe4+tcl28kiJMFNOGHpXFXjdAZ3LVZnv+0NoYkDnEYRA6d+zJ9v0fYk/NA+3239/X7blVdPNVOk7CG/ZSzMlSeKmEe259YZbcaJj9YL3eXPFQRQleM/1FmUWYXd5OVezA8WaBNGdmjwGbYKvX4xaktXkczc3tQ43D321nfbRFh4M+QGvNdGvVbTRFgN6rUypGgoNFaB4T35TEB0orefW/87nL8X3MUi7D8fkN7GMfQhZc/QyPI05nJCLnsMzcw31wx9Gc9tKDG0gSQS+JYUVNhd29KjGMFFRJAjNgD8SRRuBDEmS2kuSpAeuAL79wzXfAOdIkqSVJMmMb2nabj/MLQitRr3Tw9Pf7WLiy6vYW1LHMxf35IvbhtIxNuTXa+w7FyO/NRJ9xW7qL3wLy7RX6JEay96SOhpc3t9XFAnNwos/7iM6xMDllu1IqoLURMvOABLCjJQT7juwlQdsHlVVobbx+UBoUsDmEYRAkiQJ3YBriaectT/O9du4W3Or6G6pQTHHQBP2zgmknh2Sof0oLjJs4dnFuxn3nxU8uWAXK/eV4XA37Rf3LzflkxFlIKJkra+aKAhbasdn+HrKVGZvb/K5m5t/LNxFSa2D10bL6PN+QRp8O2h0fhtfliWSw00Uuq1IqgL2Sr+N7W8V9U4em/MVrzn+j3RdFd4rv8TY74qT3qeP7UTIeX9BDolqgiibh193PqtqQLXEodaKiiJBCLazThSpquoB7gK+x5f8+UJV1Z2SJM2UJGlm4zW7gSXADmADMEdVVfHYRRAaLc4sYuwLPzN7VTaXDkhm2QPnctXgVDSN26J6Gmqpm/8Q5i+vwGuJw3PTMkIGXA5A7+RwvIpKZkGNSBQ1M+sOVfDLgQpuP7cDmj3f4I3KgCZadgag1ci+L6eAWl8SsHnK611EesvwSlowi2UXQsvVY8yV1EpW3Js+xOk5+4RHWZ2T/KoG0jTlLb6a6I8MPSYT4ylm9vkmkiJMfLT+MNe+s4G+Ty7lpvc28uWmPGrsga1kPFRWz4acSu7MqEJ21SFnjA3ofMfTq0sG5Woo1dlbgzJ/c7F8TylfbMpn5qgOdDzwHoo+BHnAdX6fJynCRI6jsamzrXnuj+P2Ktz5yRbudc4i3CDBDYvQ+6lPU2t0JFGUX9UAoQmooqJIEILOLx0IVVVdBCz6w7lZfzh+HvDfon9BaAVKah089k0Wy3fmMyrGxq23ns/A9N9/0a7PXIj++z9jrS+gvud1mC98Dvk3u170SQ0HYHteNYPiG7cSFYmioFIdtTjKDzNv4RbGWOq5LExCzv2lyXY7+53QRCgHW952QhL7BGSK7HIb8VIlTlMcZllsEC20XJLOSHXHqYzY9ymzvlvHPVOGn9V42/KqAYj2FCOF9/NDhM1I5wtQF0iMkzZy3k0P0+Dysu5QBT/vLeXH3aX8tKeURzSZDO8YzcSeCaRG/n63poQw4++2AVdqCpFDE07rZ+QXm/KRJRinz0SVNEjtR/nt7Z2ODjEhbJDaEV/edovlaxrcPDxvB53iQrijmxv53a9RB98OxrCT33yaksJNHCj0JRawlfl9fH94+rvdlGVnMsiwG++Iv6NJEh03TiQ5wvfzIb+6Ackaj3p4TZAjEgQh+FtVCEIbpKoqn2/M4+lFu3F5FL5IX0yfws/wfBFFbfIIlPTRaJN6I618gZCDC3FGdMI2YyEhGeccNVZ0iIHkCJPvC8mINFRJRhKJouBRvHjnnIepfA//OnLuyCqWHtObPBxPbG8OlqeQvO6/qAOvRpLPfnviP8opt5EqVSKJZWdCK5A6/k+w/0PcG99jQ6+uDGofecZjbc2tQierGG2FSBFNt+y0SYTEoiQPgl0L0Zz7MCa9htFdYhndJZa/T1bZnl/Dkm3ZeLZ/RdKh5exVE3nDM5lifMtpNLLE4xd1Y0YXDa7vH8O0Zx7Kef9AHn73KU2/9mAFc1Yd4oIeCZhyf0ZJGojGFB7AN3x8kiRRH9aJuJoFvp45Afg525ypqspj32RhqctlTvwqLO9+g6ozIQ+9PSDzJUeY2Gg3gwGob36Joi825fHemhw+Tt2CWq5F03dGsENq9mJCDOg1MvlVdiRrgq9HkaoGZSmpIAg+IlEkCE3M4fZy64ebWbmvjMHtI/nXBQmkvH89DSkjcZuiMeWtQnfgGwAUjYG6YQ9jGX0/Bp3huGP2SQlna241yDIYw0VFURCpuxegLd/DZ+ar2OhM5fGpfTAYTGhDY9HEdm3yeJKjQnjRNZVXq/5L3bZ5WPtd6vc5DpXbGCxVoo9s+vcnCH4X0wlH6kiuzf2Jy77YxMJ7xxBiOLOPS1tzqxke60GqdkN4qp8DDT6564VISx+FqsMQ8b8d3bzVBWRkzabHzg/Qeiqxh6Yy1L6cq3U/k582neLed/D+1lrKFz6F94cFGGTwWJOQ1r0OQ2aetKdNdrmNmR9tJi3awrPnx6N5dTuM/lug3+4J6RJ7YqyZS2nuHmLTugc1lqb205oNjNz5FP8xrEEq0FLf+wYsox+AsMBsbpAUYaJcbaxUamZLz7bmVvG3r7MY1cHKkIoleDIuQBcSG+ywmj1ZlkgMN/qWnqUnICluX/8pS9vp0yQIzY1IFAlCE1IUlfs+38aq/WU8Mbk71wxph/LjE0heJ6Yp/8EUnYHb46U2fwdK7gZMncdgjcs46bh9UsJZuKOI0joH0aYIUVEULKqKd+ULOCzteKRiIk9M7UVoz+Buh50SaeIlZTD11u/Qrf43ap9pfq8qyimrJ0GqRBMuKoqE1sEwbCaxuVfRvXY1/1gYz3PTe532GF5FZUd+Nfd1tkE1v0uktBZSl0mw9FEcX96GR29FYy9FYy9HZyvCrCo0pI/HM2Qm5ozReKsO41z+b1J2fkbK4bn0N0ag1ZWy0DOYJfG38+wIDdavr4HdC6DHtOPOWWN3c9N7G5EleOe6gYQWLPS90DE4/YmOSOzcH3bDzp8+Ifamp4MaS1PKL6+h29KriNTUUtn9eoyj78MaHdh+XEnhZmqwoEg65Ga09KzK5mLmR5uJDTXwcp9CNN9VIQ+8IdhhtRjJEWYKqhrAGuc7UVckEkWCEESimYQgNKGnF+1mcVYxf53YleuGpSG7apE3zcHT+SKI9iWEdFoNoWl9CR95G4ZTSBIB9G3sU7QttxpMEah2kSgKioPL0Jbs4B2mEB9m5rIBycGOiNRIMwoymem3YKzcQ/32P25KefYqyorQ4xY7ngmthtRpAt7QFB6KWMFnG/P4cdfpN4PfX1qHzeWlj7XWdyK89SWKiOqAu/1YNJX70dbmoRrCcCUNwT74Pjx3bcV87RcYO40BSUITmYZ5+quod23G0XMG7uhuuK5ZiGfau/xQZGTSYhPVxiSqlr9CSa3Dt5viH7i9Crd/vJn8qgbeunYAqVFmlP1LUUxRkNCn6d//b3ToOYxM00BG573K9rn/OvkNrUC908MHb79MIuUcGPkKEdP+HfAkERxpfCzRoI9oVkvPnlq4i4p6F7Ou7o9px4d4QlOQ0kcHO6wWIznC5Ksosib4ToiG1oIQVKKiSBCayDurs3l7dTbXD0vjphHtAfCsn4PWVYc86oGzGrt7YhhaWWJ7fjXnmSJQbeWIVd1Nz7Pi3zTo4/hvxQD+fUUXDNrg96nonRxOrNXA21V96RfWHt3q51F7T0HyU9NpRVFxVeX7fpuEBmaZgSA0OVkDg24h7cfHuCCmnIfn7WBRyjnEWo2nPMTW3GoAOugqfCfCWteuZ0forpuHqqroTrGXiCayHeaLX/71eCqQFm3hvs+38UrVGB5zfMhFz84mz9SZDjEhJIabSAw3khRuYsvhKtYcrOCFS3szMC0SFAUOLocOo31Lr4NI0mhpd8d8Vr88jRGZT3NY56Hd5EeCGlMgeRWVez7Zwj22r6m1ptHj3Mub7N9BXKgRrSxRpwnHVF8S1KfeLo+CXiuzfE8p87YWcPeYjnQzVCDnrcY16pGg/3fZkiSFmyivd+I0pWMAqBeJIkEIJvHTSxCawJKsYp76bhfju8Xx6IXdkCQJ3A1I69/AnXYunOVuVEadhi4JVrblVSOZIkSPomDIXY82bw2vOc5naKcEJvduHkkTrUbm0gHJLNtfSVmfuzBW7KQ+8zu/jV9U6yBKKfcdiIoioRXR9LsGRWvkqcS11Dk8THx5FYszi075/q25VYSbdYQ7i1BC4kB36kmmlkY6y4azfVLCWf7gudz9wN/xaM38p91aLuiRgE4jsSO/mndX5/DKN2sYnvUYb3bcwNQOjfMV70C2lyFnnOeHd3H2Qq0hpN76BYsZTrst/6Ts28d9DXlboecW76Zm3yp6yYfQDb+jSRMiGlkiPsxIpRQOtvImm/dY9pfWcbC0nke+ziQjNoS7xnTEueFdVEmDvv+1QY2tpUmO9O1kl+8O9Z2oO/Wft4Ig+J9IFAlCgC3dVcI9n22lT0o4L1/RF43s+4Dr3fIRGnsZ2rOsJjqiT0o4O/JqUE3hSA6RKGpqnpUvUCeH8rk6hqen9jjrL07+dPmAVBQVvnYPw2VNRbv6X6iK4pexs8tsJEiVvgORKBJaE3MkSo9LiTz4Nd/e1I34MCO3f7yFOz/eQnm984S3VtpcLMosZmRGDGrVYQhrfY2sAyEiMhqp79V0LP2BZ8+L4bNbh7LiodHseWQIqxNf4RLdas7PfwnNS91wvDkW949P+m7sMCa4gf9Gamw44Ve9y5feUcRseYnaBY+0umTR5xtzmb0qm8eif8ZrCMPYv+l39UqOMFHiDQ1qM2v3hrfJ+HQ4y+a9SXFNA09O6YFBUtBlfoor/TwITQhabC1RcoQZgPx6FdUYIZaeCUKQiUSRIARIlc3FvZ9t5ZEPfuRBy2JeOS8Eo67xr5zXA2tewZ3QHynt6C3vz0SflAjqnB4qFQuSo8a3Ra/QNIqz0B74njed5zNzXC9SIs3Bjuh3UqPMjOgYzWdbimkYci+msh007P7eL2NnV9iIlypRJQ2InV2EVkY75DZkj4OOBfP5+o7hPHR+Z5buKmH8iyv5fufxv8S8ufIgNpeHu8d0hJpcpMi0pgu6hdMMmQmKB2Xj274TLhvejy5BX30Q5aqvcN++Hvvwh5FcNnSHfsKb0LfZ/ewZ2ikO58SX+NAzjtAtr1O39Llgh+Q3Owtr+OvXWVyc5qZn/Wocva9FMoQ0eRxJ4WYK3CFItrLgJeL2LEZfl8ctxU/ybfTrRHjKKNs0H21DGfKA64MTUwvm6z0F+VV2VGs8aq2oKBKEYBKJIkEIgCVZxZz34koW7ijivaRvuMX5Pikfj8T+1vlUr/0Q9+YP0dTkoh15P/ip8qRPSjgAuQ0G3wlHjV/GFU7Osfzf2DCyPno6Nzb2n2puLh+YQkF1A9sizscVkoy85hW/jJtdZiNZrkINiff1dRGE1iS+J+7kIbBxDjpJ5c7RHVn4pxEkhZu48+MtZBX4fs66inbSsPAvUF9GaZ2D99fkMLVPEhnRJqTaAqRwUVF0yqI6oHQcD5veAUctro+vRFu8BWXaHDQZY9HFdcF83l8w3L0Oz52bka/6LNgRH9PVQ9M5OOBx5nlHYF3zHPWrZgU7JL94bfkBTHoNj8asBGQMQ2cGJY6kCBOHnRYkrwuctUGJQSrJ4gd5BK9orqNbw2YyvhpL6C9P4wlJQNd5fFBiaslirUZMOg27CmshJB5VLD0ThKASiSJB8CNVVXl47g5mfrSZuFADS2bE0a3iBxp6X0fVsEfQ2koI//4udIvuxRPVGanzRL/NnR5twWrUsr9O5zsh+hQ1jcps9Hu/4UPPefz1kqHoNM3zx+r47nFEmHV8vrUEV68ZGAvWoFbnnfW4ORU20vTVopG10Gpph8xEU5NL3dx7qM/LpFOclQ9uHESkRc9jn66kdu496N46B9Om11E2zuH15Qdxe1XuGZsBdYVIigdEoui0aIbejmwvxztrJPrDK/BMehltjylHXaeN6YhkjQ9ChKfm8Sk92TngGX709sX808PUb/o82CGdlZxyG4uzirmxfyRhez7D3mky2ojg7O6ZHG6iTAnzHQRj5zNbOVpbERuc7Ui76P/YP30p9ti+GGqzcfW6Rjw4OQMaWeLczjEs3VUC1nix9EwQgqx5fqMRhBZq9qpDfLYxj9tGpjP/zuGkZr6CqjNjGv84EeP/D82ftlBz+Xxqu1+NPOnffm3+KMsSvZLD2FPd+OFEJIqaRMnKd1BVFVufm3+t6mqODFoN0/sls3RXCY7OFwPg2PbFWY+bXd7YoyhM9CcSWiep64U0dL2UkF2fEvL2CBpeG4l2yzu803k979XdiiXzA+y9rsGT2B/39rl8sv4wl/ZPJi3aAtW5vkHC2wX3TbQ06efije6Cpjob93nPoBvQMpsCS5LE3yb3YsfQl9iodMa48HbqsxYHO6wz9taqQ+g0MpdpfkbjtqEdflfQYkmOMFFOY6IoCH2KiveuByC64wAm90kiuUM3ii/6hIOTv8Yw+qEmj6e1mNAjntI6JyVEINlKfTsbCoIQFCJRJAh+su5QBf9cspeJPeN5+IIu6Cr2otvzDd6Bt4IlCgCtVkNY19GEXvoacvpIv8eQGmnmkE3vOxCJosBTFDRZX7CWntw8aXiwozmpKwal4PaqzDusxxnXD03mV2c1nturkFdpI9JbjiwaWQutlUaH6fI52O/OonrkE0heJ9af/o8eWf+iwNKdC1zPsaPXY2j7XoWhej+dyOPusRm+e39NFImKotMiScjT3sQ19W10w+8MdjRnRZIk7p/Yh20jZrFXSUY39zps+38JdlinpdLmYltuFV9uymNsp0hidr1HQ8JgDKn9gxZTUoSJCrVxdyxb01cUrVy5DIBLJvkqw0MMWjrGWYnpdg4anb7J42ktRneJ9e12WGPyVWPaK4IdkiC0WSJRJAh+UFLr4K5PttIuysw/p/dCkiRcPz2LqrOgG/GnJosjMczEYXtjjyKRKAq4qr0rifYUU5o2lTCTLtjhnFTHWCsD2kXw2cY8lJ6XoK/YhVK884zHy69qwKzY0CsNYumZ0OpZIhMIH3MvhrvWUn/9T9iuXkS7e5fgjuzMg19uZ3fEaLyqxEPJO0kK9zVlpeowKhKEpQQ3+BZISuyDvs8lwQ7Db24b35dtI9+m0BuO/NlluAt3BDukU6IoKoWlFWxb+jFPS7N4qeAK9PX5KEOCm8BLCPtNRVF901YULdtTgrFiJ7WGeKJj/7f0UZIkQo3N/7NAcxZq1DG8YzSrirS+E6JPkSAEjUgUCcJZcnsV7vpkCzanh1lX98dq1EFxFvq93+AdeBuYI5ssloRwE9WqxXcgEkUBl7vsbWyqgX4TWs6yiCsGpXKozMauiHGokgbXtjPvmZFT7tvxDBCJIqHNkGSZkLQBWDoOx6zX8sJlvSmqaeCSD/azXu3OUMeKX3dhUqsPo1oTQCsqDASYMW4gH2a8TLVHj/eDi1HKDwU7pJNSVr9It496c33eX5mk20RD8jnknz8bc6/JQY1Lr5XRh8SgIDVpRZHT4+XJBbvoo83FkNKnyeZtSyZ0j2dnXePusaJPkSAEjUgUCcJZem7xHjbmVPHc9J50irMC4F72LIreim5E067fTwwzUotIFDUFZ0M96WU/sjVkJGkJMcEO55RN7BmP1aBl1uY6nKkj0e6ce8Y9AA4d6U8EIJaeCW1Uv9QI7hzdEZvLS3X6hehrcqDYVy2iVh0Wy86E37ln+jju1T2G0+HE+8HUZv9FWN6zgApdPFe5HuGHib9Qct5rWHtfjOSnHVvPRnxkCPWStUkrit5ZnUNJRSUpaiGaxD5NNm9bMq5bHGWE+w5ERZEgBI1IFAnCWfhuRxFvr87m+mFpTOnT+EW5aAe6fQtRBs1s0moi8FUUedHg0lpFoijANi/9FCt2woZcE+xQTotZr+X20R1YuquE5fpz0dbl4zm89ozGyi6vp72+2ncgKoqENuxPYzN46fI+nDv1JlRJg5I5z/dCdS5ShGhkLfxPmFnHrdMncq3zIZT6UtzvTWnWv69VWwUbnak4U85hfK8UOsdbCTM3j+VVSeG+5WfeJtr1rKTWwX+X7efa9HokVLSJvZpk3rYmOsRAu3btfQfNPJEqCK2ZSBQJwhk6UFrHn7/aTr/UcB6e0IXasjyq1ryHY+4dKPrQoOwGkhBmBKBBIxJFgaSqKvKOzymTougxbFKwwzltt4/qwLS+STyQmYJbNuI5w93PcsrtdDbX+XqwNOMtqgUh0HQamal9kzCHx6K0H4W6cx54XEh1hUhixzPhD8Z2jaND31Hc7LwPueog3m/uDnZIx+WtL6fYbeGesRlYDNpgh/M7yREmir2heGqaJpnw3OI9eBSVWzPqfSfiRaIoUMb1TKVCtVJTlhfsUAShzRKJIkE4Azanh5kfbSFS6+K1+IWos0YQ+loPIn64B42tGM/5z4EpvMnjMuo0RFn01ElWVLtIFAXKtj376e/eQlHqZCRN8/rgfCokSeLZ6T3pkZbIEk8/5F1fg8d12uNkl9tI01WjhsSCpnk8YRaEYNP0nI6mJhf2LEBSFRAVRcIxPH5hd/aa+/Olbgry3kVQ2wyX2Hic6L02JEs052REBzuaoyRFmMhU0tCVbMNbUxjQuVwehW+2FXDVoFTCavagGCMgLDmgc7Zl53ePp1SNoKL4cLBDEYQ2SySKBOE0qarK/83dwaGyOj5P+Jj4zFkohlCqhv6FmmuXod6/B33/GUGLLyHcSDUW1IbKoMXQ2u358T10kpdO428OdihnzKDV8OY1/VltGoPeXUPhloW/vqaqKg6394T351bYKahuIElTBVbRn0gQftVlEqqsQ139ku9Y9CgSjiHMrOPZaT15o3YYkupF2fpxsEM6WuPW5JbIuGbRk+iPksJNfOwdh6R6caydE9C5SmodKCp0SwiF4h14Y3tAM/z/pLVIDDdhN8TgrW6GCVRBaCNEokgQTtN7a3JYuKOIt7rvJLFgCY5zHsF86xIizn+YsPT+6HXBrTBJCDNR7rVAQ3VQ42itCqob6F62mAJTJ4xJPYIdzlmJsOi57YabqcTK7u/fZld+JYczV1Gy6Bnc703FvfG949777fYCAOKoRAoT/YkE4VemCJT00UiNDa1Fokg4nrFd4xg2cBBrvN2oX/fuGW8sECiuWl+TaFNYbJAjObbkCBO5ahx5USMwbP8A1eMM2FxFNQ4AEkM1aMp2IyWIZWeBZo5Kwuopp6C6IdihCEKbJBJFgnAaNuVU8vR3u7km3c6Y7Bdwpo7EdO4DzepJW1K4iWKXCUn0KAqIBT8up5d8CH3fq4Idil+kx0dQ3+EizvGsJe2dnrSbeyHxG/+FuXQL8vKnjrsk7dvthQxMi0BvK0ISO54Jwu9oek4HQJU0ECqWpwjH9+SU7mTGTSG0IZ8Ny+cHO5zfqSj1LecKjUoIciTHlhTu20J9U9ylaBvKaNg2N2BzFdX4khWpSgGS14k2qU/A5hJ84pPSiKGapVkFwQ5FENokkSgShFNU0+DmT59uJT1c5q8N/0LRW9FfOhvk5vXXKCHMSJnXDI6qZvd0sqVzuD3osz7Di0zMsOAtL/S3pPPuosSYzgLXANb1/ReFN+/ANXUOGns5yu6FR12/p7iWfSX1TOsehuSsFTueCcIfdZ6IqjGghiZCC+xjJjQdnUbm2hvvpk4KoXTFbNYdqgh2SL+qKvMt+4mKaZ6JIpPe15dxk6YPrvB05I1vBWyuIxVFsbZ9vhOikXXARcSlopFU1uzYE+xQBKFNal7fcAWhGXtiwU5K6py8lzAPY9U+lKmzkJrhTk8J4SaqVYuviaqrLtjhtCo/rFjNVeoiihLGQUjzLMU/E5r47nhv/ZkXLX/ibwe6EBWfjKnreDyhKXg3HN334ZtthWhkiQmpqu+EqCgShN8zhuLtPQPSxwQ7EqEFMJktaPpcwXh5Aw++v5xdhbXBDgmA+qoSAOISmu/P+KQIE3nVDjz9b8ZYshVHzsaAzFNc48Bq0KIty0TVGCGqY0DmEX7D6ktQFubnkFdpD3IwgtD2iESRIJyCJVlFzNtSwH+6Z5N48HMcg+9G3/m8YId1TIlhRmqx+A7E8jO/sTc00GXdQzgkI+HTXgx2OH6XFhXCs9N6cqCsnteWHwRZA/1vQJf3C5Tt/fU6VVX5dlshIzpGE+Ep850UFUWCcBTt5BeRp7wS7DCEFsI8+Ab0eLhEu5rr3t3A2oONlUX2SpzvTsG1+K+gqk0ak7O2FEWViI6Oa9J5T0fHmBCyCmqQ+1yFV2fBu25WQOYpqmkgIdwIhTvwxnYTlYJNoTFRFC9V8cmG3CAHIwhtj0gUCcJJlNU5eeTrLIYkSEzKex5nXF+M4x8PdljHlRhuoloN8R2IRJFfKIpKyaJn6OTZxw/t/4+QmNbZc2R051im9knkjZ8PsLe4Dm3/a1FlHe71/6sq2pJbRUF1A1P6JEJt43bEIlEkCIJwduJ74E3ox23WXzDrZK6cvY7nvlyOc/YE9Lkr0a9/FdeC+5s0WaTUl1MrW5GacVJkcp9Equxuluc4cHS/HNO+b3HXlvh9nqIaB/GhRuTSLLHsrKk0Vu2PTPDyxcY8nJ4T78YqCIJ/iUSRIJyAqqr8Zd4O6p0eXolZgMZZi27qq6DRBTu044q1GqhFJIr8qWL/OlIzX2O+dzhDLrwx2OEE1KMXdiPEoOX/5u7Aa47G3flCNDs+A5ev7PvbbYUYtDLju8f/L1FkbZ79KwRBEFoSzYDrMFXv4/tLzdw/0MjlmbfhrTrM9tHv4x5yN/ot7+BuwmSR3FCJTRPeJHOdqXMyYogPNfLFpjx0Q29DVlw4173t93mKahx0M1UjO2vQJIpEUZMIiUVFYlS8hwqbiyVZxcGOSBDaFJEoEoQT+HJTPj/uLuWfQzzE7PsUV/9bkBOa95boWo2MxhLpOxCJorNmq6/DuuhOygljcer9pEZZgh1SQEWFGHj8ou5sy6vm9eUH0A2+GdlVizfzKzxehe8yixjbNZYQgxZqC1DN0aAzBjtsQRCElq/HdBSdGf3qf3FH9l0kGRr4s/lJpi7S8Ne6S7D1vx3dlndwL3gg4MkiVVUxuKpwGyICOs/Z0sgS0/snsWJfGZXGNOwpozBsew+8br/N4fIolNc76SbnACAl9Pbb2MIJaHSo5mhSdLW0izLz0brDwY5IENoUvySKJEmaIEnSXkmSDkiS9PAJrhsoSZJXkqRL/DGvIARSfpWdJxbsZEhaGJNyn8drjsUw7q/BDuuUmMJifH8QiaKz99OTGGsO8oDrNqYPa95JQn+Z0ieRC3sl8MLSfTydGYE7shPKhrdZc7CC8noXk3v7GpuqtYWoVrHsTBAEwS8MVtTu05EP/uTbgv2Ghfz7vpu549wOzN1ayJgdYzmUcQO6LW/j+vY+vyZD/qjK7iZMrUU1RwVsDn+5tH8KigrztubD4FvR2Utw7jx6x84zVVrnQFWhvecgqiRDbDe/jS2chDUe6ouZMTiVjTlV7CluHo3eBaEtOOtEkSRJGuA14AKgG3ClJElH/QRtvO6fwPdnO6cgBJqqqjzydRYq8EqnHehLt6OM/wcYQ4Md2imxhkf7/iASRWenKgfL1rdYYr6IfZYBjOnSenY6OxFJknj5ir5cPyyNOb/k8JU0Hl3JNrasW4bVoOXczr5EpFpTgBQmEkWCIAj+ohlxD84OE5BuWIyc2BujTsOfJ3Rh/h3DibAYGJM5jh8jLke/9V1cs87FW7A1IHHkVtqJlGrRWWMCMr4/pUVbGNQ+ki835WPqej4ecyzK9s/9Nn5RjQOAONs+vJEZoDf7bWzhJKzxKLVFXNo/Bb1W5uN1oqm1IDQVf1QUDQIOqKp6SFVVF/AZMOUY190NzAVK/TCnIATUvC0FrNxXxmNjYola/xzOlOHoe18a7LBOWWxkGHbVgGoXiaKzUpwFwKzqQVw6IBmtpu2s1tXIEo9f1I1HL+zGs4V9cGAg7eDHXJlaRd2ad6j64i6o2I8U2ny3TRYEQWhxojMwXPM5cmzn353umRzGt3eN4N5xnZhZMpWH5AdR60qQ54zFseQxcDf4NYzcinoiqMcU3nx3PPutS/snk11uY1NeHa6u0zFm/4hqq/DL2EcSReE1eyC+p1/GFE6NZE2Amnx0ssKFvRKYtyWfeqcn2GEJQpvgj289SUDeb47zG8/9SpKkJOBi4KR7VkqSdKskSZskSdpUVlbmh/AE4fSU1Tl56rtd9G8XwZTyt5DdNnQXvgCSFOzQTllCmJFqLDjr/PMhqa1Sy/cBcEBJ4PIBqUGOpulJksRNI9rzrxkj+FYZzlRpBY/k3UbM8gcJ3T8fR1w/6H1FsMMUBEFoE/RamXvHdWLB3SNYox/OGMc/KUq7GOO6l3G/NvzXhxv+UFpaglZSsEa2jETRxJ4JWPQavtiYh67flUiKG+f2r/wydnFNAwZc6O1FyLFd/DKmcGqkDueidVTinv8nLu2XjM3lZf7WgmCHJQhtgj8SRcf69vzHDnsvAf+nqupJ9zVUVfUtVVUHqKo6ICam+Ze7Cq3P3xfsxO708u9+5ZiyPsU14HbkuK7BDuu0JIabqFFDRKLoLHlK91FKJH06ppIa1XZLzSf0SKDHVc+wPO4Gisa9RsUNa2l44BDGmxdDyqBghycIgtCmdE0I5YuZQzGERDHmwCVsGfUukqsOz+fX+q2yqKqsCAB9aMtYcm0xaLmwVyLfZRbhiu6OK6ob0vbP/DJ2YbWDdIOvN44cJqpom1SP6VQOuIeIvZ+TseN5usZb+WjdYdQm2vlPENoyfySK8oGU3xwnA4V/uGYA8JkkSTnAJcDrkiRN9cPcguBX3+8s5rsdRfxlqInUZXfjiuyCYdxfgh3WaUsMM1GthuC1VQY7lBbNVribA954LhuYcvKLW7luXboy+vaXSBhxNVHtuhFi1CPLLafKThAEoTVJCjfxxcyhpEeHcPmPRjb1exZt1UE8Pz7pl/HrK0t8f2gBzayPuGxgMnaXl+8yi/D2vAxDyRaUsv1nPW5xjYPOFpvvwBp/1uMJp8c8/jEqu15N9I5ZPBy+lD3Fdaw9JB6ECkKg+SNRtBHIkCSpvSRJeuAK4NvfXqCqantVVdNUVU0DvgLuUFV1vh/mFgS/qWlw8+j8LHrGGbgy52+gKkhXfgz6lrcdekK4b+mZ5BA9is6YqqKvOkCOlMS4ri3jiaogCILQdkSHGPj01iH0Tg7nqp9M7Em+DM36N+Dw2rMe21nb2FK0BSWK+qVGkB5j4ctNeRj7XY4qybi2fHrW4xbVOuhoqvMdWBPOejzh9Bj1WgyT/0NN+oWMynmFGy2/8KdPt5FbYQ92aILQqp11okhVVQ9wF77dzHYDX6iqulOSpJmSJM082/EFoak8u2g35fUO3oz8FGN5Ju7Jb6CL6RjssM5IlEVPnWRF6xLbiJ4ppa4Us1KPJqYzZr022OEIgiAIwlHCTDo+vGkwIzvFMO3ABKr18Xi+vh1ctjMe0+VRwN5YsWGJ9lOkgSdJEpf2T2FjThXZzlCcKSPR7vwCFOWsxi2uaaCdrvHzlKgoCgqLyYA07U3qk87hb8osenkyue7dDVTaXMEOTRBaLb9s4aOq6iJVVTupqtpBVdWnG8/NUlX1qObVqqper6qqf7rLCYKfrDlQzmcb83i543YSs7/CPuR+jD0uDHZYZ0ySJDyGMIyeGhDruM/Ivl2bAUjp3DvIkQiCIAjC8Zn0GuZcO4DJAzO4vf4mtNXZOL9//IzHK6xuIJLGxEgLqigCmNYvCVmCr7cWIPe5Em1tHt7Da854PLdXobTOSYJchao1gTHcf8EKpyU0JAT3JR/gMcfyfPRCCqsbuPG9jTS4TtoCVxCEM9B29noWhOOod3j481fbmR66m0kFL9GQei7m8X8LdlhnzxiBTnX7fcvctuLArq0A9Oo9MMiRCIIgCMKJaTUyz07ryYhxU3nXcz6GzbOp37P8jMbKrbQTKdXi0ZpBZ/JzpIEVF2pkREYM87YUoO12IYrWjHvLJ2c8XmmdE1WFaLUSNSS+Re2A2xpFRETiHDCTqPJNvDsOduRXc/enW/B4z65qTBCEo4lEkdBm1Ts9HN67jTWz7+Nj+0xecD2FJyQBw+XvgqwJdnhnTRsS6ftDg+hTdLoURaWuYBdOyUBITLtghyMIgiAIJyVJEneNySBy8j84rMbR8PnNuAu2n/Y4uZV2IqQ6VFNkAKIMvOn9kiiobmB9gRNX54vQ7/32jB+aFdf47gv1VIhlZ81EyLCb8BrC6Jf3Pk9M6cGPu0t5auGuYIclCK2OSBQJbZPLjub9C2n36SjGln+IzZJC6dgXUW9biWxpmR+M/sgY6usr4LGJnSFO1/b8ahJcedhC2oMsfkwKgiAILceUQZ3YP+o1vIoX6e3xuLee3jbxeZV2oqU65BbUn+i3xneLx6LXMG9LPrq+VyK76vDu/u6MxiqsdgBgdpaJRFEzIRmsuPrdhOHgEq7u4ODqIal8tD6XklrHr9eoiliOJghnS3wDEtok7+7vMBWu5T3d5UzSzibmjkXEnnMjBkt4sEPzG3NYDADVFaVBjqTlWZJVTAe5EFNi12CHIgiCIAin7dxRY7nZ8G/2ajqi++Y2XAseBM+pNf7NrbQTp7UhhbTMRJFJr2FizwQWZRbhSh6OJyQBJfPM2qMW1zgAFb29GDksyb+BCmfMOPx2VI0e18qXuGlEOl5F5ctNeQC4dn6H+mwq5G0McpSC0LKJRJHQJnl2fEmtLoYn6i7iwekjibEagx2S34VG+hJFNZUiUXQ6VFXlp8wckqRyjAldgh2OIAiCIJw2rUZm0rC+TKn7M8XdbkK/eTbudyeBvfKk9+ZV2YmS6pBaWCPr35rWLxmby8sPe8rwdhyP5vBq8HpOe5yiGgexeheyp0FUFDUjUkgsrp5Xod/5Je31NQxNj+KzjXk49v2Mdt4NyO56yFkZ7DAFoUUTiSKh7bFXojv0E587BnNh72TGdYsLdkQBERXt+0BTX10W5Ehalp2Fteiqs5FRkaI7BTscQRAEQTgjVw5KQavT86J8PZ6L56Ar2ACb3zvpfbkVdsKUGiRLTOCDDJDB7SNJCjcxd0sB+o7nIrvqoOj0+zUV1TTQPcTmO7Am+DlK4WwYRt4DqhfXL69x5eBUwqt3ovn8Kjxh7VCsiSiFx//3vT2vmlH/Ws70N9bw4JfbeW35ARZlFlHvPP1koiC0ViJRJLQ57qyvkVUPSxjOo5Na79Ki2FhfAqyhpjzIkbQsi7OKyNAU+Q5EokgQBEFoocLNeqb1S2b+tgJqO05BiUhHLdh8wntq7G5cDht61QHmltuzUZYlpvVLYvX+MsqiBwHgPXj6u8AV1TjoZK73HYiKomZFimyPq/MUtFve4zxrLh8Y/kk1IWivnQ/JA4+bGFQUlVlzFzPHfjfT6j5h095cnv9+L3d8vIUb392IqqpN+0YEoZkSiSKhzanf9DkHlQSGjRhDbGjrW3J2hNUahkvV4rGdvMxc8FFVlcWZxYyMqEJFgqgOwQ5JEARBEM7YDcPScHoUPt2Qi5TUD7Vgywmvz620E0md78DcMnsUHXFx3yQUFebvc+KJ6YZy6PSXIhXXOEgz1PoOREVRs6MfeS+yux7jhxPRanRc0fAwFZpo5MTeyNU50FB91D1fbc4nrexnMshjhv1DftTczcZRWTxyXiobcir5fmcJiqLiVVQURSSNhLZLJIqENkWtySesdAPfa87h1lGtPAkgSdTJVhR7VbAjaTH2ldRzqNxGX0sZSlgq6EzBDkkQBEEQzlhGnJVzMqL5cO1hlIS+yHWFUFdy3OtzK+1ESEcSRS23RxFAekwIfVPDmbu5ANJGos1fD27HyW9s5PEqlNY5SNbU+E6IiqJmR0rsgyv9PBSdhbKpn3JQiWPulnxI6O27oDjzd9fXOtz86/s9jLbk4I3oQO3VP+CI7U3M+me4YeNUPjS/SNzci3H+dwje/3RHeW0wOOuC8M4EIfhEokhoU/Yv+wAZldihM7AadcEOJ+AaNKHIDpEoOlWLs4qQJEj25KNGZQQ7HEEQBEE4azcMT6O41sFaR6rvROHW416bW2knSmqsoLG07Ioi8DW13ltSR0HEQCSvA/JPfSes0jonigqxUhWqIRT0lgBGKpwp3RXv47lrCx16DmFgWgSfbchFje/le/EPy8/++9N+KmxO+kr7kFIGEdpxMJYb51Nz5UKcMT3pZq7B6VXJJxZ3VBe0FXshb30Q3pUgBJ9IFAlthqKokDWXXVIHLhpzTrDDaRJufRgGd22ww2gx9hTVkR5lQl99EDlG9CcSBEEQWr5zO8XSPtrCq3ssqJIMhcdffpZbaSfV0OA7aOFLzwAu6pWAXiPzSWkqqqTBe2jFKd9bVOOrPorwlKOGiGqi5krSWzCE+hqvXzkolZwKO2tLZJSQBJTfJIoOlNbz7i853NFTRuesRE4d7LtfkgjrfA7mG77Geu86Xkp+kStq/4QybY7v70uuSBQJbZNIFAltxrLVv9DJewBX1+kYtJpgh9MkFGM4FqUOh9sb7FBahOJaBz1CbEieBpEoEgRBEFoFWZa4bmg71uU5aAjriHKChtZ5lXbamxuXZ7XgZtZHhJv1nNc9js+2V+OO64166OdTvre4MVFkcZVBqOhP1BJM7JlAqFHLZxvyIKEXamOiSFVVnlq4C5New8wOjZu8pAz63b2yLKHXavjrxG5U2FzMWleKEtsDb+66pn4bgtAsiESR0CY4PV4Or/gABYle598Q7HCajMYcSZhU/+uHHeHESmoddNMX+w6ixdIzQRAEoXWY3j8ZnUbigK4TFGyF4+zslFtpJ9lgR5U0YAxv2iAD5LqhadQ0uNlr6oumaOsp95wpqvFVVhkcpUiikXWLYNRpuLhvEkuyitnhTUMq38+iLQeZsyqbFfvKuGdsBpbSrSh6K8R0OeYYPZPDmNInkTmrsmmIH4BcsAm8niZ+J4IQfCJRJLQJn2/I5Vz3SiqiByGHJQY7nCZjCI0inHoOltUHO5Rmz6uolNY56SgX+k5Ei4oiQRAEoXWwGnX0Sg5nbUMqckMF1OQddY3Hq1BQ3UC81gamSJBbx9eEgWkRdIm38nFpeyTFA6dYIVJU48Csk9DYSpBERVGLcfWQdgC8tseCjMLsLxfw9KLddI6zct2wNNTc9ahJ/UE+/uqCB8d3RlVhfkUyktsOJVlNFb4gNBut4zeAIJzE9o0r6CAXET7oymCH0qSiY+KxSE427C8KdijNXnm9E6+ikuTJQzGEgSUm2CEJgiAIgt8Mbh/J4qrGh2UFR/cpKqx24FVUIqVa1Ba+49lvSZLE9cPS+LoiGa+sw3vw51O6r7jGQRery5dcEhVFLUZGnJUdfx/Pc3deDcCb47R8c+dwvr5zGDp3PXL57l/7Ex1PSqSZ64a1442DjX268jYEOmxBaHZEokho9YprHKSX/YRX0qLrOTXY4TQpXYivv8DWfTnU2N3YnB5cHiXIUTVPR5bnRTtyUaIyQJKCHJEgCIIg+M+Q9Ch2eVNQJN0xG1pvyKkEIII6sLSeRBHAlD5JGE0W9uu7oZ5iQ+uimgY6W2y+A5EoalGMOg1Riekopkii6/fSOyUcs14LBZuRVAXpD/2JjmV0l1gK1GgaTPEouWubIGpBaF5Eokho9X7YVUxPKRtHZFcwRQQ7nKbV+H6rK4rJLKjhUJmNvcV1vh3ghN8prvUliqy2bCTRn0gQBEFoZfq3i8Ar6ykxd0TJPzpRtHxPKbFWA2ZPFZKl5e949lsmvYYrBqawqL4TmtIssFee9J6iGgfpxsZ+RiJR1PJIEmr8/xpaA6h5G1CRIGnASW/vFGcFoNDaS1QUCW2SSBQJrd6SzCJ6anMxpvQOdihNr3H51GL9w/T7YhAd500gbck1uLO+CXJgzU9JrQMrdgwNpWhiOwc7HEEQBEHwK4tBS8+kMHYo7ZGKtoHyvwpjt1dh5b4yRneORbJXIJlbV6IIfL1r1ijdkVAhZ9UJr/V4FUrrnKTqanwnrPFNEKHgb3JCb+TSXeBxAaDkrkeJ7gym8JPeG2XRE2HWsUvbFbk2H2oKAhytIDQvIlEktGqVNhfZOQeJUGvQJLTBRFHqUMrHvsCbTGOzcQjukERMZdvRrP1vsCNrdopqHGRoGns5iUbWgiAIQis0JD2Kn+uSkVx1UHnw1/Mbcyqpc3oY0yUKGqqgFfUoOiIl0kx056HYMOLa//MJry2vd+FVVOLlKt+JkLjAByj4nZTYG0lxQ9keUBSkgk1IKSfuT/TrvZJERqyV1Y5034m8U2uCLpwGZz3evT8EOwrhOESiSGjVftxVQmdyfAfxPYMaS1BodCh9rmZl0i086LyRw+PfoabDFOSKvcfdGretKqlx0Mdc7jsQiSJBEAShFRqcHskWb+MX3980tF6+pxS9RmZEksZXcdPKlp4dcc3wjqz3dsG+b/kJryusaQAgWqlEMceAVt8U4Qn+ltDH979F26F8H7KzBjn15P2JjsiIC+HHylhUrRk1d31gYmzD3PPvRPPppVCTH+xQhGMQiSKhVVuys5ih5sbtzuO6BzeYIIm1GpnQPZ6SWicmvQZrSk9kVx3UihLa3yquddBNV4wqayEiLdjhCIIgCILfDWgXQbaUjEs2ov6mofVPe0oZnB6JxdO41KoVVhQBDOsQxT5zX8Jt2SjlB4973ZENLqzucrHsrCWLaI+qD/H1Kcpv7DOUfBqJotgQKhwqzvi+KLmiosifvDvno9s933dQmR3UWIRjE4kiodWqc7hZvb+c4SFFeMPTwBga7JCCZnhH35PBjTmV6BO6+U6W7g5iRM1Pca2DNKkEJSwVNLpghyMIgiAIfmc16uiaGMFBTTpqY0XR4Qobh8psjOkSC7bGytpWmiiSJImYIVfSoOopnf/Ica/bU1QLgMlZKhJFLZkso8T1RCnajpK7AcUYAVEdT/n2jMaG1mXhvZFLssBlC1SkbcLXW/PZfLgKbBWw8H68oSm+F6oPBzcw4ZhEokhotZbvLcPlVUj3Hmqby85+o2NsCLFWA78cKIfYrgAoJSJRdISqqhTXOIhTSyA8NdjhCIIgCELADE6PYp2jHVJxJng9LNtTCuBLFNkrfBe10kQRwAXD+/OuNJX4/CV4Dh3d1Nrh9vLJhlzO7RyDxlaCHCp2PGvJ5IReyCVZqLlrUZMGgHzqX38z4kIA2KPrhqR6oWBzoMJs9d5ccZD7Pt/OvZ9vxbXgfmRnLZorPkKVZKjODXZ4wjGIRJHQan2fVUyqRcFUdxg5oVewwwkqSZIY3jGatQcrUIwReC2xKCW7gh1Ws1Hn9GB3eYl0lyCJRJEgCILQig1Jj2SrNx3J0wBlu1m2p5QOMRbaRVnA3lhR1Ep7FAGY9Vo8g++iUI3EsfD/QPH+7vW5W/Ipr3dx24gUJFsZWBODFKngD1JiHyS3HU3lATTtTq2R9RExIQbCTDrWujv4Tog+RWfk4/WHeXbxHrrEW+levQL9nvl4R/4ZEvugWhOgSlQUNUciUSS0Sg63l+V7S7mqfR0SKlIbrygC3/KzCpuLPcV1KNFdoUxUFB1RUuPAgAuLuxJZJIoEQRCEVmxAWiRZ+BpaO3M3s/5Qpa+aCHxLQqBVVxQBXHVOF15QriKkcifuzR/9et6rqMxeeYheyWEMifH4GnuLpWct2293PT6N/kTge9DaKS6ErHIJb3QXvKJP0Wn7ZlsBf5ufxZguscy/oQvP6t/hgKYDmhH3+i4Ib4ciEkXNkkgUCa3Sqv3l2F1exkWU+E6IRBHDO/o+9K05WI4U1wW5fC8oSpCjah6KahwkSY1PUcNTghuMIAiCIARQqFGHOb4TNslCyZ41uLwKY7o0bv9ur0DVh4DWENwgAyw6xICh7+VsUTJg2ZPg8PUkWrqrmJwKO7eN7IBU3/gZ0iqWnrVo0Z1QNQbfEqek/qd9e8dYK/tK65BSByPlbxSfnU/DDzuLuf+L7QxuH8nrl2Qgf3MHoZKdO+23sCm/HgA5oh3UiKVnzZFIFAmt0pKsYkKNWtLch3yN60KTgh1S0CWEmUiPtrD6QDnauG7IngbRPK5Rce1vE0WiokgQBEFo3YakR7Pd2x5d3jpCjTID0iJ8L9jLUc2td9nZb90ysgNPeK5F11CO8+fnUVWVN1YcIjXSzIQe8VBX5LtQVBS1bBqdr6F1bA8whJz27RmxIVTb3dTH9kd21kD53gAE2foszizirk+20iMpjNljJTSzR6E79COusf+g1NSBt1Ye8l0Y3g6pthA8ruAGLBzFL4kiSZImSJK0V5KkA5IkPXyM12dIkrSj8Z81kiT1PtY4guAPiqLy4+4SxnWNQyrJRI3rAZIU7LCaheEdo9mQXYk7qovvRNme4AZ0Kqrz8K55He/aWSib30fd8SXs+Q7qS/02RclvK4rCREWRIAiC0LoNTo/iK88IEtyHeTRqOTqN7yuBaqto9cvOjmgfbSG+6zC+ZRS6DbPYtmMr2/OquWVkOhpZgrpi34WhokdRi3fxm6jT3z6jWzs17nx2wNDdd0IsPzshVVV5+cf93P7xFnomWni/4wpCPpqI5HXhuWYBphG3c82Qdvy4u4RDZfUQnupb4lmbH+zQhT/Qnu0AkiRpgNeA84B8YKMkSd+qqvrbTrnZwChVVaskSboAeAs4vW5ignCKimod1DS4GZBqRd6/GwbcFOyQmo3hHaP4cN1hMl3x9AOUkl3InS8IdljHVr4fz8r/oMn6Ao3iOeplxRCGdME/kXpfcdaJwOJaBx10laiSBkmUmAuCIAit3KC0SG5Vz2GCdyPTKt9BKb4OOb47qr28Tf0evHVkB27feRkTzBtwLfk7kZa7ubR/su/F2kLf54I2UmHVmmliOp7xvUd2Psu0R9HHFIlUsAVpwA3+Cq3V8B5YTt3OH1h7sBxTpY058WaGa7Ixrd2Eo/MUjFNfAVM4ANcMTWPWykO8vTqbp/u28w1QdRgi04P3BoSjnHWiCBgEHFBV9RCAJEmfAVOAXxNFqqqu+c3164BkP8wrCMeUXWYDoKu+FMnjgDa+49lvDUmPQpJgxWEXva1JqCW7m9/607J9uH/6B9o93yJrDXj734h26O1gCAO3HdwNYK9AWfo42vkz8e76Fs3klyEk9oynLK5xMFZXiWpOQtL448eiIAiCIDRfYWYdXePDeKT4ZtZaHoWvbkGe+TOSrRwprkeww2sy/dtFkNounY9KJ3C9fT739bsDo07je7GuGDUkDuk0tlMXWp9Yq4FQo5b9ZfUQ2w21dDdincIfuGyoX96A1VnDuaoWjV5GY9OgukNwXfQ6xn5X/e6hbozVwPR+SXy1OZ8HB2UQAVAt+hQ1N/74RpQE5P3mOJ8TVwvdBCw+3ouSJN0K3AqQmip6hQinL7vClyhK8zSufRWNrH8VbtbTKzmcn/eWcndMl+a381l9Gcq7E9F4HHiH3Yt22J3srNazdHMJHm/Zby6MYML4T+mR+zHy8n+gvDoYefJL0G3KGU17pEeRKpadCYIgCG3EdcPasbsoEqnjy2i/mIHzp6fRN1SCpW0sPTvi1pHp/N+H53O5YTHT6j8GJgCg1BWJ/kQCkiSREWdlf0k9cnJX1O2fgaqKtha/UbbiLWKcVVytPsUNV1zO2K5xJ73nphHpfLohjw92ufiTpEESfVObHX8kio71t0Q95oWSNBpfomjE8QZTVfUtfEvTGDBgwDHHEYQTyS6zYdJpCKvejarRI0V3CnZIzcqE7vH8c8ke6od0JOzwalC8IGuCHRaoKt75dyA7a3Hd+BMLiiP48P19bM+rRpJAK//vR41HUVmys5il992N3Gk8yrxbUb+8Hun+3Wf0oa6k1kEspUjhbecpqiAIgtC2XT7wyAPZ7jh7zkC/9mVfr5A2ttRqXNc40tu1Y7vmcobu/wBK90BsF6gtQoo+8yVLQuuRERvCD7tKoF8XJFcd1BZAmFggA7C3oILQX15lM135y23X0T0x7JTu6xgbwtgusby/roC7QpORq3NFpVYz449aynzgt4/hk4HCP14kSVIvYA4wRVXVCj/MKwjHlFNho12UGbU4EyW6C2h0wQ6pWZnU09d7YKsjAcnrhMrsIEfko258G82BH1jR7m4Gv13Eg19up97h5u8XdWP74+PZ//TEX//575V9OVRm44edxRDbBc2EZ5BUBUqyTntel0ehut5OmKccWex4JgiCILRBhgv/iTe08eN8G2lmfYQsS8y9fRjDZjyOqjPhWvYcAFJ9UZvq1yQcX0aclUqbixprhu9EaQvYDKYJZBXU8PGcf5NAOXET/3LKSaIjLuydQKXNhcOShFqVE5gghTPmj0TRRiBDkqT2kiTpgSuAb397gSRJqcA84BpVVff5YU5BOK7schvp0Wakkiwk0Z/oKKlRZnokhbKwqPGHeemuE99wFhpyN6O4nSe/sGwv6vePsEnbn+t39WVgWiSf3DKYH+8fxfXD2xNq/H2y74IeCbSPtvDazwdQVRViuvpeOINf3CW1DuKlSmQUEIkiQRAEoS0yWJGmvYWiD4HYrsGOJjgsUXgH3IJuz3wo3IrkqBFLzwTAV1EEsE9prCIK4GfnlmJLbhVXzV7Djeo32CO7kTxw8mmPER9qAqDelCR6FDVDZ50oUlXVA9wFfA/sBr5QVXWnJEkzJUma2XjZY0AU8LokSdskSdp0tvMKwrF4vAp5lXa6hzqQ7eXIIlF0TJN6JrK4xJcoUkoD1KeoOhfTO2NwfDwD1eM67mVel4Oy966h2qPnEWUmb14zgNnXDmBYh2ik46z/1sgSt4/qQFZBLSv3l4MlCjUkDs7gvZTUOkiWyn0H4aJHkSAIgtA2adKGIv3fYUgeEOxQgkY34h5UnQnPggd8J0RFkQB0irMCsKdGgxIShxqoz84txIHSOq6Zs56L9NtIowDj6AfPqGdTXKgBgAptHHJ9Cbgd/g5VOAt+aeOvquoiVVU7qaraQVXVpxvPzVJVdVbjn29WVTVCVdU+jf+03d9AQkDlVzXgUVR6aRuz0qKR9TFN6pmAHSM1hkSUkgD9sivcBoA5Zyn2L2eiKt6jLimobmDBS3cSY9vLpwl/5pP7p3B+91N7eje1bxIJYUZeW37AdyKmK8oZPOEprnWQRGOiSDSzFgRBENqwNr/zZ2NVkbZos+84VCSKBF9Cw2rQsr+0HmK6oLbhpWdeReXPX+1Ap5H4a9hiPGFpyGe4mUxcqBGAQqmx+XVN3gmuFpqa2O9RaFWyy307nrU/suNZXPcgRtN8HVl+tldJQgrUzmfFmaiSBtvg+7HsnUv9/Ad9u0Q0WrNjD7+8dC1T7V9xsN3l3HHb3USHGE55eL1W5taR6WzIrmRjTiVSXDeksj2gKKcXZo2DZKlxRzXRmFAQBEEQ2jTdiHtQdGbfgagoEvDtfNYxLoR9JXXIsd2Qyk//82ZLpyi+z/Afrs1hS241rwyuw1y2HUbcA2eYYLYYtFgNWnKVxgb6YuezZkUkioRW5UiiKKp+L97wNDCeXlO1tmRizwQ2NSQgVxyAEywNO1Peou0oURlYJjxGfb+ZWHe8Q92SJ3E0NLD07UfpMXc00/mRyh430uHql4+7zOxErhiYSqRFz+vLD0BsVyS3/bR/yRTXOEjVVKCExIP21BNVgiAIgiC0QpYovANvRdXoITQp2NEIzUSnWCsHSuv/93mzpu301FFy1lD59Z/Z/81zbF3yHlcmljEw72285li0fa46q7FjQw3sc0X6DqpEoqg5aeP1pUJrk11uw2rUoi/bCXFiq/MTmdQzgRd/SEZSPVB50O/NK6XiTGg3HCSJkIueo95Ri3X9f6jY+D7nKRVkmQeRfvVLRCadedWXSa/hxuFp/PuHfRzqm0o6+PoURbY/5TGKax1coK1AFcvOBEEQBEEAdOMew933WnTG0GCHIjQTGXEhfL4pj1prR0LB93kzIi3IUTUN9ednic5ZSTTwsgao9J13j/k7Gp3xrMaODzOy36ZBlXVIoqF1syIqioRWJafCRtcoDXLVITSikfUJtYuyoMR09h34uymfrQK5rvDXZuJ7S+p5RnMr3yojKPOYWdL7Fbr/+QfMZ5EkOuKaoWmEGLS8mtWY9z7NPkUltQ4SpXIkseOZIAiCIAgAsgZdTIdgRyE0IxmNDa33KY1VZm2lobWqIhXvYG/SNHo73uKjPh9TOPFdKsa9jG7YHWc9fJzVSHGdGzUsBVVUFDUroqJIaFUOldm4OK4MqUJtu9u7nobuvQbgXSlRf3gHYT2m+W/g4h0AbHYl8++31rH2UAUGrYynzzN0GJbGhET/LQkMM+m4ekg73lx5kH/FpKAp3c3pLGIrqbET4y1DjhCJIkEQBEEQBOFoGbEhAOyulugXmgSlu9tGxUX1YWRHNV8URJPRLoWrJg9Flk+/XcTxxIYaKa1zQEIqavXh0/oMLwRWm/jvW2gbHG4vhTUN9NIX+k7EdgtuQC3AhD7tOazGUZ693a/j2nO3AXDz905yK+08fEEX1v1lLP+6pDfd/ZgkOmJMl1hUFapCOqKeRkWRqqqotSVo8YgdzwRBEARBEIRjSggzEm7WsWpfWePOZ22koqhxF+OtnnY8N72XX5NEAPGhBtxeFZc1BcTSs2ZFJIqEViO30o6qQns1D1VjOK0+NW1VuygLxYY09JX7/Dbmqv1lrFi1jCI1kpkXDGLFQ+cyc1QHIix6v83xR90TQ5EkyJHbIZXvB6/7lO6rtLmIUUp9B2LpmSAIgiAIgnAMkiRx7dA0fthVQqWlI3L5PlC8wQ4r4HJ3rsGtahg98lw6NlZV+VNcqK/HUY0hEdleDi6b3+cQzoxIFAmtxpEdz2IbDqFEdwJZE+SIWgZdQncSvQVkF5Wf1TgOt5enFu7imrc30IUczKl9uW1UB7SawP+YsRi0dIwJYZszAUlxQ8XBU7qvuNZBslTmOxAVRYIgCIIgCMJx3DSiPVajlgVFoUheJ1RmBzukgHJ6vJTsWUe2nMotowPT0iO2MVFUro3znajOC8g8wukTiSKh1TiSKLLU7EcS/YlOWac+I9BIKt8v+vqsxnnlp/28vTqbm4ckkKYWENa+n58iPDU9k8L4uSrKd3CKy89Kah0kS40JsnCRKBIEQRAEQRCOLcyk46YR7ZmX39hGoax1Lz+bveIgHbwHCWnfH6MuMA/g48N8iaJCYn0nqptvQ2unx8s32wpYd6gi2KE0CZEoElqNnHIb7SxutPWFyCJRdMrCek7EpgklJedLDlecebnnLwfKGdQ+kr8NVJFUL8Q37a5zPZPD2FQfjSrJp7wTRVGNgySpHI8xEvSWAEcoCIIgCIIgtGQ3jmhPqaGxXUHpnuAGE0B5lXbmLl9HpFRPYtehAZsnJsQAQI432neiGfYpOlhWz9Pf7WLIMz9xz2fb+GJj26h6ErueCa3GoXIbI0LLoQrRyPp06Iw4u13KeTve47mlm3jsilGnPUSDy8vOwlpuHZkOxet8J+N7+jnQE+uVHIYTPTZLOyylu05p14SSGgf95HIkUU0kCIIgCIIgnESoUcfV53Qjd0UMITnbiDz9j80twt+/3UlPuXFpXULfgM2j18pEWfQcarCgao1IVTkBm+tY6hxu9pXUsae4jr3FddQ0/L7PaVG1gw05lWhlifHd47hyUCrDO0Q3aYzBIhJFQquRU27j0uhi30Fsl+AG08KEj7gFOfNtdFmfk1c5kJRI82ndvz2/Go+iMiAtAvVAJuitSOHtAhTtsXVLCEOWoFDfno6lu08pUVRc66CdXI4U3rTL5ARBEARBEISW6frhaWxelUqH/Cwigx1MACzdVcJPe0qZ17kaNVeDFBfYB/BxoUZK65yoYb6dz/y7r5qPx+Ukf98WCgoOU1FSgL2yEFddJcUOLbVYqFZDcOqsJBldJCsFpCoFpCiFRFBLZXJf4vpOJKpXf7DGBCC65kkkioRWod7pobTOSafYPFSdGSlM7GB1OuS4rtTH9ueykuW8vvwAz04/vWVjmw9XAdA3JQJ11XaI74kkN+3KVpNeQ6c4K7u8SWTULAd3A+hMJ7ynqLqBBMqRI5o2qSUIgiAIgiC0TFajDmtKT+JyP2RrTil902KDHZLfuDwKf/92J53iQuilOYwS3QXNST5Pn624UAMldQ4IT0WtOuy3RJGqqmzPr+HbLYe5cOtt9GM3ab953YMGre4PO9c5G1+zJuGN6Ihq7EZM3ho0S7+Hpffgju6GbvBNMPBmP0XZfIlEURNQVRVJCkRuVDgip7GRdaIzGyWmC5omTlK0BobBN9BhwV0c3rqUgrEZJIWf+i+FLYer6BBjIcKkQS3dBX2vDmCkx9czKYy1u2OZigpleyGxzwmvd9SUYsQpdjwTBEEQBEEQTln3PoPR573HW18vpX3X/ngVFbdXRZJgxuBU0mP8v5V8U9hXUkdBdQMvX94beel2yDg/4HPGhRrJLKhFbp+GUrDlrMersrn4YO1hvt6aT06FnT/pvqGfZjfbO92DtfM5JKe0Qx+WgFYfAh4nOKqhoRrFXolksCBFdUSrt/wvUaIoqMU7cO37EengcmioOusYWwKRKAq0gs3YV71Ow+gniIpNEgmjADmy41l4/UHkLoH/gdYa6XpOw7PkYS7zLmPWz+fz1NQep3Sfoqhszq3i/G7xUJmN5LZBQtM2sj6iV3IY722JBwNQtuekiSJNXb7vD6JHkSAIgiAIgnCKjIm+z8ly+R5mr4pAI0toZRmXR+G7HUXMu2MYiafx0LW52FdSB0DvUBuyvRySAtef6Ii4UCMVNifesBQ0jipw1IIx9LTHqbG7mbP6EO+szsbu9jI0PYqH+7g4f81cPF0upvflTx59k84Iuniwxh9/ly9ZRkrsgyGxD5z74GnH1VKJRFGgFWdi3vcNhuyllA19BOvQmzAZdMGOqtXJKbcRQS06R7loZH2m9Ba8PS5l4raP+cfG3dwxugMJYSf/BXeo3Ea13U3/dhFQvMF3sokbWR/RIymMHDUer6xDU7rrhNfWOtxEuIpBD4SLpYqCIAiCIAjCKYruhCrJvDbOBKMn/np6V2Etl725luvf3cCXM4cRZmpZ3/v2ldSj18gkO/b5TiT0DviccaFGVBVqjYlEgG/ns/hTe2ANUFZVyzvLd/Lh9lrqnR4m9UrgnrEZdIrU4X7jHBRzNNqL/hOw+FsrsT4n0PpfT+W1y3BGdiX25/9Deft8Sg9sQVHUYEfWqmSX2xhqLfMdxHYNbjAtmGHQDehVFxdJq3hzxaFTumdLY3+ifu0ioDgTVdZBTHD+HXRNCEWStZQb01BKTpwo+ml3CUlSue9ALD0TBEEQBEEQTpXOiBLRHqVkN6qq0uDyUlXvJEop4+XzQlDKDvDX2fOoOLwTT0NtsKM9ZftK6kiPsaAt2YEqyRB36gmbMxUXagCgVI7znajOPaX7duRX8+evtrPmxSu5d/uFPGv9ks+u7cKrV/alU5yVhu+fQFe5D6a8BubW2HY8sERFUROISutFw/XfUbL+A6J+eRLzx+dROeAeQs57GINeH+zwWoXsChuTzcVQg0gUnY2E3rjjenNz1SrGbpzAn8ZmEGk58X+jmw5XEm7W0SHGglK0A6I7I2mD89+1UedraH3AmUJM6e4TXrtwexETjFWoGiuSKbxpAhQEQRAEQRBah5iuePM2UvXNo5jKd2At24HWWUUcMFYPVALvgsccB7evAmtckAM+uX0ldfRNjcBbsBWiO6PRn95OyGciLtQIQD6xdAaoPnzC6xdlFvHGzwfJLKihq66E5zS/YLO258K6r/B+8yOlRQ9giu+MddMbOPvcgKHTuIC/h9ZIVBQFWI3dzcp9ZZgMWuJG3kjtzWup6XARURtfwPPuZGpLTy1jKpxYdrmNbpp8VEMYWBOCHU6LJve/jiTXIbp49vPB2pyTXr/5cBX9UyN8/beKM5ESgrPs7IheyWFsbohHrs33rXE+hpoGNyv3l9E7pNa3FacgCIIgCIIgnAZNUl90tiJitr+O1l5GbbvzKTnnaUrOe5Wy8a/ybYcn+T/3LSgN1Ti/vBkUJdghn5DN6SG/qoHOsRak4u1ICX2aZN4jiaICpwlVZzlhRVFprYM7P9mCzeXhicnd+bTrGtAYkG9YRMFlS3BEdiVu1d8I/fJSPGHtMUx8ukneQ2skKooCbM7qQ/x32QEm9UrgsQu7EReTgPvKdyhbM4qoFX9BeWcUlRNeIaL3haLR9RmqsrmotrtJseaixnQR/z+eJU2vS1GWPspszau8uLoM24hHsRgNx7y2yubiYJmN6f2Toa4E2VbaJGuZT6Rnchg/bU709R4q2wMpg4665oedxbi9KklyOYSnNXmMgiAIgiAIQgs39C5K40eiRmVgsoQQqtOg1fyvDuOioSqZi3bz2BqV53LnkPvdc6Re9EgQAz6x/aX1APQIa/B9pj/JpjD+EmXRo5UlimudqNYE1NrC41azbM+vQVXhX9N70dNSg37p19j73IAlMgFLZAK29G8p3rEAy473MIx/DPSWJnkPrZGoKAqwu8Z05P7zOrF0VwljX1jBu79kIwEx59xAzTU/4jbHETn/auxL/h7sUFus7AoboBJtP4gUJxpZnzVjKO4rvkRrieIZ/kv9KyOw7frhmJduyfX1J+qf6utPBAStkfURvZLC2af6qoTU4/QpWrijiJRIEyZ7IXKEaGQtCIIgCIIgnCadkdhOg4iLiiDUqPtdkghAkiT+Oqkb4656iB+loSRs+jfvfv4lDS5vkAI+sX3Fvh3PuqoHfSeaKFEkyxKxVgMltU4ITYKaguNem5lfjSxB98QwXCtfRJUkDCPv+fV1i1FH/KBpGK6fjz51QFOE32qJRFGAGbQa/jQ2gx/uHUm/dhE8sWAXU177hQOldUS064F0y0/Udr4Ey/qX8B5ed9xxXOU5lGf9hNvTPH+wBFNOuY0YqtG7a5HEjmd+YegwnLB7fuGFkIfw2quxfHEprg8vA+X3//1tPlyFVpbolRyOWrTdd7IJmt6dSKf4EErlaGzacNy/vIpqq/jd61U2F78cKOfOhL3IzlqITA9SpIIgCIIgCEJrN657PIPu+YhaXTRjd/6FS15azKacymCHdZR9JXUYtDIxdXt8jayb8OFvbKiR0joHUlgi1BUe97rt+TV0irNCXSGWXZ9h73YZ2oij20jotSLNcbbE/4NNJC3awvs3DOS1q/pRUutgxpz15FfZMZosWKe9jMccg/eHv4N6jN3QPE6kjy4m+qtpuN8cTcWWb3C5//eF3auo1NbXUZH1I5V7VuF0u5vujTUDP+0ppa+xyHcQ2yW4wbQiskZD74m3cK7jeXak34L+4PdwcNnvrtl0uIruSWGY9Bq8uxfgje0OQW4MbdBq6Bwfzn/CH0Fbm4vzg0tRnfW/vr5kZzFD2MGl2Y/ijOsLfa8OYrSCIAiCIAhCaxcaHk34NR+QrKnkHscsZr75PbPmL8OevwNXzjrUuuJgh8jekjoy4kJQi7ahRGU06bKtuFADxTUOpNAkpLriox5OA6iqSmZBDT2TwnCt+i+S4kE38oEmi7GtEYmiJiRJEpN6JfDxzUNocHm59p0NVNpcSIYQ1HMeQl+wFu++pUfd51jxIrrqQ+R3vQm5oZKob6/FO2sk5b+8T/miZ2iYM4mQFzsQ9dV0Ij+7EPnFblR/9Seqdv6I2+0KwjttOkU1DSzJKubSVF+pJKKiyK/GdImlXWwEj1RcgGKKxLvp/V9fc3sVtudVNy47y0JbtBW5mSRdeiaH8UV5Gu6pszGUbsXx8QxUjxOA3eu/Z7b+P3giOqK9dh4YrEGOVhAEQRAEQWjtNO2G4B35MOOVVWwyzGTmtosxzzkH/Xvno77cB9eaN4Pa8Hp/ST2dYq1IRduQmrjnaHyokZJaB4QmIqleqC896pqC6gYqbS76RHmwZn2ArdNUDLEdmjTOtkQkioKgc7yVt68fSEFVAze8txG7y4Nu4A14QlNRfnzidz8glPJD6H55gR/lYYzYOpYe5U/zV/UOKioriF76J6I3/BN3XRmVXa+mYvIHVEx4g4a4AYTu/pyIL6fDf7rj2P9z8N5sgH207jCqqjI0pBTFHA2W6GCH1KrIssRtozqQVeIgL2Uy8v4lYCsHYFdhLU6PQv92EXi3fICq0SP1viLIEfv0SgqjzuGhKGEcDef/B1Puz9g+v4WCrNU8VP4o9fpY5Gvno7FEBjtUQRAEQRAEoY3QjXoA+6TXqRv9DBt6PcUD3Mftyp8pDOuL/oc/43r3ItSqE28PHwg1DW6Kax30jnAi15cgN1F/oiNiQ43UOjw4zY27V9cevfwsM78GgBEVXyJ5HEgj72/KENsckSgKkoFpkfz3yr5k5ldz+0dbcEta1NGPoCvLwpM5DwCX28vB92/H7tUwy3ATz07ryf0TuqPpN4O/p77H3abn6O+YRd+yvzN823nctSmOhcow9Fd9hOO+fVRNmoNiCEX/6aXYt80N8jv2P4fbyyfrcxnXNQ5z9T6I6RrskFqlyb0TSQgz8mLFECTFjbL9M8C37AxgQLIZaccXKJ0ngfn/27vz8KjK8//j73uW7GQBIUDYCUZZBAUBLYh7Ff02arVaFCnSWqxLbdXWLlYvrf6q1n5b2/6s1hbEqm2hFtAqVq1ad8UqS0AIBcRACLJllWzzfP+YA4aQQDCTzEzm87quuWbmnPOcc5/cME9yz3OeExuFl1H9sgBYsbmctIkzqZr8YzKKF9FnwZfY7TLY/uX5BLN6RzlKEREREUkoPj9px19KtylXM/6C67jxO99nV79TmbT5av6V/yMCW9/H/f8TqX9nTstTknSQ4rLw1RmjgyXhBZ18c5remSkA7PD1CC+oOHBC62Ul5aT5G+lf/BhVQ84mPS+686J2dYFoB5DIzhzRm7vOH8XNT67girnvMnnoWC7KyCf5+dtZnXMyT/319/yw6i3+3vtaHrniPNKTm6drIrtr6nhnw07eWr+TN/67nVsXF/Hrf61j9pQhTJtwPoGjT6XuTxeRunAW1ZXbSJ98VTROtUMsXraFXTX1fO3EgdhfP8TGxMZlT11NUsDHdacN4wdP7uFryfnkvvx7yvpdynsf7SQvO5XcLS/Anl0w9vJoh7rPkbnd6JYc4I6nV7G7po6LT/ouFbVVVCxdwA/Sf8yjR2ouKxERERGJrj5Zqcy7YgI3zl/GFcuMmyY8yjd23kfSM9fT2PAp/hO/1SlxrPEKRYNC3mimXiM65bh75XqFolLXnb7Q8oiizbuZ3LMa3+4KfEed06nxJaKIjCgys7PMbI2ZrTOzm1tYb2Z2v7d+uZkdF4njdgWXjB/Aj885muUl5dy1pJibdhaSVvURix78CbOqHmRn5lGcf+VtLRSJwrLTkjhzRG9+8j/DWXL9Sfz5yokU9M7gp/9YzeS7X+LBpbvY9eX5fDr4TNJfvJnqZ35CbX0De+ob93vU1NZTXV1N1e5PqN6+qcUJxGKJc465r2+kILcbJ/SoweqqNZF1B/rq+AE8fe0k1vc7nz51G7ntgXk8u3IrYwfm0LD0ERoz+8Pgk6Md5j5Bv49Hvz6BQT3SuWVREaf+4hUWZH6NyZ/ew7hjx2Jm0Q5RRERERISkgI9fXjyG6RMHcu/be7gl807q8s/C98It8PG7nRJDcVkV6Ul+MsvXEMrIhfQenXLcvXIzkwHYXJeG8ycfMKLIOcfyknJOyAkXtNJ653dqfImo3SOKzMwP/BY4AygB3jWzxc65VU02OxsY5j0mAA94zwJ8ffIQvj55CBV76inZMYnt81/gx7sfw2E0Xjgf/G1P08QhPZg4pAdLN+7kVy8Wc8+SNdyzBMb2v4af9Eph9Du/omHZPDAfuBAQwkKN+Bo+DU8c5mk4fjaBc+7ugLONjHc37mJVaQX/74JRuLJVGGgi6w42Mi+LkdOvI/Tz33B33gfcEhrPtAIILH6F0JSbwRdbV7KO6Z/NX745kVfWfsK9z63h9qfDH0nnHtM3ypGJiIiIiHzG5zNuLxxBdlqQX/9rHfVHXcU9GUXYX2fgv+q1Dp/eYc3WSobldoOyVZ0+mgggNys8oqisohbXrS+uYst+I1o27qihck8DI1PDU19YzuBOjzHRROLSs/HAOufcegAz+zNQCDQtFBUC85xzDnjLzLLNrI9zrjQCx+8yMlOCDM/LovFLd8K8c6kd8zVSBhz/ufY1blB3Hp01gXXbKnmuqIxnV5ZSuPkrXOrvwVhfCZmpSWSmJZGZmkxORgpJqRkQTIekNFI+fpWU9/4Ik66FrH4RPsvImPv6eialrGfqxn/gihfjAilYT40o6nApmYSGn8ewD5/irzf+htBrv8RhMXO3s+bMjJMLenHSsJ4sKdpKafke8ntlRDssEREREZH9mBk3nFlAdloSdzy9iqS8m7hr1400LPgGgcvmd+iXssXbKjm9oDv24Rps6JQOO05ruiUHSA369935jPL9RxQtL9kNwEArwwVSsYxenR5joolEoSgP+LjJ+xIOHC3U0jZ5gApFLfAPmUz1Fa+Qntf+am5+r27k9+rG1afk8/HOGv65agQvbtpF0eZyNn5cA0CS38ed54/konH9w412X4C7/1jqX76XYOGv2h1DpLhQiD0ff8DuZU9x49onGOIrJbQ2lU/zzyV4wjdISs2OdogJITB2Bix/Arfyb7j3HyM0+BQC2f2jHdZB+XzG1FF9oh2GiIiIiMhBzZo0mCMykrhp/nL6ZMzk2+sfpPHV+/BPualDjrejqpbtVXWM67YLa6yNyogiMyM3M5myylosKw+36e391q8oKSc54CO7bguh7EH4NY1Eh4tEoailLDWfor0t24Q3NLsSuBJgwIAB7YssjqUPGBPxffbvnsasSYOZRXioXuWeelaXVvKrF9dy04LlrPukiu9/8Sh82f1pGDOdwAePwknfhZyBEY+lrRpqytnz4Quw7nmSN75Ias02UoF3KSBp8nfoc+JXSU/NjFp8CWnARBpzhmLP34r/051w1p3RjkhEREREpMsoHJNHbmYKV84zjrKVnPnSXYT6HY9v6Mlt3kfjykWE1i4hWHg/+IOtbre2rAqAEX7vjme5nV8ogvCE1mXle7ChfaGqFEKhfaOolpeUM7xvJr7dH+Gi+LdpIonE+LUSoOlwgn5A82nK27INAM65h5xz45xz43r27BmB8KQ13VKCjB/cnbkzx3PphAE8+Mp6vvmn96iubSA45UYwH/Uv39Ppce0p30bFm3OpnvtlfPcNI2PxFQTXPsUK/wjuCFzLuD0PMKfgAfqd9k38KhJ1PjPsuOn4Pt1JKKU7FEyNdkQiIiIiIl3KxCE9WHDVF7g3+C3Wu96EHvsK9Uvntalt/ZsP4Fswg+Dyx2HjqwfdtnhbeILo/g0bcOaHngXtjv3zyM1MoaxyD2TmYY11ULMDgMaQY+WWco7pm4nt3oh11/xEnSEShaJ3gWFmNtjMkoBLgMXNtlkMXO7d/WwiUK75iWJH0O/jp+eN5Nb/Gc6Lq8u46HdvUkp3Go+dQWD5E7BzfccH4RxVa16mes75JP+ygMznvk1tyQoWB77ItPpbGF71ANPLZ7NpwHlcf94XuOfC0R0fk7TKN2Yazp+EGzMNAsnRDkdEREREpMs5Mrcbj11zOj/OuZe36vMJPn0t2x6fDQ21LTdwjoZ/3kbwuZtpGHYWLphGqGjRQY+xZmslmSkB0nZ+iOuRH7Xf7XMzkymr2IPL9KaL8O58tv6TKmrqGjm+VwhffQ1+FYo6RbsvPXPONZjZNcBzgB/4o3OuyMxme+t/BzwDTAXWATXAzPYeVyLLzJj5hcEMOiKdax9/n5lz3uXJ6d8m5f15NLx0N8EvP9j+gzQ2UF2xE396DgG/n4DfxycVNWx4fQF9VvyO/jVF7CCLuQ3n8mzjeIobhjK6fw5jj83h2mE9GTswh6RAbN1ZK2F1yyU0+0382bE52bmIiIiISFeQm5nCvGun8sSbR7HmhTuYtfYJNt77PmmXPUbPfkM/2zDUQMOi6wguf5z6MTMIful/CS2YBR8+Defc1+qdtIvLqijo3Q22rcL6jeukszpQbmYKe+pDVCflkgFQsQX6jmFZSTkAo9PDdzwjZ1C0QkwokZijCOfcM4SLQU2X/a7JawdcHYljScc6paAXv730OGbOeYcbni3j/rGzCLz7AEy5CY7Ib9e+6x//Kun//SchfFT7u7EjlIGvsY7xvk/YFOrJfcnfZPPA8xk+MJefDurO8D6ZKgzFMH/P9v17EBERERGRQwv6fVw+KZ/ysQ8zf8EEzl53O/6HT2AzmdS6IHUESaGWwb4y6id9j+BpPwQzfCPOg1V/h01vwOCTDtivc441ZZVcMCIT38pNMHZG55+cJzczBYAyXw+vUBQeUbSiZDdpSX7y2BbeUIWiThGRQpF0LVOO7MkPzj6aO59Zzdwphczy/5H6F+8k6eI5n3+nJUsJ/vefLGw8kY9cLr1CVQxK28MRySGWH3UzAydP44aMtMidhIiIiIiISBeSlRrkounfYsu6yWx94Vf466sJuDoCoTpq6mq5Yff5dKs5j1vx7iY17ExcMA2KFmEtFIo+qayl/NN6jk/bGl4QpYms4bNC0Zb6DIb4AlhFeErj5ZvLGZmXhe1eHt4wO3FveNWZVCiSFn198mBWl1Zw5yubOWX05eSvfpDq+cmkFf4CSzr8gs7Wp24nyWXw1ohbuOiEozmmXxZBv0YLiYiIiIiIHI6++aPom//wfsucc+T8YzUPv7aB7LQg159+JCSl4fLPgNWLsan3gM+/X5s1ZeGJrAtsU3hBFAtFvb1C0daKOlxGH1zFZhobQ6zaUsH0iQMJ7ViPZfTGF0yNWoyJRH+pS4vMjLsuGMXofllcsHoKm0d9i/SiJ6h78DTqthUf1r6qNr5L77JXWJhyHrdfOJGxA3NUJBIREREREYkQM+NH5xzNhWP78csXipn7+gYAfCMK8VVvg4/fPqDNmq3hQlFe7XpccjfI6n/ANp2lV2Z4Eu1Xi7dTk5JLaPdm1pZVUtsQYlS/LNyujYSyB0UtvkSjv9alVSlBPw9OH0dycjJfKT6D1ac+jL9qC/7fn0z1B0+2eT8b/nYb5S6N479ys+YcEhERERER6QBmxs8uGMWZw3O57alVLHx/c/jys0AKrmjhfttW7Kln7hsbGdIznaQdq3E9h4NZdAIn/LfnyLxMFi/bwkulAT7+aB1XznsPgNH9srHdH2G641mn0V/tclC9s1L4w4xxOOc4d0k6fxw5j7qcYaQvnEnVo5dSs3nlQdu//86rjKp8jWV50xg1NHoVahERERERka4u4Pdx/1eP5YQhPbhx/jJe2vApbuhpuFWLIRQCwpep/fDJFZSW7+HnFx6DbVuFr3f0Ljvb66lrJvHyjSczvOBo8ny7GNg9lVMKejIwy4evshRf90HRDjFhqFAkh3RMv2yevf4kCkf35a7Xq7i04VZKjrmW1E0vkfr7SVQ9/jU+LV19QLvq2gZ2LbmTKtIYf8kPoxC5iIiIiIhIYkkJ+nno8rEc3SeT2X96jw29TsdXVQqblwIw/70Snl5eynfPOJLjsqqx2oqozk+0l5kx6Ih0hg49kiRXy+OXFTBn5nisvATDYTkaUdRZVCiSNslKDfKLi8fwwKXHsWF3Paf95wv8/tiF7D72KtLWLyHloROpemwGlUXPE2psBOCRhc9wauhNdo2cSUpmjyifgYiIiIiISGLolhJk7szjyctJ5bJXcwj5knBFC/nvJ1XctriIE4b0YPaUoVBWFG7QK/qFon0y+4afvTufsWtj+DlnUDSiSUi665kclrNH9WHsoBxuXVTEz/69lTmZp/G9ky7i9J1/JmPVE/iLF1KZnMsS/8kUVK5lTzCV/lNvjHbYIiIiIiIiCaVHRjKPzprAhQ+8wWt1o5iwYiHXrTmL5ICP/714DH6fwTavUJQ7PLrBNpWZF36u2AK9R6pQFAUaUSSHrVe3FB64bCzzZ59An6xUbnimlIs3nssdBX/ne1zP0preXFAzn9P872Pjr4S07tEOWUREREREJOHkZafy6KwJPM8JJFdvJrD1fe7+8jH0zgrfjt6VFRHK7AcpWVGOtIl9I4o2AxDauQEXSIWMXlEMKrGoUCSf2/GDuvP3b53Ib6YdS3VdA4/9Zxs1RxaSPONJ6q5ZTs3U35J86vejHaaIiIiIiEjCyu+VwcWXXUktQX6d/QRnDk7at86VFWExMD/RfjJycebbd+mZ27mBUPbAqN6VLdHo0jNpFzPj3GP6ctaI3tQ1hkhLavJP6ojLoheYiIiIiIiIADBy6ED2XPAH+i36Bg1/OIvAjEWQ1h3bXowVTI12ePvzB3DpubiKzeGRLbs24nTZWafSiCKJiIDft3+RSERERERERGJGyjGFuGnz8VWU0PDwmbD2Ocw1xsQdz5pzmX1x5ZvBOXy7N+LrrjuedSYVikREREREREQSgH/oFGzGU1hdJW7+jPDCGCwUWWZe+NKz6u1YfY0KRZ1MhSIRERERERGRBGH9xuKf9Ryh9FxcMA165Ec7pAP4svLwVW7RHc+iRNcKiYiIiIiIiCSSngX4Z/8bV7kV/MFoR3OgzL5YXRVsXR5+r0JRp1KhSERERERERCTRZPTCYvWW85l9w88fvRF+zh4QvVgSkC49ExEREREREZHY4RWK3EevE8roDcHUKAeUWFQoEhEREREREZHY4RWKrLKUUPag6MaSgFQoEhEREREREZHY0a3PvpemO551OhWKRERERERERCR2BJIJpfUEwNd9UHRjSUAqFImIiIiIiIhITHF7Lz/L0YiizqZCkYiIiIiIiIjElr13PssZFNUwEpEKRSIiIiIiIiISU3yZeeEXKhR1ukC0AxARERERERERacryT6V++zqCGb2iHUrCUaFIRERERERERGLLUecQyj8LzKIdScLRpWciIiIiIiIiEnOSA/5oh5CQVCgSERERERERERGgnYUiM+tuZs+bWbH3nNPCNv3N7CUzW21mRWb27fYcU0REREREREREOkZ7RxTdDLzonBsGvOi9b64BuME5dzQwEbjazIa387giIiIiIiIiIhJh7S0UFQKPeK8fAc5rvoFzrtQ59x/vdSWwGshr53FFRERERERERCTC2lsoynXOlUK4IAQc9L51ZjYIOBZ4u53HFRERERERERGRCAscagMzewHo3cKqHx3OgcwsA/gbcL1zruIg210JXAkwYMCAwzmEiIiIiIiIiIi0wyELRc6501tbZ2ZlZtbHOVdqZn2Aba1sFyRcJHrMOffkIY73EPAQwLhx49yh4hMRERERERERkcho76Vni4EZ3usZwKLmG5iZAX8AVjvnftHO44mIiIiIiIiISAdpb6HoZ8AZZlYMnOG9x8z6mtkz3jZfAKYDp5rZB95jajuPKyIiIiIiIiIiEXbIS88Oxjm3AzitheVbgKne69cAa89xRERERERERESk45lzsTsNkJl9AlQD26Mdi7TJEShX8UK5ih/KVfxQruKD8hQ/lKv4oVzFD+UqfihX8SGe8zTQOdezpRUxXSgCMLOlzrlx0Y5DDk25ih/KVfxQruKHchUflKf4oVzFD+UqfihX8UO5ig9dNU/tnaNIRERERERERES6CBWKREREREREREQEiI9C0UPRDkDaTLmKH8pV/FCu4odyFR+Up/ihXMUP5Sp+KFfxQ7mKD10yTzE/R5GIiIiIiIiIiHSOeBhRJCIiIiIiIiIinSCihSIzO8vM1pjZOjO7ucnyv5jZB95jo5l90Er77mb2vJkVe8853vJLm7T/wMxCZjamhfbXeMd2ZnZEk+VZZvaUmS0zsyIzmxnJ845HHZiroJk9YmYrzGy1mf2glfaDzextr/1fzCzJW25mdr8X13IzO64DTj9uxGqevHUne8cvMrNXInzqcScGctXa59+l3v+l5Wb2hpmNjvCpx50YzpX6qmY6MFdJZjbHy9UyMzu5lfbqq9ooVnPlrVN/5YmBPKmvaqMYzpX6qmYikKuLvJ9lyMzGNVv3A2+/a8zsi620V1/VRrGaK29dbPVVzrmIPAA/8F9gCJAELAOGt7DdfcBPWtnHPcDN3uubgbtb2GYUsL6V9scCg4CNwBFNlv9w776AnsBOIClS5x5vj47MFTAN+LP3Os3LxaAW2v8VuMR7/TvgKu/1VOBZwICJwNvR/nkpTy3mKRtYBQzw3veK9s9LuWr18+9EIMd7fXYi/5+Kg1ypr+q8XF0NzPFe9wLeA3wttFdfFf+5ykb9VSzlSX1V/OdKfVXkc3U0UAC8DIxrsny4t79kYLB3HH8L7dVXxX+usomxviqSI4rGA+ucc+udc3XAn4HCphuYmQFfAZ5oZR+FwCPe60eA81rY5quttXfOve+c29jSKqCbd/wMwh9oDQc7mS6uI3PlgHQzCwCpQB1Q0cK+TwUWtNC+EJjnwt4Css2sz+c4x64glvM0DXjSObcJwDm37fBPr0uJaq6g9c8/59wbzrld3tu3gH5tP60uKWZzhfqq5joyV8OBF2Hf59duoPk3g+qr2i6Wc6X+6jNRzZO3Tn1V28RsrlBf1Vy7c+WcW+2cW9PCqkLCX0DVOuc2AOu84zXft/qqtonlXMVcXxXJQlEe8HGT9yXesqYmA2XOueJW9pHrnCsF8J57tbDNxbT+gdia3xCu/m0BVgDfds6FDnMfXUlH5moBUA2UApuAnzvndjZr2wPY7Zzb26k0PX5bYksUsZynI4EcM3vZzN4zs8sP79S6nGjnqq1mEf5mKZHFcq7UV+2vI3O1DCg0s4CZDQbGAv2btVVf1XaxnCv1V5+Jdp7aSn1VbOdKfdX+IpGr9uxbfVXbxXKuYq6vCkRwX9bCMtfsfaujgdp0ALMJQI1zbuVhNv0i8AHhCt5Q4Hkze9U5d8A3vQmiI3M1HmgE+gI5wKtm9oJzbn0bj9+W2BJFLOcpQPgXi9MIj5x408zecs6t/RyxdAXRztWhAzQ7hfAv35M+RwxdSSznSn3V/joyV38k/IfOUuAj4A0O/EZcfVXbxXKu1F99Jtp5OiT1VfvEcq7UV+2vI3PVln2rr2q7WM5VzPVVkRxRVML+1eh+hCvNAHhD8S8A/tJk2RxvwqZnvEVle4fDec/Nh1xdwudL3EzCQ7mcc24dsAE46nPsp6voyFxNA5Y45+q9IXOvc+Bw1u2Ehz7uLVQ2Pf5BY0swsZ6nJc65aufcduDfwOh2nW18i3auDsrMjgEeBgqdczsO68y6nljOlfqq/XVYrpxzDc657zjnxjjnCgnPDdD820P1VW0X67lSfxUW7TwdlPqq/cRyrtRX7S8Sufpc+/aor2q7WM9VTPVVkSwUvQsMs/BM3kmEizqLm6w/HfjQOVeyd4Fzbqb3ITXVW7QYmOG9ngEs2rutmfmAiwhfS3i4NhGuzmFmuYQnoDqsb+O7mI7M1SbgVAtLJzxx2odND+6cc8BLwIUttF8MXO61nwiU7x02m4BiOU+LgMnesOU0YAKwut1nHL+imquDMbMBwJPA9AT9Br25mM0V6qua67BcmVmalyPM7AygwTm3qunB1VcdlljOlfqrz0Q1TwejvuoAMZsr1Fc1F4lctWYxcImZJVv4MsFhwDtNN1BfdVhiOVex11e5yM4kPhVYS3iW7x81WzcXmH2I9j0IT65W7D13b7LuZOCtQ7S/jnA1roFwde5hb3lf4J+Er6NdCVwWyfOOx0dH5YrwpHbzgSLCM7ff1Er7IYT/86zztk/2lhvwWy+uFTSZTT4RH7GaJ2/dTV7blcD10f5ZRfsRA7lq7fPvYWAX4WHiHwBLo/3E+9eLAAAAvUlEQVSzivYjhnOlvqrzcjUIWEP4l7AXgIGttFdfFee58tapv4qdPKmviv9cqa+KfK7O937WtUAZ8FyTdT/y9rsGOLuV9uqr4jxX3rqY6qvMC0pERERERERERBJcJC89ExERERERERGROKZCkYiIiIiIiIiIACoUiYiIiIiIiIiIR4UiEREREREREREBVCgSERERERERERGPCkUiIiIiIiIiIgKoUCQiIiIiIiIiIh4VikREREREREREBID/A2j+H7AhLF1JAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "nb_plts = len(dfs_train)\n", - "\n", - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_train):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m_best.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " plt.title(f\"Model Performance on training data: {train_exps[idx]}\")\n", - " plt.legend()\n", - "plt.savefig(f\"Performance_train_exps.png\")" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJAAAARuCAYAAACMSM1AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3jUVdrG8e+Zml5IIySBBAidJPQmSEcEG2Jv2MvaXlfXuurquta1u/aKKIIIgiAoIL33XgJJIBBCek+mnfePCRGQToZJwvO5Lq6QX71ngmbmmXOeo7TWCCGEEEIIIYQQQghxPAZvBxBCCCGEEEIIIYQQdZsUkIQQQgghhBBCCCHECUkBSQghhBBCCCGEEEKckBSQhBBCCCGEEEIIIcQJSQFJCCGEEEIIIYQQQpyQFJCEEEIIIYQQQgghxAlJAUkIIYQ4jyil4pVSWillOoVjxyilFp2jXH2UUjuVUqVKqcvPxT1F7aj+99TS2zmEEEII4VlSQBJCCCHqKKVUulLKppQKP2r7uuo37fFeinZ4Iaq0+k+6UuqJs7jkC8D7WusArfWUWop5XqjNQl/1z3FwbVzrGNc+5eLlaVxTK6XKDvt3WKqU+kctXPeN6oJmiVJqm1Lq5trIK4QQQtRntfYLXAghhBAekQZcB7wHoJTqCPh6NdGRQrTWDqVUL2COUmqd1nrmqZ6slDJprR1AM2DzmQQ47Bri/JSstU6t5WuWAZcAO4BuwEylVKrWekkt30cIIYSoN2QEkhBCCFG3jQUOH/1wC/DN4QcopYKVUt8opXKUUhlKqWeUUobqfcbq0RS5SqndwIhjnPu5UipLKbVPKfVvpZTxdENqrZfiLgB1qL7ubUqprUqpAqXULKVUs8PuqZVSf1NK7QR2KqV2Ac2BadUjSKxKqSZKqalKqXylVKpS6s7Dzn9eKfWjUupbpVQxMEYpNa86+5Lqa0xTSoUppcYppYqVUisPH7GllHpHKbW3et9qpVTfo64/ofo5LVFKbVZKdT1sf5xS6qfq5ztPKfX+YfuO+7iPppS6tPrahdX52x62L10p9ahSaoNSqkgp9YNSyucY12gLfAT0qn7chdXbrdU/9z1KqWyl1EdKKd/qfeFKqV+q75uvlFqolDIopcYCTQ/7ORxzJI9S6rHqfy/7lVK3HbVvhFJqbfXzulcp9fxhuxdUfy2svn4vpVQLpdTc6ucxt/rnFXK85+x0KKVmKKX+e9j3Pyilvqj++xil1GKl1HvVz+82pdSgQ8dqrZ/TWm/TWru01suBhUCv2sglhBBC1FdSQBJCCCHqtmVAkFKqbXVh5xrg26OOeQ8Ixl2EuRB3wenW6n13AiOBTkBXYPRR534NOICW1ccMBe44nYDKrQ/QHlir3D2MngJGARG433x/f9RplwM9gHZa6xbAHuCS6ilsVdXHZwJNqjP/5/A3+MBlwI9ACDCuetu1wE1ADNACWAp8CTQCtgLPHXb+SiClet93wMSjCjSXAuOrrz8VeL/6sRqBX4AMIL76XuOr953K4z70nLWq3vdw9bEzcBduLIcddjVwEZAAJAFjjr6O1norcA+wtPq5C6ne9SrQqvoxtqzO+Wz1vr/jfm4jgKjqzFprfRNH/hxeO0bui4BHgSFAInD0dLcy3P/+QnAXK+9Vf/a06lf9NaT6+ksBBbyM++fcFogDnj/sfv9TSv3v6Byn6DbgJqXUQKXUDbhHEj102P4ewG4gHPe/jZ+UUo2Ovkh14a0bZzhCTgghhGgopIAkhBBC1H2HRiENAbYB+w7tOKyo9KTWukRrnQ78F3chBdxFiLe11nu11vm436wfOjcKGA48rLUu01ofBN7CXYg5VblAPvAZ8ITWeg5wN/Cy1npr9dSy/wApR43GeVlrna+1rjj6gkqpOOAC4HGtdaXWel319W867LClWusp1SNEDl3jS631Lq11EfArsEtrPbs6w0TcBTIAtNbfaq3ztNYOrfV/ASvQ+rDrL9Jaz9BaO3E//8nV27vjLnY8Vv2cVWqtD/UfOpXHfcg1wHSt9e9aazvwBu6pib0PO+ZdrfX+6p/bNNzFoJNSSinchcP/q36OS6qzHPq52oFooJnW2q61Xqi11qdybdz/nr7UWm/SWpdxWLEHQGs9T2u9sfrnsgF3kezC411Ma51a/RxUaa1zgDcPP15rfZ/W+r6TZFpTPZrq0J9h1ecewF1c+xp4B7i5+rk45CDu/zbsWusfgO0cNUKv2kfAemDWSXIIIYQQDZr0QBJCCCHqvrG4p/8kcNT0NdyjJyy4R8QckoF7xAm4ix17j9p3SDPADGS5aw6A+8Olw48/mfBj9B9qBrxz+PQh3CNNYg67/4nu0QTIP+rNfgbuEVSHHOv87MP+XnGM7wNqwij1d9wjrZoAGgjC/VwecuCwv5cDPsrd/DkOyDhOz6VTedyHNDl8m9bapZTay58/t2NlaHKMex5LBOAHrD7s56qAQ1MTX8dd+Pmtev8nWutXTvHaTYDVh31/xONSSvUAXsE9ldGCuzA38XgXU0pFAu8CfYFA3P/+Ck4xyyGdT9AD6Rfco8e2H1boO2TfUYWzDI56jpVSr+N+LANOo8gmhBBCNEgyAkkIIYSo47TWGbibaV8M/HTU7lzcI0oOH+XSlD9HKWXhLnocvu+QvUAV7iJQSPWfIK11+7OMvBe4+7BrhmitfY9qQHyiN+P7gUZKqcCjcu877PszfjNf3e/ocdyjaUKrp30V4S6ynMxeoKk69kpip/K4D9nPYT+z6lFDcRz5GE/V0c9FLu6CWfvDcgRrrQMAqkeq/V1r3Rx3o+hHDpseeLLn9UT/nsA9HXAqEKe1DsY9eufQ83qsa79cvT1Jax0E3Mip/RxO1Uu4py9GK6WuO2pfjDqswob7sew/9I1S6l+4R+gN1VoX12ImIYQQol6SApIQQghRP9wODKyeNlSjeorVBOAlpVRg9XSpR/izT9IE4EGlVKxSKhR44rBzs4DfgP8qpYKqGym3UEodd8rRKfoIeFIp1R5qGnVfdaona633AkuAl5VSPkqpJNyPf9yJzzxlgbj7PuUAJqXUs7hHIJ2KFbiLKK8opfyr8/Wp3nc6j3sCMEIpNUgpZcbdl6gK9+M+XdlA7KH+SVprF/Ap8Fb1CB+UUjGHpnYppUYqpVpWF0+KAWf1n0PXan6Ce03A3bS8nVLKjyP7SoH7uc3XWlcqpboD1x+2LwdwHXX9QKAUd2PtGOCx03zsx6WU6oe7F9jN1X/eq77HIZG4/9swV/+c2uLuRYVS6snq7EO01nm1lUkIIYSoz6SAJIQQQtQD1b19Vh1n9wO4mxfvBhbhHgXyRfW+T3H3blkPrOGvI5huxj3VaAvuqUM/4u6PczZZJ+Nu4jxeuVdJ24R7JMfpuA53k+r9wGTgOa3172eT6zCzcPdI2oF72lIlpzhtr7pgdwnuxtR7cDejvqZ63yk/bq31dtyjbd7DPWLoEtzNq21n8Hjm4m7wfEAplVu97XEgFVhWnWU2f/Z4Sqz+vhR3o/H/aa3nVe97GXimupfQo8fI/SvwdvU9U6u/Hu4+4AWlVAnupt0TDju3HPeIoMXV1+8J/AvojHsE2HSO+vep3KvHfXSSx7++elW3Q3/eVkoF4Z7ueb/Wel/19LXPgS8PG3W0vPq5yK3ONfqwYtF/cI9I2nnYdZ86SQ4hhBCiQVMynVsIIYQQQpxPlFJjgDu01hd4O4sQQghRX8gIJCGEEEIIIYQQQghxQlJAEkIIIYQQQgghhBAnJFPYhBBCCCGEEEIIIcQJyQgkIYQQQgghhBBCCHFCUkASQgghhBBCCCGEECdk8naAMxEeHq7j4+O9HUMIIYQQQgghhBCiwVi9enWu1jriWPvqZQEpPj6eVatWeTuGEEIIIYQQQgghRIOhlMo43j6ZwiaEEEIIIYQQQgghTkgKSEIIIYQQQgghhBDihKSAJIQQQgghhBBCCCFOqF72QBJCCCGEEEIIIbzNbreTmZlJZWWlt6MIcVp8fHyIjY3FbDaf8jlSQBJCCCGEEEIIIc5AZmYmgYGBxMfHo5TydhwhTonWmry8PDIzM0lISDjl82QKmxBCCCGEEEIIcQYqKysJCwuT4pGoV5RShIWFnfbIOSkgCSGEEEIIIYQQZ0iKR6I+OpN/t1JAEkIIIYQQQggh6imlFDfddFPN9w6Hg4iICEaOHOnFVCcXEBBw0mOef/553njjjRMeM2XKFLZs2VJbscQJSAFJCCGEEEIIIYSop/z9/dm0aRMVFRUA/P7778TExHgli8PhOOf3lALSuSMFJCGEEEIIIYQQoh4bPnw406dPB+D777/nuuuuq9lXVlbGbbfdRrdu3ejUqRM///wzAOnp6fTt25fOnTvTuXNnlixZAkBWVhb9+vUjJSWFDh06sHDhQuDIEUM//vgjY8aMAWDMmDE88sgjDBgwgMcff5xdu3Zx0UUX0aVLF/r27cu2bdsASEtLo1evXnTr1o1//vOfx30sL730Eq1bt2bw4MFs3769Zvunn35Kt27dSE5O5sorr6S8vJwlS5YwdepUHnvsMVJSUti1a9cxjxO1Q1ZhE0IIIYQQQgghztK/pm1my/7iWr1muyZBPHdJ+5Med+211/LCCy8wcuRINmzYwG233VZT+HnppZcYOHAgX3zxBYWFhXTv3p3BgwcTGRnJ77//jo+PDzt37uS6665j1apVfPfddwwbNoynn34ap9N5SgWYHTt2MHv2bIxGI4MGDeKjjz4iMTGR5cuXc9999zF37lweeugh7r33Xm6++WY++OCDY15n9erVjB8/nrVr1+JwOOjcuTNdunQBYNSoUdx5550APPPMM3z++ec88MADXHrppYwcOZLRo0cDEBIScszjxNmTApIQQgghhBBCCFGPJSUlkZ6ezvfff8/FF198xL7ffvuNqVOn1vQSqqysZM+ePTRp0oT777+fdevWYTQa2bFjBwDdunXjtttuw263c/nll5OSknLS+1911VUYjUZKS0tZsmQJV111Vc2+qqoqABYvXsykSZMAuOmmm3j88cf/cp2FCxdyxRVX4OfnB8Cll15as2/Tpk0888wzFBYWUlpayrBhw46Z5VSPE6dPCkhCCCGEEEKIU2J3uqi0O6lyuKisrMCVs5MmMU0xBUV5O5oQXncqI4U86dJLL+XRRx9l3rx55OXl1WzXWjNp0iRat259xPHPP/88UVFRrF+/HpfLhY+PDwD9+vVjwYIFTJ8+nZtuuonHHnuMm2+++YhVu45e/t3f3x8Al8tFSEgI69atO2bGU1n563jHjBkzhilTppCcnMxXX33FvHnzzuo4cfqkB5IQQgghhBDiuCptDvbuXM/exT+QP/1FnD+MIeCzPsR80IKmPwxGTbzF2xGFEMBtt93Gs88+S8eOHY/YPmzYMN577z201gCsXbsWgKKiIqKjozEYDIwdOxan0wlARkYGkZGR3Hnnndx+++2sWbMGgKioKLZu3YrL5WLy5MnHzBAUFERCQgITJ04E3MWr9evXA9CnTx/Gjx8PwLhx4455fr9+/Zg8eTIVFRWUlJQwbdq0mn0lJSVER0djt9uPOD8wMJCSkpKTHifOnhSQhBBCCCGEEMdUnJeN4+vLiBvXj7jf7yJqzZv45m7AFhRPTtLdlEX3QuXu8HZMIQQQGxvLQw899Jft//znP7Hb7SQlJdGhQ4eaBtb33XcfX3/9NT179mTHjh01o4jmzZtHSkoKnTp1YtKkSTXXfOWVVxg5ciQDBw4kOjr6uDnGjRvH559/TnJyMu3bt69p2v3OO+/wwQcf0K1bN4qKio55bufOnbnmmmtISUnhyiuvpG/fvjX7XnzxRXr06MGQIUNo06ZNzfZrr72W119/nU6dOrFr167jHifOnjpUhaxPunbtqletWuXtGEIIIYQQQjRYuamrCfr5Fkxl2ezv/H/oZn1REW2w+AfiYzbiYzJiWfo2zPkXPLkPrAEnvaYQDc3WrVtp27att2MIcUaO9e9XKbVaa931WMdLDyQhhBBCCCFEDadLk7diAmGzH6JC+XO/6QU2bWrFvIv6YDEdNYEhpKn7a+EeiGp37sMKIYQ4Z2QKmxBCCCGEEAKASpudgmnPEDnzLrY44xhQ8i+2GFuzv7CSOVuz/3pCaLz7a2HGOc0phBDi3JMRSEIIIYQQQpwnqhxO7E6NApQCheLQgkflxfkUjRtDQv4ixjv6My7sQV4a3Z6BbSLp+9of/LBqL8M7HtX35PARSEIIIRo0KSAJIYQQQghxPijPp/KXf+K0V4HBiFZGUEa0MpBd6iBg7x/Eug7wjs89tBr1EFM7Rtcsp31Vl1je+yOV/YUVNAnx/fOa/hFoky+qQEYgCSFEQycFJCGEEEIIIc4D9pVfEbzlW2z+TVDaCdoFLid2u42mTiclhiDm9/yUB4ZdgcFwZKeLq7rG8e7cVH5cncmDgxL/3KEUOjgOXZAhvTGEEKKBkwKSEEIIIYQQ54ONE6hs3IWi62cAsC2rhOembiK9qJxru8Xx8OBEBgf7HvPUuEZ+XNAynAmr9nL/gJYYDKpmnw5tJlPYhBDiPCAfFAghhBBCCNHQHdiEOXcrppRrCQ+w8tOafdzxzUoq7E6+vb0Hr1yZROPjFI8OubpbHJkFFSzZlXfEdkNIM5Q00RbCa7Kzs7n++utp3rw5Xbp0oVevXkyePNnj9121ahUPPvhgrVyrf//+tG7dmuTkZPr06cP27dtr5bq1qTYzfvXVV9x///0AfPTRR3zzzTfHPTY9PZ3vvvuu5vvafN5PlxSQhBBCCCGEaODs68ajDSYONh3OdZ8u49WZ2xjSLopZD/fjgsTwU7rG0HZRhPiZGb/yyNFGKrQZhqoiqCj0QHIhxIlorbn88svp168fu3fvZvXq1YwfP57MzEyP37tr1668++67tXa9cePGsX79em655RYee+yxv+x3Op21dq8z5YmM99xzDzfffPNx9x9dQKrt5/10SAFJCCGEEEKIhszlwrBpEvvDejPsky1s2V/Mf69K5oPrOxPiZznly/iYjVyeEsNvm7MpKLP9uUNWYhPCa+bOnYvFYuGee+6p2dasWTMeeOABwF186Nu3L507d6Zz584sWbIEgHnz5jFy5Miac+6//36++uorAJ544gnatWtHUlISjz76KAATJ06kQ4cOJCcn069fv79cY8WKFfTu3ZtOnTrRu3fvmtE5X331FaNGjeKiiy4iMTGRf/zjHyd9TP369SM1NRWAgIAAnn32WXr06MHSpUt588036dChAx06dODtt9+uOeebb74hKSmJ5ORkbrrpJgBycnK48sor6datG926dWPx4sUAzJ8/n5SUFFJSUujUqRMlJSVkZWXRr18/UlJS6NChAwsXLjzjjN9++y3du3cnJSWFu+++u6ao9OWXX9KqVSsuvPDCmiwAzz//PG+88QYAqampDB48mOTkZDp37syuXbt44oknWLhwISkpKbz11ltHPO/5+flcfvnlJCUl0bNnTzZs2FBzzdtuu43+/fvTvHnzWis4SQ8kIYQQQgghGrDSHfMJKN3PK/mjaBUXyNvXpBDXyO+MrnVNtzi+WpLO5LX7uO2CBPfGwwtI0Um1lFqIeujXJ+DAxtq9ZuOOMPyV4+7evHkznTt3Pu7+yMhIfv/9d3x8fNi5cyfXXXcdq1atOu7x+fn5TJ48mW3btqGUorCwEIAXXniBWbNmERMTU7PtcG3atGHBggWYTCZmz57NU089xaRJkwBYt24da9euxWq10rp1ax544AHi4uKOm2HatGl07NgRgLKyMjp06MALL7zA6tWr+fLLL1m+fDlaa3r06MGFF16IxWLhpZdeYvHixYSHh5Ofnw/AQw89xP/93/9xwQUXsGfPHoYNG8bWrVt54403+OCDD+jTpw+lpaX4+PjwySefMGzYMJ5++mmcTifl5eXHzXeijFu3buXVV19l8eLFmM1m7rvvPsaNG8eQIUN47rnnWL16NcHBwQwYMIBOnTr95bo33HADTzzxBFdccQWVlZW4XC5eeeUV3njjDX755RfAXbg75LnnnqNTp05MmTKFuXPncvPNN7Nu3ToAtm3bxh9//EFJSQmtW7fm3nvvxWw2n/BxnYwUkIQQQgghhGiglu7K4+CE9xmkfWg/4FreGtgek/HMJyG0jQ4iOTaYH1bu5dY+8SilIDTevVP6IAnhdX/7299YtGgRFouFlStXYrfbuf/++1m3bh1Go5EdO3ac8PygoCB8fHy44447GDFiRM1Ilz59+jBmzBiuvvpqRo0a9ZfzioqKuOWWW9i5cydKKex2e82+QYMGERwcDEC7du3IyMg4ZgHphhtuwNfXl/j4eN577z0AjEYjV155JQCLFi3iiiuuwN/fH4BRo0axcOFClFKMHj2a8HD3dNxGjRoBMHv2bLZs2VJz/eLiYkpKSujTpw+PPPIIN9xwA6NGjSI2NpZu3bpx2223Ybfbufzyy0lJSTnm83OyjHPmzGH16tV069YNgIqKCiIjI1m+fDn9+/cnIiICgGuuueYvP4uSkhL27dvHFVdcAYCPj88xMxxu0aJFNYW6gQMHkpeXR1FREQAjRozAarVitVqJjIwkOzub2NjYk17zRKSAJIQQQgghRANT5XDy5m87+GrhNlZZl1DeYjj3DOlYK9e+pltTnpq8kfWZRaTEhYBvKNrsDwUZqJOeLUQDdoKRQp7Svn37mgICwAcffEBubi5du3YF4K233iIqKor169fjcrlqihImkwmXy1VzXmVlZc32FStWMGfOHMaPH8/777/P3Llz+eijj1i+fDnTp08nJSWlZpTLIf/85z8ZMGAAkydPJj09nf79+9fss1qtNX83Go04HI5jPpZx48bV5D7Ex8cHo9EIuPs9HYvW2l3MPorL5WLp0qX4+h65QMATTzzBiBEjmDFjBj179mT27Nn069ePBQsWMH36dG666SYee+yxY/YlOpWMt9xyCy+//PIRx0yZMuWYGY9+HKfrWOccus+pPu+nQ3ogCSGEEEII0YDszC7hig+W8PGC3fyzVSaBlBPR+6Zau/4lydH4mo38cKiZtlK4QprhKpARSEKcawMHDqSyspIPP/ywZtvh06+KioqIjo7GYDAwduzYmn48zZo1Y8uWLVRVVVFUVMScOXMAKC0tpaioiIsvvpi33367plC0a9cuevTowQsvvEB4eDh79+49IkdRURExMTEANb2Ualu/fv2YMmUK5eXllJWVMXnyZPr27cugQYOYMGECeXnuFSIPTWEbOnQo77//fs35hz+Wjh078vjjj9O1a1e2bdtGRkYGkZGR3Hnnndx+++2sWbPmjDIOGjSIH3/8kYMHD9ZkycjIoEePHsybN4+8vDzsdjsTJ078y7lBQUHExsYyZcoUAKqqqigvLycwMJCSkpLjPifjxo0D3FPbwsPDCQoKOqPsp0IKSEIIIYQQQjQQi3bmcsn7i8guruSzm7tytXUpTr8IVMKFtXaPQB8zI5KimbpuP2VV1Z9ohzSVJtpCeIFSiilTpjB//nwSEhLo3r07t9xyC6+++ioA9913H19//TU9e/Zkx44dNdO/4uLiuPrqq0lKSuKGG26o6cdTUlLCyJEjSUpK4sILL+Stt94C4LHHHqNjx4506NCBfv36kZycfESOf/zjHzz55JP06dPHY6ulde7cmTFjxtC9e3d69OjBHXfcQadOnWjfvj1PP/00F154IcnJyTzyyCMAvPvuu6xatYqkpCTatWvHRx99BMDbb79d0xDc19eX4cOHM2/evJqm2pMmTeKhhx46o4zt2rXj3//+N0OHDiUpKYkhQ4aQlZVFdHQ0zz//PL169WLw4MHH7Vs1duxY3n33XZKSkujduzcHDhwgKSkJk8lEcnJyzc/jkOeff77mMT7xxBN8/fXXZ5T7VKkzGSblbV27dtUnavwlhBBCCCHE+WbJrlxu/XIlCeH+fHN7dyJNlejXE3F0uQ3ziFdr9V4r0/O56qOlvDY6iau7xqFn/APWjUM9mQknmaYhREOydetW2rZt6+0YQpyRY/37VUqt1lp3PdbxMgJJCCGEEEKIesblOvJD4OW787j9q1U0C/Nj3B09iAz0wbl5Csplw5xyTa3fv2uzUJpH+DNhpXsaiwpthrKVQkVBrd9LCCFE3SAFJCGEEEIIIeqBSruTg8XlZG5aSPas18lLWwvAqvR8bv1qJU1CfBh3R0/CAtyNU13rJ+AIbQFN/rpU9NlSSnFN1zhWZRSQerAEQpq5d8hKbEII0WDJKmxCCCGEEELUQVprSqsclBYV4Eqdg2/6HEL3/oG5MhcA55q3Wd3zXW6ZH0DjIB++v7MnEYHVq+4UZWLauwRHvyc8NqVsVOdYXp+1nR9W7uXpzk3dGwsyPFKwEkII4X1SQBJCCCGEEKKOqbQ5KFr2Nf7bfqRx1gqUduCwBlMa25+yZoMwRCfhO+1ukhbcxTXW+7nzjieJDPKpOd+xfiImNOaUqz2WMSLQSp+W4czfkcPTA6sb6kojbXEeOt4y8kLUZWfSD1sKSEIIIYQQQtQh+QcyMP/yAFGZ8ykPbsn+drdTET8YFdeNAF9fAixGUg+W8kDxk7xj+C/P2t8hb7k/zsGPYTS6O1ToDROwR3fF3Ki5R7O2igpg6e48XNZgsAajCjKQt9HifOLj40NeXh5hYWFSRBL1htaavLw8fHx8Tn7wYaSAJIQQQgghRB1gd7o4sHQ8EfOeQDkrecF1G19kD4JsBavtwJIjjo8JCSb0lp8pmvN/hC39D4WlWfhf+jrm/B2Yc7fgvOg1j2dOCA/A5nCxv6iC6JCm6IIMjB6/qxB1R2xsLJmZmeTk5Hg7ihCnxcfHh9jY2NM6RwpIQgghhBBCeFFRhZ2Zq7YTveRZ+lXMYZ2rOc8ZHqRNcheeiQw45qgGo4KLOkTTONgH+7VfUDDtKULXf0xx2UFcoTFYlBFjxys9nj0+3A+A9NxyokOaQd5Oj99TiLrEbDaTkJDg7RhCnBNSQBJCCCGEEMIL8kureGH6FnI2zOE10/+IUgX8GnYLfoMfZ1KraEzGU1sw2WwyEXTZq+QFRhO26HkAbM2HYPEP92B6t4RwfwDS8sroE9oUds0FrT3WuFsIIYT3SAFJCCGEEEIID3M4XVTYnVTYndiLc9myZgHb1ixkhHMHg8yrKfNvSt7IbxjWug8Gw+kXX4wGRaNBD5MbEEXonMcwdr/DA4/ir6ICffA1G0nLKUNFxoOjHMpyISDinNxfCCHEuSMFJCGEEEIIIWqR1poKu5Nym5PK0iJcmauwHFiLb+5GgnI24FO2jxhgCFAWEEdBi9sxD/knUUEhZ3VfpRThPa+nJPlKAn2ttfFQTspgUDQL8yM9rwxaNXVvLMyQApIQQjRAHi8gKaUuAt4BjMBnWutXjtofDHwLNK3O84bW+ktP5xJCCCGEEKI25RRXUpG9A0PmSnyz1+B/cDVhBdtR2gVAsW8cCyqbscbRj4hWPRg0YAiBoREE+5pPebraqThXxaNDEsL92X6gBEKauTcUZkBs13OaQQghhOd5tICklDICH+D+gCUTWKmUmqq13nLYYX8DtmitL1FKRQDblVLjtNY2T2YTQgghhBCitlTtWkjIj7cSUeFeiclpDqQ8MoWDzYZSHN6Jj3Y1YtKWUlpGBvDGVcmkxIV4N3AtSgj35/ct2TiCYt1vLgoyvB1JCCGEB3h6BFJ3IFVrvRtAKTUeuAw4vICkgUDlXl4iAMgHHB7OJYQQQgghRO3QGvXrE2ijhX0XvIwzphumqLb4+1hJ3VfEPyZtIKuolL8NaMGDgxKxmhrWQvfx4f44XJrMMiNNfcOgcA+1N55KCCFEXeHpAlIMsPew7zOBHkcd8z4wFdgPBALXaF09zvcwSqm7gLsAmjZt6pGwQgghhBBCnC7bpqlYcjdRdvH7RHe9EYNBYXO4eHv2Dj6cv4umjfz48d7edG4a6u2oHnH4SmxxwXFQkO7dQEIIITzC0x8OHGsJCX3U98OAdUATIAV4XykV9JeTtP5Ea91Va901IkKa8gkhhBBCiDrA5YJ5L2MLaY5/l+swGBSpB0u58sMl/G/eLq7uEseMB/s22OIRHFZAyimD0KZQuMfLiYQQQniCp0cgZQJxh30fi3uk0eFuBV7RWmsgVSmVBrQBVng4mxBCCCGEEGfFtmkylrytVF32MdpgZNyyDP49fQu+ZiMf3diFizo09nZEjwvztxBoNZGeV4YhNB52zHIX1gwykU0IIRoSTxeQVgKJSqkEYB9wLXD9UcfsAQYBC5VSUUBrYLeHcwkhhBBCCHF2XE6Y9wq20ETKW17G375ZxeytB+mbGM4bVyUTFeTj7YTnhFKK+HB/0nLLUB2bgrMKSrMhKNrb0YQQQtQijxaQtNYOpdT9wCzACHyhtd6slLqnev9HwIvAV0qpjbinvD2utc71ZC4hhBBCCCHOlm3DJCz5Oyge8TE3f7Wa7QdKeHZkO8b0jsdgOFYnh4YrIdyfNXsKIDTevaFwjxSQhBCigfH0CCS01jOAGUdt++iwv+8Hhno6hxBCCCGEELXG5UTNf5Wq0NbcuSqOrVlFfHJzFwa2ifJ2Mq+ID/fnlw37sQUmYAEozICmR6+dI4QQoj6TiclCCCGEEEKcJtv6iZgLUvnEcBUr9hTy1jUp523xCCAh3A+Xhr2ucPeGwgzvBhJCCFHrpIAkhBBCCCHE6XA6YN4r7DE35819bfjPFR25JLmJt1N5VUJ4AAC7Cly4/CJw5UsBSQghGhopIAkhhBBCCHEabOvGYylK499ll/Hkxe24rntTb0fyuoQwfwDS88rQIc3QMgJJCCEaHCkgCSGEEEIIcYq0w0bxrP+wyRVP6wuv5a5+LbwdqU4I9jMT6mcmLbccQpq6m2gLIYRoUKSAJIQQQgghxCn67ft3CLftY12Le3hkaGtvx6lTEsL9Sc8tw9AoHkNxJric3o4khBCiFkkBSQghhBBCiFPw6/o9tNv5MRnW1lx/490opbwdqU6JD/cnLbcMFdIU5XJASZa3IwkhhKhFUkASQgghhBDiJArLbayb8i5xhhyiLv0XBqO8jD5aQpg/B4orqQqIdW8okD5IQgjRkMhvPiGEEEIIIU7i1amrucM1gcKIrvi0u8jbceqkhAh3I+29RLo3SB8kIYRoUKSAJIQQQgghxAks2JFD+MbPiFBFBIz8D8jUtWOKr16JLbUyBI0CWYlNCCEaFJO3AwghhBBCCFFXlVU5eHXSQiaaf6G8xcX4Nevh7Uh1Vny4u4C0q8CODmiMKz8Do5czCSGEqD1SQBJCCCGEEOI43vhtO1eVjcfHbIdh//J2nDotwGoiMtBKem4ZOqSpjEASQogGRqawCSGEEEIIcQyrMwqYu2Q5N5rmYEu6AUNkK29HqvMOrcRGSDPpgSSEEA2MFJCEEEIIIUSt0lp7O8JZq3I4eWLSBp72/RFlMmMd9JS3I9ULCWH+pOeVYQhtiqFkHzjt3o4khBCilkgB6TynXU4K/ngPvfN3b0cRQgghREPgclI5/20oyfZ2krPywR+7sOZsYKhrMfZu96GCor0dqV5IiPAnt9RGZUAcSrugeJ+3IwkhhKglUkA6j9krSigbewOh859BL3zT23GEEEII0QC4ds3Dd97zsOlHb0c5Y9sOFPPhvJ28HvITTp9G+Fz4sLcj1RuHVmLbryLcG2QamxBCNBhSQDpPVeZm4PxsGP7ps3AGNIHi/d6OJIQQQogGwLF+ovsvRfVz5InD6eLxSRsZYt1C24o1OC54FHyCvB2r3kioXolttz3cvaFAGmkLIURDIQWk81DpruUYPx+EuTiD0lHjMCaNRpXshwbQr0AIIYQQXmSvxLTjFwBchXu9HObMvD5rOxv25vOi/0TsQU2x9rzD25HqlWZhfigF28qC0MqAIz/d25GEEELUEikgnWeKVnyP33eXoE0+VN0yi8COF0NQDMppg7Jcb8cTQgghRD3m2vkbBlsJ2hqILqp/BaSZm7L4eMFuXkncTljJdvSAZ8Bk9XasesXHbKRJsC+78itxBcXizNnp7UhCCCFqiRSQzhMup5P8X54jeMY9VEYk47p9Dn6xHdw7g2PcX6XJoRBCCCHOgmP9RJy+YdD2UlQ9e12xK6eURyduoGcTM1cUfIUtogOW5Ku8Hateig/3Iy2vHFdsD0wZC8Hl8nYkIYQQtUAKSOcBp9PF3P/eQKNVb1Pc5most07FJyTqzwOCmri/Sh8kIYQQQpypqhJMqb/hbHsZKjQBQ9lBsFd6O9UpKatycM/Y1QQbKvnY+Armsv0Yhr8CBnmpfCYSwv1JyymFFoMwVubj2r/e25GEEELUAvmteB6YP/YFBpf/yoeOS1ib8m9MVt8jDwiKdX+tZ58UCiGEEKLucG75BYOzEnPy1RBcf15baK15fNIGsnJymRzyNkG56ygZ+Qmm5n29Ha3eig/zp7jSQWlsPwBsO373ciIhhBC1QQpIDdyWhT9xYdrbrPLtw+eWmxi34hj9CPwj0AZTvXiRJ4QQQoi6yblhIo7AGFRcjz8LSEWZ3g11Cr5cnM6cDWn8EvYeEYXrKL74fwR1Ge3tWPVazUpsFX7YIjqgds3xciIhhBC1QQpIDVjBni3Ezfkbu1RTWtz1LaO7NWPOtoNkFVUceaDBgA6MRksBSQghhBBnoiwPc8Z8dPtR7mlfh/or1vEC0qr0fN6csY6JQe/SrGw9RRe9T3C3a70dq947VEBKzy3D1XwQlqxVUFns5VRCCCHOlhSQGihHWQFVY6/Cpo0UX/YNoaGNuL57U1xaM/5Yo5CCYtCFUkASQgghxOlzbp6Mcjnc09cAgup+AelgSSUPf7uUL3zepL1tPUXD3iWkxw3ejtUgxDXyw2hQpOWWYW49GOVyYN8139uxhBBCnCUpIDVA2mnnwBfX08iWxYx2r9O1UwoATcP86JcYwfiVe7A7j1wNQwXFSBNtIYQQQpyy71fsIfVgCQCuDT/iaJQIjTu6d5qsuPwj0UXH+NCqDii3OXhw7DJetr1KN9dGCoe+TUjPm7wdq8EwGw3EhvqSlleGsWlPXGZ/nDtmezuWEEKIsyQFpAYoe9LjxOYt4aOA+7h29DVH7LuxZzOyi6uYs/XgEdtVcBNUyX7Q+lxGFUIIIUQ99NvmAzz500b+PmE9uigTU+YydIcrQamaY3RwLK7CuldAKqqwM+bTRdyd9Rx9DespGPRfQnuP8XasBich3J/03DIwWbDH9cGY9oe3IwkhhDhLUkBqYIoWf0HjLZ8zVg/n8tuewmw88kc8oHUE0cE+jFueceSJQbEoZxWU553DtEIIIYSob8qqHDw/dTO+ZiPrM4tInfsNCv3n9LVqKjiuzk1hyyut4vqPl3DDgdcYYFxH/oBXadT3dm/HapDiw/xJyy1Daw0tBmIuzkDn7fJ2LCGEEGdBCkgNSeZq/Gc/xkJnB/xHvkLTML+/HGIyGriue1MW7swlLbfszx1BTdxfpZG2EEIIIU7g3Tk72V9UyedjuhId7INh8yTsUSkQ1uKI4wwhcRiK99WZ0c1ZRRVc9eESrsn/H5cZF1PQ60lC+93t7VgNVkK4P+U2JzklVVhaDwHAtv13L6cSQghxNqSA1IDkzHmHEpcPv7R+iSu6Njvucdd2i8NoUHx3+CikQ80upQ+SEEIIIY5j24FiPl+UxjVd4+jdIpxHuxhp4UglM+bivx4cHItyVEB5/rkPepSMvDJGf7iUS0rGc7NhJgVJdxA0+B+ow6bcidp1aCW2tNwyVFgL7EFN0alzvJxKCCHE2ZACUgPhcjoxp//BMmNnnh7d54QviCKDfBjaLoqJqzOptDvdG+vJcrtCCCGE8A6XS/PM5E0E+ph4YngbAC5mMS4Ub2V1+OsJwbHur8XefW2xI7uE0R8tZUjlTP7PMJ7Cllfgd8krGI3yMtiTDi8goRSOhAFY9i4Gh83LyYQQQpwp+c3ZQPwx73dCdDGRnS4myMd80uNv7NmMwnI7MzZmuTf4R6ANJhmBJIQQQohjmrh6L6syCnjq4raE+ltAa8xbf2JfUCempsH6vYVHnnCogOTFD6c2ZBZy1UdL6edcxnN8SkncAIxX/A+r+eSvlcTZaRLii8VoIC3P3TLBmDgYg70Me/oyLycTQghxpqSA1ACU2xzsWDIFgE79rzylc3q3CKN5uD/fLquexmYwogMao6UHkhBCCCGOkl9m4+Vft9E9oRGju1QXhg5swFSQSljP6wn2NfP+H6lHnhQc5/56jgpILpem0u6kpNJOfpmNqev3cc3Hy+hl3MprvENFZApVV3xBoP9fe0SK2mc0KNpEBzJ/ew5aaywt+6MNJhw7pQ+SEELUV1JAagA+WbCbLvY1FId2wBAYeUrnKKW4vkdT1uwpZMv+YvfGoBhcRVJAEkIIIcSRXp6xldJKBy9d3qFmmnzlmglogwm/lCu5tU88v2/JZmtW8Z8n+YWhTT5QtNej2VwuzZb9xWzeX8zO7FLSc8sZtyyDx39YxRD/VN5Xr2EPakrh5WMJb9TIo1nEkW7s0YxtB0pYnJoHPkHYGnfBsHuut2MJIYQ4Q1JAqucOFFXy3fyNdDHsJKD9sNM6d3SXWKwmA+MONdMOjkHJFDYhhBBCHGb57jwmrs7kzn7NSYwKpLTSTtayHzFt/A5HfH/wa8SY3vEEWE18cPgoJKVwBcXgKvTsCKSynDSCN31D4xX/IW7u3wj9fjjXLBjMVsvNvFv5NC5LEAcu/Y7o6BiP5hB/dVmnJoQHWPl04W4AdItBWHM2oUuyvZxMCCHEmZACUj33+qztdNcbMeLCkDjktM4N8bMwMqkJU9buo7TKgSGoCapkf51ZblcIIYQQ3mVzuHhmyiZiQ32584Lm7N84D/XFMKJn3o7TGoph8LOA+zXFTb2aMX1jFrtySv+8QHAs2sMjkCzTHyZmydOEbfoc+97VpBfDFv8e7O/0f+zt918yrpxGTLNEWXHNC6wmI2N6N2P+jhy2HyjB1GowAFU7ZDU2IYSoj6SAVI9tzCxi0ppMbm+8C5c1CGK7nfY1buzZlDKbk8lr91Uvt1tZJ5bbFUIIIYT3fbpwNzsPlvJUdyPGiTfRZNJlWEr2kH3hK1TdvRhjk+SaY2+/IAGrycCH83bVbFPBcShP9kByVGHet4ycNjdxa5NpdCt5gwntPiD0uk/I7/p/VLS/htjYBMyy4prX3NCjGT5mA58t3I0pphNOn0boVJnGJoQQ9ZH8Nq2ntNa8OH0LYX5mOlauxBV/IRhNp32dlLgQEiMD+G3zAQhq4t4ojbSFEEKI85rWmk8W7OLrWcv4PGwcwxdcQcD+hRzs+ijFd64gsv89BPn5HnFOeICV67o3ZfLafezNLwfAEByLKs322NLtzr0rMTir+Cwrnvmp+Tw8KJH/XNGBdk2C6BATTKuoQHwtRo/cW5yaUH8LV3WJ4+d1+zlYZsPW7ELM6fPA5fJ2NCGEEKdJCkj11KzN2axIy+f5XkZMpVkYW53e9LVDlFK0axLE7pwyCKruDSB9kIQQQojzUoXNyf6DuUz86m0Sf7+VpT4PMLB8FvltbyLvtuWEXfwMYY0aHXc62F39mmNUio/mV49CCo5FoaHEM68tKnbMw4ViYk5T3rw6mYeHtCLAxywjjuqY2y9IwO5y8c2SDFTLQZgqcrBnbfR2LCGEEKdJfrvWQzaHi5d/3UpiZAAX+24CQLUcdMbXiw/zZ39RBZV+jd0bis/NcrtCCCGEqBsOFpWxd/WvVEy8m0YfdeTqjOdJsuwnN+kesm5aSOCot4iMjsNoOHEfoehgX67sEsvEVZkcKKqE4Fj3Dg9MY3O5NJlrf2OLqxkvXdeXUZ1ja/0eonbEh/sztF0U3y7PwNW8PwD27b97N5QQQojTJgWkeuibpelk5JXz9Ii26NQ5OMPb/PkC7QwkhPujNeytCkAro4xAEkIIIc4jZWt/JPTjzsRNuxbf1OlMtXXjg6ZvYX9wPaGXvkST5u2wmE79JeNd/Zpjc7qYsTELguPcGz1QQHpz5gYSKrZgi+vN8I7RtX59Ubvu7NucwnI7P+5wYgtrh2G39EESQoj6RgpI9UxBmY135+zkwlYR9E/wx7h3KbQcfFbXjA/3ByAtvxId2BhXkfRAEkIIIc4LVaX4zPw7dmsI74Q+QaeKD8js9wb33XorjYP9T6twdEh8mB8hfmZ2HiyB4Orp8bW8Etv4FXtYvWgWVmWn4wWX1Oq1hWd0aRZKSlwIny9Kw54wAMv+FZSWFHo7lhBCiNPg8QKSUuoipdR2pVSqUuqJ4xzTXym1Tim1WSk139OZ6rOPF+ympMrBUxe3hfRFKKcNY+LZFZASwtwFpPQ8dx8kLQUkIYQQ4rxQteJLjFWFvKTu4q2sJJ66rDOPDG11VkveK6VoFRnIjuxSMPvi8gvHVVh7I5AW7szh6SmbuCosDa0MmBP61Nq1hecopbirX3My8srZYO2CwWWnYPNcHE5ppi2EEPWFRwtISikj8AEwHGgHXKeUanfUMSHA/4BLtdbtgas8mak+Kyy3MXZpOiOTmtC6cSDOnbPRJl9o2uusrhvsZybUz0xabjkExaBkFTYhhBCi4XNUYVj6HhvNHRl/IJq3r0nh5l7xtXLpxKgAdhwoQWuNDopBF9bOCKQd2SXc9+0aEiMDuChgF/aIjuATXCvXFp43rH1j4hr58s7OMJzWEMJX/pfMnAJvxxJCCHGKPD0CqTuQqrXerbW2AeOBy4465nrgJ631HgCt9UEPZ6q3vlicTpnNyd8GtHBvSJ2Ns1lfMPuc9bXjw/1Jzy3DEByDKskCrc/6mkIIIYSou6pWfYu5PJtXy0by5tXJXN4pptau3SoqkJIqBweKK919kGphgY6DJZXc+uVKfC1GvryhPb7Za3DF962FtOJcMRoUt/VJYNmeMtZ1+Q++eZsInPcsB0sqvR1NCCHEKfB0ASkGOPwjp8zqbYdrBYQqpeYppVYrpW4+1oWUUncppVYppVbl5OR4KG7dVVxp56vFaQxrH0WbxkGQvxtjwW6Mrc5u+tohCWH+NVPYlKMCKuTTICGEEKLBcjoo/+O/rHM1p9uAUVyWUnvFI3AXkAB2ZJdiCInFUJR5Vh9OVdic3PH1KvLLbHx+SzciCtejXHZMLfrVVmRxjlzdNY4gHxMfZbUmJ+kewrZ9S9WaHyircng7mhBCiJPwdAHpWBPoj371YAK6ACOAYcA/lVKt/nKS1p9orbtqrbtGRETUftI6buzSDIorHdw/ING9IXUOAOosG2gfEh/uT1ZRJVV+jd0bZBqbEEII0WCtnvE5oVX7WBF7Kw8OTqz167eKCgBgZ3YJKjgOZS+DysIzvt6H83excV8R713XiY6xwTh2LUArI6b43rWUWJwr/lYTN/Rsxpxt2aR2+D/KGnenycInyN69HqdLRsALIURd5ukCUiYQd9j3scDRa8RnAjO11mVa61xgAZDs4Vz1SlmVg88W7mZA6wg6xrrn+Tt2zsYZHA+NmtfKPQ6txJZFmHtD8dE/JiGEEEI0BBv3FhC46l0yjE25ecy9Z9Uw+3jCAqyE+VvYkV0CwbHujWexSMfKtHw6xgQzuF0UACpjIbaoZLAG1kZccY6N6R2P0aD4eeNBsob8D5fJjyaz7mbfwVxvRxNCCHECni4grQQSlVIJSikLcC0w9ahjfgb6KqVMSik/oAew1cO56pXvlu+hoNzO/QOrPyF0VGFIXwCJg6CWXvQdWoktzVbdiLKo9lZLEUIIIUTdcKCokq+/+pBWKpPAwY/hYzF77F6JUQHuldiCqz9LPMPXFi6XZtO+IpKqP0SjqhRL9jp0swtqKak416KCfLihRzMmrs7E5htJ5sB3sRamEjj7MXKlH5IQQtRZHi0gaa0dwP3ALNxFoQla681KqXuUUvdUH7MVmAlsAFYAn2mtN3kyV31SaXfy8YLd9GkZRpdmoe6Ne5ZhsJdjTBxSa/eJD/cDYHupH1oZZQSSEEII0cCU2xzc/tUKbnZMosI/lkbdr/fo/VpFBZJ6sBQdXN1fqejMVmJLyyujpMpBUkwIAI6MpSiXA1OLC2spqfCG+we2xMdk4L25qYS0H8LBLo8QmjqZquVfUGFzejueEEKIYzB5+gZa6xnAjKO2fXTU968Dr3s6S73htFO45CvskR35OTuC3NIq3h/YqWa3a+dslMGMqsWVRwJ9zIQHWEjLq0QHNEYX7/P48DQhhBBCnBsul+bh8esIzV5KkiUVW983wejZl4GJUYGUVjnY7wikidECRZnHbI55MhsziwBIiquexr9rPkaDCVN8r1pMK8618AArd/VrwVuzd3Bnv+ZEXfB3SrJXEb30efZFpxDXXvpbHS6npAqjQWEyKswGAyajwmRQtTYF1enS2J0uquxODI4yAoNCa+W6QoiGxeMFJHH6HOvGEzLnUQAuIpLQkAtIdIRis/fAYjaiU2ej43pitAbU6n3jw/xJyytDBzU5qz4FQgghhKhb/jcvld+2ZLMw6ncc9igsXW7w+D1bRbpfp+w4WEbjwCZQuBfjGVxnfWYhPmYDLSPc1zOkL8IW1Qmrxb8W0wpvuKNvAmOXpfPKr9sYf2cPMoa+j/WHoUTOvJuSmD8IDAn3dsQ6oXL19/gv+xinNQinNYRyawhOSzAOawj4BuPbog+hcW1P65o5+9IgexMUpGMoTMdclIGlJIPA4j0YnJVw40/QcpBnHpAQot6SAlIdpFd8hi00kQXh12LaNpUrqqZi+O4nbAGxFCUMIThnC3rwC7V+3/hwfxbsyEG1jEFnb6z16wshhBDi3NuTV857c1O5r2U+cZkrqRr4Aiazj8fv2yrK3eB6Z3YJ/YJiz7gH0sbMIjo0CcZkNEBlMeaDG6jq+VBtRhVe4m818dCgRP7582bm78jlgsRY9g3+kGY/X0H5grfg0pe8HdH7tMa44BWM9nLAhaU4A2NVIUZbMUq7AHAu9qfgsq8I7TD0mJeotDvZvL+IdXuLWLe3kEa7p/C07T0syj1V0GXyxRbYlKqgeMpi+xGyYyJ63feYpIAkhDiKFJDqGNfeVZiz11E19FX+tagVoVE9SbkuEefWGVi2TyVw87cAqFbH/gVxNhLC/flxdSbOwCaYUn8DrWutSbcQQgghvONf0zZjNCjuMUzBaQ3B2uP2c3LfUH8L4QFWdmSXokJiIW3haV/D4XSxaX8R13VvCoA9fQlm7cTUol9txxVecm33pny2KI1XZ26jX6u+RLTrS9HGkQRt/JKyfg/jHxLh7Yhe5cxYirkoneKL3qOq/TVorXFqjcvlQlcWYyzJIvTXewj+6QYKKv9HaNerOFhcyYr0fFam5bNmTyFbs4pxuDQAD/vN4mHX12z3Teapostp2bojj4/uh5/VRIDRgNGgcEyuwLB1KjiqwGT18jMghKhLpM1NHWNb9gkusz8zDf3Zm1/BgwMTCQmLIuyCWwm47SfKH9xGxe3zIPL0hqmeivjqldjyDOEoezlUFNT6PYQQQghx7szeks2cbQd5uouLoD2zcXS7G2p5CvyJtIoKYGd2CYaQOFRpFjgdp3V+ak4plXYXybEhADh3LcBlsGBq2sMDaYU3mI0GHh3amm0HSvh53T78rSacff+O0V6GffH73o7ndfZVY3GZ/QnqfCURgVYig3yIDvYlJtSf2OhoGid2Yu/lkzjg34bgX+7ilX8/Qff/zOH+79YycXUmgT4m7urXnI9uSGFZlzk87Pqa0hYjaPnILAYMuYQfttl4ftoWTAaF0eD+4NjU/nIMthLYPd/Lj14IUdfICKS6pCwPy7Yp2DpezzuLDtA2OohBbSNrdiulCAgJBw/NBz+0Ets+VyMag3slNr9GHrmXEEIIITyrwubk+WmbGR28nau3fYDTEoS19z3nNEOrqEAmrNqLq2csBu2CkiwIiTvl8zfsdTfQ7hjrbqBtyFiIPbozVoufR/IK7xjRMZpPFuzmv7/t4OKO0TSKT6E44WIC139BRd+H8A06T1+P2sqwbP+ZXRGDufvdlVQ5XNid7j8Op8bmdOFwaZwujS8P84nPezzh+JBeiRA0+B90jA3BZDRgr6qg8se7Cdz5M8VJtxFw6esYTCbuH5iI0WDg1ZnbcGrN29ekYDYaoPmFuKxBuDZNxuSBWQ9CiPpLCkh1SOWqr/FxVjHZNIzduWV8eEPnWltZ4VQcGoGUZg+hC7gLSI07nLP7CyGEEKL2vPvbZm4u+Yy7TNOpDEnENuoz/M/xB0OJUQGU25zkGSOIAHcfpNMpIO0rJNBqIiHMHyoKMedsoqrXIx7LK7zDYFA8MbwNN3y2nG+XZXBH3+a4+v4d4zczqFr8P3yHP+PtiF5h2/gzFnsZz+9NwRpuJKVpCBajAbPRvQqbpfpr42BfeiQ0olnwCIon3c2FOz+kcI0DFfsqlaUFOL+/gcB9iyns/TTBgx9FGf6chHJv/xaYDIqXZmzF5dK8e10nzCYrrsSLMGyfAU47GM1efBaEEHWJFJDqCpcT4+ovyQvrytOLXVyS3ISLOjQ+pxH8rSYiA61sLbO4NxSfWbNLIYQQQniPy6XZuGEVI1bcSQdTGgXtbsRy8cv4BwSd8yyHGmnvsoX8WUA6DRsyi+gQE4zBoLCnLcasXZhbXFj7QYXX9WkZTt/EcN7/I5Wru8URnNCFkvghBKz7hMq+f8Mn4PxbVt61bhzZxmjWutoyZ0xXooN9T3qO6dovKJzSiJD1n1JcnoM5fyd++dspHPYuIb1uOeY5d/ZrjsGgePGXLfxt3Brev74zlg5XwKYJkLZAVmMTQtSQHkh1hG3775iL9/Bafj+aRwTwyqiO53T00SHx4f5sLPRBK4N7BJIQQggh6o2KKgfZCz6j1c8jiVU5pA74mMAr3/NK8QigVaS7gLSptPr+RXtP+dwqh5OtWcUkxbmnrzl3LcBltGJs2r3Wc4q64fGL2lBYbufj+btQSuG84DFMVUVULvnE29HOOVd+Bj57F/FtZR8eGtTqlIpHAEajkaDL/0tBj8cI2jkFS1EaRVeMPW7x6JDbL0jg+Uva8duWbO4btxpbfH9cZn8cm36ujYcjhGggpIBURziWfUK+CmWmswsf3dgZf6t3BoclhPmzO78SHdAYV9E+r2QQQgghxBmwleOYeCvR8x5lnaM5k7qPp+WF12Iyeu/lXrCfmchAK1vynLh8QnGdxgik7QdKsDs1STEhABgyFmGP7gJmHw+lFd7WISaYS5Ob8PmiNLKLKwlu0Z3SuAEErPkIW3mxt+OdU2Ur3Ssvrwm9iNsuSDitcw1GAyEXPU3upWMpvXEmIUkXn9J5Y/ok8OJl7Zm99SAfL96Hq+UwDNt/Oe3m90KIhksKSHWAI3c3PhlzGWsfwL+v7EzL6k/rvCE+3J/cUhuOgGi0FJCEEEKIekOv/ZbA1Kl8aLiO50Nf4paL+ng7EgCtGweyM7sUHRSLLjz1EUgbMt0NtJNig6E8H3PuZnSzvp6KKeqIR4e2xuWC/8zYilIKV9/HMFXmU7H0U29HO3e0xr76WxY72/PAqIHuxtanSSlFeOdLCY5PPq3zbuoVz7D2UXw4fxdlLUdgqMiDPUtO+/5CiIZJCkh1wI7p7+DSCmfKLVyS3MSrWRKqV2Irs0ZBsRSQhBBCiPrCuWc5RaZwXi2/hBevSPHqyKPDJUYGknqwFB0cc1o9kDZkFhLqZyY21Bfb7kUoNKaW/TyYVNQFTcP8uKd/C35et59FO3MJTOxNWUxf/FZ9iL2y1Nvxzok962bTyLafXTGX0rN52Dm//xPD22J3unhjd1NcJl8cm6ac8wxCiLqpbryyOI/t2neQJrt/ZLm1J/df7v0XRfHh7pXY8o0RGEr2g9ZeTiSEEEKIU+HYs5JltgRGdY6he0LdWfa8VVQAFXYnZT7RqNNYoGNDZhFJsSEopXDsmo/L5IMprpsHk4q64r7+LWgW5sezP2/C5nTh7PcY5oocKpZ+4e1oHqe1JvW3TyjTPlx09Z1eyZAQ7s/NveL5dk0ORTH9UdumgcvllSxCiLpFCkheVFblYOLY9wlRpbS4+GEsJu//OJo1cheQ9rtCUfZyqCz0biAhhBBCnJSjJAefkgy2GFrz5PC23o5zhMTqldgOqggMVcVQefJeNhU2JzsPlrqnrwGm9HnYYnqByerRrKJu8DEbeeGyDuzOLePj+bsJbNWP8uie+K58D6etwtvxPGrm2l10L19AeuOhRDY696OPDnlgYEuCfMx8W5KCsewg7F3utSxCiLrD+xWL85TWmid/2sjw8mkUByTQOHmotyMB4GsxEh3sw26b+wWbrMQmhBBC1H0zZv4CQI++Q4gIrFtFlsSoAADSHNXLsJ/CFPktWUU4XZqk2BB0USaWglR0Qn/PhRR1zoWtIhiRFM37f6SSkVeOo+8/MJcfpHTZl96O5jGlVQ6WTf+KAFVJ8yHeGX10SIifhYcGJfLR/pY4DRYcmyZ7NY8Qom6QApKXpOWWkbVlMcmG3Zh63AlKeTtSjfgwf7aWVy+3KwUkIYQQok7bmFlExoYFuDDQ+4LB3o7zF0E+ZqKDfdhSVv3a4hT6IK3f+2cD7aodcwEwJw7wWEZRNz07sh0Wo4Fnp24moHV/KqK64rv8XYpL628vJIfz+FPB3p2zk6G2uZT5x+HbwvsN42/s2YzI8HCWqk6orTKNTQghBSSvaR4RwCdt1+E0+eHT5QZvxzlCfLg/6wrdzbRPp9mlEEIIIc6tSruT/5uwjm6mXTjC2oA1wNuRjikxKpA1Re5p8hSdfCW2jfuKiAqyEhXkg971Bw7fcEzRHT2cUtQ1UUE+/H1oKxbsyOHXzQdx9HsCS1kW9l+fxuaon8WM3bllbD9QwoGiSirtzprt2w4UM2vRCvoYN6NSrq8THy5bTAaeGN6GSRWdMZbuh/1rvB1JHE9FIVW7F3s7hTgPSAHJW8rzCdk9jcq2ozH4hXg7zRESwv3YWRGAVgYZgSSEEELUYa/N3M6ug8V0NqVhbNrV23GOq1VkACtzLWhlRBeewgikzEI6xoSAy4U5YwH2Zv3AIC9bz0c39WxG+yZB/GvaZnTzC8lPupOwzV+Rv/w7dD1b7KU8YzXNxvUlYu6jlG+fy86sInZkl7Atq5g7v17FtdZFAFjr0IfLQ9tFURg3CDtGytdN8nYccRy2mU9j+fYycFR5O4po4OQ3sbcoA1U9H8bU8y5vJ/mL+DB/nBix+UTgKjp5nwIhhBBCnHtLUnP5YnEaD3cyYLEXY6zDK5S1igqkwgF2/2hchScegVRSaWd3ThnJscE4D2zCVJGLaiHT185XJqOBl67oSE5pFW/N3ol52AuURXUl4o/HOLh7vbfjnRa9+D3MZVkEp02j+YzraDO+B8Hz/smH437gYHEFN/suoSL2AoyNmnk7ag2lFH+/tDsLnR2p2jBZVmiui6pKMG35CeWyy4f/wuOkgOQtviEY+j+ONabuDcdOCHcPMS+xRqFlCpsQQghR5xRV2Hl04nqah/tzb8tC98aYujsC6VAj7RJr1Emnx2/c5+5/1DE2GFt1/yNrq0GeDSjqtJS4EG7o0ZSvl6STUWin/LLPcZn8CJ56O4UF+d6Od0rsxdn4pv5Cfpvr2HrDGjIG/o+yiE402vot75Q+yhr/h/Avz0QnX+/tqH/RISaY7NhhhNqyOLB92XGPq28jwhoK58afMNjL3d9IAUl4mBSQvMhiqptPf1wjP5SCPEO4/E9ICCGEqIP+NXUz2SVVvHlNCsb9q3BZAiCitbdjHVdiVCAAOYYIKD5JASnzUAPtEFTaPGyhiajgGI9nFHXbY8Pa0MjfwtNTNtGocTNyL/oQa/Fu1LQHqLQ5vB3vpKpWjsXgshPY504SosMxJY3ipYCn6Vz5IVOaPY0rog2Vjdrgm3SZt6Me04DLbsGhDayf9Q3gbgZeXGknO7+IfZsXkfX7u+TMeQ+H3eblpOcf15pvcFkPraAts0eEZ5m8HUDUPT5mI02CfdmvG9GqdJl7qGodaOQnhBBCnC8q7U58zMZj7vt1YxY/rd3Hg4MSSYkLwfnLKlzRnTAYjn18XRBgNRET4sseZyNal+wHlxOOk3dDZhGxob40srhw7VtKZccbsZzjvKLuCfY189TFbXlkwnp+2bCfER0Hk5P1DyKXv8LB+e9jHvQQRkMdfb3qcmFZ/zUVTXri26Q9VmDq+v1MXJ3JVV1a0WnAxWRU3U2ov4UYq6+30x5T48YxpAV3pU3ebMZ9+CKDg/cRlLeRgILtGFz2muNKslbge83nmCxWL6Y9jxzcinn/Khz9nsSw4GUpIAmPq5tDYITXJYT7k1YVjLKXQ2WRt+MIIYQQ54/SHIxvt8O5edpfduWWVvHU5I10jAnmgYEtwV6BIWcLhti6O33tkMSoALZVhKBcDnTJgeMet2FfIcmxIdjTl2FwVGJqOfAcphR12eUpMSRGBvDe3FQMShE48FGKmw0hYsmL5GxZ4O14x1W2fTaW4j04O98GwIIdOTwzZRMXtorg5VEdaRbuT9voICID63bRJabPdTQzHOSG7Dfw2/EzBdqf3I53sn/ox+y/dSV5vf9J4K5pVH5/Mw5bpbfjnhfsq75GG8yYetyBtgbL7BHhcVJAEscUH+7HlnL3cHP5H5EQQghx7lQt+xRz2QGcKz/7y75Xf91GaZWDN69Oxmw0QNZ6lMuBoQ430D6kVVQgG0vcry2KM7cc85j8Mht78yvoGBuMI3UO2mDC0rLfuYwp6jCDQfHAoERSD5by66YD+FrNOC/9EFtAE8Jm3ElRTh0dfbHyCxw+YfglXca2A8XcN24NiZEBvH99J0xG99sxo0G5/5uuwyxdbybvsrEsGPYrlweMo/f+h3ix4iqsSVfQpFkrGg35OwX9XiQgbSaV427AUVXu7cgNm6MKw8YfcCQOB/9wdFATXKewyqUQZ6Nu/19KeE18mD+7q0Lc30gBSQghhDg3HDaMa75EKyPmjAVQerBm15o9BUxcncltFyTU9BTSmSvdO+twA+1DWkUFssTRCrslGMPKT4/ZcPdQA+2k2GAMafOxNe4M1sBzHVXUYSM6RtM8wp/35u7E5dKEhkVQMPJzjFWFWH6+q86tEmbLz8Qv7TcqO1xHRrGT275cib/VyJe3diPQx+zteKfHaCKs06X069WbXx/uz8ODE5m5+QCD35zPT2vchYvQgQ9SMPBVAjJmU/XttTgqy7wcuuFybZuBsSIfU9db3BuCY+R9m/A4KSCJY0oI9+eAbgSAvWCPl9MIIYQQ5wf7xp8wlR/ENfgFlHbh2PAjAC6X5vmpm4kMtPLAwMSa4517V+EMjIXAKG9FPmWtogIow5dtTa8jMH0WxRl/XYJ9w95CADo2cmI5uAFXwoBznFLUdUaD4oGBLdl2oITft2YDEJnYjbxeT+ObuQhHxlIvJzySbeXXKO1kumUYw99ZQJnNyee3dCM6uG72OjpVFpOBhwe3YsaDfUkI9+eRCeu54+tV2J0uQvvdQ8GQN/HbuwDbN6OxV5R4O26D5Fz1Fc7AGFQL9/8nDUEx0gNJeJwUkMQxxYf7c5AQXBgoz0n3dhwhhBCi4dMavexD7KEtMPa6D3tEB/SGiQBMWLWXDZlFPHVxWwKsf66BojJXoetB/yOAlpEBACwIvRKn2R+16M2/jELasK+I5hH+WPYsQqExt5L+R+KvLklqQnyYH+/O2YnWGoNBEdTrFlxGH+xrf/B2vBraace0/hvWWLrw+NwSeiSEMevhfnSICfZ2tFqTGBXIxHt689TFbZiz7SAfztsFQGif2ym+6H18s5Zh/+ZKnBXFXk7awBTuwZQ+H51yw58LEgTHYijPAUeVd7OJBk0KSOKY4kL9cCkT+/3b4rN9ClU2+R+REKJ+qywroiRjg7djCHFcrj0rsGSvQ3e/BwwG6Dga84E1lOzbwWuzttMtPpTLUpr8eUJJNsaSTIxx9aOA5GcxEdfIl61FJko63EzgrmkU79t2xDEbMt0NtF2pc3FaAjHVk+KYOLdMRgP3DWjJ5v3FzN3mnuZp9Q/B1nIYlu0/g9N+kit4ntaaP6aNw6f8AF9WDuDlUR356tZuNA728Xa0Wmc0KO7q14JLkpvw3tydbDvgLhYF97yR4os/xPfAKlw/3OTllPVfbmkVXy9Jx+504Vg9FgBTl8Oe16Dq3w8yjU14kBSQxDFZTAZiQ/34JeBqrMUZlK750duRhBDilFTanX/ZVlGYg/7iYgK+6i8vrESdZV/yP5yWICydrwfAnHw1GsXyaR9TWG7j+Uvbo9Rhy5TvWwWAiq37DbQPaRUZyM7sUkx97kcbzLDorZp92cWVZBdX0bFJEKb0+djj+oDRdIKrifPZFZ1iiA31rRmFBGBIugZjZQH2Hb97NdvB4kru+HoVhtVfkKfCeOyBB7mue9Mj//ttgP51aXuCfMw8NnEDDqcLgOBu11Le+zHM6fOgcK93A9ZjWmsembCe56ZuZsaGTNS6cTjiL4SQpn8eFBTj/iqvc4QHSQFJHFd8uD+/2DpRGdIS/+XvYLM7vB1JCCGOS2vNazO30f65WTwzZSOF5TYAyguzYeylWAu2o7QT17YZXk4qxDEU7cOyYxqO5BvA6p7qRXAMxZHdid8/g+u7x9G+yZHTXlx7V6ENJohO9kLgM5MYFcju3FKsoU0oansdgdsnMXvpKj5buJtnf94EQNegIswle9HNpf+ROD6z0cDfBrRkfWYR83fkAGBpPQSnNQTnOu9NY8svszH8nYWkp27mQuMGLN3H0DSi4UxZO5FG/hZeuKwDG/cV8cnC3TXb/TtdBYBr23RvRav3Jq7KZMGOHKwmA2vnTcFYsg9jl1uOPKimgCR9kITnSAFJHFdCmB/p+ZWUd38Qn4LtlGz4xduRhBDimOxOF49O3MD/5u0iJS6E75bvYeB/5zN+3hrUN5diLdxF8eXf4ghtgXPLNG/HFeIvqpZ9Cmisve+p2aa1Znxld1oa9vN4iu0v57gyV+KKaAfm+tOMt1VUAHan5qK3F3DFuq44XZrM6a/y7+lbWZlewIDWETQvWQGAtdUgL6cVdd2VnWNpEuzz5ygkkwVbm8uw7JoJVd5p3LxwZw55ZTY+brcJlMLSY4xXcnjLiKRohndozNu/7yT1YPXPILwljkatcG2VAtKZyCqq4MXpW+iR0Ignh7ehW/40bJYQDG1HHHlgzRQ2KSAJz5ECkjiu+HB/SqscVLS5AltAHL7L3sJ2jKkhQgjhTWVVDu78ZhWT1mTyyJBW/HhPL6Y/2JfkUBspc29G5e9mY7+PCUm6CNqMwLRnEVQUeju2EH+yV2Ba+xW2FsMgNL5m87QNWXx4sANOZcK6bfKR57icGLLWQj3rEdS7RTgpcSHEh/kztHdXtjceyY2W+Sy8tx1r/jmEL2/tjjF9PvaAGAzhLb0dV9RxFpOBewe0ZM2eQpbsygPAnHINBkclVZumeiXTst35hPpA/J6fKI8fgrVR05Of1MC8cFkH/K1GHvtxA06Xe3qhanMxxr1L5PfvadJa89RPG7E7Xbw2OonR7XwZaljNIr/BYLIeebA1AG0NhiIpIAnPkQKSOK74cH8A9hc7KO36N/xy1lG0ba6XUwkhxJ/ySqu4/tNlLNiRwyujOvLgoESUUsRZSvjQ8RwtTAd52PAkl8+08ORPGylPuAjlcqB3/ubt6ELUsK+fgLGyAFOve2u2lVU5+M/0rcTGxOBIGIRx8yRwuf48KWc7BlspxrjuXkh85hoH+zDlb334fEw3nrq4LXGXPIVR2/Ff+5H7AJcTy95F7t4eDbxfjKgdV3WJJSrIyjtzdgJgatYLe2BszQqG59rytDxuD9uEqTIPut7mlQzeFhFo5flL27N2TyFfLEoDwNh2pPz+PQOT1uzjj+05/GNYG5qF+eO7ZSJm5eT1nO5kF1f+5XgdFINLCkjCg6SAJI4rIcxdQErLLcO3+83YfSPwXfoWdqfrJGcKIYTn7ckr58oPl7A9u4RPburKtd3dn/KW5u7FNPZSLKWZlF45ntf/8QC39Ulgwqq9DJtYjsMvEscWmZIrvM/mcJFfWoVzyYdUNmpLUVRP8sts5JfZeHfOTg4UV/KvS9tj7nQNxtIsdMaiP0+ubqBd30YgHS0opjXFLS4hePNYivMP4shcjbGqCEPLgd6OJuoJH7ORey5swYq0fJbtzgODAUe7K7HumY8uyT6nWQ6WVLI7p4xLbDOxBTbFr+2Qc3r/uuTS5CYMbhvFG79tZ3dOKcR0wekvv39PR3ZxJS9M20y3+FDG9I5Hu1zo1d9QFtGJba5Yxi3f89eTgprIFDbhUVJAEscVG+qLyaDYfqAEXz9/ijvdQ8D+xRTuWOrtaEKI89ymfUWM+nAJhRV2xt3Rk8Htotw7ynKxjL0Uc+l+ikaNJ7T9QAJ9zPxzZDs+vKEzWSU29kUNwLhrNtj/+smdEOdKSaWdoW/N577/vItP/laezb6Azv+eTecXf6fzi7/z8YLdjOoUQ5dmjTC0Ho7L7Id93YSa8517V+KyBkOjFl58FGdPKYWrzyMY7WU4lvwPx84/ALAmSgNtcequ696U8AAr71aPQrJ0uhalXVStP7erCK9Iy6epyqZZyRpsyTehDMZzev+6RCnFf67ogNVk4PFJG3Ch0IkXuX//Oqq8Ha9OczhdlFTaeXTieiodLh7pG8X+FT9RMOF+TPk78O1xKwNbR/Ld8gyqHEe2F1HBsbIKm/AoKSCJ4zIZDQxsE8nEVXsprrRj6XEbDmsw1mUyCkkI4XmVtmOv/DhzUxbXfLwUq8nAj/f0pkuz0Jp9VQvfxVycTtGo7wlt1/+I8/q3jiTQx8Tvzq4Y7GWQtsCT8YU4oQ/n7SI9r5wXoxZSYQom6aI7+Nel7Wv+vDKqIy9e3sF9sMUPR+IIjNum/fnGK3M1riadwVD/X8oFN0umOH4YwRs+h23TsUV0AP9wb8cS9Yh7FFJzluzK44/tBzE2boctvD1q47mdxrZ8dz5DzBsBsCZfeU7vXRdFBvnw7CXtWZlewNdL0zG1u6T69+9Cb0ers7TWpGflMOeX8fROe48/gv5Fzx+7EjvzNkJ2TqK8xcUYkkYzpk88uaU2flmfdcT5KjgGQ3mOFOmEx9T/Vx3Cox4YmEhxpYNvlqQTGNyIoqTbCcr4ncL0dd6OJoRowOwFmagPulO1+tuabQ6ni5dnbOWeb9fQMiqQSff2pmVkwGEnVWBa9w1VzYfR6KjiEbibrQ5sE8kne2NwmQOwb/ZOg1UhMgvK+WxRGne0N9CycCHGbrdyY9823NI7vubPtd2b4m811ZxjSr4aY1Uhrp2zoaoUQ+5WDPV8+tohBoPC0fsRjLZifHLW40yQ0Ufi9N3cK57m4f78a+pmqhxOnB1GY81eiysn9ZxlWLY7j+F+W7AHNcMcUb9HB9aWKzvH0K9VBG/9vgN7swtwmf1wbJVpbMdTuHs18V914vJN93OnaQbBgQEcTHmAzMsnUfDATqw3fAcWfy5oGU7LyAC+WpLuXoHwkJqV2GQUkvAMKSCJE+oYG8zANpF8tiiN0ioH5p734jT5YV7yDg4ZhSSE8ASXC8dP92At2oVx7r/BYSOnpIobP1/Oxwt2c2PPpky4uyeNg32OOM2+zt2I2Nz73uNcGIa2a8zBCsiJ7odh56/gkpUlxbn32sztGBTcF/AHoLD0vOuk5xhaDsDpG4Zj/QTIWofSLgxx3Twf9hwJbtmD0th+AJik/5E4AxaTgecvbU96XjmfLUzDp9PVaBRV6344J/fPK60i7WAhHW0bcEkRtIZSiht7NKW40sGyPWW4mg9CbZ9x5KIAAgC7w4F11qOUuszc5nicBVespPT6Xwi++DliUwYTFhKE0eBeXEApxZje8WzcV8SaPQV/XiQoxv1V+iAJD5ECkjipBwa2pLDczrfLMghsFEFR+5sI3j2Vgswd3o4mhGiAyha+j+/ehVS2GYWpLIvU2Z8x8r2FrNtbyJtXJ/PvyztiNR3VV0JrWP4x9rA2GJv3O+61L2wdgcVoYJGxJ8byXMhc6eFHI8SR1uwpYOr6/TzYM4zgrd9ja30JBMec/ESjGWfbyzGlzkTvcvcJIqaLZ8OeQ0aDorL/8xS1Go25eR9vxxH1VL9WEVzUvjHvzd3Jfh1GVWxvTJt+dP+O8LAVafl0UqlYXeUYWw3y+P3qk36tIvA1G5m56QDGtiMwlmXD/rXejlXnFC8bi9/BtbxYeS3J/UczMLkFjYN98DEfu5fWqM4xBPqY+GJx+p8bawpIMgJJeIYUkMRJdWoaSt/EcD5dsJsKuxN63Y9WJoxL35ZRSEKIWlW1byO+C/5NecIwrFd/TrZ/G4xL38HPBJPv68OozrHHPM+VvgRz7mbocfcJl/4OsJro0zKMTw60QBvMOLZM89RDEeIvtNb8+5ctRARaudk1BYOtBPOFj53y+eaUqzE4KmH5hzhD4htcn6DghE6Uj3gfTFZvRxH12DMj2wLw71+2oJKuxly0G0fmao/fd3laPgPNG9HKiKnFhR6/X33iYzYyoE0EszZn40ochlZGnDKN7QilRXlY5z3PalciJF3DAwMTT3qOn8XEtd3imLnpAFlFFe6Nh6awFWV6MK04n0kBSZyShwYlkldm47vlewiJjKOw9dWE7PiRggMZ3o4mhKjHxi5N57GJ63ls4nqe/GEFOV/fRAl+vGq+j5u+WMnzBcNIUAf4eWA+baODjnsd+9IPcVpDMKdce9J7Dm3fmO0FiqLo3rD1l3PyybQQANM3ZrFmTyH/7BeM37rPqGo3GkN0h1M+X8X1wBEUh7KVQUzD6H90OLPRQFSgz8kPFOIEYkP9+Fv/lvy66QCr/fviMliwr/X8NLZlu/MYYt2MPboL+AR7/H71zbD2jcktrWJtDjjjeqG3zfB2pDpDa82WcY/jay9iZrNHee3qThgMx/8w7HA394pHa823y6rfk1kD0NZgGYEkPEYKSOKUdI1vRO8WYXy8YDc2pwtX7wfd/ReWvI3TJW++hBCnb+yyDP7582b+2J7D4tRcOmx/j1hbGs+r+/g9w0l6XhlJQ27AHtIC3+XvHL/QU7gXy84ZOFJuAovfSe87qG0kSsFqn96YitLh4NbafWBCHEOl3ckrv26jbXQQQ3K+RmkX1sFPn95FlEJ3GA2AsQH1Pzrcqb5pEuJE7uzXnGZhfjwzcy+VCYMxb50MzmOv7FkbCsttZGfvp4V9J7qF9PA6loFtIrEYDczcdABD2xGY8rZB3i5vx6oTxv48gy7ZPzIvcCSPj7m6ps/RqYhr5MfgtlF8t3wPlXZ3X0cdFINLRiAJD/F4AUkpdZFSartSKlUp9cQJjuumlHIqpUZ7OpM4Mw8MTCSnpIrxK/YQGtOKglZXEbr1O/Kzdns7mhCinlm6K49/Td3MwDaRLH9qEHNGwQ2uqZQlj+GtZ/7BkicHsejxgdw7oDVc8DDmnE04d/x2zGtVLfsU0Fh7nbwRMUBkoA+dm4byZV47NArHFhlGLzzvqyXpZBZU8GIfKz4bv6Mq5RZUo4TTvo65683YwtpC4hAPpBSiYfAxG3n+kvbsziljnrU/poocbKl/eOx+K9Ly6a02o9BYpP/RMQX6mOnTMoyZmw+g2lwMgGvbdC+n8r5P5qfSZs2/KDMG0fXW/2Iynv7b8zF94ikotzN1XfWoo6AmMgJJeIxHC0hKKSPwATAcaAdcp5Rqd5zjXgVmeTKPODs9mzeie3wjPpq/G4fLhaPPI4DGuOhNGYUkhDhle/PLuW/cauLD/Xnn2hSoKMA09T5sIS3wG/GfvxxvTrkWR0ATnPP/+9eL2SswrfsGW8uLIKTpKWcY2i6KRQeMVER2Qm+TApLwrNzSKj6Ym8qgNpF02PEe2mjFZ+DjZ3axRs1R9y2BMFkiXIgTGdAmksFtI3lqUzQOcyDlq8dT5fDMypvL0/Lpb9qI0xKMatLZI/doCC7q0JjMggq2VITiiGiPa+v5XUD6anEaW2Z9TnfDdqr6PUNwWNQZXadX8zBaRwXy5ZJ0AFRwrBSQhMd4egRSdyBVa71ba20DxgOXHeO4B4BJwEEP5xFnQSnFA4NacqC4komrMgmNSaSg9TWEbP+Bgn07vR1PCFEPlFY5uOPrVbg0fHZzVwKtJqomP4ipPBc96lOUxf+vJ5ksuHo9iGX/cpxpi4/Y5Vg/EWNlAaZe955WjqHtGwOwKagv5uz1ULj3jB+TECfz9uwdlNudPNu5Cp8dU7H3uA8CIs/4euYz+IRaiPPRsyPbU+4ys9jnQoJ3TiFn5U/YHLW/AMzy3bn0N23C0awvGE21fv2GYnDbKAwKZm06gGozAuO+FVCW5+1YXjF2WQZvTFvFcz7fUxaeTHCf2874WkopruwSw9asYnJLq1DBMRjKc8BRVYuJhXDz9CuQGODwV+WZ1dtqKKVigCuAj050IaXUXUqpVUqpVTk5ObUeVJyaC1qG06lpCB/O24XW4Ozzd1AGjIv+K6OQhBAn5HJpHvlhHTsPlvD+9Z2ID/enfNV3+KVOo/yCx7E2Pf6S5JZut+D0DcOx4LBRSFqjl3+EPbwtxoS+p5UlIdyfVlEBfF+cBIDzPP8UVHjOjuwSvlu+hxt7NKXx6tdw+oRi7fuQt2MJcV5oGubHvRe24P6cy8kLakOT3+/l4OqfsdfiKsLFlXYqD2wjwpWDIVGmr51IWICVbvGNmLn5AMa2I1Dahd7xq7djnXOb9hXx7M+beCVsBiGuQqqGvobFfHaFx3bR7sbt2w+UQFD1220ZhSQ8wNMFpGN1ADu6yvA28LjW+oRjSrXWn2itu2qtu0ZERNRWPnGalFI8OCiRfYUVTF6bSViTBAraXk/IjokUZm7zdjwhRB329uwd/LYlm2dGtKNvYgRVB3di/e0fVEZ3x3/A3098ssUPZ/d7sKbNwbV/PQCu9MWYczZDj7tBnX7j3aHtGjM104+q0Fa4ZDlh4QFaa178ZQv+VhMPt9iPNWM+zgv+Dj7HX1FQCFG77u3fguDQMMbYn6AitA1NZt1F9uppOGqpiLQqPZ8L1EYAzFJAOqmLOjRmR3Ypu0wtcAbGnJd9CF/5dRudrAcYUf4zRW2vJzSxx1lfs3XjQAC2ZhW7eyABFO876+sKcTRPF5AygbjDvo8Fji6FdgXGK6XSgdHA/5RSl3s4lzgL/VtFkBQbzAd/7EJrje7zf2iDCePCN3DJKCQhxDFM35DFu3NTubprLLf2iUfbK9ETxoDBiPGqz8BgPOk1LD3vwmUOwF7dC8mx9COc1lDMydecUaah7aNwujSpjS7EtHcJlOef0XWEOJ7vV+xl4c5cHhvaCv+FL+EIaIKlx53ejiXEecXHbOTfl3dgU76BNyJfoSq0FU1m3Un22hm1Mnp++e58+hs3YAtpDqHNaiFxwzasegr5rC3Z6FbDMab9AbZyL6c6dxbsyGFRag5vBY3DaQnEMPhZ1Bl8CHa0iEAr4QEW9wik4Fj3RhmBJDzA0wWklUCiUipBKWUBrgWmHn6A1jpBax2vtY4HfgTu01pP8XAucRaUUjwwMJE9+eX8sGovjaKaUtD+FoJTf6JgzyZvxxNC1DGb9hXx94nr6NIslBcv74BSivLpT+GTu4mqkR9gbnSKL7h9Q7B3uR3L9qnoXfMw75yBs9ONYPE7o1wdY4JpHOTDz5UpKO3EtX3mGV1HiGPZk1fOv6dvoU/LMK4NWIclex26/5Ng9vF2NCHOO/1bR3Jjz6Z8ta6IeT0+oSq4BdG/3saBdTPPuoi0anc2PQ1b0c0H1lLahq1JiC/JscHM2nQAU7uRGByVsHuet2OdEy6X5uVftzEoaD/NildT1P0RgsIa19r1WzcOZHt2yZ8jkIoya+3aQhzi0QKS1toB3I97dbWtwASt9Wal1D1KqXs8eW/hWYPbRtIjoRGvzNhGdkklqs9DuIw+mBa+JqOQhBA19hdWcMfXqwj1s/DRjV2wmoyUr5+M/7rPKe18N34dLzmt61kvuB9ttKB/uAHQWHredcbZlFIMbR/F2D2hOPyjz8th9MIzXC7Noz+ux6gUr41qj/rjReyNEjF3ut7b0YQ4bz11cVviw/x5cc4B9l0ynqqgBKKnj+HA+t/O+LVraZUDn6yV+FCFSaavnbJhHRqzPrOI/SFdcFmDsG2eevKTGoAp6/axNauYR6PX4zJY8O9+U61ev3VUENsPlOA0+eHyCUHLCCThAR5fxkNrPUNr3Upr3UJr/VL1to+01n9pmq21HqO1/tHTmcTZU0rx2ugkHC7Nkz9tJCSiCYUdbyVo1zQKM9Z7O54Qog4oqrAz5ssVlFU5+GJMNyICrdhz07BOf5DKiGT8L37x9C8aEIk96UYMtlLsLYdDSNOzyji0XWMq7LA3aiCm3bOhouCsricEwBeL01iRls+zl7QjdMePmAt2waDnZHUmIbzIz2LizauTyS6p4n8rCii66kdsQU2Jnn4L2RvnovXpF5FWZxTQR23ApUwYm5/eYg7ns4uqp7H9ti0PZ+uRmLb9DJVFXk7lWZV2J//9bQfJTQJIPDiLyoTB+AQ2qtV7tIkOpMrhIiOvDAKboGUEkvAAWQdWnLFmYf7846LWzNuew09r92Ps8yAusz+mBa/KKCQhznNVDid3fbOKtNwyPr6pC22jg9COKpwTbgWtMVz9FcpkPaNrWy/8P6oatcXU7ySNt09Bj+aNCPQx8TP9MTirsG+QzzDE2Uk9WMJrs7YzuG0kg+1z8fn9CWzRXTC3G+ntaEKc9zo1DeX+AS35ae0+1uSZKLpqEraAGCJ/uZmDO1ee9vWW786jn2EjtuiuYA30QOKGqXlEAK2iApi5+QCmnndhsJdjXzPO27E86pul6ewrrOCFpFxMFTkYzrB/44m0qW6kvf1ACTo4RkYgCY+QApI4K7f0iqdbfCgvTNtMlSWEwqTbCUqbQWHaam9HE0J4iculeWTCepan5fPGVcn0bhkOQPmvz+FzcC1VI97BEtH8zG8QEofxb0swxHU566xmo4FBbSL5Oi0YW3h7WD32rK8pzl92p4tHJqwnxOziP5YvCZ31IJWRKRiv++6MVgoUQtS++we2JDk2mKcmb0QFRFI0egJOSyCNJl9Pzt4dp3Wtrbt208GQhjFxsIfSNlzD2jdmRVo++UHtsEd3hZWfgat2VsarawrLbbw/N5X+rSNolf0rTkswPu2G1/p9EiMDUQq2HijBEBSDklXYhAdIAUmcFYNB8droZKocLp6evAlTnwdwWoIwLXgFm6Nh/hIQQpzYf2ZsZfqGLJ66uA2XpcQAULFpOv6rP6QseQx+KVee9T1Mxtr79TW0fWMKKhzsbTYK88H16KwNtXZtcX75cN4u8jJT+SXgJSK3j6Ow89+w3DYNY1DtNUkVQpwds9HAm9ekUGl38tiPG4iMaU7BqO8xOKsI/PFa8nOyTuk65TYHIVmL3ddsJf2PTtew9o1xaZi9NRvV4y7MBbtwps71diyP+N+8XZRUOXhiUFOsO6dT1foSOMNR2CfiazESH+bP9gPFqOBYDOW5YK+s9fuI85sUkMRZSwj359GhrZm9NZt5e2wUptxNUMbv5G6Z5+1oQohz7LOFu/lsURpjesdzZ1/3KCNHwV7M0+6jKqwdfiNf8XLCv+rXKgKLycBkZx+0wYJt9bfejiTqoU37ilgz90dm+T1DWOUeCi/9kpBL/4PJbPF2NCHEUVpEBPDUxW2ZvyOHb5fvIapFJ3Iu+RpLaSY+E6+nqPjk/XjWZBTSR22gyhwC0cmeD93AtG8SRGyoLzM3HcDU4QqcfhE4l33s7Vi1LrOgnK8Wp3Nl51jic+djcJRj9MD0tUPaNA5k+4HDVmIrkWlsonZJAUnUitsuSKBT0xCem7qZ0k53URXYlPDfHqQgP9fb0YQQ58i09fv59/StDO/QmH+ObIdSClwuHD/eiXLZUVd/jTL7ejvmXwRYTVzQMpwp2yuwJQ7HtGkCOKq8HUvUEzaHi5ziclZ+9Q++ML+KCmpCxa2zCek8ytvRhBAncFPPZvRrFcF/pm9ld04pke0HcHDoB/jmrEP9eCtlFSceubF8dy59DRtwxl8IBuM5St1wKKW4qH1jFqfmUeJQODvdgnn375Cf5u1oterN33agFDwypBVs+AF7QBOszS/w2P1aNw4kI7+cSr/qka/SB0nUMikgiVphNCheH51Muc3Jy7P3kjv0Pcxl+1G//gO7U6ayCdHQLd2Vx98nrKd7fCPeuiYFo8Hd76Vi8Yf47FtK1eD/YIlq5eWUxze8Q2MyCyrY22wUxsoCnFunezuSqIMq7U7yy2xkHcxl/7rfOfDrq5SPuxHTu8ncah9PRpMRmO6eQ0CTNt6OKoQ4CaUUr49OwmIycM+3q8ktrSKi22gOXvBvgvbMwfbzQ1TaHMc9f/+OtUSpQixtpP/RmbqoQ2NsThd/bM/B0uN2UAZsyz71dqxas3l/EZPX7ePWPglEm0qxZszD3u5KMHjuLXibxoFoDWm2EPeGIumDJGqXFJBErWkZGcD/DW7FzM0HWOFoSU6nBwjZOYnClT94O5oQwoO2HyjhrrGraBrmxyc3d8HH7P4k1n5wJ9Z5L1ARPwi/7rd4OeWJDW3XGLNRMbGgJY6AJjilmbY4ii7KpOLHe/H7rA+NP0ykyZTRNF7+HwxZa1lc1ZyxTZ6h2e1jsfrKSkxC1BdRQT58eGNnMgsqGP3RUvYVVBB64b3kdn6Q0G3jKZ31IvsLKzhYUkl+mY3iSjsVNidT1+8j7OAiAEwtpf/RmercNJSIQCtT1+2HoCbYWo3AuH4c2Mq9Ha1WvDZzO8G+Zu7t34LK9T+itBNLp2s9es82jYMA2Fzq794gjbRFLZMCkqhVd/ZNIDk2mBd/2Uppz/+jPKITjeb+g6IDDWs4qhDCLauogjFfrsDPYuTr27oT4lfd78XlxDn5XrTRiuXy9+r8ClTBfmb6Jkbwy8aDuJKuw5z+BxRlejuWqEMcv/2L4NQp2P1jyOn0IPtHfM3Kq1bQs/wtPmv8LNfc9ncMtdjcXQhxbvRuEc53d/akpNLOlR8tYXduKQEXPUdB62sIX/02/pNvxjDzSarm/ZeCxV/z9dgv+GD8VIZbNlAZ2gqCY7z9EOotg0FxXfemzN6azbq9hZh73oOxqhD7+vr/4XOl3cmi1Fyu696UYF8zho0TsYW1wxTdwaP3bdrID1+zkc25Tlw+IWgZgSRqmbzSEbXKZDTw+lXJlFY5eHH6DkpGfAAuB6ap9+FwHH8YsBCi/imqsDPmi5WUVDr4ckx3YkL+7G9UvuB9fLJWYhv6MsaQ+vHiemRSNPsKK9jR5DIUWpppiz+5nBh2z6YycSTcOJHwkc8TlDSSJ2Zm4Wcx8uGNnbGY5CWVEPVVSlwIE+7uhVEprv5oKZuzirFc/i75bW7Ap2AnoTt+IHrlKzRb+Hfu2fsos6xP0Mm5AUPLgd6OXu/d1a854QEW/jN9K6pZL+zh7WD5p6C1t6OdldSDpThdmo4xwbhyd2E9sBpnh6s8fl+DQdEqKoBtWSXowCa4ZASSqGXyakfUulZRgTwzoi1/bM9heqYveX1fxH//Ekr+eMfb0YQQtaTK4eTusavYnVvKxzd1oV2ToJp9tgPb8Fn4EhXNh+Hb5Xovpjw9g9tFYTEamJxuxhbXB8O6ceCSHm4C2LcaY0U+vu0vJtDHjFLw2MT1pOeV8951nYkOrnvN4YUQpycxKpAf7+1FWICVGz5bzso9xRgve4fMmxYx7eKVXGAYy2D720zs+AkZA//H/gtewtzvEW/HrvcCrCb+b0grVqTn89vWg9D9Tsy5m3FlLPV2tLOyJasYcPckqlr7AxqFtdPV5+TebRoHsT27BIJipAeSqHVSQBIecVPPZgxuG8Urv25nf8IoiuOHE7z0ZUrS13g7mhDiLLlcmr9PWM+y3fm8PjqZPi3DD9vpxDX5XrTJF8vl79b5qWuHC/Ixc2HrCKZvyEJ1vhlT8R5caQu9HUvUAfatv6KVEVXd6+TThbv5ddMBHr+oNb1ahHk5nRCitsSG+jHh7l40Dw/gjq9XMX9HDkt35fHYj+tRPgG8de8oLrl0NGE9riHwgrtRgVHejtwgXNM1jpaRAbz66zboeBVOazD2pR97O9ZZ2ZZVgq/ZSLNGfpg2TaQqtjeGkNhzcu/WjQPJL7NR5dcYVSKrsInaJQUk4RGHVrZo5G/hkQkbqBr+Jk6fUCxT7sJZ1TAa4wlxvnr51638siGLJ4a34fJOR05PK5v3Fj7Za7ANexVjUGMvJTxzI5OiOVBcyYbAfrgsQdilmbYA2DkLR0x38A1lya5cXvl1Gxd3bMydfZt7O5kQopZFBFoZf3dPOjcN5cHv1/LMlE30aRnOtPsvoGNsMD5mIwFWE4E+Zm9HbTBMRgNPDm/D7twyvl+XhyPpeiw7f4HiLG9HO2PbDhTTqnEgev8azEW7IencjD4C96gngIMqHEN5Ltgrz9m9RcMnBSThMaH+Ft66JoW0vDJeW5BD6fD3sRbupHz6096OJoQ4Q58vSuPThWmM6R3P3f2OfPNsy9qM76JXKW9xMb6drvFSwrMzqG0UVpOBaVsKsLcbhXn7NKgo9HYs4U1FmZhzNqNaDyOrqIIHvltL84gAXhudjKpHI+yEEKcuyMfMN7d359pucTw2rDVf3NLtz0UihEcMbBNJr+ZhvD17J7bOt4LLiW35596OdUa01mzNKqZt40Dsa8fjMlrx6Xj5Obt/6+oCUro9xL1BRiGJWiQFJOFRvVqEcf+AlkxcnckCZweKku8kcMMXFK35ydvRhBCnaf6OHP49fQsXtW/MP0e2O+LNs8thxzX5XlyWAKyXv1Ovpq4dLsBqYkDrSGZszMLY5WYMzkrs63/0dizhRfZtswBwtRzKvd+uodLu5KMbuxBgNXk5mRDCk3zMRl65Mom/DWiJwVA/f6fVJ0opnrq4LfllNj5cr7ElDMK49itw2Lwd7bQdLKmioNxOuyg/zFsnY0sYAr4h5+z+YQFWIgKtbCur7k9ZLAUkUXukgCQ87qFBiXRuGsLTkzeR1+tJKiKSCfj1Qcqztns7mhDiNHw4L5WYEF/evjYF42EvpisrKyme/Ag+B9djv+h1jIGRXkx59kYkRXOwpIrVtmbYw9ui18o0tvOZa/uvOIKa8uZaA+v2FvLGVcm0jAzwdiwhhGhwOsYGc0WnGD5flEZRx1sxludg2zjZ27FO26EG2l2c6zFV5GJIOfejsts0DmRNUfUCD9JIW9QiKSAJjzMZDbxzbSeUgv+btA376K/QBhOGiTfhqCjxdjwhxClIPVjCst35XN+jKT5mY8324gPpuL68mJDN31CScie+KaO9mLJ2DGobiY/ZwPRNB6DTjViy10H2Zm/HEt5gr8C8ZyEFsQP4bFEaV3WJZXjHaG+nEkKIBuvvQ1uhgVd3NsEe2gIWvlnvVkTdluV+fxO//xeclmAsbYad8wxtGgeyPM/H/U2xFJBE7ZECkjgn4hr58cqoJNbvLeTDtTbKL/kIa/4OKiY/iK5nvxSEOB99u2wPZqPi6q5xgHt+f97aafh9eSHW/G3kDvsQ/0tf93LK2uFnMTGoTRQzNh7AkHwt2mDGsfprb8cSXuDYNR+Do5LPs1vhZzHyxPA23o4khBANWmyoH7f1SeCndVns6fgQlvxtVK2f4O1Yp2XbgWJign3wTZ+NLfFiMFnPeYbWjYMoclhwWILRMgJJ1CIpIIlzZkRSNNd1j+Oj+bvICOlFcc9HCdzxE8WLPvF2NCHECZTbHExak8nwDtGEB1ix26oonPY0YT/fiN2/CSW3zCG81/UNqkfEiKRockurWJ4N9qYXoNIWejuS8ALHtpnYDT58uS+Gx4a1Jizg3L8JEEKI8819A1oQ4mvm2dREbOHtMPzxMjjt3o51yrZmFdMjwo6hqhhLXIpXMhxaia3UJwqXjEAStUgKSOKcevLitoT4mnlt1jYChzxJWdOBBM57hrLdy7wdTQhxHNPW76ek0sGNPZtRlpOB/YsRhK75gKJ2N6Lu+J2Q2LbejljrBrSOxM9i5JcNWZiaJGHIT61XL15FLdAaQ+pvLNEdadkknOt7NPN2IiH+n727jpO7uP84/prdvdtzt5wkF3cXQiABQihSCK6FYEWLtNCW9ldKldIW2kLR4u4a3CVAEuLueneRc7eV+f2xe+EIyRG5vb1L3s/HYx+X/crMZ3dC2PvszGdEDgoJURFcf3RfvlpfwcK+1xJRvZHGOV1jJnCT18e6kjoOSSgDwJnePyxx9MmIw2GgzJGmGkjSrpRAkg6VEBXBz47qw4w1pXy9voKIMx/GG5tF5CsX0VS1PdzhicguPDN7M/0y4xgbVYD7kSNwly2n7Lj7iD/jHqJiDsxiwtGRTo4emMl7S7dh0wdgfM1Qvj7cYUkH8m1fTmRtEe82D+fPJw/5TuF4EREJrfMO6UH/zHjOn5HE9sThuGbcDp6GcIf1g9Zsr8XntwyK3BY4kNYvLHFERTjpmRZLoS8FU6Nd2KT9KIEkHe788T3ISYrmH++txBWbguf0x3E2luN76VKszxvu8ESklcWFlSwurOInh/TA9/V9GL+P+mkfkTr+JwfUkrVdOXFYN8rrmlncnB04ULw8vAFJh9o+53UAYgcfz+geyeENRkTkIBPpcvD85eMZmZfMdcVTcdVto/7rzl/2YuW2QAHtXG8h/ogYSMgOWywDshJY3ZiAo74UPI1hi0MOLEogSYeLinDyi2P6saSoineWbiU2fwy1k28jpnAGjR/+NdzhiUgrT8/aRHSEk1OHZ+BY/R7+fscRnzco3GF1iCP6pRMb6eSVzbFYDLZ4RbhDkg5iraVq8dsssz25aurEcIcjInJQSo6N5KlLD6HnmB/xhW8ovs/voL6mPNxhtWnl1mrcLgfxdRuwKX3AhO/Ltv5Z8aysSwg86eKzkPx+G+4QJEgJJAmLU0fm0D8znjveX4XH5yfhsEupHXAWUbP/CzVayibSGVTVe5i+aAunjMwmYfscHE2VRAyeGu6wOkxUhJNjBmXy1ooK/Mk98W/XDKSDxQdzltOveTkN+VNIU+FsEZGwiXQ5uO20oZQechPx/mpeufd3bKnsvEvZVmyrpn9WPKZsbdiWr7UYkBXPVlICT7pwHSRPfSVr16+lrLYJa5VICjclkCQsnA7Dr4/rz8ayep6fUwBA9FE3YKwP75JXwhydiAC8uqCQRo8/sHxt+Zv4XdHQ++hwh9WhThyWTWW9h7KYXqAZSAeF+mYvX77/Ik5jGXbUWeEOR0TkoGeM4bQTT6IoawqnNrzGtHveZcHmil1eW1VRTtnXT4VlyZa1lhVbaxiWEYmzugBHergTSAlstamBJ9VddwaSnX49fZ8Zj//937O+cCu1TSp5Ek5KIEnYTB6Qwdj8ZP778Rrqm704MwfiyRiGXfRCuEMTOehZa3lm9maG5yUxJDsBVr2Nv+eREBkT7tA61MR+acRHuVjcnI2jYoNqCBwE7v5kLWOav6HRnUpk9zHhDkdERIIyT/kLsaaJS+zrnP3gLD5dVbzjXEOTh+1fPk7Mg+NI/eAamj67vcPjK6lporyumbHBHdhMmBNIucnRVEWkB55UF4Y1ln3m9+Ha8CmemHTSljxI92cnUfHV42wqraHJ6wt3dAclJZAkbIwx/Ob4AZTUNPHolxsCx4afRcT2hVCyOrzBiRzkZq0vZ21xLecf0h22zMdZswXnoJPCHVaHc7ucjO+VyqzaTIz1QdmacIckIbShtI7HZqxhSsRibJ9jwKGPSSIinYUraxCNg87kHN5jfFoj1zwzn2Vbqti2cib+R44l86Pr8cRlU599KBHf3A91ZR0a34pgAe2BrmA5jjAvYXM4DD2y0qgx8diqLjoDaetCHE1VNBxxC+tOeZPm+O7kfXEj6S+cSOGSGWyraqSqwUN5XTPFNY1sKymlePFHlL//D+qemQYbvgj3KzjguMIdgBzcRvdI4ZhBmTzw+XrOO6QHKcPOxH50C96FzxNxzC3hDk/koPX07E0kRkdw0vBs/J89ijFOTP/jwx1WWPTNiOPTVekQQWAZW9bQcIckIfL4VxsYZdYQ66+lsd+x4Q5HRER24j76t5iVr/KfrI84u+Yo1jx8CYP8H+ONSqV48r9JGD+NyIq1mPsPpfGzfxH14791WGwrtlYDkOcvwGIwKb07rO/dGZAVz5biFHpWFBAZ7mD2gXfd57iAxEFTiIlOY1vem5QvfpGsOX+j9xsnMzPuR1RljGVcxHriSxYSVbEKY/0AgQ1Qot2YnpPC+yIOMPpqTcLu18f2p77Zy72froX4LDw9JmGWvAgqkiYSFiU1Tby/dBtnjM4lKsKJXfkWvrxDISYl3KGFRZ+MONb6svAbF3a76iAdqBo9Pl5bUMS0tJVY48Ld/+Cq9yUi0hU4UnvSOOwCUlY9zzuOX/Bj36e8FnUyFZfMJGPSpURFRuDIHEjToDOInP8wtgNr/6zcWk23xCgiK9fhT+wOEVEd1vfu9M+Mp9CXgqdsY5fcycyu+xxvan+IyyDC6SAvNZaSXqdwTcpD3OedyqiaTzhu/a0kbHgbb0wGJSOvpfikp6m+bjW211HYYq1qaW9KIEnY9c2M54zRuTw1cxOFFfU4h52Nq7oAu3lWuEMTOSi9OLcAr99y3iHdoXQNzrLVB+XytRZ9MuLw4KImLh9/sXZiO1C9u3Qr1Y1exnvn0pgzHhOVGO6QRERkF6Im/xqfO56mjOG8ffjL3FB5Fv/8fOt3duhyH/1/GOuj6ZN/dlhcK7fVMLBbApSuhbS+HdZvWwZ0S2C2fwCxlauoXP5RuMPZO94mnEWzsD2PAGBhQSU/fWIup93/NV8VNFEy7je8e/T7HN10B38c8Bbec18m9cQ/kTH6JBJSMnGk98OUrdGkhHamBJJ0Cj+f0g8M/PvD1TgHn4TfFYVnoYppi3Q0n9/y7OzNTOidSu/0OPwr3gLADDwxzJGFT+/0OAC2R+ZrJ7YD2LOzNzMqoZqk2nX4+/wo3OGIiMhumIRu1F+3EteFb3DKMZO5/ui+vDyvkIdmrP/2mtReNA05D/fip7EVG0MeU5PXx9riWgZkxuIoX4sjzPWPWgzIiucJ37FURmYR/cnvaW72hDukPVc4B4e3ka3J47jgkdmccu9XzN1Uzg3H9OOrmybzh6mDOfGwUfQfMorXF23DmMBO3zuk9cN46qC6KHyv4QCkBJJ0CtlJ0VxyWE9enV/E9JU1ePuegHPF6+BtDks826vqqahr/s43GSIHg+fnbKaosoHzx/cAwL/8TbyZwyExN8yRhU+s20VOUjRrTHecVZuguS7cIUk7W1dcw5yN5fw+bjoAEYN+HOaIRESkLQkxUURHOgG4/ui+/HhoN257dyUfLd++4xr30TdhjYOmj/8e8njWFdfh9VtGJtVhvA1h34GtRVJMJEkJ8byQfDnR5SuonfVYuEPaY961n2JxcM4HTpZvqea3xw/gy5smc93RfUmMiQDA5XRw3dF9qW3y8uhXG7/bQEsSr1TL2NqTEkjSadxwTD/G5afwy5cWsTnnJJyNFfjXfNjhcXg3zSb9rh44XryAzYtnUFbbpESSHBRmrivjD28sY2LfNI4dnAXVW3BtnYfjIF6+1qJ3RhwLG7MCT0pWhjcYaXePfrWRc12fMbL8HcpGX09kRp9whyQiInvI4TDcceZwhmQncv3zC1i5LVDM2iTm0jziItzLXsAf4lo4LQW0B0dsCxzoJDOQAAZkJfBi3SjqMseS8PXfqasqD3dIe6R+1acspReOmCTevPZwrjiiN3Hu7+8BNiArgWMHZ/LYVxuobmw1wyq9f+CndvduV0ogSacR6XLwwAWjyUqI4iefxuCJSsW78PkOj8M7406sM5K4rV/T47WTcD9zCgVz3qKkurFLFp8T2RMbS+u46pl59EiN4Z7zRgWmAK96BwDHQCWQ+qTHMaMqLfBEy9gOKKW1Taxb9BV/cj1OTc5Emg77dbhDEhGRvRQd6eShaWOIi3Jx6eNzKalpAiDqqF9hnVE0f/zXkPa/cls1kS4Hmc0FgQOdKIF07OAs1pXWM3fgTTgby2n+rOPqQu2rNYXbiC5ZyALnMJ67bDzZSdFtXn/t5L7UNHp5ovUspNh0bFQSlK4KaawHGyWQpFNJiY3kkQvHUO81vO0/FNfa96GxqsP6t+UbcK99l4aRl7L1knlsPeT3uKvW0f2d84l74mi2fPUMReW1FFc3UlrbRGV9M9WNHuqavDR6fDR5fTQ0+6ht8lLd6KGyvpmy6npKt22muamxw16HyN6oqvdwyRNzMMCjF40lMTowLdi37E18yb2+/QbnINY3M47Vngz8zkj82ontgNHk9fH27GXc7r+DZncqhZPvJiW+7Q+pIiLSOWUlRvHQtDGU1zVzwSOzqar3QFw6zWOuIGrVG/i2LA5Z3yu31dA/Mx5Tvha/OxFi00LW1946fXQO2YlR3LU8hqp+Z5C46BGqCjtvUmVdSS13P/okEfg45sSzyEuJ+cF7huQkcvSADB75agO1Td7AQWOwqX3xawZSu1ICSTqdvpnx3H3eSJ6oHYfD14Rnyesd1nfTVw+Aw0nsYVeQm5VByjG/oOSSbyicdDvG20Duxz8j46ERxD15DFHPnop5cRreV39Gw5s3UfXuX6h492/Uv/ZzfM+eh+uRo4m9Zygp/8kl7YGhcP8EbAcmw0T2hMfn52fPzqegvJ4Hzh9Nj9TYwImGChybv8QMPAmMabuRg0CfjDj8OKiJ641/u3ZiOxD4/ZbNpbUMnn0TWY4KthzzANndcomKcIY7NBER2UfDcpN4cNpo1pfUcdHj31DX5CXqiOvxRSbg/egvIet3xdZqBmTFY0tWYVP7dqrPTm6Xk6uO7M38zZUs6nct1uHCfPwHfJ1wZcWmsjrOe2gWY+1i/I4Iug0+Yo/vvfbovlTWe3hq5qYdx0x6f9VAamdKIEmndGT/DE4+4SQ2+DMp+Pzxjum0sZrIxU/T1G8qJjEHCPyDm52WRNYRP6X6ki8pOOZB6rIPwxeVivE24q5cS3zhZySvfJbM+f8ha94dJK6fjrt6I77IRGpyJ1E64mrKDrmJiKqNNL7+i455LSJ7wFrLn95cxpdrS7n11KEc0iv125NrPsT4vVq+FtQnuBPbtqiemBLNQDoQFFU2YL78D2Oav+Ht7GuJ6zN+R1FOERHpuib2Tee/545kcWEVlz81l0ZXAp7x1+Be/wHeTbPbvb+SmiZKa5sZ0C0BU7qm0xTQbu3MMXlkJri5d149VaOvIWHDu1Qt/yTcYX1HYUU95z00myavn9OS1uHLGQeRPzz7qMWIvCSO6JfOQzPWU98cmIVk0vvhqCuGhopQhX3Q+X4VKpFO4sLDevLxkh8zedtjvDnjG06aOC6k/TXNfQq3pxbnoT9j5royGjxeIp1OIpyGCJeDSKcDZ8/jqepxHAnRLtwRDqw1+K3F57f4vc0YLJHuaCJdDtwuB/EuBxHOQJ62wWWI/urvNM09GveYn4T0tYjsiSe+3sjTszZzxaRenDUm7zvnfMunY2IzceSMDlN0nUtybCRpcZGsozv9a9+BhkqITgp3WLKPKuub8az5hF5L7+J13wQyJv+MbolR4Q5LRETayXFDsvjn6cO48aVFXPvcAu4740p83zyA56O/wEXTcTnbbx5FSwHtIangqNsOnTCBFBXh5MojevOnN5ez7PBpHLLsGaI//T1N/SbijowMd3hsr27kvIdmU9Po4YUL+hP71HK8w/5vr9u57ug+nH7/TJ6dvZmfTuwFacEyDKVrIC+0v0seLJRAkk7LGMMRZ/wMx72PsuKDR0nP6c341jMk2pPfh+Ob/9GUPY771yRw50ezfvCW6AgnafGRpMe5SYtzkx7vpn9WPGeNSdjlEojoo39N44bPiHj/V/jyx+NM6x2KVyKyRz5bVcyf31rOMYMy+fVxA7570tOAY+1H+IefAw5NVG3ROz2OBQ3dOAECO7F1Hx/ukGQf1Zdspvun17KBbF7M+hVP9EzFdKLlBiIisv9OH51LXbOXW95Yxq/fdPG3Q39B9Ke/p/KlK4k86Q5iYhPapZ+WXd8GRmwPHOhEBbRbO3dcd+79dB33f13EwMN/T9p7V1I26wncky4Ld2g8PGM926oaeeGK8Qyo+RwAV+8j97qd0T1SOKxPKg98vp7zx/cgqiWZV7JKCaR2ogSSdGoR6X1ozBzF6cVfM/XxOdxz3iiOGpDR7v14VrxDRPUmFg2+gbs+XsMpI7K56LCeeHx+PF4/zT4/Hp+l2eunvtlLWV0zpTVNlNY2UVLbxKayeuZuquCZ2Zt5eMYGfn/iIKYMzPjuLyQOJxFnPgwPHIb3xUtwXv4huDo44+9tombtTOL7H9Gp1mZL+6tv9vLZqhIKyuupqA8UdC+va6ay3kO/qhmcUvcy/4gfwJTJvwvsuNbauk8x3gacWr72HX0y4vhyUaud2JRA6pp8HpLfuRzraeTypt/ys0P77ZgpKiIiB5Zph+ZT0+jl9vdXEXfIJG4Ycz1Jc/9L0/YFVJz8CMn5w/a7jxVba8hKiCKhdkPgQCdNIAVmIfXir2+vYO3kY4jOHE3CzH/QMPIMouOTwxrbwoJKhuQkMLJ7Mp7pn+GMiMWRM2qf2rpucl/OfnAWz32zmYsP7YF1ujGqg9RulECSTs818hx6v/drjkwq5tIn5vCHkwZz4YT8du3DP/NemmJzuHRWJv0zY7nttGFER+59IdUv15TypzeXcdmTc5nYN40/nDSIPhnxO847k/No+vF/cb96IQ0f/JnoE0K7pejOPB/fSvzMu6g7+jZiJ17doX1L6Pn9ltkbynllfiHvLtlKXbMPgAinISkmku5RjVzb/DBHNn1KeWQmozxvYx6eTl3+FOwhVxI34GgwBt+KtzDuBBz5E8P8ijqXPhlxPNuYiC8+FrYvR6WWu6hNXxG9fR73J91Iuc3nxGHZ4Y5IRERC6Ooje1Pd6OF/n68n9ohzufSUQ0l67xoSn/4RZUfeRtKEi77/ZdpeWLG1mgHd4qHsq0CB6uT89gu+nZ13SHfu/2wd932+njuPvpXYZ4+j4bM7iD7p1rDF5PNblhZVc/bYQDkFs+ELfHmH4nDuW13CQ3qlMq5nCg98vo5zx3UnMqU3tmSVij+3EyWQpNNzDT0d+8H/8ZfUD+nnGMyit77g+UWxTOwVj9PvwfiaIa0f7sEnkBgXu9fLEPxFC3EXzuTRmEtp9Du47yej9il5BHB43zTeuX4iT83cxH8+Ws1xd87gwgn5XD+lLwlRgX8E3cNOoWHtBUR/czfNfY4ist/R+9TXXmuuxzH/CfyOSGI+uZmGjP5E99+zvhs3zcFpfUTka8ZFZ7S+pJbXFhTx6vwiiiobiHO7OHFYNqeOymFITiKxkU4al71FxDs34Gwup278jSRPuYnm6mKaZz1C9OIncb1wOk3J/WgedSmxq97F9vlRx8+Q6+T6ZsRjcVAT34c47cTWZXm3LsUFPFbclzMPzyPSpY+UIiIHMmMMvzluALWNXh74fD05Jw/m5Es+w/naZaR+9HOqNn+J++T/ELUPS9qavX7WldRyZP8MfCWrICkf5z4mPjpCTKSLyyf14rZ3V7Lx6Ak4+5xM3OLHaD7yRiLjU8IS07qSWho8PoblJkJVEa6KdfjGXLxfbV5/dF9+8vBsXp1fxDlp/WDbonaKVkKeQDLGHAfcBTiBh621f9/p/E+Am4JPa4GrrLUaYflWbBqeXj8iZe10rmc6RALbg49WvJ+lUNb3dHwjzichb+geJ4Gav7oXY6K4s3w8d5w/jF7B3Zb2VYTTwSWH9+TkEdnc8cFqHv1qA68vKOKWkwZx8ojA7m7RJ/6T5oJZOF6/Env115i49P3qc0/4Fr2As6kS37kv4Xn/ZiJfvZjmSz8hMqMPAA3B2So7v28NC1/FPf1ycCfCL1eBU3nncNte3cjcjRXM2VjOnI3lLNtSjcPA4X3T+fVx/fnRoKwd4+ivK6fhtV8Ss/IVmlIH4Tv3RWLzRgLgTsnDfcIf8U+5iZoFLxEx9yHiPw7+czxIy9d21icj8G9DcVRPEkq/DHM0sq/825dT50qiuDFhx7edIiJyYDPG8OeTh7CtqpE/vrmc/IvHMu7i6ZR/cBvJc/9D00MLqT/jcWJyh+5Vu+tKavH4LAO7xcO6NZ12+Vpr54/vwQOfr+OeT9dy55E/x7n2Depm/o/IH/02LPEsLqwCYFhuInbDmxjAuQ/1j1qb0DuV7MQo5mws57yM/tiV08HTCBHaMGN/hfQ3QWOME7gXOAYoBOYYY6Zba1t/dbsBOMJaW2GMOR54EDgklHFJ1+M840E2r1uGcUXiiHDz4apK7vmigG5pifzttJFklM8haukzpC59DLPkIeoyRrN90Lk4h51GclLK7qel1mwnYsWrPOWZzFmHD+G4Id3aLebUODe3nTaUnxzSnVveWMr1zy+ktLaZSw/vCZExmDMewfHIFJpeuZKoaS+HtiaRtdhZ9+PJGEpEv2PwpfTB/9BR1D1xBv/q+yCzCptZtqWa6EgnT14yjpHdA+ug6755kph3r8cXk4Grbhts+hJ6HRm6OOV7rLWsL61j1voy5m6sYO6mcgrKGwCIinAwIi+J3xw/gFNH5pCZEPifovX7aSzbjG/9l7g/uYXoxgrqDv0lsUfftMtZRY7IaOIPmQbjLqB+/SzM5q+J7n9Ch77OriAzwU2c28V6k0e/+lKoLYEOSP5KOytZySp/LuPyU+i9n18YiIhI1+F0GO46dySn3/c1Vz8zn9euPozeP76Fih4TiH/nKiKePB6uXwSxe75pz44C2pkxOMrXQ//jQxV+u4l1u/jpxF7c/v4qNk05nF55RxIz/yF8R1yP0x3T4fEsLqwkNtJJz7Q4vF98hiM6BWfG4P1q0xhD74w41pfUwqB+GOuH8nWQuX/tCiFfCjgOWGutXW+tbQaeB05ufYG19mtrbUXw6SwgN8QxSRfkjIqn++Dx5PUfRU6vwVx0/GH855Kj2Vjj4JJnl7Il/XBizn+W0isXUnzo73E2VZH52S9Jvn8ola/eQMmWjfj89nvtbvv4Hozfx9yss7jp+AG76Hn/DclJ5PnLD+X4IVn85a3l3PvpWgAicobTPPmPRG34iKavHwhJ3y3shs9xla2iYsjF/OLFRRz1yEam1f6M+NpNjJ//a6JccNmkXqTERjLt0W9YXFhJ7Rf3EvvOtTTmHo7z6q/wR8TgW/JKSOOUgCavjxlrSvjT9KVc8/d7WfPfUxjx9kmctuLn/MU8xLN9P+X9ieuZfYaPR4+L4vzMjcTMf4ial35GwwNH4/97D6LuHkrs21fhi0nHc+nHxB77+x9ekmYMMb0PJfqoG7V8bRdaPozMbwwmmktWhDcg2XvW4ihZweLmbM0+EhE5CMW5XTx84RginQ5++sQcqho8pAw9hubzXsPZXEPzrP/tVXsrttYQ6XTQy1mK8XswXWAGEsC0Q3uQGB3Bfz9Zgz3s57gay6j/5smwxLK4sIohOYk4DTg2zsDfY2K77ALcMy2W9aV12LS+gQMqpN0uQr0WJQcoaPW8kLZnF10KvLurE8aYy4HLAbp3795e8UkXNrFvOq9eNYFLnpjDmQ/M5Pqj+3LVkb1xHftLaiZdR+W6mbgXPk7KsiewK56hov85+CZcT0q3nricDmrranEvfIIZZhS/n3ZSSHfhiXQ5uPvckdz40iJuf38VjR4fNxzTj6jDrqZx7UdEfvon7MDjMCk9Q9K/9+sHMFGpnDczl+3125nYL43RPc5kY2UER839I+Py3iP2uL9ywfgenP2/r/n84V8zjBeo73U80ec+jomIwt/veMyKt+DEf0MnXtvdVVXVe3hv2VY+WVnMzDXbmeidxeWutxnuWEe9O5GGjJH0bi7FWTcHV8G7mAILc77bhtedRHNKf+r7nwYZA3FkDSK216Ear3bUNyOOL1cFZx0Vr4Sek8IbkOydqgJc3no2Obvz66HtN+NURES6jryUGB6cNppzH5zNVU/P58lLxxGbN5Sm3sfimvMgTLweImP3qK2FmyvpmxmHqyLwBXFXWMIGEB8VwaWH9+TfH65m0+TD6JUxAvece7ETLsV04OdGj8/P8q3VXHhoDyhbh7N2C2Y/l6+16JkWS02jl7Ko7qRiMCVKILWHUCeQdrUm5/vTQABjzFEEEkiH7+q8tfZBAsvbGDNmzC7bkINP38x43rpmIr9/Yyn/+nA1n6wq5j9njSA/LZb4IUfgHTiR0sKbcM68k5QVz2BXPktlv7OoHHUNMz54hQupIvnon+9Y+hNKLqeDf581giiXk7s/WUujx8f/nTAQ9yn/xX/veDyvX4f74untv5StfAOute/xYvTZFNT4ef7y8TuWqGF/Tl3TemLn3E191mCyR53DS73fJWvpC0xnEr2PupfBwbXCziGnwbJXYMPn0GdK+8Z4EGv0+Hji643c++lavI21XBLzJbdGvkOaYxtNCfnUjvsnMWPPJ8b97QcZb3MT3upt+Kq24K/agiMqAWe3wbgTs4hph29sZPf6ZMTx8rwYfIlJsH2ZdmLrYhqKlhINZPQeuc+bJYiISNc3ukcKfz99KDe8uIhb3ljG304dQsTEX+B4/Dg8c58kYsJVP9jGp6uK+WZjOb8+rj+UvhM4mNYnxJG3nwsn5PPQjPXc9cla/jX+OqKnX0LtwleJG312h8WwalsNzV4/Q3OT8K9/Bwfg6HVEu7TdMy3w2Xl9pSUlMQ9bslI7sbWDUCeQCoHWc8RzgS07X2SMGQY8DBxvrS0LcUxygEmMieC/545kyqBMbn5tCcffNYPfnziIc8fl4XI6SO8xAG/ufZRsuZHaj26n+8oXiF/xPFOJpji2D8MO77hiwU6H4bbThuKOcPDQjA00evz8aepgfJNvwf3+r/HMe5qIMRe0a5+eWQ9icPDvyonc9ZMR3yaPILBk6eQ7aChbTdQ711O3bDpZ699he/8L+MeGk6l/bB7PXjaegd0SoM8U/JFx2CWv4lQCab/5/JZX5hfynw9XU1NVzp/SP+OkiOlEeqppyBhL3aH/JHboibgd3/8l1xXpxpXWA9J6hCHyg1uf9DjAUJvQl9jtWsK2tzw+f0hne/6QlYtnMxI4dPxhYYtBREQ6h9NG5bK2uJb7PltH34w4Ljn8UJqzx+GYeQ8c8tM2Z3A3enz8cfoyeqXFcunhPbFvr8bGpOOITt7tPZ1NYnQEl0/sxb8+XM2aiZMYnNgL18z/wqizQlubtZUlRYEC2sNzE/F98Dk2PgdnSq92abulzuGG0lpGp/WD0jXt0u7BLtSf4uYAfY0xPY0xkcA5wPTWFxhjugOvAhdYazWvTPbZ1OHZvP+LSYzukcz/vbaES5+YS3FNI3VNXl6aV8ilr29n8qqTmeK7kxmJJxHv9JJ83G877B/IFg6H4U9TB3P5pF48NWsTv3l1Mc5xP6U5+xAcH94MNdt/uJE91VSLd+6TvO07hMtOmLDLIuHG5Sby3KfxxaQTu/4dasZeT+Y5d/PsFROIinDyk4dns2pbDUREYfudgFn1Nnib2y/Gg4y1lo+Wb+f4u77g9y/P5VLHW8yL/yWn1zyNN28CDRe8R/SVHxE7/GTYRfJIwuvbndjycZSuBKsJsXuqqbGO2qLwJt2qNi2m2KQyvG9+WOMQEZHO4Zc/6s+PBmXy17eX8+mqYpwTf46rphDvD9T9fOiL9Wwqq+ePUwfjdjnxl6zGpvbtoKjbz6UTe5IW5+bv76+ladzPiCpdSt3Kjzqs/8WFVSREueieHIVz05f48ye22+9m2UnRRDodrC+tw5kxAEfZWvD726Xtg1lIE0jWWi9wDfA+sAJ40Vq7zBhzpTHmyuBltwCpwH3GmIXGmLmhjEkObN0So3nyknH88aRBfLW2lB/95wsO+dvH/PbVJTR7/fz55MFM/905TLr+MWpu2EzEsDPCEqcxht8eP4Drju7Li3MLufyp+VQf82+Mt4GmN29st35mvnYv0f5aSgZdFNj9bTec8en4p71J5dTHif/xn8EYeqTG8txl44lwGs57aBZrttfgHHo6jsZKWP9Zu8V4MFlaVMXZ/5vFlU/OYkrDe8xL/DU/bXgUX9ZwGi/+mJhpLxDd+9BwhyltyEuJIdLlYL2jB46mKqjZGu6Qugzfx7eR9OTR4G0KS/8bS+tIq19PXUIfTAd/cSAiIp2Tw2H4z9kjGJCVwLXPLmBlwgQ8Kf2wX9612y+JCsrruefTtZwwNItJ/QJ1EU3ZGhzpXaP+UWsxkS6un9KXbzaWMyfhWDwxGZiv7uyw/pcUVTIsNwmzfRmOxnJc7VT/CAIrP3qkxrChpA7S+mK8DVBV8MM3SptCPo/cWvuOtbaftba3tfbW4LEHrLUPBP/8U2ttsrV2RPAxJtQxyYHN4TBcdFhP3r7ucEZ3T+ZHgzJ55apDee/nE5l2aD4JURG4nA6S49xhjdMYww3H9ONPUwczY20pxzy1heV9r8S9+k08y6b/cAM/4KNlW0lf/jjrIvtz8Vln/uAvTO70XiSNOvU7x/LTAkkkp8Pws2fnY3sdid+dgG/pq/sd38GktsnLn95cxsn3fEHv7e/xTdLv+HXzfbiScmk47w1iLp1OVA/909cVOB2GXmmxLGgKzuYrXh7egLoKa4lY+Xrgw1tleD68vTpvE31MEcn5w8PSv4iIdE6xbhePXDSG+CgXFz0+j4oRVxJRuhzfml3PxPnzW8txGMPNPx4UOFBXhqOhHNMFE0gA54zNIz81hn9+tIGGUZcTU/gljZvmhbzfRo+PlVtrGJqbCBu+AMC0U/2jFi07sZHWP3BAO7HtN9WRkgNWn4x4HrloLP8+ewSje6R02m+cL5yQz9vXHk73lBhOWTiazRG94e0boaFyn9tcUljFc88/SR/HFnKO/TnO/ag50is9jht/1I/V22tZsLUBf/8fB5exhWcWQVfz/rJt/OiOTyib+Swz4m/mNnsnsTEx1J32FFFXfkJ0vyPDHaLspT4ZcXxVFfjG0RarDtKe8BQtJKImmDiq3Njh/fv8lllz5xFlPCT0GNbh/YuISOfWsoqh2evnJ7O70xzbDd+Mf3/vuk9WbufD5du57ui+ZCdFBw62JCW6yA5sO4twOvjVsQNYtb2Gj2NOwBcRj2/Gf0Le78ptNXj9NlD/qGg+vvhcSMhu1z56pcexqawOX8vywpJV7dr+wUgJJJFOoG9mPK9cNYGf/2gQ1zdcjKO+hA3P79tStnmbyrnkiTlcEvE+nuh0oobv/zK9Hw/LJjrCyUtzC3ANPR1HUzWs+2S/2z2QbS6r4+KHv+LDZ//NC97r+W/kPaTGRlL74wdwXzOT2GFTO7z+lrSPPhlxLK104YtJx7dNM5D2hGfJ698+qdjY4f1/va6U5Lp1ADgyBnV4/yIi0vn1zYzn0YvGsLnKy5P2x0QWfI2/4NvqKoHC2cvplR773dIQZcHizKldZwe2nZ0wNIvhuYnc/vk2aodOI2bd2zQXrw1pn0sKKwEYmpsE25Zguw1t9z56pcXi8VmKmmLwR6diNQNpvymBJNJJuJwOrpncl1uvvpBXI0+h56aXue/RRymr3bOZPmW1Tfz65UWcfv9M8tnKYf55mLGXgityv2OLc7v48bBuvLloK/W5h+GPSsL3A8UFD1Y1jR7+8+4SHrnrFv5ccCF3RPyP1JRkKk58lIhrZhE39lwVx+7i+mbEYy3UJvYFzUD6YdbiWvUmjbmHYZ2R2PJNHR7Cy/MKGRIZ3AQ2vX+H9y8iIl3D6B4p3HPeKO6qOJRaE0fz59/OQvrf5+vZXF7Pn6cOIdLV6tfo0tVYpxuSuoch4vZhjOGm4wewpaqRN6KmYo0Lz4y7QtrnosIqUmMjyY7x4yhfi7Nb+88Q7pkeC8C60lpsWj/8xZqBtL+UQBLpZAZlJ3DyL+6hLDKHEzb9nSNve4drn53PrPVl2F0U8/P7Lc/O3szkf33Oq/OLuGJSL54cugjriMA19pJ2i+usMXnUNnl5d3k5dsCJmFXvgKeh3drv6uqavCxYt4Xn7/4d58yayp8cD5OQmk3xiU/ivPILksecjsOpxNGBoGUntpKoXjjKVmlHjx/g3b6CyMp12EEn40/Iw1+xoUP7r2rw8N7SbUxMLMGb0B3ccR3av4iIdC3HDMrkd6eO4zHPFCLXvoNv+yo2l9Vz32dr+fGwbhzeN+071/tLVmNTenf5Lwgn9E7jiH7p/GtmNVX9Tid6+Qv4qreFrL8lhVUMzU3EFK/EWD8mq/1nIPVMCySQNpTU4Ujvh2mZLSb7TAkkkU4oMjqOxLPvJ99sZ27klVyz6kKqHjuL52+9kA+fuJXCOW9RVbiC+fNmc+Odj/D2G89yXvxC3pm0mSujPsS95Dm8g06F+Mx2i2lsfjL5qTG8OLcA55DTcHjqYO3H7dZ+V1XT6GF90TbWvPpXuj81nsvq/oc3sQcFJz6L47KPyBhzMu4IV7jDlHaUnxaDw8B6R3ccnnqo2hzukDq15iVvYDG4B0/FJudDRcfOQHpr8RaavH76UoA/fUCH9i0iIl3TOeO6E33Y1Xisi4Uv/oU/v7UMp8Nw848Hfv/i0tVdtv7Rzm46bgDVjR5eiDgF42um8av7Q9JPfbOXNcU1DMtNgm2LAwdDkEBKjY0kIcrFhtI6THp/HA1lUFfW7v0cTPRbjUgn5ep9BHWnPknz2s/JrNhAWtkG4hsWEbnhDQh+gT8q+CASqAZmBY77nW4iDru2XeMxxnDmmDxuf38VGxMOp3tUCnbJKzgHntiu/XQVDc0+tm7fRsyCh8la9DC9fNXMNsNZPfFG+o47jtTYyE5buF32j9vlJD81loWN3fgRBJaxJeeHOarOy7VqOk3dxhCV2A2b3AOzJfQ7u7T28rxCBmW4ianZgHfQCR3at4iIdF2XHjeOWWtOYFTp2ywqOo7rjz+UbonR373I24Sp3IQZemZ4gmxng7ITOGVEDv9ZsJWzex9LwsLHsJN/iXHHt2s/y7dU47cwLCcR/7rFEBmPI6lHu/YBgd9feqbHsaG0DgYHk3ylqyB2Qrv3dbBQAkmkE4sdfjKxw08GwOvz0+z1snzNambOm0fx5jX0zkpm8vDexMQnY6LiMe4EHNEJRMYkEul2t3s8p4/K5V8frOLlBdv4xcCTMEtfguZ6iIxp9746NWtp+vg2us+/H5enlg99o/gy60IuOvtMeqTE4HAocXSg650Rx1clgSns3m3LcfU/PswRdU6+0vVEli6n4ai/AOBMyYfGysAuk9FJIe9/bXENCzZXcvukCMw3XpxZg0Pep4iIHBiMMYw774+Ye97k5sT3OWrsWd+/qHw9xvoPmBlIADcc04+3F2/lGcdUrml6j4Y5TxF9+NXt2seiwioAhuYmYr9aAplDQ7a5TK+0WGavL/t2jEpXQw8lkPaVEkgiXYTL6cDljGTEkCGMGDIkLDFkJUZxRL90Xp5XyC/OPg3HgidgzQcw+JSwxBMuvrWfkjT7dr4wY/in53SOPfoYbjmiN06nVgUfLPpkxPHZqmK8qXn4i+aHO5xOq3nJ60QD7qGBRPiOmVqVmzokgfTSvEKcDsOP0ssBcGTsYumBiIjIbjjTetE06HROXv4SDY8cSemoK4gZdSYx0cEvT0uDNXXSuu4ObDvLS4nh/PE9+PfXfi7IGUXMN/fDoZeDs/1SB0sKK8lMcJMZF4EtXoYdeUG7tb2zXmmxvLagiIaYbKJc0VCyCn3Vu+/0246I7JWzxuSxrbqRL5v74Y9Jw7vk1XCH1OGKZz1LrY3md64b+dNl53Dt5L5KHh1k+qTH4fFZqjPG4dz8tQpp74Zj5Zs0ZQzHkRKclt4yPb1iY8j79vr8vDa/iKP6pxNbtQZrHAfUN8QiItIxIk+9h5Kj7sD4mkj78Doi7h5J2fv/oKayNDCbBSC1b3iDbGfXTO5DbKSL+5pPIKJ6M01L32jX9hcXVQXqH5VvwHjqcYRgB7YWLTuxbSxvwJ/aB3/J6pD1dTDQbzwisleOHphJSmwkL87fhh14Ms61H0BTbbjD6jAllTXErnuHL12H8Pr1RzM6PyXcIUkY9M0M7ORVkDgaZ2M5lKwIc0Sdj7+yEPf2+fj7t6qT1jIDqQMKac9YU0pxTRNnjM7Fbl+BL6kXRESFvF8RETmwmIgo0o+4DHvVLEqnPk1TUi9SZ/6NmHuG4pnzGP747ANuh8+U2Ej+dtpQHioeQElkDnz9X9jFbtD7oqbRw/qSOoblJIa0gHaLlp3Y1pfUYdL6YUqVQNofSiCJyF6JdDk4ZUQOHyzfRl3fkzDeBvyr3w93WB3C4/PzyOOPkEAdA6ZcSGpc+9eZkq6hd3rgg+IiV+AbM++6z8MZTqfUtCTwbWXksFO/PRidhN+diL98Q8j7f2leASmxkUwekIkpWYE/vX/I+xQRkQNXtDuCtFEnEXXp25Rf8DG1PY/DVbsN221EuEMLiZOGZzNtQi/uqvsR7u0L8W78ql3aXVLUqv7RtiVYhwtCuEtqSwJpQ2ktjvT+mKqCQA1X2SdKIInIXjtrbC4en+XV0jx8cVl4Z9wJnsZwhxVyf393Jf3LPqDRlUj+2INz9zkJiHW7yE6MYkF1PN6E7vjXzwh3SJ2OWfkmzSkDcKZ/d1q/TeqBDfEMpLomLx8tL2bq8GwibRPOqo04MgaFtE8RETk4uJwOUnqPIeG8R6m5ZinO0/4X7pBC5v9OGMjqbidRYeOp+eQ/7dLmkmAB7WG5Sfi3Lsaf2h9coftSNibSRbfEKNaX1kF6PwwWytaGrL8DnRJIIrLXBmQlMCw3kefnbsF//O1EFi+m4fWft9vU1s7ojYVFPP3lKo6PmI8ZdBK4IsMdkoRZ74w41hTX4O8xEWeB6iC1ZmuLcW+ZjW/ASd8/mdwjUEQ7hAoq6mn2+RndIxlKV2OsXzuwiYhIuzLGkJDaDaISwh1KyES6HPzn/Am8aI4lueAj6rcs3+82FxdVkZscTUpsJGbbkpAuX2vRMy2WDaV1392JTfaJEkgisk/OHJPHym01rEo6gsZDbyR62XM0fH1gfgOzcls1v3llCZdlrSHK30DEsDPDHZJ0An0z4llXXIej5+E4myph+5Jwh9RpNC6djrF+IoZM/d45R3JPHFWbQ5pwK6poACAnORq7PfBh12gHNhERkb2WkxTN0FN/SZONYP7zt2L38wvjxYWVDMtNhNpiHHXbcWaHroB2i55psawvqcOm9A5sqqEE0j5TAklE9snUYdlEuhy8OLeAqGNuprHnMUR99Dua1h1YS3mqGjxc8dQ84qNcXJGyEF9MOo5eE8MdlnQCfTLiaPD4KEkbB4B3/RdhjqgTWT4dT2I+rm7f/1bRpPTA+JqhdlvIui+qDCSQcpOi8W1fgXVEQGrvkPUnIiJyIJswfCDLM37M2Kr3eXXGwn1up6KumYLyBobmJMG24BdvHTQDqarBQ0WzA39iD3zFK0Pe54FKCSQR2SeJMREcNziL1xcU0eizuM96GE9iD5wvXYivoiDc4bULv9/yixcWsqWygf+d3Y/YzR/jHTAVHM5whyadQJ+MQCHtVQ0JeJN6qg5SkK2vIKrgKzz9TwJjvn/Bjp3YNoYshqLKBiKdDtLi3Njty/Gl9AFnRMj6ExEROdANO+O3uI2HLR/+d0cdo73VUkB7eG7itwmkzCHtFeJutWx+sqG0NrCMTTOQ9pkSSCKyz84ak0d1o5cPlm/HRCfhOPdZjK8J77PnYQ+A3Q3++8kaPllZzC0nDmJY7Uwc3kYih58R7rCkk2hJIK0trsXf43BcBTPB7wtzVOG1fEs19z90D8Z6iRx6yq4vSsoP/AxhIe2iiga6JUXhcBgcpSvxp2v5moiIyP5wZg6gtscUznd+xM+f/prK+ua9bqMlgTQ4JxHf1sX4E3IhJqW9Q/2elp3Y1pXU4cjoj6N83UH/mW1fKYEkIvtsQu9U8lKiufeTtTR5fbgyB+A9+QHcJYtpeO26Ll1Uu7bJy92frGXq8GzOH98D35JX8MZlY/LGhzs06SRSYiNJi3OzuLAKV+8jcDRXw9ZF4Q4rrB6esZ6+pZ9SbNLwZY3Y9UVJeVhMSAtpF1U2kJMUDU01OKsLcGQqgSQiIrK/oo/8BclUc1jdB/xh+rK9vn9RQSU902JJjI6AbUuwmaFfvgaQmxyNy2HYUFqHSesXWEofwpnQBzIlkERknzkchj9NHcyq7TXc9dEaANxDTqJ+wq+IWfES9TPuDXOE+25xQSU+v+X00bmYxkoiNnyCf+DJ4NA/m/KtYwZl8NGK7TTlTgDAs+7zMEcUPnVNXj5fuoEjnIt5yzOGW9/ZTX0Blxt/fDd8ZRtCFktRRTCBVLIq0KV2YBMREdlvzvzD8GSO4PqYD3lzYSEfLNu7eoZLiqoYmpMIzfU4ytfi2EWtxFBwOR10T41hQ0kdpPcPHNQytn2i34REZL9MHpDJ2WPyeODzdczfXAFAzJT/o77XsUR/egu+DV+FOcJ9s6CgEoARuUl4l7+F8XuIGK7d1+S7pg7Pob7Zx4cFBm9yH+yGg7cO0rtLtzHR9w2ReHAMmsqTMzcxfdGWXV+c1CNkM5CavD6Ka5rITorGvz347ah2YBMREdl/xuA47DpSmwq4J/5xHnz1Hcpqm/bo1uKaRrZWNQZ2YCtegbF+TLfQ78DWoldaHBtKv00g+bct7bC+DyRKIInIfrv5xIF0S4zmly8uoqHZBw4HUWc+hDc2E//Hfw53ePtkweZKeqXHkhgTgX/Jy3gTe2ByRoU7LOlkDumZQlZCFNMXFuHPPxxX4SzwecMdVli8Oq+Ay90f0JzUm5+cdTZjeiTzm1cWs7a49vsXJ+djQjR1fFtVIwA5ydH4t6/A74r6tu6SiIiI7Bfn4JOpG3I+x/o+52XfLyi9ewrls5+jsbGhzftmrC4FYFhuEmxbHDjYATuwteiVHsuGsjp8kQn4knvhL5zXYX0fSJRAEpH9Fh8Vwe1nDGN9aR3/fD+wbMURnQjjryaicBYUda1/oK21LCyoZEReEtSVErFpBv5Bp+56Ryk5qDkchqkjsvlsVQmNOYfh8NTB1oXhDqvDFVU20LhhFoPsWppGX06Ey8U9540iOsLJ1c/Mo775u0k1Z0o+pnYbeBrbP5aKwAfY3KRo7PYV+FL7a+mpiIhIe3G6iDn9HuquXsL73a4mumErKe9eifPOIVS+eTMNxeu/d8vnq0v47WtLGNgtgeF5ifi3LcEfGR+YkdxBeqbF0uz1s6WyAZs9GrN1QYf1fSDRJyoRaRcT+qRx0YR8HvtqI1+vC3zDEDHmQvyR8TR/eU+Yo9s7hRUNlNY2MbJ7Mt6lr2Osj0gtX5PdmDo8G6/f8mF9X+DgrIP0+oIiLnG9hycigagxPwEgKzGKu84ZyZriWm5+bSm2dVH95HwMFqoK2j2WospAAiknORpH6QrQDmwiIiLtyhhDQlo3jrr0Vi5LeojrHDdTmz6CxPn3EnX/GOzGL3dc+9mqYi57ci590uN49qeH4HY5sVsXBwpod+CXs72CO7FtKK3DmTsKZ+02qN7aYf0fKJRAEpF2c9NxA+iZFsuvXlpMbZMXohLwjZhGxMo3oLL9f1EMlYXB+kcj85LwL3kFT0pfyFQRXtm1wdkJ9E6P5YUVjXhS+2M3fBHukDqUtZbPv5nP8c5vaBh2ARHR8TvOHd43jZ8f3Y9XFxTx/JxW/wa0fONY0f51kFoSSFmRDTjrtmsHNhERkRCJdDm4/ayRvN04mNsSb6H2qgX4YtLxfvhnsJZPVxZz+ZPz6JsRx7OXHUJybCT4fTiKl3VYAe0WPdO/TSCZnNGBg1vmd2gMBwIlkESk3URHOrnjzGFsrWrg1reXAxAx4UoAPDMfCGdoe2XB5krcLgf9Y2uJKJwJg0/T8jXZLWMMp4zI4ZsN5dR1G4+rcDZ4m8MdVodZWFDJ5JrpGAwR4y//3vlrJ/dhYt80/jB9GUuLqgIHk/MDPys3tns8RRUNZMS7cZcHdldxagc2ERGRkBmWm8QVk3rx4txC5lXEYCbeQETRbOZ//jpXPDWP/lnxPPPTQ0iKiQzcUL4B46nv0ALaAOlxbuLcLtaX1ELWUKxx4lMdpL2mBJKItKvRPVK4fFJvnvumgE9XFUNSdzz9T8K54Aloqgl3eHtkYUEFw3ITMcvfwGCJGHZGuEOSTm7qiGwAZtshOLwNB9U3Wq99s5pznZ9Q3fM4otPzv3fe4TDcefYIUmIiufa5BYGlbHGZWKcbW76x3eMpqmwIFtAOJLG1A5uIiEhoXXd0X/pkxPHbV5dQP+Q86qMy8X1yGwOy4nj60lbJIwhLAW0IfOHXMy2W9aV1EBmDL22ACmnvAyWQRKTd/eKYvvTLjOOmlxdTWd9M5OHX4WiuwTv3yXCH9oOavX6WbqkOFNBe8gqe9CGQ3i/cYUkn1yM1lhF5STxWGEgkedYdHMvYmrw+Ipa+SKKpwznh6t1elxrn5qoje7OhtI7t1U3gcOBPzMMfgp3YtlQ2kJMUjW/78kCBzoScdu9DREREvhUV4eT2M4axvbqRS59Zyj/rTmCsYxXPTmkiMSbiO9fabUuwDhekD+jwOHulx7KhtC7wJGc0zq0LoXWNRvlBSiCJSLtzu5z8+6wRlNc1c+5Ds1nv7o8n5xCYfX+n3+J8xdZqmr1+xmUZXFvnwqCp4Q5JuoiTR2Qza7uhLnnAQVMH6aNlWznP/zaliUOI6z2hzWt7tao9AASWsbVzAsnvt2ypbCQnKRqKV+BL66/lpyIiIh1gZPdkLpvYi282lLMs82Q8sVm4v/zn9xI0/q2L8af2B5e7w2PsmRYb2DnW48OZOxpHUyWUf3/XONk9JZBEJCSG5CTy0IVj2FbVwEl3f8n8nJ/gqi7Av+KtcIfWpgWbKwAY5Qz8zyQi/9BwhiNdyInDsnEYWBY5HFfRHPA2hTukkFsx4zV6O7biPPRqjKPtjxT5qYEE0sayQALJJOdjKje3azyltU00+/zkJEXhLFkJGYPatX0RERHZvV8c049/nj6MR356+I5aSP6ddqc125ZgOriAdoueabFYC5vK6jE5owIHtywISyxdlRJIIhIyR/XP4O3rJjKwWwLnfpFCSUQ2ni//G+6w2rSwoJLMBDfJ5YuwGMgeGe6QpItIj3dzWJ80XqvoicPXCIVzwx1SSJXWNDKu+EWqXGnEjTr9B6/PToom0ulgY3AGkiMlH0dTFTRUtFtMhcEd2PKjG3E0luPI6Pjp8SIiIgerqAgnZ43NIyEqAtfoC/HFdcP36d++nYVUW4yjbjuODi6g3aJXWhwAG0prIWMg1hmFt2BOWGLpqpRAEpGQyk6K5rnLx3PFkX25u/4Y3NvmUbTks3CHtVsLCyoZkZeEv3Au/rQB4I7/4ZtEgk4ekcPb1b2wGDw7feN2oPnw88+Z5FhM+aBpRERG/eD1Toehe2rMt0vYknoEflZsareYtgQTSN0dxYE+U3u1W9siIiKyFyKisIf/4ruzkLYtCfzs4ALaLXoGl9OvL60DZwS+zKFQdPBsfNIelEASkZCLcDq46bgBHH3eDVQRy9KX/8YbC4vCHdb3lNc1s7GsnpF5STi2zIfc0eEOSbqYYwdn0uRKoCiqD3bDjHCHE1Lxix6hiUiyJl+1x/fkp8buWMJGcn7gZ2X7JZCKKgIJpAx/IIFEUvd2a1tERET2zvdmIbUkkDKHhCWeOLeLjHg360taCmmPwrF9Saev0dqZKIEkIh3miMH52FEXM8XM4fYXPuCvby3H5/9uYT2f10tjWfv9Qrk3FhVUAjA+qRJHYwXOvLFhiUO6rvioCKYMzOTTpgFEbJkLnoZwhxQSS1avZ0rzJ6zMOJ7opIw9vq9nWgybyurx+y0kt8xA2thucRVVNhAf5SK6tjBwQAkkERGR8NlpFpJ/62L8CbkQkxK2kHqmfbsTmytvDA5vA5SsDFs8XY0SSCLSoZKOvAaHw8k/c77i4S83cMVT8yguXEPllw9R+9R58M+eRN09jOaZ/+vw2BZsrsBhYKB/deBAzpgOj0G6vqkjsvm0qT/G34x38zfhDicktn76AFHGQ8rk6/fqvvy0WJq8frZWN0JUIv6oZPztvIQtJykaf8Um/FEpWoIqIiISZq1nIdlti7FhWr7Wolf6twkksgOFtG3RvDBG1LUogSQiHSuhG96BpzK+8m1eyX+d3647n4yHx5D00S9xb5tHfe8TaMybSMQHv8Gz/O0ODW1BQSX9sxKI2Doff0QMZAzs0P7lwHBk/3RWRg7Bi4vmDv473BF8nmZGbH2JRZGjyO0/aq/u7dmyE1vwg5tN6o4t39BusRVWNJCbHI2t3Iw/Ma/d2hUREZF91GoWkrNsDc4wFdBu0SstjvK6ZirrmyGlF353At4CJZD2lBJIItLhIg6/FuNrZGTJdNzpvfi7fxrnRNzJ6nNnE3/2/4i64AU8GUNxvnop3oKO2cnK77csLKhkZPckbOFcbLeR4HB2SN9yYHG7nEwa2puP7Wgil70M3uZwh9Su1i76ggzKqRp0HsaYvbo3Py2QQNrxzV9yfvvWQKpsIDspGlO5GaPlayIiIp1CyywkIGwFtFv0TGtVSNvhwJ81ArNFhbT3lBJIItLxug2j6eoFNN24ntxr3+GkK//KBpPHWQ/O4rNVxRAZS8T5L+GLToNnz8Zf1n4zFHZnfWkdNY1eRmVH49i+FEeulq/Jvps6IpvnPJNwNZbRuPydcIfTrsq2bASgZ//he31vVkIUbpdjxwwkR3I+jqoC8Pv3O67qRg81jV5yEqNwVBVgWmosiYiISHhFRGEn/RrriNixbCxcWnZiW7O9JnAgZzTO0hXgaQxjVF2HEkgiEhZR6flExwT+AR+cncgbPzucHqmxXPL4HJ6auRETn4nzglcwfg++p06H+vKQxrNgcwUAh0QVYvwejBJIsh8O6ZlKScbhFJOCZ+6T4Q6nXdWXFgCQndd7r+91OMx3dmIzyT0wvmao2brfcW2pDBQs7xVTh/E14kjJ3+82RUREpH24xl2C74ZVkJgT1jh6psaSkxTNW4sDnz1ceaMxfu+3O8RJm5RAEpFOISsxipeuPJSj+mfw+zeW8ciXG3Bk9Mee8xzOmkKanj47pN8MLCyoJN7tIqd+eeBArnZgk33ndBj+edZIXvZNJHbzp/irtoQ7pHbjqdpCMxE4Y/dtB5X8tJjvLmGDdlnGVlQRSCB1d5QGDmgJm4iISKfiiksNdwg4HIYzRufy5dpSiiobdsyI8hd2TNmMrk4JJBHpNGLdLh6cNobjBmfxl7eW88bCIlw9D8M79T7cW76h8aXL2mWpy64sLKhkeF6g/pE/PhsSuoWkHzl4DM5OJHL0BTjws+L9h8IdTrtx1W6jypUGe1n/qEV+WiwF5Q34/PbbBFLFxv2Oqyg4AynLXxw4oASSiIiI7MIZo3OxFl6ZVwgJ2fhiMvAVqpD2nlACSUQ6FafDcOc5IxjfK4UbX1zE56tLiBx+Bk2T/0zU6uk0vfu7du+zodnHym01jOyeBEXzsDmj270POThNO/FoFjsHEbv8eSrrmsIdzn5r8vqI85TSGJW+z230TI2l2ecPLDlLzMNioKJ9ZiBFOh3ENxQFDiiBJCIiIruQlxLDhN6pvDSvAL8Ff/ZIzJYF4Q6rSwh5AskYc5wxZpUxZq0x5je7OG+MMf8Nnl9sjAlvVS0RCbuoCCcPThtD38x4rnp6HgsLKnFPvI6mUZfinnMfvuVvtWt/S4qq8PktY9P9OCs34szT8jVpH5EuB7HjLyKfLTzxwvPhDme/bSqrJ4OK/Zqh952d2FyR2Phs/OX7Xyg/sANbFLZyM/7oNIiM3e82RURE5MB01pg8CsobmLWhDJMzBlfFWmisCndYnV5IE0jGGCdwL3A8MAg41xgzaKfLjgf6Bh+XA/eHMiYR6RoSoiJ44pKxpMZFcvFj37CutA73CX/Hkz4Y3vpFuxbVbimgPcKxLnAgRwW0pf30nvQTmhzRdFv/Ch8t3x7ucPbL2u01ZJlyolNy97mNlu1zWwpp2+R8bHvMQKpsICc5OpBASsrb7/ZERETkwHXckCzio1y8NLcQV15wDsuWhWGNqSsI9QykccBaa+16a20z8Dxw8k7XnAw8aQNmAUnGGBUfEREy4qN46pJDcDoM0x75hm11flyn3Y+jsZzmt37dbv0sLKike0oM8WULscYJ2SParW0R3HF4B57KSa7Z/OXVb6isbw53RPts89btxJomEjP2fXlYRrybmEjnjkLaJrkHpp2KaGcnRgfaStTyNREREdm9qAgnU4dn8+7SrdSkDgXAW6BC2j8k1AmkHKCg1fPC4LG9vQZjzOXGmLnGmLklJSXtHqiIdE75abE8fvE4qho8XPjoN1QnDsI74RdELn+p3ZayLdhcycjuSfgL5+JPH6ilL9LuIsZcQDSNHNr4BX9+c3m4w9ln5dsCiZ6IpH3fgtcYQ35qLBuDCSRHSk8ctVv3a5fFJq+P4pomcpLcOKoLcaTk73NbIiIicnA4a0wejR4/b65uwpfYA1s0P9whdXqhTiDtaosWuw/XYK190Fo7xlo7Jj1934t3ikjXMyQnkQcvGM2G0joufWIOjYf+ot2Wsm2tamBbdSMjchMwRfMxuVq+Ju0vMv9QmpP7cHXiLF5dUNRll7LVlQW/74nP2q92eqbF7piBRFKPwM+qgt3f8AO2VQWST72j6zC+ZhzJmoEkIiIibRuWm0j/zHhenFuAP3sUjq0qpP1DQp1AKgRaFyLIBbbswzUicpCb0CeNO88ZwcKCSs5+eD41x/63XZayLdxcCcD4xAocTVU4lECSUDAG77Cf0L1uMVPSq/jta0uoqveEO6q94vdbvJVbA08Ssverrfy0GAoqGvD4/JAcTCBVbNzn9ooqGgLtOksDB1qSUiIiIiK7YYzhzDG5LCyopCxxCM6aIqjpml/ydZRQJ5DmAH2NMT2NMZHAOcD0na6ZDkwL7sY2Hqiy1m4NcVwi0gWdMLQbD184ho1ldZz8ajWlI67Z76VsCwsqiXQ66NO8MnBACSQJkajR52GNkz/kLaC0tomHZqwPd0h7ZWt1Iym+ssCT/ZyBlJ8ai89vKaxogOT8wMH9SCAVVgYSSN1sceBAkmYgiYiIyA87dWQOLofhg8rgl2NbtIytLSFNIFlrvcA1wPvACuBFa+0yY8yVxpgrg5e9A6wH1gIPAVeHMiYR6dqO7J/Bc5eNp77Jx48XHkJNYv99XspmreWbjeUMzknAtXU+NjIO0vqFIGoRcCRk0dhzCt02vs4Jg9J5YuZGqhu7ziykdcW1ZJgKPBHx+10nbMdObKV1EJeJdUVh9yOBtKWyAWMgqSn4/ZMSSCIiIrIHUuPcTBmYyf9Wx2ONQ4W0f0CoZyBhrX3HWtvPWtvbWntr8NgD1toHgn+21tqfBc8PtdZqxESkTcPzknj5qgm4o6K4sPxiTMO+LWV75MsNLNhcyY+HdgsU0O42ChzOEEQsEuAYdT6u+mJ+0XMzNY1enpr53d3HvD4/Pv/3ygB2CmuLa8ky5di4/Zt9BIHi+ECgDpIx+BO74y/fuM/tFVU0kBHvxlQV4I9Jh4jo/Y5RREREDg5njc2lqN5BVVxvFdL+ASFPIImIhELPtFheuWoCTelDuMc7lcjlL+Hdi6VsX6wu4W/vrOD4IVlcMi4LR/EyHHlaviah5R54PN7oNLLWvcz4Xik8+MV6Fm8uYd3yuWz+4mnK3voj9dNv3K8dyUJlXUkt2c5KnInd9rut1NhI4t0uNpZ9W0h7f2YgFVU2kJMUja3chF+zj0RERGQvTOqbTka8m8X+3oFC2rZzfpnXGbjCHYCIyL7KiI/ihSsO5WdPGlYUzKXny5fRMP46YiZdizMqbrf3bSit45pn59MvM547zhyOY/tc8Hshd2wHRi8HJWcEzYPPInbeg/yjG9T7ltLvsa04rfe71/U7EgZNDUuIu7OupJZujkpMwuj9bssYQ36rndgcGQNh4+fgbQKXe6/b21LZwJCcREzxJsgetd/xiYiIyMHD5XRw2qhcPvgqm0muCppK1uPO6B3usDolzUASkS4tzu3ioYsn8GKffzDDM5D4r/+O787h1H5xH9bb9L3rqxs9/PSJObicDh6aNoZYtwsKgytnVUBbOkDkuIvxu9x0q15CjTuLJzmRjZP+w6Yz32fL1WvxRybgXflOuMP8nnXba0j1l+NI2P8ZSBBYxtYyA8nkjcH4mmHb0r1ux++3bKlsJDcpEkd1EY5k7cAmIiIie+fMMbnM9A0EoGHBi2GOpvNSAklEurxIl4NbLjiegmMf4Uzvn1jalEHcJ7/Fc9cY6uY8DX4fAD6/5frnFrCprJ77fjKKvJQYgED9o4Q8iMsI58uQg4Qrox+FV6xm/fkzKTr+cf7UcBYzoifTY/B4sjPS8fc5BrPmgx1/bzuDqnoP/rpSnPggPrtd2uyZGkNRRQPNXj/kBJK3/sI5e91OaW0TzT4/faPrMH4PJllL2ERERGTv9E6PI7n7EGY5RhG34EGaG2rDHVKnpASSiBwQjDFccnhPfnfFRVwb+Vcu8dxEhT+a2Ld/RtM9h9Kw9G3++d4KPl1Vwh+nDmZ8r9Rvby6cq9lH0qG6p8YyICuBU0bmMDw3kYdmbMDr8wPgHHA8zoYyKJoX5ii/tbaklixTEXgSv/9FtCEwA8lvYXN5PSTm4IvNwl+w9wmkwsqGQHuu0sAB1UASERGRfXDWmDz+1XAirsZyGmY/Fu5wOiUlkETkgDIiL4m3r5+Io98xjC/7Pf9LvxnrbSb65fOYNPOn3DC0kfPHt1riUluMo7oAhxJI0oGMMTt+/uyoPmwur+fNxVsCx/pOwRon3hWdZxnbupJaMnYkkNpvCRvAxmAdJH/O6H1Kmm0JJpC62eLAgaT8dolPREREDi5TR2SzPXkUix0DiJ5zP97m75fDONgpgSQiB5ykmEgemjaG354wiH8WDeY4zz/5s+8ihro2c+2aS6l76Uq8lYFf1lX/SMJtysBM+mfGc9+n6/D7LUQn480dD6veDXdoO6wrqSXXEUwgtVMNpJ6pwQRSsA6SM28srsoNUF++V+0UVQQSSCnN2wIHEnPbJT4RERE5uERFOPnzyYP5T+NJRNYVUTfv+XCH1OkogSQiByRjDJdP6s0Ll4+n0efkw/iT8Vw9j/rRVxK94mXMPaOp++Bv2A1fYB0u6DY83CHLQcrhMPxsch/WFNfywfJAEsQ58ARcZSthP7a2b0/rimvpF1uHxUBcZru0mRwbSWJ0xLc7sbUkcfdyFlJRZQMJUS4iagrwx2ZCRFS7xCciIiIHnyP7ZxAz6HhW2O44Z96F39d5alJ2BkogicgBbUx+Cp/+8kjevX4SqemZxJ70d7xXzqapx1HEfv0PzOz7sRmDISI63KHKQezHQ7vRMy2Wez5di7UWR//jAfCv7ByzkNaV1JHvrsbGpoEzot3abb0TG9kjsBh8m/euDlJRRQM5yTHYyk34k7QDm4iIiOyfW6YO5hFOIa56HTWL3gh3OJ2KEkgicsCLjnQS53bteB6Z0ZuYC56l6fy3acg9HDPivDBGJwJOh+GqI3qztKiaz1eXQGpvvCl98XWCBFKT18fm8nqyHRXYuPZZvtaiZ2oMG0vrA0/c8fjSBuz1TmxFlQ3kJEVhKgswKqAtIiIi+ykzIYohU6ax0Z9J06e3Y/3+cIfUaSiBJCIHLXefw4n+6duY8VeGOxQRThmZQ3ZiFPd+ujZwoN9xuAq+gsaqsMa1qawen9+S4i9vtx3YWuSnxbKlqoFGT3B6eM5onFsXgLV73EZRZQN5iRE4aopwJGsGkoiIiOy/Cw7rw/TYM8ioWU7xovfDHU6noQSSiIhIJxDpcnDFEb2Zs7GCmevKcA08AeP3Ytd+HNa41hXXAhDXVIIjIbtd2+6ZFou1sLk8MAvJkTcWR2MFlK/fo/urGz3UNHrpE1OL8XsxyZqBJCIiIvvP6TAccdZ1bLdJVH74j3CH02kogSQiItJJnD02j4x4N3d+tBpyx+GLSsG74p2wxrS2uJYIvEQ0lWHaaQe2FvnBndh2LqRt93AZ25bKwA5svZxlgQOqgSQiIiLtZHjPLL7JOo/+9QtYOCu8X+h1FkogiYiIdBJREU6uPrI3szeU8/XGSvx9puBc9xH4vGGLaV1JLUMTGwNP4ts5gZQWSCBtDCaQyBiIPyIG7x4W0i6qCCSQsikOHFANJBEREWlHh539S6qIo/ajf+L1qRaSEkgiIiKdyDnjupOZ4ObOD9fgHHB8YElX4Tdhi2ddSR0jkgKJmvZOICVGR5AaG/ntTmwOJ76sEVA0b4/uLwrOQEr1bsdiIDG3XeMTERGRg1tKSiobe/+Ew72zePHdj8IdTtgpgSQiItKJBGYh9eGbjeXMcYzEOiLwLH87LLH4/ZZ1JbUMiA3UQWrvItoQmIXUsoQNwOSOwVW8FDyNP3hvUUUDkS4HUXWF2LgscLnbPT4RERE5uPWf+ksacRPzzX9ZvqU63OGElRJIIiIinczZY/PISojiji+24s2bgFn9Xlji2FbdSH2zj17u4Ieldi6iDYE6SBtL63c8d+aNwfg9sG3JD95bVNlATlI0pnIzftU/EhERkRCISsygYuBPONF8xcJnb2ZzcSV+/57vGHsgUQJJRESkk4mKcHL1UYEd2TamTcJVsRbK1nV4HGuDO7B1c1RiHREQndLuffRMiwkmqgJ1nkzuWAB8BT9cB6mosoHspCio3IxR/SMREREJkeQTfs/qlCM4r/YJYh+fTNGSz2n0+MIdVodTAklERKQTapmF9O9NvQHwrez43djWlQQSSCn+8sASMUf7f2z4tpB2cBZSQja+uG4/mEDy+y2by+rJS4zAUbMFR7ISSCIiIhIaUfEpxJ7/DLdE/w5PfSW5r51C3Ws3UFlRFu7QOpQSSCIiIp2Q2+XkZ0f15t3CSKoT+uJfEZ4EUmJ0BJH127AhqH8EgSVswLeFtAF/9mgcW9oupP3JymLK6pqZkuPDWB8mOT8k8YmIiIgA9EiN5dRzL+NHzbfzUfwppCx/gtiHJlA699WDZkmbEkgiIiKd1Flj88hOjOIDz0hcRbOhoaJD+19bXEvv9FhM7TZMO+/A1qJlBtL3CmlXbYK60t3e9/CX68lJiuaozOAOcVrCJiIiIiE2snsy044YwmUlZ/LxhKfxupNIe+ti/C9cAI1V4Q4v5JRAEhER6aTcLidXH9WHZyoHY6wP/+oPO7T/dSV19MmIw9RsxZHY/gW0AeLcLtLj3WxslUBydQ/UQbJFu56FtLSoilnry7loQj7O6oLAQSWQREREpANcM7kPvdJi+dPCGGou/Iiy8b/F1G2HiNhwhxZySiCJiIh0YmeOyaU4fjAVJglPBy5jq2rwUFLTxIBkg2muhRAtYQPomRr7nSVsdBuBNQ68m3ddB+nhGeuJc7s4e1wetmIT1jggMTdk8YmIiIi0iIpwcttpQykob+ChrwpIPe43OC55D5yucIcWckogiYiIdGJul5Orj+7Hh57hmLUf4W+s6ZB+WwpoD4gLFreOD80MJIDheYnM31zJ8i3VgQPuOLypA7CFc7937daqBt5avJWzx+aREBWBv2IT/vhscEaELD4RERGR1g7plcp5h3TnkS83sKigEuNwhjukDqEEkoiISCd35ug8Pog5nkhvDXWf/KtD+lxXHEgg9XIHkzohnIH0s6P6kBQdwf+9tgRfsAilzRmNc+sCsN8tSvn41xvxW8tFE/IDByo3Q6KWr4mIiEjH+s3xA0iPd3PTK4vx+PzhDqdDKIEkIiLSyUW6HJxw3Em84ZuAe869eMo3h7zPtSW1RDodpFMeOBCiItoASTGR3HziQBYWVPLs7E0AOPPG4GyqhLJ1O66ra/Ly7OzNHD+0G3kpMYGDlZtV/0hEREQ6XEJUBH85eQgrt9Xw4Bfrwx1Oh1ACSUREpAs4bVQu64fdiN9vWfvcr0Le37riOnqmxeKs3RY4kBC6BBLAKSNyOLxPGv98bxXbqxtx5gUKaXsLvtlxzYtzC6hp9PLTw3sGDnibcdRuxZHSI6SxiYiIiOzKjwZnccLQLO75ZC0Vdc3hDifklEASERHpIq47/Wg+SDyDgSXv8eVn74W0r/UltfTOiIWabdjIWHDHh7Q/Ywx/PWUITT4/f3pzGaQPwB8Ri68gUAfJ57c8+tUGxvRIZmT35MBN1YUY68ckKYEkIiIi4fHHqYN55rJDSI6NDHcoIacEkoiISBfhdBiOvvQ2yk0S0Z/ewqLNFSHpp9HjY1N5Pb3T47DVW7BxoZ191CI/LZbrJvfhnSXb+HhVKd6sETiK5gHw4fJtFJQ38NOJPb+9oTK4lE9L2ERERCRMMuKjGNXy5dYBTgkkERGRLiQ2MRnvEf/HaLOKZx7/LwXl9e3ex2erSvD5LWPzU7A1W0Na/2hnl0/qTd+MOG55YxmerJG4SpaBp5GHZmyge0oMxwxqVcxbCSQRERGRDqMEkoiISBeTMemn1CT25zrfU1z+2FdU1Xvatf3pi4pIi4tkQu9UqNmGCXH9o9YiXQ7+dtpQiiobeKc8B+P3MG/258zbVMHFE/JxOsyOa23FJqxxQkJOh8UnIiIicrBSAklERKSrcTiJOOFv5JoSjqx4hSuenkuzt322j61p9PDRimJOHJaNy2EwtR2bQAIYm5/CuePy+PeKBACWz/mEWLeTITmJrC2uobCinvK6ZjxlG/En5IDT1aHxiYiIiByMlEASERHpgqL6T6Eh/xh+4Z7OmvUbuOmVxVhr97vdD5Ztp9nrZ+qIbKgvx/iaO3QJW4vfHDcQT0wmxSaVYyuf59mE++mx8A7cS1+gad3XbNtSgKd0AyRq+ZqIiIhIR9BXdiIiIl2U8/hbiXhgAg91/4DTFiSSEe/mtycMxOPz0+Dx0VBXg79wAQmZPYjN6rNHbb6xaAt5KdGMzEuC7UsDB8OQQEqMieD3Jw7iry+ey6muLzmEjUQv/hJjvd+5zjfsvA6PTURERORgpASSiIhIFxWZ2Z/64RcyctFjXDP4ZF75Yg79Sz9kUvR6YrbPI6NsOcZ68Ual0nTpx7jTe7bZXklNE1+tLeXKI3phjIGabYETYUggAUwdns2MNWfxnjmbtPE9wO8hsqYQd/UGIqs2EFlbQOoh08ISm4iIiMjBRgkkERGRLixqyu/wL3+ZGzZewS+jmmA9eBxRNGWOomT4VZDWj9QvfgfPnY33px/giknabVvvLNmKz285eUSwKHXN1sDP+Kzd3hNKxhhuP2MY1Y1evD4/Pr8bb0J/vFn9aPT7aTKGtLTYsMQmIiIicrBRAklERKQLc8SlUnf8v2le+ha16cO5c1Uyb21P4c7DxnLsoCwcDkNtajaxL55F/QsX45z2EmY3RaffWFjEgKx4+mXGBw5UhzeBBIEkUmJ0RNj6FxEREZEAFdEWERHp4mJHnkHkWQ+T86Of88crfkKfrGRueGERCwsrAYgbOIWao28jdtMn1L75m122sbmsnvmbK7+dfQRQsxV/dCq43B3wKkRERESkM1MCSURE5AAQ63bhcBjioyJ4/OJxZCS4ueTxOawtrgEg4fArqBl+KfELH6L6ywe/d/+bi7cAcNLwb+sd+au3hK3+kYiIiIh0LkogiYiIHGDS4908eck4XA4H0x75hi2VDQDETf0Hdd0nE//xb6ld8fGO6621vL6giLH5yeQmx3zbUM02SAjf8jURERER6TyUQBIRETkA9UiN5fGLx1Ld6OWix76hqsGDcUbgPucxmpN6Ef3aRTRsXQHAym01rCmuZerw7O82UrMNh2YgiYiIiAghTCAZY1KMMR8aY9YEfybv4po8Y8ynxpgVxphlxpjrQxWPiIjIwWZITiIPXjCaDaV1XPnUPJq9/sAubOe9gHVE4Hj+XDy1ZbyxcAtOh+GEoa2SRT4Ppq4YErJ3276IiIiIHDxCOQPpN8DH1tq+wMfB5zvzAjdaawcC44GfGWMGhTAmERGRg8qEPmn84/RhzFxfxk2vLMZaizu9F01nPElETRGeFy/hrYWFTOybRmpcq2LZtcUYbFh3YBMRERGRziOUCaSTgSeCf34COGXnC6y1W62184N/rgFWADk7XyciIiL77rRRudx4TD9eW1DEvz9cDUBsn8OpnXwrMZs/48Talzh5xM7L17YGfsZrBpKIiIiIhDaBlGmt3QqBRBGQ0dbFxph8YCQwezfnLzfGzDXGzC0pKWnvWEVERA5o10zuw9lj8rj7k7U8/81mABIOu4wF8UfxS9eLHBW9/rs37EggaQaSiIiIiOxnAskY85ExZukuHifvZTtxwCvAz6211bu6xlr7oLV2jLV2THp6+v6ELSIictAxxvDXU4cwqV86v3t9KZ+tKsbjt1xfexHlEZnEvnUF/tqyb2+obkkgqYi2iIiIiOxnAslaO8VaO2QXjzeA7caYbgDBn8W7asMYE0EgefSMtfbV/YlHREREdi/C6eC+n4yif2Y8P3tmPg9+sZ7NDRGsnng3zvoSml65EqwNXFyzFWucEKsvbUREREQktEvYpgMXBv98IfDGzhcYYwzwCLDCWvvvEMYiIiIiQJzbxWMXjyUxOoLb319FQpSLsYdNpvHIPxK94QMavrg7cGHNNmxcJjhC+VFBRERERLqKUH4q/DtwjDFmDXBM8DnGmGxjzDvBaw4DLgAmG2MWBh8nhDAmERGRg15mQhSPXzKOhCgXp43Kxe1yEjPxZ9T3Ohb353+medM3+Ku3QIKWr4mIiIhIgLEtU9W7kDFjxti5c+eGOwwREZEura7Ji9vlwOUMfJ/kryvHd//hYBw4HWC6Dcec80yYoxQRERGRjmKMmWetHbOrc5qXLiIicpCKdbt2JI8AHLEp2DMewVW7BUdVAUYFtEVEREQkSAkkERER2SEy/1AaJ/0u8CQhO7zBiIiIiEin4Qp3ACIiItK5RB/xCxqiE4kefGK4QxERERGRTkIJJBEREfkuh4Po8T8NdxQiIiIi0oloCZuIiIiIiIiIiLRJCSQREREREREREWmTEkgiIiIiIiIiItImJZBERERERERERKRNSiCJiIiIiIiIiEiblEASEREREREREZE2KYEkIiIiIiIiIiJtUgJJRERERERERETapASSiIiIiIiIiIi0SQkkERERERERERFpkxJIIiIiIiIiIiLSJiWQRERERERERESkTUogiYiIiIiIiIhIm4y1Ntwx7DVjTAmwKQxdpwGlYehX9o/GrevRmHVNGreuSePWNWncuh6NWdekceuaNG5dj8as8+hhrU3f1YkumUAKF2PMXGvtmHDHIXtH49b1aMy6Jo1b16Rx65o0bl2Pxqxr0rh1TRq3rkdj1jVoCZuIiIiIiIiIiLRJCSQREREREREREWmTEkh758FwByD7ROPW9WjMuiaNW9ekceuaNG5dj8asa9K4dU0at65HY9YFqAaSiIiIiIiIiIi0STOQRERERERERESkTUogiYiIiIiIiIhImw7YBJIx5jhjzCpjzFpjzG92Ondt8NwyY8w/d3P/mcHzfmPMmJ3O/TbY7ipjzLG7uf+a4DXWGJO207kjjTELg+1/vr+v9UDRCcbsmeD5pcaYR40xEcHjxhjz3+D9i40xo9rrNR8IQjVuxphUY8ynxphaY8w9bfTf0xgz2xizxhjzgjEmMnhc49aGzjpurc6PNcb4jDFn7O9rPVB01jEzxiQaY940xiwKtn9xe73mA0EnGLddfh4xxvwk+G/jYmPM18aY4e3xeg8UnXXcguf0OXIXOsGY6XPkPgjhuB1jjJlnjFkS/Dl5N/fv7v9tGrc2dNZxa3VenyNDxVp7wD0AJ7AO6AVEAouAQcFzRwEfAe7g84zdtDEQ6A98BoxpdXxQsD030DPYj3MX948E8oGNQFqr40nAcqB7W/0fbI9OMmYnACb4eA64qtXxd4PHxwOzw/1+dZZHiMctFjgcuBK4p40YXgTOCf75AY1b1x63VvF9ArwDnBHu96szPDrzmAH/B/wj+Od0oByIDPd71hkenWTcdvd5ZAKQHPzz8fo3ssuMWxL6HNlZx0yfIzvXuI0EsoN/HgIU7eZ+fY48gMatVXz6HBmix4E6A2kcsNZau95a2ww8D5wcPHcV8HdrbROAtbZ4Vw1Ya1dYa1ft4tTJwPPW2iZr7QZgbbC/ne9fYK3duIv7zwNetdZubqv/g1BnGLN3bBDwDZDb6v4ng6dmAUnGmG77/lIPKCEbN2ttnbX2S6Bxd50bYwwwGXg5eOgJ4JTgnzVuu9eZxw3gWuAVQP8+fqszj5kF4oPXxBFIIHn37uUdsMI6bsHrdvl5xFr7tbW2Ivh0Ft/+P0868bihz5G70xnGTJ8j914ox22BtXZL8OkyIMoY4259jT5H7rPOPG6gz5EhdaAmkHKAglbPC4PHAPoBE4NT3j43xoxtx7b3RD8g2RjzWXBa3rS97P9A1WnGLDjl+ALgvX25/yATynHbE6lApbW25ZfV1v1r3Hav046bMSYHOJXAt0nyrU47ZsA9BL5J3AIsAa631vpDEENXFO5x21OXEvimXQI687jpc+SudZox0+fIvdJR43Y6sKAlqdGKPkfum047bvocGXqucAcQImYXx2zwpwtIJjAVcSzwojGmV/Dbgv1te0+4gNHA0UA0MNMYM8tau3ov2jgQdaYxuw/4wlo7Yx/vP5iEctz2t3+N2+515nG7E7jJWusLfMEkQZ15zI4FFhL4NrA38KExZoa1trod+++qwj1uP8gYcxSBBNLhHdlvJ9eZx02fI3etM42ZPkfuuZCPmzFmMPAP4Ed72b/Gbfc687jdiT5HhtSBOgOpEMhr9TyXwDejLedeDU5H/AbwA2nGmMdMoCDhO/vR9p7G9l5wOmwp8AUwfC/uP1B1ijEzxvyBQA2PG/bl/oNQKMdtT5QSmFLckgzfuX+N26515nEbAzxvjNkInAHcZ4w5pR367Oo685hd3Kr/tcAGYEA79HkgCPe4tckYMwx4GDjZWlsW6v66kM48bvocuWudYsz0OXKvhXTcjDG5wGvANGvtul1cos+R+6Yzj5s+R4bYgZpAmgP0NYHq7JHAOcD04LnXCXxLijGmH4HCX6XW2outtSOstSf8QNvTgXOMMW5jTE+gL4F1znvqDQLT+lzGmBjgEGDFXtx/oAr7mBljfkrgm/Rzd1p+MR2YZgLGA1XW2q37/EoPLKEctx8U/DbjUwL/gwC4kMB/Y6Bxa0unHTdrbU9rbb61Np/A2varrbWv72+fB4BOO2bAZgKzITDGZBIoirl+f/s8QIR13NpijOkOvApcoNkr39Npxw19jtydsI+ZPkfuk5CNmzEmCXgb+K219qtdXaPPkfus046bPkd2ANsJKnmH4kGgcv5qAhXif9fqeCTwNLAUmA9M3s39pxLIoDYB24H3W537XbDdVcDxu7n/uuD9XgIZ0YdbnfsVgR00lgI/D/d71VkenWDMvMFrFgYftwSPG+De4LkltNopQI+Qj9tGAgV5a4PXDNrF/b0IJATXAi/x7a4PGrcuOG47XfM42j2j048ZkA18EPzvbClwfrjfq8706ATjtsvPIwRmHlXw7f/z5ob7vepMj846bsFz+hzZOcdMnyM70bgBNwN1rcZjIbvYEQx9jjygxm2nax5HnyPb/WGCb66IiIiIiIiIiMguHahL2EREREREREREpJ0ogSQiIiIiIiIiIm1SAklERERERERERNqkBJKIiIiIiIiIiLRJCSQREREREREREWmTEkgiIiIiIiIiItImJZBERERERERERKRNSiCJiIiIiIiIiEiblEASEREREREREZE2KYEkIiIiIiIiIiJtUgJJRERERERERETapASSiIiIiIiIiIi0SQkkERERERERERFpkxJIIiIiIiIiIiLSJiWQRERERERERESkTUogiYiIiIiIiIhIm5RAEhERERERERGRNimBJCIiIiIiIiIibVICSURERERERERE2qQEkoiIiIiIiIiItEkJJBERERERERERaZMSSCIiIiIiIiIi0iYlkEREREREREREpE1KIImIiIiIiIiISJuUQBIRERERERERkTYpgSQiIiIiIiIiIm1SAklERERERERERNqkBJKIiIiIiIiIiLRJCSQREREREREREWmTEkgiIiIiIiIiItImJZBERERERERERKRNSiCJiIiIiIiIiEiblEASERE5iBhj8o0x1hjj2oNrLzLGfNlBcR1mjFljjKk1xpzSEX1K+wj+feoT7jhEREQktJRAEhER6aSMMRuNMc3GmLSdji8M/tKeH6bQWieiaoOPjcaY3+xHk38G7rHWxllrX2+nMA8K7ZnoC47jlPZoaxdt73Hyci/atMaYulZ/D2uNMb9ux/ZTjDElHZVIFRER6cza7X/gIiIiEhIbgHOBuwGMMUOB6LBG9F1J1lqvMeZQ4GNjzEJr7Xt7erMxxmWt9QI9gGX7EkCrNuTgNNxauzZEbf8DWIG+dBUREdH/DEVERDq5p4BprZ5fCDzZ+gJjTKIx5sngTIlNxpibjTGO4DmnMeYOY0ypMWY98ONd3PuIMWarMabIGPNXY4xzb4O01s4kkAAaEmz3EmPMCmNMhTHmfWNMj1Z9WmPMz4wxa4A1xph1QC/gzeAMErcxJtsYM90YU26MWWuMuazV/X80xrxsjHnaGFMNXGSM+SwY+9fBNt40xqQaY54xxlQbY+a0nrFljLnLGFMQPDfPGDNxp/ZfDL6nNcaYZcaYMa3O5xljXg2+32XGmHtandvt696ZMWZqsO3KYPwDW53baIz5pTFmsTGmyhjzgjEmahdtDAQeAA4Nvu7K4HF3cNw3G2O2G2MeMMZEB8+lGWPeCvZbboyZYYxxGGOeArq3GoddzuQxxvwq+PdlizHmkp3O/dgYsyD4vhYYY/7Y6vQXwZ+VwfYPNcb0NsZ8EnwfS4PjlbS792xvGGPeMcb8q9XzF4wxjwb/fJEx5itjzN3B93elMebone4/lMDf58faIx4REZGuTgkkERGRzm0WkGCMGRhM7JwNPL3TNXcDiQSSMEcQSDhdHDx3GXAiMBIYA5yx071PAF6gT/CaHwE/3ZsATcBhwGBggQnUMPo/4DQgHZgBPLfTbacAhwCDrLW9gc3AScElbE3B6wuB7GDMf9vpF/yTgZeBJOCZ4LFzgAuAHKA3MJPAL/8pBGaR/KHV/XOAEcFzzwIv7ZSgmQo8H2x/OnBP8LU6gbeATUB+sK/ng+f25HW3vGf9gud+Hrz2HQKJm8hWl50FHAf0BIYBF+3cjrV2BXAlMDP43iUFT/0D6Bd8jX2Ccd4SPHcjgfc2HcgMxmyttRfw3XH45y7iPg74JXAM0BfYeblbHYG/f0kEkpVXmW9rWk0K/kwKtj8TMMBtBMZ5IJAH/LFVf/cZY+7bOY49dAlwgTFmsjHmJ8BY4PpW5w8B1gNpBP5uvGqMSQn26wTuBa4B7D72LyIickBRAklERKTza5mFdAywEihqOdEqqfRba22NtXYj8C8CiRQIJCHutNYWWGvLCfyy3nJvJnA88HNrbZ21thj4D4FEzJ4qBcqBh4HfWGs/Bq4AbrPWrgguLfsbMGKn2Ti3WWvLrbUNOzdojMkDDgdustY2WmsXBtu/oNVlM621r1tr/a3aeMxau85aWwW8C6yz1n4UjOElAgkyAKy1T1try6y1XmvtvwA30L9V+19aa9+x1voIvP/Dg8fHEUh2/Cr4njVaa1vq4+zJ625xNvC2tfZDa60HuIPA0sQJra75r7V2S3Dc3iSQDPpBxhhDIHH4i+B7XBOMpWVcPUA3oIe11mOtnWGt3dMkyVkE3uel1to6WiV7AKy1n1lrlwTHZTGBJNkRu2vMWrs2+B40WWtLgH+3vt5ae7W19uofiGl+cDZVy+PY4L3bCCTXngDuAqYF34sWxQT+2/BYa18AVvHtDL3rgNnW2nk/9IaIiIgcLFQDSUREpPN7isDyn57stHyNwOyJSAIzYlpsIjDjBALJjoKdzrXoAUQAWwM5ByDw5VLr639I2i7qD/UA7mq9fIjATJOcVv231Uc2UL7TL/ubCMygarGr+7e3+nPDLp7H7QjGmBsJzLTKJjDDJIHAe9liW6s/1wNRJlD8OQ/YtJuaS3vyultktz5mrfUbYwr4dtx2FUP2LvrclXQgBpjXalwN0LI08XYCiZ8PgucftNb+fQ/bzgZaJ1W+87qMMYcAfyew9CuSQGLupd01ZozJAP4LTATiCfz9q9jDWFqMaqMG0lsEZo+tapXoa1G0U+JsE5BtjMkmkEAavZdxiIiIHNA0A0lERKSTs9ZuIlBM+wTg1Z1OlxKYUdJ6lkt3vp2ltJVA0qP1uRYFQBOBJFBS8JFgrR28nyEXAFe0ajPJWhttrf269ctq4/4tQIoxJn6nuItaPd/nZUXBekc3EZhNkxxc9lVFIMnyQwqA7mbXO4ntyetusYVWYxacNZTHd1/jntr5vSglkDAb3CqORGttHEBwptqN1tpewEnADa2WB/7Q+9rW3ycILAecDuRZaxMJ1GdqeV931fZtwePDrLUJwPns2TjsqVsJLF/sZow5d6dzOaZVho3Aa9lCYJZZN2C5MWYbgdlL44wx28w+1AcTERE5UCiBJCIi0jVcCkwOLhvaIbjE6kXgVmNMfHC51A18WyfpReA6Y0yuMSYZ+E2re7cCHwD/MsYkBAsp9zbG7HbJ0R56APitMWYw7CjUfeae3mytLQC+Bm4zxkQZY4YReP3PtH3nHosnUPepBHAZY24hMANpT3xDIInyd2NMbDC+w4Ln9uZ1vwj82BhztDEmgkBdoiYCr3tvbQdyW+onWWv9wEPAf4IzfDDG5LQs7TLGnGiM6RNMnlQDvuCjpa1ebfT1IoGi5YOMMTF8t64UBN7bcmttozFmHHBeq3MlgH+n9uOBWgKFtXOAX+3la98tY8wkArXApgUfdwf7aJFB4L+NiOA4DSRQi+pdAvWtRgQftwALgBHB/95EREQOSkogiYiIdAHB2j5zd3P6WgLFi9cDXxKYBfJo8NxDwPvAImA+35/BNI3AUqPlBJYOvUxg9sX+xPoagSLOz5vALmlLCdRa2hvnEvglfgvwGvAHa+2H+xNXK+8TSBKsJrBsqZE9XLYXTCCcRKAw9WYCxajPDp7b49dtrV1FYLbN3QRmDJ1EoHh18z68nk8I7IC3zRhTGjx2E7AWmBWM5SO+rfHUN/i8lkCh8fustZ8Fz90G3BysJfTLXcT9LnBnsM+1wZ+tXQ382RhTQyDx8mKre+sJzAj6Ktj+eOBPwCgCM8DeZqe/nyawe9wDP/D6FwV3dWt53GmMSSCw3PMaa21RcPnaI8BjrWYdzQ6+F6XBuM4I1sVqstZua3kEY/ME/ywiInLQMnteM1FEREREpOszxlwE/NRae3i4YxEREekqNANJRERERERERETapASSiIiIiIiIiIi0SUvYRERERERERESkTZqBJCIiIiIiIiIibXKFO4B9kZaWZvPz88MdhoiIiIiIiIjIAWPevHml1tr0XZ3rkgmk/Px85s7d3U7GIiIiIiIiIiKyt4wxm3Z3TkvYRERERERERESkTUogiYiIiIiIiIhIm5RAEhERERERERGRNnXJGkgiIiIiIiIi4ebxeCgsLKSxsTHcoYjslaioKHJzc4mIiNjje5RAEhEREREREdkHhYWFxMfHk5+fjzEm3OGI7BFrLWVlZRQWFtKzZ889vk9L2ERERERERET2QWNjI6mpqUoeSZdijCE1NXWvZ84pgSQiIiIiIiKyj5Q8kq5oX/7eKoEkIiIiIiIiIiJtCmkCyRjzqDGm2BizdDfnjTHmv8aYtcaYxcaYUaGMR0RERERERORAYozhggsu2PHc6/WSnp7OiSeeGMaoflhcXNwPXvPHP/6RO+64o81rXn/9dZYvX95eYUkbQj0D6XHguDbOHw/0DT4uB+4PcTwiIiIiIiIiB4zY2FiWLl1KQ0MDAB9++CE5OTlhicXr9XZ4n0ogdZyQJpCstV8A5W1ccjLwpA2YBSQZY7qFMiYRERERERGRA8nxxx/P22+/DcBzzz3Hueeeu+NcXV0dl1xyCWPHjmXkyJG88cYbAGzcuJGJEycyatQoRo0axddffw3A1q1bmTRpEiNGjGDIkCHMmDED+O6MoZdffpmLLroIgIsuuogbbriBo446iptuuol169Zx3HHHMXr0aCZOnMjKlSsB2LBhA4ceeihjx47l97///W5fy6233kr//v2ZMmUKq1at2nH8oYceYuzYsQwfPpzTTz+d+vp6vv76a6ZPn86vfvUrRowYwbp163Z5nbQPV5j7zwEKWj0vDB7bGp5wRERERERERPben95cxvIt1e3a5qDsBP5w0uAfvO6cc87hz3/+MyeeeCKLFy/mkksu2ZH4ufXWW5k8eTKPPvoolZWVjBs3jilTppCRkcGHH35IVFQUa9as4dxzz2Xu3Lk8++yzHHvssfzud7/D5/PtUQJm9erVfPTRRzidTo4++mgeeOAB+vbty+zZs7n66qv55JNPuP7667nqqquYNm0a99577y7bmTdvHs8//zwLFizA6/UyatQoRo8eDcBpp53GZZddBsDNN9/MI488wrXXXsvUqVM58cQTOeOMMwBISkra5XWy/8KdQNpV2W+7ywuNuZzAMje6d+8eyphEREREREREuoxhw4axceNGnnvuOU444YTvnPvggw+YPn36jlpCjY2NbN68mezsbK655hoWLlyI0+lk9erVAIwdO5ZLLrkEj8fDKaecwogRI36w/zPPPBOn00ltbS1ff/01Z5555o5zTU1NAHz11Ve88sorAFxwwQXcdNNN32tnxowZnHrqqcTExAAwderUHeeWLl3KzTffTGVlJbW1tRx77LG7jGVPr5O9F+4EUiGQ1+p5LrBlVxdaax8EHgQYM2bMLpNMIiIi0sGspeajfxA18DgickeEOxoREZGw2ZOZQqE0depUfvnLX/LZZ59RVla247i1lldeeYX+/ft/5/o//vGPZGZmsmjRIvx+P1FRUQBMmjSJL774grfffpsLLriAX/3qV0ybNu072743NjZ+p63Y2FgA/H4/SUlJLFy4cJcx7snW8bu75qKLLuL1119n+PDhPP7443z22Wf7dZ3svVAX0f4h04Fpwd3YxgNV1lotXxMREekifGs/Jf6r27DTrwXb9vc7fr9l7sZy/vrWcg7/xyec++CsDopSRETkwHfJJZdwyy23MHTo0O8cP/bYY7n77ruxwf9PL1iwAICqqiq6deuGw+HgqaeewufzAbBp0yYyMjK47LLLuPTSS5k/fz4AmZmZrFixAr/fz2uvvbbLGBISEujZsycvvfQSEEheLVq0CIDDDjuM559/HoBnnnlml/dPmjSJ1157jYaGBmpqanjzzTd3nKupqaFbt254PJ7v3B8fH09NTc0PXif7L6QJJGPMc8BMoL8xptAYc6kx5kpjzJXBS94B1gNrgYeAq0MZj4iIiLQv7xd3YB0uIosX41n2xi6vWbmtmj+8sZTxt33MGQ/M5MmZm4iKcDJzfRkbS+t2XOf3a4KxiIjIvsrNzeX666//3vHf//73eDwehg0bxpAhQ3YUsL766qt54oknGD9+PKtXr94xi+izzz5jxIgRjBw5kldeeWVHm3//+9858cQTmTx5Mt267X7vq2eeeYZHHnmE4cOHM3jw4B1Fu++66y7uvfdexo4dS1VV1S7vHTVqFGeffTYjRozg9NNPZ+LEiTvO/eUvf+GQQw7hmGOOYcCAATuOn3POOdx+++2MHDmSdevW7fY62X/G/sC3hZ3RmDFj7Ny5c8MdhoiIyEHNu2kWrseOpXnyHzELngYMEdfOBoeTZq+fd5du5elZm5izsYJIl4PJ/TM4fmgWRw3IoKrew0n/nM4NIw3HZtXgKF9LtKeCuB/fCrFp4X5pIiIie2TFihUMHDgw3GGI7JNd/f01xsyz1o7Z1fXhroEkIiIiXYi1llXba1hbXEv/j/9MliOBSxcNYVjT6dxc/w/+8+9b+TpuChtK6yitbaZHagy/O2EgZ4zOJTk2MtCI34/jtatYGPUSrABWgDVOjPXBgCkw7Mw2YxARERGRjqcEkoiIiOyxv7+3kv99vp6BZhPvur/iQec5uGMS2JwwhQ2FL3NewzPMiz+KQ3qmcuaYXCb1Tcfh+G4xzJoPbiV+1Ut8k3YaD2zpxY3nnUi3rBxS7ukL1YVhemUiIiIi0hYlkERERGSPfL66hP99vp7TRuXw27pn8W2J4/Ib/s7l0ckAeFb+jYjnz+bR4auIHP/TXbZRO/8l4mfdQe2As0ib/G8++fcXTKpK4qIhGVh3IqZ6l5uxioiIiEiYhXsXNhEREekCSmqauPHFhfTPjOfWidGkbX4Hz6iLIZg8AojofyzN2eNwzLgdPA3fa6Nh41xi3r6GhqwxxJx2N70y4umfGc+7S7cBYBOy8VcVddhrEhEREZE9pwSSiIiItMnvt/zypUXUNHr577kj4au7sI4I3Idf+90LjcEx5RZcdduo/vxuymoaqWrwUN/spaG8CNf/s3ff4VGVaR/Hv2d6ei+kQiCUEAi99yaIDbvYu2tZdXctu667rr7r2lZdexe7ggoqNgSlI72HlgDpvbep57x/DCAqnUxOyv25Li+YM+c85zdByOSe57mfOZfj8YvAdNkHGCw2AM5Ij2Xt/krK6x0QEg9SQBJCCCGEaJVkCZsQQgghjumtFftYsruMf5ydRpC9EGvmbBwZV+EXFPO7c00po3EkjyN4+b9RVz2F2z8al38MxqZyDI5anFd/i19I7KHzp/aO5blFe1iYWcKlwfGoRVta8qUJIYQQQogTJDOQhBBCCHFU2wpqePy7nUztYuas0teJ+WACKAaso+886jWmi96idOS/qOh9DQ3Rg9AMZlRzIE3nvo5fYr9fndurUxDJEf7eZWwhCRgaSsHt8PGrEkIIIdqPkpISZs6cSUpKCgMHDmT48OHMnTvX5/ddt24df/zjH5tlrHHjxtGjRw8yMjIYOXIku3btapZxm1NzZpw1axa33347AK+88grvvvvuUc/dv38/H3744aHHzfl1P1kyA0kIIYQQR1TvcPO3D37ib5a5XFW2AENREzVdpqOOuZfw8OSjXmcMjCB68l0AuDwqbo+GqmkEWn//tkNRFKb2juWtFfto7B2DP0BdEYR19slrEkIIIdoTTdM477zzuPrqqw8VGXJycvjyyy99fu9BgwYxaNCgZhvvgw8+YNCgQbz22mvcc889v3sNHo8Ho9HYbPc7Fb7IeMsttxzz+YMFpJkzZwLN/3U/GTIDSQghhBC/o2kaD89ZySsNd3ON9gV1yZPJu+xHjJfMIrxLxgmPYzYa8LMYCThC8eigM9JjcXk0NlT7eQ9IHyQhhBDihPz4449YLJZfFSGSk5O54w5vn8L9+/czevRoBgwYwIABA1i5ciUAixcv5qyzzjp0ze23386sWbMAuP/++0lLS6Nv37785S9/AWDOnDmkp6eTkZHBmDFjfjfGmjVrGDFiBP3792fEiBGHZufMmjWL888/n6lTp5Kamsq999573Nc0ZswYsrKyAAgMDOQf//gHQ4cOZdWqVTz99NOkp6eTnp7Os88+e+iad999l759+5KRkcGVV14JQFlZGRdccAGDBw9m8ODBrFixAoAlS5bQr18/+vXrR//+/amrq6OoqIgxY8bQr18/0tPTWbZs2SlnfP/99xkyZAj9+vXj5ptvxuPxAPD222/TvXt3xo4deygLwEMPPcRTTz0FQFZWFpMmTSIjI4MBAwaQnZ3N/fffz7Jly+jXrx/PPPPMr77ulZWVnHfeefTt25dhw4axZcuWQ2Ned911jBs3jpSUFJ577rnjft1PhMxAEkIIIcTvfLQmjz47/0esqZqCGZ8T0mM0STazT+7VLyGU2GAbC/IdjAKoLfTJfYQQQgif+vZ+KN7avGPG9oFpjx316e3btzNgwICjPh8dHc0PP/yAzWZjz549XHbZZaxbt+6o51dWVjJ37lx27tyJoihUV1cD8PDDD/P9998THx9/6NjhevbsydKlSzGZTCxcuJC//e1vfPbZZwBs2rSJjRs3YrVa6dGjB3fccQeJiYlHzfDVV1/Rp08fABoaGkhPT+fhhx9m/fr1vP3226xevRpN0xg6dChjx47FYrHw73//mxUrVhAZGUllZSUAd955J3fffTejRo0iNzeXM844gx07dvDUU0/x4osvMnLkSOrr67HZbLz22mucccYZPPDAA3g8HhobG4+a71gZd+zYweOPP86KFSswm83ceuutfPDBB0yePJl//vOfrF+/npCQEMaPH0///v1/N+7ll1/O/fffz4wZM7Db7aiqymOPPcZTTz3F/PnzAW/h7qB//vOf9O/fn3nz5vHjjz9y1VVXsWnTJgB27tzJTz/9RF1dHT169OAPf/gDZvPpvZeTApIQQgghfmV7YQ3zvprLx6ZF1Pe7noSMCT69n8GgcEbvGL5aV8vDRqBWZiAJIYQQp+K2225j+fLlWCwW1q5di8vl4vbbb2fTpk0YjUZ27959zOuDg4Ox2WzccMMNTJ8+/dBMl5EjR3LNNddw8cUXc/755//uupqaGq6++mr27NmDoii4XK5Dz02cOJGQkBAA0tLSyMnJOWIB6fLLL8fPz4/OnTvz/PPPA2A0GrngggsAWL58OTNmzCAgIACA888/n2XLlqEoChdeeCGRkZEAhIeHA7Bw4UIyMzMPjV9bW0tdXR0jR47kT3/6E5dffjnnn38+CQkJDB48mOuuuw6Xy8V5551Hv379jvj1OV7GRYsWsX79egYPHgxAU1MT0dHRrF69mnHjxhEVFQXAJZdc8rs/i7q6OgoKCpgxYwYANpvtiBkOt3z58kOFugkTJlBRUUFNTQ0A06dPx2q1YrVaiY6OpqSkhISEhOOOeSxSQBJCCCHEIXV2F3e8v4bXTG/g8o8l4Ix/tsh9p/SO5Z1VObhswZilgCSEEKItOsZMIV/p3bv3oQICwIsvvkh5efmhHjnPPPMMMTExbN68GVVVDxUlTCYTqqoeus5utx86vmbNGhYtWsTHH3/MCy+8wI8//sgrr7zC6tWr+frrr+nXr9+hWS4HPfjgg4wfP565c+eyf/9+xo0bd+g5q9V66PdGoxG3233E13Kwv9DhbDbboZ5CmqYd8TpN01AU5XfHVVVl1apV+Pn5/er4/fffz/Tp0/nmm28YNmwYCxcuZMyYMSxdupSvv/6aK6+8knvuuYerrrrqlDJeffXV/Oc///nVOfPmzTtixt++jpN1pGsO3udEv+4nQ3ogCSGEEALwvgn56+dbmVY7h27k4pr6JEa/4Ba5d1K4PwD11mhU6YEkhBBCnJAJEyZgt9t5+eWXDx07fPlVTU0NnTp1wmAw8N577x3qx5OcnExmZiYOh4OamhoWLVoEQH19PTU1NZx55pk8++yzhwpF2dnZDB06lIcffpjIyEjy8vJ+laOmpob4+HiAQ72UmtuYMWOYN28ejY2NNDQ0MHfuXEaPHs3EiROZPXs2FRUVAIeWsE2ZMoUXXnjh0PWHv5Y+ffpw3333va+tCQABAABJREFUMWjQIHbu3ElOTg7R0dHceOONXH/99WzYsOGUMk6cOJFPP/2U0tLSQ1lycnIYOnQoixcvpqKiApfLxZw5c353bXBwMAkJCcybNw8Ah8NBY2MjQUFB1NXVHfVr8sEHHwDepW2RkZEEB/vuvZvMQBJCCCEEAD/uLGXr1o08Y5tLQ8p0Avue3WL3Dg+wAFBrjiZECkhCCCHECVEUhXnz5nH33XfzxBNPEBUVRUBAAI8//jgAt956KxdccAFz5sxh/Pjxh5Z/JSYmcvHFF9O3b19SU1MP9eOpq6vj3HPPxW63o2kazzzzDAD33HMPe/bsQdM0Jk6cSEZGBkuWLDmU49577+Xqq6/m6aefZsIE3yx9HzBgANdccw1DhgwB4IYbbjiU+4EHHmDs2LEYjUb69+/PrFmzeO6557jtttvo27cvbrebMWPG8Morr/Dss8/y008/YTQaSUtLY9q0aXz88cc8+eSTmM1mAgMDeffdd08pY1paGv/3f//HlClTUFUVs9nMiy++yLBhw3jooYcYPnw4nTp1YsCAAYeKeYd77733uPnmm/nHP/6B2Wxmzpw59O3bF5PJREZGBtdcc82veic99NBDXHvttfTt2xd/f3/eeeedU8p9opRTmSalt0GDBmnHavwlhBBCiJP397lbmL7pDwyx5OC+9WesYae3Tv5kaJpGzwe/4+NOH5HRuArDPXta7N5CCCHEqdqxYwe9evXSO4YQp+RI//8qirJe07RBRzpflrAJIYQQAgD37h8YrmyjccwDLVo8Au8nqOEBFkqJwNBQCm5ni95fCCGEEEIcmxSQhBBCCEFxjZ3Euk14FCOBw67RJUN4gIUC1btzCnWFumQQQgghhBBHJgUkIYQQQrAyu5x0ZT/20O4oZr/jX+AD4QEWctyh3ge1UkASQgjRNrTFtjBCnMr/t1JAEkIIIQQrs8rpY9yPNbH/8U/2kfAAC3sdId4H0khbCCFEG2Cz2aioqJAikmhTNE2joqICm812UtfJLmxCCCFEB6dpGtnZuwmnFhIG6JYjzN/Cz03BoAC1UkASQgjR+iUkJJCfn09ZWZneUYQ4KTabjYSEk+t5KQUkIYQQooPLrWwksm4HWIBOGbrliAiwUOIwo4YEY5AlbEIIIdoAs9lMly5d9I4hRIuQJWxCCCFEB7ciq4J0w340xQAx6brlCAuwAOAOiEOtydcthxBCCCGE+D0pIAkhhBAd3Mrscgaac1AjuoPFX7ccEQcKSHb/GGmiLYQQQgjRykgBSQghhOjANE1jVbZ3BpKey9fglxlIjdYY6YEkhBBCCNHKSAFJCCFEq+T4/Ha0xY/rHaPd211Sj6GhhFBPBcZ4/XZgg19mIFVbojE0lILbqWseIYQQQgjxCykgCSGEaH2KtmDd8h5a9iK9k7R7K7LKvbOPoNXMQKowRHoP1MkyNiGEEEKI1kIKSEIIIVod19Knvb9prNQ3SAewMruCUQH5aCgQ20fXLKF+ZhQFijhQQJI+SEIIIYQQrYYUkIQQQrQulXsx7fwCzWBCaSzXO0275vaorN5bwVBbHmp4V7AG6ZrHZDQQ4mem0BPmPSAFJCGEEEKIVkMKSEIIIVoV17LnQDGh9LscmqrB49Y7Uru1vbCWOoebLq4s3ZevHRQeYGG/K9T7oCZf1yxCCCGEEOIXUkASQgjRetSXYtryIe6+l0JMOgoa2Kv1TtVurcyuIJxaAuzFujfQPijc30JRkwnNGiwzkIQQQgghWhGfF5AURZmqKMouRVGyFEW5/wjPhyiK8pWiKJsVRdmuKMq1vs4khBCidXKvfBk8Tsyj7gT/cO/BBlnG5ivL9pQxNbzE+6AVzUCqbHCiBsWhygwkIYQQQohWw6cFJEVRjMCLwDQgDbhMUZS035x2G5CpaVoGMA74r6IoFl/mEkII0QrZazGsewN3j7MhshsEHGik3Fihb652ak9JHSuzK5geVeo9ENtX30AHhAdYqGx0ooTEo9UW6B1HCCGEEEIc4OsZSEOALE3T9mqa5gQ+Bs79zTkaEKQoigIEApWANLwQQogOpLTWzmev/x8GZy3mMXd7D/pHeH+VRto+8cayfdjMBgaY9+MJ7Qx+oXpHArwFpKoGJ0pwPIosYRNCCCGEaDV8XUCKB/IOe5x/4NjhXgB6AYXAVuBOTdPU3w6kKMpNiqKsUxRlXVlZma/yCiGE0MGrP+5gVPkn5IYOgfgB3oOHCkgyA6m5ldbZmbuxgAsHJmAp29Zqlq+Bt4DkVjUc/rEoDWXgduodSQghhBBC4PsCknKEY9pvHp8BbALigH7AC4qiBP/uIk17TdO0QZqmDYqKimrunEIIIXRSUe+g84b/EKNU845hxi9PHCwgNUgBqbm9uzIHl6py46BwjDU5raaBNngLSAB11hhvE/W6Ip0TCSGEEEII8H0BKR9IPOxxAt6ZRoe7Fvhc88oC9gE9fZxLCCFEK/HzZ//jSsP3LAi+kFnFnalqODDjxGRFswTKDKRm1uh0897POUxJiyHZucd7sBXNQAo7UECqMh34sEj6IAkhhBBCtAq+LiCtBVIVRelyoDH2pcCXvzknF5gIoChKDNAD2OvjXEIIIVqBmj0rmLz3cbbaBhBzweN4VI3Fu0sPPa/5R0oPpGY2Z10+NU0ubhqTAkWbvQc79dM10+EiDhSQyg0HmqhLHyQhhBBCiFbB5MvBNU1zK4pyO/A9YATe0jRtu6Iotxx4/hXgEWCWoihb8S55u0/TNPlpQQgh2jlPTSGG2VdRpIXDBW/RJzGC6CArCzNLmdE/wXuSfwRaQ8UR10OLk6OpKkV71rP+p6XcGOEibl8hjTu+wBaciME/XO94h4T5ewtIxdqBJYwyA0kIIYQQolXwaQEJQNO0b4BvfnPslcN+XwhM8XUOIYQQrYjLjvODmRhd9bwY+z+eSO0CwMReMXy1uRCH24PVZEQJiESrK5YC0mnSVJXar/9B3PrneQ7ABSz2Pufud6XPpyOfjIhAbwGpxGFGswRBTb78+QshhBBCtAI+LyAJIYQQv+Ve+C/8Sjdys/Murpoy6dDxyWnRfLQml9V7KxnTPQrFPwKtZJuOSds+TVWp/eYhQtY/z7fmycxTxvHgjCEYbMEYbIHExv52c1R9+ZmNWE0GqhqdqMHxKDWFUkASQgghhGgFpIAkhBCiZXlcGDZ9yELjKIrjJjOia8Shp0Z0jcTPbGThjhLGdI8C/3CUxkodw7Z9td89Qsi6/7EyeDq3ll7Gw+f2IaFXZ71jHZWiKEQEWKiod0JQrOzCJoQQQgjRSrSmWetCCCE6gr1LMDiq+bhpKH8Y1w1F+WV+ic1sZHRqJAszS9A0DQIiUdxN4GzQMXDbVfXNw4SseZrPGc9V5TO5ekQKlwxO0jvWcYUFWKhqdGIIiJJd+IQQQgghWgmZgSSEEKJFubd9jgM/8sOHMSUt5nfPT0qLYUFmCZlFtfT2PzA7qbECLAEtnLRty/r0n3Tb9ixz3GP4LOEe5p/Xh56xwXrHOiHhARYqGpwoMbILnxBCCCFEayEFJCGEEC3H40LN/IoFngFcP64XBsPvu9tM6BmNosDCzFJ6JxzYyr2hHEJb/8yZ1mLTJ/+m345nma+MwXrBi3zUL/FXM71au/AACzkVjRAQgeKsB7cDTFa9YwkhhBBCdGiyhE0IIUTL2bsEi6uWVdbRnNvvyM2bIwOtDEgKY+GOEjg0A0n6IJ2o5R89Qb8dT7DUPJIhd37EOf2T2lTxCLwFpMoG52F//rKMTQghhDgRNTlbKSzMR1U1vaOIdkgKSEIIIVpMyc8fU6f5kT5mBhbT0b8FTeoVw9aCGkrVQO8BWcZ0XJqm8fV7TzNi56Osswwh4845RIcG6h3rlIT7W6h3uHHZwr0HGuTPXwghhDguZyNB700i+p1RFK94n0aHS+9Eop2RApIQQoiW4XHhv/c7liqDuGhY6jFPnZwWDcDiPNV7QGagHJOqanzw9nNMzXqYnX4ZpN05l5DAttszKjzQAkCtEuo9IAVEIYQQ4vgK1mNw21FNNuIW3Y77w5nk7M8mt0I2IxHNQwpIQgghWkTOum8J0urQ0s7Dz2I85rldowJJjvBn4d4mNMUoBaRjaLS7+PiFv3FJzr/I8e9N1zu+xD+gbc48Oijc31tAqlIONP1ukD9/IYQQ4ng8OasAaLzmJ4qGPIBf7hJCZ43mhWf+j31ldTqnE+2BFJCEEEK0iIIVH1Kv+TF66iXHPVdRFNLjQthT1ujtgyNLmI6otLSEzc+cw8zKl8gOHU78rfOxBoToHeu0hQd4C0jlapD3gMxAEkIIIY5LzVmFO7IXW6tNXL1rKFPsj5JvTOYJ00vUv3UBZQV70TTpjSROnRSQhBBC+FxOaTW9apaxN2IMIcFBJ3RNl8gAcisbUf3C0WQG0u/s37Icz8ujGWRfzYqUu+h6x5dYg8L0jtUsDhaQSt1+aIpBZqAJIYQQx6N6MBasYYUzlSvfXEOTy8O9M6fT+S8/MTfmDro1biT07dGULn6NJodb77SijZICkhBCCJ/78dtPCVPqSRo984SvSYkKwKNqOCxhaDID6RBN09i74GXiPj8XTXWzbNQ7jLjyIcymYy8LbEsOFpAqG1xofuEyA00IIYQ4npLtGJz1fFaeyF2TUvnh7rFM69OJAD8bo6/4O+dpT7LHkELMknvR3jtPdrgVp0QKSEIIIXyqvN5BQPZ87AZ/QtOnnvB1KVHePj61hmCZgXKAqmrs//JRUlbezzotjZwLv2PC5LNRFEXvaM0q1N+CokBlowv8I1ClgCSEEEIcU+6mhQBEpI3lrkndsZl/+WApMsjGGaNHML32XrZlPIh//jJYP0unpKItkwKSEEIIn/py/X4mK2tp6nIGmG0nfF2XSO8uYhVqEIoUkHC7PRTMuZcuG5/gG0YQcO1nDO/TXe9YPmE0KIT6malscIB/pMxAEkIIIY6h3uFmz7qFFBPJ3RdOOOI5N47uQqi/lccrR+MOikctyWzhlKI9kAKSEEIInwpe8W/ClHrCRlx1UteF+JmJDLRQ7A6ApipQPT5K2Po5nS5KP7yFxB2v8QlTSLzufTI6R+sdy6fCAixUNbhQAiKlibYQQghxDA99sY3e7kwMycMJtpmPeE6Qzcxt47uxbE85tQEpaGU7WzilaA+kgCSEEMJnspZ8wIXOL9gSfwl0PfInYsfSJTKA3CY/FDRoqm7+gG2BplH/4TXE7Z3Na1xA+g2v0ycpQu9UPhcRYKGiwYESECF9GoQQQoij+HpLET9v3EisUkVU77HHPPeKYcl0CrGxrCYSQ8WeDv3hnDg1UkASQgjhE87SPSQs+Qub1K4kXvzfUxojJTKQrIYDy9466CwUe8E2wvfP5zXOZ9RNz9A7IVTvSC0izN87Awn/SJSmSnmTK4QQQvxGUU0Tf5u7lQsi8wBQkoYf83yb2cidE1NZXhuF4rZD1f4WSCnaEykgCSGEaHaqowH14ytoUo183PkRwkKCTmmclKgAcux+3gcdtA9S1sq5APQ59y7S4kJ0TtNyIgItVDQ4ISDywAy0Kr0jCSGEEK3Kq0v20uT0cG1CMao1GKJ7Hfea8wcksJcE74OyXT5OKNobKSAJIYRoXppG07y7sFbu4i7nrUwYOvCUh+oSGUCldqD41FEbKWctJEtJZmhGX72TtKgwfwtVjU40/wPL9Trqn78QQghxBHaXh3mbCpjSO4bA0nV4EoaAwXjc6ywmA/XBXb0Pynb4OKVob6SAJIQQonltmU3Ajtl8FXoFW/0GM67HqTd7TokK/KWA1AFnIBWVltHdsY3KTqMxGBS947So8AALHlWjwRTmPdBBlzAKIYQQR7Igs4TqRheX9w3EVLELY/KIE742KiKKUkMUnhIpIImTIwUkIYQQzcqT+QWOoCTuLZvGORlxWEyn/q0mKdyfGkOw90EHLCBsXPIFFsVD8tDz9I7S4sIDLADUKB18BpoQQghxBLPX5hEf6sdQYxYAhuRj9z86XGK4P3vUOJCd2MRJkgKSEEKI5lWaSaF/D+weuHBgwmkNZTEZiAkLwa74dbiduDRNw7XrB5oUP2KOs6tKe3SwgFTRgWegCSGEEEeSV9nI8qxyLh6UiJa7Es1ogbgBJ3x9coQ/me54lHLZiU2cHCkgCSGEaD7OBgxV+/m5PobuMYH0jgs+7SFTogKpJgitg81A2ZBTyUDXOsqjhoHJonecFnewgFTqDvQekAKSEEIIAcCcdXkoClw0KAEt52c8sRlgtp3w9cnh/uzWEjB4ZCc2cXKkgCSEEKL5lO1CQWNxVSQXDEhAUU6/b09KZAClascrIC1ZuZIEpZyo/mfqHUUXh2Yg2TU0a7AsYRNCCCEAj6oxZ30+Y1KjiAsAY/EmlKQTX74G3iVsWWq894HsxCZOghSQhBBCNJ9SbzPGLBKZ0T++WYbsEhVAhRqIq67jFBCanB5cuxYAYOt5hs5p9HGwgFTZ4ELzj0CVApIQQgjB0j1lFNXYuXRwIo7cdSiqC2PnE2+gDZAU4c8e7WABSRppixMnBSQhhBDNRi3JxIGZpG69iQ4+8anUx5ISGUglwR2qgLAgs5jh6kbqg1IgLFnvOLrwt5iwmQ1UNjjAP0JmIAkhhBDAJ2vyiAiwML57FK6lz6AZrZA49KTGCLaZMfuHUGWKlp3YxEmRApIQQohmU7l/E3vUeC4a3LnZxuwaFUClFoTJ3nGaaH+5Nouhxp3YenXM2UcHhftbqGxwgX8kWgfchU8IIYQ4XHm9g4U7Sjh/QDz25c8TmLOIxrEPgX/4SY+VFBFArjFRdmITJ0UKSEIIIZqNsWwn+w1JTOwV3WxjRgVZqTcEY1bt4GxstnFbq8LqJtT9y7DiwtR9st5xdBUeaKGywYESEIkiTbSFEEJ0cJ9vyMetalwQW0rwin9T3/kM/EbeckpjJYX7s8MTj6FCdmITJ04KSEIIIZpFdUUpYZ5yrHHpWE3GZhtXURRMQQcKUh2giPDm8n2MVTbjMflB8ki94+gqMcyf7LKGXwpImqZ3JCGEEEIXHlXjozV5jIi30GXJH3H7RWE6/yUMxlP7kT453J+N9lgUt+zEJk6czwtIiqJMVRRll6IoWYqi3H+Uc8YpirJJUZTtiqIs8XUmIYQQzW/lquUA9Og7rNnH9guN8v6mnS9jWr6nnDeX72O6/3a05FEntSVvezQwOYzcykbqjKEoqgsctXpHEkIIIXTxxaYC9pXX84jpDSx1edjPeRVbcOQpj5cU4c9uj+zEJk6OTwtIiqIYgReBaUAacJmiKGm/OScUeAk4R9O03sBFvswkhBDCN/ZmrgUgqdfAZh87KKITAM7asmYfu6W5PSp2l4dGp5t6h5tau4uaJhc5FQ3c/ckmRobXEuUswNjBl68BDO7s7emQ3WD1HpBG2kIIITogl0flf4v2cHvYarqWfEfN0L8Q3GPMaY2ZFP7LTmxaqTTSFifG5OPxhwBZmqbtBVAU5WPgXCDzsHNmAp9rmpYLoGlaqY8zCSGEaGbbCmoIqt2DwxqANTi+2cePjI4DoLy0iLiezT58i3B7VKoyf8S05SOMjhoMrgYMrjrMrgZQXfg1Opnr9hBl8PYhUFKlgNQ7Lhh/i5Ht1Wb6gXcJY0RXnVMJIYQQLevzDfmUVVRyR+DbNMQNJ2jSfac9ZnKEP/X4U2+Nxa90B83XfEC0Z74uIMUDeYc9zgd+u8dgd8CsKMpiIAj4n6Zp7/52IEVRbgJuAkhKSvJJWCGEEKfm0/X5TDPko0SngaI0+/hxnRIAqC4vIq7ZR/ctTdOoKtiNaeE/idr/LW5rGK6ATqjmADy2SJxByeTXutlVXU+36GD8wwPwxHTDPzxF7+i6MxkN9E8KZW1ZAZdDh+iBJYQQQhzO6VZ5blEWfwxfjbWxDm3SPzGaTv/H+JggGxaTgWJrMl1kJzZxgnxdQDrSTxG/7YBpAgYCEwE/YJWiKD9rmrb7Vxdp2mvAawCDBg2SLppCCNFKONwe5m3M5y+mAsydzvfJPZLiO+HRFBqr284kVU3TqK2pwrPkKUI3v45mMFE+5F6MI27HaPPHqCiYDQq5pfVc8PJKhqZE8NZVgzAYFAyG5i/CtVWDksP5/EcjWJElbEIIITqc2evyKKxu4PLwb3HEDMCWMrxZxjUYFBLD/NinJNK1fL53JzaDzEMSx+brAlI+kHjY4wSg8AjnlGua1gA0KIqyFMgAdiOEEKLVW5hZirmpnEBbLcSkHf+CUxBgs1CpBOGq/XUBye7yYDO3rjc7Lo9KdVkBrHmDsO3vYHJUUd39QrSJ/yQyJomaJhfbC2rZXljD9sJalmeVE2Qz8d+LMjCZZHPU3xrcOZzXtCDvg3beRF0IIYQ4nN3l4YUfs7ghZg9BNbk4p/yjWcdPjghgW2kckz0HdmKTZeLiOHxdQFoLpCqK0gUoAC7F2/PocF8ALyiKYgIseJe4PePjXEIIIZrJ7HV5DA8qARcQ3ctn92kwhaIdtoTJ6VYp2LWOxMTOWEJifHbfk1G6byum1S8RseczFI+TuuTJuEbcTU14XxZklvDdpyvYlFd96PzYYBt940O4dXw3ooKs+gVvxfonheI02HApFswyA0kIIUQH8tGaXIpr7dwU/B3uwDgsfWY06/hJ4f6s3RftXTdUtksKSOK4fFpA0jTNrSjK7cD3gBF4S9O07Yqi3HLg+Vc0TduhKMp3wBZABd7QNG2bL3MJIYRoHmV1DpbtKeON7jWQA0T7ZgYSgMsahrWhCk3TUDUo2bqILl/NxNXjbLjkLZ/d90Q5di4g6pNL0AxmqlMvpHHQTcwvCGLetwXsLF4CQN+EEP40uTsZiaH0jgsmMlCKRscTYDXROy6EmsoQwhvKfbt9rBBCCNFKNDk9vPhTNhcnVBFVvpqmcf/EZGzeH9+Twv351BELNu9ObErPM5t1fNH++HoGEpqmfQN885tjr/zm8ZPAk77OIoQQonn9uLMEVYP+1iJU/ygMAZE+u5fiH0lw3U7K6x3Yi3fT6bsbMKhOTPuXgKb5pHn3CfO4UL7/K86gZKov/ZJNlWYenbuTnIoCBiWH8eBZaZzRO4aEMH/9MrZhg5LDKSkLJLReCkhCCCE6hh92lFBe7+CP8T+gVvvhN/TaZr9HUrh3Jza7fyfMshObOAE+LyAJIYRov37ILCE+1I+Q+j0+Xb4GEBQRi1K6hs9WbOXqzBtAMVA54A7CNzwPZTt9fv9jsa9+C1tVFjmTX+PB74pZuruMbtGBvHf9EEanRumWq70Y3DmM8jVBJNeUEqh3GCGEEKIFbC+sIc5YS1zeNzj6XoGfX1iz3yM5wvvBVlVAClGlO5p9fNH+yAd5QgghTkmT08OyPeVM7hmJUrYLg48aaB8UEdWJMKWeoatvx9xQRNG0twgZeT0A7uwlPr33MdlrMS19nLKIQUz6JpCNuVX846w0vr1ztBSPmsnAzmFUEIynXnogCSGE6BgyC2u5LWgxiurCOvI2n9wjMdxbQMq3dMNYvhNcTT65j2g/pIAkhBDilCzbU4bDrTI92YPiavD5DCAlIBIDGhnaTpamPUxM77EYI7rgDk5E3bvUp/c+lqafnsRkr+CemotJCg/gp7+M47pRXTAb5Vtsc4kOsuG2hmN1VuodRQghhPA5TdPIKijnHNd3OFImY4jq5pP72MxGYoKtbDX0QFHdULjJJ/cR7Ye8uxVCCHFKfsgsIchmor+t0HvAhw20AQjqBMDzhst5pTwDy4Et79Xk0ZhyV4Cq+vb+R6BW5mBd9yprgyeztCGBpy7KkMbYPhIYHoNNs6M5G/WOIoQQQvhUWZ2Dvva1BHmqMQ77g0/vlRwewApHCgCe3J99ei/R9kkBSQghxEnzqBo/7ixlfI9oTOU7vQejevr2pj2nU3LRl3iG38nP+yrZUVQLgKnrWAyOaijZ6tv7H4Fzwb9QNfhj6TncOCaF/knN359AeEXHxAOQk5encxIhhBDCt7YX1ZKq5ANg7jzUp/dKDPdne7UFd1gKau5qn95LtH1SQBJCCHHSNuZWUdHgZHJaDFrJDtTgBLAF+/amRjNhPUZzzcgu+JmNvLV8HwCGlDEAuLNbbhmbpmnUZa/GtvMz3ucs/KOSuHtS9xa7f0eUkJAIwK69e3VOIoQQQvhWZmEtKYYi3IFxYAnw6b2SI/wprrXjjhuMIX+Nd2dbIY5CCkhCCCFO2g+ZJZiNCmN7RKGVZrbYDmgWk4FQfwsXDIzni02FlNc7IDgOd1hXtL2+b6TtUTXKy8so++4JbJ9eTq0xjP82nclTF2VgM8vmt74UE+udgbRfZiAJIYRo5zKLaulpKkaJTPX5vZIONNKuDu+HsakCqvb5/J6i7ZICkhBCiJPicnvYsnUjd0WuRfnidpRy3+/A9lvXjuyC06Py/s85AGidR2PMXwUet8/uWVOSS9W8+wh7tR/Rqx+lzK8rVzT+iZljesvStRagBHh3tCstLtA5iRBCCOFbOwpq6EIhhijfz25OivAWkPb7pwPIMjZxTFJAEkIIccK0vUvwPNWTj5r+wG01T+O39zvsyROh3xUtmqNrVCDje0Tx/s85ONwejCljMTjroWiTb25YuZeg14cQsfV16pImsHryXKZV/ZmGyL6ydK2l+Id7f20op7jGrm8WIYQQwkcaHG7qKwvw0xpbZAZS8oEZSDvccaiWIDw50khbHJ0UkIQQQpwwz0//weGBv7uuZd/Fi1Du3Yvf1bOhBT4h+63rR6VQXu/k0/X5GLqM9ubz0TI298aPUNx2Sq/4kT2j/scNP7gIspmYde0QWbrWUmyhaIqRcKWWb7YW6Z1GCCGE8ImdxXWkKAe+z0V08/n9wgMsBFiM5FQ58MQNhPw1Pr+naLukgCSEEOLEVO3HlLeK+ZZpbIq9gC5pgzAa9SuejOwWwYCkUP75xXY+2dGEO7In6l4fNNLWNNg+F3fiCPKMyVw7ay3hARY+uXk4iQc+tRMtwGBA84+gW4CD2evy0KTJpxBCiHYos6j2lwJSpO8/oFMUhaSIAHIrG1ESh2Aq2wH2Wp/fV7RNUkASQghxQjwbP0JD4cXKQUzqFaN3HBRF4Z3rhjCiWyT3fbaVDYa+GPN/Brfz0DmaplGVvRbNUX/qNyrZhqlyD7mdpnLVW2uIDrLyyU3DiQ/1a4ZXIU6G5h9BrxAnO4vr2FpQo3ccIYQQotllFtbSy1yMZvKD4PgWuWdSuB/ZZfUYk4ehoEHB+ha5r2h7pIAkhBDi+DQNNn9EUfgQCrUIJqfpX0ACCLKZefPqQVw2JIk38uMxuO04crxTr+1NjdR8fjdh703C+fmtp3wP95bP0BQjV66KJT7Uj49vHkZsiK25XoI4Gf6RxJoasJoMzF4nu7EJIYRofzKLaultLUUN7wqGlvlxfUz3KHIqGtmkdkVDwSV9kMRRSAFJCCHE8eWuwliTw1v1w+gZG0Rap2C9Ex1iNhp4dEY6wyeci6opfP75R+Rl70B9ayqhW9/GHpmOddcXuPevOvnBNQ1l++dss/aj1hDCBzcMJTpIikd6UfwjMNorOLNPJ77YVIjd5dE7khBCCNFs3B6VnUW1dNYKoAUaaB80o388wTYTb66rxBPZE2QnNnEUUkASQghxXO4N7+M0+vNBbQb3Te2Joih6R/oVRVG4dlJ/qkN6MqJ+AWHvT8JSs5eKs97CeuP3uANiUb/9K6jqyQ1cuBFjTQ7v1g3kD+O6Eh0sxSM9KQGRKI0VXDQogTq7m++3F+sdSQghhGg2+ysa0NwOQp3FGFuwgORvMXHJ4ES+3VZMQ/QAjIXrTv49Uwe2fE85L/6UhdvT/r9mUkASQghxbM5GDJlf8K06lL5d4hjXI0rvREcVnDaRZKWUfZ5I/hHzEmEDzkexBqJOeBBLyUacm+ec1HiuLZ/iwsQm/1FcN7KLj1KLE6UERGKwVzMkIYjEcD9ZxiaEEKJd2V5YS7JSggG1RRpoH+6q4Z1RNY0Vjq4YnHVQtrNF79+WLdxRwsuLszEaWtcHrL4gBSQhhBDHpO34CoOrng/to7hvWuubfXQ406i7KB39KEtHv8+He4z866vtaJqGpf9MnNF9MSx6CFxNv7vOdaRPjFQV5+bPWOrpw41nDMDPot+Oc+KAgEgAcgrzOa9fPCuyKsirbNQ5lBBCCNE8Motq6WE8MLs2sluL3jsx3J+JPWN4bZ/3g0KPLGM7YXmVjSSE+bXq98jNRQpIQgghjsm+7n3ytSjCeo1hQFKY3nGOLTCKyPG3cuukdG4Y1YV3VuXw4k9ZYDBgmPoopvpCHMueO3S60+Wh/OePcb46iZpV7/xqKFfOagLsxawLGs8FAxJa+pWII/GPAMCyfzH9k0JRgE/XyywkIYQQ7UNmYS2Dgsq9DyJatoAEcO3IzmxqDKfJHCoFpJOQW9lIYri/3jFahBSQhBBCHF1NAda8ZXzuGc1fpvbSO80JMRgUFEXhb2f2Ykb/eJ5asJuHv8qkJnoI9m5nYl75LO6aIiq2/4j7tQlEfncztqrdhHz/R2q+fQTtwJr/nYvewaGZGXHmFR1iSnKb0HUCzsg0Epf8if7r7mdkvJGP1uThcrf/ngNCCCHavx1FdaRbSlADY8Ea1OL3H9E1gtToIDbTHUP+mha/f1ukaRr5VU0kSQFJCCFER1e56l0MaDT1uphu0S3/RuZ0GAwKT1zYl0sHJzJr5T5GP/ET7wZcC6oL7bVxRMyZgamxhIpJ/8N59y7qel5EyOqnqJvzB6pr64jN/5bNtsGM6p2i90sRB/mFUnLJt5T0v5PQ7C94pe520hpWM39rod7JhBBCiNNSWmenvN5BolaAFtFyDbQPpygKV4/ozJLGFExV2aj15brkaEvK6500uTwkhvnpHaVFSAFJCCHEkWkajvUfslbryVVnjdM7zSkxGw08dkFfFtw9hgk9o/nPGheve87C3VRPyeD7cd+6lohR1+DnH0Dgxa9RM+RPBO/4mLrnRxFFNbEjZnaI9extSXBgAGWD/kzWuV9g9A9jluUJ6r75F9ll9XpHE0IIIU5ZZmEtoBHelIshqmUbaB/u/AHx7DD3BKAuc4FuOdqKvCpvL0ZZwiaEEKJDq9q7jk6uXEqSz6FTSNv+VKVbdBAvzBzAt3eOZmPX20lrfIULtw9lVe4vDZgVg4Ht3W/j/0y30cmZi9NgI2n4+TqmFkcS4meme0wQxvj+ZM/4mt2dzuUq12zefvlJMgtr9I4nhBBCnJLMoloiqMXsqkWJ1GcGEoC/xUTqwInsVTthWvE0HrdbtyxtwcHNPKSAJIQQokPLX/IOTs1IjwlX6h2l2fSMDeaVqwbx4Y0jsJqMXP/OOm58dx17Sur4xxfbmPnGahbZprBx4gd4LpgFlgC9I4sjsJgMpEQF0ikiBOeZT1MePpAH1Jf4+ysfsWR3md7xhBBCiJOWWVjLsJBK7wOdlrAddNXIbvxPvZCAmj3Ur/9E1yyt3aECUpgUkIQQQnRUqoe4vG9YZx5IauckvdM0u+FdI/jmj6O5f1pPlu8pZ/IzS3nv5xyuH9WFb/44msFjzsSv9zS9Y4rjiAi0ktopjJqz30DxC+Ml41P8+e1FfLg6V+9oQgghxAlzulVWZJUzKrTKeyCy5XdgO1xiuD8xwy9jh5qEYeljeNwuXfO0ZnmVTUQGWvGzGPWO0iKkgCSEEOJ3Srb+SIRWQV3qDL2j+IzFZOCWsV1Z+OexXD+qC5/cNJwHz0rrMG8A2guryUhSUmdKpr5BtFLDW0Ev8+DcTWzOq9Y7mhBCCHFCFu0ooarRxaiwKjSTDUIS9Y7EnZN68IZ5JkENudT9/K7ecVqtvKpGEsPbdquHkyEFJCGEEL9TsvJ96jUbvcddrHcUn4sP9ePBs9IY0iVc7yjiFJmNBjr1HkXJmP/Q17mJv9tm8/yPWXrHEkIIIU7I7HV5xAbbiHPno4algEH/D7MCrCbGnnUlm9SuKEufwO1o0jtSq5RX1dhhlq+BFJCEEEL8lttB55KFrLWNICEmUu80QpwQi8lAxKjrqOp9NdfyFWm7X2ZbfpXesYQQQohjKqm1s2R3GRcMjEep2KNrA+3fOrtfPF9FXEeIs5jypa/rHafVcXtUCqvtMgNJCCFEx5W75kuCqcfT+0K9owhxUiwmAwHnPkV5twv5k/lTCj65G5fsHiOEEKIV+2xDPqoGF/aLQanOwdCKCkiKonDJxVeyWu2J38/P4LLX6x2pVSmqseNRNZI6yA5sIAUkIYQQv1G79iMqtGD6jz1X7yhCnDSLxULIpa+yPOIizqibS9n7N+B0OvWOJYQQQvyOpml8ui6fIZ3D6WIoRdE80IoKSADdO4WwtfsfCfFUsnf+M3rHaVU62g5s0AIFJEVRpiqKsktRlCxFUe4/xnmDFUXxKIoiH3kLIYRO1KZaulUtY33gOCJCAvWOI8QpMZtMpF71HM96LiZu/1wcH16B5pLeDUIIIVqX9TlV7C1v4MJBCVC+x3uwlRWQAC696BKWMYDEbS+Ql71N7zitRl7VgQKSzEBqHoqiGIEXgWlAGnCZoihpRznvceB7X+YRQghxbFnLZmPDiaV/+2+eLdq3mBB/6obezT9dVxO0/3uc3/9T70hCCCHEr8xZl4+/xcj0Pp2g4kABKaL1FZACrSYMZz+NR1Oo/uB6ymsa9Y7UKuRVNmE0KHQKsekdpcX4egbSECBL07S9mqY5gY+BI62JuAP4DCj1cR4hhBDH4Nkym3wtikGjpuodRYjTdvOYFD5SprEmaDLmzR+Ao07vSEIIIQQAjU4387cUMr1PJ8xGA/biXagB0WAL1jvaEY0c2J9dA/5JH3UnX7x0L9WNsjw8r6qRTiE2TMaO0xnI1680Hsg77HH+gWOHKIoSD8wAXvFxFiGEEMfgqi0ltX4tW8MmE2gz6x1HiNMWHWzj0sGJPFE1BoOrHteGD/WOJIQQooPTNA2H28PcDfnEuXK4Wp2H640zsG7/BC2qp97xjqn/WTeTEzuFq+wf8veXP6Sm0aV3JF3lVjZ2qAbaACYfj68c4Zj2m8fPAvdpmuZRlCOdfmAgRbkJuAkgKSmpufIJIYQ4YPdP79MblZAhl+odRYhmc8vYroxdk8s+aw8S1rwGw26CY7zfEEIIIZqbs7aMqk1fotQUYKrLx1xfwOTiXVxuLYMd0BTRm4r+txMx8lq9ox6T0WggZubLuF4Yxp21T3D9m4m8e/NY/C2+Liu0TnmVTUzsGa13jBbl6z/pfCDxsMcJQOFvzhkEfHygeBQJnKkoilvTtHmHn6Rp2mvAawCDBg36bRFKCCHEaTLu+oq9WjwDB4/UO4oQzSYu1I8/TkjluUUTeMbxMp7sxRi7jdc7lhBCiI5C9cC75xBTngmA3RZFiRLFFldXlJRrGXbGZQRGJRNpNuoc9MTYgiOpP/cFUudcwvSSV3l8fhh3TumNwaBgMCgEd5BZ7E1OD+X1DhLD/fSO0qJ8XUBaC6QqitIFKAAuBWYefoKmaV0O/l5RlFnA/N8Wj4QQQviWq66Mbg2bWBgxkxRzx/wUSbRft47vxtVZ06go/ADjkhcIlQKSEEKIFuJYOwtreSaLez3EC2X9WZffgNGgMLFnNE9emEGIf9sruAT2nkr97uu4dvNbsOV7tC0GNJMV1WjDOfQWLBOOuvl6u5HfAXdgAx8XkDRNcyuKcjve3dWMwFuapm1XFOWWA89L3yMhhGgF9iz5hDRFJWTABXpHEaLZGQ0KT106lM+emcQNeXNxlO3FGpWidywhhBDtQG3eNjwVewnrd87vnisrL8VvwcNsoxfXbEwlJRLun9aT8wfEEx3UtnfuCjjrUfKCujN3+WYirCpTugcTWLQK6+qXYPRdYG7br+948g4UkBLCpIDUrDRN+wb45jfHjlg40jTtGl/nEUIIcQQ7viRXi6H/kDF6JxHCJ2JDbPQ86y7Ur+axZs6TjL71Zb0jCSGEaMM0TaNq1buELroXg8dOXePTBI24HoCs0npeX7qX1M2PcZ2hhm8T/8PsiSMY3DmMY/X9bUsUsx+Jk/5AYkQ+d3+yGTU+nSszpsH756Pt+R4l7Uibr7cfuRXeAlJHa6LdcfabE0IIcUTuhipSG9axM2wctg7aBFF0DGMGZZAZMoY+JV+weNt+veMIIYRoo1yORmo/vZ3wBX+kKWYAjYljCfzhL5Su/Yy/z9vK5GeWsHHTOq4xfk9V94v4+w0zGdIlvN0Ujw53Xr94RnaL4InvdlIaNRSPfzTujR/rHcvn8qqa8DMbiQy0QHUuWtku0Np/q2YpIAkhRAe3e+kczHgI6H++3lGE8LkeZ/+ZUKWBJZ+9QnmdA7dHResAb/iEEEI0j8aSvbhfn0LI9vepGnA7lmu/wHzZB5QE9iL465vZs2YBVw/vzOddv0Yx2wg/5xG9I/uUoig8cm46DpfKI9/sQetzIabsH6CxUu9oPpVX2UhCmB+KoqD9/Cq8MgpcjXrH8jn5qFkIITo4z/YvKNQiGDh8kt5RhPA5a7fR1If04MbqT8h9fTemqCA0FAwmMyGT/gJRPfSOKIQQopWq2PgVAV/fiqapfJb6BCVBE9GW5/JDZgk5ZXfwpf//8V7As6hhFmwbFuIY9w+sQbF6x/a5lKhAbhvfjWcW7uaa885goPoS6ra5GIZcr3c0n8mrajrUQFvNWghJwzFaAnRO5XsyA0kIITowT1Mt3etXkxkyVpaviY5BUbBOeRDMAYTVbMdSsgH/0vUE7ZmH66fH9U4nhBBtlt3l0TuCz7hdLrI++SthX1zJXmcYZzQ+wp+3JvDE97t48vtdFFQ38eDFo4m6dT6K2Q/bor/jCk7GOup2vaO3mFvGpdAlMoC/rVRwR/TAs7n9LmPTNI38ykYSw/ygJh9j+U6MqZP1jtUi5KcFIYTowHYv/5xeuPDLmKF3FCFajLn32dRGjOWc51cwJS6Gxy7oC9/dg3nLh9BUDX6hekcUQog2we7yUNPowJGzDuu+Rai9JuDffazesZpVeUkB5e9eTc+GtXypjMdw7n9Z0Lfzr86xGA0YDN7+RvaZn+GZexOGKf8Ck1WHxPqwmoz8cWI37v5kM9mDptNj29NQuQ/Cu+gdrdlVN7qoc7i9M5CyFnkPdusYM/llBpIQQnRgzq3zKNNC6D/yDL2jCNGiesYGc+2ozny9tYj95Q1YB12JwWNH3fqZ3tGEEKLV01SVovVf0/DZHYS/mkHS52cTs/FZzF/dCm6n3vFOmNujHvU5TdNYvHwJ7pfH0KV+Ex/H/oUxf/mEswZ2xWY2/uq/g8UjAFtCH4y3rsDSY0pLvIRW5ey+cSSF+/NEQV8A3Jtn65zIN/KqvL2OEsP9UfcsRA2Kg6ieOqdqGVJAEkKIDkp1NNC9diXbgsfgb+s4n5AJcdCt47oR4mfmsW93onXqhzuyF+rG9/WOJYQQrV79wsfo9NVMQrPm0hg9kPxxz1A6+QXMdfnY13+gd7wTohVtwf7OBTgr83733PqcKi5/eTHxC/6AGQ+bJn/Cpbc8SGjAib1fMhs75o/ZJqOBP4zryqIiCxWRQ2DLx+1yZ7K8yiYAEkPMKHt/8s4+aoc77B1Jx/w/WwghBHtWzsMPB+Y+5+kdRQhdhPiZuWNCKsuzylmypxyl/+WYijZA6U69owkhRKvVsHMRgauepLbbeZT+IRPDpe8RN+ZaokdcgSM6A+OKp8Hj0jvmcbmWP09g7o+on1yF5nYAsK+8gVs/WM8FL6/kzLI3SDUUYLvoVYaOmqhz2rbj/AHxdAqxMds5ElPVXihYr3ekZndwBlLnpu0ozjoMqR1j+RpIAUkIITqspi3zqNQC6Tf6LL2jCKGbK4clkxTuz2Pf7oS+l6AZTLg3vKd3LCGEaJVcNUVYv7gZZ0gKARe+QKeIMIJsZu8SLkVBGXc/5tpcHBs+1DvqsTkbMe3+GldED2wlG6j4/B4e+nI7k59ewuJdZTw+oJortPk0ZlxHQG9Z5n8yrCYjN41J4aXS3ngMVtwb218z7bzKRkL9zfjlLEZTjNClffX9OhYpIAkhRAekaRqdqtazM2AwgX42veMIoRuLycC9U3uws7iOL7OcuLtORtnyCXjcekcTQohWRfO4cc++DoOzDu3CWRhtQb87x9JrGo7ovhiWP92q/x1Vd32LwdWANvUJVsdeRmTmO9Ss/oBLBiey+PYBnJ/7b5whXfA78xG9o7ZJlw5OwhoYyhrrUJTMz9rEjLSTkVvZSFK4P2rWQtSEIR1q8w0pIAkhRAeUU1xODBVY43rrHUUI3U3v04kukQF8vCYP04ArMDaWoWX9oHcsIUQzcq7/APLX6R2jTWtY8G/8ClbSOPkJbAl9jnySoqCMvQ9zzX6crXjmiWfTJzj8Yhg/x8nl+6exw5LOk7a3+McQCFz8d0wNRWgzXkGxBuodtU3ysxi5flQKr9cMwdhUibb7e70jNav8qibSguwYizdj7EDL10AKSEII0SFt27oBgMRufXVOIoT+FEXh/P7xrN5XSX7kaDz+kbjXSzNtIdoL16pXsXx1K+pPj+odpc1qyFxAwOpnaOh1CYHDrgZAVY/cHNmSNh1nZDrKsqda5yykxkpM+xbxpWc4Ls3ABzeNotutc8AahPH98/DP/ITGoXdh7TxM76Rt2hXDkthkGUS1IRz3unf1jtNscioayKtsZJRhi/dANykgCSGEaOcKs7cCENU5TeckQrQOMwbEA/D55lK0PhdjyvoeGip0TiWEOF3urXMxfX8fmsEMhRvb5Y5QvtaYtxnbvOtxhnXH77xnKK21c+fHG0n9+7dc+eZqvtpciN3l+eUCRYGx92Ku2YezFW7j7tk2F0V1M6tuCI/O6MPQlAjMoXE4z38Lo70KR2Q6AZP+qnfMNi/IZuaKkV35yDkS096FUFesd6TTpqoa9322BT+zkfGmLaj+URDbsT6MlQKSEEJ0MB5Vw1myCwAlopvOaYRoHRLC/BmeEsHnG/MxDrgCRXXh2fyJ3rGEEKfBs3cZhrk34YobhDLpIQxNlVCdq3esNsVRmoX5wwtQzf64L/2Yd9aVMvG/S/h2azHnZsSRXVrPHR9tZOiji/jnF9soqPZub27pfTbOyDSUpU+2ullIDes/JkuLp2uf4UxKizl03L/baGquWIBy1TwwWfQL2I5MS49ltmcciubBs+kjveOctg/X5PLz3kr+fmZ3/HKXQLcJYOhYJZWO9WqFEEKwJb+aOE8hDbZOYPbTO44QrcYFAxPIqWhkXVMn3DH90DZ9oHckIcQpUou2wccz8YQkY7liNiSP8D5RuEHfYK2Ay6NSU1lGxbYfqFjwFDXvX03N7Fupzd+BdtgMLWdVAcp7M1BUN9snvsNFHxfwr68y6ZcUynd3jebpS/qx7L4JvHf9EMZ0j+KjNXlc9/ZaXB7V+0P12PsxV+/FsaH1/FvqqcoluGQN3xtG889zft8HMrTrICzBUToka596xARRYU1kr18ftA3vt+kZgPlVjfznmx2M6hbJxfEVGJoqMXSbrHesFicFJCGE6GBWZJWTohRijErVO4oQrcq09Fj8LUY+35CPoc/5mEq3QW2R3rGEECdJq85Fff8CNLM/pqs/B/9wiOn9yzK2DkytLsDz8ihCnutGxKcXErHyEfyK1hC06zOC3hxB7Uc3UJO/A3d9Bdp7MzDaK/im7/Nc9FkllQ1OXrp8AO9eN4SUKG9zaaNBYXRqFM9f1p8XLx/ArpI63li2DwBL+jk4YvphXPIYuOx6vuxD1n71OgDdJ11LRKBV5zTtn8GgMKhzOJ+q4zBVZUHear0jnRJN0/jr51vRgP+c3wclaxEaCnQdr3e0FicFJCGE6GCW7S6jm6EES0x3vaMI0aoEWE1MTY9l/uYiXMljvQf3LtY1kxDiJDVW4n5nBoqrEeWKz1BCk7zHTVa0mHTUgg5cQPK4cc6+FnP1PiqG3kfFjI+pvm0H6l3baLp1AzV9byAoez7Bb45AfXkU5up9vN7pEf64zMDIbpF8f9cYzuzTCUVRjjj85LQYpqTF8L9Fu8mtaARFwTDpX5jqC7H//HoLv9jfy6loIDR7HnssaUwaMVTvOB3G4M7hzKrpj8ccgHt922ymPWd9Psv2lHP/tJ4khpjx7PwGrVN/CIjUO1qLkwKSEEJ0II1ON/vzcgikAUOkzEAS4rcuHJBAncPN9xWRqH6ReLJ+1DuSEOJEORtxvHcRxppc1Es+xNgp/VdPK3H9UYo2gqrqFFBfTT/8H7bC1bimPU3EtL8RkTGN0Kg4bGYjARHxhM54ksZbN1Dd90Y01c1j/vfw2O5YbhvflTevHkyIv/m493jonN4YFYUHv9iGpmmYU8dhTxqLecXTYK9tgVfppWkaNU0u6h1uHG4PjQ43z3z4BT2VXCKHX37UIphofkO6hNGIjbxOUzFkzgVHvd6RTpimaWzOq+aR+ZmMSbZxsetL3M/0wVi8CUOfC/SOpwuT3gGEEEK0nDX7KklSC70PpIG2EL8zLCWC+FA/PttQyPSUsSh7f/L2bJAfNoRo3Txu7B9fg7VoPdXTX+PjvDguiXUSHvBLM2Qlvj+sfwsq90Jk2/8e2OhwUldZQkynxOOe69y5ANvPz9KUPhO/gZcd9TxTcCxfxN3Gs9un0NDg5qXLMzizT6cTzhQX6sefp/Tg4fmZfL21iLP6xmGa/E+Mb07AvvQ5bFP+fsJjnarqBgcNW74gaMcnuM2BNPjFMH+/xsSaLagmI2GDL/F5BvGLPvGhWE0GfvSbwnWuz1C3z8Uw4Ep9wjRVeb+l+4cd87Tssnq+3FTIV1sKcZfv5Q7LUq6tXIT5x1ocCSPQzvof5h5TWih06yIFJCGE6ECW7ykn1XRgG9V28OZZiOZmMCjM6B/PS4uzqD97NCHbP4OS7RCbfvyLhRD60DSa5t2J397vsU9+jMdyevLJup28vWIfT1/cj1GpB5aZxA3w/lq4sc1/D2yoq0H95EqiCldRd9k8glJHHvVctaYQw7xbcIX3wO+c/x55PIebD1fn8vqyvZTWOeiXGMpjF/ShZ2zwSWe7ekRn5m70NtwenRpFSOJA7N3PwbL2JbQRN6EERp/0mCeipslF7c7FRKx6lNDSDTgD49EUI/51RVyPC4zgTDkDS6A0yW5JFpOB/kmhfF4WwFVh3WD9u/oUkDwu3K9PxlBbgGPYHdjG3AmWAADsLg9r91eybE85S3eV4indyTTDGt7020AX6140FBxdzsIw+i6siYNaPnsrIgUkIYToQJZnlXNrSBVakwUl5PifWArREZ0/IJ4Xfsriq7oeXAFo2T+iSAFJiFbLs+wZ/La+T9Owu8juPJPZ85czvW8ndhbVcsWbq7l5TAp/ntIDS1RPNJMNpXAD9L1I79inrL6mAuXDiwgs3YjbFoFt7jXYb1iMLTz+9yd73DhnX4fF3QSXvAMWfxqdbvaVN5BT0ci+8gb2lzfww44SqhtdjOwWwbOX9GN414hTXuZlNCg8OqMP5764nCe+28m/Z/TBPOlBlJe/xvHTk9jOfvI0vwK/11i0C+Wbv5KYtwiXfyyFY5+EjEv5x1e7WFhWwv1jYzg7xUBskizf18OQzuG88FMWzsmX4b/0ESjfAy3cSsGzbhamyj0444diW/44jnVvsTLpJmY1jmL3/lwGqtsYZczkWksmnaxFaCg4owZh73UN1j7nYQtLbtG8rZUUkIQQooMoq3Ows7iO3vGlqNYuGA1GvSMJ0SqlRAUyICmUt7c5uTQ8FbJ+wjTyj3rHEkIciaahrH0dZ/JYbFP+ySOvrybUz8yjM/pgMRp45OtMXl26l5XZFbx0+QDiY/qgFWxos41gGyoLMb5/AdbqPZSe8Qq22B4EvT8V9+yrUa//GoP5l53FXPYG7HPvJKhgFY6zXqLWvwsvfbWdD1bn4nT/0gcqKsjKsC4R3DQ2hQFJx17ac6L6JIRwzYguvLViH/4WI/dO7Ymrz0wsG2dRnnE9wXHdsZia6U9BVTHNnom1oZTiwfejDbkJB1ae/yGLhTtK+duZvbhpTNfmuZc4JYO7hKP+CJsizmS48ihs/hhl4oMtF8BRj7b4cUrDBvBY8OPUFK/g1sZZjN/9b/oTRKipDgCPOQhX4nDs3e7Gmn4O1uATX77ZUUgBSQghOoiV2eUAdHIXQGxPndMI0bpdM7ILf/xoI/t6DaZb3lzvFtRmm96xhBC/VZOHoa4Qy6i7+C6zlNX7KnnkvHRC/LwNnx+d0YcxqVH8Zc5mHvt2Jy8mDETb8C543GBsWz8K2cv3Y3r3XMyNJVSc/Q7R/c5EURRqzniWkK9vpv6rewk8/38ANBRkYvzsWoIqd1I56E+8UT6Qt7/4CadH5fz+8YzrEU3nSH+SIwIItPrm63D/tJ64VZXXl+1jY241L551N1GZcwh/Zyw1KdOp6HMF/t1GEexnPq2m1s7tX2GpyuLVqAeYu2cY+1atwXGgQHbXpFQpHrUCA5LCMBoUVhYbGRqbATk/0xIfY1Y3OvkhswTjsic5v6mMW6pvY39tOaO6jSS72zkkqasJ2vsV9ti+mLqOxRTfH2Mb+3ehpclXRzSrpqoSjKodS4RM8ROitVm2p5xwPwN+dTnQ+yy94wjRqp3VpxOvLsnmjYLOPO5ugrzVkDJW71hCiN/KWQWAM34oj364g+4xgVw2+NdLtKemx/LV5kI251dDen+U1a9A+W6ISdMh8CnyuDG+dx4GeyXVF84hqufoQ0+FDL6U2qJNBG94mYa4/rgwErTwXjSTjfl9nuev62Kos2dzdkYcd09KJSUqsEUiW0wGHj43nYHJYfz1862cOauB5yfMoUf+J4RmzSNsz2c4QlIo7XYe7pgMiEnHFBqPzWzCZjFgNZ1AiUHTcC5+imIthrcq+5KWYGN0aiSp0UGkxQWTHh/i+xcqjivAaqJ3XDBr9ldiSBgImz4E1QM+nA3/4epcHvpyO4GeapbZPmF7yBj+OuPqQ8UsryQY2naXs+pBCkii2TTmbcHy4QwUsx/ctQUMbXVysBDtj6ZprMgq56wkF0qOq803DxXC1wwGhXun9uTWt0p41M+Ikv0TBikgCdHqqLmrwBLErCx/cisLeO/6IZiMv38Pmh4fwtdbi6gN70MweBtpt6ECkmf7PMw1+6g7dxbhhxWPDgqa/giNpVvx//5uFE2lNnowDxr/xBdrNUanhvK3M3vRq9PJN8RuDuf2i6d3XDB/eH8Dl8+v44qhf+DyKx4kdP83BGV+SMz6pw+d67aGYg9PoyYqA3vsQEgYgi00hrAAC+Yj/Lk6sxYTWLGFJ7Ub+PS2MSSG+7fkSxMnYXDncN77OQf34AGY177uLeJG92r2+7g9Kv/39Q5mrdzPmO5RPOb3Lf67XfS+8mmIDG/2+3U08hO+aBYN+9dhef9sDM46jLV5kPez3pGEEIfJLmugqMbO+CjvGu+WblwoRFs0JjWSPinxbNZSce9ZpHccIcQRaDkrcXYaxHM/7WNiz2hGpx55h630eG/xZKs9Cs0SgFawoSVjnjZ15Yu4QroQlHHOEZ9XjGYsl8yiKWYQ27vdxKTyv/BdnsLD5/bm3euG6FY8OqhbdBBf3D6SmUOS+HBNLue+vpHX64ZRfvEXFP1hNwUzPqdwxMPUdp6KwVVP5LY3SFpwA0lv9SXkjSHUzn8Qt9v9u3HLvv0PpVoo3SbdKMWjVm5Il3CcbpWdxgPvQQvWN+v4mqZRVNPE1W+vYdbK/dwwqgtvnh1Jpz0f4ux7ubz3bSYyA0mctvqslfjNvgSPJRjPlV9hnjUFdfMcTMkj9I4mhDhgR1EtAL3MJd4DETIDSYjjURSF+6b25KdX0+lf+hk0VoK/fHopRKvRWImxfBeLTGOxuzz8bfrRZzP0jvMuZdpWWMfw2H5QuIFT77rTsrTc1ZiLN+Ca8vgxl/zkO/x5Lfq/fLgmj56x/rx/WX+6xwS1YNJj87eY+PeMPtw0JoXnf8zi7RX7+GB1DjOHJDNz6FC69p2Aw63S5PRQ2ViHWrAJc+E6AgtXEbHxBardDQSd9zTGAzORKnatIr5yNe8EXssVo3ro/OrE8Qzu7P3+ubQihN7WYMhfj6H/Fc0ytqZpbFz1Az8v+oJoRyhPDOnHsHQzjgX/wmgwYp34t2a5j5ACkjhN9bt+wm/OTDz+0ahXfYktMhl36lQMmfNg+hNgNOsdUQgBlNTaAQhtzEG1hmDwj9A5kRBtQ/+kMBZ0HotS8Cl1mQsJGnSx3pGEEAfleme8z8rvxCWDE+l6jN4+4QEW4kP92FZYiyFhANrq18DtBJOlpdKeMteKFzBaQzAP/P0P23aXh++2FfPx2lx+3luJ0aBw7cjO3De1JzZz69xtNTkigKcuyuC28d14ftEe3l21n7dW7GNgchiXDEpket9OhEVFQNRE3H3G0+BwU/393wjd/DqVtnBCpz2IwaCw74t/Y9b8GXXZvYf1tBGtVXiAhW7RgazNqeaWTv2bbQaSqqp8+fkHTNt6NwMUl7fCseXAf4B92N3YZDe1ZiMFJHHK3CU78Z99Ka7gJLQr52ELjwfAlHEx7JgLexdD6mR9QwohACiqseNnNmKu2YsW0Q1OY7cTITqaC84+h9qX72P3qi8ZJAUkIVoNLWclHsXMek8X/jMm5bjn944LZntBDfTpj+JxQGkmxPXzfdDTUZWDefd8XENuw2j9pUDW6HTz2tK9vLV8H7V2N0nh/txzRg8uHJhATHDb2DGyS2QAT1/Sj7+e2YvPN+Tzybo87v1sC//6ajs3j+3KLWO7YjEZCPG34D77MWrs1YSv/S+VfqFs9x/EyIblrI6/muEJcXq/FHGCBncOZ/7mQpRRA1BWPX/aO5yW19l57Z1Z/Kns7xSaEqk6913CzC4MtXmYavOxumuJHH9HM74C4fMCkqIoU4H/AUbgDU3THvvN85cD9x14WA/8QdO0zb7OJU6TquKYewdoZhYOeIWpwbG/PNdtIqo1BHXzbExSQBKiVSiusRMbYkOpyELr/Pvmm0KIo+sWG8rW4AHElq8ir6KBxIgAvSMJIQD3/pVs1VKY0DuJ5BP4e5keH8KCzBLqI/oQCN5G2q28gORa9QomFCwjbgHAo2p8tiGf/y7YRUmtgylpMVwzojPDUiIwtNFZOFFBVm4e25WbxqSwPqeKt1bs4+kfdvPl5kL+c34fBncOx2Qy4X/hS9S8X0340geJpjMuxcyAi/+qd3xxEoZ0CeOjNbnkB6SRpLqheCskDj6lsRbvKuWDTz7gOc+j1PgnEXrdfLpEHSwmDkDTNDQNaKN/L1ornzbRVhTFCLwITAPSgMsURfntdgf7gLGapvUFHgFe82UmceLcHvWoz5Ute4OA4jU85LiMO78uZuRjP/LfBbsorrGDyYra82wMu74GV1MLJhZCHE1xrZ3kQDDUFWKUJoJCnLSkwdNJUMp5bva3aJqmdxwhhLMRQ/EmVru7c+MJzD6CXxppZzZFoNpCW38jbUcdxk3v4epxDoQksGZfJWc/v5x7P91CbIgfn94ynNeuGsSIbpFttnh0OEVRGNQ5nJcuH8jb1w6myenholdW8dfPt7JsTxkPfLGDcfuvYpUnjR7sp7L7JVhDY48/sGg1DvZBWtWU7D1wisvYimqaePmd93lO/Q+u4CSs180nLOrXM9EURWkXfy9aG1/vwjYEyNI0ba+maU7gY+Dcw0/QNG2lpmlVBx7+DCT4OJM4EfZa1JeGU/vlX9FUz6+eysvdh/Wnh1itpXHeNffy3vVD6JcYygs/ZTHq8R/5z7c7MGVchMHVALu/0+kFCCEOV1xjp7dfufdBpDTQFuJkhfSZjkcxcWfxfXw3f47ecYTo8Dx5azFqHqoiBzEgKeyErkk/1Ei7Fjr1Qyvc6MuIp82z/j0MzjrMo25nRVY5M1//mZomF/+7tB9z/zCCQZ3bb1P/8T2i+eFPY7hxdBc+WZvLlW+u4estRUxMT8Z98fuUDr6HmLP/qXdMcZISwvxJDPdjQZ4BNbATav66Uxpne3Yub5ifwBUYj3rlF4RGyTLGluLrJWzxQN5hj/OBocc4/3rgW58mEifEtfpNLBU7sVTspL6uAL+LXsNosbG7pI79b9/KWJwEXvACvQ9slTo6NYrcikaeXLCLV5fs5YxeQ8kIiEbbPAdT7xk6vxohOjZV1SiptdM9sdh7QHZgE+LkhSXTdPlXKB9ez7T1N1LStIqIc/4Pk02Wswmhh6x1C0nVFIaOnXbC10QH24gKsrKtsAZD/AC0Ff8DZyNYWuH276oH7eeXccUNZq+pB7e8t5KUqADm3DKCEL+OsUmNv8XEA9PTuGBgAvvLGxjbPRo/i7cxuKf3AzK7pI2a2DOGj9bk4u7VH+MpzkAq2ZdJkNJE5fh/EB4t809akq9nIB3pb/UR530rijIebwHpvqM8f5OiKOsURVlXVlbWjBHF77jsGFa/iDN5DLWj/k7gni+ofv1cPlq2jedefoEp2krK+99B774Df3VZUoQ//zm/D5GBFh77bg9a2gyM2QuhqVqf1yFEe3Gay2XKGxy4VY0krdB7IPzEpvoLIX4tsNsIGq5dzHvqGcRkvoXnlTE4cptnFxkhxInTNI3GrGXsMyQxLqP7SV2bHhfM9oJa6DwSRfPAvqU+Snl6nJs/xVSbS33/m7n27TX4WYy8fe2QDlM8OlzP2GCmpnc6VDwCZNe1NmxyWgwOt8p+Wy+MVXuhqer4F/1GVUkOAOGdOjdzOnE8vi4g5QOJhz1OAAp/e5KiKH2BN4BzNU2rONJAmqa9pmnaIE3TBkVFRfkkrPByrnsPY2MZs20Xc9WuEdzjvpXg0rX0/WEmf1fepDEklfjpR25YF2g1cefEVNbsr2RD8CQUjwNtx1ct/AqEaEdqi1CfTIVdpz45s6TGAUCUMx81KA4sMmNCiFPVPTEG+6THuNz5V1xNdZjeOxtXXuteBiNEe7N2bxmpzh24E4addCEhPT6EPaV1NMWPRLUE4WmN71MbKzEs+Bv2qL5ctTKK6iYXb10zmPhQP72TCXHahnQJJ9hm4sfaAzOHTmEpaWNlgfc3QZ2aMZk4Eb4uIK0FUhVF6aIoigW4FPjy8BMURUkCPgeu1DRtt4/ziAPqS/dTU1P7u+M7CiqpWfQUG9Vu/GtbOFaTgdDhV7J88Iv0MJcRq5VhmfE8mCxHHfvSIUl0iQzggTUW3CHJeLZ86suXIkS75ln5PIbGMsj9+ZTHKKrxNrMPbdyPJsvXhDht143qQn38aM53/gu3JRTlwwtxl2XpHUuIDuP7RQsJVOx0GTDppK/tHReCqsHOMjtat8kou76D3/T71Jv96/sx2qt5xHgrmSWNvHj5ANLjQ/SOJUSzMBsNjO8ZzYd5B3p4neQytsoGJ1Z7GSoGCJCJJS3NpwUkTdPcwO3A98AOYLamadsVRblFUZRbDpz2DyACeElRlE2KopxaJy1x4jQNv1mTsLx3JjVV3qa6ORUNXPP2Gl598Umi3MXs7n4Ty+6dyCc3D+eB6WmMP+syHNd8T92M9zB1Hn7M4c1GA/ec0YM9ZQ3sjJyCMWcp7qq8Y14jhDiChgqUdW8BoFXuPeVhimvtgIZf7X4U2YFNiNNmNCg8eWFf9jtD+b/wf4PmQXtvBmpNkd7RhGj39pU3oOWsBMCSMvKkrz+4E9u2wlqMaWdhaCqHvNXNmvF0OHctwLb9E5bHXMEH+4P5v/PSGd8jWu9YQjSryWkx5DaaaQhOwZN3cgWkHUW1xFCF0xYJBuPxLxDNytczkNA07RtN07prmtZV07R/Hzj2iqZprxz4/Q2apoVpmtbvwH+DfJ2pw6vah7GxDL/yrZg/upiCkjKueXstG3Mq+Fvwd9jDunPJzBuJDbH96rKAxL4EZZxzQreYlh5Lv8RQHsrti2Ywo75zLq7KXF+8GiHaLXXVSxjcTWgRqWgVp1FAqrETbajD6KzBIDOQhGgW3WOC+POU7ry3x8L89P9hbCzH9d75aNL3Twifmrshn8GGXbiCEiEk/qSvjw/1I9TfzPaCGug2Gc1owbNjvg+SngJHPcr8u6kLTOGGnHFcNiSRy4Yk6Z1KiGY3tnsUZqNClrkHSsG6k+r3ub2whhilCkNwrA8TiqPxeQFJtEJFmwGoGnQXfmWbqHrjfEorq/loTDXR9r0YxvwZDKf3v4aiKPx1Wk/W1UXwadrzGBtK4a0zcBbvaI5XIET7Z6+Bta/h7nEWSrdJKNX7TrmZdnGNnYGBB9rLyQwkIZrNTWNSmJwWw19Wmtkx5iUsFbtxvHcJmrNR72hCtEuapjFvYwHDzbsxHmdG/NEoikKf+BC2FdaALRhP8hjYMf+0N6xoDk3f/wtTXQF/sl9PfGQYD56VpnckIXwiyGZmWEoEi+sSva0aagtO+NrMwlriTTWYQuJ8mFAcjRSQOiC1YBOawUzIlL8yO/EB0pxb+SrqFVJ2voIrOAlL3wub5T5DUyKY2DOaR7aEUnrB5ygeJ4ZZZ+LIkVWKQhyPuuZNDI5aTGP/AuFdUJwN0HBqO1AW19rpaa30Pgjr3HwhhejgFEXhqYsyiA/z47rlQZRPfhZr4WrsUkQSwic25lXTtWYloWo1huQRpzxO77gQdhXX4XSrGNPOwliTA6WZzZj05Dn3r8K24XUWBZ3D4qYUnru0P/4Wk66ZhPClKWkxLKo7sN/WSfRByiyqJVapwhAsDbT1IAWkDkgt3IQa2ZPvdlVx3+6evB/zF1JqVmEr3YRn+B/B2HzfrO6f1hOXqnLNt3YqL/kSzeSP6f1zcGUva7Z7CNHuOBth1Qu4UyZCXH8IT/EeP8U+SMU1dlIsB7ZIDUloppBCCIAQPzMvXz6Q6kYXf9yWSsPUZ7HlLTtQRGo4oTEcq9+CvDU+TipE26apKrnfPM3r5v/iCOsBaeee8ljp8cG4PBq7S+pQepyJhoInU79lbGpjNcy9lXprNHeWncM9Z/SQptmi3ZuUFsNOLQmPYkLLP7ECkt3lIbeshmC1RnZg04kUkDoaTcNQvIWa0DT+Mmcz/ZNCufCG+ykd9zgNSeOwDbqyWW+XGhPEm1cPZn9FA1fNq6D6svl4AmIxfHYdOOqa9V5CtBfq+ncwNFVgGnuP98BpFJA0TaO41k68UobqHwVm2QJYiOaWFhfMv2f0YdXeCl6qHkbTmc97i0jvXnz8IlJdCZbv/oxn8RMtE1aINsje1EjNJ7dwXvFzbPYfhuXmheAffsrjpcd5izPbC2sgKAZP3CC0nToVkFQVx+wbMNXmckvjLfTvlsgNo1L0ySJEC+oU4keP+EiyjSmoJ1hA2lVcR7h64EPRIOmBpAcpIHU0NXkY7JW8vS+UQKuJV64YiL/FRPjom9Au/wzMtuOPcZJGdovkjasHsbe8gas/zadp+osYG0tx/vh4s99LiDbP7URb8RzuhGGQfKC/Q0gimmI8pQJSrd1No9NDpKcMTWYfCeEzFw5M4LIhSby0OJuN4dOwn/UitoKVON69CI5RRFK3foqiqSj5q1vdVuJCtAZqbQnqrLMI3fUJz7nPo/zMN1Bswac1ZlK4P0FWE9sKagEw9DoLU8kWqG75XYMbFjyC3/4feNl2I5nmdP57cQYGg9LiOYTQw+S0GH52JEPRxhP6HphZVEuMcrCAJDOQ9CAFpA7GU7gJgFVNCbxy5UBigr0FI5PRQKDVd+usR6dG8fpVg8gqrefy79zU97oU89pXoHyPz+4pRJu05ROM9YWYxt3zyzGTBS0kEe0UCkjFNXYAQp0lKCGJzZVSCHEE/zw7jc4R/vx93jaUjEtpOuslrAWrcM27/ajXqFtmoylGDI5a3XuwCNEaeeb/CVv5dl6LeZA3TDMZ1+v0Zx0YDAppccHeRtp4C0gAnh1fn/bYJ6Np81wCfn6aHbHn8mTVKB46p/eh9+ZCdASTesWw2tMLo6vhhPogZRbWkmzxFn5lBpI+pIDUwaxa/iNuzcAl06cyICmsRe89tnsUr145kN3F9fyj4QI0kw3n/Htbxa4XQrQWnrVv4YnsBV0n/vqJ8BS0ilMoINXaAY0AexGGMNkKWAhfspmN/N95fdhX3sDLi7PxH3gZzqF3YNoxDyr3/f6C8ixMxZvQhtzofZyzqkXzCtHquR0Y9y6iIe0Sni1KZ3rfTlhNxmYZOj0+hB1FtTQ5PRDZDXd4d9QdLbeMzVW0Hcv822iI6se1pZcwpHME52TIrlKiY+nVKYjsoEGoGFD3/HDc87cX1tAnpMn7QGYg6UIKSB3Il5sLceVtoMzWmYuGd9clw/ie0dw0JoW5e1xUDf4Tlv0/4tn5rS5ZhGh1SndgLNqA0v8KUH49fd0QkYJSdSozkJoIpw6jxw4yA0kInxuVGsm5/eJ4eXE22WX1WEf8ARQj7pUv/e5cdfMnaCgYRt6FGhSPJ2eFDomFaMVyVmBwN7E9YCiNTg/n9YtvtqEn9ozG4Va5+u011Nld0OssTHkraawpo8npwe7y4HB7UNXT/6DT6XBQW7CTqu0/UrHqfcq/fxL1o8vQzAG8GPUQpU3w0Dm9URRZuiY6FkVRGNa7G5u0rrh3H7uA5FE1dhbX0d2vHs1gAv+IFkopDicFpA5ie2EN9366if6mHCJTh+ia5ZLB3h9i31On4gpPRfvufnDZdc0kRGugbngfj2LknGXx5Ff9Zgvw8BQUew00Vp7UmMU1DuKVcu8D6YEkRIt4YHovrGYDD87bhhYUizvtfAyb34emql9O0jS0rbPxJI+G4E5oScNRclbJrFwhDuPe9T2a0crbBQnEhdgY3PnUG2f/1ohukTx7ST/W51RxxRuraUqZiqJ58My+Dscn1+L44HIc71xI3cc3UFe0+6THt9dVUrPmQ+revwrjf7sR/PpQwubMIOL724hc9X8YXQ3sm/ASr2xs5PKhyaTFnV5fJyHaqkm9YljszsBcvAkaKo56Xk5FA41ODwnmGrSAaDBIKUMP8lXvAKoanNz07npSbfWEatWYEwfomicx3J8xqVF8vL4IberjmGpycK14XtdMQujO40Lb/DFLtAFsq7Zw/ax11Dvcvzx/aCe2IyyDOYbi2iZ6+VV7H4TKDCQhWkJ0kI37pvZkZXYFczcWYB51BwZXI561b/9yUsF6jNX7MWZcDICx8wgMDSVQdXJ/x4Vo1/b8QFP8CBZmN3BOv/hmby59br94XrliIDuK6rj4yybq40Zgrc7Cr2wz1pq9mJrKCNz7DQFvjKLm63/gbjr+DsKusiwa3zoX69OphHzzB/zyl9OQciZVk5+h6oLZVF6zjKo/ZuO8cycPrA8kxM/Mn6foszJAiNZgSJdw1hj7o6BB9o9HPW97obf3UYRWKf2PdCQFpA5g/pZCCqqbeGbMgW+6nTL0DQRcNiSJ4lo7S93pOFOnY1z+32NWnIVo9/b8gLGpnA+dY7hrUipZZfX88aONeA5OnQ/r4v31JBtpF9XYSbVVex/IEjYhWszMIUn0Twrl31/voDq4B67ksbD6VXA7AXBv/gTNaEVJO8d7QfII76/SB0kIr4psTFXZbPEbgkfVOK+/b/oDTU6L4a1rBrO/0s70mnvZdvEKGm5ei+OmFXDTYhpuWk191+mErP0f2guDaVw/+6gzBZu2zcfw+ngsJRup7X8LtTO/hj/vIvjSVwkbeR1hfc4gvHNfwsIjWbSrjDX7KvnLGT0I9bf45LUJ0RZYTAbCug2limDcuxcc9bzMolrMRoUAR7n0P9KRFJA6gD2l9QRaTaS4s9BQILaP3pGY2CuaqCArH63JxTL6jxjcTZC/Ru9YQujGveE9KgmhPHYMd05M5aFzevPjzlIe/WaH94Swzt6/vydZQCqusdPZVIlmDgC/lm2cL0RHZjAo/Pu8PlQ3uRj/1GLuKxyNsaGYhx9/hBnPL0Hb+jme1DPAFuK9ILIHqi0MNWelvsGFaCUONtR9tSCFXp2C6RnruyVeo1Ijef+GIVQ2OLn0tdW8vDgLTdPwt5gIjk4ieObb1M2cj8cWjv9XN+J4bih1y1/F3XRgNyjVQ8N3/8Lv08txByeh3bSUkHP+TXD3UZjM5t/dr6zOwaPf7KB3XDCXDpYNLoQY3yuWJZ501KxFoKpHPCezsJZu0UEY6osxBEsBSS9SQOoAssvq6RodiFa4CTUiFSwBekfCbDRw8aAEftpVSpGtm/cH46ItescSQh/1ZRj2LOBT9yiuGZ2KoihcOSyZa0Z05s3l+/hoTS6YbWjBcWiV2Sc1dHGtnTjKUEMSfteYWwjhW2lxwTx7ST8m9orBkDqZIksy1xm+JrpsFWZ7OYa+F/9yssGAljgMTQpIQgDg2bWAuoDO/FQexE1juvj8fgOTw/nh7rGc1z+ON5bvY8wTP/Ha0mzsLg8AQd1HY711KfXTnkczmglaeC/KM72pm/dnmt65kICfn6Yx7RIsN/2AOaLzEe9hd3l4aXEW459aTHm9g4fPTcfYzMvyhGiLxvWMYoknA4u9AoqP/DNhZlEtfWOsKPYqWcKmIykgdQBZpfV0iwpEKdoMnfrpHeeQSwcnoWrwyZZKtPAU1KLNekcSQhfalk8waG5+tE3izD6/fKLy9+m9GNs9igfnbWNzXjWEp6CdxAwku8tDdaOLSE8piixfE0IXZ2fE8dRFGTx1cT9izvgzCY5sngj6mBrNn1llqb8619h5BMaqvVBXolNaIVoJZyOm3OX8pPYjIcyPs/u2zPb2sSE2nrgwg2/vHE3/pDAe/WYnE55azJvL99HgcKMYTQQOvQrbbctpuPJbmpInELh5Fta8ZTRNfhL/i15Fsfj/blxN05i/pZBJTy/hie92MSwlnO/uGsPAZJkZLAR4ewdWxI4Efpl9eLjSOjtldQ4GRniXgcsSNv2Y9A4gfKvW7qKk1kF6qB1DZhHE99M70iGJ4f6MTo1k9to87ujaFyV/nd6RhGh5mkbT2nfZraYweuQYLKZf6vomo4HnZ/an/8M/8ENmCRnhKag7vz7hoYtrvLsbhjhLUEJHNHt0IcTJMfS9BM+ihwlp2MeS4DN5bME+RvSI+2VpzsE+SLmroPd5uuUUQnf7l6F4HMyu6cXNZ6dgMrbsZ949Y4N557ohLN9TznOL9vDI/Ez+t3A3VwxL5pqRnYkOshHQdQR0HYGjugiXy0W5EkHOnnJyKxrIq2qitNZOWb2D8jonpXV2qhpd9IwN4oMbhjKyW2SLvh4h2oIBaT3YsrQL3XcuwDb2nl89l3mggXZaUIP3gMxA0o0UkNq5vWXev2QZhv3eA62ggfbhZg5J4g8fbGC/uStda+d6tyj3b74tWoVo9Yo24V+1i3lcx51Dft8HIdhmJiUygJ3FtdA1BUNjOdhrwXb8XhDFtXb8sGNzVcsObEK0BmYb2qAbYOlj9DvzZoI/c3HXx5v44vaRWE1G6JSBZvJHy1mJQQpIogNz7/oet2Il268vFw3S7/vXqNRIRqVGsiG3iteW7OXlJdm8vmwvIX5mPKqGR9XQNGhwulEP66ttNRmIDrYSFWglOcKfgZ3DGJAUxoz+8bJkTYijmNAzmiWLM0gv/gqaqsEv9NBzB3dg62I9sBOizEDSjRSQ2rms0noAkp1Z3gOxfXVM83uT0mKIDLTyZUkUdwOUbIMuY/SOJUSLaVj9DkbNjKHvRYQFHHkXlp6dgtmYWwWDU7wHqvadUDG4uMZOvFLufRAiTTqFaA1MY/6EM24AIT3G8sSFpVw3ax1P/7Cbv07rBUYzavxAkD5IoiPTNNw7v2eZO50rJnTHZjbqnYgBSWG8cuVA9pU38MnaPGrtLoyKgtGgoCgQaDWRFO5PckQAyRH+RAdZUaTvoBAnJT0uhOesgzB45sG+JZB2LgDVjU5mrdxP34QQAhy53pOlgKQbKSC1c1ml9ZiNCiHV2/GEpWA8gVkLLclsNHDRoAQ+WlrG3Ra8jbSlgCQ6Co8Lw7bP+F4dzMwxR98dsWdsEF9tLqQhMIkA8O7EdgIFpKIaO/FKhfeBzEASonUwWbH0PAOACT1jmDk0ideW7mVCj2iGpkRg6DwClj55wjMNhWh3yndja8hnpWEadw9P1jvNr3SJDOD+aT31jiFEu2QwKET2HEHtNn9sO7/HcqCA9NCX26lqcPL2NYMhcwGa0YIiOwvrRppot3PZZfV0jghAKd7SqhpoH+6M3rGUqsE02aKlkbboUFzZy/Dz1LIv5gy6RQcd9byesd7ndjsP9Ew4wUbaJbV2uloqvQ9CEk4rqxDCNx44sxeJYf78be5WnG4VJXkEiqZC3hq9owmhi/KNXwEQNeAsgm1mndMIIVrSuF7xLFfTUfcsBE3ju23FzNtUyO0TupEeH4JWV4QWGCM7C+tICkjtXHZpPX3DPRhr8zC2ogbah+vVKQiL0UC+tRta0ZG3bRSiPcpdNYcmzUL/8TOOeV6PAwWk7eUe1IAYtIoTKyAV1TSRaqlCM5hkqq8QrVSA1cRD56SRXdbAu6v2Q8JgNIMJTZaxiQ6qatN8dmmJXDRhuN5RhBAtbFRqJMu0ftiaSqjev5kH5m6ld1wwt43vBoBWWwKB0kBbT1JAasecbpWcykaG+eV7D7SyBtoHWU1GesUFs9WTjKFiD7ia9I4khO9pGsE5P7De1I/RvY7dnyg+1I8gq4ldxXUQ3gXtBGcgFdc6SDJVogXFgUH/HhJCiCOb0DOG8T2ieHbhHkodRtSYvnj2r9A7lhAtrrKsmM4NWyiOHkNUkFXvOEKIFhZoNdGQOBaAH7/+iFq7i/9enIH54E6MdUUowfKhqJ6kgNSO5VQ04FE10sj2HmilBSSAfgkhLKnthKJ5oDRT7zhC+FzWlpVEqWWo3adhOM6OLIqi0CM2iJ3FtSgRKSe8hK24polOWpksXxOiDXjwrDQcbg9PfLcLJXkExqKNYK/RO5YQLSr3m/9iVjzEj7lK7yhCCJ30692bLDWO8JJV3DWpOz1jf+kHqNQXo8isel1JAUlH7qZan45/cAe2uMadeEK7QCtuNpaRGMoG14Emv7KMTXQA+5bPRtUU+k249ITO79kpiJ3FdRCWgqG+GJwNxzzf7VEpq3MQ4SlFkQbaQrR6KVGBXD8qhU/X57M7ZiqKx4FzxYt6xxKixWiNlXTf/z4/GobTNX2o3nGEEDqZ2CuaFWpvhhl3cvPIwz4EdTagOGohSJaw6UkKSHqp2o/hxSHUrHzbZ7fILvMWkIIqtkJcf5/dpzlkJIaSp0XjNAVKHyTR7tU0uogvXcz+gD4ER8Wd0DU9Y4Ops7upsh34Rlq1/5jnl9U7UDQPQc4ylNBjL5ETQrQOt0/oRnSQlftWKDhSp2Na/RI0VuodS4gWUffjM9jUJnb1vBVFGuQK0WElRwTQY/hZ2HBgKtrwyxN1xd5fZQaSrqSApJegODyRPQn+4c/Ubv7SJ7fIKq0nPcSBqb4AY8JAn9yjuXSJCCDIZibf2k12YhPt3rfLV5Om7Cegz9knfM3BndiyPdHeA5X7jnl+UY2dWCoxoMoSNiHaiECrib+e2ZPN+TX8FHsdirMe1/Ln9I4lhM+p9eXYNr7BN+pQBg4epXccIYTOhk04Fw0Fde+SXw4eKiDJDCQ9SQFJLyYLXPIu9sh0Ar+8gfo9zd8sM6usnnFBBxpoxw9o9vGbk8GgkJEQyhZ3MobSTFA9ekcSwidUVaN03VwAYoZccMLXdT9QQNrUEO49cJw+SCU1duKVcu+DEFnCJkRbcV6/eAYmh/HASo26rmdhXPsqNJTrHUsIn7Iv/R8mTxNvmy9hYHLrbbkghGghfmF4YvuiZi/+5VhdkfdXmYGkKykg6cjsF4zhijm4AuOwfXoZjfnbmm1sVdXILm1gkHk/mmKA2L7NNravZCSGsLwhDsXdBBVZescRwieW7CljYNMqagJTIKLrCV8XbDMTH+rH1nJQ/SKOW0AqqrETp1R4H8gSNiHaDEVReHRGH5pcHu6vPAvFbce59Bm9YwnhM566Mqwb3uBbbTjd0gZhPM7GEkKIjsGQMg5j4fpf+n7KDKRWQQpIOrOGxKBdPhfNaMX80YWUF2RT0+iiyenBo2qnPG5RrZ0ml4eurt2oEd3BGtiMqX0jIyGUbZ5k7wPpgyTaqU+XbWWocQcBfc856Wt7dfLuxEZ4F9SK48xAqrWTZDxQQJIlbEK0KT1ig3j64n58UxTEmsCJmNa98csbZ0D1eKhZ8wH2FS/rmFKI5mFf8gwGdxNPO2dwRnqM3nGEEK2EIWUsiuqCnFXeA3VFaCYb2EL0DdbBSQFJJw63h4tfXcVn6/OxRHbGeekcDM56wt8ajvXVYbjfOY+aT26h/Psnjrvb0pF4d2DTiK7b0eobaB/ULzGULC0Ot2JBkz5Ioh3KqWjAvG8hJlRMvc466et7xAaxt6wBLbwrlG4HVT3quUU1dlItlaj+kWD2O53YQggdTE2P5U+Tu3Nv+TTwuHAtfgpNVand8jXOF0cS8s2t2H64H6py9I4qxKmrL8Nv01usD5pIsTmJEV0j9U4khGgtkoajGS2oexcDoNUVowXGgjTZ15UUkHRSUe/E4Vb585zNnPfSCjLVJBpnfkFFr6twhHfH6KwlKHcRkav+jX3BIyc9fnZpPZ2oxOoob/UNtA+KDrYRHRJIgaUzqsxAEu3QOytzmGJYj9s/GuJP/u9lz9hg3KpGccQwDI3lUHz0vyc7i2tJMlVK/yMh2rA7JnQjvU9/5rhHY9gwi6bXpxL8+UwUdyN14x4GQN02V+eUQpyGdW+heBw82nA243pGYzMb9U4khGgtLP544gahHWikrdUWyfK1VsDnBSRFUaYqirJLUZQsRVHuP8LziqIozx14fouiKK2723MziQv1Y+4fRvDMJRmU1jq46JVV3L9SoXH8v7DOfB/1hkU03JFJQ9qlWDa8iXaSnzBmldUz3HbgmjYyAwkgI9HbSFsp3gLaqS/hE6K1qWl08dnabCaYtmDsOQ0MJ//P78Gd2DZbvf9Mqnt+OOJ5u4rr2F1S713CJgUkIdosRVF46sIMvou8CrcKxspsaiY8humOtQSNuxN3pwGo2z7TO6YQp0wt20WjfzwbGqM4o7f8YCiE+DVDylgMJVuhsRLqi1GkgbbufFpAUhTFCLwITAPSgMsURUn7zWnTgNQD/90EdJgF/QaDwoz+Cfz0l3HcPak7P+4s5eznl5NVWk+g1USovwX/KX8HRcHxw8nNQsoqrWekfx6awQQx6T56Bc0vIzGUNfZ4DPYqqC3QO44QzeaDNTlMci/HpjWh9Jx+SmN0iQzAYjSwucqKO7Yf6u4FRzxv/pZCDIpGiLMYQ6gUkIRoy/wsRv59zZmcb/wflwe8SuCoWzCarQAY0s/HVLIFKrJ1TinEKaotpFwJx2I0ML5HlN5phBCtjKHrOBQ02L8Mpb4YJVgKSHrz9QykIUCWpml7NU1zAh8D5/7mnHOBdzWvn4FQRVE61P8ZfhYjd05K5fu7xhBkM3PFm6vZUVQLgBKaiGvgTVgzP8VTeOLLuvaW1dNHyUKN6gVmm6+iN7uMhFC2q529D2QZm2gn7FUFdFlyJ/+1vIInogd0GXtK45iMBrpFB7KzuA5D9ykYC9d5P5E5jKZpfLm5kDM6mzG47SAFJCHavLhQP245dzzrCh28vWLfoeOG9BkAqFtlFpJoo+qK2NMUxIhuEQTZzHqnEUK0NvEDUc0BqDu+RnE2yBK2VsDXBaR4IO+wx/kHjp3sOSiKcpOiKOsURVlXVlbW7EFbg6QIfz66cRg2k5HL31jN7pI6AKzj/4xqDcG94KETGqe60Ul5vYMk+26U+La1IrBPQgi7SEJDwV0ojbRFG6d6aFrxKsoLQ5ig/kxWr9sw3rL0tIq6PQ/sxGZInYKiqZD946+e31pQQ05FI+d3PbAEVJawCdEunNW3ExN7RvPUgl3kVjR6D4Yk4I4firbtc33DCXEqNA1qC9nrCGFKmvxQKIQ4AqMZNWkEys6vvI9lCZvufF1AOlKL9N82tjmRc9A07TVN0wZpmjYoKqr9TnFNivDno5uGYTIozHx9Ndll9eAXhnvk3Vj3L8KdveS4Y2SV1pOslGDz1GE4hUa9egq0moiPjmS/uRvaljngcesdSYhTo3pwvnMefj/cy1a6cmvwC3S9+N+nPSOwZ2wQJbUOqkLTUW3huHf9ehnbV5sLMRsVRkQ2eQ+EJJzW/YQQrYOiKPzfjHRMBgMPzNuKdqBPoLHP+RjLd0DpTp0TCnGSmqowqE5KCGNyWozeaYQQrZQxZQyK68AHJzIDSXe+LiDlA4d//J0AFJ7COR1Kl8gAPrxxKKAx8/Wfya1oxDr8FtyBcagL/nHc5tLZZfX0VfZ6H7ShBtoHZSSE8pxnBubqbFzr3tE7jhCnxLXmTSw5S8ns+zcubLiX6eNHozTDtqM9Y4MB2FnaiNp1IobshaCqAKiqxvwtRYztHkVA04F/RkOTTvueQojWoVOIH/dN7cGyPeV8tsHbJ1DpfR4aiixjE21PXREAamAnooKsOocRQrRWSsq4Xx7IDCTd+bqAtBZIVRSli6IoFuBS4MvfnPMlcNWB3diGATWaphX5OFer1y06iA9uGIbDrXLNrDVUOQ2o4x/AUrIJx5ZjT1XPKq2nv2kfmtEG0b1aKHHzyUgMZW5jBvXRA1GWPA7ORr0jCXFy6kow/vgwrqQxPFw2mthgP87OiGuWoQ/uxLaruBZTjykYmiqgcCMA63KqKKqxc3ZGHFp1Hpo5APzCmuW+QojW4fKhyQxKDuOR+ZmU1TkgKBZP0ki07Z/L7qWiban1vt33D5el1kKIY4hJR/WL8P4+UGYr6s2nBSRN09zA7cD3wA5gtqZp2xVFuUVRlFsOnPYNsBfIAl4HbvVlprakR2wQr105iPzKJm56bx1q+sU4I3phWPA33LWlR70uq7SeweZ9qDHpYGx7DQn7JYYCChu734np/9m77/iqq/uP469zR3IzyQ5hhr33VASV4d6r7lm31tZqtdVaa2trf+7VWvfCPXBWBRUFZe+9ZxIgJGSvO87vj3vBACEESLgJeT8fjzxyv+t8P997Qr7cT875fMu2Uvnzv8MdksgBqfziboyvkjXD/sr0dTu4+phM3M76+XWbGhdJUkwEy7cUQ6cxwZEHK78G4NMFWXjcDsb2SKdy22psfGuoh1FPItJ4OByGh87tQ3mVn/s/XYK1Fmefc3Hmr4Yti8IdnkideQs2A5DQUiNlRaQWDgeB9sdgI2IhMi7c0TR7DT0CCWvtl9bartbaTtbaB0PrnrPWPhd6ba21N4e297HWzm7omJqSoR2SePSCfsxav4M7PlyMPfM/OCt24H3/Ggj499p/WU4R09fk0jWwFtOmaRXQ3qlbyzgiXQ6+L+9CZcdxuH5+cq8nTYk0Vt6V3xK5/CN8R/+WZxZAXKSLi4bW33+OjTF0S49j1vp8ip3x+FsNIrBqIj5/gC8XbWFsj3RYNRHPuonYTsfX23lFpPHonBbHbWO78MWiHP7zwxpMzzOxxolf09ikCSncuhGAlq0zwxuIiDR6rhMfwHvea/rDaCPQ4AkkOXSn92vF3Sd35/OFOTy2xEP52IeI2vQjpd88uNt+pZU+bn5rLv08W4m0FThaNc0EktvpYGiHJL5bvhXX2L/gqCqmcvKj4Q5LZP+8FfDFHXhbdGBxx6v5fGEOlx7Vvt4fTXzh0Las217KaU9PZVv6KJw585i1ZCX5pVWc3dES+dmNVCb3wDnur/V6XhFpPG46rhNn9GvF/321gs9WV+LPHAWaxiZNSOn2TeTZODplJIc7FBFp7BIzieg6NtxRCEogNRnXj+rIJcPa8d8f1vK291hKe1xA9PTHKF8anLpireXeCYtZv72Uvw8NPbmsddNMIAGc0ieD9XllLLPtqOx5Pu45L2ALNoU7LJFalX//KO7CtdhTHuHez1eTHh/Jzcd3rvfznNm/Ne9efxRVvgA3z0rCYFk3/RMSPXDU3DswAS+c/xq4o+r93CLSOBhjePj8vgzJTOT37y9gU8aJOAs3UjhrPD6fnmAqjZ+vMIutNomOqTHhDkVEROpICaQmwhjDX8/oxbie6fz9y+X8ofwKyhO74f7kOrz5G3hv9iY+npfFjcd1om35MgLuGEiu/w+uh8uJvVridBi+XJRD5Lh7wVq83/4z3GGJ7Fv+WiKnP0FF97N5O68zS7KL+PNpPYmNdDXI6YZkJvG/20aS2mUYuTaemE2TebjFR0Rvm0v5yU8Q2bJbg5xXRBqPSJeT5y8bTOuEKC6f1pKK2Da0+PJm/E8NouDbx6go2h7uEEX2yV26lUJXCh63M9yhiIhIHSmB1IS4nA7+e+kg7j21BxNXF3NR4c0EfD7KXrsA72e/5934J7l55dW4F47HZvQHR9O9ISfFRHBUx2S+XJQDCe3wDrgK9+K3oTQv3KGJ1Mg740UMlpJR9/PINys4pnMKp/Zp2EeNJkRH8N/Lh7Cj1bGc5JzF2MIPKO53DbEDz2/Q84pI45EYE8ErVw6hxMRweuBxssY8jT8qlYQpfyXiyZ5UTX443CGK1CjOm0tVjJ6oJCLSlCiB1MQ4HIZfj+zIZ7ccg7dFB24pvxZ3wTrOcPxEr6gCfNHpFHQ5DzPmvnCHeshO7RucxrY0p4jIvmdhbACyVGNdGiG/F8ei9/B2OoF/TCmgwuvnr2f2whyGQn/GGLqOOJtIvJSn9SfmNI3UE2luMlNieOHywazZ4WV86VCibphI0ZXfU5ExBPeUh6GqLNwhiuzGW1VBoi3EEd863KGIiMgBUAKpierWMo4JN4+gy7EXMpzX+Pm8OXDTz0Re8QGJv3oWR/vh4Q7xkFWfxkZGf6xxYjfNDHdYInuxqyfhLMtlXesz+GheFteN6kin1NjDF0DXkykecB3mV6/jcEcevvOKSKMxODOJ47ul8f6czfgClvjMgUQf9zuMvxI2/Bzu8Jo1f8ASCKi4eXVZm9YDEJ3cJryBiIjIAVECqQmLcDm488TuLLj/JE7qnUFspItIl/OwjHo4HH6ZxrYF644ikNaTwKZZ4Q5LZC++uW/hj0rmt3NTaZ0QxS3Hdzm8AUREE3P6/+FJbn94zysijcqFQ9uRW1zJd8u3BVe0OxrrjCSw+tvwBtbMBX58FP/UJ8IdRqOyZdNaAJIydN8SEWlKlEA6AhwpCaOanNIng3XbS1maU4RpMxiTPRcCgXCHJfKLsnxcq75iRdrJLNtWwV9O70lUxOGvP+ZwHLm/B0Skbo7vlkp6fCTvzNwYXBERTaDdUVglkMLKMf8NHIveDXcYjcqOrRsASG/TMcyRiIjIgVACSRq1E3ul75rG5mg7FEdVMWxfGe6wRHbxL/oAE6jimbwh9MiIZ1xPFQQVkfBwOR2cP6gtk1fmklVQDoCj8xiceSugMCvM0TVTviochZtwFGwAq2lsO5XnbQIgOklT2EREmhIlkKRRS46N/GUaW+tBwZUqpC2NSGDeWxS16M6X21O56ujMI3pEoIg0fr8a0hZr4b1ZwQ/opvOY4IY134UxqmasYAPG+jHeMijLD3c0jUagMIcq3BCdFO5QRETkACiBJI3ezmlsy6rSCUS2IKBC2tJYbFuOe8s8vnIdT2K0mzP6twp3RCLSzLVNimZklxTen70Jf8BCWk8CMen4V00Kd2jNU97qX14XrA9bGI2JP2CJLN9CSUQq6I8uIiJNihJI0ujtmsa2eCu21UDs5jnhDkkEAN+88QSMi4ez+3Lh0HZ43Ie/9pGIyJ4uGtqO7MIKflyZC8ZgO43GrPsBAv5wh9b85K355XXBxvDF0Yhs3lFGGvn4YjTlW0SkqVECSRq95NhIhndMCtVBGoIjdylUloQ7LGnu/D7MwndZFT+cfJPApcP1JBkRaRzG9kgnOSaCt0PFtJ1dxuKo2AHZ88MbWDMU2L4K64oOLuzYEN5gGolVW0tIYweuFq3DHYqIiBwgJZCkSTi9byvWbi9lVUR3jA1A9rxwhyTN3drJOEu38t/C4ZzYK53WCVHhjkhEBIAIl4PzBrXh2+Xb2FZUAR2Px2IIrNY0tsPN5q0mkNaTgCeBgEYgAbBqazEtzQ5iUtuGOxQRETlASiBJk3BG/1YkRLv57+rE4AoV0pYw888bT7k7gc8q+nLFUZnhDkdEZDe/GtIWf8Dy/pzNEJOMv2VfAqtVSPtwM/lrIbkztkU7bP76cIfTKGRt2UKUqSIyUU9gExFpapRAkiYhOsLFxUPb8dGKcirjM/FvnBXukKSZM5tm8DP96JyRxNAOeoqMiDQuHVNjGd4xibdnbsTnD+DoPBZn1iyoKAx3aM1HVRmO4mycKZ0hsZ1qIIUUbl0ffBGfEdY4RETkwCmBJE3GFUdn4nIYlju7YbJmgbXhDkmaq4pCHMVZzCrL4KqjMzF6ioyINEJXHt2BzTvK+WrJFhydR2OsH9ZNCXdYzUf+2uD35E44EjNxFG1q9v93sdZSkb85uBCnJ5eKiDQ1SiBJk5Ee7+G0vq34PK8VjtJtULg53CFJc7VtOQBZEZmc0V//ARaRxmlcz3Q6pMTwwo9rsW2GEHDH4F+lOkiHTd7q4PfkzpiE9hhfBZRsC29MYZZdWEGCPy+4ENcyvMGIiMgBUwJJmpRrjunAdG+n4MJmTWOT8KjIXgRAp15D8LidYY5GRKRmTofhmmM6sGBzITM2lhDIHAlrvmv2o2AOm50JpKSOkBh6UmdB834S26qtxbQkP7gQpylsIiJNjSvcAYgciN6tWxDXvh+VW9y4Ns3C2fuccIckzVDWynmkWw/HDOof7lBERGp13qA2PDZxJS/8uJbhPcfCqq+CU6uSO4U7tFpV5GfhXTkJx5pJmPJ8ArGtoEVriG+Fo0UrjDsahzsS44rA4YrEldIZIqLDHfZuAnlrILYljshYSGgXXFmwEdoODW9gYbR6WwnpZgd+TyJOtyfc4YiIyAFSAkmanKtGdWPROx3IXPkzKSeHOxppjqqyl7DO0ZaB7ZPDHYqISK08bieXH9WeJyatYt2IEWRi8M9/B9eYe8Id2l4CFSWUff8ortVf48lbggfwRqfhi2tD5KYpuFZsxdhAjcf6YjIwZzyJs9uJhzfoWtjtqyGpc3BhZwJpx/qwxdMYrNpawimuQky8pn+LiDRFSiBJkzOmexofRHSnz46vsL5KjCsy3CFJM1Ja6SO1fC0bkkficKh4tog0fpcflcl/Jq/hPwu8PNhxDI45r8Kxd4IrItyh7VKZuw7euZiYvGWUZwyleMQ9uLqNw9OmH25HsOKC9XupKtxCoGgL+MrBXwm+Kqgsxjn1UVxvX0BVn0uIOPWf4GkR5isCk78Gup8WXIiIIRCdAjs2Nuv6Eau2FdPWVYCJ7xDuUERE5CA053uYNFEOhyG91zFEUsXyBdPCHY40Mz8tXE6KKSSlY79whyIiUidJMRGcP7gNE+ZlU9L3Spxl2wgs+yzcYe1SuHQSzhePx1W8mcoL3iX6+m+IG/cHotoNwISSR4GAJavIy7TtHj7els6MQA/y0o8hoscpeAZeiPvGKVQddRvuxW/je2Y4/pVhLhZevgNHeR6OlM67VtkW7bDNeASStZZV20pIJR8Tr/pHIiJNkUYgSZM09JgTYMEfmPzNp7TrfQwxkfpRlsNjyfwZnAC06TY43KGIiNTZr4/pyPgZG3khpxO3t2iPnf5fHH3ODWtMAX+AHZOfJmnqX6lK6AgXvoUnvSsAPn+AGevy+WrxFuZu3MHa3FLKvf692ohyO+mUFsN1ozpxxokPEOh5JvbjG3C+fQHctgAS2h7uywrKWxv8nvxLAonEdpC9IDzxNAJrckspr6gg1rMD4jSFTUSkKdKnbmmSolIyKUjszUX57/D38WP4x1WnYIymE0nDKqvyUbJpETjA2bJnuMMREamzzJQYTuzZkjdnbOLW464mavJfYMsiaNknLPHYQIDiCb8nedHLlGSeSOQFL+CKimfyim18sTCHicu2UlDmJcrtZHBmIsM6JNMpLYbOqbG0Sogiu6Cc1bklrNlWyuSV2/jzhMWM7ZFGdNtBOM59Dl4YDTmHP4FkrWXi0q0MLV5KAuxWrNyRmAnLv4CAHxzN7wme09ZsJ40CDBY0AklEpElSAkmaJmOIufg1/M+N4lfr/8xz33XkxjE9wh2VHOF+WJFLx8BGqjwJRMSmhzscEZEDct2xHflqyRbe84/iMpeHwPTncZ31dIOdz+cP4HLuXS3BWkvh/x4gYdHLFPT7NXFn/B/r8sq4983pTF+bT1ykizE90jipdwbHdk0lKmLvZEvbpGiGdQw+yODk9S05/7lpfDg3i8uGt4eUbsGdcpdBj9Ma7PpqMm9TAde9MYfbXd9xi8vB15s9jE70E+lyYhLaQcALxVuCT5RrZn5ek0fv+FKoQiOQRESaKNVAkibLndoZe/oz9HesIeL7v/L98m3hDkmOcF8u3kJPVxbOtO6gEW8i0sQMbJfIMZ1TeHpaHpXdz8Gx+D0o39EwJ/NVsWnDarILyvEH7G6bCr5/moRZj1PU40LcJz3EIxNXcfKTU1iaXcTfz+rN7D+P5YkLB3BS75Y1Jo/2NLh9In3btOCVqesIBCxExhJo0Q67bVnDXFstNuWXATAquZBsUrnx3cUM+8e3fDR3MyS2D+5UsPGwxxVugYBl2to8jknzBlfEtQxvQCIiclCUQJImLar/ORT3u4ZrXP/jk3eeY9320l3bKquqKF4/H/y+8AUoR4wKr5/vlm2hu2Mzjpa9wh2OiMhBuW1sF7aXVPG/qNNx+Crwzx3fMCea+TwdXh9C3AcXsWneJPJLqwAomP4GiT/+mZIOJzK/3/2c8OQU/jN5DWf2b813dxzHpcPbE+k6sOldxhiuOaYDa7eX8sPK3OC6tB5hSSBlFZQD0Csyl5YdevH61UNJiY3kP5PXQMLOBNKGwx5XuC3bUkRBmZd+CcH3h3iNQBIRaYqUQJImL+70hyhJ7ssD/If7X5nA1vlfUfD+rTge70ncq8fim/yvcIcoR4AfVuYSW7WdqEAJJk3TJUWkaRqSmcQxnVP4xzw3la2GYme9AIFA/Z9oxzoCzkiiti8k87PziHz9FLb97yFafH0bpa2O5qMOD3DV6/PwuB28d/1RPHJ+P1JiIw/6dCf3ziA9PpKXpq4Dggkkk7ca/N76uqI6yS4oJyHKhbNgLc7Uzozqmsq4nums215KVWxo2lozHIE0bU0eAJ08RVhnBEQnhzkiERE5GA2WQDLGJBljJhpjVoW+J9awT1tjzPfGmGXGmCXGmNsaKh45grkiiLrkDTwuJ6+U3Ez6hF8Rv+J9yjOGUpExBMeM56CiMNxRShP3v0U5DIrKCS6kqYC2iDRdO0chTU04C1fBeuyab+v9HIHSPPzxbdlw2XSyh9+PuySLtBn/pCK5J48l/4X7vlzDcV1T+eSWYxjaIemQzxfhcnD5UZlMXb2dFVuKIa0Hxl8F+Wvr4WrqLruggl7xlTiqSjDJXQDomh6LL2DZUOgnEJNOIH/9YY2pMZi2Jo+OKTHEVuZiY1tqGriISBPVkCOQ7ga+tdZ2Ab4NLe/JB/zeWtsDGA7cbIzRJzM5YM6kTOwFbzAj4WSur/odP5w5nfjL38JzxqM4qorwTnsu3CFKE1bp8zNp2TZOSS8IrtAIJBFpwoZkJjGiczL3rOiIPzoV79QGKKRdloczJplOrdNIGvMb8q+ZwdqxL3BbxP28NCuPa0d24PnLBxMbWX/Pc7l4aDs8bgcvT133y+/pwzyNLbugnL5R24MLyR0B6JIWB8DKrSXYhPbYZjaFzecPMGNdPkd1SiZQlK0nsImINGENmUA6E3gt9Po14Kw9d7DW5lhr54ZeFwPLgOb3WAqpF5Fdj6f/zW+yKvk4/vT5GgrLvZDRj6qO43DM+A9UloQ7RGmi5mzYQUmlj4GeHAIxaRB96H8tFxEJp9vGdGVLaYAZGZcRseEH/Csn1e8JyvJ2TVPyuJ1ERnq4YVY6362v4qFz+nDPqT1xOup3FEpiTATnDGzDx/OzyPO0xxoH5C6v13PsT3ZBOd0itgYXkjsD0Ck1FmNg5dZiSGjX7KawLcoqpKTSx1GdkqE4B4fqH4mINFkNmUBKt9bmQDBRBKTVtrMxJhMYAMzYx/brjDGzjTGzc3Nz6ztWOUJERTh57IL+bCuu5K+fLgHAffxdOCt24Jv5Qpijk6ZqeU4xAMnlazX6SESOCEM7JHF0p2Tu2DAUb3wmga//VL8PnSjLwxETTCBV+vxc/8Yc1ueV8drVQ7lwaLv6O88erh6RSZUvwPi5udiETOzWpQ12rj0VV3gpqvDR3uYE6/y0aAsE/2/SLimaVduKcSS2x1GU1awe8PFzqP7R8LbRmOIciFMCSUSkqTqkBJIxZpIxZnENX2ceYDuxwIfAb621RTXtY6193lo72Fo7ODU19VDCliNc/7YJ3Hx8Zz6al8X/FuVg2g7B2/44zM/PQFVZuMOTJmjl1mJSol1E5K/Eka4nsInIkeG2MV3ILgnwfbubceetwDv7tf0fVBfWYsrzIToZay1//GgRM9fn8/B5fRnROaV+zrEPndPiOLZrKq9P20AgtdthfRJbTmEFAOnezQQSMsHxy9PkuqTFsXJrCSaxPcb6oSjrsMUVbtPX5jE0LUD8e+eCtxw6HhfukERE5CAdUgLJWjvWWtu7hq9PgK3GmAyA0PdtNbVhjHETTB6Nt9Z+dCjxiOx06+jO9Gndgj99vIhtxRW4jv8DzvLt+OrrP8fSrCzfUsyIlDKMt0wjkETkiDGsYzIjOidz15L2lGcMwzH5Qaio8e94B6aqJFjAOjqZZ79fzUdzs7h9XFfO7H94qhRcMqwd20sq2RLREbNjLfiqDst5swqCj6hvUb5x1/S1nbqmx7J+eyneuOCopOYyja3S5yd7/XKeqfgjrm2L8J77CnQ9IdxhiYjIQWrIKWyfAleEXl8BfLLnDsYYA7wELLPWPtaAsUgz43Y6ePxX/Sit8vPHDxdB+6Pxtjka8/OT4KsMd3jShAQCllVbixkeG6ppkaoEkogcOe49tSeFFT5ej78WZ3keVT88cuiNlgWnLM3Pd/LINys5e0Brbh3deT8H1Z9hHZMxBhZ5MzABH+StPiznzS4ox0GAqJKNOFL2TCDF4QtYNhMaRd9MCmkvn/Mj7zj+TItAIYFLPyaiz9nhDklERA5BQyaQHgLGGWNWAeNCyxhjWhljvgztMwK4DBhtjJkf+jqlAWOSZqRzWhx3ndSdb5dv473Zm3Ae9wecJTl457wR7tCkCckqKKe0yk9PV3ZwRWq38AYkIlKPemTEc8mw9vzfohi2dzwb18znYMchJjdCCaT/zNzBkMxEHjq3D+YwPra9RZSbnhnxTN4RrMHEtsNTBym7oJw2jnwc/krMHiOQuqTHArC0LA6LwR7qexxugQAVmxdhA/4aN1tvOWU/PUf3ry+iEjeVl/8PV4cRhzlIERGpbw2WQLLW5llrx1hru4S+54fWZ1trTwm9nmqtNdbavtba/qGvL2tvWaTurjo6k6M6JvPAZ0vZnDAUb8YgzA//hy1RIXapm+VbggW02/jWE4hvC574MEckIlK/bh/XlTiPi7+UngPGUPX1Xw6twbJ8AEqcLfjvZYOJdDn3c0D9G9ohiS9zYrHGediexJZdUEH/mB3BhaQOu23rlBqLw8CK3CoCca0INPEEUmDm83hePAbfo70p/t/9VG4LjvIKlBdR+t2j+B/vS/TEu1jt6Mg9yY8T3653mCMWEZH60JAjkETCzuEwPHJBPxzGcMcHC+HUx3BUFlD53tWwj7+aiVS3cmswgdSieBWka/qaiBx5EmMi+P0J3fhig5OVHa8iYvnHVC354uAbDI1Aate6LUkxEfUU5YEZ1iGJYq+T8rjMw1ZIO6ugnB5RoQRSQvvdtnncoSexbS2GhHZNuwaS34f96Wm8KT3wJncjduaTRP57EBXPjcY+0ZuYHx/Am9ydogsmcFb5PXTv0iXcEYuISD1RAkmOeK0TovjLGb2YuT6fl9fEUXXi/+HZ+CMVE/8e7tCkCVi+pZj2CW6c+atxqIC2iByhLh7ajh4Z8dy44VgqUvvhnHAtvpzFB9VWyY5gzbguHTLrMcIDMyQzCYDsiEzs1sOTQMouKKejOy846il+74LhXdLjWLWtJJhcasI1kOzSCTiLN+Me9xeir55A1a0LKTnmHvBVUNn6KCqvnEjUNZ8xx9kLrx+O7tSwT94TEZHDRwkkaRbOHdiaE3ul8+g3K1nf7hzKe12IZ9pjVC37KtyhSSO3cksxo5KLgk8USusZ7nBERBqE02G4//SerCsM8Hr7f2Ddsdi3LjyoKd9bt2Tjsw76dW7bAJHWTXJsJF3SYlnszcAUrANvRYOezx+wbCmsoDW52LhW4HTttc/OJ7HZFm1xFOcctqfD1Str8U99En9SZ+hyIgCRSW2JHfsHPLf8TPTl72LaDOa5H9Zw8/i5JEa7GZKZGOagRUSkviiBJM2CMYZ/nN2H+CgXt7+7APfpj1GV0hPnhOsI5K8Pd3jSSFX5AqzJLWGUO/TX69aDwxuQiEgDGtYxmdP6ZvDo9GK2nvIyzrJtVL11yQEnOgq257CDOHq3SWiYQOtoaIckfixIxdgAbF/ZoOfKLa7EF7Ck+rdiE9vXuM/OJ7HlujIwWMq2rWnQmBrE+qm4ti7EHH0rOPb+GDFtTR6nPDWFh/63nBGdU/j0lmOIjtg7mSYiIk2TEkjSbCTHRvLAmb1ZmlPEG3O24bzwTbABfO9c1uB/mZSmad32UnwBS5+Sn4J/bU05fI+hFhEJh3tO7YHLYbh3VgRVpz1NZPYMKj75LVhb5zYqi3IpdyWEpXh2dcM6JrOwKiO40MB1kLIKygGIr8jGkdCuxn06p4WexObuhTUOvDNfadCYGoJv6pMEolNw9Ltwt/WLswq5+a25XPTCdCq8fl66YjAvXD6YtknRYYpUREQaghJI0qyc3LslI7uk8Og3K8mLaI3/jH8TsW0hvun/DXdo0ggt31JEHGWk5c/GdD813OGIiDS4jBZR3H5CN75fkcu3zlFUHHU7nkXjqfzp33U6vqzKh7MiH6KTGjjS/RvWIYn1tiV+44Lchk0gZReUE4EXT8U2zD5GIO18EtuC0kTKup1D3KLXKMvPbtC46tW2ZbjWTMQOuQ7cHgIBy7fLtnLh89M47empTF6+jd+M7syk249lTI/0cEcrIiINQAkkaVaMMTxwZm+qfAEe/HIZEb3PoKrdSMy0p8FbHu7wpJFZubWY410LcQS8OLqfEu5wREQOiyuOak+vVvH89bMlVI26m4pOJxPx3X34NszY77HzNhaQSDGeFmmHIdLapcd7aJMcT46rDYEGLqSdXVBOhsnDYINPWauBx+2kfXIMK7eWEDjmDkygCu+UJxo0rvrk++lpAq4onEN/zYJNBYx7/AeueW02G/LK+NMp3Zn2pzHcfkI3PO7wjjwTEZGGowSSNDsdUmK44diOfDI/m59Xb8d9/F04y3LxzXo13KFJI7NiSzFneeYTiEqBNkPCHY6IyGHhcjr45zl92F5SySPfrMJz3nP4Ylth378KW5Zf67Gz1ueTZIpJSGl5mKKt3dAOSSz2tmrwKWw5hRV0jQi9N/tIIAF0SYtl1bZi4tr0oLjL2cQtfI2KHTkNGlu9KN6Cc/H72H4Xs7jAxWUvzaDCG+DJC/vz4x+O57pRnYj3uMMdpYiINDAlkKRZuun4zrRNiuLPnyzG23YE3jbDMT8/Cb7KcIcmjciqnB0MD8yBbieBQ39RFZHmo2+bBC4/KpM3pm9g/nYw57+KsyyXyvevg0Bgn8fNXredRFNCRFzqYYx234Z2SGaJtxWOwg1QVdpg58kqKKdndEFwIaHmKWwQLKS9Pq+MSp8fc+ydmEAVVT8+UadzBLxV2Fre+wbj91H1/f+B38v6rldw6UsziPO4eff64ZzZvzVupz5OiIg0F/qNL82Sx+3k/tN7sSa3lJemrsN13F04S3Lwz30j3KFJI1FS6aN10TyiA6WaviYizdLvT+hKWlwkf/poEbQagHfMA3jWTaR8HwkPrz/A6k3ZOAk0ihpIEKyDtNK2CS7krmiw82QXlNPZnYd1uCAuY5/7dUmPxR+wrNteSlzr4Cik2IWv7ncUkjd7EYHHeuB9oh/FXz1A5bbV9X0JewmU5lP23SN4H+9DxNyXKOx8Fhe8tw2Py8lb1w6jTaIKZIuINDdKIEmzNaZHOuN6pvPUt6vYnDgMb8Yg7NTHwe8Nd2jSCKzcWsw4xxz8jkjoeHy4wxEROeziPG7uP70XS3OKeH3aBiKPvoGKrmfg+eHveNf9vNf+y3KK8HgLggvRyYc32H1okxhFQUzoCZoNOI0tu6Ccto7t2PjW4Nz3Y+u7pMUBsHJrCQCO4/Y/Cqli8yLM62dgHS588e2Inf4Ykf8eRPlzYyj69lGKpr9G0fwJFC//npIN86go3EbAf3AjlfyF2ZTP/4iyD26Gx3oQ/ePf8Cd0YOMJL3LS+oswxjD+2mG0T445qPZFRKRp2/cdTqQZ+MvpPTnpiSn85t35vHvcnbjfuxD//LdxDro83KFJmK3MKWKccw7lbUcRG6G/sopI83RS75b0b5vAhPlZXH1MBzznPIP33wtxfHQN3DYfXJG79p25Lp8kioMLjSSBZIyhVcceVK5w45//IRHdz8AVFVev5yir8rGjzEtazFZI2nf9I4COqTE4DKzaGnyfYlv1oLhrcBTS+v43kJDamhZRbowxAJRuXEDkW2dhnRGYK78gOrUzFXkb8c57l4gl7xE/5YEazxNweqiMa40/rjWBpE442o8gotNIXC2q1abyVVG5eT7+jTNg8yzc2bNxl2QRBQSckVT0OBf3UTey2d2RS1+cQZUN8M51w+iUGlsv75uIiDQ9SiBJs9YmMZqHzu3DLW/N4//WZHJXWl/Mj49C/4tr/QuiHPl2rJtPG7OdQN/Twx2KiEjYGGM4rlsqT367ioKyKhKiW2BG/wnnhOsgbzWk99q17+z1O+gSVwVVNJopbABDO6Xx5OJzuHPDe1Q9N5KKM/5LbKdh9dZ+dkEFAAlVWzCJfWvd1+N2kpkcw6rQCCQAx7F/wKz8mPRPL6Wg4+nktTue6LZ98OxYQdy752CdEdgrvsCdGhxJ5Uluh2fsnTDmDiqK8wiUFRCoKMCWFWIrdkBRDhRuxlGchbNoM1FL3sW54BUAqhI648sYgKNgPRHbFhLpD9Z+9Ma2wpsxmKrW1+NsP4zINv2JdntYvqWIS5+fBsBb1w6ja3r9Jt9ERKRp0SdkafZO69uKGWvzefGn9Zx6/HUMmHYLVQveJ2LgReEOTcIoJWsSAQyObieHOxQRkbA6pnMKT0xaxfS1eZzUOwNXSmhK2I4NuxJI1lpmrc/njjQ/5NBoRiBB8Elsf/SfSe/h4xi74i/EvHkyhUNvJ3bcXThdh/7ksOyCciLwEl25DRL3XUB7py7psazcVrxrOaZVd3KPfYjYBS+TMeufMOufeKPTMf4KrCuKwOWfE5nWee+GjMETnwLxKbWez/qqqNg0F9/aqTg3/kTEuu/wJWRS3u8qTLuhRLQfhjuxDXu+E4uzCrn0pRl4XE7GX6uRRyIiogSSCAD3ntaDeZt2cOU0B9MTu+P++i5K3PHE9jk13KFJmPQqnsrGqJ5kxqaFOxQRkbDq1zaBmAgnU1dv56TeGb8kSQo27Npn3fZS8kqr6N7C2+gSSB1TYmgZ7+HNLcmMveEnSj69nRYzHqZq8xScV39xyCOOswvKaW22BxcSap/CBsE6SJOWbaPS5yfSFXzCZ8zR17C5x8X4C7OJ3fQDcZu/x1lRgOOMJ4lO73JI8RlXBJ4Ow6HDcOAOYP8fAOZs2MGVr8ykRZSbt349nHbJmsotIiJKIIkAEOly8uzFAzntqancxh08GfMYsR9eTPHm3xF7wr0YTWdrVvKy19GTtcxqfRuZ4Q5GRCTM3E4Hwzom89PqvOCK6GSsOwaz45cE0qz1+QBkRlUE6/VENJ7RKsYYrh3Vkb99vpTZW/wcffErFP8wmLjv/wRrvoWuJx5S+9kF5bQ1ucGFOiSQumfE4Q9YXvhxLTcf3xljDNERLrqkx2HTulLZoTOVvqswDkN0ZPD/H9tLKnlj2gZ2lFURFeEkyu0kOsJJbKSb1LhIUuMiSYuLJCU2kgjXgT8jx+cPsHxLMbPX5zNrww6+W7aN9PhI3rp2OK0Sog64PREROTLpU7FISPvkGP7vvL7cOH4ufx3wJH9Ke4H4GY9Tlj0Xx3kvEvAk4M3bhD93OWxfTXy3kbjaDAx32NIAdsz7hGTA2eOUcIciItIojOicwnfLt5FVUE7rhChsQjvsjg27Huc7a/0OEqPdJFCMjUraVQS6sbhkWDtenLKWh79ZwUedkok75jr80x/FznkD1yEmkLIKKugZXQA+6pRAOqFnS07tm8Ej36xk5dYS/nVuX6IigiORjDF43E487uByQVkVz/+4lld/Xk+F1098lJuyKj9Vvn0/Za1lvIfMlGgyk2PITIkhNfaXQucWCAQsuSWVbC2qYGtRBVuKKlm9tZjSKj8ArVp4OLl3S+4+uTtp8Z6Dfl9EROTIowSSSDUn98ng1tGdefq71axsewVPjRxEq5/vI/DvwRi/l2hf2a59fYs6wm9mg8MZxoil3pVuJ2XRC6wJZNC2S/9wRyMi0igc0zlYZ+en1du5YHBbSGi/awqbtZaZ6/IZnJkEZXmNavraTh63k9+M6cIfP1rEd8u3MaZHOrbP+ThnvwRl+YdU9Du7oJyjI/KxATcmLmO/+0e4HDxz0QB6ZsTzyDcrWJNbwvOXD6Z1aKRPlS/AmtwSvlq8hZenrqOkysfpfVtx29guu+oQ+QOWcq+fonIvucWV5BZXsq04mBTatKOM9dtLmbh0K3mlVfuMo0WUm/T4SNLjPZw7qA2D2icyODNpVxwiIiJ7UgJJZA+/P6EbXdPjuPvDhZye15Fnjx9P7/Wv449OxaZ0xaR2J7JwDdFf305g+Zc4euopXUeMyhK8r59LdGUuv3P9mVf0l1cREQC6pseSEhu5K4HkSMrEbpgK1jJ9bT4b88u48bhO2IWNM4EEcN6gNjz3wxoe/noFx3dLwzXwMpj5HIGF7+EYfsNBt5tdWE57x3ZsfBtMHf+oZIzh5uM70yMjjtvens8ZT0/l2G6pLM8pZtW2Yrx+C8BJvVryu3Fd6dZy96efOR2G2EgXsZGuWqeYFVV4yS+pwhgwBEeFORyQHBO5a9STiIhIXSmBJFKD0/u1olereG4aP5eLvyjm5uPv4ffjuuFwhIbk+4/BN+1x7E9PKYF0pPB7qXr7UtzbFnGT73Za9Dom3BGJiDQaxhhGdA7WQbLWYhLaYapKoHwHL0xZS3JMBGcPaA3T8zAt+4Q73Bq5nQ5uH9eV296ZzxeLcji9X2986X1h7psHnUAKBCw5BRW0TNhWp+lrexrdPZ0Jt4zg1rfm8ePK7fRsFc/Irin0zIinX5sEMlNiDiquneI9buI9h/6kOREREVACSWSfOqbGMuHmEdz3yWKe/X4NTkfwP54AOF2Yo27G9fXdsGkmtB0a3mDl0AQCVH10ExHrv+eD1ncxaX1/vh3XLdxRiYg0KiM6p/DJ/GxWbi2hW0LwSWyb1i7lu+WF/HZsFzxuJ7Y8HxPTOEcgAZzetxX//n4Nj09cycm9W+IYcAmOr+6CLYvgIBJf20srqfIHSPJuwZE44KBi6pQay5e3jTyoY0VERA6nA39Mg0gz4nE7+de5fTlvUBue+nYVE5du3bXNOfAy/JEJeKc8FcYIpT5UfXMfEUveY9vgO7hrXX8uGdZejywWEdnDiFAdpKmrt0NiMIH048w5RLocXDa8PQT8UL6j0U5hA3A4DLef0JW120v5aG4Wjr4XYJ0R+OeOP6j2cgoqiKSK6KrtwbpQIiIiRzAlkET2wxjD38/qTe/W8dz+7nzW5JYEN0TGYgddjWvl55C3JrxBykHzL/6YiOlPUzXwau7LPxmPy8EtozuHOywRkUandUIUHVJi+Gn1L8mSrHXLOXdQG5JjI6G8AINt1AkkgBN6ptOvTQuemLSSUmc8/i4nYRa9B759F5zel+yCclqb7cGFRCWQRETkyKYEkkgdeNxOnrt0EG6Xg+vfmENJpQ8A11HXg8ON96dnwhyhHJSiHPj8d3hbDmRx3z/y1dKtXDeqEynVHnksIiK/GNE5mRlr8/C6Yyl3xpPBNq45pkNwY1le8HsjTyAZY7j3tJ7kFFVw/6dLcA28FEd5Hqz6+oDbyioop43JDS4cRA0kERGRpkQJJJE6apMYzTMXDWBtbgl3vr8Aay3EtcTX+3ycC9+C0rxwhygHwlq8H9+E8ZXjOu95HvpqDSmxkfx6ZIdwRyYi0mgd0zmF0io/09fmsdafQv/Ywl2Plv8lgZQUvgDraEhmErcc35n352zm89Ie+GPS8c1584DbyS6ooJMrdN1KIImIyBFOCSSRA3B05xTuPrk7/1u8hX9PDk5bcx/zGxy+CrwzXghzdHIg/DNfwL3uO+y4v/H99nhmrs/ntrFdiInUswVERPZleMdkjIF7JyxmvT+FTu5qfzxpIiOQdrptTBcGtkvgj58so7jbuTjXTITirfs/sJoFmwvoEVWAdbghtmUDRSoiItI4KIEkcoCuHdmRM/q14uGvV/DpgmxI64634zgcs56HypJwhyd1sX0VZuKf8XYYTWDQNfzrfyvITI7mwiFtwx2ZiEijlhAdQZ/WLdiQV0ZlbFuiSrMgEAhubGIJJJfTwZMXDgAL923oh7F+Kr6+P1gMvA6W5RQxZ8MOBrUowrZoCw79t1pERI5sutOJHCBjDP93Xl+GZiZxx3sLmLkuH9fxf8BRnk/F538Id3iyP34vvg+uxbqiMGc+w2/fXcCKrcXcfXIP3E79ShQR2Z+dT2Pr2rUXxl8JJaFROzsTSFGNfwrbTm2Tovn72b35NCuOaRmX41n8FhVvXw7eiv0e++b0DUS6HLR1bFcBbRERaRb0aUnkIHjcTp6/fBBtkqK49vXZrInsSeXw2/AsGk/VognhDk/2paqMio9uwbVlHvaUx/jD17l8sSiHe07pwUm9NfVARKQuLhvent+P60qPnr2DKwo2BL+X5WHd0RARHb7gDsKZ/Vtz7sA2XLL+JJb2uQvPqs+pfPVMKN+xz2OKK7x8PC+LM/q1wl28GYfqH4mISDPQYAkkY0ySMWaiMWZV6HtiLfs6jTHzjDGfN1Q8IvUtITqCV68cittpuOrVmRQPv4OqtH44P78NW5gV7vBkD77Nc/H++xg8S96h8qjfc++qznw0L4s7TujKtaM6hjs8EZEmo1VCFLeO6YIzKfTQgYKNwe9l+dgmNPqour+e2Yuu6XGcOrsfX3R9EHfOHLwvnIgvZzHlq6dQ+tMLlE74PWVvXIRv/c98PC+Lsio/lw9Jw5RuUwFtERFpFhpyBNLdwLfW2i7At6HlfbkNWNaAsYg0iHbJ0bx0xRByiyv59ZsLqDzjvxh/JVUf3vBLTQgJr4Cfyu8fwfnyOIy3lKpLJvCPinN4Z9Ymbh3dmVtGdwl3hCIiTdPOpMmO4AgkW5bXZOof7Sk20sWHNx7NGf1acfPCDvxfyoM4irNx/XcEUW+eRszEO/AsfovIzT/jePNc5k75H/3atKBPTFGwgQRNYRMRkSNfQyaQzgReC71+DTirpp2MMW2AU4EXGzAWkQbTr20Cz1w0kCXZRVwyIY+iY/9K5MYfqfzp2XCH1ux5N86h8sWTifzhb1R2OhnHTT/z0PJ0Xpu2getGdeT2cV3DHaKISNPl9hCITcfuWA+ALdveZBNIADGRLp74VX/+dmYvXspqy6XmH6wZdB9lF7yL9zcLcf4pC+ctMyjzpPH30vu5tUv+L6OvNAJJRESagYZMIKVba3MAQt/T9rHfE8AfAA3XkCZrbM90nr98EMu3FHPBrG4UtT8B9/cPUDD7A4oL8ggEbLhDbFZ8W1dQPv4S3C+PxpW/kqrTniHiwtf58zfZvPzTOq4akckfT+6OMSbcoYqING0J7Qns2FkDKR8T03QTSBB8UMZlR2Xy3vVHscG05uQZPfmyvDfupPbBp6zFteQfaQ+z3SRy/OwbCSz+MHigimiLiEgzcEgJJGPMJGPM4hq+zqzj8acB26y1c+qw73XGmNnGmNm5ubmHErZIgxjdPZ1XrxpCVkEFl+ZegteTTMLn1xD7RCcqnzmagg9+Q+G8T7Ca2tZg/AWbKfvgJpzPHUXkuu8oO+r3OH67AOfAS/nDR4sYP2MjNxzbiftO66nkkYhIPTCJmZhQEW1TlodpwiOQqhvQLpHPfzOSQe0SueP9BTzw2VJ8/gDbiip4b7mPT/o9RyA6BceCt7HOSIjZ199JRUREjhyuQznYWjt2X9uMMVuNMRnW2hxjTAawrYbdRgBnGGNOATxAvDHmTWvtpTWc63ngeYDBgwdrOIc0Skd3SuHNXw/jyldmcYLrEZ4bF6Bl4QLcWTOIW/EBzsWvUTpvNM4zn8KT3Dbc4R4xAiV5VHz/MJ75L+OxlrL+V+MZ/Qei49Lw+gPc/u58PluQze/GduU3YzoreSQiUk9MQjtY/CF4yzGVRU16CtuekmIieP2aofzjy2W8/NM6lm8ponvLeHwBy5kjh+A6/nO8L5+K0xOLcejBxiIicuRryLvdp8AVoddXAJ/suYO19o/W2jbW2kzgQuC7mpJHIk3JgHaJvHPdcEqthwsmRrKg0/XEXvs53jvWUXTcg0RlT8P936MpmvaKRiMdIltZTNnEf2Kf6kfU3P9S3vUsfDfNIubMR3DGpVFU4eWm8XP5bEE2d5/cndvGdlHySESkPiW2x1g/bFkUXI5umk9h2xe308FfTu/Fw+f1ZfaGHbz80zpGdU0lMyUGk9AW140/YC55P9xhioiIHBYNmUB6CBhnjFkFjAstY4xpZYz5sgHPKxJ2PTLi+eSWEbRJjObqV2fx4pS1REZEEH/cLVRdO5Wq5B7Ef/1byl49l8odm8MdbtNUWYz/PyOJ/ukhKtuMwHvdFGJ+9TwRKZkA/LgylxMf/5Hvlm/jr2f04oZjO4U3XhGRI9HOp49lzwt+P4JGIFV3/uC2vHf9UQxsl8BvRnfetd5EJWJatA5jZCIiIoePsbbpzQYbPHiwnT17drjDENmvsiofv39vAf9bvIXzBrXhwbN7E+lyYgN+in/8N7FT/k7AHUPlGf8lpue4cIfbpPi++APOWc/jvfA9IrqfsGt9aaWPf3y5jPEzNtIpNYZHL+hP/7YJ4QtURORItmM9PNkP+l4IC9+BKz6DDqPCHZWIiIgcJGPMHGvt4Jq2acK2SAOKjnDx7MUDuW1MFz6Ys5mLnp/O1qIKjMNJ/HG3Unn1t/ijkol+73yK/vcA1u/bb5sVCz6iasZLhyH6xstuno1z1vP4B12zW/Jo+to8Tn5yCm/N3Mivj+nAF78ZqeSRiEhDim+DNU7InhtcPkJHIImIiIgSSCINzuEw/G5cV/59yUCWbynm1KemMmNtHgBRrXvjuv57SrufR/yMRyl/5Uy8hVv23VhRDhGf3Yzr2/vA7z1MV9DI+L34J9xCILYlrnF/AaCw3MsfP1rEhc9PB+Cda4dz72k98bid4YxUROTI53Rh41tjt68KLiuBJCIicsRSAknkMDmlTwYTbh5BnMfFxS/O4KWp67DW4vTEEvurFyg+4Qk8ObPgxTHYsvwa26j86j4cvjIcVSWwuXlO4/RNfRLX9mWYUx8BTzxfL9nCuMd+4N1ZG7luVEe+/u0ohnXUBxgRkcPFJrTHECqJEHVkFdEWERGRXyiBJHIYdU2P45NbRjCmexp/+3wpt70zn7IqHxhD3NFXUXnJJ7hKt1L5wQ2wR30y/4YZRC59j6oBV2GNA7v62zBdRRjlrcHx4//h7XY6xe1P5Oa35nL9G3NIiolgws0j+NMpPYiK0KgjEZHDyZHYDgAbGQeuiDBHIyIiIg1FCSSRwyze4+a5Swfxh5O68fnCbC5/aSbFFcHpaFEdj6Jq9F/xrP2aiqnP/nJQIID/izvwxbQk4qS/488YiH/N92G6gjCxFu8nt4EzkuUD7uWUp6bw9eIt3HFCVz679Rj6tkkId4QiIs2SScwEwGr0kYiIyBFNCSSRMHA4DDcd15lnLh7I/E0FXP7yTIpCSaTIETdR0ekkIr+/H9+mOQB457xOxLaF2LF/hchYnJ1H48yZC+U7wnkZh4/fS8Xnf8C9cQo/Zt7C2a+vxRj44MajuWV0F9xO/SoTEQmbhPbB71GaPiwiInIk06cukTA6pU8Gz14ykMVZhVz24gwKy7xgDJHn/gdfdBr2/auwBRtxfPcAVRlDcPf/FQCm8xiMDcC6H8N8BQ0vUJhN5Uun4JnzPN/EnMlVC3tyQq90PWFNRKSxSAwlkGI0AklERORIpgSSSJid2Kslz106iGU5xVzy0nR2lFZhopPgvJdxFW8m8J9ROMrzcZ32MBgTPKj1IAIRcfhXHdl1kKpW/0DguZG4ty3iyRZ3cUvBRTxwVl+evXggLaLc4Q5PRERg1wgkR3RKmAMRERGRhuQKdwAiAmN6pPPfywdx/RtzOOZf3xEVEfyneRkXcVvlm2xofx7tWw/45QCnm0DmMZi13weLbe9MLB0Bqgpy8G6cBet+JHr+S3gTOvJ4q8d4domLJ37Vl7MGtA53iCIiUl1sOjYiDhPfKtyRiIiISANSAkmkkTi+Wxrjfz2MCfOydj4MmW32Ou5d2Y5v1nfnve2lZKbE7Nrf1XkMrPwf5K+F5E7hCfoQ+cqLqdw8j8Cm2ZjsuURsmUtESRYRgDVOKrudzTtpv+PZbzZy6+jOSh6JiDRGDge+q77GnaDf0SIiIkcyJZBEGpEhmUkMydy9hsTmHV34/Omp3PDmHD6+acQvj6nvNDr4fc13hy2BZK3FH7AELFgbwPq9WG8FAW8F1luO9VZgq8qx/krwVmB8FeCvAG85lO/AlOVDeT6mPA9X/moi81cQY/0AeOPa4s0YTFXr63C1HUJEm/5MWVPCX9+YzSl9WvK7sV0PyzWKiMiBc2f0CncIIiIi0sCUQBJp5NokRvPkhQO48pWZ3PPxIh69oB/GGEjqiL9Fe+zq73ANvXafx/t8fopX/4RdNwWb2h1X2yFEJbchwrV3CbRAwFLlD+At2U4gdzU2fy0UbMIUbcZZvBlXcRau8u24/JUYf2WwkPcB8kUm4Pck4o9vR2nnk3C0HUREuyG449OpXtVoaXYRt70zjz6tW/Do+f1xOI6caXoiIiIiIiJNjRJIIk3AsV1T+e2Yrjw+aSUD2idy2fD2wbpHHY/DseQj8HvBuXtR6ZK8LLxz3yZ68VskFq7ZbVtVTCuK0gcQ8CRgvOXBL18ZzsoCIorW46ks3G1/rycFb2wrvIldqGwzAtxR4PJgXZEYdxS4IjGuKHB7cLg8GHcU1h3cZlwecHlwxCThik7E5Xbv8xePtZYFmwt5c/oGPluQTWJ0BC9ePviXUVciIiIiIiISFkogiTQRt47uzLxNO3jgsyX0bhXPgHaJOLuMgXmvQdYcaDccCNYVKv/sTmKXvY+xPsrSB5E/5HFcPU7Fl7sKsmbjzJ6DZ9t8HL5yAq4orCuKgCsaf0QLSjqfiU3sgEnuhDOlM66k9rg90UQ7G+ahjV5/gA15pcxav4O3ZmxkUVYh0RFOzhvUhutHdSIt3tMg5xUREREREZG6M9ba/e/VyAwePNjOnj073GGIHHYFZVWc9vRUCsq83HFCVy7rn4DjkY7YkXfgGH0PZdnLcb5/GRE7VlHU5yrM0GuIbd2LNbklvD9nM2lxkXRMjaFTaizpocSMwxgcJvS9AaaJWWup9AXILignq6CcrB3B72u3l7JqazHrtpfi9Qd/D3VNj+Wy4e05a0Br4jzu/bQsIiIiIiIi9ckYM8daO7imbRqBJNKEJERH8Pa1w7lnwmLu/2wpH85twVvJ/Yha/T3FCd2J/d9vsA43Zee/R4teJxAIWF6btp6H/rccXyBYAHunCKeDli08pMZFkhobSWpcJInRwaSNBawFiw19D7IW/IEAFd4A5V4/FV4/Fd5A6Lt/r3U7lwN75KkdJljbqWt6LKO7p9M1PZZuLePomREfrO8kIiIiIiIijYpGIIk0QdZaPl+YwwOfL+Wy8vH8xvURAGUp/XBc+AaelPZsKazgzg8WMGXVdkZ3T+Ohc/vgcjhYm1vC2txS1uSWkFNYQW5xJbklleQWV1JY7gWC5ZUMYIwJfQ+e12BwOgwet4MotxOP20mk20mU24HH7ay27pftUW4nURFOWsZ7aJ0YReuEKFq28OBuoClxIiIiIiIicnA0AknkCGOM4fR+rTi2WyrjPy7Et3wC7/qP529Zl5P55gZ6tSpg0rKtVPkCPHh2by4e2m7XyJ6kmCQGZyaF+QpERERERESkKdEIJJEjwOYt21ieH2BhVhELNhWwKKuQTqkx/OvcvnRMjQ13eCIiIiIiItIEaASSyBGuTcs02rSEsT1bhjsUEREREREROQKpCImIiIiIiIiIiNRKCSQREREREREREamVEkgiIiIiIiIiIlIrJZBERERERERERKRWSiCJiIiIiIiIiEitlEASEREREREREZFaKYEkIiIiIiIiIiK1UgJJRERERERERERqpQSSiIiIiIiIiIjUSgkkERERERERERGpVYMlkIwxScaYicaYVaHvifvYL8EY84ExZrkxZpkx5qiGiklERERERERERA5cQ45Auhv41lrbBfg2tFyTJ4GvrLXdgX7AsgaMSUREREREREREDlBDJpDOBF4LvX4NOGvPHYwx8cAo4CUAa22VtbagAWMSEREREREREZED5GrAttOttTkA1tocY0xaDft0BHKBV4wx/YA5wG3W2tI9dzTGXAdcF1osMcasAFKA7Q0SvdQ39VXToH5qOtRXTYf6qulQXzUN6qemQ33VdKivmg71VdPRVPuq/b42GGvtQbdqjJkEtKxh0z3Aa9bahGr77rDW7lYHyRgzGJgOjLDWzjDGPAkUWWv/XMfzz7bWDj7oC5DDRn3VNKifmg71VdOhvmo61FdNg/qp6VBfNR3qq6ZDfdV0HIl9dUgjkKy1Y/e1zRiz1RiTERp9lAFsq2G3zcBma+2M0PIH7LtWkoiIiIiIiIiIhEFD1kD6FLgi9PoK4JM9d7DWbgE2GWO6hVaNAZY2YEwiIiIiIiIiInKAGjKB9BAwzhizChgXWsYY08oY82W1/W4FxhtjFgL9gX8cwDmer6dYpeGpr5oG9VPTob5qOtRXTYf6qmlQPzUd6qumQ33VdKivmo4jrq8OqQaSiIiIiIiIiIgc+RpyBJKIiIiIiIiIiBwBlEASEREREREREZFaHZYEkjHmJGPMCmPMamPM3XtsuzW0bYkx5v/2cfz5oe0BY8zgausjjDGvGGMWGWMWGGOO28fxt4TObY0xKdXWtzDGfBY6dokx5qr6ueKmqx766mFjzHJjzEJjzMfGmIRq2/4YaneFMebEfRzfwRgzwxizyhjzrjEmIrTeGGOeCh2/0BgzsB4vu0lqrH0V2nacMWZ+6Pw/1NMlN1mNoK/29TvwklCbC40xPxtj+tXTJTdJjbifdK/aQ0P1lTEm2RjzvTGmxBjzTC3n172qjhprX4W26V5VTSPoK92r6qgR95XuV9U0YD+NM8bMMcHPwHOMMaP3cbzuVXXUWPsqtK1x3austQ36BTiBNUBHIAJYAPQMbTsemAREhpbT9tFGD6AbMBkYXG39zcArO48F5gCOGo4fAGQC64GUauv/BPwr9DoVyAciGvo9aaxf9dRXJwCu0Ot/VXt/e4baiwQ6hM7jrOH494ALQ6+fA24MvT4F+B9ggOHAjHC/X+qrffZVAsGnKbar7fzN5auR9NW+fgceDSSGXp/cnP9dNfJ+0r3q8PVVDHAMcAPwTC0x6F7V9PsqAd2rGltf6V7V9PtK96vD008DgFah172BrH0cr3tV0++rBBrZvepwjEAaCqy21q611lYB7wBnhrbdCDxkra0EsNZuq6kBa+0ya+2KGjb1BL6tdmwBMHjPnay186y162tqGogzxhggluAvOV/dL+2IUx999Y21dud7OB1oE3p9JvCOtbbSWrsOWB063y6hfhgNfBBa9RpwVrXjX7dB04EEY0zGIV1t09aY++pi4CNr7cbazt+MhLWvQsfX+DvQWvuztXZHDe02R422n9C9ak8N1lfW2lJr7VSgYl8n173qgDTmvtK9andh7avQfrpX1U2j7St0v6quIftpnrU2O7R+CeAxxkRWP1b3qgPSmPuq0d2rDkcCqTWwqdry5tA6gK7AyNBwrR+MMUMOsO0FwJnGGJcxpgMwCGh7AMc/Q3B0UzawCLjNWhs4wBiOJPXdV1cTzG7vr+2dkoGCav/4qu9Tl+Obk8bcV12BRGPM5NBQzcvrdEVHrnD3VV1dU63d5qgx95PuVbtryL6qC92r6q4x95XuVbsLd1/VVXO/V0Hj7ivdr35xuPrpXGDezgRHNbpX1V1j7qtGd69yHYZzmBrW2WrnTyQ4dG4I8J4xpqO11tZwTE1eJvhLajawAfiZA8tynwjMJ5jx6wRMNMZMsdYWHUAbR5J66ytjzD0E+2J8Hdquy/nrcnxz0pj7ykUwmTsGiAKmGWOmW2tX7uNajnTh7qv9B2jM8QT/U37MgR57BGnM/aR71e4asq8O9fy6V+2uMfeV7lW7C3df7T9A3at2asx9pfvVLxq8n4wxvQhOlzrhAM+ve9XuGnNfNbp71eEYgbSZ3UcFtSGYld657aPQ8LmZQABIMcHC2PONMV/W1rC11met/Z21tr+19kyCcwRXHUBsV1U7/2pgHdD9AI4/0tRLXxljrgBOAy6p9o+rtrZ32k5wCKWrhn3qcnxz0tj76qvQMOjtwI9Av0O41qYu3H1VK2NMX+BF4Exrbd6BHHuEacz9pHvV7hqyr+pC96q6a+x9pXvVL8LdV7XSvWo3jbmvdL/6RYP2kzGmDfAxcLm1dk0N59e9qu4ae181rnuVbfiiVC5gLcHCoTuLUvUKbbsBeCD0uivBoWOmlrYms3sR7WggJvR6HPDjfmJZz+6F3v4D3B96nQ5kVd/e3L7qo6+AkwgW+krdY30vdi8iu5aai8i+z+4FxG4KvT6V3Yu9zQz3+6W+2mdf9SBYm8wV+je6GOgd7vesOfdVtf33/B3YjmA9nqPD/T6F+6uR95PuVYepr6ptv5LaC8jqXtX0+0r3qkbWV9X22/N3oO5VTaevdL86DP1EcNDEAuDc/cSge1XT76tGd686XJ1yCrCSYHXze6qtjwDeDL0Rc4HR+zj+bILZt0pgK/B1aH0msAJYRrA6evt9HP+b0PE+gtm8F0PrWwHfEJyjuxi4NNw/wOH+qoe+Wh36hzU/9PVctW33hNpdAZy8j+M7AjND7bzPLxXvDfBs6PhFVEskNtevxtpXoW13hn6JLgZ+G+73KtxfjaCv9vU78EVgR7V2Z4f7vVI/6V7VCPpqPcHCryWh/uhZw/G6VzXxvgpt072qcfWV7lVNv690vzoM/QTcC5RWWz+fGp7Ota/ff+he1WT6KrStUd2rTCgoERERERERERGRGh2OGkgiIiIiIiIiItKEKYEkIiIiIiIiIiK1UgJJRERERERERERqpQSSiIiIiIiIiIjUSgkkERERERERERGplRJIIiIiIiIiIiJSKyWQRERERERERESkVkogiYiIiIiIiIhIrZRAEhERERERERGRWimBJCIiIiIiIiIitVICSUREREREREREaqUEkoiIiIiIiIiI1EoJJBERERERERERqZUSSCIiIiIiIiIiUislkEREREREREREpFZKIImIiIiIiIiISK2UQBIRERERERERkVopgSQiIiIiIiIiIrVSAklERERERERERGqlBJKIiIiIiIiIiNRKCSQREREREREREamVEkgiIiIiIiIiIlIrJZBERERERERERKRWSiCJiIiIiIiIiEitlEASEREREREREZFaKYEkIiIiIiIiIiK1UgJJRERERERERERqpQSSiIiIiIiIiIjUSgkkERERERERERGplRJIIiIiIiIiIiJSKyWQRERERERERESkVkogiYiIiIiIiIhIrZRAEhERaUaMMZnGGGuMcdVh3yuNMVMPU1wjjDGrjDElxpizDsc5pX6Efp46hzsOERERaVhKIImIiDRSxpj1xpgqY0zKHuvnhz60Z4YptOqJqJLQ13pjzN2H0OQDwDPW2lhr7YR6CrNZqM9EX6gfx9ZHWzW0Xefk5QG0aY0xpdV+DkuMMX+oh3aX7NGmzxjzWX3ELCIi0lTV2w1cREREGsQ64CLgaQBjTB8gKqwR7S7BWuszxhwFfGuMmW+t/aquBxtjXNZaH9AeWHIwAVRrQ5qnftba1fXZoLW2187XxhgDrAHer89ziIiINDUagSQiItK4vQFcXm35CuD16jsYY1oYY143xuQaYzYYY+41xjhC25zGmEeMMduNMWuBU2s49iVjTI4xJssY83djjPNAg7TWTiOYAOodavdqY8wyY8wOY8zXxpj21c5pjTE3G2NWAauMMWuAjsBnodEekcaYVsaYT40x+caY1caYa6sdf78x5gNjzJvGmCLgSmPM5FDsP4fa+MwYk2yMGW+MKTLGzKo+YssY86QxZlNo2xxjzMg92n8v9J4Wh0ajDK62va0x5qPQ+51njHmm2rZ9XveejDFnhNouCMXfo9q29caYO4wxC40xhcaYd40xnhra6AE8BxwVuu6C0PrIUL9vNMZsNcY8Z4yJCm1LMcZ8HjpvvjFmijHGYYx5A2hXrR9qHMljjLkz9POSbYy5eo9tpxpj5oXe103GmPurbf4x9L0g1P5RxphOxpjvQu/j9lB/JezrPTsQxpgvjTGPVlt+1xjzcuj1lcaYn4wxT4fe3+XGmDH7aGoUkAZ8WB9xiYiINFVKIImIiDRu04F4Y0yPUGLnV8Cbe+zzNNCCYBLmWIIJp6tC264FTgMGAIOB8/Y49jXAB3QO7XMC8OsDCdAEjQB6AfNMsIbRn4BzgFRgCvD2HoedBQwDelprOwEbgdNDU9gqQ/tvBlqFYv7HHh/wzwQ+ABKA8aF1FwKXAa2BTsA04BUgCVgG/KXa8bOA/qFtbwHv75GgOQN4J9T+p8AzoWt1Ap8DG4DM0LneCW2ry3XvfM+6hrb9NrTvlwQTNxHVdrsAOAnoAPQFrtyzHWvtMuAGYFrovUsIbfoX0DV0jZ1Dcd4X2vZ7gu9tKpAeitlaay9j9374vxriPgm4AxgHdAH2nO5WSvDnL4FgsvJG80tNq1Gh7wmh9qcBBvgnwX7uAbQF7q92vn8bY/69Zxx1dDVwmTFmtDHmEmAIcFu17cOAtUAKwZ+Nj4wxSTW0cwXwgbW29CDjEBEROSIogSQiItL47RyFNA5YDmTt3FAtqfRHa22xtXY98CjBRAoEkxBPWGs3WWvzCX5Y33lsOnAy8Ftrbam1dhvwOMFETF1tB/KBF4G7rbXfAtcD/7TWLgtNLfsH0H+P0Tj/tNbmW2vL92zQGNMWOAa4y1pbYa2dH2r/smq7TbPWTrDWBqq18Yq1do21thD4H7DGWjspFMP7BBNkAFhr37TW5llrfdbaR4FIoFu19qdaa7+01voJvv/9QuuHEkx23Bl6zyqstTvrD9Xlunf6FfCFtXaitdYLPEJwauLR1fZ5ylqbHeq3zwgmg/bLGGMIJg5/F3qPi0Ox7OxXL5ABtLfWeq21U6y1ti5tE/x5esVauziUULm/+kZr7WRr7aJQvywkmCQ7dl+NWWtXh96DSmttLvBY9f2ttTdZa2/aT0xzQ6Opdn6dGDp2C8Hk2mvAk8Dlofdip20E/214rbXvAivYe4ReNMEE5qv7iUFEROSIpxpIIiIijd8bBKf/dGCP6WsER09EEBwRs9MGgiNOIJjs2LTHtp3aA24gJ5hzAIJ/XKq+//6k1FB/qD3wZPXpQwRHmrSudv7aztEKyN/jw/4GgiOodqrp+K3VXpfXsBy7Kxhjfk9wpFUrwALxBN/LnbZUe10GeEyw+HNbYMM+ai7V5bp3alV9nbU2YIzZxC/9VlMMrWo4Z01SgWhgTrV+NcDOqYkPE0z8fBPa/ry19qE6tt0KmFNtebfrMsYMAx4iOJUxgmBibp+1g4wxacBTwEggjuDP3446xrLTwFpqIH1OcPTYimqJvp2y9kicbWDv9/gcggnSHw4wJhERkSOORiCJiIg0ctbaDQSLaZ8CfLTH5u0ER5RUH+XSjl9GKeUQTHpU37bTJqCSYBIoIfQVX72A8EHaBFxfrc0Ea22Utfbn6pdVy/HZQJIxJm6PuLOqLdd1xMxeQvWO7iI4miYxNO2rkGCSZX82Ae1MzU8Sq8t175RNtT4LjRpqy+7XWFd7vhfbCSbMelWLo4W1NhYgNFLt99bajsDpwO3Vpgfu732t7ecJgtMBPwXaWmtbEKzPtPN9rantf4bW97XWxgOXUrd+qKsHCU5fzDDGXLTHttamWoaN4LVk77HPFcDrBzBCS0RE5IilBJKIiEjTcA0wes86LKEpVu8BDxpj4kLTpW7nlzpJ7wG/Mca0McYkAndXOzYH+AZ41BgTHyqk3MkYs88pR3X0HPBHY0wv2FWo+/y6Hmyt3QT8DPzTGOMxxvQleP3jaz+yzuII1n3KBVzGmPsIjkCqi5kEkygPGWNiQvGNCG07kOt+DzjVGDPGGOMmWJeokuB1H6itQJud9ZOstQHgBeDx0AgfjDGtd07tMsacZozpHEqeFAH+0NfOtjrWcq73CBYt7xma3vWXPbbHERw9VmGMGQpcXG1bLhDYo/04oIRgYe3WwJ0HeO37ZIwZRbAW2OWhr6dD59gpjeC/DXeon3oQrEW18/g2wPEEp8CJiIg0e0ogiYiINAGh2j6z97H5VoLFi9cCUwmOAnk5tO0F4GtgATCXvUcwXU5wqtFSglOHPiBYH+dQYv2YYBHnd0zwKWmLCdZaOhAXESxSnQ18DPzFWjvxUOKq5muCNZJWEpy2VEEdp+2FEnanEyxMvZFgMepfhbbV+bqttSsIjrZ5muCIodMJFq+uOojr+Y7gE/C2GGO2h9bdBawGpodimcQvNZ66hJZLCBYa/7e1dnJo2z+Be0O1hO6oIe7/AU+Ezrk69L26m4AHjDHFBIt2v1ft2DKCI4J+CrU/HPgrMJDgCLAv2OPn0wSfHvfcfq5/Qeipbju/njDGxBOc7nmLtTYrNH3tJeCVaqOOZoTei+2huM6z1uZVa/cygrW21uzn/CIiIs2C0YhcEREREWlOjDFXAr+21h4T7lhERESaCo1AEhERERERERGRWimBJCIiIiIiIiIitdIUNhERERERERERqZVGIImIiIiIiIiISK1c4Q7gYKSkpNjMzMxwhyEiIiIiIiIicsSYM2fOdmttak3bmmQCKTMzk9mz9/UkYxEREREREREROVDGmA372qYpbCIiIiIiIiIiUislkEREREREREREpFZKIImIiIiIiIiISK2aZA2kmni9XjZv3kxFRUW4QxE5IB6PhzZt2uB2u8MdioiIiIiIiEiNjpgE0ubNm4mLiyMzMxNjTLjDEakTay15eXls3ryZDh06hDscERERERERkRodMVPYKioqSE5OVvJImhRjDMnJyRo5JyIiIiIiIo3aEZNAApQ8kiZJP7ciIiIiIiLS2B1RCSQREREREREREal/SiDVI2MMl1122a5ln89Hamoqp512Whij2r/Y2Nj97nP//ffzyCOP1LrPhAkTWLp0aX2FJSIiIiIiIiKNhBJI9SgmJobFixdTXl4OwMSJE2ndunVYYvH5fIf9nEogiYiIiIiIiByZlECqZyeffDJffPEFAG+//TYXXXTRrm2lpaVcffXVDBkyhAEDBvDJJ58AsH79ekaOHMnAgQMZOHAgP//8MwA5OTmMGjWK/v3707t3b6ZMmQLsPmLogw8+4MorrwTgyiuv5Pbbb+f444/nrrvuYs2aNZx00kkMGjSIkSNHsnz5cgDWrVvHUUcdxZAhQ/jzn/+8z2t58MEH6datG2PHjmXFihW71r/wwgsMGTKEfv36ce6551JWVsbPP//Mp59+yp133kn//v1Zs2ZNjfuJiIiIiIiISNPjCncADeGvny1haXZRvbbZs1U8fzm91373u/DCC3nggQc47bTTWLhwIVdfffWuxM+DDz7I6NGjefnllykoKGDo0KGMHTuWtLQ0Jk6ciMfjYdWqVVx00UXMnj2bt956ixNPPJF77rkHv99fpwTMypUrmTRpEk6nkzFjxvDcc8/RpUsXZsyYwU033cR3333Hbbfdxo033sjll1/Os88+W2M7c+bM4Z133mHevHn4fD4GDhzIoEGDADjnnHO49tprAbj33nt56aWXuPXWWznjjDM47bTTOO+88wBISEiocT8RERERERERaVqOyARSOPXt25f169fz9ttvc8opp+y27ZtvvuHTTz/dVUuooqKCjRs30qpVK2655Rbmz5+P0+lk5cqVAAwZMoSrr74ar9fLWWedRf/+/fd7/vPPPx+n00lJSQk///wz559//q5tlZWVAPz00098+OGHAFx22WXcdddde7UzZcoUzj77bKKjowE444wzdm1bvHgx9957LwUFBZSUlHDiiSfWGEtd9xMREREREZEQa/HlrcOV0jHckYjs5ohMINVlpFBDOuOMM7jjjjuYPHkyeXl5u9Zba/nwww/p1q3bbvvff//9pKens2DBAgKBAB6PB4BRo0bx448/8sUXX3DZZZdx5513cvnll+/22PeKiord2oqJiQEgEAiQkJDA/Pnza4yxLo+O39c+V155JRMmTKBfv368+uqrTJ48+ZD2ExERERERkaCKiX/H8/MjcOPPkB7ez7Yi1akGUgO4+uqrue++++jTp89u60888USefvpprLUAzJs3D4DCwkIyMjJwOBy88cYb+P1+ADZs2EBaWhrXXnst11xzDXPnzgUgPT2dZcuWEQgE+Pjjj2uMIT4+ng4dOvD+++8DweTVggULABgxYgTvvPMOAOPHj6/x+FGjRvHxxx9TXl5OcXExn3322a5txcXFZGRk4PV6dzs+Li6O4uLi/e4nIiIiIiIie/POHR9MHgEUbApvMCJ7UAKpAbRp04bbbrttr/V//vOf8Xq99O3bl969e+8qYH3TTTfx2muvMXz4cFauXLlrFNHkyZPp378/AwYM4MMPP9zV5kMPPcRpp53G6NGjycjI2Gcc48eP56WXXqJfv3706tVrV9HuJ598kmeffZYhQ4ZQWFhY47EDBw7kV7/6Ff379+fcc89l5MiRu7b97W9/Y9iwYYwbN47u3bvvWn/hhRfy8MMPM2DAANasWbPP/URERERERGQPfh/Or+7Cm9Q1uFyWV/v+IoeZ2TkapikZPHiwnT179m7rli1bRo8ePcIUkcih0c+viIiIiEjz5s1ehPv5Y/i5x70cvezvMO4BGLH3wASRhmSMmWOtHVzTNo1AEhEREREREQmzhdO/BeDlrLZYZ6RGIEmjowSSiIiIiIiISBgFApYty36i0EYzaVssfk8SlCqBJI2LEkgiIiIiIiLN1PItRdw7YRH+QNMrbXIkmbhsKx0qV5CX0AcwFDnisWXbwx2WyG6UQBIREREREWmG/AHLHe8vYPKM2Wx56ybs7FfCHVKzY3dsoHT8FUyaPJmujk1k9hlJm8QotnhjsBqBJI2MK9wBiIiIiIiIyOH31syNJOZM5eOIh3Gv9mMrVsPgq8IdVrNS9cUfiFn9FXfYybhMANoOZnRpGmvnRNHNkx3u8ER2oxFIIiIiIiIizUxJpY9Hvl7B7zxfsJVEchP7g7c83GE1K/5V3xK5+ivWxg0h3RQEV7YayLFdU8kNxGJLNYVNGhclkOrR1q1bufjii+nYsSODBg3iqKOO4uOPP27w886ePZvf/OY39dLWcccdR7du3ejXrx8jRoxgxYoV9dJufarPGF999VVuueUWAJ577jlef/31fe67fv163nrrrV3L9fm+i4iIiIgcTp/MzyK5YgMDA4t4yzeGAlcq+CrCHVbzMul+vC0yuaLiDiZHn4A/tRfEpdMpNZYdNg6Xtxj83nBHKbKLEkj1xFrLWWedxahRo1i7di1z5szhnXfeYfPmzQ1+7sGDB/PUU0/VW3vjx49nwYIFXHHFFdx55517bff7/fV2roPVEDHecMMNXH755fvcvmcCqb7fdxERERGRw8Fay1szNnJz3FSsw8VX7jGU+F3g0wikwyYQwLFtCatSxrKp2E/FyU9irv8RgNaJUeww8cH9yvLDGKTI7pRAqiffffcdERER3HDDDbvWtW/fnltvvRUIJh9GjhzJwIEDGThwID///DMAkydP5rTTTtt1zC233MKrr74KwN13303Pnj3p27cvd9xxBwDvv/8+vXv3pl+/fowaNWqvNmbOnMnRRx/NgAEDOProo3eNznn11Vc555xzOOmkk+jSpQt/+MMf9ntNo0aNYvXq1QDExsZy3333MWzYMKZNm8Zjjz1G79696d27N0888cSuY15//XX69u1Lv379uOyyywDIzc3l3HPPZciQIQwZMoSffvoJgB9++IH+/fvTv39/BgwYQHFxMTk5OYwaNYr+/fvTu3dvpkyZctAxvvnmmwwdOpT+/ftz/fXX70oqvfLKK3Tt2pVjjz12VywA999/P4888ggAq1evZuzYsfTr14+BAweyZs0a7r77bqZMmUL//v15/PHHd3vf8/PzOeuss+jbty/Dhw9n4cKFu9q8+uqrOe644+jYsaMSTiIiIiISdgs3F7I6ezunBL7H1/VUIhIyKPS6wKsRSIdN2XaM9fPJmgCD2ydyQq8MHK5giWK30wHRSbv2E2ksjswi2v+7G7Ysqt82W/aBkx/a5+YlS5YwcODAfW5PS0tj4sSJeDweVq1axUUXXcTs2bP3uX9+fj4ff/wxy5cvxxhDQUEBAA888ABff/01rVu33rWuuu7du/Pjjz/icrmYNGkSf/rTn/jwww8BmD9/PvPmzSMyMpJu3bpx66230rZt233G8Nlnn9GnTx8ASktL6d27Nw888ABz5szhlVdeYcaMGVhrGTZsGMceeywRERE8+OCD/PTTT6SkpJCfH8yW33bbbfzud7/jmGOOYePGjZx44oksW7aMRx55hGeffZYRI0ZQUlKCx+Ph+eef58QTT+See+7B7/dTVla2z/hqi3HZsmX861//4qeffsLtdnPTTTcxfvx4xo0bx1/+8hfmzJlDixYtOP744xkwYMBe7V5yySXcfffdnH322VRUVBAIBHjooYd45JFH+Pzzz4Fg4m6nv/zlLwwYMIAJEybw3XffcfnllzN//nwAli9fzvfff09xcTHdunXjxhtvxO1213pdIiIiIiIN5a0ZGznBvYgoXyEMupz0KR4KtjnBrxFIh03xFgCyfAk8dG5fHA6z22ZPfDpsB8r0JDZpPI7MBFIjcPPNNzN16lQiIiKYNWsWXq+XW265hfnz5+N0Olm5cmWtx8fHx+PxePj1r3/Nqaeeumuky4gRI7jyyiu54IILOOecc/Y6rrCwkCuuuIJVq1ZhjMHr/WXO7JgxY2jRogUAPXv2ZMOGDTUmkC655BKioqLIzMzk6aefBsDpdHLuuecCMHXqVM4++2xiYmIAOOecc5gyZQrGGM477zxSUlIASEoKZs0nTZrE0qVLd7VfVFREcXExI0aM4Pbbb+eSSy7hnHPOoU2bNgwZMoSrr74ar9fLWWedRf/+/Wt8f/YX47fffsucOXMYMmQIAOXl5aSlpTFjxgyOO+44UlNTAfjVr361V18UFxeTlZXF2WefDYDH46kxhuqmTp26K1E3evRo8vLyKCwsBODUU08lMjKSyMhI0tLS2Lp1K23atNlvmyIiIiIi9a2owsunC7J5O2E2AV8yjo7HkbFwKXmbnWDLwVowZv8NySGpyM/CAwzq3Z3OabF7bY9NCiWQVEhbGpEjM4FUy0ihhtKrV69dCQSAZ599lu3btzN48GAAHn/8cdLT01mwYAGBQGBXUsLlchEIBHYdV1FRsWv9zJkz+fbbb3nnnXd45pln+O6773juueeYMWMGX3zxBf379981ymWnP//5zxx//PF8/PHHrF+/nuOOO27XtsjIyF2vnU4nPp+vxmsZP378rrh38ng8OJ1OIDhnuibWWkwNN5tAIMC0adOIiorabf3dd9/Nqaeeypdffsnw4cOZNGkSo0aN4scff+SLL77gsssu484776yxLlFdYrziiiv45z//uds+EyZMqDHGPa/jQNV0zM7z1PV9FxERERFpaJ/Mz8bpLaZP6TQCA6/A4XTRsoWHHVVOjCsQLNrsigh3mEe8jRvX0hXo2a1bjdsTUzNgJZQX5RJV4x4ih59qINWT0aNHU1FRwX/+859d66pPvyosLCQjIwOHw8Ebb7yxqx5P+/btWbp0KZWVlRQWFvLtt98CUFJSQmFhIaeccgpPPPHErkTRmjVrGDZsGA888AApKSls2rRptzgKCwtp3bo1wK5aSvVt1KhRTJgwgbKyMkpLS/n4448ZOXIkY8aM4b333iMvLzjMcucUthNOOIFnnnlm1/HVr6VPnz7cddddDB48mOXLl7NhwwbS0tK49tprueaaa5g7d+5BxThmzBg++OADtm3btiuWDRs2MGzYMCZPnkxeXh5er5f3339/r2Pj4+Np06YNEyZMAKCyspKysjLi4uIoLi7e53syfvx4IDi1LSUlhfj4+IOKXURERESkIewsnn1V0hKcgSpc/S4AoGW8h3IbKrHQ0IW0i7LxvXYWFGU37HkaudzsDQD06tqlxu1paS0BKNqe0yDn922YgffjmyEQ/gckSdOhBFI9McYwYcIEfvjhBzp06MDQoUO54oor+Ne//gXATTfdxGuvvcbw4cNZuXLlrulfbdu25YILLqBv375ccsklu+rxFBcXc9ppp9G3b1+OPfZYHn/8cQDuvPNO+vTpQ+/evRk1ahT9+vXbLY4//OEP/PGPf2TEiBEN9rS0gQMHcuWVVzJ06FCGDRvGr3/9awYMGECvXr245557OPbYY+nXrx+33347AE899RSzZ8+mb9++9OzZk+eeew6AJ554YldB8KioKE4++WQmT568q6j2hx9+yG233XZQMfbs2ZO///3vnHDCCfTt25dx48aRk5NDRkYG999/P0cddRRjx47dZ92qN954g6eeeoq+ffty9NFHs2XLFvr27YvL5aJfv367+mOn+++/f9c13n333bz22msHFbeIiIiISEOZv6mAZTlF/MozHX+LdtAmWO6hZQsPlYRGHTVwIW3ftH/jWvc95Cxo0PM0dqV5WRSaeGJDnwv31Da1BQU2hvLCbfV+bluUA+9cgnvBm1CUVe/ty5HLHMx0nXAbPHiw3bMA9bJly+jRo0eYIhI5NPr5FREREZGGduf7C5i+aBk/Om8kcPTvcI67D4AVW4p54em/8Yj7v3DbAkjMbJDzX//SjzyRcwlRviI47xXovXdN1+ag0udnygMn0Cc6n/S759W4T0mlj20P9sKf3pcuN+89a+KgBfxUvXQKEVnTg8vXTYZWez9USJovY8wca+3gmrZpBJKIiIiISDNS4fUfVM1Hadq2FJTx2cJsft96GcYGcIamr0FwCluFbdgRSKu3ldBi7afB5BGAt/k+8W1xViEp7MAR33Kf+8RGuihytICyPHz+wD73O1B22WdEZE3H1++S4Iqy/HprW458SiCJiIiIiDQT3yzZwoAHJvLOrE3731mOHL4qop4bzG/teEZ7f8CX2gvSuu/aHB/lIuAMPXm4gWogfbU4h4ud37LNJAdXeMtqP+AINnPdDtLMDuJS934idnVVEYm0LFtB5QsnwoqvDv3E1lI66V+stxlMTjo/uK58x6G3K83GEZVA0l9SpCnSz600Wn49MVBE5Ejy2s/ruf7NOZR7/azZVhLucOQwsnmraVGRxQ2uz4jfPg/T9/zdthtjiIkJPUq+gUYgfb0oi55mA9/4BoXO03xHIM1am0uaKcST2KrW/fLie+K0XqJyFxBY8M7BnzBvDSUf3ETe538hdsdSnvWdzqQNoVFNGoEkB+CISSB5PB7y8vL0YVyaFGsteXl5eDyecIcisrsNP2P/2RpK6r9wo4iIHF6BgOXBL5byl0+XMKZ7OunxkSRsnYbv5VOhqvmOAmlO1i4P1tlZk3Qs/sgEnHskkACidhZzboARSBvzyijespoI42dRoH1wZTNNIPkDltUbN+HCD3EZte7rHXknPSteJj9jFHbLwoM+p/fLu4ldPJ7kOU+SY5NY0/IUftgY+kNhuRJIUneucAdQX9q0acPmzZvJzc0NdygiB8Tj8dCmTZtwhyGyu6y5GF9F8BG7sWnhjkZERA5ShdfP7e/N58tFW7jiqPbcd3ovrnnqEy7ffD8uWxT8PZ/SOdxhSgNbuXgOnYC0K1/H54nCGRG51z6OiFACqQESO18tyaGD2QLAqkBrAg43jmY6hW3FlmJiKnMhEohNr3XfsT3SiHK7mO9tx5j8SVBZApHBkWI2EMA46jAeZNMs3Gu+4ftW1/HsupZcNW4w58Zkcs/Hi/HHx+PUCCQ5APWSQDLGnAQ8CTiBF621D+2x/U7gkmrn7AGkWmvzjTHrgWLAD/j2Ve17f9xuNx06dDjIKxARkd0Ubg5+b6Z/HRQRAcBbgW/CzbhG3Aqt+oc7mgO2YFMB9326hAWbCrj31B5cc0wHKvM388fSh4i3oULGvoZ9ZLuEX2GZF9/W5eyITCcxPmGf+zkiooIvGuDeP2nZNsbG50MFrLUZ+BweIprgz55/5os4Y1Oh55kH3cbMdXmkmYLgwn5GIEVHuBjXM53PVqYwFgtbF0O74eCrJPDMMJyjfg8DL6u1De+kv+F1JXDz2uGcM7wrp47uw+rQFNYyZzxxGoEkB+CQp7AZY5zAs8DJQE/gImNMz+r7WGsfttb2t9b2B/4I/GCtrf6Tenxo+0Elj0REpH7Zgo3BFw1USFNEpCkIzH0d15IPYM234Q6lzqy1fL9iG9e8Ooszn/2JTfll/OeSgfx6ZEeq5r6F+z9D6ehdzReO44MH+CvDG7A0uI/nbaYDWTjSutW6n2tnAqmeEzsFZVXM2bCDoS3yCXgSKTJxVBpP0yuiHQhgvn0AO+ulQ2pm1voddIsO1SCLq30EEsAZ/VoxvTxUbDsnNI1tzfc4C9bBtmU1HlPp8wPgXTMF94YfeKz8VEb1yuS+03oB0Ck1hpTYCPJtHFYjkOQA1EcNpKHAamvtWmttFfAOUFtK9iLg7Xo4r4iINBBbGHo6j0YgiUhzk7eG8vdvwL99LXbqE8F1TegD1odzs7jqlVkcv+FJpqQ8xA+3H83JfTII5CzC/cVvqUrtw396v8X73qODB/iUQDrSTVySQydHDnFtetW6nysyOviinu/9P6zMxR+wdDQ5kNyZjBZRVOBuev/HyF2Oo7IQW3rwJVOstSxfu56jYnKCK2Jb7veYUV1T8cekU2Ba4M9eAIBvyYTgxsrCvQ/Yvpqqd69iR/Yasj6+l202geRjb+Q/lw4kwhX8+G+MYWiHJLKrorBleQd9PdL81EcCqTVQ/Tmgm0Pr9mKMiQZOAj6sttoC3xhj5hhjrtvXSYwx1xljZhtjZqvOkYhIwzKawiYizdW8N4ha8jbmP8NxFmdhjQOayAesKl+AxyeuZHgrFxc7J9K2ZCGRPz+Ot7wI3we/JuBpQdSlbxGR2olSnzN4kBJIR7yCLeuJohJH6n5GIO1MINXzCKRvl20jOSaC2OJ1mNQutE2KojQQEbb/Y2zKLyO74CDOvXEaAKZ0+0Gfe9lXz/O17xqOL/yIQGxLcO//QToRLgd/Pr0XC33tyFszi1XZ+bDiy+DGiqK9D1j5P+JWfULUK6PJLJnPTxlXcOMJfTDG7LbbkMwkcrzRBEqDv998m2aDr+qgr6252VZcQVGFN9xhHHb1kUAyNazb16PQTgd+2mP62ghr7UCCU+BuNsaMqulAa+3z1trB1trBqamphxaxiIjsU0HBDszO+fBKIIlIMxPYOAN/YgfKo1pSlDoIm94HewgfGA+n92ZvIqugnL92WIrDV4Gv1RDc0x7HPNGXiLzlcMYzEJNCUkwElbiDB/n1gfFItr2kkpSK9cGFlK617hvhCRbR9lfV373f5w8wecU2TuoSi6N0Kya5M+2SoikOuLGHeQpbcYWXuz5YyHGPTOaiF6bjD9T96d1lVT7yl/8YWsiDQOCAzz/54xfoOv1u5jt6svmkVwhcPbHOx57RrxUlST1JKF7NI888iauyEGsc2BoSSIHclfhcMZRWBdhqUjj5irtqbLNP6xYU2NjgCMvCLJwvjYWF7xzwdTVHucWVnPzEFP744aJwh3LY1UcCaTPQttpyGyB7H/teyB7T16y12aHv24CPCU6JExGRMKj0+bnqyY9/WdEEC1yKiBw0XxUmey7+TicwuuJhzi29GxOT0iSmeFR4/Tzz3WoGtUug08b38KX1wXXpe3gTO1PZchDll32Fq/tJACTHRFC1M4Gk3/NHtBVbiulkQh/N9jMCyeOJxGcd+CrrL7Hzyfxsiip8nNq6NLgiuUswgeRzE6jHRFVd/HvyGt6fs4mRXVLYkFfGpGVb63zs4xNXUrZ6KgDG+qGioM7H2tyVbH5iDMctuIO17i50vPVT2gw/B1dSuzq3YYxhxKgTiDB+/hvxBKU2kkCb4djK4r32rdq6gsX+dlzgeoLSy77CExVTY5vdM+IpIBaXrxS2LMRgIW9NnWNqrqy13P3hQvJKq5i6civliz9vViO36iOBNAvoYozpYIyJIJgk+nTPnYwxLYBjgU+qrYsxxsTtfA2cACyuh5hEROQgLMspJr5yyy8rmlqBSxGRQ7FlIcZXwdfFHdha4mNVvpdSVwKmCSSQ3p65kS1FFdw3qBJX7lIcg6+C6CTct0wn5qoPiep01K59k2MjfxmB1Iw++DRHK7YU09lk4fMkQkxKrftGRTipIKLeEkh5S77jg88/Y2C7BIbHh0Y2J3embVI05URSVV5SL+epi0qfn/dmbWJMj3SePy2FcXEbeGVK3ZIlVb4AU+csoI3ZTnZs7+DKutZBspb8N68idscyXou7jna3TyIpKfmgrqFF/zMpPO1FZne6hdu9N1HiTsRU7j0CqWrLClb6M3jy6rF07Nhln+3FRrpwxIRi2TQzGG5h1kHF1py8M2sT3y7fxsguKVzkm0DUB5fAqm/CHdZhc8gJJGutD7gF+BpYBrxnrV1ijLnBGHNDtV3PBr6x1pZWW5cOTDXGLABmAl9Ya7861JhEROTgLNhUQCtTbaqGV3+ZFpFmZNMMAB5eGs+g9okAbCyPavQ1kMqr/Dz7/RqGd0yiX9U8ABy9zgLYq+4JhEYgWVdwQSOQjmgrthQz0LUW0movoA0QHUog1csUNmuJ/OgKXgvcw+NtfqRyxstYDCR1pHVCFOVEEKhq2D9SFVerT/PV4i3klVZx2bB2ON65kBe8f+SRnMtZM++H/V7Hki+e4WbvKwB8VD4guL6OCaTVk98guXAxr8dfx/m3/hNPdPxBXQsATjctBp9P/Al383VgCDv8UbBHAmnKgpXEBwpo3akPvVu32G+TcUlpANhN04PfCzfVtnuzt357KX/7fCnHdE7h2eOd3O56P7ihZEvtBx5B6mMEEtbaL621Xa21nay1D4bWPWetfa7aPq9aay/c47i11tp+oa9eO48VEZHwWLCpgNZmO16cWIcLfKqBJCLNR2DDdPLcLdkSSOKJX/UnMzmaZUUuTFVJo06of/zDTNJLV3D7uG74N0zHn9wFYvY9yiGp+hQ2v4poH8m25GykO+uh0/H73TfK7QolkA49sbNtw1Ji/UVUuFvQfu5DROQuxDvmAXB7SIiOoJKGK6Jd6fNzx/sL6PvXb3j0mxVkFZTz8k/raZ8czTHOpbjyVlDY6zJakk/unI9rb2zjNAbM+zNjnfPYljSI/5X1CK6vQwJp3dYdRPzwd9aY9lx63V1ER7jq4eogMzkGp8OQWxW5WxHtQMAy/stJAAwdOrxObaWktgq+yJob/F6kEUg1+XnNdp79fjW3vD0Xl8Pw8Pl9iZ50F8WOUJKuCT2p81DVSwJJRESOALNe5IRV99PG5LIlkIR1R6uItog0H9bi2zCNKRWduHJEJm2TojmuWxoL8kMf+sob7weEVrMf4l3PgwxtE4XZNAPT7qha94+OcGJdkcGFI2EKW2UJ/mePgvlvhTuSRiUQsKTnBp8c5uoyZr/7R0c4qbAR2HpIIM35KVgguvS8dyg+81X8v1lExMjfANAiyk25jcDRAH+kKq7wcskLM/hgzmbOalXIyKmXMe/Rs1iwqYDrRnUkMPM5AlHJtDjrEbY603Hk1z6NrXDmW5TZSJ4b+jUtbppIuSf0MKf9FNbPK6nk5xd+Rzu2En3aP0iKi6qvSyTC5aB9cjTZFW6Mrxz8wZFWBeVe4krWAeBOq73e1U6tWwUTSCY0EtEUZUPAX2+xHgm+WryFS1+cwcNfr2Dl1hL+eU5fMtzluLJns7zN+RTZaCoK615Pq6lTAklERADwLv6Ek3zfc7JzDtkk43NEKoEkIs3H1iVElOey0NWbm4/rDMCxXVPZ6osNbm+kT2LLL60iqXwDsbYUfn4GR2Uhjna1jz4wxhAb3TCPbA8H30/P4MxdCjkLG+4k3gp8H1wLuSsa7hz1LKugnGF2AeWuFtCy33733zmFzR7iFDavP0DxmmmUmygyug4mbsDZRMT9MiKuRZSbciJx+uv3Z6/C6+ea12Yzf1MB7xxXxGM7fsNQxwpOcc5k4vW9uKQrOFd9jR14Bbg9FEa3J75sI9bu42lsviocyyYwmUFcfExPIl1OOrdvRwBT6++D8io/Tz3/Xy7xfUxOl4vJGHRavV4nQJe0WDaVhZLboULa20sq6Why8BsXJLSvUzuZbas9C6tF22CB8JLmkwzZnwXLV/D9O49zdCtYcN8JLPnriZzaNwM2/ARAUu+x5Nk4CrZrCpuIiDQzVfnBee+RVJJlU6gySiCJSNNQnruOwinP41v25UG3kT/rPfzW0O7o82kRHZzeNbxjcrUpCo2zDtLUVblkmuAHPjvl0eDK/SSQAOJjQ4kxf9MegbR23VrsT08GF6r2fiJVvdnwE67F78G6HxvuHPVsRU4RIx2LKG51DDj2/7FvZxFte4jTNSct3Up33wpKU/qCw7nX9giXA5/DgytQCftK3hyg8io/174+m1nr83nmrLYMWXAv3qSuBC7+EAcBuhROIzDzRcDgHHpN8KCkTrS1OeQU1Px/nYU/fkxcoBhHv/NJi/cA0DE9gQIbS6BkW43H+AOWR159l98W/ouC2E5kXPBYvVzfnrqkxbGhNJRAqigEYHtxJZ1MNuVxmeCs23S5lNSMXxY6Hhf8Xri5/gJtwqy1rP7sUf7leo7Xd1yB88MrqVo5CazFrpuCdUUR12koO4hrtH9gaAhKIIk0Neun4v/89nBHIUcaa4kozeYHf18CDjfrbAYVNkI1kESk0Suf+m88zw6gxbd34vjy9wfXiLWYpROYHujJmEG/FBuOinCS3rJ1cKGRJpBmL11NvCnDRsRifOUEolMhqeN+j0uM9eDF1eRHIC354B8YfwXWkwCVDfdUL9/aUOKoqrT2HRsRb85i0kwBrq77n74GEB3hosK6D/ne/8PSTfRwbCSpy76nUlp3FA4C9ZLALK30ccUrM0la+wmTWr/E8bNvxlFZhPv8F3B0GUMgtiX+xR/CvDfwdT0FWrQBIK51d2JMJStWr9o7PmvJnfYWRcQy+tSLd63vnBZLno2nrKDmEScvvvcxt2X9HuOJI/6qD8Fdf1PXquuSHktRINR2qJB2bmgEUiCpc90bioimykQAYDuG6mQpgQTAjHX5xBWtpigyg9K+V+LZ/BMx756Pd8bzBNZNJdBmKAlxwZ8HV0XjneJc35RAEmli/D8+hnP2S5qfLPWrfAfuQCWLoobATTP5IuZcSm3DFbgUEakP5T/9l6hJf+QHBlHY6QxM6C/xB2zrEhLLNzAz5ljaJkXvtql7p8zguQpqHnEQTtZaNq1ZAoAZdn1wZbvhUMOT1/aUHBNBFa4mXQOpsMxLWvEi5gU6UxWfCVUNl0Cy66YEX3gb9slh9cmTF/zZiOxYe02snXZOYTOHmFQsXT8HN34c7Ybucx/jDv07q4f38/GJK1mzfj0Pe16lffEcnMVZ+E56CJPeK/hvoetJOFdPxFGxA/dRvzwkPD2zJwDb1i3Zq825GwvoVLmMHS2PJiLSs2t957RY8oinqnDv3wcvTV1H/6X/wrqjiL3+axzJHQ752valU2osRYTew1Ah7byiMtqbrUSkdz2gtnyRCfitYUlkaJqjEkgAPPv9aro6c4jOHEzcWY9gfr+cynajcH73N5y5S3B2HElMhJNCE0dE1Y5wh3vYKIEk0pRUFOJYH/oLmE9PTZF6FHpsqye5LY6UjmSkJlLsd2GVQBKRRqp89RQiJ97NJP8Arq34DZtdbTHeUvD7DritigUf4rcGup+617b+XToQsIbsnM3YyhJsA45yOVDLtxQTXx567HafC6jqcxGOQVfW6dikmAgqrbtJP4Vt8sptdDLZrA60psR6Gq5vKotxbZkffN2ERiD5KoOxRscm1mn/nVPYHIdQm6igrIr0okXBhdaD97mfIyI0euYQ/5+xelsJr/68nicyJuEOlOP69Te47lqDe+c0NcDR/RQAfCk9oP2IXet3JlpKt6zcq913p62mrdlGRqe+u63vnBbLdhu/11PY1uaW8M2XHzLMsZzo0XfiSqpbDaKD1Sk1lhJ2H4Hkzd+E2/iJSOtyQG1FxKWymTQ+W1WFjYjVk9gI/lzNWJVDO7bgSu8OgDPCQ+QZj/2SYM0ciTGGUmci0b6CepuO2dgpgSTSlKz8BhMIPmmhqQ85l8alZNsGABIyOgHBR8QWeF31OgJpn0UqRUQOkK84n7K3r2JjIJXsMc9gXBFklwenYez8MFVn1uJd+BHTAz0Z1rv7Xpv7ZyZTSCz5uTkE3r4Y/2tnNZoPCt8s2UqmYysWA4mZRJz7HHQZW6djk2MjqcSN7xALJofTz4tXkWKKWEsrdvgjdxUTrm+B9dOCxYX/n733DnMkK8+371NBWd3qnCfnsDObcw6wpAV2YYkmJwO2MWCCP4NtwP6BwdgYMF6TTFpyWDawbM55J+c8nXNLrSxVne+PUk/YTpJaPa2eOfd17bVS6VTV6Wm1VPWc531emFcCkp1y3D3C5ZtmpIPP1EnhQpuBqLjp6AjXapuIViyFYMOk43T3mANpZu+/L961k6XmIJeO3IG14a1QN0H3scVXkK1bi3bVp05251W0khEutKEDJ12jhOMZtm3fgi4krvqT3TwBt0HSrMadOtlx8vj+AT6s/56Mpwbz/HfO6GfKB69Lx/CFnCe5970YOQyAVl2Y80lbdi3bK67kru09yIoW5Eh7CWc6P3lwdy+LRI9TZll3wvdC7XKyl3wM218PzecAkHRVYcjMrDogywklICkU8whr5x9OeDJ/LeeK8qOv02lj27LQqZtfVOMnaplYJWjlC8C++8h+/SyS2/4w/ViFQqGYguTAEbq+/UoqskM8e86X+Yur1rG8PsChaC6st1ABqXcHwdhh7hcXc96i6nEvuw2duFkJw4fRjjyO0fUcHHqkBD/JzLlnezfnBEaQFc1geqbf4QSq/SZpaZBKzk8BKZ216dzvdF2LB5cwkDJm7QbOPvQoUjORgYb5JSCNzdXMT0AydI30DLuj7TpwiAu0XZjrbpr6XG6/82AGAtLRwTgP7+nny82PIJAYV39m4oGmF+PDT6Kte93J2zWNmL+VZquTO7d2H9v8qxfaabNzZVy14/OERKAOvx0BK3Ns26Hdm7lC34a4+MOzlnv0UgKVuc52uRI21+hR53nVooKOo73sC8Su/Bwdwwmi7kZkWDmQHtrdz5VVudy72pNFRPPaz8LHdoLhLFpk3DmH3xkSpK0EJIWizBlbEZHpGHLffU5IJCgHkqKkjPYeJi11li9xVq1aqrwkcB1bvZwxhx/HjBzF85u/gKe/U5pjKhSKM474vkeQ37mMqvghbl/wj7zhptcCsLIxyP5w7rI2WZiAlN32Wyw0ootvxGVMfGksfDVsyGxBSAupmWQf+dpMfoyScHggxu6eUVa6+vMKzX4pfrdBChN7hh235ornjwzRlMmVXzetoisxewKS6HiObONG8NXMqwwkmU44Qem6mfc+Wd3tdEcrEm3fn9CFxD2NgGR6Zi4g3bO9mxCjrO/7I9a6N0BlS8HHCDavZpWrn8/+dhvtQ3GSGYvbHj3IlTW5z5Ga8QKSO+Q4q+yoIxhIKdHbnwTAWPfa4n6YIgiFcsJFysl+C8Q7yGJARXPBx7phTQOagMPZakTkzM5AiiQzPHd4iCurhx13Z+1LSgKFQDOO/01Z3tzCQ/zMCNJWApJCUc50voh996dASnZuexHDStJVfaHzmspAUpQQa7idPlFLbdBZNfO59FwXthLdWES6sCtayNasRO4pvs22QqGY31hHn4OB8R2PpiOdShJ+7DbcP3s9HekgX2r9b976ro8icuUoqxsraE/kLugLcSBJSWrrb3nGWsVlZ6+edFhtfTMuYZHExeiFH8M48ih0vlDwz1FK/rTD6QJVm+4suGQFwGPopDGRmfl3PSHTMZ7a389yrQupu2hauJK+tDl7XdgiHY5IZ/qR86lMJRMnLdwF7WLpHswiBSTLlqwcfpghsxGaNkw51uUNOPukind03bO9h49XPYpuJTEu+6uijqHXLqVV9uATCd75g2f56r176BtNcX19BOmvB0/luH0qa5oA6O/tQErJgf4YK9O7SJihosTcYqkLVZKSJjInmodSnc6/vaYXfKyQz8XGthBbRwOI+ACUyoE+D3l83wBZW7Ja70KGFk7rKBO+WudBXDmQFArFXLP3T+jP/Q8kR9h/2Mmo6dPrndeUA0lRQlyxLqLu41kFfrfhBGnOsJXvGPGBo3TKOvTK5jP6okShONMRv3kP8v5/LGynAw+ifX0VlQ98kuesFXy+7mt8/h2vQdeOZ5msbAwyKnMX+YV0YuvdgX/0EH/iYq5ZVT/pMFdFHQDPy1V87PBFSN2F3P67wn6OEpLMWPxhcxcXNJkYycGiblq9Lt1xIM3DBSn5zQtZuuWrbPT2IauXsqalipj0IKzUSWVFJcG20KI9GKFWcPvnVQmbnk2Q1gorbbR1DzpWUf+Oe9t7uIRt9LdeN20nQI/XcSDF48UJcl0jCba2D/H67D1kl14P9ZMLwFOy6HI0O82j5l9xWfRevvv4IS5YXE1tuh1Zs3TCXWoaHKeTcedHydx2Hc/t7+YcbR/ZlvPz6oBYKppDHiJ4ScfCSClpsHoY9RbuwhrjyhX1PBrOiSG920s0y/nHg7v7qPSahOKHJs7UeglaIPdvpkrYFArFnDN2kRIfoqfbqUfutnM2yXl4wacoT5IZi6psP1bw+EWHrwSdWE4kNnCUF0d8JHFBVglICsUZSTqOFj6CjHQVtJv93A+w0fmI+CyfDXyB/3rXNXhdJ6+wr2oKMvqSltb5IA8+DEB04fUEPVOU+ficrBHPimt54FCSoZrzsPffX9DPUSqODsZ5/befpLu7k79t2uxsrCrCgWTqpKU5/xak0jG0SDvXx/7IKnkQUbeStc2VxI51pCpxkHasH2FnsYNNCHN+CUialSBboIAkjZxjqYjSsiM7n8UtMlStvWHasV6/40BKxCb+fe3tHeW7jx3k73+3jV3d4/+m/7S9h3XiEP7MEMbGNxU812OsuIHo2+/FrlnJ57mND62I8LlXrUEM7kd7aelSjsXLVmMh8EQO4+p+HmPzj1iqdRNYeumE42eL5pCXUekjGR1mNJWllT6SwQVFH++KFbVssXKiWeeLJZrl/KJvNMldW7u5YVUN2tB+tDwEJDPoCEjZaP80I08PjLmegEKhmILcl7cd7Wd4wLGqH82EnNeUgKQoEXu7R1jDEIma4xcdPpdBQrrR7AzYVlF26DGS6SwV6X665TlEbQ1PCTu7KRSKecTgfuf/oz2F7de3g61iJfdlzuLOD15ITWB8SU5dwI3urQSbgkrYhg+8QEaGuGjDuqkH+h0H0oYrX0tb5xC/G13FexPfh3BnUbkrxRJJZnjHD54lEx3m6crP4tk5iDS8iGnKhSbCa+pEMZDZedaUI/f+8YsUZFJQu4JKn0nWzGXqpKPgGx+GXjS5lua3bU7woVr/vMpA0q0k2QIDnaWRG59NAhUF7dvX4fyN17VN30beNyYgJY4Lcu1Dce7Y0sUdm7vY0+sISy5D4/fPHeDdl7TxlzdsxOvS6R9N8d+PHODDVQcgDiy+oqB5vpTA0oug+Zdkv3kRfxv9d8yKa5xypAnyjwC8tQv545V/5BP3DvB44NO8vPd/QYBYcOGM5lEoTZUeRvFRERshOtDHIhGlI7Sw6OOd1Roi5WtgRKulouP5M9Jp8u2HDpC2bD62No7YlYaGtdPu4wtWkZIG2XD/GSGunInvC4Vi/pC7SOnu7sCbHcGWgkMp5wtXCUiKUnHk8EEMYRNqOl4C4XfpJMmtxs9Q8Hli217cIkOPrCZimTM+nkKhmH+kshZDR3cAIGJ9YNv57ZhJwNAhnhht4O9fuZrlDcEJhwkhaG7IleEW4ECyuraww17EtasnL18DYN0tWDf+G2bLBj5+/Up+OZJblT7wgPN/KckeeARmMZBaSsknf7WFo0Nxbl/7DJ7UIMlbfoL8xH4oIgNprIRNzKBl+5wQ7QU4XrI41iHJlbs+KnUOUsTpznVfh0HW8M4bB5KUEpedwDYK7Ahm5BxLRXxXJ/oPAyBC07tgfH7nbzmVcH5fu7ojXPlvD3HPn+/h1db9/PNNa3nmL5fzYts32OJ6D2949lZu/Pf7ue3RA/z1zzcRSWS4ufoQVu0qCEzz95sP3iq46ZuYQ3vJ/N9rnW01kwthr7zyMtYuqOcHiSsJigRSM6D57JnPowAcB5IXOxkm2nMQAL2Iz4IxdE1w2bJaNllLkCdmvKWiZDpOf0dSx3Ccnz5zhDee10r97h9hm35Y+Ypp96vyuxgmeMY4kJSApFCUMzkBqb2jgypGiWpBOmO52ur5ZjlXlC0DXQcAqGo6ftHhdekkKN7GfiLPbnHq6PuoYTijz5uLb4VCUTq+9dABfnrnfQAIOwuJ/LrVjHbsRMNG1q3m7RdNvbK+sD5EAtexjkTTkklQnThEr3/lhK6mkwg2oF/4fhCC12xoJrTwLHpkNaM77gXA2vILjB+/Brb+PL9zF8GdW7u5d0cv/3R1DS17fkB27S141r0azRMo6ngeUyM9HwWknAPpV4G3IjXz2E27cOf+HUoccp0edjpSHcmE6Esa8ybHL5628JA+7ijKE2Ge6EDKn8FoCl+8i4RRAe7p35OBgONuyuQcSDu6ItgSfrT8UT4S/U/eXLmdqvv/Ft/AFjKrXssCrZ9Xa0/wL3fv5skDg/zTK1cQ6H0ObcnM3EcnYqy4nuQNX8EY2OVsmMSBBKBpgv96yzmsfPkHkZqB3XjWtGHLpaYu4CYufIjUKOkB51rOUz9xblO+XL68lufSi9CHD0Ji2Nn47G0Y37vWcVyextz52x/zVf2b/PWaOPrO32FveCt4pnfhhbwuhmTFsa58pztKQFIoyhiZu3Ef6O2k0YyRcVfRE5fOi0pAUpSIVJ9jOderFx3b5nM5IdoAzCBIO5G2OHJoLwB2sImhlKEcSArFGchdW7tYyAnZR1OUsWXTx7/fHnr0IQBedd21xzquTUZjhYdR6SMbz09ASnVuQ8fGbNmY1/gxNE3wH286myfFBsSBB3n0rtuRf/o0ALJrS0HHyhcpJd99cDv/FfgBt256O8LOYlz79zM6ptd0HEiaNb9K2BJDzvsosvKNiM+0Q61zk6+P3eiVWEAa7TtCShoMEeRwRCIysfwddHPIaDKLlxS4fIXt6MqJIAV+V286OkKLGCAbzK+ksyLoOJAySUdAOjoYQxNQOeQsOum/eTeuo48hr/9nvLd+F6tuLX/jvYfn//4a7vjIpdza3IvIxBGLryxontPhueQDZF73XbIrXjFtOH1LyMtNl59D5rp/QbviEyWdRz5omiBjBtEzUeTQYQAqmiYXvfLhgsU1bJE5EaprEwCyfzdC2sjdd87o2OXM4afv4F1HP8tN2hM0/OIVCDuDcdEH8to35DMZkgGID87yLMsDJSApFOVMzqkRH+mlzZ3A8lQ5rdVBlbApSkb1yHZSwnPSSpuuCSy9eBv7GNs6w9TazoqMWd1GX0pH2JnSd8lRKBRly/6+KAf6Y6x19RKWuZvZ6AQCkm2T+Pm7Ed86H7JpOobj9O7fTFaYLFs1fcZPQ4WHUeklHRvJa17tO58GoGV14bklzSEvbTd8lBQmVzz3QWRyFDu0CDlLnYse2tPH6oF7eXX2PjJN55J9w09m3C7cY+qkpIFWZMv2ueLw4f2kpMG1Z688yfFheHPljSUuYUsMdtAnqwh4XOwdGVvEK/+FkEgyg5cUokABSS/SgfTi0WFaxCCe2kV5ja/we0lJAyvlXOseGYqztiKJHu3C3vhWkJJM6yXo570bhEC7/G/QB/cS2HQb62s10i/ejkTAotIHV7s23ILxlttBzy/RxnXJBxCrXlnyeeSFuwKPFUUbOcKwDBCqqpnR4RbV+Ojy5Tra5crY5NAhAKwdd8zo2GVLYpime9/LAVoZuOV3ZIKtZFa+5pg4PR2VXpMhKtCT+Tlr5ztKQFIoypncjbueHKJWGwVfDSmZy6WZb5ZzRVkyHEuzPLuPgYo144Ky5QxyEMbY2jFCoxhCagaVtc30JHIOgnkUQqpQKGbGfTt7EdgsFl3sMHNh1aO9J42RUnLwl5/Cu/s36OGjcOgRfvjEYZaLdqzq5XndyDXkAmXzFZBGD79IWPpZv+6sQn8kAM6/5FoqP7mVx1rfz8fTH6C/8QpE386Su1OklPzXg/u50b0NK9iK720/w1x944yP6zY0MsJEm2eC/kBPO8NaFetaK0/abvpmx4FEpJNuqrn5nFYOjQlI86AUezSZwSvSaAUKSJo7N77A7/4XjwzRpg1gVOXXBcxj6qRwYedKAo8OxbnS3+7M4ey3kXn/Yxhv/yVozu2qWPt6Mk3n4nnwc/D/FuDe8iOsla9ysovOYHRvJR6ZYNHQo+wVizH0md3eCyFYs7iNI6IZK5d7JIcOIoWG3v4kxE4/l03Pga24ZYrdq/+K2nXXoP/1Jsw3/iDv/UM+k0FZgTulBCSFQjHX5L5Uq4kQtCOYgVpSY/n+yoGkKAH7ugZZI45gN40PfjyWmzBDB9ISVxgCjSyoDTKcNmZ8TIVCMb+4d0cPVzdl0LJJsgsuA2B0sOOkMb/+4x9Zsvs2fpG9ihg+Ii/8il88185Zrk5czdN0SPXsPLoAANNaSURBVMvRUOEmIn3YifxK2PyDOzjqWkrAYxb2A52A4Q9x3l/8Px73Xs09/TWIdBRGjhR9vJdiP/9/tH/rJnYe7eMSsQ2x4gaYppQvX4QQZIUbXc6fErb+0RQi2oPtrx9X0ujxO4KSTE3cFr5YPIkeBrUaXnlWE1GZW1iZBwJSJFfCprv9Be2n5wQnO13Y93RPby8+EnkFaI+REu5j5zk6GGejcQgpNGjagLtxFcJ9Qmi+bmC+736Sb/g5sbPfR/Itv8N4048LmuPpiCsQQkNSlR3gDxVvKckxz19UxebsIuzOzZCMoMcHuCt7AULa2LvvAkCGO4k997N5Uc45Hbt3bgbgovMuAEDX9bzdZwABt8E+FtAZWHda/HtMhxKQFIpyJpsTkMQo7kwYT2UdqWO5NCoDSTFz+g9uxi0yBJacP+417ZiNvTixJ5OIsOdoN4tdYWRFMwuqfcTlWDC3ciApFGcC+/tG2dw+wk0tzg334vWXEJFeOo8ePjbmyf0DDD37S7LoZK79Z+63z8HefRdmaojqbD+iYU1e52qs8DCKF5GavgtbKp1mQfYQydr8xKmp8Lp03nXJIn7flXNC9O6Y8TEBsG2sR77CgoFH+G7o/zCtONqKG0pz7BxSd2HY80dAumd7N3WMEKxtHfeaNycgpeP5d+GbFikJZgZIeBpZUusnxvwRkMYykMwCQ9aNnAMpncz/Z4wkM/gSuYyzUFve+6WFGzIJoqksg7E0yzJ7sWtWgmsS0UvT8Ky9kcBN/4ZnxTUlE1PnM95ACIAn2MBbbn1rSY55weIadtgLMWNd7HjeyaF7ULuEdllP/MnbwMqQ/cU78d/1IeI/eXPpOx+eYgaO7sFCo3nRyqL2F0LwZ8/L+O6irx5zzJ3OnP4/oUIxn8k5kBZo/QgrhaeyHnSVgaQoHdn25wEILbto/ItmcTb2MaxfvpP/jH6SFtmDqGxhQbW/ZJ3dFApF+ZPO2nzxZ/fxrOfDvGLPZwFoXXYWI1o14X6nVKUnnOSjP3uRV5rPYy28nLddvYHWS99CiCi/8H/VOVDT9PlH4ORQxIUfPTO9A2VosB+PyKDlWW4zHbec18oe2epkspRIQNr3zJ2Yox1EpI/Lkw8hdRcsLl3HKQBbd6Nhg5Ut6XFniyf2D9CohScUkIIBPxmpk4rl2YUvHxLDuGUKO9iE322c8B1W/osgo7EEbpHF9BTmQHK5ncWjdDL/n/HwQIxmkSttqhz/u5mMjOZBZBMcHYwDksbYLmg5p5DpnvE0L11LGpO6m77IupbK6XfIg5WNQQ6aTv7PgYd/AsDH3/RyvineQmBwG/u+ei1m17Oklr0C76E/k/7FO0ty3rlgJJ7GDB9m1NUAhqvo41R6TcLx+VUOXCxKQFIoypncTXYVzsWw8NdQV+ElK0zlQFKUBP/gdkZFEFG1aNxruntmJWyyZycrtQ4qUt2Iihbaqr3HO7vNkzbICoWieL5+/14uHfgVtSJCcvF1pM/7ACJQjww0oMf6OPj8n9n07XewPLuXVtmNe/1NAJx7zc1kzCBLaCdx5edgydV5nU8Ige0K4s5Ovxo+MtgHgDs4s8DZMeoCbpLCw7CnFbtn24yPt+noMLvv/jZhAhy99r8BsBdcMrkzo0iknivfmyfXFId6hqlkFIKN416r9LmJ4SETL10JW3bEKbU0Qi24DY2kGHMglb/jIhF3HERub2HvGcPrOJayyfx/xsODcVpEroV5Zf6irKV70LIJjg7FaBUDeNLD6K1KQCqEhee8DD51hBVnl05c1jXB2ec7x7ss8xQALUvW8IG//ASbg1exPLGFF+1l/KPnUySu+Byug/dh7flzyc5/KnloTx8LRC+iZmZNCUI+F8Px+ePmnAn5F/cpFIpTi5SQiZOWOi5hOdt8NTRWeEgnTQzlQFLMECklrYlddAdWEZzABq6N3agUIyBl005uhAxSI0Yh2ETQY2J4/GAzL1ZvFQpF8QxGU/zy8e08YT6EveZ1BN/wvWOvVda3QfgpDv/hC9yob+Ua1xPIrECszHUxMj3Y77gbyxXAW1/gRb2nAnc06ThqpsiwiA47ApK3sq7gn20iDF2jxu+i07WEUAkcSD+57xn+RX8eec47WXfFa8loX8RcML7UeMboOUeNVf43Pom0RXyoE9xAoGHc65VekyheXMnSlbANdR+hHgjULXAyl1x+kMyLRZBUTkgzCixh033VAFgFhCUfHojRIgawDQ+avzbv/SzDi5FIcmQwzrlij7Ox5byC5qsAV4EiYT58+JUXYO9pozrSju2vR3MHWVIPfPD7DP/+kzxjvp7bn++kZ/kF3Fa5GP70abILLsbtDU577HLi/l19fEnrJdh02YyOU+Uz6RqZH0L8TFEOJIWiXMkmEUi65Qmro74aGio9Tic2JSApZsiB9k6WyXYyTedO+LrhLq6VLwCRDgSS77nfRuqyT8Ha1wJQEczZq1UJm0JxWvPTZ45ys7wfj0xgXPrRk14L1bfRZoxwmbGTcOUq3NlRrJbzIXhcFHC3noWnUPEI0Ly5z5hpcpASkX4AglWlEZAAagNuDmkLEcOHIFP8jcT+/Xv50JGPoQkNz8XvB8C87KOwYIJS4xkixwSkeXBNsa9vlDpGnCcTOJBCPpOY9GAnS+dACvcdBqCqcZGzwczdqM+DDKRUwnEQiQK7sHk9HkakHxkbyHufwwMxlriGkRWtBeUS6S4vmpXk4T39XOXahe0OQeP6guarmEXGyodPdKn7a6h66/f50BtfxVduPouH94/wZfkOzOEDGF9bQeruz8zJVItl7+EOQoyizdCBVOl1EU6oEjaFQjGX5G6wO+UJKzm+GpoqPCSkMS8u9hTlTecLd2MIm5qzJm4HbYx1binCLZQdPAyAv2kV7us+eywTQbjGyuLKf/VWoVAURypr8dMnD/J+z/1O17XmjScPCDSg2Wl0maXy5v8k+rofob/66yU5t8vvBFnL5NQ5OKmIc3NcWV1fkvOCIyB1WhUIJCSKbOcsJZ5f3kqjGCb2xl9C3YqSzW8ihDkmIJX/yvmenlHqxYjzZAIHUshnEsODLGGgb3TYeZ80NbcAoB37Xix/ASk9VoI21hAjT7wunUFZAbH+vPc5PBhjoT5YUP4RQEt9DX4tzVMHB7lY24m18FLQ9IKOoZg9tGZHQJqsvOuN57fx7becw8/Da3g3/8RI/QW4n/02RLpP5TSLZiiWxj2a65pZPdMSNpORM6SETQlICkW5klvd6hYnrI76qqn0miSlia0cHIoZ4jp4P2ECNKy5dMLXTc9YiHbhNxYH9jolHBvWnXXS9mMroUpAUihOW+7Y3MW6xDPUWv0YF31g/ICce8T21ULr+QQ23IRonHk3NABvMARAPDK1gJONOa+7g/mX20xHXdBNVyqXkRMvTkDq2/YAremD3L/444RWX1WyuU2KkZvvPChh29MzSrOeEwaDTeNer/SaRKUXUcJ8onQ8TEbq1IccZ5vmzpWDzQMHUnasi5pZWHmTz6UzSAV6In8H0pGBKG3WUURtYYKnxxug0SdpFX002r3oS64saH/FLJNzIInqpZMOuXF9E3d85FKelav5nnGrs7H96VMxuxmzoyvMQuGUM1O1eEbHunhJDW+5cAFSyhLMrLxRApJCUa7kBKJRt3ORJIUG7kq8Lp0UJtYM7PEKhbQtlo0+w4Hg+YixENWX4HO7SEkDWYRY2XFoDxmpc/6GtSdtn1GukkKhKHuklHzv8UO83/cIlr8BVk7gcMy5R+SKG0vuNvBXOPktI8NT3/zK+DA2Ajyl6VoEUBtwcTSRE2SKdCB1PvgdItLHha9+T8nmNRWaMY8cSL2jrAzEnOuhCXJ2vKZOQnjRsqUTd+xEmKjwYRjO+3QsYPpUZSBlLbv4fY8JSIU5kHw5B5KR53s4nMhQkWjHYyeOOVbyxvTisWJ8ab1zE68pAam8aD0fO9AICy6ectiSugBvu2gh/7vPj2V4kUfnh4C0vTPCQtHjPKmemYB03ZoG/v6Va5ystNMcJSApFOVKzqGRCTq2abzVoGn4XAZpTOx0+V/sKcqX9p3PUMcImSXXTjrG5zZI4cJKFXYxnrFsUgMHCbvqcbvcJ72muZUDSaE4nXnqwCDR3oNckH0Bce47YCKBum4Vtq8W/ey3lvz8FSEnNzAyMjTlSrCWHCYmAiUVsGoDbvqyOZG8CAfS4EAva4YfZmv1y2iqqS7ZvKZCN3OCV3Z+OJBWGn3IQOOEvzchBBndh1lCAYnUKElxPEPI73GRwnXqurD94EbSj/x7UbvaYyKXWWAGkstgSFbgSuUXon14IMZacdh50njWlGPH0XoBemqEyw98DctXB3UrC9tfMbv4qhEf3w2LL5926HsuW4ymuzjkWok9TwSkHV1hVnsGsf31Je9weTqjBCSFolzJ3WCboRak0JG5rhg+5UBSlIDBLXcB0Hzeqycd43PpJHCRTRfmFnrqwCANdh+EFo57zThWwqYcSArF6cj3Hj/EX3r+DEKgnfuOiQcFGxCf3A8Lp17VLoZQtVP2LTteIHH7OyExMuE4Mx0mYVSU9Nx1QTfDMudQKcKBtPmu/8UtMiy8/oMlnddUHMtAsso7V3E4liY8Osra+DOw/PpJx2UNHy6rdAsUWnqUlH78xtLvMkjgPjWLIMkIRsfT6E/+Z1GOJ3ts8afAEO0av4tBKnBnwmBb044/PBhjrXYYWzOhblVhk9z4Zvov/yLCSmMvvrKgAG7FqSFfR01d0M3N57by59HFaD3b5kWZ586uCKuMnhnnH51pKAFJoShTYlGni0hVVZXjPvI5q6oeUyclTaQSkBQzINj+MLvEUlpbx4s8Y/hcBklZuANpc/sIbaKfyqbxNfNul5PhNR8uLBQKRWEc7I+yZ892buVerA1vmzJQd7Zs/jU1TmnT6gPfxbf399jbfj3hOE82TMosXfkaOA6kYXItrAt0IEkp8R+5nw69jbY1pe+2Nhm6a8yBVN7XFDu7I1ylbcZlxdHWvX7ScbYZwG3HoUQ5JEY2StYMHHvudxvEpGdWv8NsOzf3oQMA6KkRrM23F36gsYWaAkvYPKaO5a1Bw4bE8LTjO4YTrBWHydasBMNV8DRDV32Yjjf+Cf3GLxe8r6K8uHJFHc9ayxHSgs4X5no6UxJLZWkfDLMovQ/RfPZcT2deoQQkhaJMGRx2vrRrq0LIqoWIKudGf8yBpLqwKYpFxodYnNxJe/WlU97E+V06CdzYBTqQOvuHqBcjmDXj68m9pk4cd1G5SgqForz5wROH+aT5K4SmY1wzN62cfUHHrSuQWJ4q7K2/HDcmmbEI2KNY7lBJz10XdJPCRVb35HXjfSLbj/ZzlrWTaMtlJZ3TdOi5zph2pryvKR7d189rjKexvDWwcPJ/I+kKYGCV5BpJSonHimG7gse2BT0GMelCzpaAlE2ReejLjuNo0BGQbF8t9lPfpm/LfQwe2ZlXSK9lS7RscSVsAGZFrjthbPog7UgizVrtCFpTgeVrY+fSNVpXX4gWKF2gvWJuOLstxIv2cufJ0WfmdjLTsKs7whoOY8o0YsGFcz2deYUSkBSKMmUo7HQaqa+phjfdjrjxK8CJAlJ5rxYqypfeTfegYyNWTF4GAE4r3yTm8RyFPIn3HXIehBZMeExHlFIZSArF6cRIPM0zLzzPTdoTyAs/CBXNczMR3WTY3cwPsi9jdOMHMDqegZGjJw0ZjKWpYhS8VSU9dW3AKQdLGpUFO5BefPJ+fCJF27kThI7PImbOgZQp81zFzTv3cK22CbH2taAbk44TnrGQ65lnFMXSFj4ZB/dxAcnvNojjwUrOUgbS0adxP/avsOduGNyPRMB1/4g5vJ/6391C9Q8uIfLrj0IyPOVhusMJPOREtCIEpECV0ylRxvqmHavHeqkRkcIDtE/gTAgePhOor/AQDNXSaS7CPvrUXE9nSrZ3hjlX2+c8aTt1rs/TASUgKRRlSjjiXBw01lajBeuPdYrxunTSmGWfV6AoX2I77mFYBlh+9lVTjvO7DZJFuIXk2M1a1fjyOI+p58riTlEAqUKhOCX87NmjXGc/CYB+wXvndC5D73qSf8r+BX+wnIwle9tvTnp9YDRFSMTQ/DUlPW+134UmIKZXIBP5BRCDU7KU3vcQNhr+FVeUdE7TYeQEpHSyfEX90Z+9k9sj78RNGm3Dm6Ycq7tzuVap0Rmfd2A0RUAkMLzHSx39boO4dB/PFyo1uWylbPuzWP37GDIbuM91HdE3/YG+1/+G4fXvpmLnz0jf8bdTHqZ9KIGXXDB6gSVsAKE6RwCODPZMO7Y6sgcAral4AUlx+rBxQYjn7OWIjufALr6L4GyzoyvCxeY+rIo2qGia6+nMK5SApFCUKdHRCADBQPCk7d5cBpKwyr9jiqIMsW3qeh/nOX0DC+uCUw71uRyxp5DA60gyQyjV5TyZyIE0VsKmHEgKxWmDZUt+8tQR3uB9Hqv5vAn/9k8lSxuruHhJLd/bIck0n4d8SQ7SQDhGhYhjBkorIOmaoNrvZlQEkQU4kLZ0jLAhu4XhitUld0VNh5krYStbB5KUePffxeP2Og6+/m5ou2DK4cLn/Ptlho5OOS4fBqIpgiQwfMcFpIBbJ4YHe7a6sI2Fc3e8SP/hHexI1vE/jx4ksOoq6s+6jqrXf43EOe/H3PVbGDo06WHah+N4RQpbdxfVabC+0ckvG+7rnHZsTXy/86BhbcHnUZx+nN0W4tHEUkQqAv275no6k7KjM8y52l5oU+VrhVISAUkI8XIhxB4hxH4hxKcneP0qIURYCLE599/n8t1XoThTicdyq2fmyW0lfS6DFCaaciApikB2b6HCGqav4YppLeM+l0EMNyKT/0rr0cE4rWIAS3NBoHHc616X5pSwpZSApFCcLjy8pw935BCLswfQ108ecHwqeeP5rRwditPVcA1633aIdB97LTLcD4C3svSZK7UBlxOkPUn3t4l4cV8HZ4v9mMuvLvl8psP0OAKSVa4CUiaOYafZ7t7IkvXTd+0bbbqYuHSTePHnMz71YGQUj8jgDoSObfO7nBK2Yrqi5UXuuKJnC/7oYTr1Fl48OkJfxPn9CCHwXfnXIAzSj/3HpIfpGIrjEylEgR3YxmhracGWguhQ77RjtUwMCw08pe1qqJifnL0gxPNypfPk6NNzO5lJSGdt4v2HqLaH0Baq8rVCmbGAJITQgW8BNwJrgDcLIdZMMPQxKeXG3H//XOC+CsUZRyo+6nwh6+ZJ270unRQudFsJSIrCGdx+PwD+1VPnH4EToj0sg7hT+YfBHhqI0Sr6yARaQBv/FeMxHFfTXIdoZy2bf79vL9s6ps6RUCgU0/OzZ47yBu/zzpM1N83tZHK8fG0TQbfBr0ZWOBsOPHjstVjYEZB8lXUlP29d0M2A5Uck8ncgDe5/DlNYVKy8suTzmQ6X2xGQsmUqII05uRobGvPKyQlUhLjLuhDf3j/MuFNaeNg5ty8YOn58j1PCVsjCSkHkvht1O01QJLj0Qscdcd+uE4SciiYy62/F2Ho7Qw/8J0NHdjLUdZBMNntsSPtwgmqXVVT5GkBzdZAR/KQj0wtIIpskLdxFnUdx+rG2uZJurYGoUY1dpgLS3t5RNsjdAAjlQCqYUjiQLgD2SykPSinTwM+BfK8eZrKvQnHakrVsMskYWd0LL7lgGgvR1lUJm6IIkvsf5YDdxFmrV0471uvSGaQCd2YEbCuv4x8ZjNEm+tGrx+cfAXhyIdrM1sV3Hti25JO/3so3HtjH7zZNb89XKBST0zkYYeX+7/Je+Tus1ougsnWupwQ4n1+v3tjM9/b7sHx1WPvuP/ZaMux0lnIFS1vCBlAXcNOX9Tld2PLI/5BSkujZ6zypXV7y+UyHOycgWZnyFJCGBx0BI1Qz3tE6EXUBN7+yrsTIxrC2/2FG5x6NOIsnvsDxssJALkRby8ySA+kl341ty85iUY2Pe3f0ksxYDMecaz/XNZ8hXbuG6sc+R/UPLqb6trOxvnkRw8/eTiaToX0oTrWZBaM4B5KuCUb1EHa0f9qxwkqRFa6izqM4/fCYOucsqOZFuRJZpp3YdnZFuFjbSdZVoUovi6AUAlIL0H7C847ctpdysRBiixDiHiHE2G8q330VijOK7nASj0xhG+NXjkxdwxImGhZY2Qn2VigmwbaoGXyBzfo6ltT6px3ucxkMyQoEMu+W1IcH4yzQBjBqFk/4+lgGkjjFDiQpJV0jCX7zQgdvuu1pfrepEyEgOLQd678vL7hjkkKhcDjw+y/xd8bPiS+4Ev0N35/r6ZzEG89rI5GBw6ELEQcfPiaEp0ZzAdezkDdUG3TTmfIipA2p6R2OBwdi1GY6sYUBlW0ln890uN2Oc6RcS9j6+pwQ5+rahrzGt1R5eVauIuxtg60zK2OLj44AoHuPl2Y5XdjcGNk4SDmj409I7ruxXzq5S6J2GS9b28iT+wc4/0v3c/YX7uPV//U4/70pydCb72H4HQ8zcN1/Mnj5FwCouvuDWN+6iMaBp6g0slBkCRtA0lWNmZz+u1GzkmQ1JSApjvP6c1p4JLkEPXwERqcPYj/VbO8Kc5m+A7nwsqIyws50SiEgTeQnfekn6ovAQinlBuC/gN8XsK8zUIj3CyGeF0I8398/vRquUMxneiNJvCIFEwhIAJaeswqrHCRFIfRsxWvHGKq7IK9SAGcFMhceGhvI7xR9A1QRQUwSous1dRLShcieGgHp6YODvO9Hz3PhvzzAJf/vQT7+qy30RJL8801rWdkQ5Nru29B7t8Lw4VMyH4XidCKRTLGy/Zfs8JxL6F2/hMryWgPc0FrJioYAv4+sQksOQfdmpJQM9OduaGZBQGqq9DBg5QT6PITp5w8PsVD0kg62TdmefrbwuAyS0sQuUwfSUO531dDQnNf4xkoPIGgPnIUYPjijcydHcwsnJ2T7BNwGcelBYBfUYCJvMnGyupfN9jJszYTKNl5/Tis1ARfXrqrnb69fgaELvvyn3Vz65Qd52x+j/CB2EcPr34348FMM3Hgbwsrwuew3COppMIsXkGxvLX5rmKw1tZNOt1JYmiphUxznxvVNbM6l0sh9983xbMYzcHQPraIffelVcz2VeUkpvqk6gBOXTFqBrhMHSCkjJzy+WwjxbSFEbT77nrDfbcBtAOedd94sSP4KRfnQN5rCSxrhntglInU3WEA2Ba7pnSSKMxfblmiaIxaN7nmYIOBdnn+b6LgRAhuI5ycgZYaOOA+qJi5h87p0krjRs7N/s/Lc4SHe8f1nCflMLl1Wy8a2EGcvCLG+pRIhBDtfeJSzks85g23l5lMoCuXZe3/KlQwRueRf53oqEyKE4O0XLeTrf1jG33oEma2/pde7Gi05DCbgrS75Odc2V/IouQ6XeTg3nz88zLv1Psy6pSWfSz54XTppyldAigz1AVBXn58DyW3o1AfdDFseRHJmGXfpeG5/9/GOpQG3wQA5QSnWB65FMzrHBCclhZv/017LJde8Eb+ms7IxyDOfve7YkL+6djmHBmLcuaWLx/cP8J1HDvKthw5w8ZIaPnz1tSw/e4iGRz9NMnEQajYUPRUjWEf10LN0h5O0VU8uROl26vjCpkIBVHhMmlZfzMF9LbQ9/3+Y57x9rqd0DMuW1PY/DRpoSkAqilI4kJ4DlgshFgshXMCbgDtOHCCEaBS55W4hxAW58w7ms69CcSbSG0niJYU+mfXY8Dj/PwU34Yp5zGgPfP8GGHUyJGJ7HuGg3cialdPnH40RN3M3WHk4kOLpLIFEh/MkNEkGkuGUsOnW7DqQDvRHefcPn6Olysudf7GALyW+wK3cy1mtIYQQSCvLrbGfHt9BZYopFAVh2xL/lh/SL2pZdunNcz2dSbnl3Dakr4an/NdgPHcbu3ZuplJEkUIDd+m7Rq1trmCEgPMkDwfS5qPDLBK9aDVLSj6XfPCaTq6izJanozkRccoNjUD+eVUtVV76Mh5IjeaVQzUZVmJMQDr+PvG5dHpkbi7hWcjQyySI2i7EggvxXfqBSYctrvXz0WuX84sPXMxTn7mGT9+4ikMDMd72vWf4w7Dz/etJDyFmsMjoqqynWkRpH4hMOsa2JYadxlYOJMVLuPncNn6WuQqz6zno2zXX0znGQDTF+XIrMVct1K6Y6+nMS2YsIEkps8BHgHuBXcAvpZQ7hBAfFEJ8MDfsFmC7EGIL8A3gTdJhwn1nOieFYr7TG0nhE2kMT2DiAXqu1lwJSIqp6N2O1vEs9GwDIDiwiRdZxbrmyrwPkXaNCUjTlw6HExlaRU5omkxAcmkkpBtNZsHK5D2PQkhlLf7q9k2YusYvXg7VP74O3+H78fz574g//QPCz/+C1Lcv5+zE0zwlznZ2UgKSQlEQ23bt4Dx7C33Lb0W8pFtoOeF16bz9ooV8bOj12JpJ81P/zAJ9GDxVE3aKnCl+t0Gwqt55kkcnNivaj1fGEdVz40DylLmAZEUHSAl3Qd3EWkJeelIuJ78vPVrUeaWUyGRu3xMcSEIIhs2cGyrcUdSxpyKTjBKxTM5dWJVXqTlAfdDDB69cysOfvIqWkJcvP28xLHPXj0V2YQPwNjslSMktv510TCJj4SGDNJSApDiZK1fUsa3mRjIYpJ/9wVxP5xiReIqLtZ0M1F00rlGRIj9K8s0ppbxbSrlCSrlUSvml3LbvSCm/k3v8TSnlWinlBinlRVLKJ6faV6E40+kbTVKhpxGTOJCEOeZAKs8LPkWZMPb+SI6AbePNhpHBFlxG/h/9GXfIeRAfnHZsLGXRJvrI6h7w1044xmvqJMkJoLPUxear9+5hR1eEr9x8FtXPfAXbDJD5wJOkWi7G96e/ofLO96Onwty+8Av8p5VzTsySmKVQnK4cffZOABZd/uY5nsn0vP3iRYzoNfzK/2bWxZ7iteIR5CzkH43R2pzLgprGgSSlpDqdc7FUz50DKS2NsryesG2JSI6QMgpzirVUeemI575nkpO7Z6YilrbwWLmOaC9xqkVcOYEwUnoBKRqNkMDFxrZQwft6TJ2P37ACS2q8IHNO4xkISBXn3MI2exHn7fkapKITjomls7hF+rgzXqHIoWmCD7ziAu61zkO8+EOiT9w2O8HzBRIf6aVWREg3nD3XU5m3lH7pRaFQzJi+SAq/Nnn44XEBSTmQFFMwFvCZDJOMjaAhqa6pK+gQHo+bURHIu4StVQyQ8LVMuqrjMXUSuE+eXwnZ2RnmVc+8le8uvJ/rFupo7U9hnP0WzKa1uN/+C0av/Ccib/4j2t9soX/BjUQyua9B5UBSKPJGSkmg/WEG9Vr8revmejrTUhd08/evXM1neq/mbenP8EjL+5DXfn7WzrekrQVLCmLhqZ2b8bRFm8wFes+RgOQ2NFKYZSkgdUeSVMhRsu7CxL6WkJdhOyecFJmDFE1mCYg4ljDgJe4aw+MnqlUgZ6GEzUrGSOCmOVSc8HPTxhZWNQY54D3L2WAWX8Lmcbv4mvl+KrID2I/9+4RjEmkLNxkwlYCkGM/VK+u5o/EjvChXErjvk8hHvjLXUyIedT4TTH9obicyj1ECkkJRhjgZSJMLSNqxDCR106uYgrEbglSEfUecldL6hvyCSMfwuQxGRCUyDwFpzIGUDrZOOsbUNaccASAdK2gu0yGl5Pt/uJcN2kGuGfoFbPk5QtqINa9xBngqCV79N1SsvALdMKn0mqTHekkoAUmhyJtt7YOca20h3HzFvCkBePtFC3nZ2kYet9fjve6z6GtfM2vnWt9aRRg/IwNTt6+OJDMs0nqx0WCSzpWzjaYJssJElGFX18MDMSpFFN1fuIAUIXf9lCrOgZTIWARIkDUC497jQbfBgF6HPdJe1LGnQmbiJKSbGr+rqP11TfDDd13AK1/1OmfDDBxIAOHqjeww18Lhxyd8PZZyBCShHEiKCRBC8JrLz+XWxKcYqd6A3P/AXE+JZMwpTXX7gtOMVEyGEpAUijKkbzSFh+SkX/yaSzmQFHkw9v5Ihtl31FkpbWtqLOgQzZUe+u1AXgJSPJ2lTfRjV06cfzSGZeTe1yV2IN2/q49g56MAaJkY8oF/xqpcAI3rJxxf6TXJHBOQVAmbQpEvW55+kAoRp+GcV871VPJGCMFX37CBr71hA+cvmr3yNYC1LZWMyCDR4WkEpESWhaKHuK8ZjOIEg1KQES5EGYroBwdiVBHFHSzMOdtS5WVU5gSkIh1IyYxFUCTImuOzKP1ug35RC5HZCdFO4CbkK/790FjpoXX1xdg1y6Fh7Yym01rto8+umDTPK57O4hFpNNfMhCrF6cvVK+txGzp7tGWI3u0zCrYvBcm4U47p9U2SM6uYFiUgKRRlRjJjEU5kcNkpmCQDyXDlHBxlaDk/k5E770Bu+81cT+M4JwhI7d3dAISqCrsQX1Djp98KYkWnD9FOxcJUiDhimpV0W58dAembD+3nBvdOrKqlZBdegbBSiNWvntQhUek1yUjlQFIoCuFAf5Tojj9ho+Ffde1cT6cggh6Tm89tzTucuFgCboPDrqU0Db8wpTgdSWZYJHpJB6cW3Wcbq0wFpEP9MUIiirsi/w5s8BIH0kwEJBJYrvEuBb/boJtaxCyEaOvZBLbhQddm+B41XIiPPAfrb5nRYVpCXnrTPkgMT/h6LFfCpqkSNsUk+N0GV66o477hekQmBsOH5nQ+mYTjQPIGSt+F80xBCUgKRZnRP5pCw8aQk5ew6WPblQOprJCPfhWe+q+5nsZxcu8PmQzT29vrbPPk34ENYFGNj0FZgcyjC1smNgKAMU1duX3MgVS6ErZNR4fZ1d7PeexAW3YNxlWfRGoG2hQXzxUnOZDK7+ZJoSg34uksf/nj53iZeJp04zkwi0HU852utldRYYfJ7L1/0jGRRIZ6MYysaDqFMxtPSvPiskpbUlwK9vVGqBJRhK+6oP2CHhM5FnxdZIh2MmMTIIHtGu9SCLgNOu1qtFR40nDpYjHsBHKSa79CKYVQ2lrlZVD6EYnhCQOQ46ksbjLoyoGkmIIb1zfydDzXXKBn65zOJZ10Putck3W6VkyLEpAUijLDyT/KOYsmuYgw3M4XtVQCUvkgJWJoP2TK6HeSc6ilo8OkY7nVwwIFpIU1PgapwEiNTGs7Tiedrmouz9ShnccujkvoQPrhk4e5zH0A004ill0Li6+ATx2BlnMm3efkDCRVwqZQTMePnjrCgoFHWUInnks+ONfTKWuaznkVwzLA4FM/mXRMJJkhQBLTW9jncqkZMWqozE5fpnyq6ewdwMAqSqisCOU6gRbrQMpaBER8XAc2cASkI1ZO1CpxGZtpJxElEpBKQUuVl2EZREhrwn9Lx4GUVgKSYkquWdXAIa0NCx16ts3pXLJJR/QVruID5s90lICkUJQZvZEUvmMC0sRfyGZOQMqmy0isONMZ7UGkY7PWmr4ocgJNPDJEBbl5FSggtVb5GCKIJi1Ijkw5duxL2eWdZlVn7H1don+r7nCCu7Z28776XUjNgEWXASDcU8+jUjmQFIqCuGdbNx/33oVVuQjWvm6up1PWXLSiibvti6huvw9SoxOOicQz+EhiznGYa8SoJWhHymoBJJLMkBrNiVpFCEiNVUGSuCFVnICUypWwCffEJWyHMyHnSbiEQdpS4pYpNHf53Ni2VXkZIfddOkEZWzyVxi2yxxY2FYqJqPSaXLyihYOiBatrbh1IVirntpwkJkQxPUpAUijKjL7RJCGRs0RPYJ2G4wJSOln6NuiKIhnc5/x/FlrTF03OgWTFR6jU4kjEhKupU+ExdWxPLn9imiDtTMr52Q33NF/KY6urJerC9k937KReC3PB8J3Yq18LE1zwT0SF11Ah2gpFnnSNJPB1Pckqaw/aZX8FujHXUypr/G6DfQ2vwCVTWNt+O+GYWCyKIWxcvrnN4hh11ecedM3pPE5kX2/0+LWQt7ASNoC2ai8R6UMmihOQEhmLgEggJlh0Cbh1jmZz34vhEjqQsik0JOY0Lt5TSXPIy7AcE5DGB2knE873vmu6733FGc9rNrawNbuQbOeWOZ2HHBOQysjpN99QApJCUWb0RlK81njKudlfdOmEY1xuJ6wwmy4jseJMZ3C/8/+yEpCc1WQ9M0qbN+0IK1rhH/vuitzNRXxqAclO5/elLMeE0RJkRzz05FNs2bGDby18FM1KoV/9mbz3dRs6umk6T5SApFBMyZ939PAh/Q4ynlrExrfO9XTmBU3rrmSXvYDMk9+eMD8mGXPyefQ8Re/ZIunJfcZHuud0Hieyr3f0BAGpcAfSgmofYekjncvmK5RkxiZIAs0z/nezoiFIL1VINFJDR4s6/kSkcuG+Zhlls/hcBpYn9+8fH+9AyuTyZJQDSTEd169uYJ9YjDvZB9G+uZvImPtdlbAVjRKQFIoyYyAS5Y36w8hl18Ek3axcHucGPZsqI7HiDCadtek5uN15ki2j30lOQPJYUVo86YLL18YI1DQ6D6YJ0rZSuS/lSUovxzhWEpCegYA02svoj97C1X9+OU95PsrGrp9jr78VapcVdJhKr8upyVclbArFlOzZ9BhX6NvQL/0IqI5LeXHlqnq+b70cz9Bu5MGHx72eTuQCnqcpt51t7Ipm58Fo+QhIe3ujNBi575QCQ7TBye8bxUsyOnH7+elIpxK4RQbdO94ddtnyWgzDJGLWkOzYRu/wxCWKhTIScdxSnjJrL+6ryHVvncCBlMo54YWhPhMUU+N16QQWnQtA+sCjczYPkYlho4HumrM5zHeUgKRQzDVSkt5xJ9aOP2L37aGp637qGEY7792T7uIZE5CUA6ks+OXz7ezY9iIAws6Wj5slJyB5SdFoRJFFCkihWufmIhnunXKcnR4TkKZ2ILldLlK4Js0FyYsn/gPvwXv5RvZ1HDzr46QXX4d+zd8XfJhKr0lWmEpAUiimYCSe5vLeH5PUA2jnv2eupzNvWNkQ5CnfNYS1KrJPfHPc65l47jNwjlfCzUrnM94Ol1EJW98oy4K579IiHUgR6ceKF1fCZufcQLpnvIDkcxlcvryWp6w1VB65l+rvng+DB4o6z4mEwzkByT+3jrSXUtuQ6xIYHy8gHbsOVQKSIg/WXfwyjtp1DD80dx2LtWyCtOaBEnQpPFNRApJCMcdYT34L16/eiv6rt6F9+wI+Hv5XwmY9LL9h0n18boOUNLFUiHZZsOnoCEvECRfe5RKknctAAqjJ9k6Y5ZAP9Y3NWFIQ7p3aqi/T+TmQPC6dGJ4ZOZBGOvewz25m+MJPsuT1n8P9F7+CUFvBxzkWpF0uop9CUW4MHSLy/Vt4hf4sg2veARPcUCsmRgjBJSub+bl9DebB+yF6sovTSo4JSHPrOAlUVhOVnpKWY82Ufb1RFvly32FFCEitVY4DqdgubFbu+8yYJI/outUN/GX8fTx7wTcwY92w8w9FnedERkcdR5rfX14OpEWtLdhSEBsZX3aUPeY8VgKSYnquXNXIfcHX0TCymcShZ+dkDlo2QUZXJZczQQlICsVc0v4c2gOfZ7D1Ot4q/pV/EB9lx9L3UXHr/0wZUOoxdVIY2GXUMeVMZldHP22in4QZcjaUSQ6SPOH94Yt3Fl3C1lYX4oBsxuqeuvWqGCvfm8aB5DV1otI7owykSO9h+vU6PnHDyqKPAScKSMqBpFBMhH33J6kffIav22+i/tWfm+vpzDuuXFHP3akNzpNDj5z0mp0qDwGpJuCmV1aRHi5tS/piCScy9ESStLriSNMPhrvgY3hMnYxZgZEp7nvGyjlrtEkWRK5d3YAUGo/oF5INNGP17CjqPCcSzQlIgWBx39WzxarmEBF8jAyOdyFbyoGkKAAhBOe89qOMSi+9v/4Ekfu+UhL3Xr6kshZumcRSAtKMUAKSQjGH2H/+BzLeel519M20e1fz3o98hrVv/ypi2TVT7udz6aQwlYBUBsRSWdIDBzGETbsrl79TNg6k4+8PLZtAeEJFHWZhjZ/tcjHB4akvkMWYcDaNA8kRkDzIdHElbOFEhopUD97aRfjdM+sEVeE1SUtdOZAUiskYOcoz2kZ2LH0vpkvdJBbKZctq2cESEnoQa/9DJ712rBvQHGcg1fhddMvq2Q3RToYhz2uWh/f0YZJl+eCDyJbzij6l5g3hsYr7nrGmcdbUBd2c3Rbi0b0DiIa10Lez2GkeIx515hoMlpfLb01TBcMyQDw8Pgcxm8r9TosQ+RRnJmcvX8BjNTezKLaFiie+hP3AF07ZuUeTWXyksA3VgW0mKAFJoZgrpET0buVp80KGbD8/fe+FLKzJLwfBEZBcSkAqA3Z0RViMc9G9Qy50NpaLAymbJC5OEHOKDdF2G7S7lhNM90/ZOUOzxlYipylhMzWieLCTxV3YP7D5ACERo2XRiqL2P5FKr0laKgeSQjEZcrSXI6kgly6rneupzEsqfSYbFtSwSV8PBx86qRubGHPHzHEGUk3ATS/VGPGe2TlBahTrW5cg7/7EtEPbh+L8w++388HaLXiTvWiXfKTo05r+EC4yeQtXJ3LMwTuFs+a6NQ1s6wwTD61EG9w344WIeC4Ty1dmGUghn4uYXoEVHRz3mp3J73tfoTiRutd8gZXJH3K46UY48rjzuTiwj8ye+2b1vJFEBi8p5DQLnYqpUQKSQjFXhNsR6Rh/6q/mfZcvoa06fzXc69JJSDeiSAeHonRs7RhhrXYYG42n4q3OxjIRkMgm6bNDx58XKSABxGvWOg+6t046Rs8myAgXaFN/tXhMnZj0IJPFlRY8vXkzAE0LCuu4NhEVHpOU1LGzSkBSKMaRTaOnRhiQlUpAmgFXrqjjrtgq9NHOY+UaUkq0dM6B5JpbwaDa76JHVuFJ9oFtl/z42fu/gD7agezaPOW4QwMx3vej55FS8mH3n7BqV8Ky64o+rzfodG9LRse3n5+O48LI5ALSDWsaANiSaUHYGRjYV/gkTyAVd74TRRm2F7c8VWjJ8f+OxxYylQNJUQDnLayioTrEfcmVaLF+GNiHdeffYvzqbTD2uTgLRJJZfCI156L9fEcJSArFXNG3C4Bez2I+eNXSgnb1mjpdsgZvvHw6ppypbOsMc4m5n6HAMo6mczcBZSIgWakEvfIE0WgGApKr1cnwyHZumnSMbiXJatNfRHpdOjG8RZWw9Y0m6e9wbsBEZeGh2S9lLAMpm0lNP1ihONOIOSUrSU8Ny+vLK9h3PnHlijoes9cDIA88CEAsbeEj910xxzczVT6TXlmNLq1jv/NSsenph9Ce+19sw4MYOjCpQPWbFzp45Tce45yRe3ms8nN4BnegX/KRaRckpqIi5AhIvX1TdxCdCJlHSfbSugCLanzc0+ecZ6ZlbOlEdNpzzhWGvwavFSGZsU5+IQ+hTaF4KUIIXn9OCz/tWeBs2PYrtMOPIbJJOPjwrJ13NJnBRwrNpUrYZoISkBSKOWL0qOPkOOe8SwgUmOPicxm0yzqCCSUgzTU72odYzz5STeeTkC5nY5kISHYmQX+JBKQFzU0cthuIHXlhwtctW2LaKbJ5BBOOZSCJIrqwPbF/gGYGnCdFdF17KZVekzQG2YxyIJ1u2LacfpBiaqLOjXdVfStCtTwumvUtlUS9rQyYTVj77gecUgq/SGILY87dG4auMeqqd56Mlva6IvzgfxCRXv5b3oLIxMcdP5LM8Lk/bOfjv9rCO2p38y98E7/bJHPj12Dj22Z07sqqOgD6BiYvvZ6U7PTOGiEE169p4HftPqRmQO8O0rERZJEOiuxYJtY0jSjmAl9lHSGi7O87+XtbjnV7VQ4kRYG8/uxWDssGRoxa5BP/iUCSwkVqx52zds5IIouHFLpbOZBmghKQFIo5omf/JrpkNS87t/AuUrom6BSNeK0IJEZKPzlFXozE07iHduOVCXxLLyVB7gKqbEK0UwzJCiS5G78ZCEgrG4Nsl4vQeyfuxJbIWHhFCkuffhXSazoOJFHERfYzB4dYbA45F+uBhoL3fylBj0EGA0s5kE4vnvgG8mdvnOtZzHuiQ87Nfn3TgjmeyfxG0wSXr6jjvuzZ6IcehlSUSDKDnyRZwwdlIM6lfLnP0xIGae840st5qafZW3MNOzQns27g8HYAesJJ/vXuXVz6rw/yo6eO8MnzXXwi8Z9YdWsx3/8A5oXvnZH7CKC21im7HBrsR8oCBeVjwsjUiyLXr2kkbumMeBdg7X8A7Zvnkv3ZW4uZLlYZC0iVNfUERYLdHSfnIB3vvlp+rilFebOgxse7L13Cw6kVCCvFNnsJ91rnktl1z6yU0oIjWPtECt2jHLUzQQlICsUcIfp30+VazLIiywL6jdzF3siREs5KUQhPHhjkXG0PAKGVlx6/gCoTB5JmJR1Ry50rrZuBgLSsPsBOuYhAvAMS43MQ4qksXtLYeQRpekydKB60TKygi4RE2uLpAwOs848ig82g6QX9DBPhcxlkpIFUGUinFbL9WbTO5+d6GvOe7o6jACxoWzzHM5n/XLmijjtSZyOsFBx4kEgii58ktlkeK+FZf6PzoIQOpC0P/pKASLLm+nfxiTe/EoDb73mAL3znh9z71b/g7see4Z0Lenlx0bf5y+1vRGST6G/84aSdzwolVOUISMGjD5L93isglX/Z9HFhZOq5nLewinMXVvFsrBG9ZwtGYgDz8EPQNXm590RYtsRKxbGEDoaroH1PBaEa5/1xsL392LZ01saQueBwVcKmKILPvXoNqy56BQBVF72FyILrCWSH6dr5+PFBmSSpn76ZzL+tJPO1tViHnyz6fGMh2qYSkGaEEpAUijngUF+EtuxRXI1rij7GoNHkPBhWAtJc8fj+AS409mMHGhGhhTTUVDkvlIMDSUp0O43u8iDHhCNvqOjD+VwGg/5caHX/3nGvx9IWHlLIPC4ix0K0BRIy+buQ7B/cyDsi32GhMYgoQfkaOHlMGXSk6sJ2WiHjg7MaxHmmMNTn3CwuX6oEpJly+fI6nrVXkdArsHbdeayETbrK40bGVZErYYuN77RVDLFUlprDfySiVxFYeRVLFi8la/gJxY5wXf+PeYd+L494P8HH2z9KRWQfqYs+hvjgE1A38+6aY4jcd98lA7/G7HgS+vfkv+/YosI032maJviX163n2ewyUsJN+tZfYLuCZB77D0cUyrOUdiCawiOTWHmUgc8Fmt/Jeers6jy2LZ7O4mbs30mVsCmKY9XVbyV7zrtpvfq9vOy1byUjdZ7//bfoCTtlpNn7/hH3vrtJt14Cmgk/eyNWx4sAWL27SD30b3l3QBxNOBlISkCaGYUFrygUipLw5PPP8VaRYcHqc4s+RsTbChmUA2kOeWL/AH9r7IO2S0AIKoJBGKY8HEhWBg2Jy+0DdyXQPiMHEoBetwI6gMF9sODCk16LpbJ4RRrMmmmPMxaiDUAqetwhNRWJYfzdz/BWXUdLBBALbyziJxiPz6UzggGWKmE7rYgPOk4PKwO6OdezmbckhroZxUeoomKupzLvqQu6Wd4Y4vn0BVy6915GF36GapJl03ErFPAyipdgcqQkx3t4+yGuYRPhZbdSkXOLanUreIs2hNazDXv9G0mZlWjBetyXfhhjNv4dXvqdF80/C0mzxzKQpl8UWdkYxHPZhzj/4cv4b/M8Ljz33RhP/xep/7oANAPr1h/jqp+6a2jHcCK3CFOeAhJeR0Aa7O/BsiW6JnILR8qBpJghvmqM13wdgDovdK14M6/a+1M+9M3vsr4qy0f6/pt7vK/mSe/Hufl6WHfvrejfu57EkhtwH3kQdzYJjatg9aunPVUsEccQNqgQ7RmhHEgKxRzQt9+xNocWbij6GP5QLVHhxx46XKJZKQqhfShOYGgntVYf2uLLABBjX0jlICDl7Pdurx88uZu/GQpI1a3LSEsdawIHUjxt4SWFyCO7YSxEG4B8g7Q7ndUml7Aw0mGobM173tPNJYOR9+qVYp4wVmapXEgzwo72EstDFFbkx5rmCu5InYOWGsHb/Rx+kUTz5CGgnwJq/G7C0o8dGyrJ8Q688CBekabuvNcf26bVrUDvfA5hpdDOfQfe13wV99V/N3td6Fx+OirO4T+zuTlE8+/Gplv5C0gAH712JdU19fz977aRveCDpGvXkgm0YsR6ED98BZEDz2HbkmQ6SyQaJZE+uZtZ10jCWYQp1xtbnyMg+a0IB/qd7+3hWBq3SGMLsyQl5QoFQPMt/4+Uv5mvZ7/IR/o+z0FtET+peDe/eqGd1/7kCG+2v8BT1a9FP/gg4foLsL01WNt+m9exU/FcGWuZCPfzFSUgKRSnmETaonngCdKaB+pWFX2cpgoPnbIeOXy4dJNT5M0T+wd4u/5nJzR6/S0AuFxusujHxJs5JRcA6vP5EZ5KJ0jbNbMbleWNVRyVDUS7xpcBxNJZPKQRrvy6sB13IOWXSZE+8hw2gi3unGuvRAKSL1fChiphO32QEhHPleGUQznpPGUknsafGcLy1c31VE4bVjdW8FjMKb81w4fwk8QoFwEp4GJEBkhHZ17ClkhbyA4ng0xvO8FpXbMcANtbDW0Xzfg80yIEO274Gd/K3uQ8L8SBZKWw0EHPr1jDY+p86XXrOTwY5/89NozxwUcJvud32O/4I0LaVPz4OtLfOB/ja8uo+GoL5r8vI/bAvx3bv2skgY8UerkKSBUt2JrJJ41fcHirk0/TMRzHTQapytcUpcQdxH3zt3H5Kklc+ncs+czT/PRD1/DC/3c9X3vDBrL+Bt7VewurU9/nut6/IrLo5Wj7/pTX4m0qMRZUX6ZOv3mCEpAUilPMi/vbeaV4ksEFr5jRSlNjpYeDVi1SZSDNCc/vOcRrjSdh/RvB62QfeU2dJO4ZOZAK7hQzCYncl6Tf70d4Q+CumHFHmxUNQQ7KJhjYN+61eMrCI9JoebRGDflNYhTmQOrd9Tj77Wbil3/Wsfg3Fe/eOxGvSyeNgbCVA+m0IRlGyNzqvnIgFc32zgh1jOCqbJzrqZw2rGoK0k8IKTRSQ+1UaKmycyBZ8fFNEgrlkb19rJH7iVUsOdn5Wpsr41r+sryFmZmyqqmCNCYpsxJi+QtIhp0iqxUmjFy6rJZ3XbqIHz55mH++cye2LXE1rcP60FMMX/5PZP0NxJa8nKELPkGqdi3+x75IcvNvAEdACugZdHeZZrP4a4nd8jP8IsmVT70LUqO5srs0okSh5wrFGNrSqzA+uQfv9X9/TOzxuw1uPreV3/3lpez54o38+WNXIgT8w75liEwc9t037XHj0YjzoEyaF8xXVAaSQnGq2P8A6XA34W0dBEQS44r3zehwTZUe2mU9WngrSFkWbYDPFLKWTcOBX+MhDRe9/9h2j6mTkC4CxboebJvUY9/Ac8E7jolSxTIwHKYNCAQCsPoNZKuWMdMkmCV1fh6jiWtiW8G2TrKsx9JZvHmungbdBknthAykaUhlsgQHNrPbexHXXXot4uKOkt18eE2djDTQlIB0+hA/wUGRb4mkYhx7e0c5S4Qxa1vmeiqnDasaK7DQiZm1ZIY7qNBTZVNKUe13MYQfEjNwIHW8QPaFH3FP7O18Tj+A56VZdc1nIzUTbcMbZzbZAmit8uEyNMJ6NXXRXvK5UrJtiWmnsAoUkAA+96o1GJrgfx87RDRl8eWb1+OuqMN97d/AtX9zfGA2Req7r8B154cZSafpHF5KSE+DObNS89kkuOYGvl7513wu8nno2kzHcDUbdAuh8o8Uc8DSugA/eveFvPW2DMNU4Hrqe/hX3jhl7mE4EnYelKvTb56gHEgKxSnCfvBLuP74Ya49/DU69DY8iy+e0fEaKz20yzo0K1VQXb9i5rx4dIRX2Q8zWLUBGtcf2+41deK4kMUKSF0v4nno87Dt1zOe42DYWWWpCARg2bXoV3x8xsd0GzoR3yKnbe/I0ZNei6eyeElj5OFAEkJgeHO5THnc4P/psacJMcrCDVcihCjpyrWha1jCVALS6UT8hAwX5UAqmu6BISpEAk+oaa6nctpQF3RTG3DRYVVRlR3AKxNQJl3YagMuwtKPlgoXf5Bdd2Bs+iENu39MDWH0tvNOfr1qEeLTR2HpNTObbAHommBpXYABWYkcze9aKZW1cZMhqxcuIAkh+OwrVvO316/gNy928Jc/fZFwYoLvF8ON+eafkK5aTujuD/KB9r8jpMWPZymWKe6Fzu/U7nyRjuEEVS5bBWgr5ow1zRV8/90X8yP7RvztDzP8zWuIP/pNMjvvHDc2lsqSSeSuOfPI61RMjhKQFIpThBjtJhtswZAZ9i1664wdQ02VXtplru2uykE6pWza9DyrtaP4zzl5FdXr0klKFzJdZAlb/24AZAGthidjOOxkC411T9K00jjURJ2TYcHg/pO2x1IZvCKN4cnvS9nty62y5pGBFN73FADLz74y/4kWgNSVgHRacZIDSQlIxRLud9p1i2DDHM/k9GJVYwUH05W0in4MO1U2AlK130WYAK502HE1F0NuMeuvxe3O85YJOs3OgUCyrD5AZzYIsf68xiczTkm2XYSABI6I9FfXLufzr17DA7v7eNnXH+W3L3YQT2dPGqdVNmF+4CHCV36R861NtGSOlP2N7eKFC2m364geepaO4TgVpgWqhE0xh5y9oIor3/cVPmd+AoYO4nvw7zF/+Vbo2X7SuI7hBD6R67hbJs7P+YoSkBSKU4FtQ6yP7TUv55zU/9B2w4dnfMjGSg+dstZ5Eu6Y8fEU+WPu/SMAnrNee9J2j6mTwIWVKs6BZPftPun/M2Fk1BFmqkrcftvf5AS/Z/pOFrnSSedn1vNwIAF4AqHcjtM7kNxDu8hiIOrX5D/RQtBdaDI7/TjF/CBxogNJlbAVS2K423ngr5/biZxmrGoM0iurWKDl8njKJPMm5HMRwY8uM0Xn+NkR5z3jFymk7oaGdaWcYtEsqwtwJBVA5OnWTmYt3GSw9ZkJI++6dDG/+8tLqPSa/O0vt3D+F+/nH+/YQfvQ8WsE3TDQL/kQX8/c7GwocwFpXXMlW+QStK5NdA4nqDCyyoGkmHM2toX41Cc+w7trf8abjf9wNh5+7KQx7UNxvOQEpDL/Oyt3lICkUJwK4oMIO8uTvQYLW1tY1jDzm/oKj0HUdNqq5ruqppg5nSMJzo8/Sndw/bhOYB5TI4kbu0jXQ7Znl/Ogf+YC0mhOQHJ7S/sluaBtAWHpI9Kx66TtmaTzM4s8O1v4AxXYiGkzkDKWjZYYJG6GZi90VTOdmybF6cFJDiTVha0YbFtijZX7BJSAVEpWNVXQLasxsJ0NZbISrmuCzFj+TqK4IG0Z6eY51pAWLmTjejBcJZxh8axqCjIgK52g3Txy95IZGw9pZAmEkbNaQ9zz15fzi/dfxMvWNvLTZ45wzdce5st/2k0s5SxcdI8k+Ib1OrYt+wCcderyoYpheUOAnSwlkOjESA3h07KgurApygC/2+BTr1zHU9F6wp4W7EMnC0gdw3F8JJ0nZV4qWu4oAUmhOBWMOqtyW8JeXnd2aQJJhRD4KmqctvF5rqqNHt1O/91fYvSRbyAHD5ZkHmcaL25+kfXaYYx1N417zZsL0ZZFrN4mMxYjR7cBoMf7T85xKYLRaE7EKvGF3YrGCg7KZrJ9e0/animwNWp1wE1ceqZ1iBwZjBGSo1ie6qLmmxeGCx3bCQZXzGvSWZud+w+dsEGVsBVD32iKajv3GRRUXdhKyca2ED3UHN9QJiVsAPZY84YiBSQ70s2ObCs7L/gy2nWfL+HMZsYFi6rpJ+Q8yaMTWyJt4RYZKLKE7aVomuDCJTX8+60beezvruGmjS3898MHuO7fH+HOrV10jCSQaKQv/zQsmZ1S7VJh6hqRKsdZdpZ2CK/I5r1wpFDMNhctqeHKFXU8mFwBh59wKkBytA8nCBq5xULlQJoRSkBSKE4Foz0ADIpqXr2huWSHbQz5GNFCyOj0F0Txzh14f/pK6p79CsGH/gH5ncvIbv1NyeZyppDY/QAAtee+btxrXlMngbso+/8//+ZZ6q1enrdXOBvyyEHKbvoZ1q8n7uYXj+eEGaO0F3aLanwcoJVAeO9JORnWmNMjzy/lGr+LKB6yiakDW/f0RAmJUYxAzZTjZoIY69hhKRfSfOfRvf1s2XuQlBlyNqgStqI4OhSnVfRjaS5VwlZiltUH+Ie3XHd8QxkJSMIbch4kRwrfOZPAzEQIGzWsuu4dsPiKUk5tRlT5XfiqcmHweVwvOSVs6VnJ9mms9PDVN2zgNx+6mGq/i4/8bBP/dMcOAJpD80OIcS04F1sKzhIH8JBSJWyKsuJTL1/FY5lVaKkR6NtxbHvHcJwmb05QUgLSjFACkkJxCpA5B9LCRUupDZTOEdJY4c2vs0h8CNfttyA1k6F3P0X6L1/Eql2N8dt3w557SjafMwHRv5uk8CKql4x7bSwDqRgBqX3fFgCecl/mbJiujK1vN9qdH0Pb/quTVljGSMRnx4Fk6Br9/uX4syMnXYhbqcIcSDUBNzHpIROPTDluT0+EakbxVs7eTazQc2UWVnrWzqE4NXSOJKgWo/SLKqRmKgdSkRwZjNEq+skGW0FTl4qlpq558fEnZZKBBGD4c0J9EQ6kwR6nM+fChUvwmHopp1USFi50/s1TIz3Tjk1mLDxk8v4+K4ZzF1Zzx0cu46+vXc7hwTi6JqgPzg8hZvmCZg7KJs7SDmGSUSVsirJiTXMFzRsckb5n6/3HtrcPJWjw5JzmZVI6PF9RVwUKxSmgr+sIABdvKG0IcFOlh26rYnoH0oEHMaJd9Fz/LX5z2MM/PhHnznP/l2ztKqy7PqlyQvKkYzhOc/ow4eCyCW+qPKZOSrrQsoUJSJFkhrqEU3ZztPpiEngmdSBln/0+8d/+NZmfvx3NSiKQkIqAlcV+9ruQTZO1bDKp3BxmY2UwF4xqdW87tikWy3VTy7eEze8iipdMYhoBqXeUGi2GEagtbq55oJljApJyIM13usIJqsQoHSkf0vSVTECyf/8RrF++qyTHmg+0D8VpE/0Y1QvneiqnJ8Gm44/L6EbGFcyVCidGCt73kRe2AnD++rUlnFHpWL18GQDt7YemGQmpXAaSmGVnja4JPnb9Cr77F+fxj69eg16ibqmzzbrmSnbKhazVjqBbqZI7nRWKmfLeV11BOw10PPsH+iNO7lHHcJxat+UE/GvlJ3LPJ5SApFCcArraDzEog1y7tnX6wQXQWOmh367EnkZAkp0vYmsubrnL5kt37+IPmzr52K938U/Wu9Ej7diP/FtJ53W68uyhIVZo7biaJhYCvS6nhK1QAelQf4zlWieWMDDrlnGQFuyJHEjJCPq9n8Kz43a00S7s1a91tieGof1ptLs/DvvvZyiWxkXOTTMLK4OL114AQM/e5wCQUhIO50rRCihhi0kPdnJ0ynH7e8JUEAXf7GUgaWP/RsqBNO/pHklSRZRB209K85ZGQJIS9t6DOPrEzI81Tzg6FGeBNoCuBKTZwXAjfXXOY1dwbudyAt6gI9RbBWbw2bZk007nO6ulbfE0o+eGjSuXYUlBb9fRaccmM04GkuY6NcLIdWsaePvFi07JuUrBisYAe1hEsxhwmhYoB5KizAj5XGTWvYnzspu4/RufZu8z9/CGzB+oMVMqQLsElERAEkK8XAixRwixXwjx6Qlef6sQYmvuvyeFEBtOeO2wEGKbEGKzEOL5UsxHoSgnpJTEBzuImrVU+UvbkaSp0sMAlejxgQnLmMaIH3mBbdYCDNPNnz92Bdv+8WV88bXr+HF3K0carkNs+lFJ53W6smPfAepEhMqFZ034ujdXwqZZyZPygaZje2eYFaKDdOVSmquD7Laakb27xg/c92eEleb+8/6HpaP/w576G53tyZHjnfjCHfSNphz7PcyKBf/CNcvoktVEDm8CYCCaRoyJZgU4kGJ4p+yIk8xYDA31o2GDb/YykDRDlbCdLnSHE9TrUeJGiLDlKk0G0shRtPgAWrT3jHFr9g4OUUUEQgvmeiqnLbIil4dYRiVswcoQWamRjAxOP/gEdnZHMGK5UvoyDV33e91E9BDRwe5pxyazFh7SaLOQgXQ64DZ00rWO00xkEyoDSVGWLHn9PzK44GX8VfYHrLjnTfyD+VOW9d8PZvm4PucrMxaQhBA68C3gRmAN8GYhxEuX5w8BV0opzwK+ANz2ktevllJulFKeN9P5KBTlxr6+KIHMAEZl6cKzx2ip8tIvK9FkdvLQS9tG793KNnsxv/zgxaxoCKJpgrdeuIDWKi/Pphch4gN5tbY90xk65Fj0tfrVE77uMTUS0o0mrYLKobw7fs61+ia0JZfTVu3jRXs5eqyH5HM/PmmcvfMOEu5aPvioAQi2jl3jJ4aPd20Lt9MfTeEWaaTQQDMK/TGnpcrvotO9FN+ws+J8ZDCGZ8zxlK8DKeAmigctM7lD5PBgjBC59+UsCki6OeZAUiVs853u4ThBOUpFdQNDGROZmbngY3ecsLY1fHjGx5sPZIecsmtCyoE0W4gxAamMSthqA25GCJCOFiYg7egK0yBGsHU3jHVyK0NSrhqMRD/Z7OQLbgCJtFPCpiunwqT8zdtOaCSihDZFOaJp1Lzth3QuezOft97FNnsRrvSIciCVgFI4kC4A9kspD0op08DPgZP6W0spn5RSjiXyPQ2Uto5HoShjntg/QL0YIdRY+pXcpXUBRrTcxVp04iDtRO8ePHYcreVsWk7o8CGE4IY1jTw+kLt4HTlS8vmdTgxGUwRH9zlP6icpYTN1kuTcLPmWsR16lNe2/ytPi42YL/8irVU+breuob/2Qlx/+gSDd/4jkZ+9i/Te+7H3/pnfxjdy7sIaltUH2DSQy0tIjEDCEZBkuIP+SAo3GafOW8xOpoKsX0dLtp3h8ChHBuN4xZiAlJ8DqcJjkMCLnp1cQBpNZqkiV+Lmnb0SNiOXgSSt1KydQzH7WLYkMTp0zLE2artnLIzfu6OHH/3qhG6Vw9Pnp8x3RpMZ/Iku54lyIM0aorLFeVBGq+HVfhdh6ScTLayEbXtnhBZ9BAINs/adUwpsfz0XsY3I914DPdsmHZdMZ3GTQT9FJWzzEX91C7Yvl02oHEiKcsXlo+Vt3+Gcmz/Jz4PvdLbNYjj+mUIpBKQWoP2E5x25bZPxHuDEtk8S+LMQ4gUhxPsn20kI8X4hxPNCiOf7+/tnNGGF4lRyuD9CHSP4qqf6sygOU9fw1+RWMSfJQdr89MMAnHXBVeNeu35NA4eyuQuAM2RlvVg2t4+wUnSQcVVOatH35DKQgPw7sbU/g4bkOw2fQ3N5aavyYqPx4NovYbsrqHn+6/gP/RnXz27GsBIcqL2G77/zfM5fVMVzPblV1MQwxB2NXuYcSB7SiFn8kqxbdi6GsNm6+RmODMbwiZz4kqcDSQiBZfpxWZM7RGKpLNUiJyDNYgbSmAMpnVYlbPOZgWiKCumEstveakZtN3KGGUg/feYo69jHfjv3OTt0+gtIu3tGaRUDzhMlIM0e69+IdenHyqrLXU3ATRg/ssAQ7R1dYRa6R8u2fG2M6Hkf4X77XELdT8CO3086Lp1JogmJ7lY3mpMiBDTkAtNVBpKizLlpYwtf+sTfkF18NVSVZ07bfKIUtQ0TLTVMGP4hhLgaR0C67ITNl0opu4QQ9cB9QojdUspHxx1QytvIlb6dd955+YeLKBRzzGBfF4awZ+3CqrFpAYyAPdo7oSLcu+cZUrhYu+GCca+dv6iKsKfF+YsdVg6kqdjcPsIVWgfUr5p0hdVr6iRkzoGUZ+mMzKaQUrC4qQGAuqAbt6GxP+4n9b7HGEllsDQ3z3773azRO/nE+9+Nz2OysS3Eb5/1gAenfDHnQBLhDvpHUzQa1qyuCi5YcwE8DIuf+DtM91J2emsgQ0ErO9IVwEymIZsGY3w+WCxlUXUKBCTD5Vz8ppJJ1GXw/KVrJHHcsearIYEbO9Vf9ErZQDTFM/t72OA+zH2+V9IQ+zPBoYMlm2+5sqs7QpvoQ+puhL9+rqdz+rLgQvQFF871LE6ixu+iXfppSw5PPziHZUt2dkdo9I0gghPnA5YLTWffwA1/gGu9+whEeyYdl005XZsM5UCaEq1xPRx6RDmQFPMDITDe9isQqgPbTCnFskcH0HbC81ag66WDhBBnAd8FbpJSHiuullJ25f7fB/wOpyROoThtiA91Og9ObNtbQhYsWATAQG/HhK+3JHbT51uG0M1xrxm6xjkrlxDFizwDSjNmwqYjw6zSOjAbJ29RbOoaaVGYAykWT5DGYEmD04lHCEFrlZeO4QT+qkZqGlr53L1H+Xj2w8gPPIbP61zQbmgLkcKFpbkhMYyM5z5WR3sYjMSoMKxZXRXUa5fzVOB6kuksl4z+mctErhyggAtJ25Mrv5wkvyuWzp4kCMwW5piAlE7O2jkUs093OMnF2k4ArKplxKSn6C5sti25e1s3y+RRTJnGaj6HQ3YD1uDpLyDt7IqwxBhEVraWlTtGMftUek3CBDDSkbz3OdgfJZmxCVmDiFm6zikVQY9JS8jLoKjGjkwepm2nnAUgobJ9pqZxvfN/JSAp5gu6qb7XSkAp/gWfA5YLIRYLIVzAm4A7ThwghFgA/BZ4u5Ry7wnb/UKI4Nhj4AZgewnmpFCUBamshRjNrXLN0oXVmiVtpKTBUG/7uNfi6SyL6SRSuXLS/c9qC3HUrifVrwSkybBtSaJjK0Fi0Hz21GPHLqTyFJAi0ShpTJbUHs/BaK3y0T4c54Ujw9z8309y745ePn79CpbVH+/Ws7w+iM+lE9ODkBhB5kK0BRJ7pNMRkGazzlvT6Ljq67w++Q9kpcaK9E6k6Sso/0KO5RrFJw5sdUrYokjdBa7Z61RkupzfWTqlBKT5TNdwjFv1h4i3XIpWvZA4HkQRApL91LdJ/OFj3LGpk7dVbAZAtF3IEVl/ZghI3RGWmEOIqkVzPRXFKUbTBEmjEncmnPc+27vCeEjhypZ/CRvA8oYAXXYIRid3IFlj3RYN5UCakqaNzv89lXM6DYVCcWqZsYAkpcwCHwHuBXYBv5RS7hBCfFAI8cHcsM8BNcC3hRCbhRBjLU0agMeFEFuAZ4G7pJR/mumcFIpyoX0oTiO5m+NZurBaUhdkiEriQ+NX0wZHk1QxivDXTbr/mqYK2mUd2UElIE3Ggf4oF2ZzH1vLb5hyrK3nLjjzLGGLxmKkMFh8goDUVu1le2eEm//7SY4OJfjKzWfx/iuWnLSfrgnWtVQybPuPd2HLCTJ6tJOAnp31XIIrV9QRxcdWucQJLi5wFVL351xFkwhI8bRFiFGkp2pWg1ldOQdSOqVCtOcz5tFHWaD1o537DgJugxgetGwcZIFV79t/g3/LD9jQ+VNuydxBds3rqW9bzhHZgDHaCVZ2dn6AMiBr2ezuGaVR9iFU/tEZSdZVgceOgW3lNX57Z4S3mw85T6rKv2vfyoYgh5PBSRuPAFjp3AKQciBNTf0q7HfcDStfMdczUSgUp5CS9HeWUt4N3P2Sbd854fF7gfdOsN9BYEMp5qBQlCMH+2MsFx1Yhh99lhxImiaImdXICS6GhkeGaBMSMzB5fszq5gp+Ieu5JrrNudEq4w4qc8Wm9hGu1jcRr1mHbxoh0DY9kCJvB1ImlSSNSUPwuNhz1Yp6Xjgywi3ntnLr+W0E3BN/VF+4uJq+Tg+h4QEqEkPQvBEOPow33o2vMgP67F781ld4WN1UwRP96zhH21+w48lV4QS4pyIDE2YPRVNZVmjRWS1fg+MCUkY5kOY167p/xwhBQme9lmBXnLj0IKQF2VRhN4IjRwH4B/OnSEzE9Z9nke7jV7IBTWYh3A7Vp2cI56GBGP7sCP7syLwQAxSlx/aE0FISkuG8sudC+37NR/UfEV9yI77VN007fq5Z3hDkqB1Ciw9Mmr9nZ3LfBao0a1q0xZfO9RQUCsUpRhUBKhSzyOHBGKu0duy6VbNac2v76/Cmh7Dtk1faR4eczmzuYO2k+1Z4TKLeFkw7NWkntzOdPQePcI7Yh2fNjdMPNnJdyPLtwmalyGBi6MffH9etaeCev76c91y2eFLxCOD9VywhZVYy0NfpXOw3OgGmNVYfHpE9JfkNV66o40k7lwuVZwe2MarqHFF1eGDiLIp4KkuNFp3VAG0AlydXwpZRDqT5zMr4C7zgvRQMN0GPQWxMliykjC2TQIv1cZd1AVnhwrrwg1C1iLqgm149twhwGufF7eyOcK2+yXmy5Ko5nYtibpDeXDZdYvog7VTW4mUjv+CIZyWZ134X9JKsS88qKxuC9JL7GSdxIcmx728lICkUCsU4lICkUMwih/odAclsWjer59GCDTTTz+HHfgYntN+Nh51WzN7KyQUkAKMmt5o+ojqxvRTblmT23o8uJNrKl0+/w1jXljwFJJlNkxXjA87zIegxWbtkAc12LwIJla1kPdW0iEE8pE/Jxe/bL17I+Ze/DKl7CnYgNTe1ABAZmli4jKUtqsUoYpYdSO5cBpKVVgLSfMYtU4ic2BhwmySOCUjR/A8SdpoRvOC+iMxfbcO44QuAE24vx1r/Dp3GAlJXhBv0F7ACzcfzTRRnFMax0uKhacdubR9mAb0kmy6ismL2cupKybL6AP2EnCeT5CDJbM6BNJs5ggqFQjFPUQKSQjGLjPQdJUQUGibv3FUKrKazCYkYSx76S7j/88e2JyOOgBSsmroVc0XzMgBS/Qdmb5LzlM0dI2xIPU/SrILmc6YdL8zCMpCElcIqUkACqKppwCvSAGwZ1Ej6mmgWA7hIz3oGEkBLyMvf3rgBe+l1UNk2/Q4nsLCxhrh0Ex+ZREBKZQkxivDPsoCUcyBllIA0f7EtTLKYHscFF/QYThc2KMiBdHC/08XtnA0b8VY1nlTSG6xtJY0JQ6dvkPauoz1coW2FVa9Q5cxnKEbOsZyJ9k87dvvuvXhEhtals3uNU0q8Lh1fdavzJDqxgGSlxkK0Z/87VKFQKOYbSkBSKGYR1+Bu50H9mlk9j37+e1if/C7D/iXI0ePlQJmoE07sqZjagdSyyOnSNti+Z/YmOU+5Z1s367VDaG3n51eG6MqFYed50yqsNFltfAZD3nhDxx5+78URhs0GFog+TCtxSldP9Td+H/GGHxa0T4XHJCyCZCe5UYmnMgRl9Fg4+GzhyQlIWVXCNm/JpJy/Ny33nve5dOKicAHpuU2bAbjqwnPHvbagNshRWY99mjqQkhkLX+fjeEijr37lXE9HMUd4KpymG9Hh6UvaOw45gqu/cemszqnUNLc5bkI7Mkn5dCz3maG6sCkUCsU4lICkUMwS4XiG+kTO0TPLDqTWKi+j+IgaNSeVsNmxnAV9LNNgEla11bPLXoBx8IFZnOX8Q0rJ/dvaWSK6cbWsz2sfzZXLASpAQLJnJCAd/90eSXi5p6eCpVo3rljXqV09NdwThpFOR8KoREyWtZEMo2PPeoi2x+0IDbYSkOYt8ZhTpqa5HQFXCIE0c2JuJr+/xe5wguGu/VjoBGrHu+kW1fg4ZDeQOU2dms8fHuYq+TxpIwgLL5vr6SjmiKpaJ+trOgEpY9nEenJ/C1XzK1R+5ZLFZKXGcM9RrN5dZDs2H3vNtiWppHIgKRQKxWQoAUmhmA1si3u2trNKayftrZ/1EGCPqVMbcDMs/cgTb8bHHntCU+7fEvLyZ/0K6sNbT+vyjELZ3hnBEz6AgZW3COhxuZzslTxzVzQ7ja0VX8J24u/2Ay8/n6+kXs97Mn9H/NwPwtlvL/64p4iMuwpXemIByUjmBNBZ/vvxep1V5mw2PavnUcwesZyAZLiPOwaEK5fJkqeYe/+uPprpJxtsAU0f9/rCGj9HZQN65KjTsfI044kDA1yg78FeeGlRYrDi9KC+rpaM1EmGpy5h29oRpsnuxkYruHx5rjl7YTX9hAj3t8Nv3oP49TuOvTYYS2PK3GKCykBSKBSKcSgBSaEoJVJiv/gTrP/YwBX3vZJLjD2zHqA9RmuVlwHLizjBgaSnRkgI77Q3A0IIRpffhC0F2c2/mOWZzh8e2dvHKuG09KYhv9+jx9SJ44XUaF7jdTuD1GewynlCCdsrLljDZ151FsH1r8D36i9D63nFH/cUIXw1BK0I0VR23Gt6Ouw88FTO6hz03CqzpQSkeUsy4YhEpvt4J8BCBaRd3REW6gMY1RO3r19c6+eIrMfIxk/LjpVb9x5y3JYLL5jrqSjmkOYqHyMEJi0tHmNL+wgLRB9WsHneCY6La/0MiioCfS+i9+1AHzl8LBy/N5LETcYZqLqwKRQKxTiUgKRQlJLtv0G748OkXCHMbIwm2YdomN38ozFaq7z0pL2O6yi3Ou7KREgY+d18X3z2Bp62V5N68fbTcnW9GJ46OMilwR5H4KnOL+PBY+pE8eTtQNJlGvSZl7BJzQRXgPdctpj/eNPZxR/vFOOqqKVKjHJ4YPxNvjYWRO6a5e4+uuMAk6qEbd6SyGWWmB7/sW362OM8/xZ3d0dYoA2gVU0sIDVUuHHVOZ8Dqf79M5ht+RFOZDB7NgE4eW+KM5YKj0mYIDI2dRe2cCLDAtGHqJ5f5WvgLJqlvQ3Up48e33jwIcARkDzkFhOUgKRQKBTjUAKSQlFKjjyJdAX47+X/y6vTXyK2+lbY+JZTcurWKh8dSTfCzkA6hpQSbzZM2qzIa/9Ll9Vyt7gCf/QIdG2a5dmWP6msxfOHh9no6kTWrQLdyGs/r0snKj3IVH43rYbMIGeSszBWwuarnpddk/yhBipFnCP94XGvaWPZNe5ZFpA0nSwatnIgzVtSSee94vIcdyAZ3vwdSLYtOdQzSJU9jJhEQBJC8KqrLgHgqeeen+GMy4tnDw2xQexHIqB5/gjQitkhblSipybJphsbk86yUPShzUMBCcAMNQOQrlmNHWzG2v8gMpMkfvAZPEIJSAqFQjEZSkBSKEqI3bWJDs8KvvnwQdatWoX/1ttmPUB7jNYqL4N27oYpMcxoKksFUbLuUF77e0yd9PKXYyOw9/xp9iY6T9h0dIRU1qY1fRDRmP/v0GvmBKRkfiVspswgZmL/H3MgzXKnstmisqYBgJ6ek7vhZC0b0xpzIAVnfR4WBtJSAtJ8JZUrYXN7jzuQTE/+AlL7cJyqTK/zJLRg0nEb123ARmPPri0TuubmK9s7w5yt7ydbsxLcs//3pihv0q4Q7vTI1GPio9SKMFr1olMyp1JT3+wIxTsqL0cuuQZx6FGSP38Xr37u7awUHUjdlV/nVYVCoTjDUJ+MCkWpsDLY3dv501Ajr9vYwjffcs4pPX1rlZcRmbt5So4wGE0TIjptB7YTuWLDSl60lxPZeucszXL+8NSBQepEGE9qAJFn/hGAx9SISi92HmUzli0xySBm5EByShTFLAdNzxauYC0AA/0nC0ixtEVAJHOD/C/dreRkhQHZzKyfRzE7ZHJdkzy+4++VgNftBNrnkUe2qztCq8hlvkwhIGG4yAaaaaOXW77zFNs6xjvn5iO7u8OcrR1EzIPcNMXsY3urCdhTv7d9sXbnwTzrwDZGw4KVAHx/YB36sqvRUmG8B+4G4HJ9m3IfKRQKxSQoAUmhKBG9B7dgyDSyaSNfe+MGPOb4Lj6zSWuVjzDHHUiD0RSVIopWgLDwsrWNbPFeSGhkB6nhzlma6fzgqYODvLK2x3lSn3+OldfUieOGPErY4uksLrJoMxGQdAPpDs5bAQlfDQCRwZ6TNsfTWXzkBKTZLmEDshigHEjzlkzKEZC83uPvlaDHpFdWY4en/yzb1T3KKi13Q1yzbMqxRu0SrqqP4dIFr/nW43z09k18++H9/P7J7aRv/wvsB75Y/A8yR4x27aWSUfQFKkBbAbq/hkoZJTFBc4Mx/PEO50HVolMzqVKz9nX84fwf88e+Wnb5zkXqbuJrbmVQryVAQnVgUygUiklQApJCUSL+dO89ALzmxhsRc5BF4ziQThaQQsQwAjV5H8PUNTZeeysAT93zU6y990F86iDN05FIMsOOo718KP1/WIEmaM0/VNZj6kSlN6/g3njawkUGzZzZSqdsvQBazp3RMeaMnPAVG+lHnhDeHkud4EAyZ9+BZGkm2Gmylj3r51KUnuyYgHSiA8lt0GFXY490TLv/ru4Il7sPYIUWQaB+yrFa9WK8kUPcufyP3FX7LS7a9a947v97zv7T63Dt+QPiyW84n5ujvdhbf132TQmiqSy1kZ0AiPn6OaIoKWawDlNY9PRP3m0wmMy5RuergGS4uOrqG3EZGj/eGiX9kRfx3fIdXtTW516fwcKOQqFQnMYoAUmhKAFbO0YQPVtI6X4aF+Vf7lRKPKaO7s+5UBLDhEeGMYWFp6K2oOOce/5lDOh1XL73X9F/dgs89c1ZmG1588CuXj4qfkVD6jC85psFOWA8pk4MDyIPASmWzOAWWXRzZheq2tt/C5d9bEbHmDNyDiRPZoT+6PEuaLFUFj8JsrrvlORQ2MIEK0MsPATW5KvuivLESicAMNzHQ7QDboNuWQPh6QWk3d0RNsg9yLaLpj9Z9RJEcoTQzp+w1BzgTd6neYfvSfx+P5/KvA9hpfjiv3yOHd+8Fe2378F69rtF/1wz5fBAjM/95nlim36DffDRCcfs6Rllocg5AGvy6zapOL3xh+oAGOjrmXSMlh1rcjB/M7MqfSa3nNvKz545yu/326BpPJbNOY4N5UBSKBSKicivrZBCoZiS/33sEO/VD6E1nTWnoYsLW5rhCJAYJh528jx8BQpICMGRxW+ie+8fWeMdRs/j5ut047kXnucLxt2kz3o7rhXXFbSv19SJ4UXPxsG2p3w/JBKOa0KfoQNpXpML/65mlAN9MeqDzr9FLFfCZp8C9xGArZkYmRiB286Dqz8DF37glJxXURqsdC5w/YTckqDHoIta9NhjYGVANyfcN5210UYOUuEeQS7MQ0Da8GaSyST62W/CXbPo2OZa4JV7++m640k+Gf817lSCHllF1T2fYVO8lvOueNWkc5gNBqIp/vV/f8JXkv+If1scWbUY/nrzuHG7uiO0iX4yvnpMVbajACpqGgEID04uIIlsEgsN/RS+p2eDz796DZ3DCT79221Uel3cl1jFP3tQGUgKhUIxCcqBpFAUgbXlV6T+8DFSP3kzkR++kbfu+hDrxCHM1lMbnP1SzlnaTEqaREf6Gex3OgoZgcKzccyrPsGr0//CiH8JMtI9/Q6nEaPJDOce/T62MHDd8LmC9/e6nC5swLRlbGMCkuE6gy9UXT5sw0NIRDnQf/zfa6yEzT4FAdoAQnex0t6PnhyG4cOn5JyKEpJzIJ2YWxL0GHTKGgQSIl2T7hpJZjhP2wuAWJCHgBRswHPdpzFPEI/GuGJFHc3XfAi3nSBbv46dr/4jERHkvEfeifzXNmh/tqAfq1iyls37fvgsH0l8hzgeOqouhOTEoci7eyIsMgbQ5mspkqLkhHLdMaPDvZOO0bJJsmL+l3m5DZ3vvO1cFtf6+f9+v51uagj7FqgMJIVCoZgEJSApFIUS7kT/3Xsxt/8SbfgA0e59mFhEV94M579nTqd20dJawvjp7e1h16EjzsYCurCNsaqxApeh0SdDMDr5CuTpyFPPv8BN4jH6V7512iyUifDkHEjAtO3Dk0kn4+eMFpAAvDU0aGH29x3vlnUsRNs1+wHaAMJw0SxyeV/JyCk5p6J0yExOQDrBNRBwm3TJnANzCidlOJHhXLGXlBGE2pUzn8y612OteR3Ga7/FNeet58Erfs0nM+9HZBPQ8dzMj58HP3jiMMu672C9dpBvaG9jv7Fs0m50u7tHWaT1I6oWnpK5KcofM+iUsCVzTuaJ0KwUWX3+C0jgLPx87LoVDOTKqA9c8AW4+rNzPCuFQqEoT5SApFAUyr57AdDedz//s/anXBL+Ined/39Uvvl/5zw/Yk1TBaMiwJHOTtyZ3E2wt3AHksvQWN9SyaFkEKJnloDkevbbWEKn8cZPFbW/x9SIydxF9TQOpFTSuek13We2gCTrV3OT9jjX7/zsMdEtmsoSEEnEKejABqCbruPzSY6cknMqSkg2QRoXnNDAIOgx6JK5JgLTCEjnaXsJ15xdmhJklx/9jT+E5o0AXLJhNb+yriSjeyGPjnAzpaN/mMH7/51/cv0Eq+UCDtTfSFfCQNgZyKZOGiulZH/PMLX2AFr1olmfm2KekFt4ykQHJnxZSolhJ7G000NAAnjl+iZWNTp5Tv5V1yKWXDnHM1IoFIryRAlICkWB2HvuwQ4t5BeHfXz1z3t5/dkt/H+vXD3X0wJA0wS2O4QnE6HFnVuRL8KBBLCxLcTOqB+RikzrpDldkLbNisiT7A5chFbZVNQxvCc6kCZZ8R8jlXJ+R64zXECyXvdd7qq4lUuTj8C2XwEQT1n4SaB7To2AZJwQZC6VA2neIbJJ0i+5mQ2cJCC1T7rvaCzOcq2TbOOGWZlbW7WPZfVB+kTtlPMoBVJKdv3oY3xa+zFWy/noN9/G0oYgR2K6M+Aln0nxtEUw3YuGDSHlQFLk8ISw0bCigxO+nMzYuMhgnSYOJHCunz73qjWcu7CKhTW+6XdQKBSKMxQlICkUhZCOIw49ymDzNfzDH3Zy+fJavnLLWWiamH7fU4QrWENIxLigITcnb6io42xsC9FtVTpPzpAytqP7t9NMP5mFxa88el1OFzZgWgdSOulkILncZ3bWgukPsXvtx0hKk0zvHsBxIPlIoXsqTs0cTiwjVALSvEOzkmRfIiAF3QZJ3CTMEPYUDqToqPP7dvmLE9vz4ZpV9RxMV5EdmXwe6R13YXW86DyJdCH3P1jwee7Z3sOS8NMcqbmM4HvvgOrFLK8P0J/KOexSJ7+3Y6ksbSJXpqRK2BRjaBpJowIjPUwyY417OZbO4iGNrZ9eix+XLKvlNx+6BI+pz/VUFAqFomxRApJCUQiHHkFkk3xp3wLqgm6+8aazMfTy+jOqqWukWouxsTqFdPnBKG6FcGNbiF5yN1TRyYM0Tyf6Nv8JgPqNLy/6GD7TICrHHEjTlLClnAwkt+fMFpCEEKxuDnFINhHv2gU4GUjBU1jCZrqcG+yUHpg0bFhRvuhWaryA5HG6Q426G5FTCDeJmOPKcflmrx351Svr6bSryQ5P7kAy7vlb5J8+A4B84Avw01sgMZz3OUaTGf7zD0+yVOumdeP1x7Yvqw+c4Io8+TNpNJVlgehznigHkuIEsp5qqhjl0MB4B3Is5QhIqlOZQqFQnHmU152vYubYNultvyP9vzfAc9+b69mcfuy9l7Tu567RpXz55rOo8rum3+cUEwjV0WAmqOp5Arvl/KKP01rlRfqdTiyMnhmd2FxHHqGTetqWri36GBVeA22s7GoaB1I2rUK0x1haF+CAbEYb2g9ANGXhE6cuRFvPCa37/Wc7ZZuKeYVupbBfUk7jMTV0TTBiNkBkCgEp7ghIXv/sCUjL6gN0yVo8yf5xOUQAZNOIaC961/N8/4GtZPbej5AWHHw473P86KkjLIpvA0BfdMmx7csbAoxOUlbrOJD6sIUOFS0F/1yK0xfNX0ONGOVg/0QCkoVbZMBU310KhUJxpqEEpNMM6/5/wvWbd+LqfAYOPz7X0zntsA8/wYusYlVLDZcuq5nr6UyMN4TIxNCH9qOvvLHowwghWLfK6UiUHpm8BfbpgrQyLI29yMGK8xEzCNIVQtBY63SwmU5AyuQcSKJIl9jpxMIaHwdlM/54J2SSxFOZU9qFDZefflHDYdEKqTBIeWrOq5gxGcvGJVPjymmEECyo9nE0W42YooQtFXf+Ts1ZzNuq9Jp0k2toEJng83S0G4FE2Fn6H/wWroTjCup54Y/IPN6LyYzFD544zGtrjiINDzQdz3NqrPBgm7mf7SUCUjRXwpb0NYNuFPfDKU5L3E2rWSOOcLBvvKA+VsImjDPbPatQKBRnIkpAOp0Id8DT32ZT5XXIulVgped6RqcXiWG0wb08nlzC+69YghDlk3t0EieGZq8svhQL4MqzlpOSJp3th2Y4qfKnb/fTBIhjL75qxsdqaXBah8tpStjGHEicRkGkxeIxdcL+hU6Y79BBsskoGhJOUQkbV3+Wr9f+EwMZN8LOwlhbeEXZE0tl8Yi0I5y8hAsWVbN5NICWHp20NDGdcyBhzt7NsMvQGNJzwnJkgk5sJ2z7a88fAdgiViIOPMBX/rR72uP/blMnA9EUl5r7kM3nnFS6LISguionXr1E1I4mHQEpW7GgwJ9IcbpjLrqYChEn3rVz3GuxVBY3GYRLCUgKhUJxpqEEpNOI5P3/gmXbfKT31c6F9EQ2eUXxdLwAwFHfOm5c1zjHk5mCnIBk1a6CqkUzOtT5S2roF1UM9RwtwcTKm/ZDTvZO84pzZnysRc31AMQiI1OOy2ZyApJRfqWQc4FVvcJ5MLgPK5m70XX5T83JqxeTrF1Pdyp3463K2OYN0VQWN+kJBaALl1RzMO18JtqDByfcP5PMleiYs/tei3lynR0ncEN1HtkHQJ/egMeKYdWuZM0rP0KDGOG5Zx6dMMh4jHTW5rZHD3Jus4vgyE60hRePG1NT44ja40K001laRZ/KP1KMp+1CAPx9L4x7KZay8JBGVwKSQqFQnHEoAel0IdyBa9vt/Ch7PZ3UkREmZJNzPavTCuvoM1hSUL/64rILzj4JTwgAseJlMz6UqWukvfVY4S6ylj3j45Uz4UGnZGRBy8xzQJY3VBKTbkZGhqYcZykH0kn4mhwBye7fC+mcK8Q1e7k0L6Wx0kP3WLcqFaQ9b4imsnjIICYUkGp4zl6JRJDeefeE+1upnIDkmt3W3SlfbuHhJQLSaDLDXY8/B4DvgncAIJZeg7nCCcL+uPVDjvzyU5OG8n/v8UN8OvwFfjHyNsc9t2C8gOTx57oZvjQDKZ6gTkTQqlqL/rkUpynVS4jqlbSMbhtXRhlLO64/JSApFArFmUcZ3wUrCiG6/wk0bB5wXQ1ABhOZVSVspSSy/0n2yAWcv7LMV2rrV2OFFqFtuLUkh/PVtFBtD/PYvoGSHK9ciYadn88dmHm21YoGp+tRdHRkynF2JucSVBlIACxorKdLVhPv2k0ymnNKnKoSNqChwkPYzt0QJZUDab4w1hFqIgGpJeTFXdXMHvd69F2/n3B/a0yYmWUHktcfJCwqxglIP376CJ54DxlXJYHz3oTUPWhrboKKJrKrX8dqvZ2V+/4X9v153DE7RxLc/sAzvEx/nsyCS0m+/Guw9JoJzl2BLQUyebKANJb/5PJVlvAnVZwWCMFA1UbOknvoj57saB/7m1MCkkKhUJx5KAHpNOHQtidJSYNXXetcOKYwwVIlbCXDtvH2bWKTXMbFS8s0PHuMimbEX22GhuI7iZ1IXdMiGrURfvbs6V3Glh4dJCm8JSknqwm4SQgvqdjULhZ7rMxUVyVsAEvrAxywm4l17SIezf3bnaoSNqA+6CYicy4U5UCaN4wmp3ZDXLC4mt+mL8Ac2ovsHZ/nItNx58EsZiABhHwmfaIWGT45A6lrJMFCYxg91Ao1S7E+3QG5MjTj1h/yg/OdTKRo1/gspO8+dpCN7AHAe93f47novaDp48ZV+NxE8ZBOnCyMZhKOoGR6Tt3fmWL+YLVcwFKtm6Pt7Sdtj6edEjbTM7uuPYVCoVCUH0pAOk2wOjdzxFjEJSubAUjapspAKiX9u/FYMQZCG6nwmHM9m2nRtNIFfOuVTQSI89Tuo/SET8+yyNT/396dh0lWlvf/fz+1r73v0z37DgwDDAQQ2QQERTFfI24xqFFjNKsm3/CNV2J+mhhjTDQmmmiMSoxJNCoBFRUERNn3ZWBg9qVn6X2rfXt+f5zqWXvv6qpePq/rqqurTp1znqd7Tk9X3XXf95PL40oNkvFWleyceU/4+Juz8dicMpBOtqYxwh7bRmRkL2FTvNbKWMLWVOVnmOIborQCSAvF8X4s/rHfzF68qp7vJy/A4iLz3HfPeN5miwGkOS5hqw76OGzrscOnZiANJLIsc/VBtVNG5vGe+jfm2q2rOWzrGTx0ZvBrb0+c14T2Yj1BaN0y7thVAS9xguQSpwWQir3GTBkDtbJwRNe9CnCy3E8WS2UJmCzuOf6dERGR+UcBpEVgf0+MFZnd5JrOoT7iZDIkC25lIJVQ8uDTAFStuajCM6mAqNP49ZPur/LAfT92th18lPy/XA6xngpOrHT29capIk6h2D+qFIw/gk3HJlyC2yoD6RR1YR/HvO2ESfIrVQPOxrJmIAUYOZ6BpBK2hWK0nMYzTgDp6k1NDLpq2Bs5D9eL34eTficLBYs7V1xxb45L2GpCXg7majGnlbANJjI02V5c1WP3IVrbFGGfbcXTv/uM5w4PJjnXvkxh2QXgHv/Djaqgh5gNkj89A+l4A3EFAuRMjRsuJo0X98GHT9meThWDrmOsfCgiIoubAkiLwH2PPU2tidG26WKifg9etyFR8IB6IJXMsb3byVo3m8/eWumplN/aa0hvejPXeZ7hxmc/yANPPEP+rj/Bfew57FNfr/TsSmJnV4xqE8MTLl15ojdURdAmeeXYMNlxGpCb0d9RZSAdl65eC8Dl4WLJRBl7IDVGT8pAUgnbgjFSzIbwjhNAaoj4uWpjE7clLsU7tI/C3gdOOjZHkBQF45nz1RBrgl6OFuow6WHIJo9vj8dGqLIjUD12A/+A102Xr4PqxIFTgl/WWgYGBujI7MG9/OIJx64KeokRpHBaYLRQpgbisjAZb5CdvrNY1v/YKdszqeL1qwCSiMiSowDSInDgReeToZrVF2KMoT7sJ55XBlIpZbt3csg2cc7yhkpPpfzCDfjf+jUS7/05blNg+Q/eivvYsxT8Ndgnvgb5bKVnOGu7u0aoIUawqq5k54xU1RAmif/298LtHzzjeWvtid9RrcJ2nLd5AwCrszudDb7yBZACXjeBYIQ87jOWO5f5K5V0giAT9WP5tQva+XbiAtLeanKPf+349qFklhBpcu65fyNcE/IyRDHLKTl4fLs/ftS5UzX+SmjJ6GqCNgGxruPbBhJZ1ud34iY/5sprJ6sKeInZAPa0VdiOB5DmOPtKFq6+5lexurCf1MCR49tOZK4pgCQistQogLTA7e+NUz+ygwJuaN4MQH3ERyznVg+kEgoN76XL207I56n0VCqmsWMDritvZZWriz2FNv4w/T5csaPw8o8qPbVZ29kVo86dwB0uXQCpqqqWFjPAiu57ce9/4Izn07kCXrLkjRtc+q941IVbziZlAgSG9zkbyhhAAmipCZFwhZWBtICki29mJ+rHcvXGJiLhCA8Er8W760cQ6wZgOJUlQIaCZ+5Xk6oO+hiyxUBNavD49nCqGEAap4QNwNWwDoBCz87j2w4PJNlmXsFioOPCScZ2MpBMJnbKdptRBpJMzL/BWZzl6DM/Pb4tN9p4vgy/NyIiMr/oXcsC98ALe7nE9RKZunXHV5CpC/sYybkUQCqVQoHG7GESVasqPZOK873698id/178b/4iL0UupdM2kr7zI2R+8FEYOVbp6c3Yru4RqolBsLZk53QFogRNBhcWV+zYKRkH4PRt8ZGj4FL/o5Nde1YLvmIWkvUEwF3eoG1bdYARQuqBtICkixlIE5XTeN0ubtq6jM/2XYIp5Cg8/U2gmIFk0tgy9AAaKwMplc1TX+h1to1TwgYQbt8EcEoj7cODCda4jpCJtEOgesKxR5toe7KnBpA4vgKdAkgytlVnX8qAjZDZde/xbfn06HWjDCQRkaWmJAEkY8z1xphXjDG7jTG3jvG8McZ8ofj888aY86d6rIyv8Mrd3PyLa7nQtRP/WW84vr0h4mco68Lk06f0S5CZGe7ah58MrsZ1lZ5K5bm9eN74OdrPvZr//K3L+OvQH/FUbjW+p74Kz/xHpWc3I9ZauvoH8doslLCJ9mjmTNIWA0Q9py7BPZLK4SOrANIYTMN6506Zs48AWqoDDBWCWGUgLRjDw8WyLO/E2RBv2dbOznwrR6rPxz7zH2Dt8RK2cpRw1YS8JzKQkk6T+IFEhlb6nW3RtnGPbVu+lqT1ET9y4v+RzoEkTQziqh7/uFGRgIcRG8STi5+y3eRGV6BTCZuMraUmxJOuc2jqfuT4a8p8prhKpjKQRESWnFkHkIwxbuCLwA3AZuDtxpjNp+12A7CuePsA8M/TOFbGkb3vU3QXqvi3DV/BXP2x49vrwz6GMsV/2kXQn6bSOne/AEDt8rMqPJP5pTHqZ9XWq3hX8iNYb/j4G6KFZiSdI5wvvgEtYQbS6Buyr+evdx537zjl6b54Bh859T8agymW61TiTW1rdYCBfJB8UgGkhWIkVsyqmaSh76bWKs5qq+LbuctxD+yFQ48xlMwSJIVrnAbcpVQT9DHIqSVs/fEMDWaIjLd6wibea5qq2Gdbsb27jm87PJikxTWIp2byAJLbZch6wvjy8VM+WHKNBpAmCb7J0tZZfxm1+V7s/gcByGdGm2jr75eIyFJTigyki4Dd1tq91toM8N/ATaftcxPw79bxKFBjjGmd4rEylmPb8Xc9w2256zjn4mvBmONP1UeKTbQBcqkKTXDxGCqWDLSvPafCM5l/1rdEyRcsWX8NJPorPZ0ZGYhnqDHFN6DBmtKduG0ridqNfDl3I1lXAHt6ACmWxmeyc77y04JUDCDZimQgBRkhRD4xWPaxZWbi8allIAG85YJ2/rVvC3lPiPzT/8FwMkvQZHD7y52BNAjAYCJLnRkmF5x4Bci6sI9O9zLCw3uPbzs8kKTZDGCirVMaP+cJ46JwfAU4ay2uXDEQoCbaMoHk+pvotVWkHvi8s+H4daPAo4jIUlOKANIy4NBJjzuL26ayz1SOlTFkHv86Gbz83H815y+vOeW5+rCPDF7nQT5TvklZS/4XfwcnfUK6GOR7dhIjRENzR6WnMu9sbIkCkHBFF2wGUn88QzXFso5SZiCtupz8bz1IuLqBw94VFLpPLWHri2fwk8Pl1Se4ZyiWsBl/+QNIoz2QVMK2MOQL9vgqbFNZUvymrctIu4K8VHMV5qXbicdGCJEuSwAp4HWT9UacptfFDKSBRIZ6RiA0cQAJ4GhkM/XZI9C3B4D+gT7CJCHaMqXxCz7n/2uKK7GlsgWCpMkbb9l7jcnCsrK1gdty1xHc/zPo3oHNjpawqQeSiMhSU4oAkhlj2+mNd8bbZyrHOicw5gPGmCeNMU/29PRMc4qLTDaJe/t3+HH+Iq7ZtgmP+9R/xvqIj/RoAKmMjbTtyz/Efd8n4Ln/LtuY5RAa2UeXr+OULC9xrKwP43UbBolgF2oGUuLkDKQSBpCAaMDLhavqeCHTiukZIwOJLG41IT1T/RrnTXaFeiAN2xCuzMjkO0vF9ccz+Gzxg5IpZEPUhn2sagjzS/dFuDIxAoM7CbvSmDKVS1YHAyRd4eMZSAPFDCRXpHHSY48uc8phCy98D4DMYHH1tsjUAkjHM/qKAaSRdJYgaXJuZZHIxDpqQ3wzfy05d4D8w1/Eky8GkJSBJCKy5JQigNQJnJya0Q4cmeI+UzkWAGvtV6y126y12xobJ3+htaj1vII7M8yP8xfy1gvPzIqpj/jJ2OKnieUqYSsUyN/7Ked+bOGuxnW6ZHyEtuwBUlqBbUw+j4vVDRF6cqEFm4E0EM9SbYoZDKVsol306nWNvJBpxRXvPqXMrzeWIeTKY9RD4kzeILZ2FWYKWRml1lLMQPLm4lAolH18mZ7ukRQBigGkKWZDrGuKsH24+MY33kvYZMq2CllNyEvcFT2egTQYz1BnhvFGJ39ds2njZh4rbCT1zHeIp7KE0sUP06aYgWT8xQykYnA0ns4TIk1ejZBlEh11QQaJcqRqK4WulwiY6f3OiYjI4lGKANITwDpjzCpjjA94G3DnafvcCfxGcTW2i4Eha+3RKR4rpykMO5861reuZE3jmZ/QV6KEbefPv4Wn9yWscWNHusoy5pw7+Cj2H7fRYgYwa6+p9GzmrQ0tUTrTQUgu3AykOSlhK7p8XQM7bTHQe9JKbH3xDCF3Xk20x2Hf+i245uNlHzfk85D1RDBYSA+XfXyZnu6RNH6mnoEEsK45youDzt/Ikf6jxVXYyhNAqg56GSGMLWYg9cdT1BLDPYUMpCvXN/HDwqWEhnbRs/dpmigG7afYA8kdrHLupEcDSDlCJk3BU57vXRau6qCXiN/DIFFsvBc/xQVaFEASEVlyZh1AstbmgN8BfgrsAL5jrX3RGPNBY8wHi7vdBewFdgP/CnxoomNnO6fF7vCh/QC8auvYq4LNWQlbNknmyW+e8al8Ll8g9st/Zr9tIbfySuzIHGUg2TGrG+eMfeBvyeey3Jz9OMuvek9Zx15INrREOZwOOBlIZf43KoX+eIY6Vxxr3DD6CX0JNVUFyDVsdB50nfjvrS+WdgJIaqI9JnfLZqhur8jYrtFm6gogzXs9w+lpZ0Osa4rQY6sBKIz04Ldp8JUvA2nQho8H3DOxATymMKUeSNUhL8eWXUceF90P/xfNZjSANLUMJE/g1ADSSCpHkDS2TMEzWbiMMbTXBunOOSuungjaKoAkIrLUlCIDCWvtXdba9dbaNdbavypu+xdr7b8U71tr7YeLz59jrX1yomNlYscO7wfgwnM2jfl8yOc5kdVQygykXXfj++HvwJ57T9l8/3N7OKfwMnflL2J3qgoTm5sMpMK33gI//dicnHtMx57nCc95ZJf9ChG/GoyOZ0NzlEEbwdj88TcmC8lAIkOTN+mswDZHfa7O2rCJfhsle/Cp49v6YhkCJqcStnnIE6lz7iT6KjsRGVfy3r8h9vR36R5JEZx2BlKEBH6yxkeL6cdFvnwlbEEfA4UQJJ0m7flYsQwt3DCl43/l7A08V1iNOfQIFzdmsN7wlAPf3rATQMonncBoPJ0jRPn6P8nC1lEX4nAmiC87TNSMNtFW+aOIyFJTkgCSlNdIbydDRGmsGf9FYyBQ/KNeyh5I8V4A8jvvOWXzs7+4E6/J0910GY90eyDeA/lc6cYFyCYxe+8/pQRoTo0cw8S7eSjWxsWry9+HZSHZ0BJlkGIp5QIsY+uPZ2hwJyBQ+vK1UZdvaOLZwhqSB584vq03libgyoFbGUjzjae6WBK0WMpxF5n8Sz8k+MtPEbnzN2nf+e/UePPOE1PMQFrVEMbtctFTqKLdFAM4ZQqi1IS89ORDx3sgHQ9STrHf12s2NfNMYR1ns5dLGpLYaMuUA9++UA0A6YQTvIpncgRNCuNTEEAm11Eb4mDSuVbWBmNY4wK3t8KzEhGRclMAaYHJ5QvYkWMk/RP3S/D4ii+kcyXMQBptknxSBtL2w0O09T5E2h3msqtex95UsXdIvMQr5R15FlPIYTOJ0p53PEefB+CF/AouUQBpQstqggwdDyAtvEbaA/EstSY+J/2PRm1bWcvL7rVEhvdAeoR8wdKfyOAjC8pAmneCtcsAyA6NuaaDVFImjv3x/yVbv5HE6ht407EvcKPrYee5KWYg+T1uVtSH6LFVrPH2TevY2WquCjgZSKlBsBZPsjj+FDOQVjWEsW0XEDQZgp0PYqZYvgYQjDhle5mYE0ByStgyuP3lX+1QFp6OuiDdOSdTb5V30Mk+0uq0IiJLjgJIC8wLh4eotwO4qiZ+0egaDSDlS9gDqfiJqbt/NwzsJ/7gv3DP3T/gSvfzsPJyrjqrnRFvMdhS6pXYOouZG9lyBZCeA2CnWckFK+YusLAYuFyGQmC05GcBZiAlMs4qbKN9b+aA3+PGt/xCXFjSh55hIJHBWvCRUxPteSja6ASQ4n0KIM03hYe/iGfkMO43fI7gO7/JLvca1hX2Yl1ecLmnfJ71TVH6bZQ2up0N3vJkIG1pr2bIhjH5DGSTeNPF/zNDUwsgAbzv7TcDYFJD0wogRSJR0tZDNu4ErUZL2NwBlbDJ5DpqQwzgZL4306cPP0REligFkBaYR/f202gGqWqcuLnsiQykEgaQkgPOi3Qg85/vJPyzP+EPD3yYZaYH/6brcLsMVQ3FecW6SzcuYI8HkJIlPe+44x19jkOmlbNWtxNW/6NJuULFINsCzEAaTGSI2hHMHGYgAWzediUA+5//JX0xJzPQY7Nqoj0PtdRW0W8jpAcOV3oqcjJrsc/9N7nll+FaeSnG7eVT7t8mj2vazXzXNUfoo5pAofg3pUxNtM9qq2bEOBk/uXg/oeyg88QUM5AAqFlOIdzk3J/iCmwAVUEvnbYRBvYDEEvnCJo0HmUgyRR01IUYsE4AqTrXowbaIiJLlAJIC8yje3ppMkMEatsm3G8uAkg2MYCtX0uvpxlfz3YeCl3N13OvJR1qgfXXA9DUttwZdvhoycbFWuyhx537ZcpASh16hudyy7l5W0dZxlvoPJFi5tkCCyAVCpaBRJZwfmROS9gALjprPUdoJLb3cfpizu+lx2aUgTQPtVQH6La15IfmaEVJmZnuHbgH9uA551cBsNbyULydn7e+j0LHpdM61VltVfTZk/oIlqmJdtDnJlztBItGBnupN8Nk3OHpZXMYg1l2gXN/GhlIVUEvB20T3uEDgBNAcppoaxU2mVx7bZAB6wQbvZkhNdAWEVmiFEBaYDoPd+IlN+mLRq+/+Ie9hCVsNjlA3l/L19NXc1/hAt7Tfws/X/1H+P74ZahyAlorV6wGYKDrYMnGffjp53HFjmHdvvJkICUHCcY72eNew2vPmvqL86XMH12YAaSRVA5/IUkgPwKRpjkdy+N20Vd9Ns0jL3JowAmEugoZZSDNQ63VAbptDa6EmmjPJ/bF/8ViYOMbABhKZsnkC+zb/NuYd3x7Wue6bnMLb7z03BMbyriUfVNTMwDdPV3UmWEy/rppn8N0XOjcmWYG0gHbTCjeCdaSSGUImXTZGojLwhb2ezAnN3ufYtN6ERFZXBRAWkB6Y2k8yWJpWKR5wn29/rlpon0sG+SL2TdQ9d7v8sev28LH37AZc1ITxU0djQzYCMPdnSUbdtcz9wGQbrmgLAGk4f1PA1C/ZhsB79R7aixltdEQMRtccD2Q+hMZOkzxd6pu1ZyPF91wBe2mh9V3v4cV5pjTB0UZSPNO2O9h0F1LIFXixQBkVgov3UGh4xK2Dwd47zee4P3//iQATVUBXK7pNfN1uQytrSeVgpcxC6ejzQn6fO/BF2h0xfBXTaN8bdSqK5yvDeumfEh10Msh24QvF4NEP8lE3HmijMEzWdiWNdWTofihR5kaz4uIyPyiANICsrNrhGZTzPCYJAPJN5qBlEuVbHyTHGTPiIcV9SEuWFHL+y9fzerGU3snrGoI00sNmcHSlbB5u18gY910VW1xStisLdm5x3LgmZ9RsIbzX3XNnI6zmDRE/AzYCPmFFkCKZ1hhilkmtXMfQFp+7Yf5B9e72JB5ka94P4exBTUinaeS/kYi2f45//9GJmdTw8R/8gncvS/zdORy3vBPD/LcoUH6YhlcBja2RCc/yVjCJ61mWsYgyprlTml0f183a8JJPNEZZD+2b4OP7oTWcyfftyjsc9Npih8+DezjWG9xBThlIMkUfe5tW3GNlqzrb5eIyJKk7sALyM5jIzSZQefBJBlI/mIAqZBLlyxKaFMD7Ex5eOPlbadkHZ3M7TIk/I0ES1T6MZLK0pjczz7TynA2wAqsExSbw0++vIceYbdZwaZVy+dsjMWmPuxjkDANI30spM8kB+InZSDVrpzz8VxeH8Pnf4i/fsTHX3v/zdnoVgnbfJQNNuFJ55ysunD95AdI6eXSJB/6Mt5HPkc41c/gyuv54PYNXLa2gX96x/lUB71kcgV8nhn+lTv537WMQZSV7c4qf/XuBA2uOGY6DbRPFp34dcDpjDFQtxqGIde7h66+FPhQJolM2bKaIIVwPcSOYnTdiIgsScpAWkBeODzMct+I82CSDKRAwClhy2VKlIGUTeLKpRi0EV53ziQ9FyLNRDJ9FAqz/+T+hcNDrDGH2W3b6Eqa43OZK/lsmhXJ7XTVXTBukEzO5GQgRckXl4deKPoTGVaYbvL+aghNvw/JTLzh3DbuzF9KfDTUpk9x5yVXVfH/2JgaaVdELk3mm79G8P4/I9d0Npn3/Iw/tB8laUL8zZu3UB10VgSdcfAITstAKt+bYU+wGovh+jVB3Mk+CJUvQFnTthaAwSO78Nni6wOVsMl0BIt/K9UDSURkSVIAaaF4+S4+/MotXODrxPqik35aGvJ7SVsv2VIFkJKDAKS91WxonrhcIFjXRj2D3P3QYxQGDs1q2O37u1lhuugJrOJIfDSANAcrse1/kNyDX2DPs78gSIbA2stLP8YiVh/xMUQYs8CaaA8US9hszcqyjXluezUN9fU8GimWSCoDaV7yVjsLA2RLWI4rU5TPkfn2e/Ad+AXZ13+BwHt/wM+G27n/lR4+cu162mpKFOwJnZT54y1jGZfLBYFqzq2KYfJpmGkG0gysW9ZEl61h4NArhCi+PlAJm0yDazRzTxlIIiJLkkrYFgh79FlW5/exOr+PQt1aJsuNCfncpPFAukTZOsXAQH1j86TNStesXot7d47r730tmYeb8P3eExCsmdGwXftfxG0srsYNdHYXs69KnYFkLfk7fw9P/x4i0S0ArLvwtaUdY5FriPh5wUbxpF+u9FSmZSCRZbmrG3f9xWUb0xjDN95zEcH+Kux//QhzchaEzBvheqfMaLi3k/oNFZ7MUlIokLn9d/Dt+hG56/4a74W3MJzK8hd3vshZbVW8+9KVpRvLF8J6w1DIYtzlfTlkAzUUXv6R8yleqHwBpM1tVRywzYR79hBxOX/vlIEk06IMJBGRJU0ZSAtEPDZ84sEk5WsAIZ+HDF5y2dJkIA0POH1ilrW2Tbqve9VlJOrP4j94He5kL7m7Pz7jcbPHdgDgadnE0UQxcJWJz/h8Y9r3AO7+PdhANW0jz7PfvYKaxqkvjSxOBtIgYbzZYSgUKj2dKeseitNuejFlWIHtZKsawrSsvwB+71nY+Pqyji1TU9XkrNCV6Dtc4ZksLbm7/wzf9v8ie/mteC79EPmC5a9+uIOeWJpP/eo5eNylfdliww0VCaAUtr2PVN1ZpDpeDSsuLdu4m1urOGibqc8eYUVVcWMZV6CTRWC05FIBJBGRJUkBpAViaHiYARvh5TXvhS03T7p/2O8mjZdCNl2S8fce6gRgdceyyXduPZfQ7z6Mvf7TfC13PZ5nvgGHHp/2mN0jKeqS+yjgorZjMwmKvWJKnIGUf/yrFAK19L75u6Ssl/6m8r2YXyxCPg8JVxUuCpAeqvR0pqRQsOze/QpecmVpoD0WU7sCXO6KjC0Ta2moY8QGyQweqfRUlgy775d4Hv0nsue9B+9Vt3J4MMnbv/Io337yEB949WrO7agp/aChhoqU4ngu+10C7/sRvvf8AMoYwK4J+RjwtdFiBtgQzToby1m+JwvfaL9ArwJIIiJLkQJIFWQLechnp7RvPDZCAj9VN34K1wW3TLp/yOchYz3kSxRAOnzEeRO1fuXUVyZ7ywXt3OZ/JykTgBf+Z9pjPr6vn7XmMOloBytb6kja0QBSCXsgjRzD9cpdsPWdfKezjmszn6HhjZ8o3fmXkLS/+Knk8MLoGfPikWHCCScwSm15M5Bk/mupDtJta2CkNCtKyiSyKfJ3/j756uV4b/gUL3eN8KtffIiXjg7z2becy603bJyTYU24AeuLzMm5J+NxuyYtCZ8LthiwOsd9wNmgDCSZjuMlbOqBJCKyFCmAVCmDh+CzG2D796a0ez6dIIWf1pqpfeIT9rvJ4MWWqIStt8d5E+WPTn21mIDXzTtfvYnHc+tI7PrFtMd8eE8f611H8LVsYmV9mBTFZsOlzEA69BjG5jHnvJn/efIQbSs3sby1qXTnX0L6Is7qPnS/VNmJTNF9L3ez0hSDAxXKQJL5K+L30G9qcScUQJprmf2PkPr6G/EM7MH1hs+zoy/Hzf/yCMbAd3/7En7tgvY5WxXTXPF/4dpPzsm55ytXx4UArIs94WxQBpJMx2gJmzKQRESWJAWQKqVqGRbI77x7SrubbIKMCUz5RXTY5yGNF5ubfQZSoWBJDPeSxw3+iVdgO92vX7yc5z1nERh4BZvon9axj+3uZrU5irtpA0Gfm6posWFDKQNI/fsAeCpWz/6+BDdv6yjduZeYVNVqcrih68VKT2VK7nu5i23VQ1iXF6rbKz0dmYeGvY2E092Vnsailn/5x/i+cT2egb1kbvh7jjVeynu+/gQhn4fvfvBSNrZUTX6S2WjfhmvjDXM7xjyzadMWjtlaoiN7nA1aTUumI1TrfFUGkojIkqQAUqW4XNg1V2P23A+F/KS7m1ySrMs/5dMHfcUMpBIEkPriGaKFETLeKpjmp8DRgJc1216LC8tzD/1kyscdGUxC/x485KDRKV0IRUYDSCVsoj2wHxus5xtP9RH2ubnhnMkblMvYaqMR9rOMQtf2Sk9lUt3DKXZ3HuPa3C+wzeeoD5GMKRFqpSbXu6Aawy8ow0fgf3+bbOPZuP/gGQrnv5v33fYksXSOr7/nQjrqVFo1F161rpHaTVcBYDEKIMn0jK4cqtJHEZElSQGkCnKvvw5Xqh+OPDv5vvkkeffUX+SFiz2QTG72JWxHh5LUmDh5f82Mjr/mmhvI4OWVx35M98jU5vPInj7OMsX+DC3nAOAJFNPsS5iBVBjYTyLSzg+fP8q7X7WSkK+8SzkvJvURHy/l26GrPCVsqd2/IP3f75l2z6V4OseHvvU0t3q/TTTTjet1fzNHM5SFLh9pc5qsx5WFVHLWkv3eBzG5NN63fgPjj/LJH77Ei0eG+cLbt7KpdY4zj5Y4/5rLnDve0LQ/GJIlrmY5hZu+BJtvqvRMRESkAhRAqqTVV2Ex2N33TLqrJ58kN4104YDXRcZ4MfnMbGYIwJHBFNXEIFgzo+O9/iCJpvPYnN3ODZ//JQ/v7p1w/1Q2z8N7+jjfdxDr9h3PQPIGip92lbKJdv8+XojXUh308oHL15TuvEtQfcTPjsJyXMOdkByc07Fy93yCwH+8Af/L3z+zj1h6ZNzjOgcS/MbXHsfb+TC/7r6HwoXvh46L5nSusnC5a5yS1nTfgQrPZPEpPP8dvAcewF77CWhYx53PHeFbjx3kg1es4eqNzZWe3uK3shhAUhaJzIDrvHdCsLbS0xARkQpQAKlCekbS/N8fdzJcdw6FXT+bdH9vIY2dRgDJGEPe+DCF2QeQnAykGN7I1Bton65m45Wc7drPBl8Pn7/jYfLfeTccfe7MHXf8EO8XzuGZXYe4KNhJoXETuL0ABPwh8rhKl4GUz2GGDvHkcDUfunIN1UFvac67RDVF/bxsiz2kunfM3UCFAu7H/5nkymtIRjrI73vwxFM77sJ+egW5h754fFu+YHnqQD9/+9OXuf7zv+TY0U7+LfJlCrWrcV/z8bmbpyx4wcYVAAwe3VvhmSwyyUHsTz9GrvV83Be+l709Mf7f955n24paPnrd+krPbmloWE8h2ID1KoAkIiIiU6d6nQqJBjzc8ewRXtexjSuOfAOSAxN+muO3qWn3Kci7fLhKkIF0dChFrYnji9bN/CRb34F9/Kt8Kf8JuuJu3COd0HYutJ576n49L+MeOczGzGOsDu3BtL7p+FORgIcUPsKlCiANd2JsnoO2mT+9UM2zZ6ujLsTLheXOg67tsOKSuRloYB8mm+Cv9q7l7EKON6Uewl0ocP/ze9ly5+9QXbC47vkY33gpxy+8l/L0wQEGE1lWu7r488bnudHzBMHBIczN3wN/ZZbvloWhusVZ7jzeowykUrKPfwVXohfz6/9DKg8f/s9n8HlcfOHt5+F163OtsjCGwrrrcA0dqvRMREREZAHRK7UKCXjdXLSqjjuG1mJsAQ48Mu6+1lr8No2ZZqp5we3DXYIMpCODSapNHBOcRQCpbhWud32PcH6I5aabgvFAfIxStmLT71s8dxPIDeFq23L8qUjAQ9L6sJkSNdEe2A+Au34VNSFfac65hHXUBjlKHSlPFDuHfZDiB58FwLaczUDjRQRyw3znxz+l83t/Qm2hn//e9E/s9G7ibYf/Ek//Lq7dUM9dWx7kZ4E/4eahr+PNDmPf+E/QumXigWTJa2lqJmYD5Pr1JruUCi//mELbBdB2Hp/44UvsODrM39+8lbYaNXMuJ88bPw/v/J9KT0NEREQWEAWQKuiK9Y3c1d9Gwe3H7n9w3P1SmTxB0rh84Wmd37pKE0DqHRwmSgJCDbM70bLzGX7XT7kp80ni/kZI9J25T87JLvoV18vO45YTGUoRv5ek9ZNPl6YHUrrHWcK4fdWmkpxvqasL+wj5PHT5V2G75y6AdPClR8lZF2+94Vre/H/eAkDg0X/gXe6fkbngA/z6297Jxt+7HV8wyj8HvsSn4n/B5p1fIrvhDfCRl/F+5AVc5948Z/OTxaOlJsgRWw/DnZWeyoKX3X4nmZd/CvFeXEefwbX+Wu587gj/Wex7dNXGpkpPcenx+HH5FLQTERGRqVMAqYIuX99IGh/dVedQmCCANBRP4DEF3P7pZSBZjx+3zc52muQGDzt3qlpnfa76lVsYqVpHv60aMwMplz5RnmaNC5rPOv444neTwE8+XZoMpK4DL5Oxbs7epABSKRhj6KgNcYx6iM3dqlWZzufY72rnnJXNNHWsJxZs443uR8hG2wlc9+fOTtEWzE3/iLv7BTydj5B745fwv/VrJbmGZenwul30uRsJJKa30p+cyf3TW3Hf/gF48XYMlsSKq/n4Hds5f3mN+h6JiIiILBAKIFXQuqYILVUBnmIzrq4XIDU05n6x2DAA3sD0MpBw+/HOMoCUL1jc8S7nQbQ0b763tFdzLBfGjhFA6h0cYsBGyLn8FOrWnbJCTCTgIYmPfKY0GUjxo3vopIkLV88ys0qO66gLcjQbwSQmXmlvpuLpHM2JXcRrNmKKS0+H1l0OFMsxTuppZDa+ntxNX8be8iM8579zTuYji18s0EJVpqvS01jY4r24Rg7jTg9i7/4zCqFGvrq7moFElr9441nqeyQiIiKyQOhVWwUZY7h8fQO3D6x0+iAdfGzM/eIjxQBSMDq983t8eMmAtTOeY/dIiiZbLDUrWQCphs5MiMIYAaThkRiDNkzsot+nsO19pzwX9nlI4adQohI27/B+hvzLCPnUS75U2mtDHEwFMenh4/2sSumh53fSYvqpWX3B8W2uK/4v2Zu+jFl37Rn7e857G64Vv1LyecjSkQm3UVMYhGyq0lNZuI4+C0C+ZiUmlySz6mq++uB+XntWM1vaayo6NRERERGZOgWQKuxVaxt4MLWKgss7bh+keHwEAH9wmhlI3gAuLBRyM57fkcEUzWbAeVCi8p9z22vGLWGz2QQZ4yN8za14Ln7/Kc+Vsol2Ip2lKXcUU7dy1ueSEzrqQhzNFwOdYzVJn6WDLz0KQPumk4JC9Wvwnve2ko8lAkB1OwD5ocMVnsgCduRZANy/9m8UvGHuspcQy+T4yLUbKjsvEREREZkWBZAqbGtHDSn89EY3YQ89PuY+yYQTQAqEppeB5PL4nTuzyAQ5OpSk2QyQdwcgUDPj85xsU2uUfluFO5+E08rRbDZFzuXH63EfL1EaFfF7SOI/3mh7Nl7ZvZsqkyDYpv5HpdRRG3SCgwBzUcZ29HkA3K3nlP7cImPw1S0HYPDo3grPZOEqHHmWQs0qaN9G9o/386md7bxmYxMbWqb3N01EREREKksBpApbXheiJuRlv6sD+veMuU8qHgMgGIqM+fx4XN6Ac2c2AaTBFC2mn0KkFU4L6MxUbcjHAMU3DqcFGUwuRd7lG/O40QCSKzv7ANLR3c8C0Lxm66zPJSd01IXoHQ0gxXtKeu5UJselifs4FlwHYfWtkvKINq8EYLhrf0XnsaAdfQ7atgLwo+3d9MYy3HLpyopOSURERESmTwGkCjPGcG57Dc8nm3DFu8dspJ1JOgGkUGR6n9a6vU4GUjYz84DLkaEkba5BXNVtMz7H6VwuQ8pX6zw4rczJ5NMU3IExj4v4nRI2V37m348t9oOKd74IQM1yZbKUUkddiH5GA0h9JT337mfuZ7PrAEfXv6Ok5xWZSEPbKgBSvfsn3Tfx3O0U4sWS31n0nltUEv24hg7iatuKtZZvPLyfNY1hLlurILCIiIjIQqMA0jywtaOGx0eKAZW+3Wc8n0k5PX88/un1QHL7ggAkUzMPuBweSNLqGsBEW2Z8jrHkAvXOncSpQQZ3Po31jBNACjgZSO78DJvZpobJ3v5hiPfh7d9J3BWBSNPMziVjivg9J/5tS5yB5Hnqa4zYIM2Xvquk5xWZSGt9DUdtHQwcmHjHgf2Ebn83mTv/EAoFst94E/nvvm/iY5aCYgNtWs9l++Fhnu8c4jcuWXlGibKIiIiIzH8KIM0DWztq2FMoNqjuO7OMLVsMIOENnfHcRLw+JxCTTs581bIDvXEabH9JM5AACsHRIMOpGUgem8aME0AKet2k8OHNJ2f26X7nE/ie/xaxJ/+T1uwBhiOrS1aWJyfU1jWQw1PaHkjJAdb03MNdritobVLmgpRP2O+hy9WMZ3iSAFKxUXTgldtJf++38B74Oa4Xvz8nzeQXlGPbna+t53L7M4fxuV28aeuyys5JRERERGZEAaR5YEt7NQdtMwVc0LvrjOfz6dEAUnBa5/X4nUBMMjmzDCRrLUMDXfjIQrS0ASRXpBgEOC3I4C1kML6xv09jDHlPEIOdWV+ntNOMPPniXaw1h3E1bZz+OWRSa5qiThlbKTOQ+vbgtVmONV6mzAUpu3ionerUkQn3sUeexbq85ELN+F/8DrnmLRibh+3fK9Ms56mhQ1h/lJy/hjufO8JVGxupDnkrPSsRERERmQEFkOaB+oif1roqej0t2DFK2ArHA0jTK2HzFgMxmfTMMpAODSSoyRVLzKpaZ3SO8fjDtWTxnPLpfCqbx0cGt3fsDCQA6y5mYWVn8D2lhwGo736MejNCzQr1P5oLZ7VV0VOIkh7qLtk5E8VztbYqc0EqoHYFDYU+0qnx/98pHHmWkap1fNb7fl60K/nJln8g33Q2hef+u4wTnX/sUCe2qp2H9vTRG0vzq+e1V3pKIiIiIjJDswogGWPqjDH3GGN2Fb/WjrFPhzHmfmPMDmPMi8aY3z/pub8wxhw2xjxbvL1uNvNZyC5YUcvOXDO298wAkh1ddWyaGUjeYgZSOjWznkE7DvXQYvqdB9HSBpDqIj76bfSUDKThZJYAGdy+8Uv17OjPYCYrsaWcAJKLPAD+ls3TP4dManNrFX22itRgV8nOeeyYk/3R0a4AkpRfsHkNLmM5tHfn2DtYS+bQM9zV28QdqfP5WNOX+J0fHOVuz5W4jjwNPa+Ud8LziB3sxFS387/PHKYq4OGqjY2VnpKIiIiIzNBsM5BuBe611q4D7i0+Pl0O+Ki1dhNwMfBhY8zJ79w/Z63dWrzdNcv5LFiXrK7nlVwxA+n0/j6j2Tbj9AYaTyjoBGIS8dj0J3TkGa753wt4m/t+53GJA0g1IR99top87EQAaTCZxU8WT2CCXk++WQSQiiVsI7Z4jsYN0z+HTGpzWxV9VJW0B9JgrxOMWr5M2QtSfo0dzv8VXYdeHvP579z3KMHcILSey/1/dCXf/eAlfODy1fz53k2k8JP6+k3kt/8v6V98Hg4+Wr6JzwNm+DCZcCs/3n6UG89tw+9xV3pKIiIiIjJDsw0g3QTcVrx/G/Cm03ew1h611j5dvD8C7ACURnCaS9bUs8+24M4lYOToKc+5cgkyrgC4pvfP1dLq9C0a7Dk8/QkNH8Ftc1zvfsJ5XOIAUm3IR5+Nkhs50SdnMJbEa/L4/ONnWrlGG4ln49MfND1MzhPm54VzyXoiUK1gxFyoCfnI+Orwp/tLds74YDd5a2htLu1qgCJT0brCCSCNHDkzQxRg93MPAvBrN76egNeNx+3iT1+3iY+/42p+vfAX9MRyuL97C/77Po79+V+Xbd4Vl01ikn28FK8ilS3w9guXV3pGIiIiIjILsw0gNVtrj4ITKAImXBPdGLMSOA947KTNv2OMed4Y87WxSuBOOvYDxpgnjTFP9vSUdnnw+aC9NshwaKXz4KQ+SIWCxZ1PkXNNL/sIINS8njQ+3N3bpz+hYpPqAoZCqAE8vumfYwK1IW+x0fKJLJWRmJMh5AuO3+vJ5R8NIM2shC1hQny6cAupt39PK7DNIW9VEwGbnNm/0xgyI33EXBFcbmUvSPl5qtvI4KXQv3/M51vjr1DAhaf11L5qN25p46u3vo/bttzGLZk/Idl2MSQGyjDjeWLI+fDivqNeNrdWcfayqgpPSERERERmY9IAkjHmZ8aY7WPcbprOQMaYCPA94A+stcPFzf8MrAG2AkeBvxvveGvtV6y126y12xobF18PBWMM9SudNx/5Q08d3z6SyhEkQ949/QASbg+dvlXUjozTt2Mi+SwAX4l+mPQVfzb94ydRE3J6ILlTfce3xWJOqV1gghI2tz/i3JlRE+0hBvIBOlasIrrm4ukfL1NWVe9krCUGStMHySb6SHlqSnIukWlzuej3teKPHTrjKWsty7N76Q2sgDH6t9WEfLzpkrN5oHAufe4mSC2hANJwJwBPDoR4+0UdWkFRREREZIGbNIBkrb3GWnv2GLc7gC5jTCtA8euYyy4ZY7w4waNvWWu/f9K5u6y1eWttAfhX4KJSfFML1VkbN/B0YS3pp751vA/SQCJDgDTWM70G2qOGqjayMreXXC4/reNszmm8PdB2Ja4L3jWjsSdSG/bSb6N4srHj2U7xYq+mYGj8DCT3LDKQMvEhenMBLlvbMP0Jy7Q0NDtVqvsP7p/1ueLpHIHsEPlAzazPJTJTmUgHzflj9MXSp2wfTuZoYIBUaPwy37VNEdwuQ082AMnBOZ7pPFLMQOo2jbxxqyrXRURERBa62Zaw3QncUrx/C3DH6TsY5yPHfwN2WGv//rTnTn7F/avADGqtFo9L1tTznfyVhIZ2weGnATg0kCBEGpd//KDKhFrOodbE6Dw4du+O8SSSTgBpeWPNnDQ9rQ356KPaeRB3ShITCaevkX+CEjZPqAYAm5h+f51UbICYDbJtZd20j5Xpae9wep0cOdI563Pt7YlTY+K4w/WzPpfITAWa19BhunloT98p23tiKaqJY0LjVmAT8LpZWR+iM+XHpIehML2A/oI15Pz+N7evpjrorfBkRERERGS2ZhtA+jRwrTFmF3Bt8THGmDZjzOiKaq8C3gVcbYx5tnh7XfG5zxhjXjDGPA9cBfzhLOezoC2rCfJs1dWkjZ/80/8OwIG+BEEyeAMzCyBVrdwKQN/uJ6d13OCIkw3U1lAzo3EnUxPy0m2L5445iWvJhDOmmWC1uUK0jYI15PoPTn/Q1DAjhFhWM7NsLpm6+kangftI39FJ9pzc7p4RakyMYJUyx6RyGtrXUW0SPPXCjlO2d4+kqTZxPOGJA9MbW6rYFy/2kksNzdU055VM/0F6bRUXri3tIgwiIiIiUhmzCiBZa/usta+x1q4rfu0vbj9irX1d8f6D1lpjrd1ird1avN1VfO5d1tpzis+9cbQh91J27poOfmIvxmz/HmRTHOxPEHKl8QUjMzpf24ZtAGQ6n5/WcfGkUyLWWBOd0biT8XvcxDzFN1zFAFIqWexr5B0/wBMKBjlGLbm+/dMe05WNMWyDNFfNoJ+UTIupaiWFj7auB2Z9rl1dMWoZIVw7YY9+kTnlWnMVWbzctPtPKaRP9GDrGU5STRx/ZOIA0oaWKPvjxSyc5NLogzTUtZ/DtoFL1yh7UERERGQxmG0GkpTYxWvquDOzDVdmBA4/ycG+BFXuLGaCoMpEQtFaDplW/H0vTeu4fMYpYQsF5y5bJxMsNkOPOY2WM6nim7IJMpAifg+dtpHC4IFpj+fLxch5o/g8uuznnDfIPXXv5FdSv8TuuX9Wp9rf1U/YpHFPkuEhMqdazuHx8z7FVvsKw196DSP3fx7SIwwN9OMydtIMuY0tUYYoZpKmBud8uvOBHeyky9SzdXlNpaciIiIiIiWgd9LzzCWrG3iisJECLuy+X3KgP0HYlQHfDHsgAUcDa2lL7CCXy035mHw2Td4awkH/jMedTCF8agApO40Akmf4zNWQJpTP4rNpXAEtI10ue9e/l/22mfwP/2hWPV8G+4oruQUVQJLK2nzNu/lo7rdJplNEH/g4PHUb8SGnh1ugavIStiFb/H98KTTStpZIugsbXTYnffREREREpPwUQJpnWqoD1Dc0ccC3hsK+X3KwL06QzIRlXZM51no1LbaHoXs+PeVj8rkMGbwEfXP3wj8aDjNsoicykEbLQrzjB5DCfg+HbCO++DHIZ6c+WGoYAHeoesbzlelZ3lzHl3M34hnYDQP7Z3we92i2RkgBJKms2rCPA8tu5MPRf3RWxhw5SnLYaaptJglwttcGSXuL//8sgQyk/r5uQiSJNK+s9FREREREpEQUQJqHLl5dzwPpDZjDT5LLJPHbNHhDMz5fdvNb+N/8pdQ99lnYO7WeNIVsmiweQt65CyDVhHz0UYMtBpDyGafv0kQZSNGAk4FkKBxf4WdK0k4AyR+umel0ZZpWNUQ4ZIt9i4r/xoWnvwnTXEEvkBt07igDSeaBs5dVs7M7jg03QryHTKx4PQdrJjzO5TLUNRR/H5ZAD6TO5+4DoG7V+RWeiYiIiIiUigJI89AV6xv5RXYjrnya81278OaTswogrW+p4v9l30fSV+e8gZ8Cm3MCSB733F0idSEv3bYaO9JFLl/AZicPIDVE/HTaYunb4NRXYkuOOG/YQtHxl9qW0lpVHz6x0t7IURg8iOvO34EX/mda5wlkiytWKQNJ5oF1TRFi6RzZQD021kM+XgwgBWomPTY02idpKZSw7fwpMRtg+fnXVnomIiIiIlIiCiDNQ1duaGSH92zyGC53Pe9k28yihG1tU4SUCdATWAlTbD5tcxmyxjvjMaeiJuTjaL4KRroYTuXwUyxJm+B7ba7yM+grLgk9jQBS/0AvAJFqBSHKpTrkJRMsZlyMdMFgsW/VNDKQ8gVLpOBkjykDSeaDNU3OipgxTy023o0ZLUcLTh6crquOksS3+EvYrKW99xc87T2fcGjmH36IiIiIyPyiANI8FPC6uezs1TxTWMc73T9zNs4iAynoc9NeG+QIjVMOuth8mrzxzHjMqaiP+Oi2tRDv4shAggAZ5wnP+I27jTHUtKwkj2vKwTCA4QGnT0l1rZaTLqf6hmYyeJ0MpOHDzsZpvHlOZHLUEnMeKANJ5oG1xQBSH9UQ78GTKWbITVLCBtAUDTBkwxQSg3M3wXnAHn2Ounwfh5sur/RURERERKSEFECap27auoyPZH+buCmu2jOLDCSA9U1RdqXrMLEuyKUn3d/kMuSMb1ZjTmZ5XYgeW40rl6Kzq/tEBpJn4u91XWstXbaOQv/UA0gjQ04JW13dxEttS2mtbIjQS43TA2m0Z9U0+r8kM3mqTYycKzDr3wGRUmiM+KkKeDiSi2DivVQTI+fyTen6bIz6GbJhMrG+Msy0cmIv3EXBGsy66yo9FREREREpIQWQ5qlL1tSTCC/nk41/R2bt9bD84lmdb11zlO3xKgx2as2nC5k5z0Ba3RChp9gjp/foQQImgzVucE887oaWKAdtI+ne/VMeKznilE3V1yuAVE6rG8McLdSQHTyRgWSn0f8lnslTS4yMT6vnyfxgjGFtU4R9yTDG5llpushN8fpsivoZIkw2Nr1G8gtKJoF57j951q5h3erVlZ6NiIiIiJTQ3EYIZMbcLsOX33U+fo8b37I3zfp865sjfKdQDJ4MHYL6NRPu78pnKbjmNgNpWW2QAZfTN2S49zB1vvyk2UcAG1uq2GcbOXfwlSmPlYkPAhCIqIl2OV2xvpFD99Uw2H2QhkAIA5Cc+pvnRCZHrYmR9evfTeaPtU0Rdr3kNPtfY45Q8NdM6bjGqJ9uG5lWEHWhyd/7SSKJQ/x9/mP8a2tVpacjIiIiIiWkDKR57IIVdZy9rDSZF+ubo9NavcwUMhRcc9tE2+0yeKudhtjpgSPUB5hwBbZRG1qiHCg0EUh1Q2p4SmPlEsNOL54J+itJ6Z29rJpoQwe+ZA+ZvuJ1lxya8vGJTJ4aM0IhoACSzB9rmyLsSznlxStMF65QzZSOa6pyMpBc6an/Diwoh57A9dg/c3f4DfQ2XkzQ5670jERERESkhBRAWiLWNEboopYCrhOrYU3AVchi3XObgQQQbWgDID/SVcxAmjzAE/F7OBQ5xynHO/T4lMaxqSGSrvCs5iozc+7mDVSbOLZ/n7NhWk2081SRwAZUwibzx9qmCD3WuSa9Jo8/OrXm/PVhpweSL7M4A0iFR/+Zgr+ajw78H67c0FTp6YiIiIhIiSmAtEQEfW5aa6sY8DRMKQPJXchCGQJITc2tZKybUKaPGu/UStgAMi0XkMNNfv+DJzbmMhDrPmNfay0mM0LWEynVtGUaog3tAARsElwep4m2tVM6NpnJESCD26elwGX+WNsYpc+eKM8ywallyPk8LtLeKnyFBOSzczW9ykgNYV75ES/VX8tIwc/N29orPSMRERERKTEFkJaQ1Y1hjthGClMJINnyBJBWN0booYZGBol68uCdvIQNYG17M88XVpPbe1IA6RefofAPW2Hk2Cn79sczBPIxrD9awpnLlEVbjt/N16/HFLKQTUzp0Hg6T8BkcPm0ApvMHx11Qd555Van6T9AoGbKx9rRfVOLLAvppTswuRT/PHARF66sZXWjAvYiIiIii40CSEvImsYIe7J1k2YgFQoWT5kCSKsanFKQZjNAxJ2dUg8kgCvWN/B4YSOeY89ANglAYfe9uLJx8j//zCn77u2NEzFJ3EGVQVVE5EQAaTC6zrmTHJjSoYlsHj9Z3L6pXRci5WCM4Y+u3wSh4sIEU8xAAnAFa5w7i6yRduGZ/yQRXc1dA23cvK2j0tMRERERkTmgANISsroxzMFCPWbkKORz4+6XyuXxksN4yhFACnPINrHcdBMwUw8gbe2oZYfvbNw2B51PQjqGOfoc1hfB9cxt0L/3+L57e2JESRKI1MzRdyETirYev3vAW1zWe4pvnhPpHH6yeFTCJvOQDRcXJhgNCk2BO1zn3JliEHVB2P8grkOP8CPXFdSEfLx+S+vkx4iIiIjIgqMA0hKypjFCp23E2DwMHx53v3g6j8/kMN65X7GsIeLjiLuNDlcP7kwMM8USNrfLUL3hMgrWkN7zS+h8AmPzmBs+g3V5yf74Y8f77OztGaHeDBOIaiWvigjVYYsr+m3PLnO2TbGR9mgAyasMJJmHTKTYKHoaJWyjDbftYgkgJfrJf/f9xCMr+XjXq/ntK9YQ8nkqPSsRERERmQMKIC0haxojHLbFkouh8VdiS2RyeMnhKkMJmzGGdNVq3BSgb9eUM5AAXn3OOp61a8g+85+w7wGsccHmN2KvuBXvrrsovPBdAFr23U6jGcK19pq5+jZkIsZApIkBU8v2oeK/7xTfPKfTSVzGYtQDSeYhExnNQJp6cDpU7RyTHDg6F1MqL2vJ3/F7uBLd/IX3D4hWVXPLpSsrPSsRERERmSMKIC0hDREfA75iacEEfZDi6Tw+srinmA00W2997ZUAmFwKvFMPFFy2toGv2F8lEj9E/uEvUWjeAv4o7lf9LrnWbdgf/RGZZ7/LG3u/ym7/Jjj7zXP0HchkbLSNWKCF5/qMsyE5iE0NQyY+4XGZtNPfajqBRZGymUEJW6BpNT22iszLd8/NnMqo8PS/437lB+w86w/4n6NN/P5r1hPwuis9LRERERGZIwogLSHGGEINK5wHg+NnICWzOXzkcJehhA2gedVZJx54pj5m0Ofm6jf8Bs+ZjbgLae4aXsWh/gS43Hje/C9YTxDf//4m9XaAh9b+sZMJIxVhrvsEL5z1xxxOFf99U4MUvv3rFP73QxMelz0eQCrPtSgyLeHpZyA1Vof5af5CIgfvhczUViOcbwqJQZJPfgt+/Cdkl7+aPzj4albWh3jLtvZKT01ERERE5pACSEvM8qYaupl4JbZ4ygkgeXxzX8IGQKiOQrDYWNYzvVKlmy9azjm3fI6CcfOD+GZu/McHeaFzCBrW4fnIdjpvuI3fzvw+wVUXzcHEZarMikup33wlMYIUjBsSfbg6n4CeVyY8Lp8uvsFWBpLMRysvo7BsG1RPPXDSXBXgR4WL8eSTsPueOZzc3Mjtfxj7+XMI/vBDFCIt3LvxE+zoivOR6zbgdeslhYiIiMhipld7S8yaxgiHCvXkBg6Mu08yncZlbNlK2ACoK67ONYNME9fKS3H98W7+9Hc/TMTv4R1ffZSnDgyA28PO6kv4ceFXWNMYLvGEZbo2tVXh87hJuCJw+GlMNoGJHZvwmFxGJWwyj7Vvw/X+e6dVetteG+QZs4mYp4b89tvncHJz4OBjuP7jzRRCDaR/4y6Sv/UY/98DA2xureLGc7TymoiIiMhipwDSErOmMUynbSTXP0EAKZkCwOsrX9mQaVjr3JnGG7FThOpY2RDm2791MXVhH2/98iN88f7d/GS7E6BY3RAp0UxlpqoCXt7zqpX0ZIMUDj4GgEkOQDY17jH5TPE5BZBkkfC6XaxqquHxwKtw7fop5HOVntKUFe79JIVADZ73/gj/6lfx6Z/spGs4xaf+zzm4XCoRFhEREVnsFEBaYkZXYvPGjkAhP+Y+6eKbdq+/fCtfmfpiAGmWgYL22hB3fPhVXL2xib/96St858lOVjeGqQ2XqRxPJvShK9cy4oriyp8UNJogC6mQVQBJFp+NLVEeTq7EZBMwfLjS05m63ldwr70aU9XGY3v7+NZjB/nNy1axtaOm0jMTERERkTLwVHoCUl7L60Mcto24bQ5GjkH1sjP2SaecsiFfGTOQqFvjfC1BoKAm5OPL77qA7YeHiQQ8LKvREvDzRXXQS3VtIwzsOrFxpAtqV465v80WS9jKWU4pMsc2tET5xXPV4MPpR1e7otJTmlxyAFe8GxrXk8sX+PidL7KsJshHrt1Q6ZmJiIiISJkoA2mJ8XvcZCPFoNHQ2CuxpdNO1ofHV8Y37aMZSCUKFBhjOKe9mlUNYXweXebzSXVdEwBD0XXOhpGjx58rpBMk4sPHH1tlIMkitLElSqctruA2wYIG80rvbudrw3r+49EDvHxshD+7cTNBn7uy8xIRERGRstE76yXIU7/SuTPOG5dMMQPJVc6l05s2Ubjw/bDm6vKNKRVRVdsAwPbghc6GkRMlbIV/v4nA59aT+K/3QKznpABSGa9FkTm2saWKo7Yei1lAAaSdAAyEVvL39+zk1esaeO1ZzRWelIiIiIiUkwJIS1B1yyoACgPjBJCONy4uY98gtxfX6z97YjU2WbRcoVoA7kltwLq8JzKQBvbjOfw42ZrVhF75PnbX3Zi8MpBk8Wmu8hMKBhnyNCyoAJJ1efnbx5IkMnk+/obNGKPG2SIiIiJLiQJIS9CKlgZ6bBWJ7r1jPp/LpJ07bjWeljkQbaWAm5/0NmEjLcczkOyOHwLgv+kfAMgmY/jIOscogCSLiDGGjS1RjtBEYWD8FTHnE9u7k1R0Jf/11FHefelK1jZFKz0lERERESkzBZCWoNXFldjSfWO/ccmNZiApgCRzYes7ePSa73KsUE3M10ChmIFU2PFD8o2boeVsALLJYfwKIMkitbElyp5s3YLJQLI9u9ieaaY+7Of3r1lX6emIiIiISAUogLQErWkM02kbcY/TRDuXVQaSzCFvkPVbXwVAr6l1SthiPbgOPYpr043gCWCNi1wqhp+Mc4x6IMki8yur69mXr4eRI5DPVXo6E8tnMYP7eHyknrde2E404K30jERERESkAhRAWoLqwj663S1EUofHfOOSVQmbzLGGiJ/ldSH2pqKYWBf25R9hsJhNbwBjwBcmn4oRUAaSLFLXbGpm0NuKy+Zh+DA23gvWVnpaYxvYjynk2F1o48YtbZWejYiIiIhUiAJIS5Axhlh0LR6bg4F9ZzxfyFagibYsOTduaeXpgQAmNUThsa+Qr1sHLec4T3rDFNIx/CaDNS5wK+NBFhefx8XaDZsBGHn6u/DZ9bDn3grPahzdOwBI1axhY4t6H4mIiIgsVQogLVG2cYPztfulM54r5IplQ8pAkjn03stW0WfqAHD3vIjZ9h4n+wjAF8amY/jJUnD5T2wXWURefeEFAPgf+luMzUPv7grPaGyJJ75Jv42wacuvaOU1ERERkSVsVgEkY0ydMeYeY8yu4tfacfbbb4x5wRjzrDHmyekeL6XXtvZcAPr2v3DGc4XjPZDUd0bmTkPEz1kbnEBmzvj4Wuxivnj/brYfHgJfGLIJAmSw6n8ki1THinUUMPgKSWdDrKuyExpLz05C++7mm/nreO3WVZWejYiIiIhU0GwzkG4F7rXWrgPuLT4ez1XW2q3W2m0zPF5K6JJNyzlUaGTowPOnbC8U7ElNtFU2JHPr+oudQOYduYv4y/uO8bc/fYVP//hlJ4CUcTKQrAKZslh5fAx7G4nbADZQA7HuSs/oDLmHvkDG+LgrcCPrmyOVno6IiIiIVNBsA0g3AbcV798GvKnMx8sMtdeG6PSuwNu/65Ttw6ksHltsXKwSNpljTau2kDnvPbzhdz/Pzr+8gddvaeVgfwJ8EUw2gd9kwRus9DRF5szeVe/gE7l3kY52YOdbAGmkC/fz3+aH5krWr1mt8jURERGRJW62AaRma+1RgOLXpnH2s8DdxpinjDEfmMHxGGM+YIx50hjzZE9PzyynLQD5+vW0ZA6SHl11DeiNpfFSXJlNpUMy19wefDd9Hl/TOnweF8vrQhwZTGJ9YdzZOH6yGK3AJouY+9V/yLfzVzHsqsXOsxK23KNfhkKWLyRfy8Wr6yo9HRERERGpsEkDSMaYnxljto9xu2ka47zKWns+cAPwYWPM5dOdqLX2K9babdbabY2NjdM9XMZQu3ILPpPjxRefp5BxVl7rjWXwjS6drhI2KbOO2hC5giVJAHfO6YFkvApkyuK1oSWKy0C3rcbE51EGUjqGefLfONh0FfttKxevrq/0jERERESkwiYNIFlrr7HWnj3G7Q6gyxjTClD8OuarX2vtkeLXbuB24KLiU1M6XubGqk3OCkDV9/0/zKc74Ojz9MbS+Mg7O6j3jJRZe61TrjZS8OPOJaj25nGphE0WsYDXzZrGCAfSEYj3QKFQ6SkBkH/6m7jTg3w/+GYaIn5WN4QrPSURERERqbDZlrDdCdxSvH8LcMfpOxhjwsaY6Oh94Dpg+1SPl7kTatsMwJqRJzCFDOy5j75TMpDUA0nKq6MuBMBgzoevkKTKWwCvSthkcdvcVsWuWBBTyEFyoNLTAcA+/U2yrefz7aOtXLy6Tv2PRERERGTWAaRPA9caY3YB1xYfY4xpM8bcVdynGXjQGPMc8DjwI2vtTyY6XsrEH+Glhuv5Uu6NZKtXUTj4mJOBZHJYlwdcs708RKanrSaAMdCd9uAlR40rqR5Isuhtbq1id7KY4TMfytj69uDpeZGujtdxbDjF5etUNi4iIiIi4JnNwdbaPuA1Y2w/AryueH8vcO50jpfyydz0ZT7zxYd4fZWLjs4H6fWn2eS1yj6SivB73DRHA7zcX+ByIFoYUjN3WfQ2tVZxn61xHsS6oGlTRedTeOlOXMB/x7YS8Oa4/pyWis5HREREROYHpZgscecsq6Y66OXx3DpciV5cg3up9hYUQJKK6agLsmvQAuDPDIJHPZBkcdvSXk2vqXIexCqfgVR48Q6yzVv55g7La89qoSqgBRVERERERAGkJc/tMly2toHbe5cB0DL4LBEFkKSC2mtDJKxTtmZsXhlIsujVhHw0tyx3HlQ6gDR4CM+xZ9hdfzVDySxvPr+9svMRERERkXlDASThsnUNPDLSQM5XxYrEdiIeBZCkcjpqg8Q5KWikHkiyBJy/fiVp6yU9dLSyE9n/SwD+a+gsWqoCvGptQ2XnIyIiIiLzhgJIwkWr6rC46KrewqbcDkLuAngUQJLKODkDCVAGkiwJr17fSA/V9B47VNmJ9O/FGhffO+Dn9Vtacbu0+pqIiIiIOBRAElbVh4n6PeworGQlRwmbtDKQpGLa64LEOSmA5FUPJFn8zlteSz81JPoqm4Fk+/cTD7QSz7m44Ww1zxYRERGRExRAElwuw9nLqnl4IIrX5KlPH1YASSpmY0sVnkDkxAZlIMkS4PO4yIcaMfHK9kCy/Xs5ZJtoivo5f3ltReciIiIiIvOLAkgCOKsAvZBsBCCaOKAAklRMXdjHHX/42hMb1ANJlohgbSvVhX66h1OVm8TAfl5I1HL92S24VL4mIiIiIidRAEkA2NJew37bDICrkFUASSrLFzpxXxlIskRE2jbQaIaxX7sBjr1Q/gmkR3Al+9iXb+J6la+JiIiIyGkUQBLAyUDqoYa4dd6sGzXRlkryhk/c96gHkiwNDa/5Pf46906iwzux936y/BMY2A/AUVcL21bUlX98EREREZnXFEASANprg9SEfBywxU+dlYEkleT2YEdL15SBJEtEIBji0ZZ38JzvPGzvrvJPoH8fAOHWtfg8enkgIiIiIqfSK0QBwBjDOcuqOWRanQ0KIEml+YpZSOqBJEvI1o4anks2YAYPQC5T1rFTPXsAaF+9uazjioiIiMjCoACSHPfeV62iYflG54ECSFJpXgWQZOk5b3ktr2RbMDZ/vKSsXPoO7WTQhjl33YqyjisiIiIiC4MCSHLcVRubuOC8C5wHKhuSCrOjGUheBZBk6djaUcM+W8wE7dtd1rHT3Xs4aJs5r6O2rOOKiIiIyMKgAJKcqm6N89Xtrew8ZMkzvohzRxlIsoSsqA/RF1juPOgrbx+kQPwQw8FlBH3uso4rIiIiIguDAkhyqrrVzle3MpCkwo73QNK1KEuHMYaV7W0MmJqyZiDlslkac1246laVbUwRERERWVgUQJJTRVuw4UYIN1R6JrLEGf9oBlKwshMRKbNNrVXsKTST79lZtjEHujvxmjzu2uVlG1NEREREFhZPpScg84wx8IEHIKgeGFJhykCSJWpjS5Td+VbO7X2RchWTDXXtoxHw1nWUaUQRERERWWiUgSRnMNXLwBeq9DRkqfNpFTZZmja1VrHPtuJN9kBqqCxjJnoOAhBuUAaSiIiIiIxNASQRmZ+UgSRL1JrGCAdMm/OgTH2QsgOdAFS3rizLeCIiIiKy8CiAJCLzU6AG6/KAVz2QZGnxeVwk686igCH30g/LM+jwYRLWT319c3nGExEREZEFRwEkEZmftr0X+87vg9tb6ZmIlF19+xruNRfjeuIrkByY8/G8sSN0m3q8nnJ1XRIRERGRhUYBJBGZn0J1uNZcUelZiFTEppYq/i51E65MjNwj/zLn44VTxxjwNM75OCIiIiKycCmAJCIiMs9saq3iZbucrrbX4Hr8y1AozOl41dluYn6Vr4mIiIjI+BRAEhERmWfOWVYNwEuhC3GlBmDkyNwNls9SZwdIh1rnbgwRERERWfAUQBIREZlnqkNe1jZFeHykwdnQu2vOxsoPH8WFpVC1bM7GEBEREZGFTwEkERGReej85TX8rLvKeTBeAMla0rsfxObSMx5n+Nh+ANw1CiCJiIiIyPgUQBIREZmHzl9ey65kmLw3Cr07x95p/4P4/+P1pG57M7n4zFZrG+k+AECgfvlMpyoiIiIiS4ACSCIiIvPQ+StqAcNgaAWF8TKQjj0PQKDzYfJfeQ3Dz/2AZCJBNjP1jKR0/0EAos0rZzljEREREVnMFEASERGZh9Y2RogGPBwwy8bNQLLdOyiEGki97btAgarbf53gZ1pxfXYt9tATk46RSsYpdL3EiA3SUN9Y4u9ARERERBYTBZBERETmIZfLsLWjhudTjbhGjkA6dsY+tnsHNG4kuOFq3B9+jKHr/4nBS/4f1hMkd9efQCHPyM//gezBp84c4NAT+P5+HRuO/ZA9tpWGiL8M35WIiIiILFSeSk9ARERExnbJmnoe3dPAu33A0edI7XuYwCW/BYEqsBbT8zLm3LcD4PH5qb74XQDkG9rw/OB3yfzLlUS7nyf/aB32gw9gak70Ocre/2mMJ8jXmm7lm0eX84BHnymJiIiIyPj0alFERGSeessFHRxyOauj5b/3fgIP/CVs/67z5FAnJhODpo1nHOc+751kGzfj636e5LYPQSFL5lvvJDPc4+zQ/TLevT+Diz7Aj3PbqFX5moiIiIhMQgEkERGReaox6mfrlvPIW4N75DDWuMjvutd5sudl52vT5jMPdLnxvOO/SL79doI3/jX5m76Mr/clXF/cxuBP/orUT/6MgjtAYsstPHtokMvWNpTvmxIRERGRBUklbCIiIvPYLVdsZMf2FQRq21i9cjXmpTsgn4PuHc4OjWdmIAGY2pUEa1cC4Dvr9aRqHqDwo49S8+hnAMid/14ePmrJFyyXr1cGkoiIiIhMbFYBJGNMHfBtYCWwH7jZWjtw2j4bivuMWg38ubX288aYvwDeDxRz6vlTa+1ds5mTiIjIYrK+Ocq7O/6R3T0pHlibwP3sf8Dhp7A9O7DhJkywlv29cZ49NMDenjhnL6vm2k3NuFzmlPMElp2Nff9PGBnsgYEDRDvO5oEf7Cbi93De8prKfHMiIiIismDMNgPpVuBea+2njTG3Fh//yck7WGtfAbYCGGPcwGHg9pN2+Zy19rOznIeIiMiidfPF6/jQt57m4cJmLjMu7Cs/odD5DCORtbzpsz/nQF/ilP03t1bxz79+Pivqw6dsN8YQrW2C2iastfxiZw+XrqnH61ZFu4iIiIhMbLavGG8Cbivevw140yT7vwbYY609MMtxRUREloxrNjVTH/bxzWeHKbSeh+uhv8fTu4MvHVmDx2X45JvO5u4/vJyXP3k9n3vruRwdSvL2rzzKof7EuOfcfniYw4NJXq3yNRERERGZgtlmIDVba48CWGuPGmOaJtn/bcB/nbbtd4wxvwE8CXz09BI4ERGRpc7ncfFr29r56i/3MXT92/EmEnyk50ZiK67h+++6gOqg9/i+v3peO+ubo7zjXx/jdV/4JW88t403X9DOeR01GGNI5/J88b7d/Msv9hL1e7hm02R/ukVEREREwFhrJ97BmJ8BLWM89THgNmttzUn7Dlhra8c5jw84Apxlre0qbmsGegELfBJotda+d5zjPwB8AGD58uUXHDigJCYREVk6DvUnuPZzD3Buew1VAS8P7enl5398JU3RwJj77+wa4Uv37+YnLx4jlS2wsj7Eq9c18sT+fl4+NsKbtrZx6w2baKke+3gRERERWXqMMU9Za7eN+dxkAaRJTvwKcGUx+6gV+Lm1dsM4+94EfNhae904z68EfmitPXuycbdt22affPLJGc9bRERkIfr+05185DvPAfDRa9fzu69ZN+kxI6ksP37hGD984ShP7u8n5PPwN28+h9dsap7r6YqIiIjIAjNRAGm2JWx3ArcAny5+vWOCfd/OaeVrxpjW0RI44FeB7bOcj4iIyKL1f85vZ2dXjF/s7OF9r149pWOiAS83X9jBzRd2kMsXMMbgPm2FNhERERGRycw2A6ke+A6wHDgIvMVa22+MaQO+aq19XXG/EHAIWG2tHTrp+G/irNBmgf3Ab50UUBqXMpBERGQps9ZijIJAIiIiIlJac5aBZK3tw1lZ7fTtR4DXnfQ4AdSPsd+7ZjO+iIjIUqTgkYiIiIiUm6vSExARERERERERkflNASQREREREREREZmQAkgiIiIiIiIiIjIhBZBERERERERERGRCCiCJiIiIiIiIiMiEFEASEREREREREZEJKYAkIiIiIiIiIiITUgBJREREREREREQmpACSiIiIiIiIiIhMSAEkERERERERERGZkAJIIiIiIiIiIiIyIQWQRERERERERERkQsZaW+k5TJsxpgc4UOl5zGMNQG+lJyFLkq49qSRdf1IpuvakUnTtSaXo2pNK0bU391ZYaxvHemJBBpBkYsaYJ6212yo9D1l6dO1JJen6k0rRtSeVomtPKkXXnlSKrr3KUgmbiIiIiIiIiIhMSAEkERERERERERGZkAJIi9NXKj0BWbJ07Ukl6fqTStG1J5Wia08qRdeeVIquvQpSDyQREREREREREZmQMpBERERERERERGRCCiCVgTGmwxhzvzFmhzHmRWPM7xe31xlj7jHG7Cp+rS1ury/uHzPG/NNJ54kaY5496dZrjPn8OGNeYIx5wRiz2xjzBWOMKW7/3EnH7zTGDI5z/OXGmKeNMTljzK+N8XyVMebwyfOT+WexXXvGmPxJ57izND8lmQuL8Npbboy5u/j9vGSMWVmSH5SU3GK69owxV502h5Qx5k0l+2FJSS2ma6/43GeK38eOk88t89MivP7+xhizvXh7a2l+SjIXFui19xHjvJ573hhzrzFmxUnP3VKc8y5jzC2l+0ktEtZa3eb4BrQC5xfvR4GdwGbgM8Ctxe23An9TvB8GLgM+CPzTBOd9Crh8nOceBy4BDPBj4IYx9vld4GvjHL8S2AL8O/BrYzz/D8B/TjQ/3Sp/W2zXHhCr9M9UtyV77f0cuLZ4PwKEKv0z1m1pXHsn7VMH9Ovam7+3xXTtAZcCDwHu4u0R4MpK/4x1WzLX3+uBewBPcZ5PAlWV/hnrtqiuvatG/54Cvw18u3i/Dthb/FpbvF9b6Z/xfLopA6kMrLVHrbVPF++PADuAZcBNwG3F3W4D3lTcJ26tfRBIjXdOY8w6oAn45RjPteL8J/uIdX4T/n303Kd5O/Bf48x5v7X2eaAwxvkvAJqBu8ebn8wPi+3ak4VjMV17xpjNgMdae09xv5i1NjHePKWyFtO1d5pfA36sa2/+WmTXngUCgA/wA16ga7x5SuUtsutvM/CAtTZnrY0DzwHXjzdPqawFeu3df9Lf00eB9uL91wL3WGv7rbUDOIFMXXsnUQCpzIxT9nAe8BjQbK09Cs4vHs4vyVS9HSdSOlYX9GVA50mPO4vbTp7HCmAVcN80xsQY4wL+Dvjj6RwnlbfQr72igDHmSWPMo0ZlHAvGIrj21gODxpjvG2OeMcb8rTHGPc1zSAUsgmvvZG9jnBfCMv8s9GvPWvsIcD9wtHj7qbV2x3TOIZWz0K8/nIDRDcaYkDGmASdbpGOa55AKWKDX3m/iZDGNnvvQROde6jyVnsBSYoyJAN8D/sBaOzzLUvK3Ae8ab6gxtp3+y/c24LvW2vw0x/0QcJe19pBK4ReORXLtASy31h4xxqwG7jPGvGCt3TOD80iZLJJrzwO8GucF0UHg28C7gX+b5nmkjBbJtecM4Hzaeg7w05kcL+W1GK49Y8xaYBMnPpW/xxhzubX2F9M5j5TfYrj+rLV3G2MuBB4GenBKKHPTOYeU30K89owxvw5sA66YxrmXNGUglYkxxovzC/Uta+33i5u7ii8KR18cdk/xXOfilFM8VXzsPqlZ2CdwIqXtJx3SDhw57TSnfJJpjPmr0XNMMvwlwO8YY/YDnwV+wxjz6anMWypjEV17WGuPFL/uxelJc95U5i2VsYiuvU7gGWvtXmttDvhf4PypzFsqYxFde6NuBm631manuL9UyCK69n4VeLRYshvD+XT+4qnMWypnEV1/WGv/ylq71Vp7Lc6b+l1TmbdUxkK89owx1wAfA95orU0XN3dyarbbWOde0hRAKgPjhF//Ddhhrf37k566Exjt7H4LcMcUT3lKPae1Nl/8D3artfbPiymCI8aYi4tj/8bJ5zbGbMBpCvbISef42Og5JhrYWvtOa+1ya+1K4I+Af7fW3jrFeUuZLaZrzxhTa4zxF+83AK8CXprivKXMFtO1BzwB1BpjGouPr0bX3ry1yK69Mecg89Miu/YOAlcYYzzFN4ZX4PQ1kXlqMV1/xYBBffH+FpxG2+q9Ok8txGvPGHMe8GWc4NHJga2fAtcV33fUAteh7N9T2XnQyXux33C6zFvgeeDZ4u11QD1wL05E/V6g7qRj9uOsthLDiYRuPum5vcDGScbcBmwH9gD/BJiTnvsL4NOTHH9hcdw40Ae8OMY+70arsM3r22K69nBWhHkBpy7+BeA3K/3z1W1pXHvF564tfi8vAN8AfJX+Geu2ZK69lcBhwFXpn61uS+faw1l57cs4QaOXgL+v9M9XtyV1/QWK191LOA2Ot1b656vborv2foazMMDofO886bn3AruLt/dU+uc7326m+EMSEREREREREREZk0rYRERERERERERkQgogiYiIiIiIiIjIhBRAEhERERERERGRCSmAJCIiIiIiIiIiE1IASUREREREREREJqQAkoiIiIiIiIiITEgBJBERERERERERmZACSCIiIiIiIiIiMqH/HwF/Vo+IL2jHAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "nb_plts = len(dfs_test)\n", - "\n", - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_test):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m_best.predict_f(np_input_iter)\n", - " \n", - " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " plt.title(f\"Model Performance on test data: {test_exps[idx]}\")\n", - " plt.legend()\n", - "plt.savefig(f\"Performance_test_exps.png\")" - ] - }, - { - "cell_type": "code", - "execution_count": 825, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "21.182911210003116" - ] - }, - "execution_count": 825, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.log10(np.linalg.cond(m_best.kernel(np_input_train)))" - ] - }, - { - "cell_type": "code", - "execution_count": 826, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 826, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m_obj_value(m_best)" - ] - }, - { - "cell_type": "code", - "execution_count": 827, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SolRadOutsideTempSimulatedHeat_1SimulatedHeat_2SimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-06-01 20:45:00+02:00-0.9708070.0588240.4380900.4380900.2335350.2143390.153839
2017-06-01 21:00:00+02:00-0.9800630.0196080.4380900.4380900.2480810.2335350.214339
2017-06-01 21:15:00+02:00-0.989906-0.0588240.4380900.4380900.2168760.2480810.233535
2017-06-01 21:30:00+02:00-0.991909-0.058824-0.4700640.4380900.0627670.2168760.248081
2017-06-01 21:45:00+02:00-0.992483-0.058824-0.470064-0.4700640.0910340.0627670.216876
........................
2017-07-10 04:45:00+02:00-1.000000-0.4117650.4232830.4232830.0900310.0775470.067484
2017-07-10 05:00:00+02:00-1.000000-0.4117650.4232830.4232830.0988150.0900310.077547
2017-07-10 05:15:00+02:00-1.000000-0.4117650.4232830.4232830.1034690.0988150.090031
2017-07-10 05:30:00+02:00-1.000000-0.4117650.4232830.4232830.1075030.1034690.098815
2017-07-10 05:45:00+02:00-1.000000-0.4117650.4232830.4232830.1075030.1075030.103469
\n", - "

864 rows × 7 columns

\n", - "
" - ], - "text/plain": [ - " SolRad OutsideTemp SimulatedHeat_1 \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 -0.970807 0.058824 0.438090 \n", - "2017-06-01 21:00:00+02:00 -0.980063 0.019608 0.438090 \n", - "2017-06-01 21:15:00+02:00 -0.989906 -0.058824 0.438090 \n", - "2017-06-01 21:30:00+02:00 -0.991909 -0.058824 -0.470064 \n", - "2017-06-01 21:45:00+02:00 -0.992483 -0.058824 -0.470064 \n", - "... ... ... ... \n", - "2017-07-10 04:45:00+02:00 -1.000000 -0.411765 0.423283 \n", - "2017-07-10 05:00:00+02:00 -1.000000 -0.411765 0.423283 \n", - "2017-07-10 05:15:00+02:00 -1.000000 -0.411765 0.423283 \n", - "2017-07-10 05:30:00+02:00 -1.000000 -0.411765 0.423283 \n", - "2017-07-10 05:45:00+02:00 -1.000000 -0.411765 0.423283 \n", - "\n", - " SimulatedHeat_2 SimulatedTemp_1 SimulatedTemp_2 \\\n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.438090 0.233535 0.214339 \n", - "2017-06-01 21:00:00+02:00 0.438090 0.248081 0.233535 \n", - "2017-06-01 21:15:00+02:00 0.438090 0.216876 0.248081 \n", - "2017-06-01 21:30:00+02:00 0.438090 0.062767 0.216876 \n", - "2017-06-01 21:45:00+02:00 -0.470064 0.091034 0.062767 \n", - "... ... ... ... \n", - "2017-07-10 04:45:00+02:00 0.423283 0.090031 0.077547 \n", - "2017-07-10 05:00:00+02:00 0.423283 0.098815 0.090031 \n", - "2017-07-10 05:15:00+02:00 0.423283 0.103469 0.098815 \n", - "2017-07-10 05:30:00+02:00 0.423283 0.107503 0.103469 \n", - "2017-07-10 05:45:00+02:00 0.423283 0.107503 0.107503 \n", - "\n", - " SimulatedTemp_3 \n", - "timestamp \n", - "2017-06-01 20:45:00+02:00 0.153839 \n", - "2017-06-01 21:00:00+02:00 0.214339 \n", - "2017-06-01 21:15:00+02:00 0.233535 \n", - "2017-06-01 21:30:00+02:00 0.248081 \n", - "2017-06-01 21:45:00+02:00 0.216876 \n", - "... ... \n", - "2017-07-10 04:45:00+02:00 0.067484 \n", - "2017-07-10 05:00:00+02:00 0.077547 \n", - "2017-07-10 05:15:00+02:00 0.090031 \n", - "2017-07-10 05:30:00+02:00 0.098815 \n", - "2017-07-10 05:45:00+02:00 0.103469 \n", - "\n", - "[864 rows x 7 columns]" - ] - }, - "execution_count": 827, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_input_train" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Multistep prediction" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "df_input = dfs_gpr_train[0].drop(columns = dict_cols['u'][1] + dict_cols['y'][1])\n", - "df_output = dfs_gpr_train[0][dict_cols['y'][1]]" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [], - "source": [ - "start_idx = 25\n", - "nb_predictions = 10\n", - "N_pred = 8" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAFlCAYAAABWeyEcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABNyElEQVR4nO3deXxU1eH+8edkgwQIBAg7SRBZi4gQEBCpZRMQZSdIVLRatP6wLm0VjWst4lpbW6qmiiKGkrAJBZRNEZF9F4EQBBICkR3DkkCW8/sjA1+WsIQsd5bP+/WaVyZ37s08nt6GeXLPnDHWWgEAAAAAvIOf0wEAAAAAACWHkgcAAAAAXoSSBwAAAABehJIHAAAAAF6EkgcAAAAAXoSSBwAAAABeJMDpANeievXqNioqyukYAAAAAOCINWvWHLTWhhf2mEeWvKioKK1evdrpGAAAAADgCGNM6qUeK5HpmsaYnsaYZGPMdmPMqEIeN8aY91yPbzTGtD7nsV3GmB+MMeuNMTQ3AAAAACiGYl/JM8b4SxorqbukdEmrjDEzrbWbz9mtl6RGrtvNkt53fT3jN9bag8XNAgAAAAC+riSu5LWTtN1au8Nae1rSJEl9L9inr6TPbIHlkqoYY2qXwHMDAAAAAM5REiWvrqTd53yf7tp2tftYSfOMMWuMMSNKIA8AAAAA+KySWHjFFLLNFmGfW6y1e40xNSTNN8ZstdYuvuhJCgrgCEmKiIgoTl4AAAAA8FolcSUvXVL9c76vJ2nv1e5jrT3zdb+k6SqY/nkRa228tTbaWhsdHl7oSqEAAAAA4PNKouStktTIGNPAGBMkaaikmRfsM1PSfa5VNttL+sVam2GMqWCMqSRJxpgKknpI2lQCmQAAAADAJxV7uqa1NtcYM1LSXEn+ksZZa380xjzievwDSXMk9Za0XdJJSQ+4Dq8pabox5kyWidbar4qbCQAAAAB8lbH2wrfPub/o6GjLh6EDAAAA8FXGmDXW2ujCHiuRD0MHAABAyUtI2KyoqHj5+b2tqKh4JSRsvvJBAHxeSayuCQAAgBKWkLBZI0bM08mTuZKk1NRMjRgxT5IUG9vcyWgA3BxX8gAAANxQXNySswXvjJMncxUXt8ShRAA8BVfyAAAA3MTRo9lasSJDy5btVWpqZqH7pKUVvh0AzqDkAQAAOCA/32rbtsNaunSvli0ruG3efEjWSn5+RoGBfsrJyb/oOGulFi0+UUxMU8XENFHjxlUdSA/AnbG6JgAAQBk4duz02at0y5bt1fLlGTpyJFuSFBZWXu3b11bHjnXUoUMdtWtXWzNnbj/vPXmSFBwcoCFDGmvHjkx99126JOmmm2po6NCmGjKkiaKiKjvy3wag7F1udU1KHgAAQAmz1mr79qNaunSPli0rKHabNh1Ufr6VMVLz5tXUoUOds6WuceOq8vMzF/2chITNiotborS0TEVEhGr06E5nF11JTz+myZOTNWnSVq1c+bMkqX372oqJaarBgxurbt1KZfrfDKBsUfIAAABK0YkTp7Vq1c9np14uX56hgwezJEmhoUFq376OOnSorY4d6+rmm2urcuVyJfr8O3YcVVJSshITk7V+/X4ZI3XuXE8xMU01cGAj1ahRoUSfD4DzKHkAAAAlxFqrnTt/Oe+9dBs3HlBeXsFrqqZNq6pDhzpnr9Q1a1at0Kt0pSU5+bASE7dq0qSt2rLlsPz9jbp0iVBMTFMNGNBIYWHlyywLgNJDyQMAALhGWVk5Wr1633lTL/fvPylJqlgxUDffXPtsqWvfvraqVg12OHEBa602bTqoSZO2KjExWT/9dFSBgX66/fYoxcQ0Vd++16tSpSCnYwK4RpQ8AADg8y73/rYzrLVKS8s87yrd+vUHlJtbsMplo0Zh6tDh/0pdixbV5e/v/h87bK3VmjX7NGnSViUlJWv37mMqXz5AvXs30NChTXXHHdcpJCTQ6ZgAioCSBwAAfFpCwuaLVqoMCQnQ2LHd1Lhx2HmlLiPjxNnH27U7/ypdeHiIU/8JJSY/32rZsr1KTCwofPv2nVSFCoG6666Giolpqp49o1SuHJ+yBbg7Sh4AAPBpUVHxl/xw8TOuu67y2ULXoUMdtWwZroAA979KVxx5eflavDhdkyZt1dSpKTp0KEuVK5dT//7XKyamqbp2jVBgoL/TMQEUgpIHAAB8irVWO3b8orVr92nNmn16442Vl9x3+vS+6tChjmrW9O0VKHNy8rRwYZoSE7dq2rQUZWaeVrVqwRo4sJGGDm2qzp3recTUVMBXUPIAAIDXys+3+umno2cL3Zo1+7R27T4dPXpKkhQYWFBMcnLyLzo2MjJUu3aNKNO8nuDUqVzNnbtLkyZt1cyZP+nEiRzVqlVBgwc3VkxMU3XoUKdMVwwFcDFKHgAA8Ar5+VYpKUcuKnSZmaclSUFB/rrhhupq06bm2VuLFtU1Zcq2Qt+TFx/f46LFV3C+kydzNHv2Dk2atFWzZ+/QqVN5ql+/koYMaaKhQ5uqTZuaMobCB5Q1Sh4AAPA4eXn52rbt/EK3bt1+HTtWUOjKlfNXy5bh5xW6X/2quoKCCn8P2dWsronLy8w8pZkzf1Ji4lbNnbtLOTn5atiwimJimigmpqluuKG6Jk7cwjgDZYCSBwAA3FpeXr62bj18UaE7cSJHklS+fIBatQpX69b/V+iaN6/GoiAOOnIkW9Onp2jSpK36+us05eVZ1alTQQcOZJ03NZYrpkDpoOQBAAC3kZubry1bDp1X6Nav3392KmVISIBatapxXqFr1qya16906cn27z+hqVNT9OST3+jUqbyLHue9j0DJo+QBAIASdzXTH3Ny8rR58/mFbsOGA8rKKih0FSoE6qabzi90TZtWZRVHD+Xn97YKe2lpjJSf/6eyDwR4scuVPD7pEgAAFNmFHy6empqpESPmadeuX1SrVkWtWfOz1qzZp40bDyo7u2CfihUD1bp1TT388I1nC13jxmEUOi8SERFa6OcRRkSEOpAG8F1cyQMAAEUWGfmh0tKOXfLx0NAgtW5dU61b11CbNrXUpk1NNWoUxrL7Xu7C8i9Jfn7SuHE9NXx4CweTAd6HK3kAAKBYDh48qRUrMrRsWYaWL997yYJnjJSc/KAaNqxCofNBZ6brnpnGW61asA4ezNKPPx5yOBngWyh5AADgPLm5+frhhwNavjxDy5bt1fLlGUpJOSJJ8vc3atkyXBUrBur48ZyLjo2ICFWjRmFlHRluJDa2+XnvzXz00fl6661V6tIlQj17NnAwGeA7KHkAAPi4fftOnFPo9mrVqp/PTrerWTNEHTrU0YMPtlD79nUUHV1TFSoEFTotLyQkQKNHd3LqPwNu6p13btOSJXt0331ztH79cNWpU9HpSIDXo+QBAOBDTp/O04YN+8+7Srdz5y+SpIAAP910Uw099FBLtW9fWx061FFkZKiMuXja5YXT8vjQa1xKcHCgEhPvVHT0BN177xzNmzeIxXaAUsbCKwAAeLE9e46dV+jWrNl3drXLunUrqkOHOmcL3U031VBwcKDDieGtxo37QQ8+OFd//WsnxcW1dzoO4PFYeAUAAB+QnZ2rdev2a/nyvWdL3e7dBQukBAX5q02bmnr00RvVvn0ddehQR/XqVXI4MXzJAw+00IIFqXrppe/161/XU6dO9ZyOBHgtruQBAOCBrLVKS8s87yrdunX7dfp0niQpMjL0vKt0N94YrnLl+NsunJWZeUqtW0/Q6dN5Wr/+PlWtGux0JMBjcSUPAAA3l5Cw+bLvbzt5Mkdr1uxzXaUr+BiDjIwTkqTg4ABFR9fSE0+0Vvv2BcWudm0Wt4D7CQ0tp0mT+qhjx4l68MG5mjatb6Hv+QRQPJQ8AAAcduFKlampmXroobn6/vs98vMzWr48Qxs2HFBubr4kqWHDKuraNfLsVbobbqiuwEB/J/8TgKsWHV1Lb7zRWU89tUhjx67TyJGtnY4EeB2mawIA4LCoqHilpmYW+liFCoFq166Wa+plwVW68PCQMk4IlCxrre68c7rmz0/VihWxatWqhtORAI/DdE0AANxUfr69ZMEzRvrll8dYbh5exxijTz7pqVatPlNMzP+0Zs29qlgxyOlYgNfgXw0AABwyb94utWkz4ZKPR0SEUvDgtcLDQ5SQ0FspKUc0cuRCp+MAXoV/OQAAKGPr1u1Tjx6TdfvtU/TLL6f06KOtFBJy/uSakJAAjR7dyaGEQNm47bYIvfBCB40f/6MmTPjR6TiA1yiRkmeM6WmMSTbGbDfGjCrkcWOMec/1+EZjTOurPRYAAG+RmvqL7r13jlq3nqA1a/bp3Xd/oy1bHtDYsd0UH99DkZGhMqbg4w/i43uct7om4K1eeKGDOneup9//foG2bTvsdBzAKxR74RVjjL+kbZK6S0qXtErS3dbazefs01vSY5J6S7pZ0j+stTdfzbGFYeEVAIAnOXw4S6+9tkL//Oc6+fkZPfFEaz3zTDtVqVLe6WiAW0hPP6YbbxyvyMhQLVs2jM90BK7C5RZeKYkree0kbbfW7rDWnpY0SVLfC/bpK+kzW2C5pCrGmNpXeSwAAB4pOztXb7+9Sg0bfqS//W21YmObadu232rMmM4UPOAc9epV0qef9tK6dfv19NOLnY4DeLySKHl1Je0+5/t017ar2edqjpUkGWNGGGNWG2NWHzhwoNihAQAoLfn5VhMm/KgmTT7Wn//8rTp2rKMNG4Zr3Lieql8/1Ol4gFu6886Gevzx1nrvvbWaOXO703EAj1YSJc8Usu3COaCX2udqji3YaG28tTbaWhsdHh5exIgAAJSNefN2qXXrz3TffV8qPDxECxcO0ezZA3XDDfzbBVzJG290VuvWNfXAA19p9+7CP1oEwJWVRMlLl1T/nO/rSdp7lftczbEAALi9c1fMzMw8rf/+t49WrrxHXbpEOB0N8BjlygVo0qQ+On06T7Gxc5Sbm+90JMAjlUTJWyWpkTGmgTEmSNJQSTMv2GempPtcq2y2l/SLtTbjKo8FAMBtXWrFzKFDm8rPr7AJKwAup1GjMH3wQXd99126Xn11mdNxAI9U7KWLrLW5xpiRkuZK8pc0zlr7ozHmEdfjH0iao4KVNbdLOinpgcsdW9xMAACUtgtXzBw1qh0rZgIlJDa2uRYsSNWrry7TbbfV129+wxVxoCiK/REKTuAjFAAATsnOztU//7lWr722Qr/8ckr3399Cf/nLLapXr5LT0QCvcvz4aUVHf67MzFPasGG4wsNDnI4EuJXS/ggFAAC83rkrZj799OLzVsyk4AElr2LFIE2a1EeHD2dr+PAvlZ/veRcmAKdQ8gAAuIILV8z8+mtWzATKQqtWNfTOO7fpyy936u9/X+N0HMBjUPIAALiEdev2qXv3i1fM5P1BQNl59NFW6t+/kUaNWqxVqzKcjgN4BEoeAAAXOHfFzHXr9uvvf2fFTMApxhh9/PHtql27goYOnaXMzFNORwLcHiUPAACXw4ez9Kc/LVLjxuM0Zco2Pfvszfrpp4f0+ONtVK5csRekBnCNwsLKa+LEPkpNzdTDD8+XJy4cCJQlSh4AwOdlZ+fqrbdWqmHDj/S3v61WbGwzpaQ8qNdeu1WVK5dzOh4ASbfcUld/+cstmjRpq8aN2+R0HMCt8WdJAIDPys+3SkjYrOefX6K0tGPq3buBXn+9MwuqAG7qmWfa6euv0/TYYwvVoUNtNW9e3elIgFviSh4AwCexYibgefz9/TRhQm9VrBiomJhZysrKcToS4JYoeQAAn8KKmYBnq127oiZM6K1Nmw7qqacWOR0HcEuUPACAT2DFTMB73H57Az39dFt98MEGTZmS7HQcwO3wnjwAgNdJSNisuLglSkvLVN26FdWyZbgWLEiTn5/Rs8/erGeeaceCKoCH++tfO+nbb9P10EPz1KZNTTVoUMXpSIDb4EoeAMCrJCRs1ogR85SamilrpfT045ozZ6c6dKjNipmAFwkM9Nd//3uHrLW6++7ZysnJczoS4DYoeQAArxIXt0QnT+ZetH3XrkzVq1fJgUQASkuDBlX00Ue3a8WKDL3wwvdOxwHcBiUPAOA1Dhw4qdTUzEIfS0srfDsAzzZ4cBM9/PCNeuONlZo3b5fTcQC3QMkDAHg8a60+++xHNWv2ySX3iYgILcNEAMrSu+/ephYtquvee+fo559POB0HcBwlDwDg0bZvP6Lu3Sdr+PAv1aRJmF5//VaFhJy/rlhISIBGj+7kUEIApS04OFCTJvXRsWOnde+9c5Sfb52OBDiKkgcA8Eg5OXkaM2aFbrhhvFat+lnvv99N3313t5555mbFx/dQZGSojJEiI0MVH99DsbHNnY4MoBT96lfV9d57XbRgQareeGOl03EARxlrPe8vHdHR0Xb16tVOxwAAOGT58r0aMWKefvjhoAYObKT33uuqOnUqOh0LgMMKVtqcpSlTtmnx4qHq2LGu05GAUmOMWWOtjS7sMa7kAQA8RmbmKY0cuUAdO07UkSOnNGNGP02Z0peCB0CSZIzRhx8WXMm/++5ZOnIk2+lIgCMoeQAAj/DFFylq3vwT/fvf6/WHP7TW5s0P6K67rnc6FgA3U7lyOU2a1Ed7957QQw/NlSfOWgOKi5IHAHBre/Yc04ABM9S//wxVrx6s5ctj9fe/d1GlSkFORwPgptq2ra3XX79V06al6IMPNjgdByhzlDwAgFvKy8vX2LHr1KzZJ/rqq516443OWrXqHrVrV9vpaAA8wJNPRqtXrwZ68slvtHHjAafjAGWKkgcAcDs//HBAnTr9VyNHLlT79rW1adP9evrpdgoM9Hc6GgAP4edn9OmnPVW1annFxPxPJ06cdjoSUGYoeQAAt5GVlaPnnvtOrVtP0PbtR/X55701d+4gXXddFaejAfBANWpU0Oef36Hk5MN67LGvnY4DlBlKHgDALSxcmKobbhivMWNW6J57mmnr1t8qNra5jDFORwPgwbp0idDzz7fXJ59sUkLCZqfjAGWCkgcAcNTBgyc1fPgcdes2WcZICxcO0Sef9FK1asFORwPgJV58saM6daqrRx6Zr+3bjzgdByh1lDwAgCOstZow4Uc1bfqJJk7cqri49tq4cbi6dIlwOhoALxMQ4KeJE+9QYKC/YmJm6dSpXKcjAaWKkgcAKHM//XRUPXpM0X33fanGjcO0bt29+utfOyk4ONDpaAC8VP36ofrkk55au3afnn32O6fjAKWKkgcAKDM5OXl6440VatHiU61cmaF//7ubliy5Wy1ahDsdDYAP6Nv3ej322E169901mjXrJ6fjAKWGkgcAKBMrVmQoOvpzjRr1nXr3bqDNmx/Q73/fSn5+LKwCoOy8+eav1apVDd1//1dKTz/mdBygVFDyAAClKjPzlB57bKE6dEjQoUNZ+uKLfpo6ta/q1q3kdDQAPqh8+QAlJvZRdnauYmNnKy8v3+lIQImj5AEASs2MGdvVvPknGjt2nUaOvEmbNz+gvn2vdzoWAB/XuHFVvf9+Ny1enK6//nW503GAEkfJAwCUuD17jmngwBnq1+8LVasWrGXLYvXee10VGlrO6WgAIEm6995f6b77musvf1mmb7/d7XQcoEQFOB0AAOA98vOtPvhgvZ599judPp2v11+/VU89Fa3AQH+nowHARcaO7aZlyzLUr98XqlgxUHv2HFdERKhGj+6k2NjmTscDrlmxruQZY6oaY+YbY1JcX8MusV9PY0yyMWa7MWbUOdtfNsbsMcasd916FycPAMA5mzYdUKdO/9X/+38L1a5dbW3adL+eeeZmCh4At1WxYpCGD2+uo0dPKT39uKyVUlMzNWLEPCUkbHY6HnDNijtdc5SkhdbaRpIWur4/jzHGX9JYSb0kNZd0tzHm3D+NvGutbeW6zSlmHgBAGcvKylFc3He66aYJSkk5os8+66V58wapYcMqTkcDgCv6z39+uGjbyZO5iotb4kAaoGQUt+T1lTTedX+8pH6F7NNO0nZr7Q5r7WlJk1zHAQA83Ndfp6lly/F67bUVio1tpi1bHtC99/5KxvCxCAA8Q1paZqHbU1Mz9cEH63XoUFYZJwKKr7glr6a1NkOSXF9rFLJPXUnnvps13bXtjJHGmI3GmHGXmu4JAHAvhw5l6YEHvlTXrkmSpAULBuvTT3upevUQh5MBQNFERIQWuj0gwE+///0C1a79vu66a7oSE7fq5MmcMk4HXJsrljxjzAJjzKZCbld7Na6wP+da19f3JTWU1EpShqR3LpNjhDFmtTFm9YEDB67yqQEAxZWQsFlRUfHy83tbkZEf6ve/n6+mTcfp88+36LnnbtbGjcPVtWuk0zEB4JqMHt1JISHnr0UYEhKgTz/tqXXr7tPjj7fW2rX7NHToLNWs+W8NHz5Hc+fuVG4un68H92WstVfe61IHG5Ms6TZrbYYxprakRdbaJhfs00HSy9ba213fPytJ1toxF+wXJWmWtbbFlZ43Ojrarl69+ppzAwCuTkLCZo0YMU8nT+aet71hw8qaPr2fbrgh3KFkAFByEhI2Ky5uidLSMgtdXTMvL1+LF6crIWGLpkzZpl9+OaWaNUMUE9NUsbHN1LZtLaapo8wZY9ZYa6MLfayYJe8tSYesta+7Vs2saq19+oJ9AiRtk9RV0h5JqyQNs9b+aIypfWa6pzHmSUk3W2uHXul5KXkAUDaiouKVmnrx+1UiIiopNfVhBxIBgLOys3M1Z84OJSRs0axZO3T6dJ4aNQrTsGFNFRvbXI0a8e4jlI3SLHnVJCVJipCUJmmwtfawMaaOpI+stb1d+/WW9HdJ/pLGWWtHu7ZPUMFUTStpl6SHz5S+y6HkAUDZ8PN7W4X9M2GMlJ//p7IPBABu5OjRbE2blqLPP9+sRYt2y1qpbdtaio1tppiYpqpVq4LTEeHFSq3kOYWSBwClLysrR9Wrj71oqqYkRUaGateuEQ6kAgD3tGfPMU2atFUJCVu0bt1++fkZdesWqdjYZurfv5EqVQpyOiK8zOVKXnFX1wQAeKH9+0+oS5cknTyZq8DA8/+pCAkJ0OjRnRxKBgDuqW7dSvrjH9tq7dr7tHnzA3r22ZuVknJEw4d/qZo1/62hQ/+n//3vJ50+ned0VPgAruQBAM6zZcsh3XHHNP388wl9/nlvZWXlXnZBAgBA4ay1WrZsrxIStigpKVkHD2apatXyGjKkiYYNa6ZbbqkrPz8WbMG1YbomAOCqfP11mgYMmKHy5f01c2Z/tWtX2+lIAOAVcnLyNG/eLiUkbNGMGdt18mSuIiNDdffdBSt0tmjBasUoGkoeAOCKxo37QQ8/PF9NmoRp9uwBioys7HQkAPBKx4+f1hdfbNfEiVs0b94u5eVZtWwZrtjYZrr77qaqX7/wD2gHzkXJAwBcUn6+1fPPL9GYMSvUvXukJk++S5Url3M6FgD4hP37TygpKVkJCVu0fHmGjJE6d66n2NjmGjSoscLCyjsdEW6KkgcAKFRWVo7uv/8rJSUl63e/a6mxY7sqMNDf6VgA4JN++umoJk7cooSELUpOPqygIH/17t1AsbHN1KdPQ5UvH+B0RLgRSh4A4CIHDpxU375faNmyvXrzzc7605/ayhgWAAAAp1lrtXbtPiUkbNGkSVuVkXFCoaFBGjCgkWJjmysj47heeOF7FsTycZQ8AMB5zqygmZFRsILmwIGNnY4EAChEXl6+vvlmtxISNmvq1BQdO3b6on1CQgIUH9+DoudjKHkAgLO+/jpNAwfOUFBQwQqaN9/MCpoA4AmysnIUERGvgwezLnqsXDl/3Xffr9SoURU1ahSmxo3DdN11VZji6cUuV/L4Xx0AfMgnn/ygESPmq3HjghU0o6JYQRMAPEVwcKAOHbq44EnSqVN5+uKLFB048H+PGyNFRISqceMwNWoUdrb8NWoUpqioUN6D7cUoeQDgA/LzrV54YYlee22FunWL1OTJd6pKFVZsAwBPExERqtTUzIu2R0aGateuETp6NFspKUeUknJU27YdVkrKUaWkHFFCwhb98sups/sHBPgpKqrwAli/fiX5+/uV5X8WShglDwC8XHZ2ru6//0slJibroYdu0L//3Y2/3gKAhxo9upNGjJinkydzz24LCQnQ6NGdJElVqpRX27a11bbt+VPxrbU6eDDLVQCPaNu2I2fL4LffpuvEiZyz+wYF+ev666u4yl+V8wpgnToVWaTLA1DyAMCLnbuC5htvdNaf/8wKmgDgyc4srhIXt6RIq2saYxQeHqLw8BB17Fj3vMestcrIOHFB+Su4ffXVTp06lXd235CQgLNX/s6UwMaNq6pRoyoKDw+55L8xCQmbi5wZ146FVwDAS23dWrCC5t69JzRhQi8NGtTE6UgAAA+Tl5ev9PRjF03/3LbtiHbu/EW5ufln9w0NDSp0+uf69fv15JPfXHT1kRVBi4fVNQHAx3zzTZoGDGAFTQBA6cnJyVNqauZF0z+3bTus1NRMXalmhIcH68svB6pevUoKDw+Rnx8zTYqCkgcAPuTTTzfpd7+bxwqaAADHnDqVqx07flFKyhH17fvFFfcPDPRT3boVVa9eJdft3PsF39eqVYEFYc7BRygAgA/Iz7d68cXvNXr0cnXtGqEpU+5iBU0AgCPKlQtQs2bV1KxZNUVGFr4iaK1aFfTBB92Vnn7MdTuu9PRjWr36Z33xxXFlZ+eet7+/v1Ht2hUvKIDn369du6KCglhcjJIHAF4gOztXDzzwlSZN2qoHH7xB77/PCpoAAPdwqRVB33771+rb9/pCj7HW6vDh7IsK4Jn7mzYd1Jdf7jxvVVCp4LMBa9ascJkiWEl161a8qg+J9+TFYih5AODhDhw4qX79vtDSpXv1+uu36umn27GCJgDAbVzLiqDGGFWrFqxq1YJ14401Ct3HWqvMzNOXKILHtH37US1atFtHj5666Njq1YMLvRJ45v733+/RY48tPFtMU1MzNWLEvPP+e9wZ78kDAA+WnHxYvXtPZQVNAAAu4fjx09qz5/glrwqmpx/TwYNZV/WzznzovDvgPXkA4IUWLUrTgAEzFRjop2++GaL27es4HQkAALdTsWKQmjSpqiZNql5yn6ysHO3de0K7d2cqPf247r13TqH7paVd/N5Cd8TyNADggcaP36QePaaoVq0QLV8+jIIHAEAxBAcHqmHDKrrttgjdc09zRUaGFrpfRETh290NJQ8APIi1Vi++uET33/+VOneup6VLh6lBgypOxwIAwKuMHt1JISHnT3oMCQnQ6NGdHEpUNJQ8APAQ2dm5io2drVdfXa4HH7xBX345kI9IAACgFMTGNld8fA9FRobKmIL34sXH9/CIRVckFl4BAI9w8OBJ9es3Q99/v0djxtyqZ55hBU0AAHwZC68AgAdLTj6sO+6YpvT0Y0pKulODB7OCJgAAuDRKHgC4sW+/3a3+/WcoIMBo0aIYFlgBAABXxHvyAMBNffbZj+refbJq1gzRihWxFDwAAHBVKHkA4GastXrppe81fPiXuvXWelq2jBU0AQDA1WO6JgC4kezsXD344FxNnLhFv/1tC73/fncFBfk7HQsAAHgQSh4AuImDB0+qf/8ZWrJkj1577VaNGsUKmgAAoOgoeQDgBrZtO6zevQtW0ExM7KMhQ5o6HQkAAHgoSh4AOGzx4t3q169gBc1vvolRhw4ssAIAAK4dJQ8AylhCwmbFxS1RWlqmqlYtryNHstW4cVXNnj1A111Xxel4AADAw1HyAKAMJSRs1ogR83TyZK4k6dChbPn5GT35ZBsKHgAAKBHF+ggFY0xVY8x8Y0yK62vYJfYbZ4zZb4zZdC3Hu7uEhM2KioqXn9/bioqKV0LCZqcjAXBTcXFLzha8M/LzrV57bYVDiQAAgLcp7ufkjZK00FrbSNJC1/eF+VRSz2Ic77bO/FU+NTVT1kqpqZkaMWIeRQ9AodLSMou0HQAAoKiKW/L6Shrvuj9eUr/CdrLWLpZ0+FqPd2eF/VX+5MlcxcUtcSgRAHcWERFapO0AAABFVdySV9NamyFJrq81Sut4Y8wIY8xqY8zqAwcOXHPgksZf5QEUxUsvdbhoW0hIgEaP7uRAGgAA4I2uWPKMMQuMMZsKufUti4BnWGvjrbXR1tro8PDwsnzqy+Kv8gCKolKlIElSjRohMkaKjAxVfHwPxcY2dzgZAADwFldcXdNa2+1Sjxlj9hljaltrM4wxtSXtL+LzF/d4x40e3em8lfIkyRjp+efbO5gKgLtKTExWjRoh2rPnEQUEFHcyBQAAwMWK+wpjpqThrvvDJc0o4+MdFxvbXPHxPRQZGSpjpJo1QyRJs2btUH6+dTgdAHdy/PhpzZ69Q4MGNabgAQCAUlPcVxmvS+pujEmR1N31vYwxdYwxc87sZIz5r6RlkpoYY9KNMQ9e7nhPExvbXLt2jVB+/p/088+P6u9/76IZM7ZrzBiWRAfwf2bN2qGsrFzFxDRxOgoAAPBixfowdGvtIUldC9m+V1Lvc76/uyjHe7rHHrtJK1dm6IUXlqhNm5rq2bOB05EAuIHExK2qU6eiOnWq53QUAADgxZgvVAqMMYqP76EbbgjXsGGztWPHUacjAXBYZuYpffnlTg0e3Fh+fsbpOAAAwItR8kpJSEigpk3rK2utBgyYoZMnc5yOBMBBM2Zs16lTeRoyhKmaAACgdFHySlHDhlU0ceId2rjxgEaMmCdrWYgF8FVJScmqX7+S2rev43QUAADg5Sh5paxXr+v0yiu3KCFhi/71r3VOxwHggCNHsjV37i4NGdKEqZoAAKDUUfLKQFxce915Z0M99dQiffddutNxAJSxL75IUU5OPqtqAgCAMkHJKwN+fkYTJvRWgwaVNXjwTO3de9zpSADKUGJisho0qKzo6FpORwEAAD6AkldGKlcup2nT7tLx4zkaPHimTp/OczoSgDJw6FCWFixI1ZAhTWQMUzUBAEDpo+SVoRYtwjVu3O1aunSvnnrqG6fjACgD06alKC/PMlUTAACUmWJ9GDqKbsiQplq16me9/fZqtW1bS8OHt3A6EoBSlJi4VY0ahalVqxpORwEAAD6CK3kOGDOms37zm/p65JEFWrt2n9NxAJSSfftO6JtvdjNVEwAAlClKngMCAvyUmHinwsODNWDADB06lOV0JAClYOrUbcrPZ6omAAAoW5Q8h4SHh2jq1LuUkXFCd989S3l5+U5HAlDCkpKS1axZVbVoUd3pKAAAwIdQ8hzUtm1tjR3bVfPnp+qFF753Og6AErR373EtXpyumJimTNUEAABlipLnsIceaqnf/a6lxoxZoWnTtjkdB0AJmTJlm6yVhgxhqiYAAChblDw38M9/dlG7drU0fPiX2rr1kNNxAJSAxMStuuGG6mrWrJrTUQAAgI+h5LmBcuUCNGXKXQoODlD//jN07NhppyMBKIbduzO1dOlexcQ0dToKAADwQZQ8N1G/fqgSE+9USsoR3X//l7LWOh0JwDWaPLlg6jVTNQEAgBMoeW7kN7+J0Jtv/lrTpqXozTdXOh0HwDVKTNyqm26qoUaNwpyOAgAAfBAlz808+WQbxcQ00XPPLdH8+bucjgOgiHbuPKqVK3/ms/EAAIBjKHluxhijjz++Xc2bV9Pdd8/Wrl2/OB0JQBEwVRMAADiNkueGKlQI0rRpfZWbm6+BA2cqKyvH6UgArlJiYrLataulBg2qOB0FAAD4KEqem2rUKEyff95ba9fu0+9/v4CFWAAPsH37Ea1du4+reAAAwFGUPDfWp09DvfRSB40f/6M++GCD03EAXEFiYrIkpmoCAABnUfLc3IsvdlTv3g30+ONfa+nSPU7HAXAZSUnJ6tixjurXD3U6CgAA8GGUPDfn52f0+ed3KCIiVIMGzdTPP59wOhKAQmzdekgbNx7gA9ABAIDjKHkeICysvKZN66ujR09pyJD/KScnz+lIAC6QmJgsY6RBgxo7HQUAAPg4Sp6HaNkyXB99dLu++y5df/7zt07HAXAOa60SE7fq1lvrqU6dik7HAQAAPo6S50GGDWumJ55oo3/8Y60SEjY7HQeAy48/HtSWLYf5AHQAAOAWKHke5s03O6tz53r63e/macOG/U7HAaCCqZp+fkYDBzJVEwAAOI+S52ECA/2VlHSnwsLKq3//GTp8OMvpSIBPK5iqmazbbquvmjUrOB0HAACAkueJatasoKlT71J6+jHFxs5WXl6+05EAn7V+/X6lpBxhqiYAAHAblDwP1b59Hf3zn1311Ve79MorS52OA/isxMRk+fsbDRjQyOkoAAAAkih5Hm3EiJb67W9b6NVXl2vmzO1OxwF8jrVWSUnJ6tYtUtWrhzgdBwAAQBIlz6MZYzR2bDdFR9fUvffO0bZth52OBPiU1at/1s6dv2jIEKZqAgAA91GskmeMqWqMmW+MSXF9DbvEfuOMMfuNMZsu2P6yMWaPMWa969a7OHl8UfnyAZo6ta+CgvzVv/8MHT9+2ulIgM9ITExWYKCf+vdnqiYAAHAfxb2SN0rSQmttI0kLXd8X5lNJPS/x2LvW2lau25xi5vFJERGhmjSpj7ZuPawHH5wra63TkQCvl59fMFWzR48ohYWVdzoOAADAWcUteX0ljXfdHy+pX2E7WWsXS2IuYSnq2jVSr79+q5KSkvW3v612Og7g9VasyNDu3cdYVRMAALid4pa8mtbaDElyfa1xDT9jpDFmo2tKZ6HTPXF1/vSntho0qLGefnqxvv46zek4gFdLTNyqoCB/3XXX9U5HAQAAOM8VS54xZoExZlMht74l8PzvS2ooqZWkDEnvXCbHCGPMamPM6gMHDpTAU3sfY4zGjeupJk3CFBPzP+3enel0JMAr5edbTZ68Tb16NVDlyuWcjgMAAHCeK5Y8a203a22LQm4zJO0zxtSWJNfX/UV5cmvtPmttnrU2X9J/JLW7zL7x1tpoa210eHh4UZ7Gp1SqFKTp0/vp1Kk8DRw4U9nZuU5HArzOkiXp2rv3OFM1AQCAWyrudM2Zkoa77g+XNKMoB58piC79JW261L64ek2aVNVnn/XSqlU/67HHFjodB/A6SUnJCg4O0J13NnQ6CgAAwEWKW/Jel9TdGJMiqbvrexlj6hhjzq6UaYz5r6RlkpoYY9KNMQ+6HnrTGPODMWajpN9IerKYeeDSr18jxcW110cf/aD//Gej03EAr5GXl68pU7bpjjuuU8WKQU7HAQAAuEhAcQ621h6S1LWQ7Xsl9T7n+7svcfy9xXl+XN4rr3TU6tU/a+TIhWrZMlw331z7ygcBuKxvv03Xvn0n+QB0AADgtop7JQ9uzN/fTxMn3qG6dStq4MAZ2rfvhNORAI+XmLhVFSoE6o47rnM6CgAAQKEoeV6uatVgTZvWV4cOZWvo0FnKzc13OhLgsXJz8zV1aoruvLOhQkICnY4DAABQKEqeD2jVqob+858eWrRot0aNWux0HMBjff11mg4dymJVTQAA4NaK9Z48eI577mmulSsz9M47q9W2bS3FxDR1OhLgcRITt6pSpSD17NnA6SgAAACXxJU8H/L227epU6e6+u1vv9KmTXygPFAUp0/nadq0FPXte73Kl+fvYwAAwH1R8nxIUJC/kpLuVOXK5dS1a5Lq1/9Qfn5vKyoqXgkJm52OB7i1BQtSdfToKaZqAgAAt0fJ8zG1a1fUiBEttX9/ltLTj8laKTU1UyNGzKPoAZeRmLhVlSuXU48eUU5HAQAAuCxKng/69NMfL9p28mSu4uKWOJAGcH/Z2bn64ovt6t//egUF+TsdBwAA4LIoeT4oLS2zSNsBXzd37i5lZp5mwSIAAOARKHk+KCIitEjbAV+XmLhV1aoFq2vXCKejAAAAXBElzweNHt1JISEXrw7Yv//1DqQB3FtWVo5mzvxJAwY0UmAgUzUBAID7o+T5oNjY5oqP76HIyFAZI9WvX0kNG1bW++9v0KJFaU7HA9zKnDk7deJEjoYMYVVNAADgGYy11ukMRRYdHW1Xr17tdAyvcvhwljp3nqS0tGP65pshatOmltORALcwZMhMLVq0W3v3/l4BAfxdDAAAuAdjzBprbXRhj/GKBZKkqlWDNXfuIFWrVl49e05VcvJhpyMBjjt+/LRmzdqhQYMaU/AAAIDH4FULzqpbt5LmzRssPz+j7t0na/duVtuEb5s9e4eysnJZVRMAAHgUSh7O06hRmObOHaRffjmlHj2m6ODBk05HAhyTmJisWrUqqFOnuk5HAQAAuGqUPFykVasamjVrgHbtylSvXlN17NhppyMBZS4z85TmzNmhwYMby9+fX5UAAMBz8MoFhbr11nqaPPlOrVu3X/36faHs7FynIwFlaubMn3TqVB5TNQEAgMeh5OGS+vRpqE8/7aWvv07TsGGzlZub73QkoMwkJSWrXr1K6tChjtNRAAAAioSSh8u6557m+sc/umj69BQ98sh8eeJHbgBFdfRotr76aqcGD24sPz/jdBwAAIAiCXA6ANzfH/7QWocOZekvf1mmqlXL6803f+10JKBUffHFduXk5DNVEwAAeCRKHq7Kyy931KFDWXrrrVWqXj1YTz/dzulIQKlJTNyqqKhQtWtXy+koAAAARUbJw1Uxxui997rq8OFsPfPMYlWtWl4PPdTS6VhAiTt0KEsLFqTpqafayBimagIAAM9DycNV8/Mz+vTTXjpyJFsPPzxfYWHlNXBgY6djASVq+vQU5ebma8iQJk5HAQAAuCYsvIIiCQry19SpfdW+fW0NGzZbCxakOh0JKFGJiclq2LCKWreu6XQUAACAa0LJQ5GFhARq1qwBatIkTP36faGVKzOcjgSUiP37T+jrr9MUE9OEqZoAAMBjUfJwTcLCymvu3EGqWTNEvXpN1ZYth5yOBBTbtGkpys+3rKoJAAA8GiUP16x27YqaP3+wgoL81b37ZKWm/uJ0JKBYEhOT1aRJVd1wQ3WnowAAAFwzSh6K5brrqmju3EE6cSJHPXpM0f79J5yOBFyTjIzj+vbb3UzVBAAAHo+Sh2Jr2TJcs2YN0O7dx9Sr1zRlZp5yOhJQZFOmbJO1UkwMq2oCAADPRslDibjllrqaOvUubdx4QHfdNV1ZWTlORwKKJCkpWS1aVFfz5kzVBAAAno2ShxLTq9d1+uyzXlq8OF1Dh85Sbm6+05GAq5KefkxLluzhs/EAAIBXoOShRN19dzP9619dNXPmT3roobnKz7dORwKuaPLkZElM1QQAAN4hwOkA8D6PPnqTDh7M0ksvLVXVquX1zju3sZAF3FpiYrJataqhxo2rOh0FAACg2Ch5KBUvvNBBhw5l691316h69WA991x7pyMBhdq16xetWJGhMWNudToKAABAiSjWdE1jTFVjzHxjTIrra1gh+9Q3xnxjjNlijPnRGPN4UY6HZzLG6N13f6N77mmuuLgl+uCD9U5HAgp1Zqom78cDAADeorjvyRslaaG1tpGkha7vL5Qr6Y/W2maS2kv6f8aY5kU4Hh7Kz89o3Ljb1afPdXr00QVKStrqdCTgIomJyYqOrqnrrqvidBQAAIASUdyS11fSeNf98ZL6XbiDtTbDWrvWdf+YpC2S6l7t8fBsgYH+Skq6U5061dM998zR3Lk7nY4EnLV9+xGtWbNPMTFNnY4CAABQYopb8mpaazOkgjInqcbldjbGREm6SdKKoh5vjBlhjFltjFl94MCBYsZGWQoODtTMmf3UvHk1DRgwQ8uX73U6EiCp4LPxJKZqAgAA73LFkmeMWWCM2VTIrW9RnsgYU1HSVElPWGszixrUWhtvrY221kaHh4cX9XA4rEqV8po7d5Dq1Kmo3r2nadMmijqcl5SUrA4d6igiItTpKAAAACXmiiXPWtvNWtuikNsMSfuMMbUlyfV1f2E/wxgTqIKCl2CtnXbOQ1d1PLxDzZoVNH/+YAUHB6hHjynaufOo05Hgw5KTD2vDhgNcxQMAAF6nuNM1Z0oa7ro/XNKMC3cwBR+Q9rGkLdbavxX1eHiXqKjKmjt3oLKz89S9+xTt23fC6UjwUYmJW2WMNHhwY6ejAAAAlKjilrzXJXU3xqRI6u76XsaYOsaYOa59bpF0r6Quxpj1rlvvyx0P79aiRbjmzBmgjIzjuv32KTp6NNvpSPBBiYnJ6tSpnurWreR0FAAAgBJVrA9Dt9YektS1kO17JfV23V8iyRTleHi/9u3raPr0furTZ5ruvHO65s4dpJCQQKdjwUf8+ONBbd58SP/6F79+AACA9ynulTzgmvXoEaXPP++t77/foyFD/qecnDynI8FHJCZulZ+f0cCBTNUEAADeh5IHRw0Z0lTvv99ds2fv0AMPfKX8fOt0JHg5a60SE5P161/XU61aFZyOAwAAUOKKNV0TKAkPP3yjDh3KUlzcElWtWl7/+EcXFazXA5S8DRsOaNu2I3rqqWinowAAAJQKSh7cwrPP3qxDh7L0t7+tUfXqwXrxxY5OR4KXSkpKlr+/0YABjZyOAgAAUCooeXALxhi99dZtOnQoWy+9tFRVq5bXyJGtnY4FL1MwVXOrunSJUHh4iNNxAAAASgUlD27Dz8/oo49u19Gjp/TYY1+ratVgDRvWzOlY8CJr1uzTjh2/6Lnn2jsdBQAAoNSw8ArcSkCAnyZN6qNf/7qehg//UnPm7HA6ErxIYuJWBQT4qX//652OAgAAUGooeXA75csHaObM/mrZMlyDBs3U99/vcToSvIC1VklJyerRI1JVqwY7HQcAAKDUUPLglkJDy+nLLweofv1K6tNnmjZuPOB0JHi4FSsylJZ2TEOGNHE6CgAAQKmi5MFt1ahRQfPmDVLFikHq0WOy3n13taKi4uXn97aiouKVkLDZ6YjwIImJyQoK8le/fqyqCQAAvBslD24tMrKy5s0bpOPHc/THPy5SamqmrJVSUzM1YsQ8ih6uSn6+1eTJyerZM0qVK5dzOg4AAECpouTB7TVrVk2VKgXK2vO3nzyZq7i4Jc6Egkf5/vs92rPnuGJimjodBQAAoNRR8uAR9u07Wej2tLTMMk4CT5SUlKzy5QN0550NnY4CAABQ6ih58AgREaFF2g6ckZeXrylTtql37waqVCnI6TgAAACljpIHjzB6dCeFhARctL1du9qyF87jBM6xeHG6fv75hGJiWFUTAAD4hotfNQNuKDa2uSQpLm6J0tIyVa9eJdWrV1GTJycrKMhPH310u8qX53TGxRITkxUSEqA77rjO6SgAAABlglfF8Bixsc3Plj2p4MOtx4xZobi4JUpJOaIvvuin2rUrOpgQ7iY3N19Tp25Tnz4NVaECUzUBAIBvYLomPJYxRs89117Tp/fVjz8eUtu2n2vNmp+djgU38s03aTp4MIupmgAAwKdQ8uDx+vVrpO+/v1v+/ka33jpJkycnOx0JbiIxMVkVKwaqV68GTkcBAAAoM5Q8eIUbb6yhVavuUevWNTVkyP/08svfKz+fBVl82enTeZo2LUV9+16v4OBAp+MAAACUGUoevEaNGhW0cOFgPfBAC73yyjLFxPxPJ06cdjoWHLJwYaqOHMnWkCFM1QQAAL6FkgevUq5cgD7++Ha9885tmjYtRbfeOkm7d/OB6b4oMTFZlSuX0+23RzkdBQAAoExR8uB1jDF66qlo/e9//fXTT0fVtu3nWr58r9OxUIZOncrVF19sV79+16tcORYRBgAAvoWSB6/Vu/d1WrZsmCpWDNKvf52oCRN+dDoSysjcubv0yy+nWFUTAAD4JEoevFrz5tW1YkWsbrmlju6770uNGrVYeXn5TsdCKUtKSlZYWHl17RrpdBQAAIAyR8mD16tWLVhz5w7SI4/cqDfeWKn+/Wfo2DEWZPFWWVk5mjFjuwYMaKSgIH+n4wAAAJQ5Sh58QmCgv95/v7vGju2qOXN2qGPHidq586jTsVAKvvxyp44fz2GqJgAA8FmUPPiURx+9SV99NUjp6cfUtm2CFi/e7XQklLDExGRVrx6s3/wmwukoAAAAjqDkwed06xaplSvvUfXqweradbI++mij05FQQk6cOK1Zs37SwIGNFRDArzcAAOCbeBUEn9SoUZiWLx+mrl0j9LvfzdMTT3yt3FwWZPF0s2fv0MmTuUzVBAAAPo2SB59VpUp5zZo1QE880Ub/+Mda3XHHNB09mu10LBRDYmKyatWqoM6d6zkdBQAAwDGUPPi0gAA/vfvub/Sf//TQN9+kqX37idq27bDTsXANjh07rTlzdmrQoMby9+dXGwAA8F28EgIkPfRQSy1YMFiHDmXp5psTtGBBqtORUEQzZ25XdjZTNQEAACh5gEvnzvW1atU9qlevknr2nKKxY9fJWut0LFylpKRk1a1bUR071nU6CgAAgKOKVfKMMVWNMfONMSmur2GF7FPfGPONMWaLMeZHY8zj5zz2sjFmjzFmvevWuzh5gOKKiqqspUuH6Y47rtPIkQv16KMLlJOT53QsXEZCwmbVr/+hZs78SZmZp/Xf/25xOhIAAICjinslb5SkhdbaRpIWur6/UK6kP1prm0lqL+n/GWOan/P4u9baVq7bnGLmAYqtUqUgTZ/eT6NGtdMHH2xQjx5TdOhQltOxUIiEhM0aMWKe0tOPSSp4X96IEfOUkLDZ4WQAAADOKW7J6ytpvOv+eEn9LtzBWpthrV3run9M0hZJzKeCW/PzMxozprMmTOitZcv2ql27z7V580GnY+ECcXFLdPJk7nnbTp7MVVzcEocSAQAAOK+4Ja+mtTZDKihzkmpcbmdjTJSkmyStOGfzSGPMRmPMuMKmewJOuuee5lq0KEYnTuSoffuJmjNnh9ORcI60tMwibQcAAPAFVyx5xpgFxphNhdz6FuWJjDEVJU2V9IS19swrsPclNZTUSlKGpHcuc/wIY8xqY8zqAwcOFOWpgWJp376OVq26R9dfX0V9+kzT22+vYkEWN1GlSvlCt0dEhJZxEgAAAPcRcKUdrLXdLvWYMWafMaa2tTbDGFNb0v5L7BeogoKXYK2dds7P3nfOPv+RNOsyOeIlxUtSdHQ0r7BRpurXD9V33w3V/fd/pT//+Vtt2nRQH37YXeXKXfH/QiglY8eu05Ej2fL3N8rL+79fCSEhARo9upODyQAAAJxV3OmaMyUNd90fLmnGhTsYY4ykjyVtsdb+7YLHap/zbX9Jm4qZByg1FSoEKTHxTr38ckeNH/+junRJ0r59J5yO5ZPGjl2nkSMX6q67Gurjj29XZGSojJEiI0MVH99DsbHNr/xDAAAAvJQpzrQzY0w1SUmSIiSlSRpsrT1sjKkj6SNrbW9jTCdJ30n6QVK+69DnrLVzjDETVDBV00raJenhM+/xu5zo6Gi7evXqa84NFNfkyckaPvxLhYcHa+bM/rrxxsu+HRUl6F//WqvHHvtaffter6SkOxUU5O90JAAAgDJnjFljrY0u9DFPfG8RJQ/uYO3afbrrruk6ciRbn39+h/r3b+R0JK/3z3+u1R/+8LX69bteiYkUPAAA4LsuV/KKO10T8FmtW9fUqlX36IYbwjVgwAyNHr2cBVlK0XvvFRS8/v0bUfAAAAAug5IHFEPt2hW1aFGMYmOb6fnnl2jYsNnKyspxOpbX+cc/1ujxx88UvD4UPAAAgMug5AHFVL58gCZM6K0xY25VYuJWde48SXv3Hnc6ltf4+9/X6IknvtGAAQUFLzCQggcAAHA5lDygBBhjNGrUzZo+vZ+2bDmstm0/16uvLlVUVLz8/N5WVFS8EhI2Ox3T4/z972v05JPfaODARpo0iYIHAABwNVh4BShhGzceUJcuiTp0KPu87SEhASzvXwTvvrtaTz21SIMGNdbEiXdQ8AAAAM7BwitAGWrZMlzBwRd/SPrJk7mKi1viQCLP87e/UfAAAACuFSUPKAV79hT+nry0tMwyTuJ53nlnlf74x0UaPJiCBwAAcC0oeUApiIgILXR79erBZZzEs7z99ir96U/favDgxkpIoOABAABcC0oeUApGj+6kkJDzp2waIx04kKXHH/9a2dm5DiVzX2+9tVJ//vO3GjKkiSZOZJEVAACAa0XJA0pBbGxzxcf3UGRkqIyRIiND9cknPfX446313ntr1aHDRCUnH3Y6ptt4882VevrpxYqJaaKEhDsUEMCvJgAAgGvF6ppAGZs16yfdf/9Xys7O1b/+1VXDh/9KxhinYznmjTdWaNSo7zR0aFNNmNCbggcAAHAVWF0TcCN9+jTUhg33qW3bWnrgga90zz1zlJl5yulYjjhT8O6+m4IHAABQUnhFBTigbt1KWrBgsF599RZNmrRVrVtP0KpVGU7HKlOvv15Q8IYNa6bPPqPgAQAAlBReVQEO8ff30/PPd9DixUOVk5Onjh3/q7ffXqX8fM+bQl1UY8as0LPPFhS88eN7UfAAAABKEK+sAIfdcktdrV8/XHfd1VB//vO36t17qvbtO+F0rFLz2mvL9dxz3yk2tpk++4yCBwAAUNJ4dQW4gbCw8poy5S69/343ffttum68cbzmz9/ldKwSN3r0csXFLVFsbMEVPH9/fgUBAACUNF5hAW7CGKNHHmmlVatiVa1asG6/fYpGjVqsnJw8p6OViL/+dZmef36J7rmnOQUPAACgFPEqC3AzLVqEa9Wqe/S737XUG2+s1K23TtLOnUedjlUsr766TC+88L3uvbe5Pv20JwUPAACgFPFKC3BDISGB+vDDHkpKulNbtx5Wq1afKTFxq9Oxrslf/rJUL774ve67r7k++YSCBwAAUNp4tQW4scGDm2j9+vv0q19V19Chs/TQQ3N14sRpp2NdtVdeWaqXXlqq4cN/pXHjKHgAAABlgVdcgJuLiqqsb7+N0XPP3axx435QdPTn2rjxgNOxruiVV5bq5ZeX6v77f6WPP76dggcAAFBGeNUFeIDAQH+NHn2r5s8frKNHT6ldu881duw6Weuen6n38svf6+WXl+qBB1roo48oeAAAAGWJV16AB+naNVIbNtynLl0iNHLkQg0YMEOHD2c5Hes8L7/8vV55ZRkFDwAAwCG8+gI8TI0aFTRr1gC9885tmj17h2688TN9912607FkrdVLLxUUvN/+tqDg+fkZp2MBAAD4HEoe4IH8/Iyeeipay5YNU/ny/rrttkS98spS5eXlO5LnTMH7y18KCt5//kPBAwAAcAolD/BgbdrU0tq192nYsGZ6+eWl6to1Senpx8o0g7VWL774vV59dbkefPAGCh4AAIDDKHmAh6tUKUgTJvTW+PG9tHr1Pt1443jNnLm9TJ7bWqsXXvhef/3rcj300A2Kj+9BwQMAAHAYJQ/wEvfd9yutXXuvIiND1bfvF/rDHxYqOzu31J7PWqvnn1+i0aOX63e/a6kPP6TgAQAAuANKHuBFGjeuqmXLhumJJ9ron/9cp/btE7R166ESfx5rreLilui111ZoxIiW+uCD7hQ8AAAAN0HJA7xMuXIBevfd32jWrP7as+e42rSZoE8++aHEPlPvTMEbM2aFHn74Rr3/PgUPAADAnVDyAC91xx0NtWHDcN18c2399rdzFRs7W5mZp4r1M621eu657zRmzAo98siN+ve/u1HwAAAA3AwlD/BidepU1Pz5g/XXv3ZSUlKybrrpM61cmXFNP8taq2ef/U6vv75Sv//9jRo7loIHAADgjih5gJfz9/dTXFx7LV48VLm5+brllv/qrbdWKj//6qdvWms1atRivfEGBQ8AAMDdUfIAH9GxY12tXz9cffs21NNPL1bv3lO1b9+JKx5nrdUzzyzWm2+u0qOPttLYsd1kDAUPAADAXVHyAB8SFlZekyffpQ8+6K5vv03XjTeO17x5uy65v7VWTz/9rd56q6Dg/etfXSl4AAAAbq5YJc8YU9UYM98Yk+L6GlbIPuWNMSuNMRuMMT8aY14pyvEASpYxRg8/fKNWrYpVtWrBuv32KXrmmW+Vk5N33n7WWv35z9/q7bdX6//9PwoeAACApzDFWVbdGPOmpMPW2teNMaMkhVlrn7lgHyOpgrX2uDEmUNISSY9ba5dfzfGFiY6OtqtXr77m3AAKnDyZo6eeWqQPP9ygdu1qaejQpvrHP9YqLS1TFSsG6dix0xo58ia9914XCh4AAIAbMcassdZGF/ZYQDF/dl9Jt7nuj5e0SNJ5Jc0WtMjjrm8DXbczzfKKxwMoPSEhgfrgg+7q1i1C9903RytX/nz2sWPHTisgwKh9+9oUPAAAAA9S3Pfk1bTWZkiS62uNwnYyxvgbY9ZL2i9pvrV2RVGOd/2MEcaY1caY1QcOHChmbADnGjSoiapWDb5oe25uwQefAwAAwHNc8UqeMWaBpFqFPBR3tU9irc2T1MoYU0XSdGNMC2vtpqtOWfAz4iXFSwXTNYtyLIAr27v3eKHb09IyyzgJAAAAiuOKJc9a2+1Sjxlj9hljaltrM4wxtVVwpe5yP+uoMWaRpJ6SNkkq0vEASk9ERKhSUy8udBERoQ6kAQAAwLUq7nTNmZKGu+4PlzTjwh2MMeGuK3gyxgRL6iZp69UeD6BsjB7dSSEh5//dJyQkQKNHd3IoEQAAAK5FcUve65K6G2NSJHV3fS9jTB1jzBzXPrUlfWOM2ShplQrekzfrcscDKHuxsc0VH99DkZGhMkaKjAxVfHwPxcY2dzoaAAAAiqBYH6HgFD5CAQAAAIAvu9xHKBT3Sh4AAAAAwI1Q8gAAAADAi1DyAAAAAMCLUPIAAAAAwItQ8gAAAADAi1DyAAAAAMCLUPIAAAAAwItQ8gAAAADAi1DyAAAAAMCLUPIAAAAAwIsYa63TGYrMGHNAUqrTOQpRXdJBp0P4AMa59DHGZYNxLn2McdlgnEsfY1w2GOfSxxiXnEhrbXhhD3hkyXNXxpjV1tpop3N4O8a59DHGZYNxLn2McdlgnEsfY1w2GOfSxxiXDaZrAgAAAIAXoeQBAAAAgBeh5JWseKcD+AjGufQxxmWDcS59jHHZYJxLH2NcNhjn0scYlwHekwcAAAAAXoQreQAAAADgRXy25Bljehpjko0x240xo87Z/pYxZqsxZqMxZroxpsoljh9ujElx3Yafs32k62daY0z1yzz/pY5vYIxZ4dqeaIwJKqH/5DLn5BgbYyKNMWuMMeuNMT8aYx455zGvGWOpVMc5wfVzNxljxhljAot4vNeMs5NjzLlcIuP8sTFmg+v4KcaYikU83mvG2ckx5lwu/jif8/g/jTHHL/P8nMulOMacyyXyO+NTY8xO1xiuN8a0KuLxXjXOpcJa63M3Sf6SfpJ0naQgSRskNXc91kNSgOv+G5LeKOT4qpJ2uL6Gue6HuR67SVKUpF2Sql/i+S93fJKkoa77H0j6vdPj5aFjHCSpnOt+Rde+dbxpjMtgnHtLMq7bfwsbJ87lMhljzuXij3PoOfv9TdIozmVHxphzuZjj7Ho8WtIESccv8fycy6U/xpzLxf+d8amkQVd4fq8/l0vz5qtX8tpJ2m6t3WGtPS1pkqS+kmStnWetzXXtt1xSvUKOv13SfGvtYWvtEUnzJfV0Hb/OWrvrCs9f6PHGGCOpi6Qprv3GS+p3jf+NTnN0jK21p621p1zflpPrqrWXjbFUuuM8x7pIWlmU471snB0dY87lEhnnTOnsmAVLKuzN6JzLpTzGnMvFH2djjL+ktyQ9fZnn51wu5THmXC7+OF8lXziXS42vlry6knaf8326a9uFfivpy2Icf5YxJtoY89EVjq8m6eg5/6e54s91Y06PsYwx9Y0xG10/5w1r7V551xhLZTDOpmAK4b2SvnJ9z7lctmPMuXy+axpnY8wnkn6W1FTSP13bOJfLdow5l893LeM8UtJMa23GuQdwLpf5GHMun+9a//0b7Zru+a4xppzkk+dyqfHVkmcK2XbeXx2NMXGSciUlXMvxFz1o7Wpr7UNXOL7IP9eNOT3Gstbutta2lHS9pOHGmJrX8nPdXFmM878lLbbWfidxLruU5RhzLp/ZoRjjbK19QFIdSVskxbi2cS6X7RhzLp/Z4RrG2RhTR9JguQr0eQ9yLktlO8acy2d2uPbfGc+q4A9CbVUwHfMZySfP5VLjqyUvXVL9c76vJ2nvmW9cb+zsIynWNY2qSMcX4/kPSqpijAm4xp/rTpwe47Ncf137UdKt8q4xlkp5nI0xL0kKl/RUEZ/fm8bZ6TE+i3O5eL8zrLV5khIlDSzC8d40zk6P8bn7cS4XfZxvUkGh2G6M2SUpxBizvQjHe9M4Oz3GZ3EuX9vvDGtthuvdCqckfaKCqaFXe7y3jXPpsG7wxsCyvkkKUMGbNxvo/95I+ivXYz0lbZYUfpnjq0raqYI3gYa57le9YJ9duvzCK4UeL2myzn8j6aNOj5eHjnE9ScGu+2GStkm6wZvGuLTHWdJDkpaeGUfOZcfGmHO5GOOsgr/4Xu/ax0h6W9LbnMuOjDHncgn9++fa73ILr3Aul+4Ycy4X/9+/2q6vRtLfJb3ui+dyqf7v53QAx/7DC1a126aCVYPiztm+XQXzf9e7bh9c4vjfuvbdLumBc7b/QQV/echVwV8VPnJtjz5z/wrHX6eCBRi2u07gck6PlSeOsaTukja6fiFtlDTCG8e4lMc51/Uzzxz/Iudy2Y8x53LxxlkFM1a+l/SDpE0qmFIUyrlc9mPMuVz83xkX7HP8nPucy2U4xpzLJfLv39fn/M74XFJFXz2XS+tmXAMFAAAAAPACvvqePAAAAADwSpQ8AAAAAPAilDwAAAAA8CKUPAAAAADwIpQ8AAAAAPAilDwAAAAA8CKUPAAAAADwIpQ8AAAAAPAi/x/a89q+TzP3iAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "plt.plot(df_output.iloc[start_idx:start_idx + nb_predictions + N_pred], 'o-', label = 'measured', color = 'darkblue')" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SolRadOutsideTempSimulatedHeatSimulatedHeat_1SimulatedHeat_2SimulatedTempSimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
timestamp
2017-07-13 20:45:00+02:00-0.9061440.294118-0.906566-0.906566-0.906566-0.152825-0.120327-0.0785550.065348
2017-07-13 21:00:00+02:00-0.9710510.254902-0.906566-0.906566-0.906566-0.187286-0.152825-0.120327-0.078555
2017-07-13 21:15:00+02:00-0.9865020.176471-0.906566-0.906566-0.906566-0.232325-0.187286-0.152825-0.120327
2017-07-13 21:30:00+02:00-0.9905990.176471-0.906566-0.906566-0.906566-0.270313-0.232325-0.187286-0.152825
2017-07-13 21:45:00+02:00-0.9916230.176471-0.906566-0.906566-0.906566-0.307765-0.270313-0.232325-0.187286
..............................
2017-07-20 04:45:00+02:00-0.9930650.0588240.9690310.9690310.9690310.7161510.7161510.7058690.685924
2017-07-20 05:00:00+02:00-0.9932450.0588240.9690310.9690310.9690310.7294860.7161510.7161510.705869
2017-07-20 05:15:00+02:00-0.9933070.0588240.9690310.9690310.9690310.7436450.7294860.7161510.716151
2017-07-20 05:30:00+02:00-0.9933000.0588240.9690310.9690310.9690310.7090300.7436450.7294860.716151
2017-07-20 05:45:00+02:00-0.9930920.0588240.3513630.9690310.9690310.5747910.7090300.7436450.729486
\n", - "

613 rows × 9 columns

\n", - "
" - ], - "text/plain": [ - " SolRad OutsideTemp SimulatedHeat \\\n", - "timestamp \n", - "2017-07-13 20:45:00+02:00 -0.906144 0.294118 -0.906566 \n", - "2017-07-13 21:00:00+02:00 -0.971051 0.254902 -0.906566 \n", - "2017-07-13 21:15:00+02:00 -0.986502 0.176471 -0.906566 \n", - "2017-07-13 21:30:00+02:00 -0.990599 0.176471 -0.906566 \n", - "2017-07-13 21:45:00+02:00 -0.991623 0.176471 -0.906566 \n", - "... ... ... ... \n", - "2017-07-20 04:45:00+02:00 -0.993065 0.058824 0.969031 \n", - "2017-07-20 05:00:00+02:00 -0.993245 0.058824 0.969031 \n", - "2017-07-20 05:15:00+02:00 -0.993307 0.058824 0.969031 \n", - "2017-07-20 05:30:00+02:00 -0.993300 0.058824 0.969031 \n", - "2017-07-20 05:45:00+02:00 -0.993092 0.058824 0.351363 \n", - "\n", - " SimulatedHeat_1 SimulatedHeat_2 SimulatedTemp \\\n", - "timestamp \n", - "2017-07-13 20:45:00+02:00 -0.906566 -0.906566 -0.152825 \n", - "2017-07-13 21:00:00+02:00 -0.906566 -0.906566 -0.187286 \n", - "2017-07-13 21:15:00+02:00 -0.906566 -0.906566 -0.232325 \n", - "2017-07-13 21:30:00+02:00 -0.906566 -0.906566 -0.270313 \n", - "2017-07-13 21:45:00+02:00 -0.906566 -0.906566 -0.307765 \n", - "... ... ... ... \n", - "2017-07-20 04:45:00+02:00 0.969031 0.969031 0.716151 \n", - "2017-07-20 05:00:00+02:00 0.969031 0.969031 0.729486 \n", - "2017-07-20 05:15:00+02:00 0.969031 0.969031 0.743645 \n", - "2017-07-20 05:30:00+02:00 0.969031 0.969031 0.709030 \n", - "2017-07-20 05:45:00+02:00 0.969031 0.969031 0.574791 \n", - "\n", - " SimulatedTemp_1 SimulatedTemp_2 SimulatedTemp_3 \n", - "timestamp \n", - "2017-07-13 20:45:00+02:00 -0.120327 -0.078555 0.065348 \n", - "2017-07-13 21:00:00+02:00 -0.152825 -0.120327 -0.078555 \n", - "2017-07-13 21:15:00+02:00 -0.187286 -0.152825 -0.120327 \n", - "2017-07-13 21:30:00+02:00 -0.232325 -0.187286 -0.152825 \n", - "2017-07-13 21:45:00+02:00 -0.270313 -0.232325 -0.187286 \n", - "... ... ... ... \n", - "2017-07-20 04:45:00+02:00 0.716151 0.705869 0.685924 \n", - "2017-07-20 05:00:00+02:00 0.716151 0.716151 0.705869 \n", - "2017-07-20 05:15:00+02:00 0.729486 0.716151 0.716151 \n", - "2017-07-20 05:30:00+02:00 0.743645 0.729486 0.716151 \n", - "2017-07-20 05:45:00+02:00 0.709030 0.743645 0.729486 \n", - "\n", - "[613 rows x 9 columns]" - ] - }, - "execution_count": 75, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_iter" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "m_best = m" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAF1CAYAAAByA6JvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABkYUlEQVR4nO3dd3hb1cHH8e+RZEmemc7eg0ASIEAYYYaw0pZCN6UppdCSQnfft6WltLwdUKB70hYolFLopoVSoKyEGUaAACFk7+1Mb1uWzvvHubJkW16xtezf53n06Orq3qujG0W+P51lrLWIiIiIiIhIbvBluwAiIiIiIiKSoJAmIiIiIiKSQxTSREREREREcohCmoiIiIiISA5RSBMREREREckhCmkiIiIiIiI5RCFNRER6xBjze2PM9d7yacaYVYd4nN8YY77Zu6UTERHJPwppIiL9gDFmozGmzhhTbYzZZYy50xhT0tuvY619xlo7rQvl+bgx5tlW+15prf1ub5cpm4wxE4wxDxlj9htjdhpjfmmMCRzCcawxZko6yigiIrlHIU1EpP94t7W2BDgWOB74RusNDiVACBgn1d/UW4DdwEhgFnAG8OkMFk1ERPKQQpqISD9jrd0GPAzMhOZams8YY9YAa7x15xtjlhljDhhjnjfGHBXf3xhzjDHmVWNMlTHmL0A46bm5xpitSY/HGmPuM8ZUGGP2ejVJRwC/AeZ4NXsHvG2bm016j68wxqw1xuwzxjxgjBmV9Jw1xlxpjFnj1VL9yhhjUr1fY0zIGPNTY8x27/ZTY0zIe+5tY8z5SdsGjDF7jDHHeo9P8t7/AWPM68aYuUnbLjbG3GCMeQ6oBSalePmJwF+ttfXW2p3AI8CMdso5xRjzlDHmoFeGv3jrn/Y2ed07Xxd14d9oozHmGmPMCu/83GmMCXvPDTXGPOjtt88Y80w7AVNERLJEX8oiIv2MMWYs8E7gtaTV7wFOBKZ7AeUO4FPAEOC3wANe2AkC/wLuBgYDfwPe387r+IEHgU3ABGA08Gdr7dvAlcASa22JtXZgin3nATcCH8LVQm0C/txqs/NxNYJHe9ud185bvhY4CVeTdTRwAolaxD8BFydtex6wx1r7qjFmNPAf4HrvvX4Z+Icxpjxp+0uAhUCpV8bWfgZ82BhT5B3vHbiglsp3gUeBQcAY4BcA1trTveeP9s7XXzr6N0o63gLv/UwGDkt6z/8LbAXKgeHA1wHbTplERCQLFNJERPqPf3m1Vs8CTwHfS3ruRmvtPmttHXAF8Ftr7YvW2qi19i6gARd0TgIKgJ9aayPW2r8DL7fzeicAo4CvWGtrvNqkZ9vZtrUFwB3W2lettQ3ANbiatwlJ29xkrT1grd0MLMKFsPaO9R1r7W5rbQXwbVy4ArgXuMAYU+Q9/oi3DuCjwEPW2oestTFr7WPAUlzAjfu9tfYta22TtTaS4rWfwtWcVeKC0VJcyE0lAowHRnXhXHX0bxT3S2vtFmvtPuAGEmE0ggu+471/w2estQppIiI5RCFNRKT/eI+1dqC1dry19tNeIIvbkrQ8HvhfrzncAS/YjcUFrlHAtlYX9alqkPD22WStbTqEso5KPq61thrYi6uNi9uZtFwLtDcQSotjecujvOOuBd4G3u0FtQtIhLTxwAdbnYdTcQEnLvm8teA1IfwvcB9QDAzF1ZLd3M4uVwMGeMkY85Yx5vL2jk3H/0apyrYp6bkfAGuBR40x640xX+vgdUREJAsU0kREBFo2d9sC3OAFuvityFr7J2AHMLpV/69x7RxzCzCuncFIOqu52Y4LIgAYY4pxzfq2dfZGOjsWrrzbkx7HmzxeCKzwghu48t/d6jwUW2tv6uL7GIwLTr+01jZYa/cCd9KyJi5xIGt3WmuvsNaOwjVjvKWDER07+jeKG5vqPVtrq6y1/2utnQS8G/gfY8xZHbwPERHJMIU0ERFp7TbgSmPMid6ohcXGmHcZY0qBJUAT8HlvkI334Zo1pvISLtTd5B0jbIw5xXtuFzDG6+OWyr3AZcaYWV4/q+8BL1prNx7C+/kT8A1jTLkxZihwHfDHpOf/DJwLXEWiFg1vm3cbY84zxvi98s81xozpyotaa/cAG4CrvHM1ELgUeD3V9saYDyYdez8uAEa9x7toOTBJR/9GcZ8xxowxxgzG9TuLD0RyvjdIicE1w4wmvY6IiOQAhTQREWnBWrsU1+fpl7iwsBb4uPdcI/A+7/F+4CJcc75Ux4niamqmAJtxfbIu8p5+EngL2GmM2ZNi3yeAbwL/wAW9ycCHD/EtXY/rC/YG8Cbwqrcu/lo7cOHzZLwg463fgqtd+zpQgau9+grd+9v5PmC+t/9aXMD9UjvbHg+8aIypBh4AvmCt3eA99y3gLq9p44c6+jdKci9uIJL13i3+nqcCjwPV3vu+xVq7uBvvSURE0syor7CIiEjfYozZCHzSWvt4tssiIiLdp5o0ERERERGRHKKQJiIiIiIikkPU3FFERERERCSHqCZNREREREQkhyikiYiIiIiI5JBUE4ym3dChQ+2ECROy8dIiIiIiIiJZ98orr+yx1panei4rIW3ChAksXbo0Gy8tIiIiIiKSdcaYTe09p+aOIiIiIiIiOUQhTUREREREJIcopImIiIiIiOQQhTQREREREZEcopAmIiIiIiKSQxTSREREREREcohCmoiIiIiISA5RSBMREREREckhCmkiIiIiIiI5RCFNREREREQkhyikiYhIbqpYAm/d6O5FRET6kUC2CyAiItLGzkWw+B0Qi4A/BPOegPI52S6ViIhIRiikiYhI9kQboHIVHHwLDi6HA8vdcvW6xDaxRti9WCFNRET6DYU0ERFJv1gTVK11QezgW14YWw5Va8BG3TYmAGWHweDjYNiZsPEPEIuCLwjD5ma1+CIiIpmkkCYiIr3HxqB6Q1LNmHdfudLViAFgoGQyDJwJYz8AA2a45dLDwB9MHGvy5a4Gbdhc1aKJiEi/opAmItIfVCzp3cBjLdRubVszdvBtiNYmtiseDwNmwsj5LogNmAFlh0OgqPPXKJ+jcCYiIv2SQpqISF8Wi8CWf8KSS7xBOMLdG4TDWqjf1SqIveVukcrEdoUjXRib8ikYOMMtD5gOBaXpeV8iIiJ9mEKaiEi+szGo3QZVq10fr8rV3vJq1/TQNiW2jXYwCEfD3qQw9lYikDXsTWwTGuIC2IRLEjVjA2ZAaHDa36aIiEh/oZAmIpIPrHVhKR6+Kr1AFg9m0brEtv5C179r4NEw7oOAD1bc7MKazw+Dj3fNH5OD2IHlUL8zcYyCMhfGxr7fC2JeIAsPA2My/vZFRET6E4U0EZFcEqlOhK/kGrGqNdC4P7GdCUDJJBfGRpzt7kunutERwyOhcR/UbIKajbD7KSAGWDd4x6JzEsfxF7lmiaPmJ4LYwJlQOFphTEREJEsU0kREMi3aANXrUzdPrNvRctuicS54jf+wF8QOg9Iprm9Z7bZEENu/DLb+y3u8qeXgHS0YGHEOHPZZ13eseAIYX1rfroiIiHSPQpqISDrEolC7JXWNWM1G148sLlTugtjI+S6ElUyC4EDAuCaI8eC1/T9Qc4tbbh7OPn6MIVA0HgYc4Y5TMsGNrFg8wQ388fR73D6+IBz5LY2aKCIiksMU0kREDkXFEti1CAYeBcGyVn3EVruJm5ODVKDUBbEhJ8L4iyE4xNWGEYP6Chfcqje4Y9ZubTnYB0B4uAtcg46BMe9xy/EQVjweCko6Lu+8JzTnmIiISJ5QSBMR6YrGg3Dgddj/Oux41NVqYVtu4wtB6WQ3UfOQk93w876Aa97YsBdqN0LFM7D5Ly1r0jBQOMrVfg09uWUtWPF41+QxUNiz8mvOMRERkbyhkCYiksxaqN3s+njtX+ZC2f5lULMhsY2viBYBbcBMF6gadkPNZji4ouUxjR+KxrrANfyslgGseLx7zh9M9zsTERGRPKGQJiL9V7QRKle0DWSRA4ltSia6kQ5Lp0KswfXvqlzT8jgH34ZovasBG/0u1zcsuTascJSrURMRERHpAl01iEj/0LDPa664LBHIKldALOKe94VdoCo7AgzQeMAN0FG9wd0Aiie64enDw2H307jaNB8c9R2Y+fUsvCkRERHpixTSRKRvsbHEkPTJt9otiW2CgyE8wjVTjNZB3XaIVELVSvd84Uj33Mj5LpQNmOnmEosPzlGxBJ48KzFa4vAzM/oWRUREpG9TSBOR/BWthwPL29aQNVV5GxgoHAGBMiiZAo173YTQjfvcrWAgDDzShawBM71ANsMNZ9+R8jkaLVFERETSRiFNRPJDfYULYcmBrHIl2Kh73heC0FBXS+YLukCGdZND+w+68DXstKQwNtPVmBlzaOXRaIkiGXfPPSu49tpn2by5knHjyrjhhlNZsGB6tovVoXwss4hkX6+ENGPMfOBngB+43Vp7U28cV0T6iYoliVqpoSe6OcZaB7K67YntA6UQKHY1YY37AOsG9WjYDWWHQ/nJiSA20Bt50fgy/76kX8nHi/F8KvM996xg4cJHqa11cwhu2lTJwoWPAqjMvSyfPhcifZWx1na+VUcHMMYPrAbOAbYCLwMXW2tXtLfP7Nmz7dKlS3v0uiKSx5rqoH4H1O2EXYvhjeuAKGBcLViswdvQQMEAd99Umag1w0DplJa1YgNnuhEYfQXZeEfSy/LtIrH1xThAUVGAW289N/vltjH3fyfW5O692z33rmbhZ5ZQWxdt3rSw0M8vfngMH3jPGGLRGLGYdTfrLUctsViMWAzvebA2RszapOeTb962sVir9W1v1trEtlFv2drm1/n01WvYs6+pzdsbPCjAjddNI2Z9xKxxt5iPaMwkHltDLGbcuhjeOojFIBptXTaIxWzSepqf6+66xYu3UF8fbVPmwsIA5547Ab/fEAj48PsNfr+PQMDdd3d9Yl38+dbbtre+7bH/+98NXH/9Cy3KnTOfZZE+xhjzirV2dsrneiGkzQG+Za09z3t8DYC19sb29lFIE+mDbMxN2Fy/0zUxrNuZCGJ1O5LW70jqM5aKocUcZEVj24axsiN6PrlzP9IfA08sZmlsjBKJxIhEojQ2uvtIJNa8PvF8e8td3+/3v19OdXWkTTkKQzHOO6kmRQDACwnxdV5giC/bxLqYTVofi4cLdx+Neo+9EBJ/rjmgtAoq0ZjPW6eaZWNi+IzFZyx+n8Xnc8s+H63W4z3n7v0+mpd93rLfH19Hi3UvvV2C+05rzXLUYRC1Lkw2Rd19NApNUUM0hrfsPivRqKWpyYW/aLRn1209MXRoIaWlQUpLg5SVBbu5HKK0tIDS0iDhcABzqE3N25Fv33MikP6Q9gFgvrX2k97jS4ATrbWfbbXdQmAhwLhx447btGlTj15XRDIkWt82aCUHsbrt3rrduNqwVowfTIHr+xVrAtv2QraFATNh2ue8ERVnQHBAWt5Wf9FbNTzWWqJRF3zit4YGF2K6tq71+hgNDU0p1/31r6talDcuWGCZOSVKJAKRJmj07t2yIdJkaGyCSJMLJ+lkjCUYiFLgj1EQiLG/OkS7F+PjdjRf9DcHAQN+XyzpceI5v6/Vtq3XxwOC95w/Rbjw+Wh5nBTB4zt/m9NumX/8iZfx+Q0+n8Hn8yXu/b4Wj03yOr/frff78fn8Seu8+/jN58PnD3g3H8YXSOzj95YDAXy+QIvXO+cjm9mxq+3nYvQIPy/+a7g7n0TxGe9GFH982TThMzF8tgm/L4ohiiGpZrG5ljHVuqT1qdZ1sP+Ey97PpoqSNmUeP3Q/G3/2ve5+6iBQhPUVEjPFRH3FNOHuo6aIJoqImiKiptBbLiRKIU2EveUwTTbk7gkRtSGiJkRTLEiUEFEbpMkWcOF7/017l4ZXXXU0VVURKisbqKpqpKqqkcrKxublVD9UpBII+LzwVuCFt0MNfkGKigq49963c7cmux35GCpV5t6X7pD2QeC8ViHtBGvt59rbJ9dq0nL9H1Ck11mbqPVqEbi8AFa71QtfOyFak/oYxuvSaqO0qPlKbOAG8Sgc7uYVCw2DcNItNMytr90KSy5JDGd/1qKcH5Ajk98ZsZilvr6J+vom6uqaqK+PUlcX8e6bvOdSrXPb/+Qnr1BZ2djmuIVhw6nHF9IYse7WaGmMxGhojC/T/FxDg3vcwz8XKQUCllABBAtcCAsWwJadhvbCw7tmraQgEGsRkIIBd1/gjy/bpPWWYIGlwG8pCECwIEZBAG893rbGW4ZgEAr8UBD0EQxAQYGPggJDsMB4y36CQR/+gN/7AcIPvgImvHcqm3a2bWo7fkSEjQ9s8U6ebX4f7q7VY2zqda237co2Hb2Gt37CB2exaVeobZmH1bLxDw+5OQRjje6Hlah3H2tMrI/fp5VxTZh9Qe557mgW/uad1DYGm58tCkW49ctrWPCOeigoc7dAqbdc2v66QCn4/Gkuu/cjyRWPUFsXS5S50Mett53HgosmQlMtRGt7eF/X/vOH8O8z4QtfZ9OeQW3Wjx8RYeMj1RAq925DIewth8vBHyYWs1RXtw1v7S83UFUVSVpubBECu/Kd4/MZrLUptw0G/Zxwwojm5p0t7ztqLtr+Nh3fd237RYu28OMfL6WhIfHDZjjs59prT+Kd75yEz2cwBowx+Hzxe7fO3ScvJ9a13C/1Ni23p5P9Et/DOd2kux35UGY1d+xAu/+Avz2bBR+dmcWSiXSRte4PcfwP87o7YNt/YPAxMOjoRBPDmk1Qux0adrph6G2KWq/mC+N2vhd8YffHuHCkC1jNYSt+S1oXGgK+Lo5NlDxwSB4EtCuueJS6usR3Rijk5/OfP5Y5c0YlhammFqGp5X005brWAau+3tUwpYflpCmbCQaaCAWiBANNBAPR5luo+XGq9Z1v2/E6t77A72qSWmv3IvGQah8y457njmHh7R9oGSCCjdz6uedZcPZO8BeCvwgCRe3ft1jXyfa+gkMfmTRe5nYDxPyuX8BY69UapQhvXQ15nd0n7X/PX7dz7Z2Hs3nPQMYNPcANl7zMgnP2uHkOm6rcfbS+a2X3F3Ue5toLePHnCkohUNLhwET33LOCa69+mM07Yowb6eOG778jcxeIsaaOQ1yK+3v+3cTCb4eobUh8fxcFI9x61X9ZcOKz7fztwA3mFEoKbaGhbZeTHxcM6PAzbK2ltjbSpbB3/fUvtHucM88c6zUXjaW4jzU3I039fMv7WCx7TU2zJR7e2nvvxkBxcUFzAGz/vm0gTPV8qvvkgNnxa7QMt2+8UUFjY6xNmcePL2PjxoXpPnVdku6QFsANHHIWsA03cMhHrLVvtbdPLoW0CRNuZdOmyjbrfSbGuKEHKC1spCTcRGlREyXhKCVFMUqLYpQUQWmRpaTYUFpsKCn2UVIcoLTET0lJgNKSAkpKXHV8UUkY4w+BP+xuvlDL+/hzvuTlpPsUv/Zl9Uu/P+lpeGgdoJpqWv1BrGn5RzJS7QbIaL7gqIJIjavNavK2idW5i5BogxtgI9ZIu6GqUwaCg9wfzMKRUDiqZeBqXfsVKD7E18kfDQ1NbN1azZYtlWzZUtV827rV3b/5ZgWxtt/5HTLG1VwVhg3hkM+7N4TDPgrDPsIh4937ktZ592G/Wy70EQ75KSz0Ew4nLTevc7fCcIBwoZ/CsJ9QyM+kWc+waWvbi9bxY0JsXDbHu7g0SfcG8LVzb1Js38F+8ee6vJ973G54uPUcFlw8tcXgF8SiLR8nNzdrfYt1YZsW23Zlu8Q29/xpNdfeNj4RIC57mwUXFHR+YXwotVHG3yq8dSEEpgiA9zzQyLU3bGbzLj/jRhhu+P783P6BsvVE8vOeaPvdHIt4351Jwa3N466sO+iO1RWBkvZDXVMNbL3ffU58BXDsT2Dkee77Nkf71t7zm/u59psvs3nvAMYNOcgN3z2eBVde6PoeNx6Ahj3QUOGmRmmocI+bl1s9jtalfhFfQVJ4SxHowuUtn+vgh7/2ruV6+2I83uw73jfwUIPfaaf9KWXNnzHwz3++xxtEx9UOJi+3vG+57AbxOZT9Wm7Tdp079g03tB+Ev/Sl45r37fi+bRk72i75PrnsHW2XfP/QQxtSltcYiMW+3Fsfix5Ja0jzXuCdwE9xQ/DfYa29oaPtcymk+Xw/bKc63XLJ+RGqamJU11iqaqC61lBdZ6iq9VFd56cx0rWO18bEKAk1UhJuoCTcSGm4gZJwg3efeJzyucIGFxKLXSAsKfLx4CtT+PRvz6C2IdG0pijYyK1XPcqC09e4Xsv4XbiLN8cxgcS9L+A99pZ9Bd5ygXcLeH2ICsAfTNz7gmCC3nKBC5Qm6AVK794XSgRNv/fYF/SO6YdNf4HtD8PI+TDhw+4LH9u1+65uG4sC3mhmNnnf5HsLRF1P/ObjR1s+V7kOVv7ILeOH8R9yf3Aj1RCt9sJT/GLLC06xeveLb6wx8QtwxqSoBQsOgTHvcRM6x2u5kmu/goMz0uQnV0QiUbZvr24TvJJvu3fXttlv8OAwY8eWMnZsKQ8+uD7lsQ2WV2/4KYXBCOGCiHffRDjYRIE/2tNKj0PWbg3PJ//OgtOWg7/Ym86gJLHcfCtp9bjVuo727WotanvlvmcF137tCTZvq2fc6DA33HRW7v8Q1ZUAkUrK2o66zms+uts0rr0akNaCg1pdJCcth4e1vYD2t20ymVaZrHmPNrjg1pQU4OJhrvW61oEwvq5+V/u1e8FBUDgaika3vC8clVgOl2dnCpHeOs9NNa1CXAeBrr4CIgfaP1ZwcMtmll6Au+exISy8LkZtfeKLtqjQeLXCMw697GmSqVDZm1Tm9Eh7SOuuXAppPfkHbGyMNre9rq6OUF0d8Za9dVWNVFc3UHWwjuqqOqqqGqiuaqCquiGxfXUT1TVRqqqjVNekblPdVaFAE3Onr6c41EhRKEJxqIGioLsvDjVSFGykONzorWtM2s57LmldwN/NqoIuuOe5Y7j2r+9I/Mr8oYdZcMprvf46ucG0Cr7BpABbmLgFipIufEu9X15LW22TtOwPt3wu/rwv7F5n7W3w8qcSxTj+tzA1N76I0i0ajbFzZ03KWrD4befOmjZNNsrKgs0BbOzYsqTlUsaMcfdFRYkfRNr9zhhbyMbl59DyhwPb8nHzuljSc60ed2X/jo6XYv97fvck194yKPF/71PbWfDhyV5NbvxW3fJxtMb7QSL+uItNyOJ8oY4DXjzktQl4SdtUb4DKt2HUfBhxbo+b92VELjfdjUXaBrfVv4a1vwVigA+Gz3VzDbaoJfEupG07fxcKylKEuVQBz7sPFGXwTeeAeHiPNrrv6Vk3uQGRard5fX+3ecvbXKBrfZ59BRAe6YW2UalDXdHovnNeYxHXZ7r5M5ii1q7Fc3vANrVzjbEMggNduAsOhtBgF4xbPE5al/w4jT8+5ENfqdZU5vRQSOtALv0DWmupq2tqDn3xwNcy/EX4wheebPcYJ5wwgtraJmpqItTWRqipcbfu/jMHg4aiQh/FhYbiIkNRGIoLrXcfoygUo7gwRnE4SlEoSnG4iaJQE8XhJi/0RSgOR5rD3xNLS/jmHeOpa2xV+/e/q1hwzm5aNHuCVk2hWjebMknLKZphtdOEquOmW/H1icf33LOKa38/PfGF/4kNLLjqwqSmRa1vSQGqF/qLHLI1t8KWf8DY9+dFQOvKIBzWWioqalMGL3erZPv2GpqaWl7cFBYGWoSuVEGsrKx7f4hz6Tujyw61hidZLOpd3LcKc6kCXvK6aBe260pzPxPwLlBHQHhE2/vm5eF952I1E7r62bAx15c1ObjVt77f3TLUtddU0F/UcYhrvS5Q2vL7NJeDcHu6WuZYkzd4kxfg4uEtfh9fbqpuu2/BgNThLTnYhYb1vdYT1rratx2PwpJL3efOF4ApV0GwzH1uG/ZBo3dr2AeR/V7f7A5+kPYXJYW2bgS8QEmX/v7n46B1KnPvU0jrRK7/A7bW3do/ay0NDdE2wS1VmIuvS17f2bqamsghd6Y1xjJ8iHX9c0KGcCjetyZAYVEB4XCQcGHI3YpChAvDhAsLXN+bwgDhcPzmb7GceM6fcptAoOOmI73SoT4L8u2zfPfdb/GpTz3WYhCOYNDH/PkTKSsLNdeIbd1a3WYAjWDQz5gxJSmDV/w2aFC41+figfw7z0BuX9jGmtoGtzW/gXW301zDM+xUKJ7ojUbqjUpav5sWzXvjAqVdCHMjXNO9HjbL7BPS8dmw1vXp6ijUtV5ur7bWF0o0cTMFsP9Vd3FtAnDcT9wPUuHh+VHT2lsilW4gqOQA1+J+u5unsnUIMX6v/3GKAJd8X1CS298Z7elOmW3Mncd4cGvc54Jbi8f7Uoe8WEP7xzUBr8lwUsCLh7nWoa92K1SuhFHvghHzevNMSJ5QSOtjcu2XfGvd3Ekdhbn3ve/+9vZm4VkvU9/oo66xgPpIgPr4fSRAfcQtNz/nPW6K9uyXwEDAtApwyQGvgJdf3kF9fdv+G6Ulhs9+fDChUIBQOEi4MEgoHCQUDhEqDBEKhwkVhgkXuvtQOEAo5G9xCyetCwR8vRYievNzEYm4kQZra5uorY14tyZvXaR5fcttmqiri7R4nHqbxHJHIxeOG5cIXy6MtQxi5eVF+HwZuiizMW+ACO8Wa4K9L8G+V2H4mflzAZNPujRARJPXnyUpuLW+jy9HDqZ4EeMNmpMiwLW+Dw7qXyEg06z1+i51EOLqK+DA6+7CtrWCMiid5ppqlk3zbodD6RTXyqE/ikVd88lUAS55XaTtj774i7wBP6wLHUdfD+MvhqKx+n8Arh96cmhrL+A1JK1v3Jf6XMf5i6FkQvvNWbPZP1HSRiGtD8q3X/I7rf2LNnpNoaq9DtkplpMeN9VX01BbQ31tLfV1ddTVNFBfV099XQP1dY3U10Wob/SlDHjN941uuS5SQH1TIfVNoebboteHkRiII5kl4I/1OCTGGWMJFcQIBS3hoCUUJOlmCAV9hEJupD8X7HwuIHq3cGEBoVABoXCQH9+yiQMH2070WlYc5fLz91Nb76O2wUdtvZ+6hviycevrjVtXb6itNzRFu/9H2BhLUdhQVAhFYSgqhMKQoajQu3mjG7rHPooKDTf/NvWoX8ZA7O1g22AUi3T82Cata/exN6F2e49THbujJjEAQ0+BIcdDySQomezdT8z8gAp9TW/+kt9U5y5YOwpy8ftUv5L7gt7gOx0EucIRUL0J9r6QX7UP+SQ5vJsCmHWjqx2qXOVqJKpWtQpxBoontA1vZdPcv5kCh+t72jrAbb0f9ixpu21oCAyc5U3xcgwMmuXCcV9rQpkusYgbHbNxP6z8Cay9FddawMCQE913SHP/xJ2d9E9MDnFjWg46k6OjhkpbCmmSdRmv/bPWXWhF4gGvKmm58yA44aIT2LS7bb+W+DxN0ZihIRKgoSng7iP+xHJTgPpIkIZoIQ3REA1NIRqiBTRECqiPFHjb+Wlo8rv7iI+GRh/1ET8NjcY9jvhoiMRfw+/285ZbvG6TC5sx29Eva5aywnqKQhEKCyIUhSIUBSMUhRopDDY1LxcF3YiE7rHrT+geNyY939j2eW85GOj+CIaHNh9Wct9BHy2Ge29e709sZ1Jt72u7nLyvaXWM5v6P3rqqNVC/PVGkgoEu6DXVJJXTuD+c8eBWOhmKJ7n7kkmuuYsuEHNPvJleZ0Guo+aWAPjciLAjzoWBR8KA6eor11s6C++Raqha7QW3pPBWudr1q4xrrn2b1qr2bWr/rX2La12TfexP3Xfc/tdg/zI48GaiL6m/EAYe5UJbPLwNPFLnsDOdtRaINbkflpprQbembt7a4u+OJzi4/dq4+H1oqP4G5QCFNMkJ+VT7126ftN+eyYIPjHKhLx7wmkNePAhWtQx/kar2n+vy/Eg+bzS8+DxHSXPu+UI0EWLSgtPYUtH2j+L44Y1s/NfaRCgBwGu+F58wNuVksymW49slr+fQJ1vucHj4rI382ZU/Wim+N4ODvF/nR7n+HBh3QVi7DarXu4v6ZAUDErVupZOTauAmu3CnvlK5r3Vzy3W3w5b7aP58mICriXUP3L/twJleaJvplksP0791ptiY1weodXhbBbVbkjY0UDw+RdPJaa4/V3+5sO0oDMcicPBtL7S9lghv8eZ8xu/O2aBjksLbLPc9KQm9MRdrpLKDvoneff0u2vzd8gW9qR7GdBDmRrVtEZKPfRVzmEKayCHIyDxNzc08q1qFuurU4a+D5+5ZNJGFt767a4HH+FtOuNo8/H+Kx6mWk/f1F3lz0nUS8OJhsNX6e359H9feNi5pFM2NLLhiXquh5b057tqsS3quK/PqdXsevnZeq2IJVK9p5x/V57aLKxjgLsjLDnMjqwUK3THq90DNBqhe5+6TR8IzAddEqzQpuDWHuEleCJSc0/qX8TMfdU0kD74JB5a72oeDy10tT7wZky/oLmabg9uRLrwVjes/YSAXNNW4mrbKVV5wW5kIc8m1b4HSRHArnQYDvPBWOlVNzKx132X7XmsZ3up2JLYpnpBoJhkPb4Wj9VlPt1jE/ZDUXm1c/D7VxOOhoYnQZgKw/SH3N98fPrSRgqUFhTSRfuKeX/+Ta69bmgg8Xx/NgosPT5poNV6rV9l2OdVzXZr81ngTGpe1DXCdBbxAqQspL1zmahxMAZz9VO5/6VcsgSfmekM9F8BJv3fB9+By2P+mG9ygZkPSDl5zyeTzGSiFATNcM7iyw72RBoPu3NdsdOelep2rhWvc3/L1w8Nb9X+bnAh06meTXV35lTla70LAgVbhLbk2J1DaqtbNuw8PzcS7kDgbcxewVUm1b/HwVrs5acN47Vur8FY2zdVG7Hmh/9Y+1O1ytWzJwa0q6Ueu0NBEjVtzP7ep6ueWafGpDGo7CHFVqxPNK40fjvouzLgmq8XOdwppIv1JbzVFsNb9qtYc3qraD3sdhb/49h0NWZzMX+gNUTzA1UIVlHn3A9y6QFnSc97zrR9nYsCOzs5zU62biPnAci+8vQEH3mjZ7DHex80m1aL5i2HAES68DZgOZdPdL5ixCNRsSgS36nVQtc67sE/6HvcXJWrckptTRiqhcg2MOKv/XSTmi8YDcPCtRHg7+KZbTg7p4REuvA04MinETXc/lEhmNdW4sNE6vFWtatlPyF+YmF7AVwCn/RNGvzM7Zc4VkSr3fZhc63ZweaJFQaA40c8tXuM2YIb6uWVb8sTs/kOcc1NaUEgTkeyLNqYOeBv+AJv+jAsaBoae7H59jhz0bpXuvtF7nKo5Rmu+UPdCXvy55MeB4o5rpA41DDfuTwS35gD3essh4n1Bdy6Sg62/0NW4JYe3AdNdM5S6bYnwVpVUA1e9vmVTLXdwmHQ5TLoUhpzg/tBK7rLWBfsWwW25C3PN/xeMC+MDZ7asdSs7zIUCySxr3f/JeGjb+Me2IyUOOhZGnuMGlik/RSPBgvsbUen1c2sOb8vc3wtwTe0GHNG21i04IHEM9ZdKP53jXqWQJiK5qyvzYSWLRVoFt8pEoGs8CE2ViUCXKuRFKr3O7Z189xm/F9iSQl48xEXrYNu/XVMof6jnvyZa6/ptNAe3eDO45RBLmuDX7/V5SQ6qvqDXR2Z6IsANmA4lU9wFev0uePNbsPY2WvSVAxdEy0+D4fPcRKoDZ6mJUb6IRV2T2tbhrWp1olmtr8AL9ke2bDpZPF5NYjOpxbQBAZj4MVfztmeJa+btL4RhZ8DIc2HEOa7GSP8+jo25H5vizSXj4S25RULJJC+sDYENd7n/G6rlkTyhkCYiuS3Tv8zZmBt45VBDXt2OljVURWNgwkdd2Ck/pfeGWm++EF/eMsAdXEkicHl9ArGuiWXyyIKlU72mcGWuxpKY6/d3xgOu/DufgF1Pul+vwY28NmxuIrSVHaGLxXwTrXe1Ny3C/pst+0/F+0PGBykxfjfp7oizdVGbLqm+4yJVsGsx7HwMdj7q/t3AjSA5wgtsI86GwuFZKnQOq9uZqGmLh7fqtS23GXoKTP8qDDsNggOzUUqRTimkiYj0puZ2+Q1uQJAB0+HgCveruC8IQ0+C4We5sJOOJoXRBldj0lyL4gW45MFKTAACJUAsMSx23LgPwdQrofxUV9tStwN2LfJC2xOu7xu4/k/xwDZ8npugW/JT40HXRPLg8pa1bw17E9sYP0z/Gkz7AoTLs1fW/qpmswtsOx6FnY9D4z63fuDRrpZt5Lnu/6z6ZaW283FYfL43tY0316WNuO/oQcd4P0Cd6c5hchNJkSxSSBMR6W2tfxmPVEPFs65mateTsO9VwLqBPIZ5TQqHz3MXC+lqUhipcmGxxYX4cm+OnGTGla1gIIx+F4y+AEbNd005Aao3uPew03sv8aZFxRMTgW34me4Xf8lf1sLr18KKm2nRFNb4XN/Q0RfAmAtcc1rJrFjU1RDFQ9ue51xTb38Yyk9P9GcbeKRqu5Mlfy8PPgb2vOh+gNq92DUvjTV6oe1Y9x02bK77fi4ozW65pd9SSBMRybTG/bDrqURoO/iWW18wAIbPTYS2TPQ/WfJx11ejteAgVysXrXU1asPOdBfloy+A4rFuG2tdc8h4YNu1yA3TDK455AivxnDYGRAanN73Ib2vdZ/Q2be4GtltD7imZOBC2mjvczF0jvotZkOkGnY/7ZpF7nzM/RgDrrZ7xNlef7az9cNJR5rqYO8L7jts12K3HIu4GrfBxyVCW/mpmotSMkYhTUQk2+p2uguDXV4/sOr1bn14WCKwDZ/nOsH3dmhrPa/byX9yc7FtvQ8qnnPbFAxyFWzx4d4HHQNjLnS3gUcnyhSLwoFlidC2+2mvf55x+8RDmy508kd7fUJrNsPWB1xg273YfX5CQ2H0+S6wjTxXQ/9nS+1W17xvhxfaGva49QOPTPRnG3Za7/WP7Yuaal3tWnNN24vefJ1+GHy8C23D53r9jPU5l/RQSBMRyTXVG71fdJ90wa1uh1tfNK5lk8KiMb3zeu1diNftgK33w5Z/uPLYqKvt8xd5zRytK1O8hm3YGS372EUbYe9LiRrD5iZFARh6YqJv3tCTNMx4Pms8CDsecaFt+0OuNtUXcrU3Yy6A0e9WLU622JibxmPno7DjMah4xqsZDbkfS+KjRg462jX1k9SaaqDi+URo2/uyF9oCrm9xPLQNPVnhV3qNQpqISC6z1g0EEu8HtntRYkCH0sMSg3cMm5veAR0a9rmpBbb8w/1CH2twg48Eh7jAFmtw/dZGvsPVsI16R9tR05pqYc/ziZEj9y31pioIuwvGeGgbfCz4Aul7L5I+sYjrf7n1fner2ejWDznB68d2oYaRz6amWtj9jBfaHnX9UgFC5S6sjTzH3ReNzm45c12k2rU02L3YBbd9S92PWL4CGHJiYiCSoXMgUJjt0kqeUkgTEcknNgYH3khqUviUmzIAYOBRSc0jz0gM9tHbIlWw/WHYch9s/497fX+Rqy1p2OOmIzABV7MWr2UrmdD2OI0HXZPIeDPPA2+69QVlbt/hZ7kAOmCGfuXPR9a6/pZb73fNIve+5NYXT3SfizEXJkYRleyo3e6aRu58zN3iAwkNmOGFtnNh2Olq0teZSJU3ONRiF9r2v+K+q+Mj+jaHtpM0Aqd0mUKaiEg+i0Vg3yuJmrY9z7n5sIwfBs9O1LSlqxlOtN41o9p6n7sYb9zvmlIVT4CmKqjb7rYbeJS7KB99geuIn6ompX63d5HzpKtti89tFCp3FzjxPm0lk2HPC5mdP096rm4HbHvQfU52Pu7Vvg6EUe90oW3kfA1/nk3Wuh9K4rVsFc+4/9++oOt7FQ9tg7yREfX/r32RSldjGa9p2/+aF9pCrnZt+Fz3nTbkRDX1lnYppImI9CXRehdg4k0K976UNEfbnERNWzrmaItFXM3Yln/Aln+6ZpCmAEonu6ZAVeuAGBSOdv2UxlzoLlTau0ip2Zzom7fzCajb5taHhkHjXndR6Q/BvCd0oZhvmmpcuN92vwtuDXu8UUTnJob3Lx6X7VL2b011rnYoPtT/gdfd+oIy9++n/39d13igVWhbhpuGJex+QIvXtKXje1nylkKaiEhf1twMx6tp2/8abeZoC5W7Gq/h83rvYsvGXFjccp8LbTUbAQNlh7vAWLXGjfwYKHE1KGMugFHvan+ofmvdPruehNW/SvSlAbffKX/SfEb5KhZ1Q57Hm0VWrnLrB81KBLZBx6ofW7bV7XI1oCt/5H2PeMa+H06+V+GiOxr3e029F7vQFg/A/kJXazlsrvtert/tWhAoBPdLCmkiIv1Jwz7Xj615jrYViedMAM74t5u8ujdZ63453nKfaxYZf83Saa55W/VGaNjtmmiWn5poFlk6OfXx4vN3RRu8FTE36uSUhTDt87036qVkR+UqN0jN1vvdQDPWq32N92/sqPZV0q/F/z/rbkVj4PD/hcmf1PQah6JhbyK07V6U6J8L4AvDWU8qqPVDCmkiIv3Zsq/DipuBmHtsCmDqVXDE/0Dx+PS85sGVLqxtuc/1pwMomeIGHqnbkeiLNmBGIrANOb7l4CHJ0wYYn/t1f8s/AB+Mv8hdMA4+Jj3ll8ypr3DD+m+9H3b8t3u1r5I+zf//znD9r1bc5H78CQ6Cwz7nbuGh2S5l/nr9G/DWjUDM/Xh11HdhxjXZLpVkmEKaiEh/Fv9VPNboAtrwM10fFCyM/zAc8RU3h1K61Gxy/de2/MObPNu6QUdKJrnRHw8sc/3ZwiO8fmwXuFEf9y9rO3BB9QZY9TNY9zs34uTweS6sjZqv0SH7gmi9a7K77X5X01a3I1H7Gh/ev363BrTIlool8PbNLlD7C2HyFen9sacvS/5e9gXV76+fUkgTEenvWk9mXbMFVv0U1t7qws7I+TD9aq/WKo39gup2tpo8uwkKR8GAme5iZd9SVx5fCGzEtbRKNXBB4wFX9lU/d4ONlB0Bh/8PTPyohr/uK2zM1cJufcCFtubmYd7n0x+CeWoilhUHV8DbP4ANf3SPx1/svj8GzsxuufJN6+9l6XcU0kREJLXG/bDm1652qn43DD7eXWyNeS/4/Ol97YZ93nDt93nN3OohOBSGzHY1ZlWrEttOvBROurNtgIw2wua/egMdLIPwMJj6GdecM50Tf0vmVW+ApZ+H7Q8m1g2fB6f/M33zBUrHarbAyh+7H0yita4mfPrXoPzkbJdMJC8opImISMei9bD+Lnj7h66/WMkUOOLLMOnSzNRMRaphhzd59rYHE5N3Jys/DWbd6EZGa81aVzO38keuf5M/7ILd4V+CsmnpL79kRvOAFo2uQs1GITjY9eWZ+hkIFGa7hP1Tw143Iuvqn7vl8tNg+lfd/HgasVOkXQppIiLSNbEobP2nG2hk31JXMzXtC65mKjgoM2WI1sNLn4INf0isKz3MNXFs2A2jzoejb4BBR6Xe/+AKWPkT2HC3m0x59Ltdv7Vhp+uCsS9IbiLmD7oBGHY84prNzrwOJl/u5mOTzGuqcf1F3/4h1G6BgUfCEV91A/34AtkunUjOUUgTEZHusdZdCK/4vrsADpR4w99/EYrHpv/1U9WYhIa5ZlS7FrnR5iZ8BI76jhuAJJW6XbDmFndr2AODj3NhbdwHdBHf1+x+Gl7/uhuYpmSy+1yM/7AGk8mWWAQ2/skNMnJwhRso6Igvw6TLIFCU7dKJ5AyFNBEROXT7X3eDBGz6M2BgwgI3IuTAGel93RZD8Bt47cvuIrx0mvuFfvt/3MXglIUw8xtueP9UmupcrdzKH0PVaiga62oHJ3/SzeEmfYO1sP1hF9YOvO4+I0dd72pSVYOaHTYG2/4DK26EPUvc5M3TPg+HfSZzNfMiOUwhTUREeq56o2tGuO52N0jAqPPdICPlp2bmItha1xTzta+6fnNDT3HBbOu/XM3YtC+68gQHtrN/zPV3W/kjV/MSKIUpV7jAVjwu/eWXzLAx2Pw3eOObULUGhpwEs77npp6Q7LAWKp51c61tf8irmf+U6zNaNDrbpRPJGoU0ERHpPc2DBPzCNSMcOgeOuNrNb5aJ5mXRRlj7W1j+bTdC5OgLXEjc+i8oGAgzvuYm2u2oWdXepS6sbf6bezzug64p5JCUfyslH8UibjCc5d+G2q0w4hzXl3HI8dkuWf+2/w14+/uuZt74YOLHXM28BviRfkghTUREel9TLay/E97+EdRscBdZR3wFJnzUzWGVbo0H3C/zK3/qQtr4i6F2O+z8r6thm3kdTP5Ex/3Paja76QfW3gZNVW5wkcP/F0afr/5MfUW03k0z8db33I8KY94LR18PA6Znu2T9W/UG992x/ncQbYCx73XD9ytESz+ikCYiIukTa4LNf3e/ju9/zQWkaV90zZky0eerZpMb4W/jHyE0FCZcAntfgj3dGESi8aBrxrnqZ25UutLDvMmxP6Zh3fuKSJVrrvv2DyFa435MOPJbUDIx2yXr3+p3u0npV/8KIgfc3HfTvwYjzlZfQunzFNJERCT9rIWdj7uwtvNxN8HwlCtdn6+iUel//X2vwKtfdoONlEx1w35vewAOvAEDj3ZN3TqbtykWcYFz5Y/c8UJDYeqn3UAH4WHpfw+Sfg173RQTq3/hRg2dvBBmXtv+wDOSGZEqNyn2yh9D3XYYdIwLa2PfDz5/tksnkhYKaSIikln7XnXD92/5G5gATLwEDv8yDDg8va9rrRv18bWvQOVKN7jIyPNgw11Qvc4NcnL0jTDs1M6Ps/tpF9a2/Rt8Ie89fEnN5PqK2m2w/HpXg+orcD8mTL9aow5mW7TB1Yqv+L4bjbVkCkz/iqvV9oezXTqRXqWQJiIi2VG93ut3coe7+BpzoRtkpHxOel831uQm1X3zOtecauwH3eTXa26Buh2uRu3o78Ggozs/VuUqb3Lsu1z/plHvdP3Whp+p5lh9QdVaePNbsPFeV/s7/Wo47PNQUJLtkvVvsShsux/euhH2LYXwCDj8i652XlNnSB+hkCYiItlVX+Gal63+JTTudzVa07/qNT9M4wAdkSo3x9vbP3RN26Zc6WpKVv3M9X8Zf7Hrs1Y6pWvvYc2v3XtoqIBBs1xYG3+RJsfuCw686fo2bnvANW2dca3rV5mJQXCkfda6CexX3AQ7H3NBeuqnXc1n4Yhsl06kRxTSREQkN0SqXQ3Xyh9D7WYYMMONCDn+YvAH0/e6tdvgjevcaJTBgS5cRQ66wQpijW5i65nf7FrfuaY61xxr5Y9dk8rC0W6C3ikL4eDbiQm4011bKOmx5wU3IfauRVA0zg0uMvES8AWyXTLZ94prBrn5b+ALwqTL4IgvQ+nkbJdM5JAopImISG6JRWDTX+Htm10NRtEYmPYlN7l0QWn6Xnf/G7DsatjxXyiZBEd8FQ687gYs8BW4sDX9q13rl2RjsP1h129t1yLwF7r3Za0LnPOeUFDLV9bCridg2ddh38tQdjgc9V0Y+z5NzZALKtfAyh/C+t+DbXLNmad/1TVH1o8kkkcU0kREJDdZ6wLTipvdxVXBgERTpur16bvg2v5fWPYVFxCHnOQGBNn2b9h4j9cv6asusAWKu3a8fa/CC5e7wAeAz83FNeOa3i23ZJa1bpL0N74BB1fAoGNdX8aR56o/Yi6o2+HmSVzzazfPIV6A9of0I4nkBYU0ERHJfXtecsP3b7nPjQhJzKuVStMFVyzqBgN545tuyO+x74OJl8G6W11gCw93TSAnX9G1ppgVS+CJeRCrd48nfQJO+K2GD+8LYlEX4N/8P6jZ6CY9P/p7UH5Ktksm4Ca2f/bDbiJ7AON3NZ/6kURyXEchTXX2IiKSG4aeAKf9Hc5f5QblsFEg5kaF3L2491/P54fJl8O7V8OR33E1es+8F4onwBn/gbJpsPSz8ODhsOGP7kK9I+Vz4KwnXR+mEefB+t/B4ne6AUckv/n8MOlj7rM5+1dQuRoeOxUWnw/7l2W7dBIcCEf+n2tybPyuv9qwudkulUiPqCZNRERyT+taqfEfgTl3pXfwhrqdbij2dbdBoASmXwNlR8Dyb7kL8YFHwlE3wOjzO2/qZq07ztLPuwmxT/0rlJ+cvrJLZjXVuFE+V9zsRisd/2EX9MumZrtk/VvFEvVJk7yi5o4iIpJ/KpbAzidcQNr6Dzcv2Sl/gXB5el/34Ap47auw/UEoGgtHXe8GFXnz/6BqDQw9GWbd6Jq8dWbfq/DMB6B2CxzzfZj2RfVl6ksaD7jpHVb+BGINMOly10S2eGy2SyYieUAhTURE8tv6u+DlKyFUDqf9A4Ycn/7X3LUIXv0y7H/VDRgx6yao2QBvftv1YRs53/VLGnxMx8dpPAAvXOYGoBj7PjjxDk3G29fU7YK3vgdrfwMYN/jNjGvS/4OCiOQ19UkTEZH8NulSOOd519/ksVNh7e3pf83hZ8L8l2HO3dCwBxadC1v/DWc8CLO+D3tfhEeOdQMWVK5p/zjBgXDafXDMD2Hr/fDIbPVj6msKh8Psn7n+jRM+Aqt/Bg9Mgjf+DyKV2S6diOQh1aSJiEj+aNgLz30Edj7qRl2c/Qs3+mO6NdXB6p+72pKmGjf59eH/Cxv+AKt+4uZnmvwJGPUuOPhW+31idj8Lz10Ejftg9i9d8zg1f+x7Dq50o4Zu+TsEB8OEiyE0DEaco75SItJMzR1FRKTviEXhzetcYBpyApz698z1AarfA8u/4+Zl8ofhiKth4gJvrqZbvBEpjXuuvWkD6ne7oLnrCZh4KRx/CwSKMlN+yax9r8DLn3G1rgC+sBsBVEFNRFBzRxER6Ut8fjj6BteE8ODb8Mhxrv9YJoSHwuyfw7vechMav3kdPHYaDDrGDQoCgHU1a+2VKTwMzvwvzLzO1cQ9ehJUrspM+SWzBh8HYy6k+XIrVg8b7s5qkUQkPyikiYhIfhr7XjjvJQgNgSfPgbd/5Ia+z4Syw9wAJmc/40aAfPFy2PpPMAXeBhZ2L3JzvKXi88NR34a5D7tBSB6ZDZv+mpmyS2YNm+s1yfUDBtbfAdv+k+VCiUiuU0gTEZH8NeBwF9TGvAde+zI892GIVGfu9YedCucucVMDNNWBjXhP+GHn47D4HdB4sP39R50H819zc7A9d5GbVy3amJGiS4aUz3FNX4/+Lpz+bxg4E56+ENb9LtslE5EcppAmIiL5raAUTv0bzLrZDdTw6Ekdj7bY24yB8R+CqVcB8UFAojDm/bD7GXj8dKjd3v7+xWPhrMWuueTqX8Djp0HNprQXWzKofI4bkn/Mu9y/9Yhz4MVPuukcsjA2gIjkPoU0ERHJf8bA9KtdX6/6nfDf2W64/EwacbYbMCT+p7VmoxvUpHo9PHayG/GvPf4gHPcTt33lSnj4WNj+cCZKLZlWUAJnPACTPg5vfgteWgixpmyXSkRyjEKaiIj0HSPOhvmvQOlUePoCeOM6NxpkJjQ3a7seZnwTDiyDFTfC6Q9AtA4eOwUqlnR8jHHvh/OWQtEYWPxOeP0bmSu/ZI6vwE1qPuMbsO52ePo9bmoHERGPhuAXEZG+J1oPL38a1t8JI98BJ/8RQoMzW4Yt/3L9zEoPgxNvg+cvgbptcMqfYcwFHe/bVAevfM71Wxp+Jpx8LxSOyEixJcPW/BaWfhoGHQdzH3Sjf4pIv6Ah+EVEpH/xh+HE38Hxv4Fdj7vRE/e/ntkyjH0PzH0IajbA8x+FU/4EA2bCM++Ftbd1vG+gEE68HU66E/a8AA8fA7ufzkixJcOmfgpO+yccXA6PngxVa7NdIhHJAT0KacaYHxhjVhpj3jDG/NMYM7CXyiUiItIzxrgL4LOfhlgDPDoHNtyT2TKMOMs1gWzc50b0O/5XMOI81w/pjW91PmjEpI/DeS+6wVGemAcrvg82loGCS0aNucB9TiIHXFDb+3K2SyQiWdbTmrTHgJnW2qOA1cA1PS+SiIhILxp6Esx/FYYcD0s+Cku/ALFI5/v12uufCGc/5cLV4ne4SawnfRyWfxte+lTng0YMPBLmL4Wx74NlX3X9lxr3Z6Lkkknlc+Cc5yFQAo/P1VxqIv1cj0KatfZRa238r8sLwJieF0lERKSXFQ6HeY/DtC/B6p/DE2dB3c7Mvf7AI+GcZyFQCovOhQkfgxnXwrrb4Jn3Q1Ntx/sXlLm52I77Oex4xI3+uFd9u/ucssPg3Oeh7HDNpSbSz/Vmn7TLgXbHCzbGLDTGLDXGLK2oqOjFlxUREekCXwEc92M3CMe+pfDIsVDxfOZev3SyC2pFY1yN2tCTYPavYNu/4cmzoWFvx/sbA9M+B2c/AzbqRotc82vNs9XXFI6Asxe7kUo1l5pIv9VpSDPGPG6MWZ7idmHSNtcCTUC7jf2ttbdaa2dba2eXl5f3TulFRES6a8LFcO4L4C+CJ+bC6lsydxFcNNr1kRt4JDz9XggOhNP+DvtedaGremPnxxh6IrzjNRh+lhvB8vmPQqQ63SWXTCoohTP+DRMv1VxqIv1Uj4fgN8ZcClwJnGWt7aS9hqMh+EVEJOsa97uAs/0hdzF8/K/dqIqZEKmEpy5wIzYe/ys36uNTF7jXn/swDDq682PYGLx1I7x5HZROc2FvwPT0l10yx1o3199b18Ood8Gpf4FAcbZLJSK9JG1D8Btj5gNfBS7oakATERHJCcFBrrbiyG/Bhru6XpPVGwrKXBgb9S5XG1bxnGsKafzw+Omw88nOj2F8MPNaOPMxaNwLjxyf+dErJb2MgaO/66aS2PEwPH4m1O/OdqlEJAN62iftl0Ap8JgxZpkx5je9UCYREZHMMD448v9cWKteD48cBzsezcxrBwrh9Ptg/Efg9Wtg491udL+isbB4Pmz8c9eOM2IezH8NBh/nRq986Uo3mbf0HZpLTaTf6enojlOstWOttbO825W9VTAREZGMGX2+G+a+cBQsmu+aEWain5qvAE6+G6ZeBStuhrdugLMWw5CT4PmLYeVPunacolFw1pMw/auw9rfw6CkudErfobnURPqV3hzdUUREJH+VToHzXoDxF8HrX4dn3uf6jqWb8blRHqdf4wLWK5+Duf+Bse+HV/8HXv1y1yaw9gVg1k1w+gMuoD18LGx9IP3ll8zRXGoi/YZCmoiISFyg2A3Rf+xP3ND4/z0BDr6d/tc1BmZ9D2bdDJv+DM99GE68E6Z+Blb+CJ6/BKKNXTvWmHfDO151ofPpC+G1qzM7ebekl+ZSE+kXFNJERESSGQOHf9E1LWvc74La5n9k5rWnXw0n/Ba2PwxPvQuOuh6O/h5sutc9jlR17TglE91AJFOvgrd/AE/Mg9rt6S27ZE6budS+o7nURPoYhTQREZFUhp8B81+BATPg2Q/Asq9lZq6qKQvhlD/BniXw5Fkw+ZNw0u9h1yJ4/Ayo29m14/jDcPwtcPI9sP81eOQY2PlEWosuGdRiLrX/g5c+pbnURPoQhTQREZH2FI2Bs5+CKZ9yA3ssmg/1e9L/uuMvgtPvh8oVbkj+EWfBGQ9C1Wo3aETl6q4fa8JH4LyXITQUFp0Ly6/vWh83yX2+AjjpTphxLay7zU2Q3lST7VKJSC9QSBMREemIPwQn/AZO/B1UPOuG6d+7NP2vO/qdcOZ/oXYbPHYqlEyGsxZBU7Wb023Pi10/1oAj4LyXYPzF8MY3YfG7MhM2Jf2MgaOvd5Ox73jINW2tr8h2qUSkhxTSREREumLy5a6fF7jQtO7O9L/msNPh7EWuduTx08AXcoNGFJS5i/HujO4XKIY5d7uJkXc9CY8cC3teSF/ZJbOmXgmn3QcH3vDmUluX7RKJSA8opImIiHTVkNluPrXyU+HFy+GlqyDakN7XHHwcnP0MmIDrk1Zf4YZhH3CEN7rfHV0/ljFuYuRzn/eOdzos/SIs/x5ULEnbW5AMGXMhzHsSIvvh0TmaS00kjymkiYiIdEe4HM58BI64Gtb+xs1XVbstva854HBXixcaCk+e7WpLzloEw8+CFz/h9TPrxuh+g4+Dd7wCg0+E1T+DN77hBilRUMt/5XPgnOdczenjc2HbQ9kukYgcAoU0ERGR7vIF4Jib4dS/wcHlrungrqfS+5olE+CcZ9z8Z0+dDzsfd6P7TbjE9TN7+dMQi3b9eMFBMOod3gPragR3L05DwSXjyqbBuUvc/dMXdK+2VURygkKaiIjIoRr3ATjvRSgY6Gqiln4hvU0H4/NjDT7OTQuw6V6YcxdM/6qr1Xv2A9BU1/XjDT8T/IXegxiUHZGOUks2FI5wI5PGa1s1l5pIXlFIExER6YkB02H+yzD0ZFj98/Q3HQwOgnmPuYvvFy6DVT+HWTfBcT+HrffDonOgYV/XjlU+x03affj/gL8IVtyY/j52kjkFpTD3QZj4Mc2lJpJnFNJERER6qqAMRs4HDGAh1pjepoOBYtfUcez74NUvwpvfhsM+C6f+xQ0W8dipULO5a8cqnwPH/ghO/iPsfQle/VL6yi2Z5ytwk6FrLjWRvKKQJiIi0huGnwn+MBg/+IIwbG56X88fglP+ApM+Dm9+y4Wrse93c6vVbXfDsB94s+vHG/teNxjKml/D+j+kq9SSDZpLTSTvKKSJiIj0hnjTwaO+6+7L56T/NX0BN8n2tC/Cqp+5vkflp7oBRrDw2GndG9Dk6Btc2Hz5U7D/9XSVWrJFc6mJ5A2FNBERkd5SPgdmXJOZgBZnfHDsj+HIb8P638NzF0HpYW50v8JRsOhc2Py3rh3LF4BT/gzBIfDM+6Bxf1qLLlmgudRE8oJCmoiISL4zBo68Do79KWy5D556N4SGuLnVhhwPz14Eq37RtWOFh7mpBWq3wPMfAxtLa9ElCzSXmkjOU0gTERHpKw7/ghskYtcT8OQ5Lryd+ZirPXnl87Dsa10bhr18DhzzY9j+ILx1Y9qLLVmgudREcppCmoiISF8y6VJXE7bvFVdLEjkIp/4dplwJK26GJZdCLNL5cQ77DExY4CbK3vFY2ostWaC51ERylkKaiIhIXzP2fTD3P1C11g0eUrcVjr/FDWqy8W7XHDJS3fExjIETfgsDZsDzF3d9SH/JL5pLTSQnKaSJiIj0RSPOhnmPQ8MeN29a5SqY+Q048XbY+Tg8MRfqdnV8jECxGw0wFoFnPqCJrvsqzaUmknMU0kRERPqq8jmuOVssAo+fBvtehcmfgNPvh4Mr4LFTYNPfXL+ziiWpj1E2Feb8Afa9DK98IbPll8xpnkvtFjeX2iMnwOvfaP9zISJpZWwW2h7Pnj3bLl26NOOvKyIi0i9VrYUnz3ZD6p/xIAw7Dfa86Ibnj1QCPjc5dkfzuy27Blbc5GpcJl2aydJLpr11E7x+jVv2F2Zu3j+RfsYY84q1dnaq51STJiIi0teVTnHD8cfnTdv2EAw9ESZ/0tsgBrFG2L24/WMc9V0YPg9evhL2L8tAoSV7LM2XiJ19LkQkLRTSRERE+oOiMXD201A2HZ6+EDb9BcZ+AHxBbwMfDJvb/v6+AJzyJzfR9dOa6LpPGzbX1awav/t8dPS5EJG0UEgTERHpL8LlcNaTUH4yPHcxHHwTzlrkRnDEQnBAJ/sPg9P+7kaLfP4STXTdV5XPcU0cj/qumjqKZIlCmoiISH8SHABzH4FR73DDrW+8B0Zf4EZyfOGyzodfH3oSHPtT2P4feOt7GSmyZEH5HJhxjQKaSJYopImIiPQ3gUI47Z9umP41t7gBQZpqYe9LsPLHne8/9SqY8FF44zrY8Wj6yysi0s8opImIiPRH/nhfIwNYsFEYMN0Fr4Nvd7xvfKLrgTNds8maTRkosIhI/6GQJiIi0l8Nnwf+sBsgwh+Co29OavYY7XjfQJGb6NpGvYmu6zNTZhGRfkAhTUREpL9qPUDEmPNh9i9g74uw6ied7186xZvoeqkmuhYR6UUKaSIiIv1Z6wEixl8MYy6E178BB1d2vv+YC2D6NbD2Vlh3Z3rLKiLSTyikiYiISIIxcPyvXXPGFy/vvNkjeBNdnwVLPw37Xkt/GUVE+jiFNBEREWmpcCQc9wvYswRW/bTz7X1+N9F1aCg8835NdC0i0kMKaSIiItLWhI+4+dPe+AZUrup8+3A5nBqf6PqjmuhaRKQHFNJERESkLWPghN+ALwwvdLHZ49AT4bifwfaHYPn16S+jiEgfpZAmIiIiqRWOhNk/hz3Pw+qfd22fKVfChEvgzW/B9kfSWjwRkb5KIU1ERETaN+GjMOp8eP3rULmm8+3jNXADj4TnF0D1xrQXUUSkr1FIExERkfYZAyf81jV7fLELk1xDy4mun9VE1yIi3aWQJiIiIh0rGuX6mlU8B6t/0bV9SifDnLth3yuw9HPpLZ+ISB+jkCYiIiKdm3gJjHpX15s9Aox5N8z4Oqy7Hdbdkd7yiYj0IQppIiIi0rnmZo9BN8l1V4fYP/I7MOJsePnTsO/V9JZRRKSPUEgTERGRrikaDcf9FCqehdW/7No+Pj+c/CcID3MTXTfsS2sRRUT6AoU0ERER6bqJl8Kod8Kyr0HV2q7tEx7qTXS9XRNdi4h0gUKaiIiIdJ0xcMKtXrPHT3Q9cA09AY77Oex4GJZ/N71lFBHJcwppIiIi0j1Fo+HYn8Dup2H1r7q+35SFribuzW/D9ofTVz4RkTynkCYiIiLdN+njMHK+1+xxXdf2MQaOvwUGHuVNdL0hrUUUEclXCmkiIiLSfcbAibeBL9C9Zo+BIjjtH277ZzTRtYhIKgppIiIicmiKxnjNHp+CNb/u+n6lk+HkP8L+V2HpZ9NXPhGRPKWQJiIiIodu0mUw8jx47WqoXt/1/UafDzO+Aet+B2tvT1/5RETykEKaiIiIHDpj4ITbwPjhhW40ewQ48lsw4lxXm7bvlbQVUUQk3yikiYiISM8Uj4Vjfwy7F8Oa33R9P58fTr4HwsO9ia73pq2IIiL5RCFNREREem7yJ2DEObDs6u6N2hgeCqf9Hep2uImuY9H0lVFEJE8opImIiEjPGQMn3g74ujfaI8CQ42H2L2DHI5roWkQEhTQRERHpLcXj4Ngfwa5FsPbW7u07+Qo399ryb8O2h9JSPBGRfKGQJiIiIr1n8idhxNnw2legemPX9zMGZt8Cg2bBko9qomsR6dcU0kRERKT3NDd7xGv2aLu+b6DQm+jauoFEmurSU0YRkRzXKyHNGPNlY4w1xgztjeOJiIhIHiseD8f8EHY92f1mjyWTvImuX4Oln+leyBMR6SN6HNKMMWOBc4DNPS+OiIiI9AlTFsLws+C1L0PNpu7tO/pdMPObsP5OWKeJrkWk/+mNmrSfAFcD+qlLREREnBbNHj/Z/Rqxmf+XmOh679LeL5+ISA7rUUgzxlwAbLPWvt5L5REREZG+omQCHPMD2Pk4rLute/v6/HDKvVA40vVPq9+TliKKiOSiTkOaMeZxY8zyFLcLgWuB67ryQsaYhcaYpcaYpRUVFT0tt4iIiOSDKQth+Dx49X+73+wxNARO/TvU74TnF2iiaxHpNzoNadbas621M1vfgPXAROB1Y8xGYAzwqjFmRDvHudVaO9taO7u8vLw334OIiIjkKuPzmj1aePGK7jd7HDIbZv8Sdj7q5lATEekHDrm5o7X2TWvtMGvtBGvtBGArcKy1dmevlU5ERETyX8lEmPV92PkYrPtd9/ef/EmYdBks/y5s+0/vl09EJMdonjQRERFJv6lXwvAz4dX/gZpuDghtDMz+FQw6Bp79sJsou2JJesopIpIDei2keTVq6tUrIiIibRkfnPg7IAYvLex+s8dAIcy4FqLV8PYP4cmzFNREpM9STZqIiIhkRslEmHUz7PgvrL+j+/tXrab50iXaCLsX92bpRERyhkKaiIiIZM7Uq2DYGV6zxy3d23fYXPCHwPjBH3SPRUT6IIU0ERERyRzjg5PugFhT95s9ls+BeU/AUd919+Vz0ldOEZEsUkgTERGRzCqZ5DV7fATW/757+5bPgRnXKKCJSJ+mkCYiIiKZd9inYdjp8OqXoHZrtksjIpJTFNJEREQk84wPTrwDYo3w4iGM9igi0ocppImIiEh2lE6GWTfBjodhw13ZLo2ISM5QSBMREZHsOeyzUH4avPJFqN2W7dKIiOQEhTQRERHJnubRHhvhpU+p2aOICAppIiIikm2lU+DoG2H7f2DD3dkujYhI1imkiYiISPZN+xyUnwqvfAFqt2e7NCIiWaWQJiIiItnXPNpjvZo9iki/p5AmIiIiuaFsKhz9Pdj+IGz8Y7ZLIyKSNQppIiIikjsO+zyUnwJLPw91O7JdGhGRrFBIExERkdzh86vZo4j0ewppIiIiklvKDoOjboBt/4aN92a7NCIiGaeQJiIiIrln2hdg6Bx45XNq9igi/Y5CmoiIiOQenx9OuhOaauGlK9XsUUT6FYU0ERERyU1l0+Do62HbA7DpT9kujYhIxiikiYiISO6a9iUYchIs/RzU7cx2aUREMkIhTURERHJXc7PHGnj5KjV7FJF+QSFNREREctuAw+Go78LWf8Gmv2S7NCIiaaeQJiIiIrnv8P+BISfCy5+CZddCxZJsl0hEJG0U0kRERCT3+fxuWP5IJaz4Hjx5loKaiPRZCmkiIiKSH2o2AsYtRxth9+IsFkZEJH0U0kRERCQ/DJsL/rBbNt5jEZE+SCFNRERE8kP5HJj3BAw6DkwABs7IdolERNJCIU1ERETyR/kcOP5XEGuAjZrgWkT6JoU0ERERyS9DToCBR8HaW7NdEhGRtFBIExERkfxiDExZCPtfhX2vZLs0IiK9TiFNRERE8s+EBeAvVG2aiPRJCmkiIiKSf4IDYdyHYOO9EKnOdmlERHqVQpqIiIjkpykLoakaNv052yUREelVCmkiIiKSn4bOgQEz1ORRRPochTQRERHJT8bA5Ctg38uwf1m2SyMi0msU0kRERCR/TbwEfCFYe1u2SyIi0msU0kRERCR/hQbDuA/Cxj9CU022SyMi0isU0kRERCS/TVkIkUrY9Ndsl0REpFcopImIiEh+Kz8Vyg7XACIi0mcopImIiEh+iw8gsvcFOPBmtksjItJjCmkiIiKS/yZ+DHxBDSAiIn2CQpqIiIjkv/BQGPt+2HA3NNVmuzQiIj2ikCYiIiJ9w5QrIHIANv892yUREekRhTQRERHpG4bNhZIpsE5NHkUkvymkiYiISN9gjBuOv+JZOLgi26URETlkCmkiIiLSd0y6FHwFGkBERPKaQpqIiIj0HeFhMOY9sOEPEK3PdmlERA6JQpqIiIj0LVMWQuM+2HJftksiInJIFNJERESkbxk+D0omwdpbs10SEZFDopAmIiIifYvxweQrYPdTULkq26UREek2hTQRERHpeyZ9HExAA4iISF5SSBMREZG+p3AEjLkANtwF0YZsl0ZEpFsU0kRERKRvmrwQGvbA1n9luyQiIt2ikCYiIiJ908hzoHi8BhARkbyjkCYiIiJ9k/HB5E/Crieham22SyMi0mUKaSIiItJ3TboMjB/W3Z7tkoiIdJlCmoiIiPRdRaNh9Pmw/k6INma7NCIiXaKQJiIiIn3b5IVQvxu2PZDtkoiIdEmPQ5ox5nPGmFXGmLeMMd/vjUKJiIiI9JqR50HRWM2ZJiJ5I9CTnY0xZwIXAkdZaxuMMcN6p1giIiIivcTnh8mfgDe/BdUboGRitkskItKhntakXQXcZK1tALDW7u55kURERER62aTL3WiPGkBERPJAT0PaYcBpxpgXjTFPGWOOb29DY8xCY8xSY8zSioqKHr6siIiISDcUj4WR74R1d0Asku3SiIh0qNOQZox53BizPMXtQlxzyUHAScBXgL8aY0yq41hrb7XWzrbWzi4vL+/VNyEiIiLSqSlXQP1O2PafbJdERKRDnfZJs9ae3d5zxpirgPustRZ4yRgTA4YCqioTERGR3DLqnVA4CtbeCmPfk+3SiIi0q6fNHf8FzAMwxhwGBIE9PTymiIiISO/zBdwAIjsegZpN2S6NiEi7ehrS7gAmGWOWA38GLvVq1URERERyz+RPuPt1v8tuOUREOtCjIfittY3AR3upLCIiIiLpVTzezZu27g6YeZ2rXRMRyTE9nsxaREREJK9MWQh122D7w9kuiYhISgppIiIi0r+MPh/CI9wAIiIiOUghTURERPoXXwFMvhx2PAS1W7NdGhGRNhTSREREpP+Z/AmwMdc3TUQkxyikiYiISP9TMglGnAPrbodYNNulERFpQSFNRERE+qcpC6F2C+z4b7ZLIiLSgkKaiIiI9E+jL4DwMFinAUREJLcopImIiEj/5A/CxI/Dtgehdnu2SyMi0kwhTURERPqvyZ8EG4X1d2a7JCIizRTSREREpP8qmwrD58G629xojyIiOUAhTURERPq3KQuhZhPseCzbJRERARTSREREpL8b8x4IDXG1aSIiOUAhTURERPo3f8gNILL1fqjbme3SiIgopImIiIgw5QqwTbD+99kuiYiIQpqIiIgIZdNg2BkaQEREcoJCmoiIiAjA5Cugej3sWpTtkohIP6eQJiIiIgIw7v0QHARrb812SUSkn1NIExEREQHwh2HipbD1n1C/O9ulEZF+TCFNREREJG7KFRCLwPq7sl0SEenHFNJERERE4gZMh/JTvAFEbLZLIyL9lEKaiIiISLLJC6FqDex+KtslEZF+SiFNREREJNm4D0LBQA0gIiJZo5AmIiIikixQCBMvgS3/gPo92S6NiPRDCmkiIiIirU25AmKNsPHubJdERPohhTQRERGR1gYeCUNOck0eNYCIiGSYQpqIiIhIKlMWQuVKqHg22yURkX5GIU1EREQklfEfgoIyDSAiIhmnkCYiIiKSSqAYJiyAzX+Dhn3ZLo2I9CMKaSIiIiLtmbIQYg2w8Y/ZLomI9CMKaSIiIiLtGTQLBh+vAUREJKMU0kREREQ6MmUhHHwL9izJdklEpJ9QSBMRERHpyPgPQ6AE1t2W7ZKISD+hkCYiIiLSkYISmPAR2PQXaDyQ7dKISD+gkCYiIiLSmSkLIVoHG+/JdklEpB9QSBMRERHpzODjYNCxGkBERDJCIU1ERESkK6ZcAQfegL0vZ7skItLHKaSJiIiIdMWEj4C/CNbdmu2SiEgfp5AmIiIi0hUFZTDhYtj4J4hUZrs0ItKHKaSJiIiIdNXkhRCthY33ZrskItKHKaSJiIiIdNWQ42HgUbBWc6aJSPoopImIiIh0lTFuOP79r8K+V7JdGhHpoxTSRERERLpjwgLwF7rh+EVE0kAhTURERKQ7ggNh/EWuX1qkOtulEZE+SCFNREREpLsmXwFN1bDpz9kuiYj0QQppIiIiIt01dA4MmKEmjyKSFgppIiIiIt0VH0Bk38uwf1m2SyMifYxCmoiIiMihmPBR8Ic1HL+I9DqFNBEREZFDERoMYz8AG/8ITTXZLo2I9CEKaSIiIiKHaspCiFTCpr9muyQi0ocopImIiIgcqvJToexwDSAiIr1KIU1ERETkUMUHENn7Ahx4M9ulEZE+QiFNREREpCcmXAK+oAYQEZFeo5AmIiIi0hPhoTD2/bDhbmiqzXZpRKQPUEgTERER6akpCyFyADb/PdslEZE+QCFNREREpKeGnQGlU2GdmjyKSM8ppImIiIj0lDEw+QqoeBYOrsh2aUQkzymkiYiIiPSGSZeCr0ADiIhIjymkiYiIiPSG8DAY817Y8AeI1me7NCKSx3oU0owxs4wxLxhjlhljlhpjTuitgomIiIjknSkLoXEfbLkv2yURkTzW05q07wPfttbOAq7zHouIiIj0T8PPhJJJsPbWbJdERPJYT0OaBcq85QHA9h4eT0RERCR/GZ8bQGT3U1C5KtulEZE81dOQ9kXgB8aYLcAPgWva29AYs9BrErm0oqKihy8rIiIikqMmfRxMQAOIiMgh6zSkGWMeN8YsT3G7ELgK+JK1dizwJeB37R3HWnurtXa2tXZ2eXl5770DERERkVxSOALGXAgb7oJoQ7ZLIyJ5KNDZBtbas9t7zhjzB+AL3sO/Abf3UrlERERE8tfkK2DLP2Drv2D8RdkujYjkmZ42d9wOnOEtzwPW9PB4IiIiIvlv5DlQPF4DiIjIIem0Jq0TVwA/M8YEgHpgYc+LJCIiIpLn4gOIvPENqFoLpVOyXSIRySM9qkmz1j5rrT3OWnu0tfZEa+0rvVUwERERkbw26TIwflin3iAi0j09be4oIiIiIqkUjYLR58P6OyHamO3SiEgeUUgTERERSZfJC6F+N7xwGVQsyXZpRCRPKKSJiIiIpEtBGWBg073w5FkKaiLSJQppIiIiIulS8UxiOdYIuxdnrSgikj8U0kRERETSZdhc8IfdACK+oHssItKJng7BLyIiIiLtKZ8D855wNWjD5rrHIiKdUEgTERERSafyOQpnItItau4oIiIiIiKSQxTSREREREREcohCmoiIiIiISA5RSBMREREREckhCmkiIiIiIiI5RCFNREREREQkhyikiYiIiIiI5BCFNBERERERkRyikCYiIiIiIpJDFNJERERERERyiEKaiIiIiIhIDjHW2sy/qDEVwKaMv3DnhgJ7sl2IfkDnOf10jjND5zn9dI4zQ+c5/XSOM0PnOf10jnvPeGtteaonshLScpUxZqm1dna2y9HX6Tynn85xZug8p5/OcWboPKefznFm6Dynn85xZqi5o4iIiIiISA5RSBMREREREckhCmkt3ZrtAvQTOs/pp3OcGTrP6adznBk6z+mnc5wZOs/pp3OcAeqTJiIiIiIikkNUkyYiIiIiIpJD8jakGWPmG2NWGWPWGmO+lrT+B8aYlcaYN4wx/zTGDGxn/0uNMWu826VJ639njHnd2//vxpiSbu4/0Rjzorf+L8aYYC++7YzK5jk2xow3xrxijFlmjHnLGHNl0nN95hxD+s5z0vO/MMZUd/D6+iyn8Rzrs9wr3xm/N8Zs8M7hMmPMrG7u32fOczbPsT7LvXKejTHmBmPMamPM28aYz3dz/z5znrN5jvVZ7pXz/EzS98V2Y8y/url/nzrPaWGtzbsb4AfWAZOAIPA6MN177lwg4C3fDNycYv/BwHrvfpC3PMh7rixpux8DX+vm/n8FPuwt/wa4KtvnK0/PcRAIecslwEZgVF86x+k+z97zs4G7gep2Xl+f5fSfY32We/6d8XvgA528vj7L6T/H+iz3/DxfBvwB8HmPh+mznJVzrM9yL/z9S9ruH8DH+uNnOZ23fK1JOwFYa61db61tBP4MXAhgrX3UWtvkbfcCMCbF/ucBj1lr91lr9wOPAfO9/SvB/RIDFAKpOu2l3N/bZx7wd2+7u4D39PTNZklWz7G1ttFa2+A9DOHV+vaxcwxpPM/GGD/wA+DqDl5fn+U0n2N9lnt+nrtIn+U0n2N9lnvlPF8FfMdaG/OOt7ur+/ex85zVc6zPcu99ZxhjSnHn7F9d3b8Pnue0yNeQNhrYkvR4q7eutcuBh7u7vzHmTmAncDjwC2/dbGPM7Z3sPwQ4kPShb69c+SDb5xhjzFhjzBvecW621m6nb51jSO95/izwgLV2R/IO+ixn/Bzrs9zSIX1nADd4zXJ+YowJgT7LZP4c67Pc0qGc58nARcaYpcaYh40xU0GfZTJ/jvVZbulQvzMA3gs8kfQDfH/7LKdNvoY0k2Jdi9oYY8y1QBNwT3f3t9ZeBowC3gYu8tYttdZ+spP9Oy1XHsn2OcZau8VaexQwBbjUGDO8K+XKM2k5z8aYUcAH8QJwiyf1WYbMnmN9luMbHPp3xjW4H3SOxzWb+Sros+zJ5DnWZzm+waGf5xBQb62dDdwG3AH6LHsyeY71WY5v0INrOc/FwJ+an+x/n+W0ydeQthUYm/R4DLA9/sDrmHg+sMBam+ofvcP9Aay1UeAvwPu7sf8eYKAxJtDecfNIts9x8nbbgbeA0+hb5xjSd56Pwf3hWWuM2QgUGWPWdmP/vnSes32Om+mzfGjfGdbaHdZpAO7ENeHp6v596Txn+xw302f5kP/+bcX13wH4J3BUN/bvS+c52+e4mT7Lh34tZ4wZgvuu+E83X7+vnef0sDnQMa67NyCA63w4kURHyBnec/OBFUB5B/sPBjbgOjEO8pYH45L9FG8bA/wQ+GFX9/ee+xstO0J+OtvnK0/P8Rig0FseBKwGjuxL5zid5znFdh0NHKLPcnrPsT7LPTzPwEjv3gA/BW7SZzkr51if5Z6f55uAy73lucDL+ixn5Rzrs9wLf/+AK4G7DvHfqc+c57T9+2W7AIdccHin959qHXBt0vq1uPavy7zbb9rZ/3Jv27XAZd46H/Ac8CawHFf1W+Y9Nxu4vaP9vfWTgJe89X/DGz0oH2/ZPMfAOcAb3hfKG8DCvniO03WeU2xTnbSsz3IGz7E+yz0/z8CTSd8ZfwRK9FnO/DnWZ7lXzvNAXK3Dm8AS4Gh9ljN/jvVZ7p2/f8BiYH6rdf3us5yum/FOlIiIiIiIiOSAfO2TJiIiIiIi0icppImIiIiIiOQQhTQREREREZEcopAmIiIiIiKSQxTSREREREREcohCmoiIiIiISA5RSBMREREREckhCmkiIiIiIiI55P8BCeMa3E+TTf8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "\n", - "y_name = dict_cols['y'][1][0]\n", - "for idx in range(start_idx, start_idx + nb_predictions):\n", - " df_iter = df_input.iloc[idx:(idx + N_pred)].copy()\n", - " for idxx in range(N_pred - 1):\n", - " idx_old = df_iter.index[idxx]\n", - " idx_new = df_iter.index[idxx+1]\n", - " mean, var = m_best.predict_f(df_iter.loc[idx_old, :].to_numpy().reshape(1, -1))\n", - " df_iter.loc[idx_new, f'{y_name}_1'] = mean.numpy().flatten()\n", - " for lag in range(2, dict_cols['y'][0] + 1):\n", - " df_iter.loc[idx_new, f\"{y_name}_{lag}\"] = df_iter.loc[idx_old, f\"{y_name}_{lag-1}\"]\n", - " \n", - " mean_iter, var_iter = m_best.predict_f(df_iter.to_numpy())\n", - " plt.plot(df_iter.index, mean_iter.numpy(), '.-', label = 'predicted', color = 'orange')\n", - "plt.plot(df_output.iloc[start_idx:start_idx + nb_predictions + N_pred], 'o-', label = 'measured', color = 'darkblue')\n", - "plt.title(f\"Prediction over {N_pred} steps\")\n", - "plt.savefig(f\"prediction_{N_pred}_steps.png\")" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - ">" - ] - }, - "execution_count": 147, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.training_loss" - ] - }, - { - "cell_type": "code", - "execution_count": 152, - "metadata": {}, - "outputs": [], - "source": [ - "tf_test = tf.Variable(np.ones((3, 3)))" - ] - }, - { - "cell_type": "code", - "execution_count": 296, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2.79 s ± 76.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" - ] - } - ], - "source": [ - "%%timeit\n", - "df_iter = df_input.iloc[idx:(idx + N_pred)].copy()\n", - "for idxx in range(N_pred - 1):\n", - " idx_old = df_iter.index[idxx]\n", - " idx_new = df_iter.index[idxx+1]\n", - " mean, var = m_best.predict_f(df_iter.loc[idx_old, :].to_numpy().reshape(1, -1))\n", - " df_iter.loc[idx_new, f'{y_name}_1'] = mean.numpy().flatten()\n", - " for lag in range(2, dict_cols['y'][0] + 1):\n", - " df_iter.loc[idx_new, f\"{y_name}_{lag}\"] = df_iter.loc[idx_old, f\"{y_name}_{lag-1}\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 407, - "metadata": {}, - "outputs": [], - "source": [ - "N_pred = 15" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "data_in = df_input.iloc[idx:(idx + N_pred)].copy()\n", - "data_out = df_output.iloc[idx:(idx + N_pred)].copy()" - ] - }, - { - "cell_type": "code", - "execution_count": 416, - "metadata": {}, - "outputs": [], - "source": [ - "ylag1_idx = df_iter.columns.to_list().index(f\"{dict_cols['y'][1][0]}_1\")\n", - "ylags = dict_cols['y'][0]\n", - "tf_input = tf.Variable(data_in)" - ] - }, - { - "cell_type": "code", - "execution_count": 417, - "metadata": {}, - "outputs": [], - "source": [ - "@tf.function\n", - "def multistep_prediction(tf_input):\n", - " N_pred = tf_input.shape[0]\n", - " for idxx in range(N_pred - 1):\n", - " mean,_ = m.predict_f(tf.reshape(tf_input[idxx, :], (1, -1)))\n", - " tf_input[idxx+1, ylag1_idx].assign(mean[0,0])\n", - " tf_input[idxx + 1, ylag1_idx + 1 : ylag1_idx + ylags].assign(tf_input[idxx, ylag1_idx : ylag1_idx + ylags - 1])\n", - " mean, _ = m.predict_f(tf_input)\n", - " return mean" - ] - }, - { - "cell_type": "code", - "execution_count": 418, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:AutoGraph could not transform and will run it as-is.\n", - "Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\n", - "Cause: invalid syntax (tmpusoeex0r.py, line 20)\n", - "To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert\n", - "WARNING: AutoGraph could not transform and will run it as-is.\n", - "Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.\n", - "Cause: invalid syntax (tmpusoeex0r.py, line 20)\n", - "To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert\n" - ] - } - ], - "source": [ - "model_out = multistep_prediction(tf.Variable(data_in))" - ] - }, - { - "cell_type": "code", - "execution_count": 419, - "metadata": {}, - "outputs": [], - "source": [ - "#@tf.function\n", - "def multistep_error(data):\n", - " tf_input = data[0]\n", - " tf_targets = data[1]\n", - " tf_outputs = multistep_prediction(tf_input)\n", - " err = tf.sqrt(tf.reduce_mean((tf_targets - tf_outputs)**2))\n", - " return err" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "data = (tf.Variable(data_in), tf.Variable(data_out))" - ] - }, - { - "cell_type": "code", - "execution_count": 428, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "26.4 s ± 3.3 s per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" - ] - } - ], - "source": [ - "%%timeit\n", - "for idx in range(50):\n", - " multistep_error(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 423, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 423, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAFlCAYAAACa4hv3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA9tElEQVR4nO3deXyU5b338e+Vyb7vgZCEBAz7TgARwb1iXbAurVL3qtXWLqenrZ62nlMfz+lpT/t6nvp47PGhKuKCe1ut1bZuFGQPqywqCCEJewLZyTIz1/PHDGGykQAJ90zyeb9e88q9zT0/cmsy3/yu+xpjrRUAAAAAIHiEOV0AAAAAAKAtghoAAAAABBmCGgAAAAAEGYIaAAAAAAQZghoAAAAABBmCGgAAAAAEmXCnXjg9Pd3m5+c79fIAAAAA4Kh169ZVWGszOtvnWFDLz89XcXGxUy8PAAAAAI4yxuzpah9DHwEAAAAgyBDUAAAAACDIENQAAAAAIMg4do9aZ1paWlReXq7GxkanS0E70dHRysnJUUREhNOlAAAAAP1eUAW18vJyJSQkKD8/X8YYp8uBn7VWlZWVKi8vV0FBgdPlAAAAAP1eUA19bGxsVFpaGiEtyBhjlJaWRqcTAAAAOEuCKqhJIqQFKa4LAAAAcPYEXVDD6YuPj3e6BAAAAAC9gKAW5Nxut9MlAAAAADjLCGrtlJSUaNSoUbr77rs1btw4ff3rX9f777+vWbNmqbCwUGvWrFF9fb3uuusuTZs2TZMnT9abb77Z+tzZs2drypQpmjJlilasWCFJ2r9/v+bMmaNJkyZp3LhxWrZsmaS2HbDXX39dd9xxhyTpjjvu0A9+8ANddNFFevDBB/XFF19o7ty5mjp1qmbPnq1PP/1UkrR7927NnDlT06ZN08MPP3wWv0sAAAAA+lJQzfoY6JE/b9W2fTW9es4x2Yn6t6vHdnvczp079dprr2nBggWaNm2aFi9erI8//lhvvfWWfvGLX2jMmDG6+OKL9cwzz6iqqkrTp0/XpZdeqszMTL333nuKjo7Wjh07dPPNN6u4uFiLFy/W5Zdfrp/+9KfyeDxqaGjotobPP/9c77//vlwuly655BI9+eSTKiws1OrVq/Wtb31LH374ob73ve/p/vvv12233aYnnniiN75FAAAAAIJA0AY1JxUUFGj8+PGSpLFjx+qSSy6RMUbjx49XSUmJysvL9dZbb+k3v/mNJN9slaWlpcrOztYDDzygjRs3yuVy6fPPP5ckTZs2TXfddZdaWlp07bXXatKkSd3WcOONN8rlcqmurk4rVqzQjTfe2LqvqalJkrR8+XK98cYbkqRbb71VDz74YG9+GwAAADBAWGu1dV+NDtc1OV1Kn4h0hWnWOelOl3FKgjao9aTz1VeioqJal8PCwlrXw8LC5Ha75XK59MYbb2jkyJFtnvfzn/9cWVlZ2rRpk7xer6KjoyVJc+bM0dKlS/WXv/xFt956q370ox/ptttuazOTYvup7+Pi4iRJXq9XycnJ2rhxY6e1MhsjAAAATlez26t3Ptmvhct3a1N5tdPl9Jn0+CgV/+xSp8s4JUEb1ILZ5Zdfrscff1yPP/64jDHasGGDJk+erOrqauXk5CgsLEyLFi2Sx+ORJO3Zs0dDhgzRPffco/r6eq1fv1633XabsrKytH37do0cOVJ//OMflZCQ0OG1EhMTVVBQoNdee0033nijrLXavHmzJk6cqFmzZunll1/WLbfcohdffPFsfxsAAAAQoirrmrR4dameX7VHh2qbNCw9Tv9r3liNH5LkdGl9IsIVelNzENROw8MPP6zvf//7mjBhgqy1ys/P19tvv61vfetbuv766/Xaa6/poosuau2KLVmyRL/+9a8VERGh+Ph4Pffcc5KkX/7yl7rqqquUm5urcePGqa6urtPXe/HFF3X//ffr3//939XS0qKbbrpJEydO1GOPPab58+frscce0/XXX3/W/v0AAAAITdv312jh8t3608Z9anZ7NWdEhn51Q74uKMxQWBgjtYKJsdY68sJFRUW2uLi4zbbt27dr9OjRjtSD7nF9AAAAQo/Ha/XB9oNauLxEK3dVKibCpeumDNGds/J1TmbHEV04e4wx66y1RZ3to6MGAAAA9EO1jS16tbhci1aUqPRIg7KTovXQFaN007RcJcdGOl0eukFQAwAAAPqRkop6PbuiRK8Vl6m+2aOioSl6cO4oXT42S+EheK/WQEVQAwAAAEKctVYrvqjUwuW79cGnhxQeZnTVhGzdOStfE3KSnS4Pp4GgBgAAAISoxhaP/rRhrxYuL9FnB2uVFhep71x0jm45d6gyE6OdLg9ngKAGAAAAhJgD1Y16flWJFq8u1dGGFo0enKhf3zBBV0/MVnSEy+ny0At6FNSMMXMlPSbJJekpa+0vuzhumqRVkr5mrX2916oEAAAAoA2lR/XM8hK9+8l+eazVZaOzdNf5BZpRkCpjmF6/P+k2qBljXJKekHSZpHJJa40xb1lrt3Vy3K8k/a0vCgUAAAAGohaPV+9uOaBnPt6tjWVVSogK1x3n5ev28/KVmxrrdHnoIz2Z9mW6pJ3W2l3W2mZJL0ua18lx35H0hqRDvVgfJN1xxx16/XVfg/Luu+/Wtm3bujx2yZIlWrFiRev6k08+2foB2wAAAAgdR+ub9cRHOzX7Vx/puy9tUFVDsx65ZqxW/uQS/eyqMYS0fq4nQx+HSCoLWC+XNCPwAGPMEElfkXSxpGldncgYc6+keyUpLy/vVGvtVzwej1yuUx8//NRTT510/5IlSxQfH6/zzjtPknTfffedVn0AAABwxmcHarVw+W79ccNeNbm9ml2Yrl9cN04XjshUWBjDGweKngS1zv5rsO3WfyvpQWut52RjY621CyQtkKSioqL252jr3YekA5/0oLxTMGi8dEWnt9e18eijj+rFF19Ubm6u0tPTNXXqVL399tuaNGmS1qxZo5qaGj3zzDOaPn16p8//+c9/ri+++EJ79+5VWVmZfvzjH+uee+7RkiVL9Mgjj2jw4MHauHGjPvnkEz300ENasmSJmpqa9O1vf1vf/OY3Za3Vd77zHX344YcqKCiQtSe+VRdeeKF+85vfqKioSH/961/1k5/8RB6PR+np6Xr66af15JNPyuVy6YUXXtDjjz+uDz74QPHx8frhD3+ojRs36r777lNDQ4OGDx+uZ555RikpKbrwwgs1Y8YMffTRR6qqqtLTTz+t2bNn99q3HQAAACfn9Vp9+OkhLVyxW8t3Vio6IkzXTcnRnbPyNSIrweny4ICeBLVySbkB6zmS9rU7pkjSy/6Qli7py8YYt7X2T71R5NlUXFysN954Qxs2bJDb7daUKVM0depUSVJ9fb1WrFihpUuX6q677tKWLVu6PM/mzZu1atUq1dfXa/LkybryyislSWvWrNGWLVtUUFCgBQsWKCkpSWvXrlVTU5NmzZqlL33pS9qwYYM+++wzffLJJzp48KDGjBmju+66q835Dx8+rHvuuUdLly5VQUGBjhw5otTUVN13332twUySPvjgg9bn3HbbbXr88cd1wQUX6F//9V/1yCOP6Le//a0kye12a82aNXrnnXf0yCOP6P333+/NbysAAAA6Udfk1mvFZVq0okQllQ0anBStH88dqZun5SklLtLp8uCgngS1tZIKjTEFkvZKuknS/MADrLUFx5eNMc9KevuMQ1oPOl994eOPP9a8efMUExMjSbr66qtb9918882SpDlz5qimpkZVVVVKTk7u9DzHzxETE6OLLrpIa9asUXJysqZPn66CAt+36+9//7s2b97cev9ZdXW1duzYoaVLl+rmm2+Wy+VSdna2Lr744g7nX7VqlebMmdN6rtTU1JP+u6qrq1VVVaULLrhAknT77bfrxhtvbN1/3XXXSZKmTp2qkpKS7r5NAAAAOAOllQ16dkWJXisuU22TW1PykvXPXxqpueMGKcLVk2kk0N91G9SstW5jzAPyzebokvSMtXarMeY+//4n+7jGsypwmGF77Yd1nmyYZ1fHxsXFtXmtxx9/XJdffnmbY995551up1e11vbqFKxRUVGSJJfLJbfb3WvnBQAAgI+1Vit3VWrh8hK9v/2gXMboygmDdeesAk3KTXa6PASZHsV1a+071toR1trh1tr/8G97srOQZq29I5Q/Q+3888/Xn//8ZzU2Nqqurk5/+ctfWve98sorknxdt6SkJCUlJXV5njfffFONjY2qrKzUkiVLNG1axzlWLr/8cv3P//yPWlpaJEmff/656uvrNWfOHL388svyeDzav3+/Pvroow7PnTlzpv7xj39o9+7dkqQjR45IkhISElRbW9vh+KSkJKWkpGjZsmWSpOeff761uwYAAIC+09ji0atry3TFY8s0//ertW7PUX37wnO0/KGL9dhNkwlp6FSPPvB6IJk2bZquueYaTZw4UUOHDlVRUVFrIEtJSdF5553XOpnIyUyfPl1XXnmlSktL9fDDDys7O1uff/55m2PuvvtulZSUaMqUKbLWKiMjQ3/605/0la98RR9++KHGjx+vESNGdBqoMjIytGDBAl133XXyer3KzMzUe++9p6uvvlo33HCD3nzzTT3++ONtnrNo0aLWyUSGDRumhQsXnuF3CwAAAF05WNOoF1bt0eLVpaqsb9aoQQn61fXjNW/SEEVHnPrs3xhYzMmG+vWloqIiW1xc3Gbb9u3bNXr0aEfqCVRXV6f4+Hg1NDRozpw5WrBggX7wgx+0zrbYnZ///OdtJvToL4Ll+gAAAASzTWVVWrh8t/7yyX65vVaXjMrSXefna+awtF69dQWhzxizzlrbacCgo9aJe++9V9u2bVNjY6Nuv/12TZkyxemSAAAAEMTcHq/+uvWAFi4v0bo9RxUfFa5bz83X7ecN1dC0uO5PALRDUOvE4sWLO2xbsmRJh20LFy7UY4891mbbrFmz9MQTT/RVaQAAAAgiVQ3NemlNmZ5bWaL91Y0amharf7t6jG6YmqOE6Ainy0MII6idgTvvvFN33nmn02UAAADgLNtxsFYLV5ToD+vL1dji1axz0vTovHG6aFSmXGEMb8SZC7qg1tvTzqN3OHUvIwAAQLBo8Xj14aeH9MKqPVq2o0JR4WH6yuQhumNWvkYNSnS6PPQzQRXUoqOjVVlZqbQ0brQMJtZaVVZWKjo62ulSAAAAzrqyIw16ZW2ZXi0u06HaJg1KjNaPLh+pm6fnKTUu0uny0E8FVVDLyclReXm5Dh8+7HQpaCc6Olo5OTlOlwEAAHBWtHi8+mD7Ib20plRLdxyWkXThyEzNn56nC0dmKNzVo48jBk5bUAW1iIgIFRQUOF0GAAAABqjOumffvbhQX52WqyHJMU6XhwEkqIIaAAAAcLb5umcHtXhNmZb5u2cXjczU/Bl5umAE3TM4g6AGAACAAansSINeXluqV4vLdbi2SYOTovW9Swr11aJcZdM9g8MIagAAABgwWjxevb/toBavKdWyHRUKM9LFozJ18/Q8XTiSqfURPAhqAAAA6PdKK090zyrqmpSdFK1/unSEvjotR4OT6J4h+BDUAAAA0C+1eLx6b9tBvdSme5al+TNydcEIumcIbgQ1AAAA9Ct7Kuv18toyvebvng1JjtEPLhuhrxblalASnwuL0EBQAwAAQMhrdp/onn28s0KuMKOLR/k+92zOiAy6Zwg5BDUAAACErJIKX/fs9XVlqqhr1pDkGP3zZSN0I90zhDiCGgAAAEJKs9urv287oJfWlGr5zkq5wowuGZWpm2fkaU4h3TP0DwQ1AAAAhISSinq9tLZUrxeXq7Le1z374Zd83bOsRLpn6F8IagAAAAhax7tni1eXasUXvu7ZpaN9n3s2m+4Z+jGCGgAAAILO7op6vbymVK+v83XPclJi9KPLR+rGqTnKpHuGAYCgBgAAgKDQ5Pbob1sP6qXVpVq5y9c9u2x0lm6ekafZ56QrjO4ZBhCCGgAAABy163Cdf+bGch2pb1ZuKt0zgKAGAACAs+5492zx6j1ateuIwsOMLhuTpZun5+l8umcAQQ0AAABnzxeH61rvPTva0KK81Fj9eO5I3TA1R5kJdM+A4whqAAAA6FONLR79batv5sbVu33dsy+N9XXPZg2newZ0hqAGAACAPrHzkK979sb6E92zB+eO0g1Tc5SREOV0eUBQI6gBAACg1zS5Pfrrlrbds8vHDtLN0/N03vA0umdADxHUAAAAcMZ2V9TrJf+9Z0fqm+meAWeIoAYAAIDT0uz26r1tB7V4zR4t3+n73LMvjcnS/BncewacKYIaAAAATknZkQa9tKZUrxaXq6KuSUOSY/TDL43QV4ty+dwzoJcQ1AAAANAtt8erDz49pBdXl2rZjsMyki4elaWvz8jTnBEZctE9A3oVQQ0AAABd2lt1TK+sKdUrxWU6WNOkQYnR+u7FhfratFxlJ8c4XR7QbxHUAAAA0IbHa7Xks0NavLpUH312SFbSBSMy9O/XDtVFIzMU7gpzukSg3yOoAQAAQJJ0sKZRr6wt0ytry7S36pgyEqL0rQvP0dem5So3Ndbp8oABhaAGAAAwgHm9Vst2Vmjx6j16f/shebxWswvT9bMrR+vSMVmKoHsGOIKgBgAAMAAdrm3Sa+vK9NKaUpUdOaa0uEjdPbtAN0/LU356nNPlAQMeQQ0AAGCA8HqtVu6q1OLVpfr7tgNq8VidOyxVP758lL40NktR4S6nSwTgR1ADAADo547UN+v1dWV6aU2ZdlfUKzk2QrfPzNfNM/I0PCPe6fIAdIKgBgAA0A9Za7Vm9xEtXlOqdz85oGaPV9PyU/TdS87RFeMGKzqC7hkQzAhqAAAA/Uh1Q4veWF+uxWtKtfNQnRKiwzV/Rp7mz8jTiKwEp8sD0EMENQAAgBBnrdX60iq9uHqP/rJ5v5rcXk3KTdavb5igqyZkKyaS7hkQaghqAAAAIaqmsUV/2rBXi1eX6tMDtYqPCteNRTmaP32oxmQnOl0egDNAUAMAAAgh1lptLq/W4tWlemvTPh1r8Wj8kCT953Xjdc3EbMVF8fYO6A/4PxkAACAE1DW59dbGfXpx9R5t3VejmAiX5k3K1vwZeZqQk+x0eQB6GUENAAAgiG3ZW63Fa0r15oa9qm/2aNSgBD06b6zmTR6ixOgIp8sD0EcIagAAAEGmodmttzft14trSrWprEpR4WG6akK2vn5unibnJssY43SJAPoYQQ0AACBIfHagVotX79EfNuxVbaNbhZnx+rerx+i6yTlKiqV7BgwkBDUAAAAHNbZ49M4n+7V4damK9xxVpCtMXx4/SPNnDNW0/BS6Z8AARVADAABwyObyKt29qFiHaps0LD1OP/3yaF0/NUepcZFOlwbAYQQ1AAAAB7y/7aC+89IGpcZF6sW7Z+i84Wl0zwC0IqgBAACcZc+tLNHP39qqcUOS9NTtRcpMiHa6JABBhqAGAABwlni9Vv/57nb9ftluXTo6U//35smKjeTtGICO+MkAAABwFjS2ePSDVzfqnU8O6LaZQ/VvV4+VK4yhjgA6R1ADAADoY0fqm3XPc8Vat+eofvrl0bp7dgH3owE4KYIaAABAHyqpqNcdC9doX3Wjfvf1Kfry+MFOlwQgBBDUAAAA+si6PUd1z3PFstbqpXtmaOrQVKdLAhAiCGoAAAB94N1P9uv7r2zUoKRoPXvndBWkxzldEoAQQlADAADoRdZaPf3xbv3HO9s1OTdZv7+tSGnxUU6XBSDEENQAAAB6icdr9b/+vFWLVu7RFeMG6f98bZKiI1xOlwUgBBHUAAAAekFDs1vffWmj3t9+UPfMLtC/XDFaYUy/D+A0hfXkIGPMXGPMZ8aYncaYhzrZP88Ys9kYs9EYU2yMOb/3SwUAAAhOh2ubdPOCVfrw04N65Jqx+umVYwhpAM5Itx01Y4xL0hOSLpNULmmtMeYta+22gMM+kPSWtdYaYyZIelXSqL4oGAAAIJjsPFSnOxauUUVdk/7frUW6bEyW0yUB6Ad6MvRxuqSd1tpdkmSMeVnSPEmtQc1aWxdwfJwk25tFAgAABKPVuyp17/PrFOEyeuXemZqYm+x0SQD6iZ4MfRwiqSxgvdy/rQ1jzFeMMZ9K+ouku3qnPAAAgOD05sa9uvXpNUqLj9QfvzWLkAagV/UkqHU2wLpDx8xa+0dr7ShJ10p6tNMTGXOv/x624sOHD59SoQAAAMHAWqvfLdmp7728UZPykvWH+89Tbmqs02UB6Gd6EtTKJeUGrOdI2tfVwdbapZKGG2PSO9m3wFpbZK0tysjIOOViAQAAnOT2ePWTP27Rf/31M10zMVvPf2O6kmMjnS4LQD/Uk3vU1koqNMYUSNor6SZJ8wMPMMacI+kL/2QiUyRFSqrs7WIBAACcUtfk1rdfXK9/fH5Y37pwuH74pZHM7Aigz3Qb1Ky1bmPMA5L+Jskl6Rlr7VZjzH3+/U9Kul7SbcaYFknHJH3NWsuEIgAAoF84WNOoOxeu1WcHa/WLr4zX/Bl5TpcEoJ8zTuWpoqIiW1xc7MhrAwAA9NRnB2p158I1qj7Wov/++hRdNDLT6ZIA9BPGmHXW2qLO9vVk6CMAAMCAtHxnhe57fp1iIl169b6ZGpud5HRJAAYIghoAAEAnXl9Xrofe2KzhGfF65s5pGpIc43RJAAYQghoAAEAAa60e+2CHfvv+Dp1/Trp+d8sUJUZHOF0WgAGGoAYAAODX7PbqJ3/8RK+vK9f1U3L0n9eNV2R4Tz7NCAB6F0ENAABAUk1ji+5/YZ2W76zU9y8t1PcuKZQxTL8PwBkENQAAMODtrTqmOxeu0a7D9frNjRN1w9Qcp0sCMMAR1AAAwIC2ZW+17np2rY41e7TorumadU660yUBAEENAAAMXB99dkgPvLheSTEReu3+mRo1KNHpkgBAEkENAAAMUItXl+rhN7doZFaCFt45TVmJ0U6XBACtCGoAAGBA8XqtfvP3z/S7JV/owpEZ+u/5UxQfxVsiAMGFn0oAAGDAaHJ79KPXNuutTft08/Q8PTpvrMJdTL8PIPgQ1AAAwIBQ1dCse59fpzW7j+jHc0fq/guGM/0+gKBFUAMAAP1e2ZEG3b5wjcqPHNNjN03SvElDnC4JAE6KoAYAAPq1TWVV+saitWrxWD3/jemaMSzN6ZIAoFsENQAA0G/9fesBffflDUqPj9LL907XOZnxTpcEAD1CUAMAAP3Ss8t365G3t2nCkCQ9dfs0ZSREOV0SAPQYQQ0AAPQrXq/VL97Zrqc+3q3LxmTpsZsmKTaStzwAQgs/tQAAQL/R2OLRP72yUe9uOaA7zsvXw1eNkSuMmR0BhB6CGgAA6Bcq65p0z3PF2lBWpZ9dOVrfOL+A6fcBhCyCGgAACHm7K+p1x8I1OlDdqN/Nn6Irxg92uiQAOCMENQAAENLW7TmiuxcVyxijxfecq6lDU5wuCQDOGEENAACErL9s3q9/enWjspOi9eyd05WfHud0SQDQKwhqAAAg5Fhr9dSy3fqPd7Zr6tAU/f62IqXGRTpdFgD0GoIaAAAIKR6v1SN/3qrnVu7Rl8cP0v/+6iRFR7icLgsAehVBDQAAhIyGZre++9IGvb/9kO6dM0wPzR2lMKbfB9APEdQAAEBIOFTbqLsXFWvL3mo9Om+sbp2Z73RJANBnCGoAACCouT1effDpIT369jZV1jVrwa1FunRMltNlAUCfIqgBAICgdKS+Wa+sLdMLq/Zob9Ux5aTE6JVvnqsJOclOlwYAfY6gBgAAgsqWvdVatKJEb27ap2a3VzOHpenhq8bo0tGZCneFOV0eAJwVBDUAAOC4ZrdXf916QItWlGjdnqOKiXDpxqk5um1mvkYOSnC6PAA46whqAADAMYdqGrV4TakWry7VodomDU2L1cNXjdENU3OUFBPhdHkA4BiCGgAAOKustVpfWqVFK0r07pb9avFYXTgyQ7+ama8LRmQw3T4AiKAGAADOksYWj/68aZ8WrSzRlr01SogK1y3nDtVtM/NVkB7ndHkAEFQIagAAoE/trTqmF1bt0ctrSnW0oUWFmfF69Npxum7yEMVF8VYEADrDT0cAANDrrLVauatSi1aU6L1tByVJl47O0h3n5Wvm8DQZw/BGADgZghoAAOg1Dc1u/WH9Xj23skSfH6xTcmyE7p0zXLecm6eclFinywOAkEFQAwAAZ6ykol7Pr9qjV4vLVNvo1tjsRP3XDRN0zcRsRUe4nC4PAEIOQQ0AAJwWr9fqHzsO67kVJVry+WG5jNEV4wfr9plDNXVoCsMbAeAMENQAAMApqWls0evF5Xp+1R7trqhXenyUvntxoebPyFNWYrTT5QFAv0BQAwAAPbLjYK0WrSzRH9bvVUOzR5PzkvXYTZN0xbjBigwPc7o8AOhXCGoAAKBLHq/V+9sPatGKEq34olKR4WG6ekK2bj9vqCbkJDtdHgD0WwQ1AADQwdH6Zr28tkwvrNqjvVXHlJ0UrR9dPlI3TctVWnyU0+UBQL9HUAMAAK227K3WohUlemvTPjW5vTp3WKoevmq0Lh2dpXAXwxsB4GwhqAEAMMC1eLx6d8sBLVpRonV7jiomwqXrp+bo9pn5GjkowenyAGBAIqgBADBAHapt1OLVpVq8ulSHaps0NC1WP7tytG6cmquk2AinywOAAY2gBgDAAGKt1frSKj23skTvfLJfLR6rC0Zk6JfXD9WFIzIVFsZnnwFAMCCoAQAwADS2ePTnTfv03Mo9+mRvtRKiwnXLuUN167lDNSwj3unyAADtENQAAOjH9lUd0wur9ujltWU6Ut+sczLj9ei8sfrKlBzFR/E2AACCFT+hAQDoZ6y1WrXriBatKNHftx2QJF0yOkt3nJev84anyRiGNwJAsCOoAQDgEGut3F6rZrdXLR6vmt1eNbm9avYvNwcuB27r5Jgm/zmaWrxavrNCnx2sVXJshO6ZM0y3zBiq3NRYp/+5AIBTQFADAAw41lodqW9WfZOn8yDk8ZwITW6vWjxWzW5Pm2OaApZb2p2jqZMwFXhM4H5re+/fFeEyinSFaVhGvP7r+gm6ZlK2oiNcvfcCAICzhqAGAOiXjjV7VH60QaVHfI+yI8f8XxtUdrRBDc2eMzp/pCtMkeH+RxfLcZHhSoltt99/TJR/OcLV8XlR7dYDj4kK7/haES7fMjM2AkD/QVADAIQkj9fqYE3jifB1PJAd9QWyw7VNbY6PjXQpLzVWuamxmnVOunJSYpQQHX4iGIWHKdLl8gcfExCYXB1CVoTLcJ8XAKBPEdQAAEGrprFFpZUnumC+7tgxlR9pUPnRY2r2eFuPDTPS4KQY5aXG6qKRGa2h7PjXtLhIwhUAIGQQ1AAAjmnxeLWv6lib4YknOmMNqmpoaXN8UkyE8lJjNXpwoi4bm6U8fxDLS43V4KQYRYaHOfQvAQCgdxHUAAB9xlqryvrmE+Er4F6x0iMN2l99TN6AyTQiXEY5Kb4O2MTcJF83zL+emxqrpJgI5/4xAACcRQQ1AMAZaWzxnBiaWOkbmlh6pKF1Io/2k3ZkJEQpLzVW0/JTlJc6pDWE5aXGKisxWi4mxAAAgKAGADg5r9fqYG2jP4T5JusI7JAdajdpR0zEiUk7Zg5Pax2amJsaq5yUGMVG8qsHAIDu8NsSAAYYa61qm9w6UtesyvpmVdY16Ui9b/mI/+FbblJlXbMq65o7nbQjNzVGF47MUG5KrPLSTnTFmLQDAIAzR1ADgBBnrVXNMbcq632Bq6LueOBqahO+fNubdLS+pU3wChQb6VJqXKTS4iKVER+lkVmJSk+I9IUxfxDLTmbSDgAA+hpBDQCCjNdrVX2spTVkVdY1dd3tqm/W0fpmuQNn5AgQHxWu1LhIpcZFKjspWuOHJCo1Lkpp/m2p8b5Qlhbv2xYd4TrL/1oAANAZghoA9DGP16qq4UTIqqxr2+2qrG/2D0P0dcSONrTI00XwSogObw1ZuamxmpSb3BrE0uIjW0NYWnykUmIJXgAAhKoeBTVjzFxJj0lySXrKWvvLdvu/LulB/2qdpPuttZt6s1AACCYer1VlXZMO1DTqQHWjDtY26XBtk474w9bxbpcveDXLdp67lBQT0RqsCtLjNHVoamsQ8wWvSKXFRbUGL4YcAgAwMHQb1IwxLklPSLpMUrmktcaYt6y12wIO2y3pAmvtUWPMFZIWSJrRFwUDQF+rb3LrQE2jDlY3+r7WNOmgP5D51ht1qLapQ9fLGCk5JsIfsqJUmBnfer+Xb5hhlNL9ww1T43zBK8JF8AIAAB31pKM2XdJOa+0uSTLGvCxpnqTWoGatXRFw/CpJOb1ZJAD0Bo/XqqKuqU3gOlAdEMT84ay2yd3huQnR4RqUGK2sxGgNH56uQUlRreuDkqI1KDFaqXGRCid4AQCAXtCToDZEUlnAerlO3i37hqR3O9thjLlX0r2SlJeX18MSAaB7dU1uf+hq7BjEapt0sLpRh+s6dsHCw4wyE6KUlRStwsx4nX9Ouj98Rfm++sNYXBS39AIAgLOnJ+88OvswnE7vtjDGXCRfUDu/s/3W2gXyDYtUUVFRF3dsAMAJbo9XFXXNJ+4FC+h8HfAvH6ppUl0nXbDE6HANSvIFrRGZvgCW5e9+DUqMVlZSlNLjohQWxmd+AQCA4NKToFYuKTdgPUfSvvYHGWMmSHpK0hXW2sreKQ9Af3X8Q5cP1TTqQHVTmw5Y4HJFXZPaT4AYHmZ8oSsxSqMGJeiCERmtna/jQxGzEqMUG0kXDAAAhKaevItZK6nQGFMgaa+kmyTNDzzAGJMn6Q+SbrXWft7rVQIIWR6v1e6KOm3dV6Mte6v16YFa7T16TAdqGtXQ7OlwfFJMhL/bFa1RgxJalwODWFpcJF0wAADQr3Ub1Ky1bmPMA5L+Jt/0/M9Ya7caY+7z739S0r9KSpP0O2OMJLmttUV9VzaAYNTk9ujzA3Xauq9aW/ZVa+u+Gn26v1bHWnyBLDI8TCOzEjR6cKIuHJnZ4T6wrMRoxUTyuV8AAADGdvXhPn2sqKjIFhcXO/LaAM5cXZNb2/bVaKs/kG3ZW62dh+rk9o9TTIgK1+jsRI3LTtLY7ESNHZKo4RnxTEcPAADgZ4xZ11WDixs4AHSroq5JWwNC2bZ9NdpdUd+6Pz0+SmOzE3XxqEyNzU7SuCGJyk2JZXgiAADAaSKoAWhlrdXeqmO+ULa32h/OanSgprH1mJyUGI3LTtJ1k4do7BBfxywzMdrBqgEAAPofghowQAVO8nF86OK2/TWqamiRJIUZaXhGvM4dlqpxQ5I0JjtRYwcnKSk2wuHKAQAA+j+CGjAABE7ycXwI4/Z2k3yMGpSgK8YN0pjsJI3LTtSoQYlM7AEAAOAQghrQz9Q1ubV9v69DdrxbtuNgbeskH/FR4RqTnaibpudqrH+ij3MymeQDAAAgmBDUgBBW2TrJR4227KvWtn01Kqms1/HJXNPjIzUmO0kXjcxoDWV5qUzyAQAAEOwIakAIaDPJx74abfMPYdxf3XaSj7HZifrK5CEaNyRRY7OTlJkQJf9nGwIAACCEENSAIGOtVemRBm0sq2ozJX7gJB/DMuI1oyC1tUs2JjtRybGRDlcOAACA3kJQAxzW0OzWprJqrS89qg2lR7WhtEqV9c2SpEhXmEYOStDcsYM0dogvlI1mkg8AAIB+j6AGnEXHu2XrS49q/Z4qrS89qk8P1Mrjn+hjWHqcLhyZqSlDkzU5N0WFWUzyAQAAMBAR1IA+1NDs1uby6tZgtrHsqCrqfN2yuEiXJuYm6/4LhrcGs5Q4hi8CAACAoAb0muPdsg2lvk7Z+tKj2r6/bbfsghG+btmUvBSNyEqQi9kXAQAA0AmCGnCajjV7tKm8im4ZAAAAeh1BDegBa63Kjhxr7ZS175YVpMdpzogMTclL0ZS8FI0cRLcMAAAAp4+gBnTiWLNHm8urtN4/jHFDacdu2X0XDNOUvBRNzktRKt0yAAAA9CKCGga89t2yDaVV2r6/Rm66ZQAAAHAIQQ0DTsduWZUq6pokSbGRLk3MSdY36ZYBAADAQQQ19GvWWpUf9XfL9hzV+k67ZemanJeiKXnJGpmVoHA+twwAAAAOI6ihX6FbBgAAgP6AoIaQtq/qmNaWHOm0W5afFqs5hemaPJRuGQAAAEILQQ0hpa7JrdW7KrVsR4WW7jisXYfrJUkxES5NzE3SvXOOd8uSlRYf5XC1AAAAwOkhqCGoebxWn+yt1sc7Dmvpjgqt33NUbq9VdESYZhSkaf70PJ07LE2jBtEtAwAAQP9BUEPQKT/aoGU7KvTxjgp9vLNC1cdaJEnjhiTq7tnDNKcwXVOGpig6wuVwpQAAAEDfIKjBcbWNLVq164iW7TisZTsqtLvCN5xxUGK0vjQmS+cXpuv8c9IZyggAAIABg6CGs87jtdpcXqVlOyq0bMdhbSitkttrFRPh0rnDUnXruUM1uzBd52TGyxg+WBoAAAADD0ENZ0XZkYbWYLZ8Z4VqGt0yRhqX7ZsAZHZhhqYMTVZUOMMZAQAAAIIa+kRNY4tWflGpj/3hrKSyQZI0OClac8cN0uzCDM06J53PMQMAAAA6QVBDr3B7vNpUXt16n9nGsip5vFaxkS7NHJam28/L1+zCDA3PiGM4IwAAANANghpO257K+tbhjCu+qFStfzjjhCFJuv+C4Tq/MF1T8lIUGc60+QAAAMCpIKihx6qPtWjlFxX+cFah0iO+4YxDkmN05fjBml2YofOGpymF4YwAAADAGSGooUstHq82lVVp6Y4KfbzjsDaWVclrpbhIl2YOT9M3zi/Q7MJ0FaQznBEAAADoTQQ1tLLWak9lg5btOKylOyq06otK1Ta5FWakCTnJ+vZF52h2YYYm5yUrwsVwRgAAAKCvENQGuOqGFq34okJL/fealR89Jsk3nPGqidmaXZiu84anKTmW4YwAAADA2UJQG2BaPF5tKK3Sx/6u2eZy33DG+KhwzRyepm/OGabzCzOUnxbLcEYAAADAIQS1AaC2sUV/2rhP//jssFbtqlSdfzjjxNxkPXBxoeYUpmtiLsMZAQAAgGBBUOvH9lUd07MrSvTS6lLVNrmVmxqjayZla05humYOS1dSbITTJQIAAADoBEGtH9q6r1pPLdutP2/aJyvpy+MH657ZBZqQk+x0aQAAAAB6gKDWT1hrtXRHhX6/dJc+3lmh2EiXbpuZrztn5Ss3Ndbp8gAAAACcAoJaiGt2e/XWpn36/dJd+uxgrTITovTg3FGaPz2PoY0AAABAiCKohajqYy1avLpUz67YrYM1TRqZlaDf3DhR10zMVmQ4k4IAAAAAoYygFmLKjjTomeW79eraMtU3ezS7MF3/dcNEzSlMZzp9AAAAoJ8gqIWIzeVVWrB0l975ZL/CjNE1E7N19+xhGpOd6HRpAAAAAHoZQS2Ieb1WH312SAuW7tLq3UeUEBWue2YP0x2z8jU4Kcbp8gAAAAD0EYJaEGps8ehPG/bq98t26YvD9cpOitbPrhytr03LVUI0E4QAAAAA/R1BLYgcrW/WC6v2aNHKElXUNWtsdqIeu2mSvjx+sCJcTBACAAAADBQEtSCwp7JeT3+8W68Wl6mxxasLR2bo3tnDNHN4GhOEAAAAAAMQQc1B60uP6vdLd+mvWw8oPMzo2klDdPfsYRo5KMHp0gAAAAA4iKB2lnm8Vu9tO6inlu1S8Z6jSoqJ0LcuHK7bZ+YrMzHa6fIAAAAABAGC2llyrNmj19eX6+llu1RS2aCclBj9/OoxurEoV3FRXAYAAAAAJ5AQ+lhFXZOeW7lHz68s0dGGFk3MSdIT86fo8rFZCmeCEAAAAACdIKj1kS8O1+mpZbv1xvpyNbu9unR0lu6dM0zT8lOYIAQAAADASRHUepG1VmtLjmrB0l16f/tBRYaH6fopObp7doGGZ8Q7XR4AAACAEEFQ6wVuj1d/23pQC5bt0qayKqXERui7lxTqtplDlR4f5XR5AAAAAEIMQe0M1De59VpxmZ5evltlR44pPy1Wj147TjdMyVFMpMvp8gAAAACEKILaaThU06hnV5ToxdWlqj7WoqKhKfrZlWN06egsucK4/wwAAADAmSGonYLPD9bq90t36c2N+9Ti9Wru2EG6e/YwTR2a4nRpAAAAAPoRglo3rLVa+UWlFizbpSWfHVZ0RJhump6ru2YVKD89zunyAAAAAPRDBLUutHi8eueT/VqwdJe27qtRenyk/vmyEbrl3KFKiYt0ujwAAAAA/RhBrZ3axha9srZMz3y8W/uqGzU8I06/vG68rp08RNERTBACAAAAoO8R1AK8sGqPfvXup6ptcmtGQaoevXacLhqZqTAmCAEAAABwFhHUAqTHR+qCkRm6Z/YwTcxNdrocAAAAAANUWE8OMsbMNcZ8ZozZaYx5qJP9o4wxK40xTcaYH/Z+mWfH3HGD9d/zpxDSAAAAADiq246aMcYl6QlJl0kql7TWGPOWtXZbwGFHJH1X0rV9USQAAAAADCQ96ahNl7TTWrvLWtss6WVJ8wIPsNYestauldTSBzUCAAAAwIDSk6A2RFJZwHq5fxsAAAAAoA/0JKh1NuWhPZ0XM8bca4wpNsYUHz58+HROAQAAAAD9Xk+CWrmk3ID1HEn7TufFrLULrLVF1tqijIyM0zkFAAAAAPR7PQlqayUVGmMKjDGRkm6S9FbflgUAAAAAA1e3sz5aa93GmAck/U2SS9Iz1tqtxpj7/PufNMYMklQsKVGS1xjzfUljrLU1fVc6AAAAAPRPPfrAa2vtO5LeabftyYDlA/INiQQAAAAAnKEefeA1AAAAAODsIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQIagBAAAAQJAhqAEAAABAkCGoAQAAAECQCXe6AAAAgD5hrf/hleRfln/9pMvqwTHtl0/l/MeXFVCXJGN8DwV+DWu7zYR1sV/d7O/q+e2XT+H5x18XQJ8gqAEATujwxtZ74s3l8eXAN5zt34B22H8mx6sH5zvd4zv7d7bf326f1M1xndTT43N3VlNXx7X/XnZ3XLt/80nr7ur4boJH63PUg/OeQrg5k9ple+l/CpxcD4JemMu/z+VfDvMtmzApLOzEeo/3mbbrrcthAa93sn2udsd1tc+0W+9kX1j4iX1hAfvDwjtu63B8YI3H97XfdvxcYe1ex3WiDvRbBDUAPXf8jZDXI3ndkvX4ljvd5pG83s63Wa9vuTUEtHt4u9huPSdq6PCcwPPZds9pf7zt5Dk9fJy0toA30CcLOtbr/352tS9wXSfZ11Ug6eqctvvXQx8L6FC06UyEtd0X2LHo9rgwyaiLTkj74zrronRyTPvX7HHNgd2dHpz3pB2drmrv5jVOuqyT1HAqtXW3rFM83qhNwOwQZr1d7Fc3+7t6/kmC70mfr1OsL2D/8d8Bnf3sPaV91vd7xd3U9mdv4O+W1nN0t8+2XT++HEohv00gPR7sOgt0YacQKsO7CI/hHYNj63PPwnGB2wNrbn1+D44Lczl9xU4JQQ04XV6P5GmWPC3+R7PkDVg+vt17fL1Z8rh7cFzAujcw4AQGIa8z2/rjG/njfyFt/wjrZFvr4/hfU9tvD/jr6/E3hG3edLZ7w9vpw3TyvPZfuzpn+ze5XZ2zk/N1eF4Xb5q7qk1qt97Zm/PTPb6rN/tnenxP39x39rxTCDkMEwNCS4c/5gUGvHYBsvV3ZLtt1r898Hdp6/Htj+tmX6fH+/8Q2mFbF380ba2n/bZ2tR4PwYHvBVqX3R1fu6vjgvH9Qlym9KMdTldxSghqCH6eFqm5XmppkJobpJZ63/rxZXfTyQOPp9n3Q6MnYanN9oB9recMOE9f/sWt9a9Bx/861NVfwnqwLSxcCo/uwXNP8pe4097WxTCODkNXTuHR+pzOwk7g+Uwnz+kkFAEAEChwmCZOT2vYdXceBjuE3J4c1z64utUhyJ4sYEbEOP1dOWUENfQOr8cfpOpPHqqa/cccX25pkJrrApYDn+//6mk+s9pckb5HWPiJZZd/OSxCckX4t0VIkbHttgfsC4to+9yenrPNcwP2tXlu4PYIX7gBAAAIRYTdXkFQG0isPYUA1VWoahfEmut8y+7GU6vFFeULRRFxvq+Rcb7l+EwpIlaKjPfvP77P/7V12X9MRKyvW9RVMOJGWwAAAISgHgU1Y8xcSY9Jckl6ylr7y3b7jX//lyU1SLrDWru+l2tFZ7weqb5Cqjt44lF7QKo71HZb3WGpufbUzh0WfiJAtYameCk2VYrIaRecOglQrUGsXcCKiPN1nwAAAAB0qtt3y8YYl6QnJF0mqVzSWmPMW9babQGHXSGp0P+YIel//F9xuprq/AHrkFTnD15tAph/uf5w5zdsRiVJCVlSfJaUPdl3A2V0Ys86VMfDVHjk2f93AwAAAOhRR226pJ3W2l2SZIx5WdI8SYFBbZ6k56y1VtIqY0yyMWawtXZ/r1ccytp0v44HsINS7cGOoay5ruPzw8J9gSshS0oc4gtg8YN8wwUTBvlCWXym72sI3jAJAAAAwKcnQW2IpLKA9XJ17JZ1dswQSQMjqDXXdz7csPZg2/WTdb+OB6zsyf7A5X8kBCzHpDLJBAAAADAA9CSodTYTQ/t5yXtyjIwx90q6V5Ly8vJ68NIO8nqkhsrOhxu2D2Wddb+M60SHK2GwlD2pbQA7HsLiMn1DDQEAAADArydBrVxSbsB6jqR9p3GMrLULJC2QpKKiouD72PfihVLxMwH3fnk6HhOVeCJoDZ7oH3KYeWIIYnyWbxvdLwAAAACnqSdBba2kQmNMgaS9km6SNL/dMW9JesB//9oMSdUheX9aRIyv+9UawAI7YP4QRvcLAAAAQB/rNqhZa93GmAck/U2+6fmfsdZuNcbc59//pKR35Juaf6d80/Pf2Xcl96GJN/keAAAAAOCgHn2YlbX2HfnCWOC2JwOWraRv925pAAAAADAwcRMVAAAAAAQZghoAAAAABBmCGgAAAAAEGYIaAAAAAAQZghoAAAAABBmCGgAAAAAEGYIaAAAAAAQZghoAAAAABBmCGgAAAAAEGYIaAAAAAAQZghoAAAAABBmCGgAAAAAEGWOtdeaFjTksaY8jL35y6ZIqnC4Cp4RrFnq4ZqGF6xV6uGahh2sWWrheoSdYr9lQa21GZzscC2rByhhTbK0tcroO9BzXLPRwzUIL1yv0cM1CD9cstHC9Qk8oXjOGPgIAAABAkCGoAQAAAECQIah1tMDpAnDKuGahh2sWWrheoYdrFnq4ZqGF6xV6Qu6acY8aAAAAAAQZOmoAAAAAEGQIagGMMXONMZ8ZY3YaYx5yuh6cnDEm1xjzkTFmuzFmqzHme07XhO4ZY1zGmA3GmLedrgXdM8YkG2NeN8Z86v9/babTNaFrxph/8v883GKMeckYE+10TejIGPOMMeaQMWZLwLZUY8x7xpgd/q8pTtaIE7q4Xr/2/1zcbIz5ozEm2cES0U5n1yxg3w+NMdYYk+5EbaeCoOZnjHFJekLSFZLGSLrZGDPG2arQDbekf7bWjpZ0rqRvc81CwvckbXe6CPTYY5L+aq0dJWmiuHZByxgzRNJ3JRVZa8dJckm6ydmq0IVnJc1tt+0hSR9YawslfeBfR3B4Vh2v13uSxllrJ0j6XNK/nO2icFLPquM1kzEmV9JlkkrPdkGng6B2wnRJO621u6y1zZJeljTP4ZpwEtba/dba9f7lWvneQA5xtiqcjDEmR9KVkp5yuhZ0zxiTKGmOpKclyVrbbK2tcrQodCdcUowxJlxSrKR9DteDTlhrl0o60m7zPEmL/MuLJF17NmtC1zq7Xtbav1tr3f7VVZJyznph6FIX/49J0v+R9GNJITFJB0HthCGSygLWy8Wb/pBhjMmXNFnSaodLwcn9Vr4fkF6H60DPDJN0WNJC/3DVp4wxcU4Xhc5Za/dK+o18fyneL6naWvt3Z6vCKciy1u6XfH+IlJTpcD3oubskvet0ETg5Y8w1kvZaazc5XUtPEdROMJ1sC4m0PdAZY+IlvSHp+9baGqfrQeeMMVdJOmStXed0LeixcElTJP2PtXaypHoxHCto+e9pmiepQFK2pDhjzC3OVgX0b8aYn8p3K8aLTteCrhljYiX9VNK/Ol3LqSConVAuKTdgPUcMGQl6xpgI+ULai9baPzhdD05qlqRrjDEl8g0tvtgY84KzJaEb5ZLKrbXHO9WvyxfcEJwulbTbWnvYWtsi6Q+SznO4JvTcQWPMYEnyfz3kcD3ohjHmdklXSfq65fOugt1w+f6Itcn/PiRH0npjzCBHq+oGQe2EtZIKjTEFxphI+W7AfsvhmnASxhgj370z2621/9vpenBy1tp/sdbmWGvz5fv/60NrLX/tD2LW2gOSyowxI/2bLpG0zcGScHKlks41xsT6fz5eIiZ/CSVvSbrdv3y7pDcdrAXdMMbMlfSgpGustQ1O14OTs9Z+Yq3NtNbm+9+HlEua4v89F7QIan7+G0IfkPQ3+X6xvWqt3epsVejGLEm3yteZ2eh/fNnpooB+5juSXjTGbJY0SdIvnC0HXfF3Pl+XtF7SJ/L9jl/gaFHolDHmJUkrJY00xpQbY74h6ZeSLjPG7JBvVrpfOlkjTujiev23pARJ7/nffzzpaJFoo4trFnIMnVoAAAAACC501AAAAAAgyBDUAAAAACDIENQAAAAAIMgQ1AAAAAAgyBDUAAAAACDIENQAAAAAIMgQ1AAAAAAgyBDUAAAAACDI/H+iPfXG2r1lIAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "plt.plot(data_out.to_numpy(), label = 'measured')\n", - "plt.plot(model_out, label = 'gp_prediction')\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 440, - "metadata": { - "scrolled": true, - "tags": [] - }, - "outputs": [ - { - "ename": "InvalidArgumentError", - "evalue": " Input matrix is not invertible.\n\t [[node gradient_tape/triangular_solve/MatrixTriangularSolve (defined at /usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py:173) ]] [Op:__inference__tf_eval_1886136]\n\nErrors may have originated from an input operation.\nInput Source operations connected to node gradient_tape/triangular_solve/MatrixTriangularSolve:\n Cholesky (defined at /usr/lib/python3.9/site-packages/gpflow/models/gpr.py:87)\n\nFunction call stack:\n_tf_eval\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0mopt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgpflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mScipy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 20\u001b[0;31m \u001b[0mopt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mminimize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraining_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainable_variables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py\u001b[0m in \u001b[0;36mminimize\u001b[0;34m(self, closure, variables, method, step_callback, compile, **scipy_kwargs)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0mscipy_kwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcallback\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m return scipy.optimize.minimize(\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjac\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mscipy_kwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m )\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_minimize.py\u001b[0m in \u001b[0;36mminimize\u001b[0;34m(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)\u001b[0m\n\u001b[1;32m 617\u001b[0m **options)\n\u001b[1;32m 618\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'l-bfgs-b'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 619\u001b[0;31m return _minimize_lbfgsb(fun, x0, args, jac, bounds,\n\u001b[0m\u001b[1;32m 620\u001b[0m callback=callback, **options)\n\u001b[1;32m 621\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'tnc'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/lbfgsb.py\u001b[0m in \u001b[0;36m_minimize_lbfgsb\u001b[0;34m(fun, x0, args, jac, bounds, disp, maxcor, ftol, gtol, eps, maxfun, maxiter, iprint, callback, maxls, finite_diff_rel_step, **unknown_options)\u001b[0m\n\u001b[1;32m 358\u001b[0m \u001b[0;31m# until the completion of the current minimization iteration.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 359\u001b[0m \u001b[0;31m# Overwrite f and g:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 360\u001b[0;31m \u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc_and_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 361\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mtask_str\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstartswith\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mb'NEW_X'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 362\u001b[0m \u001b[0;31m# new iteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36mfun_and_grad\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 258\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray_equal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 259\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_x_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 260\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 261\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 262\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36m_update_fun\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_update_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf_updated\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 226\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_fun_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 227\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf_updated\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36mupdate_fun\u001b[0;34m()\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mupdate_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 133\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun_wrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 134\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_fun_impl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mupdate_fun\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36mfun_wrapped\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfun_wrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnfev\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 130\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 131\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mupdate_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/optimize.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, x, *args)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;34m\"\"\" returns the the function value \"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 74\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_if_needed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 75\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/optimize.py\u001b[0m in \u001b[0;36m_compute_if_needed\u001b[0;34m(self, x, *args)\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_value\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjac\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 68\u001b[0;31m \u001b[0mfg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 69\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjac\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_value\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py\u001b[0m in \u001b[0;36m_eval\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_eval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 113\u001b[0;31m \u001b[0mloss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_tf_eval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert_to_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 114\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat64\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat64\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 826\u001b[0m \u001b[0mtracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 827\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mtm\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 828\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 829\u001b[0m \u001b[0mcompiler\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"xla\"\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_experimental_compile\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m\"nonXla\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 830\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 860\u001b[0m \u001b[0;31m# In this case we have not created variables on the first call. So we can\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 861\u001b[0m \u001b[0;31m# run the first trace but we should fail if variables are created.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 862\u001b[0;31m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 863\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_created_variables\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 864\u001b[0m raise ValueError(\"Creating variables on a non-first call to a function\"\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2940\u001b[0m (graph_function,\n\u001b[1;32m 2941\u001b[0m filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001b[0;32m-> 2942\u001b[0;31m return graph_function._call_flat(\n\u001b[0m\u001b[1;32m 2943\u001b[0m filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access\n\u001b[1;32m 2944\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[0;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[1;32m 1916\u001b[0m and executing_eagerly):\n\u001b[1;32m 1917\u001b[0m \u001b[0;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1918\u001b[0;31m return self._build_call_outputs(self._inference_function.call(\n\u001b[0m\u001b[1;32m 1919\u001b[0m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[1;32m 1920\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[1;32m 553\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_InterpolateFunctionError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 554\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcancellation_manager\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 555\u001b[0;31m outputs = execute.execute(\n\u001b[0m\u001b[1;32m 556\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 557\u001b[0m \u001b[0mnum_outputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_outputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0m\u001b[1;32m 60\u001b[0m inputs, attrs, num_outputs)\n\u001b[1;32m 61\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mInvalidArgumentError\u001b[0m: Input matrix is not invertible.\n\t [[node gradient_tape/triangular_solve/MatrixTriangularSolve (defined at /usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py:173) ]] [Op:__inference__tf_eval_1886136]\n\nErrors may have originated from an input operation.\nInput Source operations connected to node gradient_tape/triangular_solve/MatrixTriangularSolve:\n Cholesky (defined at /usr/lib/python3.9/site-packages/gpflow/models/gpr.py:87)\n\nFunction call stack:\n_tf_eval\n" - ] - } - ], - "source": [ - "rational_l = 1\n", - "squared_l = 1\n", - "\n", - "variance = 1\n", - "\n", - "k0 = gpflow.kernels.SquaredExponential(lengthscales = squared_l, active_dims = squared_dims, variance = variance)\n", - "k1 = gpflow.kernels.Constant(variance = variance)\n", - "k2 = gpflow.kernels.RationalQuadratic(lengthscales = rational_l, active_dims = rational_dims, variance = variance)\n", - "\n", - "k = (k0 + k1) * k2\n", - "\n", - "m = gpflow.models.GPR(\n", - "data = (np_input_train, np_output_train), \n", - "kernel = k, \n", - "mean_function = None\n", - ")\n", - "\n", - "opt = gpflow.optimizers.Scipy()\n", - "\n", - "opt.minimize(m.training_loss, m.trainable_variables)" - ] - }, - { - "cell_type": "code", - "execution_count": 567, - "metadata": {}, - "outputs": [], - "source": [ - "class MultistepGP(gpflow.models.GPR):\n", - " \n", - " def __init__(self, data):\n", - " \n", - " rational_l = 1\n", - " squared_l = 1\n", - "\n", - " variance = 1\n", - "\n", - " k0 = gpflow.kernels.SquaredExponential(lengthscales = squared_l, active_dims = squared_dims, variance = variance)\n", - " k1 = gpflow.kernels.Constant(variance = variance)\n", - " k2 = gpflow.kernels.RationalQuadratic(lengthscales = rational_l, active_dims = rational_dims, variance = variance)\n", - "\n", - " k = (k0 + k1) * k2\n", - " \n", - " self.train_data = tf.Variable(data[0][:10]), tf.Variable(data[1][:10])\n", - "\n", - " \n", - " super().__init__(data = data, kernel = k, mean_function = None)\n", - "\n", - "\"\"\"\n", - " @tf.function\n", - " @tf.autograph.experimental.do_not_convert\n", - " def multistep_prediction(self, tf_input):\n", - " N_pred = tf_input.shape[0]\n", - " for idxx in range(N_pred - 1):\n", - " mean,_ = self.predict_f(tf.reshape(tf_input[idxx, :], (1, -1)))\n", - " tf_input[idxx+1, ylag1_idx].assign(mean[0,0])\n", - " tf_input[idxx + 1, ylag1_idx + 1 : ylag1_idx + ylags].assign(tf_input[idxx, ylag1_idx : ylag1_idx + ylags - 1])\n", - " mean, _ = self.predict_f(tf_input)\n", - " return mean\n", - " \n", - " @tf.function\n", - " @tf.autograph.experimental.do_not_convert\n", - " def multistep_error(self,data):\n", - " tf_inputs, tf_targets = data\n", - " tf_outputs = self.multistep_prediction(tf_inputs)\n", - " err = tf.sqrt(tf.reduce_mean((tf_targets - tf_outputs)**2))\n", - " return err\n", - " \n", - " def multistep_training_loss(self):\n", - " return self.multistep_error(self.train_data)\n", - "\"\"\"\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 568, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<__main__.MultistepGP object at 0x7fe3e7e50400>\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
MultistepGP.train_data[0] ResourceVariable True (10, 9)float64[[2.22613378e-03, -1.87413538e+00, -9.95142923e-01...
MultistepGP.train_data[1] ResourceVariable True (10, 1)float64[[-4.72829156e-17...
MultistepGP.kernel.kernels[0].kernels[0].variance Parameter Softplus True () float641.0
MultistepGP.kernel.kernels[0].kernels[0].lengthscalesParameter Softplus True () float641.0
MultistepGP.kernel.kernels[0].kernels[1].variance Parameter Softplus True () float641.0
MultistepGP.kernel.kernels[1].variance Parameter Softplus True () float641.0
MultistepGP.kernel.kernels[1].lengthscales Parameter Softplus True () float641.0
MultistepGP.kernel.kernels[1].alpha Parameter Softplus True () float641.0
MultistepGP.likelihood.variance Parameter Softplus + Shift True () float641.0
MultistepGP.data[0] ResourceVariable True (15, 9)float64[[2.22613378e-03, -1.87413538e+00, -9.95142923e-01...
MultistepGP.data[1] ResourceVariable True (15, 1)float64[[-4.72829156e-17...
" - ], - "text/plain": [ - "<__main__.MultistepGP object at 0x7fe3e7e50400>\n", - "name class transform prior trainable shape dtype value\n", - "----------------------------------------------------- ---------------- ---------------- ------- ----------- ------- ------- -----------------------------------------------------\n", - "MultistepGP.train_data[0] ResourceVariable True (10, 9) float64 [[2.22613378e-03, -1.87413538e+00, -9.95142923e-01...\n", - "MultistepGP.train_data[1] ResourceVariable True (10, 1) float64 [[-4.72829156e-17...\n", - "MultistepGP.kernel.kernels[0].kernels[0].variance Parameter Softplus True () float64 1.0\n", - "MultistepGP.kernel.kernels[0].kernels[0].lengthscales Parameter Softplus True () float64 1.0\n", - "MultistepGP.kernel.kernels[0].kernels[1].variance Parameter Softplus True () float64 1.0\n", - "MultistepGP.kernel.kernels[1].variance Parameter Softplus True () float64 1.0\n", - "MultistepGP.kernel.kernels[1].lengthscales Parameter Softplus True () float64 1.0\n", - "MultistepGP.kernel.kernels[1].alpha Parameter Softplus True () float64 1.0\n", - "MultistepGP.likelihood.variance Parameter Softplus + Shift True () float64 1.0\n", - "MultistepGP.data[0] ResourceVariable True (15, 9) float64 [[2.22613378e-03, -1.87413538e+00, -9.95142923e-01...\n", - "MultistepGP.data[1] ResourceVariable True (15, 1) float64 [[-4.72829156e-17..." - ] - }, - "execution_count": 568, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "test_gp = MultistepGP(data)\n", - "test_gp" - ] - }, - { - "cell_type": "code", - "execution_count": 571, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - ">" - ] - }, - "execution_count": 571, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "test_gp.training_loss" - ] - }, - { - "cell_type": "code", - "execution_count": 572, - "metadata": { - "scrolled": true, - "tags": [] - }, - "outputs": [ - { - "ename": "ValueError", - "evalue": "in user code:\n\n /usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py:107 _tf_eval *\n return loss, cls.pack_tensors(grads)\n /usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py:139 pack_tensors *\n flats = [tf.reshape(tensor, (-1,)) for tensor in tensors]\n /usr/lib/python3.9/site-packages/tensorflow/python/util/dispatch.py:201 wrapper **\n return target(*args, **kwargs)\n /usr/lib/python3.9/site-packages/tensorflow/python/ops/array_ops.py:195 reshape\n result = gen_array_ops.reshape(tensor, shape, name)\n /usr/lib/python3.9/site-packages/tensorflow/python/ops/gen_array_ops.py:8377 reshape\n _, _, _op, _outputs = _op_def_library._apply_op_helper(\n /usr/lib/python3.9/site-packages/tensorflow/python/framework/op_def_library.py:538 _apply_op_helper\n raise ValueError(\n\n ValueError: Tried to convert 'tensor' to a tensor and failed. Error: None values not supported.\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mopt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgpflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mScipy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mopt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mminimize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_gp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraining_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_gp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainable_variables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py\u001b[0m in \u001b[0;36mminimize\u001b[0;34m(self, closure, variables, method, step_callback, compile, **scipy_kwargs)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0mscipy_kwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcallback\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m return scipy.optimize.minimize(\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjac\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mscipy_kwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m )\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_minimize.py\u001b[0m in \u001b[0;36mminimize\u001b[0;34m(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)\u001b[0m\n\u001b[1;32m 617\u001b[0m **options)\n\u001b[1;32m 618\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'l-bfgs-b'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 619\u001b[0;31m return _minimize_lbfgsb(fun, x0, args, jac, bounds,\n\u001b[0m\u001b[1;32m 620\u001b[0m callback=callback, **options)\n\u001b[1;32m 621\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'tnc'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/lbfgsb.py\u001b[0m in \u001b[0;36m_minimize_lbfgsb\u001b[0;34m(fun, x0, args, jac, bounds, disp, maxcor, ftol, gtol, eps, maxfun, maxiter, iprint, callback, maxls, finite_diff_rel_step, **unknown_options)\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0miprint\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdisp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 305\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 306\u001b[0;31m sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,\n\u001b[0m\u001b[1;32m 307\u001b[0m \u001b[0mbounds\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnew_bounds\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 308\u001b[0m finite_diff_rel_step=finite_diff_rel_step)\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/optimize.py\u001b[0m in \u001b[0;36m_prepare_scalar_function\u001b[0;34m(fun, x0, jac, args, bounds, epsilon, finite_diff_rel_step, hess)\u001b[0m\n\u001b[1;32m 259\u001b[0m \u001b[0;31m# ScalarFunction caches. Reuse of fun(x) during grad\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 260\u001b[0m \u001b[0;31m# calculation reduces overall function evaluations.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 261\u001b[0;31m sf = ScalarFunction(fun, x0, args, grad, hess,\n\u001b[0m\u001b[1;32m 262\u001b[0m finite_diff_rel_step, bounds, epsilon=epsilon)\n\u001b[1;32m 263\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, fun, x0, args, grad, hess, finite_diff_rel_step, finite_diff_bounds, epsilon)\u001b[0m\n\u001b[1;32m 134\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_fun_impl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mupdate_fun\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 136\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 137\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;31m# Gradient evaluation\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36m_update_fun\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_update_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf_updated\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 226\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_fun_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 227\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf_updated\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36mupdate_fun\u001b[0;34m()\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mupdate_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 133\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun_wrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 134\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_update_fun_impl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mupdate_fun\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/_differentiable_functions.py\u001b[0m in \u001b[0;36mfun_wrapped\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfun_wrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnfev\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 130\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 131\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mupdate_fun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/optimize.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, x, *args)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;34m\"\"\" returns the the function value \"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 74\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_if_needed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 75\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/scipy/optimize/optimize.py\u001b[0m in \u001b[0;36m_compute_if_needed\u001b[0;34m(self, x, *args)\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_value\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjac\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 68\u001b[0;31m \u001b[0mfg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 69\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjac\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_value\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py\u001b[0m in \u001b[0;36m_eval\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_eval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 113\u001b[0;31m \u001b[0mloss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_tf_eval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert_to_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 114\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat64\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat64\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 826\u001b[0m \u001b[0mtracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 827\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mtm\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 828\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 829\u001b[0m \u001b[0mcompiler\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"xla\"\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_experimental_compile\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m\"nonXla\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 830\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 869\u001b[0m \u001b[0;31m# This is the first call of __call__, so we have to initialize.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 870\u001b[0m \u001b[0minitializers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 871\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initialize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0madd_initializers_to\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minitializers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 872\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 873\u001b[0m \u001b[0;31m# At this point we know that the initialization is complete (or less\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_initialize\u001b[0;34m(self, args, kwds, add_initializers_to)\u001b[0m\n\u001b[1;32m 723\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_graph_deleter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mFunctionDeleter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_lifted_initializer_graph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 724\u001b[0m self._concrete_stateful_fn = (\n\u001b[0;32m--> 725\u001b[0;31m self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access\n\u001b[0m\u001b[1;32m 726\u001b[0m *args, **kwds))\n\u001b[1;32m 727\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_get_concrete_function_internal_garbage_collected\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2967\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2968\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_lock\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2969\u001b[0;31m \u001b[0mgraph_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_define_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2970\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2971\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_maybe_define_function\u001b[0;34m(self, args, kwargs)\u001b[0m\n\u001b[1;32m 3359\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3360\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_function_cache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmissed\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcall_context_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3361\u001b[0;31m \u001b[0mgraph_function\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_create_graph_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3362\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_function_cache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprimary\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcache_key\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3363\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_create_graph_function\u001b[0;34m(self, args, kwargs, override_flat_arg_shapes)\u001b[0m\n\u001b[1;32m 3194\u001b[0m \u001b[0marg_names\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbase_arg_names\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mmissing_arg_names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3195\u001b[0m graph_function = ConcreteFunction(\n\u001b[0;32m-> 3196\u001b[0;31m func_graph_module.func_graph_from_py_func(\n\u001b[0m\u001b[1;32m 3197\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3198\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_python_function\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/framework/func_graph.py\u001b[0m in \u001b[0;36mfunc_graph_from_py_func\u001b[0;34m(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)\u001b[0m\n\u001b[1;32m 988\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moriginal_func\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_decorator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munwrap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpython_func\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 989\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 990\u001b[0;31m \u001b[0mfunc_outputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpython_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mfunc_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mfunc_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 991\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 992\u001b[0m \u001b[0;31m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36mwrapped_fn\u001b[0;34m(*args, **kwds)\u001b[0m\n\u001b[1;32m 632\u001b[0m \u001b[0mxla_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mExit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 633\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 634\u001b[0;31m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mweak_wrapped_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__wrapped__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 635\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 636\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/framework/func_graph.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 975\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint:disable=broad-except\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 976\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"ag_error_metadata\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 977\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mag_error_metadata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_exception\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 978\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 979\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: in user code:\n\n /usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py:107 _tf_eval *\n return loss, cls.pack_tensors(grads)\n /usr/lib/python3.9/site-packages/gpflow/optimizers/scipy.py:139 pack_tensors *\n flats = [tf.reshape(tensor, (-1,)) for tensor in tensors]\n /usr/lib/python3.9/site-packages/tensorflow/python/util/dispatch.py:201 wrapper **\n return target(*args, **kwargs)\n /usr/lib/python3.9/site-packages/tensorflow/python/ops/array_ops.py:195 reshape\n result = gen_array_ops.reshape(tensor, shape, name)\n /usr/lib/python3.9/site-packages/tensorflow/python/ops/gen_array_ops.py:8377 reshape\n _, _, _op, _outputs = _op_def_library._apply_op_helper(\n /usr/lib/python3.9/site-packages/tensorflow/python/framework/op_def_library.py:538 _apply_op_helper\n raise ValueError(\n\n ValueError: Tried to convert 'tensor' to a tensor and failed. Error: None values not supported.\n" - ] - } - ], - "source": [ - "opt = gpflow.optimizers.Scipy()\n", - "\n", - "opt.minimize(test_gp.training_loss, test_gp.trainable_variables)" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "name": "Untitled3.ipynb", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Notebooks/37_gp_with_new_data.ipynb b/Notebooks/37_gp_with_new_data.ipynb deleted file mode 100644 index fa39776..0000000 --- a/Notebooks/37_gp_with_new_data.ipynb +++ /dev/null @@ -1,2823 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Bayesian Optimisation of starting Gaussian Process hyperparameters" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "Aovwtky_5Cao" - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "from shutil import copyfile\n", - "import pickle" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a517af1c-4204-45c9-aae4-865a2cb259e9" - }, - "source": [ - "Data manipulation" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "62628e60-28c6-4a9a-8a81-22e5bfd74722" - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "acb33a41-06b9-4a1d-9ea7-6a2d87b1f4fb" - }, - "source": [ - "Plotting / Visualisation" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "bVyvgbND5642" - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "id": "E9mmvHyH57RO" - }, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "plt.rcParams[\"figure.figsize\"] = (15, 6)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "90fdac33-eed4-4ab4-b2b1-de0f1f27727b" - }, - "source": [ - "Gaussian Process Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "3Z6cHHaD6EkP" - }, - "outputs": [], - "source": [ - "import gpflow\n", - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[name: \"/device:CPU:0\"\n", - " device_type: \"CPU\"\n", - " memory_limit: 268435456\n", - " locality {\n", - " }\n", - " incarnation: 14874211744067561757]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from tensorflow.python.client import device_lib\n", - "from gpflow.ci_utils import ci_niter\n", - "device_lib.list_local_devices()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "id": "-fqvYTly6E9D" - }, - "outputs": [], - "source": [ - "from gpflow.utilities import print_summary" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "id": "VpKUUEvC6F7i" - }, - "outputs": [], - "source": [ - "gpflow.config.set_default_summary_fmt(\"notebook\")" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'tqdm'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitertools\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mproduct\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'tqdm'" - ] - } - ], - "source": [ - "from tqdm.contrib.itertools import product" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Input scaler:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.preprocessing import MinMaxScaler, RobustScaler\n", - "from sklearn.exceptions import NotFittedError" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from helpers import ScalerHelper" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0aba0df5-b0e3-4738-bb61-1dad869d1ea3" - }, - "source": [ - "## Load previously exported data" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "dfs_train = []\n", - "dfs_test = []" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "train_exps = ['Exp1', 'Exp3', 'Exp5', 'Exp6']\n", - "test_exps = ['Exp2', 'Exp4', 'Exp7']" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "for exp in train_exps:\n", - " dfs_train.append(pd.read_csv(f\"../Data/Good_CARNOT/{exp}_table.csv\").rename(columns = {'Power': 'SimulatedHeat'}))\n", - " \n", - "for exp in test_exps:\n", - " dfs_test.append(pd.read_csv(f\"../Data/Good_CARNOT/{exp}_table.csv\").rename(columns = {'Power': 'SimulatedHeat'}))" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "#t_cols = ['time_h', 'time_m']\n", - "t_cols = []\n", - "w_cols = ['SolRad', 'OutsideTemp']\n", - "u_cols = ['SimulatedHeat']\n", - "y_cols = ['SimulatedTemp']" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "t_lags = 0\n", - "w_lags = 1\n", - "u_lags = 1\n", - "y_lags = 3" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "dict_cols = {\n", - " 't': (t_lags, t_cols),\n", - " 'w': (w_lags, w_cols),\n", - " 'u': (u_lags, u_cols),\n", - " 'y': (y_lags, y_cols)\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create the scaler and set up input data scaling:" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "7uZWtjPo6XhD", - "outputId": "e0c4a8be-881e-4adc-a344-0b7e4ee9bc75" - }, - "outputs": [], - "source": [ - "scaler = MinMaxScaler(feature_range = (-1, 1))" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "def get_scaled_df(df, dict_cols, scaler):\n", - " \n", - " t_list = dict_cols['t'][1]\n", - " w_list = dict_cols['w'][1]\n", - " u_list = dict_cols['u'][1]\n", - " y_list = dict_cols['y'][1]\n", - " \n", - " df_local = df[t_list + w_list + u_list + y_list]\n", - " df_scaled = df_local.to_numpy()\n", - " \n", - " try:\n", - " df_scaled = scaler.transform(df_scaled)\n", - " except NotFittedError:\n", - " df_scaled = scaler.fit_transform(df_scaled)\n", - " \n", - " df_scaled = pd.DataFrame(df_scaled, index = df_local.index, columns = df_local.columns)\n", - " \n", - " return df_scaled" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SolRadOutsideTempSimulatedHeatSimulatedTemp
057.93658222.0-3150023.000000
154.91444322.0-3150020.585367
273.94470622.0-3150020.300922
376.20633422.0-3150020.034647
465.12005722.0-3150019.786064
\n", - "
" - ], - "text/plain": [ - " SolRad OutsideTemp SimulatedHeat SimulatedTemp\n", - "0 57.936582 22.0 -31500 23.000000\n", - "1 54.914443 22.0 -31500 20.585367\n", - "2 73.944706 22.0 -31500 20.300922\n", - "3 76.206334 22.0 -31500 20.034647\n", - "4 65.120057 22.0 -31500 19.786064" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_train = pd.concat(dfs_train)\n", - "df_train = df_train[t_cols + w_cols + u_cols + y_cols]\n", - "df_train.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fit the scaler and scale the data:" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "df_train_sc = get_scaled_df(df_train, dict_cols, scaler)\n", - "#pickle.dump(scaler, open(Path(\"scaler.pkl\"), 'wb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "scaler_helper = ScalerHelper(scaler)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Scale the data for each experiment individually. Used for validation graphs and errors computation:" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "dfs_train_sc = []\n", - "dfs_test_sc = []\n", - "for df in dfs_train:\n", - " df_sc = get_scaled_df(df, dict_cols, scaler)\n", - " dfs_train_sc.append(df_sc)\n", - " \n", - "for df in dfs_test:\n", - " df_sc = get_scaled_df(df, dict_cols, scaler)\n", - " dfs_test_sc.append(df_sc)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Set up the function which generated the GPR input matrix from the experimental data (including all autoregressive inputs, etc.):" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "def data_to_gpr(df, dict_cols):\n", - " \n", - " t_list = dict_cols['t'][1]\n", - " w_list = dict_cols['w'][1]\n", - " u_list = dict_cols['u'][1]\n", - " y_list = dict_cols['y'][1]\n", - " \n", - " df_gpr = df[t_list + w_list + u_list + y_list].copy()\n", - " \n", - " for lags, names in dict_cols.values():\n", - " for name in names:\n", - " col_idx = df_gpr.columns.get_loc(name)\n", - " for lag in range(1, lags + 1):\n", - " df_gpr.insert(col_idx + lag, f\"{name}_{lag}\", df_gpr.loc[:, name].shift(lag))\n", - "\n", - " df_gpr.dropna(inplace = True)\n", - " \n", - " return df_gpr" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SolRadSolRad_1OutsideTempOutsideTemp_1SimulatedHeatSimulatedHeat_1SimulatedTempSimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
3-0.855164-0.8594630.0588240.058824-1.0-1.0-0.295224-0.270561-0.244215-0.020567
4-0.876235-0.8551640.0588240.058824-1.0-1.0-0.318248-0.295224-0.270561-0.244215
5-0.911207-0.8762350.0588240.058824-1.0-1.0-0.340062-0.318248-0.295224-0.270561
6-0.933425-0.9112070.0588240.0588241.0-1.0-0.361066-0.340062-0.318248-0.295224
7-0.952322-0.9334250.0588240.058824-1.01.00.051533-0.361066-0.340062-0.318248
\n", - "
" - ], - "text/plain": [ - " SolRad SolRad_1 OutsideTemp OutsideTemp_1 SimulatedHeat \\\n", - "3 -0.855164 -0.859463 0.058824 0.058824 -1.0 \n", - "4 -0.876235 -0.855164 0.058824 0.058824 -1.0 \n", - "5 -0.911207 -0.876235 0.058824 0.058824 -1.0 \n", - "6 -0.933425 -0.911207 0.058824 0.058824 1.0 \n", - "7 -0.952322 -0.933425 0.058824 0.058824 -1.0 \n", - "\n", - " SimulatedHeat_1 SimulatedTemp SimulatedTemp_1 SimulatedTemp_2 \\\n", - "3 -1.0 -0.295224 -0.270561 -0.244215 \n", - "4 -1.0 -0.318248 -0.295224 -0.270561 \n", - "5 -1.0 -0.340062 -0.318248 -0.295224 \n", - "6 -1.0 -0.361066 -0.340062 -0.318248 \n", - "7 1.0 0.051533 -0.361066 -0.340062 \n", - "\n", - " SimulatedTemp_3 \n", - "3 -0.020567 \n", - "4 -0.244215 \n", - "5 -0.270561 \n", - "6 -0.295224 \n", - "7 -0.318248 " - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dfs_gpr_train = []\n", - "for df_sc in dfs_train_sc:\n", - " dfs_gpr_train.append(data_to_gpr(df_sc, dict_cols))\n", - "df_gpr_train = pd.concat(dfs_gpr_train)\n", - "df_gpr_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "#df_gpr_train = df_gpr_train.sample(n = 500)" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [], - "source": [ - "dfs_gpr_test = []\n", - "for df_sc in dfs_test_sc:\n", - " dfs_gpr_test.append(data_to_gpr(df_sc, dict_cols))" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": { - "id": "eZAetwUd6YuE" - }, - "outputs": [], - "source": [ - "df_input_train = df_gpr_train.drop(columns = dict_cols['w'][1] + dict_cols['u'][1] + dict_cols['y'][1])\n", - "df_output_train = df_gpr_train[dict_cols['y'][1]]\n", - "\n", - "np_input_train = df_input_train.to_numpy()\n", - "np_output_train = df_output_train.to_numpy().reshape(-1, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "data_train = (np_input_train, np_output_train)\n", - "#pickle.dump(data_train, open(Path(\"data_train.pkl\"), 'wb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SolRad_1OutsideTemp_1SimulatedHeat_1SimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
3-0.8594630.058824-1.0-0.270561-0.244215-0.020567
4-0.8551640.058824-1.0-0.295224-0.270561-0.244215
5-0.8762350.058824-1.0-0.318248-0.295224-0.270561
6-0.9112070.058824-1.0-0.340062-0.318248-0.295224
7-0.9334250.0588241.0-0.361066-0.340062-0.318248
\n", - "
" - ], - "text/plain": [ - " SolRad_1 OutsideTemp_1 SimulatedHeat_1 SimulatedTemp_1 SimulatedTemp_2 \\\n", - "3 -0.859463 0.058824 -1.0 -0.270561 -0.244215 \n", - "4 -0.855164 0.058824 -1.0 -0.295224 -0.270561 \n", - "5 -0.876235 0.058824 -1.0 -0.318248 -0.295224 \n", - "6 -0.911207 0.058824 -1.0 -0.340062 -0.318248 \n", - "7 -0.933425 0.058824 1.0 -0.361066 -0.340062 \n", - "\n", - " SimulatedTemp_3 \n", - "3 -0.020567 \n", - "4 -0.244215 \n", - "5 -0.270561 \n", - "6 -0.295224 \n", - "7 -0.318248 " - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_input_train.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "id": "l_VzOWL66aD3" - }, - "outputs": [], - "source": [ - "## Define Kernel" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "id": "oBHgoYNf6b6t" - }, - "outputs": [], - "source": [ - "nb_dims = np_input_train.shape[1]\n", - "rational_dims = np.arange(0, (dict_cols['t'][0] + 1) * len(dict_cols['t'][1]), 1)\n", - "nb_rational_dims = len(rational_dims)\n", - "squared_dims = np.arange(nb_rational_dims, nb_dims, 1)\n", - "nb_squared_dims = len(squared_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "_WagEJum8uUG", - "outputId": "c65ec503-b964-49f6-fe3a-51c57a175f9b" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rational: 0\n", - "squared: 6\n" - ] - } - ], - "source": [ - "print(f\"rational: {nb_rational_dims}\")\n", - "print(f\"squared: {nb_squared_dims}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "id": "kTIQlLIP6dJz" - }, - "outputs": [], - "source": [ - "squared_l = np.linspace(1, 1, nb_squared_dims)\n", - "rational_l = np.linspace(1, 1, nb_rational_dims)" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "id": "MEGkQJvY_izQ" - }, - "outputs": [], - "source": [ - "variance = tf.math.reduce_variance(np_input_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "id": "WZfssVHG6edn" - }, - "outputs": [], - "source": [ - "k0 = gpflow.kernels.SquaredExponential(lengthscales = squared_l, active_dims = squared_dims, variance = variance)\n", - "k1 = gpflow.kernels.Constant(variance = variance)\n", - "k2 = gpflow.kernels.RationalQuadratic(lengthscales = rational_l, active_dims = rational_dims, variance = variance)\n", - "k3 = gpflow.kernels.Periodic(k2)\n", - "k4 = gpflow.kernels.Matern32(lengthscales = squared_l, active_dims = squared_dims, variance = variance)" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 169 - }, - "id": "vo8rcdBm6fuc", - "outputId": "75485dcd-961c-40d9-cf1f-d10516e2b80f" - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
Matern32.variance ParameterSoftplus True () float640.37330157725061586
Matern32.lengthscalesParameterSoftplus True (6,) float64[1., 1., 1....
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "k = (k0 + k1) * k2\n", - "k = k4\n", - "print_summary(k)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4af25a43-15c9-4543-af73-3c313b5fc7af" - }, - "source": [ - "## Compile Model" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 190 - }, - "id": "PC4cbp926j29", - "outputId": "72c9441d-2657-4e0f-de70-11a197d07ad3" - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
GPR.kernel.variance ParameterSoftplus True () float640.37330157725061586
GPR.kernel.lengthscalesParameterSoftplus True (6,) float64[1., 1., 1....
GPR.likelihood.varianceParameterSoftplus + Shift True () float641.0
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "m = gpflow.models.GPR(\n", - " data = data_train, \n", - " kernel = k, \n", - " mean_function = None,\n", - " )\n", - "print_summary(m)" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [], - "source": [ - "#m.likelihood.variance.assign(0.5)" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "#gpflow.set_trainable(m.likelihood.variance, False)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "08f41235-12df-4e9c-bf63-e7a4390cf21a" - }, - "source": [ - "## Train Model" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": { - "id": "Pn5TwPPT6ogs" - }, - "outputs": [], - "source": [ - "opt = gpflow.optimizers.Scipy()" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "id": "slQg9Ohv6oxR" - }, - "outputs": [], - "source": [ - "from datetime import datetime" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 212 - }, - "id": "GhsxZhc56p43", - "outputId": "778ec150-cfc3-44b7-9e21-e52bf69d494a", - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished fitting in 0:08:52.197074\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
name class transform prior trainable shape dtype value
GPR.kernel.variance ParameterSoftplus True () float64155314.92986790097
GPR.kernel.lengthscalesParameterSoftplus True (6,) float64[40975.93283651, 181.65728243, 24643.70612896...
GPR.likelihood.varianceParameterSoftplus + Shift True () float641e-06
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "start_time = datetime.now()\n", - "opt.minimize(m.training_loss, m.trainable_variables)\n", - "print(f\"Finished fitting in {datetime.now() - start_time}\")\n", - "print_summary(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Export model parameters:" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [], - "source": [ - "pickle.dump(m, open(Path('gp_model.pkl'), 'wb'))\n", - "pickle.dump(dict_cols, open(Path('dict_cols.pkl'), 'wb'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Train SVGP model" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mmaxiter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mci_niter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10000\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m \u001b[0mlogf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrun_adam\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmaxiter\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mrun_adam\u001b[0;34m(model, iterations)\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mstep\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterations\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 37\u001b[0;31m \u001b[0moptimization_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 38\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstep\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;36m10\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[0melbo\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0mtraining_loss\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mOptionalXlaContext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jit_compile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 891\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 915\u001b[0m \u001b[0;31m# In this case we have created variables on the first call, so we run the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 916\u001b[0m \u001b[0;31m# defunned version which is guaranteed to never create variables.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 917\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateless_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# pylint: disable=not-callable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 918\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 919\u001b[0m \u001b[0;31m# Release the lock early so that multiple threads can perform the call\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 3021\u001b[0m (graph_function,\n\u001b[1;32m 3022\u001b[0m filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001b[0;32m-> 3023\u001b[0;31m return graph_function._call_flat(\n\u001b[0m\u001b[1;32m 3024\u001b[0m filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access\n\u001b[1;32m 3025\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[0;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[1;32m 1958\u001b[0m and executing_eagerly):\n\u001b[1;32m 1959\u001b[0m \u001b[0;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1960\u001b[0;31m return self._build_call_outputs(self._inference_function.call(\n\u001b[0m\u001b[1;32m 1961\u001b[0m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[1;32m 1962\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[1;32m 589\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_InterpolateFunctionError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 590\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcancellation_manager\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 591\u001b[0;31m outputs = execute.execute(\n\u001b[0m\u001b[1;32m 592\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 593\u001b[0m \u001b[0mnum_outputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_outputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/tensorflow/python/eager/execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0m\u001b[1;32m 60\u001b[0m inputs, attrs, num_outputs)\n\u001b[1;32m 61\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "N = data_train[0].shape[0]\n", - "M = 150 # Number of inducing locations\n", - "Z = data_train[0][:M, :].copy()\n", - "\n", - "m = gpflow.models.SVGP(k, gpflow.likelihoods.Gaussian(), Z, num_data = N)\n", - "\n", - "elbo = tf.function(m.elbo)\n", - "\n", - "###\n", - "# Training\n", - "###\n", - "\n", - "minibatch_size = 100\n", - "train_dataset = tf.data.Dataset.from_tensor_slices(data_train).repeat().shuffle(N)\n", - "\n", - "# Turn off training for inducing point locations\n", - "gpflow.set_trainable(m.inducing_variable, False)\n", - "\n", - "def run_adam(model, iterations):\n", - " \"\"\"\n", - " Utility function running the Adam optimizer\n", - "\n", - " :param model: GPflow model\n", - " :param interations: number of iterations\n", - " \"\"\"\n", - " # Create an Adam Optimizer action\n", - " logf = []\n", - " train_iter = iter(train_dataset.batch(minibatch_size))\n", - " training_loss = model.training_loss_closure(train_iter, compile=True)\n", - " optimizer = tf.optimizers.Adam()\n", - "\n", - " @tf.function\n", - " def optimization_step():\n", - " optimizer.minimize(training_loss, model.trainable_variables)\n", - "\n", - " for step in range(iterations):\n", - " optimization_step()\n", - " if step % 10 == 0:\n", - " elbo = -training_loss().numpy()\n", - " logf.append(elbo)\n", - " return logf\n", - "\n", - "\n", - "maxiter = ci_niter(10000)\n", - "logf = run_adam(m, maxiter)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7dd49280-bb3f-4903-a339-b7225a56ae16" - }, - "source": [ - "## Evaluate performance on training data" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAARuCAYAAABJOlfRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5gcxbn1T3Wa2VUEhIRAQiIIgSSUkETGGDAYjDHgS3ACjOF+NsYJJ64j18bX4WJjg7G5trFJwuQMNjkHgSQkgXJAOa/SpplO9f3RVdXVPd0zs6sVQtr39zw8aCf0VE/orj513vMyzjkIgiAIgiAIgiAIgiCI7omxswdAEARBEARBEARBEARB7DxIHCIIgiAIgiAIgiAIgujGkDhEEARBEARBEARBEATRjSFxiCAIgiAIgiAIgiAIohtD4hBBEARBEARBEARBEEQ3hsQhgiAIgiAIgiAIgiCIbgyJQwRBEATxIYUxNpQxxhljVh2PvYQx9uoHNK5jGWMLGWMtjLGzP4jXJGIYY/uL997sysd2wbg+sO8gQRAEQRBdC4lDBEEQBNEFMMaWMsZcxli/1O3vCIFn6E4ami4ytYj/ljLGrt6OTf4MwB855z055w930TC7BV0hoHDOl4v3PujKx36QMMauYYzd2YXbu4QxFmjfcfnfvl2w7b8wxuYzxkLG2CVdMFyCIAiC+NBB4hBBEARBdB3vA/iM/IMxdjiAxp03nAr6cs57IhrjTxhjH+/IkzUH0xAAszszgHpcUN2dD8Lls5vyhhDC9P9Wd8F2ZwK4AsD0LtgWQRAEQXwoIXGIIAiCILqOOwBcpP19MYDb9Qcwxvowxm5njG1gjC1jjP2IMWaI+0zG2HWMsY2MsSUAPpHx3FsYY2sYY6sYY9d2RkjgnL+BSNwZJbZ7KWNsLmNsM2PsKcbYEO01OWPsq4yxhQAWMsYWAzgQwGPCmVFgjO3LGHuUMbaJMbaIMXa59vxrGGP3M8buZIxtA3AJY+xFMfbXxTYeY4ztxRibzBjbxhh7W3daMcb+wBhbIe6bxhg7PrX9e8V72swYm80Ym6DdP5gx9qB4v5sYY3/U7svd7zSMsbPEtreI8R+m3beUMfYdxtgsxthWxtg9jLFixjYOA3AzgKPFfm8Rt9/KGPszY+xJxlgrgI8yxj4hXGfbxL5fo20nUW4oxvNzxthr4j14mgkHW0ceK+6/SHwvmxhjPxb7dkrOe7KX+Ny3McbeAnBQ6v7Mz41FouQPAFwg3oeZ4vYvis+jmTG2hDH2//I+j47AGDtIfDfHi7/3Fd+HE7X35JeMsbfEWB9hjO0pn885v4lz/hyAUleMhyAIgiA+jJA4RBAEQRBdx5sAejPGDmORaHMhgHTpzI0A+iASWD6CSEz6orjvcgBnAhgHYAKA/0g991YAPoCDxWNOBXBZRwbIIo4FMBLAO4yxTyG6UD8XwN4AXgHwz9TTzgZwJIARnPODACwH8EnhzCgDuBvASgD7ijH/D2PsJO35nwJwP4C+ACaL2y4E8AUA+yESFd4A8A8AewKYC+Cn2vPfBjBW3HcXgPtS4stZYgx9ATwK4I9iX00AjwNYBmCoeK27xX317Ld8zw4R931TPPZJROKYoz3sfAAfB3AAgNEALklvh3M+F8CXETtc+mp3fxbALwD0AvAqgFZE342+iETCr7Dq+U6fRfQ96g/AAfCdjj6WMTYCwJ8AfA7AQETf0/2qbOcmRILJQACXiv90Mj83zvm/AfwPgHvE+zBGPH49ou9/bzG+66WgI8a3hTF2XJXxZMI5Xwzg+wDuZIw1Ivqe3cY5f1F72EVi/AMR/cZu6OjrEARBEMSuDIlDBEEQBNG1SPfQxxCJHKvkHZpg9F+c82bO+VIAv0UkkgCRwPB7zvkKzvkmAL/UnjsAwBkAvsk5b+WcrwdwvdhevWwEsAnA3wBcLdwQXwbwS875XM65j+iifWzKRfNLzvkmznl7eoOMscEAjgXwfc55iXM+Q2xfd1C9wTl/mHMeatv4B+d8Med8K4B/AVjMOX9WjOE+ROIXAIBzfifnvIlz7nPOfwugAGC4tv1XOedPilydOwBIsWESIsHqu+I9K3HOZd5PPfstuQDAE5zzZzjnHoDrADQAOEZ7zA2c89Xic3sMkSjSER7hnL8m3qMS5/xFzvm74u9ZiMSpj1R5/j845wvE+3tvjdfPe+x/AHiMc/4q59wF8BMAPGsD4rv8aQA/Ee/tewBu0x9Tx+eG1OOfEN8Jzjl/CcDTAI7X7u+rfX5ZHCUEJPnfYu25fwWwCMAURALQD1PPvYNz/h7nvBXAjwGcz6i8jyAIguhGkDhEEARBEF3LHYicGZcgVVIGoB8AG5GTRbIMsTtjXwArUvdJhojnrpEXvwD+D5H7o176cc734JwfxjmXzoghAP6gbXMTAIakY2QF8tkXwCbOeXPOPuU9f5327/aMv3vKP0TJ1lxRsrUFkaNFD/5eq/27DUBRlFENBrBMiD9p6tlvfR/VZ8E5D8U+6Y9Nj6EnOkbiPWKMHckYe0GUP21FJGb1y35qh18/77GJ7x/nvA1AU8429gZgIf/7Ws/nhtTjT2eMvSlKwLYgEkOr7XOaN4WAJP87KHX/XxGVUt4oHG866f2wO/jaBEEQBLFLQ+IQQRAEQXQhnPNliIKpzwDwYOrujQA8RMKEZH/E7qI1iAQN/T7JCgBlRAKPvPjtzTkfuZ1DXgHg/6Uuqhs456/ru1Xl+asB7MkY65Ua9yrt72rPr4rIqfkeIlfVHqIUaysiIacWKwDsz7JDsOvZb8lqaJ8ZY4wh+pxWZTy2FnnvRfr2uxCVyA3mnPdBlFVUzz5vD2sADJJ/MMYaAOyV89gNiMqvMr+vdXxuif1ljBUAPIDIlTVAPP5JdNE+M8Z6Avg9gFsAXKNnCgnS++Eh+r0SBEEQRLeAxCGCIAiC6Hq+BOAkUaKiEGVP9wL4BWOslyhhugpxLtG9AL7OGBvEGNsDwNXac9cgKrP5LWOsN2PMEEG71UqN6uFmAP/FGBsJqNDr8+p9Mud8BYDXAfySMVZkjI1GtP9d1aa8FyIRYgMAizH2E0SZNPXwFiLB41eMsR5ifMeK+zqy3/cC+ARj7GTGmA3g24iEuiwhqRbrAAxK5RVl0QuRI6vEGJuEyI22o7kfwCcZY8eI8V2DHHFGfJcfRCS0NIq8oou1h9T63NYBGMpEGDui7KOCeLzPGDsdUaZWV/EHAFM555cBeALR56/zecbYCJFJ9DMA94t9BGPMERlXDIAtvkc0hyYIgiB2K+jERhAEQRBdjMhNmZpz99cQhQ0vQRQ8fBeAv4v7/grgKUSts6ej0nl0EaKL6DkANiO6mB+4nWN9CMCvAdzNom5i7wE4vYOb+QyiwOfVAB4C8FPO+bPbMy6NpwD8G8ACROU+JVQvc1OIi/tPIgrwXo4oNPsCcV/d+805nw/g84jCxDeKbX5S5PJ0lOcRdYpbyxir5ky5AsDPGGPNiLJ/7u3Ea3UIzvlsRN/PuxGJai2IQqLTJViSKxGVpK1FFJb+D+2+Wp/bfeL/TYyx6aIs8euI9nMzIjHsUf3FWNTZ7HjkI7vA6f9NFOHjHwfwFfG4qwCMZ4x9TnvuHWIf1gIoirFInkZU6ngMgL+If59QZRwEQRAEscvBOO+005sgCIIgCILYTRGlWFsADOOcv7+Th7PDYIy9COBOzvnfdvZYCIIgCGJnQc4hgiAIgiAIAgDAGPukKBPrgSj/510AS3fuqAiCIAiC2NGQOEQQBEEQBEFIPoWoPHA1gGEALuRkMycIgiCI3R4qKyMIgiAIgiAIgiAIgujGkHOIIAiCIAiCIAiCIAiiG0PiEEEQBEEQBEEQBEEQRDfG2tkDyKJfv3586NChO3sYBEEQBEEQBEEQBEEQuw3Tpk3byDnfO337h1IcGjp0KKZOnbqzh0EQBEEQBEEQBEEQBLHbwBhblnU7lZURBEEQBEEQBEEQBEF0Y0gcIgiCIAiCIAiCIAiC6MaQOEQQBEEQBEEQBEEQBNGN+VBmDmXheR5WrlyJUqm0s4dCEB2iWCxi0KBBsG17Zw+FIAiCIAiCIAiCICrYZcShlStXolevXhg6dCgYYzt7OARRF5xzNDU1YeXKlTjggAN29nAIgiAIgiAIgiAIooJdpqysVCphr732ImGI2KVgjGGvvfYixxtBEARBEARBEATxoWWXEYcAkDBE7JLQ95YgCIIgCIIgCIL4MLNLiUM7G8YYPv/5z6u/fd/H3nvvjTPPPHMnjqo2PXv2rPmYa665Btddd13Vxzz88MOYM2dOVw2LIAiCIBKsXDwbyxfO2tnDIAiCIAiC6HaQONQBevTogffeew/t7e0AgGeeeQb77bffThmL7/sf+GuSOEQQBEHsKDzPhXHnOdh2/9d29lAIgiAIgiC6HSQOdZAzzjgDTzzxBADgn//8Jz7zmc+o+1pbW3HppZdi0qRJGDduHB555BEAwNKlS3H88cdj/PjxGD9+PF5//XUAwJo1a3DCCSdg7NixGDVqFF555RUASafP/fffj0suuQQAcMkll+DLX/4yjjzySHzve9/D4sWL8fGPfxxHHHEEjj/+eMybNw8A8P777+Poo4/G4Ycfjh/96Ee5+/KLX/wChxxyCI477jjMnz9f3f7Xv/4VEydOxJgxY/DpT38abW1teP311/Hoo4/iu9/9LsaOHYvFixdnPo4gCIIgOsOMJ2/BvnwdCkHrzh4KQRAEQRBEt2OX6Vam89+Pzcac1du6dJsj9u2Nn35yZM3HXXjhhfjZz36GM888E7NmzcKll16qRJ1f/OIXOOmkk/D3v/8dW7ZswaRJk3DKKaegf//+eOaZZ1AsFrFw4UJ85jOfwdSpU3HXXXfhtNNOww9/+EMEQVCXuLJy5Uq8/vrrME0TJ598Mm6++WYMGzYMU6ZMwRVXXIHnn38e3/jGN/CVr3wFF110EW666abM7UybNg133303ZsyYAd/3MX78eBxxxBEAgHPPPReXX345AOBHP/oRbrnlFnzta1/DWWedhTPPPBP/8R//AQDo27dv5uMIgiAIoiOEQYC9Z0bnKyv0OvTcGc/fi8Lrv8MhV78K09olpzUEQRAEQRA7HZpFdZDRo0dj6dKl+Oc//4kzzjgjcd/TTz+NRx99VGX3lEolLF++HPvuuy+uvPJKzJgxA6ZpYsGCBQCAiRMn4tJLL4XneTj77LMxduzYmq9/3nnnwTRNtLS04PXXX8d5552n7iuXywCA1157DQ888AAA4Atf+AK+//3vV2znlVdewTnnnIPGxkYAwFlnnaXue++99/CjH/0IW7ZsQUtLC0477bTMsdT7OIIgCIKoxoxn/4nx4Qo08wZY3K36WLdcxsynb8f4078I07LQvmwaxvpz0dy6Db367PkBjZggCIIgCGL3YpcUh+px+OxIzjrrLHznO9/Biy++iKamJnU75xwPPPAAhg8fnnj8NddcgwEDBmDmzJkIwxDFYhEAcMIJJ+Dll1/GE088gUsuuQRXXXUVLrrookR3q3QL9B49egAAwjBE3759MWPGjMwxbk+HrEsuuQQPP/wwxowZg1tvvRUvvvjidj2OIAiC2H3hYRidczp53uFhiMa3b8QqNgBreh+O/bbNrPr4aQ/8Fkcv+DXm9h+Cw448FfCjhRGv3N6p1ycIgiAIgiAoc6hTXHrppfjpT3+Kww8/PHH7aaedhhtvvBGccwDAO++8AwDYunUrBg4cCMMwcMcddyAIAgDAsmXLMGDAAFx++eW47LLLMH36dADAgAEDMHfuXIRhiIceeihzDL1798YBBxyA++67D0AkTM2cGU2ojz32WNx9990AgMmTJ2c+/4QTTsDDDz+M9vZ2NDc347HHHlP3NTc3Y+DAgfA8L/H8Xr16obm5uebjCIIgiO7D1Bs+g+m//VSnnz/37WdxqD8PKw/7EkKzCBv5ZWWe52LIwn9E/26PzkcsiJxGnlvKfR5BEARBEARRHRKHOsGgQYPw9a9/veL2H//4x/A8D6NHj8bIkSPx4x//GABwxRVX4LbbbsOYMWMwb9485f558cUXMWbMGIwbNw733HMPvvGNbwAAfvWrX+HMM8/EMcccg4EDB+aOY/LkybjlllswZswYjBw5UgVg/+EPf8BNN92Eww8/HKtWrcp87vjx43HBBRdgzJgxOP300zFx4kR1389//nMceeSROPbYY3HooYeq2y+88EL87//+L8aNG4fFixfnPo4gCILoHmxtWosxm5/BHm3LOr2N0ku/xxb0xOhPXAFuOlXFoXf+fSv25esBAKEXOYYgxCGfxCGCIAiCIIhOw6TL5cPEhAkT+NSpUxO3zZ07F4cddthOGhFBbB/0/SUIYnfkrfv+F5NmX4sVbF8M/uncDj9/+cKZGHTnR/DW4C/iqMuux5t//jIOX/sgevz3+orH8jDEol9MwL7+KvRgJUyb9HscccYXMeWGi3Dkpkew7ILnMeSwI7pitwiCIAiCIHZbGGPTOOcT0reTc4ggCIIgiE7Re8GDAACLd6zDmGT1v34LHyaGffIqAAA3HTjwMx+78v25GBYsxuwBn4we60dOISOksjKCIAiCIIjthcQhgiAIgiA6zOr35+FQbw48blYtBctj47pVGNv0JGbudTr2GjA4utEqwGYBQpHNp1Nu2wYA4HsMBRCXlcnMId8jcYggCIIgCKKzdJk4xBgbzBh7gTE2hzE2mzH2DXH7WMbYm4yxGYyxqYyxSV31mgRBEARB7ByWvXQrAOC9Hkd2Shxa8Pj1KDIP+5z2bXUbM20AgJvReSwQziCj2BsAwEWXMukcCtxyh8fQUdZvbkZbuXMuqTwWvPEYWrdu6tJtEgRBEARBdJSudA75AL7NOR8B4CgAX2WMjQDwGwD/zTkfC+An4m+CIAiCIHZh+q/4N+baI1DuNQQ2zy4Fy6OttRmHrrgbMxuPwuDh4+I7rAIAoFyudAFJcchqSIpDphCHwh3sHHJdD21/mIS37/xxl23znSdvwSFPfR6z/3Vzl22TIAiCIIiO0dbWggXvvr2zh7HT6TJxiHO+hnM+Xfy7GcBcAPsB4AB6i4f1AbC6q16TIAiCIIgPnpWLZ+Og4H1sHXo6uFWA00Hn0HvPTsaeaEbh+G8kbmdCHPKynEOijMxu7AtAdw55ift3FO+9+RSGYjUaWlZ0yfZWLV2Ag6b8CAAQllq6ZJsEQRAEsbOY+ofPYOpDN+7sYXSKGf/4Fgbd/wn4Xte6g3c1dkjmEGNsKIBxAKYA+CaA/2WMrQBwHYD/ynnOf4qys6kbNmzYEcMiCIIgCKILWPHa3QCAocdfCJgFWCxE4Oe7h0qlEl74y/fQ3BzlBgXb1gAABo08OvE4KQ5ltaUPhDPIbuwlbogcQ6YQh3a0c6htxgPRGIVTKc2ixYvw5C/Ow9ZttYUez/Ow+c4vwmRhdEOw40viCIIgCGJHctDmV8GXvbazh9FhSu2tGLnhCTSyMtxy284ezk6ly8UhxlhPAA8A+CbnfBuArwD4Fud8MIBvAbgl63mc879wzidwzifsvffeXT2sLmHdunX47Gc/iwMPPBBHHHEEjj76aDz00EM7/HWnTp2Kr3/9612yrRNPPBHDhw/HmDFjcOyxx2L+/Pldst2upCvHeOutt+LKK68EANx88824/fbbcx+7dOlS3HXXXervrnzfCYIgdif2XP4UFlkHY5/9D1GlYFk5QZL3Z72Cj67+Pyx5+6noBiGGOIWGxOOUcyhDHJJOIbvYAx43AVlWxmVZ2Y4TWDzfxyGbXgAAGEG2OLR5zvM4w3saG5a9W3N7b935U4zy38PCI34Kl5vgOdskCIIgiF0Fi3uqScSuxLvP3oU+aAUAeBll7d2JLhWHGGM2ImFoMuf8QXHzxQDkv+8DsEsGUnPOcfbZZ+OEE07AkiVLMG3aNNx9991YuXLlDn/tCRMm4IYbbuiy7U2ePBkzZ87ExRdfjO9+97sV9wcZXWI+aHbEGL/85S/joosuyr0/LQ519ftOEASxO7Bm+SIM9+ejaf+PAwCY5QAA3CoTqsCNhCPp/mF+NHm0bSfxOMOu5hyKxB/LKcKDpSagFo+cQ1I82hG89+Yz6I/N0RjD7NfhYnxBauxrVy3FkrnT1d+LZ7yMSUtvxvReH8XYM78CD/YuOZkmCIIgdk/aW5vx+s1fRdP6VVUf98Y/f4nX//499bcDXzWJ2JUovjtZ/ZvEoS6CMcYQuYLmcs5/p921GsBHxL9PArCwq17zg+T555+H4zj48pe/rG4bMmQIvva1rwGIhIXjjz8e48ePx/jx4/H6668DAF588UWceeaZ6jlXXnklbr31VgDA1VdfjREjRmD06NH4zne+AwC47777MGrUKIwZMwYnnHBCxTbeeustHH300Rg3bhyOOeYY5aq59dZbce655+LjH/84hg0bhu99L/6h5nHCCSdg0aJFAICePXvi29/+NsaMGYM33ngDv/vd7zBq1CiMGjUKv//979Vzbr/9dowePRpjxozBF77wBQDAhg0b8OlPfxoTJ07ExIkT8dprkZ3wpZdewtixYzF27FiMGzcOzc3NWLNmDU444QSMHTsWo0aNwiuvvNLpMd55552YNGkSxo4di//3//6fEoz+8Y9/4JBDDsGkSZPUWADgmmuuwXXXXQcAWLRoEU455RSMGTMG48ePx+LFi3H11VfjlVdewdixY3H99dcn3vdNmzbh7LPPxujRo3HUUUdh1qxZapuXXnopTjzxRBx44IEkJhEEsduz9NV7AQCDjjkfgO72yXcOyU5ioR9NunhQRpnbYEZyGmJUKSuTziDLLsJlNphwH0lxKNyB4lDbO/ejzG0sNwarMraK8fnZ4tCy+34Adt/F6m/vie9jE+uLg774F4AxsS+73mSaIAiC2D2Z9a+/4pi1d2Lp2//KfUx7azNGzrsB+66MHsPDEAXmqSYRuwor35+Hw913sJoNAAC4GfOP7oTVhds6FsAXALzLGJshbvsBgMsB/IExZgEoAfjP7X6lf10NrK1t2+4Q+xwOnP6r3Ltnz56N8ePH597fv39/PPPMMygWi1i4cCE+85nPYOrUqbmPb2pqwkMPPYR58+aBMYYtW7YAAH72s5/hqaeewn777adu0zn00EPxyiuvwLIsPPvss/jBD36ABx6IchBmzJiBd955B4VCAcOHD8fXvvY1DB48OHcMjz32GA4//HAAQGtrK4488kj89re/xbRp0/CPf/wDU6ZMAeccRx55JD7ykY/AcRxce+21eP3119GvXz9s2hS13v3GN76Bb33rWzjuuOOwfPlynHbaaZg7dy6uu+463HTTTTj22GPR0tKCYrGIv/zlLzjttNPwwx/+EEEQoK2tel1n3hjnzp2LX//613jttddg2zauuOIKTJ48GR/72Mfw05/+FNOmTUOfPn3w0Y9+FOPGjavY7uc+9zlcffXVOOecc1AqlRCGIX71q1/huuuuw+OPPw4gEuUkP/3pTzFu3Dg8/PDDeP7553HRRRdhxowZAIB58+bhhRdeQHNzM4YPH46vfOUrsG276n4RBEHsqvRY9gxWGPth8MFjAMSCTlaItES6fqS7hgUuXFgopB5n2sXo8VXKypxCMXLbhNI55Cbu72o838fBTc9jfq9JsNyt+RNfKQ6lyttsbxt6hHEOUR9vA5b3mYCJe/aPto9Y6CIIgiCInc2ecyMnTbVy7dnP3IYJrA3bxAKN57lwgA/EObR1yybMffrvOPI/rqpYZOooy5/7K/blDMsPOB/7vn8j/CoLXd2BLhOHOOevAmA5dx/RVa/zYeGrX/0qXn31VTiOg7fffhue5+HKK6/EjBkzYJomFixYUPX5ffr0QbFYxJe+9CWceeaZyqFy7LHH4pJLLsH555+Pc889t+J5W7duxcUXX4yFCxeCMQZPS1Q/+eST0adPHwDAiBEjsGzZskxx6HOf+xwaGhowdOhQ3HhjlChvmiY+/elPAwBeffVVnHPOOejRowcA4Nxzz8Urr7wCxhjOO+889OvXDwCw5557AgCeffZZzJkzR21/27ZtaGlpwbHHHourrroKn/vc53Duuedi0KBBmDhxIi699FJ4noezzz4bY8eOzXx/ao3xueeew7Rp0zBx4kQAQHt7O/r3748pU6bgxBNPhMytuuCCCyo+i+bmZqxatQrnnHMOAKBYLGaOQefVV19VItxJJ52EpqYmbNsWBat+4hOfQKFQQKFQQP/+/bFu3ToMGjSo5jYJgiB2NZq3bsKhpVl4Z+D5kGeXaiHSEukYCjVxyGeVIrrhiG1lhEurzKFCEa2a28bivrh/x0xI57z1HMZgE9aOOBvhzLtgBdn7yQMpDiXvN0MXNuKwbhseuBmX0/nMys0xIgiCIIgPkoUzXsGwIKraqLbo0nN2JCBJ967nluAAue7armT2/b/AMSv/huWLTsH+h4zt9HYC38eBKx/G7IYj4PQ/CHgf8N3uvVjTlc6hD44qDp8dxciRI5U4AAA33XQTNm7ciAkTJgAArr/+egwYMAAzZ85EGIZKcLAsC2EYqueVSiV1+1tvvYXnnnsO999/P/74xz/i+eefx80334wpU6bgiSeewBFHHIFp06YlxvHjH/8YH/3oR/HQQw9h6dKlOPHEE9V9hUK8BmuaJvyczjGTJ09W45YUi0WYptmJdwYIwxBvvvlmhchy9dVX4xOf+ASefPJJHHvssXjqqadwwgkn4OWXX8YTTzyBSy65BFdddVVmDlCtMXLOcfHFF+OXv/xl4jEPP/xwp/Zhe6j3fScIgtjVWfDG4ziC+eg95pPqtmo5QRLpGJITTRa48DKmIJZwDoVZkzNNHPKZrQQVG17i/o6yYd1q7D1g39z7m6ffD5dbGH78eZj/7v0o+tuyHyheP73SaoQubB5Plm144IYmDsHeJTMaCIIgiN2PTS//BT43YLEwVxxateAdHOrNgcst2EyIQyKrR7p5dxRS0AEAr7R9ncXee+VhjMFGrBnzIxhi/lFtLtMd2CGt7HdHTjrpJJRKJfz5z39Wt+klUVu3bsXAgQNhGAbuuOMOlX8zZMgQzJkzB+VyGVu2bMFzzz0HAGhpacHWrVtxxhln4Prrr8fMmTMBAIsXL8aRRx6Jn/3sZ9h7772xYsWKxDi2bt2K/fbbDwBUdlFXc/zxx+Phhx9GW1sbWltb8dBDD+H444/HSSedhPvuuw9NTU0AoMrKTj31VOXuAaDKrRYvXozDDz8c3//+9zFx4kTMmzcPy5Ytw4ABA3D55Zfjsssuw/Tp0ytevx5OPvlk3H///Vi/fr0ay7Jly3DkkUfipZdeQlNTEzzPw3333Vfx3F69emHQoEFKSCqXy2hra0OvXr3Q3Nyc+55Mnhwp5C+++CL69euH3r17d2rsBEEQuyr+vH9jGxox7IiT1W3xhCpfnFETTOGuMUIXXoZzyHSEOJThAlJlZU4DfNiqvEsJL50ozZo37QXs+acRWLl4Tub9vu/j4I3PYV7PSSj22gOh4cDkOauiYszp7CMz9OBAE4e4n3IO2WAfwEorQRAEQVSjZdtmjGp6GrN6Hgcg3zm08uXb4XETM3sdr87Bssto7jmyi5jz+mPYBxsBbL+Q40+9DZvRCyM/eiFM4VxOu3+7GyQO1QljDA8//DBeeuklHHDAAZg0aRIuvvhi/PrXvwYAXHHFFbjtttswZswYzJs3T5VkDR48GOeffz5GjRqF888/X+XfNDc348wzz8To0aNx3HHH4Xe/izK8v/vd7+Lwww/HqFGjcMwxx2DMmDGJcXzve9/Df/3Xf2HcuHE7zKEyfvx4XHLJJZg0aRKOPPJIXHbZZRg3bhxGjhyJH/7wh/jIRz6CMWPG4KqrrgIA3HDDDZg6dSpGjx6NESNG4OabbwYA/P73v8eoUaMwevRo2LaN008/HS+++CLGjBmDcePG4Z577sE3vvGNTo1xxIgRuPbaa3Hqqadi9OjR+NjHPoY1a9Zg4MCBuOaaa3D00Ufj2GOPxWGHHZb5/DvuuAM33HADRo8ejWOOOQZr167F6NGjYZomxowZg+uvvz7x+GuuuQbTpk3D6NGjcfXVV+O2227r1LgJgiB2VcIgwEFbXsOiXkfCcjTHpHAOZeUESeQEU/7fCF34zKl4nCXEoXRuj3gBhJzBsh34hgNDCCqOKNlinXAOtW1YDpNxNG9ckXn/nKkvYB80gR92VjQEs5BwASUQYlXaOWRyDw7zwYWL2IEHbsXvn284H4gNnyAIgiCqMeepW9CDlVA47orohpxybda6DptZHwQ990UBaefQjj2fuW/frv6dOVcAMO3Vp/DO689W3c6m9atxeMtrmN//DDjFBphWfuZhd2LXLCvbSQwcOBB333135n3Dhg1THawAKNEIAH7zm9/gN7/5TcVz3nrrrYrbHnzwwYrbTjzxRFU+dvTRRycydK699loAwCWXXIJLLrlE3S5DldPoIcs6LS0tib+vuuoqJf7oXHzxxbj44osTt/Xr1w/33HNPxWN1N1G153d2jBdccAEuuOCCisd98YtfxBe/+MWK26+55hr172HDhuH555+veEz6Nvm+77nnnpkla/o2AeC9997LHDtBEMSuzqJZr+MQbMGyYaclblfOoSqrbaqcTEw0jdDLzByS4hD3K7fF/DJcWCgyhoBFziHZHQVApzp+5XUYkzRPfwAuNzHshKgzGzec3Imv3DeemqzKx7tuCbblwGIhYMbikNwXgiAIgthpcI695t2FJcZQjDjyNOCpOEsvjSFyA7lVQIF54GGonEO5CyhdwLZN6zFq2ytYZB2Eg4PFuS6fhpf+GwGzgWNOyd3WivdexRgWoPf4KOM3dg5178whcg4RBEEQBFGTDe88jpAzHHT0pxK31zWhksJJoDuHKsUhW5aV5TiHPBataQWGDZN78LxYVGGdEFjk6+SNvde2hVhmH4jG3ntFjzedOOMohXz9tA1fiUPlElzZBUVzDsl9IQiCIIidxaIZr+CgYDHWH/JZMMOAy61c55AqDRcl0p7nqvPojnQOzXvmHygwDxsP/RyA/HO3E5Zgh8n73HIJc/7nOMyd8m8AQOhF5+NCj74AajiXuxEkDhEEQRAEUZM+q1/BEvtg9N07Gd6sQqSrTKikKCTdPWboIjCyysoi0SQr54CFLjxEglJgODC5C1dz/HTGOcRz2s9LzNCFZ8TNFrjpwMkJ25Svn15pleGcXrmEsrDdMyve94DZMHdwgGdX0L61aWcPgSAIgthBbH7lL2jjBRz28csAAC5ssDznUOjBhw2IUiy33K7yf/IWULqCvRbei4XGgeh/WJSJFOY4hyzuVQRjb2tahxHuu9i6aAqA+LwvRSFLZR5277IyEocIgiAIgqjKhg0bMNybh60Dj6u4L3b7VJlQidXHWBzyEbLKynbbaQCQLQ4ZQSwOhYYDK/RUxgGATnX8kq+TNxk0Qy85TrOgMo6yxgegomuaCuv0SvDK0Uol05xD0b58uLtcTnvweji/OwgbV72/s4dCEARBZLBt/Qqs+MUYLJv5coef27JtE0Y2PY139zgZffpGTlmPVROHXASGrc5lXrmkSrycTjqHmhZPw4b5b+bev3zOmzjIX4QNB58Hq1B9UcriXoUjVy4mxRmI0TnbErmJltMY3U7OoV0HzvnOHgJBdBj63hIEsaszf8q/YLMA/caeXnFfrUkaADXBlOKQxbOdQ05BZg5lOIeCuBQtFNk/CXGoE84hKeTkTQYrxmk6Kl8hjRKnUjZ8W4hJfrmkVlYNvazMdHZ469/tYVvTehw467cwGcfWpjU7ezgEQRBEBkuevB6DvaVYv6jjnaDnPvV3NLIyeh/3n+o2D1auI9cMPQRME4fcksru66xzaM3938emByrzbiXrXroFLrcw/GOXxo7lnEYUFvcqso9UPpHsLCrO+7aYd9h1zGW6A7uMOFQsFtHU1EQX2sQuBeccTU1NKBaLtR9MEATxIcVf8AzaUMT+Y06suC8Oka4tDkkBxeJejjgUOYeQMSE1Qi/KOEAkDtlpcWh7nENVVh9DfZxiIuxmPF69fpDjHHJLary6c6hayPWHgTl3/wB7oBnA9rcNJgiCILoeXm7BAUvvBQCEOW6f/Cdz7DVvMhYZB+DQ8R9RN3vMzj2vmtxDYNgwbM05JEQXhwUIg6DD+2D6bbCC9sz7/HI7hq17EjN6Hoe99t4HTjGaK+Seu+FXnFfV+StIdk+V7me7jrlMd2CX6VY2aNAgrFy5Ehs2bNjZQyGIDlEsFjFo0KCdPQyCIIhOUfYDHLD1LSzvMx6HaqKGpJ4JFROt2o0gFofCDHHItCz43KgozQJkiHX0HBkMXfbiiWSnQp0Dr+rYK0QsKQ6V2lGQQpYaX3bXNEesogZuCdyMpl3M1sUhe4dmNGwP78+bgQnrH8AyczCGhCu6fVAnQRDEh5Elz92Cg4SI39GyqMUzXsZBwRK8edgPcbAR+0Z85uSLQ6GLstVTnct8tz0h1LjldhQbe3ZoHCb3chdK1iybj8FoAR/2MQBxCXrWXAGIzrsMSUOJ7yYdzFIkSjuH0gs83Y1dRhyybRsHHHDAzh4GQRAEQXQrZr47E5PYWsw/6LLM++1Cfk6QRIpCunOIm5XiECBDMCsnpGboRq1pAUCIQ3KyJ+/vMHISmDMZjMYZd1WTQdK6Y0m9Pk/mKgEAD0M4TJSVuSUYVrQtw06GXH9YxaGNT16LAbCx+cjvYcgbX8ttG0wQBEHsJMIQPd/5Kxbw/XEIW57bYSyPTa/8BfvwAg47LXmO95mtFj3SWNxDwBwYIpDad0uJ3MFyudRhccjibm6JtSfO9XYx2ma1EnRAOnaT4pAse1PNI8RzpWPZqWMu0x3YZcrKCIIgCIL44Gma+hAAYOhRn8q8X07S8lbwgFgUkgKODQ9hjjjkMSszBFPa2AGAmwXY3IOvrVR2pjQrPUlMY8EH15xDTEyEvQyRxMxwDund1AKvrCanpuYcCs0CbN65QOp5U57C6qXzO/XcWixf+C7Gb30W7w48F4177w+AshgIgiA+bGyd/zIGeCswe+jF0Q0ddL7su/ltzOs5CX367pm43a9SVmbx6BxuKudQKXF+kM0XOkJWTpBELkzIhRVVgp5x7uacw4GnXLsS35PikFwUiu63bSfxf9ZBcW13g8QhgiAIgiAy4Zxjv9VPYblzMAoDDsl8jOPUFodkWZks/bLhA4ad+VivmnNICDXcdODAU2JLC2+AlbPCWQ35OnmTQQdJh5PMCvIznENSnNIn025ZF4dKanJqas6hyAXVcXFozbL5OPDJz2Lloz/v8HPrYe0T/wMfFg7+1A/UePPCPwmCIIidw5pXbkUrL2DUx74Aj5s1xaHWrU3Yun65+tvmHgKnd8XjAsPJdeTaojRcikOBV04ssnQmn87iXu65MEg1c1Al6Bn7GvgeTMbhwE80j5Bl0XFnURcut8BEKR0zDJS5Dd7Ny8pIHCIIgiAIIpN58+dgNJ+PrQeemfuYeiZUZto5xD1wszK/CBDiUMaENJH/YxVgMg6/3AoAaGMNner4pZxDOWNPj9Nw4s4sleNLls4ByfKzwCsjFNZ43TkEswC7EwGeqx/8ERzmw/A7vkKbxdbNTXDL0fi2Nq3DuM1PYUb/T2Gvgfur0PGKzCG3DWjf0iWvTxAEQXQM7rZh8OqnMKV4PIYNGgAXVs2ysjm3fxPr/3Ku+ttG9vk4YHbuoosNDzBtmOrcUALXFnWyzpG1sLif7xySrlsnXlhxYYNlLFi4wrVkMA7Pi7cnnU3yHM2CMlwkF6ncKh3augskDhEEQRDELsDO6Na57o17AAD7H/fZqo+rNaEytawhoNKRo5OXc6CHWDPxXL9tKwCg3WjsVFlZPEnMWR2FnxinylfIsMxnOYf08rPQKylrvKVNcCFyjNwO2PCXzX4T47Y8E71eauw8DDH1qcnwvPonuK3NW+H9YTym3fEDAMDWpjWwWQBz/0kA4tDxdFnZoru+jVU3faLu1yEIgiC6jmVvPIgeaAMffQGAqMNYVlm2jtXehJ7+FvW3k5MBGJiF3EYPFjxww1Gu0q5wDtkZpWBqe0LwMu14nFEJeuV5Tl+Ucd34vCqdr0yVgJdVB9R4m9nO5e4EiUMEQRAEsQvw2t+uwrRfn/6BvubAlU9isT0MfQYNr/q4WhMqmcdjcQ++58JkXHX+SuMzp0LwiJ7rxh3OxHOD9m0AgLLR2KlQZ/k6WWP3PQ8WC5UQBSCRr5BGrnjqNny/HE+WQ6+sJqe6OCRDrt0OTKY3/esXaEYjVrJ9KjIhlsx+GxPeuAJzXnmk7u3NevxP6IctMFvXRuMWDifZptjOCf9s2bAcZuu6ul+HIAiC6DpK0yZjLd8TEz96FoB8562OEbqJ86Wds1gTGnauI9fm0cKJpRYOStstDjncg8OSpWBqLGJhwtJKsvP21XP17CN9gUY4d7VFIS/VmyuvrL07QeIQQRAEQXzIad62GWNX/hOD2+dVfRwPQ0x7+Ea0t2zb7tdcuWQuhgcL0TSktjOk1oRKTjAt7iqHDMtzDhnZIZg291Q4tMz+CUpCHDJ7dE4cymk/D2grjpqIZWj5CmkskZVgaq4nP7VqqSa4CXFIlKpl5Bjl0at9FZY2jkKLuUdFJoQn3FRee/I7MPPp2zHvl8dXbMvzXOy/4B/RWMS25MRehn/aOblSRuh2yrFFEARBbB+lLWtx0LYpmN3vNPRuFM0S6nC+mNxT50seBnBYAGSUlYWGk3t8d0QpmiVKrUO3lChnCzrpHAKS4o4ai1/pus2bd+guXP28KsUrec40QjfTOZQXwt1dIHGIIAiCID7kzH76VvRk7ZkCyJt//x7mvvEkAGDlktk4YsaPMOfFe7b7NZe/MhkAsP/x1UvKgNoTKjnBtLkXT9ZynUN2ppXdhq86nDEh0vBSc/T6Vs9OdfwyMnKCJJ50/VixiGVp+QoV4+PSHaU5h7QJMtds93JCHf2Rn2OUh8WjcO7AsCreKxl6zVMCVtv7b+PQ8iwEfvJ9euepO7Afj9w/0kkVqODsQmK8PDURN0KvU6IcQRAEsX0sfO5W2Aiw19FfULcFsDKdtzpW6KrzpXKsWlnOISczAyj0fVgsBCwHlqO1f9de1884R1aDh2EkUgEol9oq789YWMnrpqa/drY4JEvAPfgsud8+s2u+f7s7JA4RBEEQxIecPebdBQCZAsjoZbdi27T7AQBuWySWBCKoeXvYe/mTWGANxz5DqpeUAbUnVJbWpUxO1liOOJTXIcXWchFkxxLmtkTPsXvmZhVUQ60gZuUWCNePPk5Ly1dII18/6RxKTkzl5NTWJriGmd8BLQ/ZKSbrvZJjC1O5EzKHIp1t1DjrNqxkA/G+MUQ5qVT4Z6ptcLqszNQuMgiCIIgPjsZ5D2ABOxCjxx+jbvNZfocxicF9db6STQiynLzcdDLFf91VK7uVhn454eIJM9w/1UiWglXm74XClZQUh7JL0PVzqe/F21KLM2IBh4UefJYsK/OZQ86hnT0AgiAIgiDyWTjzdQz3F2ALsgUQB15FOVD6Ir6jLF/4LoYFi7H5gPwuZTq1JlS6c8hVLWmzy8oCZmda2R2to4os72KuEMPsnrBYWOGKqYWlVhDzQy0NPXNIy1fQ4WEIR5SVWdpnlBCRdHFIiC1A7ILqyEqrJYSyLNu/LF1LO4fkxN1NiVC9/Cas6zEcnlFQ74Mct3QO2SIElKW64Jg8P0CUIAiC2DGsWTQTB3kLsPaAT8EwmLo9Ksuufky2QlecLz0lxGQt1nCzkOkcKssFHtOBXYwXDvQg7Cx3bTX04Ggv47nxwko8zrwSdP2867mVziFLywcMUmVlAbNrimu7OyQOEQRBEMSHmKaX/w8lbmN+/9PhMB9hEIc1BsLeLS/8lTCwneLQqtcip9LQj9QuKQNqT6jk6qMDT00a85xDoVHZPjeynPvK+i6zcCwvcg5xpyeAjnX8AqBKsrLGLieVTGs7bwlRJ921y/M8GCzqJqdPpvUJMg9c9bk4hXj1s1rIdR42PISmIwJD0+KQ2E46H0h8Rzw3+R7ZPNpWoJXzpcUhZhgocxs85UayeHSRwQNyDxEEQXxQrHjxHwg4w7CTv5i43a9D3JALGG6pPT7P5YhDctFDR3f/xs0K3KRzqINzEL38K8tFm7WwkleCrucdJbKP/LgxBhCd9yvKyozsbXYnSBwiCIIgiA8pLc1bMWrjU3iv70ngjf0BJLtaSTFErp75on359opDA5Y/iXn2CAwYdHBdj681oVLiEIvLygw7TxxyKjqkyH1mwjmksnD8SBxihV7R4zpQmgXE9vKssUsnj6F1R5HlYOn3V1/1tHi+c0gGdjp6WZlyDtX/mdmijXDWe6UEwnRZmfiOpC37lgj6Doz4okKGf+rlby4q2wbLfe1IpzWCIAii8/AwwOBVj+O9hiMwcL8hifsCw6kpbsjjtlcuqUWJzMUay0GBeRXdw/TnOCJzCH450TksvYBSi4Q4lHU+yVhYyStB1124CXEoSDuHPARGyjmUs83uRJeJQ4yxwYyxFxhjcxhjsxlj39Du+xpjbJ64/Tdd9ZoEQRAEsTsjg6h7Hnu5cs0kxSEhYAinTeiLC//tCFRc8t4UHBguxZYD6yspA2pPqPRcGrct6qKliy46oVlZKqVEH/EeqCwcP8pWYoXIOZR2xdTCquIcCmQ7d23SrFZJU7Z3fWKrZzToE2QWuEBQhstNGKapbpdCV9CBjAaH+4AoK0vb/pVwlSoBM1Klh/p4uRnlF8n3Q4V/ahNxP6MLjs2zS9UIgiCIHcOCt5/BQL4B7ojzKu6LHKDVz/+2EvXbY6EnY7FGLsZ4XnJ7ujhk2TZ8bgBBGUbooY2L5gUddQ652aVg2osCSC6s5JWg64syQfocjPgcbXEXoZF0DlXr0NZdsGo/pG58AN/mnE9njPUCMI0x9gyAAQA+BWAM57zMGOvfha9JEARBELstfedOxjJjMIZPOBlvLZkKIOn8kGKIvPBXYsR2OIc2vPAn7MdtHHbqZXU/p9aEyoGHdu6ggblwW6NW62aOc4gblSGY6VwE+dxC0AqXW0poygqyrIYlRKtqE0zd4WTnBDP7YmLbzp1EBk/CWh+4YNyEBxv6dFQKXekcozx4GEaruVZBBIYmbf8yuDP9HWBCQEyLQw6PspwC5qhyPp4R/ullOIfkRUZHSuIIgiCIzrP1rbvQxgs47KMXVtwXGk5FWXaauGV87BwyrIzFGrkgVW5POHbUc8S50YUN5pdhBC5aWSMaUe6wOKSfQ7LyinjgwuMmbG1hJW9fk+JQvC2ZiST33+Q+ggpxKFtw6k50mXOIc76Gcz5d/LsZwFwA+wH4CoBfcc7L4r71XfWaBEEQBLG7smjWGxjuz8faYReCGYYSRnSXihRDzFSQcPoivl5atm3GqI3/xqy+J6HPXgPqfl61CZXvuTAZRytrjMbcHolDec6hrA4pcS5CNJGTokWRt0UTU6vjuT2AvoKYUVamOnbF4pCTU1Ymx9fGGqs6h1jgwk0FYJpVOqBl4Uvxx3TAzULl2MXYWMoNZSrnUPJ1pHMocmwlyxL1sjIvo21wfJGxfWWMBEEQRG08t4RDmp7D7N7HoWevvhX3Zzlv00gnr19uV+cD065sEJE15wA0cUicjz0WLRwYoYsSy15AqUVCHMo4n7DAhZfytOjnrMTt2rm0wr2LaEEEkCXVyfNxVql2d2OHZA4xxoYCGAdgCoBDABzPGJvCGHuJMTYx5zn/yRibyhibumHDhh0xLIIgCILYZdj4UhREfdip/wkgnqjpK2FKwJBlZUocqj4xe+tfd+CVu35Zcfvsf/8NPVgJvY7/fx0aa7UJlcxFahfiUNAelZVZTna3sqhDStINk85FkOJQA2+PRItOhDoDSXt5mjiUORZIZEv3dMmWFOnaWCMcFiAMgmhfxATZ5waM0AULyvCQnIxaovtKulQtD7cUu6iyAkNl1lBaIFQCovYehUEAhwVgpgOuCXzZ4Z+VHeniiwxyDnWGBdNfwrYtTTt7GARB7CLMfeVB9EULrDHnZ96fVWqcRp73fK9c0XxAR4lDblocSp4bPdhgoQuTeyiZPQB0XBwK8nKC5FiCcsXCSp5jWe/Uqbt35YKJAx88DKNmDBllZbXev92dLheHGGM9ATwA4Juc822IStf2BHAUgO8CuJcxxtLP45z/hXM+gXM+Ye+99+7qYREEQRDELkNr81aM3PhvvNf3JPTeK6rGVgJIRnCjmbqor+Ucst69G0MX3l5xe7/5d2GxeQCGj/9oh8ZbbUIlVx1LRiQOhaWo/bxZxTmUbo8uJ6PyPbBECGYP3gYPcVlZ2hVTC7mCmDV2lbujtc41TBMeN1WwZXp8ZTPaR5kLJT+PVtYQrawGLnyWLQ4Ffn2rlWoV1ypkB4aK7aQFQvkd0cM6VX6V5SQdWzLfIZU5lG6R7KiLjI6V8xHAvClP4eBHPoXZj/x2Zw+FIIhdBH/GvdiEXhh5/DmZ92c5bxP3h9GCABDNH6QoYzqV5+M855AquRbnLg9RHp0ZenDFeT69gFILPycnSI0ldCsWVvL2NQyynUOyY6fBOHzfgyW6flZus3t33+xScYgxZiMShiZzzh8UN68E8CCPeAtACKBfV74uQRAEQexOzH7mVvRi7eh57JfUbSpXR1tVk93JLOnoyCkpSmNyt2LFjYchDvDfx/oBJ4AZHZseVJtQyfG6ckVRiENWxmQ0uqMAi4UI/Hh7ccZB9BwZDO2wAB6ztVDn+h0sPAyV6yZr7GpFNTVOD1ZF4LcUXMpiH1VAs/g82lgjjDCy3XsV4lAkdNXb+teT7jCrAIiJbSIwVEyMjQrnULJNfWKcViGR9STdR3r4Z7pFcuj7sFgkSmUGiBK5lNpa0OPf34TBOCB+DwDw/ntvVnQGIgiCAIDWbZswYturWLDXKXAK+Zl9VhVxyHWTDp04W6/yfBw7cpPivxSULLkoI0qOTe7BNxy4GQsotQhz3D4SFngV586sfMJoQPHzdReRvrjhltujxY0KcahAzqGu2pBwA90CYC7n/HfaXQ8D+Kh4zCEAHAAbu+p1CYIgCGJ3o/ecu0QQ9cfUbXHL80r7taUu6sXKWA3nkBm6FZMq3/eii1W7IedZ+VSbUClxyIqEE+YKcSjHOaQED10ESwVg2inRQjmH6izNArT9RbZzSE5QrZTd3mV2hStHfg6eEIdkmZl0DpVYD5ihCxZ6Fc4huS+8zswhuYrLrELkHkJcugfErrF0CZgUA/VJuKeV63HTicv5fBcutxIiYZByDrnaBUPgde+Mho4y847vYzBfjZAzJeQumzsNB9x/GuZOeWonj44giA8j8174J4rMQ+9Jn8t9TOI4noFbSs4feEro0YkducnzaphaOPGZAyNwYYVR9y9PBFR3BL0hQ1ZzBiN0EaQyh/L2VS9p0/+tnxO9cgm2aMaQ3Gahwrnc3ehK59CxAL4A4CTG2Azx3xkA/g7gQMbYewDuBnAx55x34esSBEEQxG7DonffxKH+PBVELclqeS7FkHRWTLr8J40ZehXikJvqCNYRqk2ofLHdQIhDhhSHCtnikHz9smZll6ublrjPTpU7mbI0q06BBYj31+dG5tjj3J3kOF04FeKbnMz6thCH5GQ6cBFyBtcoRiuroYsgTxyq1zmkCWVMCmnaeyXFIZb6DsTikB5orolDVvwZsqAMN2XhDwxbuY+AyhVooj4Wv/MSJqyejDf3+CS2sp7q82rdEvVrKW/L7tviltrR3tqceR9BELs/hbn3YxUbgEMnnJz7GP04nkVi0cWPM4f08mlJXpafXDiR513fiJxDFjyEhg2XOR1uiqGfu7MWSqKS7JTLJ2dfE+dSbSHH1BaBPLcEGz54yjkEy4HDfJUb2B3pym5lr3LOGed8NOd8rPjvSc65yzn/POd8FOd8POf8+a56TYIgCILY3dj40v+hzG0ceurlidutjJbnoRCKpPOF+dmukTQm9ypW3BJZNh1FTKiySmJklkDg9Ipe22uJxpxTVhbnHOjOlGQugqMFJQfM1t6b+sUhryxLvhrEZDA5djnBTJe/+cyuKNuTzpnQjvZR5kIxvwwXlhJWzLBygmvL8oA6xSG9i1pWYKh0NZkV4dGVzqFE0LcZl/OxoAyPpTrDpELHk5/Pju9WVvbrm6x/mMuyvHI7zMeuxEa2Jw676A8iq0P8PsR3PP1ehr6Ptx/8A7b+6jCsuP6kD3zMBEHsfJrWLcdh7e9g6cAzYJhVLt/NyrJsHf1cEXplhGLOkHU+VgtS6WOSOFbZUjxi0fnN4lGGjwerZlOMNLXKyoywMq+PiX31vXTHzvg8pQtF+jmx3NYSlUWnxCEmnERuN17w2CHdygiCIAiC6DhtrdswcsO/8G6fEytayUthJEgEN4pJWiorxqxRM2+Fbm7oM0uvpNVBtQmVFCBCp2c0Vr81+r8m8CS2ldGWPp2LYGttd33mqIltlh09D7n9NiRDpCVxO/fkOD1mw0yXlYnxyX1U5W2idb0vhBUz9BCkWudKoYvXudIqP3PDLqiVXd05JF1NaXFIlR5qk+VAL9fTStSitsFp51CyM4yfcHbt2In0+4vmYt3PD8O0Fx6q+rgpN16C936dv6q+s5kx+UcYGi7HyuN+iT577BWVRIrPS32HtN/37FcextJfHoGJs36CPnwb9vSzXUUEQezeLHn+dpiMY+DxX6j+wIxSYx3deRx6pVyHLBAvSKWP73GzBnG/OL9Z3Ac3nKiDaI0FqjRhohSs8nwS5Rklz0lqX1OZSAhceNxEyFkiH1A/f5Vatya2ET8omlu43bgDJ4lDBEEQBPEh4b2nb0Mv1o4ex15WcZ+0fSecQ2JCJbtusRxhoGJb8CpWF6U4wjJa2takyoRKlRwVIleNHUTikJNhYwdiK3tyhVOUz4nJKDMMlHk0UQwMW5WodcQ5JPe33cgThyo7dgHSOZQU1kI5mS30jh4j38vQgwcboeHA5B4s7la0zrUsu2ISWw2Vv2Q1qM9KDwyVYzNzOovp4pAqUbMKYNpnmJWNlG4brAtSHXnfa7FszltYvXi2+ptzjg33X4X92Tp4a+cBABa/+ya2XrMvNqxeph739sN/wpFND2FgeUmXjWV78FJOtOVz3sTYZf/Am71OxRGnXAAA8JmlLqLkd1x+72a9cB9GPncximEb3p7wW0zf+1NVuxARBLH70mvJE1hsHIADDzui6uNYDXHD084VoVfWFkEynEMZC1IAEIpzlVzgCUSzAhseuOlEGUQdFIcSpWAZziEz9BCybHEo3U0NgQsPFlxYiewjSzsnloU4JN+v+EGi8UeOuNYdIHGIIAiCID4k9Jl9J5YZg3HoxFMr7rOcSgFE/lt225LiULoTWcW2REmZvrooBQajE2VlWaVgEuVOKUbCSSFoA5AsDUtuqzIEM8zIRXBFOGVoOOq9qTe3J9p+NNZyKkRae4AYZ3LSHKS6dunjY8WUOCQcOKFhw+KR7T5IiUPMMComsdWQK7+mU4CR8V7JSbleAhb9HX3m+nskHU7JErV2mBld1bjYB/Vc/SKjg22L89i4djn2uPdsrH/gO+q2KU/dhUml16MxCMfWlhVz0QetaFq9CACwfOG7GPHOfwPAh0JAef7OX2HRz49QuRWB58J/8CvYwnrh4C/cqB7nIxYa5XdIfj5tq+cCAIpfeRETz7wMMAtVg2YJgtg92bhmKQ715mDtoNNqPlY/jmehnyu4X1ZCTFYGYNaClHoeYldtYBRgcQ8Ol+KQXTP3ME1SHKo8n5hZ584ccYgFZbjMhsvslHPIRQuPxuy1bU1sQ5K1ONXdIHGIIAiCID4ErFj0Lob787DmoPMzW8lnCSBqksYChEGgSlSsGhMzeZGvry7KsjKjE86hrOwbtV0Zki2Ek4awFR43YZhm5rbMjBBM1TlMK/GS4kVgOB0OdY62Hz3WzROHgjICzmBaSZHEN5wKcUi+rtkQuaOkgBOFaEbOIVuIQ2nnEIAo/LlO51DoR+O0nGLmeyUdQ2mBUJURahPvQPvMDU3gy3QOmQ4sxOKE71aKlNXwPRdvPfxHJZiUyyWsXrk08Zhlk7+O3mhVpYc8DLHflJ9jlTFQbEQKKKJUUWQ9rXrpVjSgjGm9PrrTBZT3F8zC0Qt/i8OwBOVS9FnNuO8XONBfgsWTfoZ+/fdRj42+S0Ickt/dICkSNfbsE/1tOkoEBoA3b/sRpj72fzt8fwiC2LksefkeAMDAo86r+VijykINkC8OOanyaSB7QUpsJHqOEJS4GblKY+dQx8vKuC4IZeQVWaFbUZItnbPpEjpDLMp4SOYDmvDRxqL99IU4lF4MU2XtVFZGEARBEMTOpHnjKgBAj8FjMu+XFu4wQxwCRFZMjmukYltCKNBXF+N28Tkt5quQlRMkkRfwVkMkDjWiDV6qJa2OIWzeegcsmXHgaNZ3mYnDDVu9Nx0Th0T7edFFLT0ZZIFb0bELAEJmV5RsqdVXsY8qFyh04TNLlWRZYmU1TUcyGlQbYbuYGRhqhpXuscD3o/BNxO6baFtxuZ7+GWZ1VYPpJHKqfC/+7tTzvs9941+YNOOHWDD9BQDAO4/cgJ5/PRqe+H7Mev4eHNH8AkLOVGaW73sYzNdgxaBPiheVJVjJEGd4rSjBgdt7yAfahnj10vlY8PMjsGTO29G4ghCt938VDSwapxRfrRWvY4kxBEeeflHi+boLTXXo8cX4A3kBJi7arIISgQFgv6UPwJz7yA7bN4Ig8tmwaklCIN+R9FjyJJaxQTigRkkZUP1cDMTNEwBx3JYlYnbluU6JQ+nje6oULVr8cOGwADALCDIWUGoiju0utzIXSqJOaMlzpxR2/JSziQnnqwc70VnU5p4qIw9K28SGs51D6W12J0gcIgiCIIidAA9DvPrXb2HhzKhkRi8XykJauJPOIa37RrmklRRVv0CWGUWZHcE64RxSE6qM1TaZx2P3iBwQPXh7ZPfO25ZTOTnLCs2UzqHQcOLSrw6UN8n9DUX7+YoJZlCuKK0C4vBNHTW+hmgfpXhhiO5kkesjWssMM8QhHxYQ1CdqBFoYaFYmhBRW9O9AYmVVdw5pQpPetjirqxo3C6rjGZAS7+oQh/xS1Ibda49cQdi2Fr1ZG8rib3/aHViHvTC7OFZdWKhxW0W43FQXDfL15PiZCP5mplO1U09Xs/Khn+CQYBE2LXkHADDrxXsxyp2FhdawaPxuVEJphi5csxGMscTzA8NWn5fcJyXe+eWkw86MvovyPbG4B6PG75wgiK5n5aJ30ecvEzD9iR3v3NuyYQ2Gl2Zh1cBTKo4fWeS1n5foLiDul8EDF2VuZ7qV1aJL2jkkXLWWEJRC00ED5LHaiTqIdrSsLJDdQ4uqPF7H4n7FuTNv3mEELgJYUT6gLg7BQ1mIQ1ycj9LOIaOGuNYdIHGIIAiCIHYCnufiuFV/x8a3HwCQLBfKQgY485w2rV65XdX518pdkfcnOoKpFukddw5Jt1FWWZmcWBZ69AUAWCys6ISlo9rS66uyGeKQLHsKTUc5ingH2udKYSFwRPv59NgDL9PhJMOldWSnsULPvoltSwcONwtwpO0+o6ysM84h2ymqzyrUurtIYUX/DujlgyzTOVRQn6HvljO7qvGUcygRUlqHKCdXn+X3XH5WMi/CCtqxxeoHz+yhhC2VJWEVEm3f5fdejt8IyvBgK1dWPXkRG9etxms3fBFbNzfVfGwWS+dNxxFbnhLjiMZTbloRbXvQKQA0wTf0KsQ2AMkVdvlbFu8lC8qJ7x9TnXlkzpjX8dV5giC2m9VP/hoOCxA0b9jhr7XwlXthsRB7T/qPuh6vH8ez0DuPMd8VDtlsJ2/WglS0kZSr1nTQg0fHdWY60XGtg8I1C1y43IILB0ZWWRn3wFPnpHhfU+KQWNxIl7c53FMZg7wciUPpxTAzZ5vdCRKHCIIgCOIDIvBcBL7M+xErbUGyhXWeOOMURXmJPlHTVsV8N3YOVROHwiCI7N9IiUPiotSwO97KvpoVO1TiUJ94rCy/rCx2w2jOlHSJDRBfbJtOFOrMrQ46h4TQkCMOZbVzByIxyk5PfMXrFnpEZWUyEycK0YzEIRtRYCeynEMsaX+vhu6iysqEkMKK/h3QywcT4pAYt55fFLilzK5qsAowGVff38QKdB2iXFwKJsUPV4xNvFdKSIuDr+V9zCpEzqAKcUg4h0QZgRRQynXkRSy++3s4dtODWD7rpZqPzaLpsZ8gFNNoKdjKcTHRtU7tW0aYKhCVKMp9ld9xuY8scFHWBKV06HskDpFziCA+SDaseh9jm56M/kiJJmEQYPWSOervd574K6b+4TPb9XqFhY9jNeuPg0cfW9fj9eN4FmHivFqOznM5Tt7YkZvcz/RzuFlQZcvMKogy6o6WlZXhwq5w+0iiPKO0kCPLqpP7aoZR23s/1TzChg/P6gkAMFzhHEqJQ9K5HHxAJYMfRkgcIgiCIIgPiPd+90lM+9OlAGJXhJwIyYtmK0ecMS0bAWfJsMZUW3LlGqkSyqu3bM8KFbY64RyKJ6SVE6o4WLdv/LrVnENZOQe+tLHH743MxJETRldzltRD3GEsGSItiVYfs8rKCrDTE1+/DJebsAuNiW2boQvfcADLgcMCOPDBM7rBdaT1r956WHaTCTLEIUcTsPTyQX3iHWolamoV1iuJ4OzKzCEgdiElOtjUUVamBB0/Fj+isUlxKBLSZD6Tfh+zhXNIiiHiuXJbMvg7r2vewmsn4M3JP1N/L3nvTUzY9Hi0qTrCtNMsmP4yjmh9Be/0Pzuxb/J9MBtk1zrx/oZu5fsJEfItPyf5voh9ZMINpUiFvjvc6/DqPEEQ28eSx34DAxxh+lwMYOZz/0T/245F07rIQegtfgnDN7/Q6ddq3tKEQ9umY1n/kzPLvrLQj+NZ6Mc7FrgqvDkLuRjD02JNyjmk5+gxq5A8rtVJJDhZuS5a2QlNRy6kpYUwQzRU0M+rYRDAZgECW4pDLYltSOT8Jy04dSdIHCIIgiCID4g+5dUotkXB08oVkXJDWBldQyQu7ETLc5ZyDsk6/2qhvHqJkT6pkhf7dk5ZWzVMMeZ0y9toYCJMurEnfB5NO7JKbCRZXdmywqF9Q4pDopSIdVQcEiVJxWSItCRPHJL5QTrSZZQeu+xOxoSAZTCe6xyqu0Qo4RyS73u839LV5MAHD6PVXF8LIdUn3rELqUFlXQVeObOrGrPS4pDuYKt9IaAydbykOCQvYqRbSX9/5W/EsArJFeXUtozQjdrC5+RF7OctB9sUtb3nYYjSY99T92V+Z2tQevq/sQU9ccDZP45ukL9h2S1QiUNi31BZEgEgIYSxlHNICl4SQ3xv5MWdAxKHCOKDZFvTeoxa8yBm9DkJJTiJczEAuFvXwmIhWrZEpaos8OBsR/fE+a/cD4f52GP8uXU/x8xYMNBJn1el6zJzW5YVnbNT+ymPtwptwUM6hyrctTVgYXQO9WGr8nidrJLsrIYMAGByF4HhRJluYltyUUxmDFq+KCtLZTyaeR3auhEkDhEEQRDEB4TF45wQr5y8SFZZMoV8ccZLWa51McR3S3EYcZVQXj2PRV9dVC6SKq+fh5URjCyRJTeOU1QCj59xoSxRHVC85H6mJ7CqTEc6KmBl2tHzUO4ecSGfngya1cSh1MSXhVEgcrprmnLgWJXlQYmxaMHEtZDbdgoNsFUOleYcEsKKwTh8vzJbKksccuxinPWUKw5J50rkykk4u+oQ5dKlYHIc8vtoidIrbsTiUNxBr5BYUZafsxRjojICR5VEpvM2bPiqbG/tioUYUZ6JqXuckRhPvbz3+hMYXZqK+Qdfjj79Bib2TTrcTOEgC7x43yrK9JAUGnVRSL4/+ndeD1/1PRcm4x1enScIovPMefS36MFK2PPU78FjlecbeRxQx63QRYF5SqTvKMa8x7EBe+CQCSfX/Rz9OJ6FLCX2uRE5h7I6U2pEjtzkfhqpsjKmLXgYdiFzAaUWUgwPjErnEA/DqBTeSh5D8+YdVughYHaieYRa1BBl5I4fNUKocA5Vmct0F0gcIgiCIIgdxLy3n8Vb912n/ra4p9w9vtbuHEiWC+URldbooonWeUpkxUjcVGmN2obuHEp1LgHyA7GrIVffMl0Y4qLXcQrwRNZQlugiqdc5JC+2meYcqrc0S9++7DCWngwaYoJZgVmAg6TwxoIyfFgoFJJjN6VzSBeEMsShqKV5nZPpwEXIGSzLVt8V/b1KBlFH34GkOKS9juZCikW5EixkdIZJlWypjmGc1ZWXpJxDqbIyJUqK9yoS36L3V4orhl1EwCxNHEqVcYkLHJbR2liWE8hyrVJr1MKY9xuWGE898DCE+cLPsQF7Ysy534EtxCjmx6KVC7si1NTm2V3qdCEMmigEROVlCeeQFvouP9eOrs4TBNE52lubMXzZXZjRcBQOHHVkxbkYgDoeBalzu9+BLDz99Q5tmYLF/U6MOxbWgX4cz0SMsZU1wAhdVYKVRySCVTqHAj03MOUcylpAqYUUw33mVLhopeuHpTKH4hL05L7Kc4kejC3PW6wQiUN20Ca2kb1N7ue8f90AEocIgiAIYgfR/PrfMWz2H9TfFnwl4KjVRXlhHdThHEqt4umT0ygrJhYt3JxQXj9RSlYpDnWmrMzOKG9SBC5c0ZJbZhtkhfOqbaXcN4C4UK4Qh8TfYjWxI7k9+vadVIi0JKtjV3SHU7EazEIPHrPjwOxAZj9VikNZzqGOdHdhfhkuLDDDiL8rujjE/ajtO2IhMMhzDslxForKMRZ65ags0cx2DklXjnSEtaCxPseWn/yeSzHM15xD3HTArYIqi5SvZdoFcdGQLMHSRbjAsDPbEEshRf7O5H0yNDrsgDg04/l7cZg3F++P+iqKjT3BDANlbseB3GJFXWVhSDdgRpgqIMPN/cT4pIhlheWEOGlYcVmZ6vBG4hBBfCDMeuxG7IFtKJz4bQCV52Ig2zkE5J+LqzHvtUfQyMroOeacDj1PP45nIcfYhkYYwjlUVRyCnWh8AVSWXOvnNFM4h9ILKLUwxDleLwWTqPevwjkk5gpp5xB3EZoOuJHR3ECUkRfDVrGN5HzHprIyEocIgiAIYkfBAjexgubAU5OV9OqiXi6UR9odozs2QrecuFjUO1TpZOUM6a9vV3n9PLIcLBLmx8G6ShyqMhlNu2+Ayu4ogOYckoIAy84qyIOrDmORc6iirIyLMOk0sqW49nhpiTdMEx43Y0cOIsGD1Swrq7+7CwtjF5WTIaQ58NDKorImOSHWnTSJVVkt6FutworvbFrMYHZKeBFiWhtriIOiq5HK1jLE/gZaa/bQdADTUWWR8jdi2kXhrkoKKPKixQyjjImsNsSyc5n83cjvv9koRcH6LgKCIEDv13+FVWwAxp/1NXW7q5Uzys/GSjnpssJUo0E4SgiT45MXRtEFWPKiC0iKQ3YHL8AIgug4vudi//l/xxx7JA478lQAOU7VIHlMi0vIOy4OlZuWAQD2O3RSh56X5bxNIG5vN3rACF3husxfrPFQ2UnTDL1EbiCzk8cpZhY6XE5nJBoSJF9PuX5S5047RwiTziE9+8iX54FCD4ScoSGMnEPpxbCa7183gMQhgiAIgthBsNBLhEPb3KtwDqmLdRHqa1dpJZ9uea6LIYFXgg0vaumOyo5NEi/POSRdJE6leFGLzA5jApnHI8cPIDOcV5J23wAZNnbE4pCREIc64BwSYkVRdFFLTwbzcmKUOFSK3199JVXPPrKFKKC3y023zpX7Uq8NnwUufPFeWJYtuuaIixLfh8VCtEtxSOYsiIuVFt6gyhrltqTQpAQ+4Ryq6AyjSraSJV1lo6Gu910JKH4s6ABA6Met2bnhKMeS55aUuGLahUj8kc4hKRKlgr+z2hDL34F8PSmUyXJCXmfJx7Qnb8FB4ftYf8S3E6UIeg6YEbjwYcW/B5GbZcPPFoesghLCYnFIhFqnnGumysIoqTILKisjiB3Pu8/dhYF8A0oTr1C3+cypEE3k8Uge0+TxynM7Lg7pJb8dodpCDQBVluwZRZihW3GcqRhGxnnVSD3H0J1DThFcLIZ4Xv3nY1kaHGSJQ/KckxaHcvY1WpSxE13TVBm/XYALCz24LCtLOYcyFly6GyQOEQRBEEQXsWjWG5j2m0+gLEtZQhcOi7tGOfDUBZ0sOVHlRL4Ll1tVW9b6qbBGI3TRzqOJWOiXYcNDK2sQm8spK8twC8nXB6Lg6I5SbUIlO3kBcZeyamVlafcNkB0OLS+25WpiJB50INtB7G9jjjhkZrVzR9y1S18NNrSVVFfrmubAB8yCyosBYgdIcl/sukuE9PeTGUbkXBFjlyVU7UbSORTIUgLWkChf04O+1WfotcFkvGIiLkUt5TwLXJS5XXc5XxwiLQQdceEkBUqHR6Vs8vMsl0vqN2I5RQSGrS4aTFWKKYQUIQ5ZYoy6SKlEWLHfUiizhXMIdYhDbrmMgdN/h/fNoRhz+mWJ+/Tyksjh5iRyK2TmETLKynQhTIlDYpymCOhWD004h6LPuVpXQoIguobitL9gFRuAMSddqG4LmFVxvpGidZg6t1dzDpXaWzHv2qMwb+pzidvlYk01J3EWNcWNoAwPFnzRBCF9nEmTdXy3RDcwiZF2DskFlJwFqixkaXDWQokvmncYqbIyJZwFGeKQ4YCbhcrmBlYBLrPRyLKd0lnO5e4GiUMEQRAEocN5p5+6+bnrcUTbq2haHVnC5cphudyOwPdhMq5KQdQEUgvZTYcupwlYMpvG5HEJUeiV4XAPbeLvPHFId1UkJkBBWWUDdZR4QlV5oa235JZdyrLCeXXSncciZ07yObLsSYkWzE64Ymoi9tcpNoqx1+ccUl27NJHN0jq+SLGAhyEKLBI8ajqHTAdWnSVC6S5WLoszIWQ2Q9mM2vXK74B0sLQbjclV2cDTStTERLsctfhlaeeQLNkS+x25jqzMi6QspGAmP1dTE0l5GMKBD27FFxZeuT0Oq3aKibbvemgzEGc7pbN+gFggk79FWapmF3tEbZrr6LQ29ZGbMJivQcsxV1f8PnwtKFs6yFRuhe/GF0hW/nepXC6p91B1HORu4vsn9437ZfW56sIzQRBdz6IZL+MwbzaWHXwRTCt2rwaGAyMt6AfJhR8r1ZExi83rV+JQfy62Lnorcbt0WFZzEmehjuN5onfgRcdtoxA5h7ibuQgiSS9IAbGQo/5OLH4UwSwRnt+BcjrZfj40CxULJb4okWepc2dWWTUAWNwHN0X2kXQOqfy6olpcASoXw7Kcy90NEocIgiAIQuPNO36CBddO7PDzSu2tOGzLywD0C9L4oj3dYSjQujQB2e3a0+i5K3L7soSI+2U48FEypDiUfdGb1aEsen03MWnqCHJCxTI6fDBNzIjLyqpPeHX3DZAdDh2LQ0IQ6ECoMxDvb95k0OZe5jjlxNfXVkX1ybLHoi42ylJvFVRJFgAYVuVKcKJrVQ10sQ2QHexk+UI0Jk+IQ1IIkWHbZaMxMfFmgauCvuUkmQlxKO0cUh3pXCnyRN/XQAuKrgZLhUlLkSr0yvB9DwbjCeeQ75Y0caghIQ6ZPLUtkVeUzvoB4s9JPkcKmJZThAerpjjU2tqCA+f8EQvsQzHqoxdU3O8zJxa8hDhkFaJxcK+sMo+ysqZ0IcxUQdRSHEp2ONNbLAfa/nWkdIMgiI6x5YUb0cIbMPITVyRujxYjUs6hdAfGlGslC99LZg5KeFCu6STOQh7Hec5xTeb3BSKs2eJ+dvm0HF9qzgGI5gF6WZkdn9Mspxgf1zpQThe1nxfdKpEWh6TrJ1UCluoWKXFEGa++LTnvMWwnKQ6lyvaynMvdDRKHCIIgiG7DnDf/jW1bN+Xe73suDlpyB/b33u/wtue+fD96smTrcEPZytuVq0OWgsj2q5Z2oeshmauTJtAukOVzpRjE3VYYjKNsCGEgZ2KWCG/UJlUsiLOBOoqaUGVMSGUXEjl+ANn5Kxp+yjmUtrFHN0Z/y3KbjoQ6A/H+mpYVOUgycguyHE7S+eNrq6Jm6CLUBDAj0B0jBZUXA8Qii46+wlmLtItKL2uS5Ua+3TP6v3IOiXwgs0fCsq+7kJhhwOUWTK8l+ruiM0wyV0qKa4FhV66gZ41bK70C4u8998vqvWJWQb2/nlvSQtKTziFTc+oAUN3VrIxOM3E3NJlxVFL747HKsNU07zz4W+yDJvCTf5J5oeYzWwlPRuhGF12ye59fzg1T1W/z3VLCMQQATso5pHfRyerGprNuzQpMv/YErF29vOq+EQSRT9OaZRi95Tm82/9M9Om7Z+K+rMWIdHOJdPOJLOKA/7TQ5NV0Emchj+N5ziFDHLfl8VR2icxDz3qTSKemRD+n2Zo45HegrCwah525UKJKg1MuqopukYgaB9gsiBY3zAIcFiAMArVgYNnF2MnMjYQbTJJ2Lnc3SBwiCIIgdlvee/VRLJ71OgCg1NaCQ/71Gcx54qbcx89+5SHsjc3RylMHyzX4u/erf0sbtN5GVbo6ZCkIV86h+EK3lnMoNJKlU1bowRUuEV6KHB+eJUqKciakoebu0SdVLCh32jkERBOqrAmpvGAG4i5lWW29k9uyVX4DUJm/AgBMOofERFQPn6wHFpThCzHOzWhLbOdMmqVTSV8VNbmPQDzWR2TDV5Z600nY7tMBmNFjClE+UR0ljaZWwgYkA0M94eoJLCkQJjuEeVbPxMQ7HfTtwlbikJF2DqnMm+T3NTCcihX0LIyUoGNrTh71XlmF2Jmli0NOMVF6p8rLEsHfhcxOM4GbFGHl7852itHFV42LgD2XP41F1sEYftQnMu/X33/ZxaegZWHIC5tscSjOHLLlNsQ+pkOspSuK+24qcLvyd75+4TSM92di/cJpVfeNIIh8Fj35B1gIse9p36y4LzAqy5iV0CyPW7wO55C4L+30iZyZ1ReL8ojOZznOIXHclospNnIaLwgCTfyWpEuu9XOa5WgCfwfFodBwwC0HDk+WWCvXj1V57nRTQo56TdNRC0iuG+fXmU4sDuWJb2nncneDxCGCIAhit2HbliasW75Q/d3z+R9g69O/BBCJQxYLlYiShT/tTgCAwTh8v36hoWXbZoxofgPLjMEAtAvSMG6jqpd5uW4JoZ+8SI5CjWuUlaXcMRZ34QohAK4UhyLXSOBlT27ynEPpcqWOkjehMjWni5pQmtVfp9XsjT6tS5VAl7axRzcK55ATO4c60r2JhZ4S4zxmVYzdhp85TuUc0jOHNJeHL1ZaPU0U0CfPulCk74vBuCoxqIbBPZXdBCQ72MkxhYVe0f9F1xwplgR2z8R7lA769pgF25fOoaSYoYcsA/H3JTTqC9PWW7QDUCIV98uJ98oQq8NByjmkt323UtuS3dX0rB/1/siMIRlILVf1nWIk5NUQh+ywhDZrj9z79SB06XBzhHMIqX1LY2gh0/J3LccpBS81Dk34kp8rEAuCiTHJ70HOMYAgiOqUS604ZMV9mNF4NIYcPKri/iynqnIOqXLXSOQIckq8o/vynEOdL/P2qogbMheNm9H50s7oTKkTZoj/aeFaP6fZTjFzAaUWSqQyCygwL7E4Jxcksly3erdIAIky3jgYO+58aTmFuLNojvjmZSwWdSdIHCIIgiB2G5b85XNov/Vc9bfDyzDFJElNVHImTZs2rMHhLa+jjXe808bc5yejyDysGXpO9BJyIsLji3YvUQpSilcXxQSS1SEOpd0xFvfgC3GIua3Ra9vR33kXhqGfdAupf4eeapHeGfImVHoejyzTquUc2jjsfBziL8DcN/8NoNLGDsQX20q0yMgqqIYuhqXHLgOSszpMKQeNNuHXxydzoaSjw7ALidbnWc4hGf7s1jGZtsJkiZ3uXFFjcoQ45CWdQ6HdI9ov+R5klKgVglY1bh07VbIVOYecRLlXNeJSsFj8iAZdVu8V0/KZfK+sfiNOoUFdzADx78oMXfieq7qrZbU2VtleYr9jwakhKiur4XrSXWFZ6EHossOdIUsVAzcuMc0IIje0sjL5HsrvcCR4aeKQ5kYKte9JlitBXgiFGRlgBEHU5r1/34I9sA3mMVdk3h85GZPHPTNVVuYoQTp/LhEH/CfP1/UsFuVRrSzKDCLnaWg6sOGrLpF5ZO1nWrjWz2l2oZi5gFILJVJJB64mlsn3L+vcmT5362W8ec0N5DkvT3yTuYHdFRKHCIIgiJ3KlNt+gHd/dZL6+92XH8S8t57p8HZWLHoXY9veQM9wm7rN5l5cciMvQHOCBhe+dDcc5mP2nqckHl8PDXPuwUo2EHuOOhmA1qZeXJD6bilxEeeV2+OLVC1HJagxGUwLILa4gPS4qcqBuBQGci4MuZctDhlhHE7cGfImVLqYoQSejM5NOmPPuhIb0RfBy9dFD+eV+T8V4lDfIdgT2zC3zu+Ovr/pMjYZkJy1ohoHA8fvr776GogWwWrSbxdUBg0QiyzJjcpJbO3vnJkKEPVZ7FyRq9Cs2EuMUXy+MijV6ZlYlU0HfXvMRiGMJtdGyuGULtmKvq+OcA7V7rSm5/IAUCIV810lnBp2AYajiW+ybMx2ks4hLZha5RWZTiygaL9xeVGgfjfivkKhmBDW8kh3DUujZ4/o5RYubDCts1i6TA/QOsC5pVgU4tHn4zA/8TuxpcDoe5nd2HTkPpNziCA6yZIXsRb9MPrY7HJSnuFUVUH50hUs8wWr/A5lJ8lKccjt9GJNNdHb4EJ0MgrCOeTXdg6l9tNJuY30c5pTaMhcQKmFzcU4pNunFAtqqrNrhus2fQzXy3j1YGyuOUZV84ic+Y7uxu2OdJk4xBgbzBh7gTE2hzE2mzH2jdT932aMccZYv656TYIgCGLXZsu65Riz5C8YUpqnbiu+9AuUn/915uPbWrbgzb9dheaMUOlVT90AABXiiak6OckVuuyTftiyHgAQ9B+VeHwtVi6eg1HuLKwccg5s0fkqTJWyVIhDbknZyOUFrxlWtmtPkw5rtMTEzoMFS4pDsqQop0RJTpLaeCHxXpihB79GF7Fq5E2o9JIwOaHMKrHRKTb2xIIDLsLhpWlYPONlJYLpmI29AQANPfoAAEaf822sx56wnroaQRDUHK++v+mxu1VChK2Mduk24s5mssxIdayzCol2uXaGNZ51QByyhDtFEhqWuiiRgpRRjN6bUBOHfG4AoquM7HCVDvr2mY2GMHIOmWnnUKptsCxv42ahLseWatUeuuBhiAITZWVaLo9pF7T3twQEZZS5HQVBmwWYovTOVr8ZL5FXpFoba5+l/C2qwG/5uys01CUOZbnWdPTyElv7rkeliq4S7LIubHQhTO6TBV85yJj2nde7EOnuv0znkHSK5bWzJggiwdLpz2LBdR9D6Ms8sxLajZ653cKynKrKORSUEQYBHBadh/JKvIH4GJ2elzCtkUNH8ZmTe1yToj43HRRRVq7LPHTHJgAlXDNdHNI6ftm2o47hYYecQ36iW6V+LpRlZVZOWZl+7o4XGrTOl+USAinYOUV1zsvLeJS5gd2VrnQO+QC+zTkfAeAoAF9ljI0AIuEIwKkAqG0CQRAEoVjy8C9QZF5i8mHzcm7A7awHfoOjVt6CxVOfTtzevHUTRq1/TDw/djE43ItLu2QL7ryTvphgGMUos6de59DyF25ByBkOPOWyim5Jqo2qW05MEH23pAIoZUB1Vrv2NNwsVOwfNwtwmQ1HlAMxIQ6lW+PGLy7EIdaQmADV41yqhscKaHCbKm63tDBpKaDUEocAYNTZ38I23gPNz/xG7GfyAv3wkz6H9066DQP2HwYAaOzZBysn/BeGBYvw9kM31ty+vr/pybRXFt+VDIeT6VROfNWqJ+KV1kATPBKT56yyMrlaWk9ZWcrJ4muZN7LNvNUQiUPyO8D8cuRkURkMcXv3IOVCauTZziElcMlW8GE0Dm7adYlDcvXZCj14Xvx4FrjKhWXYBe39LYP5LlwRGs61sStxiHuJkjTLdhBwlukcUiHzQRkeN2GYZiIvKI+amRxaqafucPOFG00JdhkXNqYmhMnftcMClNrbxJsWv67ehUh3/2VdeMr7OTmHCKIu1r73Eg5peQvbNm8EIMq6qpyP0+diINl5VD+WV3MOBVqZrs72LNZEonf2MVnNM6wCLBY5SFmV41t6QUpmnHGr0jnkcgvMMNQxvJoophNqHcayzoWqJCzTOeSknEPy3B3n1/meVsaviUN58x2ZG9hd6TJxiHO+hnM+Xfy7GcBcAPuJu68H8D0AtdtwEARBEN2C5g3LMXLNA/C5odwzQDTBSnfHAIC2lq0Y/v4dAIDQTdbwz3nq7+jJ2vFeYVxyW/DVtgJV259zMei7cLnVoTDFIAhwwMpHMKdhPPoPOqii3becPAZue8Ji7Zdj5xAQTYTMlCMkE8tJ7J+tnENaVkxKGEgjXRXtrDEpDvHa4lQ11g06DSPcd/Hui/cnbtdLbep1DgFA7z574r1BF2Bs6yvowUoVF+hOsQGjTjg7cdu4My7DPHsEhr33O2zdXClU6ej76xt2YjJYLUQ4q126A09dyCtxSE767WJCHLIKlRNcw5IhzLVzrtJOFt32L7/jdmNfAJo4FLhR+KaZXJVNB337zEZPJoSjlJjhFKRzRXcd2RUry3kkSsG0/UyIQ1aDVrZXVp11AK2zVzkWUiweX4Qx2SEnlbehnE4yZD5wo856kPlQ1ceuu8Ky4IYdh0hrDjcPNhB4sWCXcWFjiTGHXhkOvEjYAtDeskU8IPkcDxZY6KYylSqPU/L+XIGYILo5W9Ytx6prD8fGlQuiGwLZ8VGI+mH1Bg1cZPboJMQhbXGp2u9QD/jX2Z7FmmqOSLUgoC981HAOOdrxXR679XOjPL/J7l/S4VOvc8jVOozFnc4q3z8749wpM/7U3+pcUlDdzXxXE4cKRXXOy/t809vsbuyQzCHG2FAA4wBMYYx9CsAqzvnMGs/5T8bYVMbY1A0bNuyIYe2yLJs7FVPu+OnOHgZBEESXsuTh/4HJA0zpdYoqFwGii9+sE/OsR2/AHojyhNIrcXzTEpS4jeYBk2CxEIHvK1t3+sI5b9LEgshdIctpqrWflSyf/w4GYgNKw6MgalV6k3YOeaXERZznlhIOJrdcqmgPm4lZSOyfXG3zmI2iKAdKu0Yq8F2EnKFsNCRWF81U0HFHOeIzP8Fyth/2fOkHKLW1qNsTzgurfnEIAIaf/T20ioDwrHDoNMww4HzyOuzBt2H2XT+o+lgzdBGyeJKof+eqiUPxZxw9JvD9aAXWTHZNk2Kg6cTlTgAS/5bEAZ61L+bTGRF6tzAlSoqSOzkhZmHU+UbPYAAqWxIHWlljWswwVchyOflcs1BxkZQ5bi1MWp/4R6VX8Xslf3/cLyU69ujlBnr2kC8uVmSmj8uS7en134HntkcXbuJz1/OC8sddPZODm44Ku9YdbjL3Q/7uzQzHmKXKytpgsRCtLPpulIQ4lA6xdmVnHl0cyjhOqX3uxu2YCaIaqxbNwn7+cqxaOCO6oUIc8qqfD60CbBYg1EqYTU0c0tu4VxOHwjzn0HYs1lRzRNrCeZo4t1UTh6zk8V0du/WSV3FOk0J+1gJKNVw9J0jNvyrfvyzXbdrl42tlvPpcTi5qOIWGuHlEzucrcwO7K10uDjHGegJ4AMA3EZWa/QDAT2o9j3P+F875BM75hL333rurh7XLwsMQ7Q9+DUcu/j3KpbadPRyCIIguoW3zGhyy6gG82fNkGP0PBRCvHtnwKgIQPbeMAxf8HSvYvgAyJlvygk8rPZETDnlRKi+i8oIGWVCOLuhUe+na4pDbHrWPd/r0j17LiXNZ9MyB0C8nJkq+V6rosFGvOKT2T1tt85mtyoHsxj5qDJkEZbiwEKRWFy3uKbGkMxSKjdh28q+wH1+HGf+MT/sJcUiMX9q9a7HX3gMxs/85YoD1PefA0cdier8zMXH9fVgyd3ru40zux/bylEjgZ6yOStLBzG5qsiy7u8gOK6ZdjMudIMKVUxgqmLgOcSjVKUbPvJHfsWLPvokxSpElvSobZeRo4pB2MZI1EZchy0AsDnHTgcVChH51gchKCDrxbysSUOKwUNVxzCvDCGLnkBR/yqVWVQ5hc0+9Z2rfUuHiCXGoXE4IToFh55awShx4qqQtC905pX/XZY6VFOyyOu0ol1QpOo60Izp+lFu3AKj8/kWdecqJTKXM0g0/2TWJIAhg+iN/xIZViwHE5/c4l010NRXHRpN71Z07ssOkJgLJ44ChZc4BSIi5aeRvOS3mmLzzziG9g2LFsLmP0LATxxaz2rnVTIpgetmWxLJshJwpR2b6HFmLuDTYSbp91A5VcQ4ZDkyuHQ/l+cApxHM5N+p8GXAGy3ZU6W9+WVmBnENdBWPMRiQMTeacPwjgIAAHAJjJGFsKYBCA6YyxfbrydXdFtm5aj7bWbTUfN/v1x3GoNwcAEhZFgiCIXZkFj/wGBe6h76nfT5SLANEEKy0ObVyzFP2xCSv3PwtAsh07oDsj5IStpI6ZsXMoe4Uu3oYHDxYMK7pAq8c5pJcOAVrpjV+uqJnXxxy6pUR3Es8t1Qy+jXYm3r+ylrXiQxOHGqRrJE8Ei4S0qJQqJQ5VcUjUw6jjzsLbPU/C2OW3Y/2KhQCSbgolDlmVk7w8hp71fWzjjTD6DK77OcMu/DVKrIDND38fnGdXtNvcTUwSzYzcgqz24+lgZvU5ywm26Kqlt84FImFFhSuniLu71P7OpVucS6dSNKZoH4qNUe6UXA1noi1yelXWho/QjCfI+kpqdvhnXLJli89V/eZqlMTFbh8/4RwyglgcMrUSvDAoi449SedQe+tW9VwbsdCkykGRCkb3dRG2lChV44atOgpm4XtewhWWBTfE5y3FYPFY37Bhcrfie6CjVthL0Xyw3WgEALhifpj+/qngdK0TYWbotDy2BB/e1W/f+/COjfjwUGrZAh7WbjBQczvtrRj/zg+x+Jm/AdA7+iXLzX3lqqzepVAej8rasUw6hY3AjUrHJVXLysSxLzXnsUK/9nwgh2qOSEsdt+NjS1UnbyqnLstVywwDLix1rFaNOeoVh7RtmpnOIRkmXTnOINVNTYp+ll1MdBZlgavK3rg6Rme/v1kd2roTXdmtjAG4BcBczvnvAIBz/i7nvD/nfCjnfCiAlQDGc87XdtXr7qqs/9MZmHXrt2s+jr38G/Vv3aJIEASxq1Jq3oSDl96NtxqOw6gxEyu6UzjwKzJM1AVg4x4AKlekjCBdNtOujplxaVf2JEzfhs9slbVSTxvWICUiqJIhv6yCG+V4E84ht5S4gPXdUuQ2qSHOZO0fswrwDUd1f7IKDXC5mVtSIoW0wHASq4t1OZfqYL/zfgMOhtX3fReA7EIiJnVCSMgSXfLYd/CB4N9egIlnfbnu5/TZez8sPOQ/cUT5LbzxwuOZj9H3Nz0ZlOKQmTFpLgjxImiJgku9VGezKKjUSwgeQGS5l+HKaZRzqIZbLavFuV7WpNr1FoqRECXzdsR3O70qm+VCkmSVQemuHFt+X83Ki6QsdHeNl3AOeQiF2BE5h6T45gpxKPmdcWUeD6JMMb3TGRAJKInMIe134IrfnbyI0YW1LJTgVaPswtE6jMnPJmBRaUe1kgglNArnUNnoAQDw2iIBzLDS4pAFFnrqcwVycj2UONR551CpvRVv3PFTbN1SPbsrzaP3347p70yt+pg3//lLtPxiKNpbW6o+jvjgaZr9PNzmjn3mO4ptWzaidN1IvH3vr7Z7W2XRGl1m/MgOWOluYUpcqJEBGM9bsp1DCedxlbboUvhIO1UicapzziHdTZrGhldRVlbtfCzFf3l8l/O0tPvXZbYS3XUHdT342kKXCrPW51+yw2TGMZQbdmJfVdt7p6h1TStHWXNyUUA1j8h+f0kc6jqOBfAFACcxxmaI/87owu3vVvTxm+C0r6v6mDlv/Asj3XfxvjEUQH1283p55+k78eYdNav9CIIgupx5j/4WPdGG4kmReCAvgDyvpFpcyxIUiRKHijJPJ9X2VV38xhM2eQEqwxTlBWieXdgQjoI4VLq2IC8fI5+j57KkMwd44oKuDKbXycsclXrFoXK7ek+Y5STs0bZdEOUnOfsphLQwtbpYqytTvew7ZBjeHnQxxm57AYunPBG1yhUCgnSupNuk16JP714wDNah54z59PfQxPZEj1euRXu50h2i76/ecQrQ8qkyViqLjT0xp+EITFg9Ge++/m/tc5DiUNI5JEUBD1Zu61xTCyauRlaLcylGAXpwZ0MkRMmSBS6Ez1SeVpYLSb0/WfkOsMGEG8XhHmAU1G+ultNOOod0tw8AGDzuvmU7Rc195yZCWVWmkBBOWngDnERXOCF8MSvZqcfXRdj2SHASK8jpzz2NXu6Qi+nAYByl1mbxWCEui7BreazKcg7J95i5QhyyInEoEPtopnKfZItl/bed9Z2R97PtaGX/zt0/w9GLf4/Fbz5W93Omvf0aPvHu11F+5Ybcx6xeOh+j512PvmhBy9aNnR4f0fWsnPkC9rrvHMx69A8AgMD38PY/fwa31PWL05vWr8bM5++p+pg5T/4ZfdGCYOvqTr3G63/+Ct68N1pkVyK+Cmsvif+nxCHlHPKrLtawjOOeI0R6M3QTi0NVRVqtTFennsWiPKqJG/K8pwtCLCMsX92XEsHSYrzEg61Ed/0YXg+qWYhViDs4au5IBK7qhJYmva96ibLeNY1pjQjkeZ9XEYfqabKwu9KV3cpe5ZwzzvlozvlY8d+TqccM5ZzTmQDRj5PV6JDhvfw7bEJvrD/089HfXSQOtbc2Y//Xf4ADFt/ZJdsjCIKoF6+9GUMW3o5pzgSMmXgCgOQky/NiV4KOn2rRnbZpG6EXrapr25KrUXJb8gI0b9IkS29MfbWpBmHKHQLEuSy6O4L7ybKywCsnW6e7JVjcz52sqP3ULu51K7aeFWMVinFwbdZ+Bi4CZokg4/gxtboydYSxF/4Ya9APztPfF4MS7g8hRGR1bupqzEIPbJv0LYzh8/DUw7dV3K/vb3oyGHc8yR7n4P+8G+vNARj09GVYv2RW9Fi5kmoVYDIO7kY5gbJMyoOtsm7SqGDiWuKQdOcknEMFdVEiL3QcpwiPxS4fGTauyte8co4LSRMZM4KzZcgyIErSrIISTvwqziHfcyOREJGopK+qm2FcemUXign3ncnjdtJK2GqPSq7aWAMc+Fq2k3QOJVsb6+WbvltOtIjmZqHiWJPY3yrB5Gr74r625i2Jv2Vphy7YpZFlEoYQhzxTiEPl6G8jJSjJ8NW8TCU1JlVOWN/FWXN7GV4Qqr/XrliMMUv/ASAqga2HIAiBp34Ak3FYQbaYwMMQG+65Eo0sme9C7Hx4GKD0eHS89kWW3sLpL2Di/N9i/ptPZj5n88Z1WLl4Tqdeb8G//4xRL/2/RPMCnSAIsN/CuwBU6TBahTXLFuCotf9E8f3nou3J77HYlpwPKHEoTDqMLV79fKgyzsR25cIWELmTdRdo1fGrgP+0c8jv9Pk4rNJBUpZ5667Eaos1afFfnRsrxKF4kcopNCDkDMbW5XWN19Mc2Gr+pV3zymYhWaT3VYp+ll3Qso9K0eKf3IbWPCJzm04v9OVbsHHN0rrGv7uxQ7qVEbVxcrrxSJbNnYox7W9h/v6fgdmjL4Bk/eX2MPPh67EXtladEBEEQewIZj9+Y9Rx7PhvI6pGTgoeKpSaJ50eajWv0CicOcnjpyw/0bclJ3mOCFNUK/h5QY3CpSAv5mtdqEePEdvUJkpSmPFT4pC+isb9UrLDhleqGXwLAEwrC9JzcZJZMUUVXJuFEXrwmF2x4larK1NH6N2rDxaO+T4GByvEuFPOoQwXxY7ggFO/gvX2IIyZ8xus3LApcZ++v1yESEtUSViGcwgAeu3RH+bn7oOJEANe/A6AWEhicpuiVMjWyp3ynEN2sWf0mOb1VfcnXcIGALCikkIehup34RQaEtk7ZhiFq5paBkOWC0lfqXYywj9li2TZKY+ZhYoOaFnI33WZ23C0UrCAM1ihlyi90t13egc9WXoXtMt8nh5Re/qS6NIn9y2VH6X/DgKvnHAjpds0p5Hvt1HtdyGzkES5m3w/QhF2LfetkPF+SiHM8qIL5MCOvgfyu5N2GwXMgsE9sMBFm+jixzMuPI0g6YaoRnNLM9b9ZiLe+Ou31G0r7v2uEnDqLQ157V+TcYQ/Q7xu9ns646nbormtNRxA9neGhyFm3XgBZtz/67pel+gaZv7rFhzszY/+kOHMJekWqbz+4GGIdTd/Cu7kz+Ruc9H0l9AmfhfrVi7Cop+Px8bVy6Lne20wGVflXmlmvfQQBvPIMdQZcWjpc7fAYFwdC5QAIfYtDOT3O7pfCspS/KjlpGWpEl25sAWIuURC3Mgfv/ytpMWc7XHyctPJvsbjPFpIMAuJBa20QzExvtTxXTX2sJJit8dsdVw1LQtT9zgdEzc+gvlT/lVzvFJIM+2CWihJlMuGLjyWXZKdFvhD5dQsxPl1wjmkWtdbsWM4i4Ef+xoAYOUdX47Oq90MEod2Ejb8quLQuqd+i3bu4NBPfis7ub2TlNpacPDCW6IxdGPLHEEQHzyBW8J+c/6Gd61RGH/c6ep2vVNTnDuUcg6p1api5MxJTbbkBV9iW9ox03VLcR5LTi2+IS6grQ44h2JXQDy5krksiVJgv5xwO4XiIlXdLTsw1WjXHpcFlTV3S6GiHEgF12buZySkpd0y9YhTHeGYT34Js8wR0R9iMub0jrqR9ujTr8tepyqmDfPM63AAW4uZ//zvxF2ONvmWocIStXpcZUV134NGYsnR/4MBiEQnKUyavaJ9LK6ZAiD+bvgstt2nGXzw4VjB9kXvefdW3Z3MMFBTlmVGLc49bsIwzcg5pMrKPOEcioXPTBeS9j3KyneQ4pDq0GMlBdnccYvXamUNkaDT3qL+NrlX0Y1Guu/0XCgp1HER3lwS4c1SLJJCip9qQ6wfKwK3lGgRnXsRJfdXvt9VMzlE5lKqw1gow641wS6N7GJn+ZHLLHSiIHFWTu6TGr9oUW2ELtpYfq6HvNDNC9/XmTb5GhzMl6FHa3TRvnVLEyY2P4epfU6NxlSHONTS1oYhU3+BleZgLDcGZb7uti1NGDzlGiw0D0LzuP8X7U/GMXbmozdgdNO/wd9/uebrEl1DW8tW7PP2r6PPhjeo34x05WV9B9555i4c6s9Fj7A5c5sLp72Agx89C+8+cTMAYO3Cd3BwsBhrl8yMHuBL0SbHZfb2X9GEvmhC3w6LQ2EQYMiKBwFALcLIOYR000nnkDwvm3KfvbgcPaxyPk6X6OpdyyzuJcSN6uJQtqM50cihg/Ccsqgg8GEwHh23tYUPs0r30PTxPZAZSamFE5/ZCQfzYZf+CauMfbDHv7+Kli0bqo5XCmmmXYAlBR3tOydL4bNIC/y6U1PvmpbV3IDnfL5DDhmNmcOuxNi2N/DW43+tOvbdERKHdgLSym3mrF5vXLMMYzc/hZl7n4k99h5YcQBK07R8Dlpr/PAkMx+9Af2wBfOt4cqGThAE8UHw3pM3Y2/ehPajvqlcQ0CyU5O8+LVYiEBrja07OaKOScnJqiw/0bel27rdsi4O5XfxCAw70XGsFlmdiLwM5xB8N7HCz0XJTDsXndraRPfKGuKMoe+flrWiO4fsQkOi/CeNFNL0C+PA94U41TXOIQCwLBPuKf+DMrfAeg0EAIw6/hy8/+knse+BI7rsdWqx15jTMX/vU3FK052Y/s7bALT91XKC9Ml0Oi8oj7GnXYJpe50JIHK1AcDhp12KdawfxpbeAgA4xegiPhKHst9fwzSxathnMdybi0UzX819vXS+UfTCcUtlPVfB174DZhiFq6o8La+U7UKS7ZmFwJQmEGVNeqc8dfFQRUyV4lAbi94jrz3K1GlDIyweu2ukgCK7oumhsGqiL0quXFGCJTt9WSIEVQooEv134HulhBsJZkE5C7NId0LLQq2st20Rj41LFmzuJQS7LFzYcILI/QQncg4ZwklU6RyyYXEPRuCiXbyXmeKQLCurcVG9cN4sHL36tsRzSqIbnL/XobnbT/PWPb/CEKxB+eSfo2w0ZC5+zrvz29iDb0V45h9gFaPPLj2vbVqzDAfNiBxD9QhbRNcwc/KPsA82wj/1V3CZE4tDqqNX8jvgey72nPJLAJUl4BL36WsAAFyIt3Ib8lzOVOv4bHFocPt8LOl7NNpZscPfhTlvPIF9+Xp43ITFo9dRv2VZVibdbTK0XzmHyvF+VTkf6ufiaD/i77KlNSTQt52J7P6Yeh8tdN7Jyy0nagSRQmVHmU6itDsrD00SL7hF+ydFLzOVw9Zq74lyYS/1d6/ee2DbJ/4PfcMteP/vXwJyuobq27TsYubiXML1kyIt8Mcu1IZEZ1EzSxyqUrY34cIfYYE9HIdM/znWramvPG53gcShnYC0cuetXq+aOwUOC9Bn4oUAkMgIyKL0j3Mw558/rPm65VIrDpj3V8xxDsfmfY6LbegEQRA7mND3sPesmzHfOBgTPvrpxH1KAPdKiQmWvhKnRBg7KplKl5XJCz6965Nu6/bK7WqlMm8yK7eRblVejaxORPKiXL/wYUHSORRNVjy0igs8maNSNfgWWuiutn+Gk3QOOYXIOZSXaxdlrtiJIGPlsupCcQgAJhz9Ucy/6B2MPSUqPTBMEwccfmyXvkY9DPnsH6KLnie+Dd8PKvY36jhVOcGsNmmWjPrSnzFj5NUYNvEUAFFg9ZoJ31P3WzKThyWDw9OMOOMraOMFNL1wU+5jfNUpRnMOie175VKUzSBew2exSGJBikNx8LV0tunfOekcy1ul9UXJli4syY5uQZVOa3LeU065fUpGIyzugfkuQs5gWbZ6fRa6iXbS8rNgQhzyrGQJliohYDZMrSxVd9AFXtKNpIS1nMU3VbpZRbQ1rKTAa2iCoyVKwLycLnVAJCYXpDhUjJxDphSHUqJUaEQh12boKucUMkJfdVGwGpse+yl8ZmIt6w9DHAtU56Cc8P80K1cux4Slf8XcHpNw0DHnqCBundVL5mDChofxVv//wPBxx2vz2uT7vuTe/4LNPaxBv6rueqLrWDZ3Giasnoy3+p6Bw448NdHMIEjl8kjeeeJvGBquxCq2T6ZDZfarj2BkeUb0XFnG5UlxISkO5S182/AQWg1VXbB5lN66DdvQA/OKY5SLUIlD8nsl90lzV8p95WEAhwVVz4e6CzO9H2aFcyj/dyj3TXe/hEHt16+KyKFLX+N5GV3BgOrnucY9o4WdpjkvAkgGPusMvvwuDLv0/xK3jZzwEbw+5Cs4fNtLmP34jbmvIb8Thh1nzunOITN0c0uy0wK/PF45haIq5Y2dQ9H7qTePyMO0LPQ47//Qg7dj6R1XglcRt3Y3SBzaCUgrd97qdehFky6nQUwStIyALHrxZqC0uebrznj0JvTHJgTHfxdcTmY8OvkSBLHjmf3Mbdg3XIPNR3wNhpk89RiaAK5nG7iaUCQnWrbI00lPFuUFn6kF++qTM88tqUlqnjgkt6FKxGq0FY9eqLKszBfjCxIrX1HNe8gjxxQXJTMlURoi3Q+sxmRQ379AW22DHiRsFytyVxLb4JEIpgcZ606Qrmb0QfujYOdfHH8QFPfYF8vHfgfj/Jl485GbK/aXmVGItC/OifJiqJ5spEJjb4w9779QEOdsABhz+mVYbA9DO3dUh5Xm3gehudeBudvp3bcfZvf7OMZsfgabNqzNfIyX4WRJZEIEnhJ2Aj08Wny3pbsm9MsqgyPTOZQzEQ9FyZb8nerOoaBK0wz5+HLK7VMyesDmHnhQhou4G43simZrQo4USkyVzxNtC270txRo022cjTD+3YUpcUjuu5sTjBx3QqtdXhKIEF8VqCqyMHTBLgsXNhrCqKyMFSJBRmYQWamcotCIsrHM0IVvFOByM7NNtrzQNXIWISV7lFdicXEUNlv9tGwWsc9CqEqH/6dZfO8P0IgS+n36twCAwLBhpl5367plMBhHz8M/GW1bXlinhIEercuxuHAompz9agpbxPbDwxAtD30TbayIgz97HQAkFhbCHHEoWDMTbbyAFfucnFmFYL30S6xFP3jcVOKlzIKR52UpQOWJQ7KsKh0wX4utmzZi1NaXMLffafDsnupaS+YDym0p97H4v/z+c78ci8VVFmvic7FwDonn+NyIjlvivWvjharjjwP+4++7J9+jGmXmVQYHg3F4XvI3pBZFrEJC3KmWOTRs7AmYVTwCIxfchKZ1KzLd0gDQp9++6N1374rnH/OF/8Y79lgcOO3naFr6buZrBGoxJs4J0r9zsllIJmmBX3Oh2uJ8h8CFGfqq7E2d82osxu13yDi8N+wrOLLtJbz22D+qPnZ3gsShnYBcccsTh4JU29O0Op3GFhbjarjlEobM+T/Msw/DqGM/qU2IuibkmiAIIg8eBug19Qa8zwZjwmmfr7g/LnUpJyaKehaBmpAIV0x6siXLT3RLsn7M9Mul2DnEs0tq5UWjXLnKCnqt2LdUOQwQdRQyQldNRgExEQ5ctEJMqILIFSFX/5U4VEOc0d8r1SnNKSp7dFQOZCRcI3n7qQcZZ5YY7WaM+OQ3sMgejsPe/TW2rF8JQJ8kJs+JWY6wjsAME32/cAdWfOR36raJX5+MCd/4Z9XnDTj5qygyD3P/9afM+/2MTjFxq2HRkUU6h4zYwWHxqC2yzBHimhDLsraV4xySHbiyVqDTF/qJcQvhSJaCSbePa/UQAoqbEFBkWaStlVZIocT0IpeNDG823ZRzKNWe3gxdtEgR1i8lBKd0m+aKccsSiirfA9kGWv6GZZaHzMJgVfIyAMCHhUZE4pDZGIlDssws3eFM7pvMTfJhZZaOmco5VP0YFpUbOqpcENACZws9MsP/dWZOfQ3HbX0cs/c7H3sfODp6PnMqQv/TAe95jnjp3pTfM2LHMu2Jv2KkOwvzRnwLe/bfD0CyI6E8DqbFIRa4KDMHMIuZVQgHuAuxdMDHRD5gchvKJRJKcSj72saCD5hO1YWOLOY983cUmYe9jv9SIldPlUPJ72aq9FK6DblfhlvOEM5TpLuaSrG9lTVEYdK+/Lux6vilEKe7X+Tr1xIvcpHns1Sek5xTGVZBLRQAycWtivEZBvqe+zsUuIsl//weQtkNzGnIfY6OY1vo+9lb0M4LaJl8MXjGolssOOnikC7we7mu24YBwwAA0x66IbohKMPnBkzLipsb+GWxKBZtQ54/6xHfxl7wE7xvH4xDp12DVWtW1bXPuzokDu0EVKZGzolPtVsWPzw9IyALBx6MsFIdfvNv30KraK367rN3Yh9sRPmY70Qrc2Y8mSQIgtiRzHnxHgwNlmHt6K/AsiodJPoxTheH0t2+oscWMlcSTen60balHzN9r6QmqemwazUOJTBFIbG1VszFhgEAthboGLCoS5EM8wSiiTALXbjMEaupkYNBOilQjpwC6fawFWPU9k+3d8sLaOUaMSpLO9L7KSdGribK7c7iEDMtWJ+6AX14MzY/9N3otpQ4JM+JcmJabdJci732PwyHnPSFDj1n/xFHYp4zCkOW3F2x6gskgzslTOUStoOFLgJRwhRoDpqo801yVVaVWVjaPsq2xXmdYYwo8ybO4olXoIMq5UcqzDTl9vGtyDmUFlCkAGxzT4WGyrbvth89lxeSJViqHCEVxmpyD20QIqznRiV2ZkocyhG2anWtA7TPQpS7SYFaZmGwaiURYl978EgcsoX7rBi0JfZJIoNmpYgSdUasPE5JccYMq2dLynLDqBQvWX5j2oXM8H9JEIQI//1faGE9MPzCX6jbw1QgOBC7K+JFz2xxSArXoWHnRi8QXcO2LU0YOu1/sMA6BBPOjTvVBcxW4cyxOJT8LFhQhgc7swpB5qrCbkx8P9NCk5ESI3XisqpCRcB8LfZccA8Wmwfg4NHHJjpyqt9ymBSF5OK6/L5xr1zXYom+UAPEv5s2NEYCtNjPdqOx6vh14Ui6X+LX75w4xKzsazz9uK2f22qVT+9/yFhM2/ezmLjlSWDpawA6dm484ICDMWP8tRjiLcbcO79dcX/ox9e9jhSdUmVleeLQmFMvxnsNEzF+/u/w/rx3wPxk23t5DNMdo0adziEAMGwHDf/xZ/RBCxbf/nWE4e5fXkbi0E5A/jitnEBoFYQpfnh6RkCawPdgMl5xobR45qs4auXfsUi0EPS2RO0gh449EUDtCRFBEESXwDmcN36PVRiAIz5xeeZD8tw+nraiqMQhuwjfqHQOqbIZrXVpqE1ofbekVujSYddqG1r3qmoXRQkCFy6Py2EAWVbhJY7ZRuiqjhueWO234cEVuSlMuB+YVX3Cpb9XXK7g2Y7KipHui3RpTWIbMsdF2rFL7Vq50u4rDgHA0FFHYeo+F6iwaEOIeoYTiQfrls0DoDnCOukc2h688V/CIKzDjOfvr7hPrdpqZQB6R1MziHMVQs19IUs01IReE4fMDOdQnoVfCi+BLg6J9zBrRVgixQE/5fYJrJ5w4OeKQw40cUgIJdJVw4Q4ZPvCZSPHkQoojfJ54hwxRwuaVfubs1Cm3HlVyi7kffI3LF1GzHTgsABmUM4viRD7arLogsNu7AsAKHApDiVfl5sOLPjqQifKX6u88JSfey2BxdbFmFQgr2lnh/9LXv/XZIzzZ2LFmG+i2DvuPhiahYrXVa4N8V4pEd/PEofsxEU9sWOYM/lq7Mm3gn3itzC1RZuEMzeVyyMxREBwVhWCPG9zy0nkF6XFIZbqIqYjRRJuORUB89VY/O6bGBYswoaDzwcYSxwL1HeQp5xDWumtvF0vv8pDiUPimCyPcSWjR5T3I/azZPSoOn59LiPLW5WbqpNlZXnikKcy1JyEIFSPQ/bwz16L9dgTE7f8q+7n6Hz0rIvxbK9PYcSyO7HqnX8n7pOmCNspwrJt4ViMjw2W5vpJwwwDAy+6BWXmwLvvcjC/PdH2Xh7D9OYG6phd52LYPsMnYd7Bl+GE9mfx4uN31L/TuygkDu0E/JxWzZK0nV3PCEgjk+fTqrS0i8uDldymDOeSFwAfducQD7M7iBAEsWsw97VHMcybj2WHXQ7HyV6lsTQ3g56tluUcsgsNKhRXRwo7eutS/Zjpu6XERU5WSa0NT5VneTkr8mlYkFylAuJuSfIiq8RtGKGnOm7I1VQbHgIrclJY8sKylnNIe68Stf/SDaqcQ/kXVxb3wQ0nMYGMnUMfvBjyQXP453+FdYi6qsj34ODjz0cT+sB6/OsotbdVbT++oxlx8ufQhD1gTrul4r5QOocSeRFxR1MjdOEbUiC01XdAdt7RSyZ1EUCixJKcMihZ1uRrF/tmzoW+jhSTuC27cYnSMKcnbPiJNsOAdL65kQNBiJhSqCvKfJ5iXIJV4rYSaLlhJxbfLO6hbIhyNr8cCSJCHJLiYF6nNT3rLA/5/hluqsOY+E1aflvu+wkkhbhCj74AgEYpDqVeV5aqKXEopyuhFGdqCSyWEA2DhMMiLqXLCv+XOIufwlb0xMhPfiNxe9q5FW0zmVOijmMVziFXiFUOrJzy3zyCIERLidxG9bB41uuYuP4+vN3vbAwbd0LivkBz6qhystRvW5WvZlQhuJoL1a9SomamxEgdVytb7YhQuP71O+ByC4d+7NLotcyCCnpW58sw6RiS41OvEWiuyirijJ36DsvnlMxGFJinythds7Hq+HWHr5yXKBGnk4s1epMCHXkcZnYxUbJaqMMF1LNXXyyf8AP1t1XFTZk5JsYw+ot/wAoMAH/sqrhzGuISfnmcdWGDJZxDXqIja5q9Bg7B+0f+HIcECzFi41OJhQZPOYfi5gay9LdWd1idURf+DKvsoRiw4fW6n7OrQuLQTkAq0lkJ/wAqAk71jICKbZVlDW1qlcZN1vamJ7q6Df3DSrnUiuXXjsGU23+0s4dCEEQn4a/8FhuwB8af9dXcx9iaoJPICUq1ggeilfQwoxuOLZ0R2rb0Y2bglhPZbFkBtDb3E86halkbEhaUK0pGAqMQXXSJMbeyxsg5JEIV5WTF5j4CR5TGCPdDrclgYv9U6VODVg6kO4eyzzG2KKtR4pBWomZY+Rexuws9evXF2mN/DgBo6LsPAGDPAYOw6vjf4MBwKabd+p2a7cd3JKZdwNKh52NseSoWzp2ZuE+1/NUm5nqJjsm9xHfA5h7CIITDgkg81Uomg4w8HdWWPmciHppRi+TYdZTdejiN6nqk3D6RkIJCLxiMw/TbEiKJzxw4orRKlj/K+UtDGP1WzIZIHCoErcnAZyGgSCzuoWzF4lDkHBKCjua6ytzfnPBVHVUqlWo/Ly/QnKA19/2U+yopCnGoB2+vcCQCsStKOn4CWJnikJxf1rqojo4FhUj0Q6r8xs4O/5cYYRmtrLGi9CUU7qbEuCsWPYuJ2/Vxh4ZTkRtVDy//+Uqs+c0k9ffG9Wtyg927M2EQwHv0KmxlvXDo5/634v6EUyeVyyORAcFZVQhKkDALQryULePdxP/la2QdN/SyLl3kroXVth4bjT3Rt190XOciFD7a77hzI6B19Eu3kvddrfwq/3drpURxWfLryVJxNzpOeVbPquPXXXa+2O+sPLiOoI7jXvIaLxb1CwlBKJ1tlscRZ3wJs53DEXKGQrGxw+Pqv+ceWH/8LzAoXIUpd/xYG5i87hXfJ5bMUjO5n+jImsXY0y7BjMZj0Iu1J8T4EmtAj5Zlmc0NOlJGz+wi9r3qRYz80s11P2dXhcShnYD8cdZyDsmJkJqUZKxiu3KimFPfrav++kS31oTow8DMB67DkHAF2KbFO3soBEHUydRH/4T5U58FAGzdvAEjyjOxcPB5KDbkTyRszc2gl6boWQSy05jjFDPDSh0RXKu3odcvPAKvlLiI8jKEcQeeKs/yq1wU6WS1qZbCjJz0trNGWKGr3BEei9p02/ARCieF48vMoeoToMT+yYUEpyFeKRQXybzKxZUU0uKSmvbExX53YMzHPocNl0/HYUedrm4bffKFeHuvT+HYdZOx99qXq7Yf39EMO/1KBDCw5tk/Jm6Psxk055DqaFpWWTRA/D1UK/kyY0qIk0FGyZQSmvLKoGRZmRaGHrcezv+9yMfrbp/oH9GFlOO3JsSh0LBREA4h6RwyTBMeN9HIo9+uLcKbG8K2xEoxt5JtnC3uwpfikNsWlXBJcUhzXWWhLiirrKzLz8KWIdLysxG/Lydoy38/gUS5RGOvPtE2WFDhSAQQCV8sgINy3Mkp4zglL3RrXVTLckNuVgb3Wk52+L9ElhZljTHdETJ2fibLyirEIXEc56ad21USnMNfMRXQWkvPmf4qTthwFwYFcWDsqr9/Ae/felnerndbpj7yRxzqz8Xisd9Hnz0ru0uFLD53SPdG2kUrA4KzqhC8lHOIqQBoIRCr7mDJ75uOvo1qJdJpKr6TlqOCnlWeK0+KQ+luYUx3DlU5H+rnYgAqY9CzpDjUjIAzBGax6vhNzSGnOp5Jh2gnM4fkcTwdHRJn1hWV8cDjJsw6F0GYYWDvi+/E9COvryh5rZcjTj4PM/qegkkr/4FZU18BUHnd68IBC5NlZWFOWZk+toGf/SNaeENiwW7NIZ/DSO9d9Mcmtfgnz5m15lsVr9GwR4cev6tC4tBOIBTBbXrbXB0mV4PFl1YqqelAOEDrfJZaRQ9FSGqoDuzJCxizxoSoGu+99gSm/u+nVKr+jmDblo04ZOFfACB3YkIQxIeLdcsXYuy0H6L55T8DAMptkeBh9t6n6vMcvaxMzwnSJ42+KzpxmQi0fAwgCsAsMA/MLMQTFt9NWOFDrxxPUlHZnSjwfVgsVK3k88o10mS1WJUXWnHmQNStRIYq+syGGZRgswCwi/C4qVwSVg1xRt8/rrmp0uVAYcYFmtqGuABTF8blkpo0Gh20iu/K7L3fQRXOjNGX/QmLrYNxcPh+Irfgg6b3gP0xt+9HMGbjE9i0ZYu6PcvJEnc0LcHicVcX6TJJt2WWJZNZLiTVlj5nIs7NAhx4iXHIoOj0hb6OzOUwhDhUDNpQ5rYmoLQmHDSB4cTt3bXVXQ8WejIhDjVEQkoDkuKQbOPsy7B47sGX2V4iNFq+F3nByGp/ZRZGld+lLP13hPsvdg5F224IW3Pfz2hf4/saevZW/3YzhBcp8DXwEkIR1mtkCEBy8TEv21Iig8q5oWezyM+2UF0cCrPFIV1oUrelnEPpC2s1HhlAbhQS7i+dlbNfhXXLyVg5OwrGDYIAePI7MBlPLLr28Dahwd1cdf+7G1s2rsWwWf+LufZITDjriszHBJpTR+bxpJ1DZhhlm2VVIUihyLALiU5jahuyIzPPdw75WjZOVpliHkboJlwjShB3S/F3MCUOyYUm2cWUBW78+lWcOwUtv03fD9lF0XBb4MKuOX5dwFXB/X7t16+GOo6nrvHkNaFpF2CYJlxuwu3gIkj//YZiwhlf7NS4JIdcfBO2Gb3R54n/xNatm4HARcgZLOFcjs5R8XdOd/1UY8Cgg7DwIzdi9Zgr1W3jz/svLLSijmZSHNp7yGGYYw5Hv4MnZW6nu0Pi0E5Az9TIyr3ggZewEzs5J1FAC7dOqdIyqFRePLCgnJho1JoQ5cHDEA3P/wgTWl9E87Ydd9Kde9/P0RctaOENJA4RxC7C+0/+DhYLYYiVQb3ddTVUrobvJiaKoRZIzcI4sDY04hIIIO6Uwi2tVXdQTrSil64KSVoYlytscvJQ7aJIx8zoRKRKNMT7UBaZAyb34Bs2fNiwxIUkTAceLJWjUq1lNoDE/kFbbZPdN+SFpn6xp6MLaXJV1HNLcTehbuIcyqPQ0BO9L7kbW9ALLnauULbHiVegD2vFzCf/qm4LlQMjLgPQu+ZYYTyJ5mYBNvdVqYIKjxUlk1lhy4YVbTc338Fy4DAfgShXsJxiIuQ6DyWyCLdPMWyFyyx18VYM2xIiCTds5RDSjx/6PKbQIxKHevD2hEiRDsm14SO0CnC5CSayjuRj4pK4nIUy6dSqUnYhxbFimGw/Ly/QGtFWNS9Dv+gpFBrg8uhizctyDglRq4G5gOlk5q8B8QVwnkMd0DpCWYVkNose/l9VHPISgp6Emw6cdFlZqtFKQsTXkAHk6VBxnc0b1yX+/85Td2CEPxfLjUFi0TV2TXXnjmdhyDFzzjxwzWE1/67vohdvRfHs31cI4+p5mlNHXqCz1HfA4h4Cw86sQtBLonzmVIhD0oWkt45PozLwbPldqC9/ygy9RAmndNS65VJcugRPPTb6vxt1WBOvwcLsPLY0+rwFiK+nQlEqbnkt8Jhdc/wWd9HCGxL7HXeS7FzmnTqOp51Dqa6BHuzczpQ7ksY99sHW0/+EQeEazL/lP0WHsfi614eNgrdNPV5vFlKLcSedhyPPjmMMTMuCdfaNUch1ITpn9N2jH0b8+C0MHT6mC/dq94HEoZ1AohtPRu5FOuDUsmyEnGXmX8Sdz1LOIfkaCedQvE1DW2nsCLNefAAHBUvE2JPC1tRHbsK0x/+a9bQOsXH1+xi98i681esUrLX2VfXAErfUjrf+ciXammlFiCA+LLRs24SRax4CEGcJ1FO3D0CtYCGoLAWTsMCNO3GlSqbishkHzDCii6uUc4j7pariUDklZNUrDmU6hwwnuigTzgWZOSBDFX3DQcGPL1JdZqNBBNDWaimr3ivfjYIzuQHTstS4VflKKndFogtpcS5BKRYKdkJ3rg8bew8ahubz78eG43++U8cxeOwpWG4NxX4LJ8P3I6eust9rgo7qaOpHmUMybFm6fPQSDSAumZRlYHaiRE1sK0fMkGJOWIrzdZRQVaUMU7lRGvoCiAQTD7ZyHjTwpIASGo5yCCWdQ5o4JIQmi4XJ36AUeF3NKWAW4MNSuUDSsaSX5GWhylmrlFBIwaMYRuOVjgI57h68veqqtyyXkIuCcv6XFp2jAcfvBbcKmflrQCwKVXMsKEeZKCuTLiMp5DiFYtVOUbntpQ0HNgsiR48klXuZELnl/sgW6JYDWIUoJyujKYk8L8jPzFs/DwCwevCZYr+EcCkE+e7KK4/8BWPuPRJL5s8CAMyf/hImNj2GafucjwNG5jsmovNr7KIB4rbzEjOMwn3VQrNfeW41rKIIlvcS25L/l+fwauKQYRWFyF3f51jxnVRNF9rVYpGjnEOxiBj4HgzRMdAI3DiPrcpiiSxzVeVyMnBby1XzYNUcv809tLGkmBOXf3WurKz3gCEAgJZ3HkjcLitX5DnDFRmIO4ODJ52OqUMux6RtT2P/dc8krnuX7XEURre9idnP3g4g2SykMxww6misOv/fGPnpq7d73N0BEod2AvoKVZ44pE8KosmClUhulyQmPxrqIKWp/r5eVlZjQpSH/cbvtddOjr3Xu7ehOOv2Dm0vi/cf+DFMBNj3nGujmubUxGTJrFcxafUdWPDWU9v9WgRBdA3vPfZH9GLt2Ioe6jeb1So7D1+0d+cJQSf+7bOgrCYxPGXTVm2oNWcEC8oJW3LolRMXUb6bPPZ5KXdFve1zMy+QZFmZmDT6Vg9Y3I0u3JmNgNkohFIcitr99qhTHAJk942yWG2LXjtdDpTOXZFINwUztYm9W67oJtTdGTziKIw4+fM7dxCMoXnMpTiEv4+3Xnosuk2FkOvikMj88cqwoNnvhcvHK8nvdrJkMp0DEz1FOGnyJuLSadO8Xj3esmwEnCWcemlUx9SesdvHQ5xZ0oO3JTIlQm2VWC+tkHMjl1uwi/GqepZzyNM6w3LTgctsWEIckk47JazlOofEBWWV34V8/1SHsZRzyGJhDXFIC8EHVDljVslWIvxZdBmr6FbruVGuEqo7h3RBnJlaNov2vYjmYNmuh6i9dMZ+yeOw1o0IQTlRNhKJ+GbCOZTIxpKOD7dyjiqFRhWbILdRiMp55Oduia5u3RHP9zFoVpRXVt6yFgCwefojAICRn/tl9Sdrri2Vy5P6bUfOISczokI/7ydcSGHy/3Y94pBdUCJ3PRjC0SRhmjtWCpTSxaN39HO1sjgjzM5jy8KDpbYrRVUmxCEnaIUHWzjpqohD8NEmuin6Ki+2/rlTFkOGj8Ub/f4Dk9bfh3lvPKFuD/2k6OVh54lDADDhol9itjMa+/L1CQfT+C/diLnmcBzw6newYt7bUYfVOp1DeQwZeSR69e23vUPuFpA4tBPQyybcjMyfrIBTl2V3zgmUcyi7M4RcOU+HtFl2jQlRBvOnPo8R3ntYYB0CoDLoTK6Mp5n21GRs3dyUuc3lM1/ErH98Xf29YsEMjN/4OKbtfS4GHXgYfK2lpkRaVjsydoIgdhy+52LIotsxxz4cK50D1XGgI3Xzrqwx13OCtH/rx7B0yUHaGaHa0GvHTC5cFS6PghfTdut4pTKagAQ5K/JpZPaCDrcKKMATOUmWyhyQrVR9w1EuA2ZFHV0aWKWLIw+XxeKXnFApN6i8WJO5K0Hy3KCX+uklNXIySuLQh4tDT70cW9Ab9pSbAMQLPo4mjDha5k+U2SIuwIXLpNQW2fOVUywtDmXkF+WJGX0OOxEAMGDFv6LnFopgjMHLWcBSCKG00BiJQxYLI5FK5vIwt4o4FI8vEHMjF3Zi3PpvULqRXLckSqf8qHMSbBWErYQbrSQvE7+sss7ykOPoifZk4w/tuFePOCSFL3mxllWypW+TWYVE23GJFIBbeTE32xJICeJKjNHKb4RzKK80K3JCZglYsqwvlRmHZPc12bUxHreWjWVmbEMg537y/zwoo8ztClFQdnVL7LNbxoxfn4r501/K3Kfdhbf+PRkH8eUANAeuX0IZNnr23rPqc/WS5HS7d4klMmDUQrMm4uklWYHWNVNtK9U1LF1amN6GFLnTCx1Z6JlrQFIolscnW4ig8ndjcTexUG+EbmYeWxZq3oI4kF/lqoWiA6NZqDp+i3soG1HDDllK7yuHT+fPx6MvuR4r2ED0ffobaGveBKCyvFM2yNhZmJaFfhffjk3oBRfx8a5Hjx7offHdaEUjzHs+j0IHysqI7YfEoZ2AfsGT1UreyMiw8GBX1PwCWuezHOeQPGilL2BqTogy2LZyDgCgaf+Pi7FXikPpScTWpnU44o0rMO/pv1WOvdwO85EvY/Sy2+CJA+Laf/0GJRRw8HnXAMhevVd1vR10PREEsWOY9cydGMg3oDTxy4mLiY7UzUs3jL6KqP/G9eOino8BVGYbecKFxEI3Cr1FdEy0uIdWFk3C/JS4LI9B0J1Ddaw6m6FX2UVDCDOG1yps5VHmgCVKfkLDQSPisN2EcF9HILS8qGKhq9wGcoVRXmiyrNV7bT+ZVUg4SKVLy+qkjZ3YMZiFRiw98EJMdN/C7FlvRy3oOYNpxd8ZWwt0T9jvxQV/uXUrAIBZ8QWBEboJEUCiWoyb2RcMh449DsvYIBwQvA9A6y6Ts4Alkb/rxl591W2+1u0ISAkoRmVIdvScWEjRc5d0kUIKTr7bngjj9piNQo44lBemnS7Jz0K6igzGEwt7llYOF1a5sJEXPa4ShaL/Z5VsJVpbWwXwjDbf8ngoj3VZi5CAlutiFdRxr1wuxQKk05ApPqmXzwuJlccety0edyr3EhAX1noHSU2sUi63rFxO6YzX5rkuLPW5x1lTlc6hLRvXYGz7FGye90rmPu0OBEGIPaffGJU8IS4lQuDWFbLPLQeOKCtLhzZLZMdLJSb78eekSrKcouqYqG9L/l+6abJ+e6GWgaeHStdCz1wDUt0IE0JkuxqXzb2EOGSGXiKUvRoebJWxKAVwsyFyDjWEogOjLrxm4MCHa0bOIfneSYeP1UnnEAD06NkbW077I/YON2LerV8X202KTh6zM0XoD5IB+x2A9Wf9EyuO+lni9v32PxDrT/8b+oUbYbFQHVeIHQ+JQzsB7uniUOVB0chYifZy2ipLoaQi7CwV/MbCKAhVktdGtBryYClV8UpxyK04EbeLbkW83FKxvRkP/Ab7hWsAxG2lC+3rsNIegr0HDIpek1W2Y44txd03aJAgPjRwjp7T/4yVbCDGnPyZaDVR/GZV3Xw9ggcTx7iU20eiZ/ukAx49zYKuthW6MAJX1fJLcahdXDClS2rlpEwvz7LqKSvjlavnUpgxvBa4zFaZAxb3ERpRKUgPEbZr2IVEdxXbqS2kqYv7wFPPNdKOD0ubFGt4WgmeXlKTFXRMfDgYduZVKMPG5ud+Ly6Ek983PRDakd2eoAmEQhxSZYRi0SXdPhjQ5gZ5mUOGgZUi2yV6blyeUC2jS5b+FHvE3bgCZifKNvSLOn2VWC+tkPMYD1YiByjIvCAsK+eJFGELIvhdCgny+x7mzYXCSlGjYt9kzhmSgdmJ/K46xCHlHBL/9zM+A721tWzzXeGOEfvcLtwIWfEF+u2GXdAcFu2AL0rAbCdxcZ8mTxyS7ktfe90skU0uCKi/5bHK1rovZsyR5RxaF4c8FjuH9EXTdKi1WgT4/+y9d9gkR3U1fqrjvGHzrrRaSbtKK61W0ioHEBlhgxCI9BFMMtkYsDEYGxvjhPPnz5kftgHbYGNjmxxsDNjYWATlnHMOu0qr3fed6VS/P6pu9a3q6nlnpY2izvPo0c68M9XVMz1dt84999wdiH33NVz4nS/h6OZGXL36XADtWsebOoxFnCMXJWTTGF8eN0mbQCU6TFKCrae8JEsyf0DjPdQ4flh19/o0Y2SDllzpuY6tecnCVh2ydZATkaPR0Bw/RWWVL/J7Y7LAesy7ahklpu6iOE1G+fTb8pBD1CCi1N0U6bzpGk8eZ7t4wnFnnIXvr349Tnrwq7juu//KEgLaAFuXue9pbDjp6Tj1+a/tPH/M6Wfh0uN+BQAgspndPa0fWQRyaA9AWsqh7s0i8hicVk5bPwLdkEkm2b6BmOyW9edjUjC5IwSLuVlqVtwty0g99d10fq4XwcMP3IUNN3zMlHhQkBI3dg177cmKGSnxk3hxDwjYV3Ddhd/CkdUNuHvDmxDHMRr2m6Vs4iTSaCI8eGkK/41b3j5Jbt3zXG+jSmRqrLrAvGjNclNZmg2TqzxsVU6tAsc1+vfBu0HSCo2kIs8B5ZmgOm6o1rbkCRIlubUJHGd8SzDkF1NTuUbCbomFOc+yJaW4grQtMQrk0N6GmeUH4JpVZ+OUR/4D0WP3dJTFWdYSoClabwazWZ5XZWWGHKKSSad9MMBUSGPIjIOf8QZ27JYcQt3/e5H1CIVMrHK4SqQW8WMdk5EgvINexQgU7gNkkUOk/itHlhqlRmp8gei4KfvsfIgmUA4BzC8IfnJIxv0EOe+QCLSlcz4/H66iitJBx5wfaBUKVKri25QCXDk0sDfRWokDISCjtNdMN3U24nxe6ric3O9+jpWwk57mHhznjBzybKipdbjpxltY/lV1MTTdp6g9OYGuh3H+WPsypJQY/PCPsUUsw7Knvx1Aq0KZ9Fo2hu5VwUqv7Gsg0wrFxONf2rCOWA0rASeCKXaUQ969jSFnHOJyAbjrMZHPdTEPwe5PpaMc4lUcsSzNtTXOawywG1eISt9PpxTRMyvmUYnMKJ98JC01iKhS9Z6W+HziZWWEk9/4e7hJHIJV//UBRNvvB9Ca5tci9ZaG7k04/RU/hyue+Ukc/YJ37ump/MggkEN7Aj3deAhRU6B2pJ99nXO4707BbpymwwArK+OBxuNRDrWSScWKu2UZVDZhvYUWduc4N533ecxiHpesUBnIlhyy64Vl3C3taJysUUBAwJ7D/P/8KR7BLI574U8BgJXJ9rXK7kOFVGUUa7sUjGCVxlIZhr7nuaofdb8sETUFCpEpeX2lzHpH2vjR9SxrCSZNmHg2XT74yCEKZtNqm5GVZ6JCJgvIKLM2wVGaW/e8bALlDp2f+kzUexM2bz4HV8pemS4ouVVSQ8HoJORUwO7Hmhf8PAaixInbvtvZ4MVJijmZI91yDVLdmhxg5upEDtFGTqv7RDVSJZjMB8bEBmMk/GuPOAbXJBtNdy0AqEQyXjmkFU8uoWOTQ8xPh/079pBAlchaU2MAkm1wYkYScD+yKkqZYk+N2fo1+ecuHL/GPriqH8De2I0j2+hc6f5GZLGXHGIlukKb9brKcdpEU6lK36aaNsRxmptytWo0tErAxt0HE1RehRmNxQkD1/cSaEluMx9SeaV5qwL1WC8YYoc8XjRJTt9pVYxQ6e5TrhFw9SRXDl3yvW/ihOoK3H30W5Fqfy9ahye9lrmhOBE5ieO/pzoAZuZ+0VjkUEvscP+iWLYkUV1VJkEyLvGdcFXbBGVlbsvzKGvVZNa1VgzN7yZDaSnUkh6zfh8qpEZdJWvVjj2x7ldtR0YfOUQxjNSqGPL+M8n4J1BWRpiensH8OR/FIrkVx9/9WQDtff6xbD9sy1Y94WPsamx69iuwZMX+e3oaPzII5NAeAM9YuOobQBEkbllZJVJv5xx+Qx5ZEl5dAkY3dsekjcvQJ5433SxpwXHkvqlXwqsXe+fm3+hadLnsUACtXNTtfuGTTLtm2wEBAbsW9951q/f5e26+Gsdv+x6uXfMKTOsuRLwMoZ6wbh9QG6K4UT46c0ztQ+DmpxQs0j2PAjuT/dabDiKUyIMoQ4kyIXLIKSujMVJqA9699/iQesgh2thk9RwqkZjN3zSGQJxZ2XZl2qnLSHRb+oVQM+UQBfvGnDeyu5e5vnacSLNKajwlRgF7D/Y/bBOunHkKUlF3yCERRbhy7Wtxyvbvqif09UXXgBw5yiEqmSSFCIOJDcYoXQBg+PQP4vur2zIAVwXiwpT+sBKsWqQOgcL9dLhHYvs8xTFGQaQ/C9tnRJME5bAlHKisTOgNqh7TKJn6lEMeD0gfyGuIb76tTkNjyDbJTPD5/6Uno89bW0fJwKvsofshlar41DdAG39GaY4oaT8z1GXbGTLOO3EdIYPfJDbyqH74vcrMU6SmxAhoiSBrPr659zRc4aQgbbpdI2BKavoIiX0Bt1z+v7j2vC97/yalRP2/f4StmMXGF/2MucYpZvZ9Bz5w1WlilEP255WhhExyy++M0Kp+poA4M/6ArXKo9CazOQw5lE+NVZG5UIQlb76jyatiZN2fyqItK8tEZdbJ7TJXimFzDguQQ1HWKod0MyGeDKujrC2z9MyffqsyUxUZ7v5mZ5V5H3fy03DegW9V3StljFib5h/6tr/H4W/9u51yjIAnDwI5tCfAySGPqbKvAwSVSbiwS9Q8yiHG+jdW6cJ4KbUP5BmQTeuyMifzTmUT1rzNQmwfxyxW5F9EMlRno+V2JeLvDcqhgIBdj8u/8zkc8IkTcONl53X+duc3/ggVYhxxzvvMc9wPqM3+LRzgUKlLVBcYoVX7EKjTF4COzJxUQDHr2BVrcqgWqenulcq2tt+9f9QmU9d6rvRtijjIe4GDMoWDZrvyBNKPYyEhk9zKtifpwBDibpfKPlSCnZ9+b+KUA7Uthv3lc3EysEtq6tHE5FTAnkH+DGUq6iMrjnvlr+JBLAXQ/j5Mi/tH7taPW1+qBKWX+JiaXoRrs2Mxc+gpY+dy0jPPxbPe+WfmMV2TfeBdWAtG6FibL8dPp32660tEm1yucCHQprguRya2iHTnJDOm/p3HSYpail4z7agpO0puH2g+3D+M+5WIccoh2vzquI/iP5+fDyec4p4233TOdaqVQz3NOyp23xRsA8v9gSTb3LtImb8VhynvKseTQ7WT9KzZfPruX+qFZLDMSY/MIgW5SoOrJ+vCH5PuCxjObcPsF9+Aqf/6Fe/fr7zkezht9EPcevjrkE4tblWApODdUXKoaMmhmKnTqrJALCQEUw7x9dR0xMoGkEmODIqg40RT4XQHc2E88NJBm+iYwHMoc67JtulCVznEfzfl3GMAgDkxjUSWzI9tPDnEr2EiwHuVQx4VnFFD5TY51JAp/E5U8j7lDR/BNdF6bEd7X1q+bDmWLRvfvS7gRw87jRwSQhwshPiOEOIaIcTVQoif1c//XyHEdUKIK4QQXxRCLN1Zx9xXwT01fOQQ3wSZ1/V0jLDIIa4ccroCuCZtSZKiGRMQ+SDrEoVMvAaOsml02YRbVmZ7H7WT1RmEKdvc2ksOLdCJLSAgYNch+cGfAgDmHrrHen7rgw/guAe+isuWnoVVa9aZ58l8GQDLfi2sHKJ7HEnfSe1j5iFLs7lzM4lW21toRUJTIpIVqihFpcdKUZkNk0sONdwAE92OaH3IUHbMZinrPWjmUUWZtdFFnFmvp44ugH/T78PczME4dHQDlhb3G5VB4pQDWV1aGGpWVpaZrK/yenKNjgP2Lhx52gtwU7Ie8/Fs52/Ti5bh1k3vBQAIvUk+/OTn4hEswilbvgSAkUO6VMhnEhzFMY7+5e9h07NfuUNzq0QKMeb3woko+n8dZw6B4lfaWORQbJdccYWLeT2pBcqR5SVmqafZmAVSQzS4cDu99sFnIp1l/vPpHqQ1Cgda5ZDPz4d/Fn1tvmu9Ca21j0ntI1jQqr/jLDfEelWMLCLHl6ADlEolQ2kReu28uqofnyK+Fm1JDp9nnOYWwefCxNDcNkGk7D2FVYLEiQhDWO2D8eNl//p72A8PIZX+73P47d/DNkzhqHN/AUCrOpEOibYgDDk0MoohHocb1U+ceasQWv+6gencWVUlI4dKiyjxKg5ZWVfrYTVJWVllqdnMPa8a2UTkaB6ZqDAn9bnOK9P+eTGlztXjx+YD35vR/TR1yOxxKjhjCq8T5bQ3woSeRzuCqUGO6Z/8Aq5+zid32pgBT07sTOVQBeD9UsqNAM4A8C4hxEYA3wJwrJRyE4AbAPzSTjzmvgl2IySjOA6+CTJviTLj9M/BNzilJeG1ZZwu6SKiCAUSi6haCKJWmwceeJljl2QwZwcpjVEOOQSPXqySgWLLLXIotsmhzO3Epm+aT1ZDwV2Nhx+4Gzdf9t2JX7/5juut7zTgRwc3XX4ejimuANAN0q/9xl9iWoyw4qz3Wc/zTDaZOqYTBDik9qGNSSm65BDdw1o/CpscShxPFVLWqG6PQySi6cq3NVoTTS3FT7peHj4ksuqUfxBJNSu3o2ZddAClIJDWxjc35zUpOXPQS38DERocJO81a4X5jPVGk7xJivnH7PPUa06cDdoSsmqku8EF1dBeDSGw/K2fx+LXfcr755Ne/B5ceNT7ccTTXw0AmF2+Gnc/9SPIhbqOae0ulhyKNfIB7L/1iokJyYVQJLNYWtzXu1bwjSkpiJooQ8KJ4x7lEC+taBwChZMY7TDanL1qyaE4HVgxEO8CxDsOubCM8MfA136e+5WIMeQQqXZofvR/nyrHIoeyts03xWBAS7I0+WL9uKesjBkHUzltXdrkEOIcmag732tVlcozxjNHQ9KzNUPdix3lkNNwhOYZZy0h4Jb/Am3yk76zWKpuvAlTLHHlEPdcovv8uBLIvQGPPnAnLvvHD0M2qunCw5vvxTG3fAIAvOXO119+Pk6b/19cv+4nMFi8AgBTnVSkHOpWJfhApYu89IoThLzjpbcKgfv1kH8RM4BOZGl9J16vMoscan2DxqGpa8tzDWDkUDlCxAkuvS5u191LqzlFDo2iGaQo9X7H9mPzoY4y09WUCHD+u5dRylRwHnKIyGu9F6K9kahHKGWMSJd/7SwcsnYtznzm83fqmAFPPuw0ckhKea+U8hL978cAXAvgQCnlN6U07QJ+COCgnXXMfRW8naL0Koe6HhZ1XztRZqJo1XebjEp7Y3c3MIVIdyh7IuqRkkx6aowpk0AZAjPv0vY+4vMuZMwkn6N2nizIE6ylJqG9ee76xV2W85Cjx8a+5pEHN+O8P3szHrjvzl0+nyeK0XA7Hv6rs7H0S6+f6PUXf/VjWPU3p+GaH/zbLp5ZwN6IR//zT8y/O0T2I7djK2Zw+HGn28/zTHY9makj0HoVkfS9RGrdKxPZ3huEk4mjuVllM7Iw99JKpEiq7QAAqeXbcAxoG4dgQqw6otXVeIKIvBc4KBicFiMlK+d/T3JbOZS25FA1ITm0et1RuOxg1TGKgv1sSrd51ZuqNUediDmZY/T9v7Ley9sMx0mCSkbqe/K0SA/Y+7B89TqsPmSj929RkuDU1/wqVhyw1jx3zPN+ElcsfiYAYGpWkQWbXvFLuA8rsba5ezKD2gkwd/jZWNvcjZsu/W//3FgXViKkZJQhTf0ESsS8dXgHPRlT6ZWttrPIIUYsGC+xLEfDvUgc5VA/OdRN1vlg/IKiHnJojLEsnTfNjxJkfnKIl5UNAK1s4B4u1CVS6Htd36a69YYZsK5TQ5scojbizsa2GLbqkb45ctP/uDfp2bVZSLIBI5i6c6fvSnDlUGSbI/NkKS+ra9u6+1Vut950Lf7rX/7C+7fdiZs+8z6ccMOf4e5brgEAXPfVP8E0hrg6O86btNj6zd/Bdgxw1Es+aJ4zqhPqfOV4evah7fbHTJtllxwSSe6tQqDEbTaYMuWU5WhoCKZElo6qzGOZYcqqppiX1PhkNlc0EXjZW9KUptlFMad82OY1OdRo0/5RPKPOtS5Nyeo4cI9F+t24yqFx868YIVrIpI1L6nLiMvOAgJ2NXeI5JIQ4BMCJAM53/vRmAP++K465LyGqCxWQw58V4ZsgQhN1W7oDsKTQFe8M0bQZFaBLugDobL4WAnkG+GqMrfpuX5bGOY6oRyhhGwiaefKyMh2Y8KwYKjsw2GWQEjf9yQtx0x+PZ9mv/cdfwNMe+jzuuvTbu3Y+OwGXf/I9OKy+zbTzHYfbbrwKGy76dQDA8NH7d/HMAvY2bH3wAWx69L9w6dRTAHiI7B4ygTLZRTFkdfsLew5RkEUKg9LZsKXM28fNxEmzqdAlr7pshoz4K5Ehrbap+VFXkB4fNLNpZBnPPtRVhUQ0ney51V1JpFb7aZHkjp/KFBqS8e/ARv341/wG7hH7oRisBADMLlqKH276LRz+nDcDAFbsvxZXHvomnLz9u7jyvK+Z9/FOMoDeGFfKrHNScipgH4IQOPLtn8aNz/tbLFu1BgCwaPEy3PPU3wCAycpMJsDGH3sTtsscj5z3Ce/fOeFAx2x4WQoccihpn8+sTLytruEKFwJPYBl1jG77TuAbuAr9ZtpqQz2JcqjbYSxjpFY0RjlE94dWOdQlvMx82LzTfGDOm8dgpjuVLlVxm4e4r0vSgSHU6nJkldKZroeO30vJOov1zZHHtz5ionGSnhZZZQi+LjlE35VwlPGmtJaVEwK25ULTl7DUuO+/P4FnXf0rqEo1rx/+3Qdx/v/3Nu9rdxVuu/ZinPjItwAA5UjFatH2e/GIWIzHlh7t3Qscv+1/cfWqF2J22X7mOWP+Tp2GPQSdD7wkuVUOtYQUEYUizU0VgpVorkaqJCtOLP8iIodSlKhYTO+zzEDVlnWNuxY4zLw8yiFZjRDL0jS7qOYeAQAMdUe/RieBi2QGKSpvya0P/BqOa/W7sZRDcdYmwT2VIiaBnuSapG6VQ5OQUwEBuwI7nRwSQswC+DyA90opt7LnPwRVevaZnve9XQhxkRDios2bN+/sae1VEHWB7aLfEDpFVzkko7TTLQCAdUO2mHiSbzZUL1x1slDlmIDIh1Yy2Z27laXhC3HVZnY46MbnKocyWQJxe0N0jWfpver/u5YcuvIbn8T67RdjavSgee6if/80brzsf83jmy4/D6dt+SIAP9Hnw9atD2N+bmFyZmfj0v/4NE7b/HlsxYxlxHf+p34JF/zjR6zXzs/PY/jZN5nFnL7rO268Ej/4szeawCngyYUbL/kOHrz3DgDAw5vvQipqjA5U5JB7ffeSCZRpHg2NiX2aLhyQNrrrDknfqeMYgRPHkUMq09woKKMuh4ksIOMMVZQir9VvTqROhk6jNnNVYwh2Hn0wxJGz8eM+KspzgG96M+v1WTYw57UjKo6pmUWY/dkf4vi3/aV57oyXvQf7HXiIeXz8Kz+M+8QqTP9Xu9lpHCKNyvcm7coUsO9hMLsU6898mfXcic97LS5c8mN4ePGGnXKMxUuW46plZ+GYh76NbVsf6vydm6fzUjDTLQz2po4bL3NymeIY4z3kKFwAWy3AvcR44omXqrkt1Tl8Sm4fWhNp1q2MVBWARRC7iB1yyMzTQyhxUivJBmzz3VXHxLpUpe6xDzCEeD4wsVhTDu3OkEb5YZPkpWcjbublKQlLZFe93iGHWJlbMs5ziMp4ak4OtfFkU48sxRGPjc310JcYrYeIhEShPXFm7j0fq7Zc4H/tLsKWr/46It3m3XTi1GSFz2qhKgtkokY93W1Jrvy02s/J1wHPhWnsULamzamo0dS1npOuFCDi0CnLFLoLoogiq417qotIUiysHIIu64IQnX1CH+ga9ZWkykr5JxE5VA/V9rSIlXIImhyq01mkokZUDXeYHBI6GeXer+jz9JG0vHtoKRg51BSognIoYA9hp5JDQogUihj6jJTyC+z5nwRwDoDXSiml771Syr+WUp4ipTxl1aruDe7JhKgpMA99Q/KYIKaoLIIE8Ld0B2CZwHHJovEaQsv6u1moakydfd+8K5ExE1O/cogTRZQJ6iqH1EJHNeJNNVKm1qjsEg1PVkzU/jGfCLY+sgUXfP5PTPna9q0P4YDzFWHCg5eDzv8NPPKdPwegTLjrr73fqCcm6Z42nJ/Dw3/8NFz512/ZaXO34P954d7br8fhP/ggbojX4+oDX4VYSFMus/yOb2L6dlv1dMnHfxob6htw1cb3AwAaneW595Kv4ykPfQlb7rt918w/YI/h4c33YN2XX4Ebv/Q7ANqAmrLP7vXdRyZwQlfWI4xkumDdPqA2iglKk2GuRGaR14o4JuWQLivTgZUk2TxvQ4/StJmvRIpBo8rK3AydQWUTTO2mq185RMSRcO7XvPSjiVKrta2rHFLZf9ro7lgwuHjpCgyonMyDwfQs7jv9Qzi8uRUXfOFPADCzUH2epCCdtM1xwJMDQgic+nP/ilN/9h932piLn/ZWTIsRrvnm33b+ljRlxycIcY6MkSacQDHqQKeDHsUxrvdQ34aQlyrxGIirkVwi2pr3hOSQ6xcEtN6O6tz6S2vpvGWcWf/3l2zZ5BCV3/kIkGR6ifXYBTcO5mofrvLhyg+OseQQxYg9nnFmnk5cy7tc+ZKQBPqurIYrrKysoxxi/5Y9MSmBEhoUc8ayNHH07sCVF/4PTpn7Lm5IjwbAu6up+7PPaqHwkCKEUrQVAumE17JR9I+GyETVlmLp4xjCiogfuORQq3qJ2PVDRFMmS3NeI+mvihB1YcbwlSn6QASpYERxzvYriawwjLRyeKjIoFIrh0ShlMXUsCKutk/kwdew7qxxUyjvK0YKyzhvSzY917Lx2UoHVhMOUZcTkVMBAbsCO7NbmQDwSQDXSin/iD3/fAC/AODFUk5Qy/IjgLgpMB8pckhW3QXK1x6Ut4fm4Ddkninhxm8+kzZgfEDkQ6QNS906ZvXPdgPFiZy2haZ98yf/gYRlq6qqVNkS7jnkCUzonHcmOXTtZ34Rp135a6a++8ov/CGWy0dxQ7zeMuLLUSDSm8qHNt+No8rrcPn+L1XnMAE5dOnnfh/r5F3IhztfHXfvLVfjgd88HJd98++t58tihEf//o2IZIOZ134ayFUHE1roU1lYmZsLvvwxnPnQF3DhAa/F2mcqXxMKqOj/k7QUDdi3cMM3PoZMVIhKHSTRb3dKe/TUXXLIRybw3yxlECeBjDJkKI30vYra+5NLHFNXGpOJM95GekOhuxwSKV5HmSmlFImdoTNwSJPIo1p00bdBcrsrRZm9ARYJ3+Dl5rx2VokPx/E/9kZcmx2HDdf+KR5+cDPbENqBfSCHAp4oNpz0LNwSrcOy6/6p87dYqzsA5ssTZ23pC2wChdQCndLVxCZSjMLFUuPp11QFpPEjm7LiKt4FaEFyaEwbekLtIYcAmA1uPEY5RCV0rSoq75yTmTcjtdJ8yhsjmXJeTQ71Ja5aonjK3PdkNbJ8ltzOkASfSoPAy7vMXD2fY6MTAuZx3RJ5xj/IEyPHDjlEpIdRg9UjK1nqI4d8DV6AVpVkyKGm8Fs67ALIpoH85q/gESzC8IyfBdAmQChm9lktcINoFyUSW2E1wbVMv71ySKbN6nOlsi3TAZC6iLmeXawkyxBIw22qBBuqcQ2d13Yx1UsO0Ri8NGwcqlF3PW6bLqjvcaTJIFIKlamKb+JSPaaGFWm1bbL1kHXzS/TvhpPCSDJGbvmUQ+QBmFsKxrAeB+xJ7Ezl0JkAXg/gOUKIy/R/ZwP4CwCLAHxLP/eXY0f5EUDUFCii9oblIvP4A1ntoflYvPMZl/A2RA5VXpM2QAVEvdLannnXIkUUxyhkbPsd8bIyz0LslsSR6sB4hJQjb/bDF/i0N8+ds2Bvued2nPDAlwEAxVCpC8Rjd+MRsQgPLT/BIodS7YmiXqu5zsXKx8FduG675kL88NO/Yh4/eP9dOPYmZQ67I5+7Dz/42E/hB594v3k8mt+G+c+8DvvJBzF/73XWay/++LuxoboW15/6ERx42MZOuQx5sxA2XPoRXJsegxPf/Ced7J0hhxbI4ATsW2jqGgfd8i8AWvKVPMzSqX7l0DhyqNLk0KSlSkTokPS9Em2LWJc45uap+mAA2o0TSe/Jv60WKWaklsKnuZWhM8dnBpjuefShmoAckpHdrjtKBxZZlOVTrXJoAsn/jkJEEabP/UMsldtw9T99qGMSThvjSY13AwL6IKIID6x/NdZXN+LmK75v/Y2rURoqK6O1yNlIqn/rjaebvXfUNS6JAbANYV1A6ntEmg+MmXUh7S5ErjEyh+uD2Ie2w5gTZ+lNYjxGORQb5VBOT6hz8ryHk1ppNuXthET36nxmMuVQlg+sDXjCGpgY/xknIVSxtvMuKG7gCTPle+m8NkqtEnejHMqnvN6WhNh047WV8VzVzhsoWOVItT8mJdC6QPGoio8W7lq5M3Dxtz+LTeUVuPmYdyNbrLyDuEdSxTpfci+80kOKmL+xCgHvd+ABkUPUwWtOmzbTcWjdNdeeQ65GFjmkxhptV2Vc2+SUalyjY+15MeX9LqKmSw4tZN1QsRItM04co9T7lRQlCk0ORYUig5pMJUuTUs0H2sQ9r7dPlKzhe7NYlmj0e4gUFnHe7nM81zL32eJq6UAOBexJ7MxuZedJKYWUcpOU8gT9379JKY+QUh7MnvupnXXMfRVxU6GKUiXVdDYoVVmo9qDOTZ63h+bghtK1Vd/dLgajnoWjEtkOqW+4SaGbKah7uqaZFprSVQ5pV3+2mPuyHxGrV+bv5f9/orjpy7+LXJTW3AWv72Zzz1CagMRkT6gFpUP03fv9f8QZt/y5Md678fO/iQEK3C32f0KZqGsv+i885f5/wvL7zjPPXfE378Zh9S3qAfteLvjcH+GMzf+CH+73Spx8jjJVdMtlElkaMrEqCyzGdjyy5ulI0syS5OqTts494MmBa773VRwo7wPQ/q4o85pq5ZBwrm/uIcLBNxPKl2hC5VCi7nGpVg7Vot2wucSxCRaJtNQBP22cSHqf6U1DE2XmNx6lA7/HCJloJs6maMy1btrQOhuk1PIcyCyyKEoyoxSg49F57SpyZt0xZ+CSVS/G6Zs/B3H/1QBas1wKSKOm3OGytoAAF0f/2Fswkim2fPfj1vO8rKhTsuRR1yRMlcAhHOVQ4yGHzIawGpl7RJoNTJm6q0aqRdKrJPE18/CBiCeft6N7bi7M36gcRo/hM7E25wZF6hj/NRb/0Xo9tWiZ9bgDItWzgekIJ6uRVX5kSDrnPthuxLsEFsUNPIGYeRqtyDiziRc9nzwfmNI0+MghHd9GTCEv49xStfPPg6vqZU9MSqDNuTEyl6WVINxZaOoa5//Z63HFdz6nplwWWPWD38Zd0Rocf+7PsQRI65FUicxrtUCKnijpXqc8zvd9Bz4YYk778ox0pQNdA7wUSh0jsRLVnNiga7s0RJNed/TjYTTjTXxTGR3gJxt9MDF54v4GVTIoRYkqscvIGqYUAgCRq2RY3sy1fmZjoBJRdB0WRh1p7luJXe7ogjeIKNl3xbs7BgTsbuySbmUB4xHrDFqBpFPaYDZB7g2ct4dmiJrCBAqSZUqIfMhk2Sv/raO0NyDyzrupTGabTEwJfANlLcRMzmrPW/kP8OyQr0TDt0GLTNZoMnJoNL/NCmy23HubyXo9vPlebLrvC7gPK625Gz+VOFfmf1Kq0hZRmeOaFpTak8VVgQm9kNF3Or31JtyaHo4tg0Met3JINg3kfyg1Eg9uNj7w77hg8Y+rLnj6uHfffBVOvPK3cPngVJzyto+a10aOIiJFiVgvbu71Zzbb9F3r6zWQQ08ulOd/Ag9jEe4Ua0yQR+2Qk3wKhUw63b3inuCFbybEjpgcxzliIZHJEWSUKq8evXFwieOO4WlVWGoAUiTkooSIc0tKHyWZnxinEjhBBrI68B3TPrdVDtkbJLv1tk0OxWnbpplMO7GLySEAOPLVv4+hyHH6Y9/Sc9T3gSjVpROTtTkOCBiHJSv2x5VLnomjt3wD89sfM8+nbGNqrjPa6GoCOWFEQ8LKHjkoPqCuiC2J4d8Q8tIpIl/ce1IdZb1kga+Zhw+yTzkkbPWDDwkjtfUT6nFPhzP6vLJ8CnHiqCgBEwNMz2rlkEehrt40QiFjRHHMVDeFVX5kYjBHLewSBBymS5ulHOr6XlJCgM+Hzqslerr3X6OMJ9ID6jviqvbGIofaf4vKH5MSIie+S2RhJQgBFYdd9rE34ZZL/8s7xiS49D/+Dqc/9BXMX/PvAIC7b7ka6+RduHfjW5FkeVuKpON6VW6detX0ZOvgu14qkbTldxMSnWZ91WVlI+3TUxnlkK0ac9dTmxyyVUjzeqyatY73WWZwcoQTl+PQKprsa7IQKVCPlNcRKYUMGaQeZ43uCqeTvVPNHKpJlLw6bqmr0vrd0H1LJPlYFVzDPNFqVs3Rl3wLCNgdCOTQHgBl0CqP70Vf7TBvD80RNazzGa/v5i0je0of6ijrldb6512YQKx0DF376ruNj4ezuFIWJGUBiU8aa4zxWGBiTAgnJLZu+uMX4JKPvwsAMBpux9Rfno5Lv/oxAMBd116AaTHCrQe/RJ9HSw5VQimHIiFRlYUxuzOlLvQ4n1Hmc66HSd2tXa+iHE3kN+CbBBf/x99jY3k15qXd5SNHgXrRAdpoVx33wTuuQypq5M/5RWPUC7RmfXQ+KdqyMvf6i5IElYwMySdMVm3XdooL2H3Ycs9tOG7b93Dd6hdjGM+Y35fp6pIOrOuKwD1EOPhmgkzsJ4K+5qblvPYJSk3w7xLHiaNoE/XIUgPwe4hMMssHJE4HWgZv/wa5AaZ6nb73TFBW5qoCMqeVbWJ5qeQtOeSY6U7SSebxYvHKA3DDBnUf5ETao9PrsH7+ciyvHgjBaMBOwdQZb8FizOHKb37KPJei3Ti5ah+jHLJKptqyRw7zW0nssVy1QKHjK146ZY7nqBmbKDP3Gg4ppSIvPIqMzmt7TKTLHSCHDCkU+wkvQiFSlDJGnCSdzo0AlHJGCgxm/H5xBO7rYu5ZVWGVH5lOas6a75YWcURJgloKkzAzvpcuyRbnSERjmmOgHqHUZFWaalNfT9MUiltjqYyZc9F+RxUSoC4tcoj/W5qysoXIoTZ2dZVDRTGPE+7/Ah645OsAgLn5OXz7L96DRx55WB+jQvHoA97xAa0SuvAP9TnrNU7bFMSLVDkZrRmSKYfqKGvjtxEnh/pL/BThoLxHM9934EGS69dodU2h1TZEEHKT9/YY45VDtSaahuS3Sq3jY79yiI/Br81xoH0IL9sGgAJKHZuigkwVGZRWukGFVgoN6jkUMkasiahpOT/ZekilscN5S3Fn7ltJ3ra295BDkpeVRW0pfRyUvAF7EIEc2gOgtps+34ve2uGetspxU2AeWnJZd8mhTNQoR2TEat/oxmXL+uZNN8tSpLbfUdXWP3OiSPQoh6hVaspu+r4SDcre88DHMOsTzn1peT+y7fcCAOa3PYYZMUT1mCqhqUudcZleoR5XXNKZWW1iqbUpHb9m8y0836VrbEjdWtz2rZNiOD+H1Rf8Dm6L1uKaxWeaMeqqUkZ/ca4VXSN9bvq4rMQFaFUOtLHNZGkWZ9/1VyA1Kig6x4W6RgTsO7jpPz6GRDQ46Kyftnx+eADIfQsIfUqTllQZ7ZA0mu5P02IEGefqdwL/delm4kQ9stUAPACOcytbGme514BWMI8DgCmHxlzrJhh17q28lS3ivC2RgPo8jaeD3qTSefnItp2JE17+AdwZHYQR+6zWvur/oRApVuKRXUpOBfzoYOMZz8cd0YFYcvWnQA1qU1l21DURUx4Adpe/1hPL/m0JR1VD5VyuWqBCAtGUVumUS0YRmij1dqSqqlKV+U+iHDJ+Qd3yfXVuU+5bDIxyiFRRlJzp8SlSdAV5GXXLyogsNwrGnk01J8TjJFWEjlZY0HdEJEXt3Acbj78Lh2qhbqunOySb659TFea8jKmvh9giRWkiS2PMbBKoDikI2OVIxn+nJwZz47sUFTLWxh0AiqH+LPRYt11xHs7a8mncfsl/AACu+I+/QfXHx2J+21bvMS75ykexVt4DoC1jqxyyjdaMhimd6ijzquldg2iOSpdnm8TyBERnqscRmsCpklnrOI0xede/UUZqALYFReKUqFHreCKHqnTWa5kRa49TgJtKL6Qc0jGLr/lONY9YSEjmKQQAkfZUnJZzKJGaz39WzBtvtHFou7MOLWUWxT1RkiEb6AS+h+jkHQO591ksgwdgwJ5DIIf2AEiB4/O96Ksd7jNHjZuibc1odYZoZZpDbQTnLuJyBxUsicOK87lbWRpGFBFR4WZe6DOgNrayHnkzUbEJTHxm25OpV7iJtFEgVDbJEesFgpv/1SI1wUs5GrYkDymHmISVAhIOWvTpO6Wbvdu+dVJc8q+/h4Pkfdj+7I+gjtsOD23gleu21Op5bnTHwQ0sqQsUfT80V8G+A15C2BJP4xfpgH0DdVXhkNs/hyvzE3HwEcdawYmROzstVglkHO2iLfkaYkdMFS21jy4FM4o2hzh2jdJFU1pqANvUPrMMZRMnCCNwE02g7Yg27lqnv7mZylgr7gClAkitsrLc3Nfcji6TtBl+IojTHOmrP427zviIeW6/Aw/Bjaf8+m45fsCPBkQU4d6j3oCjqhtw/cXfAaBKf0hVQwoiYcihrromZRtPDhPHxKS200ST8xs0voisdEqYjVu3pbrPdLgY6rV1Is8h/RpXoW18U/qVQ7PL98d2mSNdsQ5Ae//q8ymqkLA23zaJALRkubkP9SqHRtY9jwidFKU55777oKseccETCkWPet1tjsFboLfz6cZKtC6ksuwQTyVU4tIih0oPOeQpZQJak2uK7yhW46r9lsxS4zY6cUjHmX/wLkxjhO1bH+qMP5zfjnVX/jmuTzaoMm7H48+QQ04ChNZbnwF5PYaoI/uIYoxptQu6VmPqXJrZ5JA03/2UPoa9nlLy1zoP6g6miSYinup01muZwcdY6Do250oqK+eaLEXaegolOQoZY6DJoYSTQyKxPsOJ1kMiOIt5Lzkk0hwJEa8+couVvfLEcSCHAvYkAjm0B0DSQ5/vBd3ku4to14QOAKKmwpCYeLaIpqgwL9WNZbT9EfVaZ8wdJSkSlk2qGAmh5u1fiGlhd2u2KQsiokgZc1cFy34wcsjtSoRWMTTp3FNU5j30+ZG0mAKqeIq6evASsLQNXor5DjnULkSKlHHlz20JVlu73kRZp33rJNh8/5047ua/xuVTZ+CYp79EdXYyPkF0zWSWUTjf3HNwGTp1gSIykWrX+bWiCCetqArKoScVrv6fz2E1tqA88ScBqI0MXd9ksJ7muZfITmTlDZ7a3+xoh+rmrfuTJnToN25k8/r3yP0xAHVdchKK30NEYiuHqLbfLUsVdWHJuDu+Rh6Y37YnY2vK3JLMMqhOsrYzkGvEO4kfxBPF6iNPxtHPf5v13MlnvxU/WPdTyE589S4/fsCPBo59wTuwTU5h23c/akp/ZOIQOqRi9ZBDSW7/jRA56hpX4UKgBBYvnTJJNlc5FPvVvONahHdAr3ESe0RupWPKypYsXYHivdfhhOe82ppn3KM2qkTadnIyZV9sTa4Lc//hyl8X7n2zFOq1qvxIk0OM7OdoFiKH0K4Zfb6XbnMMV73pU6wCbbIxkWVHVVoKHa8wIkHuiHJIUtymyxGdOEvNVx+zsWNBEwcbv8lunHTZF/4Q++NBlM/+FWUtQck8ij315+kmQCh+NPEbO6dx/k+Nto/o+w58IKUL+fLIVPsE6XWYvnsikVw1PCc2iECi7mC1Lusi4onGdi0zYlmgYrFD4YmxO+dK67FDFFciRabLyChOHujupanu6DclCq0caj/DZoL1ODLX8BCZrBg51N7jhBDe0nwAaEyXVLKcaJViQckbsKcQyKE9ADLm8/le+AgSgC+i9iKfyAKlbs1oshi6vns7tZ/crozg3IWjLyDqn3frGVA5mYI+8z9uhGfPu2T+RaoUymQ/EraR8gQmbb35ZO1FU1mauZpF3SFQsmlbOZTots78xt8aFJb2a7OByVZxdI0N9efHuhtMipv/+UMYoMCKl/0BABVc02daMjNCrugyQYWTseRqLMqA0Vi0CefXHyecXD+agH0b5aX/hC1YiuOe8xoA5L1B5FArd+YtVgncfNF6Pms3K1RKOQkstY8uBaPrss2MqmuXd6UBmIE8vd8lh9jYSTpA4ympjZrSGoM2c+OI0KYnUwnYfkLcgyjNBuYzMtJzt5X1boaIIjzlTb+PTc9+xR45fsCTDzOLl+Gq/V+ETY9+B/fdeZN60vHlMSVRTlcioDU1dsllWr/Mb8YQKS45pO5ZvHQqSv3kkIxzb0cqX5OMPpAqyX1tY86tnxwCgGXLliOKtdowtT8fF5XIWi8j2qDzuKsuUMHfPITDvW+WSBFRS++YFCx0P7fX/MZRj7gomeqn6lGtRGTeS8RF7ZnPGHIoRdX5jirRVQ7xf5vOXT0xGE/+URMSdQ6tIr5iSid6LcB8mZxSMcJjjz6Eo278OK7MT8KxZ75Id8mzySi6vt1Osalebyk+tpVDOib2KocyxLIyc5mIHNLjEKFCpVi0FvLYAEDHR5OXnNN1Lwo1Vocc0mO7RBrfIwDjr2NCH2FZi9SUkSHOUYgUM1LZbeTTS9gxUqOUU+c1ATlkurPOI0VlyhuN6om6tXmqC9Qb9R4pHaCJcksVt6vLzAMC+hDIoT2AVLfd9PletJtzv9qDlB2ERJao4oEluaQN/5BaRuquAK7sumGbr4nmjRLQNyvXgG4hCa9bs22RQzo7ZGS1bJ6JR9Jsbp4Tzj1jhsuVQw4Zs8qZpdbjWM+P3/iJhKHjtlmKgfe7bLuascU9ylQgugOk3M1Xno9TH/wKLtn/5Tho/fFqnklm1FgUWEU95JCbseQyccq60ffjq13nJGZbshYMqZ8MGBQP4YH0INO5ShHGdme6NPdf39y0lMOUOZSjHZJGC1c5FOfmGne7kPCuNIC6Li3lEOseFqW55QOS5APUcdeM3zXP9m26XIwrreBqhbyjHNL3ZpNd1FniPUQOBQTsChz0Yz+LBA1u+7c/AsDNpO2yqdqoa9rfCRkSu+QyxTHCKS9zf4NVRMqhtnTKeBg69yQZZx11M8DIoTFt6A1ME4euQhtwfMgWwNTSNWikwOzyA7x/r0TSUVu5BAiRLBVSoKd5h3vfLJEiKan8xlZ+uG3E2y5w/WVlnXJ+VzlEG2eKex0lUyVa1TJHxjbQJVNO0/lGTWGsA9STNnEGwFvKBNjJP56MLdk6QERL29nTJk3arq72Z3bV538Xy/AYBs//DX1+bfWAawPgJkBSVJBR1sZvbOxx6xCpevoIOh9I0U+ECrV3J09OIr+4cii2yKFW9ULxp1Eh5W7reCKHunsbTo64TXB8kD1WCpXIjFJIpErpPy3UawezS9vXIbXeO4mSl/YIo/ltiIQ0Rvl0j2k7k/qVQ7zslaulXXIsIGB3IpBDewCZruf2+V608lAnw2LaKvvZdS4dHulFgLoCUDvKTulDlFveRAvOW7abQapjJsjKTxTxDSWXjaqNpc5sIUFUFxbZYl7nSGuBVg48CTlEmZ+ksTeZLjk00C1fuYS3FinrvDSyWr8DdtkWlwe7516z98k4U4HohMSWbBrMf+0X8JiYwdGv+u32D3Gu2rc2jdWNTgXEemyqmR9MW2O23UdGVjvUohh6fZ84MRA7xJOLxx59CPPbt010bgG7Hzdf8QP88B9+3Tzmdf2ALQ9vu/xMKaNq517FTUs5+GaFdzhcCLGnFIx8IXz3Ra5o4+aV7uviNLfKQtJs4DWFd8fwbbpcSDLm9GweaXMmElU+W8jEHJ8Cfypjo4BfxCFTGPDkwUFHHIsrp0/Fcfd9ST1Bv0PHz6YlUNq1nwyJ3fsHxTGGAE785FCtzfU54RA5SiWC7EmU8cTLQmhNpB3PIX2uaTr5Rm/jU16Ae9/4fRx42NHev9dRZpRBxpyfbTy511uf+gbo3vNKkSKr9fqtz4fuVbLsIYd6yspIwQOMU8S3KmYzb3ByKOkkJSCl8q+CiqVNKTzFalGGuCkh65HxfZskJiVQ0kCWI+vvXgPopn0tP45wzpuw+L4f4PrkKKw/8RnqvFkc3ape9HXkJEBSvd62HlMtmeIaRFsfV5whlX7bhnEokGDQ2KbNRkVLJu86PnctKnjJORFILhmU1XOoZIQo0xUODjkUO+RI2UeuMDSGsLSJ2DpKMaWVQpREJQxmF5t/V8IhhyZRDulruNAVGnQfMMoh1nzCR3TysleesKcKk4CAPYFADu1mGJlqnHl9LyqnfIJAwYmPHJJxZkku6SY7iokcUsohV3a9oyRFxm5WdeRk3nvqu/mGkstGueEh1Yi7slqg25XIvBddHyMfClPSZUt3TYCgx52eXWYdhz5X3tnLkEOaUONlW37lUNfYUEYZkOSIhURVLjz/y779jzh2dBmu3/BuLF6xHxs8RSQkqqq0Fv1aZIzAUf/PncyeaT/KlEOA+n58tes7Qg7d/v+9FFd+4h0LnlfAnsHcv30IZ9z0xyZj6pI3fJMkjNw583Y25OaL1vMUMFYjHSRORni4PkGIM6Ra0WZ+t+w13AQ+dlQ/nByK0tzq1JjmAytDZ94jbaIs8xDTLqQT0HNwQ0qg9SDK8oEJmFtfBn2fm6CTTEDAvoTo9J/CrLD9TlrDZft34KprSiSd0tWV647GnWINVh62SY+lN6E+cqgpLRVNq1Ryfmdx3lE3A/4y697zTEgF2FUOjWQKEU0ebosowoGHbez9ey1S48fSpxwy5JAnNiG4981KpMhq6m6rziPNu+Pzx33KIdXByiGHnM/GNVeOm9LymalEhtghBKqyULGPjJCJipFDRLirRIaoC8wjRyOF5VXTF5MSaF1oajs+qqzW8UQO2cROqxyyk5GEpClQkA0E7DjaV6bHCZFMK3VjjxeeaxDNoTwu2/K7SYhOQF0LpLZJpqisTJ8nEVZp232Qk6u85Jx+00aFNNCt45s5ldSmxLfzXfDuhsD465hgfBKde0ETZaaMLEpzq3RxMDVrSMQ6Su0k+gTJGro3EDnUGuXbXRQ5WcrBy15lkluquEAOBewpBHJoN4PabsrEv+HiJsccfR0jyAeImwbTwkVdAaC7AnSyCkneK611UdcVIiFNNqnRdcwEK3DoydLwzABXIZG0tq66Gy1f4EOLNylnxqFwTaTdjI8ed2qRrjumxUVnLXibWJLxEqHmerK4ygqXkMpQQSaZ8SYonBJBF1sf2YIDv/9h3BIdgpNe9j7rbxS4FaN5qxSRAmKgXcCzzE8OyWpoKYeqYsgIuvY7sNprEpnZs2FeXG7GYP7+secVsGdw/10345j5SwC09yEyhidwLytZj8ymxi0jbepam5Z2A00qDVHKockDHE5IiiQ3xq4Fuy75PcxWDtnEDifCo2TKktJn2cBbUutm0fs2RRyNkdd3g3LKgFNmkQLSLJ9qySFhB5CTSP4DAvYlHPP0l+BOsQYAJ4dsYqOJMlQyQpwk1ntLkXaUQyv3PwgH/9q1WKtLrLPlazEnc8wuXWm9bn6wH1aXdyCu5gxRYlSzLjnE7jUcfck6H2iT6L5WKbsT31seN+Y3vR6PHPNGANyc307K0X3dl7hqX2ffN2uRIG/aTTTAyB/3PsiUpT7wRJVpKDCmOYaZt1NW1u3oq+Km7do2oZh/zB5Lt1Un/6ICiWXIzWNuV60CAIlWJUlHWc3/TbGgG0fCUQ41nmQuX2/5HsAodfkap5O+JqmcZFZyjzCOqJORSgK7pdkLoUSCaTJtnraV9agKi/B0rRJ4yTkRSHRdUWfgqWa71R3M9WfiHqeAXYLXCxOTO+q9KFPxCoA4yS1CNBtMmcRNJVLLo1NOsB4bZdA8KYd0R0aHvO37HYq6QKXvDzIohwL2EgRyaDejYB0DGld9g/4OUy1J0b2BysjuUkWLWJWoDAV1CeiSQ/6AaOy84/bGx8syRE9ZGS89o3m5KiS6aZrsR8p8BzyBCUmKIyFRV+PVN6VjuNwqh/T79Gc2Na0yIyYjolURvJyvJumuaFBXFVuQp9BEiXWuQBuENNrYMBel2kybznPj66ev+/R7sUI+jPpFf95Z7GhTXhUjq+SGAiP9RxQy6WQsW6PdkaVEK3s24ZxwMpLrHnlvIktEO+CnFLD7cOu3P6kIXrS/Z7euXUnQ1e9L1G17+Nr5vZvWxJ7ghXcScwO8ceCEuFL7EAE69MrmuR9F7PgT8AA4TjMrW5rlU17fr1hWVuCe5bocc4y/VksQe8ghx3OgRGI2wLShcpVDPrItIGBfRhTHuOeoN6h/p7ZyyCQq4qzt7sdw3ezpGK05bez4Jzzv9Sjfex1mFy+znk+OfwWW4TEcOX95h4R170n8XsPRV+bvA91jXG9HzKzE1njpgu/fEZxyzttw2kvfDYB707BuUawRwDhyyFWOVlGGKb2JJ8WjUVC6az4R4z3lcjxuMA0F3KQnxVdEXDjqzTpKO/EEqXnmYDdcSUw5T2aUQyVSlCIxSh7AVg5VZfdzMetC5SiHWOxtiBYTR5JiyG7cUTmEmlsqJaO0U8bNCR5VEjhi621uxW9mnHElfrFSyRpCy6Ny9aEUKaaEVi1pcqgx5NfIIjyltjkg8JJz8i+i6yqdptbx8+r8eqoiXOVMLdKOiswFXaMuYck/8yi1y8qyNFfXCNS1Y32GE8QuZm+mKzQES6ADbbK7lxzipvBMwZiL0phbBwTsbgRyaDfDLDZx7u0WVveUKfAOUxyZVOVZ/MZDN1nqChBpg0HXF8MoWDzS2t55sxtfyogtUhmoA7fPc/KLZKPUPp3GIsNjtz0mwEs7NCmhSRY61kLEFhFSXXJIjScqNW9T382UQzLOkOjApylHaJgBYDEasrrrQbfMDtzYcGiUGohTk1koxyiHbrr8PJz20Fdx/gGvNfXpHKZ73WiImsmqOeGoFvBuwE2bcMk6xAHquvFtwjnhlDDiyQfeGS5g74FsGhx0+xfM49Io6iqrXapMcqOME/XIBC0uGdzeD3zkkA7MqpEhrycBv+aidMCu8XmvbL5kMm2X5OJjxYxoKsn40Qlm1Rj2RslI5seYYEp2D3BBmzPT8VCkhmxLUqWUIEKLlEdBORTwZMRx5/w0zt/vlTjklOcDANLZlWikwMyi5QAUWUMbNI6n/vzn8LRX/fzYsaM4wpJlyzvPH/P0l+IhLMaUaEunuFKJg2IhV0liSIAJfpeUSIoT+15w/Gt/C4vf+c0F3/94EcUxSuZNA9itxGvuQ+igo2QRqVGLkOIxTlLUTmmWevFobLkcjxvoc+wkPclzipRFTPGkxsg61gul46lZmIYr9N0qwoXKCbmqns7ZHYuD1gVZj6wGMNwA2nSpdIgd+g6MUbUTr7sdPi2vHh85JJSZeMHWW5+idWyJX6KVQ4X/O+iD7cuz1DoOjw3oGLkojZLfLTm3VUhqrFkxj4q1jnfJocxRzlQeorA76RFqKUzcTuDjROnAXGOUPCXPn1qklgp4kvXYENyOgo2OyZtPuAlkwDFh1/HU/PateozgQRiwZxDIod0M3rXBNXEDmI+NcwNvOwC1N1CjwHG6VNFNtskUQ0/dJ9yFg2++Fpy30+mA6pjNWHWBAokKFiwJb/sayryY1uvkX6Tlx74FLk0pMFF/q/RmjCTFvsWdw/UJIvLDEBh63oDdDYEWJi7h5Z99UQytsi2vJwtTDnHFWDTB5/7IndcAAA581lu8fzc+JsXQZKfibIAmSs1n3lnANbKsJdwsk8XR0LsJ5+dGgVVf14iUdYYL2Htw3YXfwkHyXlybKh8Lug8lrrInzpGIBlWpZfn6t2F1MQNrPewJnuIkMd0TibyeBDY5xAidYugljvk9r0sO2aWpEVPv6CetYNaMweZKGc++EkoA5l7nJYdIOWQyh5n1eyzQlszsf9Dh+OGq/4O1p53Te6yAgH0V07NLcPpPfxwrV68FABz33J/AHa/4OlYcoB4vPv31uObId+3UY6ZZjhtW/TiA1hyW7gtuuQa/13A0PWX+PqxcuwEjZFh10BHW8/n0EixatfZxnMHkKJHYSTlGsnAFjwv3vllHmfGHIkWEEAKlU5oFKLX4uHK5JsqQNDZJ4vpeJo4i3p1PI7pxFRElQ+2pWc9pT01Shel4hTbdrpExj0/c7r9G4a3+aMVHFDuq+bZklnotxUW2cqhxlf7u+bEEsU/1Qj41fL01SV7LykG/12tIrTwuy5Eu6+oxEHfBS6+mFpEnJyUeWxNlNaj2tyoLb8l5KVJzXeW6MzA9H3m6r9H3wJUzdQ+5wqH2Id2Yl6/rcZabxA291hhCR5m9lk9ADi1aeSBqKbDknu+q8Q05pMvq6PyiblMPwDZhp/vQ9scesR4HBOxuBHJoN4PIjCjNOyZugG1yzEFBDc9EGAWOVg6R5JIyBKYrQKWM4NzSh76AyAcjazXtY20za6u+28nSFDJW8yUvJEeFVFNJFpV0sUBMCKFu4PrciqFaYObEtD1WD0itZHyCiPwwrdlbSWehO47xhantDDG0WrmWo3ldtqWUCL7uR3zR5+csemS0HO1meNr7d1OnXcwzI8OBRTjyzT0HL/vhC3JVDiHJPJvXXTPpsznHHnlvJstOpi9gz+OxH/wdtssBth7xEgDt74Y6JxpQeUUxbxm5ukQ2tfXtC16oeyKR15MgsUrB2O9kNPTK5vmmxw26ObmpyCH1PjJ+pKCzZGUFKWu/255HMr59bq0ylXHSDUjdkrFKpFbgWorEbFLjJMEZ7/oEDlh3VP+xAgKeJEiyHIccd6Z5fPRpz8NTfuJDO/04y5+iytnaEg+dGHHIIbOeumVlY1qEuzjwyBOR//pmrFp75BOb9OPA/fFqLHnoKvM4lYXZEPtUzQTXE84tvyEUIu2s+VY5jAdNlCJxO7s6n2Ns4is/yV9HaWfulGQkY2c52mqNTWtVpM22XSPjRBaYk/4YrOBKn9ouu6/ZWmG6VJp4yPYaihu/cshV1Mg4b/cAHtVLBTV3nlQ2yiH2fUhP7EwwSVjtiTPJtQzYyqEp3c2XCMLI+e65B6ZR8zNVMY9DBzNLrGMkpiqCWRwwb1aCZZnQg76EKI9xEqYcotfSudZxZhFsk5Az+69ZhwuWno2jR5cD4MohIof0+XkSyICyuKASdDre/LZH9GQDORSwZxDIod0MylQIIod6lENu7TAFNZyg4GqUOsqM5JIWTzGglpGKHHKz25OQFO68SfXiena09d2pVd+dyALbNZHjkkO8NjeRrXKo27GkVSO1kmIVGExaVkY+Qa4cWPmqtNkDUY+shclIRsuRTcwVQ/Va+DfPQFvKJquRtbi3xE7/3BfqBNLWabeKpiRTXZgoYHEXcAIv++HtUKti1LYCZdcfPzfTyaqndCxF1RuIBuwZzG17FMc8/F+4etlzEM+q8gv6PafMGB5ozRTL4bwJrgEySmQqwML+DbsoRQJRzRvyehJwQjxJB7ZRZd39PXATeFcBxQO8JJtivj+2fLtg6j2fP1IpFmifW5feTCXAlEMJeatlVpvmB+IDUC3etYqCgIAfZaw/4Wm4MT4Cw+nVANrNs0sOLTpgPQDgzgu/aj0/rkX43oT7D/pxbCiuwgN33wbAJln6NqVA957Hfds65v/Omt9RjzhQcZ2t2HY/R7fhiEvy+7pK0tpTUcOVIXlqtt9titKYW7tdolJZdmJSAiUf6fy4jQNXARmyiyXi+P/bcjP7M3N9dGSUmu5UPtVLFSm1DF9vvV00e/wl1SR1EnbeJtEWQs2VQ9Oqo5dkyihuHE4qoXI0NMouHhuUHqIJUKSMIQjZZ1144guuROtDn3KIf+ZplptrjEgrE+dEzGICbTy0ENa9/CMYSioj1/E1dVHUMUsZT2FZtaVzzcWyRKNLaimuH2kfLZ+nY0DA7kAgh3Yz2paeA91K3va94CbHHK3pIFevtGoUnkWn+u2ItYwEuqRLX7bMP29NqiTtZpErh6z6bmchntcLMalUCv1/UiGR2S1vnc1RiK7Z9iimxX18SRw3ESyLedaqvl3kePYgqguLdOMLl6Uc0uSQaUHpUQ5lsiWHKoscohrrcV4mYwwGAYtgMiojpwsT39xz8LKfxsqMjbx171z6nNHn5tkwN3WNVNSInWs6YM/i6m//A2bEELNnvNH4SND1mDmZTO5lFTWlyai5RHbFFJA+lEgR63LWSaXR/FqPs4FlVOkjjhuWSXQVUFZpat4qh+i3zs+ToPyXHHII48mh3kwlPN1KohQV81U55Be/j9Pe+Lu9YwcEBDwxiCjCge/7Dk56x8cBtPcY1+j1qFOfh+uyY3DE9X+F+e3bzPPSrK1dw/m9CWue9lpEQuKW//kHALZChSt/Xbjtwi31JVNyKmNk+z4Y1eOVQ5KXTJX+eMY1V3ZJfp8vpyGHtKcmTMMVTZrojpuxLPU91+5ylaLCvPYrcj08+XqgyKEuIQTYZJZ6re1lSUkLt9Ol66ODJDdJF99aQl1C+XpL8TFvAtPnLwm0ax0prPpiShdUiklqpoKthTw24Mcoi6G35JzHodOLlrJj+LuvmQQyN6SOM6NE64NoStP5ywL7vcfpwFxjJvaP2jgeaJNI0YSxy5q1h+PiA14NAEh0jJLuvwF3i/0xmFLXaX38G7AKD+Hyz/2ePbWmaJVDOp4abXvUehwQsLsRyKHdDFrY4jSHiPOO74Xs8bDwmdBxNQrPDpn6bd1hYErOedvEmg3TRMohKivT80pUHTN1e1BERNqR8NoLsV7UHRUSlWTJHoPDCokZk+ZaxvqGW/YTLIBdxzwajYwCwahrmBkczZ2bhqeMlOOffVUMETHVka81tqUcYou76W4w7nNfQDnEu9fxUkQZZ4aUipoSpYccAmAWev758bH4Jpy3N8/QdrLqjEmd4Z6g59BFX/trXPKNv3tCYwS0mL7ms7hLHICjT/sxc92o7nsVYkfZQ7/JolDkUC3aFqucDKbfYV+L5xKp8TqbVBrNCfEkYwq7cuQljnkNv6uAssihbMB8fxxyiP0GOyV2QOd+1kFPphLoGlLWUWYF1GmWI47j/rEDAgKeMKZnFhvFkImjXEWAEMCzfwWr8DAu++L/M0/3lUPtbVh75Am4JT4ES2/5GoC2iy3QGjT74N7zXG8WQuVRUFLM14eGlUxRYm0h5ZA7H5/1AsWRTaqU8XGh1hlKoFLHTTK3JoKFkMrSKM/d7r8leyzqka0csgygdfk9WtUP/7/bgQzw++jIOEMmKjR1411LqJSKr7fkhccbJYxLUhiCYdTTtbgHxrSZlPUisUgw/t0bT7/R0NqXEEyMLWPk+QCNFOoYImXXAEvketRHvgRs51zrnmuSl5XlA0OCViwxDLRrNiV9+5JfPmz6iY/ge0f8PA4/4ZkAVEfBA3/tBrPvOvV5/wcXDc7Ahhs+hofuu72dj2w7CwqtOqrmH1HHD2VlAXsIgRzazTBGdmluAhTue9FnLJcynxgCv4HWUdqa/2lzPN4y0reBsco2Fpx3S2oBvNOZJnp061SfhHekF2IKtEgxw139E1kaU2sXPDAp9XurdMYaqw9cClyO5jsZH66uqbTnkF3frcv56sLq0FUVQwi2QPIW4Or12pRPvRgV+94jp32rD30ldgTTvY6pKtJ0oGvYK3Zu/oBBLfSFFbzU5QioCzRSWJtwOjdu1ujbMI9GdsD0eHDnjZdj04W/hKmL/+pxjzEOF37hT3DPLdfskrH3NC4979+x5YF7refuufU6HFNcgTvXvgQiiixyyJRUsQCkLTWdVxkt/dsQcY5MVIbIpmu3L3ipRIpUl7NOKo3OHBPplkQdeYlj7vOVorI6e2QO0WR8DeBXDnFzf/c8fCo5AjeTdEEbLbp3D2fX4pHBQb1jBQQE7FpMzy7B99a9E2ue8urO3zY85WxcnZ+Ao276BOaoW9ACSZq9CQ8c/EJsqK7FvbffoNbrmMihbmkW0N7z+P2fE+ycRPC14e5TJrdjZZZ6Gugq4lOnRMol+WVkNz4BgGqkY5ZcJQjjym64Qh03qbSucrxqMpQoYr9yiKvoo7qwG8Dw1xLZBTseIvW+r6urz0eHiKKiGKpEpRP/1pEqnTbrLTUiQWKRdX3+kkC7RkcFfU6TqeCoxJBIp5J5f7pd5UTaxg2Vh9gx5BCoOxi1jk876jGg60uq5uO/jq1z7Yt52ThpNjC/DeM1FFFFhF1+3pf88mHR4mU483UfRpb7YyIhBFa+7A+Rygq3ffYD7dSatpTSxGfUgW/CsraAgJ2NQA7tZhhyKGsNVy3fnHpkTI45fHXGbTZB1dAmRqmiS0a0cmhajLxtYvnma9J5R0w5BDCDbX1TdiW8GUqUyYw1RuWoDhqtTBE9MmWevaf31lpSPFZ9A3vxr4phq0DQnxXVpQOthJerfHK60VdtyRUd1/L0cZQV7ndas8WdMnLc4LA7cUXSJB6jWxqHzo8IwzQfqLalehOvOpb0kEN6oXel0qIaqcCDbcJV2+/SIjF95BDJibPHqRySTYOHP/8+ZKLa4Y5nl/3nP+OSP3ihysD14NJvfxanXvFruOO//vpxzW9vRlPXOOZbr8MNX/sT6/n7brgQALDyxBcCYAagJfcG6JqQVsUIcVOa68cQ2fpeQfeMvi4+lUiR16qcdVJptE3oDAyh05RDL3FM5FBdVUhEY0nHkzRTXQ6hVJi8tMs+T3XNkrm/S2S59zMXSnnoD8opc08Go6f99N/ghJ//+riPICAgYBdCCIEz3/R7WHfUCd6/J8/5IJZjKy7/ykfVEx6vs70Va5/xOgDAbf/7j6pc2PhD2n5xhLIsOp5wssdzqBLdTks8dvKCq3507JQ7n2PuKOLdMmeZZJ14wvgk6oYrCTVcobF1x82sGaKJUjQiRaRJG9k0yESFUvsVuYbRXEkqmtJbSqbOhxSrpKTWCnpJyiFNBDF1T+Hr8GnW1aGX2GiEUn2Z9ZYUOo6Sq89fEmjXOirzdr+DPjSOcqhipYVJU1rfvSlXL7tEFsBUSKZLWGKed9Vjapz5zhg+FZmLuIcc4p95mrfkEI/96RhASxrFO7ms65Ajj8MFB7wWJz3yH7jxom+rY7BSSjrfhsihHSCnAgJ2JgI5tJthWqmnA8vEjSBqf82s2ezUtnpFjZVbtdm0oA2Y8ZvPOJBvvhYCJ7WAbubdJ+F1F2IirWpHdUA3/T6Dw5ot7kZSnKkxF1I9Wcoh1n6eMhBUlw60BrfcNLz1eipMoKjmUdiLeZxZyoqCEW6ibluiRsmUtzuDCx9Jw9F2UWtJq2ww1Sq6imEnu8NBC71POVS4i6smnEbDOfOUryUnnaMvEPXh+kv+Bxf8yWvQ1Ephdem3PoNNw4tQyGSHOp7Nbd+KA/73l3DS3HkYzj/mfc1wfg4rv/fr6sGYz304t633b3szimKITFQQpT1/ut9kA0XQGsVZOUJZdIPV1g9riEQWJkBsiex5a9y+4KmKUgwaFbRPKo2O4hilNoJM8ylDZNXlyEscUybRp4AC2qA2ywam/S/9Xvl5AsyY2iGH3JKEzpzHlVYY5ZAmvaJI/RcQELBX4qjTno8b0g1Ye/3foixZk4y93HMIANYcthE3Jkdg1a1fschyt3kIwXvftDbR7Tkrktweg8dOPsg4RyZqtb6TIr7PS7MuUJWFKnPm84lzpW6S0jxF8S15auYVNVwhI2D1/oGcRxNllsKUknaVTljyUjHANqiOmsL+O/93zcrg0CqGeJkzAIvA4XYFhDaOnveTQzquN2V5ZAXheOGJpuxVcdFal7if0wIwRIkpK2uTtLEsrdiS2xy0sS4jh7j6CK0aSUZpRz0GMI9ThxxaKPEY96nZkpZkySzlUKuuUwO05Js6/s4nZ47/id/E/VgO8Y1fRFNVWuFmH6/RJYA7m5wKCJgUIVLdzTDdstKB1xSVmxy7oPbQBK5G4V0d6CY7NbvUvNZHusQeI7iF5k2LE6kBaLGlTAKX8NLf6szO0pDaJ3ZqxPuyH7wrkVm8ddZoobl3O4zZ3jlxU6Ax0tLU6gwRJYO2c0E9soi5uhzamTNHBVayLkiiLiylhemYUo2Zu4+kYUi4FJcC2DRv5zEadtrCcpiFns2hKUeqPa1zrZD0eail9gC83U8o65ZSQDgGdVUh+9rP4LRH/g2PPHifOv7VX8IWLMVVi56KeAdK0y7/59/G/nhQzaHHXP3Cf/otHCzvRSNFr8Hw+f/0W2h+/zBs3/rwxMfek7jzyu/inuuVMsiogJzuKNJ4ZmiTxLwlhH1BHA/yEh4AOkR2U7T3MR9qkWFaKjJxR+r2SW6eZlOm+wwph9zrstEGlT4FFKCucergQp3Q6HzcjoEllSq4ZWULtM91jTk5KHPv+scFBATspRACw9PfjQNxPy7590+1SuMeheTehgfXvRBH1DerB6yzbOZZT32+LpapPyPE6ijp3AfHJZ8AWIkq1COUHkV8RM0xqlGrrOEEfZwhYt6WAEtUTmlyqNlutYCndWBGzkFGmW54ot5Pa0WT+pVDNjlU2qVkPG4gBY3ugmsUQ01b5qwG9HuEms+Ied8Jz1pi1LEmOavJIafMb1ySgtb0tNrm/Q76YDp68YYtTauMajzkUFUMWdK6Xffc1vG8y6+rHgNgbBis2KFHAccRydKrlufjZPmUiWnptcZrK7E9iKK0//p+vFi0eCluP/mXcER1Ey758p9bpvBGib1tsz5+iB0C9gwCObSbUZvN2qCzQQHGtwdVbeJtggJoO59xA2RAqQUoE+8jXUzrzwmUQ6TAofrgtpOQWtApk0A10kC7EMuUlEMj6zMwrLguyeLm0Bx1lCIis23qdJYv1vMaTw65JtJkqEdG4HwDrIwbC0uRBbQlWJxUaMqR3hjSotKSMoBNUkR12zJeeal0a6xd+EgaDl6nbfmxUEakGFoZCRe00Et2TrIaqQ4k7nF1sDX32CPtOXmUPfw6tsrqPLjoyx/Foc1t6n068IvrIR6LlqCOpyYuK3vg7ttw/O1/i3mpgw8POXTnLdfjpNs/gStnz8RDYkmnJS8A3H/3bTj2uj/HtBjhsUe2THTsPY35r/w8tnz5QwBY4NnY15TpZKcDME4qUokYPMqhurDJRZfIpvtBn7llLVLMSJKGTx7gECHKS8HUb81DHOv7hk8BBSgyndRD9HupTUawLcsEmOG+Mwa/n/kwzndj0VHPwiWzz+z4xwUEBOy9OO45P4E7owOx/LKPQdaj/hbheyHWPeO15t9Ekog4tVTNBB9ZwVUtnNT23QfHJZ/48YvREBjjiVPo+Kr0KpmIYGqTbWZNo4YrzZzlqUnHnRYjNHFmqerpGI1OLroJOp5sjBtbWc1jJR4LFqN589kQgTZOOcSJitbjb2h1rTLH1HF9u962ClhODsVjkhQUb+b1XO934INbYlUxBX8iS8e8nOKGkYnRI0aougbQtJY3cdYqmfjehintDZJ8wcSjKoXvXpOUzCZyjMrkKT524xyKE5JdRM6c+sK34ur0WBx+5f9TJKb+LA84dCMewzSesuVz6nx2ATkVEDAJ9o0V70kE3nbc3LCsOuf+2uECqbWx5XXIPvO/LB+0tb1ecoiVJk04b8rAc28SoM0kcAkv/U06C7EhyGiR1J3P4nreu9Gqo4yZbesN54DIoQXKyhyfIGuxLgsrwOlkaUgdpeu7hVVWZnuyUEBCwQcnSsBq1+N0YD7DccohL0nDwMfgfixtJmrUye5wmIXe6sAx8nZ7oHMbbX+kPb6HvLHIoR4FDwBsf+wRHHblH6uMIbq+VTJKJ+54dvu/fhAJalx+sPJbcEkp2TR48F/eAwHggFf/aW9r8ts++/OYEZrYm6B7396AtB4i1r8H8xk652aMPjObHJLVyK8cylrSJJGt/4NLZNc6o570ZNTrKDPm5TsijaZrPsunrLn6iGMql6DfnFu+ViE191JjLG98gOzSTrpuXH8kfj/zgd8DXBz79HNx0s9/ZZ/ZWAYEBAAiirFl0zuwvrkZ+91/Xm83wr0RB6w7CtcnRwFgLcx9jU/AlEMWWdHGC7z8yHcfHJd8Ui9oS6bEGCV0KRIV73iUTMJjvWDiW2q4gjkrZo6cbmDcyNis7Tq52CGH9N9HUnd4Y3/nqv2IewkVQ2ZErcvnqIsZi9e5XYEZh9bVkRrDjdOpU6zbNc8t8xun4qL1d9BsEKe6JAABAABJREFUH6tGd+EzbSZCKnWIQZPwrOZZ85qWWGmcErW2kUvelpN7qiISTo44TXB86LsmyROpdOJkOgc6V0PW6X1IuosSOyKKkL/4D7FYbsO0GBkj7CUr12D45v/GddlGAMDU0v13yfEDAhbCTotahRAHCyG+I4S4RghxtRDiZ/Xzy4UQ3xJC3Kj/v2xnHXNfBO9+YUzcuJS1rxUjdEt3S73SlmdZpoN1W99NZqm+Ma3SpAnnTe9xPTsok8DbpprMlEMOkV8J3XhJRpzV270kVi3aMduskT/z0zdvQPkT8WxLMZpXBErskkN22VuJFFE9skgFWfk9WUpHiQCo75QrxlK26e2D8ljpzxqkqU0OUXDEW4q6CzhHrTNPwpFKe+XJ1FFj+6PmKQqCOPg5l2MW8Bu+/2WswsO4dPkL9Pu0+kwHOJMYDwLATZefh5Mf/gYuWfMqJPtvsMYiXPbNT+GE4fm48sh3Y+VB663sF+H6y3+A0x/7Fm6P13bOY29GIkuTqaRrtkN8OYaqhiRh5BAnbxLmSZSgMgalLZE9b94PtOVqLjhhsiN1+6VIUckIcZKYa7ypRl6FjtTKoVb10y0ro2CQsuD0W3dLas016IxRJTNYXm/Gow/71WSJ7Dd9DwgI2Ddx3Avehi1YhsOb23qTdXsrHj70HACAIAsAo2q218aWrGD3Z9oc63swgcd15qVjkk/8uGUxQlSP+hXxOulZeMkqime6xtD5jFIOzcihrRyySpFyK54wCZHBIv0hOEpb/Xi7mFLKIb2ezsncUra4iiD6bBJZGq9NwE7WcLsCAsXRpfb4cwkeslxonPi7FklHOdRnDk7r+7ScG5tw7L7RLr1S/ntUNmcbh/O9hEtkAUw5ZBREmpShcjOn+1rjxOBAey2MxiQe+8ih1sg7sc7NkEOuckiPkezCkvAjjnsKLlr1UnV89lmuWnsU1v/C/+Lm13wXa484dpcdPyBgHHZmSrMC8H4p5UYAZwB4lxBiI4APAvhPKeV6AP+pHz/pUVcVbrj4O53neSaf+3sQxrVG5i3d1ftYHXLMJJfVyCzutBj4sgp8o7gQ2nbpas7u3BOpNpINq+82ZtW0EOu5S0eFZAwE6zmvwSGXBRuSZWqpnvuYjl+A1Uq0KUbWgqoW9cpRDlVMOdTWd6MpETWFKV9qtLKidhYVauPZMTZkijGfAZ+LsUa3YG1biRyi1pus3E+19+4hh7S/kqhHKvDRY/m6PZj2qXPKc2he+tUUNSNmxqlvqnllmlyvWK/nqq8THeDIOF/QeFA2DUZf/yAeEYuw8VUf6SjZCIOLP47booNw8ivVbcfXknf7vdcDAO496GxrPo8Hm++5HT/80zdgNIYce7y4+Bt/j+9/9G3mcSpLo6irmPqKQzpGoOQjIatRK91mwbQpV6yGVucYl8im33BfyZTPj2ASVIKVgrFr3NsZRysOi3lltCmSQWcs2tjRPI1yiPkZqfPS5aqO+mjxs96DRXI7bvzbn/LON16gtCIgIGDfQ5JP4/b1rweAHSrF2RtwxLPfiLvF/lhy8DHqCY/6BvCTFYZIcv3dWFxHGJd8Amy1aV8nWqA1V66cRiUAS0pwhbiOmwbaUzMS0oqZrXUg1skmUrObmNSvHKL1YF5MG+VQIwXmxcBSAUWNTfokpktZ1ZZre14H2OshedpU5dBbEkV+UdKUh6v12y3z8xFLBFrTZ+T8jhGdiU3kcO+mVLrkUKs4dpvXqPPQcbOwKxnoeaXOt5X5gP1ZcfPu3in3EJaWRQQ4CeQohxzSqK9sfmdhw2t+D/eK/ZDut96eb5Lg8KOOhxBilx4/IKAPO40cklLeK6W8RP/7MQDXAjgQwLkAPqVf9ikAL9lZx9ybccGnfhGHfuXluO+OG+w/MOVQ7JRqALp2eGwpkO17A+ibv6nNprbPtvGbL6vAN4oLwSiH9OIUM28SQGUSGkfCazJT+bQxHeTzphsv3agHzXbvAsclzfTeXHdiW1A55Hg0cdVIWQytDAgZ3Lp+KrVWbEVNgTnRfma8JC1ySgTd75QrxrIJysr6WnISjB9AVVh+LCbYKEZ6Ae8v+0lkAdTtOYmq8Co0KECr55VyaLuY9pZ98Xr9akx2h86bfKNM0KTJtr7WuxyXfONvcUxxJW7c+DNYvHQFU7LZn2nebMfDg7VGnuwjh+iaEprErHeAHJJNg4v//W+xTZtY337xN3DGw1/G3TdeYb3uvtuvx61XfG/icX2ob/gPHLv56+ZxirKj0uv44+jrP9Xn3157RYcEBVi5YmlfP+69il/PPjSerOIkUKVgiT12VXg745DicKQVbS4JVYm0NZbUxvKkhMqmlA9a8cDN+hBkgGnP9ciTnoUL170dp2z9Fi75+sc781Xk8r6lLAgICFgYG1/0c9iGqX1OObRyzToc+Gs34KhTngvANj3m8JEVbVmNTYjxuI4wLvkEtHFD1dOm3cxDr8mVJ1nRll21hACtPdOL2iIE/h1ZHa6STCtMVTxh1snBLBqn+y/QxgLz0QwSWZqS/ZK1cQfQiSNpHU5RWqXtgr3OR3gkRFIUIyQozfrUviBDIhrIUjV3yCjuFqnV0XWc/xOt6bkoUe8A0UnrK8XkNWvOkDnffcJ8NKkrMffrMSVqRkFEjVxIOZR2PD3Vn7vE5bjkXR9hyasAgPa6onlR8wiKn+mcd1VZGWHJiv2x+sPX45SXvGeXHicgYEexS8wQhBCHADgRwPkA9pdS3qv/dB8AbxGlEOLtQoiLhBAXbd68eVdMa7fi0B97JySAO778W9bzrR/QVOvvYWUaStTCfwOvnLbKjbkJTzHpsDJdLp1yMh/pwgmGBWEUCOo9rqFrCuW4zzf2PDNV8Jt/zUgttDf9acx5b+w8MGklxUutx/3zbv9O5SntKQ3tDIguU2kXptb8L24KxHWBeTFtjmt5sjgLV5+xYZoNWrXFmM89asaXq9AYsrb9WCKm6FLKj35yKJbaBBwJRjKFrEdeDxXKLNbzWjkkppF4yBurM9wYLyj6LGLtGWDUYHTOCxgPPvrQZqy74DdxY7wep7zs59RYqa0EIbhBk1JMOQGhnk80WGLNZxJc+s1P4+Tz34vr/vuz1lhuAHPXFz4M8aV3TDyuD6IurAA9YeSQ6e7hkkNVYRmqGh+Jyp/h4/Jwrhxqf++FeT9/vQsZ8cBxB5RDUWb5DgGK4PV6KtCmR5OWble0OsqsDUmBzPwe1hxyNK7KT8RxN/8V7rjxylbG7pnrqa//CK5NjsYRF/4qHrjzJnsKC5RWBAQE7JuYWrwct53wATy47oV7eipPCFRu6yZOfGQFbY7d8iNfwmZc8gmw1aZRU45RxGcqDjHkECu7orjK6RrWSIGp2UVsDOY55JBdQs9dNk2rTkpzFEgsHyGgXb+LWCXAqHuwq9r3xZH0mXCFFo81eHdhMw4rb/YSG+QbNdqmH7aKF949TsWi/s+Xr9F9zRP8byQVTdt2nsrmclEalQ1gq3zbpHVXOVQ7+xHBWsdzZVZrY9GWrbsJWB/6CEtKgNF1YkoPKdaNiRxyFca7lhwCEDwJA/ZK7PSrUggxC+DzAN4rpdzK/yallACk731Syr+WUp4ipTxl1apVO3taux2rDz4Cl658EU7Y8jXcf8eN7R+oBWaSWiZuhHiMPJS3dAfApKYDS3LJy4xaSahPOUQEw8LkEL2GSInE8ezIZKklvDlTDrUbrlIkRjZKpS4kkaWb/oyc9yqcfJ3YphcttR73wc1G8M+vLEZWBoTm7vqpVJEy/4tkiWGkyaG6NGopOkegVZ0YebLUizj3mtIqBtT9c1clVmOyclGEQiZGOUTfM3V3qIqhqntP/MGb8hCotOooU4FSXXjlyaS6kSP1cx7G015PIE7MuIEohyHKpoiM0SQndHDEW+B6cN0/vA9L5VaIF/+p8UWITRDpIYdYsKB+Q/bcTZnjlE1WLYSmrrH0gj9W7xlus8aqnXnE5TYMmslKzeq6xgXf/Gynu4xoSuQozfOprDrllu65iXpklQjE1Dq4HjGT9G5ZmSznEAtprp/Wo0crh2qbLHZhZRV3oG6/FqnZRCRphloKoBohZuWf5tzonqfLHV1voyrKrGD4mk0fxMpnvFW9N4qw/xv+BrVIMP/Pb0Gpvz9fZ7UkzTDz6k8ilg0e/Ps3oanaTdJCpRUBAQH7Lo59yfux6Sf/eE9P4wkhX6Li6S23XWk973orAswDp0MO5R3l0LjkkxqrXZMjTycuQhUp/5zaQ9B7O/pWIxRIkLHXVZZyiJeV5UCcIRISZVlaTVwKbRdgnadeE4tkFglK3WUt7SRmY5ccAilqSou8sMmhbkKFd651YxWgVe+I0WNqfNZYgZf5jVMOcfWLz7ahD8bQnHX0SmVpjM0l8+fjPpqtqrgldtxyLTNXU7pmK7Mas0fgyiG7tN2HPsKSG3kDLXFp4hSjHLIVRX3xTUDAkx07lRwSQqRQxNBnpJRf0E/fL4Q4QP/9AAAP7Mxj7s1Yd+6vAABu+/Jvt0/WhWk77mtpnsh+Yzne0h2wSzu4dJi3Qa/Yjd1FkqZWuddY1CMUug0kwDudDZUBHyrIJDc10oCdmVKmg3rurJsa0N6QE9F4WX9eM07vndJlZQupnngds6xGlhS3KoZWBoQMbo1PC2t/HTcFkqbAKJ428yC1lDoHmyyj/28X05ZyiBb3vq5ZhHE15ASlxrL9WEgFUmmVDxL/GCoL1BpQU2aMSrs4TA3/SHm7FNGM1xNoUuWQUaHN2EqdRFZo4sxSwbm4/66bcfpDX8FFq1+JI44/0zwfsZp3jlSWlorFzbgB7HekW+NOYtAOAJf/5z/hsOY2awzTkc8JYKKmmMhkGwCu/cG/47TvvwM3XPpd6/m4KZS/QtUGojSmKYV0fCGUitC+nxRIIZhyiAerxg9rqIJRYchP+/oWtfJiSBL/vYoHaDuSfauj1JovKQ6VQscpKzPljpoccjqnVU/5GWw//efM49Ne/l4cvump5vGqAw/Dzad9BEdV1yM+7w/1XP2/l7VHHIPLj/sQji6uwMX//BHz/EKlFQEBAQF7Ehue+mI8jEWoLv5763lfWbFRZ3Q6Q6aWcsiYLvfEF2rcVhnv9YyjeQi1JrfETZc8sdZTbZsgoggj2VXG83VAJHmrMC3m23UyHaByTJCBNnFZJbPIUJqusZVIrRIxHkPUTDmUobKVQ+x1rTqVlXGzODr1kG0UC0XFY6ilMIk67sMJdA2iOThJM86qwAWtr4bQ0cckY3Puz9eWgDNyiKl+TOt40/zF9v6pYJf7m8S3RaRNUFaGyqugIhVTFSXWWFRORuo6o0Ancmg3KIcCAvZG7MxuZQLAJwFcK6X8I/anrwB4o/73GwF8eWcdc2/H6rXrcemKc3Dilq/g/rtUOQJvO+6qbwAgacZ0mGIt3QFubp0bgqMaaQmvsFtGuhkJQrEASUHgaiQ1d72JLEeoqhKRkErxkWTIhJLw8swUJ0NcFRI3IPSdu4zzjnIoH0yjkLFF/nhRF0p9oN8by7Jtoa4VByYDog1uZaHqu2nBq4SqtVa+JwOjvCC1lDrHtpwLaAOBoZhSi7iWQtNmuhBpp96dY5IuSEqNZfuxUAkPnZtrsEugLBCRQ6VRDnXr3uncokKNWSQzigx0lC1cxVWPUw7p7ywzZAwRG4rIoYXaZzy47aH7AQD54U+3nk88RCvQDZqaKLV+QwBasnJmfFnZ+Z/7I1zyrc+oc2gaLDr/j3A/Vqg/0ndZ2eQgIZblxOQQEXvF3KPW8xQ8FaN5NFWFRDRmTBPoS1c5VHQMVem6Md4ALAAymbJCkUMU/LflZjowq9R9rE8SzT/zHanbr5lPkJqrIkB9mVG6b8jh1s55AMAJz3o5Tnrea8Ye78Sz34JLljwPG8urAYzvrPaUl70bF02dieNu+CjuvPFyAF1jzoCAgIC9CflgGtfv90Ic+9h5eOiBu83zrrci0HrguCSCiHPkolWtkqpXjFEOtWvyUCed+sgh1RzDV9obOYpsQLWHJ/KK1jZOPCWWEoqRQ6Oh1cTFl6Cj2KROZ1VZmY6lXdV+0hTYLtuEFHkaRUKimN9qvY7g89FpGyOoeNJdSyh+i8ttlgLY9YBK0b9v4OqXhRKOHLS+NlxZz8kv9t2bEvCKJ0K7fkGucsiQQ47BtjRdVsdfCxy+cjcCeaWSGt9cY04Le7pmZZRZyfCAgB817Ezl0JkAXg/gOUKIy/R/ZwP4PQDPE0LcCOAs/fhHBge/+EMAgNu+pNRDvGuD6QxkKYeKXiJHqR5Y9oa1rOddD5QHjW2sJnsWBV7uNQ6iLhShoUHESVOOrEwC3ZiLYmjKs+J0YBsBOz4oloGg59xFnCETNWRTWyRLhQSox2+4o7rAdstEun080ptvI92lRVBLeOkcybw50d0kSHmhStLIsNcm+ug7HUaq6wVJoemcK21y3YdxMmECmSRyPxaTrdM+LH3kEHkIxNrnp9TfT+rxUKFgJi5V6U2VzloKFjMm93daQDlUyNi6hoCWyOkz0FRv7dbtA/y3ZL8nc2TGMkqVXJzPW38PrY+Vf+6rr/kbiEv/AQAwnN+OI+qbccvBuhUpKYf0WB1yqCnGdmCry8IE3u01ZJNjFDyVo6EJznPHqN3tIseJYgK1DjblnZwcIsK2UN+1CZpYEAvAeDH0wsoqTvW/zkF53GvwwFGvNY9HyJCMHvaWb0WZVvE9eoc65A54G3Ec+ea/wn1ClV6MUzmJKMK6138Mhciw9V/eiaqqLF+mgICAgL0R+z/rbchEjRu+9QnznOutCLQlZm75ESXQqKTIqHrHKYeYmjfxecZpkJrXX3alyQOmEI9YopJiaT42XwdEmlvxREuI5SbmsUDreKaVQzp5VkdJx+NnTvtP1qVSoFMn29E2FXvVUljrcWOSuZwcmjJ/86l/jKq+2m6pubjVAgArUemCq1/61Fs+tCVWrbI+lW3ZHI8tkyRFI4Ui29i+hGBi69glh6iszCaHTMKOqY+Mb1BPbEnXiPRckymrAgCAmMYlZZYpK1OvSw86ATcNQhv5gB9d7MxuZedJKYWUcpOU8gT9379JKR+UUj5XSrleSnmWlPKhnXXMfQFrDjkKly4/Gydu/goeuOsWS4GTerpWjSMFyBCOIGhzl2asW5PdGaJeQDlUYryCxRyrHlnKIV5j3GYSsrZr2mhoBR9kOkhj8SxI5OlqYMEs7iOLZHHbX/oQNQXmQCbSShlDjytSZtAiRxJTT3133FTGfLYUCUQ1r9RSHWWFXV40imeMcqhwFRFuYMJP2VN/7oLG4NcMzcOUBfWSQ8pDgLyNKpFpcqh7XFqUk0qVlTWp7vTkKHss5dCY0iy6lkxmkcrMNJFjskmesjKfiSbQ+tp0lUOVoxzKkEjHTFu3q82nZ71jmGPIwgQwxVCpy8TUUrvrCXXkcwimRJZetRWgiKbHfvtQXPYfn9LvtQlGQtS0HVdG+rOhbK4JPDvkULeFMGVMW28tluHTXlaJJgIjQw61QayeXMeXwgL7zHekbv+UF74Fp7/qF83jW5c9Fcc8+l0skts694bDT3s+HsJinLT5K/qQj08CPrtkBbad85e4ZnAS9j/4yLGvXbVmHW4+6ZdxTHk1vv/Z30cmqrHZ84CAgIA9jUM3noLrkqNxwM3/atYg11sRYN5ybsdSU+qt1vzSU1rkgqtNx8W1tVbz+pU13XVdsAYcRjkU9SiHEu7HObSO4frcAAAqlXxEOo1YSCT1UJNDbuv40jQnqbRf3ZyTdNwupuxkLvMIJZjGIuUQmagtNQ7QlvRn9XYrZpZxZpqCcFsHH4w/JfzK/D64vjxku0DxvmX8HUUokCjFTzVCJSPjB6nOg/yLbJLIlIZHqe2XaBJXnLjUCaoeVXox7L8miWRqk6jq3ISrHNLHOPncd2PjL33XHSYg4EcGwSZ9N+Dgcz8MAYlbv/zb1maNEyyEcbXDrgmdrEfGv4gb93EJr1kMxpBD4xQsBN4RC2DZpnpkzIdFwrI0o3mrpr2K2iyN64MSe7oaWOAeNIxkWci3B1Cb42Gkgx/d7YlMpcmrhOZMWYxufbfy50n0d1MiNSoamEWFiI6R9f8imUWK0vKBAroGfC5crxwfSI2lAi9dVkblfqPxZWXkDaVK0jJdU195697p3NJKnXOTqS4hHdNplt1rqvHkUCHSDjmaogTi1DKydFEzzwDfHC31Ul0jFbWlYnFr9dV8VImUbwwORaZp9Q7LnlldT6h0sqMcKr1qKwDY9uhDWIptGG2+RT3RU5pGv/1yNERVtMRcVRW9yiHhUQ6pa497A9ifZYEUSWUrh9ogVr2HZ2994NfdE6nb3//HP4CBKDEtRp3rcsmyVbj15F9WQbXnPHYER5x8FjZ+8DuYml284GtPfNG7cPX0aTj9RmVU68tUBgQEBOxN2Hr0q7GuuRM3XPxfANp7eeYhYzoKk7glWAB41SMuSMHTVMVYcqiJMtWMwpQ5t2QV9+Qh8OQnxZF8bFd5xLtcyYqTQ1lXOVSr5CPFDFm9HZXIdOxtK4fIf7JiXVyBNuk4h2k7WVN311sTAw3tMm4+fwAY1HNWtzcZZ0aJbNk69ICIpYUSjhyuOTPiHJmoUGnbBeEk6ArtWym0J5SFxB6L1nIioNy9jfI4tcvWWxsOv3LIV+5GMCp1EydTzK/+f+CJz8MFi87CmsODWiggAAjk0G6BUg+9ACc+8CUsnrvDLGzcxI3ATY5dNLFdZ8z9i9pW3rb5X+PIOV14pbUeqAW5zQRkbGNv6s87Et52MSTfHpo390HhG31fFp570HCSZSH1Dc27FDlKGQPVCAkqjDQ51AxtAoVUEm59t9TBC5W2lEiNsoLm63reGGPiZAYpMzYkuAZ8LsaRhGYMbZLI22mba6qg7ks9wVusvKHSRr23FokpfXKPS9mbvNZBQa4UNqWj7JFMxTXO1JnUc5wcbepalQ7Gedu+1lNWxj0D7Dl2iR2jbOLKIUeOreZDZNVUZwzrGKhMdouC4yjJLf8oIivd86dSNldtxc+TStL6lEP0+ymLIUpGzBXDeZtg4+/xGIFSUGyM1x1lTylSZFolRtePS+QJhyx2YTLNst+XaBKs23AiLp8+Q59M9/dw0gvfgSsHJ6nzGEw/7uPsEITAmjf+jckUj9sgBQQEBOwN2PhjP4ntcoCt3/sbAHZDE4IpS+/rDKnXqmoScoiU16XfM45ACRufsiZ1khKAWtPGeWq65FBMpUvM6iDNp0yjEes8Kfmo35PVc6ijVHd3tT1+RvGMOrYmh9yk4zCatkrYpacDF3nqkJWB+3nS+jto7LIyEWdGiewziHbhI9EWgomxKCbXn8loTs2ViB1zDBA5NEIpbJ9DQzQZkojsGNrrLensbez4wk3AuhhHWGYDqgLQ5JD+Dui1Bxx8OE57/+cxmJrxjh0Q8KOGQA7tJqx96a8DAI6sbjB+QJlnM5rK/u431ewarJAP495blHkq9y9KmOdNwjpOtcoh/8LhzZ54IJrSylxQtklUhVExREw5VLEsTZoPLFmuW+rCMyneLDwLTDjJspD6BoDx4yHD5RQlikQtALQg08JFc0+d+m4y/yPCphIpsnq7/Z7cDmIoEKizRUhl1dlMKwO+fg8a1yvHBwpuuB8LqZ3IMybqCxi0MXYu51HHmTEE9HVfokV50OhzHih1RafV/ITKIfLB4eSoGSvJWG15d4xGX2uJ05kqZYaIhMIXLER51/tHX1M5BWpjlEOU3eLBMXn4ADD/d8egwMcl1ADmrVTZ107fGFUxtEruytGwJXpklxyqnBKBiiTcTgc9Mx4S5DWRQ7qkMGu/K8DO3vpgNhOOGfbjweCZ71X/8FzLIoqw5k2fwkXH/yaW73fgEz7WpFi2/8G442m/DwCIBkt223EDAgICHg9mFy3FVcvPwjEPfxvbtj5k7uWcrDDlw47nkFHf6HWn8pQWuUjTdjOfor9MXur4yqdk9ZWLR2xNo//zhCr3uIuzQWu5UNqdtKoo7WngkJr1a6rZjjrKOsqWFCXK2I4jDVmkVUDDaMZ07gXa9Zyvt1TuFBXjyaFpzFnrrYwzo0QuRyP6sNAHWod3xB8vTqlRC3ly6oTP9kf13+3jteRQV1XcGkDbRJNJajvkEDzl8H1NR8zxWQVD51ySFLUUJk7e76AjcMngdKzc+PTOawMCAgI5tNuweu16XLL/ywG0kl0yceOeP+NaIx/x/PegQoK7vq42JfwmbGrFy5E2TlbPm7F6Sh/qiZVDqvyIQHXMkpWVRUzCW42G1mJfizbz4m4suQrEd2PnHjScZKnQzfy4UJ46qfEnymSJSpNDQhMotEDR3LN6u7WpJfM/Iu4qkZrNM0lr09QhFkj9kdrGhgRf1opjkhbZZOLHX0uBkfGMyaa87zXBj5yDjDI0IkXSjFQZlkNKUbA2LZVyKMqprMxWwXD/J7esioPIQU6OksGlSPK2Lb2nttznSwAwJRubg88XwTVyBNoSKWN+2GNynqG0CBpAXTO8NNOQlY4XViptxRGHIZpqmxRyP8P22PNWyR2Xy2euckiWaCKboKno2quLjjcAoLKMA6k+O8q6UuaN1E3xAuQQ/ZbGmlZPiKNOez4u2vhBrH3mT3r/vmL/tTjlpT/7hI+zozj+rJ/AjS/5Gjad/fbdfuyAgICAHcXiM9+MaTHCtd/6O6uhCSGjtbdHOURrvlHOjunuyJM/qmS8hxzS/jk+JRMRTDxRErP4thZd0iO3lFCDtllIMbTUso1IOwk6iqkpqTaNOUMOcdV+JktU2nuRPCqLRD2W5vGMU1Zmd6wFVDKvkaJtANGTmJuR89Z6yz2gJinxo/cuZFVgHZt8eRzbhUJ3wnXJIbI5cC0UAJaAjW2iiWJ/6ZT7R54uq4nHo5WjvSb951ggNQTlYGoGJ33wmzjs6JO9rw0I+FFHIId2I458+a9iTuaGZBFRhAfFUiy5/wJlKuvxSOHY78B1uHTF2Th+y9ex5Z5bLQVO201oaJUZ0WLQt3AoFcHC5JCvPKXQmYKKBQoULJTF0MpMNVGGpCFyyPZBsTb6HrVM60Ezb5ttR6qsauy8tYqKshoZKrOoU7YmMuSQmkdez1mLm+rSQJ2JclRRirzRREnilHMRKVArUz6kU0hEg1gbGxJqT9aKsNB1YI3RlLqdtia2ctsfyF3A2w9GPT8j51RZWZSZc3KJRDq3GTmvyIRc19Y75I2gc0b/Ag60PjicHOVEDrXT9XU8454B1hzpPJlyqBp5gqYkRyZqNHVtnqJrKkoSNX+PyblsGmSiYgQNEaKqZFI4ZWXu+RMh5VMOteSQ41vUQzDVxdAqubN+a865xU3ZCfSpO4zXGwCKdJzSRCAFb4nOvHHl0LjOJ2SkOda0elIIgVNe+UtYc8RxT3ysnYz1JzwdA21kHhAQELA3Y8NJz8at0VosufazQDWyvBUB5s3SaUpBpVnq/k/JibHKIUYOjVNCG/8cj7Im8VgvJLLtfGaUQ5626oCKE6KUxRPsGLQOclAsQDHDjJyHjFLLABpSIkOFmsghHUfWlHTU5FCVTFvJGrdjrXpSoECC2CnjJlD8lojGXseZyfYk5BDtE3ZEOURJwZYc0sSh7oTrEoOk5Hf9SQEgSvR3QrGlqxyKM+QYmdjFV7a+ZMUBeFTOYOamrwJSduZLXkR9Me+8mAKyUDYWEDAJAjm0G7F8/4Nwy7P/AuIZP2+eu+3Y92BjeRUu+vonvR4pLg564QcRocHNX/l96ybMuzrwTlf0/15ySGQY1NsWnHvCTK4Jpd4U85syNxPmMlpVV96WlfGNJe9I4JWEmk5so069eR/BYubNW7XrDmNkqNx2ZJoy8wdU+ZQt4c2Ro0AiGiDOUIusVdGQ2oiUFeTJUumObMbYcM4q73G7X3BMch3QGIksDGkFtOV+VPbW15rbGA2LGjJW5NCUJofc74CCrVyUKJCaoMA1TBZ1ge3ahwVjyCEiGqnDhahGVoDDVXAuuGcARxTHKGRsETtl0Q1gKXPFS+I44Vggbc2lGej1CSNoAHXNUMaMxgLaToKEbIxyiBRShhxy1GeEVAendTm0Su5Kragzc2W+Rj6vB1KtiXpk+YgRKpFixrm+hRCGDAagjcz7iR/TgngnKIcCAgICAp44RBThvsNfiSOr6zHz4FWd5IApj3dbqmcqITTappoN05rVm3wCkA+m0UgBOfeg8sfpi2fyxZjCCHjsPjUHRlaZRghsfaOEH4CuQh4qFihlDEAlTY2vTTkySbs4SbomyGCJIkbKNFFm2rgDQFUWiISEdOLIWj+OSiKHZhELiZqaUDgdawmFSE0yzzV55vEbj5m5B5SxdRjzXRjl0A7447m+PC05tFXPza8cUslfh1x0DKDp/6Zr2EGnYhkewwV/83PqXDxlZVPTM7hy/U/hmPmLcc3/fK57jp54j+Oxc/8W61/6oQXPOyAgIJBDux3HPuuV2Pi0c83jk1/ys7gxOQLrLv4dPPLg/QDGZwAOOnwjLlnyXBx37xcwU2w2N2HeackytV6AHHp09VNxRHUTbrzoW2PnTd49HOTj026UB+1CXIyAujQyWl5T7Pqg8I2+78bOO7HxevNxBAshgdocV2wBNou6ztbQwkWkh1vfjThDLHSmIslRixQzct56T0IZEaYgKUVipLh5vd0i1zo11gwjn+LFAwpuMlG1deFRhELGRgUU98i+3VIrGaWYgt/YkAdrpUjYd2wTHVFTYB4qiOTBnAv+/ZOZM1f5cBWcC+4Z4MLtXtf6ArHPgMzNmerJ7n6SeDvgUdkbKYDazOmgLdPS56bO30/sjDPZNsel//d4DtXlyCq5q4qhdbwRUyf5yKEmztVYvcqh1HQA48FpqUszASJd+8lL41ERyKGAgICAvQZHPu8tKGSCTcMLO/dnKq12y48OOf6ZmJM5tl/wGQDt2ux2DeWIkxRXT52MI+/7muqm1RPPHPDU1yASEsc9+A3TfbedDymH7Dby0u3G64xNJUlJNsW6XI3apB38nUtbcqg9rybOdBt3tYYXVE6vG3NQHNlk+nFpd3U1LdY95VZqrimympTo9udpkUPc1oEph6oJiDpDLC3gY8mxet0GfHf/N+DgM16q5kZz2Xa/Pp49V0o6RU3RSRwlPSokev7Uc9+FHy4/F2fc/Slc9MU/7fU0POUVv4DbxYFY9N1f6yjXKUltVEoO1p34XCxbfchE5x4Q8KOOQA7tYURJgub5f4D98BDu+NwvA1iYFFjx47+IaTHCUeW15qZPm2Uy/2u9huybsYvjX/GL2IylqL/5a5BN03tM3yaTOp3R5jZKM2YaNzRtQUUUWV4v3BMJsLsluZkTAIiTdnG3683TXoLFmnecoUKKtCJDZbVoU0cm8lUhkqhb320vynWUIRea6CJlRRRhJFnXKh0IkFJlIOesxX0cOeTzyvGhiTIMGk2AsEW/RIrpZrxyyKrLjnM0cYZZ6T8u+UvR2K3BY5ccGkWDjo+WC/4dkpkzl6lzFZyLvg5bQNtKlVAxdY85FxNUteqauClMqSc3l+ag19M13HZNyy1Td6McYvMwZYLwt2E1QY3zXpekouC0KYcWcVYV8xDMJ4mfW+ojh/S1F9WFZTJv5tPTFrhAe33HY7rPAEztF8ihgICAgL0GK/ZbgysWPQ0Auh2htAeOWwK2ZPl+uHLlC7Dp4W/ioQfu7u0a2sFTfhor8Kge3B/PrNtwEq7KT8CMGJruu4Qo1rEHS37wNa12kqAEUuhk2YB1uRqapB2Ajo8Q0Kqaecwg4xwizpGLErJpTGm4yKZRyaiNK52ko9TejPR6t2MtoUSKXMdrLsGTWuRQ+16TfGEl5r3NR9CW3y1kVcARxzGe8c4/xwEHHgIAWHfCWRjJFOvv/qIayvnui3gKi8rNSlXsrPsUDxiD7dXrMSdzLF21BoCKMU9+5ydwRX4yNl32m9hv/lZv2fpgMMDmp3wYBzd349Iv/KH1N6NmyyY/x4CAAD8CObQX4KhTnosLl56N0x79BoCFSYHDjzkVl0yfCQCGoafSLFmNtHGyHmMB5dCixUtx09Hvwobialz53//ce0wfOVSJDFFdoNEb9iQdWCVBvGW9jFpyyN1YZmyRcTMn6hRaQ0Feb859jPqQSqWiqqLMLMAim0Ejhem+RYscEVuJaCxlE//sFDnEzLRZ9qQQiSkn6nS9kPMOOdRPbE3SJlaNkWEaXZ+gQqSY1kRP2hO8WUFIkkFGqvuFOq6HeEFL5pD/gFv2RV5SVCrWB+6JpdQ+pRXgcBVcBz0dttqxuKKmNUonuC15gda0vB3DQw7p11N5mDHGTnPj/aTGUgSOVeZVcCKnSw7RWBEjFtUYzOC7aQwh2ZQjizhTvzVbSURIPF1iKCgWTelV9vCgjGeGKyRmjomsOh1tOChAG+dLFBAQEBCw+5Ge8kYA6CYHhMBNsydj8eGndd6z+qyfQS5KXP9vf9EqhxbYiB/79JfituhgNfQY1Upx0lvV/0U34TBEhmT0iHls2Sb0eGpWOu5M84HpwCbLkaXe8TWnoMQVVw7JODNddMuyaMmhJFedPXUcGQ2UcoiSjkKTQ0VJnoJ+NUwlUlPS7yrnOQHDY2ZTtl2MmK1DP1FHMavoaUwzCVauWYfLVr7QkH1ubDl35Lk4pLkThw2v7aiKVx28HrfGh2LlEcoA+tinvQjZh+/BkuX7mdekaYY1b/40HhMzOFDe1ylNI5x81qtwWXYSjrruo9j64H3tOZYLK6gCAgImQyCH9hIc9po/wFZdkjOudpgw9RzlW0Q3YVMrXtndq9ra3v4xT37Jz+JOsQaLz/sd1FXlfY1PgUA1xhQopNnAKglSWRq2EEs1Nid4AOYX0zNPY1pXDe1687hbM96Zt1ZR1WwBFkmOAgkG+jEtwH1ZGpcc8i3SgK06cWvXZ+WckUKbzwM9yqEFaqfbMVpvGD7HEilmhSKHEo/CpjN2kts1+54gg77HSqS9yh46ZyoV60PCvkO6hipWmkhlho2PHGKeAS7IENG81Bc0ma4rjBzyzKczdkFlZa16B1DXDnk/qbG6qp+ClXn5OrAZ5R1dO255GYCybK+Vphqhrjg5ZHsOceIrRQk4JE4TZ0g8HfTM33lbYBb8l0whxQk+H+ga6QvwAgICAgL2DI59+rm4F6u8yYEjP/Cf2Phjb+48v+7ok3FlfhIOv+2zqIaqdKpPmUwQUYT7jn6T+veYZNem57wK92GlV1lz7cypWP/gf6EcKtIlZR6L0pAeblmZTprmA7OGNSZhyWNSOwaj2JSrT2ScWd3BeGfVkhM7g8UAYJKOQj8mJW/felsxm4JOow2WBGusGI18lIaW/2Ef+ki0HcXB5/ySaTqSOrHl8We/A5uxDNNi1EkKLV66Aod++DIcsrElHRNPDLdy/4Nw9zOVIsj1OCWIKMLMi34fM3IO13/2l83zNUvYBQQEPDEEcmgvwYr9D8Y1R70bAEw3qHE4+pTn4IeLfxyPrVRMPCkpxPbNVqcrWgzGEQ1ZnuOBUz+AQ5o7cPFXP+Z9TYISMrZv1uS1YlQU+cAiDqyFOMlN5wYf0USv8y1wRDjV2mybAgIZqU3uOFCXjDpKTQemKM2VugZEDk2Z+RN8nSHovXyRtjxZmOpEmYVnRoWTito6Z66kcuH1yvGBeSHxRZ8HIH3KIasuO84tGbnvOyAFWCUyJtO2iQ7ypeorzSJwFVollBqFSJMoy82cZdUdg3sGdOboEDuGHMrs7w9oO5kByj+n4eSQh9ii18dCoirZNZ8OrK4npAbj8+BlXk3V/psgKz22fi+ViNmET/s+6VEO8eNx4kupCB2CJs6QodQS+m6AVvPrm/0mOHHm+w1zGJ+HMeqigICAgIDdjziOce/Tfht3HfvOHXqfPP2nsB8ewuA6f2mRD5te+A6ct/RcrD7xx3pfk6QZ7nnqb+CWw9/Q/dvpb8USbMM13/o7ABTTjW+4QjFQlk9ZiVNO0HAfIQJ197QIhjg3Xj3VyDaALtDGlcn0EgDAoJlDLQXijLq66vV9DDlkknlOYi5n6y/3gaL4rS6HzNZhjOeQfu+40rNJsObQDbh06fMAANmU3aVzMDWNm/T3Ny42WAibnv1KXLjhF1Af/9re16w/7jScv+IlOPGBL+LOay8A0MZRk1yTAQEB4xHIob0Ip7ziA7jo5D/Ahqe9bKLXn/G+f8GZb/2/ANTievnU6Tj2vi+pP+6AcggATnr+T+LGZD3WXv4nGM5v7/w94ybXGrQp5u3FeUmQ1XEgzlQ7zqpC7NmwUo24r4a9JZyG1qZURikS6Vc6EUhFVbMOTHGao0SbraHggX9GPvM/QC/AbMPLFyIiOgAYUz4+JieVuJLKhc8rxwdO6NjkULvhd7t6EeKUBxo5wIg/X5BhOsRFKfOVcskhVZ5Vwk+wEBIW3JFfT80MLo1axaMc4p4BvjkKVmZoCBxP2WLpll5F7flFnnI//vpiNN9e8/lAX4cOOdSj5PH5KNFzseNbFDd2RzKCrEYWMSeLeeu8OTmUoex0KJFxjlSWlrm7NR+uHGLXj0UOjes+gzbIHVd6FhAQEBCwZ3DSWa/CU17+Mzv0nmOf+QrcJQ7AptHFAPrjC47p6Vk87b2fxrr1m8bP58deh6e+/tc6z5/wtHNwqzgI01d8Wh2Te2rq/7sxSyUy1FIgSbOWHKpHJmlH7yUfIQI1MLGSakmrHCrLkVmL4zRHxePIKaUUmsa87upqq5T71luusnHjX/758vXWlG0XLTk0jhTZWcohADji9X+GC0/7YyxZtrLzt2Ne/F5sldOo0lnPOyfHqa/+EE44+21jX3Pkq38Xj4pZjL7wbsi6YvHewtdkQEDAeARyaC9CkmY45UXvwNTMosf1/kUv/AimQaoTe9Ec11UC0KbDz/o1rMYWXPK5P+z8PfEQOtSdoO0gZZcERbzGmslyU48PSqsc6s4zZWokXm8+rjQLYEbAuhSMOjCpWvHUqG5ST1mZ9Jj/AYpIaRgpwxcibkxMpnz8vVZZGVNSuSCZcLRABkR6ZMaA7SPgM24G7CBEpG1mDPB/B1ZZmcnEOR25tCS7EolFVrjg33/tqM/ibGBUcL6OZ30dP9qxxpNDRIpxM22uZKqFvwMef305Gpq5pdnAMrak8jJLycPLyrwm2yMzD/7ePoJJViOLOGsqWzlE109dVUhE0+lQIo1yqPQqezgJnDmlljFTDrmmpRx0jTyRDGJAQEBAwN6DKI5xz1GvN499XUN3NuI4wt2Hvwbry+tw25XfV3EclZXFpJC3Y5YqSo3C2MR1ep00nbQoQVW1MQMlH3nMIJLcxNPlaNg2kEgHKEWqusUCyGaXAgCm5bzqekpNGcgouWe9rXuSjercY5TacoHHe4kpKxuhmUAxI3tItMeDZStX49Szu2WHALB4yXJs/j9fwkGv+N0nfJyFsHK/A3DNpl/GEeX1uPKLf9juQ3pi3oCAgMkRyKEnEQ479nRcsuQsALxlpFbFTCC1POZpL8JVg5Ox8ea/xsMPbbH+5lMg1LrrUXtTnjLBQivhpSwNkUNDlfnp+BcpNYiXHCKywHRiawODzKPyIBRUzhNnFhkVp7ldeqUXE6u+25Lw2iQMX6TTnrIbKrGKLWNDW6pMSioX1QQGgzRGOy82D2tz7w/euGxaJLn13fq6PdDnxSXXLjlEJEtfaRaBf/9VlCrPH0bkJKnK+vUqh8aSQ6xLGAVNKSeHyH+gfV3KlEwuwWTGLmwVD7/meUtcIoliq7yNETnjyCF93MhXmsa9iqqRMYGnMWOPcshc/262MMkRC4m0GXrb0fPfSpbb5CcdJ/OUmXIYQjeQQwEBAQFPGhxz9juxDWpd6Es+7WxsfP7bMSdzPPiff6qeSNoEIdBVWVciNQktk+CoC6uTFvcRIiS6gUnskEO8O5hJ3qUDK44czKiyskQ0unFHq+5RYxfe9dbuDtpf0i+dGBZQsYWcQDFDiUmfn+TOxuHHno4DDj58lx8HAJ567jtwUXYKjrjqjxE/fAuAfiuFgICAyRHIoScZ1rz0t7AFSzG9+kgAwIGbnomLZ56ONUccP9H7Z8/5bSzFNlz9L79pnutTIJh27BWpKPI2WKhGpi0o0NY6l8W8InRilxxSr/MtjikrVeP15ko51F9WVugNdddE2l7UaQPMAx2bTGLkQjawyaHMIYdYeVEtUsfY0DaBBuzAxBybMk0LZXkc0opAn3khE0Sx/ydulVqludXFwpeBqhk5xMk6a0xZoIkzS0HlA//+6yjT6jM7+1X0dA3rM3VUY6XGtwdAGzTl9vcH2C3llZIpb+fjIRx56/iiaMmhLB+oMi3y09LXIx+jo/pxIGtbdRQz9RmhYp5DqLvKobgpTIaRyKhipK9/h8QR+rMfNHPeYJWu71LGiOK4PSyVkTYNMlGN7T5jFISBHAoICAh40mBm8XJcs/olmJO5t2vorsDylfvhiqVn4biHvwWAlUf1KGLqKDPKIRFFKGQCVIVJ2gEwMRgv2SZVc+qQQzErEWu7Ytlx5NSiZebfJVLE1PyCkn2s8YU7V3N8XxdWKqO3FOvk+zg0Cadxipk+Em1fRxxHWPzyP4OUEpvu+icAQTkUELAzEMihJxnWHLoBK371Vhz3TOVbtPqgw3DyB76GmUVLJnr/Icc+BZcuOQsn3/tPuPsOxcT3KRAa3S1M6jbamVMSFMnSSHhbWe48MlQdFRKVQvkWR7O5rwqn3jxXRs917T0XMgIWTjeujnJIlxrxEpo+g+YkHViLdOqYWNPGPmmUisZtGU+gz4N3sjLjlDZR0gdeP277JWlyqEdho8ZuP+coHVhj+Y5LCrAmyoxJomsYTZJsV8HDIZvG+v6JYDQBjj52Key29Gautb9uH7A/f6A1zE6tsjIih9qxOeFYRykSz9z566ti3hCimSYLszHKIV6S5iOH4JSVkYLIGoMph0Q1ssaR1QixLLFNTOu5quORiXXHZ0A/npJzkJHHv0lf35SxJDT6syEVkxzTFpeIVrd8NCAgICBg38ZJb/4TbH/z/3i7hu4qLHnmT1nWAADMWuaqrGuRWuX1Ktk0Mkk7PkbpaeDA41CuHFIG0NToYmD5BU3NLDb/rlhi0JS3s2YqHHZ3UA85ROdhJfB0nF2OLFuHPlA8uzuUQ7sbRx51DC48/N3KQgKBHAoI2BkI5NCTECJ6Yl/rgS/7bcSocccXPgwArHWnvdEjrxVRFyi0yiBOEtXqshohadpMCS2uxdw2REJ2lUP6db4FLh9MYyRTTD92m1VvDkOwdNU3QLvoiySzytiSbGAIhpFMzecVxTEKT3137JIL7HPgmTNekkQqGqt23WMgzbtQEYjUWLDrQuKQVmweAHqNmwF7AU3SHJFVz+5RDumgpomy9pwdZQ+ZFFeOgoejqkrr+2+0mXNraq6vk3HKoR6TY6Nk0+ClX+bcmLk5n3c7H38HPP76qhgB9chc89z7ipRDfB61UxLWgSbBaIzYIYnMMTVEXdifTVUgbkrMC63W0cFo2/XOJofo8Yyc8yt7SDkkXHJIfTZFH+nEYIjWQA4FBAQEPKmQZAOsWnf0bj3mhhOfjuvj9QC4bYJWxDiK8ybK2mYoaJNNlLTjY3DlUIYSSHJLRR6luekOVhVDEwuoTqXtMfLBtFIoQXszZnYiqq/DJ2/a4CvTI3KIr7cUvzXlqPU/nEQ55FHmPxlw5mt+CdfFR6GSEbInmToqIGBPIJBDAR3st24Drjjg5Tjt4a/jxqsu7FUgmLIuxweGNvaxLNGYLI1auOa3P6Je5PoXCTIP9JSVJQm+O/VsHLX53/V7aXHX5FDh2XCjNQJ2lUNJ1i7qrjqCzkP2lJUlma2ySVnXL05OxKg6xoZWGZgJTDzk0ATdJwAgZuPFHr+kPm8ewPYcitKBMqWmv3mCjIaRQxGZJHYMqZUflFLw+MmhYmRfS43T8Y4yZxX8ptbcM6A7R5scAiv9Mu9P7WyeMS3XxB33D7LGtpRDQ9v7KM6RaQVbLuyuZeq945VDovKTQ3HPGKIpIDUhS+eZyBLDSCmHqJyuNN4IDjmkH0+Jwk8O0bXpXD/02ZS6XM0tM+WI4hgjmaJJFiA4AwICAgICFoAQAo8eo8ywW3JIN1xxYqXq8LNwzwHPM49LJBB1YZJ2ACwfIQBoalUujTizVORRkrPuYCPmj5ib5GcjBeKkNcHm5FDDlME+JS1fg31leq5HEsCtFgoW54wp8aPP6UmoHAKANE2x5E2fxWVP/YsnnBwPCAgI5FBAD478Px/BnBhg29c+ZAiMyCF0mnwxZuV2TG291bSiB5TiQEl4280nbcrL7Y8CQMevhMiavuzH0ue+D5lWZbiBgY9gAdpynii1DZeTbKolhxyiwZyHVd9tEyd0XK46AoBal9kBrcmxW7ve/lsTOB5iSz6esjI2x8YoP8YYBls+PLnV7cOn3qLv0Yytgy2OTJuFN6JfOWSydIwcShk5REROJfzKIcszwDPH1CKH2tIvc26smx7ASya1j5U7hgYndepSkUPmWtHvndu+1byGrgP1evYd+zqwUeZPVvr/VKLmL00j5dAImVLpabn8KJrRcx3q0ydy1P4++e/Y246eflfO9UOfTdmjSHJxzem/j3XPe9fY1wQEBAQEBEyCTS94K75/wOtxyGnnAGjXMjdWOvXl78Ppb/8z8/ihdDVWP3oZUk9Maho4UHlZnFsq8jgdmNfKym5GQbFIgQQiiozathKZIWJMyTz8HT5pDa5k5C3TI5W7Tzmk/Ad1/JD2q3TJZ/DJbNZ8wEGH4ZQff+2enkZAwJMCgRwK8GLxitW49vC34cTh+bjt/K8C6JaVHfr8n0GJBMfPn2+pDEqkQF1YmRKTpZl71DsWLbJ92Y9TTjkDF2Rn6Pc65BCrGeegRT9K8o5PUKuu8SuH0GPQzJVDRceThXWt0h253JaoBKr95pt+gkuU9CFyvZDYPAD0evO4Yycs+AH8vk8mu8VKjrgnEJkUI8n05+D3HDLEguk4p0uyNEFC3z/v/MbBPQM6c4ydkjBW+mXOTZNopK4ZOWQVLxHjqJm/Ul0MIepRR+4999gj7XH6VD8+5ZA+zwy26oiPwQmmqFHkUCl0plL/1oqEyCG7rCxK7M+LXze+YJV+m5VHOZSiNATfQm1xTzz7LVhz2MaxrwkICAgICJgEg6kZPPUdf4FVB6xVj1cdgpFMsWjFAWPfN3/im7FW3oPV2GLIGFq3yUOoYDYEQBsLRllulNZVWVgeP+QhRIkiek8dpUaBbeI55m3IQWtwn0dk69vZrrcmTq4KoC46icoOiEQLfjwBAQETIJBDAb04/hW/iPvFShx1jWof6ioQVq9djyvWvxMArFKfkcgxmLvXqrE2RsDzSl0h3O4SIkMjBZLEv0AKITB45s8BAKKppXo+esH2mDoD7eZY+QTZktymRznkk/DyEqw0G5jW9l1lRcpUH6XX2JBAGa/apxzyeOX4wM0FeUaoJYf6lUOWmiYbWBt9HylFY0pjVpxaZV8FI336SrOAVjlE37+MtVKnGlmZs6rH1Jp7BrjoEDuetvdGjq3JqNIpc1Pz8XTAs5RDI22MnVjvnX/s4fY4rIsebzs/TjmUiAZVWZpz4ESXRQ7VI4i6QIVEk3TKqL1yyCHeVYWDXze+dvTmd+WQizLOkcnSdE5bSDkUEBAQEBCwq3DsmS9C8f4bsWK/A8e+btPz3oj7xUoAMP6TvB08wBTolPyjDrrpwOoOxsmh2inhp5irjjKryy5AyqHJPf4INCaP0UglJOuRTlSNNwaPMlVyng1mxr4uICAgAAjkUMAY5FOzuOuE92M5FKHja4N58it/GbdEh2AumjXP3XnQi3H88EKskA93jPDqoRrLLVGTcWqkuX3YdObzcfXZX8Bxz1N150aNNJrzvp6IlyizW7Vz5ZC7AS495BBXM6X5VKtYcogHTk5QR67cMTZ0/137VE9UDrVAlifu8wmK7UDFB9PeVb+Xj5X5yspiIofaYIiXfZmua1o55CvNAro+ODLOkKFSZVrs86xE1qMcKvo7YEWpRexYpV8aRo7dUdeMVw7ZreMLZYztXCvDbY8AAOalff4Ne6/wnBM/z6KYN8RSxuZBAeaczBE3JaJGKYdK3YUlRYk61b9Bff3w65+Df9e+dvSGHHKNv7XHWEu6BrPpgICAgIA9AxFFWLR42YKvi9MMtx/xBgC8rbtOWOr1rGQelYDyPQRUQxKrOxhrHS8jWzFUcnKIOvdWIzR1bTdTsSY33iPSNHXhtgRRhJFMgapQ5NCYWA8ANjz7dbhw029i1ZpDxr4uICAgANiJ5JAQ4m+EEA8IIa5iz50ghPihEOIyIcRFQojTdtbxAnYPTjznHbg5PgyAv4wkzXIs/al/w9RrP2OeO+E1v457xP5IRGMWYtM6fftm71hNlHU28j4cc9pzMZhS2Y8Vh50IAHjgkq96X1uzrhKCEQpZPtWrrqlhq0EA258nzwdGedFRDsUZElmhZibHlrEhU2zE48rKdLmWj6Th4ONlOjOk5kGb+/GbdyJjkmxg5uOWYbUT1mMZVYld9sUVOL0EC7pkjIhz5KLUZVJt9quOUq+pddLT8QMAZJJbhErESr8IGQvYAFbmRtcjM5e2xmZEWFMOIZrSlF2ZMkNdMrldTNvEjg4mCxkj6unARihHQ0t91h5Tk0NiCnFD5FRmSLpUVmg0OUTXD7/+ObiSyNeO3hCX7u8xzpGKGlUxZ70uICAgICBgb8bGF70HD2IpxNKDAHSVQ5WTuKL4LskGVncwUwI/mGr9goSdkJNRapJ7shoxZXW/x59bxk2gpi6uAlj5Po50c4zxyqHFK/bDqS/72bGvCQgICCDsTOXQ3wF4vvPcHwD4DSnlCQB+VT8O2IcQxTGGz/kIhjLFktWHeV+zfL8DceBhbVvTwfQstjz9IwAAGasF7cAjjscWLMVRd39RjessdHW2BNvELHYEh2w4CVdlx2PdLf+EuurvMBV7Ooy5izqBCJU+cihjJVjue5UKpkQxbOXJUZIo02DYm2lSUjW+TmtVgUKOV1EBtgKEq4zo3PqMmwlExqTZwMynL3tFGTIRt4orTnRwk2IZpUjgKc1CS1gY5ZAmJ6Jqzjp23eNb1CvNBoA4RyIa1JU2Lq+LzneUJCkaKUyA15JV+vMzHfAc0o4rh8oR4qY010rrp6VUcfNiGpmoIJtGnaN+73Yx7TXZjhgJVo6GhljKULIxCjN2LEtEjeraVmqFVYYSMsmVGky/ll//1mfQ44Nl5kMZVZccos9mjtR/48seAwICAgIC9gbMLl6ORb94DU571S8DAAazSwEAw823AmANHJz4LskGdolYPUKtLRBMIo4UQ6Lt6mqSe1XRNh7xJGP6GkAQqHmKqwAuhVINk4o4ICAgYGdhp5FDUsrvAnjIfRrAYv3vJQDu2VnHC9h9OObMc5D8yj1Yt+HEid+z6TmvwoWbfgMHPedtAICpmVncdMzPYFlPidoRr/gNzP+fz+7w3IYnvhWr5WZc9Z1/7vytZi3haQNPpAst6i6BUvvqu7XqqZAJojhqu1y4hs9xjgyVKbGiUjZS6FhlYDpwqD3KIVGPes0JOfgmPxuwjTq1ZR9jSA20RFCaT5mx+tRbptubUQ4lluKl4h2s4gxZT1lZW5Jkm4rH5TaHHEoRe7x/UpRo+lqok4KHuut5giYRRap80S0rc+ZTOD5WnNSR1Uh1TaNrhT4T7adFLeUNwaSPNS+mvaVy3FtpNL8NsZAoZIJYSFSa9CSCaRjPaOVQiVokypupHiIRDRDnKHSZGWBf/9bxsu61wmGUQ85vw8jtdcfBOOv5HgICAgICAvYyZFMzJum29sgTcHN8GPa//u/R1E0nUURKnpQph6g7WIEUQogOOUQxYRNniOIYpYxV2ZfjbchhGkD0NdrQ67CrAKaOsaQiDggICNhZ2NWeQ+8F8H+FEHcC+EMAv7SLjxewi5A8Dn+RU1/2Xhy8fpN5fPJL3oPbBUl67YVu5f5rcPjGk3f4GMef9Wrch5WIL/pE52/U0lt1GNPkh17wDTnklpVF9oYfABKt/jFlWH3KijhDJCTmtbLCeBNphQ5f3FuDQ0/3qglqyPkYpYwR81KwhJRD48egYCTLW8PFPuUQkQimw0eUWe3qK9bBSpV3tcoZDvLBMd+/HjettlnBkYxSr6l1Kqte5ZAh42guWl3jgjp8qfn4ySFjTklj885s1QixLM3nS0RXM3xMjR/PWPOgkrShLglzwcvn5rVv0XahCSY9DyKHimgaiSwR64CwijKk1XY1xzgz2USgvbbc3+5CyqHEfMcOseaQYC7pFBAQEBAQsC9ARBEeOf7tOKS5E5f99+c7iStSBsdZzrwKHY+fpFVSA+2a2TbuSIC6tJTVnXn0efxpNMa30yGHdGl/X5wTEBAQ8Hixq8mhdwL4OSnlwQB+DsAn+14ohHi79iW6aPPmzbt4WgF7Amma4eGn/5oqUdv/0J025i2HvArHji7FHddfav2NymrSrDVcdhf1jnLI6a4GqE5pBVIUojUoBDyLuWNMTAQTES58cSeiqCl95NDCNeRqDGqBar+WSJLe8isN+iwyJpvuDTLII4j50XBSozWaHhiSrPKV+lWK7HCVQ3m93cp+NT1lZRlKv6kjG6ssWuWQr+19JRJjDE2eT/R9t2M4iq66wLzUnysph5yyMjlSpAm1lDcEUzVCIwWKaMqvHGIk2EircubElB5jaI5JYytySJFTtUiR14ocQpKZbCIdVz1tB5WpRQ51rxG6Tl1vJ0MMDkn9F8ihgICAgIB9E5ue/yZsxnLE53/UKG1dz70sm0ZGa3xdWM0zRGwnUtqurjpRpZM11QTkUN2j/qHuau46XokMQjenCORQQEDAzsSuJofeCOAL+t//CqDXkFpK+ddSylOklKesWrVqF08rYE/hhOe8EuKX78KBh23YaWMe+YJ3oZAJ7vv2n1vPy6pbVkakCy3qjUPw0OLu1ndXIjEkT0Kd11xPH2pprskht6tZwsZM9b+lRzk0aQ05dSjrlE4ldG7jyaFKpBjJFCKKzNz6jkskQtSnHGJeQsIp7+JonFIn+l7yZs4i23wdz+qqMuVTPkSO6ifukVsrE2c1duMomSLKBDplZVFdGDUPqsIyxjaKsJFSDtVEDlFAWBcokPSbbDeF8aUqtan1SJemGZKKPJLSWaSyRCIVOVVHKQaNMogWSW6yiUCrHEpZtz312N9Bj2DIodhPDmH+YTXvoBwKCAgICNhHkWYD3HbE63B8cSkevOGHAFjJf9Qqq01316qAaArTyUw6ScbGKIfsrq5cWe1COGSUi7api0sOqbWeJ6oCAgICdgZ2NTl0D4Bn6n8/B8CNu/h4AfsA8gVatO8oVu5/IC5b8lwc88DXsW1ra3sl2eY4djuMJbSY24tqX313gdRkZ0wZkfNeIhZKrf5wjav54p6wThYuJq0hT/tKwVhb9nGoRWpUR+Sr1JeBIiPq1o8mRcJUMG25WN4aLDoEC9D1waHAaKqZs8vKdNt0jsLU7fecF8mzaS6y8pbWcQLFdPTKHGWUo+iKmgJDob+zemSRQ0SmRMU29d5skZ5HS+wUIu012U5QYrtWClVEDlFp2rAdo5IRmmQKKQrEsoKM1JhTsiWHKpEZ5ZC5/jOHHGLXoev9pT4L/Xfns1u6/jTUUuDwu77YGScgICAgIGBfw8ZzfgbzyLHhtk8DYLYBen2nZh/k5xfVBUodn4nYJYd0bBK3yTbRFLay2gF5HPURPFSi5q63ZTTAzGgLkqbsJZYCAgICHg92Ziv7fwLwAwBHCSHuEkK8BcDbAPw/IcTlAH4HwNt31vECAjgWP+tdmBFDXPNvf2meo81xnrfduIh0ET0EitnwO5vmCglrbTqlX+tX7JD6gwIBOiYnh1LTUt3fvWoSmTCN4ap9opjObbxhcC3StrQs7/FR0qBzo3NqogwJeKv1tm266Wjm6cTWKofU3CkwmpbzVnAk47yjHDIm0R5pthpLf8fUpaspvOqpSqSm01rjlF7RfNyyMiLsKHuYcuVQ1ppqA0CTqa57lC0UTYESaUdtRUhkiTkopVA9b/sWVaUmxKoRSiSQUYYUpSGnmijDtNRldGmmDKobMrHWLXcdMnYh5RCVK7rG3+s3nowfLnsxVsmHrM8sICAgICBgX8TM0lW4dv8XYT+QIrZN/lUyQpyoBBrvDkbxmYkjnbIyMJPpqC4sZbWLNtm4Y8qhrYe9EEfWN+Lg8tagHAoICNip2Jndyl4jpTxASplKKQ+SUn5SSnmelPJkKeXxUsrTpZQX76zjBQRwHHXiM3BdchQOuOEfIJtaPVnT5rjtxuUu6m7pTBPbG35CKTJD8mQLebLM2x3ZqFyKl/fQGP3KoYXJIdr0V45yKEqp7n0BcihKjeooy0k51EO86HOhc1KG0a2yp2Zt00l902kHD67mGljjzYp5i5iScW5auhPIS8hXt8/HIsVOIktv0FTp9u9Af5lbVfrIodRkDxOU7FpR7000OYR8kZ6vDghrRQ71m2yXGEaKDGq0b1GVzlpjoCkVkac7waWMHJoS6lyiZKCCUVInaXIoda7ljF2Hvnb0CRGXHuXZ+lf/DrbKae+4AQEBAQEB+xrWnf1+NFIAYM1CoszqGmt3B7O72lIsSDFBRAkyKJWypax2EBs19nhFdOokeTad+15sxjJMi9GCFgIBAQEBO4JdXVYWELBbIITAo8f+JA5u7sY13/uqerIaoZQxojjuJYeku6iOqe8m8oIWaXdBNou87lrVKoeoJSojh2iDXvtbm0+SCcqccyIY6XJf+ZVGHWVGORTrjmx9Hc6o2xuV5zVxZhEdvDzLKHiKrucQTKkTKXXaYMn6POMMmbA7npl2sJ4AC2Alb4wc8gVNykzbLb2yyaraUT2RfxFlDzOUpuyKrpVMG0NHg8XqVMvWc6gSqddHCQASVBjG2s+IfIs0OVTTOWsTTOoER+QUPz+RZEqdROV+9Qi1FN1uZUlqAuHY04XQyNc95NB+qw/CVRvfh/uwAjOLl3X+HhAQEBAQsC9hxbqNuHbxmQCYijrKTKdZoC1Hp2YQQBuLmCQj/d90IMsQN6WlrHZBqnY3UUmIppdjKFMMpmas5wfTs7j16HeMfW9AQEDA40EghwKeNDj+x38SD2Exqh+o0jLe9cutIzfyXmdRJbXNJOSQq6zIBnpD//Dtemi96DulWwAQxTFKGRuyhGPSGvIojlHI2LRcNc/TufUobAhlMmsUK4DKjPWRUkYdY1QlOVKm7JGGHGrNv31lZR3lUMbJIXbOifp3WbbkGSmCol7lkCbL9FxSWXrVL1WUmvIuY1qu59N2kbOVQxQQlkggmtIamxRhuUMOEcFEmUaXUCNkskSpy8iEJoeoNM10UKkLpRDTneCm5BCIUisojNOB1UWOd1XhEFFkvKZ8mcwsa79jH576qg9g1Ydv6pSrBQQEBAQE7ItY8/LfxY0HvgSrDjwMAFDPrsGWaD/zd2UAXVqNLqgMXTql/G0HskQl+5iy2gXFLX0ekce/+D3Y/BPfRD6Y7v7t3J/B3WI16pnVO37CAQEBAT1YuF92QMA+gsHUNC458OU4466/w323XwdRj1CIFNNoN/+1UQ7pBdkhGmTcLQEDgIfS1aj1e7Lcv3lef9qP49H/nsWmB74KCJ+xoT2m1XacIe4ph/KhRNohkkyb+AXKyvZ/6e9iftvWdiytbvHhyKecg/PveQ9O2aSya1KXNxF4eZZRTHnKyogMo8+Ck3Cc6OAdz0z5nDF17CGHiIzTpAwv/eKoowx5pUrApNPRi4I315A6liXKeEplD+sCKSpz7ZAiLNddw5Kpxfoz0fPVHlIuoUZIUaLUHc6iUrel16bWtRmjQCUS87nMiCFknEEIYcaJshx1lCGtHgEAiHqEUqToFo6pFrsDlF7foHx6GpWMkGiy04c4DnmFgICAgIAnB5YdsgnL3vYp8/jkN/yeVRpfiClMjbYgliUKrfQ1Zfax3cJesK6uSVNg5DS+4KA1uKNi1xhMz+Lgo07y/i0fzGDlBy7EmrxLHAUEBAQ8XoQIP+BJhUN//N1oIHD7N/7cajnaticlw2lHBkyI7Q0/Yc1bPoN1b/pbNVaaoZQxZGJvrLPpRbjxkJ/AYjGnx2g7e3FjQ0IhUoiqW3pFbconQSmSTilYbMrKxpNDBx+2AUduOq2dD9JeefLUzCKc/obfQpy0rVot5RDvDEed4EoPOaTJsDSl76H9DK3giLp9sI5npETydfwA2Hesj5uh9AZcjWi9f2jeVKJnzCiduSe61K8SGaJ6iEQ0Zo5EXk3rrmHptFYOMWPsWqQdQg0AmrpGJmrUWilEvkXCUR8JMiln36lMcougTNIcNVcn9SiHgLbDnZccmprF3S/8exxzzru87w0ICAgICHgyI8tzzC5aYh5vPvC5OLq8GvtXdxuVc+SQQzCNO9r29LEsO96GHIYcWiCZ14d8ejFEHPL8AQEBOw+BHAp4UuGAtUfg8tmn4eh7v4hs9LDZBKfGZNBuR++aG8fLDsJWzGBqZpH1/MGrluLAFYvN40tO/j0c/Nyf6hz/qBe/H3PSLk1zjQ0Jd+dHYN2D56EqbfVQ0lMO5QN1wbLOgc6tR2HThy3JASgXHTzZiwdLkIkaW+5RJXQtOTTdKofKblkZ6hFGMoWI1K2HB0vSoxziXcPIS8hXCsXHog5kqSy9vjkN7xpWtablAOvU5cw9QQkZpahEirTS6p4kt947o7uG5TNL9Rh6vrJEFaUdQg1oTbubVF1vqVY0UWlaU+kxdGmadb3GmfWZxelAdZHThtSmFM2Dlhzy6YqAdaedg+klq7x/CwgICAgI+FHC+rPfjUImWILt3a62VE5GhtS8q2tTtuXrPnJogbKygICAgN2NQA4FPOkw/ez3YTG245htPzRmzbljIm1qv51szckv+mnI91y6oJ/K6S9+Ow46fGPn+UXLV+Oq1S9Rx5zRG/zYNjYkjE55O1ZjC678z89Yz6c9Rso++ErBTOetHcxEHf4L/4PT3vz/JnrtgWe8AgBw039+EkBLDuX5wJR3uaVZ+knjdwMw82PYmTPKvFnKISJb+pRDxi9Iq4FQdsoGAcdMu25NywHmqeR4QZG5dS0SYzwttEKKzLxzocbMpqmsjCmHogyIc2SiRlPXZtyCzk93OKOx29I07luU2SV1cWYpiZIst0yvldrIn1Gk30WShYA0ICAgICBgHFatPhiXLHkOAHQ6lZrmH4ntaalijaJNWOXdZIyJNRdQegcEBATsLgRyKOBJh6NPeTauyk5AKuq2/bzTnpsIBuF09IqTBEtW7P+Ejr/p9X+Aq5/+MaxcvRYA0KSzmEO3JnzTs16Ju7AaM5f8tfV8ismVQw9kazG36FDruWVrjsB1OBSLDvXXqfchzXLEmiRZCGuPPAHXJUdj9a1fUB3F6laB45I0HKIuTIc0wG7PaimHjKl1W3ZnyrR6lUP6+WqEqiwQC9mrHDIECjMtB4CU5l7Zaq5UKv+iSmQYaG8hruIhZVghExMAmmwhkX36WuM+BtSBDVopRL5F6YySs5PRd9xUqKMEghFjIslNplKd/0CrkyoAsFruumg76AVT6YCAgICAgIUw+7SfBtCWwLdxpK1Ej1mL+0SWrCtqlxxKxnQHDQgICNgTCORQwJMSzZnvBaA6UwFtdzA347OjpVeTYDC7FMc89yfM48Nf9mvY/tK/67wuSVPcevjrcGRxDe688n/N86oT1mTz2viBb+H0t/2Z9dyy5Suw4dcvw4bjz3h8JzAhtm54JQ5p7sSNl30XqFoFjinh83gOKTKGkUOcnGBkC3Uk4yV34+r2+fNNVaAg0sWTjePlXaIuUHjIKlc5pAi7HHWUYqrZbs0RgFGGFUiNf1FjkUMpM9lm5BCZbOfKc2hKk0MZlabpMWLtQxUlNjlkK4cGyvRaE1/xJOSQJ5MZEBAQEBAQYOOYU5+Fby97JaojzwbA4kjyGtL/56ViKUpIU77ejV0WLVmOO9LDsOzQE3f5/AMCAgImQSCHAp6UOO7p5+K65GhsT1eY5+ZFDpmozfDiFQeglDEGyw/a5XNZueYQHHH807x/2/jCn8Y2OYUHv/NR81yGamLlUJZESPZQ56gNZ70R8zLDw9/7W0uBQ53hfMqhqOlXDsHyz1H/rhnB1JiOH35yiCt2qBzN17FNxlw5NLLJKpqPQw5l2geqiTJMa28hrhyiMUqRdgimRBZooqz1URq1aqiK5pnkGMnUmFrn00ucMZT6iKumRJJbSqI0VeRQpomviLXcddEq6oJyKCAgICAgYCEIIXDWz34cT33BawEA2UDFHFGq/m+UQ6wDWYqy06WVI04zrP3QpdjwjFfs8vkHBAQETIJgcR/wpISIIhz0M/8OKaV57rZn/jnWHnocAGDlAWux+Z2X4bj9dj05NA4rlq/A95Y9Dyc/+O/Y9sgWzCxerrxrHmfnit2JxUtX4KIlz8DRD34L1y17FgqRYhqsvWtddN4T1baahQdLwlIOqeergpNDpBzyq11yRsqUjHRxIeMMGZVeOWVupvzQmXuqCbs6yjArFLnD/X8MOYQEs2YeaoxEVjY5xE22yVMozVEgwQzU36YXLTXnosZQ6qPMIocyoGnLANN8ACQZMlFBNg3ipux0sjPH1c9noawsICAgICBgh7H64PX44cYP4ehnvQYAMLV8DRopsGjFagDKcyiTJVANUckISRK2XAEBAXs/gnIo4EmL2cXLsGjJcvN407NfgTWHHGUer1q91nTN2pNY9ox3YCBKXPuNv279aJJ9o/58cOobsBjbsf7h/+10hnNLs4CumiVJUjRSALCJHGNqXbRjSN25K+1RuxiiqS7M5+gtG4wz5KKEbJqOL0+SZqilsJRDTV0jFTUQ55b5d8RUOzRGKdJ2HuQzoD2k6PwqX1lZkqMUKSKhyMxpaqFrysq0coiROVGaWwRVmg+MUqoohojlOHIoQyHjveL6DwgICAgI2NcgoghnvPIXsGT5fgCAjU89Bw++9XysXnskACBZczymRIED7vuOt2NtQEBAwN6IsDMICNjDOPrEM3F9vB6rbvjH1o9mH+lcsfGp5+A+rMQybDUKHNeQmSNuCtSMjBFRZMrRhOOfAwBN1ZZgtaaOfnKIfKVQjYyRddRDDgFAVZW6o5cdtBVIIZhyiBN2duv4dmwivCqRtgRTreerS9JoLhUrlaN/R2lulbcNphehkhGg1UepKStj5FCSW3PIskFrej0atkbYHtRRZh0vICAgICAg4PFDRBFWHdwmIE94wZtxH1bikOYOb8fagICAgL0RgRwKCNjDEELg0Y2vwyHNnbjhB18HYJsd782I4hi3HXQugFY9k/WYOgNKAVNFLhmjgiZO5MSejmdUptWnHAJUWZeoC1RaceT7HFtj6Hlt2mwTKKVIIer2uAUrUWsYOcTHpnOiz6BACkE+A7okzZhs87Kyou3ARuRaLQXiJFWZxtpWHyWWcmjQtszV7+HnRqVoPjRRZhlxBwQEBAQEBOw8pFmO249+GwCEZExAQMA+g0AOBQTsBTjux9+MbZhCfsnHAfi9cvZWHPyctwAAKjg+NlXXcyhuVNctDiJFBOvERSRIzU2tx5g6EgpN7BAB41UOGWPoYUfJBCiCCUw5RAbSIslNC1ugLX0DWlKoZuVloi4gmwa5KCHi3BBeto+SNtlOB21pmibLCpEiqslzqIKMUiQZJ9Ay481UIIGIImZ6PTRG2D40cVAOBQQEBAQE7Eoc/6J3YwuWhvU2ICBgn0HQOQYE7AWYml2MC1Y+H6dt+SKAfYscOvCwY3BVfiIklHdQFMcoZGxULxyJLDHvkkM6aOIlUqYVbNUlh9K034+pRArRFKbLGS/DInBj6LgpUcWD7hh12T4uWuUQLyvjKh4ivEiFVOh5lGWBDIBMMkQeHyUiv+Js0L5XpBiYeegWuCiBOLPMuJN0gEY21ntM6VoxRDamrGz6lNfhtrtPxH7evwYEBAQEBAQ8UQymZ3Hd034Poy234oA9PZmAgICACRDIoYCAvQTLn/kO4POKHPIqXvZiHPKuL6JpavO4QmIRLARfqVMpUkDCMVfW5VIlUx/VBUYyRT7GRLnSZWV1QeRQf1kZqWtG0SJ7DJEiatrj8nbzveQQKYeovEwTO8VoHhkAEWeG8GpKj3Ioy02Zl+l8JhTBJJtGlaYluWmdCyhCKdLkUEW+TYwcmtHlbD4c8/RzAZzr/VtAQEBAQEDAzsEJZ71mT08hICAgYGKEsrKAgL0ERxz3FFyfKDPDyKN42Zsxu3gZFi9daR7PiwGS+S2d1/lKnaiciqt8vB3P6pHxJ+qDInZKS5HjgkiosvCbNnfIIWYazY3CEzZfGoP+X+oxyPsISW7mwkvlyFMpyQaGWCJyqBIporpAVZWqi1mcIWXKoThtS9XoPVFCpWvKc6iPHAoICAgICAgICAgICOAI5FBAwF6Ehze8FgAQZf2+OvsCbl72NGx89Lt49OHN1vOpl4xRj7mHjzGdZqVpoi6MP1EfKpEhqovx5JDu6FWNIYdiTg6xdvOCK4eYMTYZVbflZYrY4SVpbQc2Rg7psjFFDukxdFcTIqmMIXacGbNv9Z52zNIh2KpiaIywAwICAgICAgICAgICFkIghwIC9iKccM478D9H/zqOOuPsPT2VJ4Tlz34PpsUI1339o9bzqYewqEXXc4hMp7lySNTFgqaOVaQIlaZShIqv7T2psupypMihuEtWRR5yKE4HlnKIj+0qh4jYKUcecoiVlUlNYqX5lCGHiOhR8yhbA+skt8y4k2zKzIHUV9zXiIywAwICAgICAgICAgICFkIghwIC9iIMBgM881U/h8Fg31YOHbHpKbgmPRYH3/yPaKrKPJ/KEtIhLKgNPPfwIdNpwTqeRc0kyqEUsSwN6ZKk3c+RSKi6HKoW8Y5yqI5SxE3rl0QG0lGWW0bhKSNqiPCSEXkPZYhlaZRDUZq3pXKsrEwak+2cEUukIEqRNCOLYIqTBJVUt+0sGxiFFb2HSt3K4WNq/CQohwICAgICAgICAgICFkYghwICAnYJ5k58K9bI+3HV//yLeS5DlxwixQwnh0QUYSRTSFZWFtWFUcj0oY4yxE1hvHzSvKscotKrutDkkKtkijIksiWlatZuXljqpnZsIphMeZkuTauYMbZRDtWeDmz5wJBDpKSqogxxU6IwZW1tJzR6DxFOVIpGZXTV3KMA9q2udwEBAQEBAQEBAQEBew6BHAoICNglOP55r8X9WIHowo8DgOq6JSrAIWMaTYa4JWCF7jxGiJrCKGT6UItUGTFX48ghUg6NkHmUTE2k1EfmMfMvihjZkrH5GoKJeQ8lsjTEUpTkRmlkKYeoVX0+ZQgmMqZuNElFhtimy5omgpIsRzYYmOOp5/Tj+a3WfAICAgICAgICAgICAsYhkEMBAQG7BGma4eZ1r8Kxw0tw5/WXGgUMnFKnxqMcAlSJGCeH4qYwqpo+NFGGpCmNkbWPHEpY17AMlWc+imAi1KyjGHU6K2SMKI7Na6QmbohoqqMUSVOabmVRmiOnubBSOVQj/P/snXeUHNW19fep0NMziiAJWYFsSQRlEElGJthk2xgHHAHjnJ9xws8Jp+eEjY3Ne3yO5GAyNmDARIFAIIEkhAIKKKIcZzTTXel+f9xQt6qrZ0bSCIU5v7W0NNNdXXU7TNetfffZJxYEzy9lXEdyH7I0LbZK04C0M1mpoRElFVyuH2PcSVVZVsbOIYZhGIZhGIZhOkOXiUNE9DciWktEs3O3f5mI5hHRq0T0q646HsMwez7DzvkiqsLHqkevNl23kBMstChiZ/gAQJhzDrkiNPlE9ZDCTmCcQ6WCrm+pgNKiWsTnnUOljDgkVLi1FIdU2Ra87E5dLQ6VrH0EJnza9ctpmHSuA5suE7Mfq3/3hS0wpW3rE0HwPF+KSoKMc8i4r1o3yP2zOMQwDMMwDMMwTCfoSufQdQDOsm8golMBvAfAGCHE0QCu7MLjMQyzhzNg4FDM7HMaRq57AM0bVgNATQctLYY05Fw+Iflw47Szl5sERgSpR+KW4CICRQESQfD9WjHJ5PS0Nasd1zqZ/IKyMr9UNiVpQd7BpEUY9X/i6rIyVZLmN8BxXYTCzYlD1TRkWz82U1YWIlL70JlDIZVkyZ3jAESowjdB2P3eciBW0QEY/cad8jE+i0MMwzAMwzAMw3RMl4lDQoinAWzM3fx5AL8QQlTVNmu76ngMw+wd9D7lS2iiKpY/KtvaU06w0I6ZUs45tLppOA5tnmY6fnki7FAcEkrYEXE1FVByeOo4iXbXFIzHR9phTbuQPCtzSJd2aUgJN2S6lpXgI8yUpMnHedmyMss5pEUq7aSS40hzi3SQdkS+3I8iJD/jHGq74Hq4iNVjWBxiGIZhGIZhGKZjdnXm0HAAJxPRVCJ6iogm1NuQiD5DRNOIaNq6det28bAYhnmzOGL8JMz1jsBRq+4CUFvqJNwSwlyGDwC4x1yE/bEVrz5xOwApDiUdiENxqRd6ixZ4bRtS0SVHv4EHYjX6Y9DyB+qMpyHjHErDrRvhlnQodF4c0s6hrLCTWCVpgHQckd2BLQkRGXFIO4fSfZREgCTQgdjy/sgpZY4fws90XDts1El49ZifAAAa+76l8DVgGIZhGIZhGIax2dXikAdgfwAnAPgmgH8QERVtKIT4kxDiWCHEsQMGDNjFw2IY5s1k6+hL0QttAGpLnbyDJmBO4/iax4w8+b1Yg35wZ9wotxNBh+LQ/id8FA0U4uhNj9cIOBrX87Ds8I/gkGQ5gGJxqIRacahUaoBnuXdstKOIrGBqX0SmM5lfSvOCKEmdQxQH6Tj9XG6R24ASIsTauaS7rJGfcS4tOepz6H38RZnxHPPuz2PTF+ZgxIR3Fr4GDMMwDMMwDMMwNrtaHFoB4G4heQFAAqD/Lj4mwzB7GGPPvAjr0RcA4HjZbKFjz/sMxlz+n5rHeL6PRUPeg6Nbp2HtikWyXKyD1uwjxp2MOf7RaKJqTemXzRHnfhltQpWC5cQhp/dbUKIIi16ZKm+w2s1rkSeqKStrUM8tFXhKCE1ekSkry3Vgc5IAsWpNb4QllR9EbgMayMot0llJjp8Rvo754Hcw4sRzap7jfgcMKSyrYxiGYRiGYRiGybOrrxzuBXAqABDRcAAlAOt38TEZhtnDaGhoxPyhHwCwfTk4B53+WQDA64/+P/iITB5Pe7SO/wyAWnePTe/9D8Cr/c8qHM+RZ3waraIBG/5zlbwhqiISDlzPg6dCs6Ocg0m7ocgKpvYogQilW8rTJWHkw7E7sCWBGaftOtL7AICk0qz2ocWhkmldzzAMwzAMwzAM0xV0ZSv7WwE8B2AEEa0gok8C+BuAw1R7+9sAXCyEEF11TIZh9h6OeM/X8WyfczF01MmdfszQw47A7IaxOGjZ3SiJAHA6FpbGvuMjWIUBCKl9IWnwWd/ABtoP/Q4+KnN7734HYPYB52Hs5kew/o2lmXbzRqDJl5WpcjNTMqdDpatS2PFVCHYEH26SdQ5FapzmsSq3KC8OaddS6+CTsKrfiR29DAzDMAzDMAzDMJ3G63iTziGE+HCduz7WVcdgGGbvpd+AQZj4tVu2+3HV0R/DoGlfBwgdlpUBgOeXsOHMaxBs24xD29lu8LAxwA+XoF/BfUPOugzeDXdjwQO/gxNXEarSL98q7bLR7iMtEvn7DQVeB/qveBQAULIcR06S5hm5SWj2ZcrtXO1CUgKTcQ7J20/8+I86fA0YhmEYhmEYhmG2Bw6kYBhmj2bU6R/BZvSUv3idK0kbeeKZGP+OC3f4mEMOH4mZPU/CESvvgBtsNflF2gEU58rKvJK8XecCjTvnU3jNG45h8SIAQElnFVEDekYbAGWg9ERg9pV3HekyM9q0WB5bHYNhGIZhGIZhGKarYXGIYZg9mnJjE+b0P1v+4nXsHOoqGid9FfuhGUdvedqIQ9oBlO+a9tZjTsMLh38Fw487EwDgej4aP/AnVIWPQHgmGHrdwefgsGgx5v7nermdCGvFIfUcB4+chAp8nND8SObYDMMwDMMwDMMwXQ2LQwzD7PEMeLsMmaZSrzftmCMmvBOvecPRSGlotHYA5cUhv9SA4z7+EzSUm8xtB44Yh9ljvot5vdN8oBM++A3Mdw7HgClXIGjZBE+EpjuZq0rStGNo6BETEH7xJUwb+EG83HMSyo09dt2TZRiGYRiGYRimW9NlmUMMwzC7imGjjsPLG2/CkaMnvmnHJMdB87jPAC9+w4RGk+MgEC4Sp3Pdwo654GsAvmZ+byiV0PyOX2PYw+/Dq7d9B/tbziEtDjlW6VyvAQfh2M//uYueEcMwDMMwDMMwTDHsHGIYZq9g3NvfhT777f+mHnPMGRdjNfojsLqkhfA7FYxdj2NPOh1P9z4XRy6/Hfslm82+dOA0vYmlcwzDMAzDMAzDMAA7hxiGYeri+SW0nH8dRJS2n19eOgxJ/yN2ar+HX/hztP35MfSiNlNWtv8BQxALQp8DDtypfTMMwzAMwzAMw2wvLA4xDMO0w1vHnpz5/YjvPrfT+zxw6EF46pBP4+1Lr4ZQrev3H3wYcNlsDOs9ZKf3zzAMwzAMwzAMsz1wWRnDMMxu4LgLv4OZpXFwDpqQ3thnKEC0+wbFMAzDMAzDMEy3hJ1DDMMwu4HGpiaM+e8nd/cwGIZhGIZhGIZh2DnEMAzDMAzDMAzDMAzTnWFxiGEYhmEYhmEYhmEYphvD4hDDMAzDMAzDMAzDMEw3hsUhhmEYhmEYhmEYhmGYbgyLQwzDMAzDMAzDMAzDMN0YFocYhmEYhmEYhmEYhmG6MSwOMQzDMAzDMAzDMAzDdGNYHGIYhmEYhmEYhmEYhunGsDjEMAzDMAzDMAzDMAzTjSEhxO4eQw1EtA7A0t09ju2kP4D1u3sQDPMmwp95pjvCn3umO8Kfe6a7wZ95pjvCn/vuw8FCiAH5G/dIcWhvhIimCSGO3d3jYJg3C/7MM90R/twz3RH+3DPdDf7MM90R/twzXFbGMAzDMAzDMAzDMAzTjWFxiGEYhmEYhmEYhmEYphvD4lDX8afdPQCGeZPhzzzTHeHPPdMd4c89093gzzzTHeHPfTeHM4cYhmEYhmEYhmEYhmG6MewcYhiGYRiGYRiGYRiG6cawOMQwDMMwDMMwDMMwDNONYXFoJyGis4hoPhEtJKLLd/d4GKarIKK/EdFaIppt3bY/ET1KRAvU//up24mIrlZ/B7OIaPzuGznD7BhEdCARPUFEc4joVSL6qrqdP/fMPgsRlYnoBSKaqT73P1K3H0pEU9Xn+3YiKqnbG9TvC9X9h+zWJ8AwOwgRuUT0MhH9S/3On3lmn4aIlhDRK0Q0g4imqdt4jsMYWBzaCYjIBXANgLMBHAXgw0R01O4dFcN0GdcBOCt32+UAHhNCDAPwmPodkH8Dw9S/zwD4vzdpjAzTlUQAvi6EOArACQC+qL7T+XPP7MtUAZwmhBgDYCyAs4joBAC/BHCVEOKtADYB+KTa/pMANqnbr1LbMczeyFcBzLV+58880x04VQgxVghxrPqd5ziMgcWhneM4AAuFEIuFEAGA2wC8ZzePiWG6BCHE0wA25m5+D4Dr1c/XAzjfuv0GIXkeQF8iGvSmDJRhugghxCohxEvq52bIi4Yh4M89sw+jPr8t6ldf/RMATgNwp7o9/7nXfw93AjidiOjNGS3DdA1ENBTAuQD+on4n8Gee6Z7wHIcxsDi0cwwBsNz6fYW6jWH2VQYKIVapn1cDGKh+5r8FZp9ClQ2MAzAV/Lln9nFUec0MAGsBPApgEYDNQohIbWJ/ts3nXt2/BUC/N3XADLPz/A7AtwAk6vd+4M88s+8jADxCRNOJ6DPqNp7jMAZvdw+AYZi9EyGEICKxu8fBMF0NEfUEcBeA/xJCbLUXiPlzz+yLCCFiAGOJqC+AewAcsXtHxDC7DiI6D8BaIcR0IjplNw+HYd5M3iaEWElEBwB4lIjm2XfyHIdh59DOsRLAgdbvQ9VtDLOvskZbStX/a9Xt/LfA7BMQkQ8pDN0shLhb3cyfe6ZbIITYDOAJACdClhDoRUT7s20+9+r+PgA2vLkjZZidYiKAdxPREshIiNMA/B78mWf2cYQQK9X/ayEXAo4Dz3EYCxaHdo4XAQxT3Q1KAD4E4P7dPCaG2ZXcD+Bi9fPFAO6zbr9IdTY4AcAWy6LKMHsFKkPirwDmCiF+a93Fn3tmn4WIBijHEIioEcA7IfO2ngDwfrVZ/nOv/x7eD+BxIQSvNDN7DUKI7wghhgohDoGcuz8uhPgo+DPP7MMQUQ8i6qV/BnAGgNngOQ5jQfzdtnMQ0TmQdcsugL8JIX62e0fEMF0DEd0K4BQA/QGsAfBDAPcC+AeAgwAsBfBBIcRGdVH9R8juZq0APiGEmLYbhs0wOwwRvQ3AZACvIM2h+G/I3CH+3DP7JEQ0GjKE1IVcNPyHEOLHRHQYpKtifwAvA/iYEKJKRGUAN0Jmcm0E8CEhxOLdM3qG2TlUWdk3hBDn8Wee2ZdRn+971K8egFuEED8jon7gOQ6jYHGIYRiGYRiGYRiGYRimG8NlZQzDMAzDMAzDMAzDMN0YFocYhmEYhmEYhmEYhmG6MSwOMQzDMAzDMAzDMAzDdGNYHGIYhmEYhmEYhmEYhunGsDjEMAzDMAzDMAzDMAzTjWFxiGEYhmEYhmEYhmEYphvD4hDDMAzDMAzDMAzDMEw3hsUhhmEYhmEYhmEYhmGYbgyLQwzDMAzDMAzDMAzDMN0YFocYhmEYhmEYhmEYhmG6MSwOMQzDMAzDMAzDMAzDdGNYHGIYhmEYhmEYhmEYhunGsDjEMAzDMAzDMAzDMAzTjWFxiGEYhmEYhmEYhmEYphvD4hDDMAzDMAzDMAzDMEw3hsUhhmEYhtlDIaJDiEgQkdeJbS8homfepHFNJKIFRNRCROe/GcdkUojoIPXau125bReM6037DDIMwzAM07WwOMQwDMMwXQARLSGigIj6525/WQk8h+ymodkiU4v6t4SILt+JXf4YwB+FED2FEPd20TC7BV0hoAghlqnXPu7Kbd9MiOgKIrqpC/d3CRHF1mdc/xu8k/vtT0TPEtEGItpMRM8R0cSuGjfDMAzD7CmwOMQwDMMwXcfrAD6sfyGiUQCadt9waugrhOgJOcYfENFZ2/Ngy8F0MIBXd2QAnXFBdXfeDJfPPspzSgiz/72xk/tsAXApgAEA9gPwSwD/5M8xwzAMs6/B4hDDMAzDdB03ArjI+v1iADfYGxBRHyK6gYjWEdFSIvoeETnqPpeIriSi9US0GMC5BY/9KxGtIqKVRPTTHREShBDPQYo7I9V+LyWiuUS0iYgeJqKDrWMKIvoiES0AsICIFgE4DPICuYWIGohoMBHdT0QbiWghEX3aevwVRHQnEd1ERFsBXEJET6qxT1H7+CcR9SOim4loKxG9aDutiOj3RLRc3TediE7O7f8f6jVtJqJXiehY6/4Diehu9XpvIKI/WvfVfd55iOjdat+b1fiPtO5bQkTfIKJZRLSFiG4nonLBPo4EcC2AE9Xz3qxuv46I/o+IHiSibQBOJaJzletsq3ruV1j7yZQbqvH8RDlcmonoEVIOtu3ZVt1/kfpcbiCi76vn9o46r0k/9b5vJaIXAByeu7/wfSMpSv43gAvV6zBT3f4J9X40E9FiIvpsvfdjeyCiw9Vnc7z6fbD6PJxivSY/J6IX1FjvI6L9AUAIURFCzBdCJAAIQAwpEu3fFWNjGIZhmD0FFocYhmEYput4HkBvIjqSpGjzIQD50pk/AOgDKbC8HVJM+oS679MAzgMwDsCxAN6fe+x1ACIAb1XbnAHgU9szQJJMBHA0gJeJ6D2QF+oXQLojJgO4Nfew8wEcD+AoIcThAJYBeJdyZlQB3AZgBYDBasz/Q0SnWY9/D4A7AfQFcLO67UMAPg5gCKSo8ByAv0NedM8F8EPr8S8CGKvuuwXAHTnx5d1qDH0B3A/gj+q5ugD+BWApgEPUsW5T93XmeevXbLi677/Utg9CimMla7MPAjgLwKEARgO4JL8fIcRcAJ9D6nDpa939EQA/A9ALwDMAtkF+NvpCioSfp/bznT4C+Tk6AEAJwDe2d1siOgrA/wL4KIBBkJ/TIe3s5xoAFbXtpeqfTeH7JoT4N4D/AXC7eh3GqO3XQn7+e6vxXaUFHTW+zUT0tnbGU4gQYhGAbwO4iYiaID9n1wshnrQ2u0iNfxDk39jV9j6IaJZ6rvcD+IsQYu32joNhGIZh9mRYHGIYhmGYrkW7h94JKXKs1HdYgtF3hBDNQoglAH4DKZIAUmD4nRBiuRBiI4CfW48dCOAcAP8lhNimLk6vUvvrLOsBbATwFwCXCyEegxQrfi6EmCuEiCAv2sfmXDQ/F0JsFEK05XdIRAcCmAjg28plMUPt33ZQPSeEuFcIkVj7+LsQYpEQYguAhwAsEkL8R43hDkjxCwAghLhJCLFBCBEJIX4DoAHACGv/zwghHlS5OjcC0GLDcZCC1TfVa1YRQui8n848b82FAB4QQjwqhAgBXAmgEcBJ1jZXCyHeUO/bPyFFke3hPiHEs+o1qgghnhRCvKJ+nwUpTr29ncf/XQjxmnp9/9HB8ett+34A/xRCPCOECAD8AIAo2oH6LL8PwA/UazsbwPX2Np1435Db/gH1mRBCiKcAPALgZOv+vtb7V8QJSkDS/xZZj/0zgIUApkIKQN/NPfZGIcRsIcQ2AN8H8EGyXHlCiNGQotVHIMU7hmEYhtmn4HpphmEYhulabgTwNKSD5Ibcff0B+JBOFs1SpO6MwQCW5+7THKweu4qI9G1ObvuO6K+EEJuDAfyeiH5j3UZqTPr47R1jMICNQojm3LiPtX4vevwa6+e2gt97msEQfQPAJ9WxBORFuh38vdr6uRVAWZVRHQhgacFzBjr3vDWD7duEEAkRLUfWVZMfw/YGIWdeIyI6HsAvIEv/SpDCyh3tPD5//J71Nmxn28znTwjRSkQb6uxjAOQ8st7ntTPvG3Lbnw3pGBsO+dluAvBKO88jz/NCiPacRX+GdP58RjnebPLPw1djNZ9LIUQFwK2q9G2GEGLmdoyNYRiGYfZo2DnEMAzDMF2IEGIpZDD1OQDuzt29HkAIKUxoDkLqLloFKWjY92mWA6hCCjx91b/eQoijd3LIywF81tpnXyFEoxBiiv202nn8GwD2J6JeuXGvtH5v7/HtonJqvgXpqtpPlWJtgRRyOmI5gIOoODy4M89b8was94ykOncgss+xs9R7LfK33wIpZBwohOgDmVXUmee8M6wCMFT/QkSNAPrV2XYdZPlV4ee1E+9b5vkSUQOAuyBdWQPV9g+ii54zEfUE8DsAfwVwhc4Ussg/jxDy77UIH7IslGEYhmH2GVgcYhiGYZiu55MATlMlKgZV9vQPAD8jol6qhOkypLlE/wDwFSIaSkT7AbjceuwqyDKb3xBRbyJyVNBue6VGneFaAN8hoqMBE3r9gc4+WAixHMAUAD8nojIRjYZ8/l3VprwXpAixDoBHRD+AdKB0hhcgBY9fEFEPNT7dhnx7nvc/AJxLRKcTkQ/g65BCXZGQ1BFrAAzN5RUV0QvSkVUhouMgy5l2NXcCeBcRnaTGdwXqiDPqs3w3pNDSpPKKLrY26eh9WwPgEFJh7EjdUesARMpFdEaXPTPg9wCmCSE+BeAByPff5mNEdJTKJPoxgDuFEDERnUBEbyOiEhE1EtG3AQyELE9jGIZhmH0GFocYhmEYpotRuSnT6tz9Zciw4cWQ2SW3APibuu/PAB4GMBPAS6h1Hl0EeRE9B8AmyIv5QTs51nsg23PfRrKb2GwAZ2/nbj4MGfj8BoB7APxQCPGfnRmXxcMA/g3gNchynwo6WUqnBIx3QQZ4L4MMzb5Q3dfp5y2EmA/gY5Bh4uvVPt+lcnm2l8chO8WtJqJ6zhQA+AKAHxNRM2T2zz924FjbhRDiVcjP522QoloLZEh0vgRL8yXIkrTVkGHpf7fu6+h90yVyG4joJVWW+BXI57kJUgy73z6Y6mx2Muqju8DZ/yao8PGzAHxebXcZgPFE9FHrsTeq57AaQFmNBZCC1TUANkA6xc4BcK4Q4o12xsEwDMMwex0kxA47vRmGYRiGYZh9FFWKtRnAMCHE67t5OLsMInoSwE1CiL/s7rEwDMMwzO6CnUMMwzAMwzAMAICI3qXKxHpA5v+8AmDJ7h0VwzAMwzC7GhaHGIZhGIZhGM17IMsD3wAwDMCHBNvMGYZhGGafh8vKGIZhGIZhGIZhGIZhujHsHGIYhmEYhmEYhmEYhunGeLt7AEX0799fHHLIIbt7GAzDMAzDMAzDMAzDMPsM06dPXy+EGJC/fY8Uhw455BBMm1avAzDDMAzDMAzDMAzDMAyzvRDR0qLbuayMYRiGYRiGYRiGYRimG8PiEMMwDMMwDMMwDMMwTDeGxSGGYRiGYRiGYRiGYZhuzB6ZOVREGIZYsWIFKpXK7h4Kw2wX5XIZQ4cOhe/7u3soDMMwDMMwDMMwDFPDXiMOrVixAr169cIhhxwCItrdw2GYTiGEwIYNG7BixQoceuihu3s4DMMwDMMwDMMwDFPDXlNWVqlU0K9fPxaGmL0KIkK/fv3Y8cYwDMMwDMMwDMPssew14hAAFoaYvRL+3DIMwzAMwzAMwzB7MnuVOMQwDMMwDMMwDMMwDMN0LV0mDhFRmYheIKKZRPQqEf1I3X4oEU0looVEdDsRlbrqmG82RISPfexj5vcoijBgwACcd955u3FUHdOzZ88Ot7niiitw5ZVXtrvNvffeizlz5nTVsBiGYd505r7wKOIo6nC7KX/9JmY9fe+uHxDDMAzDMAzD7AF0pXOoCuA0IcQYAGMBnEVEJwD4JYCrhBBvBbAJwCe78JhvKj169MDs2bPR1tYGAHj00UcxZMiQ3TKWqBMXN10Ni0MMw+zNzJ58H4588P2YM+WBwvtfvPePmDv1YQDAyOU3oW3mPW/m8BiGYRiGYRhmt9Fl4pCQtKhfffVPADgNwJ3q9usBnN9Vx9wdnHPOOXjgAXlhceutt+LDH/6wuW/btm249NJLcdxxx2HcuHG47777AABLlizBySefjPHjx2P8+PGYMmUKAGDVqlWYNGkSxo4di5EjR2Ly5MkAsk6fO++8E5dccgkA4JJLLsHnPvc5HH/88fjWt76FRYsW4ayzzsIxxxyDk08+GfPmzQMAvP766zjxxBMxatQofO9736v7XH72s59h+PDheNvb3ob58+eb2//85z9jwoQJGDNmDN73vvehtbUVU6ZMwf33349vfvObGDt2LBYtWlS4HcMwzJ5K68y7AQBh66aa+zavX4MxL/8A2575fwAAT8SgJHxTx8cwDMMwDMMwu4subWVPRC6A6QDeCuAaAIsAbBZCaJvLCgA7bbX50T9fxZw3tu7sbjIcNbg3fviuozvc7kMf+hB+/OMf47zzzsOsWbNw6aWXGlHnZz/7GU477TT87W9/w+bNm3HcccfhHe94Bw444AA8+uijKJfLWLBgAT784Q9j2rRpuOWWW3DmmWfiu9/9LuI47pS4smLFCkyZMgWu6+L000/Htddei2HDhmHq1Kn4whe+gMcffxxf/epX8fnPfx4XXXQRrrnmmsL9TJ8+HbfddhtmzJiBKIowfvx4HHPMMQCACy64AJ/+9KcBAN/73vfw17/+FV/+8pfx7ne/G+eddx7e//73AwD69u1buB3DMMyehkhiHLb+SQBAEgU19899/EacSDEcJQj5iFgcYhiGYRiGYboNXSoOCSFiAGOJqC+AewAc0dnHEtFnAHwGAA466KCuHFaXMnr0aCxZsgS33norzjnnnMx9jzzyCO6//36T3VOpVLBs2TIMHjwYX/rSlzBjxgy4rovXXnsNADBhwgRceumlCMMQ559/PsaOHdvh8T/wgQ/AdV20tLRgypQp+MAHPmDuq1arAIBnn30Wd911FwDg4x//OL797W/X7Gfy5Ml473vfi6amJgDAu9/9bnPf7Nmz8b3vfQ+bN29GS0sLzjzzzMKxdHY7hmGY3c3iGU/icGwGAIgCcajXAllCRiKCSBL4llDEMAzDMMy+i0gSbN26GX367r+7h8Iwu5UuFYc0QojNRPQEgBMB9CUiT7mHhgJYWecxfwLwJwA49thjRXv774zDZ1fy7ne/G9/4xjfw5JNPYsOGDeZ2IQTuuusujBgxIrP9FVdcgYEDB2LmzJlIkgTlchkAMGnSJDz99NN44IEHcMkll+Cyyy7DRRddlGl9XqlUMvvq0aMHACBJEvTt2xczZswoHOPOtE+/5JJLcO+992LMmDG47rrr8OSTT+7UdgzDMLubTdPuMj+LOCv6LF08HyPD2QAANwkRhgFKAItDDMMwDNMNeO66yzF66Q2ofmcxGspNu3s4DLPb6MpuZQOUYwhE1AjgnQDmAngCwPvVZhcDuK+rjrm7uPTSS/HDH/4Qo0aNytx+5pln4g9/+AOEkNrWyy+/DADYsmULBg0aBMdxcOONNyKOYwDA0qVLMXDgQHz605/Gpz71Kbz00ksAgIEDB2Lu3LlIkgT33FMciNq7d28ceuihuOOOOwBIYWrmzJkAgIkTJ+K2224DANx8882Fj580aRLuvfdetLW1obm5Gf/85z/Nfc3NzRg0aBDCMMw8vlevXmhubu5wO4ZhmD2Nt6x+AgucwwDUOofWzXsWANCCRjgiRBhIUZ6SNz/4n2EYhmGYHKJd38BOsXLxPByz9G/oSW2obGvu+AEMsw/Tld3KBgF4gohmAXgRwKNCiH8B+DaAy4hoIYB+AP7ahcfcLQwdOhRf+cpXam7//ve/jzAMMXr0aBx99NH4/ve/DwD4whe+gOuvvx5jxozBvHnzjPvnySefxJgxYzBu3Djcfvvt+OpXvwoA+MUvfoHzzjsPJ510EgYNGlR3HDfffDP++te/YsyYMTj66KNNAPbvf/97XHPNNRg1ahRWriw0amH8+PG48MILMWbMGJx99tmYMGGCue8nP/kJjj/+eEycOBFHHJFWBn7oQx/Cr3/9a4wbNw6LFi2qux3DMMyexKpFszA0eQOrh5wBABBxVhwSoSzJbUFPuEmIKJC/O4KdQwzDMAyzq9i6YS2m/f7D2LxuVd1tXv73dVj7o8PQtouEm7V3fR0NJM/3QViVQlQS75JjMcyeDoldqMTuKMcee6yYNm1a5ra5c+fiyCOP3E0jYpidgz+/DNN1PH/LT9HzoDEY+bZ3dWr7F2/+ESYs+C0WfOAxDLvjdDx/2FdwwkU/Se+/+/eYMOsHWOociIrThP0/dScGXDsKr5ZG4+j/nryrngbDMAzDdGuev+H7OGHx1Zg56f9hzGkfqrlfJAkW/+wYHB4vxppPvYSBQw/v0uO/8tRdGPXEpVjqDMXByQqs/uR0LJt6Lw589VoM+uHC7Fj/9zMota7G+G/c36VjYJjdARFNF0Icm7+9K51DDMMwDLNLWb96GSbMvxJtL97Y6cf0WPofLHYOxiHDZClw3jmURGrF0CnDFRHiUN7vCi4rYxiGYZhdgUgSDH1dxmMkUfH5dv6Lj+LweDEAIApqm0m0R7VlY7v3B5U29H3ye1hOg7HmqE8CAOKwinjD6xgk1iGJU/fQSw/8GSesvR2DW+Zs1xgYZm+DxSGGYRhmr2HREzfCJdHpPKAtm9ZheHU2Vr/lVHieL2/MPVaLRYHTCE+EiENdVtZ14pAQAms3b93hx69fvQwvXflurF+9rMvGxDAMwzC7i1efexBDhSwnS6Kquf2VJ+/C/GmPAwBan/k/c3sUVtFZZj5yA/xfH4bXXnwUgDwHT/nfz+K5W35qtnn5Hz/FgeINbJz0EziNvdQxQpBqWhGq461YMBPDXpRRIS7kvEAkCZI42b4nzDB7ASwOMQzDMHsN+y2W2Wqd7SS24Nl74FGC/ce9G+Q4CIQH5JxD+vfIbYQrIpM55HZh5tDUh25Er6sOx8Z1q3fo8Yvu+hHGtzyFlXOmdNmYGIZhGObNpHnrZqxdvQIA0DrtFiRCdle2G0X0ePrHaH381wCAwc2voFU0AMgKSO2xZMFsHPbst+CQQMsGmb360sM34aS1t6HHMik6rV2+EKMW/RkvNU3EmFPfD8eVi0dxWAWp+UUYVLF141qIWz6EED5mNB4PT4lDL1zzCcz8zXk79VowzJ4Ii0MMwzDMXsGapfMwPJwPoPNh0WL+Q9iI3hg+7u0AgBCeWRU026jfI69JOodUmZnXhc4h75Xb0EgBWjZtvzi0/o0lGLtWimL1rPcMwzAMs73MefwWzLrqvW/a8Wbf9C00/0mKKg2V9dhM0rGTWOdlDyFcJdB4iNBCspFPFHZcVlZp24bw1otQRmD227xlIw58/gcAYPa74o5vgSAw8ANXAQAcTwpQtjgUhwHm3PUzDEpW442z/oJKr0Pgq3lBU8sy9KkUN/1hmL0ZFocYhmGYvYKlT98EAFiH/eB0oqysWq1g+NapWLzfRDieBwCIyAXVcQ7FbiNcxKasrKucQ83NW3B064vyGNthi9csvvdnppNKZ1dOGYZhGKYj3Of+gJGbn4BIdl2J1PM3/xjzf3YCAMBv24DeyWYA0gFcoTKArHPIE5FZAPIRoqq26cz5c+Zfv4RhySLMOPLrcr9hgKWzJuMAbEQgXFMuPrB5Nl7tPRFDDh0hx+KV5DGiIFNWRm0bsZl6Y+QJZwKOZ5xDjgjhgjuaMfseLA4xDMMwewX7Lf03XnOHYb0/uFPOobkv/Ad9aBtKR55jbgvhA/mStDhELAjCK8NHZCagXeUcmvvMfWgkVboWZo+9Zs0aTHnq4bqP3bh6KcasuQev+iMBZCfQDMMwDLOjrH9jMUaEc+CQQBzL812ltRkLf3oMFrz0ZJccQyQJDlp4Ew4MZKi0IwJLYIkQFIpDqXPIFxGqTiOAtHlEPV6dfA+OX383nhv4YRw4UXU+iwNzTt9GTabRhCciJG6jeazj6bKywDiHojCAk4SIIO8Tbgm+Grsr4i4tPWeYPQUWh7aDNWvW4CMf+QgOO+wwHHPMMTjxxBNxzz337PLjTps2DV/5yle6ZF+nnHIKRowYgTFjxmDixImYP39+l+y3K+nKMV533XX40pe+BAC49tprccMNN9TddsmSJbjlllvM7135ujMMs3OsfH0+hkULsPHgs5GQZyaO7bHt1X8jEC6Gn/Ruc1sErzbMOgkRwoNw/GxZGbpGHErm/tP8nF/5XPjg1Tjm8Y8ijotXIBfd81PpZnr75XJfMU9GGYZhmJ1n8dO3mp912POG1Svw1mghNi6a1iXHWPDyUxgs1hhRhZLIlGa5lvBjZwG6iI3Dx0OE0NHOofqLI2G1DX2e+G8sp0EYd8lv4ZVUTlEcIlHCUxVlI+h4iCDcUnpMX+cahSbTUJeYReTpjeCSQBxFcEUIT7BziNn3YHGokwghcP7552PSpElYvHgxpk+fjttuuw0rVqzY5cc+9thjcfXVV3fZ/m6++WbMnDkTF198Mb75zW/W3F/vIuXNZFeM8XOf+xwuuuiiuvfnxaGuft0ZhtlxljwjJ7EHve3DiB2/Uyt2pbZ12Ej7o9yzr7ktIg9Okp1gUhwiJA/C9eEjMqVbXSEOVSoVHLnlWaylfgCkZd3GCZvRQCFCFYIdBlVM/9V5WDhrCpo3r8Oo1fdgWt+zMPiw0QDYOcQwDMN0Db0X/cv8HKhzUKxLl/Pl1zvIxqny3O1TDJEkcJLQct+ECJV7R1gLHz4iuCKCSBKUKEbgNgFov6x65m0/xtDkDaw7+WcoNzbB96XwI6LAPK7qlI1zyEcEOJ55vA6kTqKqcSZHQQAnCTLiECDLzdwkhAderGH2PVgc6iSPP/44SqUSPve5z5nbDj74YHz5y18GIIWFk08+GePHj8f48eMxZYrsKPPkk0/ivPPSNPsvfelLuO666wAAl19+OY466iiMHj0a3/jGNwAAd9xxB0aOHIkxY8Zg0qRJNft44YUXcOKJJ2LcuHE46aSTjKvmuuuuwwUXXICzzjoLw4YNw7e+9a0On9OkSZOwcOFCAEDPnj3x9a9/HWPGjMFzzz2H3/72txg5ciRGjhyJ3/3ud+YxN9xwA0aPHo0xY8bg4x//OABg3bp1eN/73ocJEyZgwoQJePbZZwEATz31FMaOHYuxY8di3LhxaG5uxqpVqzBp0iSMHTsWI0eOxOTJk3d4jDfddBOOO+44jB07Fp/97GeNYPT3v/8dw4cPx3HHHWfGAgBXXHEFrrzySgDAwoUL8Y53vANjxozB+PHjsWjRIlx++eWYPHkyxo4di6uuuirzum/cuBHnn38+Ro8ejRNOOAGzZs0y+7z00ktxyimn4LDDDmMxiWF2Efst/Tde9w7D4MOOQuL4cOqs2L3y0J8x99dnAJArlDG5mftj8ms6nZG2jTs+PMRmIul3sqyspWUrpv7iXKxcsqDmvrnPP4Q+tA3L3iLHlORXPtUEPAwqAIBN697AMa2TsWHOU9iwainKFMIb/g6zCsriEMMwDLOzrF/5Oo4I52At9gcA06VTu1tFF7hURZLgsLWPmt/DMIArUnHISSLEyhUEO5BaRPBEiEi5eGNXl5UVn//WLZuPkYv/jGlNkzD+tPfJfSgnEOLAnDcDp2zKxT0RQTi+2UfqHApS51AUqHmE3I6U0ygMqnARdZm7mGH2JLyON9kDeehyYPUrXbvPt4wCzv5F3btfffVVjB8/vu79BxxwAB599FGUy2UsWLAAH/7whzFtWn1L5oYNG3DPPfdg3rx5ICJs3rwZAPDjH/8YDz/8MIYMGWJuszniiCMwefJkeJ6H//znP/jv//5v3HXXXQCAGTNm4OWXX0ZDQwNGjBiBL3/5yzjwwAPrjuGf//wnRo0aBQDYtm0bjj/+ePzmN7/B9OnT8fe//x1Tp06FEALHH3883v72t6NUKuGnP/0ppkyZgv79+2Pjxo0AgK9+9av42te+hre97W1YtmwZzjzzTMydOxdXXnklrrnmGkycOBEtLS0ol8v405/+hDPPPBPf/e53EccxWltb646vvTHOnTsXv/zlL/Hss8/C93184QtfwM0334x3vvOd+OEPf4jp06ejT58+OPXUUzFu3Lia/X70ox/F5Zdfjve+972oVCpIkgS/+MUvcOWVV+Jf/5IrKU8++aTZ/oc//CHGjRuHe++9F48//jguuugizJgxAwAwb948PPHEE2hubsaIESPw+c9/Hr7v1xyTYZgd443li3BUNBcvHPoFHAogIVn+VcS211/A+JbpAABKAkSU/VuMyTV5AumNISK4gFuCRwliJdT4nZz4rV70Co6vPIPpc57GkEOGZe5rnXU/2kQJPUa9C1h1a83Kp2NlGwDpBF3EgfnZ8RuMONRVq7kMwzBM92XR07egP4BFA8/EAWtuTc9B6v+uWIhoa23GAdiITeiF/dCMMKjASSKZcRRJcSV2GxAJJ3Nu086hMKjABxB77WcOrfrH19AEB4MuvCrdhzlnRpY41Ihe0WZzDLuszJShRaFZGIqVQyjOOYfiMIDHZWXMPsreKQ7tAXzxi1/EM888g1KphBdffBFhGOJLX/oSZsyYAdd18dprr7X7+D59+qBcLuOTn/wkzjvvPONQmThxIi655BJ88IMfxAUXXFDzuC1btuDiiy/GggULQEQIrXDT008/HX369AEAHHXUUVi6dGmhOPTRj34UjY2NOOSQQ/CHP/wBAOC6Lt73Pqm2P/PMM3jve9+LHj1k68gLLrgAkydPBhHhAx/4APr37w8A2H9/udrwn//8B3PmzDH737p1K1paWjBx4kRcdtll+OhHP4oLLrgAQ4cOxYQJE3DppZciDEOcf/75GDt2bOHr09EYH3vsMUyfPh0TJkwAALS1teGAAw7A1KlTccopp2DAgAEAgAsvvLDmvWhubsbKlSvx3vfK1p3lcrlwDDbPPPOMEeFOO+00bNiwAVu3bgUAnHvuuWhoaEBDQwMOOOAArFmzBkOHDu1wnwzDdI5lz/wDgwEMOuGDAIDE8Y01PA8lEUok7eiO2A7nEHnpxK+yDQDgQdrgyWnfZGtWWnOT6ThOcPjGp/Bar+PQo0dfeVt+wq3yj2IlBEVRui+9Sup6JXjaIs+ZQwzDMMxO0nvxA3jdORjuoJHAGss5pM9RO3Guef7Wn2PAyNPQf+jhAIA2asR+ohlRUDVZQmFQgStCJI6PEJ7pIiqSBD7FcBGZa5zEl9cjoqCsrHnzeoxueRbPDr4YEw9+q7ndlJXFgcnqC90muIjMMWBnDqlAahFVTaZhHAVwRFjjHIqCKlwRd3oBiWH2JvZOcagdh8+u4uijjzbiAABcc801WL9+PY499lgAwFVXXYWBAwdi5syZSJLECA6e5yGx2kNWKhVz+wsvvIDHHnsMd955J/74xz/i8ccfx7XXXoupU6figQcewDHHHIPp06dnxvH9738fp556Ku655x4sWbIEp5xyirmvoaHB/Oy6LqKo+Evr5ptvNuPWlMtluK5buH1HJEmC559/vkZkufzyy3HuuefiwQcfxMSJE/Hwww9j0qRJePrpp/HAAw/gkksuwWWXXVaYA9TRGIUQuPjii/Hzn/88s8299967Q89hZ+js684wzI7Re8lDWOoMxcEjpAtQOF5d55CeYMZxBCdJJ3WamHwzOdXobiSkWtkmgRSHHBKI4gieU0J76ADrvDj02ozJOBIbsGr4uXXLwvR4w1Bb+tX9SWSyHxyvAb6xyLM4xDAMw+w4a1cuwYhgDqYe8ln4uoV7KK9PTOlzJ5o+FPHGkvk4Yf4v8Pzmpeh7wfcAQHYkE/I8p8/dQVA1pV0RXLNQEoYBSpBlX5Fy8QrtHCpwzlYrregFwN0vuxhOjoNAuEASmvNu7DXKgGt1DMoEUpfNMXSmYRwGsvTNiEPy/yiSHde4rIzZF+HMoU5y2mmnoVKp4P/+7//MbXZJ1JYtWzBo0CA4joMbb7zR5N8cfPDBmDNnDqrVKjZv3ozHHnsMANDS0oItW7bgnHPOwVVXXYWZM2cCABYtWoTjjz8eP/7xjzFgwAAsX748M44tW7ZgyJAhAGCyi7qak08+Gffeey9aW1uxbds23HPPPTj55JNx2mmn4Y477sCGDRsAwJSVnXHGGcbdA8CUWy1atAijRo3Ct7/9bUyYMAHz5s3D0qVLMXDgQHz605/Gpz71Kbz00ks7NMbTTz8dd955J9auXWvGsnTpUhx//PF46qmnsGHDBoRhiDvuuKPmsb169cLQoUONkFStVtHa2opevXqhubm57mty8803A5DlZv3790fv3r13aOwMw3SerevfwIjKLKwYdIa5TTg+XBTbuXXJWBhU4YoiccircR1REkqHkcofEEoc0vvpCF0qlre8t61bAgDofcg4uFp4ygdS58rKTDezODBCkeOX4HpejfWeYRiGYbaX15+7Gw4JDD7xQjjq3JSeg7RzaMfONcumyHk3JaHpgBaoXCHpuInUzxV4iJA4PiLyrXN3WtatHy9K2jlUK1iZ8muvdhEnggeKQ/NcYq8JnipXAwC4qUfCuHOj0IwxiULlbpLb6QWkKKjCR2g6lzHMvgSLQ52EiHDvvffiqaeewqGHHorjjjsOF198MX75y18CAL7whS/g+uuvx5gxYzBv3jxTknXggQfigx/8IEaOHIkPfvCDJv+mubkZ5513HkaPHo23ve1t+O1vfwsA+OY3v4lRo0Zh5MiROOmkkzBmzJjMOL71rW/hO9/5DsaNG7fLHCrjx4/HJZdcguOOOw7HH388PvWpT2HcuHE4+uij8d3vfhdvf/vbMWbMGFx22WUAgKuvvhrTpk3D6NGjcdRRR+Haa68FAPzud7/DyJEjMXr0aPi+j7PPPhtPPvkkxowZg3HjxuH222/HV7/61R0a41FHHYWf/vSnOOOMMzB69Gi8853vxKpVqzBo0CBcccUVOPHEEzFx4kQceeSRhY+/8cYbcfXVV2P06NE46aSTsHr1aowePRqu62LMmDG46qqrMttfccUVmD59OkaPHo3LL78c119//Q6Nm2GY7WPRM3fAJYH9jnmfuS1RXcWK0G3qg6AKJ4mR5MvKHN9YxjXaNq4nfqKaikNBZ8QhndGQm0zrVU6vVEqdQ/kJt5VtAKQTdMSB2a8WluTqKjuHGIZhmB0n2bYeAPCWQ44AefLcpMvJkliei2gHXaq9ljysDhIiVmVhuttYHAXGORRHoXTe5MrKIvUYF5ERqkiJQ0WClT53alePTUQeKAnMeTfxmqTopM/rduaQEodgOYeSSIpZiVo4cozLqmpyiYzQxDD7CHtnWdluYtCgQbjtttsK7xs2bJjpYAXAiEYA8Ktf/Qq/+tWvah7zwgsv1Nx2991319x2yimnmPKxE088MZOh89Of/hQAcMkll+CSSy4xt+tQ5Tx2yLJNS0tL5vfLLrvMiD82F198MS6++OLMbf3798ftt99es63tJmrv8Ts6xgsvvBAXXnhhzXaf+MQn8IlPfKLm9iuuuML8PGzYMDz++OM12+Rv06/7/vvvX1iyZu8TAGbPnl04doZhdgxvwUN4AwNwxJiT0hudUt2yMtNlJKjAESFCpylzvyDPTPw0bhIhJs+IQxSk3zXGydMOsZ5E5yauQk1yPT8tC8uXlTmxdg5p95GaDMdhmjmkJq2hXgVlGIZhmO1g7guPgh79AQ657D+mPNn3GyznkDoHaUFmBxYiNq1fjSOqrwAkz2GRKlULlTgkHTfS9RsGVTSJCML1lYiTcw6J1DlEpZ4AChZXrHEXO4dc+VzV8xW+FIda9H49O5C6rI4Rmo5miRKzEtLikC4rC01JWRgGsEM1Xpv5LMo9+uKgtx7dyVeNYfYs2DnEMAzD7JEErc0Y1jINr/ebBMe1TleOV9c55Ii0TMtTYZc2RWHWjgiRkAdHrSJS1Gbui/Kt5wvQIZn5iav+3fUbTJvcvDiUrlCqlU09aU3C1HmkxCHbet8RSZxgw/q1ndqWYRiG2T08//dvY9p91+zy42ybfC2OCOdg45oVskOncOC4rgli1qKQLo/eEXFo4ZR7ZamVIJn5l2tFr8/LgMw48hBDOCXE8IzrV4s9PiKzOOOWlXOoqKxMLcJQvbKyRJaVRcIBvDJcEggq8hxvZw75VtMHL1NWljqHjMsqrKJEUuSKcu5i5/4vYe193+vkK8Ywex4sDjEMwzB7JAue+yfKFKJx1Lsytwu3BK9O5pBjJpgBHBGbrABN4vhwkQ+kjjJlZU6U5snlJ35FJHW6u+gOKZ5fslrR5zqlmbIylYlgTcz1fh01IY3gdnrC/vxNP4T/h7GdErc6y7M3/ACvPv9wl+2PYRimO1Np24axS/4Kd36x27+rqFZaMWLrswBkaRfFAUJVPKLPL+l5bMfLyuKtqwEAG2g/meWn3UgqUDoOq8ZxE4UBfEQg10dMXur6VY/xKEFYlS4ip0E5hwrOf3F7ziGSohPFoXTeqoyhoE3mi9qCkm/O0YGZI4hIBmgLXVamStfCSlp6HufOseWkFZ61wMQwext7lTgkhNjdQ2CY7YY/twyzY1Re/Re2iiYcdcLZ2TvcEjxKCoMgU+dQBR5SO7gmcXyzKmh2J0LEjm8ml54tDoUd5wmYIOr8ZFpNtv1Sg5l45t1Fbm5CLKyyMv2zp7qoRJ0sK0viGIcsuQ29aRuqlfS5tG7biiRO2nlkfV57eTImLv49Wl64aYcezzAMw2RZOP0xlCmsycHrauY++0/0IilYxGEVSEKEJIUSXbasM4fi7XQOVVpb8PJ/ZOSGUOenKpVlF1AtDqlW9EkUmIWdsNIKh4QqK/Otc3d6XC3CeKVGxIIKM4d0Qwi3jnPIScL0+SqnUHXbVvkcrce4SjiiOC0ZS9TPQolCjnbxVramY8zNETwRmefCMHsje404VC6XsWHDBr7QZvYqhBDYsGEDyuVyxxszDGMQcYRDN07GvF4n1P796NW7gjwgW2zRbXIz+3X8mrwibRvX4pAbp6t+cYGNvYZYCzq5iWuSlpWlrejzZWXKOaTLytREl0SUikMllXPQybKyOc8/hMFClpRp51OltQXRr4/Ayw//vePnU0DzY1fKcSXcmYVhGKYraJ4rOxhvj5hQadsGkaQi/7znHsSMh/5mfq9WWvHcTVdkOm1WX7nP/BwFVVASIYYWh5RzKLdA4bRzrtm6YS1e/N9PIqi0YfZjN2PcM5/F6mULzAJJ4JRBIjILJ8JXgdRhYBZnwjaV7eeWkJBrXL92zp8WYRy/hAhenUDqrMM2cx/5cJIQFAfy8UocCivy2LqkDgDIcRAIDyIOTdi0UC3r9TzC0y7etjSXMO/O9RDtcrGPYXYle00g9dChQ7FixQqsW7dudw+FYbaLcrmMoUOH7u5hMMxexeKXn8Th2Ipk2Fk19+muJGFQRbmxR+Y+xyrTcuuJQ8g7hyIZVK0mfiVbHOpEILXJEcpNCPUqql+Srejlyme+U1qU2YcuRXOSwARde2ryHpPbqYuIthduMD9rAa1l6yb0xzaEG5d1+Pg8yxe9irHNT8mQUZ70MgzDdAn91kwBgE6LCRvXroR/zTF49fif45hzZOOVtmeuwf5tS4CzLwUAvPbCozhx4VWY+/KJOPL4MwEAg7e8jG2ijB5UQRxWM2Vl2nGTOmDVYoeovxCwcNrDmLD2Trw25yLESmiptjYDcYBYEEJqgJuERnBCSTuHqiYvMKyo0i7XlyKOSBd2NJHat+M1yLKwgsUJU37t1zqHYvJAIgIloXTeqrmDFncoJyjJYwRppmEihSKhRCV9jMTqaJoUiENOO68dw+zp7DXikO/7OPTQQ3f3MBiGYZg3gY0v3YODhIsRJ7+v9k41USvKA0qdODLbIHE7Iw7J4Go98fMTO5C6E+KQEnFqnENqsu2rCajdrtccO0lb5gJWWVkSmRI0XVYWk98p585bt0xBVfhooNCsaprnYTmh1q58HW0tW3DwiLHt7u+NB3+FgXCxFU3triYzDMMwnWPLxnU4PFwAEDotJix89i4cR20IN6Uiv5OEGTdsovJuYqvFeklU0Uy90AMVmTmUhIjhAkjLynTWkD6ftSdY6SYMSRSYRZE4UuVb8JA4HhwRItLnMyUOxWEVvg5yVsIPuT5ix09dv1bThkSVlbmej5Bqz5/29m6hc0iWlVESIiIvbUVf1fvNCkoRuaA4FYfyziE393igdo7gi6imIyrD7E10WVkZER1IRE8Q0RwiepWIvqpuH0tEzxPRDCKaRkTHddUxGYZhmH2Tt6x+EnMbRmO//fvX3KdzAvJBkACsTigqNyDnHIJbgieyYdYeZFmZtpg3WOJQflWwkDgVdDIkskOK48l1mBBejbvIZBto+72e6CahlVkkxxWT16kV5kZRwVaSAZ56FTZWOQ52oOfSf3wb0T8+0e6+1q1ehrHrH8CMfmdjs7M/i0MMwzBdwKIX/w2XBDahV00HzXr4C/4NINv1kkSUydHT3/W2yOIhQtWRiwxJFICSCJHK49POVO3A0eJQey5VvW0cBmYs0pEkHTryXBVBqPOa2yDFoaialmMZ941bQkK+EVTs87oRcfyGtPNYDnPOLHAOJeTBEZFsOgEvnTtUU0eSTQgfFFfhkIowiUMpFKlFJn0MEViB1LnScx8RHFHcMINh9ga6MnMoAvB1IcRRAE4A8EUiOgrArwD8SAgxFsAP1O8MwzAMU8iqRbNwYLICzYecUXi/bj+bD4IELOdQGEg7eL6szPVTy7jCExHgeCZ7oSzS/SZRx+KQMOJQbuIah4jU6iwgM4Py4pBrWuYWTMxjLQ5p55DXqbIyDzGqpEKslbvKrG5aK69e2Ixysq3m8dN++348/5fLAAAL//kb+Igw6Oxvyc4v1kWIEALRDgZcMwzDdGfCBY+jVTRgSdOomhy8IiqtLRixbZr8xSpPdpMQrtW9U5+PEsvRIsWhRnV7INvMq0BqfX7Jl5W1uxBhyqCr5pwVh1WQCn5OHCn2aEesU5aLFYnV5Sup6tKuknIaxWoc6bhFILfxSg2Zdvc2enuvsKxMOpKkc8g3ZWX62HlBKYYL1+o0JqIKXBLGraznCAjssjJrvEmCEkWdej8ZZk+ly8QhIcQqIcRL6udmAHMBDAEgAPRWm/UB8EZXHZNhGIbZ91jx/F0AgINOKCgpQ+ocKmrT7honTjXTZSTdoASfYiRxOpnWziE9uWy0xKG4E+IQYnnMvKuGlMVeE8KDk8sc0pNIPaHX/ztJBKEmwp5yNCXkm9DO+kOJ4FFiLgT0a6QdRHa3M1mOkN3fay89hWO3Pooe614GAAxZ9ShmNx6LA4eNRpJzLk2967dY+9MR7Y6HYRiGqWXQxqlY2DgasdfUKefQvOf+hSZSQoT1PeyICD7S301+neVo8UWEUItDUQBHpOKQEVVMYwW9QFF/TDobL4kC87g4DEy2j3QCRWbRwyv3kttbogqqaclYQmmjiMyCTNBqtpFt6WtFF/08jXBjESuRSothOmNIO3+cmrIyD67VrZSC1N0EpK8VhVZHU0vMitRcoLNOMIbZE9kl3cqI6BAA4wBMBfBfAH5NRMsBXAngO3Ue8xlVdjaNQ6cZhmG6L72XPoqFzqE48LBi4cFRYklRWLRnOXFKFINyziH9e5hbVRVuyUwuG5Hel3Qicwh1nEMUB8a6D8hA6fw2Jv9IT4i1RV45hwLhgRx5qo4dr8MsA/28AlVCoC36RuSynEOuCGvyl7Y99msA6YVBKQlQLfdXx/czziWxYTEGi7UZoY1hGIZpn9XLF+KgZCVaDzwZgrxOOU3aFj6LQLgIhJf7Ho9Mdy0gFYdEZJ/jYoSuFoeqssxKt7IvKcEkzrpX2xM4hBGEQiMmJZEsK4uhnEOIzL485RyCldVjSrPcBuU0ypZYA6kI4/plmRmU1C7WpF09a8UhoRxJUgzz4frqfByk5Wo2EfnwY0scCuV22nGkS/Cc0Hoe1ni1U9cFi0PM3kuXi0NE1BPAXQD+SwixFcDnAXxNCHEggK8B+GvR44QQfxJCHCuEOHbAgAFdPSyGYRhmL2Dr+lUYVp2DNYNOr7uNzgkozBxSkzKdVVDjHPLSTmfmJhEDjm8CLU3eALIT1XqQcfvknUNRtqwMfs02uhxAT6LtiTnlytL0amx7aKeQfSEAWM6hzIpznBGHVi6eizEtz5jjA4AHGdYNqMwj6/ikVknDzghoDMMwDABg2bSHAAAHjDkLwq1tklAERW2oUBlV+BkHaF7kN64eLfaoUqfYyzuH5Pd6SYsq6lxHSoBpV7CKUwFKWMcjESEiTzZ+EKERbkqNUhyys3q08ON4vtleji89n2gRxi81SOdPgXM2bdxQlDkk9+sq55Cju46pY+cfk8CDn6TOYUe5iLRbWYtDtrvIdhcHal6Rd+QyzN5El4pDRORDCkM3CyHuVjdfDED/fAcADqRmGIbpBrz8y7Pw/O3bFzO38Jk74ZBAv2POr7uNcQ4VlHzlxSGdT2Rwa8OsfVV+5pXSbduECp4s6I5Sg5qw5m342mKviQts8XrF1xwnscQhld9gDuN0QhzSGUNukzxmGGT+t4/vqja9mo3L58IhgWbRaBxKMtRbjiHJi0PqIiIs6BrHMAzDFOO8/hQ2oA8OOfLYwg6aRcjziSuzc+zvcRGhRDFEIvPfUueQ3CZS/8eePCckUQAniZDozCEleOhmBdQp51C6mKHHEochnCRArDKHPJE6h7Q4ZJdjOZEq7fIbIBwvXSixzutahHG9kmx3XxRIrY7hF5SVCUees1wRyVwjtQCkx5F3G0XkZRpS6PwhPY/QLis3tppWZJxDUljqzPvJMHsqXdmtjCBdQXOFEL+17noDwNvVz6cBWNBVx2QYhmH2XA5tewXO6hnb9Rhnwb+xBv0wfMzE+tsY51BRWZmaYOquKDnnUBpmrVrxxrFsreuWzKogAFQo7ezSEXpyXOgcssrKooLJrZ8vK4utVdskRIj08cLpuPxAi0PphYBuOaxXheuvOGuxrY0aTbaQJ2II9ZolVrthe19FDi6GYRimmB5tK7Gq4VA4rgvhljIifT30YkOIbEt37VKJ8qXD6n9zrlPnBMQhXBEiNu3ZPUTCSR+nFyjaEzi0OBQFZiwiqqpznmfcUHrRo6GHjJ7VghCQCj+OW5Kvgc4LtF1RSoTxlHOosKxaB2gXlJXp8jZHRLKsTC0sGdEpJygl5KHBcg7pEjPtHCopp5EX26HVVuaQeq23VxyKwgCV1paON+yASmuLEQkZZkfpSufQRAAfB3Caals/g4jOAfBpAL8hopkA/gfAZ7rwmAzDMMxuYsva5Zj923ejeeNqc9vLj9yEedMeAyBdMUUBkvWotrVgeMuLWNxvEhy3/unJMa3sa8UhPcHU9nXKBU7qx2oRRU+cyfHhqa4tANCmxCHRGXFIT05zE1cZgpmWhcWqra6NmUTq1ylOJ+a6LbBGTnTbz/fRHdwSVUIQm3DSqhmTpnbFWW5TpbI5jo8IwlEuqtzx9Qozl5UxDMN0HleJFQAgnFLnnUNUG8ysxSHt4ExdPdrZqcSbUg9zuytS5xAAWb6cK49utzRKd0SLAnPuko4kVa6m3VDq/NPYo4983lY5lnbluH4pU1Zmn3O1CFMqNci29EUNGSLtHKotKxPKweQKWR7tKDFI77emW5njo4xU+PHVdnoeoTu7+RnnUDreSL3WnRH7bF7648ex4jeTOtxu4awpmP0/k9CydVPNfZvWrULbr47EC3deuV3HZpg8Xdmt7BkhBAkhRgshxqp/D6rbjxFCjBFCHC+EmN5Vx2QYhmF2H/Mf+QtGbn0KS2ZPNbf1f+5n2Pbk1QBkCGaRDbwer6luLI0j39XudnpCl88DEkkiXUCA6XJCeeeQWjlMxSE1sfNK8P1020CJQ+hEWZlu75634du5DgBqbPFxFMk2udZx7Il5XlyyJ9D1iEM1wfblhYB+jfQE1s5s0CvDkdlG/l91ZFmZSBL4iECuKitTnV/M81ZjjbisjGEYptPIMid5biDXTx2k7eAkEWK4NS3d9fe4FoFsVw+QljqROieIKMgcH4ByI2Xdpe2NiSwBSo9F7jdEojKHfBGZUrVykzy23SZeCzSOXwJcL13YscSWknLu+KWy6jxWMCZ17qxXVuYhkiVujm+cQp7abyn3mJg8NIr0fKbzh/Sikut5SARlSs9gOZ1S51D7izgLZkw2As+SeS/h2M0Po2+8od3HAMC2h36IkcFMrFv+Ws198+76MfbDViSbV3S4H4Zpj13SrYxhGIbZ9+mz9GEAQBLb4c6h6SjiIyoMkKxHZfa/0CIaccQJZ7e7nZ7g5Uu+Qqu8yXQTyWUOkZt1HcVa2HB9syoIwLSC70zmkBZ08s4hsjrCAECS6zYWBql93UwwtTiEyKwUazqTTaGfl1klzpWVOYUrzsptpF7PwGmEJyLEcQSHhCkr06uw+eddlP3EMAzDpMycfD+mPXQ9AHmuECrLTbg+XBKIo/a/21PnUHaRwUP2e1xnwelzSqwXURq0cyiUYdGOXfLs1ZRHt7sQYTld9flexCEcESMmD8JVbiidOVQqIxRuphNYSQksrldS7qk4M265TQWJICnKkF9YViaSEKFw4bhu7X3KlaWdQ55aHCpZ5WqZp0UeGig9hhaByEu3C5HNJbLnIdqh61uO3DyLZjyNw+95F2bf/3sAwPoHfgKHRIfn9kWvPI8xbS8ASBtPaNa9sQTjVt0hx7odcy6GKYLFIYZhGGa72bh6KUaEcwEAiTVR8XR9fySFhXrOoah1M9rWpBF0Iolx2MbJmNfreJQbm9o9tutp51DWsWKLLbrLiJMrK9OTPO2WMWVlbslMHIG025eIO2P3L3YOuUmYse7nu40F1uumJ+Z6RdaDcg5ZZWVSHGp/RVKvXFIpDR8FUpHIbkWvJ/+hdhtFaaczD1E6AbUyh+wJrN4XO4cYhumOiCTBzF++Ey/9+7qa+55/+BZstcp/xJRrsP+LMpLVFTESLfzrHDx7saAAR3XckuXJtSK//u4XuYUG/f3sqAUDxAFcyIBmTYg05JrMAkX9c43JGYoDc44XcZCe89wSShQDUYBAuCDHQZjrBKbFIc8vycw/ShBHUWZBpiQqCGE7V2vPxxSHZpsaXOlgyjuHSkKOw14Q0sewaVDbuW7WZVVGes4TGedQOvawIItPJAniB74pF12qzdi6ZSPGb30CsaAOS9E2P/JL83O+pH7R3T+CiwSBcAvdzoteeb7DzxfDaFgcYhiGYbabxc/8w/xsl3dpUUNPRJw6q48zbvsRmq890/y+YtGr6IfNiA89rcNj13MOxUH6u1tHHHJV6ZieXOnJnOP6IMdBIOQkM1LiUGfKyuplNLj5srJcWVZsiSpaFNL78kWkytKsSa9b6rBFrl4lppJqHawzh3Qukp05pCb/uuxAT8pjT4pDui2vKc1TFv30eUeZYzIMw+zJvDL5fjz3h0902f6WzJuOMW0vIHj9+czt69YsxwnPfR5zH73e3OYmgSkBs507+vs16EBkl6HKShyyvsd1OZY+p5k29+r7PFI5dE6pEYkgIA6MWKKJ4abnIHWOabeszHIOGadKHMDR5WqqFNmJWk1uXkSeEYQAoKyEItdvMI0jwrCacQ41WuJQvYYMlASIqNY1JB8jF1R8yHFpp5AOnc7nFAknKzI1KnHIsbaLyEVZ2K7fdI5gizZFYsyrj92I4eE887hKyxbZIZR6tPt6r1g4G2O3PoEF7jAA2TnXytfnY/y6+/By//PQTD1rch6n//NaHH7XmZj1n5vr7p9hbFgcYhiGYbab8sIH0SpUC9zILiuTbWP1RNet4xxKtm1AzyTtzhG0yZ/9nv06PLbuKiZyokRgTcy0OJTPHNKdzhJdVqYfo0QkPRGNnQYzke4ILYDlhRtHZFdndVtdTWSNt2jV1k2y4pJwvA6zKfTzcstSHEpM/kR24g+kk//8inPsNsEXUZpVoV7DfFcd/byLgsEZhmH2NLa9+m8ct/6eLtvfmhmytBq5Up6wTZ5/dGMEQH73anHDQ2SECDJNEtp3dujzQUzZrpHmezzQuXJZF6oW7x2vJM9vcaSOn+2kWVNWppw8RaTiUJAuAEUhPCUO6fJtClsRqQWOCK4RhACgAUoc8hrMOSYKg8w5t1G0ISTLOVTkZso1bsi+aCX4FMNDKEOy1WvdiDbjaLJJnFQEigWhEZaApYjgoZHSMYqMOGSFUxc4h1qWzQIAtImSbDih5kkVNKJEUd1StJUP/BIRPGw95os1x1lx3xUQcHDoBVdIkc/6bKxYMBNHTvuBHM+2zYX7Zpg8LA4xDMMw20Xz5nUY0TYTc3qeCCA7OfIRyUlsqDt41REz4jAjdOgJrOvXmeRZeKVSzXGBrNhigiRzK4OOmrRGStAylns9QVcrkImrJ9KdcQ6p1WBkxSrZESadgCdO1vkTWivFOrdBr8L6JMO8YyfrHGovy8B+Xk6DFIfybY3t98OUIwTZbRK/CX5BWRlyZW36AoXFIYZh9gqSsFP5Pp2lvOIZAKhxa8TKrWOfP1xV3gRI8V9nuWkhpUhMsNGLDYmTlpXZTQ3iKCcO5b6fHa9BBk8ngTx+LnNI79M+R9TrRKnPeRSH2bIypGVlgFyk0QsuETwjCAGpK8crlcz2UVBN84wAlClEDHlOrteQgZL64pAWnRpFVeYgKedQo6gWPsZ+TdpQNq9tXhzKYJWe26XuYZETLJZldqES47Srq+rI8ra4oIx91YrXMW7jg5g54Fz0PODgmuMcufkpvLLf6Rgw5LCMyAcAKx+5GmWoz9V2NAdhujcsDjEMwzDbxYLJd8muYCPfCyDXehYxXBEaoSbful3jJGFG6EisCWxHuMY5lJ1M29lHutWs42b3Zzqdhdpyn66qAjJ7AQAEeWoi3fFFhGutBmdvjxA7WeePLQ7ZQc5pbpEdxtmWEZf0RURRloE5hm7rW07zJYBUSLP3b8oR9ERTdy3zm+AhNsKZXtkWqquOfs9ckV2ZZhiG2R0sWTgXK5e/3uF2+nu2K/JXojDA4dtmyP3WLFSkIc0aR0TG+eJZgdSpc6h9kV12AlPOId1MwBJv8mVlZMrKlGjk+QjJA6myMrtZg91J024XX0+wMgJEEqbn+CSEq8rV9HPy4jYj7kTkG0EIkMIPIJ3A9mtAcfZ8Eulzcp2GDPnGDTZCiUMlimTwtzr/lygyjqbM9tZiTBuleUSuZ5eV5cUhO5Dadg4ViUNSyArhAUmIyDSBkMcqEpQW3/9LuIhx0Lu+U1hSXxIBorJ0XMdwMyWHFLZiG+S+8/MlhqkHi0MMwzDMdkHz/4V12A+HjH8HAKscKYrgUQJXRGZiVNRdBEgnl1ro0EKJk+suVoRuWZt3DtmiSYNQnVD8fOaQmlzFun17VgDRq4LCLSEit2bSX4SeqHsizt0eZiabcnJrZQ6FtnOotptYSVQyZWk6x6G9Cxv9OvqNveQNkV7V1WNU7YKTRAp81jjM6+n3gEMCYUWWRJjcJrcEh4RZ3dTPOx8MzjAM82YRxzH8m96DVbf/V+H9Lz7wVyz+0ShEYWC+zzvK9+kMC2dORi9SixA1ziH1XWoJ564I4cMKe9aZQ57uoNlBWZlxDqXikC3eGHFI3afPsVpIcL2SKTvyEZnzCQAk5BpRyD5n1xOsnCQVoFzLRZQvK/PiViPcROQZQcjGFofCsAJKQlRE1tUE1G/IIBs3FGcOZcrK3RL8UrbrWB7bOVS1xCHPcg5lcgQFZRw5dhZQHBa7nELyEMEDxaFZpApUd9T853L9ujUYu+YezOp7Ot5y8BHp4lYm5zF1oUnnkJ0LGKCNdH4iL+IwnYPFIYZhGKbTVFpbMKL5BSzq93aUyrIjlhYV9CqmJ0Izaa0XoOyYyW22jXpezCnCV2VlyAdSW2JLgwm7zK4opq6jbOaQa8rK0oloBK+mXKAIPVHP5wF5KgRTk1/5tCf22tJvO60akkrGOZSx3tdBPy/tHBK5cNJ0xbkgG0G1BIZyb1XbmgGkjiUooSoKsy6khJ1DDMPsJuZMfQRDsAalqLnw/oZZN+MwsQxtrS3mwjnuoISrM2ya/R/5P3oXlJWp7+gkPY4rIpPZJsUZ+d1uSpo7+B7VZcoyu662U6R+TvkS5cQ6x0XwQXEgXbtOzjlUkJ1XVxyyBCgjJsUBXMQQbuocKiUVc06NYQk+Ir389EslOK5uFBGCkjDj2jFNGeo0ZHDacQ6RvdjkeGZhCSgoD0NOHHIs55AtDllCVAUNGaeTvVBS6BxKQoTwTai43iZ05VwqX6I9574r0YMqGHD2dwCozm6w5i9qQU7PDfJh5U4SGpErv5jGMPVgcYhhGIbpNPOn3IcmqqJx1HtQKmXLu4xogDgVXeo4h/QEJqrmnEOdKCvT7WdFbkKeWBMrHSSZ35+e5Onj2WGdgDURdTw1ke6MOKRKuZANlMx3hMkHOtvWcP162HkPjahkxKV0dbX+JE8/L69UlkKPvjiJs2Kd7T4yWRWqJbDpnqPEIcfLrnCbsHHllMp3jdtVhGGAbdtaOt6QYZhuw7YXbwVQ3Pxgy6aNGFGZCUCVLOnzThfkpPV6YwoWuYdis7N/rXNId420zh+ekEHQSRzDo8S4PbRbtqPsNle5cuzsOlu80cKEdgDpMZmx+CVE5MFVJdeUKyvTr59ruVvDOm4mvS0lkTlnSUdSqMrKVDlXUkGsmzxYHcXaKD0v+6Wy5Z6SZWVVWCKOtWBT1JCBkijb1dO+z8uWZbueJ90+KCgPQ1qGBgChcvMA2UUrXSoeCBdBLuPHLt0qej8dVVYWkVx40s6h2JPHypfx7b/2ebzmjcDQI45V45BzH+18NmWFWlyzsqMA+dqEVEIiqFNzGYYBWBxiGIZhtoNw9v3YKnrgyBPPNatwetKhJ6qeSAOp6zqH1IQqMM4hHUjdsXPI0xO+fDaBNTHTrWa93P485SQSanx6Qq2dQ3GmrMwzFv12x6O2sUuuAN2RxnYOlTK2+ExZmai19DeKnDhkOrq05xxSq78lFT5qnEPZ0OzMRUWYCkgRpeJQpMvK9PtsnEvqtTXOoa4Rh4JqBbN+fipe/NdfCu9/+Q8fxRu/ndQlx2IYZs9i7nMPYtrvP9Ru4H6earUNR2x6DEBxvt385+5HA6VdGfWFc2FY8HZQaW3BsOqrWNf/+EyYs8Y4SHKB1CWKEWhhPu8c6kgcUh3OZDCzek7Wd2+SC6TWY9KChec3ICIPXqTayVtlZbHjm3OPKyLZqRPFpVH2vp0khAtdVhbIxQ/HN+fThqTNCDd2OVYbUuHF83yziBOFVVV6VZKLG/bjXL+wIYMjOukcynckLRKUrO0DNx2jXpAC0jmClPq8+uJQwXmRkhAxuYjhwxFRukiljpV3anlJiKrbI/3dOIeUW1s31DDikG/K/AD52sSOjwhuzWIaw9SDxSGGYRimU0RhgLdufgbz+5yEUkNDugqn3ClGHEI66SkKkATSiXysHqNt0nkxpwhyHASitpOYXSpQUnk6th3c/l3kMoe0AGICpN2Ssmh3PnMIAMIg3T4vDlEu0FmPNxCemdDZYaDS+l8bSN3eCrMw5XnyQkC/RpRk348wk1WRXlREcNPytYp0DpkwTj0B1QKU2teOBl0unTMVM688D1UlQs24+zcYXX0J8bIXAACTr/8hXp8vV/0XzpqC47Y+gv3iDTt0LIZh9myip36NYzc9lIonnWD2U3ejL1rQKhoKO2Mm8x4yP4dB1Sor27lA6gXTH0MDhWgccWomzNkcN8wKNUD6fVltle5HLcI7uSYJ9dBO1MTKrsuUlekFFku4AewFEBlm7cVaHErPtcLx4Agdlh2hTTl36p1rbLeQXiQgEan8Gx+kxJ4yKka4iQvyfHQ7edfT55ZAZgiRK89FSEWceg0Z3ER1SCuArCBp83jUlrkZrDHGljjkZZxDShwiD7G9AIPsQkmhcygJEJGPmGRwtN4+8Xuo5599jCvCzAKRGUecnXNpF5rdyU4eL0RMfnahiGE6gMUhhmEYplPMn/ow+qIF7lHvMreF8IzQElmCkHEO1RGH3NzKp+mm5XUsDgFABLdmslOUfePmysq8XJi1Xhk1ziGzSqmt351wDlnPMbAmhJ6IMxNwuH7GXaQnhq1UrtvxzLa5k69XmOtP8vTz8vyS6raW7VyjQ7PtVeoktsUhz0yok1wgtSlrs0RA+/Hby9b7v4MxLZOxZtkCbNuyAcPn/68ZR6VtG05+/XdY/ewtAICWh36UOSbDMPsOG9Ysw1FtLwPYTlfPrNuxCb2xsGlMYQnzIVtflAsJkIKQKWfeycyhlrmPIRIODj/2TMSOVyNMxbmOYUD63dW2bau8Qbd71wsTHYzJV84hWNl1tjtFL7BokUeXfukSJNdvQEweSokqK7POtQmlbeI9RCbzp56bST9fJwlNebETByhRBLKcQ02iYoQb26lTVSVbOvfHnHPCACQiKWio7Y3wowSkfEMGRwV1F+HYZWW5XMGisjJY59vIazI/e1aQtc4BDHV5mPXei4xQVBRIHSGGZwRFXQovfHms/OfSyz03T5fU6yYgphNdyYzN/iy6QpbcReR2Kj+RYQAWhxiGYZhO0jLzXlSEjyPedr65zV6R0qtYvojMCphfr6zMZCYoccgqh+oMIdWGResVUm2Jl/vLrg6avKKcKKVX5HQuArmlTA5De9iCRWxNXPMdYfTFgL740eJQBWVTJuCKEG3CXtFNx5+GdrbjHFLvhe83mM406mDpmHL70BNU3RJYHyepyhVuvbKdZmPI56jfW9FOkOq8J27G7Af+DwCwedMGbNm0EQDw2vTHMaoyXe0vwNz/XI++aEEsSJYV6AvEJMCWjWsxtu15RMKp+3liGGbvZdETN8IlAaDzYdFbt2zE0c1TsGDAOxG55cIS5t6iBZuoDwApqmsBqaN8n47Yf+3zWFgagZ6990NCfsbxCaRCjS0c6PFVW3XQv/yeTduTd6KszC1BuCVL5K8tK3NNWVnW2en5ZcTkoUGLQ5YQYndA8xChStlsvpqxWA0U9PnPi+V5QbhpmViJUnHDdsCEunW7EmhMWVlUhZuEUtDQDh/9OPV/vvTKVWJSEWQvDmlHLGrL3Mz21mJOYolDdpcz/XwieLXu4th2DtW+do6QTp7YkWVlWkCiknIO5T6XLsJMUwo/53zWmVAms8nJiUOJLCsL4We6qjFMe7A4xDAMw3SISBIcsu4JzO0xAU09+5jbI0ukMW3UERmLfFGAJJBOLrWIlFi5CJ2haLKj99FmhVnmnUOm01msRam0DAtIVwVNWVmdQG0bT0RoFTozQdnE46SmI4xelQxy4lDVKZsQUE9EqFidWmybu55At3tho8WuUoNqa5stMdBlbbb7SE9QZdcXL51QB61yXzpzyFj/033ZxywimPp3NL70JwDA63/6KBb89RMAgNbHfp0OOQoQtcnV9BZqAsVhegEQh6ioi6kWaqr7edI896cvY+odv2l3G4Zh9iz6LLrf/Bx2UriZ99jNKFOIvid8DIlTKnQOeYhRUS6VOKwaEaezAlTzlo3YtnVTze0HRKuwtfdwAFpYKXax2gsYPvLikHIOaddHB+W5Os/HDma2zwXmXGayg/LOIR8J+WhQeXwZIcRJnUO+iFBV7c/rlbqZxQwVQg0gU65mZwfqc6p2ACWCEDnqfKmEGtcqrdMCir5PP75eQ4Z86VXmPtc+f6rzlxGd6juHQuGaUi0AmS5nejwR1bqL7Y5gRe+nk4SIHQ8JSbeZFhFhxKH8c8uWpufnL3q+oRdu7E52gHJVqdeSy8qYzsLiEMMwDNMhC2ZMxkBsQDT83MztctKRnah4lBg3SomiwoBRPbk0k9ucg6cjiiY7ekJut8G1gyTl/rNlZWZVVa0M6kkmuX7hinARvm3DV6JGqFeOrQmmsbUrd5EuxwqdcmbV1h6/yExu1epgexcR2oGlOtNoUciIRKqsLXtRobvchIjhmUm0CKRzSAtnZnU3V1Ym2pl0OiI0z61HuAFNVZkZtH9lKVqE7tBSNe9HGxpBIjKfJUpC4y6roCwzLdTnKQpDPHPzz1Bpk+Vvr055ECe+cQPKi/9d//XpAqKgul2huQzD1Gft8tcwIpyHZTQYQP326Xka59+FlfQWDBt3CoTj1TiHRJKgRBECSxzS30XtfodaLL72Qsz7yydrbvdEiMTV54yCY+dcPABMMwLdBVI7d7xOOod8RDLPx8quswUIU5qty8r0mKyFl9jxUVadPMnPOlSNAwjpaxbVGZNpwiBC42LyLUeSY5WsaeePFjlCeOY8a8QhSyBzkgiJEl7k47KZQ/lSN5nFVKeszHqOTq6sLClyDtmh1U4qFDlu2mlNmMwhH0mudTzqtLXX6DKvmKSIo4U7p0FnDhWVlaXjdF0v03lMn8f1wo0sD8y61YTjmYwjhukMLA4xDMMwHbJx2p2IhIPhJ38gc7vdrcMWHKJq2nI8KsoCyolDWmDobFmZnOxkJ1Ja5Khm2uTmyspMoKPOy1HH1ZNTJ12ljHOrcPXwkbp99GTaXOBYZWVmcqtL2nQgtdNoJnQeIgQZ55A9udVlZfUvbHRHEllWlgal2q9VFAbZsjKdj6FaApuMobBVPYVsV504rCKOIlMG0p445CapOOSKtKzDE6kIJsLATKqrTlmGdmq7fByYi4Gq05jJbFo06xm8bcGvMP+5BxDHMUqPfU891103Ca60tmDFL47F1D99cZcdg2G6E69Pvg0AsGLIOQA6Jw6te2MJjqrMwPIh54IcJyNuaCL1PaFLmOIoSN00nXQn9Qg2oFxZX3O7h9iIBwn5mfbvQCrUmHbyqn09AEQVFUity3VNB6r631uJfrxbkmVbRuSvLWnSY9HPVVhu0sTx0aScQ4618ADXN8J7iWKErmqZXudcozuUuSIyLqZSkpY42Y0gRK6sLCMOkXYOpYs2ruqwpR0+6YJNcUMGV0RInOJFJcdyDpvFDS0OFQhK+jWJyDULMzrAWqPHo7ODMnOEjHOoYN6TyDKxxJEl61pEdMo95WPywpcqJdSQ42RzHrVzSD03kS8rg3RV2S5ihukIFocYhmGYDhm8+jHMK49Gn34DM7fLSUc2YBkAkoolDhVMMFPnkG61vn1lZfZxzTHVPrQlXu4v6xySnc7cmrIy4xyyOqPkwx2L0CJJQKkLRv6vnnORc6iq845UboDblK7aihiBY43ZmsB3KpsiDsxKZ0yueY3s1yoIqoXlCNrOryeaTigdOfo11OJUEofZUNB2yspcEZrOOp6ILHEoNB1r4iiQIpBwzPtqXr8kMs9Xh5jqPCKd7xSHVcx74REMixchEVTY0rqrePmm7+KQZBlKLSvqbpPEMabc+COsXDxnl42DYfYV+rz+EBY7h6Bh0JEAOufqWfTE9XBJYMikiwCgUBzS31GhK7NjkrBqXDWddQ65IiosLdYuHnPsvHNIO0LUBbkdsh2rc6NjnENqYaKd71FdakeOn3bdCqpIYut7PE6/Z+3/0xw6eU7TIpUtnAhVVqYXciL9mtV5nTykgn+J5M86ywiOn3EAm7IyRzt33JqQahPKHQVK7PFNlzMjDvk6c6jWXSPqlZVZgdRmcaMTzqEIXppRRHlxKM33kZlDcfp4a6FEFLyfjnpuwvHhIk7nPeVect85QclHBORErAiu6T6q3x/93ISb/TvQzqME3i49LzL7FiwOMQzDMO2y7o0lOChZiZaDTq+5L7Zs1fYqZhJsMz8HBSvBeuVRX/gLtcrrd9Y5BK/GIaJXXrUlHrCcQhZ2KZyd0QOk1nfy/ExIZz3CMCtc6JVW3Y4520pXZ/ao4E5djuc2mtVXHxECt6nmMYAtDtW/iKA4tFoA++bCxn6toqBicoPs10CHV+r8B1dlSOjXxs48st/T9rIMHBFnyhxMJx3E5jWLI+kcCq0uLlq8cpLQCEXaARCEutOcFviqCFu3AJC5RG4nSgF3hEWzp+LYlTcCSMW2lYvnYMvGrLNgyj+uxEmLfotlk2/eJeNgmH2F9auWYngwF2uGnmGyzjrTSaz/4vuwwHsrDhw+FoBs5Z0Pqw+ViBCqYOE4CoyrprPOIRdRzTnAuHicVLzwRP5clAru8jlZTs2q7gIpn6/vZ5skFGFeE88H1DklCKrZc4FpZZ8Vh/T3u18qZ8qvbOeQUKVqWlCLPfndXCRwAGkzglKSPi9TruaVMg5gI9xYQc7CuG+ypXUilOKQUKVX9uPdOmXVHtrJHLIWmxzTdCIrOmUfkIpD5BQ7h/RrGJPODqpXVla8KJY4vsmpMq6uco/Cx7gi6xwCVDOOXFmZ7RzKikMhhONnSsw1K16fh1VXHIYVr8+Tj00SvHjVBzD19l/Wvi5Mt4LFIYZhGKZddCCw12tAzX2RJUDYK5/CLivLtZ4FrDboUSrSRMKBa9X2t4ctfKQ3qosBVzlMhAtyak9zdoi2WW31s2Vljlcyq6ntoVeE9TH1RUBsgiItccfL2uL1xUDiNcnVzySBjwiRm4pbsMQl00WsnfIDxIHpABM7abc1ewIbhUHGfaRfA52HoCfRbqTEIf27FRpqv6ftlZV5IjTClyci4yLyrVwLEYVAEiK0shjszCH9eunXRTuGTHe6KDQlhW0oG+Gxszx/84/w0q/flblty9JZENaKcBhFCO75MrZRE5bTYPO60o3nY84/vm+2e33RfIydd5X8hQNAGaZdFk2+DQ4JvOWEC+H67XdjDFs2AkJg5eK5eGu8CBsOfY+5Tzglk+mj0d/FiauF+zRzqN3vUAvb7WjGoV08OgTYLdW4lsx3aqK7clrOoWrOOaQXJtoTh0yZciktTw4qqfMWVvmYdvWYhgG6dNrPCCJ2Hg+ckhSH1P5ivzgDR6OPocOtAaDRKlfLlJVZDisAiOAXlJWpbeJQ5jkpV479OKrTkMErcNdo7GBs3Zwiv1+bNJfIl0Ic0lykdCPf7CcfRk6ZzmUFZWWQCzDabaYXxUqN2jmUfW4+al1RETzTjEO/Fvp55l1sLmIIR2YjUU7k3LR8LgZhAzYtnw8AmP7AnzFhyyPwlz8jjxMGSOLs3xTTPWBxiGEYhilk6u2/xNoVi63Qw1oXju0cykxsVF4NUBsgCaQrj1ocoiQwjpfOEBeshAkjDsmV4vyKnxmaNbmCsdyrCbqaeDteAxLH61Bo0CJGZC5Asq6WbFlZdmVcX0Akviwri+MIDglj6Qeygdam9K2dsjJKQqtVr2cuhrRjRx+/SBySnU08I2L5scocUq+NCQ2Nw+zqfjtZBq4lCHkIMyUPWlBLoqosK4OnAj4j63MRmtcyUg4A0xHOEhb1RUzVKWdCYDtizcrXMea1P+KwbS+Z22bd9zv0+fvJmDfln+a2Z2/7FY6M52PZhO+hxdvPCJM9RTPcymYAUkDaeuun4aqyDcQBwqCKl399Dl5/dWqnx8Qw3YUeix7EMhqCQ44YD9IBzwXni01rV0L8ehjmPHs/mtfLks4eQ0ea+8n1TEizRp93hK9KpOLQKrXqXFmZJ8KakrG0ZDgVGfLiEFmCO5DmzAGAUK5aLc4Yl01nyspUIDUgu0ZmnkdOHPIscShQCyW20GALOHB9uCQQqnB/ob5rRR0Xlxb8tVsIAMqkBHOvIVMero+pz60xpZ3AdHmZ3SjCRaTEoayopMW0fOaeJ+Iad425zxaH/Owxi5xDWqSKyMuIQDZa7EpUILVrnVspCREIzzyXmvGICCBPBqgjMu9ZgxaH7LI0lf+E3HOLLNd0YjKH9GvsZzp6anHJXijSpIsrVWzbugkHT/+5eg7y8Ut+cQKm3vDdmufA7Pt0mThERAcS0RNENIeIXiWir1r3fZmI5qnbf9VVx2QYhmF2DVs3b8Dxc/8Hi5+8IXVxFEzAEvLMpMNexXSssrJ8RgBgO4d0t7KorphThAyLzq/WqhwjZYnPZwWY8didzrRjycuuJjquX5glUTMOnX/jWSVSSC8gqKBbip7c6jEIv0mGgOoW916xcygtK6svftjiUEJpzoA9MYzD7IqzKStTK7Z6Qu2rgNGSunixM49scchp56JGCkKx+jlK2yVbDqkkCsy4Y1XKZ5eV6eebuMXiUBIFabg3bZ9z6PU7v49GCswYl86ZiuEv/RQA0LZ1IwBg8fxXMGHB7zC36RiMPuezSphUZYAiMiuyz990BcZEM7Fg/PdRFT4oDrBhzXKM2/Ys1r76VKfHxDDdgU3rVuGIyiysHPxOkONYZUO1329bNqxCiSK0rFuWCsdWnoxwS5mwegCI1XknUS4YEQW1jtUOcBHXOIdsF4/+P1/SJqzv1MxjAECLQ1qELzVkHlOEfQ5Ou15WM24j7YbVY9H/a+EdQEZEyQdSA6lLWKjW6kWCld2MoFHUCnmO52fKuVNxSAsvflpWpv7XXUVFFJgMIRMYrRdsdFlY7r2TAkixOORamYPm85UbT2bsWsCCn77OeXHISV3GiZMNI6ckRBvVd4JpV5QRFOMAsSB4DU01jwnrzLts53OsRUgtxjlZccgTEeCWkJBbM1/Sc4A4CrBg6kMYgE1yLqT2fUC8Gu7WZTXPgdn36UrnUATg60KIowCcAOCLRHQUEZ0K4D0AxgghjgZwZRcek2EYhtkFhFUVLhkFZiKtV9VsYsc3AoQ9uSVVkgQAcYHTxTeT9LTVej0xp4jCNvOxvhhQIkIdJ1Km/j4Js9upCanjlwpXhPOEoc5oUJkBxjmkxA27FX1ucmteLzXetm1bM+PPP15Pbtu7iLBfR9vyni8ry7xXVpCpcNKSgJIKGPVrxKEQcWiVCrbj1PGsbjaeiKXNPUngU4xYr07HoRl3orq/ZMUhJcCp10UfW5jXMTTup8Bt6jAnSrNs4as4duMDCIRrxrj24StRsi4gozBA9Y5PISEXb/nYXwCizOvqIzKfpXGv/wWzmk7A6Hd9SbnTopoSQoZhJAuevh0eJRhwnOyAaZwdBecLU0pkuQQ9z3a+pCHNGt05kkppnov+Pu/s36OPqGaBIL1oT0WGfEmb/k7UQrUtpqddIJU4pC/s2ylDjW3nkBYtwkpWHMo5h/R3mn1OqOcc0gJEtU13UkvdVnnsZgQ+1ZYdOfnMIX0OswOerdwewOoqGsv3SDieCYzWGT/6/c58PoSQz7NA6AGyziHjTtLzjMKysrSjmXFoIbudvt0ES1ufDycJ0Qa1uFPw2unuYyYjSwl3Xkl3rLPEIf06u9l5kc7lk9tXs8/TLcElgThKPwPC9VUZfk7A1HmPUYg4kJ/JbdRoXLGeiGqafjDdgy4Th4QQq4QQL6mfmwHMBTAEwOcB/EIIKS8LIdZ21TEZhmGYruWVyfdhw5oVqSXfDge2J+OKxGrlak9s3CgtK8tnBGTaoGfKyrbHOeTXrOhSHCARBKHa8Nbbn93WlVQQskavrLp+Q2GWRM2+wtT9A6QTV30BY79mRlzRFwpxiFC4gNqm0qpymvSqLbKlfH4nsimcJDItgG3nkytixILUYbMrzmnmkFzV1NkM5aSCRBBcV1v/fXP8zMVOOxNIDzK8NYlj+IhUroXOWtKZQ4EZt1COMGOXF2mJGUo555AVKm5KCp1yh24vzRsP/BwxXMzc/6y0FCPchlaoVew4wIKXnsSR0TzMH/Ut7Df4MHlc1cVOB9M6SQiRJOhJbdjWbyRAJENDkzB1DHAbYYbJ0LDgX3iDDsDho04CkO1YlUe7iUSUlsQ6GXFDfjcF1veSPodRQ+ocMg6fTpeVRRknRma/nuUcojiTz5IK7tlsGCDtAqnFMMd1EQmn3THp8wz5JcuBWs2KN0mUliIhFYeQpK5c2y1jCzhGXGuVCxTUIFurF51rwoJSs6qwu4I1GCeQvCEbSJ2QV1BWpraPIyOgaIePHhsVdOvUpdj1xKFM5pB+vHYOFYlDVmg1uXWcQ5Y4lOTcxU4Souqk5488nsoAgiMFRVLvTVpWl13EAWrL+WO4Zv6SLtw16CcJQJYh6kUYOKWabCT7sSJOFwDb0GgW3Txr4YPpXuySzCEiOgTAOABTAQwHcDIRTSWip4howq44JsMwDLNziCTBiP98Aq89cHVaCmat1DoFZWWxtXJmT1S92M4cyk6SQmuirCdQFEfbJQ4J8graB0eI4EK46epfEYlVsy9XVW17vZ6wywlcvlygZl9aRDOr0/kuIrXOHz25JeVa0pO/qrb0+6k45Hj2yqdeXeygrMzqxmKcQwiN6BGHQa4cQa04K+eQXsUso02OT4V6u1YuROZiJ6l/UaPzhoKgYlbh9Yqofp4iDsy4pU0/Mp8lV6St7OH3NOOXr0M6udU/x15Th4IeAKxavgjjNz6IWQPOQ9RrqFltdUSINpKvUxKFCNvke9LzwDTfJFEClskBSVLBC2a1WU7gzWe/kwG4DNMdaNm6CUe2vYxlB5xuvl9Mx6V2nEMiTstM7TblxuVhuVq0wEylnmongXH4dDpzCFFNmaouxzGdJK0Lcmsj+XidOWSV8eqgf9u5E9qlzgWY4GGvlLpbrO/xiipj1a3oK8KXZXZRBIoDxNodazuH7NdP/RxWVFh2Q/2yMi14t4p0/K2UikH5sjIj7rip8KJv00KN3l7ESsBzfOMY0o/zPN2QIX0/wnyJXw47+8hk9uUykGzMOdrxzHk5zre8t8aebx1PSYRQlZWhYNHEE9LJo7OBSDWQsDOXNIFxDuXEIdutrV106vH6MxkG1YzDTRSV4dtl2XZmnwiNyEgsDnVLulwcIqKeAO4C8F9CiK0APAD7Q5aafRPAP4iICh73GSKaRkTT1q1b19XDYhiGYTogDAO56hhuM6VgFIdmku0WtIW3W7nagoMXW2VlOedQJqA61g6RsCb4sT3ytf6AFDlCeMaGHdd1Dnlpp7M4W1ZGGeeQX7NqXLMv/VxKenVaO4dUyHMmM0iLQ6nwFpJnJn9VvWprOYdsQc5cTLQjxjhJ+jomTikTAN1GaS6SLeTZ5Qgyc0gep1FUM64qI07FYeY9bM85pMW1aqUVDskSAOO20q9ZHJpx65VYLQi5VuaQdg6lpVpWqHisxaHGTolDS+//BRwIHPiu76QXd0FFrvzqC504qF2ZBYyApS9MHBGan81qM3xQHGbKYRiGkbz23L9Qogi9RqddArUzsShTLSsOZS+IAaQlSxnnkPrbLaffzSXqfFmZvkDOLxDknUNUUNJmBPd8th5qu0ACsj15e+7CtKws6xzSj2mjMhzLqagF7jCogESULoBkziepoKOfS1hRriYjDtWOST//NksQqsLK9vFLIMdBIFx9g/zfiC1e2ulNdyLT22sBz/XTsjLd1a3AORSY791i51DJckfVlJUViUPavUaeWdiJc53QSJd5kQ+QlznfyHmML0OpC77zfUSAUwJURhZFFUTw4KsFGVify7hO5lC2rCw3N9MCXBikZWmen5kLaPQcQESp8zagslr4SJ27TPejS8UhIvIhhaGbhRB3q5tXALhbSF4AkADon3+sEOJPQohjhRDHDhhQ2y6ZYRiG2bWYSW/uota4OArEIbt0yZ5wlzLiUHaSZAdUp2Vl25c5lK/1l+MOEJFrZRsUTxhjK6/IsQKcARhhySs1AG7JlETVw4hA2jmkO5CZFrMFZWUZ51A6UdYuFTMxR1ZcKnWmrEy1oweQdkSBdOBo0SOxysoC4ZoVTtkSOBWHGki2l9eYjm5RkJbGAe1az7W4Vt0mn5tPMcJAfjZIiT2IAtm+nnyAfBnaGaWTUz1xdVSpgyk70SKZlTmUeE0dur02rFmBMWvvxYz9zsBbDh6Rvv5hAEdEqDqq3C1O844yrZkd6VrTF2JuElkdjNKOPJSkz0PwCizDGKK5D2IrmjB8wjvMbWk3xtrvNyMYWS7BTGaOFdKcPkYJNGXZCUqE6TkJcccXvdqFk18gMGVtOedQlBGHso+1F0hMF0ir5Fg2Saj/vZ6WKZdS0SIKU+cQyrJTlvoe0mJNEFTlOc4IIlZZmd0sQX9vVdQ5qKzKytoRh6q2OOTY4lCDeU5AKtzo79mE0gUcu2OYfg18kt3HjHCkHu/4tec/87p2oluZ/jlxsuPJbK/dSY5vHFpJbh5hnofrp9lB+rknslV9BLfGCSaSWJZ5uT5IjcGNWhHDSwO5M40jat3HgDy36LmPfn+Mc8j6O7CD0wXVOodgnLfp5yhwG6U4pIQl+9w++5n78eLvLqx5zZh9j67sVkYA/gpgrhDit9Zd9wI4VW0zHEAJwPquOi7DMAyzc8x68i688fo8hEEq1MRWULR2wxRlDmVEGmsi0SDSiXh+sp91DunQzKjWvt0O+Vp/dSCE8K0L9GKxKXZS51C9sjLX84vLBfLj0BM4K9dCDkVdwLTTbcyIQ3pCpy39ZUscsia3vml5XP/Cxk3C9HW0ArU9RAjUBD6OArOqWVErzoB0+Qi3lK5iIpvbZLdctnNBHFEsfCRWtlRFuaKAtHzOLvdwkhAJeUhcX4ZW6ws7EaUXg+qCxQguWliMA7PCnfhNteGwOV6771doQIiB53xHvWjpxZ2bpK+T7VLIikNSwIoyziE5mU473PhyFTnXmY5hujtJHOOwzVOwoNfx6XcarLLVQnEo/VtPxSE750b93VmuEv3d7KnvDQRpqXN77kuN/psukczy0WghWJ8PjVswIw6lojyQ7cDmq6B/O/MngtduCU9sjpk2DEjC9Huv4sgg4UiNWYs1kXJDahctFZQp27cnVXkOcv0G4+TJo59/VhxKO2y6+S5fpqwsFV6Qcw7p7UlnFarSK3tsduZdfiz1nEOeJazo19uUk7m18wPz2pJvxL+alvf22HNh5K5anNGZczZmfuWWADUuL25DRF46zk5kDtnNOPTCiafEJT3mKArSsme3VFP+Zj8WcTofiNxGuJa712760Tz3MUzY/G8Tds3su3Slc2gigI8DOI2IZqh/5wD4G4DDiGg2gNsAXCyEEF14XIZhGGYnOOjJr2DZQ79JnUNJaLmIrO4wRc4ha9JhT9oaEiv7oR1xyLT8TbavrKwoLNoxThy1slpnf5WGARgSvI6WrZsyZVhAOhFz/TLc3oMAAItert+GXF+MuLmMBnulV5NmBmXdUmYlWItDXlkGlCIXaO16SAS1X1YmQtMC2F7V9BEh0I6YKDSve5tacQbSsEw7TDQqKCtDnIZEx4Jqu8YpQutCTQtCAFBRLiJHOYdEEsngaceTx7czhxDWikNWoLe8QXZ9CYR0jfnIXszZbF63CqNW/gMv93o7Dhw+FoCVhRFKB1PoytdJXohmV2YBJYgiNp3qXBGZz7SZnJMHSqy8JHYOMQwAYNGsZ9EfmyGGnZm53bVyZ/LovyMRp98Nvm/n3KR/wxotyHgNZcSCUuEB6FSZpx28HFniTvrd7meOHVodHJ2cc8guhdJdIO3MH7tJQhG2WyrjQE1CJIIQUUmG+mvhRn3XR2GgFl6y+T1AKigA6XlPBNvMc6rnZtKOlsAShEJbHFLjC/POIZPn42d+NvuAB1eFdVPGOaS7uinnqyWgmHJer3ZuAuhyNd0RTbd7b6+sLB2XHU6d2ad+39wS4PgZ8VA3dYhQWyZoFpm8NOzai1vlucIqq9Noh7WTF4fscGn1udCu4iLnEHl1Oq/GqXNILzhFblMmF9AOsdYLHO0tljH7Bl3ZrewZIQQJIUYLIcaqfw8KIQIhxMeEECOFEOOFEI931TEZhmGYnadBBLL23SorM2GeIjIXyG7BBCwz6bAmbWW0Iw5ZZWU7mjkEx6ux+1MSynIeIw4Vryb2OuUr6IsWvHLvb0FWGRYA9DpoNFbQIPTt/xaMOuMSbERvhE/9pu4wjHigSxf0hEsLatbqsJ7cmhBu1aHLXNhU1cTcL5mJtX0BASJ5ezsXNq6IMlkNaRv5yIgeSVQ1k8GAGky3LR8RyPUzq61RUVlZHJhV+TaU6zqH7AyOULVIlj8r55BfMhNiueKqVmJFZCa9rmr3CwBeOW1JLV+w1IFFqiWwznKI67irXrvzCjSigv3P+YG5jayLO09EiJ0GKcLFobUym372tYBlMk1EVFPekJAMPY9tdxPDMFj/0v1IBOHwE8/P3F4q6NikEcZtGRR+t5rvfHvhweoYGcKDE6biUGecfLYTKCwIutbf22lr+fRvXDuHShRDJEnmHKgXTmxxJiKv3fLc2BaHTGMD6fgI4ZkcGj0GLdZEQdXk4KgdmH3aodGuEYdaze9RgfvFfl0C1xKHrJ+1w0cvLORfp8TKHEKurEznMcH1a8rKvIKy6lgJcnkBJTNelSlozl9OVqyysbfR+xS5zCFdgicsd5MWD13lgI0KAsbtMi99niglFfPe5B9jys9zju3Easahz0/6vTQh2mE1Pfeo17LGaa2PZXX7TLxG6YrVZfH2uV27iwq61TH7FrukWxnDMAyz9+AhlheyYXqxbTJfkrBwMq7J1NxbE8lGYWc/5FvZ12YzOGL7ysqKJjuOLhEz3USKxabhx5yKV8rHYMTi69AQbs2IQ0edcBaG/nAemnr2QWOPXph/6McxpvIiFsyYXLgvPQHzm5Q4lCt5cttxDmnXkp78JVocchtM1o9dzgRAZRm0U1YmItMCmFS7XJEk8BAhMuKQvKiIhIOQSlJUUy2BhetnwkTt98RxXYRKzNGlcW0qwLKIqGpdXFWarZ9bzGujJ8R6xVWLjUaUEZG5WCw19pbj10JLkgovJrOqIJhWs3b5AoxdfSem9T0bhx51TPq8lBgWhQFchEickrygsD/71oWUUAKWCWq3SszIWm12hVWSyc4hhgEA9H/jCbxWOhL7DRiUud0uW81jl5Xp++0MPJ1HY7tS9feEp8R2L9pm7utMFyZ7X2FgCxLZ73YqcC3ZgnkYpt+XQLpw4ltlcTHaF4fM+dj1M8HMFIdSHFKl0pESS7RYE0fVjCvXFkTskj5TIqecQ64vBbWijlvauRNZglDs1TqHotwxU7HFN9+5whKrYvJMl1NdCgWk36nm/Y5r34t6ziFAhn2HwoXjupljFmYOWR3NXGu8NkassUQes1AA2fGzSOwLrQUE7T4qJW3mvcmLcXaHOpvE8eGYBTlVvuhln1MUWWXPXqlwMU2/jqQaOgTCReKW4CJO845EWjKnx2aLpsy+CYtDDMMw3ZDnH7gOc6ZPlo4R1bJUTyxtx4OTpGG/heKQY3X0siZtJYqk+wK1GRK2c0g7KtwkqivmFFFUVkYqWyFdoawvNvmnXo79sRVHhbPbFaWOfs/XsRVNaH70V8XjUBf/vs61UJO1NMTbKgvLXfxoMctM/gItmvhm1TUvDsmuNu05h0LTjUW4sp1xFIUoUYzYk2VcSRTIFrrwZFvcpKjbVjphtYnggpLIPO8KNdYXh+yyjLb0wky7iMhrMNkMnpCd0sj15Wq7FmUQmRXOhsZs5hDZZWVJJNtBqxyJoGAC+/pTN6NEEQa/54rci6Y+L2EgxSjHVw4tyzlklbDoLKd0dTU2GQ1mVZ9cWeZhwrM5p4Fh1r+xBMPihdg09NSa+0w5a0G3stRtmZ6PMnlFXvo3rLHzwiLy4VpNEjrj5Iut9vORVTKmRSctWmhhxXYt2cJAGFQyzqFGocQhyzkUd+Ac0uKSV2rIZDNJUdxFQj7cJDKldFqsiVTIvj63atdLIgiulbmjhRcKt5nfOyor0+eT/M96XzrLzwRKe6nwAiO8WPl25MGPLSeQyf9TZWWlWmeZyX+qkzkEyHOZ3XXTZCAVCEqmtNEtZUrMbExAtOub56bPN646j8UFrqtYizWub96HhqRixKEwV4oW5xxqGp15JwcXIBCyLE0OKXXQpZlFDWq+lM3i0++tiC3nrXbFqrF6dlnZPi4OvbF4DpbNf3l3D2OPgMUhhmGYbkZb6zaMeeGb2PbU1WnL0iRIO2+J0Nj4pTikLpCLVueszKF8S/M2FAeM2mHGesLhirBdMaf2uCVj2dfoTl16MtWe2HTE8WdgdsNYuV075Wy9+/bDq0MuxNiWyVg676Wa+/Wk3W9oRGzlAennbF/ApJNbXUqXHa8OTHVLJUscyr7mUQcrzFpkAVKhp61VijGJXt2NQyAJEcGV5QgiMl1uTAi3ek3yr01InupgJ7cPnDLcOuPJhMNWU+eQ7oijcy2QhHCVKGNyIFQJiBSHAsSC4DWojCIrswmQn1E9uU3DYdOLOTMG9foOPujwzO0mzDasmsl9RK6cPJv30Xof1GdPH0N2V8uWAEjnUJT5O2KY7s7rz90DAHjLse+puc9vJ3PILsWFyRyynC/GTZM+NnVvSheMb4tDnXIOVayfLdFJB12rY5qy4ExIf3oujIJq5hxYJiX0eLZrxm/3O0JYXRNdK5hZNzWIVQ5NXriJ9XeaFmo83UnMNYKC/Rwclcvk+aW6glWROJRYP+vywDQEW79OqVvIuK5s5xB8k8dEnm9KzsiVjzfvd2wLKEpw8WsXrjQRPNnFVGMykGrnG3YukRHhcg4jUybnlsz49UKBPP+WEMOvaQNvyva9knlNyqiY9yZfVpaWEtY6h7RrWjvH0rHpsPJq6jzy5Xk133lV/w1QEhrnrXZk67mgvfBjxKF2uqXurWzdvB7eDeei9c4v7O6h7BGwOMQwDNPNeG3qv9FIAZwkSLssJWluipOkF7sdOYfgluCSQBxFNauMbVQbIAnkyszidBKSr+1vF7XqaU9UHNWpy+mEcwgAaNK35BDy3UhyHHH+t1BBCWse+mXNffbqtJ0HlLaYtWz8ucmtzieoWbX1Goxjx6spK6vNMrAxIgtgVmcr22SnMOGrjmqxDCmNyDdtcaN8ty014cy7qnRXHdP61inDrdMdLNNWurqt5mdHOaScODSOHTNxV+UNvoiMy0nn/ujPE1kOLBMsrsOlC9wHWmRyvVyGhNUa2oPs2BbCVy4FLQ5ZziH12QvV8/AQ1ZQA6NDQVMjKXiisXb0Cs358AlYuXVT42jHM7uT5//scXrz3mi7fr7/oEaxGfxxy5ISa+8hxEAoXVOCMFFaHx6K/Y9f8DVsijjlvlZQrxRaHOnby2WVitttVf7e7JpC61jlkC+ZhWE1LYRWByIozsVMrJtjox7teKRPMTEmECB6EyqHRY9BijRS8Q3OO0991GScNUgHCU+KQ65frZg6ZbpF+2lVTlNKf9TwhNqXR2eBuOL4RR7JlZa7pckpuyZwL9Jhdz5ONGuyysoLGD3kilQGkMW3kO8gcMi6idpxD5nwTpk5X4crzal5YiywnkN5Hk6iY9yYvxiV1usQK1dETkOfA0FrAcazznxYxyW1Iz1l2mHRinUeV81Y3GDHnM8ud7ezDzqH5130FB2Cj6STY3WFxiGEYppvRNuchAKqsKUyFCtNxSaTdqBwRpoHABd3K9OQoDCqgJERFpBOpihKHapxDll1fTzhcRLUtY9uBzHGtCbmIEDtpt7KO9nfUiWfjpaaTsW2/o9rdbr8BgzFr4PkYv/kRvLFkfuY+O5MmtIWbOBWNzPjM5DZ1aMWObyZ/jgrjdP2SWXWtEYdUF6x6eEhFNv06VFUbeaFaxwurrEyWI1gt1928OJQvK1MXDFbuhFsnkNq+WEqsNtK6I46nRDBKQngIVYtjJQ7pFWykJWNmMp8r1SKRrnzq1eCwYAJLSVBzUQRkV1t9lRkRwwWSyLyf9iq/yZlQ5XEeYqsEQJdOeHBFbLnEsq/RutdfwehkLtYvqnWjMczuZMXC2Thhza1wFz7cpfsNqhUM2/YSlvZ7W0YYsZECe8H3mxGCAyAJC8SN9G/YYH03x/BQErXdxNrDFpoyWUZR9rtdiwiZsrIa51BOKMiNPyavbnkukIpjfqkhE8xMShTXOTRaFNdiTRIGmYUXk81kO2mQnts9JaD5pYZC94t8/uq5+KlbCLY4lOvypQUL1xZe9He55cqJyUeDSB2YJqvImnfIsmZLqKuTy2MT58QhvWiSD3qW+/HQJkoQpZ7w7GwhC5PP5JYy3cEAwEcIOD5i8kE1zqG0zEuLWSVK5z15MU6/zvnScln6pcvKwsxzM6VwUTV1/3ilwvmSmauoBRjd0KFEMWLjiq0Vh+zP+b7ArCfvxITNDyASjnm+1Uorgmqt+7i7wOIQwzBMN2Po+mcAyAtW7RxyRJhORiy3kCviQhu/xq65pyRCG6XBlIESh/IBo0lcG0htl0N1CjPZsZ1DkewSZSah7TuRyHEw/lv/womf/UOHhzv03d9GAsKyf/08c7vtqrLbEZsQ5ZzbKrRyHLTd31xkRGkYqM5ryAtysgysvq1bO1+AVOipqrIy0q3j41RM0Q6XKNcSWDuX8q4qPYHVokfoNsETdZxDdih0kHYrM+2S/QaTzeApUUYfX7c0LlEMiquIyDfuHWE5hgCZVyU7v6VZDnFYMLGLo0JxSF9YRFFVTg4dzwSKiiTMZDrYr2tUVeKQVVamV8kT8uEizISP2+iL2HxYO8PsbpY//v8AdK70antY+NIT6EEVlEa8s+42ERV3Y0z/5qOaUhrAEocsV6WdFxaRb7qEAbVibeFYrIvgTBc04xzS4pD6m7e+72yhJ46CmueUz3LLtCcvwjiH/Exwt5MEiMhXpUaWW0S5euJI5qglOaEmRPZ7Xb9+WhxyveJQZSD9zrLdQmT9rOcJsRakzOuUuoXIBChbrezdMnoLlbvnW+3eLRGnjcrwWtenL4su2y1auNLbwDfnU3nMbJZRnkVn3oDh7/oa3FLalczGNVlTJZN1pJts+MoBGzt+Tbm1XeZlu4F06XZejNOlhPk5gHB80wREO8fSsanXPgqsc1LqwrJdP6asLA5V/qEHOFlXrF/kHCpy5e6lbN28AQOf/BaWOAdiVs+J5u92zh8+gJn/e9FuHt3ug8UhhmGYbsTyha9gqFgFQDuH0km3nlja5TCukC6RSDg15TiAJSZo5xDSSU+g2unmMySSgq4unhWk3Bm8Pm8BAKyYM8Xcpjte1esysjMMHHo4ZvQ7G+PW/QvrVy0zt6d5TA2yw1XOOZSf2EXkGju3q4JC86u2nhJNgNpSvpjc9p1DVlmZfm8C3TpeT+BVWVmsWiC7Ijb5QKYltA61zr0nuquO/nzEXhM8FE8WM9lSdhtpIw7pbIYQnogh3HSF07Q0BuBEFZkZonN/tPPKdLqT3c4iK7+pqKyMdDe7HPrCQkShdA65JSP0FV2IGmea6rrmI7LKG9LVcU9EqeMht4qsJ+7JPjTRZvZ+wqCK4W/cD6D2M7uzbJn9MCLh4PDjzq5/fBSXMmk3kZ2PYpPvBAnACq6W+TmNsL5TOiF82X+bGXHIdO/MBlLbeUd2kG8UVM1Y2oR2ZmadO9rBWY90EaKcya6jJEJMrvm+MWMopc0H7FJjExadF9c8KbzrzB+vVJYLLe2UlTkNqSDkqHNLJBzTFUwLUvqYtlvIM+6b9Pu49fBzUCL5PstAaiVoWefQBX0m4sjNT6GtZUtmLHmHrU1Mbubzkg/IzjPypLPR74AhacZizjlkd6kzGU6mrCyGcH3ZkKDOd77jpmVlQDpPyYtxSVQ8hxBWzqMUB+3MIe0cCq3Mogari1m2DF//r8+NxmGkXLF2WZl2QuWdQy/9+zo897dvYW9k3g1fRX+xEdVz/4DY62GcQz0rq9HUtmo3j273weIQwzDMPsCGdaux5LVZHW638kU58V+FAbIMy2rHnVghhMLKxZGWY7d4h7pePpKrT4HTYLqUha52DuVW0NRxQuFaZWVxTfBje4w87cPYgD6In/2juU2vkDp1giR3lsHnfAceIiy438oeitMLhczkLg5rOsIAQATfcg7JEG49+dOZGK7vG3Em7zzqKLjUV5kHQCoOhUocckqNSASZlcKYPAjHgwurpFCLKyguzYt1WZt6TxOvsaZrnMYu8ciIQ0r48T39mkVyhdJJu794Vj6IG7UihmsuAPKlWk4SyZws8mps/ja6lC6Pa2WG+BQDbgkJZGtoioOaEgxdlpCYzKG4ptREOCqQ2nTjy+duaYfZvhfuyey9zH7yDvTD5sx3MwCsXDwHU/7+HYgkwcoFMzD9zl9v9777r3kGC0tHoHfffnW3ieHCKcpUs74zdQizjVsg0OjH+CUptjdaZWXtCTGapEPnkBL1rVIes38RIRAqFy8MzGN0qXV+/InjZy7E89hOVDu7Tufs6e6d+nvFaehpnoNnnRMcU/KVKysryfvLShwqlRpMyHXNWHSOmuUWclW3Tvv7VZ879DnFBCu76TnaFl5GnfM5bIXcp+OmZWW2w6fpxEvRgyp49dHr5TG04NKec4h8RJZTyuzXb3/xyNM5czXOoVTYMnl1YQCRJFLcckumIUFmHFbpsR0yrV+nvBhnPmd54ctqxqHffzNmI5JWMyHmVOAc0scildmXwLPObWrhw3oO+m8myYlDyav349BldwMAnr35p3j2T1/F3sArT9+L4zb+Ey8M/ihGHHNq5m/QE1GXi+N7EywOMQzD7AMsvPErcG79UIfbNS19HEtpKNaXD8rkDLnWqqMr0rIh18p8KcIIEEHVtJLXQlLsNGQydjRClZW1oQGOcsFIcaDzzqFyYw/MP/BCjG57ActV+1FH5e2YrijbE3DdCYa+dSRe7n0aRr9xJ7ZsWCOPYbVVjpCWlUE5TvLZGuu9gRiy8XlU2lqVyyftiuJnnEO++dlGTjrbF4e0YGcs7xXdOl7mIok4hCPkSqFZcc5l5ujVyLw4FGlxSoXCCq/cTlmZdbEUpeKQY9olN5gJsY9ITbazrwUghaKIfNPNSH+etIPKFaGV35QNrbaRn89akdOspqsJMbmpaCXzTXKBpPpiQeUoeZQgUWVs5kJRr+6afKl6ziEWh5g9B+fl67EW+2NhaUTm4nb5s7fhpKX/i62bN2L5U9fhmNk/zXSK7IhN61bh8HAhNg2e1O52EflAwfcb5crK8uKKncNjMHlh8mK9RPJ7qk2UOlVWZv9t2uHU+ZB6U9Jmbe8iQqsSguKwaoSqCmW/X80+HS/jNqrBcqI6rmuCmWXHSx9wPPiIUrGkrDKHorRkVz5eHz/7naZvbxDp91hMHpyC73YjWigBCrDEIaoVh9JsJiWqOGkptd1OvrFnH8wd9F61rW9lFaXbHH3cO7GUhqLXnFvU82unk6p+6Ug6eTQdOYc0TT16YQUGwj9geOb2A4ePxdSBH8Lhx52bLqaE1bTcyvULywTTBYRSRvDR700+lDx1qOXFISX0RLUuOr1tEgWZbmdkHLW1rm0n0fOBNK8xthY+zGG1cyjndnVUZiAA9Fz+JAatfhJvFmtXLMbGNSu2+3EtWzdhwONfxzJnCMZd9Ct5o+XIchG2mwG2r8PiEMMwzF6OEAIHb52OHqKl3e0q27ZiRNtMvDFgorSxW1kpnghNRxRPRGmYpyi28WvSyVFFrmI5vhGSEvVzvouZnvRUqGyVlUXbXQY2/Lz/QlX4WPXIVelzcPxUUOnCsjJNv7O+jR5UwZz7rpQ3WHlMmW4jqlV8nnDSf2OoWI2X7/iFaZuuJ3Q6MNUrlZE4XmFnrarfF/2qKxDHtZP2OIrgkjCrsaaLjukOVjKBntJp46pJbFTrHKL6ziHtqAnhqXDMOs4haxLpWeKQFoo8tTrtJVU4JDJZFKUkKw7FJIW2QKSle3ol0xWRdMGRZ63k1jqHnDplZSbEs6I6qnm+Ea2cApeCnmgLK0fJuIhK6WfPFofyE039NyCKXBIMsxtYs2IhRra+iEVDzkfklDPuGi2IRGHFnBu2p6X1ohcegEMC+486s93t6uXcwBKCdQizjSm9ibPiUKi6giXWQkGFyp268LO/v4o6bHq+FlzKNdt7IkIF6vawClJO0oCybd7N/p1SJvw3D+WcqLr5gcyts8rK9NjKvQBIB4l9bjWZNDXimhxrk2gzx6mXg2REi8ZUHPLV8ez96iwdUzat3yOvBL9BHi/fgn7Ee/8bLw78IA4ZeRIOOf48TBn4EQx96+j0dXAcrDzsAxgRzsXyedOtrqBl1CNwGxE4aXi2fm0arPEX4ZcaMPSK13Ds2ZfU3H785/8f+g4YZFxNcWR1fnVLctEn7xyy3KW2G0o7nPOh5EaEzL1GuttaGFSMY1Zj9huHJsTc82uDswG7LDuCk0iRUZeVCe0cohiJmmvoz0I+J49EZLqnuSJs1wG3Myyd9xLe+NFwLJ07HQCwce1KuH85BUtu3P72869e/184QGxA69lXo9wohVRTCg7599tuBtg+DotDDMMwezmrli3AW7C+7kW65rWpD6KBQjSNPEd1U4pMrXzWORRBWEHRppNFAVpMiMJ0FVOvHgrHlwJJbrKvJy0VKsNVk347SLmz9B84BDP3PxOj1z+IzetWmUmwWZVzu14cOvTo4zGj6UQcuewWtDRvBuLA5CxE5IP0alyuxazmqEkXYGbj8Ri16E/oKVpkuKQar7b0+76PhGSbdyLKPF6MvACDsB6vPPPPmn2bNrVmZTRrEXe8BoQkxTr9Xun8AuMc0kKJU5w5lJAn37Nc69siMhkcOScQkGYrGSHILZnVYt3SGJBCkRZ1okygd1YcSqzOb0XikMznqH1PvNzrBLdkSiqKhFH9utqlcvqxdlmZr/52ANS4Aow4xM4hZg/h9Uf+BJcEDjr9s7Wt1XV3wigw3+dFHQHrkSx4DFvRA28d24FzCMVls2QJwdrlYOOZsPr0sXYZqV16U0FDJ8Uhq0OZJTrlnUN2QLQZDyJUVeZeFMnMoQhu+j2WE6nb+x7VzyuCa5yoIXlAEspOk1ZZmRFutHMoDuS8QIlKrhbPc69f7z77YykNRRNVjeNVftcXiEP6+Tf2Mrf56gLbdhgbQUp35ipLgcbxyzjwraPxwohv4ohJ78/su+8BQzDh839Guakn+g8cipM+/381mTvDzvgkAuFi1ZN/qu+usehz/q/R8J6rzO9Hv/0CvHzC1ThoxLi6j+ksZjElaEubY7ilQrHPLvPKOofUYhp5WUGiXpdY7dYOw9Q5Zu5KnUMiI0apz11BaLp2DsWOZxaWhNVdVM8rTFlZbrHPTUJTfuYkUfsOuJ1gw79+iMFiDTYunwuRJFh6/WfQD1vgh811HxNHEab+32fx2vQnzG2zn7kfx2+4Fy+85UM4YsI70o2V+w6Q52t2DjEMwzB7LStmPg4A7a48AkB1zr+xTTRgxIQzTHeT2HIImZUm2/GAuKYjho19MS7dG67ZNnE8KZjknUPq98BplB2dkkRa/ndAzDngjK+hTCHmPfB7uIiVc0h3GenazCFN42nfRF+04JX7fp8JLI51KRJQ02LWpu97folGVNCL2uRqlRpvI+TKo18qZxxYNked+hFsRQ+EL15fc5++WKNcvkRinENScEISyYsKxzfOnzRQOV3FBGpfQ3nRmAZYwi3BJYE4qv3sCeviyi4TS8vnSkjIQ0l3EXJLZsy6pTEANCRtZjx2u1/XuM7kRZLs/JYGcubRpXR5TNmCnhC7aUmFkwSZyTeQdvzR5XFAutJqcpHUxZ59UWtjxseZQ8wegEgSHLj8XrzSMA5DDjsCgrzs+USdD+IgMN/ndqfIjvZ98OapWNjz2MKmBjYJucXikNXhkZKo5m+ypDtL2eKQJezaDsiq09gpV0C2rMy+aFel0DlHjKgjDiVhoMpTPTPuGpHaaV8coiSbl6ZFckc1NTA5NOo7t9SonUMqZN/RY1WlbrnXjxwHa8d9We1bOl5FvRwk9bqUlPMmEC5cvV/LLatfcy1Y9Bt4IF4e/3MccfpFIMfBcR/+Hnr23r/uc67HgIGys9Tw1Q+Y7123ncyhQ48Yi8NHTjC/+6Uyxp11cU3J944w8PCRAIDmhc+nziHPh6D2nUOZcnGdOZQvKzMl61lXlAmXDirGMWuem5XLl3brazDB2ZnSR8s55CYqr1EHZVvnNrOAqNxBmb8FyPOqFlVcEcoOt+Y5R5j1xJ3bVYJaxOLZUzG+5Wn1HKpYMONpjNumu+7W/7uZdvdvcfya27Bh+j0AgJbmzdj/sa9jOQ3G2IuzuWnCLaXPA3HhfHrqbT/HghmTd+q57A2wOMQwDLOXMO+VF7Fxw7qa25OlzwFAh86hvptfweLy0Sg3NpnwvcR02UjDc21xyEexjV9jatnDQLWST8MfhS4rqxPGGziN8JIordXfgTKwQ448FjPLEzBsya0oiyrg+CacdFc4hwBgxLGnY3bDWLx14d9BYUtaRmet/LUnqB18xDi81PcMAFJEKDf1RCsa0FOocitPiiZFzqNSYw/MG3AWRjdPxuYNazP3Gcu4KStTDhfdHcwrmZV5GYbt1XS50au8emKfL/VLVNBmWlamyhyC2tbxtkBjl4mlHXEakDi+yblwvDQzyA6PbRAVY50PlbgFpIKLK9fkpZXfdGupvXB16nyO9eRbl4k5rm/eS0qiGpeCCTS1SuWgXET6gpEclXFiZ3dZ6L81Litj9gQWzJiMIWIN2o54HwAdkJx14QCyrIyMc6j2b76IpfNfxkBsQHzoqR1uG5NvuiLZ6Nu0EFxbVlbr3kESZYQOTeCUO1xIAbJ/myJTVhaYcjXAchHERtYAAQAASURBVC1lupXFCB1VVhaHcFSwvR53fvx2e/IiKA4z54NInVdNm3rdQVEJ3A1aHArbMqXGWqiJC/L4xp39SSyjweY41abBGBSvxgarOycA4yrW4lAED55X64gSuWMCwLh3fwG99x9Y93l2FveYi9EXzeiz5CF5jHa6le1K+g08CK95w9HvjSeMiEJuqdgJZrqP+ZkwbP062WVNcvu0256NCZcOq+kij8K1cvn059EvNaT5g3YOYMZ5GyJx0m6fjuWK1fMKvb3IlZW5SZhm9Ygo87znTHkAo5/6JBa/+gKWzHsJs/9nElpVp7ntYdNDPzGNTkQUom2znPu0iMa6Dp/1q5fjyDnSMabzCWdffxnekqzDtrN+h3JTr+wDXN8sdPmIavb76rMPYMLcX2LTU9du9/j3NlgcYhiG2QXEUYQtG6WQ07Z5HTa8PqPTj123dhW2bNkMAJj8v5/H1H/9FQBwwF0XYN49P6/ZfuAmGchs14cX4ScBQk/V2edEAduSbpfD+HVs/BpjU48C00pebyvUzzWt1/XKs9sIB1EqarQTKtkezgmfRz9sRk9qk5OyUm2b3K6G3nYZBmATjtzwn3TC76TtiPMtZvMMOf9HCIQL0dAbrudj3tAPwiFhLjpkSV7x4/uf/Ek0UIi5j/4tc7sOTc13eRFqouf6DYjIBSWhKcMyXW7C1PIOpHkR+Ta+uhxRr8qbQPKwVoyxyzIabLFHl88pcUi3mCa3ZCa3jUgfW0bFTIBjuGk4rZUPoPOm0nDY2pIXN5fPoNEr/7pMjLySWcXNd4MB0s+8XSqnJ9MmGFd99lzVma2mxEBfxLJziNkD2Dj1VgTCw4hTPgwg7ban0YJQHFbN93lc8DdWxKqXHgQAHDTh3A63tb9DbdKulvJ8lBdXXNeTF4/W35NdDm07hwK3qXPikCX22GIzWaITkHaUtMUkHxEit1Htp6rKcH3T3j3/PaS/h+uSc6JqB6UD+T1uvqeVk6bUpM7zxg2Zzf8p/h700XrOH/Da0f8FABhyxpfgIsbCf16Z3TDOikMhpU0V7PfFhGDv4Hm9PUad/B6sQn8cEc6RY2mnrGxXs3HIaRgWvobNq18HoDOHasUh0w027xxy0wWZjKMt0SLk/2fvu8PluMrz3zNt996rakmWJblKLpJsy71TTe89EAglJCEJCSEJCb8U0iC9EEgCIRBIgAAJEEoophcDxr1btizLRa6yerv37syZOb8/zvm+853Z2b1Xtoolzfc8PKxXW2b37sz5zvu9JfQu9AM5O+SR0u8088yhwMScUurEwIbMxmPjQUZmHQtwiGRldM7UBxqR0QyqxEYjFaByMbEDAJCPb8fGO67AaflN2PjgPdj44D24+r/+ZCCjaOvWLahK+2933fxTnLP7RzxQq8qcz8cJ1R3IHLrnM7+Nruk5n8IcE7t34vyNX8C1816E5Rc0eJ+5z14U1qdL/v22b96ABd/+dTwQLcKpb/5A4/sdStWCQ2211VZb+6Cu/vj/Q/lPZwMAbv3sn6H6xMv6HnP9//w5rv3E7wX3lWWJiX+9FHf8hzXZW/Ho1xHd9W0AwEyzG3EvnLrs3rkNJ1T3YbexU8qiwWuFigABwBpgSjlRIuLrUyGHsdKYfho/FRlKVm5BrVTiJUlRihINBqM0hY5HkJgCeRHKofa0TnvKS3F/tMS9Z4au81tQ6eiwpz2uWnnJi3BrtgqzsFsYcGeYobdAF8VAfxuqxSeswEOv/gZOfcXvAwCWv+IPMYEOv1benYcd0ezG5y49/WLcHZ+A+Ws/F9xfuMQsmhJSwy7TwUpFzCE/cc6Uj2JncIOZQ3XPIdvARi6ZzlPc+393sons1JhAgKXAmyjFqCE6fsasr0gZfvyI6fGmitPS4JvVBBqxKVFFPgWmKa0sNuGUle93jXPsGuIoyVx6kGaGlSyarkpwiIAlYiHR9xKThK6+8XPngGqZQ20d4KrKEks3fBO3jZ2P2XPn2/vqLAYGhAo+/3Q+vd/uyAM/xv1qMRYee/KUj62b8lLJc54YqrJUFNlrpzifpAG9ZA7peITTlYZVyBySRtehnxzLfogNWFVIVQmd2PWn1DknJTLIXb8OiXjypqozUWldTUwBE/lNPTEYR0Zn2WNxrFHFLB7HZhrA0l1+3jNx/qt+FwBw7Imn4YaZT8WKhz6HXTu2+GMpc+Qm4c+tkXhGkrxWNjCH9lYlaYp7jn4p/3d6AMGhI895CSJlsPV6K11SadbPAgICmVcgFYt9vySTP6VkXRabSxeTiEwZ/C3ZvLosvPwx6wpGrV+nyRsoMppBRurnJCtWC3Y50O+TR+drkU8iMUXwGYhlVBY9fl5Z9LDu8s/g/Lvehy0bH+z7fOvvug2d9y3HdZfZ4df2b/w5dmAURz7vnfz+9Dl6qtsoEb3tiq/jvO3fwnVHvwG71RhUVWByfJcNvjhyZd/jASHXK6xPl0xqu/NHn8eR2IJdz/lHjM2c0/j8Q6lacKitttpqay+XLnKcdP/ncQR2oNQaZnI7xqrdwWN2b9+C5av/CXPv+0Zw/y2XfwnHmofQ6dlmjGRdVWkbzrq588ROCxZtjeYCGG4SStIbwDIbYqPZZyiF5uY2heb3yVTZSOPn1xRpHdRgaME6KVW/rMy4pqVM7AS3ZK+cxzZhVFGMR055vXuNFLPmHYmbLvkgVjznFx7T603vPSNEz34PABH7ftqrcIx5GNd//m8ZPBlWx688H7Pm2M3Y6NxFeOC0X8WWsWUAgOWv/Rskb/rygDdX2HjSz+Ck8i7cdctP+W5dYw5RU06NXhSnPHFmoLAWXUusGG44a38TAk1Yash09X4GjPTgkDKxrplkE28TWSo3HXfUMGVOVcmbKa2SQGIC2KbVGpqnnCBkGo4nMv2bSsBv7qKSmEMdZyhauBSXGjjkGmgplaPvmGRl9L0MBoccRb8Fh9o6wHXHNd/BkdiCcsVL+b66LMbLynp8PddDBhGyRoqt2NpZPK3H9pny0vtXEgguGmVRfRJmo9kDR26gy3iE/VOGlbx+yduqdm2Pk5C1RCzKkphDRc5MSx7O1NdTSiFruG4BcN5nnkFCIHniruOqZpLfnTHL/bfrO9x1nBg2Tcyhpppx6W9jFsZx2//9k7/TgRbEfhkEDlGv0WeovJfquGe8BZVRQYrbgagTTrsQj+IIHPPIdwHYnsjE/SmeXubV5XUK8H1PFaUhaOmkiPWSErEERfDbjuIY2kRWVsZpZ2JoIhP1EDJvTZRyPycHHyRFI0ZQXbJN63BR5Iihg89Nj60K74FUFj2gtK/ZdA15+Ct/jlHVQ7n9ITz64H04Z/zHuP2Y12DmvCV0QNy39qKRPhBucmI3ZnznnXhIHYkzX/sevi7wew3qM4k51JtEqsrAWLsq7Pex4Njlzc89xKoFh9pqq6229nLd9qMvYT62AbDTFCU02VSrL/sQRlWvb2Err/0PABAR79YUt3CTkjrTgNginIwyBBwK4uJd80ITGAsOucQJZRDJCVM5MRgcCphDtsEoeVqbBEwPKlXlKI2CSTpIoIVW/7HLwE57/q/gUbUAI0edBAA441mvY+BlX9XKc5+GH818Ph5NbNNyxvN+ETd1z8Npa96Pub0HG1kqw+qkV/4Zjv7dKwAAR8w9Ascde/zAxy5/1puRmwSbL/93vq/qk5WRtElEx/OmooCJPPOHTKvJWJR+J3XArnJyk8hoazbOsrJ+/xE5YRxV/vc0iknBthKNbZIFG4lJI3wZSLonmGi+uS1t4ypkZU2gS2x0498kZRBtwn0HqWNIlY1sIzpGNtIGkJTjyIUPCX0vGYFDprYZJeZQU2w3feaqwvatm/i/e5PjuO7vXoRbG5Lq2mrrsdaOa/8bEybDiqe92t9Zk8XQOVcVOd9uSgQsdYFr/v03sWOL90OLHaN0OlU35eX3F0BwPADk1SoOwg9iwRySfnZVMjLU38e/oACHdAgO1RkdlrVERt32e6lSF5Fd5sxiYllZ7ZpC19lBPk6SBQXADV1shLiJfQQ5gUOdzghKoxC5az+trWyePc21afnZT8Ut2ZlYetfHveFyVUCrmL1wtEqYsSL7BJXNQG7ivij2vVVLTjgFt3TPRu7S1Q5UqSjCvfOejKPNw/a/k447f5qv+WmW1ZhDbs2LkhCQHRBqwSEg2oODsgpK9CxzXpMIUAoSRIXnEL1OEyuWekpaw+prKzGHdG772UxpZsDReVMJD6RS5/wadfbh/etW45xt3+D3mdhh179k0anM8DVlzolpedTtYxre+J+/jeOq+7HpqX+NkbGZbG3AgR0DZI50Dk2OWymc/PtxKt4B8rba39WCQ0/Auu/267D+zhsP9GG01VZbj7HK6z/Jt/PcTlolZdxUJY66878AhBHXGx9ej1W7LDhAvgupk3XRAl3fTFJyRO7ML4eCQ4I5BJfMQPKbWBkYLZgQpacVZ9XEwOY+EX4L1GCUNeZQVJ8Es5mxBag4XvVxpIuNzJyLI//oTpzxwl99zK/xWOr83/gkTnqHlf2pKMKcV/0LIlPh+PLeobKygVWLrh9Us+cdhVtmPQUrNl6Gid02ylUXIQOLgB5q9OK0w5P5GKXdIHB0rQWHCCjhhjMJG0/yUiBz54jNMRsm3gNi2mNlvCxDMAAi4TkEABNqhG/T8dhEuBAcSqGROuCzKTmI37dBIgYAsZu2piXJyjpAnCBB0bgR5UQ1wRxKyomgkafNWEr+SgOYQ3UmoKyr/vP/ofO+5di9cxsA4Pr/fS/O2X05dq754cDnUO3euR27d+658Wdbh1fpIsdJm76L22deFMgl6gbJ7DmkcwZvyobze/2a63HeA/+BtT/9P74vbtjADqomOQ4g1kOjB76erjGHpLRXpi6W6diU4Q2AN162Two9h8oao8NuyN0m2V0LjZM1G51DVRoVhjGHBstz+T2lrEylLiXKguJ8zdcepC6QIHJrOm36yZtpun8PACgv/g0swBbc9PWP2DuqAgVSBjhKlSBmRpJ/3VNe8Dbc+az/nDKh7vHUjJf8Pa5b9Sf77PWnW51Tn8+34yQD4gyJqsIUT3fNT9KOZ5jCgxUmzkJZ2UBwiORPfiAnS6sYqAofGgEZcS+GfpI5BA0j0kIlK7aU7HKgzyePelhd9Pg1dRn6E1W65xMPi5xv15lDD33lPT7xrsz536Ok4729dM5gTRGHzKE1134PF274b1w1/+VY9TRrrk8DpXoia71oze6N7ww/L8Dr9L6QSD4RqwWHnmBVlSXSz74G277wOwf6UNpqq63HUNs2PYLTdl6BncZubEsxaaVUrgfuugXHVA8iN0kQ+/ngbT9BqkqMmw4iQxHvdiNOTWOdhUPT2yK2jWgTg4OKGgDAevMkqkIlJpVKmBAmAijKzORAFgzLkHTOU0xqEFWcoVQp4j5Dao0CPimrJK+cx0s/PwDTw06aYKzrv5vjli3HdUt+DkBDXPFeru5Fv4RZ2I1bvmnZZj4q1wETrpFJS/v9xgmBdZb6beLMs7UcOMSTsah/4g44WRm0kxp65lDVJCtzv9Vx4+QHxv99qOmVm7YoyRjQAoBJ+EbMMDiUClmZA4dUybIyjvJt2LgGzLlaacRIK0pN67gY55KNroPXcZ+5C3/uZOVkmC4XhwBSWvMTIQbgIObQvbf+FOfe9+/oqgLjO7dh+9bNWL7WpaRMYWJtqgr3v//ZWPvBVw99XFtt3X7lZZiH7VCnvSK4vy4rI0Co0jkDNU3MIVqngshsOZSYovpMeek12F+sZNZj33sjZfarPeZCgEOChZiO2uvfVPHakiFRhiwqSuSkKlQCVRFzyDFsMsEccqEOLOuuM4eYgdkMDtVNuMm4m0BxlRLjY5wBgQIJEmIOkezMgUbTZQ4BwBlPeRnWRSdg/s0fhqkqRGURJJSVSBnskH3C3AWLcNqTXjzt93kstWzl2bjkFW/bp+8xnTrlwhdiwrjvOEmFTND/PdnTMc3s38FYEIQGLCbKAkBC1dhiVBQ3XxW5G/jVwCGkUJWQfsMDIqZJVgYXRR95qaAcfJRFj3tR+zlqnkOOYVPkAhxy1wF6bKVzcbvHa5gEqx5YtxrnbP0Gblz4MlRGQZUF98xR4sFIVD48RcejQRLotruvBQAc/7I/8sfvpPRlbXhWLzpHersdc0hVHPAik98Oh2rBoSdY3X7VN7HYPBpQ+tpqq62Dp+74zn8iUxqr59s0BF30hIGnM9GbsIkiO9SMQGNOC+UuNYbYaJ6+xMK0uQ4O0eJJySi6GMxESI3mzb5yzQvJiQBvXAyAWRQA0K0mGmn8gGenVDq3U0yVeD+IOLHxqLVmn/wXKKGFJq3R45CVPZHqzJ/9U2zEXJ8Mt49q5YXPxX3RMZiz2jLVyPeHaOf1Ri/NOm5Tob2sjKZonGjmp5hAPwXbTjdtYpCNvnXAT8OmhgCQnnJNFzKULo6WwSEpK0uzYKLaizxQRJu7UiUBq44qU6Wd1lLz1gC6xEPAoQIJf09xkjJzouk5cWKPa1T4KGUmZA5RM94Vj5F+IrSRHGRIPfl/70Ci7Oa1yHtYfdm/YS522qa5DrbW6vrvfAbL9R0YLTYPfVxbbY3f8HnsNl2seEoIDtUNkr2srMfX8yafMQKow1j3x88ciiQQ3ADYAlbeJNcaArDp8wCw15+ki0gZlOUU7KGy4A286WMOheCUZC0xo8qBQygLTkqka0lVA7ekGW5TRbVQiErFLja8tBHcDjBIhQRcq4TXcSnZLgSDaTqlogibTnszjq/W446rvuGTKqMIuYkDWdl05YOHWnVHZ2DN2DkAgCTpNP89hcwLAIN4vMbGSbCmRVVzSiyHgOgcCTGARbGsrNKeOcRBDf54iBlohyDaeQ7Z15IBEqXOuc90dwTvR8dc6pyZTzkx4MikXRe81lXitvx+HvzKe6ARY9nL3mUBzLKAEcyhwNuL/IuSkQDEpusOhZIA4IEYD1iT5t8+rdnF5C7/XVJfw8BeCw61dQBq99W2yW+anEy37rr5Clz/rf/aW4fUVltt7UHNW/s5rIuXQh1tG4Ui9+AQATw0weipTrCw0bTVJjCIxazSPqa87lFEr0nJKENMQhPH7AF8M2pyvxDK+NJU+Kl00Rs4+U0F1TcxJUyceSCJmEO1Y2a6tEvK4onOPoi8PRA1NnMOqp//Bo5+3b6NPFVRhEdO+lmcrO/E2ht/zNHSDA65v03HON+btMNpY3ZS6OUIBAxmtbSyvimbkwLGxm5WIicZkBG5XK4ZLkBm0jE3q960XHoOdQJZWR55WZncVNHvKYVGT/gSIfayMjQcD7GLmkqrBB33m4/TDjMnYvRvbJOOo94r/7vuVJON4JA04pZ+IrSRHMQcWpA/iN2GvCVyYMICPbvUyFDmUFVWmH3l39nPMR1flbYO6xrbvR73Z0vRHa0B2SQXpcl95Td29LtqYufROiXBlNjoIG57WFUNEeD2Nfx5Ytej/vPYSk79+0ZGexCGzGZFwuKw8AYALMspXBS2f93+gAaNxG94c8fg7EjmkPU788zdZubQ5M6tjcdCYLz/rCniKrfXoCi1PjewMla+xiLhdZz+HQA2x/NQzThq6Gev16rnvBlbMROTP/lgwEjRSFCpBFEcozDxHoFOh1r1TngWACDpjjXKBFWZB2sErYEeHMosaOmkaINCLWQISGJ0nxy/RAzlZGX0fr5P8+cRgTqpkJWRZ59kxZZFHnphDZCVlUWPX5OHRZqCF3IhMct5OML9q9Y4e+s3cfP852P+ouPsb7gqoGs9DXl78Wu5UJP6sUn5F0nR6b2iAQAPgUZ60g9JCwFylUbtU4nkE6n2GjiklDpGKfV9pdRqpdRtSqm31/79HUopo5Tatw6hT/C69Udfxk8/9s7Gf5vYvRMrt34fwONr6syX34YlV/zxY35+W2219djqntuuwknlXdh04isQxX4BJ0CHGgXaSPfUSC3204FD0YhlCxE4ZDQvbHFdVkaGfwkxh5obXorXReQaCWpIcg8IxYKxKGnFI2ZyYNPHMqQyd1KllB+rkqxRJqBK1/RQw+6YVIO04AdjLTxuOeYvWbbP32fF834ZEybDlh9+iKVdPEUmbxxDoIeNaKeJs4kzS4GHSNviKHb/N5RlQRNr1GwNLL0heV85+QE1wdYhwxtL2zf2rx8nKUctA0DRAA5Zrw2NUmvEymBC+UZPRUJW1gCgNFHwqTQSdOG9meAo/naiGjaEScPvdAQTwZSXvr8R+O9FsvoIFKozAf2xFuy5ZNNdLNBW91Wp17Xf+iROrO7BuOkM7CNu/uEXsfovLsbkxO7Gf2/r0K4fX/YZfPuTfwMAjWl8gD2XAA9oEiPHlDn/rpo8h2gNk6a1Us48ZQ0Ah+QGsGsmG89jMp6lkn5hzORAwmtfPhU45JgbzMSgQ2xI79Qq7UtxU5kd2KAk7zLPHKof/1GnPgWTJsWO//t9mKo/SS2u/Z2qKEVqnHQn9ilTnWqCPVu0YENKtsSc3/gRzn7du4d+9nqNjM3A7Ue9FKt2/hizJx/g63ehEpaSWbna4bF5bqqzXvxruPacv8Wy0y/i67+uG5mLv6F2fydaQ8GgJRl/N5+bNECpHBhTH3jY36IOmEfUEzDjpiyZmZpCe+Zt2s+KrXQPhVy7amsrA0K5TfkCBEjszgnru9XvP0TpaXlvwqaSzj7OfYYYUZmLnsZ9N3DnOD3fSUS5iOEj+gjfM4SvVS8CUHXPD0x5KCv8mw6H2pvMIQ3gHcaYlQAuBPBrSqmVgAWOADwbwPq9+H4HZe2+8Qs4df0nG//ttu9/BjPUBDZjdmBSuye19obLcVJ5F0cOttVWW/uvNvzo4yhMjJOe8fO80JRFzzfTBcV62qYuj0eChY0a6tzFc1KTmZjCS69q14aKzS/tlLIeM0pV1BLBfLpJs5RM0opTVQ6c/HpDajvFVFEqWCcpR5/LIv8FnuBOWgPAQwkc2l81a8583HrEs3D6lm8h32ETgmj6l2ZdVEZhhrF/1yzruE1FjkRVULFPJ4n1RDAZY4ZZnYLtjDZTk8NECYOgWvdvtKgZLsUkmzwU2EtBNLZx2kGW+d9A4dhw8ngIbCS69yQ8gIQk4wl2k6wsNYM3qRoJRtxmK047VqqhDDoNLIVE+CJRjZhe4A9B/lmRMv7ziOlrNBU4ZEr0FF1Dcuu/gGQoOKS1xrxr3osHosW4Y+aFjeDQ+K5tOPL7v4OVxW3YtvGhxtdp69CukVs/jeV3/ycANKbxAWAApSAWjBtiVDpnsL9prWHASGwgE+dnMp2q4qwxSUz+lkdUPoA5FCZjBp+NBhEq4TVwGMvWHoyV5WgVnnOR6d+0S6N8kodHaQe5sUwHeo6Jm8GhY048DTes+F2smrwG1/7PX/V//hqD0UQpusQKijMG8TvVZHCNZTakWFtnzzkCnY64bk6zjn3OrwMATtR38feqkQQytsOZOZR1ujj3Rb9s08HINFoyh2oG03SbgDuS+vuhYBFICal8LH3PgjF15pD7LUrPIhq6UI9JjJjSKHSUY7HGGfsVEnBk36eAlsyhmqyZUr3yCQ+q6LqsrCwYVKp04SWYri/Na/2pdswhAo8IEONEwjK3HoZxp7GHlvL0yknRq6mYQ9RjNMnKGhIKD+Xaa+CQMeZhY8z17vZOALcDWOL++R8BvBOAGfD0w6ZUVfRH2rrKbv0sHsF83DvjrMfMHNp6+b8BQOPkpa222tp3VZUljn/km1g9ei6OOHKJp6jmPWb7aKbQOuPKyIFDxl4aZQJDbLyUzErM3O3awsweD87fYFDDyxtTakTIoFJKyUrfAIyY0PdsUNPHdOXCPj5gDsUZqijrZw7RRIvYVY7GO2ii09bwmvuUX8Go6qF762cA+OYxThLcMno+N39p1kUVpQz8mdgzf5JyPExGofSb+t/ENVCdatL+bcmjqEHGpVyqDW0eShXztJTuk14YSdYJomLLWGxgWI5hwUZqoKUvkWcHxI1ePukQY9xSJfw9JQ4cAizoUweU0kz4dzhPkkyFaUJR3N+ASqYFbSTrMlF5rD1iDrmpa6H6N6qyrrnsE1hW3YvN5/wmyrjbOGS6+VN/gKNg44GHJRu2dWjV3Xfeiqu/90UAdtNJJq6DJF/eM8UBpsQcIikLQjNZKgaMpHxliNdXXznZar36fIgaQN7SJTHyQwTrj9a7EvGU/j5UqsxRImaJC79uVfR58GmXHiZfN4ozxzqynkMyHRIN8tYLf+Z3cWP3Apx6xz/h0fvvDD9uFSYtVlGKDkl/4jSQA2m+3ib8mChp3hDvSR19wnLcNHoRvzbgZWWAYw4dpp5D9Yq6Vqa5c8sjfB8B/FQE3BCQRL9L7vuqZuCWpNOl84tUtcdQQmxUFahIVsYpngQO2d/FOEJfv6ao9krnASNdrj+l1t4bT4JD7trA63CZ8zlkSsEiKl1PTGwpAtWcqbYpxcAG3tuLmTxuiMOpcDVfJ8CZt5uCGfuD+kwa6EgfTi2YQ03m4Idq7RPPIaXU8QDOAnCVUuolAB40xtw0xXPeopS6Vil17caNG/fFYT0hSlVF48K36aH7cOrEtbhnyYtQxZ3AfX26tWPbZpy2xUYqN01e2mqrrX1Xa679Do7CJhQrXg7AL/hl0WMzTVpgfdLCSGCMSVKYMhm1Rs25Zw5RI14HjmnxVFOAQ6UDl8iQ2jNGwsh6KimHATCQccEGfS7tSsWZZw45Y986IE5SBm4EHI33caeVHaZ14llPwdrkJJyW22U2Fmyf7jN+DwBQOVaQiVKMGTIp9RPnrJwIJmNeVhY2iyqzTe9ss8MaWKbCF6dWVj4YB5Nsao49OCRkZWmHo5YBL5W0/+gatyizYGnPNpM9IT3jxB+VNDKHEvT7M1BJSViS+RQ38vQIXkcwhyaUoK+Lx8UNv2UCeAGw/KUuEwXAyTDkuVQWPY6PpljeehVaY+H1/4j7o6Ox6rm/wGlrsu649rs476FP41Ec4V+3rcOiHv3m3+GEy38LAJwhvQeHmoB/nuDX5cyV9Bzq/x1WwmOESnrdTVXKyVbrSWIJCjazB9AI8lYqQSSGJzKd0APHPmFxKnBUGc3XLAk2W/+gwcwhGZlNTAfL/EkEyN3wnUcRjnzNPwMAHvnM23hoBFjTYPmcKsow5gY4KsmQdizLcsxMeKam8tf6eIAJ755WdMFb+PPa9/BsoTXL3oyRc16zV97nYK9jz3wmAGDzjZfxfTwUc1UOkJV5QHaArMw93hCIkTSAQ5W2Jswq9BwiJg+BHpNKDldCcIjOt0r3amuXPxdkGlvpGODyM3jmUM5rntG5MLgPj4fPUxUjqnKRwErgkAWNQBI9YgSSlLPm6wRYIDUyJffdTWszYI3EgdCHk/0whbn34VB7HRxSSs0A8L8AfhNWavYHAKY0wDHGfNgYc64x5twFCxbs7cN6wlRUFUhVyfF4VHd972OIlcGSp75pYFrDLX/7bFzzmfcMfO3bv/nvGFU93NI5m2l+bbXV1v6pHVd/GhMmw4qn2+aIvVjKgs9nlpUROORkMwXHfrrm0iUw0PQlRukXyRoboCzsaxM41BQpDngzbGYMueOLB0jJElWFZr8DGBdxkqA0yptZOymZfUrmDEbDY44oBj0OJzXxXphuHq6144xf5NvSjPGUcy/Fzd1zMQn3XS88A6PKNW5xxpuGrAqj2Ol3Up+yLTrruQCAriLPIfe6A5hDWiWolGMLCVlZPUWI3ktFkWcXpT5xBCICOhH+AdKXSFLS674I5FE0CByS9H0rK/OP62MOpf6xk5DGl/I1/O1x05/oRiyDqGGtpwlnEXfdf+cB0NaUVnbV1z6GpWY9dlzw21Cx9f6Qg6jxXdsx42u/hkfVfNx35m/b46n9zXTew8YH7+l77bYO/or1JDrw0mT6bQxK/vIAilt34Dd2xEyvGny9jK5tCikCe5qeQyZOG5PEYpQBy6GROVTzt0saPIdKFfvPVkz2vYYs8mzRNaNr6WVERdIVAIH3W4EUqAqX2JYJ5lDz97H4+FNw44lvxarxK3Hjt7wFRVz7O0XHX+wN8aMUx608H2vik5CoigGFzUsutV4yGCyl2dNa9eSX4G51LCaTOQCAiWgGynQmAODi1/8pTn/yS/bK+xzstWDxcbgrXoY5D36f76tH09NtAiuIbV4Ir8mm9Dda3yvyi+yTlaXMHKI1KXaSNW+a7mTZKhyupELWPeHON6OLkDkkgFJp6l4Kxg2dAwwklZrPIes/ROzD8HhIxk4SUeNeJ5WysqqAqrRd52sswDoAB9hzMxiwDpKVEWgkfDj5uAYkxx2qtVfBIaVUCgsMfcoY8wUAywCcAOAmpdS9AI4GcL1Sas9s8g+hohOiqE3sRh78Ke6NjsGxJ5/Z19RRLR6/A9hwW+PrmqrCkWs+jbviZdh15DmNAFRbbbW1b6rIezh58/eweubFGJs5B4Bf6Muihxg+zQHw4FDlwKF67GeVjCIVsrLEFJ5qjGbmUOxozIM8h9gkk9KpXIOcChPqbk1KJs1+h8kCCiQsT1NJxpvpKOkAUdInc42MpcjTZp4mYHE2vQ1EW/216jlvYkZIvflZ/MaP4e5nfhgAcMaL3ootmAXAgin02HoUOwT7S9Zxy8/GfdEx/JiEZWXNnkNapdygllHKDVbFcg//+jTdpAmdEeAQbehMlCBBwU2pjkf6HtPky8OyyoHgkP/sadoJGE3151CEMwBMCnCqdCAYEMo4JpX3iOCXdMfXJCH3n81eH6oiR1Tl0CoJGApUeaGx+MZ/wv3xMVj5zDcCAEyUBdeKNT/5Eo42D+PRp/wFspl2AFdnDt3wgZ9D8pEn9x1PWwdn3XHNd/HTj/4OANt70pAiqjRLDmMMkJVxIlLIWDVlwdfzprQyYgwROMsA5HSNigckiaVGs0E70JCiCLgkRmFILcx6FW8u04DVO6woLaoOyEq5GlUZpQz00hocZR13LfLG9iyjjQd/H+e95g+wLjoBi3/6J9i1w6aXJTVp3jkv/jXcPHK+/WxJhjRNoV78fmgT8bXszNf+Ge5Xi+3b7SVwKIojjL3l6zj2jR8BAIy97hM44TV/v1de+1CrjYuehpPy27F9s5WW1dPH6O9EfxsGMMUgsAm45UROx3CpnwsEVEamYIabXbOSPllZwLyNs8DImVixVZkHa1cgKxPDyEoYOes+cMizhVAVfNswk8n7ZwFg+TQdLwE3FjTKPUOIBkJ0vWjwBjKRvS7QeZkMYA7RICwSPpylSGtsSo47VGtvppUpAB8FcLsx5r0AYIy5xRhzpDHmeGPM8QAeAHC2MeaRIS91SBedEPWFL6pyTEZ2c2firFFWlkIP9BpYc933cEJ1L7as+DledOoAVFtttbVv6vaffAVzsQPRqlfxfT5Rwns0UKPN4FBqN39s9ucWQuOYQ9S8JtC8ONd9RKhBjzoEDg2QlRVkOhh6DoXgUPjcyUCPPhi4KZCwPE3FmZeuxTa6ty5zJXNOVWtymlKg2ppepVkXdy97PXITY3Tm3ODf5i86Dqc9+aUAgJGxmVhz/OsAWICQvSpMGMVOv4+kgc310OJnAXBrFTOH+jeKkbENFYNDwp+CJu+R+F0RpZ0ZTJT2A980klyKwE4tpGdsAlpLLQI8AKsGyFsCcCjLgnSfpo0cNaC5oOVLNoFsQGk6Kz1OYpb19K/pZM5Zus9WuUmrBdqSPlP6h++9HUvN/Xh05ZvY1NTEaXDelT17fs479lTfaIu/2a0//j+ct/1bmIudfZKetg7O2nrd53Hu+o8BACKT89AxNgWzy5MBsrI6gMJs9jIPbteLmAA+uSuUi0xVqiYTobIeXJI51CAri0JwSKYTcvy3ihm4ndJzyMmf61LOJraVBaZqsrI4Y9ZR7I6FmbtDvo80zZA//72Yb7bitv96J38W+Z4qirD4Df+OW7rn4MhTLgQAnHzGJbjmtHdh2wp7fe90x7D7ee/H2uQkLDjmxKGfdU9q4aJjsGDhIgDAoqWnYd6iY/faax9KNffMFyJWBmuv+DIABGANIMChGptbnnNNQzkGkxzDpR7kQUBlXIUMt0IMTWj9LKRnX5IhEesenW9G58G5ItcfKc00AXPIM24ACxbTbaNzfg1m0QspJuAkokYzeES9Aa3txORhMEkTKF00yspieHAobgiUsPf3+3CW4nO0nkOPrS4B8HoAlyqlbnT/e/5efP1DouiEKGuLUiw1zFHa6BmUGB0sUHde/0Nc+cG3wFQVtl7/ReQmxqnPefO0zfbaaqutvVO9Gz+LHRjFyqe8nO/ziRIi+pfiQImWyz5BPuElNzGQ2BhtOocTubDV/HsqSmcYmSZzKA3lQlnlqfWjqseMCCCcKjUZaPJrqxQJgUwOEALstMe4SHBZcaWtBKBmih0nzYt2W9OrC173p9j85p9i1px5Qx+38iW/gxvHLsGRK5+EsTkLAQBzzI4AIKEmrUmOcOQFrwbgJF7sZdAPclDkM7GEysgn25RRCFICni5PEzqVenCIvToc2FgygOIfQ5u+Jl8ebvIGgkOSwdQNjqtpI0efI4/9+weyDwGqSWNp/jgkK2uQiBFYXCb2+mDc1JWAtj5TemcGr0bF3z0OjX0JRE6yDgNyUoI69r0/5NtF2zsMrCLv4acf/wNsfOjeA30oU5YqrY2BqSqoSjtGeYXYaC8rGxAzH9X6SGILqdJL0kzDOc+AkfuNMit2up5DA/yAEmjk0XBZmZWcNhth88ZbMocGrJVUNi0qcZttYUiN/vTOUgBTtDGO04yZfgRU8bVkiu9jxbmX4ur5L8W5Gz6Hu278UWPi2/xFx+H03/sejl95Ht930avegQte8Xb+7+XnPxsnvetazJozf+j7tbX366SznootmAW19lsAnMG0WGdY8uXWWBliAgxmDmVunVTkF1n7LRFIap8vDbBjkRhG4Sdy/cwCViyHPZRFwLKTg5dCSDONkGMxe47ZQtpLqJ1BO+DXJVqLInmeVgX/OzGaKnc+0XqoaswhYtjKohAL/1rNLDoO8hA+nKX4HE3+T4dq7c20sh8bY5QxZpUx5kz3v6/XHnO8MWbT3nrPg7HiAbIymX5g4v7NFGAXR8kc2nzD/+HCR/8HRZEjKsYxrkaspCVuXlzbaqutvV+T47uwctsPccecp6HT9QstMQeqUng0ULIYNdAOHOKYeTf1MFFmExh6dtNnN8MuSakuK6MFbwpZGcfrxuEktdMnJfMN+LTBIcRISjHFEtK1JoPR2BQwKuGGncChJDt8JjP7olQUYdFxp0z5uNlz5+PM3/06jlt+DpYsXYE1ycmIlQmaqtg1Y0nWD9gtPfV8XLnwNZh75gu9/0HD746aYWpwKyExk75UVHVZmUoyGwWNUFaWCladSWVzS34F/bIyHpYMmNjLJjpJ0hBEangOHaOcvMpGXhp70qZWgjHUHDclixKQS8zC0k1ayyhFFfUzh3xjLY4zypCoiuXlTKlPfMIcXROqssQJ1Xr2Riry4V4sh3Pd8LUP46J7PoB7rvjCgT6UKYvOgaLwko5C9xAbmzBUam0ZRA2Srz7mkACEGBxqlJV5poB8vpomK7RpuEl+YXmD+bysKkoC1n0iZGWeOZTydWKQPx8VXb/qUs4m5pCJfFIafQdx2nEGugWzQBTHlk/9fax4/T9gq5oNfOXtyEwxlL3b1hOv4jjGutkXYdmOK1FqDVUzmKY1J2FwiHpGtzYMYA7ROkkgRp05RB470nMLAPtfAX5/KGXZDE4RK9adb6bMA0KDDFGQ56kK5FgkK3OgspCSSVN71JhMfN1RiX1MSYCO9yKKTcFMnjqYTAxbWSZK7fWLWUjDZWWJYNPT5yag+HCpfZJW1tbg4qjLuqzMaN+cxmnQ1AFk6leG09BSnFTOnAvwi04rK2urrX1fq3/4OYypSYycHaZ0sCG19nR+kpWxFIyZQ05vXU9gcOkPCUreyKU1c2e6DmSjM4PXrpeuTWZIWtI14UZQSskCyvEQzyGNBFlJkbkZU/7jJGs0GLUpHH6CG7kmZ2/5IrS1Z7X1ZCuHlFPN5U96Oa5c8Yc4fsV5fY9XUYQLf/XfsPyC57AUsIlFoBwjlhrUKkqFrCz0vgJ88h2BVCrO2Jw6Yq+OzEouCWgNwCHhK1Jj3xb58E0qHWNuEqgoClLamp5DSTOlkLUF4JCMuydjadlgC4lPvcgEmJhTRvtJad1XBZDntmQ7hfIcpudnHWGWnwePGWf5W7N8/XAvXeRYdPMHAdjvc/vWTbjrPWfjvjU3HOAj87VpwwO47rL/ACDAoXySf2c67zG7pih6AzegHOvsZGLEZlflpDV2BxrZguwR0icrmybw3zDcJLBSshyaXq8e5pLCJw16RkLsExanAIeoL+eNKh0iyga2RsbvLb1NqsgCSyk0EHsZzHS+j9lz5uHe8/4YJ5brMKp6jQltbT2xS538HMzBLqy9/vt9Mi+6nWTCoxEhINvEHCJzaZby16Tf5LET1Z5fImawhtZPybyl16H1l843U+rArkAOJ6oB4FCdOaRKz6BHmfP6XGcOUUAGJQ/S9YQSQq2suvTWBDQQkgyfBs+hBDoAbZuKQDcJDtH1r876OtSrBYf2c9HJ0UeZlQhvg+aamAWykaTJTJHbqZBGaCDaysraams/1K3/i02Yg5UXvyC4m6ZBRnuPBl5IqYHu1GRllWUO8TRk0i62qSph3PWgLjmlTV/HycqafCDse4SbY1ogR2rgUE8AQnKqhCGTX61SZBSrG3vqfCyMfaXPmvVfSHhSlbgmJx2gBW9r39aKZ74ZkyYNJmMjYzNx4avfiSge3iakHedLIOJfqSjVhzY1lZNoAP3ModIoxEkt5j7J2H9IibjfWBlox6pDOsO/H0k5VdwgKxPgZUPR8RAjSHoONYFDnLoWd1FR5K+MshcNOzXZMt2JeoHE9AdHEIhMzELjpKlllATyFSqWsYjjNNxHeMkqYMEhZlEUoQdiT7XMoWF142UfwzHmIQD2b7Jx/RqcWK7DxruufVyvO7F7Jx598N69cITAXf/7bpx15W9hcmK39xfJe4iqkm/Hzm+oyHtIB8nK+DfiJvcOzIyEHweqBhCRDKlr4NB008p8kIP/DZIHV2A+P0hWxoOYMJ2Q0gMrlQrJ9/ABKl2/KpUGbIkU/YCaBKZ4E5p0mOmQoISJMv5ep8ukOud5P4+buw6gb5lDB12ddNGLoU2E7Td9tU8mRmshXY9jEWICOLZeU5KgM5dOSxqqNcjKoPsYbjJ1j5NzxXCFjoPWQD7fypxBknHTCaTQMsVMyrF4AOr2rMpoPodUWfSx7Oh4FJ2blDxItgkEVpPZtgNr6Ji1ZPjUvzMnRaf3ygbIyqhnzyoJDonkuMMInG3Bof1c7D1Sm+7H8Cdx02aKnNwj0UjKqZCl2MXB86dKYmirrbYeX+3Ythmn7roSdy14Fm9sqWgaJKN/aXEiQIcSxnRNVuZTvPyGu8wtUERGolTGMXI6Y7OC164XT0AIkCFwSOVBZL002J2qGedjUwk6zrsoEjHgcZpBdS2j6YE7r+fH07SazI5pUpO2srIDUrOPmI8bjn4DNi28ZI+fOzZjNu6PlmDmQz/p+7eYpVCCOUTgUEwT/bAhBbznUERR0BBgDYE4EzsAAKojmltiBDQwh5rYNbLouGgdlUBL1PDbJ6auiTy7SW4YZeoLTWcrsSbTRjKpMwEhgFxnMm89hzzQVmcbMYVfTES5D6A+ghggWUdcm5y0gMGhfm+ktmxVZYkFN/4LHlDWiNeUBcs/jA7/HveuvQ3X/PXzsH3bluD+9auvwnUf/HmYqsT9d92Cq/77rwAAN/7Pu1F95BmN77tj22Zc+c9vxLZNG6Z1nEduugqRMsh7k7yJK4oe/2YsW8jd7k0gVf0sGADCaL7n4+gRbgCbBhGqxhwikCdOpndtZ/af+E51jzy4xHrUIA0xjlUIiOEqycp405kMNdGXZQHZ1G9UXTWxraoo5XNZ+nuVKkFc5UhUBRWnzA6ZLpNKRRHmv/pfsMuMIJq5cFrPaeuJU7OPWIA12alY8MgP+szfaSBBa0UTW2+QlLBAwmEiUR9zyHrs1H+npQhqINDDpFJW5phDbm2r4g5Koxw4ZH/TE6obnAuBj56WoIrrcSt/PaA1mWSW9gVCDyQ+NwlsdT6cKor4/tgUjsnjrQmqId5AxlkbeInacENq6cPpvT51yxxqa98VU3sbDKmZMtpIq/XUNi6h1YwE5W2QoV9bbbW1d2vNDz6Njiow5/yf7fs3Zg6VOTJlAR3ajKmyQGUUYpfGRJvByCUw0DWgFOCQceBQpnSYJuQWvO4UsrKyJiuT1FoZWS8NdgPK8RSG1F04cCjOfNJVmmH5s96MzZgN8/V3wlSUkGPBcDI7piYnaZlDB6wu+qX34uJfet+eP1EpPLToWVg+eTO2bHw4+KeksjHZhtlCqffWo6lp2gAORR44IvkW/VbqrDqVCeYQsR2icNIPiMnkgN8xNe0ejJKysv5JIzWgJs742GUjnohpLp1HUnpHm9gY/cwhBrI6Y/w8mjpbWVnNlL5GybfHXGMgU2OceuaQKcN+hDwmSNbWlq8bvvkJHFfdj0fOcma/Ze59r2rX3Ie/9lc4b/IKbLj75uD+rV/5I5zz6BewZePDeOCHH8cFd/w1iryHaHwT5prtje+7+lsfxYWbv4R7b/r+lMe45dGHsLS6F4A1NZfMIdl70m9vctytL03gkAhUCCTBAhxSw2RlnNzlHhNPTzJcl9bY1yCWw5h/XNN5LMJcilo6IUspVcpr89TMIeuN15iCVn9/wVoywtukjFLebJpYSKn3IJlz8QnLUf3WbTjvlb877ee09cSp7cdciqXlvZhXPcqyasDLytIsZHMTIJE2/c5cFSrh31V9eEEMuvrvtEQqQFuSZUvmrff7odfRSAAhK+upbnAuyPOUfCftZ6DrgGMcCkBIVZ45RNcQen3P/k0QQfvIenrdyK5/kTPbpusAHUdc83Wyb55aEFz3AoZyvYhR1AmYQ27vPcAc/FCtFhzaz8WR1jVWj0WUQy2ypOsRzTuUldFJXnCsHyBoue30r6229ml17vgyHlILcco5T+/7NwaHRLwnNcqmLFAg8Y0wm/eFJnsECAEAxG05VSWgqTviGuemBBkAVUnSE9K5+2Y98BkSbCHZjA+jwRdRBzMMUZwzJKNzUBmFkbE5mD13Pu447XdwcnEHbv36h+xjUMLEnt5PTU6aHj6L76FUC85/FRJVYe3lnw3uJ0Ysy8rEbROFDbE0kSyFlIzXNfbqcOeGA06JfQcIE3jVwK4hAHaA3wClD1EjKoGWqIH1EDTQajhziHyRJFOBvMOakkm50aXP5uLD7fcXJjLZ1w0ba6Df2NdUBQoTI4pjPvcJ1OBY43gk+O+2bFVlibnXvg/royU46/m/BMBed8uanxMAbNn4MM7c+k0AYZ/30LrbcPr41fZ+XQDueqwLG/HcZEwOAGN3fc0eg26+rsu657pv8m1deF8Pe9vLyoh92hu3nnZNrNBYsBgkiz0Vfhx103d5XyyAKaD5HGoqBn+D/td9z4I5VGdLABZ8IflbXc5G1wYTJXye1Blf9aJzjmQ6gPf/rHvwmThjiaj0NqmUB4dUnDE7ZNoeTK5mzZmHKI6nfmBbT7g66pwXAgBmYTxYI+g2rRWJCAowVYUE/b8zKo0EHWcJENdYdMSgS2uytFLFfE2gNUNl/cxbWnOrKEWBBKrKea3oqZGB4FBaCjly6Rk3gDWKjuEBIZZTVwQOOW8hWptonat0EJRRqQQxCu9byd+ZZypVNYYP+3wV48EQql70/Y/AX+NooDvIm+1QrRYc2s9Vj7qkkghvVNNQ2tu94PmANPwLmUN+8tKCQ221tS9rXm89Hpp5OlNeZdE0yAiPBiNBIMS8qBvBHKqQ+EmQiAaV4JD0BDGlfa0kzZgC3FTMLnANgExTkqlkpQCHpNnvsGZ218rXIlGWzRSlGVY96/W484X/i/mLjwMAXPDSt+K2eDkWX/t36I1vZ88GWow7ZiKgDrd1cNUJp1+MR9QCdNZ+Lbg/JkCDY+ilrMyblgM15pDy/0agETfANCl0oKsEhyLhVxDV2DVljbZeLzpGBqPE+dE05ffMIS99k54gqWjYG8Eht5Y3JZPS2h07WRl0YYE2lcDESR+QwOk2TbIykqg5QBoAyznpefXkmqkYFQCmLXM6FOqm734GS6t7seGMX0ecJMhNYmVlBLwJQP6Or38QIyr09QCA9d98PyJn5KzzHg/3iiK3HhzKoNTh33XjIw9gRc+yj8w0/ibFXT/k29ZniAaIPZY8lc6EGgDyCQsONTGHGEzRPR9HDyCtpgCHyHOIel1iEk2TKUOgrGnof00mmENNrxf7hL6yZkDPqYpR6m8PWCv55dyGkCUu8IOZPkaHAKbgzvMs66CKUnSFHx/HlrfhC4dNnbDiXGzAPAChLx39hpIklD6WvQmUpUakzEDmkEaCEfe76jNYjlJkpmiQlXnmEK1FJF0GhM8YrWdRikIlUKUHh/KoGyQCStBaevWwdYLxTEIGioz2cmqW5oa+eXTOqaoIegPy9iImD7OFtX+/PoaP+36jYnfAQqpXHCd2qGn89Y6uXy1zqK19WtTUad0PDkGYcAKhLIw3duKkVGLhj03BdEV6fus51FZbe7/W3XoV1q+9CQAQm5IZf/WiaZCS7B9qnMschUp46lEKCq5WiTetFOkPUSHBIcEcEotngYSb83oxPTalSWp/1DYA6ESwhaZqxl2d+5K3YnV2mn39JEOadbD8PO+hkSQJ8kvfjXnYils/+x7baIuFvWMmh0502npil4oirF/4TKycuA7btm7m+7k5jXyzyc2qMC0HfPoX4On2UdJBRf5DNHGvserSRuZQA7tmKuaQOy4asoTMoSZZmf9M7D8kGnkVRSiM+0wEsjbIypoYI5xM2HWyMhGFbaKs7znUuAfMIcfC4z6izBn48ht/AjHsY8jTZaowi5u+91nM+udTsO6WK4c+7lAoU1WYedV78YA6Cmc9/xcBABoxVFV4sE9cc+c+8F32cJNg4PGPfg+5+z2UhZR8TQb+kbLuuvx/GHSfyh8HABZtucYOCGB9KslzSBc+KUgXPj2zmBjGHLJrQlUW0OK45AawSVYGZg6FLPmmc6ip6PyUzHfeyAbrUcNGTYS5FOTTWfMckkOJQRJsqsQFJ0i2nk9fq31n6Sg6qsA9t18PUxFYm8FEiU8EjTMsPeNJuGrR63Diuc8a+t5tHTqlogj3HXExAAQeQiZKg6HYwmNPxg6Mwtz9AyGLbO67tqYLMRfWd68ODql5y9BVhU24E88vo5TlnrxmdPrXz5KYsLGTdVeaQZIiHgkSAeV1qWP65Vj02FjIyqLKS1upX60E286+t5XG1WVllMRGwG3dXN725P2STwCI9AQHXDSViiIUSNhfTX5PLXOorX1arEmu0VkD47EGQ2lKHJEnJdEDy6KHyJRi2trfmLTVVluPv0xVYezzr8WWL/w/AAO8B1zRNCiSCQ60iXCpZHGjmZ6XlclkmEiY/WmR5KLKnGUtBZLmBBnx3gmDQ75pyAVzyCTC90dQjoc19yqKMfNV/4rrZl6KJSeuanzMWZc8B1ePPhUr7/k4Osjt4p/5xLQ+nXhbB1Udce4rkCmNOy7/PN9H5wedI0bIyupyDykro1SQOEkFoOEm7syqc+DQiG9uKe3OmjaHAMpUzCEyuq6/H9BP25fHiDjjZrqeJsTJZ8JYGvDSlMqoRsYIN6SdEQswlTn7dNXjugFBqZdspzgEnomtaF/XPa4MZWVlSumJ4WDpx//9d/jRP/+Cfa+yxMwf/wUiZbB784O4/65bsO49Z2Lbpkf6vqNDoW7+wedxYrkOD5/+Vv6t0jSdTV0l6Ff1sFPZ7zHYOGESu9z9WhfCMzLnDVte84lM11+OSQc0TQVkPHjPGhxnHsDabAUAPzSk297SYNL6bwAoyLer4ZxIhfSwFP1qR5i1NsvK3GaQPYfI6256G6s6EwDwAGfgL9YA8sowF+2S+Lz/nWAOsaxs+AA1QQkTZ0EKGv+Nauv+0mf+EjZjDrLPvgbRTuu9liQpdDoTY/BAVac7hgt++YMYmzln6Hu3dWhVtvw5AELpcZWOYlIEgHS6o1gz5+lYue2H2LXdmdkPWK92nPhivl1f00566s/6wYT4nVYqZr86XjPkcCXzgQ6ABWi08ymi648Fh/x5L1mmHcG4UTVZWWS0B4Qq7eXUtUh7uu6Qhxf7cNL7OdCIJJ8E/laaPPz6GT6c0FtODGUOAeA10r+hA7mgW+ZQW/uueIGuLfSNsjKxIHO0oTgpmTKsc+vcHoUTkgPlOXTH9Zfj7j87vc+ctK22DvZae+PlOAqbOEJUMv7qZeNG4wDgoWSxyIFDZFrr4zKdyR6BQwIQigNwSDS1RrOsRat0IDjkN5C2GUmF55BMJTNxB9rYpUElHW4y1BTN/TEnrcI57/giRmfMHviYI1/+V4hQ2YjhKMPseUdhpxnBqOq1zKGDvJadfSk2YS6SNV/h+9jzgGVlmRiChHKxssGoM0o7nsnDhtQueMGdV52Rmfw8Zg4JjxAqU2PO1YuOq/5+9jgawCECs+LUA1u1DSMniApjaQAo3MZ1As3R8SUnC9okNFUWzqcrA6KkT4rGjbU4zqjGIJYTWG+W7wAKkspQqlpteDXywI+wdMuPAAA3fONjbHpc6Rwb116LZeU9eHT9mr7v6GAvU1XoXvH3eBgLcOYLf4XvL2CvszTtDhhhRvOGT26cUqMxSWlwhZeV6bzHgErdCiApJ7Bd2RTKaoCXHNUDV38JALDtuGfb1y1yBmiqoufBjQmRgDlpbzdJhpk5V+YBi70Lfzsy/cdEUdnU63o58zRlZQTiNBhSx92xvsfVngzAfqf0fLpesAdYlGBs1lxswSwcse5LQ1lyiSksc0ikoPH5VNuQH3nMidjyov/EvGoLztv0ZeQmgYoiHPWcd6BHMp09MKFu69Cqky96gf1NCKbO0hf+DtY/6yPB40bOfQ1mqAmsu/wzAAYzh06+9A3cp1H6JNURRy7G6pGz7X9IQ2rlU/d4ANH166dP+3QqlMgOZ1RV8CChTEaDEAUJgI8YaXcQXgdio3ndiqqCbzP7kIeXnuGXGg3UDaYjK9/kxNssZA7VE+EAf31Ly/EpwaE6s4jXVhSBf9OhXi04tJ8rZeaQX/jqBndxGrqvy9vypJSu85SqAPimcDq+Afuidn3vH7HUrMfmB9YekPdvq619VZuv+RwAz9obFjUKWF14LBIc2I/BTUPq6RSxYwBGHPHunytvyzQhVRYsySmQIBq0iagxh4Ko7ShjEMh6qLjmQNweyLjYgzr+xFNx9ZGvgntBjIzNxK2r/sB+phYcOqhLRTHuXfB0rNx9NXbstMlL3KjFAjxx6xw1bNQMhswhD9BIFhHgGWwMDo3N4ufFgZllnV3Tb9ocFE0giYErzNGThufQMEYlGUvf6o08m1t3XANO01cHBk04EKGobVC50U07tll1zbRx/k1JPeGMzm0B+EY1BkbkzO4Bm1hm/9GDB4D3dKmDFDJpJr718/5aUeYMWhyKTOVbf/xlnKLXYP3KXw7A9BIxVKU9m0fIymIULNOVIFsCDw6RTyQAlLrnzZtrjK24KtAjye8U/jide7+LB9VCjC453T7cMcoBa2PAEe8SHHKm7k3MocStD6bMA6bqiJCOEKgliz4Xmc+yXGS6nkMk+RLrGCdtio113DCskCbs9F0ql5KWZsSGsLLne877E5ys78S1//MXA4+FwW2RgsZgUsNG8aRzno6bTv8DRMowA+G4U87E7ae+AwCQCZZjW4dXjc48Ahte+UWsfNk7+b6FS07AaZe8IHjcigufj42Yi3lrLQN3kNfj3AWLsXrkHADNa9rk8pe55/vzznrxUaKeC0QY8YCrZ9d5mXSpEsscEuCQHE5IFcyIAI5Rkmzae/Z4oKjgNYzAZFNbw0hWFleF90CCX9sTxxCqm8tbQLfZkDotJ4I+o6lozSZ5Lq2RiSmH9vqHWrXg0H4uOqkCymzN4I4jNwNwKA+eD3jabqV7gc7SbzinTrcAgMnJCVRlNfUDp1GbNjyIVTutKWKbltbWoVSmqnDMI98B4M892rANqkIlSATjhxp8ko9RdLupmd6xL5B4rkyJkZsISbvlKU/T8bNpraPYJgkvgCbyIBDijKcnKs4aDXofT6189btxh1qKaJGVn13w0l/HFd2nYmOycK+8flsHrmad/QqMqh5uv/yLAByzLs683Cr25tTcsGXhtBLw1Pskzfh+OlcI9KBI7ZExP/lkKUzUYNqsQ3C0r8jo2r0fSdSAZuaQaThH+phDxNQZCWVltMEkhomuyYkIdIjSDrTzEbM+XQmb7kopmj+3G8ChIgSkAXHuU8PPyTVODlU2gEPkkVRNYpcadc/LhW/Robfexz/6ezyKI3Dmi38tuF+rBJFI8JHeO7HRyCP7/UgpWAqNwgE9xiWUAaGsrKj9DiJToOcApWHg0MTuXThl/AY8MP/J3rOnyJlpXhU5gxsECAE+STNu2IBSrLMpdSAr6yrxWYfIyhITDkIHgrK18olN0nPIeXAJcKXp9XyYS8+z79KQOUQpiWc/7824fvQSnLn2A3j4vmbWW4LSXbP6U9AGpXee//LfxDWznoVN0Xy+76xX/i7ufe4ncOpTXzn0s7d1aNcxpz8FM+ctHvqYOEmwbuFzcFJph+vDUmLVhb+C9dESzJl3VN+/rXj6z+JudQyyxafxfSZKvPrEXU86o3L9tOcIsWdpbbPMIbdPTUeDwYtMaiTDfQAAMQjhmUO8hpQ9fixdL/rYr3GGTJWIqjyQlRFolCD0raQ1K2noyRUFn1QTXgI+oGjNnoAHxwHX6+9hwuDBXC04tB+r1NrKKRCirTRFpGa5Hm8tb4eeQ6QdLQKdZdPiOqiKIsfDf3s+rvz3tz+2D1WrO7/5b8icnl02ixs33I/x3Tv2ynu01daBqLtvvQpHm0esT4jRPmp0yIKhkSCtJNWWNNfOc4gSzWoxnOTPkFWeLSSNQCUrUFUFb2hLJDy5rVeTaS0BQlWU+AU4SniBVGnmfVOm6RkxVc2bfyRO+ePrccFzX2dfN45w9m9/AYvf/t298vptHbg68bznYAtmIV79BWbEIk75HFFxJlhEoedQJWVlYi3j226zSr/DxIFDne4oKgdyEiNGykD4NWuyyr4iWRkPWXxTnjQ06ExdjzMfBlFnDhGw5WRlcI0wrfmUEliXtjDlP7Vm16rSrjnNAJfyVgiAmBtYwW7xUeQkWdXBBFYLfzKS/jA4VGewGA8OxVWBHjzIQcd6oJjK+6puu+LrWFncintO+UV0uqPBv2mVWuaQ8JCjSowAgRh8s71fEbvNl/aAUFn02Di6LEJ5YVxpFCT5HTLsu/PqyzCicoyc+vyAjcrpuNpP6qtJAQ7lxBzqB1oYRC3zgeEmjbIyQ4MOGoQSc2iankNkhB30v24Y0x0ODskwFzagJ8+hJLMy7479W6oowuKf/SdUiLDhs7/V91pVWSJRlTvnHCBblvw3igas+yqKcO5vfhZHvvMacV+M4y98CZLOaONz2mpL1vyLfo5vDwOHTn/aK3HsH69Gd7SfkTZr9hFY+ie34uxn/Azf15t5LBaVD2Ni906+NnVGPfOWbQ5obUvs2hYZDZQFtIlg4k6wttL1f9zUTLEF48b+f8F7Q9nLcr/qemNmtBOzuJz04Q8Ag0bE2pfeaEAzOETnqgWHpmAOuTV7UnX4c9heRvd5Ch7K1YJD+7GCZk4sfOQ/wB4MDYbSPDlpZA7ZqWJdVjaVgSEA3HDZx3BCtR7Zrgf3+PPUqypLHHvP/2AX+uNwJz70HNz0qXc97vdoq60DVRuv/ixKo3B75zTEppgyahSwG7BMysoqwRyKUt50cuynS0ehxlcCS5m4LTeTctNnNy2DZGX2/kxsIIkhZKKUafAqzhgciuKUJWtN0prHWkqp4L+7WYIjZraN88FeUZLirgXPwmm7rsDOrZvsnXHqQZPYS8yo6eVpZUPEb5x2GHihzaqXXNoGM8m6KJBAmwhxQgCnl4Hwa9YNL2ulWFYWglH2vfsBpUrIyujY64l+JcnKUrsxrRtAFwwOhaBAxVPUrpvc5tZEOM4C6QwXbZ6FVNTLy10SYs3Y0yYbhpKwqDMWPIdfSxiIxsZLnUzp5QaSbbR7x1bkvfAzPdFrfPdO3PC9z/F/mx/+DTZhDs54Sf/grHIgvGcO+c+eQEMnxBwijyn3944948oniQnj6Nr3HhsNXQOammry0bsBAIuXn8/MoUrn7LtV6UlO4KkcWwgAm7o3JVFSrDNKL9GaMP5xkyblzyCL7vPhK/2Sx2HlzaJl/+vWx6zLksYmBiABS7u2buBE4MjJylQU4f4XfBIrXvSb/PijjjkRNy79JZy5+ye49QefC16L+3VxzSrynmfiDQ1oiNAVcp222tqTWrbqEtyvLMNoWErsntboyU9Dpkqsu+67vGZ0BLDk2XV+2FEqa0itytwOCuMUmSphKqs2oevShDDWHjcdBsxpzyrNqmWqWSSYTKVRvIaTzUpaTaKM/LpFwRFd9GxaGXujufcz/SAO9Qxd9KYMPqF/10iRmwSmKrz/b8scamtflKQMy4WeYkLZUb0xytOBQ+KkJEpvpXucZAI0L65NZaoK82/8oH3vQRvKPahbfvIVHG0eweojXxQcMwDMMdsQT2x63O/RVlsHqhY99G3c0TkdE92FdjrMqSVDPIdUEiyEtImIjEalEuHr4KetlYja7QiDP3m7rMnKiCpL+vCmqmu6AbsAAgQOuUUzyViXHSUdvj3dyW9bh3eNnfNqdFWBtT/4pL0jzrjBVUJiRvelzBwSvy/BFjI1uTQxYtJqwrL44gQacZAyYqnnNV+eajiDgUAXWkcliNS4sY0EgErMoTo4xP5FJA/zbBEAzDDpM8UV52qJhM3o5fcXSNGq3H4XiW98635mJGWlKoQElf2YuqH8jV9LMIciUzLjyZRSVuavOxve9zRc/8nfr39jT+i66b9+D2dd/ovY9PB63HHNd3Ba70bcdeLPN07ltUrspqakJDgPkqTQKGP//QC+9ysZNMr5Ol3pwsfM5/2MrTIKgcWmYuZYZ0QwxnIfgNIToQi5B4fIt6vRv8fFOqPUzCyTyUoTqsuglqzIhJtCs4eeQ8RekJ/XsAdX5hP3GoYVS89/HiZMhu0/+WijAf2y81+AWfMWBc85+9Xvwn1qCeb+8F3IJ/335KPEUwHI9vhc3VtM2rbaqpeKIjx4jN1HRXuRrbLsnGdCmwi71nyPwZhMmLzzWuyklyqxsu7YaKAq7DCRgFJas9z53RPXhknVYcYNXQe6QS8r+1d37azyMJTEXS+yaiJgFdO5GCsDFaeBNxpACYM15pB7ra6ZnJI5RAMdrRIOg6irew6HasGh/VhSZiWBG2+cF05GpWm1nOTRSUnm1EbnPskEwndhCgPD1T+9DEur++x7iinrHVd/G9f8wytQleWgpzaWvuqj2IqZmH3+awAAZeFfMzF6rwBQbbV1IOq+O27AcdX92HnC82HcYknn4VBZmUrRNXIT5/XXpUqQUsqEkI1WUcYbO5n+II1A5YRZGc0LXkmbloZimm8csgcABw6xztzHh0fi9nQ9I9o6vGv5ec/EQ1iAWWvsJF5KyVSShRIzuE2oiUPmEAE0aYfBGmK8xaJpLGATgQqVhI1lnCFVZbCGeQbDAFkZsfjEe/M/NXkO0fEnnt1UB4fonErSLPADIxCAGCZVXVZG52rWQakSZkkh8RK9AEgo8760v6RPVlYEE1hrquwBCgBInOFvXZIeG83T4sQUzHgyWnhRiH7liGoTol0HT7T9zu1bcOpDXwAA9CZ2Ytvt1jdxxfN+tfHxdpruZWWqJisrU7fhIqZYDRyqhKysKnpeglWX8zkmaeGkhQPL/b2yrONNZYUJddnAFgLASZpqwLXdvm/OvwfJDphEl487OOY+z6E9ZA7VBib2szj2W9JhtmsTODR73lG4ZcELcObWb2F80/32eKZISet2R7DlqX+OJeYR3PQ/7+b7+W9RA2QZbG2Tx9rah3X8s96CO5OTceSJZ+2115wxay7WpSdj7oarGIwhQCg3MVRkIQHvp5daWVmlOe1SAqWA32eSN1phYhSwDHZi1wPAKGQv62/TdVCVRbCG0ft0q8kwfUycdyZO+fhNqVGVJTNsZRGQO6LyoM9oKmYOqYQHKAUFwLTMobb2RdWbOb5Zk5X5eOt+Wi3g/QpYVla6WEBOdQnp5INqYrNdPLdjLDAW3Lr6uzhv53cwMb5z2p9t4yPrsWrXT3DnUS9Cd2wOAMCUIsYVeiCjoa22nuj18E//GwCw9Ck/y4Z4zPgbsmBUSIKJCSe5OFkZe6QIMz1ECeKEwCEPCMnFVW4m7Ws5z6EobTQJBQBTFRyvSyWNdLUSVGKSlaUZS9aapDVttVWvOI5x15HPxkn57QDs70kyh/wQRLBYkATTQRN7UMXUmDwEUnbMJLMINJIghYQo6aEvT7+sUhb5EnCwgzBsbwKUiHofJSk/J6pJTSRzqBAeP9qt+cQwqadUSQ8hrVKkJE2N/HepRU+gSt0HDnl5OV1zdPAda6R9srLUmZPWWcfMbHEsF/bBqXI+VrmZT43mFJqDoW796gcwS9nvWOc9/kyjM+c0Pr6KLAivGphDCTRM6hhCNRkh3W/9gJw3o/bG0fUQj9gNC0qVDGcOVT5sIBG2Asyey73PELGFAG/qPojVo1UMVeZ8XLkAh3pR15vbymN2gJRnDrm1bZpgijfCluAQeXB1vMn7ANBn0XN+Gx1VYP5tHwPQf0421VlPezmuHn0qTr/737HxfmtOLYc/0suIvou9kd7ZVluD6qhjTsTJ77oGi09YsVdfd8uRF2BZcSfiya0WHHJrm0yLNWKYU0UpYlOwT6aXWIbMoTyy51mBhAchkhEbC7NqmWpGa4uqyZ6pr+5iImAVy35bCc8hlHkoBRUlB5vVVMwhMWglX76WOdTWPq1C+gqUvpkgvwE2zsv608ZCphEZffnJTGK8CVfSsSe7moI5RB4Bk+iGbIMynG4OqgfW3YaH/3QZ1t1yFTasvQGpKjHj9Bf4KFIyqiwrpKocPvk6TKvSGhvXNydltPXEKFNVOOr+r+P2dCWOXHK8jdKE9gvfFLIyuRDShNnKylIkboPMrB5nppc4RlGQDCMWVynZJIkaYE19m6a59B5SegN4Cq2JUm9WK2QycdoRzKHDZ2rS1uOrIy58Ld9WScr+HCpJeZ2TmzatksBEUglZWRWlLB8DfKM3asaZRWCDbSUl3bFrJCOHAZdmkFMxc0gCKPZ2I6BEgFDaEUBReC2oBMuhdBR1wJ+/xDDR9UEO+SekHVQqZgNP+102y8oKFYJDzCAhPzMhPQdcsiFdK+i7IcPfGsCccJrWJBJToEy8SbJi5pD/rlPog2a9L/Iejl/7ceTG/ZaKnBmeyQDpUKkSxJVmAINAfzJhJxCI+jwPDpGnU87DPaMLZoHXjcATJzO2DJ4hwzVaP5LUR0ELWZkRzKFI+9vESBvErrGbI83HlUf+3MmjkQHMIffbJeaeYMFNp7LOCLabMXQ23iI+H7GPvB/eIO+wY05ahRtHL8Ky6l77nCmYQ1SLX/0PKBHhkf/5LfeWntFP51xRTDKjaJhRcFttPVFrxvKnI1EVjt52LbRKeQgSJIIJD73KRcerSts1w/W7BJigzJGbmEEVrWJo51OUu3OIrq1UMtWMryFlEQBUdH6NmF6wbgUATZKxN5qVf/X6H4PQPL6KwmOpF/17qVKWghMgfDid8y04tB9LC02+CZhDYapC3OAZZBqYQ9LwL6EkE8jJyxSeQ64h7UXd0FiwDE0UdZHjlr98Km694rLg+fd/65+xCJuw/YHVPk0t0Ly71yFa+2HGHCqKHNde9ong716vaz78q5j90YsxsatNcnui1rpbforjq/XYftLLAVg5SWr0lJG2gJMfiIWQzgEL5loWD5neAeAEhkHmz2TGKZmEsQOa6P2afCAAC0zVN5CloA+zlCzJeKGPHK0Y2LuG1G0d2rXyjItxtzrG/kecMUsoSoTnkNi0acQBODS29Hys7p6FLOsCtDl2jLcjj16G3aaDOdjFzaRWSRhR2+DLo8oiMLysFzWQ8jiKISwFWm/jJGOPhroPiUw+o4YZ8Gs+gQWmngZV5tAmQhTbprtT+cklTU6lBEnVGmtAyMu1v+bIqWnp4tjtYyi5Zkbw31TEBikK6z3EnjpVwQAJXZMoxfGJtN5veug+3PjXz8JD9/YPYm78+kexCBtxw/wXAnDy/zLvY1nKqqIUMbQPGCDwjNkmdQNy931mXm5W94y0t2ugnGOS2k3KkH7ObdBUFInhYs7sHckWirRnoyaOkTZIMqxhf7N0XHnsQwOKaIR/F7Ji4fVVFD3BgpvexiqKY9y28EU4fcfl2PTgPQDEb1gMKwaBvACQPelt/nimuaE7+riTcN3xb8Hpu36CNZd/1ts9JBn7vugi5++iZQ61dTDWiec8E7mJsdhs4PWtPlwxgglbqQSRU36USLjfZcDErT0EqmgkbNhP7PoJ5a8v9VQzug4yM8kVvU9HFeHgSJx3Ks6gosj2D2Xh1/saOLRnzKGE/588PHXur+uHS7Xg0H6sYCokwSG32FDTx8wbacgnDazd63CcYNlzkcE+stM+Z4rJndCKyg2lqjU0O7dtxun5jdi17qf8mMmJ3Vi+4av2c2mvSY/TDtI0NAijE3aQF8qhWtf+z1/h3KvehjXXfqfx32+/9vs4b8PnkCmN8d0tOPREqCs+/i7c/FfPCO7b9BM7VV7xjDcAAEyUWdPRKSJtAQQeH4XxHh8x/BRfpgbZuOo0kLHIxZQ8H+rgEG1CqyGyMlT9G0iS4pg4ZUBIxZnY1Hb49nQnv221FcURHljyfHs7yXgjFSUdBlDk5mpjvBDFzKP5v0+/9DVY+Xs/gIoiVGMLsFXN5n8bGZuJO2Y/CYA3VLdTvn7qeSF9/hoAlOCYyetPNICFSgLWUlCxYA4xsBqeI33MIfaWcUCKY5joWgy89F8oVcpm9CrJmIUl2UbUuAeHR98vmeBD9zOHqlD60x1z33NZAynYMHnSGn4mXWgTAWXO1zQCichn4om03t/1pb/AmZNX45E1Vwf3V2WJ+Tf/K+6JjsPI6S+29+leI8syeJ5KELsEHwBB8hgAK9MVgA4PAF0anCkLkSSWcy9X93qioZ8eEjQAhOAgS5V1z/pvAFCFZwvFAhzKSjdoHMQcUnbN4l6O5IQAiniEfxeyZC+pi9xHVE9D3kV1zHN/ExEqrLvs/fazEHMotQbtdfP1eq248HlYFy+zz9mDdeu81/wh7lVLMOsH70IxbnsyyXwsi57odQ+fjWJbh06NjM3Eumw5AG8rYCH/fllZlFhZd0KyMiU977zfWqESzxxCAh1ZVirtIScRGtlT9UzKYHLkXp8qZPsMkpWJHrrKea9Zt3qQ14DAv6ih6N8rlTK7loHiw+icb8Gh/Vg6mPT1gz0UQZoRyikeIydK5DdC0bImd4s90e4dTVBNofmnBTePQ3qwqk032UhbgE23fvdTmIud7th8YkmcdrjRoPvohI0PEpr53qjt2zZj+V0fAQDoyd3YsW0zrvzI25n2mOc5kq//NrNK6p4Tbe3/qsoSy+75NI7p+elykfdw0qPfwK0zLsbseQsB2IVHysqGRdpKj48J1WXghuQCgPd1sJIEDRWlSIWESy6mE26RNQE4VLCsxbiJdlNFDZtjZg5FKQNZUSJlZRnfTg+jhbGtx1/HPv3n8ZCZh5FFpzBoEglwQzKHjvmdy3HeG/+68XXOevUfIfmVHwT3pWe8EoBvbksVBxG1ddNMAFD1NJRasSRMNI8l4oC1FFTsQS5TG+xQcYJo1g2YQyQrUxl50IQbfyVkYlXkfcss0NbAHKr5Ndj3rPmZmXACW4rjATOHZgbPoSIGinb+OIbYXKUHSKhfoTWuKeZ8f9X2LRuxfu3NAIAtjz6IVRu+BCA0zQaAm77/WZxQrcfmM9/qU2KL3MY2D4k85utsRQluJLvzUuMmA3LlmENG59xzVcIbqKodX+rsArRKh8rKJCuUN0J5M1uI/asAZM7TLh6whtFvhAARLZhDZTLqB5SiJGCk8x6nIkVDwJx6HbN0BW4auxinPPB59CZ2BewjrdKh5zFgTe53XfxOPKiOwux5R037fUdGRvDok/4ci6oN2PVtez2KkwydWfMAAI9+719h3FCoBYfaOlhr+8ILAchkrrjR74f89GJTurRLyRxy16qqQIFU9LPWoiAWnkOTkQeVe0HiYYfBZHp9KjlokeljUrrNEmvlUsVqFi1UMo3RTAUOUU8RpSgdA4rW2sOJLdiCQ/uxArNB0TgR2EM/vKTBkE8CRTQNpYYNbirE6S9KuQjSqWRlfhoUaMdrDQ2dcEHDeOc30TMUOVoIw8AMSafD99vnH37Mods+9+cMnhmdY91VX8WFD/4n7l1tJ5fXfvavcFJ1N24ZuwiAbUiv++q/4b53nwZTVQfsuA/nuuPa72IhNjPoCgDr77gO87Ad1fIX8n0mThErA92zjfWwSFs5pZhEh1MBY6OZbSCTHej1JWW+VzMBBbyPiH2tkqmylZvyNFXTBpKTG5KMX4N05oA9n320d2tI3db06/hlK3DEu9bi1HOegkUnnYnb01Ox+ORzMOe407EeR2HekpP4saMjowEgKqs7OgPzjzomuG/5JS/DDowJCngaTB25ga0NZIZt+Ok8lswhjcEbUc/07XDDWZfn0DmVudQxlpURJX9AOpj0X6hUymb0KvGG1LKfaDq3vbzcp0fJ65H1JwtZPyNOVqZqzCFO08pzZjcWyhlsM3PIDZueAEzhez7yc4g+/SoAwJqv/CNGFSXrCGl/VWHkyvfjIXUkznzem7n/KnUOGI0Cw6/rsdFBwADgJf8qyZwBuQOAKM6dPJ3KwoMo4nb9d0DfdYUkSJTtPyDtjZrp7x6whQQgVHmgiOSKg9g1BHCxf2TiN3llMtIMDon7iqLnNo/TB4ao0ot+FXOwE7d846PegyvroqwnEw6oM57xGiz5kzUYGZu5R+973qUvw5UjT8VpO2xiXRRnWHnRC/DTI1+N8zd+Hkde7UGjtto6GGvGiqcD8MzxeqCDibzFCQWwRMaCN1FtbVVlgRIxDyhLxGzYT+z6wMg+SDz07EN6faoA4IkkOOSvVewFhhSoCg53qls9xCJMpR5zXy9ay6so5TXb+4wdPuz5vQYOKaWOUUp9Xym1Wil1m1Lq7e7+v1NK3aGUulkp9UWl1Jy99Z4HW8mEITkFqkdj8iZMN4NDZdFjXT/g40gRNLVJHzW8r4gGHo8EG0pqDEnuxnp5uSHVE9ihnD9BKWRliY9SNTV52iCj3H1Rq2+7ETt2Hhip1saH1+OMBz6Fe6LjANhpIDXyZdHDxgfvxplrP4CbRy5Ab/nLANgJd/7w7Tiuur/fnLSt/VLbr/0sAAG6AigcKy+dcYR/oDvPcpfmNyzSVuqbe6rLDb70CCPTT2mmJ41Q5WJKi6xkDiWCOVRFWSPVH7DXnLK2geQI7jhjzbjVmRMrwt8eZM7aVluDqptaac4RRy7Bij+8AvMXH4+ly8/EsX+6BgsWHfuYXzfrjmDtCa/HpgUXALDgUCU8h4iFO7lrO99X9zSoFz0nWEdVPBhQIs8hkahWl+fQeZk6cIhkZcRgiZhJUpOViWOtooTN6KMk4+ZY9hO2sa5R6WsMZHnNAZznkEvMQlmgMgpJkgYeaFTMHComXTKqnaqqMvfsIzJfpjTVA8Qcum/NjThz4kqMGQuOdLfcjl3GeSSJ6+YdV30Ty/XtuH/5LyJJM/77m7LX6OEky7BJqw8YAAQLfICsLGFwKA/SvPztELwiJunUsrLcy8rI/F1E1idlMzjUxXBZWeXel32lyGgbQJWMBoMUfi9olkLrfOrvclCddskLsC46Hkfc+jFmtiWO1ToM5H28pZTCMa/5R+w2ZKKfIYpjXPgrH8KPjn0rlphH7LG0zKG2DtI68exL0TOeIa6RhrJkMfhAlCJFgajSlkko/LcAIKpyaJWw755WKQej0GMKIUfNJYso6jKYrCpdA4ea2T4qkUCRA6oQ2+cPMIuX5vVTMoeErIzW7JY59PhKA3iHMWYlgAsB/JpSaiWAbwM4zRizCsCdAH5/L77nQVXSV0DKygg4IJo9yzcCzyG/CJdFj3X9ABAxc0gYaQo/gYFVWYPOMu4GUpS6aSY3oaI5iUzBm1aj8yCRIk1D5hCfWHsRHHrkzutw+/teDN0b7/u3e+68GSd99lLc+uV/3Gvvtyd11//+KToosOMS+1OvygLGfYeVLnDP1V/DqOph7PnvESh8zr8JTgFoa79VWZY4caP1hpKTzzqrD/Dnme4RODREViYWol404pNc4NMFtTOGzdlML2WjaiBcTMkQ1AgAMUbJr0VTnqaKjPaJZPS52WcoFcyhlDe1SWaTmMjstK22nih1zhv/Buf86kcB2OazEJKXRSsuAQBsvOXbfJ8S7Iqm4mZUrKOUWNJUdB1IUikrqzGHiFEUW08Gb0Ls1suRGcF/+2P1/guymY2TjFMDpQQprjXW9rHWm4WTyMQ1B/C+OfY/cmjEbO5ZZw4ReFH0Ji1QFWecoMWDLgJCyLC3dh0yxuDHH/9j3Lf2FuzLevhb77PHbPymo8mrbfLH/4wtmIVVL/w1e7wsKysQVXlocF6ryiVWkqE3M6sofCLOQqYYgUMdMqT2nkPSGyhIpRVM0kAC2FCRYI5FcYTcxIgEWygt+9lCADBqSCI1WFYWm4L/tmSgbm+PBoMUqsSUmFQCHGoIQphOqSjCxpU/j6XlvThiw094DSpVinKIH9TeqCXHLcMtJ70VAJCNzubjefKb/wrXnfFu3JMsxRELHzu43VZbB7K6I2NYM3ImxtM5AOwQJJRlC8l0lCIxpUu7TPqYqzbFLGUmfKkSlFFq1yR33SsCrzLJhPfsw7gKBxxR2iwrk7049d7UQzM4X+vJ90RWxr105Nfski0kDp8B6V7r9o0xDxtjrne3dwK4HcASY8y3jGFU4EoARw96jUO9gkmfZA5R4+BOBhVFNpVIegbVwKRCpLCQwaBES7Uz6BpapfVgoCkYVd1zSAv6oD9+zRIXUxbCMDBjzyNO6iDPob1IM9/8xXdixbYf4sF778TE+G6svvb7/G+PfvXPkaoSanLbXnu/6dYD61bjnI1fwvXzX4T5J5wJwDZ8bNZZ5DwlnjXvqND5n6jpQ9LN2to3tXPrRizAVmzDDMTKoNShcWyjznlil/u3wQuGjMW20b9u42Q0L3j91FViFNkGWC6mmqKExbkdbPqitLFhB0jTHTbVtHlVQkoWp/2ysscy+W2rrf1V81/5jzjiVe/n/158wnLcEx2Hmff5MIAm5pwsXn9FI6prRp2yoswCO9nIDKa9J2lNehklnHplqfahfCgZICuzBtMumbBGqafGV8rKmphDXl7uZWWmZvJJ1yNpgF2opDa80kiUlToXExYQh0s3VJWXVqn6el8DMyZ278CT7nk/HvrJpzE5vgvr3n0Gbr3i69ibtW3TBqzaZF+TNh2RKTCpHHNI9DCzJh/G+tFTMTJm/wbEjDS612eO2lcOHKIBXFxjDqnUeg6B/t40ZEgzy8wqC+EZ6UGcIHhEMElLJ9MYVMqE4GCBpCYl84AQsYUAIFP2GLIBsjJil/H35phuuYmBpINEVTauXlQKzd93WVhw6LGCOWc87xexDTNwSnF7wKTTQyR/e6vOf827cOezP4GTz3l6cP85L3s7TnjXDRiZMWufH0Nbbe2rOu4tn8Gxv/hpABYEDtYPCjdysrIU2gafqJRJDBUzh2wYgu9n7aAxNh5UKQNwyA9x8miEr4OxKbzNAWosHcF4laARmVaTn1+p+/t1AEHAy1SyMmYORSmv2VXp9uitrOzxlVLqeABnAbiq9k9vBnBZ3xPsc96ilLpWKXXtxo0b98VhHfCqRGMiZWW08Ep0UzZ1QI1pVORBCkvipkIyZq9smP7Vi+i+JkoCtkFkwo2xR4hD5hAzGsrQkJqPn7yLCjLEfOzMoQ0PrMOjLtZ07bXfxqkT1wKw09ObL/t3nPyVl2P7lk24/84bce72b7njGvz5H7j7Dtzx7nMf9xRz3S1X4dqvfZT/++Ev/RFKxFj6yncjybwxNzV9Vdnj7ypJvX+ELnqiuW6ZQ/ur7r/rVozv3sGN+IRraom9Rd4+0jyXzrOqZxl7w4wpiWoL2OlJ7GQcJM0ArCmgqoTBtXt9mraWUWaTgQDohJhDNVmZiOEeKCtzi7ssApVUnAa+KZXQnFdR1udn0lZbT6RadOIZWHTimcF9jyx6Ok7p3YrtW2w/QfT3QRU3yMqqKBkIKJ32rNfj+os/gIVHLxMSs/D8qiLvWWQbZmKLODbPCBlAh2tVFDCH/PvHacbHKdlGcVUE5vdUGjEPieQ1h46NrkfSj6lAyqAG4D0DAQ8OqSRjs07uCzixy7FRaiA1mzWXBbZtfgTLqnuxe/1Nfcf8eGr11/8Fo6qHG0cvYpA8rgr0RK9CZSfhYjPCsrLCShSGycriFKnwHCJZvpQflEgRkRyLery0w38TBvElOCSu65JJWql0qEzPbtDCJLoglUyAQyOmv79IB4FDlH7pvjcy1NZImGFX1MI0Umhmleui5xh7jw3MGRmbgTuOeol9H+XPo/2xHkVJgpMvfgmieN+ylNpq60DU7CMWYM58a9ZeIg6SdWlAGacdqChFpjSSKoeJ0kDtALjBROT7xzKye8oYmveOOvGMwzLx4JCOR9geJTZFYMMQ9NWBIbVkF7le3PXQ5QDmUBCmMlUcvQh3oTWbrV8GMCwPxdrr4JBSagaA/wXwm8aYHeL+P4SVnn2q6XnGmA8bY841xpy7YMGCvX1YT4iSvgLSXLCqASuAS2GRBtCBR1EvABAofUJS3rRKhxsYwidcmDgLwSGivtf08hKgiisNHXVQGWVBKNf80ARKxnOXj9NzyFQVJj/2Yjz8X78MABj/7t/7z1nkMJPbkKgKvYmdePCnn0WsTBAb3lT3f/Uvsbxai833PPbmtNQayRd/AUuv+VMAwF03X4Hzdn4HNx39WsxfdLzwXhKGjkXuPSCyDl9oK+2b7LL1HNovtWPbZsz/5NNx8xf/gRvcngOHqDGvs/oA8EJVMjg0eMGQUwodjyBG4bwkSl6kyihFZAo/KZYme7DNMMda08IqNpMJSt70mTgbyByq03YBPyWRJtQyfSnLOqi6c7DT+Yu11dbBUkec9WIkqsLan3wBAHkaDN6k0nBGMnDLIRvRkbGZOPvZP+eeTMyh8FoQLTkb60ZXAXDeQWwA7QCbUcs+MDXmkPRfMDXmUJJ6hgvfb3QwdaWyLCB7zUnFNQdwsjIQsON9YeqDJclSLiZ3uTd0fgxV4ZlDNcZxfb1nuXTpWZL1VLTHUhyckfew7O5P4bbOmZiYv4oZoLHRKJjlLEF1HYD3bOSsc97wDCoTZUhQeiYoaKDmjUu1MPwmCWCSZszMItZOVOzyryu+dy2YpPa3MwU4JFihBdIglaxrhM+Q6u8v4rj5N27cZ1DOkyrK7PqoVeJjpMXvo9TW7iB333fp+pphEr2p6tjn/AYqo/zvM0qHMgDbaqutPasySgNgpjNnEXITY8bsedwLpia31yHas9DglJhD7NWTsGE/9c9GGNnXTe0ZxDeafS+BsK+WxAe5xtJjtCIDbLf21Aa2Afg9BThEvnwmziw4bjTLhYf1+oda7VVwSCmVwgJDnzLGfEHc/yYALwTwOmOM2ZvveTAVoajjphPKyphJ4qlvpOenkv5BRufeJBpAWvXH98kY1UHFppdRGhgL1uN2mTkkHhNDO7lJHMjK6CSU78+N0YBN61S1+qeX4bjqAWTaTi3n9B7ETmcwWWnPxNF5DygmURmFcdUNwKx1N1+B67/xnwCADQ/dh7M3W+q52QMgxlQlrv/AG3Dn1d8AAFz/1Q/juOp+pK4B3PL9D2CXGcHKV/2R/bzSmJuYQ9pP4dKs4y+0jn7Nn6OtfV7rrr4MIyqHGd/KACZNmAl8pel83GCCZ/Jd7t+GLDbE/jEKVdxFYrRn/dVkZTRxZ08jptGnfmoad5xk0/9uKdHGvmaGVJWoyv7EO7v4hk26EeCQif20yMtkMqx8zXugXv+lwZ+xrbaegHXSWU/DZsyGutOSleMpZGWZY/FEmZ9slioeCihRqWwMlVHojIwF95/38rdj1f+zvkdNzKHOiA91kCVlYkYAGHGacex4wByqJZFRacfgLWqsRPu6/ngku6NuflyKXqN04JBKMh5AeWlaGEBRZzBKBjI9RnopPpa66lPvxva/PBm6yHHTt/8LC7EZ5fm/GrBaIqO9NFeC6iIxEgASHtTkDmwZ/HdXJLVg5pAOPmMUp2zmTK8JWHCvQAql/XBPxsyjxhC375WxTGPg8dRYoRoJ94VAM1towrhgBSd7bCpilxknO2RWKxI/3JDMMrduksdIVUxDojdFLT5hOW4euwi7IyfBXPlyPLL0lY/59dpqq62wdp7766gu+FX+71WXvgbb33Id5ixYxOd8x0yiigRzlVOotWULSVmZC0ah62GV+XWxEsyhMh5B5ED8yOgAoEoGMIfiBnDIXmu1l7rVrB7i2PnvAVODQ4I5ROC4EeD+4VJ7DX5XSikAHwVwuzHmveL+5wJ4J4CnGmP63YMPoyIgYlKF4JA0c+a7EDMlGagbWBcBgNCpKFJbMo+GGxja13Sysjhjah/gI2gJLZXaUipLY08diJUDpTfeBMK0NGpyHis4NHHlv9vXFtrUCTWCmZhAmXszbK173MTYaEP/fpu/9884ftuVwHPfhLu++o+4xE3P6ikxw+qW730GZ2/8Mn564xxU5zwLi296HwBv1pnkO7ApXoDj58y395OsrBSGjmXODXGadjwtUvvUF4p/bGvfVu9O60eiyhxai1QF7dlbtGmTCxKDsPl0mEM+kcxECRJTQBc9ZIBvrl2yA70n03ZVDBi7SLHvSexYRBXJFEvrB+Jei5t33UNH6LwBt4ircPPKsrJEJi55inCSpJg1Zz5mud90W20dLBXFMdbNfRKWb/k+8t5koy+PrKOOWYbrL3w/Tn3Sy/g+HY+gmAbjdeXzfhm3Ll6OVbPmDnxMJSWf7rrSHXUx2/XoeAlOxGHDzH1CwIIJKfl8/E76VeST9pojmmZ5PFZyZ4FjrdJgsCR7DZLSqiRDpWJEVcGJZzTAog1Bfb3XLCvLPeAkPsPV3/pv5Ds34Umv+HWsvWstoICTlp2EbZsfRZymmFn7bsd3bcfJaz+MudiJ3ZPj0OuvwYTJcNrTXoWrP3MHAMtqsV4WHSvNDRiXRcDsZOZQWTh/jcFsFxOniJRBUoWDL5ZapJljhJLHlOvx0g50zQ8o1j5VTDK2PJM0tSDNkP4prkKmU6niIJVsBP09xaTqYgTWiHzQlse+bwFVWX9KlYp0IFprBHiY5z104X1FtO45c/XHt9VY9pZPYtc2Kw8954W/9Lheq6222grr7Oe+KfjvKI6xYMkJ9vbYPADAXLMd90Ups3J4cFpp2zcLrx44qxIevouUQyOBImdwX+STjskpPYeamUNyUEuDWWLfFw0qHMD5+CJGBg01gCXpX5SYQymvkUzgGCC/PRRrbzKHLgHwegCXKqVudP97PoB/ATATwLfdfR/ai+95UBVNCydVNzAX5A1oTRYGGS9fk5WVAtTouKlQJM0mHZI6rNigM04d24C0n5Sc4aQ1ugEccswhpq2XRTCB0mhgDk3RZPd6kzCVZTw8eNfNMFWFrRsfxqodl7vj8saapGkvBROnLHIol7qikdYMtL3Gf3TbGo62raZLazcG3av+2X1vGju3bcISswHjpsPAmt18+AtPSiZoZc7+UZW2LCJtIsRJEkyB6ftto+z3Ty3Z7CzRKs1NvY7Jcyj87UtWH4GwqrANfjpkmkCbj8KBsDFK9t4ghlClUhsTWtNL07RVGkKbKHMRyWRe7jYQtKi6a0gT+6zusWGPz7GFkkz4pnSAWYvxKI5oE8raOqgrW/kCzFLjuPPqb9rJ4hSb1LOf+yaMzpjN/z32gr+Aev7fTfk+s+bMw6qnvnzoY/ToAiyoNmF89w6WD3WdqW2dOSRZflJWlmQdnl5KE+uBzCHH4OXrQRxOY32MsAejKoTMoUIMK4wDxKM44yQXYs/wej9gGMQyKWG+L8Gh7Ib/wJLbPgwA2PW5t2Ln52yK2IP/9grc/rG39n22m7/8fszFTvfaBVSZI1ep9YghUD7vWYaQ834KpPEi5RFAALrR8GtgudfPXO9Fn5V7naTjQP8wyS3JMpQqZp9IAIE3UCAr096Q2nrJDUkrMxqVALO0StEVzKHYJdtSAiYATnAbliRmVILEaDtAUXFgAMvBCVJWRj6Vjh1QFbk7tscHDs2cMx+Ljl/xuF6jrbba2vNaesnLURll94hRyusP71upryRQJUrZqoSuh6ojbAkagKI871nvzKbrMUKpt+zFGahSMWJT8n6uieFD1gxqCuYQr5FxZr2TjO7z1D0caq8xh4wxPwagGv5p78ZRHMRFJ1NPeWNaez8xh0QqUa1Bi1zsfKxMn6yM0iekaW6phqdb0GtqFRoLduJR4YsQsicCcMhomChh2rqqLGOHjkAyl2iSOMgLBQB2bt8CvHcl7njq+7HwxLOx6JNPwa1P/yji7hhWKo2d8ElPCTR2R7OA0ho8gxk3PTbW1CoOPn9UFdxcRUZjXI1gBiamLSu746pvYHlhp5EovSH4uBrBKHqWFlmTLVD6CYQnk9E2sl4jRgKwf0Sle9xkl8X02UxtPbZ66N41OMY8BCDcrGg38ST2lmmYGBCzJ3LgUDSMairMpY1LEssd9V6JqUdX7xAxnN6oGrAAk02+sbcLIdnURY4O4BkBcX/DzofizllZoazMS8nO/Znfw8TuXxv8udpq6yCoUy56ESZ//HbsuvmrmGsK9ETy33TqxNPO32vHMnbqc9HZ8N+48adf5/VgZBBzyBToEcuvRqmXXnZUtrHub+dIssogck1Wxolegt1h/Rv8Wi17DQKHVJKxWTGty5756tb7uqysERwKQy6IHTNS7gCUbSdn6C3QvZAF2Zscx9K1/2F9cJSxcqZKs0+bEkEPtHnRiAM2cWo0g+MAgk1PNABsoyJgv+vYOYnr52gzFKUdy7oprQzPh1B0MKnSAByS8i+ZMCuTMvWQoAHAXttzwQotkaCD7X2Pm1AdZO47zlUXMN7brqnIOwSVtj2piI5m+bNYa2gNY3BI541ed2211dbBUfOPOharO6dhZX4LECWIHTjDg1O6VsZ+mGmcVQkTCwRbSMnbjjlUFrllGtVYsvw4eZ3O+mVlpUrRMbsb/XupGASfpiE13OdIoEUa9+EDDrVj4f1Y1MzJSGsAgPtByzjRuixMVRoTcCelMHQEgFE3vZInBE31hhXp1JkeXIugpYamyXOIzBwJxKLJkn//WOjt7f8PBYe2bsRMNYHJjfdg19ZHESmD3o5HWdc6jlFujhJoTkqrijw0vnZNTFmjxquq4PePqoKZR5gmcyj/4XuxBbOww4w6zwR7XBTZWhQ9y/4QTZCKIhv5WhZ+YlkV1gPCbfyp2arKgr9f6fHQ1r6p+6/9GgBAmwiqzL022pnl8Yao6vccotskDRi6YEReZmllZdpP0GnS4qazVV1WJuLpCShSxCIiKSU15iJ1DOhPkAHcOVtPK3OPj9KMXyNNLTth5px5gz9XW20dBDUyYxbWjJ6NYzf9cCC7Zn/Vyec/B+Omg97tlwFljtzEiJOkT+4EhCy/gFI/QFYWo2yM6OUkxJyA5xAcIgBHeuxUfZ5D/lqiiDmUOOaQKbxvkamxZxBGnEvPIZLQyjU6rgq/xovXTUzRJ5G/6asfwpHYgutnPQ0ApWJ5U21muBQ9JMYyhOpyuRQhWJ7SdbzUfRKHejE45AZzKTOHnPQ9cX4V1EuJzUWJJJB8ZcI4WrKdPZPUAvfDZPlxbepeRin3hbIm4EE2No0eEjNPDICoKqAhkorkbcFgo7XNpAQO9ZycuU38aqutg7V2Ln0BAHc9IBCdgB9YZiBdE40DihKUnljQ8YBQ1BUsIufvp4ueBWEa0iOBcN2SvTizaN2gwjQw/alobVDDPELlv8epS/IufbpoKytra59USb4m3QC4MQ1UuErFgQl1ZApMKp+mIQGERFkpljyZZDLKoGKDTjISo1Qx0BTM+eTQ/eKYCeVl42kxtQMsOKWIgeSaRUoPaSpqKipdcOxrVRbcePSiLjeLqdHI41F+vE/5yrmJqZtqRlUhIhM1Gw9PJy3l3tVXY9XE1bjj2NdiUnWDyWfPNVje2yBsKLWjsisBuFkgLUy3MW7CRp+jrX1b6b3fx6M4Ao9G8xFVBUshKp5kuCaXmUN+sVHubxa76e8wWRlt7Epn4JnAJx/Qv5GvAxv80TSEpWSpN/SMPSALeL8HWtDUEOYQySuCco9PkoyfW096aKutg7l6y56DxWYDFusHhkuF9nF1uqNYM+M8HL/5R449StHxodwJsNJuOlcl6JOlHeFlJ0IpUATG1VSDkhDpdZk5ZHw6Gj2HSjKHVOHBIRMliEzJbJ+Yh0GeKUwycUCAHVXh5QbiM1hzazqekmXxidF9x7Pktg/hzuRkmGXPdK9dON+kcAOgixwJLNBW/55T6GCK7IG63F6Ph0mh3PNGjP0cqSphqkqkknUCnyAaDKZZhlIl7BMJeGma/fL6v3eVWOB+ODgUJv2UKkXH+SpOGv/7ob4nN95ofZgfELFdyTeIWa0qhiIWUSHBIdczpr4/i6v+oURbbbV18NSyp74WlVEwyYjfp7IZvwOmRT8Ld91giXF3Jr9WLIEiJzcrhPyXKgtkZVJu5nvx1IFAJkrsgGSINxAPDqYAh3jQ6kJaElP4z3oY9cYtOLQ/y03Ling0NBekJigJwZW6LIpYKkbnjQBC6DmUslHkoCKDTm8sSBG0zbIyGaWaQAPKMnQiJytj01wQnV347LhqYjTIx6gyDzbmJPvqqRFujlJolGS2W/a44aPEL63ivulnZDQSVdlo26oQ0bZTy8o2ffNvsdt0sPLFv93n4VC4ZqsscjvtrTVBEjxzD7Q0f/ddJcK0Ojb931dbe79KrbFs13W4d86FPE2mpp6aWgJK6fchFyoywUuJOTRsmkCbFGXBoUyV0LndGKjUT1pikezgTfa8rIzliomPkAaEj0dck1M0ycpqtF17p2NBpRkWnP1CXLngVRgTnitttXWw19KLXwEAGFW9A8ocAoBi6bOwEJsxc+utXsZVkzsBdeZQ6MOQklFnPXmr4bOVDkhm1o48/931yFRVsIG3Xjm+d5DrUeSueVHSQaWsDw6bWnNsu2NAKoNSpJFx+lblvSjk546N5jU+MTZWArDDKtl73PL9z2KJ2YBd572dgXrtUrHKGjhUuom0ZV/GYpBkI9frEgONGKrMB36fVPT6FEcPWKBeelOwJAsQCaVdlCpFJqRkHXE7SLGlfsyFBdRlerKIyU0l5e3kLQR4tpBGwuDX0CQxx3aNqtz+LoSMg4Ei0dOxdNANWYzO+4Crttpq6+Cq+YuOw22XfhQnPv/tDM4wEONYljx4iFI27DeFG6B2PSBEQFFpFKKUvGPzMHUXIUtHhi3JXpx67yrKLHtyiOcQsRenAoeCQWtkGVC0d0+zPZOlH8zVgkP7sQw1JsloaC5Y5n1xonVZWFwVzFJB5VkG46b/RAEoiWRq5lClEj5ZaENZT1ShDbJkIpFen8APObUDLDW9DjIBXrpWL3pvUwOHqIksYgsOmapCpjRKJ/8pdcEMK2vqnKNUqQPXwsYTkNG2BC4N/44eWX8nztz2Xdy88KWYM3+haLadRDCm6PNeYxNkk6U0A1imdNI3913FkjlEzXVNVrbuh5/B7Z/5g6HH2db0666bf4LZ2I34xEstPV5snojmyv/dsNjQ3yx1099hCwYzeVTCE4liwvpQEAhEiQh+Y0Eme54txJueOGTF1VlIkdgU1atO25XPi9MOlq26GBf+2r+3JtRtHVI1f/HxWJucBACNvjz7s5ZeZJPQlvdu5QFBXe4EhJt9yfZJsy6iBilavbGmKiPrH+RZKGIaS5JXXdhBkftvuXYD4bWEzJPjNGPwg7383DosE0Alq4T9eKqCr1uhj6GXfifwLKIURQAO9TbfBwBYes4zeSBWFj2oSjPbkjYTZZG7XoVkZa4PcL5vdXCI1uupJIhRw3dd5JPB5NoE6XRu8pykKKOE5WhAmCQWBo/4YQHJuwZVYjSM6L8kg3kSfn2ioVihEn5MNcR6lN5XuZ6FwaEo9etXAA6535ljB5iyeWjWVlttHVx1+lNfgQVLTkCnO4LSKJhdGwGQiiTja6KJPeGAPOrSUc8cSpysrEDC61FZ9PqZnCJVTAI6YS8urRnKRqY/FYHgquHaLYuv7bGV86bCc2iYSuBQq3YXsD/LpVRZlNNP5mykfKjJrqI4aIgio5mlIplDcirULysbng5GMihJwQZ88gadEKwtFa9HzSgxdOpmzKVLYJLPBwb76fDEqSx48oiq4AZJR13r1+L+rXQMD6O9ZKvSOTcxpUoQy6mkMPCNjUYZd1AZNaXn0H1f/VsYKBz/wt+1z3cNJh0vMZgKMr6sNUGlm0RSE6wcc4hYVimbi3pZWVUDrLZe9784Ys1/Dz3OtqZfW26+DABwwnnPc+ar/jenMrtwVeL3CISsPgJhafo7XFZG0/iUTaN7DhxSsfvbO3lH3UyPNydRImKtMyfZtL9tZg4lxBzqBPfLapaVOeZQMoT91FZbB3ltXnwpAAxlg+yPmr/4OKyNT0SsDK8BxFaRlQg/HNnM0rWm/pwEZWPTW6kUsViv4jRkDgFOeiXWLvJvoJLgEBkpR0nqqPye7cPDDXFcuRgGsTmp8eu6BEMSISuTjKTU6NA/kQM8Oh4E0rkDuMhgP+H7E5QwUcbm3PK46t8ZAXW04RlUEmSrjDXO1oWXxCeO7cOAjvOYUlGESoV+QF3TzBxitleaBSyvpqqzQmUfwkNFgIdiGgmvL0Nj5t37kqk0+X1UKhbffcMxO7mI0bk9tpY51FZbh0R1uqO4vXsGjn7kOzBV5bzb/D7SRJkPUXDgUDbi2UIE3FiDezcw7U3YREVxzbWerQT2i/5b3CZ2ke2hffBPU0/Og4MpTKWZOZRkQJRZ2xbd4+v34VKHzyd9ApQqCxdpHerHVVX0xYn2M1+8FAplIeRWAhyqmU3GQyZNgNX1V1HqN7AFGUmG0y5mT7jjIfaOilI2pZRTO8BNlpg5JDTpA5hD1FQZAQgZnTPrSCejSOEnoHBpGBDAS6WJWp72TT/pts57zoMgs1PCIcyhbZsewekb/g83znkmFh1rJ8/UYNbBISsrK/umjdpt5NlzyEnwiNLNKHjpk1oqHX5HUZWzD1Rbj79mPfRjrIuX4oiFRzOIycCMm3hSk2vKoo/VR+BNp5pAMcWCwfIGlXgW0aQFh3jBI302m+kRc8hHb1aRv10Ko1OexifEAEqD45eVQvskhtrxBZvGtto6xOrI8yxjZ9iGf3/VpsVPAwAhK0sCf0HAsmW8ybw9ZtmcEsMFsBKpRFVAg+cQeQ+yn5kEgd25nzPrVchcxXojmaypM0+OU8+M8eBQ/zBI5x74IAA+rjT3FIEhtdHMHIpReokZdNDL8BQ36wRMSWmqHdUm0spJcyPuA1xiZA0cIl+ipmulLLlZmQQFejQwh0QvRWBgFSWBHC1TYlDYwBxK0o5IlG0eZtVZobIPofAOwPcrVlYmBheDyk3vk2qyT1bGDFfRr9BvJSZwqMynZGG11VZbB1eNn/xSHGMewl03/8TuC+NMyLE8UKRcom82OguAvb7SNaQQqpXcDUzr11xi10rigwSNeLju1iy5NtSLyAvxNGVlUZLx+hAVuwPblMOhWnBofxaBQFFqmz95fy1OtBLgCmAbJx132TCRFmQJDskTIqA0DyiaFtaNBVNTB4fCySD5CBhuuMpgagdYml9dbw8ARdGfoGHfSjKHfMwtNVs6GXMx4E5ylhFtufBeB2Xh2Dt2KtYkK9NkfKZsy1mn88u644t/iVHVw/zn/K4/TtdgEgOqFAbGbMwmSgtmFX0+GxvskqEyzxwier7R4TFFVRH+Xtp6XHVMbx02zT0TAMku/O+MkhTkZLvO6qPFpYte37/VqwkcKgkcIkqsO1e9jKDGHEoybuRVkoWbHIo7ZlmZ3xTVK22Yhh9/3gtx05EvxcLFxw/9HG21dTDXCadegNWdMxAvXnWgDwXzznoRAE9zb5aVlXyuMrNXNKfyOeTj1yQrq5SVfmndDw75KPLJYO2q9x6lGKAQWzJJrdQpheYY96b1XrJKGMiW19uAOVQwOyZ1jCQ7iAo9h/x0uCN8bxwjmH0lXE/TG7feF9SrMKDm3rd2PSyd/9NUnkNS5kDsbV30/CAt69jvR6TB0QBwkMSqMHHwfUj/Ik6hHDBcqx+vBGMKYUJNUkWtEmbzDPMDojUrLSfswE2wWhvTysiQe8QlEump/Zvaaqutg6tOedprUZgYm6/8DLNcWUoWe8IBedRlXZdKhoSZ95Y55G5P7ADQnyRGCdj1aHqNGNpEiBMf2pIabfePRgWSNCoeHEzFHJIWDYn/HHUCx6Feh9enPcClyhwlkj5zQVUWfXGiVQ3ciU3BgIaUW+XRCOCYxkkgK0uHRsfb17QndUJsA9dk0vMCnxx45lCR95DAsRiiFB29G6VKAuaQ9DySnkPkNVAvmjipMveyqjL30rZkBLEyKCYsTREOHCKDZ8A2UzZOPgnNIAGePFr5l51kFao/JYZq04P34IwHPoNrZz0T5648zx+/o+lX4rgAoNA5RqFhahcl8igioEo5DT6h2Ex/dPG5QL8htTJ6qBnlvqzJiXEkScq/kUOhMhT8d6tUgrSc9E191xtpAvbvVV8UCNAbMRPIVSrCgfuL9MuVkJXpHnkOESXW+UkIuQTgJTAqToVcInVSkTDZLkqGg0Ol1n20XQBYeMKpWPjWjw/5BG21dfCXiiKs/P3LD/RhAABOPOPJ2Px/s3m9LFUICgChhxABIFL+I2VlRd5DF80RvZSYxYwOQbdnsFoXiFEGzKFEyN6lhxClbFnmkJWVsU/QFB6DDHYIIDwAh3iNtpIyAwWt7dgsGHQ5eX4Sxx6s0AXSynsJkvyJ/N1IjkugetGQ3gZY0C2ahqxMgmyTqguY7SiLIpxcx6IHEwNACdxMmAwjylsESFCOmUOJTwLSA5hDdc8pCcY0ScmoR6LbA8u9b8dMYCKa7WOsozT47vmY3fFlXc8cStAyh9pq61Cq2fMW4qbRc3HCI9+wzMc4Y/a5EiyiSI8jNwn7chYq4WuzlJXpyd38XFl0zayzfQqVQBnDO07vDWTVOZ0GNj956k3FHPKfI2X2bqzH+wgch3q1zKH9WKqSsjLffEUuJlSWqRlKk2TJ0p4LbsCKWHoOiR/9NGRliUtEIdZBpXOYqvLHVnmQBvDNG/sIxKljCFnwo4xCcCiqM5DQzGig96b3NIW4rcOI8cnxnfbjMTiU8/uQqXMZWVlZAjmVdBPDIufGTwtqfr3u+cIfIUaJRS/78/A4I/KoIQYTedS4161R+22ylPZNsNEOwHIXoChCbmLANVFAKMMDrF9ScgBkZaaqcM8/XIrrP/CGvn+74bL/wH133LDfj2lvlGTQ0JScGtykY7XR/veo+xYFAmG7Kkzoa6qIWUBistKzCyFPMOLUTsw5BllEgsIumDTljZLMRU07IJGYQ4lPHZP3U3FKYMNEpa222tp/FcUx1i57EzYsehoABB5igJdto8YGLCRzSEjROKa+Acwwznuw7mcGeJ8yy6YtBJMkDdZOOazoGGIOdYEoRccUSJ0simPbA4/BBlmZ0Y0hFwwO5ZNIHehExtGBDL8s+uQGle4FCW98f4/83ZzUnI387evWk2ssuyjnDc+gkr1W7lJkLXPI+SSlHU66MVUVDAAlUDIpmN+T6DCzKfi+0i5vtoq8mXlN0jkqCQ6VToKvVcLrXok0YIoNKnrfbjVh0+kEc4iBIikrowEHpROVTnbYeg611dYhVcWKl2MhNgOwaw8D5sKQOtETKJAgzTz7NXYJZVpIU4lN358eSfYbIdvHainENcVJeFWVh/eLIpuGeApTaWbhpx1vu1BOtLKytvZdkVmyNfnTbC6ohMyIysZbe0CAaN9EJ6cGrIhH+TEy4s/Ew6NPAavrN1EaJHuUpYt4hWcOqRo4xBKwxCeWyChcgBrMfpp5k1Eu4E0sVeWd4VXpDcYoRYrMfKNsxBlKF9zwURx8pdI+WR0BbeRBYCLbftYntlRLtlyFW2ZcgiVLV4TH6Wj6nBLljqsqeo30aZpW0sRSORmcpHJTo58yOFSTlRkd/F72V9125TexQt+OkYlHgvsfuns1zrjyt/DId/5pvx7P46kbf/IN3HvnLcygUYLRkxj/m8tGQ3BIVf2sPpkKODU4RLIyT8MncIiN9SjlIR93r++iQkU8PbOIkk4g2eQJvFs8/WYpBIc4regJ4LnSVluHe134+nfjol96PwAEHmIAOHSBPYemkJX5c7tBVhZlwfUtaWIOFZOhZ02UBGCMBHvIPDlOU5g4Q0f1D2CCYZBgldAxxKbgniAKehx7u+hNIlUlEpQo8rD3sB/KS7SYmenkS3VwiDYdqgaqD7oeliph0+1hQLr0HOpF5DvYY1ZTFMcc56xL7Xo8L4GgkoEiPdWtyee8RI396hr6J1rT5GBKGkBTsqtGzCBNqWI/IBnCHKL3HTUTDhDyrFaOkRa/DwKK4rRjfUGqPJBIttVWW4dGLX/aqzFpyPrAkwxUknGvm5QTKJRnDmkkzLwvlWB+0sA0qe+fnEy4BuiUiEPGY5zZvl5PDpR/1deGQZU6SWzaGeM1NSkn+FgOl2rBof1YUVVYKjlp/bWPc63Hidand0TNJZ8carRoKgSEkdomyqaUlRGDQhoLSho4m2RWPjUECBsroq3HNcADUcLNohrQLAafl2nmuZf0iM+pHFOoGPfaVGvKWQTG1ySVq8vKeCrpmkjEKUo12HMoMRplNqvv/tK9LjVBdFxa541xwtT4U3JaVHkAi0qrxDKHGgw9AQgJ0d73HZqcGMflH/oNPPzgvX3/lv/4A/aYayDj/d94LyJloMpmoO+JVr3eBE781pvw6Nf/ss+fw/5+/WaFUhWM+D3WWX3S22to0gv8omY9GhwIVDhwyC1SvEGh2E9aCMXmkH4vsZOYMdjJsjK3iDWYhALCCH6KGM+22mpr/5ZWGbJyN/93UTNLjhtkZXLtYjZJA13eOKDHXyf8tYsaeK2djIs9I7KarMyvR6Mg5lCn71rSOAxqkJVJsEqCYtSvTE44drAy6DkZeSjDz/1EOfPSpgjaT4cJiM+9XEH2BGWNcUlVqgSpA4eGAelyg0GyrVLnVoYMHx5A34H0GZQ9Qk95UXIvGgmYVAzoJakA8vrXXM8KFcwhcezEutbO0sB+Ts8cGuYHNO/kCwEAM9RECAiJKPuAKUZsJ9efqbJw5t7tutNWW4dSzZg1F6tnXmT/Q+wjLYvI3s6qCZRIeBBaClmZTT9015CiWVZG18wkrd+fhAwhB+RHenzgwNbUQ4AG1MnnPAPXn/cPWH7+s/l4snKij8BxqFcLDu3HUi7uXUVkLuiozUY3y8pQAzdia9OohFEzgUOVUWzOBdjGMlEVTDVYjkRUcp6y6TxIw6Dmk/6fpE06D5lDFEEbMoey/tQz+IjwekmDSmLOqCpnYCnKnLcPJz1ldhLmACF3YCyVQ1z//kr3/rlnDqkUUTVMw9/QbDsZHR1jJCJbU+g+WqSVoWlu+pQDs6R5NwF+fLw1wIqT1hoSqIZVVU7NNLrx6x/BUx75OO6/+ivB/Q/duwZn7P6xe3//Pe7YtgmnbfgKf5Y9qbtv+hHWXPWNPXrO3qg7r/4WZqgJxOWE95qgjVBEzCH7WTpjFhwC//Z136KQio1BOU3mkI36dGCQS3DwsjL3m3H3pzXPoShOPYsozRyrkIBEd26610o6jmG3YU1wHMOkJ2211daBq+3zz8ayfA22b9kIAMyWIbCH1md5HZJppgz8NJ3bro8gqbak58ukL7mBrw+WCKSojLK+ZXDsRhmdblTj+hWAGcwc8v5qPNhxJtQA0HPScXt7OwAEx2NDAkJZmdFhIESSheAQnKxMMojt1xNOkUuVIquIOTT4Wik3GDoWzCGZPOu+n9yBQzQAlGBMLmLm82gkWGtZVpZ1oVIvAayXX9PEOiXDQVKSlaVeVhalvKEaJitbdvqFWJuc5B6XiMGFN5aVTGef1paxp2PSMDRrq622Dv5Sp7/S/n/sPchU4tPKOpWVlZF9hlYJM+Nl+iEcc0gltesxyJu1G9yvVRrsmb2MbTA45JlD3cZ/p4riGGe/4BcRJQlLrzMzOWWvf6hVCw7tx7IgUMpNHzWBMoKVqyYLI8kS08kp+t0t/H06S063GAwoUENITWKliyB61ids5fx4U1WcSKGc51BibAy7bDJM7GVdSgAwWg+SlfnNOMfclhqmslHiIFf7STdVTDqu+RDMocofh6kZcnvPIUtZR5xBq/4IYf/4/uQxwBuFcxPkKIi6N24b5wZZWezAM/pOE8du4u/ExedypK2ug0P2/nxAUklTXfuVf8O29xyHid07Bz7GVBUW3PYxe7sGPN132ftgoHBPfHwwzbzz8s9hTE32JasMqp98/F248h9fCwDY+Y33QH37j6b9GfZW7b7lawDceUbgp2QOGf+bGxmtM4f6WX1xkqA0CsAUZp7wE+wq8rGdETOHfPQn3S+TFqiRj5KO3/QkHWbrAZ4hRNOYJSesxC3dc3D+PR/CDd/4Dz4OzRvItklvq60nUs077xVIVYk7f/Q5AF46xKkpdK2CZA5J/xwa1vTT5Skxi1komZCVMTiUh8OQOKmBQ/Z9JuBfPxNSJ8DGuRPbSDKFKwkcSHk6DVfcc6ScPQ/AITsM6pfhhwyhqmyWlamc5AohqE6AWt2ctFIJJ7I1GXxTSQYWybYqXUBVmjcRLAcselByANhgFk23pc8k9V1Z1uHj1A2BHn5NE7Iyd7swMd9fwt+uVMIytKmSxLac8rP8uJQlz5mPkRZMMZmwZvuaSSv3aJlDbbV1yNWKp7wSV899AY4649nc36o44+tVp5rk655GYsF3lpX5oBtVDJKVhQxRKuuMK5lDUv41HBxqirkfVPSZRqrxYKB/OFQLDu3HiqoClYr79ON1DxrATu+kCTFJlijZhFO8BoJD9B7NBoaAZdOYOAuMBXXAHHLgDgEbyqAstaBkZ5y01AemCHBGMkzqMe1ctHk1QkpWFWw+SVNRcrWPiEVVFd6bqSwYRJONIH1/AFAIV/zKxcw3VTrARJFelw0+HXOo7PkJpSz2ZHLvHxHLSvgDaJUiJp8DWJBLVuzkhU1Tw6aqyhILrv8nHIEd2Llt08DH3XbF17Csute+p2jid+/cjlM3fBk3z3wytnWWBNT/0oFzO9XYQGCNanz3Dpx+90dx3Par7eeoekgHMLX2ZR290aYURVXRx6AxxDArNUqjOHKTmWGm3ywe8OfbVFTTWHg00IIZu3jPlCctPtlBI4ZySQsMGgnPoSjNAskmbb7ofaI4xrJf/yLuTJdjxU9/F/fedpU9TvrtTJHU0FZbbe3fOvGMJ2MD5iFZ81UAAhzqYw6JwAeVsI8dndv1xhoAD0l4mCGYMgw45JNIVOXBhTiza732jFwgNE9OslBWNqG6jet9yBxyqWbQwseQpHF+XcgpYax2uyxpwOIBGGZZ6oLZ1fJzKj3hvpssBNWp96obUkcpm243eTjx55fsUSfbKosBsrKih1gMACWLRnpGlskIYtHzcfJZmjHwV5cLAwP+/vTeiL2NgRLyNOd9CQxnDgHAqc95M3aZEVTZLB6MGMkc6nkwj9bNJM2gkSJ233/LHGqrrUOvuiNjOP/tn8Zxp5yJBceciHuj4zB/2dm8tnQxwdc9rRLr6UYm1CLxsI9N74qeWzeR1ioJem9mDpUTA60eeMA6heeQrNH5xwAA5pmt/QSOQ7xacGg/FjUIcqIEWGZIH9pJMajGTtOI5UPJJjydS53cqu/51Pg1b8ZLrbkhlMaCEoCg5lMCKEXe85Rsx2hIUAZTu+D4UWsWB0ijqBGKqoKbyKgqrL+Aipnex8ZlacbgEE/biMLsZGVs8FxVnKhC4AbixLF6BoNDTbIyMtrmxs0xhyqmRYbPsWkx/hg9c0hIBBBzE0WfQ5ZMWhtUu3ftQN6zf5ebfvB5HGceADAcUNI/+RfsMiN973nL1/8Ns7Abo095m4sr7vefmFTdKZlDt3zrE5ilxvn5UaUZ6ALsb+nar31knxptP3jXzTjaPAzAgpzEoOHGn0BMl3LAUwX+PerGRYE2ANUUJnUylp6ZQ+5vzdOQmECjiQDkpYY6TlJx2zKH+LfNE3C/4I3OmI35v/BZ7FJjiD//JuzasbUv8r6tttp6YlQUx7h3wdOxYvfV2L1zG6/Z1PCy7LsuK6tqsrIGLwXlklE5CVH4ErLnkFgT3T8A8LJ3WuukeXISJyFzSHWRKkrm8mtJkJpIa6bRLD2jtS0XIFIxsbP5NgH7wr+HG3259sP7tkU8ke5YQION/N16XPvOqijFiJnac0gysAxJ+3UvYDVRz1LmOSJT+DRXMRgqA3BorMYcIv8eP1gY5jkUHC8xx1USAkLUR7keyR7PcPbrjFlzseV138CKn/kzAMC1J/4GFl70OozOmI118VIsWv81XsM9oNWxhrMEzrXgUFttHdI1a858HP/HN+P4lefhqONOBgDMwS42ci5gwaE4TlAZZWW+FKTiBqZ1JiddM+tsn1KlwZ458DgaAOJ4Vun0e+ATz3gydmAMsTJTqgQOtWrBof1YNu49FUaFPr2jb3rjki7KUnMaBeKM6eQkt6KJUj1RiRbjfIDHj4y25hOyLFCKyRRt/iUIkBe5N6ROUgsuGW2Tz2QDEGdIVIWyLAOGiRkgK6PppJT4KNdEFvCJaibf5b6ejpOFea8eVRbcIJo4s/HgVRX4KOkJYvhkLra235NJft99xUwT+52QgbGPzK03m/b7oaY0MgUSFKGsTKVIy3H+b1VLK6OGsRgA9JRaY8N7n4wbPvQL9j2u/jf/2gOYY+vX3IAzJ67ELYutZlgyh0bv+Sbui47BKec+g6Pe/ZvZ77KnRhg8HFSzVn8KgGdtxeJ7AIDVP/4yzr3md3D3rVcOfZ3HUw/+9LMAgIdwJGLJHBJeQIkDWwv4hcun6YimXhRtTqaaJpDcy0Q+tpP+1vTfbCZdjgcgL/2WVNrh32KSOrYem7C7TVYW/u4WLDoWjzz7g1hcPYzV//k2Pmeb2AVttdXWga0ZZ70CXVVgzY+/2MccIuq9vA5VbugACHPluElWZvsIuHVAJpoSMKIFm1a+L62bqixQGYVC2efmxnpISKCZ4tyLIg+GQVJWJlNPlfQfAlAKObueFGyhSQ8Okaw6ct6NgL+GmjK38jn2HAo3HSpJAx/HqoFJBVhGFpluqyGbCLmJMS6UotK5Dx2BYA7pnktzDb2IACFJMwpV3AlT4qjHi6JAAlivkvuxfsmghmcIlSrhoYiJEr8GTsOH7tiTz8TseQsBABe8/t1YuupiKKWw+bQ34/hqPW77ifMsFAlrWqWc/NamlbXV1uFTcxcvw+0j5wDwPbJGgkqlUFGEAjY0iEB8Uk7Uh5dkIp3Wr9NRUksrs+/RqSYHgzhubcj2QFaWpBnWzjjXfo5WVtbWvqrYEHPInSzEHKqK/jhR0oznk0EaBUWjq7Jw0aR04tV+uEMmTfZ1/bQpYA6J5iNuAIfKfNJLqpIMJrL+BCmK0G+HPY9cUoeJ3Hs0AwqG30s0jpXV8Gt4vxaKAY/TjgN3BDhUFXYqGWf+/YvCp7kAKCm9JLGysibmUFP6Bx9n1Bx97o0v+y9usQPPAMsSC2KDYZs2NsEE+gyp6fMNYl3d9O1PYml1L7qTjwIAFvXuwU5Qgkrz9/3oN/8eEybDiS9+pzsI/9pJ1cOuZC5UFDG45Q/Wvl4edTmBjarIe3jwz07G9d/8BDZteAAritXITcxARmyKQOpHmxKS+u2Lmn/vV3F7shybO0sQG5/aQ+egiZ35qpv40sJF7LWgqZef1W0Aplow2PwuzpgBQGk45N/AU49yIjTTI+ZAkvnbaceZzNrfkxngnQEAp138Aly9+HU4f8tX8Oi1X3Sfe/oLY1tttbV/avn5z8YWzEK1+iuCmRsaaFY15lDMLBiKD28aZpDZvb3GygksASOlG2zQY2XKFmABaC2ig5ndKFO3XJx7kU8Gw6BABuXWtRSaH0Nrm+w7iIVrj03cZqa1B4cyNkXWzvjYAfDu2krgRCwk8PK46rHGJkrZdLvpmkolk2FVSswh5znkji0SDPFYMKulXE3aAsjjA+B7PAAJ+0I2RNkzmNgvs9DwIFAVSMmywID8sdaq574ZWzAL+op/ta8lZWUqQVY5uUg7lGirrcOqyrPeaP9fysp4vxqjUj79kAamfZH1UQptoiBsCQC2zz8HW+edzf9Nfe2Y2T1wYEvkBXntntbnOOFSAOH6ezhUCw7to9q+ZROuu+w/g/soZj2qLfQxyj5TQGog8jwPgBzrk2MBlEL5hb+us2Qq8QBZmY+2Do0FJZhEaShKbuiL3Ov1HaMhVWUwtaPXBWyzGFUFm1lWgxK3ZHpJ5Vk2UZVbn6WEjMvcRSROUcKCQ2zcXRXszeT1/pOhtCr3DJ8+VoyrosYukWVIruaOt+vAIeR+Qll/fELgmft8qQkla6UwwQQQ0PIBAQ41AH2mqjD72n+23wmnymlMEDjU8JytG+7Hqs3fwI3zXoD5C4927+m/h7jyaWoUhczv5x6no24fc2h81w4sMRvQe2QNes4Ie4eaGTKHGlJwBgFYe1KmqnDjdz7jfTIAPLj2Riwt78GWE17Ef2vahHDj736/UdljYMamx/nJdpMnAzH1moAjWeyJEaeste5UE8G/ESsuqyYDcEjx5jBjQ88ky/xvEP7vMWjBO+sNf4t7omNx7r0fse/V0vvbausJV3GS4K65T8HyHVcg320Tuui6QCBOFTCHBDhEzKEBsjIAQDEemN3b93TX+LokmjxqaO2oCicJ8FIle3z+/chYWfcNg/o9DGNlEJV2vUunAIfkbWY/CqkvX/d0zwY60AaAWZpuIu1A9dSEzKG4tl7La71qYGJRpdLYu2OZQ0b3nEcdecU58C3PLTucNheSdeT8igokFvQ3nslMPR4fP5oHRAVLpcXxxr4vZNaRYK3b9Ez6ez92uUR3ZAx3Hv0qrBq/Evevu437IisrS725d8scaqutw6pWPP012IJZvJcoVcL9cqEcc8hdv+k63c/kTBkgl3XRW96PC3/1Q/zfC060LKW52DFwYGuirC/Vezp13AUvcs9vZWVt7YVa/aW/wTlXvR3r197M91HcOzUNvFFtlJV55o8HclJr4mUKllvxwl/bpBKYUgzwqZFU5Fj4rEjaMgEn0pBYF7nwL/HNxqjqBbIyakrLokBkCkw42nk9FcsfkKMjG8209LgqbKMpvjNytU+yjm12BOAQlbn1UYoEcyjPPRMIvhGOkhRVlHJaiiz+vpsmauT3UubQJkLWsZ+LvQ3qzCFHZaemNDYOwJK+AyplwABAn9EzNYy64W955/Xfx7JyHSqjGMxLoNFz/hC6ARxa99V/QIISRz33t13EZBLIymJTMJ2TopD9webITYwyygIWEOA9KlAW/L6Tqsssl8R9dipq0JumoXta6265Amf++Fdw+0+/xvc9+ONPoTIKS5/2c5bBVRX8nqo2JY+0B2Yogpe+i6aJAW0ApjLzlCAUM4TMpJ2GxHbRU3z/RGM8Z5x22CsiSTos2dy5fYs/b9Lm4+iOjEG/+INQsNPwpg1kW221deCrs+qlmKEmsPWWywB48IXObXkdsv459po9SCIFhEmI0uwe8KyZKg/BobonYuRACj/1JU8d/34U514U1l+HhkEygEIOPciLhtYQKX8m6Tjg5dqAMF4WAR6cHFlQ/LwbIkURChMzI9cyhzzj0n9nIaguNwDD2C7yu45cKEVVFoHkjZ5f6l6Q5sqDO6MA9/5axQHo7w4SBWhAQMO1/kFKVfQDXdwXIvFpd8LvUsrKGuXze1AnvuDt0Ijw4DfeZ9d+EyGKLdOM+pphyW9ttdXWoVdx2sG2538Yo8+xCcXbssXozbDDaI3EhiWk5BU0yc+RZaKkP2ypoY49aRUexgIAgxk+Cy95Ha45+bf2+HMsPHoZVqenYWLGcXv83IO5WnBoH9VJz38bcpPgoW++j+8jFgI1fcTqqBsUA6JBEwbQihI3jHaRqTEv/H3MoSE0ZAAoXDMWxf4ENWXBwM+46XDjJkGAspjkhi8Rm1b7wAbNe9FDVHmwwpTNLBE2X0TBTWTEnzPx/ixkXOZkZXHlAQf2FxDMoaIIE9iIXg8nK0vQfzy6gaYtP2OsDJTuWY8aiiPX1AT109QTAWBZ9kwZUMurKEEXgjlUk5XR52tiXU1s3QAA2KlG+e+UGs00/6oGKPXGt+Ok+z+H60afhBNOXmW/EiTMlLHHWHIjS1HIfGxlbiMpG1hXDEQJBloeda33lLbSOilRM9MAh2674uu45h9/ptG0enL3Dqz+66fjgbU3cfyxNDCd8+APcEe6AouWHM9JNV6y4X6rxM4px7mpJ6NzAIihGycG9FgzBXOIaLMqSnlD0TWTwYJHTX3XTAaUWE5gSFJ05x2LXRjB2Ky5mLfquaiMwm2feAfL34ZRZU8688m45ljrR9UdnT30eNtqq60DUysufhF2mhEc86ADh8iPwZ3bEoi21zMHdJQ1NqSsAWb3gAA4aGBCQBKzbt2aUBXOL8KC2QQOSfCEvHPsei+GQaVkDvn1InEyAlrbAi8dkmgDzMgFrHcP4IdsfD8SREW/51+BRGw6MmaJVmXJDJd6RLLsw4YB6an4t5iZQ3mQSkZ/j6rIXZqr+/6FHxD1AeQNxMcH+30RQ1UmytarKWwgEkND7gUFa91EqR9kPU5waP6i43DL7Etx2qNfQTSxRYQ1pNzXDEt+a6uttg7NWnr+83DC2c8CAKx8x9dx7i9bP9S18y5FdcKTGcSnhMikgck5VSIwYIcB64+4CAAaPUIBYOlpF+KC1/3JY/ocp/ze5bjoVz7wmJ57sNZeA4eUUscopb6vlFqtlLpNKfV2d/8RSqlvK6XWuv+fu7fe84lc8486FjfNfSZO3/hVbN9i48SpQeCJUuENGusMBMXMl55PoyBAw8mtAspw7QRiSvMA5pAWzCE2+yoLloxNqC5v/qO6rEzq9YP4esl6oOOfRGwKBitM2Xw8vBk3muVRsdFsCEyIcuIAoCS1htJJ1fMeAe7fkKSN4BoARE6WFrt48KTGfrGfcbCsjCeT2poHkzQo0Z6RJIumgZlLS8uqHiJlApZVqVKMGH+MgYF3VfqktYbGkP4WExjhv1cKjdxNcuuA0urLPoLZ2IX0Kb/B9xUq4WYZsACdB4fCaSalsdgUtvC7YxCz9OyynLwoih4SU/SxkOzzQpDpwXW34qoPvw2mqrBz9Xdw3vZvQouJ6b133IC818OG9WuxcvJ6PLz6J/w7l5PVrJrAZHe+vT+yJs4kYeO/E6XbiAhMjdSDlQNkZdNlDo3NmI3V6WkYOf4cjM6eB20izDE7A6ps6kzNZ5pdgbH8iRe/FNcc/UYsWXoaznj2G9B95x0YmTELJ5/7DFx91Ktx4eYvYNZDl9vXmIIRdP4b/xqrn/1pLDvjSUMf11ZbbR2YyjpdrJl9CacrJiQ3TWlzL5lDaR9zqMlziNawWI/3JZryYKMYDx7LKVsEpFcFNNLAOwIIwSgf525j23kYJNYf6V2YOlkZhUbINZqOx96WnkNe6iulAwUSToCUQIdWCW864rQjfAh73Ickte9Myr2TIf5slnHrgJuu8x0sC0RGM6tJCSmYHbi4ARcdh/AD0kiD4wPAPR6AwBeyXiwrFMcrGeV0v2UO+fRMuq0eh6yMavbTfwMz1ARWbv4W/87KKMWI+/5br7u22jq8K0kzlnRd9Lb/wAUv/XUA9jo4ZihoKBxyVkkXPUwPvE5PsSCU2QfeQHEcQym111/3iVx7kzmkAbzDGLMSwIUAfk0ptRLA7wH4rjHmJADfdf99WNQRl/4GxlQPq79mPWHIW8hThB1zyMXUy+LJj/bMlyi2iRsEoEi5Vd37JKqZXtdLspGiOEZhYqDMeXM9qbqIDZkoF8HzmJItQBggnNpx06OtCXERdekFmr8sEW1LHkcWBCtQwke5xkKbWqkUqfDq4dtxJmRteeA5FHF6SSfwbZDlv+/BHg5xsRslEgbWCJiqTxtVnKKr/Gfuwns9UZkoQUc8RjbRhfCMagL66G/Ri0asbKoskagKOiJD6hpz6NG12G26OOPCZ/nPK5gygGOyURyvMz9m5k6lbdKA6gfWNIE8lWfoFGxU2kPiQDIfe0uJW+Ex3n/VF3HBQ5/A1k0P82NIsrZ96yYs/swzcNNlH+XfttEesJST1cRoVMpPShOj+4xI6XealhOeOaQS8RvU3NTLosdOLStLsPIPf4IznvYKzJk7HzeOXoRImWAasmzVk/AQjkSmymDTM/fIJTjvF/8JUZJARTGS0Tn8b2e84e9xb3QMVua3oDChXGTgcVz8gikf11ZbbR24ik99Md+mtYR9y+rgEPmODZBIAR6ISOtm9/DMISXi3uX/s/S8KqBVzNe6suapA/g4d11YgMQPg4SsTAw9ZABDUYRBGCE45G9LQ2rJ5ixUgtgNZyRDRSPmWPok9T1BUeTeyL8uxQuYQ8MBDfo+k5EZ7gBDbyFmDuncmWW7wRKlwQmDaK3iYCAI2O9L116rSZbv1zRx7NT/KMkWSvgxJk69j+Ne8AM68aynYE26AjPVBKe19UYXce/TGlK31VZbTbU+W4bZ8HYhshY/7/9h8zPfO63XOfGCF0CbaMqevK3p1V7bKRhjHjbGXO9u7wRwO4AlAF4C4OPuYR8H8NK99Z5P9Fq26hKszk7HCev+C7rInVly1qcftwbFzbKyUhhAs6wMXm4l6cOyZGPSVGVt2qQR28haYnyoEZ5MJkZj3HifJDruOO2GjUVDlGpZ9BCbgg0rBzKHiOaNkDlkp4SeOZQJcKiMQq8eMjVDnAWyNgmQEPMojtO+dBD/3dD33dAc1mj6URxDm4iBqXqccD0JhJrVQFZWQ7qlAbhMWmucGjJDp4sYJU8dNUXk1sBBVebIVRqg4NoZe1MlJmQORcqgdPIlkpU1sa74e6sK/n1pt2koi5z9HsgHi8Gh+ufS3qiaQCsCySZ2bbMgyvhm/ruaMvf+RTJ1zXhJmImtDMP/dmlq6k2iadNjU/A8q69JVkZg7B6b1J3z8/bziI1akqa4b+nPuvee3sI2MjYT2ev+B9sxY1qa7LbaauuJX6dc8lJMGLfG0EAkTlAZFfQIpiGxsN5YA34NS6uJvkTTpD7YcO/nB1NkAJ2jVClf6zxzSLxeStd5t97zMEgwh8SQqWP8uq2LXrBOMQMYfphDjwP6AfsSMXsYyWGVho+lj9Ou93HMe7z21GON5XdcN6uuF30PmQOHTFkErCZiZlVFL0hz5RQzJN5/SKXCZ5K+94KBloRT2Rqi7HXYywHCwFoOEIWlgfTAe7yyMqrxs34JgF/bVr7pn3BnusId/54lBLXVVluHR207/rl8u87kPPqkVTj1SS+Z1uvMmjMPVx/3FkSnvnRvHt5hW/tkjKyUOh7AWQCuArDQGMeTBh4BsHBfvOcTtXrn/gqOwibc9O1PsaysDtwkKPtABG4gJnd6Y8ik44wondxKCYlanXnEANQAcKiW1lGoBKgKnkLlUVf45BSYcDTxSufeBDfr1JhDYnLFpts2xpUMKwcxhwgECMAhaESV9RegRjZ1YFCSdWAEbRzwDWcUh75Ogcm2A5BUmgFREhpAutKcVtbfHNLnTYQMqUCCrCQvpFqjVQP9aJImv7c60l03AOfHNaV6yWh5U/DUsXSgTN3jSfoY8HuokDkUo2R6PXs3kRmoM9y0YMtgWRn9jkqRYkNgkvQmAvrBIWqAi7zH/lP0HJag6dz7KQnGm3ytWExrTZQihQc/o9oU14JDgjkko5ab0soi/7p7Umc87WV4CEf2/Q1WvuCtmDQpStWfzDCoFi87FZtf+mmsWfXOPTqGttpq64lZozNm444Z5wMQzJ4osjJUea3pzMSomcC2rZsGSqQAz9jIqok+X0JK3IopRpiZQ04yW0gGS8KADAHjAbMmE7IyoxuHQXIA0REy6iLPgz5FgkOJuE3X+KTPc8gziFUgK/Ox9JY55H0Iae1J64CalJVNwRwiEKRDiaWOOUQgGqfMlUWQ5kqM5BI+hVWrJDw+gHs8AD5RtsmQujbwAMRwUHlfROsz5B4TiZCPvcTqOf2ZP4dHcQSvbWOzjsCxb78MN532+zjp3Gfslfdoq622Dq067kmv4duPF0S++M1/g7Of+4bHe0htYR+AQ0qpGQD+F8BvGmN2yH8zxhjAxeb0P+8tSqlrlVLXbty4cW8f1gGrVZe+Bg+qhRi7/t/spC9K/URJ92CqCil0n2HfkcsvhjYRtl3/pcAnhejkkTM+pAW+bozrzRCnlpUBboolGBh5PCJSpkpMEjhU0+vLxkI2ZpGQdSVGo4o7TrrWDA5R45gGsjLtktw8HbrjmsA0s7IwaeRM/2alcn76Kf0MODIx6bBEb9B302TwKWn6NNUrVILMgVR1WZmMDp80zd+VZJ/Y1DEhK5NJaw2eQ/S30PEoEqOhHcOmcuBQHRxUle6TF1imjPCDgDBId8efk8TAaOc5lPaxrpihVWluWEs3US6KSQbiiAVEbLE+ALMik9JJlhsSOMRSsqpgg1JTFv67Eb8v6eXlZWWhESmBiF30eNNTqpQBOsvq6/8d8OZkD4020yTBfRf8GW5f+qbg/tnzjsItq34fk6e/bo9eb+mZT8VZr/idPXpOW2219QSuM34WuUkwc95RfNfD0ULoWcfyfy8460VIVIU1P/jvvmuarIjB78kGcCiMEebQBxrsMHOocMyhUFYmwQiKc7f+OoUYBvk1Qg49RsRQp8gnA3YvM4BhhzBU1MvE0EH8ulZ+OKPE+isBeCkr00VuWdJGIa777Ujm0BTgEL1+2h1DZRRUWVhvIf5+vBQsQcmDCh78qZTZ1raX8z6JgP/eAfG3rfqHfbT2ycRKZg5FKfckVlZGbCHfhzbJ5x9LJVkHjz7lL/HQyl/g+7oz5uKMV/4eOs5Xr6222mpL1qLjTsFdyYkAgCzbO9eith5/7VU9glIqhQWGPmWM+YK7e4NSapEx5mGl1CIAjzY91xjzYQAfBoBzzz23EUA6GCtOEjxw8htxwZq/BRQCWZnROcpSI6kZFAPAkmNOwHUjF+CEB76MDSufDcA2FSSF8nKrfrNKQFCaB4AxpWAjAd53hpgmOhayMhQYV3MAY5s/OamKG6RkgAdJKp1zGpuVrjUzmSLBHOKNOTRPCX3Sk20W09SCQ6NmEnAKqREHFEVJJphDecAcIq+DKO3YJK4G5hBJk6IGWRnHjgumSYmEgan6tFECCxOqiy76mUOSfTKBDiLhzVAKv6Qm5hAxZXQyigTaAybOILQfHCr63P/LBs8h1Jg1pZO3kQeUidIgxQwI6fD0vuxFkU+ysTZJ5bznUO1zkVG1LpjBQ6AXA31lAUN/V13w71xOqlPjWT/0t6ZGmhhzJLvomklmA5UqYYAuAMrkITLotOeL2UXPe23j/ee94h17/FpttdXWoVVnPfvnMHHJS3DEmN9QH/E712Jxx19rlp71NDzy1QXorPkyJhdfCMCzS2RlYzadcK7ZhgfVMcG/UTJMUtK6WZdDkQG0Y4tGBJ4nwfMBH+fOw6Aos4bNgazMrxcj8OualarLNVowh4RsvGSmdXhNLuVwRnoOqZRHkUnWDaTupixQIEGn5sEmh3RNYJssev0060IjhikLxw4nnyDP3s6UZlYS9UZaJQHDh9ZcBodcjweINMphzKGkmTmUkOeQ6D1VknnPob0YM3/apT+7116rrbbaOjxqy8mvwcbVH8S8bORAH0pbrvZmWpkC8FEAtxtjpIPU/wF4o7v9RgBf3lvvebDUqhe9DVsxy/5HnDL9u5Ix6w3TG3P2GzAP2zB+4xcBkKzMbsqjypoGs39RHRyixmQAc8gDPL5RUZVmsKFMRhk4SaA5darSOQM8WdYJfHlUoNcnU8seEliqNUnXmoo245kqmc0TQyNy7A9qjrqmh9IoxIllrxBt3P6bT8agBqzUOarSfwcE4sSJnSRKg2QqTkUZkv7SMRMMshRIGJiq+xTIxqsHT5lUgX+Ex2hlShwQGoo3SQQJWCnjEQsOucbSOJp/nakVubSx4PNG6UDmEDGctAB+tJOV1ZlDJCWLhDyR5Ab5hEid0SRX8LIwWcQo0nmPvX9YVqb9c0oBCNHvVsrKpAko4gyZKn3sszNvpQZ5ROU88a1Uas+vqkKCsjGGV3oZtdVWW23tzRoZC5kWM8dGkSYiDTSKsP6oZ+PUietgdm0A0CCRArD0jCdj3HTQVUWfLyElbpFvH/USDCy466uVdieeOcSeOgKM6FpwqNJWVmaHQeF6L9e1SKzbZQ0ckiETHckcco+pszm18sMZOdCRnzfLOgEzR1V5kBjpD1LIyqYATXzMfMcmj1VFsOawkXjuwC63ZrDht0q4f5LG0Sz5d9874NMoGz0bWebvj1f2hdzHiDAURCmyMduTUtpaW2211daBqPNf9TuY/0drESV7la/S1uOovSkruwTA6wFcqpS68f+zd95hclRX2n9Phe4ZZQkFlAMICWUJBUAgcsYkGxsnYHGO2DjhdQB712t77TU2Xq/9OYHBYDDYJINtMCAyEhJIoIhyjiOUZ6Yr3O+PG+pWdfUEaTQjac7veXjoqa7uutXdqvDe97xH/XcxgB8AOI+IlgE4V/3drqju1AVLhqhyEddH994D8A46o2rZ31DS+TY5N5njz3oPtqAHRmx9XL20AKjW4q4IEDlJF6+sOFTs0R+BcOFuW5g7pqTjmK5/l6VF+uIjJQ6JCIGbtKYVVr2+7Rxych7HYcl0aZPupHKnDoCUW0ZfHPoiNDlNOh+hGnWm1j/r6NDt4h3PT81+2heeVVb3En0RF2S6gJnWsHnikA4wFvWJc4hcI0xlreipsjInEYfsz8q+0JVd4pLPItVtLufCUAt1wu8AXyTiEBV05lD6NTozyCYi38zqijiWDh+dOZRjdY9Vl5Ws68qIQyJIshFUWVmpdk+yT6UgPfasOKRuKKKg3ohWkckc0rlGSSkZxUkOli2G+QgBR2cnKadPveqK4KdDX4FE8IkcT5ZGRCGcHFcfgCQQlTsjMAzTBhxz8jXwKcKwrf/KL5ECUKzqgKUdJwMob1oBSMdw0TonArCczUl3sMjxzXkqzpY6AfCKWhwKTIh/SJ4R+uX7hCZsG5Al1IA8x9mifl6OoByPuu4ocw75KddwstwO/U+cMrqsLMj5POxy7yY5hyCzmwKSZfm2q8m0n6/XndT0OScpz3PdRHAjk9OYOLb0dR05jukom8WUFVrCmAmwtpp5CNdPOYeGjpyMuaf+CqNPb1rgK8MwzCGBCJRz/mLajpbsVvaiEIKEEOOEEBPUf08IIWqEEOcIIYYLIc4VQuxoqW0eSYy6/MtY4wxAVf+xqKruiCXHfQTj6l7Dill/A5Bv7fX9Apb3vwKdoWb2vALgFuBRLDtKUXKyz2YO9Tv2WMz3x6H3un8AorxKz9zIq9eH5KfKyoTfES4JRGEIHyFC18qwUTkCruulMofsWTstzkRBycz06VyjPFKdTNRMpikrcwpJZxUSiThk3bSXRLL/rpU5FIelJMQY0nkkx1csC1tOPhudqVR+caizj6pFnckDCOEbYSrbTtj+XrX7Csi0AbYudOupOiMOJWOPc2cNZXZC7FXJ70nnRCjHTjbsmawcA/MW5JptaqFMfzZaVIlC2+ruy1lI9fsw41OPnTg0YyV10xDY4pAWvLQgmC0r04JQWDJiop5NNSWCVukaojApTTMlaaF0lRnnkHIFldLikP096AvxmGQWlRbEcl19SkhqiTbADMMwzWXY2NOwgfqgD2qkc8XJv5wLjjsPQHlXTAAokY9OYi8A2zmkj/lapJCl3cYtqQOXrXObbueetG0vGDeNxhWByS4EZAk1IAV/ewKnOiUOlTtnPSRlz3K/PDM5Y0/o6POcFs7IKvNCHJRl7wHNKyszYdGFKuOS0iX0gDVRpM45Ol9IL4/IMxlJ0gWucxq1KJcO3g4qXD+ZDMiCff2VOIfMNYlbMA5sxy+CHAcnnf/+3CBzhmEYpv1ySLqVMeV07d4Tg7+9EBPPlTXZE676CrahO3q+qoxUFRwIg8/9hJlhc/2iuSgqijp14tezQuUn+N1DL0bfaCO2Lp9b9py+0LIvVBwRmjbi2vERlGSQcOQlZWWISygJeTFqz1Y5llBkRKuopGb6CmVdsWxcyzlk3D0Uw0cA4frGVg0kLWTtz6yW7HEUk/0K61NBznqG0Sskn2WYdQ4Z4Syv+0tRvU894kwGg3lfC1scClLikPXe1gVp4FanuoBFKedQTuaQyk4gtwgPUZINVEza69q4IiybQY6tAGadB6QDP40VPyilX69dV6XkQj7tHCqlxhHW7S3bJ1PKlu2opoOqg3ojGurX6FlSioMkgykqJfup90N/bpnsJCiLv/6e7NJBLbDGjg9PBEkId25ZmVrWQp1eGIZhmgM5Dtb3uwgA8kukFENPuRJAeUdTAFhTdSK6QB0TlYhgXCe69FyoYH894ZJxxgBAQQUOx2G96cwVwc2IQ5HpegrAPI7CUuo8VWWJQ7ZQFIclS/RPO4T05IztBNXnZy2c6ee0IzVE+edhn6/zyvRs7Owl7Yr2rbIyE64aZJxDVpt5z24zrz9fK3jbLjkPyUsmVFIDKS8rM4IP+eZ7IsdH38EnYO6or2PEmdeUvQ3DMAzDACwOtRnVHTth5ahPY6DYCKByKOCAoSOxoGoSAO12kRceVaJWWYYrt9Q+fsY1iARh/Ut/KnvOWJFtccgqK9OZNfW1++CQMN2vRBRISzbK29nagkdyISbFIbieCj7OLyuz8wiqrNnCKlEPkGfyEQCYGT97n+usPB/XL5iLIxEGqVnJVGtbTzuHkgtQ+dmkS+5s9AWcQ8LM6mXt6za2s0S39wUywpMValxyq03LdyCdGZV1AQGypCqAzABySCColxf6OgMia0OX7XHTv5XYScrKsm4Zx8qOAhKru/nsLGFNmKyEpKzMrVJdbOqSzKGkRXK6vMyMUeUMxWFglZXpZXZZWcm8j34Pk1ekt6E/fzctDunwVrsM0O5sJp1DSfe7LOa3x2VlDMO0Eb1PkZNNeSVSml79hmBhYSzqqvuUPVd33EXmsb6WsBtmAEhClhsUh7RTNTACiXYjazwRoGSJQ9pFFGXKyqrJeoz05EgyeWGJQ075pBSQOIf0tYp2OUdBSTVmKBfU7GuYvIBvm4h8M0kWkQsn1tc68j2MSyeQ5xx97aa7isWOlzTusFrL6+60nlVWpvcjb3JNC2u209lXQl9sZVzC86Vb6L03o0u3Xg3uG8MwDNN+YXGoDZl4+eexkeQFm1NBHAIAnPo5bEUPdOs9AFSQN/2dxL5UuRWc8ovDQQMHYUFhHHqt+0f5e2Zmm3T7bt3ildTFRe1+WQ4U+x2T11kXVvbFmJO6ONFhjLUyfNItlLVMt3FTnUwSsaYD1RtXlBaFjB3czurJuHKSNrL1xg1lt5L3rLKyrHMoudhKl4jJ/S2/KLXFoWzmkGu1l9XuKznG/CDvyE2Xldktfu22wOa1UUl+F7pErlY6dLxiB/V8xjkUh2ZGVROTZwQpU1bm6cyhtLvK1ZlDTrqzCmCJQyIwLXc9HVRanziH7BbJ8smMc0gJiHFYMqKVFoVi89ok+4qiknEf6Ytn3d1MO4eMqBdKkcrP5GsAifsudny4CI0glVc6ptdtyU4vDMMwzWHIqKlY6/TPLZGyOe6L/8SkT99Zvvz0q40zWV9LeJnwY1c1hYCTnpTRzppAuPBUl5lY5e7AlU5h+3wvG1sk59SScQ4FuVk6QDq4WkSl3IxGu6Q+7RxS5yh1rWJcOlEp1SY+tT19vhMOHLeyG0u+v2ccWyH5cKJSytXkuh5iQXBCJQ6ZsjIl3FCSGSnLynQpvJ6IiZJsO6ByWb4699liVpI55KNTlx7YRL3Roe/IBveHYRiGYQAWh9qUQrEKGyZ8AQDgFjtWXG/cGVei962r0LV7Txx3+vtQEtJGLdyki1deWRkA7B58PgZG67F19YLUcnMjbwKtZftuEQey5by6kKrfr27qVZmZCOWsW6As2XY7W/vCzFzolNTr3YK8gBIVxCGrlMruQCb3TV/kZcq4rAAze0bS9YvJBViUtDm3Le1eIRGHoqw4pGdMc2zlKTHBlJUln0Eh85pU9xTlvpJDty5MvbQ4ZHcBixsJpEYcyotGXealyrccr4iS8HLKyoKy7AkphuQ7bszvQ/9eVLi4Caq2u6np7jYiSsJDVbmB0LkLSD7vys4hVVYW1ptyQ+10S8rKkpwhEtZj9V4mmFuLXFoMUhfq+vNPfQ9WpoYnQquTYF5ZmRKbuFsZwzBtBDkOtp90E1b0u6zB9aqqO+Zmy/Q8dhDe9qVo4KlrCTOxoydJhCxv0sdSIw6p9QJ4VmeuWnn+dvwyp7CHECU3OQfqx3GQlJXpwOpQJJem+rEIS8lx3c4ccuxJn/IGA2HG5RyH9co5lJM55CX71Bgx+caxFcGDpzur6ckXIgTw4GXEIS+VB2R3FdPOoSRbyS4rqzi5FpVMB1fzORSSScNCVTX63rIM487hNvMMwzBM47A41MacdOkn8Mapv8CJp1/ZpPV79h2E+d3OlX84vunilReaCwADT3kPAGDdy39JLU86jlmzWCI0JWP6Qqa0f7d8gQ44VmVl+oIr1c7WujBzzcWirrf3EZOb6kpm44kAkZrBBORspPVmcpl2DlG5c6hklWx5fiG5WLW6q9mt5H27ta0twFifTd7FdF6QdGxdZGZzChxrjLEtDtkOI2t2MPI7pMUh2zkUl4tDOjtBXyzHdTpctDwQFLDyIyyE4xvnkOkGph03+uK1QllZmFP25okgmc1UziFbHLJb3gMoKzXUAmIcloyLSn8Own6tabUcJEKTdg7p9XTmkJuIQyXhmvBWWwAUVlmZjxBhUN4BR2M6K3AgNcMwbcikSz6KaR//+QG/ftcJV2I3OqK6gzxWV3fqKl22O1YBSLqD6WOoPk46rotQOAjJMyK7Oc67fpmY4YsQoXWeDpSLKA7rzcSHLjUL4JkmE/v1pE4UJE5a+7xqnc+cVJmwdhynJwKiIKjoHNKTIQ2V6WkixzeTZBF58KO0CCS37cJTyx0jDlkOVSszUj+vz3E+glTZcsXMxjgoE7P0dWGlSUOGYRiGqQSLQ22M47qYeP6HUFVd2TmUpce5XwQgL9IKxWrsRkdQ5/I8AQAYctxILHeGouOaJ9NPaGeHLitztDhUQkCeuakuqTIl0s6mqAQnLhmBJq9DBgAU9OP65IIpasg5JCLst8Qb2+WDzAyguahL5fkkwotXKCbCTpS0Obdbyft+0cogyIhD2iVTKC8r86wyMZM5pEWinHbCqcDjQvId25+b3fFNeNXw7cwh21WTV1amZ0C1C6o+6Tyj2+umxi+C1GwkoC5SdeaQdvWYVu/pzjW6e5yTV5KnyxBECMRS7PNV5hClxCEddJoWdDRaQBRRyaxjysrUNhwRmN+wY2cOxTo7KVsep0omotpUCUZeWZlwC1KsVPuWJw6ZsjLu9MIwzBHM1Pd8Bf6Xl6BQlOe7QrEKiztOxpBtz0LEsQxGdgtW50frvAtPumO0g1lPBnmqjNw633tW11MACO0mF6qcvR6JOKMFD50nKKKS6SxqCzCiQuafXm6uVawmGdJBm+ccUue7JjiHhOOlrkn8WGXU2Z8PefAjNcmglttt5nVZv3CSbKDkXBulxJ0Ifq5zyJ6s0/h+lcxDUjEEDMMwDNNUWBw6Ajlu7MmYPeYW9D3zo/D8Auo/8SomXf75iutvPvZsDK9biD07NptlQl1kmLI0x5M34iKUdnDtDFFOFCokGTYUJx2vbJHDvjDzMp064PhSgKqQOeQhRC0ls4p1sDN5dC5SuqzMyZRjaVyvYHVLCwAlRuhW8jpPIAmAzM8cKuTc+KecJtqto7MN4Ja1E7bFIVjikC1K6P0rCQ/CKaScQ/bYqIJzKCLL8q8uzl2/YNrrpsaDqNw55Ppmm1oQcU0+Qrpzjba65wlr+nNzEQKRDMrW2T4U1pr1TG6QiMw+pPZJ3VCIMDDlhsI4hxK3kP4NO3Fg9jMJsE4Ha+vsp0JUm5oVtkM8zc2P48vObw10KzOB3VxWxjDMEQw5Dqo7dUktC4ZfgmOxHcvffElOVlhuUWEd80K4COGZcmoyTuGCyjFMzmU+QsRW7l6ky8qUOBTAQ0j6XOqZrKASFWQOYhQgynFz2ucz38oJ1OPU1wt20LYjorKunUCSS9SUsrLQ64Q6R+5D5HgoxuocZwk6ITwU1HI9ZlO25yTdyuB4ZV3iZLh12jnkiBzndRyUOZ0c18XqS+/DqHd9odH9YBiGYRgbFoeOUKa+5yYMPnEyAKBX30EoFCt31jjmpMvhksDyF/+aLNR5Ap4ujZKlRbqsTAsnYZ0MpHbcgsmwceLAzKzZHb1czxaKVKcOq94+rnRxA2mhrrfcQvZjaKGqLHPImlXz0s4hfbEqokRE0DZ202mtgnOITMldY5lD6bKyvAvKVPC07RyyRCOTF6SygwoUQcSx3EbKmZMza6icQ1qkECWdqVMw7XVtTOeZ1CBlGZXchJ6ZTXfz0s4dD/JGwfw+SnYmUpJRoWczdTcWN7CdQ6pELSPoaNyUcyidOQTjHArN9yTLykK1XGcnpV0/5sI8rkvNsvq2O0x/hm5BlZWp0rScrjWm7M6r/O+OYRjmSGT46VcjFA5qXntQdR9L3KIp8YNk+ZiXnQRwCybHEIBpQR/7yXk6TuUYlhDCNef2EJ4pB4vIRwgXIgoQBsptao3BdteknLomkFqLQ77ZnhsHqS5nGn2sz8sjyjLk6v8Crr5D7gt5KArd3dIWzzwUhRKHfN3FzBKH9GO3kBKvRByjQGGqrCyipjuHAOCEKeehyzG9G90PhmEYhrFhcagdcMKE07EFPUBvP5EsjEqp7BXdvluXjDkq3FBn2JBXlOJHHMh26DntbO3HulzNDZJ6e7t8KYsv0p1M6q3uY/pGPEIiZMnl1uyhddHp+8VE2FFlZaFwEDlqVtA4j7SNO3PBpSzu2RIxIBt46af+n5dTYK/vpMQhSzTyEyu9Cd/OiCFAuYiil0XkGzEHKgDcKxRVt5hMWZnKj7DJyxzSYpPJR9BliCJM5SPEtmClRTWEMrScPLOfOggayHQ1gwyUtrHdQnpcOgfKdNCJwyRzSP1u7c9IO65Me2b1+RRFbUYcskQ6/bm4PjyKEam2yW5e5pARndg5xDDM0UX3nsdiSXEc+m16Ch7FgOsb0YOs84d0+3imM5eeBCDPNzmGAEwLeuEn50CdwRerbpMBeUaUCa2yMv2Y4iA5P9ml2HYgdcrZqx3HOkA7aVKR15gBSCZDmlJW1rv/UAxRE3ShW40uIplI00TkoSjqU+/teh4iQdIlrMfrFlBUJdjRns3m/J9yablFdC1tMQKZxp6sYxiGYZiDhcWhdoDrOljZYwZO2DMbpTrl5MnMNunSIlkyljhDonp5sed4PkJy4UQlOHFoLkb8CmVl5MiwStcKY5TupEplZZEp+wKQepyUlUmbuRamUheIGeeQvliFCtAO4JkW7nrsxhWT08o+gFdWIgak28WWl5U1LA65VfnikMnvQZIdpJ0vOmNnvyiWlYgBUmCJyDOfBSkxzvWLud1NcsUhu6xMl22ZzCHtHEqs7sLxE2HNcl1pJ48nZEB0CM84c0wnFySCkluhrEw7ikQUmHGZsjLz2qSUTIqaiVAEJAHa5MrxO0Ycqk+VE6ScQ1oE0gKdds3lBlIXKj7HMAxzpLNv2IUYFG+Qf7jJNUGquyZcRPBBjoMAnpkEcNyCyTEEgECfY60JEp3BJ8LkfKGFnAie5RT2TX5elOfmdOzjeV430XQJvFCNDrLZe0DipM4rOWuI0uAzUUVqssNyk5acanQRqoOobo5AhP2oQuR3QKFYLSfpip3QvVdfLCyMxXGr78f+PTvlunbTjXEfwiCxAa/d973UtikOm+R0YhiGYZimwOJQO6FqzLvQgeqx9JXHAcA4OzTCkQKBnIVK8nh0ho3jFaTN2ziHlDiU6laWLrGRbVylKECur3KNyp1D2kJth0rbXU20S0NfOGoxxg6lRMESh/yCaSOLKADFMmRbzxTqGcmkTXumrCwuVcwcSLW3N91btBW+8kwkALhVnXPfx3RNs1rSl1S5ls4fqKNibqc3RygxT23HCWrNZxDldCvzRFTeYcstmFI2Uz6mA5wtB5b+nsjNF4egxuchMuKjX1CztiqsU+6TcvVAiTtluUih2aZnPVYbVPshS9cAKRTpsjI36xzKdIipFrWpC2nPutHRF+L6/zpvy8nJntKz6NnfPMMwzNHAkNPeax6TWzBu4mxZmXH7wDWTAOQVkxxDJOXHZJ2nTZl1VFJdNz1Toh2Rl8oYjJRrOXtcB9JlZb5ffn6OTVlZ0qTCU103s7imrKx5jtATzr7WdFi1J61qBp0vy8OQPlcsOOv3GHTRTSgUq7Dykvsx6tLPyX0542vojR1Y9OhP9IDMayZe9BHM63AKJi7/X2xYudgsd0Sp2WIWwzAMw1SCxaF2womnXIy9ohp1Cx6VC+KMc0iVFumSMXMhZcQhWVbmxAHcODRCi25nC8Dk/GgC8uDrMEa/KMvKUC5waAu1LQiFXk5ZWSbjx3ZtUDHpyqEvEEO4MsRZCRVxJoPAlEZlAql1x7Y8Uu3tM619dYBman271M4Sh/w8cYgScciILqbFb3VuWZkbhzLbQXdCifaZzyBy/LKMJz/HOaQvQIMgSNrMq89Q76+ISohUtzThJr+P2CrJ00KUbxxonsmeKkTlZWW6ZCw7Ru0uoygwndu0Y8hkDiEpJXNFYLItku5muqxMOaDU592R6lMWfHIclNRFvQmeNp3f9qnPIC9zSDur2DnEMMzRR58Bx+Ft7wT5h1swE0aUKZsymXvkmUkAR5WVeaYLZpJlp0UU3QFVRCVZMmYJQiH55jgdm7KyMGlm4JWfhyNBcD2vfLk63/lWDmFeYwYgOV83V2zp3qsvFnU4qWxsx1/4OXN+sa8FTjnzYgwcOBgAMHLqeejS7RgAwOhTLsEifwxGr74LQHoCjBwH/T7wfxAgbPrr15Pl7BxiGIZhWhAWh9oJVdUdsLTTVAypeQEijnLLynztHCLf3PQmZUoFKV7EAVwRmhItIHHiZAOcIyQdPFyvkMq2sdF5BJHdycRL7OfGpaIugLS4Ydf2a3EoEC4cV16MBaSdQ3JfRaasTF+sxZnMIVLuqTzsmUmdvZDNNkivb81qVpcLWHL/kuDNbFmZMOJQVVk2DwCTnaBFEO3U8grFsgBLEcfwqdw5ZJwyQR0ilWfgZpwxIrTaCFvhmbawZsrKKIYb1yGkpFtZQdSVr5cRdJJ9itS+ByYo24RxG+dQYJxKroiMY0g70yJzE5EuKwPKL/z1v4Ok7b0Svur2pT6L1BhNNzcWhxiGOTqpGXQBAHlMTMQhOyTZM+JLCM9MAjh+0eQYAki1oDcNIVSbdaHP0eSb97LfN3J8k5+nS8BTbk63QkMIR4tLOnNIu2CD/MYMSBps5J3LGyMc9W75HlXJeb5bn4F4q9vZapiNvyc5DsSMr6ILqfL/zLm694BhmD/ww5i891ksnvMMgCR3kGEYhmFaAhaH2hHRCRehF97B8nkvmOBpg+rQ5IgQMbnm5t8JkswhnWGTDXPULptsgHMIz4gC8mLRS7VpN69XgkScCqtMhCJ9UapnKPWMn75AjAXB8eX69gViqMqqdEcvYV14ArbwkS0rC3NLxADplNIznyZ7IeNIsrGt5MVqFTiZmeFMrOxJi3gtDmkxJHCq8p1DIkTs+Oaz0LZ+v1CFiNxUGV9QqTW7dg6VSkaM0m4Z4waLAlPqBtfPLcmzS9jcqFYGZStnTpUlDpnMIURmH2z0b4SienhqHe0Y0tvwrJwhVwRGONNCk8g4h2z3T1Yc0r9fEzJtOr/tVe9R7hw6/pR3Yc7Af8OQUVPLnmMYhjkaGHDqNSgJF36XPkbcsN0sKbePfb53C5ksu5JZrh22JoNPdUANrdLvSHVBA6S4oyc69GREqqGDElCy4pAR+R3dlMCTLmdVrpwrDukJo5w8osaYeNFH8cbJt2Pk1PNTy3u/6xbM7n4pjh08sknvM2r6u7DYHy3/yJ6rAYx977dQg26In7xFriICc23EMAzDMAcLi0PtiBOmX4VQONg+92FlRbYuPBwfLgn4cb10DmlxSDlRdMAxxQFchClLdggPJVEe4ByQZ0QB1ytAuIVccSjUnUwsQcjuPqadNXqbwlzsJReFprU6pcUhJw5MNw/t8NH7bTpxRZmyMnWhWokQugxJlVy5yQVtFu2mCoQLr1guYMn9S2YrtRsqClRbXNVVLiK/LJsHgMlO0J9FQTm1fF8GgNs5RdqhhcwMprm4LtVZokoxNX5hhYGSV8E5ZG3Lj2pTNw3VljikBS/tCso6h3zosrI6OCTM52D/X+djyc8glN3LkLiOkpsIJQ4V7Bua9P4H0E60zM1PSZeVVSFL5249MfkjP23SbDDDMMyRyMDjx2Dnx1/H+HM/kFwTWOLQvqk3Qpz8GQDy3GvO937B5BgCsM4dvnFquoUOqmmEzByKKXH3xo6XmgyK4KqysnTnL/VGavv55zU7eDqEC8RB4+LQAThxHM/DxAuvS5e2ARh4/FhMvfGeMmd1JchxEM34GgDA79i97PmOXbrj7eEfxejSm1g6+0k4ccSZQwzDMEyLweJQO6Jbzz5YWhyDYzc9Iy/GbJFC3RgX4jrEjm9m5jxlE/f8gpm9y3b6COHlBjhHTgGdhCrNUReLfk5plM4jEFYnExQSa7a+GE1ax6czg0K4iePGKgfTZXBaCCvrXmKcQ9nWsKUGxSGTR6Qt36asrPw12soewEuJWTauVTan9yMKkzIqHdSZzeYBpPtGOJ4RQYpxLQLhghxHikaW8BKVlJDjZMrK9PbDUpIHpC5kddc3igLjZiK3kPvZ2c6mQlxn5Ud4qIblzorSmUNa0NF46m83SHKKTKc2JQL5CI1byEdowq29ssyhdHYSUD4rrG9WTNlEWUklC0AMw7RPevcfAtd10aX3AATCRcfeQ8xzE8//EMaddTUAYJ/bDd3FLgDS1WuXketAascrpo63ummE7Lrpmwkg7RYC5Ple5ucFies01Uig/NwvV0o7hwB57qUoyG/MgOQ8EeUIR63JmNMvx6qrn8TYs96b+/y4y29EDboifPaH8nNhcYhhGIZpIVgcamfsGXI+hsZr0KNuTUoA0TfEBSHFIX1DrMuUHE9l2IgQnggRWwJDSF5ugPPOQeejaHfqcP2kTMgiLCmniCUO2V1NdDhynMn40Tf+ASXCi52jFJEP0s4h8kz5V2ScQ0knLhsZplz54rAsoyYTlG2jA7tD8ozgkp3hTEIwk3bBpruL6ioXZYQe81qVnaA/i6KoM+JTTF4q46kUaOdQNnNIXVyXSonjxuybgxAuRBwkY/IKplxLWJ+dY42vGNemusNpB5AcmBJy1KyyV+YcUr8Z9duzX+NY2ULmMRLnkHGmlTmHEvdPdlY4UmUOWpgzIlGghVHuSMYwTPumT/9hqPvSCoyccm7u8+8MOh+uOs57ftHkGAKJc8jxCua6w/ULKmg6MO6X2MoZMkKRk5SVmckLy81JOed+uTztNAbkuZdimWUnckq29GROXpv71mbo6GnpBhgWHTt1waLB12J07Rz0D9fkhmszDMMwzIHA4lA7Y8hp7wMADI7XpwUQdXFRLeqkqKAzZ6LkBjlWGTZe5sIqgld2YQYAw971FdQLq4TLLcCnCHGUFoiiUJVQWR3HbKHIzTiH9FjdQnJRmJSV2WGZriwrE1IcEmYmUTuHygUOQLZDb8imbWY+9WfgJRe0eUgTu5tyEaW2Z8rmPNMu2HQriwME8BGTV5bNA8DY4/XFchXqTaZD7PhwrDI+7fxxMhfF5uI6qDddwezOKnq2NdSlbq6ffHZWWZntHCqKOvM527+NkpDvJeIYBYrMPmjkciX0hIlzyFHjsjui6TI7X4SmC55+rzizHwU7cyjzPenfjP6daUeaq7ZvC0sMwzDtlc5dysucNIPP+JB57PpFwEnEIX08dryiaQjheD5CckFRyXRJheUW0ucP4fjm2iPrbAWshgoZ0d9xM9cNUC7jqD63MQOQ5BLFTr4oczgx+vIvYq+oRmfUsjjEMAzDtBgsDrUzjh10AhYVxgAAImt2zOvcEwDQReyR5V/qhrigWtN6hYLJvfEQGoEGkBdleeJQxx798GbvSwEAfrGD1TI9HQCthRC3aAlCllBk2qZnnUOuJQ75+c4hR4RK7PGNQ8Z0L7Fa29poMakSeuaTdAcsLTpVcBtJ6cIz+5EtWXOVsBNbziF9Ma27ytmdX2ykOFQwTq9qUWc+A2nrt8rKrMyg1P7a4dJR+cV3QB4oKplSN8crmN+H/dnZZW9Vos6Ij/b+1lJRuqGCRFSyxaEoSucWabQopP9foMg4qXyEZj912aIJ1vbS2Unyc0l//uZmxWRqKLFICaN+4fC/UWAYhmlL+g4egSX+KABqwsMtwCWBKAwt55CfiPG+KjGL5fFbkIdYNwNwfHM+FcY5FFoNE6xOpabbZ9Y5VDSv14Tw4KocRaogqIRwIY6AMq0ePY7Bgj7vApDvWmYYhmGYA4HFoXbI3uFXAkDqAmjUme/DLnSESwKx45sbYt19xPML0okiQvgiHeYYkVcxo2fENf+N18begj4DjjMiSn3d/tQ6xtFiC0JVtjikbuz1Nl3tRpICRUi+cd/YF4jaiu6IELHjJcHRjhaHlCMkKw7FYYOBlPbMJ5CUZVWavQtJXhBrgSLKCGmeVTanxSFzMR2XEJGr8oPKxSFfhLJcTwdIU5QRhyznkMocKheHlOsqSLqV2WKKvIAPrAv8YiKYWK4rOzC7A+qSEgH1nUSCUI8iKCol4dhAaoy65TGQhGvLzyFdVgYAvhIuCxSa9zBCk3EOKSHRyqgoKyvT3e8yZWVanPK5rIxhGKZRdg+/EpEgdOhyTGoySLegd/2ClflXQAgfFAWm66a+rojJtzIGfZOfF6sJCjuQ2rEy+2z08dx2CIXkJ+XKFZoJBPByS84OR4Ze8iXEgo6Y8TIMwzCHPywOtUNGnn2t7IBliRkdOnXFor7vBiC7b2mxodqIQ1VGoMjW69vtbLN0OaY3prz7JpDjoNOgCQCAFa8+nlonMlbxakSC5OOqzuZ5U8LkZsShQiI+6IvFtDgkS7FcESrnULp7iet5pluKjast7hXQ29BOk7yuKDYBpHjm54xR7l9yEWxKzMJEDNFh2i7ynEOR/L6s0ic9MxtbrYQBIAqT3AcbXWYWBfVJJzE/LQ5RHJrgcMezAqltcchyKbkkzMV9hCR7SHedCQO5bkl4pvQAAEq2OGR1ONOd0LKh1+YxlKiFtHNIi1zkOCgJLZplnEOZDCrt8NLikMcdyRiGYRplynu+hI0feBY9jx1oJk1K9XWpBgGRyRwqIiQPjkjEIVgdQM0ElFtA7Mj8PN2tslCwxaH886ppZJG6VnHhKedQXlkZAGx3eyPq3P+AP4PWpM/gkVhy0i3oOePjbT0UhmEY5iihxcQhIvo9EW0logXWsglE9CoRzSOiOUQ0taW2xxw4XY7pjTeO+zSCkVeklg+75EaEwoHwquH7BZSEa7qN+YUCYvLgi5LMhLEurCLyy9wweZx4yiXYjm4QCx5MLTezilabW7/azhzS9nAVkpwJpA6RdOuyc5Ri8uDEoZxxdJKyMtv1pLul2JgL1Qpo8UVnGmgnTqXXRHARwbfCqbOB1FXm9dkW8RSHiFRZmZdxDsVRZLITfKujVqS7tjgZcUg7tLLikP7swkB2RxMOHDfd9c2JS+Z7cjwfvrb1p8rKIiPuyf1JupUBWiSTgaDaObSfqlLiUGSVHFZZ4pAOu7ZL14rW81rE1GUMeSJXYDmqbOybFfv/hbhOZiQ5rKEzDMM0BjkuBo6YCACo6nMCAGDVG88gtsrBIpPxJoUiJy7BgxaHrJwhfb52ZYmZgzDX2WomN7KZQ5myb71OIZbOZaogDvX9yiuY8qH/OMBPoPUZddkXMeSk89t6GAzDMMxRQkve9dwJ4MLMsv8G8B0hxAQA31Z/M4cB0679T0y+/DOpZX0GHI9l59+FYe/6KshxML/bOVJ8gCzBkq3odTv0RAyKVavZxvB8H8t7nYfRe17Bnp01ZrkWLcgvmhv4QrXlHNLuj4xzyFdlZZFdjmWNQ1vRPRFKt0hONpDulpIapwgaLiuzuq0A+V1RbELyTUesAOUuKy20CMdPZjvVRbAO6oytzi9m7FpIcZOMKL09/X6+KBde3Iw4ZASpoCRLvlDurHHiwAhWjl9UThw3JQ55IsB+JOMwziEre0jeDATGhVSH6kTQQVJiCCSCD5DuUpY8n5SdVVEyjqBUB4pKZSKX7qhXJg7pgHOdNaQ+n6KoLW+PzDAMwzTKqNOvxC50RPDGfcm5wysmDSEKsnMZqcwhkG8mgITjmzJyUuVmnghAUYBYEFw3OUfpyY1s7o4p+86UwOtyZapQilVV3bFilzCGYRiGOdppMXFICPE8gB3ZxQC6qMddAWxsqe0xh4YTp78LvQccBwDoef6XzXLPk3X/VdAdq5KLp32DzsGO/mc16f27T/sAihRgycx7zbI4TEQLfQPvFYoIhLwxz5aV6W37VlmZye2h5GY+Vm4b6QQq5NrMddiyjavFpAposUNflJZ1Uytb300EErhlM5wmGNuxHFD6YlqFaYP8srIy3VoebiFV+qTFJ5EpKzNupAplZXFYL7ujZS6ydSmYHpNrtQ6mVFlZiDoqF4fsrmWRKiOIVFlZvSPX10JXaJWVVSN5rPOMsrlGNrpsLAhKQBSUiVwmiylzU6Czt3SGlWuVVGY/C4ZhGKZxClXVWNLjHJy46wVE+94BoLueJmW8euLBQ4jYtUq/y8rK5LlcRIHsOGa5OU1Jeeb8qydvkDk3FlU5cvY8yDAMwzDMoc8c+gKAHxHROgA/BvD1SisS0cdV6dmcbdu2HeJhMU1h6OhpeLNqCuqED3IciKqu6KzKzGBdWE374Lcx7d9+1KT3PGHSmdhAfVC1+K9mWSqPQDk1XC9xEZnwSTfdatwzXb48EzycLStzoZ1Dfq7DJ4ILxGnRxUXDZWVm5lNnDumytwo29Yh8c+Eakm9eb7bneipUspAITWHilIlIBmT6mbIy7bIh10+cPPZn4BZQoAgijuVyLcJlApbtUjaKSmUlgpHjwxEB4iD9ejnrm3YO1eeIQ1qsMuKQlV9U0uKQEoWiwHILkUgeq323y8pc63lAdkIDlMAUB2WuH9PJLvPd6u9ad3zzi9UAgI5iHwJw3hDDMMyB0GXKB9CR6tFpxd8AqK6njs4MLMpztJBpdMIqKyPXNw5heL6Z6KC4XPQ3kxtl4lB5WVlMyQRXtryaYRiGYZhDLw59CsAXhRADAXwRwO8qrSiE+LUQYrIQYnKvXr0O8bCYpnLsh/4fls74OQBgwNmfgE6UqWTJbgxyHKztfwlG1b2B7ZvXAYDVgUR2LwESyzmQhE/qbeoZP52zEzm+EVXsC0Td/t2Dzhwqd/iE8FMhxwCMmFSJ2GQm6OwhtW5F55BnLO8BvLKSNXIc1KKI2O9oSuiEFsxiFY7t+PAQpV6n3TZ6v7T4EWnxSY0rVJ9vnHH+mP0taHEoAMVhA2Vlyfek98UW1lxEqHeqkxe66e9Eltf5yjmkxSG5vnYM6bHa7BdFE3adzV3aLxKhq06VtIVBPSgKyrKdbEeVjR6fFvuOHTgcy91hKFCU5DcxDMMwzWLE1POxGT0xuvQmAHmM1a5cX3Uuc+JIHtddK5DaKSSTLW7B5OdRVCpzc5rJjWyWny77tsSh/R0GoDv2yOVeepKEYRiGYZhDLw5dB0BbRB4AwIHURxi9BxyH8ee8HwDQ/4SJmNflTACVwxybQr/TPgSXBJY/ezcAQChHi+cngpBn5Q+ZjlOevtjTWQLSLRNTkrljizraiu4hBBzPcvhY4hCVZw7JbmyV989k1KiLUifbTS3D/smfQjz1E/K1cHPzmVacdweGX3oTvEzmkCsCWfbkFuBTBBEnApEWVPQMqL5o1kKUzlrQ4c+6lKuSc0iE9aA4MN+B2V9yZamdFSoKlJeV+QiNE8j+PPRFe0Ry3904EYcCt4MaW33q/7Ui+fxrqcpkDbkITLmhfk5Tp4SmoFSfO8OsxSKq4BzSweCO62D3yV9Rr+GyMoZhmAPBcV2s6nex+dsuK/MLVfJ8IAKZp+f6SamX5RwiVWLmi1A5QjPdPq2y7NS2vUxWIYDqyddYz7MrlGEYhmGyHGpxaCOAM9TjswEsO8TbYw4xPS76BuqFj2KPfgf8HoNHnoQV7lB0X/EIACCOtGhRZYlDVUmJmZsuB7Jn/AJ4iB0ffiGnY5iyovsiVCVbSbmVRndLsfFE0KBzKJtR4+V0RbGZcOENGKcEtpB883qbcaddjF59ByUXuvozEZHcJ08LPclYTWcvVzt5Ml1btGikRCERJSKcjXFdRSWZcZS5+I7JhxOHVvmfCgJX4dIaTwQI3HLnkL5oj8iXHeREkl8UekrQ0ZlDOqjaEn3qqco4h1wRpgQhu4ytpB5HQR0oDspcP0boyXxP+ru2O75NPOcavO0OR63TCQzDMMyB0fe0a81jv1Awx1vPk+dCVwRy4sMpmEkn8gpGxCe3YM7lFIdl4pA+r2fLyrr17Iv9oogOfYaZZaNOuQSb0VO9jsvKGIZhGCZLi02LE9GfAJwJoCcRrQdwC4CPAfgZEXkA6gB8vKW2x7QNQ0ZNwd4vvY1xnbod1PtsG/wunLzydmxYudiUUPl+AbWk3UI+9pGPUuyhoMIn9ayi66edP7Hjm5IgkSkr82TSDYQVSG2LA7pbio10DjWUOZRkJgCJcwhNKLXbPP6zqDpmQMXnTYimdg6pkjgtjAVBPQpVqhTLai0PJC3sY/uiGkConEMmxyjjHDKB2GEgRZWMeBU7Ptxwt/mePCtzCFaZl48QoXICAYlDR48nUt+VK0LUq7HHbnpfdOlaLVWhu9gNQApAukueJ0LUoYgu2Keeq5ax9wBKbjUQAZEqjysvK0syLGyMOGR1fCPHQfeP/hX79+4CwzAMc2AMGTUFK9yhOC5aJbueuj5KwkXBcRA7Pgpx0uTCdBhzfQhKzvtC5ec5canMzaknK7ITOl2P6YPSv6/D6EJyvndcF6v7XYxjN96VtLpnGIZhGMbQYuKQEOL9FZ46qaW2wRwedOrS46DfY8iZ1wIrb8fa5++CUyUb2rl+wdzA+wXpIgrgQV/aaXHHvqgL4UE4nmkHn5o99KpRLergIQa5Sbv7dGvbnMwhRBXzg4DkIjTb+rwppXZTrvhMg89Xdegku27t2SzHIsJUXpLdzcsEUnu2WJM4dbSdXrtxEnEnkzmkxaKoBEeUiyq6PA+mrEyLUX6qe5iHCJGXiEMwM7o6LFzmLXkiQK0qJYz9jvI5NUYdel2iqkT0capRFe5X2wixz+kEyIxtmXGkHodukl/k5IlclP5cNPZMtk2vvoPAMAzDHBw7xn4U4q3f4zhPloiF6rweOz6qhGwtD9dLGl24BRDJEmrHK5iJFzesrdztM+f8WyiWC0BDL/wcFty7EANOmNhCe8cwDMMwRw+HuqyMYXI5dtBwLPZHo+/ax5Ism0KVuaH3PB8RvFT4pBZIHOsicJPbD/s7Dkq6dVmiTvdxF8nZRhKA6yeOI0sE0N1SNFEYwqO4YokYkIgvOqPGiCsHGNJt4/sFLK0ah2O3vSTfW5W46U5rQVBeVqb3S4s6WozRTqvIuHL055zNHEpyjiqJKg5CU+qm9zu0ysr05xZ7OWVlVvaQdg5ph5DwdeZQSb2P/L+dXRS4VTI3ClIcKlH6OfN5KHEoCupl6HVZdlJ5WaH+uyS8VHtkhmEYpmWYcsVncfy3Xgc5DpyBU/B2RzlnGDs+Ogop/JOXdOskr2BEfMdLys28qLbMOZS4hps219ln0AkYc/Mz6NbrwEvjGYZhGOZohe+GmDZj9/ArMCReB2+z7GRSUK1tS8IFOQ4i8lL5Atpy7lrOl943zsRJ1/0QALCPOiAuJBkxw6ddiI3UB4CcVUwCKtOZQ26cuHECk+PTgHNIvb6QKSs7mJBum72DzsaQeB02rl4KD7JzmnEOBclY41B3K1PdWtRnpZ0wWhwyr4l0+V5aHCpYHdLcOCibmRWOdPtocUivH1vikP7chHICyXGp9yHdRc2HcDy4SPKLUFDikPpbl76VrPK0wO1gxCFfhKbDGZC4hQAg9Dqa93LisFwccjLd5RR9z/o45k24FQzDMMyhZcrln8aEr/4dAOAMnIqOJMvK4BbMxI/jFpIGFJZzyI9rjQNUY64HGnD7MgzDMAzTNFgcYtqME876MALhYszu5wDIcqdIWc4B6fSwxaGew8ZjLfXDMYNGmGW9u1ShU1Gus+3yP2HEFTeb58hxsW7wVfKx6ydZO5aIs6/7SAwrLcfOd7YDkJ2ugERYySPJqJHv16Fzd0SC4HU6+HI7AOg/9TIAwLrZj6i8pEQcilPOoXSGkJ5R1aV1jnEOKeFGh1wXsplDyn0Th3BEgNgpzxxKl5XJ10eOD0dlDunPTRRscUg7h9TYyVNCU5gIW0rMM2Vlarkt+kReB9mpBtI5FGSe02gXkjDOofyuZFnn0OAREzD1ys+BYRiGaT1OPP8jpjMlpQShpHOZazmHClF5WVmhgbIyhmEYhmGaB4tDTJvRvVdfLOh0KqooQCwIriszaQLLaWJbyAcePxaDblmMXsfmZ8GcMPF09OidtooPO+/j2C+KKHTvb7Jy7Ba23ad9AEUKsPTZe+U2daaP08CFphJPdBe1Y/oMwNr3/hPjz/twM/a+MgOPG4v1dCyKq56WooxbAPnlZWVaSNHZR+aiWY3PMW4j5cqJkuBvG9fzEAkCopIs+co6h3SnmKgkvydPi3eeaTGvy8KoYAVSe5myMseHcAsy8Fs5hZxiVhxSXcws51DsVUsHVRyjQOlcI/txrEvUwgBuHJTNMOsucQ53qWEYhmlzOnTpgUU9zgEgz8vahet4xVTGoD6XFEVtmSPUL1ShTvgglV3IMAzDMMyBw+IQ06Z4U64HIFvSk+peoluyx+SWXQg2l179h4G+vBQTL/w3dO81ALUooMuxx5vnj59wBjZQH3RY+hAAO+S5skW9aujJeLPDtFRGzdDR08qCng8Uchys73kaRux/HUWUIFzfCD2RVVYWmdby2smjysq0NV87h3QJl3IOZcvKABnsrcWhKGvPV13fRBTK74kIQDqvSQdlk+0c8tJOHaHKyjwRIFZjcark+iaDSC23s4tiv6PshKbWSQtCyfagxKE4lMHa2f0wXdwa+G4ZhmGY1qPb6R8DAFR16QlPlX47nmfOea7vmxLloqgvO667nof1Vz2C0Zd9ofUGzTAMwzBHKS3WrYxhDoTRp12BzTNvRmfsQREyVFK3ZI9IhlIfLNWduwMAuhzTB/jWRoywMmfIcbCu/8WYsu5ObNu8FmGg2uo24C6ZcMG1wAXXHvS4GhzzqItQve1B+YdbKBd6kHQf0+KQdsoI5XrSs7C6FI2iEgLhwnfdsu0F8EBxCFcEZcGewvHhixAUlxDAg5aWYrusTH1ujleU26DIhItqJ1PseEpoipLOaco5FJvMIRWe7Vtdz/yOcElgf+0++EgLR7DWI/Ne9bkOKFNux+UHDMMwhwXHTToHNd2fw+hBY1BfX4fX5rwbJ550Pvbu3Io1s4bg2CGjUb+7BgDQTezGhpwJo+PHT2/tYTMMwzDMUQk7h5g2xfE8rB/3Gbzd5WQAQKnzINT4fQEA9SMux9ZhV7bsBnOCpvtO/xBcEljx7D3GOdTWAsKIaReaLAa4fll+EGCVlWkRSDtj3HT5lC75QhQgqCC2BeSBopLMA8qIKrDKyuzucTo/SL61dPWQVzDboEwAuMgpK/OqE0EHSErf7GBr4UsxqG7fHrmun4SOw3YqWUKTl5OdJNx0FhPDMAzT9hwzdALI9VDVoROmfOb36NS1B44dPBKDvzkf3Xr3x4jpl2EXOsqOmBw8zTAMwzCHDHYOMW3O5Ku+COCLAIBpH7kNQggAaLWQ4MEnTsYqZwi6rXwE0YTzACTCRltR1aET5nWYiAm1s0CWcyhOZQ6p1vJaHFKiji4r086dWAkuiAOEVO4aAoAILigO4IrQBG5rhFtAgSJQHBhXFwDVll6VegVJkLfehnEOeYk4BLcAj2IglE6jQnVntS9p55AWfUrCNS6uuv171HOJW8gpJuKQqx4LVR5Xth+O/lz45oJhGOZIoaq6I+b3ugjTtj3I4hDDMAzDHELYOcQcVjiuawKPW5PNgy/FyGAx3lm3GMDhkUtTP0QGdcL1jTsoUoIQUF5WZsrBTFaDKjfTwk1USnV/swnhg+JQZgtl3VXacRPWIkTynO0cCvU23ILZhv4MbecQlKsJpf0AgIJyDukW9joXSWcXhfDM6+v37049l32sS9REGMBFWHYTocUip9C2wh/DMAzTPHqd8XEAYHGIYRiGYQ4hLA4xDIBBM1SG0Pz7AABuGzuHAGDgtCsQCBdep56JcyhMyspEprV8UlYm/2/EISW8OHFQWRwiDxQHUhzKXHxrccYN96e6x8UqqBqww7F9sw3PlJUlwdT6vRBIcajYoXNqX/T/tQsoJM+IXUHtXvl+liDkViUlZrpETajyuLLsJJczhxiGYY5Eho2ZhlndLoUYekZbD4VhGIZhjlq4rIxhAPQfOgJLvBMxeu8rAB0euTT9hozAhutexviBw7Bm0WsAkvIrAIBuTV/Q4pAcsxZjPF+JMpESlOIQYTZPSBGSBycuwc8px9LOIS/KtBG2xCFd7uZ4RSnoCMBR4pTd0l6LQxTsQyQIBdWtTLugSDuHirJ0LIAHRzmQglpZVuYWy91CAOBXdTLvlSdyJY6qtv9uGYZhmOYx7Qv3tPUQGIZhGOaohp1DDKPYMfgiFCgCcPgICP2HjYTvF+BpASioNc/ptu86cwhlZWVVAJJSNCeTGWQTkVexrEwLOn5Ul3IOCVd2MQOAUDmaHK9oOszpbB/T+c1JWhI74X6E8IzryTiH4gAl4cLx5NjtsrKwbq96G9kRDUjcQgBQ6NDFfC5SHMp8h5lyO4ZhGIZhGIZhGEbC4hDDKAafdo157Bwm4pCm14Dh2C+KiFa9lCxUoo9fkEKKdspoMUY7irQrx4mDis6hiHw4cQAfoRFRNPr9inEtIrIzhwrwIMU07RxyPd9sQws/2oVlB2u7YS0CePALalvaMRTJ0jftForIM+HgUd0+9X5F0xHNL1YjFPIwpkvUEEkHVLYzHanPxzsM8qQYhmEYhmEYhmEOJ1gcYhhF/6EjsNQdDiARNg4XOnbuikWdT8Hx2582TiDttvF9XbYl/28EGC2CqPVIhOmyMIuIPHhxPVwSQMZxo90+RZEuKyPXl23p49iUu7l+0ayjHTom48fzjdDkRfsRkJcIW3qMUQkBeabTWUiJUBSXVOaQVzAOJscrJEJRVTViQaAogIeoPFjb01lMVbmfAcMwDMMwDMMwTHuFxSGGsagZdAEAwPWr23gkOYx+N3pgN5a88jgAgOKSbPXuyH/GWgzRZVieEV6sQOoKzqGYPPixbC9vOoopjHNI1CHOlJU5JBBFYRIkbYlDXiEtVsFJxCE/qpVlZUbAUt3KRIgAPhztFoJvXFyifq8ano9Qlcd5fiIOFQrV8nFUB58ioEKwtneYucIYhmEYhmEYhmHaGhaHGMZi9GVfwnPDv4bBIya29VDKGH3Gu7FXVGP/63+WC6LQCCNAUjalnTYFXVamhBc3DlLijk3k+CjEMs+IMmHchY49AABdxR5EtuCixJZSfa3VraxoSs90tzIt7pCXdCsrxLWI4IEcByXhJu6mSOYi6cyniFzTOU6U9qv3K5qOaCkxSglFpHKZKFMe1/uEaVhVHIHuvY7N/QwYhmEYhmEYhmHaKywOMYxF1+49cMYH/x2Oe/j906ju0BGLup6OEe/MRFCqA6JSqszLtGpX5VzGIaNdPSJA7OSLQzH5qFLOoayoMuKUi7EDXeBRjNhyHlX3HQkAePuVxyFU5pDn+2YbOkRbl5eRW4CrOqgV4yTcOoRnupQ5cUmVkmlxyE+cR4HOHCoYB5Rrl5UVigjJhRNKEQmZbKGhk87G0K/Phq86oTEMwzAMwzAMwzCSw+8OmGGYinjj3o0u2IclLz0KioO0c0h349KZQ65nMngAwBFhKlDaJnZ8VEOJKhlxqFjVAUv7Xm7W04w+4z3Yih6g1+9I3El+0QhIWhxyTLlbUi5WJWqNOBSQB4pVIHUcIiTfCEqRk5SVOYEcn+cnmUNSEFKP/QJCeHC1OJRtZc8wDMMwDMMwDMPkwuIQwxxBjD79cuwSHVGa9wAc1dnLoJ1DujuY4yCAlwg3IkyJOzb13Y5HV0hnDuV08xp03qcBAMJyHvmFIlYOuBJj97+GaPtyADLIW5eeaeeScQ75BSMOdbDCrUN4QJzkIsXwzGtjcpOuZ0r0cf0iQiQd0UJ4JnsphA8vzC+PYxiGYRiGYRiGYfJhcYhhjiCKxWos6X4mRux6AW6417hmgEQMcazA5XoqwK3fAUCWlYkKZWX9z/yIeey45aJK/2Gj8NKgTwKj351aPuT8T0EAGLnpEQCAX6gy2/CVqNNrwPFYR/1wzNAJGDj6ZOwV1ehA9cbFFMKDY9xNAUJKxKGIfOOE8ow4VEBMrnkckW9EspA8eFF+5hDDMAzDMAzDMAyTT4uJQ0T0eyLaSkQLMss/R0RLiGghEf13S22PYdorxQnvQSfUYvje2ZnW8robV9EsW9ZpMobveA6lulp4IkTs5Asmg4aPxSJ/rHwfr5i7zvQbfoiTLvxwatmxg4bjrQ7T0B271bZ9xE4BoXDgenJsXY/pg4G3LMbQUVPQpWsPLOjzLgBInENWWZkTB1IQUvsQO74Jp3aV6ON5Seh1oSADqbVIFpGXBGtnW9kzDMMwDMMwDMMwubSkc+hOABfaC4joLACXAxgvhBgN4MctuD2GaZeMnn4pdqALOqMWERIBRDuHXEsc8k66Ft2xBwtn3gdXhBAN5PDsHXVN2eubxOR/Mw/9QhUEeabVfB4DL7wJsSCTTRRSAV4o29Q7IkTseCavSDgePL9KvrcWhwpJ6ZpfqEJEnsleCslDUYtD3LKeYRiGYRiGYRimSbSYOCSEeB7AjsziTwH4gRCiXq2ztaW2xzDtFd8vYGmPswEgVVZW1e1YhMJB5269zLLRp12OregBd/698BBWLCsDgPEXfwSvDP8yhp98SbPGM/aM92AzepqxCddPBWVn6T/sRMzu+wHs7n86AGBTj8kYte81bN+4Bm4cIiLPlKTFTsEIRdoRJEvJZNi263mIyEekxKiIfBSF7LrmcuYQwzAMwzAMwzBMkzjUmUMnADidiGYR0XNENOUQb49h2gUdJ70PAFLdx8bMuAo1N7yKnv2GmGWe72N5v8swev9r6CL2NugcKharccoHv4WOnbs2ayyu52H1yI9hpTME5DiIOvdHjdurwdec/Mn/wynXfQ8AMOCir8BFhGV/+zFcESB2fJM5JBwfngrI1o4gzy8ittxCseOZ1vYReaiCFIc4c4hhGIZhGIZhGKZpHGpxyAPQA8DJAL4C4M9ERHkrEtHHiWgOEc3Ztm3bIR4WwxzZjDr5fGxFD4SW2EOOgz6DR5StO+Csj8AlgSIFEIdIMDn5mpsx9FvzAABTPvQfOPbLrzT5tQOOG435nWdg9MYH0THeg5gyZWVFWVZWpRxBhUIRsZO4k+xA6v2FY9AFMrjaYecQwzAMwzAMwzBMkzjU4tB6AH8VktkAYkDVn2QQQvxaCDFZCDG5V6+GXQcM097xPA9rz7gNpdO/1ui6g4aPw2J/NABAVAikbgm07uv5BVR16NSs13Y6+yZ0wX70E1sgHN+UldmPq5U45BWKEI6PUHUsi5yCcQ51PPtL5j0dzhxiGIZhGIZhGIZpEodaHHoYwFkAQEQnACgA2H6It8kw7YLJZ12BSadf2qR195wow6bhVs4CaktOmHQmFhdkt7TY8eG4LgLhQrgFVFV3xGbqhY6kxCHXQ+wkbiFvxk3Yfso3AAAjTzoLczueAYAzhxiGYRiGYRiGYZpKS7ay/xOAVwCMIKL1RPQRAL8HMEy1t78PwHVCCNFS22QYpmmMOu9aGUzdY0hbD6UiwcmfAwCTi7TaHwa39wiQ42DjxJsAACXhgRwHQYc+eMc9BgAw7uRzMfW895r3OfY9P8LcjjPQ74STWnkPGIZhGIZhGIZhjkzocNRqJk+eLObMmdPWw2CYo4owCOD5lQOp2xoRR1jwo4tQN+x8TLn6y6nn4jDE6v86Cb2jLej0nc2oq92HurpadOueW6XKMAzDMAzDMAzD5EBEc4UQk7PLD88aE4ZhWpzDWRgCAHJcjP3ak7nPOZ4HuvoOLFr2GqYCqKruiKrqjq07QIZhGIZhGIZhmKMUFocYhjkiGHriJAw9cVJbD4NhGIZhGIZhGOao41AHUjMMwzAMwzAMwzAMwzCHMSwOMQzDMAzDMAzDMAzDtGNYHGIYhmEYhmEYhmEYhmnHsDjEMAzDMAzDMAzDMAzTjmFxiGEYhmEYhmEYhmEYph3D4hDDMAzDMAzDMAzDMEw7hsUhhmEYhmEYhmEYhmGYdgyLQwzDMAzDMAzDMAzDMO0YFocYhmEYhmEYhmEYhmHaMSSEaOsxlEFE2wCsaetxHAA9AWxv60EwRwX8W2JaCv4tMS0B/46YloJ/S0xLwb8lpqXg3xLTUhwpv6XBQohe2YWHpTh0pEJEc4QQk9t6HMyRD/+WmJaCf0tMS8C/I6al4N8S01Lwb4lpKfi3xLQUR/pvicvKGIZhGIZhGIZhGIZh2jFjIx22AAEAAElEQVQsDjEMwzAMwzAMwzAMw7RjWBxqWX7d1gNgjhr4t8S0FPxbYloC/h0xLQX/lpiWgn9LTEvBvyWmpTiif0ucOcQwDMMwDMMwDMMwDNOOYecQwzAMwzAMwzAMwzBMO4bFoRaAiC4koqVEtJyIbm7r8TCHN0T0eyLaSkQLrGU9iOgpIlqm/t9dLSciul39tt4kokltN3LmcIOIBhLRs0S0iIgWEtGNajn/nphmQURVRDSbiOar39J31PKhRDRL/WbuJ6KCWl5Ufy9Xzw9p0x1gDiuIyCWiN4job+pv/h0xzYaIVhPRW0Q0j4jmqGV8fmOaDRF1I6IHiWgJES0molP4t8Q0FyIaoY5H+r/dRPSFo+m3xOLQQUJELoBfALgIwCgA7yeiUW07KuYw504AF2aW3QzgaSHEcABPq78B+bsarv77OIBfttIYmSODEMCXhBCjAJwM4DPq+MO/J6a51AM4WwgxHsAEABcS0ckAfgjgNiHE8QDeAfARtf5HALyjlt+m1mMYzY0AFlt/8++IOVDOEkJMsFpD8/mNORB+BuAfQoiRAMZDHp/4t8Q0CyHEUnU8mgDgJAD7ATyEo+i3xOLQwTMVwHIhxEohRAnAfQAub+MxMYcxQojnAezILL4cwB/U4z8AuMJafpeQvAqgGxH1bZWBMoc9QohNQojX1eM9kBc7/cG/J6aZqN/EXvWnr/4TAM4G8KBanv0t6d/YgwDOISJqndEyhzNENADAJQB+q/4m8O+IaTn4/MY0CyLqCmAGgN8BgBCiJITYCf4tMQfHOQBWCCHW4Cj6LbE4dPD0B7DO+nu9WsYwzaGPEGKTerwZQB/1mH9fTJNQ5RgTAcwC/56YA0CVAs0DsBXAUwBWANgphAjVKvbvxfyW1PO7ABzTqgNmDld+CuCrAGL19zHg3xFzYAgATxLRXCL6uFrG5zemuQwFsA3AHarc9bdE1BH8W2IOjmsA/Ek9Pmp+SywOMcxhhpAtBLmNINNkiKgTgL8A+IIQYrf9HP+emKYihIiUVXoApCt2ZNuOiDnSIKJLAWwVQsxt67EwRwWnCSEmQZZmfIaIZthP8vmNaSIegEkAfimEmAhgH5KyHwD8W2Kah8rNuwzAA9nnjvTfEotDB88GAAOtvweoZQzTHLZom6H6/1a1nH9fTIMQkQ8pDN0jhPirWsy/J+aAUXb7ZwGcAmmB9tRT9u/F/JbU810B1LTuSJnDkOkALiOi1ZBl9mdDZn3w74hpNkKIDer/WyFzPaaCz29M81kPYL0QYpb6+0FIsYh/S8yBchGA14UQW9TfR81vicWhg+c1AMNVJ44CpMXs0TYeE3Pk8SiA69Tj6wA8Yi2/VqXdnwxgl2VbZNo5KpvjdwAWCyF+Yj3FvyemWRBRLyLqph5XAzgPMsPqWQDvUatlf0v6N/YeAM+o2TKmHSOE+LoQYoAQYgjk9dAzQogPgn9HTDMhoo5E1Fk/BnA+gAXg8xvTTIQQmwGsI6IRatE5ABaBf0vMgfN+JCVlwFH0WyI+Bx88RHQxZI29C+D3Qojvte2ImMMZIvoTgDMB9ASwBcAtAB4G8GcAgwCsAfBeIcQOdfP/v5DdzfYD+DchxJw2GDZzGEJEpwF4AcBbSPI9/h0yd4h/T0yTIaJxkCGKLuTE0Z+FEN8lomGQDpAeAN4A8CEhRD0RVQG4GzLnageAa4QQK9tm9MzhCBGdCeDLQohL+XfENBf1m3lI/ekBuFcI8T0iOgZ8fmOaCRFNgAzJLwBYCeDfoM514N8S0wyUWL0WwDAhxC617Kg5LrE4xDAMwzAMwzAMwzAM047hsjKGYRiGYRiGYRiGYZh2DItDDMMwDMMwDMMwDMMw7RgWhxiGYRiGYRiGYRiGYdoxLA4xDMMwDMMwDMMwDMO0Y1gcYhiGYRiGYRiGYRiGacewOMQwDMMwDMMwDMMwDNOOYXGIYRiGYRiGYRiGYRimHcPiEMMwDMMwDMMwDMMwTDuGxSGGYRiGYRiGYRiGYZh2DItDDMMwDMMwDMMwDMMw7RgWhxiGYRiGYRiGYRiGYdoxLA4xDMMwDMMwDMMwDMO0Y1gcYhiGYRiGYRiGYRiGacewOMQwDMMwDMMwDMMwDNOOYXGIYRiGYRiGYRiGYRimHcPiEMMwDMMcphDRECISROQ1Yd3riejFVhrXdCJaRkR7ieiK1tgmk0BEg9Rn77bkui0wrlb7DTIMwzAM07KwOMQwDMMwLQARrSaiEhH1zCx/Qwk8Q9poaLbItFf9t5qIbj6It/wugP8VQnQSQjzcQsNsF7SEgCKEWKs++6gl121NiOhWIvpjC77f9UQUWb9x/V+/FnhvQUT7rPf8bUuMmWEYhmEOJxqdiWQYhmEYpsmsAvB+AD8HACIaC6BDm44oTTchREhEpwB4mojmCSH+0dQXE5EnhAgBDAaw8EAGYL0HUwEicg83MecI4RUhxGmH6L3HCyGWH6L3ZhiGYZg2h51DDMMwDNNy3A3gWuvv6wDcZa9ARF2J6C4i2kZEa4jom0TkqOdcIvoxEW0nopUALsl57e+IaBMRbSCi/zyQciEhxCuQ4s4Y9b43ENFiInqHiP5JRIOtbQoi+gwRLQOwjIhWABgG4DHloigSUT8iepSIdhDRciL6mPX6W4noQSL6IxHtBnA9Ec1UY39ZvcdjRHQMEd1DRLuJ6DXbaUVEPyOideq5uUR0eub9/6w+0z1EtJCIJlvPDySiv6rPu4aI/td6ruJ+ZyGiy9R771TjP9F6bjURfZmI3iSiXUR0PxFV5bzHiQB+BeAUtd871fI7ieiXRPQEEe0DcBYRXaJcZ7vVvt9qvU+q3FCN5z+I6CX1GTxJysHWnHXV89eq32UNEX1L7du5FT6TY9T3vpuIZgM4LvN87vdGRBcC+HcA71Ofw3y1/N/U97GHiFYS0ScqfR/NgYiOU7/NServfur3cKb1mXyfiGarsT5CRD1aYtsMwzAMc6TA4hDDMAzDtByvAuhCRCeSFG2uAZAtnfk5gK6QAssZkGLSv6nnPgbgUgATAUwG8J7Ma+8EEAI4Xq1zPoCPNmeAJJkOYDSAN4jocsgb9asA9ALwAoA/ZV52BYBpAEYJIY4DsBbAu1S5Uj2A+wCsB9BPjfm/iOhs6/WXA3gQQDcA96hl1wD4MID+kKLCKwDuANADwGIAt1ivfw3ABPXcvQAeyIgvl6kxdAPwKID/VfvqAvgbgDUAhqht3aeea8p+68/sBPXcF9S6T0CKYwVrtfcCuBDAUADjAFyffR8hxGIAn4R0uHQSQnSznv4AgO8B6AzgRQD7IH8b3SBFwk9Rw/lOH4D8HfUGUADw5eauS0SjAPwfgA8C6Av5O+3fwPv8AkCdWvcG9Z9N7vem3Gr/BeB+9TmMV+tvhfz9d1Hju00LOmp8O4mo2c4gIcQKAF8D8Eci6gD5O/uDEGKmtdq1avx9If+N3Z55m+eJaLMSGoc0dwwMwzAMc7jD4hDDMAzDtCzaPXQepMixQT9hCUZfF0LsEUKsBvA/kCIJIAWGnwoh1gkhdgD4vvXaPgAuBvAFIcQ+IcRWALep92sq2wHsAPBbADcLIZ6GFCu+L4RYrMq9/gvAhIyL5vtCiB1CiNrsGxLRQADTAXxNCFEnhJin3t92UL0ihHhYCBFb73GHEGKFEGIXgL8DWCGE+JcawwOQ4hcAQAjxRyFEjRAiFEL8D4AigBHW+78ohHhClWLdDUCLDVMhBauvqM+sTgih836ast+a9wF4XAjxlBAiAPBjANUATrXWuV0IsVF9b49BiiLN4REhxEvqM6oTQswUQryl/n4TUpw6o4HX3yGEeFt9vn9uZPuV1n0PgMeEEC8KIUoAvg1A5L2B+i2/G8C31We7AMAf7HWa8L0hs/7j6jchhBDPAXgSwOnW892s7y+Pk5WApP9bYb32NwCWA5gFKQB9I/Pau4UQC4QQ+wB8C8B7KXHlnQEpLo4EsBHA36gJIfEMwzAMcyTB4hDDMAzDtCx3QzozrkempAxATwA+pJNFswaJO6MfgHWZ5zSD1Ws36ZtfAP8P0v3RVHoKIboLIU4UQmhnxGAAP7PecwcAQtoxsg6V6QdghxBiT4V9qvT6Ldbj2py/O+k/VMnWYlWytRPS0WIHf2+2Hu8HUKVu3gcCWFMh46gp+23vo/kuhBCx2id73ewYOqF5pD4jIppGRM+q8qddkGJWz/yXNnv7ldZN/f6EEPsB1FR4j16Q2ZWVfq9N+d6QWf8iInpVlYDthBRDG9rnLK8qAUn/d1zm+d9AllL+XDnebLL74ettCyGeF0KUhBA7AdwI6Q47EQzDMAxzFMHiEMMwDMO0IEKINZDB1BcD+Gvm6e0AAkhhQjMIibtoE6SgYT+nWQegHlLg0Te/XYQQow9yyOsAfCJzU10thHjZ3q0GXr8RQA8i6pwZ9wbr74Ze3yAqp+arkK6q7qoUaxekkNMY6wAMquDyaMp+azbC+s6IiCC/pw056zZGpc8iu/xeyBK5gUKIrpBZRU3Z54NhE4AB+g8iqgZwTIV1t0GWX+X+XpvwvaX2l4iKAP4C6crqo9Z/Ai20z0TUCcBPAfwOwK05mULZ/Qgg/73mIVpqXAzDMAxzuMDiEMMwDMO0PB8BcLYqUTGosqc/A/geEXVWJUw3Ickl+jOAzxPRACLqDuBm67WbIMts/oeIuhCRo4J2Gyo1agq/AvB1IhoNmNDrq5v6YiHEOgAvA/g+EVUR0TjI/W+pNuWdIUWIbQA8Ivo2ZCZNU5gNKXj8gIg6qvFNV881Z7//DOASIjqHiHwAX4IU6vKEpMbYAmBAJq8oj86Qjqw6IpoK6UY71DwI4F1EdKoa362oIIKo3/JfIYWWDiqv6Dprlca+ty0AhpAKY4fMPiqq9UMiuggyU6ul+BmAOUKIjwJ4HPL7t/kQEY1SmUTfBfCgECIiotFENIFkWHwnyDLQDZAlowzDMAxz1MDiEMMwDMO0MCo3ZU6Fpz8HGTa8EjJ4+F4Av1fP/QbAPwHMB/A6yp1H10LeRC8C8A7kzXzfgxzrQwB+COA+kt3EFgC4qJlv837ITJaNAB4CcIsQ4l8HMy6LfwL4B4C3Ict96tBwmZtBCRjvggzwXgsZmv0+9VyT91sIsRTAhyDDxLer93yXyuVpLs9AdorbTESVnCkA8GkA3yWiPZDZP38+gG01CyHEQsjf532QotpeyJDobAmW5rOQJWmbIcPS77Cea+x7e0D9v4aIXldliZ+H3M93IMWwR+2Nkexsdjoqo7vA2f9NUeHjFwL4lFrvJgCTiOiD1mvvVvuwGUCVGgsA9AFwP4DdkP9mhwC4VGVPMQzDMMxRAwlxwE5vhmEYhmEY5ihFOWV2AhguhFjVxsM5ZBDRTAB/FEL8tq3HwjAMwzBtBTuHGIZhGIZhGAAAEb1LlYl1hMz/eQvA6rYdFcMwDMMwhxoWhxiGYRiGYRjN5ZDlgRsBDAdwjWCbOcMwDMMc9XBZGcMwDMMwDMMwDMMwTDuGnUMMwzAMwzAMwzAMwzDtGBaHGIZhGIZhGIZhGIZh2jFeWw8gj549e4ohQ4a09TAYhmEYhmEYhmEYhmGOGubOnbtdCNEru/ywFIeGDBmCOXPmtPUwGIZhGIZhGIZhGIZhjhqIaE3eci4rYxiGYRiGYRiGYRiGacewOMQwDMMwDMMwDMMwDNOOYXGIYRiGYRiGYRiGYRimHXNYZg4xDMMwDMMwDMMwTFsTBAHWr1+Purq6th4KwzSLqqoqDBgwAL7vN2l9FocYhmEYhmEYhmEYJof169ejc+fOGDJkCIiorYfDME1CCIGamhqsX78eQ4cObdJruKyMYRiGYRiGYRiGYXKoq6vDMcccw8IQc0RBRDjmmGOa5XhjcYhhGIZhGIZhGIZhKsDCEHMk0tzfLYtDDMMwzJFFUAvEcVuPgmEYhmEYplUgInzoQx8yf4dhiF69euHSSy9tw1E1TqdOnRpd59Zbb8WPf/zjBtd5+OGHsWjRopYaFlMBFocYhmGYIwchsPG/p+Gtu7/c1iNhGIZhGIZpFTp27IgFCxagtrYWAPDUU0+hf//+bTKWMAxbfZssDrUOLA4xDMMwRwzrl85Bv2AN6nasb+uhMAzDMAzDtBoXX3wxHn/8cQDAn/70J7z//e83z+3btw833HADpk6diokTJ+KRRx4BAKxevRqnn346Jk2ahEmTJuHll18GAGzatAkzZszAhAkTMGbMGLzwwgsA0k6fBx98ENdffz0A4Prrr8cnP/lJTJs2DV/96lexYsUKXHjhhTjppJNw+umnY8mSJQCAVatW4ZRTTsHYsWPxzW9+s+K+fO9738MJJ5yA0047DUuXLjXLf/Ob32DKlCkYP3483v3ud2P//v14+eWX8eijj+IrX/kKJkyYgBUrVuSuxxw83K2MYRiGOWLYOPthDABAImrroTAMwzAM0874zmMLsWjj7hZ9z1H9uuCWd41udL1rrrkG3/3ud3HppZfizTffxA033GBEne9973s4++yz8fvf/x47d+7E1KlTce6556J379546qmnUFVVhWXLluH9738/5syZg3vvvRcXXHABvvGNbyCKoiaJK+vXr8fLL78M13Vxzjnn4Fe/+hWGDx+OWbNm4dOf/jSeeeYZ3HjjjfjUpz6Fa6+9Fr/4xS9y32fu3Lm47777MG/ePIRhiEmTJuGkk04CAFx11VX42Mc+BgD45je/id/97nf43Oc+h8suuwyXXnop3vOe9wAAunXrlrsec3CwONTKbNu4BjWbVmLkSWe19VAYhmGOODqvewYAQHHrW5oZhmEYhmHainHjxmH16tX405/+hIsvvjj13JNPPolHH33UZPfU1dVh7dq16NevHz772c9i3rx5cF0Xb7/9NgBgypQpuOGGGxAEAa644gpMmDCh0e1fffXVcF0Xe/fuxcsvv4yrr77aPFdfXw8AeOmll/CXv/wFAPDhD38YX/va18re54UXXsCVV16JDh06AAAuu+wy89yCBQvwzW9+Ezt37sTevXtxwQUX5I6lqesxzYPFoVZm+SPfx/AtfwdOWtPWQ2EYhjmi2L51E04oLQYIcNg5xDAMwzBMK9MUh8+h5LLLLsOXv/xlzJw5EzU1NWa5EAJ/+ctfMGLEiNT6t956K/r06YP58+cjjmNUVVUBAGbMmIHnn38ejz/+OK6//nrcdNNNuPbaa1PdrbIt0Dt27AgAiOMY3bp1w7x583LHeDCd3a6//no8/PDDGD9+PO68807MnDnzoNZjmgdnDrUyTrAPRVHf1sNgGIY54lj+8sNwSaAkPC4rYxiGYRim3XHDDTfglltuwdixY1PLL7jgAvz85z+HEAIA8MYbbwAAdu3ahb59+8JxHNx9992IInn9tGbNGvTp0wcf+9jH8NGPfhSvv/46AKBPnz5YvHgx4jjGQw89lDuGLl26YOjQoXjggQcASGFq/vz5AIDp06fjvvvuAwDcc889ua+fMWMGHn74YdTW1mLPnj147LHHzHN79uxB3759EQRB6vWdO3fGnj17Gl2POThYHGplKA7hglswMwzDNBd3+ZPYga5Y6w0GCS4rYxiGYRimfTFgwAB8/vOfL1v+rW99C0EQYNy4cRg9ejS+9a1vAQA+/elP4w9/+APGjx+PJUuWGPfPzJkzMX78eEycOBH3338/brzxRgDAD37wA1x66aU49dRT0bdv34rjuOeee/C73/0O48ePx+jRo00A9s9+9jP84he/wNixY7Fhw4bc106aNAnve9/7MH78eFx00UWYMmWKee4//uM/MG3aNEyfPh0jR440y6+55hr86Ec/wsSJE7FixYqK6zEHB2l18XBi8uTJYs6cOW09jEPCa7e9F+N3Po3Cd2oaX5lhGIYBAIRBCfu+NwRvd5uBLntXoeR1xNibn2nrYTEMwzAMc5SzePFinHjiiW09DIY5IPJ+v0Q0VwgxObsuO4daGRIRXHA5BMMwTHNY8fqz6Ip9cEZcgJhcLitjGIZhGIZhmBaExaFWhuIQLgnEEd/YMAzDNJXdb/4NgXBx3MnvQkzuAQVSb1y9FOu/MwKrl7x+CEbIMAzDMAzDMEcuLA61Mo7KyYgizstgGIZpKr03P4fFhTHo1r3nAYtDq5+9AwPEZuxYu+gQjJBhGIZhGIZhjlxaTBwiooFE9CwRLSKihUR0o1r+IyJaQkRvEtFDRNStpbZ5JKJLIaIwaOORMAzDHBns2rQCg6M12NH/LACAIM8I7c2h17on5YOYxXmGYRiGYRiGsWlJ51AI4EtCiFEATgbwGSIaBeApAGOEEOMAvA3g6y24zSMOUjclITuHGIZhmsTaV2Ur1Z6T3gUAB+QcWr18IYbHK+Tr+fjLMAzDMAzDMClaTBwSQmwSQryuHu8BsBhAfyHEk0KYKd5XAQxoqW0eiTjGOVT55uTxX30df7/ze601JIZhmMMab8VTWINjMXLURACAIBdOM4P91774Z/NYsDjEMAzDMAzDMCkOSeYQEQ0BMBHArMxTNwD4e4XXfJyI5hDRnG3bth2KYR0W6FKIuEJZ2Tvv7MDZm36LQRv/2ZrDYhiGaTa73qnBSz//CPbsfueQbUOU9mHo3texotup8DxXLnOa7xzqve4JvIMu8vUsDjEMwzAMcwSxZcsWfOADH8CwYcNw0kkn4ZRTTsFDDz10yLc7Z84cfP7zn2+R9zrzzDMxYsQIjB8/HtOnT8fSpUtb5H1bkpYc45133onPfvazAIBf/epXuOuuuyquu3r1atx7773m75b83JtDi4tDRNQJwF8AfEEIsdta/g3I0rN78l4nhPi1EGKyEGJyr169WnpYhw3GORTli0NLZ/4J1VTiNs0Mwxz2LJl5L6bXPIg1858/ZNvY8MZTqEIJzgkXmGWCPLjNOEauWToPI6O3sfzYi+QCzhxiGIZhGOYIQQiBK664AjNmzMDKlSsxd+5c3HfffVi/fv0h3/bkyZNx++23t9j73XPPPZg/fz6uu+46fOUrXyl7PjoMOnofijF+8pOfxLXXXlvx+aw41NKfe1NpUXGIiHxIYegeIcRfreXXA7gUwAeFEKIlt3mk4TQSSF299KHUegzDMIcrYs2rAIA4PnTHq51v/QO1ooAR02xxqHllZZtfvBuxIHQ/+cPy9RXE+Vf/eAvmP3MfAGDWPd/Fklns4GQYhmEYpm155plnUCgU8MlPftIsGzx4MD73uc8BkMLC6aefjkmTJmHSpEl4+eWXAQAzZ87EpZdeal7z2c9+FnfeeScA4Oabb8aoUaMwbtw4fPnLXwYAPPDAAxgzZgzGjx+PGTNmlL3H7Nmzccopp2DixIk49dRTjavmzjvvxFVXXYULL7wQw4cPx1e/+tVG92nGjBlYvnw5AKBTp0740pe+hPHjx+OVV17BT37yE4wZMwZjxozBT3/6U/Oau+66C+PGjcP48ePx4Q/La7pt27bh3e9+N6ZMmYIpU6bgpZdeAgA899xzmDBhAiZMmICJEydiz5492LRpE2bMmIEJEyZgzJgxeOGFFw54jH/84x8xdepUTJgwAZ/4xCeMYHTHHXfghBNOwNSpU81YAODWW2/Fj3/8YwDA8uXLce6552L8+PGYNGkSVqxYgZtvvhkvvPACJkyYgNtuuy31ue/YsQNXXHEFxo0bh5NPPhlvvvmmec8bbrgBZ555JoYNG9YiYpJ30O+gICIC8DsAi4UQP7GWXwjgqwDOEELsb6ntHanoG5q8zKGd2zZidO1cgNDsPA2GYZjWpu+uNwCkxZYVc59Bddee6Hf8OCx5/BfoNHgcBow5/YC30X3zS3jLG4Opx3Q3y4TjwRVx095ACAxa/xgWFCdgQL9hclmOc2jXjm2YvOx2zNtyFnD2NRi57FdYsmMFYIlSDMMwDMO0c/5+M7D5rZZ9z2PHAhf9oOLTCxcuxKRJkyo+37t3bzz11FOoqqrCsmXL8P73vx9z5sypuH5NTQ0eeughLFmyBESEnTt3AgC++93v4p///Cf69+9vltmMHDkSL7zwAjzPw7/+9S/8+7//O/7yl78AAObNm4c33ngDxWIRI0aMwOc+9zkMHDiw4hgee+wxjB07FgCwb98+TJs2Df/zP/+DuXPn4o477sCsWbMghMC0adNwxhlnoFAo4D//8z/x8ssvo2fPntixYwcA4MYbb8QXv/hFnHbaaVi7di0uuOACLF68GD/+8Y/xi1/8AtOnT8fevXtRVVWFX//617jgggvwjW98A1EUYf/+hqWJSmNcvHgxfvjDH+Kll16C7/v49Kc/jXvuuQfnnXcebrnlFsydOxddu3bFWWedhYkTJ5a97wc/+EHcfPPNuPLKK1FXV4c4jvGDH/wAP/7xj/G3v/0NgBTlNLfccgsmTpyIhx9+GM888wyuvfZazJs3DwCwZMkSPPvss9izZw9GjBiBT33qU/B9v8H9aogWE4cATAfwYQBvEdE8tezfAdwOoAjgKakf4VUhxCdz36EdoB1BeZlDbz97N6ZSjI3Um51DDMMc1mzZtB6DxQYA6eOZ9/jnsanTCPS76S/o/doPsHzFmQcsDtVtX4P+4VosGnBFanlznENr3ngSg8UWLD/hcxjsFeTrc8ShZS8+iMkUm1w4V8RAUwUohmEYhmGYVuIzn/kMXnzxRRQKBbz22msIggCf/exnMW/ePLiui7fffrvB13ft2hVVVVX4yEc+gksvvdQ4VKZPn47rr78e733ve3HVVVeVvW7Xrl247rrrsGzZMhARgiC5/jvnnHPQtWtXAMCoUaOwZs2aXHHogx/8IKqrqzFkyBD8/Oc/BwC4rot3v/vdAIAXX3wRV155JTp27AgAuOqqq/DCCy+AiHD11VejZ8+eAIAePXoAAP71r39h0aJF5v13796NvXv3Yvr06bjpppvwwQ9+EFdddRUGDBiAKVOm4IYbbkAQBLjiiiswYcKE3M+nsTE+/fTTmDt3LqZMmQIAqK2tRe/evTFr1iyceeaZ0BE573vf+8q+iz179mDDhg248sorAQBVVVW5Y7B58cUXjQh39tlno6amBrt3y/SeSy65BMViEcViEb1798aWLVswYMCB9/9qMXFICPEiAMp56omW2sbRgKtuPKKcQNQuyx7GKmcwdlYPRNfaQ19DyjAMc6CsmfcM+qjHttjiixKcqB4A4CI6qHyfVbP/hhMBdB93YWq5cDz53jm8+cz9KC14DJM//0cAwO4XfoNdoiNGn/thuI6qas4Zk/O2PFXpvDcXEYiziRiGYRiGsWnA4XOoGD16tBEHAOAXv/gFtm/fjsmTJwMAbrvtNvTp0wfz589HHMdGcPA8D3GcTHTV1dWZ5bNnz8bTTz+NBx98EP/7v/+LZ555Br/61a8wa9YsPP744zjppJMwd+7c1Di+9a1v4ayzzsJDDz2E1atX48wzzzTPFYtF89h1XYQVOnPfc889ZtyaqqoquK57AJ8MEMcxXn311TKR5eabb8Yll1yCJ554AtOnT8c///lPzJgxA88//zwef/xxXH/99bjppptyc4AaG6MQAtdddx2+//3vp9Z5+OGHD2gfDoamfu5N5ZB0K2Mqo2e740zmxYaVSzAyWIQtgy+FIBcu+KaEYZjDl9LKpI7a7v7liCgRWER8UOH60bKnsVV0x5gJ09JPkFtRHNq/9BmMqfkHAKBu52aMfOcZvN7jQvTo1g2e55eNFwDq9u/FyD2yuWZKHGIHJ8MwDMMwbczZZ5+Nuro6/PKXvzTL7JKoXbt2oW/fvnAcB3fffbfJvxk8eDAWLVqE+vp67Ny5E08//TQAYO/evdi1axcuvvhi3HbbbZg/fz4AYMWKFZg2bRq++93volevXli3bl1qHLt27UL//v0BwGQXtTSnn346Hn74Yezfvx/79u3DQw89hNNPPx1nn302HnjgAdTU1ACAKSs7//zzjbsHgCm3WrFiBcaOHYuvfe1rmDJlCpYsWYI1a9agT58++NjHPoaPfvSjeP311w9ojOeccw4efPBBbN261YxlzZo1mDZtGp577jnU1NQgCAI88MADZa/t3LkzBgwYYISk+vp67N+/H507d8aePXsqfib33CN7es2cORM9e/ZEly5dDmjsjcHiUCtTqaxs9XOytd3QM6+FcDw4XM7AMMxhzDE73kANugFIiy1SVAmtxwcosMQxBu6cjaWdJqOqkDa5ysyh/PelOIQLefxc/tRv4CNCt9M+LsejxKGsc2j5nKfQgeoRCwLFIUQco0AsDjEMwzAM0/YQER5++GE899xzGDp0KKZOnYrrrrsOP/zhDwEAn/70p/GHP/wB48ePx5IlS0xJ1sCBA/He974XY8aMwXvf+16Tf7Nnzx5ceumlGDduHE477TT85CcyLvgrX/kKxo4dizFjxuDUU0/F+PHjU+P46le/iq9//euYOHHiQTtUKjFp0iRcf/31mDp1KqZNm4aPfvSjmDhxIkaPHo1vfOMbOOOMMzB+/HjcdNNNAIDbb78dc+bMwbhx4zBq1Cj86le/AgD89Kc/xZgxYzBu3Dj4vo+LLroIM2fOxPjx4zFx4kTcf//9uPHGGw9ojKNGjcJ//ud/4vzzz8e4ceNw3nnnYdOmTejbty9uvfVWnHLKKZg+fTpOPPHE3NfffffduP322zFu3Diceuqp2Lx5M8aNGwfXdTF+/HjcdtttqfVvvfVWzJ07F+PGjcPNN9+MP/zhDwc07qZAh2PzsMmTJ4uGQrSOZDbdejz6YhuWXfE3DJ+Q5HDM++H56Fa/CUO+/RZeu+1q9N89H/1uabhelGEYpi3YvWc3qn48BIu6zsCE3c/itQnfw5QrPgsA2HHrQGyoGo6xNz+D0i098Fbn03HSlx9p9ja2LHkFfe67EM+O+S+c9Z7PpJ579VefxrhND6LDd7aWvW7Wz6/DtJqHIb79Dub+/IMY9M4r6PntVXAcQhxFcP6jB14Z+DGc8pEfm9fMefw3mPzal7EbHbGmOAKjvvIU3P88BnM7nXlAY2cYhmEY5uhh8eLFFW/0GeZwJ+/3S0RzhRCTs+uyc6iV0aUQWeeQGweodzrIP8g7qEBqEccQMTuPGIY5NKya/wIKFCEedCqAPOeQPH55OPCysk2v/x0AMGTyxWXPCceFV6GsTG8vjmOIOERIPhxHxuE5rotIUHnmkBp/CT4cESEMS6n3YhiGYRiGYZijHRaHWhktDmUzLxwRISYVcuVUztNoCq/+5kYs+f5pBz5IhmGYBti97EUAQK8xZwFIB1K7IpbHsyiCQ+KABZbqtTPxNg3FkMFDyp9sIJAasVwehiU5DqQDDiO4Zp3kJUocogJIRIiUeK87lzEMwzAMwzDM0Q6LQ62MvqHJdisjWxyiBm58GiGOIhy/6TH0DDYe3EAZhmEq0GnLXKx1BqBj975yQZx2Dkn3zYELLEHtbgyrXYBNPU8BUU4TTMeDSwJxVH6c1HlHURiA4hARpcWhEC4oTjs39fgDKqixy78d7lbGMAzDMAzDtBNYHGpldIiqyHQrs51DqOAcevDO2zBz5pMNvv/y+S+iF945KOcRwzBMJcIwxLDaBdjabQI8rwCgvKzMEaFx3xyIc2jV3KfgU4TqEefmr+DIY2VWZAcAMs6hUIruZc4hB8iMSY8/pAIcRKbsl8vKGIZhGIYBZPtyhjnSaO7vlsWhVkZ30YmzZWWIIEh25JGdeMozg2asvh0d5t/Z4PvXzH1YbYdvahiGaXlWL30DXWkf3MEnw/FVFzHLYeMhzjiHmn8s2rPgSdQJHyOmnZ+/giO7jkWZ7Da5vVANKUg5MjURuaCsIyi2xKGDHDvDMAzDMEcXVVVVqKmpYYGIOaIQQqCmpgZVVVVNfo3X+CpMS+JB3oSIuNw5JBpxDnkIy7IysvTZ9AwA5IpLDMMwB8u2hc/jeADHjjkzcQ6p45LOGXJE4r45kLKyXttewuLiOEzs3Dn3eVLOoTBHHNLCTxgGcOIwP3Mo6xzSr3EKKIR1RrwnFtkZhmEYpt0zYMAArF+/Htu2bWvroTBMs6iqqsKAAQOavD6LQ62Mp51DYfqGyRURYkeLQ/mZQ7pcoxIbVy/FsHg19osiO4cYhjkkOOtnYQe64NihoxNxRondURTAgXRCHqj75p2NKzEoWoc1g97dwCDkqSsKc8rKdLeySJaVZTOHIjTgHHKKcBAhUt3K2DnEMAzDMIzv+xg6dGhbD4NhDjlcVtaK6Fl1IN3dB0iXlYE8eIjLrIuuiMtmvG3WvvIXAMCSziezOMQwzCGh3543sa7jWJDjwHV1WZnK+QmkIOSKyLhvmiuwrH7tbwCAXhPKW9hryNXiUKnsOb29SHUrE7niUH7mUOQUVae1Axs7wzAMwzAMwxypsDjUitglEPmt7NWNluPBIYE4TpeGuYjgNFBW1nH1k1jrDECp2/HGocQwDNNSbN24FgPFJtT3nQIAcFwXkaDEeaPdQrDbwTdTYFnxLLaiO4aPmVJ5HeUcyjowgaRbWRyFIESIKG2Qjcg16xjU+GNXui4PeOwMwzAMwzAMc4TC4lArElqz3FlxyEUEYZWVZdfX69g3NXEUo7auHgCw650ajKx7Exv7nAWhxaWcNs8MwzAHytr5MwEA3UaebpZFcIEoCYEGpMtRl3y5FQSWt2f/A6/d/Y3UsjiKMHT3a1jVZSpct/LpifQxMsoLpNbOoSDXORTDLe9CpkR34RZSzqFKY2cYhmEYhmGYow0Wh1oRXXIBJAGuGnkTo51Dqk2z7TSKYxQoSt3UvPbwz7HnByMRRxHefukh+BSh28TLkxunnLBWhmGYAyVY/TLqhY+hY6ebZSFckMocsp1DcVQyj/N4Z/b9GLn8d6llqxa8jG7YAww7q8Fx6LKyPOeQY2UOORW7lWXFoRChcGSnSERG2Ko0doZhGIZhGIY52mBxqBWJbbEmkznkITSiEFwt7iTrRMoFZJc5xDvXojd2IAwDROvmoFYUcMKks3LFJYZhmIOle80bWFUYDr9YbZZFcEwWmnHcwO5Wli+wkIjgZspft837BwBg2LRLGhyHFsCjBp1DIVwRJqK7QjqHsmVlESK4ECQ7RcYRl5UxDMMwDMMw7QsWh1oR28kTl5WVxab8Qd/4xJbTKMxrC60EpigMQHGAeirA8TxLXGJxiGGYlqF2314MC5ZhZ8+TUsulEyc5FgFSHIosoSgPikN4mec6b3gey91h6NV3UINjSZxDOeIQtFAV5DqHYnLLRB+KAylyKedQbO0HwzAMwzDMxpWLsHzu0209DIY5pLA41IqkBKG4PHNIZw0ZcceaFdc3XamsDDsENg5l9gdghbWyOMQwTMuw8s0XUKAI1cedmloewTXOITtnqDHnEESUEl/27dmJ4fULsa33qfnrWxhxqAHnUBwG6Sw3RUw5mUMiQkiuLCsTscmEY+cQwzAMwzAAsPtPH0Hxb59t62EwzCGFxaFWJAysQOqsOCQiCCXqUE4nnjDnZkXnZsRhYMoi7Nezc4hhmJZi99svAgAGj0/nAcnW8LpDmDzGuYhTJWZ5UBzBJWHy17atX44CRfAHTGh0LKasrIHMIaEyh8rKyshNOzAhXUwRXECVlTXmemIYhmEYpv2w7u15GBksgi/kvdWumi3YvnldG4+KYVoeFodakYYyh1xEQKasLLK6leXOwlvOIRIR4qxzKCq/cWIYhjkQqjfPwVqnP7r16ptaHsO1hGp5zPGs3J6K4pDQxy9dkqYEcK+q0bE4XuVjnC4ri6IQThOdQ1oc0oHUopGxMwzDMAxzFCEEUNpf8ekNz/4WQHKNsezOT2HzHR9qlaExTGvC4lArEtk3MjmZQ7qcLCmZsJxDSihKOYesEFgSISKSX6fjanGJnUMMwxw8cRRhSO0CbO4yvuy5iBwj9ESpQOrGnUNAcpwyIdCul7t+6rWOL1+Tc4xzjXMokI7MjHNI5GYORYjhgBwPXhNcTwzDMAzDHD0sffxn2Pv94Qjra8ueC4MSjt/0GIDkuqAQ7ER1uKtVx8gwrQGLQ61IKh/DaqUs4hg+RYBpZV/eiSfOy8BIBVKXO4fySi4YhmGay9aNq9ANeyH6TSx7LiLPEqqV44YEYiVouyIuew1gO4eUOKRz1ZogDmkBSeRkDrnQJW6hdAGVBVJ75VlCInEOOU0Ye1uwefUi7PzOQGxYNq+th8IwDMMwRxXe/HvQSezF/tp9Zc8tfP6v6Imd2IReRhxyRGQmoxjmaILFoVbEnuW2M4fiWN6ACFfOhjuunhW3WtmrzmUO7MyhpBzDEQEiXZZmnEdJWRrDMMyBEtbXAQCcYqey51JlZZF9zJKvqeS+cTIh1iYEuinOIXWMzGtlb5xDcSgdmTllZWXOIRHJrmtaWC81PPa2YN2rD6Ob2I2adUvbeigMwzAMc9Swbc1iHBe8DUB2ip77+G+x5HunmOfj1+9GDbpiTc/TzTWGI6LUPRnDHC2wONSK2GVeFJeXjOmbGHLLnT+mzCG3rKyUcg4lbZ7ZOcQwzMGjy8XyXD0RucYFZAvgcUlasytnDmlxqNToNrK42jkUlx/jXEix3TiHnJyyMpRnDsXkmmNwHDQ89rbAW/8qAC4XZhiGYZiWZNVzd5vHYRSgtGE+RgaLIOIYO7asx5i9r+DtPpcAXrW5xnBExB1NmaMSFodaEbusTFgHlFC5gijbrSynlX2ecygOQxlIrZxDJnOoDQOpS/t3t9m2GYY5eEQc4/XffBYbls0zxyKd9WMTI3Hi5DmHPOSXZjkiOX4BSYmYdk42RF4um3lfJN3KXBGZMluzX+SVWcFNoL8WnRoZ+4GwYtHrePWHl6GutnLgZSVEHGPw3nnqMYv+DMMwDNNS9FrzuHkch2Hiho5jvP30nfApQt8zPwrhuPBMWVnIZWXMUQmLQ61I6kbGdg7p5Voc8srFoTznkGOFwDqWOGTCWnNKLlqDhS88DPrhEGxdv6JNts8wzMGze9cOTNpwN9bNeqjBPCC7+1dKAFcCi0MCcVR+AaVfE0Y6kLrpZWWOJ49xIscdqd0+lZxDsZPjHFJlZabTYyNjPxC2PP87nFz7HLZvWNns125auRA9IIMvBXehZBiGYZgWYdXCWRgarcYy93gAqlzddIMugWqW4R10xpATTwJUR1NAZQ4dRu5ihmkpWBxqRewbJ7ICqU0phroxcXJmxaOc1sr2DRmJEDFV7nbWmux740H4FGHX9o1tsn2GYQ4ec1yKogaFG5nhk84NAhKBBUhCp22M20g7h+KmO4f0OnkuGk8L6DpzKNOtDDmZQ44IZXaSFpLChsd+IPTcNgvAgTk6N7z5tHnM4hDDMAzDtAybX/wjQuFg+7ArAMhrH7Ib/ogIIZKGQa6aNJKZQ4dP0wrm4Nizswa7d2xt62EcFrA41IqkMoCsmxqduaFFnaSsLFlHmLKy5EBkt7J3csrK8to851EKYwghmrUvlRBxjCE7XmrW9hmGOfzQgrSIg6SsrFHnkH3Mqk/eqwFxSG9HHx+b4hxyPd2trHLmkIgC2QUy6xyqVFZmOYcaG3tz2bVjK44Ll8vtH4Cjk9a8jEiQHBuXlTEMwzDMQRNHEYZtehwLO0yB360vADWBo53NYQjEESLTDdo16zhg59DRxNpfXok1/+99bT2MwwIWh1oRu+0yWTcn+uZDi0KunhW3M4fynEMmcyhIl5U1wzkkhMDsH16Cp+/8bvN3KIfVi+egN3ao8fNNDMMcqRhRJI4gVGlVnnAjyE06hNn/5lWoM9CYc0iLUKp01mt6K/s8oUUfI4UJ+s+8n+OWXdDJ46eX7F8znUP79+/DCz++BhvXr859fsWcJ+GSFOAPRDTvt3selvvDAbTtcXXWPd/Bktn/bLPtMwzDMExLsfjVf6APahCMuTo1sW7fX8nKDC0OqU6pYQCXy8qOGjauWIjR9fNRHe5q66EcFrA41IqICplDpiuZdg7pVvZ2iUaYlzlUyTnU9MyhNSvfxmnBy+j6zlvN3Z1ctsx9zDxuy0BshmEOjJn3/xQrl76VHJfisMFOYjF5SVlZbB1zLIElTxBxkM4pSlrZN15W5qrMIWRcNCKO4ZFyDmlxyk23shfklVnBnYxziCznUFPEnE3L5+P0vX/HpjefzX2+tGxm8n7NPC5u27AS/cQW7Og1TY6/jZxD72zbiClv34Zds+5pk+0zDMMwTEuyb8492CeqMPrMa8z5P1JNfgA5OUSWc4iUcygMA+kcElxWdjSw9tnfAUjuqzctewNbVy9oyyG1KSwOtSL2jZPdyl7ffGjV2jElE3YgdblzyLEyhxxEEJmysqbMMK+b/YgcTwsl7ndZ/yxC4ajtJ+N/65+/x7rFs1tkGwzDHBpEHGPGolux5fk7ElEkjhrsJCYov1sZRYnAkue+0UJ3ZLqVKXHIa0rmUP4xzhakdSB2Wbeyis4hNyntbWTsWfR+p8Qxiz41s1ESuotk85xDa9+QeUMdRpylNtY24tDKVx+FQyKVl8cwDMMwRwr7d+9AveqmXFe7DyfueAaLup2J6o6dresKyzkUhTKT0DiHEgHJFTE7h44C4ijCkA2PAkgmLd954PPY/Oeb2nJYbQqLQ61I6sbJLivTs/LKrpgXSK1vgryczCFhnENaXCp3HlWieo288XBa4IZjz84aDK9fhKXF0WXb7//KLdj4r18c9DYYhjl0RFEIhwQQB8lxKQ4aDKS2xSFbrEm5bxpoOZ8IK8od2STnUCH1Gk1KyFHbp7KyMi9HHAohyEvEIdv11ITjaJRxP9ls37wOQ+M1WFY1puI6DRGuegl7RTUGjZl+QK9vMZb9C0DLTSQwDMMwTKshBDbefh4W/L8bAACLZv4ZnakWVSd9AEBStRFFgTnPRWFJZhIiKw6VVOYQO4eOdJa8+gSOFduwTxTNpKUf18K1rgPbGywOtSIizM8cyoa96pKJVOcf3co+1zkkxaHmOof27N2LUbVvqPEk6y55eyke/P3/NDukevmrj8GnCHsGnSe3b82ie4hAFWbVGYY5PDDiigiTslQRNdhJLHY8I/SICs6hhgKpy8rKmpE5lBWHUtuJ8p1DIDfpaGaNJSY3cW/GpQbHnkVkBC6bNXNlRs+e/jMAZBoTAHjjH3fg7e9NhYjzLzL7vDMXK6tHo1CsgnqDRsfT0sRRhGG7Zbc14kBshmEY5ghjxVuv4vhwOfx6mYtKbz2AbeiOUadeAiB976TvieJIlphFOtNVNwwKQ3gI4VNU8dzNHBnsn3039ohqLO00zVzLOiJs1xNhLA61IvrGoSS83LIyrVo36ByiGHEkD0T2DVm6rEy3eW74pmb5nKfQgeQNnN3aeccrf8R71n4Xtfv3Nmv/wqVPYrfogO6jzlT7lYzfFRGXIzDMYY4Jx4+j5LgUhw12ErMDqW3hIi0O5XQVE/nOIa8JziFPl55FWeeQ9XcF55Bw/LLZPi2uG/dmI2PPYo51OYJ8uPJ57BXV6Hz8KXLdzDr169/ECcHS3Iy2XTVbMCRei/3HTktyltrAObTyzZfQHdKK354vmBiGYZgjg80b12L2987FmpVLAQDbXvoDgOR+p1ftCqzpPMk0wXCsvFd9vxKpcOpsw58wCsxkfZwRh9746dWYfefXDuWuMS3E/j3vYNTOmVjU4zxEfkeTIeWKKHVf3N5oMXGIiAYS0bNEtIiIFhLRjWp5DyJ6ioiWqf93b6ltHmlogacePsgKMdM3C/qgY2bnbQHJuiGI1HJTyhHL1Hxhup01rVtZtHcbAGAXOqYu+CmSs+ZNydow+xbHGPzOK1jeebKZ4bZn0V1EKXcSwzCHH1pcsUvJKA4b7CQmA57LM4fcyC4rK5W9zs0EUuvjXZOcQ9pdmXGx2OHRpjQsK2jlZQ4hgnCSzCGnkbFnyQpcNv12vIblHcbDK1SpdTPHVfWavOPtzq3rAQB+r2GJINZEB+ae3e9g4atPNmndxtg+73HEglCDrnwcZxiGYQ57Vj/xE0wNXsOO5a8hDEo4fsvfAST3Tq6IINyCWd+emKdMZYaO7YDlHNJCQhimrxGO2b0Q/raWafLDHFoWP/1HdKB6dD75WhmRoJ1DiMzj9khLOodCAF8SQowCcDKAzxDRKAA3A3haCDEcwNPq73aJvnGop2LqAlvnVThOuqws5Ryybgj07L4d6JpyDnlNKysT6kawhILpNiQ3rOyUQeM3Idu3bICIY6xZMhe9sQPRsHMT55J9o4iYZ5wZ5jDHHHNEZI5LFEcNdhITjpd07LDEESe2O37lZQ6prmJaWNGls16hbN0snhaQsoHU1kWaFrnLOqw5HjyKU1ZwV0RS5FLrelZZWd7Ys4gKmUNb16/AQLERdQOmJ4JW9rhszVACQBCUMOdHl2P5W68aN5Hj+Ub0F010YL513y0Y/vdrUKo/+Lr57hufw3LveOxyuqccoLvWLsDaf/zsoN+fYRiGacc0EmNRu28v5j//aJPfLqrfhxPXPyDfOgqwfN4L6ImdiAQl4pB13wQkncjiVOZQOpBaX09ElnMoW3ruiAgOV0ocEXRYdD/WUT+cOOUceS1rysrynUNb1i5r8jXYkUyLiUNCiE1CiNfV4z0AFgPoD+ByAH9Qq/0BwBUttc0jDX1TEMBP/ej0zYcuK9M3AfaNln1DoWeYjaoZh1Io0oHUSglvVBxS7x9QIS3c6Jlsa4Z785aNCDJi0coFs9Dt/8Zg8eynsLdmIwCgU/+RZTdBIo7hE5eVMczhyuz/vgyvPvR/ZgaM4jARXkTYYCcxe7Yl5Ra0c3tyjkVu1m3UgDup7LXGRZM+ptidwLT7pzyQ2i0bkxbXTe6bsMrKmlDGFcfpfdBsWiI7NHY74dSUZT39Yu0ckv/fuW0jJu+biZpFM5M8OscHOY7sBNnEzJ9eW15CgSKEQX3jKzfA7pqtOL60BDV9z5Ad3axzxdtP/RYDXrnloN6fYRiGab9sWDYP+77TF+uWzKm4zhv3/wfGP/NhvLN9c5Pec+W/foeukNEYcRwi2L8LALAfVWYy3EFsKi4ApCa2HZM5FJhMQiARh+IwEYfCzASSKyKAJ8MPezatXowTS29h3aArQI4DUOIqd0WUxCUoojBE/PuLMOf2D7TFcFuVQ5I5RERDAEwEMAtAHyHEJvXUZgB9Krzm40Q0h4jmbNu27VAMq+1R7p/AKeQGUjsNBFLbj6MgXVYWR6FUwNVNj7m5auQmwhaHUgqpPiiqA17tvr3o9H+T8Prjv029fvNrD8GjGHU7N6VK41w3XfKh63G5HIFpT0RhiD3vbGnrYTSJE/fNBm14DSKSxwGKo+TftIga7CRmz7bYx5yU+yanfbubCbHWszFeE1rZe9pdlA2kDmxxSolDOc4hIF3G5Qp5kaj3r7GxZxFRvjgUqdyjYofO5riczYIzLXPVePQspIjCspLjCG6ZIJbHzu2bcVy4AkD6wnV3zaYmOaFsVsx6DC4JdBt3kQzttjtthrK7XRzxhTDDMAzTfDa8eC86ohY7Ni6vuE6vDbJbZqluX5Pes/DmH7FDdJJ/WOfSknW/4yICLOeQrrrQpWSAPC/b4lBSehaY7tFxxjnkon3n1RwprH3md4gFYcjZsnuddMEnv41sWdmbz96PvtgGd+RFrT7W1qbFxSEi6gTgLwC+IITYbT8nZPurXO+gEOLXQojJQojJvXr1aulhHR6kxBhb+FHikAlFy3EOWY916YR9Q+ZaCnheWVouUQVxyJQ5yO3U1e5FJ6pFvCet2Hfb+IIaf2hueFzXLytr024EPlgy7Yk5d30d4c8mt/UwmoSLGIhD82+eRJjOHGqok5g122KXeXlxw63sPZF1DqljSBPEIcdRp66sGJPnHMoIWkZoscUhhNI5pLZdEA2PPYspK8uMxy7Hq9hFUtvXIy0OJUKTvuh0jDjkNKnr48rX/g6HhHobuX7tvj3wbh+PN/7xu0ZfbxO+/RR2oSOGTzwDMXlpkV/tb9QEAe1oYt6j/4u3Zz3R4Dpv/Os+7Ni6sZVGxDAMc2TSY8PTACqXcG9atwLDIykcNaVBxO71izG4fine6HqufN8otCo30uJQyjlkytUDc4+WbfhjJpeCkjnHZvMCHcR8v3OYI+IIg9Y9ggXFCeg3eLhc6HimWUned+jO/T22ogfGncPOoWZBRD6kMHSPEOKvavEWIuqrnu8LYGtLbvNIwogllHUOpWeH9ax4yjmUE05tAqmNc6iyuJQ7Hl3O4BRT/wjMTHZG3LHfb9c7NTihtMhs3+5m5GWcQ6YDEh8syyjV12P5glltPQympREC/db9Dd2xG3EUYdELD+O139/U1qOqiIdIduSwModMSZPlHMrrJGbPttiuFk/YuT15ziGV+WMCqdUFW05HtCzkOAiEa1yOedvR7h/dgcxgnEPpwHzheMZW7jcy9ixJWVn6GGeX4yWO0HznkD5O6gBsYbu3dIcU8ppkVw+WzzSPQyMO7UYHqkewq3Fb/tZlc1CzWgZq9t79FlZ2GA/P98ucQ8iMvT1Qs3ktRs/9Nva88P8qrrN03kuY+OInsPTJX7fiyBiGYY4sajatwfGhFH7yGjoAwJqXHjSPm3I+XvHsXYgFoevUD+gXmeuZgHzjCPFEZK4HgMQZHceJcyjKBFKbiZr62mRMmQkf2YCH73cOZ5bO/if6iq2oHX2NWSYcFx4S4dBuXLJm2VsYVzcHKwddDc9vPBfzSKclu5URgN8BWCyE+In11KMArlOPrwPwSEtt84hDX0g7aaeOCWLVrez9HHHHuqHQF/tuWeaQVLa9Cp18yscj3yd08svK9GxwNhMEAJa9+jg8is3zeluOlziHslkaTjssK9uzd2+Dz8+58ysY9MBF2LdnZ+sMiGkV1ix9HQOFdA1EUYg98x/BiLV/auNRVUZfzOibfMcKoSYRNdxJzJptsY85KYGlwcyhpFtZJAiO65atm0eE8vwduwRMZx45GbGJTLcR2zkkj5963UIjYy8fTH5ZmV2OZ5xDmXXs4Ev5FomTKik5lsd06RxqfDz9dsxOhqaP4/p9G9sfIRD96QNY/8BXAcjvMfQ7y/fIiEN67M3pbHmks/zvP5cZeg1c/G+f+Uv5IDz4MHCGYZijlVUv/8U8tifEl876O1YteAUA0GF10nWz0QxAIXDMqsew0B+NIcefaN5XGHGoYCazPCuOA8hmDunJd1lWZhr+6MmlUiIORZluZW1ZVrZ47nPYteMojWZpQfbOugt7RTXG2C4gKyIh+x1uWTATANDvtKPfNQS0rHNoOoAPAzibiOap/y4G8AMA5xHRMgDnqr/bJ8apkxZjYqv0AMgXd+yDpl7fzuyQM99KXDJhrU0rK4ucQqq2UgdH65uJKEjP7ANAsPwZa7+CVPmEm3E+xe3UObTotadR/NEgrFyUH7K3a+c7GL3xQRQoQn1t0+qomSODTa8mM11RGABxaMqoUjTSoeNQ8tojv8Ti2f9CHEVwSYCEnTMUWg7FxJKd10nMnm2hlDiUCAbZ3B4Rx0Zc1scpikOZqdNE8vJ3bMu5di5VyhyyS6FM5pASvwqoPPY88gR0AKlyPPPZZS5uyzKHzHvZXeKszKEmHEd7xDuwCx3la9TxO7REOM2yeS9i/sy/pF67ec1i9I23wFHChmtdGJeJQ2qCIQ4aF6yOBoJSPYaukf+29flszfIFqYvxLVu3YuI76mZG/T43rVrUrtxVDMMwldi4eimWzpH3ELT6BekCRvo+x3vy37Hz7/8JAOhdtxr7RRFA4+fjVYtmY1C8DnuPvyxxOlul8aF1v+Mi4xyy7r0cM3mVLivTZepRUNk55Im2aYO+fdNaDH/0Cix67LZW3/aRRN2+XRi14xks6H4OOnbqkjzheHBVhqIn0s4hbdAodujcyqNtG1qyW9mLQggSQowTQkxQ/z0hhKgRQpwjhBguhDhXCLGjpbZ5xBGHCIWDmLx855CXzgxK3WikMoeyzqFAztw7aedQozPEWgRyiqlU9qTMIV1eZo+hUFdjbj6EVc/rul5ZILbprtbOxKE9L/4GBYqwb/u63Ofn/e2X6EpSFGpuSCxzeNNz3T/N4zAMQCoXLMvs/70Oc//nytYcGgB5kzv69Vuw78VfGTGC4tD8m3dEaE6GKedQnqvHmm2xBe0Cktk0kbkxtmf/7DDnsDniELllLhr7Is1XuUFlzqHczCF5kagFets51FjXRz321P/1a61yvEadQ1pMt0QcI9B52jlUvs95uIhQD3UxHWacQ9brd//rR+j2fLrb2LrXHpfbzMllsDvTAclEQpiZOT3SWDj7abz8QOMX1G8+fS96YwdC4RgnrH/PVVj052+bdd56/JfoQCqzKg6xa8c2HHPnaZj/5N2HZOwMwzCHOzu2bsDbrz8HAFj/6H+g4+OfAgC44X7so2oA6XOjJwI4cZKvWkfp81kltrxyHyJBGH7WB+H4idhjx2i4IjaTYkh1K9OZQ6G5JxJxICdIMrEdUSlxhWaFf7eNMoeWP3evnHQr8WRzQyx6+o/oQPXoOO3D6SesTrYu4pQ4ZFzgTcjEPBo4JN3KmAqomfHsBbYOc9Y3AK7bsDikbx5coUo5ogA+JQp4pTbPWUwmkFtMX/CboNh09xx7DI5Ibj4Qp8vKsuJUNiOpPbB3zy6M2fksALn/++vq8Pe/3IEokt9ZKQgxZPldZv2wnQW6Hs1sXvs2jo9WYAuOASBFVsrOQkAGBI/Z/g9027+qRba7bctGLFs8r0nrrlk4Cx2oPl1KJpK6fBIRYnX8cERkjiW5ncSs2RZbuChYzqGsIGKXIQlLWImacUrKcw7Zs4p+Y86hsswh1xyDq8h2DjUuxpgSvOwx1yrH83K6UAJJF8c4p4y3zDlEbvk2cnARIyAlKGmHaE5othMHcEX62OOtnqnGpcWh2Hxm2YkN09myKQJaC/Dyn76PV2+7pvEVm0n85LcxcuFP0gvD+rL1im/8HpuoF1b6x5vPp6PYC7de9t6ora3DqDV3YXnVGJSEB8Qh9u/ZgQJFCPaw1Z9hmMOPhbOfxgu/+dIh3caKe7+Eno9+CADghLVmAsYREUooz1l1RGSdgyKU9GRHA+caEcfov+EfWFwcj559BiT5hTnOITNBZZWVeXnOoTDtHDIdzSxxKC9zKNsGvaXYvrceP398DqK43HXeZeXf1IDS49m1YzsWfe80LJ//0iEZ05FG1cL7sZ6Oxeip56efUNU3URjAQ5gWhzLxL0c7LA61IhRHCOFCkAdHJC6CxDmkysJcF7Gg1I1PqltZlHEO6Rsip3mZQxSHiAVBOH7GOZQWh+yuRWYdEZmbDxGHKfdTIk5pcengu5XV19elAmQPdxY+/Ud0JHnyEFGIxS8+gove+oIpMXv9X/dhMDZhUcepAOQJaNm8F/Dyb74A0YalRszBs+alPwMAVvWWnTKisAQSETyKIeLk3/2SF/+KDlTfYhcRK+/9Iop/fn+T1q1ZIjsNIg6NUGOXldmZQ44IzcVG7qyJmW0JUiVPVaic22PPtAnbuUTNKStz0p2zMtsxF5+Zk7lpRWuHVysBJO/Ef1DOIascr1K5b1LGG6T+L0X3dOZQDLdsn8vGG8fwKUJA8oLbHMdzRH4S6YvYMCjhuH2vyzGLpHxZXxiLTFmZCe1shZIpEccY/PYdGLarZQP8l69eg1HBwtSF4N6lzyH43gDsfDu5mF6x4DWMKb2JtUOvQUR+4qwSsbmJeeOJX6MftiOa/kWEkEJepZJDhmGYw4H9L/wfTl2fdLHcu3sHdt7aHwtfbJmIWBHHGLrzFVQpN689WUYiTN1LaOzMFxeRNdlR+VyzevFrGCg2Yu/xl8rXWRMyZjLcKcJFMikGq2GF3VHUZA6pTNekrExdPwS2c8hyQquS+UNVVvbK43fhk7PPx+rVK1LLt29cjZH1C+QYMxNIS57+A0YFb+GdFfkRF0c9b/wRqJGf17a1b2NU/XysGXA5HDctgZC6lg1K9XBJGAMGAGuij8UhpqVRNz+xk3UOpWeHASDMhq1GVkaROhDpnA8Temlsj1Jcaqz8QMQhQjgQditq2DPZOgujvFuZFIcKZrltuUvU+vRNz8EcLBf99Aq88bP3WYMX2Lfj8G0T3HHRn1FSddRxFALBfvlY1Sl3fP3X2EI9sX/4ZWadmjkP4dQNdyCODs1JhWkdOq36B1Y5g0G9TgAg/72aXBnrpB0tfBRA/r+LN/55F5bMfgoAIIQwgmEYhoij8vI0AOizZyE6iP1NGqO38TW5bREiCpO8INvlZ45LIoJowDmku4GFQZA65ug2r0B5h64wdTEV6pWanTmUvQiynUM6NyhbVgbtwjHOxkiO1fFyA7dFE1rHJ/uQOeaa46IHL1Nuq0mcmunjrv19uCnnUMPH9VgJkKEWh0wXNCUCxmlxxz72r3zrVXTBfhkMrnMZrI4u5WVl2pV06IWPFQtnob/YUubAy/L6/1yJV3/7xSa/75Ln/py+EAzqsO/Bz8AXJaxaucyst/WZX6AkPIy8+NOIyUnduOjPoe/C32KVOwQnTL/KBKbrm5BGG0QwDMO0AX33LjDuXwDYXbMV3bAXezctb5H3X7XoNfTETiubMIKH5PrCvpfQOCJKCfB6nYYma3RJ2fFnyEkyz56Q0ddgTgEuomRSzHIOmbzU2Cory3SD1hNIIrSdQ8k1QmRdQx0Kuq94WFaK7K9JLV/x3D1wSChjQfoz6rzsITXO9ncOCmtWA498Bsue/A0AYNUzvwUADD77I+Urq+84UJ3oUtca6jP1fRaHmBaG4kDe/JCbdgvkhL3KkokKZWVhaGaHAYAipcZnxKWmOIciuLKFs5WHUvFmJTVjHJqbDxFZzgLXh+O6iAQlSr3evwM8WO7ZtQNj9s9Gx/otZtmcu76Oqp+NQs2W/DyftmTjGqlML+h8GoB0JpOIAqx461WMDeZj9XEfAvwqAPIzyn5ezJHHjq0bMLJ+Abb0O9d0xQqjwOrqJIXW+rr9GLFLuhKyFxH79+7EiJe/jP3P/QwA8Pr3z8MLd90KANjwX+Mx6/7vl213z57dGBitz801ymPAnjfNtm1nn3ELwSppEpFxGeZmDuk26yp4O484szyVG3CggdTklYkxoinOIV0ipS7oTImb4yUBloAJyWzSBZXZh/R3aYtqbgVHZ9IyNyvihOb1xsoOt9GLTv0bC5y0DT/KyRwiEaaO/fV7tgMAdlOnTOaQcg45Xtpl2orOoW2zHzTjqcT2zeswYfezqK5Z0KT3jGKBzqv/mXrfpQ9/H30CeV7Rn/+2rRsxvuYJLOhxLrr27JdyUNltiwdG67C5zxkgxzFCXuIcYtGfYZjDi+1bNmCA2AygvAS5pdyOW+c9AQApt5AW4x0Rpe8lFFnnUOjIdSqda0Qco9/Gf2JJcRx69hkgX2dNVJsGOa7MWDXnQzuQ2k/WTzf8ia3JdzVRYjmH7OuZMEhykprD1jWLseK1fza4zuaanZhQP0dtM/3ddF35N6x0BmMndU7dq21dtxyjSm/pgTZrTEcDq1+RDTd27NkHEccYsOYRvFUYjwFDR5Stq++hS0Ycsip8OHOIaQnmPHQ7Nnx3BMJSkltAIkIEFUjdiHOobFY8kzkUW+UplHEOJa9v5ECgZ+orOIf0bH/eicIREULHyhzKCU5tKefQ8llPwKfkRLF09j8xceWv4JLA3p01jby69Vn9zO/hkIA3+VoA0nkgrNKOmuWyzfSAU69J3agmQeCcP3SksuKFB+CSQM8p707sxypzCEhu0DeuXIjOVIs64ZeJpoufvQ8dqN4E3g4uLUP1O0sBAMdGW0A715Rtd+2SudL90IR/Y1vWL0cfyH83MlsoEYFM6/Qy55B0GeZitYYnERlRBUgElmw4fsoabuX1xM10DmWFElvI0blBbsYNpLuNmO5gljhkO4dKyM8IysMujUsPSI/Bh6fF/4xIkBxv0/+HLda5ygVEbqNdH/X+RPpiuoHy4KxzSK8TwCqbsi6My5xDmXy6lmDWE3/A2hWLAACv3H0L1i6bDwA4doN00jU0ybDyxT/DUZ33msKbKzdgWjxPvq/ar31r3rC658j9WvLobehA9eh94VcB6Owl7eCNQSJMOvCp70p3ltP/5tk5xDDM4ca6t543j6NMaXNLHbM6rpNB1NqdZJ93HBGZiQz7HkOKQ0lps77fqHQ+Xr34NQyKN5iSMgAgx0EonLRzyC3CRWwmxexJdTsvVU+aiDhMlVbrexzbOWSPKclwbKY49KfPoMMTn21wnSUvP4pOKq7CPudu37ASI4NF2DTgojJjwarnkkYI7fEcFC/5u3oQYu/ud9BPbMbeAWfmr2ycQ9KBn+5Wpif6yjv2Ho2wOHSIiMlD/3gzNq5ebC2MEMIDnLRzSB9Y7JKNiJz0rLj1OI7CVHcYitRBLiMONdbyWGZ8OGWzwY654E/frGRvKiKygq91Vx51cyXzFvTN18HZLEtLn1KvV+N56lbZZQAte1PSEog4xsC1j2BhYRyOGThSLrNcQXEUmpvhQlV1+kbVuEsOr31imk5h+RPYSL1x3NhTzL/HKArMb1eXU0VqdqmWqsoEHW+hdEjof2922Yr92GbnyrnytY3k0QDAhvkzAQD7RJUqK0syh2y3kHEDKudQJVePcUiFARBHRlQBEoGlocwhLZaQkMejphKTU/ZZZLuiAeU14ka00wGVxl7updybpSbY2JPBlLsr1UYAyBlMx3FS65rx6eNtpjskpcp1dSB045lD5jeWuZg2x8rMsT4vdLFEMrTTOFQtcSh1rojTYz5Ytm/ZiCmzbsSGf/0C9XX7ccqKn2LDi/did81WDI3XoCTcBt1xVcufMPvVFNbMfgxVFGBNx3Eydwryd1hvBaTu3bsbo9f/CW91OBkDRpwklyvnkC5JpLg84FRP0CTd59g5xDDM4UXtylfN4zBTgtwSTpMwKOGEugVSpIF0J9mZQw4iM5EhrGOk7RzyEBvnUKVzzZZX7kckCMfNSOcu6olq/d7Cq4KHKHHe5LSylx2gE+eQJ0LLOSTXIUscst3++vzbHOfQ7p3bMaJ2nmmiUQl36ePmsf05rHr+XgBAv1PfX2YMoB0rsF+Ui2/tgWD/LgzZ+4b8wyrxJlWxkYWMOCS/W7vUUt/Pmuu4o5z2sZdtQPchYwEANSvnmWUkQsTklmX85AVdlTl/rINmHAWpmytHlZWlnEM5N05l6Bs+qxW1HKc+KKZbINs3PiQiRI5nVHl94HWNc8gxNyFJd7UDuDgWAgN3vCJ3T72+OtojO8EgU55yGLBkztMYKDZi/6j3JjMMcSII/X/2/jTqkuO6DkR3ZOa9Xw2YwQKIeR5JgiAJkiIpUqRGW5ZlSZ7kbntp9epu97Pbdlur31vuXu7nZ7stW25ZtrRkW5ZsWZJlS7YGUuIgUpxBEAAxz0PNBVShClWFmsfv5hDvR8Y5sU9k5P2+AqqAAvCdP3XrfneIzJsZEWefvffpCCgqysokqupLc5Yd00osL44ePoDbjj+CFy/5XriiIOZQlJVF/xdiaFCyu2/3drzrRA/0pLIVZSbk7qOXnwqvXVpWVm+7H8f9Al6cXh+6lQkIRB43RmLWzvcDKuga9g0WHYFD4iUwAIfi/z0BK6fGHKoGYIx8lswPwLisrE2NmsvKsIwU5FrOhkoArky3sjbI8VxR9IyUMXBoAMa3JDlmQ+r586gyokRWlgGd+LsrLlSEDVDtpih9GxmqAg6NrBWni+24+f4/7MGWdkZdMlsshkrecbc6eu0B2LNrOzb/w3dh24ancPjgK7j1xGN6XMuJc7f9CY66c/DyRXf1fg1ti6JrMSOD1G1P3oOLcAS463/Q93WBQVXX0WCV5YkA0KHor+mMEfhKrMRKrMTZEOe98rg+lnVZ1+fXAPo//e3PYu/ObZgtnsCCq3HUrQHQexMWvlEw3qoQ4jpS+s4A8Gmxg8N3HS7b+Sd4fuE9eMc7rzJ/a1H0iX34bF/2BTnpEMxF9VIedy21su9lZb6QbtLhNTUzh8hzqDl1WdmGb38aE9fO3b8dPXES7zpyL/a7C8MQ43eet+Xz2Fxch+tuvXPALnZdi8WRfdhbPTbc91lMEfeXWghMfShDyPPN7IQ+J8Cf7xrUvt/HvR3i7XGUb0BcfuN70XmHk7sic8h1LYExNAmEm7yqEuZPxzc4JVNtYwxdi4zn0MCzKBc6nhITmsiKtHtOxnNI3Pt1nJ0cQwCHyDh10F3tFGLn1udwue+9hqI5XYPFEUbCGx2Hv/OfcNwv4Pbv/aux8xEBQr3/UDxXJlHtLJNhJd5csf7bn8bUNTjvfT8OgBkqtV67aWVu5qbmvtjx9L2oXIeZjy3DK9/2rJox6RKACw8/D2B599jFBx7HloVb0RbTfvNFsk8GhOR7xHNojNWjbdabGq5rUYPYN8j77DAAKt/juvaUupXlJFYy/kViL5XJRkDYetralphDzN6cuaVb58bByByZysos40pMijm0K4q2mhcmVzOQHHduOZ5D4RorbaVVvYyY+QO7IVU2VWAOKUNVTDuTtSsFtl5rFJu+3I+xozWOKn4z2Ptl/471uAE7cPDFZ/DCk/di6lpz78yLl/cfwQcWH8RLl3wSXdn/1k0AcrW1ctegCyy/yTkX63v7jqOtkRC0ycazC2ugJjMr4NBKrMRKnEXR1DWuW3wei15aePdz3Wv1STt8cB9u/cpPYdPn/6XO4zKnNqF7a0ESs64YSq5LtGENCuuZMoeG++PDB/fhmm4HjmTkQo0LKgr57GqK0nm09TBvKsogQ/PUxjzIymQNlKKveL32YyJlxzKZQw984T9i90vb+s96/gtLvufp+/8EF7kj2PHOvgsug2SXz7Zh78U9q7VNC0i+QQ1SebyNYvbkZ7Dfn4uD/hyA/f9G2tErC36RwCFZ17um37+9TeLtc6Svc6w95zzsKi7BdP96fa7w9QhzyLJugPwNHl/e2DbMXYY5tIwKs/MMVg1lZRHQiDeHvgYtOlcRKh/lE/L90KRHEs75rIaNm9ZjNqtx+PABPPpPPomtG57EwT0vAgAOY416XRRolZHQtjVOnjiGTY/fYz5r8eQx0zb8TMX9v/n38fQ//R4AwMnjR3H7vq/gmQs+ibXnXaj+JZ4ShI60z0U1MYmqMofOMsBrJZYX/rnPYz/Owy139Yu3ysqaRmVlqcl7k4BDshCdcAt6/5bo4LrWtJznOLk4wzXNVgBA5bq51/2Jo4dwbb0Fh9e9P/imtKa7hrZO95GGXaIdgBwmkuPUziNA7DCSJMZMw/YErJwKc6hzpcqa9LkwVy0GYKcf3lgr++R+KyozBzeZDirjgxH/BPta17VoDDg07LAm85pPvYGIvSWg1XLAIb3GSqm0BtBpGZ5DCpgV02Daaaurg86WsJK41xJ1PcMtRx6UgRDjJrLbajcxVG8uYHRNv6E75lYPfodcPPedL+ICdwzn3PljkHbGbVOHa1hAzVbPH19HPkjDmyZeu00iU5A1uF0Bh1ZiJVbiLIwXnn8Ua91JbFnozXlbXRNfm+fQlke+gsp1cO2iztEyp3aNLZYVoROYegOFKNGaNSiuZ8MxNQL0LJwz+JuqMAKLV4CBJkiHXAIUSMFbmE2+rXvGtnQrC/t6Boe4o2mjSonxfdiWZx/Ghx/6aWz56q9icfEEbj3ynfCe8bV98anPYhETLLzrzwCweUKJDl59Ca1qxHUxX1rO7/nkd76OLet7Jnpz8thZr2R46rf/Lzz7+V8aPL94/DBuOfxtPH/R92Lmpn3xsRlasHAIUNgSc0iL9fPY82/BWAGHzmDsXXUdLjy2Vf+vhquJx4/csBPyu0i9JTih6JlDRL8M4FBqaL0USiwyNxSV2XAXsPKGrovJikQRmEOCyruuRuMLpdyxLG45SPrBfXtx9W99DI9/5bewb/sGvL95DPs2PhAZFpjqOSu5sts2ePJLv4ZrP/OjOBzMqQ/v24PjP3sLHv7ML8w9/tcabdPgxq3/BVfONgEAnv7G7+BcdwKrP/hXAUA7H3E3N9/WSu2sqol2f7KmxWf3ZLwSw1g8eRy3Hr4fmy76hG4etMNU2ygbL1bmonzHyHrE8wXTgayMKxgcRw/uwVq3iH24oP+OOeDitifvQeU6rLnho+hcFaRkERBSWRmi51Dh2wgkZyIypPqKYEOysrH2s1z9Y4ZSdyrMoRwA3kW5nkSZtB7l3wUgA8myMiyjulj+hsp1eeAOSbWpceOyMqUvs6wskRwvBxySa8yHzXSXgM7pPM6Aonx3q+1+LeCRrl1yXftMNfdUY/3DX8d57lg/xi6uca6r0QVfvVqLAmkSU+s6w2ba86J7/gs4iSku/8APazvjJiQuDdHwoyl4vDbEmLtTwLaLj8v4WznfUHHl7VW1XYmVeD3j5d07sW//vjd6GG+qeOX5bwMADq27C8CQObSkNcVInNzwjf79ba3zuMzdDYFDbVOj8g2pEOL3VegMc0jWMwZiJLjAk4YWqtVGo5+f6wAApBKjJrB71XMoYc9KAalg5hAVR5aT7+y+5zfDl81w5MBerHUncdSvHn1P3bS48cDd2HzOB1GsviAcMxEE0AJOihJVssY3aN0EnXdL/p6LiydxzRf/KvZ94R8BAF78uY/iod/6+3Pf80bGicMHcMv6X0b99B8N/rb+W7+PNVjE6vf9xZ7EQLYJS4ND5CfVxHvhVJjtb/ZYAYfOYJy44CZc2e7Q1obO97IJXyTVV5UOjFeY+abu2tqgxlUXJi+a5JZjXMoyNwCGQQAMu+ekcgSZ0HvqvE0eefwm4RyJE0f3Y8HV8Ef3Gr1zapAqn6OJW9ugO3Gol+IcPwoAeO6L/xYX4giagzvnHv9rjefu/wLW4UDUJm/4MvbhfNz+kR7ZLyQp7aysjJlinKjGbmUrFeY3Wzx/3+dxjjuBhff8mD7nCpE+1nrtpr4yTTFN2mXGjZQYAleu1943Ge8vIG5GhC0zT5Z4eOO9AIBr3vvJaKqbk5WxITXaKEHNRNqVrXGTvkIXji/8MRkzjTEcjztVcCgDlMj4mb1UDGRlgQUj3RgJACnKMo7dnYKJoxxD8tp0Q9FvVMdkZel8G0FlYQ556pI1FnqNJZVW87ny3bDAlEpbi76ji/5O6jlk1674/lcHDm164l48+zMfw/Gjh3B026MAgBO+r/LpGuejeaiANgLo8bGp35SbLgkOnZw1uP3Qt7D1/A/DTdca36zCN6bSqmw6qjD3v0On91ovK5MkQjyH+jVwxXNoJVbizMehX/2z2Pwb/683ehhvqnAvPYwDOA/lupsAnD7m0LpXHugfUMFJ5u5+jk2YQ6pCkH1SLzsrCXT31ThziAs8aXTomTTC4tVCQJAOpe9pUQLCFgKApBu02EUUbTSP5vO0lI1G1zS4Ydfn5T869kVn94Iczzz6bVyBvfC3/jDtXyzLSted1HMoeDk2KJb8PZ+7/ws43x1DGYCvi9pX4I6c2TzqtcSGe34XU9dk13v/9KexBxfi3R/5U3pOUul3Gsr2r4/rc7quz2PPvwVjBRw6g1FeehumrsHOrX1bXq2Mu8pIrHzXYOZLwDl9bsAcose+beIFC6AKDvdFKis7BeYQMGzBmMrKOCkpfU8FFVTedbWpkLc0fvXYmbNh14SGdKFdGx/3Bqn9OSvRqa9JR6ycpu2rx1du/u3woad3M961LR74F38ej9/9GQDAiUd+R8cDAGV7EkeK8xTkUw8pkpJ5Aop65lBMVGNb6PkdC1bi7IvFp/4IR/1q3BqAQYDkS7QZUop0wtCQYHCDJV/ON8RSsNe1zAVcmRuL1S8/jK3F1bjw4kvgi8B+ELDS9yAvYJlDFdo4V2RCPYcCwNlJFRBxQ+iTuYjB7cgcatC5/KKdi86VKmtKP5fBobT1qGzuIqPGtrTVsZfLN3Fk9pMJPw6aS6isrLMgQi/tCwDdKTGHZDO9Kgwhkauxr8PACyuck2IhMIeSzVTiOVT6OK+9mth3z6/h9vpp7Nu1Tb33TrhVvceWUMC76LclxqXpeH1bR8CVCglj8fTDd+Mytx/utj9rjk88h8T8FLQGMatMQDL5W8Fml7Kehg1pjnm7EiuxEqcvdu3YglvaTVg1O7Dka5umweGjR1+HUZ39cenhJ/Hi6tsj2zGshTkJ8nLjwN5duKHdqu+XeVzm7rahYllTh1wiqBDCGthQwSp66K3ux5YZU5syXPlvsuYKi1d8ZYQ5VCSyMlcaVpCAQ7JGCItXFBuABWpkn1aNAD3Pf+cLuAT7w4tJMo0pJq7N2gIcfuT30fgC13/sL+leIHYhbfvuzcaXkHPHnpQwaHKUicUnPhPeE9Y89mo6C8M9+4cAhvuuE4cP4NYj38HGd3w/JpOJHnu3BDikxXpiDnFDpmYFHFqJ0xEXXnsHAGDf1icAiOdQBRSVmThybaI7pMwhlqElzCEvyU2c5NIJIhcic2NKfT9OW8nOysoCc0hQefi2n9zp+xXsUAbCuAa3peoqVy1yG/4SLVplZZCfT9PgqXs+jSuCgfXpntQ2PnkfPnz0qzix4ZuoZ4u47cA3AUC756hsMIRO4l0LtEJRDQl06GBUUKIqE/Lp8O9Yidcv2qbBjQe+hfXnfQQLq9bo83HDVWsSnjKH2mLBynpEFhW6RRlmwog8JQVE2nr8+lk724uDq67ov8tVRtNf+hbeR0CImUNuHnOIGVJapQpzijKHLGBlAFDuVnYKzCGfA0qU+ULMoRHPIZ43AAIIwtjbjEnm+GDEc8i+Np3bcxu0Mp1vmakZvjt6Di1ttqxrQ2VlZWMMUMDOvwDQlaFbWUrDLiqzgX2thtRX7LsvfC0xfzDtrwVmDoVrX35X2VArc4jWCrl35sWRx/8QrXe49iM/occl4yjQ0nVLbLqKwaG+wCOJTy8xs9eRAHkrhtQrsRJnNrY/2Bv6LsWWB4AHf+/ncPRfvO9MD+msj0P79+CabgdOXPoBw/4FaD5/FXPW1oe/pI95Hue5m4sSfSewyqyNuichAF7Ws1yxJi3wcEih2nV1/ziRDqXvaVEaPyHXWE9XKfqOgkNSTCerDo7DG3r29syXvWQ69WRK9hu+63Dtnq9gw5o7sfrCS9W2QL5HWb8hj0vl9qZgl6yLx/e/hO0/9zEc3/8S2qbBTQfu7t/DfpfLuKder3hl1wt4/mc+gp1bn8fxI/txy9GHAGBQJFx/93/Fgqtx7l1/GQCIORTW8lFD6pCzUSc68ZCax55/K8YKOHQG4/IbenDo5M6eOaTJT1HZiSPj59EmiU/hG23P3DOHYrI18cOJcTktj4uAKAvirDcObLICqo5KcLcy17WDJIjBLfmcebKyjr6LE+iccW/pY+tL38UuX21b4/i2RwAAi36iPiCnK/Y/8odhsA2OHz2Mc9wJoxNOk1tlLDBzKHQgasKtx4mqUmpXkog3Vax/6Cu4CIeVhSBR0m8bk3C7+WqD9KdN7jUBQ7PdkJL7utXEWSpzixiL/r4ViVJppGQl2tg6HRGYKH0bWD1LeQ41yo4UFqEyMOYxhwhYec2ysgw4VCWbv0Irb3ZzpQyoMHZ/Sp5DeXaIULp5zOlrInPIbsiLICsTILkfU7kkK0Y18pPAHBImUWfBf4CZQ5YB1JU9c0gZqsQcAqAt7uNacepA/I5NT+NKv6sfc9sogFireWT02GKmXX+MM3NM3BGyKeYzh7z3uHrvN7Bp9R1Ydf66/juoa2ThWwIGiTnEDDQ3ZA4peMuyMuM5tDKvr8RKnIkot34dQIa5mYni0HZc6vee6SGdUux56QUcfGX36/qd257sm7icc+N3GfYv8NqYQ7P92wEAh7A2MIfCOqvdxmZGZl+gBSSXSJisJe2BBBzKrccpMG/+JmuutzYaXZ2XlXUoDHNIgCKZ10tlDo3Iyqi4m2VxdzU67/r28sQOj8xvqxzY/PQDuNrvwokbfySMN9pV9N8n0u88u1gKdm1iVA0AW595GFcdexpbnn0EGx/5Gi7CYX0PEFjjZxFzaNM3/hNurZ/Fnk2PYusT92DB1dnupNVzn8ZOrMO7Pvh9AGI+qmvxGHNI9rJ1jjk0vgd+K8YKOHQGY+2552OnuwTT/RsAUPJTWqZOrk30UFbWYlE7qDQmuZrmZGWZJCSNoays/xytZCdGpiapCB0GVD6WyidysrI5nZR0Qu1ilZg9hxqS35RU2e2aCLx0Ta3J1CImA5T8tcY7dn0TAIzr/Yy656TJbSHtn8lYFkF6I+eqKGOiKkyvFc+hN1ccfuwzWPQT3PLdP26eT0GT/rH1SukSmYzcc9JmXpL2gqseqedQSMzNPTESDh18IUBDZdghBbooY0o8h1KQgyN2/+qvYe9K9dnpit4Iceg5RP/vXh045HMsGj1/sVtZOWAOpbIySepDxyoae7sME0cgsrmyzCGa23OyMmW5EAsGEOZQBJLlmJdixejxiKxswByKxyNzauqL04NDXYY5JGuXXSteDXPopYc/Z8cczkvjptY8knx72mJVGKZdm5g51BZRgpyLjc89gRv8dhy/4U/rc1pNrvuqtrlu5T4wsrLKJC4leXelzKEVWdlKrMSZi65tccORnkEwBg49/Llfwc5/dHPv/+lb04DlbIgj//HHsOG3/s7r+p0ndvQdqa66/SOG/dv/G1mby4kX1j+OJ/75D+LkiWM6Xy5iwTCHeO5mmb3kEqpCQFyPTMdMKXbkPIeSAg9HlxSwtRAwhznEwI8CRcoc6s9VxeCQYQ4xUJQDh/o1XaVOA1asfc8rD/43tN7h+o//ZDjGqJoAKI8U5lAOHMoYfvNn+K7B8QN9oeYw1mguUqI1CpRZ3WLfkRN4o+LcbV8B0BeFxMv3uFtljvfIgd245dgj2HLpD6IsQ5Ey5KPCAioy8kMgsv09FViZsb/CHFqJ0xZ7Vl2HC49tASA3aTXw+MkZXaU3uPOxQxfaxgAIU9guKfr+JZIamTQcUeoBYvgMKtkWHEJRKSrvugYdXU4d4viZCTPWSSknJWMz0LZYiN3K0Gny52nz3icYYeJ18/W1O7dvxvP/+C68sOnpuedI4uUdW3FTu0nPh5wr+U3atglgW5x0XFFoe05hMfnOAmkxUW3Jc2gFHHqzhO86XLPn63h+zQew9rwLzd8K0oanSbhc19KeNTXYFTCUzaLHPIe6pDKnNNhMCOMPEOZQp+BtmbCILLW4He3UoPK50IWEPYe8CxKz5F7kzZQcT0FjW050rhwCJQnDBAAmk9RzqDKvTZP6OPae6r4s5pAcQ8JYyTGHCm9/H+2Kkptvk7UhNYTORZdsplPQyc7jXXjJzLwW5QImrkVT23PjUn+6lGV6CrHqhW/EMbeRJdUE0K+h6129kEp7jecMqdtiYS5zaPeDfwAAuOajf1Gf0zWwo9bKKACShaXMocoAq7GooYahsoZn5HwA0NQzfOc//0MsnjyOlViJlXh1se3p+3EBjgAYB4eqZz+Ny/1unDxxLEqXzpJ91vGjh3BdsxXT+tDr+r0+SLFWrzkHLungearMod3PfgvvPfEAXnlpK0njJ8E7zs7dbRtlZW3T9F6kiewpMoe6mJyHYkdO6hZblA/lQlFWFmw0BLyfCXNo6DnEkjEBh+R9sn8QxQZgmUPcRSzPHOr3/3K8sl5HPz17fOfsfQybJzfhwkt6O4CSvUwBdHXSNCKTO3ZhL5OuQUwA4E65PajXg6j8ngc//QuY/fy7h8f0OsThfXtwy+JT2fHy8W66748wcS0u+uBf0udSibcbkZXp3rBh5pAwrusV5tBKnL44ef6N2rFMkp/U4yfXJnrgON81asLsCW0GiDmUyMqW9BwKk4ZsjBVVTZhDsYMRV5y74DkkqLw9BjN+WoTHzHI7YlGx3lmrwWXv5O+7DhPXoqNuZZFe2WgyldPXcmz75n/Grd1GHNj65NxzpK+//9P62PlWz1VN3XNyzAdF631MophNoBN92+j57eYk9ytxdsXmp+7HZdiL2U0/PPgbV3jGOlJJRyndEBBzg6UqbE49ZA5ZFtI85pB0BgEi+yHXvr5Ep48nrkXRzTGkJplWgQQcKqq+Q0jCluHuVsq6QXtKhtRZiZVIM8vIHCoKu8xpW/jW3m9FCg4VZRj7MjbIJI3jcN52K8vJfQWgSWW8ZdjQGnBoGZ5DOl9PLHMoKw+G3YzL+RMz67YWSn3YTMlaIYUEXSvG56ynHvoWHr3niwCA+/7d/4r7/v1PAwAuWNyJI743GRXWZ4NC1w5P66NWtAVMre19xAyfNphpj8U7dnwFm6sbcNEVN+pzjthvJScrXQORu1nPoUmfuGSYfQo0CXNoJNHa9Njd+K5N/wobHvgSzkQcOXwQR468vgnnSqzEa4ltT34Lj/7q3wS8X/Z7Xnmiv382lddnQeF6toibjj8OIO4RASjw/UbHi889jML510V2uvOFjbj3V/5Oz5rirrlU4AHifD6P7fjyixvx1D/7FA4f3BeLMm2jnyvy4HTu7to6FsvaWfAcmoSCri2QVuzlNhkHh+YZDUuhul+LC52ffQAAhrKy+cwhKfoyOAQDDtHjEeaQ5Cg5yXSXXJdlV2NWRi/LsoxFRyCyeC1jNY6h8C26QtazZB8mv3dDnn2YJM1QaL9w+EVchlfeENbdxvs+rR3k2HKkdhNTJJwdOwgAuOTK6/U52VN06jk0v5W9AYeIOTTGnn8rxgo4dIajfOftfceybc/13YBIxtXRhjwFhzxK7QQD9De4GJb5tjGTzio33LzmvC3SiDK3V8Ec8j1zSFH5NAmiCWpJmiXyxqLoYjW4KxZQIU5YHbVp5gVFqKNMUc3F+S/+Sfi+5W0QVm35Mna5S7AP5xvmUEMdovLgkDCHbBLTIHQ+KKNUcIU59OaIQ3u24+j+lwEAex/8A7Te4caP/8XB6wT4Y+ZQS9c5EJPwVNbTlquMbKWgBDkFB+Qzo3/REswhkTsWFSpEdl5FUrIeEIqfU/h6aVlZAMF6inhkDsk9wMFME6UwnyJzKAeU8HwBALUv4RJwaFB5S42ECdhqA3tkqSjIn4kj3VDk5L7D+ZaAplRyvAzmUJuCQ/OYQzLnJJ5D4u+gHV1SzyHyhODvyEXz9Z/BOd/8BwCAi195GOfvfUTHsegkYYhAmKwdTOdOwdRWDM1pXlWpZjkdPUd7d72IW+rn8cqVP2CejxLQPnHRSit9rmEOSbcykdex/1AVN+mOQNaBV1igxZ+p7pRb/82fx6Zf/skz8tkrsRJnIvZ99Rfx/p3/BbPZuG9eGmt23ostxTU4unBpFjjf/NjdWOv6ZK9tZuRrc3Z0hT20Jc6HZzq2ffnf4GO7fhN7dm6N+/qiiKzZZB8yl33/3HfwnsVHsXvrM8RAIQ9QNwkJeQAgyjjXS7fmrgl7o6I0VhpsSK0A/DQpdlBoQWSO55CweJXZGXxl0oYVrStREXNIgCL+7BalZQ4ZWVncN+XyHSkOS2Fd1jlRQ6TM74FdRbp/ke9W5pDdF2nzoMSqBKB9KOVadbA0YM+/eHACSL3+wKpb/8eofdibtbYBBYPCufXawxZqOFfmkGvBsayMupWNseffirECDp3hOP/q9wAAXtnyVF8ZL4ipI4lfN6Sr5WRlNZlk5jbjjJpnO/kkIZOOTHoNbXQBLCFH6JNMGWdqxmzAKZpcUsqkhKLUCXMIBAZxa2UFh1hW1kVWTurtcf+v/x949me+GwCwd/d23DrrTcKXA8QcP3YYtx5/BC++4xOaMMiEXlMHBpUNUjRyHgw4FMHAckKmxQoOnR0VrZXIx75f/VFs/PX/BQDwjpfvxvqFd+PCdZcPXqdm411NSXT00wIAX1lAJ4IbU7sxYolZCojIe5U5NAccCpKZ/vUVSt8pMFChtRsvAoeqbjanlX0EOIUdKYCG+pKNaN0BMqTGKYJDGaBEOgH6MKY2s8SlrWC9MofEcyi8J3gnLctzaJ6sLJ0Xk88rk3mS59uUVerd0uCQHs90tf3cdjjGCFomG0EBhxataSe3fO/fb7vs5aLqZtpRszByxRYzJyaltVZUlTlEHkldAg5F1hedM2Ldjfkybbvv0yicx7q7fsL+QeVyDRU+CsNIKnlDWVSoHHUrI/BWO54UlaWyjzH+zoDH3P49O/Guk49gzWx/9u9P3/NH2PaP34OTx1daer+a2P3ihhVvwNMcvutw7eHeO2i5e6DFE0dx04mnsPsd3zW65z3wzFf0ce9ReXYV4dzunr3+eoBDF+55EICch0aLJ+x92f+bn7M4lNXf1tT5s/eOq32J1tn5T+fuJu6Hmqbu2SChoCTfJ/dW6byyV8uJrGfDMWn+MAIOFYGF27gqgkNzmEMVAT8qMTPgUIEJ6Bql9c/TtZu9xsKa3roiNCxImEPJvJLui6TRjb5PPYcsY1XfT1L/lMFtZNkMtvh20L06HJD5ztcrZidP4OYjD+K51aHLIFmONG6ajFEAILZZqXo/zCUMqVU+T4bkvB9bkZWtxGmLK256LwBgcefToTIePYe4ZfGAOeSsZKLwrbJU0DVZvXQ5aGU/f7EpEZhMpR1PrGTbpMUmFXZCTyvkvFAbVH2UOVTLgzxzqFxA6TzqUFHyZfTTcPw9QtlMUPLq4FZcUvddFLZ8+9MonR+MbSzW3/8FrHI11t7xZ7XyrzphlZXNssmtgEk6xq6Xj8m5KgubWC93TCvxxsSe7ZtwfbMF1ayXa6zpjuD4qndmX1vmPIcSwFWS8JZYhEDPKGLPIWscnSSZApimn5UbEzpArtEANKgJNVqz8Spa3iDNRoGbgqqOWqVKfHtS9o3qxX1lupUJcLWcyBtS12hQ6FhzBoJl2u0jqTpa5tDQLykXfAwc6YaCvdh0PInnkOP5NvEcQpACzgudxycWHMp7x0kFN4KTtS8hnU/ahDnkipG1Ys6cVfhWr9nCt/r9PRtWwKEI7Mva0ZFkSzexI0w7dC283DvBTDsX7ZE9AIArw7qsY2T2WwBQxaNBPrfiCnNg37VhPbLModgNkI3dU5m3TwDh0xmb7v0DlM6Pei+19/4Sru1exMF9L5/2736rx7ZnH8LFv/ZhPPGV33qjh/KWim3PPYyL0a+ry2UmbHrka1hwNVbd8n2DPbPEBbvu1cdNW+u+UAxt3+i44PB6AK/NsP7gvj3Y89ILc19z8vhR3DDrv6tpZmFtsV1zB55Dc6wpJDlna4euleJnod0a23TuZia1dIUqbCGG2ZStdBXj7r/pWJICD0dkDvX7blnDnIJDk8HrJyQrq5Q5FF/XuBJT8g70tG9icGeMOdQg5k7aXGGE+Z0WnRX0UBZPAowlcnvJO1O5GRB/566tY7dPJ8yh4X7B6Xe+vuDQ+ge/iHPcCZy44YfDeBuAuvSaPVEYI3ep7cLcIP635ajnUP88d6vTog/lbW+HWAGHznCsPfcC7HLrUO3fqIlTkVA4cy3yuqIaoL8NmTDLBXvSx4u8yNwM80ImnSKVCkinl6TiHP0let8fFFXYyOdkZTR+mszHJC/sy6BSL2JISdWhDpVsT20txey5axoF2jwK69nkG00Yym3fUnricqpHs2e+gKN+NW7+0J+KE7pSQSPan0OWO0mMFWhrjecQU0Qjc8iOacOj38IjX/z1Jce5Emc+XnjgDwHEBbP03SigEZlDjd5TZkOFaLKo1NW2b3PqiwlK30XgAtZ/iKPLbL7GYsAcQqv68dJ5OLo/2ZRx4hdHqyYqn+tCpydX6Vzgi6it55DzsIiJ/q30Q+bdvMiyaISVJ0yQzJg1eVemTm2ebwk8y5k45kKvhwFzyJrU50B7BTIE3KDz4brUkLqa24mLj6daSGj4CTik8zhoAxQShrSji64tunblO1vmwvlWX1f4FiUisCTgum9rrajK2sHFEzFPFTB1ALJ2DVx4jS97CXL+3ISNYyIlUFP1ICvrAU5hDoV10YBDcn5O6LF0SYIiyarpPkfRJevr6YzJxt7jKVcgemXXi3j3iYf7MaywX0459nztl1C5DvXRfW/0UN5Ssfvx6L3V1cu7Lo88+1XUvsSNH/xBdIn3iMQV9TYc99GPL/W1eSOjqWe4ut4KAMZGYl4cPXwAL//DG/HE139Xn9vwW/8b9v/6Xzav27XtOfP/zY9/C1MXQRz2s4vsXwtYz2tjHtlCERxq2xquq0keHNuHx7m77iXsiMxUKTTrHpjbwS9G+Vft88WaLinwmHGGcahSQvbcQTpUpswhV2JCwI+wiBzt81qU2giofxMBRWyjkVN4+BadNs2J6xwzqzjSRh0V7bf6Y7fj65KOplywGxpSU5GFuqYViB2ZzXvEKuR1BoeOP/k5HPcLuPpDP6Lj5eYtvM7p/qkakiXmyQ/5eQsOMXNo+fvTN3usgEOvQ+xZdR0uOrY5+H0wc6i/oHNGVylFtkAbO/DQhCK0fMDS6HyxtHGpGmQnrRFHPYdUghDGTd3KCj+HOcTg0BhzKAMIMaVfFpaZLCYKDkXgJVYtSmNuB4QEJYy/bI/juBs3t+Po2hbXH/g2Npz7IUwXVml1Q5J58Xlp2jqcz7QtZhGYQ5TE0LkqiSIqm4M0WTh097/G5Q/8zNxxrsTrE5MtXwMQk655UijVPLcNKtBGqn8AIJosMnOjQUHADTGHRlvZ23tkHiWffX1cUaFCZ3y3PC2KZcvg0DJkZcq6iMwhuNCidow55KZ63Yv3wLIj578TwBQBwJpMpaca8RxSU05lDk36x3M2yDoUn/9tUsDYJ55DDNCkPg8iwTLnfRmyMpUJTi0N3yfzeNdFkEklMsJi1dbuy2QOzZlHDXMIrQHSBBzqmlqBMJ8kFYVvYjv4cL+0rb2PepapsO7GDalFdliU9rrgyrl04lQafivMIepEqefnpB6LGGjrZ0mBZATUTc3plxPee3z5d/8ttm5eP/qak8eP4NZjD2W/EwA2fu3XlTk7z59sJYZx9NA+vPuVAGKcAcbX2zlW77hHHy/XD+jiPfdj4/Q2nHvehfkGBQAq3+C46+fCtq11rn69pTG52L7xiegZusS8LrHtyXvwTuzFiZfjHDCZHcTaNprPb3r8Hlz2G9+Frc88qM8dfv6b+lgaAEghROesdH8yT1ZGbCHTvMb33ixS4FaQnzzwtEsmMVPZioJBFV6Dcv6F/VhsgYdD5mFZS0X2q8yhKgMOgZhDIomuLDik63Z/EgZjAeZ5DkUPIFnnuipZ20KowkP+nzCHUs/E9D4ofRPl/envybIyAfiKBVS+ye43Jad6PZlDvutw7St3Y/3au7DmnAvCczzexGMww/Qd7Cky1wkQz23ZcrcyAodOZX/6Jo8VcOh1iBPn34Qr2x2YoIYvoiGa+jz4odFVSpEtfUPgUJxQZmDm0PBmmBcDJlO64VdAI7IkAJoYil5XXPq851CRSRzGdPpxUWpt1ULBoX7irAfgUARefKAMd4qSx+9yHVevG21Bv9TGfNMT92IdDqC76Yf64SlzKEzMxBwq0USzXzleF7u5yblglhWb42rSlozJdc2SCeFKnPmYnTyBm489AsAyRZbFHEq9WeQaTzYEyhQRcIiMGRUoQsLCketlpPLEIYkvEABk5+GpOwYb8XHHjomvB8CnHifL54jC3H9H3rdHzQ9D21QAKNCNfkcufEZi5XyLxpUqncvKylLPIQFNqNtHeEJ9AZaKMebQQFaWzMsM0OhcR6w0qTLOO+Y0tHI2WbCfm5hmcwLGzM3WcbtfS71PjUsHndYyUaDVtaP0CThUxA6cwvpMKeB95zJ7v6TeXVJIaHwBFBOUzmc7qgj4OhgjM4d8p9ctgiys9U67jALQ61QSl9J3Q1lZYWWbA1CXAOHlxgubn8cPPvt/Yte3xpmkz9/7Oax2MxzAeYOE03cd3rnlDwZjkHjkc7+Mp3/2U8sez9stnvviv8MaF6TtbYOTx4/i4Z//CezesfkNHtmbOxYXT+DG408ow2c5beYP79uDG+pNOPjOjwIgGWcSJTrUiN24Ul+bNzJe2dgz+Ha4dy7bc+jI5gf6BzRvMAAPAMcP7AYAHDu4W587d/cD+rhra2NnUSZslNiheM6Y2LNPvWhmsSmMJOTS+YyYzVIsE2YqCit74gIXt5zP+eb0p2I5zKHGeKwKO6Qop+b1nSu1AzQQW9Zrx07ArMlhAPFhm38soetcYEopg7RMJNMhlFQg/x+RxSs45Cy72BhSj+zD2LOvDcwh7V5N15W8/0zfO0cO7sP2f3QbnvrWp7HrhQ24FPuweO2njKSOwaycrKws7XrN5zonP+yf788h731lH7HiObQSpz3Kd96GBVfjYhyynkPciSgFh4qEGhgobUKrjJX32LKZK5tj+mszrjDpuMSMrgobfgY0AGIOKThUhZuu0Yk3fn8c/7I8h7hSkfEcEnCoWTzev66KzB+lCXdpx5tUVtbqd8zcuH6ZY9+jf9R3o/pob2Caeg5xh6iU/glAQSrDHCKmWKUSlzZ7voAezFoBh9742PjQn2CNW8RJP9F7oUQbPXySqKjFu1SZBoCEMIfIc6sNuvgKnWFojG3YOr1HrOQmF+IVBhALpDmhfy+oYsKmjFOMM4dKMqTmziP9B0bvFhNqfjhJgLZTWHxdRmKVMIdy4FCVVN58ktTz2LuRzWgaywWH0nnZVMhzzKHOynXlupgXsVvHBDOm4cumSTbmNBfr9RfOn14btZWVyQa5rxYPWU+5GDCH5N7xnXZo8cFzqHOlrh18vev6kGHa9eesVdao+gHlNuaJTE/HWMYuKBXawHiLzQTS9whQJOCZuT9pk16QpHjYWc9KTJcTOx/+bP9Zczqc1c9+Hkf8amw9585BsrzhwS/huu4FPLHqg/34KQnz3uPCx/4dbjvx2LLH83YK33W4dMNvY2txdf9E1+ClzU/jriNfw44nv/mGju3NHhsf+SbWukVsXNsbzi6H1bP5oT9G4TwufM8PAhgHzkvEZi4CivSP33jPoXbnEzjpJ3hl9fXLBocW9jwBwM4bvXQ3rgspyAMAF8124RDWAhCWPXsO2YJJZA6Nz03KHCJgQZlDwfevb6SRzt2zyFwUVlBhmUMGYKE1qHV5WVks8OQ9h5iFK/mOyJDLhDnkXYkFkowJUJR2K7NfEsc01rlMQgvYSeOF6D+Z7P8TdrqyXlUxISbLE3lBxnOoRM7vMNclum/oEBuVpI2R+jGe2Xtnw32fxVV+J47teBZ1yPmqtRfEvVvbDJoVaXTNoEutsqlob5SLchKYQwQOeQLJTqVhyps9VsCh1yGkYxkAoKiIws6eQ0NqozGkDhem0Crlgq1HZGWp7jQX8plaJW5qdG2LIkzcg4pzGE8jk5mi/UPmkKE2MnNoZCPMBngGKArf7SbWc0gWGrSNVht8G0Eq0y0N4nXR6ePaLY85tG7XN7BhehsuWHdZfyihuqFmotyBIScrEzM8OY7OnqtIEa31fPlkQWZJ3Eq8cXH0qS/gpJ9g06p3kefQHOaQLmSZlqeSSE5tsqumvIHVo5060BmJGYd2YEiBpiTYK6z/8nC/1hEQ4i4NbMo49TVQ5JcLoVsLXbyvUsXW5/NaqNbUaaIMSflyY6xbmQE3Mou5egyIDCk1pHbx/LQZE8dcyGsG4FCyoUi95DgJSsH4ErH9bjzm/rrIsWL0NQR2GUNt+VxlDg0rnC5s7NVfoYlVW4CZQ02e9ZSJkiW9PoLgJUmlfUt+cUUqKyPgJb3G6dh6r4tCr+9sgumHzR/4uIaysgbwzUCemLZD7hlCiSmqXJ8jEo0UKF5OrH7h63Pf0zUNbjhwD9af9xG05epBgWjx2/8GB/y5mL2r9yfhRGTT0w/i+m7bKOvq7R7PP/AlXN3twMu3/DUAfUFHrsOVJhKvLQ498xW03mHxqk8AWB4zYbbxGzjqV+PGO/v39GxbC5z7ruv9obRxSB1Nj88C5tA5B57Di5Pr0JYLy5aVXXGs77RrmUONeX/azbF/TYtFxP0qA+VFlQeH5gFWtkNZ/L7IHBJw3M7dAggBEVyP/qVt/Ex5TR3Zq2MegFoQyTKHKmWselfqa4rgqZgCBZ2r1JsJgHoLOQKejL+qd6aAZDyHMtdY0fXGxmkHLVVDJPs3tgLoB+KM91Lqt5R6MQq7Ped3qOsIm4oXC8bjskwUGPydZyq69VG6q15+RUX5UiwYdcXUAKO6D+DPC9fAPG8qfp79Nju6F1Y8h1bitMYVN8bOKD1TJ26wgRG6WgLuSBIqtMqOkit9DcvKRvTXHDLpFOQ5xFpSmYTF8Fk7LkkiW1ZE2bQTmJG1sZP/WOKqsgbbrUwXwED9bFJwqIutkT1RZY0hNnrQaeJa+K5D2vltLF7evhk3tptx6Krvj+MPi1ObgkNiZJowH4R5wObc/HtzoqoTXCoro4RqJd6Y8F2Hq/bejefXfAB1dQ4BGpGJk4YaBxL4MuhIlbJ9EnCjEcNbSpBTACI1tx5LVDSZl2s0aekKWJ8hZg4tYDYq+aoGzKFqSfaNMRMMx1P5U2QOjcjKuuDZBOSZQ64oevkRU6oRW8QOxr6Me48NytPneUORSh8YoElBBAWHEuZQ/77xyrrKylIavjKSbIcygMGWwFxT8EOo95X5t2trNCRBnOfLVIDAIWIOVWi1Q4vIg3vmkJWVMXOomCTXuIDuvgWCpFDGnjtH3AyAQ9lvUtUuqfDRNb1UkT+nsPeOYfmlm/SRRCuVmC4VJ08cx83HH9PjyMXGx76Bi3AYuOWHB9fawZ2b8K4j9+Kpd/4YpmvP7b+a5ord3/5P+ng5sp63Wxy/79/jMNbi9h/6n/onujoy2N6C52vvs9/C4R3PLf3C0xAX7b4PWyY3ozjnHQCWx+q5Yv8D2LTmTkymYQ7J+LHJddxQV0S5D9/oa9x3Ha6abcSB824dlcSl8crOF3Ap9vX/GfHUBKA+Z3xdloiM+U7AeC1SirzXdk2dy2ZithA9dl3/uf0xRb84BfZncb8hwE/vORT37IY5pLKyOZ5DWhDJgEMhF5K1WNYH2esMwSE71wtziIEnfs1JTO2YRiRmErKmSwE79WQadCvDsOkJn4eYj0lRokrAoU7Bt8Fehv0IBfgpp8HSIDCmmKQQjLrTMT70B/8SD/7r/wEA8OC//zt45BesOfqpRNe2uP7Q/WFcsWuaKyektIjMIensy8c02PcpcyjkspM8c0j2gLz3jQ2ZmhXm0Eqc3lh73oV42a3r/1OUSgu0LuiprMwudMocElolJVf6GmPAtTRzSBBlNuO0lewwsRFLAiApRFENJt7s9/NkuaSsLC40LoBDtY8AlhjYaZLQxTbxXXg8xhzqX9MNOr+Nxbb7Pw0AuOxDPxbHHxawtIta2zT5STywJoRZoC01nSRbJVrvMM9zqOiiZ81KnNl45NP/Co/+4k8Onn9h/aO43O/G4vU/2F8DlOCOmSjrpoOSaGYLmOua/cdYGkOyldjKPq2OJiykkU0v37f9v8PxFd1Qaw/0ncxGW9mTb5aA2Ozbk96L8lqgb0O6HKBt5IsHEiuVYYnsJwMEAAE0SplDlWUbpSaZc4cyR1Y2AM25wpsB49kbKJXr6nUxDxyi42ldYedTGiODJ8zcZM8hBPBDqPfsOWTGsISsjNlCpW8B7zFxBA61UW6rawdtyhRgCSbbDKbKv+zX1Y8xM6ZRWZmV0YEMPLNStIQ5VDgP3yTGpbJJT2TZGmQGupzY+PBXsDb43WDkmjz46B9i5kvc9LGfGMhstj5+N0rnse67fpLkgfE3vGF37BZ1Npj1nk2xb/d2vOfw3Xjmkh/Bueee3z+ZFrLeQuGbGRZ+9yex6ff/wRn/rgP79+Gmej0OvPOjxGKffz5ffnEjrvS7cPLqj8cni+GeV+a4pojG9xGAeGOv8Ze3b8T5OAa88z29BHUZzKEdz9yrjx0ZHxcJONRlGB6mAUAopMbGKJH9279gaeZQLK7UhlEiLb+1W6N4toS5m4tlwkwdMIf4t6E1KNf5tB+DMEKmw78lBWzJk0Q6pI1D6PUcYhjuGByi9aB2lRmT9RzKycpijsK5xFhxj30iJbjoM2AOJfeBdt/M+dAyk70Tz75+3ZD1kz9Lc63k/nQv3IurXukN5Rf2PYsLDz8/OO7lxqYn7sHFCObqXR3Bs7JCUZaBqRXBLJ/IylIpPtDv6UrfDfwl05DnJ35FVrYCDr1OsWfhWgCALyaDjVkWHHKWIissH6FVyg3TEnPItOfNdfJJQpKxgrxRarPhF+ZQE1+POBm54DnElE0dP3+/YQ7lF31NaIgtFP0eitg9RwxSq6lOEgVRI4uuMROvng4CtgrfRFCtG98grN76ZbzkLsXVN78vjj98buwQFRPynP+M6HzZcyj9vUX6ISZ96UbT+Wa0NfNKnMbwHpc8/e9x7YF7B3/a9eBnAADXffQnDPCZW7glpArhmjxzqEVBfl+RCcHdojoxvEU3zhwSBuJEEuf8Nc1eYQAGAABgmUMLsNXbMfmc6biHFBzK05kjOJTIyk4JHCoHEivd8IqsDPnP67sIWt8aYUANxr6MxM94UCXP23nRMhqbDMDifJxvU1kZ5rBi9DvoeJiGn4JDOePM3rOtiuabTaT09//GJCLHespFv2p1ekwlWu14aZlDoeIc1o4IhhJrLlzjA2+MrlHJmNxTOV8E50fAoUqKD2SQiiCHzEjRhDnEBu5R/hDuh6L3xHIE9nFoYWKZrNCjW3pD2ZN+kmcOeY8rdn8dz6+6E+dfePFAZiPzwjnnnGsKQv1YOlyGV9QQ+PXsRvNmiI1f+hVMXYvLv+9vmIJOq+fP/oYvbl2P+//5j+LQoQNvxHBfc2x97Bs4D8fM2nCmYtNDX0LlOpz/7h8YNEdJ4+CRY/De4+CeFwEAqy+9Sf+WkxnLmifeZsKYkcdvZOxa33cUPP/6D8AXJaplyJdPvPgoWu/Q+MIUNhmAB6gIlYBDbKfASXTapGEU0KYwvkbMHNJ53BZSde7m/RAxU9lKg8ftG3nNJN9xi16f+gcBJCtDaGUf1odKZWWp59ASNgGIsrLGF2hQ2Tl8CeZQEYrD2kFL1jBhDiXAS4khKNE3SwjModRzyJWD3FH3MunvyUyxTmTdIsHKGFIL6y4Fh7roi5qao59q7H/sc+i803GxrAxA3823ow551YItEmaZQ7ZQU1VDELF/fggOGQbzqexP3+SxAg69TnHigrCIJUwdYASRLPK6UaUThgu2HWUO2QkiFzLp8Ia/485F3m5eBaBo60RWhjjx6vcXlTIcuMIx1jqXfYb4sRhMy2Y8trWc6CThdJJslJUzBg61oXLUuqhdzcXxo4dw6/HHsH3d9xhjsxTtj+BQrb8RhzAPCkrQhuBQ0XdTyyyMMvYVz6EzHy8+/zCu6l7KnusLd3wNm8obcMkV1ylbrmvbXoIy5jkUrhv28QElhC3ivaemjcIUKSwYOnEtvBgopuCQJP1SmRu5xzSZTwypOcGtSGvNHTuAYUVNQim6wnALGx/5rs5Vo55DbdC3izfEqTKHADunKPNF/jYy5saVcUOnEr8oBwLEJLNaludQqXNkB++9eZ7nhM5ZNgdvHp0CHXG+HRQO1ER8juyCjsd6DoXP1blwSJ1OO7oIq0zWFvbm4bVirqzMt7p29P5DnbLYhHnJoLlPNnKlp03dgjBGxaMrzKuB4dOR51COfeByG0dE8EtlDoWVlaXdaXLAqvoPSbKRyspG5KCpjJhj28ancc8v/y10bQeEc3bCrcqCcTs2PoEru504dl0w6E1kNrHCPNVEQjbe4iO46PKmqG/n6NoW12z7b3h6egeuuSUYJkMag+Q7zm3/8r/GR07cjd2bnxx83ptBgrb/sd74fDlm/K816o1fxwk/xQ3v+1SW0Saxb89OLPyLa/HUvX88aCIQ/jPY88qaF8EhYg6dRgD0O7/6t/H8g18+pfcsbn8crXe45rYPmf3yvHCLh3ECq7CIqfltCt+ZY49dqOIxlr6LDKoA4ihzKOmA5Tvx55xzrZIkSa0dAotImEPZuZtl9jJ/lpUpuhlQRVvOT0Zl3roHyhgNC2jYy4IqnZ/LsL+pUlkZMcFP+nw3aDlvbSh9MFjPc8GymENLML8rPyyaNfSdqd+SLypTTBa7i7QwFb5Mx6xePSF3VJk0M4dEypYcl/OtXr8pUGnGXc/w/ENfAwCsf/irePaffQL1zALQF+/8JjZMblXpf2QOhQJOOHbXNT2IVE5NkbAvANn1us9Tu/y8QSHXz9TT8dF5WGEOrcRpj/LS2/oH1B3MMocS9HpADewTJ7kx5CKXblmA7VaW8+MYjClMOtqpoKu1fWE/LqrKYlhxdmWl1dGBGTNtTDkxHN0YMY2VGUvdeGvlFiLZikmeJhgJSi7H0jThNcVEq3+5eP6+z2HB1TjnPT9inpfubLroTmJFqvIZ5lAwtFVwyIuPSNL5wJPnUDKmwrdvmEno3b/y07jnt//Z6/69b0Tsuv93AQx9Y/bteQk3z57HK5d/LwDopkermyOAhiuKvmtCO5SVSdVOpUyGuTHsFgUAXUjUq2ThHYJD+WtatekyXulARf4OtkOZ3QCMVU24g4QYXqeG1GObkt5MkM/lqXkO9V9rTZ0Nc2hkMW9zmythQA3MtJe+77Qbl/PGqHnAHErOBQM0Mk+yuXUKDsnaMZc5RMfDx8mMJGCEORQSBqfXRqiuKnMorl28VizNHGrNY/nNfEWysiBHkLVDN3JolZlRJbIyKTzkCglNbmPeNdlrQjfWDTGHFBzKMYek480w0ZGqpIBccv2MsefmAWsvf/kX8fHdv4X9e19S2v+YKevO7/w+AOCaj/wFPQazSdcK/iQer+wjwu8xwzjr6u0az9zzGVzm9+DEHT+lzzVB1pHzHPJdh2tf/hMAwyTq8c//Cg7/39fg5PGjr8PIX31c+vI3AQxN1M9EXLbvAWxe8x5UC2sM+JzG0f0vY7WbYfGVbbGYUto9r/hKSsjvw/LVMfn+q409L23Fd+38Tzj46B+e0vtW7XsGO8orsHrtuWa/PC/EMy3t2lWgjcxzjDOH0gYAMhcW7OUC8hldhqyMzYx1HhfPIWKAytzNMnYFfsiiIh23FK9KYQ7l1po5ciEB3vpCTSx8TFRWlgAFtD7M2NOV8is5bz0kkszH3fB34Ig5SjXCik0MqdENvBhZFq+gvxRwBuBQ9Bwa/J6c4/nes88Xk94PsLFeszL2/juH4BB3g+bca89LW/Hkz34fDh14BU99/Xdw6xd+Ai9v34QDGx/A7YtP4ND+vfraV3a9gJvaTThw5ScVgNc8WViFIV/yXYMGhe4Z1ZphGcyhSYZhBsS97IRY86Zj8ApzaCVOd0jHMleUg41Z1ugqxxwKnkMitwLiogfYSS4Fl3IhMo6Sq8FUMeQOWwAUoGg1yZwY5hBPYMbvgGVlIxVJ9rxgWZl4sBRJslyUVV/NDR5C8hky8aaG1FwtKpSFlW+LCQDNc3+MI341bv7QD5nnU1mZM8yhDr6YDF5vmEO+HfzerSsMLTOtQp5pA8WTdf46ObBvDz6y8zdx/otfOyPfezbEY1/6dezZsRkAcMlLfeUv3aRtuvczKJzHurv+HIB4bacyrVy0KFDkmEPBx0SNfxUotswhU2XTzkhJhVE3X/MNqRVQ0LbkFgAAgJIqjRPX9l0xJMaYQwoOhc8pqoR9My4r68rekLpZxrlMI2fOHNvViqxsHBxKmUNlyhwqR8aeCQYUm5rO50BuO485FOcIoJ9vy67OGlLPZXbQ8XCnOJ3HhQGa9RzqJQFqQN0Kcyg1pE7WijkV5hIR3C7DJl1ZbJU0FkiYQ7TGlb5T+nu1kACgxMhM/ZKyzKGMRKw/vnANG4PUUj3iUgaaJqXciVDWpireXxU6y4Di0Cr9+Lm7dF8vJevaSPvnxIDjgu1fwYbyRlx+zY395yZ7CKHHl+VkkITLPTRz0s3o7Ge3vF7RPvgfsR/n4Y4f+O/jc4HB3dF8LrH+8W/jCr+7fzqZi6dP/mecj6M4duQgHvzDf41d//BGA2acDbH3hedwVbcDQAbQPM2xa8dWXOe34/gVH++/jzrnpsEdCiMLzjKHABhwXhLGroxFvNPtObTjyW/2D07xXK2qD+LIpDfgTteF0fBxDkg9NasscygFh0TGWxtwqCLfQD6WufIg+g5Hj3keL2j+k7mbwSEBflw5MYUTZjw5WoNGmUOyB8oxQgJIJYUa2a9MMkbTAEzhVsBywAJPct4aV+r+XSNTdOEQMoCCNQoOhVwiWQ9GPYco7+HxcUdT7lCbFszDAPv3dOzZZ0E93m/mDMP7562sjPdDO5/7Du44+TB2bX4C9fHDAIDFY4fjHpA+a+v9fwgAuOT9P6qKitQTUs53HK8UNMI1k1mvhZU2j2EGxGthgZlDyvwdesq+lWMFHHqd4oqb78RxLGBy3qWUEMYJeAgODT2HuHtObOPHzCHSUS6jEtEjypG94NsmW8nmjX/TRCRXmUMYeg7BlZHhsIQGl1/DrS+t55B0k4mbd6mejDKHMuBQoy3nS63+5eKyg49h09r3YRqosBKqE5YJi7rn9JN4OimVVoPrhxI8AakimJZMvJlk7nTFzh3bcPCf3Ign7v3i4G/Pf+O3MXXt3MTvzRy7d2zC+77zd7H5y7+CI4f247p2G2Z+uEmrNn0Je3ERrn/Px/onwr2Zgi25aFGi4ASSAIAWhTIyOrrmWW6WB4fyzCGpzI22uZZrNlyjsrEuif0wSaRkvDkaZQ6lEpuyjHPBGMASWBCyaCvgPOdcDkIBY6qgyoZ3CeZQh4I2tIGVUo14Dp0Ccwiw9+mg2pQkAfxaNq2XqHzSJU4NoceZHXw8pltZ+PzKdfBdZ+biKNNqDLgm4FCVMId8W1uJ8Bz2ixxv3cwwcX1qo8mfmHB2tIaE+0vp9ohs0hQAdXTfKDCYkRtKqGwzHaOsgY0FOAvfAgl7qz8P4fyYREdkZZE5VDiPIun2KZF2Lkxj764XcV33Qn8szUxp/9LkgOPwKy/jxtl67L38+2iQicyG5IZp6+o23ENiWJtjXb0d45WXtuLdx+7H85f9OSxIcgsogyFnSL3/gf+qjxmA2Lf7Rdy6+FR4vkH3yhZchr1omhpPfesz+M6/+5tn+GiWFy/c/wcAgD248Iyv/S8+/McAgHV39kW4ecwhAcS7Nsr5DFMkrGsNzY1thjlUJkn1a43Ztu/0Y58D8ubCKAZ4vzwnJCFOu3YVaK3/HrN6QlTojPdSwbKyZD5wvB8fC8MWavX72PevRMxVpuH+YbalAD9ujqxM5tWqnIwzeXVuy8nKqiAr63q2DpkOt95pgyAN2sNb5hDJypQ5VGaYQ/HxPOaQeADNY36Pye07YlDJ2i1rMxfNYoda2w0ufpBlDklDh9J5tPXQxmDMr8v5Vq9fIQvE00EsNpalKWuVmOubv4I9uAjXv/u7eun/iKwMNF6n931kDg2KgqVIvGVvlPcckk62C25YOMt5yr6VYwUcep1izbkXAn/7Mbzvz/5NncDmGl05S5EV9FhplRnmUEHeOD6jv+ZgRFkNNNvG3PTMdpFom9i+1ZWVglCprMwXE/1+o8cdaVEqCQ2DQ4WP6LBuAupUVhYnIt81CrQNZGVEJe5fM94WE+gXjmZ6/nCchXRgCBOWoP1NPTKJV9opAQCKbniu5Dik8pPzHAJO3SR0VuePjWPrPf8V73T7sbhn4+Bvazf+kfl+Cd91ePBf/gU89Pn/cErjOdvixQc+1z9oF1Ev9l5Wx90qU4E7eeI4bj36ELZd/HH1nhK6dJt4+OSidSXKjplDtmU4+30BUEN1ZQ41GdlKSO7jZ9rK3NimVxdhYQ5JgkvjS8GhRdoczZPPNb6I3kVFpfNZ9CVLxhTua9m4pX5IywkfaNiLR/fHIQbPMQXgRz2HKmrxHpJ32SAXkSWTrbZlgjdQbNScdmAb84EB4jzL82XlZ1nm0FxJBB2PyFoBex+3bWPYR9FzqN9YqQH1XOZQprNlJqSKOFuMzDfdyFXiOVQbYK8iCrjQwVvvUE2kkYAF0kRWxpK4HPsgu3EEbfyp+OBFEhxMus3nZO4dqYiXxBwC6ByOMP7GwNxtD0fAvmtrpf13maLGwf0vo3AeC5feGJ9MZDaSUFfVhOSBdoNea1en+WvH3l0v4uH/50ewb8/Oua97s8fmL/8yKtfhqu//G+Z5lTZkPIcu3P8YZt7O6wCw+e7fQeF6P7K2qaPvWlPj2FNfwB27fv+MHstyY822r2KLuwqvTK4wc8bB3S/i6c/90mn9rmLr3TiA83DNbR/u/59YLnBwh0LdOxNzKLIqyeMyXMe+jIyZ0y0ru2jfozquUwkuqPpyMne/ruG7yBxiVlCyR/TJ3NK1ATyivT53wlTGTcIcmqc+iOsnew7Fz9W1TqQ8q9b27yOmss6NQVaW892UDqpFVZn1zJ4WW+CxA+2BN1EMCHg/QZ1lkfLevKb9DwORnsChAVhPrKcsc0hyFPEAknVOPJno2h+zLhBLDf4OZUBRR9PYobYcMEn7N8ffO3r2leFPoRlKpsieSt96X1TyHKLvkd+ya8gOpWkUqOGmCDcdfRjbLvwoXFHoNR5l8uQ5FMbbOvIYrGPemGUOEYuNc+U0BtcE7UNWmEOvIpxz/9E5t8c59zQ9d6dz7jvOucedcw875z50ur7vzRhrLr4CBW3Moqws8esBBhRZYfkoc0huqLC5rn1pjJNdRn/NId1iUESDtr77xrC1Mm9Em2ZGDIRKJQBiehbHz55D85H0/ruj/5IxGQ0yh9QAtCgjuDNkDlUDWZ08bptZX0FgoC0TuQ4BQKQn6iQT0P5WpCRjzCFNYpqBBK9FCdfWunHMeQ71Y1/+5uOhL/wajv2Ta3H82OG5r1uz7SthEPaz9+56Ee86+Zj5fonNT92PDx3+Crqt9yx7PGdjlFu/3j/ookRmBmtut2Pj41jrTqK84XviGwthu/QLr5sHDiEFh+J10DrbKbB/3sqirD4/PjYSQ9l8LSyPOeQKCw6VHfsMpcyhuDlKde/pcWoVcCArG1asel24tE3thn5Iy4jzbugTil1PfV2fk42pVJPGmUO0oRO5VQoolSPVtkwYwCdlDvEYgkebRGukWQSQh5j4mXk/t5IfDToermryXNc0tUnAlKXjpaOLvTZkQ23XChr7MphDs5P9ZnPi6N6ZiKwsMioFMDQVuwAmyjii5xAVElJZ2YgZaM6kXBh8UqU2htQZtlEquwNi0qMJijD02jzjLxqQj9yvm+/Wx21TR9ZAxuA93ttzZDZSgCnjmq8bd5GXhWRorHGExMYv/3vcdfwe7Hz+IWx++kHs+YfXYu+uF+e+580WbdPgmhf+AE8uvB9X3fAu+7eQuERZGe81Ghx3Q3PZtZu+YD5bfvemqYNnxxsvLztx5ABuOvEkdl7yPYO5b/1XfwPvfuT/wtHD++d8wvLDdx2uOfQQtpzzfmVvpMUSDrmffRsTRsscEsZEfK96QlVDWdnpYA6dPH4U19WbAWDAaFk8eRzP/sx3Y8Oj34zPLZ7AyRPH+uEyg3yZsjKZi9KuXQN2ObF6gAgadWW8LllWJmtfOifNHRNJKtm/Tz+3qHo2SWuZQ8y2LJQ5NDGm3AYcEt+7ajoqK0sLPBxSqJbkXq6ZBT9DkwOHaJ/TGOZQfCyML2UOMVvIFMOH15jkezGX6Mc+ET+9ZJ3uT0KGOZTKymRtpo6mLe2rfHYfFn9v9eoRkHU2XLfGgFUGhEqfgEPh+DrDHGoMOA4AdT3DOe4E2guu6Z8PAHwqIVVZdWetGQQI69n3STEn5MOuqwe5choDM2spvvoV5tCrjd8A8KeS5/4fAP/Ie38ngH8Q/v+2j7gxi3TzQeJVxAueWT46KcgEEha9wQWd0V9zxEknanBTH4kiIyvr2gggubLS5G6gxywqZTjwZJ7qaemD+7dRpaEQqQBVsj11LpANWunjwiTVmKWZQ6VOPrkYQ4nlcxWtlwk9dFFDOc2+Xr5f/Ic44etcqQlEOEnmM16NrGz61G/jQncExw6Nb+QOHNiP208+3o8z+V023f1fUDqP3bh4sKC8ct9v9cdyipWysymaeoYbjz4MoE9sRUYhNGK5PwT0K1edq+/VVtvLYQ6hQEXgS6TxCnMolZVZ5otpJUyPmUUmVbPJwpr+/6PMISvdEppuRWy+hYQ5VC+DOSTH6TKeQ8K+yfmtNFRd1GT0FMChm97zYRzw56LdEkFKATeUYTPyeWZzHVgpSi8PG7+SpUVLROlbZQvwbyNyYAlflMY4lAGMHJV/6mdmbYjdfOYxh+Lx8HGmDFAzn5DnEPsylEm7X2acGGbOEp5DADAL7DwAaGZhI1dNtTGAMmgDrR2yPoaCQcMM0gxzSFhP83yZBt3f5Hkx85RkpSI/vQw4lANW1bxbwaEEYBuRlY2tQZcdekw9v7q2URp9jjnUZg16E5mN+nJMYxIeNu7ymlaZQ/PXmne8+MUw9BqHdjyLS3AAB1/eNvc9Z3s8e+9nsfmfvB8njx8BADxz9+/jnXgFszt/avDaDkV/7WVkZYVvFVTnufjS2Qs47gWkmOnv3lfRm2WBA2c6Ntz3R5i4Fufd8WfRFXbuk4YIzWyGRz77y9j2f7/3NX3XixufxCXYj/baT+hzRTU+vzFzSPfOSRMWIGEOyXuqRP6PeO2/ltjy5Lf7vXk/QPO3g6/swu31Uziw6UF97vFf+etY/4u9d6EpCtN+eV7IvqFFNZ85lLBitQGAKA3a2syF0jzD0/4EyLAdeSzEFuK1NHoOhY7J4bOmqwI41GWYQ6RCkPHpsdEaNCrznscckm5lQRYkr1nAbJA39QeWZw4ZT1dhDgV52KghdeYaK9CiYyaPjD3s37hQO+ZryWtABEqn5rVdUytQ6ouJKdjHATL7K9/8J+c5lGMOyfVbwHYri+boNTHZaup8ZkEi3bsF6X9kDkWrAOeb6B+YsKldZo3XPVRb539ziibdHyhQOvSUfSvHaQOHvPffApBmoh7AeeHx+QDe2hzkZYZS89VTIWN0RdRAphYqrVImhlAJGHZTsWhqGjzp8IY7V8nmia9papqMJiHZiRPvYPxtAysrGwOHLCAEAEUn1MGYFIh0pQieQ8YZX2RlxTAhlWp928SW8yk1l2NMXyrd2XTCkPaT2gJ5yBwqfZwspc1jKisrGEBIEi0Bv0aBtSQO7d+L2048psc7Fuvv/QwWnK0wSZy/+XPYWlyDl1ffkPipNLh+d9+J5fXoZHKmYtOj38R5ON7/h5hDshlQr4KRCmWJTgGlXIcMiRalaQ/PksnORXN62RCkzA2mYHPLefO7Jpr+MXp7yi4Qk/fKU/t61MaEulkmONS4kqqAUVaGEWkWL+yv1nNoOqmwac17cdmBh83nGkPqecwh6orI86duJMpJduy5KNFhEcPEZsiotHJfTsJzMt4pajNXRObQEuAQInPKJUAK0FfX/TKYQwJsyoaavWpMl7g5c4HINOuTx+P3L/aPXREbA0TPIdnIhaQg0MFbFDoOTWK8XTd6Nt649E47oqVjFPDLsN8qFL6LHhoU6teVSXQivb8yr0k9RZZiDq3xx3HM9QmDME264Dk0kPqGdZ7nooHMhqrrqceIzH+tGvfadWPb0/fj2bt/DwDw0tb1uLntZcgdbd6XYhu90bH18W/OlcuVd/8sbmg248DefpvqH/6PeAUX4I7v/SuD1wrruMuAQ6VvULvcXNBhkQy/5Xfv/aSaZYEDZzqa576Ig/4c3PrB7x3OfcR0mr38HK5tt72mDqovP97vI654f6wpL4s5NCYrK4d7Xr2OCRx6NUzssTi04V4AwGGsGbD5VNJGx7LqxMs4b9Z3Z3LchSrxTRkL2Tek8irtJJzc67KvUNBIPd5kvuV9aLRZiJ0tl8McagfgkHdSOB56DhWmAUaUjLEptzHSpjVoHBxq8v5B/Yejch2qUHyQNax0PssiNaz+Iu5/qoznUIdyMCbDIsoyhxrADQ27J9PIbpNocqA/LHMobahhPIcMc2gIDuU8+6JMq89pjL2JH2MOyRrQGIkZQNLGboQ5VEuBwgJhIh+Lnkr0fNeDatydVPeQXaaYQxLvnJSQQ/7eetePX4oqaAbKkLdynGnPob8L4Oecc9sB/AsA/+fYC51zfz1Izx7eu3fvGR7WGxu6oM0zutKFrokTOxlSi6GrGpSm7ydwKRcNAU684eZNofrkmOpRTKRdOdEFIGe82o+/p0xLwrm8VvYCmkVzuzRZLsqJnosoK+vUbDrt/lBCJqUIZI1SVAGVnqUhG6aBCbAYB2fon8wcEld/XoC6gS9NCg4tzRxq2g7e97K09ff8AaZu6Q2Qe/6PcRzi+RFf9/L2Tbi9fga7r/4zA2r58w98CZcEDPjNzBw68NQX0XqHE37aJ5Xhum8S5lA0w7PX9sS1ati3lOcQt4dnyWSHclApjcwXkbkMZSv9+OjcK3NIJDr56yRlFyhziIDJiWuNCXVdMDg0X1bGibWcE5aemujEc2j5/k25OHHFR/BOvwcHXuqT1Z6qz55D+c/jLl7oGkMvN55DubFnokKrrDM2WEw9h4Y+MJZxwP8CgTlEc3v0/BmfC4RlA/Sb1+h3RoylpjaJMreN71y8LuXaVSYRSaJtp7UxQLJVuWwzi8yhOjx2ZaWNAbQxQ3LtV6AiQeKNoRVu3zN8PN07uXM0xhyS42OAsyuEOTRuSM33TtFag1MX/q2UOZQk/snmfjAmdFiEyOhqZQ2YazeEYfPqgBKZjVbXY0FIN+jS1amQa9h+/r4v/xzO/eY/AAC88O1ouMwSn9Nl8Hsm4rl7P4vr/vDP4bn7v5D9+46n78Ets2cA9HPx7u0b8e7jD2LDFT+O6cLC4PUtEgY3M4fQapEhbSUuc2vLEosmMi/OVEfS5UTXNLj+4H3YcN53YTqdDhNx8ghRYOs1jHfy4j3YhXW4/Nrb9DlliGfWsGj+Hc1s2YA458emyXEV9zljjT/G4olv/B6e/vZns39b9fLDeLG4AofcBQM23wCoQWA4hr2o6WSZdlwaCdk3pHtXmVs0wVbmkAWNPJ2HdF7j5gXaMXMOOOTo2hdwgLuVCSiDrkYX/OJa7wzbUva94l8qADqDQxW1nJ8LDo0l/WHfMkUd8h1bmB2+Pv69oYY/hWEOxbxrbiv7zDUmxtjKlOoa1L5EOZkM3j8mt28JHFQVQ8JY7dqYO0JVHik4FK8T9ezL+F2KAkX9Xcd8UetZ4LXR99D6EGXMkTkkRaouBYdc3nNIgNEidHLVglnim2gHKOSCk1lAkEOuCVl7e1PsvuPqqe5P38xxpsGhvwHgp733VwH4aQC/NvZC7/2veu/v8t7ftW7dujM8rDc22NQTyEuYdKFj3Sh3/klR0/RmKJONYRJsKs0b7jw4FD+jbeuYyFZRAjAJaLiOn7wxnI+bojEqb6SxtkZekTIBuDork4cmb74JbeKj3E1PB8nKylBBGLSg5NOHNjsRKOg0Ag6lCH9vOtfpGPvNgQWeOpQmyUg3GbH19Phm5pGf+xF869/9b/3rN3w+fvaIAfjJkydw25H7sP68j4YXxs/edncvG7v64391IKs5unM9AOC4X3hTM4fe8fI92DC9ra/Md1Ei0ySyitgVZejl0czyvzlHh9KaPFOlpnWl8XABCBwS2QrJDbniZmQfurkYJiQcaYcXTXDTDmXEFrLMoXFKbe+tFA2vYzv4PPsmmh9az6F5LKxcvOM93w8AePHRL/fvDxtu3eDMYQ6xV5mhGhcy9lMzpK5h/XBYDhw/28p9jW+Pj3OgxCpXm7lintlyPLh4PLyZNrIymsflPQBU2iXXe5W0+y1G/OnGpHc1AWU1y8rCY1dMtGJd+gDsyflX5lCrkird2BOFXL5f1op0feUYdNUMocwoTVYm/ebdj4FD9vwAfaJj1uHC3l/zqra5KNFSa/laaf+5BGmeB4teKz5W19U/Q5lDQX5SDqvXAODaWgssa3beh5kWe0gqcBqYGGcqjj7cA1qz4wezfz/wtV/Qx21T44V7fw+l87jqe//n7OsFoFOvOOM51Oq8yfud0kfQqGtr/d0bfnwGOpIuNzY//k1ciMPwN/dMnoFHCTGdoiTu1Y23bRrccOxRbL/gg8b/o5xz70aWFsn6eV2WPWc9NATWxiEkK1uuIfWqe38O/p5/NXjedx2uPf40Xj7vvVmjZJ3bkwJASfO8gAxpx6WxkH1D6jk0OCZJvInt1b8wdm1LuyRL918gXs/zOqgxc4W7lUWQP7L9m7AepR6MCvyUE9PEBgYcinv+/poc/m5cEBlEGMfUNX0xikCePDhEhdsR5pAUd/PMIRpfbg0KxWHOJbhzLe/fxuT2Zl/e5fd1bUO5mha6bIGCO1KLD6YW1mq2MQgMrxHmEMsaB4bUDALp40bnEGHgN5STApEdpaxmZg6F9b7JMIeyBSBlDuV9pji6cK3OnOTFLal3VphDpyt+CsCnw+PfA/C2NqSWEO2tXzwKYMToikzFuJOPmmSGtraRgpf8lOnGMInoYh+ZQ6BqcO1HkoqaNkRlpTfLAmqrx6SqZeEbTTiXYg6VvjUb/ii/SSq71QQehZ2IusjKSSmUcfGstZo/lzmENj8RyOeG4xATYIwwhyS5lO/X8SaLck56JCG677HfcvuW5/Hhk/fi/CMbAABXHHsOJ31A2Uc27M/c98c4zx1H9e4f78dJ37lmx73YWlyDy2941yi1fNFNz3ib2zMV+3bvwE3NRhy8/BMqLRRQVGjEKXMo1zJXkt154FDrSkz80FdGqK+pvEM2VrrQZ2QrQCLhSCQ3S8rKBHgKiTaPD7Dt65lWnUomzWejiFVAYg4JwJKyb1hWxgbFOEVw6KZ33YX95Dskkk0BMcaYQ8aLp7PdLeQ9RQC2lmIOSVVJpCQqSaQ2shqJD4zMpSf9JMsc6sczZA7NY2nw8Xg6TtOtrKmtbwD5+3iSO6btfivawPL7x+ZR4/+xSLIyYg4JyK9G/VTlA3r6v2tnfWJRxQ0bH1PhGwJWXwVzSMHYsAkughk58p5D3A5ZP6NbNBtP2bTKa8a6DKZeJfp5DDKQ0WuunXOO4ehoDyHf08AmEOwBAURPkvTcOR+LMGW3iOMumqemptZnW9Szk7j5wDcB5Md4ZPdW3Lb/69iBS/Q1XbhW111+bfYzfWBZ5FrZF2iVcZAyhyI41BCrgyVm+TV+kYDVMxX7H/scGl/glo/+GABk1v4hc+jVgllbn74f5+MYihs+aZ4vqvH5zZxrSRiJBZJjDsk6WUwiqzbnazMvSt9kwe8dm5/ChTgMXPWh7F5S7yG6vwsfWeR9kTIaUgNLS91k38ByYfms/v3ynXGf0Q9BQDJiUHnLYG/pGKKsbGnPIRf8i+T79HNlHicpT5MUQgU4L0IuIX58/PtXtAaNegCmBR4eZwKYcxvznMSY12vuBp3zHJKubOa3p8dZ5pCQAQJTShihZWb/Nia3zxlSVwlzqG2auK8qiKlEwU2HUr9GZg7JOMZYd9EXtc/BSmrqoutD12TnkHT9iJ5DgSGrzKGpOfaBhQA1dRkUgAQcSgs4mYjXaoXWux40U3B1xXPodMVOANLm53sBbDzD3/emiIsvuRIHcB7cy08CyBtd8ULH1EJmDjWEzo97DuUXQL4RecMtz8+QT1badqZ677KcKJugcN6AKcx8MsyhpWRlsOCQ0GhdAg5V1bRPgAITBwgTnLByirRbWafHXYUkZNCCkqJCl2VKqMwkMQEGdbkx4WI3NzmmlCnWuZQ5lKDyMvGOnLvt3/5t874KDU6Ebilj75k99Yc4jgXc9LEfD4Ogc9WdxInqPHu8cvzhO2pM5nYoOptjywM9s+od7/sRBQlkU9YWtnKubJsMfV0S3Hlslw6l7QBG13aHCHpa5lBFTDmSrdA1knoOtSD/opHfpUuYQ/IdaYcyNmFsiVY935A6XsO951AwpA6ystTYUrtGybmsY1J+KjGpKmxecyeuOPgw4L2aPYq0aKzDmrQp7/8Tk2Y+Tq22LcEckntM24Crz0NsIyuRVrl0vnVTkzSYsWaYQ3PlHAK8IWEO0XG0TWM9zIi56Um+NfUzs7Zo8tbZ5gVj8ygzV4VpB0A7ofRdJ/t5vPQtwNd+Z6/9DqVu7HOeQ+J1Uc4B0PrrY3iNuaJA4wsrcygicygFGQVYnRqJxMyYWcpxTPi+zTDFxs5diVavqd67r58zPIYJUtrRpT+mJFlua63gVwkonbb8nteNhg2XQd4RDBY+/u0vYPuW57LH9XrEc9/5Ih78vX8BAHj+3s/hfPQdonLXxJbP/zwAYMO1/z2A/lwI4ydrcIsALpNfiGFx+FYZqMY7BZ1hpsrv3hrm0HB8m5/6Dtw/vRKbn7xvWcf+auOSl7+J5xfejQsu7pn72k0phGNz485eN6carzzZMz2v/YDtYVOU40VEa0gd9joZzyFeG7XoIgzvttG94FhXzzTYB5Nj19PfAgBcevsnsp1vlX3MwCExh3gfGMeeZ3rz+0VWxnNAyi5Xs+IEdHTqOUQy3hDsOVTQGMdCj9dHawcvID/N4wwOtSgM21LBoSpYVDgP37XRUBuhQCHrWZEHh9ICj4mEucttzFuXSYFHwKEqIyuL/k+WOSTNKbKeQ6E4rEypRDLtDTgUiQEc5jsVKA1ybAVLZoaRndvLRFl2tPDQAl0ztDEYYw5FH6/ZMF+R4yEprac5RP3ukgJhf08NmUOdK1F0jfoHxuPlPXSSDxMTf0lwyMm1GpoWdW1kNa3Iyk49nHO/A+B+ALc453Y45/5HAP8zgJ93zj0B4J8C+Oun6/vezOGKAi+svg2XHH4aQJ6lEpOImaEWKq3S2zZ+Q8+hcXouEKm3rmTPoVhN5mTFeA61to2oYRNk5BNtqCqoBn9kQVaNsydZGfk9SFLCBnayQKbMoX7iHWEONXWvhxXmUCaRFp+MnOeQyGBSkz0FhwayMuqUANocEPA0kB4lix+znnKx7oUv6Gf3r+9QY7x63jQNbjzwLWw49yNYWH1OGITdwMjkOsYcmrnpm1dWtumr2I/zcMN7PqoVP+2YEMAQTd5zcqcEHHJz5FadKzHNMIfidW03BCJ7yRne8mNjHN+1vUQyJLijzKHEc0iAqemcDmVdZvOdi9ZVutFzxYSYQ9GXjENNA4VJIwbFr6Iyc/LKj+JSvxev7NjQ3wPEvBqVlSXMoY6WQvYcSuWpudBWrE6unWRDnvViC5ukkHAZMD7dkBvmkCT18zyHrCF1dh6nxgLhCX1N52Kr8ylqw4ZRORIlaOlnc3Qk8WiJpi7dHV0ZGwOoF5tSwJk1N0PrCt3Yp53dBByylcQMODTCHAIswFlUodUwuqwUTX6HCQGrVWeBNGUOIZ4DU6xRQ/Qx9mpHzKH5srIU+O0/IEk4CTRMvZtkIx9bfqfMoWgy2q/n5JUmm3yady7/6t/CS1/459njej3Cfe0f4/pnfgkAcOKpP9Ln02RtduwQrt/+B3ho9XfjoitvARCOPfwm5cicp8wN8l2RKNFGxmUiMW2IOeS6uCeRuSjHDt5z33/B1DU4svfF5Z+AU4zdL27Ade02HL7q+/Q5XyRrPyWG6pG0BJgxFmt23odtxVV4x+XXmOerRGbNIb+dC22sgZQ5NDQBlzWvnMRmDafqOST70EFsfwCHsRZX3XznyD1p2TsA1HMSCKycxHNoKWmmzF/p98m92UoxKWEOKWhEDKp0XuMGLfL7zjNJ5/WzSB4bWVm7qCBMz6Qmj0NlDk10L9B376vpNXEN8oHNOQia2wbjTJi70pkNGGMOkaxMwPLE7HogK6MxOd/iJPnVpCG2FtI9TFjUVTm89sfk9vz7C5AmhZMoPW8i2FxWcEWFCtGbtB9r/L2FIZvzu+yWYA7F/Cpe3ymLjdmSvqM5TwsUdr8ke/OUGRU9hyzTSWVlyKzx4bcru9no+q/HKuCQK/vrrmtGQbq3cpzObmV/xXt/mfd+4r2/0nv/a977b3vvP+C9f6/3/sPe+0dO1/e92ePEujtxdbsdhw/u603bUs8h2uDmPIdS87BhN5X5lQjjOVSW6LwbMIe4wxa/j9kUuda59vstODS2IMuiJJOlfG/sniPmuYE5VE40wRMqakwwhkmdTlj1LLCcqiw9H8BclFi6s7mu6U32QocBx2a85vV9Yiza7QJtP0EnhtQTP84cquZsHF/a8ixuajfp+ZJjVa+KTIL03ENfwzocBG77kbhQzgGHDJNBWBFuOpoQcjzyJ/8Z9/2X/xsAsG/3dux9acuS7znTcc3hR7Dl3A/GVt8kK+tKa8gaqxZDyWS7HM8hV2KBEkjuAOhdOdgMp7IyQ8Gmx2kb8ViZK0eZQ6l/kgAxC7DXVUNSsm65zCEXjbddAFX67xrpkuHt/LUc/6axWBd8h7Y/9hWVlcmxZQFeAE25Cmuaw/13dsnGMpXELcEckvlCWQGqoR9uKFLPIEkGZm5q5lupPKbHMM9PR79DKoAQz7McA9TKwkDzL/sy9Mwh8gRh5lB4f+3H5bkNfUc3i7IyZg7JJrBEb9Qp10QKjPbXi225zIBaynrKMocyLCAdKwpMfGx4IMlx4YdsI2ZWSUwSllVk5hFAZjq8yTFkEuEAJrTERhPWQM4HizuI6ucnBSKurqfzjl4LZezqZI6Xktp0Pc8ZUk8xM+De6xn7d+/AzbPndP2fLB7AEZ/v5PjsH/8yzsVxTD/+t9VAvAtV7cYXxg+HQwpTPknCgT5Rl3kzGn6HdZPmiMLX9DiyiDh81+HKl7/aPz6Dsr1t938GAHDFh388fney9huggSRxpxqzxZO48cRTePniDw/+pqazOVlZF5NNOa8lSYQiq3LoOVQuRMaMdsRa5vksfZsFJNYdfBJbV93e758xZKHLOAbMoXBdlsTckXl9rLuwHmPYN7CUSb3tQPt6YvUAUO/JaMyd6ZpLTHrrMzq/oMuG1MIA9QXN44Y5VBom5ZQ97cLc1TS12cNMqeV82iBFx9LNM6TmHCVIvxHBqsFn0et92A82Saosa3LnSrPGylhmc/IdBQWL3rBbLEJynpF67tOiM58H6kIJUO7VxjVaGdzOR7k74vqZk2m5hj2HLDg0akjd1srM00ZKBKAL+9AARWLpkPEc6lUylhnVoTLjTbuTim+iGZ/uKWbj10kI2Tt1KJVNJ3n0q9mfvlnjTMvKVmIk1l7/YRTOY9vj3wSAoZ8HoaGMWorm1vmgsX21zCGVlYUJOdwEkTm0YCrOXWjr17VJG9FMVRwAVS37Ta3SrEdlZRHY0KoFMYfUEyIkDEVVKYKsJmu+jf5Nhe0KJO2UW+mYU+QrsP2Ya33NIIrYnrNBEamc1OXGvr4MJODYCrJviUgLkCtNdTlNtOS9ud/ylW29NJENoo3xZQZQOvLYZzDzJW7+7j/fHy8s24QrSgMqavid6mV6Dl30wD/HtZt+CwCw7bf+Fvb85k8t+Z4zEff++v+BR7/Sy+/O8cfQrAn+EglzSCtFrXjChM1lxsuDE9yx6FD2XQ7kvQlzKPUcko1V2i0KgPGlMvKULoIB/W85X0oq45XuGFPXqEcVYE2omVY9j1LL7LeCwaFgWj9o4+2trEzuy1OVlQHAjbd/APv8efBbvhXBDflNRj7v2CUfwHXdCzj0yi5lZGiIJK6aIpWn5mIgSUxYZ7k5Mt041SwrQ4tFDMHIfmjjjECJHgTol3ZO8CwDtDZMD8tcq5RVtsrV5tywr5Vcs8x6SoOTx45kZWzgL40BhEGrzLakq02kexcD5lCpSUlJ5ygDDmHIApJoUZIHxgRw1IkzZQ4VQ2B14hcNA03BIbqHWTYk3eNywJoalouBbKi0dq5EVwwTpJw3Wiqz4QSqTBiLeq1Wq8zn6WcJ4xX9OWQvpAHABOsd+HrHpvs+jcJ5Xbecj50E+bh82+CS534dz5S34v0f/QHr55UCxkmwvF++Q6JEG383lZiKp118XphDLXcrS9brF9Y/iqv8zvCeV+fvs5xYvfUr2O4ux9U33aHPDdZ+BRqiJK55FWPa/Og3sMYtYnrTpwZ/0+t3LnMoXnNlVQ3e642sLCS10yD/7+pYNHyNzKELugM4ufaK/qMye0kzXvksH8GpnkFu16mlZHr9vqHo9w7SrYqSfX0/MXmAOA8XVd8xjP059b2oDFggMWZNURjWSfw+nS9HwCGWsQtwLrKy/hhq89tMfVyDUkWABBdEBn/jObGI4wDGmENhHN4RmJS8LvEcMiCqb5W5n1NK9LYWkSklfno5z0gGdzgMW4m6UPbHGPcIkQQwIauRTLGyY8++yPiK44jFo3SM/LxlDgkoRICSj4+dXr/ELOLxi/S/E+aQBY1cwnRSlqDPrPFFJBd0OSkhhe4zXKnStm6FObQSr1dcc8cnAADHNvU6ckGoJXiDa3WjYVLoWjRUZU0nuZz+mkPNu8gBHl00pG64ko1Ik+zaOhqElRVYHmUnYblh+6qYSC5GmUNkgFdo9ULaE3OyLCj5lJhDvDAF/yY5L10Hbqes0oZi0nu7ZAAO0/4xjaCLjhO6nUgHsrLEc6j0zaAlYi89Wo7n0PC3lElr0S0Y5lBTDDfDQF9lumbP17F+zfux5ryL+s9N5HXSDlyPlxhY2v2iWJo59OLGJ3Fd96K+blofxqr26Nz3nIk4cmg/PrTtV9E91Xvjl8TckmtoYMgqzCFJunLGlySNGYuB9pnuqc4NNwTLZg4ZM+BoxthkvA8kUhYUJ5KmQxkzh0KyuJzjnBrmUKmPfQBIOYqgF0/BoVcjK6uqElvW3okrDj2izMHYyj6/Ybzo3T8AANjy0BeHG0tlPU1GN6McUlVqEwA81148ZXN4mm+Z4cO/h88wMucaUtPxdETDLxnkb+I8DljmJooSxYR8p4ysjJoXdDL3jINDzFztjKxMgNVJZA4lFef02u8owQDdR/KveF2Uc0xtldKfG6srjczBF71hqEjtzOdU/VimLn7HxNdZWdkqR0yGDHMoz17tx9GpR02jtP+sKaskwXNkNj2ILJ5DUtm21H5MhkbKgE1q+2JPXM9F1sBgY4nuDfOkm278Yj8GSnzqjMzj6W/8V1zevYzDd/51OOeiPKFtYsOPkVDmRgbgK30bQXVl21hmKkuzurZBmch/JHZ95/f0cbdMMONU4/jRg7j1xGN4ad0n4JyLf0jW/kIKKE1NkrhTH9OhZ7+K1jvccNefGvytnFjGFYc+54dSE2CEOSSJ5TSsY22txRq/zOuz9J0CMeZ5RHAnd092CVAD9POU9RyK6yQQi1JjIXNcV8R5nZN93dcnckctBovHW9cMu+a6IegOjOcQkTnU9v5b4fvkc6N3XASHOti9rjKHqjjvNwQ4A8AqRLZH6oOlY6GCyCBydhcKAOT3+EC/znh6zBGZQ8OOps436hWXY3HrdUPy6dblPSMZ3DHfL8BJ/yLTNIJVJ6ZRgcr24u/JuZZ0enY0LglZx9WvK1kfOEeJ4JCVOPbMobjvcQwagaSPxBxynlmCYT0LvlM9k7aiPVGUlaX7PvX/8zO0yK//EpY51O81BARf8RxaiTMe51+0Di+6y3Hu3ocBDJlDEdxpDLVQJkdJrvhGyr1/jDnUNUNwiLtv1MXUVDikrV/H7RGrSdaLxXxuoMO3GYNGM15hC/m4aSqZORQ2vRUtJrIgc4VQ/ZuoKxBXPlpJ6Ocwh7IVfz1Gi/bLhFWOyMpQVKjQ9tJBUGeoRFa2MMIc8l2n78128Oioeq/Mg468DezCvvGpB3AFdmPxxh/W57iFKSDIe9z0cHIscrpuTkIosfP+fmMrZsQyob/eseWRr2DiWnNdKXgYFlmVRoRNvXpwKKBC4K3cW5TgjsUoOBSS1HRDIFUP9TTJ6PMBm2Sia42J3ljFfsAcoo217VAW2UL+FJhDWgUsiVI+5jmUVKniuXx1i+/ilR/Dpf4VXOgPAyQtGqv03HDnx3HEr0a98Rt90ky/k+nmtgzPIUkCuuTaUY+n3LzYWGZa42i+BRn+JscQgY85zCFiQvWG8hF4jCB/Y9cGTlgc+R8gAYfoetW1AtOsNEq+R7+CaOryuCgrlTOkzKHKtDxeNF4AQ+ZQ9AaKnbiG52gp5pDMzz3jTViftsIO2HtHYoqZYVkxoKzfwaCueg4Nz51s4CNzKHYr6+dk+x7D5pXPpz1E/yGROaSmrGnVdpJnDrEcxjCBuwbKVKT3VGjfkG6WJ48fxS3H+j2VlcFlKvmP/AZ2YR0+8EN/rX89+3n51piLp5FKHlLmkE/AIWGMdcQciuautZrFp0zfVXufiqzOMyQre/6+z2PqGpxzx58xzw8ktT4mdmMyuOXEBS/fh82Tm3D+Re8Y/K2c4zkkx2+ZQ/F6j35sNOdIIVMYMw13hV3e2AV4HoyVgObleg6ZQiGinQT7xMwdi7AHSVbEyb7u6xMGUEfJbRP2+mnXXJHryPdI5EzS+TXcyVD34C52Uq7I56V1hdnrCnBeMnOontlipfNxDXoVzKEsm1KLJxlZmUj8QH42KfBEzKFU6ua6Fg1s0U9COpuisI0XRDKdekbmulACsIBUIqlT6XlTx259RaX7VsNepd879XflTrnLZw7VqtLQa1kAoS4yh1iKKHuZ1DdPAdfEU0mOPTKdArtL3p8p5uiewi/fc6hzJbSbcZP/Hd7KsQIOvYGx59x34fqToaNHqpEMF3y9eNzqRsONIf4BTMGz759PU9VEkSc/T8yhYiEm9ZSssAGlJE8SuSSoC4bUmnCOVGti5bozDBjZ8MsmQNsCVz3zR5k4AFxXq38Tm5SZxVOkDUU1Cg7NdaYXs7ZgsicTVkFGpvb1JRaocqwGpsS48kVlKtBjlN7cxkETtMA8UOPLERnfK49+FgBw48f/kj6XAgoFJ0PFsFtZgyJ77tqmwfqf/QTW3/95AMAF278CANETyuc3WWc6Tqz/Rvj+JoJtiemdModUVhH+rxXK4XXulwFo8H0585GpJiBQuiEQ5gu3EpfglvOcvCkLB5EBmAufsAsscyiCQB0BYY6YQ/PazJ8s12KtF1NpqoqFx6mxpS7sysIK5zKTUC8nLr2jN1IVI3lNFEa6lU0mU2xa8z5cceCBjKzMjn3iWoBMHNOQqlJM/EJirz4uOXDIgo/MxOMuVTye/mFgts1hEbDMkDeRBYH8bWup+5Y5VJmkqzMbz1JlCenckwuTPNZDWZkyh7pWkyXeyEnwpo6vcfYckmQtlWpyZCnnepwFyRwqlZXlfIpy9/zU1xZkzBjVW8+hYSImoYbl1D1M1sK0gyQfa2GS5bgGy/fJdZ56zcX3j3kOtSrTLsDreTNkH8HKw1/PeP6+z2G1m2FDdbMBs3Keh2tm+7B7zY2YThMj17aZ72ECRFmHeg4xONTpOpLK9jojE4zAnCb6Ga+nE261vu61xIZHv4mHPv2LAICH/+jf4Du/9v8GADTPfRFHsBq3fOgH7RuS68zRGOcZaM+L40cP4obZeuxb913Zv1fVOBAWvUtiwpiTe/M+if0xW5TGZHdsL5pGSWyf9HkFCYqhUbIC+CwrQ890V5+gwq7Fc7tQIs5fzFRqzPEmgFRybxZVBbERSLvmSudWwM5J3YgPUpSS0b6ui914C5rHDXPIZeZlkj11jWUOyfuADGAZYrCGmw/nArb1HMqCQ8oWKuYwh6KnYcou7ufZqvcsS45Df19qvGAl09YzUphkqaysXwNil2ZuGsHzmF4PZAHCTSJYRiiFE1m3uFOurFui0kiL/OozJJ6uIMlphjlkmJPJHBkJD5X1HCqs71TvBRgZV8owQjPY98n5S9foXDA4JPlB24wU/9/CsQIOvYHRXv4BrHF5OdK6698LADiw6UEy6propBBbvMckl4N1p9nvzsjKXNcoPb0h5lDluTtJTdWY1JB6mEB3TR02k3kkXd+aAEL6GOIhYg1Ay2oyaAGvrY8pOW2axgAs7HUxyhzSCXw4EQjDqwg6apmwInMoSQiSz1DpDU1ePqlK8KbaAFuZjUNHCVrp2+hVkbRk1+Gc3I9jfhUuuOTK+B1zPYeGzKEG1aBDAwAcO3oIt5x8Agc2PoBD+/fi5tnzaL0zFdyl/FvORKx75YEw9pYWZ1vx87LBqux5SymtQLxnNMEdaXcMwCSVi5ig0JbhjZ5j3hBIci4gCZvZcmckk3T7hDk0co+l7IKKzDzl/gZgTagJHJoHgh268lMK0rIXmfESaO011rlSN25+GRK9eXH9bR/APpyP8CGxAj1nMT959Sdwhd+Ni05uN/Onsp5o7F07ft0qcyi5dnLMITHdlPtaKdXFgmEOccc4ZhlqMrSUrMzRZprmUwH5fWu7jSk46XtJAMs10qqpgDPCzKndNMoKkjCJGidmxBwS+vjEtQDR2lPWnFQDWxRGninHJqynItkscqQJkRkrSR6E8Va5LnjE2fU11+J8AbMESMswh0aqtoOxyPVRWqZJ5/Jzr1Z2M8whNqnljTHP+zI3CHMoZV0JU6nrOpRU7GHPochC6qvjbwRzaPbM53DEr8a+S75LwSxHTCe0+XUOiPO473rm0DxwSExoY3cnWS9C0l/ZYpiaEydgX/+4No85nG8jq/NVyMoe+N2fwwv/+F0AgIPf/g+4/smf749145dwxY6+y+ma4zvwUnUtJtNV5r25tR9A6JyXH+9SsemhL2PiWpxz2/dl/67rbAa40UQ3+JC0SQepnJk1r3kNSuOjstzzKfvQ4fOdkRcNmENZyWFfnEr3IUvt1yVkP8ygPwN0Kh8jVg+/xhUTNK4Cuib6c8p4mZFJx9vW+THF+Yu6lXn6XJLGM+sz+1mUSzRt3UtBPc1VsgZlWMiALYgMPjvH3J3DHDKt1EfAIVkPeqDO/vYi/801B9H9PIFhVjJdqGkzEK/loayMwMgu2gr0Q2PPIbn+WbaXl5X1bPa4fpYJc4iNz8eYQ9J1tn+JBc5ZSoYugkPa0TFhtkfmUH8tSHMAeV7BrEQlkxqt9+cv7CmSNToXCg6hVD/EFebQSryuceHNH43/STasl193G3a7d2C6/V5zYSpzSCiAS8nKRio7EVEO3ZlCUqndNYoF4zlUZwwoy9KCQ/xYktu2aUJFdzK3zTa3ziwoUZEbXbvDhGS5LCe9kTMlEIp0s+dQU5vFTeQMrhhqhSW0JeKI5xAA1VFLBVbMUwfvSX5XpdTS84OJbIQ5lJOSeALzCrTRq6LMM4e4Y41ECiiYyTWV1fhWKypDjb1UClocO7wfhfM45tZoVSGlZ7+yewce+Jd/CcePHR4c1+mKA3t34Ya275DmfBvPJ3kO9YyrsHkSWUXShtNQk6Vq1Jwic8hNjWm4SXal44RW3frfL6fPB+zvWrAhtRuXlckiLPcSs3TGTKjFgyS8YfQ4r/3EX4kvK4kyTS1q+VqWxCxlDpWvwnOof1+BLWvfB6Cv6ulvkmFvSLzzzh8CAFzTbbfzp2EODceeRpr4ybWU8xwqCruRifPtVKtype/M78HHUGQSoDQUeAOMqSzLa7g6y93GpBpeUtKVbqYalABJMdmfbnBumO1IsjKp4JehsUDZxXlRrktmyk3IlNSAqaaQ0AXm0BAIkGApx2CsrlCZAwOcE9RDQ2oGz4KPU+m8mVt5Q88NHfTvcz2HUnCIWk/nfDdknsoZ9LYxAWC/Bfaai8a9q8179LOUpTDr/dJKYuIk7KOWvu/1jK5tccOBb2PDed8FTHoD4q7rmch1hrmcSgyjHKNB0c5nDgnomsobWwGRC8tUUjCYmFnyHiMxS+aZ3q9xiWYeSax/4gF885f/NnzXwe/bjMvbXXrsKsEntofzw258/ZcnnkMKCEUGwFIGymmcWP91LPoJbvzA92f/HmWrmfmWwBZp/82hRRveJ5E/Zovi1YFDmaKWJMrKIs4UGvX3Sq45AJgtxsYoPPal2GHCYmT2YG6PqF3HEtloETyHehlvpwwYANqBT45ZYsx0nA2po79Xq58ra93Ex4Sc1xIGf6qqgmF+MShK72PGDAcXRAZ/y3WapeLJ4PUCoiCu/0NwKP7uqdQtgkPDfCeqEiJziCXTjSuj9ErOBYZ7TC76pHt6nveZMRZzokyBQpi31OmVC+9t0xjj81FwiJpOtDnmkILolkXUv94CMMzOZPDLyspibigFXrUWoYjNIZZmDsk1YZhDIyDdWzlWwKE3MK69/UPasnhAV3MO28/7AK479phS2npDaqG6N9azY0RWNrahSCcdkRbJ67vCemA01O1DfVjmeQ5RJUSqHfMkL7xBVl8hRHRYZD1TP0PjCxRlEcChuHBVnQA/8bw0TW0M+yJzaDLaFjN2K8swhyTpbSNVtkVBbbxT5pD9XYRSywnjwDyNzhFvvrJSEpGlBGmHGl8WNlHl16cLXQooGI+NwnZ9k4UotxniDkyyyZ1hMsoc2v7EN/Hhw3+CHesfGx7XaYqtD3+pH4evzPlRUCIch1Zokm49UVY2bJmLJra9Hgv+bWtEcIile7whkKpbmWEOsVafF3imVMtilosoJRXmEHUoIxkTm+O7cqqJ7TwQ7Mprb8Hz1a3hdbEqVpZW4ilR+AatI3C5jnPcq43ZVQFsp1bs2Y6DIa695U7sQW/KzvPnOeuuxAlMce4F7wCqPlk+cWTf6OdElocAiylziNkcVh+vbIvSMof492CW4VxPDnm9b7KG8sxI4nl8holhrvWm0IVu3odgcpH40y1kQfb+e0hGRYmZa0hW5qroL1RUer5sV5tZZNo5armMmMwIsLUkc2hUVpawEAJANvHNYC3ge2eR/KHMZ9C1bBo6hJjLHJJ1W5h7XaMm9jmTdJ2ncp5DxCYwzCHHsrIAik2tHEqPRcCPpu6BbTJc5WqwvEa+7/WMDY9+AxfjEPwtP0yg7szI4Pi4GKAH4jzee2PMkamA5JoJO0T2Gr6sjGxPZaRVznMoerbkusTlJHHz4uDXfwGf3P2fcPLEMcC3xKBKvGF8lN1lE6Z07Rcwq6vN2E8l3rH3O9i4cDtWrz0n+3eWrQ5CJXw9INkk+xgpLPA+if0xW1caH5XlGqaL75gZSjgnnsGhEVlZQXsw+Zx6MRYpZXwA0NXzDall/jLMoXZ4vOpnptLFqD7oYLtD6ntpT8fHMuaDxJKkuMdj77hoBdFSwi3B4E9ZxT1DG5hD3JRB78URWdnoNYykOJMoLVJvGn59N7cbdHz/wJczjKWhdUpCJV0sn+6sZNqZ65dkzhS+KNWuIWU5cgHJU4EqWo1QQZ325pJrybrFsu6utXlUyogadING3BcZ43If14rC23VD7xeZh0MRxCWdIwUYjR6D1k+uRDcs5kj3VdpHjIVcE50rda+RNnB6O8QKOPQGxnTVamyd3ABg5KK77uO4CEdwaMujAMIFHiYikZUtxRwa0zAbRDm8n5lDXbmgN3yfrAxp5FVVmcSnyE3Cbd1LFVylSUUu2NCUwSGROUiyt8rFjjB9C3hudyzMIerilhqvNjEJyXZ9Qb7iHwcaKZc8oU86kSOMM4e4UmKZQ8lERmPiiTxrSK0eUT2Yp8aXZV5W5gLzhyMFFEwXCzmPUjUI4FJuM8TyBbnuZs4am/MimhrRnYmoN30Tx/wqvDC5Ds43UZ+vm7rKGFJHQ9aEOTTJXOeNsF3GFwzWPtdk4s3sLN4QSNVNPbZcPF+s1beeQ3FjxGa9g5Aq6oRYPSEa0x0rsPwAoKjQhOtlqTbz+6/tTc6LyQLcmovQeoeFtecBk7UAgKMH9pgxs75dZUZzJHpLxaV3/ICOOTKHxsfsigLbzvsgADt/vuuTP4nVf28Dzjn/Ypx7Yw84bX34T0Y/R6+VyiagaSWMH/sEfOzKBcOCYVNwa0g97qejL/eJrCwL8s/02u4ZbWFOR2c8F4Ahc0hABWY9jbFEDDjEzKEAFBUiD5aNKNHapwT89xW/uLGXdaTScbeofGMkcWOeQ+PMoQSEC69bhdlAimbM3FmS6Ya/Nb8mvW8BZIG1RpJEYprInOFdxiSdCjb6+WywjAAa0m/JXnMqFZ9IV6eEOSSV4dCq2JfEBJbNvRQqhHn7OnQre+brv431P/txdG2LA0/9CVrvcNPHfoIA6Vm4HybovLNtxbkIgjiP++CHMU9+IIWl6NGSAGNF9HYBiBFURa8mOae+jY9Tg+eB+fcS4bsO1xx6EED/O2h1vuuirxdiMiiPx8AheS/AEqVoJnsqa/eBvTtxQ7sVRy776NzXtSjndisTqUm6j8kWRFUW3jNmylfBHOrfae83SZSVOZTxAcvKygbMoVAcXqbnkDSyYOaI2SN2NiFXZqCy/Svdb7D3IiDsJzrHIcZMx6PnUKP+pPy5ytZAZGtYJnWcqyqSlXVNbeWU9D5mwnKYgkg6zpysbC5zSHyJIrtnMBfo714ilbrJ3iYnK9PrhqwvmFnFnTgBAvsyeUVkAeYNqX0bO4qWxITNrUGlj7kWg1Y6jsS7FUb6Rt2gGRzKeg6FY0uYkzwuHX9BzCH6nZQ5JGBW0p20L3DZfaR8ZuH8KTCHKt1rxLGtMIdW4nWKgxfdASDDHAJw5ft72cP0xbv716jnEDu1xySXI90YpuETAEQ3irlKttmgzPEcMkmQZQ6h6JH0pTyHADKdRkfMIaLxh8vWF5WR2shk5soqIv7NzCyeAg6xRC+NefpS1gkrc4iSG24B3T9BCQItdvx7c+Ix8xawypkrJoPtx1D0rey7DH3dvn5Ix04BhQpN1KJTBRYILBWUwQzcnjuV13QRaa/dVEHGItlkqRHdazTaBIC2XsQTv/m/Y/H4IfP85fsfxKY170Xt7PkZeA7J5D+x503a3eZa5oo0Zp6JMt+XNcvKqGrHGwJtJb5EhYKvBdO6fA5zyPNGITmmFIyQa0Rb32JpSu0dP/bT+NZt/wDX3f5B3PH9fwXP/OgfY91lV2Pduz8FANj+0BfiVwg4pB46S7Owlorrb7kTX7/oJ3HOHT+i0qKlKj3++k/0//KGwTlg9YUAgFve/wkc9Oeg2fDV0c9oR/yq0u4bQNyotolskefbCp12d0yPQWV3cxIbk+xR0pKC/HKNzzAJG6BWDb2BcV+GlGXaFuOyMiOjIoNLaZNblol3XBlp7asI+F9ImEOaxFABQyRjCpCMeg4tzRwqqJLN50SC7x3uLMfnioGaGuI1lQGH5jGHJhZM8MVQxgDQvU0Mx1igiUkqb7IZvJDfcrKwxnyehLBMuqZWhpYmP4nnkBxj7rgOHdwfWTTew88xel9OtA/9Bm45+SRmiyfgFg/jJBZw/oXv0Pm9UVl7iQbFgDnE83NBSUZOfs2h7C1laETwLHwYWLanQDExU5l9kyZKOiYfAd3lgBkvbHwK78Qr4eW1ritNM0PhG5WuandAxLl4EIO1PwINr4Y5tPWhnsV74bt/YO7rGjpvJuhc534flZfQ2sh71RZR/g9gvIiShPiZcUR2OYHwqccWeyTJGMN9NDtpwaGl9us8FjWlzzGHknvPJb+TK6vAoIpgvL7XWVmZdMkbs6ZgcFGvJfrcaAJM4Ifj/XCcq0qSoneBOdS4KspxZQ9SVLqfNGOZyxzKmPSPrG396yOAFLuVjUgYVeKXNtuoBkBPf2xxfpCxTEjqJKwuCb1+M63sZS+dAtmRSRNzNZb6M9jH1iGSa8l9NElsDNj4nO9P0zSHmk5oa3pdH6IJf8oikvGa8YfrMZWQCjAqDSjSxgvcRVDHS3uoUzKkDqoKuQdeC7P9zRYr4NAbHOVVfeU6l8S88+qbsdNdihuP9bKbMqDN0tGrI0rdmKxstJV9kigKfY5beleuQ9d2KClZ4W5lVSIrY4Seq3CyoM1rs23BoXAjOo8JGtvyG9AWs97ZFvA6mc1hDrk2GlLnqj0AbW5z4FCWClrod6fvyVWP0+d5YzYj6RFg9d45WVlkeglzaGhkasaTocungAJPrqkkSIz/FNXnz2Hj0/C4cdMerW9bs4kIH9q/7zUwh44f3g94j01P3IP3bv0PWP9AZHjs2bEFV/mdOHHlx/puIr4dsMLY9A6I4JBeM+IFlOkCpOyHMgEEKfi3tR2pot5fNgTcSS1neMvB10LhG6p2xMR5MJbEl6QkILMrJuqd0ktAI3NI218vsTCec855+MRf/t9RliUWpgu44wN9hfj62+/CLqxDtfnLccyw5ofLYWEtFUVZ4Hv/zq/gPR/85LKYQwBw9V0922ms6jiZTLDpnLtwzYHvmG5rHGkb8LQSZplDltUi4KMvF1CiU4DG+D7RMUTT3GUyhwhIKH2nID/P4323sQZpl8acFAAgphsxh3LVXD4HQASEAKi8owieQ3Hunug1INVIoPfzYaNIA7KiB9SqcE1Vc6R38zyH+Dirampfl7ynKEtNXIyZuxtu0vvXZGRlVHxJQ+fbSfAA6uZ3K1OGxISuFUoSgCEIwIxFuZ6qhZFuZcocqlV6KF5pKftIijEF7GfUs0X4X3gPHvnsv8Wxo0fwwj+6DY9/63ODY19uLJ44ipuOP6bjMoCBepnVmvQMvPVgkwiZx323NHPIK3PIJuNcfGDZnsoSJiQTpPMWW0FnwKGRzqO52PXYH+tjZg61gY1R5hJ6DFs/A8O1P+uRlFm7Dx3Yixf+8bux7dmHzPPNpm/giF+NG+/8+NxjyHm19F8m57rJeg4VGVkZ+2N2KKN8tT+QueMAoObq6f2miTLtIwbSs0TiBcRuT2LcG7355u/XJZTVTeAQMzrkPk6vSx+8sISpqXMxXf/cca1Eq7Kusf2ZAgsENBp5sDSRGWEOyZzY+AKuKOh6i/efsJaZOST7SXNe5oBDOb/IyKwdXvdGjbEEcwhFOZC6yTybAj39sdEaK+AQuNmCBUZTNg1/v/Uciql8SdcSd+vLdfNLAT7u9MrgUNs2FiQ01hd5cIiLEv04Y7MhBphjR8eEOSQF6IQlqNYqyhyyxaCc5xCvxWMNKfTvLn7/wHZiBRxaidcrrr3rh7DHXYwLr7o9+/eXzr8L57m4kPRa05bAobg4cbgqMn1ykTrDK1VfNouhCt62NSqk3UnCAkJodD++TKcU2fhIkjmS1DA4Ybwm/Axw1PIbsaLtnW2Lqb4/RI1MW9nHhH4Oc0g2chkzW2UOJVRQGfOA+cCyMmYOjUxWM5IeAclmMbdxkIk1dDuKXhUL5u/6vZmuDoKOS5ToiDkUK7D9+/uFyGeZQ+G7aDKVqqckFfye1NcnF6/sehGPffV3sn/bv3sHqp+/Cc/c+3kF9Ph8vfjIFwEA697zAzrJp55DAnLpIpwass5pmavsh3nMIfptG7dgNl/crcx2UovVGwBawePHfM6YEcAdRwZBoC7/CyDSoAGgqPqOJgjyiLDxeLVt5l1R4IWLvxs3H3sEiyePAYhV+/RcvhZZGceacy/AIb8W1YVXz33dZVdej83FtZhV546+prnuU1iH/di+/pHs33W+SNh6uWrTIAnohOm3gIlrUQfvJe4YxyzDecCHfgddW6nnUMuJZri2hdGWVsNju1/7u3fCGBFZaLmgDJ40uBLO3U+keUCVNBZwyZpiPou8AFJwqHC+XwtIgpwCaGn76DRS1o9h82beI4lL7eJvxZ/B84KCQ4nvFoCRNcgCjuhIVpaRVkRvtEyVXNkESbcyN5SVVdM1+n0czFIQXzTxSouV4WSTn6wPs8UTuABH0R7eiaMH9+Ba7MLs5WcHx77c2Pjgn2C166+bNhisiw8Ndz4SWVlaye8B+uHvpbKyeRXmALpKIhcNqWPxof++ZC6gFvcqK5vj4cN+ScthDi28eI8+7o2jI6PJ+R7o0EINsUTyzCG79htwCPa64dj30hZc023Hvq1PmOevOPAgNq+5E1XKrk5iVBrN4FA39E7MdXJkf8zWFQYcWg5zSNbkAfCTMJB9UQ3nwKysrH9NLfIbJ4UXC+SOhbD2RplDrf2toueQ7Pd7kKxklr2817HnUKdM9zHTcQYWKi/gUPxcZaA46n6bAYe0+FTFtVGKmJGdb4uVaYOIueBQNdy7cfEkDe4APWrbQV5T6Xws3nAp0ANYqblhVhErlplmmqcl+yL+zgFziOYx7tYXPYcIIPfMvO2vrZzfpW9rc8753hljDum+iBhCESiKc0gqS9Z5WOfY5F4PexqZt1I5aZ+/pMWcfDE+Fx01q+kLUVEJsSIrW4nXLd5x2bW45P+3Bdffkddhu+tjlUXaQoshtXcR5R14ImRQYg5GlIG44ZZKtngdtCGp70rrOSRof5EBhPhz1SuhqLJIuo6XwSH2mkA9kDkoOJQc85QTDDXEtsyhQmRlxQTZri+gSW0Oc8iY7KHQMafMB04wuD21+eyEOWTaiDJzaI7nkMhSVEKXGCtLFDnmUMI26SvwYugr11Gc6DvkpQ0tMYdk3FL1bJt6yBxahqxs45f+De6452+YBW3rhicxW1zEkf27MXUNju/brr8Zb6781m/hAM7Fde/6sAKB7aDiF6sTAFBKpV4kMN2wZa5c8xEcWp4hdVMSc8jHJFU2BA1tOI1sha6bmXausca2EWjKm6z3f7SAMLMfOldGg89EVtaEDkevpWqy6l0/jDVuERu+0wN2adtx8aOZB7SdSqxZey7w/9mE9//gX1vytQs/9Qe48r/7pdG/X/PhPwsA2PXIF7J/HybytX3ezIv2fkIy39azAA5VBA6xrGzZnkOROSWmsuxl5Lta5/HWVbaTX2nn2wFzyBWhnTSznkaYQwyGEHOoNMyhSjeijmVhsD5tnjZtso5U6bVeVNE8PtmYq2/aKDhEIBxJk8feI+eH53UjUyqHcz//brHynmEOyfpMbDSVxBXjnkM8F+kmm7xa+Lc0jNHwmsnCavN//SxlKcyU9ShMnAgOBSBCxj7GtujiPLzcDly5OPbMl/Rx28wMm4RZL3LepC2xOSaXube6ZgCkpSFMkdSjJfUckuRQ54JpPL8lgS1yflNZUW/+LZXx+UyXpp7hxmOP4bhf0LFwK3NlEQXmj/oPYT441KXMoSVkZboW07HsemE9rvAv4+RV3z33GICh7wp9MICQbGaYXdlOjloQqQJziGRly2AOye+Z3m+a5Bdxnh0DbPk+iC2/e3AorsXz9+v6fmF1u1LnPgPeJPdeKlcsq57RVnZD5hC3ZLfMobE9e/SvkvNTEXu/SICn/l8qlsneMKSh3MRGipiDNUgKFyk4NHYNI1l/E1lZ7j0KojBzKH0d/e6p1E1A/BTo6ccdG9dIgXghYVbxdZlKrfj7o6ws7VZGaw1bgND51dcycyiRaU2NIXXi3WoK2LTnzjGHCCSV+dIwh5IiMee0BbqBHFrm3iowncoqMj61AJTsVfn8jbHENehaG9hOrDCHVuJsiave/4P6WNrr9jTXZi5zaF7HFgAGUQaoaiCGdiE5mc0W+2oTt2Yl35oxWZl+bht07kvJymhhZa8JrvRGg9QoeeGYUIIRmUutWTxFziAsrFxS4+foSxkcYkPqBWEOJcmtyyQI6Wf7BEAyzCHuXjGnmuarVSh9R14Vq7Lv6cGdIRNgYJqYtFhVyYmP3crSDRO3f49G2Qv6fvUFkeMeYQ4tnjyOrUJJb/rrT3wPDh3chyv+y6fwxJ/8um7QPH0fL2AXHdmAF1fd2oMgYePTpcyhABqlsgqlpmcqlLqh6/JSQg7+bdmbhb1PZEOgiUVZmSSPvarksZWVRTCAq3+Dsah/UrwOhf0gMpFwQLRhi0DRq20zDwC3fuTP4LhfwIln/ljHzOaHywHaTjXOP2cNinLpJe7Ka27EOy+/avTvl111A7YVV2HN9ruzf1et+zSVlQ03doN2ywF8RHjN7GTPEvXlGHNoeZ5DzBwCemCkQpeA/P08LmBLWg0fA4d0vsj4JaXBYC37fUiSVlZTeEfecWVlzhdf+yqdBHljpCBJUaIowm+enCPttjLmOWRYPylzaPgeOT/cWS79DP1uqZJzoYJYhGlED7QIJrCkhLtI9X8Pn5VZgzlJ5Y0xMzTkNdNVUcbGwd20ZH2QJD76SFjm0MCgl9YHfrxULJ44ippaJEtcsZdYMo3dl0TPwSjHS5nLVdKFTufxrh1U4wcRwABtZQ+bqAtzKAIydo4As286kpUl56MICRB3PhuLTY/fg/PccWxcc6eOJXoh1QbAKkJyBcS5OI107dfEbo5HEhB/Z76GdjzSA3mXvne+3xBg5Y7JB+t4XdcaKQ1AhYWcZ0voVsZSmeVce3Ls6f3G3jFAXlYWmUOyTwmycURZmTY4SYDcsRBZrC8mOvd1mQLiABzq4p6WQTLjfUlMetvZcgnPIcSiH7P3c+CQKZYJq9zZXKIj5p78xvq+5JrUsfi8NBKw+5YBc2hutzLuBp3f13fFZCB1E8l8CvQABP7R3mfqGr3/uNkCYK9fe8BxDUjVAHwfdPp+yonIg5WbVci1Jd9lmENdbbxbx5hDvokFoKWYQyU9z8eqxSFnmy/xsZc+GOrTdea7ZrQAxHlZ7jfniHvp2LSoS8f2NogVcOgsj0uvvAE73GUAwk0fNqmVr61TewoOLVFh9rKBo8mPq8EiS6pDhcMTE8V1tSaPfLOwVIop2upRkJksdbz0PHtNALFi3BAYkztmYe9w28aurS1SzrKyTLUHQLbLkB5jmHSMTtiV2lUq9Z/hz7DtqWmSMdIja+7KyUT2t0yq9wowEH3djCdB4QELKIjGXrtoFHHBBkiWljl3rDHWdt7SNS2AQ2aTNcIcevKP/z2u+G8/hKOHD+jxyXEtHjuMqWvQHtsXf1eqatjKfIO2DMmOyMqS31bNBAUcksquyn6GLXMl6ZLq21x/IK7UF1PafEXvE9kQsJnpUswhps4XPrbu9HPusRy7gO8lbhfLzCFZmF9L1WTV6rXYsOb9uPKVe5TFwm1IS+32d3Yuvi+v+xhuPvkUjh87PPhbLpE3zzPzJ/XFCOCj3GfSxcaXq/Q91pB6mAClYWVlgd0yO9lvYKnzkczjArYs23NIQAU5znI6ZPBAhknJOIND0pGy6kF6Zg4xe2yWYeUY41S0RnaJYgJXFNlkOpWUDsZKxzmZTM3rcu+RxIXNw3lN4t89yvks44//zY21VEPqSPtPu0j1/+lZYAyGpnuA1HMoxxyaLoiszI5JEtGmrtUXTZjA3KoYINZTyixlQDTx3AKAHRufxJYn7wMAfOdz/wH3f+7XAAAbfvFH8eiv/C/ms17a/BSu9Luwqby+H1dbh45FljnUNeyRNJRPs6yEu9zNk6kAcd1QeaOsnwrwT7KyvThHkMTaMIcScEhYCCiAJSRHB57+MjrvcPLq7wlfMTPMJbnOBCjihiP5rk127TfMoYykSSIyh+Lf3LZvYR/Ox7W3fXDuMQDDYpV+Bkn40s57wAirkqTUvbcZSWOWxRyKn8X3W5sUEH1RDeZA010Ndi/X1v08Hz2HhqyOXIivGjO3c14wzAgBLMhgu0PaIqVck5XnzpYjzCH9jkZBL/b95NxAwQ+WtXJXMMT8oVMpKDOHIlNncMwYzm3mb4Y5lHgOZUB/fk0KJsUXyXjKgdQteg6Ny8oKkpUBcd0YyMoSqVX6/W3bDiSwJTPo9P3TgfwKsOCQXFtqlE2dcrsm8W7lAjZfH9SR1FM+AAQpmbxPwJ3+A+yxEnNIZWXMHArXvuwhda/cNqMFoNJci/NlZWoyb5hDK4bUK3EWxs4L7wIQLswimoX1N3KYCBJ/nLUXvAMAUB/Ykf1M1mIDtOEOlWwXQA4Fh0rSvft2gPaPPfZdre2R5/mh5HwX4h9tJbtNEh8JSTDYmb9rrZEaa619jp4P0EQwTFQFgV7weZO9dBJnEKgZkZWZdufFFA488eZN4Pi5xhc6kepGbow51A3p8pxsse9NOKD+eepY0rm8KWrc/MdxCDgkzCEgbrJ8kkTr55w4iKlrcfL40UEXGK1eUFWEmUP8WdyqWKpiqZ+UVsvEcyMkRwyGjbXMlWR3XjVBNkWNL+CDn1TqfSIbAmY1WcPbeN3UmQ2baNwB+1sOgij2Elppd6WRj7V0f0fPodcG3Cxe/wO43O/B9g2PasKWAm1na2Vm7e0/iAVXY+ODXx78TatzU8u6yLU/TTdormt78DFcCzLfYkRWpt5rc8ChnKH84kkL8qON83hqupiacKabbmXu+KYHYUbmUT4XAEkOEO+dqgqeQ2EjysA+kDCHEqadVOIZQHLslzRgDtnjS8N4DhUFHElJ58nKDDhkPGzi86ahg/xdwKHsGhTXZ/m91UA56SIVPnjAcNRNtmy6k+o6V7blNZNpft1QI11h8BTRU0MSICdyykSGpOeAmxroWhHXtz1/9PfRfvbvAADOe/LXcf5Tvw4AOHe2BwsndpvP2vHgZwEAey/73vCdTZirLeO1bVPPw5QhS3sWYuUtJSuTqnb0aEnWz7IyyaGCfXR+FRDqGpXo5GRlCmwtISs7f9e92FJdj+r8d8Zz4uO6Kb+1sKnEf4j97+yX27Vff89M1Z8jJxk858RO7Fq4Dq5YOuVI5X8aJOHLFbmynRzJM7BFhQmx0ovleA7RPcb3W5vOJcTkid9twSFmWLSz2BgFoLliCZmlXrNFhcp18F1nznMqZWN2GhCYQ856vOl7DXOoI3BoxJBa2UJkA0Gfa0yAE6ZO7UtjwgzANLGR1vRpIXjUc2iOrIz3FKmHUI4xx68Z8xwyDS8Sqds8WRlbVrjM+WFWbPjQ/jMrW3SOa0A9AIciA7IxoAbPiRLMZJdra/Bd6K8f491K946R+DVDWZkwDntZWQYoGjCHwviDdDLLHELXg7EEQvIY02LOqXgODQypKW9Y8RxaibMqVt3x4zjmV+H8iy/Tze/Ez3qNsEx8CVCy7p1X44XiSqze8e3sZ6aItAGHiE5ZB/qrGFT7zpoBmsSHkk6t4jQzbQU8r8126VtNhgFg5unmHoBDcfKQqD0nGBEl75raIuWShJaTfoOXGc9ohwBEUGEBUVZmKZ128rDMoZjwmc8u7Gtyps3ACOU4bIhF96y09gklgRRFhi5vwKFEWpKrHnau1M0xR6wUxEVJjHW7Nm6AGwJ4+uNKNh8sEVOpgvVxAYN+bU0Gv8yoISPEAGbFyi4xh9DqJlI9N+jzBpvQSsChZTCH6Nr1RdEDeAn1VTYECq7JBihMzwwq5toaS3UZgC5m2eiG/klK2y5KI9fsKMnqMvf6q4lrP/JjAICdD/6RsiBS5lB1mjyHTnfc9MEfwkk/wfHnhuCQT8ChucyhtN1yFzpxyG8uXWwqYg4lG515xv5AyhwK83giV+N5XNhmaTU8Mofs9yuoQGMflZXR/DPxi/RYmEMTQ/N2xcTMocbPp7BrlWxyGUDi+y1NplWiOwIOyTmrfd8AwbxuLjgU5/Uxz6GmFCYnFSrmyMpM6+kAaogRdNpFCoBh88YhWyCSwXJAzqOdN6vpNAs+Rq+UKIeR5EcToGQNGXrSxe8aeG4BKNuTmMj67FvDyknBgjUvfB0vuiswueSm8NkzA+iwv4aAHx0la9wZUqKiJGNZzCFkupVJElHY5FDniEkssgmYYLqVZc67sjrn3PPHjhzEjYvP4pVLPhrv39Z6A8U1fmbALJUrJjFY+4ndNM+Qmuc2if63Wd76sRzmUNENmUPZTo5d9MfsXGl8VNLEPTsWYg41JPHv2gRcyVgUpECN6eoUwCGVqOf8ktKxMKtbAIm2Mcl+CkhpAk4gQ+dKTLoMc8iVvdQS/XW3VJc82aeyVE+lSAkDNO7DIngfAZEgYaeC7pA5ZNez9Dzl2pdL2BxFioLDHELCMXMo6W4Wv5DAoUTqJiD+AOihcRdlKruLa5v1HBrJRWgN6H1E8/MYNyqIMmNeg4Tx1ei1lct7fDvOHGJ2nSNZmdhzKHOIwCEGx1PmUKXMoR5wHTQHCJK6QXfSthktADEjfcluZbJGFn0R3HgOnaXFyzMRK+DQmyDu+OSfx+r/70s4/+JL9aJfwKyXlcmNlJnkdl30Idx04knMFod6/VTLKhtuqWTLxqCW91ZUUfSxQpfr4gQQ+h4MytxSsjK0OImYCCzyRqKwi4hWtOkmn5lOYJY5xItnRT4x/eQzHI/qszMTgbJGXGc6DKR/57FIcIXZjYJD1pB6rH2kfk5ICkT33IRuR7FCaY8v14WlNyLsP7tJwBPu+ta/v6/o5FhXspFyXaubXGEOtcQcks8a8xyKUrKZJgUyrpaSijxziBY+Ak0icyhZbMMmXyvniefGvJa50TdlHnMoVHhQquFjSn2VDYFsPvWch+/NgUNGnoIWXkGeCuXYprcb+idxhzI2c7XMoeG9/mri0itvwObyepy34+sofZ+QFAnQdjo9h05nrFpzDjatvgOX7b138Df5LarEc0jmEd4kaxIg11cAHyMYH+bbCQHJCWDGRre5MDKRVK5WkeeQj55DfSe/ZTKHFBwK9wZVsYfnhsGhmh6LjLAygEXKHGJwSDby3vUtl2VOmGUYmblkumnt3JaGbNBFRmpaIGeAUU1cRmRlDBpHeS0z/mKnmMFYqFIpLePFCFqBRDaiJTavfn/CHGIQGUiScKL0p+CjJqWIzCEXGAhpNbh/vU1QJbhhQQ7MdyQ1KNDqPFYQQwcAThw7gptPPIGd676b1vnaVJijv0bdFyUS9k1kyA6BWyg4ND7fubD+mQYDAFhWxueXWYS1LwHPyRE9Tos5AbiZ59cIAJse/gqmrsU5t32/NfYlYKKEFFoi80fX5Rw4lKz9zBZSM+2M1I3XZT2OJcA2jhzjAohgToGhlAYY6eRIbLLOlVggH5VRhi1FQ+ss328deUv1H5aZAxOJl3m/7otDcWQZXSgNq1vmgHpm9gI++c60Xbh06Z0Qy17fG65pAU4bKuzlQvZ/DLjJ4zHwgzu0smcnQMANgUOpN1CRXJMS85hDpclLUlnZ8LpXBhOtywPbjiL+7gPj9nDP5j2H4rxufHBoL8jNYXJdKPV7ATQZCSwzIPUarGK3Mv49hRE6Qby2+Lu4O64BgTyvDwS4UtMJzaO6uD7IdcnMIWGcxrFawLXs6gE4BGDQnRRdLP7O9RxaSlZG16rYUYx6P72FYwUcepOEXNxrLrkOAHAejpnkKre4T2/6Xqxxi9j8eMZIVS52ApcKUDVY0PDQclMMqtH2FWcBagxbyHgOhSS2jjT0Hkkfr0LMCBCaEVCERJuc+goANkFgPW/X1gZgmbB8pRiaKgNx4c8xJcaooBLpJM664q5k5tAQ/AL6KrQwbPrxDxcKEyEp0GpyqOyKt0HKNsppsy1zyG6aueubvL8L3zdm0lh4AmuqBf3cMt0kKXPIjtHIcpLNNW882XNIFiL+LDZ99oEl1iYJojzvugadd6gmC+Zzci1zZfEVmcyymEOu1MUupb7KhqBLzn3O8LbOtDXmqpl382Rl7cA/SaRkxnOoqNS03DCHTsPCuOeyT+LmxWexCot9lUrAoeWcyzc4Tlz9SVzrd2D71g3med3AqV9LkiTzvCgbVbmXfWT+AXG+VVkorDQVCN5r82RlIFmZgE4nj/V/JJBf5vFInbbgZM5EtH++B5Nd1/RjkY1tBrDi+3FKzKEpamWx8Qa9KCtjmF4zKydlDoX7yABIzBwaAyeWYA6l0qT0sQQnGI0PhQv6rfh+Ya8nCfZ8GXw2gdjSMl6MoBn40PFl5ymbcPJ8KOOPldxWf48UfDReKdKCu4iyKT3Psoa08fvMMQkozizJBECIYEtDjzszp2144ItYcDXWvvtPmyIQS404EZLj7lwxKILw2lsl4NA841JflNoYBIhAHzO+DFOJKs8ieRSWBtoaU2fXOQlhWOZkkhwn924FALzz5vcnDIyGHof1t41Akcq9cy29k7U/yuCiX1GWOdTlf9ul5BwSOa+WMJB+HD4PDuU8h5hR17myTyjlb8sAhzoDCJEsbFBkKs3zPF79DYxxbyorm+8RCjCre2LMwnPd2aJk1f5OvffSBFOR1yVFygKRkWmaF2RCgAU2Ll7lav3cnM+L3FN9UxPaG4GAmwxzKLI5BBzKMIdOQVamr828JzJnCVAZGFJHxUYqdZN7NgV65Nj691dmTfEjzCEGd+z3xzWg71ydmceIeV9VLL8aslfVX6iYmO/S7ri83wbM/WkKHi0bUtsigfPRZ835OIekTGuVtRUTVK7r98ZGVmaBotidtBkUt/U42Qt2CUNqvtbShjVnqyfmmYgVcOhNFtd/8E/33W3QX8SRgje84G/44J9C6x0OPf2Vwd+GnkNVYA6FSrbKHAI4NIlMFNb2swFz1nNIaIZlHkmXKNEaQKjO+UiozGGI+tewG3n29uDKyoQqG8gAHHxucm21uQrBVFA97jmysnZUVmaTCMMcWsJzSJMCYagIXblaQOfdgI6fq+AxoMCtNnn8shjL+zVRo3Mn59n5aOAm3ildO9N2nwNJQbL50A4v3H43jEtlc8QWQtfSY1uZV9BEGEJZ5lAH3zVoUAy6QbkMfV0WiImfoUtkWoNgWVmQ4qXUV+1Wlpje5Qxv2wzVm6tm7BswCAF++Sli4SnoajyHJvr86Wgzf9GdP4LK9ZVJX0Tm46SLTJKzNS7/wJ8BAGx/+PPm+S5hDilNOkNFTuUDev/Kby5gvBjXYrjRWYpFwGbnygBNQf4uerQI2yytho9VV6MEOTKHgMQDJwRfp5xETP0sghk0H7nSGpk2GeZQ53qJqNxHxstN77dhMq0Jxcg1Fk1BQ+FjhN2pn0f3TmTg8SadNv+VZZUBLCub73sn3ZtUBiW/KZ/vDMNRCzS0STfMIQMORXApBR/Zd0WvT5JNqaeEbvLzsjL126C5m5OMgpIHBoqEKSJxcu8WAMDlt3zQSOzYT0/Wr7at+yS26D1nmEkjx6HfLz5vnbR1XnpeVyN9lWlFWZlt9GB/z95gvJOTSidpCA5Fz6Fx4EDO52SyYNgVqc9Q/xXMHGpQjQBhubW//4DaSOLSkHlkzP9vqRjbJxYJkyxN2LOdHIlRN2B/LENW1rZ19nHqXYgEIOBx6Llmhk9tZWVZv6QkYsOAMhZMm8Yk+ywh5e9mkKFzJVbJPtjIyqqwPwks7SWZQwEc8sN5v0jkScrgVllZadgyQNxfiGxRpKD9+xNGYGu/kwsig7FwXiIAiZoO53xFY8F8jDmkzHpmDhGIOsYc8uLfVU4s0MDemBlwaCC3pzU3vReYSRNzGQK6pFkMMUL1uFimhajI8K31bjWyMr7PmTmU8xwi5pBcPwP2KjGHAKBImEO2i2hlupPqvmouc2iJPSblDLLXGPghvQ1iBRx6k8U551+EzdNbAAR6PZl3pXH+ReuwZXIjzn/5vuEHJZOOTkpSyU6TFep+Je3Mgbxkov/c8FgMypLNUhp960zymsj4SKQeP+PMoYlJwljHL9KGopxQtWdEK55lDvGCZxc3c9w0FomuYqkIyeC4mltOzabadt7ImL5KUiC/F206GhRD5hAy4FARAYWUvcJd3wDLHAJsQqhSGR9lZQheG0090y50uoFaBnMopeVrJ5QuMaSWz0iTL2LDlGgHCTCKEhVaTdJ1IyGLjG8GLXPlnpuiVl+g0WCDXB2Dpb5qu0ySJPTvidU2ZSaUeeYQFKgcGoVL5Ew89dgCs0/GJdeIGFgCp4dSe9Od34P9OE+/p1CgrVZviLM1rrj5/djjLsZ06zfsH2QunUyMX4tWwgxzKAEfgxRGk1wBd4k5lM5DXSL7ScMYzEqFWY2uh/N42slP7/k5sjLpGMTgUEr1l++RmCbeFMJiGzKH4vFas+e4sS/oPsoZ/eeS6W4p5lDC2GOWaM6HgcEzAV35XJnKeaYKL92NKgzvVwaxr9WqqQABAABJREFUO5SRrk+VauMBQWze+P0Z5hCNj9dj18WujCn4yAlvV9N6DrkO5DOstGrccyjOw6kvjXZAQkwk2PiZz001XaVzsbINEkmgb2s1/+dkTYDFNDlsAqg4T6Yixw+QPDIpfKSyslgVr7TbX5SSDRMqCTFdnSfJD18chjWBZQ5FcCr6DNXKdGqbWZQrpoeYrP3sEcJm2mnocym7dYmKvR7KyD6RPahyhuGxk2N8LzPqOIE+6SfLZA4ROMT3QWv3ETrv1Az0WfZOa5hDi+Z9Wb+kJCKrm/bnzcwwN1JAShhivN/3xKAyTPiiNwCWcepeI2NIzcCCsoUoXDmxxsaFneut51Byz3a1Ah4d7YH6z7UAh8SYNLI/5hxzKLw2M68zu0h9eubIylKpm9yzORb3mOdQzCUqO9cRuMPBa0Ba8GXPIbkGq2oaj0UKrmEsqb9rOcIcMmAvjTHXDRoYApUFsUGzzCEda/h+sW/wM3uvG3CojN1JfRMLGcnvavKyJbuVRXCo32t0Az+kt0OcvTvxlRiN/e/8WP+giM7yY2joK+s+ghtnz+PYkYP2D8mkI4wDTZKTZMVVU2WiMKW3NBNvhlLfRM+hpcEhlhMMN/ydLvLDKm2TysoMc4jAIRBDIVftQb7iPzgu5MGheYbUfhmG1NKSXsJUbXI6fEkKZLEQWUqVrzYWflhh8QQoqC9HkS7GoqcOm+akQwMAqgY3EaQJgJgmp3xMCcOCj6n/7MawiHgctvocv49bI3M1qWftdEOpTwBsBGQTiqp8zqBTAuJCs8Dsh7EgSaS0P06pr7Ih6BLJW/Q0ifTqtojJvT3OuPmazxxKEn0ChFrS9bMJtWyqTweltqgqbDn/I/qdcr9MsIxz+UaHc9hx4XfhpmOP4ORiTAI4kTcdkVINPT3ma7d1BYHxwvybKCCYAhPNEiyC0seN8qhcrYvSjLFOfuOysqHnEJB44OiL43OcREwcdQGcwxxqSYobq6uVMXBn2aWCbJlkuk0SujRSWZk575n3mE5/BEJLsDyOGzro3wn8GIxFEvKqB550011Q15na0vzT+ycmCQRC0ZrJXnPMKkzBx67mx3M8h1TCJB41iScdAe7MnJMofBt9mIhF1M9+wwS4qqp4rTY2SdK5dRbPG3dLjd4f9ncVv6WlPYf67xGTdTWUJvZn50r121D/DZ0jYvtvkIlrCvqK6eq8Zh72nFjj2cgWqo0vUmyDLt3chnNvuvYbj6Sk2s/hk/UdwNJgGx+Kq/KeQ128HnIM6GwnR2LU8ffP3HRZnkOc+LYZiZnpWoXUB8wyrowUqqHGKCBmyJxW9srqZrZK01hAqbNzSvSGivt94/GWSHRKdBE4Lce7lbXt+PoDWPY+QOee5thUVsbSOpEhyt9kzGy2zjHacQ/2Hhd5UerJZz5LjtvFYmG6Z3a0f0ylbnrPJkAPEH+HorLyrbRQqEHgjv3+uAak95YwIF3XxD1IUZhucP14+991MfFrNbJuaoDC59x6DtFetBuyIPOystigRtcA9WgMqgWZY7t54JDsr4tlM4eWkpXp57tK9xq5vdxbPVbAoTdhXPjuHwDQT1hSHRyrhp572/dh4lpsejiRltFmQj/LU9tAYS/UkUYuTBTXDSt0gJWEyGKn7vUjSLq+3rf5rkzhvcBQVsYbdvamKHiD1NVGVqaGeRVtslNwaI6+1LTnpAk9HnfCHMpIC9LPMQBSmXYrW0pWZj1LuEVqixJIzndO+89SpJRZk7be1k2zat7jmDyzi2SSDsmoJKcAbXIy3gThg/TYXbKx0o2nb43PkPxmTLGW7j79oCpU3rb2BPrKcek8XDtD6wpjStqPMdMyV8ChZQAaRhIZZGXpAqbMjcY+z8whTdxExjkPBBtlDg3ZBXpsVKUbYw6drk4N5a1/OnxP3HxNMRtI3s7GmN76/TjfHcP6R6OPm9LJqynEPJif52pTNcocCkmuzrcTYrCkbK+lZGURLExBJ0f6fJnHhW2WVsPHZGXq0xWq91rFrIdJxFwPDf18W2AwRs7FcB3wiXcXy3Vl3col0wMpSDrWBBwyzKHM+mqZQxkWFLPg5snKQktx89myGS0naF2p4FDabEGC2bz6+TqXxeSexzeQlenx21biLF9LwaG0GszHOCor8yQ7pt+ooGqyYQ75lDkUkwhmCDla2wrdv6Seh4nEJ/ldxbQ69WcahDKHrFkzyw/4/LKhaQ/2kYkrtX9OmSPCiBC20Vhk5SPEHOIOY9LBDeiZv2nXNj3EZO3PGWjnu5XlmEP5jmi5GGcOCRMh08EohAHnYRl1/PoZJssCh3KAEJBhDilAQL8reSSl75ffvCgSYGTOb8ysbgX9W9uNN7IE+8RbwFYGGUx3yKRIyczmnBRWIscSZQZKUVQJW8OCLK0jWdmAOZSRlWmxQxQB9vuFrZMLZjCVkwTsydzj8preE1GK5wnYQIyxVOom9+zSzKFhLjHoNkvgDgevATlWnqoGuka7b6aFqVxDByPTAlC7yHjVDsTeWeYQXQvSDZqPlaXCKiUj9mGUlYX7JQFcJ35x7jULxPu+TQqvEuZaXMq6gP2twl5j4If0Noizfze+EoO4/n2fwj6cD7d2nQF3cnHjXd+Hma9w/Pmv2T8oAEIJqjCHXBE3GCnYkMjKJnSzcPKo6K9uaidqZJqLEp1p9c6PNflImUM0YaTMoZImT5aVSbeKsprGak+y+M3Tl+bac6r3UMZ/xlRPSFZWZhbOzjtt3xjHkjeB0+fkt9BKUp9cluWkZyQMNpvNEBwKjBYgbppT5lBL4JB3XLmiDRNXCiT5FXCIOuZ1BPD0H24Xeq7uyoZQxtUSK4Orz7lqJdPlfTAf56TLHGc7C8yhSj8fgCbAHHKdT1w7kJwNgq5d8T1Kqa/RENhed8zcUN+EMib3fJxM2x5rK55jF3CLWDZ675hFFJ4/XW3mb/zIj+IQ1qK64AqsPf8izHyJc3Fi0G3pbIzrP/Qj6LzDoae+FJ/s4oZPzIPN88wcmljPIUnK1dug5vm2v7ZSkHopFgF7DqnJp4BO0i2JZWWJTKtIwKF0092FbmF6PQlQnKt6z5NJKBjJVU9La5/LHArJEkvPol/XuKxsDOTkDTp/FmCBIn29i8ynrH+S0N0B9XqKktleliF/H1TijYFxFTfdRWTLmFb2mWQ5ldmUSQLFyQt3ZUxlZaYpQm2ZwLZbWWtePwSHwjF1jenWp+P1LSrEhELWJO4K1n9QLGyxtxCzSfQ6II8k23ghn0S0rgD80obU8j4x9o3MoQga9HsqKVpYdmFBSRRLMQxji1qXL80cipKM2PWJpGTEHBKfIQCoZxE8GztGNRjXSj/5Jc2Vlb1a5lAeHFKD8gAc5j6PwXkZKxdZJJbPHIrHx/coe0j1DyKTJ77I3geGeZEYUk+kO+WcLpTcbZHlVcyWTr8zle4URZGwTGyiXblOpXE+I2HXsWTAIctAscwYzU9ISpbOt5p4C+BRUMEqZQQOmEPdKJirYA+og6OubcN53TTp0SJiugeMoCD/FuaeTYEeUAG1nFh/RRev0TKZ6wTc4eA1IOfnpaoBYoSKP6zKysK1WsMyb3ndaog5JOf8JOy9Y7qf5ZhDKiuLzFCWlbHnUEs5lN4bfmZYnEyEMExhwxyyv2su3xqNxJC6RMxnTofv5psl3j5H+haKyXQVFv7uI7hr7XmAK7EP56O64Irsa1etORfPLNyOS155wP6ha9D4AlURvRKYOeQ0qbDgkOsspVeSHcDeOEJN1IrnEsyhEq2RBxhwKK1kq/64pNennkOEkhO9XbTWRTWhirc1t5unL81RZeXfBgVSXNn4hYx4Dkn1qEEJX0yMB0WuKsQhJpy6iM2ErhzBPDMe3w3o8pY5ZDfNTFEHAriU6dAAgHx6YmVYZCzCQOtfFqVh/Zcm14SwgNpGEw4v1ayMqSkIjLKgSWsm+rwhdbiO28V+016WveE7AV1jsjKAEtyR4NbarqhQkbQtMof6DUGdMBuirIwNbytN7vU4OZGZCw4Nga4cW8iVFTo5LxXJyk4Tc+jcCy7G4t9bj7sW1sIVBR5f9T7cufjw2S8rA7DmgkuwaXozLt79bX3OU7LKUs5YzY+zQmqaKteXAjLsGZYBKYA88BHH0qnHChBBDWYUNiydCfT+HHNITURzTEMffT/GfCD68YQk1JeYuBYzX+kczNe0xIA5VEa2pb6uEGP3xBsDBIZlmUP2+AZjJbPU/rNGqpXyecoWmig7IS3StCgwQWu6xAF9olgAWMQUE5xA29SYTONxKMBSTlC7Uun6JhkxnkPDeSqdy1LmEHvNsTdLykyzXinxOvJhXPoZSWeuCqmsrNbXeVordLxgQKhFBx8+p02q6bHCrMWtrkGJBospc2hGHkkMDgnLLcscanqQahnMoamvAReZGuwzNmNZCVWeG2KCAX1hQsInYETRH8zcZh79Z9RanIrGsyQlayPbp3/cj7cJ3U3zzKF07Zckro7djebIylzSFelUmEMTf3LwvPUcysv+DDgPy6jjBLp200Hinh1LxoQawGAfIfMsA+Qy3tjJjv7WUtdcwJjqjo4lwxxqm1nSnY3YGs6CQ7UvMSkK8ztYFkZ/fmaJP13OkFqABZ7PewZKkC+XlS0mJSxRYVIDQzDed/Uoc4ivbY5lew5JXqBMpOE9zq/Re2AgKwv/L+m3aBtzzw6AHhBAXuXBM56Tw4GGNcQGrwGTjBpAVAPOO53Xy4Q5JEXK2k0A8aVWv8t+3dIGKF3c08/cJAGHmK1Pc1kiKzPMUN/q+uBo796ijKuYzLFIWtln5N7KHKqtb6eO6xQ8hxR8Ksu4n5Y17Szupnu6Y4U59CaNcy5Yh3KygLKqcM7fewYf+HN/a/S1Ry7/GG5ot2D/np3xycR/RBgHspjqRE2VQqmqsQ9LlWELAXGxU3CoGvcc8l3fvYgrwF3GR6JLFhNeDFhaUFZVRMnbJru4VeUkUhLTivccfWmZmdBlPE0Ga7WdEmKiY9gAUnlHCQQDNP2OzMLPEcG88D1CV5ZENTnfAu5wMNsk9b0pkkREW4YW9nl+XHgCYULXpW6W8RxK9PB8TEC/2MbHVqoz8BxKwCG5pth7pXJd9E+o4uIOAEW3aCrnLPtpk01oeQrgUMocKpxHM7NmlMrcSDacDIZyV7G0E5PxHJJKRyaYHSDB/l28SfOZx6dzYVxYfa5Ww07c+GcALONcniVx+IpP4NZmPXa9vKt/gnwEjJQzU20ayBYD0K7XQpMwNTFkusxjEWj3wIT5x91xBORXtkkhckdbDR9jDinLNLSYdWPzKACRNEnXkwalViUjMGkr2do1ClS95mMJ13jacplfk0umuZNULpzIqhKAYew9fO+oFC1lWUnVdmINqdsmbrSBTCVerp1Jf+9rRZbAodYkokNZGWDnshKdYdua5IXAJfbm6cdK83O9qOdDPDVYNgAg+uskcjnTNa1NCgSQhEEYD51hP6TVdDGvT82XZU2We44NtLk4xd5A6fnqq9rdXKaL/M4LgTkkXU/Z046/j5lDHUqU7dLMIW5dnmuLzSHdNvtjjxKl2Mo8dhhjWVm9aBksHIO1X0DAdmi6nI4lfKk+Z5pDLBFjHTfl+OV6yDOH7LXLjDp+feOmo/JrDrO/ycjKZG7OAeQK1CSFNyD+5pHBXAyKPoNjo2vW+EHxe5LvrGgtypnmm+KlFPwynS0HYwnAArOFmIFSVGkre1uMyzGHuAW7/L6pV1EOGE/3emmUJkeZms/LvUfVGK6M7J4BKzOAeuVEAaaurc09OwB6YEFF3hekFgP6fIbt3Q8nrgE5WZmqBjpuHmSli3I91i7DvA3fqUX3rtZzPoMFVo2nqx/OZREQooYDvtYGNdzQoKFjlXMy9TOzRzDMIR1vEbzs8vN6URTa5XvMgiW+OOYMoqqQNa2crMjKVuJNFAurzx3ImTgufPf3AwC2PhylEP2kQz+/gEOdJCthIlGwIRocFz5Kk8zEyz46YbGzzKG8Wa5s8hngaUc2/P2/8eaVUC8WAEU1tZ1awiR10tsKwqjn0Bx9ac5IWo31MreTWXy5A1FmYZCOVpXr4EOSZ4CTrA6/NbIy/b2oZS4Hd7aKHxIBhbTFL3s3AQgVHe7QQBvFNr5GE+ZwzJ1hDhGoQ/9qUNeb1LNBk4qELeT1sxIKd9Ilg89P/yAcZzsjkC+et1xXFMscmr/QMLCpbcUXo68MEDcEEZiL7Ac5BjbvleRegmVEvbfSODg0YA7pvRTBod5PJCRZ3Mp+Ka32q4wbP/6X0Ho38EM6W2PdnX8apfPY/MAX+ie0qlShY7+WTLWpqqwsUH4TnVfq5P5FModAgI98EqHdA4X5pexIAfl7uSnCPN65El3RG5Gm1XBlRubAZN+iCH5ceo1npAZyH0knysbFazl2ymPwTIDykMhULCuL13gPDvXHaplD8X5Lk2kFk0eM1TVZyZz3nBSNwbPITrD3iLK/yAgcIL+HkFC1TX6scv9VXQSU5TdNu8ekzCFAzMtbwHvDKANsEs5dGVPw0bSNFn8cAj/iZ1hpFR8nP2+6WSYAggGE0KpMI2UOpcCpb6KJrX0+8UhK1rnUfyK2mR9nIsjnATCtoLsu3kPlZIKuGHoOVVXvIcXGrezTwes1ty5fSlbGzC/2ClIwrGsMSCFm2OoFOI85FNZ+rfS3Q+mIiRHJ4HKZQ94NjXyBeH1NME9WZvc8zKjjBLp5VcwhAiRS5lAOIE/Mofn9IitkgCAt+gzGQtcsS/6s91gEV/lfI68zTM1hoq3NQybD5hdxLP1ziy7OvdxtODU2Vvk+A0IJaMcd27gdfD/m/m+SYxijcN3rjYBDmfVFmUNzQFFfxG7Q6bWr562Mr+naxtyzOaVE9DOdZsGznKwsB/rzGpDzR4sWIO1gXlD2qnT7zDT/UX9XBYcioF8PmEMMDnE+MGQOaYdOmv+MrIz2gFG6W1tZGV+zmjv161ybFLf1dS4yqJaWlcV9huZGIts9Q3vgszHeHLvxlXhNccN7P4GjfjWaTdSCuWuMx4dUY4WJoolgQ0lFWHhNtzLDjLEb6BZFpMOXVZ+EZBb9nDyA5QQuSVYk8eEJoGPmUDnRibdrI8OEjdfYcyjdmM/TlzJglCZP2Ul8hDlUZZhDbajiA3HBW4o5JAmeVqDC71WWVTaJzC0knn6X1Pcm0niJOUStVG0FhxYDOYcLARyaRZq4giDaySVlDkUgSDvghO9n5hAnG7ohDJ+lSQlP9IhJslb8pNJsmENxkzbXywNY0nPIAJsiHxRwqLQbgpgQ2gW69xyKm5TWxQpjKiMSb6XsWALTg4PN3dlnKIK/Pah7JtvMr3vnlXh2eoc1RjyL48p3fxxHsQbY9LX+CUkCVFbWDp6XiPIBBh/jZl+Zf2WlYFkKyvVdkPJJRArupiC/yoM9zeMuGJEm1fAuuXckInPIsp6yHWyCj0CNuIlTuSSG87jKgeQ6pTlTq6uhmtdpV51hIaFFNZSVNTahG0TCTC0rqlZmAKUc6y6tSurGfLqmH2vq9+AEHLLS5rgGBXDIZ5hDS3gO9d8vXVxafb8Ee80xGziVlRk2hMphItgSN//DNSvXzbLwTZQgJ8whMeeWbmXR74YT/ho5Hw0GDBTYIOazL6ohcyhleoU1cykwI1d9bpqZ6UpmimHELuxQovR5E1fLHIpJ77xOr/2BchIocrDYVYwft9wcgjyZ0uC1v2tbrfSPMZ3iUHLA3zizY/D+kWNlz6Gx36ef2xgsoeSau9sWy/Mc8sR8Y+An/s4pc8iy+YDI3uH3iyE5z0Vp0ScNvmYdgyQypwQJqe4JYGVlsfnEfOZQPeulhi6RwnKIfK5m5hDvr8uJZYDK3E37Ia9dMfvnYse2Rq+XuAbJWhGvbR2L7vXyBfKiLLTzpxZqRta2/jWRXaQF72Runa45tz/OhXOoY2Jt7tmcrCyCx1VSTOf9G8sil2AONXXfaj2z7kgBVeZKZURJMT7822S6KEdLg4leVwLo14lfF/8WUz9kFbKUTPamFXuu+bgWcA4l52TibM7CfkLsOQSSK+fWeGUljTSk0M8s47Whqgpiq75d4u1zpG/jqCZTbF7zXlxx4EF9bjDpBMZBkWz4Y8vNmFSw3lt9DTA0rG1R6sbHSaUxxxwSP5mCwaGMIbWz/1rmEPv5VBYlD5PaIhgcqmjzk3YrCyhxrpV9ljkkoEIGHOLEcJpnDskG1baFjp24AGDm85XDflMfEwaXyspS5hC6odFmYA4A8VzIBKyVFtncykJUxMVJg/Tu6sMisrKawCH5Dj9MEPr/x2pn3MzbxMMyh+Jjp8mXrSCk8poyYQ5V1C6Tk6NcdzdtmQtkq/X2tcRGkMpc2HypX0aRdDFLmHJiSCqfx3LBVEY0z3NImB4cWpEpJuTlVRlmoCfZzJmKhR/7Rbz8yZ8/o99xusJVU2w77y7ccPgB1A1d69U0XDsC3FmwD4iMSuM5xOAueVHMk5WNJTYNbU4Bmq/qoReZXNsCDg+ZQ+PgUO/7kXoO5Q2pGRBqEdsTt3R9S8ixRnAowxwKhQwFLaqM51AmwUyB7zTmGVLnWHN6fsppZCfkmChg5pDMT/0mWgw/U78mn4AJUpHlLjfcrCDHcASiP5V2HCOGsWEO0ca8v74IpOAChTKBJ5r8xPbEliUDzGEOJVVlICYRbaiGl+h0Hjdzmm+1sMU+GiXtS3RuVaZTZTo5Kns1Af24W9k8GVSOcdA2sXNUWVlZWTTRrgwTDEDS/pnAiIYKa0uAQ9JIpP/uCJjFrmJRStZSoaZdHGcO8drPv2PZkR9QDszIMIekvfdyImfkCxA45DxKP2ysAYQ5hY2wCfTkBLotFk5ZVsbXdZcUcmKxbOg5lPpRAREQNBJ1VxqfpsGx0TWr81wbWdOLmPZFs7An6LxTFjrv98eYQ5I0S/MQnbMyoL/MVzWxTuoEZHDOKQNU9+oCpNBed6BCkG6BrqT9SVjPiKUTz0veZ4Yj+u6Ih1AezLevYeaQ/eyrbnwPHv+eX8O7v+fPG/kl37Mp0APwniBtZR9/G7aVYCCcwwDAmblKC/nMKEwk7ZE5xLlW9ByS8ag0WcCkhHXHHYLFoN8cq4BDxAxlbyLNa5Kc1HRxHmMOybkPe6JYABpeC3oel2D/mGY8Re8TymzVt0usgENvk1i86rtxpX8ZO7et75/oLItAGAcuVLKVWdFwt7E+8WFDamA48erzLnolSCWt9ENWgyQ0LCHwCdgDDJk6aQt4iYpMTX3XEB0yMYYdq3hTq9w0KkMFtXTl3OTB1YGCZGXMQHJULR9UhQUcCgt/GgrmyYTWRrpyTlphTJrpOMTrIfW9KZJKjSxEvDnRz5H3Eg2zXOgr5uB2vakZabJJ4wp0pOUnnkOepGQ+AoDyWWmSPJDdJcyospvFyrkshoABQjnYvHVeWOZQ+G3VHJg2ISzrqWgDBWILyWNiNqUyIhQTI0s0Y8nKyuReiq1li3JiDCC9K3WTd6bi5ne9D3d9z4+c0e84neFv+kFc5vbh+Sfu1/uyKArjdeM6231Dgn+/CA4l4G4Zf/OUwTjPf6RLGHMKhKTMoa6J17a0a02q4ZrMpeCQSJDD+2PnlOGYxEdAJcFhi9g/Hm7QZb6URNeVU60+R48uYTqFa5/YRSyJG1D6RyjnOtakCMHzf9aQWtlCS3sOlVMLDqXJ1aDTm4IJk2DQO5SUMKCUrskS4oHVpkxKxPOYvj/1a+oM4yGCjOKpwZ/BY+8f5phDLc3dGXCo6f1xKkTT8dIkTJzwxKScu/ZoItQkDTGSdS79XeXe4k6XuchdD00T1ySZNxWcGWOCIZFYUKLVnQpzKHNO+vb1ASjoogk1N4fghiNp8NrPRaByCVmZFNes9Hm+TM+8f4Rhzsc/QZ0Fh1Jg03oOEThULowWUcxYRjyH0o620SCavnvgOURgWZdnDs2Tlel5LZPCpuwR3QTOt7onOCmS1bYxDJKcjNccQ2CTaTEzAwC2mT21aQqTgvxFnCsBux+KnkMEavoW4hPG70/3o0Bmr5cJ9eNKioK5674iKVm0Hxhea3d+6i9gMplGFlczM/dsCvSEF/XjqBLDbhmHS5hDS3gOidF8yhySXI09M2NOZNmTbU5WJntPV6o0WebMJgFWeX1YIEZkev2XvlU5K8vPCt4vjYBDqS/hYLzOdivLFYBa3esuMQ+xVLQoUTgP182yIN1bOd5eR/s2jkvv/CEAwPZHet8hl+g7hXEwrGRHmRJ3KzPmfpDJfViFq6jiiYxBGxAXXQMOVUM0e9itjDa6lWXlGJSc6JASZTWJfhyDjXmrx5yGRfsj8wPIs0gMQyhIC/rvz6PfkTlkmTKy8A8+X8AhATvaWJHK+RT0dOxk01vkDKkn5ngZHPJG2kCbmZysTIxYm1gpFTDOdXFR4IgV6Og5pB4V7C2UfSzJVyKvkd8qbIarZJMw8bPIaCBqeo451L9mmcwhAodid7zYVjw86M+rUs0TQ2BXDplDKUMqoV/nJD5FRlYmx+acNaHuaEPhXZXdoLyd49qP/DgA4OBjn4XvYrvZFpWRS+bOW2p4bufbeA1EeZO9X4+vvhxXzLbENtQUzQhjDuS1xS3IxVy+pC56yrpw9prSGKwVYV4eaWXfuggI9VBCuHeyzKEEaC+qCEzSvcxd/ww4VMV7Z8AcoqptLuYxh3KeQ57GP2beHRP2BXTe6bUhYNAoc4gYKJ0rtSJbFNbjQsc3Ok/1c4WsJwa8okSkZxbE4x/zlFAPQeM51OkY0tcz40TBR2Kp5cChup5h4vorRdaXlDmkBalEQuUV2BOwNXo1iYF2P8Y826ALc3/qz5QGn8eZp0Sd/AoNyKFs5KlhggGJTwedD21dHiQq8wypmRmi7bqZOdTEDmMs8W7neQ7R2m+ZQ9RpLTemzjKDub33cmLMm5Kfm/pZXlbmSnMOmVGXMocGiXsmbMONXLey0JV35J4E0DfCaDvzt0qZQ3FP2pvqjgNWrZGV0feRUbAjIJjN7jnxtsyhIQDeCrs6sL7znkN2/gJgPEMH8uBkv8Uye7lnRXLtyHPIJ/NqZLMxiJrsgTLRokTjCxTlcC1JQ9UQBXkBzvns8y+5GgBw7OWN5p5NgR6A53XrOWQk02auG/EcIlC88nnmkDSdGBTvw7mTubXNePaxpUFfzIogZFMkzCFau6RzHUCAuBdAKP5m/FjBIWL58TmRcejzGRm65DrzCkBjBZw0YreyKoKazUljw/J2iBVw6G0SV996F/bhfBTbvgUA0chYouiNkGUx1c1Va6nNzlttPxAT5RRMaVEoONTTLPOSF1n0mP2TrwbbZMXc5JVl5XDnA58Dh0rSbWc6xeQq/kAinaMJHcj7z7C3UEmyMtNek98v1dsccyizEUvBPAWHysnAOwLIew6hqNTrIfW9KWmjCUAXIgU6jA6fNvIhYdbjNMwhu3lMq2VRMsXdVmSjSUkFeVgo0JTq+xPmkMok5fouIzjE7Ab5vAL5irwsFLm/mWMxmyGpzEV2CMBMiFhVApgpx8lnaX7XMYbUoPsR8swhvY8JEHLlJFbqRFb2NlsYl4pz33ElNk5uwSW7vtEn34jXA8slufuGBLeil64sytTT+zdKCVMwo7jjL+ACHMXz3/7M4LP1/ijs/evajDxYru2i6nX94ZpRQHuEet8zIrqBBDnXrUySEpZstrD3DifoVZJUmK5tdL8UzqMLUjlj9E9g7Jgh9ZjnUNoV00iCM4ASM1i9Mp2SNVAAvrIHudRzqLZV27GOmcIcmvoIZkTfjVRWNjwu2TR3dfQsiuOvjCSMmUMGHMp0WSrL6KkxlzmUY5Ymc7eEJBHSzbF0XgFQ6znUxC5wJB9nVqwkQo48E1nmkQKhEq0rUUjiOafCzEUf6djUNLVlDnHn0YRdyMmRkVgY1lVkNy3NHGKT7uScAPDkaWUk3rVdizh47edroBqRwaXPcdfR8CXj46fwRZllDvFzC6izCXuHEgUbUvOaR6/vlsscYhCCCy6dXavZd4a/W6Jt61jgAoxMVKJBlT+fMhYy1I/M7VrfU7uJAYKj2X1t9vs8n+eKnQIeFtU0ANoZcEjA7YLBIbu/BmhPnDB1OlcqYBQlXr3k2nfRcyg1js4x1gd7vUzwuhM+yHxuGl+76n/FOe//y+RRNH7tXnH97diLC1Fuv9/cs9l8xzCHhr6jcKVpKMKG6hwsZcuxHGX9c10ER/X7EuYQ+7WaQjUia527A7eF7fSXAw/7sVtgf0KSM5afGeYQ5VBFJtfiYzfjDXvieQWgZYNDhjkUi3ZvtwLpCjj0NglXFNh23l24/shD6NpuFKWtujqbrLCHTenbaBSHfuLNmXW1YK+EyWibbaUsE8BjjEiTRUTZDjyxG3CI2mh2UeIkVQ4BfnKmyv0T+Yo/ANOBgT0wgKWZQ9V0NY2RKzYipRi2KWZJXM6ssO8cF9/Hv1fakhgYMYYktklKt2eKurzfFxNlKhlgraMkITDTiqSC27+MkgRgAGBxt6dUVmbZSfT+ZXoOqWF3+B21I4JftJ5DJnkfr0IsBQ5FSWSkgmtb8cpuCNLklU1ujXE0McJSGZF2HKlpAx/CZdozy30syQwAlGVsM1tVEzSr34HD7vy5x/l2jH1XfC9uaTegOvayuR40ifNJR8gQ7BnVAzSxra1U5YsqyspS1srtH/8x7Me5aB7/3eFnq7dM/F0BGC8jmRf02lagV+bqQO8fYcMggApSJODuSIMIlUtuk67eNhkGaI45FKvPttor8hhnCgkk1RyRleVYQOHNOsb+v3FcueYE7MmU88Hjz2I5HxDPtVRthwWKyF71rsIqxCKLduyhuX2UORRaGje5imoRveYMw2IOc4gbTAjYUtK1DNhkwRhSy9yNKCvLeQ7NFo/rc42AQyNSC5nHNUlSMM6Coj3TaRnMIUedxOYkhGyKKkb63PxCGJc67jayC5kJBiQmrgmg0H9XNWrSrOOh3089h9pGE03PxZnc4yxLOt7XXGwYA7M0mNELugaWMILVMY0UEQ1zyOU9h9ImHHxfcFHMl8trZe8z4CZA4GKYS2KyPgIONbUyNoB4DhkgmNeFEohgYUGyMk+AZO165lBsUS6gZWP2+8wcMrYHcgxiSF1ODKDNoayTEZ/QVFYWmc1xP+SS/Xz/+n6+EuZeugalTPZ+LPPlwjIOI42XpH/kPT/4P/0M3nPXd8e1Yi6LsMCL596Jqw8/ipZkrCnQEwYLoP/drRehFD4mRkJbjDGHqECQs4qQPSKzxdUgXNegoE4oM4wvZ9df3mO3hQVWs+t+/wcAce7meW7qbWEDyDGH2MJjCAgBsbAuTTrmFYBkL7aUrMzptTHRa7RoF0dzwrdqrIBDb6Pw130KF+MQNj/z4MAZXiaXKjAoZNErWytHKPxQVsaGoxytK3VC6GVleS25Gu0xIESysihzSBYKnrAn5DlUWc+hOKnZBUsZO2nV1ucr/vLZGkmb9NwkzrThaiGCQ8xA0kUZkZGTeg41YeFPI2UOyca2b6ttN5RpZyuJ6BkSDTVlUawS5pAsRNmEkF4jG3hJNB11OPFKO7eUez6m/ul5htSN8a1QnxepVo4watiTCYjnfgoypE6S95yRZgQDlrfQdJyEJz4PsiHwyYaT6fCxrX1lwKtURqTspIz/S86XhJlDSu8uJwp4ltUEd/x3/wSr/voX5x7n2zHe8YEfA/7/7L13mB3Hdeb9VnffO4MZzCANcs45RyYwijlJoixRyTSVZVm2lWzZsiRrV2vvrv15vfauvbZle624srIsy5YsiUoUJZFiEHMESTCDJECABGZud9f3R6VT1dV3ZoABZgCc3/PgwZ2+qfrevhVOvec9AJbt/0m0DHilj9W00EDSvw+AW7yEyr+EmByHRv8dHZ24a9K5WPnCD9H/4vPefaFyyPyOE68KmtpVtNe26cdMOkHmX0tVz6GUpJVl9UF28xmABISCQBFtq3rvZuU+89na/t4Es80ON/Vya+M5ZIIpMRWQfnP93iYwSjw0IhNKSdpIg7fee1o1hzYYt0FdPUFPTGChqhwyGy6lSF2lqCSL9r11CkerHIqklVGvORocKoMUJto2F7xsWE8N6ilh2m7w+iFaeaxNcKh1yHnitHSgyPMcIgumikomvO6JYg5EORQqZOnnZVJ+2u0w0+uhZRUaA+68sgZoujadU1AlGODvovvKIde3G3+nOvyAmb4+iM+QJGohkNt2oyJyrlmdcsgLDsWUQ26MBuCV9x4SIl5xsxIciymHAsWg5xlIr/2s01777YgFhNQf/iJUZNXfMW1Hnre81FE7L6aG1BisWpm5tpxtQlmqlLFSChTWc8j3AyrzAW8s8pVD1UW3JGNFjqxGOeRUJPYYrRgcBvmDwD5VUnteUEiBwgVnZdBmmkZqnzMEzyHqdadeb2gqkq7uHjySzEHXrFVtH5fPORXT8Byee/Qu9bpZoxLoUQ1xfqa0sAm1BahWK4sEbonnVCbKSuDVqMvDDJGc+B3G7DzoWgQwaWVaOWSel3Z45+WK5rh2HpINe91k+rEdcL+NzphyKAiEeWOud7y6sR6mlcU2gOhGTTu8DWVz3ZX9Vq16sjBiZyuE+HshxNNCiNuD478hhLhbCHGHEOK/jdT7McNnwbZLAADP3PpvlSgt9V6hKgcTbDAGxy6tzO/Q4zvkGQkOGVl3ddC3kyAS4BENqhzyBxEnNSWdhKcccmU0hQ4O5TKxkwQzSYuVxQTMRCv+06CpZrZDb6McSj3lkGpjIYU3UbK75SK1g6gd8IzqKWnUlnelu/e0CkYlPSCsbGXPQ7VFyeJ9U1o6+ZZlqQeizAWxaoJDpnSq836g1cr8lIJwt4ymJ4RpZXRRYY2ASQDQ+hyYFJkaBYUJ8pngTVO24Krhta9WBsAOFIMqh2wAKK1Mvpw5Ymo/M/85bkLlqYiocsgGA/zJTqU0NuLBIdh8fyfhTtPMUw6NH9+L6TPntT3Pk5HFq7fhCfShFy8FyiF3rcaC5rsnbMKSF36G/v5DTn1jgrFBf6tuVyc6nZuvRidauO8HX/COh7uo9ndsFvUk3dRc26EfF63WQl/LohUnYWArGhzS44yXVkbSl8LXDxcVNK3M9vd2h1svYiJVIKOVMWsCAvS8zHPVnyQlOOY5RD6f2lL2VoXUsCoewPWbRarHhDCYW9LqQmTMIVVu/LSyGoWjHrPtBkhQupqmhFmFRTBuyEhKkQkgpyjs5N9+3t6Culq9JqF9Hen7zeu0BmhwSH3HDVFYk32aKuT568iC9Fv6+i+d5xBVLrczpLZpU+3UAuRzNAoNWRQwxSyyzK+O5n2fRAkG+LvoNDhQErVXrCw2hQb3XPoITSujaiFSit4a1Vevbzr20w003yMpFhD20wyHsnin1CmHKmXBI8Gm0GfRG7+9wGhzaMEhEhjxVEQk7RMgQemI5xCgPgP6Wg2YvsidQ7tCA+q13fXgggPqdXMkKHRQ1xoHCz+tzG0wuffMvIW2GQeIehWJp2azbTUpSUR1UtIN3RrlkJvLk/kQaU8hUiR6Q5qmlbmgr7sm7fsGc70YdIMi+no1ZI0m5n34Dqx/2evaPm7a2nMAAAfv+Z5rS6RamVOEVtOnTbtoQZGYFYB6ff18k1odKof0BiJNKzPvZ6sBW+VQ3LPPtKc0mxomOJQ0/fPSxw+RatADogmUOcqisBsb1I/IHANIcChIoaN9Up1PlvNIUqrQdhtA7lpsr2C0a4WkYb+XtOhHPshG8InGSIbC/hHAhfSAEOJsAFcAWC+lXA3gT0bw/Zhh0jd7ER5J5mD87h9GPYcAExxK7Q6u3SlMnaGjmoSRQQ1p1Kxrb8cM9IqX7PORZNEB2RoUU++IRrXDkoFSx8s9pQqdzASBEqsc8nwvAr+C0AzUBDaiCKFKUauG6fYEHSrBTB4KKaw5cx7sBNA8X7uzQpRDudRGtzHPIb37bzrDrHRyZSn8iVKrVSOXJwGpUC5NJerUO8Dt4NC0MqIc0ukkVnZdVhcJggwK3udhU8lyOyE0z4lVvDG51ep9/MWX3ckP0u6sJ4U+3gHqOeTk3UeaVmYDkGQyRMuKqxuZNq3UCwtj4i3cZM4brMn3WjWkrrmmEV9AlnbS1vAnTEIFV2O+W4xCJAkenrITAILgkFOxxYJDjXWvwCSxH3f8+Bt2QWt+Ty4Y36gu9ghrt5+HpzAZ8g7fd8gFC/1FS6IX6akOZMTSyuiOsXqRmt3VJNOGwbkXmK6oXwAYQ2r626ooh0g/ngWTU2PA7j0uUOAZ41TVdqM8qi6m3c57fHJog2RGOeQFrZqVx8eUQ5VgA1FzUCPycHEVBtZoCWP6m6Wl7GlaWZjqTd9flC7VxPsuE+c1RxUW4aYCXdQa1UiaOU+NDIEKiAY4SD/keQ4FyiG6iMj7q8ohdb56wUQWEWnDD4TYALdVDgXKZRssie8wS0HMotsEM2iA0S7Cif9LqpVDZr5D/TSoEgxQY4+BjvEFUXtFg50Euvi3gcyiZasDIRIQordju+l07I+pXsz7VgjGd7OAHbRKkH3RGs+h8PxrlUMkOEQVdXre05JqE25onkM0IFSd61iFmum3aoNDA17gqCldP29fkqSdxqB+KgkJilpfN6jUGrMxZEqU5yY4FFE3esqhYBwQqa9S9tpiPCCJWoimJ9nU12AMcelTRDlEvscCKUkFdWOTuXayyEZEZa4XIfQcEiQAMBLMX74Rz6MH0/bc4F43CPQAUApCYoxdqSAXFBQJgzsGOwYYFWBk3DFZHjTgEhuDEFMOkVRMtanhbA9k1ul7DtmiOSQ4BF/F1g7Tr4WBsFjaHT13wF2/pUghULTdAIqli8dwG2vu+lPKoZNrLjxiwSEp5Q8APBccfgeAP5ZS9uvHPD1S78ccHk/2nYKlh25DI3/JS4mx3it6kWx+QFmwWBFSG1DSaLRIoougF+edY2+nmT85o5hOKqGTfM9k1N/JtmoH3TG0ZOp8e4gqx8ghjRIoTP+KVZgA6hd19nxt7qpvVhfrxOkOitst8H92dCB1nkNOOWQCWzHlkFng2e9L+otAf4JSU9WBqE1calPm/Y+S+A4kxMybfHYmyJPKEtZzKAjKAMEiAajslsWUQ4h4DgkyCQ3Tyuw1FaQg0kUy4AaKVEi72FP5yy5fOppWJuq/c0pqB1v3HdnKUYHZodnRpeW41Ytk3sBGdxjDHXDrORRZqKextDKTU00k3EnaRNnoxkFUF8SMz7i1lwKIB4dQYya5/LQrcQDjMHDbF61yKG34v9+EfOexiU6zkeG+Kedi2f6f4dABl1pW5P71YK4x6mVkJo722jb9Qe6r6mx/G1EOqbbmunJhXIEJVJVDpXC3w5QB9VZOJm7OI0wDDhcx1OjfptTE0nACE9kKdOECf+HWTjkE7aen2lb1sAHU90nTVUO/h0pgTRZ2w4UqF5Msc9dDkFZW78FSuMUG/S7JQsRXDvnVoopISlGSqgByQ+aqEhVQCeSb13aNcQF360+n34cuInKiHMpJZS1TopumH9DCEylKOzfIguveGsRq02tnHF39vmgRjTrofS2TGkjUIZmpVkbSymh5aEpKAkU02OKCmU2v7dH2kM0+e30Q9Sj1/KMp3uZ4LK2Mjv1UidoEVTrFlEO+KszOEYasHGpE54kJShySvvItJJzzeJs7CZl/kcBo27bUeA5R7xiAjNk1waEyz/3gEFre8wGXCjRYW5LUeWrKIof1ddPn7kqOu+uSKsvg9be0/LzZvHLKZhpMoNjgNq0wHFGg2MB+UABEeQ75mxCAUvWn5vpMYp5D7poM2xK7hu1jlNbVHYhsMB8JSZpiV9c6LCp2ATCBLT3m0c3PoDR9bscH39vI9IdhcMeQ6aC4TRcNzp1agHjKIaJetddjVvUcojYGdrO0dGNWTDk0QDxdjbl6EQkOFVLY2wPSbeKEbfWqUQ+WChlc+9G0snCTqYaEzKWdF+9AvWDgBOVoJ9EtA3CGEOKnQojvCyG21j1QCPFWIcSNQogbn3nmmaPcrJOXcSvOxTgxgIX9d/mdjt5xHScPQSbOST9crJjStfTHqlwHqj+cWVsvt7cTrUyIDchWFlqjHLKTlGDnwy6EieKGqnKsx0OZIyelusOd6LAEMy37GYOapdL/Y/4zKWmj6dRClRWN1pvFhVXX6B3kOkNKu7jM3OLS86ognXheM0lzaiVq6KauB+fdVHgpKzZ9I7KbpjyH1GcYTtIB93nXGVJTY9OKcoimJpBBpRIcsm1teP+nZb9XiY4OFNG0suBad4+NT/RDqHTaLhxJWXF1w5+UOfWEu74881uyyAwrdbgKfPUqM4p5XS+/Osuw+JLfxj0v+6e258YAy7dfhBdlJ7keMudZIv3qG4ZmZxfunXAalu/9gSrJTJSaDWJUWoosavRv6Nl0FTpEC/f84J/tMTtRTt13CdB0oGalH6+Uu7cpl34wxqKvIasytcqh+EKxECkkCZ5Rbxv1fmSxYmXi7vdZqWoWpsFFjP5VGo6/mA49vULCoKxXUTI2oTSL8YxW+qtO0tVrNfVCy++fjN9DVTnkxiCqCFJ9bzUwn8oyqnA033XUtJV4zYXGvXXVaBpE8SCThhcosAuGyMKNHlcptNp7I1BAAkDeT0qtE+VQEVkw2e+7bHl+euY6iqXB0XaFgUJaSayt5xC5NoxCoyiIgjVJIJLMpsqJmjTBkFhaWZIOQTlEFAa2FLcXBDoUv00Mu0Po2E+vNaocippkB2Nx7aZUHcQLi5Ki8NQJQ1UOuWpYZP4XKDRqiaSSqTciCjGQDUwyH/LnXi3/dyRMehGdf7Q3Had+KtSY2ajSjFLcfN60EiJVlvnBeNq36M+2cArSgqio/bb4wW0AXpAhI4oO+p7xtDLfd8mozFW1qGATj6jZDOFcL0ZFORTMl0aC/tk77G2qOvHUM0XLM8YO1yJ2c5j2dTHlkPn+jX9l8Fsw14IIbBE837tIxkaa+t+b9bgkAX2ZNgPPIXXceFyZQKWQbkOZ+hH1k03HfjSIcsivuEn72DqfLLqxThWpsQ0gl+Ldvh+iKflWsSYHWDk0wmQAJgPYAeD9AD4vhBCxB0op/0ZKuUVKuWXq1KlHuVknL0u2XoSWTNEt+r1Op2/ZdgBAp2ipncMgOJRlblGRBruUhQii8pq5S9bhUTETgP6h1wzItpOiOctNmipgBhE/GEPzdkVqBn7S8eoouVEChcGhWNUX3aC2HQFduOgGqqdF5Z9qolaIpFKm2T6GpFK4wUG3SRbIRX0p21SqBZ6ZnDTkAJmEZsHuVbzkpw2sFa1K5+qqvrU85VAsJc9MBm1amXBeKmkkraw2OESUQ6GBaNRzKLgN1Ctq0tKvOkB3jj3lkCQLmdiOvF3sDrILQRarti2kHDRtm1UOBWmUYdoKvRZcBRN/QR8rKx71JUncQEgVE9NnzsGm0y8MX4IJ6BzXhTsnnIEDqarm9tLklZif78LzzzxRW4YWALK1L8ck7Ecf9nppZQ1iVCpFVukrKKt1ahnu+Io9VgZBgDTox1PthUIVoHaiXKMcCgMe5vGd8pBfrSyyw2wmt4UNoLu0slBtQ4O2sbQym8Jhfy86mNpRHSvQTjlUtyAI0sqoH0gstc95gjnlUEyJYtpOqxHZxbb2yosph6hHjSFNG56iwzYdhR2H/PdX6cgurYxOuNXj87yl0m/s+fufXSwdxnpqUO+IoGy7d56ggf3S9eMR5ZCpQgcABVURGVUcWTA55VAQJNdmr3Rziyp56qrayCRzBtFtFhH0e86JqbgscwzoqmQyyZDozTAa7KPfp6eEAbyFOB3D6nx4bHsi6SOeQsi7TYI7RZDiTKBjP52zdYp4RS57LBiLo6q1dsTScaCDQ6DKoer1LgMz9ZjnUCFSLzDaDq9Pi1zLZgyPBcjbKYcAVAL/g1YrI2o3m9Yf2CZQ9YSpJFbq4G9MORQLgJtxQGiVacwkO+ZXg4jnUKjWcGllGbwUM/IZeMohc1+w2RHrY9pdXyV8z6FwfBwJ+ta4TAmRZpVADwCvXzftAkjwwwaUXF8X24C0339NWmitcoikLtriLrTaZxDUM5uRxtczlwmQNjwPOBPoN+m1OYyJtUtn7ie/2wFBbzftJk7YVm8sJddIrMKeqUTZbgNoqIbUUxdvwo3pRvQt2eiUQ3Igur47kTnawaHdAL4kFT8DUALoO8rvybRhXM9EPNCxAoAfzFi09jQ8hSkAVGfdyMLFitu9osaPQL1ySAiB3VNOB6B/0DUDckF2RIyfT7Tsu+2w/AhwIRIX4Aij5HbwdIbUrrSj7lgqaWV51EPJe13VYO//us7DVHOrlGmGOR3nSxP6dwg68Eel1r6hbVMOEK8KfwfYyvLDzpEEeiqeQzaFofB2aNyObTVtIENpd6qsAo0Eh8wky+4YBItKqxYqXLUVOxmwqWtO5pqg8CoeqObG08rScsCrREcnxTY4hMxOek3qTIiZaAymHHLqIPfd0rLi+ob6P/eVQ/CUQ/HgUJhGZP2rIpPeWIocfV3z+xwpqfXJwqq3/j2mveMbAICpO16Lhihw73WfqS1DC6jUshelnpQlLhjvK4fiRv+GLMtwf9+5WHHgZzi4X6WWhYteM5EK04NdWlnmlJihHxcJflC6Z6nxo0ccVAvgSHlhg6m2Qs2OQ9Wd7ccjk+Yk81MqzecFwKXBkbHCBrZE1QzUBifqPIeIyk+dt6smE30OCZ6F52Lf06qLGnbCDJBgkF5QVYsi5G7DJfH7qzTyeVO/HUq4YPTaZ9OJjf+UC15Q1VUsHSbNmpVNhqhyiPZDJFU3NC2mjytJQKgklbWswlj6KplSCuejk/rjf4MUaKBKHreI8FNnpXCVxNopXejOtF2EF7kXBLJzkrzllZqnY4bn0yGDzRyrHPJVTzHChVWO1FYoBOCldcdux4x57dhPFnkhsWAGLeYAwKakDUc5BFQ3ETPpK4dir9curUyQfoYGRtvieQ6RjTCiEAPc51drSB0oh0w7/Lb7338F+xtOvfczm59mjhiWmS8LPzhE+wC6iLYqazMOJJmXhkSJpSRRBYr12gxUn7RggJ2HBsVtzEYiVTOb+VsWmXeGc70YVLEKuGunbiw4HBau3oEDUo1FJlMCcIEewClpbduNRYVNuzPK78GUQ/4YGE0rQ1GpYklTm23VYM/Cw68WavwujXJIqe70HNMGh3SAX7i0TbPBapVDnh+Ru91C064DwnP11D/kmvU9h9zGOq2CGdsAKslY3I7pM2Zjyx9ch5mz5tlrtCFbHBwaYb4C4GwAEEIsA9AEsOcovyczCC/MUgEbv7NM8PDUswGoqH5Kgg2AS3MwiwraGZUirV0E9Z3zDlzfdS4mz1xgB+SBgX7vMW5B07CdZWw32MhP7aKFBFtERJVjOkIzYTOTfpPq4SbZ/gTBy8+OEBpaU6lsDBNJt2WaK55DJrjUqC7upfNLiiqH4BvaNtHyvCpoQCksc23P10yaiHLIVfnSEvUyd0G9JF5O2U6YhESic3StcoGkldkAVDCJtO0hi4xwwSFIQIhOQsMJqd0VsZMSt0imC246OTCLKzrBTFFWBl4AFfVDHWlkMuQW4f5uWrg4lyQISm97yqHCX8hEd6vMubZVDrmJWK2ygonSPb4XE6dMAwAsWrMdjySzMf6+r1YrQhI6xo3H3RNOA6CuDSPDN6qFVBvKtwtSA9XUsnCXPgw62esHBTJplEP6NxJU8jOLtDCYvGjLhc43oKYvMBiVh0vZdMGesOokDdo65VCjEsy3vyM9MW50VL0ulBlwqAjVwesazyEXHPIXK+o5MeUQ/X365+LOw/2+qCIx3LWtppVR5RAJDmVONUAXrrUKR91XmAUU/S5dXzHgVSAN/ZroQixUDlFMX+2nRlU3D2hlRjMG0EW6FxAit21J9EogJHGeOt53l6AhnTKGKnmcQtb/vqRIbSWxdjvMdIFdWm+Xlq8MMPONvBWklbnnUiVMvzZxtW2haWVJ+2pllfQRkXhqoYSMvzTFO6Hmv5VzdGO/+R5tMQ7zmCEoh8pgA2NQYuk4UGNxS3RUHkcJ0++9DRETDNWeQwBRaNdBg0OBcqilFWKAW1R7wSE698pb3mvZdtC3qlGH2/ut2W7DVenTJuhqfqsrNunrRqamWlleqxyiaW3OH9KlF4fV38K2eMGhrD49yfnFOVVqWGBAPd6p/UDSyqwtQFbt+8K5XgyqWFWPJfOeESLNMjwwbo193UpxGdVYf40SKk4D5XcY3DGY71/kKpBeSSvT10ISbuQLpxyyGwYxzz4TUE1cARRbJMEGVvX3VOY6O8IFBM11Y/sNGhAKlUM1waHYRoZqI1UOublyAlKkphEpIDFEzyGKCw5xWtlhI4T4LICfAFguhNgthHgTgL8HsEiXt/8cgF+VUsp2r8McfaasVeki4UKxe/0V6oZwig+zU5ho081E6tK1QYdTF0xZumozTv3Al9DZ2Ynm1EUAgMfu+pn3GDp5sClfnueQ/qEHg3xqB3uSjhUEh1AW1sDSnG9hvS7iaWXt0kG89wgGt7oUIxW/d75A7dLKwoWWDWzVTBwy5IBwO0lKOeTa4+1etUw546CdJCAVlmi17S1dOVtB0ti84BDN9S8GfOUQLX8bpBSEhtSpLQVe1HsOkRxoFRyKT0jdgtK1o6gZgKxyKHGfdRYEQu0piOpEPwZVO5jPLA2CQHYCFCiHpKcccpMrKp233lSBbDtWOSpMB9UNdM83i91Byrsy9YgkwWOzL8bK/tswvv+ptkHmZM0r9I0MWcN5vgG62mASV2RSVm1TqWXizq8CoAtKfb1nbnLjXtcE+UtIUq41Kfr9CnU1E+juCZNxf3O5er8kQ2oWRtG0MhVob6ccsj5DZDpClTiugICeEKf+76XR0WWfR1PiDt9zyA8w1D6HKBIGUw5lwULLlHg3u7Yx9WoRWcwltJQ9DQ7J9sohugHjXsz0+6YMvOvTqEqFts2kFGVZw2vXIdlQwUYA8FKjqp5DGQnmh6XlAaCoCQ7ZxUzER8N655A25UQFlGjlEKCCDqFC1r6HyGwlsXaLTa/KVBooh4zPWOreLxmKckg0vbHQjmH6s6Y+HyGx9BFfIVRNJQNcunfdhoAZ+8336KV1oSatzH63RsU7vOBQ3QZHisL6mqgTiQSHgsAm9QxMYvNFYrQdJaKMBsy8zPVXVuVArvdUFjZtsMhb9ndU6sB6GPgfLDjkKqQ5z0eUuVWlGaW48zNzgedE5lUFVVCN1AWH3DWh/GbqlUOCFJExfRlNlwvTymglzDCVSj0+Q6OkAWi/zU7NFvmdtEsrCzaw087xAICG/n+keGmmsudISP9Ig5yeIhTVz8faAhDlUKxfTxomOBQP7pprIY31lcEGKq32mZK1iD4Rt46QqkhC2EaQNYp5D+NTZB5DA0L0NzyQOHPrsKiCp2rzxsBqcNOkldkxJnItmPXZcDY/084eAECvPMDKocNFSnm1lHKmlLIhpZwjpfyElHJASvl6KeUaKeUmKeV3R+r9mMNn4fozsB9dkIFZ6vJtF2APJgHjpyFJU+xHF8ZLZQhpSqOn8EvGAno3eAhR1SXbL0EuE+y9/d+841Y+nbmFQNZo2t3pSjpBIAktkNqB3+t4bcRbB3uMNxD8RQnaTcwj2MVK4nfotWllQi3yQqmtIc3cpFEEkmpr6CriaWWpLCHJTlKnICWQE1+KXqscogGFSOpFjhSQOYqWm+TF0sroRDEt+3WwS8n+G7Lec2hoyiE/BS2lASGSVhZ6DplJlPmuqScT4C+W6ALWtKFdugZ9Th0pWazayVcwIXeKogF/cU4CN3VpZVZ+bJUi5rusTuiU4i8MDpEBU+8CNiK7LszQmXXaa5EIiaX5fW0nFCtPvxLPYgIwfho6Ortwb7YMTVHYa2AwzyFABX8e6DsHKw78FAf3P19JH0rDIL/px60C1C2U0rLfM8sMJ+aU56efCn2nrbQWUw6ZRSv187IKFeFPjGm/SE2oXTqEn/ZoAgKNjurkNpqGEwl8U2z6XBBgqH2OVd0Rz6GIwbE63kApEmKYbxZXNcohstin/U+aZmg0qgukOoWj6cvCfkKdr168FC1feSRS5x+EmqBf1vCuC7UDbMyX42oLpxyinkPqOTQQIEmFMkn9h/RCXl1TNIBHAiGB6qsBYkhNlDyhQta+H+kf25W59pRDtOIcLWZBlANURUi/T7pQaqEZKIdcG2WNSbNtTyR9hPr8UbVQFlER1S2sc+sdotpCg1mHZCOuHAo3agJ166BE0nFkWSITpfU1AeL9kkqJ9JVDrpAJmX+RwGhbvEpT5LGBAiQ2H0rg0uDo3OoQnHGv3/YUSah2pPebCmlpwxkzl7lVpZnfemgWHaaVxTZS6TmkJNWwznMompKk03u99GCinFTvTeZDpq8kv7lCuGqBoBtWtq91ajb7HsFcL0aoHFqz8xW4deffYP7yDbXPORzm73wDftmxCdMXrnFZAEFF33bKodBzNAzuGMymTywoDrh+Pwy4UF8rFxyiaWX+2IzEKV5tymzw+xRlgRxu08caUpe5PQ/az+XB7YzM3T1D6hrlkOeTRVT2KYboOTSMVMK5q04BAHQITitjTgKSrIFHt30YXae9zTueNTsw/r2/wNbX/SdACNzXu8PuoqV6xzmVBTJRVQ4Npcxf78QpuK+5ElOf/KF3nC5onPmou12X5uCXgK9PK0ukC7AAqOxEhxPzuvKRtr022u8vJmLVYkw7aIpV2MmkievgnCKHSOih0jJisnIz+aEDIzW+jJWyD01T7WeX5zZQ5iuHEjVBJJM8G7GPpJUBpvSjHkSQ2Aow6gNwO8hANThkz7MsUPEcIjvOwvoPkbQymF0RP43C/N8MgkNUVh2mlZVFoQxXjyA4RHfKksrky79+0uKQtzinhsB291MHimqNtxM/Z50SDXSZVM20gcXnvhk3bPxvGNfd0/acmPbMX7EJD6YLANSrCQGgs2s8mr99C7Ze/WEAwPMLLwMAew1IETf6D+nZ8hp0iBbu+u6n7aTdXHeNhlogdEiXMmYWIaYfN9dMWvR71R4FueYq77nqZaqNSWCOGmBUHpL0kWHQIyx7DLjfV5q6jQeXhhmkwTWrXhdRA1/TX9QshEXqJsSGAmllh92dnFML1Zl3mzHBeEhZM1Arf69RDlH1KlU6ZsTvjTwnQ9VPDHDqURto8DxG3AKZKiwqn11ZTSnKssz7nAbgyo+LyMLNnBNg+m6SYoYgvSd3ASE5FOWQSKLpUQWccihNM6vkof4vYdCPjuHtFpvUq8gswqn/CwD4nkOu1Dz9PulCqSX8YIv7LRvlUHvPoTAd0g8IDbS9Xee9UiABytyOpwOesWyzJq3MjcvA0Bbv3vMj6Thms8xU4KKPo4SbaHTMs9c7Ui8w2pYaQ+rQO6ZOzWc+r7LIbVWnAVHt74Cq0ruuLUmWecbMSpWW2Oebz4pWQqS/mVgaL+Dmhea6yVJjoh8JDhV+/wW4IEMRbNCq1w6UP2TcoUp2VS1QX5OJS82iKj7rJWrbEqnEGLY3yG7IGk2sP+fVtY8/XGYtXIG1H/weJkzqs/0jVaeFG8+VlOng2g+DOwbrC1iTFmquhTDg4gX7TB8c8+wjay27GSkDzyFPOZTYz7eECsSpObQ695z8bk11R0D9nmlama8ccs+hcxDfMyuuHIptcLo5xdCDQ5OnzcIjYrZ+/hCD2ycIHBw6SVl18Tuw9PRXVo539ky2+ZpixaX2uFlUWAVIUGFgqPmY+2bvxJLiAex5arc9FvMcStKmHbzCRbQzk3M7IM6cOoiSl7kNsNjFP4JOIkwrk/E8X0MRyHNDI9PK43UkPU399zcktIMLdhuscihWfQfEc4h0pAVZfEWVQ8FAQt/TTEhp5L0QajCm5ZCjO2VEfkxLPxZIXQUYkO8bfkCHnpM695Yt+QryeajnlPb9qHLImVmbRYHvOdSEnzvsTVgTf6CxhpjRqijVXeAYdoePKIfMjq7Z/XFybr+Smrf4pMqhJLOfWRmkEYXXj9cWWQLhAGcCU1mGabPmYccVb6s8jxk+T827BEC9mtDQM2GyneAsOusNKKWw10CrZw6ebUwf9L1Wbz0Xj4qZ6Lzz8xWJfZKmeExMR5dwqYylyLx+3F6X0vfjaqccWrL5bOzBRKBnppfiECL05JSWSQ+rByWRwD5d0IULDJuioBcxjYYqZEBVd9R82KKrrdAKQV5bU39ibNpUq94yE2hizhxOPGkFQDNhBujiSk3MaQlswF9EeMqhLENm+vrQc6husUx8SDzPIeJvoVJOXSA7o0EK3VYaGDAGz4YB0bQVpmLqF9reTJR299qllZHxIXdBDZDbBVkwVVKoaPlr83ZI0AES/DDjfyuPKmTN52VoZ3ArSLCQLsJBlQGJ64tpqXlautsPDvnBFucxowJxqfFLihAqDEqkfhBItr8dbhgZCqMAMN4hnrFso5ISDqCyUROrlNeWwHcFcKk5dJEZqyYXppMaXzXAVyjSwGhbysIGRb3gtyy9fiGLlFhPqXIob8FUdTKGvGHgPywgUjk365PVtGnIJiCp5rdGPWHM7l0lxIQEj813Xed9mdqAYX2V3DC4DbggA02XK22quj8Pk2Tc8dPK3FxREFNnGhAwajb7nDYmxIZnlr8Ou5e+ofb+o0HS0Q0AOLjvWXuM9gNAG+UQCYTHghLmekuLeLUycy2ERUhsWXqQ/iXi2ed7DqkCLUmReymZ1gPOrlHM7yux1435fbVIQIj+hos2aWX1nkNNctu0VyuFjdVEZIyvS/0ejCcmrAMw+FzuRIODQ0wty05/OQak+UGlgCBlXslAf6g5BS81Jg3pNfs2XAwAeOin/2KPxZRDaZbZ3H0roTQ/auOnQWTClRKMgPV4sMEektoAkKBMRTnU3pDaRvuDNLc6FYmNpNuy9qGct2mf73agfOVQKJc2ZCiVkifzB1igmlYWMyUFyG6FNjcEqp5DIlhg2A6WDNJ0UdDQaWXm+c2IcojuGHifh0lPIN4I1seCPFeQgFASTkgrxto6OCRbzhMCsEaSQDWtzBlwxySq1YlNDOuTQjyHXFlxf+csLQeC4JBTSkiykKbXQlidyla7qPMcqqSVBQFYZkSYd4aaiA5nQjF19kLc3bHGTtq3/tqfYNH7vz/o85I0wSNzL8eq/lsx8MyDAMjOohB4ZMYF9rHGy6hJTD/NtZOVcT+u2MKxo2McOt77S2x79e+43cZoQFIrh8hvy3rbCNfXA37Q3KVpNcjj/ACo9cbIGsiRVlR3SbiYpik/EeKLlaSyw26gPhhD8hwS1eCQrbQWpG5Q9arwJsYNJOY3bCuf1Sscw1QTvzqR2wGmnkUyacDztymrKUWNrOmNIyZoUOhAiH1/EvQKPekApx71FumkyhYNDpkgA61ABQQqmUA5lFrlc0aUPANRhaxqmPuu23kOZbTKWebUX7Qqmd2wMqXEybhsCBdNSSSwlmSZbVdeE8wIF1aFSOrVQpHgUJ2arkAKyMJ+jwPEELpOOeQ2atQ1FK2U14aY55C5bVL4gKEqh0objLMbJ3QzcRDlkChbGECGUgq/aled51CQ6tmyaWW5/b2aqk7hJmGddQB9T/Ne9ro1m58itZtadhOQVEKMVm0LbCXMfNjNT5o6MBC55mLKoUhaWahWohu9tjpakIXQKYkaJtgIBoCWyCD6X3DvMYTr6+xXvBXnvvo3au8/GsxYoVKS9tz9Y3sszEqo2/gw87fonA2wY0AsKA64Dc6wCIkX7DMqm5pqn6oBDVvAAnrDQpCgt3qwS2sEoNcr2nPIKv58tRC9bTZxQt+8LDJWqSZFAkVmrVO2PKP48DNRzxneXFfO2ab+H2pa7AkCB4eYWrp7J+OecRvVzokQkEmKDmk6I9dhLXvz32HBWz83pNdctPY0PI9e4P7/sMeofLogCwEXKPKVQxV/FRLNph2viZKryLYbaEyHnB22cigY8IgpWvzxiX1OgbSyE2ClkWShZj0pTFuSqodGWRRIhIRMMj+YY+XrgbEoKUXvnS9Nrytz3/dGt5nmD4ski+6U0clTQw6QNL7EVoDRb6TOuzY4pJVDNDhkPIdoWhm5nQQ+B2EahfmMOwLlUBpTDun0Sbsz0k45NMji31YVIal4xnDRSF9NkDEt+70Jm63Ol2Y2sGn8J5xyKDzPNgv1mLoglHszI8LsRStxR3MdDnX0Det56fkfxe3Lfx2ACop3NDsGeYZi/tnXAgCmPfhFAP5EeeopVwOA52VkPIhE6ibpjZrgZN2ku6enF2lKdoCJ+sO+hFZ50LQyGQRWk8hixQVbmrUTaBMQaGTNisKHpvTYY8GCLiRMEwaMcqjmOUR1F6bIufPI7OdOUzSsCkBPzIfuOdSASBLkMrHjVluFo+7LTLA8Vq2sNJ5DdrPDH2tsOgxRDiVp6i1IjALGpFAZYtXKALeoMUEoWrZckICQKFygyIw/SbBgKohKhrbJM6ClyqEiJwvtYKFQt3Md4N1ngkOlX5XMpZXUV4sqgnQLr0qcXfQ27QZFrAolUFUYlEi9IFBjkNv1aWVq7DfzEbrr3xLNaDCDKnoBkE2lYSqHSCAsz6uLzKjnUKCWpj57NuVapHaDMZZ+7b+gSgfMkVRK2fvKIbOp5793HngOFVIgF9X+zrS9XVqZJAFNZ8xcWDWKOXcbkKWG1CR4aPvbSlqZ+mzNbykdgnKIpiSleqyKeQ6Z9tKqXDTFzLB//AKrck0SV9GMftcPda3DvOdvgNSl1G0RhjG2wTV7wXI8g0lId99gj6n00upGbli5lpayj60rzBhgPcPClE2iHPKyPEA8h4ySkxR0oB6Z6mWcjYH1TbPBW93nhobUOoWPKlb9gJALKJZph93EoRUz1TnFg0NxzyH9u28zxtPqosNh2qqd6vmsHGIYR8c5H8Bt894IAGjMXG07btqh906YjAmTh7YIStIUD/VuxaIXfoaiCNUPftli5zmk09zMe5rFgSkNL1IrKS0qUfLcRutN52AXG424V0aY+xoSLlZMe+rSyoxyCFD52OGOEY3W28HT+vGowJaSTfppEi54kXmT3JJMTqnE2pbHDAIECVWblLlvSmteryxAvQPMZ+dN+KlySA54yiHjXUWfY0vZh2ll5jgJDtnAk1E2SepbUUbSytw1pf7X14yQ1UWDhioalHLILLqqg0lsoh/DVpVInAGjlfLbvG6tKKpbnAeLT6UcMhOjQCFlA33VhXpYZdC0iz6fGTkW/9Y3sf5dnx7Wc5ZvOQ/bX/vhYb/XnIUrcEdjLRYWuwD4ap/Fa3bgETHLeRll49Alta8LVQ4FflwinNDX0DV+Ip6TPcieu69yn53cJq6PpClmgPsN+juqLqhrvQJ0f5+Q34v6O1UB+EhKpreYLnO7MIuR2mqY/gZDnZ+e++00IERib1Nk4hRNMeWQlfRXxiCnQPEqtVB/ptL49dQrHJ0hdTX1QpBFeIMGXJLMpoiptpmKM+rzN5tFVKVjFsFF3oKQuUvFqdk8MIuaNAggAP6mAL1tU2jDQIhIrckyXUTQDZ40bXhKnjpzcul91vXXSkbuo6bi3vdmg28Dfql5qpRIfeWQpw4mSpHEKofi1bWq6SNZbUCoGbmd1pyrUV+bOVJoJhtXDvnKYHutD3GMcRtk7pooo8qhSL8kXGDTmFiDbrIAXlXYmMLWezm98DVBMnucekiBzCOIUi6VLjgkdUBSvVZ1IxNArTrcQgKaNEBs1ShJhoz81q2fWd5ShUuCNOGKIbVWZNDKlrXBocIPDuUycfPxmqqTALkGSCEE2r81V19mb4vUpa7Sfqu15ELMxDN44HYVdHEq8bEVHBJJgoe712HW/lvdMZnHFbJWWeWrcqJFRDR+ULyaHmuCQ2WgzDLfp9DXPi3oUFUOZfa6NOljoXKI+qICer1jxh1ToY/8bkui1jfHc6tepQFX0hd7PkPuXG1VMj0nDg2/w88EANLG8K6T+cs3Yp/sZs8hhqEs23YBNr/pfwAAFp7xGnt8qGVJoyw5D1OwD/ff9hMAZKCh1cqIcsjmj5rJONmxBYLBPpJWZnftgvQvKs2l1OX50tdVzfHbUyc7NJF0wPkPUWi03voSBR0viM+MfV27KEi9iVdJFl+xksThDp5VPhV5tHMtRKIGNWtI3SA7ZTXBIbS8c/awyiEnJ/U+D6MoIgEOYdPsIgEhFF51MdUuYkQKxINn8Acden2ksnA7I7EdSlNxqWbgNnR0jsMBOQ5JzzSbwtaU/Z70VdQszt2Op1tc252c4DwrnkNB+oFRmYUTDRsA4PL1I05n13g0iFny0ebFla+yt/0ysAkeW/p6PJItAAB0rHiZWjTBD1o25IA3sa+UH64hTRM82L0es/feWLnPqDyoR5ftJyvKITJptoEj34yd/p/JARuoUKb/ZDoT+CIA8MyCY9jfeeL3FfWeQyRgm1T7GXO+XoEA+7v1Jf3VUvZUaVKdMCuj4JZ3jnUKx5SkBXnGnmQhEiqHAKLm0f21TR3T14inHEqMckiNIUZl5AWHSD9vFjUmCOUZV5O0soR6DplUi0haWWyR5HvLOeVQUeSQWsVRMRon59RujuP9vmhaWekWf57hd8336adb+Mohu0DMGvZ6rlO6hAqDQqR+QAittrepjwelEAkEMaQuPOVQRzSYQcdleh5DnjMGvivqti7PThaWtcoh/f6hoo6mlQmrxBrEc0j3GSa9zr53kB5ElTz2GAr7uyj13Mqr6hTMA8P5WrUtpfdeKkDsKpGZgIDpW0zQUpahcqjq8aZe16Te+/50UTWTCa42jQl1Gn1dmh6s/nd9rE25J9/jytMuw4uyU7czs9cC7bcWn3YVSinwzM+/pA4MM/h4LGnN3oaZ8hnseVyleydBULEMPh97XdK0sprNiQKJDYpXxmitpFEFa9x9XjETfa02OrV6lfSHkqy1Sq1UN0HIMO1TBY0Sb/PdqOBsUDehwaHq7SLXvndBCrWB9uu0TL1bO5m0svpK04erHErTFLdv+2Nkp797WM873uHgEDNkJs5YgPsaK9QfR5B/uXC72h3Yc8s3AbiJsqcc0gaesUW0CW64amWZU0wE+bxGDilJcMhKXWtScIaqHArbg5rnmBxcwJm1Uai8NvRBsgN/oAICyMInzayfEW2f2Umy7QjMau35BmlllSoaMJ5D7vlpJLBGJ/8dcsAZ1NFUPylsoMe0rWpIrSdBpNqKeW1a8YaqhZznUKCoCXxKvM8Hwc4xTSsjO3BRLw+yy96Ojo5xOPj2n2HjZe+wwcwmWp701QQXVXCILE7IrplnJkkmkWUwMbLV7oKAp/VWCNq7cOUm7O2YhalTZ7Y9D2bss/LcN+Cg1EaVwW98x9W/hyV/8Av1uNOvwH6pdwuJdL8J33NoyoK1eFJMRd+sRYO+98DsUzFTPo1nHr3XO54GfS+I55BLyzI7zrEd1WYlmG9+042y3/6OKsbRgTxf/9E2rYz6gxkKUR8colUz7W81DLKK1HoWxfwerKS/nXo1MhnOhTNlbadwtKkmMc8hk2bT6vc9i4KUPFG2kMuEVJ/0FQiAC3KYsu3Wn6hmfKDl1Isi976nhPjjJORxsmY3nVY48trk9fOZv6ip8Z+iwf52BreeH0aDeg65xV9CghyeiXaNcqhMO/yFOPXNi6RJUmLpIw20VwvR2xXvJU0BZUZrPvsiUDrF0sqoFyBQHYsHw4yHVNVjFqIyq5bd9p+c2fmDmx/5QQgpkmiZ8Rgq2JfYIBk97vuzVUuspyjt78Iph/yqTpRohUVKENA0VWSd9YAKjIVm9yZtNAyyh/PQhMxPAFgvtagPUtB/FUhs3+cH+cPAvskCSJ3fI/k9dI7rxt092217XPEZd+1Mnj4H9zRXYerj39HnN7zr61gyaYVKSXr0lu8BgK8gBFmLhBYVXl8Xn2PmggTFK4pVtV7IpP98fwxS33OzUxlnexkD1DpDbzCY68yOG8EGtglO20AlWTOUmes3ZFq9nect9bv1+ux4INiq5kArWavfTrsNIFc5NB4Ib8dpl7wR63ecO+znHc9wcIgZFnsXKHPTmBngUJk0fS4eTBdiwuPKbNXmLzdcCkGWNZCLwO8hkMX6yiGST64xUXKnHErtcfUe1QksgEo1lBArTwwnHTWfSTmIcshMLJTnkO/lYxcJIuI5lPsLftMp0rSyhigAqVK66krK+sqhvJILbyqWUO8At1MWVw51wHkO0fPtR9PuwJnz8XYfpbQVyugiwVYh0MqhTJSefD0NXpOq0dT/RMpKJ3WR4JCZYOZWKRVTDg0tOAQAU2fOQ6PZgXHjJwAAxssXg/QdvdiVA/5nb693t+ttK9cgnHiT+8lxQ5HHg0NT174MEz94l62swRy/9EyYjDsmqMloOFEWQtjbHZ1duHviGep4mtl+rCNQri1YtQ0zPnI/Jg4hcDh13XkAgEd+8W3vuPERsCmbSdVzyKaVRRYVaZZVd58jSrsCqQ1aAO08h+r7deqHYaApwSHT156Dn3WfhSmz5pP2+hPPbN42PNC7VZ1TJK3MSPpjqc3O9J7smtq0sgzGpL+dwtH0ZZIGGuz56s/IlIsn5YvV65pSxYU3bpk+iqYnG0VJUSglAy3hbaCLa2qQnOct73E0nZjetpsbKL2xtkSKhqwqo3xvuYbnsWRUHBWS6ucTgwZfk6ZLDaQKIbeIavml5sl7UCVMGaSVWU8QUhmuLpgRKgxKkaJDxtVCnaJ6u9ZzSCiPEtOWMjCTDTesAKoc0hs1gbp1MGxRBc+QWvukpO09h5CkdtOpCBR1dI449LQyohwKAp1hv0AfI8sSDVHY34Xyo1IBJfO8yhwzMsfzCPqvXKTeNeeqlZmULxe0VAqS9soh07c05YANQg3mOdTQabF5jXrfzZX1pkXmfgPWZyf4HuXKy1U7uiaio2cKSinQ1esXvHlh/vlYUjyIx3fdQ9Ltxp5yaNGaHXhRdqC163oA8BWEoMohf6PZpgHLsnZdUcD5ilV+vyJercwL9uk5dUeHU3/Zx5G1llGPGbN9Nz6Y4JAOlFrlkAsqllbxVxMcytymQqgcohXHwr7Y+tEa5Weiq5O28xwK5hFMezg4xAyLBae/FgPIMH7KrCN6nT0zzsDygTux9/nnSE56g/hLqNu0w7K7D0ZpQRYVaWRgMgNbCu0DkPiLENv5BJViQtl6SOg5ZCfJdcoh4fJxCxJhp+TIVIceVL1IArNB7zm5H7zIw0mHnVCaBUm8WpnzHMoBWXiLLAC2BDP1DnA7Za5NXpUQIZ1ainyHLZHpQFPhKsl4Uvpq6gHg0sno7nMqjfS2jKSV+TvlvnLI3faVQy54SJVD7dLKhhMknTB5Gh5O5qhJo6he103pm2V7lToC/6FwV9Ys8BvjxgMAWnsf8947vFaYE5OpF/4ubpx8CaZMm9P2cc21r1A3kgwTZixEKQW6xaHDLte6aNUWPI8eyId+6B23PgK0jwzSl7JIcIgGjkq742d2n8kihgSgy8hGghecCCT9IbHFihRJJVhumL9sPba9/6vo6BhX6921+fJ3YMN7v65eK6ETc7Nra6qV1SuHvEotNqUkscqhtgpHs+A0ZrYNuhurF4kDyn/KSvdtYE2/bqGUjs43zyiaSAoXSQ8QMnclz2uUQzTlqchb3iKdKkZTMgZ4PhzkeyyEU8nUeQ5lWYMEBPL6RUTE3ykG3b1OGybAZxZQ/nWkvIjI90mDQ1oJk8ukOsabOQAJDtUZUocKg1KkXkDIbLjUkdUsrEtohVpEOVSmHVFViTlmgjRlMbzFe0zVYwNFQ1IOqffNg9+FC144FdlghtRm4Wsqtrrj1Q1EWmK91H5d5ndh5lY0yBo+n47r0bYEAU3TJmvkGwSCw+DQYMqhjnHj0S8b6BL9fipsNK1MpyR1uAplaVYNOjmfF38jQKQZJs1ciPvEAkycv8F76c0XXYs7L/oCFq3eijVnXoXdr/k2ps9Z4j1mzimvBAA8cv0/R1WRY4Vms4kHOlai71ml2g2DQ3aj2mZD+Nd+2NdRSriqo5XfwvhpGCcGVPCX9gtJ5qlXCynQbFaDQ56Fhw46moBoGFgVpVEOkbE4aXhrBpm63y1V/5nfs/EcoucqksR614Vz8AKJX5UsUb6mSdlqkwZuPmueAw8FDg4xw2Lq/BXI3n8fVp35qsEf3IYJay9EQxS476f/6nKGM5dWlunb3mQ+SONK0hSlFH5aWSU4lNtdO5G4AQ8gnU9sYt7GS6aSJ2wrUsUHpwPTt6J/pto9jimHAODW9X+AGWe92e2iG0UIjJQzsyUfbTsKf/JjJruht4EJDBjjvlAuT9Umsd11U2Un9A4Id9PCSUQp/ElIIQVaaKhJEpn4UaNtutNPq62YSVfMt6IhnHIoIwMfPVcaBPKMSr00C7KrJQubihUNqETMa4fCE5PddWDboBdsXfKgd717hsB297Opd4WMWayvHJo5bynuyZZj7v2f8fwUylb9ApI5cZi/aiu2vPszg3pIrdr5Ctww/+1YdMoVmDZzLu5srgFQTXUYKmma4sGuDZi97yb/uFmU2JRN588TpgyUgTcCoCa9oXG1rfqHll0sFcFY4ZkPa2K7/ZRoKXvhDGTbEgS6YtCFllMOdXl/25fzFCg6WCMTOxlWC0P1nHYKR5tqUlYVIjbQNHBIP99/P7twlgXyQP2qTpl8TjY4pMZbExzyPenc7QZRteR57p0/DQilXloZLe8cBEIiiyTfkDojPjOtSlqQayS9htovNu3uNfV2Id8bNVZOkUfVpmYXvYD26aBjPKlOZQJxdR45ocKgFOmgASHv+TXXrRn7zfdId/2LpCOqdKlT8Q45rcym4xHlUFCeHajzHGog1dWPzPXrfPWocsiputphgkDUAB6AZzxu2+j5gKnr0fwupC5lX9K0snCTUFSLjngEAU0z/6Kemg1RuN9J0wWeU+mKUVjFfdAXdo7rws3jlfLU9KteQNtrSzU4RD2dDFZRqT/viX0zcdu47Ziy/DRMmDgZSz9yK5au3+F/DEmCVdtfBpEkSNIU81Zurbz97MVrsSuZh/G7vlWZ64019k/dgvn5Qzi4/3l93UTGuWBjoq6voxRI0EBclde39mXuj8R/Py84hNSuo3JPuWuCMg3tlVfa6ywMrNK0RgCe/5Vdo5DfrX/bmfmrc/XPw1zv4fnVZZUkRX8bzyE/QMm0h4NDzLBJuicDJE3hcFi86Vy8hA607vm2k7xrtZAxRgv9HoxCh04AcySqIzJePbTj1VFyu2tnFyh098WVBLbvE0i0Q9wOTKBKqQkUbHrL/8bma/47ANdxhmx7xW9iwYpNzlTUfCY6sCWTzJZ8tG035S4DQ9dwUWEeV+85pD+XshVdQNkJYu4vMPIgOJTKAoek63itQR1ZwJVQuft00UYnmPQ4VQ6ZhQVNTTDGiQDsIJnVTEiTmuBQ3HPIKIfiSiv1mOpCcig0F58JAN7ANmvZRhRSoEv0e5+952OiB01j0FvZlTUpjkmCA5vfidnySdz2H5+0r5W3Sz1hTjoazQ7s+LX/ir4Z8wAALyy6FEAk1WEYtOacgpnyaTz5iPMdsjufVC0ULJLbKYcyXZ1P3VYBhw6bnvmSS6UVaVR1RxfTtQEB09YaleGQPpNxEzEgM6cEilAmDXSYPkv3Yx11yiEQ9SoNxmtMqq96ahuFYxIoh2i1MjPJN2llQXDMBsfDUsWo7uZahUSuUqhsyfPAp8VA/XDKIK2M9vv0ttncqPhoIEUHqn21+d7MDrOnSKnzpiCLk8EWEaYPT4mpuBfU85RD1WpR+snutcK0IuOv56XE1Vcro7vudfMXsxMPAAPStaPOh8Oor814GnokxYJDVsWr5ytO3To0rw/rm0eVQ+ZabHRWHkexc54ir/js2fR5kgIVBmUrr1eaSkwuGAvEA825VkUDZM5lg0Mt64dSrxxqeB6R1bb4/ZepoBb6ukk91mdN4zmUIyPpRTatLHKNdO64Vr+2urZbXdMxo3gK+/c95z+wzJHLxF43JUi1skg/boseNDuw7ne+hSUbzqg9z6Hy5MxzsKL/lygPPK3fY2wu+ruWnoZUSDx0y/crfqalnePpSpxmLCxzQEo0RYFYFUpAfX+dUvXd4W9h0ZodeB690C/q3o9UMaRKNOWKFvne9OaM8fgsI78d6ouq3iO1QSgZCQ7R37AJ9hbGcyhYQ5kshlhaWbS9ZX/9BpCdR4zN62SswcEhZlTImp24v3sz5j3/EzuBzFI1Ebelf+FHh61iiOyKm8E26luhOygT7BFkckCfH07MB0src55F/sA3lECB2iGsX2yEVcDMwB/z0AiNSKkUmB43z4ntHgPwfI5inkMq5zj3jMPV+7nUBkBNCgdIqVvTDjMJyWFKwhbeeVApNT1OUw+MYsiriOZVY9EleeErh8x31KgJDpldE/3B2P9TlMRjKbLoiuwCD4WFWy4E4C/0eif24cFscaVtrlJHwwYNU51ikAXnSdu44WWvx24xE903/pU756ByC8NQFp95tVZhHv71MU37Dj1KfIeccsj9XsLAatxziKgzzW2tmpk+exEeF9NVeqYJDgXKodhiejDl0JRZi/Czrp2Yuvose6wU9aXsKesveTt2vfKb6NKBqxhl33JMx7N49pkn7MK/af1qIqnNgZKHjoWmSACAQRSOgecQKeNrFyLWc8gPXhREORRb1NIFiVXA6ACJLXlOvYRI390M0sqkFxxyQX+qHnUmraU3hpYiQ1P4YxMAEswyu89mxzuukAWceoo+vg6z057WeA5RdUoK6iGl/m/J1PbxuaimjnueQ6TtMapqKnebbtgYLygA6Ce3qb8HxQRFYsohmTbjwSHyPRc6hQ8YelpZrOKm3ahpjKs8Lniyet+8RTyH/H5GihReEY42eGllnnKomlZGK5qZlDZJK9lptZEMFNXuRQcxpA4CmoUgaWVJas9d6mp/GQk8J3DKoZjK3rDu1IvxiJhl+7yJW34FHaKFu7/3Wf+B2ovJvJanHIqlTR2FBfmULa9AJkrMePy7+j3G5sbXwvVnoZACB+77USU4ZNPugpRpWeQozEZwTT+0p2sJuoXqK8NzT9IUD/ZsNn/Y4/mU5ZhVPonnnnnCU6LVBluyDBCZFxyy6cjWkFqroYRZf6R6AzO3aw4/IERu6+NFPqCUjsEYZv3tgusnVArb33gx0EY5pD/rsEIlE4WDQ8yokS88G3PwFOQetdMc+gyFnkOuOpgfHJLCmaqGHW8ClXJU6pxsdZw8X/iDPmAmWm2UQ5W0svbKIcrji64CVl1Ze7/tBM1k3qiYyKTHYBY+XpoXaFqZWSDp4FBRnUADbmCSZV6rHKK7ANYUVaTWFBWAZ0Sq38hrT4HEGlyawNYh2fAmRFTm3YiklXkLDOKpYMw3UyEhy6LiOUR3gcNdVROMFGTnvCGKyuSSEt0FHgKTps7EQ8mCygD2bJ+STpeRAY9Wq1E7OUpFlg8c8hYQhjTL8OjS12NZfg8e/KUyQmx3LgwzfdZ83Nq5BS82Jh/2ayxYuQV7MR5y14/sMaPycCmbLtBtfjuDK4eCqpVJgt1TTvGeQ41eAaDZPREA8MLTu+2xmE8IpbNzHLZ94OtYsHy9PVZRJNUwrqsby9Zta/uYCUtVmx+59ft25z1J03hqM1GvChJAMPjKofogti1KUPjBcvp42TJpZYFyyCiSdMWmMK3Mq5BjjEWLFhJQ5ZC/oDZ0kL47z1t2EQH4AaGGFxxyqRZh6p99j4i3XKh0MiqO6PdKXpf6M8Uwr5t10EU4LRlOlUPV77NAYlUBBZSiLiOfkShzq6Kmlc9iZCh9LyPymdANm9htz7sjwBoSm+8x871DYobUdLOnIKqwoaZzeN5Qph1mITqIcsgG2/KWu35TMo5CqTWGqhwy5buNRYF3POhLjCoacL9JE0yTZW7NrY1apNIXpZlVW8UIA5omQJzozUzz/ctcBQwaTZOy2kImSFqZCVpGrv8kTbBnxwdx14wrAADLN5+Nx8V0dNz95aAtyofM9CeFSNv248MtHz4Ulqw/HU9jMhaWuwCM3XShiZMm48F0IcY//fPK2kIGahY7Fy9aVu1dt64YWHiuvR1LIy8WnAXAn/NNWnsBEiHx4M+/6SnRlKqffm+ur5KJ6pcSmasUMxvA0pvNFeVQRjZYTTpoNSAEAIm+nQ/0R8/VpTD7361yGa2mlaVtlEMDHZPxnOyp7esYH/6UmFFj/tbLAABL96kFrEkh8IJDZKBZsOk8/LjvVViw2uUoFyJRedGmUw0mSKndWSGDp5dW5gc4AFSqoYSE5SdtrvMQZNPb3/CfsOniN9Xen2X+pMVWrSGTHtuO3A/2mE6xsqjI/eBQWObaDqp6dysMXJgJogncmM/ayJrt61SUQ0FwSBh5dmEr7AyIZq3nEA3+xAypvZK8wrUjz3M7mTWDru85VJWoApHFUavfO1+Pw0wrA4BnV/8qdk8/xzvWufTMStsWb78UN858LWYvXIVpGy7EDZMuw8S+mWjOUYvXu378dXue4c7KygveioOyiWev+2t1LoFfFMOELH7XF7HoHZ8/7OcnaYqHun3fodTsWFufoYjnkFbvyciiIs0aQJIhNA/uWK48Fby0MvL8hZvOQ0umeOGOf3cvGfEJGYz+tAeH0vHDek4dC9aejlwmOPjQDXbnHTCpzfVFEQQNIGiocqidwtH2T3ojgS6g7IZKEByiXjkA7KJWBotabxwx3hE6rcyW8K4xpKb9dVnkXiDAU4QGaWWyLL2FLgCUNT5Bkow79L6iaEUVsoD/GQ62oDXfh/WNssohX6Ehg1LiVOlrlErq8214Y6Esc7dxQSqfhZRFgUTIytzHQDds6O0WSEpbDdajJJIeIpNmNA2KbvbkecttdA1x7BHB4hNw41cyqHLIBTbLYEMk0ak7Kq3MKLSH5jmkfm/tg0NUXWTnMRlVlRnlkHle8Lmba6HGBykMaBYiRVLqa0ukziBez1uMHxByf+GdNuqVQwCw6YI34pS3/2/1nkmCh2deiFUHb8JzTz/mHqR9yLJGh32tpOE+X/sw68U2/PLhgyGSFA9NOdP+PZbThZ6ZtAkLDt2FpuwPrC+cIhwgfW+rf9ANvbnbr7C3k8jaY+6Wi1XRmI4ee2zxhp3Yj3Eo7v+ep0QrwsILCVnb6ECPTSsznlVBWpldXwnnOSRjQV2qItLXT6v/oL4zPjcfLK3MbjSVAyhqsj6WX/5e3H3lN6L3MVU4OMSMGlPmr8TjyUxMxV4AKmquAkLOWJkOhhMn9eG0d/0dOse5stvGC8E40Ncph7y0MpLDG6ZGAe0rBKjn+8oh03GJEUjZ6Rw3Hi/JDiT7H7dtoYauXnlXM2GzOeSJ1z5nLKolzsTbiWJ30fTuVp3nkJvkmUllWtkZbpHgEILFhNmdEKWrBDaAhjJRNNU9iJScBn/MrnOdcohSkAmpWcAkWWbTx0LlkKu+4yvA8n6dzx3L+Q4WuMNhyyvfg21v/z/esYWbX1ZJ65k8Yx62vO2vkGQZFq3agh2/+SmkaYo1Z74Cz6MHA7/4NFEO+e2YOGUabpt4Llbv+Tcc3P88K4eYQentmYAJvfVpUUNhYM6pmC2fUiWGYVQeqZv0pURFFHjH0cBoMnEensEkVZigYwIOCNfnA8CS7RejJUmqE/zgUM/EKbivYxWmPuVUTIOllcWY8Zr/iYlX/+2wnlNHZ3cvdmUL0fPMzXbnHTCLSr8vozvMoTIUIH0yiMInmlamn2NSTcgizfb7oedQoFIxGwaSfNa0XeqFnbGo8slroJTC2zyIVj1CNa2MmlVTbyIUuRvzgvLM4TkBvmLVO98ahax6EFEODbLYNNXx7CK8LDyFEFXAULWT5xFoxkgkMFWBDFQpEqvgZYhVoizJbbph0/JuV4OOlXM0Jurm+szUuZqUuLjnkAtwFXkeVbe2w/Nd0YTl2YF4mprzWRyobIg4dXlWqQpV2xYd0AkV5kZFQTGqaPW6uoBG5gypzTVnf0fh71XPM/JWTXAoCGh6yiGqzizU77mjUwctbXDIV1G389WkTD/1dchEifuu+5TfFji1UIHUpu7XVZ08GnStu9zeDjc9xxLJglPQhX7MlE/737tNu1PHps1ZgkOygXz3LyrV9kKmzV2GXYnyDIz9FmbOX4b7rvgq1l70VnsszRp4oGsj5jz/U69/CZVDZi1jVOsmrUyK1P2OyrhyyPhfpSTbIGlWg0OFFNZrKTcVMyNBIPURBGllIp4Gl8mB2qDnjCmTcOrG9dH7mCocHGJGlSemngZAdRQiUQOn884Z3O/BppWZgYnuniUZUlnaAIsdPKk8P9gRAozfQ/1AE0pBbcc1AgvvJE3xcHMJJuy9Q/3d1nPIN6R2yqFwkm88h+K5/9bnyExggs/cKLBcyVD3fl5peRCvCTgVlyQDkJlAmQo7ZuJqSr/SXTNfOaSDQ2QyGlZjMWabZreSVvcBXPpYJTgkzO6sH/AxJZ7beRuMlBJnwqQ+3N9YioFscJVCR8c43NN3Pta88CPgpecBxCdf4097K7pEP+78979rry5gmBFi+vrzAACP3vwtp/IgpaNBvDHoYpYaHgPA1ivfhZ7fvQtJmmLVVb+PF6/+qvc+3b2TcX/narQSt3MdKgJfmL0TS4oHsOfJR9RbD5JWFmP2vEWYu3DZsJ7Tjucmrcei/ruBYsCmiRUisV4lBqpedf07WRiSNBe7g9tmsYy8X6Uokf7Q9hl68Wg9/YJ0ZDMmVJQ4tM8xE36dVma8A71qZSicvxuhLPzgUJMEhOgGQVnkbvwjAXu/+iQNDvlBNeozI2SOPLLDTK/JwQxurXKoqdU0lbQyN66m5LinHKKBvyRDJkq7UQLpDGNDNZfXDvuZxANmrZrgkBmr282xSr3BZjaBrIEsErUA1GncFL/AxIDbVBpyWlnMkLoaHIqmlZENsXDMc+pyojQf1HOosKpEGtyMppV5AVt93TacckjIQqunqxuZgFuQ55Hv2LYlEiC215aZv+jfszXHz/1qhDatbIh94cLV2/BQMg+995E+WKtOrOoTSdw7LhuHlkyPmh/Q8h0XY78cV5nrjTXmrDvL3g6L5pi1DwB0do3HvePWY+aeH7vfept1xeNTlbF3XfBtxaYz0d3jb/gMzNuJ2fIpjD+wyysW4/UD1J9K90tmwyL0BLOerjYzw5lY201aqvhrugp3RhFpgkPhuYaVH+nxmMdgJgcOu+Iq4zN2f03MSUHXqgsAEDPlhHoOZYP+0Hd1r0drxgayG+JLqxMdE0eSEeUQWZQIX/0CmN3uNhOZinIo8B46QvZNWoP5Aw8gbw1UlUN0whRUoDKdpU0rC5VDNbn/1OcoPunJ1AAQ+PgUIvECa2FwyAThvN196BQ13SYzWW1pKTRVDtHgT0w5FGIk80WuTDDDHVF3jcV3J6jnEAAUJt0iJok2KR8jGGyZ9Gufx5zX//WQHjv51DeiQ7Qw/8l/AxCXba/achbuTRZjyl2fau9LwjAjxPwVW/AceiEe/L6n8vACr7XecVQBkqJTL24mTJyC+cs3VN5r6hv+DuNfrVQ9L3bOwIsd0/z7N14CAHjohq+r1zyM4NBIk87fhm5xCL377vF2banCBvDVq1HlUCytrJ3CsehHjgSCVBm1E26tNHCefnqRR9LKlDLLV4LSxbkgxrtmcyU8r0QWOATXTxmj5KJwSk8AaBLlEPUmAqlyKbxACA3oVDcnwtQEqQ2pY9cCvSYHW9Ca8TbNGtY3im4sUXUKrbBmlUM6wGJfy6YVOa+nIrgG2imHqBKPfiZ0TDZeULlMPL+ROmxamdSbLUQp4nwQq9eu+W7LPCd+V0MLDlHfFYO5xlOanhJ5PfPZ5kWrklaWEV9KWoSjHWZzrhRZJa0sDO4YVbRqr++1IsvCXnNGEVhR7kTU4RQRpMWWQv2+TCDZ/n5zXzkkCqMcIgt+DD04JITAk/MuwcrWHXjqkfvUMe1DBhjVp1MR0fNactGv49adf4PkKJkANzs6cW/vKb7X5Rhk9rzFeAxqfAqzG8Lf30vzzsL8cjeefvguAO3nbPMvfT++P+9dturoUJi1+WIAwNKBu+zGaEU5RIqhmN95JgeU51BQNMem0tLrOvAcor9bEyjKaXB8IPC901hft2B+WyL0SFLPa7RRDjHDg4NDzKiyeOuFGJCZ3SGjnkNI4mXfKVvf/1WcevUHnaSUThq1HNLsrISLfwA6WOFPELKgGkpIWK0sjbzukZDN2YRxYgCP3HOzlaMnEUNqZzAdKIcCw1drbBcpZ6zOwwWHbOUBQliWkr4flVqn1IiUtMPtOCfOc0hP9uzupT4vu+NGaEm3a5cGwSGvEot9rQHtk+F3b1SRFjtuF1dmkjYU5VC7IOIwmTp7IfpmLRjSY5du2ImHkvmYJXUZ18iumUgSPL38tVhQ7MLeu3+gj3FwiDl6iCTFrt5tWLT/ZxgYMFWwGiTw4ALd9LejvOOGd232zVmOGUs3AQDW/vqnsPpdn/PuX7h6B/ZgIsQD31HNGAPBoZmrlUfG4gE/OBQqh2iQIQmC/wA8JUMZ9Mse5jXy/soixHiPmMVkEgTt7ALXpJWZAgMwQRESlLFVZ1p6JzmrnFcqCwyIan9dtlqel04n4l5yssijqRZ+UHFwzyHrDRQJitD+cbBUGOu9lDW1b1SgHDKfT5nXpgnaDRyi/LDBHrLBQSufVdoRURjQ+UseUwuRNMz2nkMmrazw2quCWQ2/vZpMOu/BvGjZzbdhG1JH0sqSRlP5qIB4PXpPNhs7eUVRR30pU/LdtG2LXvhWlEOBsTDgp5WZ+Y31Vylb9ppz1cr832voERkSpvybjTYbSDa/9VKpBLNGU6V25n7wN4v4cw7GvJ1vAAA89P1P2rZ4KUnCqYjoeU2bMRdbzr1qyO9zOMy66o9xz2n/31F9jyNFCIHd49epP4I1Sh70QzM3Ky/W525Wmxrt5myz5y7Emdd+fFiqqdmL1+IpTEFDuOsp9Oyz1b/IeN2QLd+vi3gOKc8rMt9PdCEEnXqWNp1yKOvQYwUSN7bZuUKNcigI1BeBcsi8TlMODDldkmkPB4eYUaXZ1Yv7u9bZCHarYyJeTJSB2qRz3wOc+YEhvU6SpihCU1OhpI1pUDHHM6QWkYk58QeIv5nuOIO0spFaeE9boQy399z7U2TwO166Sxfm1JuO1CmHnIweQLScMT0PWeZII6atRoEVegfQyRCgJoXGiFS9v26X9VVwVT/MhNZMVs2kP7YzOoAGUjgJK01N8KqvgOxWlrlX3Ue1tyatLFQOmYl4SweHYpPaZGTVYsNFJAmeWfF6AO2rzay54FockOPQd9c/AYinnjDMiLL4bPRhHx64TRUaQEp2tUk/3E45NFw6O8dZpZEhSVM8NGE7Fu//GYo8j/qEHGtmLliB59GLDtGyO++0ypHB96ip7vT7wSGjCqz2U/ZzL/srixAzoU60ssCMFyatrKDVaFAtwU2DUcZTwimHlHegCNLKBhDpr0m5cwBIhKych3pgXlHLAr5Kxq9K6W+amE2cuvTp8HUHM9GlQTJjRpzJnKSVNe35WWN2+ME+QTda7BhvFFs0OOTaHhLzHKKp83TDJk9cWliYdhdDJiatTJW9tsEhEDPtIJiRovTG4uF6DtECGbYdZpGZNkiaYPW3bD/DYsBev8J67TTNg1wK1JCVQ35wiBrGG0ywBiApNw2TcuhKgVuFRbgBGVGHe+em09Ls++k2mUAy/T3nRNWTBMqh4XoOAcDsRatxb7YMfbv+RbclqHSlP4scyTFfnM+cvxwbz3/9MX3Pw6E1W1WzpEG5qRsvwwPz/ODZvKXr8ASmou+J69SBEZ5jiiTBIxO3A0DwHZJgi75uGx0d9rppYkAFVoO+yFVUJkFHc1v312kHVQ512ve2/V8r7jlk+thwQ7uiHNL3d8mDo74BdKLAwSFm1Jnwst/B46uUadrK1/43dP3aFwEAczdfiEU7rx7y65i8fYPUpmiZyZU1k4lQOUTUL2VRrYYSYjp3M3mcOW8pbpj3Niw67ZVDbms75ixeiwNyHOTjN1cCW6Z8PeBk1+HiIVQO2YBSzSTNKYeKuOeQ/hxD74CYcqhoqxxy1crMgsZMXE2wyAS8jH8QoAJANK2Mpib0k9stslspSCUGQ11aWVh9xw1Y/o66RyQ15liz+sK34IAc13bnd+LEybhl8gWYWzyqDoyg0olhYizcdikA4IVfflMdSJy3AMhOJP1d5ci8QgEjhVh6HiZhPx647UdjQjkkkgQPd60GAG/nPSyKkFHPIeLxZqCLVTtJjyy+7Q5w0V/xljHjl0k7CdPKbKWZcFFL0qkMJlXAmC+btDIEaWWtmHIo8ByqQ5K0sjqVjNdXJ27cUU8xY2irtnKdV61skN1487pZ1tDp6S7FByDKqqKldtET//MtkAVKHKMcIZ97xC8pxB4L5j62nWTDxozPOVEKtPMcMn6DZrNF2EqlLiUuL6qBTavi1ZXhSimGnFoULWVvK7M6pUW4YARcAKj/xX0VpXNKFDM0lb5tW1DjOYRqWlkhsqpJfNahlE7ac8hUcgJQCS7Z66JGORT2X6V+Pxt4NOdZDHh9iwv+mnnr8INDAPDcosuxpHgAj9x7izdPNIpw836s3IjTt0pXVqMVaU+5HGvf9L+9x4kkwSNTTsWS4gH998jPMcXiswAgUA6591l59mtx28Y/xPQ5SyC6pwAAeuWLaqM4SCvLZO57uiaZGyu0aq2hlUO5dN5UyrPKbMTGlUNh320IlU69C5SCuEv0j/oYf6LAwSFm1Jm96UIs/5WPAQAmTJ6KmXMXH9brtIIFhuzoRRcOoYFcB1iqxtFloH4pzGShXeUx02Elxsg4wY5r/xv6Zsw9rHaHJGmKRzqWYNLe260c3QYsiHIoTCewnXuws2ul6IFnEH2/Uk9gYgsooxwKvQOsWaUmRYkyjSiHyA6uSVEzkyczcTW7fCZIFJbftWll8FMTqMHmgOhwn1Ebz6G6cplU3QC4Kj5x40tzDYxecKi7dxLumPUKPJ9Mavu4Cae7ahVDLSfMMIfLpJkL8HA6D9OedKmM9LcVpi8BwBOn/2dMe9lvjnhbFm+/DKUUePaWb0Z9QkaDg9PVRLYgi/OwKEKmxywgnlam0n2M2tIvTOBh1ARlNa3MeubpxaNVHoSGo0EJ7phyKKXKIZ3mUhBfJED13TFzZKocskUFZGLThw5K/ZwyJ2oQqhxy50U3PkyAxAZYUvc6tcoh/Zx2akyDUw417LlSxZdVaJhU6eD7LEXiqX6dRyBRDomg0lokOBQWpgg/ExMQKqRAmbiFGfUCrENqv0GjYrKFMZCROQlJddcm9Pa7zVuQZW6VLEPBBHiomTmttGqrz0WUQ7PWnA4A2HP7d+z1a4Iu9toQqQ2MykGCQ0YhJMO5jiwrm0xSpNHfpAmSOuWQWUT7n3v4/YcImVcCxKnM3eanue7Ib90LDtmqbcF8cYgsPusNKKXAYz/8lJfi5qcopsNKVzuZWLx6Cx7BDPSPnzPoY5vLz7e3j8YG5MJtyneortpn94QpWHfFbwFCYM7miwAoRSdNyaxVDpG+zBQ7yDqU/1UBF1xSwSH9nIH4RixN3Q2P0/YuWb4OT6BPvRZffyMCB4eYE4b7t38cc1/2Dvt396LtSIVUMnWyKKGDMq36AtDKH/W72KJjPF5E51GtjvDC5LWY33rIBbasXLoqtR5MOVTmfnAoJpfPjWdCZAHldg997wBjiKjaUqocZhIccvJpNwE2pXFNYMtOXK3nkF/FDFCLCDMxS6SfmkB3oo0Kye5WDtFzKDRYdQObGrBiJVKFNSEfXSXO1jf9T0x678/bPmbNplNxe7oCQE2gi2FGmKennoql5YMAVD/kqVIiyqH1570OC1ZtG/F2TJo6E/c3lmLSE9+P+oSMBr1LTgVAJubCD6KURYFUj1kASU+qUw7l8aA/QJRD5UAlOJSl7j6AmJBahQ01HHWT/9iE3XhKVJVDflGBmP9NWbRsxStbVADOqLVfOPPgouWnUgP+YiAWIHHtdYuaukChOfcwBS+Ged3MBCxKd+60LWb33FW4NMpbEmCBU9QVtEpc4DlkxnxKEfNhohtgqUklIxXnMETlUKLGfhscoinspr20gqq+Zuh3KyIbNe2IBcKcCqhBjMCr85jpc5diVzIPPY9+z5nhWuWQ/gyTBsZ19+CgbELsua99W3SfYeYt3vHIPKKa6qmVTtqPShlSx5U7afdEAMCzD98Rb0tFOWQKrmh1ub5G0nLAGQ2LxP2+rddbglwmw+4Lp85agLs61mH27m9E0sqcimgsBODHIo0sQ8dv34ztV//eoI9dsv1iGygfSV9Lw5Tpc/FgusCrWFinuJkzfykeEtrwmqRk2gI1QVojSFqZmUObynnKZ8hlHlhFpFEO1aSVhRWWS+GnlSVpgod7t6h28fU3InBwiDlhWH/xmzF7yXr794KNZzt/GjJ4emVwg93NPFINJWTVle/Fs6/45xFseZVs7iZ0iJZdJLi0MlLBg0itAeJJEU5OzSRLT8BjcvnCm8AEO2KJMvYOvQPohMmUoveCQ9SgTrfPKIfMediJa1BRjSqHWqJpjajV7jO9z71fTnYrY2ll4edjj4fKITNA6V2PqE9PkCIwWiRZhs7xE9s+RgiBPSuUoaTo7DkGrWJOdrpXnWdviySzu9p+oOjY7PA9N+MMLB24Gz3lC6PuOQQAC9adjkIKFHDKFppWRqu8qf+C/h2kihSqmwQUa0JbDlSC5WaSn5aqn0ttwNuMG85zSAqnCAiDHwCQdYyzbcmkUg6FqlxVsKDaX8sihzEutelISGyAxm4GlKQ8eU1amRcwqASzAkPqaCl7Uo1rEEqR2hLapjKbOXeApO/kfiUez3OItLHiOUQW4LTyWaUdRdWHyZvj6DE2J6qOknjDtFUO6bFfKUUSkhJHzKnJnCQPvASLPAciY3E7rMInEhxKU1ewJFwwGp6cfgaWHfolBg48B6CqmEGSotnRiTvH78CSZ79XqbZGsdd+kFZGg4CGOpP4QnuKJXoRba/X4PmrTn85nsZkJDf8Zdu22M8kyZCWZI5ofuvSTyszv++qx9vw+8IXl12JefJxzH7pbk85RIOOvDivZ/qELnQ2Bv98eiZMxr0dqwAcvXGyuPQvgPP/M4BqWlnIE1PVhoZMGs4I3qj5TCot9XQ1472eQze0cigXqf0dFsIZUiPX/p41lg+hFcaz3cvwTNcSv5ELd6r35+tvRODgEHPC0juxD7vS+eoPYqQmKsohMjFvVXfhQnomTce8dTtHvsGEGctPcX8kWWU3FyCR+8yfBLsdykBtVOa1cnnje5HGdlTtBNH3DqCfnamIJtNO73kA9RzK7G6XOQ8zca14DgXld41yKExNoDvRRoVUGs+h0BPAeg6FXgF+XnMlOJRWdyjDif5YZ8cVb8c3d3way9adOtpNYU4CFm+5wPmGpS4wT1PMjpWKbeK6i5EKiSnYNyYmjt09E7ErW4jS7u4Hqc2BejVWelomme0TQ4UExQQ7sjLmOWTuM8EFHSwyO7u2VHGOQjRs0ENGJuyZVg5Jbb4sk0bFSymsZmn95orcbly0dMAsF6lNH8rNoqV06cjegokaUjeqQSOnvtHjUY1Clj7GKC/aUQqnbipEav1fZPC9oRWUEifBvoSO3VaJo8+xpJ5DVTWNbUfkM6FjnFMOJYFyqBp0rCBS5WkjlfonscEslxJn50xw1y79bml63FAIPU3o7SRzhtR1Btc9ay5GUxQo7vsP7/WSNMWN067C5PUqTUauuhJTsBf3/Ozfa9tSm1YGFwS0bfRSPd13UmiFtZ1bBUFWQ+e4Ljyw6A1Y3X8L7r/lB9XPJVAOSZEig+krXIpOo/SDQ1lZDR4qz6jh94XLz34dBmSKaXjOUz6aa+nR5hLkU1YM+3WZKi/MVh5FR2uOuXTjTqzYpjZxDp72O0jO+O3ax3atugC6Me73acYd/Vug1aDtBlChKuc1mqZCGVELEc8hM9cON1tj/nYAcMq7/g7bf/OT3rH5W02q3PExJx/rcHCIOaF5ZtIGAP6Odeg5lJR0clPdZRkNZi9ahRegou3UL6mMlrIPZMqJv/iS1nOoVWteXIhqKV77PmaCWLY87wCaDmEmhTKreg7RtDIplLl1RTlkKqrp42EAiCqHYgEhddupkERZNRytVQ4FHhrmsxaFTitrUxXleKn+1dnMcNGFlyLLRn9xzJz4dHT14v5xawGYgJBZMJOqOseoj12ycSdeQDeAseNHsG/H+/DsurcBgFflCKiqV2PVymyqL6ghdX0/RdUEhlQH+c3i0Zb8DqvRhMohG0x3E/ZGR+A5lLjKlPb9goIFpr+W2nOokAK5IGllNpCRqU2NsuWl69jPgnynXsAgCH5QRUpMIated+jKIUkCWEaBbM7dfz/fbJWmVdhxXbjFvfUcIsEAs0ERr1bmK4jpewGATF3qCC0OEabdRc/RbAzpzRaaBhdTM+eBl2BZtBDz/2uHKbUuyupcJ80yz+spxrKt5+GAHIdFz/8IgB+E3vLOT2D5NrXQXbnzKhyUTRz4xRdq22I8H21RDnNctlcO0WIhBVJAFhVvljC4BACrr/gtvCC7sO87f1a5T6Cs9AGN0vhZNex5hsqhTPppZYAKvh5OoHzClOm4s3ubPV/zHua11v/e93DqGz4y7Ndlqsw+5VV4AV2YMGvJ4A8+QtaffRXWnHZp7f0rtl+A59ED2T3V/j6th6lW0XnBIdPX6cp5qTWyT91toiIy6WeVamWBctLQSBM0Un8tM3POQvyysQ6HJiwazqkzNYyNmRLDHCXS+acAz35Fq2+q5ccPjZuBBft+ilaeo5FlzvB5lBcRIknwSMcyrOm/BSJ1C6oylodP0rwAuJ3L4DmirJd3qwmMkz57mIlR8PxSpMikCqaZSSGyqnKIKohMaVzTdpmSSSRpa540AZWphjxpqkk3lBFknnTAbOLRneiClA6mfg22vTWG1KHnkA0S6UBhOy+P0Q4iMsxY5cU5ZwD3+/2XSBr25zdYqfCRIms0cf/4Ldh04PtjQjkEAJte9jp7O/QcCj1kbOngMK0MQXAoonC0agI54AXcATXGtKRbPNqgXeZvKpjgUBjsN4uEUgpbnlgWLVvtM0zZTmUZrZxlDKmpz1CBFALSfj7K06dwKVe0D/fSykhfHaSVUUVKWmNIbVMehpRWliEnwRZR5l6lU9MWEWw4Uc8+G4gTmU3DLkhQLvRLilXXsmllSfXcc5lYBRo1C/YMxtudq3CeQ6q95Hxte4lfllEAJ/5YPJzgULyUvfPV6hcJIONKOQBoNDtx+/jN2Pjij/Rz4o/r7pmAm8bvwOI930WZ59HgqkmZkXrjzLYR1Yq2NPXMTytLbVpZKYL0m4DeCZPxk+mXYfNTX8CzTz2KKdNdkZNwblaKDA24QLIJbDbkgKfqsb9vcn4PjlsLzHQWDMMhX/UK4Maf2Pd4unsZBiYtPazXYuqZt2wD5IcfQ+9R9DYdKp3juvHir/8cm3snI01T7JfjkDx3PwDYVFrPc8iMJYUyR7dWFHDVykqkaJgNCR0ciqWVFVLYjYzBWP3BHyBJxJGdLAOAlUPMCc6cDeeqVKiOnqhyKFt+PqZgH+6+Scl484inwWixf/IadYPsvNNdOjthCpRDLuUpMLEs81rzyQJKQWVk1BSZpCo4E+wA0gWK3e0kyqEkWNSURp5NDKmN0sg837SVqoPKpMMFh4LUBOpxVJJAUzStbKjKISKJpccpzseADZ4ZJsacbVeilAITJs9Ab98slFKgt28Olp9yKX6+/H1YtPbYpTgWi84FMHaUQ5RSpNY0FgCKPDSI9oP/AFAmDaRSR8+D9GKKsMGhVjQIUCBBQy8eU5t+E6SVEfWEaS99PN0ZLnOTQpXaVCtDiiLaX8sihygL5F4FrcSONaUJGpW5W3TTc6VpZV7QqF45lMq8Mg7Qz2voyiHXxsSqOPz3E0EpcRrsE0QVZlO2Cuc5ZL5zu6CKppVV1VSmDSog5G7bzwTV7zN6jkkDKQpVYRSZp2KzKiIyJykCRXCZD1Q2lQaj2ezEc+hFtudOepIA1HhbiAwFSW+P0Vp4rr3dTqFYrroCU7AX9/78W9H7TcpMqBwyFcIoZuMLqCqHRFlYFRJqPIcMs859J5qiwH3f/Cu/LRXPoRRNuEp45rpqwimHcqT2902Dhxt+51vYftV7aj+Xdqw669V4SXbYtmx+31dxypv+5LBei2nP0Sx6M1ymTJ2JZkcH0izDveO3YuFzP4YsS5tK66pBu40EUyWTlq9PaZ+nNzRsHxmmlSXZsPoODgyNHGPnymOYo8CMeUvxwJVfw7qL3kw8h9ygvOTUK1FIgedu+TqAeP7+aNGcuwWAaq+dUEaVQ8HOcmhkas6pzQ6eqSyTRiY9ynOo1AEXmlaWEc8hPUFsOOVQGIyTJK3MnodWGlkPopwoh0zb0g61Uwe1YxdLTQBUEAkAZN5S5ZdrDamDSZ31pPCVQ6YEbMzbILH+HKN/nTDMWGTGsi3Ab96CJTsuxdzlG3Hot+7CgjXb0dk1Hluv/oNjmpK5YPvl6sYYUQ5R9ncvwOyBB1EWJtAeKIfC/h1Q3g+h51Csn9LqrG75EopIGlVBFo9J6gcvjHLDbBjYcVMY5VDTvoY1e265FCpazRLQwaFIYF+WJvUo8ctjEz8f48vkDKnJuaZOJZPQVANTLTMIsKAsounTqtnVFL46vOAQDfDZzZlUbUzpccTuphOfoWigKHeKrXDjIqYckkSl4k7ELMYSl/6F4aeVIUnt2O+lvhFDaprqbpRd7rvNdZBr6L87kSS4v+9crNp/PQ7s3+efY9ZwwcI2zN9xhb1dl34GACt3vgoHZRP7b/p89H6TMiOTDFnoOVRRDrkAkqcc0tduEv6OaoJD85dvwO0dG7Bg1//zzLLDa1aKDJ3SqdLMfKsjUA41ZcSw/AjoGj8Bty1/N15a8coReT3m+KNYcj6m4jk8dPsNNpVWkPWV3TzVlfOcCXXq9bFmbEtqNmKlSIdUOZIZeTg4xJzwLN24E51d412pctIBdU+cigc6V2HGk9dBSunKyI6BHeZZq09Vk8vOXrJLV5VaZw3tR2DanAaLCjOh1BPwGKayjK08QEkyNEQBUbYqyqFwMkSVQ6F8utRpZSkxpDbBIfO5m7bSoI9MfM+hMqnuPgNOhVRo5VCd51D43VZK2ZOBTZ1GdXK5/JSLcdvc12HBys2V+xiGUSSTFwBC7eZ1TZo5au2YOnshfjr3zejdfNWotaEOseA0TMQB7LrnJgBV9WoaCVgoHzi9WC0jwQHNtCWqf+oWh6IL9EKk6ISW9FtfKF+l4rxSdLDFbD7oXW26G0y9I0IvpQwlJEk79pVDuQ0CmXaZjQhr/FwW3qLbYoycw0VEUOXNBvnLHKmMjHPkMxhqtTJTAU4Fh6p+hTkSu/Bxit6mfY6tDJeklTGeBocykhIXYtLQ6Psav6qceNwUIvGVQ0MKDqmxPylbfulpQcy0yZzEBDOcijdvm85eR++WV6NL9OOu63TQxlZKVcGWwRaM0+csxoPJAnUKbYIi43sm4I7xO7Boz/dcUJZgq89RlXRR2AphlFiqZ5plNm3U+lHZ4FD9OQxs/DXMwB7cfp2rihtW2Cunr0VT6N9XkmFc72QAwDj028BqiRRNnXoWpuwcCTte+yFse/m7R+z1mOOLhadcgVIKPH3TV20qrc0UICqiTKeVJalKDytF6tKRRebUqmW8MjD1dWOOLfypMycNk6bPxW4xA73z1nrHX5x/HpbLB/HgQw/EJdqjxMz5y/Hgy7+OtRdcU6kQAMCTWgPtDKmN51C9MSSVPld2182komghJzZldDJkUyGyJgopvPd3yqFMV9kpXZsazsiU/l+mdIe5qQNKalJW0IAQeZwku5VhZQ+AKoeqAxDggmlWFVTWK4e6JkzFujf9bySNjsp9DMOMPba/6U+x8pSLR7sZFWavPw8A8PRt3wVQVa+6/t0PiJjgkN0kiPRT02fOwS4xW71uJAjwZDITE/Cieh+tBAr9bWwghfrjwHkWFSJxAfTcVebyS3sXSIS0fbR6Yddfm3LnXgUkL60sgVfKnqYfmEBIOJ0NDbS1kqeu8AI992Erh0hVKDq+FEhdcCjctCE+iFJkdvFeFBHlEAlsVdpBUpgMXnqcl0pGN2r87zOKCQRKFbyjqeJmAUhL2dv0cPPd5rlS8Q5Tsbds6/l4BpOR3fkl9Tq6ml1qlUODL12emn6Gfk57b7NypUotu+/GatUykzIjye/NVn8Ngjs01dMFMVV7bVoZUYghqVc0rT3najyNyRA3foK0xVd1r7nkHdZoXyQZ5i5ZhwfThUiEJEHWBsZJHfw9TopnMGOfqTPm4b7GUkx57DvqAAluJ0TFlskBu2YwatCY51pSxNVtpchqrTCYowsHh5iTht6JUzDnI/dg+aYzveOzt10JAHjsZ1+NVkMZTZZsOAOd47qr/kGoGlJXPIeCgFLMh8dgKssYGbWHmSAW/V6qlkyyigGjoDnCYXAoSXVp3MKehzBpZXkQHKLKoawTGQprei2D+yzkteLBobicuwyCaUmgHGonS2cYhjkSZi1YjifRh8bunwBARb1q+/HE73utB0rpjwMhT0zYqB4W6fufmbzR3jaLxzQYN8IqS9ILfiTacFQfM8qhRPnLiSDtmFaztLeNcghBQIgEioypr1VkeCoZl7JAEXTc0eRIgLpxDiQVewhKl7xzMg6kE2wbY1WhCrh0M7vpQMZrWmlUpDWfO3y/pJBB1VT086E+Q0PwHDKPycp+r72emTZVDgVegrJsRYtDDEaSpnhw+vlY/dLPsO+5ZwA9X8iyhroehrBgXHLZ+3H9wndh6sz5bR9nqpa9cFO1aplV+4hUqYjgUufC4I5X7p78Jm1amTGxNsUs2iiHGs0OPDD3Kqw79HM8/qDyXjJpaYbxvZNwx0yV2iXSDCJJsGfl69Xb68/nmanb0dDqorEyp2VODJ6bdRaW5vepP5LM2wy2hRDKAfvbz3WfnpHgkLltNmJDD0+ZDJ5CyhwdODjEnPRMW7wRT4s+dD38H1YWPRbSyihpRMJNpdYAmbRb40tfii7K+kmaqSxjZdQEm95Q9nueQzS1oSCKKyP59qoXwFQrUztwdgLc8D2HTFu9dLG0A5koketd6TLz77PtzJwKKZHVnWGbVhbZnQCAtOEHibI2yiGGYZgRQQjs7t2I+QdugSzLino1i3gOye5p6BEHseeJR2zAoK6fkvN2VJ5vaC46zd7OrI+ar1KxpYojXimmwlisMhdVDtkFtRfMH6faVbrqkrY8NlEOSes55NLKRF0ghGKDH+5zMcbWUYUsXOBmKMGHVW/4U0x6y1f0e6Rolk41Zd9PJHYcoTvr5rw8FVHgEUjTiKhfUojZaKHBQeczlLj0OvgBIXM9tKvgZ9VO2sfGBOVKzyPJzUmsOTXxEmy3KdWOyduvRlPkuOe6z9jzTvV1NZQF49RZ83Hqr358UFPfnt6JuKN7OxY9813vXGRZ2pQZZcytVEG5rZgXXm8pMuj5iw1iNmx6ZSqrJb/bsfjCdyKXCR759l+q1zKBKsKSy96Lh5IFmKDV8KsveDMOyHGQemk386w328dy8QxmJOnbdLm9LVK/GnRClENmzWA85WgfYp6Tlb7vnUEmDQ4OjRIcHGIYIfDIlDOw8qWb0P/SfgBjT4LbO0X5dbT27LLHqNQaAEknMzvO/s6ekG2qldm8eCWj9jCvGyqHRLV0q0ga1ofBTYKIMajegTNBoKTpSiDTtsq0qg5q9R+q3OctNhputzIhlV5oe1Uba9LKrOeGG9jKQaqiMAzDHCly/qnow148ct9tFfVq1qimlc3YfCkA4MGffNktnGuCQzPWnAMAlf4QABZuPNfeNv1eWMreBlIiSpxCL9RjlblKoqTII9UskYWeQ4lXXj1MMROkkIGnkqoJDsWUQyo4VNqFekhCFi6D0TNhMvpmzLWPb8iq6rhAitQaAuuFEKk+RwNFoYcP3eBo5zlkg0kxNVUQEHK3s+j3WSEhCgDSRkmKZNANqzIIAprvdrhpZQCwZMNOPCamo/OerwJljlwmEEky5ODQcChMatlN33bHaPpYQjbC7PFQYe1Sz5xyiHoOld7vaDAlz7TZC3Hb+NOx4omv4tBLB2xaGmXqrAVY+OFbsUyr4bt7JuLODb+HfatfBwBYuGIj7spW6tMYW3Na5vhm8dpTsQcT1R8V5ZC63ZBOOVQI1aebdORSZLZfM6rLUP066azfwMPbPnL0T4apMGLBISHE3wshnhZC3B65771CCCmE6Bup92OYkaS56iJ0i37su1Pl0Io2+eCjweRps/GImIXOJ37mDuo83SxIK7NS8FA51EbebSrLxHanrBKpHPCCS14ePvHJMDsFtjQ8mYTaHTizs9ZQu8embLJpayxdbODQQf03VQtVlUNlrXJIT44quxNmd7apT9dNiLlSAsMwR5uZ684DADxx23cq6lVTFYwu4hes3Ion0Yfs/m+19RwCgAWLV+JJTIlWK+ubOQ+7hdp4MP3f+J6JeAFdSJ69Vx3XgZRQCQrA+gTZSqCkMpeXdmyCBsQjzvjNIaIcKoV/u9DjE/Vysa9jlTH+dNaaPZPzLkSilUNxQ2rzGQw3mCFFigb8IBCgq8GZXfFImqBNMSOKEushRIIB1C+p8t5l9TNxZtykWpkgpuIis9dTO88h89yGHFC+SPr7k9RMm3oO2cIUvop3uGll6r0TPDrrIqw6dDPSA0/agJAkqrKRYuWZV+GQbOCFG50BtK3AqlPBMlFGlX0Gleqp1EUmiJmlDZuyn6H+d1RH85S3YCIO4PZv/9/aVMiQbS9/t2cWvX/NGwAAXROmDPpchhkqSZriwUlKeSrIda08h1Rf1IRbM1BPuQJqI8BsfGRB6q1h6fpTsPXia476uTBVRlI59I8ALgwPCiHmAjgfwCMj+F4MM6Is3X4xDskGpj+ugkNjcZflyYkbsfDgL23JYyq1BlDZkUoCY9F2JWWV9Dm3MmqK3cEm+cPm/UxwqLSmmM5zqFLKPsnsDpyZ0KaBcshOfmlwSA8YA4deqt7XcLeTRjAhDc51MOWQmbSndtejxcEhhmGOOrMXr8GzmIj0ketdAMQoeWyVMKoMSfDwlDOw/MWfQwwcaKtwTNIEt2z+Y7yw/X3R+5+cuAGAS11OswwPdq3HrOdvVH8HXil+cEh5DokkUaXkiXKIVrO0yqG0gZbU/bAXHMrtzjJggkNu3AiVQ2lGP4v2aWV0k6Aw6dORUuTqszKBpuGN/wONHvTKA157zPtlNcohSZRDEK7im9koCdVNuTblDnGfiVtYed5JRC3kB4r07XYBBxIcoqWnJUkJKUmbrF8W+W5jY/FQmX7q65CJEsv3ft+aUCuT2pFNeujtnYQ7urdj4TPfsUosmipvgmpFkdcrh0SkgmDm0itTFOrzDzbN2rH61EvxiJiNnl/+kwo8HcbnuPXyd2D3G67HzPnLh/1chmlHtuIidSPJXJ+cZnbs6qDKIS84lEKKjMy1tb/nGFx3nayMWA8rpfwBgOcid/0ZgA8AkCP1Xgwz0ozr7sHd4zZgcfEAgKAayhhBzD8VE/AiHr5bTdqp1BpwO8uuKore5SMy9djuMQBditfslMXl+ZmeIBqo5xDdTTOT9LBamZFUZ6J0KQtNrRwKDKlNAKglUxscag1ElENaeaRuk+AQisqOqA0OhTt+Vrpvdj70gIUBLqPJMMxRRyQJHu7ZiHn7b0ZpKj9q9aqR4YcLw841F6Nb9KPvmRuqlboCLrzsV3DmWS+L3jfl9Gtx14Sd6B7fa48dmn0q5sgn8PTuB5Eh90qtVzyHyITflXNveAa9JVlQmz7VBvPL3PrhSRK8MGONNOkI0hUy8DZvTGWu0CsvSGs2bTSeQ7HFOTVLHQ75jE1R41+Vbub7aVC1kB2jyc57zJCatj0kmmpHPhMvVY4GzIZQrcycSwMt7ZFkPp9GpRqq15aG7znUzteoHQtXbcWuZC4m4EXk9Ho4Cps2xcor0EdSy0wBDBoYzfOWCxqFm0xks8wF7JrqcytbSIWETFKrIBuKQbRIEjy+9LVYnt+N8eLgkNRGsdeYs3j1sJ/HMIOx4rTLcWvnVkxZfgomz16CB5MFmLJwI6bOU4HIbnHIBfzhfM4KkaJMXIn7Rk1aGTN6HNWVjxDiCgCPSSlvHcJj3yqEuFEIceMzzzxzNJvFMFFemrvT3h6LFapmrVP+EE/ffp06UBb+bmngORSWJG6XViZFioasGmrqFwIANGS/P2kmMuqYcsimlZlJb+J24EzJ46zDmJIGyiHtH1TAyeJbOq1MULUQUREZFRLKXO+6BsohWyUkrIjgT9rTzvEAgB55gMtoMgxzTMjnnoLpeBb7HrsHgB8AKZBUUkqWb78YB2UTS4oHjsiDZeHm87Hyt7/uGez2rVFjzaM3fwuZVg5Fgy1koV4gsZW5lCF1VjGk9pSljS71ImWhxqbAJDkMDiUyj6pkPDUMwRt3THuRIrEL9YhyyAQ/2vnwRJi00lVADT2HOmAWPiZN0KWV0RSj0Ospk3lV9RQ1pHbmx/Y86qqSUZ+hpPp9hjR6pwEAJsgDXntVSlwkrcx8z82RUQ5BCDw59xIAThk21Gplw2Xlma/CIdnA3htV1bKSBIHMd1rkLZv2WU2/b6ApCrT6Dzoz90z9DlLpNt7MxmO7amVeuy58Ow7Kamopw4w2XeMnYP3v/geWrD8dEyZOwaIP34qFq7agb+YC3N1YBcD1y4VIrBq0QGI3OwqkaEJvFo8xr9eTmaMWHBJCdAH4PQAfHsrjpZR/I6XcIqXcMnXq1KPVLIapZcbGi+3tsRjBnrVgOZ7GZGS7bwAAiLLlK1uC4IczsVQTyqSsn6SVIrV5v+GOlvMdaHmmpjKhyiHnOWTeI7GTIF85BADSBIe0csgaUeu2Gs8CaqiZa+WQIAEhOwkFkBj/IqscqkkrC3fsEn/SPmPWfOzGNDRFcUSLLoZhmKEyY60KyIiHfqD+J4v9PUkfRO8s7/GdXeNxd/cWAJGUqiNk4erteAHdKB/4PhIhQcsTU8UE9QnKRYqUppVRE1+iwjALezvGkgCCNaQWbhwpBUkrs/46JK2spvy8S9nylTw09S0kVhluKCxaswMvyY7K6xYiQ5c86LXT+gcRQ1ZJTFxtWllQHKIQCSDbKYfoZ6JfC07xVVKfIOE2atqd66LNF6CQAomQkLS9VJFUVpVDxktQlmosPuzgEIDZpytzZXONFyuvxJOLXnnYr1dHT+8k3Nm9HYue+Q6KorApcr5yKHcBsGAeMW7xqQCAO777Gc8HTBL1GJKGm38MMYVmwuQ+/HLyy1xbGOY4YN8ClXJm1gyeckinlQGqxH1Tb0yPxU35k5WjqRxaDGAhgFuFELsAzAHwCyHEjKP4ngxz2CxcsQlPYzKAsek5JJIEj/asx9z9quQxZGGl1gAqnkOu/K2ezLSRd5feBCYIDlnl0EBVORSkDSRps6Icgt1tJBOjXFUea3S41AKvrVodVJAJbaGDQ15AqOnSykyKmlIOlbVpZZVymfq4yXdOEoFHeo/OoothGCbG3OUbsRc9mP/CzwH4/gvTP/BzbH3NhyrPaS1Si8aR9mBJswwPdK3H3L26AEKSOsWlF/zwfSRc1ZlMeerYapZu48GOD1lTpctpzyEVEHLBGasiSoxyqHCFDDJibJ3Gy8/XVSszwaGYYiYllcSGQ6PZgYc6VthzNzw/cRU6hd4VJ8G+XCvBbPlnUv0LJK0sTIkTbQypM6ocigaEUveZkNvtAg4TJvfh/sYy9VpU3ZRkbn5Bq5UZBTEZi5OaynBDZe7Sdbg/XWwNx7dc9jbseP0fHvbrtUOuuhJT8Tzu/tm3As8hfV3kLec5FMwj1u68Ek9gKhq3fJIohxre3EokqQ0CJsP4TCad+U79ns32D2SYMcKCM14DgCqH3FjxfDoFra7pAIAns1noFjo4NAbtPE5WjlpwSEr5SynlNCnlAinlAgC7AWySUj55tN6TYY4EkSTYNXEHgKpr/lghn7MD0/Acnnj4XlX+10sr84MfdrJplEOoN6SWSUYmMP6kxXwWnfJQJTiUwVTn0JPCzO34Gomom4Q6FZCwwSGdWmAmXFY5ZNLK3OTWKYeaaucVQEpSzFyKmlYO1aWVRZRD1LsJAJJFKk3gaHgbMAzDhIgkxUM9mzFdWzfSfqoxrieqZl14yssBHJ0g9qHZp2IG9qg/aGC/ohwyqQJEfZo0gBplqfUcMrepciiJGFILZ+obVQ4lTiVDsUEa2l6R2tS3mHLDVoY7DKXLC9O2eO0BgHTZ+a495P2eEX2Q42c6pRIJvJiNlrA6VV1wiJofG1yqHfEyEhnZqHFqmMECN89OP9U+31bEI0qyMuI5lJkNnEKneB9hGtihc/4QD63+9SN6jaGw8syr0C8beOGmL3hqN7tBVbRcACz43NI0xUPzXoHV/Tej8fwD+pgKktKNN5duP/Q55tINp+On6z+O+WdfeySnxzDHjOnzluGu5hr0NycBAJ5e+hpgzVUAgL53/Qc2/ep/VcfnXmSfMxYzNk5WRrKU/WcB/ATAciHEbiHEm0bqtRnmWNFcczlymaBn0rTRbkqUqavPBgA8dut3AOmnPYkg+GHM3uzksU3uvxQu7zfcSeybq3ZEe8TBSnAoERJlUTgpfNqwk3SbVkYWFbaNNq1MBYHMpF+ULRRSkOAQKcU7oAJKSZJZA9aMqIgyqhxC4Uny6XmFyqGk2YVDosM7tmCrKrw40jvyDMMwdRSLzrW3hzJRnjp7Ie5PFx+V4NDUtefZ28Jb1PrBFmc4mnjmy7RgQVG4oA6tZqlMlguSVuYCGTagQJRDNvgQq8xVUQ5VlU4lMc2OViszxR0OI5jRs0KNzc3xE+2xhdsvtRsZ9Psc95s/xeZX/y6yRgcGZIqk2VXxCMxk4ZmQm0prITKipvKUQ4lTQ1HlkFcoot15rTzPPiclaWX2/bxqZbotHc5PKpbiPVzWnHYZtr/qfUf0GkOhq2cS7h6/DYv3fBctM99I3edW5AOk+EYkWPuyt6GQAmv2flel46Uq4NmEU86JcF40RLa//F2YtYArjjHHD/N/4+tY+Y5PAQC2Xf0hbLxYhQUmTZqMzk41X5992tX28Rl7Do0ZRrJa2dVSyplSyoaUco6U8hPB/QuklHtG6v0Y5miw4byrceA37sLU2QtHuylRFqzcghfQDfnw9RBlbqXWAEjwg/gUkAon7eTdrawH4+WLAKqTnrmrtmEvegAEk2a9y5vnLed7kFY9JdwknSiHin4MyNTt1BLlEFULebdbh2z7zAIjbbigjlEOodDBoXBCGlRzM6x++fuw7+Wf8Y7NmL0Au5I5rBxiGOaYsWDbZfb2UNWr+7f/Nu6f96oRb8ui1duwD93qj9SpJ0QSDw4VxDtCpI0g7diY+zbc+JCq24KaFhsfnMQ3p1YpajlRyRBDahsICRWvRLGqKai3XmQsNJXhDicNas3pl+HeK/4FyzedbY/1TJqO+5vL7fkaJk+ahI5mB5odndh16eex6tLfcIEXU8kz8BwqRXvlEDVzFXpc9dLKSEqTJGqYwc516eZz8KLsRJl1RpVDsWpljaZLF1ff7XG06Ft9JabhOey+5Tvqb3LtF63cKqViwZ2Zcxfjl13b0Slado4iRYZOohwy3/NYtC5gmJGkq2cyOrsntH3M3KXr8GC6AAB7Do0leFucYQIm9o1dW6wkTfHQuDWYse9miLJATiddEWVMTiqctPMcwvxTbCneiudQkuKh8ZsA+BNwW0VsoJ+klTVcWllMOWRUTUW/8n8gpqTm/xzO7LIQrvSrbB2055fb4JD2rQDQaLrdylQWlfMwu9Lhoqt78izMXn9O5SN5ZvWb8Pis8yvHGYZhjgZ9sxfiwWQBgKFXbtl4/htwyrX/fcTbkqQpHuzaAMAoh3S/ScaXgbQLear63UKkaJiqM2mmfGlsNUtSsIB40hVIAekKCJRE2WKDFolLK7OqGvLZ1CqH0ohySDhfpDqvnQLJYStdlm08w0tPBoDnZ+2stNl7ztbz0DNxCnonTVOm1k/fBUCllVU8h2LKIT2+x9RU1DhakkARiOdQLEhG6RzXhfsv/hzmXf771kxbJql7P2pIrT0Ds2YHSikgrIr3+NlkWb7zVeiXDYy/76sAlFLZKoeKljWqrvMMKje9EQDsHKXoW44O4SqfLd6wEzcseAeWbbvwqJ4Hwxwv7FnyK3gOvWg0OgZ/MHNM4OAQwxxnvDRzO+aVj6Hz0NOessUGXsgkcb8Yj+aLT6jjbeTdczaTvN/IjlY+X01w6fObfQsAAI/c8wubVpakLjhkPBC8dARTNr5UwaEskNKjzFUqGa1AY3Y7jXKIVrxJG9bDotnpPIfUrmuoHIqnldWx9ZXvwfa3/PmQHsswDDMSPDXtNABjQ1lwaI5qS121ssmv+SvMes3/AAAUouFX5iJpZWXLGVVTZWmBBMKmlWW2shhNK5OJuk09h9Kocsjv71OyKWEoiWl2nedLQarqjAQrLvtt3Lj4XZi1cGXbxzU7OnHfuHWY+dxPIcsSmSgrgS0RqVZmijjQz8T6FwUVygRRDmGIyiEAWL/9bMyeq9TUjyazICcucObUsWplWUOZbhtD6uNIOdQ5fhLu7dmGNQO3AlDXib3GiEq67vpZe9ar8DQm23nJ4vPfZjewRJqh0ezAjmv+GJ1d44/2qTDMccHWV38QPR+8h0vZjyE4OMQwxxmTViiz5MWH7vAqtIhI8OPhno2Yv/8XkGXZVt49a/4y7BYz1etEFiWzN6ldLjppXrhZqWqev+M7rooMKWWfRZRDCVUOicRJ6a3nUK7UQlQ5ZCaxLecBYNPKyG26W5mh8EoY6yfq/1i6yjDM2GTWOW/DTd1nYNrcpaPdFExfr6qhJR3dLk2YjA8zF67GtHkqbWpP7yqMEyYI1FDKocBzSCRV5ZCwAQSnFqJpZdBG1QkKW7Ag8/x14hXG6tLg6govGApxeGlldUzom4Utb/g4xBDUMwfnnoF55WN44uF71QHynJKogD30MVrdjppQu1SyFFH/v2Ge67QP/hLbX/U+u8svBg7Y+6hhuPluQwXU8YBc+yqkQgIwPkE6OFS0rLl6XfC20WjiweVvxq5OFQzsmzEPv+w5Xb0Wl6JnmAoiSVxxGmZMwMEhhjnOWLT+dBySDXSJft8TxxpRu+CHXLATU7AXj95zE7JB5N27J20HUJNLv3AVHklmI++cbI9NmjYHu5J5GP/49a6UfdaARI1yiOxWZuWAVg4ZU0tdpUz6nkMluW2CQyCeQ+FOdI4EKFt6QhqklSWc688wzNhm/rL12Pz+f0HnuO7RbgoWrd6GW8/9FNac+3rSj8eD62KxS81N0gZEtJpl0ylLjecQSStznkMZCRSpik8pSStLaGVJkjZFsQpa0t9LkaJpgkM1u9TPi4kouqa2/VyOFlPXqU2Y3Td+XR2g1cpEPK0MZW7Njw3UODohCqGEBN9coGh4gZtxzRRpIjCuezweEnPR/eTP3Z3EHFulDBZx/78xzvKdV+FFKN+kJMnQ7OkDAOx95E4y16mfR+y4+vex9oPfs393nPI2AEDW1d5/hWEYZizAwSGGOc5odnTiwQ5VQayMKIfoDuLcLSpd7Mmb/21QeXdj6VnqRo1R54R3fgfrf81Ps3pqyjYsOXQ75MBL6r29UvYq8OMph2xamQoO2Uk+VQ4hJbvB7jZ0hbPU861oOuWQUREVLbXrF55HYtrFwSGGYZihsP6MyzCuezymzFyIvejFlHkroo9buO0SezvNVHDHVrMkBQucJ11m1TCpKZZAK2gRZYsURjmUoyVTz9fHKmPC4JBRrpJxoJV2oVce0MfjQa7Ot38H66/+2NA+nBFm4aoteBYT0HzouwCqleGSuuAQwnN3qXY2SCZSz4fJnv8RbJY8MWUHlhy8DQOH1PjvKYdEQpRDx9eY2zGuB3dPUAptkTawYtsFeBJ9yG79JxvoHE61sdWnXYL7rvg61pz5yqPSXoZhmJGEg0MMcxzywrStAPzg0KR5a/CMmIyJM+bZYyZdrOPRHw0q71515q/gRzOvweKtF0Xvn9A3E53dvd6x5tKz0CX6kT72MwBqx1IKPwhDS9qbyWkmVXBIJAkGpKuoBlmgJIbUJdn5RHHIvo4pMZ9mmc3tTzOlKBKFKVVc5znEaWUMwzDDYdK02Zj40UexYM0p8funz8VDqfKloeW/87xljYqTtOEC+1r1mXjKIaoW8lVERjlUBNNWo+CoeA5lblPC8NK0DWiK+mpTADB9+kx0d4+OH0ySpnioZwuWvvgLfcD3S4p5DomysObH7nWct5CnHIoUhziSwE3HivPQKVp44Kb/UO9RGMPwhq2UmspyRNP0jhWd25SxdNek6cgaDTw07xVYe+gXOPjk3QBcwY2hsnTjTmSN5uAPZBiGGWU4OMQwxyHdy84AAC+tbMnGnZj6kYcwYZIviX9s0jYsfulWNDHQVt49rqsbp7/tzzFh0pQht2Px5gtQSoEFL9wIQE2YTMWZLCzZSiakDTnglUB2yqEChUiccogEikzQJ8ka1Yo3+v0KkbjgUDD5jxl2MwzDMCPDM9NU4CjNGjY4X+S+T4tLK2vqgIdWDpHgUEw5lKJQ40MYCMnixsrW346MA73Lz6zcP9YoF56JbuGKL9jjOpBWfUI1YOanlTnlkE2FSsi4egSBm6XbLsCATPHCHd+2bQGM2bj+blGo7/M4Y/Vpl2LPW2/D4rU7AACLL3gncplg5n2fATB2rx+GYZgjhYNDDHMcsmjD2SikqOyWxsiWno3x4iAm4MURl3f3TpmGB7NF6MNeANpzyCqHTHDIBYlMWllD9ttJfkGMNoXMK8ohozYSOq3MeFWY1yxsmkKqUtKscihMKzNpdxwcYhiGGWnmnvcO3DrxPEyfs9gG51utAVJljKYdZ7oCl/alSTLiOdQgpexTZ26tCxZQ0pq0smb3ZOQyQdnlNjuWbNyJflk11h5LzCWVQ+kYdrBrJmYO7ELeanmPF9HPxATZMntbJg2iFmqMiHKot3cS7muuxJSnr1cHSqMc0ps2Jfluj0P6Zs23t6fNXohfdp+CeeVjAHiTiWGYExcODjHMcUh37yTc11iBgWxw09JFWy9CKQWAoZWtHS57+rbZ21nm0gHScOeWpJU1qXJIJE45JAsUIrUpAdQzwQR90sx5DmVaRWR8KFRwKF6NxlZzY88hhmGYEWfm4nVY/1tfRNbsRGPSXADAE/ffbNONkrRBgkPqtvKlKb0KWkiIiijNAKMckhHlkA0O+f36jNnz8PNLv4X157zaHusc140Hmsv188bmODBz/jI8KmYB8ANYybILMBn7ce/N3/efEPlMrHIo8dVCqfVhSqPKqsNh78zTsaj1APbteYIEAfV3K3NkKE+YKl3Jtje527zJxDDMCQoHhxjmOGXyr30WM1//N4M+blLfDDyYLQJwdIJDncvOsrdTXcKYVk/pmjgVpRRo9kyzE9EmBmyAx8jPASApjXKoakidlEY5RFITMqUiMrL6AinSMq4canT1opQCXV09I/0RMAzDMITF2y5BIQWev/XfXHAoa9ggTqINqRNa0SohapbEqVyU51AJlHnFX8cEQmJ+eqds3YrOpr+I36v9+saqcggAHpusN1zIGLb4tCuRywR7b/ma91jRxpBa+Qw17WuNtOcQAExedz4SIfHgz/7VVh3NdLWypGwhEfK4VQ6FrD3jSjwupgPwC38wDMOcSHBwiGGOU6bNXohpsxcO6bF7pqm8+aNRNWTRlvORS9WVZLpUMZ2szpq/DA+//kdYe/pl6Jk6GwDQi5esFN7zHJIFSpHaSmdSZMiMsbVWBJldSfV+GQo436FSuOBQuFu59vxr8PgrvozeKdNH/DNgGIZhHBP7puP+xjJMeuKHTlGS0r67YStwpbIIAkKurL3Qx5XnUPtAyFDoWX0BAGDchLE7DjSWngMg8EuaOBX3dq7BzCev8x4rdBEHSpaZgFBqx08kToUr0swrFHEkLF2/Ey/IbuT3fdd5DiWJ+m6L+Fh8vJKkKR5e+CsAgM7xvYM8mmEY5viEg0MMcxIwfoWabB6N4FDvhMl4sLEEgPL9gcgqu7sLl66BSBLMXbIOT6IPADxD6iQIDplJLK1WlnnKIe0fpBcYNNCUljqtLJj0Njq7MWf92SN78gzDMEyU52acgSWte1AceAaASumVRPXpew6lvpqFpJXJxKWVhT57WRb3HKpj7akX4eFf/TkWr9k2+INHieWnXYGfjz8L01ef6R0/MO88LCwfxmMP3WOPKc+hoIJbQwfMRGY3WpRyqEFua0PqIwwOZY0G7uvehLl7fwoULZviXZKxuF2V1OONrVd/GPdc9hX0kaqwDMMwJxIcHGKYk4DFm8/HPoxH2nN0dkv3zDoHezARIkkgk7RSPcUgkgQPTz4VgKu0VooU0FVYElmgFJn1HJJERWQmmqlWJwFUqZTY18rshPTE2K1kGIY5Hpm47kKkQmL8o9cBALK0AZlElEMolUly4gIWggYvkkx510Q9h4afHjV/4bIjO7GjzPieidj6vq9i7uJV3vHZ218OAHj0hi/ZY3HlEAkCZe5zNKlQggSKRsJ7qbVgJ2bIZzBu3/0uxZuoeMPKocczWaOJ5Zt5k4lhmBMXDg4xzEnAuPG9aL7nl9jyivccldff+ob/BPHrPwUAyLQDLVFv1thY/jIAvnLIVCtLZK7TyqqGmo2Y55DeobRpZUjRkHHlEMMwDHPsWLrxTLyALiw79EsARjnkVJ9SZEiRoyF0WllEOWTSyhIhkZQDKEVYtl2nIJ9A6pQ6Zi9Zh0eT2eja9W17TMhItTLiw9ToGIdSCojGOPT2zcB+jEP3jCWYPGshnkMPJsxeceTt2nwJAGDpgZu8FO9Gjf8fwzAMM3bhHpthThLG9U4+aq/daDQxZeoMAMC8i9+LJ3dfgrp3W7L9ErSu/y2bBpCLJpqtfQCUcihPmqQ8cWZvZzroo3acM7Rkiob2NjAT0kKk6CwPAeDgEMMwzGiSNZq4v3sLNr34AwAqkCOJ55AUKdJSl2ZPUqccIsEEpRzSmwHFAIpg2po2XNn2k4HHp52JjU98Hvv3PYeeCZMhyrhyqJACWbMTPRMm4/Zz/g6r1p+NnolTgI8+idXmgR/dXTtOD4c5i1bhMTEds/EUXoCqoFoiRVMeBHDieA4xDMOcDLByiGGYEWXmwlVYdcYrau/vnTgFt3dvx0tdypz6qak7sOLgzdj37FMVzyEpiHJIB4cSvaigqWRm57QUKZrmcRwcYhiGGVXyhS4FJ80yyCRDqatZlolTelYqaNlAUQNI1HiQlv21nkMnizqld/1laIoc9/7k6wAQ9WESSYo9F/8tVl/6LgDAmjOvUoGho4QQArsnbQeAQDnEKd4MwzDHGxwcYhjmmLPuPV/Hlnd/GgDQd+ob0RQF7v7OPyHRJY1NhRWZZHby37DKocxTC0mREv+iDA2onWjerWQYhhld5m27zN42aqFcTz2lyLw0YJG4ClrUc8j05Y1IcCjNGiilgEzrU5lPJJZuPhcvoBvFXd8EYHz6qil107e/CuOmzD1m7cp0hbWcjMsNqcZi3qhhGIY5fuDgEMMwx5w0yyAS1f0sXnsKdiXzMOG+LxFDaqIc0pP+BlwpeykyTy1Eb3dK7U2U8YSUYRhmNJkxbykeTuYA0H13khF1SYYm2iuHktTdTuVANIXqq0s+hkmnXnP0T2YMkDU7cF/vDizZ92MUeQ4hc1u9czRZvPVilFL4yiGwcohhGOZ4g4NDDMOMKiJJ8OT8K7CidSemFk9r5ZAxpHbKoQ69C5llTV0RLbWPMQuG/T2LME7onejk5NhJZhiGGcs8MfUMHJINVS2Lqj6TFB1GOUTKqyepX2rdBI0a5UA1hUoIvPwN78bKFX5lrxOaZRdhMl7AfTd/v1Y5dKyZ2Dcd92dLrWF4Kch3y8ohhmGY4wYODjEMM+rM2/l6AEAvXlQmpWYyKVI0OzqRywSd0IqgJPE8h/bMvQD3TLsQANC98Vfsa7KUnWEYZvRZ+7o/wmMv/xKSNEX3motx18wrAQDFhIXoFqqAgKccSl3lMqocasgBa2h9MrPktCuRywTP3/y1MRMcAoCDp70Pjyy/FgBwqGsmxgttSM1jMcMwzHED99gMw4w6sxauwH3ZUizN74NMVMpZLhPIJEPaaOKOiWdg9b7vuwplSRO57r7Ou/q37eus3HEhnv6PyZiG5yBOEg8KhmGYsUx37yQs3rATALDmrKuAs64CAEzb9krgkf8DQAUQrHIoqFZmlUOyqhw6GZkwaSru7FiN6U9eh1bSiZboHO0mAQDWn/Nqe7tj9aXAD78GADwWMwzDHEewcohhmDHBs/MuAgC7M9yC2zHuOVNVXTFqob5z340nT/1o5TXSLMMDU89Tt3m3kmEYZsyycNVWPC6mqz8SakLdsAGFJG045RBaHBzS7J93HhaVuzAlf3JMqqlWnHoZDshxADg4xDAMczzBwSGGYcYEc09/HQAXHLpz23/B7PPeAQCYt/Fl2JUtQqm7rEVrT8GG898QfZ1pZ78d9ycLMGXeimPQaoZhGOZwEEmCh6eeBcD4DFWrlSVphkT7znXJQ5BsbgwAmLX9FQCAPuwdE4bUIZ3junB3zw4AvhKMYRiGGdtwcIhhmDHB7EUr8JNpr0a6QvkHbb7kLZi7ZK26Uwikl/x37Fr9zkFfZ/GqzVjy4Vsxdea8o9lchmEY5gjp2fByAEDS7ELXxGkAgM7eqZixbCt+2ViPGQvXom/5qQCADtEakyqZ0WDu0nV4VMwCgDH7mcgVlwIA0ubYSHtjGIZhBofD+QzDjBlOeeff1N43d+N5wMbzjmFrGIZhmKPJ6h0X4BeHPoFVp1yMznFd2PXaH2L50rUQQmDG7/8AgKqE9WAyH4vKh8dsIGQ0eGzamZj71GfH7Gey8YJfxQ1Fjs3bLxjtpjAMwzBDhJVDDMMwDMMwzDFHJAk2nXMVOsd1AQAWLFsHIUTlcU/MVBsDYzGFarToWXcZAIzZVLus0cCOK96ORqM52k1hGIZhhggHhxiGYRiGYZgxS98W5bEjk7GpkhkNlm09D3sxHmU2brSbwjAMw5wgjM3tBoZhGIZhGIYBsHTdqXjoa/PQ6pox2k0ZMzSaHXjuqi9hwaRpo90UhmEY5gSBg0MMwzAMwzDMmCVJE0x57/WY3cEqGcqiNdtHuwkMwzDMCQQHhxiGYRiGYZgxTe/4ntFuAsMwDMOc0LDnEMMwDMMwDMMwDMMwzEkMB4cYhmEYhmEYhmEYhmFOYjg4xDAMwzAMwzAMwzAMcxIzYsEhIcTfCyGeFkLcTo79dyHE3UKI24QQXxZCTByp92MYhmEYhmEYhmEYhmGOnJFUDv0jgAuDY98GsEZKuQ7AvQA+OILvxzAMwzAMwzAMwzAMwxwhIxYcklL+AMBzwbFvSSlz/ecNAOaM1PsxDMMwDMMwDMMwDMMwR86x9By6FsA36+4UQrxVCHGjEOLGZ5555hg2i2EYhmEYhmEYhmEY5uTlmASHhBC/DyAH8Om6x0gp/0ZKuUVKuWXq1KnHolkMwzAMwzAMwzAMwzAnPdnRfgMhxDUALgVwrpRSDuU5N9100x4hxMNHtWFHhz4Ae0a7EcwJAV9LzEjB1xIzEvB1xIwUfC0xIwVfS8xIwdcSM1IcL9fS/NjBoxocEkJcCOADAM6UUr401OdJKY9L6ZAQ4kYp5ZbRbgdz/MPXEjNS8LXEjAR8HTEjBV9LzEjB1xIzUvC1xIwUx/u1NJKl7D8L4CcAlgshdgsh3gTgLwH0APi2EOIWIcRfj9T7MQzDMAzDMAzDMAzDMEfOiCmHpJRXRw5/YqRen2EYhmEYhmEYhmEYhhl5jmW1spOBvxntBjAnDHwtMSMFX0vMSMDXETNS8LXEjBR8LTEjBV9LzEhxXF9LYoge0QzDMAzDMAzDMAzDMMwJCCuHGIZhGIZhGIZhGIZhTmI4OMQwDMMwDMMwDMMwDHMSw8GhEUAIcaEQ4h4hxP1CiN8d7fYwYxshxN8LIZ4WQtxOjk0WQnxbCHGf/n+SPi6EEP9TX1u3CSE2jV7LmbGGEGKuEOJ7Qog7hRB3CCF+Ux/n64kZFkKITiHEz4QQt+pr6Q/18YVCiJ/qa+b/CSGa+niH/vt+ff+CUT0BZkwhhEiFEDcLIf5F/83XETNshBC7hBC/1BWPb9THeHxjho0QYqIQ4gtCiLuFEHcJIU7ha4kZLkKI5bo/Mv9eEEL81ol0LXFw6AgRQqQA/heAiwCsAnC1EGLV6LaKGeP8I4ALg2O/C+A7UsqlAL6j/wbUdbVU/3srgL86Rm1kjg9yAO+VUq4CsAPAr+v+h68nZrj0AzhHSrkewAYAFwohdgD4rwD+TEq5BMDzAN6kH/8mAM/r43+mH8cwht8EcBf5m68j5nA5W0q5QUq5Rf/N4xtzOPw5gH+TUq4AsB6qf+JriRkWUsp7dH+0AcBmAC8B+DJOoGuJg0NHzjYA90spH5RSDgD4HIArRrlNzBhGSvkDAM8Fh68A8H/17f8L4Epy/J+k4gYAE4UQM49JQ5kxj5TyCSnlL/Tt/VCTndng64kZJvqaOKD/bOh/EsA5AL6gj4fXkrnGvgDgXCGEODatZcYyQog5AC4B8Hf6bwG+jpiRg8c3ZlgIISYA2AngEwAgpRyQUu4FX0vMkXEugAeklA/jBLqWODh05MwG8Cj5e7c+xjDDYbqU8gl9+0kA0/Vtvr6YIaHTMTYC+Cn4emIOA50KdAuApwF8G8ADAPZKKXP9EHq92GtJ378PwJRj2mBmrPI/AHwAQKn/ngK+jpjDQwL4lhDiJiHEW/UxHt+Y4bIQwDMA/kGnu/6dEKIbfC0xR8ZrAHxW3z5hriUODjHMGENKKaEmRAwzJIQQ4wF8EcBvSSlfoPfx9cQMFSlloaXSc6BUsStGt0XM8YYQ4lIAT0spbxrttjAnBKdLKTdBpWb8uhBiJ72TxzdmiGQANgH4KynlRgAvwqX9AOBriRke2jfvcgD/HN53vF9LHBw6ch4DMJf8PUcfY5jh8JSRGer/n9bH+fpi2iKEaEAFhj4tpfySPszXE3PYaLn99wCcAiWBzvRd9Hqx15K+fwKAZ49tS5kxyGkALhdC7IJKsz8HyuuDryNm2EgpH9P/Pw3l67ENPL4xw2c3gN1Syp/qv78AFSzia4k5XC4C8Asp5VP67xPmWuLg0JHzcwBLdSWOJpTE7Guj3Cbm+ONrAH5V3/5VAF8lx9+o3e53ANhHZIvMSY725vgEgLuklP8fuYuvJ2ZYCCGmCiEm6tvjALwMysPqewCu0g8LryVzjV0F4Lt6t4w5iZFSflBKOUdKuQBqPvRdKeXrwNcRM0yEEN1CiB5zG8D5AG4Hj2/MMJFSPgngUSHEcn3oXAB3gq8l5vC5Gi6lDDiBriXBY/CRI4S4GCrHPgXw91LKj49ui5ixjBDiswDOAtAH4CkAHwHwFQCfBzAPwMMAfkVK+Zxe/P8lVHWzlwD8mpTyxlFoNjMGEUKcDuCHAH4J5+/xe1C+Q3w9MUNGCLEOykQxhdo4+ryU8mNCiEVQCpDJAG4G8HopZb8QohPAJ6F8rp4D8Bop5YOj03pmLCKEOAvA+6SUl/J1xAwXfc18Wf+ZAfiMlPLjQogp4PGNGSZCiA1QJvlNAA8C+DXosQ58LTHDQAerHwGwSEq5Tx87YfolDg4xDMMwDMMwDMMwDMOcxHBaGcMwDMMwDMMwDMMwzEkMB4cYhmEYhmEYhmEYhmFOYjg4xDAMwzAMwzAMwzAMcxLDwSGGYRiGYRiGYRiGYZiTGA4OMQzDMAzDMAzDMAzDnMRwcIhhGIZhGIZhGIZhGOYkhoNDDMMwDMMwDMMwDMMwJzEcHGIYhmEYhmEYhmEYhjmJ4eAQwzAMwzAMwzAMwzDMSQwHhxiGYRiGYRiGYRiGYU5iODjEMAzDMAzDMAzDMAxzEsPBIYZhGIZhGIZhGIZhmJMYDg4xDMMwDMMwDMMwDMOcxHBwiGEYhmEYhmEYhmEY5iSGg0MMwzAMwzAMwzAMwzAnMRwcYhiGYZgxihBigRBCCiGyITz2GiHEj45Ru04TQtwnhDgghLjyWLwn4xBCzNOffTqSjx2Bdh2za5BhGIZhmJGFg0MMwzAMMwIIIXYJIQaEEH3B8Zt1gGfBKDWNBpkO6H+7hBC/ewQv+TEAfymlHC+l/MoINfOkYCQCKFLKR/RnX4zkY48lQoiPCiE+NYKvd40QoiDXuPk3awReOxVC/GchxONCiP36Nz1xBJrNMAzDMGMGDg4xDMMwzMjxEICrzR9CiLUAukavORUmSinHQ7Xxw0KIC4fzZKJgmg/gjsNpwFBUUCc7x0Llc4LyEx0Io/8eH4HX/UMApwI4BUAvgDcAODQCr8swDMMwYwYODjEMwzDMyPFJAG8kf/8qgH+iDxBCTBBC/JMQ4hkhxMNCiA8JIRJ9XyqE+BMhxB4hxIMALok89xNCiCeEEI9pNcOwAwlSyp9ABXfW6Ne9VghxlxDieSHEvwsh5pP3lEKIXxdC3AfgPiHEAwAWAfi6VmZ0CCFmCSG+JoR4TghxvxDiLeT5HxVCfEEI8SkhxAsArhFCXKfbfr1+ja8LIaYIIT4thHhBCPFzqrQSQvy5EOJRfd9NQogzgtf/vP5M9wsh7hBCbCH3zxVCfEl/3s8KIf6S3Fd73iFCiMv1a+/V7V9J7tslhHifEOI2IcQ+IcT/E0J0Rl5jJYC/BnCKPu+9+vg/CiH+Sgjxr0KIFwGcLYS4RCtUXtDn/lHyOl66oW7PfxJC/Fh/Bt8SWsE2nMfq+9+or8tnhRB/oM/tvJrPZIr+3l8QQvwMwOLg/uj3JlRQ8vcAvFp/Drfq47+mv4/9QogHhRBvq/s+hoMQYrG+Njfpv2fp6+Es8pn8kRDiZ7qtXxVCTNb3TQLwWwDeIqV8WCpul1JycIhhGIY5oeDgEMMwDMOMHDcA6BVCrBQqaPMaAGHqzF8AmAAVYDkTKpj0a/q+twC4FMBGAFsAXBU89x8B5ACW6MecD+DNw2mgUJwGYDWAm4UQV0At1F8BYCqAHwL4bPC0KwFsB7BKSrkYwCMALtPKjH4AnwOwG8As3eb/IoQ4hzz/CgBfADARwKf1sddAKTBmQwUVfgLgHwBMBnAXgI+Q5/8cwAZ932cA/HMQfLlct2EigK8B+Et9rimAfwHwMIAF+r0+p+8bynmbz2yZvu+39GP/FSo41iQP+xUAFwJYCGAdgGvC15FS3gXg7XAKl4nk7tcC+DiAHgA/AvAi1LUxESpI+A7R3t/ptVDX0TQATQDvG+5jhRCrAPxvAK8DMBPqOp3d5nX+F5SCZiaAa/U/SvR7k1L+G4D/AuD/6c9hvX7801DXf69u35+ZgI5u314hxOlt2hNFSvkAgN8B8CkhRBfUdfZ/pZTXkYe9Ubd/JtRv7H/q42v131cJIZ4UQtwrhPj14baBYRiGYcY6HBxiGIZhmJHFqIdeBhXkeMzcQQJGH5RS7pdS7gLwp1BBEkAFGP6HlPJRKeVzAP6IPHc6gIsB/JaU8kUp5dMA/ky/3lDZA+A5AH8H4HellN+BClb8kZTyLillDrVo3xCoaP5ISvmclPJg+IJCiLkATgPwO1LKQ1LKW/TrUwXVT6SUX5FSluQ1/kFK+YCUch+AbwJ4QEr5H7oN/wwV/AIASCk/JaV8VkqZSyn/FEAHgOXk9X8kpfxX7avzSQAm2LANKmD1fv2ZHZJSGr+foZy34dUAviGl/LaUsgXgTwCMg0o1MvxPKeXj+nv7OlRQZDh8VUr5Y/0ZHZJSXiel/KX++zao4NSZbZ7/D1LKe/Xn+/lB3r/usVcB+LqU8kdSygEAHwYgYy+gr+VXAviw/mxvB/B/6WOG8L0hePw39DUhpZTfB/AtAGeQ+yeS7y/GDh1AMv8eIM/9WwD3A/gpVADo94PnflIrgl4E8AcAfkWf4xyoINkyqMDfVQA+KoR4WZt2MAzDMMxxBweHGIZhGGZk+SSUMuMaBCllAPoANKCULIaH4dQZswA8GtxnmK+f+4RZ/AL4P1Dqj6HSJ6WcJKVcKaU0yoj5AP6cvOZzAAR8xcijqGcWgOeklPtrzqnu+U+R2wcjf483f+iUrbt0ytZeqMU6Nf5+ktx+CUCnTqOaC+BhHfwJGcp503O034WUstTnRB8btmE8hof3GQkhtgshvqfTn/ZBBbP64k8d9vvXPda7/qSULwF4tuY1pgLIUH+9DuV7Q/D4i4QQN+gUsL1QwdB25xxygw4gmX+Lg/v/FiqV8i+04o0SnkdDv7cJZn5MSnlQB+o+p9vGMAzDMCcMHBxiGIZhmBFESvkwlDH1xQC+FNy9B0ALKjBhmAenLnoCKqBB7zM8CqAfKsBjFr+9UsrVR9jkRwG8LVhUj5NSXk9Pq83zHwcwWQjRE7T7MfJ3u+e3RfvUfABKVTVJp2LtgwrkDMajAOaJuAn2UM7b8DjIdyaEEFDf02ORxw5G3WcRHv8MVIrcXCnlBCivoqGc85HwBJRSBgAghBgHYErNY5+BSreKXq9D+N688xVCdAD4IpQqa7p+/L9ihM5ZCDEewP8A8Ako5c/k4CHhebSgfq+3Rdp72NczwzAMw4xVODjEMAzDMCPPmwCco1NULDrt6fMAPi6E6NEpTO+B8yX6PIB3CyHmaCPc3yXPfQIqzeZPhRC9QohEG+22SzUaCn8N4INCiNWANb1+1VCfLKV8FMD1AP5ICNEphFgHdf4jVaa8ByoI8QyATAjxYShPmqHwM6iAxx8LIbp1+07T9w3nvD8P4BIhxLlCiAaA90IF6mKBpMF4CsCcwK8oRg+UIuuQEGIblBrtaPMFAJcJIU7V7fsoaoIz+lr+ElSgpUv7Ff0qechg39tTABYIbcYO5X3UoR+fCyEugvLUGin+HMCNUso3A/gG1PdPeb0QYpX2JPoYgC9IKQvtV/RDAL8vlPn6SqhUzn8ZwbYxDMMwzKjDwSGGYRiGGWG0b8qNNXf/BpTZ8INQxsOfAfD3+r6/BfDvAG4F8AtUlUdvhFpE3wngeajF/MwjbOuXAfxXAJ8TqprY7QAuGubLXA1l+Pw4gC8D+IiU8j+OpF2EfwfwbwDuhUr3OYT2aW4WHcC4DMrA+xEo0+xX6/uGfN5SynsAvB7KTHyPfs3LtC/PcPkuVKW4J4UQe9o87p0APiaE2A/l/fP5w3ivYSGlvAPq+vwcVFDtAJRJdJiCZXgXVErak1Bm6f9A7hvse/tn/f+zQohf6LTEd0Od5/NQwbCv0TcTqrLZGajHVIGj/7Zq8/ELAbxDP+49ADYJIV5HnvtJfQ5PAujUbTFcDaUcexYqsPQH2q+LYRiGYU4YhJSsjGUYhmEYhmF8dCrWXgBLpZQPjXJzjhpCiOsAfEpK+Xej3RaGYRiGGS1YOcQwDMMwDMMAAIQQl+k0sW4o/59fAtg1uq1iGIZhGOZow8EhhmEYhmEYxnAFVHrg4wCWAniNZJk5wzAMw5zwcFoZwzAMwzAMwzAMwzDMSQwrhxiGYRiGYRiGYRiGYU5istFuQIy+vj65YMGC0W4GwzAMwzAMwzAMwzDMCcNNN920R0o5NTw+JoNDCxYswI031lUAZhiGYRiGYRiGYRiGYYaLEOLh2HFOK2MYhmEYhmEYhmEYhjmJ4eAQwzAMwzAMwzAMwzDMSQwHhxiGYRiGYRiGYRiGYU5ixqTnEMMwDMMwDMMwDMOMNq1WC7t378ahQ4dGuykMMyw6OzsxZ84cNBqNIT2eg0MMwzAMwzAMwzAME2H37t3o6enBggULIIQY7eYwzJCQUuLZZ5/F7t27sXDhwiE9h9PKGIZhGIZhGIZhGCbCoUOHMGXKFA4MMccVQghMmTJlWIo3Dg4xDMMwDMMwDMMwTA0cGGKOR4Z73XJwiGEYhmEYhmEYhmEY5iSGg0MMwzDMccXN//FZPHTnjaPdDIZhGIZhmGOCEAKvf/3r7d95nmPq1Km49NJLR7FVgzN+/PhBH/PRj34Uf/Inf9L2MV/5yldw5513jlSzmBo4OMQwDMMcNzz39GNY/cN34Zlv/eloN4VhGIZhGOaY0N3djdtvvx0HDx4EAHz729/G7NmzR6UteZ4f8/fk4NCxgYNDDMMwzHHDvd/6WzRFjrTgcrIMwzAMw5w8XHzxxfjGN74BAPjsZz+Lq6++2t734osv4tprr8W2bduwceNGfPWrXwUA7Nq1C2eccQY2bdqETZs24frrrwcAPPHEE9i5cyc2bNiANWvW4Ic//CEAX+nzhS98Addccw0A4JprrsHb3/52bN++HR/4wAfwwAMP4MILL8TmzZtxxhln4O677wYAPPTQQzjllFOwdu1afOhDH6o9l49//ONYtmwZTj/9dNxzzz32+N/+7d9i69atWL9+PV75ylfipZdewvXXX4+vfe1reP/7348NGzbggQceiD6OOXK4lD3DMAxzXCDLErMe+H8AgKQcGOXWMAzDMAxzsvGHX78Ddz7+woi+5qpZvfjIZasHfdxrXvMafOxjH8Oll16K2267Dddee60N6nz84x/HOeecg7//+7/H3r17sW3bNpx33nmYNm0avv3tb6OzsxP33Xcfrr76atx44434zGc+gwsuuAC///u/j6IohhRc2b17N66//nqkaYpzzz0Xf/3Xf42lS5fipz/9Kd75znfiu9/9Ln7zN38T73jHO/DGN74R/+t//a/o69x000343Oc+h1tuuQV5nmPTpk3YvHkzAOAVr3gF3vKWtwAAPvShD+ETn/gEfuM3fgOXX345Lr30Ulx11VUAgIkTJ0YfxxwZHBxiGIZhjgvuvOHfsFo+DuDwgkP9h17CLV//K6y7+K0Y190z0s1jGIZhGIY5aqxbtw67du3CZz/7WVx88cXefd/61rfwta99zXr3HDp0CI888ghmzZqFd73rXbjllluQpinuvfdeAMDWrVtx7bXXotVq4corr8SGDRsGff9XvepVSNMUBw4cwPXXX49XvepV9r7+/n4AwI9//GN88YtfBAC84Q1vwO/8zu9UXueHP/whXv7yl6OrqwsAcPnll9v7br/9dnzoQx/C3r17ceDAAVxwwQXRtgz1cczw4OAQwzAMc1xw8IZP4AV04el0JtLDCA794tN/gFMe/TvcMnk2Npz7mqPQQoZhGIZhTmSGovA5mlx++eV43/veh+uuuw7PPvusPS6lxBe/+EUsX77ce/xHP/pRTJ8+HbfeeivKskRnZycAYOfOnfjBD36Ab3zjG7jmmmvwnve8B2984xu90ueHDvkp/N3d3QCAsiwxceJE3HLLLdE2Drd8OuWaa67BV77yFaxfvx7/+I//iOuuu+6IHscMD/YcYhiGYcY8+559Emv3fR939V2I/nQ80rI1rOc/fNdN2PzIPwAAiv4Xj0YTGYZhGIZhjirXXnstPvKRj2Dt2rXe8QsuuAB/8Rd/ASklAODmm28GAOzbtw8zZ85EkiT45Cc/iaIoAAAPP/wwpk+fjre85S1485vfjF/84hcAgOnTp+Ouu+5CWZb48pe/HG1Db28vFi5ciH/+538GoAJTt956KwDgtNNOw+c+9zkAwKc//eno83fu3ImvfOUrOHjwIPbv34+vf/3r9r79+/dj5syZaLVa3vN7enqwf//+QR/HHBkcHGIYhmHGPHf9+9+iQ7Qw9ay3oUiaSOXQg0NFnuPQF99p/y5b/UejiQzDMAzDMEeVOXPm4N3vfnfl+B/8wR+g1Wph3bp1WL169f/P3nnHS1KU6/+pjnPCJljyEhZY2F02s7skRUQFVPSCmBPmq4hyDdeL14si6s9wVRTligEFBJWMggTJEjexObA553DOnjDTsX5/VL3V1T0955yFjVjfz4cPZ2emu6t7ema6nn7e58VVV10FALjssstw8803Y+zYsVi0aJFy/zz11FMYO3Ysxo8fj9tvvx1XXHEFAOAHP/gBLrzwQpx55pk44ogjGo7jtttuw4033oixY8filFNOUQHYP//5z3H99ddj9OjRWLduXemyEyZMwPve9z6MHTsWb33rWzFp0iT13He+8x2cdtppOOusszB8+HD1+Pvf/3787//+L8aPH49ly5Y1fJ3h1cFIXdyfmDhxIp8+ffq+HobBYDAY9hNWXDMWkeXhpP+Zhpk/eisG1Nbj+G/O7tOyL95yFU5ffh1eOP4LOGP5LzB19NWYfMmX9vCIDQaDwWAwvBZYuHAhRowYsa+HYTC8IsrOX8bYDM75xOJrjXPIYDAYDPs1y+dPxdB0JXYMuwQAkFoenD46h1YumIoJy/4PM1pej2Hn/TsAgMflzqFtm9aiq6MNALBiwTTs2LLh1Q/eYDAYDAaDwWA4ADDikMFgMBj2azY8dxsSznDSGz8CAEhtHy4vD6Sefve1WPo9YU+OwgDJ3Z9FJ2vGcZf+Gq7fBKBcHOpo3w7+q7Mw7yZhq2654714+a5v74ndMRgMBoPBYDAY9juMOGQwGAyG/ZY0SXHs+oexsGkCBh16FACA2x5clDuH4o3zcWy4DADw0h3fxwnJMqw4/Xs4+NCj4PuiQweP64WlebdfjcFogxtsBwC08i5Y4c49sUsGg8FgMBgMBsN+hxGHDAaDwbDfMn/GUxiCjYhGXKQe41ZjcYilIVyWIE0SWFsWYhMOxqkXfBQA4EnnEJK8OLRxzTKMX/cnAIAlu6B5iGAl5e4kg8FgMBgMBoPhtYYRhwwGg8Gw39I29S+IuI2T3/gh9Ri3Pbg8Ln09CTphWIOVBgiZnz1n24i4DRTKytbNeRIVFqGb+7DSEEkcw2EprNSIQwaDwWAwGAyGfw2MOGQwGAyG/ZIginDS1kexqN/paO5/sHqcOz68Rs4hEoeCGqw0RMzc3PMRHPUaIo1qAIAO1go7DREGVbGutG+h1waDwWAwGAwGw4GOEYcMBoPBsF8y57mHcRi2wxp9Sf4J24fDUiRxvXuI3D5RUIWV1ItDIXPBkrxzKI3Ev6tWM5w0QhgIscjej5xDO7asx7SfvR/bN6/b10MxGAwGg8Gwl9m0aRM++MEP4vjjj8epp56KM844A/fee+8e3+706dPxxS9+cbes65xzzsHJJ5+MsWPH4qyzzsLLL7+8W9a7O9mdY7zppptw+eWXAwBuuOEG3HLLLQ1fu3LlSvzpT39S/96dx31X6FUcYoxVGGNTGWOzGWPzGWPflo/fxhh7mTE2jzH2e8YKV+DZ8gljbJb872+7ewcMBoPB8NqkOvMOVOHj5LPfm3/CEaVi5PDRIUEnCmuweYTE8nLPR3DrnEPUvSywWmDzCFFYza1rf2DxHVdhUttDWDPvmX09FIPBYDAYDHsRzjkuuuginH322Vi+fDlmzJiBv/zlL1i7du0e3/bEiRNx3XXX7bb13XbbbZg9ezYuvfRS/Od//mfd80mS7LZtvVL2xBg/+9nP4qMf/WjD54vi0O4+7n2lL86hAMC5nPOxAMYBuIAxdjqA2wAMBzAaQBOATzVYvso5Hyf/e+duGLPBYDAYXuN0VWsY1fYklg58HZymfrnnmCMEH3L46JBzKA5qsNMQSbGsjLlgRdFHOokCpwUODxEFJA7tH2Vl61e+jPGbxd1BcjkZDAaDwWD41+CJJ56A53n47Gc/qx479thj8YUvfAGAEBZe//rXY8KECZgwYQKef/55AMBTTz2FCy+8UC1z+eWX46abbgIAXHnllRg5ciTGjBmDr371qwCAO++8E6NGjcLYsWNx9tln161j6tSpOOOMMzB+/HiceeaZylVz00034V3vehcuuOACDBs2DF/72td63aezzz4bS5cuBQC0trbiK1/5CsaOHYsXXngBP/3pTzFq1CiMGjUKP/vZz9Qyt9xyC8aMGYOxY8fiIx/5CABgy5YtuOSSSzBp0iRMmjQJzz33HADg6aefxrhx4zBu3DiMHz8eHR0d2LBhA84++2yMGzcOo0aNwjPP9HzDracx3nrrrZg8eTLGjRuHf//3f1eC0R/+8AecdNJJmDx5shoLAFx99dX48Y9/DABYunQp3vzmN2Ps2LGYMGECli1bhiuvvBLPPPMMxo0bh2uvvTZ33Ldv346LLroIY8aMwemnn445c+aodX7iE5/AOeecg+OPP363iElOby/gnHMAnfKfrvyPc84fpNcwxqYCGPKqR2MwGAwGA4A5z/wNZ7AObB33nrrnmHQOkcNHhwSdOKrB4RGqdkvu+Zi5dV3IyDkUOy1wgghxKEQnh+8fzqG1f/02jmTioiMx4pDBYDAYDPuOh64ENs7dves8fDTw1h80fHr+/PmYMGFCw+cPPfRQPProo6hUKliyZAk+8IEPYPr06Q1fv23bNtx7771YtGgRGGNoa2sDAFxzzTV45JFHcNRRR6nHdIYPH45nnnkGjuPgsccew3//93/j7rvvBgDMmjULM2fOhO/7OPnkk/GFL3wBRx99dMMx3H///Rg9ejQAoKurC6eddhp+8pOfYMaMGfjDH/6AKVOmgHOO0047DW94wxvgeR6++93v4vnnn8fgwYOxfft2AMAVV1yBL33pS3jd616H1atX4/zzz8fChQvx4x//GNdffz3OOussdHZ2olKp4De/+Q3OP/98fOMb30CSJOju7m44vp7GuHDhQvzwhz/Ec889B9d1cdlll+G2227DW97yFnzrW9/CjBkzMGDAALzxjW/E+PHj69b7oQ99CFdeeSUuvvhi1Go1pGmKH/zgB/jxj3+MBx54AIAQ5YhvfetbGD9+PO677z488cQT+OhHP4pZs2YBABYtWoQnn3wSHR0dOPnkk/G5z30Orlta0NUnehWHAIAxZgOYAeBEANdzzqdoz7kAPgLgigaLVxhj0wHEAH7AOb/vFY/WYDAYDP8SpHPuQgeaceKZF9c9Z5E4VFJWRoJOHNbgpBESK/8DGcOt60LGYvHvxGmByyN0K3Fo9zmHat2dWPj8/Rj/5g/s0nLbNq3BuO2PYE7TJIypTTPOIYPBYDAY/sX5/Oc/j2effRae52HatGmIogiXX345Zs2aBdu2sXjx4h6XHzBgACqVCj75yU/iwgsvVA6Vs846Cx/72Mfw3ve+F+9617vqlmtvb8ell16KJUuWgDGGKMquk970pjdhwIABAICRI0di1apVpeLQhz70ITQ1NeG4447DL37xCwCAbdu45BKRL/nss8/i4osvRkuLuLn3rne9C8888wwYY3jPe96DwYMHAwAOOuggAMBjjz2GBQsWqPXv3LkTnZ2dOOuss/DlL38ZH/rQh/Cud70LQ4YMwaRJk/CJT3wCURThoosuwrhx40qPT29jfPzxxzFjxgxMmjQJAFCtVnHooYdiypQpOOecc3DIIYcAAN73vvfVvRcdHR1Yt24dLr5YXN9WKpXSMeg8++yzSoQ799xzsW3bNuzcuRMA8Pa3vx2+78P3fRx66KHYtGkThgx55Z6dPolDnPMEwDjG2EAA9zLGRnHO58mn/w/APznnjXxZx3LO1zHGjgfwBGNsLud8WfFFjLHPAPgMABxzzDG7uh8Gg8FgeI3Q0dmJMR3/xNLBb8R4r/5Hk5xD5PDRsaWgE4c1+DxEWsgcii2vrlyMJwEC7iK1fbiIEIdCgNmd4tDMv3wbZ6z+DTaeNBGHHzOsz8st+fsvcDqLYb/+S8CjH1QuJ4PBYDAYDPuAHhw+e4pTTjlFiQMAcP3112Pr1q2YOHEiAODaa6/FYYcdhtmzZyNNUyU4OI6DNE3VcrVaTT0+depUPP7447jrrrvwy1/+Ek888QRuuOEGTJkyBX//+99x6qmnYsaMGblxXHXVVXjjG9+Ie++9FytXrsQ555yjnvN9X/1t2zbikqYhgMjzoXETlUoFtm2/giMDpGmKF198sU5kufLKK/H2t78dDz74IM466yw88sgjOPvss/HPf/4Tf//73/Gxj30MX/7yl0tzgHobI+ccl156Kb7//e/nXnPfffe9on14NfT1uPeVXepWxjlvA/AkgAsAgDH2LQCHAPhyD8usk/9fDuApAPXeKvH8bzjnEznnE0ltMxgMBsO/HvOevhv9WBWtp76v9HnLbSwOkaCThAEcHiG18+JQwty6oGmWhAjhgNseXB4h2c3OoSSOMXS1yAyqde3MPbezbRuWzHy6dLkwqGHY6tsxuzIJQ4aLixQjDhkMBoPB8K/Fueeei1qthl/96lfqMb0kqr29HUcccQQsy8If//hHlX9z7LHHYsGCBQiCAG1tbXj88ccBAJ2dnWhvb8fb3vY2XHvttZg9ezYAYNmyZTjttNNwzTXX4JBDDsGaNWty42hvb8dRRx0FACq7aHfz+te/Hvfddx+6u7vR1dWFe++9F69//etx7rnn4s4778S2bdsAQJWVnXfeecrdA0CVWy1btgyjR4/Gf/3Xf2HSpElYtGgRVq1ahcMOOwyf/vSn8alPfQovvfTSKxrjm970Jtx1113YvHmzGsuqVatw2mmn4emnn8a2bdsQRRHuvPPOumX79euHIUOGKCEpCAJ0d3ejX79+6OjoaHhMbrvtNgCi3Gzw4MHo37//Kxp7b/SlW9kh0jEExlgTgLcAWMQY+xSA8wF8gHOeNlh2EGPMl38PBnAWgAVlrzUYDAaDAQCs+fdgB/rjhMlvL3/eFXeHyOGj40pBJ41qcBGBF5xDieUqdxHBkhARc8FtDx5ixJEQh1zsHnFowXN/w+HYIsecL4Wb/9ef4pj7LkGqdb6Y+8/70N3Zjg0rFuBgtCEc/i64vrwjZsQhg8FgMBj+pWCM4b777sPTTz+NoUOHYvLkybj00kvxwx/+EABw2WWX4eabb8bYsWOxaNEiVZJ19NFH473vfS9GjRqF9773vSr/pqOjAxdeeCHGjBmD173udfjpT38KAPjP//xPjB49GqNGjcKZZ56JsWPH5sbxta99DV//+tcxfvz4V+1QacSECRPwsY99DJMnT8Zpp52GT33qUxg/fjxOOeUUfOMb38Ab3vAGjB07Fl/+svCmXHfddZg+fTrGjBmDkSNH4oYbbgAA/OxnP8OoUaMwZswYuK6Lt771rXjqqacwduxYjB8/HrfffjuuuKJRKk7PjBw5Et/97ndx3nnnYcyYMXjLW96CDRs24IgjjsDVV1+NM844A2eddRZGjBhRuvwf//hHXHfddRgzZgzOPPNMbNy4EWPGjIFt2xg7diyuvfba3OuvvvpqzJgxA2PGjMGVV16Jm2+++RWNuy8wkTfdwwsYGwPgZgA2hJh0B+f8GsZYDGAVAJK47pGPTwTwWc75pxhjZwL4NYBULvszzvmNvQ1q4sSJvKcQLYPBYDC8Nmlva4N77UlYeOjbcern/1D6mrlP34PRT34ci956J4afdl7uuc1XD8Wh2I5ZZ/0KQ5/7KhYOvgCnX/579fzsH7wZzdEODLsqs0pP/dkHcGzbFKwYchFOX3sjZr/hdxj79KewE83of/WGPo179pN3YeTr3gnX9eqee+nH78SETuEOWvT2uzF80pvVcy/8+gs4Y8MtqH1tHSrNrdixZQMGXT8cU0d/GwedOAkn3vs2zDzzeox+43vhfO8QvHDsZ3HGx3/YpzEZDAaDwWB49SxcuLDhRN9g2N8pO38ZYzM45xOLr+1Lt7I5KCkF45yXLss5nw7Z1p5z/jxEq3uDwWAwGHplwdO34wwWYMCk9zd8jXIORfVlZeT2SeMALo+BQllZanl15WJWKp1DjnhtXBUNOr0+lpWtenkWxj79ScxMbqgLnN6+eR1GdTyLZc5QnJCsQFJwO7FE/DsIaqg0t6LatRODAKS1nWr/LNeH43pIOAOS/aODmsFgMBgMBoPhtcUuZQ4ZDAaDwbAn8Rfdi83sYJww8c0NX2N7InOorK27p8rKAniIwB0/93xql4hDSYiYuSroOqm2i3UhBk9Lq6ZzBF1tYrnu9rrnFj/6O3gswdbhH5FjzgtaJA5R5zUqO+NxoIQkW2YshXDBTFmZwWAwGAwGg2EPYMQhg8FgMOwR/nnjlXjpiXv6/Pod2zZjVPdUrDz8fDCrcdcKRzqHytq6e+QcCrvhsBSwC+JQA+dQzDz12rQmQqMtxhHHvbuHKBi7GBbN0xRHLLsTi5zhOHjY5NIxM+kEonWoHKU4QCqFJNrfiLnGOWQwGAwGwz6gtygWg2F/ZFfPWyMOGQwGg2GPMHrNrYjn3tXn17/85J/hsQQHn/aBHl/neiQO5V04aZLAZSLYmQQeFJxD3PbqgqbtNESiOYd4kHWLCIN8gHQZ5PBJC+LQ0tnP4Nh0DXaO+AAcOeai28lKxVgiJQ7JfUoC9VpbLhvCBUuNOGQwGAwGw96kUqlg27ZtRiAyHFBwzrFt2zZUKpU+L9Nr5pDBYDAYDK8Ej0ewdsHp0rzkPqxjh+P4Ma/r8XWOX+4cCoMq6OePBB7m5DOHuFUiDvEIseXCkuVbTBOHoqAG9Ot53GlcLR1Px8blAIDBJ5+hxKE0yotNlhR74kC0pKWyM5aEmXNIltHFcHbpeBoMBoPBYHj1DBkyBGvXrsWWLVv29VAMhl2iUqlgyJAhfX69EYcMBoPBsEdwETV0uqxfsQjbVs3H6HMuAQDs2LoRp9RmYtrRH8NRVs+mViW0FJw6QVBT4hBT4lCJc4jn26/aaYjAaQWT4pAVauJQWB96XUSJQnHByRSHcry+cjsVS8+YdA5ROVkS6uJQ3jkUM1eVoe0Lls19EQMPHYKDD+v7RYbBYDAYDAc6ruti6NCh+3oYBsMex5SVGQwGg+EV0dXRhhdu+jpq1S712At/vBozHroJaZLAY4lyxhRZ/dBPccxTX1D/3rFxFWzG4Q0Z1+t2ldBSKCuLtBIwEnisojjk+CqXiHB4hNTyYDlivXac7U8U9C4OqVKxgnBD4pXjNSm3U1EcsuXxIVGI1sWSQL2WModi5jY8nnuazetWYMhdF2LJPd/ZJ9s3GAwGg8FgMOxZjDhkMBgMhlfE3L9dhzNW/h+WTn9MPXbM8j+BzbsbIXXaaiBmWHE3Kjx7jrJ2qE19T7h+k/gjyQstsebycWLRjr7oHILtw2EpkjhzDzk8RGq5qiuYE3Wq53bNOVQIpJaPe15FjbmROERt60kcspJQiUue5hxqdDyLTLn7Wqy65pTcfr4aVtz7HfgsghXs3C3rMxgMBoPBYDDsXxhxyGAwGAy7DE9THLnsLwCARMvRcXgMKw2VqNJIzGBJCJ9FqlU8Ze2QQNMTXgMXTpQTh4T7xyquT4pFetC0K51DtG0vyZxDcR/EIRpHseSLHnf9CryG4pBwMZEolMrSNCsNwWVZmuuTOOT1yTm0s20bTp77YxybrkWt2tnr63tj09plGL/lr2pcRHdnG9Yumf2q128wGAwGg8Fg2PcYcchgMBgMu8zCKY/gmHQdgHwQs4sIdhqqEi8nLW8FTyJDFOXLquw+OIfIScPivFCiCzm+Eofy66OA6lArF3N4hNT2VbZPJelWzyXRrohDeeEHmjjkS4EHhTE70j1FxzCVx4OlUW55AEgsV4lJPTH/zmswEEIU0sviFk17HN1du+78WXnvNQA4dqBfThyac/ePMfDW85XAZzAYDAaDwWA4cDHikMFgMBh2me4XfoeUMwD59uwul+IQiT28kTgkHicHj2rb3gfnELMshNwB76GszE+7StdHZWZRqDmHEIHbvhKmKumuOYcoa6jOOST/7flNYJaNkNt1pXCOPD7UmYwEITsNc8sDQGJ5SkzqiZPX3YOI23I/xXo72rfjxAfejbl//03v+6OxcfUSjN96P2YOvhDb7UPU+wYA6N6KVlZFHPcuWBkMBoPBYDAY9m+MOGQwGAyGXaJt60aMbn8ac5snA8g7hzzEcHioum+5DcQM5RyS4lDW2at35xAABKjv3JVoQk5TKtw/RecQBVTr4dUej8BtT227GZpzKCy4gUpQzqFiyVccIOEMjivcShFcsLiROBTk1mWnYd3yieXB5r1nCLXwKtpZPwBAWBPHpNa1Ew5Lkdbae12+q6MNtW7hPFr11+8CAI79t6vqArHp+OtCm8FgMBgMBoPhwMSIQwaDwWDYJRY98hv4LAI77d8BZIIGT1P4LILNI+W4aeR0oSwicg6Rc8bpg3MIAKKStu6xVgLWBFnW5pWXlemOIOEc8uB4YtstPBM70rh34YPK26zCeFgSIoSr/h0yt670jMQhdQyVOBTVLc8tV72+EfQeVFmz2E+ZB6XKyzRxatZjf8GU23+UWz6JY2y+9g2Yd8OlAICjtr+I+a1n4PBjhglxSheHlMDXB3eVwWAwGAwGg2G/xohDBoPBYOgzFES9yB2Bo085UzwmBQcqL3I0cchtIGZQdg69jpwz1PK9N6IS51CquXxaeSNxqJLfbpLAY4noYuaJ8i2HZRk6uiuqEVTeVgyLZkmAiGXiTtmYXeTFIcokcnhYt3zah7IyynCq2S1idVJ8U2HdmjiVzrwVRy76Q275WQ//AUPTlagEWwEAHg8Ruf3FoszNZUgp55ARhwwGg8FgMBgOeIw4ZDAYDIY+s0AGUXec8mEVlExuFHIBuTxELEUVEj+KUBZRLIUFEkf6WlYWFUqcgCw8OuYWLMZL10cZRFT2FpJo4ngq6BoAqlyWcvVBHCKRpC4suuD8KRuzC1EmppxDUrxxeFS3fGp7DcU2gt6DgMQhuX/0f72szUrDXNlfEscY/NLP5L6Eanzc1svaotzyABD2ofTOYDAYDAaDwbB/Y8Qhg8FgMPSZ6gu/w040Y/R5l9a1ZycHicsjJap4DcQMh0qSwrw45PZRHIqZW1fGlcp1dLGmbDteU+411Nqexkddy5jjZ2IXgG65jr44hzJxKD8eKwkRa+JOWSt6JfZQFzPlHIrqlue2r8SkRtB7EElxiPaThDPduWSnIRxtfUtmPIFj07UIua3K11wuwrqBeucSHf/YZA4ZDAaDwWAwHPAYcchgMBgMfWKHDKJeeMjbUGnuB1cGJSPJCz0uIhXk3Mg55MjHKSdIiUN+U+nri5QJLSTkdKNZPeb6RedQJbddCqYuikOU2cPjXRCHCkKYlYa5sjAR6Jx/jUfHJybxJgvyLi7P++AcovcgdlsBaG4qcg6lujgUZdsHEHS1AQDaWX9VPuZBE4dsL5d5RMc/Ns4hg8FgMBgMhgMeIw4ZDAaDoU8selgEUR96jgiiZpaFgGcduCLVoSxSQc4eS5AmSd26SGRQ3cBiatveN+dQwtw6pw4JOTVLE4eKZWUydJryiUhMYY6vnFD6OvoiDpFIUuccSkMkzFH/Lnb7iqMQtix/o3IyJQ4hgpWGiAvikNdAbCNU9zclDknnUEjrz7bv8DAnNtFrq1YzHB6Cpyk8FgMyxDu18uKUKg0MX1nm0MvTn8DcH5yLWncHACCoduCl6z6ABc/cV/r6MAjQvmP7K9qWwWAwGAwGg6FnjDhkMBgMhl7haYqjZBD10FMmq8dDOMo5ROVFPiIkUSZChCXigatauEvnkFyH6/axrMxy65w6JORQ3g5Q7xyiDCLlqNHKyhzXQ8JZfh19EYeSrBQs93ga5cSdxPJUOR2Q5QMBmWhD/3d5vTgE24PHYvA0C8wuQmJX6otW9nR8SayzenAOpdK9VLNa4PBIvW9MOoe47eWcYCSGJdGui0O1ajcqf/8CRtdmYNOaZUjCGpZddxEmbH8QO+c+CAAI4xScS/EsTbHgZ+/Etl+8cZe3ZTAYDAaDwWDoHSMOGQwGg6FX5r/4CI7h69B5yodyj0fMVaVKVF7ksBRp0K1eE5R0syKRIdG6aIXchmX37Wep2FYdALgUKUJNHPIKZWokDlE+EZWXURYRBUCHjnDe7IpzqF4cChEzLxtzwe2kd/kiUYjW5SGGnYZINHGIRJoysY1QLh5fdBijUjv6v57T5CCCzThiKeTxKBPXXEQqj4mcQ8Wytsz91TdxKA26kUoBcfqfrsaxfK0a86wHf4uR1enqWCRxjC3fPRlT/vZr8foHfoNx1RcxIN3Rp20ZDAaDwWAwGHYNIw4ZDAaDoVcoiHrUeR/LPR7B1YKJM5EgrnVkr6l1o4jLRRAylTKxJESkhS/3hghHLpRYydK0yNGcQ66Xe4kjnUkkltCYLUcIL5Txk9hNSDlTrqieUJ29CuOx0wiJpTmHbD835p7EIZ9FdcuTSBP20Dpe7U9FOodiCqQOcuvXx0sOJjomkdMKF1EujwmgsrYswJpyiXrq6Dblrzfg+T9/HwAw5xfvxaxffhgAcNS6hxByRy5fQ9SxBQCwk7eApSFq1U4chc3gW5cgqHXjxJe+mxtzIzatXYrtm9b2+JoiC158GC/e8b+7tIzBYDAYDAbDaw0jDhkMBoOhRzrat2PMziyIWidinhI29PIiXtup/i7LpCHnEFdBzCFCtivikFsnDlFuT+IKcSjgLpiV/5lzZJkZOYJobBRUTc4hbnsI4eRavzeCytucQh6Qw0MkViZOFcesO4BItGFaYLWb1nLLk0gTBY27g5GLx64I5xAvOIfsEucPiVR0TBK3FS6Pc3lMgHAu+SxSZW3Uuawncahp4R04bOntAICW2gY0VTcAAHweYCcT7qw4rKltd7EmWEmYCWdxiPZtmzAIHdiJ5h4zl3a2bYXzuzdhxa2XN3xNkVq1Cwc9/HmcvODnfV7GYDAYDAaD4bVIr+IQY6zCGJvKGJvNGJvPGPu2fHwoY2wKY2wpY+x2xpjXYPmvy9e8zBg7f3fvgMFgMBj2LG1b1gkny9Gn1j2nhyznRIIgE4eigjiUJgk8JkKq0ygLYt5151DB1ROHCLmjumuFcOqWo4BqJYTIUjhLBlVT6/jU9oRYtQvOoaJwYfOoIA7lx6y3gCf3la2JQ5W0q1wc6qGMizKGnOYBuf2k/+tlbSTQKSEmycQhD1HW4YycQ9K5FEX5MjrKKirDTkP1OieNMiGNR6ojXBIGQBIi5QyhVRFd2mjbSaDG140WeMgylzrat2Pmj96GrRtXAwAW3fY1HIw2uNFO9JVZ9/wYh2MrPE0027x2GabffS2CWlfpMjMfvx3L5k7p8zYMBoPBYDAYDgT64hwKAJzLOR8LYByACxhjpwP4IYBrOecnAtgB4JPFBRljIwG8H8ApAC4A8H+MMXs3jd1gMBgMe4g0STDt2vdiyaxnstIvKRLoxFqOji4OsbBT/R2FeaeL7pgh0cJKCuHLvY3Pqm/rzpIAIVwlDkUl63NlBpESh0hMcZtyy3DLQwQ31/q9EbYskSuOx+ERuFYWVhyzfrzKOp418+7c8nT8e+oORut0pTiEgjikO5dIEKH3QwlJfj84LEVYFe8h5THR9qkMTbm/enAOOWmk9tnhkRLHXESoyWyoNK6CxQFCOIiZC5ZGCGuZOEQiWtVqhsU44lisb92i6Rjf/RzWzn0Wa5fMxsTN99Qdw55ob9uG4Ut+I8cj3sMpt/8Qg347CRPnXsTronMAAQAASURBVI2Fz/y1bpmp91yH8c98Bjv+8cM+bcNgMBgMBoPhQKFXcYgL6Crflf9xAOcCuEs+fjOAi0oW/zcAf+GcB5zzFQCWAphc8jqDwWAw7Efs3LEFk9ofwbY5/6jL5dGJmaeEjVQXOzRxKClk5OiZOSRIsDQqFXMaITpnxbnHWBIgYi64LbN5UG9o9QplZTRmKjdTApXt5fKUeoIEDw+R6q4FCLEo1Zw/3PZzY6YAbyATNHTnUAuv5pYnkSbuIXOInEN+i3QO0fhJHNLL1kCt6GW2kMxsgifKvYKunXK7suMbiW5y+7R82oM4ZPNICVKu9rfHI9URLolCIewxV4V2x5EcU5o5mOj1JE5RmHgSBdi6eiEsxrETzbl97IkFd1yDgejErOYzVBc4d/UzYODyuOSdQ9P/fiNOnf1NsV9J49I+nqaY/rdfYev6VX0ah8FgMBgMBsP+QJ8yhxhjNmNsFoDNAB4FsAxAG+ecrnLXAjiqZNGjAKzR/t3odQaDwWDYD+jsaEMSZ3kzPAnrcnl0EstVgkaqZQ65URZIXexmpWfmKOdQGiIpKQNrBLf9EudQiAgOQA6bErHJk2VlFF5NThvqYkbLcMcXLpY+iUNiHLbmaqHHU1sXhzx4WlmZflyycqvseZ/llyeRpueyMrE/fnOrCNSucw5JIU8r7SORiieByGmi4OuudrFd+e9iWRuFivfU0c3hoRKRHGhCESJEyjkUqEDymIkudFlZWXb+URc6EqfoveNxTZ173WjJ5So1Ysv6lRi37k+Y0f9NqB06Qaw/rMFOQ3Qx6S7TRK+Zj/0ZY6f+JxZ7I7HCOhaWPOef/8UnMe3BP+TW/exN38DEl67E0sd+1+s4DAaDwWAwGPYX+iQOcc4Tzvk4AEMgnD/Dd/dAGGOfYYxNZ4xN37Jly+5evcFgMBh6gacpaj8Zi+l3/1gLBA7qcnl0Ei1HR3eQuEnmuoijgjikixta1k5slUbXlY/V9uEhL9xYaSjcR1JQKROHLNtGxG2Vr0OB2NTFTGX82F4uT6kndJEq1DqzuYhUiZvYiK+EEiA7LlXuKedQXci2trxyDkWNxSElAnkVEahN4laSX79e2hdrQkwIJxOBqkIcsuV2aft0bqiMpaQncShS5WsuRIkZCVOxKxxKPArAUiEOkdiYSAHRSkMlAlEXOjp/Ui1sm/6uWs31WVQlLL/rKjhIcMRF3811gbPTAN1ozq1/2p+uwZhnPoeVzlAM+fz9qNmtSoA6ZdtD4EseU+t95r7f4vWr/0/uFzmcshBvg8FgMBgMhv2VXepWxjlvA/AkgDMADGSM0W3eIQDWlSyyDsDR2r8bvQ6c899wzidyzicecsghuzIsg8FgMOwG4jjCYLQhbVujBAiWhFouT5lzyFMTZa65bLwkE0mSMC8e5MqitKDkZBfKyuB48FiCNEnUQ1YaImaecr40yjCKNNGkWFZGY2DSOdSX/Bpd8NHb03s8UiVugBS0tDGT6NHNmrLQZh6hyvNuI4JEmuLx1KHW9a7fhJC5YFK4oa5rNNZAG2eivdcRc1X5YFIVZWW2dFUxEqfCKpI4hsOE4NGTc8jlkdqmy2O4iJQwlUpxKI0C0aGMeSq0m46NlUZqfIl8PR1jcgvxOFD7HdgtdQJbkRULpmHitvsx47BLcOTxI5WYGAVV2GmEmtUiD0yIZXOew6TFP8HsljNxxBWPod/Ag6WAJUsJeaRyqWY+eTdOm/lfWOyfgphbQBKic+cOVL97NOY8dXePYzIYDAaDwWDY1/SlW9khjLGB8u8mAG8BsBBCJHq3fNmlAOqTG4G/AXg/Y8xnjA0FMAzA1N0wboPBYDDsJmb8/XdYtXCGynIRpTwkKtSyNuhevTjEtfbsukjQlGiZQwWni+58IfFCdPbquzjEqCNZrh18JErBVFlZuRMp1MrFaMzUxUw5hxw/l6fUE64m6OiuKOEc0sZADpWC86XKMreLwyN0yS5eQF4cInEu7YNzyPWaRPe3gnMo61CWlfYlegmX5hxKa1Icktu1HFl6F9bUuQJoWUUluIiUIOZBuIgocyr1+6kxC2HPlWJjrM4ZW3MOpZ54fdE5xONAlYCFdktduWGRnX/7OrpYM4a/9zti/Fq5nM0j1Oxmtd6ubRsAAM1v/Apa+w8Sx4tl57yHSOVSHfv0f2CdczSOuux+hBDn2M7tm9GPVVHbvLTHMRkMBoPBYDDsa/riHDoCwJOMsTkApgF4lHP+AID/AvBlxthSAAcDuBEAGGPvZIxdAwCc8/kA7gCwAMDDAD7POU9KtmEwGAyGfcSwad/ExsevV44MPeeFpaFyZTgl4pDowJUXWgCgiWfOoWKrc73bFlNlZWGubXuvaKVABAkMNNlvJDZF0MUhmZ8ju5jRMszxc3lKPeEhVoKOcrVQpo9WFpZ1+8o7X2pWsxI0XGQt3gHklidxLokaizFcCjWeX8kFapO7hXKC9Pcgc+lI55B0CPGayI2i991WzqFaPlS8h7Iy2q9atRMOS+EizoQpv78cQCYOCedQpMZkp2HmEJJiUlzsrhYH6u/Iack5uYrMe+Y+jK1Nw/wTP4OBgw8X+632K4SThirbCLHmmtPO/dTy4KQR4iiEzTisNESaJDgIO7HxyLegZcDByrVFYd89uasMBoPBYDAY9gd6Tf/knM8BML7k8eUo6TzGOf8bhGOI/v09AN97dcM0GAwGw57C5yFYUsuFAOulRqr0yq0Xb1I7a8+eF4eqABN/F1ud6126yDnk8DjXmas3mC9KjLatW4r+Aw8GkAlMmThUvr6IZS3qaczUxYzGIMQhD5V4Z4/j4GkKn0XYzJoB3qaOYRTV4ANgmvNHOVSkOELHNbBb0D/ZAUC2eLeaAbqN4mjOIZn5VBTbcqj9acplJpFI5CnnUIk4lIiyPAq+ZiGJQ2K7qqwtChCFmnOoh9BuT3Zn6+5sRzMAlyWIAiEcWpXMOWSnERLLk2JjpAQhO43UcWJSHKJzU2VcJSHAxL2uxGtt6BxK4xjNT30L69mhGH/J17Lxa+VyDiIkjnQOJYE61q4uDtmi9C0MqnAgHGthWENFHCyxLlm6mGV39e5AMxgMBoPBYNiX7FLmkMFgMBgOfHiaYu73z8ELN/+3EjcsbSJrpaEqNbLSMBdyXLcuWwtZ1ibALSxAJxdunGKr80T7t6WCknfNOXTi2e9HF/ex/eEfqMecNEKiOV8arS9mWot6ctrIfaPuYJbr5/KUGhFJF09gNcnVyc5agdxHTdyxCt2+6LiGTqs6hh6PENqZc0gXl+j499Q6HkmAmFuwHScnDpGA47AUSRznnEMkgJB7RwVQK3FI7FvmXKrlytIaiUN0bgFAtWOHerzWKbugSYGPxaHKnOK2CweZIOTwzLlmV4TTSImLSRaaTnlXqdtPCVJFZv3jZhyfrMS6U/8LlabsGOvlcg6PkNg+Qu4ASYg0zGdSAVDuJvq82FqpnBIApQBJQhbvQUAzGAwGg8Fg2B8w4pDBYDC8Bli9eBbm/vPePr12+bwpGB3MhLd1gRI3LK19uJUEOTeJHnJcRLRnp65V+QlwN7UELzhd9AwiS+vSxXchc+jgw4ZgzlEfwKkdT2D5vCkAxCQ9tTwlwjRaXwytC1kSIOQ2LNuWywgxxnb9XJ5SIyh7J5ClSLRvJJ6QWABkDhV6jsShxGkR4dVpCg8xQqc1W0ZbnrJ/0h5KlFgcIITY75xzSMtOCoNqThziWglXzFzlHHIikRvlqbIyEoeC0tLAIpFW/kaCkP635foIuAuehDJzygNsDx6irJSRZ0KR3TxAbj8vrrEkFF31OAPcJvisvDtYsGkxAGDsWz6Se1wvl/N4iNTyVWh5mTDKbQ8OYiUI2WlY937HsqRPHaceSu8MBoPBYDAY9geMOGQwGAwHCF1bVyOqdZY+13nX5Tjkia/2aT1bnv8jACH8qBDqNJ/zoufQ6CHHRbjtwZVOjaJIUKWuT3Fj5xBLs6ydXHhzHxj57v9BB2/Cjof/HwDpPrK9TERp5ByyPJUlxBLRQl3fH0AIF1Ti1BPkHiFBh8QAVaKni0NO3l1ExyXx+sFFhDiJYTGORLZsLy5PIk2xTE9HdBwTFeMx81RXLTsnDtVyAh2JL5YUaGxZRubEXQAAV7pmMudSLScONQrt1kOrg6627PFu8bflZCKMm4ZILFc40Xik9tHhkTpOblP/3HgpCJslIVgSClGMOo+V5TLFAVLO4Lp50VAvl3MRAbanQsuzskMtJNzy4CJSgpDDo7r3W4SZR6qzXE+ldwaDwWAwGAz7A0YcMhgMhv2YzWuXoaNtGwCg+/o3YObt9RFuG1e9jJHhXPjo3Z2QxDGO3/gQAFlGFGqukZJSMptHuZDjOmwfruxGxRLp3pDUrKzrkw7lyXRzX4kWLiLl2ukrAw46BPOPeBfGdvwTG1YtFi4Ty4NF2TwNxKZEa1HPkhAh08UhWVLlNMlsmV7EIXnMSNAhMSAuEYd0hwoApFQK5bXCYwmCmsjiSWRXruLyJNL0FG7M0kzs0gO1dQEnCgvOIXLHyLI86orm1YlD8rhGQS43ymrkHNJyjaLuLLsp7s66oEUyuFkIe75woiHKxsSzv90Wcg7JIGrpxmFpCJYEiJgLqNDvTJhSxyYJEcIBs/KXPqoMMarB5TG47anQcrVtP+8c8jRByEmzEjMlDlnCtZXGWQdAg8FgMBgMhv0ZIw4ZDAbDfkbc3Q4uBZTq79+J+X/+bwDAoLQNvGNT3etXPXUzAGTlXT2w8MUHcSi2I+UMtjbBtbV8FD0E2ElDVS7mlZSVZV3DqmBJiC6WvSaym5ByVlduRq6QLtaciUNyUr6rDH3blwAAKx+6VgQZW54SN7jW6UsndFowINoMnqZCVChxDtmen89TagCJAiTokBgQU36Tm41BiRDKOSQFKrlsrUOUW6Vea90ygCZQ9CQOJbo4lGUm6V3XoqCac29RyROVdlH4ciUV4hC975Q9lMZBtg9o7ByKNAEpqbbX/W15mXPIIXHQ9mEzDoRCKHMQq/31pThEGUkkuLBEnKMhXC30uz60myVBTggkHJWlFAhhyvERMwcsDVVJpH7uk1uOBDaHh6ormeVKdxhzRZkjuZxMWZnBYDAYDIb9HCMOGQwGw34ET2Ks/8nr8NKvPw0A6J+2w6luQxLHcFiqumxlC3AcseqvANCrkAEA3dP/jE7ehMXucJmVkglCiTbZVc6hVOS5UMhxEZqMB0ENLA3Rjaz8JmEuQjh1Ygatu2o1C/EJUJPyXeWwY4Zhdv83YNSGe9HCu8FtTzl0GolNwUnvxBC+AfOff0B26NIEAzkGx6vk85QaEMvJPwk6JAao/CY3c5xQuVtMJV0y7whyvN2dMrSZWrwXlieBoqdwYwqVBoQ45KhMp2yZOKwp9xagOYd4KMQ1n8ShbiScqS51ellbrC1vNxKH9I5o1cw5lNTE3450DllpqIQ9FeAtw7A9RCpk26u0qu0DmThkpaF4H3VxKKwXh1AoIVTjpzLEoBsOSwHbV6HlVLrm6p36HF92XRPima0JRbYWhm7rwe7GOWQwGAwGg2E/x4hDBoPBsAeIwho2r34ZAJDEEWrd5VlBRRb88y4ck6yG0yUcQh6PYKVZ6/BieUrb1o04Jl2LnbwFnizvakSt2oURO57EwkFvQOD2y2WlODzLGbJ5vqxHuFHqhSEg357dSiNEzEPEKdzZRcg8WAXXBIUN16wW4a6QwhdegXMIAPq98T/Qj1XRyqrgtq/Knxo5h8Zc8AnsQH9Ez/9KBHHr4hA5h9yKdIj0Ig6RCKHarMuysqjeOURZPqmWQxNpgoYKaq7o4lC2vON6omyvB+cQtaMHxPF35Pj1rmtCHNJyn+IsFDy1PeWkaUa3CrcG8mVttJ8Bdxt2dIujrLSL1zqyJ+TfjuvLbJ5QZf3QsWCh+Ly4PFIh27T9tCgOJaF6H7PQ73pxyGogDtH+xlLAYo6vQst5EqDG3XwpmjxHwq6daoxKBJLbT5kIM6dznaX5Y8TTFNMfuhlJXN5ZzWAwGAwGg2FvY8Qhg8Fg2APM/O1lqPz+HPA0xbRbv4WNPz697jUv3HIVXvjdV3KP8Sm/BoBcFo+VRgi0NvM6tZpwL+y0hKBQlrVCLHjqDvRjVTRN+IBwiGg5Q7o45GrOISEOBXkBRYNpbcBJmCAhKbE8IS4Uy8qohbvdDIeHCElgeYXi0EkTzsEid6RYt+1nnaUaOJEqTS1YdOS7MKbrBQzsXqXEFLE/mXMIti8Ft/rOVwSV4pGgQ8IFZQ/ZurijtYIHsrwj2mYoQ5utSpY5pC8PQJRO9eYckl3aqOU6IN7HKhf7GYdBThyi7B5y71BZWSuv5t53vawtVaWBTY2dQ3quUaCJQ9IVZHsV2VEtUmWFTDqHbM05RCHbNC46f/RObEIc8rS29PWfA91VpUPrTaWjCY6PxBLjKmZSAVqukCyPcxEpMTALQ3fhpFmwdvFzu3jm05g45YtY+OJDZYfOYDAYDAaDYa9jxCGDwWDYzWzftAZjN/8N/dGNOI7Adq7Bocnm3Gu2blqLCct+hcPWP6YeW7N4FkbVXgIgOkelSQKPJWLiK0WfYnkKZdtQ+HNQ4phQzLsbWzEQI868UAkHidYVSheEKA/H5ZHKcymDnBJRWFPCRCDFltT2VEtvHQq4jpwWODwTvtgrKCsjqqd+VvzhZM6XnsSmoW/9IjgYjk9X5gQDGoPrVbQ8pe6G61Eh3lIcomNIZVuOVhZG3d5SJQ4FOedQ2C3EBttvRsytuuUBqADnRtg8UvuT2lm3NZdH6GLiHEnCWi7UmsQm6hjnyvI1i/Hc+66XtalQcdbcMLQ7l0sUZmVlJPw4ShwKVVmhJY+FLcOwbcbB4ioizTlEGUl0Xtk8gpWGSJirzse4pKysoThEjigpYDHHV5lBViGTSjwvRTbpNPJ4pNxg5A5LLA+2FqxtF5xD5DqKqx0wGAwGg8Fg2B8w4pDBYDDsZhbf/xP4TEwGw6AKKwlUu3diyf3XwmdRbmK9deU8AMB29IeTZo6aYicxHXIsBLbolhX14BwaVF2DNc0jYTuOatNOLhZXC891eaRybRxEKs+lDN05ZHPR7Yom09zyhJhRdJYocagfXJ61BH814tCYN38IMwZdgEGjz1PiRk/rO/zoEzC73+sBiIk8MWDoqVhhH4dBhx6F5iFjAABzHvpdw/WQQ8hpyotDqkTPy8Qdp1AWRXlHStCQ4pDlVpQooy8PoNSJpWOnodofPVDb4RGqUhyKowbiEBfikN6VTn/f9bI22oea1dIncciOOuv+dv2KCMBOairrh94zL85e78SdiOBm4lTBOWSnofiMWC4sl9xR5eJQxOoFQ0cef0bikOurzCBWUopGY0ylOOQiVp9DEiZVpzs9u0uDgstzweAGg8FgMBgM+xAjDhkMBsNupGvnDoxce4fK3YkC4ahxtTygWncnhq+9HYAo4SLIjdHFWmHzCGFQ3yq7mO9Ck+BQtlIvmxQTDg+R2lmbdwdZVoqruRxcGQIMyLKeNGpYVqa3Z7dlK3RyZ3DbQ8w82EWni2x5z52KKMkpafu+q9iOg1OvuB3DJ5+PgQcfjhn9zsXgUW/qcZmm110mhqPt2/DJb8bQq2ajqaUfxrzxvVjkjsBxc3+Oale5w4Mm+dRmHUXnkFdfVqaLGxFzlVuGypps10fEnLrlAZQ6sXQcKdAByAVqu4iUuyyJAjWGTt6kxCEPorTL0wSp4vtOZW20fCBLA8vQhQ9HOoH0vx2vgoS58FLpzHJ8JZT5Sf71MXNVKDRlJJHg4vBInHuWB8shd1a96CKEs8bOIUs6mixXjMvmsSxpywtKdJ6S08hlCVLZXY3cYVyKr1xzN+nQ+KgbmsFgMBgMBsO+xohDBoPBsBuZd/8v0B9deGnQ+QBkuZWcIFIe0Prl8zEIHdiJ5lzgMU0YA6tJhEXL19s8Ul2xig4Ecv7ETj+1vUbYiJHS5Nj24CHScoYycciTIdT0eKNyHCDfnp1aoUe6OGS59a3OExEwzG0fLs/EIct95eKQjuN6OPUr9+LEsWf1+LoRk8/DInckqs1HlD7PLAt487dxKLZj9p3fL30NvWd+y0AAelmZdBRpQksxM4elogSMcmq4Eocqyq3iFJxD1N2rEU4qu34ha7kOiPc0lO6yVBOHulmTCF5OU/gsArN9MMtCyIU4VXzfqayNlo+cVlW6ViTROpq5mhPIk8KP6zUhsTw0SXGIOb7qzlZJs1I+P+5CzDwwy0LAXZWRRIKLk0bKtUZlXXFUf4zsNMrlS6nxSEcSOZps15eZQWHpuW8VnEYAkMjyMHKHqTDzOHP/5Y9N/jwxGAwGg8Fg2NcYcchgMBh2E1FYw3FLbsI8bwzYsWeKx6RzCMjygCgst5O15sShzI3RIsqtqGSJ54OjdaisKfF6dw65PALXSo48LYTaQ6w5h2IlDvmIRMlOQ+dQ1p7dkc6MvHOovpuVcGO4wqWCWAlfr8Y59EpgloWhX3kcEy//Y8PXDD/tfMxsPhOnrPg9dmzZUPe8On5N/UTJlTxuKTlG9MyhQlmUTTk5Xl5ssF1fiUN2IXMo7kUcsnmIlLKWbF851lxEyl2WRjVV2le1mkUXLymmcMpZktsvvu9U1kb7EDstdSWThC58+Ekm9lSkOOT5FaSWhyZe7xxSjwHw0y4Vsh3CAUtkBzblHArhpKHI0aKyrri+vJLEyyLkSHKlo8lyfbEuRLDToF4cUh3VMnEoDbIcJYA+X6LTmhhj/hhlziEjDhkMBoPBYNg/MOKQwWAw7CZmP3QjDsM2xKd/IRfUTOIIOYFIwKlaLXC1SaPq4iWDmjNBKCv/cgrBtiROcE84h+IeMococBgAuOPDQ4xUOht8FqkSF5clsOTk2mIcTlItnVQD+fbsDoRrRbkz7Cy7RUfluNg+fJY5pHaXc2hX8CvNsGy7x9cc9M7voRk1vHznN+ueUzlNnsgJIjGAulTpJVoqy0eVRQknC4VOM+lccTxfCRKet2viEHUckysCAAS1bngsQey2ZmNOAkTcRsR8WGmoXG0k0JH7q/i+q7I2uQ+J29g5lGrCRyXt0v7ulsejCantoUUKQZbjKzGsRROHmtJudTz0QG69E5uDCKntZd3CShw5QkCqFznJkUSOJstpUplBeoYTQdvQc5RAJWYqDN3NiaxFUZc+60YcMhgMBoPBsL9gxCGDwWDYDfA0weDZN2C5dSzGvOHdyl0gsnhC9TeQuX0CqwWe5hyCcmO05rJ4XJ61yi6G/6pcF7+fXHdj55DHI3CZOQTbg8U4uN6JK8wm8HaU/e0nXUhkBk4RvT27w8UEnSbTzPaQMlGeo6PEIXKpdEvHzF52DvWVY4dPwPSD34EJm+7Gqpdn5Z5THd68ihBUpBigXFhauDMJPXpZVGK5KnTaDqU45FaUwKYvD6BUbNPRBUASero62gAAqRSHeBwASYgIjijFSkOVaQV5fkQQ73dSUlZmpaHaB+4WzmENXaBp1sSeZnQj5hZsxwG3XHhMZHFZrq8yrCosyi1L51QkM4+A7LPgQgS7686hsqBnEi/LCOGonCPb88EtFw6PS0vRLOU0ysQhcn2RO4xcWywp/9ySeMh7yI8qY+2S2ah1997hbNaTd2HWk3fv0roNBoPBYDD8a2PEIYPBYNgNzH3qLhyXrsbWsZ+DZVtZFo8UTYAsD4hKXiKnBQ5LkcTCPUQt3hOvFZ7mHHKRtcouujQo+JhaqcdRY3HIlYHDQCYcJLWsxbgVZpNdfeJbSbsbOoeyMp4ADo/BLTcTFBwPie3XTYwpiFm5VKhLl7d/ikMAcOL7vo8aq6Djnv8AT1P1uBKBPF84h0i4KRGHyKGi59CklquOoQpq9iuqjKooDnU1HYGjgmWoVbtRhousdJCOb7WzDQCQSncZjwOwJEDIXMSWKPuLCqHgDZ1D5FyKQ5FL5FTgsTh3TIrHBgBaeDX3N5WtqRI4CHGoGMANAC2oqXNKz1wiN46LSHVaI+dOqXNIipdlRMxV2UeO16Q6vZGAl1uPdA55Wsg2hVn7VDoohU8SWd2igEZB1HHfxaEVC6bh8FvPwax7f9rj67ZsXI0Tn7oclef/t8/rNhgOZFbMfQ5rl8ze18MwGAyGAx4jDhkMBsNuwH3xOmzEYIy74BMAtCyesKZKwUjsoYlr5AgnB5X0kIuAu9I5pLeZ1zuJaai26FIcatQaO00SuCwByJ1D/9fFoUgPDdbKengP4pBWxiNcK37mHHJkdktBHKIMIxIiqIW7U8jX2Z84+LAhWDj8CxgVzMSsR27OntBEoBgurDjvCKGwY0Jk5mTOF93tQmVNjlfJysoKy1cmfhiD0IE5j/+pdJwurxcAa1IcIncZjwORMwRXOZHIOUSiJrllisIIiUOMQsXJ/VXiWNPFIV9zAtmMq25s3NLFoUougJs6/lmMK1FHL6sjodTlsRLFSEwrK9fSM7eKxHDQDBKHKqrTmyuzjHTI6ZXrqCY/Oy7lR8ljTzlGxc+tcgwVO/lphLUqls78p3h9mqLrr1+Fw1Lw7h0NlwGA5bf/N1pZtc6xR6xc9BJeuOEy1T3RYDiQicIA/e/+ALbc9/XS59M4xtZ1y/byqAwGg+HAxIhDBoPB8Cp5efpjGBHOw4phH4Pni0khTSCTMFAOB1VWFlGINIlDcmKdBAi5Ld0YCRIpGvmIsmyb4iSTwo2bhDjUqPsRCVAoCAfQOi45mjjkaxkxLbwbvCSrBdC6M8WBLFvz1ESexKGi28kqiEPkXrK9/VccAoBTL/kKlllDceSU76C7UwhaJA55flO+k1gcIOEMjpsXFiLmwqmJyT2JQ25BbHC9ChLLK11+xJnvxCY2GN6c20rH6CECd/ICRdDVBiATEBGHYNK9ReIdhaQzJQ5JZ09BGCExiSVBzv2lzmEd6tzGmdh3nmU7UeA2NCeP7fo5gbCTNau/aRwJc2GlWTkZ7bNXcA6VikNayV2RiLkq58jxfCE0IYajB3xLyN1U0Url3LgTAXdFhztkx151ZisEUtOxYT1kDs3+zacx9L53on3HVsx+8g6MCmaJZXooRVs290VM3P6AGGdJFtTOtm1wbv8gzth4GzavW95wPQbDgcLcJ+/EwWiHG5e7KWf89jK0/OZ0hLUqViyYhhf/8oO9PEKDwWA4cDDikMFgMLxKqk/+FO1oweh3fkE9pndNoklaUnAOcZkBE9HEvJDFE3UL0cRjMdJIvKaurIzEieYBct3lZWVBmO8IRv+3tI5LrlYm06wHCLPGWS36ZJwm36lyDgmhyEV+MmulolSHxpDW8p2e9lcc10N4/o9wGLZhzp/+RzwoO2e5rpdztbAkVKVTOksHvg4T2h/D7Mf+rMKjKaeGQptdvwkJc0uXtxwHa469GGOCmVi5bGHuuTiK4LBU5QapUPQuWbbny8yhRDiHYuaKsjathNFypOON1Zd9AZAZRZE8V50so6gkCJ0Emk4m9i+EK8RPZOIQ13KmbLeixEYAqJaIQ/ox9iiQmqXwEYI7flaGVyK65DK3CsTMg824WJ/XBDgePBbD5RESK78Mnad6jpKbdCNElstF57YS/Aod3UjgaST0LJ36CCZtvx8246h2tqG6cjoAoJM3qUDuIjxNEdz/VexkrZhTmVQnDqVJguW//QiGcNF1L+ohn8xgOFBgs0S3ybIstg2LZ2L8xjvRxEJUuzux8ZmbMGmhEYcMBoOhEUYcMhgMhlfB6sWzMKbzecw/6r1o7TdQPW4Xyq0AIKF24TJnhMsyH5pYsyREyFwwOYGNq+1qfUkgXD3F8F9al986UG2vjFh1oxKTbItCkDVBqJJkzqFmnp/sN8pqUe3Zo6oIFrb9TBxyfZXdomOnERLmgpFLRGvhvr8z4rTzMHXABTh13W1YNudZ8CRQjpG8OBSo3B6d0Z/+LZY7x+OEZ76E/nynEM/kMaRj7vkVpLZfujwAHP+WfwcArHzsd7nHQykyUsmgRaWNVSEyWl5F5ATFoXBvgZxDoRKH6D2g0sBiGVZiebB5VJ8bVSY0JCFSzlCDGEfIXCUKqfbwunPIq2TdvgDUrKykLrWzcdEk0EWkXEk244DtqzK8cudQ3NA5pLer97yK+gxWUK1bhsQhPUepknbl3i86LpRj5LIkV8ZFAg9rFC7+6P9kYwtqylVYY74KPS8y65GbMDKci5dH/geCyuA6cWjaby7DuK7nMM8bI9ZbeM/SJMXO9u3l4zEY9kM2rluF0d1TAUB1BdXZ8devCcEc4iYMiwPYjCOOdi0I3mAwGP5VMOKQwWAwvAo2PfQjhHBw0ju/mntc75qUiUNiMkYTV0Yh0hQGnASiG5Oc1Oth0bwqBRTGkcT1Hc78lp6dQ8XAYXKI6KVk1GIcAFpZVU28ATR0XFB7di7FKziemkxbTgWQ2S06DhftwcnZQu4ldz93DhEnfeQ6tLH+sO/7HKywUzlGcp3EGjiHmlpa0fLRPyNlFppZANgeKk0tiLiN/lwcB8+rILW80uUB4KCjhuHlllMxbMNfUQuzY0u5QUoAJIFSnkeWI0OzkwBWGiG2PFX2R6WOShySQkdRGEks0X1OlAZm72FRaABEyVQIJ2tDDxchI3GoUN4IIQ45WsZSYLVAe1KNy0kjpEkCjyXKlQQAcHw4jjxmBQGlLnOrgC4OuZVmQK6nhVdzAhYAuPK4uiwTe5rS7qxUDllHM8oxArTSTm18jZxDg6JNaIfY/ziqKVdhDBdWyTK17g4cOfV7WGoNxcSLr5COvezcWPD8gzht01/wwiHvQTzpc2K92nvG0xQzrns/wmvHl47HYNgfWfbY7+CwFKuso0szto7pmosunrkbSYwNS5yOBoPBYDDikMFgMLxitq5fibHbH8GswW/H4MOG5J7TuyZR3ohy9ST5EGlV0pPks3hIEAIAhJlQFNayC1sKtm3uN0j8u0GGSRzkxSESATwtVLdScAt1IRNrGmUOUXt2JjudMdtTQpLt+uCODw/5blZ2KsqpyF2lxCH/wBCHBg4+DOvP/l8cl67G2K1/zzp7yZIrQL6XDcSdI449GUtP+x4AIHWa4fkVTD/qQ7AZR8gdMMtCVDkYHdbAhmOwJnwER2ELpj95r3osavAekzhkuxXh9kkC2GmIhLkipwexEi5VVhY5hwqiYGp5cBAJcYm5WUZRWeaQdMJFLHMLKecQnU+aWON6TfC1cyB0MnGI684hHqkA7G5kpWfM8VRHuGKWTzFzq26omkPK8yuqXM5lSd0xKDtPW3h3TmAi8bVFKz0LtGNEopDVwDnkIlL7Foc15SrM5VppzL392ziMb0X1zd+H47oyMykTh7q3rgIADDn/Cq2TYnaMZvz1ekxqfwSD0WaCqg0HBDxNMWTlPVjkjcTW5hPgFDsCQpSSdjJRThuHNSWsRmXfVwaDwWDoXRxijB3NGHuSMbaAMTafMXaFfPx2xtgs+d9KxtisBsuvZIzNla+bvpvHbzAYDPuMpff/GDYSDHnb1+qe07smeco5FKjHAMBtJnFIikWFUh2u5QGxIHP45O56yuDjSrO4AG7U/Yg6n9HEkISDiiYO6RNZAOjWMl8aOYcs20bIbSXwMMdXOTKW4wO2B4txRJqN30GE1HLVGLJOT004UBh77nsw5aB/Q4VFSvCInGYMijYhqHWr97IRE976ccw47Wc49vzLAQCnfvRHWG4fh24mzptTPvwj9PvUXxsuP+zs96Md/WDN/KN6jM4LSx5/leEkzx3L8xHJbmnCveWKsr+cc0iKmkocyospqS0CrClUnESQsrIylkq3i9aGPmb5sjKWE4cqSmwEgFh289PHQWVwFICtl56pcGzm1DmHgoJwViRhWV6Q5zflXteTOETuulZWRcT0zmvycyZzjIB8LpOdSvdgUj+hBQCfR6ha5BwKlKswLhGHdrZtweiVN2Fq6xsx+sy3yg3kHXsq0N6rqPc4kd87PE1x0uz/p15b1nnOYNgb6DcRemPhtCdwLF+LzhEfUN9LxXV5LEbVyousgBGHDAaDoRF9cQ7FAL7COR8J4HQAn2eMjeScv49zPo5zPg7A3QDu6WEdb5Svnfjqh2wwGAz7jnXLF2LjmqUAgCM3PYF5TRMx5IRT6l6ngprDbpV5wGM5QZU5QU5FZA6psjLpxlDlVlonMb3NfFRwIIRwe8xa0bdBwgE5RJq0UrImFqrAYADqoloMttxxAYhyIRJ4mOMr14Xt+apEbseWder1bqGFuysFKu8AcQ4Rp3z8Oqxjh6Emj5M16VM4HFsx89b/UeJJT5z61o/jyONOBgB4lSb0/9RfseECkSPUb8BBGHzkcQ2XtbwKVh79b5hUfQ7Ll4vzkQRAVhCHmBTuHOkcstJQ5D5ZwuXlIVLliCpInUShgpjCZRmanYrSQBL44pJyRkuWQiW6c4hcVlZ9WZnrV2DZtupqlriZOETjoEkgCS166Rmd2xHcuiyfKOiu256OCrzmFmzHyb+ucO57WumbXtamv99l+Vl6GRc5GGxe7wLiaQqfRQhscV4lYRYgXiYO7diwGhUWwRr+9mwdBccefS84XgW2LHkjt1gcR+iPbrSh0D3RYNiLvHj7j7DuOyP67FzreOEP6OY+Rr75I+p7SSeS4meNRNYwUJ8dI4AaDAZDOb2KQ5zzDZzzl+TfHQAWAjiKnmeMMQDvBfDnPTVIg8Fg2B9I4hjWLe/Ahj9/EQDgpQHCyuDS17rFLB5oXcpkiHF2B19MdKnUR4lDmiCkZwPpF7YUfOzKCR8JT0WywOFK7v96JgoAdLFssq1PvFkD5xAAhMyDI4OtmeOrybTjVTB49HmocRddv78Y2zYLgcjhEVLbUwKVr8ShA8c5BACt/QaCXXo/wnfeAAAY88Z3Y9qA83HqmptwSPeyXsWhIoOPOA4jTn9rn19/9HmXw2UJVj0mtk+lXXT+kNBjy3PH9ioiJygNxXtgeaorVxqSOCRFGCqzKjiHuMyycWSouCpdC+tFSaYEjSwviI4JCUaWm3cOARBd0ACkXr9sXTnnUKycSoFWesY0caiYyxMXMreKkFhFOU+UGVS2jON6SKRjSC9rizXnkONmQieJXbF2jGiSWtZhKZaf4dAW+5ZGNeVEE6WLBeGLhF9X+/xIx14s88mUW9FvUp87+j4ixxk5Bcs6zxkMe5Lurg4MW/hLDOEbEdTKW9LrdHW0Y9SOxzB/0JvQ3G+Q+l7SoYB+Kk9Nwpr67CQNsvkMBoPhX51dyhxijB0HYDyAKdrDrwewiXO+pMFiHMA/GGMzGGOf6WHdn2GMTWeMTd+yZcuuDMtgMBj2CnOe+AuOwBZ4sczIQdSwixcJHSzQQqUpiDoJEcLJ8l2opEeF/NaHRbta+VccZpM3cg5R1gpvUFZGJSSWlxcOil3JujUnRGj31TnkwJPikOX6WeaN4+PEsWdh2ZtvxJHJemz83fuQxLFsee+rMVSSLuXYONA48riTMWzc69S/h33kOnSwFgzhG3I5NnuCg44egQXNkzBy/d2oBUFWnkjnT+E8cryKdJ5EShwi0Y+64TmytI/KuIrCCLd9eDyCzYXzSJ3DcYlzSLqnEisLoSZRiMQn3WFDgiqFVsPPxCFyDtEkkISwWBOHVDg2c+uCnqOCcFaExkPbzjl/SgQlErBqmrsu0XK5bK08rkt+pnR3FXVWoowqHcoUi6RzKokC5SpMLLduGVqvPmZVYkdCj3x//EpTLiwfyI5NjcQh46poCE9TzH/2flS7Onp/saHPzPzrL3AwRHfOvjjX5j/2R7SwGvqd8TEA2feSDp3XkZ0Fu5MoWxagbzAYDIZdEIcYY60Q5WP/wTnfqT31AfTsGnod53wCgLdClKSdXfYizvlvOOcTOecTDznkkL4Oy2AwGPYa7gxR8kOTMxdRXatvwnFcpJzl3D+6OBQxt26SJkp9MjeGLgj5OXEoE4BYGiGWE9UALqwG4lBKZSW0bjkRd1iKbp5NKmuaWyjSMl8aOS4AkSXjy/I0y62AUSc0KUSd8vp/w9zxV+OUcC6m3vLf8HgEbmdlZRVebdiZ60Bj4ODDsWLy1QDyOTZ7CjbpUzgM2zHr0T9lodLkHJLvMQl3mTgUwuWhcg4BAJeh1ZT501gcEgHWjlxeud9KWkPbUhwi4SWxMhdRWrJ+ElRV1y9NHGJFcYhKorRzlESxstBmElTp3CxC+xuh3tFUdu6TiKR/XnQxkM59IHPk6BNScjCUtd+mSW0qxaE0qilXIQVy65Dwa3v1glYUUM6Z2J7nVdTnjspclQuLJtGmrKwh0++7Dqc89mHMe/SWfT2UPcqLt/8Ic56+t/cX7gZqtSpOWHyj+ncUVnt4taB14V+whh2Jkye9BYAQh1zEudfQ5yjRRFb67Y5LnI4Gg8Fg6KM4xBhzIYSh2zjn92iPOwDeBeD2RstyztfJ/28GcC+Aya9mwAaDwbAvWLN4FkYFMwGIVuwAlMhRBrMs4Q5qJA4hE4dSOUkTE+7scV0QquTEoXzmkB74WwziJYqBw07O2ZC5HwLNLRS7fROHYuap7CLL8WBJ94nXlE2cJ77zMkzr/xZMXvUbNCEQk3w5hlbehXgvCCl7iwkXfBxTDr4IO488a49va/jZ78ZGdgha5vxBiUMkktDxpY50rlcR4kIawkGM1PYy0SXId4xrJA7B8eGyBB4PRf6PKlFq5BzylGiSWp5y1xSdQylnqg095RIxp6IysKgrGpdBy/QZ0EvPVP4R8+pKr2gyWJYFBGRiFW3b0vbbcusFJRKR9I5qqS4OaduplYhDFJ5b1n6bxJpMHAqUqzCxvLplUiUKZuOkMjy1zSQQwfG2neukCGSTaHIKluVH6bTv2IIXf/cf6O5s7/F1rzVWL56FU2RwN3UAXL9i4S6FKB8IbFyzDBMXfB/xtD/sle299MCvcTi2Yla/cwD0Xta4cfUSjAznYu1xF4NZchrjeHBZgiTOBKLid0QaBeq3OzHOIYPBYCilL93KGIAbASzknP+08PSbASzinK9tsGwLY6wf/Q3gPADzXt2QDQaDYe+z/rHrEXIbC92RcHgkOqEgVuHLZYTMzZWGQWtfLZxDsoRHTtKo1Icmebog1Kx1EtPzEvTg47KsFSILHCbnUFY+pgdPkwUfKGS+9FBWFjNXZRfZro/hb/wgpo/6Jg4/eli2vGXhpI/dgB1sACzGwWwPBx9+DNawI0UQ9mvEOQSIfT3tCzfjjI/9YM9vy3aweuj7MDqcjY6VQry0C+9xRQp3jldBwlw4aSQ66GniECuIQ1RuVleGJUWHJt4tQ8WluBPV34knJxy3shDqYhc0OtcDWRoJALE8F5jrZ04eGqctgpZp4sc1dxGJOEmJcyhRuTzln1dyAMaqrEwTWkqWoXHpZW26c8jWOu+RIyfR3AqOdDCUtd+O1L6JboY8DnLHsrhMUfjVx0z5ZCRIA9CcQ0FueyQGF10VW9YuweoFL6p/v3zLf+D0tX/AspeewtaNqzHtJ5egu2snXssEtW5Et38cibxs5nGADatexuE3nYF5z96/j0e3e1nx8C/hsBSspORxdxNFEY6efwOWOycgGiby1nor+WrbsAIA0Hqc1uOmWEaJzIHESRyKa8p115sAajAYDP+q9MU5dBaAjwA4V2td/zb53PtRKCljjB3JGHtQ/vMwAM8yxmYDmArg75zzh3fT2A0Gg2Gv0N3ZhpGb78ec/uegq3IEHB4hjiNYjPfaxcvTBB7IyRh1HqKJeFoQh2jy1qQJQjlxqFCeorcHL2atEGob1CFMm7w2KiXTJ95lE2S1vN0PrXJ8tldBv4GDMfHdX8nu6koGHDQYa07/tviH2wzX8xG/789o5y0IWePjaOiZE8//HELu4NhltwLIsoao+xudR65fUWVJLhe5TyofSoqYquudQ86hvGumcsQIAMAgdMjSQPH6tKRLnsNFR7PU1p1DUhwqOIfIsQPkw6pDli/z4o4IWo6qMgBdO0dJFIt7zOVp0BFPOYfqs5CsklI0FaztNKt29nr+mKc581QgrjYhJQdDsf02kDl5WEWIQ2kcqDI+EcidX6Yo/Ioxy2NB5XRJqI6lW+hsSJNxKr8pTpxX3fkN8Ls+BQBYNOUfmLzjAbk/Vaye+TgmdTyGtS/PrNuP1xIzf/8fOCFZjsWnfV88EIfo3L4JFuMI2jbs28HtRoKgimHrRIGA7r6b9difsebbIxAGNbRv24RF0x7bLdt76eGbcTTfgM5JV2SZYSXiUJpy3H/vn9De0YWYfkf1z7JN4lC2rFqP7ArKo0B9dpISMdtgMBgMfetW9iznnHHOx1Dres75g/K5j3HObyi8fj3n/G3y7+Wc87Hyv1M459/bM7thMBgMe475D/8O/VBF8+s+JybEPFJ3KFmDsjJAiEOVJBN1mOYcillWVqXaTBfEIT0suollF+r6hS2tC0Bpm2tCb2UN5NvG68HTie4W8rU8lwZZLQDgXnANQpl71HDyLRl//qWYefrPMOx80Z9g6PBxWPdvd2DdGd/pcTlDYw46bAhmDXwzjuSbAWjlZF4F3dzHIC7Kf3y/IsWFEB5ESSRNyOyoEwlncKjrHYlGBVFw7Js+gBXWsQBkiRedw2XOIRlazTW3UNE5ROej7hyLrSwUOssAquTGFVfbxONSQAEyUSyR+6ij3DVeA+eQnXVUK+53aVt6Cta2fXXu6/ljrvb5ihxyLmRjorbbDs/npADZpJb2jcdiUktCW7FlNwm/+jaziTaVsgbqWPpUOpjkOzdRGVtScA7ZUSf8VHwXVf/5c9WpjUc1te3Xcven2U/egdM3344pgy/B+PM/CkAcOxLpeYkwumP7tr06xt3F3EdvxWC0ocbzXfGq6+biaL4eXTt3YMHffoqhD7z/VZfTpUmKwTN/idXWEIx684fVZ7wsD2jNikV4x+zPYdHTf1GdEW2toyCJoXpeUfFzlMah+uyUOR0NBoPBsIvdygwGg+FfDZ6mGLzwj1hqH48Rk94kJmeI1N39sk5GRMxcVNLMOUTiEIXLqsmcDJGm7mf0eDPLX8AGXLoVtAtbKjeh7ZW1xgYyZwe5BvS28ZEmDnGnSU3+mNuMmIufiUZZLQBw0oRzsPDMn2ADDsFBRx7f8HVipQzjL/g4Dj7saPXQyAmvw6Tz3t/zcoYeGfyWL6u/KYjasm3MHvIB2IwDEG6x1Pbg8UA85vhZPlHclRNoSIQplmFZto22074CQIZD+3mBU8fhEbjlKuEltT31N3fyXfNiXRzS3EJxUayRDoGoW5Qx2c2ZOKSydCwPdkF0yZxzTSiFRCcptLqa80fvPFYcI7c95cjR88d0oSZxs5b0anPIQu2LkNDiNJM4FCrhmNs+nELwblH4BaBNtOUEWcsmU/smxapECt3cH1A3TkB8X9E4vagD7SItAEkcqm2/VjNctm5YhaOf/gpWWMdh7Cd/Acu2RQ5WEihXVtE1N+WBG9H/5ydg3fJF+2LIr4rm2TdhHTsMy/yRefedPFeisAYWdMBnEaKSEPpdYdaTd+CEdAW2jrsMlm2rz3jZuRTLzzuCjuzz4dWLoXpekQpqb8qLrEB5RprBYDAYjDhkMBgMPbJ42qMYmqzE1hEfAbMscEt2S6Isj17EIcriAQCmdSiKLTcr4SHhBjGgBTUDmSAEZC2xU61tuHBnZK3Ce3MOUTmZ7TiIZNhvavsIuXQ/2J4SCZiT/d2TOAQIR9ARVy/F4MOP7vF1hj3D8aNOw+zKJAD5SdMp7/kmdqAfYm7BdhyklocWLkuyNOeQl3TlSrsy51C9MDL2zR/GC4d9AIPGX4Sm1gGocRfOpll1r3M1QQMQzhpVemWTOCQ7lOllZdKBYzlN6nEahyXL3dKqcEO5TQPVciSKpZbbQ+lVubONHID0WXI0cccpOQaJJghRt0Cu5Y/p4ivXAnHV8yS2lJSV0eTYkZNayEktl+JacZmi8Atkn1cVUi5zzgDx2Y+5pURpKiNjsvymWHKji0M2j1T3tTQK1Lb1bnWrFs7A9s3r6vbrQCNNEmy86VI08yqs9/weFRmwH0GU79Jx4pojrKOrC0dN/yFsxtGxLR/H2dm+DfOfbNi/ZZ+zbN4UjIzmYe0JH0Rs+3n3XULh5QGY/DvsJTi6J3iaovnFn2EDOwRjLhAli/QZL8sDosd4VMs6b2qfZeUo1ISlRP5Ouk1C9ORxoM5j4xwyGAyGcow4ZDAYDJJatQs7tuTzI7qe/RV28haMlhew3PHh8UhlG/SUxRMzFy1aaVjOOWR5cKmER04uKAdGn+SRIAQAVZYPsAayUjRATGzLuh+JwVAr62y8kZzUplYmAsHxtW5RPiLZRazMPWHYv+h34XcxfeAFGHz4seqx/gMPxvJT/wdz+r0eAJAOPhkDIN1sjq9EhEraXXAOife7rAzLsm2c8bkbMHzyW+D5Fcw8/N0Y3/YY1i6ZlXudw6OcWwh2VmJGTh1y2MQlmUO2V+IcKnRX81oGZNvTnEPFsrJi5lYdcr2JVV9OV+ockiISs7PSNz1/zHG9rPxK5iLp7ioqbylzDtFE2PFblIhDrkIunYs6ReFXjF+W2IWZOBRruV4hXDAl7MgMFylG1TmHeKQEKTsNVUYZjwO1bd09497xfiy+81t1+7U/w9MEm1flnT5T/3gVRgUzMXvMN3DsiFPV4yHLi0PQ9v2FO36KIdgEoL48b8lvP4ZTnv4MdrZtRdu2LZj74uN7aG9eGVueuB417mL4Wz9bl21Fv11xVFONFaKgXsTpK/OffxDD44VYM+LTKisrEzTrhRvlJoqD7LOsibZleUVUfkbfETwO1Hlc5nQ0GAwGgxGHXpMsnPIIpt33y309DEMf2LppLaY98Lt9PQyDZM5vPo2dv3qz+nfblvUYvfOfmH/YhWhplXfxbR8VFqkJnNVLi3eHZbkM5OohQYdZFgLugss7sZQDo+cBdWtt5mlSltaJQ9I5ZPmqG0sRyhfRy130chjl3LBdJRJYro8Q+a5Shv2X40edjon/cTtsx8k9fuo7PosJX/0bAGDMRV/CVgwEIMQ/mmA1pV250i6abDUUUzSGvesq1OBh8/3fzj3uQoidStBxfBX8zOx8iZMuDpHYSd3VxN9NuXFRdzW/dWC2PQrHtupzeZSA4pfvDzkPaNu6e88pEchUsLaTfXa4nV83ia8Umq0LKMo5xBKkSZJft8pHqigRx0UkhDXbr1uGnCv690Zxoq13NQSAiDlqwq9cVUocKjiHeAgPMXiawuGR6r4mxKH8OgCglXfCDvef7mU8TTHvuQcQ91AGNf3/PomDf3862uTNgUVTHsHEFb/C9H7nYvLFV+ReK5xDgXJwcq0JwJB1D2rlv9kxmf3EnRjf+U8AQNDdiQUP/BwnPfQ+JHGMpbOfxZTbf7h7dvYV0r59M8ZsexhzB70ZAw4+HInll4tDYU11xIxeRSkhf+bH2IaBGPOOy9VjStwtE4fIOZRkgqSTy9iqzyuic9JrlgJyHKrPnRGHDAaDoRwjDu2HzHv2b1g45ZFXtGyaJGh55Es4dtZPdvOoDK+EreuWNQxtTJMEG2/8ACZN/wrat2/dyyMzFOlo345R2x/DoHSHemzzmsVwWYKmk87NXijdAaFs3dyoNTaQlagAQMRtdVGtCzohxCQtjkKVA+M16CQWaHfs1XBkFyNAltM0dA4FucBhIGvHzS29lCzfPrxY1mM4sGluHYDlI8WEjLkVOBVxTvXnHbnSriNGnoW5/ngcPnRkr+scfNhRmHXk+zFh5xNYvWCqetyTpVBMdw5RS/qCc0hvA0+lZ7ari0PSyUTiUCjEoSZNHPIq0llne6JEUyNz1/QiDslt6+49x2+uez195piTuZuK+WOq05qWeQJAfda7eb7dvFo3iTVuRYk4Ho+EsEbfP/oycr16KRsdLyU0SbciEcFVZa4q0Lo5c1joOKnozJjEkQjjp46GcaC2nSuZ41HD8tZ9wdS7fopRj34IC54rbzk//Z5rMWnrvbAZR2f7NrRv24hBD30OG61DcfKnbqzruhgzB1YSZg5OXfTjgcpk0o9J67NZP5YoqIEF7fCZaGyw9dmbMHpB42u2dcsXverw595Y+PdfopkFOPhNQgijxgsElZIlUU29t6/UObT4pacwOpiJJSdcqkr1AF0cql9v5tIKlSCZywUryStS5ZaVisiJiqtwmRBVjThkMBgM5RhxaD8jiWMc/tgXkDzx/17R8vOeuQ/HpOvgYf+5MPtXZdpdP8bg307AsjnPlT4/5fbvY1Q4BwAQ1jox5/E/Y8EPztnjF4GGchY+fiuaWZBzHJBF3S7JNqh1i8wTqwfRRJ+MdbEmzTmUCTqRLFHQu59ZtqUygPROYtQSm/IfgCzXBZDlNCVlKoBsZa05Q2jbQN45pE92bbei/i5zTxgOTCZc9EVMG/ZlnPS6S3DsiIlYzY4UbjhNHDpy6AiM/vpTaO1/UJ/WOeKSb2Anb0bbg1erx1zphFOiie4cko+RoKGXPOWcQ+TkoZBtcjRFnQAK4hBleNl+D86h8kBqlWUkt6eXX5YJSqn6vFTU2JlWVgZk4muWHSQ+/0FN5JB1yzLRMCiKQ1QC5ysRx0MM7vjquOnLsKSmMqUINdGW7hYnjZTQRmNTziESl6Q4VAxYJpEgDKtweYTE0UTqJMj+hnDpeIiVEL4vmPfPezH1T9cAEO7cEQt+CgCIutvqXrvkpScxZvZ30Q6xT3FUw8J/3IjDsA1db/8V+g2oP/+pKyS9T0zbV4eHqFriO1svjzoo3Yo2CFEtCmuqlDgMamBJoBwtRWY/eSeOuuU0LJq+50rQ4ijEcctuw3xvDI4ffQYAqMYLhJVzDkmRU+sMtit0P/p9tKEVo/7tS7nHe3IOpVF2npUGsMsbKnpekV5+FsGFFXZmK4zNNbLBYDCUYcSh/YyFUx7CYLQ1vvvfC3zKDQDKQy4Ne48V86di9NwfAAC6dmxE+/ateP6GzyMMxMXKqpdnYfzLP0MXFxc3URiga/mLGFmbiTg2792+oHXhHQCQu0hX3U50dxB1S+pqr3+ugC4OdbNmVfKlCzohPLAkrOt+RkJOZFVUx7BYtprOZZcgznWDKgbxEiwJcs4QIN9xKc6JQzIQ2PNVqVEjx4XhwMPxfEz60Lcw8JAj4Xo+tp7+DQD50q5d5aDBh2H20R/GmM7nsGrus0iTBB5LADsTNJj2N4k8lLulu+y4/Nv1m9TjdP5ZjgxUj0Vukt/UrILVaV3c9usn2yWlVzo0HvoslblwdFJN5Eq0z44OiUPKkVPIaqnKktFieQ6XE1zXb0IMF1ZchcU4mO2pbehdmRDXC79UhkfuFhFcn30fkcChv6aislny1x8ktEVBDQ4iJG4zUs6AJFS5RcoVFQuX0b5yDnXt3IHDn/gPnLBYlGsvvevb6C8ztoqiw7ZNqzHgb5/AFutgLBr9XwCE+MFrwhV6/JizSrcRwwVLI7XPLCfWhwikOMS1xgGeFuQdhzUglQHPYRVWEsJhKZK44HZLU/jP/RgAUGvbtKuHos/Mffw2HI6tCCb+e7ZtqyAOyfczCQP1d/wKysqWzHoG46ovYuFxH0Fr/0G55+hzVubqSbVjTc/7pWWU9c4hz29CyFzYUSYO8aR+G2XMefIOzH+23HFmMBgMr0WMOLSf0fXSnQAAJ911y+uapXMxtjoV3dyvs9Qb9h7tO7bCvutSWBAOoDQKsGzq33HmxluxasEUxFGI6p3/joB5mDfscwDEhT5dZEev8G6c4ZXTuXMHRkZz0c192IyrbAq6uC9zDsVV2Uq7B+cQ1ya8Ndas2szrgk7MXFhJoCaMavLHKCw6ywBKnSaknKm7zkAWYi22V5+1oihzDiELB87cD74K23UcH3HBuWF47TH+LR/EXH8COipHvKr1jHrXldjB+6HzoW9nZU+Op0LbmZO5iCjwmlnCJZdqwgV9NlyvkmUASbGGArI9KQ55XgURHATczcp/HA8ei3MuTJXr1UDkJAcgfZYs285EpxK3kV5WRgJWMX9MtY73W0Q4tfqOF8emJrN7ipNsNan1KoiYq1xS0JxDuqAkhN98zhR9XpV7QnMrirF5yg1Ck+1Kv4HyyYJzCCQOBfAQyjJUBywOlGuG1kEOyEbZZ3uauXd8B4PRpoQNv2utcuzookMU1rD5d+9HK+9C98W3oHLQkQCAOAqAJETKGRynXCyNLU+0eSeBIcl/H4d2fTaciwg1Ro4iLbcnqCqxpdj9a/7zD2B4vEiua8+1Xm+a8RusY4dh7Lnvzx4sdMVjsq19GlfVe/tKxKHOf3wP7WjBqIu/VvccnbOl4hBlZyWBOt6lZZRa5pCeMxbBhSO/M+Tg+zTeynP/i/QZE9NgMBj+dTDi0H5EHIU4aduTAFB69//Fm/4bs5+8s+Hy6x75OUJuY+7gt8ItCbk07HmSOMaqX78fR6SbMPOUrwMQF/p0YZeENcx5/M8YHi/C0lO/CXfwceLxKLvIfjUdQAyvjFq3yC9pswYCyC7SE2VLzyZ95DBIayQONXYO6ZOxwG5Rn2td0KE7+DSZpol0lgfkqokfTcqQZOeIEJoyB1CjklIrCXOBw4Dm1rA95X6wXK2sTAsENs6h1y7MsjD8Kw9j7Jfue1XrGXTQwZhz3MdwSvdUrJr+sFi34yvRhLmZuKF/bkK4WYt7ZAKN5+vikDj/aBLop10IuS1EHOaIzwXtj12S5ROHCLlTlx9D2Mo5VN/Nz6/Ui0MkYFmu5hwqCMX65yjUyrjoOz5oIA7pk9qYufAS6i5XycRpvawsDbOOaRKVLabnnGnHOLZcWHSdIbfX3E84OXihJIxcWGFYU9lHIVzhHCKHUJzfN3sfOIc2rVuOsWv+iJQzrbta5tjRRYcZf/gqRkTzMW/idzFszOlaZk0AFgdC/GpwriTMhZ2GyuFlpdn1mosIkZMXo8hFp7/fuYBnJQ7lz4PalJuVQLmnWq8vm/VPDI8WYNWJH86VJXLHVyHkQPZ+plGg/i7rKtYTS2c/h/HdL2DhsR8pLdcjEbZMHMpcWiEQByLDz7azZQtllADUOUmfIzfOnEOsj84hNw1fsZPfYDAYDkSMOLQfsfD5BzAIO7ETLaXi0LCVtyKcfXfpsh3t2zFq8wOYM+BcpP2HAKi/C2XY/cz8x6144XdZ3fy0338JY2rT8NIp/42jJrwVgLiYojvBcVRD1LEFAHDMqRdoHTZqYGQzD0xQ4t6GSjQoKyKsSXGoJNuAFcShnro56ZOx0GmBIycRHvLikJ2GKr/BUs4h6RayvEwosj3VRhmQZQcsUpNhkbVS7hpkaVRSVlbvFrIcX5WfOF7mijDOodc2rufXdTl7JYx7139iKx+AytMi84U5vhJULae+rAwQ53qpc0gTh8glYKvuat3qcxHBzZ/bFNoc5N01ReecjsoO03KDSJQtcxtl4lCWi1QMp9fzukS2WN45FJFYULwhQJPaShNiy4UvxSH9WOrZKiypF4eKE22v4BwigUN/TVNzv5zDSa1LOUWqKvsoZg5YGmbfRYV9swvfQ0kcY8H3zsTsJ24HALxw36/Qtm0zdicr7/wGbKR4acCblbBhp6Fy7Ojlcodsfg5z/fGY/I7PAMjaoqeyVXvYQ4llYrnCPSP3neWcQ3Fd+S+JlJQZVyzNUgHPBdewG7WjjeXDzHuDpylq3Z09vmbr5o1Yt2oZAGDH079CJ2/CKW+7PP8i24PFuCpz1wUhuj5NStxM7ds2Yv23T8LyeS/WPdfxyPewE80YefF/lo5Lfc5KXD1c67onzvf8d1WxjFKshxx4TYiYCz/pVk+xtG/ONoeH+8wFZzAYDPsCIw7tR9Rm3oUO3oTF/U4vFYdcRLmLEJ0FD/8WrayK/ud8QV18B/vIgbJm6Ty89L/vQFdH2z7Z/t6ifdsmDH3+vzByrbjYnfnwzTh9/S2YcvBFOO29X1VtVnkcqAuWJMrq5V2vkquTp/e22LnGsGcIgwBLvzMe0x74nbpzH1r5DBCugmEz54Aly2EgW2n3JA7pLoTYbobDQxHYymI1CY2ZJ9pMSzu8mvyROGRr4pDsJKYcCFT+5vSQtULjTkMkhdITEn6YJghZri4OVRBb+eBgg6EnBgwYgHknfBrHxisBkKCRhUnT+a2XY653j0U86MRsJZUBCLkDz29Canu5Eh8SKfulO9UEPoKbE0fKcnnKMrd0qFyN5ZxDrnInFeGqo5qvRJdiOL3eaU13DtH3DYkIdS3BtUltwjxU0i65/syFpbuNrCSsy4tS2UokNGmlrDQ2mybISYCYW3BcNzdOtS5yDlU7YTEOyO8kKwmzbKGCc6jotqh2d2BkNB/dq17C1g2rccasK/Hy47fg1bBh1cuYes91AIClc1/EpB0PYeYR70E06AQlbNg8VI6dfJfHCKHbX/3b1rq7lTmxdBLLg51meUt6vpKHCKnXL7c9Eilj6ShK46oSW+IoVH9HhRt6No/UDYu+ikNT/ngVaj86GXEUYuWcf+Kl264CACye+jBm3vF9caz+9BV03fI+AEBT11qs8Y7HgEF5J08WfC7LBKmsLArUTY4y59CWtctwJN+E7Stm5x5fMus5jO9+DguP+RD6DxxcOnYSh8rygOgxloSl4l2xjFIMMDuvY+aqz5FYT9+Op8OjHp1DYVDD1J++G7OeKr9xazAYDAcaRhzaTwiDGk5uewqLBr4eideaCwIkiu1h5z59D2b96AJh+926GDvRjJMmvKE8sHIvsvmv/4MJXf/E+qVz9sn29yTbNq1FJCfxi/7y3xiITuXUSOfdg804COM/82sAmc1Z766RRlnrX9evqAlSEta0biDG8bU3WDLjcZyYLEe8fi4ieUFJd3ZpgqNaPJcEX1LnE104KkKTsZA7SG1fTEiofExOQhNLTNJosqfcZCwTfNTEz86LQ6rDmeoG5ZUGmwLizm9xApnPTcnKffRuUanl9Zi/YTAUmXTJl7ARBwMQ55b6zLiZIG5r3cBO+cazOONjWYfOkRdegeUX3i5Ko2wvV+Jz5HEjsBkHoR+rqgl8zPLOofJcnnq3gY4qHXXy4lBDkYCcQ15FOQSLJaYqu8urqBBjIHNckIgQFx0Y2qQ2YS6auXA8MNdXvxm6OGSnISKt2xtQP9HWS1kBKXDIm1CijEoKbZrDSYwthM04ACDoFCH8zPFVl0VLuWfyzqFi10RVLh0HCKpiks6jbrwatv7ps5g85yrUql3Y8vytSGBhxHuvyQkbThpmHR9zDh+RnURQN8ZU5gH1JA6llgz+l+tTJVeJEP6515rbHl2LkRiYRnnnEAkvxfJCOw1Rs+qFrUZs37QWo5f/DgPRiWp3JzY+/2eMXnw9AKD9hVtw3IL/AwD44Xa0prKhAo9yYfDZAaHrSPl+8sxlpv9dhM5lveMdT1PEf/9P7EB/jHjXlQ3Hr7p0luUBKSFOXAfHhc+yWxZmreXs6Z8jAH3upuciatgBFABeuuW/MHnno6gtfLRP6zMYDIb9HSMO7Scseu6v6I8uuGPeXdclAsjaw+p1/J1LnsG47hcQBFX5I5hvEfxKwgJfLasXz8L4nU8BEIIHsX7ly2hv27bXx7M72bp+FSr/dypeuuP7qHZ14NTN9yDmlgr/ttIQHfYAdcdWt/XTBYvuHPL8Js05lNXxx2Hf7mgZXh075z4EQExqKMSS7uwq55Dm8iLU5DaUziG/ceaQEofggtseHMRZqYtDXZo8ODxUE0ZbOYr0NvN6cHR9dgl1UIN0NZWVlFppmGsXTtsGRFAwhWc7bj4EWJS1Nc7fMBiKtLS0YsXIywAAtt+MpgGHAgAq/Qfj0GGTsMQ+EYcNHdVw+QEHDcbwSW8W6zrlAsw77B3qOcfzsfz4DwHIPiMx83LCZ9lvoJWGPTqHyAHINIEnZi7CwmdGIT/bjltRn51iOL1y4PlNogyLbgDIz2cqRYSk+J2vT2otDy1yUms5FVieX7eMlUYqOJ6goG/VpQ1FcchVjgiWhKqEjrKECP27JOoWggJ9D1lp5hwicSgOxFiL7mf6TmVJVkKrT+R3tO/E5m3iGiGOYyS9ZCbOe/Z+jA5eAgAEtSqsqBtVVkH/gw7NCRsOj5DYFZHdU3AO6WW/5BxKo0A0CGj0vkM0CXB4pPKWVGaQCmFvym1P/Z5IMVD/vU/CWsOAZ4dHmbDVhwDlxXd/Gy1MlizKJheUP8mSUJUHWmmk/nbSMNfFjsgENhKHxOuFONTYOUTnpV7eNffh32FENB+LTvlSQ9cQIZxrJddACY03aFBGKT972rL6eR0zDy08O5f72k3PRdSwA+jiKQ9h0tqb1bYMBoPhtYC52t/LTH/wD3jx5x+uezyYcx/a0YKRr/s3cMeHX/gxKmsPyzTLsh42S7b9Oqv6XmDT378vbOfI3w3lN78DC/9y1V4fz+5k6X3fRQurgXduRndnOxyWop31UxdfdhqqMgIgs/XzOHML8TjfCcXRrOxWg7uHhj3DoZueAUDiUL7MQ70HSYlzSL5n1Erb7aFbmWp7z1wl+kYFtw/dwU8KziG6YOe2pyZ+zPFyLajVhEt1gKrPWlFDSevvEKdWlv9CgpCtd4hyfZFz1IPjwmAoY+LFX8SU0dfg5LMuwoljz8KSix7Ayaeei6OOH4lhV83AoMGH92k9o855DyZe9ofcYyPf/gVUuafEnthyc8Kn0yQ+x20bV6nHysRRHcqc0dvRx8xt6DZSwdo9OIeyvKTm3OdWZbX4oqyp2IlKn9QmlguPJWr9uWwcSfG3h6CJdrGUlcZGjgi9jCqW5WKE7kCOq5lzKGaitEq5jwolc8WuiaobYxJo36/Zdhb94bPY+OtLAACzrnsfXvq5KHua/tNL8MJvr8iti6cp3Ke+kxujvg+6c8zhUSZw686hglhGx5XHgTxXenYOuTxSx4mcP4HqOCndbkoMlOKQL8ShYmmW0+DGkJNGiKQ41Fvr9Q2rXsaETfegHS1q30m8CmVHNCoPtNNQ3YC0eZzLoiJYnXMoCy+nZctCsum8zJXwzfojVrIhmHTxF3vcB0DkfJWKQ3J9NjmH6soo68OsWRKocyK1XPisvvtab7g8Lu0AumH5PBz60KexzjoC7WjJgtkNBoPhAMeIQ3uZZNmTGLX9sbrHK9WN2OgcDc+vgNk+fBbl2vCWtocttEKlC2VqEdxXkWHqLz6K6X+9/hXtj876FYswvu0feNk5WQxPu3AYkO6EXdv+qrfRV7p27sgdv1fLlvWrMG7TveIfSagm5VUZdBkGVVm2k11k5cIVk0wc0juhOFqHDbs4cTDsMbasX4kT0hUA5J1suqBVd3bzF7h63g65AzzZ+aTHoGY5GYvgiE5iPKoTdLi8C02fFyq3SbRSMtUNSd6xzzIqssmIvs5isCkgygKKd4hpUms5vvrb8bK/Xb+CxB+ATtbaeB8NhhJc18Npl1yBFtkefdi41+8291n/gw/D3BM+g02Hng1AiDi6ODLsjHdiJ1oQPH+DesxKox4n/IcefSKm9zsXR4w5Vz1WLFfLIT9rjldR5UmO35x7SSrFWF92Syp2ebIq8vum4ArJT2o1d4vr57Jx1OMNSoOoRCxztGRiSGp7asKvOzEi5uYmznr3zKQqQviZ46tAa7vgnqFxFd3Pqlw6CbNrE20i31LbhAGxaNbQr3st+lXXAQAO7VyI5u0Lcuua/fhfcHL8MhY5I+S6a7l9oO9Dcg5lQf7Z9jz5uPq3+i0OexWHhAs0y4Ck6zIlpDn5AHL6faH3G3GglkmimhLpkjrnUIjU9huXWmmsvfdb4GBYeNzHcscEEKIVSyNR8pamcHiourmReFYkCz6vqtcB4jeR3tuysjJ1XmrPuWk32v0j4PQh8F4vm9bJjnUoM7byY3ZdUf7MtOOknxPFz0dfu+l5sri0SMefPg4OIP3gnehGs3EOGQyG1wxGHNrLWElYGhhr8UjlE1C4LIXNAnp7WP3OR+Ye0MNm6e5lX8ShRVP/gcnb/gose0I91r5jK+Y9+7dd2i8AWPPA/0MKC7XTRfcu/a6S10OY9u5my7oVSH46EtPu/knD16xYMA0brz4BKxdO79M6l937XThIUOMuWBqqO4E1GRYZBLU6Z4Zl2wi5DZYEyuVFziEKU6S8mjTK7sCmhfdt7dJ5WPDiw30ap6FvrHhRnN8xt8DSECndsZV3dumzQxearqu5EqiVtuwg5PUgDimxhrngjg8XcbZu+RzdhaaLaqfgHILjqfPKknfsVV4FTTq0blBA1m1NR0wg8xfUWahuRd1Ft11fayXehJMu+RaC99/RcB8Nhn3B5I9+D5M/+ysAQNuhp2H7IZPVc639B2H+kZdgbMc/sX65EBZ6m/B7fgUTv3Ivjh42Vj2WMLeh24hp4pAqMSuE0+ud1vTPLbkr7EoPziEShwqlT9kNBU0calAaRG6ZMMh/5wAQTkZVZhRqJXpuzqGsuxCpQ6Pliu6GFo9V/kzRFeUV3c/kjExC9V2nXxPYaVb2ZPNITd4d7W+x3zEGvPADrGFHYucporyQroFIyLM055CLSIX61zuHsmPmak7fRsczd+wQwZYdRkk40YV/fXtq3ytZ5zE6bqnW/auYPWVDuHoallpJVi16CRN2PIyZh78b7iHHi3UFWhe0IAvADmXGEZXDuw3EIbvgQFcCSRKqnMUycUg5h7Rj7aTl2ygjKpx/2YqzY61fLxPMsoTDNSkvJdW33839PolDSRzDYWlpB9DD4nV4efB5OG7YqMZjNhgMhgMQIw7tZVgSqrs3Ok4aIWV5S3Su1p9CHrULLkuzLOsXdzRRLN6FKqP61LW5dQHAor//EsMfvRS1alejxRTL5jyPJI6xdcNqjN/6d8wc/HYMOGoYAO0iQVra99aP54q7v4n+6EbSvr7ha9rv/wYOx1ZsX72w1/VtWb8S4zffi5cGXYA2NkDctZL7FkjLdxRUxV2+wgVQDAdIMmGMx/lOKI7nqccdefETFy641j/wPQx8pHc7tqHv2MsfxxYMwnr7CNhJoFrWkzikchOSAAF3c44H6kLXJDuflLW5JlT2CfMA24fLEoQ1mR8iP6d0Bz+N5UU4Tf5yYdFZ5hAFWANZGQJdyGdZK2XOoUhloxCqHbfnq78drwmwPSScwXE9HHTokThu+ISG+2gw7GvO+PTPcMa//yL32IkXfgUJLKx5SNwk6G3CX0ZiuQ2zZ/ofMxobcAgGHToEXH7u3BJxKJLdzlT7c2Q3TpzmAbl/E/qkluecQ1mgt75MI/cHTVrpOycnDskMNAA5J4bucAIK5emyQ6MtOxraaajKo1gq1pU5h/ITaiWQpFm+mi542GmW7eLwUPs7zt0Um/3EXzA0XYVNE78M28/KgPV9sLQbZC4icMuTjigKjk5EqZ5WVqYcoHEgbvT04hxyeXZNo8Qdec1muX5ue7Tv9H7zJNs/HgVKFCtm+LjS3VQMCS+ycc5jsBnHsW/7kipLjnJNLjJncijdVFQO7yCfvUQUryNJHGJxkN3g7EEc6infqSeK4qQaT0LHOixtrgDIvCzNOaSXkuqfjy7WnDunGkHX4GXOIZfHShSOmdfngGuDwWDY3zHi0F6mLrhQkrurTzkl2h27urpvaDX+US1X0qS6mfRSnrTq5VkY3/18blwAkAadcFiKoCouKMOghrXfHo5Zj/8lt/xLj/wRJ9zzVix47m/YsGQmPBajdcL7tEwEmYlE5TJ7SByKoxDrlguRZ82SOZiw7QEAWSYTINxQ61e+DACY/8LDGFedIsYY9y6gLbv3u7CR4Kh3flOFAdPFXuRkF6dOiTODrOx0kcjjINcJRXXY0O4eplH+ODlxF3xuSs12F3EUYljnNKwceAYi5oGlkTrmVpO4s5tIKz1Lwrq8HTq/m3g3Qt5zUHMmDrmqpCPoErkddBHPbV9MYGjCSC157Uwcylpl+yrAWoyz4BxSk6L6i/ayCSTXQ3Xl355XwcGnfwBTj/98w/0yGPZ3DjnyOMwaeB5Gb74f7ds2wullwl9GV/MQdFSOKH1uxGnn44irl6K1/yA1SSyWmHLbU5lFuqhLrh+XxKHCJFsXOnR3i+NVSrsyNRKHyK1ULGWl9ZK7x05DRHL5pDA5z4V6yxB+yihzeCboqI5d8juJxAe1HiqlS8udQw7PcnD09bqIcuX0wdaVAIBhp78z55K20lC5SVRuW1QT+2jLrLakcP2lZTCpzJokLHVZ6nDHhwfd3VRwCLmVXHaTEoeaBorl40wQ4knjDB8lbBXykurGI495y4DBWjmY5hzSOqKJG1ni7zCoCqGnTBxyxPEgcYjOFRZX4bBU7Uf9WOrf20bupDLEOVsvxtD6XB7B1m6m6uiCHADYSZbFpW+/ajWr96wnyDXnFc5lAPARgssIh+JnBgCiMMCMn1yEFQum9bodg8Fg2J8w4tBeRr97o6O7Tsra8GbOIf2uSBZgrJc0qcySXpxDWxYLgaQdLcoeLRakDhtigtzRthVD+AZU183PXhLHOHjKDwEAQec2pLG8w9LUoia3dOFAwtbudA69/MIDWPudU9DZvh2zHroRg29+PTrat2Pdc38RwhbPd1xZ+OevI77lYgBA9YXfIubi1OclgYo6m9etxPjN92HmoLfiqONHqLtadLEXU+tzLfhSh6zl6kIpDmXYaNYNChAXiJk4VCgx0Czge5M0jjH3B+fixRsu2+vb3pMsmfk0+qML9slvUaGqPKaL93yZB0saB1+28KrqKNQIXRxSYdFKHJKZQ3KSlso7nk6JcygThyq5FtRqMiIv5C23Kfe4jrhAL1jxtVIy6nTm+hUMG/d6nHHp93rcN4Nhf2fw+V9GMwuw8P6fl2Zu9cb4z9+MUVfc0+vrGIlDBeeQPfR1mN//9QC09ufIfncqrQNz/yYsLWA6F5rs+Zl4rGe6NBSHXJG1VFZWZmddUfVAa13EAvIZeFYk3JKW06Q6drl14lA2Lt39nMrrCSsNs+9XfSLPIyVAuNp6PR6pwGaxU1mTAN3dYvMsU0oXjTzE4I6PBNkEvqzMznGFWxJxIDt49fDdbvtwWAqHGhYUv49dPycYKDdVU4vKxdFze7wGv/26c6in66csGy9zliVhkPudoGvHKKzB5VkWkdhGfcdNdR0ZBapbLpCdA3IjdculCYlD2vlZKOHriUbOoVyZYQPxLiqEqevlZ7pzqWa1NOxAlluf5sDVb+jGUQibcXXDJ9ZcgcS2jatxaseT2Dz38R63wZMYM371Sbx03896HY/BYDDsDYw4tJchQafYalq33SpbsGwJC5R3AFG5I/LCSLXNVTk2PQsfdHHZyVrzWUZ0d03mlkTkQtAuRl964AYcm64BIC5saVu2W39nsywv6dXA0xTs8WswJFmLbetXIN65CT6L0N2xAzzqRsIZOllz7sLTqW1Hv1TkJbhRB9oZiQA9H6Pl930XFlIc9W+i0xpZ7qnsKHHzzqHiBRDdyVIXO0m+E4qnWdkzcSg/Jj2LYXcTVDsx/Tefx9b1y+uem3bX/2J0bQZadvReencg0Tb7QSSc4YTT36FKI+iYu4UyD5H9kXcOkaDns6jH1tiAZs23PCXERN3iPLSVOCScQ2rSQ5+fEueQ7foqwBrIyt/oQl5tr8Q16CKuOz8p38zxfDC/H2JuwW9q6XGfDIYDheNHTsbsyiScuPJPqKRdfXYvEK7rwfXqJ85FDjv1HZg6+CL0H3RI7vGJF34ak75yN4Cs/TkAJUZXWgfJfxe+8/UMwpxzqAme11y3TKPSoIQ54vem4DAUG/GVI0IPtNadiUBeaHYiEcJve+QcClWYctEVBWTdu4BMING/b62Cu4QEE9Ejrv5vIMuy8fymnEtaLxtUj9c6RfdU2xMTeM09A+TFIYC6u4l96vFckd+bftotx0gldZpzyHLV9R4JY45XQQhHuIVyAc9i+eJvPwlbel5VKXRMvEqum52jXSM6ulAktxdJ51CZcJN1Uq2pbrlAdg4AeXc2oYTOYr5THz97ibxhU4RC0l1EDcU7cnarfUhDJFQWqu1jaDf3TRzSrtP1G7p0/U6icFooxQSyG7pl7ioF55j760/g1E13wVpsciUNBsP+gRGH9jJ1XS0kjtZOVNmCcxdWVPedOUhU5xN5h4gujFRmSS9lZfQjLu6i5Ds8AFluiZpo6vkAS/+BKpc/jFGQhel6lcwNQ+JQievp1bDgub/hpPjlbN1xdgEkyoDc+jtIWoiilYboZvUX2EXINTTroAtw5FDZFUVepNExSb3+attuyQU6WdlpLCzJd0JReTVJ/k6ijp2Wh5jvDubc82NMXH8rVkx5IPf4prVLMWrhz8T2Sy6i5k95FJvWrdgjY9rTDN74DJZ4IzBg0CGy406U3XltlqJhnJVAFAUgPYC6UZtrgoJRE805RKGudBEPR0zSuCxlU58fW2szrwVHU4C1GKecdLhaOC7KXYNld4ips6HjVTDy7Zdh8fl/RKXZdCYzvHawzvoCBqMNR/FNfc492VWGnjIZky+/GZZtN3xNYjehJe0AT1Nw+ZvV1Cq+b4rZLbl8JE3A8LyK+v7hWrZKo9Ig4YyMNIeh9vknJ2OYF1Z0ZyKQCdAA4MoQfsfLvoc8VQomS6c1gUO/zlEh3GmU+35Vw+GREqtovZQNlJvIx4HKQyNRPA3FzZWk4ByKukUZXLHLY6zEobzTK2KO+C1Owx7PFRIFmqQ4pAsvYvvUnS4vmDleRbZqD5UTh0dVuEyULOm//UmSiMdtX15H9HANEAcIZbaV3s3OpvJjXRyiUjIAYbUr54DRsTWRSb+ZSeeAXHHJWGSJdkH466tzKLFclWOlQ0Kbx6OG4l3RdaSLnvpvX+S09kkc0oVR/VxWkQ9OdvOnuL64RBx66R+3Yso916l/z/nzVRiz+a+IuWUCrQ0Gw35Dr+IQY+xoxtiTjLEFjLH5jLEr5ONXM8bWMcZmyf/e1mD5CxhjLzPGljLGrtzdO3CgkV2cFOzDiMDtfL28XlZW5hzKtULVwmaV7bwXVwz9aAV2S+5iULVflReFypKu/chZaYidrJ9aj3JeaBevdJGgnEOvwv2ybdMabN8sWtsmz/1SPR5HNfAkGydLAkTMrbuDZGkCi51GqMkgafQQ8rj8vu8I19A7r1KPkeVeOUtUgHGt9O5YLK3s9MPPkhBOGqgLcWZZqk1tY3Eogs044qjvFw/dne2Y8/S9Pb6m2rEDw5b8FkD+XOFpig1/uhwMHKuso+vuiC2d8wJOevB9WHHf/+vzePYnjopXo23QKADZXXI65upOvpaPUexWpLe17805ZGudx5SrR4pDdBGvJnVBp1x/vXMIShzycy2oE3lO0GQoC6utF4fEHeKiOJSJSv0HDsbIMy/scX8MhgONUWe9A8ts0cFpV51DuxN+7OswGG1YMvNpJQY19xsonitMsnP5dYWOWrrbVD3eoDSIfq+UOORl311Z44t8SbTuTAQyARoA/ER8RzlekyxLi9U1id7qnNAn18pdzLN8Nd1NTL9/oSwFc3mkSnnc3PVJqMp5dXeL3hFLPV4VJbyQof50DRJq5V86EYTTtzenCx27ZsimBMiHcduq/Ddfaue4FVVq7jO5T0EmtujHTnWcVMJW42sVvbud42W/ASSyxFEmDomyMvF3tbNNLN+DcyiNglz+pa+JQ6xE0KDrMV3s8BCpfJ7eKIqTBF2HuIjEzdRSMTTv4LG1c0IXp2KntTRkum59JdEOQHZNy5Q45NY549Wymohrz7wZh867EQAw//E/YcziX+C55jfhZW9kvnTSYDAY9iF9cQ7FAL7COR8J4HQAn2eMjZTPXcs5Hyf/e7C4IGPMBnA9gLcCGAngA9qy/5I0almqX4zogYIE3b3THSR6jb+eOeCUBFaWIp8P7Xz9dTFEUYVZFsSWqpUJLLQt168oN4wSbchS/QrFoSSO0fnrC7D6pk8CAAaG67EDMjg4DDIRKqyJNvFw6+4gWTxSXeIcHiK0ROlMo2O0ad1yjN/815xrCMjEBLoTyCqy9XlUg8/r797GlrhzSxc7LKnvhEJtalXr38KY6I5ssRSxJ+b9/vMY8+TH0LZ1Y8PXLLj7exgIcbGvH4eZj9yMcd0vYPawz2NHZUjufUviGOnfvgiXJbA0e/mBhINYXagKoSVUk7OmfvkyDyuN6jKHbMdRmVWN2lwTFl2oW566S81r4m42XcSr0gYZ9qrcZE59a3nH87MyNGiTDq+S+3+xrIw6BuoBrADQb+ipWGYNxcDBR/W4HwbDgQqzLGwf++8A0Gf3wp5g+LkfQsBd7HjxViAJRAmn34SUszoHhl4Oo5c+uX4l+/7Rbmw0Kg2i0i+6flBuRW29FFBM1w9pwQWh3zioJNIpQ99DOedQ/e+XPqGm71QnzcR4fSJPgkUY1OAzsV4q5dEn8nQDSIwjy19yeOb2UY9LIZ45IgOomNVW5xySjmO3REjXoWPXwsVvss8i8DRVorzjie0VBTPHF+KQreX2WOHOumNEx0Fsy2somOjHJCweE73JRZiFXidRTb1nQVcb5MDq1ulqx1Z/HyuaOFTaoavgClP5PD0cTx06Z4vQYx5L4PGgVLwrlt85iJDQ50Lbx9Rt6aM4pAmdelkZnT9u9vtevL5V7t1cR75Q7Qeb8iusYUdg7OdvQSqvEw0Gg2F/oFdxiHO+gXP+kvy7A8BCAH2dSUwGsJRzvpxzHgL4C4B/e6WDfS1QtB8TniYs6IGCBN29I4FDX1ciLwLowqism0kZNCGOnZbSLCOaYMZl4ZFpiEATWJQ45FVg2TZCbufKvQC84tyc2Y/+Ecema1GJ2tV+d8mysDSqZU6nSLazhVNyBynrUmLzCJEjlmdx+d2aFfd9T7qGvpl7nC7S6CLQqsgypDAQF4iFi82EubB41tWEpfVhitSmtsLoQrJ4FznvwOqNVYtewqmyY1tVhh8X2bltA4av/CNe8iaKB/T8itm3Yg07EpPe9/VcTgYAzHnsVpwULxb7fgDd6Vq9eBa2bVpb18JYXdSpMg+ROaRf4DZsmQuUPqej8h9sL2s3H8iyMvk5pYmGFXbmup/pYdFcm/ToXYbUpEM6Ahzpaoo7t+fHSxezhQv0kaedhxO+OQtNLaaUzPDaZdwFH8di+0TwQ0/ZZ2PoP/BgzGs9A8O2/AMs6hY3BSwLIZy67Bb991wXh8i1GMJVyxTDcXWo3IW6L9pafpLe+EK/uZTaXu63Wm+v3sRJHGoCt31UEIhtQ3MOaYKBXt6qSqu0fDVd8CDBotYlnZWMI+wWNyCoJFyuNHMOuXkhJLtBJktzg6ysLLW8zEmjyr/yx4wcxy6vz2fToRt4tO8AEEVhTqzXt6dfH0XMhR1nAout32TRfvspDFkJWz383uadQ9n1n8szQYjEkJhKyQBE3W1qG0WUg7XgHKJzgLZbNhZA68xLN7WcvgmzZUILkHeZNfFq6fsTF0QW4aiXnyP5+pDb4E4luxnXA/r5q9+spRueVKaZ2l4uF0t/vX6M7FTrwpdWscMfgtaW1l7FP4PBYNib7FLmEGPsOADjAUyRD13OGJvDGPs9Y2xQySJHAVij/XstGghLjLHPMMamM8amb9myZVeGdUBRvHMFQHWC4OQUUIHS9ZZsIJvo6eGW+p2uYuZPQ2Jx9zJ1KrkfYwr+ox9GEqnyQX8RQltsh8VhroMIQF26yDmUH++uwNMUA6b/AoBmK+YRalKYSqJAbScJA5kR49XfQVJB4JmFPuCucjcVOWbrM5jXegaOHDo8Px4plqi24zLAOJZukOIFkLAbh8oybCVhXZhiBAdWnF1wlZUYAD2LQ8/99suYcq8ot9t+/zfVxV9Z1yoAePmua1DhAVre/v/qtukmVbS7h8Jxvbq7eGH7JgDADvTrkzjUvn0LNq4WYtKi6U9g3rP397rM7qa7sx0D/vQ2LL3965pIkt0ld3mk7uQ3ybwdOh657A+NiImsod7EISodS7WyMnJcFcUhJ+rMdz+jsGi3oiZ+1HK+6Byiz90Rx43AanYkjp77S3S0bc3GS0JzHy/QDYbXEq7nY9j/TMfp7/vaPh2HNfZ9OAg7MWTLM8rpETK3zjmkizWqdEXm7ABQuTVAfTiuDk206becvnP09cZBLRdoLZyJmRijX3u0SGHA8yqA46mW5oDm7mlQVqaEbB7lvl8B5LphVTt2qGW6O3fk1w3IG0D5EnoR6py5p+j7kElxyFLluFkGDz2uQ45jUQbVk3OovkQqDKp5cUjbXuasbkLMXHhxJgg5mlCkX4+oUkDbayiYqPFoNzHo+i+NM7dQqnVEC6uZU4maI5SJQ652bHXnUDPPHMxl1wB0PUbvbbEEqzeK4iSh738LC0rFoWKYeq6LH4mhcMUNFmQ3WhuRF4T0v+XNI2oqYdWPOS25bra10HUnzW4SFks5DQaDYV/SZ3GIMdYK4G4A/8E53wngVwBOADAOwAYAP3k1A+Gc/4ZzPpFzPvGQQw7pfYEDlKzlafYDm1AniIIlWr9rod+9I7uxo9Wze1rgXzHzpxFUu6+XqQBa0LXcpnLJ1AX9+Qi56LyRtVKVdzZZJg6pNq692HhXL56FOArB0xQv3v4jdHW0Y/m8F3FCsgwRt7M7LogQ2LpzKFR/k9OjWAOuB4HTBUMIp/TOFwB4PEDkDax7nMQEatfqygDjpFp+kUV3bmnsVlrfCSViLpxce9i8YKXs9g2EnnnP/x1nrbsR/mIhvBzVNR9dXJwDZeLQlnXLMGb9nZg+8HycNGayat9L6CGOaeGih97nKmtWAZGN4GmKdTdcjO6b3gMACB7/Pvynvt3jMnuCuQ/fiAHoghPuzDqOOFkOgYcILA4Qws21MwbkBVyJAER3aXtrja3u4tqeyh+iO8V0EU8XmG7cmcswYkosrqiJn+NXAKcCjyXo3Lk9d0caEJ/9rrdfj8F8O17+w2XZeGm/92FZjcGwL2GM7eshYOTZ70I7WjCEb1DfIZRzo6MLHfT9oAvH+jLFcFwdLvPJ9EBkwpJCUxwF8BCq7wZenJzHmmuEyRs0fqXOhUi/7/pvaqxn2cXZzR1oQhEARFHWDasmc3AAoNopnK8UVA3kmwToLmm9NJ8et2Spru36OYGFJv22mxd5YubCSWpC9OqhDEp3HAVcvo9BLfd9rG9PbzUfMy+X2+PGjZxDWelSYvcsDlmJfkyym4P6TQQS3+LuzE1M1y1FkQzIxCHEQe46opnly6SKMCX8FW5q9VEc0m9+6BT3v7yM0s2LQ9rnSGVsMRdwfFiMI0niunXo6NfdeXFIOofc7Pe9OOZEOYc0V3aaZUs6PFQlb2WB1gaDwbCv6JM4xBhzIYSh2zjn9wAA53wT5zzhnKcAfgtRQlZkHYCjtX8PkY/9y6J+rLWSMeVm0MJhgfwPk373jrom5FuhauJQIfOnEaJ238mVqQD14hD9X68vd3goBRYZ/JyESDmD42gXvEm+PK0nG2/7tk044rZzMfuRm7Hq5Zk4feH3sOiZu1DdKdwPbay/+vH0eITIaVXHxdLGm4lD+TtIqjSLWs5bniznKheH9OOpQ2HA5BzyZYAxhQwXLyhTJjpv0NjJVqyHKcbMy3UAKY5J2cFLQoaTOEbT4/8j150FNnYwcXz0mnlixd3fAkOKIRddA8ZY9h5KnDTMhTjqd5GVOGS19Oocmvfs/RgZzkVLKjN2kgBuD6GaewKepjhkwc0AZIlY4bNGuRksCRFLN5Ao2ZCTh0IJIKHEod7KynRxSJZ00J1iuoinu9Be0pXrfpZ9H/iAJ95Pv6kVB427EAlnePnmLyoh0dU6qI2YeC6mDfk4JrY/glmPiH2PCvttMBj2Pn6lGYsOehOALMy+2FkTKE5qK7nX0zL0nd2TMyOVk1Y9EJmwnOwGgscjpDZ9J3q5bEP1nc/zwdi6C7GTN6nfd30yrJfGK3cxIjV2R9340FqGa+JFSJk40EKkS1wyooQqrnMOkRBvydLc4vWXXmYHFH6Le/iu1MWUbibGEIU1cPm74fh5hyeJPp5XQcJcVNLs995P9DKtEueQW2mYw6PGo3dA1brZqa6WQZcS3yiHCQB4rbE45PniBhxPsu6slLWXbbf+mo5Ey7rw776KQyUuHKAklqBEvCs6rPSbppQPFMHNSsx6yXHUr7v1czkrS5Tnn+3XXd+qjnz6tRUiVSKpl7zxXsQ/g8Fg2Jv0pVsZA3AjgIWc859qjx+hvexiAPNKFp8GYBhjbChjzAPwfgB/e3VDPrDRa8CJ4l39rGa83pINZBM9mrTzuJbLUdE7YPWIrFMv3vXI2q+K7ZQ5h0jgIIFFOC+yvJRIC4Tui3Ooa+cOuCxB1LEFUU1cOKVhFansxlS1mtWxcxEjdrK8I9pOGlFLXreuhlvPeqKW8xF6EId4XBpISS4rLtvK+i2irIzLTlPFC3SylrtKHBJ/62GKMXPzHUBKSgyA8vbki6Y8jBOS5Yi5pfbX4xFqMiy8uMzqJXMwYdvfMfPQi3HU0JMBZJlHRF2JgX7RIscWWM2ldw2nP/BbbN24BjxN4f7z+2L81CVOc1ABwJolc7DqmlHYsWV93Xp2Fy9PexTHpyvF9tOoTiThji8mQmmU3cnXREMSQYvQhXhvziFXE4foc+1JcYgu4ukudCXtzk0ALV+c415TK4a/5ROYMvk6DBp8OE6e8Aa8cNgHceq2+zFozRNyO/nz7tSPfh9L7BNx7AvfwNaNq9V3TNkkwGAw7D36TfoggOw7pNhZE8i3/rZLnEN6w4ViOK4Ot8Rvux6ITOiNLzzEmRhie7lsQ7oRQjl/gHAI6791Xaw5K9PRM4f0GxryN8bjkfq9od8WvWQ60sQh/W9yfZYLIUGuFIwczOTKsZwmdSz0celOKkCUgVPoNuuhBJdcV0AmDsVhoI6V6+e3hyRrNR9bLpq13B5dKCoVh2ReUk+ZjXqTC9VNUx4TIBOBxN8d2d9UdldSJqe7aGksXXJfASEWluXkWNpvp9gPctn0URxyPOVyyo0HEbq5to6S9yctiCwuYnVdTOJULJ1DQO85jnq0Q1LSIIbExeJNNLFsPpgbENeh9J64KOR89SEg22AwGPYGfXEOnQXgIwDOLbSt/xFjbC5jbA6ANwL4EgAwxo5kjD0IAJzzGMDlAB6BCLK+g3M+f0/syIEC/eiluthTuPPnat0miLL2sMo5JIUJ/ceSOmD1hKrdt/2cbZt+8LkqK6sPj6TSrIhKs5JQZSgA+a4R9AOrb6MIuaGQBErQSKNA/SDXrBYhWiQJXJYgcaVzKK6pu1dpJDqBxcyrq+FW5XxBTd1N0gWsIo26vyiXFbUibh0IIJ9toEN3shxNICm6khLm5DqAFN83ZQcvcQEFMpOhnfXLOYcok6noNlr31O8BACe++1vqsRD5zItcW2Pbzd1FRlxDyG3hzCrcNezcuQMTp38VSx+7EVs2rMLweCFq3M0JY/p7smXZSzg2XYNNqxbW7dfuouvZX2EnWrDUPqHgHKI20T48FsNKAiUOhVrJhsNjpFa9O4i6lPXWGlvlCtm++puEQK9QVtaUduUyjEac835MHfd9HHncCAw8+BCc9rZL1XPjLv0RlrOjcXIwR6yrMMnxfB/ue36LFl7Fstu+rC7QyyaQBoNh7zF88nnYiMEqN6fYWROQ4cw0qSURB4Xf16Qw+S5zZsjfq2LZN5CJTnG1M1fWTuViJDpRPlBVikMq+0jbXtVqhsU44jjKCV36NQxTzqFY/d7Q76I+SY+1TJy4W8vHkdcIeg6c+t6LqrlSMFeKNyTE2550DvH89VepOCTFmp5clroDi35ro7Cm3Nqe35Tbnh4YnVie6nIGICcU6cdOz0UqEx907DRUv0mqm11UVdmDJAKJv7MytkbXLQS5ikkM6UYmEHazptIbRJb67aQbcvl8nl6xfdX9TcdFpIQ4oPz90V1HdK1I18W0/Yi5Wqe+3sShcvc+NYhR54/jwy1c39JnjqX561CHpUjiWIhBdBPOMuKQwWDYf+hLt7JnOeeMcz5Gb1vPOf8I53y0fPydnPMN8vXrOedv05Z/kHN+Euf8BM759/bkzuzv8DRVP/ClZWVuvqwsFyiti0PyB40m7fQDrwdSFt0gZajaffnjWQy6ph/D0razyAssLM0ufgC64M2vR99GEZXBFNWUoMHjQF3EhXazbG0rXpd6IuuHa2VlPA5UGVDxThv98EbSOQTHF2MscQ4lcSwuNBtkOLgQAcYRt+FWZNczmW1QnHzT6+m9stNQilPZ62Lm5TqA6GPiaQqfNXYOkburypqFqCO7cYVOFtitw8IOdLMmHHzYMdn24eS2qd+1ZlI8oQs1usgt664RVMVFNY+qCKriAnQn66fELUcLYwSy8yIpEb1eCUtmPJG7oNy2YTXG7Pwn5h96IapOfzhpqD476n2S574ddeXKPPSyh/KuKFkmU0+osgfHUxOKCu8WTi/HkUMQj7fwvDjU0m8AJl90mXLj6bS2tKL77dcj5lauw5nOccMnYM4xH8FpHY9i+dQHAZTfITYYDHsPy7ax+ez/hx0Tvwgg/1sJiAxCvfU35eLorsLYyrpXxcrFUP/ZFs7IOBeITND3UVgMJabrAZo4xwESzhBa8vXyd16fnFPn0jCowtZKh/XfH/pOdVkCi0SUEnEo1cQhvQSKXJ+6S4Y6o7KQbpBl7umAZ0KP41UylygArpxD2fEAxPd5M8RvcU9lUPqxDmx5Iyas5crH9O0x7eZZannqNx1ATijSRUI9F6nOwVscD4+QWllJcghX5S0BKPydHVMquys7d4DsOpLEEBLCgOyao24sKWXqZG5tYBd+e+TvbRQV3XSxEiiBBuKQ5sBRJWMqu0uWUTJX/f43uh5V64vLz2V1w5REwpIytUbXzfS6XEe8QrSDwWAw7Et2qVuZ4dURx1nool4ylhTu/HlScNB/mIplZTxN4TEx6aYffv3HMuohbJkge7YK6gvy4hBtU91lKzhxuO2pO5hWUiYOhbnl9W0UibW7lOpHOAnUj3DktMLlEQKa3Pv9aEH145vGgczLcevtxVoQuCjBq+9olo0xf1GRQ7qsqIzOl7Z2h7INChdA3PLgIFbbFwJJnOuEkliu6gID5C8Q9YuXsswhcndVrRY4PFKvp7K7tCgOaW2AiahwHPRgT+7kL9ToIrcsA0F1NNFs6N1Wi7oLWCcO0flVsl+7yor5UzDs/oux8MWH1WNLH/oFXJbgqLd8QY2XAlLpfaJz30s6c2UelubCSsvEIXIO9RLw3NpvIGZVJqPfsNfBrYiJSP+0I/ceHDlsPDrQhBYW9JphpDNq4hswfdgVWFIZ3fA1Yz7wHWxmgzFpmehkV2zdbDAY9j5jzn0fTn3bJwFAtinXfiNr+dbfVLoSs8Lva3HyXfbZtj1YjIMH+VJW8ZTMNqzK0i0SVpSrQroN5W8GbZ9EKn17gUMCSQArCVU+kX6do4du27IBgyOdNXGkTar1sqdaVlZGwn4xBy6CCyuksm7dPe2gkorfVdutALavXBvFLo9EarlKrOnROaSJKaFNN2JqQJyVj+nbY5oztehE1YUi/XdYz0Xitp938BYodtWMmKOEHwDq+ADIPa7EoR6cQ0hCdbxqdibO1KxG4lDmugWycqw+O4fU9Wg+D8hDhJqdiVNl3fn07J+g4MinfUyYm5WYhdW6deTWl7sG10vM8s4z2kagXd+WiUOqY1xQy5VBkogLznscj8FgMOwNjDi0Fym7qwBkHT3oxzOro9fr9fN3lHTRgH7gc+JQDyVTRFEcKgZdU0aAyivQ7m56iKU4JJ1DSZi7eE0sL2tTWxKmXYR+bFkc5BxLtO3YaYWHKFveb1VjpHHxOFCdwIod2Mi9Qq1bYfvyorxMHOohvJcsypHoLEU2fScuv8iiMjRVZ84DYXXWnEOp5akuMEA+5FEX04ouICATf0K7BQ4P1etjKrsrCC9MawNMFMsaciGOhQs1usgtim9AdvHOkqx8S1nuI5G1pN8do/OiuF9pkmCnbMM+5f7fYum3xyJN6lvOtm/biM6rj8DL0x5Ft3x9rWObev7gdY9jgTsKxwwbrbqBZEGS+YmQl3QjUe3ps5INXSjToW5uZa4iHdtxMO7KRzHqrAtxyBHHYQ07Eq2siohld3kHHnIkFo//H7XtXeH0D1+NU77+VMPnveZ+6DjvJ2hlsiTDiEMGw37FztahGFr7/+29d7xlVXn//1m7nlumMgWGAQaYYWAoMwwdsWNEQUSwG3uixhI1lsRoYmK+JjGmm2qMSX6JmsQWYywRjYkVBGHoHaT3MuXee85u6/fHWs9az9pnnzszMEx93q8XL86cuvY5++699md9ns9zPaY2GyHEl5nbhQcq/2qdXxOX6UeLS6ELBvAX0Gpgznu8/DSxolO706Zrce8WBAYoVYraHptI2OYLIbQYUQ5Mx1DKJ2o6nEOAEeMB5hziDg7mclGsHIoWRxKbK+ierlK3ONOeA5ELyARo+3NZu8sj0USZcQ0DiEa4aYBQHKJzbVX0g/Ix/nkRmx9xtykP+QbCc3+Qi5SEOVBD49GtDqhI3ZwEQOv2cKe0dnmd2zYbll6zeQYxsHOONuQodvlOdM6d5fvkdJV8kZubf36X2MTL75y46cQhcg5lvlRzK65lPk/vKjFLW+JQ2ekcamUgASj6U2FHPCviVpW4h3YlWmts2rxp608UhL0cEYd2ImXHqgLAarKpaxGdRFmgtOL21mIQiAZpNVwjP8oVw6HVJtcNxZ7YKAeAxkgtaGkiQKVOKjalWXFTWKHJX/DWtktXe1vLETZeF/ZXF17QqArvXsomESuNwpYuRdm4qauvBz4jqSpcUDbvwMZLsyjgUiWZseZ3rHyVRTip4LiJRrnFrFjGMUod+2yDtjiU5OihcLX/Y2QhD5xDoyeIfLLRdgGZbbaTtmQCqfbiWZPN6XwNbwNMDIlDbEWLJi8u0NhOcnWUDtncK9a6lSaEVN5WDGaQoPShpWzsbQHr8m/+A6I/OQYzU5vR3HcNVuqfuW42VVng4j+6ADdf/RM8ct/tmMQ0Nt51vXuPhgmqme5jJl9k7rfiUO3s4HQhZEu96ilU9neoIv99ZNrnAnDoN9MdeUSjiOIY9xz9JgAIXHYAsP4Fb8UlC1+ATfufss3vt60cftp5uHTx+QCApDexlWcLgrAzmXP66zGpZnD1t/4RABPi291L2XmiVv7c1Q7HDbDvEZVbhspPXfl6v1sccvMV6xyqbdkSLS7wc11lu4cWRR+xLl35Dz/3B+cYG/qcqAZVWQYl09zlopjLhYR9WgAiSqQseDoP7icXUJKNOVdRwVvO56Ggxt83SkeLGVxUovzDuhgAzcBnL8b+8/h5l38Gz9DZosdC5xDLRWrnQLXpEocyJgilI25T/l06YtGAFhlpHkFCGAAU1s3dJubnTmDonLs13P7HtpX+Jopkcuh5ASz7p92Z1DmHosyXmG2lrIzPwbuc/OQ8c4Iqf7/WvNllIAGY2fKYGy+Abe6e9mRx3aXfwY/+/n275LN3J370d+8C/nA1Bv3prT5XEPZmRBzaiZQdJw6ArazYEEWqowfPDApCHvuBaJDZEzxfSTGlQrOvQlDtvgvqK1pZRjTGVlkZlRjpJHPZMzwQEUCYSdORl9TGOYfYRAT1gIlDRuygk2qU5mYFsyr86lU1cJ3AeO05r12nVVKkvcDdxGmvOHHchN06hwBTwkeTrKHVsTh3pYQAMKmHO6HwSV2tVTAmvs90ll/VftKWonLP1/b7CnKrgGAF070Fy69weUtx60KBtREulXUOtQIy3cSoLpxQVMZ+RTlDGa6OOXEoHGP5yB2YVDOY2viI2z4SQx954G6csvnbeOiqC52oqqsB6mrYpWZaxXqHDxeHaJ93YdB62pV0VfbCSzeNEbM69gNaRe8sPZyFtWe/GQ9iwZA4pKIIJ/3yv+DUN/7xiFc+MY55/Sdw6frfx6rjn/6kvL8gCI+P1Sc+B7dHB2HedZ8FMDqDkJecNlHmu4qO6LwF8MWMqaFyYvf8Igwl9q4K60iyblM6T9F5j4tRdH6uihnETYFBZLPWuDjE5jC8Q1dRzATiUFx6t1BcdIhDOiz1rVTq5kBt5xAtymRZj53LZnw2UKusjDtBZxMz+HfdZNQcYxCU10fs85RtlNH+DJ6h0w54pvNikvaGc6BapG1xSKVOgAMQ3M75bVt2l+TdQhgtHNHvWDNxqE4mOkOyk7ZzqFWCtTW6nEPOEc3EoU7xjrm1yla5JRdZnVC0lZJ2XQ8LQmYg5nWpzazqErRo7kLfBxd++nYe6+aB2xiQTcxMT0PvoBI03TRIvvF+nHrH3wXOtI0P3QPddDeQ2Ru5+gdfxWl3/xPmqmnMbNmEpqpcdiZHN43roiwIeysiDu1EAucQb1nqarL9ya7dZp3X69flIDgJ5U4cYqtZ21BWRrX75J4Y6oJWe5EGCMP0AHNCrKzAEjXF0OTVOY1aJXFd0AQ3qv1ERLGyMsoYGkw9Zj+7h1IlUPUgKINzGTGsAxs/KddslZTcJG1my3DwZUhTbgW1UCnGGnIOtSYsLWGBHEx8Essni1NqLHAzVYE4NNo51KRmFc+VdvW6xaFYD4tDlfIXGu67SsILBVfq0JTWOTTcWtd9b3Xh8hJoMlkWffd8+gzaL9pjdG4oa9M3nz8TjAOV72Snq4F3DrHvKGUXEU2cI0PhnEU+K8D8f1xPu5V5Eg1dRliHAETv2yUczUZvbBx3PuX38LPVb9yu1z1ReuOTOPHcX0KcbLvTSRCEJx8VRbh/5UtxZHU9brrq4qHW313OISPOh23Zh849YAJTtSXoJgoAqX0+OXViJw6F8wFaEKDPp/NHIJ5kVFo1QKJLF9I8yjk01niBohz0g9LirrInwDukaAHIvV6lLluIn7P5eS7NeyxnhnUVawkWvFFE1/fp3485juzcpC4HQXm9cufOGbt4RgsV/jP6kReHZqKJoHTflfPnvc6yJU6CtmCWBQLcqNv0O4wsK2uJQw0Xh7I5nc4hmlPR/KtxQsq2iUNtcRLwbm4S4vjzODz7xzuHbHkmdQGOMrcvdDX5CBjlHLL7a9brtcbs3483taAxEYMt5GAf4dabhbtvvRb1xw7DZd/4h60+d1u45qJvYFV9c7Bwt+nhB9D7xHG48jv/ukM+Y2vcdu2luP23j8YdN1056/OeLLHqsYfux5Jv/7JbyC2LPi754h9h48fCPMeiP41rPn4mbvj4M5+UcQjC7oKIQzuRQBjpCLfjK3GFCsWhqOUc4iehsa6JUZS6TIJRUO1+3Dqx8Q4b5v/hSpA7gcVeYImb0nVwAhBm0gQldKPEoYH7TN8CtPAn557pTlZOP2Y+Os2dgEafo6qBLwNiHdgCUa7vw7ubVrv79hhVR3cNOon36mkf0AmfbdCeZKnYfydT2j/G7e98UjeN8WD1sAoExeHfk9xdTWoymZzQaL+vIXGoFVwJhC4vn7dksypaE7WYRMA4GwrIpMl71BTugoVWlMk5RLftxpnntMZI+1tVzHhxiIK27Tg0C71GK6eKSFC5ibhpK1wOdRmhfX9CDbw4pMzfTru8g+MuTrbTOQQA65/zCpz2ig9s9+sEQdg7OfKsN6PQCR78v0+yMvO2ONRefNm6M8M1uaimhtyKVBJD7hwShdoXupRN2AyJQ+zzenPca5KmRGnLibnjmS968AYMRhxi5cCBOORv03OoUypRBeJQj93vn5NygaUYAFXR2eVRs/P1bM6hjM3VVG7OtU0Vlo9F9hxaFX3EjT+/cHFowDJ0+tF48B3xXKROZwofD2uLDgC1SjDOvmMuxvH7J/WU+4wunLuaIgbstgJAk453hmRzwago+k5IaXeGG0WX0EJzBk2NSND9+3iRZXooX5A+v4kzN9fuynEM3q8eYFrbz+FdZGtyno2NHHNbHOLCXjXzmB2vXaTaxu5pAHDflz9ocgsfuWOrz90Wyu//ubs9sGPc+Oj9yFWJ/iN37ZDP2Bqb/vPXcIi+C4/cfs3I51z2lb/AYx9ZgZkt254JtPHRB3HR370TGx++f+RzdNPgtn94A+brjbh48YsBmP1NP3o7luAR1JXPsLr+E+fjmJmfYmFx7zaPQRD2REQc2onw8DtVj7APW4zwwS3ZYRgeFw1ImOAny1ElUxyq3acTW130UZU+H8eLQ7RiZw+SrJabBJZEh6IDbyXPt3WkOFR5YYEmRVFdALXt/kHtfG2gdETiUFO48iZVF6YTWJwFHdj4hIqCOaM07+y4ZcY4ukaevqte4zNqSuWzDdrdT7iwMDWiDStfBaWuYwQfe1voAYy7a6BTF1hJE5B4bC5tTPB83gaYaJiQ2M5bilquMiofdC2SmQ3ZdSVpCvd7Unlb0d/i9iu3/4xyDlGpnO18A3iRjJeudQWX81JMHqyt4wwZqqELKf4bUwlaE+dIdOlFrA5xiAS92TraCIIgbAtzFy7F1fOegaMf/AamN5lQfTrXkEuFlw2R2A0Mh+Ny6D3yemooa47OVb6ZQnhMdCW4VhyiYymd57kYRQJJXfbNXCDumUxAdmzn85Fx5e8vBjOB45Oc0ACQM5cLPccc19lcR6Uuyy+YA7HtzfKx4AJe1YOhMjsALtunvX1tMuYconOtLgeBQ4g7shN23uULRjxDp4gnusWhfKw704aRtr+TKHNzEiAU4/j99Du0s5fc+6gUcVP6BTsrAhY6AZJeZ0h2wgSjYtAf2RluFO3FSoDNgzIvDiVd8zPmsCJXkP878s4hmmtvizg0UBlKHQf7MqoBaq2QUBQEvR/PzqLfD2FXQSCcx/Jxb6172i0bvocTNv+PHYP/e7r/3rtwxy3Xz/raLn52/QYcP3MRHsQCM67WPKtrzvl46c9M4YG7bwMAPHTvHbjt2p8CAK763n9gbf8SAKM7127Z9ChWXP4xLMAmbHxktNATfN70Ztz7V+fi1Lv/Ebf+9FsAjBB00afejUu+9CfueT/54p/g+Kkf4PKV70B8yCkAzP6mXKTBDLZsfBg3/fFzcdzUj3EfFrnf9Mr/+xIu++Y/buc3IQi7PyIO7US6VhUAL4zwyV2p0kAQipoCW7Sv4+eiAZ34ubg0qmSKQ7X7rotD2Q9KsNwYaZWk5fzgAkvcqnnnmT9c5KpHdIeg1aWYuYVUXbjuH3QSbWzb3TjtGctzXbDP6btOYNyGzZ1DUemDK5uO0igzxtFlZXQSH0eYUUMdToacQ0w8mGEW8uC92YpfPw7bw9a8xW/Hidq0GU58YOW0cUYlNGGtw9e02wADdl9BuLpF29meqMVNaVawO7prNOxiwk327WRyQAGMYCVqrhteKGDRflcVfVeKQI4o7hZyE7uaiVHsO+IrzCrOkauSXUjZSRlbzaT9l/522oGWAfSbiTgkCMIOYOL0N2KemsLmn3wGgBdrcrqoZecJHfnzazscl0MXrWPN1FA5MQkcWSsvL3HikF8QqKPMfT6d9xLmnonHrThU9F04ctEqjU90aQSjFlXZD9yjvRGOFzre0wKQu1+lmASV4jHnkBX76SJesXI56sDWRrMswNnEoThJ3LbEY/MBmPNfxLIX/blzEJ53eTOKxDuHylbAM/2uWd7zwtaIsqOs5aaqVepK2IFQjOP3u9ePEG6cq7gu0GiFKLMNJpCODMnO4H/ncjDD8nm2taxsWLjxjmjmHJolY6sq+u419HdEn6/jzN3mDSy6oPlniSSMebAh7W4sViTi1QGqCcWhID+y3xKHWoLsKB68+N+NMIdwbnf7534F/c/+/Kyv7eL+//4jDHSKW1a83IzxSRSHrv7r10L/3bMBALd84UOIP2/GW/7k00Z8QxgL8NPP/jY2fPWvAQBX/fvvYCE2BWObDd00uP6vXokjy2uD9734c/8Pp971afRu+E8AwO3X/RTHXf37uCpfj5Ne+ZvhfNf+3sWgj6v//SNY3b8SF637Pfxs8TN93uaP/wrzLvmzx/+lCMJuiohDOxGuinc5h4LuH61uY1FTuM4WTTUITkLkyOAny1ElUxyq3SeLbVMMQiHFfj65NxLVoK4qt7qhUi+wmAmhP1nylU1uxx0VAKi5c6j2t1VdoFC+9K2xgdJxlrvviLpiUDtbJFlgw+arMXHpV0l521NOe1LBofsm9Iyz+fPW8O0VOC4CDQJxyL83z60p44lgglgNRgQiWlRtbex2Ukvd2OKsZ0LNW8JLuw0wEJYAjuzwQY4bXaCOcubM8t9tzQQ+93va8rZiaqPfRub+sRs5tE3m/Zg4ZF9Ts/JDuqAIsqmozK6ukVmhEPCTfj0IW/fyUk7NxKFUlyiskNlZVtYK7BYEQXgiHHHyWbgrOhDrHjWr3HTsJRGHO0zrbA4m9Aw2PfLAyLbsAJDaRYIF+rGgzAoAkjRDrZVvpuDKysKL84TcolHbOeTPdakVSOpy4ER5ygR0n9cUmGLduahcp2LuEiAsexpjt3XV9x2fWt0+IzcHCu8H4C7iY3sOqF3Led9dleDH862VQdH7ZhO+hJuXbTtBpxwg0YVfPEvC39HdTkPXsAvNznreOd1xYezc3rN0QO1ioJmzamRZmXEVq2pgFqFoXsXmHO2Q7FSX7ncui/6s4mUXsdv//Pu6kvWxee6+LvFu7vIjAQD3/M8nXe4h7RP0+TrOXAC33ooYQ645E/PAnf+huEgLsw1b/Aw6niIUNahDIDmzt7V7miqnMa16RiBic7u8fAwTzfa1YH/w/ruw9pFv4Mr9zkI8fzkALw65RdyOKIPHw+3XXYr1G7+N+dqMMSk2YcKWNCbVNDaq4YzM/W7+PNS1XwYAHHL3fzlRbFvEoZ9+4Q+wbsv38OOFLwRgrrHuuHEDTrrRNPwgh96WL78bfdXDAa/7R0RxzES6vrvuKYsZRNMP4WG1AKee91YTqWBfHzeDrV5nCcKeiIhDO5HAcsqEHx48SJggQH/QiZsCM5EPeaSDN1+J4yt5o0qmODSJc5kGZZjPQwdHPtZiMOOzCBIvsLS7ZVAZD38foDtU2WwICQulO+nFTWFOwsw5pAfGGROnuWlF35TucyjIUiVevKgGYT4TCUhRlkPHebdzyHYi6GoNHNn7EtX4gE623WlrQslzi3i+QDzCOVQlE4EtOxDTquHfk1a23PZacShJe0OliQCQ8kmqhYdLt8O4o9ZEzU1yOwIUdeXdRbRPk+W+nPHiEA+uNm8+QhwqusQhX5LWMOeQcx/V5nG3mknZSfZ3oMwpupDiF1RNTGVlxknlgmGT4Ym2lrIyQRB2ICqKcPeqV2FM0fnHXjjGMUodB86Qxae9Eqmqcd3XPuHOnV0X36tOeBYewVz01HA5MWAEDgoopnmAC+4lsV97tyjgs4+4oJBNmIt2Jw5FmSv7JhJdYhphdy7AOGv4RfpkUALlbzflwC9GcJdMNHyRDgANZQK2MpIqu+hQqA4BhZVmbU3MKJW5WM3GrWBRF0H5GBc5gg5r7DMo4LnQMZo4dy4T80JbUs8uWrsaerhsvBHfCTnO27dJwOnKXnLjI1exXaRzDSq4UNQKyc7gf+dq0Hf7ZzaidK1N7Oaj3HFu3UfjXhzqKvs/Yv0zcPHCc3HSPZ/BzI3fBeD3ZyeysjnvyPmohTKk2g1i0HYOZeE8ybzWBnPb8vugcoDmsVlrEW6Es969rjHzvaIdO9EUwVx2MJjBj/7lt4NOvQBw1Y++gas++lT0Z6Zwy3f/BT1VYunPvdtnS1qnutuOHeQceuhrv4NIaeTKdIHljv+4KVzXPu4gTHTp5n+57jsBaWvi0J3XX4rjrvk4Lu+dgkNf9JsAzDXTY3ffjFhpbNFjrgHLwuIe3DzvNCw64BAAQJTQMYnPPQdQrUB5+k3jpgxKQQVhb0HEoZ1IxS7ueclY18ofdYkg4qZ0nS10VTgXEl+JC9qrjiiZ4lDtvjtRVoPAIuycQ4E45MWWOPUCS9ISh6iMRzdN8PpRtlkK+Et04U56UVO41ut00I5s290kM2VlST3jVg0zJg7xyRQ/mZCFPkl79iDfJQ713We04ZNPamceZhuEr+ETmHJUG1YmMJiW9MOlWuaDhr87mrzQRI26scVZb2i1CxhuAwwYMcTXxQ+C8ZHg6HKx7Ou7AjL5xYTbp+1KXz3jV7V4NhFgnD/tbTLPG7icCpo0cedQGFxu36PyVmBguBsIiYsub4P9xi6zwYZt+++iQwBqdXMTBEF4ohz5vF9yjQu4E/ihaCH05AHu36uOPQVXZetw6C3/AhTmnNZ18Z3lPdyw/zkAEDSMIAYqw1zrOKBjvTvm06JVY87tdHyk8zwXT3IrDjVVH6k2ZV/tC+pUl+hHfoGELgjrsh+WAyvfkShjt3U1cB2fuCjfBIszvaH7nXOIOaRpXtGGv+/WxAwK+O5NWsGiKoLyMf55fPHMLeToCEjH3HsFbmv4hR9gdvGgKxuPfyfT3K0V3Dbff1f2knsf6yomUYLmBYXqngOQi4l+56r05Tlpum3NG5wLp+Tva+dkrKxslLNrzWv/DPdFi3HiPZ+xz+u5z9+kx6EmFvn9ZCvOmKgpUanMzLG4k78uAse4n0OX7LV2/mzL7/nisCpbOV+Jn6/OBjnFy9bcLm7KwAV/48Xfwuk3/zFu+ul33X26adD7zodwbHklHrnvTuiZRwEABxx2tM+WHJA45OdZj4e6qnDZx1+ADRd+FoP+NI7f/H/O+VOWReD4j3WJfkd3w9Q2ugHMQjbFMlSzCGh1VWLwhTdjixrH8td/2guCrLvtNOsIbLobs/LYzP+d0e9XFn3E3CmW+EiFRBdbvc4ShD0REYd2InTxXGsVhDOS64GXJFGLeCLWJYrYHBwVy1vhK3HhhW53yRSHavf9yXgQlmA1XqQhymLGlw9ZcSizVdl8ZZPKeOhEQBZmParGu/LCgmpoRaF04gcdtKntbpL1UEdZEFhJK6AqyYO2tVyQ6tU2vDvruRDndqCiE0I6xKGgdK+1kgoMTyi5eFCzNrDc5cVX/ExLev+78bF3nahpkksTtabvxbOh1S7ArepydJy7E3XNhD/zfy8cAnCT3K7Wq84Bx8rKaEWZauyBsAtO13ZFNReHrGjValXfFVwOwE3gylanMRewXZhx0O+UZP7vh1ajSfD0Lqrh/YB+s9k62giCIGwP8+YvxOX7nQ0gdKFOvP2HWP/y3wieW5/yVizBIzjwrq+j0QpJ0n2Rv+yZbzbPj4aPVbdOnoA5yhwr6WLbdXVipcQN6wBKF1Mu4Fcr5OM+lDlDCZ3kQ+7nBCX6sT/e0gVhXfrW8jRPqLVyzyN3tK4GQ8d1IBRCuPuazs90Ec8d0jwbiMPP11t1DpE4ZM9xug7Lx/jn8fkRfUaB1Ak6hQ385otVVFIPdAsmbhxdghmbU8xwQY7dHkRWmOoQyQhyFUet7Ecz56AyPT9HIRcT/c4mu8U0zRjlTmrTXpACEJSI0T4yqhRuzryFuPfUD7u4BfruVBRh82u/i7Uveh8m5i5AX6dQ918961iorIzyLfn9QVkZ5Rmx+W0cLKrOhFEQBYlDlH24bZlDUT1ApYYzkNoiRV1MB/8HgMu/8zmsqm8GYAU9WpBNfLQEzXl89+DH5xy6/Jufxvqp76F/8/+hPzONSGk8pmzEwGAGsS6Z+6ZwrnqeP5midNUPGROWR0VTAMCl//ZRrKxuxi0nfRiLly5311S6Gri/nelowr9vq8ufF/lC17pqSh80H1M5pdmOtGOBWRD2dEQc2ol4t894Z1kZd53UUYaET6yaAlU8hkpH0LV3DvVZjg0Xl0aVTLmxsNp9V3/NQ34Bd2HOT3LlYMYHVTKBJddF0C2DZ9JELGtglI2Xt/2kE1KiC6imRI3EW95tZ5XUikM8sJLa2aok9xbyImyTyy30owIVXevVDlGg7c4CvHOo0hHiJMwx4LlFPF+Ar3rxlUSdjgUTRD7Z6BSH7CTXTWoHtArcG3KfAcNtgM0gvZDogh+dcyi0eNPrnb28o5taAl8aSJZ7KucCWH4AiUOtMdL9TdV3Kzy0v3d1tTPB5eZ5vk48XE11GUqlbd2bDq9+e3HITNLdfi7OIUEQdhIHvei38F9L3owDDjvG3Td3v6XIeuHCw3HPeDHuUAfiIH2PyYMZcfF9yOp1uHTyGdiy8Oihx7KTX+9vU/lN5ucDAJwrWLHjI+AF9gKJF4qKadOcIe6Z8xI7Z2UoUbDSarogrIuBWxyiecIAmRMB6D5dDTqbBDQdF3eAPz/TRTx3SMdN0Vlmp9jxfGvOIbpYzPIxlwHDnbn881LWOZM+o1SJE1hKG/DMO4BSST3QXWpF0PyFj50vAPE5It0udOLEsa7sJfc+1lWs7CKUC+xVmd+Ojpbz9DtXNt+pmOUz2rjufMxFwt3chS3nS/PR5971z3klrsjXm9ew3/HAw47E2MQk8t44rtzvLBz3yH/jkQfuHvk+lCFVIZxLGZFm2LHG57d8/l4O+kEeUVb5RTwAwQLtbMSNcSyV7coCXQbzRpovBQujP/lLd7sq+lCVF+2SJBSnnohzqKlrLLrsE+71JOiS86cc9BE3BXPflChJNG47h7SpPshQuX1qlDj02IP3Ys1Nf4MNvVNw4vPeAIBdU1U+hmDAOgK3u/zF7nso3HVPVfTD4wVbeE7FOSTspYg4tBOhydY0xp3wAsB3A2tNbHhmUIISOkpdBxB3oGOTrZRPDkaUTBG8dj9lk0Fu2aTP52PlTpw49QLLuBoEB1mqq6cTAVmYR3U/IEGIVqkAc8KLm8K4qKjjRMWcQyoLAivHYW5Hae5XYopQ8KLnJFbYMt9FeLJpSJzqWDlsu7OAYfs6Jwg8zrhzyL+P4iuJceaCv4FwstB1ok6aAWrl7d7RwGfqtCcQAKzlvzWpinOkqkZT1/63pRDH1qSHJrld7Wb5xQTlJaQ9u2pXeHGoqcy+F49wDtH9uhwgIaHIfn6nc6jxpYiu0xl11ItDESeutgQZC8HqI11wJDlipVHOhNZvjnMiJcOPCYIgPF4OOehgnPPWP0CWzn5BHcUx7j3KXAQVs7g/AODE934Fp7/pz4fuX/OUc3GPWgLAC+VpK6zXLShQaS45Y2ygdaFSP4ewiwAqyVBF4fkn1SUq5p4tE7rYGwBVgVorDOCFExIUZsgdXRdOiIhGCCFpx/m5GnLfmO5hXWV2FFo9mxOLcOJQb8xlwFCTj/bnZazDGp0zgqxAlULbcpWy9AsdlRVCvJtm+MLYZ+Px+Z//TrggR7cLpK78bVbnkHUVk4PGtYBXqS9F6hCHSvs718XAN83YRty+xJ1DdrEpyXoo0LGw00JFERa94pP43sFvw9IDD+18ztLnvBs9VeKGrw3/XRCUIWWc/GHJGN9/kpagCiDIoilbi5RpFeZ8+XnW7GVlUVOiirKhhjWJLgMXvJ8v+fdbWN6PR2C7CtpyP/oba2cm0aJke+FuFE1d465bTGewK//381jR3GFeX3tBlxqylLajIWCuQxJdorYL3zw6IUNlOhxWpfm7sMeLpuwe0w2f/zDGdR/zzv1dN79L7f6qWQzBIPFNX9pd/nxJbZ9FGpjblQoXGsuB+XvPtlKhIQh7IiIO7UTogD0TjYdh0dUApQ0edM9tdRuj1TvqAEIHOn7iD06WI0qmCF67z62XVFY0ozN3cuMnuarouxMOF1joMwlej27ykoZrigOYc4hOeokVh2qV+lBBWxaW5mNo4qwVXuknSQkLg+QnSHpOmvVGBiq6SXFX95cucSimSdbwZD4QgfJu51DErOXkXinthM8JijrvPFFHdpLrAqRLL561bf3A8MnQPtl8/mDGlxKQGJeHkx6a5PKuDg7KFtCly0ug94mKYecQTbbaApZ3Cw0Qg0QymrRQ6drAdSaLm8J9trMCU3B1K1g7q7YEIl77bwZg++60zW/qcAdRW2QpKxMEYVdx3NlvxmOYdA6T7SWKY9x++KuxSY9jzGbnTM5biEcxB+ndFwHwpcgut40LDzBhvXRRRZlusGVlfO6QoQxKqyubwacrU3pUIHWCS2ndEQBQRJlpdR04h4bPw0DbPd0Sh9i5jHcVC74Pt1Az2onlxs+cQ5QBYzJMsqHPy1XpFtJi5xxK3bmf5wYWJPawENzZApS7svH4AhBlHTZaoYp9KZlzPHcFcxOJcRXHdiwkIlRR2rlARC6mJvEuD56dtC2kHUKLO+/bRhsAkG2lm9yBK1bhaW/43dGOuqNOwBW9k3DE7Z/DoD/V+RzKkKpVOhTzwDOr+Bya4HP8ctAPnFBZQ4uUtpQzH/37BuOx8+H23I7EDvr+aRz8/VKULufLlEp50a7tTHOLcLM4hx5+4G5c9KevxMzUFmz4zuew///3FDx0353o33s9AOBRzDEOKxKH7LVKOeg7V1U56LsFxwKpy5/UTYNclaZrrJ2fk7Dc5Z6bmdqM4+//Ii5bcBYOXXOiuz+KI9O1l10zVckEUpSdXf7o99Cl70JmXESli49wi7mFKRelbFVB2JsQcWgn4pTrKHQOdbVVbTuHUmtXLpECrI03qelAaIMeVTJF8Nr9jE1iKlb6RgfHpClc3X9VDFgmTx7YuxWbkLiyo4EpDRrEszuH6CSUwmcOUSBdHfmVSSoLy/OeCd1mgZVUYx6nPXeya8pBaPVVjR17rzNQ0WykFYc6bOWzOYe6JkAJm7Ap29bdvLd/H98BxE8QSbyjFZwpNd55ok7sJJcmatSNLc3HzOoeDwOvKrP9rQ5b/DNJhGl389LVwJ2wVZwHXR0c9L1ZG3qhUp/tY8cFeKGHLhza2+WcQ9aOT7f5/+OmdKtMFFzOX9vuukbun7yeDlYxg1IN2n/JWmw7rHVlT7n3HZF7IAiC8GQzNjEHNx79bty68GmP+z1OfeWHoN99jZsHxEmKG/d/AY7b8kM8eM/tLmCaLoo0O39QJyd6LTlEVZKb85IT682FWMPEIbrdlN5d4kudUnc+reAzVngzDIILIbw0n87PJALxc1m7gQZB57WtObHofWutkKSZGx8vH3NukMEW+72FOXWl8m6sSqWB2xpAkHPS5UwhurLxuGBGF9UFEr+QhcR3W51tW62rOG5MGZULxmZzDn6xTi6mxpbQN+VgKJ9na7i5EdtWN+fMzaJXY7/3J0p0+tuxHzbiym/8fefjlCFVR6HQ2RYX83z490l0icZmZ1VlP5iHUhxCuzHGyMVT+lzbObAdGeCdOFacGyUOudyegcuR4p/fXoRrL9xxbr/sQpz62Ndw5w2Xotx4PxLVYOqxB12kwLSNz6hKulYx+2FVzLhrm7LoI7GCqln4tveXfoGY/h7oeNGVWzq1+VFkqkKzbP3QY5S96cWhyUB0UoG47K8bSMAy3Qb97+3zTGfc/JTcfoKwtyDi0E6EOnIVyQRS+IMuDx4k2t3GjLU7N7XP7EBHK3F1+2Q5omSK4LX7rrSGZQ7NqHH3+QlKV/dfF34FJMnGwlbe3DmU+gNo0hQoyeE0YiWCTkKZdQsB1jlkV27ooE0n1SwfCyZAlE8AmHA/npVD4+XPSXM/9nZrTArHbHceo9c54nAltUsc4uIBtXUHQgcSTer46iGJd/Q799VY54k6tpNc5/SpvXhWqdAK3dUGGEDwmXwSZrbX7xt0wtYswJCHUdKJPbO5USVSP/mp/Mqc74Iz3A0P8BMdVN5+7CZNLLjcuc2aYqizXjsviMoMe810IMQmSeYmcFHLOUQh2p1d6+aYUoyxeUuGHhMEQdhZnPyS9+KkX/6Xx/16FUWYN39hcN+Bz/4lpKrGzf/91y5g2pUtMTGG3D40h6CgXZXmxvHLykcAAMw929jbuhrYXJrUlepUyjuHqihznTfrjrIyPu/gZcK0WEUOGe7uMOLQ6DLwbXG61Cp1LlRycuQooWM6d9rP63vBzHyGdd/AO4fq4Nxvz10sNLsrh8eNoysbj5eYpb4rWcMEoWYbxSHAOLbryDvEmijrbN9OLiZtf1sSIWb9jBa9sQnM6AzJwzf4bXAdfY0jrUACKDXqLbaZY844F7dGh2DRVZ/qdH9QhhQXOun+sEutnRe2uvNtUbSINgiEH4pDoN+1yy3VRWxFivZ4KBS5PW8M3EqsqU1Dji5Xckllix2LcCOgUr+q8N0Gq4KFy6sxUwZn/2bpWqViZWXloG+OL5HtbthQt9kZt120eEv7VJe7irY7ai18ArDHjsKJVk02iQxVZ5e/UED2kQY8aN6FshcDV1JWskY+AHDPJV/BQzf8cOR3Jwi7OyIO7UToAFomk0HJGLUJDZ6b9IJuY5ldkaIcGe0OdOaAOZR3Q3XtrZIpgtfuR3FsrJcstK0fMeeQLl1XtKrsu7KrjLlvgDAkktejJyhRxz3jPhrlHGq8cyhmt2mFjw7aE3raleBxcWiKtWhN0l7QPYLGy5+T5z1/kG8LaBSm3CEK5EGAcZjB0DUB4iJQOt7tHPIhjyyDgEQXO5Z+y23mttVOcmmilte+rXEdpS1xyAuCHC6SOfs2lfGxCXXB3GY+bNPvXy43CpWbENJ2ZkwccoHfGC5bpG2iz6RJT9s5lDSFE6NiVopI2+tK18hRZcWzMT0d/E4qilzdPQma7bb3XS1zjzvjXFx7/rdx8MrhkFdBEIQ9meWrjsPV+TocevvnXcC0E2TY+aOy4pCKIhQ6cQ0joiQ3ixasfAQAkHvnEHLb4awamPITVlZWqczdrq07SdWFczYHOXDkktZhKRg5dWjFP2MLHfxij0PntW0Sh6LMXVybedkAmaqcWOXcVLZJBFxZGZVmZUHAM3dbA76ECPCd67rEA99hlH8nZgwDnTpnVWk7otHtpuWs6sRuS6+eMk1SqJNdlLrPC51Ddo7hhL/RneFGEScJNix5IdY9diHu/dn1wXYn2ZgRh7ZDbJoNFUV46JhfxKHN7bjmh/859Dh1ZzVOft4gJnSeRXHsSh/da8HmzWxuBcDFIficLzvH2Io4RJ9bqzQIvKZus05Ioa5frEwrQ4Ui8aVZQdliS3z04tBo55DrvlwMnIu7KvpAVZjA88jkInWJQ07MKkxZGWxVhHMO2b+BjDmHkHkxuU1XUD1R2jwwWMeRTieQMnGIv8bNy2teVjYIguZ5J+RctY5vNJ5vfhB3f/X3R353grC7I+LQToQyUup0InAFdQX26ThDxsvKbNaLs5Pagyip6e3Xd3WS4LRr9+kASrbSIp5wB/A0aCPpV0BSJrCY9/K3eT06HVgLDLdWJ5xzSNXOUZJpJg7Zg/a4GnjnB1vBpMBrwKzM8SBll9vDnpPlY96x0/6ObJgyz4Dir3MkYfeWrglQEohD8zvfx00WWatYNyY7lvZKkXtPcg6RM6aecuJZuzSRVjdGiUMlm8DQ95ckxsKNuvAnwDhnE8PQAQcAqaoR1QOUKnW5AFQOCLSCqzE8AXFjrgs36XETAnILoURUe6HI51SRcyjMToq5uNj6W6GJJgma9BsoEoc6uqJEcYQ1x500dL8gCMLewGDt67A/HgJgAqbpfKmYU6dUqSmPglmgooYRUZqjif35x12IpeOuRD3q+Ys9Kj1ypU6RLzGrI+MiUk0RtDR3xP7zOXReo6wQ14WtLt15s407F29TWVnoHEoqKlPJg8+jHEAaj3M1K3++r6PUu61L8z4858SX/g/PAXyDkOG5WIEkcDY3sV+Iandb7YLGNKanUUeZ2yYz5whLkcxY7KKjLaFvytGd4Wbj0Bd+EDVi3PXV/2e322xjnvdQWZfJjuK4570RD2E+mh/+xdBjFMY+JA7pIuiSB2CovbyZN5s5Z12G4hDFIdD8KCVH1la6g9F8uI6yYFGN5urOBd8SeSjUmXK+6HdxzrR2phVbeBsFLfI11YyvZCgHUC4/zMxZ6w43GR8vORN5qRzNf7lzKBrzYnKbdoxA8Jiy1Ra16c6GJEekNGZspmRXh8JwYbIfHC/o76yY2eRe176GSJsBUHdfewnCnoCIQzsTe6Gv49wdeAAjjNStzCFqIQqwtvMxO4BWA9RaQaW2Rr51soxGlEwR7dp9sm3TyaFIJtyFeQqfGdSUA5bJ0wvq3ANxiJV1UQcPCtPuggsEOdVjw0/iuJhCF/PcOUTiFWAmX0ENN5Vm2eeQeOKcQ60OEbMFKLoVIra9lMFQdkw2eRlab3K+v5+VADohjYV+OvHOjqVqTQbctjpxyDtjSDyrWxManjMVbBMT8rzwZ8ZNzhpVDdwJMHAO8W5q3HZdT9nuJikqHaHX+OBwt/8wZ1rwndl/K3aCJgeVYsKSYkIR7T8xW+0B/H5I4+2pcmjiT791lIYnf5rUpx0TDkEQhL2ZY5/9CjyE+eYfrKyMnz8qlToBo1SpaxgRpb3ggpq3W6e5SkwZfFXhXAw+JNnfrqPMXeDxluaEbw3fOmfHvgQKAHNIm/OK7ug0Se+7LeJQY1ucA0ZgyaxrlxaN6PPi0gtm5mEvCJEY1USZ72JGczNbUg+wxaTOsrLQ7QuwBR+VduYa1cxFNJtzKLG/0Ty9CTryTmC+IMXnAM7FNGbCzY3w190Zbjb2X34oLlv0Aqx76Ou466YNvqNvPoZaZagweye/7aE3No4bD345jutfgjuuvzR4jDKk2jEPZt4VzgtoDk1kqPyiKptbTWv7vWmFNA2FS3SIf+3xeCeTrR6oa2RWbHIueBpHFZZp1SznK2KinQv3bpfvz+IcovKxpvTNQUwA+cAKvcbdRH+zyolDfaTalmPNbDZZobHtwNZ2Dqka1cAeU3qziUM2I6mjs2ylEqjG5mAicX8b/S2PDb2G5uWqKpg4VPiOjez55dRG97q2cyixeanCHoTWuOQvXoeL/+oXd/VIdgtEHNqZ2At9ag9KmBKc1gk6zpHZ9uKuXj/xtcZUo+9O/G1xaFTJlBtKqLQPhbalk+7gaGqVqY1k32UnGfcNKyVjt2PWLYwOrNw22oYfSElIyFSNFGaFxjlYwCzfbJJK4pX5mnpBvgCNl55D4okLVCzCk01XBhSHXu8mya1sAw6VodVaIeuZE/NAp4H9PVhJtBNLLg4VKkXT6pZB0HfrxaEZN/b2ateo1RUuDrmSOlb2VigTgl5RXXead9bI82DpvJpy30eBFOPw4hD9HrR/Ja2TKJVTqnrgJj1ussM6ooVd7UKhyXfUM9uWstKw9u9UIqwld2HTLNxbEARhXyLLe7hp2QsBmHOdE81b4pAPkU6cQzROTVmZdwj4TBDq6hnb86GufYmLc7NEmRMUSISJmoLlHXYIIS3BwGXHsUUkmoNQmX4bcnCU21AG1Rz2LNy29Ez7PWSupJuLZyVS14xBOXFozG2jy+7jAc/2PM1Ds+MkGWr17cZRdQhmCZvXsVIy7nJuN9ToYvXTX4bHMMfMRZmD28w5hnOQSKiiEnrKbpm1dG0EK1/yEfSR4ZEvvc/Mne2iHomFO5Ijz3kn+jrFfd/60+B+6s7axJkrgwcQdKUj+PyWmncUrmvbgAU104KuL4N0wuWIxdP25xpXXii8Al5YVM5pbaMsqMEJy/mKmWjX7krrFt5mcQ6BuYVIKKopXB6JyaXSpRMPqSFLXQ6Q2e+ysAKLSnLTddc1FPFxBeTQSSmzs+Maom4tdgfDtMcOV6FBDVimHht6jYoiU4pZD9w1WlMN7PGCMsPsfHk25xBbsBT2DK7+2l/ipIe+jEUPG4G4qSo0db2VV+29bFUcUkodpJT6rlLqWqXUNUqpd9r7P66Uul4pdaVS6stKqfkjXv8zpdRVSqkNSqlLu56zr2AOTgl0kruDI2CDB9srKxQoXfSDtvOmpWbp1PlghYjhWqSOcg61avd9lpFdDUgnnTiVoHJd0cg5RAHYcSAO8Rwd7xyiAysPnGvDXTFcSBjXM0CcBdkwtK28y0AZ+yyDNOuF3SPseKvI3EfiCZUcNUPOocGstmV6vbOjtuzrHFrxK5C6kOeiNYl14hCv43fikBlLHWeIdYU29N2SgDGh/Nh13C0OqdaKacQ+04Vxs4km/W4u9C/tBV0d3Pu03F/uokElmNQs+8ruY5lzDoX7BK3QRaUvRaPJCu0/KUrXyjW1weXmtg8RBPx3mzCxa0gconau9nuJrRsvtZP6rmByQRCEvZ1Dfu5t2KzH0FtymLso4uLH/fOPx6ML1wIwx1FqGBGnvcD9zNut0/kpzsZQ6ASoCtf9iS64G1Zi1kSZcc42/kIz6XAsD82BqLsaEybI3cGdABx/Lt66mHHS+e/Eab/0N/b5ftv591Oo1IlG5AzqLM3aijgEIGj1zXEZfmwBJOJuKhZ6zecq2yIOTc5biBuOeLN5Xuwd3Dr2jUx0OSwOZRPGOYSqcE0ztpfF+x+Eq1e9BcfN/AT73/u/3hGd9FBEO/acvHDJMmzY7/lY+/A38egDdwNA0J0VcRbM2TOUQ409qPQR8N22Ki4O2cqBgsowOxzMoxZPidR+Lncy8aYzNK9370PiEF0HsNweLtq5rq3k0KaS/dnKylhHNPq8puwHJaKJLryL24o79WDKdQ0ubUdY2LIymsfxigdy6MT5+FCuU3u7O51D9thBLnx3vLDv214spfJA+r11ZcQsEofcdUPfi0NVa4E5Y3PSnc1D99w28rpP6GbjXdfj8Es/AsDv8xv+9Hz89BOv3pXD2qVsi3OoAvAerfUaAKcCeJtSag2ACwEco7U+DsCNAD4wy3s8U2u9Tmt94hMe8R6MK1eKcySqQV2Zi/1ID5e60AV8MegH5UCu1tg6hxS3DDNc7XzZfZBo1+5XKgvFIQq6HswgU7Wzo/LOIkA4SeMHWW857od5SSNOfgkTFriQMKYKd1Cmk6nbVr6CmYZlZbx7BI233XKel75xttZdw5UhOZv9aHs2laGVKnUdIdqTWD4hpa5aNKbIrnaYycAo51AeOGPo/Rs2OQf8Cay9uuLK2sq+CxPkzqYKiRkHa5nb6Rxqub9cuQFSREq7x1w2kXUIpa2TKJ2UybnDXxN1OIdScHEozCii75YHg7dFPPqt6Xug/YLKBLqCyQVBEPZ2lq1YjfyDd2DtMy5APmbmAOT4AYAz3vEpPPUtnwAAbEoWYT/9mHlOai6oqXyEt1t359+0Z3MIjYuhZs6hJuK3M7so5ucnXOz3c6BWF04Sh4acQ9aRGofnQcCfJ7Y3I6dM5mCB3fag7A6JE4doTpbmvtzNlb/H2dB8JG2FZvNW3xzqGpUG3wkt+mXB96OYIETZSG0HTJt1578Ht8SHolm0GkmaGWdFNjHkNjFjMb9zTuJQPboz3LZwwkt+DbdGK3Bo8zM3/1t69m8AZ33scb3fbCz9uXcjVyVu/K8/BYCgO6uO87B7MHOSENRJGPBlXBWVcVV9HxGg/LyI47pqzQJ9LhdeedMZcsGTSNUOeFYstycOnGkpaq2cmKTYPGsk5JKquDg0cAHk5Fyn1vPkJqtnNvu3sO4bd23jnENMHLLZQHGWD+U6ufcpw+uZ4DF77CDRyv092M+OktAZXqoUUTVjyt0A6LIfBM07QZeJQ3XrOitFNbTouaPQWuOmex/rfOyuW67B5N+ehMv+/feflM/eK2lqPPyZN6LQCa5IjnW/29yZuzA+fecuHtyuY6vikNb6Xq31Zfb2ZgDXAThQa/0trZ2V4SIAy5+8Ye4dqCa0NdIJxAQPjm4vzpP4TR1vYQQMFmDcFjNIZGhGKMjt2n1qxepqnq39dGrzY+Z9Mt52duDdFrxVOxeHyFlSTJu8pCR3AlQX3LLLhQRguFU8ldDxSRiJV4ApA+LdI2i8DbNXm233AhaHTiKjoMdccHHiJ3udz0diwjqdiyh8ns8gyJ3Y5oIdmd2+vYrjas2T3E04Ab8v6CgUh0ZZb93JrvBhgu3tVU3JVmfyoKsDwW2045geEuMAU2+v6oHP0QKCMeqmMSdiwIWbAn4lS9W21BGV+zwKLufvRVZ31yqWlYa1/9bItUf7Mk3i83pqSCgTBEHYl8gyc7xccdRJuGTdR7Hmaed3Pm/q2Fe7c3eSGecQCf283boT47PcnFvqgcvX4Tk4JCiYVuLGVdBumEDvCXTMgRISXsJzY0yO1GT4fE3nte0tg2qOeoHrXMQXyQI3FZU489weciHEWVCKDwAJquGSuK750yzfSa180HUdcedQ5rq5dTmoOHlvHId98DKc+qoPAwBufNYnsfL570Q+NmFK/Tfd457rOtn2Jl0ZXKpL1NHwRfu2kOU94MWfQl+nbh6x7KhTcOhJZz2u95uNQ488Hht6p2DVHf+KQX8q6M6qO5xD7e8tCFS2YkyT2nmzddcUKnXz17Y45LpqzQJ9ro69c4i7RJqWc8iJQyTOupyvYdGuQOrFISrZx2hxiFxsXBzSZd9kTNkSxpSVlVFDFi6q0G2qiuAdwojauovitDeU6+S3e9hR6F5vjx1modV3BaTPbgtKJZLAtY7Clos655B9/oCJXOwagua2XU7/2ejPTOHRh+7b6vO+/cVP4oC/WY177r4juF9rjQe+8F70VIlm6uGh191z122o9+EyqVFc/5U/wGEzV+Oi1e/HYPIgJPZ329dzo7brqkcptQLA8QAubj30BgDfGPEyDeBbSqmfKqXetN0j3IsgRwo5TcgOGutyaKXKqduDmSAIuIlM7TMJGG4S0JrM0EFyVCB1u3afTmxUVkSdRGasOMRrlcGdQ+zAyg/MbgWubw+gsckQGPXHlugSM9pvA4X2mQd9/TxgbKJA2GWgybw4RCVlbpWh5Rxy7Ts7QpUBGCFkFnGocuKQeb3aij27VAkqpG5c7fdOubXcjck6ZewqjG65gABWa55kPlAQLH8qzoJsK1dK2HLC8EkpF/749kZ1EbSHzzpWDflKyaSecfskf79pNWZ+D7baxbeL18/TiivgHUPOLaRqJw6lqNxEqd3djBxVvDSs/TvVioKobQka5Tc100NCmSAIwr6IiiKcdN7bkffGOx8/7rmvx4NYAMAeQxPjkG6qKmi3Tg6fJOu5c3TSFKbUidxCtnTGvMhnLbYbJgD+PDzsnu5wDqkUaTWcDUSQ47irRHw2jnnWK7EJE8F4zOflmKvNRSjNj+ic1MSZW0TTQfcvK7C0SpdGiQe8eyzhFw0z53CuozRYyHINNbZBCOMLJMc+/XwsXrYCvfFJXDFxGlbf95+YmdocjD3NjSsMVWHcI1sRoGbjsDUn4cqTP44bDn7F436PbSV6ytuxEJtw5df/LujOiiRHrDSqskBVFsZV0tp/aja/dS3l7by5sV28qLkIMLy/zuasBxB8rhGrrCuPlZU5x3nLOUTXAUlvwnWfbZctlsy5ROPIZhGHXPaP7TYImOsKE3SdOOe66zQ3Md98J0xU0fb6ILIZZZQ/GYgtVsQxx4tudxWJYmmHy7tWKWJdIG4G5nZLHEparzHHCL8wGRV2vNRt0P6dRYV/Ts3mrTS3ndV11cF1n7gAj/3Vz836nMc2bsQxV38Mk6qP6YfvCh776Xe/hPUzPwKAoePEVT/6Bpb+3fG44tuf3a4x7e1svOMarLjij/Hj9FQ866XvCK6zUl10ur9uueS/MfXYQzt7qDudbRaHlFKTAL4I4F1a603s/g/ClJ59ZsRLz9BarwfwPJiStKeNeP83KaUuVUpd+uCDD27zBuxJxI1x+zjLrw1dS5piyHZLJ/ei6AdBwhRER46SiK0QBZ81Qvgg2kp7EHStEzfGvg1to04DqLxrCQgPrFx0cIHQ1kKqqKZ4hHMo1SWmWKt5fpvEFzqZ0rbyYExyOgEs58euMtB4XRhja+zt7gdba71Kr3cBnamfcHVRwrTipXENiUOujp8FVLKTfKXSIRcQ4MVFleRIUmsLhhfPTLZVBd00wXu2V0rcpLTyYYLB9lrHlwt5TntIEt/Vwb0P+20jpZkYZ/4/0KmzXlOOVqWj4CTK6+dz1uGMJh/tXCPACEWZtpNSO2HSzmpvtjVnFxPtvzX6vkjopP+PY7jtvSAIgjBMlvdwy4pXAgDG5y70LeaLmaDdugvBzXou6zCBuVClc7SOMida6DhnJSoD91lEzOYwHOeQDcq8fFexLnGIuhVtb0ZOb3wS1y16bjAeALh38VMwrui8axcfqLlGnPmL2Zh1/2LdPNuup07xwDWR8Oc4/52kwfwkKLWz7607HFTbSv7UX8YCbMaVX/sb817MxURlcF3hzdvLyWe/Hme84fee0HtsC8c+5RzcEh2KJVd/KohzoDloMZjxjqIO51Dccg6pnl9UpcVh3pGPQ38Lo+Cfq+IcuSqhmyaIjqA5WnsxrWau7wKJc3QF4hATXtwi3CwCB7mLaNvodkwLmjYXifaJMdutVzFxSFnhJXbXNjReNie3z0/s8aLLPeeuZzryIY3oVLmFVvq7p3HELbdRpTJkFVuYtGOkvx36m41Y7AEfb8Eyw7aVK7/3Hzh++seY1zw66/M2/PtHcQCMK4gv/M9MbcH+3/913B0dgE0YD8Sh/sw05l74XsRKo9x0/zaPaa+nqfHoZ9+IGZ1h4cv+EmkSB468hFUkEPfedg2Wfu21uP5Tb9wVI96pbJM4pJRKYYShz2itv8Tufx2AcwC8Smutu16rtb7b/v8BAF8GcPKI531Sa32i1vrExYsXb9dG7ClETWlWb0j46VtxCMOBfSTOVFwcSnJ3wHXiUOI7X3Bcjs0Icahdu18r03aSXDY0oRhssaFtedhZxJdm+QMrdxG5DJyiVVM84oCZosQME4RmIrY66QInyXIelnUBgMqNXZY6WgD+ZEfjpckmiQEkyjQd4tBQ9zgGvZ5OKvRbjZoAUZ05lbq1JwU00W3izLVNpzptCurULL/BvW+rNT25XJywFWeIlEZVUQcvmqCHJ0O+YtlVUkc127w9PO/q4N5Hl4Hjy5UIuK5liZsA0din1FiwOsWD/caYOEQTAi4u8sfHbU5VakPUXei13Q9VFJnwUwxP/BvlL1YAYN5+B6DQMeZiakgoEwRBELo58VW/hRte8B9YvGwFlHXzPnLfnUG7de7cpYWHRBsBQSdevKDzKbUST7Qve89GlFBx3GIVLz+PUvRq2z2sQxyi89rjETOWPvttuB/7YeFBR7r7Vpz9XlNeBT8/UlGEjWoSurfALwwlPdYgYwCt9VDp0qiyfDoHk7Bltt07ysnJ1ESpW1BrYn+R3JW9tK0cdcpzcWNyBJZd92lz3qWx5D1XBpfp8gl9xs5ERREeOvYXcEhzJ27/8RcB2Hmmi3noe0fRkHMoY4HKZj7iyrjYvJnmr+15YA3Tcn0U/HNJ0CvLIhAJmpZzKGo5h6JkzCyattqzA6E4RA6o2ZxDTqi0c2zALMol9joH1t1E1xrjc+ab1xVeHKLbzjnU6jYLALAOnSTtjRRI2xmTHBKdYjsuOl4oet+sLQ6l6DHXetJyGtLfbDJCHKK5bXsxl7PxsYdx3e+cjMsu/CyausHE//6Wec0sgtLdd/4MJ931j3hQLRz6zCs/8wEs1/dh05l/hD56gbvqp1/4OA7RxmXUXgjfl7n+Pz6GFf3rcNGRv4bVK1cCQODISxGKQ0V/GtOfeTVqHWHJBX+wS8a8M9mWbmUKwN8DuE5r/cfs/rMAvB/AuVrr6RGvnVBKzaHbAH4OwNU7YuB7IhQ8TSdoOoEkuhqajKRjZsXh0duvDizZZHsj0cBPAsITzZz9DkClI1S3/G/nWNq1+3Rio3aPzt00bVtNpj3XWYSEKSC0d/ODLAkepM77TmvdKyOZLtFnglA/8gHT7dBt5xzi3dFs0B6/mKdVBue+aYkVJGANO4fKWW3l9HoXYEwi1YgJZaW8lbhEMiQ8ua4fHdbyxAZ1IsmGTtS83JC2F/D7ghON7MnKW2/DAD4eLBl1CGOVrdlut4cvWuGAScv9Rfs0rRSXKnXlizRZmca4s2vzbQK84AN4UWhkVzvFVm4GM0A9QKUjJGmrph7DGQt1HAYNzttvKX56+NvcmAVBEIStk6QZVp/wTADAwaedj0pHuPPCvwjardNCVpL3XNZhqkuzeENuFhu6a5/ouzPZjk+0AASwxhJDziFy5XD3TYZeR1cxToFkm0qt2qw46kQs/a1bsXzlMe6+/Q9ehQ3znuW2ndj8iv/E0Rd8AHlvzIhH2aQr1ys3P4SqKodKl0aW5Xc0kQg7oHrnEO/g5hbX4sd/jlNRhM3r34KD9D244jufY86uMSc2jOoMt7uy9nlvxINYgOXXfhKAcYyoDnFItRbZ+PyW5jcxC4CmuALnHBrKPsxmzTgpmVOcz+24OETfP82TYnLisAY0JNqlugqcady55OZbbG7WxuUaWbeQ2QgfdK0T426i8jMSh3ijERJYomQsKOkJuuAWvmsstaVv05VFRpDoRN3Z6LgQW2Gq/ZpKpeg1XhyiEjP6zunaJmOlZ3yBmcr8slmEnus++wEcVd+AwR2X4eEH78LhzW2Y1rkTJrr42ed/HSkq3L3+vQDCUrbV93wJP514Go46/ewg+woA0kduwCaM0+BGvv++xMa7rseKK/8EP05PwZkveat/gDnyUl26/CEAuOp/PovDq1tw4ym/i4MOXb0LRr1z2Rbn0FMAvBrAs2w7+g1KqecD+AsAcwBcaO/7GwBQSi1TSn3dvnYpgB8opa4A8BMAX9Naf3PHb8aeQWIFHVcPXvh2ke3JyOrTz8Zt0SE48OLfQX+jKbOLsty0ELVBWbVKXftS3RIzFi1djkuXXICTHvoKbr7iB0NjadfuN7btpKmLTnzI44xv90idRQJxKBslDpn7yXrZXhlok6LCIPaCUBGzsrJWrpLrsECTHq0Q5+a1vD0orTI4cajVct7n5oQnm6TVJaQNvZ621024RqyOVSpz31fBVo7c9kURNukJ6HyeX0lkJ/k6yoc63AH+JDTkHIr8pBpg4YgjrLe8vC7u6NRGJYft9vC8Rh2wuVFM4KN9mjJ9nIOKiUMkApKAVbKysknVIQ6N6GoHmLI1ABgM+lBVd7A2HxdBvzXPbDj5lR/G1dk6bEr2gyAIgrB9LFuxGhvmPB1r7v0Sms1mDpNkY35xhpwADRMQmHOIBAVlXUQJfDtqTuycMd3u6SAgOh7DfE1zmnCRhLiztwp66dFPaNs5B7zod/HjxS/BASuOcvcdvHo95szfD3lvHNc8+59w5PPfhoVLl+PWZCWOuPUf8cC9ZqVfBc6hFHHTH3r/riYSbpGJXQw3zEWE2JeYjRLJtpW1z3k17lFL0Lvkr1yZeZpSd9rRneF2V3q9Mdx06KtxgH4AgAk2d27/oh8EVXP4/NZn/JhFXlUVLq6gXW5PzLZ4Sp8N2Plw7Od2NXNbk0jRni81lV2IZrk9vD27GY935fBFOJ4PyXECRF3459cDJ8LQYqkqplDqGFneQ62Vy/wCvCsnzvIgOoGLLSQgpXlvpIDWlUXmvhP7vhR67xZ17WenrflwHWXBwmNWm9t0HKHFXJ6JqbfDOXTHdZfgxPs/bz9sgNJWkGxWk06YaHPd5T/EaRu/jqsOfBnGDzTiMxfQxvQAxdyDzee3xKGoHmDa5qGJcwhA0+DBz7wJpY6x8KWfQJr4hQYSysuyQIYqCGSvbMTKinXP3Jmj3WVsS7eyH2itldb6ONuOfp3W+uta65Va64PYfW+xz79Ha/18e/tWrfVa+9/RWuuPPtkbtDtDwdO00kUnkK6VlTwfQ//5f4rF+hHM/7GptU7SHhCnSFG5Ax2fBLQ56pW/j0fVXJT/9b6hA067dt9lGdWtLCPX7pF1FrEiF389EB6Y4yQxeTIlqe499xltKN2/TLw4VCY+YNoFKirfvQTwk8ICiZv08IkjrTK48cahyORq9FsHzEQPd4/juJXPVnerUatjVZS611RIOt/7vvO/gKNe9KtDbiZzok3d2PmJmncPo+0F/L7gVrsoHHGE9ZYLUlz4I9p5D04caoUDpigDxxdNDmrmHCKhyYlDVgQkUYjcdJxKRy6okO8/kdLOsg+YEjXzXjNQdYFKhSVh5Cpr/05d4lCcJDjiPd/Cind9a2g8giAIwtaZfOY7MQczWHqjCUJN8x473o7ZEF9TeqTj3DXrQJK77kBIcluiUrqOTxw3B4rb4pDNBGQX8f2VZ6Nnu4q1u3YSaz7wfZzy8l9/AlsdcuChq3Ha2z6FJO2eH6x92rlYsGgpVBQheeGfYaHeiLv+7VfsRvgxbpp3JFYNrsU9t10XvL6riUSScnHIC27udpK7bm7t8qjtJUkz3LHqtTiqvAZzHrgEA51CRREqlbmL/67OcLszx573bjwGMweN0zxw+5dFOO8i+PyWZ2xR+T3FFTRuXtQSh6xDexSuVI05h8qiH4Q3+3mj3ceb4UgBL9pVwe9iHOLD4hBfsOOQ8KTsHBswLiIKunbZPsVmN/cqkAaOG8r2oe6GFJ3AxRZy7qR5b7SA5nK3hp1D5EiicdHxgsaRtQSlWqWYYAuPYzW5m+zxJI5R6Ng5EIFQdKH9I1M1dDPcHeyeH38eiWrM30lduHk8LayWLaeWbhqUX/8ANqkJHPnS32EZoX33eK586WZluwsTUVNgEPVcEPnWuPzSH+LWW27c6vP2FPpbHsXdHz0O13zTOAGv/a8/x8qZK3DRql/B6lWhA4g78nJVhtUaFVVeDO9jeyPSo3knkjTm4ORygkpvP+wSFo468Vm4ZNG5WNGYloVx1oOOc6SqRtoMTFt7CjHseP28BYtw85p34KjyWlz1/a+ED7Zq95soQ6Z9Po9bbaJ2j6nvLEKuJSA8sLbLlQr4ziBxyqzhLUjwqJk4VHFxaCvOoYJ1IOCTJFplcONttZwnAQv1sDg0m3OoceKQ2V4X8DxikvXoYediZuULzPiQdopDR6w9HfP3W4J8zDpv+hvdWMyKKoV7Mvsqy6Li2z4kDg1Ccah9cMtZWVncIYw1kWkx2m4P316hSFEGji/d+r7JUh03pRt7Yd1iXhyy92uv5k+pMTdZSXRpTnLsMWLalrRVRR+qKYZWUwvlMyw4tHrW/l6yPMfYxBwIgiAI28+RJzwT16ZH45DmTgDmGEtzlaw3hsZmHaaooIMcHN9q3bQSz5Hq0nV84vDW8Jwly1diQ+9kLF7zVHff2uf/Ih6FOaa3L+53Bw4+9gxcfsBLcMrUdwGE7pRDX/RhNIhwz5d/I3hNVxMJ1wUt9hfDOs59TiITip6ocwgAjjnnbdiECRxdXGkCj2HEhtnCv3dn5sxbiOsO+XkAZt5NC7rFzBZfMtYWhyIuDvXdaws+b468c6jdGIMWzkZBlQZRmrt9txz0AwcJueD9YloY8EyZX3FlSyuZc6hW/vOTZuviEM81ou1WdWGD1L0LMCm3OEG3bJVs0e047dkGKmG3WQBuH8qysZECGuVuZV0X7lZ0Sm2uWdJy/rSdQ02UIlF+MX3MpqbEQUfgxN3fHi8v9yqLrhK4GZQ6xrQy2UBUATAgF32rw/SlF/4rjiuvwC1r3o6J+Yv8NZ/9TZ2YxGIz4kAcMuWMJoh8dnHorjtuw6qvXoAHv/IhAMAlv38WfvC5j836mt2dq//1t3BgeTs233EVqqKPgy/7GDYkx+HpL3vP8JPtPtvfYq57+fUqCZZZT8QhYQdjypVSJybQQWG2muzDL/gdF/Jr2sOa5/WaaauCU6er7pPvunNNSGL2gz8I3UOt2n2jrleuLtoJHjYzKMpyJwZwAcEJLBhW7UuVILMH/yg1GQJJh9WSOlfVmb8Q563pI9Z5g8bqvg8YwaWrnS2tMtB4aVWSTyILpFAdzqHZauTbThMaR7t7BXHyK38TJ73E1AlPxXNRpXNHvndvbAI3xEdgyT3/AwDIbImbF3qYc4hlUfFtp/G5CUTLOdS23roTKrM+t7c30QV0K7OoHQ6Y6TJwfLmTles2l7lsq8oeaKvUPJ9OiLRNPLtoWo27SU6iC2zhghD888i1VBZ9c9JtXUS4faM1UaXfOsv2rAmsIAjC7k7/xF9yt7lzKLP5Q4keIFU1kHiHBs9VUSm17vbOZk6aeSGE0xufxLpfuxArjlwf3Hf9gRcAGG7MsLtw9Kv+AA/ChM4qJkAsOXAFLl/2cqzf+G3cevXF7v6uJhLcTRWKQ15825Hi0OTcBbhmmfleaSwm2Hf2fKfdmXUv/RAuPuI9WHXimdj/yFNRa4UHL/q3oPMXh2fm1MypQ+X3FFdA++lQY4xZYhcAthiY+jK3inUCNHd4xzngRR4SElIrDjn3DnMO1ZHJ/+KvB4bFCoIECMXKylRTIEEVBJ4n1ZQTdAukgeOGbidZL4xOYHPyXjONRiskaTZaQOvI3SLo2ibVhc31HAs+e8g51PpdKPuSHy8KlQaZmFwc4t3jig4nPIm5pY3pINFvkIQLpUR2+d/jXrUE615kxAwaP/2mrprAZbOG3xFVA1AQOac/vRmX/d3bMLBdpe/8/K9iUs24/WN1/0pkD1wxtA17CvfefgOOvdM2Uq8G2LLxUUxiGjOHPQ9ZGg89n/bZ6S2maxx3Dul6uCvk3oyIQzuR2B40vS1wBrppZq3JXrTsEFyx3LSHHZuzwO28E5hCE2c+zHiEMJH3xvGzNW/BkeW1uPoH/+nuNxfPfrWJWviROODq9W1oW5LmvrNIUwS5OeTQaP/RlPCTgzjtQUfDocqAFzy4INQwoYgHKgI+M4aLQ05wY4IArTLQeFXLyQLAtVvlbK31qhOHslAcwjZMNsde9c849BUfn/U5jxz2QhxW34o7brhsaEWVhw9SrXlE2z5Udtd6zQjrLdlkTb14l3MobElKr+fdU3TTIEMVOL5ozD57yOQtJU3hxl5bcYgs0zTRCTrXqQk3aUp1GQhCM6yMbRB751DUlEMTZlfj3/ptVTaBPlKoaPhkIQiCIDx+1j77FbhLHQDAzBF0nLkLuSbyAdFg5zmV+FyVKMmBJEesNKK6P3RcHyUOjeKoF30AFy95CQ5de8aO2LwdzticBbj3Kb8NAMgmFwaPrXnJh7FFjWPz17x7qKuJhFsAinJ3MYnEzz1Vmjs3zI5yUK085z0odOyEgDrKnDNkTxSHxibm4JRX/iby3jgOOGQ1rpjzVBx97xfR3/gQALgKACLIzHHNO3zGD82taD7UnmNuTRxybqTUlwSWRd91tjVPCsvKSOTxC4OmQ2DeEcpeqywo3yf3dlepP39v6jYIwAeQswXNtJrygiHSsJGIvZ1mPSduFIMZdyEOAGPNlHG9KDXyO+rK3fIDNdUWOQpznWPnr2N6GrUVnTjB9YGOXbOTmC0elkgxpth1AxNd+By9y3VFpbG0uEq/a2XFoaolxuXVFB7KDkScelEd8LlMZSt7tG4F11OsBgWRc27+6f9g/d3/gpsv/R/ceOXFOG3zfwPwrrDUNinanfnJZz+Cy77+952P3fdv70YDhRmdGVFuREkooZxzyFRuBIHs1aBzf9lbEXFoJ0IdOWLWstSp8rPUZJ/42o/h+ud/AfsftBKTK8wq2FxMm5NRvvWJ0bpz3477sR+S73/MuYfatfu0Mkd10S5Px4pDZgUkQ9QYzbstsNRaIU7aGS8pxp0lM3cCVBt38sm9IKTYbdeKlbW2BbyCXqnU1djzDhC0ykDj5W1c+RjbB0w6uY2CXu+cQ66l/dYnQAcedjQW7X/wrM9Z+azXoNYK937vn6xFNx9yAQF+spA4Z1UofrhyPPu82ay3fALTXtGilRe0lPOgO0dVIlI6EPh4uKgZn7FUJyjdmBonDg2CsfJg60E84fabFFXQ1Y6HmJNrqRrMdGYnkSOq/TutfsG7cd9zPzn0nQiCIAhPjDhJcP/Jv4YreichTTPopIe+8hfINEdQiT/PcedQlObOlZtWW4adQ7TYsY2hx/MX7Y9T3vopjE/Oe8Lb9mRx3HNegzte+t849hkvDe6ft3AxrjnsDVg7czGuveibAHzZCCdn80L6flSc+4Ws2ItG0Q5yUC1etgKXLz4PD+YHATDzkbnad6vd0xl/+jsxF1OoL/k0gFAsAGiB1WTm+OYd3nFPcyuaD7XnmPWI2AX3OHOK84U/XlZGLngSqUhI4ZECdZR2inYmPqBwr59yZfrdIcauI1pTuHFHNj/MONNs+VYz5fbPspXnQ7fTvOec/cWgHziHxvWMu1aZTRwa2VnWft/jegY6zt3F/YSe7hSU+LUUjy3gWZ3tz+JiVhOEU3eJQ6Y0lvYLLw5Ndr6m3SDHHe9IHGp1LSanv3u9jdVoZ4QCQF2a778qB9h81zUAgE2YQNyU0Fobtya7Pur3Z3DfPXcObdOu4oZLv4OTb/wjxFd+buixDd/5Vxw//UNccfhbsFlNImLi0KjjEZ1/Chs+DTDxrR6OqtibEXFoJ0LlY/THXZcDcyDE7CfPNMtx5MnPAQAcfdrZuCY7DkB44p9tYpT3xvGzo96Mo8prcfUPvmo+r1W7r+Icmaqcy4YEh9gFxplW9O4k1xJYuv5opuI5mKc32deHNcUc+uOLer7cSrHbpJjTyZSybFLnYEnd6iEvifItLMvA5orW2FGHY6KT20ioDMmKJAuWLscd0YGYd8ja0a/ZDhYfcDCu6a3HQfd83XWUUHaliK8quJDB1rZrt+I6Fr5mFustOagSXQytaDlRrxqg1LETAasoRWRP1IVzfzGBr8M5RKGNNHadzw3GSM6hAXMEFcmEm+ykusSAiUNFR05VXfQ7xaEqInEo3L55+x+KFaedP/SdCIIgCE+cE573Oqz9tW9DRREOfM47cNtpvwcAqOatwAJ4AYGECp6rEqXeVZDXU0Nlz1nPXsDtQe3St4WD15zq5j6cdRf8Kh7EAkTf+W3opuk812VZD5v0OPTEIu8iSjJMzNsPjVZIJxdixTGn4gcH/gJWnnrODhvzyW/9FI7+VZOXNLXsKZhQs6/U70kcedKZuCFZjeOnfwhguLEHzW910zhXR5KNOYcIxRXo1qKZI047YxcIHnIdu4W/QVDSRBf/br5E7+fEodx042KCLNHEeSAOzbAMxy4SJgjR50S16fKkkxzK/i2PNdPO0V+pFLHSfpPt7TTrsZDtmUDEmFQz7lplVG5pV+6We4zK21Rjr5lsWZkadpeb78H/LtPMwc5/7/bfG88t5WV+Xd9dVJsy0BoJVFM6Fz3NncvWa9o5oCnLCAXY9RPLZuUCWmxFyXaLe8BfQzTVwLndptQ4Yl2gqkrj1mSvufyLf4T8k6d1dlTbGTz24L245E9fjofuuxN1VSH+xvsAYCiHamZqM5b+4EP4WXQQ1r/sg6a0symGvqs2Lsd2epO7j3JeZxUg90JEHHqSuP6Sb+PHn3wnrrv4v9HUJrE+06U5ANsVm3rqEVdSta0rKyqKED/nwwCMCNAbm8R16dEYO+TEWV+37oXvwANYiPj7fwDAH6AICn/MmhkjqtgDENWeJlnPdDOwqwR81YNU8DYPHvUaF+xGNcWBTc/iaqm5IDTmbyftbmCtAOFKpW68vNyNxCEab1fL+fYBk8qj9Cy/hwswphWIOfNx8G9e6wS8HUH/qPOxTD/gOkoMlYghDBkEvHOIvida2arZwW2U8k31z+kszqH2CbhmbUWdup53iEOsO4e2J3d3ArXPd04i+/+yJfrQhCBD6Wqz6TE3Hntyrcp+0FHPj3fHZSwIgiAI28/yVWux9rmvAwCsfsGvYEb74Gmfg+NzVeLUu4jyZnq4hCrNsWHpBViy/uydtAW7lrGJObj16LfjyPJabPiff+s810VxjEde879Yd/57MH/hEvzvQW/FstNehkUHHIKfvegrOO7Mn0eaZjjjF/8Ic+ctHPFJ24+KIrf4dOy5v4xNtoV2tJecc7esf7O7nbQasCSLVyNRDa7+/n/48Nqs58rvXVxBPDwPBcKytC74fI8WBJtixokEA+1d8ORgovdzkQC9MdRR5hw7/CKZCy+prpx7m3dD46TOOVS620k9g0jpINNqTE87Rz8XVejvHjCCh2usMpiBajWJceLQiNzSrtwtIlgMTPIgVqHTOcT+lvqBOMQDqf3rpnUeiFkNK/MrO0rySMytbGVD7RZK7fy1JQ615+SZ6y5sXfv2MxSL3+DiUKIL1HE2lBEK+H2qKftuH+mrCSRNiaJvs5ZYiRq23IsF2DzUUW1nccO/fwgnPfYN3Hnl/+GGS7+NlfUtqHQ0lEN1xWd+HQfoBzH1nI8jy3vuOq/aSlmZ79K90d3nfkNxDgk7gsduuggn3f3/4ahvvBTX//7TcP/dt5nSnDjFogMOwR1qGY699o9xyw++AGB0mHEXR550Ji5Z97tY9uy3IIpjHPXBH2HdmS+f9TV5bxy3HvFGrCmvxnUXf8sFTxM0+Rprpo29tZXon1B4ZFMOBWibJPzhP5oTX/g23B4tN69nq3+8HTvg7bIJF4TGveXbZwrYP+gh51A2JJAA/mRH4406Ws5XKgsOmFQeNesq5CGn48f5GZ0OnB3FUc98pT95JjkiK0TxTghUa+63PQxc5tlWwOzKd2lPHJRxxFFxjlyZTjFFhzMLYNbWHi8HtJMgZnel0EYae2yfT9vlOjAw0adKJ41g1zTIVOVqs+kxNx5b0laXg6CjHkH7hohDgiAIu575S5bjqmUvAUBuIetYZrkqMQvgNfOT1jlMKaz7pU/jsPXP3nkD38Wsf+E7cKdahvk/+j3TubbjvL7i8NUYH5+EiiI8442/h4MPPwoAcNi6p7uOR08mc+YtxDXLXwZg9w3/3l7WPufVuA+LAGDoOzzurNfhASyE+tGfBRk/VH7v4gpGOId4WVoXDZvv0ffJnUNTasyJFBm8yGOeaAOqkww6Sk3rc4QlhQ0L1M5QOvd2vRXnUKKNWwhA0J2OxKFJPe32Tz4/n2YlW1k+FuZq1gW2aCbG0P4dd+eWduVuEcF8L8mDWIV20xL6DILHFvCuZnQMKnSMgcpCcaijo3AwnqZEicztF/S7qtZCqRtyq0FOkqS2Lb1t6mLFCzpe6rgtDm2Dc4jtR4N4HLEu3YIvF15oO9vXcDuDu2+9Bsc/8GUAxulEpV+PqbnB9t554waccPdn8JN5Z+Ho054HwOej8tyuLlwn8RnvHCIDR1QXQ50y92ZEHHqSOPWVH8LUu27CT47+EFYUNyH+u2eYjhyxUa7H3/zfuDdZhhOuMC6g7b1gPem8t+HgI9Zt12uOO/cdeBRzMPjfPzQHU76jW+FlHFNGVLHqdN5QTfAYGttpKrM5OESlss6DbJpm2PSMj+Lm+HAs3P8gZItWAABu+sk3gudRun+Sj/vOZ0wcSlq5SrQS4LJvIl9WxhV2WmWg8boDAvuuqyhFzDszbIOT69Tn/TxO+8DXRj6+I5gzbyGumfsUNxbXkYydOHgHCoC1sHeB1L3gebNZb+nEkerhTm3kKovK6eDgyGvUnXMoHUNpgwx9ZxSf9aTj3DjoyCI9Zn7nmtlbgbBznc7mIFel72jGhCOd+pM3uZCacjBkxQUAbU/oe4PFXRAEYW9g9QUfwtXjJ2P/o07HfstXYkZnWLD8CMxZcjAarTB38XIkdhFhvt445GzdF0mzHA+c9F4c2tyOleVNQ+e63YU1F3wQFy19OQ5d/6xdPZQdQpJm+NkRr0OtFSbmLQoey3vjuOXw1+CYwQZk9/wEgA2Ato1RKK7AOVnaXVNHxC64x51zaMwv/JV9J/zMqHFzAVxVzrFP76eqgXEW2RB4IpgLWXGIXk/u7aAbGoOEpFiXTmxy4fKJDzxPVe3EFC5i9q041GiFJEndWKqij6guAvGIxCEd551lZV25WwSfy6skh4oiFNrMg7sWS3nVwIDNNdOOsjKz9JwGTqegc1lHXlNsozsoOJrmwlQ5MeQcajfIUQoFfCMd37WYYhzSwIFGlRM8I7Q9Vl15caiIJ5Bon8/DnUP0mV1ZSk829375Q6Z5E8wcn6oMZtS4C1IHgHs2XIhU1TjwhR9291V222vnHOoWq12EycCLQ85t1EhZmbCDmLdgEU5+yfvw0Cu+gRq2E5I9MSza/2Aseus3cXt8CICdc8E6PjkP1x/yKqybuRj7T98UhDdPLj8agA26jjNnvRzT1E1gzIkBbXdJFXWXlQHAsU87Dyt/4zKMT87DcWf+PO7DImQ//rPgObxFp+t8Ns5cRHRQ5p1M4Mu6aiZmBRNHu8pA46UDgmq5nvgB0x30dgN3SbLWrLrxVZia2Tm1q2sPA7vbziE6uc9mva2QQjWlzThqOYdcS9Itweu7nENRmjsBKmqJcd45VPmVNfs7O2stiUQs2Frb2/2pzfYxJhzlfj+JnDjUH+qoR58P7D0Wd0EQhD2deYuW4Zj3X4jlq9Zi/4OPwNhvP4hDjjoRq45/Oja+7WosX3ksVp9xPh7BXGSq3m2FkJ3N8c99HW6ODzeNIHbT72TegkU49Zf+FnN2YOnaruaUl38Q9776+9hv6fKhx445953YhHGs2/w9AGYBkxqjuCyeeHiREkDYyr0DtxiY95xrqSkHLguyUDmiunALnNOavV9doFBmXsaFBu6gIOcSvZ7c26PEoczO/WgBGTCdxYBwQRPwjiH+t0udZguYHEyan1fFAFFToFC5Wyz24tBszqHuuS2/tqK5LF1ndLqN2PdTJ9w55MUq2g7edYzg3eO6vjtq+lPb4GiaC1OURt0SlNoxHvS5JNTQ8504FIfliSQuUfdmTpc4VKYmxoHm9Dzc2olDI9xkTxY3Xf49nLj5f3DJ/LPceOnvoR+NB2Ok739y3n7uvto2U/K5XaPEIXuN2SkOFahHuNP2RkQc2gkcfOQJaF7/TWzIT8Cclb596rz99sfcN38NFy86Hwcff+ZOGcuaF74XU7qHA/BgoOIf89QX4vLx0wGYk0eeGwfIPNttIst7aKIMmS6MA4q7b+wBcmukWY6frX4jjiqvxXUXf9Pd7/5gsxylPYGlvQnnQHGKfRxe3KsowkCnqCMvZvFJkp5Yikk97cbrukuwsRfJJBYW97gcpK2l2e9Mjn7a+bh4/1fioJPOdaswuhxeoaCTlm6VTTlHEROHRllvTf3zAJmq/OSFoIylVqcYXqPOVy+o9IwsmrRSpm29fapqaNslIZswziGy1rpVF8oP0hGUrfWe2vSoeQ7PNeJlbHblpSkHQx31AD8pEueQIAjC7s+CJeYCfGLOPNy48hcAYLcVQnY2URyj/3TT0r7dREJ48lBRhOUrj+18bM68hbhm2UsQKY1KR0jSzMybm76LK1AtR7VjROwCwTuOUf6NrgbOEV5Fxv1NTW6o21gxmDFhvAgblgA+z5Puz1C619d2UY5n6HBSW0pG4dbmtnfe8wDnxpWV+fljEZvx0WKiWwBlDUWciBP5hc9Y6SEBrSt3i+BzeZdrpOh9h69bgsVjFlvAs4pq7hxSZmGV0KytfdMpDpW+c68uvSNsnObC4e+fYbhBDu88VlNEA4vfyHTLORRnTqQMcOJQAdhx16lpAEPlVLxki8rSdoZz6N47bkZZFtBNg8E3fwOPYg6WnfubdrwDV2VgnE7D33+7DDBufJfkOOsWh2ifjYot7j5yf0V10bm/7K2IOLSTOOCQI7DuA/+DY57y/OD+/ZYuxylv/wcsXrZip4xj3sLFuOqACwBgyFlxwCs+gS16DM3YflBRhMsWv9AIKzArIE2UYYzaUHJ13dazbgtrz30HHsVcFP/7R+4+1/Yz7bkTWJr13EmDxA/Vcg4BZtVBR6mrI+aTpCOe/3bMgAShXmfLeb3+dVimH8BlX/1bAKw8ajcQh9Isxylv+WssO2yNO2hVA3/QoslC3i67S8NMJnrebNbbWqXIavPb6qTbOZTV00H5IF+hoIOucQ6Z55AYFwRTJ3aCYrejNznf/JtOonas1K2uQOomUTNbHjOfwcShuDecU6WrwVBHPfP5PuBUEARB2HNY+6JfwX1YhGp8ya4eym7DMU89DxcveSmi1Wft6qEIllXnvhcD7YWNJkox1vjuYFESLnISQSv3LmrvHHLz3WrgsiBrZWIfKECXAqWLQT/IS+HO8JjnJsUZEtVgMGPmZtoKI7pD4Ghqk/8IIGhNP6l80DXPZKK5GAm7hY6d4ENCTcSiE0gcosViEmNIuGkLaElHxqTbrA7nEF1bdM6H7XNqraATlovExS429qEsH1ZW1hXmTa3pnThkf9ecxCG+ANw06KlyqEFOIA4VLTdMkrmMTgDmdtwb6mIGsMXYqgDqAQodQ8c9pCidKBKIQ66ULfz+r/rBf+FHX/hTAMB1P7kQV3z3C0PbvT3ces1PsOjvT8aGr30K995xE44ZbMANh74Oc/c7wI2b9kvezdgMzoavt5xeifaZQ8kI55ATh8op/1oSlPTo66e9ERGH9kEOP/f9KHTiujcR+x+0Ev03X4zjX/k7AIA1P/+HeAALTRp8kqCeexAWwNjtuHgys+ZleGT17IHYxNjEHFx/yCuxduYnuOWqiwD4DlVGELLiUN7DQFG2UCjqcOdHqYwC7+qI2Ylv4ZJluPLgV9vX+pBtxV6/9tmvwE3JKiy/6s8xGMwE5VG7EwesOBKbMAF1Pcs6ovBBcg65Fvahc8iLQ6Ott3WUuvDxtjBG38VYvSUoReT13856mYy5k7070DJxyAl8hXGk9SbCE6K220QuoFIl7jUDG0CnxnweFe9qRyVquhp0WnHp+xl1YhAEQRB2T8Ym5mD8XT/B+jf86a4eyu6DUjjlrX+H9Wf/4q4eiWBZtP/BuHzJi/BQZMpamijDHOvAR5JD2eDg9hyTHNtdHa4A1nEsHwsW/pQVfihThhwffVu2Ra3hSzUsDnF3D4kitAinWYZjm4KVFVHeECdO86C7F4kpJBKVSL3A0lpMNA1FClRR5h6rmXMIGBbQujIm+VgIl2vUEZBNuPkmMjdnpLwmtz0xdV+jLJ9hcQLw1zacxI7VxTLQIu9kmL8JwHUFazcs4oIUfYb7LePcONeqErppzO+TZDYWJPytKCtJ134/ovJClwXb4Rxq5yINLv40Drv6LwAAxXc/jskf/L+h7d4eHvvaR0xW1ZYH3Lw/XXy4uxbkZXBVOhmKQ/UAtVZI0rA5UcKyTtO8+/qO9tmk5M4hH8y9L5U0izi0D7J42QpcedLvITrtbUOPLVp2CHrjZsVgzvz98NBz/wqXHvwGAMCaF77HtSblAsJJL3wrTnnp+7b586m07bFvfQwAcw7ZloOAOdDRiYEUey8O+RPaA8kylPNMbtM1c05HeujpwWcd8+Jfx1X5esxfdRoWHLACd6v9Mf+Qte5xFUXon/FrWKYfwOVf+cRQuNvuQm98Dq7d/zys3fw93HfnLeZOW2sexab8TrfKppytkmqaZzm41VHmVrfadmcS08ZZ1wnzebnrUuFWL7Lc/YZxy6mlYt+SOCo2o9Qxsp5Z3fIrGObAHud2YgMfVFhOP2Ze22MhgSy4PJ+Y796r3VGPfz+jLKWCIAjC7svc+fsF5R2CsDty0pv/GovfewkAoFnxNEwo70h3uSYjnENdIcYAoKhcJs2YOFSYkjGVOmcIzWFd2dZgJlwYDMrKmKvGzo9IHCL3Ng9YJoqOzJmB9nPDKA27gtHcixbsCpWisZULbjGRNVChbrOuhX0rMqEtoJEbpwu+GBilY8FndrmNaL5bqsRlxBatRi70WZVKh4OeWf5QV+YQdQ9z3eHs79rlHHIOqda+EopDlD1K5YreXUW/k4pzK5C0y8oK939VFyYSwuY6UXgzF17iEeJQ1BRIKKC8GSBtf04HumlQDqaH7r9pww+xfvr7blwVy1RKaX+tCndd06STQZc/VQ2GumeTMEalaFy45NDfFXXdA4DGCnSJHu1O2xsRcWgf5cRz3oRjn/bCrT5vzWnPw6lvNCVg8/ZbimsPN3X/T6Tsikrb1m36Lu657fogWJkycVIrFBU6cYo9iQR8xWXlr/4Ap7zuDwAAx7/3q1j//DcGnzVn3kIc+4Hv4siTzsTc+fvhwA/fgCPWPz14zjFPOx/Xp2tw2LV/jf6WR4c+Y3fh4LPeCQWN275hAr1VPQi7j7XEM+coou93FuttHeVudav9287ZfxUAYD88FpYiJhlyZVYnqE46yXqu9Mw5h1xLe+8cSsotKJH4kL/ad1QrkLoJVInUn6ynjWstSnpuIpIy51DPrrygKmyHutZkwQV1736/rSAIgiAIez5xkmBswixiHX/OW3C3WgrAlpV1zGMBIOqZBbHND9/T+Z669h3HXMlMNTBZKFZsSRovDlGgdFX0XQgyACd4AEDCSm9onlVMbbTjsXOreljgIHcSbzc/xbqLRclYkPlCopDucA75BWEK2e47JxCJOCQkublgu6ysI0aA4IuBbedQl6DkcomQAnEoYPntoUDrdDjoeUTnMj5Wk79pxSH7u7ZjIMx2dsdccHFItwQP/x0NvMMqyYKMUEK5effAXk+kLhi9GhiBJBSHKEYi3C4TuF6629xt9ODdt+HK3z8TGx99CDdf9WPc/DvHY/PGR7Dh25/BzO8djuktG4P3mvrvj2CjNSHoesA6jOWI4hiFjs13TOJQNhmElHOXHOHzncx7ZSMWiKnaImfikCtFa4ZzTPdmRBwStot1L/5V/PiAn8fBJ5/zhN7n0HPegwYR7vjGHwdBexT4lWU9lCyQDoCz48bsQJmkqXPOPF5UFKF55oewBI+g//2/BODDlHcnlq1YjSsnn4Ij7/kS+tNbvNJPuBb2VgRJUjRauZWM2ay3gwNPdatb7UnLEcc/DbdGKwCENlxngy4L35o+7bnSs9SJQ95B5DufTaFQaWATBazgpdLgJB7Z372e2eS2j1ZyktwLRVSipuvBUEe9ru9HEARBEAThySLNctyz9pcBAHE+6RzV7Xbah5/yAgx0ikd/+I+d72MWzuy8J81QawXUprNXhdTlqpDTomLiUMQWBrnQwNuzO1fOtLlY52X6bUi04O3mp20ANmAc5IE4RM6h2M/rvDiU2W3yzqGkMU4geqzdaXao3bsefeHO53uugy+JQx2CUsQXJrlQxKDtqaPhoGfFnENNNeygoe5hFBxNv2s7BgIY3SCnYp9Jbph2hUVZ9J2IppLcdQrm0FhV7UVGJOFiLA+3jq0jqJ2lFDWFE54SXQYi1F3X/BDH9S/BvTddjkduvhQr61vxyD23YfDgrZiLaWzZ+Ih77vWX/g/WzVyE61a8zsSEVIUrb6O/G5e3VA9MN7tkPOjyp5piyDlE+ai+ic8Iccje32uYc4jEN12gbofI78WIOCRsF72xCZz25r/E/getfELvs3T54bhi3jNx7P1fgd7yIAATPE2KfppmNpDO/5HHVhmPnwRb+ZrTz8bV+fE4wdoZ493UXZKd/lYswGZc9c2/N0GEYGJNQoHL9iQRRaZNKDu4jTqBrn3hL+MhzDeva9fCRxEeXP0qAOFKixpfAAC488Yr3EpCkvXciZcOtO7kHPtVs6yaQgkfJE6WaTjnkA0nVN5FpPteHOK5RjRhyvIx4zQrZ0yQers8zjmHdj/hTxAEQRCEvY/157wFPz3hYzjqaedjwYErsUX3MO/A1cFzFizaH1fMfzaOfvDrrjMrJ7ILZ0SBFKoyJViVLVNKtC8HajIShwYmTDcaFocyNheiuVltRYHEdoJVHQIHiQPUjh7wGUeAmZfxQGAKVHbOIZV6gYXmcmyhMIFZyKTH2pEJQ+JQR4yAGwu7XojdomMoOnEiNvekOeSQc8jeX1uRK+ZlTXWBKZ27bWmToYCOMujYBEfTgmg7BgJgzqHWnJznHDnBozdGG2xeW/QDcYlnhLqxNiQOFYhseSI5y2gxlodbkyNo2DlUOvdO0pSB24jElarsu7GWBbvN8qOKb38Uj2Iujj3/fWb/rgdBN2vAlCQacciKQC7IfcZtS5eYx0v4RolDtM+Os5B1l1M0iwC5NyLikLDLmPesd2FC9XH4XV8CYIKn6yhz1llTc+zLpo449Xn48SG/hJVrn/qkjCd7zm+428lumkuz5rTn4dZoBfa75tNe6bd4ccifSO6P98eiBy+CbppZrbfjE3Nx0+Gvs68fFk/WnPULmNI9VIlfHTry2a/BtM7xyLf/0B9As54rPetyDtHKT6+ZMi1AbZA4dWyI6gIVEnciCMShgSl7i1keVZL23Ik7zXvmhEKdBlpd1yi8emxiLgRBEARBEJ5s4iTBCS94C8Yn52HZitUY+/B9OPSo9UPPm/PUN2NC9XHNNz819Fj7ore0F8lxU6C2YkuK0jktmsyIO7UtK6tbuT1AeJHsHNp2ES5KjStbd5SVVfaCvh/5+eAgZs6htOfdTYBfqEv8vM65iFrzRd5tlh5rXLMVK9y0cpnSrhgBC88ccs6haDic238PXkBSSSgmEU7Yslk+PGMnagrMkKOqSxzSlXGxJyY4OqqmzUJpKwbCbOdMsN1EzfKD2q3bvbtqxoloJA7x8ivAdx+LmgLKdjOmbW5oP7Dh1gDcZ7ZDyhNdIFYaVVkg1mXgNqLnNgULkS77TqihbSyLAY7rX4rrDzgPE3MX2P17wDKVuHNoAFUNbMOasMtfV+MdHWdmTB2dzDipDbGe0N455MS3WQTIvRERh4Rdxqp1T8XV2XFYDLNKklnXSeHaTGaBYj8+OQ+nvf73gxT6HckRJz4bV46fAoC1hdzNUFGEh45+PQ6rf4aDN/00+H68M4YFdh/3Fqysb8GG73xuq8r38Re8Dz8+9O1Yecrzhx6bM28h7jznMzjg3N9y983bbymuXHoe1j32HdQP3gzAnKBoEuKcQ5mvsafvtddMuwN4wdpymtWLjJ3EM+cYUyQOMUEoyVlweW46pcW200DbinvMz70B1535T1iw+ICR34EgCIIgCMKTRRypzvuPXP8M3BivxJLr/9m5NQjn7LAUSKGawsYFpNBRjhSlc1oo222sKvsuBBloOYd6w84hcmgnWWac5/Wwc6h0odfeLVTFoXOIxmjuCMOSayYO+fmiF0eo22ytwqwi525qOYeyrhgBeiwbFofou2h3tAX84moZZUMZRf6NrIASpUNdwKK68CV2LXGIuofpJHcB4Em5BaVKh2IgAO+QUq3rkSbKfIc0V1Zmvj/vrho4ES9Kc9PiXlXBfkW5RVHjRUbXXbi/2T2PXDm0nU1ruyhzqRjMIEEZlK+RuFKXfTfWuhi4bCbaxkHfhFNTRUJp9712N7ZKpYhqG8TOS/9ISKuLITEP1Dyno5MZhxarM1UPjT9FGXTD3tsRcUjYpRQn/ZL5vw2eblgIXR2lw3/kTzILz/sDXDH5NBx4+NE79XO3h+Oe9wt4BHOxBI8EJy0KNEzHfDev489+E+5SB2DORX+EbCvKd298Eqe99qOYM29h5+NHnnQmlre+l0PPfT8A4Oh7/t18dtZzJ15S52nlRqW5E3rm6s0uuJpWwABANSVqlQS14SQokehjgsvJOWRKzOiAXyJxbSjb4tDY5FwcdcZ5I7dfEARBEARhV6CiCA8f9WqsaG7HjZd8K3is7RSvwJxDtkwp1ZVzWlC3sbq0ThzrlnECi1aIk7DDGACoIlyE6xKHyJ1EodcAUKb+NnVBo7k8uTsCJ04Slna5LoRV4VwaNOZ2XmTFMm9IcFEj8mC4OyrJjGhDgpROhheBaTGzVqnvIDckNvixu5IleqgZoIio0Ur43VFrenIOASZioSIXPYuBMF9Fd/fkJkpddzDK3klS+n177rWlC3PuBRmhhBeHShNazgQxFJv8uAe+tArocg6V9nl9pLpEqmo0tRFYSFxpWPv5puy7/coFqLvwbL/vRE3hA7cpc8jeT046FyBuBayoKZzjzA8wQ6Q0VDmNAWa/phzKK6r8tmvJHBKEncPaZ70Md6pl7g+yiTPnBCmTOYFtdWew/Ih1WPver6I3Pmenfu720BufxA0HvxJA2Irz6Ge8HJes+z0cdPgx7r4kzXDv2ndgZX0LFmDTDrdFLl2+EhsWPAdzYVT/NDfiUKMVEjvxOHDlcfjpxFOx/NhnYPmaU7AJExhXAxdcXbLVqdhaQulEUEcZ0tyWy1nRJ05z1tXO5FQVTGiiNpRPpKOeIAiCIAjCzuS4s96AjXoC0z/82+D+qAkdEXSRTK4gnZiyIXJaUBl9Uw6CvEm6mG5fBLusysJ2qbLl+13iUG3LumomCPHbJMjQZ9BcjP5fR6kTKxrWhAawDUXshbjrjmuf64QbJk6Q2KGT7rktd9LTuJxzqGM+7OeePtKgbokNiglbOmqLQ+Z3Guh0qNNbwQKi6bvI6in3uxYqBWr/Xi5vZ0gc8p3H2q3b3ZjLvhNeyDnEx0BjBcg5VKJhzqGo2OKeV7ba2uuWOJRyccg+p7Cv8YLQwIlldTlw+xVtYzt8u1IZosY3u6HsqEqlUE3pysfc80lI0+VIp5cqtqBUCWaDBM1Sx3b8ZpxbW1zf2xBxSNilxHGMh5/+UWw4+NUAgGrF03HbItNqfukFH0d+wV/vyuHtthx57rsxo7NgsjA2MQcnnfdWqCj8sz7+7F/EXcqUUj0ZB7clZ73f3c7yMTSRtSPbcYxNzMEJ7/sv7H/wKsxbsAjXHPZGAF7YokkO4CdAdCKoo9Sd3LPKnKxSFnqd572g/LBSmWtDKeKQIAiCIAh7ChOTc3HNknNwzMb/w6P33+nup7IfgsprXMmYbUFeF2ahLhk33Vubsh9ECsTMgcGheRZ3aPO5GYcEqDrzglDDblN+ELnDo5Y41ETDziHXprwqXJmYi0FIhjuaEVxw6YKXzrnuuCT2dLwmZZEGzmXVKj+jz9Kxd2wRkS3z6yrJ4+4YCpnuNdN+LmxLBQkK/o5bGajaho8D1LrdCx70+9ZFPxCXXPkVC4Cm0rSkKUw3rihzziPaDwAv3FCWUDtom8ZSFH0nFA0GoTikq4FzRRnnECs3Y+Py4lCKqCmDbtYAhXEXrnyMl9GZbSqGf6+YuiRvGQqrbkM5t1PKu7+q0mQqde0veytbFYeUUgcppb6rlLpWKXWNUuqd9v6FSqkLlVI32f8vGPH619rn3KSUeu2O3gBhz2fdM87HGW/8OADglAvejVPf/g8AgAMPOxIrjjphVw5tt2XBov1x9fEfxsy612/1uUma4b517wCAkdbbJ8IhR56ADeOnodCxqZuOM7MCMoJ1F7wfD2AhCmtJnornYdGWG1FXFeLGnFhTVhvuxCEr+qR5z9lGs3zM5lSROJS6NpQiDgmCIAiCsCdxwJlvQ6pq3PTNv3L3RazjGEAXz4UXfkhssVkxmROHBkhZJk+Udbdnp3lWahfhkrznBKg2zrmTMYd97m+TQ8eXlfncScCILYFQZCmRQlW222yS+wYq9rluXsjKypzYMWJum8SJyfJh46L3VV3OIeYuipIxN16OF4dy6CQPMnYSK050leRxdwwJZmN62v2ubaeWF3damUNx7hw6lL1DeOfQwAkvSdZzbqeS5TVRVlDclM5dRvsH7QeAL9lyzqGWI4rur4oZk+3DXkPB07ryzqGmHLj9irbRhW+nXBwqXE4RZVJVKjPikC0fi5gYBhihqlZtpxeJQ1NbF4dcFmpmxcqBFyDFORRQAXiP1noNgFMBvE0ptQbArwH4jtZ6FYDv2H8HKKUWAvgwgFMAnAzgw6NEJEEQto+Tzns7Tjj7F7bpueue/4u4ZP7zMf/Y5z4pY1n+6r/F9c/4G6goQnrU83D1knNHPndsYg6qV/8Xlrz8EwCATce/BSuaO3DZVz7hVi/oRNDE/nbe2NK1zIRelzpGFMeootStUFUqdW0oo1TEIUEQBEEQ9hwOXb0WV2TrseJn/4am8u4OLlLUUYZYl0hgu9DGYaB0PmHEIRfwTO4Jcg61y8qOtiUzAAAsm0lEQVRsHqRzaKc9V9rTxokzPd/5VeX+duYu5MOcI5V44YW7b4hCpYio22ycucBod3FPwg0vK2uVI7WhLB8+LrREJ45vhpK7MrZ2Ixc3dhssnaoatc3YMQHhNh6DlYgB3B3Tc9/JhJ52v2vVcmq1w5gJ130Lw13skoyLQz6vp8s5lNjPinXpOsRRZ7Ss8h27qmKApq59UHPLOURjKfrTRtiDL/Oi0jpdDZwrSlcDt520je18pToyIpAr62LVBHFTuvIxn0NFzqHhxjvk0sqrqSHHXBuqxqhUisq6v5zQ1ZFRtbeyVXFIa32v1voye3szgOsAHAjghQD+yT7tnwCc1/Hy5wK4UGv9iNb6UQAXAjhrB4xbEITtIEkznPSuz+HIU54ccWjRAYfguGe+FACw/jmvxOlv/dtZn7/s8KNxwCGrAQAnPO/1uC5dg0Ov+lOM15tQRxmz/2ZI7aRljMQhm2tE9s86ylBZW+0gmcRc7QMVBUEQBEEQ9iQGx78eS/TDuPZ//w2AuYDnF71UXpPZLkqudMt2de1NmnV4XQ1sXgrl9nSXlZErJ3PzrDH7GcPt2EmciXreLUQZR4BvCe7FIVuqlHpBiLtviBJp0FDEuZ1anXh5WVPJO3KNoFBpkINJn9klKNH3oOMMMbmxWo4R91lx7kS5knX0osY6bWGNu2PoOxlTPg+q7dTybdxb42Qh2O3W7a4jW9X3+VNZzwkkNAYALtQ60aVzoJEgRvEMgAkAL3iHuJYjyuUMTW109zkhrGaCEDmHqgFUE4ZbB/lIMPt30pROXMp4NYH2QewugJuENF2M/L3yZgpba3JE32WpUhQqhaoHQyVv+wLblTmklFoB4HgAFwNYqrW+1z50H4ClHS85EMCd7N932fsEQRAAmJUdddbvYhEew3J9H3SU+nDC2AtFc7SZNLhcI9fVLkdJLU9P/2VTG4zhED9BEARBEITdnXXPfjnuwyLEl3wSAIKOY4BZFKOLeh37DBtlxZXxOfMBALrqI1OVz+1hLcE5VHI1Zsvys54p33ct0xkkznBBKB4zTqWBTl3eJDliaC5GF+lN7LNiuDhUqdSVMxlxyG5TGpaV6aCj10zwnC5KpEEOJolOXa/hrnUnRrWcKCRWIfHlfJSxk1oHTldJXsW6h/H5Kf2uQ84h6tSVjSEgzpHZjmDt1u20mKrLAROXes4RVDGRh7KCEl26DnHkLOvpafe8uuijYI4j3lGNO4qKaS8O0ee4MrmqCIQiCsNuXKt7KziyUr5Yl0BdoLBVAnR/Yp1OtUq9u6vwXcXazqHI/kbjzdRQyVkb+ruoVOrK/GjbZ9vH9ja2WRxSSk0C+CKAd2mtN/HHtNYagH4iA1FKvUkpdalS6tIHH3zwibyVIAh7GEee8ExcMudMALbW24YT6jhHb2wC1ydHmRUWu/rTRL6r3fgz3o3NT/kAAGDt087Dj/Y7HwCQ9CZ2zcYIgiAIgiA8TrIsw82HvhJHDa7AHVf/eOiit46Ms4K6KJGrIbZdpsYmjXCjBzaDkcrKSByKup1DY1YUSNOevRDvKCsj0cLmGgFANm4+j0q4AN90xDuHvNhC94F1GWt3m3UijhUMSLjRHe3eo1lKfkqkKLhjhDKQZnMOsbzLdiMX19kt4UHP3jmkowx1p3PIl05xZzv9ruQGI6grWNYqK3Odx4r+UOt25xwqB9DWTZPmXozi4lCqW86hOHfbP6G9c6gu+760CgicQ9xRVM14acCLQ/a3qn0pma4Kt520jT5825fyJdpkDvGyuYbEIVs+5rrL0bZ2dBWjfW0cM8Nt7lvUrqzM5kY1hStd3JeiKrZJHFJKpTDC0Ge01l+yd9+vlGmBZP//QMdL7wZwEPv3cnvfEFrrT2qtT9Ran7h48eJtHb8gCHsJy1/y+6YDmw05vGTlO7Dg1FdBRRGy8/4MpY7d6o864rm4Zf/nAQBWn/xzOO7Zr3Dvs/YNn8AP1n4MK9c+dZdshyAIgiAIwhNhzdnvwJTO8dC3/8R3JbOYduZ910WJLlzTagsKnSDPqTW9KTMjQcF3fQovoCfmzEUNhXl6i3NqNOTeaEHiTE6h11ohGTMNRni5mnMOZWErejDnkGo5h3q2rM20X7evs88lFzmFHJubYVZNF5VKgnbvFCzcdbGfsTGSY0e3wq6j1GchtVupp/DOobglDvHuYaFzyIpDURp8365TV94Wh8xrB4P+UOt2eq6uBu71SdYLgqrdc205WIrSdYijXKcJ7cWgpuwHQda8oxp3FNXTXhwisYbcU6r2ghCqgXOk6ZZzyIlbtiObqougwQ11aqPyMRdSbt8nQznk9KJtn8TM0H7fpo5sXIXy7q9t2cf2NpKtPUEppQD8PYDrtNZ/zB76TwCvBfD79v9f6Xj5fwP4XRZC/XMAPvCERiwIwl7JAQevwk0XfBWHL1kGAHjKq3/bPXbYMafgosvfjsm7vodjAJxwzi+OfJ+JiUmc8aK3PNnDFQRBEARBeFJYuGgJfrT4BTjxwS+jQRQ4Ipo4w7h1+ajYO3HSagoFUmSRcV9HVhxSrdyednlN2pvE9Ye9Fkfe+o/o6xQZTLlT0ikOmYv8fHI+AOMW6gq6pnIpesw5cRImjjDnUK1SzKk32vH2XHA0iTguboB1y+KCyygqlaLStb/DdU8bdhtFcYxLx5+G7PAzkOQ+eJqTOOeQD5YubVlTZsv86g5hjbem5yHT9LvWUeYCwc3Au8Uh7lZqt253z60H0E1s7xtzWVM16/SW6RJQRhzKVQkV525ciWrYuAeomAjEy+UK5ihqBsPOIXILqbrwTqp64B1prL094F1ZRvwsEbUCtxubt6S1Ms6hVki5KbPsdnoBRoCbDS7UVXWKqCm90LUPiUPb4hx6CoBXA3iWUmqD/e/5MKLQc5RSNwE40/4bSqkTlVKfAgCt9SMAfgfAJfa/j9j7BEEQhlh13KlYvP/BnY+d+uqP4JgP/O/OHZAgCIIgCMIuYNlz340EDXqqDPN5xpdgviZXkBdb8sZ3ZGoHPAO+NKvdnh0Ajnj5x3Bbchim1TgAoJhzCA6s78EdN24In9hyDhUqdQ6OLucQPeYEEZZtw0N+y2iMNRTxrhxXxhVFKHQSOIe44DIKKhEiqK17nI51Pv/E938V65/zSqQ8eJpBnxWlviU9iSEUEN4uETNj9a3pQ3HId+jiYpyuqVNXOE7+me3W7Rm5narCO7zyMfcdhs4h03Z+XJux68Q7cQCg0kYiaKqBC3wGWI4QwjI19DcPbSsFT6vau4VUNXDbqVl7ewBBKV+KEqoVuK0jcz+Vj7lSRe4caol5XS6tUdSRF+qqyHTr86WL3fvL3si2dCv7gdZaaa2P01qvs/99XWv9sNb62VrrVVrrM0n00VpfqrX+Bfb6T2utV9r//uHJ3BhBEARBEARBEIQ9nRWrjsGGidMBhOVNh539K65jq0p8hs1YM+3uL1SKpPIZPgBcuVmXgyLKelj01q+j/9LPAQBWnferGCDDQ1/5UPjEeoBKR8jHTa5jidQ5OPiFfEM5R/YxLgiRwMLFoalV56KnjGgQiEOsW9e06iGb8ukkXHAZRa3SYFxRx/t2kY+Z7VOtQOjeHFMMk4zPd0JTXfbR1LVp5Z6Qc6gKXsdb0/OQafpdm5Y4hGqAWiskaXdr9mrQH2rdntI2VYXLBsryMZZFZMbgxgrvElJJ7sRDAJhSPtyai0A8S6nkQdWFF4e0ay1vnhvVhXMLqbrw20nOIXJJcXFIl4iaIuysF2fIKEA7ytz26mqAqixMmWUc7gtcOGx3MmtD32UTZahVgliXqK0rbGv7y97EdnUrEwRBEARBEARBEJ580jPeYW4wIWXp8sNx+f4vBmDEAnJHjOvQOZRZcciVZlE3rhEOijkLD8BBa04FAOy39CBcveI1WD/1fVz7k2+756hqgAKpExJKpKwLmn9fKu9xpUpU8pTkrj07F4fWveBteAD7AbDt11ulcABw/eLnYe3G7+KeW68128EEl1FUUSgOdb1vFxNz5uOSk/4IK58TxhgctPJYXP2sf8IxT7/AiVJV0fclVnHmA5UZvDV9UCqWkCCRhq+pB0FWEuE6j5X9odbtzl1VD0yYs82Pou+bxkBj3aKZ8BXnPtcJwDTG3Wu4OMQdUYFoVPiSuLotDjWFK7NTjReHXAezMiyh03GGHEYcCpxDSY4MFVJtMpJ4SDltk0rCfZv/zltzDtE+28SZEfiaAk1p3jdud43bixFxSBAEQRAEQRAEYTfjmFOfix+ueh+WPfU1wf2rX/xhXNk7EUtWn4ZFy1eh0DHmY4sTaEzAM4lDthQqjlHqeKsOCuK4l3wID2M+cOFvQjfWYVIXKFXiMoAqVlZWt0qAAO8GWbhkOa7O12HBEadjyUFH4Pp0DZasPtU9P+uN4c41RogZmzPfCVr84v7wF/0GKsS4+z8/AiAUXEbxyLw1eHDOUe7fycR8AEDPZibNxkln/wIWLV0+dP8xTzsPSZohynyJF7WzV0k+7AJC2Jqel28p5hxK2WvM99whDrHOY12t2wvbgl3VhXORkVOJxkBjnVZe8FBJHnRG60dGHNLVwLlngNA5xMWhhOUl6cqW+1EpWVMGghCFYVM3M91yDqk4R6YqxM0gzMeKM0RKY1wNjFDEAridi6lVVpZ25DuNgv4uGttxLtGlFyBncaftbWw1kFoQBEEQBEEQBEHYuagowlNe9aGh+xcsPgALfu077t8XLzoXpzz8Zee0KNvdvywlkqGOTqMYm5yHa455B068+nfw0ws/ixOe+/NAU6JEijnWtVGpFFnP3o7CzlKAzznK8h6O+cD/uceP/OCPhz5v/QXvw+0rjsWhx5yOOYsPwsV3Xor1hx/rHl+87BBctPQCnHT/v+Gum68KBJdRPPVtnwz+fczTLsBV+SSOPWLdNn0Hs7Fo+SoAwKabL0Z5+FoAVhyKQ6EHCFvTdzmHTM6OL0VTrTBmwotDA9sdLRRDSpVC1QNoFaFQKcbBwrztGKg1/Uw0DjSPuPcl51GmKgziCaABUA9cttNAp07wAcKA65SJQ060s06ouCnc9xE1Xhyi0rd2+La230lWzwRuNO40Q8zErKpw4pBqB4iz73pr+z09rsn91ZSsk5qUlQmCIAiCIAiCIAi7OYef/2H0tS+hqlSGOdpcsPNQ3kejBcDk0m1+33XnvgN3Rgdi0UW/h7IsnGhBLqRKpchy4zLhQdcUDJy1W7HPgooTHHLyOYBSWLT/wTjlbX/vc3Tcdn4QBVLc99XfDgSXbSVJUxx7xjnb/PzZ2P+QI3F9ugbLbv+yc9GoJHeByhzemp6HTJOYoeN82DnUIQ7xcGkKwOaUSEx3MPZ63uIeAKrCiEP9aMJ/nt1HqJStiCfca0gEmlJjQekbdw7l9dTQtpJbKGalZFFdmE5pACJyDrXCt11GVj0V5mNx4SfJEcWmKx/qAQr6/ltdxdJ0251D9F3qOEMdm9JAl4eUS1mZIAiCIAiCIAiCsJuz6MBDcd0Jv42Zta8DADy430mYUMMlMfPf8V0c/6qPbPP7JlmOR0//AA7Rd+HSL38iyIEpkaBSGdLUl+O41y1cgQewcLuEm21h8f4HY8MBL8Hxj30buP8aAMPt3ncmm1dfgBXNnbjzSuOKitIcOkqHxCHujknTYTeMjnMj9liGwpgtXhzq29btw86hqCmg2OtdaV5FziGzXxTxuP+8JOw4VyXmMVUVzgk0rcZddpAZgy83y61LDegSh0r3fURNgcw6pFyJWjVAoxWSxG6v3aZeMx3sU9wVRNlCpS2jI8ErapeVcedQMrv7h75LHefQUYYE5eMSIPd0RBwSBEEQBEEQBEHYgzn+3Ldh3QveCgA44sUfdoHDvGPTxMJlSHuT2/W+xz7rVbghXYNV1/45smKjK/UpVIo6SqGiCAOdomEujxNf9E4s/PXroKIdf6l5xPkfRB8Zjn/oPwHsWnFo9ZmvxUCnGLvynwEAKu3ZrlphtzLujnHB0WCCR5IhU5XLdorqMIyZoK5Z5Bxqu2EqZVqw89e7bB47BnL8lInfD8hdRjlFTZSh0Al0PXDiUD+aCLKUGlZWNjaLOJRo7xZKmz4ipc02Nr6DWYHE7Sv0nYxjOnCjheKQdTopEofMZ0Yt5xCVPJqN3EppGIVZx5QbVQWOr30FEYcEQRAEQRAEQRD2EhYuORBXrXgtAGBszsIn9F4qihA99yNYhMdwTP8yly1UInUX7wWS0OURRVvtCPZ42W/Jgbhi2cuQ2Xbs2S4s+Zk7fzGumXM6jik2ADDh3zrJkcILPQCgqn7Qmp7Kt0jMoGBqKo+KdYGqIyOHvtN6MGVat7fcMJVKETW205f9jCRJ0WjlMn5q+xl12iEOWUGpiTMXbk0CSRGPB6VvDXMOjesZPwj7OeQWSrR3DvHys7gmcWiAgneUs+6oCT0T7FNc+CGHkHEO+Y5qUSs4OkvDUrTZUFZoU0kOxNb9JeKQIAiCIAiCIAiCsCdz8qs/iuuf/+9YvvKYJ/xeq058Dq6YPAOR0iz0OnPiUKnSrbYK35EcdcEHMaV7geCyq0iOf6W/neauq1ZVsdKyKmxNTyKMEzOsa6UYUKevbueQE4dmNgHwggZRq8Q4h5rSiUsqiowzhzKHyg5xyHWfo9yd3IZbe3GojNvOIS8OTSomDpGgAuYcskIeddADgEj7YGqer0QiUKx04Izi2VkkIFUqRVQXLhcpbjmHQpfWVvYT5uLScY5Ml0N5SPsCIg4JgiAIgiAIgiDsRcRJgiNPfu4Oe78l5/0uKh05QWhLPA9VvgAAcNPqN2Py5J/fYZ+1NRYs2h9XHP5m3JYcutM+cxRrnvoiPIx5AIzY40qeBl4wabemp/It5xwiJwwTh+oOsY1aszd9Iw4NOYeizARAt9rAFyp1jh5y2eh8jns8ZmILYEKZKdzaiUPpZJClRPe3USSoWPGnp3352bj25WeJLSuL2uJQ4l06TdxdVhYxp1PUFM4NFXe0nCdRrt3JbGjcif8tqHucqvqodLTLBcidibSyFwRBEARBEARBEEZywMq12HDcBxCNzQcALHrj57F/zwQXn/KKD+308Zz+mo9AN7+10z+3TZLluGnJWdjvgX8zmUBc6LH6i2qKYeeQ9k4XJw5ZB0yiSxRqAm1cqV5/c/A6olEp0noGGgpV7IWSEimUFWMoSFoxccg5kpSRBnSceeHFikB1OukEH8CLQ1v0mHMOTescqh5AN40Lnp7Q04CCvT3jbsesvT13SXH3D28/z4UfEpCojG6Ucwggl9bMUFh1G8V/iyRHqmqoqo8C6T4lmOxL2yoIgiAIgiAIgiA8DtZd8H53e+EBK3bdQCxPRuD14+Ggs96FDZ//GQ5buQ4bb7scAFCyVu/t1vSVygDtO8mRyFNZ51DSlJ1letRSXRVWHGqJIXWUoVcZV9Eg8uJPCVN+BfhyMNWb6x5PbNC1K0WLcxNuXRdAZV6ns4lO59C0GsMkZtxtVReoqhKpDZ4eU4V7TaZ8UHfSjBCHMrZNI8rKyDlUWwGrstvUlXNFLq2tOYci5hyiz1XlFEq1b8kl+9bWCoIgCIIgCIIgCMIO4sDD1uDAX/0WAOYC6vsSqrYAQrcp68eVSRXkHCqCkioit8HIkRWH2m4Y02WrAKACcamy+UGA7zIWj3FxyIhODY0xyZwrB/UApY6hkzFkqkZTN4jiyIlDM9EE0DyCQscoosy4pAYzSAE0WrnuZLVWJkQbQKljO05ANWXLOdTdfp533eMZSXFToJhNHLIurWgrAen0G0Rp7n7DuNgciHr7AruH3CoIgiAIgiAIgiAIezDzD1kLALjz0q+6+0xr+VCsAbxjh4Kp68KXlXU5hygYOS632Ne1xKHYtGBvv76yDhvAO4fScS8OZVRWRq9JcvMaXUDVA5M/1OqoRsHTg8iMqUTqAqIpO2mL8kHOW9R4cDuxLiQTvt1dPsbbzwfiEDmHohSxrtw2kcjFoffmWUZd0G/Ac6PSakrEIUEQBEEQBEEQBEEQto9V687ATfFKLL3+n107+6gpUEVeZCARJmk5hygsOkUZdOoiojhGqWOktiV8u3W7cQ6VRhyKQ3EotuIQOX7S8fnucWrVToKSSnLUNtxa1YUJtKaOaiQOWUdRGVnRSKWoYEQockBNwwtC/PaMGkeqSRwqUbPvJuFlZcw5lDJxiL63JjLbpWdpOV+5znDbVlZmnENmW9N6qrNr3N6MiEOCIAiCIAiCIAiC8ARRUYRHj34NVjR34tqLvgnAhC9zkaF2ziEjZjgnTOnbwOsO5xBgMnSyaip4HWG6bJVDr69U5pxDJKTkE/Pd404cisllk6NWKeKmtM6hlHVUM/lCJkcpcUJXidR2Syudc6gfeUGoH/mA7ZloPGh1zzuzJUzg4TlBSepdQV4cMmIYbVPWUTrWLuEbxZylK1BrhcklK9zn9urpwNW0LyDikCAIgiAIgiAIgiDsAI597huwERPo/+hvAQy3pqfbFDBNwdTUdSvVVadzCDAOnV5D4lAoeOg4Q6pLpLpEw0qy6sgIPYAXh8Ym57vHqVzNOYdS4xxKdGnKxBQXh8wYyVFEr6lUagUl7xzigtAg9kLRIJpAqiv73ZShOJR2i0PcFZSOEIfS3nBZWW3Fna5OZpxDjzweG991Kw4/+iTnMhprpgLH176AiEOCIAiCIAiCIAiCsAMYm5iD65aei+M2fx8P3XM7El06txDgRZjUZuSQq4WcQxnKIIyZUyLFWGPCroedQz30MEAPRdDpq3ZB1XDdx8bnzDePaYUkzezrfT4PhVtTmDYJNSRgkaOoseJJqVKbAVS68rgi8eJQEfvbZTKBjJxDKKGZAENCFdASh1i5WcLK4FJduvwj/lq/7aFLazYWLlhoPmtykfm3fkScQ4IgCIIgCIIgCIIgPD4OfM7bkaoaN33zL4da01P5VmZFDsrZaco+6qpCopogjJnTj8YxX2+yrwvFkHlHPROZqpGpKhCXSLQBAF2Tc8gEUhcscNmJQ2luw61LqKZEqTKfi2SdQ+QoCpxDNqeIBKQqCQUhf3sSiWpQV5VxObHvhjuEeE5Q4BxKfRlcghKoCzRaIUmGXT7OpbUN4hCx+pTn4mHMQ6bqIA9pX0DEIUEQBEEQBEEQBEHYQRy08hhc2TsRh9/xeWR6JgiIJjGEnC49W+I1eOh2FDbTByOcQ/cddDZyZV03LcHjyDPOwx3RQeYf3DkU9zBRbzYB2VWBgU5dPk+pRohD1pUTNwVqlbrwayoZI0cRZRvVVihKmHOoSif9GPjtzNwuBjND4dmjxCHuCnLPiTPjQKoHKJBARcPSRuPCv4ddRaPI8x6uX3K2GeuI7Ke9FRGHBEEQBEEQBEEQBGEH0pz4C1iCR3Cgvj9wx+g4Q6UjxEkCADjg4CNwY3okDr7lM5iZMq4g6pjVZvW578GMDjOLCBXFePCYN9rXM+fQoc/C/ngI1/7oq1BMSBnoNHAOkVspTnsu3JpazTvnEJWVNSUqpE7YqVTmxKG6MO6kJpvjvwt2W6ckDvVtZzYmAjERh5fNpan/PvLeuP0ec6S6hKpsR7UOqOytq5PZbCx9+hvt60UcEgRBEARBEARBEAThcXLsM16Ce7EYAMKA6XQcfcWcQUph5uR34EB9P2648NPmrhHOobn77Y8rl54HAOiNTw49fuzz3oSr5pyBxUc/09239nm/gIcxD/UP/8JkBVkhpUCCKhCHKLy558KtqdW866hmhZ+4KVBFmduuOkqd26ipjPtJc0EoH75dFjPIdBl8N0maotJGooh4OLUVswAvFGnrHFKNyT/qgt57e8rKAGDl0Sfi4vFnYGrJ+u163Z5OsqsHIAiCIAiCIAiCIAh7E3GS4GeHvgwH3PYXQWv5w57/btx527NwFHvusc96Be748e9h1U2fAmDayY/iuNf8Ia76ybNx7NLlQ49lYxM49j1fC+7rjY3jsoNehtPv/CSur9Y4IaVUaVBWRqVsSZZb4aVCogsMornIKefHOoeo3IzcRk2UuQygxgZrq54XhFQ+fLsczGAuyqHObAVSJBgMdWMrkAAayKl8LMkRK42omhkpDpGzaXudQwBwyvu/st2v2dPZqnNIKfVppdQDSqmr2X3/ppTaYP/7mVJqw4jX/kwpdZV93qU7cNyCIAiCIAiCIAiCsNuy+nlvRV+n0L357r7FBx+Bo57+kuB5URzjgWPfgkV4zPx7ltbrY5PzcOyzXr5d41h1zi9joFMcWV7rBKESKSomDiknDvWg4hy5Kk2ZWJQNdVRzLeidcyhzGUD0nKg3128fvz1mw7D7M8hUPRS+XSrjX4lbbp9SpUYgovHaz07KLcF2cHQr30mYnW0pK/tHAGfxO7TWL9Nar9NarwPwRQBfmuX1z7TPPfFxj1IQBEEQBEEQBEEQ9iAWLjkQ97/iQhz94g9u9bnHPf8X8QBMO/XZnEOPh8VLD8KGBc8BACeklGq0OKRt5lHezJgsIdZRDQASXaCOUve8JspcBhA5h+IxLwjFY/P8bescGth8JbTylcgFlLScQyW6nU5ZNTVSHCLximcWCaPZqjiktf4egEe6HlNKKQAvBfC5HTwuQRAEQRAEQRAEQdijOeTI4zFn/n5bfV6W93DrqtcBAKLt6K61rSw6810ATHi0+X8adONaeMjR2KjmYuHSA6ESI8zM0Vug48x1RiPhxziKcico6ThzGUC6Ms9JmSCUjhuhaKB9flEx/RiA4XwlJw5lbUdRGpSP0euyerQ4NHnc2fjRohd3djIThnmimUNPBXC/1vqmEY9rAN9SSmkAf6u1/uSoN1JKvQnAmwDg4IMPfoLDEgRBEARBEARBEIQ9h3Uveg8u+kKF4045a+tP3k4OP+YUXP6106CVEUoqlZncIMvKk58HnHwnAGDJsc8Gbv4TTKoZkyVkxSESfhJdmk5elDkUZy4DSBfTAIBswotDmRWHCiSuZK5wndmGRSDo4W5sbQGIXtdrpjEVz0MXx5x+NnD62Vv/cgQAT1wcegVmdw2dobW+Wym1BMCFSqnrrRNpCCscfRIATjzxRP0ExyUIgiAIgiAIgiAIewy98Umc+prfedLe/+h3fQWRddE8POcoNCwomnPY2qfi6m+sxzH9y6CjzAk1DROHdJx551CUuQwgPdgMAMgn5wMASh0jyU37+VKlLmi6mtkIYFgcqlRmxKFW5hA5nggSmcb1FDZFi7bnaxBG8LjFIaVUAuB8ACeMeo7W+m77/weUUl8GcDKATnFIEARBEARBEARBEIQnhyz3Qswp7/rMrM+Nn/4+4L9fAcQZUlvm5krGUKKJMx+cbZ1DAKCsODRG4hASJ/SUSBFTftFMt3OI3ExtcahuOYcm918JANgPG3F3JJlCO4InUnx3JoDrtdZ3dT2olJpQSs2h2wB+DsDVXc8VBEEQBEEQBEEQBGH34MhTzsLFh70DS57yavTGx9FoBTxmLv1TlMYtZMUhnfj8oajYjEYr9MaNK6lQKRLbSr5UqS9RGxhxqN2ZrYqsONRqP19FYRnc6hOeiZviVQAQZCcJj59taWX/OQA/BrBaKXWXUuqN9qGXo1VSppRappT6uv3nUgA/UEpdAeAnAL6mtf7mjhu6IAiCIAiCIAiCIAg7GhVFOOU1/w+HHXsa8t4ENsx5Go6+/yvY+MhDyHQJxBkiG1yN2AtFcbkFBRIn7pTwglDFxCFYh1G7M1tty8eyXpg5NH3S2/HYib8cjG/j+jcDAHQ0oluZsF1staxMa/2KEfe/ruO+ewA8396+FcDaJzg+QRAEQRAEQRAEQRB2IfOf+wHM+eJZ+NF/fBynooJOctd5TCW5E3nSagqFSjFmc4pKlaLnxKEMPZs5FBVGHIpbLevrKEWtFZIkFHxOes7Lhsa07jmvwZ2X/jGK8f134JbuuzzRQGpBEARBEARBEARBEPZiDjv2NFzx9VNx9B3/jEhpIM6cOIQkd+VhWT2FEinmJCkarVBFqQu0rlmJWVxuAQBErZb1TZShQIoxpbY6piTLseg9F2NZy2UkPD6eSOaQIAiCIAiCIAiCIAj7AGNn/irmYQqAcQvF1hGkkhyRdQDlVhxSUYQCCSqkyKwgVEWpC5pOSvM+Sds5FGemnf22jmlyLuJEysp2BCIOCYIgCIIgCIIgCIIwK0ec8CxcnR9v/pHkriRMsRKzsWYatTIFSoVKUUUZMisI1VHmXERpbZxDcasrmbbOIWHnI+KQIAiCIAiCIAiCIAhbJXr6+wEA8dhcFzodpV4omtRbnPOnRIpaWReRTtBEmXMR5fU0APiAaktx+Fm4ctHZO2VbhBDJHBIEQRAEQRAEQRAEYausOf35uD76HI455gxkeQ+XHvBKrDr1HCiVYMs3xzCpZnCf7ThWIkVtO4kVSNFEqXMR9RpbVtYSh55y7hsAvGHnbZDgEOeQIAiCIAiCIAiCIAjbxJGnPt9k/aQZTnzzX2PeomWYu98SXLPi1QBM8DRgWtfXkRWKVIomyhDFMQodY1wb51DaEoeEXYeIQ4IgCIIgCIIgCIIgPCGOueDX8SjmooxNrtBMPIkqnQMAeDReiGp8KQDgYbUQ87VpZd92Dgm7DikrEwRBEARBEARBEAThCTExdwEevOBfMTc2MkP+0k9h+fgkAGDRW7+FZWPjAIDbj3oTDrjuowDgAqqFXY+IQ4IgCIIgCIIgCIIgPGFWHPsUd/vgI9a523P3W+pun/Cid+Ku6z+N5fpe5Lk4h3YXpKxMEARBEARBEARBEISdQprl2HjmH+KSBWcj743v6uEIFnEOCYIgCIIgCIIgCIKw0zj6KecATzlnVw9DYIhzSBAEQRAEQRAEQRAEYR9GxCFBEARBEARBEARBEIR9GBGHBEEQBEEQBEEQBEEQ9mFEHBIEQRAEQRAEQRAEQdiHEXFIEARBEARBEARBEARhH0bEIUEQBEEQBEEQBEEQhH0YEYcEQRAEQRAEQRAEQRD2YUQcEgRBEARBEARBEARB2IcRcUgQBEEQBEEQBEEQBGEfRmmtd/UYhlBKPQjg9l09jsfBIgAP7epBCHsFsi8JOwrZl4QdgexHwo5C9iVhRyH7krCjkH1J2FHsKfvSIVrrxe07d0txaE9FKXWp1vrEXT0OYc9H9iVhRyH7krAjkP1I2FHIviTsKGRfEnYUsi8JO4o9fV+SsjJBEARBEARBEARBEIR9GBGHBEEQBEEQBEEQBEEQ9mFEHNqxfHJXD0DYa5B9SdhRyL4k7AhkPxJ2FLIvCTsK2ZeEHYXsS8KOYo/elyRzSBAEQRAEQRAEQRAEYR9GnEOCIAiCIAiCIAiCIAj7MCIO7QCUUmcppW5QSt2slPq1XT0eYfdGKfVppdQDSqmr2X0LlVIXKqVusv9fYO9XSqk/t/vWlUqp9btu5MLuhlLqIKXUd5VS1yqlrlFKvdPeL/uTsF0opXpKqZ8opa6w+9Jv2/sPVUpdbPeZf1NKZfb+3P77Zvv4il26AcJuhVIqVkpdrpT6L/tv2Y+E7UYp9TOl1FVKqQ1KqUvtfXJ+E7YbpdR8pdQXlFLXK6WuU0qdJvuSsL0opVbb4xH9t0kp9a69aV8ScegJopSKAfwlgOcBWAPgFUqpNbt2VMJuzj8COKt1368B+I7WehWA79h/A2a/WmX/exOAv95JYxT2DCoA79FarwFwKoC32eOP7E/C9jIA8Cyt9VoA6wCcpZQ6FcDHAPyJ1nolgEcBvNE+/40AHrX3/4l9niAQ7wRwHfu37EfC4+WZWut1rDW0nN+Ex8OfAfim1vpIAGthjk+yLwnbhdb6Bns8WgfgBADTAL6MvWhfEnHoiXMygJu11rdqrQsA/wrghbt4TMJujNb6ewAead39QgD/ZG//E4Dz2P3/nzZcBGC+UuqAnTJQYbdHa32v1voye3szzGTnQMj+JGwndp/YYv+Z2v80gGcB+IK9v70v0T72BQDPVkqpnTNaYXdGKbUcwNkAPmX/rSD7kbDjkPObsF0opeYBeBqAvwcArXWhtX4Msi8JT4xnA7hFa3079qJ9ScShJ86BAO5k/77L3icI28NSrfW99vZ9AJba27J/CduELcc4HsDFkP1JeBzYUqANAB4AcCGAWwA8prWu7FP4/uL2Jfv4RgD77dQBC7srfwrg/QAa++/9IPuR8PjQAL6llPqpUupN9j45vwnby6EAHgTwD7bc9VNKqQnIviQ8MV4O4HP29l6zL4k4JAi7Gdq0EJQ2gsI2o5SaBPBFAO/SWm/ij8n+JGwrWuvaWqWXw7hij9y1IxL2NJRS5wB4QGv90109FmGv4Ayt9XqY0oy3KaWexh+U85uwjSQA1gP4a6318QCm4Mt+AMi+JGwfNjfvXACfbz+2p+9LIg49ce4GcBD793J7nyBsD/eTzdD+/wF7v+xfwqwopVIYYegzWusv2btlfxIeN9Zu/10Ap8FYoBP7EN9f3L5kH58H4OGdO1JhN+QpAM5VSv0Mpsz+WTBZH7IfCduN1vpu+/8HYHI9Toac34Tt5y4Ad2mtL7b//gKMWCT7kvB4eR6Ay7TW99t/7zX7kohDT5xLAKyynTgyGIvZf+7iMQl7Hv8J4LX29msBfIXd/xqbdn8qgI3Mtijs49hsjr8HcJ3W+o/ZQ7I/CduFUmqxUmq+vT0G4DkwGVbfBfBi+7T2vkT72IsB/I9dLRP2YbTWH9BaL9dar4CZD/2P1vpVkP1I2E6UUhNKqTl0G8DPAbgacn4TthOt9X0A7lRKrbZ3PRvAtZB9SXj8vAK+pAzYi/YlJefgJ45S6vkwNfYxgE9rrT+6a0ck7M4opT4H4BkAFgG4H8CHAfwHgH8HcDCA2wG8VGv9iL34/wuY7mbTAF6vtb50Fwxb2A1RSp0B4PsAroLP9/h1mNwh2Z+EbUYpdRxMiGIMs3D071rrjyilDoNxgCwEcDmAn9daD5RSPQD/DJNz9QiAl2utb901oxd2R5RSzwDwXq31ObIfCduL3We+bP+ZAPis1vqjSqn9IOc3YTtRSq2DCcnPANwK4PWw5zrIviRsB1asvgPAYVrrjfa+vea4JOKQIAiCIAiCIAiCIAjCPoyUlQmCIAiCIAiCIAiCIOzDiDgkCIIgCIIgCIIgCIKwDyPikCAIgiAIgiAIgiAIwj6MiEOCIAiCIAiCIAiCIAj7MCIOCYIgCIIgCIIgCIIg7MOIOCQIgiAIgiAIgiAIgrAPI+KQIAiCIAiCIAiCIAjCPoyIQ4IgCIIgCIIgCIIgCPsw/z+0BZGVkSz/9gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "nb_plts = len(dfs_train)\n", - "\n", - "fig, ax = plt.subplots(4, 1, figsize=(20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_train):\n", - " plt.subplot(4, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['w'][1] + dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - " \n", - " mean = scaler_helper.inverse_scale_output(mean).reshape((-1, 1))\n", - " #var = scaler_helper.inverse_scale_output(var).reshape((-1, 1))\n", - " scaled_measures = scaler_helper.inverse_scale_output(np_output_iter[:, :])\n", - " \n", - " plt.plot(df_iter.index, scaled_measures, label = 'Measured data')\n", - " plt.plot(df_iter.index, mean, label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " plt.title(f\"Model Performance on training data: {train_exps[idx]}\")\n", - " plt.legend()\n", - "plt.savefig(f\"../Thesis/Plots/GP_training_performance.pdf\", bbox_inches='tight')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Evaluate performance on test data" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [], - "source": [ - "def SMSE(measured, predicted):\n", - " N = measured.size\n", - " measured_var = np.var(measured)\n", - " SMSE = np.power(measured - predicted, 2).sum()/(N*measured_var)\n", - " return SMSE" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [], - "source": [ - "def RMSE(measured, predicted):\n", - " N = measured.size\n", - " RMSE = np.sqrt(np.power(measured - predicted, 2).sum()/N)\n", - " return RMSE" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [], - "source": [ - "def LPD(measured, predicted_mean, predicted_var):\n", - " N = measured.size\n", - " sum_part = np.log(predicted_var) + np.power(measured - predicted_mean, 2)/predicted_var\n", - " LPD = 1/2*np.log(2*np.pi) + 1/(2*N)*sum_part.sum()\n", - " return LPD" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": {}, - "outputs": [], - "source": [ - "def MSLL(measured, predicted_mean, predicted_var):\n", - " measured_var = np.var(measured)\n", - " measured_mean = np.mean(measured)\n", - " return LPD(measured, predicted_mean, predicted_var) - LPD(measured, measured_mean, measured_var)" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAARuCAYAAABJOlfRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd7wdVbn+nzVt75OTBiSEEiB0CCGFKkSQooKIXEBFsfLDcpWLem3ItYFeveqVa0FRrl5ERBAEBEGQTmiBQAIklCSEhPTeyzlnT1nr98cqs6bts8/JSSPv9/PhQ87s2TNrZrdZzzzv8zIhBAiCIAiCIAiCIAiCIIidE2dbD4AgCIIgCIIgCIIgCILYdpA4RBAEQRAEQRAEQRAEsRND4hBBEARBEARBEARBEMRODIlDBEEQBEEQBEEQBEEQOzEkDhEEQRAEQRAEQRAEQezEkDhEEARBEARBEARBEASxE0PiEEEQBEG8RWCMjWCMCcaY18K6FzHGntpK4xrPGJvFGNvIGDt3a+yT6BvU++mgbT0OgiAIgiC2LCQOEQRBEMQ2gDE2lzEWMsaG5Ja/qCbkI7bR0GyRaaP6by5j7PLN2OT3AfxaCNFfCHFXHw1zp6AvRTz1Or6zL7ZVsu2WhckebFMwxjZZ78ONjLHL+mC7VymxcgNjbAZj7BN9MV6CIAiC2JHpsx9wgiAIgiB6zJsALgTwKwBgjB0JoN82HVGWwUKImDF2AoBHGGMvCSHub/XJjDFPCBED2A/Aq70ZgLUNYudkjBDijT7e5iYA7wPwOoBjAdzPGHtDCDGxj/dDEARBEDsM5BwiCIIgiG3HjQBs18InAfzJXoExNogx9ifG2ArG2DzG2LcZY456zFUuiJWMsTkA3lvy3OsYY0sYY4sYYz9gjLk9HaQQ4hlIcWeU2u7FjLHpjLE1jLEHGGP7WfsUjLF/Y4zNAjCLMTYbwAEA7lHOjxpjbC/G2N2MsdWMsTcYY5+xnn8lY+x2xtifGWPrAVzEGJugxj5RbeMexthujLGbGGPrGWPP204rxtgvGWML1GNTGGMn5bb/V3VONzDGXmWMHWM9vg9j7G/qfK9ijP3aeqzyuPMwxs5R216rxn+49dhcxtjXGGPTGGPrGGO3MsbqJds4HMC1AE5Qx71WLa+p130+Y2wZY+xaxlibemwIY+wfar+rGWNPMsYcxtiNAPa1XodSBw5j7Ovq/bKYMXZx7rH3MulsW6/O75XWw0+o/69V2z+BMXYgY+xRdR5XqtdrcNU56wmMsfsYY/9j/X0LY+wP6t8XMcaeZoz9Wp3fGYyx0/W6QogrhBAzhBBcCDEJwJMATuiLcREEQRDEjgqJQwRBEASx7XgWwEDG2OFKtPkwgD/n1vkVgEGQAss7IMWk/6ce+wyAswGMA3AMgA/knvtHADGAg9Q67wbw6Z4MkEnGAzgCwIuMsX8B8E0A5wMYCjmx/kvuaecCOB7ASCHEgQDmA3ifKitrALgFwEIAe6kx/xdj7DTr+f8C4HYAgwHcpJZ9GMDHAewN4EAAzwC4HsCuAKYDuMJ6/vMAxqrHbgZwW058OUeNYTCAuwH8Wh2rC+AfAOYBGKH2dYt6rJXj1ufsEPXYv6t174MUZQJrtQsAnAlgfwCjAVyU344QYjqAzwF4Rp27weqhHwM4RB3jQWqc31WPfRXy3A4FMEyNWQghPo7s6/DfJeM+E8DXALwLwMEA8iVomyDff4MhhcjPszRD6mT1/8Fq+88AYAB+BPk6Hw5gHwBXWvv7DWPsN/lxtMjFAD7OGDuNMfZRAMcB+JL1+PEAZgMYAvne+BtjbNf8RpSodix66WwjCIIgiLcKJA4RBEEQxLZFu4feBSlyLNIPWILRfwghNggh5gL4H0iRBJACwy+EEAuEEKshJ+L6ucMAnAXg34UQm4QQywH8XG2vVVYCWA3g/wBcLoR4BFKs+JEQYroq9/ovAGNzLpofCSFWCyE68xtkjO0DYDyAbwghuoQQL6nt2w6qZ4QQdylnh97G9UKI2UKIdQD+CWC2EOJhNYbbIMUvAIAQ4s9CiFVCiFgI8T8AagAOtbb/lBDiPiFEAnn+x6jlx0EKGV9X56xLCKHzflo5bs2HANwrhHhICBEBuApAG4ATrXWuFkIsVq/bPZBCT7cwxhiAzwL4sjrHG9RY9OsaAdgTwH5CiEgI8aQQQrSybcj30/VCiFeEEJtgCTkAIISYIIR4Wb0u0yAFsHdUbUwI8YY6Bw0hxAoAP7PXF0JcIoS4pJsxvaBcUPq/M9RzlwL4PIAbAPwSwCfUudAsh/xsREKIWwHMRM5Zp7gWwFQAD3QzDoIgCIJ4S0OZQwRBEASxbbkRsiRnf+RKyiBdDz6kk0UzD9IpAkghY0HuMc1+6rlLpJ4AQN4UstfvjiEleT/7AfilXdID6RDZ29p/s33sBWB1biI/D9L5pCl7/jLr350lf/c3g2HsawA+pfYlAAyEPJeapda/OwDUmQxS3gfAvIqMo1aOW7OXvUwIwRljC5C+bmVj2Ktkn2UMhcylmmK9rgyALhf8KaSo86B6/HdCiB+3uO29AEyx/s4cF2PseEjX0igAAaTodlvVxpRA+UsAJwEYAPn+W9PiWDRHNckcugfSWTfTEvE0i3Ki2DzkzjFj7KeQx3JqDwQ0giAIgnhLQs4hgiAIgtiGCCHmQQZTnwXgb7mHV0I6QWx3yr5I3UVLIAUN+zHNAgANSIFnsPpvoBDiiM0c8gIA/2ptc7AQoi0X5ttsor0YwK6MsQG5cS+y/u71RF3lC10G6YLZRZVirYMUULpjAYB9WXnHrVaOW7MY1mum3D77IHuMrZI/FyshxbAjrHEMEkL0BwDlMPuqEOIAyPK5r1h5O92d12bvJ0CW6N0NYB8hxCBI140+r2Xb/i+1/EghxEAAH0Nrr0Or/BDSbbcnY+zC3GN7M0s9gzyWxfoPxtj3ALwHwLuFEOv7cEwEQRAEsUNC4hBBEARBbHs+BeA0VcpjUGVPfwXwQ8bYAFXC9BWkuUR/BfBFxthwxtguAC63nrsEwIMA/ocxNlCFEh/IGKssA2qRawH8B2PsCMCEXn+w1ScLIRYAmAjgR4yxOmNsNOTx57OWessAyJylFQA8xth3IZ1DrfAcpEDyY8ZYuxrfePVYT477rwDeyxg7nTHmQ+YANSCPu6csAzBc5xUJITiA3wP4OWNsdzWWvXW5FWPsbMbYQUoYWQcgAcCtbR3QZF9/hQwAH8kY64dsjhMgz+1qIUQXY+w4AB+xHluh9nNAbv2NANYxxvYG8PUeHnsljLGTIbO3PgEZ5P4rtQ/N7pCfDV+9TodDZj+BMfYfauzvFEKs6qsxEQRBEMSODIlDBEEQBLGNUVk6kyse/gJkEPAcAE9Bujf+oB77PWRWylQAL6DoPPoEZPnPa5DlPLdD5tFszljvBPATALcw2U3sFUgHRk+4EDLweTGAOwFcIYR4eHPGZfEAgPsh25TPA9CFFkvplBj3PsiQ5/mQwc4fUo+1fNxCiJmQLplfQTp93gcZBB324ngehQxLXsoYW6mWfQPAGwCeVWN5GGmm0sHq742Qod2/EUI8ph77EYBvq+yer5WM+58AfqH2+Yb6v80lAL7PGNsAGYD9V+u5HZBOnqfV9t8G4HsAjoIUqe5F7v3JZJe1a7s5/qmq+5n+7xeMsYGQJZiXCiEWCSGeBHAdgOstt9AkdS5WqnF9wBKC/gvSSfSGtd1vdjMOgiAIgnhLw6jEmiAIgiAIgnirwBi7CMCnhRBv39ZjIQiCIIgdBXIOEQRBEARBEARBEARB7MSQOEQQBEEQBEEQBEEQBLETQ2VlBEEQBEEQBEEQBEEQOzHkHCIIgiAIgiAIgiAIgtiJIXGIIAiCIAiCIAiCIAhiJ8bb1gMoY8iQIWLEiBHbehgEQRAEQRAEQRAEQRBvGaZMmbJSCDE0v3y7FIdGjBiByZMnb+thEARBEARBEARBEARBvGVgjM0rW05lZQRBEARBEARBEARBEDsxJA4RBEEQBEEQBEEQBEHsxJA4RBAEQRAEQRAEQRAEsROzXWYOEQRBEARBEARBEMS2JooiLFy4EF1dXdt6KATRI+r1OoYPHw7f91tan8QhgiAIgiAIgiAIgihh4cKFGDBgAEaMGAHG2LYeDkG0hBACq1atwsKFC7H//vu39BwqKyMIgiAIgiAIgiCIErq6urDbbruRMETsUDDGsNtuu/XI8UbiEEEQBEEQBEEQBEFUQMIQsSPS0/ctiUMEQRAEQRAEQRAEsZ3CGMPHPvYx83ccxxg6dCjOPvvsbTiq7unfv3+361x55ZW46qqrmq5z11134bXXXuurYREV9Jk4xBirM8aeY4xNZYy9yhj7nlp+E2NsJmPsFcbYHxhjraUhEQRBEARBEARBEMROTnt7O1555RV0dnYCAB566CHsvffe22QscRxv9X2SOLR16EvnUAPAaUKIMQDGAjiTMfY2ADcBOAzAkQDaAHy6D/dJEARBEARBEARBEG9pzjrrLNx7770AgL/85S+48MILzWObNm3CxRdfjOOOOw7jxo3D3//+dwDA3LlzcdJJJ+Goo47CUUcdhYkTJwIAlixZgpNPPhljx47FqFGj8OSTTwLIOn1uv/12XHTRRQCAiy66CJ/73Odw/PHH47LLLsPs2bNx5pln4uijj8ZJJ52EGTNmAADefPNNnHDCCTjyyCPx7W9/u/JYfvjDH+KQQw7B29/+dsycOdMs//3vf49jjz0WY8aMwfvf/350dHRg4sSJuPvuu/H1r38dY8eOxezZs0vXIzafPutWJoQQADaqP331nxBC3KfXYYw9B2B4X+2TIAiCIAiCIAiCILYG37vnVby2eH2fbnPkXgNxxfuO6Ha9D3/4w/j+97+Ps88+G9OmTcPFF19sRJ0f/vCHOO200/CHP/wBa9euxXHHHYd3vvOd2H333fHQQw+hXq9j1qxZuPDCCzF58mTcfPPNOOOMM/Ctb30LSZK0JK4sXLgQEydOhOu6OP3003Httdfi4IMPxqRJk3DJJZfg0UcfxZe+9CV8/vOfxyc+8Qlcc801pduZMmUKbrnlFrz00kuI4xhHHXUUjj76aADA+eefj8985jMAgG9/+9u47rrr8IUvfAHnnHMOzj77bHzgAx8AAAwePLh0PWLz6NNW9owxF8AUAAcBuEYIMcl6zAfwcQBfqnjuZwF8FgD23XffvhwWQRAEQRAEQRAEQeywjB49GnPnzsVf/vIXnHXWWZnHHnzwQdx9990mu6erqwvz58/HXnvthUsvvRQvvfQSXNfF66+/DgA49thjcfHFFyOKIpx77rkYO3Zst/v/4Ac/CNd1sXHjRkycOBEf/OAHzWONRgMA8PTTT+OOO+4AAHz84x/HN77xjcJ2nnzySZx33nno168fAOCcc84xj73yyiv49re/jbVr12Ljxo0444wzSsfS6npEz+hTcUgIkQAYyxgbDOBOxtgoIcQr6uHfAHhCCPFkxXN/B+B3AHDMMceIvhwXQRAEQRAEQRDEjkBnmKAtcLf1MIgSWnH4bEnOOeccfO1rX8OECROwatUqs1wIgTvuuAOHHnpoZv0rr7wSw4YNw9SpU8E5R71eBwCcfPLJeOKJJ3Dvvffioosuwle+8hV84hOfyHS3yrdAb29vBwBwzjF48GC89NJLpWPcnM5uF110Ee666y6MGTMGf/zjHzFhwoTNWo/oGVukW5kQYi2AxwCcCQCMsSsADAXwlS2xP4IgCIIgCIIgiO2Jv9x+Gx5/5tkePWfTnGfh/fFMoLGx+5WJnY6LL74YV1xxBY488sjM8jPOOAO/+tWvIJNegBdffBEAsG7dOuy5555wHAc33ngjkiQBAMybNw/Dhg3DZz7zGXz605/GCy+8AAAYNmwYpk+fDs457rzzztIxDBw4EPvvvz9uu+02AFKYmjp1KgBg/PjxuOWWWwAAN910U+nzTz75ZNx1113o7OzEhg0bcM8995jHNmzYgD333BNRFGWeP2DAAGzYsKHb9YjNoy+7lQ1VjiEwxtoAvAvADMbYpwGcAeBCIQTvq/0RBEEQBEEQBEFsj0x6aSrOe/nzaJvYvEV3npV3fRP+4uewYfn8LTQyYkdm+PDh+OIXv1hY/p3vfAdRFGH06NE44ogj8J3vfAcAcMkll+CGG27AmDFjMGPGDOP+mTBhAsaMGYNx48bh1ltvxZe+JJNffvzjH+Pss8/GiSeeiD333LNyHDfddBOuu+46jBkzBkcccYQJwP7lL3+Ja665BkceeSQWLVpU+tyjjjoKH/rQhzBmzBi85z3vwbHHHmse+8///E8cf/zxGD9+PA477DCz/MMf/jB++tOfYty4cZg9e3blesTmwbS6uNkbYmw0gBsAuJCi01+FEN9njMUA5gHQUt/fhBDfb7atY445RkyePLlPxkUQBEEQBEEQBLG1iBKOCT86H++KH8ML/U7CUZf9A4B0WCxb38Aeg+qlz7vtrjvxwZcuAgDMv+BB7Dvy+K01ZKIJ06dPx+GHH76th0EQvaLs/csYmyKEOCa/bl92K5sGYFzJ8j7NNSIIgiAIgiAIgtheuf/Bf+J98WMAAEdEZvmE11fgMzdMxsT/OA27D8gKRNc99SaGT/m1vM0OII7CrTZegiAIYAtlDhEEQRAEQRAEQexsrN3UwB6TfoD1bBAWuPvA4ak4tGJ9AzEXWNsRZZ5z14uL8Jd7H8QZ7mSsGjwaAJBEja06boIgCBKHCIIgCIIgCIIg+oB//P1WHIvXsOmEr2KjOyjjHIrDTrzbeR5hnMawPvH6Cnzttqm4bPAEcLeOJUd8GgDASRwiCGIrQ+IQQRAEQRAEQRDEZrJgdQf2mfF/WO/ugj1P/VckzIdnOYf2XPIofhf8HGztPLPsh/dOx4hd6zgNz6PzgDOAATIEOIlJHCIIYutC4hBBEARBEARBEMRmcvPd9+EdzlTw4/4V8Ovgjg/Xcg45kWxPzxubzLINXRHOHboEXucKeCPfC9evyXWszKGuKEGUUNNngiC2LCQOEQRBEARBEARBbAavLFqHg2Zfj4bThsEnfw4ACuKQSKTgk0RdZlmYcIza8BSE46N2+JnwPCUOxak49PHrJuG/75+xNQ6DIIidGBKHCIIgCIIgCIIgNoPf3fMEznGfQTL2Y0DbLgAA7gTwRJyupErFEkv4CWOOI9Y/iXCf8UB9ENwgkM+1ysoWrenE4rWpoETsfCxbtgwf+chHcMABB+Doo4/GCSecgDvvvHOL73fy5Mn44he/2CfbOuWUU3DooYdizJgxGD9+PGbOnNkn2+1L+nKMf/zjH3HppZcCAK699lr86U9/qlx37ty5uPnmm83ffXneewKJQwRBEARBEARBEL3kiddXYNzCG+EwoN/J6YSOOx5cpOKQSKSLyO5ENjxZiKHhArgjzwaAtKzMFpASgZDKynZahBA499xzcfLJJ2POnDmYMmUKbrnlFixcuHCL7/uYY47B1Vdf3Wfbu+mmmzB16lR88pOfxNe//vXC40mS9Nm+esuWGOPnPvc5fOITn6h8PC8O9fV5bxUShwiCIAiCIAiCILpBCIF/vrwE67vSUjHOBa69dyI+4j2KeNSHgMH7pus7ATyrrIwlUhSyO5GdIp4DAHiHvxcA4JdkDoUxZQ7tzDz66KMIggCf+9znzLL99tsPX/jCFwBIYeGkk07CUUcdhaOOOgoTJ04EAEyYMAFnn322ec6ll16KP/7xjwCAyy+/HCNHjsTo0aPxta99DQBw2223YdSoURgzZgxOPvnkwjaee+45nHDCCRg3bhxOPPFE46r54x//iPPPPx9nnnkmDj74YFx22WXdHtPJJ5+MN954AwDQv39/fPWrX8WYMWPwzDPP4Gc/+xlGjRqFUaNG4Re/+IV5zp/+9CeMHj0aY8aMwcc//nEAwIoVK/D+978fxx57LI499lg8/fTTAIDHH38cY8eOxdixYzFu3Dhs2LABS5Yswcknn4yxY8di1KhRePLJJ3s9xj//+c847rjjMHbsWPzrv/6rEYyuv/56HHLIITjuuOPMWADgyiuvxFVXXQUAeOONN/DOd74TY8aMwVFHHYXZs2fj8ssvx5NPPomxY8fi5z//eea8r169Gueeey5Gjx6Nt73tbZg2bZrZ5sUXX4xTTjkFBxxwQJ+ISd5mb4EgCIIgCIIgCOItzmMzl+PzN72An7z/SHzoWCkC3T11MU5ddQt8n8M5NesyEK4P33IOQTmHhC4v4wKnOS9gSfvh2HPgXgAAL5DikM4nAoAoESQObS/883Jg6ct9u809jgTe8+PKh1999VUcddRRlY/vvvvueOihh1Cv1zFr1ixceOGFmDx5cuX6q1atwp133okZM2aAMYa1a9cCAL7//e/jgQcewN57722W2Rx22GF48skn4XkeHn74YXzzm9/EHXfcAQB46aWX8OKLL6JWq+HQQw/FF77wBeyzzz6VY7jnnntw5JFHAgA2bdqE448/Hv/zP/+DKVOm4Prrr8ekSZMghMDxxx+Pd7zjHQiCAD/4wQ8wceJEDBkyBKtXrwYAfOlLX8KXv/xlvP3tb8f8+fNxxhlnYPr06bjqqqtwzTXXYPz48di4cSPq9Tp+97vf4YwzzsC3vvUtJEmCjo6OyvE1G+P06dPxk5/8BE8//TR838cll1yCm266Ce9617twxRVXYMqUKRg0aBBOPfVUjBs3rrDdj370o7j88stx3nnnoaurC5xz/PjHP8ZVV12Ff/zjHwCkKKe54oorMG7cONx111149NFH8YlPfAIvvfQSAGDGjBl47LHHsGHDBhx66KH4/Oc/D9/3mx5XM0gcIgiCIAiCIAiCaIIQAr95+DVc4d0Ab+2lAKQ4NHXmLFzmPQx+xAfg7HpA9jm5zCGmBB/tCooSjj3Yaqzt/zbsqdbxlHMIiV1WxhHFYsscGLHD8W//9m946qmnEAQBnn/+eURRhEsvvRQvvfQSXNfF66+/3vT5gwYNQr1ex6c+9SmcffbZxqEyfvx4XHTRRbjgggtw/vnnF563bt06fPKTn8SsWbPAGEMUpa64008/HYMGDQIAjBw5EvPmzSsVhz760Y+ira0NI0aMwK9+9SsAgOu6eP/73w8AeOqpp3Deeeehvb0dAHD++efjySefBGMMH/zgBzFkyBAAwK677goAePjhh/Haa6+Z7a9fvx4bN27E+PHj8ZWvfAUf/ehHcf7552P48OE49thjcfHFFyOKIpx77rkYO3Zs6fnpboyPPPIIpkyZgmOPPRYA0NnZid133x2TJk3CKaecgqFDhwIAPvShDxVeiw0bNmDRokU477zzAAD1er10DDZPPfWUEeFOO+00rFq1CuvXrwcAvPe970WtVkOtVsPuu++OZcuWYfjw4d1uswoShwiCIAiCIAiCIJrw+OsrcPSSW/H//Afw1IqjAMiym+NX3oUAMdxTitkkcH0EsMrKuBKHlPATJhwBYjA3MOt4NeUcUplDCRdIOGUObTc0cfhsKY444ggjDgDANddcg5UrV+KYY44BAPz85z/HsGHDMHXqVHDOjeDgeR44T983XV1dZvlzzz2HRx55BLfffjt+/etf49FHH8W1116LSZMm4d5778XRRx+NKVOmZMbxne98B6eeeiruvPNOzJ07F6eccop5rKbet4AUUuI4Rhk33XSTGbemXq/Ddd1enBmAc45nn322ILJcfvnleO9734v77rsP48ePxwMPPICTTz4ZTzzxBO69915cdNFF+MpXvlKaA9TdGIUQ+OQnP4kf/ehHmXXuuuuuXh3D5tDqeW8VyhwiCIIgCIIgCIIAACEgbvt/wKT/tRYJ/OGhyfiC/3f5t+XqGdRYgpVsN2DIwcVNuQF8xBBCun6YKivTXcuimEvxyEvFoSCoZ/ahy8morGzn5bTTTkNXVxd++9vfmmV2SdS6deuw5557wnEc3HjjjSb/Zr/99sNrr72GRqOBtWvX4pFHHgEAbNy4EevWrcNZZ52Fn//855g6dSoAYPbs2Tj++OPx/e9/H0OHDsWCBQsy41i3bh323ntvADDZRX3NSSedhLvuugsdHR3YtGkT7rzzTpx00kk47bTTcNttt2HVqlUAYMrK3v3udxt3DwBTbjV79mwceeSR+MY3voFjjz0WM2bMwLx58zBs2DB85jOfwac//Wm88MILvRrj6aefjttvvx3Lly83Y5k3bx6OP/54PP7441i1ahWiKMJtt91WeO6AAQMwfPhwIyQ1Gg10dHRgwIAB2LBhQ+U5uemmmwDIcrMhQ4Zg4MCBvRp7d5A4RBAEQRAEQRAEAQDT7wZ79W+Y/9LDZtHkeWtw2tLr0Y5OAICIUzeQIyLErKIYwwngMmHu5jvKOaRdQVEiECCGcNO7/77ngwtm8onChOPT7r04pmti3x0jsUPBGMNdd92Fxx9/HPvvvz+OO+44fPKTn8RPfvITAMAll1yCG264AWPGjMGMGTNMSdY+++yDCy64AKNGjcIFF1xg8m82bNiAs88+G6NHj8bb3/52/OxnPwMAfP3rX8eRRx6JUaNG4cQTT8SYMWMy47jsssvwH//xHxg3btxmO1SqOOqoo3DRRRfhuOOOw/HHH49Pf/rTGDduHI444gh861vfwjve8Q6MGTMGX/nKVwAAV199NSZPnozRo0dj5MiRuPbaawEAv/jFLzBq1CiMHj0avu/jPe95DyZMmIAxY8Zg3LhxuPXWW/GlL32pV2McOXIkfvCDH+Dd7343Ro8ejXe9611YsmQJ9txzT1x55ZU44YQTMH78eBx++OGlz7/xxhtx9dVXY/To0TjxxBOxdOlSjB49Gq7rYsyYMfj5z3+eWf/KK6/ElClTMHr0aFx++eW44YYbejXuVmBayd6eOOaYY0SzEC2CIAiCIAiCIIg+JQ7R+OUxqG2Yh6nt4zHm6/cBAP75xNN45yPvQ+fICzBw+l/wxD6fw8mfkhPz5//7bAxrzMO+3ymGFE/607dx/JxfoePrC9GvfQCe+en5OGHTI3j8oMvwjo99C/NXdWDPq4fjjYM/hcM/9lPzvK4rhmDa3h/GcZ/9NVZubKDrpyPxun8YTvv2vVvnPBAZpk+fXjnRJ4jtnbL3L2NsihDimPy65BwiCIIgCIIgCIKYfB1qG+ahQ9SMywcABq96CT5LEB4jW4nrlvQA4PAIMavoDqSyhKIwVOtq55ByBcUxfJaAWWVlABDBM86hSOUSuTwCQRDEloQCqQmCIAiCIAiC2LkJNyGZ8BM8K45EIBpoF6kYo1vPu20DEcIDrLIyl0dIKsQhLfqEoSxHc7TAo8SlqNGZWU8TwTPh1WHMMQgRXEHiEEEQWxZyDhEEQRAEQRAEsXPzxsNwu9bg19E5EE6QCjlIM4K8Wk0JN5Y4JCIkTvn9duZJ0ShWreu1wKNb2sdhl1qvlnlezDwTXh0lHDVE8EgcIghiC0PiEEEQBEEQBEEQ25zVm0LMWLp+m+ybT78X69AfYp8TEdTqcEUauKudQ37Qhgh+pqzM5RE4CwrbA2Ba1CeNLrOuXBCp/8nljp8Th+AbAaqhOpqROLRt2R5zegmiO3r6viVxiCAIgiAIgiCIbc5lt0/Dp/7Ys6Y0Yczxo39Ox4LVHd2vXEUSI55xPx5OxuHj4w9E4gRwrcwhKKePH9SkqyfnHOJOeVmZoxxBcSTFJE/I7aTOIbm81Dmk9h9FEVwm4JM4tM2o1+tYtWoVCUTEDoUQAqtWrUK9Xm/5OZQ5RBAEQRAEQRDENmXJuk4Me/1m/Is/C8BpLT/vnieexR5P/wLP1b6MfU47oXc7nz8RQbQOz9dOwH8eMQwvPeDDs5xDTJWVuX4dMfxMyZknIjSqxCE/Kw5pN5IWfhK9PO8cYuk+YuU68hBDCAHGWO+Okeg1w4cPx8KFC7FixYptPRSC6BH1eh3Dhw9veX0ShwiCIAiCIAiC2KbcMWkOvuzdBrfKnbF+MeDVgX67yr+FQGPKzTjjia+hv9eBicuOAtA7cWjti3ehTfjY//iz4bsOhONnA6B5iEQwuI6LmPkZ55CHGIlTXlbmqKDpRGUOeSZzSJeVNdR6WXEogWfEoSSSodUBYsRcwHdJHNra+L6P/ffff1sPgyC2OFRWRhAEQRAEQRDENiPhAmuevwVD2Hr4iEvX6fjTh7Dx3m+lC+Y+hdo/LsEcPgwAIJKw9HndIgT4jPswUYzC+084DADAnQA+LHEojhCqjmQJ8zIlZ66IINzmZWWJKStT4pAWflQgtetnyz5ilopDOrTaR4wo4b07RoIgiBYgcYggCIIgCIIgiG3GE68vxzmNfwAAfETgvOgeWr9qKebMX2D+7lgxDwBw697/IRfEvROHNi2Yil3DJVix1+kY0l+KOcLJlZXxBmJVcJGwbFmZjwiocA65vnYONdJ1ASMucV2uFmTFIe74cNT+dWh1wCJEMWXeEASx5SBxiCAIgiAIgiCIbcakJx/AGGcONgZDUWMxwjgprOOK2ARDA8CsJasAAB9+++FyQS+dQ3MeuQ6RcHHEaR82y4Trw4MtDkWIoJ1D2ZIzX8TgVc4hlSWUxNo5pDKH1PN5rJ1DWXEpYb7pbJaEWliKEZJziCCILQiJQwRBEARBEARBbB14ArHgucyio5fehg6nHW/seTYAIIoahaf5iDKOHZ3js+ugweCCAbzn3bx42Il95t2J52pvwxGHHGyWCyfIlLc5SYiYKeeQkwo3clwx4JY7hzwlDnE1Vr1NfRxcl5v5Zc4hvY7MHKp1U1b2zTtfxo3PzO3miAmCIKohcYggCIIgCIIgiK3CihfuBrvuXeha/qZZdhifhVn9j0McDAYARGFRHPIQZ0QZodw4Qa2OCF6vyspmPvpnDMYGiGMuziwXbpBpHc94hFg7h6ywas4FAsRNyspqZqxCCCMOeeo49DF4JWVlOp8oLUlrLg49PnMFJr25uoWjJgiCKIfEIYIgCIIgCIIgtgrzFy0GACxdvsws80SE2G0DVIBzpNq32/gizpRzCSUGeX4NIfNNe/ie4L54PeZhTxx36rm5B3x4jANclrc5PESsAqm545uW9GGcwEcMUeUcCpRzKA4RJlwKSYBxBYmqzCGW7kMocShA1FQcasScAqsJgtgsSBwiCIIgCIIgCGKLwB/8LvDin83fWhCJLXeQhxjC9cE8KcDE+bIy5bpxrZBonTHk1+qI4Zn28K2ycMZkHNJ4FXNHXIDA97IPKrFHB0Y7PDJlZdwJjKsniiM4TIBViEPaOcTjEFHMUWM6kDrvHMq2sudWILYuPXOZQBiWd3IDgCjhiBIKrCYIoveQOEQQBEEQBEEQRN8TbgJ75hqEr91nFmnBJY5TASgQEYTjm9bvca6sTCRShMk4h5IQiWDwfU+KQz10Ds1/7P8QCg8j3/OvxQeV2BOpNvIOj5AwuUxYJV/G4eSVi0O+VVYWhen4XJEVh/ycOCQcHy70OqmLKo6KjiqNFIfIOUQQRO8hcYggCIIgCIIgiD5HzHsGTMR4Y8madGEiBREe5Z1DgSUOZUUQnUFkO4dYEiGEj8B1EDMPrAeB1JsaMWpLX8SCtsMwdNjehceZLm9T4/BEhMTRzqG0k5kel14/jw6kFklotqW3B8C4n5iXKytzffi6rMwS0ZKSLCZNGHOEMYlDBEH0HhKHCIIgCIIgCILoc1a8/BAAQCSpqKHLynTQsglqdgMw5cDJl5VpEcYXljsoaSCCB8YYYubD6YFz6G9TFuBgzMPAEeNKH9fj0G6fgnNIiUNmnBWt7L2aEn3inDikO6Fp4SdXlmbvww7arnIOcS4Qc0HOIYIgNgsShwiCIAiCIAiC6HOS2Y8DQKbLmHbLcCWMhHGCgCWAG8Axrd+zIogWRfLOoQjSzSPFoeo8HhshBO5/+jkMZJ0YctDRpevoDCG9X09E4I4SgNwaAuX80Q4np8I55AdKUEqijBtK5wnpc5EXh+AGRhyyhbUkn8WkCJUoFJI4RBDEZkDiEEEQBEEQBEEQfUvnGuy+aSaAtDsXAEAFR+vsoShSpVVuAFeXlUVZF5B23ehW8IBqL69CohPmw2mxrOypN1aifc10uY09jixdxziYGlqUipAocUi4tnNIiUN+uTgU6C5kSYhICTscDL7KE2JaHPKKmUO6rIxZmUNVZWXaMRTFFEhNEETv6TNxiDFWZ4w9xxibyhh7lTH2PbV8f8bYJMbYG4yxWxlj5YltBEEQBEEQBEG8JVj92mNwwbFWtGecQyyXOWRCnV0fjgpmzjtkdFmZh2y3slg5hzjzWhaH/vTMPBxVWwQBBux+eOk6WuzRZWPSOaSmMG4AHzESLkxwNqsIpGauj0QwIAmNsNOJesY5xMEAp9gtzWcJwHnqLkLqtsqju5RRWRlBEJtDXzqHGgBOE0KMATAWwJmMsbcB+AmAnwshDgKwBsCn+nCfBEEQBEEQBEFsZyyb+iA6RYBX3cMyXcZS51C2NAteDa4SWXhOHEqUk8gXeeeQdPMkjp/dRxNmLt2AE9qXQOx6IBC0l67jqHEkRhyKIYxzKECNxYjixDxeVVYGQJa+xaERmrpYP+OAcpIQEXyAseyTVJlZEodgdiB1ReaQDqJuuaxs5SzgjUdaW5cgiJ2GPhOHhGSj+tNX/wkApwG4XS2/AcC5fbVPgiAIgiAIgiC2P/ovnoiX3ZHw2gbCt4Qb3XJeZ+nocivmBfBUGVbeIaNFGB8xIKRLxuUhIiUOcebDazGQOko49m7MBttjVOU6WuxJjGMpAleCjc4jCqMGEhVY7VaUlQFAxDwwHiJRIljDqRvnEeNKHMrjyWVR2GXOF5AKamXHZP+/WyZeDXHLR4Cwo7X1e0PXujRwuxte+MO/49WfnrHlxkIQREv0aeYQY8xljL0EYDmAhwDMBrBWCCPzLwRQ7Bcpn/tZxthkxtjkFStW9OWwCIIgCIIgCILYSnRtWI194nnYuMfxEI6fCZLWziEtHGiBxXEDI7LknUO6fMthAkI9X3YQU5lD+X00IYg3Yki0uLk4pMvKYi1KRYByDplOZo0uJOpx169OzYjhg/HICFyh244AEaKEw+GhyU2y0QJUFDXgWIHUPK5wDhlxqMXMoahLZhm9+Xhr6/cUnqDj1ydhzd3f7HbVJfNmYtS8P5l8KoIgth19Kg4JIRIhxFgAwwEcB+CwHjz3d0KIY4QQxwwdOrQvh0UQBEEQBEEQxFZi/bo1AID23fZS4cqp40W3nBfKBaPDph2/Bk+LQ3HWBWSXU+n8ISkOKeeQE8BFa+LQfslc+Y9h5WHUciy6rCwtZ9POIVjCDe8mkBoAYnhgSWTcUJHbDx7jiKIIjlUaZ2O6pYWNNLQagIjL3VG6rCyKW3QO6W3O/GflKpwLJLx3AderXn4Q/TbOw9y5c7pdd97fvoeAJSakmyCIbccW6VYmhFgL4DEAJwAYzJiRxIcDWLQl9kkQBEEQBEEQxLbHOH3cANwN4MEWh+S/hRIokpKyMlFRVgZY4pBIxSHh+PBazBw6kM+V/2jiHPKNg0mKPwFiIwox3VGt0QBX4pHXTBxiHhiP0gBuT+YcRVEINwnLxSHdLS1qGDFNjqd5t7KWM4eU+0q8/oAMvS7hmlv/jh/98hetbS/Hosf+DwDAkuavyawZ03DM2n8iEm4mT6qMtevWYv68N3s1HoIgWqMvu5UNZYwNVv9uA/AuANMhRaIPqNU+CeDvfbVPgiAIgiAIgiC2MWsXAHOfNn9qAYf5AYQTZFrQm65iygUTm1BnSxxKsg4ZbrW2N+3jeWzKyoTbujh0iJiHTncgMLA06UJu29ciVQiecPiIIYw45Jtxp2VlzcQhX7qc1PFyv59cHjbgiAhxSSNn2zlki0PdOYfChEOIFtw+6vyyjUuBJS8WHp6zeDnOm/FVfHrdr7vfVo4Vy5fi0DWyXM0RzXOglt99JSLmYdqu7868R/KIrnVY/atTkdxwTo/HQxBE6/Slc2hPAI8xxqYBeB7AQ0KIfwD4BoCvMMbeALAbgOv6cJ8EQRAEQRAEQWxDxAPfgrj9YvO3Fk0cL4Bwg0zJkBE71P+1G8b1a/BVK/u8CGKXmWnhybXay/OcAFVFwgUOY/Owsv3gYocwi7S8rYEwCuEwYZxDOqw6jhqmVKyZcyiBB4eHEOo4ud9fHkejEy4PjcBlo8vaorABNyMOlTuHtGNICLRWCpaEwJBDIZgDzLy/8PCc27+L4WwlArQWKG3z/D/+DzUWYQP6pUJgCTMf+D3GdzyCmSM+jrB9bwQshihzMcUhlv/fh3BAPAcD+Poej4cgiNbpy25l04QQ44QQo4UQo4QQ31fL5wghjhNCHCSE+KAQouffMgRBEARBEARBbH9wjmTOE4gbm8yixHIDwQ3gIzFdxrRgwExZmQqk9mvwlDiU73KVxMXMIU9ESBy7rKx7cShKOHbFenTWd2+6nnYCJVFoMpGYWzPj1Meoc5O8oK1yW7EjnUNa4BKBEoeiBlwRIXFKnEO6W1osxaFQdzRLyp04dhB1S6HUSQgMGIZ47+Ow5qW/Z9xGc197Hu9Y9VfEwum21CvPyo0N7D3vTiyuHYD5/gFwK8QhvvBFjHjmm5jijMLhF/4X4Co3VokzKrzvGxi28hnM47vDazFXiiCI3rFFMocIgiAIgiAIgtgJWP4qvMaaTC5QKg7VjONGCxuuLv9SeTTafeN6NQRaZGlSVqa37YoIXOf1uK05h8KEw2dpiVgVtoMpVvvWOUCO+n8Sdhknj16/jIT5cHmUun5q/c1xeDw0ApdNuo8QHo/Q5bSr8VQ4h6wg6lZyh0QSAm6Ah+Nx2GX9TCxeNN881vGPy7ER/fDiru9p6Zza3P3P+zCGvYHgmI8hcYL0tbaJG+i86UKsEAOx5F2/Ra1WB3QHuLDYja3xyj9wX3IcpraP77FYRRBEzyBxiCAIgiAIgiCIXtGYNQEAMh3JUjdQ3YhDRjDicoKvnUNafHH9wIgieXHIziDS2/FEDKEcJ8L1ZS5QN3k7USzzg9CNOJRmHzUQa8GipKxMj9MLqreXMB+OiMwxuFocChvwrNI4GyMORQ24IkTD7acPvvy4LEEoaiWUOgmxKXZw/0JZ0hZtXG0e2rVjLl4fdCJ4/2HwEYM3K1MTwmRHrdjQwP6vXI1NzgAMOekzSFgAp0TMidcuQnvnEtzefiHOOl52jDMZS42icygKG2gbNBS77zKgx2IVQRA9g8QhgiAIgiAIgiB6xdpXHwYAuEwAPAGQ5gh5fgAoMUW7QjwVUsx01zJVMuYFNcBxEAm3KA5Z5UaxVVYmnNQ5VGMR4m6EkSgRsvOY1504pJxAiVVWpp7jmjyi0JSKNSsr444HV8TG9cPqA+RxRA25vMQ5ZMra4gY8EaLhaHGoe+dQa+JQhJkru9DFXfmcMN2uj1i+Zm4AlwlEFSHYAIBH/xPi6jHA6jm45757cCp7AY1jPw/UB4I7HrySsrIVazcAAI49eB84jsp9yr1HbDzE0l3kBtW5RARB9AkkDhEEQRAEQRDEjs68Z4BwU/fr9SVJjIHLn0Mi5CRfCz2mVMwPwJS7JxWHlHOI67Iy7RySbp2IecZVpLHLqXR3Mw8xhHbdKOdJFDURMiCFk6AF51CmrEyNW4dEG3EoTJ1DQZOyMu74srxKC0lKHEqiBnyUZw65al88CuGJCKEry8qqWsPbpWRR3H3mUKPRhfnrYuwzZJAci3V+PSjRzdWCTZO42HULwdYvRnz9+3Dkaz/FJmcgdj31C+lxlzh99PvAr9XNMu2UiqKiOGQ6xenxdPMaEwTRe0gcIgiCIAiCIIgdmI5FrwDXn4k3J9xQeGzu8vX47m9vxKZG35fkxIteQBvvwFRxIIC0nIxbLd6ZElOihpz46xwa3bVMu4J0x68IfkEEsZ1D2pXkIwJXwpN29USN5n1vGqqsTAtWVRixJw6NGOV4dXVMquQrboAlVrZSBZwFcEVshCRHi0NxCF9EpflHrpd2S/NFhMjT4lBVIHXPMoc6OzshnABnjtlX7scSXHwhxRh9TuNm5zQJgfpgxJvW4Fg2A43jLgHqAwEAwgngl7Syz4SVK0xZWYkQ5YtIioBeVmQspWs9sGFp9eMEQTSFxCGCIAiCIAiC2IGZ9+QtAIDlK1YWHlv6wj34/rJLsWTujD7f76IXHgAAzOp/HAAgDLVzSIo7rl+Doyf+lqgDpF3LdBZPKg55ps29wc4cUkKRLywHkHEONReHoiiCx7gRI6rwPQ+hcIEkQhJmxQztHBJxCMShdE25xXb0Gu548ERkjoEFUujhURd8VIhDRoCSAlLi1pHAAcufF0VPy8pcHsH1A7T362fGovGUs0qfo7DEzWNIIkQD9sInwssxafBZ2PXUS9PjdpUoVnhKUVBjVsZSBp7AYxzw0vE0FQAf+yFw4/nVjxME0RQShwiCIAiCIAhiB6Z9zn3yHyXOEta1FgDAO9f2+X7j2Y9jptgHQ4cfIP9WE3ddBub59XTiH6ZB0oAlDmmxp6aCnpkPJ38clpNIRA1ACAQstkKidber5uKQFqhYN5lDrsOkSJWERrDQDigdVp3EDYBHiFi1MAQA3AngiwgsCRHCg6vyiZKwIQOfnaLryLMEqAARuBsoR1ULzqG4e3HIETE4802pnHZ8CZ4gYIkUh5RTJ240E4dCLN8kMIUfhGEf+z+gNsA8JBy/NEBaO7+0AAYAjq9DvrP7MkHkrp86mZoJgJtWQnQUBVKCIFqDxCGCIAiCIAiC2EFZv2QW9g1nyz9KWp1r8SWpaIO+OdQ2LcKa9gNlYDDSzBhTKhYEYCpLSE/8PSUYuEYcUo4itV7CPCMcGawg5jhuAKrjGXJlZXHY2XS8rYpDgHQwsaRhuqlpAcpX4hDiECwJEaN5iZpwA3nMPEQET4Z0QwpZASIjwtjo/CUehdJd5NQQl50XRU+dQ56IkDi+EaH0eyMKlbvJDcA8/bpVv2/CRheWbYpx3ri9MWJIe/a4Hd+81jamTM9PM4d0GV2SyxMKlTDFLCdT1Ow1TsLKjm4EQXQPiUMEQRAEQRAEsYPy5hO3pH+UOEu0+JJ046rpFs6B5dMzizwRwfHr2fbuyOYIuUa4UQ4hJRg4KnsIOedQBL9EHEqPS8Spm0c7h5gRF7opKzMlYvWm6wFAxHyAR6bkSncws109LIkQorlzSIskThIigg9PiSJh2IVAhy3nMC6qSApI8AJECExOU54wEda/WygrU13SPKvzGpDm+QgvMGJYXrCxWbp2I0Lh4dJTDyrZSYBAFIWaNIDcdg5l3WUaUyboBeY1jpsFUicRiUMEsRmQOEQQBEEQBEEQOyj9Zt+HmewAdIgaUOYsUZPlpFlL8laY/QjEb04A1i4wi3Q7+dS5o8QhtU8vqJuSoUSJLL4SDDwtHCRaLFDrsTJxyCori0OEqnyN5crKmpYcIRU6HL+52wcAYnhgSWSFa9fVMalOYnEIxkPErJttuQF8EYMlEWLmwQ3ScxUgMl24bDw/FYdqiCDcWrmjSmG7haKkm25lQig3km/lJ8nXRotnzE3FobKQaE0SNeB4QcE1JI/bl6V/IjseHX7t+Xa3Mu1gyr5HY+t1bkkATMJSgZQgiNYgcYggCIIgCIIgdkDWLJuPg8PXsGzvd8mMnBIBSLt4eLMuTy2wbOkiMAh0rF9llsl28n5aFhRmy8qCoJaKPnEjDRhG2rUMPAIXDMyRDpzY8eHmulwxbotDjbS0SO3XZNZ0445KotadQzHz4fDQysjRmUNtamMNODxE0p1zyJXZOw5XziFVlsbDTXCZMMdg4+tzFjYQqIBoPZ4yMmVl3WUOqZI87qZjEZE8v3GYlnFV5QDZODxCUiGOCVe7krKClhHbgvS49b95bl+6TJF5NeM0avoakzhEEJsFiUMEQRAEQRAEsQMy+/GbAQB7vu0CxMwr72aV6PbymzdpXrxqPQBg+Zp1ZpmPGML1TVizce4kqTikRQYeNjJjMJ2skkgKW4zJ9Zhv8og0ThJio1CiShKl2UEqc8it6naVQ4sPbqvOIR5aZVB1c0z6GB0ey/KzZihxiCUhEmaVcjU2qWOoLitLoi74LAG8GhLHL+3+BeSdQ92IQ+q1EU7N5CdxtSwy4dupOMSbnFNXROBO+fFrN1mUD5k2YeWpOJQvb9OYMGyv1pI7bPHq9WAQAE8q1yEIohoShwiCIAiCIAhiB2TAG3djNtsPBx1xdHlWD5CKAZsZSK0dH3YGjS9kZo5xdejHeIhYOHA9L+McCq3OV7qsjCWNTMevxPHTPCIF4yE6Wd0cR5RrL6/LkroTwNJw6aJbp7Au8+HwOA3MVqKQeW4SgjVxzhjcAA4TcJIuxMw3ggwLN8r/lzmH1DpOJNeBV0PMfLgtOIe6zRzS7wfXNw4l7fTSrhzHDVLBrck5dXlcffxueQc5bsLKuxeHtNjneul4molVZl/kHiKIXkHiEEEQBEEQBEHsYKxc9AYODV/F4n3eC8aYdA6VTYq5zhzqmTg0beFazF25yfyt24obd45qJ8+cwJSVmbKgRHbmAtJsGR41MiVKuqU9SyJEVscv7vhpHpHC4RG6mCrnsgKpWa6srDvnUJIrEWu6rso+SjuvqVI010MiGBCHcHmIpJtW9toZFCQdSJhvRCY3qhaHPNdBKFw44Qa1Th3c8dNSvBxhTzKHdH6TE8CrybEZccg4h9JyQN7kfdPUOaRcXXGj3DnkZ8rK6qX7Mp3NvABOUN7RzMaIo/nPwYZlWPXzE7Hk3h9XPpcgCBKHCIIgCIIgCGKHY+6EPwMAhp/0UQBQZWVF8YAZ51DP3BSX3TYVP3twpvlbP19PzhOVJSNc30zujTijS8WQOkR4HJpW6bFw4EM5h3iI2Mrt4U5QKJ+S4pASZ5IwIxpk9tGNOGR3UeuOhHlwrbIyz+quFTEZVu2KCIlTLAvLoMSfGu9A4qROqmbiEGNMtr2POwBIt1LiBAXRzIwnEegXuACyLqLyA1PvA9dyMSXaFZaeV6+lsrIY3KkQx3Id7DQFsQ3puRW5dfV7jfl1U9bXnVilnpgu3LAUq655N3Zb9yoWvz658rkEQZA4RBAEQRAEQRA7HLu8eQ9muIdg/4NHAQBiFpSWlbFelpV9f8N38d6lv0kXqAk3N52tdB5MYLlM1GRedeYC0hIpEafOoU1og6da2jMem3UB6RzyS5xDiRMgFC6QRKbluRZWvIpuV3nS/KAWxCFd3qaEE6/WZh6L4QM8hNtCWZl2DtV5BxIWmL+N8OOXi0sxPPixyiXyajKLqSJzKIwTtNfkOew2c0i/DywBKHWFqUwmr5YKfs3KykQEXnH8JnMoHyCt3kdBzRaHsuMwQzUZUak7rZlzyM6xkhsIseo3Z6LeuQTrRL9yZx1BEAYShwiCIAiCIAhiB2L53FdwYPwGlu93tlmmnS55mDVR7gl78qXYLVqcLkiyzqHQhEIXXSaO5QYy2TJxaEqMOlkdvprIO7l28GVlZVqEieBlnEN6v2lL9hadQ0ErzqEArlVWFljPiZA6h6rKqjTMk4/XRZdc13EQCRdBIoUfp0KoipiXWYe7QUE0M+smAu3KOdR9ILXahuuDOS4iJbgBQKKcXY5vCUdNxBgPMnOqDBMgne+Sp8Q23xLFtFCUd7fptveuF8ALVOZQC84hofaxaskc7Nb5Ju4b9jmsdIeVZ3IRBGEgcYggCIIgCIIgdiDmP3kzuGAYcfJHzbKEFYOcAasNfA9dEz7irNiUK0/TQg9zg0zpmNxnaLp4eVZHLF221MXq8KHFoSiT2yOcwLiKNI6Q4lAMTzqHtAilxSFTVtb8GHXuUivOIS1SabeJb5VBRaqtfCvikA6wbkenKUGTwk9H5vE8MXzUuFyH+TUIx4eHisyhmBvnUKuB1NrBpAU3wD4/dSPGNBPcPBFBVBy/W+HmEnGIhvDgu266nSAtGcwM1cqI8loQALVzSAuYmzrk+Rux776Ic5lNb855Hff/7NNohOQmIggNiUMEQRAEQRAEsQPB1yzAajYI+444yCxLSlrAA2lIb08zhzxE2QBkU1YmJ+emM5lXM6HTeh8Oj2XpFYBAT/zjhnlOw+kHj3EkcazEoVRgEG5g8og0OtsnYh4cHqYOpVzmUL4sKY8en9+iOOSKGCIJEQkXriVmJKrNvSfiFpxDcoz90GWElAg+aqJTHpslOtnEzENdiUNu0AbhVDuHwoSjPVBlZXFrgdRalIrVOQXS11aKMeo1TarFGB9xpTjEKkLCGZd5VI7D0u0E5c4hYYtVuc5qZWjHme66Znc70wHjmuUv3osz19+GlQtnVW6PIHY2SBwiCIIgCIIgiB0IGeKcnZRXdbPqrXPIE3FWbEq0gJBte848H34t6+qQpWI6cygwz9eT9YbbD4DMLXJ4lCkrE25gSs40rhJhYvhgPDRuFO1uCUxYcTfiUKLLpnrmHIqQDV2WgkoMv4lzRqMFLJcJcOUciuGhTQs/lc4hD21aQPJkWVneUaWJEo6a78B1WAtlZTqQOnUO6dLDJJL/d/0avIpSLwNP4IKb7eRJy8rymUPZAHIA8D0PXLDCe1SLVV6QZiA1EwB1B7xIvc9MNpVfK4hDMB3ayDlEEBoShwiCIAiCIAhiB8LhkSnb0lSJQ3pZT8N4A8SZ7bGcAyntGFZLO3lp8cVyAwWei4bwZOaQChiOlTgUho1iaZZTdA7p8qWI+WBJBG4FJwOAp8SpbgUwq1NXd3BVxsWSEBHLi0My/NtDbASfKrRIAsjOboAsS+sHJfxUCFUx89EP6jiDOoQTIECMhBedQWHMEbgOfLd7cUiXjpnAaBWuDaRh454fmIwlEVfk9CRpt7oyXOMcymYOlZ1P5jgIVclgdhdpgHiVu8hGi2eJ6awn9+34NXDHy7yftZAZ5TORCGInhsQhgiAIgiAIgthOaXRuxKtXnYk3pz5hljEeZTp8AVCtzovOEu2WYCVh1VUkXMBHnAmG1u4SYcrK0pIdX3XySsvK0hwh12Em10ZnAsWWc8gVuY5fXoCAJUgskcNTAlLCPDAeGcFCu1t8E3rdTUe2OOuaaYZQ51OWQWUFEB3+7SGqDGTWOH5aNqaFpIR5aFfCj1crLytLmIcBLBWQhBfAR1wq/kQJxzs23Ye3u692mzlkl1rp/Tj6tY3SwG6/Igco3VDzc+n6OkA6+/yy8wloB1Ou7b3Oe/LrqVhVNR4hTI6VdivFJtC62O1N5ALWCYIgcYggCIIgCIIgtltmPnUnjtj4DJa/lopD+ZweADKwuMw5xNP28q0SxTF8lmTFIS0umc5WKpDaCxAoIcCUbYkYiXIDMcakGJCEaV6R3y7/HzVUyZgldOlyJ8vR4QmZbRPDg8OjTDYOACsfp/kxim4Ejcy6rg8fcWlZmQ7/9kXcrQvJtVvVq3Vj5qM/0y6dKnEo3a5XawNzfQSISsWhMOY4e81NuIA9gjBuLg5pUU87h2Kr3EqfHy+oG/Go0nFmdT0rwzWlfsXMobywCciQbpbLzNJCpFerdS8AWq+9FsB0NpUbBMUueEpg5FE3giLRd/BkW4+A6AYShwiCIAiCIAhiOyV65e8AsuU0+Q5fgM7IKTqHjFuiB86hUDkvbKdFXkCwO3/p0jEtJLg8ArfEjQhy4q+FAqHFoUaoSsZsAUX+u9GwxCHE4K4MFXZF2l5eu1uYEii6LZ3rkTgUyLKyEiGOOzL8WwYyN88vsjOFhKtKrazXriqQOiMOBXUIt6acQ8WysigRCEQX2lmj+7KyUJdqWc4hnu1E5/k1gDGEwqt26uS6nuXRwl2+g5yThEhKnEMx/MLrZweIu55+javK3NLnGnFIi0t+G7gTZMWhJBtaTWxZxJKpiH+0H6LZT27roRBNIHGIIAiCIAiCILZDwq5OHLLuKQDZchq3zDmkxIw8OmfF6YlzSIlDdvaPCfONddivDncO4DipO0jv084RipgPxyorE0F/uamoE56IjMsIsBwt1qTdQwQ4vurIFppSJZN1pISM7jKHjLDQgjgEN0AgYrg8LOQ7JU4AVyhxqFvnUM3+Qz6fpfs3jpgctpvKD+pgriy3i+KiABgmHAFvoA2NUvEoM/Y4zYqSY5EuKCAtAdOt5SPmVQpuxhFUcS51EHm+rMwpOZ9yXz4Yzx2bdjLV6mCOg4bwq91h1jjjKOsKcv0A3PWzgd5G5KSysi1OEmPtLZ+DF23A9NembevREE0gcYggCIIgCIIgtkNmPHMPBqjgYmZNYqX4kivNccq7WRlxqAfOIZ3Z4pc4h3TpjyntUiJDZAUKuyLOOIdi1frdCAWBcg6FoSoZSwUGIw5ZZWWBiCHcAImjSqB0Fo0lrDQTMgy8decQXB8OE/CSrnKXFg/hs8SMtwrdUU1us+gc8iqcQ7a45gV1QO0nbBSdLmGUIBBd6IdGC5lDacgzoMvK1Ouszp/O94ngAbxcjMmXp+Vx/WwHO40jiq43AEjgFd+jcXE8ldlZlmik35v6/aYDvW1nnX6vdNfhjth8Nj7+S+yy7jUAqSuR2D4hcYggCIIgCIIgtkMaU+/CBtGGSLgZx4Qj4hLnkI+gJHNIT4idikl+GbEq6Sp1DuUm1VoEkOKMKuMREbjlqImZr4KklaBQk86hJGrAQ5xpB8+UgBIrZ5IJGnZ91ZEtNtvxLWElRjGzJg9LInAwwHG7PwlKQAp4R0lZmYeaajPfXSB1xjmkhBRb+AmCttLn2fv06/1M+VYcFbtrOVyejzZ0Ieomc0iXUTm67MvucqfFIRUwHsODUyG46bBnp0Ic8oNsSHk61jjjFDPbY0VxSCQhIuHC96SYFLFqd5iwwqz1e1Oo7mu+X5OZXJZ4mnbfK4oV8x7+X8y54fOl+yF6hlg1B8GTP8Zz/DD5dw+7JhJbFxKHCIIgCIIgCGI7I4pCHLT2CcwcNB4NBJlOTp4Is+3fIUUKv8w5pJaVtbmv3rcuK4shhMg8X5dmpXkuaUt0PeF2c4KPnvjribhbHwBAljh5IsqUZjHtaAmV+MJjOExAuDWTOaRdIoHtHIJfaIWeh/EIMTyAsW7Pgc4HCpIOxAVxKECbSAO5m2G7m5gu5bKcUk5FK3v7/Hl+zTw3LnFeeIk8V3V0nzmUL8nTLig5sBCJYHCNGONXCm46MLwqc8ir6C7m8TDjKtMkVjC2RoeBu458vWJ4lZlDsZVtlOScQ35QA1wffqb7XnW3spXTHkT/N+8v3Q/RM5bd9hWE3MHUsVcCKIqFxPYFiUMEQRAEQRAEsZ3x+vMPYxdsgHvEvxQ6OckOX7lJuRvAZQI8l0nj9aKsTLtLAkRIuBSHdC6NLuvhqttTWp6UTtx1dzFNzAI4PDJCgRGHwgYCxBn3jaOCh3XZkskespxDSEI0hAfPdax9+N0eo5OEpZ2yStdVok+NdxSFOCdAuyr3c7pxDnmWM0gHZ2e2V/F8nslhqpvx5MUhzgU8JRzWRVf3mUPqfGrxJrFbvOc6syXwK8u4klA7kMozlzxTVpZzDok4I45p4hJxCDxCaI2nzF1kHrPKEPV7E8Zh1qYyuewyyeqyMsaj0hJNomese/Uh7LH0Mfyt/4dwwbveDiD7frj/oX/iLzf+77YaHlECiUMEQRAEQRAEsQ3gcYzJV38U82dMLjzWuWoBAGC3/UdLV47lwPBygc8A0hbwUWdmsd8L55AWZFwmEEXq+bzKOSRLu+zMGB9xpqwsYR5cHkGoSbvXNlAujxuqZMx20qjtKfEh7EodOkK3I+eRzJ+xHEBxSSv0PE5JkHcV2hFT552ZAGlAlvC1MfV6eOXOH43nF51D+rVLwAC3XKzSglki5DpMnZc4110r4hxtTItD3WcOiVw5oF1WxpJQlm4pYubBrXDqRKasrPz4A1XylxeHPBGBl2UO2eVtCpYT8yKUCEh6rGG6H6GDz7VYWasBjo+AJQCX54flAtZtHB6SOLS58AQb/n4ZFoohOPEj30FbTZWAWt9ju039HU6a87NtNECiDBKHCIIgCIIgCGILsn7RDHSsWlhYvnrlYhyz+h9Y/EKxhCUt/6kr4cMWh7LOHCAVHvKBxbqUxutB5pDd3jtU+UNpdlGu7XlNO4cCM3GX3cVSQYWrIGldGlfrp7qVhV1SHLLLrJRDRpcG6Ywd5qqOU0IGUsfICgxSgOrGOcSjlp1DWvRpQ1dRiLP+rhJHNNmyMnls+rWLSlq6a/Q6oRKztKMqyWUOhTFHG+Rx19AwYl4VXHcA084ey1Ejy7hsUS/tZJbHZBdVZQ5pR1GurCzfyc6Mi5WJQxHi3Hgqy9ys82JK2dR7KAjajACpu5M5JnOo+J5xeZQJYyd6zrR7foXh4Ry8OvKrOGjvofB9D7FwMqWfHm9kSv2IbQ+JQwRBEARBEASxBVl+/ccw88YvF5abEqES94IRX4Ia4pxjwsuVYgGp0yVfdtQb55Cdw6KzZdKuZ9lJtRYZEsczj8nuYvakPoAnQiCJEAkXQb2f3HZXBxwmTFAzALg551Ck/s/cQHacQgwn53ABKsqScjgiQsyal4FpmBJj2tAoBCiXlcFVYYtD2hWlSwLDVsQhBJnnJnnnUCJQR7rMSbLOscJ244Z8DXzP7Mc3JYNRRnSLnepzakSWiswkz3PREMWyNE9ESEpK6RLHh5trZc9ybe8T5lWPx3rPmkDqJEIiGHzfM2KfFju1E64s4NoRUWl+F9Eaq5fOx4gX/xuveEfg9Pf/KwCAMSbdflZ2GpXvbX/0mTjEGNuHMfYYY+w1xtirjLEvqeVjGWPPMsZeYoxNZowd11f7JAiCIAiCIIjtAiHkfyXUk41wGusLy7WQU9rBxzg8AhXWm67jo8w5VOxmJXSnLyDTxrs7uLUNvT09iTPOIT0+VT4ks2vCtLuYk4oGiZUVFMFDTQkmvLFBrmAJSbrcKXUOher4ahCODN1mvMw5VO1y0Ti8vKSpDNdyBAknX1bWfaB0up2iK0o/P38MZfvQTh7tUOI551CU8LTEDYAbdzQdj4jlaxCovCZudfFiPMqEbzd3DqnytCbOqQjF7mKeiDPOKw13fCkgWji517kVJxOQlpOxpIEQPhhjRjzVYetu7n1s4/IIHuOF/C6iBYTAghs/j0CEaPvAb+B5aWdA+X6ws9OiHn0vEVuevnQOxQC+KoQYCeBtAP6NMTYSwH8D+J4QYiyA76q/CYIgCIIgCOItw+w7rsTiq04ofcwTEVjJpFZPaMs6MNniS5xzTHg5Z45aEQAQWWVlURTDZVKw8tBL51C+rExP5uJsxzDdbSpJdHexdHzcCUw5WAjPCEq8sUkev2s7h1QXLeX+0EHDjl+DcH14IgZLooyjRO7Dh8ObTzRdEZW2US/DLpfieadLxjnUXBxiriqngdXWXp2bfBe07POy6xjRLNddS5aVWZ3skmKrexspDrnwlTgknMC8tixXdic7mTUXY/TrVYZ0iuTEIZSEqQNp2LiFzIiyxCHHrywdtLOYtKuNJZEJ2NZOMO1EMyJTmTikHoui5ueSKPLS/ddjzKanMGX/z+HAw8ZmHsvngrk8QtCD7yViy9Nn4pAQYokQ4gX17w0ApgPYG4AAMFCtNgjA4r7aJ0EQBEEQBEFsDwTT78CATXNLH/MRp+3CLfSEViTVZWVBUEOSK+/J5/QAqUhhT5Ijq4NTj5xDVpmb6W6FbDC1nlQbcUhN7s0+LXFFOJ4UyFRWkK/EISjnELPcN7qsTDtkjIDmBoCrnUPFYOmkJLMmjyvi0jbqZdiOoCqXVn69KrRAoV8j7UTKC1w2xjlkxCEtmmXfK2GSZg4BgBs3LyvTAl3gKXHIC9LSwyREYpW6ceZVnlPegjhkd7DT+IiKwiZgSgZtHB5nygATViw9M4/Z5XZa8LHK0rQAqTObdBc/USLMGnEoLBeiiHLWLpuP/SZdgdfdg3HcR79beDzMdb9zqXxvu6PFRLaewRgbAWAcgEkA/h3AA4yxqyDFqBMrnvNZAJ8FgH333XdLDIsgCIIgCIIg+pzVi+dgn2QBukRFW29EqePGIrEcDsUH5TI/qGeED8ET+CwptEDX5Ut2YHFkTZj9Htyht9t7a7FHP9+IBTxELBx4npxOcNVJLAobqCPrBuJuAFdIUSdiPtqUoMLCjfL/1rqeEhuEcQ7plukB4PrwWQKXNwolWdzxURPF0j2bqjDkMjKiT17M6EFZGQDlxgnhalFMl5U1yT9iuXVc0/0rJw7FHHVmvc7dZQ6p0j7flZ3emOPLMkUhVCaTVVbmBNXiUC5zqowIxQBpX2RLDs32dCc6C4dHSJysk8mNy1/jMnHIsYLLdWC77mqWdt8rCkB6HHFIzqGW4RxL/nQxRoguOOf/L/wS0TDJiYWekOV7SRzD9baILEH0kD4PpGaM9QdwB4B/F0KsB/B5AF8WQuwD4MsArit7nhDid0KIY4QQxwwdOrSvh0UQBEEQBEEQBV6cvwZ/fnbeZm1j9rN3AwACxKW5Q76IU8eNhRZySjswJSESweB6npykq3XCEmcOkLpv7EBqLeyEwutR9yVbHNKTbv18Ixao7BrzHNWKPLYCpDUyKyhS3ac8+KrDGYtkPo5dwuXV2jJjMF2x/JoRVfyks+AcKut2lcfrgTiUyRxys2JGVsxqxTmUdf/o1y5pln/kZcvK9H54IZA66xzyeXNxiCURIpFmDsEN4LMESZIoMcYuB/QrHWd2YHoV+S57Oo9KlIR4CzcouEhcHmZeZ/0eK8M+L4IXy+SYrwPbVSC16dBW3J4+5ny4O1HNzL//BIdveh4TD/wKDjri6NJ14pxYmJbv0XneXuhTcYgx5kMKQzcJIf6mFn8SgP73bQAokJogCIIgCILYLrjx/ifx+P1/3axtsNmPAgAcJpAkxcm0h7jgigDSjlyspKxMlv/IibHtqohKxBegGOQMpJPbDlbvUbaHHdKbRA05qWeJPBbT2SovDsnsGjO+XGaPCZJmvikrc2KVOWQJMb5usa4mjKaszUvFoSDpyDhK9D66K53zRDHIu4pMuZRbXVbmtiIOKYFCl8yZEqcWnENarNHPzbdel+KQ5Rzi3bhdjHNITQN1VlXYgMvjjGAlS72qnEPqdVHjKiPfQU4kkexOV/YaOH7B3ZZ3ejUTq3icPpdZziEjzBlnnRY7UwdcHv1YSOJQlnULga6ic2vDm1Ow/9SrMNE7HiddeFnl02V2Wnq+PTrP2x192a2MQbqCpgshfmY9tBjAO9S/TwMwq6/2SRAEQRAEQRC9pTNM8J6FV+PH4upeb6OrEeKgjZPBhSzTiRpZ54bgHAFLysUhXVZW4hxiVrt22xUT68DpnDik82wSa6Kl/93J2hCwGILzlo5JZDKHwoxYZEKDk2x4sVACls48YrY7RE38XeXk0O3dPdVZy/HTdXVYtd4nt5xDWkSq8c6CsCJKypLy9Mg5FKSiR8E55NkZSS2UlSmBwrS11yVjTcaSF5CMaJYThxoxR5217hyCCmnWmUN6LGGjASd3fkRTMUaVZzU5/iQnBpjSr5IQb1Ei7rkizrzOsrNac7EqEq5xAzlWNpV+zbR4qt8rTllZmXIVJRRIbYjWL8OmXxyHV2/6RvaBsAOb/nIR1oj+2OXC/0Xgu+UbgA6tT19j49Bq0HneXuhL59B4AB8HcJpqW/8SY+wsAJ8B8D+MsakA/gsqV4ggCIIgCIIgtiWTXp+Pk9hLGedFT3l18mMYzDZhdu0wAECYK5GIdflNyaTWCB8lE1TGI5OXwq2OUqn4knMOBdkuX0BartFgbWpsrQXs2gIEjxrGDQRYXcuSKJP7o0vH9PgyXby8GjxwuLwLCfPBHBeRcOFrcch2DmkBRbmpUhEiMMdcE50FkYer7JwqEi7gIc60oW+G2yRzyC6D85uUVZl9G+eQKqdTzy/r2qXR68RqHa9WnjkUJQJ1q6ws4F0QJaWNZrtcBlJr55AWTaKwC56IkFhjEm61c0iYTKxmZWVZ55AOeM673gAAboCAJZmyTE+EObGq2h2m3ycdqJlSNkc51YC0TNA4h5CWnuXRx5xQuZNh9i2Xo11sQuf6VZnlC2/9MvYI5+OJI36Aww/cv+k2EuZlus1pp1hM53m7oS+7lT0lhGBCiNFCiLHqv/vU8qOFEGOEEMcLIab01T4JgiAIgiAIorcsmXwv6kx2zEl49YS6GWumPQAuGNYNPxVA0Tmkc3/KJrW6FMapcA5p8UW2cM/mc+TFIc/TXb6KZWWh2y8zlu6wxaEkbmTKPvSEjlkTbzlG2W0qKRmf7k4VJJ3mORE8BIksK3Mz4pBy7Khzo50erl8z7d3bRFdBHJLOk2rnUJRwBIhNp7Du8C1xiOWcLraY1UrmkBaHvHxZWQvikBaQtKMq33pdt7IXTE7r+qELcZP3sm7vbgKpdbZR1FUo4xKOX5lVZXfTqyLfXaysk53BdBNL32turgywLJcoP55NqAM8zcfSZXmOzhxSAqlxDpV89oKcEFvG3Ad+jTl/+FTl49szS6bciwU/HQ/e6Ghp/TVvPI9DFt0JAJkMqY2vP47hs2/BbcF5OOf8j3S7ncTx4VifUb+bbCchBG78+3344y1/aWmcxObT54HUBEEQBEEQBLG9I4TALgseBAD4LEEU966l8rCVz2Ju7WAk7XsAKE50oka2FXxmDEr4cEpEDYennaO41ebbdO+qdA5ZJWFxThxqtHiHPsk6h3TZR5dIy3p057F0AFJISMKic4i5uhysw5T5xMxDTZVAuUHROSSUc0hP+v2gZgSTNtFZbEnvNncORQmXj5e0US/Ds8rK8k4Xu0OZvV4V+phNELcuEWtSVqZfX672rUUokeSdQzKQOqntAgBoQwNRUl0+qB1pMhHEEqrCRiGTSbiBDFkvPahQur+86jIinhMDtDiUf+8CMOKQLWB6iDPuqmalg/p90ilqpWVlOkOKK3EoqHIOqdBsQJZUVrHq1UfRPv+xzLIHJ0zAxs7txAUjBNa89gh4mBWreec6+Pd+AftsegVLF89vbTt/+zLWoj8WYWhGTJs57TkAwMHnfgO1Ju8Ds+9caHzqHCqK1oInuP/338KHXvgYTp35n92Pk+gTSBwiCIIgCIIgdjpmL12LE+LnwSEnyY1e5l4M4muxprZ3WgaUF4fUZDcomdTyRLfVrigr05k+rm8CpcucOXIV5RyyxCE9EY7cdjW2Fo/RFofihnFQdKBu7vY7IkJil5W5AQIWW2VllvChy8F4h3GmRPBQE6pzlC0kOQ5C4ZoxcOMcqhvByWUCPCfyyLK2uLKkKow5fJa0XFaW6cKVdw5ZYdU9EocCWd6nj6NZWVl+HeNeynXXihKONtYArw0Ch4N+rIEornYOScEkfd30fuKoUcxkUoJbaVaVDrb2qqeTCcuKOaYksuQ10A4mu3OVJ6Ls69zMOZSkZWU658h2Qnn258MSgPLOoSSJZWg2mpeVMR5lBN9FC+bi9MfOxcuP3Fz5nK3JG4/fjF3+ej5efeyW7PK/fB1DuCwN43H3Qtabj9+IAzpexqQDLsUmd3DmfGnxbN+hu7Q0psTJOslSEa44jqnXfBzvWXwNErioie1EcNsJIHGIeMvy3JurMfGNldt6GEUWTYG47+ulrW4JgiAIgtg6zJr0TwxiHVgwYByAHggnOVxVqqTdIPkQ2ziXcWKj3Q52SKvG4RESFWRsBwOn4kt2gq0dN9xyO+hJV+L3rKzMFiBEHJoJeydry0yqM+3klTuIN1SpmF2WpcSAuugCV13GIvhoE52FdfVj2v1ht0y3RZmC60YJB1XlgVGiBIFWxSFrX0UhLh1vs7IqjQ6e9pW7Swdw5wUuG/36GjFL/Z/lJvSNmKOOECLoh9htQz80EDZxDtmONCA9tihqyEwm+7x6NThMlLvqkhARXARu9XQy33o+Np3sSs6ZWhZa7rYgPx7Xl8tKxCqRhIiFg4jVzOfJzlBKnUMNxHFkBCA3J9raZaFJE/HETcLMZzratAYuE2Bdqyufs7VIwi60P/F9AEDXxrVm+dqZT+Kg+X/FXLEnAGSyxMrgjU3o/8T3MZPtj5Mv+HIhM0gLcl6t+88AoMoMdbB+FMFjXP27KI7vs+opTO53Ml7Z7YxS1yWxZSBxiHhLwrnAl299Cf/9wMxtPZQC4rnfgz33OyCmZH6CIAiC2Fb4s+5FJ+pYvbfOCurd77InIgjHN62y8xMuPSEu6xZmhA9RnBw5IkLs6MyhmnWXXZXm5FqI66yeTJi0mtxyTzmHWuy+xKzSJRE3jEOgi7XBZUK2JOdRpp28zgNKujYAyIlDauJfF2mXsYR5aIdyDvlZ8SVinhmDOUd+Da6XHnPBdeMFcJlAFJWXHcnMociMszuCWrqvQgmfHUhd6945pEvgvJxzSDjVk2p9/rjulOZ6SMBMm3aNaWXv90PitXVbVuaIrHPINaJmCB9RpjObPlelomISZYKty5DiUDqxT5qUlaXlbak44yHKiHnCDeAwgSQpEQti6WSyc208EZlzb85nHGY+63nnkB0oz5s4hxwRZXLEzGcrri5F21q8/LefYE++FEDqTgSAeQ/+ButFP8wa+QUA3Qduv3b7f2IoX4EV47+H9raaOrfWuVffL4F6X3eHcHwj9EQlXRVtfMSI24ep777mXQiJvoPEIeItyeR5a3DKhnvwzk33lD7+4sQHsWzpoq08KomY+7T8R0lnEoIgCIIgtjxrNjYwauPTmLfLCRC1AQBaF07y+IghXN9MePMTLvvvOD9x1GVlJaG/0pmjJsZeAJ8l4EmCRHV8cgvOId0Cvji5FUF/uf9WuwLxrHNIH0PDkZPAKGyoNuPF0rG4U4lDdqmYeixAbMp8YuajxnTHq6zAEsE3WTDaneAH9ayokBN5tLgQVrijQhVI3apzyA6kdnNOF7dJHlEZ3PGRCAY4MpfFiEM9cQ5BnhfkxYyYo42FcPw2JG6bLCvr1jmUbtOUr0Vd8EXeqaNLJcvEIRmY7jqscl+yy57lHNIZWyUh3lpAjEOrm5XIvl7MLRdg5Xhk0LZwPPPekWVp8jnp5yPMCED5z57dVp03yRxyeGRKPeXu5boi3rZCxvqVi3HgjGvxijtSjcdyEjY2Ya27C3YfJvPRmjmj1i97EwfNug4T6ydj/OnnAChmBpnPpt/aZ0pYTrLQPs8l4/DUay/D+Mk5tLUgcYh4S/L00xPwPe+PeFfXg6WPH/LAxzH7nqu28qgArF0AZ50MfxPbwZ2FHYIkBu7+AqBFNYIgCILYTJ5/9gnswdag/cizTVhydyUWVegQX535kxeHbEEmzLuT4jQbJY/L49ThoUSEMOyyWrtnJ9gmI8eanJq29jUpDpXdoS+DJRFiPU1IGsb9FLmWOMTTTlBAOrnnjfWF8dnh1Focst0rXq40K4aXOmS0O6FWz5WVZSek2uVS1fkojGUgdb5ErArfc9EQcowsd661WBQJF2DV4oiGOz5CpOfKnJsmwpIJ6bacPJF9XvQyFUjNgn5IvH7o141zKN+RTLu2krBRCOzW56pMcGM8kmJVE2S3s2JZWV5sA1LByHxekli61OxzZMZTJg6FaMBTAoQuK0vFLhPoHYeZ0rH8Z89+//Am1+quiOExDpHkcnOS3n2P9JhlrxXypwDg9Vu/ibpoAO/5iVxgHYMuVdXCcuX3gRBYdNOlEAIYct6PTXg5d3y4ljjJkggN4cFt4h6z4W5ghJ7IEuPLRCotusOpzpki+h4Sh4i3HF1hhFNn/Qge45kfJI3gHO2sC060aauPLXnzSfPvloIvN66A+NtngE2rtuCoth4vPvsY7v79lZVhkWV0TroOeOFPeOOZv2/BkREEQRA7E+tf/gcAYPix70snpb3MHNI5NqlzKDuhtP/O78NkdpR1K7PacBsBq9Fl7rLn3Rf5Ll9AekeeaXGoReeQw0N0QApBtnMoMl3PVNtzVnSZCJU55AWW46MkK8h2HeXbwcfMT8t91ATY94PMevlgaS1OVeUqRVEkM2HcojBRhuswRCpwu+pch/mOaRUIx0/DxZGKQ6LJWFzjLkqPM4ZvwpY1USJQRwMs6AfutaENXWjETcQhHoHbgdSmrKyBgOWcOsbNU3zfsCTKHFMZwg0yeTFabClzDuWdd1owYCViVdlrzFRAtnACI2B4WmBAKkCKJMyIIvnPnn2soomzRpeCRurzzbXYUVIZ0AhDTJ32UnbhxuVAY2Pl9pux7tWHgN+egIXP3pFZPn/6ZIxbfheeG3IuDh3ztsJ4HB4hdvxMiV0Zs5+4BYevfwpPDf8MDjn0CLNcOofS11Oe89Y+A4ASC3WHsrDaoZUkCXyWSKeYGyBgCZImgifRd5A4RLzlmHHfNRjLXsd69DftVm2MlbSkM8iWZu6Uh8y/7W4MWLcIiDqLT3j2N2DT/gosfmErjG7Lsm7K7Tj8/g/inEU/RxS2eO47VoM/8gMAwOr1vfsBJQiCIAibdR0RDljzNBb3OxxswLB0UtoL55BQXY+EG5iuVTxXnmbfFS+4k4w4VLwzbuelmE5oUQOJcQ5lxZHAD8AFyzgFuHIROap0rllr7gw8QidTOSJJZCbssZVd5Io440AxZVANWVbmWZlItlNECyJ2KHK+45cUh9RYkxChcOG6Ti7kOldWZp2jMkynrBZLYACYiW/e6aLHG6G5OKKp1euZUi7jCioLZtb70Mdq5SxFtmimaOiysqAfhN9PlZVV34TLO4f0fiKVFWU7ldJOZmXd9GRZWTPsjBkg/Wzk37tyX9kSNvNZscfTpMyN8QgxPCSOZ9xAPiLjMDPiUBxmSkjznz37MdEkAkKLJNpVZcrKStw8Ux++GSPvOA0rli40y1b85j2Ye9s3zd/RmgVYecfXgbLOcDacY8M93wIALFm2JB0r51j398uwEf1w2Id/CM/15PeBdQyuCJEw34hzZZlK4cY1GDThm3idjcCJH/1OdtdutvsckhBRNwJhBtX9Dmju0Epfex8o6WKXZ8XaDXhz4eLWx0FUQuIQ8dYiiXHAtJ9hCkZi1i5vL20bq79wnJIv776Eb1iR+bsrShAsnIhYyI+d/aW4/pcnYMbfc2VuYQf45OsB9KC7yHaKmPQ7DLjn01CNIVo+nkV3XYF6vEHatu3Xi3Ogl9kQBEEQRA/pXAOoCf9bgQkvTcdY9gacQ88AkLaAT3pR7h3HsrQEbpAG++a2w0NbHMr+dukSobJuPJm24sYV0zBuoLzbhjmOFCsyeUGqjKdNi0Ot/XY6SYSI1WROTtIwk0huup414KogbvMcNblnoepWZpWKuRnHj+rUZT3XD7JiQcK8jHMoggfGWCbrJ1+Sxbxq4UAuV9d/LWYOATAT33zZmz733YkjmsPf9h4MPPKs9PlaFGqSOWQEFEtASpgHpyKQmvlSHOoukNrLiXr6dUq61E04z3YOaeG0TIyJM6WBZQg3kLlBevwVJZFAKsBpMdWUYNplgHqdMqEgkV3YBPPhiASAzCzSzqtAv3fitEyyQ9SKzqGoWrTIjFd33VLd1YxLr0RQ4htXwGcJOjekncycjpVYtTzNP3318Tsw5OXfYfXiNyr3CQDznrwJw7tkwx07omLahNtwZNcUvHbI57Hb0D3BHAchvMz1s3SN+Ua4LfvOe/X2H2BXvgZrT/sp2vtlg6a5E8C1vqu0INcqwknfD0nGOZR9PbXgpp1D9rI8G9euxNqrT0J4/Tktj4OohsQh4i3F+tmTMJCvw5sHfATCbStNt9df4oxvQXFo4WSw/zkYWPyiWfS3Cc9jHyzF/H4yIE7/+AieYCBfh3Urc4r3tFvgdK0BALyxZM2WG+uWZt4zEP/8Bh5JxuHP9QsBZH945/71cqyaObHwtI65kzHs9T/jH8GZWIf+mddrzdP/h66rjuj+7gpBEASx2Sz+3Qcx76YvbOth9BnLpvwDDhMYdrScTDh+751DRuxxg9SZUHAO2WVl2X3o37ag5HrFtfJSbFeF3b2rMB542U5jWnyqS3GoWcBuZt88RMxUTk4SmUky99vNcfjIOlB09zQWdRTGlykjUk6OrDiUnYTGLLDEobR0JXPMXl4cKgYa22hBwemBc0hPfAv5TrWi+6kZzlEfh3v+b9Pnq/dKaUt3hdtvMBrCQ9Q2JB0PSztxacJYZg7Bb5POITQQNSsrE1Gm05s+p1w5h2xHltPEjSUD07sRBlwVOq7iBPRrUCYOpeVt8vWLSzqbpZ+DsvFIJxN3lLtFCLlvHUitX/ckMsfTyeoFYTbzPdBEHNKOIz1O/RlhZTef1WO2c89DnLm2DbtkBUFHZ0klgULEIYInfogFYnfzt3n+1DuwGgNx9Ae+bpZF8LJlZSJG4vim5LMsCJqvmo0Fzl447qR3F/efy5DqcVmZG8jSRSEyTqD8OHQ3Oeal4pCev2W217UOK3/7XhzM38QAvq7lcRDVkDhEvKWYM+kecMFwxPj3yS+gktawxla8BcWh5JW/gUEAG5aZZWunPwYA6NrnHXIcOtxR/wjZdxo4R+eTv8YqMVA+1Gp3ke2NjtUI/3oxFoih+Ou+38GoA/YBkKr/gicY8dpv8caTtxae13XTx7BM7IL9PvBDefFlnZ/XX5+OemNl611XCIIgiNZZn71ZEa9bgnUrtk2Hz76mK0qw14onsNHbFWyvcQBs51BvxCE1IXTTu/F5t0GmW1n+d8t0VWruHLJLpoSaYObdLAAQMi87OVVjCZRziMctOodEjJjJnByWNNJzE7SrYwozYb9AOnHXmY52BzI7kFpoNworPldjlwYxnpaueJawk+8SpkWfyrIy7RxqIsgUnsO0OJQte/PV362KQ3l2GSAzoIYOHli5zm5D98Alu/0BA8eeZ42nmDkUx5EUQfx+gN+OfqyBsMo5JEQmhwew8o9C6RyyBSuWD4m2cESU7VZXhs6hUu9J7WTzS967aQ5OI7PPzHialrnJDCRdyqZLKrVzyHUdGTCepBlaXWXiUItlZVok0SIHbxZboQRbe9u+iDIlgvocNbu2nXr3L7FnsgSzxigByC4ZS7qw3hmEoJa+V2PmZeY7ngileGaFc+eRol/56yqssjC5btht7lQGV4tSUcY5lB9H+toHTV/zRdd9HHt3zcJssTd1NOsjSBwi3lIE857ALPcAHHbAflIcKrFp67t8W6ysTAiEr9wDAFiwMlWxD+6cig7WD+t3Gw0gvVg047F+TOJZD6Nt3Wz8iZ8JoFzZb8qcCcDsR3t7BH2DEIjuuhTOpmX4rvcV/OjC8YWwTpM9ZP8o8ARrbvwE2sMV+OfI/8bYQw9EbNvLAdO5pLedZQiCIHYmwphj9abWHCNrpvwN+NnhaKyYY5a5uUnMjsyGjgbezqZh6bCTAEdeBqfdmnpermycQ17NlOfkJzqZVtKFsrJq55A9iTfZL2GXCZwuy22J863O1eQxaJciRLMyGRtHhRbrlvLmGAIdbN2lxmfl6KgJpxdrcchyp9jlYEpQ0sJSWccvztKuSE6SZttoxw6AQtcx19PiXPm1gXZw5YWoZsTasZQTM/yaFod6MDG2qO+2L/gJX8SIt51bvY7v4v++cA7GjUidQwnz4fLcta3OrPTbgECXlVVkDvEEDkRG1PO1UKCCxO3zqsvfylx1zUQEQ671vGhSVublcnD0c1jmPaY60lU6mXyVixMjUufFFpd0Fzx9PF1Ov0zZG5ArtWrmHEK2S5kwzqHic/Rj9rh9xDlxSDumyt+/GzesxT7TfoVXvFE48axPqMGm+2Ilr4f8/FpuJVVSaATBks+Kw8NqcSiXIdXSe8DCBIpHXRnRPC/Cpa99zXKLFR1V7StexONt78SKocdlqkXWbmrgx9/7Ml6cNb/lsRESEoeItwzzlyzDwdEMbNr7JDDGILw6aiwqpNubzKESV1GfsPJ1tG2UX0brNqYhyrvHS7DQH2Fs1ybcUdfVWmLV9CkT5HPGfwxA6xdzasPgd3wG4rH/6vUh9ITlrz6OZa8+UVgunr8O/uv34qfxh/FvH7sAQ/rXTAiktotG+ove+lFoTPkzdlnyJK6ufRYfPU/eLYvhZe+UJdm7NQRBEEQ19938Szz/s/e3tO6yp24AACxYsMAs80QMdxs0cQCAabPm4pr/vBSr1nf0yfaSTaswmG3CusEjzTITJN2bzCFdquT5ximT344tVuTdSfq3zWMcPM5OUj3EJkzX7iiltx8E/YrjyWXS6ElprU2JQy3+brqqU1qktme6TKlg6yhqyDwXqzxJO3f8RL5WtnOorByMa+GgRGBJnMBkwUhHiJyABpaDJ1+S5ajg2qrywMSEIffEOVRSzgakrcBZ60JTBscBe/f3gcH7NF2N5USzxPHh5q5fhSUOsaBdlZUl5RtU742MOKRL3JRzKFPG5VeXH8n3SHdlZVlxSL+PvFwZoVxVuYxMCVaxDNAIgCXZWcbJpHJxQl2GZIlLIZPiqck1ctoKbdIzbv0m33u66U3+2EqFdHXdakKruezGlXkt9XFXiJsv3voD7IZ18M78PmqBDJ+3hWe3pMwvzjkJdYdBLXZqd5WNy5u8rrkMKe3WahnzfggzJXZ5QV2/BswPwLxqQdBDhPYBA8Gc7LhWL5iOy8UfEL52X+tjIwCQOES8hXjxyX/AZwn2Pfa9coH5AsrV/qsvI3cL3QXdNO3uwr4A/SMaFGqqo5IMpI6OTiSC4R2jDgBQbvus5PUH4GxajoUrtnztbWP1AvS77cNY8/fLsw8sexXJ/f+Bx5PR2OWdX8Zx++8KIL2QS4Wx4rFPf+1lcMFw0oe+irbAlevnunM4CTmHCIIgWkEIgSPf/ANOiid1u27YsR4j1sgMuNiaoHiITYnP1mbpI7/GvyU3YtWbL3a/cgmdYYLl69PrAH1NwPyicNFjly5SIYK5gRFD8nfjs86hvDhkZY7kJj92mK5jOzjU9vxauXPIdgqAR4iFA7+tvTCWZuhJZJxzDjm1drXZhunSZp6jzqPP5TWM56WTxozzRpcaaedQSWYJd3yrrCwVh+ztaDEov/+qUnzexLVSRWICqbNlZXBcxMLpPnOnCXnhp7XxBIXrVxZrcagfWNAPDhNIyjrgAunNOOt100KNG2vnUDFIvCyryuWx6aZXBcu5PvT7qLysLCuumpunVre2fLt7G5OB5HrwEVvPT481hgfGw9Sd5LbL97GVYZkRUJtUGZhgZb2++tyXi0O63b0umSuZi3C9TvFcz18wH+MW3IhpA07GYcecbsLnbeGnrMwvyd1c9UUE7gamLBJlziERZzrrZR8MpJimMqRcEfVIINV5VnHYlf2+rXAOOV5gdcwrjlV+R9Zk8LndFU/ffO7Fd/rODolDxFsCIQSi1x9FAwGGHH6yXKa+TPLp9kmzL+8+YP3Uu7FcDJZjsC+uuQwAdHLdGLT7heVs4CF8BHX5g13WFrOK1U/+LrP9LYYQWHLzpeiPDnjc2lfUhc6/fBJrkjbcNeI7+OzJB5mH8l/wxjZqHV/Y6EIID2870A5gzJaV6XPVatcVgiCInZU5rz6PA8X8wt3xMl57/DbUkZ3EALL8wd0GeQ484Tho6T8BNP++X75qDW793x+gKyyO8b47b8QDV19i/jZZFvbkuFYu6rSCnYsS6AlvbqJjl0zkf5szgbSN7DH6lnPINdkvXWb7fl6wQPH3EnGICJ6VMdKqc0iWn8Tq5gzXwdam65kUh+zwYr2POu8w3cXM9oKi4ycVh4oCiwkVhg7H9tQxp46TvHMozaypCqTujThUXlYGSBdKT0pq+gJuZTFpnJxzCAASVSJWQGf/uEXnkKuCxF2vKPiVXVO6IhtIXkZaRpQVUPyS18DPlZWlr5eVTRU0F6sS5kM4ATwkiBuqrMzNl5VF6U1KT4ppkeXaswXUshIxuZIw0RWmrEytW5ZpqrejM7+0cz7zvZpkHVM2b97z32hDA3u/P60KyIdNuzxEkns9IjvYHakbUecSlc0vXB5Wvq7C9aX4mMRq3RZCyS3sjoKZ46xwDrl+WlaW5IPm9Wvg+tLRZIl8pozRCud/cOLzuOnv5CTqDhKHiLcEry/biNHhi1i121GA7pah2742sndP9IXclrjQFRuWYdj6l/GEe4L827Z7qq4eJtvA/PjpzKF8+r/XNDCudP9r52PwYlni1ZfBbGGjgQWzX80s2/TiHRixcgIawsvUv3fMm4y2tbPw6+BTuOLCU+A46cWhkzt2cwc3I4xFhQvFvHNIr1/WuYAgCIJIWTPpZgCAzxLEcfPfhejlu8y/7Qt3T8SFds9bg5nTJuIALJTjqehABQDzn7sbH1ryUyyYOaXw2N7LH8O5UTohSMvA0gmjKRnqTSC1mcQEqRuiWeZQblJr/7bZLdgF5xnxxTXlPaEsHxcMnltSjsX8TAkgU8KKzsjJC1dVaLezbCkfpm4lLQ41NsFhIhdsLPdR412F33E7SFq3kteuo7JQZ+4EJtvEzjXxfQ+JkNcV+WBpEyxe0ZFNOxXKspqq0JNtO+RXE8MrTMa3NNwJCtd3tnPIVc4uhFXikA5QT8+Bft96qhzQ7iznNRHctLusGVqY0U4ZLUb49eL51HlSWmTRgpTrlbn8SoKUtVil3pNaILPL0mL1ftYiaezJ8xVacwXegjiUJDEclu3Aps9t6c1nroUfff2qhK9M5y/577LSz/bORVjs7IndRhxploW5sGlXxEXnUE4s9pSY4lcI2Xo7la+rnlvpvNQWBEIbWyzMCNX5kPVI54PV0hvLuTB9rl4D4dYAJVrFSrTSZYf2d+/AZ36KE176Rstj3VkhcYh4S9CxaiEOcRYh3PcdZlna0jQrDmlL95awyM+eeCccCHijZVaOfbfQzYXAcdOqU40ndzEXMT8Ncyz58p745MO468efALcyleY+dC0ggOfE4X16If/8dV/Crn86NdMpIPnn5ZjG98ck/zi4VgjcvKUrAQDvGX8MBvfLh0VWtCnNHHujkD/AnWzrVp2nQN3KCIIgmiAEhi/6p/mzWSnuspWrMGrTs5gVyCwe2/LvY9uIQ+ueu9n8u5kbVqjJMQ+LuUQsiTLNKRIz6SiGJfcmcyixyh9cz0MsnMJEx747n29zb1+L2EG0sZn4aHFIZ600AC5vojCneBkfO8WbKRE8Mxls1n3JxhcRhOObMib9vKDfIHncpu25fR7lPtrQWfgd92u2cygrDpU5D4SbZg45IjbrMMaM8JRvSe+ZYyx/r+iJYj4/qBmpKFV8jm6bvjWRjqqcwGjEoTY4NRkYLiqdQ8WyMuZKwU1nRWUCqfU5LbneckUM7jY/ftNBTr+34xBcMPhe8XnGFaZdNqHOiOqhk0mLjvo9apeVaSecei9wvz07PmQ7+lV1NrYjK8z3hi5bLHUOZbu1RSU3qpkRxUqEryQqiKj58PkyJ1f+5mogIghXflclgpkuajaeKDqQzBjVudVVGTKfqHWx1bHmAc3K9/RjrhekN5ZzNwgi9V3K3CAVndS49DkUVqZSkGxCm+ib7Lq3MiQOEaXMWrYBQlR0OtgOcdfLAOjGboenC9WdhiTnLtFfGFtCHFq5+E0AwLEnnAogq1h76kIrb+02gXuZuwfSOeR7nuziUXZR/PoDOLfr7wgt8at9+l/xnDsO0aADTFDe5rJk5SqMWnY32lkjnVhwjoHRCiwcegra+vXP3MXS53dg/2JQprYqp21Ki3dZWBIV8gcSlrVRO6asjMQhgiCIKtbMehZ78KWYhX0BAGETcWjaY7ehjYWIRsrgaj3hSYNTt25ZmeAJDlh6P1ZgFzmeJp3ERO5miw3jEXzE5kZKUuIcCnTJUy/EIf175vh1MMYQwi9ux/o7HwBrTyRt8S4yJTHydzMNkA0BdY1QRsJ8OJkJZ4QYfiputHiMnpCd0kxLeTVxrfWT4kPcpcQHa+Kt99GOLtPlSxMERXHITOJLMoeEk7bMlp3T0nX0sbs555B2J1WFbhvnUEmJWBXc8dEQHnzPLTwWMw+8BxPjvqCtrR8cHmGZlaPFtJjh94NbV86hyswhleOU69gWwkegxCGvxDlUJirKEqVuxCGTlaWbrzSkM94tTkH162cCqXXOVVAynrJwYnUTVrvtuBKH7M+6bu2ur8GF6r4XlbRV3yjq2fwuCzuyouAcKplfOLk8Ib0/r8Q5VNpBTITFsGlkw+c9ERXej0muDFHnhBmRtaSszMsFzduYsrBGOv4edSvTgnDUyLyn8g4tu6wsnTtk1zFluF4qCOocVxNYbm3X4WFL5dU7OyQOEQWen7saH//5nXhuzqptPZRKrn5kFq56YKb5O+1oYIXWmfr87A+k/sLoiwvd+T86Bq/e+5t0QdJALBwMGCBt1/YXn/4RzVzgIb0YdHN3+mLmI3Bl4FxptwS1fkN9EQrOsTtfAb7XUYBXtB33lufu/j0GMXkRqCcW+o7NoP7tEK6f+XHT57fszly+rKy0pI5HhQtF7mRbt+of3i2eq0QQBLEDs+KZm9AQHuYMOwNAsczapn35FHSihvbD3wmgGJy6tS+qF019BLuLVXht6FlyPE1EDT2ZKwuUdngkM0VyJRu2G8E3+Rub5xwC0sDb3Ermnzxu4hyyJryRvkvuZTOHeNSQN5Aqcj44yzpLHFVW5rguQuG2XFbmqVL4RGeWJDLYuqbEB9GQna3KspuAYov3IAhMORjT1we6/KfMOeQE8NW5kU6GdD+RCYnOi0PN3VGmU5Z1rdgdiRMgggfXKYZH92sfiH2GDSl51pZj2K6D0cYaeGT6crPMS1LnkCkriyocEiXOIUC+XnWhcnCs6ze3iatO3/Rshvlc6Fwe7XorCePOB7rrz6pnl4Dqa+jScqhsWVnUqcQh63hk2WWUirQqo8n+7On9d7I6HF7+vRc1SpxDXL9fS5xD6jHtatPO+YxzSAtIZSV8PCq4eXSJnKbs9eCWWMzjGC4TgJX1VVY2p0W2MvIZUq4SkVvFzM3CbFlZ3qFlbuT7NStLLPv9Hlvt7vW4QjWvMOcwU8ERmVJVohoSh4gCLz77KCbWvgix4LltPZRSOsMEtSd+iANe/JFZxo04lP4AmLKyXMCj/sLwN9NZIzjH8K43sGHBy+lClZcT+OoiyPpS0lbOfL10mVjlJKG8I+BUK/v6C13/wMRqe8wLVBjf5n8BLl/XiYPm/cX8re90mDssXpC5u2cfl1ty8ZWxxQOIw6KLy0nCwkVl4gSZdVxTu03iEEEQRBW7LngIk9xx2GXoXgCal+I6SQMdqMOvydIOPXnSWRyb+5vZU9Y+dws2iRoGH/MBNZ4m4lCTIFd98yHs6sysY18vGAdKb8ShOL3DDUjhojDhSuyJZ/Yx+7ffDt2Ocp2WbNexvIlS4RxyguzNFKvVdFwxGSxDugf8NBhaO5q1AyjUrgw7u8YSh3Lj8/XNLliBx9pFUDIRFV7afcjNTVb1DaR85pBnxIXyY9TLXa91t49w/NJuagDQ/4L/xW7v+XbL2+oLBg3dG7uxDXjstcVmmcu1c6gNniorYxXikAlNzk3oI5SLQ4HpalU8p/ludWWkHXp1A5IQYcV7N/B9ee2sPrP6O8gWAXWXrbLX2DiZtCClxCHbYWacddrxp86XHZugr7m7WFtGfLGxv0u1aKE/W2U3n/X3kHFFqefb36t6X2XH5vKSTmS5krEyUYc7Pjy1XVNpoHODmF9aNucjqnxdjfNHXb9LEbkHZWV+Khbq49wk6oXvJSMMBrXKoPm0GUBgjUvfxC6KQw6PMu3uiXJIHCIyCCHgznoQDhNwOldusf2s7QgxYeby7lcsYcIrb+LjuA9HhtPMMv0lYP+ApMGE5eJQT501D01+DZf95BdIuAqgU3kALGeLjOCljh/LPu6pH1FTv52705m50yfS2uJ8q0p7X4DqXAJLsHEDGTbXB+LQPffdgyPYXCxtP0zuS+0jbGi1XneFsJ1DqdqfJ++aMnb8EteUjXD8jNiVlpX1/EKeIAhiZ6Cx8k0MiZdi3Z5vTydoTUqztODg5Voc67uzfdnkoFt4guFLH8aU+tswdOgeAAARV49dT3hLQ2p1A4Mou07mN8pxwXM3dFoeqvqd106kCH7xN9vOHCqIQxG6hG7vbGUOaRFLTXp0WZZIQuUcKhcs8t2s7N/UkPkti0M+YsANkKiW8kzd/PJ0FmKo255bziHLjZWfyHqOKrlDKuqwJoHUzPHhswSCJ7Jcxi4rU//Ol4d1Jw5VuWaa0eEPxho2sPzBfY8HhhxU/tgWgg3YAw4EZsyejc4wAWA7h/rBUc4hFpeLQ2VllYAU89qEzvhJRT7fhESXlHG1UFbmlohDZa83ADjqPaLfo/ozb3e6y19DZ8Yj5HvWhGB3SXebXZamBRX9neHU0+576UryMSkOlYvidv6NiPLiUHkHMCD9roqNOFS8tq0K285/puJcIHWZqCNvrsp9mA7BppyzwjmEqNINlGb7qPG34B7LbNuzOtKp4+xgbQWRysyN/Jr5XslnMemb/8wLrC5oyqGWe00A6aza2jc5dkRIHCIyTF+yAWOiFwH0LpjRZkNXhF/efBfWbCz+oNzx3Jv4zh/vMz9sPWH+s3ehH2tkvny1NdG2njoV4pAJJOzhF0T9lb/gvzq+h65O+YOrLaUZcUjdoTOOH/1jIIRqSesXbM+mVWfOOaR/BOSXf8lrkWQ7HpjxuAHgBqghAjYjN2r5hi4MmX4Dupx+WHrAB9QudZmBVutr8u6eNXb9WpR19sir/4lxTWXzhPI/gHZLW7m+bh9K4hBBEEQZbz5/PwBg9yNPL1zQl+GoSVsq4meDU7dmWdmq1x7FYLEOmw58ryn5anpNYpy4ZVkd6rdSB5VaWRYGxmTnn83IHNK/7fkJG6CuDYS65M6VRngiRidrK4w/se6KA7bw0ZBuoAr3hexmVf6bWlryVoK+ZoGrnMgiMl3PdOmYGxXFIft3P18qZgdJG1FHTxRLnUNpl6t88HGituPlBI6gSQcmwBIUeuAcenT3i/Fv7ndbXn+LM2BPAMDgZDUmzpY3cT0t3PhtQNAPAOBUOIfi3PvKLGc++jP5GfFtp05FBz7wBB54t0KbdpZxK2Oy6r0LIOOW16+XXyIOlb3GHmJwx4OjuvhxJQ7ZziGuxU79ua0r55D13SjiEIlgiJ1apTgUWXmf+Rb2ZUJ63jmkXwd7XbOvkvJYTxSDn6ULqngT2sa+fjZlWJ6eX2QDrTW+qBb9tOtOOyblPnteVpbEoTlvZSKcsG76uyZnKvuaR5YLtFC+mCv1A+RcI2AJEquRD1GExCEiw4Rpb2AsewNAeSBaT5g04T586fVPYvaUhwqPjVhwJ+4PLjM2b5uEC+POybOuI8KIpQ8AQM6tUrSeGiEid6dUX3z11FroxpvgMW4cOqH+gS20oC86fqJEqJa0QXrxZO50FjsWuCJC7FgXc2XOIZ53DqnXy6ulPw4VtdKtcMuDT+O9bCIaR34USV0GguofFt0BjpWUlYmyu7IKP++aKhPGRFS4qBQ5cUi7rMryJQiCIHZEhBC49++3YNHSpX2yva7XJ2CVGIgxR52QtgJuVlamHKu6nbS5AaHvECsXx9Zg5aTb0CFqOGT8eVaQcvXYdTew8qwOne+XbW2cz8WTnX96Lg7lf/NkN6TsdlgSogNtaqzZx2xxKM6UlaU3YQDLwRGHpTdRzHhyTlu7HKXU1VRCnHAEaqJpWqerZhHaweQoZ4rtQPE934hgZe6QKOccMsJB2bHogNmwsxCQq8vk/JxzKH+NkUf0wjn07qMOwvtOOqbl9bc4A6STbj9/HR5WuUMe1+JQP0B13zIdzHIkufeVxn69MtfSWkSqcsN1cy69XF4M41Gl602OI3WzpBlRlgDZJDzeRww4gREgeGODen4qLmmxRCQhIuHCDfRnz8q/UVUA2jVXOk7LOaTH6RhxqCSQWi9Lste/GeeQuhYWJZ9Rt8ShI/OT0uf7IjZ5Qhrh+HCRcw6phj0xvNLOalIYLg9tTzuHdZl99sQ5pB2WImrIcHLhIir5zhSW6G4y4XK/ASa31K2BqdfYiENKMHUSWxxS54EiKZpC4hCRYdUrD8NjUlGttOW2SGO6bJ/LOtcUHquFq9HOGghLWm1+528v4gt/fr50mw+/NAunMOlsstV2/SXgBukPiGNC9LJfAvrioMd3QbXQo4QRfRcyIw7xNC8nYp75EYjiGAFLpMvG88AFs8rKik4m+2Ku7C6kXCd798FY0L3A/FhXdezojuUburDr1GsB5mDQaV9O85tMR5g03whuAJcJJLEO29N3ekrKyvycOBQXuzW4PCzcHclnKOkv+KZ3kmc9BNx0wWa5pwiCILYW056bgPe++K+Y+8h1m70twTn2WDMZc/qPRT3w0tKOJmVlTiKFebt8CcjeUW/mPOozeILdFz2E5/2jceDeuxunStNrElOGUiIO5Uoq0jL07O9MVQl3t8PNZQ7FuRwQQF4ndLLySa2HCA3jHEofsx26QNrmWyRaHCp3X9gt4AE5KeWOZ42t+2u7KJYh3nADcNeHh8g4o7VY58Xy+s3OHDKuaRTLyoA0SFqfK+1gKHMOpbmRoSqXsZxDFWVlulymqnTOOMN6IA6dfMhQXHLK1i0da4oSh04YFuPRGcuky4t3IYErg5i1c6iirEy3/87fwLOzHm0xhjkOQuEVnTpGaOumrCzItp7X76MqItvdpq7tbeeQrz63hdBxnsAFB7wgfU+q0kdb7JKB7RGggrHzZW/62EL44CwoFU/s4wHS7x097rLMT4/nxaGi6J4XkDLPL8kTyotXASLjuDNjc3wzXzLzFss5VBBlVHfKqs+IqcqIU0epqBCSyjDnO26YnNZYh95bcPVd7Ac1U+aYf831b5PjB6mjSX2HapeR7ZTUAfdRk99BgsQhwmLR2k7st/Y5CMgOAptTVtYRxthv7SS1neLFJCu56NS8a86P8bEF5Rbepc/fiRqLsKy+f+bLV6vJvt9mluk7BXnnkFAiho8YvMKhVIoWetSY0y5jdthZbIISY6RBb3adr++5yjarv8DSul2Na7WjjFF+Mae3nUTZcUnBRuUL9PJC/s8PT8YH2GPoHPlBYNDecH11TEaIUmq9V7PKFfRdWXU8JWVl5q6euStUvMviljmHchlKqTjU5PgWTAJmPVAa5k0QBLG90Xjq1wAAJy7eNOkpc2a9gj2wEhhxktymbifd5HddZ1rknTr2pGmzL6rnPgUsmdZ0lY2znsYufDXWjDgLgP27Uf1dznRZTclvgpsrKxO5MjBN2d3rVjDXFHoSnOsgBKRuiVC4BXeShxgNV07o7d80U3Kufn999X8Wh5lcwjzcCQq/l+nNpvIA2jyRlSsIx4ePSJUD+XBdB6FwTdtzJ38elThUJvjo6yN97p0mZWX2tYWHrGtCH0+hK6rjIGrWkU0few/KYLY72neHAMO4XbqwbH0DryxaD593IXJqAGOAJ6+DvSrnkH5f5crKbDHPy12/lXW1SloU2vI3BV0eNm19brvb9HPsckXmVHTd0387floyp8QhW0Tkrg9XxGBxQ4lDxZup+kavFF/KbyRnbr6q8WohqSzXxs0JP9nvVSUqGVGsTBwqBj/LTr5qe7oTWe71EG76fZDeRLa/q7JjTbskVuRCadE2bEBwjoDFmY6F3WG/H1jSQMQ8JKzoYEpLCtssR2BOQLI6VeeDz/OlfoD9W0CRFM0gcYgwPPTqUpzkTEPn7kcB6F1LV80zL7+OkXgTQPkEPr0jWbzQHBIvxdBkWel2R656CGv9YZg/YBwC27aZpLWpGq/W3DnkMoEobl04cHIZQUlJWZljOYekNTYrDsEL4LsOGmU11ciWldkXc2WtNNNQZpWjEGrBJk3tj6OeX8gvX9+F9hd/h4DFGHDa19Q2rQA5pF+sjucb66k5Ru0cKguk1svUhXx5SV1JC003m2ukhbT8D0UG/f5t4UKYIAhiW7Jy8ZsYt/4x+UcPfpeqmDdFll/vf8yZAOw26NW/Ca5yo+jJv7khYk1iym7o9IRlf/13zLvziubrPHsLuoSP/U84F4BdRlK9b/07XN5uW2fUZQUkL2jLrCdv6PRGHMqKTUmJ20A7fcq6j/oiRuS2qTFapSq5iZxxcHAp1JSWYgGyIUWmDDsyv6llk8Ey7GsW4dbgizhzfRPBh69CkPPBxrpkqKwDmX6+nqybsrKSbke6m1YUdanSFSvs2tFlZcWbUBHzKn/3WYulUNs1rgfRbwhGBOvBGPDIjGUIRAOxo86F46ATNbhJuXMonVBXi0NB7rzKc5rLe8l106scbi5rspnrTY/DvEe1eyQ31tIgZatk0JQtRkXnkHbSaMHWXN9a3x06fD0f7p7dnfVdqpurqHXLYiv0da5+D9pCva5IMNfCJUJ43j0HSBdU6oy0mtJYCCf9PsiLQ7FTdDnqjmaswg2kXWU8Ds0x9CRzyO7YzLgsVU2cbHYSAPN6BrVaOp/IhaLr43G91DlkRLskfb9p/Fx5HVEOiUOE4cWXp2J/ZxnqR8i7dZtzgbr4hfulJRkorQvWX45l+Qcuj0rrdYUQOJ69hrm7nQzh1XPOoWIpk6tcRIXspMT+Qu7BF4TueGJyd9SXbEYcSkWdBOlFmPkRdQO4pj29tsEXQ+k8EZnwxYR5YGX1y0YcypWV+bVCan9P+OMjL+Ij7EF0HnS26cKhw/yMEGUCPeupEKX3FYeIhYPAL/5Y6BbJ+r0lLFuqOXZeDN2D6yNgsSkR0yV4TXOx9I/rZoicBEEQW4N5//wFHHDVMWvzL1y9eU9hDRuMISOOBGDlRDQJ8XeswNPIcr5m7nA3Ns85FHZ1YP2GDU3XCRZNwkvOSBy5/3AAAHM9mWPTRNRgTb7v9eROl0FoB5KXK0mKSxw/rZAGp6obUo5XmOho101U0i3MR4TIa1fbsp1D2YkcANntK25IN5DTpKwsd7NJiy8yo6T7YzTuYDeAcH0EiDPXNxHzUOOd6riLE3egPEco7/hh2kVQMrkUgQwKFmvmy2sES4RImOrgVuJQjtCkI1svMoe2R8SAPVDrWoGj9t0Fj0xfjkB0IXLTc9HF6vCT8s9q6kjLnjv7plxedCvLqgotR3wz7CB1QF8nVz8n8zlMQjSEB8/NTlejkrgFfVzMC4zbzlUuTPtmJVcddh2VK+SaTli2c0g68/J5l5n92XMbrl1R6rulpKxMfw9pl6P9WdfXz/l1bMo6w3ErX6zRKBfrbOdQkhP0OPNNzpEZi3INVn1GUqdVWMhFawXXyg/S2U5S5Cp3Drl+rTJLzOSWBrX0N06vU9INWTu6YitMvIqXFqzFF25+AfFOGF5N4hABQAY9D1z4OADAOfQMubCXk+o44Riw6In0AqGsrEzn5ZQ4h1wRlX6xxglHP9ZAGAwCHF/W1iqxQFi1qRpT1pS/U2qLQz240HVybiedv5MtK8s5fkS2fM6k6SP9YSvLQLLbtiaOX1rz7ObulNoXksyyffaE5eu7sMuL16CddaH9Xd9Mj0t3r8m5phzfah+pz7Oq1XYcVti+vvsjjDBWkreEYuieDtjmVkmgvZ1S9GNUVkYQxHZM0rURBy+4HVPaTkQXgs0WtFdu6MIhXVOxfLdjZZkJcjkPFdiOVZmZp35jLEFpc4M8PRF271yJO+G275L5DYngme5CZZiJYtmkSjuHdItjczMp75wISl263SGsO9wAELOgMKF0uGwykXc8yLKMBEmJOKTvgNvii54Uu5YbqIAbyIxDlWNiZ5XEZXfoS8h0tHJr8I04pJzR8NAmpDPFLQQbNykrY7pETuUWqeeKEudQv5FnYKUYCD7hJ3CZyHRh0tvOO0r02KocYIxHSOAAjlt16DsGA/YENizF6YfvjpcXrUNNNJA46evQYLW0vX0O/R3gVjiHuGBw3azwWJZ9mb+urcI34pC6ZhZRpbAp92U7h2STF8ay15MR/ML3ZGg5Z/R70lO5S+bGJGCaqGgBSEdQ2MKDw0PE8JWQVFFWZgsVSVYcqrG40BFLu3fMtb/1Wdffq14z55AoZvvY4lVs3YTOoMUhIazXXv0elMwvqrrZmc2ZsrBGOofqUVmZup5PZI5ZwnxVHpc9z0aMdFIBL/+a23lvrqlwUGPi2VI/ID2/zRozYP1iJI/8EIOuPwlXzjwHK9esbvnY3iqQOEQAAB6buRwfcCagY9DBwO5HyIW9vECdPHc1jhdTsXLIsWo7Ja4Xbasscw6JuFSpD3WNqGrVHrAEUcwzY7W/FI06nbtYtAWFqAdlV+Yuai6HId9lLLHs24xnv4iMaGOVnJmSOMYhErm+J9J2lPJOX8k51HdDtWATpj/4+RygVvnzQ5PwMfYAOg49Dxg20iz3crbgrBClJhM6o0CF/JUhbfFWrbi+SM+4poplZfp11a9XWlZG4hBBEDs2rz96AwZiI+LjPl96R7ynvDB5IvZga9B+2OlmmZmgNbkotkt6pYihfuus79my3+ye4Im4W+eKLIMqERyaOof0b0pxHT25M8dhSp+z7ojE8Vpy1RTIbU+UdDhyRQjOfOXIsq9BVP6epzOHrLIyPZm2xBf9fK+J+yItK1fXFlaXI878NBi3CbF2Ifg1wPXhMAEv6TLXN1IcKg821h3JyjoYaXFJ37wzeUUlzqHRB+yN+wd/GHuvnayOK12HM9kVzfWK1xox8yodcnLSXy1M7CiwAXuAbVyK0w8bBgBoQ4jETQWQBmuDz8vFIeO2yIlD+rMfwTOisiZG0XGmneTdlZX5+cwh0aQkEtmyMu0syROjLCsnFTX0sXmqtC7TIMUN4IsIDg9lGW2umxog5yjdOYdKM4esdaPce1B/D5WVwOqxa/GizMHoIyp8TrgdNl0l6qjPb5LEVoCzcjmy4vGFxoFUUVZmAsZt51DrZWWB/t6NQzg8RMT80q5wIgkRqvcic1yZJZYPrdaiml8z49LnVf8m2GJ4gBbEoYe/B+fJnyJINmE3tgHJRhKHiJ2UmS88jjHOHNRP/KwM9IPb60n1vJkvYk+2Gu1Hvg9AeemPvjgq+wH3RFQa5papb9bih/4yTCJpO7fuBgU6TyC3f9saa+yTLWDEmDAvDqXH4HK7tj8VddI7LCqfx7pALLOR+4jMnTRpt6y2yusfNFPP7dVSh1IPLuSXre/CsKm/RsAS9D/jO9l95e4622p9vkUyS8KmnShiu6ROC2PWnRlfRMW7iOpiV9uYjcuqiYC5ZPX6zD4IgiC2R9xpt2Ie9sQxJ50lc282U9DuevluAMDex52b7iMn8JfhiTAjDunJFy9pr95bfMSVAa/pOIrlE2GzUiFYE4CSSZV2phayKHKTKOn27cW5T0IkgsHxUsdMfsKlO5DmO5np6xquS6gSWxzK3uWXY5TOIxfNnUP2tu1ylMQJKjNUbCK7pE39xge8w0zqIxagDXpiVuFAKROH1G+7LjUyba0rjuWw930Zy8XgzHEBMlQ4gldwlOhth+tXYNHaojgic5N24DBqhTNwT7BNK3DI0DqG79KmxKFU7GywusmEysNNRlZ5WVlYcv2WlIjWWvzo1jlU03kxtnOo+jmJdc1b1dmsLFjddjLp69JAnQO7TE6XWTnKOeTnnPFyjFI44m4z55BVhmbEoXTd/M1ZvR3zvWoJ2XGYXvurwWT3lUiHYVnYtN5u2oksJ+pY3wfGra/dOyWijGkPX+LKk89NnVZ2c5pW0e8Hu+ti2Xcm41lhsCwU3QjoQb0QfM6s9xsAJInqwgYgaRJI3dWxHrPEPrhaXAigZ/OotwokDhFoxAkOnn8rGk4bnDEfBqDu/PTmDhqA3Vc+BwBoGymDMMsm8Pm8HBtfRKVhbsbO7qaBy0bhThomBFETBAESwZqLQz340DsVziEv7xyyLoz0c2Jd++rZriJ9Z8S+UEzFEu7aX97V4XYiL9gE9bQTQQ+O70/3PIwL2CPoOPJjwK4HZB4rtqAPzfLCvpQNuIrMnXHdicK2wFvHrjF3QhtdEInqyCB3WrmfdRvlHSMKniMIYntl7eLZOKRrKt7c62wEvlt6AdwTGnGCA1Y9jvltR4AN3NMs93O5H2V4VuhvxALLLWs7hzYvc8hD3K044SEuZNCUOQVsbKdBHn09kYpDxZtJgBJ1euHayrtluRNkrgsAwBExEscvlOfoSSFT4pB9vcJzEzkgzTKU7uKK31l9E6phiUPW9USVE8ImsSb+2olQF52peMg8kyuZz67R7qCy8WnnkS4H066ofPttzTEH7YV/7vIRAFlnuHD8SodyMOocnOa8gAfuv6fwGOMxmnXK2mHoPwwMAmzTCrzz8GFoYw1wL3UORU4dAS//rJousbnMrVQYLi8HzH/+Ugd5d84h9bh+P5eIv9lxeFZ4c/n1ZFk+mLlB6QZmn3XegUi48L30s85cHy4TcHkDCfPTTCTretLhqgrACUrnI0CxDE0em309n/2u1U10zLhLbgxrIbvgitLr5svK3MA8p6rMT39+w7DLfAe6fvX8Iu5G9PPssrJeZA5pMY7FDdO5TpSV7yVRxuUXW6XOGj3v8f0aXJ35ZsShbFlZaJkB4ia/gwuWr0VDuDh9lMy82xnnECQOEXhu+hychaexcv9/AeoDAWhLee/uXvrROgCAt+u+UpwpuVgztsqysjLE5ZlDofWFZTJ1dM5NsZRJdgUr5jfYlu6eiENubsxJnFWlgVxXEEuRTzuJqXEjta+zkjK3QESAU63sy30poUaXlZnwttRS26o4NGPhCrxn5rcQee0Y8O5vFh5P7ZpaGEvVev3Dox1VjEdNbduxfQc481ro7KUIyJeVWe6k0A6SayFzaGdU/QmC2DF445E/AAD2OeUiAGi5m1QVL73yCkaxOWgcdGZmuZv7Di8jk01jiRhl7dV7i19RNp4ZR8lvQFwS5GxjZ5QU9qmuJ+xyg/zNJEBmDrXiqik+MZIZTQrhljiHRATueNIVkfnNV+e2pjKHMs4h/TtrTfpZAIeHmVKxPCznrPatyXjVzaY83NzQqpmuRXXRmTbcsM6fXwj2VpPKEncIdwKE1mTdCBRNxIJR7/siro/PwLq9TjbLEqeORkVZ3YB3fwtrvCE4YfoPsW5j1j3jVDhRdjgGKOFX5Q7VEYJ7qUgXOm2V4lC+u55ZbrkG8yQlrrokbC4iaDzXQUOkN5zt6+QyEift9qdbypeNh+UyauwsTP19VxedCPMOMyUy1pIO6RzK3fwE9PtEhrH7Fc4h/VntEDUzr7DzM/OZn37OOWR/V+m5jBai8iV8JtunpGQsMGVl6vstJ9Toz2/U6LK+U9TvgRNkxiyHpecrxbB3OYTU+ZMPuG4Fz5UlYkJ1Xawq33OSMCNURii610xTmyDtaGa+53VIuDo/oeXkKpt7auKoAcevYdiucj68uaXUOyIkDhFY/8wNqLMIQ0+7xCyLmgT6dYsVIiY7a1SXRJWFY/qIESAG5yKzXKfLM+tOlikrKxEkPIfJH4Vc5pB9XM2shXnyGT/6C8huGWtnNtgtJrWAo4OdE9sSm/mBaABCyM5cXnoxl78LCaSOJa7bwithyfNrpp64lQt5IQTm3PINjHLmQpzza2DAHoV1/FxgX3pxERjLu3FH8fILb00Ev/Qub2T9OIq8c0idizhsGHeVPMDq40s77VBZGUEQ2x+Cc+z+5l14xTsCBx4yCoBsA97r314AK6f8HQCwzwkfzCwPzHd4tfhhO3bs3A+RcQ5txoWyEPARl/6e2ZT9BkjnQvV5SSeTuTvLXFjikL5eKM8xadVVk4flJjHcCQoTSk/EMicnN8nWkz4nkOIQs851WRdWLR6WdS7SOLkOoj5iMyHmTpC5ZqkiMS4E31xv9RNd1vsjPX95B4p2B5U5hzjzEcKHr7pP6euHZpPLow/cE8d87vc45cS3mWXuiZdg0qgry59Q649Np/4Qh7O5mHbnVZmHusu72WHQ12kbluJtB+yGYW0cQ3bZxTwcuXXURIU4pMogfT/7GdCfuVIxxinJHKoIts7DmO7QqxxLVve8MuxrZ4fHpWWACSvmg9nxDVr4qqOrKHap49Rlkl5NlTZanz1PibnMDTKdcm30dXAnq5ub6Z6I5U1xWE1aoIPns+JQ5ntVX1Pncok0xqGT+0zpcG0IYVyd+QwwZsVM8FjPE9J8tPz3sXEOVZWV6c97HKbX/X7rziH9fmBJaIRCYXVdM+vlhFx5wyL3G2A6Rbal35M6YoOn7zcg24ComTikS92cfMD1TkSfiUOMsX0YY48xxl5jjL3KGPuS9dgXGGMz1PL/7qt9En3D3qsnYZ67H4K9x5hlZfXFLWOFiEVlH2YUXTg2nojhswRRUn5XgHm19OJHl5WV3A1ijMmcgmZlZc1aoVeMuSCQ2GHKyN+hy955NS3hnfTucMbJFHalnbzctBa/zEll9mvGoy8k6+ZOTrO7xJqXn74XZ228A68N/xDax/xL6Tpero1k2ro3bR+pX0u7o0kZGVu9/VqEIcC5rAnOTQz0PuKoYV5zAE3dbfr89iR0nCAIYmsxe9pT2JcvxIZD32+WJSXlG60ihMDQRQ9jiTcc9b0OzzxmuneWdPPSBJYbxZ58icgWh3r/fSp4LIONuxEnpJhRdA41Oy/6t9bJ3TCI4siUIevfbJaUu1t5i3k8eQohx27xbrynsvTyreTTiVgNofAypS3CKt/W6O5C8lqjIpDa1xkjDfCEo8ai3PVEC+KQ1UZat5uvM/v9Ud32nOtOVCUdjLgbyPbhqhOdfm537dCPHD4IdT8tDTr22Lfh7A/8v8r1h5/4IUyrH4Mxs3+Lro4NZrksF3orOIe0OLQEvutgsB+jX3t/83DD7Y8BfH2FqCHF0ZqXnQLq91OZGMOZV+gmZRzkLQgDdrmsXeZYBnd944yvyogqa9SS5t8E5jPjgSPMP19dH9d4JxInSN+D1nejFhG1wFnmQNefzy5WN4KvjwgdTG7PLkeKouxNZHmg2RvVunMhgOKx6W2V5Ak5TIAncaZRjI3+bCVhaG5Um9Iw1y9kvCbWeSwjMGV4oRlXvmNhd2ixUH4eA3C3KKjnXX4xfNPMSGO6PddqGUeTfj6Qurns17DZTQ5HyLB/18w7dr4bzH3pHIoBfFUIMRLA2wD8G2NsJGPsVAD/AmCMEOIIAFc12wix9fF4iA6nf2ZZzIofwlax6+/zbVs1jhFNio8F6oMc5Vw9dhK/VqnNhRXP3rnThCjehbUvMJMedPPSX+hpKHP6Q6fxRe4izDiksj+i9g9bRqwKG5m6aaDcop7Zb06wcf1aup8W7vJuev1xAMCBH/1Z5Tr5L13jmvJrcD3tUlI/EqqGuAq7VjzrHGqk2RZ5ccjVxxNmxJ5md9gdcg4RBLEds/LpG9AQPkae/kmzLGFe70qbAMxesAjjklewep93FR7zcwJ/GXLSlv5GmeDUklKn3hCagOTq49OZcvnJY8K8pmHR+pwV77hbd+9NuUF5aZFw/ZZcNXny2xNWqUc6Pukq5o4Px3rMntAVrlf0ZDrjHJLOI79J5lCaA9iFKPebagfYNiPNJqlnJol22bzGD/Kvlfq7ZHzz+x2BieJI8/fA/v0AAEMGD+h2TD2CMThv/zIGYhNeuv+PZvFbxjnUvjsEGLBxmfw76gD8fubhhf0OwyBsAFa9UXiq7gKl3VtmuRZCysSYEuG0SowoQwepA+oav0lZmX1DtOpmY+IUy9xs4SOwPjN5IVhfW7epDC1Pvb9tYVZ+XgOT8VOaO6PW72L9zHelL2J0oU09bIlDVhyCW3JzlFudvwBkviPk8yvKt0yzlq70Gjzn+LHFYn2MRtAtyVQyHcD+P3vvHW7XVV2Lj7XbufdKlixZxZItW+690mxsTAs9gGkhDwIhISGQhOSRvMcLSd4vhSSPVN5LQgohQCAkhBYwvYQOxoAbbrj3KtuSLOnec3Zbvz/WmmvNtfba++x7JVuWvMf3+bPuqXufc/YqY445hkf6EoxCpypsUXgRbWWA9h4l5ZBITYKcc9x14ewlgi3XRA5lI3tOld0XAraQzvd7XfMYBQsR4bU7c96+ij1GDkkp75ZSXqL/vQPANQAOAfAmAO+QUk70ffftqfccsGcQBfp/py3EusCrciqVq/k6VoXjDrhcAp57gzFnqIVngtw2gRQiReRVSh1yaDHKIfo8PN8dzronKI1ctmYGazQokbGkWuA1IyvLYoJ8TL3Fo8brcJC5nU/YJNmoVzKNQZWjkDFGs8tbH5J5g66s7ORhjO2MlLNE2dVPzlrqXP+nsZlA/QnQKIfyCQpmKtdHOeT3fQ8YMGDA3sZ4YRdO2PJ5XLniKVi5eo25fXeUQ9uu/TZSUWGOwiAY4iRFLUWnbw9X7FTcm4aTQ7vRVkYFnzYPD4CbyvprkqZSgMPOp17FnSeSlna9EComBU1Re0DUhdtKHY9Mqwch1WoJUv6YQ2JFr0K4xTSa27NRUznEW8V8mLTSnBnGMnIo67G246qQmM3HXBltzs0zpDbtboHju/igF+K3oreYv2dWHgwc9UwccfrTph7TYnHSk5+P26NDsfzKDxqbApWUtR+QQ3ECuWwN5EN3q7+LBSC13lS3Lj9D/+M7zefqeHifHIJRDoVbLn1yqPaKnl3gfjFdxKZ6L2vozkNenFMQTe8s6zk0cghVn+yybZKKHBJxogzq2bWX6n0RWRqEyCG6PvN4xlzTKUqMI/U9cKUKX4caIttLJuREtj/WmZYx32w6tsQPP38OGg+qcgJJbWWk/gl4Kk37XmPtGYQqbxS++6LUe8NEFiqAJk6VaoqNmbH2IzLPCcyNslQtklmaNYzP6TOkMZ1/h92pnWqMWEyRfX/Dw+I5JITYDOAMABcBOBbAU4QQFwkhviGEeELLc94ghPihEOKHW7ZseTgOa0ALQoNvKCayLwRT8ZQt5po08PvkUFEWSEStnsuNhwGHFbeLH2orC/cll2j6FPAJrl6EqoTUO6a1qrJmj4RUFmZxXTPFj/QGUD7R+uSQ6VOmhVVAbgkw5RARNsa1f8YaSPcY1ETAzNuHqQzSgKpJmWw00zCrjlomc4Ji/5sL+bKwC9mGcoi+73LiTLhdv1EbF/rYY/0HDBjw6MZVX/03rMQuZE94nXN736jxIPJdAID4gDWNu0QUaSl/eDw0Mb9OSmbTG6Pu8CyaBmoJ7lLntM0B0z6XJDCfAkDOfT8qqy4KK4f6+fH4iKoCFSeb4hSRkCjZZ5WggIxTvfFtqpejNGsqrakqzpQZtciQyQkSUbe25tDmsConNg0tseRQHwLMFoBGzmbTpJ7pOb6UEaLE/SyJOAq1iq2YSbFihn1WSQa85hPAxjOmHtNiIaIID534apxcX4vvfe+b6u2m+N3sS5DLN6DecQ9QFcqcmZFDaw8/EVvkSmz/8TeaTyzVmi/z2sqo3SqkrAr5cdGa3DckD6EkLzUp9TjT/hz+G43q8HoyGMHOQllSpp5pI4dSUZnfQo7UGRtj3QVg/U2bXQaiypHLxBjZy7pGihKTKKAcYv9OAuRQVebO2tY/t7aYehPWkk+s4scjakxATT4GTFId7S9GDU+luoWI4qC5xCoMF0kOaXuJBKpV1Ywr3BRc+sqhplpMaKJTCNEg+eixtN/kHlCdyiFZqDbKbFAO7TEIIZYD+DiA/y6lfAhAAmA1VKvZ/wTwEeHYxitIKd8tpXy8lPLxa9eu3dOHNUBjy44Jnv4XX8dNW3aa27iJMkH1Fy+9rYwWXqXIGh4A6j1Jru6+B1cLcYUIwJQp6Yy5aI0hXp0Hq0GFyJxkEEBNNmO9kOvjyUMwBtA0UBjlkB1YeS+1MYqDleUTW++SQ2yhWIyZfFQPtnGKzKtCSmkVVkYKywmb1I107IKoJk7SSvAxka0UADAV2DRtqpSSOu9OohApEmor81r8Cm8hSzDyzmLieF50GZTSxPBY7BceMGDAoxujH30Id2EdTjrnJ53b66hbIcPxg1sexFV3bbfPnVLFLVravAHWfsU2/xTrzhO0qPK8FNDivFM5RJ5y3uZx2ufClQbu67E5vqKKctjHpCuZqAuR9Mgmlg5EoMQwf5NtNrTJqGlGXuUN8qWOUoxqXThrIYeMt2E+aXyvymC3gqyrznMy83mauW1DVPzSc3zQ2JsVtnz86jOOxvt/Llgjflhw3HPegAlSbP/WPwFwE/n2eRxwMLDjHlQTRQrztrIXnrYR36+PB279bvN5dY5CBpRD5E3TRg5514Zf9OyCUn2UDU/NIKLU2Eu0JZuF0q04UZEmMXIZ6/d2f6P892wS2jyfVdUFkJqkr6ACXRMTdaQULUVRIBISRTSn7+b7GdZWJpum03XhquL9c7Px8l1m00T8+Moha/1g1YhWOQQAVdkck5KRqwh0jkerHKulkkPQxvq6fc8ooNj6Pva++7a2stxLNOOpeICdb7jFRFd7dazHajonX8TwWMAeJYeEECkUMfQhKeUn9M13APiEVPg+gBpAs6w14BHBnXffiT996K24/eZrzW2hwTfUz9sXorILpbZY3tjzyyHwAdg3gKtYbytf/ADt0tMikHASyQILpid4Ecoh0EKZyBg9WAuJqiwg60rJIpmkmibThnJI2ISA2Jkgcpa4YCt96k7mU0BVXrDqA+u9NWZzfRjvukARkNj74FVnWRUoZYQ0TWzqAcnQZWk9BwLgvy0/0pfUYn7/siWgJk7CXKdBaYfp+YABAwbsLdxz649x8uRS3LLpfERx7NxXi6R3YtYffPoqvPPL15u/Q+lWHIWwcdI+JrQxoRaEOEMMt/AA7F4Vlcj/WEjH38N5TBEuEExLEiNSqGlS2ySH2tQI1A4mAya+XYhrt1WJjp0Xu6gNrI4yu/4BC3JIR6jgrpdCqt46yjAjw/OkOR5W8bZta26rl+/p6IObYcfMe8S0ldHrhBRY9FkE0o5WL8twzPo97C/UgeSANbjj4GfhnPmv4JIb70Qi21Pe9jVEBxwM7Lgbd137fXUDI4fWrZjB/Qc9HivzeyC33uo8T2jPoayNHAqSMbbVy9xWWQJxGtRvO0c+IeuADs+h2G0rC5FDofGAE5ppHJlrx7/WHQ8t+h17xHkGVzlUBcghUeXIRWrS1YiIzZM553gAS+6UMrLKoZqTFROPGGlrmQsn+RaTsSHuY6/N03q0ThpqRCJl8glXWNLn2E4O5botzATz9FCPOeej92apVlSGxqWo9sihwL7UV4Gq1lw9FzBySErptod1ED4JVKtbmtqi9GMNezKtTAD4ZwDXSCm5s+0nATxdP+ZYABmA+/fU+w5YHOIHbsATo2sx9+DV5raEJZQQapE2kgn6gksBlQywuQgx0m2/rYz13PqpKLwqYBKyjHIovNgro6wRdxnXJcbCuu33BbHPlGjAn1vkY0s0McVP6rXPpazP10R1ygJjSew9k4HTJBBlzmuo9+O+O0TYqN7bOElsNGeP84sqL2mlBQWrrHAppzWrtkTdNOUQP3dze8EM+bzqCFcnlSVXDnVtFjyl14ABAwY8CnDrV/4JtRTY/BO/2LivjlKHPOjCQl5hUloFiBmDWxb1BZLWoAnTtuAEKtCc16/iOg28GBM0eIUlc3ziQyWJtX8uND83TXPZ8ZL6uM13Rqt0i7JuP4kAolq1IRCsD4jaCMvatuzJyDW9tsqhTCmt+ZxW5Q3ypY5SzMkpyqHUKgUKU2waOc8pvLZ9H3bTN+O2qbDfB9A0+wVsQUt0tA49kjjkKT+DFWIBX/7KF00by/4AsWIDovn7sfGzP4tixeHAcc9z7t9w6jMAALde+hX3iVWhDandJg4iGoJKnThrpFqRLUOftjIqFNPmvzOdLs7U9VLXwc4GdYxNsqpm6+w4Eua36e8NHMPm2P6OHeWQVGmAEVPm+BC18lcloooeUyXL1P8D6VjzYtZ8jlGVY5fUe4LSFoYLGTdM+4mcavoJWV+ctuIAtYfVZa6UNjJBpIlB0zbHjftb2tM4VAtswQi5diIp+Hz9e0j150y/B55GnMjSaXGsRdNnivYihAKpKWbQY1NRoaoqJ5K+a29E371NaV56K/W+ij2pHDoHwGsAPEMIcZn+7/kA3gvgSCHElQA+DOBn5WLLMgMWjb/80rW46KYHGrfT4MmJhpDMNtTP2xfcRIykpD6Mosa7QB3lkFfZqlkly7Rn0UKyZQKpRGYiMc3xycL0BC9moWt9knLn/4BKCmh4JUSZ8k+qq8agzasecV1gHnQ+ttIXxTpeU0/YvArJ/20Jm4klbBahHBKe6VsbSqTWAJoNyKZiQIvJKeQQ/23xKm9VWEM9PxaTG8NVAWO/ENpaFwcMGDBgb0HWNTbd8WlcMXMmNh5+bON+35OmC0UlkTMiY5pyqPTblvh9HinjtG3weXo3JPZ8g9VKDrWk8tRTIthpw+VvHlyPOlK3tiRWxSPVFrLIzUAsS1c5RPMVbfZoLROraOwkoByK05GT5KmOt6nqlXGKGaHn/DblEBXP2HxJx0Tt6n7bfgMm4GLGbRnpQQ6RenqxCUYPF2YOPQ0AsOO2HyFF1d3StC/hgIMhIFEcsAnbfvrTNt5e46yzn4LtchkeuOprzu3KFzRB4imHiMwLXRuK1Awrh9KWVCuOUnuG0fXdiGTnoNbFMm/1iAp5Z1mFvo6SJ3LIe77roaVVNV6XQ4YC4MnILcohTg5RGmOVBpRD+r55zDp+Sgu6UF2zFq0FMdNKfCUtbWVVkTuhNBymuFrkDTIl1M5l4+GntJXVhf3Ml6QcKrRyKDOK1bKjrSykFvP3L4rkc9vKAC8NGd17o1QTyGYfVS19zttXsSfTyr4tpRRSylOllKfr/z4npcyllD8jpTxZSnmmlPKre+o9H6v4+EXX4fp7tnc+5phvvwW3fvs/GrfT4MFlctwnxzyOVQ0XC64caiOZzCTTIQH3HeKNSigd2bay0g4CQXIo4FOQoEQRNwfvaTBeBLRQ5mbK+djK4emzNAkBudPyBbhRnYksMC9m9UtOmvJRYtQZs8+9DGxbWWF6b81k3WMhH9V50JzTB0+bEHVu0lkSo+qxyQCyw/CRV6S5aoq31PmLXjLPk6WdAHfKmU7lEE0Mi/GVGjBgwICHEz++/LvYKO9FftwLg/fzloppOL64GhsnN9rn6jE4ban4+r4azn0Tz7iYeeaJKse8pIXy7iiHwh4cznG0KIdCHiMc9Jn5xSCeSEpzZVy3+M5QIWbcrarx4ZNNPEFI/d/6/sh45KSF8Q2dn1QnAqpevlZrU18kTGlL528+z6S5ngjBbvwzZ7Ppt7sHvZv0+uzRQg5hxSGosxU4Mb5DtZjsJ8ohHPtcbDvjTbj/FZ/E2o2HN+5eMTvCLctOxUEPXIyysiRyVBXBdkB+7TcQCEax7Ud9lEPal6ctkt17LwAoigWdGhYgh6KmP5g5nswSPvTeHCEPLZ6iK6sSsZBAlNqkr4ByKNLEBK3nSfUiU6Uc4mtPGtfG0azZ/0SyxIJQexHJWkA5gUQwCkOPiKNzKYtJo0PBnKJZP6u2spx/HkmA/GLteW2oNJFdTylItEHtDXNlxRFnTsKiOTSvBTREDvnJk5zk44/NWZob0D2PUbIkeS7tjlp2X8XDklY24OHDlu27cPbnnoNbP/OnrY+RUuI54iIc+tAljfuIFOJqijQgs5VRav0GFgnVf28Z+yRQqTSLzobn0Dj4b3Xs1iTNkCxEGLX0kZcB5VAiCxSxTnXoSRzUtTQGeby1ilDkE1bx9Hv7xzZakZjoKHNk8BMih0pruEwViyhxF5qAXw2l47G9tyMaqPu0lbX5L3ioWFVTVIVZtI5mZp33SmUxJaaUKYdkgXldOalYEplvbkeVoLrIjTR0Qcx0thnQ5LqYRLoBAwYMeDhxz0UfQyUFjn/qK4P3q01Pv7n3LcV78ModH7A3TKn4VkgbAQ0EqtiKhFqfM6PUEbUtYGA3lJh8cR5q0+C3+8arobYWjtQUW7xNVUBlm8gcdRTaHDNvjkXAL06ZtDD9mZa8cORtarmJeBW5bROhVDXpvE8LOZTZ9YRPtkUBP6QQDDmUzrhtisZs2hr5NvAoUw5BCGD9iXjy8ntVuMf+ohxasRHRc96OQzdubH3I6KhzsRl34QdXXGluE7WXrke3E6kY+nw0OSRr1nJpxpvpxACt+4ynZtd3QOq2PFfruNB6MkCi+0QFrVF9IjhuUQ6RBQW3NzCq9cBegVQrdZzptjLdVZAdoI/H9RMFgDyaNdd/VBcm9h6MHBpHsw6BrJ5PfkLhJDLHT8gjaox3TjkxrXDmHIynUlNV06UIoyh6S0jNtj42hEokyCrtPxVnZizjATIx3L2EjJptZVHlFrc5wc7H2TIfOx0zom0ek1KPEan53HanILKvYiCH9jFc+YOvY6N4EMsm97U+pqpqjEQZlI9XpiXKZWf9yXJ3lEO8ilaLpHEx86Qt3xyTD1C+4oOb31FbmRnE0GJaF4faykqUWjnU96IvykJVEtRBAnAHlyqfGDWPMEZv2igun0ASgcP8iLhyaBxZJRN5JCRGBt40xKsYcUYDIfcOSpMYE5n0WshHdb+2skKkhhDji1ZTpabvB2V4caFRRzYuOKkLUzmpy9xMoP4EyH2NaAGwIGZ7RRvvqYF9682X4J53nIEd9968R15vwIABjy0UVY1D7/kv3DR7Mg44KLyhW4xyKMMEqQwoY1o25WVH0IQlEVJzHFThVsbIqZtYuQRUPdrKKpPK4yuHskZbC6GualWBRsBziK0jKDlVtYE1P6OQOWsf+O0PwivoOF56cYZM2E02bwVUSmfXkLUxNzMfnzbyxcRUl7atLPbaynxPxwb02iFKMmezadQl+jhChSV6jO+PsjcRrT8Rm8pbMBIlRjOL80d5NGPFTPfa7YinKBJ627ffZ25TBcEmqRd1KIdknCISEmXFrsEyRyFjZMl05bnvyyM6fht87dymRJexTTSzx6MTe/X+gM7R3xvw1izBlEO0ljbqprhbORTXOSqRGOUQPUZkSjnE91k0ruXxnLn+4zpHThYXlV3/ThiBRGhLoowY8dPW5hez9GLfY9QUnwPG/VkHOWS6MvQ4kWaLI1yrKDOpizIZIaLxhB1H5tmFBJVDXhgRb81NZYFcqnMt8omzp2zdF2gbFBmP7PkP5NCARzt2/VgZy7XF0QJAUVgliQ/TRsUUOySh41jMAtUHXyjVcdZYrBVlzeTqXlsZu3j9li+ziEpHjmwaoMpdc3DiRAQhRYlKyz7R01uAL2RpgcmJrbKYuNVBuAtEUSqzaEQ6mSbOkEIZ7iUokTOyqvaUQ+Z12GLOOR4TC29bveJIOOliXWgz8/ahzMX1gpFJOeM4UpGhTDmEjrYynxibkDl4MbHn7reVMQ8lGuAnYraXcmiPSEKlxAMffQsOHt+EW6+9fPdfb8CAAY85/PCSi3EMbkN93E+2PmYxceqpLEzcPKDmj1zGEFF4aee3LTn3+cbFTN1KFfK+c0obuDl0W1tTW4FABtpaCDnbUDQ2VYVLtgDU+hwiNZaoHPI2sHGLcihKUtvW5XkXJukItXBNt4ObeN5WloQ3b+586RKGXZtdDlGpjT+iyNlsmvWNaSsLEAP6vjaScq9g3YmI84ewNtqOQ9ccuLeP5hHDaN0xuG7Z43H6lk9hYax/hy0FwUZCLoNpleTtoDpNzze2DoFUcVVLJLvzXqkiTKpdDyBrU6LHIySiRlXa60VWOWopkKWuH5a/N4gzfg3p64GNjdYXyXoOhRTopLonIp2eF42Wq+Nx9jPqcyNLi7LMVcpyPINaCogqN50dRTTnEMjqtWic8IgfZkgtSnX+iZcEl7JiuqgLs08AWsaDWs0jkZ9mx1CJRO0H9Dl2EUkh1FGKWWmVQ0QW8rE38VR+obnR73zg32OC0ihey2JijLYBto/zQN+ZIgbV63btt/dXDOTQPoSqljj4/u8BQKtvAABjihZaBJqNsr4AKqq4BdrK+i5QfXCD6zogkS+KHJFW4fgXKB+gan/xqE3BkmzGyljJpA1lcAKpolGTHJIFqoTImH6LwCJoAM09h7hXkNsOVuZjgBE3AJt86wKpLKySqbTKGJoELKPOFta8Gmp8gNwJvzc5JIugxN6HaisjOawr5TTvxSSZbah5Sx1KTJhqis4r8iYa00ZYFWYCzePZdg+KukKC2jxnMQj55V//zQ/j6PnL9HEu0cOozIEHbpz+uAEDBuyXuPf7HwMAHPGUn25/ELVv9MjtSFE6xRfe7htCJZoefOY+GnupVSnJEAuJqiz0ZjLRMcFLXyjXgUp64zhaPIcQZ8j8thYNnrTjrzf4moJ7UYSKSdZ8dnHKoUSWqNmcF3sbSuulN3LbzcG9fUa6Ms7ILBko3CR8YxeeZ6mtsK7yhuIg0uuKkMGuA9am7ngOeV6IIfPiR6NyCOtPAgAIWXcnZe2HqB//89ggHsAVX/sIAErra44TRDQEPYdMsZNdt7VNrZ0GGWUYybFRvXe1HD649omopUB09aeQiZY2QFIXeYqXAgnSRG1t6ffrk10O8UzkCmtZKtj1mhjVTcBzSBYoo9S0ihoSeOYAczzm0HTRvtRJZvlkrMgyQ7oXqHQSb5EQgcTb0nT7ltfCZ6wqygmkJuv84oBV3ueI6twZU6gtjXcjoHRNq0Mwc0ltU5IXAxmlmIVWaKUjRlLpcVFKa1ZtntM0IY/r3AkD4ORQhhJjTQ5VxcRp8/O7VgiGnEoyQAilPHoMhtoM5NA+hCtvvhOnymvVHx0/VjNAhX78lFamB62CXwgc2m9gKcFyXDkkA3GTfCHnt77xqMHKV3wY+eKMbSszapWyQXABYZ8C1fY0g1JGnSQbR+kcs+s9pA5t3DBTNpW1PNeyfDZ4UuJHqWSzNGHIMm/0FhtGPQ8vrGlzEMkCFXsP7trfhVgWQYm9D76x8CtPhU4yk3WJSMjuNBCmSktlYVRTdTmxvlLeopLLO8l0tYiXNSYKe7Csmr4I5dCOcYHf+dM/x+e+e6l9qXyMZd/4A+yQepJZohLplg+8EQt/e05wcxPCzsnSyNkBAwY8+rBzUuKw+76Ku2aOQbZmc/sDdcolr4iHUNUSCUqHIBdeEaLxnI4UUpMUSZVp1mJFJEWBtPecGUIovaf5GD3/+QanSYZISOQBtS/NjbmMG+sNGv/HMkUkbetzaL0gWBV+MVC+jXbOi7zXqZgJr00L0+dPRa901GjnD/kB8nh4P9WTYOZLZkhN3ysRStPUUaLOTcBFxjyszKaeteM0kDwalUMn2H93FK/2RxzzlJ/CvViN2cvfD+TzmKl2BUk9Q+aFlEPGB4hdt/66tgN3zR6LdfIBpPcp5bWvDOQ4+cST8O36ZKQ/+hAA28LoHk/TixNVjhwJ4kiRVfTb9MkubtgvGMlJYyM3zTbkSWDdF9c6aj1RraJ0vSezihzia09SpNS6a6HMJ3qvlJniKhFIVLx2P+uwSbQ5viJX43/g+zDPKfOGGtGMVdyPx1MXhVDp9Dn1mae9CEKOOkoxC+s/1SDUa6m6K/hvMZCYp/YvnBxSViZlWSIVlfF0Up5DurVPJq2eQ8YehEh8sXtq2X0VAzm0D+Gmi79s+urbfAMAu1AKKYdocUbVP9tb600GUYIUFap68eQQd5hXMkBfOdSs5BE46eH3hHKzuczzHAolrgFMpUL9/eR3FGfqou/bVuYcc944dieG3Sd1iomJDiXwiS2VhW1zq3Kb+qUXx3ZyavMc0iqcyq0IKI+g6ecX1y2xvh4qnS5A514776WIKNNz3UEOcWmoIsZINZU7EnsO089c5kbtVcRz7a2P/LeziM3M1z75XvzJ+I+x4uoPmdsu+8w/YGN9Ny458o3q5ZagHFq46ypsuu0/MSsXepFLF/3Xf+KhPzkGN19/5dTHDhgwIIz5vJ8C55HAt39wMU7H9ZDHt7eUAWAV+u5xpqhqZCgdgnyacijk2WDuK712DyKH8onZUJTYk8qh8PnR/Bd77RO2raVJKtGaZ17MKuVq4D0XxKyZK1MZVhobc9clKIf4BpQShei9jSI2yRpJZrQGSbOZRjt/XJedbWVt8dEpC6QgxQH5ENHn2qetjH5LfD42noqpVVz4oN9QFwHwiGN2FeQBG9S/H2PKoThJce3Gl+KU8Q9R/tVJWF3eizuSwxqPs+RQgIyhYicPQ6mahultmD/h5ZjIFCuueL9+r/bv4PCDluHyNS/AAbnyVhUBhZwtvrqkRsmUTHWLcihhZCf9nnlQiml9i0eOMseHMrZPLVE63qlunyXlEC9S6sK8XusX+VgnsaV6/WzNnauEHtPcDyUj1/iZW2yIKg+m0KWsmO4Xdq15vutd1zWPAEAdaT/ZRRCEHHy8FKkl4WjMzMl+hBtSx6OmckiWzl6k1qQVfXbUmVAVuSHi58VMa5HD7PVonEa/fdT+hoEc2ocQ3fwN5EhxV7QBUZdyiAwIQ6oRE3vuyp0blZRESbiLagnkEOu/DymHSjbg+eQQXzz6Pb7GDDlOzeJDVDmqWjYGEQJFqtKgUGqzbsRqWd0mLfRRTjgZUzj/B1RVwY+MNW1lxaTZ420M98aqhUBPGLIqTF9saip9TRd/GsjHkhE2slQSVzpmtMcWcyQoUPVYLFXCym59tp42DcbIc0pMaSoq1FWl+rRJNVXlpmqc+IZ6cYxCxmqC1JuYKplrT6/h10fPzczWe2/Dedf8IQAgKu33nT9wC0oZ4chzX6GOc5FVZQC48xO/i1i3uU3b9D1472046lu/jo3iQey8Z2hDGzBgKXhwV47/8Sd/js9876q9fSgAgPKi90AKgQ1PfX33Axkp04W8qpGictqmhdfu66PuoRyiKjNviyYFSyn6zSltcAxaW0j22ihdmsohdTzN51GRayxmkYoKVVXZ99Tj/1jMmHNPUQQJAqv4WRwBRgUnQuwl79DrxcmIFYb8trJMkXdsTotl3lD1ciPfNuVQHMfGB1B6bWW2Qt9NgFErIQCISM2/AFvfdLSV1bMHKe+TZas63+MRxzrVWvZYI4cAYN3T3oAtcgXuWn4S/mT9O/HR5a9uPMYYNQfImGzFOgDAlhsuNrdF9XQSgfCTTzwJX5RPwoHztwCYThxuPvensF2qjX24rcy9jgCYtjLzZ9SiHGLrS+MpxNrKTIE9HRmiNeQ5FJOFBiWeLewAACQzy83xEIh8l5m6rywmKmU5zjQBYVtA64zIIebvZLx9vLAWRl6JKkcRSKEzzyGfowA5xFuu/GJ2CKS0ElX3nNMGrrQUych6J+nPoNDKH+e7jzOMRImqsup7v0WY2gPJXoU8nqpiYvYOYzEb7qyB+90DyjKjTwfG/oaBHNpH8OCuHMfuuhj3rDwd89FyRB1GvMR8BtVFJmkr0AvPEavezrzs1wLD4VTlAiaSvCrnL1S57LzhB1Tlqv9TCCCKTHJKUVaG8GmAbtMDa0EDfKz6fNtMyXw4bVwhcigf22qDWYRZozefiTcLxPE8ElFDpCN1PmWOWp93rHuLadCsi+bCekHMGvIt7NrfgxySYXNOHzKybWW+2qjUfb5m4d5hNmh7xcfIUBiZLcrCtIwl3gQohDLYFlVuFtN1uqyfcqgP61/X2Pqh12MEbejKJgOhFxx+Ql5f7Lzp+zj6/q/iHqkWyp3kUF1hy/tfizXYrv5c5CZlwIABCt/49jfwd3gHVt3w8b19KLjvwa148kOfww2rz0O0alPnY4PtGwFQsAMnyP2YYh91oFhDIOKG1CicxEi0L50a55c+JsmSz5nhcdCqRz1SJLQZ1CA1A4Ub8DGW1hSTaA5JnRv1cEhpnJgqen/lkFUj2/nQRCDrIoP1I8yYr5E+Rm38LKK40QYfy7KRtCQcEqp9njXzJfky+uTQlHnM/y3RppvWNfT7CKXEnvLUl+GCcz6Bw488rvM9HmmI9bq17DHWVgYAxx1zLF594L/iv0dvw1XpicgCZsPGqDlwbZxw3ktxN9Zg5qK/tjfW/ZVDK+dS3HHkT5m/fXW4j2eduhlfEOcCCMfeJ3MrAQBb77ze3OYrmYzqLvEJFd4Can/HNDZWLBgl7Vj3JdqSga7JaqzIoTidQS5jx++Sni+0WXWZT9Q4FFnS3ZDnmX2MeT6z1XCOYeSaTYe+j4jI4jpvJCsmgf1FVBcoRDeBSoX/SCdZLhZcuRklIzPvGE/RSaALIaG9g/0uEu98pC6AkMKUOhMqluY26VAO+cFCpei/T9yfMJBD+wi+f8U1OCG6Dckxz0A9ZdNv2ptCj6lcvxzeW8shYmVGmReLrxI6yqE4Q+Z5F5UdbWWOKsMbjH3JZCmUUZj1TWpONnXsRhEWEysZLEV//wTnmJnHz7y0Cy2qxNGkx30HorpwVD00IeW60hAlI7OYg2mfm9GH2lzM0QDKq6Fx7Q6SVc/zS2TRixziVU0VBez2+Yq6QK4rHV1mgyYueDxWiQxGNZUzM+7m88m0DzqRQaZzrabpTlW6x8D+4PXfxZEPfR9f3PBLmBdzbuuE/t2RLL81ArMFWy74//CgXI5LN6hI2bxj03ftx9+O4xYuxVcPfBmA3TC/HjDgMY7q0n8HAIhiYcojH378+Cv/gtViJ5ad+6apjzWeMFPJoQqpqBzz6rYUIoIih7rbymj+MhueYmKqzV1pZ33gzGFtyqEW37ku0syQQ7pKPOGtZ+QzEal0y6LUIRwh5VBHMlEbyrJALKTzelRIqBvKocymIxWMHCISxvPUiGWz5Zu34yQd8dGl9sqwbeoz+v/NzWAIwvM7orUXbSajDnJo2UyG85/9jEX7kDzseAwrh4QQeNmZh+KS27bhhvt2Ig2QQ+baD6zfRqMZXHH4z+KY8ZV44KqvA1CWBtUiWorOevoLcWOtWvumKYdm0hjbjlfG/dVoReP+o899GR6Sc8i/83fmNp/QNL9N7/t2lEPMhJvGRpsumNlxKLDuiyn1kK7piW4ry0aK8Kk4uaOLxyOrHEpQoI4zVFDx64ZAyqwvkYEmkeM4do6BJxMqJVd4/Kf1c1y7qn8iBPl4HPVQA1GL8jS1aivYdxKlGWuPo0K+6+HKn8PX0Il0TauJ5KPvkFr0qnyiBQYxSpG1BjNY5ZD+ThexT9yfMJBD+wi2X/4ZAMD6M56vez17kEN9lEMtySDU45svooIGuJ4+6nWaJJOrHHIHXL7x9jfhonYZ6hypMmDLAwwzgc6LUgDYgKMG5H4XPScbuHpmgWLYWcqYMX6kKmSZN1Q9ZCo52fWQOU6SLxqZua4IxAHDOHqvcWR9d3wGvRRpuLXQQ4oSdY/FkurlpffKG+8V1YWR0Xd5DtEif7KwUx+Alg5XE6PwSrPZxvMKob5vUvKIRLWnIZReM+GT6nRj57vv3QIAOOrUczVJ16zGZ+nilUPbbroYR2y7EN9e80qsXrtRHU7Lpm/bHdfi8Kvehe+kT8bhz/5l9dgltLANGPBYx7V3bcO5C18FAGeBTijyCX7w6X90zOG/9P9+CV9699v2/MFIiY3XfgC3Rofh0DOeM/XhnJTpArXwZihM+/c0ckjGaauJv42Qd+evMp+YwkPVU43a+v6BAkfjMSy9i4MW6yHlZaVb1QvtL8HXGPR6eTKHRLJiUkA9YoiTsv+6x5BVDjnk+pTYJLiR2YzSMSrzV+uNwgseScAbiUeAd6kvyDxclu7nGXubsDaEQifoHAA7j/cpLD1qsP5E9f/HoHIIAM4/4xBEArj3oYlJ9OKga18EPIcA4ITn/wrulyvw0JffoR7nEQ3TcMZhq/Bfy54PAIhmV059/FOf9iy8KP8j7DzyeY37Vq5chR+seTFO3PZ1jO+7Wb2mp5wxxKq3v0nTFJVUxCUp4bg/KimH4mzGSfrykerCqtk/ETmUjhpeNXQdUpJZmY9Vl0WUmvUzvYcYHaCPw/UBCppNGz+hImhgTyh10qTy6GFjVWA86Hodcz7aO1QlFy9FOcSPYYZ5O7l+uHxvGvKZSlA2lEOpzM06m/xclSeTWstXImn17bWqMT1Oo/2x+zMGcmgfQF1LHHL3l3F/cjDijaehFmlnW5nxDgiSQ25LFFW0/LYycxFOFrc5Jf8f3lYGuAs6PuDFdThZRL+5e0y1a3xGPjfmtUMJC7G7SOOJYsUiGGGSwFdSOOlgCzomsS7yRuXVStTV4tpNCCDl0EPm2AtByhjdW+y1p/FqJp3PJJqzyiGPgOpb5U1kAfRIK5NMduvL3Wlyq9raFDn097SwU7VOiXRk0gNocsxGzeeXRObpRAp6nZDBMzcQ79MvTIv3dGa2oSijlkC74O9PDt3+mXdgp5zByS/+DfOZBFNipMTd//bLKGWMda/8f5gZLZ6IGjBggMLF3/gkDhZb1R+BttKrv30BnnDxW3HjFRea247e/j0c/OD39/ix3HHlt3B0dSPuOObVqiV6CshTZqohNXnToUKhPRjUHNBRxY1SZC0+bdIQ8+7mvygmiFGijrLOimsvBDw42o7D952zStyAcoiqzRQBzcZYGkOreBkSFO0hHOjfcsVRTKwXIsFU86kFmtRQ2QwrGum5krdlJCPjxwc0Cz6ASw71aSujzzw16xIyy+7+Hv2IaNoANryL9iUVzrqTIJ/0JuDoZ+7tI9krWL9iBucesxYAkMXNsWjDwRtQRCMcc8yxwedvWn8QvnrgK3DEtgtR3nFpY107DUIIrHrGr+H84o+wYm13ey0AHH/wCrzrf7wezzqlaZ4NAKue9quoEeH2L/ylen2P1CDi0r/W40iYvURERT8Wk14zj7DOtjJdWDUERq7IoTibaXrVkKH0rCV+qJBuSHcqMM9YdRGhzdvH+AlVkwY5xkFkcSIL1Hys8lSOgNrbTCV8dCdBVBetaqVOOMqhUcO2gbxp+XcnAr5zfouw6nAozfxJHk91mQN1jlykKKMeyiF6r91Uy+6rGMihfQDX3HIHnih/hAcPfy4ghDLc6mwr04NQgEASJmnL9RzyI0cb0ueeIKm7UQ4ZkolF1JPUGiLgOcQVH+59osqdiYj6dC3hExig9MBfTlRrAWejFyOR5x4/MVPqTHRMYl1NWOVVnbNh5ItJg4mnBV4xv0Mf+wilVkKhKjCRCdJEyUdTrwoJ2IVdGc/a5C9ZOiZvXbHFHBnCyS0+auaHkMD1KVLxkYWphnYlUdBvazKviDERZyoy12mpC5BD+vs2ldYuDwovwWLquZHaLhlpcohNlDrW00iRe7aV3XfbtTjhga/gh2tejCMPO9TKVAPX1I++8F6cMP9D/PCoX8ExRx/b2FwMGDCgH8qqxsrrPoH5aBkWkAWvV5L/l+Nd5rYY5cOyCLz/Ox/AWKY45iemGFFrRF0kMgMR8Uo5pMihaRVfGY86PIeIwKDNv07gKXLTelxHu1lF7VAG28eQt4anHCJyKG8+r/ZaCPh6g16vTJTKtquYlPRM8uIoiKziih6dKESfqTGFTkZmrUXn4bTCMD8+oDnPAixRCk0CjcOsbzwlcqqPLZps7zwvn2gkAssYltNx7EvKoTiBeN47gNVH7u0j2Wt42ZmHAACygHJIzK1C+tbrceBpL2x9/pqnvwk75Czu/dI7G4r4Pnj54w/He972Bhy0vF+S3abVcyaa3scZJ5+EryXn4tCbPwaMtzfUbkSshoqV1kPL/o6ppZOb4me0lg0qhxS5YxL8cqscathWVDkqKZCMtAdOPjZ7pcpTDiVaXeQUPutCrZP9Y3Bi6vNWJVepFfEJXBuJlCmPCHGdT00wlnGGVKo5czHqMfsmLpmemLQyd2/KxztDDrHxOZWFOwZpv9xSj6HUoifLiWqXQ4JatHff0GduSPwp++39FQM5tA/gjos+iUxUWPfElwPQhlst0nDAEhkh5RC1k9EiuCybFyBgF2LTElN85L7EmhQyrNpHF98CZpvH2JEy5csXyRyzrTUOQCMZpOJtZYuQyNPiUxlAa4JElsi1jB1lu/GjNAkBnCnXi0CtHIp0W1lUFRDVBAUSMyEmntxS/VsroVhil+q9dQmbqQt50wbYY6LmEfR+n69pK6Pvov31jGpKE2NIRibKk3qCE6+vGrBKMaXkSa1BaWAh78etTkPNNkaq3dBeX/S7M1LknoTNDRf8GWoIHPuitzrnXQY2N9FlH8Ct4hCc899+C0DYZ8rH/P234Zp/fgMmu7b2Op4BAx4L+O7Vt+Lp9ffwwOafxBgzQeUgjeclm5cSWfQi0xcDWeY4/J4v4rK5s7Fu7dpez4l7FmZojEtEjTy36tGQB4w5HjaGN0AbE/K6S6iiPEailaKVSFs9i/rAMWhtayvzFEwEG7ncLAbQ90nhBg6xpjdlVTKDFEXneiFUiJkGv9IMACOWDgTwzWZmYu4r3boW1bboRUpnMmMNkUNcLeSb03I8GB+ETTsvR5Rrk1x9fCvWbMCNOBQHXfcfmJ+0zy9RXXpKZO05RORhYttxBuw7ePaJB2P5KMFs2qL4mVnZqXA875Sj8IX4aVh32+ewqtyyaHJICIE1PYmhPq+17bRfxKxcwAPffi+iujDx9YD9bYY8lHJ93EaxwmLSTbEwGyGKIxWEE1j3ZSggI+sjFhXzABQRa5TudKx6XW/Ifx17jzhDGaVqrV4pP814RJ5DLCW5JV4+ThKUMoLULWNdbWVRneuxvNlWxse8yPMUDUFqEiaaplZtAR8v43TUKL4acocV/UOhBClKm0oNaiuznkNkAF6XE11YTlFHqbPG57CpnXoNLtKhrWzAoxMrb/k8HhCrceAx5wCwRmBtMMqhgHycmGzyoqnNQsmXLi9NOeSreEwrjaMcYkSLv1ClgUFGrikwmj3wJVJElVWrhKoDwuvvLxh5US3ioqfPdBxZciiWhYlJrJkTfqJbohK2wfcX7cb4UlewRTrSps5KOcS9lXz/AvVv/TklNrEr9Xpv6yhttO01zqsqEQnZqwdfsqSbhnIoyhQBRpNqh9zdkCSMGCuhJ1/yEwosTqi6QgM8/caKQOsj/912tWCac2PEXhm5Xk2iLlDpYzKm2FNw6w1X4YwtF+DKg56DjYcf7Z534JpKqwVsH21AqklD47nURg6VE2z551fihNv/Azde9u2pxzNgwGMFt337XzEnJjj4Ka8z1VIftdfuA6gKZLKHK4Q3XPRZrMJDqE5+Re/nRExx2gWujqTiS1w3060cxKNG1DvBb+nla4BES/fr3ayiij7KobpAJQXSxpqEFFUBsk+P33UWaMegdnQ9f5lW+cB6IclcxU8f8IITwVbjXeVQko1Y+ihTDgl3E0vfbSqbqWoxU+X6sdYc2574G1hXb8Hxd31CJXBGark/k6WYnP0WbK5vw7/9yz84YSEcIQ9D9f5u8atPS/qARw9msxgffP0T8evPPGZJz0/iCOMzXo8UBQ6u7u4ebx4BPPVpz8Il9THAD9+LRHrKmQ7lUOkrh1hMum8RYVo0GWRdIxMlRJyaazoulRI1S0dNI+NKKX9oPV8yS4la6LW6Xv/6yV0AjRNNEsasS+um2bRzvvp4UrhFZGNqz5VDsocaKM6QiQpJnTuF797wPNoMOeQph/hewt+XyqpEImpHOUS+bTS+kseTLAtj2N21h7YdIINyaMCjGNu3b8dp4x/g9vXPAPTkLuP2OFrAVuTSEDlEyiF9YVgTZV85tMS2MmJ79YUfMd8CAi3kONFioI9vQcwA3gXZqGRpiXvVpRwimbhO0TJx88niFrq0uJtEltBKZGliElEVrOKpFphWJjlpLLRMfKSuHkSx8kCKaq0cYpOA8QgImNvV6TKr5kFTzTOtypuP1efSZSBtwKrOWTAhoDAmcN3kkDs5EjmkJPDtUcxKCVVC1Lkia6hlMeRB0ZGIF4JZvI9mVBog+9y4bDa0SGi+mMSuj/0KKsQ4/GV/bG42k02gKu17OKVTktFu+7dfx+ELVwMIb5YGDHgsYvuuHGfe8zHcM3MU0s1nmzHVhxk/GQmQoNzjyqGdP/x3bJfLcOpTX9r7OTzlsgslG0eoxcz3nWuA2pZCpvjUfkRpVBkdR24il+so61QtT4VWhvL38yGqHDlSRF4rCaXqhMbPigIv2lJ+RGJUUyWLqfZBhR0ETMzbUAbIIarmkxk6rQ2ybIZt/Eg5xDZ9XmWch3uY106tWijUfk14yrNeikuWn4eV2NmYU0/8iddh28yheOId78U/f+um4PP9ghb9rowymopWg3Jon8MZh63CYQfNLfn5z3nqU/Ct+hQA4bS6RxLrV8zgsnUvwUHj23B4fkPQcyikZCefHENKsJh0qyRX9xllO3++tnaQSWYsA1JNDqWjmUZnAnkGkeLOrP1pLyILiKpADvsY3lbWZfxM5tcq3TC8lqfiaipLh9C1ih1m8lw3UxIb0Nd9Wo+X1FbGTc+TdMa2x1HhhrpakhA5pEMGQmnbcYZMlCj1no/8m2SZI6qUyqk7tdPdw9QiNVYijyUM5NCjHNd/91OYFTlmT3uJvTFKprSV6UVe4AdNm14iRWiBEnuDp00qWdzGszLmjM3qI4HY8DyaaxJYOq4xR9ZUDnnyRUrjMjLxACERaWk8LRb5gFNNUWBxmHjFeI6RMSVK7XGActLwSuDtYIm3+TfHOtGeQ7rSYJQx4ERBwBCPKpLZcmSiQlXVJvnAHHPcPgAScvpeugykCXFmqs5USTbvpYkomlS72srIcLUaM78lXdWI6hxFy6RURerziXV0plWFBTxF9HntkqNe5JCtFDVNV2NmzhdaJPi44Qt/hxPHl+Li496Cgw6x3gYm+jfQqpnI3FnUhCZswrZL/xOH3fTv+C5OU683JJoNGAAA+N43P4sTxS0oH/8Lyp9PS+l9SK/dB1Bk/24RHx7yhZ04dus3cNWBT8MBy5f3fp4lQbrnXn7dl4wc6tqs0SI6n4TJoVJGiBLdPsRSbBLtraEk+0sn0KI6xzxIndMyblVu8AQhoTa3ALFF3yP5S7jJO6paLOMRMhTBNjCCbSvrf440//hzHleZGlVxOmKfq12L0djPE+JkXTfMVgH2+5ACcdLeziGEwNGv+itMkDbn1DjByme9FadGN+O7X/oPXHln03/IL1jQBpDmJipwhVp2BuzfWLdiBlce8lMAgDpaQoz5HsZh570a2+UcRnBTdInA8DsjABhC1ijxGDFrC72aHELa2I9wY3siEtJ6AbUUSBLVgssV6JEufJq20gnZKmRWyaIJoDigHu3ykyt0ElnIwJ5AZJWfTpyxfQpBmVZPua71/TP1/JJ+A7xdLBnNIE0iTFj7XukpeAA2PurPpaC1f+ySQwBQLGiijpRDVW6MtusoaU3tNJ039B309G7d3zCQQ3sR9996DX70b78LtMh6AaDYcj0AYNMpTzG38faeEIw8PPDjpz5L+rFTxc1XenSpHLpgouI908KKbYhpI17Ec00CS8sqy8CiXskXGfkhVN9ozdRAPnyfAitVVAvdvhc9faZlvIy1VhVAMoNSRp5ySL1nNrLS8li6JnBmQtI9yrEmh+K6UL3FjARLRwFDPKpIao+FIh83qowyao8tJpQdyS0N6Mfk4wVkooJwiCjFrpOPQtJR0aRzr3TlRCSZ/r4LiDoc1wnATLaq0pqZ31ioTYvIoXnM9GodtHG/M6gj16wuZlWUEmkwGtu8744t2HDRH+HS6CQ86eW/4Z13+zWVeO0DCU2cgZaYGy75BkoZoXj67+ljH8ihAQMAYO6y92IHluGQp7wWQHvSiE2RclNPdof48HHtNz6CZRhj5syfXtTzbNtRd5w6n1NpHA951HD4bdbeCzqGpzZQIddzS7ccvxeqAhORdXq3taXyxB1pkaYoYWKiXc+5Aqlq/xAS+VjNuaFiUmbawfqPqW3K5UKk9hw1EZSMRiwtTD+P+aRYw9UxiqIItnzT89varzlWbDwGW896G3ZtfHLjPnHaf0O14lD8n+Sf8Of/9lks5G6roYrpZgEXeg6kdY2Z4/eltLIBewynPv2VuLY+FNvT9Xv7UPDUkw7DZ+NnAHCVTLSm4mo7AhWaiQCy/qTMIoLWmAgoh6g9Nc6M0mdUzav1qxCoosRRnAhd+DRF44kiL6LYKociTYynAc9J31bDORZ9fD6h656vWj+rVjjmfxrwVIqnzCOA/bxm5MLUx4bAQ2vSdNSwbagDFhWmwEqegQHlEJ0bkW/p3AoA2vtVG3bLDuWQH8yw23PePoqBHNqLuPGb/4ZTr/sb7Nj+QPuD9AU7mllmbuo0lQTb6EL1z3LQQpl+7LRAMX2n9Ljd9Byi51ufALsYtX45cw3yQlTKT6bh9A+tHPIqWbG0BpO++gmAYelpoV0xldFi5IJEQJXJnIkCpqQCNaAp5RD3SuDKIZ+tp/so3SBORqZNTnjRkFmSoJCxRw4VKGRsFvv5ZEEnH9jPoEs6SSAvqF7VP/2YMRlJO0SUIixrTTaGFt7mZeh7ytXkGBvVVA5RtU+AZgKtCzXxmtSXUCVZfVa75Eyr8ZwDvRnIRjPKrI79Lnj/dSFSiI7Xu+GKC7EM89j5xLdgJvMW9fRbDEWieqovEekJO/DYqphgghRHbFyj/h7i7gcMwC233ICzxt/BzZteYkwo28ghQcohNqamKPfoIlBe8VHci9U45cnPW9Tzkh5m9IBLMlNRxjcb9dFl4q/GXkvKGDI7XzCpOmRCulTQBidH2uqnZjyCPMRMyeTDpIFpcog/xnh10Fy5oOavYBu6nj/7hBgQqPDkJ3QWsAUu2mym2cikhhGpz1sBbWjBxFEmcHAflD44+Lm/iY1v+GjzjiRD/Kr/wKoR8Bc7fwvv+fhn3bsDHoZ0Dvw4BnLosYknH7MOv7P2b/Cj49+ytw8FaRxh58mvAQCXqCDlUCA9l9aZhhyK7bXHbQbosf5+JDeGySOzzxjJBeT6uqxE5raV6bHPkKo5+Y1maq0OZZlQioSF2dhxLPaK4+65qLEmlUXr+F+JFFm94HwuhMIjv1KvmB0CfV6zctw557Q+P7GEHX3OBWxScM18QAmmsKz3Y6Y9mu/99P6r0uN8NrdS3V7lRn1Fn3cIvtXKNDHG/oqBHNqLMAqakMSboJM2HPmwJofqOqw4ooEtEhJ54REshhwqncf6zDp5noQWYl3wq2jmYg4oh8pkGTLvPISWXpLZNIfPitciQyJzJ3bSR0RVOkozKS2RVMdZ0LQ7BFNp1h4/dS215FstdEVVmMoreSXY1qCiMdjSgBcVunqQjlAJZeoce73FcSS0142b5FYgMYTNxCR/uRPjVOWQ8UuY3lZGk8HCTi1BZ4trGafK84jUU12eQ3Qfpajo2M9It5W1JR9UmsyjxTQdc0iJQ2TePGb6qcNo8Z6OUIvMURDw312FJJh+RKCUmTVrDmrc5xuRcqRoTupkMtg8VnWNUAV5iLsfMAC48yv/gBg1DnnWm81tRDr78I2Cy6JAIurdIj44dmy9D8fvvAg3rHuOMZnvC19Z0gZOHtVcOdTlAWMCIgLkkKfaJBKDQhMQp7tNDpG5f9Exjqo1QPMcLLkeIIc0uZ9ofwnfyLUSCQT5LWmvu6AvXhSpQswi1j1VS3GqQGqVn8zPidQIZp3Gig+0XqmKSdDLCLDripC6atE4+GRkv/AFjNIEL/nxW/Dd6+8zdyUoHOKnjjKVpBSr911xgKrIr165YvePY8A+ByEEPvIrT8dvPOeEvX0oAICfeMq5+LvyRbjqgHPNbcK7rjiscshtjyyLsbn+M3at+UUGXgin9fysHJu1u9+OFOmxz679yXNopFT+FAuPxCaosTFerUPD13yp294Sz2yao44YOeSPVcINWkm8YnYItMebE5MlkUOcnM+4t1NFXS1uexdg96m05i8CLcK0T6F5KxnNaqXqRHU3RKnar7QQPobI1/5ztd7bPNYwkEN7EXQRhKp4BlWgzUa7seeeKojAF435ZMG5L5H6gpPNXnjnLTo2sl2gi5YIANtKE/DLSZchFRWKiseGT1CKJBjDnnisuFIOlQ13eec8zGJrQZ+PJscyOyD3QmmPORE1JnlhpPalThlrLK5pU1DlakHtufMDQKIN7JJ0pNqZ6rIhH7VyS5agpau8hrDZpQgb4S3mQqbkzmm1LEBDEIaI0uQQUynJKFUEB1WwO9vKSDWl5f2JSmojVVCXciiRhW7zysxvNKRuo+OYiFE/dVip/DaSJGm2lbE+7tAigYN+/0lIxZa2E65qIe5Vc0TY/Dry5cmDcmjAYxxVVePwOy7ANbOn46DDjje3t/oFmHYfd5G5pyqE1371Q8hEhdVnvXrRzzXplEX32M3HPRrHp1V8o5RtgDwILwzAtj/oCnecAVGKbDc9h0qh2sbb1DlUPfcRarUwILW0biGoAu0YVEyojXIoPEf18ZXjoPfyX89pja9y5DJBFEemSk6/Pe5HaNSwxdiYrfrKHCKH8gCBtiSsPQ4zz/9jHCrux7987BOYz3X6qe9hGKWK1NPBKLOrNwDn/z2Oefpr9sxxDNjn4JvG700cuXY5tj/5t7H2rFfaG02RunmtU8KWrxwqcuYfSsXtgM2FTWa2nkNzcsHsAWpvfxHXOcooM4E1pjCcZDphq9Dr+iyoHlUK9jZVkFqXJiid5C7nMVGKmXpev5j7OqUXtOKbVgfB4+OXYEpvWsSkMJ9zyYoGpOrlewmrHqWiTtO02uxltDIrzWaMMiqWubKI6Oq+8RVLUXenzv6KgRzai5DEkAYMagkiYM4o4hSZqJCXzTha/YLmn4X32rRQJibUSOi8zXyQ1OkB/2INxfLSe9YZ+eUw0qNWC9TKixMHmtGqMiITZOsj5IPknpTgRhXGOB318uQxoM90pI551/xOxEICcWYGVl+WT61BsrJpL+Zc9OedVtpzKBtpU2dlmub3DZeeikTUubpNf86TXTYW0558GjQld163R7qYeU9PpcQJJRllajFpBvRmpYZAldO41C112Yzxj5pGDinlkGL/I09i6jy2sol4vZRDtYoZFULodjz7uXFSsmppUyHQ78y/ngC26QtcU/5CHCCJbThxsEDSqEAPGPBYxZUXfRmH4l7kJ/6Uc3vV1jpMBQr9fzLmz/pWCO/7MXDZv7fePXvtJ3CrOATHn35Ov9djsONEt3qFmybTHBhKt+KIWduSDz8MwCRhkXIoGQFJtlsLZZL150jR5jmkUklD5JBLqnDQ9zjSLQSytORXpJVDtFGkIIS2Oa+Y4ivng4cZcDiqNbaOy7yY+5jNL6RwKIuJTVb128p0RbttnlwKsuOfAylinLLru/iLL16n3sdTodXUQs9x+quAudV77DgGDNgdvO35J+AnT91o/ibCJwkph6IEuYyRJmobzK00RDXBRKaIY3Vf6bWIAZZgF0lmxsqRsHuAhnJIqnGNPEST0nqfGeWQVM8n5T1XhXcliFVCWSFkHUbSdZRiFmEbCd4CC6h5cBrhE3nr/8WCxt8CCfucbdFABjyHEo8cqoznEPclci07kmzGKKMMER9n6hwDfr/cfxRAp8pof8ZADu1FEEMajJU1j2luli3D3bIpZAOKbzxJC2WjKNEXQuYNnn0XqD4M2aQvUCMF5zJves1M+QPw5BQiBypNFjjHFEzjKhuxkxw26Uu3lRW291/G2VTyxIA+01TJ1qm1SugIelEXQZVXgcR4DnGmnQa5TJNDaTYyMcE8vcS8jldpJXM7GqBzTQ457WFxpgisuoVEhCVWutLFCPSYYp4i6F3jvxSl7dUOTMYEo5oqyHMoM/5RKoozPCkRmZfIXKl7usgh6kmO5nophwT77vzWCf67U5Nw+wbSbhS6zE5DbWUlZOw+p/RbCelYqXd91P56AwY8lrDz+/+KBWQ44Rmvcm5X1duA+s4zCi5ZdHhowejjrq/+A/ILwl4b991xE06YXIE7N/2kUVksBqGNQQjcsLrKrc9gFzlkAxpCbWXuvGPIocIGB8h4hFhIVOXSFstqg5Q2Yp6dx7RENttWi8DzSiKHtPkoU11RGzKtSaTZNHSRQ/2VQ8Y7yHu9kvnTibpQGxQAGT2usi3+RjlE6tIit8oEj3SiNU3V03OoF+ZWA4edjVcs/xHe992bcfGtDwYDLkoR77n3HDDgYQaRIKFrvdYkNZm627ExbyQmkrKdw7aVjZzX521lqddWVovUpv0ROZSMNFmh1/5RalqanLYytCeRlTrJ1+9Q4JBRijm5oN/TUw6JzBQiZV0jE6XTGRCC8GwlFgsi03P2OZewxVdSDqVZc99ExFEVCCOifwu9v0izGdt2R0R81zxGhQbaA0ej/kWj/QgDObQXQTK+sqN1SwQIB6qAFW1pJmxh4xNPhhwizyFSeoy86pTxPVjcRWEd5l05Z80qcaSYIhUOl7gbcijQDqAMEv00LutzE5oAqK1M6vewZmOZlhb29xwqZQTo1xsbpU6KEon2y3Ej6AHdy1uMkYnKaRsiomCkZZ5xOjJtU4nMHeNtwJVbArYFgCrBxbip5qFJoovgs22A05l/Y5bJIuj5e8VCAqWafGhyC4G+k6TSj9XnPq2tjBIGVO91M/XFeSwpAuLZfuowlpBDvysCTwCqROLE3PuoO36LbW1gdVUpw9fGhB32S6HNk9lkDGll+yyuuWs7brhv594+jH0aO3ftwklb/wvXHXgeZpYf6NxHasMGaCFcub5/fYmPO+/fFmz5BICbvv4viITEpvNeu4izsLCGxd3kECePqnKMisaRjoV61NGKG9Wu8jUdUfuDmqNEktnESq9dvS9ireJRm4AW5ZC06V0c5IOIkKpHrymyOe05xD4b2pTR3EgpQW3KoUp0+8r5aCsIqLlC3Seq3LTsRXGMXMbmPBLWCsgjrNtavjNqwdiDyiEAEMe/AOvHN+PxB2zD//zIZXrNYt977Tmvxe0n/+oefc8BAx5OzK84CnfKgyAOWN+4r45Sp43WhudMVKGXjUF1oFjNw21SVpiu9B5ARilip8io1vVJnKCWAlmlLSWykWlzinVyofUrZcoh2e4DZJPIqlZyqI4yJEJZkfgeo9wuoaI93xTCxxk/l2BKT2Q9/5xLXnylhEdODuk5wKRHa7sQfiyCLE0KW3inNDcz1vIWQh9VgYlMkCaaCE+6PX73Vwzk0F4ELUCqjsha4S3YACszLibTlUN+khN5DZmYe1IOeaqbdKnKIY8cSs1ip+k5hHQOAFAwc0xaPFKLlXPscP0UlPKnYGqVkFojRSFjcx7UVpamM8a7qepx0VN7Hy3U8nlLkNAm3q+8AorUiUpKCLADKC10R1IbiaazyvhMt0012sq8nmffR6EMJbDowT0U9U6glsY+bWVRx3sJrSKKdFU2033VIaReS12SzRhZbRxoqSNIbbCtyBqrHAptoui2Kp7rJQl1iL04Q8aek6IwkahVlHW2qfmSVI5kFL6mjOeYNxm3VdepTYIbng/Y9/DQQo6t734hbv3AG/f2oezTuOxrH8WBYhfmntD092lLbDTXVUUVSJb81aHkJYi6UERM3fT9W3nrl3F9fDQ2HX1y31NwENoYhMDHPVlMjBl+t3KIPPia5+grVhNKHNUVWBFnxtQ572iF7wK1TIfSf9qOg5AFTFoJUnv60Lwj2fepvDoSM1eahNCWgkgxpXXYh/U8dMf8UmSmkBB5foQ8spkXH7jpdshPA7Dt6m3BDUvGcSpV7/+cdAfueKDZpn7E456NU17+tj37ngMGPIw49LRn4LcO+3ccvHZt4746Sp02WmtTMNHXazMZmcMa0WfO3qMk0+jYbcElOwQRRciRYFSTikd1MURCIq3HqERqxl6XHGr3k3PNptuVQ+ZcvcdUbDzO8+7XMecTKEQvBratjH3ObM1bm70pJ4fcOYAUs9xwnM6N/FzTbGTIL2O0TfNYaG+kBRkx+WnpwnexSKHEvo6BHNqLsK7s7QutqHZNIgHuqt/yPEc55D4mMW1lOuae+t4biRj9pO0+/BjAxIttBbQaSsYmypAvVGnxqDbh7qaeouMJ1MrU1cqTxmogNoMsMzmTcYqRKFG0eTcxiEq1cVFLX64TT0ScGR+aOGCkWSJFXLLKKx1XEmMiE8xKprTRBtK+8TbQ9LqJdaqXmdDGAXLIxNy3b3aqcjHkEL0XRXAGKgf5TlRSIE3bF65Jp2qqgxzSvkapLFDHo4Y5nfNYky4328sjQ3DlkGdWl8rSkEN1lHYqh0jFEyKH2sictsjithhuijSN41gl6wxtZfskvvmf78aTcTnW57fZG+sauPFrQI/WpgEK6ZUfwYNYiaPPemHjPvKl80ELYZqD+VyaB5K82p4fSkqcqXZix8yGfgcfgPGumUYOsfvrMm81MObgbUs+IumSMoqEiK0vXpLZYkQPAi34/rUyVS07FJixLFAGPCxEnCj1btCHTRVvjAKafTZUbIlNRZmMStuUQ+2qphB4TD0HDzbwC0clCxvgxQfrIzfpbPnOkbbGWi8Zq4+AXHcijnrwm3j5aUpp4c9JAwbsSzju4APwwdc/CTNpsx1yV7Ia22CT9hI2Nvrm/KFgA7o+48xTDglaK7reldwyoUBiCsNxmpnrLKsXUEeZIYD5OOb7ljrHItrNpgmS3e6rEbkivtSiAzGlrSzaTeUQqYBKhxxiXrNVM0nZeA5V7vzL/d6MpUll9xeFUK3CqU5gNHvowDzGVZ6AZ1T+GMJADu1FGIZ0iueQvwigH3bbj5VLon3iiVpsIiFRFLlO0Ygb3ghxSwvMNPhETbCVRvffRwGSK66VW38oSSzzDBKFdpG3i7PmhjyLI0yQGoNK8itIs5ElenokspEBtGG7tXIoSi05FAW+q0KkZnHNF1qJjqefgfVLIk+dkHrGT8ki5RAN0HKilUyMQaf361IOhUzf2kCeCuTZ4ET36okkKnYhR4okbh9aqBIwU2ufj4zIodIx52wcq24DpGSvzvSaqlC/62TkSHvbIDgJG48seQry8dB95G0Gt3SMgYQFQhqoBgFWOedLfUOJfQC0aaFdZHQqhx66G/jnZwM772t/zIBHHPc9uA1nXPt/AcBZdN71o68AHzwfW67//l46sn0Ld9x1F05fuAi3H/J8o2rhaIteJ88h09rN/Pta27UZ6HkhlVFXhbcPRKRI32mFGUc5VI5ZG1L7e9N83KocCrQz0yJbJCO29lgiOWQ8h9oJmFiWrb5zOVLrWcigPPiscoi32tKcYhJUS2o3CPvidfkhBdHSSqw2OqQcchXghfbAAFxPOxvVnFtlQmBuLkSCqiXWencgjns+cNt38Qc7/jcAYONBQ0z9gP0TFx/1y/ij1X9k/rYhPBPj6UkIFRlsEM6MTSYGrKLPKzImrMhYClsYTtIZo9KZkQtm7e+v7RKoomgIMkoxI8NFRvMYNj/6KkcV3EDhDHpsX4RyqE/aceP5ZL7PPuc6Ym1lNP85HRdkpaADJbxOFcAqwEbVvNnb0nxDwS+de6M6R87nH/25DeTQgEcMtAApOwgYk7TBEOvFX5viiJsp+mlj3CBtMhkDAWWSehOKYV+clM5PqwpJ5FWVL7VtSmxhTsqh2huMq6puGiRqEzdpTKabA1SWRHpBmTvHl2YjsxkvOpQ15pg1oWUqp8zjp9TJaiG/nFIkSLW3Dt/8m3h6Os5Mt7lpZYzv/u+nJUS6GkqR6eSjEAUG7K6FPDHv6SLaymA8G5rvFRXzTY8sDzTAz0K3lY1m9SaucMw5fYg4QyYqZHrzRZ5DbW1lhfZkSlB3mnIDcIm9OFXkaVlYHw/9fajWv462MopAHTU3HlHcrAYBbILyJvUqCiuHotpunspp/hj3XQXcfhGw5ceNu75z7d34q49+pf25Ax42XPqRP8EhYgu2ipWImZfBli1bAAD3P/DA3jq0fQo//uoHMBIlNp73uuD9dRQOHTAL0LqpHAoleTWer7+z0IIxRvsY1heFFy0chKccMsfdES4Qd3gJhsIAcpFiZCqwtsLdpXbuQqrH7q72XEXmhOeQsiVmnqq9cUB1RXNK7LUbtIUmtCk222DWPN4cWrNzbCiHYM+DFx946xwZjvuqbkCRS20E2m7hzNcAxzwHcZpBbjobh5z2zD3/HgMGPArw5uedib/7peebv6nYWZd5Y99VeSogepx6HlP6AGbsN50N2raCdwQUsObQai+ibp+VY0sOCXcOyKQdJ3zUUWrIJr/IaMD2FH5LrSLE1fmRmsZvPfPh+PwsSTlE5BA3/k7teoj2niFyiDoDTNq2HcvpuEb1vNnbUqFVBb8w5VBAJeyrxmg+Lajd7jGCPV96GNAbRjnU1VYmm2oUa5wWXjw6yiGPGEhRopICsZAo8zFEpVjSOf9F4uYiqw+kJ/MLue6LaqK8eAJVzEQWWBCpIQsIRVlgRkfH2wePEAkJWVj5oI80FtglE4hq7JyPiK25ZtFjoasGDJsOVps2LhVDGZfzkDJC6W0KKpGa9imfXTcDlxTIskyds6gxQo7amwRqkSB12soKVLE1JQ75KNhozvbvUAYG1zbQ4pfei8vdeZ/vNHIo1oZ8cxgDAsh0lKf6bbZX3anyMStyyHhkJfgBg1IycjcTXFUAUXvSimplUK/vkGp1ihgwVRTfrLqBcqLMBluq9yGlD5GT/u+jFiniunluicwxjpe3vp6DyqvCaGxfKLDrw6/HL9SXon7pnYg6lF4D9ixuue1WnHP3v+CaA8/FpJA4YHyXuc9EtC5x8/1YQl1LrL3pk7gzOQyHHPuk8INaQgdo7iUFEU/+6tMyFUnXyJojlYUj4V8KihYShMNJ1GLkUFc7QFcKqfLmaSqHuDcGVWX7EGghxDoiuRYJoiq82A557hHaSDNVvEmt6op9dkRIJZ7XXVtbWR2lSBZDDpW24NR4HXDlkD2nQmSI6hx1VTsmsvz7MW1lAW+kUiSolhAfPRWrNkO86sMQe/6VBwx4VCFLImSJXfdYm4IJUo/MDXUy0JxB12yBBBlKc12KOEMqKkyqEiPqcoioqJcihSpYxtnI+MjOwSqHOIEMKRWJ3HLN11GKORE2sLcnyPcGnsoxyjCjSXMzj0xJMHbSoXukHTeerz9vXzkUl9TyndPBmvsNUa7X/CYAhu39aA80I8dmb1uJFHGV6xQ2qyItAwpa3+e3i0janzHsCPYiqHoZSlsiJHXeIBzspr+trcwOYv5rpyixIJT0usgnbjsNx5LJIXehFIrvpoVcaKFJjvxkPkwwvixcGaPJAiIrQux1mkSYILOkUFUo34IoZn2n08+RKgmm3W6iCZJ0pAzkZG6SBjgqkWDGMPq+Gkg91pif6eOfwaShHKq81J1Y5o6PAsU2JgHCpmshT7LMtlhfDmori4omEUXnllXzjhw3BDLkS4WaHLPRjE4iK61hXPAA3B7nJEA8GtTKg8IsrKcs9snHh14bUBu/3PMD8vvIGyDj8pYIa78aBNgJKkr9CTvcwqY2T9Sv3a0wuPtB5Y11z9Ydzu1f+PC78Gz5HawQ8ygGQ+tHFNd/4o8wiwkOfuk7UMeulwGN110FgwEKP7ricpxWX4NtR78EEC3bWV299ePpqd3HeAdx5VCPz96ofgOLS24wvFSUrO2oFawIJMvcGhh3JE/aNu8Q6RwKQkgx0vNXnGXGJ7BPQSX4/vo9VCU+fH4hzz1CgbCRtfJmtO0Ygs0J9H2QaWlWd5NDlafSnQpSi3oFljq2c4Vvsk0KqIK+h5iKaVZpXXf4AZZIgoluAwYMWBpoPMjHY6d1H6AwFL+tzO2SoFakminQAasuJTsEAM6eK0lHxr8zEbVtPUNqihdVVapCeA8/oVbFDytY+mMK91TqqxzihMy0x4ZAnzcfF501b1Uov1g2t5PvnPEUNfsXO/ZSF8SsXGDKoRQpGXbHWbBrxZwLm0sAqyjrsy7YnzCQQ3sRtADp8vWJAv33lvUM/1gjRzlkH0OtWUQOKeWQeyHYF9GD15LbytR7iDhFJQUEU3dYoqUZRZ5AS8qjDBnbNBmCw1EOUSvTLiXpDGwQMm1IbRbale0lNn2nvSrFhTaAdn13oiTT8vEyaKZcCdsLHHvsOilsjNJGTxwx6oZ8VHndsP5jqSoU9JqUKMNd+4n570rDo8jftuQWjtjzbHAnB1uVDZKNHuicSxkhThIgUZu4BAXQ1lbmEYPGXyJUSa5y5LCRlSEDVg63rYwmjglKUgYw5VCXwbV63/bzL5E0iCoTiRpUDrW0f5gKVLc/xtaH1O90245d5rYrr70Wz77lz83fpjVGSmz5y7Nx94Ufbn29AbuHK358Lc7d+klct+65WHX4KcZnjECLHb8deEAT93znAwCAI5/5c+0P0q2o5B9GoMKMje+1n3c/cogk+M3viRvYLxW92sr4b6SamHG+a6GemjSs5mvHAdVmicS0P8TpDGLtrbFU8pKq53UL8Q24Hjw+qgC5Drjt94VIHfW0WlPYRCFSQoU8qgA0WtqnosqVGjtxx33uU0LrB3seqpJdGLWXJodok1MWnUEblx7+83jg+GY634ABA5aG9es3oEKEbbdcpoqFPBnZm6cBprqn/RjctjJjZKwVJ6l0lUOENJt11raSre2ICC8m4QKz/xygY/xnc1LsEeNcGWW966aQQ+w1luI5lGkinCsg1XHoQn6LcEHNjXrvHPCbpe9jDmOz16uihKW5jToFFsJrKRQ9OjD2Rwzk0F4ELY66Flohk0hrKtlGDjUr0YBqzYqExFiTQ1UxbhglGgjhkio9wQ2fzft6rS8ksbbJKVw5pPx2/MSoMpDoRORHXM6jaKmipdqQOiLne60oASwhEqr++lBJZFmjtSpJRmahq2T53gY/SlX7FALKED1wGfMzPkHE7cw+YBfyxJgbHwX2uRsSsUs5ZOIiG42FDSQeOcRb0ajyMVPPh39PHhxDZXWwqqVO5q0bK8doNRkhNf4SgYW8nljMBD3lO+atDEbRVkxM6ya9jq9oaxyjNkZtQ4kmmUMEri/15W0JHCmrrJdTknVCbUrbL/gdzIocV254mXoNvXgp8gWs3XE1br1qMEN+OCClxO0X/DFSUeKwl/6hui1KHR848qwKKTsGWJRlhePu/RxunDsds2uPaH9gS3gDbdopGYWTJX0WgbbK2myNUgTI7pFDKuq920hf1AVq3QAkqryVZHaOraOtLA0odiqRmPkrTkeITcLoEpVD2vOh9n73znHo1rMQ2sY73rZVss0DYFNOjdedXGgtJgHkL7I4cigPFNhkZKOs/Va5UijjVdOqoOe2lLVK+5tPjhe/7n/iWS96Vf9jHDBgQCei5Wtw/arzcM72z2BU7nCL8rFbrAaaXRJEZJixK3HXnsrvhtQyzG90NHLWfta02nqfTULFcX4sbNwWLV5qvN246Y9m9xfWCL/basLZayyhrYzGOq6ArBkJpxKEm+MqJY8B9jvg52P8bkWFClbNNcOKAiblOdReXbvvGwpOeixgIIf2IkgV0JVKEgeqaKZ611JdjuoCC7D9swRqkZlEvK2sGb9OKFsk3J2omgsav5WGqmi8x5eQUiIZJUZpMzezuGcLX+tz065WiSOBnMkzeUyh6NF2Zd7LqJ10P3GuCJIo1USWLILfFe8F9hft9Lnb42k3ePMrrSmUeoTiIFMW22jOvWMAtAehJ7jR9M2MaRWsmsoh6gUeyTFKMf21jGqKVFzUlsb8F3zwyU3EGeI4wiRg8AzYaHqqDrf5cxESmZvFgCWUJrayS+cahw1unfcNKfE0yGuCw7aDhKo5zeuPV9ZLdJun0hjB1YkHTW7HDTMnY37VCeqY9AY3J5XUYq/5Ab1w4aWX45m7PoubD3kxlm04FoBuU2RkI23au8ih+Xuuxy3/+EqUu7Y+vAf8KMaundtxhLgbD248r/uBlEjpqUNNWxm1djPy2PfpC74skUPeuCJrpc5tU6X0hTII7R6zRJ1jDNu23RV9TkgCARHmPjQVT6XIEAttqJqOmE/gUg2plamqjDLELd5tCcpW9WibWTRX5vjKITJ8ps3OnFxw02g8TPWV8yCqIlgQAKBGrgABAABJREFUkLElmfwE0lqfh6nS68+dR1jbtpXFb7wGDBiweMye92YcKHbhyPpWVzkUZw3FOHldWmNlvS8jzyETeDOBrHWwCRn6s9dO08w1nQ+QQ1SEaPUBiptkhg+u7vHN+BVZr86PipXTugl4iI2/du2DOI6Qy9hTDtlW3DblkPJi0uO72b/Y8+HnRnusOsowA/sZxkn7POanTpsQoiUmdO6r2GPkkBBikxDia0KIq4UQVwkhft27/zeFEFIIsWZPvee+DlpgdrWVJWi2KtnIxXZyaB6zjdc2CoF4mXp+MQkaXpvH9zDF9GEqdsxETPkEMHJIX3w0qPJKrdr4ZkCsFqVFoWWVRVNd4fjcdGzIS7ZY5GZjkRkgengOabNOIkSikhK7RnqDVyi/HJ8cYovGNuUQHTsnhKTfYuQZ4hFBQAO0JWyYvJLSF7rOLyDLbAOdO8kzQ5WDOSw00vVC4H5L6mC5amr65GaIPYTJIaok9yUAHeUQe46ZlOmYqBrseZiY46rLTuVU6Jqi35/fduh/5wReWa+mJOsQyVB70c6VSI0SiwgwY0S4SLXggOmoaon6878FKSIc/pLfN7dLn2w0ZF7Ld1qVuO/9r8Hmu7+Am67+4cN4xI8u5GWNrbvYXKYXajLpVjyaBbp3/cewXjCAO092eQCa59NC2ltclsYbYjc9h1paSjkUKZGiRKxI6R7KIZLyhwpS3DCVwMdyRQ51+x12QpuqyijVBZUwyd7Vlld67dWEiCmslTpTKyZraRJqqLgxh3Fn6zP3CuoDUefB15Nxikz/zlKPHKp0pd56KbpKa1HlVpmwhI3XgAEDFo/DT38mrouPBgB3La/3I7JqztXkq2rGSm8dWRUTW5xI7LoNsLYKzt4gSs3rRUahOmVs5y1jLaSOQw75bWUsAIhI6WlqIP4aoUTFaaDE5toh4WzHSCipG3DDGnj6NIH/2xJ2KZZJO9ZGZm8UIIe8sdrutwfl0FJRAvhNKeWJAM4C8CtCiBMBRRwBeDaA2/bg++3zoAUqugypAyaRxlSyZdMfy8Kog3gFmhaPhV5QV/kEUV22buYdt/y+qPOGiZgy1/SStkQSNMekhRwx4RPdaxuSzNMFPprSylSIzLQPRLVVdvRS1phjVt5PsWnjsuoZ8qGhVBTn44g5W9+U7Kv/u+oZoKkc8lUkVOVNRmSyqQkbpgCiCafTH0L7JSQt6VocRObN1AHlkD63EdrJRudt4aqm0HHuBGdipE2f10JgHqt/Y6KnJDSW1gjbTupjK7ElzyEdc1+1bN757yuEEJljjUe97zx2VSUEXuGvogRRx0aGNhhcZUiGr5FntGc2KgM5tMfx/S98EOcWF+LmE38V2ZrN9g6vTdEYLbYQ/1d/5P/D5vE1AB5bMufPfPY/8bG/erP5u68vAhGgftXPKjp0a/cS28p8ksR6Q+zehp5vDNpABHiuzasrI7HvMKROUtRSOIbN5j5ZNkgtXuFOspEZ85fiOVRr4gzxSLdcBc5PWjIn+BpRmAyPZWGUnxX36igKpXyKUzNXxkJ2++JF4YS7NrRVuIVWP8u6bvg5ETlk2pbZ7zgXqUsOjaYXbgYMGLAHIARuO0552PnkEOAWGWiuJsKdiAjprSPLgnuLaaKB4uqRQAjhkiuJfYxVDrkKwwZiTmaEx4uoixxi7VxmPTqlYMwLytGUFrQ2lEicVmYZWZJKeAmP9jmso4W+g5Sfm/03fc4ySjES2v8tSY3nUtB7z1MOhexPHgvYY+SQlPJuKeUl+t87AFwD4BB99zsBvBVAuNz+GAUtULvaypIA4WA8h1qe55JDzWprlWjlUDlxU5o8VFP8TMJPyhtR5orpta9D3jyGHNLnIaVEph39rZRPG7QGmHMiP0b1QnAQIagqLJFDlo2mAa1PFZRk4X4cbpKOlP+N1MqhuDnoEvw+X6Mc8tqZ1IP913GJAlJYUZQ99dOmDmHTg/HW35doS/thIEae0tfaJgffIyuEQree9Tl38x6BlsI2dRup0+hxvnLABzcT578L2nCZyo5RIoQlplFHmyZA7SJhQ+rGZByHza95ZX2qcojGCEZmEeFsSTAdy02f0dBWtkcx3rUdR3z/D3BrfBiOe8nb3Dsp4paUaDQWBq7Zu6+5EMf++O9xIzbphz52Fisb7vwiXlt+3PxNRtBTyaE4TA6nhhxqtl3WPTzokha/wIIMqnfTkLqKpidmRdobgZQytWlPbV+oiyhCgcR4W3GoudcvYPD5y87ZbeRlF4zvW5zplqvm2CZrIpDCn1/VohxKuHJIZEZ1xdMm+dzYNUbXU1qHfUQt3hhUSCjLQo+59pxqkSKpC5YMxI5NF+VMuMegHBow4BHDic98LW6R67EjXWduozZhZx1ZFailQBzrQqdHDvFAGOMtRgEpXteAoxyKrU8OmTNT2IBoGwvYPOgr0M05sMekFOZinmTHPOs5NK2tbLpaaRomInMK6DJOkUmlzPfbuwiVSBBVlhyayNRJB+b7Evqc+XtEycgUUEIqYd8fznRgPMZCQh4WzyEhxGYAZwC4SAjxYgB3Sikvn/KcNwghfiiE+OGWLVsejsN61MEYMnaRQwGpN/3425VDJfJYqYM48UStWXVKyqFxoxeeI7SRnYaoalbRKpHaixm2ypeM1ABFF11ZloiFhIgzpvgY6/83fVmIbZ+V3a1MFVMOqbYfrRxaRFsZtYylFIdL5FDGlEOBpC3+3fmbf1rMWrKKtWn5yqHYrWZmurWIBvk5UKtXoK2sa1BrMdMMgeSzs1qemY7CBne9lENGNdX0W2qTzvLbaTIq4BKP5rFStQ/GTNrbhRSWhDWKsiJncl5tRE4eJh1m8F3nXwXaRWiC8iv+vP/a3ihVBSSyctnQZsk8nNqUWFogEc7C+2xM2tGgHNqj+PFHfh8H435sf+afN2PG40wZJ1aV+pvIocDm/bZv/RtqCDxw3tsBPLYWK6LKkaJErVPHaF6YptCh6HW/rZSI9kSbPrttZdM/V5q7feLdtgntJjnUQoJwkAKXDDqpfThkYOwcIxInPRQA6rJEIuoGKcPXBsloxsxhS/nt5ROr9pJxpsgoD4bE60gSm5bgWEVJs+KeZGb+AtBZTELcompqAW9Vd243aoOxXj8wckj7EVUBBVyhlUOLafkeMGDAnsHGg1bg8+d8FPIZ/5+9MbHXskE1cbokbIS9pxzKJ2bvRdc5jQXkVcbHbPuYFLGXitna6sXNpls8yvj6OQu0laWecmgaKW380TB9zmnDO2d/DZcd+jP2hjhTxYG60iKCFnKI7Z19MQJfR5f0fJ7mlo46ixyJ976myP4YSyubbg6ySAghlgP4OID/DtVq9ttQLWWdkFK+G8C7AeDxj3/8Y0JhZJQg08ghb8FGsrm6Cm9QY1lgIV6t/nDk8kQOLVf/L3PEdWk8iHxwWWNfiEBbjS+RJ2bWMM+lbWtJoZK6bAykGozrADlEFdJZLGBeHNh6TGWUGQY+qnNDSJjPscdCl1pxklHAd0f3I4eSttzeVe8+I4N3e5SBQIUgssy+1NJ7xBniJEElBWYxBoSVuAJW6dN1fqJqSasLINLvtUyo74QvtvmE5Ce2hWB6rtE897aqsTuBWilvuK2sRC2WMXVM9++YtzJYGWkO6MmZfneGtJy0KYcKOyEFUEeJISrNbS2pNCETxLosFKNPxJ9oj4QGwJQo3KC1QB1nNs2OCFjaSA3KoT2GHQ/cieNu/RAunHsazn7yc5sPYMq2JGHG/YE5QZZjjDHCmvVKkNvHG2dfxX/84DY89dh1OHilus5FpZM2ixwz8cx0DwaNtkRKmnvJFJmTp73mA1CVNWwu3yr/74k6SjEqd3Y+hvwCS21eXRuD1CnkUEBtWZQTFWHRMX9l6cj6OSzht8cTR0WcGg8PETN/wnyCFO2fX1vMfIzSmU9pvVGwlJ9It9RFU9rKaNytaok4mq6ojerCpOI4YH5XZIpt3iNKEaNkRS/WCoFEpauaNKTd+y0NGDBgcXjTs09z/rbelXYeISN6WgVX2mdVeOvIqpyYfQwVM2hcpXGIEzH0/IoV/kLjhHt8TTLDB1eUpv4codOCZVWyFLbppHSBBBnKzlbmLrzlTb+MuREbiykVuNJdLQG7C27UHVXNdGARxShkjFRUZk7gRfooyUzrXciP1e/WWcw+cX/CHlUOCSFSKGLoQ1LKTwA4CsARAC4XQtwC4FAAlwghDt6T77uvwkb2tW/GUtlM7rCkSvjHmsgSZaxlg2yTUZHkPVNkUF1OOpVDtUggZDX1PDhCVbSSKXfU8VEMu9tWlpu+Whs1WBpVA5n2cvWIev4yjDvVGtzck0sGTVparzYCUuq4rVVJOjIDGnkbOGCL3DSQEABYBREf1P1Nj0wyZELJLYvCrfIWSFQSAty2spCnk4+oxUyzDcTSczktfy9+Xl2giZTO3SHGWvyPHNUYTbwtbWX0uzam41M2M8YIHbxSMGkSN6ZNpb2lc6pyyCNziPhMQlJfrioBkFN0NsmTIys9Dr9hk2wgNaJRzpEhNS1ABnJoj+Haj/0hMpnjoBf8fvgBuuKX+8RcMIFPq+F2o7VnX8CuhTGe+OmfwGVf/qC5zXjIUGt0T+m73zpJIKLdKPPY590VEEEgXwR/bA0pQZaCWiRTlUOkUiQPBjIxn2ZgXGiPIg6j6mmQQ7wVYca2tC/ht+f4RLV4wdEmqrWtrCVmni/oqyhDUrueUCLOAG2ACqiCURtEnCETFYqyX2sZqVQbr8PUBjxhElCfayoLM/bzVpAts0fghB0XYvTA1ShkDBHFvY5jwIABDw+KZYcCAMa3/cDe6BXCzbo3oXUkERATq8pOM+exNG4kIeWQSI0vLT2/lfhJ+Lo/TOrQ3olMsDkEK1KZMamHGqgwhfalqRvXrZjBcocc0p9LkTfauwiOlUKdB8OIaJynMZcX7aN0xuzjQpYusRcsRN+j7LFP3J+wJ9PKBIB/BnCNlPKvAEBKeYWUcp2UcrOUcjOAOwCcKaW8Z0+9774MWqD6Em8O1T7kLmTM5qCFVFL97SPkMnYWvUaKP6OVQ8UkmIZGqEQyNTHFRxQgh/z2NPI8yWgzXJLnid74JiPWDkAGrc3BkTYGiai728qiDKneQHOzscX4J6gNddZsrcpm3I1AwEjaHm8zjQpgyiFngvAGZj1oyqqwLU1EDulz9wd9Ujm1tR8Cql2j6NEGRqAI4AKJ0+cbs0qE3wYZQpdqqi0WMwqQZ23RxkmtoukjMqSd0laWoWCTOv0uJmZTaVLqaLPZ4jkU19YYNYQQmWMrNeHvnEuZ89zdfNah1jOOADmk4qQzq5Aqqa99IIf2JLbceRNOuevj+MGBz8WxJ50RfAx5GZiKpP6eQqbgUaUWQrT46yJ9b738G7j9j07F1nv3vQyIYn4HjojuxYodN5nbTJtQ4f5Wp7WVGf8wr62MFHmGaGCeXH0UWUbF6c0dpCicpmiahjoedSsCYQsdVaQ89WTZb1HP0zvNbXmYlHG9F1JbTV6K55BpK0vN++SeAtNvv/Aho8wGeTBwcp8TazR20qaM5sq6Sy2r3zvv6enFk9Kc25lvom+ync8chFVyOxZu+i4At+i16Wf+DmMxwpnz3260TAwYMOCRxzFnvQD3yFWYXPQv5rbIa2lqtJUZ5VBu5i2aF2iNTGtvrvakOY2H0NTe831wUp/bPXDQvBD0GGWG28brbIoCFbDKpzYT7EWDeXq2CRe4lUJb5wOPsFcH6IoKkg4FrBIC8KJIO5G0P2NPKofOAfAaAM8QQlym/3v+Hnz9/Q60QG1r46i0Bw88k2MzELT8WBPtR1OKxNlk0EY3Gh0AQP3YY88okWOan0kIIuC5Ukep01aWaH8XM9DpY7R9tRmiVJMHmtCiDSxn2Dlb3aVWqeOR2ZDzAccol3p5TKgkF/rs56Bbq0Yjd0HtVzydQdsdQHmlE3AXiA2ChKSmBZeoaoIElrDhoM+na1AjU9O+oMnAf6/UUQ5N3xj5qinXbyk8KSUJJwZtW5nfpgWojVMVpW6LWAtkpa8zo+AiX40JS27QbWW0yWghm9T7tp9/HWXNTV+L8agIbFJKz9OkLe7evnbh/h/aXynOGoblhhwKXPPjvMDnPvKPyIvFKQkfy7jp478PgRqbzv+D1scITyHZqRzSZuckc24bt+piAnHBr2JTeSvuveUac3tVS1T1o79j2xgXs8/AKIf02Ff1JEKsCtCSEBX568DOwc7n3Wc+MP4M4baypaa3EOooMeqkNtBcRv5E9HtIprQhKQNr97VNS6nf2qrHxIlMASHsxqOjoNUGmzg6YoETLjk0rV1QRklYOYQSNRm5RlkjTc4EE8AtSoRgqugtrcM+YlkGySb7OvNK2cvWAke+6H/hfrEap173LvUabCO2duNm3P/sv0EtRe+W7wEDBjx8OHjVcvxg5XOweduFqLbfBaCZplUZI2paz1NnwsQUE4kwNoEiaJJDtBbmpv3VlAQxJ6Z+SnE1SDgzj1ebkjjbfJwH2nv4HkZLBVmeVDu3NtSW5jEiMWvotnRgGud9NRegPp+uvVHq+fyax+6nSu027Mm0sm9LKYWU8lQp5en6v895j9kspbx/T73nvoyaLVDbDGCNYsBvs6FFRkucNqlcck8+bgaYmRUAAFlMWi9AgMih/qkdgFJO+GQDl3kDzN8lilDI2GxcK6aKMO1A1FZG7T3c54abIHf6vKSIUQNV6UgVidDoqsCb90IJRBkQxShlhDlBm5MZZ0HtVzwFazPze3iN5NFLyQKaiQPW3DJvEAQ02PsKIHt+XeRQYWLl+6BseS9O1PVSDnmqKZcYa/EcYpsemkyrlvaLWP+urQqofaNlfCn0Z269mopGNZ6IqzaD60TmqKOOJJyAZwa9h1+pMUlLbJNSepGoMk47N5FGIaCvv7qqkemNSmxS2aYrh677/pfx/Kvfiusv+Wrrew2wuPXHl+JxD3wal607H4cccVzr48x3TMQ4KYcC3wEtRpMp1/WVH307DquUYogr5r7zf38G3/q7Ny3hbB5eXHjp5XjvB/7Z/G3Mo9ncZb0XyINuikEnPY+UfmyM50o8cy0ysmNahbCmog0CbWWlLXDsDmRL+xRHokmJUqhkM0sOdRNTZSCF1EYte8pXT52a7sZCuWKx7WY+88bRylNG+pDxKGgWrdSQdkNAn50fKEDzV2eipjm2fuSQ8plrHm86p9ZZ93zvIwDctcAhGzZi+/PehQhqDei3Rx775PNx7Sn/A3etflKvYxgwYMDDiwPO/jnEqHHrV98DoGmhQeteGrvMGpUrh1KPHNLrXyf5l6mLaKwz1gN92spG4fHf+O91EtnW6yzr0VZW7mZbmY/55YcDAKoHbkCMZlI34IoWQp0qALO/IMKOjb1xZr3zQvNY6nXrmA6TDvuX/REPS1rZgOko2KKyTTnUtmAz5FBLzDxFXZdekpMZYGZ1W1lVaMPrdnJo2gLVRxTwXKm95JWERXEXTN1UsiqfnyQmvfYewK0a16J9MT6OlVIKC1t1tVUP3qPpyhrAGkDbY9bEhhRAFDvJYo3FNRu0fWNJIkjM8Thm297AnNgFq5Hea4KgZK1eHJmp8naTQ2XHZ+ej9b14W1nL74mD1DV+fDzQLlF1vnvWlx1sK9MTC28Ra4NJGIpd7ycZaisjqXAe/kzjDrIVIKmwS7jS7y/zJ/WAv5FN32HS40CbBYH8zOgaM+NOnDEFysT5f+ial/kOAEA92dX6XgMstl3wNowxwtGveHvn48ymlTwJavf74oh1lcxWvZrf07Y7rsFx1/0DbsUGAK5ibuOua7Bmh1USjYsK7/7mjSh1AtjeQn3RP+Gnbvxt8zf93vlnQJ8LzYnVlMWyeZ7xlbOvRUq8XMbImHp3XvZTxXDSwF9ccnXM7oASMLuQSGUsT/O0GUemVHGrwJjpe2Lw4wCYcapR+y5+oUwEnVIOhdU5paf08SGjNBgzzxf0POXRvqc7d3e1/pprctL9OyAkMtxKfOJTXopLZ8/CE278W3WDtzY47knPxfXHvREAsPqg9Y3nn/Dy38Xxv/afvY5hwIABDy/OfsIT8EOcgOVXf1hFrVeuEb0p8urxwxRxCqtAN+MaS1YEXEsBQw4x5ZDxvmyZV/i43Tb+J0Y51ByraC9RFBOWkrgYcmjPKIeWb1SFtAdvu8bYj/jg+9KuuHsAdsz1yB5DfAXmsVSWbpueaUEblEMDHgEUrFWkzeOj9LxlDGjz3aKGSDXhYyJRNWiAoYoWyokT4e2jrb+/C3FdmAGPUMVuFTQlFQ5cc0yriBkZmTUtWq26gl+0/drKHsw2qn9su9UZcMzgPWWhW1U1RsJWJguvtUqwgbmpHOLEUbhVzLa5cWWMSxRExptk4sTzAnaA9o2l0yTRyqz2QU3FRS5COUTv5bH1qaMcmj5RNFVTTDnUsjFwyCGKVG5Rt9H3nLC+7zaYDQpVfJgyg1KMaIIwCV9luKrsRxb7kHHWJHOqsJGsTRNjbWVEDKZ2ARHaLBGEIRvU//Ox9fWKPQWKMfkNkEMm6XA/TshaCi67fRve9dXrnduuu+izOG3+Qlx+xOuxet0hnc/3U1AMOVQ3v1PyNsk61BvXf/HdiGWFO5/4uwDctqdYFo6H3IXX34cffuGD+NEd26ad5p5FvguQtr0tLucxhwlkTTH1pByyxxoZJQi1GfcjhxKjAmwqh+bFrJqLpISoCiwI8tPpng8KTgxXYXJomlH2NPCNQRuUX2BmU216Rp/zqHdCKynDQg8AFl+8BP8F/h6Rp1psPib8vcpkZAg9DkrvBHRMPNwIaFL3Wi+KrrYy9ditO/oR4UmLN0Y6msXxv34BvjKrUgrrdK7xmOP/2/+B/NWLseqQY3q914ABA/YORkmM2w9/OdYVd2LHdd9ALHMnmdaSQ65ySJZ5sw3aKIfU//mYHZvWM1sgMKrQVlUQL0KHH0O3h5Q2NrhhrIy2ZYQknV7kpcJytoeUQ4874Shslcux7farGz5tBE4OxS22GHSbr+YC1GcVJQlKGTXnsbpSKZpxYJ+5hFbqfRkDObSXwKtSvsSbULRJrIVAiTioHKpqG3PuVwhpo5DNanKoyo3KKAS5JOVQ2aiicXUDHZ9kRAupm+zCeuT06wI2apirSpKeapWtI00Obb3FJDUBlmGfJpH3DaD91irHFNVf1JLCRauMOOiYpadYAdw2K/4eZTEx0nujYiHPIb/VK9LpLFOUQ13+Cz5o0PVb0dIkUgboQLMNMoCm3xInfsK/Rz7p0b8rEfbFSnR0cJ/WQZuio9vKuK+G16ph2lRalEOpbBrIcwQVAeUEuYwRxe7vwxAHTKlQer3riLsVBjS2EElkVBlx2kizM9WpwKbUmlY/tqonXahriUv/9XfwnK+/yN4oJeKv/B7uxhqc/oq3TX0Nk7pHsnMyWgyM7UqVmXQqAqvJTixghA2bVQWOkyKJLJ1rZfnd38G7s3ciue+Kqce5p1DvfADjPz0O9337feY2UauYekqHMq1APOHSS5+iMXsaCRNKbKRraIxZFWteFhB1gQJpL+KD++T4qlPT7rYHyKHpyiGVZFoLPU9rMs2fO3yUImuMmbady2t9pjmPbSgKJEFl2zTwFBzbTumS7KbC3kb66fGTiESAeUhFgXYMIhFJiUzKoQ5y6JA1KwEA//SRT+Jfv3M96ik+XV1q0dmZEZ74ax/E+zf/GQ4+52eaDxACYs3Rna8/YMCARweOe8arMS9HuOvb/9pYO9NY2VAOVTnqnIrbenw1cfWUVsbIi8wSSClKSClNonJbZDyN+YWMEcfhdMPYEOQd5vmFWvP2NcKvRFP5tDuYyxJsyTYBD96krTxCyiFbOIlaE810WplpK2uSPaG9kbGL4G1o9JkPhtQDHglwNUCb6XPZ1lYGIlWai8eiKHTMuYq45Qtsqd8zm9VtVuVEE0ktyqE4LOHuQqiKxltpirJU5owsbYo2rtavwRqGkVdMKNEpc9Qq7Qvihww5dLMx6wYYqTPlorcpK2GlDic2/MortZzlIgG8hABplEOB6oGXOGA9hyaN6iodj0/yCCGQIzF+MyEo5VB/cojew59gBIsJ7iJHCGQeSotq/r0madgIL3Eeo8nDFuUQVR1i5h/UBj8hx/HVML+7Gfd9W8impEOJB0C1c3nHK6q8ofoCwsloDWVCnCET7mbJeY2a2mZInWeJMP8ao41taDyits5BOWTx1e/9AK8a/weOju5CpVuzxgu7cFRxPW7a9DIsW7Z86msI0z6rv1f9PQVN1usClcgQx7FWBDa/C0rvoEWkdMihwrlWZK6UEXKys9/5/vhePLhr9xZIt37nw5ipduCmG69jx6xeM6eYen3MIuA5VBkis9ugk5AErn9Sk4wjvUjMJ4iqHJVI1Bg2Ja2v5ClWjcUlLeJ3c7EcpyqpVLYTE9QSXseZUQ7lsjnP+KijtJFCatN0vHGdxiDWilCIpLWlvQvWrHvESFHPc2ial1QycohEgPkWsRaC1GvHiFK73gC61wvrDj0GEgJ/Hf0lXvalJ+M97/wd3HBf+zXSphwirJjN8LrX/RKO2rSx9TEDBgx49OPEwzfgB9kTsf6OLyGtJ25KsheuYtdXuZ2vaH/AbBEAQER6TgfbT0SZSmIuS5sgthSzadBbku9aoK3MKJgnEPViyKEUuYyd5OLdhVx9JA4u70DWohxSPptqfI9bkiJpn0LdGlxgQXuNQjSLHCErF/puhrSyAY8IcqetLEzAlC0+AIAmBAI/Vr5QKkXivLYZYEYUcz9RRE3LQklGGVJRLirhJg4wuaoKqttaPH+XSiTGhLVmG1/rFUNtZer53JeFp391bchFNof7sQp48BZk0ra00WAupiiH/AGDenZpQ+9GrHukjpco5sDrh02YKir1fHcitpj2WwBIfROMdJxS5Z22sPXRRg7RewFotkGGQFVec+7cS6qtrYwN8CPbVtZQt5FHVJQ51Zs2mPjpmAypSUZqfTzILyqaQg51KfEAmE0fh6gLY/jKYas5zFS+aCqHAKBs+Q0TOWw9W6yZuY2ldtV5oXaWWt8nB+UQAKWATL76+xgJ/bkWLsERzRzQ63Xo92m8UUwKR8hk3S6E2kiMqM6RI7Vm4+x3kaJwiL96Ea2CN27ZiQ994B/xmQt/1Ou82lD/6GPqH04SmVYMURKZUQ7ZYzXkUE7KId2KOaViaZNGmq2ZeaRI6Dwf6yS4FIVIEE31HGJ+gb5ySB/X7kb7ijhDLCTKMrw2MArcKEMdZUhlAVHlwXGk8VzRHDNpnm2kvwWVQ6lpU10MeOJoqGUWcNcAIdAcnE8WzG0TUmEnpMS1qiuuVgKYcqjLF++wJ0H8xjWQr/gXbFv7eLxhx7vw4b95G973nZuDD+dq5AEDBuzfKE98CQ6U23FUca2zdpax60tp11c5mxc0WeFZSgCW2DFjMKmB8okpjmctCWLGT6hj/Kc9RYhMiViqr5pH+o1ndZQEC5u7g9WHnYCN4kEcgPngXkJGtm04loVpzeMwpJ2eE3hoELXmFUgbfr9Fbm0XnNuRLGnO25cxkEN7CTxaN5bhDZcfw+rch7ARL/khCG1UyV/bppnMqguDKsdtMnTdspKX/Q1L46ByyKolTDsdI1qE1zIQpSNDBBgj0YCfAlfsdLWVpbHAnWI96gdvdg24owhFS3seR+kpSyxB4g3maEr6bYRuYAD1ySHWTuVvLgxRkE+cz0kdT1g5BBA73qUcarYBdsG8V2CCyel1epBDpqWO2soyTg6FN3z8uzfKiJAhM5kwJ9ZzqIscqrwkCfoOZZVbxZr+Pixp2dJW1lLtIMh4ZKpB9gDyoEmg7QO3Gyj/WEFGgl57hnmNunD+bwjnJLOJDfTZdBhSk4Jqv62eSAl866+A+6+f/lgA3/nqBXha+R1sjVYBsKSQIRp7plX5hskmhSNA0HHivWxZrIgqRyXSYMtsgtIh/ui+uphODn3noovwz9lfYvMdn+p1XiFMtt6JI3Zdqo+TET96/C2Mn5DbCgmAGQznzrFPU+hkadOfiZQ/ebxM/z1GJFUSXIF0qtmy0wrlPbYteXCxkFOu66KqTXu2aaOqi14VX572Qqg8EsXAFHHs+KSKTrvTVsYDJ9zzq6a1lSXWe88cjyk4UcEhxUgUqKvaIaQAthmbRuas2ABx0vnY8MZPYeGo5+F34w9g8vnfxf/9zA8baq5kypg/YMCA/QdnPuMV2ClnkaIyhVkA1rNSj23U/q3WkaQonXEey/0pidihfYAhwosJ27uFx8XYKIc69kEj2r8054iEtZWJquhN+NQitev+PYQ1h58EAJgRRXgvwUIJEhlW6pv9SUxr+mbHSahw7vu5mtun7KP2Rwzk0F4CVwO0GU+WHRLrUiTBlDPa/IkkMxG3BIriS9IRCpEgLhQ5FLUtbHQFLl9Emk0auliZWsJv4eGeMdy0LfE2rnQRO+RLFCsvH32srccUR7gd64CttygzS/bYEknvzYDwfAtIPcM3gpE3eEdeKxqHXcxqUzeuivJfx5BlE9t/TMcTNRfw9vzSoH8JIWHpbX1gEtZaVEqA58HUBhbFDrQbjXPwzyTVFZSgcSsN+FHGzHvbv2M/0QZCaGWd2nCVMkKUUG94Ozkk6wqpqCA628q08oNtyKM6PBlHnh+N+rdrxGvUbC3JOnRt2Shw21bmpzDQZxRKP7OJZvsnOZRf8Z/Af/0Bbvvmv059bFmWWP/d38cWsQY3Hal8RGhR4Y9v02CUQ/S91mS0GPDRYsR7SBIN6HhdJEwxw5RDsnSIPxpbu8zaCZMrP62Oq1yY8sh23PSNf0UEiVqKziQyIhEc5RApQfRYbFSw05RDI2qva15DRTxn3jeqS1QiaZ1XOfjc3VAOGfn/7pEFpKwtWrzN8qo2c5mMR0hkiajnop4Xa8xxEznZUpTgoQVloOLaB5zQM+2+nhLRT4f0QXMLJ8384o3dVOXmt514yqE+iZrqiRlmX/VBlKe+Cm9MPoPX/uDF+Mx7/sBp402nJFQOGDBg/8GqlStw1YpzAHjeZeQ5RIVEPVaJKrdhQHqNzxPJCNRdYGwVeKLjlLABE1PfMf5bn87m3GTtF3K1huihQAXU+e9p5ZA4yHqwhdZRXBka6lQB7DmKpLlHo3WvKnL4yiG99vD2kzw46bGCgRzaSyAfkVwmSJaiHBJJcANRMGVOHXmvzXx7CqSIy3l1e6dyqEKxCHIolNYk45ExVvOjuHlyCl88pt7mRla52rBzPwUhlJcPun1usiTCbXIdxI67VBsIe6zybpqSVsYINzpmwDLwPFms4TlE8vmOPl86HpMu5r2mel3bflJ5pqeSTKIDg2QpEkQd5FcyxUDZB1VKgkSUMeju8Xqxy+ynmZXLtrWKGK8VwERRhpRDZrObZKYdrMtXypo8s4laJBDVBKKcONX4JA1vagC2aewgx0yEM6t8q8m4+Xkmnh+Nel8vpYler0X9YZVDWnlBk18yskQrfTbUVhYihyq6DvdDz6GqwK7P/x4A4O6tO6Y+/JJP/z2Oq2/CPU/8LdQjZV5L45pJR/KTCVtgjPc91VYUUG/FjHgvW8YtSu8wpAn73aconO+WPOimtQrecN8OnDb/3cbrLRajaz6Ja7EZ27DceR0/icwUCdjcRZ9LbYhM9ZhpbWU0roiKX0P6fRJFDlXFRPs5kU/ftPmAX7vu5+ErDZcM/bvI8/ng3UWpyCGRZLr4UprWuGmovfRQgHk4+aRW0hzvq8Ciug94wpz93bvKIckKRCFY7z1GDk28dRIjkPyKO20kujyHGohTJC/9e8hf/Dq2rTwBL7zznbjkH38R0ARR6hWcBgwYsH9j9vSXA3DtLIQpdJJnkC5eMwU6FQ1o/yNDbWVkYWACSSZAlaOSAmlLglhiksjax/8kSVFJEW4rMwFAY0Q95xGAyKE9TIyvPtL+OzSuanKoqmqkLcVtQxgl1Oqn5wQZQ+hgIO53S+hUDi1BLbsvYyCH9hJoAbxLzAYNdQFWQQ1UISuRQgSex/1oqihzX5vFcpciQVqphWfI8BpQF0i2yLayYBUtTpGIGnlR2Cofi3Ikkqt2lEOuV4SoiqBk0gxMXeRQHOGWah0EpDkeQiGmM8J+apxJ7BKUMsbbwdqUQwFyiIyxiRyKIzNB+NGQMVMY2M/J+u4ACLaHlSINbjQJi/VLoMeG2HqjHOqzUPZa6niMu0+MceRIdLKXHrriFKl3fvnEthmkSWxVQC0ItVTk2lfD9wMyE3/Ap8X4YHScv1X62M1NVOXheNGAv5FJFMvcCpRjkstACgGjzmNjioqljiFpgiQfl9B4RMqrfVw5dN8DW3H/dtdc9qEL34dVC7epP6aNBQsP4cjL/xI/To7Dyc/5+YaSwagMeypHYmMcrb9XZrTogy+EChFWBFKCiq8Kq6samaiM9xvACb/uc/7qD6/G44U2kF6itHrHPTfgyMnVuH3jc/WijJlNm7RKMj0nU277XsZDhn5/+pinReiG2kpLfT1VqW0ri2WOKkrVeDllEVix69GXmk+T//dFbK7rFuVQWRlSgoovbcb2PkKEut9+RSAfNt4+UYrpBFrwfUn9m41se24RJtfalFem2MLbykzxRv0WbBLapKEwqzyvu8VAHHIGjvjvX8I3174Kj7v3Y7jxH14JWeYDOTRgwGMMJ557Ph7CcmC0wtxG+wOzjhQsLZiI8YZyyCXdATtWmT1SPlE+QEggWsIGTKtUh+KHQmPqqPkYrhxSSvaee4K1x2PrsiOnP24xGC1HtXwDAODgVQHvxjjVoQSFEzDEQfuTyLSVNe09qkB7tO/nam7vISLY3zCQQ3sJFIU9xkxrWxktQpOAEqFuqd7xH7f0k5xYa1aJFFml2spalR6aoS3Kqt9JgSLE3dezG6iQmbJtK6MKdjqasZsbWtTXYbPNwrQydbeV3VKtYcdjH1thehXUSN0Tt/poBnPHc8j9rqwRZqCtjGTwNKno6PlSRsgyd8AzyqHCmtv5C9421/6u85vmkePDEFEBtt4qh/q0lVGVl9LKwkbjzfdIHJKwDkQ+GxVNkiKJhG4dbN/w+WQbQJNBDnitGkbRFlDQmA1LFzlkqkGucqIMSH152gVBsuo7MJ0c8tvKbBoQTZaWHKVz8g2z1RPJtHrfJYeKssKWdz0bN777NfbGfB7y6+/AD+vjsEPOTiWKr/3Y27EGW7HraW+HiGIjW6ZxzbYo9lQOme/YNQMP+T5xb5MS1sifI5Ilyig1ZCt9X4X3+upgXRVOG3Zc8WlEQhHrS62e3fy1DwIANp77Mw1DY5qj6DM06hH2GdBxk3cDVVL9dC0fJgWGvR9dAzIjcig33mt9VDEVI2waRFLlbgKWjMRuDEIoilJ9J3EGGWfqmq2K4Dzjwzye32bGlXAQAm8jrkQaTNOb+r40b6Uz5vPx23PbSCpzPMYbo5ngSL8Frs6UntKSiht92z59iCjCOW/6O3xizRtw1H1fwg0ffDMiIfu3qQ0YMGCfRzKaRfwLX8Qpr34Hv1H9j41dKtnRBpsQiUPjDy/M0vo5NY9hpv1Vd4KY3zbbBkUOBdaaTMEctSSAhXDmz/4ZTvifX+r12MVAHHQUAOCglc3EVzu+j5Ei3PlgxvmUWv2a9h6hvZHpIvDmwaUWRPZlDOTQXgItgibRrFPNdR5j2oeaC01Oqji359anSKWYsI1llaOUEUScoBQpsnpBP7ZFORRnhqHtA6lTohqbY+OfMHHaWgCldjHkUKitTC/qo5aqKLnqi47FWZZEuKVe75wXISQt9OF70pBCh4gSrnTxVS9+SgoHDf58oaq48ARp7FYIUsbs115csjRS+Za2si5yqMXQrQ1dyiE6x5DSzYf5zVFbWZqg0v5RXa0iBVKHJBRxphL3mAdEwUyBhanetH8GRqmQNn8Xos6dKkpCJoOBa8L4zXSY5FpyyPUcCm3q4oByyChMMve340dCm+M15BCl9+jfjv6dcu8a4+slJGTV4uO0D5vyfe9zH8BJ9XVYXmwxt9195dexsnwANx33i60+PoTxA7fimBvfj2+Onoozz3k2AL5Zpbay7rQlH8YUnFRbei4IFQxSpvJrI33jWhlSRybuXpND+prgRCqlNLaZqwOqpezUnd/FzpkNeBArl9x3v+LGC3BVdBxOOOHkRsWOFEK04TfJLmx+85VDoqf5MkBJI031ncxUVbIqJyYSt5qitKTHExrfQc8UtWmIAuMEh/FGSDIIrcyNqnGvdgAZpY3fl5l7R2HlKx/vq2iJyiHT1j7DvNvc87PpkG3kEJFmzEOqtGsegG2q8oWGV4f01LpLQRwJvOCN78Dnlr0Ex9z64d1+vQEDBux7WHboycgOPNj8vemJL8K31r0K6zdZz5wCqVLvVu68QIVIydrPaeymMImIkSCi7k4Qo3F72vhfiiS43s9WbcREJsjuucysIfYmojX6MwyMq9xns83vzSiHqPBOAgW4ZFwjmMEEIrjvu9RW6n0ZAzm0l0CLokk011A+2MfQpjWgHIrSYOtBydpGfOWQas1SC+oySjGjyaE2pQdtPPOW6qUPE6/rETW89cJEcVNFkvkf8IWhabnSi/o2X5Y+rUyHHDiLLViJMmqSMcq7aUobgefxY5VD6m9ebfW/K9okVgEpZ2SUQ3yCSJAjQRy55BC9riy5VN6VpoYIm7qHcmgxkvi6ixzS59hHNUHfgfkMSPIqBbIONUAJLzqTpLcBw1mzSWiJ/fYfz787ItUiLx7atLEENsmGlOrRVlZSZCbQOhkb8o+pjIyxoVlANCvpzmvAbytzxxQul+Ukae6lJBmlxz6qHMqLEgdf+k4A1vQZALZs3Q4AOPWE46Ya7d700f8NyBrLnvd2I++2m1VNbJg0uH7kgFH40PdKbYCBgkEqrV9aJZKWRDNmWs3SOIhMyESFmjzkaNzrIIduu+cBnBtdgfGRz0HRo+UqhC03XY7N5U3Ysvkn1XXuvQ6N/zamnpRDWi1ERQcwY+mq6BXbDujqLSM1JbUhaeVQVUyUPD1KVdFlyjnS3F1J0RhbTYV4SoraNFiCI3xd8+AJqlhn9UK/RX1Abdmm2BFGLcvnzLS1Fb4LZn4fZQ1PQfMY05YXVl4J014dUg7RfGqLUZYcormbihK7t/kZJTHO+9V/wGXJqdAHvFuvN2DAgH0bGzcdhaf88t8j4b5AcYot2x5CVUxQyBhxrPxubHHU3YsA1iePB5LwvVsItB6cNv7vwhwKndLJsWHdWlycPg4b7/w8UjnZ6+QQyJQ6ME5Tx8QDO3YGO1X482ida4qh7DNUe6OWYIbEJ4eWppbdlzGQQ3sJtJnN47mGZwrBtBpkzR9/3bJAq5nKpY5HjipJVIVhn2uRYhbdyqFoirTdR1GqtKZmW5neEE/GLIHNEi1mE8BbZoRALu2iPqrDyqE+JsgvOn0jjlx7AG7VrWWcjOlTKTYbPuPx47ZxcX8Jv+JpTIUDbUMhcqiAilP2e4vJg6EumbmdnkSsmifgTRWljrGrc15liUTUi/Nf8BLWnPcKpLe1wRj2eqqpHAlE1D4s+W1ldDyh9BraoBdTYijrwIZEGdPmiGThTJTGGylAkhhSqsU0ELCeGVzpE8syKOM15B9/L+MbRr3rtt0wBNp4k1KA+3oBWiFlVEH2NfyUJGon6vocq7LEZZ/5B9RV/zbURwrf++z7cIy8FQvInGqR/e5HnX3l9998OY67+wJ868AX43Gnn2ZupzGBKk5lgGjsArXXmI0zqK2sRTkU27EnRPom7PdasOQt3nZILWakculqFVy+5RLMihwLRzxzyX33t33zg6ikwFFPVe18aqHFk8h8s2kiyijhUo1T+kQAQPvr9FvA+qQfvU80UpL1Oh+b1EZ1bN3ER1Wo15rHTFO9q4MTusawPjBFhRblEI9vp7lvVM/3ageQWm3pXKdmrRFWvvLqbB2lrSEanSgtceankfqPaWstjg0ZzjykTEFs5D1mYtYPVMAhI+perc9TsHx2Bpt+6SO4bO7JOOiE83b79QYMGLB/Qa49AefV38cD996BnO1faFwVjueQJjQSIjZsy/m0sIHUkPjdBZPbn/WPWPOC323cLoTArmPOx+r6QWwubujdVvaw4aB25dDmI9R911z8bWSiMt0HHDTO017Ett2xtrJA902oUAyQd+viCyL7MgZyaC+BNmlFsqxVOSRbqnkAIKMk3FbGftwyTh1zWcEIllKkmJNT2sqYV1Af5C2eK2aTXkwaaUsyYobCprKoSA+n5aVFOVQZcqjd4yGNI/zuT56Im+t1+nhctr5rwwswzyE65tht4+ILWZ/I81NSOGgD4KRk6bay5mNtW5mf1CMNYRP+fNqqvIWXwtYHhhTqkHL22RibXmA2sBcifO4cKm7arcwAblpXmbuV5Apxp+JBBuKTqW0n8mI94zhqNbj2SakQosDmhqs9OBJPVcL/bcgh6qVuayvzyIba2wQWLJ2Je9j4igV7HbZ/jtd+/ws4/Yf/C9dd/DVz230PjXHfjrD64ZHCOC9wyOV/jTviTbh27vHO9UCfR5qOdEJd+Pzu+cRvYx4zOP4Vf+Dcbj2fdIuWpzKcBlI0yHICWddmLvDnhEoTuVY5FG4r5tGuBVKjmOPkKSncRE1m/x3XxkSnty1bh1JkncmH4ReQWH/bZ3FVdio2HX4EgGb/fuK1PBplpGweO93X13wZUK3HUaCtLJ6ltrIciZan1y3t2s4pad+jeTHbUO8u5ri6YEnH8HfDvftonh71VA4Zz4aCf67qPDKvuBF7aln691KUQ6hVW3ucJK3G/oYkbbl+rHEqT59z24JJXVQXKgK6lgLQCTXYA21lHAet3YDT3/p5HHPGU/fI6w0YMGD/waoX/wlWink8t/q6u46k8Y2tvesoVQXxhip5MtUkOtLr0mpKCuPZ5zwdxxx9bPC+k5/xU5iXI2QIx8M/olh3IqSIgWXrGnetOuV52CmWYcW1H1E3BDoNaC9E8yjNN7w1LzSP2bYydx7ssy7Y3zCQQ3sJtMmrkjkkokZZNH94clpbGZoVeqMMSEaQUeYqh1jyUh2lGAndwtBCDtDtbdVLHyaJzLtYTWx9MbZVW0MOZTY5hfpy06ZZblSXLeQQtTJ1D2ZPP24d6pWH6+Ox5zs7O4vxeIzLb9/W+lyuLgCsQocG0MzxHJp1nmtInY74SL+tLHSeKXndVHnDl8GQQy2Rjm2DWmFitxdBDpFKKagc0v29PWKcjWqK+/x4fkIhlEgd9t9sdCb2N+qbApciBTrUAEaxxjZGVZQYcsjfcBVIjYLHObZ8OjkUuqaSuggmzYUMqW1KE1XJ9W+x5Ro1ShRSZ3hEGO+l5uoK3+DatJ51EAnFgkoBK8a7zG2fe98f43P/8metz3kk8N3PfgBHydswf9ZvoIpdtQcnq8uAzBgAbrvm+zh5x7dxyaafxaGHbnLu44o+/n/f2LcNJvK8ylGWhTF+9tOkDEHCWkhDbcWJLMw4wE2reRuOSV/s0SoojfJipK6JRSpGbr7yuzi0vgs7jznf3FZ7asbEa3mk46HPgBO/MPOBS9p2wVc8maILkUPFBAlK1HHWi/ig54/FbEN16qcbLhXTrmurlpkxY+CcXOi3qNeEfD5mpC2NK55ixwQsxP6iegkLZd0aIYQwc6bfVoa6QCkjpC3zOV1XFSMMK3MNzzjHXOa5UnLBbriIXN0TyqEBAwYM6ILYcBpu3PQyZKJyFO+0RhasOFpH7vrX+JWWE0Q9wgYKpMF1ZF9sWLsGl86dbY5lr2LV4RC/fhlw9E8070tncNvBz8LZ+YXq75AhNaWUmbayZttdLZoK2Lp0labm9oEcGvBIgdQKtY7TDalzai+G1Xk+8+rhIMl7lGZAorwFpFQbjohJ8TnDHLX095uq+JQ0G0LBpO7B18knjbYWGadm4+pL8k1iFJQvSx0YHMtFyMTPOO0MAMD6VTZ+ct2BB2BNvBP/77MXm8/JR+OYPQPoNE1bzZS7lEP5mhPxueqJGK891dxWiTRoPEebSFnmzPRUf29eLLxz7AHzUUJB0euL8UuY8l7qrumvR78JTqQUInVbxgKguGmC8fBxlENuJXmaKbf0WrUAq7iKg+RQWG1WFeGqA4dtK2PKIRSoAp9n5if2AUA5QSkjJEmiz5EWEIFNu5TIPCWKUWWwtjL6bHhPdeFtSkl51dVWRNeJSZQCcNaOL+EJ27/U+pyHG+O8xLof/T3uiTfgmGe8Rl0PjHix8dozrTHmW+++CQBw8JnPb9wXcZUCmmPFNESJHjuq3IyflRTIvLGdVJmGaG9RBCayMMRtydrKQso68112tVzSxjubmZp8GMK9P/gkKilw3NNfZW6rPBLOmE0T4UrqODSVQ2BK0i6DTg7fTNKQQzMrzN9k9l1HqRPiEAIPk2jMwVU+dQzrg2hKW1nN2rNpDJ3FuNfmwE/YU2+UO54YBCKoeeFBBV0sfqFMccwAkKWZUvT4JHupHhNF4cjm2Bi4czXlxLnPfHblBPB/J4YcGjyCBgwY8PDjkJf+MR7CMkdRavZ0ThdD6ijnjWqzmOhE2ylJZCLZbVJHnvQy9f+9TQ4BwIGHAS3t2avOeo0RN4hAWxl1NtA6N2XrXUIdZY29kQ1s8ZRDPdrN9zcM5NBeAhE/dap8D0Kmz6aFJFCFDiWOqOcwFUScKcZaR9HzVCR+8bdtZMxGtmdbWWmUKL403fqs1IVPtGTI9HkIb2GtNjfqvkiG4xVpMdwnHWjtYccBUIQQITnoCByHW/EPd78Cd7/3Z4A6pMZyyQa/jYsi6AFXRQRYwiHkB3T4IRvw1wf9bxx+2OHsnNNgWwIph1TyAZmmuVXdUFuZ7GC8zeZgKeRQ4Lug31TSg6ijDQ3/3iqEVVMcfluZVaUF2kZYUlwnOUTVApbUQ0beod+d+l22ew61KfHUMQWUQy2JC2nI/LoukDNPKqNMC20i2WRmCBFqo9IKAWVs3FQO+ZvSkLrIBxFUfsvc3qy4fPXzH8XJ8nrMP+FXIeJU+a1IThTYFBH+WXD4aisO4wtA8egBFdo0FFrZQkq+ecwgEyXAyGrjMcO82kK+L0kj0Uwrh5iHFJEthgjrarlkKsVKpI6Zdy+Mt2GXmMVBa22qizp21lamSSBjvK7fg1qi+e+JiKOQoq8Npcjc618TEqM5NQ/U5UTNpXGGOsoQt7R5E2heLgLkkJL/775yKGFV4xC4txXN08vFGHUPo2Vrdm1fmxM3HLyIQ5Bx1lC29YHyzdBK3zgKpki2HYd/PE5bmTfeG2/AYgJRed+HPvc+vngDBgwYsLtYtmo9vnfqH+H7G15tbou13x1Saw5dR25x1BSWy1yFlkwhbEokQUX/YnDq016KrfIATNKVu/U6Dzc2nPIM3CvWAmgh+imlzFcORXwe60jtDLSVLclnbx/GQA7tLVAFNJsDABQsvcjAmDOG3dhTlKhqV+3ipI4Ys16taGDkEGeYW9vKTAWu30VhNjAeUcNNeCv/4ktYcoqXDFWIzGxgQgoOfh690oE2PQn1sc8DNpxub3vh/8P2n74AX4yfho23fwb1dV9uPM2SdGQi57ZxUdJWJQVSz4zYpLIEBvZ1B8zgC//9PGxaPWdu85Ux9nWYgaeu8hKrbpRaLcZsbVVe87sIMe8tMANx4DdjlUM92sp01Z7+DyjSpZqysXpw7khsndtsX4cn02hQy4HZSCDuVjyYVi2mHIqUMi+WzZavVuWQqWC3n39oc6NagQKeVEliVCUEf/NkFxChtlT1OeyUM0hQA3XVmPxqZmzMiRE//cw8potk8wgSOrdHihz6vx/9Mt772W+Zv+fzEgdd9i5sjVbjyJ/4RXVsvnKodJUxoVYt+l6TAAFtPn9NONjxrf8ijdK0cj0HLIhZ/VrNNj+61tvan7hpNSfXeVuZaUkKeE01wMiukIHjNIQ8eKrINQVPjR+WPg5POcRJDJoPlFF8PxKmEq4/HxFeo2VqASzLHBkKIE6DC0Yf9Pw8Xtb4Dtq88RaLhCtFA+DeVnzu61PxNa24niIrRGqZeZrPEdoncFIuznjeT9zJA+OomNIumHSQQ36VuComzSALfW309QQbMGDAgN3Fs1/683jRL/2h+Xvj4cfgP479Kxxx3k+b27LRjDN+G3V3MelVDLlmdCoeWn1q52OmYcXy5bjx/Atw6Ev+cPqD9yaiCLdsfAGAMDlE6yRan1ECXO0oh1jXCt3mCQHM7UssiOzL2P0S14AlwSz6Rqp66Xt8ALxqG1YOpaJEXtaYzawUXLK2BqoQ5pMxli1b5kgTuZKlrcodB1QZXfAjZc3rsEhGm7RllUMpSlRVrRaG7CfJ2wFiWaLoMEHutdibW43oVR92b4tirDz+qSiffxju+/TTUH3t77Dh+Oc6D5Geia8MKHVypEhQYdaTwxvD2Z4yzQuWvQJVMcbve7encYKJTJAWO1BVEoVITI3BDI6BqnHXoEZkXlcbVAMky295L6CfauL4xz0NX7r7b/G0Jzzb3NZHCfD4N3/APZxAhd0f4Ksoheja8HnkH6BSH2JZQCJqSHVLEY48r83vv8NzKKD0SbXfiQ8iHR3lkEegmsp+OfafjiLPkUEpUZZjDFQFi5Mm5VCKpNZS2g7PISJNuuI86TrhHklqox1uEdmTuPbOB/DyK9+Ie2eOAl6g2th+fNlFeJK8Ajec9r+wKrH+XNykn3s41VGKrJ5vvLYxLA+Mw6n5PonYoBbF2cZj21BqbzVSaI7FLCDV5p1+w4b8pPPwSC5zPLIw4xInu3gbI/076pFAZ9sQZ1CLDKnc0fu8ADTGdMBTDrHWR9sypr8TUaEsK/e3WNHvsL9yqJHspkm3mWWKmK6LBZ3a2PTpC4IUcskskrH7HURMHbM74GrbEIyxfDpClNbm9j7zjDXFZ8qhukDeUZTgc8vqw0/Ggfd/Ah/9yPvwilf9wtT34+/BiTMVOOF7m3Urh0yxpWySfbSZ4uENPtlEc2U8eA4NGDBgLyGOBF75qtc7tx37wregfvBW8/fa9RtRIsLO67+DVbJAHnevKc5666cQi91faz3+jDN3+zUeCaw593WYfPhDSA48pHGf8BLfaB/mqK8Ca6i6dNfHhLZOnf0Zg3JoL4EWNBSnGyKHhE7aSOLAYilWpEpe1c7NNTMQhfFjoTYCu6AOMdQ+TFW8JSbbh58SZQ6VybxtGolVDkVCoihyLQF3ox1pUZ/IPNhPS7f1NYBtw4vO3IyvzDwb6+/9JooHbnHv9Em6gO9O2ZK0ZVr2eso9r5p7PC6ZPbtxexQJXIZjseGB7ykfBSfOnYytA8ZsUdqahmei1xchsTfeToHFtWkr60E2JUmMZ5//GmSpJTYrkaIU3ccySmKMEvucUIsE3zjR64YUIfaNc0xkgji2wyH1IycybyRAKNKyeU10tR8RQibTiSyAlpQJX6Xkp1aEEs3MczX5twAWt05kCH02ke2l5sqhyrvmSXnR7d1EyiH33NrUJtsXCpTe+LVUXP7pd+FQcT9ma2uGLXbcof5x2Dn2GKPMvR5M+ttItRJOa9X1EHuff1fCZBtKqJQ0+g2PI60m5T5Bxs/KtraGPOdSlOa3VInUfKeV4zlk5wOgO4HOabtbgnIoqpoRvJJV7KqqNCbc9Dlz4rUoco/EsB50vckh4Rpgk/Iy06mY9UT/ZuJUp2f2Uw5V6fIGkSTqsvdxdaEtzYvAW1hjh9SePpaLVJ/39rvsbX77lUacNeevo5/3Ztw7OhxnXfsOXHLjnVPfj+CPXSVL03OPo/3zG+lFe7HNvq9Nm3RbCWQ5aRBStp15IIcGDBjw6EG2+WzMnGmVRKMV63DV+hfjKQ99BqvL+6b6yaVx1OrVtj/iqBPOwF1vuBKnnXd+477VB64GAKxcoQpAIopRyNjZ9zYKhYDd66UBcmha0Wg/w0AO7SUIUjfMqJ5Tv40DgE33CJhyiThFigp56W6ueAuUiZDX0cWxLA1zKtlir20jwytwfdAWA0gLzKqc2M3TyG3RyvMxojp3zCNLhxwqgwtfutj7eA51IY4EDnvWL0NK4JrP/K13YnaDxI+Z++6USIPkED123eoVjftCOPXQA3HaoQcG77tr/dOxYXITVs3f4izkTfJXiIDqaJMgAmAxVVTRFQWsv5+Q0q0Pyiib2lftg469ZteP32ZAKqBW+K0HoEpBEfQD8qO4G+/boZxKAtdUhjLoF0XvxTfLonKVCWko0UyjMGTDrP27VHHSUWLbS+mziesCO6UmkjzFgiGHOj5HQ5AwpVOKIvj7q6oKd/3pE3DhZ95nbrtpy078xw9ucx63a9JsnfVx+5ZtOPfu9zvHCViyjhukizjFSBSQdW2OtZAxkiRBFYU9dXxlAkfimYZbZdYiyCGtkCQShCqEnPAkQodagEPKoVrH3dPYrog/7W3HSAZDLPT4To2/WTpaUvUsZBxds0WZE1NfNpVM+WTB+S1SC1wkS1RRP4VOHblmkqKaoACLU89Vyp5IMsh41EqmG1QFailQxzONBaMirXZfOWSv6/B3UzPCkhMdskcR4qCTno575CqM/ut3mIdTWPF0wDK1Plm/yvr0Icmw4mV/jU1iC6768O9hPu/3m/Dfo0DaaGmclkK34qCDcd3oFJx1+z/jlv96DwB2fY7c2OKqnGiFGVcOkdJ4IIcGDBjw6Mah5/8BakRYg217P0HsUYgjDjnYKeoSjn76a4BXfRRzqzea2wokzh5SxmlTJazn1cxbvwWJpP0cAzm0t1AXyGVizBNDyiETwxqCVg4VfuW9suQLKUJKthkw7DNbRMYtm9lQf38Xypa2GjIoluWEVerVBsj6H0wcTyTAjRqMUaIObAboYt8TlcBzHnc6Lhk9ARtv/ijmF6wHlGTqAnVCzWpqIZLwolYIyJmV2LRhY/O+AH77+Sfg7eefHLxv8zkvBwAcvevSoFQ+mNgWZ0hFFTTaLgt1jotZKJNyIWwCp9PbFmHGy3HFUb+ES4765UU9pz5ggzqu+68ztzV8dVqSnQjCa9UC1MQRo1wUOUStXZ3KIapqE5lQ12oz2uL7VGhViTlWrxLuvx4HtSlNBJFDY6DOkbPKfC1SY8CbyAILIkw22bay9s+RlB+O55CmTX1MxvM4ATcj2XK1ue3qL/wTTvj0i01qYFVL/M073orPf+M7re8JAJd86m+wUTyA7WKFSw4FksOkSWDUqhnm4RTqQVfnQ2NqU9ZN8mOjljJKm0W0lWkCkAigItbKoUkzrluYtrLmYqUoPNNq9rvnbYzki0TfadTRVmZ+e1GiSZ1FKofqouEjptSM6nXyliQyc075xDl2IrLUXNavIODH0FKrESmHBJFDcaaLLqUhD4Og30wyanwHcV1MVT/2QdoW9a4hDfE5Y5S56obpG4jNhx6Crx3zO9gwvgn3fEZ5S7R5/aTLDwKe8bvYfO4rndtnj30athxxPl6ZfwLv/cRne52T75tRsTQ9wlTPJiGw/k2fxqXxKdj8rd/EzgvfZ8a+zPhLWDWf/56hIIQBAwYMeDTioA2H47trXwGgnyp0gMZoOXDss52bSpG4xed4hExUzlzPAzg4ujow9lcM5NDegl5gUiW4CiiHuswZhTZy9pVDvE3CTxuLZGHYZ15hzFpasrhbfh8YrxefHKIqKG8rM3J1agsa66ohWzxGth1ImfYGlEPkc7MHyCEhBA48741Yg2349gXvsXfQpoVUMwn934+hDC9qxc9/CXjSL+328Z1+6hm4JdqEVFSO0sWSQ83P56G5w9Q/7rq0cR8lGC3GnDMyaS/NzztPV2BBZkgDm+g++G+vfDVe/dOvWdRzNh97Km6V6xBd/0VzG5ECpN6oo3C7EMFPyQN0ih4Klf7kbbhq1q7jPMdTxYVgjIr1Y01bTatyyN1AxbXbpmMUKgFyiDbeuSYbynyi23wYAcs2/LEsjRmyn35GpEmnAotIBjZepLIMeuMUk0njuFfvvB6nRjehqhSRmY8X8Fvyn7H6pk+1vuV92x7CE25/H26dOxk3LzvNIQHN74CNDUapSMQLa6epo3CrFp3PKEB6pj45V9F79q/yEdlIBFCpvy8nga9wTdZl3Fys5JOQabU6Hz6G155yqPs7zTFBqkjuFp+jLgRTJuORUSCVE04OuUbZgCo4uMohriTt6znkkVpakZuQiqRQbWUiGQFxikhIQx6GYIyVA9+BmmP3QFoZedW1mIVzP0JHqdjzM/nJl78On4mejrWXvQvVHZfquTcwDwgBnPc/gVWbG3etfdlfYJKuxLOvfhu+e83tU98zqgtH7VUG2nP7GK+uPHAV5n72o7iwPgnxl34bcwv3ALCE2uysun7uuO/BRsHpmGNPRCUSHH7YEVOPd8CAAQP2Nja+4G3YKpdjnPbrPhgQRiGyYCGl4BYKVaGU5HHsPlmLMaTsVrHvTxjIob0EUit0KYeUOWPLQsmLqSdI5jlE7Ub02ikjh7jqJQmloaG5kZ0GG1Pvvl7KSSYvhl2wY+SG2YCbyJOhCDPn8e6pVXwc8+SX4K5kEzZd/R5s22U3sBOpNkgA81SKOTnUohwCgHXHAzO7P7ALIbB90zMBIOijECKH7ljzFBQyRn7VBY37jLIi6d8GFnVEAV97yMvx0uIPkT6CVdkDl41w5bIn49BtPwByZSbMTXSBZnS2j5BpLqUWqWvG/W1VIgl6GNl2tvbPk1of6LH5RKm3gm160GbF7L18AtW08AU2s7SpLqhNqci1X5U9V8k+mxSFURn5CYX0mK7P0W+tArRyKEDMkcqFe46QnwxFuhOBIzuULRdd8E/YKB7AzDP+V4PcIb+chJsLGh828rfJjRGvbEkA6woGsJ+/HStyGW4FbkMlEkWi6GOqdbxt0HOIqRbb4u4pSbBmbWAOOUTXvb6vO8nP/l7afI66ENrsyzhV6WDwYuqrpq9VORk7ZvMRKUn5XDYF0ounF9qzTUQRcpkgNuRQZlSh+aRZrDGo1dwt4wyxkM7vM5Z7xnOIfleiRbVrxxrXc6ivt90BMyni570DD8rl2PLx/7G0drjlazF6xbtxbHQn7vvoW/DQuPu3EXmfTSmyxjjaN4XupMPX497z/gRJPcGJd38ClRSINdm3bOVabB9twKn3fALVZIfzO1l+zDmIf+tWJKsOXcyZDhgwYMBewfFHHIaPPv7fUT71d/f2oezTKJ/zpzj6Bb9h/m5L7cyRQPjG3roDo6wWl9C5L2Mgh/YSaENKREpInSOqduWQifD200yMyiUzyiHyM4p5iwxrY2lrgTCb666oYwbj8eGRA0bVU+bGZBtRrM/DmmbHtWs6zTd7iSyD6gqpN+594tN7IYqAJ/8aThC34HOf+ncAzbYjEVDPlCLbI5uCaTjiHCUxdaTylNISIGzOOHYzLqxPxPhHAXKoIN+KRSiH9HuJgFLrxU86Fm/8qRchSx7ZYUUe8xyMkOOBK1RKlTHRHVELTtKpeAi2MuhKgWr58pRDLSQCvFS7EKj1gQgHIkLQYgpeisRJCIt4ayhgiLhgWxkpURKrRFGqB2bKF9k0u4QlYkhvU0okQyfJRmNPRWbDNUaiDMpxTTS71zIH2I05TdqiZfzZvivHcTe+H3dlm7H+cS9skoABryBaEJCqKmIR3iE1Dr1OKSPEScCwN0nVeGaUQ0XQe6wLZJhOhByRQ65yiNqI3JbWMkAg0fjktFM5nkP6+uihHBI1/3wymyzWE4os8T6PeKRJlRIVW5jR98/VJGUxMec+ltY7KEGz3bMNMkqc3wX3vimQIKkUqSySrNGKHYIxb469JDksjrTqginMtCmHWOuso5pdRLjAcx9/HD6z8lU4eOsPceTkmiXNX9lxz8K9p7wR59dfxsc/8LedldXYG7t4Gqk5/EUYjb/4mU/F11e8GBlK95qLEyx/yTtxbHQnzhTXN19Ph4AMGDBgwL6AN7zwPDz9tKP29mHs01h/1iux4ogz7A2xFSYYtAQzIGnO9fs7BnJoL8GSQxRZ26xURgFFg3l+YGEKaCJDxoAQhrygTUbCFq5cZULy+gb0pnjbjl3h+z1UAY8PwHp1yGpio7g1M0skQzmZNDYSdZQgBqkayrDZJvnc7EG1ysbzfhbb4jU4/Mfvwd3bFxrKEmGUOm6y2p6IMJ6GFUefjV3JKszOWkKPSCERUKw8YfMqXDx7NlbsuhnYcp1zn418X4TnELViBDYhG1bO4sWnN2MlH24cf9Zz8ZCcxYOXagLMS+RClHV6DgUTlRxyyEsrizLjheU8R5Mio462MqsIIHJIEyAtnkOV52/UMFiNIuQyDm4iaYNbJVaJ4pvCSmZYnqBEEavH+mQ1EUhxFzlglEOFeT9AXbu1541myCHPbJs/j6t7Qvj65/4dx4rbIM9+s2p7ijOHBAwZhNO4WbH3N59HS9sU9yVq3inUfZT8VU2CkeBdUORQbshamS3Xx9hU+xgiIDD+07+N5xBrp3KVQ1QssEbkbeAGwUL33S9GWh3XeaCtTP1dFWOnuEGx5rHTVjY2RMiCmDXtnKksUPdUydTxyPG9ihgBkYsUaanUe3GSmc/V8ULyQL8ZEVgwhjzKlgIRxchlDNn23VALXjJy23h7fiaAUqKe+dLfwJ3yICyTu6am4bRh/fl/hHuWn4SX3fln+MK3f9D6uKR2ibMqarbnBtsQu47/tf8H27G84RkXH/88LBz9AvW4RXwmAwYMGDBg/4fQHRPzOx40t0XVpDGXAGy/PRnIoQEPM6K6QCEyq84JKIe6+u/JJ6YsvMUjU7mQIoRIG4dgoQp6VwuEfuwVt92Pb12/Zeo58ZY2jswk+hSNthbruaSSRfjiUeo4cSllcJMOAMu0v8BoZmk+N0EkI8gnvRHnRFfgIxd8RrchsGM2psz2PC+ffQJ+mD1pzx1DG6IYc8/9fWx46s+bm7I5lSSTzjQrokIIrDrzfADA1ks+4dxnNokdbVA+DjlkEwDg0I2PHln+UQevwsXJGVhz99eAujZKjzTVXjJxt1eKamf0JoQoRSJqZeYd8BwKkk0d7UeEOElRMaUJtQIFDb4RIIdkgcprr6Qo9MZzteJCpsxzyK/MM7VMJgvjd+O3kqZcwdcCYQgS9dyJVgBFQiIv3NcjNSM/bjrP0ieHAuc2n5fYcNW7sTU+CIc85bXqPH2TZkqeYOSQUVM65JD6POq4aTCsHtM0LOcohP38Qy2K01BHiWq5oc9Ik0Olo/YhIleTi6QcDSSaUVFA8t89+wxN9DcRflPUYKQ0k/EII1Gg9EMQOhDLsmkcTSmaee5U7UhxxgmDMp+Y+WssZkyaXIKyt78OvHh6UZfmei+RIKu1ciidQeSRh8GXq3PV7mkqjza8IJH5HlEO0bG1qeaMv1ecOUpF0cOQmuO0zevxtYPVXLLYpEiDOMXan/sQkkji4K/8Cm65b3v4YQ3lUNogJtXvpf9xHLT2YDz4jD/DXYe/pHHf7Iv+AnW6HEcfur736w0YMGDAgP0fa056OgDgzu993Nym1m+B+SfUgrafYyCH9hKo+kgEjm8AC6BhpujcF7ubHPu6djFPG4laP0ZJ8d3Y884WCP2YDctjvPVjP5rqKSBb2mpsesjESvLpLZi6KZYFKraRUOqNAmVZIhYySA4df+RhKn54NNd5bIvFqvPegIVoOU687u+xc37eIQ9CHj+3Hf8LuOrYN+3RY2iDePzrgCf8gvn7mDOehh+d/X9xwpOeG3z8c89+HC6vj8TCFW5rGbVrLMav6cAjzgR+5ftYfdyTF33cDxeEENi26SewqnoQ49svBkptOEsRl1OSBkIkrJP85plv13E7OVTIGLFvZudBKU2IHHLVHo2XjBJnsxxqW8lFGtxEktqElCh1MWm00Ml4ZPxfEpQo07ByiD6/UPIYwRIkLvEFNCdV46HjeA5pckh/JiF1EeHHP/oBnogr8eDJP28m7kZbmCHrLHHstw05Hk465h6+MsZrxfPBN/H++NYHlVDtX/R9RTP6O2BqUsmiy/l5FOwx1pdI/5bY7563CZp0J0wn/Jxrw7xnvzZj9drN36utwo1ds+ma/ISY+qvIjXJoHM0ZIiuVLUrSAEgFGDqnEglmNDkUJ5lRsnbJxwXNy0nzscooe88oVTjp2ADdHqfO+N02jnThKS9/M66Vm/BQctBSDlMdxkFHYPKcv8IZ4jr84H3/oxmUAfXZVIy8CnnBqQLR4q6fI857NY77ub9v3rFiI6LXfwHZc/9wUa83YMCAAQP2bxx5whm4Ljoaq274pLmtLQQq0vNWV7v5/oaBHNpLoAVq3KUcku2xrqQcqrwfK/cUiU0Uvd4kSZu8RBX0roo4KSZefvp63PvQGG//9NXtjwX3QXAXqCJWvhxFPkbkmWybRLViojYSMVcOqYpvQZXZwGYgOvO1EG/4WmMDv9uYWYni7F/Ds+KLcfTClQ55QGon7vHz288/AX/yklP27DH0hIginPqcn0MU8EQBgINXzuD61U/Fxp1Xodp2p7ndKr0W6de09rglH+vDhUMe/0JUUuCOi/5TGcY6HhRpUBFi7g6SQ+y35v3uZGBTA0xpP2IoRGIq/35EuY9apE58fGizXbK2Jg4zNlCbUjlptKVBm+qW+QSZqIzfje85ZMihTiKBCBKX+AI842GwBEXPbFs9b6yf004ORQ+pdCR5OCMpNZnM3gS1FIjiJrFLr+0Y8cbk3+S1ujBfohAKpEb1MjWKO4CaFJJ6/IxGSglYsc/MkEOkWgwUByqjQiPlUGaJH64conFaUqtgR1sZV9X5SW89EAdSxSwBM3YIMPqeY1lgF9SYVLG2sjyateRQW5tx8CCUVxJF1vLrvRQpZqSaX6Jk1GjFDiGqlbFyFGjtSxZzXFPgm9FzmN9oMnKUim3jSBcOX7sSN774U0hf/P+WdJyEVWe9CrdvfjlesfARfOoj72ncH8NNHK2jrKFaS9A/ha4XDj4lmLQ2YMCAAQMeuxBC4N7NL8RR5fW496Yfqdva1m9JWIyxP2Mgh/YSSBWUGFVNkxyK6xz1Ig2pOfNpiSe1AFdSfDf2vLPKrYmaQ1fE+OuTrsfMZe/FV66+t/XhfnXbHpRAHo2w/c7r8dDOXQ4zm+okoa07djVMRslDpJjYKmkD2Ryw/qT2c9gNrHjqm7EjXYPN0b3OgHHYulUAgM3rVz0s7/twYN0TlJH1Td/8kL2x7fvaB3HGCUfjchyLmZu+rAhSft1EGRJUTUWIRhyM27abGL8a3xrpXXW3HxFKWKUPKWrafJ8cU2GElQklmsaugFUjRiMyOM6bRJg+z/HCTnVuRA4xgqQsCiRCbaynKbCApgJI/dslFMh82fVT0qQSeSXR8QfSyojwjpxoUpXgWFKCI5lDs+QJUtUQkaLSkbQPW4vfTFs1yZybSCyxUTf9q6ZB6u/YjJ+zB+hzZIbUpauCEuY8GDnkeb45ihn2GZr0NUP4dXsOmc9nCdLqRBYNDx6jHComDmlIv4VElliATs0rJta8PZ5DigKyrtWx9yURkgyRkChKaqOzPkilSDEr7TVo0zPbzzHWiVq2sGHPIV2EUfY0FC2KQIC1Wkap46kTLbFI8vwzj8JZxxy8pOdybHr13+LO2WPxnGt/Dz+85IfOfb4fU0g5pMjvwSNowIABAwY8vDjiaT+risrf+BcAaq0ZWr/ZcKeBHBrwMIM2aQlrufIRybLVB4Dasfx2NN6KZiLki9wkB9FmkDZV3eSQXqTd+DW84MY/wNvT9+PCj70TW3e1JKh0eK7Ix/0cXhx/ByfkVzkX3+bNR6GGwNYf/IfaIEXuxjVDgbzQcd97Wh00Ddkc4qe/DYCbDja7ci0AYPmB6x7Z49kNPOlJZ+FqHIHR1R8ztxEhmXYYKO8rSOMIt619Kg4dX4cVkzud37WMU0RCoqrCxIbvhQG4JqaRR0pK/bv0QRHZ01DCkgmV3wrkwSeH0sBmuxRhhQERCmJGkw1F3jB8JY+S8U7tE6JVRlxpQsqIXCZq81uHPWds2hR5B7W3lZFiJJJNcqDyyKE4YEhtTPYDMd7U9hTyCjIBAGTG7rRNkY+P+37RFMKHk3NdrcBtqDXZaBQ9syvU7axgYMdWNy3QSSvLvUAAHb9aV5VDMsgqR1VLp52wDfzziZaQ2KGUNO5nZ1Sv+dg5x9i0lRWYRFZRS+deJsuQyBJFWSISsncyF/3GDRHLfG0qkWCZ0MWTNGNefl3KIXUNWc8h+9tWqZp7SjmUtCqHlDdCrNI1o0iFUGBpbWV7FOksDvq5jwAixooLfh4Pbttm7/J+CyGSfU8Zeg8YMGDAgAFdOPSwI3BFdjo23v5pQEpVOAq1lfVIMd3fMJBDewmRVL31lDQSVg61x+L6mxzzukwWR94/dTmxCiO9AaKWqM4qN/X+3/Q11KuOwkMbz8H/qt6N9//7h4IPNxHiAXJo9jm/h4UVR2JTtMW5+JI1R+LW416PF1Vfxhq51U2g0UqA+V3z+nAe+YXv3JNeh10rjsTaNYwIWn8S8MbvAJue+Igfz1IxSmLcvOEFOGx8LebvugZAN5m3L2L5KSqd5ogdl7imclMUD6HrLOKtkR4pSUbpPsSU9iNCySKcjYKmRTmkktGYcghlI6VJvV675xAZldelat3kRCcRrguaHIqyOccwGwByTQbMi5lukq1DOeQTCsZgmbeVycK5zxBnAWULj/I28GLquZmyeY/UJdUj3vZkWrXc30nUZlKoUYrUttTJ9hCBNshYpYqZ69Eoh9h36qn84sBihT4TSw7pRK58DFQ55uXIvFZRFMrHDd2tglxVR7+VLrNmH6HIecFa+4gknJcjRzk0jpSHXF1MjDl6lSrlUD7RxYK+5svM4whwr3enXTgbtRZdnJfT3zFviSb4BMjuoGq5roFmC2th1MJ7X3Uzs+4IbH3eu3C0vA0/fs8vGDLZ/y3U0aihWtuTbXkDBgwYMGBAF3Yc+xJsqO/FbT/6emsIVJ928/0NAzm0l6Bi21MTty2r5o8ukaVj0Ow833gOeeSQtJVrs3Eqc7sx9pVDXVVuHQ9dJ7OIf/pfseI1/4Yds4fitbf/b3zuwkubj686otHTWcy+4h8hEeGgFW6q1uaX/zFuTo5SmxUmKV9zoHrc5y66Sh3O3qiKxglmf+HzOOC//ZN7+8EnO+0q+wI2nvszqKTAbV9XEkqKQ84WEWX/aMbjHnc2bpXrkKJ0DcSNciA8sCufC88nixFCPnHjG9ya50xpPyIoRYDe8PpqDw9+dT1B0VAmVCKFqJvHQ2RtMmPJBp8Io2tqsush83eBxGlDIs+vBTGr/w5/jkTikAKET6T+pGpaoJyWubByKNQyZ8ghRmwa00A6voA5tE1HJN8dmy7lm1Wb162747WryCbKJaHo9imQnnJoZk4ph2TRVA5lupgQBdrKiNCg35JgnjiiLjAWI9RSAFXhtM51JvnVVlVn/Zr6t5VlskAdu79t8zo5j6mfMUbUCUoUsTrPupyYeaVKliORpf1++5IIxjia2qsZOcS+qzgdIc7CRRcOuoZiT2VUV5VON9xDyqF0OWZ33YlxUTXuU2o2Rg7BVXftbRz+pBfj0iN/CU/e+WX84GN/AUCTkOyzKdLlOAA7Ud13nbktRCYOGDBgwIABDweOf/qrsCAzPPDdf3XWOxxmvTWQQ4uHEGKTEOJrQoirhRBXCSF+Xd/+50KIHwshfiSE+E8hxIF76j33ZdCmhJRDfnQ0oAwc25RDbe1onPk0qqQqR0mtErFrpjytyl0/4Q2QL3svsO54YPZArPy5j2C5mGD2C7+J2+7f5TyWTFnRljay6Ymon/t/sPxJr3Gfl85AvvTdGMsU5ehAc/sRZ/4Eagicec2fqsftpYVvtOJgiJWPnuj2peK0E47HxfGpWH3TJwEpIaoCuUwQxfsHR7xq+QhXLTsbgKeICxjHcoRMnvkmy99wiVjF3EtPQeMkX3WgFKnx0SF1T9zy21bm1/Z9skDbRSWSYOuVIRTmqE1pgtgjwohAmMy75BBvQ6LN+ESTQ22GxLHXVsaJa5/ENioXRmoROVBp8qHuUg5VpKThSkOXBIgCZJ1VXOrnM+WQNRj2lENT1ECVSM0xRpr0XwwkGabrcxotW+GcIwCAiL7EJWoqHndPvyUv0azMJ0ZFpYi/HKX+DsdIkaGAbPHj4p8Pf72+SFE2vOJiprghddRYzCCW5IVUoIiVckhqcqiSAnUygxSl/X56thn7knDua8O/qySd6aUcSnQbqn2sOp7cK8DsLsQpr8CJuAnf+voXmvfVBSqmZrPk0KOH6D/jZ/4El808Eadf9Q7c/qOva58o+9ksnPmLeEjO4f73/TSgW8czWQzKoQEDBgwY8Ihg7Zq1uHzubBxx7xeRyXGwuBcHVML7O/bkrrAE8JtSyhMBnAXgV4QQJwL4MoCTpZSnArgOwNv24Hvus6AUlzhOdDW3ubnr6r9vayuLJfcc0ousKjcbY1o8GoOtKRuZ+Ll/jPiE59tjWn885s/9bTxdXIz//Je/QFEx/5E6R+4ZwDZe76w3QpzVjHw/8sTH45pXfB3Hv+x3zG1i87l48Mw340nRj51jH7A0RJHAliNejHXl3dh63XfU72KRsduPdlTHPFf9n/2u7eYwrAYIXWdcLdT43ZHXSKOlM+9FDFSRJRNocxy3tPY5KiUp9WbbbyvLnPYs81z92hmRDWXR8CwSpH4YM3JIWGUTYNusJrrVp7U9zxAkRA7xmHXfc6hdOUSfiSGQAm1PpKpJAklNpUlCa3oF+aR6zIiCkMEwoNVAU8gh+vz/f/bOPM6Oqkz/z1vLvd3ZExJCFiDsW8gGhCUQEEEUUQHFEZFlcN9ncBkcF9AZZ3TGfRt+OirLoCgoiKIiyiL7EkjYlwSSECALCUk66e57azm/P+qcU8ut23076U4n6ef7+eST7qq6Vafq3ttV9dTzPm9PpcDNUG41eV+jALESVHQre2SF/6iOuvIgTnLKLnuSlXY0yzuHwqBmnSaJ8BdYoaQL7UmId1SeI+VmhNO+hjKqOEZFGj+vbqa0z4ijSZv6tCNe6JmuefU0WNxNhKz0XNaaiOAUPhfZ73v2vfIr1cxFYA/OIZWUdjqV/LJmXNJP4sZeJ70fmzEM7gP/r0G8S4Iz07/d5nPerDx1MHBcF1MuvAqrZRe0X/+PcETlSu7ecNRs3LTvlzGxawleuOqjgFL680LnECGEkG1DMP0sjEEH9gqeL3UOURzaCpRSryilHtY/dwB4CsAUpdRflLJX9/cB2PEtGP2A7eIiklywlzz5L3M0GHx9Uxc33KCmT3orNs+oZm/OzNNfc5PU16fcADD2xE9izbjD8I8bL8MPf/f3dMZWig2zp0/H+DGjc9PGn3Ypnh95GIDm7grSOgeecDa6VAUr77wCEtVR34L3f3vmoKNOwUbVnsu16s3x4KPxaXXeOVQuDjU4TFoMI86KCcZ14PdUVmZFkyAJ4i2MNXa8Ju4aU6Y00v5e/Jtis2u6k25lrl/V3dSy3cp0ILV2czQTB1xbVmYcQNk26/nXpO3US8QhkzkU1hqWKe5bJdNpzwYdB1nnUEEc0uW02Xbu1hnjln9OcrlEJcSOZ/fd62XZUlxfi0M1BPBsB8c4TPdb4jrqGaeIcQdllzHHzZYT23Kqmi55TIQ/xOnDgm5TKtjkPfWRimduH63VoRlbMZA6U7+ftqkfZt9nHyFiLQ7FUZC4nsQD3CpcUah3d+bW0xtF0TAbkp19r7xKmz12cUmDCLsckrxAz8sva9bfXw5XaRuFl/Z6O46r34UHHn08N89R+c92YHIGt7MHKBN23Q0rTv4xRsQdyYTCsTn73f+I60e8C3st/w1WXq8fDNE5RAghZBsx84Qz8ZoaCUcU4pKHE/aBVg/l5jsbA1JPIiLTAMwGcH9h1oUA/tTkNR8QkYdE5KE1a9YMxLC2K7ItqeuSz/iwy/QQblm8yTG4mRIIcVJXkn2qqcsSzOvjZiVgPeE4mPCe/0WbE2POI1/A9Q+/mKy7JONjq3Fc7Hbh1Xh00lnYZ86J/bvuIcg+u0/GA9WjMOWlP8ONuvr//Rpk9tltHH5dOR0L246000xwbbOslLLvWTYDqJgHZMWmWv4G0tU34L0RSZpRExdDhAsoIxygedlKJH6pu8Y4T9qtc6jeEPhqbpzjrg77e1DofmbEoNBLxKFm4oApf3MLDqDiz9nfc3lK+vWxLqcqE5DSnc63dk/GbsQdHfJdItalzqG0hElZ51C5+JENZS4jkkpGHKoj6msrbjdptY6gC3V4VtTPukmtQGL2o1DSlOyTDiAv5BKFQbctsQu1c8gIm91a8GtaKqjS74ZjGhy0mDlktlF00niV9EIr26beUwHiKGlTH1cy7ikTCK7X053Jx2oF+76a45MprcyLQ9WGz0cZifOoknNAARnRtB/FjT1P/We4EmPV336Um14MzrQ5g5XtSxwCgKPmvQ5/2OOzAADlD8/N810HJ3zwO/ijeyJ2e/SHyUQ6hwghhGwjRg0fjkdHvw4AenQO9VRuvrPR7+KQiIwA8BsA/6SU2piZ/nkkpWelra6UUj9WSh2ulDp8woQJ/T2s7Y5s8GLypL7EOVSo0c/iNnEOedmyERHUdX6IfZqubyq2xjkEABi3N5xTvoL57mNYcP138diKDb129dlSho2dhBkf/F8MH7vjtI7fnuk+6O0YpTZinw337nTikIhg9nv+A/ufdYmdZt0xTW74fNXYIcfLiUOF72CTlt6u7kDYG5HjWTHHCiDVJh3jdFmZUsq6O6TgDii2u083VEdduRjWrvNbonpSVpbZV3vSqyXikOtVERWcjJG+yTfiUDMHlnUO2eygrDjUgnNIC0WmZCwt/SoRvkz4vVfigjJ/60qygrxC4LCXycRpVjbVk4MT0K3ojTC2BYG6Rjxxg80IxU/dUAVxKPtddSuNf/+N0GI+u2lodbdtSW862xkBLHBMyHi54JOIZ3lXSk9hzVmCQs6dwcm4c8znIPCGJW3qI+2OMyJCVLcPHWxL+q6Nuf3rDSuSmUDqTDByNn/Lr1TtsStm+WUxYrJXeA+CfnYOAUB1wj54Ydx8zNvweyx5OX1o5hTKF42LqJnIPNi8+dxP4cd7fw8T5p3XMG/syHbs877L8Uv1BgCA8tobliGEEEIGisrsdwFAaebd+LHJA9aXXlqxTcc0mPSrOCQiPhJh6Gql1G8z0y8AcBqAc1Sz5MshRrblbTEA1i6jemiLaz7Ahde5hbKGQJIA0sg8TdcXribjpM8lEBm8ue9H99Rj8Tn3Knzh8pvQ1d3dUrcmMrjMOuHtWKdGYEy83pYj7Ewctuc4HLbnOPt72oK75KZWKVQlsGHGhp6cQ05BhLDLtdjGPJZUzCnmxDTgVuCKQhQGCEwL78LNZzG02qKzWqrVtGthEgqbzWPS82pJuLzjV7WAEGRWkxy32B+hV9OkBMmUBam8uAOUPHGJUheHoVI4JlbsaCp85fPN0nIlE3bd+H7Y8j3jHMoIg83CiHOCewlZca6nnLhmGNHDDTcjgAfXdVBXbs5NKnGQ+666xvmZFTF0GZdfNeKQEbvq1mkSInGFWXHIHW6XKSO7P04fn56ZLnfF4Gg/ux7Tpt4bDg+hdTBZh0lYs64n0a8LOvsmDrmZMjYAqCCwgmD2vapU2ux5sSXnkDmHmn3Q+9vfuT/jT/wodpEOPPinKzNjKDqH9Gd4OxWH2isuPnDe+dh/j8ml8w+YNBrj3/l9fCC4CKv3eus2Hh0hhJChzOx5p+Ax7Iv1I/ZpmDditwOw2p+KaSuuR1e9sXvozkh/disTAD8F8JRS6luZ6W8E8FkAb1VKdfbX9nZ0PJXepIWFMg5DWfisxWQmFJ1DKIhD8JMwUn0TYVrY2yekW9M21nHQ9o7/QZvv4SvBt9C9eQPFoR2AiWNHYsGIxEK5xc6xHYhm5UIAEDXJRcneZBVLNbJBv7nXqKClkqJsjpCy5VHNnUNA4kpIOw625hwyHap8z7Vig48QyssKX3q8de0c8qu5sjcgFSDMDXvUxFVhnD8u8uVhyToKN9slwo91DkX5QOqyVuvFMiszdiAfdl10ctn3MiNOWXGoifiRLQEuQzl+KoyV5Ff1ismBCzvt30/TVczgxHVEGeeQb0qzcu3u9T7pz1L2c29K40L93ja4wWrl72klcw6y5WCtZg41CY42LjnTiSxWAuUPg68C+xlXfhsC/ZkVHSxuv3fdHXr/mnxnCjiZMrYoDOFJbPfJvFeBcuG4rs17UiUPawymA5tfEJLM34P+bic/+uCTsdafjL2XX4t1m01Ie945ZMoejTC4I3LyIbvh8xd9Gm858pDBHgohhJAhRFvFw4iP/R1z3/2lxpmOg82z3ouZeA733Xnzth/cINCfzqF5AM4FcKKILNT/TgXwAwAjAdyip13Wj9vcYUluSkzHsMZW1LG9iG1y824uDAtZRclT7vTiNISfdMGxF675Nvdb4xwCAIzZA+7pP8RMeQ6nOA8OCbFhZ8CdlVgoh4KYZ8qN6iU3wEGTHJ+sk6fo6il2P7LL9eIwMeTEHONgaXZTp8dVr9esuOUUytxip1LuHIoDBOLBdZLQe4SdcAuB1kYQcQLjHKrkWrMDmTBpnQPTLHPIuIC8QskcUCIO2cwfvazpxIbMjbkJnS4VvgLbvttgu41lOpEVxTob0h/V7d9Y69wpZNOk+9Wz4BO7FStg+dpV0heMs60SddryoLDgJi2Ga9vMuezff9OdTu9H2tGsnogJ4iPSrjBTYhkZwa8kR8i8J2bfPXt8WysrayoO2dKtOiTWTQx0+WQQpDlFJjzb1ftuHHNRtxEyWzvO2XwmU5pp9sl8X00jhYp1lpV/xu3n1PHT/YhM5lByXIpln1uN4yA+7ALMlafwp1tvA2AcwunfbnPebepA3EHYc5fh8N0BicIkhBBCmrLX+OEYM6z8umLa69+LzWiH+9BPtvGoBof+7FZ2l1JKlFIzlFKz9L8/KqX2VUrtnpn2of7a5o6KiiP4EqUtsUucQ+YiublzqLysrBiuG+ibgWLwrcm16OmJeMsccjrU0Z+AKwpjR47Y+vWRAeeIY9+A5WpX1KW1p+87MlP3SGyiq565t2Fe3eT4NAnNBRrbzBtxplhW1mqnqthJxQQrgDRxDmXzUmzAr1fYhuvDR7mAYnJqAnhWAMqJQ3o/3TCZ51XaEIlnO44BGbGkmnQ96y2Q2oo8mRvsYpmOitPOVEopRJH+m5hZ1ggfZc4hxEFDZ8S005RxVzS+H56Xiurmb6wR6d0m4keSD9fD38msOITG/KreMGJjJe5CpAWvYii4NIhDWtzIHGOJ6qgp37a7NwKScQ7Fjm+Fv7hQKljMzwKAIIxz7lWvhZKrLJHNyCqKQ3nnUFYcMg4m8SqJQBbWbbC4cQqpWtpZrxUcexwC1Au5QNkHNEDqyGrmHAqj9NxdPB5mfweiq+aEYy9ECA/OI1egFkYNOVjm5+0xkJoQQgjZkZG20Vgy5XQc1XkHli19frCHM+DwEc0gYIM69Y1KsYwju0zxptViBKDCRaxfyLyIxIcT1TMXrvpGxNjn+6kziJx0CeJ9T8aIqQf1y/rIwDKyvYK/z/xvLDzoM4M9lAFn9B6HYHH1YOz/4nWIojg3LzQ5Pn5RHErFmmKb+WK2jX2NCloSW2M3dfooXVbjuk0cXDbfqJYpW8kLSbFTyWX32HHqchwgufl1gqSqN3uzbgQVz4hDXrWhTM3c/LrVREiIm+TTVGByd/KuqGQdefHBuGKSPKUwL05oUcgsYwSk3L5F9QbXmxV3TMvyEieXOE6SVRTWG/7GZh0tWXrMfoMpKwuh4kRMkT7+TTUCYJvqQuikYl7WOeTG9Zwr0zNOs6xzyAgtZr2Z4GcjJkSOLiszwmYPbrAg1OHQ+vgY4aSZq6ZI+nktZA5VU9eTRPWkW6dbgS8Rat2b7WsC+JC4boPFrQPJikMtOodscHQt/b7rfRI37xxyPV93+CzJuUJGRPMqqJoQ+ciIQzrXr8Vx9YkRE7B2j1NwanQb/vzw83CRL3U0Pxf/VhFCCCFk65nyho+jIhGW3fKj3hfewaE4NAgUS1ki8RvKypqVu1jM9IKo5BVyikLzpLjgHHI9H5GSPpdANMX14JxzLeTtP+2f9ZEB5z1nno5z3n7GYA9jm7Dp0POxJ17GU/felJseWoGgcAObeQJfzANKs2kaHSYttWF2fHjG6aNv6I3bo2FR4y6s121OTMNNsVteViZx2uEqhG8FoKzgbFwcXpjcNPuVKiIn//fIlqS2a3GoRBywWS7QOTXIlzwVBZes8FGvd+VK/sRkFZkyKYkaRL1iK28g06beiEpNuowFuhtb0Ynl+uXOmCTAuIfMIbeCCgJEWkzpq+BuxLp21WX3qegmLZYRWadZJtdJdBmhfU2m85arc5Mi8eFlnKSqkrynZaVitr29Pj4mK6ihRLAJZp3FsjI79rCm3W2+FUFrmbDpUDxIHNhgcRNIjXoiDnktlm/55n0NapnSL+McMuJQ8r84TkPeU5agljoNffM91Ptpvhetjquv7HrchRgtnXjkzptsKLYh1p/PZg5EQgghhGw5u+x5CBZNegfGTWkMrd7ZoDg0CISFUpbI8RvaNds8k2ZPIW1ZWSY4NtYZEUXnUFy3F/TmKSoAbJQRQHXUVu1LDpFc9yBCthcOPPE9WK9GIHrgf3PTwybtp7PiULFUI81yKcmmaSWQ2k2cJkAiktTRPPdJMiVsURPnkHL9Js6hpBwHSDJs/KjROWT2sxIn89xKGyKp5P4e2a5h7cnfijJxwGS5BMpN/gbFca40p1imkxU+glo930rdOIcyAlUQNL6+mDnkZpwyQPNysEASV05oxaHkdSb3KetyisJQ5zT1cMPvVlCRELVaeXeu3jCfp2EZcSjSwohdJg4QZtuu22ycTOlZVMsdk2xGkK9dVMYVpsJk35024wZrzBxqOD5+oyDVE8ad1OAc8j2EyoGK6lbANOfCeucmvc1K0kwhqttgcSO6mPLIVsvK3GoqGlpxR6/LhlxnRLVm3UOB9HMOrwLXdVBTqZBkRdQWg7L7iuxxFGJxsctrjyTvZ0aEtB3liiWnhBBCCOkXZn7wp5h+6ocHexgDDsWhQcBY082FadLauugcMss0C6rVTzoz4lAQRahKmLv5MwGkypSVZS6oX3vnb3HQmZ/byr0hZPunbdgIPDr+VBy84U50rXvZTje5QeIXnUOZsrKCOORW8iKEXU6FUK3kjWTKwCSq57JkGhbNhF9H1v3X6BzyJUIc5VtsOnGIUNKbXz/SJTVeVvhK9rNNi0OeX026qWXEJrOflWFaHCopQTIuky5pgyMKURTmb7CL4lCUFX668/lNel5WHKl3d+V3Oa5b4ctg82IyXc7K8n8C3c49KAiDnt8oDlnRqqebbr2Nzs4kKLlpKXCzl+vttknqdAoLpcaeDpS2rykIEwAgcZgTOezxCOpJF0u3YsUh43pzesiRKp6nise3N0x5X/Hz6rmOFWCcOEAgvhXUgq7UOWTykRydHWXKtYw4ZJxMvZHNorLfd/M9NSWimWMbiA/E5ftoS+UyjiPzWTbfkwFrJ18dATXxUBzpPQdfQqDgHKopnw9nCCGEELJVUBwaBNInssY5VGlwDqVPXZvcaIgghFt4um7acmfEIacCN1NGkM1S2fvguRg9bsLW7QwhOwgjjv0AfImw9K8/ttPCJiGyblZAKdzsuU0yh5IuRq05hyraXSMlwcpZsi4lU1bmFG8+9Y1qvRAq7MQBIl2KFIqPqhaAnFzmUPJzNdZlZdU2xI6fazFvy7vaEyEhLnFVmL9pnUi6gQX1GhDW0a20iF0sK8sEXof1WtoRDakolBeQCvumW7NnKYo7vgrTro7ZscJLypkKmTjGjRNnBPe6+Vvdg+Bj5tU2JcJG0YXWG1nxJM44h7KlfWX5SSG8nIiRLSMEUhFTRXXbfj15b0N7PvD1e1pWVlY8Plb06KHNe5aoUMqcpQ4fiOo6aNuzpX1pJ7Jq8mAjCmyWl2tLIJPPsd+iQycNjq41hEab96roHHKaZQ4VnEeBpAJdVOLO7W/cPY/GbGcxhqGWcw6NGjEy5ywjhBBCCNkSKA4NAsUn1g03Y0jb4jYVh6BDZnPlGSanKL1orLYNx7jgFTy/+GkA7GZChi6zZh6ORXIgRjx3g52WlmoVvmeOg0C5iJRACmHR2ZtNu54waGgT3wzxKnBEIQhDHazcu3MoDmqpwFu4KTa5RLnSLMAG+QKJ2NAWNzqHjENqGJJ5lUpb4hwqKSurDhut97t5WVm3k4hD9VotyfURPwmALjgxnDhz7ILuXCC12LKy9G9bWBCHkhya8hBxmznUpAW9yfOxYpt+701ZWTZIO6zlS6tK0cJG9+YNvS9bgpt5P41zKJJ8KLirQkSFm/9EmMgsE9cLHc1Sp09SVqadQwhtqLTXlohDqsQ51NBtzHERKqdpyVWRuMStajACnaODtm1Xvu40bDrULifTdc7sjymPLDr6mpENjo4Kgpdkcv/s2MTLPXTJUnxoEyIt/1NB+fezX9njKPhxDWNlk20qAQAHvvVTGP6unw3cdgkhhBAyJKA4NAgUb0hViTjU9KY1u4z42NzVjRWvJRfLYfFiHsC0t3wG45xOnN31CwCtP20lZGfDcQSr9ngzdg9ewPqliwBkvmcl34tAvMThUMCrpGUqdlktNLRUVmbyVerd1jnRdFF9QxyGNStGNQi8tt19o4CSFRva0BhobW6wh+t5fqUC5ebLyoyQ0DZiVO73LGEtORZ1LQ4FQTdEh21n3RUGJ+McCuq1XFmZudnOujca9k3n0GSp2G5aAaIoRlXC0qygpNS2nnaXMs6hSioi2O0ad1gP76sRg2qbtXNoC8vKgDRYuNjB0m/iHMoKNcWQbiOWxWHiHFJuJQlDV4ENC/eHmxypkve04HAFdMlVE1dNkVjnIZU9kAjEh8Q1LfJ5EJ2jpbRzyPGqtqzMM+KQduSYfKxWHTp+puV8WDivSklZWQSvoXuooXiONR3VgEw21wA6h7DHUfbHfXYbm04ftxdwwBsHbruEEEIIGRJQHBoEiheYqqTbUBSam9bmT0crlTa4KsBZl92LJWs2NWREAIC37+vgvPdPWO+OAwC0tbX3344QsoMxbf45iJRg+d+vAoCGMpMsIbxS4caIK1kHTb3ku9cMG4JbqyU39CUCVHFbcVC3OTGNmUNaQCq4P7I5NZH4GKaM6yEVwlzXRaDcZB+UC8/zkr9HyNwcazGgqruVqRJxwIg7dXdY8rsWvgL4Opcl/5qsKyYMarkSPUffbDvZZQquKFc1ditLW6TX0wDrkqwgk+djxmz+xnqug7pyc+JH2IeyMuN66Wsrcy9bVqYFoLjQpMBD0NAFLYBnjxVgQqszrlHrhOqCJzHErSB2q0mJWQtuMCukZM5BptNbK6geMngC7RxK3sdK+qCknjqHYvHhxfVk3zNlZVXrHGrtQYfreoiVQLLOIb0u815lSxRDqTR8Xg1pu/o2vWwqJKXi7QA+gBm5G9TYackYBqgrGiGEEEKGLhSHBoH0hlQ7EBwfPgrOId1iu+ym1eBVqjj5gHFwwi786//8Es+9sg5ASXeYqXMw+uN/x+a3/RyVYSP7bT8I2dHYf599sMififHLbgKUSoN5m5S+lOUBmWyabAeuQHeq6snpZzGug6C7oRSoiJsJ0411l6hi2Yp1MZS6a4zY4MERpdeZH6Pplmb3NdNNDQAQ1VFTflrGUiYk6G2HWhyKgkT4CsUvFRSyzowoqOecK2ZeNnOnUfhq7EQmTiICIKrbrKCyMj/jSIms2KZLjEQa2pibY9qTSG8EhtCGKfe1rCxdXjUpKyvrhNfY7j4vmFnxpLZJL1CBcvzEhWTcYMN1WVnJe2qPT+YzXXQr9YQVS0rEslB30TS5WPb41jfbsUdOBY4K9b771oHUpkXOsvWWIpJ8xjNdO80xt2WbhbIyRzUTh/LOo1B863BTJbl+A4HscXTyQx8daoQQQgghvUFxaBBIb0iNc6ja4ByKW3AOwfEwtgr8Yc4C/Cr+NO6+MckcKAtElTG7Y/jsM/tj+ITs0Gzc562YHL2MV5661zr0ylwIgfgIS8vKGjOHrHjRgjAgmTKwsmDl3LaMcyis2UwTm42jSUOr8+6apByn0RlR/JsSZtrdA4lA4WfKykx5mClJLbalT7ad7H/kDbf7JlFSMlTMRgOQ684YB902/wdIxaG8gNRc+EoHKrYLVjHXLTdWx09K7oLGMrui+GEdnC2UlcWZkqi+kA08V9oFpgrOIV81dl6LCsc1W0YIpI4Z090Lnp90tkPaSa5iWtmXiENxQTwDTDlYa2VlNvup0uhWNZ8JV7vbzIMSp562qTdZfL4KAbdixaF21YW6ciGO29I4knEnTiWTg2S+V/a7kzluyeejWeZQ3mkYiQdHmbKy5LhUBqpbmcGUlrnN/24QQgghhGwJFIcGAdvFxdxwuPmbMSAT5tmTE8GtAFEdo5f+EQDwWff/APS9Ww4hQ4kDXnc26srFK3f9nw3ibRaaW+bqsUG4mRtq4/RzWnia79gysDqcOGxoyZ7FOoeCGpRxDhVutq2LodA9zUXGOVQSVGwItAAWmGXcClxRNjMGcR2BeHBs2VWZkJAILaGfiENBULOuqAiNgoIbh9isErEpCmq5blnGMZN1bxQ7w5kcmiKJCFDPlIOVZw5lOzjmxQ8vH4RdCK0uw4hBUSZMuS9knSYqU1bmZ/bf093GshTb3ZsSLYt2zEiQlGGJV7XnGhUFqCk/bQcflQRSW2EsPT5hoZStJ2xHtJLMoVAqcOKkE1nkVOx74IbJMfT8qs3iS/KSfPu5H46uXFe2VgjhQ6Ja2m5ej8kIpdk8p1g8uHHYuBKkx8SMN5cNFTXf335ldyMO8TxPCCGEkP6F4tAgULzAhOOjggBKqcwyzdsAW1wfWP00nDVPA0d9FKgm4aJTdhk1MAMnZCdg0m6T8Wj7Edjz5ZugrFOhvPSlLHPIL7mhDuq6E1gLwkDqHOqGp+oNXaiymBviOKzbLJxKpegc0mJToawscZskN73Zm99iQHDYUFam23SbTJ4osAJSs7Ii45xSWhyKgrrtlhZkSm/sGFSALmmzyxoxfDPa0rIyFdo8pLjgHGrWiSyAD8SBPRZlQnmsu2CVddMKMwHD2e26PQT527ycmnYO9dE5knOt6fcrdn24utQ4jiJUJLKuIkMxtNorCekO4MENk8+4uBUr/EnYhUC80hBug3VWZT4voVSatnlvwAY0Nx6P2DqHEpHPseKQCZtuQ6yz+HwtjFX1ejyJk5DzPhDormJFQdCKr9nMIafStKys6KaKJHGhmf2NlMDzB9jRM+EA4A1fBQ45fWC3QwghhJAhB8WhQcBeYJoLc68KT2KEYaZ9dLPORFncCrDmqeTnoz4M76yfQVVGYPyUfQdk3ITsLNQOfQ92wXq0L0lcd2VP+yPxSl09Fc/DkngSJqxbYKeFxjnUgmvPCFFRULM3x83ItiNHkxI4J7O+3GsR5pwo6fbzrzfuqFBMByeTYZTsk8R1K5IVnTUG6/yp6DKloFt3z/JypTd2DCpEtxjhq2Zv2rvQbjs3eipAp14mDJvvW25fdNBxsStVlthJRIcobBQvAsmHZ5eFMhexwqIRGvvo3Mx99lzTwbJic5+ahZ2b7CT7UhUidoolgz680DiHKnb9brAZIbz081Ui+Bi3lpdxDkVO43vZFO08KyvZjBwfnqrbLmzmGPp6rL52DlVVDa6opBwus56ycs8eh6LL4eJCu3nzXsUZgVZJY/dQQ1z4zEROJhtKl18OOCLAMR8Dxuwx8NsihBBCyJCC4tAgYIMrzQ2HaW1dS3M37EVoT63n9eviSbOBMbsD+74ecvFyYPKs/h80ITsRs048C6vUWByw8T4A5SGykVQaOmIBSXDxotGvwx4dj0B1rEqW7aEzU8PrjdMnqNnMlWbY0N2oDhUFCJUD38/fgNrclEJujK+C9G9E5ua3KITZzCFJA6kBINB/jyQOEFl3kV/qHDLleVJNxKFI71vk+DbjJ7dfCFBzkvDqOKgjDpNtdTvt9mbbU0EqIAXFfWvM4DH74MRp5lC5OJS4clTJ39hijk8r5b020DrQZWV9DCTOi0OmzKmSlJIBCEwek1cUh7zccU2CmxudQ5VIO4f8ql2HG3Ym76XrIdKdvIqYzKDsZzrnlOkFmzlU4qaLdFmZq3OxzDGwbeqrFcROBe1Iu8W5np8EjgN9FmFC8eBEdfvQxWzP7Fu2E5zJOiojbigrS0KzgSSbq95H0YoQQgghZHuC4tAgULzATLsXpU/HzY2L24NzyDxJdg46LZ3Yh5BOQoYqw9vb8Oiub7UdvPwSEbba1oZKtTFMFwCGzT4LLmKsuPfXANIw6FbCiI0o3NnVBV8FOeGmYdlMe3aJakl5jEjp+uJCILWfdde4PZSV2Xb3yQ23LXszrpkosK6iEOXOIRugXx2ux1K3GThxofwJSISfmu5sloRtJ/NrTrsNYnZViG7HiEONZWVlmSsmhyc2WUElYl1y8x9mumnlHSnZ/Ytb6EBl26IHqeulL2RLGs2xV65vmxTYcsHC/sZOvqOZVyKYheKhEiUlj65Xtev3ws2pGwxeaQe6MvdqUspWnsdTRKKaDo5uvMyIdOB2Uh7oWzdbJU7G6lfaALeCYZIJejfd5IAec7rKsO9rodTNhstnvoNxIQw8S1pWVkmX1Z8XiYLSMlRCCCGEkB0FikODQPrEWpdxmIyPrHPIXsT2FEitL0QPessAjJKQnZvxx73POhGKHcAAYI/jzsEex51T+tqjjzoWi9UUhI/+FgAQt9Dy3DBtr30AAC8+cS/cTC5QGSZfSOnMoTLHhBEnsu3gEUfwJLbd07IlWMUyn8g6h/IdnIz7xlV1hI5ZprxblRFRnLYk7ywK05K5sORm20eI0G23+2b+3tWdYbmysroWh7Id0qIoRlXKj5tx/pSFKRtM0LF1tmTe+8jxcp2qykKri5hOW164uddlyxDHtdlKVsTTXcUANHVBxWXt7oulZ/DQpjrt601geiXqtKJg0oGsJHOopOzOlIO1RCarqmHd+j1IygNT51C7Foc8r5ITNM2DkMCWN/bNobO5bSKmdj6JoHOj3qfkO1B07yZjqzR1DqlC6HTseIlQCV1+uS3KygghhBBCBgiKQ4NAeoGpnzhnAmrtMvrCvNJTWdmwXaB2PTgJqCSE9ImZ0w/FA+5sAOW5KDjyg8BRHyp97ehhFTw17vXYc9MjiDaubC1AXjNs6qFY1n4wZrz8a/iq3mPmkF9pQ6BceF2vQuJ66U2xLXEJGrNybIZN5ua3WFYWF5xDtvuWcQ7FgS2vM2VbRayQ0J62Rvd0u/lExGjsNhbqtvfZPKXAG2YdMx5ChMZdlHEOBdq9ISXCjxGvTOc2p6SkSTm6O2RBpE+OQV5wKWt3X8QI+F5kSqL6VlYGpGVSdp9cH75EUHGUvpeF/TUOKDsO1ZjDFEoFbcq4qCrWOVSNu1JxqIkbzJyDsq66WCq549MTEtWbBkcbga6iAsD1rVjTproQKgfierkAbvHMWM1ntW/i0PDjP4Fd8RqmLf8NAKBSNc6hxrIy5fpW8GkYtz0mafmfOR4SB6XdDQkhhBBCdhQoDg0CaTmDzqrQF/1BtttQyVPbBk79BuS83w3MIAnZyXEcwcuH/wt+4JwDfws6DI0+/Cw4UFh65y+tkFJsE9+M6IgPYC95BbvIxtLsHIPruni0Ohu7r74NTlQrdSYYcUNlnENBMcTYbe4cMje0RiQyAoLZJzcjDhU7ZBlslkv7KP17Ig4pp9IgYgBABQEiLxF+VFS3N92RN9zemFdUgEAvE2ecQzaDp+S4GXHHjr3MOeRWk7GFeZHeHIvs/pUtU8SIJ74Wh/rayh5IHTGpOJS+B6HuhNfgHHKKzqHysrJ2LQ65XptdR1vcmTrGkA/hthj3asZZVdxmj8RBUydN5FTgo54IYG7VikPD0J3pmpfui+3It4VlZXvPfTOeqx6MqUgywnwvLw5lt6Uc3+Y9FVHW0avderqjGpCIqCwrI4QQQsiODMWhwUB3cTEX3cWbseSX3m9KMGwcMGLXgRkjIUOAM950Cj74+R805Pi0wty58/Cc2h3yxPVpRliL4tBe89+NV2UsAJR23crSsc9bsFu8ClM2Lip1Dpm/EdnQZis0G0HBBFMrgefl12GcS5FjysryziFXO4CAxsBmg3U6DkvEoTiswdNlZaogKCil4CNErNveI6rZv3dRwTlkBaRMJo4Nyi4Rh2Lx4cb1Hrs9Js6Q0G6zkvkbqwolcEWXZxmu/jte1dk+lUp5TlVPmO5bjnlv3PSBgckcKoZiZ4UJFUfwJbKvM0SOb3N73EoFooWsNnSnOVJN3GCpMJYXh4pCXzOcOGjeVczx0aaMu8235ZNtkgoskvmc2g56smXOIYjAOeFzAIBQOXC8ZBv2fc1+lvzhGKa6sG7tq43rKZSVJS605LPtxAEiBlITQgghZAeG4tAgUMwtcPz8zZj+BbES+B6fRBIyUIgIfHfL/gy2+S6W7HoSpnU+CnfjcgA9BxfntutVsXTau5JfenAOAcA+x/0DasrDpOjlUieGq8uaVNQoDjk2wyZTQlQICDbCj/nfKQRSuyrMlJ6Vd6sy224bnnEOIckFijOdtwAgDEO4oqB02/skTyl5vfKHJw4YLSBFfrIMovRvoykZK3UOOV4yXhscXPJ+uBVUEAI6MNnJvP/FsrKiy7MMM89k+/g95cQ1ISyU9CGT+2RKFqWwL1mHS+oUKwh/GSeL61WtwNSuuu37HUovzqHMviu3eR5PEenBSRO7VQxDlx5Yvk297fiVcX3Zz6ReX0+lmM3Y56i3YHHlINQzwtKwkWOw2NkLbVMOtdMmzzsbFYnw6PXfaFiH0g92rGBmhEYATlxnWRkhhBBCdmgoDg0gcazKZxhxSF/8FgNgzTJlN3KEkO2HcXPfBQcKY5+/EUA+v6Y39nrjx7BZtUEN79n9t/vkSXikMgdAuWPC3Lxn3TWmFMk4LqzzokRcSp1Dyf+u7X6mhRFVR2TKnJqUFYnedtuwVBzyTVmZW4GfeU3dBO9XjHMo6SIVKBex15aEVUcxKhIBxl0UZvOUeu5E5qoAcWQ6Qpa8H24l6VIXdjccj2Ibc+ue6SFHKJuXkyy7Jc4hLQ7p8RpRLwxqNouuWFamcqHVpt19wTmU+bx4lTYrPg2TmhWOIvHglAk++jwlubDmVAzpjUQsafJww/XhQJmB5Rx39lhky8ps6/gtdA4BgAjGn/tzrDzhm3aS71ew75cWYvZJ77LTdp8+D08OPxIzXvw/vLpuXX4dhWOi3Cp8010vDhA5fJhDCCGEkB0XKg8DxJ8fX4nTf3Q31neWdHaJ6rkn1m5JK2rR4hAhZPtlzpy5eBZ7Yo/6EgC9lIEW2GXiVGz4wIOY8/ZP97rshr2TjoRhiWPCtuPOuWu0k0SLAcVuT1liXU5m2nmnTkbtHMkEHRedNQbjHKoa51BUTxxAXgUoZLgYsUPcCurKTW64jRiuBY+u7kRoUVpAKnNFidd4LCKnAleF6djLHD/6WLj1zQ3iRUPZVGScIs3f16p2kQxT3UnZntv3v9vGcWLEGyvm1brT8r7CvijHt6Jb9pgW98fg+tWcwGTKCIs5SwaJ6qgrD8iUXPbFOZRk8JSLpbmwaTdpU1/XHdus+6bUOZR3ufWVMbsfhL1POLfX5Uaf8jmMkw4svP5buemiRUx7TFwfFQkBpeCocMtEK0IIIYSQ7QSKQwPEiKqHp1/pwPk/fxCbaoUnrYWW1G7hZgxILPnNOr0QQrYPPNfBi5NOsb/35DApY/KUPdDW1vtr9j72LHQrv/Tm02bm5JxD+VbuVhwqyUQxN9qq4Bwy7eC9TOZQ00BiLXhX24bZsfgIITpzyM8ILnUjgvtVhPAgUT0tQXJ9OKLQtbkjGZPXjliJdWwkqzZOmvI29b6ql+blGIzw4oSbG46Hcny42U5VJmi7h8By4xRqk2CL3Z7FTnGSKe2Lm4hDuXb3tULGlFmvk/7uVaq2BBHIOMZ0TlPjoErOQaYkrwWSLnfNnUOGxjwhcywqmcXzzqEtFYdaZcqM1+HZYXMwc/mVWL3utXRGHOTK0kwAeBTWtXOI4hAhhBBCdlwoDg0Qx+4zFle+QeHklT/B4m+ejO7lD9t5xSyGtvbk5uK5Jc9CKW2176HTCyFk+2Hi0WlJSqvdyvrKvlN3w3XV0/HEsCMa5hkBJOs8NM4hU6YkhcyWLMYxFOsbXVMaZ3J7PITpMoXAZktURwjP5u2osKYDkitQXjVXihTWdZt5t5LcaEd17ZT0raune/NGPe5qIqRnMnGMk6ZYZmX2xVOhFXXKMqCMUOZFnQ1/Y5VbyQlZiAPUlN+j4OO6XiJgobxsrxWM6OGaHDovGXcUdNvMoYbPluvDkxgqChHo9168RneRwffbct3bVKacsOw9lbjeeA7SZWX2PNUD2S53jTOzncjSPCwgm7+UEYdMSLrNHOp7rlNfGXnK5zFBNmDhb1P3kBQe7FjRtd6dlDPSOUQIIYSQHRiKQwPF3/8bR912Nj7i3Yh9ak+hdvkZqK9eDADpjZBmz/1nYoM3Hqcv/Xfc84P3IeraCKewDCFk++SQQ+fgWdkLQN/KyvqCiOCo930bs8/5asM8z69ghTMFo1bea6cZF6JbdKKU/U0phFYbESI27hsE1iGhCpk8dnxRHYF4EMdNym7qm5LlvWoqKMRxMgZbFlZJnENxYG+6zTi7N28AkAgEdfHgZErmjKPJKQmbNiHNSotJpeKQ3oYfdTYECKtCeDZaKe8VsctsqdvTjMPT+2Tfr3raec0tuqD0exKG9aaCWdZh41erueNhBJZY/NLMoeJ5CoAV+sIo7nWfHBUgbpbBkxmnNLSp1yV2GTHMOoec9HM40EyaeRKeGX44jnjx51izZk0y1rie+w6Z96leryVB6HQOEUIIIWQHhuLQQHHImQjP+Cmczy7BHcdfgygKseHHpyHc8EriHMo+fWwfi1EXPYRFE8/A0a/+Bq98+wSMrK9uHuZJCNluEBGs2OdsvIDJPZYfbS377joS++46onTey3u+FdODx7Bi6TMAGt01xcyWLOZGW1nnkAm4NmVlaeZQ7FRKW5lLHFghIYAHJ9icTHcrgJcEQAdBoMeWBiyHSDpliSlB0lk0tc6krEz0Mshk4kT1HpxDrs4Msm3qS8rK9H5Wo86Gv7H29WZZLXr1hhWHtlDQj21JXyX3f9RLWRmQuFbCJsdEZcq3PL+aW4eZ16xUMMkMKuyPa97LkjK0Am4PGTzZbCQjDhXb1GddTl4lda4V92sgGfXmr2CsdODx334tGWtU6MBmBLpaty6/HHhHEyGEEELIQEFxaKCYsD+8me8A2sfitBNPwJ1H/AjDg3V45UdvQXuwvuGiW4aNxZyP/Bx/mPE9jKutwAFdjzDckpAdhBPe/VmM++yjg9ZdcM8TLgAALL/9CgBpp7G0TClflpNFmZtwLcyY15gQ6ApC6/RIOmSVuUwC66gIxYNrxCGvYtur13VWkHUO+W0IxYMT1+HGdQTi2zK4oDMtK0tyiTLikC2zKi8r8xH2mDlkHCnVuKshMFm5PiqZ/ZO4NQenETa2VNA3oocR5ozIE4U16+DyCk4p67ipZZxDDe3u0/3zK23wKtWGeXEm2Dq3/pJW9Pa9rHU3LF/EzWRVNay7JGy6mCfkZN5fI2qpQj7WQDPp4Hl4bNRxOOLlq7Fq5cupiGnHrt+DoAYPzfeXEEIIIWRHgOLQNuJtp70Nfznkv7Bb9/OYvvnepjcRb337ebhp9v9ggxqGLul7S2RCyLbHcQSjhw3ejeHEPQ/EU/4hmLzsd1BxnCm90mKDcaKU3byaabasTHc/C+uIoijJDsqU83glgcTZtuUBPHhhJwDdUczcQGtRyOQhuV7FdspydD6NcZSE3YlzyPEqCCUpPTOkTpqSEj4vEa8kqiFWYsWMLEaYaFNdDWKZuBWb4wOUOEWaYJxD0dZmDtn3K21S0EzoskHO9e40Y6rQwU25WXGomluHmRfrDm9FSgOljcun3rs41JOTRnJh06bkUecJmcyhzPtrxm3LytxG0W+gGP+Wf8MwdOPJG/4bblzPP9jJfLazDjtCCCGEkB0RikPbkLeddT7+tM/nAZQ/wTecdfrb8ZfjrsMzR319Ww2NELKD03HAmZimVmDJY/c0ZA6lgb5lmUOV3P8mN0mFdds23sxTbr7zmMHJuEwC+PBjLQ651VxoL5ApefOrqTikEiHCuki6OgrLpGVMJii7IYMHiRumKiFUWEsEm0wbdru7uvRvmOpqPB6Z7lN2v1oQfMy+N2vd3hvGcWK63dn3K6il5X2F/CQjfAVBtt19uXOorlyI48DPlqb1kiPVIIQgU57YQlmZp4KmYkneOZSM2WwrKriokp/b7FiTwW07EWbSfrPx3MgjcOArNyCsdxacQ9oxVu9Osq624bgIIYQQQvobikPbEBHBW869CDft/SUsmfbuHpc966R5OOPkE7bNwAghOzwHnHge6srD2ruvtIKCcVykgb5lTpp8RzO/qgWOqG5LwazTw6nkOo8ZEnHIlAd5qEaJOOT41Uy4crIuK+54lUQQUkEiRDgV63CKa0mgtZNxFxnisEkGD5AKXUFX06wgUwo0TGqNgcmuccZoASuutyT4RIVOW33FiB5GvPGsQFez5X1+tdw5FNZrtlNd8ZgYAckIXDmBKSP4lbvBGruNSZ+cQ80DmrPZSPY9t7lWWhzKiH/m51Qc2rbZPrsc/wFMknU4NHgsd0wcX7t7N61MRFNmDhFCCCFkB4bi0DZGRPDm8z6FN5z72cEeCiFkJ2L0uF3x2PCjse/qmxHXuwBkMmzMDXiZ0FEUh2wgdR2hyZbJZA55EiMO82KCo+rWURGKj0qcbN/xKlaMMYKLFXcqbUkb9bhu24CbZZURh/y2REAqEYf8MnHIBHCHjW3q7VgzrpWoeDNvSrVqRhwqKa0qIRXGtsw5YsPAtXMo1zEuKi8rczLuIpNL1BharTOC9Lhy3fTMe+pUUCkLpC4JlLbbbEUcQpgra8sPK+sKyrvaTCmalysr02JZweW2rRg/53R0eOMwXGq5dvXV/Y7HGjUa7l3fRCXT1Y8QQgghZEeE4hAhhOwkqEPfiV2wHt7ztwBIS69MmVKZk8N2jtKuGc/zECoHiOsIdLmSWcbm3AR5ccCNA+tKCsVDuzLiUNW6TUypm80c8iuIxIerQrhx4jKxokE9CbT2/KpeJhUvVKjb1FcbM4eMI8ULNzcNks6Wo8VF8cOWamXFod4Fn1A7kEoznVrAlpVV8t3KVFgHQtN5rRhIbUq8araszGvW7l4LZWb92XnKrZQ6h8oCpcWWUdV63ScfzTN4sgKdV3C1mddk3ycrjJnP4bYu33J9YNY5AIAo4zabvtcU/HXCeZiy4WFUJNzmohUhhBBCSH/Sb+KQiOwuIreJyJMi8oSIfFJPHycit4jIc/r/sf21TUIIISnTT3gHNqjhOHjj3QDSm2ojGpSKQ16+o5mIJHk9UYCwZjqL6Xk2PyifOWOcP0DiALHikF9Nw7C148cELHteNRGE4gCeSsQlE8SMIHEOGQEp6xyyGTwlziEzPj/c3LTEK/u6RvHDlGp12f1qRfCJCnk5fcVkA1Uq7bkxxmENiOoIlAtx3Nxr0nb39ebOIbM/WigTx0WgkvXY3B+3vFTQKxGHTEi0Efh6wlPNxZJs2LSrRa+4IA5lhS4341xLxr7tRZiRx1wIANht7Kjc9OPe9WksV7smvzBziBBCCCE7MP3pHAoBfEopdTCAowB8VEQOBnAxgL8ppfYD8Df9OyGEkH6mrX0Ynhh3EioSAQB8LTaYEqyy7lEmVFcywkIADxLVEWqHkBTKeYqZM24cWmEkEh/DkGbgOMXMoUxmUOwkriAjLhlRxNXOoWQZL+ccMmVWDS4ZpKJBJepqCFO2Y82KQwXxIuvGSfarNXHIdNgqOpFaxfUriJRAXJ0NVDWlfQEkqttuaFmMmBeHNZvj1KzdfZAZl1mXcQHB9VGRCFEU58ekgoayOyPSxC2IQ0mZVbP3oLFbmSl5NAJQxQhRyrHHxYpNXuN7P+CM2xtq9rkYd9D83OSp48fgyQM/ocdF5xAhhBBCdlz6TRxSSr2ilHpY/9wB4CkAUwC8DcAVerErAJzeX9skhBCSZ/jhadi9LVMygb49tHbPhgSb9vGmfMjcwGdDkLNkS5Aix4crKpnuVdKSNiMomMygalsiCCGwnZ6McOOGaVlZXOimpWyZVQ/iUEmbeoOXESaKZU+mc5bt/pVxRPVE6ORDlfvKfoediA1TX2d/9013rijJHCoL17bt7uu19Jg2dDRLQ8LtWPXPRcGvXssLfmWt2Y3LpzfnUByG8CS2pYpF8plD2jlkPpvGOaQFspwwNojOIQCQt/0AmP+ZhuknvP1D+OPED2Lc4e8YhFERQgghhPQPW9ZapRdEZBqA2QDuBzBRKfWKnrUSwMSB2CYhhBBg+lFvwIpbJmIqVtmcGq+Sti0vYhwoWTdHAB8S1dO281o0sZlDBXHIy4goca6bUxVOnJQsmfbwpgTK89t0G/VQtz2vWOeQr7udeZU2RE4FrsqUPdmA5vam+9IWd6HbG1l6fLLt3ovHIxW/6ul+tdCBShXClPvK6MPeARyWCgvGFSVBZyLSleQn2ayesAYVmcyh/PZNSV+Ycw75ep4+DvqY1evdaB82LF1/SVmZm3Er9UQ9qKENaFpmle2a5lcLZWWmNNAIUVlhzISnb2fZPm0VH6d++L8GexiEEEIIIVtFvwdSi8gIAL8B8E9KqY3ZeUopBUA1ed0HROQhEXlozZo1/T0sQggZEriug2d2fydWYRxcL7mxNiU6Zd2UjICQDQk2ziGTE+TYjmYmXLrgMkFoS7SygoJXqVpBwQhNJlDar1QRuxV4KoCPELFTsQ4nP0q7ramCcwhRDbESOG6ZmyYZQ7vqahoknQ12Lh4PI5DZsrIe2rFnKeblbC1tw0ZgsZqMXdY80LSszOYSBfWmId1G7Mo6h8y67Htq2t0X3EBeSaC07XrXi3PIiIfNHD5eSbcyk7tk3EFmenbfjSjksnyLEEIIIaTf6VdxSER8JMLQ1Uqp3+rJq0Rkkp4/CcDqstcqpX6slDpcKXX4hAkT+nNYhBAypDjuvC+j/tFHICIAMvk8ZY6LSbPw5+gIuJNm2EkhkhBo07LclBMZQSEqCgkqsOVAOXHIr+ZEDECXSiERh5Tjw4N2Drm+zUaqaOdQskwlCTc2REEiGOh9y2IEruHoaloOls0qKopDZv+MM8ZDo3umjNT10j/ikO86eGbMfOzR8TCGB+tK85NcG1pdB7RzqNjRzLaezziajFCUCn7lpYK+amzNbhw/vYlDZl3NHD5lncjSNvU6A8v1ECnJuabMmJ2SMHJCCCGEELJ19Ge3MgHwUwBPKaW+lZl1I4Dz9c/nA/hdf22TEEJIIxXfxe4Txtjf/UobYiVQJRkwM/ffGxPe92scvM+edlooHpy4bkvBjMhgbsqLLhMfafmVyjmH2mypky1FymQOKTcRfnwkna2MkNSmu515GQHJIHFQmsGTjDPZVpsEuZbjWXJB1sXA5WyOD8oFkjLK9n1rGTnrDHiIsF/nw6Wd1/Lt7rUbqyCa2ADpXOZQvqxM9GeiQRxC2CgOZQWpHrCfjybHzghCkRJUKvmsoazbqA4/L4yV5GMRQgghhJD+oT+dQ/MAnAvgRBFZqP+dCuBrAE4WkecAnKR/J4QQso2oVCr48wH/hvHHvbdhnojgsD3HWZcRANs+Ps0HMqVn+Uweg6dSISGbu+NVqjbjxwRJm8wg16sknbIQoGLEIV0W1aYS51Cl2pY4ijJlZUmZVe+dyIqdtgx+VhzyysWh1DnUWFpVhnEMlYlvW8oRx7weq9RYVBCWlshZoSaqAVENNeXBdfOndDEB25l9MM4hs69iBb98qaCP0Ao2dppxDvUiDgU63LpZWZnJi6rDh+8kY1Zeo7stFC8njKUiZd4hRQghhBBCtp5+C6RWSt0FoNHnn/D6/toOIYSQvnPquz/e8rKR48GLawiCfFmZWyi7MhjnD5Avrar4bYj8QL9GCwpxgLpyUXEcKLeKNtHCj1uxHciGqW5AEgFDOZVk/RqJ6gibnLqyQcfNRJ1c6VVD5lBe/PBVo3umDNXPZWUA0F71sWDc8Zj42g2lZWW2HCtMOpqF8FCUpoyolxXszLrMe+mUlJVFscq9p3Z9RljrJZDaZFI1K//K5gm1O/qywXQiy2wzgJfLSzJjzYanE0IIIYSQ/qHfA6kJIYTs2Kyq7oNptWcgtQ4AqchgRKJsILWKY+38aQxl9qoV25LcCAo5cScrPrgV60wZhm7ESiCOB3gFcSgOSsusgLxzqFlWkDgO6spt3D4yHcB0PpKP1srK0ryc/hUtRs06PRlPyb54pltbWGtaamcDpHPOIVNWlu9Sl82RqtcDuKKaikOtlpU1K/+qaIdYvk29bzZiJwWSLysbO343AMC48Wx6SgghhBDS31AcIoQQksM56DQMQzcqS28DkDpqHK9RHAijEE5WSMgICn6lHb4pK4vSsrK6ueHPig9exXbOckXZ0GnjHIqiOBlDHJQ6aYB8FyvVQ1v5sNCxy74+k+Oj4hgViVpqmz5Q4tDBR5+KjRgOVVZWpoUaJ+hsWmpny+Qy4pD52TiPykLG6/Uus5Hc+kw5mAnAbkYY5LOqiviei7pyEZTmCWVKA+HngsWnHfYG4AN3YNe9Z/a4fUIIIYQQ0ncoDhFCCMkx87i3YJNqxz7r7wKQOj1c28o8FYcC3dEsLSvLZA75qRvIiENOFFhxRjJlWOJVABHUVTIvKyA5olAPkvKznsShXCeyHrKCjMummIljBJM4qiE0Algrgo8piernoGSvUsWrx/07hs//aMO89mEj8JyainGr72taatfQJh6pc8gKfvr/KFMq1qzbWMWWlQXoiagX55DvShI2nRmzoz8LTsE5lHNNiQCTZ/W4bUIIIYQQsmVQHCKEEJJj9KgReGLEUWiHCaRORAG/pKzIhA9bl4m+mQ+UC3HcfDYOAInrVtyRjEvE0UKEEW6sgOQly9ZriZvFieu5HJos2bDpuAdRx7hsiuJHmqlTR6C315o4VOKE6if2fv2FmDbvrIbpnuvg2XEnYM/NizAyWJN34dhhFdrEI3UOWeeRcYNlBD8TTl0Uu0wpmurFOWTK8pwm2UAiggD5sGm4jZ3IxPVzbjBCCCGEEDJwUBwihBDSgHPQafZnkxvkFbp5AUC9XhAS9P8mT8bV4o5ERhzKOIeyQkAmpBjIikOmm1ayTTcOSrt3JePLhk03dw6FRhwqBCbbEriwhsC4Z1oQJ6QkTHlbMHzm6XARY5/OheUdzYwwV1pWluxrmrOUdQ7p96q4P46LUDn2vWyG7fbWpKwMSAS6MFMKZ4SnbIj15MPfgn2OfHOP2yKEEEIIIf0DxSFCCCENHDT/TBvcXNFZMzbwOSMOWZeIdn5IwQGUBEB7toW9k3UOZcQHI8IYwcC4SswyptTJUUFpQDMAeNXmnciymHUXM3Hs66PAikPoQeDIvFDvQ/+1sm+Fw448Hi+qCfAQl4Z0GwEIOedQJTevTPALdOaQlDh/AvGAqOeystgIeZXmLeeTNvWFskLknUPeKV+BN/+fe9wWIYQQQgjpHygOEUIIaWDEqHF4bvhhAAC/ktywm1bxKltWZhw2fj53J+sKqcOHRGlmUNoxKxUCjFBjRI609EyLTdqh5KnmziEzTqCXQGq9DdfPr8eWwEV1hHp7TgtuICNgNcvYGShGtlfw1OjjAQCRNG7bltm52eNiyspMB7p82R+QOofKAqUD+JC4NeeQ26SVPZA4w3Jt6gvd0wghhBBCyLaF4hAhhJBSxr7hs3hm2jkQJ3EQpeHSqXMkalJWlnWyBOIBWlBw4xCRY0rGUmdJKg75uf+t2GTcKCpo2qa+knGq9FQOZsUpL+9sqfg+IiVQYd2KXs1yc7IYUWhbO4cAoHLo2wCgNIfJuIKyJXbKzZeVuSXOIRsoXbLvIbxey8oiLTT1JA4Vw6bHjRye/D9qRI/rJoQQQgghA0N5qichhJAhz+RZJwOzTra/G2eOirLhxVq0MaVVrskOSm/8Q3hwTFlZxvmTde4YIcGISlGh9MuUlbkqbCoO5TJyenD82HUXxAsTlCxRYAWSVgSftCSqec7RQDF73ilYfdcYhE7jOIeNGIXnRs7FrgcfZ6dZ51AhZFxlOpCZzmWlziHxIXHPZWUqyAeZl1GXKgJJ5+8x4wREL70du+4zp8d1E0IIIYSQgYHiECGEkJaoVNvRpSqoblphpxlxyIQ7G6Ek62QJxbOCghvXEbm6jXpGfHDt6/zc/8a9YsQaT4U2N6cBEdSVh4qEPTqHQl2CVVbCFMCDxLW0rKyVQGrPuHCaZ+wMFKOHVXHlQf+BYcNGYGZxXI6L/T51S26a41URKBe+kxiHbbv7sNsuE1nBr9w55PRSVmbEQ6/S/Nj9b/t7UW0fgcPMhBET4J71sx7XSwghhBBCBg6KQ4QQQlrC8zw82H4kDlx9K1QUQFwfsRZRjHPICC7ZsOEQqdvEVSECx5R1ZVrZm65Z+nVxYZlUHKrnum8VCcRDBT2LQ7EuaytztgSS5CNZ90wP7hc7dq8xQ2lbct67zml52X1PeDdWP7kLpujf/WoSNp7NHIptK/pGsSsSH04vgdRmXT05h55tOxTjhjFfiBBCCCFke4GZQ4QQQlpn+jswFhvw7H03Acjmy5jSqrzIAyRCkWPFoTQzKOsscQviUJoLZJxDyXZ8hD2LQzB5Rs2FibSsrVH8CJB044p0KLPbQlmZq7u5eYPgHOorYw84FlPO+Df7+7BhwxHAQ+fqF+w06xwqEXfEq2Lj5k6seK2z6TaUFtaM8FTGRSfvjw8dv0+fx08IIYQQQgYGikOEEEJaZuaJ70CHakfHg9cAyAoJplRMizkZAScSD64uRcqWhWXFGZN9Y4Qj878VjYxzCCFUT23qddaR9LBMKk41ih+hztSxHbdKlimy/5Fvwt37XIR955zQ67LbG45fxeJxx+OwDX/BK2vXAQDiguCXZfyUfXA0HsUVV/0ccaxK12kCyys9HLvXHbgrjt5nl60dPiGEEEII6ScoDhFCCGmZYcNG4Jmxx+OA125HZ+dmW4LUk3MoyjiHPAQZcSiTOaSFotiWlSXLeIVuWr7qRRyyQdbNl0lDmRuXiXSmTlQI2u6JtvZhmHfuJaXr2xHY5fgPY4xsxsI/XwkgPdZlZWHtb/8BukdNw6fXfgl/veHy8hXqzCG/sv07qQghhBBCSALFIUIIIX1i5OHvwkjpwqLbrmsQElxdKpbtKBY5PhylxSEVlIozxsVjHEeq4BwybhYfAdAskBpp1lFPbdSN8OSXlIGF4sGJg9Q904JzaEdn1xkn4RVvKiYv/gWCKIYKmotDGLErxnz4ZrxU3QfzF30GLy9b3LhMVEekBK7HWENCCCGEkB0FikOEEEL6xP5Hn4b1GAU8fp0VUYy44/lJzkxOHBIfbhwC0JlBbmPmj3m9EYVityAOBTVEUYyKRD22qQ9hnEM9iUPJuv1qk8DlOEDck0CysyGCjkPOwUz1DO6/786021jJ8QEAGTYOw8+5Cg4Unv/NFxsXiOo2+4kQQgghhOwYUBwihBDSJ8T1sWzSGzGn8150vvYKgDSM2ZSXZdvNx44PT6WZQ0rPq2TKjiqmrEwLP2YZIxrFYR2BFmzQQ8mYcR711DnMlKWVZQ51OcMwOlxjQ5V3hJDp/mCfkz+AGnxsvvvHLXUbm7jnAXhyylk4esOf8PCC+3LzJAooDhFCCCGE7GBQHCKEENJndjv+QlQlwORlvwOQll9Zp0/GORQ7PlyVOodQIs541bxzyPxvgqpVVEetuwt6Y03HZbuc9SBspOtuFH5eGDcfewbPo33dU7lx7ey4I8Zj2W6n4NjNt2DNyhUAysWzLAe+88voljZ0/ukShFFsp0tUt+V9hBBCCCFkx4DiECGEkD4z8YCjsNzbC/urpQBSF5Bxm6icOFSBqwIopVBBYMvKsuKDEWrMPCsgGZEnqCHUziHxmgsPRhzqsRzMNZlDjSLTlOPORaQEU1+8sff17GTs/ubPYLjUcMS6ZN/9Xva9bcxEvHzI+3FseB/++Jc/2+kSs6yMEEIIIWRHg+IQIYSQviOCDQe8w/5qxB2bHeQWysoQIghCuKIguizMzzqHjOCjy8nS0i9dbhbVEda1OOQ2Fy0i26a+eTmYO+lQPOMdAHEaT4FzDj4AD7izMVptTMbYJHdnZ6R991l4ccxcTJKkpX2l2t7ra/Y97VPolirC+3+CtZv0+xMHdA4RQgghhOxgUBwihBCyRez7+vciVMlpxAg91gGUcQ4p14evAtTr3ckEN98trKZ8K9QUnUO+KevKikM9hE2rFrqVHfG2D+OALzxQOs9xBBv2O9P+Xhli7djHn3yR/dnpIdvJIO1jUDvwTLxJ3YUf/GlB8ro4QCh0DhFCCCGE7EhQHCKEELJFtI+bhGdHHY1YiW1Lb0vFMs4h5VQS55B1/iTzHNdBXbn5EiTzOi0SGXFGhQHCIBGXpIew6dQ5tOXlYDNOejc6VOKa8YdAK/ss7QedgvXD9066vom09JrRx30I7VIHFv0Sj7+0AU4cIAKdQ4QQQgghOxIUhwghhGwxe579Tbx83H9YIcEvKStTbgW+ChHWdaB0xpESwkOQdZnokjFTemaEJMk4h3pytBjHkteDgNQbkyfsgodHzMcm1QbXdbd4PTskjoMxZ34T3lEfbP01k2chnDQH53q34tLfPa7LyugcIoQQQgjZkeDVGyGEkC1m+OSDMHzyQfb3arUdXdKOcRMmpQu5FfgIsbFmysJS4SYQD0HWZVIoK4MIAuUCUQ2RDqR2exCHYlOOtpXlYLu+4xv42xML8batWssOyj4nJv/6gDf3fdj7dx/B8BV3YLPfibYKnUOEEEIIITsSFIcIIYT0G+J6aP/4vdh/ZCoOeWMmo/pygKWP34vJABwvFW4C+DmXiRGOnEyuUCAeJAoQBvVkXgtt6j1/68Shg/baAwfttcdWrWNIMf1MxHf8F/7f+u+gQ7Vhtew52CMihBBCCCF9gGVlhBBC+pdxewEZceagk/8RgXLhP/IzAPmysBAeosxzCltGllmmDh+IA8Q6c8jpKZDaZBVVh1ZW0KDjt8N5718Q7HIgJsgGm/1ECCGEEEJ2DCgOEUIIGVCGj90Nz447HkeEDwPICz+h+Agk/b3MORTCh8R1W1bWk3MIjg7G7mkZMjCMnIiRH7oZiyaegfpeJw/2aAghhBBCSB9gWRkhhJABZ5fj3g/ceCuAgnNIPETZsjLfBFL7uWWcOEAcJmVlfg/Czy6jRwKrAHHpXBkU/HbM/PDlgz0KQgghhBDSR+gcIoQQMuDsNuuNWO3tBgBwM2HRkfiIJBVyjHDk+Nllksyh2ARS95AntPfcNwEzz265DTshhBBCCCGE4hAhhJBtgeOga/o5AICxI4fbyaH4uXwaKw7lcol8OHHdOofcntrU73sScMZl/TlyQgghhBBCdnpYVkYIIWSbsOcpn0A4LMLkg+fZaat2PzVtXw+gra0dANCu/weAyEnKyoIocQ55FeYJEUIIIYQQ0p9QHCKEELJtaB8D7w1fzk2af/6lud/3230SAGCvKRPtNNdrQ1dXF8LupFuZX9m6NvWEEEIIIYSQPCwrI4QQst0gexwDnPMbyJTD7LSRUw/CTDyDJc8vAcBOZIQQQgghhPQ3/SYOicjPRGS1iDyemTZLRO4TkYUi8pCIzO2v7RFCCNkJcRxgv5NygdLjTv4URkg33lK7CQDgVekcIoQQQgghpD/pT+fQ5QDeWJj2XwC+rJSaBeBL+ndCCCGkdSYeglcmn4QJsgEAUGHmECGEEEIIIf1Kv4lDSqm/A1hXnAxglP55NICX+2t7hBBChg4TTv28/ZmZQ4QQQgghhPQvAx1I/U8AbhaRbyARoo5ptqCIfADABwBgjz32GOBhEUII2ZHwps7BKxOOw/g198F32UuBEEIIIYSQ/mSgA6k/DOCflVK7A/hnAD9ttqBS6sdKqcOVUodPmDBhgIdFCCFkR2PSuT+B/+6rB3sYhBBCCCGE7HQMtDh0PoDf6p+vBcBAakIIIVvGqEnA/qcM9igIIYQQQgjZ6RhocehlAMfrn08E8NwAb48QQgghhBBCCCGE9IF+C24QkV8COAHAeBFZAeASAO8H8F0R8QB0Q2cKEUIIIYQQQgghhJDtg34Th5RSZzeZdVh/bYMQQgghhBBCCCGE9C8DXVZGCCGEEEIIIYQQQrZjKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYUQpNdhjaEBE1gBYNtjj6APjAbw62IMgZAjD7yAhgwe/f4QMLvwOEjK48DtIdjT2VEpNKE7cLsWhHQ0ReUgpdfhgj4OQoQq/g4QMHvz+ETK48DtIyODC7yDZWWBZGSGEEEIIIYQQQsgQhuIQIYQQQgghhBBCyBCG4lD/8OPBHgAhQxx+BwkZPPj9I2Rw4XeQkMGF30GyU8DMIUIIIYQQQgghhJAhDJ1DhBBCCCGEEEIIIUMYikOEEEIIIYQQQgghQxiKQ1uBiLxRRJ4RkcUicvFgj4eQnRER+ZmIrBaRxzPTxonILSLynP5/rJ4uIvI9/Z18VETmDN7ICdk5EJHdReQ2EXlSRJ4QkU/q6fweErINEJE2EXlARBbp7+CX9fS9ROR+/V37lYhU9PSq/n2xnj9tUHeAkJ0AEXFF5BER+YP+nd8/stNBcWgLEREXwA8BvAnAwQDOFpGDB3dUhOyUXA7gjYVpFwP4m1JqPwB/078DyfdxP/3vAwD+ZxuNkZCdmRDAp5RSBwM4CsBH9fmO30NCtg01ACcqpWYCmAXgjSJyFICvA/i2UmpfAK8BeK9e/r0AXtPTv62XI4RsHZ8E8FTmd37/yE4HxaEtZy6AxUqp55VSdQDXAHjbII+JkJ0OpdTfAawrTH4bgCv0z1cAOD0z/UqVcB+AMSIyaZsMlJCdFKXUK0qph/XPHUgujqeA30NCtgn6u7RJ/+rrfwrAiQCu09OL30Hz3bwOwOtFRLbNaAnZ+RCRqQDeDOB/9e8Cfv/ITgjFoS1nCoAXM7+v0NMIIQPPRKXUK/rnlQAm6p/5vSRkANH2+NkA7ge/h4RsM3RJy0IAqwHcAmAJgPVKqVAvkv2e2e+gnr8BwC7bdMCE7Fx8B8BnAcT6913A7x/ZCaE4RAjZoVFKKSRPUAkhA4iIjADwGwD/pJTamJ3H7yEhA4tSKlJKzQIwFYl7/cDBHREhQwMROQ3AaqXUgsEeCyEDDcWhLeclALtnfp+qpxFCBp5VpkxF/79aT+f3kpABQER8JMLQ1Uqp3+rJ/B4Sso1RSq0HcBuAo5GUbHp6VvZ7Zr+Dev5oAGu37UgJ2WmYB+CtIrIUSYzIiQC+C37/yE4IxaEt50EA++mk+gqAdwG4cZDHRMhQ4UYA5+ufzwfwu8z083S3pKMAbMiUvRBCtgCdlfBTAE8ppb6VmcXvISHbABGZICJj9M/tAE5Gkv11G4B36MWK30Hz3XwHgFu1u48Q0keUUp9TSk1VSk1Dcr93q1LqHPD7R3ZChJ/VLUdETkVSg+oC+JlS6quDOyJCdj5E5JcATgAwHsAqAJcAuAHArwHsAWAZgHcqpdbpm9gfIOlu1gngH5VSDw3CsAnZaRCRYwHcCeAxpHkL/4okd4jfQ0IGGBGZgSTg1kXyYPfXSqmviMjeSJwM4wA8AuA9SqmaiLQBuApJPtg6AO9SSj0/OKMnZOdBRE4A8Gml1Gn8/pGdEYpDhBBCCCGEEEIIIUMYlpURQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIIYQQQgghhAxhKA4RQgghhBBCCCGEDGEoDhFCCCGEEEIIIYQMYSgOEUIIITsJIjJNRJSIeC0se4GI3LWNxjVPRJ4TkU0icvq22CbpH/Tnad/BHgchhBBCBhaKQ4QQQsggICJLRaQuIuML0x/RN+TTBmloWZFpk/63VEQu3opVfgXAD5RSI5RSN/TTMIcE/Sni6ffxpP5YV8m6WxYm+7BOJSKbM5/DTSLy2X5c/zgRWbOtRFJCCCFke6bfTuCEEEII6TMvADgbwPcBQEQOBTBsUEeUZ4xSKhSRowH8TUQWKqX+3OqLRcRTSoUA9gTwxJYMILMOMjSZqZRaPEDr/jqAp8CHpYQQQghPhoQQQsggchWA8zK/nw/gyuwCIjJaRK7UDodlIvIFEXH0PFdEviEir4rI8wDeXPLan4rIKyLykoj8u4i4fR2kUupeJOLOdL3eC0XkKRF5TURuFpE9M9tUIvJREXkOwHMisgTA3gB+r50fVRGZLCI3isg6EVksIu/PvP5SEblORP5PRDYCuEBEbtdjv0ev4/cisouIXC0iG0XkwazTSkS+KyIv6nkLROS4wvp/rY9ph4g8ISKHZ+bvLiK/1cd7rYj8IDOv6X4XEZG36nWv1+M/KDNvqYh8WkQeFZENIvIrEWkrWcdBAC4DcLTe7/V6elW/78tFZJWIXCYi7XreeBH5g97uOhG5U0QcEbkKwB6Z96HUgSMin9Gfl5dF5MLCvDdL4mzbqI/vpZnZf9f/r9frP1pE9hGRW/VxfFW/X2OaHbO+ICJ/FJFvZn6/RkR+pn++QETuFpEf6OP7tIi8vvD6Y5B8nn/eH+MhhBBCdnQoDhFCCCGDx30ARonIQVq0eReA/yss830Ao5EILMcjEZP+Uc97P4DTAMwGcDiAdxReezmAEMC+epk3AHhfXwYoCfMAHALgERF5G4B/BXAmgAkA7gTwy8LLTgdwJICDlVL7AFgO4C26rKwG4BoAKwBM1mP+DxE5MfP6twG4DsAYAFfrae8CcC6AKQD2AXAvkhv7cUjcH5dkXv8ggFl63i8AXFsQX96qxzAGwI0AfqD31QXwBwDLAEzT27pGz2tlv80x21/P+ye97B+RiDKVzGLvBPBGAHsBmAHgguJ6lFJPAfgQgHv1sRujZ30NwP56H/fV4/ySnvcpJMd2AoCJesxKKXUu8u/Df5WM+40APg3gZAD7ASiWoG1G8vkbg0SI/LCkGVLz9f9j9PrvBSAA/hPJ+3wQgN0BXJrZ3o9E5EfFcbTIhQDOFZETReQcAHMBfDIz/0gASwCMR/LZ+K2IjNPbdZG85x8DoLZw+4QQQshOBcUhQgghZHAx7qGTkYgcL5kZGcHoc0qpDqXUUgDfRCKSAInA8B2l1ItKqXVIbsTNaycCOBXAPymlNiulVgP4tl5fq7wKYB2A/wVwsVLqb0jEiv9USj2ly73+A8CsgovmP5VS65RSXcUVisjuAOYB+BelVLdSaqFef9ZBda9S6galVJxZx8+VUkuUUhsA/AnAEqXUX/UYrkUifgEAlFL/p5Raq5QKlVLfBFAFcEBm/Xcppf6olIqQHP+ZevpcJELGZ/Qx61ZKmTyaVvbb8A8AblJK3aKUCgB8A0A7gGMyy3xPKfWyft9+j0To6RUREQAfAPDP+hh36LGY9zUAMAnAnkqpQCl1p1KqVQHknUiO8+NKqc3ICDkAoJS6XSn1mH5fHkUigB3fbGVKqcX6GNSUUmsAfCu7vFLqI0qpj/Qypoe1C8r8O0W/diWADwO4AsB3AZynj4VhNZLvRqCU+hWAZ5A66z4B4H6l1ILeDgghhBAyVGDmECGEEDK4XIWkJGcvFErKkLgefCROFsMyJE4RIBEyXizMM+ypX/tKoicASB4KZZfvjfEleT97AvhutqQHiUNkSmb7PW1jMoB1hRv5ZUicT4ay16/K/NxV8vsIOxiRTwN4r96WAjAKybE0rMz83AmgTZIg5d0BLGuScdTKfhsmZ6cppWIReRHp+1Y2hskl2yxjApJcqgWZ91UAmHLB/0Yi6vxFz/+xUuprLa57MoCsYJLbLxE5EolraTqAChLR7dpmK9MC5XcBHAdgJJLP32stjsUwp4fMod8jcdY9kxHxDC8VRLFlACaLyGQk4tBhfRwHIYQQslND5xAhhBAyiCilliEJpj4VwG8Ls19F4gTJulP2QOouegWJoJGdZ3gRQA2JwDNG/xullDpkK4f8IoAPZtY5RinVrpS6J7tbPbz+ZQDjRGRkYdwvZX7f4lIfnS/0WSQumLG6FGsDEgGlN14EsIeUd9xqZb8NLyPznmm3z+7I72OrFI/Fq0jEsEMy4xitlBoBANph9iml1N5IyucuyuTt9HZce/o8AUmJ3o0AdldKjUaSh2SOa9m6/0NPP1QpNQrAe9Da+9AqX0XitpskImcX5k2RjHqGZF9eRuIOmwTgSRFZiUS8misiK2UL8rgIIYSQnQWKQ4QQQsjg814AJ+pSHosue/o1gK+KyEhdwnQR0lyiXwP4hIhMFZGxAC7OvPYVAH8B8E0RGaVDifcRkaZlQC1yGYDPicghgA29PqvVFyulXgRwD4D/FJE2EZmBZP+LWUtbykgkOUtrAHgi8iUkzqFWeACJQPI1ERmuxzdPz+vLfv8awJtF5PUi4iPJAaoh2e++sgrAVJNXpJSKAfwEwLdFZFc9limm3EpEThORfbUwsgFABCDOrGvvHrb1ayQB4AeLyDDkc5yA5NiuU0p1i8hcAO/OzFujt7N3YflNADaIyBQAn+njvjdFROYjyd46D0mQ+/f1Ngy7Ivlu+Pp9OghJ9tOfkORJzdL/vgTgEQCz9PeNEEIIGZJQHCKEEEIGGZ2l81CT2R9HEgT8PIC7kLg3fqbn/QTAzQAWAXgYjc6j85CU/zyJpJznOiSuia0Z6/VIWoBfI0k3sccBvKmPqzkbyQ36ywCuB3CJUuqvWzOuDDcD+DOAZ5GUEnWjxVI6LQ68BUnI83Ikwc7/oOe1vN9KqWeQuGS+j8Tp8xYkQdD1LdifW5F0ilspIq/qaf8CYDGA+/RY/oo0U2k//fsmJKHdP1JK3abn/SeAL+jsnk+XjPtPAL6jt7lY/5/lIwC+IiIdSESVX2de24nEyXO3Xv9RAL4MYA4SkeomFD6fknRZu6yX/V8kSfcz8+87IjIKSQnmx5RSLyml7gTwUwA/z7iF7tfH4lU9rnfoHKqaUmql+afHFuifCSGEkCGLtJ5RSAghhBBCyPaNiFwA4H1KqWMHeyyEEELIjgKdQ4QQQgghhBBCCCFDGIpDhBBCCCGEEEIIIUMYlpURQgghhBBCCCGEDGHoHCKEEEIIIYQQQggZwniDPYAyxo8fr6ZNmzbYwyCEEEIIIYQQQgjZaViwYMGrSqkJxenbpTg0bdo0PPRQs46+hBBCCCGEEEIIIaSviMiysuksKyOEEEIIIYQQQggZwlAcIoQQQgghhBBCCBnCUBwihBBCCCGEEEIIGcJsl5lDZQRBgBUrVqC7u3uwh0JIn2hra8PUqVPh+/5gD4UQQgghhBBCCGlghxGHVqxYgZEjR2LatGkQkcEeDiEtoZTC2rVrsWLFCuy1116DPRxCCCGEEEIIIaSBHaasrLu7G7vssguFIbJDISLYZZdd6HgjhBBCCCGEELLdssOIQwAoDJEdEn5uCSGEEEIIIYRsz+xQ4hAhhBBCCCGEEEII6V8oDvUBEcF73vMe+3sYhpgwYQJOO+20QRxV74wYMaLXZS699FJ84xvf6HGZG264AU8++WR/DYsQQgghhBBCCCHbARSH+sDw4cPx+OOPo6urCwBwyy23YMqUKYMyljAMt/k2KQ4RQgghhBBCCCE7HxSH+sipp56Km266CQDwy1/+Emeffbadt3nzZlx44YWYO3cuZs+ejd/97ncAgKVLl+K4447DnDlzMGfOHNxzzz0AgFdeeQXz58/HrFmzMH36dNx5550A8k6f6667DhdccAEA4IILLsCHPvQhHHnkkfjsZz+LJUuW4I1vfCMOO+wwHHfccXj66acBAC+88AKOPvpoHHroofjCF77QdF+++tWvYv/998exxx6LZ555xk7/yU9+giOOOAIzZ87E29/+dnR2duKee+7BjTfeiM985jOYNWsWlixZUrocIYQQQgghhBBCdix2mFb2Wb78+yfw5Msb+3WdB08ehUveckivy73rXe/CV77yFZx22ml49NFHceGFF1pR56tf/SpOPPFE/OxnP8P69esxd+5cnHTSSdh1111xyy23oK2tDc899xzOPvtsPPTQQ/jFL36BU045BZ///OcRRVFL4sqKFStwzz33wHVdvP71r8dll12G/fbbD/fffz8+8pGP4NZbb8UnP/lJfPjDH8Z5552HH/7wh6XrWbBgAa655hosXLgQYRhizpw5OOywwwAAZ555Jt7//vcDAL7whS/gpz/9KT7+8Y/jrW99K0477TS84x3vAACMGTOmdDlCCCGEEEIIIYTsOOyQ4tBgMmPGDCxduhS//OUvceqpp+bm/eUvf8GNN95os3u6u7uxfPlyTJ48GR/72MewcOFCuK6LZ599FgBwxBFH4MILL0QQBDj99NMxa9asXrd/1llnwXVdbNq0Cffccw/OOussO69WqwEA7r77bvzmN78BAJx77rn4l3/5l4b13HnnnTjjjDMwbNgwAMBb3/pWO+/xxx/HF77wBaxfvx6bNm3CKaecUjqWVpcjhJDthdUbuzFhZLXXLoKfuXYRjtt/At46c/I2GhkhhBBCCCGDxw4pDrXi8BlI3vrWt+LTn/40br/9dqxdu9ZOV0rhN7/5DQ444IDc8pdeeikmTpyIRYsWIY5jtLW1AQDmz5+Pv//977jppptwwQUX4KKLLsJ5552Xu2np7u7OrWv48OEAgDiOMWbMGCxcuLB0jFvTPv2CCy7ADTfcgJkzZ+Lyyy/H7bffvlXLEULI9sBTr2zEqd+7E9d96Ggctue4hvnL1m7GyDYf44ZXcPMTK1HxHIpDhBBCCCFkSMDMoS3gwgsvxCWXXIJDDz00N/2UU07B97//fSilAACPPPIIAGDDhg2YNGkSHMfBVVddhSiKAADLli3DxIkT8f73vx/ve9/78PDDDwMAJk6ciKeeegpxHOP6668vHcOoUaOw11574dprrwWQCFOLFi0CAMybNw/XXHMNAODqq68uff38+fNxww03oKurCx0dHfj9739v53V0dGDSpEkIgiD3+pEjR6Kjo6PX5QghZHvk7sWvQilgTUe9YV4cK7zz/92L/745yV8LY4UoVtt6iIQQQgghhAwKFIe2gKlTp+ITn/hEw/QvfvGLCIIAM2bMwCGHHIIvfvGLAICPfOQjuOKKKzBz5kw8/fTT1v1z++23Y+bMmZg9ezZ+9atf4ZOf/CQA4Gtf+xpOO+00HHPMMZg0aVLTcVx99dX46U9/ipkzZ+KQQw6xAdjf/e538cMf/hCHHnooXnrppdLXzpkzB//wD/+AmTNn4k1vehOOOOIIO+/f/u3fcOSRR2LevHk48MAD7fR3vetd+O///m/Mnj0bS5YsabocIYRsjzzywmp80P09UN/cMO/JVzbiHzt/joNXJUJ5GCuEFIcIIYQQQsgQQYzLZXvi8MMPVw899FBu2lNPPYWDDjpokEZEyNbBzy8hg4tSCv/8b1/Dd+Kv4b4jf4ij3vSe3Pwf3b4Y77jt9Vg6cg7mfvp67POvf8RbZ07Gt/9h1uAMmBBCCCGEkAFARBYopQ4vTqdziBBCyE7PsrWd2K/+JABARUHD/DueXo3R2ARREZRS2C1eDSfYtK2HSQghhBBCyKBAcYgQQshOz0PLXsNhznPJLwVxaFMtxBPLV6EqIZw4RBgr/LLy7zh5LbPUCCGEEELI0IDiECGEkJ2eh19YjRnyPAAgjsLcvIeWrsPwOHEJOSpEFCuMkU1oDzds83ESQgghhBAyGPSbOCQibSLygIgsEpEnROTLhfnfExF69AkhhGxzXnvhEQyTGgBAxXlxaGN3iDH69CQqQhgr+IjgFJYjhBBCCCFkZ8Xrx3XVAJyolNokIj6Au0TkT0qp+0TkcABj+3FbhBBCSEu8trmOXdcvAnw9oVBWFsUxRiPpYOaoCFGkUEEEURSHCCGEEELI0KDfnEMqwTiDfP1PiYgL4L8BfLa/tkUIIYS0yoJlr+F1zkKEbhuARudQECmMFiMOhQjiGB5iuBSHCCGEEELIEKFfM4dExBWRhQBWA7hFKXU/gI8BuFEp9Uovr/2AiDwkIg+tWbOmP4fVb6xatQrvfve7sffee+Owww7D0Ucfjeuvv37At/vQQw/hE5/4RL+s64QTTsABBxyAmTNnYt68eXjmmWf6Zb39SX+O8fLLL8fHPvYxAMBll12GK6+8sumyS5cuxS9+8Qv7e38ed0JI//GNm5/BzU+sbHn5NQ//Hie4i9A54wIAgCpkDkVxVhyKEIUhHFGQOOq3MRNCCCGEELI906/ikFIqUkrNAjAVwFwRmQ/gLADfb+G1P1ZKHa6UOnzChAn9Oax+QSmF008/HfPnz8fzzz+PBQsW4JprrsGKFSsGfNuHH344vve97/Xb+q6++mosWrQI559/Pj7zmc80zI+iwb8hGogxfuhDH8J5553XdH5RHOrv404I2Xo2dgf40e2L8ZcnVrX2grCOE57/Bl50psCb/08AAInzZWVhrDAaJpA6QhgG+mc6hwghhBBCyNBgQLqVKaXWA7gNwOsA7AtgsYgsBTBMRBYPxDYHmltvvRWVSgUf+tCH7LQ999wTH//4xwEkwsJxxx2HOXPmYM6cObjnnnsAALfffjtOO+00+5qPfexjuPzyywEAF198MQ4++GDMmDEDn/70pwEA1157LaZPn46ZM2di/vz5Det44IEHcPTRR2P27Nk45phjrKvm8ssvx5lnnok3vvGN2G+//fDZz/ZexTd//nwsXpy8HSNGjMCnPvUpzJw5E/feey++9a1vYfr06Zg+fTq+853v2NdceeWVmDFjBmbOnIlzzz0XALBmzRq8/e1vxxFHHIEjjjgCd999NwDgjjvuwKxZszBr1izMnj0bHR0deOWVVzB//nzMmjUL06dPx5133rnFY/y///s/zJ07F7NmzcIHP/hBKxj9/Oc/x/7774+5c+fasQDApZdeim984xsAgMWLF+Okk07CzJkzMWfOHCxZsgQXX3wx7rzzTsyaNQvf/va3c8d93bp1OP300zFjxgwcddRRePTRR+06L7zwQpxwwgnYe++9KSYRMsA8tHQdpmIVqsFrLS1fX/kkJsWv4P6p/4j2YSMBAKogLkdRnHMOxWGof6Y4RAghhBBChgb9FkgtIhMABEqp9SLSDuBkAF9XSu2WWWaTUmrfrd7Yny4GVj621avJsduhwJu+1nT2E088gTlz5jSdv+uuu+KWW25BW1sbnnvuOZx99tl46KGHmi6/du1aXH/99Xj66achIli/fj0A4Ctf+QpuvvlmTJkyxU7LcuCBB+LOO++E53n461//in/913/Fb37zGwDAwoUL8cgjj6BareKAAw7Axz/+cey+++5Nx/D73/8ehx56KABg8+bNOPLII/HNb34TCxYswM9//nPcf//9UErhyCOPxPHHH49KpYJ///d/xz333IPx48dj3bp1AIBPfvKT+Od//mcce+yxWL58OU455RQ89dRT+MY3voEf/vCHmDdvHjZt2oS2tjb8+Mc/ximnnILPf/7ziKIInZ2dTcfX0xifeuopfP3rX8fdd98N3/fxkY98BFdffTVOPvlkXHLJJViwYAFGjx6N173udZg9e3bDes855xxcfPHFOOOMM9Dd3Y04jvG1r30N3/jGN/CHP/wBQCLKGS655BLMnj0bN9xwA2699Vacd955WLhwIQDg6aefxm233YaOjg4ccMAB+PCHPwzf9xu2SQjZeu5dvAbXVb6MJ9e8DsAJvS6//IVnsS+AKfvOhLj6e6nKnEOJOOQiRBgmXc2YOUQIIYQQQoYK/dmtbBKAK3QAtQPg10qpP/Tj+rcrPvrRj+Kuu+5CpVLBgw8+iCAI8LGPfQwLFy6E67p49tlne3z96NGj0dbWhve+97047bTTrENl3rx5uOCCC/DOd74TZ555ZsPrNmzYgPPPPx/PPfccRARBkN7kvP71r8fo0aMBAAcffDCWLVtWKg6dc845aG9vx7Rp0/D97ycVf67r4u1vfzsA4K677sIZZ5yB4cOHAwDOPPNM3HnnnRARnHXWWRg/fjwAYNy4cQCAv/71r3jyySft+jdu3IhNmzZh3rx5uOiii3DOOefgzDPPxNSpU3HEEUfgwgsvRBAEOP300zFr1qzS49PbGP/2t79hwYIFOOKIIwAAXV1d2HXXXXH//ffjhBNOgClN/Id/+IeG96KjowMvvfQSzjjjDABAW1tb6Riy3HXXXVaEO/HEE7F27Vps3LgRAPDmN78Z1WoV1WoVu+66K1atWoWpU6f2uk5CSN9Z+dzD2FXW4/lwU+8LA3hl+WLsC2D//Q8EHH3KK2QOhbHChELmUPIzxSFCCCGEEDI06DdxSCn1KIBGi0Z+mRH9srEeHD4DxSGHHGLFAQD44Q9/iFdffRWHH344AODb3/42Jk6ciEWLFiGOYys4eJ6HOI7t67q7u+30Bx54AH/7299w3XXX4Qc/+AFuvfVWXHbZZbj//vtx00034bDDDsOCBQty4/jiF7+I173udbj++uuxdOlSnHDCCXZetVq1P7uuizAsv7G5+uqr7bgNbW1tcF13C44MEMcx7rvvvgaR5eKLL8ab3/xm/PGPf8S8efNw8803Y/78+fj73/+Om266CRdccAEuuuii0hyg3saolML555+P//zP/8wtc8MNN2zRPmwNrR53QsjWsaErwK5rHwA8tNxmftPqZQjgYZddpwKOg1gJEJcEUlvnUIS6zhyic4gQQgghhAwVBiRzaGfkxBNPRHd3N/7nf/7HTsuWRG3YsAGTJk2C4zi46qqrbP7NnnvuiSeffBK1Wg3r16/H3/72NwDApk2bsGHDBpx66qn49re/jUWLFgEAlixZgiOPPBJf+cpXMGHCBLz44ou5cWzYsAFTpkwBAJtd1N8cd9xxuOGGG9DZ2YnNmzfj+uuvx3HHHYcTTzwR1157LdauXQsAtqzsDW94g3X3ALDlVkuWLMGhhx6Kf/mXf8ERRxyBp59+GsuWLcPEiRPx/ve/H+973/vw8MMPb9EYX//61+O6667D6tWr7ViWLVuGI488EnfccQfWrl2LIAhw7bXXNrx25MiRmDp1qhWSarUaOjs7MXLkSHR0dDQ9JldffTWApNxs/PjxGDVq1BaNnRCyZTz4wjocJYlLsRVXj1IK2PAiNvgTACc53UXiNHQhC6N8tzJlxCEMfjg/IYQQQggh2wKKQy0iIrjhhhtwxx13YK+99sLcuXNx/vnn4+tf/zoA4CMf+QiuuOIKzJw5E08//bQtydp9993xzne+E9OnT8c73/lOm3/T0dGB0047DTNmzMCxxx6Lb33rWwCAz3zmMzj00EMxffp0HHPMMZg5c2ZuHJ/97Gfxuc99DrNnzx4wh8qcOXNwwQUXYO7cuTjyyCPxvve9D7Nnz8YhhxyCz3/+8zj++OMxc+ZMXHTRRQCA733ve3jooYcwY8YMHHzwwbjssssAAN/5zncwffp0zJgxA77v401vehNuv/12zJw5E7Nnz8avfvUrfPKTn9yiMR588MH493//d7zhDW/AjBkzcPLJJ+OVV17BpEmTcOmll+Loo4/GvHnzcNBBB5W+/qqrrsL3vvc9zJgxA8cccwxWrlyJGTNmwHVdzJw5E9/+9rdzy1966aVYsGABZsyYgYsvvhhXXHHFFo2bELLl3L9kNY50ngIAiOpduFmyZjN2iV9FNGKynRbBBRq6lcUYo7uVeYgQRqZbGcUhQgghhBAyNBCl1GCPoYHDDz9cFcOcn3rqqaY3+oRs7/DzS8jW88lv/xzf3fBPAICHq3Mx53O39Lj8rx5cjnl/eB1GHTAfo979cwDApkt3w8JdTsOxH/9fu9zX//w03n/vSRgnHViNsVh5xnWYcf3rsVj2wL6X9HPzgy0kihV+8/AKnD5rCioen+sQQgghhJAtQ0QWKKUOL07nFSYhhJDtng2dASaufQAAsMbdtSVXz+Mr1mE3WYeRu06z0yK4gGpsZT/KZA5lWtl7/Zg5tHZTDT+8bTG29IHMXx5/BX/+7eW4b/GqfhsTIYQQMqjEMaLHr29oFLE9UgsjdHQHvS9IyA4MxSFCCCHbPQ8sTfKGOkftg3XuhJbKyrzOV+EhhoyeYqdFcCGFQGon2AxPksYBLiLE+iK1PzOHfnX303j2lp9i+brO3hcuYc0D1+JnlW9g+Cv39duYCCGEkEFl6Z1wr7sAWHbXoA7jsRUb8PnrH+vxAc6vfvyfuPk7H9qGoyJk27NDiUPbYwkcIb3Bzy0hW899i1dhrvMMqvsdDyVu005iGzoDPLMyCZYfVV+ZTBy9u50fSaM45AcbAADd7gh4iBBFdQD96xwa8fgV+G7lR1DrX+x94QJxrDBtxe+SX4KufhsTIYQQMphsWLoQALBm3fpBHcfX//w0rr5/OTpq5ef9Jas7cMLKy3FM99+38cgI2bbsMOJQW1sb1q5dyxttskOhlMLatWvR1tY22EMhZIfmtcUPYIR0wd17PmLHa+oc+uldz+PsnyTumlF1XYI1KuscanxtJdgIAOjyx8JDpqysn5xDm2oh9t5wPwAgDrr7/PpnFi/BMeoRAICKaGknhBCyc/DiMwsAACvXb2q+UH0zomduHrAxPLeqA0uXPIm3OPcgisrvM2+65S/Yw1ljHcXrNtexuqPv53NCtne8wR5Aq0ydOhUrVqzAmjVrBnsohPSJtrY2TJ06dbCHQcgOy6ZaiN3WPZicsaYdByU/alry1VELbSbA6PrqZGKmrCwWF1JwBFXriXOoyx+LEV0vI+7nVvYPPPMS5skzyfbDep9fv/req3GQLntTMcUhQgghA8c9z67EnGnj0VYZgNvE+/4Havl9kHdeAaUUnDVJB1Jz3i1DPfhTuLd8EfjM88DwXfp9SHf98Rf4Y+VSjJJOrOm+CLe+GOLXD67AZeceBgBY3dEN5+k/AG56XXDpjU9gTUcNv/zAUf0+HkIGkx1GHPJ9H3vttddgD4MQQsg2ZtGL63GUPIFNo/fHiOHjEYuLSpOSrzBSCOPkyd/oYDW60Ib2tjF2fgwXTrGsLEzK0GqVsfAlQhDUALTuHAqiGF//09P46Ov2xdjhlYb5Lz36N1QlufCNergAbsbYFX9FB4ZhJDqhwsEL7Vzd0Y2RVR/tFXfQxkAIIaT/qIcx1nfVsevIxOG+5tXVmHH1TCw45nuYd8o/9P8GX34EeDFpLvHUyxuxR7QcEEBlz8u1DsDxAL8dALD8sTuxJ4DNnZswvJ/FoQ0dnXjH0kvQjuS8H4d1PLh0A/78xEoopSAiuOKepXibJO5fR18XvNZZx/ouPqwhOx87TFkZIYSQocnDS1/FbGcx/L2PBQAocZt2Kxu/+Tmc7fwNcazQFm1GhzMSELHzI3EbysqcOHHzhN6wZJl6YhX3ECGOey9lfnZVB/73rhdwz5K1pfMry+6wP/f0dLSMVzu6MK3+HF4eMR3A4DmHgijGL779afz2hmsHZfuEEEL6nx/ethhv+s6d9vf6xrUYId1wN67ot22sXfo4nrvtKgDA0tUb0NGZnGPveOhhjJDkZ5XpVqZ+9R7gT5+1v1dXLwIAbO7q/8y9W++4BSOlCy+OnAUACIMAkT7vR7HC5lqIu++9G/s7L6HutMPT1w9hpBDFcb+Ph5DBhuIQIYSQ7ZqVixdhpHShOi2xbyvHt0/visxe90d8ybsSQRxDVIgYeZdLWVkZtOASuW361+QC1EOIoIWLvyhWmOc8hqikZOzl9V2YUXsYAfxk7IV2vfUw7jG34KGHH8Yo6YK/59zS128rFj3xBP4pvgr7rvzjoGyfEEJI/7P2ib/hY7Wf2ExX05AB/Zhv99o1H8JudyRiz/rNXYj1uusvP26XyeXpdawEOpLMwBdXvIjd4uTnqJ+ds2EU46WFfwUAdE09BkDyAGfMpudxvnszwljhugUrcHJ4O2Jx8czY421Z2ZkbrsRHO/+nX8dDyPYAxSFCCCHbLXGsUFn5UPLL1MMBJM6hpp3EVAQXMaJYwVERYmkUh5w4LyyJFlyUl4hDSodGVyRCFPUuDrmvLcHVlf/E+FWNrXgfeuxpHOQsx5pxSXZBVLjg/sX9y3Dyt/7e1KH08lP3AAB2OfBYvQOD4xx69cHr9PYHr6yNEEJI/9FVjzB37Y04z/0LzCnINGTorwcR4fIHsG/3Y/acLSqyJduTai/Y5eLM9tZu7MSLa5Ny7wX33Z4u0wdxqDuIcPndL2BzpvvYyg3deHVTzf5+8xOrcFDtMXSM2Au1YZMAJOfoQ9b+GZd4VyKKFRav2oAzvHsQTTsBm6u7wkNyTbBv8DQOCp9ueTyE7ChQHCKEELLdsnjNJhwUPoPuylhg3N4AAOW4cFAu2kgcwZcIYZQ4h6KCOBSJB6cgLIkWXOKCcwgAwlYukGtJlxWpN3Zbee2JvyTr2eekZOyFsrLqy/fj4uBHeXv6SwuAoBtBFMNZuRCBVCC7JWVlcdQ/Idl9QSmF3V5K9qNZlzhCCCE7Fo8sfw2HyhK4ohBo4cW6c/rpQcC6v34LQBrk7KjQ/jy5vgw1VBq2F9Rr6OhMzsPrFz9gpxcfrvTEz/66EM6fPoOHnng2WWcU4x2X3YMv/S51K11+12Ic6T6D9n3nQxxPDyOAxCEcUQjDEFM7FmEyXoU3+12A49qxS2Y/CNmZoDhECCFku2XBstcwx3kO0eTDbXaQcvymF2WiLzDDMIQThw3OISVeQ0maeU3sJeGXKtNuPgx6vxg1IdPFJ61xrDBu5d3ocEejtuvMZFrh4naP9ffjbO82REb06VwH9b8nof7odVi+rhMHRM9jw+gD4VaSPCSJ+t7tbGt5/oUlmBElHWWEziFCCNkpWPjsC9jLMSVb+iGJOcf0h0s1rGP88psRKUFFIkApSBzZ83d71IF1MgZA/vzpILIPIvasPWunl5Vul7Fs7Wa4934X53m3YMTqBQCA3y96GSte60RHd7KdhS+uR+eLizACnfD2Pg7iJuJQqMWhZHsBDthwN2rwIQe+GRAPnsSIoxiuiuA2czATsgNDcYgQQsh2y5PPL8e+zssYtnfaLrbnsjItDgU1XVaWb8oZi9voHFJa3NFlZRKmzqFWLkbNRa0qCCdPvbIBc9UivDbxaDheVS9buODWv5sOaRs6NkJUjMefX4EgDDHdeQGbx02H6+nMonjbP6l8+e5fwBGFLlToHCKEkJ2EjUvutz+H9eRc1+xhR19QS+9KMoOiOhzE6ERybo2iCI4KbaizoyIEos+NmfOni8g2ndhHLcVm/fpWy8q+e8PdOE/+ZNcbxwqX3/44fl35Ct697kcAgMvvfgEfrvwJSlxg2rFwzDk2DNIcwqCOStSJTRgOVIYDWkAKokA7oBhITXY+KA4RQgjZbqkvTSzlsvvcdKLjNb0oMxeUcRTCKQ2k9ho6nZnMIbj6IjVIMwlaEYdi84S1IPy8tvRRTJT1cPc5EY6+qIyLF9xa7DEX5N3dybbDoA5Z/yJGShc2jT0Yvl8p3caAoxR2X3odnnH3w2pnIhw6hwghZIenHsZoW7PI/m5KtowotKUuUbV5LeLL34Klf/oWurXgZErHwrAOUREcUUAcw1EhAqeqB5Ce21yVikNtqGGTjADQ6Lwt44m7f493L/s82qVuX7No+au46LX/wFznGUwKlgMAdnn+dzhN7kJt3meAUZMgjm+Pg3kIEmqhyDiQTelZFNSTMbKsjOyEUBwihBCyXbJucx2TNj2GGA4weU46I1P334ARW4I6HERQTt45pBy3URxS+UBqJ0zLyqIWyspUkyetbR3LAADBrofC9U23svz6zLZNzoMVj+IQqHcmP7aNsk81W82BuG3hc/i37/6wadB1q7z27D2YFi3Dir3eiUi8xk5vhBBCdjgef3kDDlGL7e/mQYg5B6ktdIm+9MANcBFj1drXEnEFQCC+3YY9/8YhHBUhlMbMoaxzyFUxAr1Mw8OVAvGy+3HILe/BXs5qrJn54WQ/ohCy4kGc4CZCmFnvOcF1WF7dH20nJl3UzAMcFYVpqXkUwFERIvOQyUlLzxwVNXcwE7IDQ3GIEELIdsnDy17DHHkOXWMPAKoj7HTl+PAQ2da7WRz7xC+Eq8KGsjIlXkNOgH1C6ieZQxL10TmUFXSy29LZDY5XgeNW9LTybYeBtvRnnt6anx3HhzguYiUti0Pxrf+Gz637AmrdXb0v3AOv3fkTbFZVTDn2PYjFZVkZIYTsBDzw/KuY5SxJHr4AVsiJ9f+yhZlDnY/dmPwQR4j1ea2uS8fCMLTnkFiXZkVuxS5vyIlDCFNxKOx5TOv++GW8qkbhjjf+BerwC/V6QyDYDADoRsWe/9tUN9a07w042hWkxaHEOZRmDomK0sYWxgEchnDBsjKyc0JxiBBCyHbJgmVrMctZguq0I/MzHA8uIpSZYsxFXRzWmrSy9xpcR44KEcGBuMnTTSdKnUNxS+KQvmAtXEwbIcj1PJsZFBcCpW3wZZS/MEcc2p8dPa4QTkviUL0eYOaG2+FJjDDUQldYQ/CNgxE89cdeX59l2MoH8IA7GwfsOQkxGl1XhBBCdjy6n7wZE2QDXh2flGzHgXkwYcqkt+BvfdCN3dfdByA5t6XOoUTciYLAijNhUE/O4+IjUpLLHPIQwUGof45t6VlDZl+W5fdj/Kq78Sv/dLzliP3seVNFgc0qqmdy81xEUE56fWCWj8MAjhaqks5lASLzkEmXnlnnEOgcIjsfFIcIIYRsl6xc8ihGSSe8PRvFIQ8RgqjxqV3WOeSoCKrgHILjwlH51zlxmJRM6YtDN+ccauHpqbHhFy6mjTjkeBW4npdb1mDt63o75mJaxaEVnWwXFXgtiUOLH/wzxssGvd5k+c0dr8Hf9BIef3RBr6//659/h7vuvFXvQx3DRoyGiDQ4h8IoxoaubZyBRAghZKuIYoWjVl+D9d4EvDT1zQCSPCAg44TtoWRqfWcdX/rd46iFEV5c14lPX7sIQRRj1aK/oB364YqK7EMPKw7pMi0gKaV2VQjl+Ajh5jKOkk5gqYgTanGoaVnZiodQ+8U5WKNGYcRxH4bvOvaBDOLInotrUoGrBR0XkRV7AKSB1FFoHzKF2jlksgvFdfXYA7iI6BwiOyUUhwghhGx3BFGMYau0kDF1bn6m68EVlbZ/z2DECxUF8BAhdlp1DnlwtIDjxKk41JuNHciWlTVzDvlwPF1WVhR3zIWyFZjSMNDYikva7i5OS4HQ9UXX2Z8D/TS4u6bt/fXMGMMaUN+ce20QBJh178cx4u6vJWNXsc1ZiAsleVfdtwwnfeuOXsdDCCFk+2HpE/fjKDyGFfu/B/B1J7AozdkBei4ru+/5dbjy3mV4ZmUH7l3yKn6/4Hm89FoXXlz8KACgQ7XDiQObpWfEnSis2xDnKKpbd28EN33woRQ8iZN5sYKHCJEVh0rGFHRDXfk2bAhdfEi+hHcctT8AZNy6gW0aEUjFilOeipJOZRo30zTClr6FidPJOIdsIHWYXF94iBBtZa4fIdsbFIcIIYRsdzzx8kZMV8+h7o8GdtknPzMTCllE7FPJQDuH/Nx85Xj2yaFdnTLOoWS9btw355C1uhfbzOsLUtf101b0hYtbx2QbaBEnypaVmcwhnckQwevxaa5h6pq/I1KiV2PK1eq5MQHAazd8Fht/ekbutc/c/yeMlw1wVbK8mwn1jp18p7dVG2tY01ErzX4ihBCyfbL+8ZsBAGOPuRDQjtlId+lMH1A0LyszgkgYK4xfcy8WVj+AuHOdPY91SxUSR/b8Y8SdKAhTd28QwEUI5XgIs+KQ/t9BhDCK4UuEyOkhkLq+CVLfhB92nYKjj56P4VV9Hs80cVC2vK2acySpjHNIMmVojmllHwWQOBWRsl1Hk7KyCGFM9xDZuaA4RAghZLtj4fOv4CR3AaI95gEiuXnm6Z0Jcc7iZMSh5MLTLSzg2YvD9DUhYnHh6AtFL1NWpqLeM4esG6joHNK/e74Pzy/vNpZ2Ranr7aXikLmgFeMcKljvmzEs3ozNMix5jV6vFdIyF9fLly5Bx5rludca11E2DNSU5ilxrZgFAJG+KA755JQQQraIDZ0BOusDn10TrFuGVdf/KxDHCOrJOW6X8RPgOKngAaTnrZ4eRIRxjDbUEMUK7ZtfStrGd66z58IAFUClTRVCV4tDUWDPv1GY/KwcL+ccMudAFxFCk8Xntul5JWMyyzg+zj9mmp1sz7lRaPcpdCrWOewhsmHUAHIPcBzrQK7bh0fJQvpBTViHhygRrgrl7d//23O4bsGKpseOkO0dikOEEEK2O9oevwYTZCPaj/to40wbHNl4oehk7eAozxwq5gQ4uquZoy8mfdXXzCFjwy92K0vG4nipc6ghc8iO1wRTp09tbVmazRxyG8SlMjxEqMFcxOYzjXJlbXGYD5iOAuyzJskaMiKQm7mAjsW1JQEAEESJKERbPSGEbBlf/fGV+J9f3zTg23nyxu9g4qIf4rWVS+15yPN8m7UTZzplAj07h0atfRSPVd8H2bgCKjZiT92WotV1+ZZ1rpqysExZWRyF9hwdiZNrHw8kuUO2g5rbPJC6u548AJm5xy6YMLJqp3ue6YIW2nDt0KkmjmKlkm27jZlDiSvIdCsz2YWFjmb6+gIAwkJ5+w0LX8ItT65seuwI2d6hOEQIIWS7QkUBjl3zS7zQdhCw57yG+dY5VNJJzFx4qiiEq2JbEmXX7fgNHUZMpoDpVuKpdL2qpbIy4xwqlpWlF+D2qWRB3DEZQkaEyuYXxcZe7+kL64JzpxkuItQlfcKZXX9WXBIV5cShV566B6PRgVA5qXMocwwT51C6fLa0gBBCSN/oDiJ84rX/wPEv/++Ab2vEy/cAALpqtaRsWQlc17XlVOZBgnnY0dO5prL5FfgSwd282p7/4jCAipL1RuJD4jA9rxnnUBjCy3Qr83RZWYS02YERhFxEtkzNOodKcpC6upMA7N3GjshNNyVgiEMrKkVONemQFitUJAIyD4/MQxiVeWgSR0lodtyQORQmziMAUcHBHMaKD0zIDg3FIUIIIdsVrz55O6ZiFZbt/96GkjIg+/SuuXMosX2XlJVJo3PIVWEifOj1VjLiUGkAZgEj+EjxYto8AfUq8LXAgyaZQ2VPbU1Jm5vpVtZbWZmKI7iibHeY2DqH0qBrg6gwF8796tpXAQCbpT0N7USUBlI7fq4kz2QtRBEvhAkhpK8sXroMU+VVuHHv5ctbQ33zeuxZexaAflCgQoRwICKpY6bQraync42yLp/QllPHUQioCCGc5GGLCu35TLlpoLR1DoWBffgQZ1yxYWDEodg+AFJe87IyO143/yBIHBexkkQcMhlCbhs8hAjMtUPmNU5JWVkcJuM14pDpOhrqQGrzc5YwUtZVS8iOCMUhQggh2xVrn7gdkRLsOvtNpfPTJ52NF9SuyjiHCq1qgSSQuthhxFERYsez7p6K6lu3MnNxLEUhKeMcMheexQtuW1ZmchNMiZpq7FYWS++ZQ7G2uAeSXIybC1eTPZR1DplATYNt94uq7UqWLStT4ubEpEPW/RXXVi5lICchhGwBa559AAByXSAHghce/is8Sf5Ox1EAxCFC6O6cJoi54C4V1byszDzkUGFgS9TiKIDEAUJ4ybkq08o+9tKOaObhTBSFSXMIx0MoXoOL1kValgYrDjWOyQhIUjjXA5lSbP26yKnCVbG9dpCMszibOWSaVqgo6VYWO8Y5lCyThGmnD6Jyh4bOIbKDQ3GIEELIdoX/0n14Bnti/z0mly9gnCwlwo1tk6uf7BXLykSLQ1lBw1URYvHtRXIVmbKyFpxD5sKz4WLaloX5gAhC5UAVljE3BXGhrExUZC+6XV+7gAplXWWEYSJsmdbByjqSjOiUvt6J884hIw4F4ifHMY7hirICm5J8t7JJXc/hCOfZhkBOQgghvROseBhAieu0n+l46lb7cxwGkChEpG8BzXnPumTj3svKVCYfyP6shaIIjhWHbJm0EYfCuj3nqCiAhxjQzqFs+3jAZA7p1/ttue1miYNy5xCQikN2jF4bXITWnYSsOGS7leXLyrKZQ8ZdHAS1pCwNaadRw+hoLarhhqbHbkAJ6wC7h5KthOIQIYSQ7YcoxKSOJ/Di8EPhueWnKHOBVtbK3rW5BfXkCWVBHILrNXQYcZBkCpgnh1Wk621FHEq7lRUuXOMQoXJsaVzSbSy/Psk4nbL/JzkJJpDaT1/fmzgUpF1ZANgnt7YEL+scQpQrEzMX8nVJQjvNa+0xdPLOIVsG0Iq7ihBCSI7h654A0LMQU2TxksXorjf/m9tVj/D939+L7iD9Wz1m9QOIlD4PhQGgIkRa8DAPH+y5zjhWewikTs9XQT5IWq83Fjdx3JhGCFocisL0gURoS799ROJagcw4hzxEqcNHvx4l3UPNecopEYcicfSDFj0OtwoPGedQJpDa9U0uYJRxIJuup9o5pK8Rwnq3fV1cKHX7r+i/cc6GnzQ9dgNGvRNd/30w1v39/237bZOdCopDhBBCthu6XlqEYehCfcqRTZeRzBO+Ik4mJNLXlvUs5iIvCNMLX0/bxsvEobiFVvbWIVS8wI/DpEWvJoRrXUYGY1+PC+KQkwnRNONqJZDadiez3WEKjqRCWVk2fynWwlUg1cRdZezyJpC6IA45hYt5QgghrRHFClO7nwOAXh2hAAClsP7W72KvKw/HoptSAeCux5fg9/cstL8/tfBufPShN+GZxx6y04ZFG7BBRgIwOUHpuck4bsw5Io6NE7Z355DKuHJUrqwscZmqgnNIRQG8bCt7xIDjIoZju6MZ4cYRBaWdsOK36+01HqfYCj2VhnmRKSszY/TakqBrc85yG8vKEAf5jmoq7Xpq8v+iele6jUJZ2WjVgRHRxmaHbsB45eE/oL22Bs8998w23zbZueg3cUhE2kTkARFZJCJPiMiX9fSrReQZEXlcRH4mIo1FoYQQQgiAlY/eDgDY5cD5TZdJA6mbZw6F9sKzWFbWmFfk6vIz49Bpy5SVFVvPl2LcQIULV4lDhJKKQ8nT0WIgtX5CaYI3tRglKrLrNU80TchnT5iL3si0/jXikLmAbsgcyqzPdnRJ2hDbC2jbrcxv4hwa2DBVQgjZ2Vj+8svYU1YBSB9q9MjCX2DM378EVxRU57p0+s2fx95//YD91d28Go4ouJ2r7TRPhahDlydHdThxkDysQJKJB2ScQ7asrPfMoTgMrBs2jsKkQxkcKFtWptflm8yhAL4uxwrqNfgSQTk+YvEy+XvpOSmqJSKMEYca3LlIsouA8rKyxK2bEYfcNniIUNcOWykpK4PuUJb8XLfXB8k29IOarDhUcBe7iAasTHDFa524+DePohY2vjfrHrwWQHnpHSF9oT+dQzUAJyqlZgKYBeCNInIUgKsBHAjgUADtAN7Xj9skhBCyExEuuxcr1HgcfNBBTZdJMxIaL4LcTOaQL1FpWZmZDwBxrJJsIvFt8LMnMWIkFvxWysrME8/enEP2KWZ2X8wFcVxwDqnQPiW1WQji2tDOZtjW9br1b3G9ucwhlXQ2M9sxy4ROBS4yeQ+mxa/j5crQnDi9QSCEENI6Lz+dhFF3o9JaIPWqJ9LzUuY8MDzagJGqw/5uHUCZ86OLGPVMB0tRUdIhDGmXLtsMIXMOaop1DgX2oYgKA7veWLykC6g575jMoDBt9hAG2hXkeDlXbNaJasq33EpbbrtZlD5PlZaVZcShUDm2rDyoN5aVeb5xDqWlb7FubGG6nloXb5ARh4L8mDyEufNkf3LlvctwzYMvYumrnbnpcb0L09beCaCx6YWKAjxxzRfRsfalARkT2fnoN3FIJWzSv/r6n1JK/VHPUwAeADC1v7ZJCCFk++Xx6/8LSx++pfUXKIXx6x7Gs/7BGDOs0SJuSLuVlWQO6TIpZS7eGtrb6rwi/eQwiGOde+DBM+3mAdT0U9Zi6/lSmnR3EdVYVlYUd8xNgc1wyK4r0+0MQGLV7+UJsxW9Mq2DgbRkLDvGtKQtLw5FTvJ0NQq0vd9cQBfLyuLGi3lCCCG9U1uehFG/2LZ/S2VlUVhHt0rOS5IRfqSh62TeLQokzqTQiENRCInTzCHHLWQO6XNST+caW95VyBxK3LJpWZntuFnRZWFBJqunpgUOt5g5lI471Mu4FX1uLulWZkUtr7EwJdIOpqQ7m5uWlWvnTy5zyDioso0aohCeSh4eJct7jfvR4ByK+5QhBQDL13biwaXrelxGKYWnFt2H7/vfQ1TPi0PP3HMjhkNf8xSuMR676w845Onv4Zm//7ZPYyJDl37NHBIRV0QWAlgN4Bal1P2ZeT6AcwH8uT+3SQghZPtkyqLvY/VdV7S8fPzaMoyN1mLDhMN7XM44fIquHqVU2gnFXLwV2tvafAXjsIkVfFNW5qdCUk1Mt6/Wy8qKF4QSR9a6D5Q7h4yYZS4wjTjkqNAKUzlxqJebCJM5ZAJA07Iyk2WUHrO0BK+W23bkVvO5DPqpKcRLustonEKnNUIIIa3R9upjWCPj0eFPaMlpsmbjZnQjFTAMjopy5wXbmSuzjIsIQbaDpQqtc8gz5z3bDME4YXsYU5x5sJDJHzLOIZNPZ8qkHV0WFmdFFfMAx3FznTDNuQpIs30ct4K6ctMS7uxQTDaf2ygOxdo5JHGQiGFGHOo2wlR6zjcl5xKnuUgq1i3rjXPIiEOZsrKsOBTFCh7C1soEM1z6mwfw5Wtu73GZx5evwb92fQtvce+Du35pbt76hTdik2rHRjWswTn06iO/1+Nk+TdpjX4Vh5RSkVJqFhJ30FwRmZ6Z/SMAf1dK3Vn2WhH5gIg8JCIPrVmzpj+HRQghZBBwETXk8PTE6ifuAAAM2/eYHpdraL2riRUy4pB+MljMHDKuI1NCZcrKMplDAGw+gyq5GC3SrKxM4gBxIXOouEyabZD/38k4hxxPP/F1eheHrMjkmgBQs17zVDjj/DFdY0wr3ih1HbmZvAhzDJXrJy4r3SrXikO86CSEkJZRSmFS57NYPeKApFy4BTFhzYbNCOAhVpLvOpl1uqDkbz4AT2WcQ7r8yzqHPHOuy7+ux1K3zLKScb86+pynCoHUrnEOZUWVjHsnKSszpVwZsUWXlTmuV/pwJRlKD5lD1jkUJSVmxjmsHUlZ55B9CBJH6XVEFOrrg2Q51xyrMCtyZZxOcQwPcWsB45pXN9Xwthe/ju90X9Ljcuv/8nUc5CxP9ivzQKazFmDP1+7FC6MPT0oHM8do3eY69n7t7mTMzCIiLTIg3cqUUusB3AbgjQAgIpcAmADgoh5e82Ol1OFKqcMnTJgwEMMihBCyDXFV34IZNz13FzaqduxzyNwelzM2+OwTRiC9MAMA0RdvUnya6OQzh6IoEYfgePC89OLSPGWVljKHMoJOdrqKcmVlMdycOANkxKzM01e7LnMxZwOh3V6zKWwpgc54iApPkbNjNE+rrdvIZFW4uluZyVLQF93iuHBFIY6TY2zKyugcIoSQ1nl17TrsqV5GbcKMpKS5hfNkFCZunxBOzkHjqNCWCAPp3+Moc370ECE0pcZxCCcOEdkOXCaI2TRDKD+fZbHulDgtK1NRRnRy3KQFvD6neFWdgRc0ikNw/UQgy3QxM4TGOeT5aX5QAfMAx+nJOaSSsjKbOaiDrp3swyMRBMpNSsky4lDOOaRdvBKWt7IP9fVESxlSmlsffhpvdB7AaDTvcKbCOma8dA1eUyPtuAz33Hc3JstaDD/4Tckxyrxvt951D6bJyuSXVlzQhKB/u5VNEJEx+ud2ACcDeFpE3gfgFABnK6XiHlZBCCFkR2fTGqA7uchxEfUaoJxl+KoH8Zjsj713HdXjciZ4slhWFsVpWRmsOOSVvtZcgCaZQ8mTQddPc47qUnDe9IQyrX+L3cry4lAkXsPFbfqE0rh30swhicPkKbGTnKpbyRwyIdKiy8rMBX+63nxIaTIrX9Km3KTdr3EE2UwKY8k3nV5sGQDFIULI4LF6Yzde29y7g/GeJa/ikt89vg1G1DMvPvUAHFEYMe2wxGXTShlSHCISFyE861YFAEEEL3t7Zbtn5svK4kxZmZMpK3MrJnNIr9M0QuhpTJlGB5JzEWUDqdMHHG5lWLJ8pqzMnqNtIHXhXIi8uyiCU9rK3riA3dLMoaTDp0Shdg4ly4Q6s8cpvCYSpxBIHSRCkRaebOh1M3FIl5X1eOwA3P+nq7D65cQFtPmhX6IqPb9myYK/YDQ24emxJ+h9Tj/rqx65CQAw7ci3JMJc5n1vX/oX+zOdQ6RV+tM5NAnAbSLyKIAHkWQO/QHAZQAmArhXRBaKyJf6cZuEEEK2I175f6fjhWs+BSARH1p2DnW9hkm1F7B6zGw4jvS4qGszh/LrDiJlnUNOpLuiNJSVpdZ6QGcE6K5mksknMk9ZyzIOipiL4+LTQlH5srK4rKws84QyWSjNe1A6RNOQdAvrxTlkLqz9vLhlWwrnbhgKAaDGCeS1wZMYYWA6uhjnUF5Ys91l+ESSEDKI/OT/fRtX/7JJvt3y+6Gu/UcgjnHHs2vwf/cv37aDK2HTsgUAgMkHHdkQ9N+MpMGBh6jBORTlnUMZJw+Q5AK5ohAZ55DpKib5VvZmnakTtofn+dY5FNqHBCoOE9FJvORchdiOxdNlZVlRBUEq/ChJz23ZsjJTHu4WQquzmFy9UueQLisTpZ1SJnOwJJAaSHIBVRTY64i40PU0dYoCRHwAAQAASURBVA6lXddUQ+ZQ3ON5+vklz+DI+z+GJbf8P2yqhThi/Z+SY9SDU2v9Q79Bl6pg2PRT9TbT9e+1/j6sqk6DM3aPxCmVWc8u3cvRAX3seZ4mLdJYoLmFKKUeBTC7ZHq/bYMQQsj2xTMrO7D/xBEQSQSdeNMarFcroeIYvkS5J5xZgihGEMUYVklOERtXL8coAMMmHdDrNm0GT9zcOdSsrEwKzqEwUqgiQs31c0JSpPMZWhGHnCY2fCeT65CsszEzyFURIMiFeibTkyey2dcnZWW9ZQ7psegAUPs02IhDuW5lBRu/cRdp15HJe7C5TSavIcxnUhSznwghZFuxZmM3PrjpR1gRHQTg/Q3zn7zrdzj42d8iPO27iCKFKFZQStlz1mDgr3oUazEGu4zfHcrxc93GmpF0GHMayqscFeUaBaDYfTIK4QCI3LQdvKgIyopDFTs92Y4WdPD/2fvzcMuOszwUf6tqrX1Oz1Jras3zaEm2PMgzNjbGQLAdAgRCSAJk+oUkDBlubpKbhMw3QIALBAgQcEjMEDAGDDaebVmWLWueZ6lbU6u71d3q+Zy9avj9UfV99VWttfc5LbUtqbW+59Gj0/vsvaaz9qqq93uH2WCCEuNV4TkULMvKNByPKe3iuvhBCQ4lgEWZJo6NxNYRcjgCh3TbJsbUkKyMvPn6y01mJAUHB539Cok5VDGLHQyCt3zugZtM5DmUGERuBnOo66BVmAv2PXjDR3FBOv8jz+3ElXorOswGCL1zOGfX53HvumuxccOJ8TVxja4Ij+DRje/BaQCsKu8N5S2WsIgNODLo1zTWWEP1NfEcGmusscYa6/ivW2+9CYu/9Frcf3+m6Rv4KIfyw1Irql+97lF8+y9cz//ecyBOAk/auG7F/ZJHQqjkTNY5NCpOko2bLysjQINo4NANoHWUcSGydLpgVmeoTTT8gbQy8nUAov9BL8qeJoSVFCCaedtClha7sfOPJyQWEEcHcwpaYiSJz5tAsrLcBQYApMVCt1xS7wloI9YVdauDHQ2pxxprrBen7r7rFpys9s+MD9+2fQcAYGnawTmHFhbWh6/nIfZq09JT2DE5B1AK0M2q0sqih10Di6bwrjPBYciQmrx4iBkampzAaUL2HCJw6Gii7BUDSV0e03wH5R28alKypeVtThYTMCUYNxANnKCFIbVoyJDxs06yskFwiAy0B2RlxKTRPjKaauZQT1YGA7gORsX7Q5EMzpTMIWYmo2yO5MbJ8LULIUBv/UL6oIVN2z+MNSXAJ+r+W7+AU7EH4bK/wPuXgNQEFrZZy+crG0AqOHSqMhwfa6wVagSHxhprrLHGel514LY/xLl6J+yuR/g1Exx0sLAEUsyYsO/Z8yyafZneTxr6noH0QOkUvVtPdpwTE2Y3izlUJp058hxKr9vUTQ0qOgeoo2EOoWYOWQSUsrIaLGvpM+z3kFlIyru+rGwFcMgxc4i6xGUSmZw4Urfai0VBFwxfI7uck2LiD4k5lP5WNAEemUNjjTXWi1V7748hyEONiKXO4cC+PQAA1y3jtTs/jM9O/jHciwwO6WDhEhsl6GZVzKGYBKbhoYugBA2LRnl4l8CF9MwPCfQnwCInWHZRtkxpZSb+X1UR9nPHmpDHLb7uPsrbgjLwuonNhzSetQux6aMFc0jbSlbGY6EYT7rldIzRl6gOdAAE23YIHEpS7CjJM2xALUEnWQ6mAH5UOsZaVmb8sKwsN06Gr92t2/bgGnt7enMHn/z7pmqCBhZ+4L58/PbPAgAue8v7eWwOwnPIIMvefCW9U76DUw1s0Kuayxz43b+Nw9f94orvG+v4rhEcGmusscYa63nVCTu+DKDsYmlEfT/Fo88Ch96640P4oPoJ/jd1O2ua91A15BtUaeg5kh1A4/OkUhZNBoktY31AC8d+Q8TU8dqsGhyiyfGwrEwwh1TpGRRC6DGH2O8BDggVc0itDA6xrGxSysq8kKtR0YLEddlzyMJk6d20jPtVaRHhOgKwiDk0gkNjjTXWi1NrnrkJwPBYc8u2vVgMcYFvrcWm5e04Uz17TJlDv/y7f4Qb731k5TeKMsLzB6sA/QGw2bNVTQGEEQO0I4aQ8AMCAJfGxZDkwiHJynj/SmEaDDONWFa2yrQyHvcS6ORVE9M/4fhYFhYjs0XKsQiE6TGH5LiewJmmnUTgZog5RICMmfR+Rz5/kTlk2FgaDA6Vn3HKwHh5jCUDeYg5JP1/qCk2C+x78M4bcYqKgR3KO7gELE0xgVEB1pWfcz7APH0znm1Ow/qTz+r5Lfo0f6GwCI+muEY6OHhEKeJKLGi393FsuP//4OGbPwUA+NyNt+DhJ56e+5mxjs8awaGxxhprrLGOuo4cPoRLl6OcTE7mDBx0cDk1a8YEc7Hbj004yP8msKameQ8VewvUnkPyOHyeeA59lmVlFGVvSnAo6AZWNasycaRFST0hVMEOGFLn97hkFBp/WU7om0Bxw/nz0M3cCTuQJ41sAMrModIXKXgHnfZN140SXchfwRH1vmIO0bUjXwY/0tXHGmusF6GePbiMS5bvATAcvX7dQ7uwDnGB710HpOeetcfmmbVz9x784H1/C9Mv/VLxeggBv3bdo9h1QMiobvxV4LP/IR4rEogCALrFRLnM/JlRBOhE6VDZkAGyfEy5DNwAmTmEJnsOReaQ8NgTPka07XmAFY3ryrt8LLxdirLPnoOLa9akY8vXg4AXbUiGVoUziPfPYw4x27btN5ZC8vlTqVHDYxkZXVc+RR4GTXGMaR6hSYIXx8ZmBebQLL+m0/ZEINMipqJxampKknNVo+XGx3bjcv8QpqdFS1/2W0zXqHMWWgVubtXsZLpnLMoUs6Ha9sXfSduOx3Dhx78PT//Jv5/7mbGOzxrBobHGGmussY66Hrnts1hUqSNZUZx1cPC2lB7VpYJFA48QIkDBjJdVyMoMeySUkx0vvG/aQJPKChxiWjaBQ8k4m9gyaVhkWdkq0tZmMYeMoO4DkeIu32PlRLAChyjp7Wg9h+gaNAsEDpULhbyQEBNalpVFw1MCgVzly1CzrmTHeKyxxhrr61233/cQLtTbAfQ93wDgiw8+i/UqMYe6KT/P7TFiOz5x9/VYVB2a7lDx+s4Dy/iPH7sPn7jnGX7tubs+joN3/gmAlEZJRv+JkVmzRuoiVo6rTIdpjO26MtSAGgI0tiqSGifPIdm4kEbGBOjM8sCJ7yl9huLPabs6NhiMCoCbogsGkzaCH1KOZQrmUB7bJNhCqWDGtHAVK4aKmhNt02cOBRWNsXUCSXg+kLbbj7JvYHyeRzBDyJSG1O0McMgxc8gPShcXun0AgANYF4EbCsZIvkC28u+77pa7cJZ6Fidf/rZ0HUpJPY/jOjGeqwZUbDDRPdO/5x/emRt06r4/jv9Pn9+EA1i0+3ufGev4rxEcGmusscYa66jr0H2f5Z8L5lDw0U+hijuvS6VEEJpAEahRG0gPlWkJ4KlkZeLfrc9JKLJoMkhpH+R1hEQvZzBGGbgZ6Si945nRaaVYX6qgGmjRUSy6hJWBt05dV18zh1YpK2sWIo2frpGqTLPl4oiPIxlgU3c1dCWlPhtSl9T5Wt431lhjjfX1qB33Rb+hA3rjoIHyE3sOY6OOY4G3HT/P3TEy0V969AYA6DURusQCsoIN9OTu/dizP5n8QzQOOAVy/jERE9WhlJUxg9OSLCxHywOCUdSQ1NjCCCkSkMY9kpUJzyFq3tRF47pKgFA6AGh4BNUy00a5pZQSpmGDZkAIyECRTrIyM8AcYnZRM+n56fB1IT+9gbkDJXzqYKM5dVPLympwyKAJEsAqffdUAmGakP9W0vuQGicNHKwfANe8hQ2UONfx2GkTc8h2VWDF9lsBAJNzrk3XIR1vmrdYkoSbWcwhumd0T1Z295N78VM/91O4+8m9WNq9DecfiQw8BgeDGxPOXqE1gkNjjTXWWGMddW3aeSOew3oA5WSuQaSWuwEDZFkq2EJjH46GOUTvqWVlwnNokiZvtUkld96oq0reSMSWSWCO123yOFi951BNJddw8GICHj2HhplDqvJ7MMm7STKHoFu0ygEzJuyAMOdMXWIZORy363v7ps6nCjbGBTM4lKj37DmUrhGlw4yeQ2ONNdaLWOGp2+Ch8fjipYNjjfUB6xGfY85ZflZLf7oXUht23hJ/qBbR1gXeP5XyjgEsE2yWdSVJ0ErgEHnYeVV679A2bWLD1N5B3KiZ5JCCWlYWY+KJAZsADuULcEsWy8qCzQ0PH6PsgzYIBKbYZQ5VcDBoBCuHfQGbtkxsE0wcApOaNrJfhv7G5KvXDDCHvG6hQ2IO6YZBKwKdmrb8jIdBK46RmU4051AKXTDMTI7HK8GhNO+AG2QOqeTrZ9EA3vH7rVkoPk910fJ98b2nXx23y2mr9LdN+ybJd8VOJlmZlA3ysW77Cv775Ofgtt2Ih2+PybFLoS1khbOae2Md3zWCQ2ONNdZYYx1VLS8fwXnLD2Lr2jhhkbKyBj7G5LJp8QxwyNOENk4EKb5WNyszhxp6Ty0rk/GuYTj9TLFmP/6euq215xC0iVTsVUQMc7pLKCfStawsmm6KiWQnJoIi8QWIXTuO3+UdlRPDoWKQrWnRBdMzJ+WEMbE48oJd5KH5WmTmUAKHaP+iOwrkxcixqJu37il9OkR97oGd+PUvPnrM9jXWWGO9fGv3wWWcefh+7Fl7AZbNukEJs/MB6xI4FJlDabw5Fswh73H+kei7Vy+8CRSSAIFKIAWQxobEQmHQvZu/ECc/n5od0qRxh4CCuiHA4FArPIeQ9w8gJqD5fkNnFohWeg7Rz100oVamYg4ROKQLVg6xe03TJFmZL44bAJtDm6ZFwIzxOB130/YbSyQrUyGmqFGjo2YE8aaUwWTgGHXBstKYBNFcEcdLEu0Wbtj0PPkIEguKQR69mH5dXu9zu0fxZHse0K5J5xhBJBrnGVCkMTudL1WUD7YF+MfH3UUWG7rDmC7H8zysFkVanR/2eBrruK8RHBprrLHGGuuo6pG7bsSi6tCdGanO1Lkjk2PJHJrlkUMTEE5SSRPbocSRuogNFKrJjhcg1QKoK1lurzGlJM0Sa4aMqgXVf7WyslnRv5zckqpOG/MFc4gMvDPwEk00BXMoeVN0cxY2gSRfTQsHzdtTleeQ7FIT2EMG2LpKdCETTgLuyMCamVIvQFYmZQvP7FvC9/zqV/DBGx4bfN+//+i9+LURHBprrOOyvA/Yv7R6oPmrj+7Glfox4IzXJMnuEHPIYy0xh+yUwQV3DAypdz92OzYgJTpWi2gChSRAoIPlZ6aBA3isIebQMCieP58MqSt5FY0pPJ4IsAYQ4L+ZwAadvIHKxoVMQJMNjFlsJmYu+Y5BOQKKgm75nLRdjj52aR+SOUTsG2XaIrGtAIccMYAXen46VMG7KFkz/SUtycpMGot1W6aNmWp+4FXDjSUgs5uUmJe4CkCSDGaaz2gV4OzA3Cc4OBhOXqO/mU/MIVv59y2EIzhi1vO/aQymuQ9LCUWUvfTekvcMQrntIDypCNTqMInsLx+9GLWYY+25/3o8/jv/qH9OYx13NYJDY4011lhjHVU9e/+XAACnXvmNAPJkjlhAGtmQep6sLH4mMXgocWQVnkM0UasNFuWEf4JhHwJKNKFjDux1VHoOBd3CKgMdVl6sGAHoFK9Xvg5Bz5OVETiUgSadup3i4OMxdnPAIbqOTZTFMUWfTUYrOjqkIXWUsbFPE/kyNOS3kHwN3BQhhBfMHPrs/Tvwmn/3Kew7HD//ezc9AecDDk+j18VP/vn9uPfpaIh509a9ePTZQ4NU/bHGGuvlX7/xpcfwjp/83Kq/4/c+cB9OUftx4kXXMgggy/sAFRwWkcYYZ3NT4hhIYXfcG6U4y6Hpy8o8eQ4JcAiZZaPheWxQCfRfCbCi8SDKk/vgkGPPodJnjhlFpkmpVS4yfHRm2shGSJGoOeM6yRAGAuVUIC+jPIZovwwHCnuoWDks/Z5AKYNG+SiZlrKykGVlXjWDMifluyhZ06r3OzK6pnQ4anw0iTlkKraRVwYT5PGVGciC0WzR8PwCKGX18ueu64N9JCtzzByK23EmMYcqppauQDxqjKkEshEYReAQpbPlz0f5okMfWCM5uXeWr/lUTWLaLAGKYv7z8Jc+jHMe+B+9ptxYx1+N4NBYY4011lhHVebpW/Cs2oyNp18UX0jdPZpIGkGXXpE5ZCnxLIMaKxYBLtWE3IvJNS0Iep5DnHRWHjMncaksK/NqOB2lLjpHAwcvFjYm2NwdRj9tTC4GMsMnXTcVYELHE2t53naerIw+byYxgYa7uqXnkHNycpuNSJ1qsowsgUNExWcz766D8xkcer5pZb/5pa3Yd6TDs4eWYZ3H73z1cfyI+UOcfuAuLFuPX/r8I/j0fTsAAL970+N4v74B/8D+1vPa11hjjfXSrk/d8wyeO7zMZs4r1cHHbgYAmDNfO5jkaH3gGHsgPm81S61euKxs766nAAB71Ik90MKxrCyfiw6On78G2fOnNvqfVTp9pmbQNBU4xMbDoWyAaNOwEXJPVibYSAVzaIaszCCPV3ws3iZZWcMsV+OWC1lZGyTwkj2HAl+DrjBOJv8fYybwlSw7H7yFhYYZAIeQjK5NAtaoWWRY0tYHhxYhASwyzRbMIWieX9D++XeCvewHxkXlO3iYaI7tHb8nNMlzyPXBIck+Nsx8dsX7CbyqZWURFDO9hLt4fMT87Xj+1akJFJwIFHG99x8L1t1YL+0awaGxxhprrLFWXdZ5nH3obuzYeJUAWkr/IANfAEVDxcwhYsGQgfUqPIegNXxQPXBITqzWpMlbDTZlQ+rEeqFuKwEfUlY2o1PZO5w0gWrh4IRMqsccUqZgFzkhI1BVWhkANH5apJWxN8V0DnMonZdumpRAU4FO5DlUMIeyrMzDsL+CcmXcrxZmmNZL5tDsa/TrX3wUP/WJ+3uvP7n3MHY8cjt+s/0v8NPD+MKDu7DuwCP4R+0f4PK9ny1kGUudw8fu2o7vMl/At4YvztzXWGON9fKsI1OHS578MG5Y+BG4FSLdAWDPoSk2778XHgbYciWDALJcBQ4F1/G4cywSFvc/twfLmGCqF3sL7y4xhrpCVuayrExE2RMjc6VFN0nBJIPGOx8ZNxCJn5UhNUunTTR1hrdJ1lamlRFwJsGFIYCDzgWI43jDjQ3HYx6NIY2X4JApGDcLsoHDiW1dMZ40EkCqWDH5IFOQghpiDrUJHIqG1LqKoq/BoaAMFuQxsndhea3ke6SsWoYzDAFrJBWPAJ/l9wdiDlX3QD2HaCdpzpWuEf/N0z1Us5NNMh736ANrLCvz+Zp3egEmWHTTZT5eroohPtbxWyM4NNZYY4011qrrgUcfxTlqB9RZb4BpSgaP72jiu3rmkJfUZmRPoJXKDnTCgpjIahUn5cbMYg6lLpgrmUMyXnhoQjVU1EXVKsBa2bXzxcQOVXdbLlBy11aCQ8tFd5dlZfOYOqlz2bZtmVASyr+H7JwzayvF3tIE2rDnULxmDA75EhxScxZa1z30LD7/wC4AwL/4yF34tx+NcbkfvuUp/EV9Pb7R3AHsewpbdx/Gt+kb4/a8E4auHvuPdFjqPC7RT/Wke3V98aFduOOJ5+a+54XWdQ/uwv3P7P+a7mOssV5Jdcu2vfhm9RWcrvbkhsGc+upju3G1ehRHTrgIaNcwCCDLeo916gj/27vumMnKQgg4cnAvpmZdzyAakMyhkklKx9jAMSBCrI+VjkknQCkI5pBkkbJ8TDB5gDIJlGVlYYg5lKViVLOAAJbHBctgkg7Jf0g3QGLaNH4ZPnkOOdUw2AKATZ21aVkWZe2Uo+kBoCVZk9JxbBp6/nsXo9oHiqPs0/VmWVliJNUm1l41WFQi9XSgyeSV4flFfKEf7gD0zaWBOLY5mMjQDS4DYU0EhyTzCKAxOc8hWCZPDDj+2w4zhwgU88r0DamJtWRttgZQC/EzNH8TcywCHY8F626sl3aN4NBYY4011lirrqfu/AIA4PQr38ExsNlzKMe4emYRrU5WRpMdPZA4MlSSFcOvDYAUPeZQS2bWJGcjT4GUYpZkXEFHj4PVpJWVPkIyuc1WaWVt8d4hQ2oJRrVhCq/y8ZP8YO4iguKImzZOQCv/iYlyQAjFNvgaJPNKlpVx1HApfwiug7O5Y405nkPOe/bduPfp/bhvewRVPnXfM7hW358OuYN1Ht9mbqQLA+s83qjuQzPdB+sDNuIQtqg9M+8nAFjqHH74Q7fiFz778OzrM+NzOw8srfxGADv3L+Fv/9bN+KXPPXJU+xhrrLFm140PPY036AcAAHbAq6Wurz6yE6/TD2HxgrcAwKDnkHUBGyDAIdtlxs0LBId27F9G0x1EmKxPfi7DnkNSIqfhOdEygkOUVkbP9fmLbgMyF87m2/I5To2WeizhwAGTGgbBFuAUgIIl20jPoRmyMi2AJJLKqeB4uwRWNGFaMIcWBPDSqgSUtZNCMi2ZQwthGV0wgFIzmUPK25wy2jvQppCV0ZyF5GJNknNRFc0YZHaTrphD5Ydkwyf/DYf+nip0cCwNzE00SiOrPYcMSs8hYggxUEPvF80t+T3Q6fNDyasMDnnLPzu9ED2HiFFdMIcoRGSUlR3vNYJDY4011lhjrb623YApWpx48RuZUUKSsJxiJcChGeAKTUQ5rYw6VavxHALSJLee7PQnLU1PVpb+zYbUXfG60xkIcbqZKYsrzgV5ASDNok0oTT+DrmVlgulUeQMB0QyzlJWlSfaMCTuQgbqmmaS0skz/p/LOFRKGwOaT0XOIpHfG0QS68hyyFp2QxM2TlVkXeKH0TYc/hrcf/ER8fekwXq0eSdvrsOHAo7hcPxH34y1cN8X/nvwnXLXjj+F8wEUq+nsYca1DCPjs/Tu4O/+Je57BgSW7as8Sqv/7w3fie//7V1b13l/+wiN4s78Fpxx6aO77bnt8Lw4cRfLSWGO9kmvvA19ixkYtrRmqnQ/dgvXqCMz5b4svzPIcUlJWZvl5Pksutdq666l9WI8jMGtPiAv9ipUxzBxyZVpZGmtIgrXSeRNzyAsAoEiddOWCnhoCLBtuyHPI9uRKBFYApaxsFks1s4VyApv2NjYMdMMyrCZM4VSVBApEWThtq2l4bPPTacFwmYQpbPqc16YArqhUsGWqZ3GgDSIk5uF1yyAPGU33o+zLf7N3ofAc8tW+VOHfJ5lcw8whD5OZWuwZRJ5DlaysYngRoAhXMq+ZOWRKBl0TLIIupYj1sQZnM/CjJylQpO85pKom4FjHb43g0FhjjTXWWKsq7wPO2H8bnlx7BdAsZCCnMvk0wXEnamVZWfwMMXlqGdissjKJi45vABwybRVlT8fME6PS66iQla3Sc0ieoxUTfANfdGdRSR/kAkUPyMpaTMuuIZl2zlvY+AyyeSErk6CTtV0hwcuysthlZFlZxRziv7friq5oLe+T5XzgBdK7lz6Ftx/5DADgEvsAd469szh9700AgA5NnOzbZbTKobFH0DmPi/VT6ZpYNv2+d/t+/NAHb8ZXHt0NAPj9m5/ED5s/xlsOfGL29alq+74j+MKdD+GEgyszgXbuX8IDN34C/6P9aXzz3t+e+b67ntyHf/7Lv4uP3DgfQBprrLGAg8sWW/bcyP9eiUGz99AUp+2NZtQ4963x/7rpSU6j59CwrOyFMofuevI5bFBHsLh+U2KY1syhgSh7OBgV4K2FUUHIykguvDJzKCiDoNvB8yDAn8aS7K+UfXOcMtC+g1GBWSgA0liX2UBLYf5YQyCb8o6BKop9h254261ocEjGzRLyuNw0E5ZMW9cVTNRFZOYRBGOqqJQANlRkVG4SU4vGsAmWYYOG0uUyOFTAj0nysdpzqNx/PiY5rg6BQxQtTwwfmrOoxBwK1fU2VaoclIpMKl+CnJS2ClV6b+n0eT+QVsbMa9/xfMiaBTRwLO0kybx8/7Hw6xrrpV0jODTWWGONNdaq6sEnn8Fl4TEsn/nG+IJSsEEzrZo6nwZ50tNgmMWhq8+QkfILYQ4NTWT7nkNllD133siLKE0OVQKHZjGfZDViYSAnhA1s7vTFnaBRHiExaaR55ZDfwyR08AJcWlWqTTqfxjTJ16APOjnblWllbFZdeg7RZL9tY1eTGEXO29IXZM5ksfOBF0g65Cjnq+w9/B5vLXTyNzqi1kTPIWJHBQvnAy5RT8ZjgEeXrt/hadzWoWWLp587gpse2Y5/2HwErz983ezrU9WHvrwN/735afxC+M/82lLn8Ftf3oqDy+V5/eZnbsN/Nb/ASXIA8CtfeAQ3PPJs8b5f//gN+NPJv8B5j3941ccx1liv1Lp12168SeXngV2BQbN19yG8Ud+PQ+vOBTaeDiCCAA0cgggEsN5jPUrmEIELQyzTo6m7ntqHzc0yzOKmXrQ8kCPsrWAx0ljSdQmw0pXR/0qG1KnZEBmoyUC4kyA/GVJnJk98PT3fk6xMJ78dVJ5DBCoZOExVHA9nsVTpXAxJ1JCbCZI5tBCm0TQcJeNmGXlcNs2kkEwrbyMAAmCiMvAT9AxZWXC8j17pBkaFOEarbEi9IORusoJgDk1FUqhsMsnzWMKE/fyAEtwJQ8whNqRuoyE1gTuTJCsbAocqwMopzfvMaatZDi/BoWg8bhC06QGYJXMosfbMYgSwXH/eoHifI3PoeK8RHBprrLHGGmtV9fgdn0ejPE5+1Tv5NYrGBfKkoUE2WmwwPOHNxsjkk5BAjVV6Dg2ZgPoEMBWTugps4g4beQ6xrGzC240vxHSU1cjKDDw6kKloYkKFEIEx2fXTpfGopJAPUfoXMS0SZUh+MOStxJUm1troIvJYTgw7Oy0noUKO4FXftNNUsjK4btAvaaik5xB5PwDA1f7efMhuyvfLFJPEHMr+GdYHXJzAoVY5uLTgou06H/DAjgN4rXoQa9R0ONFmoKbWY9+N/xvX6geYYRBCwD/78J341398D254OIM+O/cvobv1d3C62oODah1LH/77Fx7BR+/Yzu+7eeseLGz9DBrlYbpDqzqOscZ6JddtDz+BV6tHcGRyEoCVF5/OObxBP4ADp72BX1MJBLAi6cy6UBlSW5HytTrm0IM7DuDRXQd7rz/wzAGcqI8ACxtmGFKnZ1TFHAKA6dLh9IJJ/1tdlH0Dmwypm15zhc4PELIyZueSrGwSJWkuAWZGysryNhs4LCdmz8y0stT00cTKgWAOmTaDMMjMIQmqTAU41LRtlkxbCxVswSwi4CeofiIdkDyH5sjK6DiCblgKP0E3yDaSUrupOAZdXSuqZUwYhAMqWdmQB2Lo4NlzyDFjWhM4VAFKtTQdoDlXbTaejqnyHGoSc8gN+DXRvuFtltmbCQwcfwflZ7JPZHVe9/8ZcP3P9s51rJdvjeDQWGONNdZYqyr72JfgoHHK5d/ArzloZo4wW0h5nlQaFRi0kVV7P2SvnKNgDtWgRNp/pwRlvQabaPJHkyGanJFRNccLN/C6KWnVM8qIyTSBGt77mGgiZWUmJ7LEQ4jv7YIZlJUtqK7sGvIiYr4hNSW3OJHoJiewvuvKRYXP+w7KMLtqQqad5EHEsjZbxPSqOYbU0XOImEO5c39q2I3n1CbeHm1jqhaiUSctlLyFdYFlZXGbqYMppBvOBbxN3xWPcxWAHgDccP/j+If+f8VzTMf1P2/Yij++/WkAOY4aiF5D71C3YumEC/GMOSOnBfnAC8EQAn76kw/gWyZ38rF7H/CfPnYfntx7eFXHNNZYr7Q6/NAX0SqHZ7dE/6AhQGL/Uoe3/ZfP4o4nnkOz9xGcqA7iwJYMDtGzVTI3rQ9YL2Rl8JYNoVcrK/t/PnI3/uOf3dd7/UjnsBgOA4sbewlRAOCnh/G5yY/j/AO35kMkcOjI4eKY2cttBcCKpFGSHSKlaLVPDI0p2c+vgUNTMHyoZCNEModmysqE5xD5wLWURCYMqaVvngRVpiobQZumZaaRtx2Uz+MpAFgMs2KolLczmUO03UXVRRYRgVZqGFCS/j5TMY+glFMgy8pcUPHY5DxEXK8hsK+WlZF3kGZZWTl21cbhvP9K4kXMZ5i2YGtTetxgo6tgDsWmEqX+OWaB58/QXKIH3t7zEeCm34g/f/FngD//573zHuvlVSM4NNZYY4011ooVQsCpe2/FU4sXAQsb+HWrGpaVyU5ZmOZJeTekvUflmSC8clZTEvjg1zyBQ3niqWsPo8rQEa7cL9HKlWnSBG4+0BBCQAuHqSJafNLup8SdIDqO5MNASSBEKZ+qFtLvQZaUldExzksrUyEnt8husOxsW9eVk1BPEoHEHEoTzSZMYYOGNnGqQElvcLZcXM1h6kjwxCDLygwsLxCC6/gYOtVCBcfSEuUd/PJ+nK724LBaF3efgKnOObxffwnedrA+4K36bgD9azirdtzw2zhVPYft6y7nRcdXt+7BKfoAPtT+R0wObAMAPLHnMP7oK/fjzfo+TC7/C4UEQ4JfNzyyG7c8uhNvS8cBb/HM/iX86nWP4vMP7FrVMY011iuplq3DabtvhFUTPHdKBHuG0pB27l/Ck3uP4OGdB6GW9gEA/NrT8hvSs7UTclfnA9YXhtQdL3b9HLajrMOdZfmqLOs8Ft3hyBwaCC5olvbgfL0Dpy49xq+ZijlE8e1agO7zygQPqKYINvADwQI9cIgaICYyVogRWngOCcmWgYMlcGjGWCNlZeQd1ybQSZnMPjUqMCgkwZhOpHA2TcvH4t0UCBbLSsq40lJ1wFcKyEEKgyUBMAEOARj2KZoDYPF20nlY1fTmIUWU/QCwRg0Yr6N/Ev3NmoXZsjJUCWqxMUZ//8pYW5fsKgOfDKn7AGb2HLLZtyndWyQ7H5KV1ffpw888h70H4z294+7PYs/dn+6d91gvrxrBobHGGmussVasR3fsxZX+QRzZcm3xeikrE2aM0zwpHwIzDFPec1qZCwpGz6CHVyUX6FzExBETS9TgkFLoxDGHWZ5DpoXXbZGONVTWBxg4BqRoskbMGiW7fpRK05ULlGVM8oS+nsANeA6FecalrsvgkDChrD2HSllZlrQFbZghNAnTYgJNE/7go2E0H9fcKPuQZWXBiUWFh9XUnY7MIQcFp1pon5lDKlhgOcqzDjQnAMjg2tpn78bPT/4bTtz5ZeilvbhaPZY+szI4NO0crnr6/2D75Dw8eeK10ScrHev7mq/ireYebNgbGQM/9YkH8HZ9FxpY6Eu/pbj3pOH2z3zqQXzLhscwcYfSdbGDqUVjjTVWrDuf3Ic34m7sO/kahMl6ANlAWZYV36Nswjsk2bXiM74wpA7CkLoOM5hV1oXB727jl+OzemFDZA7VoL6QxVIRa6lLzzNmDiVJc21GXG4wMVFNUxgzS+YQg0DCLBoQ0ummTeBQBnF48yqzZJvg0Ok0ns0ArAikaYKIpg8EOmVvn7jtLAujIuDFBQWlDYMbztroOSRkZzSehRkegDrMjrKX46/SbcFMHvQcEu+3BXOofz4uWV2Xce+SOTQEDll4JaSBJKdf6MvKvA8sC5MVY+krWRkdn2oSczvea9H3sB28RwtDap+uoY7XmO8ZKStL95OtfKgOHlnm+2TXvkM4cPgIxnp51wgOjTXWWGONtWI9csf1WFQdNl32juJ1By26WGJi02UZjR0ChxLowoaM3sHCQGvVe+9QOTQ9xgpJ06zOHb+akh0/a7KJJBk4EzikBXNoFVH2znk0yjM4REAYn3MB7pCsLLGKmDm0wPvRwWEaym4nn4rpL4Dqil3UOLQX8cTSNLvrykk/JcUFGyfgbZIEoDTtZHZV7Tk0lznkeWHHqTGIk9a8AOlS57JhbwReAHrLMjyny2scbJyEKruE9XvuhlYBS1hYlazszps+iyvwGPZf+dcRdKTi22Se/W59c9y+7/DIroP4kzuext8+7UH4xROAs99YeH7I87v9iefwvac8hqAbdOkeG0otGmussWLd+eAjeJXehrWXvquQFtVFAHPnfU7CbOSzkTxruuIz69USjwchRbgDq09ccj6wAb6sNT6NbwsbYkR6z/8uMToEWECASrccGycEXNB5zD0mWsjrOC5RpLtkWYWK7cGSIMHKdaop5F/8WeFVUzQ7VpCVUSQ8EH194nbbAngiNq6UldHfhCRj0pBaewurWo67Z1aQmeE5lKRawwcqZd2mAHkc+nMDOd52Yh5Rgl1pHOdI+mHPoSHTc5aVaQMDm+X0k8iKDQJMdCGCQ2qQOUTgEH0XEpCV3mudTeCS53umB6yx55BLvk06Sfc8f4/k9aZxvgYxo7QwN6H0Cg21sV76NYJDY4011lhjrVjLD38RAHDale8sXrdoGGgpJkZdZpYMJZ4wvZ8m83O6f0PlByRfGRyKEyUbNKD6YJMEtGiCxMwhndPKghqmscsi/xum4bvyvIrutimlZyQJ6NSEJ1QGrqDUDzOH5nWYLU+4pVRALl68K6PsafFQM4cWwzA4BG+LRdg8Q2rZeS9lZS6DeM4mryTD5q4sUfS5i0nvd0k6Eph11iEkwO2wXjccd1xVd9P/xOGwgPPe/UPRI0MFOGvR2IO4FjE5KViL7c8tYQFTXLbvOoSL3wuYJkVXR6aRD1FiEkI8z1OXtiKceD6WsAA4y2lFbmCBOdZYr/Q6/OAXAABrLn3XXHlVyRxKzBi58E/sCidkZdYHrMMSukn0NgsuJ2vNZV+KksxAWWtCMqle2DholMzPVwEO0XssM4dKo/+VnuvpzYW8qkid5Cj78pnvWTo9QVAGbegzhxg8CAGN8nBmNnMohMDnshDyOE9AkWqaIiU0DHgOOZJhp2UoHUtwFkiJXha5yRG30wwyebW3xbZlSeZQSKBVBp0GlsCSOaSld2E/rczBwKIp/PwK5tAcWRmzoNJ72oXFfP60fxsbT33mUCMkXmVaGUz2PrTWJt/DtL+erIzmQHn8hW7RqtycKcGhxJatzkv5/L1Sgh081su3RnBorLHGGmusuRVCwObdt+CZ9myo9acWv/Mq69+LdA6bqcV2YCJuuAtFFPiOJ4qrqaGEGNqWJxBhRjfRCRNJnpCnSWFIk1bVtIlRsgJzaBrPrTMlq8VV2wXyRJUTzdJ16dREyK1KM86COdTMXjzxPmiSBySGS9/o2llbeQ5Z3ndQDXchJ8oWE+iGFzGuMNvUc2RlP9D9Hv6l/g3efgObktwc/528iwk1FoZ9nnyXJRJ0LZ1ZLM6/iOJ1WVK40uR0ebqMy/Z+Hg9sehsW1p3Ifxdrp3jVoa+iBXl1WFjv8R59C9ruAMw13xf3r6N/g/UBP2L+EJcd/CovIDcf2QacfAnLDUbm0FhjDZd1HifuuhlTtQiccQ2DQ0MyZE7/cqGXMAlk4NyKhavzAetwBDaBQ3Bdb9xZ8RiFLJbK+4B1IY1vCxsH5U4s9+HgAwej0rOgYg6xXHfOMXkxnkhj5iI6nRodqBoCBP4nzyEGcQToEJIHDj1bXQJGhuLYfcjMX2YLIaVrpvOSXn9el7IyGzQ8+e+p8ho410XpFZpCHk3bbVUEsGTpOcwh2Zzh5zyBTkPNKDHeOr3IPxdgVzqfGElfzkMk82cI7NNw8LrNf8M0d2oW1vU+Q4zZQpqejpslg5WsjFhGtlvO3yMT9zdLVqZ8BxW62FRKn/epuVf4Fw00AYF4/Uvm0AgOvdxrBIfGGmusscaaW7sOHMGV7j7sO/UNvd95mDwBlpOhLnsODckEaHLJk17vZsfRDpRXVccOedLiqHs2g4lUJJ3R/2nyxxP2ZmY6iixajLgq3cWmDnbR3ea0sXLfVk+YSaXhCs8kJa5JTgubZ0jd8XWUJpQydcS7KsqeDKnh4jmLhLeCOUSv+5J5NE9WdpV/AG9QD7B/goGD8yFS1w0xhzpOnPG1rCxk82tfAXB0HYPLMrlOL66YMHf39X+GE3EA7au/M51YTjq6cukWBilDSkr7TnMdltaeDpwXU/oo+cX5gB9o/hyvOXQ9rA9oYHHC0uPQp1zC95izHf5z82tYf2Dr3GMaa6xXWt23/QCuDvdj30mvLuLPh0ASAmis9/DM9hQLf5aklZ5DG9QRuIXEHPIuM4f86haw1nnYivXnQsB6ReDQhsFxgkEVTpUS4Pz0cHHMlKg5jznEBv26gdItjAoI3pUhEGxIXTYE2PS4aeFVgwkyw4c/qxs0sDxu1UC8rM55vo4T5GPWCfxSphxDiNXDoEpqAtDPQGa+eGsZ7OFUMP78sPxOB1umeooqgBWSdYMMsgfYRkLCxeMTgGYimVANH3stK1MyrWzg79kk5hCSfAu+i16Lbd93KoM7FTgkACkCBJnVa/I16myWDw6x25SIslfewUPz9fLpHpWgJ+2zBm8lW8gEOzKHjoMawaGxxhprrLHm1vLuJ7BJHcahk67q/U6aIxYgkBWG1IOysnJyw4aIqyw/x2CROn6DaSSIdHJVeQ4xc0jTZHUC6AYt+p3KYlvEFEqT6cAx9SQDyJNKbTJDBciTdqsX+VyaChwKsvO5CvlBnOT1DTx1cFgKuTNfMocyhTxog0YsGqzwZSBfplpWVoN0snQChMi424To0dPCwtM189GE1CrDHU727AhOgEPx/WTCGjzF3Xf8d7R6YcW0suU7/gCHsIhL3/Yd8Zoxc8hirT+AQykVDa6DObQD36DvxL5LvhPQCTRK/hydj4sknbyFzlE74/U++ZJ47wUHHHgGf6X5HM7Ye9PcYxprrFda3fLwk7hCbcPiBW8GIACegeebEww8BkEKWVnJygQioLQOS/ALJ8QXhOfQamVl5ENWvOYCNiCDQ3VCVNw+sTETo1HI3XxK8iTmjl6FXJjSL2Eyu8PZrmT2EAOUWBzsOZTBtKAaLIThsIQGLgPv5NM0429B4NCCGvDVMZPBv01grx7NKZy2AocCNQqUKbzzAOnZV3vezPMcksyhNP6l7Q5H2YvGiMnMoaYZkJWpBg4NTCErW8FzKDVgIlgTxz2HLOWWzCMCBGtwyCF7CQabQJmmbG51XcfsW0U+VT1wiJhl5Dlk8vcoBYrIz9RgY3699BxaqaE21ku/RnBorLHGGmusuUUU49Cu6f3OiS6WjAdWEhyqJhMU/w7kDisZUq+2gkhsyQeaQKoVmUMNM4e4e6bLyZUyTZ6Uzekyu4rVwrT82gsAmeKeE9oSsKQXeEJlQjYDlccDSFnXSobUCRySnkPIcjXvbDGJVXJRIWRlQDmB5nPxdtXMIR1it956EgrYBBT5DA65LjKEUifWwDK4pn2WwIUmgUNdLSvLkcBOT+YmzB1Ztrj8uevw0AlvR7uwNh1kXliaYPn6B2+xZt/DMCpges438DZCYmQ5F+9j5S2cC7hQPR3fcPKlEbz0VjDjVidjGWusV0rtfvAGNMpjw8VvA5BBkkFDavIcciGb8LaSOVSxMpFkZeoI/GKSlQlwCKuUlbkBWZn1HusFODTk55LB7fRckkmeXfysTiC8aVd+rvMYqhtuGFjblZ5DdF2o0cDskvj/tp1EWZnqezZRI4GYsKGZbUhtnef4+qFSpikkf+w5xIBQU7Bv4mlVsjKVZWXMCuLndAUOwc30HCrH35KtNPQZCZh5aUhdyMoSiJkYUGVa2XxZGUm32VQ8RcjzvSzuAWf78j867sx8Lg2pJYPOClkZhljQ6b5QPsq6HZrsi0jMoQFwqL4ndLBRMun9KCs7TmoEh8Yaa6yxxupVZx3+5D99H7564xezAWg1SQFqWZmkV0tD6rJLGz0LaOKatp3AgdWWF346+cWSOTRLplb4BBDwQ5NI0c3lLuIcTx3qzmVwiCRPfVlZncZD5+7MAnfoolHzsCE1ew4NLJ74PeI6UncSAJpgMVX582FAVtaE2NUsuqTib6K0iWaeEvQA+n8HUQYOLSymNoJDDTycjYsLWoAEZ6G9hVMNR+5yip1gERE4xOCaAPiIgeb0wlyfqC/e+SBOVAew6aI35vMSsjIVHDq6/i6fp27zQsHrhhlQZLLdeS/AoYuS55BgWM25h8Ya65VWIQQsbr8l/uOs1wPIC9xBQCJJuzrBHJIABAEtEiwhQ2o12QAXFLzrjl5WNmBI7XzABkVpZRuHk6BE2iKQgwsAwE/j2Kg5rSwzMmeVZIHQ52xXMkDpecieQ7RIF9KjoCXYL8MSIrPEp7E6A/f9Y3Kuf+2OBOn/1EAL4I6AIAaElM6yMmYFkayKZGVNX/5FrJijYA4NmpYjgzu9Eu/3QlZWJIYJ5lAdjKEGwLpi87Dxb6BbGPjYFFOG74EirYxDLfqyMs33cXwPsX3Z19BNBbjUDPpiKWKQBZubSsTySgBmIxotNJcY8hyiY9FwPYbSWC+/GsGhscYaa6yxenV4/268f/pncA9+OrNgmn6njTxigHIypJ3wHKomSdY5NKqKsg9H6TmkTd8ENE34V2YOCc8hlpURcyh3Mnly2B3BrMqd1hK4oESywhCzNlwlIEkviBhhz2ag6UD4RzbFnLOIYHo4CMQgurfHVDCHaBLahSwLNCn21ph83XyV6GJhIBPEPNR8cChYNMphaRr/5gYOXXXN4NPkFCbGQiN7DumQ99UDh+h1YUjtzOJcz4Mb77gbAHDOeRfnF3VmdJngiuhr7sab8m+i4WCdw0RFWZnzARfpp3FocgqwuImN2mvvkbHGGgt4fM9hXGHvxd71FwJrTgSQx5d5nkPO+wyCSM+hAVaJ8z4yVJtJZKuItDIMLNyHashzyPpQMIcwINmpZWUS0A/dsOfQPC85GmeUaXhM8DZ7rZX7JLCf2CVpbDENBy7EbUk2TBv94CqW5tBzy3Z9SZ5M2FSmZZZr3DYxf7LBNLGICKgxTfbKMSHJypBlvHzuAANYVCbYIrhBlmQOsek1SFY2nznk0jWYBlOkntKxe2U4uTKfrDCnHriPDVz8+2kTmxihg4fh85ef4aZabUithKwsAXXZkDozhwrPIjNbVqZ8bM54GGZX+eQZSSmewBzmEHIq3ug5dHzUCA6NNdZYY43VKysWtYOx7KmkIaOUlZkCHConSYXMjNPKjo45FET3LO+ImDjEHBqeMEpAi0GiypDamBauibKjMD008zgYqKg6rTlitu85xNeDUt6axSwrg4PTsmPZZw7N86YouqiFIbXDlORSdsrHOUXL16CBjeevVJwQow+wWZjI1EnHsIzJTHDIJ2ZNC4el5Zx+Mk0Jb2iiTDF4y1ICKIMmCFAmdLmbmt7vKuYVfCckhYszZWUHljo8vu3huN2Np/PrmTkUj8Om66QEOCQXokEl81YCAIND5yJz6MD68+JxJOYQsZ7mSRPHGuuVVrdt243X6oeAszKDj713Blh20nOIgB3TDDxbBQjTuWgSr0wLC41gp5wYtlqwdiitzPloSG31AtBMZkh26PnVl5UFS1Hyk/I85snKaAzWWfrT2Wlxvkp4xwGApuegs3BBQRtTMYfE+KgMGuVzkEKTJb+9YyF/NzE2TJHHLNO0MFKylsD3wMwd02MOcePJRfZJSElgQAZjmPljy+s0T1ZWNmeIiVTJ1USxZCwoBD2jyaQy86j2PlTyvhq4j03wyZA6mopr10VZGbPHBLhJc6Mh5pAvQU5m+wrJIc0zZoVr0LxNBRcZusowOzyIQBHySJyV9Efn33XT6Cs4Mode9jWCQ2ONNdZYY3HtPriMqfXZu8HZcmJaVSHvEpMG44UxaEUD76RBtc/0+6NhDgXV9jtUDBAkiddMQ+rceSNqdc9zqGngExhhl2eDQ2S2HZoKHBqghGfj0dKQOpjFSOlPRp8yJUXS3NlzaB5zKOSJsjShNHCwqbvrhOfQVE0iCEJRy9zRLZNi+HyVTrKyeA7LWJgJDrkQ0KRQ4mladEyUw3ICitCm7nSKsncqLl40PF8bKStTkzXFdePuv8+eQ76ZLSv7zH07sdnvif8Q4FD2OplGiRiBc8LvyFSdcCPMW4k5dIF6Goc2XJCuU5QuMoNslJWNNRbX9gduxiZ1GBsveye/Rt+xoYQs8hyyLvCzSxrn6ybLkqic85goB2XaaOIrGharlXm6IUNqHw2pbRON6+k56+X7XH42ANUYSKwMQ6yZlRmhDIiYtpAnl8EC+Vkv/y/DHiQgMpSkaZcTI6qdIyuzuTFANVWlrEz61qGKsncpeCD+nJsx8RSSrExLz6EmbaYvHQQSaKGHx3o9xNwludrAfIb3oTSDWbaalzCApJo0FqzekDoyh1o+XuWncDBo2760MM8hJsU2Cr9F+i4k9pkW3yE2ZzctVAL/ZLgG2QGo1JxxKgOPMm2WxznMYA5xipmFDr6Qoo318qxjBg4ppRaVUl9VSt2hlLpHKfVv0+vnK6VuVEo9rJT6PaXUZKVtjTXWWGON9fWvEAI+91//Kj798Q/nCZhYIOsB5lAQnTM5qTfCcyhU4FDRRU206CgrGu7+DR6rLrX+dKxA9kuY5UNQeg7ZSDNPSVTkLRCZQ3Hy75YOzDwOvk5tKXniKPZ5sjKfgaUot4rGjr4Ah0R3nCbcKzGHaFKdpAJA6WUUfMcSvGVMChCjBofqaxgleRmMWVaz08Gsi8yhRrKFAHTLceKpyODcd5HWrqLswSB7Dung8kKLZGUVc0j5jsEXl5hDYSBh7qnnjmALEji0fkv+hUjBMcFm5paX+y6ZQyZ4nnxTWtl6HIFNyUg+xd0H8T0aa6yxYrVPfgkAYC54O7+WGTSzPYecDxwLbxrBsBwADoh5oZs2NgTEmLQaJl8IITGHqih7F5lDXbOe921UgJVePBU4VDB8bGlI3Q6wRurKTNQmp27ZrmRZ9Qyp8/PRijGBqhjP0+vdcpK8tbNlZTR+TUVwgkzYNKYtzMJD5RkUjZxL3x/JGiNZGTOHKkNqW6WfRqbRLObQgOffHOYQXQcLwwBOjzmk83FJFjKwMnOoQQKy0vlquxSZQOnY5OcplXOQOcQ+P9S8SIbUIlyBQR3TZjBO+kISezp5DgVxHDJtlpp5JpSAFJVkxxk46GROPdbLt44lc2gZwLtCCK8G8BoA36KUehOA/wLgZ0MIFwHYC+BvHsN9jjXWWGONdYzKe4/vCp/CCc98KevdfSeAjgHmkG6EOWKeNDQhT8TrTpOMG4bPC+yZcbQDFfRQWlk6jrRomAU2mabF0vIyljoXjZDF5I+SYHTT4pSTNgMAHnj8mZnHwd29tmS1sE5fXDNTy8JYLjVBA4/plCRqw7Iys4q0suI6quzL1CAzYry1QJp4TtUEKshkkzQBnzGB9hTRns6hUwszPQYooayFxbIAh6ZLiYklfC1IDhd0kpWJBDUGECdry/P3ebIaBDBo4HomsgDQOY/T1B6EdadEOQhdM5OvawMLrxt0ST7nXTn5pmsUmUN07zpYG5lXnJqUAMgg2E1jjTUWsNQ5nHfgNuxZOAvYeAa/nlkPA+BQknZ1zkOlMcNI5hBLdmXjIcu3+syhlcFaeoTUzKHOe2zAYdh2PR04gCpFixgdA7IysKyMGDErM4e89LAzGQAoxoKQn5nx/2mBHlx+nktZWSPBofTcX4rgkG6rZ60oOhcJCFmZ7NWUnkM57IHSyoxg36RmjBjbCOzJTY7M5gX694cJrjgvWbq4R7KsLe57DnMITc/AmqpgDtXgUOiwjOFxOoTYLAm64XHd+GVYNFBawwZdzKF8159D0P4NA3/le+j/wXWZtSqkiLbL8zKSlWnvshydrrUAh2iOwyEiVbOP7jObwCEg/40OP3k3lv79Wej2PoGxXj51zMChEOtg+meb/gsA3gXgD9Lr/xPAXzxW+xxrrLHGGuvYFQEEyncFc8gPSGuoirQOMWlrvACHKo+AwpzTZ+bQUYFDA/HB2T9ogY9tqE5cvxZwFp++b0fqqubJ14a1EbBYv3YRV58fFy63PvzUzOPgJLfKwDN71Qi6fS2b8BY2aEC30CpgaSl2lIn5BJQTQ6KOz+swa2HOGYQJpQnZyyi4jsEKqybQ3rKvQI85NOg5lBkxnZ70GVypXJLJ9ZlDcQGSTU8dNJLnkG4i80d0wUmGp5OsjO9NcY8qBodi8lu9oKPj2aL2AhtOL16XrAOdOqgOUT5H17ppBTik4nUlSaEODi4t+CDAIR2EsfbIHBprLADA3U/swRvUfTh8xpuL15s5IAmBvc4HHjMkAMGysiIyPo1nTQSHjBiTViPz7FxmK9XHsl4dgZtsiNtinxfZ9KiYQ2JspCRPPl+t4VIK5KwiFok2TQYwrC0leHRd0mKd5bWyASIAETMA4NhpzRwa8BxK43knghO6KvZd/m2UkDkDCTjXJUBDTKOYVuYRdCMYPpTEVTFv6dAT4DJUpmDellK2QbYRg0M6jws9zyHyQkrNDCErU95x8EP996TxMMrKkhm5X+bzLIIykMe5vqxM+BzRHCIZZitmweakTdW0g4btWVqfPf+YwSSAVDqOOmGWt0OAkJ2yxI7mkg/dfycW3QE8+sgDGOvlU8fUc0gpZZRStwPYCeBTAB4B8FwIPHN8EsCZMz77d5RSNyulbt61a9exPKyxxhprrLFWUTlFy+VOpRcL3BVkZbJTNgl5osymvKmsAIuUywvso2UONTVjJdiiKznLkHrD2kWsbQL+4JYnk9Y+7/fiLScAANavWYOFtRsBAPdt284LhboI6CLgopaVFcwhYqgIs2+LTDHvgSZAIStr2FdjNguFYoDjPzKA1gija+8tTypdSluhLqWqwKG+5xCBQ7RAWOwzuFJ1LsAoj0Z5dNO8MLMkXTBtnNgWzKEmsYVSVxOOJ6MNew6VzCuVzschmogaFQbjlq0P2KL3Qs0Ah0LqfAbdRsDQC3lbEYkcPYdoAmyCywwyAuaSUTv/reckuo011iupHr/vJmxSh7Hh8ncWr5sB3yAqKw2pOa2slDIBpbQ5iHHLKVNInVfD5JMm2FKmal30HHIVc6iQOxHzkZlD+biIwSQlxxbNXENq6WHH7ETXFZ+pDambJK+VYQ9hQGYF5OcWeQ7pSfIcGgCsfALBrGAOyYRN3bRF4mVOK8vgUD1GM+PFR/ZmUE02jqYE0QF2GJ3vLHColJVl4L44Lvl+Zjc1uVFSew7xdqIMWoc8N9DeZrldde2sS75+pslJdX4qwCFdeRYNjD0o2do8h6BrIViwngHFDEZZcb+QqbUOgjlEzGkxZ3M1c6gnK8ueQyZdCzI2Zwm4s8C+p4CP/uhcWfxYL406puBQCMGFEF4D4CwA1wK47Cg++6shhNeHEF5/yimnHMvDGmusscYaa07d/6kP4pmHb8vMoWDzZNZ3vMAdAoe8bosuFlVbgENVB010WANPUI5OVkYL9PJgfOy+iQX64EfXnohzJvtx3YO7sLy8XLBjWMalDTBJhqPdYXzp4WcHt8Ug0ITMlcVkCOU1Y9mEADXk8U7JDFSAQ3JyS53eeV3vmNySu8QNPIKPPgBsdO0s4FN0fJI/UdebJ9AVpZ/PN6VwUUfZ6oUVmUNAaertpmlxpJsod2CfiTghb5BlayZYXgCZhcqQWpiZEwMsd04HOt4+4DTsLcyoASE3sDZK2pIZKoFOANBOhA9UOkaaABs4XhgyOyyBpmysXU2olzqHn/iTe3BweQSNxnpllXr0swCATZe9q3hdz2FGMlDjfP4uySRHltPIxXVaHLcTODRoj5I5JNmHrvp5PY7AJ3CIWDCSlVEDNRLQIO8j6cvjlJ4LIMvkKSVlZV7u08K7CMb7oKBVgPc+jTNpuSeZQ0N+eAm4p2TIIRCNfGuklEwmbBoTZVKUeJmTQAUblVKx0ljVCGBQB5eYQyXjKJ93+bdr4IrzkmUG5MM8tg3JysTzGzOZQ3l+0WMOBcvm3PU9loM9snyr8cu8fauakjk0IyVWsqaV7wrwSgkAzXcCXKJzEQxehRIcCqrhlDkpwSQGXjMwzwPKe5zGe8fzoNQssx3w2HXALR8E9m7FWC/t+pqklYUQngPwOQBvBnCCUvwNPAvAbH7+WGONNdZYX/c6/Uv/Ets+8d94MhF9hhJYEDJzQw/IyqAESCMmDZM54NBQ/K4ODuEoouxJflQcCoEt6ThnMYdw5utw0vKT2BgO4MDhpfJ9k9QNbtcyOLS5meJjd20f3BRP2ivPIQaNxDXLXb0MalhleELXLRGlX1D0xQKoMZqZNrPKJFlU2jm0CrAJjGGjbhfBFAedQAybjSqpw1ibgaaiFC46B2vW8ISwLvIcAjJbSP6sm5YNrjX5RiTmEAFo0pzaVGllyucJMv3tcxe/ZKsBgO+WcJLaD2w4o3hdC78Lw34XOoJgvCgrfamMCpgmY20TBIWfu8oRNPUCwJJ155P78MEbtuLmrXsGr91YYx2vdeGe6/D4wiWF3xAg0hgHGDTE3KQoex8UKEQAyP5DMno9kCeYmcArjUaMSeoomEO8X/7ZY41ahk++PEiynwIcoojxQEzSfE7EYJKMEIum94yQ5UWzgRk0NjM4fVCAd+jSOS8laVM3XY7gf2UKDZSeTQwqdLFBoZphaVR8KZv/U8mfTVtGwFPzg2RhsQlQycqaDAxGJpApmhzx3An4GAAnZngOFb5UBPzoEnSSlZlDeSyp5xHKZHPvOiJeBwuryFi9vMeYWaZbHifaUMrKVsMcCsJLkJo8vH9xjVjybvL+pGG7EbIyMgGn+8DMk5UNXf90fvQzp7hS6IZISB399176dSzTyk5RSp2Qfl4D4D0A7kMEib4rve1vAPjjY7XPscYaa6yxXni1oYPyU3QECPkc0y1NeaW5I1VMburTjRcgKPy1IXVBhU/bTvG1q62gml5kuQoWXukVmUM46w0AgL+85Rm0ypWTvys+APt9fwCsP5XBoatPbfCJe3ZgavvSMmJVmWSWnD2H+j5NDBQJzyEHwwkyBA4VzCH5ea16E8i6qOuadg4AWF4iuRoxh7pIR1cNM1yckC0Agno/YEitvOPFjzPz08q4kzg9kreRfqaIaXibQK0mx0JLKjvdI+kaE3DJaWXB9SR6foA5tHY5sb96zKHsORQXGg3L55idJHwfiClg03loODZwZ3Nr8uIi0Ki6RjJ9aayxXim14+nHcaV/EM+e+e7e79inZgYg8RPNB7F+uqsnpQEA3ZBkNn/vsx9cfM5I5tBqZJ5WJC7VLKIJLINCLMXtJPiUpLDsxyL9+BKoLJ7tKz3XWb5cycponFnCJALknCSW/XmUSLBEwUSVJvsJ0EnPNNNM0AXDz3lZBBZItpD0yaMmCIMW1XgkjY8zcyi9x1k0CaCn39H4SM/gwsMwhMiO1QONK1TM3UpWNmRILce/+v15Q0Iep8pgDBXifKILpseAY/DQZEPqNkx5/uGgC4Awz7uqcxOAlArld4Gklt523GDRMz2Hsh+hTtI8OmfjRXOPx2JPJ1IcDt3jwU6jbA5ZRhksNcvyWPpSTe50D38e4cFPvtiH8ZKoY8kcOh3A55RSdwK4CcCnQgh/CuCfAfhHSqmHAZwE4H8cw32ONdZYY431AqtJC/DsM2QhE6EY6BiUlYnOmeiULaySOQQJDh2VrCxKpryYtKsQu2g8eZ7RTcQZ1yAog/ed9FT04pH7nayFuuib4s9mgqAbvOqUBvuOdPjSI31pGTFGmgWi4Zfg0JChNF+PdLz0HgIbVCErK695t8IigpgvQO7UThkcSswbb/laURRv7Zkzi3rvVBONLNMxOLPYA+morA88ofQSHOqy55BLMrUoh4uTZqMCfEpVMcHxpJJ8ncDMISkri74aDNwMgUPT5Ge4YRgcCokWH2VlDYNO8U392GeSYBhhPM2LC22g4TPLqVqMSj+TscZ6pdSOm/8IWgWsvfr9vd+ZOeDQusOP4weaT+Lig7ekBbipPku+YX3mRdNM4FVTSJ3nsXSorAv4fvMpfKe+Ds7l72lHoDeZ93KKVikvAjI7o2AOUUKnGBsc9FzT+iBYIFoyUNNn6tRJMkW2NrEqqzj4ev/8DOyyH5JTepDlwWwlkarpxZilmbmry33KlC9iEVFqFxn+e8cAfZaVVZ5DhfG3652XrFLWnfeffjnz/U56DvWi7PP51N6HJI+uJWJAltMr3fA9MwlTBsEsjTl0agQIVuCQZCspV6atcuqbt8ycM6ZhtlPhfRWyrIyaMzTfKAJFXIfgPVpFbKXK8ylth8zMASEr88KDUaSLvuRqaT/s7/117Pv4v3uxj+QlUatv065QIYQ7AVwz8PqjiP5DY4011lhjvVTKO0DFlAsDF9lCHUnJMiVZC8nMUFoZKnNEKqMC+x7UNORCVkZxqgLUWFWlOHHrAyY6JXV4lzp+1JWcsb3JOrhTrsDF0/vwlHK9qFrFPyigXYuz1wVsWGzwZ3duxzdeemp5LuRJs5CYQ47AIYpblkad6WfywvBdSV8nuRWBIOhTyutEk7oK5lCa/C4fSX4/htLKLPtQxCjeQ3niWknyajYXydBoguj0Yt/7iY5VeA4V4FCSuRmTvX2aYOPxkgQh0doNXJZ2Jele9mzK3VN4nSR6fWNaqnXLO+MPPXAod9lbWIRkYAufZWVy8cET7eQRJZlO1N0mRh1LA3rmpDl9aayxXim1+Ogn8GQ4GRe86o293zEQPsBWCQUg3GcOMThUyHLyM80pU7BZZ7EdZTkf8F3mCzgY1qATLKL4XLNQmphDJNmR4FM8hxYW3ofCc6jx/bHBqWY+c0gwUYMTqV0EDiGCQ9Tg6dQECJHNpEM2pC5lZYI5REyeJCvTTRNNmQcYVjRWSLZQEEAR/S0oBZQAc8nKyT8n7x3yHPI2JXpl5hA1LCSIny9M2dSoq2n7nn01I0mW9ByqDaypmJmsm4LFA8TnvFcmAjbVtbMD0fILYZmvgVfl2D5TVqazrEwFWzCflbhGIYFzUlYmgTUGh0DMIcPXSLLsnO3gnMh0rQBDlpUtZykaSejoHILr4F0XGSkvQVnZgS/8PDZ0+/DU/kM44cU+mJdAfU08h8Yaa6yxxnpp1yM/+Tbc/j//MYKPCRoSEFKSCSFiy4c8h4Iy2XOmNt2lSNdqsl/G+mbm0EwZ2FDpBo3ysIKtpGgSLBboM+vsazF55lZcddoiNqxbU/xKa4aHENp10N0hfPMVW/CJe57pS8vo+MkPR2rsUUrxyOwxMKhRglmcFNPKKPvymls1nzkUk15KI9AubTdwPLFljx6WlTkxccUcWVnyHOIIXdPMBIc6lz2H0OWuYmBfizbJt+Lk1Os2yx5SNHwELktZGUu1RFy0CjayfdhzSEhIUq2fJuZXBQ7RIil6JnhANfCIIFj0Zir9TYg5RP4cGo4XTFJWJpPW+rKykTk01iusnMXZ+27B3WuvxaQdeNZrE71zBoAbfp6GLn0na1kZGRqLsUZEgQdlMAl9r7t5ZX2ULLXKlf5DzmGiHD9fh4ySpazMhVCA1W1IzzYxNkQG5exFM40rusccIhnZBNrnYAFKzPLOstRJHmu9fx7bu1LyO3Sd6G8hUzVDm8fQJnnmsecQG1ILsKXy/TEm/u2Vn0IjJOZQCeIwcCOuJadhzWIOFYbUNC/oA2VU/LdUTQ/Aqt8T0nk0wvuQGLAWptcQ4KaYaRlQXEDH2ycWLb+fAcEyyj4GTZDfnjAbR55jeJfZ300zKRPu6L3I7DYKYqC5SFMxvwsmrrwnvGcpmRVjvHflPCg4i0d2PAcA2HMwv+8lUYf3oLnxlwCsDjR+JdQIDo011lhjvcJq/54duHDpXrg9W3NCmfArUCKhTBpSDzKHTPYcqieS5Hvge9r7Yfr9TBnYUBEIULCQotyA6edzPIyac66F7g7hzOWHsWHtmpnvC5N1CNND+ParT8eBJYvrH95V/J5ZVQy8lP5LjZjYNW25gIkTu0zldkzpbyLwgr7Pk1+BOWTgmTHEyV0UHU8TeNeljqOJIEZw/DfppZVVE2N6P4FLQZW0elkuJecAGRACAKTz1Kbl9LOYOJNTbLSN74mSx1JWJiWP8Tq6nHbHHdL+NWpdOoaFDcXrdI2dnaJNchEJgtULUQbQyJ9DmGbzIkun7wW9XoNDZLDr+j5WY411PJbdfhfWhCM4eNpsMYGDHvS54e+8s5HlWjOHmHUkvvc0Nuj4nFmAYPasijnkYeDQwhYgbm0+z89vOa4RoxQO1oUCtCJ5WyM9h1QzF7Ci55lu8gJeAgCdXkgpox3/GwCsnUbJLQMieZ80HslzAD13TZs8cPrXyQ+AQ6rps10JtOgxf3SW/8rxxUJzklvQbf6dLkEmyQ5jNo4ZHuulFL5ZhSG1EWyhWeAQjTFkSN3AIoR4f9A4NOQhlRsI+W84UbmZ4yrmEAQgWFThOeSK4zMi9c0L5hwFW8yUlcFHFnH6/CQIWZmdVuBQvidkWp4TzCEG8NL5eG9xZClu8/BSft9LofZ8+mew4A7jAX8WA2av9BrBobHGGmus46Gmh4FDu1f11q13XAegBIR0ISVzgkWU/WXMLENqYodUE+6OmEPVJElOlGkyZObE0Q4Vx79PS5p0UDmtbC4T6fx3xP/vf6r0k6n3M1kHTA/hrRedjI2LDf70ziq1TJhGdiF3WoN4nY+vKSe35AXBk1AyOE5yq/hzxRyquot1GWRZGV2jjsGhDGDFBVbD/gXBlj4YboYvA3kUKd/BqmimPTOtTC7UujwhDJakC230ZgjRkNrrlq8FRek28Nk7pPJ1Ujy5tXw+0ly6VwMR2PEU4zW2tov+SbqN20rbtbUCn/054nm0yIbeEpjU0ky7lhiMzKGxXmG1+97PAwDWX/K2me+xqhn2uaFxInSDnkPk51bIymjhalp43WABfTPeeRW9hXwEhwSI6yovmOyF05dLN8rBel+wXSjJU7JaPPTcY5ISI/Ln8Qko80GxFxwdm0uSN9fFaHgC+6X8qvAcSueirGB1zpCVMVAnwCGIhM1GSLMAZG8mKfemKHsxvjgYTslSxuTfpfdSc0oytPjnGY0g0/Y9hzLoNMQcEszPFWRlJIM2KsC5DLR41fSBHogxyTRF0ITn5DZT3ANsBF3Nu4LJfouRMSs9h/rAYfQcyg0Qfm8at00hK4vvk/5czlpOH0sHxj9K0KiQjttyHkQhGHRsL5k6uAtrb/s1fDy8GbvWXjwyh1KN4NBYY4011nFQd3/wH+CJn+snwAzVoUe+AgCFgaWSiVUCHNLesslnYyb9jelmpqxsqmgSWw64cnJAi+ajTSvbvDEmid22NTN5KJUlL9Bngz7YeDq6018ff57RdQQQE8umhzBpNN77qi341D07sGzFBM5nPyYHETPvyQy137mkzjgdL7N1BKXfMjhUXvOVPIeisWQpd2C5WprMB99xh5PAHld1w7MvwwzPIWcjaCL//lUVk0DBHFKWPIfauD3v0MDFbrIuwSGDeC9a6NwVZXAts3J0KIG2YAfAIVro6HLqQ1R816W0lSRp0N4BoSto+4DogHeZOUQeC7zgUyYCTeIYZZFMZfQcGuuVUtPHbsCT4WRcfPHlM98z5NUCCLDdD8vKTNMHh5iBZNr4nFP5uzbP/JmPxYfEHHIFiBuEXA3I4LIXnkOamUMWzpe+e5PkfSTHhvi8mWNIzUzUHGUfXIcQ4rORDPSJYWQTc8i5aXy9YpPGbUnJVQJwbE5SI8lv77rQdRXyZyVlZROKsi8ZQzKhTAn2DW8XZpA5xA0DTjST4FB8/0zPISnrbmpZWX9+QODIXFkZM4/aHoM5MqCbQZkgsXa0bgtgLrCsrCkaPwyItn1ZmUlyRS1ZYRDX2uckO9O2DEYVxuicVmZTUySnlUmWXXAdyxWBMlxBAnVejPHsv8XNso6/N95a4LHrgF9+G8vHn3cd2QssH3jeH3/2kz+F1i/j6Wt+DJPJhP0zP/qr/xp/9pv/+YUd28u4RnBorLHGGus4qBOf+TLWdHtX9d61u24DAGjv4LvMYuF0DG+zx4FIbNL1JAUATIoe9wHKWyyFPOEi3wMlJs1AOYmmyefRMofOOXkjAOCTdz/Fr9FEiWPHV5KpXfG+dA5zQKTJOvbL+QtXn44DyxZffPDZ/Hth1h1NjCm5re85xLIy7oLbNAklcGg5HXbDnfFaVuYGUlBkxRSdkobvOAVtEj09vAOSNCNoAwPBGquj7HvgUGIOpY5l0HHRFYYWEcL3R7k+OKRNk2RlMaHGS8+DtEhoEaVZDqYXda0Fc4jALskCqiuygPr3BC8aUtc8y8oyI6koNm/N0jfyOMqLngYm+Hwf1Kw6kpWN4NBYL8H6xC//E3z+I7927DYYAk7YdTNux2U4/6R1M982M7WL2YKWvdpkEThUGPpSHLdu++yPVUXZB7QkKxNpZdl8frasjJoeLSw6V3oOLYR+wINTzVypm2SiZs+hyjvO217MvLcdTLAIHGWf9yn3T+dA4Aw9m2vGY9x4On8hJSNwyAeFhtmnJSDFZv06p2dJdq9VGRxS2ohgBfIlIpm6ACfous4Yw6VfD7NqCBQaSisTrGMpg5OlBNhV+03plPrlVANdyQS9kG5LRjCdZ80cGko8pf02ysM53/suMEgqmUPNRACY0nMoG1Kb4AvPoTJttitl2uJetuJ1CQ7x+9lzKM8jveuw46FbgB13wR1e3ZyVzunRz/1WnleEgOmvfyuW//jHV72NoqaHseauD+GTeDO++73fmIy+47h8yc6P49xn/vz5bfc4qBEcGmusscZ6mdT3/OJn8DtffrT3+qG9O3Cmf5pjw+eVtRbnLd0PgJhDaTIoUsm0TFkKVnQtB8CbRKu2LgIOxBYCAKsJDJnNHGLPIfjeJGxemZQOdueDW3F4miZdiBMlpmGvADa1r/pAfNs8xlK7DpgeBA7uwrW4B5vWtPizu7K0LCRWlDFtiqJNkyHqHEu6PXf1ctKINKSuzUDjdgc8h+YsIoooe5oQTitGku8S/d1wqhZ7WtBn9PA1JKNllZLWsgF0CQDG0xR/ZyuBotSdbidpUUSeQw1P8k1KS9EqAG4au8q0mKni4VlWJru9Q9T1Aa+SeBxkxppjnDMIFuVzsugaKZulb8QcYh8PbeLke4asjJlDo+fQWC+x2n9gP975zG9iwyN/euw2uudRbLB7sP2EawrD/7osmkHDfR6bfMfm87Ja4bXCxcBBU4AQHmoY9KjKeQ+jyHMof089sVXSPrVYkFPR9htEM2vpzTJRmQXE21QzgBj6PTUhTJv3l2LqrcrBAgRcUcy8s1FW5iqpcb1/AhUInDFNAtQG/xbp+StTNSeRRWShQX9er8omRcHEmckcSvJj04pghRIckteZnruzPIcKz78mjcW63K6s7DkkmjbVGFgwoTQ1I7I8PuhmcJx2BHw1TTGu03Wq74HAjacFyKLj6rpp/NvO8Bwi1o4x2XNIMmqzrMzz+Eufp3uUtiVl2oVptpCbBdEM4oALYg55y/Me7zps27UfAPDcQeFFuELd/cnfxAVf+Ie4/8vxubS89SuY7L4Pj2zduuptyNp23f/CunAQh1/9Azhh7QRBtfmaBLcqX7LjtUZwaKyxxhrrJVy3/c9/gvs+99sAgJ/c9fdw8t3/o/eex+/8AoCcPjGvHn3gTmxSMdpcS1BASslC7jpJ5tCQITVNNp2NHd1lSHAoTWp6nkP9SbRJ8bWrrrPfBAB4rb8Tn71/Jx9r2fFbYXubz8f0jDcA67fMfItaSMyhL/8i1vzed+PbrjgZn7p3B5a6UkpnWjLwtOXr0nNIK0yDKaRG0vgyEKOGJGoAdDUxdPMWESGgUZ7/JmycTKlaDA5lpg17DrGhckWlrwA7ApO0j6ynwF3zAXBITkQFc8hI5lDqeBvE9B9dgUP0s0XDCS98/QSDyISY+jLUIaUaYhwAAoAj5lBiGuh0nr4GlGix46SsjDruwpBaJq2NaWVjvUzqoZs/gwVlj+niyD4Z2arqrDfMfd+QVwuADLJ6GxmvNWBbsQrjzyQrmxTGx8uYrMpbxLrhtDJm2BLbZsDPRcrKrPclaIXIsNFG+u3MZw7x+TctgzpxwU3MoSQPJs+hFDPv3TT6yRBQQzHzQUObvAQkVo8pgHszeJ14biBTNRNzyKKBUorPCcjjED9ntWiI9DyHskwse+fNSSurUjbrktdYsoLkdov303uExKrnXSie8XT8FBHfhGgwPTRO83XTbeE5RPemV03JmqOmXDvMXHU2ycMxwBzylsHRZiVZGVwaf5vCo4kPw1m4rs/2BlDIzWToBKeUeTFPkrIyYhENyb9n1MKtvw4AmC5FJvfDn/zVYl9HW/bGX8PDOBvv/ba/FLdDDR0QG3kEh8Yaa6yxxnqJ1NL9n0L3RJxMn/3Y7+PAHR8FAGzBbqyf7ui9nzyEZqVGydp535cAAHuxETpYWOpO9ZhDxM7IiUvNADjEcel2GSpYdCq/xxKLqFqo07aPYJI7rMHOj56v65RL4TecgfdM7saf3rGdjzt2/DJ9faXyf/UPgff93Mzfq8l6YHoI/rnHoXyHD1zc4uCyxXUPRq+jwJ5DkzjBpwUJTcxEh1ApFZkrAoSLgEY83iy3atkEuTajnLl4Qp748aS6xxxq4FRMoFFp3wRi1Ak8mCUr01lWZtFw99UOpINJaReljwGATnIP08SIaQQb5WM6R9G3XhhnuuUUf5wm9cy8yp4JGWij7vIQONRPHovHkcAeloZFpoFBZiTJyv4cWfrGfhIirayBz2lllS+THWVlY71E68gDnwNQst3273wS9338VwAAf3z7U/j2X/jiUW1z9+P3AgDOuPDKue+bGekuDKnJX6wobZJkVjAc6Bmg28LPbqomve/jUFn2HIrSMKo6mVAPMFro2k2Ug7WeGaa87Wr5FXQzlzlEi+ymbdnXLPguy4OVSWN4GgOYOdSx1Ekea/0cbCpQ3pgGHsPHxOcvwKEmMXmlPxsBeGx2zWCLAPqFvMrD5KaAaRgEoeYJAxdSVkbgxAxZmdIGLkSwipjPzFYaSitjM+1GAEXltrkBYHKAAjFnNWKwgldNz6+JE0GbUlYmvZiK+5Lu+frcEuDlnO15NXIzynfMXtZNm5s+4h4lr8BJ6Nhrr2YqA/HvXQQ8SM8h+boY43k+wfOhbEgdfJ5f2oFxeqi23vUlXNJFxru3Fvv27cc52z8e9/E8QJz7//xXcGH3ELZf8v1Yv5hlhtRgNXAwq2AXHq81gkNjjTXWWC+lchb29/4GHviDnwAQKb8qxKjUGOvdHwjX7rwVAGYaAxf15E04hDV4auGCgjmkBCCkZXx9yIkog9Rt6mJ12Z+lC2nyouenlU0xyQt8eJ70rKqUgrro3XizugfXPbAdB5dj4lXQwptmFeDQ4rqNQMXOKWqyFmp6CGF/BKBev3kJJ64V0jICgZqUUEITFd+hC6bozgIpbUykbXllsq9QxagB+uBQ9IEY/jt3AtwAMgsoFEbXEcAiMIXkTzRp5Mkx+z2UE9MMmiR/J01+SX3mkFwsNT5PHKk7rZt4nsZ3UT6mG+5syyjdxi/FxYxS8d6qpFrRkNoVzCE3w3MoqP60h2j7ij2HBHNoYCHKzCz6e6kA11HHXXgOofweybLPw5A6hICf/NPbcfeTz6343qc//Ut46jO/suptjzUW1eZdNwIo/Xvu//Rv4PIb/xkO7d+Dpx5/FKds/wL8Udy7h7c/iO1hM6489/S57/OzwG+XwaE6vpvKQhfjI2/HNAx2A8AUC6ta+Fkfx1wyleZjZHColJUNBS0AMbUxVOdUJyD6BO7MLJeBAhoTgrUR5IeB1y00crAAxcyHBCBkE+YEZlTLP2KWNL6UlQ0ZUvMzLQFCAGCSxEyCTrRPBtNNXoQzc0j8HZ3SmTkkZWXEHBJG3PmylCmRQ0XHxJ5/NLYNAEo50czMZA6pAVkZyaia1OSIzKGqKSaOddhzqBn0HKrZPDTmum7KDGAqni84WzT1jKFwkL6sbEIpfropmM40jwvOFp5DugDnxD0rE0lpP4JJTd/HmLJHLKIZ4NDO+wuz6l2f/W95277Dtjs/jw04EudY8743dhl7f/lbsP+2j+TPb78T53/lX+FmdSXe8J3Cr4h8AhFZVSNzaKyxxhprrJdEPXv/F7E+HGKZioGF9hbWORgVepO14CzOXbovvXflwezkfXfhiTWXw6k2Rd+mjpfwK9DIlGQNx4koQ6UExZk8dKh76FWTZFTDnkNTNeEJcdTqzzGGHtr3Re/GGn8Ql7sH8el7d0SAS5mCvfGCa7IOyndQzz0OAGgOPYNvuXILPk3SMiEf8xCTae96KVdAmcZjEnuHunXa0sRcRNk3pQm4Vw3asIShqmN9eXLLXjppu94xOBRUg0ZKCusJcXUNY4dagCbMHOpP8oqJqCtlYgBg2gV41aAh80uTO8qNMMRs/DKzdyLzqZRqGVgYRObZ0AKCSoUZnkNpQq3FwsTrlhlSvlrI0f1FIFe8AJTyQ74W0TSU2Av1d5NlZW71C+zbH3kSP3TT+7D987869312/05svv7f4OBXPrjqbY81FgDs3bsHF9uHAJRSSDKB7aZTXPXMR/Cr7c/A+dX7Zem9j+JJdTrO3rxm7vvcDBPkIADhWkojPzsoK9NtwYDs9OpkZc57GPiYVia9wWwZRZ9NgMXzrkh0Wu49j+qxIaxkSC1SMdlHJy24rYrMISkHp5h5b7sYOFA1G2rAm16X4JBLpvy9ItBikk2oKaxC+rMxc4hYSczcyX4+QYA6DnksUCIJjMCYtuk3m6TJ86yiEAJTzQuGml2NYB1rcbyyMtglfIk4rSyytGqgB8gsG13Jtxgc0tVn0t+8reYABGrZihUGAG0rfB5ZljbJ4yJFzFOzEUCrHF8X6W9EFgHBdwUIJO/TQk4uxng2bZcejMQccpaZcG6AcXzoyXvgf+lNePSzHwQAPPfcXlyx5zO4b3IVf96nOc1hLM5lAW7//K/hxB1fxv23fIFf2/EnP4EDYRGPv+sXsbiQzzeI5FViI79SawSHxhprrLFeQrXr1igho+5MQ8lQzPApJ5l7n30G67CEPdgIMyM1iuqZZ/fgIr8VS6ddExfSAhAywXIKiAkuT0ZTbPnQojq+IfstkD8LvTfo9HOV2kGThKlKk/TklQM1Yx+z6oJ3IiiNb1tzL/70zqfZjLmOzn1BNVkfN3UgpaIdeAZ/4aozcGjq8PkHduVYdTNJk+k8Kaq7w0CclBNQQh1d6toql31reDJfTXofnlyKC5bvBw4929u2pYVBJSsjcMiYFh6aE3+CMgi6jWbgzByqJsQVmyvoBhoJHEKWgfkhzyGxIGoFE6hNC5AmMaSYJaRbPt+JAIdaP+XFjIMRC0XH/yd6vW77XXyqWZ5DxDQjM1SdZGWZOVQvDvq+SORXVN97ZL49O8p+9Qvsh774YZys9mPdUl9aKuvRj/0sFjF9RRtqjvX86pGbP4VWuV5HngBZa6fQfopWOVi7+vvrhKUncHDdOexHM6tmpnYJBl4tpcmfLVlHSngOSaaRVQvstzKvrBNpZUWUPYFDBHrMToICIsODx7wwDM74BLrPLGaoCkNqnz1nYjqiy8/hljyHEoDAYwLFzNfgUHy9YclvZk/WxQEViTlkYVgaLbdL1zzL74gtlBs40ivIK8NjQ5SVlcyjIeNvSj6dxxyyKkrLlC4bHkOeQ5L5qWfI07OvXJaVUWOmIUNq1ZfkBcH+Ko6XJNy1TxHLwkpwSLHPURdlbOLezlH2ma1WmJgTe8enOZfcrmkLf6NlRWwjWybMFsCnYBQVsjJiDOVmWZaVCebQwDj92Cd+ERoBu56NXpK3fuJ/YZ1agn/N9/PnmX2u5gC9dor2y/9f2k/a35H92Lz9Onyu/Qa87y2vLt+f2L5A/P6uRnp6vNYIDo011lhjvUj14I4DuLOSiGx64rMAMi3dwMcI7jTp6+nY0+C6jNgBGWJwUD121w1olMfGi98SGSvB8ue1NCWWJtTkLzMDuGGKs410f6cMv5eMGevJPk0I4iQ9+yQcNZiz5kSEM16L9y7eg+sefDbK77SBSQlhR8tEGqx2bfnv/U/jTRdsxuZ1kygto8WITucqouyHmEP34QJctO8GwHXMHKJOMMutTMuLh9oE/IYN743drTv/T2/bvkpuIaCH5FIqdYPhXdq3gTIGDWxvwUMT1p7Rp25g4CMQKBJdhmRccuLY+D44pJPnUMvd4pw2tgDx/rDM7B2ZCCcTgUwyAh1KtKEiKVxdurr+yrTJnNKm8xyWFUg2lKJY+7Qtum7ERmoqs3hiDHVzpDmHdm3DzdfHON3OeZy87c/iL2Z4TgEApoew5YH/Ffc9gkNjHWXZBz6Bw2EBj04uqVgM8Z5ztmM2nBWyj3m1tH83NoX9UCdduOJ7Z8nKFDdLOn529Y4d5WdZ/mJaBhoAoNMLq1r4OfIcUq5MFaxlZQNsRbnI97ZjcGcZw54/XjXzj4kTQ4Vs2tnIUFWGP89jaYqZ965LcmtikzaD++eUqgTUt+0khQ/M9hxqJmRCnSVYJTg0LCsLWoAjMq1MjAVaeA4RU6YZ9ByqvPIGSjas4sZpuyt4Dg0kqsV9SeZQbo4BFKxhBmWCbJ4tZF7y/LxqClCRgZUZ449zlsc9/p3O4JBiNrARAGZ8rUvXbRrK61LIykD3WVeM71rMQYt7XoyH3MAhgNZ3QlaW/ZDqIAu3fBjnPPEnaRvRCH7DA3+AneY0nHL1N/PxhAH2eV1PXvdBnOwiwET7vvUzv4sJOpz+5u9FW0n+KXkXPt4xr+TxcwSHxhprrLFepLrpf/5zPPKhf8T/9nsfxxnTxwAIs93E0uDI1joSOw2uU5UNKGfVwUe+DAA468q3czJDQYemzhZEWllKXJrFHMqTI8vMjMwcagoD5nyicZ9d6vqQmeOsONp5pS/6Jpx5+D6sdfuggo8AAYEieviYj6om64p/hgNPozEa33LlFnzmvh1w3RQ2aECpwg9IDZmmAvjCpvdjk90N3P+n0PCpQ5km7j7Lykg2wdHoqS581Rtwh78AR276LSCUwAInh2gyACX/ASlXi4koREcPuo2MswQOcZTvDNNO8tJhRg0xhwZkXHLi2PoS7AHiAsTrFgsh//2Jyr+IPGmchOUc94u+rEwHF6UTuhU0/z6TSWGYOQSt4YNiAEuldCMDz15GsugaSR8liKS59EN8b3oPeRnw2xNjaJbnUPjoj2Ptf3s1rvnU92Lfnl348r3b8JaQEp/meCw8+ZU/wMZwADvDCatiR4w1FlcIOHf39bh/zTVYNmsLUD8v5izLYueNNbK2PXQnAGDjmZev+N4hxkX8hZSVlVIafouQ7MYXhMxWPMecXh1zqHOe2RUSCGMJLjFiJFiTqpSVTfn6LdM4XY2nQTdo5nmnhMjmaoxhkCT47DkUtImhDgxALPCxGjgGGGYZUhMoQOCQIfbkEGCVwIF2MZlQKy3kavk6Z0CqZFhByLEkQONhmDGqTNvzGjIV+4XOT75nqFwSHtfHNQQosWePbjKLppbgmTy+UkS8tx1LtUIypK7BBR5jm3ZQVkbsLyrlu2imrculOv8Nu2kB/MUPqTgf8RYh2Aj+KJUZyOkYKH2M2EFABJZk6AjNKSNTR8rK+uAcUIFDHGWf/88SM2e5iVbLLe//zG9hIw7SxvHUU0/gde5O7Dz/L7J0MbgcntKpdhjECQHuy7+Ch3A29oV1gLfwPuDwbR/GbrUZb3nnt/U/IuYyBm7Qw/PPf/vnccuNR2fG/3KsERwaa6yxxvoa1LbbP487fvNHAQA3Xf9JfPw3/m3x+32HlvCthz6Cq5dv5deeuP8mAMDBsJhMoePkVImIWl11VUlzb5P5c9fNnrCv33U7dpgtmGw6TTCHcscrCLYQip+HvVqADEB4t8zpWySnCqpJ6TPVpJeYQ2YBBrbnlXNUddG7oRDw7esfQJPAFuqCzkowOapKsjIgTh7C/mcAAN9+1ek4PHV4YvcBBoGKhY0flpWd/vr34wl/Cg5e/yvs+8PyhIrSH38ut/GB15yJD7t3YM2e+4Addxe/y13UNJlO3UnyMoppZfHvEVNVMnXfd9lrIn6o39kFIhusId8P4R1hBwypJWV8QcrKAnXeo1HsAgFBpmXZwwK64rPZcyjfT5Qs0sDCBB8BnYEFBJUODmHGfWyhGRzSTZvSg1zP8BMQHhhC+qZdNrOW7zH8/aqYQyt5Dj3wMSgEGBUwXTqMQ/d8DIuqTMIbqoO3/gGeCZvx2Jqrevsca6x5tXvbnTg97MCBc97F6VdcHD095YWd7VZ3f+3cGpPKzrroVSu+d6bhfnqtEcmEdTnUsjJiDk2KBbRL486KxyIWrqHwVskJlUAG8L3Yt7x2XsjKiI1ReyaRXHdmuQ4OGloJdqLP1yJ+3md2yoQMqTtuQgCCOdTzHErgEKbogoHRGk6vIPFbyPH1zEwZNKSuQDTdDDKHvDKYoM8covey985QlP2csd5Bl8znaruyeB/a5FS46n3MHNJNZv24aFrewEKRrAw1OEQyrxKEmZlW5tzgHIL26VyUldVAqU2+gtIOoDZNJ4Z5BwEOmQbG5HS3qU5+PM4WDB/5/ZTfEe0HwCEO6LDCjzHLypz4WwbX4YRbfh6P4cz0vg7+0G5oFbB8wsVoxdhO2+/UAjT60uwHb/4Mzu0ewZMXfT+z1w8cPoxr7S3YfsY3QQ+EnxDrytoOzYAh9T1bt+PtD/wHqJt/rffZ461GcGisscYa62tQez/9X/HqbR9E8B7+9t/BWx8vk4Puv/mz2KwOFpOBvQcOAwCOqMUI3BAgFCwzIerJGg3aXeryDDEmqE6xT+OZhfMA5MlokVBGLCIIcAiOu5NDldOhJHNI8z7qCTuQF+5WL0AHn+NMn48M7IzXIixsxHduejB1SBucuD5OWi8+/YSj315dEyErO+1KYP/TAIBrz9+Mk9ZNsLQ85a6kF8CF9sOysm+7+iz8jn8X1m//Ck4OewowK4MTDbNVmspv4LSNi9h97rfE/T3wieJ37EtFk1/2MiLPoYVomh1cMs7MaWPsS0QTMJKV1RPoJCsjSRxLBQZYBLIrOKmYQPE4Y8Q0sYSUyZG7DIQAWFAdXw+HHBHMzKHUGw46s8aGZGWzFpVxuyZff9NEo27YYeZQWgxKNpQhvwVmXFXpP9VCYSXPoa5bxnKg79YUmw5tBQAcxJqZzCF3ZB/Of+7LuGvTO6Hbhfm0+LB6I+yxXhn1zE1RznHKNe+L3m2QLAbBHJohCZlVR555EB4Kp5xz2Yrv9bXvCpVgtWrYwbSy2nOIJS2mNKR2emFV4Q1SFlsa71aG1MzKyM8syToIToBDianhVG1IvYLnkI9AgVIKWid2iCMpd35e5Zj5NWnfXXw9XS+Vjrkez/VkDVxQWIPlCEJpNVNWRoysJkmuPTKQIkGnPIZRs0KklTUliB7fb7iJoIQUkBoG2piYmir+xjIBbFY51RTny/scTCsjn6FWHG+57cXFCLw1k4XCbyqm23mExLqq/54812omxfHyGFyxx5TveveJPFdPsrKKIR2/B11hB5Aj7kvWn2QOwbRQSjGgZOl3Qsblgiq+n7Ok48zoYlmZK5hDxPCTKWgPfeJXcKZ7Ctuu+b/4WDkZ0DQZXBTgkB0wlw8hYNdnfxEHsAZv+MD/j43q/fIhLKoOh9ef17umcSfZPyry312xzU9+5DexTi3j0vf80PDnj6MawaGxxhprrGNcrpviwoORBeRcnEw31QA2vTf6h8gJBIEmUyxAwXF3RwfHZsP1xNmJQRKY7zlkgoPX2WRRplQ1EAaGAhxqkqxspueQkJXR4ptYHuw51IuyTxMDnZhDxHY6mih7PqkG4fx34orDNyVKt4Fadwrw1h/Fia/+9qPfXl1CVqbOuAbqYGQOkbSsQWZVOUklnwFEbNm0iKdP/yYAwAKmie2SJtGJOdSYSe66Nv0J7De94Urc4S/Agbs/VrzOCSE8GSf2ShkdT8yhoBqW3lHcfS2LGgaHcnR89j8YAoeGmUOSKRRUw0BQ7Fz2J/kLmMLrbEit5H2KaNrewJassSHfEhnpXJVVhuVu2XOI5Gq1ISkxh/oJbHlBU77HwCMIQEYv78Ovtv8VC8t7ho+n67I/SVqQ+6AwRTvTc+jh6z+MBXRYe813xgXYjAWwu+ejmP7kJcDywcHfj/XKrMWtn8UDOBeXXHJZTxaT/UKmPAYNfeeHas2BrditT4Fq5yeVAegnNtH+yV8s2CSlmcEcEp+NZs0qfiel8XGz2JN5DlVYgTlEwDgB+PJ5V8rKOv7+dip9pytwKwYDzAaHlEgMVUoxO4ST29JzmcGh1NQIzhbSIzODOdQsrsNH/NuhEZit0jYtgrPYfbDylqK5yEIESSyy11sRZU9jCMvvshF0lmbl8e25dRdGzxfEZ6wyfQDJQleyMmKhzmMO1Z5DbXEtikrXZcuJ6/l466bVmZsjm/jyM04UgQwdrLXQKgCp6VEDa9LXz8imD43Bif2VPzDMPpb7NPBZAi7Ol5LsMnOIACVKCSubinK71OxyNFf0eZ64jEkpN5WAqAxo8GSDkGT2Iso+CBYRM49CwEk3/yzuVJfiLd/219CFeA40N1RNW3htUWCKVX2g9/O33oM3HL4OW8/6i1i/4QSeM1AC8CyGOt1n1nbRx1Bs94sPPYsr93wKhxZOxbqLvmHw88dTjeDQWGONNdYxrodv+xw2IC62rY1GfKaivp61K+qWJb09VDpqCQ75mZ5DaaJukpfBHFmZZE5QZzizhURiVc0c8rOZQ1lWRrGqJr+XPIeqyT5Tis0iTHCC8fL8ZGD6vLdg4cgOnNU8h5M3rgWUAt7z74BVGKCuWElW5tecDJxwDtTyfmBpH/zDn8ffnHwKJ6n92WNJyMrUDFkZALzutddiqz8tHXyeWDcEJLRt7HbKhBVR733VFnxJXYMNu24DDmdwgRJF6DqyJwZ7HTQRwPI2dii1QaDJuS0NldkLYsCQOhpAu4I5NOQ5JGVla1ReXDE4pHSxyIvMoSq2F8AaTLkLLdlZBKwaOJaV5USb/vGsxBxqWdY3iYut4JlhJYv+XlJWxrH21YKG2EUtLKS90CmHH8Y3m1uw5dD9g8cDb7GUKP/OTRNzQKeJ7vAiUt3+ITwTNuN1b33v3PSj7R//L5gc2Ynn9uwc3vdYr7xyHc46dDce3/g6NEazhw2XNKRmidmMsWZ6qPjnZrsLu9vTVnUYlBJYF93zDeyglAYonw0AsTf7zzFvFnsG8UMlJS8FI5e9jNLzVXgAURm4CEwhPZfT9zd7p1XPoQRGz6xK2h2fAx20z7IyE7KsjJLEgosAAnugkTdQNTatX2jwocW/gmnIzN+zTt4IHRw+eMPW8ljouTshzyHDHjry+UrPTZI3GzbrN8DChvjZNsu2977j3+GL7sr4j8k6Bk2kSbJFU4DjdL61/Lq4dKr0HFKzGh8AoDWCbnD2ySfksbAeA9efhtAsojnpfAa+nBNNLt0AQ7IyuoebJptrx4NPB1bdAzPk/CwRSwyX2hOJQFIJDpFcTpHnENkRSM8hvjfi39+SrMzn0JDlFCLC+7ISHMrfkRxuIj2HyGdIAEUkD5su4SS/G/vOfhcmbboHvcvgn5aSccFkSnNIqkPLFg9+7L9hohwue9+Px/ek5wLPM2fdK8Qc6mIao/xb7N61He/Ud8Bf8Zd6HlDHYx3/ZzjWWGON9XWu5+78OP/suhgpLQeaZ59+DOf7bfBBFRPhIPyDGjGY6WBnppXR4EkD+bxuroEFiNWTFvle0PWZLdRLK3OD5soAOO7V2ymDQ/TeGOlqej5JNElyZhEGjo/5+RhSAwBOuggAsOCP4KQN61Z481FWos6HDVuAjWcAANyHvgf6f38AF9z0b/F+82We6Ldti+m0w8FlO+hVQ/WtV52Oz4drAETjZ/Z7EJ5DQRnuFNe1dtKgO/890PCYPvhpfp0nP2zgWcnVTI4n1vDJMyhdc0uyMpqozvBlSIkeJnSRXcMG0LPlB4AAhBD9hDpEo0w58dY6J8TIWkDHi0EnFo/MHEoMH+hmblqZnsE4AOJirWV5WyOMt/uyMurCynPirimZgafzIoNVA88m1PFEcorLUBk4TClK2FrAd7AgsLV/btOHv4BLDt2MG7d8LxYnLTMJ6trz6G046+BdAIAjy6tLmxrr+K9dD92EBUyhz3kTAPRlZYE6/dlY1g41Ig48A/yX84DHv8IvmWALhsK8iolNQ6y/+FqbgOk6XhwgOY085o4ZOkVkulnoNWsGj0UAQoVsVqagIcum5He5gc2GvslzyMHwmFCPp0GtYEjty4ADC4PghSeaptTJNG6z51B8anAsPMnKasBbK3zPe96G33DfisfVFgDAhvUbcFI7xQdv2IoDS/3zb9q4Dw+TpU5D4FBbspaCaYETzsF3L/9r7Dr9nfz+t152Nv6u+6f4u9Mfx/JJr+KxSY4JS2qCk/fdzc9PlmqZflOBSl73eCC03eHPqO/478A135/BiB44dCrUv9gOnPX6LKebLqGzmXnqBwzGZbR8kULKsrK2AC1nBYFwQihJBqvji8CK5Xsu7oKAFWIO0bwxXwO6zpbGWvYc6pj1NEVpAC3H2SZIALXyHEr+ffQ7+j57YgClZwkBciwFc3lOw8yh5KcUj3FSPKc+ceeTeJ/9c+zd8ha0p13K21ICaJrVhGTm1LQfInHKri+jVQ7dZe8f/OzxViM4NNZYY411jOvkZ3KagbWxS9IoD5/icPfv2RH/r9YVk1T24kkpXi7RYLWQf/XiUdMENhjyHJovK+PFMaWVUSxtkVbmRKd2Jc8hkhUlk2PVZMq8Nj2qPyAkCiZSgtnP4fkYUgPA5gvkAT2/bcwqkpVtOB3YECfN5okvw732B4FX/5X47zTxOuWkzdgU9uNPbn86TkZmXLOT1y9gx5ZETVYme9igNKSexTwCgNe/5V3YHTZgxy1/yq+5yn8hy9UyK8gnc0bDsrK0eEoTW5qAhQHaf9povCxhGV613DmlyaMsOXFcI8EhlSetkgGgmqboAHckb1AZoPFFlH1KzYnT/zi5poSZIUPqGYwDIE4gFxNzq2kngGoYdKon3wS6LQ6BQzVzKE2YG7gymYxYXgPXLb7fMjhEbA2n9CDYihBw8GP/BtvDZpz0jh+OL2kzmLby8Md/kX+e96wY65VVT9/1BQDA2Ve/E8BQclJmC2VJSP87tnfXU4CbYusjmRFHfmCrqaGUJ7n/FjY9u/rb8yiTzoy3WeJcgEOTuKhewXdLnp93fVYEKllZkVYGh6lK4Imj76+BBz3H+obU8wCrmr0bQfIuS2V1Gz+fFtsSHIrx6iXQMtS4+K7XnYXfP+Fv4QfUf44vnHQBTnTPwi0dxO/d9IS4MBYdGjbidqpB06b5h0wro+tDTMuF+B7TtFi3YHBTuAzr1izy+zetaXHVuafhE/4NMMYMgkN/dOIP4eIjd2D6kR9O13bae09d9ViaPflmjK9XfRew+XysXb8R29oLcMJ5r+6/J7FHTjs7Nqaee+rB3CDRTV8iBmFI3UwKQ2olWLoSkJiVeErje5QM+t68ySeQVDb1mp7nULxuzA5K+weyNDCYNppTB2kAXYIxXgCikkkbknyNxqpSVpbnl9wQrcI0bPJN4jlN00KTWba3fJ87s1iMcydsvw5nqD0wb/w75fUoUnFn3CsJNJouRe9PCdTpxIZUG04f/uxxViM4NNZYY411DGvvzidxoX0YO7EZQByEudOaBjoa8KaYFAMQ6ag7vQgNx7R2E3Lk/KwEDJ/AocFubiotJtVBt2iCFcwhMbGEY+lXEVs+tM0mMzVMSrCiSWyOdK0WEcl/wdMxrMJUcm6dcE5eLDxfgGlWUVrZxjOADZE55Nt1MO/+V8A7/hmCMjhhXfTS2HTJ23CBfgaf+Mptc68ZAFz4+m/BrrARhxdO5s4zsUyaJnrxDJlRUr3polNxl7kC7fab+DVOCOHoYGIOZa8Dkm3QgoEnyq40pK69c6hoEj4JywgirWwIaCii7FWMYqayA3IPZVoGyoDob8DbIp8FZaCFxASI92iLKJMzTY7frStKxIavqRVJOcpMGDzVAywFukYyUY3NqWn7ht6TwSErwSE6viH/IO9hEJh54F3HEoMhsBXPPY7Ne27D75r34U2XpqQX1faeFQ8+/BBetfOjeA7xnl5tFPlYx3+FJ27EdpyMiy66JP67kjlJcIie5972mWd7D0Q59Z6DR/i1WdHzg8ehTa8BAmQGQptM4sNA99+rUpImn8H0HOtCNOFv4EuwduhYJPglWESqClDIcpcEmvkYad6ZDA7R95dlZfWiXzdzpW4qlAEHjjyHUkMGuokgejrmdmFdOodlGBX4eg2lilE1RuMX/+rr8G/+4lXxhZPjvfBtZxzC//7KNnQ2AhcqhS0wWwg5CKA4L/bNi7/bfOrZeOCqf4LL3/m9OOvEtfjDH34L3nXZqcUx0L8bo7I8WkiwJm/8m/hl+z5M7v4/wJ7HMuDSzr6/nGqK46Ixax7bCIjX6tx/eRsuf8dfnvmek864EAexFm77XQy4qOSl1/t7Uspd28I0UTYOZLAqJPYXH+cM5pA0pB5mDmVZGf2dsyF1PIaccpvBOW70pfvMp7RZCM+hTpVBB5IxPAl9zyGWlaWE0/QhYU5Nx0MNQuFd5YWHlvS08tkfM5jSc2jx8Pb4+pmvL65HDHUpmdV1qSZeq245gkNDjVvTzgYhj6cawaGxxhprrGNYj974UQDAYye+FUDZaaXFGC2kp5WZHuuo9ULy4smAENNre2llBA6JieiMInZF3GjqVBJzCJYntxMlDKmVh/azJVJMce6m7M9C3UOVJGZD4JCD5m6ppQnG8wWHTItwwrl8Xse0mgncyZdDnfV6YNOZCM1auDf9A2DdScDm84Fr/w7CqVcAANQF7wAAnLDjKzi8tDzzmgHAe64+B9/ifg53n/P9WEzGnmuQPIcSLX1oYkhltEI48/XYYp/GszujSbaruqi1cbJJKWg6mbpCmWwWyp5DpSxKVddz8ymRPbUJB6P0RHQx6wqVBLITC8ScaJfPUZu2AAg7JcGhLMfIUfZx8tYojxY2mrpSN3jIcwjDchQgLnAWQRHVbaL4J6PrGbHPkjnUhmlkOqk44ScJBYNDysNa0RWmv9WQrMzniTiQmEMh+qf4AYP3Q4cOAgDOPvdCNCZfV2mCb53Ho7//LzFRDo9d+nfSblb2XRnr+K8QAk7ffyeeXH8VtI73b1ClLDH7hXT8sxu4f2icChWLZihdbPBY1LAcku55+k4OMURrzyEjAXqSjJA/Tw3WDpRkDklmpBIpaEAeA+l16wNaOHS08E4NIic9hwbAodq0vjz/UtpNJrsxZKLh8wuJbTxZTHLolEJJz/HsDTT897j89I14/6tjE4TAoe89/wj+yr5fw84PJTYGgRZKoQtxjCcWUcEcYp+jxE5RCpd+57/C+lPOAQC89pwT+XlF9Zdeexa+63Vn4bItG/MxizHh3Zefij9wiXX72BdEPPzsRXuck/TTyuaZWK+6lMLONRdi04GHYKeCAT3gIcUAQ9MmU/GykYAEWlLNkqabwnOozxxyqmEwhiRixN6Cq+aipi8r4+aeaqL8W0bH60npZSfGWSmzprFfM8vXZlDJZ6DI01hHjQoGqJJPUGU4bslzj8ChZqE6HgJxMiOKxkz2ZJwFDqXrSOBQqxxCkoITSGWOxT3zMqgRHBprrLHGOpb10GewBxuBM18LIA7CmplDSQLGxtOTMjWFTfYmSW6VpWTUlerJylweJGl/s6roMqVOIw96KrDUBSjlLsZPZwIdDA74bBTKptc6RroOycps6nYW8btzJngrlSLz6WMtKwNw5G9fD/26vw5M1sH9w9vQvuuf5/1+6/8L9X2/G/9x2lXwiyfi7c29cLab6dMERAr97/7Db8YPfcPFQLOIAwunYYNK3XbdAMr0TEPruuiaOEm++YboO0SLffqb0ISd6N4mycpMcDHZzTTcnVVuGTZoKF1OWGvq/Rmv+wvx1yogmCZ7LgyBkhXwYdHECGYMM4fqFJcCHBKG1MSIkV1Wo0LhS1ADUwCgg++Zd/KhKsNgj2kawERvpSbYHkuBAKhW5X1MwnJpepr+BhJAsvIaMXNoNjhElP9AshSk9L/q+7TnQKS8n3PKJnGypUzl5ltuxHuWPoltF3wvwskXA8hg4liv7Hp628M4DbsRzro2v6hrcCiNTU4s7AYAYcdeMPm+nuf1VVfQTfyeVkX3/AQ2xoWvijnU5UaFlMyYBo3ycG6+71CRVjb03aVjUClanr633kemoC6ZQx5GMCCrZ7tpI/NnBmBVS7sJJNfBsqwMyKmTbQKHkMAh9hwa8AaaWZsvQFAar1mzA9/VXI912z6TjkUkdCbAiwGLIXBoDqunrlM2LOCnv/vVWLfQ4LwzTgEAbDl5M//+9E1rsOb0y7BbnwT/yOczQ2UFWVnRaEmAyFD4wfMpf8rluCg8jkd27AWQmEO67SXUcsONTKxR/k2gDbQKnCimvBucAyjh89gq1wOHfAJQCuaQ0SkBLIFCLsuyqAiA6dkC+I4/Z3XZ0PSiUTEJ4jvC6br5XHjcErIyep+vZGXkExRs+feNfkodg1I++VZSEfteyvZIqsoenjPuFQJ57XJmPTqXAS0gz6mO9xrBobHGGmusY1TeOVyw/0Y8svGNUAmssTZ3TGgApEm11bWsjMChOOARbV8yh2o/Bp60NmvStud7DvHimDqNUhqQ2CMAoF1+vfHTmf45PCl0OWKYJp7KNL0Je3xz6jwSvf+FGlJDgkPHmDkEYCK6m82mLcwO6ZXWUOe/He9auB+NWllKcfFpG7BxsQWUQnPxu8V2YvrLShP4s694CzwUnn3gBgDSnJM6tiQBK+VqKgmUoLKvg/HTYgLNcrNqEbbm5HPxoIngQlAtT7SG0sHq1ywMbN05F9tXpik6c53wQ6C4Xq/a6CXiQ9FlBaKMkSb8qgJdQghzmUMOcWIOxEUDnf8CpjNlZbIWMS0m8nTdpPTM2T74Wh8nkFkKFCXsk2+ZUzqmzc0AiKXRZqgW983Ou2FUwMK1P1DIEmQ9s3sfbrj55t7xjHV81+O3R3B5y5Xv5NeCborFLXmHhJRKCQyPNYHBIcngORpZ2bAhNd3zDaUIDTKH2tJzSDKHhCyFjWfnSLDlucQ35/GwZg7RdpEWvDbJylwak+Ei88+qpkhdrM8bEAyKqmYxh1gqXgULTFJaGY/pxCIlQ+rVgHXNAvwJ50I/8DGchH04we/BUzt2sn8SHYdXDVrTwAVVsizTOTXPk21x0jXvB77nQ1g49aLi9XdfvgWf765AePTzCNQ0m7cP1RTPcHf+N+I/2r+KxTOvfF7HVdeJ51+DjeowHnvo3rg703LgR1HsOZRZMOmF9P/0evLGmc0cSvfQjGh2YmtHz6GKrUtzTAGuUClTglZBN/HvLGRlTk/K+Zz4nstmiUy7BSK4yY1N3weY+bvI43wMXqA5MTWprGoii9C7KMszk3IeQGl9Qv7lk8zOC9nfUNH46QQ4RFYQNbB3vNcIDo011lhjHaN69M4v4UTsBy76JrEAy55DHXsOZWZAYUJJvg6pO5NNqLPnUI+qzOBQ6lLOkYoYeIRqIkKdRgBQAhwyAhxqw/JMGjotxoPtIqNDyMqg42RYVYvZ6L+gAd1AqwA3TSDYCwF2Nn/tmEOTZvVDpTr/G7C5ewZv1PdjSa9Z9efWXPYeAIhUc6Vw2TVvw4YL3zT/Q4sb8dy6C3DGwXvwwDMHcuxrU/pLkJeOaaPnUGQOeUC3PFFq/FLhaUGgkRqYDG075Z0AUpd/TnQ8KvYOeebQz+lg+ffGlEadXWGWSVT3yByy3kPGRfO2aDJd7zuBSUNGtgCKSXSTouyBxPxZBTi0gGmxeGPpgspMANeVfhLy/7Koc5yZBzbLytAHW53tg6tKR3YE0eL5WdKuyfKBChy68zd/BJd/9AO94xnr+C6/9Us4gLU4+3LJHKo8h0RaWV7Y9b/z7D0mQE+Do2AOzZKVCc+hRhgsF/uuGhEmWB6LdMEcSovwAc+k4lgKWZkwpx0Ch5RmLyLnAlpYOBOf/yFJy73wHKrBMmY2zQKHgmUz67i/Ji24fQQ+dAUOLRIwtVxsXyfmw6znYK9OugR61338z09d/+XCC8cmyZbWCrZOBXuB4BCaBeDyb++9/J4rTsP17kqYpb3Y9FwEZOZ5wZx25Tuw+fJv4H+/8bJz8P0//lM4+6T1z++4qtp8wWsAANMnbwOQnsNDaZGentPE0CHmUJb6A+J5PiMllsYfR3O3qoFD8soaXCK/HiAbQRPjHMjyPcn8JhAyp4NVzKEB9iCQxzX6PurgKllZycjhuYtgDmmRVmYk2yo4wHVxrpTmkMwU9uX76Xx0yB6eM2VlZIY9PZyvGbP9y8bb8V4jODTWWGONdYzq2Ts+Bh8Uzn/j+3igKQ08SxM+qxeSiWQCiFhHvYgmOPbiaSDkX9XCkGi9imJl7WypSDGpJnr7dAY45AU45Gf753AXy3XJ06gpWCEkY5IVF7q522mTxvuFMIdw0gXFeb1odfn70Z37Dvyvxe/Dh8/4p6v/3AXvRIDKjJW3/wgWv/+3V/zY2vOvxav1I/jDW5/IUa2Jdt6mhcCCYA7FiN0ughY6ewY1fpn9CQCxmBjosoXL4oRdgkNDHj+1KbRT2UeJJ72V55Cc1MkkFZKReJ0meqk7L02r46Rcx0STmrXkw0zGAVB28nXb8r25qLoec6gdkCMsqhIcGvKzkKbdbPg+wByiRasz2ZBaBQevTJRpVte1nlgDwsCbJu/kcdQMm4jfs+0ZvOnAJ3CiOsiA0ljHf4UQcNZzt2DbuquL52+g9KtU0nMoj2cD4BDJnAU4S8mIq6rKK4tfTvucJHBoiAEYeuCQY8ah9DLhsW8Fz63i+VV4DlWyMiSZLMnH07PJN5QYNuXkKQJleuMpL0yHx+8aKPCIxvxkSM1gvis9hzQzhyhZbYasbUbpU5JBedr3fffcjuAy6EDMIfpZ/l0mZ1yJh82FhWfQsahXnbERD617HQDg9Ge/BGA+c2jz+/4dTvpLP83/Vkrh3JPWHbPjUae9CgBw6qEH4r9NG1nRApwHAITEdtH52gHg+5EZbSSlmsEcYnA/zd3qeRM1EOrPW8FuY9BDModIIk6fURkckqx2yYgiGddyKI8hkC+g9ByizwUnnidpu7YPnKkEAsVzTow36Pj9CzZ+5+pxjubDugaHZPDJ8L3Cc9mpZA5V213BxPx4qREcGmusscY6RnXi09fh4eZCnHzamVm/LGRlLi36COhxafFrKxNPSmDgRR9cNuarulE8wW3XFNuuK4Q4YUWV3jJbSpZ/pmSqoWJZkc+RufReZUw0La6YQ9JzCMjg0AvxHOI4+xcbHNpwGtof/BN84Md+Hv/P97xz9Z9buxnhjGuO+hosnnctTlIHcP+t1/MEiyY5pmnxtNqCVjm4oGCMAVSTU0VMXlQ0layMPYcGjufiV70ev2K/HY9sfgd3hYc6iKq6Fz0MU+lruQcQQRmp6XcSHKJIatXABIvOxft5KnyJaLFm0WRfkFSWZGgzFkVyEt0IWVk8kfIzQ8BPT1Y2cN2krIwjfgeSmVxXUv6j5xAxD5q+7xhNrOVxkUwlSRQ80+IngtWY/z43f+w3sDF5XrHPwljHfW3d+ijOxdPozn5r+QvypEuLW3qGB5fHs7lSUvE7M0fO2fu8bgeZQ7TPCbroLzbkOaTL74aB8Byi8VhlWVk3R4Idz0WCQ9JziCQwtcwrjfPOR2CAZGU+gbsCPKmZOyxpmXFMOoHDfAhp8dwEC6icOqlEsEAXDKdQ0u8bYvquEhxSp1waj+vCyGw9aflJ7Dl4ODOHkJtBFqbY7uu+7W/ion91a/axO0allMKrr7gM94dzsGb5WQD5vF6UWtyEAwtbcKXaCiCB9AQASQDVDSTOIY/XnNQlZGVDfycef5g5VEkURZS9BAFlmAPf201mNzNzKI1jwSRZWbDC46dkDhGjaIr8fZwGA8UpuNlziL6bSsjKQuWBJBPwlEzTbQS4mzyLnNJ5DkkSO9/F5pC456KPmfC2nAEkMntPgEM8ttJ8Yk6C7PFUr4yzHGusscb6GtfS/t24aPle7Dj1bQBEd6fwaEgdV+7CVCbS3kZjSxO7tsQCMnA5laP2HCJDxsQccjNovs45ZovED6wEDokkJjHJrquMsndlMoiOTJVaBkMTZdaXp0nOC0oP2XQOwuYLgJMuWvm9X4fauNhi3cLRAVX6Nd+HcObrjm5Hr/oOLE1OxN+f/joeeHpP3A5NNpXCDa/7GRwOC7AwaLRC0AYtRbZrw/dpE6bFxJUmabUhNQCcd/I6fOXCH8Vpr3p7NvWcwxzq0mTTKcPeVfR/CcIY0xTsF2+krCyDQ5Ei7mBU4EQvQJhZKt1P9XMBeiDZhY9VLLxMDQ7VQM/ANtZgWnxHhu5lufBT6fulB0yhrc0TcYCkPB1HMqsaIB5I7OnJVMiMs2kGfaKu2P5Hvf2PdfzXk7d/CgBw2lXvLl7n+6fyugu+P57Jysyh0nNo1aD9QMqT3P+i6gMzVEE18TueqgkZlJJJTMycW9FzSJyfGA91sEUyIVD6uXRpoerbtbwd5Yn5l55j1fGzpGUG85eNp2l/qoEOHUv2OJ7dLsEFBaUNHHQGh6gJQOP1auXXCRwyl34z/LrTcMXiswVQRYB1vAZm9dt9gfVNl5+GT7tr+N8vdsS4O/01uFg/BSCySwI3B0vGmVUloEjvB5DZYwRiVJ5BVAziECBSjU8ko6oBRZaIQTQGRKoXM2cK5lAcb+n77E2ZDkbfEdmkWcYkSr8gmUNZVhaBIgKYE6DalUliXkVmXJ0SRiwg+K5gAXJyonc57IKvRzyHDEAN3yvZIiHPiXnM9jYaes/ymzzOagSHxhprrLGOQW296WMwKmDN5e8FIAY5O+VBkUz3WF6WFn80mSQtv6qSxJqQ/YeayqyTtdCT+cwhW0WFcgxvAQ7ln5sgmUPTmR4FjfCciRPVFkG1fA2C6k/2Kda37tS8IOaQaaB+5Dbg6r/8/LfxYte1fxv6Bz56dJ9ZcyLMe34C1+oHcNa2PwJQggTveMc34Yftj+PX/PuglIIyDRYDRe5mQ+lJqJlDs2VlSil88AevxXtftYUnqrWEDAB30qcUyZ7StgAxAS3SyiYFI0AmqdDxeJ08h9Kke1qAQ8KXoDqeLiUIzVq8SGCnadtywl0vbCmdCMBSkrUtVp5DQ94EMvpbRvz2jiV9V0OTmUM00aeJbvH+IUN36qhWi/WmXYBiKSiZk3q8Tj2IaaCJ9phi9oqprV/CIazB6ZddW7xMoEqWuGRAiJ7nYY6sTBrVNhBBCCuVbvtGvkAP7O0BtiBZmWQOWZaVyUUng8gr3OdBSj4LSajtLUClUTzL7diQesoSn5xWVh2/qRa5VQ0xh3SIsjLozAA1fqlg9Zgqvlsb0zeOnldnvh5HvvX/g3rN9wGbL8Cr1+6OSarpeWmFVO6QWoNlc+zkWvPqzReehOvV6/nfzYvsBbPxsm/kn3XTZI8r+R0Jthhjs+dQyebm1NEKEKQidq2yM2Rl6V40NaA4AA6pNjOHGEAVY7NTScYlLA/KdLA+c6hTLe+HpKmaQjDSdSAGvGLmEMm2SlkZfQcpxZQMqSnJTZl0rzPDp4uMouJ6xDkD+3bOYJnRdQxSVtZlcKje7vFcr5wzHWusscb6Gtb0gU9if1iLS18fJwnS9JW6J7mrWspGvNA1W+g8UUxGzQ2E9rqXgJFen1Ba2QzmEE1SOIWqpKEDlc9QyBPnBcyOsqeOTvAWbfJ0oQW40g0zPWRRF5VNsafxGF4pZn/HutrX/XU8uXgJ3o5oiCkjek/ZsABz8TfhF/E9AIBN51yNtSqBkaZhZtAkLBddypNOvxAdGpy05ey5+57HHKIJJXUVY6Rw6Xkhk0NM02bPIJR+CJI51ATH0ivpS8TSETS9FDDnA4yazRwqPIdMW96LQ0BPmuQTc0mrUABMhXcSsaUGPIeGwCH2gyBwyOfkmdpXBUCPeg9AsCPS95g6sKYVgG7ySHEWWgUcVnF/tht+hox1/NUJS0/gqfacXoJPZrJU92liiALDhtTMtpHModQ0WE1RylMd6d5LvBzyHNKm8EkyQlbDjQjV8Lgz5JlUlDgH+TwxicUnSwLSDDqlhbfywjOMnmM1c0jPPyY1AA5FWVkypCbmkFsW0l3NY7r8+7pK/jW3tMaaN/4A0K6BOulCbLFPo4Vj5qfVC/yc+sfm/8bnT/0bq9vuC6zF1mDTRW/Cs2EjbNBozNeHsTSr9AXvyD+nKHsgS4SB3PyjomuYDanTZyzJykpZGG+fxhZbSgZ5uwkMqT8fJWIl6081MsqePIeogUgBCAIcMgsleMtjfLJICDr5byXmELL3kGHmkJCm9gyp09hEQSaJWUTzFEoeyw1GumaCfV8BtxTCESrpWl28bzEn9nO2ezzXCA6NNdZYY73QCgFnPHsD7lm8BhvWxgkhg0M2d0nYLJriftPALOMyJVXWpg6GTC6rzTqZEbBK5hBPJHgyKdhCgjo/kcwhNdszwkhZGXkOUZR900QfiArQ0ilimPXl3TFgDr2SS2scedOP8z9rA9B/9e1X4Ke+69UAgPPe8deyfExnidEEXTFxPe+ab0T7Lx7HiaedM3fXZpIml2JCRUULKmYOqabHHJJdzyKRBPn7AWRD6qCb6MFl++AQU8yF/wcVmcSqGcyhYrFk2hIQGljYUhdRMpf8DObQNLGLpKyMmUMDjCue6BI4lEztgzI9XxX6fdynOE4CmOlZw8+JnFBHE3KKTp6CZK4jc+h4ruu+ciP+6M8iQ1EFB6sGOun0XepK5lDwHS/4htiCzLYpwCE/KAMbKqUbGBVgK9+rWk49DA7l70YIAS06fm7QgtrLKPsVwCFpqi3T12SUO/9asJZ4QZlkZUg+TR6ZZVODM5vWx/H7szfdMXgstf8MeY+RnxN9942f8rPJomFwSCaB2so4erWlTroA7ZFdOHddx1Hh5gO/gLO/498BAN7y5m/A219z+VFv9/nWu191Oj7rrsFhLKDRL7Lc55TLcKjdDCB6vw3JBGtwiEAYujc5qUuw9YaYQ9x4YMlgOT6Rx84Qc4iT9irGudxuEMwhr5o4lnobmzZmUhptk5QyPUMiP0gL5lBOK8ux9tl/iNPKqjHMKROPPx1na3KDSQWXv4PVNauvcTyfUho3y7ycJfQDsrKh7R7PdczAIaXU2Uqpzyml7lVK3aOU+tH0+muUUl9RSt2ulLpZKXXtStsaa6yxxno51YFnHsLJ/lkcOjObetJAE4TnkOO0MjIDTD5BaQIRJ+oiTYXAIRXgk5l1P8q+BodmMIe6ml5OsrJhE+oFlAvE2eBQ0mm7KUzyNKIJudItkAZ5WYpSNIjG2yXm0IC/zVirqwvf/j3Yqs4E0PdfOO/kdXjfq88AADQnnIGtGyMdX5kGa9bE+2ZNWOqzwyYrSwTMZA0OhQVMpnt7vyMpSCeYQ+xVUXX0gSyHo4WXBIeyV1aUKQ6BQ7wAHPAcss4zeDlUdQSzXEzVnVlAMIe0MNAumEP5dQKQgpCMUEqZCUPSnBIcouhfSivrmdJzzK5IbqtlDSRRbSZ8nZk5lN7Tqdnm4mN97WpqPfYd/vr5PC1+6Sdx9S3/EgDFvfcXPSzvIN87+j4J5tCQrKxmDjnn0So3CLAOVZaz5fEnhMCAVH18xWdVbkQQGFx7DsWmRHn/zyolfi/N9bW3hfk8gChx8SQfJ8+hbEjNsjDxHJN18TXvxJJeg+++++/hjo//eu9YallZIOZQJStr/HJOhIRB6/u+NM8XHMLmCwEAl+incebmDQCAs69+B045/0oAwI9+08X4xstOPfrtPs9612Wn4r+4v4If7P4Z9IsNDikFd06c/205YX2WQRds0TJxznGDpC3+T/NEAwc/8Hei57e2fVYYkJkyuvo8AStAHmNMAQ5VnkM6NnN0sBkcSfetJ+CUk3eT7AtxjCdwiJqZmu7VdB1Ymko+nDSGCYBKBcegrG4prYyOJ8nKOK0sgTjBMXOOr0eaM6xkSE3XVXUDzKFg4V9BfJpjeaYWwD8OIVwB4E0A/r5S6goAPwng34YQXgPgX6d/jzXWWGMdN/X4LdHU8+RXZVNP1o+7jgdFGsBYXsbgUNZLS8NMNz3M2yMApUEZM83dkIVkfjkQjS33wbGp3GnMA2FbMIeq7azkOUQDqm6yrMzE5DJTHTN1UXNiWgLBXogh9Su8tDG489IfxdZwGibrTpr73nVv+KsAgLWLizjrkmuwR52AVmWpwNFUozV2h41YWN7T/2WaQHYJwAnK8MKF6e6FrCxPMIESHGI/ABU9SWjR6szqZGUxyn6OrIwWpdDRdFJG1g4lj7GsQrCbZhhSE4AkGTmUGjMoKyMgt81SUZIIRHZE/QygSa+UlVFaTk6IAWJ3OgPX1LUtu7+zTHHH+trUn//x/8af/8wPDv5u566d+Mz/+914+uknXtA+vvTnv4NP/tI/AgA0bomZobPYCbXRKwGSwdvi57ronqL7jcx1sUrZTy1nA6IktB73hgBbCJaq8wGtkLMVnkOUfLTCfe4LtlDJ+qtlZcXCm8ZzkpUNeA71rvnJF0P9g5uwrTkf59z4b/Hcc+XzlCLr8/4ycwjCkLr1y1m6C4OW/s6CyfhUcza6TefPPffBOusNCLqFOvzszOfo17NOXr+Ac88+B3eqS1/sQwEAbLz8XfH/69dB13InIHkO5esWOK2svEeDy4DskPyvbUvWdw0OkS+drj4vAczaqxIogZn4QitAGhvH5SoFM/iYhErfhwj75FQ0mvtKzyFVmVPH46nSyiq2TyOAK5aViQYjSaGV73pgN4Wi0Dg3y3OIG6YimIVBJ+9iwu4rpI4ZOBRC2B5CuDX9fADAfQDOBBAAbExv2wTg6WO1z7HGGmusl0J1j34Ru8NGXH51NkikAYgWdvRz/CENZGnyKJMWpKzMiw5GBocsQhB+DGlb7UJiDs2gylPqTO5SJQNLJ32G8s+Lq2QO0aCNAhwS+xiQlZHnEKd0EHNolJW9oPrm7/xbeOZvfBknnrBp7vu2vPEv49Crvg+Xv/FboJoFbDvnOwCgJ5VYTTVGYQ82YjIADsVuo4YjRopqeIFD/5eLFmI8MX27YA7llB0THH9n/AA4JBdqVLTAHFxUIgM75CtQeg7170vL4JCUlUnmUP6ZfIkkI6chUHeQOUTPh8wcIoZHZEeUi3Ka9DYFOFQyh0JwnGLUYw4lpgOBeH6GKe5YsR7bdQDW+ZXfOKd27XgKt37+jwAApz5zHb69++Tg+x76wm/j3UufxK77v/SC9tc+8Kd4/c7fB5AkHqKjPwQOZUPd7H+SXuAF37CsLL2P/XfS/bdK5lAtZwMI2K0NqWfJyjx/poXl765kRdDCfSWGnJSmrug5JGVlQjbuoZj5F7RkDvWPf2Hz2Zi876dxIvbjht/+z+XphtJMn8ChRnlASLTbsMyyYasMewfK59kF//zLePP3/5u55z5Ym86Efc1fTwf00lgo/423nId3Xvr1YyvNrau/B+G9/wnYcjW6xRMBAH5/XvJy/HqqLCsrxxwn/CWHAhRYhuayd6AsYpc2KL/bRZQ9jT8CHGpozsoNxEYwdVLSGjUuqYGRvHh4/FSazdIRQmQNIjIUGwEOsW9RJcUk3yPeBjHj2+yHZHw8Hg+TwSQyXk+MoqKIUcjm1jM8h+i62mxI7YQ5+PNpnr1c62vCkVJKnQfgGgA3AvgxAD+llHoCwE8D+OczPvN3kuzs5l27dn0tDmusscYa62tSW/begkfWXo2FVjAHpCE1M4cS4OKps0iG1HmgdSp7IoQCHMoSMyf9GEiTvRglQEMT9riPMq2MBkIpJZM+Q1oFTi8CBjqdqQwlZ8jIXJr06OQ5VC3UiSLPptjps7M6OmOtrhZbgzddMJ81BACYrMW67/5l6JMvAACc854fhg9qpun4vFo7MThgTojd5KpUmlBlQCjLyjK7rM8cYnaRjLJn084meXCVpu5yW150Lqm6FWRldH8T6CMn3HqA9UDn4SQ4NCCRAzKAFArPIZKV9ZOZeKI8Wcufoy5wUP3vE5vSS1mZyXJPIC5uCfhi2SFLf2xxnCNzaHY9+siDOOEXL8PNn/mDo/7stju/iLt+7jvgrcVDH/9vuOpzPxQXH972mDFUk8c+B2B2itW8+upHfh4P/oc3xH942bnPY9Is01v0JC65scFAzZC/Hcs7SsniLFB29n5LcKhOMKsXxACZWRNjyaMRXnkZOG6gSH66oiG1lJKVUfb1NfNi4S39U2xKiNJILA42pB6+Hue/5h14+IS34i07PoRbH8nAQs0CCdqgCXlMp/lGG6aFr9uEwaH8PFpoDMzzlGG13/h/wTeLq/97fo3rA685E7/211+/8hu/HjVZB/Xmvw9og43nvw4AsOfhm/jXEWAoZV6AkDNxiACNDXaQOUQmzI2fEeSRjNl1cJzWB5DcjKwN4n3RJMY5ID2HMqvXqYaZQ4Vfl2h0WmgePz1MfJ+3xVx0AsHCE88f9hwiZiuxWkk+XfkEEZNJp4CG2lxeh74fWJaVpW3NjLJPzwrxXffSc+h5zI9ernXMwSGl1HoAHwbwYyGE/QD+HoAfDyGcDeDHAfyPoc+FEH41hPD6EMLrTznllGN9WGONNdZYX5Pa/dTD2BJ2Ynrmm4vXuTshZWWV5xCBQ07opR3y5FWCQ9Ikz8qFQho8J4vzPYfIdJZjU3X2KKBqUU6Wl0Xc7qzOL0ePk/5dNwgMQE2AlD4jK06uW6iGIlkT9X30HHpR6qSzLsGdJ7wLh9afe9SfVUpBrTsFi0OeQ2lCJdlCteeQnNgS82XIc4jfl+4n6lwOvcepBtrPYg7NMKTW2aejPq5CYkbbG2AOhRnMIUuphE6yD+YwhyhydyKYQ7DwSbLZ8x0bMNrMzA9KmXLMKDDcbU0AWwKD6FxGz6HZ9cTnfh0nqoNQzz0OADgy7YN7s2rH534ZVz33WTy3ZwdUdxitcrB2mjrpFSMUQNd1uORgWlzOAP3nlX/mXpzfPQIgLsiy/0denNF9VRczz4TEBYj3Gv88cJ/QvciR2ST3WKUh9VAEuHOhL00eWOAplSXMNsnKiHHIbDkl2QYrgUOSOST8wgZkZTKVk1kMpmWJKzG0pLH+rDrrm38EJ6hD+OhH/5DvCVOxQLxqGPiBbnOwQJgyw8GhYe/AIY+m51UbtqD7wK8Cb/3RY7O947Quv/gSPBs24cjjt/Jr7LWYin4mtgz7YhGIgRlBIOm7ZNzw3zYkGVUDW3hbUdJX/Edi5Czk8bMRwAyQ5nLJ5D3OTQWrvQpR8dxcaRhQktLQSZDgqhNR9qWszFBTIzHj4Dv4xHila6aTrMwrA0PPCwFW9YyjU0MpVL5GddEzwri+55AKz092/3KtYwoOKaVaRGDoQyGEP0wv/w0A9PPvAxgNqccaa6zjprbdEuUAp171ruJ1Nsd1Xc98j6j3HD9vc7fVQWd2Q5fprTJyXnol0GR8Qh2gGZ5DLFWhTmpDnUZhQh1KxgClF6UTGtwutI6DNw2oJndHtWmiIXW1mDWIAzsDVencmtFz6EWr1/zYh3HNjx09GwIA1px4Gjb557DvUHn/0ISSFp9ByMrqjj6QWWg0uVNmEj2A4i/5cwaOAVIZd19S0suFK0lThhgH8dhKSZsWLLahLjlNhjuxfy8m4pIF5waZQwQO9RfYtVlooOjfZGhbG1JzR1R8f2pZmQodeybwsXlKK0sgEcvKvn7myC+ncs7hwif/CED8m+x69lnc8R/ehrvvurX33if2HC7+HbzH2XtvBJCaBJ5CCjoob2PogC8BkIduuw6b1KH4mZWAjFQ33vQV/J+f/bEYBR8cWuUQvC8AIZkcNFNWVnXkmXXkc7NjcKxhWVkyZ6axarXgBN23XX6WWB9ZQLIGDamJIRBCAoNtL63MqSb/vCI4lL+bupCVOXhV7t+pppdWphtiDnXpM01erM/xL1m88G3wqsHJz96IP7/7Gd5nARQogwkBP9pwY2UBJXOIxvRj2XhZuOoDwIXvWvmNr+BqGoOn116KE5+7l1+rDakDM4fKRgmNE2Q23iulYIPmxl4NlJIxu0HlOaQzgBkS+7xdyKETNP7msbnJ8q7kOcTjSlcyamhcd4kdrIIrvsMlc8jl1F1PDYrSN48Z5740mA7peMjDqx7nhgz2gzJxf2lfJFGrixi1BTgkPNRqQPh4rmOZVqYQWUH3hRB+RvzqaQDvSD+/C8BDx2qfY4011lgvdrlHr8c+rMOFV76xeJ07IDLdhSajnMBQeg5pX4ImEH5AEhwi8724rRgxygPejK4/02Mp6YINLPMAXvsMTeUEeE7n18JAkzRON1Aypty0PGHnTaUFSTbFTklsLxEfg1dkqeef9nLiKWdiohzu2Vqa5pK3FDOHdD/KWTJ0iIUmY+5Z5iW8Ohp4BjTQDsjKBjyHrPVolJ8JDtH9TRPAUlY2ZEhN5zTMHGpEYpwzxBAUnkOBFgCzwSGm/CeA2SeZZlOdW2YO9T2H/EBHNScMll5oZO69WiDilVb3fPnPcRZ2xH/4Dvuefghv0vdi6fHbivd98dY78dWf/W5s254tEh667w6cjii9dHbKHjadtdm8uQLl9t31cf45rFJW5r74c/jL+34TS0cO8nadsykhKIJPWizODNwwUDGQnBTP2xU/18WsWAZK0nGv8tneu2+xelkZdIsWDtYHdM5H5hB7DmVwmdPKVpSVCXAolMCuqxbttGgF8jgfwe0GmmRlWoQwzLseC+uBM1+Lb5zcj/9+3aPx7UjgcKppsw7rwmHeFoHZC2HKz6a96y7Egiojwsf6OtaWV+Nc/wSe2LEbQAIuBqLsCZRQNSAbhtPKgOgn1QyYjQO5gWLgC0CR/IPizuN8rV3MsrK2qcGhNhpDw/HctE4xzMyhhvdBgFInvl8y/bZOLosbpDRNwfCDS3JowX5KzRGSwzLLnp87rs/q020pK5vFHBqwWqCxsE4LPN7rWDKH3grgrwF4V4qtv10p9W0A/jaA/6qUugPAfwLwd47hPscaa6yxXtTasu9WPLb21TCVL4mUlTFziLyGevHzFJeZBjyOmRfMIQEUFSkraXBumgxGDRWzkwgcSu8v6L6VzxBFcKcPDG4XiN0iTj3TDYIEoFSDiXJwwsCVzDnZiJE8h9oFjPXyqy2nnwUAeGTr1uJ1on6HQeYQMXTSZDMoQMcpCdPCdZtZRDSh0y20Cuim6bvRZkPNbDrb9JlD9L2Y5TnEaWV9WZka6LpTB9gJyZmUXsoJKHsnSVkZyXqGmEMsKyM2oMvJNQMG77RdyVbKnme5w0vnZsgbjcCD1OEl/yY3MocG68hNv4WlkBcj9HcKFZi2/6bfw3ea67H09D382tO3fox/tslnCAB8N83+PF0Jzi/uvheHQvybzPKSk+Wdx4X7b0z76Hgf1nZQwTKLSFXMoaEFaC29kj5DEzVbVsZ+erzv3DRYTZFXlrN5vCPWX0AGsAe3Zxro5MnnyJBaslhBsrJyQTnzWAT4pcX1b0LX84LxAhySzKEosUkNImVY5rZS2pe+4B24LDyCh594Gnc++VwCl/Jnntz85mhGDQC6xRnnXYYltFhQOa1py7f+07y9sfHyda9TLn0jGuVx7x1fAZCkSdI3SpVjoGnKZ/ZM4BZxjKTGXk8mpSNTxgRb3GdBCwAz3dsLCRzyQbG3XhANkuhTlNLBhKzMSTBGRtyzIbWFT88zemby4QkWIxtk15KvxByqTbzJiD0zh0opng62z4SkxFxmDs2XlTWiYSrB7hEceh4VQrg+hKBCCFeHEF6T/vtYev11IYRXhxDeGEK45Vjtc6yxxhrrxayntj2Ks8N2dGe9ufc7Huh9TmmgLmxIbB9NMhqRCCMj3iVbSM+QlalEu+UBb1aUPQ2elFKWFrwTLBfvW1J5gdkJcGhe2oyD4dQzbdpyQp4mHFaYaBtEWj4Z6Dbps7NSJMZ6adfaE08DADz15OPF6xT5TBKMoJvMHKpkZW6go6qbJoNDnICXQBkCh6TnEH3nxEKNijuAs2Rl5KVAE3bTB1qK7fF5tAy6yMWbNL0kX6QirYyjfgd8W3iiPIENOpsAp7Sj2ryYmUNi0lvLgpTPk1uWbxJAQXLXZvQcmlWHDh3EFc99Afdu+ob4grc5laq6Xht3fjW+Rby+5onr+Gfvpsxsc67jn23FDtLB4ohK9/cq2FyP3X8LTkNMDfRdl5lDVuzD2RyBDiR2wZCsjOQaybiW08oEm3WOrCwnd5Vy5pVKVYvP+HP0C5P+XkPhBWyWaztmG4X0PWa2nGrEIny+8TotXDu0pawMfUCNPVKQzX7JkFr7KYM7mQG5wkLzvLdDB4e3TR7Cb315W/7+p3r9u/8S9ocIjCtjsH7zFjx81nfF80rf87MufyPu3/AmALOlNGN97WrLpdFFZe/D8Xmggy2kxzRetOkeVRVo2cDNZJg5GA4QqccnlZgyDXwxb5O+WJxym8Ahyc6h+0ybhv2LiAWsKxlXT1aGhll09DxbRnnvmRBltAD4uZQj6+l7aqDhU/OzBNSIORREqEk2pO4zh6CbmJpG+5jRhGTmUJDMIQKdXGEmfrzX1yStbKyxxhrrlVDbbot+Q1uufnfvd9wBcV3u8FH30btIN68mAyolLTC7R0xetdBBy4kzfAerRDz1ANU/7pqYQwTcxPcvVFKyTgzkVgBF8yb3FoalYTG+XrCT0s9dV9KKg9CLmzQYj55DL9NaezIAYNeOp/vyQUjmUMkiAvIi1A4YdSojmEPCkBoA3HKUVFCiF5ABmSFwiIDZmca4Ok9u4z+lRGsAHGJ2U5a+STaBHgCHJIiQDamHpDkZyHIwDA4FHT1L+swhmlj3PYeC6KjScTYVFZ9Mh8m/afQc6tedn/t9bFBHsPYNfzW+4C0beUv50bZnD+BVNvqMSAbWudOHcATC04mYNV3HrJT6uqvgmL25EssFAJ69PcvQOrucAaGuY7DG2WiOPEksogYzEpFMyUQlSZoSjJ5Bk+yQGQVxf4k5tMpne/YQkbKymDRozZre+4qiZ0k3hXMuyUiJlZG9THT13Zh5LOn8pmqhkJWZgbSyILzAvAB3nWqh0/c3soITKL4SWHb2tQjNIv7+iTfiT+54CiaUC/2LTj8Zd294W9pWfP2iv/T/YBltwTY54zv+I7Zveg3OvuCy+fsb65iXOuEcHDQbsWbn7fA+9AAGDmUgrxvBHAohzDakRmIOITPUZJ28cS17DhWG1Er41aUxZjIADuXGzYT9i0iuxbLP2qhZGEYTc5e++zU4JJk5bPTuynOh5EFmLIljMyHLymqfJu2HmENpDkENzBlzAG6YFsyhnII2MofGGmusscZasfxj1+Mg1uKsy9/Y+x13QMRkmr0IfAcHnTXmNAFPAxB1QyQgZMSARWaAcVtx8NRGwwY93M3FkOcQMYfKCfJUAEJOi0F9TqfTwbBOW5k8gTBNgxPXx8nHlx58Jp9LkpXRZIjo0bO04GO9xGtdTBidLO/G0/sE2y3p9ImZEHSbF1XMLuszhwh4Ubph+ZYWsjIA8MmsXQlZWTakbnpyLfI+mem9wYaa6d4V7xv6TBDMISeAovyhaNQOILObxHeTGEMtul5KFT8P2jY+J3xMmgq6BXSLRvlCpjmUVlZLFOBz2ooxJsr42AyUmEMEYo3gUF367g9jDzbh0re8P77gXWZcCZDhjttvwmZ1ML0u0nrQ4SDSQkz4DHnJ6ulKFqcOlp/Hq5GVrXvy8/yzd7YAaDTvY8oLROdoATlbVkYAF92vWjCHBhsRbOBaJnSuNi2Lv8OCHUtJg870WYKymHVku3wtGRya0AdhmlUCbgQO6QWYgjlke0xakt8A2csogkMmR3eLJM95TFwAUS779n+Cq/Z9Ht/mv9hLKwOAU9/4lwEAiwvxfBY3n4VD3/jvsfltP8jv2XjB63H6j38BZs2m+fsb69iXUth7yhtxbbgT9z69ryd5ChWTk2PcnYX3Ico3Z8jKgm6YOVTPm04/+UQsYhrBUV2CUW3IgLYPCi0l5ko4QDC/Ka1MJ7+kLOOSc9nsJehV9hwiX0A5pwSQjwEZRPbMHErnQkEm3hbHRswhk65lHufS8wmuB9zSnEHZJXTBQOlh6KNhq4UZnkOrTFw8HmoEh8Yaa6yxnmdtOXA3tq551WAXk7oQQSSOSYaQVSZ3M6m76qOvCGvQxURcJigUnkOk+UZaYM9gDuWo0LRtQa2VmnDpM2SNoN/Omdw7ZdAEYUgtPIcuPPsMAMBdn/0dXgTrNFGm8yRgqTGvnMH3uKp1kTm0GQdwxxPP8cus0+f45gwU8QS0HQCHWFaWgRfN1Pv0nZnG7wMl/gHCdHZIVuZL5lxdoTKkLpK/BhaiTF3Xho+xXvBxN7aSlfmUpARE6YD1JTiUmUNtTBirZGWASIFCAoiDQjvAdvKCOcRm20qlFCViOpTm3qOsrKxndu7Eq498BdtOf2+MJw8acJ0w+87AwYH7pXxMgoEOXVokedexZMkVP9eyMpfZmzNAf6pu6RAuOnwnngvr47aErMxbCy3S0QjEsLZLjJQ545frELxjGYgch4ZlZfl+o/MDjl5WJq9d5yKLQoJDw4bUGRyqPfaKZ4M4t3lFz5CpWiw8zJoBnyYvvMB4rG1aOEQWhQke0AaaFqqruB7q7f8I/uw34T9P/gcWVOkfAwAXveU7sPvaf4rL3/4d/Nrmd/w9nPSOv7vitsf6+tSmK9+L09Ue3HvnV9mUnIq+d3RvMoDZHUG3gpF707RYJOZQ9Z7JVR/g72sQv9u1eA5O988AyweA4GChoY2BD6pMUZPgUAJpaCyvTbMjo8jw2OeViXNYOJZX1uBQE8rmJpB9OEkaHXQLE3zyHBLnpxJziGSazL6XDJ++rAyI4JCbA3uQNUMrktWCkJUNpToerzWCQ2ONNdZYz7PWhMM4Mjlx8Hes8RdeQdyp9BHQYY8UL7seQm4lUhPaAR00kLxE0qPcJgnKULH3Q8UcAkrary2YQ3kyPteQujBHzD5D2jTQr/4ebN90DX7swM/i3uv/GEBcKHnVcKJbG6ZzOzpjvcSrWUCYbMCpen8BDlHaCptQq5YlLDwxTvdjkUgi0srq9DCWSyXQ1Uwkc+j/z95/x1t23eXB+LPKPvfeaZoZTZFG09S7JUuyLVtucsHYGGMgVIceSIAQCBDeJG8KyZu8bwoJ+ZFGyMsbCC1gsCmGGFfcq2yrW73XGc1o+r1nr/L7Y63vd33XPvvce0eappn9fD766My5p+zT9lrrWU+hBeBk3btj5VD/95gnmV2lEmoVUfcYoRueWMfOY7NVrqHg+WwlorBcJOWe75JDrAQaJeKJlAc5kBrohEbnsGktCueYeBZVvFIWT48LiNYmO5fvMyiHJO782O9hVrU496ZkKaP3jhY/8nx83oGv8WVpEzNRkEOuZWKObF7d2wNpQdLq5alcHrzlQ5hVLe5Z/SrxuCUUWqOEU9Nvw7nxhPWEIMlFmYUkxyTVM9YQ0dVt7lpuIDIHYYvn9Dk/KAhyyJjJDB3FtrK2/D562srYVrmUGisW5ZCV5BAcYqfKngJ00+OWoGCvLExo2SLEpNBy3g9toL/zN7F35UXV62OYBme/4x/Brtm89GMNOClYc9U3AgDaez/MVigCZw5lUmjFpgtxMM6iefqWkukzZd5lVm/ECkXKoc5v4dxr8Nia69JlsWHht94Ig4C993wG8C1ctrg5GL4MAIrGXNskhTcCdCdziMeV/JqI9AqwrByi19CKOeV8bKoog2mZQ2Sf1rGtN46MzdfnOWRnnOtreCsZngvV65x4T3VS1M5EqfYXmUNDlf2AAQMGDOjDrgML2HuoBEhPk/3SBFRmNPBkNFvBOCeoGoBKm4qs1KxsZZ1AalYOKTPVVsaT9DyYWjGhWBBqoVaEfgahHJpaAY60UCbySpkR2tmNWIgWem4tMFqBdT/6fjyhNuOsT/wTcBWytnwsM3GhDkQc8JJDXLkR5684gq8KckhTwxaRK7pkDtGkVeYE8WPpohZiK1THVsbk0EzJHKLvdNB2QjkU2d4y5XtMpIui51s8cyhKcqjPVoYi1VfcOpZ+g15Uc/cph6hm2DQ228p8Dte1JVelQw55GChV2CGZeQYA3YpfD81EMqs7piiH7n/2IL708J6J9+BMQIwRq+//EzyrN+GcK98AgEh4L5RD5f06xz+FfUjqHUk+mI5yiAObK1tZnf+moyshzEsQGQfu+EssxAZh5+v5OYqtzAkCyjHR4dtid+qCiVbvKiJyKXKoG0jtO1l3S4FtZYKgdCHAKo/YTBLBEoXQGiO4Mh4BQgmlm/LalnhPSW3l1KjKHLJwE2orsrsAqNoDfQ4BJnKXVIjLbg9bfQ4Ofs+f4N+034X7Nr5tefcZcOpg7TY8O7MDO/Z+PtvKBDmkLFzU0CaNExvXrsJdzZVY98znWRkapyi2515T1GG9hQmv+vH0N0H8Xnjdm+CixtO3fzSPB2VTMUjrFo+/2cYMB4U0fhTytmT8BBieB4c8xpvoeVwZq0LqzmOEUVVrX59DrSBxKeuoyvrJSiYLyq2sf8u6x37JKmU/XzWfdaF1UtTOKqEcoo2aKdlspysGcmjAgAEDjgL//Nffi195bwr+tB2ZsITh3YpiK5M1v5VySDQtSFuZrZRDZUCVu6qyYpMWLX2gSTotsrVoNmohdpdEzlBFDi2hHBoJifOOG78N/88lf4DN554HAJhdtQ73XPFT2OoewWOf/p1cy214x2uEcbU7NOAliBVn47zmEG5/fB9czsOhiVohhIryhUgO+q67vqBOa4uKyNa2sph/V1YEUrNdRFmYTpaW79gqJ8BtZcUSSTA9TT9RvA6pIqqek7KTaFGbyYQ2BM76apSD911bWUc5FFrOj+BclVaSQ35CLm86tjITO8ohVc4VTByT1bSjHPpPH7sPf/+Pbpt4D84E3P3Aw3h5+zXs2vlOIJNviYR3Qglavms6OsyrngBy0bYVXMkDCr7lfKwuKZdyLshWtjiRsenZz+DumaswuzJly3gvbGVeZg4tpBYgAM4tTM01KWUJ48rC2AQZSD051qiOrYxtjT1Knz50lQlAyRyKVlhIF7WVOfi2NIYBQskrsu5Cu7hCjsJwg26YUIsxt6B1M4fyIhqof7+JqG5Tw6AuquClquwlLtm6EVvf9Y9w8003Lfs+A04dzG9/I27A3ZgJR+r5orAkEw5veTXO84/j4DMPp5tM+Z7oa74be23K+jPN5G223/ht+PL2H8b2V387X3fptnNwj7oA9vHP84YCkDYK5HEQ4ZKq7BPRQxk/hYCtg5pZOaQsE6U0T5UtgwtoqpxL3sTxLUJUTOKq3MrZtZXJQOqobRnnXBnnusQtNZzqsLDkPHPi7yJzaNpc/3TEQA4NGDBgwDKx99AYP7vnn+Obn/4vAJBDIqfYVLRGG00d4NlpJWM1RBALODF5tYIQqsghsXhTwaVcEqSBTcUpE16atHdk9kCSzRPkQB5FTfhimUNBWYwiTcYttm9YhV98z5vRmDLE3PjOH8G9cRtGn/43STWhLXSesM/GhUV3dAac+lCrNmK92o8jrcf9u1IgLynhSuaQFYobylsgUmbSVqZNU2rtacLK4ZI5p2q2LBgrSfqUKns1LddKNKql45KB1JO/cRmszcRW53asehpRIDUpdYpyqIFHG+pqej4fZFsdnUOiFsohWcMd2gm5vO6cW7hVJsOjqAx5AZ+JttAhIhZcwILrHOMZggc/8dtolMf2138/X0fvXQn7FiSQsI8R6RZ8QKN8IYd8CaSubGUdUi5ZJJoUHr6Irez5px7Cdv8o9m95A5+nQ1set36OUmM/XsiW554FKO3gB+8qIlKSQypOHpNi5VD9mpavHCqkFIEyh7CEcmjVivQ7e/jZfeV58zmBCyJ0g1Vz6XEeeOb5xY8lq+28agqBF9FPDimTcoUgVbqjZH0JRaFF569lK4cyvvdV27H97BVL33DAKYeNV78Zs6rFVrW7siY5M4cjnSavTS97KwDgsVv+Il0x7XtiR9hz/U9jHjM4a+2GiT8rY3HDD/8yzr3war5Oa4Vn11+H7UfuRuMOczOnV6bO9dGkLm8Ak21lHVV7bSsrWXiUOWSiZ4W7ExuOC6h/N0wORQcHzerXqC20itBhXI1byIoismlyqygrfHrm5Pn5rV/cVgZgYpMliscdbGUDBgwYMGACt915G87Xz6AJaVI9La+B4KErcogXark5qDvQ6jyw0UR6JAihmZ4GBaBe9HkRMttF2cHNxJMge6QnXIZ+RluIosUms8pY9pFPu91ZK2Zw7/l/HZvHj2GVOpLaNs46F/eErWiUX3JHZ8CpDbVyI1aNd0Eh4KuPPg8AsDG3+lAgpG5YJl/CONN3r6qrFYHUXVuZop3FnOU1mlnJ9yOFTwqHrcmM4POidWrmEMni88RYqIVsn3KIc5GaJZVDui9zSFFb2WTmEP2+bTOT7Kd0DtEN7yRX6sHgJshV01Fg6OiqLAYZSM0BuqNa4URofZw4Rj7WEHHLI6en5ax1Hpc+9gd4bHQhVu+4lq9PljxflEHi/dLwaFUhgQDA5f+TKjMKJU/wxfLlO0oWUt452EWVQw/f8iEAwMZr38aLJV+1lTlW0nnfFnJo/nB6gJ7fhGxOkhZGuWHRayuLZSyj+6enWC45ND1zCE0hRyZyVgBcuHktAOBjdz4+EUitMyk8Mxrxczyyex+eeP7IxOMQFKsiiirIZdVfN18MpgRSs62saVKVfXSwKlRW6mVlDg04LTB3wWvKP8Q5uL3hb+K3zv9X1W0vvfa12I8VaB7+BIDFFdsXvv2nMPsPH8bsqrXLPpbZC1+HGbTYvP92JkIcbBVIzeO1aVIwdM74kWHuVYuXyMKLynBeEI0rck7ZdsgwOkdJJZN83TYs1LayrCiy2ebFNjT6zWVFUfUcIsMzLDHP7JJHfP6K/fbb0xUDOTRgwIABy8T+Oz8CoOx2pKaXRVq8YKp2F9nk4pXhdgTIgU2Z3krNkVAE+cpWVjzZZHfoQ3eSLifXdc5QuV7K+BebzJ69egVmMzm0WGXx9W/5rvIPbbFh9Sw+s/7d6dgHcuiljfNfj2ZhL9654i586aFEFrD/nwghYwGhCgIEiSF25YIgjlhFZElBVJNDzYxUDlEN7qStrHz/p9nKKPvITtyuj1CS2Ul0n646ggKp2VaWlTouBDSsHHITmUP0GzY2EU9EDild3kvf1qGe3d+P7kyau20rAYaVH5x51lAgdf3euRAmc5EyPn3/bnz7f/0cHshqsdMJt3/6A7gYj+LAy36ELWUAKTR9r63MRFfOp0QKuXqRlGrmS+bQNOVQWng1OXdqugVq4dBeAMDmLTu4DStWdrUWOqtafNvC5udrFzIx0ltlX9RPMih7VNVQ9wVS09hYh2wvVzlk+HnLY7sQYBAqJWsf2WTOvgAAcODhr2LfgUPpdRCprA0OvOLv4IqbvxsYrUJUButwAH90y+NTj4XUEkFbblhioqo77quG1YD0OzdZOcR5fJ0mzwFnCFZtxPMzyWIvrUk3v+Jl+Kkf/P7qpsZaPLzyWlw2/zUAi8+nAACjo1OTXXTDWwAA28LjTAgF6Io04YY/00ApA6sCTGwRVDNhV6bfCM2Do7KcF0TnPRlP0G0uI/up8q7OnTREDo0nbGU2pyTBlAiGSL+5nqgHSTQ5tfg8s7vJEitF0pkzRx3IoQEDBgxYJtY89RkAZUCzcIvuJnhlqgDP2uIxObBRPScthEeiUlM2PMgKXi2yRLxY8HUhpe5Aqe0EAKckOSSsZGIyPs37DgCrLn9LqTqetvgGcO7W8/H46IL8gOnxrv2mv4X9cW4gh17quPxdcCs248dmPowvPLQHMUaWfvNCSmYOabJcZeWQDKRmAqk0nXGVPdnKMuk6mptUDsUeWxmHLk+ZbOuOckguPvtUCkU5ZMvEurNgpOsVKXIo4NaXtjIL35s55KKGNWnSTtljyjS8yK5qz4NjiwAfM/2+adLcqfj1yojcm3wsRLR1SAofpiuHjhzah58wf4IDhxd6//5Shv7Sf8NerMbFb/2h6nqvLFR0fN5GlOSQZ4VQyCUCrk3vjTdFUSQJIVLZdEk5A4eoTVrQTFGEApL4nOHAY2kl827cqxxyC0k51KdO4Epp7/i3A9TjUJ9KtWQOdZRDy80c4gZPsRnCyiGZOdTzOz73GriZtXg1bsOn7nkqHY+43epv+r8ws+MVgGkQ12zF9aufx3tveQxhynebCNWQ1RNAUv31BVKvnJuBgcfHvv4M13I3zSgpZIlQM7ZkJZ1BKoQBgDvvBgBYVqixOv/1WKnKOf9YYuPmLXhYbweAylZWqXOyys40TWlUiy2iNnx+4flkJmMUZQ5py6HR9NuXc0o3QQ6Rrcz3qpdsnFQOGRWTKlmV3xOfZ3qaBGnMbOK4fqwe0Dw0xLwZIMmhRTaCTzcM5NCAAQMGLAP7jyzgyoWvASiSeZNDJqfBwVQtY7STrENWDtHAL6SrMmSvspWJBoVptrIgFnxdlKrQvCvUSCuZyBmSIdRWtpUtMjDe/A9xZOtrAQBbN5w1/XYA7CVvzY+XBuzrLt6Gv1z7PbiruXLR+w04xWFHCNf/EK4+8iWM9j2IR/ccTr8PZXgXUGlbJliLtZWxrawoh8jaxYojTzW+DVxMUxnLC69mwlZWFqlTJue0WFOUt1C++4sHUhdbWfc3EjrKIdXTVjajHJzv/GZDqu+1RqfzBCkITckskWoOOp9I2I4Co1vFG2CK4iUfl83Nb90Wp9YHDhknPLUvqU7WPf1Z/ELz+xg9dxdOJ+x/9nFcffCzuGPzu9HM1LvzZN/lDDkZSI2SLQRfkz58bpVtZd6xwsd3quxJSephKgJqArSAaaxowGwra5cRZM0EOdTzm6CxKYa6rUyOSXox5VCH8FruIpdbxcRzuh5yqC9zCNpAX/AGvLG5E3c8tjvfrp+Uiut24rKZPXhszxF8/qHnem9DNd1BlUBq70IK8e68nku3rMeMcviPf/xpDvBO5HaDWakcsiP+24AzB2svSWHio5mZJW4J7LhetNIdh+/Jc2dfDwBiU9FW6hwlx+b8PW/iOOVqdRp2ueiASJqsIjIxIOTfgVQOSZU6UObSqpubR6RUGFeKHSKyZzBORNFEbmeYIF61VCEtkTlEc+l5sr8JVf9ic/3TDQM5NGDAgAHLwN23fh4b1H4EqNSIEFLI6KLKIbHrD4An+GQFY6WDF7sTyvL1slJTIlTVwo4Hdg8LvYStjKvsjeHdkVA1lI34emVHKQxV3K8XpsHce34beMcvYWbLVdNvB2Dzdd8EALhsyzq+7h0/8W9x1U/9waL3G3DqY3T9ewAAN+k78Jn7n0NDu21ECBnLgdC0IOXg2450PN28KbW6ZCsjW2RWDlnbwMGgjQZK63x/wxkh/JhLZJ9QlhEph+TirY9QimwlK6HZ3Yk8ETbKziBAFeVQCKwcAkomDSM4tDCwWiEoA5sJZqVLlbD3ta2sm6VQAqlpsV6rHbwyQt2RzidNzm+KnePpKoc+ce8ufNv/817c8cS+ErosbG5P75vHwYXF27VOddz78d+CURGbXvsDE38LKod595BDBoF3yul9bHOWENmiks2rvPcG9edQHittFiQyapH3k5RfthFtQnV9PT2Hb8epOQuAG2dbWQ9xw+d731bkUKUcWtRWlgkxtlgtN3NoVN0PAJwLKbNHKFntFNJHX3gzNsbncKl6rHq8ieNcfz7WLTyO1bMW7/1yv7WMLTOmQZNVvPxb7SihzBXvhLMr8B8O/33seeye9BxmhEMzG3G22kcvDnZFGvfMinUYcObAbn8VAODK89Yveds1O67FfrUGwOKK7ReKlRe/DkBRyXhlqvFjvO01eH94HeY2bGcyZhbzSUG3ROYQtE3KXZE5JO2gUjk0HxsmrVODb6EkSu7mQh0ETXMDFZMSL2/ixEzE96n6wJutC0srh/Lfx6o7fk5mGZ3OGMihAQMGDFgGDt/5QQDAQ6NLoaMvu/1LkENNmAzwpKBL2931yAHX0+q225gGLrmzr0SWSFIOTVlE0AKClBdaoUWRAtNjQ1n2fivRxKSWktTOrQNe+aNL7q6o7a9G3HETVl/wCr5u5YzFpjWzi9xrwEsCq7cAAM5rDuCzD+xm/78Sih4ZdgkURdA0cqhkANXKIZ1/V1T3XuUV5NBKCfrNTMv6oEkwPbcS32PTTO720u20bSobnARNuK1tciU9BRSnzCGnJvODgDJRTuRQsaUosZMrA3sRe5RD3OIiJ/Gyyt7y+SiyraxuVSO0PlaZQ5/82J/jc7M/hYXHvsrKEKlmfORX3o7P/c6/6L5lpzRijHhmf8mHW3P/+3G/Ph+XXHXDxG0DEWtEYIj3y8IVJSa1wTmyV5RgckncTG0rQ1gWOUREirVNsWU5GXo9Lmqhdh46W4BDJof6bWV50RVctRlhVfld9SmH6Lou4dWr9OkBj31CTceWUNtgnMcj3Ux5vAtvBgDcrL+WHm8aibR+J/SRPfjOq8/CX9z+FPbPT27EUH13FUjdTml423It7A9+AJvNfrw7fizfxmD9pSWMWBmLS172KnzqTe/HFa98a//xDzg9sfkqxBVnw6zasPRttcazWd1zrG1lALDz+pQ7RGNrQG0ru+kVr8Qrf/a9WL9mJRbO2gkAWIuDyS5ma+UQRSHw+Jmbyww8W58rcqhqLhvxOUoFV+cekXIIbXVsclyGsjBNPc5ZTFcOzaDOL+oDKYvGpBwixT2GQOoBAwYMGNDB5qf+Cg/Yi7Bv5pxUcUsT5sUCqZXhMEoAIpA67bYUSawM07OVSmccxY6Oqv3e5bFoB8hOtZXxIjEvxpVSvHMUBSEEI8ghY+HyMHHMZPB2BPVDfwFc9JZj83gDTh0Yizi3HpetXsDnHniOJ1QlhLXkDxFhpHtsZZxHZBtW6BCJxKQS5/BYOLLe8P3T5FRmiZS2vinKIZqE0+RRKSZM7RQLC5AmsWwf0/VCtIRp16HCzjloFTHWWUnianIoBocWFiYrhyiYXpmmKIcEOaTDZCB1mcTTjmq98xlgyuI+vzej2WyfWiRz6NHnDqN5/PPpOY48x7eVxMYl/j6cdeDeyffsFMZffvTDuP2X3oHnDxzEEw/ehUvae7Br5zu5WlmCA6nZllfOuSZ6to/R373Lnx9ZFUMhhGJo2QIZuraynGkn86F6Qbvbxoqd/dJQJuvr/bgQYHy5z1YmKqLld01C92UOsa0s17q7JYLgO+DvrSDD+LcrNit6f5MAsG4nwtqdeL29M91n6u3OBwB810UeCy7gz259svozZaYFZTM51GmU61u0b70eR678HmgV07lDKVzxSjHOaQulFF73+jfBmGH5dUbBWKif+Dzw6r+9rJuvveLNAIANZ61c4pZHj9mzd2C3Pafk1ylbNVlqrXDe2kRk77z2Zr4+als2V6TdShkeP4kosghlHBHFJl7X4dR0XlLR18RNfryZuFDlNEX5uzOirSx4xNifBybbf5dqK6NNFg+T7OrBIYTIRP2ZguHsNGDAgAFL4NDeZ3BpezeeOecNyXcNz7kCi3nCAwyanupf8mnbrq0spgwjmXeygNHEZWn70CjkUFQGZpqtjDOHyvEyISQX19qWliXTlDruKTuwAwZIxJUbsGP2CJ47NC6ZXDSh05YnakzGaI0QVT0BzCSoFZlDpCigxV5Dds28YKxaSHQDqwJaoT7gfJgpE7xuIDVQfh+mR6XACiPTlPt0FqIlTLvJdeQUEJwmza3O7WBtHeZMyiGlEjnUkJVHvH/TQukJDeUkCeWQfI+rfLJ8mxFl63QW/a1PbWUxRvzuFx/F1eqBfDPH5xV5PAZh0QDlUxHNLb+Ot+hbcPi5J/DYF/8EALDjde/pvS2/d5zn1G8ro2BiJleaYisj4ib6llUp3awnmxdeHrY3/JmgQsu2Si0yQWQoNDWU+YVS3R7GKXOojzA1IniWiL9WbFT4qKAweUxa2Bjla1ouOWQ5CLuMmzK3aElyCAB2vBorYnptK+fm+m+zbicA4OJmNy47ZzX+oGMt86EE6kfdoIGDD5GJ3GmKjnU3/xQCFBwpHs/agv2jzfk+Z87ickAPVm3ic8BS2HDduxHPvgjnXXTNcTmUs77h72PbzT8CIJNDUxQ1O7Ztx6MqKYKhDSvxYmejs7aVWWgVeVxTQnnrO81lHEjdyc2jc9IIbTUmV+O3bvg8oHwL5z2MihO/MzonzmKMsISyPWRaxOUN0xgch9BPmzucjhjIoQEDBgxYAo998U9gVMTMle9MmUDRw7d5Ir/IYOOVwUhkNNCCiYIulU65PzTxT7seTZHKoq7+HKvSdkPQsSgCgjK9E/b0RyKHRBC1sJVxhaeuiSIasIcAzQHLgVqxARv1fgCAVSlziBZSypRJpFxcOZjeXAFtS1sK5XCRMsIS6aqbbCuT98+7f1KJQQvvKRO8QlaV46Lvfr9yiI5xVAK0pwRSm2aUyB6uL0+KDWeoOr5WjMhwzqAsZiJZc0rgsFQbqR5ySGud8sKqtpWaHCrqlRyOnZvfuiQFqYZCBO58ch+u0Q+l23knlEN1Y9e07LNTEU/vPYRrDn8WQGqBiwsHAQDrz9nee/ugLExsmVRTHVtZtB3lENmimmLb44BokQfUzXpKu9VNJqOmV9kjeM7r4Mwe35Y6eS/USW0hh2K2SPUtehpa0AXPx19tVKgR5wpJ0HfK8neLguCXRw6x0kcQu5xvYixaFMvp1MfY/mq+PDc7ZTG+PimH1N6H8R03bMOtjz2Pe54+wH9OC8KQbGVmhBEcXAjlnDKtfe3sCxEvfhtmVqzmq0Y7U97MOWtXTT3mAQMqrN0G9VO3AGdfeFwevnnlD6F59d8EAIxf/w9h3/gLvbdTSuG5ddcCQKqyp8B4kZNZbVoIixmda5QIkpfNZWM1w+c+HV2tfiUrmHKp1IKOx0iiyMDk7MwqOL+j5mcruopTSTA+PmG1Izuvz+eCwVY2YMCAAQMK7v1LPBvX4tKXvza1icHBuxISOw0eFjM97S5UkQsg2baEX1opWy1Gx2JC3hJRJHfpcy4CkAa2Pql/uk+etIvHZrWFkOtDNyy91ZVy6Myp8RzwwqFWbcRK9zxWjAwsfGroYXJoJCxmNTkUJcmqqaFM2MookDovyopyKE3iZJglTeKcIIeYvJhC5srJLYG++6pvIcgkl61q7SVYOWTr3BiyphA5NJk5VGxiURkOAU5V9iVwmA+lkycECNsoZya4anJbKYfy+WQ0O5fJ6nrRT3lDLgSsaPdiq9qVjs23TCzJdikLPz377BTElz7zIWxQidAMbiyI9P5zHr93dK4lIiRm+4HJQf6dzCGyV0TvSpNYcEkxislAavrMQm5Hm4pQFlZWLN5k7g+3h2W1EABEWrz1BVLncHcEx8e1oKSKdabs+sv7gRaNOZvIF2JzOeDNCxFITXa7FP6e7B4UPt+L7TeWy9NIqdmzEGbXAXsfxruv3QKrFd775cf4z46VQylDZbnKIQAw7/7P0N9bChZmMzl07rqBHBpw6uHq178bV9z4tql/X3lRzs3SRti46k0Hngcrw2Msk8+CHJJtuK5jK5PEjZFj1TTlkEk2zTSHdmW872YOifP4UoHUJaLBJDtvcGh9soEP5NCAAQMGDEhwY2zb81ncOvdKrJodZXIocNjeYpPEoAxmK+VQCfELTA7ZNAEPHlrF1LRkJ9VCQCGHgpg4a5RBNSjDcv4uVGgRoqom6XIBygth3c0cokX5mTMwDngRWLEB6vBuXL9jndhVlJlDhVQheKX7G0lEWxkRNKOsIBrFhfQ9VSpN5IRyiJ6P80EAoRzqnxzy91seF3TKHejJnaFsImOLraxLoBJpZOxMlQcW8wLTZ7KgmzmkhMQ+KMshwFrkkUlyKE2sJ89DDoaJCxPrzISoTFF+cFh3yhiTTVFAIoWApCDavnAfXx9Cy4uEUDV2+cUzck4xuLv+jC9711YZPn0IyiaCnwoGWCFEDZYUQJ6tXNkiZUY9yiFJ3IjPNAbPjTyyWa7/gMr3RQs7GD+ua/k7RAs2AIiuZFl1obRONjLfMrk1hti0kJYQeb9OlX3sUawuhibbyhbG0lZGjWcNnGrQzdeawIZLEOZyK9Q0hQ8ArDsf4bkHcfaqGbzl8s14/1efwNjl77rPaoGcOWRURNu68ltdbDxcuQHYen3597ZX5hc3lC4MeOlhx7VvAgDMzczw+UXRbxJpo7NsrpTSBBD5PJpCDulCDunQUb+Kc5K0Q1cbMDTO53HOtf2/TTl3jUsoh8q4a/gcXnLGzpw58EAODRgwYMAiOHj/p7AyHsahnbldhJoYlqEcCspwMwxQ1/zSIOWVTgMb745aGFMGSdnuQJdVx8JBi76o7dRFRAyOw6UJlX1MXOYgXSMvD8qhAcvAyo3Akb24ceeaLMUuYZUQgcqSSPEwFXFx8bmp5rlpZsr1WSq+Oe++z2GeSUwPW7d1sXKoLDBJ4TJt949tKtJWBjt9IWoKaVVq7fsDqW1XOZQn1kwO+Q45FB2TXVJRlc4NpByq1YN9O6Iems8VZkI5JM4VmThWmqT09TnEeVIORVww/jpfH53j3J1iL0u146eScuixZ/fg1/7l38b9jz018bfH9xzCyw9+mu1KwTtAZPj0gSx5ivOcqIWuEJAOhv9O5IoekXKoEDcIReEDcV53rjzWoi2USOQU52OJTBAmaAQhFMRlWrxNI/5d/s5y5pCSeSEzvW1lRHpZFRBDKMTjsjOHZjGvZrD7qUc4UJ6bkYyFhyhPmAalgG1JrbPobv/6nQhPfhWHPv3f8F3XbcJzh8b42NefBZAI0WTzNkB+T70bl3F/MdKpi62vAL7914GLv2H59xkw4BTBzDmXw517Pa667jWYmV2JhWhhDj4BIP/eha0MYgMoZvu0EaRotFI5NMOqSR37M4fyP8plMQ+lubeDgfLFVtadk8vHWko5VObllq3grSv5hmcKBnJowIABAzL2HTyMR57aVV2368t/goXYYNv1bweQdtxtdCVzaLFA6q7VgwOpPasNfF5ESL8079oiSW8JLjc9dAOppa2sLwci/dFNLHRpMI4iW0iqhWQg9XIDRQec4Vi5AQoRN23RsPDQdsQ5KNrYXltZVBajUfmer7vqrYjXvgfI7SgBCsgLdb12KwI0Nqvn2UoWhPINKLuLkkDh38zUzKG8qJa2MmXqoGsJVgtZnrx2c1UCq4tGmVDIKpsc1BlsCoCOfcoh0SRYnrKBEsoQvr2wqUo4ZVk5ZHN+TTk2oUYJnhfcTljRCG0mh7yP2NE+iHkI6w8RIL4mSE6lzKE7P/Q/8GPtb2Hf3R+b+NuXPvtR7NTP4MlNrweQw6NzIPg0RCaHKC+jDhpXOdRfsXIo77KTvSLUlq+RygofodiS40Ei8hYhh0ReB2WCwBd1ElXWAzVRhLx4mxaUTDvy9Dsaa7mwawqpJSA3J7xrmfBaNEC6egCNfWe/HJeP78AXHtqTjp/JoSYt2pZY4AGA3nlTutCsmH6b674ffm4TVn7kF/D6hU9h0+oZtpb5EBPBpRogb8r48UJlcVs2lAKu/mtAMyUce8CAUxlaw/7Nj0Ff+90Yzczga7OvxAXPfBgInlu8SmafKJ0gcmhG/AZFrb03JXNIRY/Yo/4F6jFZ95BDXqXzFCl8usRtbStbKnMoz6VzjqEKvpD7Azk0YMCAAWcevvY/fhru195crogRqx/9KL6EK/GyC85L15km28rSgm4xu5UciNpYFocankP2qInGkXRV7IYAQCsn5Ln6WgbGpirRvFOjDGdZdCFzTAhsxRFqoVo51EzYFQYMWBQrNwAArlnXYoWN2LphNX93Ejk0GUi9evvVuPwqYcPY8Rqod/8XQClctmVdHTDZzGH/yh0AyvfXKVPX4OrFbGX9v1f6HctdRw8zXTmUn0PaylTHOkOTWtuMqjpyWmzHvHDtZs0osYsaq93URrRIddSDvcqhol5J+TXlNlHZcq4QyhPKWageJ9vKXIiYC4dxQJ+VX4fj95WOh/KTFrVBnUCEELHpgT9K/+i8zwCg7vgjtLA4fNG7AOSWrJ5zpQRb8shWll8rncOjyblt+XxPeUwmK4eUIIcqS6H4TNu2KFMrIq/3RZbjtZWtjOrkJSFUiCLtiRzqP7d7paGC4zp6uVHR6hkmnySkrdm59qjbygBg/eVvwOXqUfzZF+/OL68EUju1iJpP4hV/A+E97wNWbZx+mwtvhvmxj6TjO7Ib3379Vnz8nmfxzP55tDlzSC52vVsQxzK0dw44M7HvondjfdyL3bd/mHPRmLTRpoyhWXFjR4UcUkJF5PUIFkVNP005JDc1qkBqW2xlKpQcUJj6/FAR00sQPHKjNah0Di+2sjNnDjyQQwMGDBiAFCZ64XOfwPq4p1y392FsGD+Oxza+Do3Jp0tlYeFKPsQylUMLGAlbWcn/8DlML3TC9EqTWJPCTQEEPRnWyaGZWNxWpkI7oYKQhJAX2UJBqIgC70gPk+EBy8CKRA6pw89BRw9rGpy77UI4GJy742LODJoRSiH7Qx+AfcPP9T7c3OzcBOliz70SgMgHgKl+a5oXc4LkIMJjiuqAs7jEBNArM9XCotgeNxL5Q/W5gCaa1jYIsKymiZSNkMmh4GrSQlbTh2piXGx53cwh37Mj6pEW9z5X/EqSLepCOKjQcluhx6SFiWxlPkSo6EUwviuhzPmc1JLt5iSSQ7/15x/Dv/ovvwoAuO32W3FdvBPAJAn36O6DuPHIJ/D4htdyRo13LXTPuVIi6AYankk0Iv2l1VjaCJlQsA1c1FUINWR7mPhM+TthbKU664Nsq9Mc6Ox44QWhFlJOXk6Lt2lNYiUPLweo61rF2rcRoel1Ids6lwj37kNzwWuhVcTuuz6JA/NtUQ7ZpKJa0lYGAM0c9MVvXvJmdu6s9Ds9shffcf1WhAi87ytPcOZQ1IZzUrxrESinadgsGXCG4qLXfjv2xzns+8LvpBIVqRbSlufEdK6xM0UxJ8mhYGdTRltM48o0hZDc1JDqHaVrcohVfZ22Mkl+hyXIIR53sxpZixa0aQrL0xEDOXQ6YnwYOPTcyT6KAQNeUnj4/juxFc9Uu6FPP/0kAOCc7ZfwdVFbWATOCFpsB1FaQhZEgKdBaRjzeeJPiype2KpJy4ynGlCpGoCssrdcITx5MD3KIVIc5brkdACyoazOHxowYEmszDv1h3alhaFpsG7b5bD/6ClsOP8aXHre2QCAHZvWLu/xrv8B4Jv+XXXVqm3XAhAEqirkJlBUbkcWRPjukoHUOc9L5hOgDrqu75AJITPinc1uLhdX3GdbGVfZU8bQKFfHU6ZBRlL5kaqvHK+xTcmUEURHykaZPM6ApFbi7KUpgdTy+WTDGUG2lZnoWM0Yw6RyiCX4PeehsQuIMU5cfyzhfMAVX/o/8YPP/hsAwHOf+5/8N0moAcCX/upPcY7aizWv+G5eQERPtrLFlUM6lka2CVuZsZU9r5Ab5XpLChv52QvS3wmLWpUP1QMtlF8U6BwlOSTUQsovTFyepgrlRRepwoSK1U9VDokK+ja/l1FBm2UQOoTzbkDQDV4e78IHbnuKxzttLPxyAqmPBkoBc2uB+edxwcZVeMXOdXjvLY+hDWEiUN+PF1gFNmTwDThTccG5G/CZ5tXY8tRHcomKFYUODSuHTFYmNqNCCCk7WWsfvJ/IzZPFKdOUQzxXztlAfM7snM+kanGpQOrAKnyLoHTaePFL54uebhjIodMQD//ez+DZ//TWk30YAwa8pPDkVz4IoJ7cHjycBre1q8TOh7HQKsKNsyR/0UBqYSvDiHd/JaHjYQHha4YRizSkhUhLi2BDi7JyjPKxoBezlU0ueEgVBF1sOapDCNH1R7PzO+AMRraV4eCzUBD1rzmI0lz4RuAt/wzq3GuW93gbL4W65rvr6zZfAQCcU+SVrX5rWzesAQDc8YjID8vWqKMJpA65zrYPNDG1TcMEjp6wlQllnrAGEbGjptjKpHIodibMWpIYfPvpmUMqeJFfI4M5RWaMsCUF6MlAatFWpuELSRDaQiTl18CkeVd91LZ47F9cjS/8+W8gxoj/8ZmHsOtATYodC3zlls/jetyFUW6JXHvgXhyJQumUEULEtrt+Fc/rdTj7undXLXCqh0iXiMqkRrZQk0OUt9S1gkWZmZMDv8nypXwPgQlBZGnLZNQ0SOUQf4/dmMsQlCCgtFAOGSKHprWykYqMAtS1tITMFIJLQB4nKYeOmswZrUA891q8bnQf3vvlx0p7nl5+5tBRYXYtcOR5AMB33LAND+46hC89tCcH6ltWLga3UH67g5J2wBmMIztuxlw8DAATyiEao7RfwDga2Kb8Voy4TIo859qqdReYrhyq8oSonCHnu03LA6taJ6dsDvExUfMvqT+jYwXyUeWMvcQxkEOnIUaPfAr6yKAcGjDgaDB69FMAgEbufPbV1ecFVjufB0a7GDlUBqJWNdBUkZx3JOk2OrYcWkqSWAqFjiJjgSxmSuww21jyi6LuDwnNL6aQQRlsRdHFPqZyACqQVBETi44BAxbD3DpEpYEDuRmqOxkbrQBe+zNLTtIWxeZkK1u9Ii1W/3TVd+KPV30n/3nD1qT0e+qBW8t9lsgcIktYpRxS0zOHrtiWFFCb164qKqKmQw4pAxc1oFTK+OEMmrwTOZOVQ522Mi1tYuJ4jWlgmnxeEESCzDCToNybtp2cNFe2stiWQGplJ21lobSVmegEOVQIEq60p3ydDpmxMH8IF+JxxN33YNfzB7D9gz+EL312MiD6xeLw534dAGBFC868msxqu/OLH8Erw614/PIfSRYkVmSNe4l0iagtTBVITUHjlHlBJBCFdRe1Scp0apOdAh2bl2wra0vN/KJFA0jKLzp/c+aQzBkSBJQWyiEb0vXTlENOdZRDoobam9nejQg5/njXpjy9F6D0MTtvwuXxPnz90afx2O4D+eBtVgkeY3Jobh3ikb0AgG+6+lysGBn87hcf5Zwu+t0sSOXQQA4NOIOx/bq38eVoLM8PlcgVNGEBHobHxXE0VTwBNZd5105scEjCWm7ASuu2lhupQjnUDY6Wz7mUrYw2dIIySbEpNm7PJCvpQA6dZjj43JPYEp7kXakBAwYsDe89Ljp4C4COLJ5aZqpAO5KYL14DnP/IF8d6BhrUViYyh/LufuDQu0waUROTaBKDtpwDQTAIvIMSlendzQUAHadnDqluzhBfbniRqpthMjxgGdAGmFsPHHwm//s4SLHP2o7YrOTf4mWv+zZc/NpvL38/52Vo1Qhzz34VY5fHwrg4OXT22ZvgYLBlyza+zsNWBK/E3I5XIO54LbD6HP4tm+65QDe8MA49yiGdbWXo2J10LLZTKanXdsT5MHUgdaiyiQhBpcwEmV8jHqw0xQRfZS3IvCAfIsgJ5nNIL5EEUQRS02sgC1uXOHDU7ug9/KHdeLP5KtbtvRXHEocOHcS1e/43gHIe19FjjPzeyPa6z/z/sCeuxoVv/zvpdrTQ8C6RQ4uoU2J+76bZykhxSe8jB1Lb/H0QZKAka/qUQ8rYZNuYRvoj5TvxOVubtIFQqYXEZfF8JpCVuX/RQ98FtgwKciiYUkMtYeAxH/MY6VOb3Qshh3DBG2Gix2vM3bj1kd354A28tEAfK8ytZeXQyhmLd12zBbc9vi+NrdrivE1JDfnHn7uTLaGDrWzAmYxrL7sY92I7AFIONROXjV+Ag6lIHNuI3022lTnXplIFSQJJhZEcA/tsZdl2y+NqZ8PWyOdcwlbGyqGsUJS2sqGtbMBJRdzzELD3kRd03we/+nEAmK4eGDBgwAQO7N2NdeoA9mMljIoInppkeoLocnYCk0M9izKClMk6NcOLCAvHO/2cCyIaWQBUbUVsMdOWA6z5cOALCaVt74QdqBcQE8dnilooBVKXgF0O1R0yhwYsFys3COXQcVhEaY2w6Qr+3n/bdVvxHTcUUgd2hAPrrsDV8R589dGkCFBLZA7Nrt0M+9NfwXmvKiRTUIYVfBM452qoH/rzVE89RTm0Y+MaVmUE2Q6WJ5tmdhWAycwhqRyKVeaQhaVd0E7mUN/rosmta6dkDpG1KbbCVmaqGnqylAEpmNpEX7LPQlssaKSSmZI55Ok1hpYbzbqk2IvFHX/1h1irDuEhewHn7ajg0SqRkZSx8vATeGTFlZhblZrXZAucipMqS4mobK+trJQUNGx1AIDAjV1J9aKnKHnQU2WvzNK2skpphpwV5EvOkAnCShakcmiheu1d0HeB3jfa6QeAYOd6NyIMPMY5sDwphxYn2qZi+6sR7Szes/HB8tq1xbMXfzdu3fp9R/94i0DNrQPmn+d//8BrdgJA+g6ZBhsvuwkRCvaRT+OL9yfSWzcDOTTgzIU1Gk+te0X6h7Yl1N40PF+2MSuH8vmlhanjCRrKHGpTPIKaJH7o8Ql15lAeW6mtjLKBOjmgVebQMpVDUZt83nX964DTHAM5dAoivPcHgf/9Cy/ovgfv/xwAwC4iQR4wYEDGw58BDu9hYmYexQMNlMm+6ZG4Mjm0yCRRDkROy0DqwLshfsoAJGvmWUavDUv90/EFWBVKlb22U5VDqsdWFnm32SLoohZiosgKi9kZJKkd8CKxYgPigafT5eO026Ze+zOIN/7E1L+vvPDVeJl6CJ+9N5NURGIsZmdbtxPQZVoUs7R8yWMx/eTQxu2XotlwPj8WWYPot25ns60sTFcOyfdPm4bPN11bWV/QZkA6t0hFS7lTOVfoUMgFrwwgc2N8CZAm5VBpTXRFkZXfX7LHdm1QnKkmMpC6r/toMb7zz3Ho197OeVL6jj/EHpyFXZtfK5RDDmNNlrFuTtPkjjQHUi9GaOiUOVTO5zlzSNga6L2Xz0uZQ8bL3B9h/wpStUr5RQ2CtiVcuu9wYlsR/w5mEbVQudwwOdT/HffKpu9C/kyjKZlD0c6kTJ4OTAys1PKuXTK/aSqaWYRtN+KV8VYYVfLC3vatP4Bv+eH/4+gfbzHMrgWyrQwALj93DW68YH16Xm2BlWcjnnMN3rHiLtz1eIpsMIIoGzDgTMSKS98EIOdwysyhPGY1YQFOTVcOUXNZUg65qW1lkpQx1fUicygW9X1XzV9nDi0+j6VxNKpGjJ+DrWzAycb4MPTTt+Pg/j1L37YHa3Z/BQAGW9lLCce5vWVAP9yhvfC/8U7c9Wf/gRdrVNFM1ghavMidCLoc26VtZdJD7XVSDsUQUt4E2cdyFgkPQII0oseQtjIPywsyWohVyqEpv30VJxc8VeaQUA7RcRtjebBsBlvZgGVCrdoE7Hsi/ePFZAstAn35O6Gv/4Gpf5/ZeSNmVIsnvv6ldIVQHywXzWg0deEscemWVIO+em6u/sNrfgrqxz8LAAgy44cIlJlV+d+TmUOUjSDzFmwzgqXjmaYeFKBJs3dF0UKIynIukFQVBpRsJKDkDaXLgSfx42iqzCFSvfhptjI6V4VSTS5fw7P75/HYnpTjNnah2AEXwRMf/HdY+eRn0Y6PYPfuXXjZ4c/joXPehmhmYFVA8AE6ejglyKwMDd9RZZUWOB1dpcTpImaFZtdWFgXB70U7XbE7pAw3LT5vSdbI4yN1lTINsERbWVcV6pSBDosTQgDQxKVtZTpK5VAhh2BGabe/M39JyqGZ/HJSYHl4gUsNc9GbsHLf/XjVuoP5iuO0OJtbC8zvK6H1AH7ktUl9NsqLWX3xm3GZuwdbR+lYzJA5NOAMx+WveQfutxdj7fnXYS6Pfc3MLKtlmzhOhBBlC0HXG625ucy3bV2sgm6UgyCNxDy0qHLzeaovIxQoatvOY/WBjiHqtDGkYgm6PpOspAM5dKrh6dugoseTew4e9V33HTiMC9v7AJx8W1kMAzmFPQ8i/ucbgecfm3qThz/+P7DnX14KP56fepsBxweP3flZGATs37+PFzQ0qXV5ByL2ZQ5lW1khh5apHDKzMHAIndakkutQK4e4rUiERUfdpNpO2qWnHXiq4dYWjfK9vz8dHULHIhNZLVQIIWUsL0xNkxYz4WiriAec2djxGqj2ULp8snz6W5PkffXur2DfYdGqdRTHc/E3/V3s+Ka/t+TtVs7OLPnYUTWFRMhESjNHgdR1W1mq9S1qQIK2lifaFTkUQ5XLQKDJLVm6JJEdTSGSdSwBzGRFIzhfziU+RNg8iafKe74tB1JTrlrHVkah2MHx+VZa437jj/4E//23Uu38x/7r38HH/utPAwA+9B9/Eh/+zX858drmn38a2w+kzbC2XcDXP/57mFEtNr36PfyetT4FnVbtahk2uo6NIS80vEvk3GJql6y6ku2TQCHrVVZcdtvKTK6yN1OIG92TOaStRcxKpamH0wlz7aqTrCCjbCiXm0jKoX6igy2GtEmSyaFxNIBuEgEXJsmhtmMrc8tQ3/XigpsBAD987kPp38eJaMbcutSsuLCfr3rrFZuxcYXBulWpURAXvgkqevy8+V/Yq9Zh3eZtUx5swIAzA6vWrMdF/+jLuPQVb8GWi67Fg6/4p7jy9d/G40wTF+BhOQPIoSiMQlTc+Od9m9T0SpL1/VYySS7V5JAvwf8dhU+Vc7QUOcSbskmxWT3uYCsbcLJw5OG0y6kW2SWahntv+Sjm1BiP2p2wKpw0gubuL34Y+//ZVux+6tGT8vynDO54H9Suu4Hn7uv/ewiY+fS/xXr3DA7s29t/mwHHDXvv+3y6EMrOutNUWdtW/5cBd6TsCW1uellMOSQzPnQDHQMcyf11UQaZWPzSPOBJW1mlHCq2sraloLw6vDaEyfPHYplDStvKPlaUQw2iNnDQUEpNfZ0DBlS47J3l8snabTvrPMyvOBfXq3vxuQd3V7kly8bl74R62XcsfTvOW5j+2HMzI0TfYv98C2RyZDS3GgCq9kEAdf6CVA6ZpmQ2CItUyhzqsZXlc4vMwmHIQGpRhR6VgZEKlko5FHmHl1q3SuZQnbvTJTMoyFfuxEqC683P/ia+f9+vAgB27L8F2/cn4ufivZ/Ehmc+NfHa7v7478Igt6g5B7P7LszHBtte9ga2Dvh2nJRDepJQ0/BVcw21wBHhtWjocVZosq2sqxDS6RzKgdScOZSyiGyV+yNUY0Kx5fmxknpzml0YyEozQcAEGA6bBlL2B6ERl0do69feAQW9MonX5J1+GP6+kcoWAEKIsAis1Aq+XTK/aVFsSK2Da46QCvE4Lc5m16b/i9whIJGmvDDd+krE0UpoRKz7kT/E3MrVx+dYBgx4KUIpXPBNPws7t4bt1XNxHl6VnCEPwyS8g2ZVbHAtDFxl+ZIbsnXOkFQX1RusXCDTU2UfoqI7Lf46yF6sDZNObAsebGVHD6XUNqXUx5VSdyml7lRK/bT4208ppb6er/83x+o5T0fsvz8tWBerLZ2G+a9/CC5qPLPxtQBEOOIJxoEv/z7OUoew95kXFqp9uuDgHak15ennD/X+/Ykv/QnO9WnS43yLXbuewZc/8+ETdnxnOszTXwOQFmakwGnzIqLt2MoqnzMNEJkcWjSLJ0/Y22gQtIWBY1VS8UvT7gTlUnQCqbVlokhpk1twKHOIFn0ULJ3rqF1tUwFoAdHNHCrZQkRkUTtOut4iqubYVwcPOL2x5lyE80pY5clCc8HrcKO+G5+6d1fJc1HHYU/ssnci3vx/lkVmD85aNQeDgK89+jwrWBoKpO5RDkWRAUbQdlQUfEGSQ6FXVUFBxqTakeH5SpmUVxZjajRTYqItiJ1WkkM+KYegkgJGBc/qGSK4iOTukkNsbRPV6DLbyMZxyUCKJc/HRlcpavg9uvtPymO3SaEyVg2gFJSm82BadHg9SosDX57PdNQ21pRcoirzqQ9ZoTmhHKpsZaJ+XixaAkyvtSu9N+X4ipK0Acx0u3B6La4ihxwMjF/cSgYAo3zZTiFwmeDKx6VGSTnkYUo2nhhrfPDQKvI4+qICqQGgmU2thAd3pX8fr3PJ3Nr0/yOdTbrgy3PaEeI3/Qeo7/1fwNYbjs9xDBhwGuDcC64CAKzBoRxITXNaDSVURDSX9t7Bxn6bLwBAj3qv5+bOCeVQfZ7QWsER3bHUOURsyqTSBleI+sFW9oLgAPxcjPEKADcC+Eml1BVKqZsBfAuAa2KMVwL4pWP4nKcdRs9+DcBk08dycM6uz+C+mSvg8gSVVAUnGlt2fwZAPWl44raP4/mnHjwpx3NScGQvVjybdj6f299PDs1/8lf4cnAO9/75r+DqD30PN2UNOL445+Bd6UJwPKjQDjPtbLMdQPqcaXAhW9li2QO0SIEBVAMTPRwtkoStTEdfWn7EgAeAd+nzgaTdl7xYmmghyos/IqCqQwk95JDMNSG1kB3xQsPapBwayKEBRwt9xbvyhZP33TEXvB4b1D48ft9XU+YWNHA8FHDrz4d6wy8s+thrV63EjGrxlUf3MlmgZ5KtTHfIIQ2hBBHvX9Mk8qONpuTA5AX5NOWQ3FGVRFMUu7ZSeRKUhRYkhbSVLTifiBCTra7RMVHNyqF87pkkh4qtjMkwqeQJjq1oOnrOLNIi+Jnw8H2346qFW7FLpawn71tAWOPodXrn2HLloBHFppvONeUEJvnJiraYFYpst4Fea3qPin1sVDeMUatZM4JXFjZKa1e5rHrayrRtqnyo3sPp2sqU6aiFynPMYPLytB1x3jmn48+WRqcMjzVtK9RO+Zg9KXCXY9FbCnPrgEPPIh/AC3+cpZ4D4Dp7RqgVefqa7wQufNPxOYYBA04TrDn7XDystgJI55DGGLTRwKO0mnmlS4SCa9OmQ2WhnlJfX9nNsi0t53bK828XPDYsO3MoKTa1iHw4k0pZjhk5FGN8Ksb4lXz5AIC7AZwH4McB/KsY00gVY3z2WD3naYfDe7Bu/nEAR08O7X32CVzsH8DzW17HPzAaqE8k9j1xL7aGJwHUzSCj9/0w7nv/ZG7A6Yrdt34wTT6RJkjz+3bh3v/vxxCz2uTAw1/BhYe+gvti8q27dgzdHsSMarnxZMDxw3PPPIbNcXf6Ryg2h8A7nrTwmmwrY2tGtoeZRW1lRU5LuRHcSkaLM512mOOEcig/rrKF1NH5MreVueqxitS/hxzq7C6n4xMNZflYlbG8e6Jzc5l7oTu/A85cXPmtiKu3AOsvPHnHcP7rASSb0uH58eJWoeOMZt152Kyex1cfea5k3zQ5z6RrK4teKPkmpfZJtVM3KvbZ90ImFWijRvXkOLjcKMWB1MpUYdIykHrBBTTwOfss2VvJVqZDh1DvzGGYoBLtaUqQYgqFEDLRCcuWn7DZ7/rQL8PB4P4d3wWAFCqChBCWJ53fSwdbkS8WnXYc0QK3HOUQIDJ7QJa6ohwKghyi96Sx6fpRpd4RmUNRKofE2LNUW1knXHsxddKMfG6V1VnTMoey2hXBoY2mlCXAMGkZxFhDG5KU8ZRsZS9COQQgrlgPuJyfdIJtZV1yaMCAAcvD42teDiDNY42ms7tQEUGcT5ybCKS2ZnKsAupzlc122C6J0w2kpucDsLTNXWy0Bm3SWNyZm58JOC6ZQ0qpnQBeDuALAC4B8Dql1BeUUp9QSr1iyn1+TCn1ZaXUl3ft2nU8DuuUR3zqVgDArrgmDcgdfOSuZ3DvMwd67/volz4AAFh79dvLpO8k2Moey8cBiOpaADNYYKXFmYBnvvBevhy9wz1f+N+45NHfx0N3fRkA8NQH/x0OxRncvyPlWQRfAlNPBql3puGR2z7Nl5VoCvOmyOGB0j4jdzFocFN5wrqoD5mIWqVTww3KQo12XqOy0PBsxyCpLS9OTMkDUllFRIuIYmPIjSpELPWoBpMaoWsrK4RQlTOUH8c2Iyw0a3AQK6e/xgED+rB2G9TP3Q1sufbkHcO6HVhYtRWv1nchePfiFAwv+lh2ooHDU489UGW4hKj6M4c6hC+Qfo9AnlhnUqYdL0zcjkDnlkI0lIk1EdfOjWHgRBCnrWztssp+vk3KIToPqeCEOiafk/I41iUzinLI99rKdPRFOQTPx2DEZQCY37cLV+36M3z5rLdCr02702Qrc6wcKsSFQSLFvSpB/vS41WJEtMB1M3wmYEobD5Csb/R8QBojoi7vYzdzSBJCUskjlVRM/Geb79KB1OV4vbI1AQV5eXJ+MW1HnCzPKrSJkBTZIfQecIYehHIoj6ORVGkv4nen5taXfxx35VDXVjaQQwMGvBCMz3sVgERUW63gkDN8SDkkw6ndAoyKVeZQVXk/JXOISwTyhgaNc1UAdYbPdvKllEOFHDI8foZFFEmnK445OaSUWgXgjwD8TIxxPwALYD2S1ezvAfgD1ZNsGmP8tRjjDTHGGzZu3HisD+slgb0PfQ0AcEc4v1c5NPve78G9f/yve+87/9hXcSSOcNE1N5UwxvFC722PJ/SDH+XLQda1Ct/6SxKPfBb+N94F3PuhJavnD339I7hy70fxOZtOjtG3JfDYtQj7nsL5T38Qf7Xibdi4eQuArFTJ78+gHDr+OPLwF+Gjwl6shhK2smBSpkKYyByalLIqT8qhRcghU3ZJoG22ldWtZGQ/iNTyIwY8AEUtlO8TYDjrwncei377oVc5VC+G0pUm/88yIWRsIYps02DD2/8h7nrL/5z+GgcMOIXRXPgGvMbcjQaTyrkTinU7AQBnj5/E3gPU5NagVRaqs5FjRSA12VhDLFk6XmkOL6axRfVlDmkKu++cJ1AmyY6sP6LCV84/nCi2WGg9RsojmhyMHz3byrq17V0yIwrlEF+WtrLo+T7SVmY6trL7Pvn7mMMYszf9eFFfdhUqvCPdZhWW4XY1gol1ThPvSIf6/ehFvh8RMEaohIGsxMwLi/Q60+u1zUwihwRBM4rlshYkmNyYUNqmZjDfnztkO+HaAWaqWqhRk/MwO4UcYmtc8HXOEEzZiBCbgIUcmuX3Q4UX97tTK88u/zjumUPPl+tCSA1mAzk0YMBR46zL3gggW75IOaQKIeRRbGVunIQDqiLrRZSDmGPL64msSaUuRTnUlw3kqOBlCWsYbSxw5lAMiH5x++3piGNKDimlGiRi6HdijO/LVz8O4H0x4YsAAoANx/J5Txfsf/Q27IprsDC7qXeX6LL4ADYdeYD/7Q4+h4P3fjL9w7dYUCM01ooJ0wlWDsWI8/bfivuxbeL5Dcok8iWJ+z4E8/AngN/9DuC2359+u/Eh+Pf/bTwQzsXBm/4BACBI8sG3uO/zf4YGDitf/cOiPrdlWb7vyYsZcGyxetdX8Yg9H4fVig45VOTw6QLtRMiBKi/aclXwtKaXfGMAaWCi3V9S1LHfOlsGONeBvhNCORDEosfnemqgNNrQBLaEhE4hh7ptZdK6ItvKKFPDNLjigu34htfeOP01DhhwCkNvuwFn4SC2qt0n1VZG5NA29Sx27TuIAAVoky1itdLPyPwFmkCL6ZqDLUrTfA6IZnJXk5QfkRUtcjc2q2vaNtlaRVtZZSsTyqEFCtPXTc4zciUbiMih/FwWAVFspHCmWnDFWluRNY4V0xZFRdQlhw4f3AcAuODCy6rxU9oQA8FfAAEAAElEQVTKtMwcggcUkUMiABuO1VNAWXTEnDm0mK2M5likyKH5WpV5ITOHyJagDUJH1TMLmTkkbGWBFjqjMo5M2TiaVA4ZNOh/Dr5NLHu0HHLeAdnKUqh0aRfyInNIbkRwVp8YR/uKEI4KJ0I51MylY5a2MlLzncTMtAEDXqq4+JLL8HjcwMSwg4WHZkLHK0EwLyRyKE5RCFXKITHfprl31GQrm5yvE5abOcTqJdOkDV2UyAc72MqOHlkN9OsA7o4x/nvxpz8GcHO+zSUARgB2H6vnPZ1gd92NB7Ada1bO9oYPGvhq5+v2P/0VzPzut6ZJV5BhjCcnc2jXw3fiLBzAU2uvA1BnDln4aiL4ksP+pxDXnJdCe3fdw1e3n/1VzP/29/K//Zd/A2sWnsJvbfi7uGT7ufnKlhlt7xz2HzwIALj0gh0iH2rMn21f09SAY4e2bXHhwt14bv218EjNX0QGRZvbWDqZQ33heNQGMy2vId2Yaul1zo0IZRefBilVD2xkW5NV1mwry/YvzTaGmlAqOSI97T7oydHQhRCiy9o0yW8d1dRFw4ABLxnkxeU6dQDxeDSVLRdrtiJqi4ub3YBvc0i9Qgtbj43BQyMi8m+acobE4r8KpU/noT7lECjnzNeEdPpbHdpMmWMhB+cTZOZQO85jk8n21uCK5SvUBIlWEUGojvgYRMCxrG5PtrIgLlN2UajIKj4nN42Y67isHKpJ8uBbGIQU6g8DLVQ6FgFKycVInj8F33+uFKDPhFQ/VgXEEBAzyaeNRdBNIY2ih4saSmtEZTGrhFpIlfdXbqDR+2WtZeJv2pwukYkic0iZSi0kn4OwgPSY42imB6mzcsilzCYOk7W980yKMiAFbiLaXqRib8UJIIeAZC2TtjL6jg7KoQEDjhprZhv86tyP4QOrU3SGRyLGKVA6iFp7Pz4MoKhkAUBpDRezFaxSDvUQ+iqNc1z0YCd/sx6Tj9ULsSlLG7p964DTHcdypnQTgO8D8Cal1Nfyf+8A8P8BuEApdQeA/wXgB2JcwpdzJiIEbDjyIPasumiqv9xGV8mOFw7vRwOH1i3kJpaaHOpbIB5PPHrbxwEAzfk3AQBL8WIIsCpMhEq+lBAPPAmsOS+xyTRp8A6HP/qvsXB/UW/Nf/JX8IVwGV77lneLnUjHO4fRtxULTUQAya/p8oDjh4fvugUr1TzM9ldxfg8TmbajHOIJ+mSVvcmBn4vVW/IEWqUATwvHljXKbIh0fWdgi8JKxpd1HXTatZXRwBfcpKXURI+gOseqyv1YLWRHmFu7Gfv0WVNf14ABLxnMrgEArMOBk6scMhZxzTZcvWJvGrdB8nrLqlEAZXxRnc0eQWwFoYLpKhElSDlE5xaZmSCryA2CaEc0VeahbCsb5ywzpS0CkoKRzkVsdRVEVyus7WQzr4JDhVJGw3NOUdL55LBkuCpzSJ6TSytZmxRJExtkY1YIeSXeM58b3iT5LVrgZCB4H4jYl4oc79piDbYNWx3S6yzzs2nfwTaa2lZGJJu10Kwc6t84MqiVQ0HZXrVQG8tzj1XJr5oGakmj+SUtjkJlKxMNa6R6zuNo9K436+6oUCmHjuPvd3Ztx1Y2Peh9wIABS+PN7/4hvOYbvwdAImeCMqy+cYIo8uOkwpdKznSfWgkK9NvNOJA6UPD/zMSxhM54OhWSHMqk02ItaKcrjmVb2adjjCrG+LIY47X5v7+IMY5jjH89xnhVjPG6GOPHjtVznk5Y2P0QZrEAbLoiS9n6lEOhs8NYckdU9oQDiy8Qjyfah7+A/ViJzRcn5RCRHF7sGJ4IeNfizn/zVtz1qfdPv1EIGH/tD4DlqnT2PwW15tx04sgTzP23/znO8nug80Ta3fperJx/Gn+x5rvw5ss3sfwxes8ScRk8bWzDaf3BuWIVGpRDxxW7v57IvC0veyNCbtyhBVa0cwCEVJ6qimUgdf592UDKoWUEUsMCuoFRES4vmFghlHeYOauDwjxFzTwPbDZnWZByqKtCoufrIRi7jTZAkfHq3IiTHsLimm//P7DuZ784/XUNGPBSwWwiObfMHMHM6CRP7tbtxA69CxY+nROQJsmV5ZqtohQyL0KA6SZK832YIO4jM2jnk4lnca4SbWXJVlZIaakc8lI5ROSQaZik7pJDfPyoiYPI8wDRzChet4mOyaFkQEiklEGoMxjJ6mtHJdDUp8Y1r7pzoET0QBk+1wOpHTQdQHcxotkqt3ggdT5XCkWOc23JqGtGrNqiY3ZMDgkSR1i7xqrptJUJW1lPvo+E7YRrB2VSwGsHpBaSlxdrEqONymTZ0+X9Vka8x4Igo8/elsyhF20rW3ECMocAYG4tYmUr88f/OQcMOI1x82Wb8PpLUoawU3ZCOcTnkFxW1CVuSO1jhBJIXm6oYZLHuekKn+76eBr4GPKGqYmBxzTbo0g6XXESNdYDJB77emqxWrfzWkyrLbXw1WRKBhgnT3jNjJ5IBUqMERuevw2PzV3Bfk/6oZJP3oR+SfSxxr1f+CCuPPxF7Lvvs1Nv8+jn/gCjP/5RPPSlP1/egx54Cli9BUEZfj3PferXAYCl8E98+U/xVFyP17/je6GUYhIhhqIWir5MjE0zwyexKEijQTl0fGGe+DL24Cxs3nZJCsiTAakN2cqIHEq/sabK6qjJoWlNLwBKVacyPMls8y4J/Q08ANH3gibgJWSaLuvcXNZVDtH3iGtCe3KrTE+OhmJCaMQLJWsaoJkFVm+e+roGDHjJYCaRQ3NuP0YnmRzS63fi7PGTGMHBcRaDgZaZQ6xYKOQwACaTgGzr6QRSoydzKKkSvWjRmrTHpkavQi6kiXZRC7WVrSxb2HJVuxKV87pn/JKNqUEQQmwxk5lDWS0UYyyXQ0CjfGUrK+RQU2cOCRKCVS3eJVUU2eA6hFp34e9gAU+E0vSFQF+lsXNlnDfGZtK/vM4Sll3OwfMdskZV5BCNB8XyO1U5FH31WiQBNY7l8oIqz9eycmj6MqCQQ+n4qYzBC4uZ/LxZxcbKoaXzm5bEinXl8nFU8ai5dYiH95Qr2FY2WKsHDHix8LmtjJQ/QRkejwIFUnd+347XtELxqg3npRlaaxIRz8H/fW1lteV4KsSmLG2uBLaVDcqhAccJt9z5dbz3zz4wcf3zj6Qa+wuvvD6zlZ2mjxhTbk/PDppvU1NHCWM88bayx59+FheER+G23JB2ulB2vqhW+0Qphw58LSuG/HQyat+X/iD9/8DBpR9wfj/U+CCOzG7C8/MB9zy5F2HhMLY99yn4qJjI27P/EI7olXjT5WlRTSe+GBzvKAbvygnMygnWmCeubgikPq4498BteHTlVVBa5wVOUXYpW7ISAADBJbm/Lju89LnavKDrC78TN04Pg0IOkYS2NIwlG0dpRmv4er4dD1hNaZCBsB7QfTq/vepQMGmVIBmvMZafz/QMrAMGvGSRlUOI4eSrANbtxGi8F+vUAaEcanoVwawc5Prw2lamQ6007SMsQI1ZnbB7QBDX2fpDv/+obUXGeJEb5LgZLSuHQiFueHyXZEFbyAxWwkhbWafK3qqAECJM9LDRsQLSVvOeFi5qaCOULM7BxFZks5Vx1cIB2uZ8ufQ4bbflkV5rVmSZHpVlhT4LX9vy2K7tqOw6pwMUtrJ+smasZir7HI0H1jSVEqr3cDrHK5U6C8JK3EpySCcCZzFbGbKtQsWkdGMbvAyTrcih/L6O5vh1m+gWb35bCicikBoANl0O9exdwJ4H07+HzKEBA44ZAjSCKucQmVsWW9owtZ375DlphzSicxar9slt0xMD0X2sxWIg0t9FvmfncZvF5vqnGQZy6ATjyF/9Mt5wy9+euF49ezeexCZs2rCh11bms0deyo6pHtW7eteMJn3xBNqT9j70VWgVMbPjepbesXKIdwyPPzkUg8f5u1L2kWwmkRgfOYiLnv90vskyCLQDTwEAbt2/Ai0MWjfGwYMHYBFwGLP8WancGKJyuCOfoLxjoir6FjEfl7ENV6QH5zh/ISxCag148Vgf9mJh5VYAYIsW72Q32VZG3wvvktVATZJDo7iwZGizkjJ8yo1YOJz/RpLYJjX78O5EsZvRY3DmkLUIuiiHukGzTAwvkxxSYgHqV27G/rgCzczc1NczYMBLDjlzCADn+Jw05Mayy5tnWDnkYWBEUDItSlnVJ3PLMnxW7QDCWtpDWERtYKNUDk1mDkXfJlsSkRaqnn+0oq2MLLEgBSMcb2QxYS2IrtpWJsih0Fb3AUodfNuOs3IosEq3Vg5JC32Za/Qph0LbwiIAqiid0vXTbGWp7r7vXCmhxf0WYg4Md+OSJ2htzpiTmUNpui1JnDFqJU+ffU6LBtrpmUOhWlhJpU71HCjH7Vm5Nv11Rt3AUuaQMvV4Rrv+4ph4PJK2sk4e0lFDBlIfz0D5V/3NpNL91H9I//b96rIBAwYcPf7MvBWfX/FGXhdFZYq7wnU2TDPIitsNmHYwCFGVEgZl0waCiOzooowNS9jKRIOv0hYjJTdXzhwV4UAOnWA0/ghWxPmJ6217AAft2vQPbZNfvNqxy5MkMfHijJp2DB1EUwftNJ4IkuHgLiBGIHtGMXtWmYCGWjlUWeKOE+7/6iewEUkarISN7cj+PXj+qbQjdPcn/whzSJPcuBxyaP+TAICPPUG1w44naWM1glERMfjqMwCEAiO4shssiKKmGRVbWXBl4nqCW+bONBh4ztqh3AxW4IyIHKLA1HZiZ5UGlyaOq3rpPpTqX8uSeG5moAFP16F3soEByPkeIn8kheTV3xV6LA7om0IOTVglyCJnLa795h/HI9/7KczODuTQgNMIdoartU+6RWT9BQCA7fEJrJjLFtaOcogX2xOZQ7VtiMd/Vg/2kUNNIl04C6fchosr2nEVwEyEEkFmDvE8xIzY3kpEElfZi3OP68kcMtEBvraiASl4GkiEks3h1GxJ79jK6LxLKuVuZToHVbfjlAuUc9toA4bJ885k3yPdZslAarHAIPVP8E5s/Iwy6V82joiEkURJq6aTQ5xBZ0eFlOmZG5D1rrKVicvjHrXQOBqeqyyaB5THJh1cVgtRo10hrGobYf5+ZHs2fNtrZz4q5MyhqO30VrVjgdXnIF77HqhbfxfY98SgHBow4BjiD2fehS+turlYyZQp+UG0fpyiEOpmCHmlmTgCiq0shhZekkYC3Y2DaVBCjcTqfU926jNHVT+QQycYKrT9YdNCEs2DkdyBY2uWIIfIVuZdr63seGfXPP/oHQi/dAmeueOvShuKKYFjNBnkuu3jpBy674ln8Z9+83fgQ8Rzd6a883GsQz5v/51/gH3//V3pb3f9BXtWqVFtURx4GgDw0cc1fNSACDCmUMcUvOiqiZYVxA/X/IaULeSjgtZaZCaUJrqJz21+HxNUA148UrVx2b1QwuZgRmQry59B9NUgBJSBaoTx4pJ8CHWQMsViliW0vIOhG1gVgPxdZFJRhkwLi1nQpWq6hJbWfuo++4GNfnJxLDKHVs3N4upLL1r09QwY8JIEWctO9kLvnKuxcNE7YKLDmpUrACTiWCqHSugz/TYnlUMBJT+ntJX1TFy5yn5SOUS1wdHnIGg+3zRV5mEr2sq8OLYUXC0yh0T4Mh+nGMtYGSnIeFUFUmfipm1hVUih3e0kOSSbv7g9i8dfW13vxrToSOSQ6WQOdd8zDwvEzvvRAyV2sscg5VBbgkubppD+MabSA26D6yeHnJ7pVQ6ZpilZPz3kEJGDsVIOSXKoNPc40VBG88VlZQ5FjwCREaLFrr+XBGAej4StTC+hwloSo1VpvD4Bv1392p8BEBE++ytDIPWAAccQjdawWhW3hLJF4eOp+bdjK1P9tjKXOizLFTknTwU3VQnpO5bjaSg5nE1RllK5kx7IoQHHCSr63rBpKYkujUNyB66HYBGhtLpq6pi+QOzDbf/+Xbjl9//vo3shAB7+8gehEfDkEw+XyZ5pSkgYt6ll5VDP636h+NqtX8X7/sX3YP/hI3jmM7+NH3/wJ7H3uV3sXT2sZitbmZrfi5XhAADAtvtxSKXJy7KUQwcSMfNEWJeVQ55fU5snXs6N688QgDE5OK2ylTme3Cql+GQYc6AmMKn4OvC//xmO/Ma3Hd0bNKDCn9/6JG57/PmJXda0MBPtOU1asJWqZTfR5kIZQ6O4NDlUtbvQYiwvWHggpOtdp/1M2EqikMRGZfi3RIsvkxcPPHnvUQ6lRpt6cNu9/lp8xL8cauXGRV/HgAEvacxka9nJXugpheY7fh1HttyIeNY2AMA+vRYb2yeTAhfit2vIVlrqwwmU9wMUpVFv0CYTz5m0EBNjCtdMoc2+THw7tnbne5RDtmF7K93WsHJI2sp6ModEcGifrWxh4VD6m4oY53Ol7ZAmdE7mxseOQoUWIJ6CTnWTQ7xJbV03wvHxKg0dliaH5CKGyJfguk2kljOUqAo+v3l8X1LyAIkcIkVoek0lP4M+2z41uOsJ15ZKHdeXM6QME2lhsTFMNxipVITixWIuKAudNzEkYUVzTpPJoRgcbHyRtjKlkrXsRCzM1u1AvPo7oW75TY4TOOnnjAEDTgMYrWC0hs7rIplbpslW1lUIUeZQ5/oAAy8tptqiUb6y73bBRNNi7cIo4ygFUgMA8vGdSeeCgRw6wVDBo1GphUNC95BDToQ50iTL9CiHQiYmYufL32ct6eKZx+7Dy/Z/AvGJW476tfhHv5Se35e2J2tHImsn28p6amuPFvH9fwv4i1/gf6sP/UN8m/sL7H3sHpj2EIyKCOPDHCDsYKsdTNWRv5MPX+YjTMX+p3BIrcI5Z68DdFIkUUMM7fy5tq12LgHAapXY7eAAKbkPDu3EzmcrJvv153b/w4/i4N5nl/9mDajgfMC57/sWPPknvwjv691ACnfmMOgZykoogdRdAoh2MWYw5jaFaVBSht+p7eRdfBpwMrHJv18mh8quqbZN9lfXKjPVXUhOs5V1BrcDZ12Gv9H+PZhmZuL2AwacNjhVlEMA9MwKjH7kL6C++3cAAHetfBU2+6eBXV8HMFlNT4SOtCyTHRYov/XeLAVSCubJrRaBmrKtzMpA42xrJ4uUtJV5UWUflYVO0/R0tzipHKqULnSOFedbLcgQspW1Rw7zde18PldOUw6JzKE0h+ooKLOFF9ogou896+xUw5S5wjIzh8i25d24hEjbhol458a1ckh8jk6QQ76jHFJhkhzqs5W5HhVUmEJAeZOtjNAI+fP2ixE3+XlNGCeVrVDC9lmYebMiK3CLcuhF2jnn1p0wS6h+3c8Cbh7xM7+Srzj554wBA17quOmiDXjl+al50MMk5WmeAysan7qB1FMIHQ9dKYS4vMEvcJZfF5HXXIuHSldzaZp3+3kEKECfOZTJmfNKTxGQjNp1FCtyYsPZJNWOzGQwo7SVJeVQLZtbTubQw597fz6uo1f1bNp3G/KBlppaK6SCHeVQt4Ft2Ti8B+HW38fDd30BAHDogc/hmkOppj4IVY5zYyC0SP0ppspx0KHlyaeKnid0yyGHFvY+jsf9Wrzrmi2cW0DvbauL3Ft3lENKKc4w4MyhnD/UZcRjZSurP7cY3HGz5J0JuP/B+3Gduhdnzz9WAj1lM4+wOdgZUg4V20OXHLI5t2Ok/JLKoSrAc8JWRr/3/LvNA6TtKIqUKQsNYxoEkxZlADjYlXbQ+fvUUQ0G71OOWWfwvXjzauw8ewXWrThzWhgGnIGgUOqTnTmUYUxZaPuL3gYAmL/jz9O/2zpguhDMUjlkmVihjYreLIUO8dyISXbJHFqAUbEEGlNwfp5ztGIjizd6LLUmlkBqInDkmBr6ModE+wuHWMfIyqHxwhG+T7uwFDkkbGXCvkSLDm7BybYyLdTW8j3g41UGyre950oJLRodncgcojmH3HVOG0e+t8re63Le9Wamep2lvdKW19mjBi8qKPHdFgsk+RyUXedgmaRaKnMISORQXUNtBTkkbYR5PMrjKHy7ZLj3sjC3/sSRNBsuRrji3VAPfCT9eyCHBgx40fjFd12JH3v9hQByoLSyvDmucqTCRLbQFOWQV6ZSPCpBDk2bkxMZvlTmEKuZJDnkFibiJU53DOTQCYYK9eSEYKIrAbSdyRlQqlclScC7YC6pVoqkenLQnoaZhz5SHRcA3HrHbfi9//KLCGLHsIvndz+NbTHZrYJvS/uIaUqgLithaJfwhREc+77yPhgEzC+kE8jzHywWOO+LlJsavzxM1eYCZOVQrpXV0bMdbLG6e8L+Zx/FM3EdvvmaLYnsiY6l/J5k2pkc6gYveuikGhLtVyo4VpzwZyUIoO7npnN7yoAXhmduTzlUOrqJXfmgbJLy5+8vk0M0yQ9+wlYmdx6WnTmkLbcI0kKNB0Ye2ObRRgNFuxNMDlneedXGcr0wIKwatg6v7WZpcd1wZ3F84wVn46/+3s2YG51ZA9+AMwsqK4e6VbmnAq66/DLcFs7H4Ts/AADwvqhzAGGdEuehKIiO0nLYQ/DSOcfXqkSgnCsoIJ/DQMnClM+VUjlE4542DaJODTFE6pCquQrXlmOZtJKFmhwKISa7LwBXkUPp2EZSbR1L8UOxsHdsZaTIFUGnqVq+2/DWybJQFiZQvsTybGWk/vHesXIZShXyjdpkQRsSojFMqHqCnqk30PJjKa3LxkLPfMW7+vuSnkPYyuj4ooJXFG4ubGWLkkNUvrCQF3P5u6htr4WZlUPNLEJUQFhahbUcqJVnn1CSxrz+58s/TsFzxoABL2V4pRG15c0K4zs5nBklQ25S4VnZx4jQ8dNJnNjJo5sGnpdbW4iiRUin0xUDOXSCQYRFS5WwGX22sl4vt5Qd8y7YuLq/3E1bDIcO7sdlh7+Sn7/c9vAtv4/vefaXMX/kwNT7PnjrJ/ly9I6VCto2MIYS3slWlneTXqCtbP8t783HmF/73ocxH8tOWpVtlPMIAkxFeMmsJx1cCYJcikCLEfbgk5if24SLN6/Odbied2udIIdMx1YGlGpcJSfyQYSHi7r7bo5MOXZXZREMODroRz8HIBE9lN0lbWVGLFZGVONOi4c+5ZAYXBbNa0DJvojCX80WD5avknJooX/As2UXWltalNX5HvQ8PGHvKOI4++MMalsYMIBxiimHJK7dthZ/Fa/H2ue+BhzcNREwTWNEZSvLikdAEjaTi1hWxmRC2vbYyiiXh8lotkNl5ZDIHKI5SSKHUvYZKXJ13nypA6mnKIc6mUNO3I4IIQBw4nIIZXOHd5SFrczAi2y2+nUrbbPaqt6c6wtAtcsih4RyKCtzQpvnH6jJ/eDatKHUpxzKNi8ACLZWDsnHKsqhyQIN3xnTgA4BlZ/DwbKCJ2RbB12eBvr+NKwcErYyoXrm5xXNeQ4aMTiYGF5c5hAAbLkO2HTFi3uMo8E5V8Ff/I3p8il4zhgw4KWMAF2dQ3SgNrDO+imfo2wn9sApW9nHaNPH+PnpyiFVz5Gn4fDGl+NX3Tfj8KYbhK12IIcGHGdMa6TSKKF9pZlCZg6lH08lrxYLRC1C/6jtaKkmrvu+9GHMqlz9F+UAnyeFbZmwferLX8O+A2WiduiBz5cHCkW9Y20DpXXaPetUs5Ny52gQD+3Glr1fTPdHsWZxS5gbMwlEsm6XlUOS8OKQSaTJJZE6MSyuyHnmga9iXdiL0Y5XAMhVt9Hza6LHKVW69cnNqWRvU3kyDJ+IIjrR8GTLtyXQs6Mqk6qnAUeP8/alPK2k+KrtBNTGQpPapmMrQ/ATO6tygVWF4vVACRk+B8ySfYxbyWiA7AxsVeYQqQjSZdqt5wVX/h7Z2VXp+uefqI6DfsunonJiwIDjjlMlkLoHs43Bs5teA40IPP7FiYDpYuXp2Mo6StNeckhmJkQFLarbSWkUxjlss2NnDW3edMmkjFLCNmRT5pCBh83nIiKJlsocsvCgsggj6uv5PhU5JFRElHcUHEI+75bNlazcpXMpkTeu2Mqk2ipMec8iBDm0iP3AVORQzvHxLVRoJ4pBnBvXG0cyG8jk+UNUCHq0LPtcF7T5VuV1CEIj0gYWNJNDtHOfLk9/nfT9aeI4WbC5rcz2ZlvK8cjBQpGdfwkrx5J43c9Cff/7X9xjHCXMzf8AcfW5wLqdJ/R5Bww43eFhELTl9Y/NbWWmo37tumEIAbWtDEwOLUwo/Scea4nMocu2bcItl/wMLtu+mTdKBnJowHEHTU7adjxxPYUIqjyB807uwJFyqCY86G9G3F+GNC4Gd3A3AGC/WlVlDpWg6zToHziwD9f/2Tfg9g/+Gt9mbv+DeB6r+HlCZ5HqYFiV43vykpbC5x98Ds4HPHH/rTAIOBxLWKMWmUHBO7a0+bxDl4TutmMrc9AqIviUSES7fQiLv0ePf/p34aPCha//nnRzZWCC40kyTe5cmzMPJmxlWTkUysQ52co6GTHSVhZqckhH19twd8wwv5+bcrqIU65/qWDXM0/ggvgYgNpWxsohbWvl0NzK9Hfe2Z4eSA0sEeYJ8VtURaIKX2cO0SKiO7CpihwqdomoDX8fOJcif4+27LgEd5rLcN59v13lfYTO6x4w4IzC7Nr0/1P0+7/54lfAR4WFR28puT55k0hPsZURsdIdeyuINpiu3J7takJdA5TzUZs3pEg5NGtNyT7MakYjix6WqLLnQGp43iyhTQ+5EcX186iVQ2wJji5VzkMoh0IqNyY7FW2QSXKoCvHusWIBWTkUx9X70QdpTaA5QPQOCJ6DUrlhLNvd+5RD0eb5AzSislUrm2zKpO9ALzmUSbyKgBHHHvL3yCkDqBJCfTS2shmkQGoiKiHGsypjyhcVm1caKmTycInihlMSW66F+rmvA+vPP9lHMmDAaYWoLJpmVDY1IymHJs/HQBmr5PWhZ65swsJUJWTQ/Y/VxdoVI/z3778B61eOauXQS/Ec9iIwkEMnGIonJ/Ugb+B5AFU9EuI+gqXKHELJHOLMnyXIIfp7iwYmTE7iKLy3PXIIK9QCzPye8tyhxRFkSbRveTFNP3YiReTzLJWbs//+LyCM5/H444/iit+8El/57Edw4FCaKB5BIYcMXCGHXFuTWTJzKEy+Vy5nA7HXf4nMoY2PfhB3Nldh27ad6TlylhHt1kXa+fN5d7AzoSSlEUSTi4qTtrIki5+iKovHMXNo3xOI//Yi4IGP9v75s7/01/CJ//pTE9c/vW8eh8envtXtsa+l1zWOqca42+wSyWqQvysN28rIKuEmJs9y931JWxk3j5VAau3qXRLaFZ7YnZC74IL4VbopZKEIiAUArRUO3vCTODc+i9s//Jv8UK6jmBow4IwC2cpO0Qne9Rdvwf3xPOx/6BbEjnKIyGipSmVSG4tnDsmgzi45xGoUyuURVfZAmaNQ5tBso1klYswo2VvhYFXOHMrnJJk5FKUNSrSV0djMVmq5ESbIIT42lHOYFkQLqTiLraxWWxVyaISomzLGcoh3N+jUoglkwV0eOeR5DuAycUW2sqJu1hCqYmH5itweZgBjJ2xlrqMc6lODBz+5sJK2smDn+DkokDrAMEnV3dCSoGrpuXgk5fM1ZTwjq0fsIwBNk8s4Wuglwr0HDBhwZmHFjT+Iy97wXUU5lM+5fSQQADSjmYnrvWgro3O1DQtTN2zZWWOWX75CBHgzKIcGHG+Utow6c8jE0uhAEwHXlzmEYi9SnFFDYYx1eNdSTVz097GaqdvKOMOnQ1bI9q/oObcnhmLLoRYPr3QhwqjmfpHcnAN7nsbK33ob7vjIb2Jh71NYo45APf8wP/dYFcm1iR7jHCgdcoYPPQ95++UuYbpPUTElEqeBj4qtb314/J6vYHt4DAcufGd5a7Kcn3ZQQ57cJYLOTyw+AshWViuHyI7E+TWLBFKrkJumwnGwlj3+JSi/ABx4euJPzzz5CF598KNYt++u6vqF1uG2//BufPT3/+OxP55jDH//x3EozuDh5sL0uXEwM03UTfpehhZtNGjIahFooeMnBxulMI60A7v4gKGlfY0yRPJknhcYNLB1F3CcI1QsacbOIJoGWkXMHz5YVScTrn/r9+JhtRWrv/yfWBE2KIcGnNHgKvtTc4J33fZ1uAsXYHb37aJ9rM4cmgik5lD66ZlDcufTTZDclIGWCBhlO4oXagH1adxpjBZEVMo+G8kq+jhJDvUph5KtLF+m9lYxH/KCHPJkeQPgyVYm8xW5/MKluRETajURr3QK9TedOcmErUwZjGgXW9fEkYQR9ysbRC2Ul1YwspW1ncIRcV+bySFlAFWTQ9J+To/VqxzijKoptjKKKYDh879XInNoEfXrqvOTnX5WtUnZxJsdjVDCTs5TdZPIIe3Isjhk3Q0YMCBh7m3/FDNXfwu0MQhRoYmdOXHGRIZcxqRyiBRI4+m2Mip1WSJzSKKbuXYmYSCHTjAKOTSpHOLJH1leKltZmhhJgkWSCanGtfZUxiVUMfT3sZqpiBRIJQ4ESSUeT0VXGr8EQUM13A52gmRaLDfn4IF9MCriyIG9/Fqjb/kY5DEaBK6PjbkJJD1PC519+qTwKceblUPtmO1fSd00XZHzxGd+FyEqXPSG7ylvTQ6kJgKHJ3c+By92lUP59pIc0lIWL8gh3gnufG5FUbR0sxqjnQce/vTSt3vq1nygk4/94Cd/F1rFKrsJAG77wsfwDfFz2LT3q8s/npOELc99HvfMXoPWzGZbWb2QSplDgcM/6fOgak3ZMiNBk/alBgwtFErcPuTrWmnKirBxXO1OcFOCbYps1lqsueg1AIBbP/Rbxf4mJt/WWjxxxY/iAv8Q7v/8n6bjndLOM2DAGYFTOHMISLlDz6+9Aqvb52AOpLwwUm0wYV0FDgvlkCeCeHJHlFWJPW0rnL3QFgIl/b+UPQCACxGNUWiMLrX1toFSFrMoShYmNqYEUtMYaOB5bKb7VBb6ViqHCjkUhJrTs0KICAqXCZh8zmzoPC4svKLlkcmhzkIhKIsRauVWH0xlKysbREocGzeMOVcXjojHVWwrM3mjoj9ziFrZFiOHKhVUPoY2CkJIhFBHVVREiymHLr/mRjyszku306a8bkkUSaUYK4dsIofy+3+q/u4GDBhwcuGg0WQr70S2kLIpE7ezqeOVrSMY8jl1FBYQMOVck5sam+Yo5sCZ+J+Nh2ul0hmAgRw6wdBCwSJhIJRDZM0SEuKSOTSphiHlEKex0+RjCeUQ28f0qGrDUqE+Rk95AB2bFuf2iDp5khp7GOi8cGUp+iLWKFY2BJELE0qeUKvKMVq40hDiW7bWRJJ1q1TTWuUzCQKJVFqtsL71YfPjH8TXR1di85YdfB2FWtLkkjIDvGtz5sEkw62EKigph8pEsaFwY1+sYxNV9pRT1dNUMg2HPv5LiL/xTuDwnkVv555IBM+z+w9N/O2sBz4AALWqDMDCLb+brz+1bWX7n3oQ54UncWDLTeVz69qr8iJLZTtiUXKVfKu+yTPtwi9lK+PFhzas6NNZQlsqM9N3oAkLNdkkbGVnX/UWfG7VN+Cs9ZtxxU3vxBP6XKy847dKkHZnwLvmHT+KZ+I6+E/+MgCR1zFM0geciWDl0Kn7/Z/bfh0AwDyVAvRZadiU3DKGthPjRbfuFxCh1j2yeL49KYcoA82S4iWdp1yIMFrBaMXkhWlGiMYmyxCAFoXYkOOFJDNoXmFV4MvFViZCjQUhFGX+EBH7wuorN1csAn++RKgZslxlpZPuBPnrjsUgaItRXA45VO4Xs20rdsomSv38uM6UJLImqkrVE3UDqwJ8Vmql4O1657xvw4/mItW53ZC9X/M44pUkimyxDy7ym1Ba47Etb0/PrS2sMfm4LRNW1caSULJ6ZWC4+e3M2nUfMGDA8uBhMBP7A6mDsr12LmMaLm4ChMIntlM3bF+Icmjlxu0AgHPirkE5NOD4gnfKOt5xSQ6VzKEysfI9tjKpHLLwPNgfbeaQ07VyqGsH42MVRIqKHl5Ys8rupcgcoseRcvIpoBBO+PJY0bVl91KNyq4lPJwqfnclSDIVktKDFD78XqFkDlFziM+Wrz48dNct2Bkew0FhKQMS2aPhyyQtTwzJVtatbPVIrWlMpORae570ac3X82Q/9JNDXUJxKmLEoVt+HwoRe/btX/R27omkHHriuQPVn3Y/+TAuG98JoCYk548cxlV7PpyP+ehykL761S/j85/75FHd58Xg8Vv+HABw1lVvK3bAbrOLtmxzcMpAGw0XhX2iJ3MIkMqhxRebJXPIsgXChtxWRsohHthq5ZDdcAEOxDmsXH8uLn7ZjXj1z78XtmmgtMHTF38PrnJ3Ak/fUT0PYdXKlbht63tw6ZGv4rn7v1zIoSXC+AYMOC0xe2orhwBg55WvQogKKx5Pik9SDvF4PhFIXY8XtmfSS+e5Jk6SQ5ZVklnSnyfbRDIQYdP6gEZrWEEOaduwOgUAxkg5aCHEKuuvjzgAirXW9oxtUSiHohMqIlLICMKeN1do/GQrbl2RrE2TyJdOrl+XUIvKYISlVZbV/Wxtcafxgu7vnavnBrqoq/m9zplDAOCI7ImebcaGM4f6lEOZzJLHJNRC6HmOIMKpF1MOAcDm13xvvp2FUgofiDfhybOuw9yK1TiAOcTd9/NtOV/SNAgwhZxbxKI3YMCAMxe7zUasR1qn9J2Pu1l5ALD9W/8pznv3L/K/9cqzAQBnxz3TM4c66+PlYOdFVwAARmqytfh0x0AOnWBwiHRbL/RtLOQOLRa9mFjFRWxlwbeVrYx3GpdUDpU69oocIuVQ9viXzKFyPCY6RJhkH/MlU4ePXRXihYiURvmprVg0OZTNZzE4vm+rZ5gYMzHASZ+/CL5W0XMTR1/mUCCFTpYlTiOHnvzs7yFEhQvf+J7q+sgkQ/b5cyhjW01OCURSUbOcyrYyIhWU1im/RoZOd47JcC7D9M/zyJd/B+N7PgIAOPjYrdi08Gi6T7sw9T448BRmx1lZ1Jl0kqXsSbWpspXd89k/xVp1kF/LUrjlL38bn/nt/wsAED/0j3HWR//ekvd5IXCH9+G+//JdmH/+Gb4uPvhXeCauw2VXv4KVZGxfoIm/btCo1J5DiydJGmqhyJNYrq2MLZ66tLuU8L16MdbE2tf88te+Hfv/7kPYsHHzxONe9o1/C2NYXHcokW1dOS4AXPb2vwkAuOuT7yuKqVN4cTxgwHHDKZ45BADXXLgN92A7Vo+fxdfCBfCrzgVQE8wEaSsjAqa/rawEfnYnzUygiEYv+X8vAqk36+exPT4Jq3Jwv22qsW6MEYyK8KE0kQH9yiGgWGuLrUzMdZxQDgkVkVQO0WvRWiNEhejbFIzNdjN63SJzSJkJ63bfYmRG5XP/IufKiohrSDnUVu2Wch5nBKGlrFD1yPkSETqcrSSUQ3a6rayooMoxkQ2jUgspy+9PUAZRWKsXw8VXXIe/WvVOuJ1vBACMvuP/xY1v+24Ya/HI6huwbe/nMU/lFDRuNg2csjDLCPceMGDAmYun1lzDl7vETdR2IisPAOYuuRkrLn8r//vcy14FIK0xp5LdVGIwWj45NLt6PQ5hBYCl5/qnGwZy6ASjEDqTmUPgiUCeDLrJSZZF4HrxEkjZMuEBiB/YkplDefLXsZWVgOc6e0juCJL6xUEnVUxwcFEDSqX7COKlaiLx/WqTYitrS0tbaFl15PUMTyQtHIIueUdS6URKjzQRFJPRKnMoIGrKHOonODY99THcO3MFzj5ne/2e5Uk5vXeKlEPewcZ+5ZCK5RjJYibtSHQctjNxJZAUvkso8jG1RxA/8HO47wPJQvTgx3+rPPYihNLhR27hy6HzPqx58AN4SO/As7MXVCTbwp7HAQAH4txEFlEf1n7hl3D+A+l4mnAEo7AIWfUi8MCdX8LFz34Q937lr/i6lfsfwGMzF2N2ZDnAtdRE08Q4/+b8WJBDukxyBZEnQbddateVg/SU5cVYk98DysugxcIItXJIKYXz1s71Pu7KdZtxz/o3YUY5hKh6LSXbtm7HE80OqEc/i4Vxf3XzgAFnBDhz6NSd4M2NDP79pv8br134Fbx7/C+gZ1YBKOcJuYjXM6uxAvN4ft++otboyxyy05VD3JboiRwiJWOdWdj6iL+D38M/PfKv0QjlkCSaqZzCtSkDsM2B/VLpUil56RyYxza5EaYEOQTXlzlUxlmlVJqD0O061gEih4y12YpX28q6zTUVUbLIuVK+18qKUgphGedGTJfmZ11bmVOmWL6Ewqdtab5VWk1NQ1EBfbaynswhKjWRaiHxHFHJy4sTN0opvPHnfwc3veuHAQBvv/pcbF2XFkyzl70ZW9UufPEraS4hFeQBhlWyw6bEgAED+hC23ciX+wKpl4puAIBzztmCJ7ERAOCnnGuitghRwZqjmwPsm02bNNMUSacrBnLoBIMDEV3XVha4frS0hYigP9rpUhHel9audMNMTOSJkWzAWhREvJjZigDgXCQij4hgqJRDFOps0+NEV8n/PIpyJ4r7ta6fHODgyiAapYIDsmIqEVgeCCHtUFIIZKUcKuRQt61MZhuQhS8pRPrJqtV+Pw6s2DZ5nMrAoCia1GiO3ysjrH3l9hYqeH5PVfQTViUPA+WnK4fodbgpZN9jX/lLrMARlpevefTDCFHl45pOED5yx+fEgZbn3PNUspQ9ed43VrutgGy4G01kEXXx5KMP4MLwEB+/jp4/h2MNIhflDrQKDqrJ3xMm9eoAZ66XF5kcTtlCDglFngSF4S1lK7OUBWSEciiO4aOCNnVuxmxcOKrdiY1v/PF0vIucxvXOm3BN/Do+eXcKue1WNw8YcEZgZnX6/ym+SL30oovxeNwAADA6ncOVzjkv4lyz9tLXwqqAe7780RIC3GcZbVYCAM6KByZaXOj2mtvOuvOPfE4NAevVAazCQR6jGjuqiBRqD3Uu5esscJPpFOUQqSfhEWOsNsIkOaQlOURV9qh3hx0sW+NAZI9ScFGzSlPZpgp8DlPUVvJ8bhZRu1jxXtMYM2EZZwVWm8bATlC1h4EyReHDcQKCBKPHsmZ6VEDoU0GJ55ANZcVWVlRES5FDi2HnK78ZAPDkV/6c34P09BZBGQ6aXSy/acCAAWcuNlzxRr48YY02/ZlDXSil8OSKSwFM37B9Zs1V+ES8BioLGJaLsGbboo97umIgh04wmKSQxE8IyXJFjUSmRzkkFCCupYlVsV+lzCGqu6ZdpiUW4qTs0aOKAOCsIEe2sjzAh5psCbqBUzotwkWFK0B2KsoRKq9jWm5OIYfakjnky2VvZmGFnYuCoKP3InOoTM6ishURQa/PewcbU3C07zSaSfTV0gPFVsZS7tFsPg4KxDSd2yeSSgZS6+iqEEivNBD91EDqaYQiYe8t7wdQdmZX+AM4QFLIRXKKzMOfxNeRw7bFcz70yRQ4fc6rvzuHeApyyAtyaAny8aHP/0l1/Dr66nv2zL1fxPgXN2L/M48s+jhTETzu/71fwPzzzxQSTHzXdCw5XmnX2JUFBgdSl3p5WjxJW5m0A0hQc8FiYZ6A2GHWli+POtlCOy6+Gi5qzKmjq8s85+qb8USzfWp1Z7rNm7BaHcFTdycicJikDzgjoQ3iyk3AaNXJPpJFceMFZ/PlxpRJrIOtxpYLrnsz2mhw+J6PiTKISeXQyq1XAQBW4fDEDixNxE0QjV7i/zQmOx8xh3nMxHGlHJL1wq0uxQwqOozRo14W535WT6qAEGJpREVXOSQq7vNtjAh3BpLSk+4jW208DCy34IwAnXKRYox8XN2KZJmjtJjK0oj3Wo9KILW0vLEdMG/8sErVFLUQN8MJEsfl10wWeflYXfs3gMkxDcUSlwgokTMkQ6hJOfQi1HR2w4XY05yLDc98BocWXJV/5ZVlcu5UJ2UHDBhwcrDz4quwOybbt+kUq1xwwcWYWX/esh5nfsPVAKZv2F755r+Ox9/+m0d9fHObzs+PO5BDA44jTJxc6IeQQ6Y7bWVScSMvy0kSIGxlLFtOO43LUQ5R1alsEtOhJrA4X6fT/sWSv6wckovUoAzn7EiyY1puTlEnSeWQR8wqqWCSrYzCsUPOHIJvK4UStbZVmQyoCRaTW00CppNDybo2OTmMOtmTirc+kzDtPLSKiBNVjCaTIlI5VNvPHCxUaDFSS2QOtT15A8Fj665PpGOJxXY3zju305RD+597GhfO34EnNr0p7UoL4q95+K/wiNqKCy5/+UR2E1g5NLOkrWz00Efz8RA55Cr74pMP34MRxnj6iYcWfZxpeOKB23HRPf8Nd3/6j/k7Ju1xRuwwl0Dq/Dlw5lCefPsFXjw58b0w6M8cooFiSVuZLc9Di4IRxpXKbsXZW3HX2jfycS4bSmHFO/4Fnr/kO6ffZEeqvX9FvD0dxkAODThDoX7gT4GbfvpkH8aiuG7HWtisGCLlEAAcVnMwc2fxv+2Ks/DI7GXYuOsLTBj0BVKfv20rnoyJcOrK4olMMqQcsrVySFbZz2GMBuMyTzBNteD3utjKdCjjjxz7tTg3N8Je3LbjykrNKiAUyxsgFDKd8dMrwwHXMtvGQ2OUW3B0tpVpFRFCKCRGzgwkSKJksXOlzHhjcigkSx2NI9SmE/w4ZUV2Cke6xA0rilppaaYcycnaeD7mvuY1UiEJ65okh6JQEb0o4kYptOe/Ea/B7fjkbffy/ECZEaJUDh1FQ9CAAQPOHFhr8MDslflyvcGx7u3/BKv+1oeX9Tgrd14PYLoS8pLNq/F9r9551Me39twLARzl3Pw0wEAOnWCYHuUQ7RTB1DtLUi1UESwtVcNnUsm3MCpWg7yD7fWnVwgOHjoRKYIcUrGuoOcFtWwb4cwhm5RDYdJWVrKAROZQ269+Kcohx+HbyrdMigUzC6sC3Jgq5OsJGQBEl3buorJVm0t6r0rwJTW7LRZILTOgKigDEwO/N5aUQ7lhpeutD1nBpIggCSk8vGsrkzus3WMq35nJz/Oh2z6Ds+PedD/R5kaT8zCFjPv6J98LoyLOedW3JTJEWgb9ERxq1kEphajr95Fet1OjmjTK+OJH/hB7dj+LI0fmcfnhW6rj7yqHSBk3TRG1FMY5R8e5cVGU+fo7yuRNzpvoBpHS52VDrRyqqux7Js/LzRyamZnDkThCmF3HFrOZuDARsjf3up8AcPS7E+te/i0493v/8/QbnHUewtqdeJ25A8AwSR9wBmPT5cCK9Sf7KBbFipHFNdvWAgCsLtMz+4N/ipd9x/9Z3fbI1ptwWbgfR/bvRogKpidLwRqNJ2YuAjB5bjHGpAwGbvSizama2HEhYBYLmInj0jiqbaWsIeVQcDlzqM9WJjYTSNEDpDFZWuhNRQ6VyzReSBUOkM7FXJkujskrw7X0RpBZzo0LodK14olz/aJtZfm9AwDDyqFkGS8KIVJguTRnYHJIhFALEqfYygoJRp9Zw1EBy8scktY1LaxknIOkimppqUDqpbDx5p/ECrWAhc/+t6JWVxpBGcwgz+WGtrIBAwZMwVPb3oG7wg7YUU3Ww46A0cplPcbWK1J20Ys9n3Vh1iV3xdpV/fmfpysGcugEo1iHeqxWbAtrJm4jLWaULcN2n04YI0ChukvZynxa5HaIlG51OufrBEm2dKxZ9Fj00MoUZUmQRNiUUGV+jpYnlDE4Jk3IRuao5taSnas0gYHCnpVJdqg+5ZB3hRyCmZqbIydz1XFmIo1IKzOTlUNj+gy65FB6H+hYVCZIJLsdoLm9hV5HdSwUSN0jKT+wO2XJ7I8rWWFkYuDJ+TRbmb73L/CMOhuXXfvaigwB6klpzC1f3WNr1czEe3fowD5c/6m/gXv+8tfw/LOPYpU6ggOYY0IoZQ6F8lBEPi4Smr0YmCzzJQNK/mYoWwpIO8IWrky8aSLNbT5FOZRUb/0LEQLtwi81EM3OrcDX3/1BXP3On8CGzVuxHyuxUk2Gw1503Ztxt70ch0dnT3mkFw795n9c8jNGa4754w8YMODY4cYLEoFlha1s9c6XY7S6Pjdsetk3wKqA857/UiL4p2QpHF6f6ni7O58U5mw5F4YCqfttZRoBs4psQk1lUQ1sKxtDo5BDksyQ4/FIkEPOtdX8Ro6F8jIRSKZTEuBRlEOqs0FGz6Ntw/k+rm35uGxX6StDv5eoPKasN5vJIWTlctcKRg2pHKLNyiEriBvRVuYKOUSbD4vZynguInOQKOi6yhkq6qSoi03xxS6m9LlX496zXoPX7/lDYH5fUqMrlcihWBOPAwYMGNDFzd/+t/D8D3wMTV9u3jKx8ZxteEydi3bmrKVvfDRYm0qJzll7alvSjzUGcugEw/SoaVqyC+l6UiF33eTl0lyWSRSqexUTHbeIKoagQwunDKJuuCkLKAoUWmjTZEXu/FEWS8ihzrLCFShZO+mABbE1xeZUWclcUSqx3SmTQeP5mhwiQogeg+1uqlZD0esL7QJ0VlkFZSupu4SUgUswOZTtbnYmt5URadWZBBFJZbu2MknkKVNNgrvScfqc+/KaaMK8IAKik60s7+T2vN+79+7FFYdvwZOb3ghjdJrkVpP4MvnuqsqIRPK6qUkjAG48nxRs7jA/7zxmi60Mnl9LeqySLbVcLDiPn/2V38ZXHnyqsj0WcqhjKxONLEbYyrr5GjYu8KTeCdJQBolKEHm2HKXPy19+PdasWgXdzOC+DW8BgAlySGmN8/7OB3HZj//Oct6Go8PVfw0Hf+JW/NoF/xHnX3Xj0rcfMGDAScO3vnwr3nL55qlNhYTNV7wOhzGLS/BopdrtYrQ1VQX3nas8DBq2XvVvTrkQMZtvswrzCFCA1rWtzBA55KCDh6M20aqtrFyeQVEEBddW4xTXn3cuc4h0p/jBw1SV9eV6jRHyfUzDhR/OtXxc3YwLVZFDiy9UXM6dY3LIF+Vyuj8ROkWtnI5FkjWFKKL5m2+JHHLwKm9e2EklFqGoYYXVrSKdpFpIBFJ3rNUvCjf9XaxXB3HZcx9OGYr5Oej9H7LuBgwYMA1nzTV4zYUbXvTjND/yv3H5e/7dMTgigUwOnWm5aQM5dILRpxziqnjKHDI9yqFKfZOl0pFsZZN1oaFjFepFSIRO1zrUzRwqqp564U3WLJ2r7CurlFTuiAmi78nNAVAIoVhCDVEph9IEbDx/KN2OG0LaolDypYlMNpPw8QJoFzKJo20OzZ6iHEK/cojymei9taOkHIpjetzJKkYjAql1qHcRgfRZaTEJ7jaocZh2j/1KBkTT7QwCHCmHenYa7/74/8IKtYCzX5myaiaUQ9L2NkEOtWhjIt+67x2rwoJn62OrRnx/Gx1qi1omvRYhh75w6+34tf/671OIKIB9e3bj3zz3Uzh0yx9UIeb8XRXfUTkhh7YpjJRrn0uLGAA0YVwRPrSQsVOUQ7xzrY5OLr/6ld+bXnPPYm7NmrVYtfL47E5sPPts/Nj3fz9Wzg7y/gEDTmVctGkV/t8fuAGzzRLEczOLB9amTDG/yFTunEtfAaA/M8HDYMR1753MIbaVRcxmMmcl5pmIksqakNtDk3LIMTkUO1Z0wiiWc760BQOlfr57udjKwsTmCpNDgiDxMJjNtiZjrchSahHyeNfNuJBj/lJqFyJBSD0cg6ua1IyplUOk1GH7GKSSxzAZ5YWtjB6Lmi37Nvxo7lS9FvkcVgRSEyEkLGbdEo0XgotveAv2Yg024Hke25rRDKwK+SmGcWfAgAHHF+dsPR9nrTvG6vu5dYijVQM5NOD4wrJFaNImRgtV22Mrqxq/2rJwBVDqXitJdb3g7wVZwbqB1LEmhWS1Kt8mkychNzupWNvKorCVBXEcfQRHei5qRHM1GUWToWwraxcOp7+JljBWOrGtzE68JrJm+fHh/ALSsfeFKlN7XDc/KD2xybaydL/RbD4OR40vPW1lKBXuOroki5eflbLVJLhL6tGx99XYkqS8VaO0a5mPnQJC+2xlK+/5IzyrNmD7y78hvSedYG45Ke1mN1FOFVXDS1CouPKFrBmrEawKiCFAwxdCE+hV+3Thbvkt/I2n/zkHmfvxIVgVYMcHENpyf34MuQM9kTlUlEMkwafJeRMFOYQSpp6IvMmJLdvujnJiffENb8XT2Lhow9iAAQMGLAfhslQlvtj5ZPsFl+NAnOtVDi2oEVYhbbgQOWQ6tenOeczENL6tVEd4nK9sZYaUqmkMpvEH08gh1LZ6OdeRY6EMrg58TnYVKR9EK5nMtgnKJJUwcmukyBxSnkijzrldnM/7Ar4l6H0YzZCtzHEhhnzs4MaJJKHYAJE5xPmSyvJ8g96LavxSCm00/cohKscQSiepTqLmsqiKjS1qU5rdjkHQqtIau9cmhRq9L1vf9Y/xR/ab8NvuzTi48eUv+jkGDBgw4IRDKcStrwTWX3Cyj+SEYiCHTjB4oS3Jnk6tKjdTyLp7qb6hiU1+LK5xrZo6pqtiCGwF001qysrqDG7/YqtXUfXI1xGVgc8KEh26bWWiAl2QHX02J6BM/CQhpEiRFBUUZQ5l5Q/9W+UJGR0nZcQE3ZQ2t0yYAICnbCBje9UvQLFqdZvHACDqBgYRKr+OZiaHpTFBN62tTGQOdWTxQcji85sknjCWY+8jUURAtIFnIs7p2fxQ9X2eefJRvGz+Fjx63juTNQCT+VRyggtta8thJhSjshyyzYeSg9VjcBwyTUGlzqU8Bmkro0lt9xifuvvz+Pp//GuJ+PNjaBXZUkeEEIIriqPg6pwqeh3ifY45kFq2qQBlMTGDQg558b2QO74STJ4d5W6C0gaPXPtzeGjLu47qfgMGDBjQxQWv+VbMx4YtTn0wxuD2dW/FgY3XTfztUbsDq5E2TIioIJIh8CbNGBppbrAaR1g5JDdPYrZ5u3acq+abicbUqq1MlbEjuLbKnWtEHpEMrqbb2B5bdhMoN0nOgWqLGM2vvHM83k0QQGL8VmbxzCEiQWxWDoFs7d3W2bbMOdJT5I0bQQ5FZfj2pMDVHdWqQ39UAI15pgqkFqQTtaZpWzeUce7esdkRX3PJTQDK+7Lqotfgmh/7NXz4gr+Pi7ZtOSbPMWDAgAEnGvr73ge89Z+d7MM4oTizdFInGcEHltnGPqsV7yz11JbKzCHXInif8l0A6EwWRbmTt4zMIUWEDgUheg9jC6nD9eAckCjbRlIgNQUuh2iqnUnKeAEAJdvKpqhEiq2sWH9UXvS3KJJrVg7pJgUfZil3evC21NwKq5z3ZeocRKtYUAYmTpJVzrXp9n2qEGqU8/PwUaGZydkKTNB1bGW6gamUQz7J4lX9WTXSVhbr94sY3D4VEL1XrZ7BrDuMth3DoGRAxI4K6YFP/A42q4BzXv+DfJ1XtrYM5s+2HH9R+yjKqVJmInNIttrRZZ/tbd610AjVY03LHHrkqx/Gjc99GHuee4aPK1kpV7DyLHYIoaIckuRQ4O+20k1SVJE1wVL4aq6Xj2MmxGSYupnWVsbk2dErgF717h8/6vsMGDBgQBer16zDF2ZfgS0LDy56u9f8zG/1Xn9o3ZXArtsAlHOhFVk5AGDcYb79SjXPwf1SqRJpvPHUxmmzXVmQQ+jfrHKurcYpykBKl8u4yMHL4rwOpPP1XDiSX4Mgh5RB5rRgm1GxWrlUeuGihjWd/VHxuGaJzCEmh0YNXNRArG1l9D5yHiHHBsj2MFIRWVhS9bii1A5CITW1XbXTwFk/R7GVRWW47j5oi4aJomNj+dp05RuAL/6rSkF+0aZV+M0ffuUxefwBAwYMOCmYUvZwOmNQDp1AtMJSFXuUQ6pjK5OKG0kUeeeqnBadM4e0GOS7VqFeRJ8metTiQS1owqaVbjZpK6MJGiljkq1MtpcI8iBKImyKrayjFkoP4jgXiZs8iByyo6R4iU5kDiVlSsocsmy7kw1pgbKBTFMfo4DrZEBVoMYRvwAHg4Z8/m4yEBNI8m1DaiEQOeQmJrdyQixVPPJz7rNfMQmjk3KIFTYk8+80gennH8HhOIOtlxSZd+8knu1YfbYy02src6zqKcfhhHLIwqFRHjHUBOnE6yJFkWv5MoV0BmEfYzLKy5yqfEykuKIwTpos54k6ye7pNzeDMRN2UlFW5RYJFNvdwK8PGDDg5EF98y/jK6/+Ty/ovjPbi5rIZkULW4/yOdWKsoSVOAJHgctyIyRnAHqhnnHdcSV6zMcei65z1XxINpnJcZFuw2M83R8WDVWmi2OSm1XGNnUbWKddtRykre6zGEgpbc0ovVbveNMsPVR+rM7coFjJiloIPVX2qRG220DbF0idrmtE5hA9bpBWMmFdgy6ZQ+oYZA4BgNrycgTVYHZmccXVgAEDBgw4tXHMyCGl1Dal1MeVUncppe5USv105+8/p5SKSqkXH0n+EoVsm4odJRBQFqqGmil8HQTMF/24eizT19TRUYP0IVnBLC+gWVXRyRxiT7sgA7gOXlmuau8qh4oCSUjIp+XL0O5XcLxDqKKHCi7JqanJY0xEWN6Z9CXsOdnK8q6itpx1U73vQjkUlZmwRqVDybfvsZXxBC+TQzQBJIJOdXcbc2saEVUGbkIWH5Stdki1+KzdeLKtpQIpa/QsTHRMbAWxk9u9vesQGr6TvWRiCeNW+X0MPhE6lC0lP9/u8SkREO04qLStlFz5ynSM3eB00ZJXlENEDhUrGZy4LMKp0+3yY1MIKCmh2jp8lXfLVagCqXVMNsuUFTFJAHFm1BC0OWDAgJOIV151Gb7lbW99QffdekVpL+TMIVtnDll/hG+T2srqYOV0o9za6caJIFEmN6ZKu7LDgirEARFFwY+rDYIRypg3A7mhltpLjYpVtpBXhgmlKgcJHXKIg7bbpIDtIYckUWKWqLKnxze24c04LcombLa+o9NkyllEypRsIG1FRpHMHJI5krY/R5LmZ6J5ja1kgnSK2pb5iSCHjpWtDM0c1JZrsHJu5tg83oABAwYMOCk4lsohB+DnYoxXALgRwE8qpa4AEnEE4BsAPHoMn+8lB6lgqdrKOplDtplUDkEQLN61aNseckgQE4s1cRFUrG1l0uuenygdK5NDk3kuVFmf6s+n2MqWkTlUlEOen1eHdkI5RMofZVJTmoqutJKFlrOQilXO1e877eLlzCHd8x6RdalPOUQ5RNrPpwpdIhny4+puW1lW3tB7wbayTnCmnBDLz835/u9M97qkHAqszIqZlOkGWKrQTuyYBtXJHIKosifZuwgJp4Y727WV0fscPUK2OoYcTJqyKBLBVFrNpgRSU26Sc6w6o8em0GsEx9+lrsVMPofcKQXAE3Vu5hG7w7Eih4o1rl859MJtZQMGDBhwKuCc86/EIaSxgglzysrJ59ImFHJopTrCihkjSAVqD43esfLUdxpTNTwWUIiDBVVCrOUG0ozYKJGtZtG7cv7Xcq5hmESSuTsyA7FpRrwR4LMitTfEW9x/qSp7ur9uGm78lE1q9H7SnIM24aSqR4nMoUnlUJ13lzZxJucAlNco85O0sJLxcWjDYePQpljwjpGtDADUq38C6uXfd8web8CAAQMGnHgcM3IoxvhUjPEr+fIBAHcDOC//+ZcB/ALYAX5morL4hJrsAcpOHMuZ5aI51JMkmT/DNa5SUg3TS3xI6GwrY7l1W3asAGkrK9WqQM4mUjHbynIgtWzWACo7UpWh05ObQ68pPUcJiyTlkFe61LHmcEdtmyxbb0XmUJJ1k3IISKSEtLKptpBLksCSoM9J9eyo0c6i9gupQrdJE1xNgdLd++haOaQplLlSDplqQizJIfl+9aquyIJlZlMgdT52CgjtEkpJ+VP/7L0yPcQf2cpySGYryCFlAGWgZX6QOD4VHB8HVRxznS/qyvu+YyxB1WPeeSbLI5NU0fWGmLMNjZ6DFT4k8Z/P/8wTdWlPIAIyk4Zs6VvEVnYsml4GDBgw4GRAaYMnZy8GAJimP3OotpXNMymihLJGNVk55Fve/PAwgLSiR49WZOiMkTcOXFvNb+ZUGQtnUVvxXafZFcibKznguraV1Rk8SmQO9Y2D6f7lPs2SbWWWb+eUQSnEoHlcVhU7mnPUFfcVcSPtX9zKFqpW06D6G2ipHEPa4Oi5g+7YygQhpDrW6mOCq74deMMvHLvHGzBgwIABJxzHJXNIKbUTwMsBfEEp9S0Anogx3rrEfX5MKfVlpdSXd+3adTwO66RDKljgJxf9rBwyGi7qTiB1TRg4kV/UsK2s3jXrq2mXUNkKpjrqkKIcysfYyRxyYuEdlIWJokI+I8oqeXns0wKppXIoFIuZig4OxSvvWTmUpdxBNIGFosqh1+Q6TSjcKrZo5lB+b3t21OhxyVZGIZKGcp/6yCGROWSjy8SaVKzYSj4v7YCurUnBLmJ+b4OdhYYvgc22v62sL2shdCfxImeHyDB6T1QmFEMO2pZgklMERJO9zbuWCTIiIfsaxtKdJjOHmPSi755vC3kqnq9rQwPnKtS7uDxxt/XnQP/X0U8STPIQWZE0KIcGDBjw0oXakirIZ0eJrJlddRYWYgNz8CkAQBMKOTSjHALqYGUA0A2NN1m9qy0C9ETRQStsZXQ5dgKpJaiKPj24E4rQ/myhKiSb2iejghJKGe9dtpX1bf6I17QEOUTPa+yIVVI2Os7rowwn1c0c6lX1WLaxsb0frtp88J33sxzIZPMaBU8n0onUQra8P9qykqo3W3HAgAEDBpyxOOajglJqFYA/AvAzSFazf4hkKVsUMcZfA/BrAHDDDTeclgqjSjXTmzmUd5y0wrgT5titg5eEB9W96mo3bRmZQ9FV0mYiFsguFDtqDANX3U7aylR0CGolP3YUgdDVa51iK4NUJ1VEkUvqJtpta0srSfL5F+IF0RXVC+couXK8QFGO6GRL62tQ8Ysoh4goMGEhqbMykUfqLd3JoKH3gVrqKDizDqS23DyX3gMZPr6EcoisVWYGNvpkxQKgsqIJnfvo0JamLX5+Ay0IPJuriNMLrXMQVMyZRdpWtfTp+MptSA0ULGUOjbm+mIkm+l50jpGsCCncNH/nyKbGz+ErpVL3u0oEFE18addWObKV5Ym7JId0sZWZ6NC242S46MsVYlvZkDk0YMCAly4u/Ma/jXjbZjRzawAAszMzuNtegJW7U4vZjCCHgNLUKNu8zIgyhyiU2aRxItSbDq0qtrJWNUBM5/QqX3EKoncI3Oxaj5/8HD2B1B4GBiJ3zi8vkNoulTkkWsl4owphIltI+brJlEgjqeqBLvmFNB7aWJchUL7j5IE4+KhgxEaFFuokLTKHeH6iLZNfx1Q5NGDAgAEDXvI4psohpVSDRAz9TozxfQAuBHA+gFuVUg8D2ArgK0qpc47l875UINU+lXKIsn5I5qsUXGeXSFUES91W1hvGqJZpK5P5PHnixXahjrKjKIfyolybrBByOTxR5gA0QtFTjr0vN0c+lxFtZTq6HJot/PGOFDpNkreHYleCdxwgzGooN+bjBVLLWHqiBkE1nINTHYqfJNv4/vm9sn6Bdx49DEyg+3TIAmWZGAJEE0vns6ruIj43+Tmj772jz8jOwKJk/ZDMfyJzKE5Oir1o5wJqWxm93laoggJX2XdtZYW44Z3gTA61C2WBEVxN5Ey8rrygSIHUpDYii6NQCNH9pBWxaysjUijvnur8+dMuq1xMsHJIp7DtQtpOLiI46HqYWA8YMOAlDLXpcqi3/BPIut79667E9oX74NoWVmQOAWW8kmMdkUPItjIom63tZfzRCNxeCQCtFo2a+bw9jumx22gQosrX5XNscGVjQZx3ZWizJPuJNKLgafqbd23ezJo8r2tBCNlmecohbUzOP/SVrUzp9BqMr23/xVZm+fmSwidvxARSDoW6uAJ1wDe//pwDKGEbGstMIfG04eeWSirVt/kxYMCAAQPOWBzLtjIF4NcB3B1j/PcAEGO8Pca4Kca4M8a4E8DjAK6LMT59rJ73pYTK3hQnCRM5SKdmCkFqiMV79G2lKKGmK90J1+1TxUjo3CqiO7YySbbI/5MSKHCbF9nKUuaQ9MfD9GcO9VmjgGKPSjlDJZ+HyIyiHKLMoTL55LBnykYwJXMouJYJE3kbbW3aretVDi3SVka7gmEhBTkDcNDF2tclCzr/puBpKeWOHWuSJPV8WyvGJpB3DWO2ebE6LbfHTFTfhslJcSISRcA5REMXv4+FIAwwnKUkIYkbDg5lcqgsMDjwmxVq9eMQwRPcmG9D303+bIRaKGUOieYycXvFE/ViBwSkray2QgJpom6jEyRoT+YQK6sGcmjAgAGnF0bbX4GVah4PfP1rE8ohIl0kkWJm0njjabOGCiPE+GPh4LS0lVEgdctEP7WZubTllK8rAdl9Y7McP42dVA45DtDOj+Nb6NyCOgFZZb8EaeKVTWSWUtxW1uQwboKDgQmkHKqtzFGVQouoLSuVoiOltq+UqSEXcHShel5LIZ2aMi+sGspk5tBADg0YMGDAgIJjqRy6CcD3AXiTUupr+b93HMPHf8mjUoF0lEBAPbHx0B1bWW3NkuQQ5dWojq1sqcwhHX2SiLN1KDd+iGr49P86kLolssU0rLLgljCCslUIc/e1TkCok2gCpKPjXCTe5RLKoZAnn0RScCi0bnjC080c4mwg3WTL1+TxELHRqxzK1zVhgXfrPCxb+ybqbzvEAgdP60nFCpB2TOXnFqZ8Z8QNEpGoGxgVOXxbi/aY6nDi5C5jFOHlMYRk/6JmFVZgZfKL1GZmkhwq1jNfVD2ZHHILh/l2pXFs0nYo/x29Y6KQHlsSQoWMElbEjnKoG7pp/DxnUAAo7S0oi4yYSUN+7/usY90WtAEDBgw4TbDtqtcAAJ66+3MYxS45NNlWZkcrAADRjUXmUN2YaqKHzwUFAOBzHl30LZ/X2xxS7QU5NKaGM98K0n8yWwio1Uw0rlLlfGkDc9OVQ1QtH9WSbWUx9ZDye6L8GFrFah7mhKqYjrnJiqSgmzLnE3lAqX0zsAqa368pczoq7ZBgIkybYo9TtqihjMXsTPosRksopAYMGDBgwJmFY7ayiTF+GoBa4jY7j9XzvRQRKnuTUNPQwlYqhzqZQbU1q24rm4ljQE367ZdjK4vC906L9omsoLxAJzIgCEVFVAY2eng4Vl6kB092qhhCmrxEBaPiVOUQ5cxM2spaeAivfFZ+aDtiKbfNNjgifpQWDWyutuBpYRmLPeqX9HInQy/5OMlWFsdYUGm31CmNUczkSXdC2VEFkcWsksWL922MpibT3OT3pDqe0Kagyvw87TiRMHo0Sw9QHw6RO/L1Kgsdk7InhDzdpeMWE+p0/1xzryxGyqfPV6eJqWycc/SdbogcEsohsr6R2meiUY0IHseLC/oM+bMJoq0sFhKJbh86ajyyFGg/5gyK9PLE5yVsZSZ6uHaSdCXQZzaEeQ4YMOB0w4adV+MIZuCf+ApmQgNoIEBDI7ByyAhSoZmhzKE2NYcpO0FmpPatQsZ7spUFx/ObsRoBEfBKc7XtOGcTIfhq7kGoMod6MuSIwGHyxSe7cuhRDnGRBTQWTxxKcyxqbgswMHlzKlbFIJqvpzlMIYRMRQ5xOLVPwdtNvo18vt45XS7tkKBxLVnX8mXTlE02bbHj4pdhzzk34fLrX7/EKx0wYMCAAWcSjktb2YB+SJKiqncn5ZBU/qCWZKuODc0L0qDhGtfah99X0y5RbGVEAOTqWiaHaquORUeVkSvjNXxSWkjSgXbgQrKGLeSpVhQWrwpELMDz6yZbWVCGpdGaq8gtq6PouIwvYc/0XgS3UKmsbBD+f2V7M4fY9tTTVkJy7SaO+fUGGM4S6krR5SR2IYoJnMixkTufYzWqJtQyp6qXWAsOThlEChXPJIzJO7kIXeKljxwqk862rQOzebLcFvVYkM8ngkSjaJljVU/OPqKWuXTIRPCUIPHqGEXFPb0X9Hj8uNEzwSqr7LmtrBNcSp+DCQuVBL/6vIStTFr0FgsmH8ihAQMGnHbQBk/NXYKz992FGczDqQatyTl2dC4VKtlmJpVR+JbGV8PKXoJFVzmU1a3OIQYPFzUTOWlUJ6KmgY8KCKWltS4SKOfgPuUQPaYRmUM6uoliBnn/3rDqDqK2PJZ4ZWB93UqWHseiCbXtn+1jyjDBFrXF6hXp/X36ub29TZmhW1KS0Ud0sVpIm1K+oA1mZmby3xtgdg3W/62/gFm3fcnXOmDAgAEDzhwM5NAJxLS2sugmM4M8dCXJVnnyBCQyqS9/prtrtlTmEFnBWG7NFaqlGl4eq8kKHblopjauFEhdK4cAwLUL0MFxlsA05RBVqZtMCNFx6Cz/ph0vygwyJmcOhZabviTxw4HUHZUVt4rZJoU19rxHrIBZJJB6JMghD8NZQt36W7mLOEa5LFVJcnK7gFG1OxiXsJVxJhO935mEMdRW1snz6ZsUR22guGa+VsvQcdL3rYSYU8V9T7B69OU9HBE51GMrI1JoWuaQIIdCPi6pTiIySkXPj1XIpDpUnCfmYaGS4OueRQYpyjyRT73kUB1yOmDAgAGnE46cfSUuiI9iFObh9Cx8Vv2wckgQMc1sJo7y5g10kzMBRQsmPIIgh0K29Abf5mr5osTxHcuWh8nKoUnCXm6uyBBpykCkx2TiKLjeTRL5uL7nb13wcSFZvsg+JtU+HgZNrPMIdVbaQltYERA9e9ZmPN9swsYnP4o9B/J4KTcvVp+Dc8aP4Ll9BzsH4lIMgYBsJeNNR22xaevFePSi9+CKm75lydc3YMCAAQPOTAzk0AlEpRySGUKklFnEVqajY/WN9N5LqMpWtrRyyOTK8qKyaRG8L7XqvHh3fHtA5rk0vJCmnIFywDnzp22hoseYlEN9uTko74eBq5RDOqRcJFYOcaDwTKocD0VZQ5MwGbzonasIFkkOQZdcJAkOX14kkLpBsrsBaSI5yoHOXeWQJJgWRI2v6lGsAFk5JI7JS/vhFOWQJIcCk0MjtNFMWLb6bGWpeSw30dFzUOaQLd+NdP9kK2MyqkfZpKJnxZLJtrIglUO+KIzoNUgUa5jjxQX9RpgQCqKhrMdWxtkUNCE3xQ4od4WrumKRI2RE5pDuzRxq6vsMGDBgwGmElRt3YI06go3qebRmjm1gRMZIS66ZyUrVlsghi6CtOJd7aBURbRkDmSjKyk+vDCtgAgxCnp5y/lAoiulpmyvV5owgmgAIhbTjTacu6Da9YdUdxNzIRu9JIYHkJp8phSFMBGmMo0HUDWZGafzZsGYloA3G13wfblK34+Of/lS+bXltq1/5HmxU+/C1j/1BfczRTZBZDSuSGszOpc9mZnYOMBbb//p/wezGHUu+vgEDBgwYcGZiIIdOIOTivpshBHSaNlA3U6jgkh8fObCQ2ptiiXmyHRXEkm1lWTlEBID3Dq1Y7KuOVYeIFC/zXDKxkJo1ykSG7Ug5/LFdSjkkCCh63SY6KKRJHJEupTI+2cqsIIes+BtNxKIbVxY8G4WiRDfJkhcjJLjKvkcVQq9rFmOeJHtYtvaZbrijIIfGIsVAT9n5dGpUkXrT1GZ8PEQO0Y5nVugYO8qh5pPKodhRDgVVco4mlEOCZEv3zyQgXd+K73EonxtdJuVQaEuoaWkrI4Vaf+ZQ9C3fhr43pTVNZFOJzIrSdFarv+h1NHHMpB5QyK/8j/RcOudoEQnapw6i9rOh6WXAgAGnIdafez4A4AL1NJyZLQHSlLsniB6bM4fgSjNXUCZlCKIoTKNQDsVcVhBy8YCHYVWrV7rk+SgDp1KNexmbJ8/bAFiJI4+TA7Q5c8jlTZLphRPLsZXRcQFpvsabU5IcUsVyLsf8J8150Gefn8bHN/4DXPj67wYAbHrDj8HB4Kw7fqM6HgDY+opvwR61Dqvu/l+dA5m0lZmm2MpWrFmPXd/4a7jybT+65GsaMGDAgAEDhm3vE4gwJXOIF9WdGlYlFvZ1bo/jxe88RlgJUsPIcF2zLOUQlIU29Lh1CxovuIXNCxCB1MYimibZyiaUQ3li1o6ho+egyW4GTve5DAK/bkN2NW2ELSjbyprUVjZLEzJ0lUNEeLVVQxpnA2XlEJB3NcV7FxaxE3VDv4E0kaX0TNMhElRHFcQpmz2TWABo9Qwaf6D8bUlbWdo1jKT+GpfJuYeZIF76JsVRTOI5AJvID36PKDA8WxE58HtSOaRR2sNsJodie2TidmqKrYwURVEqh+h5hKqsv+GO1G11yDt9LqOwUEnwa+UQtZU1VeZQn72wm8k0YMCAAacTVm9KWTTnq6dwwJzPZ82SOZTHhqhKro1UDimDJjeduTbPXppCDoGIIt9CxWQrK2OqRcx5gGTfUtFNFA0A9eaK3Jyh4/QcoF3mOTp6tLqQWwTKFOwLq+5i7qyNcO1aPsaGW8lqW9mKeAhQ9WbTzn9yO3bSP97498uDrj4HT537FnzDkx9J9S5yTmUsHtv+Lbj+4f+Jhx9+ADt3XpiOOTq4zphubYMAhbls99t443ct+XoGDBgwYMAAYFAOnVBMUw6R9UcuQr2yFYHEBAsAhJYnSZTlA9TExbQmLgkDj2BKW1lwLZxsVGNlR17oq4DgQ2muMhZKJdWMjZ5l3OnB6/BHnohNaytjAqoQAiZ6JjPYFpRtYcY0CMqyZBsoxI+yTSUhlwQLtYpp03AotMzNAcrnZBexlQEle0FOJLtKEkkOOd2vHELnNvJzk8TWtDBKD8skTmwpsLtJ0vjYVQ712MpEPhWregzZyjqZQ8i2MvGd4ccRuUR02eSgUkkOEQGpQ/394tckGsdMLESR/L9UDqnoha2smznUVK9nhHElwa+UXiJk2qJ8z3tDpzuKpAEDBgw4naDOOg8AMKtaOLMCYUI5ROHNuihVqDHUNEmVTHZlIuutIIcyURRDC2TlkCx5KMohy2HMcu7BkMohQfZ3q+y53j24XgVtuk1WPC8jc+iKv/5vse0n/zQ9h7Zo0FNgYEaYw/zkMS+CDd/w86nxDZPjy9abfxRWBTz6sV/n6/oCqZU2mH/nr+LKb/rxZT3ngAEDBgwYQBjIoRMIudCXjVRhiq1Mhjnq2MIxOVQmSa20KtkuOTTFwpVhkAgdJlKC4+BfYDKQGkhECqk4tGlYsTJCW4Uv00TIu6Qc8mq5mUOe35sSSG15Z5KsY6YZZZ+/IIdAO3eCHOpkDo3yBE4qh6T6BSjEgpKqEnrPOrlO8v/puOoJoPxMWpk51KOyAgCnZ+sq+2Uoh4IynMFAgaDajOA7bTEAWIklQe1cgJjE65r8qJRD2pZMqZ7jM7HkAdmZvBhwReFFnwcROdPIIdrhBUrmECnPpiuHSpi1PH763EZxXE2kK+UQh3gaaBVZhdWbPcW2skE5NGDAgNMQq8/li97McUYQkSqcz6MMmnwe1U4qh4q1nTcRhBVNkYrIp4bSVA1fcvzoPO1VyhxSwQnbsyCBxLyjUu7qYktLh9S1lU0PpF6Ocghz64A1WwAAB806rI/78mOUY1jY+momenTPfKL3Yc9/Je5ZeUN6rM7GxNk7r8I9o6uw87H3I/ikrJqWn7Tihu+GXT9kCw0YMGDAgKPDQA6dQITKsuXlHwD02Mpk5pCQQUfvEPNjjQXhYEy9a9ZX0y5BC/3ixW/rzKFYQogJ3rWV7YomL1aFqqWDyAPv0kTMkXJoGjnEOUOhXIbjY6SJHVnHjLWIuvj5AXAotDJWTATbKtSZ/f92VAiOjnKokHWTC3/dyElpmbwSZA5DfiK+6ISMvcqxkdW3egZWkHqxx+ZXPXxwKZ+KjjUrdIy1ueGlvo/G5I5p1CW8nDIdaJJsWCFULGOp4S5P4nsyh2pb2SQ5xLu/RIJ1quz5++YdLy6IsIu+BE8rQUbR74nJpM5nSCTdTFc5JD4HnojT94LIob7MIVJWDcqhAQMGnI6wMzgyWg8ACHZuQjnEmyuYbBPVxuY5CGUOFUUqta7CknIoKXk8DCKEWkhR2LNNGx0iy64am7UcfyfHVXocVgL7NK/oyxwiBdRy2sokDp/zSuhc5CHJoS03/1h57KPYSPCv/XkAgF6xduJvB6/4bmyPT+LrX/pwer4p5NCAAQMGDBjwQjCQQycQpJgYR1sRLhxILYgHr2xpcwImCBaaJLVK7Jo19YSpr4lLwuYQafbZO1epm5jAEkoW58Z1FkvliRcLbSIVfAsNz2GWU21lpDSRtjJ4JiMaWwKFAaCxIwRlMYNCDs3my8aItjLfVna+WUXKoUJs+bbfVtbND5KvC5DKIWkr6yiHZDillkRePzkUzAwMCqlXKa2mVdkrw683upI/lXIa6u9A76RYGej8nMHViht6vWy1iy7ZBfjzLaQPhK0MvsU4Gn4PlZvMHNKdnCB+O0g5FByTVvwZUgta7LTaxZoc4udge1wOEldtrRwyktDM70sn3Hsx5dCQOTRgwIDTFX5VUg8FO8cB0qXVUcNHlTYhlEIbDYwvte21XbmMK9QEppocYu3b3FZmO7ayMr4GUCD14rYy3XM+D53MIYQ0J4GeJFRYcbwc5ZDA1pe/hS9Ltc/cjuvx+MzF6fn7Nhmm4IpXvx23f+tHcfUbv3Pib5e/5ftwKM7i8Bd+Ix1z9PxeDRgwYMCAAS8WAzl0AkEL/QU01aKdQoNtp8FKLppNdPBa2srSfWSoYnfXbKnMIZtDpGmiFUNbESW84BYqJ9+2bPFJuT2TMu50kYiXMUy2hrmopwdSR2pEC8VWFkO+bwmk5kDpZoSoLRNCAKqdO5qIRe9YdSJhbMMkQGWNgsjOMX22svozAsC7nUCpkOXXJXOkxONVWQLVbWamZg51iR66LoiAaCJhjJnptZVp9NjKdI+tjJRD/D5S5lBIMv6Ooggo32+bVT0ehu2AtKOcHqvbVtZVDglyCJQhVFscdfRMWmrUDXfyfdNsKyvvvSTzqFZYvmZSDoVxei9Vj4KMlF+6528DBgwYcDpg9uxtAIC1a9eycqhSuuawaCBnD4VS5x6VnSgIQC5KAAA9KlX2OnoEaASh9mGiSFnOYIxucmymAOhxTCQVg87jpByisSw4npN0QeP70ZItl15+LXZjbX576jmAfuUPI0Bjw4ZNR/WYV19zA0ajSUJpxaq1uHPtG3Hp3o9j/shhngMMGDBgwIABxwIDOXQCQWqGBTVTET+R2rmaegErq+gpmLmNySpEj+WErUx3yCELj9ipaZeg+nlLhIZva+sbZcIIlZMTShxtm052jlQOkXLHcf15sjn1E1asIlGRF/gWLregNUwyzGCMEBWsMUm2riZfnzIlcyiK4w2xTBytaXpDldN9FrGVycwhnnzKzKFR5/ZSFVTCOLufFT+3na1a5pZqK6NMJg5edtTmRsqhnsyh7sRXkEMcPM2Km1F1vck7rpw3Icgh+mw1EnHjUUg95SdtZabn+0WviV57UQ7lKmS6L6RyyPUoh+rK465lU4IWK6yW4qY9ItoWUw4NtrIBAwacnrBrtwIA1q5Zy8ohmfHjRHC0g2VySJsGUdtUVIHSNqm05dvrZkV6vOCY4IhqkhyKuiiHuOhAjM0xE0UT9fOmzhziMSC4vEnSM77bmlBaLrTReGz1y9Nr7KhJt7zpx6F/+muYXXdu311fEOZe/h1YjSO445Pvg8lq3gEDBgwYMOBYYCCHTiBKiHRT2crIamWrBWxtPdO5QtxDQ/mWJ0ls10K3lrtJ7WKhnxwK3sOoCKWtIFIcvJfKodIGxfdzncYQMRGSRJEMMjbZGuZ6yAr5+ghNnmBaBA5QpsngKI7hoKG1qiZ3kvjRRuYolVareRne3ZTMId8lh0gB0xdILUkd2tmUmQcdsqCylQlyyEx536KZqeyAkhzqzRyiQGpSsnjZ5jZJxpmeSXHvJL6bOcSkTLo/BWD3BWYbJOWQU4bfD1Mph2o7me5W2dN3IXi2u5HiTFrJSuZQCTEvGUW1NVAuJrq7wryo6NjKQjs9c4jen75GuwEDBgw4LbAmNZahmUPsUw5BBkdrbhNVxib1c9dWZpuiHGrS4ynvoLOtLAq1EG26UOaQjq6olqusuMnsP3mc9Dg8v/I+b5JMEio2b+68ECWOueCm9P/ueKEUsO7YBkNfcdO78DxWw9/2R4NyaMCAAQMGHFMM5NAJBGcO6ZmaHAoOISoY4ZePylQKEgOPQOqb6JlQ8qIe3UpLE9W0+34bF4cwC1VOmCCHSI0hlEPtQlUTXiknKu9/aQIzMSmUvDKcS9OFJKAoV0irmOphlUWTJ21GRTjQpLG8X5L4MbapKtiJ2BiLfCZrrTjGzjHxBLRvZ1EQObpMZAHARQ1j6p+UVA5FI1VekxazEBVix1bGVsRop5BDaWJYAkEpsDtNwnVXOZTVYp0XhUZ5IMYJOxZPwvPnZrMKjKxWQTa90W2QCDkPw1XxWlj7ikVt8vsFoFILGSZ78v8jZVN5/s5o9GQOBUFgAvwdBybzJKi2mG7L3+lFlEMzMykvY3Z2ZuJvAwYMGHBagMih0YqSOWRqcohIGQ+DJpTNhdinSNW2ZA6ZBm00iNFxqPI0W1kq6PDCVjY573Bd5RA1eFK7mrVpEym0bKnvgs71LyTD54o3fBeeW3s1LrnqhqO+79HCNCM8uPFNuPrgZzDjD/Za5AYMGDBgwIAXgoEcOoGIWf3QqpmK+EF0cNBQwi8ftK3UNDrbgVzOkaHFb6VG6alHd+PJvB1AECJClYPQVhkyrMYQyo7gi3LIdAKppZxai8wfg2SJ89C9uTn0+gijWCxII4wRtK124zx9bcVzS+JHGcsZM0k5lEk5QSBZOyqNW64mJ4p0fVI5JJUikSefJKvvqcYVx82Ta/QHajpoKG1hVUAMIR+Lz8fe9L53ZDdkpU9W6Bg7SqRRn61sghzKxx1DaSUjxQ+TbGT1yyHmpr4egFDyBM4cIhLMhunKoe7rItJIBVeIMlYOldDrkk1ViCLLixFSDiXyRpJ6021ldQtPZOXQ5MT7ite+G4++4h9j66WvmPjbgAEDBpwWyFXtaFZyDb2aohxysNwmqs2osivLQGo63xqT5wScOVRsZVEXFVHUhpXUrOpt5OZKaU2TIEWRzNhz0Ivaylhx/AKUOHb9dpz9M59Gs27bUd/3hWD9q74XK9QCzo+PT1rFBwwYMGDAgBeIgRw6kcgL/VaPqjwhBMdqGEJUlsN4AbLzGK4np0kS5di00UBL1cqUmnZCS9cbWyZawVX5O33KIe/GdebQlNYQJexIlFPTV61enkvUzVcNZC2UtjDasHXM86SxPF8rLWO2KYSXyBwaK6myGpUg7m5gNZEczaRiRF5XJPBl53Tidcn3R5BDVYW6mNzSawqZkFP52BbUzJTMoSSPpx1PynwwTQ7x7Fi2LDzb4cqDEDnoiqqnUwEvLWPQtvp8yxtSWuZUnuzb/Dg2COWQsIOl19AfSI3g2O7Gr92XVjsljsl0lEPg7yhZCspn3534dzOH+DOj/KYe5ZCeXYXt3/TzgB5OoQMGDDhNsXZ7+v/cWkSb28WkVVqJVjGYovq1trYri/MxjZfKjuCUzYHUKTtPqnGZ8MjKIR1dOa/32LInGsZMvXkDgOcgvQpaALp5YZlDJwM7r3srnlPrALwwMmvAgAEDBgzow7CyOYEgksKrGQ7jBf7/7N13nBx1/T/w13tmdu/Se0JIQkKHENJIaIFIEUFABayoFBH92VFUxPYF/Yrla8EuX/wqWFAElKKg0pEmkEgIJQGSkJDe++Xudmfevz9mPjOfmZ3d20suubvc6/l4aHZntnx2b7jbee+7hDX3fuZHoU7ltDKVqMmw1ZA6iJsxpu+fe/JuCUpJg8gkSGJNQVM3N7PDHg3vesVUerddYhaXqpVL8QexMiqDFUY6cyjTA8jx4DiCEjIZOqnMISs45FqlckHSc6gUNe8OVMKRt9a4+9Tz5fSAyr4u+/nNh9i84FAqsFDIb0gtVlq8+bmVS2GQxzQrb0WxYuQ7gLgZpclQMqOEPa+IAG7FfTz46Qlz1usIyqX4529+liZTKjw2wj5VsDK5Ug3MrabVcc+h6MO26UUBIC4/M98qZ9cYTyizMofMzySeSmaVlYWduPzUY5oglxf3HLKCQ5mTgoqG1HFzbxNoq8wgIyLa6w0ai9L77wLGnxN/uVEtc8gXN/5ix3E9QNykrMxkDjlWz6Fs5pDjxb+bVdyk55DjRsEhPxmM4FV+7ihLNnMo+rtmN9CWsLG1pzlfkgAoRH8nukUmjuNixb6nA6j8m0ZERLSzGBzak6IgRdlNTyuD+hXNFMPMoXTPoXDiVzjS1TyWRplDFYEJE3Ao5ZeVxRlFbiHu56OBH3+Ia0UhDmDZJXBBOSnTcj0vlTkkuZlDJXjqI3AKUd+A/Ewm+/2wx9PbryUZmZuTOSR2Y24rcyhIvm0sR/2ZytFh71YpKzPvbV5wKN1zyJQhRUGrnA+bdlkZzDevSAeNzG18cZPXGv0cNA5sFfPLyqJeVOa1eNE3t55XCINGFYEXPykjM88f3bdULlnlWFFQxWRKBSWrT5UXfyBPTVOLnqsoPiQoIRAXXlSKYNZlv6a8zDQgOd4kSHoOxf2W4myhIB0cypSVxbcz70uhRlmZ6TkUTyAzWWemRI8fvImoZyoc9Ibwiw3z5YY9sdPqDVR2iuirTQCSYRXZ4JDjWtPKTHPqIAzuq2TKyuKysPBvmaN+8re5UPklTWXmkMk8ymYOmZ5DeV/+VE4g7cpGnvA+AN1nvURE1PUxOLQnmVIwpyFVMmaa99rU8TINqYOwrEzCb9pMwMP0sckGl5J+OvnBGJMtI1YWiPitcXCgRZLSNwd+UtJVLsUTQ9xMQ2qxTqJdKxvJLiurJ3PIyY6nj4ND4eEafwi0g0OOXVbmxZki6pdSvZ7Cx0lnigRVgkP2RDHDy2mEGdTKHLLeEykkASy7PE3s4JdjAjVRpoxZu1OsCKIASS8q81rMpDfXdSt6DpnMn4oPxVZAqrIhtdWsvGwdMzV6DgGAE5TCzKWo7KpoBYdSJWrIyxxKppV50bQyE1CKewtpOQ5eeuongcyKaWVRzyPrvc+m4Afx8eClX3uNsjIioh7FZA7ZDaklKRPbOvhI9BKTOVSEOgV4CKCqSUZqlNEa3qYQf9nlRg2pYWUOxdk7cc8hP1XSbsSfdTK/1+OM6Eymk6gf/p3I+/tueiV2kzKtoYeegI29x2H4vvt19lKIiGgvwa8b9qCkiXS6IbUTlCqDQxWZQ2VACmEfGfXjgIf5wJZthmyPks/jl0z5UHKir0GStt0qDanMjmYU0RstYaaIaVpsTfyynzPcZ5eVBUA0jrZaQ+pUsAzhdK4GiQJgjpVZA4R9CpA0nASAsmNNAnOLVsaLH49z9+PMofR0qryeQyV1UcjpJ5OaCOekP3zml5VZTboLVuZQlZ5DccaVyRwyWU9SjEuqUuuJvnE1H2qL2opWdVF0nPADdbAjvm25HHZmkmwKehwcak1KvqLH86wMrDgLzU1+7vbxZa/PDVrCY9VxUFIXRSRlZWo3twbS/bcQBkLDBbUmgUITHKqWOWTKyjLTyuJpadbPIfstqy8eoMkJRxwkiie/sayMiHo2Jy9zCEnm0KDxpwCP3B3exCuEgwtE4ft+aoiFub3rRZ8JorIylaTnnjoeoNEXA9GIe9fKmPbsv6umPDz7cdZ8rskGh/zWuDy64jXmBJS6NMfBoE8/gUEup2YSEVHHYObQnhSdSGfHlYv6OZlDbuo24QjxsL7fCcpxwMNko1RO6jBlZfnBocCaHuK4DsrqpBoSl1BInbybaWBBuZRMDPEaIPZIdisjxY2nlbWGY9JdL1p7/npc9eFrMq2tBXbaeLrXkPnm0c6A8R17EpmXfAPol8LAhjrxmFwTZKoWQBO/VNHDKX5sezR9ZlRu9ptLIJmWBQBOMQkO2Q2Skw+3bvwe+mZEvFm7eKmpcfF9o5I9E9goaGt8LATipQIvZfOYmQ++ceZSOek5FTdytsrKkgl3hbgPj1bJHPKClqTcAC6KsN7jTOaQW5E5FAUfy8mEM4mnlZnAUjkOXtoNqbNlZeY4EKuhefaDv1lnnDFk/jX9mwrd5ESBiGg3kejLDcf6/dmvdyMG9e0NANh38hvj7Y7nJX+3y63xl1mOV7B+3xZTPYfUKcT3SU8rK4TTW+HHGdNesXJaWbZc2ImzkOxMJxeOn/93MHwwQUnd7tFzyCj2yc2CIiIi2hkMDu1BpqQqcIrp4FBQ2XMIThKcAaJsCieq19ewp0tJ3XgqWUVwqI2G1L7ZbmetBMmY+rCMyZTw+PE0sCAKtgDhRCz7g6LjVl7WqKkvHC/qOVSlrAw+mq2AUItU9hRIgh6VZWW+Y08CKyb9goJyPFY9W/6VNFXOvEfqV0yPix/bDTNhAEBcs476ppXZmUNOTkNNX9yKckAJyihHaxdUvnemZM9kfxWRBIfCpubJayuX0z/z7POXrUl0btToPA5i+X7cc0iszCEN7MwhK5gZtCSNSuHml5VlJ4yZ+5rtvtXE2gRDTfmYKNyof1VR/CTQZN6jnKbiJriY/eCflDmky8q8wPQcYuYQEfVs+w4NJ2MdNHJQvG1w/z4YPrAPAEAGjcPG4kgAUcm5Xa5sso3dQjzdzPWSTGg3yoCN/6ZbWURwwmBNqudQ6kup/OBQnMlsZRgHcOFEveQqMmgjPpy43xEREVFPw+DQHqRaRqu6UDcd+IGWK5spOm4qo8JDOQqweOEJf+CH37pV+WAUZ6OU8xtSB1HQxgR3ytGI16SMKcluCjOHkt4zccmOV8iUlVk9h6KMmaA1yv5wwtHqeRO3gDBQYAeEWpFk3MQZPtZUlOzz+VZateMlDZolmlZWhht/E5ntOaRBOjgkQRm+VMkccsSalpZOW88bf2v3FvIa7MwhqwQv7pngWSVeSQNmH8m0lorHR9hzyGT6NGhL3Bg7TMW3molbE+pSrzcKcgV+2SoriwIl5kNyULYmziR9qrRsZw7ZwaHW+CTAFweNUpk55GUDOvFrCssJ7OCQCQqlA1DJse1FmUmeBAj8wOobZZUeIh3MM8w6zX8z5rgyE9Y8NqQmoh7OjTJfezVYf5sPfhNw4Knx9caD3wAA2GdQP0j0GWD71s1xRrJrjbJ3vEKcCe1GvfPibFynEP8tlCiLyEMYHApU4l525nGA5Pd4st0El9KZQ/HkzCrZNr71WYGIiKinYXBoDzIZLCrpZtOSN63MCiBpkDQSTsrKoibWbhuZQ9msmIgJPthZKwisUfZOQ3Lyrj5ao2bO6pcgVlaGYwU/7GwY88EsKO2I15NtkGzzkGQnAenR9HF2k6TLyuwPfYEVHHK9YtzrRs17JW5SVmYyh3L65oQbKhuEx6/LCg7FQZb4cav3MAAAt9g7eb12Q2qzDrhxU++4hCtauzpu3HTZ5kWZQ+ab1EZJ+ldl+1aVyknPIFv8DW/JajYePZ55HxGUUxPu4myaIL/nUEFb4w/Y2SwsyYyyz76ueHtgBYfinkPJ6ylqsr/BmoLn+yUgCsSKdRJhAn4VDanNyUrBjL03mUMt8FVSASYioh4p6m+YKsc66Upgxqfiq70mvAXqNsDpPQiDDzoaAPDasw/Gf1cctxD//jWBItFwaEXgeKm/qanMIcdkDpVQhguRpATdBPUrModM2bn9OQFu8nclZ1oZYDJ4OYSAiIh6JgaH9qToRB+ul8occoJyxbdeEDdsxhsESSDHsTJIgjLK4lpZJ/kp1X6VhtTxVCovCZiIlTnkO0nmkAs/HgPvWz2HXK8Qlx8ByYc0wMqMKSeZQwFql5WVrIBQyWowbT7kmaCQKQ+zM4fUtUfZW9PNrLIyM9LW/uYSyIxjhynlqp4tEvcjyjSvzMscKljp716DFRzK6TkUSNJzyDTJFvWjsrIqmUNRrwY7MBeX3znpTC3zM5fMh+I4IOUnDT/tKWthX4hSahxxXJJnlS3agb+iJj2H7EBbWR1AfWgQwJMwQ8gOYNnbTVkXkASH0s+RZA7ZPY3KpVJugM8E76r1HDKleaaZuheEJXr2iQgRUY/Ub5/wd2f/favf5vCzIV94Deg9GAdOfgO2oxGtrzwYZ6Q6XhG+mCB8MS41d+CHQZy455CbXHaLSQ/GwM8ZvpFMOLPFX8zYvQnFgxtlnEq1zKEDTsUhR51SzztCRES012G9xJ4UlYLB8cImzaqACJzcsjJT8lRCuVwKf1BuUlYWBzysrJPU3eNJXNWCQ6ZEKOo3g/AbvDg4ZE1Uc+An08CCMhCUotTu9DdsqSwZE3iJMofgFMIPeEF+mZuLKDspGk5VlsqGk+VoqlReWZl61iSwqFmyCXiJmrIy63GsNWb7Mon6lT8PS7YsTaR6cMixmhkXGqLJcurAdaxvPk1wRpJePtmyMq1SkudGH6q9nOCQSrqpuT2hLvV6naSfVJL+n7z/ZXjhsRtnDllT6qySPDvwV0Qpfj/s97IFxfDY9ZPwWzydDOFENfNK7LIx89ip7CQk+wvih8ekKMrlVoifFxyq0nMoLitL/1vQVpTggh2HiKjHGzAa5c8uQKHPoNq3K4Y9iJxCEYv7TMaYTU9jdfkoAOHfXBPE8aKeQ4768dTNeBKa4wHRAAEn6jlkysqywyLiLOWKsrLosazMz0BcFKLMoWo9hwZd+Lvar4+IiGgvxsyhPSguKzNTNIKkj0pFYMEECUqt1pSpQpxBIlpOjz6vljlUrhIcirab0iofbjT2PVxTYE1U89SPp4EFfjn17Z2dYSJWgCIuSyonH8R80y8ph6c+StbEsbJjN5xMZ/zEmUPWN4LqJQ2pTaCkHI3JDYNybtxkMmlAbLJ06u85BFhZWubDpWt6IVV+2DQZQr4KPGuynJ2NYt6rAPkNqU0z7ezId8A0KneT/gqZ9dkBJb+cHxyKx9KX7Wbj9retTtgXK8pmctxCehqcWYsVKGrQFms6XPJetkohzHorJYGdVADLOl5TwaE4cyi5bYOmA40tSCbqQf2Kn2G1nkPmuDDBQnNSUbQmvxER9XROr4Htun2w/0kYi5XYtnIBgPDzglqZuwHCUnNXTeZQku0TTyN1w+0uwkEc5WwQqNq0spzMoQAuCqYcmaVjREREFRgc2oPigI6TDtzkBodMo+hyGUGpHG8LxA2DBFHAI36sKg2ps4EPI84cMoEJCcfMm+2B25hqGFyOpoFpuRRP0AKSE2ogCTQBSXBBorIycb2KXks2Dz58K1vIt8rK4CbBEyBJH0/1BbBGxqcDXmHmUCBu/GEzLiPyqgSHtJzbPyheW/SfjTjpD5+5DalNoApJdk8585+dHeCLm2+bEjCNShEzDcrD2wQoSFhWVigk7138Pjluqnwx7q2U+VBsB6Q0Z8qXycCKs5kcL87OqpY51IDWOEMnbkytgjK86LGsIFBqolqy3e4plNeQugHpwKdpaF6KjtFsYCeZclfI3W6CQuZnVkRr5RRBIqIeys54rcd+088CAOyz9nEA4e9YE4wvFIrxl10ufKjVc0gqAkXhZwdRv+L3uiltz2aEip2FFAkkmZzpVCkrIyIi6skYHNqDxPQWij4cmewJV8sVKdESB4dKceaQ43pRH5lyHDRI+tXkT+qoaLYciXsOmZIt0w8o2q5eYzz5yUMQTwPToJzKynBTvXOs/jomuBBNnAqDQ25u9gsQBaDcJPvHty5nvxkM4uCQ9ZqjMfFldeImxH70mpw2eg7ZTZWBsOlxXqAnXpspK/PSHz7zJpx48fvrxM+X7WfkWj/D+Odpeg5ZmUMu0kEs32SeOW7q52CCMSqFVFZOEB1HrlPl+f1ynKGTFxwyx4zrJYEutRpE21k9rmj8fphgVRkefISji8vRYzVrIVVW5lsZRQUrM8gJKsfeO6LwNTlZMQ3Ng3IZ0Mq+UX61zKGoB4bJ8jKT9nppMzOHiIh20oD9jsQ6ZwjGYyGAsAdfIEkQ3vTF8xCEf0et8fMmY1jcsDm1a6aVVXy5Ev0tyvz9NUF+sUfZi4ci8gczEBEREYNDe1T4rZcTZ8KUy0mpTEVgwZywl1rjEjC1sm/EZA5V6TkUT+KqMq3MNDw2AQszNcSUupkGz34QThJROzhkZWWk+wwll03wwPVN5lChokGyEfjhNDbfKiWzR9PHmS3xiPbKhtRigkPW+2D3HAonfqWnirlxAC39HjkmW6cKc//stLJsgA4AXDec9uXDhWd6IWXKneJ1OK5V4pUcG0GVzKE4+8YpwE19AE4yh9IlW9HrrJI5FPhWs3HrvfWjnkMmuCRuMckY860ATibwF7/fcWNqB76Eza1NEKhViqk1pjKHYPccitaVKUtszplw55dbov8+0u9zXPaXzRxyTLAw3N9vxP5YpkNRlOpT64iIqA0iWD4iae5sZw55XiHqpVeGhzJgTytz06Ps4YQ9hyQoV5SVJX8/q/Ucsr7oKPZFP90e7mdZGRERUQUGh/YgCcJGx+abLL8UZdXklJXFARG/hLKZ9OEk2TdOVCpVdYxr3Gy5Ws+hZLQsEAaXnCCZVmV6+LS2NIcZRCaTp1xKMnGAuI8OkB5l77oufBU4vl1Wlj+O3Y+bYCfZQoF1OflmMAmiAOmGko7Vzyd+3KjnkHnfs1PF4olhQWVZWVCjrCzOPDINqd3qwaFwTU56slw2c8gzafHJbUx5V5g5FAUFrQwbACiVkm9AnSgIBViBQiddxudnJtQZ2Z5DpZwR8KLlVLZZnFlkZQ65Wo7XYL8f5t+yuPHEOhPwbEERngTQIIgezu5bZAWetDJzCEgCQgDiaXd+uQwnKFf8NxFfd7OZQ+H6vOjnOaBPA2YNOjt8LAaHiIh2Wr/J58SXPS/8W+arwHHDKZyuluCKhsEh1/rCxU2CO+J48CTIHd4Rf1GRDRq5lV8ilUcfFw4DQfWG1ERERD0Zg0N7kOl9k4yZN9kQfs2ysiAeZW9q78PynwBuHATKjuc2gY9qPYeScfRWvxv1kxKrKBOntTmcNqZeHZlD1jdxIgIfLtyorMwxWU85ZWWmvM4OCAVeZXAoyGQO2d/8OdF67YwfE4gwgbRs+ZcZWY68aWW1ModMWVv8zWT1sjIgDDAEcOOASjbg4FjBJbMmE9Rz4n5JlQ2pgzhzKCkNDNeXfMC2A0pqMn+yo+yt/lQSlCoybkzT0HhNbgHiOOFYeiuw5qiPVliPnWkA7sOFL16Y1ROtPcn2KaX+BdLj6aVacAiVTcz9cgnQnJ5DVtDMFh9PVhPugcdfDF+l5nFARES1jZv6JmxCXwDRJFHHTU3U9DSZginWFy5x/yE36T8kfmUfOPO5QzPlwk6m7BsARk4509rP4BAREVFWhwWHRGSMiDwkIi+JyIsiclm0/bsiMl9E5orI7SIysKOes7uJy5XihtRRaRdygkPWtDFzO/FMWVkQlqiJB6dKSVMhOtFtbm1BHvtEHwgDCmHPoehbtSg409LcFN7BjIr3S9FzJ6nhhj3hCgiDFfHoerdYtazMlBIFVs8iWGVlTib4YgJh9oc7KTTGz2n4Uamcea/Mh00/+rdgxsxneg65OVkntiATGDPBlmyALn59cFGGF39Yrfhw6yUNNZOG1Jlm5U5lYK2cmT5mPnAnjZe98FtS1egxK0vGwpulJ9FVjIAXFxL40LI5ZtINv+PHgR83hQ7fj3RQLwwOhT8TExg12T7lODiUHk8fv0dRxpkDH61WdlIplTkUZY/5rbkBPjtoln4DogapVt+m46dOwqMyDZulP4iIaOc4hSJeGXACAhV4Xvg5wPydVqcQDx4QK3PIvuy4hfhvq+s3V2TemqB+tqxs5JBBAIBDRg1Nth0yFeswKHrcIoiIiCitIzOHygA+q6rjARwL4OMiMh7AfQAmqOpEAK8A+GIHPme3IuqnxpWXS9E4eS1XfOtlAhlBuWSNIC/EGSSmF43dM8i2z6DwpPb15cvzFxM3F07u72hSVoboRLnUEgaHTJmZBknWEpAOCNlNkYEwKOIFUeaQ1TcgK86AsTKH7NH02deYnVZWVgcSfdBLlZXBgxOUU9k39v2TaWXpNZlgUjVxQ2y7JwJqlJVJGBSJx9pXpMVH63Lc5LIp4YrWoo4LL9tzqGQyykxvHye1vvj1Rj/T7IS67PMHQTSJLieoIlpGEKTvX456OhmellOZPHFDakmCSSYLyQSBynHmUGv0b2UZpK8SBxVd9dGCyoAQkPSpCqKysuxJRPJzy2QUmRMPK9BZ9BysPu0neOSon1Ssh4iI6jfibV/H45O/Ddd1ERT6Ybv0BhD+jYh7yznJQAZTSgZEWUTRZyYvaKn4rBNnLGfLygaPBd7xawyYcl6yUQRLBh4TPy4RERGlddhfR1VdCWBldHmriMwDMEpV77Vu9m8A7+io5+xunKh8LO5RYzKHchpS2z2H/HISBFDHg4ck4BGXlWVH2Q85AGsa9sPU1X9Bc+tX0FjMnCjH/WesUfZRWVlJk9K31ihzyGTmhKPh7cwhe1pZZjqUWMEhL+o5lFdWFr0PdkDIlLXZ74WZcpItK/PhQrx09ox5TRKNvw3Ejcu/TLCiWs8hR/1Uc+ws8+E0Huce90loo6yskB/IM42qw2ll2eBQlG0mlYE130w0c9Kv3bw+uzSx4BbiIFz25xQ/Z9RzKG8EvKPluLzRZB75kskcUj/M5FGzId3jyZdw6prdc6jkNAB+EujKNgcHwhH1jmlIjXJUirYjun8RpnLOd5LgUF7mUBy8y35j7JjjIf2+vHvG4RVrISKi9hl7wKEYe8ChAICDz/kS1q56P4YB8Br7oO/mJkBMECj8GxmWoYeTKMVqTu0FrRW/1534y5Wcj7MT3l657aBTgFn/gFfs3UGvjoiIaO+xW3oOicg4AFMAPJXZdQmAv1e5z4dFZJaIzFq7du3uWFanE1OuFJeMmRNev6LUxWTCBKVmqFUCZgIsJjiU1NtXlsqsn/wxHCZL8PJjf6lYS2XPoajkKyiHGSEmsNASnoRL1HMIfjlq2GwaUifZFnaJGRAGKwqajLJHTt8c+32wg0NxMAqAG70XJrtKTbp53MPHqRh3by6L+nFPp7gBpek55DjhKPRsWRnqKytL0t7bakgdZg65mR48RlI258XZV4GVOaRVyspMgMUECM3o9jgLzQSNzLS76HU6mZ+TE2dQRZPdcnr1hCWHUaabFYgTK5vJhY9WK5MnGxwKEDUgDZKysnIU0CnHmUPhdrt0rAUN8XHjqp9qQm3uDwCByRzyS0mfKUuccZb9b8VqkEpERLvPsBEjMX5SmL0z4JAZaJDoCwGnkGTzuMkXJY4VNPK0MnPIlANXK+vOmvSmi/GfKdfgkKkn7eIrISIi2vt0eHBIRPoC+DOAT6vqFmv7lxGWnt2Udz9VvV5Vp6nqtGHDhnX0sroEkznkZvrKODlZDk0DDwEANCx/KskQ8QqAU4AXZcOouMm3ZjmBiQNO+QCW6zD0nf3zysXEJ/ommyUcKStRz5m49K1le/TcDVEgJT0JynU9BBp+w5dt8BgGh6LsKLcYZj3l9ByKeypZASHxksyh5DVmG1InGSxiZREZ5jU5Wg7vY4IVJl09apqdlzmU7V9gS6aVmbT3ysaXqdcXTelyXAet6laUrHnWh9s4cJPqOeQBrgdXFGpNBytnGlKbRtLJVK4oaFQy/XySaWO2+HgMkp9/+vV6cAIffpDONgvLypLAmgs/zASKxNPhTI8t8eKAnQlsJdk+Ud+p6FhoSY2oL8RT1xwEqT5DdoZX8lituf9NVZtWVvL6YDt6gYiI9pwx086OL0sqIFSIM3IdK3OoGLRUTBLNazxdi1dswNS3fYINqYmIiHJ0aHBIRAoIA0M3qepfrO0XAzgbwPtUVavcfa8Xn7CajJfohNiDHzfvNQrD9scLwTgUX74rNUJcHZM55MOXgpVVU/lBp6GhEc8OORP7b58D3ZbOxjJlS549Rl39cMqTJD18TOYQHC8OpNg9eRxHUI4Oo4I11h4IgyJFExzyavQcMmPb7T5DRetyZpS9Kd8yHyTL8OIgl5/JHHI06c+UnVYW3tdNjWMHTLZOjeCQY31oRZJBlO0bFd8+yhwCohKziobU5sOtG5ds2YFDO7BVLieBrCAO9qTL1ZKysui6CSLF2WLpY81kAsEP+0llG2bHJYd++vn8zHvnIlOOl3m/w8yhMEMtnk4WZfuUo9fr++kpZkDYVyjuOQQ/1WfIzhwymWeBX87tGxUHBTP/rQw99VN4YPr1ICKiPccdOAorG/YPrzhe3CRarP5D4hbiwRsFLeWUZbcvOERERETVdeS0MgHwKwDzVPUH1vYzAFwB4K2q2tRRz9cdOSiHQZi42XQYOHHhx6VOxvRxg/GvwvEYvPE5eJuXAkhKs1wEYRPrVOZQfmDCO/xMOFCsnv3X9I44CyTJHHLVD4MDVuaQX2qOnzsMpJQqsjJMOVM26ODDQy+E93ejZtr5o+yjQEjRyhay+gHEZU8m2BAF0kzPn1RZGSqDQ26UZSU5JXg+0uPYgbCsrNr7aT+HKQGTzLqyTK+d8Pkqg0Oe9frib0FNIMeUR8UlYsk0r1RGGZKsqfj1meCZycqJyxPTPXfi4FKmZNDQqOeQVmSbhZPHDFf9VLAmGxwK3wc3fH99M6Eu6RMEJEHLUqrpdBEukhJMOzgUuHllZeXcPl5JI/P0ScThB47DuWe/BUREtGe1jD0ZQBQE8kzJuBdPAXVdL/5bVkRLRVav287MISIiIqquIzOHZgC4AMApIjIn+t+ZAH4KoB+A+6Jt13Xgc3YryYSxTF8Z+BVZJwXXQePEcwEAfV69E0BU/uMUUBAfLsKT3ySwkB/MOGLqiVipg7Hjhb+ld0Qn5541KctBmDlShtU0uzXqOeQWUI5Gmpupa/FDRYeRm1nD6+5+6I2oIbUJbGVKo8L3ISqhsrOFrBIzLxMcQiZzx4cbBzzSPYeisjL4UGs0rp0VVI5uY3PVr9m/wLzXJpATB3SqBJTsgJAvTkVGi+M6KKsDdQrJBLUgCYao46aaS8frMMdPPK0s/frMh2uTjaPldJ8pwzTE1qisrJzNuJGwV5R5PjOhrgwXjhVYcxHAd6ym4nFGVdJ7SJ0wc8gc+0E0oc4EvUyQKJs5ZMrKPPVRTgWErOeLShHVb416DqVfR7aRORERda5RUWnZoaMGY8joQ7ECwzFozBHoP2Q4AGDAkOFwo6zk3rojt+fQ1oYRGHvQEXt24URERHuhDvuqRVUfAyA5u+7pqOfo7tyoRCguHYpOiD2tbEgNAKe/4UTMnz0GB619AoDpOZRM7VDHtert8094xwzpg7sK03Haun8B5RbANJaOAjRJWVmYOYQgDPzEPXzi4FBUVmZ6+FiBIF9ctKqLopuONW7Y73Rg0b/D5XnFVINkr2gFcaKAh2tNKHMbrMwhNxN8MaPHrSbUcaDICghoVMJkej3FmSypzKH8nkO1ysrMPtdqmGmvKyuIeg4BYZaVojKItBV9UC70TSaopRpSJ/0XglKyVhMokkzWVDZDJmlIne4ZZMTfvJrMoWxZWRTQie9vve925pCHciqTJ8kcShp2J2VlUaZQHBwy2U3hfxNmihkQ9hWKG1JnStdSz1dIMofcvMwhazQyERF1vsJBJwFnfR99j3gz+jb2B65+NdyhE7BjxOMYOWoC3GIv4BmgUUqVWb2Og35ffAX99vjKiYiI9j67ZVoZ5XMQNjq2p0MBYcZFXknSqIG98NKgk+M+PWF6dfjBKKy9t3oO1QhmbB5zCnrpDpQWPR5vMyf6cdaI48KBH06rkqRMS0thcMhxC2G5WVCOp38ZZXgVTYwB4PCT3omSmhIsu29OejpYnEFViJpeA/CsEjM3mx1lMoficirPmrqWrEMdF676SfZNNsgEIIADqSgrq8zkSq3XNOM2ZWWmTKtKgC7IlpXlPPa8N9+CA87+vHVsRAEzlFOZQyWrrCzOHLLKvKIN4bpMxk5Utpdki2V7DiVNsJ0qZWWuluPnM9NhAoSZZIaHAIFVspaU25leSG40ba8MjYJAGgUrTbDIHAvlzEQyzwoOBTl9hoCkZ1X1srL8nkNERNRJHBeYfinQ2D+9XQS9Rk0AAAzf71AscsYBqD4VlIiIiHYdg0N7kDlhdTJNhz2U4ybLWX2nvCO5v1uMAxBFtITBD9OMscYY7n0mnYayOljz/H3JxqCEwBrfbTKHTHAgbgJdSkbRm+BQtmTHh5MbHDpovzF4vjAxXJ5XAKLAgd+8LXU7U1LkOEmQySs2oKzh4VkxjcRkT5meQ+JWBkgQ9cqBH/VnSiahqFVWFGZDpcvc3JwG4ba4PCl6TtdLB0Gynux9Cv7T/+To+ZzcD7fHH3s8Ru0zIg7ciB++73EGjNUXyDCZZxUNqU1wyIycN2VlcTAp27MhWn/UbDxvBLwDH4gmk9nvtSnJC3wfjigCK1hjjlXzXtplZWYtGpeCpddYtqeQuQ3hz0QVHgL4qVKyJFBkpt2pX4oDsanX4ZiMKpaVERF1Jyv3Cf+G1juynoiIiNqPwaE9yGSkJD2HStDAhytatSTpuGOPx6s6Orx/ISkra9QWqHhJP54a36Ydfch+mKsHAIsfSzYG5XjKGBB+4PLgh6PMxUuaN9uZQ9EYcgfpAIIPD77kH0o7Dn87WtVF7/5D0DIsDBRtfOmh1G2SaWWFsOk1gIJXSAJFcXZTOkhkB0XcnPchkAJcLUfve9JzyM4c8sVL9c0B8huE20yQwQRVzONWK1eaecFXcfL5n4/XWutn1dCrD5bqcPTf+GK0ljCrTKySvPj1+ekyr7ikzrw/2Z5DJlssU1ZmMoEQlJMSvNTrjUoOzYS7QlLCJ1FgrVwymUCVPYfMe2kyqFz1EZj3PAromObaceaQk2407UalaI5oqpTMBJcAQAom0FTOLQ00xw97DhERdS/9Jr0VQPXhG0RERLTrGBzag1z1AUlGtGq5hMCPslaqBIf6NRbwyuBTAADiFeEPOggA0FtaACeZVlarVGZA7wIW9p6MEVtfAlq3h7cP/HjKmHn+pKzMTQIf5WRamQ8vyhxKl+z44qYfy3L8uR/HmkufxaCh+2D8MW/EFu2NrS/8PXWbZIpWEhxyvQJK1uXoBtFawuummXYA15qgZfUcikrlXASA41llTlbWUxTwsnltNqROT2dzTbChSrbRAcP6Yr8hYQ+lZjSiZDdtzvBcBwt7T8LIzc8CqklZWdynqrIhtVg9gMIN6WllpsmzyfypOso+iDLHKkbZe1HmULpPlZ05VDblbnaZV6YhtYoHOG5YGlY2WUxJKVj4mqIgUabptAc/LkdMlZIV7Mu94sfyUK7I5Ko2rYyIiLq2w6bOxFIdgebi4M5eChER0V6LwaE9yGSwmFKwICgnJ9U1ypiGvvEy/MD9IAaNOgRHznwb1mtYmx84HgpRE962Uq1LY46HhzJaF4cNohGU4yljQFRWBj8uK0oCWGFwyHELcQNiJxM8CeDmlpUBgDgORo8ZCwAYMbAvnmuYihFrHgNUk+c2vZdcD77p51NIMofcbMNnN93zJwxmVU4rC3vl+NFoei/O2JLM2vN7DtXRkDp67yvK3mr4475X4vlDPl7zNq2jj8UA3YKtS1+IspiSrKey1XPIBFTcuKl4VCIYN8qOjrNyumQr23PIc134KtCgDCeoLCuDePC0HAeXPKusLM4cMgEoO3CTKQM0ZWUu/DgIZII72VH2dumYRmVlcWNtK3Ak1vM5pk9VUMpvKu6aoB6DQ0RE3Umx4GH9++7FuHd9u7OXQkREtNdicGg3CgJNXY/LykzgxS/F/XZqBRaOOeIgXP7VH6B/ryIG9O2NFwafFu4QD4WGXvhh4YNoOuRtNdey75EnoawOVs+9P7xrUIoDMUCYZeNFPYcUSQ8fx4+CQ54XNyB2EVRkDvl1Hkrbx5yMwcEGbF38bLwtsKZuJQGhJIvIK0bBgEyjZVPeFNj9hBz7NRXgwY+mwbm5PYeCnMwhF/nT42JOOmhlMnHqyUj5yofei0vfekrN2wyfcCoAYNmz98LVAOp68Vh6u+eQmp5DmaypuPFypreVmcrmFtJlZY4jKJusMOSVlblwEECDMnyrT5UpEQsfOnoOu8zLHOd25pCEmUNmLUkpWDqAlcoc8hrhIUDJBIesqXaOlTnkFRvjx3BRvSE1y8qIiLqfyYeMw5jhzBwiIiLaXRgc2k0emLcab7/uCWzcnmR6xKPs4+lQrXHGhdRoKJ014Jj3A4h6wTiCT3/5B3jjCcfXvM/UQ/bDC7o/ZEk0sUz9dLZPFEhxop5DccCjHDZGNj2HHC3HmThGIG5qhHwtI6e9BQCw9Jm74m1Jo+RivCbHyiLy4swhE4QJgxtJnyE37puTyhaxysrUKSTBGyuA5MOLS6PCB1AUxa9ZpmeCHSaDJh5l30HlSoePPxIrdTD8xU+EzcqtHlBmqheAuG+PG5eVpYNnbtzEOh0cymYOAUAZTpg5lFNSZ7J9wmwzOzPLqygrs4M1cS8ma2qZOoWwbM9kPTWEgR4/s0Y7OwheLziiaG3eEV3PyRYCwnHH4ZsU/cwzPw+HwSEiIiIiIqI8DA7tJo4jeHHFFrz3/57ChihAZHrfoM8wbNHeGLTmafhmzHg7JnBMnH4SHuj7FshBp9Z9n/6NBSzuPRHDt74ElFsgmRN9RAEAJy4ri06kTeaQ68VZNm5OWVl2/Hk1Ew49BPMxDg2vPRBvU6sXTlxW5jXAh4uyOnBdJ15juDMKGtlTswrpAAmQBDXMNDgTFEiVlUWlcvH1qAdUrWllpqePyVxyXVOu1jFBh4aCh0W9J2HfTbPhRceM6S0VB3pgleNZQbJw7enMoTig5JdTE+psZhJdONktk3HjhGVlEpTjbC7A9Bzyo4eOsr+8QjJlLs7mspqFRz+TuCTOZA7Fo+xNX6Ek6GOCQa3NTeFzVM0cSsrKcrO/4nI7lpURERERERHZGBzaTU4uvoz7D/oz9ln3BK645VmoatzLpn+/frgzOAGjV96LYPua8A7tyGZwXAenfu73OPa0d7ZrTf7oo1FECS2vz84PDonC0VI4ujzKxEnKyopRGZE58U5P/PKzfWqqcB3B0iEzMHbHC/CbNob3LycZMCbI5BbCErMyXHiOAEiyqyRTXhaIFzdJtsvKgkIf9NKWcBqcW0h6A2XKypwgKSsrmTK/GplcgVtEi3rwotv0HTEWtwUnQ8edUNd7UI/mUcdhsG6EIwq4Hpx4WlmSiWZnXAH2qHYvvd2UomWCOzYfbjitLKesLAzoBBX3t8vK4gCUk5QGxu+zmwSt1DFlZVFAsCFdVmYyh+zsIESvo2SCQ6nMod7x5UJj7/j1elqunjmUkzlFRERERETUkzE4tLusX4DRy+/GDe43cdair+HuuSvCUfGOhwG9CmiddAEKWsKmx28EgPjkf3caMeEkAMDK5x+GqJ8O6EQn8AVtCU/6oxN7N2oc7HleapR9RVlZnZlDANB4+OnwEGDJM/eEG8y0Ms9DWZKsoHAKmguRMDhUURYkgpK6CMRNSqWsdfU+7I0oiJkGl5855IuHojYn16PgS62ysrnDz8EnSp9CFLPCgD69cPZX/4xjjppW93vQluFHWn2JnKSsTO2eQ9H7lpSVpRtjm2wj0/wZWiM4JE6UOZTTjNvxwmM3KKePmahsDwAC8765BZSjXytutqxMXMApoCh+/DP3GsKAThCkew6Z4FBJ3fj+pdYwOOQUGxBo+Oab4BJgZw6Voyy99GuNy+0YHCIiIiIiIkphcGh3mfYByOcXovm4z+Bc93G8dsc1KIgfZ3e85y1n4gU5GMMX3BLefg+Uukw67GAs1n1QWvxkdKJv9+cJT5gLQSsCx4MblWm5QdJzKOwx44dNklOlWV5ltkkNRx57GrZobzS9GI601yhbxHEb4swhx/WigrDkBN8ESMTK/PHhhOVjpsTMWtf4Y07HBvSLX5+TnXoGYG2/wzGutBDBjs0AkqlbtcrKeg8fhxf6nZAErQA0FtzU9V11yPgpWKsD4vWatQdWzyGNG0yboFD0Xjmm3C3dxFr8MnzJ/0/ehwvEk90qy8pcExzKZA5ly8rCXlGmrM00pLYaU5v33gQdoybSMKPsTeZQNAmuDDfOQCq1JCWOcQDKKisr9OoTLawUT3lLcdPvCxEREREREYUYHNqNpNgbjW+6Chv2PxsfC/4QbotOjvs0eNh8/JfQR8Mmu3uiD0q/xgIWNh6B4Zueg6OlVJ8gs66itoYj4KNSHk+T4FAQNaT2MmVlqwpjsMIbVfc6BvbtjRcaj8LItY8DqknvnEISZPIKDRUZSXE5mWtn/rhQcSGOE/a6sQI/xWIBrw48Mb6vU6gMLskhb0IBZax49h8AgCDqAVUrc+jC48bh/svfUPfr3Rmm7xAQrjeeSGZlDiEzyt6MoDfld3FAydxHyygj/3UFcc+hyilfEpUcSlBKN6R2PLhI9woKJ86ZnkOZht2Ol2QRlcLjqmAyh8wazeNEfYV8JJlD5Zbt8XrixuVeA/woi8grRBlFfhmeBJWlmiajqsDgEBERERERkY3Bod1NBIPf/XNsLw4Jr1tBh+NOPRd/6vVuAIDaPVZ2o9Z9j8YA3YwRLUviYAKAOHOpgDA45LlJJlG42wsnrakPD34qs2bNzGvw6oxr27WO5rEnYYhuwPrX5sTBIc9NGlJ7hQJ8uJnSt8qGwmV4cYmbD7cisFGc8Lb4vnHjaOv+h057I7ZoL2x/ISxxK8flUdWDQ64j6NOw+4N5zaOODS9YmUNqN6QOTDleupzMZA5lew5J4FdtHF4WLyoZDCqzpkxQzm9J/TxU3IqeQ+IWUhPn7Pur40HNtnIYFDXBIWR6DsXBIXHin3vQuiN+DpNR5npeHPByvaikzW+JnjcT5IqOaY8NqYmIiIiIiFIYHNoTGgeg4W0/AgCMGj443uw4grHnfQ2fbP0ESuNO3iNLGXJ4mEmzb3lZqqzMZGc0agsCpxBnV3hRWZlbKCJwwulU2UlQ7ztmLD4084B2rWP0tLMAAEtn3RM3J3Y8Lw7uuI5XkTlkgg0SBT2AsKzMlJJtdAbC7Tc89TyHz3grnu57MgYf/gYMHDYKG9EPfUceEu/fd0h//MebguGr/wWoxiPVpQuUHg2dEPYdUrfByhxKgkMmc6jgJcEXIFl70nMoek1BKc7qyTKZQ2ayW4rp1eO3pIJL8Yh7a12OW4iDNWbNcaBNkiwgKYclYkXTRNqUk0XNwZ2orMxH0iuq3JIEh/w4S6oQvybXCwNT5rGz08rGjx4KABg6oF/ue0BERERERNRT8Sv0PaRhwtnQ4q0YPTrdtPj4Q/bB2Cu+gpH990zm0BETp2PT3X0wULanTvQbRx4OzAP6SHOYORSd2BcRZQ7FPYfCkh3JBhDa6eCDD8MS7Atv8cNoHj0zfI5CAwJ4KKmLguuEU9Byeg7Zzbtdr4BBfcMsk4GfehTD+gxMPU9jr944+nN3JBuuXoZBmbVs2PckDFr6BEor5sIvhUGJijHoneDQI4/BnS9+E0edeB5a1i0BkC4ri3sOZZpxm7KyuLeOycZRH+UqvaHCZuNVGlK7Sf+pVOaQmWIGILB6DgXiAlrZI0qdQhIc8ltQVidee2qimjpJQAheHFwKSnbPIS9+jWZNrltAWdx4wl72Z9hnytuBxiLQb0Tue0BERERERNRTMXNoD5JD3gT0HlyxfdTAXnCcjmtmXEufxiJebTgCAFJlZUccdwY2on+00GQ0fFFNWVkB6ngoaDRVaheDJyKC5YOPxQHbnwOiKVRmIprJBAkkXVYmTqaHDYABJ30KB550IQCgcdBIuMVkelW9Bk08HQCw8tl/xNPK9kQPqLZ4roO3ve/jGD1yJFzPNKRORtmboI8XZdlkR9mbRtX1lJUFcOEEPlwEFT9bE9Dx/Bb4djxZ7J5DpqwsCeiZwE/cv8n14j5AUm6GDxdutPakrCzsa2QCSoF1WUs74seL+xp5yfN5hfCyE5eVZbK/eg8Gjroo9/UTERERERH1ZAwO9UBNI8LsJbs/j1coYtHQsLRNHStzSJOeQ4G4cSZRrYbN9Wo87FT0lhb0XvV09BxhAMqc7AfZzKFoTamGwid8Gjj4jbu0jqlHHIGFwUj4Cx9Oyra6QFmZbei+B6CsDlpXPB9vE1PKFU8pM5lDYWDPzTSxdrSU7uFkCcSFqB+VleVnDnnaku5T5bjwop5DGgfVkkweU9YmdkNqE7jym+HDgWdK34IkgOXDie/ri5M01jaZQ14yEc3zkv5DXqEhCg613TeKiIiIiIiIEgwO9UADDwv7DvmZIMCg6e8CEGYFOZ6HTeiH/hJm9bheESpeHCzqiLKrQ449EyV1ceiO5wCEJ/p2tlAgbjoYMe5EfK/0ThTHHLXLz20b0LuA+b2nYp9N/4FGWUxdIXPI1nfAYCwoHoYhqx6Lt6n6KKsDccL/jE3Gjym7M2VlEjUVR63MoaiszENQ8bM1GVuFoDX181CnEJeV+SYA5RXi53Dj3kemYXbSc8gJWlEWLymJC6yyMvHi58zLHHLcYvwcjldMglFR1pIbNEfr7lo/QyIiIiIioq6KwaEe6ODJJ6JVKyd77T/tdGwo7INB+4wFACwZkWTkFApFiFtAL0Qn3h2QWdO3/2C80nAEGiTMgHHdcJS9yQR5pO+ZuL341vj2Uw7cF+d9+oc4cMTAXX7urNYxJ6CXNgNLwywmp4tlDgHA5lEzcXB5AdauXg4AkKCcyqwyZVRxdo7p52OaPKufakJuC8SFqyU4opXBITPJriJzyAszjWBNTnML8W3MtDQT6IFTiI8b12+BDxdeIWoubnoOafiaTEDJFy851krJsWdPKwvgIlCBOGFg0Y3Kypg5REREREREVB8Gh3qg3n364YX+M9Ey+LDUdnELGHzFHBxy3n8BAIYd9954n+O6GHz4TBTFjzZ0zIn3tv1OBQCU1IU4DtSaUPZc3xPwQONpyfpEcMCwvh3yvFkjJ52GQAXBggfC5+qCwaGhk8+CI4pFT/0t3BCU4yAJgHjKmAnKeIV0Vo6j5XRwxxKIBzcwJYPp154Eh1oR2D2HHA+uKDTwEZSTzCETgHLddFmZuElZmRe0wIcD1w0DO/Eag3JYVuaa4JCbZHGVk7KywGpCHRbDRX2q4MILOi67jYiIiIiIqCdgcKiHmvrZO3D0h35SuaPQC4jKlPadeCo2OIPhR1kZB550ATY7AwAkE7F21T7Twswg02DY7jm03+DeGDO4d4c8T1smH3oA5mEs9t04C0DXzDo54MjjsQn9gAX3A4gyhzKZPECydi8zCUxqBodcFALTyDl9GxMsKqIVgb0vOgbK5XLcUNr1kswh0xA7nlrmeHGgp6At4SQykTCwo8ko+3B8vRevywSKzBQyx016DrlRWZk5ZnzxUNCW6O3oegE+IiIiIiKirojBIarOcbH9sHeiqRBNWPMasO2I9wMAGooNHfIU+x0yGStkeHxyv60wFBuccNj81956BK6/oGP7C1XTWHDxet/JaIQJLHS94JC4Hhb1PwYHbnkKvu8DmbIyE4SJew552cwhH0GVsjIVF57pJ5UJjBUawp91H92Rvn8UNPLLrfDNc9hlZdHjxO+lk5SIeVb/ojK8eI2iZfjixdlPAdy4ETnK4c/GSwWgvFSfKh/W62DmEBERERERUV0YHKKaxrz9GvT7zNPx9VGnfQKtfUdj/JFTOuTxxXGwZJ8zsN4JA1D7nvdNbHz7LeE+EYhIhzxPXcYeH190oolfXY0cdCqGYjMWPP9vSOBnysqiYEzUx8dzXfgqgOkHpH7NzKGk2Xg642bc5FMQqKAo6cwj7TcSALB20XNxz6Awc8hkLoVBJZP5I24hlTkUZ/vAgfj2tDI7c8iLJ5qZzCFxi9ZzFOHDjd+HQFwUowyortZUnIiIiIiIqKticIhqcwtAn6HJ9f77ovi5F+Htf0KHPcX0S76PIZ99CgBwyOhhmHHEAR322O0xZvKp8eWuGljY/5izAQBrn707bt5sSKasLCzZcoG4IXW5ogm5EU6iy2/k3H/YaLzcMCG6XXL//Y99G3wVrH7mDmhcVuZZDamjTCY3aZRtMoeKmmQO+eICatZYCptje0lZWdxgO2o0bZpQA4DnhU3MfTs4BI6yJyIiIiIiag8Gh6jTeYUi+vTt39nLwOEHHYjXsC8AqySrixk4Yj+85h6AASsehRNkegiZIIrVTNuHW1dZWbPbF/10O4D8EfCb9z8LQBhEMkaOHIV5hfEYsvyBuK+R6xXj2xQK6fK2sOdQ0r8oyRxK1iiBjwAunCjrSMWFazKQfJMRFJaV+SphQ2tx42BRIF6cAdUVJ84RERERERF1RQwOEUVcR7Cs32QASPrcdEHr9jkBh7W+CLd1cypzKOnxk6x9M/qiT8uacLv6VTOHNg0/GgUziS4nqDLmhPeE09wygaMNo0/F/uVFkI2vxWsIrGbR9rrE9eD0GggA6KtNVs8hF05U+ibqh+PorbIyc383KhdzCx4Cx0MZLkQknHBnXpfjoSHOHOq6P0MiIiIiIqKuhMEhIovuPxMA4EVBjK6o/5FnoCA+DtnxXDpzKOoVZGcOvVI4FCM2Px9uR7kiuGOMPuqM5GFyyrFGjdkf9w54BzaNOjm1feTR54X/rnwAQNgDSB1T8hWuY/CogzFfDkD//afgwInHYg0GwRWN1x4gKSuTqC+SCXAFjheXmHlRcMhzw+ykspUtZIJk7uipKEZBrq5aGkhERERERNTVMDhEZDn67A/hgZP+grEHHtbZS6nqoKPeiCY0oq80p0bZNw88CMt0KNz++8TbmkYchWH+KrRsXB5lDuUHTI44bHxcUpedVmaccfn/4Y3v+VR6LYdPxhIZhdHB8vCuhUKYyROVfAHAoCHDcNhVz+Lg8UehoVDAq4NPAoA4w8gXFxL1RXK1FDWhDoNDYVlZ1GDbZA5FTa/tPkMm0DT23KuwCf0AMDhERERERERULwaHiCyNRQ+nnnTqnp2S1k5uoQGL+k4FgLjXDgBMP/5UPP22RzBm1L7xtsGHho3DF895GC6ql5W5jmDZwKMBtK9Xj4hg2bA3xNc9rwB1CuF4+ir6TnkHAFjj5724ZCybORQGh8LLBdNLyASgovsXCsV4Uluh7xDMPfSy8HZ9htT9OoiIiIiIiHoyBoeIuqMDw8lqvpUJ1Kvo4rypo1OBrcOnnoAWLWDLK4/BVR9apawMAIqHnAKg/b16+k16a3zZ9YoIxEW5xq+WI449HeswMM4cWt5wAMZtnwv45ahptptkDjleRXDI88KeQyZz6KCDD8W+Y5IJd8e883Lcd+o9OGTC9Ha9DiIiIiIiop6qw4JDIjJGRB4SkZdE5EURuSzaPlhE7hORV6N/B3XUcxL1VOOODQMy1TKBjP59+2JR8WD0XfufMHOoRnBo0invwiNjP4kDjzmzXWs5/OhTsTEq5fI8D7ACN3m8QgHL3vADyMzPAwBaD30bBukmLPnPP+OJanHPIfHguengkOsVoOLBj359eWf+D9z33hw/foPn4rQTZ8Bxum72FxERERERUVfSkZlDZQCfVdXxAI4F8HERGQ/gSgAPqOrBAB6IrhPRLug78hCsKewLt9jY5m23D5+KA0oL0KjNVXsOAUBjYy+84QPfQP/+7YvfFgpFvNL/eLSqC8d1sb0wBOvaiAFPPvntmDDjLADAkSe9A9u0ERufvhmulqHihqViCINfTnS5CJM5VMRzQ87AHwthM2x4RaDQ9vtARERERERE+TqsY6uqrgSwMrq8VUTmARgF4G0ATopu9hsADwP4Qkc9L1FPNeyCGzC8jcwhABhw+CloWP57NKAMOG3ffmfse+43MOvFN+N4AMPP/BLmLP8gDmjzXqEhgwbiyb4zMH7tg9jsDMRWq8+QOl6YjQSgQVsBAVzXw5vOfjfWbG3ZLa+FiIiIiIiop9kt43xEZByAKQCeAjAiChwBwCoAI6rc58MAPgwA++233+5YFtFeRfY7tq7b7X/Um1C6z0VBfKjTvn5C9Rqz/yEYs/8hAIAJY4djwtjh7bq/c+TbMeDfD2BAsA3rnAPinkNwPDQUw8yhRrSipC4KIhg7pA/GDunToa+BiIiIiIiop+rwhtQi0hfAnwF8WlW32PtUVQFo3v1U9XpVnaaq04YNG9bRyyLqsbxe/bCo14TwSo2eQ51p4sxzsVnDYI+KB8d14atAHQ9S6IVNw4+GKxr3GSIiIiIiIqKO06FnWiJSQBgYuklV/xJtXi0iI6P9IwGs6cjnJKK2NY0+Mbywm8rKdlWv3r0xf9BMAEmTbR8uIC4ggoEX/B4b3SEoy+7JfCIiIiIiIurJOnJamQD4FYB5qvoDa9ddAC6KLl8E4M6Oek4iqs/wyWeEF3ZTWVlH6D3lnQAQT1SbO/I8DDjyzeHOfiPQ64N/Q9MZ13bW8oiIiIiIiPZaHVljMgPABQCeF5E50bYvAfg2gFtE5IMAlgB4Vwc+JxHVYd/Dj8PiwSdgzMSZnb2UqsYf/xasfXgwtNdgAMC0j/wytb9x3/Fo3Hd8ZyyNiIiIiIhoryZhG6CuZdq0aTpr1qzOXgYR7WFNG1ei2KsfvMa+nb0UIiIiIiKivY6IzFbVadntXbM7LRH1SL0HjezsJRAREREREfU4HP1DRERERERERNSDMThERERERERERNSDMThERERERERERNSDMThERERERERERNSDMThERERERERERNSDMThERERERERERNSDMThERERERERERNSDMThERERERERERNSDMThERERERERERNSDMThERERERERERNSDMThERERERERERNSDMThERERERERERNSDiap29hoqiMhaAEs6ex07YSiAdZ29CNor8FiijsJjiToCjyPqKDyWqKPwWKKOwmOJOkp3OZbGquqw7MYuGRzqrkRklqpO6+x1UPfHY4k6Co8l6gg8jqij8FiijsJjiToKjyXqKN39WGJZGRERERERERFRD8bgEBERERERERFRD8bgUMe6vrMXQHsNHkvUUXgsUUfgcUQdhccSdRQeS9RReCxRR+nWxxJ7DhERERERERER9WDMHCIiIiIiIiIi6sEYHCIiIiIiIiIi6sEYHOoAInKGiLwsIgtE5MrOXg91bSLyaxFZIyIvWNsGi8h9IvJq9O+gaLuIyI+jY2uuiEztvJVTVyMiY0TkIRF5SUReFJHLou08nqhdRKRRRJ4WkeeiY+lr0fb9ReSp6Jj5k4gUo+0N0fUF0f5xnfoCqEsREVdEnhWRv0XXeRxRu4nIYhF5XkTmiMisaBv/vlG7ichAEblNROaLyDwROY7HErWXiBwa/T4y/9siIp/em44lBod2kYi4AH4G4M0AxgM4X0TGd+6qqIu7EcAZmW1XAnhAVQ8G8EB0HQiPq4Oj/30YwC/20BqpeygD+KyqjgdwLICPR79/eDxRe7UAOEVVJwGYDOAMETkWwHcAXKuqBwHYCOCD0e0/CGBjtP3a6HZExmUA5lnXeRzRzjpZVSer6rToOv++0c74EYB/qOphACYh/P3EY4naRVVfjn4fTQZwFIAmALdjLzqWGBzadUcDWKCqi1S1FcDNAN7WyWuiLkxV/wVgQ2bz2wD8Jrr8GwDnWNt/q6F/AxgoIiP3yEKpy1PVlar6n+jyVoQfdkaBxxO1U3RMbIuuFqL/KYBTANwWbc8eS+YYuw3AqSIie2a11JWJyGgAZwH4v+i6gMcRdRz+faN2EZEBAGYC+BUAqGqrqm4CjyXaNacCWKiqS7AXHUsMDu26UQCWWteXRduI2mOEqq6MLq8CMCK6zOOL6hKVY0wB8BR4PNFOiEqB5gBYA+A+AAsBbFLVcnQT+3iJj6Vo/2YAQ/bogqmr+iGAKwAE0fUh4HFEO0cB3Csis0Xkw9E2/n2j9tofwFoAN0Tlrv8nIn3AY4l2zXsA/DG6vNccSwwOEXUxqqoIPxAR1UVE+gL4M4BPq+oWex+PJ6qXqvpRqvRohFmxh3Xuiqi7EZGzAaxR1dmdvRbaK5ygqlMRlmZ8XERm2jv5943q5AGYCuAXqjoFwHYkZT8AeCxR+0R9894K4Nbsvu5+LDE4tOuWAxhjXR8dbSNqj9UmzTD6d020nccX1SQiBYSBoZtU9S/RZh5PtNOidPuHAByHMAXai3bZx0t8LEX7BwBYv2dXSl3QDABvFZHFCMvsT0HY64PHEbWbqi6P/l2DsK/H0eDfN2q/ZQCWqepT0fXbEAaLeCzRznozgP+o6uro+l5zLDE4tOueAXBwNImjiDDF7K5OXhN1P3cBuCi6fBGAO63tF0bd7o8FsNlKW6QeLurN8SsA81T1B9YuHk/ULiIyTEQGRpd7ATgNYQ+rhwC8I7pZ9lgyx9g7ADwYfVtGPZiqflFVR6vqOISfhx5U1feBxxG1k4j0EZF+5jKANwF4Afz7Ru2kqqsALBWRQ6NNpwJ4CTyWaOedj6SkDNiLjiXh3+BdJyJnIqyxdwH8WlWv6dwVUVcmIn8EcBKAoQBWA7gKwB0AbgGwH4AlAN6lqhuik/+fIpxu1gTgA6o6qxOWTV2QiJwA4FEAzyPp7/ElhH2HeDxR3URkIsImii7CL45uUdWvi8gBCDNABgN4FsD7VbVFRBoB/A5hn6sNAN6jqos6Z/XUFYnISQA+p6pn8zii9oqOmdujqx6AP6jqNSIyBPz7Ru0kIpMRNskvAlgE4AOI/taBxxK1QxSsfh3AAaq6Odq21/xeYnCIiIiIiIiIiKgHY1kZEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQEREREREREVEPxuAQERHRXkJExomIiohXx20vFpHH9tC6ZojIqyKyTUTO2RPPSR0jOp4O6ux1EBER0e7F4BAREVEnEJHFItIqIkMz25+NTsjHddLS7CDTtuh/i0Xkyl14yK8D+Kmq9lXVOzpomT1CRwbxop/jGzvisXIeu+7AZDseU0Vku3UcbhORKzrgcV/MPGZZRP7aEWsmIiLqrjrsDzgRERG122sAzgfwEwAQkSMB9O7UFaUNVNWyiBwH4AERmaOq/6j3ziLiqWoZwFgAL+7MAqzHoJ5pkqou6MgHVNUjzGUREQCLANzakc9BRETU3TBziIiIqPP8DsCF1vWLAPzWvoGIDBCR34rIWhFZIiJfEREn2ueKyPdEZJ2ILAJwVs59fyUiK0VkuYh8Q0Tc9i5SVZ9EGNyZED3uJSIyT0Q2isg/RWSs9ZwqIh8XkVcBvCoiCwEcAOCvUZZGg4jsKyJ3icgGEVkgIh+y7n+1iNwmIr8XkS0ALhaRh6O1PxE9xl9FZIiI3CQiW0TkGTvTSkR+JCJLo32zReTEzOPfEr2nW6MskmnW/jEi8pfo/V4vIj+19lV93Vki8tbosTdF6z/c2rdYRD4nInNFZLOI/ElEGnMe43AA1wE4Lnrdm6LtDdHP/XURWS0i14lIr2jfUBH5W/S8G0TkURFxROR3APazfg65GTgi8vnoeFkhIpdk9p0lYWbbluj9vdra/a/o303R4x8nIgeKyIPR+7gu+nkNrPaetYeI3CMi37eu3ywiv44uXywij4vIT6P3d76InFrloWYCGArgzx2xLiIiou6KwSEiIqLO828A/UXk8Cho8x4Av8/c5icABiAMsLwBYTDpA9G+DwE4G8AUANMAvCNz3xsBlAEcFN3mTQAubc8CJTQDwBEAnhWRtwH4EoDzAAwD8CiAP2budg6AYwCMV9UDAbwO4C1RWVkLgJsBLAOwb7Tmb4rIKdb93wbgNgADAdwUbXsPgAsAjAJwIIAnAdwAYDCAeQCusu7/DIDJ0b4/ALg1E3x5a7SGgQDuAvDT6LW6AP4GYAmAcdFz3Rztq+d1m/fskGjfp6Pb3oMwKFO0bvYuAGcA2B/ARAAXZx9HVecB+AiAJ6P3bmC069sADole40HROv8r2vdZhO/tMAAjojWrql6A9M/hf3LWfQaAzwE4DcDBALIlaNsRHn8DEQYiPypJD6mZ0b8Do8d/EoAA+BbCn/PhAMYAuNp6vp+LyM+z66jTJQAuEJFTROR9AI4GcJm1/xgACxEGfq4C8BcRGZzzOBcB+LOqbt/JdRAREe0VGBwiIiLqXCZ76DSEQY7lZocVMPqiqm5V1cUAvo8wSAKEAYYfqupSVd2A8ETc3HcEgDMBfFpVt6vqGgDXRo9Xr3UANgD4PwBXquoDCIMV31LVeVG51zcBTM5k0XxLVTeo6o7sA4rIGAAzAHxBVZtVdU70+HYG1ZOqeoeqBtZj3KCqC1V1M4C/A1ioqvdHa7gVYfALAKCqv1fV9apaVtXvA2gAcKj1+I+p6j2q6iN8/ydF249GGMj4fPSeNauq6fdTz+s23g3gblW9T1VLAL4HoBeA463b/FhVV0Q/t78iDPS0SUQEwIcBfCZ6j7dGazE/1xKAkQDGqmpJVR9VVa3nsREeTzeo6gtRsORqe6eqPqyqz0c/l7kIA2BvqPZgqrogeg9aVHUtgB/Yt1fVj6nqx9pY03+iLCjzv9Oj+64C8FEAvwHwIwAXRu+FsQbhfxslVf0TgJdRmVnXG2Fw8sY21kBERLTXY88hIiKizvU7hCU5+yNTUoYw66GAMJPFWIIwUwQIAxlLM/uMsdF9V4bxBADhl0L27dsyNKffz1gAP7JLehBmiIyynr/Wc+wLYEPmRH4JwswnI+/+q63LO3Ku940XI/I5AB+MnksB9Ef4XhqrrMtNABolbKQ8BsCSKj2O6nndxr72NlUNRGQpkp9b3hr2zXnOPMMQ9qWabf1cBYApF/wuwqDOvdH+61X123U+9r4AZlvXU69LRI5BmLU0AUARYdCtaq+eKED5IwAnAuiH8PjbWOdajKk1eg79FWFm3ctWEM9YngmKLUHle3wewuDnI+1cExER0V6HmUNERESdSFWXIGxMfSaAv2R2r0OYCWJnp+yHJLtoJcKAhr3PWAqgBWGAZ2D0v/52M96dtBTA/7Mec6Cq9lLVJ+yXVeP+KwAMFpF+mXUvt67Xm+lSIeovdAXCLJhBUSnWZoQBlLYsBbCf5E/cqud1Gytg/cyibJ8xSL/GemXfi3UIg2FHWOsYoKp9ASDKMPusqh6AsHzucqvfTlvva63jCQhL9O4CMEZVByDsh2Te17zH/ma0/UhV7Q/g/ajv51CvaxBm240UkfMz+0aJFT1D+FpWZG5zEYDftiOzioiIaK/F4BAREVHn+yCAU7J9T6Kyp1sAXCMi/aISpsuR9CW6BcCnRGS0iAwCcKV135UA7gXwfRHpHzUlPlBEqpYB1ek6AF8UkSOAuOn1O+u9s6ouBfAEgG+JSKOITET4+rO9lnZWP4R9ltYC8ETkvxBmDtXjaYQBkm+LSJ9ofTOife153bcAOEtEThWRAsI+QC0IX3d7rQYw2vQrUtUAwC8BXCsiw6O1jDLlViJytogcFAVGNgPwAQTWYx1Q47luQdgAfHxUcnVVZn8/hFlfzSJyNID3WvvWRs9zQOb22wBsFpFRAD7fztdelYjMRNh760KEQZ6fRM9hDEf430Yh+jkdjrD3k7n/aAAnIyxLIyIi6vEYHCIiIupkUS+dWVV2fxJhI+BFAB5DmL3x62jfLwH8E8BzAP6DysyjCxGW/7yEsJznNoT9aHZlrbcD+A6AmyWcJvYCgDe382HOR9jweQWA2wFcpar378q6LP8E8A8AryAsJWpGnaV0UTDuLQibPL+OsLHzu6N9db9uVX0ZYZbMTxBm+rwFYSPo1p14PQ8inBS3SkTWRdu+AGABgH9Ha7kfSU+lg6Pr2xA27f65qj4U7fsWgK9EvXs+l7PuvwP4YfScC6J/bR8D8HUR2YqwAfYt1n2bEGbyPB49/rEAvgZgKsIg1d3IHJ8STlm7ro3X/1w0/cz874ci0h9hCeYnVHW5qj4K4FcAbrCyhZ6K3ot10breoarrrce9AGFvq4VtPD8REVGPIMykJSIiIqK9hYhcDOBSVT2hs9dCRETUXTBziIiIiIiIiIioB2NwiIiIiIiIiIioB2NZGRERERERERFRD8bMISIiIiIiIiKiHszr7AXkGTp0qI4bN66zl0FEREREREREtNeYPXv2OlUdlt3eJYND48aNw6xZ1Sb6EhERERERERFRe4nIkrztLCsjIiIiIiIiIurBGBwiIiIiIiIiIurBGBwiIiIiIiIiIurBumTPoTylUgnLli1Dc3NzZy+FqF0aGxsxevRoFAqFzl4KERERERERUYVuExxatmwZ+vXrh3HjxkFEOns5RHVRVaxfvx7Lli3D/vvv39nLISIiIiIiIqrQZlmZiDSKyNMi8pyIvCgiX4u23ygir4nInOh/k6vc/yIReTX630U7u9Dm5mYMGTKEgSHqVkQEQ4YMYcYbERERERERdVn1ZA61ADhFVbeJSAHAYyLy92jf51X1tmp3FJHBAK4CMA2AApgtInep6sadWSwDQ9Qd8bglIiIiIiKirqzNzCENbYuuFqL/aZ2PfzqA+1R1QxQQug/AGTu1UiIiIiIiIiIi6nB1TSsTEVdE5gBYgzDY81S06xoRmSsi14pIQ85dRwFYal1fFm3rlkQE73//++Pr5XIZw4YNw9lnn92Jq2pb375927zN1Vdfje9973s1b3PHHXfgpZde6qhlEREREREREVEXUFdwSFV9VZ0MYDSAo0VkAoAvAjgMwHQAgwF8YVcWIiIfFpFZIjJr7dq1u/JQu02fPn3wwgsvYMeOHQCA++67D6NGdU6sq1wu7/HnZHCIiIiIiIiIaO9TV3DIUNVNAB4CcIaqroxKzloA3ADg6Jy7LAcwxro+OtqW99jXq+o0VZ02bNiw9ixrjzrzzDNx9913AwD++Mc/4vzzz4/3bd++HZdccgmOPvpoTJkyBXfeeScAYPHixTjxxBMxdepUTJ06FU888QQAYOXKlZg5cyYmT56MCRMm4NFHHwWQzvS57bbbcPHFFwMALr74YnzkIx/BMcccgyuuuAILFy7EGWecgaOOOgonnngi5s+fDwB47bXXcNxxx+HII4/EV77ylaqv5ZprrsEhhxyCE044AS+//HK8/Ze//CWmT5+OSZMm4e1vfzuamprwxBNP4K677sLnP/95TJ48GQsXLsy9HRERERERERF1L202pBaRYQBKqrpJRHoBOA3Ad0RkpKqulLDb7jkAXsi5+z8BfFNEBkXX34Qw42iXfO2vL+KlFVt29WFSxu/bH1e95Yg2b/ee97wHX//613H22Wdj7ty5uOSSS+KgzjXXXINTTjkFv/71r7Fp0yYcffTReOMb34jhw4fjvvvuQ2NjI1599VWcf/75mDVrFv7whz/g9NNPx5e//GX4vl9XcGXZsmV44okn4LouTj31VFx33XU4+OCD8dRTT+FjH/sYHnzwQVx22WX46Ec/igsvvBA/+9nPch9n9uzZuPnmmzFnzhyUy2VMnToVRx11FADgvPPOw4c+9CEAwFe+8hX86le/wic/+Um89a1vxdlnn413vOMdAICBAwfm3o6IiIiIiPacjdtbMahPsbOXQUTdWD3TykYC+I2IuAgzjW5R1b+JyINR4EgAzAHwEQAQkWkAPqKql6rqBhH5bwDPRI/1dVXd0OGvYg+aOHEiFi9ejD/+8Y8488wzU/vuvfde3HXXXXHvnubmZrz++uvYd9998YlPfAJz5syB67p45ZVXAADTp0/HJZdcglKphHPOOQeTJ09u8/nf+c53wnVdbNu2DU888QTe+c53xvtaWloAAI8//jj+/Oc/AwAuuOACfOELlRV/jz76KM4991z07t0bAPDWt7413vfCCy/gK1/5CjZt2oRt27bh9NNPz11LvbcjIiIiIqLd47mlm3DOzx/H3y87EYft07+zl0NE3VSbwSFVnQtgSs72U6rcfhaAS63rvwbw611YY4V6Mnx2p7e+9a343Oc+h4cffhjr16+Pt6sq/vznP+PQQw9N3f7qq6/GiBEj8NxzzyEIAjQ2NgIAZs6ciX/961+4++67cfHFF+Pyyy/HhRdemBp93tzcnHqsPn36AACCIMDAgQMxZ86c3DXuyvj0iy++GHfccQcmTZqEG2+8EQ8//PAu3Y6IiIiIiHaPxxasgyqwfltrZy+FiLqxdvUcotAll1yCq666CkceeWRq++mnn46f/OQnUFUAwLPPPgsA2Lx5M0aOHAnHcfC73/0Ovu8DAJYsWYIRI0bgQx/6EC699FL85z//AQCMGDEC8+bNQxAEuP3223PX0L9/f+y///649dZbAYSBqeeeew4AMGPGDNx8880AgJtuuin3/jNnzsQdd9yBHTt2YOvWrfjrX/8a79u6dStGjhyJUqmUun+/fv2wdevWNm9HRERERER7xuwlGwEAQXQOQkS0Mxgc2gmjR4/Gpz71qYrtX/3qV1EqlTBx4kQcccQR+OpXvwoA+NjHPobf/OY3mDRpEubPnx9n/zz88MOYNGkSpkyZgj/96U+47LLLAADf/va3cfbZZ+P444/HyJEjq67jpptuwq9+9StMmjQJRxxxRNwA+0c/+hF+9rOf4cgjj8Ty5bn9vzF16lS8+93vxqRJk/DmN78Z06dPj/f993//N4455hjMmDEDhx12WLz9Pe95D7773e9iypQpWLhwYdXbERERERHR7hcEigWLX8f3CtdBmjd39nKIqBsT7YIR5mnTpumsWbNS2+bNm4fDDz+8k1ZEtGt4/BIRERFRR1uwZivm/eQdeIv7b3yz12dx6ceuwPB+jZ29LCLqwkRktqpOy25n5hAREREREVE3NGvxRpzqhK0sXtpcxJf+kjdAmoiobQwOERERERERdUPPLVqO3hJOLHYQoBwEnbwiIuquGBwiIiIiIiLqbta+jA+9/OH4qoOu1y6EiLoPBoeIiIiIiIi6mdZ7vogD9PX4ujA4RES7gMEhIiIiIiKirqx5M/w5f0ptWhf0S113wJIyItp5DA4RERERERF1ZbdeDPeODwMbF2PzjhJmfPtBLFy5HgCw+A0/AsCyMqrfdY8sxEMvr+nsZVAXw+BQO6xevRrvfe97ccABB+Coo47Ccccdh9tvv323P++sWbPwqU99qkMe66STTsKhhx6KSZMmYcaMGXj55Zc75HE7Ukeu8cYbb8QnPvEJAMB1112H3/72t1Vvu3jxYvzhD3+Ir3fk+05EREREtNOWzQr/dTw8/8pCPN58Lk5sfRQvekfAGXF4uAsK6cQlUvewYXsrvv33+fjADc909lKoi2FwqE6qinPOOQczZ87EokWLMHv2bNx8881YtmzZbn/uadOm4cc//nGHPd5NN92E5557DhdddBE+//nPV+z3fb/Dnmtn7Y41fuQjH8GFF15YdX82ONTR7zsRERER0U5p2QIAaG71sfX5e+LN0ncYxAlP6Y50FkG08z/HU9f24PwwY+ig4X07eSXU1TA4VKcHH3wQxWIRH/nIR+JtY8eOxSc/+UkAYWDhxBNPxNSpUzF16lQ88cQTAICHH34YZ599dnyfT3ziE7jxxhsBAFdeeSXGjx+PiRMn4nOf+xwA4NZbb8WECRMwadIkzJw5s+Ixnn76aRx33HGYMmUKjj/++Dir5sYbb8R5552HM844AwcffDCuuOKKNl/TzJkzsWDBAgBA37598dnPfhaTJk3Ck08+iR/84AeYMGECJkyYgB/+8IfxfX77299i4sSJmDRpEi644AIAwNq1a/H2t78d06dPx/Tp0/H4448DAB555BFMnjwZkydPxpQpU7B161asXLkSM2fOxOTJkzFhwgQ8+uijO73G3//+9zj66KMxefJk/L//9//igNENN9yAQw45BEcffXS8FgC4+uqr8b3vfQ8AsGDBArzxjW/EpEmTMHXqVCxcuBBXXnklHn30UUyePBnXXntt6n3fsGEDzjnnHEycOBHHHnss5s6dGz/mJZdcgpNOOgkHHHAAg0lEREREtNts2N4MZ9Vz8fVy4xA44gIAPuHdiXM3/RZBwPIyqm72ko0AgMNH9u/klVBX43X2AnbK368EVj3fsY+5z5HAm79ddfeLL76IqVOnVt0/fPhw3HfffWhsbMSrr76K888/H7Nmzap6+/Xr1+P222/H/PnzISLYtGkTAODrX/86/vnPf2LUqFHxNtthhx2GRx99FJ7n4f7778eXvvQl/PnPfwYAzJkzB88++ywaGhpw6KGH4pOf/CTGjBlTdQ1//etfceSRRwIAtm/fjmOOOQbf//73MXv2bNxwww146qmnoKo45phj8IY3vAHFYhHf+MY38MQTT2Do0KHYsGEDAOCyyy7DZz7zGZxwwgl4/fXXcfrpp2PevHn43ve+h5/97GeYMWMGtm3bhsbGRlx//fU4/fTT8eUvfxm+76Opqanq+mqtcd68efjOd76Dxx9/HIVCAR/72Mdw00034bTTTsNVV12F2bNnY8CAATj55JMxZcqUisd93/vehyuvvBLnnnsumpubEQQBvv3tb+N73/se/va3vwEIg3LGVVddhSlTpuCOO+7Agw8+iAsvvBBz5swBAMyfPx8PPfQQtm7dikMPPRQf/ehHUSgUar4uIiIiIqJ20wBjtz4LUz/WXBgQZw4BwNjWV4E7Pgocfnb4P6KM55ZuAgD89bkV2Li9Fb+/9JjOXRB1Gd0zONQFfPzjH8djjz2GYrGIZ555BqVSCZ/4xCcwZ84cuK6LV155peb9BwwYgMbGRnzwgx/E2WefHWeozJgxAxdffDHe9a534bzzzqu43+bNm3HRRRfh1VdfhYigVCrF+0499VQMGDAAADB+/HgsWbIkNzj0vve9D7169cK4cePwk5/8BADgui7e/va3AwAee+wxnHvuuejTpw8A4LzzzsOjjz4KEcE73/lODB06FAAwePBgAMD999+Pl156KX78LVu2YNu2bZgxYwYuv/xyvO9978N5552H0aNHY/r06bjkkktQKpVwzjnnYPLkybnvT1trfOCBBzB79mxMnz4dALBjxw4MHz4cTz31FE466SQMGzYMAPDud7+74mexdetWLF++HOeeey4AoLGxMXcNtsceeywOwp1yyilYv349tmwJ03vPOussNDQ0oKGhAcOHD8fq1asxevToNh+TiIiIiKgWVcUvHlmIj0XXVyxbjGmyJNnvFFLBIQBw5v4RmPtH4OrNe3Cl1B00l3y8tnoDvundiCeCI/C3Bcd19pKoC+mewaEaGT67yxFHHBEHBwDgZz/7GdatW4dp06YBAK699lqMGDECzz33HIIgiAMOnuchCJKxks3NzfH2p59+Gg888ABuu+02/PSnP8WDDz6I6667Dk899RTuvvtuHHXUUZg9e3ZqHV/96ldx8skn4/bbb8fixYtx0kknxfsaGhriy67rolwu576Wm266KV630djYCNd1d+KdAYIgwL///e+KIMuVV16Js846C/fccw9mzJiBf/7zn5g5cyb+9a9/4e6778bFF1+Myy+/PLcPUFtrVFVcdNFF+Na3vpW6zR133LFTr2FX1Pu+ExERERG1x6urt6Dpvm8DUVL6jpcfSt9AHIiTfIZv2tEEdqWmal5csRnvlvvxXu9BHBiswN9aw+CQqkKEB05Px55DdTrllFPQ3NyMX/ziF/E2uyRq8+bNGDlyJBzHwe9+97u4/83YsWPx0ksvoaWlBZs2bcIDDzwAANi2bRs2b96MM888E9deey2eey6sHV64cCGOOeYYfP3rX8ewYcOwdOnS1Do2b96MUaNGAUDcu6ijnXjiibjjjjvQ1NSE7du34/bbb8eJJ56IU045BbfeeivWrw/HZpqysje96U1xdg+AuNxq4cKFOPLII/GFL3wB06dPx/z587FkyRKMGDECH/rQh3DppZfiP//5z06t8dRTT8Vtt92GNWvWxGtZsmQJjjnmGDzyyCNYv349SqUSbr311or79uvXD6NHj44DSS0tLWhqakK/fv2wdevWqu/JTTfdBCAsNxs6dCj692edLhERERHtPhtffgyfKySfZweseTp9A3HgWJlDvbV2ywbq2VbNfRBXF8LpzSt0SLhx21oEK+Z03qKoy2BwqE4igjvuuAOPPPII9t9/fxx99NG46KKL8J3vfAcA8LGPfQy/+c1vMGnSJMyfPz8uyRozZgze9a53YcKECXjXu94V97/ZunUrzj77bEycOBEnnHACfvCDHwAAPv/5z+PII4/EhAkTcPzxx2PSpEmpdVxxxRX44he/iClTpuy2DJWpU6fi4osvxtFHH41jjjkGl156KaZMmYIjjjgCX/7yl/GGN7wBkyZNwuWXXw4A+PGPf4xZs2Zh4sSJGD9+PK677joAwA9/+ENMmDABEydORKFQwJvf/GY8/PDDmDRpEqZMmYI//elPuOyyy3ZqjePHj8c3vvENvOlNb8LEiRNx2mmnYeXKlRg5ciSuvvpqHHfccZgxYwYOP/zw3Pv/7ne/w49//GNMnDgRxx9/PFatWoWJEyfCdV1MmjQJ1157ber2V199NWbPno2JEyfiyiuvxG9+85udWjcRERERUb3cxY+lro9qXYTX3P2TDeKkysr6IKxSaHF67ZH1Ufcydv4v48sOosbl182A+8uTOmdB1KWIatfrZj9t2jTNNnOeN29e1RN9oq6Oxy8RERERtdf8778Zh219Ir6+BX2wsrAfDi3NAwA8fdBlOODkCzD0l2E7hjU6EMNlE7Z6g9HvK691ypqp65r99RNwVPA8dqAR9/uT8cnSp7C48b3hTvao6jFEZLaqTstuZ+YQERERERFRFzSkaWHqugsfgSQ9hlSceJQ9APTFDgBAq9OIYMm/oYsf3zMLpS5vU1Mr9vFX4OURZ2GtOwyCrpckQp2LwSEiIiIiIqKupnU7hvmrU5tcTQeHsg2pe0tLeFenF5wbTofceOYeWSp1bY+9ug4/vfcFjJL16DXiYCicpKyMKNKtgkNdsQSOqC08bomIiIiovVo3LK3Y5iJIBYdEXDhO5ZQp9hwi2/fufRkPP/UMAGDo2MOgEAaHqEK3CQ41NjZi/fr1PNGmbkVVsX79ejQ2Nnb2UoiIiIioG3n6tXUV2wriQ8VLNjjpzCFjB/jZkxKvb2jCOAmz0HqPOCQsR0SQvpEqtJl9h3oyr+2bdA2jR4/GsmXLsHbt2s5eClG7NDY2YvTo0Z29DCIiIiLqJu568gWM+/sncr/KV2ujZEbZG2uaXZhRKH+buwJnT9x3N62UurotzSVM2/E4PuzdHW4YvD8UUtlz6OnrIX+/ArhsLjBo7J5fKHW6bhMcKhQK2H///du+IRERERERUTc28KnvYqKTP20sECsYJA5EKjOHtgfJad4n/vAsg0M92NLVG3B98VoAwFb0Qb/eg3N7DpXm/hkFALrpdQiDQz1StykrIyIiIiIi6gn6bX+9+k6xM4cETk5Zmafl3bEs6oaa5j8QX94mfQAAKoJT3Wdxa/HqeN/i1RsBAA8v3LJH10ddB4NDREREREREXcjQ0oqq++yyMnVcOG7lKV0fbUpdX7h2W8ctjrqVYNXz8WVz7Jh/pzuvxPvKrTsAAN97YDFumbWUvX57IAaHiIiIiIiIdrP1i5/DlpUL67rtGKyqvlPEuujm9hzqi3Rw6NTvP1LfImmv07h+XnxZo2NHpXLCXQNKAIASXFxx21zcOmvZnlkgdRkMDhEREREREe1mQ26cif7/O7XqflXFZ264H4+8VPukXFM9h/LLyvphe3x5msxv/2JprzGwaXF8OYgzhyqPmUZpBYC4UfXDr6zZ/YujLoXBISIiIiIiot3o1llL48s//v5VWLg8feKtqvjTg0/j2iVvR9+bz6n5WHZZmePkZw71kyRz6LaGr+/kqmlv0Lu8Kb6sqJ451IgwOJRtVE09R5vBIRFpFJGnReQ5EXlRRL4Wbb9JRF4WkRdE5NciUqhyf19E5kT/u6ujXwAREREREVFX8uwt38Szd/wIQBj4+fxtc+N9n9r6Qyz90+cAALOXbMTiddvx6svP4z2PvgkAcJTzau0Hz04ry8kc6o8du/gKaG/Q3FpGf036TQWZnkO2xqisbIRs2DOLoy6nnlH2LQBOUdVtUQDoMRH5O4CbALw/us0fAFwK4Bc599+hqpM7YrFERERERERd3ZSXvhNeOOcyrN3ago+5d6T29/fDE/DW/zsTr8PFTPd51CtVVuY46WBRpABOK+vpXlu3HU3bt+IIKcXbzLFTK3PoxuJ3cUHrlQD22SPrpK6jzeCQhm3KTbixEP1PVfUecxsReRrA6N2yQiIiIiIiom6g/MxvIGOmpzq6rFzxOq4o3FJ54+bNOM59qf1Pkhpl7+YGhxypLA1SVUhOUID2PlubSzj5ew/j0F5b8E9ruykryysgso+ZI+U1LN6tK6SuqK6eQyLiisgcAGsA3KeqT1n7CgAuAPCPKndvFJFZIvJvETmnxnN8OLrdrLVr19b9AoiIiIiIiDqblprh3f0puNcdl9peeuXBitsKFPj2fjv3PLACPFUyh/IEbCXTYyzdEJYVOs0bAQAlhB1gksyhOlsPqwKtTW3fjvYKdR0VqupHpWGjARwtIhOs3T8H8C9VfbTK3ceq6jQA7wXwQxE5sMpzXK+q01R12rBhw+p/BURERERERJ1s0+ollRtXzsXB837SsU+UyhxyUqPtawmU0aGeYsWmMDg0UMICoK3uAABWQ+o651Jte+B/gG+OhG5ftxtWSV1Nu6aVqeomAA8BOAMAROQqAMMAXF7jPsujfxcBeBjAlJ1bKhERERERUde0ceXi1PVt2gv43xMxYEflaPpU9k87aaYhdb0YHOo5Vm7ahpsK1+DN7tMAgK2OCQ5Fx0sbAcX/5/0Vjf52bHjiNwCAdatX7L7FUpdRz7SyYSIyMLrcC8BpAOaLyKUATgdwvqoGVe47SEQaostDAcwAsBOFtURERERERF3XtjWvpa7vtlCM2KPs6w8OMTbUczStehUz3BdxoXsfAKDZ7QOg/rKyAdKEd6z7OVCOxtu7uYPJaS9Tz7SykQB+IyIuwmDSLar6NxEpA1gC4MmosdlfVPXrIjINwEdU9VIAhwP4XxEJovt+W1UZHCIiIiIior1K64alAMKMob6yG0fJZ6eV1YmZQz3D5qYSymteTW3zJeo5hPp7DjUGTXAlzAEJxG3j1rQ3qGda2VzklIKpau59VXUWwrH2UNUnABy5i2skIiIiIiLq2rYsBwCUJDxNqlm4syuBmlTPoXq+6weOkNcQKKDfPwzSdzjw//61889PXdr53/glPuPeDrhAixbQICVodJwkI+zrK2sswAeA6P9re+zVdfjqnS/g75ediMYCg0ndUbt6DhEREREREVGlhu1hXxa3jlNpQW5XjrrYWR/i1HeSf3fDlxGoQrauBFY+t9PPTV3fPcUv4jR3NgBgK3oDAAInDNa0J3MIADyUw/v7bR+vT8x5Hqdv/CM2N7W2e83UNTA4REREREREtIv6tqwGAHjadnDIyW/ZWp9U5lD9GRq78pTUPZlApUbHSdxzqK7MIYVnAp11HDzvm/dRXFm4Gdi2cqfWSp2PwSEiIiIiIqJdNMRfCwBw68gK2pXMoVRJUDt6DrX49RQHUXe2pbmUup4Eh6KyMjPKvs7MIVNWFgS1j50drT5GBWFQKGBrq26LwSEiIiIiIqKdtXIuWhc8gv7YDqC+srKO6jnktGOU/bOvb9r556RuYfn6banrXhSEDJxo2licOdT2caOKOHNI2wgOzXvt9eR+DEJ2W/V1MCMiIiIiIqJK/3siitZVT3Zv5pBapWTi1F9WtmxD004/J3UPa1avxOHWddMzCNFxErSz51BBTOZQ7WDm+ufvjy9rwPrF7oqZQ0RERERERHvSLmUOJWVl0p5R9kF555+TuoXNa5elrpvMIVNWZjKHgjqnlcXa6qO17On4YqlcQrmOBtbU9TA4REREREREtAftUs8hO1uoHZlDPst99npN65amrjsSBSHNtLIosFhXWZl1OYiygcp+gEOvvB0Tr/4H7p67Ei3l8Jgqblkc3/aiXz+Fo75xP6j7YVkZERERERHRTii3NFU9oaqVGyQdNq2sHZlDDA7t9YLNS3O3q2MaUpuysrYzh+zkNo2O16VrNuDlxovxo/J5+PgfwuPphg9Mxz7llXHaiQPF5h2l7MNRN8DMISIiIiIiop2wfs3yqvtqnX7vUuaQHRxqR1mZz1KfvV7D9hX5OzJlZar1HDdJdMg0pF6z4D8AgI+6d2IQtgAAPnDD0xgra7C1MBQA4ETH9lt+8lh7l0+djMEhIiIiIqIaVi1fAlw9AHMeuaOzl0JdzIbVy9q+UQ6ngzKHnPaUlQXM5tibLdvYhH7Nq3L37WrmkCkra13yDACgKD7ubbgCADAQ29BbWtDabwwAQKKg0vPLN+/Eq6DOxOAQEREREVGOJxeux5FX/xMvPP43AIDMvrFzF0RdzrZ1+WU8beughtTtKitrX0Bq5eYdWLOluV33oY6zbeMavPzg7+u+/cX/8zvsX1qQu0+jUfZBfLzUERyybmMyh3TDwnjbMAkzhwbLVgBAudcwAGFZGXVPDA4RERER0V5NVfGzhxZgzdb2nej+7s57cK3/LaxaFp4QSe/Bu2N51I2V1r++U/frsJ5Dbv2ZQ4Hfvmllx33rQZzwPw+16z7UcZZd93Yc+q+PY+VLj6NpQ/XyRQDY0VLG/Q1X4GAn/3YqUUPqdk0pqywra96+reJWgxAGh1obhwBgcKg7Y0NqIiIi6lZWbt6BZRt3YPo4nqhT215YvhmX/fRPWKj74vEF6/CHDx1b8/YlP8B/3fkCLj3xAHxn8+fRz92BR5saAQBu3/Dkp7Uc4M45y9GnwcNp40eg4PL71p5KNofBIV8FrtR/Uiy7lDmUBITaN8q+/oDUpqZW/KrwXSzWfQC8uT2row4ysGUlAGDkLWeGG66uXqa1YukiHFjrwUz5YR3lZDG7IXWgUFW0NG9PJR3dXfwingkOBQCUGsO/yc6u9NOiTsXgEBEREXUrH/329TjCWYybjrwQ1757MqQ9H3apx3nhkdvwQMPncXnrR7Cw+ew2b79gzTasmnUXnhl+Ht4jOwAAhdJWQICWwkAAwPfvfRn/+69FGCOrMf+k43H56YftzpdAXZhpANyewBDQ9gl0SV0UpMp0Mbvn0G4qK5u9cDVOdZ+t+/bUse55fiUmqtZT/QUA2Pza7Kr7fJWcHkNtH6+po0V9rN3WAi9oAaxktSOcJTjCWQIAKDcMibYthgaCeTq2vsVTl8GvOYiIiKjre/qXwGv/AgDc0fBfuKbwa3xz3uloaWWDVapt0JqnAAA/KF6Hs5r/2ubtN77yb9xQ/C4mv/zDeNtADb+xLzlhBtH6V5/C4sb34tGGz2DM4ls7ftHUbfSPsjvaTWufnPs1TtNS2ULtaEgd5DSkXrpuK378xzvhB+n1rHiJk6Y60ydvegZ9UH8ZbGnV/Kr7Ajjt6k2VR4MAJV/RC63V19ArDA59t3A9/t7wxZqP9+9F63Hq9x/GjtYqAVDqFAwOERERUdd3z+eA37wFgXUC01taAL/6B1UiACg2JdN7Tmppu39KedksAECwfX28bVDUcBVRn5izNv4u3jdux4sdsUzqphrKlT1Y6tHWKPtawaH0tLJdG2W//uen41MvX4ilS5ektg9c/HcAwCKvZrES7SY/K/wYg6T+Y6u8pcoIe0R9hswI+2hbPWWNdvxSNUAQKBol/29uC4oIvD51r/eBeauxcO12bGzi3/CuhMEhIiIi6tpam+KLyzY0pXa18eU7Efq2rEldP//6f+OX/1qU2nbvi6vw+vrw2CqsfxkAsLzUN94/ENvDCxpg3JV3Y0xQ/USM9n5BoAgCRWs5QIPu3DQvp41fXlpncKg9GSGmqbBtchAGN99/3UNYvikso2wp+5jU9CQAYIf0qvvxqeOc4T6Tu73cvA1bl74UX79zznL8zz/mw922uupj+XBSx0y91AogBYEPVaCxSubQNukDaUcW2/Ylz+LnhR8iKDM41JUwOERERERd27Yk82Px4vSY3mBXJv5QjzBc16euP7loPa65Z158vaXs48O/m43zf/lvAMCAbeEx1tq0Nb6Ni+ikOjre9peklGjxuu045XsP746lUxf1yT8+iwO+dA9Wb2lGL7Ts1GO0lTkU1DiZtwNC4tTfQjbIBIfUClA5CCf6qSpeWbEJo7A2Wicj8F1Fc8nHSz86D/1+dRzKrS1YsnwlXrz1vzHysS+jV8vaqvdTkZ0KDqUfRBGooqFKcMiHW9Ec3UP+dDxVxWfWfBlnuk/D3bJs19ZFHYrBISIiIurSdlgjfN2Hvp7alz3ZIbJtbiphH9lQ8zaL127HI8VP482t/wAAjGpdDADoH2yKb2NGM2sUHLKbD4+WdThow8Mdt2jq8p5+fh4myQKs3LQDvWv0hanVdLrN4FCtTsR2WVk7JuWpn/59uXpLEthyEOAPT72O3zyxGAsXLYiPcWEAfo/YNPcebP/mAdDW7djWkh9Ueff/PolDm8LG06UFD2HsLw/Dlwp/xAXe/RjgV/89F8CJe1O1a5B9qqzMR6BaNXPILl0zFjRemHvbVVuaMQwbAQC+cD5WV8LgEBEREXVpy5e+Fl+esf3+1L72jGamnqW1HOCfL61Cg+SfaBnLF7+Msc4aXBHcgKZtmzAAYZ+Pgbolvo1jgkE5J8rHuS/h+uK1Hbdw6vIea7gMdzb8F1Zv3FxzSlmtrBunjaCL1gwOJeU77ek5pEH6v4Xnlm1KHida69V/fQn/eX5u8lQa4Au3zY3LLqljrbrxIrT8974o3fEp9GldjxVLX0NTleDQxJW3xr/Pet3y7tQ+E2zJo5CdbEidHL/qBwgU6FWl51AgTt3H4ksrkt+tyuBjl8LgEBEREXVpG1csrL6TmUOUIwgU/3XnC7jqtqdr3m7+H7+IU/75RgDA0j5HYOWipNxsILZU3oEnMj3GsmfvxdJZf8/d1yDh1C+/uXbDYKdGcKitcq2g1mmaY5eV1d/nJdvAf8HqpHTyTc4smGDA5pVhT6613j5oLpXwp1lL8bnbnqv/eahu+yy+Aw3+dgwLwrIwt9CAoDU/EPffhRurPk61jB4gOpaywaE6qgXtAKZqAK2ZOeRUlJVVs+S1pDzc9/k3vCthcIiIiIi6tMLq6iclzByiPDc9tQQPPfMcrin8uubtDnv55/Hltb3GYfWG5Nv33rqj4vbK463HGH3nOzHmb++p2O63JmVkTjk8iS9JIfcxapWOtVVWVitzSHa6IXU6I8X3k+tXFm7GW5ywCfUoCft0rfdG1AxwUccLggB3PV19LH01tTLYFJIKKNbPyhzSAH4bZWX1Hovl159KrmS+4Pndk4vx1KL1oM7B4BARERF1aSO2vVR1H3sOUZ6Rs7+Hpxo/gfPcx+q/kwJrNuU0oU7dpvoJvXJ03l6j+QeTqu7buDoZ+e6UwgDiDskf4b1HMofc+jOHnEzmEDLBouGyCQAwStahyRuAZqd3/Bqefm0D/vHCSlDHCXZUZic+PH8VfvWvGtmyO/M8Of2A6kkdSpU+BgECP0BjlDVX8Rzi1J3FNnDds8n9rN+bZT/AY/f8Ho8+/mhdj0Mdj8EhIiIi6rKaN63GyKD6iN6AKemU443rftfmbYIgc3KkAdamgkM5gaBawaHs41G31bhlcdV9raXkd47rh5lDLW7v3NvWCg61Pcq+vswhR9pRVpYJBkmQ39tmX1mHLQ0jAUjqNXz2FpaWdYggAFY9j7VLXqjYtbW5tcOztQI48TFTs5dVhmMFyFV9aLl68/WwrKztY3FLcwkHtyZf+NjZbK+tWI3/db+LDy/5TN1rpI7F4BARERF1PRsWYe2//4hNN7yr5s2eXrQe4668G88v27yHFkZ7i9Vb0yc6oopNW7fH1728zKEaZWU++xHtFfzWynJCm52t6EZlZS1Or+T+mpx8OzWbVbdVVlbjNM0KDrnt6DlUmTmUPsYL0ejxfWU9tjXsAxWnzXXSTnj4W8B1J6A09/bKfUFQc8rdzlCr55DJWGsrcw3ITKoLfEipVnBIIHUEKl9euhZHyGtYVxwd3s/6nbpp7t0AgBbplXtf2v0YHCIiIqKu5bEfAj+egmH/+Aj22TwHgQoWY2TuTR99Ncwqeuo19iigULl5e9s3ArA9OxFIA8BPSibygkOq1TPVymUfc5Zuquu523L7rTfiph9e2SGPRe2zbuWS1PXlm3bg/pei7MXAR5+5N8b7nHIYSGp1ksyhMuobzd1mWZnUlzmE9oyy18wxH6RLhK4s3IzFje/Foc4ybGscAYjDnkO7w6KHAQDeyv8AAFrVCqqoD6kRVNwZgeSVlbVNUj2HtGbmUCAu4OQfs+u2taCpNTz21r78bxTFx+ZhR4WPawWH/GXh+7Gk1+HtXit1DAaHiIiIqGu5/6rU1WYU0erm9/Rgg2DKWrdycV23q6wCC+BpkllRkJzgUI3j7ecPvYJzfvY4rr9/7i73Hzr3xcvwvk2/2KXHoJ2zYdXi1PWzfvwoLv3tLADA4vt+gUFz/y/e55bCzKFWq6zMr/P0qq3skJrlP449yr4dmUOZYFC2QbWt5PaBigMXAT7q3oXBedP7aKfojk0AAHdHOKHMhx0cCjo8IJdf8lVP5lCmrKzG8aKQqsfitG/cj3N+9nh4u6VhM+qWkdPjxzWKmxbFj0Wdg8EhIiIi6tIUUrXEwvR5Eftb9qYNwL1fSWWBUM+xoe7gUPrkSDSAW+PkBwgn9lQzf+VmHC3z8OHHTsTD99xc1xryrFpTvccW7X7b1qQzhzY1Jb9HXn99cWqf44eZFHZwqFxnD6C2MofqLStzqmRr5N7Nz/YcqtGzTRwAgoOcFfhC4WZ8t/C/NR/7F3+8DTf/9Z6619KTtWwLM101GlmfCgbtlrIyqXvMvC11jAZaMziukj/K3gTKX1m9DQAwbMNsrPBGo9xraLjfeswhO8L/9qRGhibtXm0eJSLSKCJPi8hzIvKiiHwt2r6/iDwlIgtE5E8iUqxy/y9Gt3lZRE7v6BdAREREe7cAgqBKSrxEZRJ2psaaP3wYeOInWP/CfXtkfdS1bFu7tK7bVZznqMLR2gFFDXwcJMuq7AswzXkFANC4/Im61pDntWf+EV/+xcMdO7WI2hasW1B1X3NzuqxGo2CLOsko+1QWSA1tZYfUbEjt2MGh+srYgOT3ZXy9VjBUHKj1e/dU91kcICtyb6qqOHne1Rj59LfqXktPVmgNs7BMEMQOBgXB7skcygYbpY7sxlSQSv2awfEwO6ny77SdoVlqbcH41uexavD0+Asd1QDNJR/LlizAaI2m4Zm1NW9JLtMeUU8IsQXAKao6CcBkAGeIyLEAvgPgWlU9CMBGAB/M3lFExgN4D4AjAJwB4OdST6cqIiIioohK5QdbI+/b9+aVLwMAVrawqWVP1LppedV99tFSkTmEAF6bwaEA9zdckbuvo77t1gUPxpff+9AJHfKYVL/em16puq+UbVYdlWmpFaAJ6g4O1T5eqgXEAcCxR9m3IyPEzZSVZRtSp4hT0afmRlyVe9PXV67FwbIsbmhNtbnR7xk3+p1hT0ZUDepqFt0egQiwE5lDTqqsLKg5HVThwMk5Zu3fs8tefBJ9pRn+2BOBKCSggY+zfvwo/nD9/0AANGsBggBrl8wDvj0GC/7xs3avm3Zem0eJhrZFVwvR/xTAKQBui7b/BsA5OXd/G4CbVbVFVV8DsADA0bu6aCIiItpL5aStBxBoleased9kDvHXAAB6NRYq9tHeT7esrLHTupg9/1IfbrZhb/YmNb45n7Tj37ii8Kc6Vljr8RWjNz0VXx8gTbv0eNR+g7fnZ2upKsotmcyhKPNGJQkOlesMDrVdVlajXEx2rudQNnMoO9o+dVvHrQjKN6I197ZLXvo3XFEUmALQLm4UILSn2g1tfg0PNHx+lx7XnpgHmBLFKFOnXf18rIbUQVA7c0gk1QvLsINDW+c9AAAYMfG0OKgZBIqFa7djoGzDDhSx3NkH0AAvPvMQAOCgp76M1Y/8X8Xj0u5RVwhRRFwRmQNgDYD7ACwEsEmTlvfLAIzKuesoAHZub7XbEREREQGlypPhvJT4ZGf6w2rT9yehD5qjXWxW3RM1bM8vfQEymUOZnlSiGn+jX/0Bqh9Tb9j2j6r72qKqUFUsW/wq9tOVFftoD9myEoPLa3J3BQr4pZbUNjGZOFbmkF9nkYTTxs+1VgaS7OQoewmyx3yNBsPiADUmptmal4QNu3sX2Ei4Pdyc7LGx257b5cfNljYGVnCoPexR9qpB7pc38XOIk8poS+6XXG5c8SRexRiMGT0mPoZNgNVBEGYfOS5EFRvXrYrv1+uh/2r32mnn1BUcUlVfVScDGI0w8+ewjl6IiHxYRGaJyKy1a9d29MMTERFRd9BaOYbcrzM41NzSgt5bF1u7GBzqiYa05PcEMq4vfB/vd++DltMlQqJBnDnUjPyss1rHlJ0JUvR3AJurl7dBFc8//SBe+s9jAIAn/v5HzPrvmXh91t0AgHkNk+KbBpVj1Wh3WDMP+MFh6IWW3N2BKuBnMmfinkM7U1a2K9PKdrasrP6G1JJTVlZtTb3XPR8ui2Pv22ZFS7ycMjypEYCuVzZAGQ51iIY3RP/W85NKHaNBgKDm2pxU0DK+W/x6Fftsn49lfSaE/YYcU1YWRPfWMEsYAkGA1i35QVravdpVfKiqmwA8BOA4AANF4hzK0QDy/gIuBzDGul7tdlDV61V1mqpOGzZsWHuWRURERHuL1m0Vm7RWWZl1sv76qvSXS6oBsORJoJxfCkF7n8APsE+wCiWtfoL+Jnc2vlG4AVKRpRb2HAogKKFKk98aJ0f2Sd1Rq28Frh2fe7tX7/wO8LWBOPKeczH+rrMAAI0v/gHTg7koLLofG9EfWwYcmqyqVl8Y6hiblwE/PzZ3l4MAjWhBoFrZUyeoDA7VmznktdFzSGv0HLJbuMYjyscc0+ZzOplMIa1VRikOgjpei6pi1I754V2Y5dam5q3r48tuzu+TDgkOZQKUKpWZQ/XkETn2WjRoc1pZXomjiW3vJ2vQX7eiNGJy+NjmtmqCQ0EymVQV/fxNdayQOlo908qGicjA6HIvAKcBmIcwSPSO6GYXAbgz5+53AXiPiDSIyP4ADgbwdAesm4iIiPZGuWVltUbZhydYIoJlmeBQceMC4IYzgL/nNxCmvc+61cvQR1qwws3vYpA6dy2l+8eEZWVl+OJFZRh5968vc6iWg5/9ZvoxAx8Hbn8WAHBk09NYMvBoqHVSzuDQ7rd8wdyq+35Y+BnmN34AqkBRqvTs2YnMobySIlu9mUNx6dcH78XjQ99Z+zkzZZNOrWllTmVAIe8IX7ZqDfZHWMopHTyCfW+0cVXScaUgOcdABwTYsn2v2tdnKGE3TVcN4r+3eQI4uU2vTebQSGwAAAwaEwa+xYl6IAVmYpsiEAcqAtEAA3TzTq2Zdk09mUMjATwkInMBPAPgPlX9G4AvALhcRBYAGALgVwAgIm8Vka8DgKq+COAWAC8B+AeAj6t20CgHIiIi2vvklJUFqNH7wvogvWLtutQuKUflIUt2fqw4dS9Nm8MA4bbCoCq3sE68ypn+MRrA01aUpVB9Ol6tMpy8E+Mnf15zvQCw8uVnMBBhxlwvaYUe9pZUOU/YCJYZGbvTllX5TagB4K3ukwDCk9wiMj178oJDdWYOuVL7Z1o7cyh/n+sVaz5mNnOovdPK8iyfF74/LSi0WSpHwKY1r9e+wW7LHKrowN/m46Sy29SvuTaF5E4rUz/KDJLw396NjQCS7Dfzu83OHBIE6B9saXN91PHqmVY2V1WnqOpEVZ2gqibws0hVj1bVg1T1naraEm2/S1X/y7r/Nap6oKoeqqp/330vhYiIiLq7cnO1srK2ew6Vd2xN7fKdsG9MafsGXH3nCzzB3ss17WjCont+CAAIJL8szD4CKkskAngooywFBNW+aa/xHWduOcg/vwiUwt5GTz1yDx648eup3ZvQF2ufvz+1bfghx6aDQ03rEdz/dcBvo1k27bTS+iVt3iZQVASHckfZ1xkcakutbI9qfYYaiu0IDqnWbEgNcesKDu1YHDajXlo8sENKovZ2OzbU6EUGAB0QYMvrOZS9XE8ukWcfH0GAoI2yMskrK4szg8L7msCmOYZTmUMwmUOayqzjX+49p109h4iIiIh2p02bN1ZsU6nekFqsk/Win8k6ir7VL+xYi6ufnYHmlhLWbG7C8o0cD743mvW7r+CUrXcBQKosy5Y64c4EesLMoTL8mplD1QM01UpqnnxpMQDgmIfOx6mLv1+xnobXH01tcz03lSlX+Pvn4D7+A2DhQ1Wfm3aNbGojmwOAH1T2HIozyWR3BIdqZA5VCQ4Viw01H9O1TvZVgyTzKfc5KoPyeQGrXuuex2oZjq3e4LpLK3uyls2rau7viABbtrQxgAup+NnVkTlkl71pEE8Wy6OQ3GllgW+mkUUNsaMAUpz9Fr3esGW2KSEPeCx1EgaHiIiIqMvYvHlTxbagVkNq64O0V84EfTIfZNVvwcbvT8eGa4/b5XVS19N30/z4crXMIbthbnYKmMAEh7yqmUNSM3Mo/2TmuNuPxaIF83P3eShj7LY5aNFkveKmMzaC1S8CAEoNA6s+N+2aXk0r2ryNBkFlcCgKtgRWxoRf5dhrr2q/84B0Q2pbQ0NbmUPJ8RsEQep65ZNUzxwyWZiqilFN87G63+EAJDewsXQDg/EA4h5n5W0bat6sI4IiFU3RaxxLtXgVPYdqr81xK49L38oMApLApuROK3PCIBMz0DoNg0NERETUZTRtXl+xLWwOXKXHhpbwNuex8MTNrx0cKpVKONRZhiOdxR20WupK+rWsji/bZT62VFlZReaQwkMpyhzKP5mq6Nli379GOciGhbNyt/fDDvRCMxZLMtzXzZyUF7eGDWxf39RccX/qGANaV7Z5myDwUazIHDI9hwrxNq2zIXVb2soc0v2Or9je2NBY8zHt4FYQ+BW/I9NP4iKv+OiJheuw/xfvwZylm7B6zSqMwSqURkwCxKkIbMyevwj/+sH78fKStoNve7MNrzwBXDMCa5+9G8GOyuzYlN3QcygMuqR/Nm4d8aJ0z6GgZlktgNyyMhP8Mb8f48yhirKyIPoiKMwcSj1u20ulDsLgEBEREXUZLZvXVGxTcRBU+Qb73KY/40fFn+OgVXfnBIfSJUAr5/+7w9ZJXc8QPzl26hrBnemfkZSVeVXv79RsSF39W/WW5c/XXotnlQM5VRoBt/GtPe2kciuGBJVB6awwOJQpK1Qzyt6aLpdzgrwzamYOOS7kgr8An305tb2xoXZZWTY4VDMTzpHc6VMPvxw2fX9q0Xosfyn8ndrvgOlhz5nMSX2/B6/E+7wHIAvur3icnmTRo7cAAObPeghuS+0pXB1SVlYjc8j8npowakCbj1PIBIfa6tuXV1ZWKqXLypxs5pAZZS8KhYMADjOHOhGDQ0R7kO7YiM3fnYxtC3mCQkSUR7evq9wGgf2Rxdfkg645qWssbUKxIjiUPvFpevlhAMA6bftDMXU/g5FMt6knc6jyG3qFh3Iqc6ik6ZOsmplDNU5oGtbPq7oPSPdIcqoEhzjwd/fYvu71+MS1lsAvV2QOOUEZgUqUZRPSDiors3/n/V/5zak9Ig5Q6AX02ye1vV+fXjUf0T7Z1yCo2ZBaxM0ZBCCpAEFT1Ix61OHHQyEVAdKR68LPu617e0lkaQew6oWqu91tYeaUM3AUvNYt8GuegndEWVn6GMzLQivWkTqUyhwKao+yB/Izh0xDardKQ2oEVs8hkeh3HwPhnYXBIaI9aMlLz2DA9tcw//lnOnspRERdgm5biw03vAe6PQzyuDvWoVVzUtOtk5RsyryR7TmkUSPMp4NDAQD9V4Ujlze7g3d94dSllFenMyiqnaDbJ6/ZE52w51BYVmZ6DvmZk+NamRa1AgzDmhZU3Qekv+l3nPxeL7UmBdHOW7/81bpupxqkJigBUXBI0hk2HdaQ2sr2+L9el2Jc801Y4YwMn6NKFllb08o8yWQO1Rxlnw7K5+3utXYulss+6DNwaFhWlgmQ9gvCLJm9fVLklt+eD1w3A3dffRY2b63ssdRrR9iEurHvIPTyt2Kb06/qY+2OhtRVp322wUO6gbm2sba8RullP91zCE46OGSC3uEoeyc3A432HAaHiPagLSteARB+WxMEioVrt+Guhx+v+keeiGhvt/DWL2Hwkr/jxXtvBAA0tGzABhlUeUPrRKlkffC1P0i7QUvqLtuawh4tXjH8Nn1gc9i7xYGi+enfYNsvz+6Q10Cdb8t1p6euV8scSjekzikrQxmB48XftJeRfhy3Zs+h6ifaI4LKckmbHVAQx8vPHGJwaLfYtnJRXbdT36/oRSUabhPr51VtUl572dkef/74DPz4/KmY138GAGDLtq35d3IL+dsjduZQEAQ1g50QN/W6KtanwMim+VjT7/DwujipAOmm9ckxv7cfu/2XhpMEz8JjWDL7nsr9rea9UPTHdmx3a2Sv7kJwKIiyarMByvRxG12uI2BUtKaViWqc5VONk3Ps+9GXNCYw70TPa26rqjhAVuBYZ140o0yqNven3a+j8h6JqA6taxeGFzTAPTddi7MXfg0HAnhkx/V4w5vf3alrIyLqDM6asNxmQ3EEAKCvvwnbCoOAUra8LPlwa2cOOalvGNMfKOOxu1Gqu5nMIwjQeM+nOmD11BU0b9uIwZpp8lqtZ1CmrCa9L4CrAVQa4pOpbJZarelOtfpkOG18E25PVxPXyf+mn2Vlu0Xr+sV13c7PybJxtByWCKXKyjoqcyg5BkYN7IVRA3thzdgf4oZbJuDdJ1QJbFcJihrpnkMBnJqj7N3cKVcSbdu8fhVGYQ1WjHiv2ZPK+FgyfxYGmtfSo3rIVL5nvYLtAADf9zFAtmODM7TG/Xc+MOLDgQO/4hjM/X3ypmtQXvUSvDW1+6HFj6F+m9mLeT2HyuUkMwiIgt+wsozUx4MNnwMALEGfqLF5kAqOMlS05zBziGh3KbeGNcgWb9NrAMI/yDMXfi/e3rAhnQ5PRNRTDG8Ofy8O6NMLTa1lDNTNaGmo9cE5PabXPhnJpuOb4JD5FtX0T6iV/UHdz/rllZkf1TKHUkEazWYOadT3IgnOVAaHqh87tcrK2uppY5fBuY6Tm7GhgWLeyi1oLfekE+3dT7YsxXqtXuYTC4KKnjpOUIYi/fOqduy1V94J/fCB/fCBD38GvRuqZAg5tTOHUj1k/NqZQ+JIZZDButzy+n8AAAMOOjper0ARLOvITwABAABJREFUBIpxV96Nv95nNaHeyzOHalr9EgZF/dA08NEfTWjy+le9+a6UlZmfT1BHzyH0HQbnnJ+148G1zb5neWVlQaaszHGjzKF4WlnyelWYOdTZGBwi2k02/PgNwDWZRoFNYUkD1Ed/bO+EVRERdQGt24GNSwAAfXUbgPAD8Yr1WzBAmhD0Hpa5Q/qbWD9VVmZ9iMwGh6IPpeaDsht9sDXPGd6lB5+07CW25JUFVc0csk5EssEhBEnfi7jnUPpxagcWdyE45GR6DuWcZC1evR5zfnYhbrn3kZqPRe3TuH0FVjsj2rxdkJM5JFoO+1Oleg51UHBoZ07T3LYyh+yyMr9msBOS3/uqX8tq3Fn8CvZb/xgAYL/xx0e3D6dMlYIAb3GewDH+s/F99uZm6qWWHbVv8Ivj4ovql+FJgJLTWPXmuxYcigIuFdPK8rNwxKs93S794EFYS1iDk9OQ2g/SwSETQBKzRjs4ZPUcYoCoczA4RLSbDN7yUnqDKkaUV0SXeTJCRD1X0/WnAz+amN6oAdatjia69K88UbPDQ4H18SVOVY8eI3UfM2Y6+hBqmsm6NUqLqPtpWre4YptWOUl2rBOOylH24SBlFTc+xrKZQy5q9RyqERyStjKH7J5D+dPKnFf/ifO9hzD11R/VfCxqH6fchFKheiaHkVdS42g5PFbsn1dHBYd2polwm5lD7RllX3kcKgTTV9+CSc4iXOT+A2sxGI39TI+4MHNIy634SfGnOM39D5oRNshWVaxd/hqeu+/37X9NXdyq16pPKcsy2aw1J9rtSs+h6C9lkMle05xR9gAgbfSosokGFRNAU88ByS0rSzKHzLSy8HddtiG1Wb9GxxGbUncOBoeI9pBtG1ejL6IJBgwOEVEP1ntd2OPgvgfvi7dpEGDzujA41Dho35r3T2UORR8gVaTyw2T0QTYJDoX7XU1/e07dm258vWKbVJ1WZmcOVU4rczSAioMgOinOTv2p1XPI3YXsCDvbpNq0soHbwr6Fy9ZtwY2PzNvp5yKLanjSm5PxUHHToFzRkNqBjwBOqpxG63is+rQ9arxCFBRQNz8jpGA1GA609ih7SH4Gm1rBhZJ13KrjhMFVa8jKcm+/cF/gw/vliZj0+Mfrex3dyMYl6eCQAsCCBwC/BJSa0zf2S+FtrGOklJ3OuQsZM+b4rCwHrHLK347gENSvOXVOoPmZQ1FDahMcMgEkcaPb2gF7CCAC0coSTtozGBwi2g38HZsrtq1abH2QY3CIiAin/esd8eUg8LFj02oAQJ/BI2vez7eb95pUdXOSZ8t8S2tOjNzMxB7q3tytyyu21dVzKJs5hMBq5hplDrWjrGxXTmayZWV5PYcOwDIAwJvc2djvgY/t9HOR5WsDcZC/sK5SMM0JJLtB5bSytppC10vFwdIgW2LbhuhkX4p9cnc3oJRcCYKawc5qGWypNVoBrLjnkPV7uFWiIJUGGIRwwtpD3z4PLa3pyZLd1bZ7/gsTn/x0atuAtbOB35+H1nu/hqbob5qhUaDELnstIxsc2vm/Sb4Jamd7DomD0YPCqZ0jBvRKdrjF+h9cg53qOeSbzCExZWXRgAhz28DOHHKhCIOMu1JeRzuPwSGi3WDtkspv9DYvnx9fZhkDEfVY1b551AANLRsAAE6/dFlZ9h6phtQ1eg7FwSEnWxqU3I6ZQ91fn+YVFdukWllZrZ5DcVmZE5dhZEdCuzVKHXYpOFRH5tBQ2RJfniFzsWjttorbUP1SwZ46SrjyPru5MGVl1rSyDgoOQQQntf4ABzX/tv77mOeuEhwqWmVlfps9h/LLyuyMpnRGisBBkPqdav77MROrAODk5gew7OVn0d09/L+Xo+/TlSWe69eEwepX583B+rUr0zvNkASr/C9buror5VRBtZ5DcLBP/zAoNHqgFRxqowzRphpA2igrk5zMIfMFjGR7DjnJKPv4tiJxz6G2JjzS7sHgENFusHl55fSx0pqF8WVGw4mopwq2r6+yw0djKRpH3nd4alf2pDvIGWWvQGXPoSr9HezSCgbru79BpdWVG6ucoLs1gkMOAjjQdM+hzLFTq+fQLp3M2JlDrpNbzpN1yvfZmHpXbFmXBBWzJ9OBVpZ0md4pNkf9sEeK0/GZQ4Dgn5efjDs+eVL9dzFlQoUkAHDv4d+KLxetzCENajcYFnHisfXVpMrs4mll9vSp8H1tKZWyd+32Dlp1d+72clRW11oOsGX9qtQ+03PIPkb8zOl4rWyutphgXTaorSLA6OnhlUnvTXa0q+eQtp1pm3O8JGVl6cwhk21nZyMpwuCQE02OpD2vo357EZGlZfUCAECTNqB3tO3/s/fd8ZIU9fanumduzmHv3buBDbDkKEmCAgZEBXMOP58B8el7GN5DxYQJc9anoJgTKgoqElUQyWkJyy5suhvv3pzTzHTV74/qUF1d1WHu3Ls39Pl8YO90V3fXzNRU+Nb5npMZ7sQAatGE0cCENEWKFCmWCobGxtGkOM4YQ1nBdnGsaAi9hz+tzAkOBe1vXUHqkMVayhxa2KD5aTTTwaA8i2ZHXFxwBASpnd1q4rEjZM0hk1laKZiZBIdkAVlVWlmK0mLwQCfq7b+ZtKjNw0S5FAhUppWxAiyitrK3GIEZIUQehUOX1Sa7wGlHGc8N69BjTwZsQnvWJ0gdbmXPGWx6K3tACkKQoOaQk96UyY1gMSE3PY122hMpCzU+6A8OwfKbJADB1NWZBYdszaGAILUJNB4CXCHJXiTSHKJFpbzJgtSmExxyAuLCPR1xdy5LLbqYFaG/laIopCNPihSzgUFuqztNvFze6sl96M3YIqsztGd8clsnfnvd72d0jxQpUqQ4GKATg8rjjFnuJFFOCZInhn7mELOvD05cXeZQaHAoDdYvZAwe6FQ7gWlEgX0BHE1aGYjpOkXJO/AZhGi0zGSnW9a8iQgOlZMCXm2mzKGicevHseaPL3Vfys5gcqoPwIOJhvQdG7BsEV2ROWTa9zgIyywnKCrMM+vLvbZVRrzgEKMRduEazSGfzpCsOcSYbwPUCYIwa3Exhw7sfhoZEj120KlR6YCKORRf1ywKzvch91v6iHay4FAxm9uO5pDL2jR4XUxXc0gOAqVW9gcTaXAoRYpZQMXYHgDeJPTX9+9GbnoKeZPTfKME3RzctukAvnDjU4HjNT9/IV7/xDtLVNsUKVKkmBt0b7kXLT9/rvIcT3GwQBmBIbMopLLixJe4waGgVoO7Kx6YKIvP5WX2b38S2zf+K87bSDGPMLh/u/J4LM0hBXPIZNzK3lv0+lufOUvBITmAGYc59NXsVUU/b8njnu9IB1TaOn4wWgj0MaYqrcwO9GkdomYTTrsXFvHNNZ5zWTly7t+87wvR0DLMYJqQ9NL3HokBA8yvOeS0a7q4gkODe4LyESrIMhKEOm5l+uCQEdLHRIFq+i05+Ok9LDg27r/gp+qyRTKHLDsg5vSPhitIrWIOEVfYXPytpSlmc4c0OJQixSygJtcLwOvMHrrhezje2OEuaMIE3USM/vYd+OiDzw4cX2NwfYUwS8kUKWaCfz7dg4HxXHTBFCniYnoUtX96q/68PfGkIErHE19RYcHiTKQpiMKtzLayD2MOWRb2Dk6g4xdnYv31F0a8iRTzDeM9O/m/TLLu1uyIh2kOETAYxLGytxkPxPDpz4Qxh4yZjMlyG03TyuYWRGYnKoJDjAWYQ6ZtZe8LQNsBGtU9Zh0uc8hupy0bgKZ1YLXcAVIUpGbMCk0rIwpBahlU/NxsIWFRm8l1zbKKZ8PMR0x2b41VTg5Ae5pDgiB1AkfEKDis2kAwSPc9KjSCOo4KrjsAO9BVVFqZbWEvBYeIadfJpzlkAITAYKkg9cFCOvKkSDELqLdsxx17ovj1sh8AEHKMY3aurzT/HXpezOtOkaJU6B8exbN+fTx+c83XD3ZVUiwm3H4FqqZ7tKc5c4iCgXgWt/4Swl/eeXexprCyd514NClGAPDHR/bgrC/9wztwRb22bIr5h8LAblBG0GP4RcwNDXPI5zYmLYwNRvl5gTkkM0jCmEMzE6SW6htDkDpF6SAvplWsH0qtAHMogwIY8fdZxNEcmuEyq8yaSH6R09dRC+yje4F338XFqT+wid9TEKSmlIULUhtGgMHGbE6H91pkDhGbOSQEYF3mkD/gESV0Pd9BBtSMRSDKQdPuP8yQtLJSMIekzzeRZo82IMgiDBzUz6CWhXOMjTiM7AUgBIectiG6ldkpmgRMn1b2q9ek4/QsIh15UqQoMejkCKoxBSA4UXR3UGYggDo46Ol1pEKqKWYD3bufRh2ZwCuHfnKwq5JiEeHA3h2h5xmjIGCwYCjtcH1lhUmoE4RnYJBTJJxd8TDmUOHpW9FZ8abQ56WYvzBG9qAXDSgYEnNIExzypSdIGyxcBJUBxHCDBXLQIBuaVla64FAqSD23kINBVBW8oJaSOcQgucs5Ft0zZA41TO9LfpG7CWmBlNcCWS5M7bSnMsGpEYpglw+GCRbVF/uYQyZ3+xMDCA4Djy4u5lDl2G7tObGFBNiJNLhhIesDmTMRpNYF3ZIE44gB1K1Q3DyKOaQO5lBq4adlX8abM3/nB9y0MjsA7ws48V6YgOrb5tZbI95AipkgHXlSpCgxhnt5ZLybNQZyZB3mUBiN10HB8jrF4ZEx3HjDtWCMoWvHE+7xVEg1xWxg9ABP0wAhePSqi8EWGR08xcHB8GBf6HlCuSA1JYanRaAt7E10XbcyhqBbmR1AJyHBoTPGbw9/Vqmw+35gYmBunrXIUfh0C/b/+M0AgIqJLvRnlgWCOHrNIYGBJo3FjlsZv5e9cJHuG5pWNhNdDLnNp8GhuYX0eVPFEskJYIvIMJ5W5gvm2X+Pk2pf2WmWBT7Wja+Wvxd/ttSpOwCw7633AQA6rK5EbwGAjznkAyGBNDfKKAijKCjEt/klQeYQ4OeHyMwhAgrKgswhssiCQ41Te2OVC6Y62/o7YYLUM2AOOd/OjMKSxAAufRx7V1/kP15sWpm0VnGCQirNIf58zkCL059SyvDIbrXJRYrikI48KVKUGCO9XIx6wGzx09cBgBBYjATotSr09HuLiEeueR9e8ujF2PTI3RjZLQaHUuZQitJjuq8TALDc6sKJXdfimYfmaPGcYlGjPB9uZey4jfG0sqjd6mBaGRX+7yCOlf2M2B5xMd4P/PiFGPv9JbP/rMUOxpBheXTs/gsAoG66C6PlywMsDV1A0J9WJjtP8bQyJriVyYySLJmt4FCqOXRQEdAcUqSVWYUAI9yEBUaIn+1o3+tA+SEoMMHiHgCyFfjAhz+P4999jbIaW8+7GstXHwYAahe+KOgW3AAKkFwgKQ8OBZ2t7Ftp3crEv4OC1CIThGmYQwtZMtMq5NFOu2OVDTCHWNCtLMAcmkFwyPk+5P4wl08gCE4MwMygvKbJPWTZmn5FpZVJ371pOmlljuaQpMuUwMr+Z3++GYUfnY9NO/eH1CtFEqQjT4oUJcZYP++gxrItQeYQDJ4yERIcuubm+3D7xm3o37vNPdY6xZkcwxv/jNonf+HdL2UOpZgFsKE9vtfWAp7EpZg/qLRGwwsIgtTO5FGE2J+KCxL3uFJzyGEO6YNNc2GX2/vYzQCA7XvjLShS6DEyKOhWUYpW2ovp6o5AECeOW5nKyt4E5ek0ziIrQTrGjDSHTL+AdpQoe4rSgoU4GjqgCiv7jJ1WJjJsnOA2YwSPGscE7mMaBKs6OpTPOOw5r4ORyaDzpI+i+xXXJXkLHE49FJuHFvG3MUYtEEZhQZOCaZiKdhjmgmUHh0RGnsMcWkQM5J49W0ODxL65vyatjAi/91KmlTnpkPL6o2I8QfDE/k6r68TgkDkDQWpJ2y3Ercx5voGIlEcbJz55JU41nkbFgQcT1yuFGvqttBQpUhSF3BCnAU9XLoMxFezwGIxQ5tA77jsfe1kL9pz+2cC5M/f4bWvlaLwWjAFjPUBtW7zyKRYVJod6kf/OKRh/5S+w/OizI8uXje2JLCODMbbgBSZTzC5q2Fgo191jDhkgRnhb8jOHqHODwHa0m8IbwhzS6SSUEoNP3IxWAD21R876sxY7evfuQB2APDORHzqAKhSAhlVgQxt95QxT7VYmagbp0spADJf9ES+5wX7mDIJDAaYTSafos4b8VOBQQHNIyRwKag5lYIFKrl7NtVznp5CbxFDNocDY44F7GUIfN/6Cr6CsphGGWeYmGK256COx344PguZQoP5GFiIpxUmTo8RUdoPEkFzYECzmY3QQAwZhsArCb8wJDskOXDMIgBxsDOzZguUABlCHJgQZsb5NCq3mkOBWJi3HS8EccjBBKlHFJrGOxEhRNLIAzbttubK20T1VQGYGaWVSP2sHHFXBIWJrvhlgto5gOJbl9wEEYFUtieuVQo10WyJFihLDGu1BnpkgVU0wJUowI4Zttxwe1FlJ+pDr74x8VlzNof4bLge+tgGF0d5Y5VMsLjx19/Woswax/6avxCpfN5Wcnvv6y7+GL117W+LrUiwdVJPp8AKMAoyBgsCICDSKCxJnh5RRy7W1d+Awh2RWhoiAJkSpwRhauu8GANRW6OuRIhx9+zvBKMVIzy4AQL/RhJGxMQBAeWVNYFGkcyvzpeoE0sp4KIgZprebnyC9a0bhcVmQOiJA6mDPwASe9fHr8PieVHcjLuiE4rOK4e5EaTCtLEs4c8gQ2I7LjjwLADBkVYA1rXePy9oyH6v8OH5feA6qz7wY2eNfA/OYlyV+LwFUNvB/T35H4BST+kFqOWxNdRsnhhm56SMG6h3xamoJKUyG2ohFTrdaSJjo4eYKvZnlyvMsxK3M2bAQmY1U+u2H6ZpFQf4u92dWAQAa2FD0xdV2gMWuM6moc09xXarigkNyloPHHApa2QOcxWcwFos51EH6+TVSX773sX8AV9Sjv/PJxPVd6kiDQylSlBhkvBsDpN7dtQyq8JNYbmVkWGBvaILncYND1Rt/BADoGRiOVT7F4kJ+mKdhFCqaI8syxrCscCDR/YfGJnBt+Wfxxk3vKap+KVIAnv4Fg6EMDvnsk4XdbGcnnzAaSBEzWVD8U4ZMvweA3u69mBgP10iKi4muLWiifAJ7+v6fY+DPHyvJfZcSnnnkDrRcfTwevuG7oL1PAwBGzEa+uIWdNii1GRISEHTA5B1tW3OIiILUILGDPkVpxDjPDjCHotOcAOCvf78DD2fejq47flj0s5cahvoVY1wMQWoVc8gpKwZRatadhgunP4db1/wvyled4B7vfs2ffdd9+NL34/BLfoGSIlsJ9slB4JwPB8+ZZb6XjPHUHVl03QEhZiLnSOc3aBW8DVAdc2ihyiI8dPV7ccqTnNmfNyuVZeIwh3zBISloOJPgkBzUnCYVYIe+AHjF1dEXv+1G0Od/FnCCQuW17qk8KQOx8kUxvmTmkOG0CaJhDoELm5sRgSgquE3K7ann9m8DALZt/Ffi+i51pJzVFClKjLLJfowYje5Eg1HPH4IzhwwQGi0MVzkpTl7UE05mxeukK5ADAChkPFIsAdBxmzFW3RpZdmBoGK1kKNZ9n9jdh+6RKZQNbcdzADQbEZoyMgrTQKY8ulyKpQFGAdiC1BGrcXEC7AgMExbUKDBipJWp3CNbv380tprrcdgnHolX9xDsffLf2CC8bnrku8BFn5/xfZcSBp7grMSTH/uEe6xglHs73E7KtoA4wSE5mGjYIqg+QeqYQZqZQtZIMmJqDg11bgQAHDOZam7ExXBfF5rkg3JwiBiBqRcPDgUXrIyQgNvcdZ99LzIGwViugC89/hFc9Kq34sg1fnvwuoosjlvZUOS70EOnV0Xk4FCEIDVPK1N1xmKgPujSZvmYQ2r3tIXKHDp5/y/dv/V9Q5iuWdBBU75PwMwmCRTfF3nzH+Jd27we5Mz/8l6X17t/jmUakJ0eKEpJPKg5RJw/+L/yPY14aWVdgyNwflFyinDdxG4AQHXLqsT1XepImUMpUiTA4w/fjXtu/X1omcpcH8bLmuGsbnwRc2KAEhLLyt5kYgBJ3UE69+4bncSXP3Yx/vHQE8py7l0W6E7NUsbD99yGR+/7B38xtBu4oh6PffWlie5BJriFOKkOZw7lCxbu+8M3Yt+3/EfPwfP/cDSeczu3O91Txunzo4M96N21JfTaqc23AJ9bhtyeh2M/L8XCxe7rPx1dyLZVlnfhHfgEqUXmkMPWsNPSRDhpZqGC1Jr+9TBre3SdY2Bq5/0YYxWYYGkgtFiYI2odNGcMJIYREI42MjGYQ7KAOWxBamIIwaHSTZVF5yoZcnBIZSGuglXgcwWaahTFxuigQhhe+rzVaWWWsr/gbEf/9WUZA4ZBUFeRxYc/9NFAYOhgwMj6+yCuOUS1TlCEqDSH5LIic8hJKxNYQkRtZb8Y3HZ1v7kw5pDBFMwh6T5hYtdRcILklVn+XdQlTGX2jb1CWtl0eQsq80Pu+ykoQgg68X7xu7YY8T3DYsTHRiJggltZRHCo05tnMkrRPzbtppcts7rs95OGOpIi8hMjhKwihPyTEPIUIWQTIeRS+/i1hJCN9n+dhJCNmus7CSFP2OUeKnH9U6SYU1i3fQYr7/1UaJk6axC5ihZvB0XoFJmdVhbmVuZAHFwMzQ4LtY9vf+BmXJa9Fk1/fis++7H3Ilfwyo8ND3jlrTQ4tNBQ+/ePIvOPT4PlJ4FvHgsAOH7srkT3yE7ZbSBUlBe459ov4SX7vhn7vhuMfb7XoxXL0dfbA+Nbx6L1J6eFXtt/JxdX3/VMeEAzxcIHs/JYvfHrMQp6VvaRRVWT0DDmkMAiyTP/Yme2rexr+h/HtsxhtmZDimJQOaHWQXPTwhQLAJ0gtQh5gWrC4sFGYsJd9JZQaD+sDcgaSXHdypw2ngaH4mNqqCdwTA4Cykw0gLcX1YKVESMy/Wo+wJSDQ5Sn4qreK8DbYFQ7FFlHzqLfFxyy27Uha20ugs1KLeMqNK0sqDnESth2qN2OHX27lY3q1LdYKPeCQ6ymDQ1sGNN5HozWtRkVxCwHOV2TwpA2dRi46x2NHJtH93nBoe7hcXzzC5fhJ3/fCACow4T9gMXjkjdXiDOSFAB8iDH2CCGkFsDDhJDbGGOvcwoQQr4GIEzM5FzGWN8M65oixUHHsumd7t/bf/9JlK8+CStPe7l7jFoWGtkwtle1ujsoIluHEZPvisdgDomdoraDtO891dcJADjB2IETjB0Y7PkgylpXANkK7Nm6Ea4/zgKl8S5ltFn7sc9ch4HdTyFaMUiNijwX3xTb4ta7/whGLew4MIgVR56GA5vvQVPX/bHvOTYxiRrp2KHD96Hhe4fFur5sgOuG5MqLfVcpFgqGevehMboYYNsqx7MOD05Mic08EuFYAosLbwuGz7FqNq3sWX4Sq3Lb8O+W14H17Zi15yx21E2rddBc3T1lcCh6iiuzaV2tD8MUggXx3cqiwAWJNWnlcn1j7ng7zkY03SGPjcJoMDgkBwFVmkOWRdVpZVgYwaFMVtYcsnXeNHm8hplRMi98+m+iOYBdlgqaQ44rl7wpuhDTyqYmxlAhvGZa5hD/TTKQwLxbpYNXytRVp906DLcZhbYF5lCmrh1NXSMYHudOf3wcjQcx5Uve/JE/IwLejmTmkGrTqGLc2zQw9j6Iz2Z/ivsf2obCc693AxyyUHWKaESOnIyxLgBd9t+jhJDNAFYAeAoACA8TvxbAebNYzxQpDjrGR4exgnVjP1mGex55DGds+hawCcBpXlx0oL8HLcSCWdsGWuDOPIG0MhjuzkEYxEWObvHiTIzpsH9XtfHqkzCabcHOtvNx3N5fCeUXPo13KWF0qB/1GMd+RjG064mig0O1hSH+h9CmDrvtPwCAa6FsAo4FMIg6+VIlnrztZzjm7v8OHG8gY7Hr1JrbG6hTisWJ4e5d8YJDjGmdcwITStVCmAUXbl5amRgc8i/QZ4s5ND5dQO+WB7AGFrKrTwHt+8usPGcpwGQ55XEmpJXJMDIxgkPSRo0bHCKmpxtYwqCLFbIIlJlOcdMhnDrLorYp9GDjiv1qmTlESCCjn1Er4ELLy+q0eeYXgppDlquxpYJhGNFBStGtTKU5ZC4eQeonOg/gFOE107CxvcAMCzCknM/BNL3PrZSsP2esnKjq4AfWn1v8zaq8WWdVUwcyhIKO2+5gCW4jmudQyEHYYAANhNiBIVmoWr6x16Yy1iQAoIaOoGvPNjhKQ+m6JzkSjXiEkDUATgQgbi+fDaCbMbZVcxkDcCsh5GFCyMUh976YEPIQIeSh3t7UbjvF/MP+7Y8D4CleZ/z5OcoyQ718wVvW0O4yhyxRiI3YaWURVvYApEi6Jq3M7vSMsa7Audp8ny8wBAA1f3wT+q5+RfSzU8wL9O19BgAPFE53bS76Pq6FaUQgphHx3Jkq7v920XUBgJ5uLx1tIe4epkiGsb698QoyCgKmDA7xiaEwOVRpEjEryBxCkMIvL9Bnizn092+8Hfk/vhcA0HH0mbHS5VIE8dStP8EKptCIgdd/qAIpZhzNISnV2l34CwLXJdUcsgM4FlO0BWnhHpeJ4rRxK8YCM5e3cP3Pv4megf5Y916syE6pkhnipJWp526ylf28hdTG+KKdhWsOGeGaQ+LvwwnSilb2TmBe3hRdaMGhXbt24pTfPct3TBdU82cHqFOdxT5LF2QqBs73MVG9CvjgZuCsDxZ/M8EwpL6Va2ZV5JzgUIJ+UdQcUqaV+YNAjPC0skjOpi99jz+jJb8fw3+41DuczjETI3ZrJITUALgOwPsZY+IK4g0AfhNy6VmMsX2EkGUAbiOEbGGMBXzlGGNXA7gaAE4++eSUA5Zi3mF4lx0cCtllHu3jDJ6qpuWYHOB/+1T6beaQESutzPsZ6J7p7JrW5hQUaQUaJnYBE7tilU1x8DHatQ0ADw5OjQ0VdY+8RVFPeO61M0jmpqdRFnZRBFYUdie+5r77/o3hvv3Y8MDHsb/qcCyzj//2gV34wEnTaK5JxXoXK3KD+6ILAXxyF1dzSDUxZXyhI8KdiAusDFn3JaxPLxaj4+M4f/JGlJMCutGINWs3YECoc3/vAeRzU2hfsabkz15sOOqe92vPuTp6ikVaHM0hnR4FMwxh0Vu6oJ5ltz0Kww3qODCkBaJKlF2FDPh70OmfiNh59+/x8h2fwtM3d2HZG78U6/6LEbXTqrSyaEFqFNQpgYwQVJUlE/49GCAZPvIzIwtC8xgdHbFTeXWaQ6Y6rczXNkVBajugWlBpDsluZQuL0THxRJD5qWUOiYEwnSC1EHQrrSMi8f6p64h3yTv/DjrWpw73vOoa0Cf/hKrGdgBAq60iIzOAwsB82qtBhp4stUGIyQP1UYEdhbZTG+tD24QQ/F1g7Ww+IFbYjxCSBQ8M/Yox9kfheAbAKwFcq7uWMbbP/rcHwJ8AnDqTCqdIcbBgdXPhM3lCJ2JykDN46lo63AG1UBDo8MSwmUPSPRQ71/60Mk1wyL6ujE1Hv4EUCw7TfVzjioAhXyhOVK9vwBMkdwbPvgPFBwgf+/tvUAl1ikcYqv5+Oc5/6F1Ya3TjzClvf+Bjo5/Ht677e9H1STH/URiNxwZmjIUuVHxQlCGMBsT7nf7arzk0O4LU06N92P/l09C/8zHs2vwQygn/zfZnV8AwiG+x2fy9w9H+w+NL8tylDGeBaRhGgAFmxtAc0plDEENMK/PaC1UxfhJADA4FninXNzZziLffOMyh6Z332mUXAMtlFtFCo4NDKg0nZumCQybamuKlZR9UOMwhO11oZLDfTr1V97mGYQZSNuXZqsrKXkzlcZhDsiD1QmMOTQ0Fdc90QtK+Ob7WQXO2mENF9FErT4ZxxIvU5459NYw3/AqobgUAtJIh/pyQ4NAU8YtgM0GgPG5aGQBlCqfvvr7gkLosoynfJCniuJURANcA2MwYk+1Gng9gC2NMyRknhFTbItYghFQDeCGAJ2dW5RQpDg4qh3iKT1hwqDDMg0ONy1Z5g6SwqGd2cCi4gxIcJElUri0AlqrwL2qQQR7EIXa6TTEYEFK4nN2swa6duuJaTE1N4qlPn4zj77ok8bXT05M4LOdPi5uwZR0rSQ6v6PkuHt09iL6xNMi5GOFzrgkDC09x8BXVBIfkpYuzcBaZQ3JwSOcGmRRP3vRDdExsQedfv4rhbV72vWuJnqaVJccV9eHnnQWmUnMoBj9Sl+JNMoAirUxOiUgKh92j2nUPuJXFFaS230MczaFsP++HxyuXx7r3YsTExDhaMYQutPpPxGEOUU1wCASkZQPub34F7qx6QamqWnrYwSFiB4fGRwZAGNOKmRPDUP62xE9GFRwSgwHEbvPypuhCS/exFCLmoiC1mCoqBsLkzV13/i8GaEsoZs6cfqDUMZGqFgBAK3GYQ/r+yazy99tE+N3IwSvZrYyAKducCmGucN7hlDmUFHE+/TMBvAXAeYJ1/Yvtc6+HlFJGCOkghPzNftkG4N+EkMcAPADgRsbYzSWqe4oUc4qWyU4AnvuNCmTsACZRhvKaJndXwJKYQ5QYQUtPVacmRsEjBKlTLE6Uj/G4O0EMeq0GdMxjbTiTscLEULKbMIae3U/jKK20XDh2Pn4PKomfbbQ3s9r927IsXP793+Cy3z5Q1P1TzHPEbLuO25hu0ulfkKit7OUUMSVzSNYcKsEs+gdfuxyHbfoWAGC6+UhkDjwq1NUeC2YYWFhqKOQigsWMgbqaQ2agTcTRHCKaxT4Mw3VwEtO7CjNk3DiBSVXgwZDqS8yYwaEEmkMtE9v585fwZnrf/k4AQH+23X8iECBRMIc0C01HkPq0//opnnvZH0pQy1mCyxxqAgBMjw/ZG5Hx08oI/HEHMU3IdSsTGFbMMGExsuCZQ8ZEuIi5OG75mUM6tzJRyLt0KYml1EjzwQ4oLrOZQ0ZIACdbyYNDw6zKrpTeyp5JmkNAgjS7kPQ99/BS7uyKRGQLYoz9mzFGGGPHMcZOsP/7m33ubYyxH0jl9zPGXmz/vYMxdrz939GMsc/PzttIkWJ2kZ8aQzvlgphmSApCdqIXg0YTp0Q6CwJfOhCxmUPRwaE4VvbORCXdkV74YNRC592/983a66e5bhUBjbXAHp7M4/Jr/ozu4Un3GClMec+w7510UjbTwXX46bsCx8SFzMlT9+Gm8o/iBYPaDOUUCxlxA5sJNIegYElwQWp/W3X0WMKYQ2FpZaO7Hsfw9gdDa8IoxSWj30Md4b+7bFUdWkc2eednQdh4KWCgJ1yrioB5i3XFQsWMoTlEdKw2YkDNHJpZ+odF9GllxTKHXLeyiAVVLl9AK7UXuAuMtVFKjHRz5uxYhcSeipFWBl1a2UIJ/Dq/ibIaFEgW1sSQ7Vams7JXpZUR+DJ1lMwhQZBap7UZx5hlHiE7pRBxF0WlITKHwjSHHEFqQXOolGlls7UeMDOYyja4LzNvu0H/7AqeYvnp/FsB+NN35fpRkCCLLGbf50sL1vVpqeZQYiyQ3ixFioOLA9sfh0EYetDoWd0qUJXrwWiWUy/dtDJL1hxSDZKK4JBMs1QgZQ4tHjx971+x5rZ3YvvGO/kBxtBq8YCkweIxh+665Q+4cs9bcM/1P8Ctj2zFnr5RbO0W/APsdpeUZjtT4cjKrvsDx1QLmTXVybWMUswv/PBfO7CtZ9R9vfH/3obT9/883sV2+qQqiMLkXlDpVsYUzCF+lag/I7e9MOZQ7U/ORv0vnh+a8ti9+2nfazo1ikMsT7Q9TSsrDkM94cL3PDhkW0Yr2kwmG0NzSLNAJYKVPXzBoRmmlTmaQ4r2G7Cyj5laEZc5tHuHl9q70FJ6ZoobNu7Dhd/5NxhjmOrj6dq5mpX+QtJ3ovy9aoKJCybw6zCHzAymM7Uwc6NgVK/zZhDiC2K4EOanPrcyVVqZYcspSHNnUQvmwNZHMDU+nPjtzCVq8gOBY8zHHNIEhwJjks12NLzys+FWNhuwKjl7yIKBytUnAW/5k+981rTfU3ktAODdZ9qC2FTUHApnDhEwpRi/8vfIYgSH0nVSYiyQ3ixFioOLwU7uVLa/bG2o5lB9vh9T5TyP3UsrEzWHTOUg6XRezBcQ8jo0nSbGQqPlptBjtIunbE1NcmexqaEDqISzIKVaUXIR9d33AQBWs3144Z9PRu7bp+AVT7zHK8CC7SwWZtLOKMUh448HDqtow5v3D+P3D+0p/lkpDiosyrDp5h/iPd/zdhRP6PlTyBUSGIPBrOKDKMzSsoBEVoaszWLE+D2UfeUQ7bn+p+/1vTa7H/cJaTrvJw0OJcNYb3hfQJjlBrxVgRQ5TUsFQ5tWZgqLLGEBOMO0MhrGHJLTymI+y2UOCfd8Yu8wntznX2z3bn1IqMjS2k3/6rW34MgD14MywBq0ZVIbVvsLyW1ItUDV6TwutOCQkQUtq0UtmbDZmpq0MjOjDJr5e0wxyGGnTYqfEzFAVVqbdhukloX2X52Lnd+5qKi3NBfIFSjamUrEXBCrFz5DA6LmkKyDZ7NZZ0lzKH/2R/AkXYPVp5b+8zSreXDIHcvWnwd8cgDsmFcBAI5ot0XZ7eBQR5U95xSYZHLfR0GCc8yYfR8T3KD1xj1Lq68rBRZIb5YixcFF/sBm5JiJydq1WvV8izI0sUEUqtoAeDsovrQyW3MooFvkLNqFnRRxQImysk+x8EGH+ITVGcj69nIB9ElWxr//GAvY7Dh30yD1KwAA640ufwHnHgkHy5kMrn27nkA9xjDF/Asf1S732zM3Y+efPlP0s1IcXDCrgG+W/R9+hk8UeQPezuPsfKqyILhmkfp3Ii68g8yh6OCnkzKmwuT+Tb7XLSPcd6MLfhZpimSYHlR6nbjgzCFHc0iVVha9wNBrDoluZQQ58PaTy9RE3jMM4cEhKa0sLnOIBYNDm3/wFvT+4EL861bXYBiFfRvdvyen83ioM8iEWKy4sexj+HL2h6BWAebYPvSzOmQrqn1l5A0LVcBE117CxHnnFRyRdiMDo6IedZiAAabto4hhwDCC/SVLyByiMFytHfc6+x6Os9mGyceKfFOzj+6hsYBuIgBtWpnzXpnCict0A9picKh0zKEjjz8Vx3zmMbS2LivZPR2UVfGgj49BaZggr7gK7FlvR+bCb/BjK04GAFQ18PXQxJQnbyCL8TMprYyEtEcZ4u8x4ALt3D/dRE+MBdKbpUhxEJGfRMXAFuw1OkCy5dpiA4P9qCWTQB0XOWRuWpkwmdDmXvPOiwq7LXE0h1wxzpLbEqSYa2RGbX0NeyAb7eLCofuNNhiMagc+EVVTPA2NltUqzztuZUmtPZlV/OC6f9PdAICtmQ3+e2pSIC7L/q7oZ6U4iOh+Cmwn15Zqw2Bx92CULzxUizKpj1MFFwmotq8U9WeSpJVFwaIMZQP+tLIai6dyDmc4i3TBpJzMN0yNhJ4mjLqLCqLYeZcXtcp76DZYiMAcIiZGDL4jPlG1KvKeYaB2u1WxyGSNJNV7UsFhMzufRd6ieG3mTpxrPobn3PMfeOBhzhiqGXgK/WgEAOzZ8hBu/eHloEvE5rmOcEYupRbKJ7rQb7YG2BpygFHJptG2lwXyG3fTyrLIVjeglkzYmkO6tLKg5pAB5t+sEoNDdlmROUQcxnxg3msHNaXF+6O7B3HPdoX480FE377tyuOiVpM/OKRntJgKK/tSBofiBpWLgZHlFvWB/svMglz4DaDO1vF69vvA/uNmmBteCMBjxKuuZcTwzW8JoN79USGW5pBwvPdpYLQ73r2XMBZIb5YixUHE59tx9Ph9GKhYre2wdj3zGAa6OgEA2QbeOTqUUTk4xGAE08rc4JCQSiamlekWL2lEfNGgapKzfByWzvgIFz+cyDTai9fo77ohz2nPTCey6gySiZlDxbez8X2bkGMZTNSu8d9zhukZKeYZvv9sZH/9CgBeksE3rr872T1stzJtioPQD+aMSrw591H/eWZpAz0kI2oO+SfiOmZmFAoWxSc+8SEcNeJ/nxkUYDHiLhzSdLIiEdHvEDCXdaDSqJCDK/941vcwiip/GZ3mkOjSRAxXiHW6drWyfFw4gtRKtzI5OBTXyt5ZbNqf1+69fsbVqX95HvoH+rFy+hnsrzocAPCWzO24PPubJac9xCiFWZhE3qwKtJlAcEjVpnRMs4USHHKCOlXNyNY0oZGMw9DovAE8wKoKDolBeLWVvTDHMAxQQgJ6nc4mFZUCbr++6krc9uMrkryrWcdYl8apVdQcEtqLKzqtcJp15v9iWhkRgkMFNrO2FCcoXjSyvP+MFGA3DJBDng3YwaRyKjKHFGll0mcUN8AVZ9PUxxz63qmY+u4Zse69lLFAerMUKQ4CCjnQzwlWp9lKZR7szqcewiG/fg4mb/gQAKCq2RY5NBzmkDD5tIX5AqLWbnBIvdugz6V1FvtLY/dvMaMhz3czGKWY7tmGFTu5HS4zs5wREeM7brGdaKhONNPVHErqVlb8AqJsYCv2Z1Z6LinOPWdzApNiXuADG1+c7AJGATCtc46IjEHwb3osRlile4wwvTaXmdELUscNDt3/56uwe/ODrijtnv17cWX2GmRIcGeYwvAm0CELR2vLzZj85RvTPlzC2OQ0xsfHQ8sQId02DnPovAvfjMnTP+Avow0OGSir4G1r2mIwaniKYKF2Rbw3oAELSSszZc2hmH2k48jnbBZ1i9pCNpq/vQ6tGMJk63G+4/LCfLHDsizADobImk5ygESZKqbRHFI6m81H9Nksx/ZjQapb0GKM2puPOs0hA1XlfsY8YdTPoFIwh3yfEzE1m6IOk1kINDGGr2SvxqeyvwjU5Znu0YPGKCr0qplDRJNW5nuvsoOmE9AQBKlFFpvspokrhjF9yDmx6zq7wSHeJ8ZJ2QUAZHj5KgiuuQG3MtnKnsXWHIrDHHLmr9OjfMO1Ynp+sdLmIxZIb5YixdxjfLgHRkHUmSBK5pBji3pCfiMAoL6V085VgtQgBhjRp5WJg6R/BzzcrSyOZkaK+QtmFdBC+cDFKEX+B+dg+fgWAJzloNp9cjDUvQdb/sUDSVXEFrDW7W4690jKOCuSocYoRUtuL4aqDgkskHVpZSmWLkgEc0iEYRBs+/wFPgYaYVQb6DEdrQ0Un1Z22iOXYfW1zwc+24zH//4b9GwLCq0DgMko11Gwx4swPRLzt69D5bYbQQua3+wSxeNffQme3xdcIIowmGdlrxSkViySmpf5HaoMptccqqjnm0PW5DBWdPBx/ai1/uu7j7k4ETMsNK1M0hwyYu6eZ6S0MtapZ+xVHHKS7/VLv347JnOLO0CUywliuNTiBh+E+BfnUDC1FAGfBc8cqmjg/3acBFS1oI6NIksK2vqbponGhgb/MVDffMSvOWQz43xW9gQWglqbTnsVN7N6h0ahw97vvhRH/vx4/XsrIUZ69wBX1GP7nb8GAGSGd6oL+tzKvP7G9Gno+Mck5/fq65+EzTOVI2L5a68BzrwUI6gOnJMRt98oCjZzqCwTc/5mGCiQMlSTMM0hOTiE2Gllhpi+qJkjO8f3Pv0IAGCEVSnLpfCwQHqzFCnmHg/s9Is1UmLGSoWpX2bTzl16rWhlT9TMIYQzh3RpZe7EON11XtAY6tmLLPEm+DXUmyBRkoHBgv4gDkavehGO+Mc7MDXu6XOIEzMf7HZSDHOomCZGKUUZyyFvVCiCQylzKIUE18pebWPbVbbGdyxjGpg0vMkyDw6pG6rfyn7maWXH3XUJJvY9qTyXgWVPgP3MobAglLXEGBxROMN6MLIMAfU2VBSLW9Uiyaxr87/WMEEIMVHXzINDmalBGLZLj2H5RWmH1lyALYe8KbKuDpibVhaHORRviu5uNtn9emvv/dqyVc3+tLhbJt+AHZ07Yj1noSI3Neb+zTfUGBiCzCG5DSnZQJrfaZyA9rzA+Vdi+k1/BloOBao5G64Zw1q2pmGYqKmt9x0jAb8yMThkp9IKn5NhcM0h2enX+e06m5wMBPue2ait+nnmRjSSMe35UmL7Q7cBAIYe4MGhqvHd6CYtwYI6K3sfc0gdHNJpDhVUc6PqFuAFn8GB7MrgOblKszm3ylY4D4l9ScGskJhDwSBsviBqDrH47yGGlb0z3x3YxY0jumJ8hksdC6Q3S5FibrH5mWdw7l/P9h8kRqzdoWwVF650d1AKkuYQMQKDpDPhoBrmkLx4yTHTd13KHFrYGOgSJucSS4cR006fUH/HqyjXlxjYL9CeLfUEliho3LHArKKsjym1XOcJmbLPSijAmGJxgKdP6plDf2t6C263TvQdm7a1YNzrY1jZy4HJYgWpSf8zyuMZJ63MWSjFGDcszW82hR68X1Q4/zjnVekVNf7gUCavEb02TDS3dQAAGsgYsO4cfrzlMF+xuoZmVDS2Iy6cwKQq8CCy24DkaWXOhlJNrldbVmYnAUB2bH+s5yxU+ASPqcX7GGIEBakDwTiFLpSUhrgNq5yLS1HV2UdFHcoOfQ7/2w4OtZJh7WaNYRgg5X6DC0NmMpNgehQRGR2OW1lg3msHh4R7Tezkgc0pSGnoc7wBmhvg86p8Ff9tN03vQ1+ZIqjgCw55f4vvNWhlH2QOiZpDFvRzo8GaDdpzqjqVHDZzKMluIctUoloIDskgmTIUcpIbqBGTOeQT/g53K7Nytii9UYaNv/gIpif9LLWe4TH84LPvwdOdu2M9ezFjgfRmKVLMLaZ3Pxw8SEisTteZ0BG7c6OB3OvgDgpxLT3VVNSAU49NX3WdWlLm0ILGWE+n+7fM6mEGTyvTUWYdDHV5wSGm2Q33BKkTMoco9U3g4oJSiwc2FYFVmb2RYuEiV5AEN0mR/ZHjVqbpZxkx8RA93HfMqmj0nsssJXOIMoJMxpuIy22v2P6zblTNuDAIs/fWozWH3Dps/3tRdVjKMJjHHFKmUqh2t2v89s6NBbX+BDFMVNTxshvq8sDhFwDvfxI47AVumf0v/SWWH3o8Vqw4JHadPSt7ReBBZg7FXORlnICF2471fbUsem0/KdZzFhoKFgWlzLcZQqnNTgQJtJlAv6NkDvnH1u0NXNw2q0tPnIdwhbireHCohkzx9/rJAUVZEyjzpzIFNqtUgtTiQp1wrU1dWpkjXk3AUHmAMwa7iT+IOziusJGfRbARO2BauxyMWlhudWG0ek2wnEZzyNUBAyD/Hk2i0EmLSCtzUGg9OrryCVg9iWFrDsGajn0JKatEJfHKyxs4hbJ6VNMx4Txiaw75gpBRcgr2v0fmnsQJ27+Px375MV+xp266GpdYv0bP374U69mLGWlwKEWKmGCIZg5ZTOiU3dxr0dKTcOaQTnPI8lMrHYaQzBwq2MGhVHNocSDXv8t7IU+giAkjhBHhQEwr04lmFh0cEhZhia6zmUNMxbpLBakXDYYmSzRxZ1x4Xafh8oKj2gLHSFWTcD1T/k4oiG+XNihIXVxwqCO/S3vOgsiWi56sl1/3VgzteqKoeiw2+HT6QkDAvA2SuLvlVc2+l+0kuCAGwPsnm1mRnR7ixxpslohtB95x4gUAgLL6YLvUwWFMqthxGUnkNbbmkB0cYojeLJIDUHatYj1noeGKT/0vPveVK/HTH3/XPUZF5pDUZuQ2pGJ3GfLYesiZAIA2WyNwQaFaSJNSMKkA8GOZCvfl7daJ3K3MpzkkMGCcz8zHHFJviqqMWOrHeMBd3hDdd+BAvPdUImTG+fNIRS2GevaiguRhNa4NlBPTn3zMoRiGMmJ7o2U17t9heoxNp7wGI6wKd5MTtWXmJDhU0DOBZBjZKlRDDA75Qaoa0QAhOMTiC1KTGMwhd04tnac2k8hBtvsxAEBlAiboYkUaHEqRQgLN51D16I+CJ4gR2elSVe61wsreDCxg1JpDDkNIDg65drip5tCiABn2rIflIAwjGf79R3zHPkFbreZQfLeyPBMGZ0p9GgJxIaaVyb+dNK1s8WBobDK6UBzYwR0dc+gVJ67Em87kaT2HtPGgUKbGW+wbsGAoficUBFkhrQxS2yvWyl4bWADA7I0A/ne8qdaBnu6i6rHYMNgXL82JgHp9WVwRVsMEa1rvvqwm6h1wQgyXWeEuiBxc8m/ghZ8HnDbV4NfxCUOY1posoB034OW2XydQFhLsMZXMIT36+3qK2hiYD/hc5kf45OSXcenYN91j4pgUSCOTmUSqJZKUVtZxDE/RCgsUz1sIjKCyrGY8Jn4jlq1spb1ZJbSxGG5lFAYycj/rBoeE4/bnS8Cwb/cO3PPXnwEA+rs0gtCzhMpcn1vHwb088JdpPSxQTtRq0jKHdMEhob2JmngTFctUxQEARx52KIb+eztO/8Q/MWhw1uxD9ecjf3lPyLspIbLJxZwzFVWoEgSp5Q0cs7qZp+4KIDEDXL7gkGZT1O2/Iua99aNb+R9i0HSJIg0OpUgh4dHfXoEN40ErWBASOVkTBweHMio6MTDb0tMRH/ZOBINDBpgbBJJ3tt0glDsZnOHkLQ0uHVSUje93WWJMZg5FpJVRh60mDIy6tDL3HjEm+wXBeYNRqyg7e8vi7lGcdSctitLg0KLB8PCQ7zVlxe1cEuYw5ILXO4uRVS/8L+Ds/0HHiz8KAKisb/Vdrwr0MBgwhLQyeYEeDNbPHCor+8WZvFN6TE+EW9g7IGCuFpqRQGeDvPtfwNtuxHim0Xd8ShQ3N00gWwF20XeBt97gv0Hr4cAZ7/NeLzsSeN0v8XRlyG6+g5B+Tw5WxHVBM1zGEPW9VsFUBAF067Atmzeh5jtH4e5bfherHvMJkxMTyuPMslNXEZzPya/vq31h4HqZOXTEukPwk8L5+Ezdp2ZY44MA09O4am+wF/3/cVPoJRQEhsDYA+BnYNlt2K85xJ0b/alWgmi1MB9xgvsGLNAfX4AzHvpvUMvCRPe22G+rFHA2XBmlGOvhgam65cHgkM/KXvjbGVMYiHbzVgwGi8G5seXPDq3b6uYqmAZB+QVXAgCedclVyJaVh15TMsiB8hgg2SrUCEF4eT1TUdfiYw4BTK0hpwh6i+0s4ALt3k497+0ZGMKX/3AXAJ4avyrfaRdfmMHwUiINDqVIIaNPLTLKaciKXT+h46e+4JDjViamlRlKVwjVop2AurnHcmDACQ4xGr1TqENvbw/uuOl36OwexPh3n4PRb52BZx64FWMj+t3wFLODmukD6CZ8kRsYmIzwtDJH38XXzrQsH7ud6AZRAZbQ1hmjoFYxmkP2Yl3afeSVTNPKFgvGRwZLdCfqpXzokCkHnvcJoIwvZmobvV1WwixfX1hghnNXX4qOzForVpA6DNzKPhlzaP3fXo/CWH/J67LQEJelaDDmCtUaZkR/cs7l3t/lNcCas5CrXg4AGCU1GD/1UmTe/Q+3iJMuQk56C9C0LroyR16I0cajIoslYg7FbJeGlDZRKubQlnv/gnKSx8RgV+xr5gt69qjncZQ5VvbRbmVdNUfjnOmv+Y7JgtRZ08Cp//lD/OfF7515pecahtcW3M/ikDOAk9+hvcSCwcd0qg4OKdPK7E1RU9aiU2yKOvMcAoZV4KldjDGgn2sq5kPEmkuFb934ENj0qFvH6WmeNl1bWxssLKYrC/N//wawZu7kE6T2/q4+4jz3b+uTQ9p6Vp3yRuCKYZBKO8h9QnzXxKKRKSY4VOljaMr9U01DKypIXjgPZcRalf5tMMuV8yAsXE5B3uC8yLoNlz35Utz212sx9dkO1BO+KbF9x1Z8/Ctfj3xfixlpcCjFksfILVdi+NfeYFg5paZnkoRpZa7mkI9ea2ioyrYgtZinDCaklamZQ05np42Yh2DfVa/GOfe/C2u+vwbV/Y+jdnATNvztNdjy4/dg34Eu3PSNd2N0PN4OboqZobnQg4EyvlAJuJXZzKHItDIrmjmURHPIJ4rIaIDRFAuUCwQzYgYm3sxIlt6QYv5ifMzv+FSsIDVxreyDfaSORVHe6i3cuQS017adNiwHh0phZR8F3kfbqcUxp1pZlsfjf7u65HVZaIjb1/C0MjsgogvAveanwH89Apzz4cApuu5cAEA1G0f1iz+DTNsR3skiNNGM5qAmiQxXc0i1+Akwh2IGh5z2S22h25Dr5ABUGCq6HgAANFQuPJbnyH7NJh+1bOaQwdlhIqQ29M6z1+NFZ53mL6JYgB7dUY+WmjlibpQSYqBQbI8v/Tpw+EuUl5y2rpUHeTRuZUThVmYYhrr/dhbtdnCIgbht1xDuT6mFipFOAMAYkgcn4uLe7f147VX34tIHn4ejjV1eHe05makKQPt+x+oxSsf6Fn/vhBDcz7jY9IrjznWPmzFduwAAF30X+IRaYL9kKII5hGwlKpmXei6vZ8prm6ULmDLYr/ocDVbw1kkRzCEdg+uIhz6JOuLV7/UjP8Hnxj+tvtcSQRocSrGkkN9xN3I3fxyF37wZ+S+sBXLjqLv3S6h/5g9umZq8eueWEUM9AdXkHLsUcUH/hRhq5pAyrUzQHNJN9mbCHFpZUOfInzx0MwZ/8BJcMPxbbLv3L4nvmyIZCpMjqMcYxiu5bXIgfYuYMDRCuz4ITg26HRTXyj5WcMjPHCqGakspZ4JwK/v4aWUPdg7gL48tbnvlxYTJsdIwh5y0sLjBFADAylPcPw3m18Jwg+gw/ItiaYEc2NEuAUTmUBJr4Zy1tFN8d215FKt+9ZxYZXlameP8o/mMj34F0Lxeear+aO48Ji5WpggX3x3LJf8eatsPjSwTprWWJHAjwhsbotPKDDPjMurEO8iglOGI6Sf5iyJSig82cmNqBjSjXgA6Kq2surIMH3nJsTiQWeEeM+w52nXW2bg8r2fYLAj4gkNSm3jNT4HLgjo/zmdEJDcy+bzITnas7ANw5r1C+zIU7Le3/OheZEb2BI6XGr/61TX49L6LA3V0N2Ezit+uxq3MV0TzeyS+4JCJVe/7C2477y/IVlQjx0zsZQm1bwzD/53OBiTnuliQdIoC36FoKgHeG9VXVUCGjjnkSCDoBakd5pD6vMNQC1628Pq9UmHhbQekSDEDZH/+Yt/rAzufgqxL30g1aVXEAIuYvFFxB8VJKfBpDhnKXXF30e7THKKwSAZgwcmepznkDKSl7cSOAafwVtbHH5xuv/5nmDywFRde8jkAwOTYCCpr6kpar8WI/q6daANQqFsFDCM4ESecxh1lZe8TgIwQpI4z2S+IwwOlrrZHElCbOaSysg8LDr3mB/cCAC48viPxM1PMPQqjJUpFtd3KVMGUQaMRSl6GMLEk8FvZO5N1CuLXMJgDvSsGIZXSMSeY9acuLIwd2I4aswCMHgDWPRcA0PXgnxDXGJ4L9dtjYBGBlUxlcHyyalcAI9vRVp98h7x59RGRZRjRL97iirDKcFygnDEibAFNDNOX/qLD7t07sMbgAunF6M0dTAw8dQee9XCQKQbwBZ9hp67KAUX5taNjNVR3ONoH9vFj9sbLLdbJuJWegitLXfm5hKA5FEjzzpQBGf+iHQDKsrxcoSA4VCo0h3zzBcPkm6JyVpnLHPIz5sV/AeDq7jegzuQaUsU6S8bBldbXUWdI5gqMuvMlQ5ESKv5mKTEC75GEzN0Mw0QXa8JyMgAYBjpam9HRygPjYx/Ygcr5qFKnCbSHYmrI9zIQvK6RV2EMDa3BuZ+qXzOYhQIJZw45qceRc2gJlDEUF65f+EiZQykWN/q2ArkJFL64DpM/fWXg9Hgu2JnUQi1kCJDIHWBxx9vVHKJ+zSHlz84Vv/M6P55WxssG0sqcwFMMGvmMkECo+vkb/xsXHvgOAOD+676Fyq+uwv4dT81OvRYRhm0XjkwjXxIFmUN2jn/Ud+zTHAoyhyxGvO8zxiBJxWGRUd/uXlwwh8mhCg6Z6d7EYgGdKE1wiEDtVvY/+Xfj0VO/qr/wsp3YUnE8yq0JX6DcCQ4xycp+LpzyihWknk0X4vmEx//6f6j5wUnA904Ffn5RUfcwBLeyolg3Cv2M6tY1AIAV5WoXszA0Lo+hTRSijaRlP0XAkIL+YcwhYmhS2yUceOKf3osiNgYOKn7/Nu0pyyrY8yXFmCS9dtrU1Mqz3GN1Bc4s/9D5R2LHlf7NxgUH22IeQDS78TU/A33Rl1BbydPn8jkvOOS3snfSygTmkFZOwWYOWUHNIbEN1xFvTm7MYqBSTC1yQUVHRFXnLGYOKDZ+OYdU+TxiGNhns4PkK5saGtDcUB+n2nMLR98oCSQ3x0D/JJ0nABrag32pql8zYMGyNzJNreZQfMa8CLrQ+r0SIg0OpViUoJaF+3/8P8B3T0bnD16NzFQ/Kjv/HiiXn06gqaNLKxOfK6aVOQMmjU4rcwZEkfZIwNwFujy4uIse5t8xTII4axCnMx2eyKMQIkg8PulNpDft6kbrkz8EAEwM9Sau11LDeC9P76ts4zsyspg0IyZfZkZ8x74gpGIHxYLptZM4aWUiXbrItDLmClIr9LpSt7JFAzJZQuYQmNu/vXr6k3jd9Cfw2U99AW9/wcn666qa0N9wHFZae1AOr791+mMakVY2G6BiQDRBWtlSgbUl3BUpDgiYl1ptmIg3qgnIBlMXcPQr+L81ejtpbX0yMXRnSOn7PddtL0JbA+A6J3GYQ6zzHs91cAExh1j/DjQxfZorsx0RGSHBYJycZmb3E82nvsY9toFyVrVpGjCS6MHMVzjsoag+6uiXwzj9ElTXcTZRpTXqnROuNUwn7Ux0KxOCUCIU6T4q5pAIMfhvUYbfPbgndG46Y4jMoajMAVVwiOmZQ8QwMJhtAwCUTc+yVlApsfrZYNWt0eUcPM/v5FcNKQhX04aCUeY7ZNQHmUNaQWpnEz3KrSxpcMjSBJuWANIZS4pFiX2P3IjTdvMAxZqBu7Xlxvv2+V5Pj4dMKhSiuoEyCuYQZLcyFVHR1RwScq9BQV0re0mk2HUrc2w/Z4c5xChFLl/A9i+ejt/88ofacs9sesT9++ifbMA6xvPDH3n0AeTySzf6HgfW4B5YjKCxfQ0Axe6GYbiMChXcCbyobaVgDvG87CCNWweZOVSMIDVPK3PcyuKnlaVYWCibLp3mkKNRBQAPsSNwPzsSlWVmZMoNbTsGZcRCOfHavsOwpMQvSD1XaWVJ3cqARGTNBY2q6eDGwdP/+h1O3/6t2PfgaWV2QIQQJE7ck7QwAAAnvQX4wFPAipOS3cvBx7qRf+cdGCINytNJ0t+WLZPTLdRw5wcsej6gEgdWtbm2oYfRmbET/BZQcIh858TQ847mEIgR+C7k106gY9XK1dj+3n34Z9vbhMKLJOEkbnDIRm0zX7QvI0PeQYWcgo85pNEccuYhohOqY2WvdWcV2vYNN/4Zr73xGPzjzuDGb6nAmBUaHBJ/Osp+noU4zRoZjLfxTY/h3AIKNL7tbyD/szV++TJ/Pytu4AAADANTVVIwSBFoVwUMzTiC1LS44NBS1hxKg0MpFiXG9m6OVc4a94tPD3SpRZoBqFNj5PupgkPCIMm0VvZOWpl/B8WxE5cFU93Jnb07U2rNIQcVd12JkS8egZOMbbig8wu+c513/hLj/Ty41vfMfcrrX7vnc/jXH74zK3VbLDBH96KXNKGmmqc4BAak2JpDlvpvGxYxEjKHRM0hK+CiFgecOeS4lckT8TQ4tFhQTUeiC8UC07qVRaFm9XGBY86kkUFiCcwCe0MGE93KEi0kF9AiYQaoKwR3ysce+FWiexDmZw7pBGG1yCiYQwBQv0J9PA6yFciuPBGPVWiYbk7AMEZdszXNwIfUrlsinOAQkf5VljXMwEJdDvxPjPRjTWEXuhv5e1hMiySuOcSCIvVAgAkkBpTXt9agYs2p7utiUwDnHZz07phBy6om7qraRrwNASKmlTmfC5PSyjSBk0BZu+2aMYJDbVt/y/8deSJW3YsCY0JwKGpzWJUVoHeaNQwD573lcvxy/ddw9Av+Y+Z1nSsY0c7NSZFRMIUsqZ/SpZU5m+gmZu7SKyJNK0uRYpHB6tseqxyTfvyjPcUEh4ICqIC3gyJrDqnz/R1Gh1+Qmmrk0DzNoeLdyuJcsW7icbRYfId3T9XR7vGRrm1Y88/3YtcPXov//tjHYO19WHuPmuHoye1SRsVEF/rNZYLLRzA4ZBJ93roLkcatyL1OnlYmuZUVsXtMLS4QTIgRZH6kmkOLBjUlCg45bmVOgOSEVQ04ank8UfuO1YcHjg2AazYE+tw5Zg4tGSGhBGjRGT8kgAFx4VYEk6MYW+aYcNwnA0ga+KxtiyxiSGll4cwh02ecwS/z9+27N/4TBmEw157lu+9iAGPcyh6KtDK5n5DbVMdRZ7h/R0kMLBi4zKF4fRSp4e2xgQiSDMJnUVlVCwDI5L20M8MMTyujKkFqTUBFDHzWT/D5+podv0HhKxti1V8FZhWw+ftv0pyk3sZYRB+jNpvRM4eIaaKusgxvfss7UV0xyy5j8xwVFV5fPGDw1MWejD9IbxLmiks74GlleuYQZSTRvFeEZS3d4FA6O0+xKJEdCQnyiJAmReOD3fqyxFDvHDDxT2EANBx6rbBQN9SpaUQ1SDIGqtnhdtPKXI2B2Z+8Tdaucf/ev/k+1AE4Kv8kvp19Ev3jtUtlw7vkqM91Y3fF4ehwJh6K4BCg1hHyQWSdqQSpkUm0g0KJP62MFmNlbxVgEKbU6yJpcGjRoJaORheKAQLqYw5d/94zY1+7rKUJQ6zat2gZNFsAa09AY4XNQdujxPAYQ27bXyI5YzGQJcH+TMWqDQPxCVIbyTdJzLLoMkWiULcKUMW/7PdYShOJZMEhVVqZv28f2snTxFccfRbwIBZVcIhSy0sri2D0ycGjVavWCOcWSVqZYQcl4ga7VFpcwu+2qYMLCTfke7zThhnKHBLbn8MY0rVh8Xh7fi9AgPqRmW1A7tuxCUd2/1V5jvjcylTMIA9q5hDVBrpU7mdLFvbvaS/aMHXRVQCAoarVWD6yBzeTs/EidhcALqVBTO9zzjALOaMcYJ5rowgKIqyTkvW5dKnkeCuwSELfKVL4UTexJ1Y5OQpthQmQaZlDVPhLTCvjCxAWQ5DaHSR9mkPMn9ojFoefZTKb9p4OxMns5J7HfOeaSWkWh0sOlKKF9iJX3QHTHhxVbmVASD61e69w5lABpreDVYRbWTFpZe7vSUErXzST6xTIslx0oRggjNtMFyPgTAhBn8kXLhvpOnTSNuyuPgYAUAGpfsbs79L6rezjv58lQTLSsgKSwRSs7FFMms8sfthjHWcrj7NZ6PdMaZMoNK3MzATTyijFdd/9CP5yxUW8TM8mdJFlqG9qdgr4ym/btgUP3X9nqapfMtCpscgyzOLsRG5lH/79y2xXMe1s0YxfphMcivl+ymuRI5IejPBZ1NS3YALlWM68jVaDBAOSAIR5bzCtLI7mUAsZDq8rpT7NT22xkCAAY14fE8VOVL9HvV7kohA0LxXs9dLKc96Bs47jLLC6VTxb4YiTz8G9a98LAMhJJkLcrSyEOQSiTF+MhTStLEWKxYU2a3+8gtKkJzS33jCUE1DRfl4M/Bguc0joYDS510QzSFLNgO3QwmeSVpYYwmeV6d8SON1prpn9OixAjEzltecmhw6gDAWgfiVg6tLK+HdtKHZFfBCCQ6pB0iKmtyiLsSPCJOZQUYLUbnAoSOGP2rVNsXBQKs0zh4JfjOYQAIyV85SH/uXPxW+efQNqlh8GAKiHtGick7Sy4t3Knnn8fvz711+chVrND4wOzzylDLAXitTZ1Z9f09nqZatx3NTVwROz0O+ZNgvLmQeEbRYRQpTMoVf1fR8X4k4wxtAyvg391Yd6TGlpTDr0l6fh5JsuKuE7KA2GhvojyzCmF6SWmX1hunhRgaUFg4SC1CAEQ1WrpWOG73yvscxvC2+YoVb2TJFWpmUOERY+TxfwzNVvBT7bHFlu/9CU/iSz3E1kowjGaShzaAmyp7fQVfhC/g3BE4qxcsVFn0ThpLdjzfMuBms5AgDQv90vYWEKmkMZxRyZwRDmvUk1hxYPYzIp5tdomiJFCTA13BufSSN3FmGdByHKiZ0Y0PG5lTmdnKQ5pPrZeVb2fuaQTsjUfY4zMY5YnFls5hMZMXWtfrwzcH7KUDi/LHHcuukAjrviVjy6W+3m1L9/BwAg27hKOxF32pwZEZwxIqzsaWLNIVGQmgZYdnFACzZjQ+H0t2gEPVMkpmtr7wNbwLzYqUkNt9etLi/DRy84EmWNK9XPmYPgEIWwEZAwcLHhjy/EWc98IbrgAsVg146S3IfMVHNoFnH2YWqr5yjXvWIgWtkzxsKDQ0ZQ91Ccw+zftxvrsBf55Se5n2kxff/BQKEQvYHBKNfBU6Y6g+Ga6otxPz0C/3rNEygrC6YdOoG1+kqNmPlCgxOgSNBHjTcf6z8gXTtc5tfJMgwSO63MiEgrA+Iv2jcc+EtkmYc6B/Cr60PKCaxp1ZwlSliehDCHluIcaP+zr8AJr/9U8ITTf4v9Y3ktMhd9A6ioQ+WaUwAAEzsf8G1u8uCQAcqINq3MmQ8nld+QBamncgU83RXBVlskWHotM8WiR2/npviF5UV02KCjmEwA/olTpOYQIVBR2T23Mn/utVZzyGEOsXjBIRWNPDHsZxVy02gv7As+I2WCBHDfQw/g72Ufwq5bv4v9Xz0Te37kFz0c7ebaWNXL1niLG2lAIkWklWmZQ86EKwYLiEmC1MVQbB3mEFNpbSVcMI9M5TE4Xpr0pRSlRemYQ8zd1S8GlTWNAID+Cc7Wq25ZrSw3F3pXfDGUPK3MsCajCy1wjOiMHxIGIQxBc4izQOYPm6Opugx3XXZe8ITkVjbO/Ck6P237CG49+w+JniVa2TPKuM5bCGQNLnGz4MDGmwEAtUefr3Se6hmIZuccLDCF1l6wjC1IDeJa1Yt40/u/iMM/cheec7Sm78jyTbCG6qDV9oJEUuYQANZ+vO+1HOSYrvDrEhESIUgtpH65gtQhY0ophYK7H78d3yn7rvY8YSx2WpnyeltHT4X5FtCeC5x3ZDsuOHZ58ERAn8+P5SvXoo/VAT1b/MEhZoHBgAVDGRxivrSymQWHbv2/D+Dwq1ZjcnLxj9FLj9OWYtFjaP8zWBW3sLRIDnVkIqZa10C4hxiEMRUTKwAaNlBwB4XEYQ65GgPhk8EAjbyI4JATdd+3czMOUYiJ6oJDC2PPcXbw3K6fYr3RhfV7v8oPjD3pOz/VzxdJTcvX6ndp7XakGvhEiEFIlSA1hekFjWIJUnvDgzhBSgLL4ot0QsiMmUN//fxrUY4cXvXZGxPXI8XsonRprbazS5HBoYbGZmAnYNg6b/VtcxccKjADGeL9rnif6w8OxWFYWZPRuikLHZODXSW5j0k85hBRLPTnJYS23fWf20CYherve057b3vPRxPf0hR0WiiTt4KCCJsPWLvuxzirwJqjn+2lEgvjxZ7ND0MhSXzQsWX/IO64+tO4JOKnzZjNTiSGkkFYkTVRkQ1ZtGcrgfx40X3UvIOjv5YgUFHbJDnoSZ8Fq24FhsTTEYLUtjQDA4HBGECimEOauUhugge7zAzGJyZQHflOgMq+x8MLMOoGI0wz+Bn5xz7Vxi/VMlaWYnBI+7tRMYcELKstxya0oGp0n+04yGGCcmdQEK69Jl3Oe8Pi0spkssBFQz8HABRyk0Dl7DldzgdE9m6EkFWEkH8SQp4ihGwihFxqH7+CELKPELLR/u/FmutfRAh5mhCyjRDykVK/gRQpZOR7tsUvLO9AhHQehBA1c0ijOeTks/sW7UCA0g1AcCvzW9nrxCvdyV1s5pC/x+SOHUnB32fvjo3qsylzKICGXLj2FR3agymWRWvbcuUuLQB3MI1kDgki1KZCkJoSM9EOChUnzswqKqBIC54gtZySmURzaCJXwBvNf+BV5r8T1yHF7KNUbonESYkpMvVmWStP5TnnEL6rv6ypUf2cWQgOWfC3Z74YsseGJAvJIoKwCw2soNFhK+Z7p86uvrec3NpwNrYf8/6i6lZK1NTUBo4VMnzJutdYgeXLWtHe1j7j5zhaGySmqySV26rw+20YfAKd5Ychk816i1chqDm+84EZ13c2sO8fV+OSjNpxSgSjnui90n02CmV2+vxiCQ6ZCd3KADTU1/sPSNeatf7woWGGC1KLfZ4zlxUD7cHLNOeuXI7Bn7wOALD7qfu11/vqNt4bXiDCrSzy/qHMoUXShpJA184imEOGQTCcbUXFZLevj8vAAiP8U1amlREisN4TupVpgpBLwcUsTsssAPgQY+woAKcDeC8h5Cj73DcYYyfY//1NvpDw2f/3AFwA4CgAbxCuTZFiVmAM7UQva4hVVnQSA6KYQ8EFLr/IW4irNYfkxb7K7tLubMS0MhJiZe9Q02NaNFrST70ooTX7WVP7nwJVaBilwaEg2qwDgWPixCYz1oVu0oLybEaYiKvdyqKYQ07wiDICoihrkYxH2S5KkLqI4JDNHOLin7IgdbyJ1vV//xfu++zzEj87xdzg2E/dgnwMrY84IDZzqFjNIVLBFy2VdAIA0FCldiWbDc2hgrzgFhdDiYJDAvtoMQpi5iZQP7q1ZLdzUonEhdbUSe/A+ld/umTPKBZmWQXwiT7fMaNxNd6a+zDuPPpzJXtOFh7DR8uqEECJnjl0SH4nRhu5S5BKB6+i+1EAQB8aZlDj0qNqKJ6dOaXcrUzvPhuBrBMcmj8pjDMBcdPK4r+fbLmfkyNvmlY0+AOe0cyhoCB1GMLaeOPe2wEAk1v/5R77vy98EL/69U+V5bNTEWmSdnCIsqCpBhAdbiCMaTdPVJvNix6RzCH9ZzJZ0Y76fI/v++fzYq5WqBakJp6LY8I5LKMUjFI8efsvcNvjQip0DAe8hY7IGRJjrAtAl/33KCFkM4AVMe9/KoBtjLEdAEAI+S2AlwF4qrjqpkgRjZrx3ejKrkRrYSiybCD9JiI4pHKoEAc2cUHgDCQGk3ZJw9zK5BQ07SLGfo4rSB2lMSAHh6zkiSB2HbMDz6DbWIYGOohK4mnA6AJZi2MKVRzaSVCImlLqphxWTR3AULYNhwDKXVoAsYNDTlsuwFSKVzMYiQSpZc2hYoJDzB5EiaHQ6wqhVP+neQMON/YAeAkO+/cHcbQZXEze+fkXY2r5aTj/7QpxwxRzhpbcHrSWqQXXk4IwxtMKit1RLa/j/06P8PtpFjyzwhwicnBIdPApLjgk9hWLBeM/ey0O33dX6W7oMoeK3JxoPhRseO/sjVNmFhNtz0JVN3fZqasqx+f/5/1YXl86QeMs7H7W1hyKQoDFIYwX5SQPVsYZT26fzSh6Bodw9z9vwsljXNMxiq0816iaCOogKkEtV9esqDaTtdNJFgt5oAjmkBsgcyB9jjXNfk0ZQ6MH5mptCn2eGaNdRQVAP/+Nr+N9Qz9wH/mf09cAzwDA2wJlK3LhzomEUTBQUJCitiycDQ8ZlJGimEgLHlrmULR5A61dgZqxceTvv8o9ZhKeIspAkFXJXcDT2iQJN1sopXjstp/jhHsvxTHS8cWORG2dELIGwIkAHL7e+wghjxNCfkwIUfG3VwDYI7zei/iBpRQpikJLbh9Gq9fEKywFh0J3arXMIWEyLzKHFGllAMJ3UCwqlVUvYqg7aXMsbMM7K3kyGGd3UYYTWGia2IH+qrVB3YIw5lDfViC/+EXcRFiaSbr42TfkezBewfP3dW5lJG5wyG4LBVFbSHwuMbx2Eic45EsrowgVa9dAZA4F2n3IJOCy7LV4mXkPAGAFDabmTU6M47n5u3H+7q8DAO75120YHh1NXL8UMwOlDP8s/xBayUhJ7mfAXrgV65VRbqfxTHmOIi+Z/jzelPPruJjZ0jsNBdPKhI2CBAsv4gsOLb4Us+pSBoYAELuPKTo49N4HQC4PT/+dKare8w/3b8MwsaqpChlBI2nkPU+g/z/u1d9AXoxL8FJwPOZQgenbXNCtTM1WBSGcJcwoNv3oErzi8UuwinG9qNLpjJUGddNBlq4KjFmu5pDcZmK5sjnfRX4iaRXnJ1zmUILfT9avtyL3b43L/Ms8QzX+wwsKOW2W2OoxUYhK6/nY8KdRT+J9P7VWxMYGszhzSBM+jgrvyO/paWM9AESKxi9a6AJi7m9R/4mOrziD/7HpT77jFEaADemdEwSpEwa0GbUwPRTsVxbjuCwj9oyFEFID4DoA72eMjQD4PoD1AE4AZxZ9bSYVIYRcTAh5iBDyUG9vRA5oihQaTI30owGjsBrXxbtA/pGH6T0QQ7kT7WMOCQOg4TKH1BoyIpxdOJmdoQ+4EN+zo5hDjMjBId1QF3YTiuHxSaym+5Fv2hA4TTUsJ5PmgO+ejJ6fvEl5frGir7dHedwZWFghh2Y6gEJNBwCPaRYI3NiDZiamlb0FQxkc4syh+MJ8VE4rKyI45GqLEDMwgYy7mGsg44FjuzbdBwCwGMHmx+7DGf94NTb+/LLE9UsxM4xOlZZeTcC8lI9i4DKHvEChueIEPGKeAAAYZzwoVLvskJlUUwk5dde3AHecK2PcR1ygLoVJ6IzBgmlliWCYicR4i0W/s3+qaNt1bavRfEiI4kI2nvgpYRSW3WbkYKWIyM0i4bO0YACMYvn0TvfYLrKSMzysAh788ktx73XfiVW/UmB8293AFfWYlLSP6q1wBogDRj3R+6KsxJ3vYrEEh4zkVvaB9ih9jrUNrYHzzBa+FiUJVExmAzQ0sAmgpGk9VSxq05IBdAapzszPHOpvOLao+ywaFKk5BABVa07GzdYpoKP+uTVnDqmvm5lbmbp8MSz6hYZYrZ0QkgUPDP2KMfZHAGCMdTPGLMY/pR+Cp5DJ2Af4jKNW2scCYIxdzRg7mTF2cmtrq6rIogC948vA7vsOdjUWLbp3bQYAlLcdFu8CkdXDWGjnQQxTuaAVOwp/Wpk96AoLdQa1q5e7aJcmaTpBavceLF5wKJhWRotIK2PYu2MzykkeZe3BiayW5WTv7FbvuzvpExc0BvY+rTzuBFlG+rtgEAajzqNgF5jhMoBc2IOlKp8a8NjtznUWMWEiOHlihCRjDhE/c6iotDIaojkkvVbpWOkw+AzfZd+e3YD+p+4EANQWSpPalCI+hoaHSno/wujMgkNNa/m/R7/CPXT9f56Jpz5zPgCg12wBAJjZ0ttQF6Qsfd9O+RLQHOp+/Hb0fPF4WNPFLZoZpWrR2ihYTnBofmve9ZdxNsV4MTbI2Ti+Szy46rCPrbD0DPmcRucOkBZXNiYzdSCMYmrj73HKxF149hMfx+5nNsaq40zw8K4B3HvzbwAAj93pZw/EZTI5bmUgBgyF+1QkmuyNR1OtZ7bgUISVvcxkkzd+iBQ8MgwD+WquQ1QQ56Ku5pCgIUNYaGATmNu0Hh7A0jOHovosAjtV2obZtsRld6M0h0KwsrEK3awB5ROy2yXRfj9UkFNIrDmk2ZCl1sIZl4tFHLcyAuAaAJsZY18XjotJpa8A8KR8LYAHARxGCFlLCCkD8HoAf55ZlRcwCjkYd3we+PH5B7smixZDe3hwqHHlEbHKE1FMmlpBvRcBjBjKDkzscMQFgcMyMiTnqFxl0AjWWbTTAGskXHPIFaROmFZWlJU9LLDRbv6iviP4jFkQeV3IGD+gFsh0dmknpqYAAGUV3kSKggS+m7hpZU47ozCUmkMQNYdi0GsDaWVFCVKLbmXhaWVJuGxmF9fvGC9rAQ48AQAoNB8edkmKWcDoYLxUjjjIsQzK6OSM3MpQ1QR8vAc481L3kGEQty/effwHAQDVLd6elZUgKBkGOejPxwLHyj7+IlTsyxcScyh//X9h2VQn9u5UB8WjUHQgzElJIQRs9bMBAK0r1hZ3r9lEG1etqKdFpGAe80oAwDCC7mciCLPcOUQS5lAwOORd66RliFdYxIQBhgNde91jq3/93NC6lQLH/3g9nt/3CwAz2L2nXnCoKObQCz4LvOz/gHXnFvf8+YaiNIck5pDcT2X8abuEGGB1K/kpce6hEKQGgixMGdZc9ou2FX0RXHsATtjCW1eQxRJULBZRzKEQhvyqpip0s6CCDXcri8EcSrglrhuTFtK4XCzi9AZnAngLgPMk2/ovE0KeIIQ8DuBcAB8AAEJIByHkbwDAGCsAeB+AWwBsBvA7xtim2XgjCwEjvVztfJwFdy17fvs+9N1/7VxXadEh3/M0LEawfG3M6LzwI7esQnCQE0CIQlQXYcwhW3NI6uzKWoITV0e4V+6MdAEXJwhFimQOsWI1h5yJuKJeurrON22CuUK+f5fyOKUUw59dh7afnA7Av+vGYAQDlA5zKMTaFXAWBty1wVC5NhCSyK1MXCCQCFadDszyUj6CbmVyGo4iZVNRT8YYOsacYYShaZQvRqmxxCddBwFTg90lu9e+zEp00AOoJLmZOR9myrXBpee87B3If2IQrW1ecFs3qUyKgOYQCNzJqOMuGedGvrSy6N/cPY9txtU/vSZmLWcPjXZaT1lliD5OSL9jUau45RcruE5Cx77hc8i95wG0rz+hmDvNKg5701fRf/IHsOGcNya/+HmfAv5nG7qyq0KLETB3bA8PDoVrDonp89RNR/a+O0ZMEDD0js6djuDYVM43BoptJXflGjQiXtCNUYvrvRADhtTPxHLQzFYAJ76p+AD2fIMzDidh3knMIWtMkgIJBIcIsk2r+WN8Wjt+JrMzjy1E9f9zyahkSdLKGLa/4q/YmvEyFwhjgc3bzZUnlbiSCwhRzKGQtUl9ZRaj2ZbAcYawtDJDmPcmdytTjVnFrJ8WGuK4lf0b6lT5gHW9XX4/gBcLr/+mK7vU0L9nK+oAdJNW+BRxrDyWbfkFsOUXwGmvO0i1WxzIDmzHPtKG1TU18S4Q0sqopiNwQBQLXEDSHBI6KNOmLMv6L40d6wHuBouXTH8el2WuxdGsE1O5QlBzSLPgdZ7DXaRYZOCgFILUYMylWRJDEY7SDehxAhGLEMbwbuVxSi3UW4J9qrRLG0gri7m7aTDL9sVQM4coMRO5lfkG8aKt7D3mEJEn4tJklC/S/fWmDIElzr4tD2Ilup0HYL21g49QjGLTxvvQ2NKOjpVrEtc1hR87Pn0MxjMNOPZj/9aWyY2qdbWKwXDtoVg71MlfzKLFb9YWAv7Wiq9gdM9TuIz8oiT3pcTwRX+KTisT+uY4waHjb3gBzqCjAN4R/xmzgGrCmZBhbllTk+PQSYEXuxtLaIHrrIH3KWVt85NBSMpr0fzSK4q72DCAmlZMlTUBeX0xwqjbZpIwhwJ9e0RamUWyMEBBrblbJPV074duVleWi59SzJw5H1Fbky851NmB8ol4mk0AAil1VA4OKT7XmmVrAsdctzJHO9MOHOnabp6ZyBKrZGllP7+3E2dZLJQmwd3KWOxNhPXHn4377zkJ6OYOqzJzCAA2fPBmTE+NofTJzQsAkcGhcD0pUtsGSN4jjISklZHiNYeYpi6xhOsXONKecQ4x1r0DADBc5k8rGtnPd74jRdhSRKJ+Yid6y1fHLk98wSErXHNI61YmaAqJaWUqQWoGtK/2xJx/+5E3ouXEl6KFjKCzc3uQUqllDtkdIaNFWdcWM7gSeKLExDACXbE+rWzx5+eqUDG+DzmmaC9SvrI4QVVNxOM6HfmCQ8oUNM+tLM4Oim9xy6zQHR0tHLcyIyjmLr8O6GBA7UoysPFGAMA+1orq6W6UE1uI2yrg6OvPB70mTdstBdaxPTg2/0RoGTbeV7oHLhPYnrMYHHJw6bsuxsc/801Moawk9wsy34IpxnG4BuIuc5xUq2o6v1z6dDoNgM3O1V1X7G4stYrTKlqAyFc0hxdgNB5zKIHmEFWMScxOK0u6Ez8TDHTvjS4UA6KDpixivhQWfQGsP4//261SBtFAGrsbyqI/t8aO9cHb2H2FHJykmrbrpJuVKq3nkzfESWThKfU6Nyw/eBmz2csOMMBgMOpqKk40bICZLUd5bcRvebFCt4nsOjCH9ymVDW2Ko4Z2DGDChmuU/AYA35ydUnWKuy5otJiQRiPmEDk7zWS6wi+43b/zMQBAJ1kRuCZFMpRb47DKgzmpOvg1h2hovisjBoih6IAi0spMmvMVb1jmUcNN00TD+lMAAP1bHwgGerRUX68jjTNQBjrOItzKiMAekVkf/KC6rmQBiaqWEvW5LnSb7YHjge/LNxE3EEg+iZliY6LA6bWERKaVJWUOkSI1h7xdWoUjUIA5FGyRquDQxDhfDI9nG9HCvN3O6V4efF/JSqeDs1QRZ5E0cd9PUD22p2TPJM3rkUcRzjkzRL9Rmkl6IFWnyLQT8bOPCphMFCNuHIGegSH8+RMvwr2PPFrU9fLGAxvvw9hfPoJbbvwDbr7uxyHXFRfkMVihaD2QhQZWFUypEMHTymz9wpBxI1KDUGQOEUMZHCJgc+raM9anCQ5dUZ/oPkxgs853EfM5wcpTQU97D/CiLxR1ed+zLsXhr/9iaBkzW4bGNsWmraM5JLWjgi44ZLfpUqT1UMrw/ew3sM4Iny84cx99HxMcK2vaD/Wut5lDD9Sfj5+d/jecfd5LZlLthY9IzaHwPqWuKRgcCtcc8qQa4gSzxaC6rp3NpSD6wUIaHJoDbNt4FxilMEZ4molp+hkWE11cuLY3u3LO67aYMJEr8I4lwYBvBJhDIWllitQYAP7gkNDx1Te1YZpl0VyQdDmERYNhmGg/4nTkWAbG7ruDnZHGAYwRMThURLpPkWllTq636nNgpk5zyJ4ALJEJPMAn221WD4bKg8LdocEhomAOaajvLovLfu0skhgMpe09EwWpY2kOSa4ixSwE7N8XUQhSyxNz1eCuriaFxfj7FBlS7WNPAQD2Ztckr2cKH4ZGxrTnRr//fBQ+uxxVN78fJ+y8umTPpCSDnjI7cD6Heh4yk7dYBBbcRVsfi2ll4f105+aHvefFGAcGunbiqX/8Rnu+f6AfE986DReZ96Li9stj1JZjdHxcqIfDBmD46afeiO6vPhs1D38f5z/4Dryq89PaexQ74SY0XzLdqPmOI87iLnwTRK3rRBgVBKn1n0mAOSRrDgl9M091DmohGihyTCgS04N+h6JiOT5hwSFqlIZFuKBgGDAu+CLQXpzFesuFn4FRrd+QffKlf0ZtfRNIRvHZui69fiaGpZn3OkGjUrg4DkzkcIH5YGQ5JziUpD9vETTPDNvK3jRN/L8XnQlTtcG8FOD0Obqx3ck8iBjzmlqXB44xYmg3YyhJxpj3BYc05ZeC5tDSGFEPIh7+2zU49PqX4pG/XYPK8X0A7DSj8T7+H4DCIN99NcsrtfdJEQ7GGJ73tTv5jznBwsI/EQ+f7MTTHPKenclk0G22owVD3j2kqhGDwCyvwjPZI9A28FDw+ZpAl5hWFifQI+c8FyVIDerTHApAlwK3BKnafT37UUlymKwOCojKjnRyWllgANMFh6TP1WQWqE2vVaWVMXGQjHA+sysmXEyLmpC5E3EjKOYesLJXDEcq5hDfxTPAiD8I1s64/k1/Njh5SJEMfT37gseGR3Hd73+B2u4HkbGKsysPwyHHn4OJelvIcw6ZQ1MVQXZfMZAX3IEFeEwExqQQDG9/wCsbo5/d+qfP49A736s9v/k3l2MNSc68692zzf3b6SeG+7vxNnKj+7uMQtHBIbZ00srqDj8b+OheVHx8L8ZYcL5IwFwdoDDmUMCgIlRzKMhmZcSESYozKSgWdES2ry4OjPK0MkIMEMHK/sr8G9D2rItK8owlAzNaNeeYk4MudvsYZ2sSlznkb1+6lEjneFjqalz09MfUWLLdynR9jOpo8/L1wnkul1zseLBo4PRHM9Qc6mgNMn0ZiRCkTuBWZol9n2ZMKkVwcr5jibfW2UfuwBb+b/cWNObsSRejwFfW8/8AZEb5RNxcotospcDgRB5dw1O8E07QrINW9iHfgc76VKM5BADDVX4qrTMG/nXD5/EwPQyZLJfnHK7bgJb8/mDUXGt7aVvZ03jBIRlygCIWbPFrQKODo9ntUUXrGWP4yd07cWCYi5gWLIobb7kJ0/nFkcvbt9deLDWuCZzTWdUDdq59TM0h53t3hjtRcyij7EsIjAT0Wv8gXuRCQGAOBX47JJo5pJTTYkwZBDOdieYSWSjOJoZ7g8GhJ696J1616X3aa4pJ7Xm0kjv2TfzPbjS1rUR5G9djy7AQ1d0Sw6oNsvuKQaDdFRscEvpzp6/IFSh++MtfYW+vX3iXdG10/+7p3o/R0eHQe1cPbkEZ8Y8XFmVY85Eb8aO7dqByTC2iHwVHNxHwgjwDe55KdhOryOAQtZZMWhkAoLwWhmniD5WvCZwSdQF17AtAwWorQnMIANgcClJXFNk2ZYgbFiJz6PLP/wCrmmMamaQAPvQ08KEtRV1610vuwG7aClePUprD6gKbBTvtuBRpPaMHdsQqxzfUaLhVunyNMNchzM5oWPLBIcP/r+58ROBvdXO16uJQzaEkaWUFwacrTStLMeswaAHNlDsUyaJYVVPd9vGlx7AoFfYPce0FAyxRJ2yIzjCWBYDqhcEV7AcAgCCyKU+6rAbJtt7uv17yhvfiWZ95yHU0K29cjjqMY2zcn86hsowHvCCU6E6SBIzSxK2NCGKXSZhDqmj9k3v6UXXT+/GD390AAHjm9mvwkntfj+136lMeFhLGurcDACra1gXOBdPK/BT+uMEhS7qPAYvnXhO1IDXXiUiSViboZxWrOWSLfxIjqDkk63fFZw7ZQTBi+ALqGSyOwOJ8wHj//sCxYybuD70mYOUeo1868r//hG2vvBlVNVw3pGX1EQCApnxpWAJxYDSURusvwBxSTq+if3fihgW1J8r33fFXvGvbf+LJb78GO/Z5aco1I9vdv5dffQz6v/Zs7X0ti2JlbievhfDd9I9PAwC+f8d21E6LKdDquvaNTeOGjf7gYa7XW2g5Y8Rk19NIArk/iwvCCktyV/7F//kVXNX0P75jhDF3PhCqOSRTmOUFWYRbmWs+weauz62fCgasi4IvrWzptZuSobYdqGpKdMnkO+7E8EU/xutPXc3nvvZvXp7D6gSpnTZdCpc8RwM2EoyBUKYNPrQde477Nznnw+7fN734Hvyj+fVoI0NoJcNpcCh2cCh83tDRUIEx5ve8jNIc8ua9aVpZXCzx1jp3YIUp125cjl42WT3K4yniY58dHCKYSVqZhTDhOc5+UAxaAg1SnqRmVp3kL8uce0luD61cb2q0VxJd1Oj4AODuBzHTymQUm1bmag4ZZjCYqdMcUrTrwU2343WZO/C6oR8CAKqe4UEiVpjGSH83ngzRxZjvKBQsTPV2AgDqBGFCBwHmkBAkUbqVRWgOOTDttstA3L7GfyNBkDoOS7EEVvYec4go0sqiBamVj2TMLmsgK7AgsnFS5VLEAh3gQYQewzNPaEG4XbSscRInzamisgqHHucFNKraeVrZIaRbd0nJUdmsEEotAoHJaZG6SaIOnvMbZ513AQBeZD6IXT94DSZyBeQtiva8XxB8DfQL6F27tqOB8M0HcTHWM8KDQy015Wi2epXXivjsVb/A9B/eg9HJaaDAzRas8X6hzrZbVn+8nXkHxToQOYzJpYZldRU4abU/xUJM/dYtsIFg4DI4JvlNEoKaQ04KyNz1ue2FYMC6GHgmCWlwaK5RueoE1J/0KgDAWKYJVVN2yqnUvixNYNNLKyt+rZTf/RD677wKOztjMocYBYE+dXXtMWcAnxwErhjGhrNe6R6/4NSjcfYl38EEs1Pv0uCQ/18ZMTWHyjMmRklt4N4qt1vAr+MZh4AhjuO6Da6iMi8WGJZ4a51DCI3JN9BeUY96OGKOi7/BzRZE5lCSXUTDl1bG+H+an4UuOCTaGsoDSNPhZ8WqR1sHX6AUhqUJkKFLK/NYJnNmZc88dxLVpEoZOAP8A3/fNkx+pgPPuf/dAIDJep5G0jLIHfvy2RqMfO8cHPOvSzA1OR641XwHYwyPfv1lOLvz2wCAssq6QBn5syc+5lBwIq5zK5MXU4Y9gdHmXicU5vM9l80srQxGJhDkMmIwLSyN5pDjyibCYUsV6xKVwkPFMJ84j5Bg+9VBDo4Utdhv4f2BseJZya8tErVth5TkPkG3smI1hwTmkL1DXjWw2T12rvkY3vyDf2HH7j1oIcMYIn63po99/f+U993/jCdeLX43vaN2cKi2DM1kJLJ+V45cjtdm7oS57Rbgc62gj/wSKwYfcs87Y8T0RLL+u9gF31LSHJJByv3C1MUzh/RsVSVzyE5ZI3Nk6WxZFtrRHzxRjJ4hFazsCcG/raPx7tz7Z1S/FMkxXHUIluXtzVDZyl4353HdyopfK2V//Dw0//MyvLXnKzGvYHxDKqw/1wQZs9ky9FYcYt9lafZRLiKDQ/EDzoNlfp1AFmplb7hBISOGVpX4PTOdSVGaVpaiVCC64JCvTPyBbmTbfRjd+ciM6xUbT98EPPGHuXteQjRt+xNuLvswMrASRehF5hCjFkjILiQxTCWLg9C8WMh3rn3VYb7XVkaVLwvUtvDUhuyEf8fcMPUTPAoDTEj1SoLiJuLeswxD0RlrAlm+NMrBTlRSb9EwXbkMYAw11F6UUIqVlAfIqLXw0oT+/sXX4JSJu9zXRibIpkrKHNKJkstBJhO2ILUmOMKF+Zzc6xgBxRJY2fs0h2TmkBlt/W0pdEic36i8GDdJmpZbKtROxKTcC5DTyooKDlU1Ae9/Ajj/yuTXFomWjmDqZzGQ22+xbmWGb0zibXrtxBO+Mh/t+zB+e9M/AAADVf7U5c+PfFR534k93j3E76ZnlOu+tdTI4rLqfqSa8GDSrodv4fX983uxetSbi7hW6gm//2L1a7hL49KcytbW+12iOLvX0aIL+0zCNYeYsDh3rKB9u+7uLv/cjNHUKsBQ9O9FpXdY3phkEODN+Y/hFnrqTKuYIiFyDevQikFMjQ0G5qPa4JDdbucyrYdECFJHXt96OACge2zhzWdLisi0MsfKPvq7Hav0O3szErIp6jN5SbaRrhWkTplDKUoGMTikSX9IklZW98vzUfuzc2dcrdj4zeuB694xd89LiJft/DSOMPagnkwgSbM2FGll2kFAscDlF+oFqQ1hAfy5/Juw5vQL1feu4ZHwFfA7u5BMOcZRoboC06QM1uRIUUEURq3EGle+AIFKXygirYwBmMpLQrOMYmLQS4VghWn374Um+rZ/93Y8f/o23zEzEwyYMXlCLU3E5e/F0Fifyp9PBoVQ5hAIgeH0PQkFqQmLEGvXgXrin/LumqynpVrgWaq2zRifDGgmGUmC7EsBU7kCuoeSsTiaclzzJ8mYJKcCRO3uTl6ucYtpWA2obI9nCXXSArtYBH53RTLYfCYJzII12utzvASAU4xnsG7/XwEAUw3+DQgdyvo99pG4uOoemUYVptBc5f/Mo8aH4fFp5XF34pywv6DMKuojM5Ywc6ihQU4rY246ZxiDMpI5JKaVERLQyXQ0h+aKOXTPNrXjXVFzBDetzISRskwPGswWnnLfu3uLQpBaPZd0xpi5TOvhG8jJrOxFtB15BgDgKNJZukotRDi/tSjmUBxdoHp/KjgJsbJnxGPjx5nPiN+zzhUv1RxKUQJ4luMuNIsXeQDWgeVKbyMcfAgDbvkYsPdhIOctLLqueePsP7sIDBjCBL/otDJHc0iz6DTMSM0h1W7rv8q5led/X/Y5LKsL2s8CAGrb0V+xGscZO6UKZrCj8ljlJV3la9E49kxRA2UxtFwiOFYpg2Q6QWqhve8fnJBOUXRt9oRuc12bvL+7t2DwyycgP5zcWvlgoOPHJwWOEUXATB5Y5Il4UBxUvYvGJFaNaTtqaIX5iBd4itPX+FlrrCh9Ccd5ie/SSoLUMdLKCnnFAtSxstfSiJc48lPA9n+6L+/91pvR9s1kjlyO7k2SALKscRLFHKks07Mi5xKEENxd9bwZ3yfAHFL0kXE+T3nDomvHE8pyb8ncjjwyGKtaFXlPizK0TXri1ZbA0hnv34enKt6OM3p/G3kfEbL9tFhnXiDZGFNsqgjXHFqaU9nGJik4JDKJQ+ZBkZpDUloZkcYkNzg0B66Cm3cdQMNvL1KeK05v0dMcSmNDBw+1tt37cNfO+GlliJ96VCo4895i+5jyZ70JALDm2DNKWa2FB53shAOnz4nx3U4dco7vNYMZyhxyJFvijL9+5lDEGLeIsTRH1IMBX1rZzJhDw7se9148fROQn5xR1ZSYHATu/S7w69difPej7uHle24s/bNKgGkqsC8SjPiGwOKijBuBU831xCBqFkeIIDUAnHjptbjvxTejrj7E2YEQ9Kx5maKCJoaXnaK8ZLj+SKzNb4dViJ6gyZ1icZpDnk2uUnPI1OkjOQEJYHwqF7zn5r+4r6t7PF2Mnus/gcaJndj0rz8mrut8QIEZAV0dAKDSgOO3sg9qDuncypibPsDbpGnvoGu1TogpWNlHD5LlzWu8SxktUt9BSCuT0sjkNqSafBUKKuaQPVHTMofmZleRWhZ2btk4J89KhL9+APjFy4F+Hgw4d/ymxLdwgodGApFvmTmk62O2t5yLncdemrhOs4kzL/P6mDtem9CC3YXMHBI/jwRjki+tjGJ0Qs3QAYAD5nIwbb/robN3GOuwDzmFFfRR+34PAGgbj3YXm8p5v0fdPMY1LUgYpqVFWtkbrLBkmUNlVQ2+1wTU1akKW8wGnPUCqcxicMgI9v0uc2j2F0kjW/6J4w21eLBVTCqiwGZ1jEEuPD5Z8DxFDCw7OvR06wqezjvZ26lIK1NvNDrHGaVFB5OTwkkr060LIlFRD3y4E5kXfra0FVtocPsczbjgag5FsxFr15+O86e/6L5mRoiVPTETMYd82lLMUjOAF1hWQzFIg0NzBLFRGtoGGq/BDez22BX4zesxecOHZlAzDUZ5WkG+vB7d2zaW/v4lRG56GsuYIFaYiDkkTMQtvgDWTqqImjlEIoJDtVWVOP1UvcWwg8ojnx+8NzFQtfpEZXnWdgyqyTT69ySzDAaKo0USeILUys9Bk1bma++ytgGjaOx5AFsp11xqm/KYU63jWwEAmcbonfGDjf6x4AKOgnC7VhlMzxxSTcR1bmVUGkRNV5Bax6gR0wOi+5qGdScIFxenOeTocRFTkZIpBxMUgzAtBD9XJ/9fm1YmvLet3aOYzM3OAmbrrz+Etb99Lvr2bZ2V+xcLayfXvGKMYf++3YmvZ4K+SDLmkCxIrcnXP+tDWPuqzySu12zja21fxDeWfxVnbWhLdF2B2ToYASZcsWllQnulVqi+wbhRG2u869qxCeUkj+5yrk8kfjfN4zyIOFjuXyCr6t/XLRgmaJlDxaWVsWLTw6xc0SkfCx7lnmtPnpn2GO1aomovkz/nsA0J/7hhI6azUCmQH9I78BXFgBY2LADgsU++EF9/7fHFVS6FHu+4Bbj0Me3plmUrMMWyoEN7AottpnMrc4JDjGqZi6UGb/t6o5pYqGwMdR5eEoiyqq+2nVFr29XnBZy4uhEXnH6ccMTQzgd5/xV/PhNHc2ihSV4UgyU6os4l7Mbo+0HMTJBatjvv3PpkMRULxVgvFyTNDm7Huvs+VvL7lxJ9+7b7xWgTBIfMBJpDKlFdANJiv/gdzI4jFbRTYqLj8JOV5etWHgUAGNmzSXk+DKwIgT1Rc4gYQW0crVuZ0N7lHF7CLFiFHCbNGgBcN8dBs6uzMf8ThR7/0gsCxxjU7nZhbmVMoe+gYw5Z0sS8jFigRD9IQkwri7Fw61jvTZgNZhXFyHEWuoSYgd+lzMJTupUpWXEOxVvzO2UM379jOz7wy7tx2PdX4saffzlxveNg7Y5fAwAmJ2aBuTkD0DFuR949XkDb1cdFlAbG770GE0947L0bP/kiLAPXA9JvZCieK2sOFckEOVj40Hvegw+8+13IKETkw+D0o4H+tEi3MlN0K2M0lMLOQGI9Z3wPX6SNNhxh39i7Z1PeTtsN+657nwH6tmJkn6dbpEtNdTcQYgiLiqCUFtXVb2Cdxe/qL3SUeQYXBXuH3Pn8QxezUcwh0UGTKBw03bSy2dccYiNd2nNFpXcIaWUAUF+VRdZMl0IlR3kt0LhGe9o0DfQYrciO7QsEeqLcyqhlBeY/swXC2IwEqVPYWMvlNZBRa6ji8BcDr7oGeM5lkbcyDYL/OMeT22AkRGYgseaQMB/XlE8FqVOUDOJCWjfhFhtu172/xf5vnKvcnZN3UugsRND79qlpvPMRQ/ulnftEwSFR/JNGaA4ZGreycOZQXJSVBUVYiUHQ1rFGWX75er7wYz1bAHg72CrIHWdxmkMRaWUx0nwCObyMs5FMe0FmqhYU81xg2LIozjWDO2QURNle5IFFZg4FJ+KaoJsiHzosaMKIASNB7nVZeQXuOfGr6EEjqqd7ihsQnQmcEdR3kANnSkFqVVoZDWcOARRfunkLDjx1NwDg1Xu/iKceujNpzSNRxmxWU34ONOASIEu5+xSzLF/QXPebr77lg6i67s3A/o3AUzfgpeZ97rmZaA4tBdFGQAgOyQtu8XUCJz05rSy0/9NtWMj37NmMAgxM1HPxaidAPTKVx0p021WUvy/hud87BfjuyZjuFliquomzk+6asN8upr08neUbJEt24SZ0qhYyMMC8zz/Uyj7crcw/JhF9WlnCAGAxyIxrNAfZTAWp0+XPwcZQeQfqJ/cG2NRMk1bmtGkWETQvLRy3srS9zAgXfQd474NAZYP6PCHAsa+ObUZRV1eLPlZvX2uAmbLbJoefORQnrUxgDkWMcYsZaWufKwidn1ZzSGi4y295NzqGH0FeIchKxmZfoHesN3k6wsHCVK8UyAqZFMkQNTW4lX0Ec0ghuizm3YdNyIoCMUEMA2P/tRk7s4e6h42yGtS3LMcQalA1wtMCZCvpMBSz0BeZQ4YqYKF5777Fjtz2GYXBmDsZyCg0TuZ7Rzww0K88zkCUQTQq6SRETcR1jCzqsHKERRyD4c+ZFstXNqOBjWBydCg2C+iMl70LO5ufi/bC3uIEqZlD4Q++B7kNqepNC7nAMRKhreS8t+OJJ8B71F/VgqbFoqevz/171e/OB9t1b0nvXwrIk2flQkpsa1c/F/jdW32n45okAMHdXt3kfbEt5C3HXjkGc4jGeO/+4JCldUwBONMwziK3buQZHMishGXyXVvnuznQ3YU6Ygc34wRz+oWxVteHJNiltZhE4U/YNPpXccamL618iSIPnlbmaNqFf5uyW5neBIE7aErBI3Pu3Moqp3q154ox45DTylIcPAzVHIZV1i4Yln+cZ7o5T0LNIbF/KRY8o4PNaOM3BYBsBdC6oWS3I4SgL2OnoBEDEzWHKMv5mEMx5jM+tzLdnDdlDqUoFcSUMd1urGoyNfjUHRjdLbiV5KdQOdld8vrJKAzujS50kHHv9n6s+ciN6N3zDArMwAhsinUi5pDIauGWlVrNIcNQBkX81OqZDUb/POZLyDHvGY5gYk1zB8xDTgcA9JevwhH/8T0AQE92FdqmeQqgleDnTIuxso/QHILGct3XruU27oqA8/upg0PzuyMeONCpPM6DQwq3ssAubfhEXBVgAtSfS5iVfcVhz0GGUHQ+enuiRT9pPhR1GIcxqZ+k6+C6XikFzOU2pNIcUgeHeCBJ097sdr2azF4/uf2xu3yvNz9w66w9q1jkpsZ8r1XirZPDfYFjIpL0EXJg3JoDVsF8gBsUCmhqicKW/J8PZj+BQVYTej/fhgULXwQxRDOHGGNYkduBwZpD3To5fdDons1Cweg+ITftpVDqgj8sgeYQjTMRD0HryS8HAGQx+0GK+Q6uOUS9QE9Iuwik7TD9mMMICX6XpWIOjXQBij4eAKbyFn5xbycyTC/IXpTmkeOgqRlXU8wdpluOQhkKqBrxb/CWijmUZMNUB8NlDi2uTY3FgLEqrlUKQkBb1IEnH3MoxgZIHLey+b4mKQXS3nHWQez/e41JzxwKNsRl178OtT8+i7+gFPh8G46ytpS+mhIy4/o87/mCW+55CD/NfglG/1b0kwYUbCeWRILUPuYQA6EshDlkKicUBvV0UWa6u3DGy9+FLe/yBkoxcLD6NV9C7owPovl/H0ZFLXc+G61di3bwBV4hCWupSLcyEjKxUrFDAIDAcdUK6pAwRvluZxhzaD5E6bs3oXDfVWCDuwKnRnr3KC9hurQy+bMX3coIie1WJjOQnOt1bXDdic9HgRkY33Y3CKO+IGQYqjqOBADUj+2MKBmEEzg1iBHMTIgh4Eut4KKP0EIs5tBsTuWmt/7L93p4cn4sTsW2NXpgu++cajLd3x3OEJ2J5pAq7ZFjfqeJJoUT4Ai0R0X7/PQ7X4WvkLeF3s+U0srCJqKUGD5nKRUGBgewEj3INR3pBYfse04f8NLE5HmJ6vcj9sW6wKET5Imn7xBN4Q/D+iPUZg1LCUPV3PUpC77h47aXMB0m+Vygc5ZSnQP6gny8NmYSHMpPAV8/AmN//C/l6W/97VF0/fVKjEyog0cAK8511ZmvpcGhg47scp4WWjPil4aghtqB0WEUMVqI9d0XShAcctzKVPONR+ihiitSzBUKdasB8O6rcsVRyjKMZGA6xihxmEO+TZ2CklE7L9Yks4y0d5wrxJhUOQ1Xad+cm8Bo/9yxeaqne+bsWcXiefu+j3PMx/AC8iB3MSCaHdwQiALIPE1Hv0NgmIZaa0ecIM0wOFSeMXHcygZ0ZtbZdRLaSnkNyl74KSDj5daypsPcvy3EF1ItKq1MYA4pGVSayaghLkoDgtSU6yTYC0tDoc1xMDvi/Pggur76bOD7ZyBz82UY+sGLA2WmB/S/S9XnJO+Qy8yh4C6tjjnkpA8IC6wQzaH6+jrsNlaivO8pEMZi76q1rj0GANCRT55qSgTNIbleegFzD1rmEIIC1+75Ipy2EoExHNnz19m59wwxNDTg/p2f8DOHVMyMkR4e2BxjapFI9zOMseMWN61sIYBWtsQv6/Z7kq6br33ycxvaavGKk8LdFwPModD+z4gcc7q2bgQAlK88xg1WU2rh7T99EI9tfAA5lsEEKmJ9xz79OE15r75xmEPeZ6YKdsvYD+976WJNMAyCPx16JX7fqg4wLAXUX3QlAL6LbjDP3S5MIyVwLsqtTD5fgrSygT6+ATm9Oci6tCjDGZ3fxWXZa3GG+ZT2HsX0MZ5JQrr8Odho6uDBlcZpyZEuIq0MlMbqL5Kw6XUg4Ox2eV3w29OvR/l//EVzVYq5QLZ5DQAgM9GN1rVq842pqnY0W5xFbpSMObRw5zZxkfaOcwS/lb2GOWSXyU2NB09euRx7/vz5WambjPHpAlro/M/hb83xxWovmvwddwLnElOYiFOLu5XpNFu45lB4cKhU1NOhJt7RFXq3h5ar6jjC/XsK8YTcgOJokZyy7glSBxbfmgFdXuxIFbHTykICW3NE4XzkqkvwyFXvBgAMDI/iH3f8A0/+5uNYPuZNTs3pQWzf24Wff/bt6BkcBgBYw/uV9wOgtLKXPwM/hV+VVqb+XFVaJCzE0hMA+mo2oG1yKwho7ODQspWHYpplPW2SBDAc5pDCxlWXLieCKtzKXM0hnXC800al9rm1ezTyeXEw1rUFbbQH92dPKcn9ZoLhyTymC1476NkvMNukhZtqITVlBzYHjUbl/Z3feJwArZxWptvZ7Wiqi7zXwYbxjlswWr0mVlmdILU2aBOxKPU5aFpWaOoMI2pHRBFj+7ibZcua49wFMaMU/9jSg5WkF91GK2fdxgnCh6UIu4cd5lCMgKKYVhbj+d0V69y/h990MwDgFW9+L17z3s9FXrtYQQ6/APhEHwaqDwMR0m1CWcxRgtTEPyYFBasTMIcoxa5fX4rRvZt9h3t6uHbmqBFMszzt8t9gqC+avV7UPMZNuyuxPmSKxOhYvhzDrAp1dNh3XKfdyQzByj6O5lAJvmMCx63M/5t5/YvOxdFrO2Z8/xTFo6Z9PQCgdqoLLSvULC7WuB5NGMHwQG9izSEwS70JsgRS5tPg0JxB1BzSuJXZZXST6qP2/Lb01VKgc18Xaonennmyfzc6r/tErJ3G2cQqiy9suFycYGWYgC5s+ia74ZaVRKM5ZIiLsBLtRh3+mivQVbUBRz3/LaHlxGh5b4VakM1BD7wFYDGRb4Mxb5KoZA6p37tvAim3bYc5FLLAmSvm0IoDt6Gp+27s7XwGm773epx3xytQ3vO4XBt0/eHDeKt1HXb8i/8eTY1APIMmACIzhwK7tP7fVWVDm/L+I2PBYEdY0AQACq1HYxnrR7U1BEvzfd1mnYTfFZ7r1c/M4EBmufaen6z6BAAgRxRue2G7tDF+p8wKBocMVgALSZ9z+lGZhfbv77wD/96SjH2Z7+/E+KPX+Y7tfZzrDY22PivRvWYD+756Fu7++afc1wPdXoojs+TgUPB3lB/igc2xjDo45LjbxZmIB63s/c+fQhnw0m+gevXxkfc66Gg5FM8ccUmsoq5LW6A9ajYKTHXKhINMAuZQHCt7q2cr8szEslUb3N+M0xZMUBRIljN4YgWHhHmM1ubXYZslTCuL0cYm20/BncZp2HjB9Thiw+GR5ZcMzCwy1Q1owCiGx6bsgyHMoQRuZVSRVgaHOaRIA5ex56l7ccgzP0XPr97lOz7Uz3fz81kvWHzzPQ/jp3/4Ex6qeA8uFFwTte+jqLQyRwcv1ZA52GiuLsM+LAueUGg1Ap4WEU+3nRvNIWJLH7AEm84p5gYtq7jOUHOhR7tJUt7OsysO7NwUj00uu5UpxjEdo2gxIQ0OzRHEiZRuR80pU5Q95wxBf/JisNv4IqNvx6OhZff96E1Y88S3sXfz/fpCUyPA8OymwVUTLlRowvK7wCQRpPZpDhUAMD0jgZioqA7uevuYQyUKDlW2rsXyyx5EzbI1oeVaVnsT5Fxj+GR50BRSJYqhY4vMIcX7jAwOkWCgh9jMoVCXtzlwRBkZ6kUb68Maugcrf3oKzs79GwCwLBfUE2qc4No71Y2tAIDyEIF41YAVmNBK+g5yOkbHId73ekvr2/Grej7JHtn5SPDexAidxFSvPgEAsNLajzzUi9TlL/s0XvRxf0BkqGqN9p6f+Z8PAADI+UFmo5vrbRiQtWZUbUgGVQSHeFqZPp1G50zxH5lbkNn4i8hn+u71nZNQfcPbAXDm0dmX/xy9m+/CKKtE7apjvHKJ7loaFKYncZS1Beft/o57bLzfY7HJek3KcWWMt11K1G3BCQ7FSd+Qf8PyBGoENcDJb4+8z3xBVWO8XWFn7AkYGfis7L0/M1UNoffz6+DR8L5aw2YFgK/f+jQ2d42gfGQHDpjtMLJlAnPIsp/F3I2VOOLCPu3EKM2hGBNxKyFzyMiU4bmfvBUnnHZuZNmlBqP5UFSQPCb7OHswfDEraw7JY5JkkqAxUTBZ9Njcv4+zn0fgZwiNDnDpAqu8wT32olvPw9uefFvkPR3QInbwHTZryhw6+CCEYCDbHjjOtMEhR3No7gSpCfimaGplP//QtHwtAIA18o3xR5qCsg9Nq3h2xcj+LbGYjr7MEaoODi3klPm4SFv7XEFMK9PstiTZpS0pGIOx626Qu78JTA7B2vNQePkcT3ubzAUXbi6ueg7wjaNLV8cQZFDgi2LnQNHBoQhXAmKgtr4pcNgooeZQUhBhFzq7PPzzHinzGCiM6YW3tc+CR+U1TUVwSLNIMUUnGUVamQmqdacAAGJNo/Dlw5B/8noM7dHrD8wE+7ao23wLBuXaoDHPF9RmWRUAoCandvEiAEAIqGSnGkgrkyj88kTcNA10kpUAgIbmZXjDf30R46wcxr6HA8/kQs36CdGKI0+1n8nQk12pLFNZlkFdhT9YkG9Yr70nDBO4YhjZ0y9G5+vvdA/nWAa1BS6WrgocGoaJv1in6+8LDXOIWn6moARnASunlfEbxt/x2bx/2MfiePCG/8NdZf+Fs4f/jO1lG1BRrtbpmSsM2E5TBSGwMz0kpGJQ6bMTJzR7HgSsPLITvC1Hsllj6DsEgkMLnHrd2BHS5gXo3Mp0v8NaO6isgxlgDunbLHcrCz5nKm+h846f4b3f/wuaJndjsPIQu4qe5hDA5xwMBJSY8XZVY6SVucdjpSIKmkPUOuhs5IWMquV8F90c3MYPhMxFIplDvjGJBPsHEh4ceuaBW9Hz6XUYHxnEVD9P/89V+9mnE0M8OFQoq9fWMwozSSvTaSSmmFuMVynmIbq0Mtdt0YIVY4GudR5OAIc5pJObSHHwQDLlwNtvReu7/gQAOOm/f4MHD/+Qr0zbmiNBGUG+Z1tMHcpo5lBqZZ9i5rAHIGfBV2CG1gHGSyub40l1Ycr984aHtmNwx8PoJU3oR/GDNgaTOxslwZ4vP9v925QDOokEqb3vgtodgX4Q8E8mulkDAKC6MFTUs0uF/QafdNGKBuCtN2DEaAiUuanmFeg74xMYYZUA+O5uUsFeQ+golTo4mvfuamgwjeYQC08ro8P7kJnoQfYP/w8N1zwbw4PJLdWjMNK5MXbZDsYX1M7EtMkKtwOnUruRf99+QWqi/F56q7x8aiOTQWf2UNQPbw6UYyEW7wDQ0rYSfWgAAOQzVcoyKrZTWVvQJvQv1un4Uv71vmNrjjgB/1j5Hvyj5c3oNpah3Trg3jMwFycEj532DW1dAbVbmZNWJra3vOC8FhociolHHr4PR1692nfsJfs9hs5I8wnBtLi+bUAhxHa5xBjb8wQAoLvMSyetFC2BJcadY2Xfv2MjcM3zsfWXH0DVtPNbUn9WyZhD/gDvQt9da1kRLzjkNOug5pD6d9jYrE4TdZDxuZVZoUE2Rgz1IrcwjW+XfQ8/JZ/CCtqFXL2t1SMxh3i6hKFMK1O1CB8DWqff4DD3ElrZg9JITYhCVfhnt5TRuIq7SlaPdgJAONMhMq1MZg7JbmW2gYSmbRZu/wyWsX50PnkvmM0gZ7X+4FB+jI+bU2ZQcygOCFisoLUMw00rS5lD8wFWnSI4pNAoBMTgEAtxw/RQioCOoznkLJdvrX8NtlN9mn2KOcbq04BqLyuisu0w3+nyimp0Gy3IDu2MpTnkS49Pg0MpZhuuExn0O3ReWtkcT6pzntDsl298ApXIYYJUh+zMJ1t0jW7+Jyb2PjGjKoqg+RxWTXgMkgwKvolQEhcKny4JtZSuBB7873v8LbcAANZQQQT2IASHnJSfsYlJYN05MN/yO/SXewvbP79iM156yZW44OzT8fQLfg6gOB0f0a2MmGbgc9KmlblW9kQhLs01hxDCHMrl/IvcTb/9lLvQLRVIz6bE1zgLrEaMhJaTg0Py7jiRBakVE+7pJp5aZtgT7dHadWjLBd3DwizeHXRVHmaXNTBUxWm5/ZVrvWeNDgSuaVwVtAld+5rP4ZKPfTdw/Lx3fhHnve97GCxbjjJiL0KNoJU9AHz8pWr7URdKzSErILwtpqc4CxkjxkRAh/FH/+B7Tcf6UQ9P46m8db2vvTeO7wC++yyM3P6Vop+ZFDlbrL4v601UOya2eAVkQWr7t9vVxVMlc/seQ32BGw9oNyzszzLODr0c4C1m4TafkCmvjFVOVBMUoWNSNjYrNDbE54rM4gjhVUYMpf6bc81q0otykoe5zA7uGqbvPE8rI7HTynyuqzq3MqpO61SW9e3SWqEBpVtqX4XTL7o4uo5LFLWtq5BnJuqn7dTSMOaQ3FZDxySCgPMcCQ8OiciMdfmucW8xwYNDDvMxly+ivyiCOeSklel+nynmFmbT2uBB3XxQCG7HSSkshUEMD517mkMv/MCPsP4zWyKuSnGw0LL6iMCx/rKVqJ/YFWvt6h+T1MzdOc/uOQhIe8fZht2wnMGXB4c0bmUHizmU99zR7q64FC82H3AnjCrE2REUUXvty1H1o7NmVEURQz3+RbEpB3SKDNAwV5A6/PrBt92FnWd9FR2rD8UAk3a9DgJVuWI5Dxw053jgoHrtaWj4sCekfNHxHWipKQcA1FfZqTBFag45Cwglc0iTJy667wQ1hxgPyIXt4kmTgDO6f4VHb/5JzFrHQ8PI04mvcd6LGbEIkttTwMo+QpAaAMpWchFfOmJP/Fs2oAGjGOjZH7CyjwoOTTbxHWZGDDR88H7go/vQ/OGN2Pfmu7Cx+kysPT74W21bd1zgWF1FFvVVenHdiWpvR1DnuCZCNXCr3MoM8OAQfMGhIHNoJlb25YNbfa+7Hv6zvw6m6VtcHN7Nre0feaaz6GcmBR3m9r/O4opZeayzdmKrsc5+LbGuFMGaKjgbAzrmULhJgoiAW5kisLeYIf/uGDHR9vLP4kbzPKx7vifGa1SEu7XJqc6hC2Ci1t6iUj9bt4L/5p0UNLHv4swhMxi0Vj0ujluZm1aWbCJOLRp6TfML3o9MJmV76EDMDPqMZiyzbZtD5yLSubBUZyiZQ8Q+Ez2PqJ7udp9Br2jAM99+GRhjWDnNg9tOm+rt3qe9hw5J58p5ZqZuZfMM1W3B4BDTifbb7ZIwK96GRams7BktmZ5oitlF25qjkTf4emf/CZcCACZq16CtsF+7CSbC9z1TGlh/AMVtri80pK19jiAyh/RpZfbxWVBCf7BzADc/qXZVcjSERIRregTr94t7O7HmI39FruB/b5MjHgthYNdT2P/Y3xPUWo3hAzt8r7PE8v+giw0O0UK45pCNxjXHYe3z34WKsgx2Gmv89zgIE451L/xPAMCRZ7/SPWZqnDjK6poBANZoT+LnOMJ8AF/sy+1A5/5hSjvhPthuZbrAEi+jCBrkktuq60ALBazM74ouGLiQ21yaJPz3agWCQ3pnGJWVPQAc9ZxX4Y+Vr0L9S7llc81KzrjZ/4xfK4lGpJUBQLkdaAIhQKYcKOcBzhWHHocT/vdvqKiqDVxTVhvU2ooKhNL6VV5Rw0BW0qmSX6vArFzgmKlIKxMtaw27vUQF7cLQPOFPix3bLPVbxFSmJZDauaObuy55jAJWHqO/fSfKiIWJrO08pmEOEaF9OL9hXcDfaYuxhF8DwaHZF5KfbXSTluhCDhRW9mtWrcZLPvEntDYJbnARvxuxP4lyKwOIkrEpL5orm1faVeLPZpLmEA9Kx/m9RKeVucyhWPeTmEOKYMMYq8BhUz/HmnWpO1kURsra0Ew4kzVsMUullOIAa0xiDuk1h6L7hcZCj/0MPtZvGLgD/aOTOBr2PM5uJ7mRZOnijLFAEDQKFgxXJyllDs0PNK4Ipqzr54NO/0VjMVNLozlkb2Cmy+UFAZIpQ/aTPcAVw+h4+WcAAKxpPerJOBrZcIw7CH0ftUBUAegFnjIfB2lrnyO4mkOatDLKPMZAMQ4MKtx094P46icuxlSugId/9N8Y/u271QUVC+2wXF3VpLD7r59DZ8WbMDnpv9e+rdz5bJpl0PSTZ6PjT68MXJsUjhuHCD4IqIVB44JPalnAkjkMI5Wyo81BEDlsPRy4Yhhkud8i+pPrfoePrvK7M7WtPBR5ZoL2+wNscSBa2ass2nXsEDc4RKANDuncKXiZ2e2I93duRhVJrhXD7VST7Y4DAJNEPI0IfQcAqKmswCs//GMccSQXHW876rnIMxNsmxxsDRekBoC2DSc7T46suw73rHg7Vq0/NrRMttnbESSGiXVHn4rhqkMwfuxbQDMVqK7jC2aL6X8zaiv7oFuZijmk0xz62q1P40+P7kX/mP47P4T6Xerqex/CPtYsvB9DGRyqCGnGpUbFpCcmvf+x21C39XoAgvaPJEit2mV3Amk6lpXzGcZLK/O/+YKC9bXQMJgJTwETEdhUKMFOM9O4pbjnNW5lVOqXjIz93dh9A6UM5xsP4DnmE7bDYdAlUQVf36Tr+tz6JgzOUqpJVSPY+sWXuezXFHpMVgrOT2FpZTV+7SadGxmgHpOc8T+KOZTLF7CM2RuEwjO+ft2dqCFc69IJfrKErqSExbMzF0FhuKlwSeQHUsweVrUHA/AkUnMo5tyrBEx+YqeVHYysgBSlQWU7D0CWk7xPn1IFX5vRGUIsAebQHE5llza84FBGyRwqwCidW1l+Evj+mbhgYDsuMIFrf3M8Lsn8xT3NGEPX8BQ6GmxNhbyKOaTvCFVaHv+T/T3/ozAN5L1mNdjJtYb2miuxnnYW8WaCyA/uDRwTd8mKHfSj3MpUY0Ou9hBAjIfNownHZ956fuBYZUU5dpNWZEaSM2W4lb29mExgZe9jcCis7A0SxRxS/R5KN1D3bHsYKwHsJ8vQweIzqhjjdqq6b9wZUqhM4bfktDJhIq5hDsloaWnBg+QIrDhwt29hT4kBUlEPQR4ngLY1R2MK2cQ06d4T/wvG/ofR8MYf44z6aIZMTbsn6GsYBkh5Deovc9IdPa2iM6e/jVYyjG9W/ThwD9Xk34DFf4zC5+rTHALDd7Lfxvlm0IGub3QSrZs+hldkbsM1ZW/COy7/P//zGEP3wDDaif87KLfG0ZtpA6x+5w0p23uYs1SpUZfvdR6K/rFpOGFqNzgofXbBz5K5fbmO5eGmlcVxK5M1hwr+xV5ZZv70jXExUdEO5GM6JNrtYZplUE4KMPNj2qJsxcnI56ZQ1vtk+D2ZFcoc4ppDis81IHpvp2MQjzl0Vdk3+d+ulX2MeUcM11WPORQncC78zWjilPUUfli1HcCQ80o/RmbqJfvwgFtZ+Jjk9H1RzKGxgf0eE054xpW7PCMDV2szxnefZyayto4di9DjUmGSlKOS8t9lyhyaH5CdUQHo54O+4FB0MLEUzCEDDEZqZb+g0WSL9QN8rpgNCWr7vmeNIHWqOQSAELKKEPJPQshThJBNhJBL7eNfIYRsIYQ8Tgj5EyGkQXN9JyHkCULIRkJIhEf64oVfkFoVHMp4zjAzFPIs7NsIDGx3X79u5+W+83/53TXo+GY79nXZ+iUK5lDYwlGc9BUsit/98irvOquAqdF+73w3F26byDQkeQuhyI8FBXN9GklFaw6F5xar5rqGJKZ3MNLKkqI3uwJ1E0Ex4yg4aWWUEWWkTGtl7+zUgQVTqmwWTRhzSL04Kt0iPLf3cViMoKdiXYzSQsoHpaFaLK6LkZxWJrFhDNP7LPNmFaqtaOorIQQ91RvQMrVbYsgYIMe+KvxaM4sDa1+F5qPPiXyOiNaXfQ7N77kJZozAEAC0rPJcI1R22w5++v6X431vfg22lynSRhTMIdMRpBY+V5k5dKF5n/JZrVO78NbMbQCAd+R+FTh/+3U/Qvt3Dgkcz6Dg+20TDWNjznaUCjk0siFeF2mBRp3fkjR5dnZandZC4DGGdOLdSdzKZBHRwlN/9b2uXXsyFhoyhz43dtl1h3IhzIEGzqhz0/4UIO/6O6w3/EF73gGjLFJzSJ1WJmvImHZxv+YQYIcIiZE4OBSlORQnyO2/NYWKbTQT7bClhopqwWE2ZB5U0SD14QHmkKSDF0ght4NDEd9xdkqYq2lF7x05hej2YkkLt6TaHwfK1mAV5dpGYWNSioMLEhEcAqWhLo4OSqI5xLiLYilYSCkODtrXHIFpxoOQhQhOjG/9p9mwSDWHOAoAPsQYOwrA6QDeSwg5CsBtAI5hjB0H4BkAHw25x7mMsRMYYwtvdjhTEG+JCHBtDNVEXEw3m2lUctfOraHnT938BV6XYdtFIjFzyOuUH3/gDrx222Xua0ot7N3tBaaqhnldmvP7oyseE3RiKHDM51ZW5I4Q31lniRwOatqkgMICGEAmqzrQmO9JbmUPHkUPuG850Ey2ZPcd3z2dAT4hc4h0P4Vn7r8xtL5xUTGwGXuMFbA01u7aajEr1qI5aGXvX7SLFP7csmOxkukXlb7nN29AOaZ9jnuMEBx2apAxtvcl/vTCNf/vKhxywQdjPadYtLR2YJzxVBCdHhUAHNFeh/OPbscx7/gBflP2av9JqgoOFfgA7tMc8tpPKGMh4vd59JNfUh43meVLNyWaRTmohfu37Ma2rsHQ58wUuSGvP5V/x15amaQ5pGRhOWllwd9YjpkCmzVGXyH8hnezZejY4wWHRo16mK++Jvoe8wzHXXQpnlz/zniFT3wL8IZr0f+s9wMAKqe6Q4tXNkTbsjNmhaeVQZ3eKLs5uswhV3NICA4RwsfPGBNesa3pXVftzYCEE2i+OZMGgmaCmhrPICNsMVvb4rcPJ1ROdfZrOPIFMvMdA6LTynxzWV17cNLKYrSXgq+fp1zEPAFyLUd716fMoXmDC6c/h/1M0DWMYg5RGkidVaEUbmXE3npOVVgWLjLZMuw0+aafFUUeEPpNreZfGhwCGGNdjLFH7L9HAWwGsIIxdivzxDPuA7BSd48UnlWwJTCERFjEdCdTSfOoZfrwWE+ntuQvvn8l2sEtRGHn9U6OB3NQwiLuhrD3PLnrYd85i1kY2OXR8JdN87qUs+SaLjqQ6ZHAMT7BdQoU2Yk7zKEEg0DTKontMI/SynSgtR1owAjKkEwTxADvKHXBIV0AIAObHQQS3KF0JqUhwSGVINwpB36DDTe9MU61I9E+uRV9NRtiplkJAwcNMqFUCLQnmTkkLO5q1p4Wow4ctSuPDhxjxEBNRZnv2DTLYuUpF8W+b6lADAPdZrv9d3QGc0dLAw4/6Tm+YwHHLXANKwZJkFqhOaSGf0J5w6N7sH3zoxgfGQCjFB1Qi6KaoP7gkKFmDjFKcdpvj8XuH4Szt2aKoW4vLVRehDvpXfLvRqbhM3iflWpRbsGESRgYY7HGJGJ6n8/+ysPRYnkpmtvLj3SFzxcUCMFRb/ginmh9qb6I+OLwF6GxfQ0AoCaKARhjccp1zcKYQ2pBanlX3Q0gOW5lwvfppJXFcZ4S25ou+FM8c8hKfE0KP+pqBDOBkPFs+Vq/3bPMPvRpDhEjyBxy0sqi2kwMpplzPI4jotjPc+ZQsrly/YYz3L/T4ND8wYff/gb8gl7gvjY0mkMQmY8xxqRSOIwZqVvZokB3Fdcdik41jJFWlgaH/CCErAFwIoD7pVNvB3CT5jIG4FZCyMOEkItD7n0xIeQhQshDvb3JXAsWBmzmENTMIX7cZg4lFuDl1+154l/o3Xw3jN7N2pJv6fZ2xp1J58BgcJc7NK1M3D3skyzAKcN09zPuyzrG87sjJxEJkMkFJ92+BXgM22wV+OSUJaKPrlyxyvd6IYgcZht5HLcGk4muI2B8t07Tbah2sIGg+47vmji2srMoSD061It21otcy1FIrGPECrGYQwG3MingIdoGrz72zNiPX3nY8YFjzu9gX6UXtCwjB881aricpy+YZszfpNQOiII5ZNj22+LiRwzc6ISoVXjZDcdg/bXnoPrra/Hg776oLWfCAhXTpoipTEuo6OcaMueRhzGVn712O9LL00KnWTYweXHT35jMHAp+LmHMIWchRmk8V6CKMi8omVnuD1xWly/cFA4jk8Uxl/wsdvmOQ4/FUytejbLXloApFcUc0mgOyUwvJwDtjE++tDJCQImpdmUJQAgO6X5nCTSHAtctgUn3bKK21gvANtVUaMuVVzcAn/DS/2XmUCCtTCNYnWFyADpoOOH+qf1uHcZ8wrGU0VipaCJWnSloHS2AudpSwVmHteD5pwoGFxore5cJxCisWGllM2cOGbYgdSnuleLgYbrhUABAJcKJCnJamVJPJNUc8kAIqQFwHYD3M8ZGhOMfA089Cwo4cJzFGDsJwAXgKWnPURVijF3NGDuZMXZya2tr7Dcw7+EI+DrMIaK2srfgif7F2UFRYdV1F6L12hfj2L6/xauaExwaGgqeC+kI3YkCo6ga92vXUGqhbGgb/5t5ueqq4BDbfT/Q9XjgeBTKCgqmE5m55lAxzKFqSUxvIewuVLeuLuo6L63MTlGQz8d577rgkGFyLSMF5IlrqbDl/luw7Zp3AQAqV52Q+LtjlMGKs3slu5XJbBhhIl7f2IJuEq//W7N6NYZZtf+gHdjs+MA/wd7/BPCqa0AuviPW/WYDU9U8eBp3l9aQgkh65pDho/+KVvbFitpWb9f3mxlCY2kOHTLhCQz/7LNvL6oecTDZx93UDqBZm1YWWOxTR/vLgxccUjCH7N8DpVashZsoSL3iSD8Dbu0F74+8fj5D554DiFw0/skSw8RR77oG7YefOuPnMsrCdymJ4eoJiZCD1oabVualZbjPIJw5ZLLoftbvVlZi5pCcupQiMTJlXmp01SlvxcTykDZoiilaeuYQlMwh3tYdVrCDwNxVuK/8DO+4N5+MApWYQ0mt7LPZMvSxOv4iZQ7NK9Qs9yztozWHLDArjltZCTSHYFvZpxpVCxplzTytrAK50HJBzSHF2nUJbGLE+uUQQrLggaFfMcb+KBx/G4CXAngT09i0MMb22f/2APgTgJnPmBYSHOtvOMEhdVoZLaHmUPyq8YF9fCQo8EwVEwIHbj0ZhRmwS6ZYNcGZSwZhrmChqdKN+fELgavOTlRnShmqaNAFxqc5VOSAQGm48FxVmXpwGDA8i+uFkFbmpD0khSNIrQ0cxplsyYsWJ/BDDDddTQ4SzVZwaPJf38aJo/8EALQffkry745ZxVnZBxZu/nbVXeOn/OuQMQ10Z1dIz7IXgWXVIA2rgWNfDXScEOt+swHafCgKzEAmWxmrfHVtve+1ijlkMsu23/Y+N+pLKytugdmQD9eIoeKEVZNWJi6W3m1cX1Q94oAO78cUy2I80+DpdtlgphMckhZucmAWcPWq1BsWDnPIirVhIX4f7cc93/37yfN+hszhL4y8fqFiqoxrZZSVJTd//Uv7f+Gf9ETt+SjNIRADxFQxhyQmiCkxh3x9EBd3N2IFh0TmkL9eltNvu8yhOCm3om2wpbxmd8PSmjLOCJly7++KGlS9+zYMXvJY5GVE+u7FORSDwkHTYQ5JxwNMWl9aWbhGVZx5r7gJgCKs7AFgTxlnEFgj4f19irnFsjUe27S8Sp2C7LbLmCmFpWEOMR4UXwB6oin0qG1bG10IUhaKhs26FFw147iVEQDXANjMGPu6cPxFAC4DcBFjLGh3xctUE0Jqnb8BvBBAhHfr4oLTiJwJvC44ZBHTDaTQWUyjEeGkGZQP71CcjU4rUw3ME7270YEeDNmMBue9iqLEnZ3bcOfVH3Jfb7v16th1zlOKOgQFtHnH7ezcFs8cgkZ47sDaV2LlkacrL3vslXfgz3iOUI/5jdaV66MLKWAwO61M8x7juH8E6OmOeKkQHCrIn3+MRUsxaJnw2n1b++rkzCFGlcwWGYE0vBDNIQDIt/HFYoEZ+Mra8NSUiVq/IPp8c9Q45qXvw93n/BoNzfHYUA2Nzf4DquCQrTlEtGll+oE7LNVlBXq05wB/8IMY6rQyOc3iw39IzoyMA2OsCz1osnf4uXqQV087OCT9boIpH+Hiwk5wKFL3RriL+1dFHXK2K0g+jpj1AkbzxTdg31lXoq5lRXRhCRde8jmc+5k79AU0mgfuaWKqNYdktzJnTHSYQ8J3zwgBI0YgyKiGuNiXz3gLNyBekFYsw2iQOTRx8f04/D+vjVGvFACAjJdK5rSLxvY12HzuD5XFf7vy47wslZlDoiA1CfSpzr1FMwQgKjik0xxKklbmZ4jGEsqXccEX8Bhdh8ajzk1+bYpZQ0OzJ9BftWwtppgitcxlsxYSj0nFwmQFnsqeClIvaIjuuaEg/g0LtZX93KzRDybitPYzAbwFwHm2Hf1GQsiLAXwXQC2A2+xjPwAAQkgHIcTh57cB+Dch5DEADwC4kTF2c+nfxjyGPeFyKNsUpt+9yYaFjBd0iUGX1KXgJKqa3cCbJjtRYJIuSsgi0wsOBfV5hvdyMerdGR6lzRL7/Qvveernr8Nz9//IfX3oPf+boM4MdQjGIn0dd7FW9pTCYEHm0LXtH0LbW3/so2GLOPeY1Vi+wTbiG53/u1EVVbXoRWPi65y0Mt0gaSh2sGXIBEN3t5p41uQ+0UkI7KISYnpqHB2Uu/VRRnjdE6eV0ViaQ/LuVZhbGQDUHfZsAEB340n40FvChY1Z+7HSkfk1gamvrcFzz70guqANOThEFMG3DChvL77gkPfbDAsOzSR4Jj6DEAPEDN5L7ts/8MTsCIGXT3ZjKNPCxWKZJBHvClLr3MrsILrwOel08Jzritml7W/nrNB6FkwDXoiYuvhePNUW/D4rW1ZjxfPfOyvPZFE6PJr0Rl1wyHAFqb22wWDazKE4gtRe/y23Gef7d9PKinIr819T1XEEjPJkLpJLGkJwSNx0OPK5r0V/9aHYfcz7fMVf/87/xV7SHkidMGRBamncJhoNuTDNoSgr+1jOnxJzqBg9whNPOh3Hf+ZRdLQvT3xtitkDEcZmksliX2ZVoIxR3YQcM2EN7I5nBjJDJn+BGagjE2ikgwsiKyCFHsvb+ebN3xBf1xOMqfutJcAciuRBM8b+DXX4VSnQwBjbD+DF9t87AARVU5cQnImS4wRCSQZZBBc8VNAiijMRL8BA2QxFnhmjyOemsMLaj05zNQ6lnd45aZFpMeIKC7uTQkU9C3mez0nNcojVE0WJ6zzJqsSghWlUEEUOKJl5cIi/H+Z77/lsHV53yScjL61efQLwDNAw+nRk2fmAvuxytOaT2W07aWVat7JYn7u/UzVZMK1MDg7FE0pNhn3bnsA6u01SEBgoYiJB42keMEL8u+zyLq0UVFt94vPwzztfhOaz3ocVIRbwAFC//lTuH2mjlMLvBwPZSn9amYo1ZoKnlemYQ2GMBTaDoDoT0sqIodZ6kYND7WR2LO3rcj3orzgKdYV+WyxTqCdRp5XJu13ExxxSpDoTE2A83TaW5pDULyx/w/cwdf2lWHfqSyKvXQio6DgKR73nFygULNxy/c/wkic/MPsPpRorXRdEyWCTtdBcQWrTCQ7JzCECQzEvCT6NunMBuc2444Jb32SsjlRzqAQQgkPlWf/0vvl/H0azXB58rmeyEDZriFuZjDDmkD5YGF9zSHalnCsJhhRzgzwzkSUWDGKip3It1o/5sxqYWYa95irUDD8dSJ1VIdqZKhxby4/CkbknUUWmF4SeaAo9yrIm/v36TTixvRH4ZkesaxijypT7pRAcSlv7bIM5mjtOWpl6x8UiyTSH5AV0cVWj6Nr5FDKEor/Kn2okd4QFIY7o1FOlQ0HtnX4akmI0kwmgbndJXJgkTStztBIYDVpWZj+2J9Y9Vh3Do9EjHck0lA4WRiuDuzJR4OK1IfTaSFaGwsreSSszPEFxSx6ES5hW9uSfvoydD92CwZ0b3WNesCtO4EB0XrOKci1ggbQy//stLyvHuZddi+NOjm5Lq457DraUH4fbG14HAFg59UzEFfMc5bW+lyq9qQyxda+E9ia2yXC3shn0PTJzSNHPyGkWswLG0EgHkKtqd5lDvvCQozmkdRIKOpTprOwBwLLiag5Jn0f9ClT8vz8A1aol6cJFJmPi+Re+YU6exSLSynTaV/IcwinjaXbIVvZGTEFq6rYLedIsp5WFMfiUoEHmUIqEyHrBodrKspCCHqaMKlQU/Bt2xPD3rUHNIfUcwLJkEfw4aWX2pmiMPsbnGFmElX2K+Y39Bk8tI7SA6bo1yjJ91YehfWp7LFHgmQZ0huuPwCSzf0dpcGjB46wjVmJ5Q3V0QQeu1Ih0eAmMU2lrn2U4k26ROaQChcAcirFLWyhBcIhSCwOdTwAAphs3+M7Ju8CihaijjaQczO2FLyvSTj4M49MFvPWH9yjPyU5CSeAGvljxlpW1DS2Y/t9dOPX/fSHxtQcD+brVia8xQAHKZrYbI6c7OEwLYrr3LUiExnhaGDEenc/hmMc+j7V/fS3yB55yj7uBhYTthjBanLOgFPCQg0NJkC2rwBEfvQvtL/koAKCJBsXlFxREQVWoBan5CQOi7b04CUzqkhQbYp9mGIF0wLnC9GgvypEHq13OtZcCCzf++5EFhp1xxUv70acIAcJGBrUCbDc1ls50orw8nsB6XOx93y71CRbOjpAZdN5lclqZ6fwRPE8M0NiaQ8xtF3L7osQfHEpqZc9sQ4gUM4DAHIo7no2VL0NTwa+3RnxpZSQQcJd18hzI46GP3RGRVhZnwSWnlSXR/rj3pK/ELpvi4OChxhcDAMZRiUzLusB5AmC6+Ui0sX5YY32R95M3MhMzzYwstmUPtx8+v/QcUxSPp156A/agXXmOZoXgkW5zJg0OpZgxJOaQNjhEBM2hhMJ8M6nbdBdfJJctP9J/TmYOiYKvYelv9mQgzPZRFXx54NbfoLd7X2h1H9i0FX8cfp36nj4rewXNPiSdxA20OZoHxMAzdc/GvrJ46vYOyqsbDtqCMSmM5mTvDeALSAJ9Wlks5o3UqboLEmK4QtfBtLLSMIcOdG4CAOSYiYrBre5x9/3Emkx775GyeJpDAUS4lRWDDWsPQYEZuN46Y8b3OqiQJ2Caz5fCrxEl9ilhzCGdnXIc+NLKiFmS760YDHbxQEJZ40qXOSTCqWeAOeRaRiuYQ4rPzFmI0djpkzHfQIoAVrY0qE8odHj80DCH5H7WCRjabdZ3nhAAhheoDwFh1B0v5YCiE9z37p1wAs2sNK1sphCD6zGDQ7mqdjRj2HfMEJ0ZFX2Mobu33F8LY7euHbvBoTjMIZ+VPQtoGIbh2RddHLtsioOD57/zC/j1mbfgyKOORXX7oYHzDEDZCq6zOL032oVP1hhM0l4c9DefYD87XS4vFhx18jnY03ae8hytP8R7kQaHUswanOCQ40SmCZpQwa0szg6KLj0tWdUojOE96EMDyqrq/OekwV9csBsuc0hBt3ODQ8lsfU+95xL0X/3y0DJkz70hZwXmgEKnJYxpVRCEVw3wtLINH7wZKy7fGFqfhQzVwBsFk0RY2ceB1LadoCkM4i4uqCxIXYK0sh2bH0bfnz4MANhlrkbr5HavSo6QahGaQ8W4FshsmKLd9QSUZQx86ZS7QF+hdqVZqNCKkRPDn1YWlzk0k0FdDJCbRix3vtnAcHcnAKCqdZWd8iHpgbjMIXWKhxPUNyKCQ5bdh1NqJXOGMcvDiy0S7Hz25/HMEe+Z1WcwFqE5ZJjKDQlqqdmJrpW9cE9GDDBCkJHtzBULKQLmsohNOfjofP92WzFiLMTEsUQlSJ0iITICoy3meEbrVgaO+dmshr0xxMQC6nvJ6YzCWKcLzLv9dYzAvU9bjlEwOY0txYJGfVUZ3viC00EIQfuhJyjLNK0/CQBQ3hdtfC3P6YrZzDNWc4OQNK1sccFsWqM8XtYqMNZ0Y9ISGKfS1j7bcINDthaPobBnBB/03ME3xkS8FGlljHKbvgIygYVOQJDaJwRo15NZQRcLV3MoWXAIADqscOZQfljvBMaIxxdQCnSGBYfsuho0z0UOl8DPonHl4UVdRxidUVpZYAcSjpW96bmVSYNwGNvjO3/fijUfuRFT+fBBf9215+G4ifsBAFPZBiynPS6bjBaZVsYXbnF2omQ2jLxwK02Q4WMvPQavPCk40V9o8NsVq4NDjBj+NC+RORTyncxk8Skzh1RB6LnARP9eAEDDskOEXX2hLprgEJV26MXPQpVW5gRpKYsXHHIn4tnSplzNV6w9/33Y8Povlux+X8Tbggcj3cqIJjiktiZ3A9HC98lggBEzlpg97/8d5pAmOOToyBWjOZQyh2aGIphDZY0rggclK3tuRiEI2Os2OQOi98Jr3TjuWtnHcOn1PTdKrJ3jZ4d/D79c9+XIcinmF5Yta8fjbwqyg1avWoMhVo36sZ2R95Dn8klkAPaxZuSf/d9oP/osfiBNK1tUaDrkGOXxug7B8l7HHFoCQviLfxV8kEHc4FB0WpkzQY8T3fbrshTXaTk2uZQYgLTQCUTcFYKvfMHgH9Bd5tAspFywsR79OZ8gdfDzCAto9KMB0yyDqol9IIwtCVeCtvZV+Cd7VuLrDJrX2oHHa4Vq5hAR3Mpk5lBYcOgn93QC4HpUcdGa2wuDMOwzuGOBq5WR8HdEmBXKHNItdOQ0uYOVnjRfkcvUuH8boZpDOuZQSHBoJpomYqqFYcDQ2Dmr0PXUPRjp3l38swVYQ/tAGUHr8tU8rQwMYj/sBAt0gtSu5pBwjSo45KYGUxZrTHLXjtnUerwYfOSKb2FT2bH+g4z6FuVBGMoUH8vKeX8L+X4q5hDslOxYwSEwN3grM4dkt7LEgZ6UOTRziIHZmEHa6tag/qDYphgJMocMUz1HkoM14lincx31NIeSM4fi7OD/vze8GW9+67sjy6WYfzjusDWBY+XZDLrMDiy39ia+XxLm0OCFP8XZJxyFdatW4YfsZdjWuDDMZlLEw2GnvRjbnvWJwPE1R52G+xov5C90DppFpCcuNCz+VfBBB29EpjMAhqWV2U43cdgIYW5gsWvGLNvpRmGHKwUACqJTj0ADlh1LSAzNoaRClQ7MiV79SWKEag7RsICPmcUutMMc2GYzhxb/DkFZ1sShl/418XWEWSHMqhjfq/Tde4LU3vdnkfiC1CbN4TiyHdd+8Z3oH5nQPNL/zCrGy41lGgEk1RwS7kvjClJLn4scHEp3pPxo9Vht+pRC4tccImLwWv+dzGjxKQSHDMOMnQ7IqIXlv7sA41e9sPhnCyBjXegn9aiuqvQEqcV2aLNTg4LU9msn7cf+nCwWFJwFRM2heMwhg9oBiSXCHJoNBARUowImAQadfV3B++7FjRGXZSS6lRETjBjIBNLEFI9jlidIHWAOOYLUQU2rOGCU+n67VnlDoutTwB/ArqiPdUl925rAMVMMfBtZZFDwa5RpxsqAS55Pc0jdlzv3jcMcYnJa2RLYwU8RxEjlSphx5ptSO43TXgp2P+bsMWdMAye9/Zs478I3Ja5ninkMQnDohf/jvvz1ib/GTeffiUw2i9Mv/SX6UI/M9JCa8bgEXBLT4NBsw57YZeyJlJia4CvmDHqMFSFIXVywhQ/GjOtWyJ2oTMf0pZU511PITBCPOaRPKyuWOl42rXdi8jEHFIs2UUR5L2uRKmSgr+IQVI/u4HVbAswhAFjVVAVcMYzrnv8v/N9p/8A501/D+1f/IfQawgra4FnUt8qAwE6fuyAxPLcyWU8rLDj0SXYV/lz+Cfxn5s/Y88hNyjKDvV2+185iy2HxeZpDcQKuwruMsNLVfU4yo6MUmkOLCZWrPUabjjUWdGmKJ0hdjCCle60vrcyAETNA37VzMwBgmXWg6Gf///bOO0yOq0r776nqnhx7ctKMsmxJlmQJ29hyloWznAAnbAOLbTDGBhNMNniXNcsuu7CwRBOX/IBZdmGJy4cXWNvIxsYJZ9mSrBxGeWa6635/VFV35a7u6Z7U7+959EzXrVtVdzS3b9177jnvcVJ9aBt269YYJho0Tz8UPTiszF58ZcPKbOMQ9EADhP39MDKZWOEbicxh8wM9h4rG51ls/W1DEyqIFpjtMJPJedy5vWotXbcYYWW5Rbs7/NCeC3jrZ8O6i81W5tml1d8bksGNhGNvNCyPv5Bt7x3yFzoNjvUdaMEB6E79oFDNIa/OmWNcyhNWFmfB5ZpX5tPjIjOC3Voq+3n+kCkWPNbsz2QWRDGaQy8f8zYAQH9nbp2wcjCFnmZuesxk1p1xEs555fLs8Y5EL+oPbqTmECkT3rCyEKNJdqFqxJuIl0KQGk7PIe/L3itI7RRjdQhn+yaA9k5RhOZQ1M4+AOx47s/Y9syDvvLmsQjPIefuaJDnkGOCfNfCH+Dy0Q/gIcMUZVYQjKUWoTv9MhqMgxURVubk0tXL8JZzVuJrt12BT163Bg80nw0A2I5WX10xMlkjTlFGvjDNIS2Xbc67QIoSpF6Nh3JtC/nebH3BLVxoGw+M7ATY9hzK78Hj0rMpdueyRNnXZizH57LKRAtS576nrnCDyGxlxb/UxWkc0vyhuGFsfeoBAMALiXgT2h9941P4/f/+JvR8w+h2HKzqBGB6hfg8hyzjkC9MSAWnsk9DDzSo2cZSFbOfDzfOB+aeAaz7TN66JJjDNR3uAiusLDQsWgs2DqmM03PIYTi1w8pcqeyDw8pEKV9dTWWy3zWvpxFgeqEFCZ6HsVfLvWMO7XiBqexLwYd2AxfG/w4mq/3GXGef0pt7AABtxq5sWVhWVp/nkOPdHTaW23OAOPNel+dQDM2h509i+vrpTtW6T2M00QC17rNIrboMAJDsnBvrWu8GXSbGe6z/wg8Ct/wFTQNHF95YMu0YqTaNjzVJ97pjf90A2kY3BYeQ0ThExktWc8gKGQszmtg7IiqmC79Xl6UYnJpDPkFqn+ZQ7nwu/M3wTeYkhuZQ1KTxgRd2o+Obp6HrW7k0g8//34+x9ZmH0KPCBanNhb35IgjSHDqI+uznz1x5LD5+21sw3H8mAKDGOITquauhi0Ib9qBSvxZD7fXQNMHS6+/Go2f+OzY0HuurIyoTGqKXyOMBI4BvUNUDBKn92crG58J5YNMTnhKr//pCKfN/p5x9N+6i2UuY9gKxSM3Bnpv+CgBIZg4GVjEFqd2iqTbRYWXj+L/3eg7F1Ioa3WkKZ+6rDRB+9dYdS+OS5z+E1b+5JLROa2YXRuq6rIaYmkPORZJtxNJ9YWVWHWuMtsfutDMZggPbCKAymXh6IFoCeN09QO/yvHVJMJmGHneBpasSGuosWrAgdTqnOeQyLGXDypzGIdPQqvu+N34NRM0RVhakUWRAy06m4xiHNqZOyH4e3PG7rJHzm+k1ea8lIWh6aDaxMEbgzjDoHNtqU+a41SBHsmVhYWW+bGVOj8aATZ5RpWf7S6x5r3P+rJTLM8nL7zOLMecspq+f7jQsuwBVH9gMWXF19j3fEjehijciIpO/j4mmAa2DeeuRmUH1jb8Fzr4Lek2DqzzdPIQOY3fOI9oJjUNkvHh3qsPCreyJeMbIRL7wbLy6LMWgVCarseMXGBTXgiFI40gZAdnK7N2hIsPK/u/u21zH67/2bsz5xbXo/tbp6JDh0OvcYWXmszehK9d+T5a4wbZ6tMw7zvxsbMTQ8lOQVtauaoVrwNTWN2DpyRcgU9flO6dFhJX1z16EtFYTeW/v9yEraioaDLE9h/TgOsF3jHzexueeQOK5X7nvZy96vN+hGBNq14JHGTCsthlhYR9BbYzwhCImLW2dGFM6mtK7As8raC5jnjMMNmuID6BUxiFN12Mbh2zDTZywxU0bno48f+TQfjTjAJRlRFDZsDKHcUi3NYc8YT9Z4Vd78W7+zEAPFqS2fl+D2h4Thtbc6zrObuCEGoeCta+Uw0vDOV7bHiHObGbKMg4l4E1lbxuHnGFlmdCwMrGfVYgg9cnvxA/Sp+C3HVdjrmzGLGzBvTWn46x3fSv/taRkDCfdofbOsa2xY8BXP8hbDYjWHAra5MlAd2hYxvAcchroI7KF3tD0OQxf9I289yPTk945i2PV825yx5HsYJh/hdE6BJzwZl9xon0uNFFoPhKQRZvGITJufMah4FT22Yl4zLCykghSG8oKK/NrDnnvH2wcUn7PIRUnrCx80nhL4kfZz0/fuRKrNnwhtK77wc5U9uZkuPame/HTBX8LAOgwdvou6V/8yuzn7vZ2bND6s/ciQDLlz2KSNEbCBamr6pD4UM67a+fJf+uv45nMJbJhZZojrMzjORSZRSd3v2079+CR59wZLAa++Uoce+j3rjLbOOT3HIpjHHK038jAsHaiQhdvQfeoADG78SKajj1aC9qNYOMQNM+YFfM7Oy6vLceCSTQ9dIHke2YB2iu7NjwKANiZDPYy2rVlAwAgYaeftj2HDL9xyKcJ48kKZC/+MyFhZa5QZxqHJoSqVs9CXBmmt2bImCuC4GxlDkHqjFOsXbPDyhx9QzQYoiHhe5db4beOurozrCzAoGg4jUMx5jFnLJuLBTd8E6dceXu2rC4p6G6O3mQgpcUbzuhcIKe6/cYhCdPOtD3H7XrWWJNWWqBh3tQ7szWHCvQcggr1aPzCO67EeSvn5b0fmZ40tnZnPx9C+FjhT2XPjTkSDzulfU/mZVe5oYTGIVIK3J3I68GSJTsRjyeyVxLPISNt7Upqfq+JiLCy3A0yvt3BbFiZHuU5FO+LtSDzbKx6gNdzyGxrW0c3jjrjSgBAHfyugR1d7gXYroaF9g1iP3cms3zd2/Bc7RJXWcvY9tieVe1n3oyH6050lXn/9rorW5m1q12AILWTtY+/C8u+uRj3//hzAMLd1JNiaRzYYTPZxsX5uztShjvc2oOMQ3FT2ZNg9iXaUSujIWfFZRyKqxPmDbUqBJfeRUiWqMDrCjAGHn7ZFK/eUdUfeH7v1pcAAHVt9oJNTK8fp/CrFiJIbevQGHY2qZznUFBfzX4/jJieQzM/u2vZaex0hzMoO6wsZMw19QIDNm4ywZ5Ddl1X+I9oADRoHo87sbVgHHV1pLPjc5AgtRlWZmfDi9chlg20QG8dwHOLzN3bxfv/EOs6Ujoydd2uY6fnUH1rj08QPSh0H/AL/tpjUAZ6sOeQaNk5QZzMn065Ak1lsmMZqTAc4+HGmgWh1bwbgPGyyxICdAwuAgDUyJirPO14x81kuAouM97dM0MPtnKr7KQt4xYXDcEXElMESilz11k0/+6jZzIaZIwKTLNrTw4iwsriThoLwblD4Nz1mtXRin8auwxXjb4X91/8v/j9ub92Xffr2e/G7xZ90LxHz3IAQFPa72VUiSRq6tFwzfcAAH9ImkaeDmNHRCp7k92rbsWha39pHni9czwTRHv3WRyp7JWnr3nDHZwELWqPf/h27PpwP3Zsic524wvxjCNI7XieUjkvv3z/J67H0HMoFke84rxOvJpDMT23osTN8+I0DmkatLjhpwVMJPTdZljZPmnEx372JH6wfiMOj+b6y6FdGwEATV2mEcEQ3RJmzfVLLREsSK08WYGyqexFD9Cbcb6TjFi/Q7FZKEmO1m63cUiUGbod5ZkYKEhtBGsO2e9Gp8FSQQLHvryeQxKU4U7LZSsrUFx64JI7YSjBLxrWFXQdGT/S5DYOuVPZm16cTjQ92DCey4Ro1bPG2wy08LAye2yJ49Xp0hwyfPMJUjmMWhIGBzpXhVfyjmt51laPX/iz8TaLzBBS7T04oPwZ6lzejjOY8VsYSDSeTpTWg9Mh5sLK1ISFlbmzlXkEqT2L3UC9DMPwew7Zi6+IXXVRRty1XHxCQkwSuoaO8z+Id/Q2YeVgynfZmmvfn/3csuhU4OlPYPbBR0vcuOlLV08/NtzwLAbHDgJfWYaE5MRRX0qdiHl77vVdkzr/I9nPqqYRcGgKewdVe7daNDO0Acqf0S/KcyjM0Ngm+/GXZx9GZ8Tv5jOwFhpWpozsTlSmAONQaAYu4iJT3wXsDznpyVYW13NoPMYhp9FZNB1ahHekiwKMQ80HTPHq9PAWrLnvWtw0egv+vPEYfOzipQCAsT1m/HtHz5DdEIhyh1dkBam9i3NvtjI7ax90n9cIkDPSGkYmllYDGT+p9gBBahjRxucg41A6vueQEi3w/R7k0aEjE6mdpSzlIfP6wibQVVVJvHzrZpxRW1XQdWT81HfMAp7JHXsNjvsS7Wgf25M7H9IHvHNX20s2LXrg2DsuzSHEmyuTmcn+htlo2/ckOo+9AH+uacKKp/8loJZ7oWHk6S+Ljz2pdA0k0xrRNGxN9GJe5jlXeUZ0eg6R8ePdPcskgo1DcGgOxdkNiSNumvcehrJc1jW/CJvnOFBzKMhzSPk9h7wuyeXwHLLT8QLwGbqueeVQoGHIy5wlZuaU7TVDJW/edGaopwM9fbMwosyQSHshPu8t3wdufgjPn/E5bL74nsBrlSP7jiDcA8HMVmZ7Drn/fokIzSEtYpA+uOmx0HPmxUVkK3MuopXKLppDswnBH21Dz6F4SHNwaBUA/5gVV3MoUr8qz7Ue7Za4gtQ5DZboZ6czBvrSpmfQSfrjOE57Clcnfo0te3MhsbL/ZexHLWobW+xGQYM77EsL0xwy3FmBsmFlYf3ezqCp4oU6k/HjSwyhDMAwQjWHFCRQc8gtSO3st7lQQef5IONq1nNIuY1DUSHtxYSVOeltrUdTTUjoPSkbnafegL1dOQ1G73zwUHW4JpETrxHZGVYWFNKbdnoOxRljnLpvyojnbURmJIlz/h5H9Eb0zl+B5VfcEVjHG47rDXu0+d/MEnx87PJSN5FMc4IyzGagVYTHIo1DZcZrPMkkQsLK7Al6JhMrLtbt9SDFCYZamkHKo99h3zOwfZ7rvVluNMMWGHYYhzx6RWE7iuMxGSnPwq0YqqqSuPdV/43Dr/3BOFoyM9F1Dds1c4KYXagka4G2uZhzypXoW3ZG4HWJltzgqikVKlIqmkBZ/cTb14JSJmfvGRG6oO/8a+g5ILcLafd0KTRLncoZu4yAa22D0Zi4d8LHFdpUQSTb54SeU6J7xqy4nkPjeKk7dc1ED8jwGEJ28RM9wm3e/BJaJcxVyqTq0Fbs1nKZhRRMQWrnwkp0O5W953e1j6269vcqUE8ODn0Pw4jlOdTVVJ23DikQZSr5RIaVBXiwKUc2Mue1tiHJuUgys5UFaab5w31Mz6Fw45CCZI2ghYaVkUmkugFy1fdCT6fr3D64YcYhw6MBpMMOKwvWHDLDYi2jdcGeQ8yiWMk0H3U6aj64CXp9a8TczbOOCXmP6YvOxi13/FuJW0imO6NNQ74yc74088cdGofKjWdBYCTqgutZQtVGzMww3gV0MS9J2/NHQfOHlXkFqYM0hAwjPFuZo34a3sV+iIEgbsOBbNr53MW5Ca7f0BWfU155IuYP+bN0EWBvlZnaPm4IDwDUteWMQ+YkMGSBLHrWwOLVAorKVhYVutC8P1rQ3LfIKbTfqNx3NSrsY5fHE43ZyuLR2BORbUbE5emlQgRSvYzr/96xINL0AjyHbE+dPIufHc8+5Cu7JfEjLD68Htv3H8Fnf/ssqtP7cUhvylUQzSdIbRsLwrKVweM5FBqinE2SkI7c1T+sme+0WcecGvHbkbgcUOYGUjYrilKh44uI31PWvDgnounyasxqDhmu88FhZVb/cBiadGWEei0L3NnKyuIhTMpGU2NT+MlGd7hjY0Nw3SjPoaD3uFtzKMYc1qn7plTkuESIFxUiYK6JoCZZAqkOMqPQ22b7ygxIRWgO0ThUZvxhZcHGoZzmUDzxT2/WszB3yeibmMYdJRKwExTHc8ivOaTbk1KncUi8nkPjf6F7vZFcXblIzyESzZG6XutTfDNeY2fO0KZFhZVp4dnKEkVoDgFAS3pHdON8gtSFGodyHhVRO/tjqfnux9JzKBZt/QvDT4oGuAxC5fccchqdpaCwMvuZ0ROKkc1/AQDsRKur/Kz99+Dt33sYn/jFUzg0MuY2zopAg3IJUtueQ75wTDsE0rN4DwsTyglSR2t7PF5/InDHMNB5VOTvR+Jx6C0P4/mr74MBQSadhqhoz6EgLw5nWJnhCiuzxtiMp28EhpVZXpGO70wCmUi9QwUtuyFGz6HpRZTnrHS4M0JV1TdjGA2+et5xImsckoTfk9Eqz84hY4WVeTyHPNfcm7oMf1z9tfz3ITOO20ZvzFunqHUSqVjquub7yjRNQ12y1KK5Uw+uosuN5+WlYmkOFZ6tLFPEoKccu5J6HoNKUHY0pQyf5kvWpVwPDysrxY6iTwDYuavPVPRlQTWZGjBGAf+/qZ5caJCGiLAyR7YyePpamKcZEL0AiQpHMxtUAuOQtRAK2tm3J739r7wMALAzYWaEaU9vKew5FUptc3v4SdEgTs+hCUhl79y11rRE7Gxltiirs+//6MGNOPdf7sUvH9+aq7jrOQyjAcN6i/sGSqHq0Da8I/F9iMq4+pqyspU5Y+C1hLlx4M0mlfUuzWogWYv/0LCyeN6sYWnWSXF0dvVgzryjcEDqoQ7vMceZiKlaYBi1U3PI8fcJ0hyyzvhukQ338QpShxhFzQA4yfYrrQJ2VyuF2t6jfWW7El2+Mm+/yuc5ZEDPhobH0jVzGoeUf7OppncxTlxzcf77kBnH9rmX4P1jb4isQ+MQKYR2K529k9Zrv42ll753ElozsXAVXWa8njVGMthzyDamKBVP38HpySNQxYWVGYYpZioSmV3MfF7A7nKA51B2Z17PeTaVwziU9nXdcEFqUhqSbXaa5fiLwWRTbgJp/oUiPIdsPQzNaxwqznMon3HIXuRk71CoyHtMz6H+xScB73kR7e//K9bXnIB2tSe0LnEQZXQQzb3THdc4lMebYUxF9AHN7TkUprvhwzYOOZ69655342d7L8Bx3z8WV3z2Nzg8mkHi4FbsTXb4DAEC4Lb9n8DbEj/GMnnW4zmkmd8Bp2iwHizoay++vJ5DRth4aX8PjTzaHjTGl4W9iQ7UHtkK2O/oEPSAv59bc8idZQ/wLsRV4HfNfpe7jEOi8mgO5QSp82UrG1FMljvV+Oe+f8Zn0ut85S39fq/AfTW9vjJfWJmtayZ6oOeQIQUKUutOzyFmKyM5vnTNKpw0r8NX7nynh6+taMgmfjp6ZmPU+54aPBHoiPBqnyFwVldmfJ4SyfrginZmmJieQ1732mIs4mKlsge0vN42QbuFKkhzCPkFqYPSJheKL6zME/JBSk9D5xCAwjSHnIsOM6wsTHMo5znk1RzyekDEPpfPS8TznIL7jcpNTsOyCWWpbQFEcKB55r9UysmY/b0XzW3Qjm0ciu4TPo9EB66wsgK+A1lvSkfff1PiZwCAFjmIfZv+iqM+9HPUjWzHaG23L/OdEkFSjQIAqiTjPi+aT5hV03Vfhkjz+R7PIdszJMRzCE5DQsQ7KTLNOimaA9VdaBrdAVGq4LAyt+aQP6zMu0gKer8HaQ4BISHm2XOm8hAQnSzg+4s+hUcu+nXoeTI5vO2Nr8fffPirvvK2liZ8KP16V9lovT+TT9YAbR3bBkYDemDW0ULDysSXrYzGIWJSk9TR0eTffH9u1YeynzOZMd95IG+uCFKhaIkEtul+D8lKgLO6MuM1DoWFlUlW3yFe2mDD414bJ8OZF2V5/phpoaO9QeJqDmWzlTnDygr1yIiB13NIiZ5tSVRacVI8bf1zARS/GNQlynNIz903SPy8mOfl07wYZ1iZuASp4/U5vcvvpkryo6DhQNtSbNEsYVTRXAYa22AZ6fmDgAxeHvxaZjmci/DYekPIhZXZi+Z02m2gOke/H4BCl+yFauzJa3xVnt9b96SaF9EDjZXKYxyyF+9hGjLi2LCIfCcxrKwsjNZ3o8PYGSOsLODvlwkWpM4Zhzx/zyDNIbt/eOcwEeOzU6wzyqvzNZdfh+NWrAg9TyYHXQsW5tU1Qd9ZN7sLWwMSd3j6le29m5GQsDI7LBaIuSma84qUCA1DUpnUptzC6TJ/DRZdcCueWPMNAMC+7Zsno1lkGrN3Sc4o/mjf5ZPYkomFxqGy43l5VUVnK1OZTLzdEM0dVlaUccgws5UZEkNcNShVd4DmkL0z70yvG6Zp4btfrFr2Pb3ZynLty+fOToqjtWsIQOEaI/c3rsl+DtMc0jQtd98SGRODdirdDx2vcciI7zlkkepbkL8S8TH6zufQcPPvsbtmwCwQzZ1K3vrbRXn+APlDDSMN2Y7+ERTKE4ptMLf6ykubN7lOvzXxH9hQcxU6ZS9Gazt9hkZRyjWmeQWp/ansJdBYmTUIWO2xF++hniCaM9SZYWUTTmMvWmU/MHow0vicT3PIqRGXfc/7jKTxNIeAPJ5DBYSVkenFDafOdR1XBWXyscc66zjrOSR64NhrhpXFT2XvDCtrS29zecgR0uaYX+17+wtYdf71AIDOOUsBAIc2Pz4p7SLTl6WXvAu47SngrQ9i6Zu+MNnNmTA4qysT9/x5E8791P+6DD2GEtfOhwtbcyhmtjJn3L/km7yH3sQOC9N8E3zvxC5w5zJCc8gVVlYWzyFvWJlOj6EyI8ka7JJUwcabV9z6A/xx1g3mPUJCvZyeQyrsO1Ig+QwBMu6wspxbe5DBLKg/9s1mRqdCUHo1AKDaMgQdrjdF0SEamprbHDXN/+sozx8AgbvXTiKvd46Revy+Yvd5e6x8adPLoXVHqtsjF9+AZywW3ac5pIkeHIbk0RzKhg2FeYJozndS+P9bQWGmJDaJVrOvN45uj/w/DtrYcYaNOcche4wTx6JaEPw3tDd+fCFoEf3TEC07F4kKKyPTk8dPvxvPXfyfAIDG7rm+8955aCKrOZQIzDqqJCdIHWfem0jk5gZtGEZq6x9jt53MfDoG5mU/NzWnsp/buodwSFVDdj09Gc0i053GbqB9Xv56MwjO6spE75bf4N0734/R0dFsmQEJ3uWDw4Vf5XHht3EtoFUsEWsf2bAygaYX7jkEZfgmgHY2IM0hihrXc6gQDOX1HGJXnggS/ceif5Z/UhiFpmvZ/p0wRoMrSc5zSPL1xZjo+bStLIOs3bML0ZEBYIZ72KKtETvvTlo6/CKeJBxZe6f5IWmG46pGU+dCP7Ibqb5cP9SragDE8BzKM7ZGag65wsri9xVNubOVvbw1PFud0hOBmkPOMm9YmTe8QjQt2JPNXpxZO/V6NqwsjnEo4rvEsbcs1HWYCQDaM9sjNj4k0KgtzmxlLs0ha2z16AgFjX1Z46HXcyjEmChQSOg6Dhwxx3hdFNLe9zSZ1iw+9TLMXXYKAKB9wL9YUh4DkO4UpA4wFhqSKMg4NNDWCAB40ejEiEpi/v77C2o/mdkkahsDy0XT8HKiH037nws+Ty9HQlwwXUSZGGoSdOmP4IhKZlefBgQNNcH/5bYWkRo9FCuszCkgqcGAkSkiRbMyw8oUNGh5NIfCjEM+zyFbkNqlOVT6bubLVsYFyoTQfN13i/q/lmZzUZ8a2xp8XtOzy5+obDglxeOhVHBKbqUcqexjXkt9lsI4/gbzn0UyNQA8DyQPbEFj+0C2PNHSD2wEmuRQ5O0SeQWpIzSHXKnsC9EccgtSH9m/O6KyHsMTx+EJYmcrM9zGoVhhZRIdVmZvGBhGOnLzgansy0OzFcbbIcN4EU2h9QI9HlVYKnvNd96sE6455N2siuqfqjaFhcNPYHjvLjTD/D4l6EE0I2lqTuGn9Rej/bjL0FCVwOJfvNY3TjiNQ0Fjr+EUpI4x721RwwCAjVWzsS3dgePgDhMaag+RbSAVw+7T7oLeOoBmT/lw/RBm73sg8Jql/S1lbxch0wmuqMtEx4rzkVYaasSdNWROe3C2siN1ppCadnBr4Z5DSvlEI+PgFqR2LxB8i4sgw7oR5DlkLYQc7r9hgqdeClli+DWHHMdMPVA+9KQ7S1RMajtNL48utTPwvMsTo4j7F0PWWy9XUtgNlJFdaMfVHAKA4aSZ/eD76VPx1cRrC3tmhdPQaXpT1I9sgySqsuW1lpdFPvItVCMN2cUKUit3Kvvq9L7wulqAXpBnPMuXyl7yhJX57hfiCdJQZy60dgwfyhpBg+E0ohykeoayn8OMz2F/lVDPIdtb0nFelAocc3OaQ/6wMiMgGx4A7Fz1TvTLTrz8wE8ABIR/kxmDiOC8d30Nx596PhpaOwEAo8PbXHXsUDIleqAnr3Kkso817519ClSiBive8Glsb3ELmh9uX4LOk64t5lchM4jUaW9G87LzfeXp1nlIYX/gNfXN7eVuFiHTCs7qyoRWn8KGKrfbrQHBUIhxKJEyMz+M7t4UT3PIk8q+aM0hZQCQwkNqAEBlQj2HihGkLgR/KntBwYt7MmG09kencBdHKnspg0ZV4DP18XkomdnK7Mlv/L63YfBSAMCKV9+Oa99XOQJ3paBjlpntbV+d2xjU0j0n1vV5Bakjs5U5kgAUEFaWS2VvjtE16eAJKmD2/byeQ86+JprpAeQI59A0LVQjzvXTLg4xiDW1dQMAmp+9x+dp4m4PpxHlQK+uxzAaABSh6xSmOWT3nRiC1DnNIe/cQoKNjwBmHXsWDqpqpJ/7HQAgPUFjOZlcugYXwlCCsR3Pu8qdnkNBGFoiK4wveTJJAoAMHA/5wDbU9y5Cdf8y17nNJ/9DNvyYEC9VXSFz0HX/BhxTOVmoCIlD3hmHiAyIyG9F5AkReVxEbrHKUyLyKxF5xvrZGnL9tVadZ0Skosz6e1uPcR0bEDRUB0/Ee/qHkFYaDu3cGDOlZ+4+mlLZLBEFYVjGHdECsu/E8L5RKtxzyLHgCNW0GAc+ketCxYTJhNLVO4BDqjq8guPvN2FhKuM1DkEVnK0MAAYuugNfPPobGFx8Qv5wTuKivXsAz170Xzj6+rvNgut/B1z//9DWF884lJB8nkNRYWXO8Jz4i96sSL81VtZmwo1DkICQMK/mEJzfFeuz0xNE02GEhAGbPz2eICG/y1jrPNzbvA7H7v8tkiPDoU1OGkdCz5HxsVc3RdfDPIfCtDLEla3MbdQ0lLjOAyrw/amFhJU59eG8NDfU4cnEIqR2PwQgv0A8mRnU1NZjh6SQ2LfBVZ5P10y5Utnnn3M6PYx7F73C3Yau+QW0mFQaLbMWB59YcRXXD4R4iPONSAO4TSl1NIATANwkIkcDuB3Ab5RS8wH8xjp2ISIpAB8GcDyA4wB8OMyINBPRZ61yHduT+k3K78I4q70ZO9ACY/jlyMwwWUrkOaTBCAwri3u9eF7oOjLIKIE4svkYZQgT8nsO6RgWU4wuLEyCTB7VyQR2SFvoec2xM16UF1sReLOVFYwjS2Cgp0YIqYZqXP+adahKcEJSDPOWn4y6BktRoHc50LsCyfpW7F18Lf469Lpx3TvKy9Hp0VZIKnvNcGcrq8mEh5VBi+M5pPk/O41DIiGC1IWFlYmmYf+CS5BABqkt94Y2p3vfI9HtJUVzOGlOlwr1HHJmhfQalgxIVgcrd4Hf2NOqhjF65DCMjD+VfVD/sp9zoHkh+sZeBADs09zKH1/OnI9P4ur4vwiZNuxM9qLh0EbzwBpikmJ71oYZhxyaQzE2RZ3z1PkLl2Y/P/KGF9Df3VlEq0ml0DMnxDhECPGRd8ahlNqilHrI+rwfwJMA+gCsA/B1q9rXAVwUcPmrAPxKKbVbKbUHwK8AnF2Cdk8Luo9aHVi+Re/zlVUldezWO5A8sDme55AjG5hA+TKKxEEpZRqWIrKoOR4ScAMj6xKcbRYyMKC5FvhxNYcKwZtVSETw0pmfwwfHrkP74NElfx4ZP/uSHaHnXNnyJmgXR/Rk/kpRqFyWKIryTj4tr/40Rub7tQYKIXKscvTLQsLKNE9YWXUmXDTbHDc9Y1uE5pCEeQ4FvdqN4LAyhHl2io7BY1ZjRCXQsf+J0DY/PxZu9CXjI10b7TkUhtP44zUsGRCX8QgAEg4vyq26qX+YlAw2Pv2QLwMVJDysDACSPbn378Y29xxo5StOxC0f+ky8X4JMKw7U9aN99GXrKDdmGUpCjZtKc2QxizPvdbxnq5K5PnsMBYVJHmrqGnEEVfkrEkIK0xwSkSEAKwDcD6BLKWXn5N0KoCvgkj4AGx3Hm6yyoHtfLyLrRWT9jh07CmnWlKV7tttS3SCHAQB/bLkgsP5wTR+aR16OlbXBSOa0i4r3HMqYCw/RXJ4+wXUDipSRcwm20JGxjE25RVZYNpyAG8arh2BB6vNPXI47/+5TaKwZ56KflIWR2nDjkAR5QwChwqeFEnQfbdyaQzkh4EI8h0j5aOrsH9f1UcahYjWHsqns42hraMEhOxJylF10ZZyaQ3qwMSFMcyjCg25RbwrPow+1ynx3/V43QznuNxbhJ5lX4q45Xwcu/XL470PGhaozx8zw8cX8O++1tImypWrMVyd7T2i+PtDTmptPHLr0G9h4pakZtOu5h/zzEQnWtLL7d8fcnFBworkHnxh7Dd4y9nb889ilMI6+CDpDaWckY81DaMdejB4+4JoXGogyDiUL8hzy8qHOf8Wn0xcVNB6TymV7cnzzA0IqhdirIxFpAPBDALcqpfY59ReUUkokIBVBASilvgjgiwCwatWqGZFuSjQN9895K46MZXDqxs9ly4dOuRJrv9eIX1a/x1V/rHEAHQd/ixeN0bz3TlflUttqyohMNRyKZdxRouXV0AhbbHg9hxIqY+5MOiaAcTWHvPeKwhf+QVHUKU+mvgcIiagxJ3fKPsiWp6GjKk/68TgE3We8nkOCTNZjz2D/mxK0dQ/krxRB1FiV17sy7Dq4NYe8nkBOgjyHlFdzKNBzKGcMEF0L9OzIeYB4FmERxqGErmFH3TwcddgME9p7xj/g9p99C2dd8Q70NtTiwqFU6LVk/CSaOoHNQDLPGPjimi+i5ddXZo81x3zAOzaNSBX00QOusi49d6yJjr45S3BYVSGz5VGoWUtcdUWC+5fN4OLjgZ/YlTW8+UOfQ3VCw6HRDJpruXEzU0m0zQZeAna89JRrjDP7SsjYKXpOt7II49D7r78KOw+8uojWkkrkUF0fMPx8/oqEVDixZrsikoRpGPqWUupHVvE2EemxzvcA2B5w6WYAztl6v1VWMRx/zd/hlDf8vats3fI+fPM9fm0MaZsDXRSq9m/0nfOSrsrF8gsMv+t3HJSCZqWy9y58vFO/QOHLqLAyl+dQPOOQ1wspCp/gKhfnUx69JdBpEIDbKwMO741SpUIOus/4s5UZWbFWeg5NDRobmvJXiiAyrKzIMcYOK9NU/h1yES2/odF53v7eOMLKTM+hIM2hkOfn2Rg40pXzBDn5qAHc+dFP4MwlfVhFw1DZqW42M8Y1GBE6VQCWrT4P65vWZI/d3mnud+UevR3NY1sdJQrasbn5iGgatEQCG5Oz0bjnSRheAXPRoEWE0VZX1+I5MbMJimhoqE4gqWs0DM1wGnpMQei9m5/KGsQB890YFnatNH1cnkPVCR19LcxQRmLSPL7NI0IqhTjZygTA3QCeVEp90nHqJwDs7GPXAviPgMt/AWCtiLRaQtRrrbKKQkTwn5kTsEflXL+7Wvwp7eu75wEA6g68mPeemarG7GcNyicaGYtsKnu/55DfFBRmHHI/NwHDrzkUU7y1EM8h31SDxqEpT03H7NBzmqYho5nZzJwu4l5tqWLJBPQPbdyC1MoxofVPfr+VuHh89ycFI+PUfooKgS1KtB/+bGVRRnDRdd9Y5vc08odgiiokrMxzv9DvgVmvfsFpjro6kvlCkEnJaGgzjUNNxj7g6h9F1jXmvyr72S1I7f57HajuQrfKhe4LAHQdjResiH8ZMzWx9jUvwsDoczAyXs0hDXUqXDcLALY0mZladWayqxjaZi0CABzZ/pxrM9GAhM/PRIcWEu5KSKmpaZ812U0gZFoQZ5Z3EoDXAThDRB62/p0L4C4AZ4nIMwDWWMcQkVUi8mUAUErtBnAngD9Z/z5qlVUcC2/6AR54zYOB576mXwoAaBtYCABoH9mU/4aJmuxHgYqX4cyLMsx03KIFxmyHpcl1Xu81DmmirLAy5wIm3qJKL8BzyEuxCzcycTTNWuo63ik5zwMRHUdqrGwjjsVrVGrxQkgHRNCO13PIKUjt9fb4YWY1zrnpk0FXkTIzrPyG97hkIrwci82ip8PWHIqRsjlAz8VbWzk1W2zjkMtzKNj7SLKLMM+7Io+RdP6SXNZNjXoxE0pzh2mwqcIoMO9MHH7ro6F1j7vgevz5tK8CyBkkAb8g9Wh9D7pkr6PE7GF/WfX3eMwYQrLLnIdI91I0y0EMb3nB/aAQA+wLS96W/TzWexwAoH77n8N/OTKj6Ozoxj5VB+zZkBtrYEoShBndlSOsLCrclpBS0Nk/L/t5S3IW9l79y0lsDSFTl7yrI6XU7xGcqwoAzgyovx7A3ziOvwLgK8U2cKawoLsJC7rdIQ8vXf4/OLBrM6476UIAQE//EI6oJNpcE7dgnGFgogwYRWgOicqYL2YRVyrx+Ncr6AFSU0rElfY5bliZ19AU+WyvyCY9h6Y8nbMWuAtOvR34f+8GAIgmyDR0A3sB4+DObJVMicLKvPcxlPgMinmNoR7McE5/WNkWlcLp7/gmUq11RbaWjId9WjOa1cGiro32HCo2rMy9+In0HBLdv/gW71jnEMYOyFaGUM8hd9a0XP3o8bmzKRe2Ucx7ghRPdZM7z0dt+yzsPuF2pO67K7B+fYMZbu40Fnr7gmrqAwJyfqw7fx2GzzgXzXVm+FfrnBXA40B688OuehLwHflT79V4xWXvzB63r1yHrU98Evd1vhbMHVoZ6LqGLXo3ava/5PYcEi08256m5TzG6TlEykzd4rOBR1YD5/0jejqPmuzmEDJl4UxvEpm1aCWOtgxDAFCdTGKLZk4GM3myNLXW5VIyalAwjCJ2XSzPIYgGPc/CJ7A1RrBIpqk5lLtfVDYc9zMK+B186yd25alOTVUSW9GO+xvOBO4YRtspWRsyRNOhNfUCAPQDW7LlpTIOebPbmd5t47u3KJXN5OM0To6c9iGkWqnHMlkcTLQUfW10Kvvi+oueFaS2s5VFGIc0f2YfM6Okq8R5gdk0RxiRJhKoOVS9/yXzgzf7VNj47NjJ/2b3e/GU0Q8tSX2PCaXen+ExtfY92Nh/PgCgo7Hada61zZw/1I3lHLS9Bs+qlFt3w9m1bMMQAPQvMjPTNe193N0AR//8dOYy/CizGtsXXu2qsnTeIJ644n68+rLLg34rMkPZW9OPliObXGNcVFiZEs0x7wsfFw9Xd5aymaRSqW4EXv9TgIYhQiIZZ1wFKTV7qvsw+8gmGNCyi4ogeltzk3QzlX3hnkPKUFnjkG+z2lO3raEa8AQESohxSHnCyuIah4K8kLx8YOz1eKX2OHoSHs8ApjKdFvzg5J+jt6UWx8MdCqhpOqpTZprR5JFcRxuvcchQAk2U33PIG/qIQFWtSAQZh+eQ+Y3568K3YNHpry+6vWT8HKluA8by1wsm3CifL6NjGLryhpVFew7lFTd3CVKb7RWfILVZbvd/AJi9/0HLMOTp6THCK9tPuhY3//qV+O8qigpPKFUBIZKahoGrPov9/9mIuee8zXWqrdfUdesytme7slcMuKFzMOajm/GSPoglo4+6vxYiwPFvRrpzCd664ips3z+CTo+RCgDOWNTlKyMzmwONc9F96H+xQ3JGTQNaqHFIRIuVrezxY27HqvPeWNK2EkIICYYr6inG4QZTMC3UDdci4dB+EKjsIrUQRGWgw4CCllfINVHf4i8M0TkyoEFz7laWSDcGAH6YORk3jd3qK6fn0PTg5jPn49KV/b5yTdexaPVFuK/5HLRd8glssyaXXo+fQklb13u1i8w+Or57i1LZHdJUg6kB1jKLQRSTTbqmrehro8JTi01lbxv57fCJKA9J0bRQTRdHJcdns197BanHxDTiOFOOt6hhHNz6tG8RJiHG+/ranK7dOUt78Mu3nwqdmkMTS1hfqG1B42s+7zMeadX12IsmNMphZ6mrTqpnjus4yii+vfPErHExdzsdOOcuJFZeDU0TdDfXUIuKAACOdK2EDoVulUteHJWtDKLnNgUjPSo5vyOEkImCI+4UQ1qHALgn9fnQoKC8oQJxUIa5mx0jw8/ezuOgLv6CKThoEeU5pOmFew7FIdRYQOPQtGREmYtYBaCmphYnvP27mDV/KfZ0mIKmhxPjS01uewx5w4UMaCXwNjOy37v2RtOTr7uJYTeTTe+cxcVfHDEWFmuAttM6x8nKI5qeVz9NBRmHHJ6jomnYljBDNLfq3RitbsVfjzI9TDY/cZ//+XoVvGw58aNoH6Shc8rgSECRjz1JdwiOtz81dsbP2FO7cI2/kO9aEkJy8DhfWXS2Mtu9TUUKUnPzjxBCJg6OuFOMmi5TTT+Wx8Qbf4Ud1YOoxWGoEENNNMrczQ548SoAtcncgjpd1QxZdjk26325SiGhbMozGSilccj2qPJrtrIrT0cem2O6itfWNbjKF77pbuy64OvY3rV6XPe3jUPesDIFyfaZnJdefINsWmmm15DtscH+N2XofdU7sKv39KKujQzpKtKYmLAFqeOksteCQzBUgM6Q2SRrPFTusLLDzXMBABkkUPXeDeg85z0YUQkcevFBn3GoefYK3/N61t6S79ciE8W7XwDe+XTs6odre1zHXq8NCQpVC2HOqrX+Qo51JITe7m4MK3ciBu980IX9DjbS0YLUJfQ+J4QQEg3f8lOMVL+Z0SmWcWjgODzScxlqMAbtYED6kXwoA6KMwAw9AqCuy1xg3DZ6I6qHTgAAHKjpztVR4YLULn2OknoOSbZ9rvbS7XhasvKau6De9zIamtwCzpKsRdvKiyDNAyFXxiOd7dulFaTOQDd3Ou2FP/vf1EFPYOtRpu7TFnRgO1rjXxsVVhZw7vOr/4AXjGhtlVwqe1uQOt8OeUAa+pAje+x2CVJrGvTORQCALmMrACDV1ICNWj+0XU/7BLGbOwcwoig/OGWpSwE1zbGrpxv7PCX5kk2E98fahgDPTRqHSAgDrXXYqtzvcgNaeBbIrHHIYFgZIYRMETjiTjG6BxfCUAIjRqgXAOgpU1xydMfzBT9LlBHqOQQAuOK7yLz6m7j6xtuxpM+cnI7W5yaeWphxSNzZykprHLLv63UdYleelohE7mRXt8UPgQgiF1bmTQee66O5xVF8SeoMNNMDxJ7QcmdzSnHUK8/Dn/quQfWb/wcvLr019nVRIV1BxsQb1yyBJPxhWU4SlqeQFsNzCJo/lb2vVzrGVtv7zas51Dq4FABQg9Fs+YH6WWg6vBHerECaaHiyehkA4Nvp0/HJscsifx8ytUm0ug3qQX26EC239T1XAAC2qxYAyKtPSCqX5rokdmlu45Dp9Rjc3wzNFDLPjB6CKANjKvg9qhlFZxgghBBSIFxRTzFqauuxQ1J5BalVwtQ2qes0s5OoPS8U/jBHKvtA6tuhL74QK2Y5dt6bc2LCEhFW5hJvHWfKcCdZLSbrR0ZZWXkyhWdrI1OfxpiZdcKwjUPecCHDEVZWDGnRTa87yziUOcZcQKFvZdH3JKVDSyTwijf9K1Jds1DTHD8NcqHGISdhCxt/KvtozyGvPpbVMkclp1em2V7dEVYsmqB//jH+e7fNQY+xDaMjI+5yTceunlMAAH1DC/DG938+tH1k6lPXMeQ6DppLGJLbsInqjwBQe/7f4+bkR/Fwt2U03PvSuNtIZi4HqwI0r0IMigdrTK9LY89GCAykQ7KTbgZT2RNCyERB49AUZFdVLwxo2FPV7Tv3zarL8dqRDyLVbXpUtPaaoV9V+4qYsCnD3M0uYJFc055brIeFlZnZzxy721pp0h8bSgBPWNmT1eYiaGx7fE0GMn1o652Tv1IEOeOQ1xtD82VpKmQ/PIOEqTdkp7Kfvxa4YxhIzR5Xe0npaeo/qoDaEWFlevQ4mQm5NiG255C9CI8WpM6vOeTIVGkLUsNhHBJBW6s/lK6lbwGqJY2ag5tc5ZqmY/G6d+BLyavQv/ZmNNcxXf10JtXjGYOC3u8FbNgs7mvFv77/FsxefioAoC69dxytIzOddL07zFZBQvXaajrN9/uWF58ClOHLKvpnfSluP+o3OGH1meVpLCGEEB80Dk1BDjbOxqhUofncO3zn5s/qwff+/p2oqzIXtl0dndivalF3ZGvBz8mFlcVfFjd15yaeEpLKXnn0XJRemrCyoAxu+5Zfj/9QJ6P91BtK8gwytWhNFZ+WHMilsPd6hBgQiJ4nfCeCPdX96B97EYcOHQJATYSpTNfgwth1Iz2HQkIHD4spwOoVPfddb4eV5dPWyGesd5zPWB6k9Zn9vmqPYT4ekUXZ4+6jTgQArMKT7tvpGrpTTXjT+/8Nc2eNT+OLTD6NXUOu46A+rSedoZDxRr75x5+PF1e+F/Ou/MdxtI7MdKTJLYhuQEK8IYHFR5ubexuffxKilM9zqH5sN+567Sqk6qNDdwkhhJQOqlBOQRa89u+wb9tL0JauBpZfAdyRE6P06vw01STwPFrRNVakIHVUWFkAnf1zQ9tiKIEmCoa4Bam9HhrF4jQO2Z+amltw4kf+qyT3J1OP8epbGKIDyu85ZECDHlMn6I+v/CKquxZg59aX8Kr7rgEApOetRdPj/4KGbesBwC3ATqYUNbV1+SvZRPQ3LcQAeDDRAmQQGhKRvd4OK4tYjJv9KEx+Oncnm9EWc+d9ILPRV2vBBx6A5ri4um8Z9kozWtRwwDPJTEEau5GGjoQVzhgUVmZ78+5DPTov/Ei8G2saBi+4vWTtJDOT2rZ+4MXcsYKGwzV+L3gAaO/swSHU4tDWZ1CrGRiRakAdAAD8bPb70TRrMRZMRKMJIYRk4Xb3FKS5cxYGluZSeP/+zHvwi2ozpWxyr1tbSEQwnGhHAw4W/qAiwsqaUrmXvObxHEojlxpcnKuSEhmHXLoxkislJAwjRHPIdHV3L4rbl58XeI/uviGsXL4CC5a8IltWu2gNxpDA8eoRAFxgT3XuX/tjvIyO/BWL0BwaqTa925ISHGabvV7F8xyK8l7ytrFvztGhmcaqEhoSzlA4TcOG5uN89cKMXmSaounYm2jPHgaaO3XTONR0xd2YPWt8ov+EOGntcusEKghqukNMPCLY3ngU+g48CiOTwRGpzZ4699p3Y/Xpwe9kQggh5YOzwmnA6pPPQMdJ1wEAjIM7fecPVRcp1qcUdCnMc0g0Dem3rMcOaUPSOOI65xT/dS2W9RJpDrmmucyYUin83PAvaOMSFlYGAJplwLR31ufMnovhm57Inn9BzBAbSZv9vL/HsftZ04QN9csc9+JQOpU5/sTTsadlcd560WFlwWNOusbMzlOHkcDzNnE8h8LCytyaQ7nzszua8RJ6fPXDGBk8LaBhNGzONEbqeh1HAf3N3rBhlk9SYrr73ZpXhujoHAofe2VoNY7GBhgHd0FBMJJoKncTCSGERMCZwTRh0fFn4etVl0M79x9858bqugKuiCattFxYWMAE8ZAe/oJOdM7H5qrZ6Bjb4r6nnTbcYxySEmkOORdIPS3mDtNAawEhI2RasvJdxYcN2loHXs8hIFhDpimV+y79cvBd2KfqcKDB3AlNOrwwRHRkBk/OHdM4NOVJp+bnrxQRahg2jqm69sBy3/XZbGVG1svSixYiSO16nqOvaZpgV238jH7tS9b4n0kDwYyjZ9a87GdjLMBoSeMQKRMd3f2uYwXB4Ox5IbWB7lXroInCCfIYFDRU37IeuOqH5W4mIYSQEDgzmCbUVVfh2vd9ASuOWeY/2RR/59gmAz0nKO2ZIH5g7PUYXnVL5PWHGwaRglu7wuml4fSkKJ3mUO6eqXbTi6O5oaEk9yZTl47G6qKvzYaVBXh9BIUJOQ0A1119Ne699EEsmZtbfJsZ88xr+5adUXS7yMRT3R0na1m4R6Ku6dg/93wcaRxylauWeMYZzRakhgoXr5b8xiHv+bFUfFWOoTn+uvR6m3loSy/Dkfo+AEDzkc3+CrY37zg13QjxInoSB7tyIdgKGqqT4d7j1bNWYkvCNCgpEaCxC5jvN2ITQgiZGDgrnAFUtfQVfE0GGmDYnkPuhcqN7/wYLnpFdApxlfKfNxyaQ85QBa1U2cocE9n0+Z8Czv1HYKD4kCMyffiYfiM2qXbc11DYpFFFhJXl8/apTug4/5heVzjRFjF1a1RmBI1zTyioLWRySQ0tzVvH2U92vuF+vHjRj3MnNUHj676FmtsecV3TeuzFeM/Ym/Dv6pzIe+fCyoxQ45AWEFbmCwryjNe1fUdHPteJrmvYqvfgMGocz2RY2Yxj4dk4eNl3AAC9xhb/eXoOkTJS/+Zf48+9VwAAjHy6kCLY2W164SZVtG4bIYSQ8sOZwQygvqPw9MNp0UPDyvpjhGrVdvndhLPGIdGyei4AYFQ1Fty+IJxhZVptC3Dcm7jzWSFcd/MdeOzVf8AJ7/wh9qE+9nW5sLKAnE+WccirAfPCaZ/GU53BC/0Ny98FAGhI9QKJahyqaovdFjK5tA/m1xxyjoXtsxZhcPnp2KNM70RNBS9yls9qxZvf/hHM7u8NPG+jOVLZZ0JevabmUNCY5sjU6DnfueD4yOd62fP63+PRq/7sfiaZcaT6FwIAGuWw/ySNQ6TMVPWYnpqpzC4AwAjCPYCbF58FABgwNpW/YYQQQiLhzGAG0NJZeLaRDPRctjFrsfG00Yd/T58Z6/rUwCJfmb0brSDQkrmsEw1d0V5IcXGGlWk0ClUUvS21OHuJGUq4T+ILViqHwdKL6MEeE7NPuxYL3/LdwHMnXXQ91If3oqXNFIGvufUhjL3xt7HbQyYPrTqGUTGgn9zd/UE8ZgxB1aVCLxtqr8dIVUv08x2C1GGeQ1JEWFnf3JxH1JfT0d5LAHBUfzuOm9+LfXVmOFxVRMgHmb5IsgY7V9yEfZcGjGU0DpEy02Z5araKmZo+fe4/htbtX84wMkIImSqUJt6HTCqdvcUZh7KaQ1ZYwdrRT2BOez2ujnF9z+BCGEqgSW43fafegYHMVjPGvKoqW949EC5GWBgOzyHahiqWPcku9I8GhEoEkNMaCshWFiE+HIXTc0Ora4FWd2xR9yFTkIDF8lve+Dd46MXLsKQ52gNSa4jOGqmJgjIMCAzToy0oiZSuRYpiB7VR1wRvGX0bmuUgrr35juhrHTTd9D/AxgegJYvX9CJTm/Z1Hws+kc0gyhcpKQ+ds936mPXHXQO18krInaa37dfUebjOOqfVNk9s4wghhIRC49AMoK62NvTcSaOfxR+qbvKVm55DdliZOUH8yx1rUaXH20msqqnFFq0dPWpHtuxgTTdw8FEoESQc96l3iEbvUY1olf2xnhFFWFppMvM5VNcLjD4cq27OcyhIkNqdyp7MfPa85j+w475voeel/0Qj/OE2Qf2kriqB1fPzZySra82fNdJQCqIiPIc03efl5m1RUBjYa669GcOHx7Cou4A00PXtwKJz49cnMwfNNg7l0YMhpEi0Bn/ItSvhw0e+7T5562OAMVbuZhFCCMkDfYpnOH/4WLAf0KhUoSpjLY6sxUhTTRI1yfjeFLuq3ClLxxpMzQ3NM+F0Cp5uT+RfQIXDiSwBMo39+StZ2AvtoFT23DWvPFqPPg0L3vAlbD3p74IrjCPMpqktWnMIAAwjA832HAogOJW9co98AW08bWEn1i0vPDEBqVDsRbpBAWAywbz+v4G/+Y2/vGUACEh0QgghZGKhcWiG8qi+GL9e8a8AgEzLEDId7ow2e5Ld6Ey/DACQIhdEhxvMcLYtLcfiYNMcaC2mMHZTZo+rnoiGbZfeg+2X/BD7a7iAIeNj8Jxb8ZgxFKuu7RUUpDlEKpe22ccEnxAdhy/6Kkau/q+C75nqim8cyoQ47YqmBXhFKm+lgttGiAvbc8jITG47yMzmnc8Atz3lLhs8EehfNTntIYQQkhfOMmcIW+EOexit68KaddcAAPRbH4F+0/9hW8NR2fOH6wfQAiu8q9jFRmo2AGDLUW9A/Tv+jJp2U+C0zdgJANi80szspOs6upaegc5j1mCsqfDMaoQ46evtQ8f1P4pXOdJziFQqrbOC07+LaKhdfgmq551c8D3b2nvy1lGGYYaVhXgOmdnK3OdEGd5KBbeNEBe2IHWGYTykjDR0Ao3dk90KQgghBcBZ5gzh6dSpruMHml7lq9P1tv/BU4tvNdMo9yzJnSgylXFN13wAOf2f5m7TWFQF01W974IPAHcMuzQy9NRQUc8ixElTS0eselmPIS6oiQOpCs5cNh4PMz2RwDMrP4gHVt8dWscwMjlB6gC0gGxlogxXAGSxnp6EZMmGldE4RAghhJAcnGXOEI6/8fP4Xc8bAQCvHfkg2lec569UVYeFr/4I9Dv2oKE3l4peiszaNPuYk7En0YGBeaahqbN/bt5r6rvy1yEkH7UNTdiNOOK71rKaAubEy4f3mv+u+yl215vjUnrUL1JdCPMveCeOW3MZ7j/qvYHnDcOAQIUbh3Td11cF9BwiJUaj5nEZFN0AABKKSURBVBAhhBBC/DBb2QyhuqoKp97wSYzsux1fTLaiuTYZWb9j1sLcQZGLjYbOQeADz2aPW1ta817T1l+qtPak0tmpdyGV2RdZJytIHdDHm9p68NPMCag9+SacUZYWkimNbYQZWo3NS9+K1H1vR+2+F0py61RTsGeSYRjQoJCWkFevppv/nM1Ubs0heg6RcWNrDmVoHCKEEEJIDs4yZxjVTZ15DUMA0N47F2PKXISUarERJ718R/981/F306eV5Nmk8thXk18AOCpbWVUygfPu/AXOWHthydtGphfNg6ZAdeeR0hiH5p91A7YNnOMrVxkjMqxM14I9h1zmoSLDgAnJMuc082f7/MhqhBBCCKksOMusULREEjv0TuugdN3g+Sv/iI3XPRh6Xq+qxZErfwwA+H/JU3DKmz5RsmeTymKkIX9K+6xRiGFlJILeecuwvvo47F3zydLcMFEFnHWnr1gZGQgUFMJS2YvPk1PzaA55BasJKZgVVwG3PQ30HTvZLSGEEELIFCJvWJmIfAXA+QC2K6WWWGXfA2DHJbUA2KuUWh5w7QYA+wFkAKSVUsxfOYXYW92L3sNbSqphMWfB4rx1ahacjuH37MQJCQ2iCnNrf90Jg/jmfS8W2zwyk2iZBWzLUycirIwQm0QyiVXv/VVJ79nc3JL9nFYaEmKYqexVhCC1pvuzlcFw6Q4JPYdIKWjsmuwWEEIIIWSKEUdz6GsAPgPgG3aBUuq19mcR+ScAwxHXn66U2llsA0n5ONI4Czj84KQsNnKhb4Xtgt950RLcedGS/BXJjKe6bShvnVxYGb0tyMRS09SOI6hCDUaRgY4EDCtbmYLSgl+9ouu+8Vig3LpDNHQSQgghhJAykHeWqZS6F8DuoHNiisy8BsB3StwuMgFoKTP1PAVOyXSkoXtOjFrB2coSYApnUmZEsFtrBwCkLeOksgSpjRBBatNzyJ/KHs6MZfQcIoQQQgghZWC8s8yTAWxTSj0Tcl4B+KWIPCgi14/zWaTE1HZZmcMmWcPi9xqjDUnhpPrn5q2TDSfzLLhT2F+OJhHiYn+VqeuWscZYQ2VMgemIsDKvsV5gWAYi65jGfEIIIYQQUgbGO8u8AtFeQ6uVUscCOAfATSJySlhFEbleRNaLyPodO3aMs1kkDkMLlwMAZvd2Tmo7lt72U/y858ZJbQOZfrS3pPC+hr+NriRuQerdqqHMrSIkx0h9NwC/55DSwoxDWoAgtYI48pVpNA4RQgghhJAyUPQsU0QSAC4B8L2wOkqpzdbP7QDuAXBcRN0vKqVWKaVWdXR0FNssUgDVvYuBN/wCqWXnTWo7mutr0DV76aS2gUw/NE3wsXfenK9W9tM9Cz6OLVf8pryNIsSB0Whl1LM0g4yM7TkUojkkWqDnkOYKK6N+FiGEEEIIKT3j2YJcA+CvSqlNQSdFpF5EGu3PANYCeGwczyPlYNYJgB5Hl7y8tA3mz3JGSBDfT58aek5pOa2hi6+8EYsXLcJPmy7HTwdum4imkQpHazdDH1NihjEqQ0V6DkHEpylEQWpCCCGEEDIRxEll/x0ApwFoF5FNAD6slLobwOXwhJSJSC+ALyulzgXQBeAeU7MaCQDfVkr9vLTNJzOFnqFFk90EMk2Z+6avA18dCjxna7so5IxE573jCxPRLEJQ373AdZwx0qZxKMRzCEBAWFnG5U1EzSFCCCGEEFIO8hqHlFJXhJRfF1D2MoBzrc/PA1g2zvaRCiFZXTvZTSDTlJWDrRFnJeIcIeWlZWCh63jv8F60QkWGhgWmsndoDnnPE0IIIYQQUgo4yySETHt2ozn4BL0syCSS6ujDL1JX4k9LPgQA2LfleWgwoLTwfZl82cqYyp4QQgghhJQDzjLJlOEA6iLPuxZIhDjYnewKPkHjEJlERNPwqrd9DsesvQYAMLrzOWhQgCRDr6mqrnEdazDcnkPs04QQQgghpAxwlkmmDNvbjwcAbJ1zaeD5Fjk4kc0h04gDNT2B5YoLaTIFqG5sxwHUQdv7omkc0sPDypq757iORSlXtjKGlRFCCCGEkHLAWSaZMsx+07/j0IVfRvc1X3GVj807e5JaRKYL9UOvCCzvWHUxDkk95p1368Q2iBAnItiR6Eb9wU0QGEBEWFmHJ3Oj33OIqewJIYQQQkjpmfwc5oRYSHUD6o59NQDgkVO/hCNbnsLxV34QSQC4oxm7q3qQmtQWkqnK/Ivfh61HNqP7GVcCRVSnBlD34ZfzBCwSUn721fQjdeC5vNnKapvbXMe+VPb0HCKEEEIIIWWAxiEyJVl2+mvcBe/djFREhh9S4Wg6uq/6PDbdtxYP/PRuXKL/3ixmnyFThNHGWejb/39IiAGJ8BwCgBcTQxhMbwAANOIg9iLXj+k5RAghhBBCygG3IMn0oLoBSDLdPYmm/4RLcMmdP80V0DhEpgjSNoQaGQMAqDzeP4MfeARfXfw1/GfmBNRgFJ1qV+4+9BwihBBCCCFlgJ5DhJAZi8aFNJki1HbmhKbjeP+8/tUX44keDfj1fdAkF1amUWSdEEIIIYSUAc4yCSEzjhFlpQoXmdyGEGLR2tad/RzX+2fuwmP8hTR4EkIIIYSQMsBZJiFkxrGhbgkAQFdGnpqETAxt7R3Zzyqm90912yAOiltOfezgcEnbRQghhBBCCEDjECFkBjL45h/iuRM/jo5ZCya7KYQAAKrrW7OfJW5omKZhe9NSAMCm5BAAYP7SVaVuGiGEEEIIITQOEUJmHjVNbZi79sbJbgYhOWqacp8L0A2qm3siAOCRzBBwxzBq2gZL3DBCCCGEEEJoHCKEEELKT6I6+1FEwyOrPh7rss6jTwEAnFq/sSzNIoQQQgghBKBxiBBCCJkQRqQGgJnKftn5N+LQ+3bh16krIq+RfjOMrAGHy94+QgghhBBSuTCVPSGEEDIBjOp1qE4fweExMzV9XVUCa972eTz2hwtwcMeLOD7oopom4MLPAH3HTmhbCSGEEEJIZUHjECGEEDIBZJINQHo39o1kXOVLTjov+sJjX1fGVhFCCCGEEMKwMkIIIWRCkOoGAEDGkEluCSGEEEIIIW5oHCKEEEImgKamFgDA6Ud3T25DCCGEEEII8UDjECGEEDIBiJXOvrYqOcktIYQQQgghxA2NQ4QQQshEUGWGlUH46iWEEEIIIVMLzlAJIYSQiaC60fxppCe3HYQQQgghhHigcYgQQgiZCCxBaowcmNx2EEIIIYQQ4oHGIUIIIWQiqDY1hzCyf3LbQQghhBBCiAcahwghhJCJwNYcGqXnECGEEEIImVrQOEQIIYRMBLbmEMPKCCGEEELIFIPGIUIIIWQiqGszf2p89RJCCCGEkKlFYrIbQAghhFQEC84G1twBrHz9ZLeEEEIIIYQQFzQOEUIIIROBpgGr3z7ZrSCEEEIIIcQHfdsJIYQQQgghhBBCKpi8xiER+YqIbBeRxxxld4jIZhF52Pp3bsi1Z4vIUyLyrIjcXsqGE0IIIYQQQgghhJDxE8dz6GsAzg4o/2el1HLr38+8J0VEB/BZAOcAOBrAFSJy9HgaSwghhBBCCCGEEEJKS17jkFLqXgC7i7j3cQCeVUo9r5QaBfBdAOuKuA8hhBBCCCGEEEIIKRPj0Rx6q4j8xQo7aw043wdgo+N4k1UWiIhcLyLrRWT9jh07xtEsQgghhBBCCCGEEBKXYo1DnwMwF8ByAFsA/NN4G6KU+qJSapVSalVHR8d4b0cIIYQQQgghhBBCYlCUcUgptU0plVFKGQC+BDOEzMtmAAOO436rjBBCCCGEEEIIIYRMEYoyDolIj+PwYgCPBVT7E4D5IjJbRKoAXA7gJ8U8jxBCCCGEEEIIIYSUh0S+CiLyHQCnAWgXkU0APgzgNBFZDkAB2ADgBqtuL4AvK6XOVUqlReStAH4BQAfwFaXU4+X4JQghhBBCCCGEEEJIcYhSarLb4GPVqlVq/fr1k90MQgghhBBCCCGEkBmDiDyolFrlLR9PtjJCCCGEEEIIIYQQMs2hcYgQQgghhBBCCCGkgqFxiBBCCCGEEEIIIaSCmZKaQyKyA8CLk92OcdIOYOdkN4JMadhHSBzYT0gc2E9IPthHSBzYT0g+2EdIHNhPpjaDSqkOb+GUNA7NBERkfZDIEyE27CMkDuwnJA7sJyQf7CMkDuwnJB/sIyQO7CfTE4aVEUIIIYQQQgghhFQwNA4RQgghhBBCCCGEVDA0DpWPL052A8iUh32ExIH9hMSB/YTkg32ExIH9hOSDfYTEgf1kGkLNIUIIIYQQQgghhJAKhp5DhBBCCCGEEEIIIRUMjUMlRkTOFpGnRORZEbl9sttDJg8RGRCR34rIEyLyuIjcYpXfISKbReRh69+5jmvea/Wdp0TkVZPXejJRiMgGEXnU6gvrrbKUiPxKRJ6xfrZa5SIin7b6yF9E5NjJbT2ZCERkoWO8eFhE9onIrRxLiIh8RUS2i8hjjrKCxw8Rudaq/4yIXDsZvwspDyF95BMi8lerH9wjIi1W+ZCIHHaMKZ93XLPSelc9a/UjmYRfh5SJkH5S8DuG66CZS0gf+Z6jf2wQkYetco4l0xSGlZUQEdEBPA3gLACbAPwJwBVKqScmtWFkUhCRHgA9SqmHRKQRwIMALgLwGgAHlFL/6Kl/NIDvADgOQC+AXwNYoJTKTGjDyYQiIhsArFJK7XSU/QOA3Uqpu6zJVatS6j3WxOxmAOcCOB7Ap5RSx09Gu8nkYL1nNsP8+78eHEsqGhE5BcABAN9QSi2xygoaP0QkBWA9gFUAFMx31Uql1J5J+JVIiQnpI2sB/I9SKi0iHwcAq48MAfgvu57nPg8AeBuA+wH8DMCnlVL/PUG/BikzIf3kDhTwjrFOcx00QwnqI57z/wRgWCn1UY4l0xd6DpWW4wA8q5R6Xik1CuC7ANZNcpvIJKGU2qKUesj6vB/AkwD6Ii5ZB+C7SqkRpdQLAJ6F2adI5bEOwNetz1+HaVS0y7+hTO4D0GIZIUnlcCaA55RSL0bU4VhSISil7gWw21Nc6PjxKgC/UkrttgxCvwJwdtkbTyaEoD6ilPqlUiptHd4HoD/qHlY/aVJK3afMXeVvINevyAwgZCwJI+wdw3XQDCaqj1jeP6+BaTQMhWPJ1IfGodLSB2Cj43gToo0BpEKwLOgrYFrJAeCtljv3V2yXf7D/VCoKwC9F5EERud4q61JKbbE+bwXQZX1mHyGXwz354lhCvBQ6frC/VDZvAODctZ8tIn8Wkd+JyMlWWR/MfmHDPlI5FPKO4VhSuZwMYJtS6hlHGceSaQiNQ4SUGRFpAPBDALcqpfYB+ByAuQCWA9gC4J8mr3VkCrBaKXUsgHMA3GS57WaxdlYY/0sgIlUALgTwA6uIYwmJhOMHiUJE3g8gDeBbVtEWALOUUisAvAPAt0WkabLaRyYdvmNIXK6Ae+OKY8k0hcah0rIZwIDjuN8qIxWKiCRhGoa+pZT6EQAopbYppTJKKQPAl5AL92D/qUCUUputn9sB3AOzP2yzw8Wsn9ut6uwjlc05AB5SSm0DOJaQUAodP9hfKhARuQ7A+QCusoyIsMKEdlmfHwTwHEwtmc1wh56xj1QARbxjOJZUICKSAHAJgO/ZZRxLpi80DpWWPwGYLyKzrR3eywH8ZJLbRCYJK/72bgBPKqU+6Sh3asRcDMBW/f8JgMtFpFpEZgOYD+CBiWovmXhEpN4SK4eI1ANYC7M//ASAnTHoWgD/YX3+CYBrxOQEmMJ/W0AqBdfOHMcSEkKh48cvAKwVkVYrbGStVUZmKCJyNoB3A7hQKXXIUd5hid5DRObAHDuet/rJPhE5wZrbXINcvyIzlCLeMVwHVSZrAPxVKZUNF+NYMn1JTHYDZhJW1oe3wpxU6QC+opR6fJKbRSaPkwC8DsCjdmpHAO8DcIWILIfp6r8BwA0AoJR6XES+D+AJmG7eNzG70IynC8A9VhbPBIBvK6V+LiJ/AvB9EXkjgBdhivwBZlaHc2GKPx6Cma2KVACW8fAsWOOFxT9wLKlsROQ7AE4D0C4imwB8GMBdKGD8UErtFpE7YS7sAOCjSqm4wrRkihPSR94LoBrAr6z3z31KqRsBnALgoyIyBsAAcKOjL7wFwNcA1MLUKGJ2oRlESD85rdB3DNdBM5egPqKUuht+LUSAY8m0hansCSGEEEIIIYQQQioYhpURQgghhBBCCCGEVDA0DhFCCCGEEEIIIYRUMDQOEUIIIYQQQgghhFQwNA4RQgghhBBCCCGEVDA0DhFCCCGEEEIIIYRUMDQOEUIIIYQQQgghhFQwNA4RQgghhBBCCCGEVDA0DhFCCCGEEEIIIYRUMP8fsBo22DdhhbYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "nb_plts = len(dfs_test)\n", - "\n", - "test_smse = 0\n", - "test_rmse = 0\n", - "test_lpd = 0\n", - "test_msll = 0\n", - "\n", - "plt.figure(figsize = (20, 20))\n", - "\n", - "for idx, df_iter in enumerate(dfs_gpr_test):\n", - " plt.subplot(nb_plts, 1, idx + 1)\n", - " df_input_iter = df_iter.drop(columns = dict_cols['w'][1] + dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - " \n", - " mean, var = m.predict_f(np_input_iter)\n", - " mean = mean.numpy()\n", - " var = var.numpy()\n", - " \n", - " test_smse += SMSE(np_output_iter, mean)\n", - " test_rmse += RMSE(np_output_iter, mean)\n", - " test_lpd += LPD(np_output_iter, mean, var)\n", - " test_msll += MSLL(np_output_iter, mean, var)\n", - " \n", - " \n", - " mean = scaler_helper.inverse_scale_output(mean).reshape((-1, 1))\n", - " #var = scaler_helper.inverse_scale_output(var).reshape((-1, 1))\n", - " scaled_measures = scaler_helper.inverse_scale_output(np_output_iter[:, :])\n", - "\n", - " plt.plot(df_iter.index, scaled_measures, label = 'Measured data')\n", - " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", - " plt.fill_between(\n", - " df_iter.index, \n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " alpha = 0.2\n", - " )\n", - " plt.title(f\"Model Performance on test data: {test_exps[idx]}\")\n", - " plt.legend()\n", - "plt.savefig(f\"Performance_test_exps.png\")" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--- Lags ---\n", - "w_lags: 1, u_lags: 1, y_lags: 3\n", - "--- Test errors ---\n", - "RMSE: 0.05070630392998371, SMSE: 0.007725763915918466, MSLL: -10.7159901541676, LPD: -9.762631896880064\n" - ] - } - ], - "source": [ - "print(f\"--- Lags ---\")\n", - "print(f\"w_lags: {w_lags}, u_lags: {u_lags}, y_lags: {y_lags}\")\n", - "print(\"--- Test errors ---\")\n", - "print(f\"RMSE: {test_rmse}, SMSE: {test_smse}, MSLL: {test_msll}, LPD: {test_lpd}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generate a table of errors and lengthscales" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "#t_cols = ['time_h', 'time_m']\n", - "t_cols = []\n", - "w_cols = ['SolRad', 'OutsideTemp']\n", - "u_cols = ['SimulatedHeat']\n", - "y_cols = ['SimulatedTemp']" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "# Max lags, used to generate columns index\n", - "t_lags = 0\n", - "w_lags = 5\n", - "u_lags = 5\n", - "y_lags = 5" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "dict_cols = {\n", - " 't': (t_lags, t_cols),\n", - " 'w': (w_lags, w_cols),\n", - " 'u': (u_lags, u_cols),\n", - " 'y': (y_lags, y_cols)\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [], - "source": [ - "lags_cols = ['w_lags', 'u_lags', 'y_lags']\n", - "err_cols = ['rmse', 'smse', 'msll', 'lpd'] + ['variance']\n", - "lscales_cols = data_to_gpr(df_sc, dict_cols).drop(columns = dict_cols['w'][1] + dict_cols['y'][1] + dict_cols['u'][1]).columns.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "df_perf_cols = lags_cols + err_cols + lscales_cols" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "np_perf = np.empty((0, len(df_perf_cols)))" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "w_range = np.arange(1,6)\n", - "u_range = np.arange(1,6)\n", - "y_range = np.arange(1,6)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e35fff50426243a69720a697e1a97aaf", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/125 [00:00 2:\n", - " break\n", - " k0 = gpflow.kernels.SquaredExponential(lengthscales = squared_l, active_dims = squared_dims, variance = variance)\n", - " k = k0\n", - "\n", - " # Model definition and training\n", - " m = gpflow.models.GPR(\n", - " data = data_train, \n", - " kernel = k, \n", - " mean_function = None,\n", - " )\n", - "\n", - " opt = gpflow.optimizers.Scipy()\n", - " opt.minimize(m.training_loss, m.trainable_variables)\n", - " train_success = True\n", - " break\n", - " except:\n", - " nb_tries += 1\n", - " \n", - " if not train_success:\n", - " continue\n", - " \n", - " nb_plts = len(dfs_test)\n", - "\n", - " test_smse = 0\n", - " test_rmse = 0\n", - " test_lpd = 0\n", - " test_msll = 0\n", - "\n", - " for idx, df_iter in enumerate(dfs_gpr_test):\n", - " df_input_iter = df_iter.drop(columns = dict_cols['w'][1] + dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - "\n", - " mean, var = m.predict_f(np_input_iter)\n", - "\n", - " test_smse += SMSE(np_output_iter, mean.numpy())\n", - " test_rmse += RMSE(np_output_iter, mean.numpy())\n", - " test_lpd += LPD(np_output_iter, mean.numpy(), var.numpy())\n", - " test_msll += MSLL(np_output_iter, mean.numpy(), var.numpy())\n", - " \n", - " # Compute the current row in df_perf\n", - " \n", - " iter_lagcols = df_input_train.columns.tolist()\n", - " \n", - " np_perf_iter = np.nan * np.ones((1, len(df_perf_cols)))\n", - " np_perf_iter[0,0] = w_iter\n", - " np_perf_iter[0,1] = u_iter\n", - " np_perf_iter[0,2] = y_iter\n", - " np_perf_iter[0,3] = test_rmse\n", - " np_perf_iter[0,4] = test_smse\n", - " np_perf_iter[0,5] = test_msll\n", - " np_perf_iter[0,6] = test_lpd\n", - " np_perf_iter[0,7] = gpflow.utilities.parameter_dict(m)['.kernel.variance'].numpy()\n", - " \n", - " for iter_lag in iter_lagcols:\n", - " iter_lag_idx = df_input_train.columns.to_list().index(iter_lag)\n", - " perf_lag_idx = df_perf_cols.index(iter_lag)\n", - " np_perf_iter[0,perf_lag_idx] = gpflow.utilities.parameter_dict(m)['.kernel.lengthscales'].numpy()[iter_lag_idx]\n", - " \n", - "\n", - " np_perf = np.vstack([np_perf, np_perf_iter])\n", - " \n", - " # Save the output for this iteration\n", - " df_perf_iter = pd.DataFrame(np_perf, columns = df_perf_cols).to_csv(f\"df_perf_GP_{w_iter}w_{u_iter}u_{y_iter}y.csv\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "np_perf = np.empty((0, len(df_perf_cols)))\n", - "for w_iter, u_iter, y_iter in product(w_range, u_range, y_range):\n", - "\n", - " # Define dict_cols\n", - " dict_cols = {\n", - " 't': (t_lags, t_cols),\n", - " 'w': (w_iter, w_cols),\n", - " 'u': (u_iter, u_cols),\n", - " 'y': (y_iter, y_cols)\n", - " }\n", - "\n", - " # Training data\n", - " dfs_gpr_train = []\n", - " for df_sc in dfs_train_sc:\n", - " dfs_gpr_train.append(data_to_gpr(df_sc, dict_cols))\n", - " df_gpr_train = pd.concat(dfs_gpr_train)\n", - "\n", - " dfs_gpr_test = []\n", - " for df_sc in dfs_test_sc:\n", - " dfs_gpr_test.append(data_to_gpr(df_sc, dict_cols))\n", - "\n", - " df_input_train = df_gpr_train.drop(columns = dict_cols['w'][1] + dict_cols['u'][1] + dict_cols['y'][1])\n", - " df_output_train = df_gpr_train[dict_cols['y'][1]]\n", - "\n", - " np_input_train = df_input_train.to_numpy()\n", - " np_output_train = df_output_train.to_numpy().reshape(-1, 1)\n", - "\n", - " data_train = (np_input_train, np_output_train)\n", - "\n", - "\n", - " # Kernel\n", - " nb_dims = np_input_train.shape[1]\n", - " rational_dims = np.arange(0, (dict_cols['t'][0] + 1) * len(dict_cols['t'][1]), 1)\n", - " nb_rational_dims = len(rational_dims)\n", - " squared_dims = np.arange(nb_rational_dims, nb_dims, 1)\n", - " nb_squared_dims = len(squared_dims)\n", - "\n", - " squared_l = np.linspace(1, 1, nb_squared_dims)\n", - " rational_l = np.linspace(1, 1, nb_rational_dims)\n", - "\n", - " nb_tries = 0\n", - " train_success = False\n", - " while True:\n", - " try:\n", - " if nb_tries > 2:\n", - " break\n", - " k0 = gpflow.kernels.SquaredExponential(lengthscales = squared_l, active_dims = squared_dims, variance = variance)\n", - " k = k0 \n", - "\n", - " N = data_train[0].shape[0]\n", - " M = 150 # Number of inducing locations\n", - " Z = data_train[0][:M, :].copy()\n", - "\n", - " m = gpflow.models.SVGP(k, gpflow.likelihoods.Gaussian(), Z, num_data = N)\n", - "\n", - " elbo = tf.function(m.elbo)\n", - "\n", - " ###\n", - " # Training\n", - " ###\n", - "\n", - " minibatch_size = 100\n", - " train_dataset = tf.data.Dataset.from_tensor_slices(data_train).repeat().shuffle(N)\n", - "\n", - " # Turn off training for inducing point locations\n", - " gpflow.set_trainable(m.inducing_variable, False)\n", - "\n", - " def run_adam(model, iterations):\n", - " \"\"\"\n", - " Utility function running the Adam optimizer\n", - "\n", - " :param model: GPflow model\n", - " :param interations: number of iterations\n", - " \"\"\"\n", - " # Create an Adam Optimizer action\n", - " logf = []\n", - " train_iter = iter(train_dataset.batch(minibatch_size))\n", - " training_loss = model.training_loss_closure(train_iter, compile=True)\n", - " optimizer = tf.optimizers.Adam()\n", - "\n", - " @tf.function\n", - " def optimization_step():\n", - " optimizer.minimize(training_loss, model.trainable_variables)\n", - "\n", - " for step in range(iterations):\n", - " optimization_step()\n", - " if step % 10 == 0:\n", - " elbo = -training_loss().numpy()\n", - " logf.append(elbo)\n", - " return logf\n", - "\n", - "\n", - " maxiter = ci_niter(10000)\n", - " logf = run_adam(m, maxiter)\n", - "\n", - " train_success = True\n", - " break\n", - " except:\n", - " nb_tries += 1\n", - "\n", - " if not train_success:\n", - " continue\n", - "\n", - " nb_plts = len(dfs_test)\n", - "\n", - " test_smse = 0\n", - " test_rmse = 0\n", - " test_lpd = 0\n", - " test_msll = 0\n", - "\n", - " for idx, df_iter in enumerate(dfs_gpr_test):\n", - " df_input_iter = df_iter.drop(columns = dict_cols['w'][1] + dict_cols['y'][1] + dict_cols['u'][1])\n", - " df_output_iter = df_iter[dict_cols['y'][1]]\n", - " np_input_iter = df_input_iter.to_numpy()\n", - " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", - "\n", - " mean, var = m.predict_f(np_input_iter)\n", - "\n", - " test_smse += SMSE(np_output_iter, mean.numpy())\n", - " test_rmse += RMSE(np_output_iter, mean.numpy())\n", - " test_lpd += LPD(np_output_iter, mean.numpy(), var.numpy())\n", - " test_msll += MSLL(np_output_iter, mean.numpy(), var.numpy())\n", - "\n", - " # Compute the current row in df_perf\n", - "\n", - " iter_lagcols = df_input_train.columns.tolist()\n", - "\n", - " np_perf_iter = np.nan * np.ones((1, len(df_perf_cols)))\n", - " np_perf_iter[0,0] = w_iter\n", - " np_perf_iter[0,1] = u_iter\n", - " np_perf_iter[0,2] = y_iter\n", - " np_perf_iter[0,3] = test_rmse\n", - " np_perf_iter[0,4] = test_smse\n", - " np_perf_iter[0,5] = test_msll\n", - " np_perf_iter[0,6] = test_lpd\n", - " np_perf_iter[0,7] = gpflow.utilities.parameter_dict(m)['.kernel.variance'].numpy()\n", - "\n", - " for iter_lag in iter_lagcols:\n", - " iter_lag_idx = df_input_train.columns.to_list().index(iter_lag)\n", - " perf_lag_idx = df_perf_cols.index(iter_lag)\n", - " np_perf_iter[0,perf_lag_idx] = gpflow.utilities.parameter_dict(m)['.kernel.lengthscales'].numpy()[iter_lag_idx]\n", - "\n", - "\n", - " np_perf = np.vstack([np_perf, np_perf_iter])\n", - "\n", - " # Save the output for this iteration\n", - " df_perf_iter = pd.DataFrame(np_perf, columns = df_perf_cols).to_csv(f\"df_perf_SVGP_{w_iter}w_{u_iter}u_{y_iter}y.csv\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "gpflow.utilities.parameter_dict(m)['.kernel.lengthscales'].numpy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Multistep prediction" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [], - "source": [ - "df_input = dfs_gpr_test[1].drop(columns = dict_cols['w'][1] + dict_cols['u'][1] + dict_cols['y'][1])\n", - "df_output = dfs_gpr_test[1][dict_cols['y'][1]]" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": {}, - "outputs": [], - "source": [ - "start_idx = 25\n", - "nb_predictions = 25\n", - "N_pred = 20" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 90, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3IAAAFlCAYAAACum9rrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACS4klEQVR4nO29eZxkVXn//zlV1bX03n1nQFGZQURgopHIiKIIssgWAeMCQpugYobsLl+N5DfGLGaSuMSIxhgHo7g0skY0goAiKKCsigtDBFRmABWYqq5eq6prOb8/bp+p6u7abt2z3nrerxcvuqtrqs7dzjnP9nkY5xwEQRAEQRAEQRCEO8RMD4AgCIIgCIIgCIIIBhlyBEEQBEEQBEEQjkGGHEEQBEEQBEEQhGOQIUcQBEEQBEEQBOEYZMgRBEEQBEEQBEE4BhlyBEEQBEEQBEEQjpEwPYBWbNiwgW/evNn0MAiCIAiCIAiCIIxw33337eWcb2z2N2sNuc2bN+Pee+81PQyCIAiCIAiCIAgjMMZ2t/obpVYSBEEQBEEQBEE4BhlyBEEQBEEQBEEQjkGGHEEQBEEQBEEQhGOQIUcQBEEQBEEQBOEYZMgRBEEQBEEQBEE4BhlyBEEQBEEQBEEQjkGGHEEQBEEQBEEQhGOQIUcQBEEQBEEQBOEYZMgRBEEQBEEQBEE4BhlyBEEQfc709C5s3rwTsdhHsXnzTkxP7zI9JIIgCIIgOpAwPQCCIAjCHNPTu7Bt201YWqoAAHbvnsO2bTcBAKamtpgcGkEQBEEQbaCIHEEQRB+zffvt+4w4wdJSBdu3325oRARBEARBdAMZcgRBEH3Mnj1zgV4nCIIgCMIOyJAjCILoU2o1jpGRZNO/HXjgqObREARBEAQRBDLkCIIg+pBisYLzzvsG5uaWkUiwVX8bHExgx45jDI2MIAiCIIhuIEOOIAiiz8jlCjj55KtxxRU/x0c+chwuvfQ0pFJxAMCmTaPYufNkEjohCIIgCMsh1UqCIIg+4le/yuO00/4Hv/rVLC6//DU455zDAADXXPMwHnooh5/97K2GR0gQBEEQRDdQRI4gCKJPuPfe3+JlL7sMTz21hG9/+437jDgA8Lw0stmiwdHJg/riEQRBEP0AReQIgiD6gG984xc455z/xX77DeL661+Pww/3Vv3d8zLIZgvgnIMx1uJT7If64hEEQRD9AkXkCIIgIs5//df9OOusa3H44R5+8IOpdUYc4EfkyuUaFhbKBkYoD+qLRxAEQfQLZMgRBEFElFqN46KLvoc//dNv47TTDsKtt56DZzxjqOl7PS8DAMhmCzqHKB3qi0cQBEH0C2TIEQRBRJBSqYI3v/k6fOhDd+PCC1+Ea699LYaHm/eMA6JjyLXqf0d98QiCIIioQYYcQRBExJiZKeKUU67GV77yf/iXf3klPv3pk5BItJ/uPS8NAM4LnuzYccy+VgoC6otHEARBRBEy5AiCICLE7t2zeMUrLsMPfvAbTE//Pi666KVdiZds2BCNiNzU1Bacf/7v7Pud+uIRBEEQUYVUKwmCICLCD3/4JH7/9/8HxWIFN930Bhx33HO6/rdRSa0EgEMPnQQAvPKVz8b3vvcmw6MhCIIgCDWQIUcQBOEo09O7sH377dizZw4bN2aQz5fwjGcM4eabz8WWLRsCfdbERDRSK4G6MRoFo5QgCIIgWkGGHEEQhIOs7Zf21FMFMAb89V8fFdiIA4BEIobx8VQkjB9hjEbhWAiCIAiiFVQjRxAE4SDN+qVxDnzkI/f0/Jl+U3D3I3K5nIjIFcE5NzwagiAIglADGXIEQRAOoqJfmuelIxHFEsZopVLD/Pyy4dEQBEEQhBrIkCMIgnCMubnSOol9QZh+aX5ELgqGXP0Ycjn3I4wEQRAE0Qwy5AiCIBzi179ewHHHXYFSqYpkcvUUHrZfWlRSK7PZIiYnhXiL+4YpQRAEQTSDDDmCIAhHePDBLI4+ehoPPzyD669/PT73uVOxadMoGJPTL83z0ti7133DJ5cr4JBDJgBEQ4WTIAiCIJpBqpUEQRAOcPvtj+PMM69FMhnD9773Jrz4xfsDgNRG156Xwfz8MpaXq0gmm6du2k6xWMHSUgXPf/4E7rrrNxSRIwiCICILReQIgiAs5+qrf46TTroK++03iB/84Lx9RpxsPM9PR3S5rkwYbs9//sSq3wmCIAgiapAhRxAEYTEf//h9OPvs/8WRR+6PO+44FwcdNK7suzwvA8Bt40ekUj7veZRaSRAEsZbp6V3YvHknYrGPYvPmnZie3mV6SEQIKLWSIAjCQmo1jve+91Z87GP34Q/+4BBMT5+OTGZA6XdGwZATPeT2338Qo6NJp6OLBEEQMpme3oVt227a14N09+45bNt2EwC5afqEPigiRxAEYRnFYgXnnvsNfOxj9+Ev//L3cNVVZyg34oB6aqXLUSwxds/LRKadAkEQhAy2b799nxEnWFqqYPv22w2NiAgLReQIgiAsYmamiNe+9lp873uP48MfPhbvec9LwBjT8t1RiMiJsXteGpOT0WhwThAEIYM9e+YCvU7YDxlyBEEQlrBnzxxOO+0aPPzwDC677Pdx7rmHa/3+ekTOXeNHROQmJ9OR6YtHEAQRlocfnsHAQAzLy7V1fzvwwFEDIyJkQKmVBEEQFvDjHz+Fo4++DE88sYAbb3yDdiMOAAYHB5BKxZ02frLZAjKZBDKZAXgeReQIguhvOOe45JKf4IgjvoBEIrautczgYAI7dhxjaHREWMiQIwiCMECjctj++/8nXvrSaTAG3Hbbm3D88QcaGRNjzPm6slyuuC9FlCJyBEH0M3v3LuF1r/satm27CUcffQAeeugCfO5zp2C//fw5cv/9B7Fz58kkdOIwlFpJEAShmbXKYU89tQTGgPe97yi88IUbjY7Nj2K5a/xks4V9KaKel8bsbAmVSg2JBPktCYLoH2666VG85S3fRDZbxEc/ehze9a6tiMUYpqa24NBDJ/GSl3wZl1xyCs4442DTQyVCQCsbQRCEZpoph3EO/Nu/3WtoRHVcj8hls6sjcoAvIEMQBNEPFIsVvPOd38Epp1yNiYk07r57Cv/v/70EsVhdNGty0v16aMKHDDmCIAjN2Kwc5npdWWNEjjYrBEH0Ez/96dN4yUu+jIsv/iH+8i9/D/fe+2a86EX7rXtfFBSKCR8y5AiCIDTTSiHMBuUw1+vKcrkiJidXR+RcPh6CIIhO1GocH//4fXjJS76Mp59ewvXXvw6f+MSJLfuPjo4mkUjEaG6MAGTIEQRBaGbHjmMwOLi6RNkW5TDPyyCXK4JzbnoogeGcr4id1GvkAPI6EwQRXX796wWceurVeNe7bsHJJ2/GT35yPk477blt/w1jjPpsRgQSOyEIgtCMUAh761tvQLlcw6ZNo9ix4xgrlMM8L41KpYa5uWWMjaVMDycQc3PLqFRq62rkcjnyOhME4T7T07uwffvt2LNnDgceOIo/+IPn4UtfehBLS2X813+9Gtu2/S4YY50/CO6n0RM+FJEjCKKvaJT937x5J6andxkZx9TUFmzYkMEFF7wQjz66zQojDnC7dkKMuR6Rc/dYCIIgGhFqx7t3z4FzYPfuOXz84z/E8PAAfvjDP8SFF76oayMOcD+NXmDLmm4KMuQIgugbmi2E27bdZGTiX5sGaAsbNrhr/IjIm6iRGx1NIh5nkdisEARhBlsMhWZqx4C/lhx2mBf481xXKAbsWtNNQYYcQRB9Q7OFcGmpgu3bb9c+lqWlMkql6r6okS24LBCyNiJHdSAEQYTBJkOhlarxY4/N9/R5k5Np59PObVrTTUGGHBEKWzxVBNENNsn+16NHdkXkXBYIEcZno3EcBa8zQfQjNuwvbDIUZKsd+zVybhtyNq3pppBiyDHGTmWM/Zwx9ghj7KImf383Y2wXY+wnjLGbGWObZHwvYRabPFUE0QnOOYaHk03/ZkL2v5nRYQNRisj5P0ejDoQg+glb9hc2GQqy1Y49L4NisYKlpbKM4RnB5lY+ughtyDHG4gA+BeA0AFsAnMsYW1u1/yMAWznnvwvgagAfDvu9hHls8lQRRDtqNY4///NvY35+GYnE6mJwU7L/wuiwLSI3Pp4CY25G5ESUc3y80ZBzP32IIPoNW/YXNhkKU1Nb8MlPnrjv902bRrFz58k9C2VFQQzK5lY+upARkTsKwCOc819yzpcBXA7grMY3cM5v4Zwvrfx6J4BnS/hewjA2eaoIohXVag0XXHADPv3pH+Ov//oluPTS0xBbmfnCLoRhEMaFbWIn8XgMExNu1pVlswWMj6eQSNSXNkqtJAi3yOeL2L3bjv2FbYbCSSf5CW2XXHJyaLXjehq9u46uqakt2LnzZAixzgMOGDK2pptChiH3LACPNfz++MprrbgAwDeb/YExto0xdi9j7N6nn35awtAIFVSrNXzwgz9Aq37B/RTSJuymXK5iauo6XHrpA/j7v385/vVfj8XU1BYcfPAEzjnnUKOy//WInF2plYC76YjZbHFdqmoU6kAIoh/gnOOqq36Oww//fMv36N5fCEMhk/GNOc9LGzUU6g7A8OtGFCJyAHDOOYft249eeeWZfWXEAZrFThhjbwawFcBHmv2dc76Tc76Vc75148aNOodGdMmTTy7i1FOvwQc+cAeOPvqAfZOboN9C2oS9lEoVvPGN/4srrvg5PvzhY/F3f/fyfT12bNjc2xqRA/wx7d3r3uKezRbWnc/JSffrQAiiG2wQB+mVxx6bw1lnXYuzz/5fHHDAMP7pn15hTSRsamoLtm59BgDgfe87yqih0KwOuFdcFrZqJJerj9/1Y+kFGYbcEwCe0/D7s1deWwVj7CQA2wGcyTkvSfheQjO33roHRxzxRdx++xO45JKTcccd5+KSS07el8ZkMk2NIBpZWirjrLOuxde+9gg++ckT8N73HrXq7zak22WzBQwNDSCVSnR+s2ZsOD+94Bty6yNy4m8EEVVsEQcJSrVawyc/+UNs2fJ53Hzzbnz0o8fhrrumsH370di582Sk03EA5vcXwlgw7QCsG3LyInKu1xA3XpN+nOdl7CDuAXAIY+wg+AbcmwCc1/gGxtjvAfgMgFM5509J+E5CI9VqDf/yL3fh7/7u+3je88Zx441vwO/+rh8xnZrags985ieIxYBbb32T4ZESBDA/v4wzz/wqvvvdx/Df/30K3va2F657j+el8ZOfmE3fzmaL1gmdCDwvjZ/+1L309lyuiEMPnVz1WqMK53OeQ2nfRDRpJw5iq3P1pz99Gn/8xzfhrrt+g1NO2YxPf/okHHTQ+L6/T01twXXX/RJ33/1bPPLI280NFHVjwbTRI8YhY+0Qn2HaOA1Lo/Hm+rH0QuiIHOe8AuAvANwI4EEAV3LOH2CM/SNj7MyVt30EwDCAqxhj9zPGvh72ewk9iFTKv/3bO/CmNx2Ge+/9w31GnMCGNDVZuJyaQvhF8qeccjVuu+1xTE//flMjDrAj4pTLra/nsoWo1cgB5jdgBKESl8THCoUytm+/DS9+8Zfwi1/k8eUvn45vfvP1q4w4gQ1zNed83xhMj0VmRC6VSmBoaMD4MYWlca3qx3leSk4P5/x6ANevee0DDT+fJON7CL3ceusenHvudcjnS7jkkpNxwQUv3Fdj1IjnZXDXXb8xMEK5iNQU4dUUqSkArPVoEnX27l3CKadcg5/+9GlceeUZeN3rnt/yvRs2ZLC0VEGxWEE6bSa1MZstWByRy2BxsYxSqWJl6mczKpUaZmdL62pHolLQTxDNeOKJebzznbc4Iz52yy17sG3bTXjkkTzOP/938G//9qq2RonnpZHPl1Cp1Fap0epkYaGMcrkGwPw8kssVMTw8gGQyLuXzfEe823Pj6oic28fSC2aeCsJqqtUa/umffoATT7wKo6NJ3HXXFN7+9t9tasQB9Ygcb7WSOIItfWuI4Pz2t4s4/vgrsWtXFtde+9q2Rhxgx+bej8jZasi5l3IjaljWR+TMX2uCkE21WsMnPvFDHH745/GNb/wSb3zj860RB2lGLlfA2952A0444UrUahzf+tYbcemlp3WMLIm/z8yYm4tWi2mYTq1cXwccBlezLxoRc/tznjPSl/O8G65WQhtPPbWIN7/5enzrW7tx3nmH47/+69UYGUm2/Teel8HychWLi2UMD7d/r824lJpC1Hn88XmceOKVePzxeVx33etwwgkHdvw3jYbKs541onqITfEjcvamVgL+GA84YNjwaLpDpNSsjXJGpQ6EIAT33fdbXHjht3DffU/ilFM241OfOgkHHzyO6elduPDCb2FxsYxNm0axY8cxRrJJpqd3Yfv227Fnzxye85wRnHHGwbjqqoeQzRbwvvcdhQ984GgMDg509VmNc9HGjYMqh90SMXds2GA+zbNZ+ngYbEhdDUs2W8TAQAybNo325TxPhhyxj1tv3YPzzrsOMzPtUynX0jjRumzIHXjgaNMmpLalphB1fvWrPE488Srs3VvATTe9Ea94RbsWlnXEPWtKYp9zbnlEzr0olljA125y0ukEBgcTTh0LQTRjbq6Ev/3bO/Af//Ej7LffIC6//DU4++xD963TU1Nb8MMfPonPfOYnePTRbUbGuLZEYc+eeXzqU/fjoINGcdNNf4gXvWi/QJ9nQ42rmDue//wJ3Hvvk+Ccd7U3UjUWmSn5npdu2XzdFUS9uedl8Mtf5k0PRzuUWtmnNIp6bNr0GbzxjV/DiSdehZGRzqmUa3ExDasZO3Ycg2Ry9SNhU2oKsZqHHsrhla+8HPl8CTff3L0RB5g3VObmllGtcovFTtx7ptv1V4qC15noXzjnuOaah3D44Z/HJz/5Q/zJn7wIDz74VpxzzmHr1unJyXp9qwmalSgAQLXKAxtxwGrVWVOI7z7kkIl92UcmxyLTARiFuVH0D52cjI7wXhAoIteHNPOY7dkzj6OPPgA33viGjqmUazG9KZbF1NQWXH/9r3DZZQ8CgNHUFGI9jek6z3jGEBYXl5FKJXDrreesU1LtxIYNZu9Z8b02i50Abj3T7dTcPC/Tl2pmhPs8+ugs/uIvbsZ11/0SRxyxH7761bNw1FHPbPn+RieMibToVqUIjz0239Pn2dAHUtTIPf/5E/vGYir7SLba8eRkGjMzRdRqHLGYmShjWESZguel+3Kep4hcH9LKY/bEE/OBjTjATe99KzZv9tMo3/rWF+DRR7c5bcRFqZXC2ma3v/nNIubny3jve18S2IgDzN+zYrGhiJw8WtXIAdFqkUL0B+VyFR/+8N3YsuXzuPXWx/Bv//Yq3HPPm9sacUBjk2czhk+rUoReSxRscCo1RuQaf9dNrcYxMyM/Ise537rHVUSU0vMyKBYrWFoyFzE1ARlyfYh8j5n5iVYWYoJ2/VjWGj6ilYKrxlwz5wPnwKc+dX9Pn2e6f47tEblMZgCZjFt1ZdlsEYlErKkzKgrpQ0S0aXS8PeMZ/4nnPvcSvO9938Mpp2zGrl1vxbvfvbUr+X3T4j47dhwjVT1zZCSJRCJmOLWygOHhATzjGUP7fjdBPu9HzuSKnbjntFuLUPKM0l40CGTI9SGyPWZi4YhCSFt4MV2e1IDotVJQoShqsn9OPSJnpyEHuGf8iDqJZrW9/Vo7QbjBWsfbk08u4YknFvDudx+Jr371tYHWZtOb2ampLdi58+R9DpVNm0axc+fJPWe3MMZWnl/TrWIyxo0e8b1yxU7cNn78Zu0iIue+UdoLZMj1IbI9ZgMDcYyMJJ2dCBqJSkQuaq0UZDsfAH8BM6VaaXtEDnAvHbFdfyXPy+yrAyEIgS3p560yDq655uHAn2WDyuPU1Ba89rXPw6ZNo1JKFEw3rV4b8TGVttquDrhXXDfkFhfLWF6uUkSO6C+Ex2xoyDfmwnrMAPc2fa0QE4DrE4EKw8cksp0PgNlGqPV6Ljtr5AAXI3KtRQA8L41ajTtdB0LIxab0c5mOt3pqpel+Z/IaV5tuWi0iPqbTVtUYcm5HsRrPSZSyw4JAhlyfMjW1Bccd9xwceeT+kjxmbm36WiEms1yuCM7d9d6rMHxMIpwPmYw854PJ5q7ZbBFjY6mual5M4ZpzJpcrtoxw1j3p7hwPoRab0s9lOt4GBweQSsWN3+syZfJN7y9E77aBgThGR81lH6lIyXc9itV4Tlw/ll6xdxdBKCebbb3xCYrpiVYWuVwBiUQM1SrH7GzJ9HB6ph51HQAAjI+nQhs+ppma2oIjj9wfxx//HInpOuY8qzanVQLuPdOiRq4Zrnudo4Qt6Yw2pZ/L7GFarykzbcjJjMiZPZ5GyX+T0UHxvTIjcmNjKcRizLjh3yuN56Rf53ky5PqYKE20MvBlays4+OBxAO5PBlNTW/DqV28CAFxwwQudNuIEstN18vkiKpWalM8Lgr8xsN+Qy+XcqStrn1rZn55a27ApndGm9POpqS04++xDAQCMhc84sMEJoyIiZyJLplqtrZL8N1mvl80WEIsxjI2lpH1mLMYwMWG2BjEMjfXmptWoTUGGXB8TpdQHGYjxH3LI+KrfXSYq4i2CdulzQRH9c2Zm9BvsooGpzWzYkEGt5kZkemmpjGKx0nI+s6VuqN+xKZ3RtvTzgw4aA2NApfL/QmccmG6MXK3WkM/La1zteWmUSlUUCuv736omny+Bc6yJyJkz5CYm0tIbd7vsiF9bN2haGMcEZMj1KSom2ny+ZCS6IQsxkT3/+aLpp/uTQVTaKQCNMsPy7lnAzHV2IyLnjvHTSTymHpFz/zlwGZvSGaemtuCTnzxx3+/Pec6I0fTzbLYobZM+OWnWsTozU1xl/ITFZER9rcKw6dRKFeuGy474tS0ZTAvjmIAMuT5lrZcpLOJzTEQ3ZCGMnuc/fxJANDZ9UYrILSyUUanUpEXkNmwwt7mXWZ+qCpeMn7pXtvk5HR9PgTFzsuGEj03pjABw0kmb9v18221vMpp+3liHFRbTERbR1kVmxg9gZi6qi2n4YzDZ007mPdKI6fslDNlsASMjSSSTcQD+9XG13q9XyJDrUzptfIIShRqUqEXk/AhWdCJyUblnZUfDVeHSM91JBCAej63Ugbj/HLiMbemMjRs+0/dGO7GeoIjNrCnlZdmiHCZTo5ul7pnKPpJ5jzTiekSu8Zy4fCy9QoZcnyJ7oo2CWpB4+J/7XL9WwfXJYHGxjHLZX2xMNb6Wiezea6ZSB2VHw1XhUmplN0Z+Py7wtmGbmm7j/WD63pCbNp7B8nIVi4tlKZ8XFPlON5OG3GrJf5PZR6rUjl2uK1srgOZydLFXyJDrU6IS3ZCJePg3bhyMhPdeXItnPnMIMzPuqA+2Qt09q/c6r625sBVxflxwAnRj5PfjAm8jU1NbcOKJBwIA/vRPjzCazrjakItORM5030RxXkX6elhMplY2q5FrfF3vWFSlVmawtFRBsahfTCYsa9NNPS8Tif1OEMiQ61PWpguExSXvfStyuQLS6QQGBwci4b0Xi/ihh06iVuPI593exNY363I2OyMjSSQSMe2GioqmrioQ/YVMb3C7oRsj32RtC7EaW2p3V6dWmo7IyWutYlqlVX7GjznjKZcrIhZjGB+vtx8Qr+ukVKpgcbGsxJAT94uLtWVrHSCel4nEficIZMj1KWuVfsLikjBCKxpzraPgvRfjP+SQiVW/u4ps5wNjzEhKSd3Da3dqZSzGnDF+stkChoYGkEolWr4nCs6ZqFCv3TVtPNlhyC0vV7GwIG+TbrrUIZstIJGIYWQkKeXzksk4hocHjEXkGtVETe11VDoAXc6oWhulrDsx3N7vBIEMuT4lmy0gHpfXWFJEN1ycCASNHtEobPrE+KMi3iIWsokJeQvZhg36pYpdicgB7jwH3chyiwbnhHnEdTC92cpmCxgcTGBsLGV0LLLTreupleYicp6XBmPy+p2ZmovWi2mYiXbKdmQ24qohJ4TDGp8bUxFTk5Ah16cI+XNZE209uuHuw9MoCe9y8a9ATGRRMeSy2eIqmWEZmNgcyI6Gq8SVZ7qbtDTPS2NhoYzl5aqmURHN4Jzvm5tMb7ZEfY3p+V52/a/pqITMNFGBOUOusMZQMGP0yE5XbcR0BLdXmvUrdNUoDQMZcn1KlCZaWeRy9VzrKHjvxbWISmplLidfscvEPZvLFVbVXNiMK890Lte5L18/LvA2Mje3vE+63fS1EOug6ft8ba+ysJiueVKzvzDjVForplHPPoqOSJarc+NaRVH/ZzePJQxkyPUpKhpLml4Mw9KYa+15Gee999lsEUNDAzjggGEAbqgPtkOFYpeJzUE2W1xVc2Ez7kTkOt8bURBkigLi/G/cqD+tef1YfAeA6ftcdrQllUpgaGjAqNiJ7NRxU87VtWIa5mqrVdbIuRmRa5Zu6uqxhIEMuT5FRWNJ04thGES6T2PTT8DtTZ+IMI6Oul+/CHQXdQmK52Wwd29Ba+NcVb2AVOCKc6ab+UyIy7g6R0WFeu3uJIrFCpaWzPQ6A4RDM238PpedWik+y5whpyoiZ6ZGbq0wlQkRKFHvqCK1MpMZQCaTcGKub6SZcTs+no5EH+AgkCHXp6iJbrix6WuGSPexoVeMLMQCxJhQH3R7A6vC+bBhQwaVSg3z88tSP7cdYvPoAp6XQaFQQaFgbrPdiVqNd5VhEAXnTBSwqXZ3dWqlebETmWuyqQgW51xZRG5mpohqtSb1c9tRl/xffSwm7pdstrivPZIKXCwnaWbcxmJspQ9w/8zzZMj1KSojcjqjG7KoTwhrDTm3JrZGGg0G08X8MlATkdO/uW8U1bEdF9JU5uZKqNV41zVyrm1WooYtbVGEA0CkVs7OlvbV7ulGxSbdlPNucdEvSZDtKJ6cTINzIJ8vSf3cdrSqXTQjkiV/z9aIK61mGmmVkuyiURoGMuT6kEKhjEKhIr2PledlsLxcxeKivd77VqydEKLgvY9SO4X6pkv+PQvo3Uz6Ka9295ATuBCZ7ra+KArPdBSwpS3K7KzvABAROcCkXL8Kx6qZOV/UYqvI+AF0O92ap7yaqq1W6QB0sTRGtNEaHV3dr9DFYwkDGXJ9iKqiWRc2fa1Ym9oShYjc6nYK5oUFwiCiLlG4ZykiJ5du64sGBweQSsWtPpZ+QFyv5z1vfNXvumns52h6vlcxJ3he2pg4iPh+mZiYi+qtYppH5HTXVqt0ALro7G3VRsvFYwkDGXJ9iKrGki5s+lqxtreX6977Wo1jZma1eIvLqpViQ6IqtVLXuSmXq5ifX6aInES6nc98tbn+WuBtJJstYnw8hf32G9z3u5lxCDn3jPH5XsUmfXLSTy+r1fSWOojruWGD+xG5RmN/9VjSKJWqKBQq2saiOrXSxbmx1XMThVKSIJAh14dQRG49a2vkMpkBpNPuqTgJ6mlD/vFs2KDfgygTdc4HvZ74VhsDW3HhmQ5i5EdB9Md1GgVGxO+mxgHYEZFTIYDkeWnUahxzc/pqygAdc7WJ1Mr1ETndY1HRMqoREcF1aY/Q2pBzOwMpKGTI9SGqZGyjEZFb3Y/ExWMB1jcP9bwMSqWqUanvMKiKyE1M6JUqbowCuIALz3SQHlz95qm1EWG0JJNxDA8PGDWeAKwYlVGMyJl5dqOVWtmqRk6v4V9XAlWbWlmtcszO6jX8w9BKHXVyMo3FxTJKJX0RU5OQIdeHyG4+KjDtYQ1DNlvA2FgKiUT9kXAx1UCwVm3LtMc5LKru2UQihvFxfZt71yJyphsLd0M2WwBjwPh4quN7+03NzEYa+yianGMbM1NMrl2qNummjqlVXVlYxsZSiMeZ9nrmZDK+Tk1Ut+E/P7+6PZIKxDG5ND+2i8gBbh1LGMiQ60NUecwmJtybCATNis2jFZFzu+ZPRJFVLGQ6r/PaWkwXsD2Klc0WMDGRRjzeeTlz2TkTFRqNFrOGnP+94+NpDA0NIJk0I4QjNumqSh10r8fNnKIyMNEPVUSPm4lpAPozOdS2H3DPEd8qIuf6ficoZMj1IdlsAUNDA0ilElI/N5mMY2Qk6eTD40vCr0+fcPFYgGbtFKIRkRPOApnovM6q0ppVYnu9QRDFP5d7XUaF1W1RzDnLcjlfdCWRiK0I4ZhxWKiqKaunVuqPyKkyOPyIut4auXYRH90OQNU1co3fZTuFQhnFYsWK62MaMuT6ELUTrZtRrGapLS4bcmtT+Fz3UOVyRSVeXkCvoqebETm7n4MgIgCel0GlUsP8/LLiURHNKJermJtbbpiXzEbkGu8bUw4LVXOCqY25Spl83deoXQ2W/3fdKflqa+QAd/YI7Yxb144lLGTI9SF+jYLKida9h6fZ4uOiipOgMW0IqE9srrYgUCm9LBQ9dZDLFZFIxDAykuz8Zkuw3TkT5N4wFaUgfGZm1mYKmLu31kZyoxaRq5c66I7IqZur/dRKvRG5Znsl3UI9OlIrXYvIrS0facS1YwkLGXJ9iOrUBxc3Sc1r5NxTcRI0pg0B7m9gczl1TbR1ennFJmdtzYXN2P5MB4kA9FsRvG2s9aJPTqaRzxdRrdYMjGW1wWHqPlfVDigej2F8PGUgIqdOXVG34d+uLYTO+6Wd0SIL3QrOYWn33IjzpNuJYQoy5PoQtakPdnvvm1Gp1DA7W2pSI+euV2ftNR4YiGNsTP+iLgvV6Tq6pIobFftcYcOGDGZmzGy2uyHIxtHlZzoKNGuLwnk9UqeTtSm5plIrVdbNmlBpVZ9aqWdz7quJtj4WvYacGiXQRnzD325hq0baRbIHBweQSpkRLzIBGXJ9CEXkVrM23Ufgcp51axVO944FUB2R07e5V93UVQVis53P2xeZLpermJ9fDiB24u4zHQXWetFNihKsdaqI+VF3Kr1KISfdqYhrayBl43kZFAoVFArq+6EuLJRRLrdWE9WrdqxGCXQtLjni2xlyvniRe3vRXiFDrs+o1ThmZtSmPuTzJVQqdnrvm9FqQnB50xdFFU6VXl7/O9SfmyAKi7Zgs1BO0L58Nh9LP7B2rjV1PeoGx+qIXLlcw8KCeiOhkWy2sCoNXia6nXeq1RX1Ot1E9Lh1RE5XtLNdiqdMXOqz2Skl2SWjNCxkyPUZs7Ml1Gpc+abYRKpMr7RSDXM5Dau5CqebE1u1WkM+r7ZGDtAjBONqRA6wUygnqFBEvVeSe89BFFhvyJm5HvUsjNUROX8sJuT61a3HOjfmqoRbBLqdbv53tjMU9NXI6Vg3dEdww9CpjZbLjuugkCHXZ6hWP3IxitXKq+/isQia1WJ5XsbKzXgn8vkSOFe3OdiwQefmwL0aOZsdGkEjAIlEDKOjbva6jAK5XBEDAzEMDw8AMDfHNrtvzI1FtcqjfkNOzKmy0TkXdTJKPU9f7bDKcphGXDJ+OkUpXS4lCQoZcn1GlFIfZNFqwh4fTzml4iRoljYE6JXZl4kwtF2vkSsUyigUmjcwtRmbHRq93BsupQ9FDZFaLFRbzUXB1qsAmoo8q3TueF4Gs7P6Sh1UKXAKTETkWl0bnbXDKltGNeJS1k6nKOXkZP/M82TI9RmqZWxt3vS1opUhF4/HMDHhzsQmEGlDzSJyc3PLKJerJobVM1GJIget57IFm5/pXu6NfvLU2sbazdfYWArxONO+4WrWYNlcA211qZViDdBV6hCl1MpOaqI6nRA6I3Lz88tYXrZ/j9Cp3lwYpS72AQ4KGXJ9hvqJ1j0xgWy2iHicYXR0fZNml1INBM02Kf7v6VV/d4V61EXNPZtOJzA4mFB+nTt5eG1ldDSJRCJmpUOjl/nMlMw8sd6QY4xpT/8T4wDW1siZTK103/Bp/B51Tjd9a1g3EbnG96mi3h5JT0QOcGOP0Om58bwMKpUa5ueXNY7KDGTI9Rn6Uh/snwgEQtq+WZNml1INBK2usc2RlXao3hz4n62+flBlvyiV1Dfb9t032WwRyWQcQ0MDXf8bF50zUaFZZMHE9WjWl0vI/0dLrl/vxjybLSKVimNwsPvnMQipVAJDQwPa6plHRpJIJuNN/y4MPNVjaSbMowqX9gidopQuBhV6RYohxxg7lTH2c8bYI4yxi5r8/VjG2A8ZYxXG2BtkfCfRG9lsAbEYw/i4mklhZER47915eGxp+imLVumzLhrZgPoaOUDUD6o9L65G5AB70xHbOWFa4aJzJio0U201McfmcsV9wjeCRCKG8fGU1nujVQ9TWdSNDX2plZ6XCfQ8BkVXBLdz6p4eo0d1FlUj4jtsj8h100bL1f1OL4Q25BhjcQCfAnAagC0AzmWMbVnztj0A3gLgsrDfR4Qjmy1gYiKNWEzNROs3YnRro9TekLNzA9uOTqmVrh1PNlsAY1DmfAD0bCZbXRcXsDUdsRfFv8nJtFYBCMKHc970eplYL4TAyFqDQ7dRqV58THdqpfpaLl3XyO/F2s5Q0GMk63QA6ooyhiWfL3Zso+VSdDEsMiJyRwF4hHP+S875MoDLAZzV+AbO+aOc858AoJXTMDoaS7oWxRJe/WbYuoFtR6cG5661IMjlikqdD4CezaRqoSGV2PpM91Jf5GKvyyiwtFRGqVRtmilgoi6t2XOo26jUJeSkL7VSfb8zXdeok1EqhHqiFZFzQ3W8mxIh8XzbHl2UgQxD7lkAHmv4/fGV1wLDGNvGGLuXMXbv008/LWFoxFpUKmQJbN30taLdhO15GSwullEqVTSPqndaibfo7Jcmk6jcs9lsYUVYRU39iEpsjbL3cm/0k6fWJlpFn8xE5JrfN6YicqqcO6OjSS3GhkBlTzyBrmvUySjVJdSjo0Zc4Mrc2E12i6sZSL1gldgJ53wn53wr53zrxo0bTQ8nkuiZaO3c9LWiU2ql/x53jqdV3dDg4ADS6YRTxwK0j5jKwvPSypu76oiGq0JsnmyTcu5lPnPxmY4C7TIFisUKlpbK2sbS6lnUb8ipjbYIY0On2EmUInKd1h2/J2V0UvKHhgaQTMatN366eW6EkFE/zPMyDLknADyn4fdnr7xGWIjK5qMClyJynZo0u+KhaqRd81AXa/503bOcq02362ZjYCuel0apVNW62e4E57wnI9/FZzoK2KSm28p5Zy61Ut0mfXJSz3pcr4FUnz0xM+PXSKmiWq0hn+/seNNRepHN+sI8IyPr2yPJxhWNg27KFBKJGMbGUn0xz8sw5O4BcAhj7CDGWBLAmwB8XcLnEgrQ6TGzzXvfjE6KiC5u+tpFflys+WumdCebetqpunOj4zhUYaMCmKi5Cp5a2T8pNzbRqv2GiQhpK6eK7obI2WwRAwMxDA+rS7fWtTGfnS2hWuVaUitrNY58Xt0x5fMlcN7ZwNbhGG0lzKMKFxzx3bbRcsEolUFoQ45zXgHwFwBuBPAggCs55w8wxv6RMXYmADDGXsIYexzAGwF8hjH2QNjvJYJTKlWwuFjW4jFbXq5icdEe730rOk0ILqZhRU2FU1dETnyXKnQchypsdGj0qvjXTyk3NtGqHkz3vVUolFEsNs/C0N13TTh3VG7S/fQ/PamIQN0ppgoda3K3kVI9ETn15TCNeJ6+VNxe6baNlq39T2UjpUaOc3495/z5nPODOec7Vl77AOf86ys/38M5fzbnfIhz7nHOf0fG9xLBUN0MXGDjpq8VnSZsl45F0C6FT0fja5mobpgr0LE5cDsiZ59Do1cRgNFRv9el7ZuVqNG6Rk5vhLTdOqhfrl/9Jl3XZlaXuqKOa9Rt71I9ETm964YbEbnu2mjpcmKYxiqxE0It+iZa+zZ9rehsyLknYev3v2m+APmNr+2epBsRNWuuR+RE/QhF5OTRa6P4utqcPcfSD2SzRQwP+2IKjehO221XX2PGkNNR6hA9Q07lmtztsUxOZlAoVFAoqMs+0u0A1NVwPQzd9it0wSiVARlyfUSUPGay6LQZzGQGkMkknDgWACvqb+3FW3I5N+oXAX2KXap77C0slFEu15xWrQTseqbDzGcuphi7TmuBEb33Vrs5RbcTUldrlaWlCopFtS109GX8qI/gBqnBany/mrHoTq20U6G4kW4dIFQjR0SO+gKmPpUDcCUi1/mcuCQQ0knNyfPSqFY5ZmdLOofVM6r7LAlEup2qzUEroQdXsPGZ7rVGTvwbm46lH2gVWUgm4xgeHtAekbPBqNQRpdfVGFmXo1jHXBSkRq7x/WrGolft2PPSKJdrWFiwV+Og21Y+npfB7GwJlYq6tkI2QIZcHxFm4xOEeuqD/R7vbLaATCaBTKa1aphL3vtOESwb1QfboSsip1p2WZdBqopkMo6RkaRVz0E3EtSt6JeUG5toF1nQmera7lnUWa/np1ur7y2paz3OZgtgDBgfTyn9nvFxvzZKdY1cLMYwNtb+WFRH5JaWWgvzqMLG7Iu1BInIAW7sRcNAhlwf0as4QFBs9N63opsJwSXvfbc1fzZP0o2E2awHReXmXmdTV1XYlqaSyzWvueoGF+pAokYnESadUTD/O9ePZXBwAKlUXMu9sbhYxvJy8PYZQdG1HmezRUxMpBGPq91WxmIMExNqDf8gYhri/arG0fg9OnDDkOsuSikUil3SOOgFMuT6iGy2gHS6ffRJBjZ671vRTUNhl4QRotYXT6cBpHIzqdMgVYVtUawwQhEuSGxHjfZtUfQ5y3K5YsssDMaYNkGoqNWs6xBuEah2KgUR0/Dfr9oBqDe1ErDXER+kjZbtxyILMuT6CB1pHALbvPet6Oac2LaBbUfnvnhqRT1kk8sVEY8zjI4mlX+Xyns2GhE5u56DMEIRnpdZEQaytw4kSlSrNczMtJ5rdaavdzI4dBmVujbpupSX9e4v1M5FwVP31Kbkm4jI2eroCiKq45rjulfIkOsj9HrM7Nr0taK71Mq0M0qPnSI/olmrC0Y2UBcDUNkwV6Cyx14UInJ+pMKe+yaMmlu/LPC2MDtbAufta3d1KkW2ew71yfXr2aTXUyspItct3WTqAEAqlcDQ0ICG1Ep964au+6VXgkSyXSsl6RUy5PqIKHnMZNFtjZwrSo+5XBGpVByDg83TZ8fGUsoLxWXiL6h6NgcipUqFwd6qh5ZLeF7aqkhuuIhcf6Tc2EIno8Xz0sjni6hW1avLdVK807V26dqk66r70ymTryci192xqBXJEg5AvX3kGr/bNoIZcm45rnuFDLk+IkoeMxlwzrvyvLm06RPXuFUEKxZzqxmy3s2BOtllv0m7u2mVgH1Szt16zZtBETm9dG6LkgHnwMyM+jnWltRKXZt0xvw5X3Wq3N69uvcXaiX/uz0WtbXV+mvkBgbiGB1NWrvfCXJORkbUthWyBTLk+ghKrVzN3NwyqlXeVY0c4Mamrxs1J5dUOMNs1oOi8jrr7gWkApuknGs13rbmqhO6emsRPp3VdPV5zjv1btOVSq+zJYnq9divN9Unk6+yybkQ0+j2uqhcT7PZAoaGBpBKJZR8fits3r8FqTfX5cQwDRlyfYKIPumMbuTz9njvm2FT009ZdHONXeqLp9v5IL5TNq2aIbuETWkq+XwRtRoPJXYCuPFMR4HOIkx6DOv6Otg+Ilep1DA3t6x0LNlsASMjSS3p1qpVWsVzJGqwVaNSkCOoMJXKDBede7ZGbN4jBE1JtvlYZEGGXJ9Qjz7pnWh1pMr0SveGnHuple1QKeohG70ROXXXuVMUwAVsMn7CCkW49ExHge4jcmrvrW6yMHQJJOisWZ+cVF1TpjcFUGUdV2+GgrqInAkHoM1ZO9lsoWX7kGbYfCyyIEOuT9CtmmfTpq8VnXquCVw4FkG3NX8uTGzLy1UsLHTXL0YGwpuswsg15VmViU3GT7fPbitUq80Rq8nliojFGMbGUk3/rrPXWeP3mR5LVGrWdTeuVp0G3/gd3YxlZsbPEFAxFhMOQM/LWJuOGPSc2JwmKgsy5PoE/ROtPZu+VnTrRRwfT4Ex+w05znlXmwNdDW/DEnazHhRVm4NajWtV31SFTQ4NGfNZP6Tc2IKISMdizUWYdK0X3cwpulKIdaZbi425qrq/KO0vgq47npdBrcaRz6vJ5DATkbN3bgx6TlxxXIeBDLk+QXfqg02bvlZ0u/jE4zFMTNg/GSwslFEu17qKMBYKFRQKdjdD1t1DZ2JCTbrO7GxppZ7L9YicPc+0jHujH1JubKGTF31sLIV4XH1blO4icjr7rulLRVxermJxUc2cH6X9RVCjVG1KvplMjslJezUOgp4TEZFzoQ9wr5Ah1yeY85iZ3/S1QoxNbODb4UJ4XqgJdi/eYvcmtu4Z1XPPJhIxjI+npJ+XoMXztjI8PICBgZgV942MZsr9oGZmC5286EJdTn2vs84Gh675MUwfxKCodsJEKSIXvEZOXSaHr8xrpkYOsFPjIGhEbnIyjVKpikJBvsKpLZAh1yeY85jZNxEIcrkixsZSSCQ6PwYuhOe7vcYuGNmA/oic/13yDXbd9amqYIxZ49DI5Qpta666wZZj6Qe68aLruB7dPIs6Uumr1RryeX31T6rbbWSzBQwOJpBO65HJz2QGkMkklNXIpVJxDA52L6YByD+39UwOc4acjfNj8NRKe49FFmTI9QnZbAGMdRd9koELjRiDhOhd2PR1azC4YGQD+mvkAN9olC12EpWIHGCPQyObLWJionXNVTfYciz9QC7XnZqu6jm2myh/PZVe3VhmZorgPBoRLPG5uuc3VfeLEAxjrLu5RZVj1KQD0FaNg17aaNl6LDIhQ65PyOWKGB9PIx7Xc8l9773dG6Ugnh2bi38F3RoMYmLbu3dJ+ZjCoDtdBxBCMHLv2ahE5AB7HBoy6otUqs0Rq+kuIqcjtbLQVRaG6vpJUxkyIv1eNiZEOVTdL71HfGSvG3rvkUZsjWL10kbL1mORCRlyfYLOwmqBLZu+VgTp7eWCMEK3hs+GDYMr77f7eHK5IgYGYhga6i7FRQYq7tm6gU2GnCxkRABUqs0RdUqlChYXyx1rXfWkVnaXzqjacafbSVXvu6YyIheN/UXQYxkbSyEWky/UY8KRKbC1/KKXcgtbj0UmZMj1CVFKfZBFEPlnz8tgcbGMUsneglmxSHfaqKhspioTsenqNsVFBipr5MbHo2DI2RFllxORi37KjQ0Eqd1VL/nf3X0T1YicSrGTfo3IxWJMSSquyZR8VXV/Yalnt5iPmNoEGXJ9QpDokyxs2fS1IliNnP2bvlyuiOHhASST8bbvSybjGBlJWn0sQHd1NbLxvDQWFspYXq5K+8xstojx8e5EdWzHFinnbhrfd0K1AATh021kwfMyKBYrWFpS1xalW4em6ohctwrDskgm4xgeHlB2r+/daybjR0WqaC9zi4q9jgmxL0Fd48CuubEXB0g/zPPu7yyIrjDjMbM3Ilep1DA7WwoUkQPsjmJFreav2zQomai4zjob/6rG89Iol2tYWDDbg1DGfObCMx0Fghhyje9XNZbuDDm1a5eM9hlB8ds7yD+marWGmZkiNmzQO8eJ9iEynUqc857mFlWZHIwhlDJvr9Tbgdg1N/aSbppKJTA0NGDdsciEDLk+wUwOu++lMu29b4bw5AWpkQPs3vQF8STabGQLTBhAYjMiU7nSRDRcFTY8B8vLVSwslMmQc4Rua0RV13GJsXRXI5eRHplvJJstIB5nGB1NKvn8ZvgRLPnnNp8vaVXgFHheBtUqx+xsSdpnLiyUUS7XAu+V1ETkfGVeXQJ1a7HR2dtrSrKNxyITMuT6gOXlKubnl41MtMvLVSwumvXeNyNo/rkLqZXBInJuiLdEJyJHhpwsZKUcufBMR4Fua3dVixJUKjXk86Uua+TUjsVE/a+qhuumRDlUPL+9HouqiJzJTA4b9wi9ttGy8VhkQoZcH2BKNc+GTV8rgnp2bD4WQZBURBX90mRjwgBStTkIUpxtMzYYP7L6C46Pp5WozRGrsSW1cmame+ddNMVB1Kk8+p/v/v6i17lFRcTHtAPQxqydbLbQUxstG49FJmTI9QFR8pjJIug5sflYBEEmfr9fmr0TW6FQRqFQ0W4AUUSuPTY4NGTNZ6rU5ojVZLMFpNMJDA62byOiWl0uyCZd9VhMqTyqSK00t7+QPxeFicgtLVVQLMpTtTahNN6IjWJ1va6lop4yqpAh1weYkrG1WeY+aJPmTGYAmUzCymMBgFqNY2YmWDuFfL6ESqWmeGS9YS6KLNdgF+lc0amRM/9MyxSKiPoCbwPd1merT2fsfpOuI7VS99w2OenXyNVqcmvWo+Qo7r0GS75cv+naalU1lWHo1bi10SiVCRlyfYApGVub+3f0YtzaHJ7P5/0FOkhqJVBPN7KNbutqZCMM9r17l6R8XpB0LhcQEVKTz7TM+SzqC7wNdCtaVFeXUxUF636THtWIXK0mVxwEiFpqZa8ROfmGv/kaubTydiBB6dW49bwMZmbkOzFsgQy5PsDUprjupbLP+Mlmi0gkYoFUw2ze9AUXbzGfItcO3X2WGvHTTuVcZ5NNXVWQSMQwNpYyet/IqpED7HbORIUgzdtVqssFaSasOiJnpv5XTZNnocCpWyZ/fDwFxmQbT/656UVMw//3csZSV+Y1F5GrO+3smR97NW49L4NajSOft3P/FhYy5PoAU6kPOuSke0V4doKohtm86etdvMW+awOYcz4Acq9z0BReFzAtlJPNFpBKxTvWXHVD1GWpbSCIF13lHBskXVtlKr2o/41KqYMJBU4AiMdjKzWuctMZR0aSSCbjgf6d7PXU1J6tERt1AXpNSbbxWGRChlwfkM0WkEzGMTQUfuMThGQyjpGRpJUbpV5C9HZH5Lr3NgP1ic1W5UqTkSyZ19lUrZ9KZEYse0HUScjYOEZdltoGgtS1qLweQSNHqsZiPkNGfkTOlMEh2/Dv1VCQbSTbsG7YlrUTpo2WbcciGzLk+gAxOen2mAH2Gj+9NJuOZkTO1uMxF8lSE5GLRmolYP45CJKq1wnPy2BxsYxSSZ7aHFGHcx5orlWlrAgEjxypitaaz5CJTr8z2WJFuVxvrWJkR3zsisjZsUcIY9yKe9828RZZkCHXB0TJYyaLXjxvQsXJxoLZoIbPhg12G3K5XLEryXIVUESuPaafaZmy3FFf4E0zN7eMSqUWyMGkLrUy2CZddUTOdUVegQkFToFsR3GvxyI7FddkaYHAtvKLMMat7Y7rsJAh1weYnWhtNeSCG7dC9WtuTq7qlwxyuSIY675Ie2hoAMlk3JpJei0mpZc3bMgglyugWg3fmiGbLSIWYxgd1SsEoBLTUXZ/Qy4rImeX1zlqBBUt8rw0ZmaKUp69tQRdB6MWkRNrg2zxsb17o+MoDuP0VpHJYTYiZ5fxE6bcgmrkCOcxG5GzM7VSpNkEwXbxlvHxNOLx7h5pxpjVQg8mm2h7XgacA/l8eINdGKSxmP60ZlV4Xgbz88tYXq4a+X6ZETnbvM5RI2hkQeazt34swdZBVU5IU5v0eDyG8fGU1Hudc45strAvw0M3ttTI+WORt9cx1TKqkWQyjuHhAWuyFcKck/Fxfw22db8TFjLk+oBe6sFkYWNErlAoo1gMrhpmm4eqkV4MU5uFHno5HlnIvM4mnz1ViIXUxAIvNo4ya+QAO5/pKBDUaFF5PXK5YHOKSKXnXHYDbXPp1rLX46WlMkqlqtHUyoWFshSnUrVaQz7f+7oj89zmckVpyrxhmJy0x9kbJt00FmMrCqd2HItsyJCLOGLjY25TnEY+X0KlIj9Vpld6XUht3vT1EsGyOyJnNooMyInSmHz2VGHyOVhYKKNcrkmMyNkbZY8CwUWY1F2PoA4Az0ujWpXfQDuXK2BoaACpVELq53aDbHGQ+vU15yj2xxF+LsrnS+C892ORG5GTp8wbBpucvWEj2bZmh8mADLmIU9/4mI1uzMzY8wD1OiHYvOnrreYvY237gWhF5MiQk0W9zYbciJzsuiHCx5aIXLFYwdJSsCwMVWm35sVB5NaU+Z9r2ukW/pjCGwoZafOILQ5AmzKqwrbRku3EsAky5CKO+YnWvihWryF6G49FEDRtCBD9wOw7lqCS5bKReZ1tWZBlYtKhITsCkMkkkErZK/rjOmLj1K0Ik6o5tpd2JqqEcPw5wdzcpiYiZ9rpJiN7ItyxyEzFNWnsN2JTFCtsGy2bjFLZkCEXccwbcvZFsYIqqQnGx1NgzE5DrteIXDYrvwYkLIuLfs2DSdVKQE6zdJnCHLZg0qEhWwTAF/2J7gJvGl+EKYVEoruthqr1ohfFO3VGpblNul/zJNOQM72/kJk9Ea7np8xUXJMCdY3YNDeGPSc2l5KEhQy5iGOPx8yeB6jXcxKPx1YKZu0xSgGgXK5ibm65pxq5SqWG+fllRSPrjTAywzIYHU0ikYiFvs6lUgWLi+UIR+RMGHLy7w2bvM5RI2iK9NhYCvG4fHW5XgwOdamVZuX6Z2fl1aybN+Rk1jOHj8jJGostIlkq24EEJawDxKZ6P9mQIRdx7JlobTLkeq+zsclDJRD1h1FJFRWGnCkDiDEmRa3LtEGqisHBAWPpiLJr5AA7n+moENRoqT978uvSgGCbdHWplWZr5AB5NeumG1fLToNv/Myg1NsThRuLbGXeMIh2ILIFf3ohrACa52WwuFhGqVSROCo7IEMu4pjuR2Jjn6ZstoBMJoFMJnjRrI3e+16jFDZeG8D8PSu+W54hZ35BlonJdEQVG8cop9yYppcNqYp7qxfnkIreU7Uax8yMuWiLSBuU2bh6ZCSJZDIu5fOCImpcZdT95XJFxGIMY2Opnv69LKNSCNTZkMlh0x4hbJmCjWU+siBDLuLUNz5mFo6REZGmZs9GKUzago3e+14jjGJis0250nREDpCThlG/LtGKyAHmHBrZbAGjo0kMDMjbOMoWgCDq9LL5UjHH9hJtqfeekndvzM6WUKtxCzJkZMrkm5unZTqVstkCJiZ8470XZJ1b01lUjciKMoZFRhst8W+jqFBMhlzEyeWKGBvrvthcNv5Ea1cUK8ziY6P3vtcUPltTK20wgDZsCN+aIaoROcCcQ0OFeIxI5bNN9CcK9OI0U5NaWUA6nQjcYFmdXL85sRMA0hwXNohyyNpfyKjB8j8n3P1ikyFnyx5BRhstm6KLsiFDLuLYIH9uWxQrzOJjY8Fsr5sDoc5o2/HYE5ELuyCbPw5VmHJo5HLy5zPPy1gp+uM6lUoNs7OlnjIFVKRW9l4TLV+uPwo1ZYCfzWHa4JAZkQtzLLJUrU0L1DViSzqiDOPWFqNUBVIMOcbYqYyxnzPGHmGMXdTk7ynG2BUrf7+LMbZZxvcSnbGhaNY+Q673ZtM2FszWDZ9otFPIZgsYHEwgnU4YG4Pw8oaJ0tjkWZWNKYeGioicjYJMUaDe5qWXGjn5Yie9rIPRa6Dtf6/MiJxwCJpC1jXyo8e975VkqVrbJJJli/Ejx5CzwyhVQWhDjjEWB/ApAKcB2ALgXMbYljVvuwDADOf8eQD+HcCHwn4v0R029LGyLbUyjPqRjZNBNltEIhHD6Ggy0L+rLzx2bWBtkF72vAyWl6tYXCz3/Bm5XBEDAzEMDQUX1bEdmc1vg6DCMRXllBuThBFhKhYrWFrq/dlbP5be5nzZTkjThtzoaFJqewfTNXKAPMNfRvaSnEwO+cq8vTI2lloR/DEdkQsfpbTFKFWBjIjcUQAe4Zz/knO+DOByAGetec9ZAL6w8vPVAE5kvbZnJwJhRw67PRE5znkoz5uNk4FYgHp5pOxMFe09YioLGddZPHtRnOpED8K5Ob3piGoicvY901GgV6NFRYS01zlfthPSdNqczPYOInXWhv2FDKeSjLnF89Kho502GXKxmH+/mBYIkeEAGRwcQDqdiOQ8L8OQexaAxxp+f3zltabv4ZxXAMwC8NZ+EGNsG2PsXsbYvU8//bSEoRF2eMzsEROYnS2hWu1dNczGTV+v9R+AveIt5jcH4SOvYVN1bMbEc1Ct1pDPyz+n4vNIuVIuvYr9qIiQ+s6u3iJyMlPps9kCYjGG8XGz9b8yNua9ps7KRoZTqVSqYHGxLMGQk6F2XJSuzBsGG5y9skSCfKM0evO8VWInnPOdnPOtnPOtGzduND0c57HJYxY2TU0WYYU07EytDCfeYlv7ARsEekTdR5hz0+vm0QVMGHL5fAmcy1cztUViO2rYEpHzpct7jcjJNSrDStzLQFZErtfUWdnImItkCWzJcIzakEXViH+/mJ0be9UBWIttZT6ykGHIPQHgOQ2/P3vltabvYYwlAIwByEr4bqIN9njM7IlihQ3R23QsgjCpiBs22JP2KrAjIidnc2D62VOFCYeGKun2epPk6C3wJulVoVH2HDs/v4xKpdZjjZxco9KGOUFW30TT9X4CWWnw/meFjfiEX09tuEcascH4EVHKsG20bCrzkYkMQ+4eAIcwxg5ijCUBvAnA19e85+sAzl/5+Q0AvsNtyLOLOLaoH9U93uY3SmFrFGyMyIWr+TM/STciahhNR+RkbOBsqPVThQmHhqoIQCIRw9hYKpILvEmy2QISiRhGRoKJMMmOgoWJtsi+z20QH5MVYTFd7yeQ0RtP1tzieWksLJSxvFwNMRa7InI2GD+yzomNpSQyCG3IrdS8/QWAGwE8COBKzvkDjLF/ZIydufK2/wbgMcYeAfBuAOtaFBDyMd2zRmCTvHdYL2ImM4BMxq6C2bCplTa1U6h7z01vDsJtJv10LrsWZJmI66MzLVdlM2XbHBpRQKQzBhX7kb1ehJnzVaRW2rAey+q75n+e6YhceOeqrGOREx20ywFog/EjS63Yhno/FUhp1MQ5vx7A9Wte+0DDz0UAb5TxXUT32DPRyu1dEwYZufA2eKgEhUIZhUIlVF88wF88DjhgWObQesIWxa6wUZpCoYJSqWr8OFQxMZHW3oNQVp1EM2x6pqNCr46MVCqBoaEBib3Oeo8cqTAqX/jCDVI+q1c8L4OlpQqKxUqoXp227S9sqZETY3nmM3tbT21zAMq6X8IgK5ItxE4455FSk7ZK7ISQi0oPdhBsqisTY5iYCGPI2eO9D5s+a1O0FLAnHRgQ9YO9XWdbNjmqkNX8NgiqI3I2OJqiRJhaV5lRADmplfKMStNzgoxURMA/loGBGIaHzfbJFGu5DTVyYe+XSqWGfL5kfM/WiA37N3mplRlUKjXMz+ttm6MaMuQijC2qUrbVyI2Pp0IVzdrkvQ9f8xdenVEmtqQDA/457fW89Cq97hK6n4Nstoh4nGFsLCX9s2WIFBCrCZNGKDMFKoxTJZ1OYHBQTiq9LIn7sMjamNvSJzORiGF8PBUytbKIVCqOwcFwRmnYc5vP27Fna8SG9iyy2mjZ5riWBRlyEabXYnPZJJNxjIwkrXh4ZHh27IrIiVTEaKhw2hSRC2Oo2GSQqkL3cxCm8X0nbHqmo0KYzZdMJ0HYdG1ZY7FFHERWqYMNPWoFYa+RiB6HnVvC1uvZ4nxvxPQeQWYbLRU9Km2ADLkI02uxuQps2SjJUESMUkRO9Euz4doA9tTIAeGuc731hz0Lsmx0Pwf+s6vmfHpeBrOzJVQqNSWf32+EFfuRuV7kcuEaLMuKDtqSbi2rb+LevfbUcoW9X2SJ0IQ1emxa/wSmM6pmZuQ5QEwbpaogQy7C2FQ0a4vxI0P9SPThqdXMd9AI3xfPrlQDWUXnMgizOeifiJxe1UpVEYB6+pAdz4HrLC2VUSpVLYnIhXPeybrPbck2kJUql80W9jkCTRP2fpEVXRwcHEA6nej53NoStW3EtPEj0wFiY/soGZAhF2HIkFuPjGJzz0ujVuOYnS1JGlXvhDV8hEKcDdcG8O/ZkZHevecy2bAhg/n55Z56AtnoWZWNbilnlUIRNinrRgEZIkwzM0VUq+EjpGHXQdkROdNzgqyIXJT2FzKPJYzhb0vUthHTxo9Mp2hd6MeO/Y4syJCLMDY0VhbYklopp0bOnvB8NltYKcjvvUjblmsDhGtuLpsw1zmXKyKTSSCTMavophLdPQjVRuTsSjF2nbC1Pp6XAedAPh/eWRbekItWA+3BwQGkUvFQ97qfOmvTXB1uDQujsLp+LL0b/rZEbRsx3TtXpnEbtj+srZAhF2HsmmjNR+TK5Srm5pYl9ooxPxnIaB5qw7UR+LUKdixiYdJObfJWq0L3c6DynMqKUhA+MgRGGj8nDGEdmrJS6W2JtjDG9h1Tr8zPL6NSqRk/FoHn9Z49Ieo5ZTm9JyfDReTicYbRUbMCdWsxuUeQ2XYmbH9YWyFDLqKELTaXjeelkc+bFROQVTRrU0RORgTL8zLWtB+wMyIXfMNj03GoQudzUCxWsLTUe+P7TthWK+o6YTdfMp0EYR2anpeRkkovI3tCFmGMDcCeHrUCMS+INT4ICwtllMs1accSLrWyqEyZNwwm+2zKVvK0KQNJFmTIRZSwxeayEQ9hLxOtLGRNCDYZclFrpyAjwiiLMNfZpuNQhc7nQHXKEaVWykVGaqX/OeHurWq1hnw+XNqcLCPfrgyZsCqPdqUAhpur5UZKw6RW2uR8b0R3PXQjstto2ZSBJAsy5CJKlCZaWciasG1KrZRRB7lhgz0Tm8xahbCEuc65nJ0Lskx0PgeqIwAjI0kkEjFrngPXCTvXykp1zedL4DycUIIsI9+mTfrkZCaU4IMtaaKCcHO17IiPn7bKefBUXJvukUbCRnDDILuNlm61ZR2QIRdRojTRykKWtP3YWAqM2aF8JEu8RZZCXBhqNY6ZGXsiWRSRa49O54zq+cyvGzKXPhQ1crkihocHkEz23rsNkGM8NX5euLFQRE5gi3CLQEZETtZ87XlpVCo1zM0t9zAWe+6RRkxGsWQ7RX0nRrTmeTLkIkqUJlpZyPLqx+MxTEyYT0eUpRwmUyEuDLOzJdRq3Brnw+Cgr9YVtH6Qc25VZFEVOp0zOvoLRjHlxhRhxSPGxlKIxZgU4wkIN+fLSq20KUofJmoERMtRLHuvFFbt2JZz2ohwcvV6v4RBdtsZm0pJZEGGXESxd6I1acjJS6GwYdO3sFBGpVKTqMJp9nhs6bPUSC/XWSi62XQcKtApS60jVdxPH4rWAm+KsJuvWIxJuR4ia0JORC5sdNCeKP3kZBrLy1UsLpZ7+vfimZ+YsON4bKuRCzMWW+6RRjwvg2rVTO9c2efE8zKYnTUrvCcbMuQiin2GnHkxAZlFszZ4deTV/Pn/3rRypY6oS1B6uc62KbqpRJdDQ8c5tcE5ExVkpXzLisiZjg7aFqUPmyGTzRYxPp5CImHHFnJoyE/j7TUKBshNrQSC73UKhTIKhYo190gjJktjZKebis+yoTRGFnY8hYR0bNsU2yAmIIRBZBTN2rDpkxXBsqF+0f9+u5wPQG/X2camrqrQ5dDIZgvKG6zb4JyJCnJSvsOLEsiYU+rRwd7HMjcn+q7ZsR7XN7PRUFcUNa69pVYWMDKSxMBAb/WcaxHnJei5ta0cphFTpTEq2mjZEFSQDRlyESWbDVdsLpswE60s/AnBfK8YWcgyGDZsMF+/CNjnfACEomdvC7JNx6EKXQ4NGeqsnRDHYqIOJGrIiD7JkDzP5YqIxRjGxlJGx2Kbk6quCtrbMe3dW9i3bthCr3ORqohP0LHYdo800qtxGhYVbbRs0GuQDRlyEcU2jxlgPools2jWZF8VgSwPni0Tm40eSc9LB045pYicfGQXvDfD89IolaooFCpKvyfqCPVZWyJyExNpxGLhsjDCjsW2TbqM1Eqb5mmg97lI9l5J1A32nslh13kFzNXRq6iNFk6MKClXkiEXUciQW4/Mc+J5GSwullEqmdv0iRzvyclwx1RPezU7sYnjGR+3ZyETrRlqte6jNDaKtqhCZ42c6g2OLQ4N18nn/ecl7Lwkw1kmy+AIH5Gza5MedjMbpf2F7Gh/PB7D+Hiq59rqsM+NCsJGcHtFhQPEFnE3mZAhF1Gi5DGThcwJ24a6MlkpfPW0V/MROZsK6AF/AanVOPL57q9zvxlyuVwwQ7cXdGwcTW1WoobMTIFisYKlpd6UFf2xyLlvKCK3GhsNucnJ3vpAqjiWXoxK24z9RiYm0mBMv/GjIkpJNXKEM9g40ZqPyMkzbm3w3osibRl1kKavDaCnDioovRjsuVxRavG8zXheGrWaellqPamV5p/pKCBPTTe851zWnBJ2frSt/jeZjGN4eKAnw2d5uYqFhbJ1BkevNa4qnN7h1I7t2rcBIsqo39mr4pzYILwnGzLkIorNETkTYgJLS2UUi/KkfW3Y9MmNMGYsaD9gp/MBCHadbXz2VKGjdYWQblcvdhK9lBsTyG6LElZkRFZq5dJSBcVib6n0tvVdA9CzEqetBofnpVEu17Cw0H0Et1qtIZ+X7yTqLSJXwOBgAul0QupYZGEio0qFcJgNwnuyIUMugqianMLieZlQTUjDIDvdzY7USpk1f+YnNpsa5gp6UfS00SBVhQ7jRzRY11cjF50F3gSy0qHCSuQD8iK5Ye9zW9PGexUH8f+9XXN1L063fL4EzuVHSnttW2PzumEia0eV08AvCYiOw86eWYWQxsxMUcnkFJZ6DYr+B0i2kqANETmZkR9fZt90RM6+hayXiJONBqkqdDwHuiIApiS2o4YsL3rYe6tUqmBxsSzJkAtn5Nta6tBbTZmdqry9ZU+oMhR6Sa20b/1rxPN6q0EMg6o2Wn40OjrzPBlyEcRW+XOTHm/ZhcQ2RORkp1aaSnsVZLMF6wygXmvkbHv2VKHjmda1cRR1Q6YdGq6TzRYQi7HQ6rNhDTmZdWkyInK2RbCimFoJBJuLVAmMeF4G8/PLWF6uBhiLfetfI6YiciruMxs0AWRChlwEsVX9yGQNiuzFJ5MZQCaTMC52IjO10lTaKyDSgUvW3bNjYynE4yywl9fmBVkmOp5pnUIRvW5uiToye7f5n9d7FKzxc8KNJXoqj733XbN1f9FbGnzjv5U3Fv/czMwEMyptO6eNmIhiqTPkKCJHWI69HjNzqUsqJOFNenVE012ZETnAXKqoWPBs66HDGAu0gFWrNSnNkF1hfNzfsKuNyOmryZHRu6zfkbUhTaUSGBrqPUIqMzMliqmVk5PBe2QCNu8vgjuVVIhp+GPpLc3TtnPaSC9RxrCoMm57VTi1FTLkIoi9E605Y0FFuqlJr04+79dByq75M6VcqaJfjCyC1A/OzoriebuePVXEYkx5FEvnfBa1lBsTyEwtDtO/TeYmPYqplb22DslmC0inExgcHFA0st4Qc26w1Ep1YhpBxlKrcetT8mWIDwVF1TnxvDRKpWqoHpU2QYZcBLE19cFkw10V0r4mN31Rq/lT5RmVQZDrbOuzpxLVz4E4pzqk200U9EcNWZL/QLgIqcxNepjoYLlcxfz8snVzW68ZMjYapQCQSMQwNpYKHJGLxRjGxlJSxxJU2G1uroRajVt5XgUmHPEy55JGhNEflbmeDLkIks0WEI/Ln5zCkkzGMTKSNFQjp6JXjLmInOy6oV5k9mWiqlZBBkF67NkqNKQS1c9BLlfE2Jge6XZKrQyPzBrRME4C2VH+Xu9zW+eEXlWk9+4t7FsvbCNoHVcu59+rYes51xLUMWqzI1Og25ATZQoqzolpx7VsyJCLIEL+nDG5k5MMTBk/KgQozEbk5Bo+pmvkbF7IgtyzKmoxbUd9RE6NV7YZnpfuqW6IqCPTaRZmvchmC0il4tJSAHu9z6NW6mBzLZcfUTffKiboubX1HmlEt/EjevypUq0EzLaPkgkZchHE7onWjPGjItda9OExsemTPfGLtDXTEUYb79sghdEuLMiyUe2c0TmfTU5mUKtx5PPR8NTqRmbvNiDceiHbodl7A2070617rXmyNbUSCH6NVM0tQ0N+77NoGXJ60xFVnhOTCuoqIEMugtgsf27KkFOx+PRaLC4D2amViUQM4+PB6gtkInpP2ZYODAQrjNYplW8LOmrkdEbkxHcSwZGdzjg56UdIq9Va4H8re5Peq/CKrZv0XmvWo+QoVjW3MMYCZnLYaew3otv4UXlOTPY0VgEZchHEZvUjk6mV6pSpzPTFYwwYH5dn+JisD8rlilJ6T6lgw4ZBAN1N+iqui+14XgaFQgWFghoFMJ0bx6il3OhGRco3536aVVD8dVB2u5noROREFkaQVETb1RWD7i9yOXVzSxCj0uaMFMHgYLAoY1hUOkB6rQ+1FTLkIoj9qQ96Hx6x+MivkTPnvc/lihgfTyMel/cIe17aWPsBu6PI/ri6OTcqrovtqH4OVDy7rTDZ6zIKyK51DRMF8OcUuRG5KPVdi8dFFkb39/rsrN3qip6XwexsCZVKdxFcVTVy/liC1Vbb7gAMGmUMi8rnRqjQRmWe75/dRh9hd+pDGvl89xOtDOrSvlGKyKlIFTUn3iLbey6TINfZZieKKlQ+B5VKDfl8SWNELlqeWt2oE2HqLRImOyLXS/1kNlvAwEAMQ0N29V0DeklFtNMoFdTr/jofk+x6zvVjCdK2puCEA1DnHkF1JDtMj0rbsPuuIQJTKJRRKFQsnmj9cc3M6POEqJoQTKdWyr7GQRpfy0alZzQsQSJONqcdqUJlRE7ME/pq5KJVO6Eb+f0te5tjOZefAtjrvSHGYauKdJCohK1pooIg10h2PWezsXR7bl1xAOqMyOVyRaVttKLUaoYMuYjhzkSrt6lk43fLwnRqpZp2CqZq5GyOIgeJyNmbIqoKlc+07gjA2FgKsRiLjKdWN/Ijcr1FSBcXy1herkp9Fnsdi82bdL/vWpQicsHm6sZ/I38s6UBqx7ae00b0RuQKmJhQ10bLZAaSbMiQixj2T7T6jR9Vvb3Gx9PGNn1qxFvSmJ9fxvJyVerndoPNEbkghdGuLMgyUWnI6VYBjcUYJiaik3Kjm1yuiHQ6IbV3G9CbsmLjv5c7lij1XQsu1y/+nY0E2V+o7l3qeRmUyzUsLHSndmyrsd9IkChjWFQ/N6aE91RAhlzEoIjcelQpQpnc9KmqkQP0Cz2Uy1XMzy9ba8gNDMQxNtadKIBOYQ5bUOmcqc9n+jaOUVrgdSM7It1rhFRF2lwYo9JWw2dyMqqpleYjckEdgDKFeVQRJMoYFtWRbIrIEdZSjz7ZOSmYEBNQ249E/6ZPleFjSujBBenlbhQ9y+Uq5uaWrd3kqEIogKlNrdR3TnV6naOG7M1XLMZW0v+CGk/y55QoplYGV3n0+32Oj9t5PEGMJx01ct2OxeZ7pJHJyXTXUcawqHaAiB6VQVVobYQMuYihenIKiwkxATGRir45MjHh1VFl+IjP092CwIUm2t1cZyHMYfNxqEKVApiJVK4oqZnpRlW/zl7SGQG5z+LYWArxOAu0dnHOrY7IiX1Ct+JjIuJqY79PABgZSSKRiHXliFFVciHoNlNhedl3zNp6jzSiM6NKR0TO71HpvtOODLmIYXsOu5hodYudjI+nlEj79uItDotqQ073Jtb2exbobnNvIg3QFlQJ5eRyRSQSMYyMJKV/diuilHKjG99okZ8p0KshJ/NZZIwFFgdZWCijXK5Z61gVmTvdHtPevfYapUCwXmfZbBGpVFxaPedaul1PbXe+N6LXkFNfI+d/DxlyhGVkswUMDiaQTidMD6UpuptKAmol4U1471V5EjdsMCO97k5Erv15cSFFVBWqjB8hgqNTut2EcyYqqJhre3ESqJpTeu27Zn+pQ3Rk8ru9RsJQUKeK2F2ap+h558K6ocv40dFGy2T7KNmQIRcx/InW7glBt8db5eJjwnuvri+emRo5E3VQQemmx57qVB2bUeWcURHh6YTnZbC4WEapVNH6va7jpxGqMOR6icgVMTw8gGQyLnkswYxK26MtQQWubE4TFXS7JqtWiqxHO9ufW5cyOXQZPzqeGzLkCGuJ0kQrC5XnxPMyWFqqoFjUt+kTHjzZBkMmM4BMJmGs5s9WrzXgX+e5ufatGVwwSFXheRkltZUm5rMopdzoZH5+GZVKTUkULKj4jKr7JqhRaXvaeBBxEP99LkTkuk+tVOl0SyRiK2rH0XEAimuvWgxKdWsIIFrzPBlyESNKE60sVDZp1jWxNaLSg2eiKXg2W0Q8zjA6qq8OKijdXGcXDFJVeF4a+XwR1Wp36nfdYqKdQz1K4b6nVieqHBmel0GhUEGh0L1Snqp0+uB919yIyHVvyEXHUazjWLrZ69h+jzQStKayV3Q4QMS6EgWFYjLkIkaUJlpZqK2R0x+ez2YLygQgupHZl43YrOusgwpKN9fZBYNUFUIBrFv1u24xkSpuQlk3CqhyMPXiOVflvItaRG50NIl4nHW1mdVRtyQDYTx16nWmx5DLdHQI2X6PNFKPMqqOyKk/J+Pj6Z56VNpIKEOOMTbJGPsWY+zhlf9PtHjfDYyxPGPsG2G+j+iM6nQBGXQ70cpAdW8vUw3OVRk+Zmr+3HA+AO2vswsGqSpUGT9mauTM1Iq6jqrNVy9zrKrMlKDRQdvT5upKnN2lIgL2R448L4Pl5SoWF1tfI8658ho5fyydz20uV0QyGcfQkBr1TNkEVW7tBR33WizGMDERjVYzYSNyFwG4mXN+CICbV35vxkcA/GHI7yI6UKtxzMzYL3YyOZnuONHKQrWSoIk8a5WbW1/UQ79qpa0bHUE3ip4uGKSqUGH8mIoA1OuGKCIXBFUCBb3MsSpTK4OMJZstYnQ0iYEBuaIrMukmagS4EznqxvAXbSFUrzuTk92JZHmeOw5AHUrduu413WU+qghryJ0F4AsrP38BwGubvYlzfjOA+ZDfRXRgdraEWo074TED9PUiAVQ2/TQTkYtaOwX7NwedDRWV18V2VETkTKm5RUnNTCeq5tqg16Pu0FSTWgmg6/RzlfXZsohaRK4bR4xNhoILWVSN6Kij19VGKyo9Q8Macvtzzn+z8vNvAewf5sMYY9sYY/cyxu59+umnQw6t/3DPY6beExLNiJy6iV8oxNVq6tNeBS5E5MT9024D58KmTRX1iKW8RdFUf8HBwQGk0/rVW12nrjRnNrUyn/fnLxWiQ/0uDiLebzPdOt3896qvkZudLaFSaS0C5cI90ogO40dXbbTnpftD7IQx9m3G2M+a/HdW4/u4X/AUavfHOd/JOd/KOd+6cePGMB/Vl7jiMdNZg6L6nJiQ7FfdTqFW45idLSn5/GaYqIMKSjebexcUY1WhIoplsp1DVBZ4nWSzBYyNpZBIyNVQC5rqqrIHVdC1y4Uofbf3ujuGXOfeeLrmlrracXsHoO3ntBEd6Yi6nhsd9X466Bi35Jyf1OpvjLEnGWPP5Jz/hjH2TABPSR0dEYgoTbSy0HFOTKhwqm6nkM0WMDGhfgNdLFawtFRxQrK/0wKWy/VvRG50NIlEIiY5tdLcfGaiDYfrqHJkpNMJDA527yxT3Z6l8Tu6GcvBB49LH4dMut3MuuMo7k5hGFAf7W+8X/bbb6jlWGw/p400RhllO20Eupy7UZnnw16FrwM4f+Xn8wF8LeTnESFwzZDTYfzoSM/SWTCrWgCimxRCmaj0nsumncEuDFLbnz1V1NXvZEbkzNTI+d8ZDU+tTnI5tZkCQdIZATVzflRTK5eWKigWK23ft3dvAcPDA0il1NYthcWuGrn290tdPdPue6QRsVbLbjXTiK66Qc/LYHGxjFKp/b1vO2ENuX8F8GrG2MMATlr5HYyxrYyxz4o3McZuA3AVgBMZY48zxk4J+b1EE1zxmOlUhVPZc02gMyKn+hrrFnoQKScuRLLaKXqaqueyCdnGj8lzGpWUG52ojCwE8Zyr3KQnk3EMDw90NZZKpYZ8vuTMetwpQ8YFoxTwr9HISLKrGjn1Ebn2e53FxTKWl6tOrRs6moLrutdMaByoIJQhxznPcs5P5Jwfwjk/iXOeW3n9Xs752xve90rO+UbOeYZz/mzO+Y1hB06sJ5stgDG/0aHNdDPRykJsLlRK++qMyKlegLqR2ZeJyahLUNoZKq5Ew1UiO01Fl3JZM6KScqMTX+zHvJqu6ih/t447EbGwfU7o1nnniiEHdF6Ts9mClrYQnc6ti+uGauOnVtMXpYyKQrGaBFfCCKKuKRazvx+JLuNHx+KjNyKnduLX3QzZpUiW52VappzqUkGzGdnPgcmNo1Bv9TW8iG6wKSLHGDA2llI4liipPHZXs+5SLVena6Qzdc//vlaGnBtZVI2oNn50ttHqNhptO2TIRQhdkq0y0GX86JC21ynZr3pzMDaWQjzOtEcYXbhv211n1f0KXUC2c8bkfOZ5aVQqNczPLxv5fteoVGqYnS0pdTAFETuZmEgjHlezven2PtclqBGWeqlDlCJynQw5PccyPDyAgYFYS0PBFWO/EdXOXp3nhCJyhHX44Wi7Fw2BLkNOT0QurU2yX3UES4VoRTtcMoDaXWcXPauyEc+0rCiWyf6CUVngdSFqXVVG5GZmiqhWW/fjqo9FrQMgeETO7jmh21Q5tyJynRSG9TiJGGNto8kuiX0JVPcB1rmWUo0cYR1uecx0pVaqX3x0bvp0THLtUghlk8sVkUzGMTQ0oOX7wtCu6bVLoi2q8Lw0SqUqlpbKUj7PZH9B1ZuVqKE6su55GXAO5POdnWWq75tu1y5Xsg3q6WWt5/xqtYZ8PjoZP349p565pZ1jtO7IdOO8AsDIiN9qRlU6Yt0pRBG5biFDLkK40FhZoCMixznXFpED9Gz6crkCMpkEMhl1ho/umr/JSbViNLJot7nPZotIpeIYHLTfIFWFbOPHpGOq23Qzwkd1GmGQdC7V9U+el0E+3zk66Era3ODgAFKpeNvndmamCM7tPxbB5GQa+bzf66wZOqOL7dZTV9JvG/GjjOqydnQKoA0ODiCd7r5Hpa2QIRch3KqRaz/RyqBQqKBUUi/tqzsip0MyWWeNnCuLWL3H3tK6v4njcMEgVYXM58B0f6WopNzoQr0IU/dOApX97MRYOO/cRyubLSKRiGF0VF3rGxmI9L92ERbXUsfF9W92jXRHF9utp9lsASMjSSSTatUzZaPS2au73ELnfkcVZMhFhFKpgsXFskOGXOuJVha2NP2UiY4ohd8vTV9Ezp17tvXm3qXjUIVM42d2toRqVY9yWTPqSn5ue2p1oboeLMgcq9qh2X1NmTvZBp3qol2JLgrENWpmnObzJa3RxU4ROVeM40b8+0VVjZxoo6VGdXYtk5NpUq0k7MBVj5nappJ6zone1Eo9KpwUkVtPu3vWJaEhVch8pk23pZiYoIhcEFSnQ3WbWrm8XMX8/LLy1MpuxuJWqUOnvmvR2V+Yivg0E4FSHT1WhdqInFrV2bXoLCVRBRlyEcEl9T9Aj/Gjy4s4Pu737tMXkVNvmBaLFWmiFe1wySM5NpZauc7NI3IuFayrQKYhZzoCkEjEMD6ecn6B10Uu56cRjoyoSSPsNrVShwpgEJVHV+YEP7UyehG5VvXMje9RP5YMlperWFxcv566VA7TiMp0RN3ZLSrr/XRBhlxEcG+iVR+R0+XVj8UYJib0TAY6Jn6dqaIuReRisdZF3i4ZpKqoC4SEX+B1Fry3Qmdk2nWEg0lVGmHdidJ+TtKheBfFiFynVDlxrEK513baZ0/o3St1ig66sv41IrvVTCO619IozPNkyEUEGzY+QVDdVLLxs/XI2KovmBUCELrEW1S3IFhaKqNYrDhzzwLN0zB0XRfbSSbjGBlJSo7ImTunOvspuo7qDWksxrqqy9GhAti9IedOtKXTxnzv3oLSiKts2htPevdKnaKDrhj7jchuNdOI/oicL/SjwijVBRlyEcG1xpI6+jTpbSypPs96fn4ZlUpNQ0ROT32Q6TqoXmjWY29xsYzl5aozmzZVTE/vwtJSGRdf/ENs3rwT09O7ev4sG+6NKKTc6EJXpkAn8RkdzrvRUb+PVjdpnq6sx5OTaZTLtabpf0Dd4HBBuAVof43018g1Nypd683XSF0MSv4eQXck2/PSqFRqmJtb1vadsiFDLiK4llopmkqqjsgNDQ0glUoo+w6BjoicLmO9XeNrmbh2zwLNr7MNRodppqd3Ydu2m1Ct+l7N3bvnsG3bTT0bc0K5TIiOmKCTJDtRR1e/Thtq5BhjHaO1rmUbdIoyuqbK2+4aZbNFxGIMY2N6VBFbKWi61puvEZWOeN1tZ8S67bJCMRlyESGbLSCdTjjTkLjeVFLdRklnupuOiFzdkxiNGjkXDaBm19lFg1Q227ffjqWlyqrXlpYq2L799p4+L5stYnxcn3JZM6JQO6ELHSli3cyx+lrO9I9cP+CeIQe0vka5nJ8GHIvpiS62Wk9dy6JqpF4PLXePsLxcxcJCWeueQEd2mGrIkIsILuZaqzZ+dC4+OtKwdKWKyhStaIdrmx1A9NhrHpFz7fmTyZ49c4Fe74QNQhGel8bsbAmVSs3oOFxAhxe9G8dfNlvEwEAMQ0NqHZqdjHzX5Po7zfnu7i9a1aXpW3NatTLRUc+pClUaByb2BDrF3VRBhlxEcNNjptqQ07f4eF4GS0sVFIuVzm/uEV0RrIGBOEZH5YhWtMPNiNz61gyutf5QwYEHjjZ9fWAghvvu+23gz7NBPIaagneHSCPU09+yk2qlv0lXXcvVaSyuOamilloJtBYr0q0U2UoEyrV7pBFVUSwTIlc6+wCrggy5iOD3rHFrI6k6tVLn4qMq1aARvSqc60U9ZOOa1xporujpmmKsCnbsOAaDg6trUZPJONLpBI46ahp/9Vc3Y3a21PXn2bBx1BWZdh196YwZFAoVFAqtlfJ0RXI7N9B2y7nTTryCcx7BiJzeY2l2v0TDkJMdkdO/llJEjrAGG1KRgqJa3lt3jRygp8G5jmPSkSqay/l1nZmMG3WdQPNJ38XIomymprZg586TsWnTKBgDNm0axec+dwr27LkQf/ZnR+A//uNHOPzwz+HKK/+vK5lnG6Tbo7DA60CXQ6Ybz7kfbdHj6Gon1++ac6edI9JVVV7PSzc1THM5/U6i5rXV7jkyBclkHMPDAwojcvpTX10WtiJDLiLY4MEOivCYqejfUatxrepHuhqcj4wkMTAQV/YdAh1CD256eddvJnWqo9rM1NQWPProNtRq78Gjj27D1NQWjI2l8MlPnoi77prCM585jHPO+QZOP/0a/OIX+bafZYNjqpMABOGja/PVTdaDLsn/DRsybfto2dAHMQjtNuauRo48L7MuDR4wFZFbb8jlckXE4/rUM2XTTTuQoJgwbhOJGMbGUk477MiQiwCiIbF7E20ay8vVlr1rwjA7W0KtxjXWyOlIrdS3APmiHupr5FyLYrWKyLl2HLp5yUueibvvnsLFF5+AO+74NV7wgkuxY8edKJXW15SWy1XMzS0bn88oItcdusR+usl60BXJ7TSWXK7onHNncjLddGPuauSo2fNbKlWwuFjWErVdPZbmqZUTE+705luLCmevKaeBjvZRKiFDLgLMzS2jWtVntMhC5UZJ94SgI7VSZ0qInoice1HkZj32XDwOE8TjMfzVX70YDz74VpxxxnPx/vffjiOO+CJuvXXPqvfNzNiRqhoFWWod6KyRa/y+tfi1XPpq5NqNxYaIclBa15S5GpFrlj1hxiht1bbGtXPaiIryi1yuaKSNlo72USohQy4CuDvRqm0qCejbDOqKyOk8HtXS6y5GspoJYOhK54oKz3rWCK688kxcd93rUCpVcfzxV+L886/H008vAbCnvujrX38EAPDe934Xmzfv7Lm5edTRJaPeaY5dWiqjVKpqqiFuv3bZUOMZFD9Vrrk4iP93t+a45tkT5iI++fzq9dTF0oJGfI0D+RE5E3sCHZoAKiFDLgK4a8ipq0HRfU4ymQFkMgml9TR6++Kpl1530SMpWjOsVa10zSC1gdNPfy5+9rO34P/7/16Kr3zl/3DooZ/D299+A44//goAwDve8R1jxtP09C5s23bTvt93757Dtm03kTHXBF01ot2kMza+T+1YuonIuTW3tZPrB+rZCK7Q7BqZchKJ7xPZBmJcrt0jjaiIYpkybnVkIKmEDLkIECWPmSxMnBPV4XmdkZ9mMvsyEXWdLhpAa6+z6wuySQYHB7Bjxytx//1/hP32y+C///tnePJJPzL31FNLxoyn7dtvx9LS6vq9paUKtm+/XftYbEdXGqGfcpVoYzzpNOQ69V1zb25rVSck1gDddWVhaWb4m2oL0ay9g+uZHJ6XxsxMEdWqvKwdU2tpq2i0K5AhFwHcjchFp0bO/y51BbPVag0zM3pTKwF19UELC2WUyzUnF7LGNAyhjuraps02tmzZgEJhvfCJKeNpz565QK/3MzrTCNs5y3Ru0jv1GHS1Rm5mpohabbWKdDZbwNhYComEW9vFZiqnuoR5uhmLqTRCWXheBpwD+Xz3/UE7Yeq5mZxUX0qiEreeTKIpumoUZKOy4W4uVwRjwPi4PmlflRG5fL4EzvUZps1EPWQiUjZd8/ICQtHTv2fn5oQ6qnvHYRuPPTbf9HUTxtOBB442fX1iIq2kXYrL6G7z0jm1Uv06KFKsm82Pwunm2pwwOZlGrcYxO7t6Y+5qLVcqlcDQ0EDTiJyJGjn/+/2x+G0RKs7dI42ocMSbqi2tl/m4WSdHhlwEEA+SaGzoCslkHCMjzRfDsGSzBYyPpxGP67vFVUbk9Iu3qFXsczUdGFhtsFMzcHm0Mp5ava6SHTuOweDg6pqvWIwhlyvivPOuw/z8svYx2YrOyEI7UQITSsXN5kfdTjdZtNqYu5w6vvZ+yWaLSKXiyGT0toVYe25dzaJqRLbGgck2Wq4rFJMhFwF8o8W91AdAnfFjS9NPWejfpKhV4XTZAGrcwEVhQbaFZsbT4GACO3Yco30sU1NbsHPnydi0aRSMAZs2jeILXzgN//zPr8SVV/4cRx75Jfz4x09pH5eN6Jxr20XkdGemtDIqTaXvhUWct7UbcxfTRAWt6pl1925bb8i5eY80IjsiNze3jErFTLmF6z1D3elWSbTExWbgAlXGjwkvoiiYrdU4YjG5C4VORTbAF6FIpeKRMUxlIlozlMvVSCzItjA1tQWALzSyZ88cDjxwFDt2HLPvdRPjafbdr3jFAXjTm76Bl73sMnziEyfg7W9/obNNfcNSq3GtaYTtInK5nB71zPpYmq9drs5trSNyRRx66KSJIYVmrYiFKYGR0dEkEonYvvXCVBsEmcgujTF5TlRrAqiGDLkI4GoOO6DOkMvlithvv0Hpn9sOz6vXGMhOc9WttsUYg+dllKlWuh6RA/xjcPk4bKSV8WQTxx77HNx//x/hzW++Htu23YRbb30Mn/nMqzE8nDQ9NO3k80WtNaJCkKNara1Lm9e9DnpeBo88kl/3uruGXLuInFvHIvC8NHbvrtfYmqrBYoytau/gqq5BI7KjWCbPST0a7WZEzr1cPGIdrk+0alIrzUTkxHfLxkw7BXU1f6ZkoGXQeJ1d3bQR4dhvvyHccMMb8MEPvgKXX/5/2Lr1y/jpT582PSzt6E4jbKeUp3vObxUddDVK3yzCUi5XMTe37NyxCJqlVppacxrvlyisG2NjKcRiTNoeweQ5oRo5wjhuG3KqUitN1MipVOEsrKhwRqMvXi5X1JoGJZO6omc9Iuea0BARnliM4f3vPxo33/xGzM6WcNRR0/jv//5pX6la6m6w3K52V3cbEM/LIJ9fL1nuqpNKzGHN5fpd3V+s7nVmcq+0urbaTWO/kVhsdZQxLCbPyciISH2liBxhCLdTK9NNF8MwLC9XMT+/bKzppyrDdGIiLb32rh2+zL66GjnXNjqCxs2kqz2WCHm86lUH4v77/wiveMUBePvbb8Qf/dE3sbDQH6qWuo2Wdp5z3WlzYh6YmVmbilhELMa0Ot1kEI/HMD6eWpVa6XrkqDGCW1dFNBWRq6+n2WwBmUwCmcyAkbHIQqaz1+S95peSqMtAUg3tPhzHlNEiC/HQrl0MwyA+K1qplWZSRVW2U3B5cwAAe/cWqBk4AQDYf/8h3HjjG/AP//ByTE/vwkte8mX87GfRT7U0IfkPNK9l0a2u2E6uX7fTTRbrUxHdjhw1XqOFhTLK5ZrBiFy6ISLnbhZVI56XltZ+wHQbLZUZSKohQ85x3E99UNFU0o6mnzIxYTCISVpFqlg2664BtDYi5+omh5BLPB7DBz7wcnz722djZqaIo46axrZtN2Lz5p2IxT6KzZt3Ynp6l+lhSkX3Rr/VHFur8ZU5UmdErnl00OU5Ye3GXKylIp3cNRrvF9Mpr40KmiYjgzKR6ezNZotG22iRIUcYw/3UB/nGjykv4vh4eqX4Nyo1fxlUKjXMzclPE3N5Iau3ZigaU0Ej7OWEEw7E/fefj82bR3HJJT/F7t1z4BzYvXsO27bdFCljLpstaE0jbOX4m5srrahn6hWDajYWl7MN1tY86a6BlI1NwlSTk2kUixUsLZWddmQ20q4dSFBMRyknJ+VFF3VDhlyXTE/vstKzWp+c3JwUVEbkdE+UsRjDxIS8ia2RXM5EaqV//lS0IMjlClq95zJhjO2rH6TUSqIZz3jGEBYXy+teX1qqYPv22w2MSA25nN7a3VZKeSYMjnZ911xejxvP7d69Syuvu3k8dSXOgvFG7WuNSleN40Zkip2Ydu5SjVzEmZ7ehW3bbrLSs+p+amVrFbJeMXlO1LVTMJFaqabmz3TRuQzEhicqCzIhn8cem2/6+p49c01fdxHdokWtlPJMOO/ap1a6OSesbaCdzRaRSsUxOOimKEfjNTIdXVyb5unqPdKI52WwtFRBsVgJ/VmmBdBEaqWLqsNkyHXB9u23Y2lp9Y1qi2c1OsXIMlMrzfYjkW34CEGbqIi3zM0to1rlTkeyPC+Np55aQj5fcvo4CHUceOBo09fHxlJObhaaYSrlu1k6o/ibLoaHBzAwsF6y3OUaucnJNGZn6yrSwuBgzD3hFqAxglswYuw3slYky9V7pJFHHskDAAYHPx46U810mYLnpVEqVbG0tD6TwnbIkOuCVh5UGzyrpvO+w6Kif0c2W8TAQAzDw/q9iCoicnUVTr0Tf2O/NJm4fs8C/tgfeWRm388EsZYdO47B4ODqPonxOEM+X8K5534Di4vutygwEVnwI3Lro2CA3jnSlyxfnYro10BVnE0bF+dPqIK6nCYK1CO4uVy956fJhuAA8KtfzaJa5c6vG9PTuzA9/SAASMlUMx2ldLkpOBlyXdDKszo8PIBazaxnNZstIJmMY2jIzdQHFf07RIjehBdRRUSu7kk0pcIp93hML6gy8LwMnn7azca/hB6mprZg586TsWnTKBgDNm0axRe+cBr+9V9fiSuv/Dle8Yqv4NFHZ00PMxQmok/NBBZMpc2tHYvrNetijRFztOnNtQzEmpzNFjA6msTAQNzYOADg4Yd9B6Dr68b27bdjebm66rVeM9XK5Srm5pYN18ipax+lGjLkuqCZZzWRYJifL+OCC26Q2sw6KMJj5mrqAyDf+DGpGiZTxUkQNRXOaETk0k1/JohGpqa24NFHt6FWew8efXQbpqa24H3veymuv/71ePTROWzd+mV85zt7TA+zZ0zMtc0kz3O5AhgDxsdTBsYSJZXH1SrSLqeJCoSj2Hzqnv/dDz0UjUwOmZlqNmg9CMPaReVKMuS6oJln9dJLT8Pf//3LcemlD+Dcc7+xzjOhC9MFojKQbciZ9CLKLP4VmJrkhAqnbNXKKETkGvsqub4gE/o59dSDcM89b8Z++2Vw8slX4eKL73Oubm55uYqFhbLxKBggelClEY/r3dKsNSpdd1LVG64LQ87dVgqCxoicyTUnmYxjeHgADz2UWxmXu+sf0DpTrZeegzY8N6oykHRAhlyXNPOs/t3fvRwf+9ircPXVD+Gss75qpEgyChNts5qHMJjM649SOwVATc2f6+lHwOoFx2WDlDDHIYdM4K673ozXvOZgvPOdt+Ctb71BqgNINabmJc/LoFCooFCor7emIkdrjUrTEvdhaZTrr6sLu72/EGuYDcfieRn84hez+352mWaZaowBTz9dwJ/+6bcC1QDbINpHNXJ9zLvetRWf/ewpuPHGR3Hqqddgdrak9fujkcMuNx3RpOdNTYPzaKlwis3OxISbmx1gbWql288fYY6RkST+53/Owt///cvxhS88gGOPvRyPP968bYFtmHLINNtwmWqwLCJyIppqQ2QhDI2OyLm5ZVQqNWeNUkFjRM70sXheZl/2lumxhKVZptrnP38q3vOerfjMZ36MF7/4S7j33t929Vk2PDdUI9fnXHDBC/GVr7wGP/jBr3HiiVfua6KpAxsmp7CsXQzDYNqLqGIyyOWKSCTMqHD6ja9lR+SKRovOZSCucyzGMDamty6HiBaxGMPf/d3Lce21r8WDD2axdeuXcMcdT5geVkdMCoz4398YCTPj0PS8NJaXq/uav9sQWQjD6GgS8ThDLle0YnMtAxHB/fWvF4xnTzR+//i4m/dII2sz1c4//wX4yEdehW9/+2wsLVVw9NGXYceOO1GttteRsCGSLVJfKSLXx5xzzmG49tqz8MADWRx33BX49a8XlH+naaNFFmsXwzAsLZVRKlUjllppTtBGhXhLLmfGey4TcZ0nJnxBGIIIy1lnPQ933TWFkZEkjj/+CnzmMz82PaS2mNrot4rImcpY8L+/sO//6XQCmYy7KtKi1CEqhpxYa5aWKsaPRexLxsdTSCSiu/0+4YQD8ZOfnI/Xv/4QvP/9t+O4467Ar36Vb/l+U8rca/G8zL7WGy4R3TvJAL//+wfjhhtejz175nDMMV/BL3+ZV/p9CwtllMvRSH0A5Bg/plXD6jUG8rw6przNgLp2CqYX1LDccouvNJjNFkI3QiUIwZYtG3DPPW/GiSceiD/5k2/hwgtvMiak1QlTXvRm64WpdPq1RmV0MmQK+46pF/EKm7ApDV58v+lx6GBiIo2vfOU1+PKXT8dPf/o0XvSiL+KLX3ygaeaVyd6/jcjWa9BFKEOOMTbJGPsWY+zhlf9PNHnPEYyxHzDGHmCM/YQxdk6Y77Sd4457Dm6++WzMzpbwyldejl279ir7rqh4zGQWmZoUBgHUKB+Zqv8A6iqcjcICYXE9Ijc9vQvvetct+34P2wiVIBoZH0/jG994HS666Cjs3PkTnHDClfjP//wRNm/eiVjso9Y4DsyJnayeY032oFo7lqiIj+VyxX1qxVEwTOs/m66RS1sxDl0wxjA1tQU/+cn5OOKI/XD++d/EOef877qol3Dumm6jpcJxrYOwEbmLANzMOT8EwM0rv69lCcAfcc5/B8CpAD7OGBsP+b1Wc9RRz8R3v3sOajWOY4+9Avfd113BZ1CiY8jJ699huh9JJjOATCYRoXYKasRbXL5nt2+/HUtLq9UFe22EShDNiMdj+Jd/ORZXXPEa3H33r/EXf3Ezdu+eA+f2OA6y2SJSqTgGB/V60dc6/mZmzM350Y7IRWV/YY/CcD9F5BrZtGkMt9xyNv7lX16Jr371EbzwhV/At7+9e9/fTSqNN6JCpVsHYQ25swB8YeXnLwB47do3cM4f4pw/vPLzrwE8BWBjyO+1nhe8YCNuu+1NGB4ewAknXInbbntc+neIG8705BQWuamV5r2IzRrWhsGvg4xOzZ/rETmZjVAJoh1nn30YNmwYxNpsJBscB6a86Ol0AoODiVVRMMCUIRe9iJznpfeJnZhosi4bG1MrXV7/eiUej+Gii16Ku+6awuhoEq9+9VV497tvwaWX/gzXX/9LPPBA1ni2Qb9G5PbnnP9m5effAti/3ZsZY0cBSAL4RYu/b2OM3csYu/fpp58OOTTzPO95E7j99nNxwAHDOOWUq3HDDb+S+vk2GC0yiFKNnP/dstspmEytlBuRq1ZrmJmxw/vWK60aobZ6nSDC8NvfLjZ93bTjwHS/TjHHiiwME3OkEGeoj8XtbANA1An5NXITE/qbrMtmdWql2Wvzk588BQCYnn7QuNFiihe/eH/cd98f4s///Aj8+7/fh7e97QaUSn4dsMlsg+npXZie3oVcrohNmz7j1LXp+IQyxr7NGPtZk//Oanwf9ysYW+rHM8aeCeBLAN7KOW+qRco538k538o537pxYzSCds9+9gi+97034bDDJnHmmV/FO97xHWm1DlFJfZApEGK6Rg6QG5FbWiqjWDSntiUK3WUZprOzJXBuXp0qDM0aoQ4OJrBjxzGGRkREmVYOgmc9a0TzSFZjus1LYzqj/5r+OT+RiGFsLLWvfY7J7AlZiLroJ55YcH5vAdQjuIBZp/f09C588pM/2ve7LSnSJhgcHMB//MdJ2LgxY0W2wfT0LmzbdhNmZ/0m5nv2zDt1bToacpzzkzjnL2jy39cAPLlioAlD7almn8EYGwVwHYDtnPM7ZR6AC2zcOIjvfOdsbN48ik984ofSah2iklp51VU/B2PABz5wR2jjNpcrYmhoAKlUovObFSEzImfS2wzIT610vc8S0LwR6s6dJ2NqaovpoRERpJnjAPBFPh58MGtgRD6mlCKB1XOsaYemGMvsbAnVKnfe+BHjf/jhGafnacH09K59EZ8XvegLxjbn27ffjmJxtQKtDSnSJhGCOmvRnW3get172Jj51wGcv/Lz+QC+tvYNjLEkgK8C+CLn/OqQ3+cs4+PpdQ8xEO5myeXcb6wsPCHCKxPeuDVfbC4zImd+kyJPURQwb5jKYm0jVDLiCFU0cxz87d++DJwDL3vZNK67rmmlgnLMijDV51jTc8pauX7X5zYx/l/8Iu+8USr2F9Wqv8EwGWmh2ur12FKm4Pq1CWvI/SuAVzPGHgZw0srvYIxtZYx9duU9ZwM4FsBbGGP3r/x3RMjvdZLHH59v+nqvN4vr6n+AfE+IDcXmnpfBzEwRtVrLTOOuMdWrSZBMxjE8PNDScxYUWxp/EoRLrHUc/OM/HoN77nkzDj54HGec8VV86EN3Ne3PpArOueEaucaIXBGJRAwjI0mDY4lOA20x/lKpatwpGhabIi22GC02YUuZguvXJpQhxznPcs5P5JwfspKCmVt5/V7O+dtXfv4y53yAc35Ew3/3Sxi7c7SudRju6fNsiD6FRbYnxAZFRM9Lo1bjmJ0thf4sGwwfmUpOpg1TgogKBx44ittvPxdnn30oLrroNkxNXYelJXn9HtsxP7+MSqVmNCInnGViHTTVg2q9XL/bc1vj+um6UWpTpMUWo8UmbClTcP3auC1H5Bitax1qeOihXODPsyH6FJZWxi3nwAc/+AOUSpWmf2+FDVFKNSqcpsVbZEfk3N7sEIQNDA4O4CtfeQ3++Z9ficsv/z8ce+zlLTM/ZGLaaPE8XyQhny8an/NFmqcNiskysEmuPyw2RVpsMVpsw4YyBdevDRlyGml2s3zgA0ejVuN46UuncfPNuzt/SAMmi81l0cy4zWQSeOlLn4EPfOAO/N7vfTFQDz4bGkvKlOw3Xf8B+MqVsmvkJibcvm8JwhYYY/ibv3kpvva1P8BDD81g69Yv4fvff0Lpd9Yj6+YERgB/jjWdheF5aczOlvDUU0urxuYqq+X63T4W2yItNhgtRHNcvjZkyGlm7c3yD//wCtx995vxrGcN49RTr8HOnT/u+rOiEJFrZtxecsnJuPPON+O6616HpaUKjj32cvzxH9+ImZn2xkStxld6lEUpIldAJpNAJjMQ+rN6RaYKZzZbwPh4yvneRARhG2eccTDuvPM8jIwk8apXXYHPfe6nyr7LtLBH4xxreh0U3/3IIzNgzH0nVSaTQCrlC6iJ9jOu4nqkhSC6gXZTFrB58xi+//3z8OpXb8KFF34L7373LahWm7ba20elUsPsbMl5jxnQ2hNy+unPxQMPvAXvec9WfP7zP8Nhh30OX/nKgy2L+mdnS6jVuPEopWxDzgbDVGZEzvTxEERU2bJlA+66awqvetVzcMEFN+Id7/gOKpX2a0kvmBb2WG3Ima0VF2N56KEZjI+730CbMbbvmKIwV7scaSGIbnB7xokQo6MpfP3rf4B3vOPF+Pd/vw9nnXUt5ueXW74/l4uGQlYnhoaS+MhHXoV77/1DbNo0ivPOuw6nnXYNfvnL/Lr3mt5cCG65ZQ8A4I/+6JtS+uKZNtY9L418vihlQ5jNmhejIYgoMzmZwfXXvx7veteR+MQnfohTT71aWkRdYLpGTswhtqRWAr4hF5W5TRyH6bWUIIjOkCFnEYlEDB//+An49KdPwg03/AqveMVl2L17tul7o1JY3S1HHLEffvCD8/CJT5yAO+54Ai94waX40IfuQrlc781ngzDI9PQuvOtdt+z7XUbTd9ObAyEs0Cm1tRtyOfeVVgnCdhKJGD72seNx6aWn4rbbnsBRR30ZH/rQXdi8eSdisY+GdjDVUyvN1sg9/vg8CoWKFamVjz02H4m5bXp6Fx5+eAYAcPrp1xhroE0QRHeQIWchf/InR+CGG96APXvmcdRR07jzzl+ve08/yrjH4zH85V++GA8++DaceupBuOii23DkkV/CnXf+GtPTu3DGGf8DAHj72280tvjI7lvjGz7mUysBeSqc1EOOIPRw/vkvwHe/ew727i3gootuw+7dc+A8vIMplytibCyFRMLMFmJ8PI1YjO0zOMwactFReRQNtEsl30H6xBMLxhpoEwTRHWTIWcpJJ21aVbh+2WUPrvq7LWmEJnj2s0fwP/9zFq699rXI5Yo4+ujL8Ja3fBNPP+2fk9/+dsnY4iO7b40dETm5Kpz95HwgCNO87GUHNG2WHcbBZFoxORZjmJhI46GHfEPObGplpunPLmJTA22CILqDDDmLOewwD3fdNYWXvvSZmJq6Dh/4wO2o1XyhD9M1CjZw1lnPw4MPvg0jIwOoVFYLoJhafNr1p/n0p+/vKGLTCOfcCnGQe+75LQDgla/8SqiULCHQY9owJYh+49e/Xmj6eu8OJvMp0p6XbojImRvL0NAAksm48XHIwKYG2gRBdAcZcpbjeRl861tvxNve9gJ88IN34txzv4HPf/6nePe7bwUAHHfcFX2d9jAyksTCQrnp30wsPs361qTTcRx++CT+7M++jZe//DL86EdPdvVZ8/PLqFRqxmv+/vmf7wKA0ClZosbOtGFKEP1GKwfTfvsN9vR5piX/AX8eEVkYJsfiqzxGQxzEpgbaBEF0BxlyDpBMxvHZz56CD3/4WFx55c/x9rffiHy+BMAvsO73HHabFp9mfWs++9lT8LOfvRVf/vLpePTROWzd+mW86123tFUlBepRV5MRrO3bb0ehICfVxobjIYh+pJmDiTHgySeX8E//9IN9mR7dYkdbFHtq0+py/W7PbbY10CYIojNkyDkCYwzvfe9R2Lgxg9qa7Lx+z2G3bfFp1reGMYapqS34v/97Gy688Hdx8cX34bDDPoerr/55y754NiiTtku1CdqOoC7Q47bXmiBco5mD6ZJLTsF55x2Ov/3bO3Daadfg6aeXuv48G2pdG+cR086hqETkqIE2QbgHGXKOsXdvc+XAfs5hd2nxmZhI4z//89W4884p7L//IN74xv/F6ac374tng+HTKqrJOfC8530WF198X8fIoqAuWe6215ogXGStg+mCC16IL3/5dHzmM6/Gd7/7GI444ou47bbHO35OpVJDPl8ybrQI42lwMIF0OtHh3eqYnt6Fu+/264j/6q++43x2DDXQJgi3IEPOMWxKI7QJ1xafo456Ju6++834+MePxx13/Bq/8zuXYseOO1Eq1dMYbUhFbBXtfPe7j8SBB47ine+8BQce+Bn8zd98r6WggqBfmtgThCswxrBt24tw551TGBxM4Pjjr8C//utdbVMtRa2raYdMPZ3R3Hwi5PpF+vlTT5lTTCYIoj8hQ84xbEsjJHonkYjhHe84Eg8++FacccZz8f73344XveiLuOWWPZie3oU///ObAQAnn3yVsY1Bq2jnv/3b8fje996EO++cwqtfvQkf/vA92Lx5J9761m/igQf2Nv0sisgRhJ0cccR+uO++P8TrX/98/M3f3IYzzvifln0jbWl9I77fdA0xyfUTBGESMuQcw6U0QqI7nvWsEVx55Zn45jdfj3K5ihNOuBLnn//NfZ7vxx8325S1XbTzpS99Jq688kw89NAFuPDCF+HKK3+OF7zgUpx++jX4znf2rKr/y+WKiMUYxsZSJg6DIIg2jI6mcPnlr8GnPnUivv3tPTjiiC/i+99/Yt376rW7piNy5uvSSK6fIAjTkCHnIK6lERLdceqpB+FnP3sLxsaSqFbt6IvXLQcfPI5PfvJE7NlzIT74wVfgvvuexIknXokjj/wSLrvsQXzxiz/DxRffh1qN47nPvYRSjwjCQhhj+LM/+z18//vnIpmM4bjjrsBHP3rPKoeMLRG5H/3oKQDAd76zJ1R/yzBQqQNBEKYhQ44gLCKTGcDcXHPxEBe8vJ6XwfvffzR2796GSy45GYVCBVNT1+Etb7lhX7+/ML3oCIJQz5FHPgP33feHOPPMg/He934XZ5117b4a17oIk9n+lh/72L37fjc1p1CpA0EQpiFDjiAsIwpe3nQ6gbe//XfxwANvxcaNGaztsGB7hJEg+p3x8TSuvvpMXHzxCbjhhl/hxS/+Ev7hH76Pd73rFgDAccddYcwZs3377SgWq6teMzGnUKkDQRCmYa16WJlm69at/N577+38RoKIGEIJrbGIfnAw4ewGIRb76DpDDvAbEtdq79E/IIIgAnH33b/B6adfs68+TmBqXqI5hSCIfoIxdh/nfGuzv1FEjiAsI2pe3ihEGAminznqqGcikxlY97qpyDrNKQRBED5kyBGEhURJ0IbqSAjCfZ54Yr7p6yZqd2lOIQiC8CFDjiAIpUQtwkgQ/YhNUTCaUwiCIHyoRo4gCIIgiLZErXaXIAjCFahGjiAIgiCInqEoGEEQhH1QRI4gCIIgCIIgCMJCKCJHEARBEARBEAQRIciQIwiCIAiCIAiCcAwy5AiCIAiCIAiCIByDDDmCIAiCIAiCIAjHIEOOIAiCIAiCIAjCMciQIwiCIAiCIAiCcAwy5AiCIAiCIAiCIByDDDmCIAiCIAiCIAjHIEOOIAiCIAiCIAjCMciQIwiCIAiCIAiCcAzGOTc9hqYwxp4GsNv0OCxnA4C9pgdBEAGge5ZwDbpnCdege5ZwDbpn27OJc76x2R+sNeSIzjDG7uWcbzU9DoLoFrpnCdege5ZwDbpnCdege7Z3KLWSIAiCIAiCIAjCMciQIwiCIAiCIAiCcAwy5Nxmp+kBEERA6J4lXIPuWcI16J4lXIPu2R6hGjmCIAiCIAiCIAjHoIgcQRAEQRAEQRCEY5Ah5wiMsTRj7G7G2I8ZYw8wxv5h5fWDGGN3McYeYYxdwRhLmh4rQQgYY3HG2I8YY99Y+Z3uV8JaGGOPMsZ+yhi7nzF278prk4yxbzHGHl75/4TpcRKEgDE2zhi7mjH2f4yxBxljR9M9S9gKY+zQlflV/DfHGHsn3bO9Q4acO5QAnMA5fxGAIwCcyhh7GYAPAfh3zvnzAMwAuMDcEAliHe8A8GDD73S/ErZzPOf8iAYp7IsA3Mw5PwTAzSu/E4QtXAzgBs75YQBeBH++pXuWsBLO+c9X5tcjABwJYAnAV0H3bM+QIecI3Gdh5deBlf84gBMAXL3y+hcAvFb/6AhiPYyxZwP4fQCfXfmdge5Xwj3Ogn+vAnTPEhbBGBsDcCyA/wYAzvky5zwPumcJNzgRwC8457tB92zPkCHnECtpavcDeArAtwD8AkCec15ZecvjAJ5laHgEsZaPA/hrALWV3z3Q/UrYDQdwE2PsPsbYtpXX9uec/2bl598C2N/M0AhiHQcBeBrA51dS2D/LGBsC3bOEG7wJwFdWfqZ7tkfIkHMIznl1JRz9bABHATjM7IgIojmMsdcAeIpzfp/psRBEAI7hnL8YwGkA/pwxdmzjH7kv80xSz4QtJAC8GMCnOee/B2ARa1LS6J4lbGSlPv5MAFet/Rvds8EgQ85BVlInbgFwNIBxxlhi5U/PBvCEqXERRAOvAHAmY+xRAJfDT6m8GHS/EhbDOX9i5f9Pwa/bOArAk4yxZwLAyv+fMjdCgljF4wAe55zftfL71fANO7pnCds5DcAPOedPrvxO92yPkCHnCIyxjYyx8ZWfMwBeDb+o+RYAb1h52/kAvmZkgATRAOf8bzjnz+acb4afPvEdzvkU6H4lLIUxNsQYGxE/AzgZwM8AfB3+vQrQPUtYBOf8twAeY4wduvLSiQB2ge5Zwn7ORT2tEqB7tmeoIbgjMMZ+F34BaBy+AX4l5/wfGWPPhR/xmATwIwBv5pyXzI2UIFbDGHsVgPdwzl9D9ythKyv35ldXfk0AuIxzvoMx5gG4EsCBAHYDOJtznjM0TIJYBWPsCPiCUkkAvwTwVqzsEUD3LGEhK46yPQCeyzmfXXmN5tkeIUOOIAiCIAiCIAjCMSi1kiAIgiAIgiAIwjHIkCMIgiAIgiAIgnAMMuQIgiAIgiAIgiAcgww5giAIgiAIgiAIxyBDjiAIgiAIgiAIwjHIkCMIgiAIgiAIgnAMMuQIgiAIgiAIgiAcgww5giAIgiAIgiAIx/j/AZg3YRPdU1hsAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "plt.plot(df_output.iloc[start_idx:start_idx + nb_predictions + N_pred], 'o-', label = 'measured', color = 'darkblue')" - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SolRadSolRad_1OutsideTempOutsideTemp_1SimulatedHeatSimulatedHeat_1SimulatedTempSimulatedTemp_1SimulatedTemp_2SimulatedTemp_3
3-0.828499-0.6867530.2941180.294118-1.0-1.0-0.255370-0.240796-0.227086-0.020567
4-0.858285-0.8284990.2941180.294118-1.0-1.0-0.270921-0.255370-0.240796-0.227086
5-0.866567-0.8582850.2941180.294118-1.0-1.0-0.287999-0.270921-0.255370-0.240796
6-0.864584-0.8665670.2941180.2941181.0-1.0-0.305151-0.287999-0.270921-0.255370
7-0.811292-0.8645840.2941180.294118-1.01.00.111516-0.305151-0.287999-0.270921
.................................
1842-0.993804-0.9940130.0588240.058824-1.01.00.174022-0.2380890.173677-0.236739
1843-0.993823-0.9938040.0588240.0588241.0-1.0-0.2368730.174022-0.2380890.173677
1844-0.993842-0.9938230.0588240.0588241.01.00.175584-0.2368730.174022-0.238089
1845-0.993652-0.9938420.0588240.058824-1.01.00.1977910.175584-0.2368730.174022
1846-0.993576-0.9936520.0588240.0588241.0-1.0-0.2129260.1977910.175584-0.236873
\n", - "

1844 rows × 10 columns

\n", - "
" - ], - "text/plain": [ - " SolRad SolRad_1 OutsideTemp OutsideTemp_1 SimulatedHeat \\\n", - "3 -0.828499 -0.686753 0.294118 0.294118 -1.0 \n", - "4 -0.858285 -0.828499 0.294118 0.294118 -1.0 \n", - "5 -0.866567 -0.858285 0.294118 0.294118 -1.0 \n", - "6 -0.864584 -0.866567 0.294118 0.294118 1.0 \n", - "7 -0.811292 -0.864584 0.294118 0.294118 -1.0 \n", - "... ... ... ... ... ... \n", - "1842 -0.993804 -0.994013 0.058824 0.058824 -1.0 \n", - "1843 -0.993823 -0.993804 0.058824 0.058824 1.0 \n", - "1844 -0.993842 -0.993823 0.058824 0.058824 1.0 \n", - "1845 -0.993652 -0.993842 0.058824 0.058824 -1.0 \n", - "1846 -0.993576 -0.993652 0.058824 0.058824 1.0 \n", - "\n", - " SimulatedHeat_1 SimulatedTemp SimulatedTemp_1 SimulatedTemp_2 \\\n", - "3 -1.0 -0.255370 -0.240796 -0.227086 \n", - "4 -1.0 -0.270921 -0.255370 -0.240796 \n", - "5 -1.0 -0.287999 -0.270921 -0.255370 \n", - "6 -1.0 -0.305151 -0.287999 -0.270921 \n", - "7 1.0 0.111516 -0.305151 -0.287999 \n", - "... ... ... ... ... \n", - "1842 1.0 0.174022 -0.238089 0.173677 \n", - "1843 -1.0 -0.236873 0.174022 -0.238089 \n", - "1844 1.0 0.175584 -0.236873 0.174022 \n", - "1845 1.0 0.197791 0.175584 -0.236873 \n", - "1846 -1.0 -0.212926 0.197791 0.175584 \n", - "\n", - " SimulatedTemp_3 \n", - "3 -0.020567 \n", - "4 -0.227086 \n", - "5 -0.240796 \n", - "6 -0.255370 \n", - "7 -0.270921 \n", - "... ... \n", - "1842 -0.236739 \n", - "1843 0.173677 \n", - "1844 -0.238089 \n", - "1845 0.174022 \n", - "1846 -0.236873 \n", - "\n", - "[1844 rows x 10 columns]" - ] - }, - "execution_count": 91, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_iter" - ] - }, - { - "cell_type": "code", - "execution_count": 92, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3IAAAF1CAYAAACtTdhwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5gsR3X3/62Z2d2JG6Z6b47KWQiUQERhQCByxtc/jDEW2GDjCLwIA+ZFJtqG18bgiw0mXAyyEDkJUEACCSQU0VW6Od/drtnZnZ4c6vdHVffM5gnVYXbr8zz32Ts9PdVnZnq669Q553sI5xwajUaj0Wg0Go1Go+kfQn4boNFoNBqNRqPRaDSaztCOnEaj0Wg0Go1Go9H0GdqR02g0Go1Go9FoNJo+QztyGo1Go9FoNBqNRtNnaEdOo9FoNBqNRqPRaPoM7chpNBqNRqPRaDQaTZ+hHTmNRqPRuAIh5L8JIR+W/38GIeSxLsf5HCHk79Vap9FoNBpNf6MdOY1Go1nFEEIOEEKKhBCLEHJSOl9J1cfhnN/OOT+zDXveRAi5Y85r38Y5/7+qbfILQsgQIeS/CCEHCSE5Qsj9hJAXztnnuYSQRwkhBULILYSQrV0c54OEkK+qs1yj0Wg0QUI7chqNRqN5Cec8CeDJAC4G8L65OxBCIp5btQIggrn32giAwwCeBWAE4vO+nhCyTb7GAHAjgL8HkAZwD4BveGWzRqPRaPoD7chpNBqNBgDAOT8K4EcAzgMAQggnhLydEPIEgCfkthfLCFKWEPIrQsgF9usJIRcRQu6VUaZvAIi2PPdsQsiRlsebCSE3EkImCSGMEPJvhJCzAXwOwFNlhDAr93VSNOXjPyGE7CGEZAgh3yWEbGh5jhNC3kYIeULa+BlCCFno/crI2KcIIcfkv08RQobkc48QQl7csm9E2vpk+fhy+f6zhJAHCCHPbtn3VkLIdYSQXwIoADhlzuec55x/kHN+gHPe4Jx/H8B+AE+Ru7wSwMOc8//lnJcAfBDAhYSQsxZ5H+8mhByVn/tjMpp3FYD3Anid/CwfkPuOyGjgcfmaDxNCwvK5NxFCfim/i2kZEXxuy3HeRAjZJ4+znxCyYyF7NBqNRuMN2pHTaDQaDQDhXAF4EYD7Wja/HMBlAM4hhFwE4AsA3gqAAvgPAN+VDtEggG8D+ApEFOl/AbxqkeOEAXwfwEEA2wBsBPB1zvkjAN4G4E7OeZJzPrrAa68E8BEArwWwXo7x9Tm7vRjAJQAukPu9YJG3fC2AywE8CcCFAC5FMxr5PwDe0LLvCwCYnPN7CSEbAfwAwIfle/1bAN8khIy37P//AbgGQErauCiEkLUAzgDwsNx0LoAH7Oc553kAe+X2ua89E8A7AFzCOU9JOw9wzn8M4B8BfEN+lhfKl/w3gBqA0wBcBOD5AN7SMuRl8lgGgA8AuJEQkiaEJAD8PwAvlMd5GoD7l3pfGo1Go3EX7chpNBqN5tsy+nUHgNsgHACbj3DOM5zzIoRj8h+c819zzuuc8y8BKEM4Q5cDGADwKc55lXN+A4C7FznepQA2APg7GZ0qcc7vWGTfuewA8AXO+b2c8zKA/wMRwdvWss9HOedZzvkhALdAOGqLjfUhzvkE53wSwD9AOGAA8DUALyWExOXj34dw7gDgDwD8kHP+QxlR+ylE+uOLWsb+b875w5zzGue8utibIYQMANgF4Euc80fl5iSA6Tm7TkM4hXOpAxiCcLQHZJRv7yLHWitt/Ev5uU8A+BcAr2/ZbQLN7/AbAB4DcLV8rgHgPEJIjHN+nHP+MDQajUbjG9qR02g0Gs3LOeejnPOtnPM/k06bzeGW/28F8DcynTArnb/NEE7ZBgBHOee8Zf/FIlGbARzknNe6sHVD67iccwsAg4jq2Zxo+X8BwjFadiz5/w1y3D0AHgHwEunMvRTCuQPE5/CaOZ/D0yEihDatn9uCyNq5rwCoQETVbCwAw3N2HwaQmzuGtPMvIdIvJwghX29NNZ3DVghn+3iL3f8BYE3LPgt9hxtkVPB1EBHT44SQHyyW6qnRaDQab9COnEaj0WiWonVSfxjAddLps//FOef/A+A4gI1z6tG2LDLmYQBbFhFQ4Qtsa+UYhEMCAJApfxTA0eXeyHJjQdh7rOWxnV75MgC7pdMECPu/MudzSHDOP9ru+5Cf038BWAvgVXOidg9DpHra+yYAnIpm6uUsOOdf45w/Xb4XDuBji9hwGCKCarTYPcw5b03ZXOg7PCaP8xPO+fMgHNZHAXx+qfeo0Wg0GnfRjpxGo9Fo2uXzAN5GCLmMCBKEkKsJISkAd0LUXv0FIWSAEPJKiBTKhfgNhOP3UTlGlBByhXzuJIBNsuZuIf4HwB8RQp4khUn+EcCvOecHung//wPgfYSQcSKUIt8PoFWu/+sQNWR/imY0DnKflxBCXkAICUv7n00I2dTBsT8L4GwIxdDinOe+BZHC+CpCSFTa9WBL6qUDIeRMQsiV8rMoAShCpEAC4rPcJiN/4JwfB3ATgH8ihAwTQkKEkFMJIc9qGXINmt/ha6SNPySErCWEvEw6lWWIqGEDGo1Go/EN7chpNBqNpi045/cA+BMA/wZgCsAeAG+Sz1Ug1BbfBCADkYZ34yLj1AG8BEJw4xCAI3J/ALgZIvJ0ghBiLvDan0HI8n8Twhk8FbNrvDrhwxC1bQ8CeAjAvXKbfazjEA7q09Ai/885PwwRpXsvgEmISNffoc17KhE94d4KUbt3QqpKWrYKpKzXexWA6yA+58uWeI9DAD4KwIRIKV0DUTcICMEZAGCEkHvl/98IYBDAbjn2DZidEvprAKfL8a4D8GrOOZPv7a8honMZiNYJf9rO+9VoNBqNO5DZqfAajUaj0WhWI4SQNwF4i0zT1Gg0Gk3A0RE5jUaj0Wg0Go1Go+kztCOn0Wg0Go1Go9FoNH2GTq3UaDQajUaj0Wg0mj5DSUSOEHIVIeQxQsgeQsh7Fnj+bYSQhwgh9xNC7iCEnKPiuBqNRqPRaDQajUazGuk5IkcICQN4HMDzIJTH7gbwBs757pZ9hjnnM/L/LwXwZ5zzq3o6sEaj0Wg0Go1Go9GsUhZqxtoplwLYwznfBwCEkK9DNk+1d7CdOEkCyzd8hWEYfNu2bQrM02g0Go1Go9FoNJr+47e//a3JOR9f6DkVjtxGiB46Nkcget7MghDydogeNIMArlxoIELINQCuAYAtW7bgnnvuUWCeRqPRaDQajUaj0fQfhJCDiz3nmWol5/wznPNTAbwbwPsW2Wcn5/xizvnF4+MLOp4ajUaj0Wg0Go1Gs+pR4cgdBbC55fEmuW0xvg7g5QqOq9FoNBqNRqPRaDSrEhWO3N0ATieEbCeEDAJ4PYDvtu5ACDm95eHVAJ5QcFyNRqPRaDQajUajWZX0XCPHOa8RQt4B4CcAwgC+wDl/mBDyIQD3cM6/C+AdhJDfA1AFMAXgD3s9rkaj0Wg0Go1Go9GsVlSInYBz/kMAP5yz7f0t/3+niuNoNBqNRqPRaDQajcZDsRONRqPRaDQajUaj0ahBO3IajUaj0Wg0Go1G02doR06j0Wg0Go1Go9Fo+gztyGk0Go1Go9FoNBpNn6EdOY1Go9FoNBqNRqPpM7Qjp9FoNBpg8k7g4Y+IvxqNRqPRaAKPduQ0Go1mlbPrc9/BtnO+j9B5EWw75/vY9bnv+G2SRqPRaDSaZdCOnEaj0axidu3ajWve+TAOmmPgIDhojuGav3wEu3bt9ts0jUaj0Wg0S6AdOY1Go1mtNKq49q//F4XK4KzNhXIE1157h09GaTQajUajaQftyGk0Gs1qpJwBbtyAQxPxBZ8+dGjGY4M0Go1Go9F0gnbkNBqNZrUx9RBw4zpUCxnEhyoL7rJly7DHRmk0Go3GE57YCdz8AvFX09dE/DZAo9FoNB5y4HrgV6/DdCGKV3/6TciXhzAQrqNaDzu7xOMRXHfd0300UgGTdwITtwJrng2MP9VvazQajSYYPPqvwL1/If5/4ibx9/Rr/LNH0xM6IqfRaDSrhfveDfzqdTg4OYqnffDtuPWRU/HFa76JL37pJRiKVAFwbN06jJ07n48dO87x29rumbwT+OkzgQeuBX7+bN1SQaPRaADg8LeA+/5q9ra9/+WPLRol6IicRqPRrHQadeCWq4CTP8PdezfhJf/0ZpSrYfzkgz/Fle8TTs63Pv1R7D66Frv3/y1AiM8G98jj/wagJv7fqAD7v6yjchqNZvVSPA78agdw8pb5z4Wi3tujUYZ25DQajWYlU7WA758LFA/hW3efhx3//gasG8nhlp0NnP3anzm7Gak8mBUHcgeA4e3+2auAXT+I4NrPvxeHzFFsMbK47s8r2HGp31ZpNBqNx/AG8OingAf+j1jUWojRPs6+0OjUSo1Go1mx5A4A31wDXjiEf/7hM/GqT/9/uGDzcdz1sytx9ms/NmtXmiqAWXHwJ77sj62K2LVrN675p7Nm98X7x7Tui6fRaFYX2d8B3z8buO9vZjtxa58PwM66CAHb3+iHdRpFaEdOo9FoViLHfgp87xTUqmW8/b9fgb/Z9RK86pKHcMs9H8KaC543b3cjlUe9Ecb07q/4YKw6rr32DhQqA7O2FcoDui+eRqNZHdRLwD1/DvzwAiD3eHN7fDNw1b3Ac38CbHmd2Lbu+TrtvM/RjpxGo9GsNHZ/DLj1+cgVB/HSf3oTPvuzp+FdL74V37jzy4iNji34EposAACYmfPSUuUs1v9O98XTaPqQyTuBhz+iBYva5fhPgW9vlnXCXG4MAef/A/Cyg0D6IrFp7bPFX171wUiNSnSNnEaj0awUOAd++Xrg0PU4wkZw9SffjIePrMV/vPXnuOZzP1rypTSZBwCYuSGc6oWtLrFlyzAOHpzvtOm+eBpNnzF5J/DTpwNoACQM/N7t/kWPntgJHP4msPlVwZTqL5nAXW8Cjv1g9nZ6GfDM7wCxtbO3j5wn/pYnPTFP4x46IqfRaDQrgXoJ+MF5wKHrcd+BDbjsA3+O/RNp/PDje5d14gDASJUAAMxKuG2pq1x33dMxFKnN2rYi+uJpNKuJ0iRw8/MANMRjXgfu/lN/bHliJ3D3W0XPtbvfGqwm2pwDe3YC39ky24kLJ4ArrgdecNd8Jw4ARs4SfytZT8zUuId25DQajaafue/dwHe2A98YBmZ24/v3no1nfOjPEA418Mtvbsbz/6a9SQcdiwEAzFx/O3I7dpyDP3j6PfLRCumLp9GsFjgHHv008K31QD0/+7nsw/7YtPsjSz/2i9we4EdPAn7zVqBebG7f+gbg1QzY+prFXzsoU+xrlqsmatxHp1ZqNBpNn7Lruvfj2k9FcMj8M2wxsnjW2Xvw1Tuegou2HcX3bnoH1p92ettjGWdfDQCiBUGfc/o6BgC4/LRDuHP3x4GBmM8WaTSaZZnZC9z2QiD3xMLPE59iDyW29GOvefyzwCOfAPIH0KyDAxDbBDzz2wB9yvJj2J9lveSCgRov0RE5jUaj6UN27dqNaz4UnSWz/+XbL8GTth7Fbfd/rCMnDgBGLv97hEN1sFz/O3JMRhWZFQfy+3y2RqPRLEmjDtz7t8D3T1vciQOALUtEmNxkKL30Yy95Yidwz58B+f2YLWbyAeDlh9pz4hxCi/eW0/QN2pHTaDSaPuTav/shCpXBedvNxjlIDEc7Ho8kh5FOFvs+tRJoRhXNXALI7fXZGo1Gsyjmr4Eb1wGP/tPs7ePPBF7TIlq0dQdwxVe9tc3m3Pcu/dhL5qZ1kkHgFceA8z8IELLgSxaFhEXtoaav0Y6cRqPR9Bt3vwOHjvMFnzp8uPv2AUYyvyJSK+33kC1EUT90k8/WaDSaedSKwB1vAG66HKiYze2hOHDlz4Hn3QYMpJrb/XLigNkqlaGYv6qV1Tk1bQPDC4uZtENoELNSMzV9iXbkNBqNpl/gDeCWq4EnPoN1owv3RetFZp+m8v0fkWvUHUeO8xCmHltesVOj0XjI4W8D30wDh74+e/tpbwdemwPWXTn/NTwoDkfD38Nvf+Psx6e+ufuxwrJ2mPv8njQ9oR05jUaj6QfqZeBHTwaO/xC3PHwqsvko5q6m9iqzT5OFvm8/gMJhmLkECBGTE5bJL/MCjUbjCeUM8NNnAre/YrbIRnw78NIDwKX/BoQWmZaWMp6YuCwNnxton/JHzf+f/S7goo91P9ZAUvwtHO/NJo2vaEdOo9Fogk4lC3z3FCD7AL5y+5Pxgo+9BdvXTOFTfzWDrVuHQQiUyOwbKZlaWfRZla0XrH1gVgJbaBYAwKzO6wU1Go1COAce/3fgm+PA5O0tTxDg0v8EXr4PSG5d5MWy7uv4T9y2cnFmRQN9jl5N/kL8HRjrzYkDmi0IZh7pbRyNr+j2AxqNRhNk8oeBH5wLXs3hw9/+Pbz/hhfgOefswY2fXYPRZ34I7/xndYeiyQLMXAJ87w0g571V3cAewk/ejYwVw0XnHsVBM93/qaIaTT8yeScwcSuQOhO4/92AtWf282ueCzzru8DAcjW5YQA14Nh3gVN+3yVjl6E04c9xF8K8W/wdGOl9rKE14u/0bmD97/U+nsYXtCOn0Wg0QSVzH/CTy1Ct1vHWL7wGX7ztUrzxGffg8//yZAw+5V3KD2ek8qjUIsjv/hySferITe/+BuqN38eZ6ydx00NnrgjxFo2mr5i8E/jpFVhQSCOcAK78CTB+RXtjhYeAeg3IPqTUxI6wnacgYD0u/ka7FDhpJb5Jjrln6f00gUanVmo0Gk0QOfoD4MdPwXQ+jBd94o/xxdsuxQdeeRP++3PPcMWJA0REDgDM48dcGd8L2IkTAIAz1k+Kx/1e86fR9Bu3vQwLOnFn/o0QM2nXiQOAgVHxt3hShWXdceKn/h17LkVxfUPqtN7HSm4Xf/OHex/Lb078DHjo/4pFhFWGduQ0Go0maDz+78BtL8YhcwRP/4c/w62PnIr/fuvX8cGP/j7IOW937bC2I8esAdeO4TbMEokm24wpRMIro8G5RtNXVCbnb3v5EeApn+y811lym/hbt5bczVUycyJyfipoVrPib/rirofYtWs3tm3bidAFQ9j2zvdi1w/7PDlv8k7glquAh94P3PzcVefMaUdOo9FoggLnwL1/A9zzdtx3YAMu/8A7cIiN4sfv+k/84bvfBZz+JlcPb6SEwiPr47oy23EzUnmkEwWdWqnReE04Pv9xfGN3YxlShddPtcjikdmPy1P+2AEA9aL4a3SnTrxr125cc81NOHhwBpwDB80xXPPpJ2PXrt0KjfSYiVubjc0bFfF4FaEdOY1GowkCjTpw+6uAR/8ZP7z/LDzjQ3+GgXADv/zAZ/Dct/0TsP21rptAR8TKrNnHUSw7lZKOEKnC2b9OqUbTMV9PAF8j4q9fPPlfln7cCZtfLf/jo1pkJTv78dT9flghsB3a0fO7evm1196BQqE2a1uhPIBrr72jV8v8Y82z4bgzoUH5ePWgHTmNRqPxm1oRuOly4Mi38LmfXY6XfPKPcOb6Sdz1D/+K83Z8FdjyUk/MME4T6Tr97PzYETi68VSpwhkXYgkazUrna1GgIdKj0Sj458ydfk3z/+d9dPbjTqFP6tmcnnF63skp84mf+2aKE3kaGOrq5YcOzXS0vS8YfyoQWw+MXgBc+XPxeBWhHTmNRqPxi8k7gQf+HvjOKWiYv8W7/+dF+NMvvgovvPBR3Pb3n8X6194EbPJOFnrsqR8GIY2+luw3cwmESAOjT/0AaEo2OC8c8tssjcZd9n8DQHn2Ntup85ML3t3b60MBqN+ynaeIbKA99Vv/bFlIRKYNpqfLeNObfrRoed+WLcM92BQA6gVgzbNWnRMHaEdOo9FofGHX576Dbed8H6EnDWPLW9+Mp33wz/Dx7z8Hf/p7v8K3//pLSL7kDmD8ck9tCo+fitF4qa/rypgVx1iiiNCmZ4ImZYNza6/fZmk07nHfB4A7Xz9/e6h/f8fBQqZ1xmSdX/6gf6Z0wS9+cRgXXvglfOUru/Hyl5+KeHy2cxwfrOC667qruQsEjRpQmQKGqN+W+IJ25DQajcZjdu3ajWv+8lEcNMfAQXCYjeHXe7fhDU+9F59507cQeclDwPglvtgm6sr6dwLIcnFHtIUmC2C5OPjxu3y2SqNxiV+8BnjkQ/O3h+LA6/Pe27OSSZ0u/pZNf+1ok3K5hne96zY8+9nfwMBACL/85RvwrW+9Ajt3Ph9r14pr/JphCzvfcgN27DjHZ2t7oCLFZ4YMf+3wCe3IaTQajcdce+0dKJTD87b/6ontIC9+Ahj176Yq6sr6N7WSWQmnjQJNFlCtR2A9fr3PVmk0iuEc+P6TgCM3NLdd/Xjz/9qJU49xmfhb9yll1an1XX7q/tBDk7j00l34xCfuxjXXXIj77nsjLr98AwBgx45zcPPNQjzr0390E3ZccZ9bFnuD7VgP6oicRqPRaDxg0YJzNgaMKGj02gNOOmI/Us6CWXFQGZFz2imcnPDTKo1GLfUy8M21wMwDzW0v3gOMnN583Kh7b5fb1ErL7+Mm488SfxsVf45fkG0QlqgbbDQ4/umf7sbFF38VJ0/m8f3vvwKf+9zzkEwOztqP0hgAgBVGxYZqHzv+ZSb+6tRKjUaj0XjBYoXlQSg4N1IF0UeuVvTblM6x9ghHriUiBwBmbnCpV2k0/UPpJHD96Oym2y/ZCwyfOnu/PV/21KxZlFxSQGR3L7+Pm4xdKP5yn5zkyV+Kv+Hogk8fPDiNK6/8Bv72b2/Di160HQ899CZcffWpC+6bTosxzPyo2JDbo9pa77Ajcjq1UqPpksk7gYc/Iv5qNJplue66pyM+OHtVNygF5zSZh2klgGO/8NuUzpl+YnZqpR2R69cIo0bTSvZ3wI0bAN4SmXrpPiB1yvx9D3zJO7vmckh1KrOcqh76X8XjtkEl1/z/oFSt7FI5smdMOceKzF7w45zjy19+GBdc8CXce+8EvvjFq3DjjS/D+Pji172BgTBGRobAbEdu+iGXjPaAio7IaTTdM/lL4OfPERLqNz9XO3MaTRvs2HEOdr7tpxgI1wBwbDWmsPNtPw1EwbmRyqNQHkTxvo/5bUrHlB7/HxTKg6BJKXYyLG5xrI8bnGs0AIBjPwJ+eD6ajbEJ8NIDQHL7nB3ltG7mUe9sm8thxY5cSEbU2W/UjtsO2d/J/xDvjz2XmUfE36FxZ5NpFvCa13wXf/iHP8IFF4zjgQfeiDe96TwQsry9lEbB8tIpnHnCDYu9QUfkNJouyR8G7nwj0CgDqIu88Ylb/bZKo+kLdnzyR9gwNoP/7+n34sDnvoAdn77Fb5MAADQlolnsiI8TwS5hB0TRvv0e6OazxPY+bnCu0eDxzwC3vqhlQwh42QEguXX+viFR+4TqlBeWLcy0dDigqAec3b/Nj36Qx38m/zNfnMpzikex65cXYdubX4lQ6JNYu/YzOPXU/8R3v7sXH/3oM3Drra/D9u2jbQ9HaQwsnxIP8vvdsdkDdn3LwrZ3vhehwX/Htm07sWvXbr9N8hTtyGm64+D1wA8vAIrH5AYiVs3WPNtPqzSaZdm1aze2bfwnhEKfwLaN/+TfRT/3iKznygOvOu6PDQtgpyUyl8pc3MScEilP9ntIX/EBADq1UtPH/PavgHve0XxMwsKJS2xZeP+ojNbwquumLUolI/6GY2rGiwm1RVSn1YzXCexXwnl657sRCn0S2975Xuz65UXe2wFg18/W4pr/fDUOnoyCc2BioohcroIPfvBpePe7L0M43NmUntIoWE5+R85crr/YtWs3rvlwSrTy4cDBgzO45pqbVpUzpx05TWdUpoFfvRH45euA4TOBFz0EhONAfCPw5E8B40/120KNZlF27dqNa97yAxw8xsE5wcFjHNe85Ye+XPQrR++CVYo6TkdQMPq4roxZooDfTq2MbLwUo/FCX74XzSqHc+DWlwCPfaq5jQwAL90PJDYv/jp6uT2Am9YtTaMs/kbXqRlv7KLZ43rIrh9w4TyZo8JRMMdwzX++Gru+4n1N2bVfewYKldnCTZwDO3c+2NV4hhGHOT0gHpQnl945oFx77R0olGa7MoVCDddee4dPFnmPduQ07TNxO/CjC4GDXwPO/yDwvDuwa+ePse0df4nQK/4C2552CLs+9x2/rdRoFuXa996OQml27UChBF8u+pknbgPQTAMMCjQlJoD92EvOTqE0Uk0hGZrq7754mlVIvQz84Hzg2Peb20JDQthkKScOAM78K3dtawup6pi+rKdRdu3ajW3bdiL09PNEJOyOCxTY1hnXfvmSec5ToTKIa997m+e2HDJHFt6+SDub5aA0CpaVNZeVbJdW+cuirXy6/Ez6ESWOHCHkKkLIY4SQPYSQ9yzw/F8TQnYTQh4khPycELJAYrcmsNQrwP3vBX72LIBEgN+7HTj3fdj1iU/imvfOiJA2CA6ao7jmrx5fVSFtTR/BeaAu+uyQKKJPJ4LlyBmbRB+7fqwrs0VN6PiYs40mZTsF7mOEQqNpl9Ik8K0twMzDzW3hGPDSvUBi0/KvX3Ope7Z1yqlv7vqlu3btxjXX3ISDB2dmR8I8nl8cMhduCXPoqPc97bYY2YW3d9m2htIYcrkqKrUwULN6sMw/gtzKxyt6duQIIWEAnwHwQgDnAHgDIWSu9Np9AC7mnF8A4AYAH+/1uBqPmH4U+OnTgN0fERflF94HJLYCtzwf134yN3+lqkRWVUhb0ydwjq9e94FFk438uOgzJqJGQYvIpZ92LYB+jchJR+7833e2OQ3Oiyf8MkujaY+H/gG4cS1QaWlgH0kAL35clC/0G+ue2fVLr732DhQKtVnbCpVBz+cXizpPa7xvCn7da380v21NPNJ12xpKRSp6xooDdZ+brXeJaOUzux60l8+kH1ERkbsUwB7O+T7OeQXA1wG8rHUHzvktnHN7tnIXgDaWlTS+wjnwxGeBHz8ZyB8AnnEjcNl/NtMrzbtwiI0t+NLVFNLW9AGc47PXfgBvfH8SZ2+YQCwg/duYNQSgWc8VFAa3PQupaKkv68qYlUAyWsLg+e90ttGkrJGz9vpomUazDLv/GXjog5hV2xZJAVc/1l4kLoiEulN6bDQ4Dh4MRvbEgs7TYAXXvfEeT+0AgB1X3IePv+F7zuOtW4exc+fzu25bQ6kQOjFzSaE63ofs+P2zsPMtNyBExO9mw4ZET59JP6LCkdsI4HDL4yNy22L8MYAfLfQEIeQaQsg9hJB7Jif7s/ByRVA8Cdz2YuDuPwPWPFMImmy4Grj3b4DbrgZiG/B99g8gTj+b2aymkLYm4HCOj73zg/izjwzjxRc9hnuv+xQ+/5YbEAnV4fRve8sNvlz0nehRsu75sZfDSOX7sveaUAEtANGmWp6RkhG5zMNLvFKj8Zn7/3b+tqsfARJ9GInrgd27TTz72d9Y9Hmv5xc7rrgPO99yA+Ix0UqBDpfFPeOpPvS0A/Css0WbgOuvfwkOHLimp3uXYYjrJMunAB68+1BbVLJ4/VPvA2TfvBtvfPmqcuIAj8VOCCF/AOBiAJ9Y6HnO+U7O+cWc84vHx8cX2kXjNke+J5qOnrwZeMr/A579I6CWB356BfDoP6Oy5U/x1196Hl7ydmDj2DSiQ7NfvtpC2prgwhsNXPvHH8R7/jWFNzztAXzznf+N6GANO664DxdtO4qrLngMBz79j9jxvIwv9jmO3DpFym4K6VeBEJaLz1MBpckCrFIU5cd3+WSVRtMOCyR+d+jEOeIgOz4uxEH6qF69WKzife+7A0960pfxu9+ZeMtbzkc8PrsPnV/ZEzuuuA+XXb4eAHDtm/PYccV9QNXjzCNui1CJnnp2NK0X7DFEU/A+rSEum8jmY2jIuAJjRX/t8QEVjtxRAK0ySpvktlkQQn4PwLUAXso5915DVrM0tTzwm7cBv3ipyMV/wT3AmX8OHPga8KOLAGsv9q79LJ72pgT+5fp1eMcLf4vHd78B//lfL2pGNzbHV0ZI+8QtwMMfASbv9NsSTZc06g38xRs+hH/8Ygp/cuXd+Mqf7sJApBlBNlJ5mFYCiG8FXn7AFxtZLoGhgSrip1zly/GXwklH7CfqVTArMd+RcxqcP+6HVRpNd5CBjnafJQ4CIsRB+qSf1k9/egDnn/8lXHfdXXj968/Co4/+ET7/+Rdg587nIxoV6ZlO9sQbzvTFRsZEDRmrbhMbvK4pK50Ux5cNvO36tl6wx2B5qYbJF86yCjRlNutepR257rgbwOmEkO2EkEEArwfw3dYdCCEXAfgPCCduYoExNH7C7hbO2p6dwNnvAp5/lxA0ueuPgDv/ABh7Er5+8Fpc9BITe4+ncOM/PIh//d5XEF17HnbsOAeXnnoYV567BwceeFr/O3GHvgncfCXwwPuAm5+rnbk+pFat480v+7/4t+uT+Jur78B/vPl6hEMtq42vmgFNyoiTT04c0EwDJGf9pW82LIaRyovPp15bfuegkD8IMxcHTc2uObRrENkMWehVGk0w2XB1R7svKA7iRz+tRvspeidP5rFjxw/w/OffgFCI4Oc/fy2+/OUXYc0akQ2wY8c5eOlLT8MZZ4yJ7Ikr7gNy+9yyfElsB4GV1ogNXqcisnvFH0ukliqNyBWkI1c43vOYnlM2Zyksm6Z25DqGc14D8A4APwHwCIDrOecPE0I+RAh5qdztEwCSAP6XEHI/IeS7iwyn8ZKJO4Cbnwf85Klidem5NwMXfQyYeQT4ycXAvi+hsP19+JNPX4Y3/C3H+ZtP4P4fjOMV7/8yEG6mPNCUlPcu9b+PvuuLt2PbO9+L0I6PYts7/gq7vuB9rxhN95RLVbzuBR/Gl36QwIde83N84g3fsVPnBS87CgylmjVgdf8KvJ16rmQAUyttpcfM7/w2pX2sPQtH5OTjvoswalYvZAA4510dvSQwrVXYfcvu0mhwfP7zD+Kss76A//3fx/D+9z8VDz74h7jyyi3z9qU0KqNh8kJ+5Ntq7V2KulBD5LwZkTOn7RuKx9GriV8AAFhxFICaiFw8PoBoNAIzL8bEdPCjt/OosFn13Pb3tJqILL/L8nDOfwjgh3O2vb/l/7+n4jgahUzeKSJOjQpAwsBlnwfWPAt47F+B+/4WGDLwu/QX8brXPoJHjq7B/3nlXfiHz/8jBtJnzBuKJou478AGIH94gQP1D7t27cY1H92AQkmsbxw0x3DNBwFs2t3/kcZVQCFfwSt/76P4yV0JfOqNP8I7X3Dz7B2ueghIbAAgJve5UhSV7EEM0tN9sNZ25IKlWGljpAqYKcZQfejjGLjya36b0xb1Q7chWxiDMTcilxIr5/3YF0+zCll3NXD+tcD4U9vafWamjPe//5eLtkn0XHxs738s+fTDD5t461t/il/+8iie9axN+NznnoezzqKL7m8YMUxNlVDnAwiTCnDi58C5f6fa6oXJCaXbQnkApZKIdvrmKMyIRTWWH0MsFkEs1lnq7WIYRqyZWjmzG9jwPCXjekbZ1KmVfhug8YmJW4GG7L3BIaJzv3g58Nu/AF/7fHz+wb/GJS89BpYbwk8+sRv/+L/fWNCJAwBjpCzSsAqHvLLeFa699g7HibMplKD74vUB09kiXnDFx/DTX0fxX2/7znwn7jk/A9LnOQ/tyT7b71PEiXOw3PzoUVBw0hH39M+5P/Xot8F5aN5naqwXwlk6IqdZkCd2Aje/QPwNApf9R1tOHOcc3/jGozjrrC/g//2/e/Hc525GLBYAcZDJX8n/zL6XFotVvPe9t+NJT/oyHn00gy9+8SrccsvrlnTiAJH+12hwZEuy3ZHlYa3rSZGRw6yUs8k3Ry4v5lesSB21SRVQGnXq7mDtUTauZ5QZTJluun59YlU6ckoicpo+ZM2zRSSO10Svlz07gWoW06d+Ete85wSuv5XjeecfwFc+fxnWXvYPSw5Fh+soVQdQOPEQ4hd4Y74bBCY1RdMRkxMWrnrmp/HQngF8/S9vxGsu/vXsHS7/MrD+ubM22QIY5oEHsf7iV3hlapPiCRGRC1gzcBsnHTFbQ/ASPxeGmVkA8/vy0Yv+HMCJvmynoHGZJ3YCd79V/P/ETeLv6df4Zw8AxNcvu8vjj2fw9rf/HD/72UE8+clr8e1vvxyXXroeu3btxlvfehPy+Sq2Gllc99ofY8eO93pgdAvFY9j1y4tw7fUvxKE/+CS2bBnG6153Jm644XHs2zeNN73pXHziE8+CYbT3e3TquMobQWMngTJz0/rZTIgFQTtiNTo65J+jUDYBAGYhraQ+zobSGFhGZiv0Y1ZVmYEVKSKRELZtG1mVqZU6IrdaGX8qQC8TzlyjCgyO4DfxL+Kil07hm78w8JE/uAM/vv09WHvZm5cdio4JVSl28ojbVrvKYikoui9ecDl6ZBrPuuzT2L0vhO+864b5TtwFHwNO+f/mvc6wI077H/TCzHlw8x5k8nGkE8F05JyIZa73OgyvcBqsz3GOYxfsQGyw0pftFFYsT+wEfn6l/1Gww99c+rEfkMWnZcViFX//93fg/PO/hN/85jj+7d+ei9/8ZgcuvVQ4fzt2nIM/+ZMLkYzVpTjIvV5Z7bDrttNwzX++GgfNMXAOHDw4g49//G4UClXcfPNr8cUvvrBtJw5oUVasy4yguoeO1Mwj4tjFNADgzDPTMM1iM411sXxWN6hZwpb8iJL6OBtKo2A52UdKKmP2FWUTrDCKdDoq0kRXYUROO3KrlF2f+w627XgWQr//EWz9i/+D3//M7+OKVx5Gvc5x+2cew3u+9E2ERra3NZYxLlaHzIlg1vu0y3XXPR2DkdmqX/HBqu6LF1D27c3gGZd9BkdOcPz42m/ghef9dvYOp78TOG9hwQAnInfCH5Wu3P47UKuHAxyRE2nXZh/VlTUbrM/5TAmR7RT6572saOwo2MlbxF8/nbnNr1r6cYD4wQ/24txz/xsf/vBdeO1rz8Rjj/0x3v72ixAOz57GURqFVYygUgv7Yue11z8fhcrgvO2Dg2E85znzxUyWw2laHblUbOAeKunakv8lkZdwxhljKJfrKJR9cHwaomsXyw0ojcgZRgzmlBRwqfjTU7UnKgwsPwzDiIHSqFat1KwOdu3ajWv+6nGxYgaCQ2wM//OTJJ605Rju//nZeOrbviDSLduErjEAAGyqD3uQtLBjxzl49aUPyEdc9K35x5QWOgkITrPb0CexYcNn8eQn7cT0TBU//+A38KzTH5i986bXAJd8atGxnIjTtIsGL4FdexZYsZO1QmK7n9IRmYy40dH5FQN92RdvpRKkKNj9/2fpxwHg0KEZvOIV38aLX/wtDA2FcfPNr8VXvvIirFu38MKEk4ro02/3kDm64PbDh3NdjWe/H5M8SW7xMgombGYV4YCeeaaIzDk1Zebd3tnSkGIrmZriiFwMU9kqGg0CVH26IfZC2YSZS4DSmIzI6dRKzSpAiHrM76k0UTsTYxf+Qcfj0Y0icsdm/FkBVMm28SwA4I+edTcO/GordvzNO/w1qAdaHZ9t23b2RWPYxZjV7JYDx4/nMW2F8a6X3YNLNs8RLDGeCTzz+iXHo0mxumnOqFvZ7AR2ckLaEdCI3CV/CgB9lY7oROS2P2Xec0ZKtlMoZz22SjOPIEXBqpmlH3tmx/wFnUqljo9//Dc4++wv4Cc/OYCPfOQZeOCBP1w2quWkIvq0cLHFyC68vcsSBccx9SOiLtvTsPqpAIDTTx8Vjwvir11D5w0NNBoEU1Ml5TVyjQZHthAFasG8Hy1JmYHlhkBpFJTGUCrVUChU/bbKU7QjtwpZTLzj8JHufsTGtrMBAOZM/9TTLIa9islyCeC0P/HZmu6Z6/gcPDiDa665qW+duYWa3QIEn/3JHHWd1HnA85fv/TeUGEEyWvIt3c5e9AiqIxc7942IDVb6Kh3RzCUQCdeRuvwj855z+uL1oyrbSuPhf1z6safMkXAn81MCPWHyHuz65UWih2nok1i37t+xfftOvPvdv8DznrcNjzzyR3jPey7D4ODyi6W+Oj4ArnvtjxAfnN2fMx6PdF2iMDw8iEgkBJYpqzCvQ0SWEatuQTI5gPXrkwAAsyCVNqe8rbHOFqJoNLhiR852/JOiHVU/wblw5GZEuqlz7q+yOjntyK1CVIt6pLdfAgBglj/RDZXYq5jMigP1YE6y22Ehx6dQqPVtK4VFFUVb03iiG4GXPNTegGNPhpEq+BZxYjnxW6GpgKaBhMPNKFafYDdYJwv0BaSpglicyXooXa5ZmMLBpR97yK4HXiGcpx0fx7Z3vhe7Hn6jP3Z87vpZAiEnTxZw/Hgef/3XF+Pb3345tm4daXuspiPnz293xxX3YedbbkAqJZzirVuHsXPn87suUSCEyKbgfkzORRons0TanlOvJ2vmvG65ZDvnatsPtDj+DQ/rD1VQnQFv1MCyIadGDlh9TcG1I7cKue66pyMen9NvpocVs4FkGsOxorhxNPo4pF1vRiDMXMJbmWPFrLRWCosuPthpPJFR4JUdqKae8qZmlMYH7POMjvkUAWgDmvTP0e0GZiXmNQO3ockCMvkY6ge+5bFVmqCya9duXPPpi5xa8YPmGK75p9N9yVq49nN0nkAI58A3v9n5woMzmfWxvnXHFffhZS87Ddu2DePAgWt6rjOnNOariAXLlGXER362lc3iicqUNwZIdUz7eqyyRs52CkUvtrqycT2hbCJfHkSlCie1EtAROc0qYMeOc7DzXy9CYqgMgPe8YgYARkqqwpX7UPXIpsJmR+RKkz4b1D0rrZXCddc9HfHo7CL3+GAF1732RwCJAq/p8Lzb+Ap/I3LyPBvbdN4ye/pHX0XkOJcRucUcuTw4DyF78FcLPq/xkPSlSz/2iGuvvQOF8uwFzUIp5EvWwqHJ1MLbu1h48zu10oaxorIUQErnyMp7KfuP5ntJp+VnW90mnqh5JFZVFeeB3ZhcdY0c0OyV11eUWYtz23S0V5typXbkVik7XpbAM8/ah4tPOaZmxSyZFz+oSv9GsVCadFYxM1Ycjdx+nw3qnuuue/r8OoXBSt+2Utix4xzsfPttiA1U4CiKvuUG7LjiQeD1BYDMF+9ZksFBnyNycYzGC4icGdw6TCci5/GkqSvKDCwXX7Tm0GlwPtVnqUMrkc0vX/qxRwQpa0GlQEg8PoBoNNK8tk360yvTNFU6ctHZ6XIlbxeMGSuB0igikRBGRoZgVjaJJ7hHGUhTQtDLVst0pUauIB25BYR3AkvZbIpc0ZjTn1BH5DSrg5KUbB1WU9zqyHuXTCXj+ULhKJiVwNBAFQ0eQvbQY35b1DU7dpyDnW+5UUZdgdF4ETvfcmNft1LYcdmduGjbMTz33D2y2e19wGuLnTtxEiMlFx/q3hd4s1xC9JDbeLXnx24X5zed86+GqW2svU6N3EI47SZWQB1vv7Prx6nZdWk/Xjga5TZBylq47rU/mt/DtIdyB0qjTUfusX/u1bz2yTfv/4wVldVyNRs9y2v98ZuUjLskLQtYrdFFw4g1ryPco5ZLE78QduRHAahNrRwZGUI4TJyxkesjQagKa7adoVGk07pGTrOaKAmnhY6oyYmmqaKIZhUOKxnPDwoT+1CqDuC0tSKqyA7c769BPbLjBdN47rniovxHz7obO17Qhz1iWqlOz0mfCwORgSVfshQ0WcB0IYbqtPeOiuN0DHRvv9sYqTym8jHUH/6c36YsC2e/E9ezxWrkUlJGvI/64q1Edu3ajWveV5xdl/a+oi91aQtmLfTgPPXCjivuw2suE70wCeldIITSmDPBBfMwVXT/V5z/2lEsFdg1cpzLKeux7ykZd0kKxwEAtXoI2WzZeS+URsEy9nnjUbZC9rcAAFYYQzhMMDIypGxoQgjS6ShYXi5gTLcpGBYEys1yGMOIYXAwjFRqUEfkNKuE/GEwKw5jrLtoxlyM4bKIbnis4qQS86CYTJyxTtTGsRNH/TSnd5765dk1f0/9ss8G9UoDzIojnSw6j3vBjtJkDvxumT3Vk8nHkU4EWxXVriubevR//TZlWfKP7EKlFlk8tZIK2fC+qflboSzUw7RQIr7Upe3YcQ52/vENEJNxji10quda8V7YZkwhHAbq9b/pudxBROSkI1c6rsjCNjj2bQBAtRbC9HRZWUSO0iiq1QasqnQ2sh6ki7K7AIgyC2FDzPnruaNgHRAmFdOgNAbSZRbKYhhGDKZdIzfTR8q+ZRPmnLrBeWm4qwDtyK1SqjNHMF2IgabVrOzQ4SpypSgqmb1KxvMDduQJAMCZ64UjZ5p91lNlLuNPdSauZi4BjD/VZ4N6ozF6CTKtEbn0JT2N59RNHfC4hqRaEvVcqYA7ctI+xoJfM8EOizToRR25c14OoL8anK9EglSXBgAvefJuiHQ9ggc/+s++pp4zK4F0Oqpkkk5pzKmnQt3DSa0l7qEZWW+lUuwEAFhxrdhQOqFk3CU58TNxTCedsenIeS6mIYXXzAJVmlZpQ2ms6fjnDygf3zXKDKwoevqNjdkRUx8cbZ/RjtwqJXNiAgBAqZqJDZWRvczRA0rG8wM2mQMAnLFeplbmlm++GnTsi/NKSCmbedptaPCQcDDSlwJX/bqn8eyInLn/PhXmtU/ukSUVFoOC8/nkgl9XZs6I689ijtzIpe9COFTXETmfCVJdGjA7Quv3uWHm4qBUjQ2zJuY9Zi50hJTjN/Nicq2yRg4AWGOb2FCzlIy7JJl7xTELowCadWmiXs/jiE9tWtoyplToxEacL3LcYh9lIpVNsMIYRkeHEIkId8bvVhV+oB25VQpj4sJAx9VIzhq27OtE/9ZhsayoFzxjoxRGyKlf+fISzjkylt0jpv8jEfbNkyYLPTtxzjgAzGMerO62UD12F2aKsUWdjqBAk0Iox+8Jbjs4Be+L1MiReBLpZNF3SfbVznXXPR3xodl12fFYyDc13dbzwe9oLbMSSlUeM1bUe8HZhqxFlX3WVEfkzMZF8jgeqEUWRF9SVlwzywZKo8jlKqjUZOsKL1QeZVSV5aIuOXJRsGm5cF3uo7ZLFQaWH561YNAUxlk9aEdulcKYuOAa68eVjEfXjIlxp/q3ITibEWmm2081EAnXYfZ5FGt6Ko96I4wQaayIiBw7KVZ7VUWyHCXDGbX1BsuRefw2AItHj4KC0Ud1ZY4EdWpx8SYjmV8Rv4N+ZseOc7DzrT9uUdMtYOd1cd9SGmdF5Hw+N5gVV1hTFkO9DkwXvF6MFNE/kzxJ2qFK7ESqEUYun3UcV6nKKJjjlDZT9wAgYy8CTD/ivi1cKJqybMO11EozUxeOf6WPFuPL5rwFEF0jp1k1sClxIaQbNikZj27YIsad7t90RGbJ1Ilzr0Y6Uej71Xt2TKRIbBufQrYQR62qRqHUL9iRAwDUOUA0JSaT5oy3qYPs0EPy+MFOraTnvRKA/5GKdnCUy9atW3Qfajc4r66u1dqgseOyX+JZZ+8DAPzJc36DHZc/4I8hnM9y3pjlTysSNMS9mOXi6h0fn+5hbODZANSlVjo1cuX1SsZri4aMgtVPnWWD03Talus/eav7tvAGOLeVQNXfrwwjhkqlgXx50Ju0VVWUGcyZ2KzfDaUxTE+XUat5mFLsM9qRW6WY0yItgC4x8ekEY+sZAAA2M6hkPD9gVhypaAmDp7wSRqr/V+/ZAeEw2CqcmRMeqpe5ADskVEXTihy5WHIE8aGK55MdlhFR66BH5JJPeQ8GwrX+iMhJZ3PsyX+x6D6iL14CyPevINPKoOpcW5kVB07+1B8zypNzUivjQH6/93YUjopJusLUynRaOj4+/XZZZXY6Yq+MjUVBCMCyHjraXCx8svp2RCIhpFJibuM0nZa1c2B3emEMCuUBlMt11yJygIxKeymO0wuci4jczMC8iBwAZDKrZ8FOO3KrFJYTaYR0vRpHjm5/CoD+EEZYDEdJMHVKsxmyHyu0imB7fgMAOHODVLza573MvkqYbBOgzAFKXwyazHsecWKWmBAE3ZEj8bhc0OiPiNxovIDI2TsW3YcmC2KybvkwWdfMwq7ZZVYcKPkkrpDb6zg6IdIQTt30E97bceibKJQHUKoOqI/I+bQYabISYrEI4nE1fTIjkRBGR6Mei1iIAkNWGINhNCX/nc+2JJxVWN400LYXHWxHUiXNCG7SqXMMPLU80KiATYfmOHLSKV1F6ZXakVuN1MtguTiGBqqIj1AlQ8boVsQGZXSD92FIu1FvKgkSApoqiAl+JeO3ZV1jt1Nw+uLt+62f5vRMZmIShDQwmlB0Mz/lj4Wj4vGqtVPPlQx+qitNFvpCKIdZchFmCel2OyLHj97ioWWahbAdDDOXcFLYPMd8EMyKYyRebF7vj93kvR0Hvq58ku5MZv1KrWRF5SmAftU+sanavNQ9ADBLG8SGojfiIGYuKY/vYkQun3IikYGnbKJcDcMqkHliJwBWlXKlduRWI2UmCqtTBZCQolOAkOakuNpHxbI21axIbZFREiMp30vJ9Nmw7mFMvBenL55MtexXWBYYSxQRVnXV2nC1jNJ4HJGzFRbXrfX0uN3QLynGrb/dxTBSeVRqEeT3fNsbozQLUquHkC20pFb6xZEbwHLivKH29f6ED2me1mPNxR3lNXI+ReTMorL6OBu/+oPNdUqdz7a6VWyo5dw1oCbeM8vL+4ZLNXIAYOaHYUciA0+FOQsVCznaq0m5Ujtyq5GyKaNPak90Z1Lcj86PdG7tyaAQRkiAFw77bFj3sOkwCGngtLXi+2ATffi9tMCsqPh+iKIVycFB3yJyg5EaEqe90NPjdoMfjm7H1Ept9eWzxWWY6fLES7MkU3kx0XLSGf1i+gHnvHFS6QuHvLejlmuZkCquKbOvbTlvr/1ClENt5Ghe/7aaN9G5uY5cLDaAeDzSdOQaZXcNmBGpm8wSvRbdichJ5zQv21H1Q1ZVmTmLjAs62jq1UrOiqTCYuYSj2qcK52ZYYUrH9YTiCfmZiMkeTRZQqUVgnfAm/90NWC6K0XgJa0aECpWZ9VZmXzUsF0c6UQCiauo6gRZHxcNayIwVRzpZADnznZ4ds1toSv6mS1N+m7I41n7x210mImc/z6whL6zSLILtXGxdY4Hl4mg0fLouVZqLd4adWsn9qFtttrpRNUkPh0VNmVPf+tjHlYy7JPWa81+3UitNs+X7Yd6UCizklFIaAyukxQNeW+BVCpkU7WpsJ8uNiJwjjmM7coU+EEaTAQlgriOnI3Ka1UDxhLiBjajt+eZM+grHlI7rBbXp/ZguxJwopf2X7bvPT7N6wl5tjg1FhDpjnzc4d+qg0pcqG9NI5ZEtRFGbOahszOVwIr9JdQ6pW9gRS77nf/w2ZXFmnmgKFS2B85vuAxXOFQvnjnNx5ikDaPAQpot+XZdERJCmiqCpiq8pxE66tcJJOqXR5rl+4sfKxl2UE790/uteamUJzrT1yDeVjj+LygwASMn/+U4ppTGYWTtq5XIqIrtH/JEqmem0+t9LJBLCyMgQWEE6ctO7lR9DOeVmamXruZZIDGBwMKwdOc0KJ38IzErAGFU7rDFcEquaee8mxarIHHoMQHOyZwyLCA072r9S5Y7DMHKuVGfs7wlsJi/fz/Y3KBvTSOXBeQhThx5WNuZytJMGGBRosoB6I4zpB/7Db1MWpbL/e8iVostH5MZEy5XAp4quZMoTjnNx5lnjAPxtxM1ycdDhKmh6QKTS+1QeZH8mKifplMaaTavzHqSM7v88AKDeIJiaUp9aSWkM+XwV5bqctE+6KPufeRAAkCtGUa3Ob8LtqfCKJUTLWJFieHgQAwPu9OqlNNqMyM30gyNnLlgjRwhZdU3BtSO3CmlYR5CxYqBpNdLANjRVw1Q+hnr2gNJxvYAdFBcuKh04Oiq2z0rl6DOcCNa23/elFkw1LCcdoHVXKRvTSbfzKvLKeVvCHEHBdjjZxITPlixO5vGfAxBO+VLQ7SKS2++/g74mt9dxpM84ZwsA6Vj74EFVamGxAJCOwti4DaXqAApltffEdmFWHCMjA0on6WJiLpQOUfdg4ShzNwBgKi8cYtUy+XbUhRXEAgAKLi4YnxDqpcxKAZgfKRX1eh5FfIonhC1FqjzK2YphxGBa8nzxqKVCT5QZzIJQXV/o+9GqlZoVzfTkcdQbYVDFF1o6ysF5CNnj/RfFYifFRJWOigmFk2c93b91ZbYiG7a8tj9EK5agUqk3oy6D6mqc7Mm/6ZUjZ6c194kj53w+OX8muO3ApsTK63JRzvQVHxb79/HvoO+xDjQjcudvByAd60rWc1My0g5jy9mgW8+Stvgk128lQKni+zGNCTl5AIDLdVwAUJIOR35MHl91RE6MZ1Y3iw1uqmOzX4k/Mp1xodRKzyI+1SwAwCykXamPs6E01oyO5/tA5K1sghXSiMcjiEYjs57yS+HUL7Qjtwphk0K4gBqpZfbsDIOKyZ55sv/UEdmUuNEZ8mZhbNgkts/0rzCCk8KX3NT3EblMRk7Wl6mD6hQnInfypNJxF4Ob98h6rn5JrRSfu6/qgstg134u5xwPjG/FSLzY17+DvidzP5gVx0C4hq2niPYbzEr4EgFwhBK2nA5j4+ZZ27zGzCVcEAeJefu7rYnfn1kStb9u1MgBAGucIza42bja2i+OVRqXx56fWpnJFFG3hXrqLjrKdbu2N+mKYqWNcOQGxQPplAeaCgMrjCz4uxGpldqR06xgmAw507WG0nHpuMivZpn+y01mMyKlha5bAwAYO+VyENLo27qycqmKfHmo2U6hzyNyzBSOTzqh1pFzIk4eKXpaB+5AtR7pn4jcmPhdBLmXnFMn0UY7FUdZV+MPx74vMgVSBScjhFlxwNrnuSmOdPnGzaDrNwLwr36SWXFXIlhWgaBSc6emaj6ikTSrnyGP75IjF75cbHBTLbKSEccqr5917FZbOAeysrcbikfds6UhROnYNHE5IhcFy8oH8v0HmrIJZiUXXDDwNGIaALQjtwphU0JtydiwQem49s2Q9aHMvbOqv0Ws9oW3vhKj8VLfTvrYCdEE3I5gGam8qF+s90F/mAVgJ0TETH1ETora5Ny7QbbC9twuj9sfjhw97ekAADPIETk7spJe/rcqRH8S7q6gaxYnfxDMisNI5jEyMoRwqC6+D/ag56Y4CwDrN4KuScltcU9bkTi25OLKa8ocx8ezRRhRlsAGrpDHV99HDgAYP1PpuAtSl5katVMAzH8vji126urkr9yzhUsHmZVcT63M5WrC8a/OuHYcZZQZzFxskYicSK3kfqkXeYx25FYh5rT42ul6tY6cseU0AACbGVQ6rhcwK4aBcA3J7c8UG1Jb+zodkR0WSld23RBNFoQ6Y582Bc8cFqlXqtUe46kRRAeqnq3EO7WYfeLIjTztOtG4OdAROenInfV7y+7ra+NnDdAoOCJMoRBBOlkU59bxH3prR7XQ7N22Zrg5Mc8lgPx+D+2QYkIuReTssb3EbJwPQL3YiVMj50XdekMs9LC6mNPYfdaattjCK6Niw8QvXDSGo1oLYWam4mpqZfM3EHfSZANN2QSbGVzwM6E0inqdY3ra5WbtAUE7cqsQ29Gi69YqHZduuxAAYFreRDdUYqf7EOMZYgMhzXRE3n9RLLZXNEu1HQY7hZDt/51vNvUC2/8AAPUOEDEuAU1657CzaZnC2yc1cqHRjaCpYKflslwC0YEq4hd/eNl9Ra/LBGD1nyDTSqG1ebvz2/O6Ri6/b5Z0+dhY1LEN0094Z8fkPajUwpgpLhxZ6AXH2fA4ms5mGhgYCCGZVCuQNDQUQSIx4FHtk7jns/J6jI4OIRKZPVV2nEpbQXP6IVetyeSlMI+LqpVNxz/hbv2hCmpFoF4Emw4v+LtxnNJVkl6pHbnVRqMOlosiRBoYGVfbkDi1/hxEwnWxotNPIW3Om0qCA81oojPJ8EFRrVfY/vsBYFaNHOChOqNi2BF3InI49U9geOioONGjZP/cYLx0dLvBdER90svua6Ty4vrE7nffMM2CiCbcYqXcSNmprh4vbMzsAbPiGBqoIh4fQCQSwmhcRmuPeRgd3PdfjnqmG33XAB8icrIZOCHqI2dei1gsVpfmfLYlUVPvao0cmrWbbqdWAhAtKxoBTz2vMNGvcIYsWiMHYNUInmhHbrVRmZI30gJCEbUrZiQSaaYj1voj4gAAqFkLNmk2UgWRalNmPhnWPWzCrpETDoMTkTtwv18m9QRjBQxGaogPVdUOvP4FoPZk0gPsSVt6tH/UUMVvOtgRuXZrJ2mygFwpisrjX3XZKs1CcC7TCMfEvYcmi/Lc8njh7+gPnMU72+Fw7l0nfu6dHZN3NBd3lEfkZITF47RoxoquORyGEfc0yiLq0uY72E7EpyJbIbi12FuXQic50d/NE0fOGoYtXBNYyiayeSE4s6SjrR05zYqkwlztY+WkI1b6yPkps1npPjY0mRciD/0gxTsHNiX74Y2IFBEnInfcG5l91bCZAdBkHoQovmQNDMDwMrXSduS2nOvJ8VQQaMXTRkOIZ7SZqmov1mROHHHTKs0i5IpDqNXDoBuliESq4k+09+TNzT6bEuc8L3h4bpSOO46Wa3L99iJMwZvFVTsi5waURmc3em6463As5pSmUoOIREJgtW1iQ90lh6Eg+rmxgt2Y3M32AzJdND/s2jGUIedswMKfibOIoVMrNSuSsimclpQ7RaCOmEC5j0Q1ypMiSjnXkUsVUCgPomR6L43dKyw3KOqGhkVzVmNYruxl+6/eDwAylmwGHlLb+xBAswbMA7U6ZsUxHCti4MxrXD+WKpzfdC2AN8VSZw3WnQWNADc4X8nYTpuxeYv4Swdh5hLeZ+IXj83LwqAp2WOQeyj0wEsttXpqnZ94fADRaKTpKO/fqXT8xRDOjzsOx7xGzzl3782LOXKEEOFUyp55rqUiTt4p7JDOlTeplaKNlC3EE0jK5pKRbB2R06xsShPiBjbszqTVERMo9k/kh1sHpZLa/NRKoCm00U8wKyYmKaNCQSyeSmFooApzxr0VPTexle6QOlX52E5rhpz7SobOgsHGF7l+LFXYKWf88E/9NmU+1r4FF2EWw07BDHKq6EqmKfkv+3NtPAWVWgT5ssdKx7w0bwHAGC77Enl21DNdcH4ojTYduUPfUD6+g9W837spky9q5EoAZP3dke+pP0jLgt5iqZXClhjYjL0g5FJk0LQdubQ8pnv373h8ALFYpOnI5TwWIOqEMmtx5OZ/JqOjQyAEs6O3KxjtyK028ofBcnHQUXeWQI1UUdwM8/0j7507tlek+8xpKGxHLdmhh/0wqyccx2fdCwEAZOQMmULYf4qiQIsDtP4q5WPTZAENHkL2sPvfM8vJ72WgfyJCNFlAuTqA/P0f89uUefCJXyNjL1q0AZUB3SCLt6xYqs1aVLpB1BbRjbL3qA/tLZiVAB1uZqbQsUFfzgu3InL2mHZ9latKrftEtI9zEQVxK7XSMGKYmiqh1pCO/0kXFpekammlFkEuV1n0ezGMGFjGZXn7md0AAFZMY2gojHjc3fsGpbGmI+eyEmdPlE2hX4CFU5LD4RDS6ZiOyGlWJrxwBMxKwBgLuzI+HRY1D3zmgCvjuwE7JC5Yc9NN6bBYZTMnpjy3qVec+o8trxIb1j0/8DLyS8GsONKJArD9jcrHdoRg9t6rfOy5uFmf6hZ2pJodCZ5k//RDu1BvhNsWOzE2bQfgj+Ow6rH2NVfRZesbu5ep1xFSziEWAEaayop003ZYpSjKVXfujYvBrDhiUeLKJJ3SqFAhBIDatPLxHaTS53QhhnqduxiRE+NOlUTJAHKPqT/I5K0AWgVGlojIuV2DJdUwWZG6pgTaijhf5GrXzOOuHqsnygxmgQJYfAGkGb1d+WhHbpVRyBxDqTrgXg77SAO1ehi5kx724ukRdkwUtxujs/PcaVqs+tnCIf1EJi+jFHHZ52bLa/q2wTnnXEay8sDYmcrHd+qm9v9W+dizqJZkZDHAtQcLYNifz4y3E9x2YCeEEFHbqZWXv0e8TqdWek9+v+NA03ExSTY2iFo5M5cAqt6tnk8XomIBYP1GZ5ux5QwAPvRds+Kgiptn24gIi5yYcxcl5S1Rq2ZaIprjntiJLfsvUnNRzqg/yMmbxTEKI7OOOd+WqPupexWxiGwWqKv1cTaGERMCbwCQP+D68bqmbIIV04hEQkilFk7LnldPuYLRjtwqg50UIiTUSLoyvpGOiOOc6B+lR8Zkr7XR2Suihlw1thuo9xPz6oaGTwu2+uASWFYV1XrEtUiWE5E7MeHK+A65R/o7IhfAc4dZ4nrTrnMcP+3ZiA5U+3JBo++ZfhzMSoCQhtOAm64XC03MigN57yK+TjrjtvOcbXTDJvGc13L9uQQoddGRs2yBKBcXJKsi2seKdpTELbETqUZYF0436i5cS2WUjy0b8RGOgiPU44Zij2zjxPLDrtbH2YhUXNkax+XeeD1RYWCFUVAaXTRKqSNymhULMy0AAF1LXRmfGuKmYfbRSgibFhcCOj4yazs95UIAgJnrr7oyzrlIG2pNNyMk8P3AFiOTEeeS246cmXU3baV2/C5MF2J958gZw2KCEkTnx6m5avczJUS0FQmgU7riOfojMCuO0XgJ4bCYetiRKGbFAWu/Z6Y4KZ4btzjb6Pp1s57zCjOXcC3akk5HkckNuK8KyoUqslneCkD0e3MDO9Jnhi6Wx3UhyiiF2lhFCvIs4kAZRgzVagNWST5fnVFvS0OqTc8MeBKRozQKNi0zL8qTrh+va8ommJVcMvKrI3KaFQubEhcGY/1aV8ana2UUa6p/ZO7ZjFiBoptPmbV9cOuLkYyWAjmBXYrpjCXShub1xSuA5eJoNPorVZRN5AC458jRpFApc1sIJvP4reJ4bfY8Cwp009kAEEjnx0nVG2nfCRfKunF3VtA1i5O9f17Pv3RaTsxzCSDrQr3TIjjnjRRdAQBjTappiwetSBxbrLirEax6nWO64HY0R9zvGbnIOa4bOKmVoYvkFhejYJWts4453xYZHbRrEDMuiINIR5Vlyh45cjFMZetoNAhQcbGmslekauVSn4knqa8BQTtyqwxzSq6Ertu4zJ7dYWw5DQBaZHmDD7PEBXnslMtmP0EvgWG3U+gj2FGhGDo33cxI5YU642TWB6u6x3k/LjlAyeFRDEZqjgy4W7BDvwPgnkPqFmNXfBBAMCNyTl+yTacss2cTI5UXaaLF/kn/XhHUsiL61HL+RyIhjMalY338h97Y0ag3UytbMlNmNdDOexAdbEjnx4q7X1Pm0T2MDTxt1nFV0+x15k5pCACgIRf2GqcDWLzez7bFrgvE5M0uGMOFME9m8TYIKqE0hkaDI1uIAjXL9eN1TZnBnB5a8jwzjDiKxRqKxaqHhvmDduRWGbaDZaeRqIZuPRcAYOb6p1+ZSPcpILLphbOfCEdkGlZ/rd6zAw8CmO8w2I/ZoUc9t6kX2EHRFiCdcMcBImsuA03mXa8BYxkxQUj3mSMX2XQZxhLBrK9kVgIh0sDIZX/f9mucBuduyrFrFqAxrwk3ICOkuQQw9aA3ZhQON1MrWybpToTFigMzHvTQKhxGo0GQWSay0AtNR86bRRizkEI4TDAyMuTK+MnkAAYGQi7L/ksHu7oV0WhkUTVR57MtiB5vMO92xZrpQtRVJdBWnNTVXAKoB7S+rF4BajmwmciSzq3ze14FdXJKHDlCyFWEkMcIIXsIIe9Z4PlnEkLuJYTUCCGvVnFMTRdw7hSypte548iNbnkSCGkEcvV+McxcQtSTxYx5z4lJX8KdomqXYHvEDWWuw+DUgu1zWZ1RMeyA3R7Cpe/glLfCSBWaal0ukbGEaE6/ReQAEd0N4m+aWXGkkwWENj+n7dc4jlz2ERct0ywEyyVAU7MnVo4IUy3rjRGyDUKr6AoADA1FkIyWhC2Hv+u+HQe/hWwhigYPudpAG/BOwIWxEtLpKEIhd+qNCSFCWdHVlDlZE5yLLuko2E4PK0llaKncqRpziX5pqmkuZiSdyGTgqDDRr3CaLJNaKb+fVVAn17MjRwgJA/gMgBcCOAfAGwgh58zZ7RCANwH4Wq/H0/RALQdmxTESL2Ig5k5qQjgax1iiKFZY6y43y1RBvdLsubYAjmR/2fTYsO6x+33Na3AuV8LZvvs8t6kXMieOAXAvIod1z5EROZdTK+0oQLLu6nHcwLCjJgGD5TpXAaXJPDJWHI19+nbkNcyKg47Mrp9utkXx6Hdx8tdgucQs0RUbx8mfcCNNbg6Hvt7SDNzlmjKPUitNs+C6w+GViAXLlJatwQIAVpZlKhXFcwRui0wt3c9OJbNSV3lA71NlE1ZpCNXq0s6tjsh1xqUA9nDO93HOKwC+DuBlrTtwzg9wzh+EHbPW+EOZzZeldwEjJdMRy8zV4yihwhZM97FxVotLLkvTK4RNiQsXHZ6dG27IiJZ5LMCywgvAshzDsSIGIi5dPgYG5DnrcmqlPWlb547QkJvQZB5mICNynV/PaKogakWP/s4lqzQLUa6GkS8POYJYNjRV9jbae/TGRa/5on4yDhSOuW9H7vGm6IrbETn78224OwVjbGnnRwXzZOVdKnsQ72Vx52lsLApCmkqdymvKSlI9U7aP8ErsBBDtDlxtV9ELZebUsy+dWqkjcp2wEcDhlsdH5LaOIYRcQwi5hxByz+RkgKVP+5Uyk2mE7q5QOOmIlT5w5EqTS/b2oskCpgsx1KYPemxY97DpsEgbmtMXj6aklHE2oCtti8ByQ/L7cafuAmhZiXdRrY7l4oiE60idfpVrx3ALp46p7mJT4U6piu+sUxEcp1Y0wKJsKxF7IcPYevqs7XSUeOvI5R5f9JpPk0WxoMM9SH+WGTKAe2lztrORsT/fgze4chwb0yx6H5ErudAUHMIBWMp5CodDGB2NglVF/0HlqYjsXvGnMAzAK0fOVuKUAi48gLGXstkSyV4+tXI1KFcGSuyEc76Tc34x5/zi8fFxv81ZedhOy7C7uc/OpLjUB8548aicDC6eWgkAmQMPe2lVT7BcVKQNpbbN2p4ajmIgXIM53V8NzpkVE/V+g2nXjmGnd/H84eV37hJ78kjO+kvXjuEWRjIvagjZ/X6b0iS/r6sG604DeI8bP692nOjTHKEtY8NGWKUoytWwN4bUc4te8+lwxUOnstbWhLQXHGfDfk/7Pq/+IPVm5sdyzo8K5tXInfi5usFbHJd23othxGT0CupTESduFXYURgF4k1o5MjKEcJg0lTgLx10/ZsfI1gPAco6cnVqpHbl2OApgc8vjTXKbJmgUj4qakhF3IzJGqih+aPngR7EqbD+sUhTGYqmVMnpp7n/AS7N6wkkbGn/GrO0kdZrsodVfDc6d9Ln0k107Bk0VUG+EMX3YPYddvI88kOjD1MpUAYXyIEr3f8RvU5pkH50nZ98OTmQ6gKmiK5Z6rdm8ff3mWU/RTdsBeFfHBXCwXAJGav4Ez0gPeNpuxvlMXJykUxptvqesC+nER38MQGQ4LpeOqAJKY8hkSuBcOv5Hv6ducJlS22iQtiT/KY2CZe0sBcWpiNPiXsQKaYRCBKOj7jtyhAgBEVaQjtz0bteP2TFlsyUlefHPZGgogmRyQNfItcndAE4nhGwnhAwCeD0ADySfNB0jZZeNUXcUpWzocEXcoPKHXD2OCthhoVy3WLopHZENOU8GcGVqEZwoxZZXzX5izXNEZCWAohVL4byfza917Ri2I2/ucU/Rs5voUVBwolj7fu2zJU2Kj34dxcrgovWti0HXiN5h/dYfsq8pHmmuoq/fMOspun49AG8jpCIzZX6aMN24HVP5OGp1b5KVmBVHOMxdk+sHZCqiFMxAJav+APv/GwBglYZQqdQ9SK2MolZrYKYiI2HTChdZT94hhizG25L8p9RFBc2CmD+xInVVCXQulEabUcaZIDpyzGn5sNy55pUwjt/0fLXinNcAvAPATwA8AuB6zvnDhJAPEUJeCgCEkEsIIUcAvAbAfxBC+idPbQVRmT6CmWIMlLp30wCE81OsDKI4+YSrx1EBOyRsnCsMYmOMRcR+mQDVBi2DkzZEL539xNbXyIhcf0UiMnYd1Bb3OpfYaVbmvnvcOQDnIhruVgsFl7EdUHPKZ0NaYAdEmw2j0xq5C98sXt9nv4O+xtrb0oR7dNZTxgYRoTM9qsF0RFeMkXnP0c2ifm8q703WAsvFkR4bAiHuTdJnTcy5C2UVU0IF2StRDkfEoigzG4oKF1knfibGztt1aW1E5NxyFKRStlk0PKmPsxGOv1zksjzop9gpZRNm0QAhmNU+ZCG0I9cBnPMfcs7P4Jyfyjm/Tm57P+f8u/L/d3PON3HOE5xzyjk/V8VxNZ2ROSmUF6nh7kq0MSZSHtgx9+qNVMEmswAAOrbwjZSuGQUAmNMLNwUNIk47hfCcmpP0hX0XkavXG8gWouL9DLk38XYiTidPunOA4okl1VGDjtO6wnI/vadd2JRIEe/UOR55ypsRIo2++h30PTP7F61roevFhJxZcaDg/j3DcSi3nTfvOWOj0Gnz6txgVhzGuDutgGwobanjckM4vCxq4U1rDID7/c6cptU1kZKrVC0yK6J7LC/eS1s1cm6l7tXyji1e1MfZUBprRsddrBnvmgoDK4xgdDQ6r33IXOYpnK5QAiV2onEXNjkDAKDjo64eh9oXWjP4k1ZbwZGmF3YS6OYzxX4BmsAux6IOAyEyItc/E9ipqRI4D7mekuhEnLLuXBI5u8eT1h9uYci6siA5P/ZvstPPNDQwgHSyoMVOvGTyV2C5OBJDZUSjkVlP0XERyWFWArD2um6KU1+zefu85+zWIF5Fa81cwpMIlqvvpy4iHqy8zjmemzgROX6h2KAyyihr5Fh57axjLWVLPl9FqSLP6frCmT1d0RB9eEVjcu8icoYRgzkt30/phGfHbZuyCWYNt+Xcupr6GiC0I7eKYBlxYTDWrXH1OHSNUBxlU8FPR2QzItJGN2xa8Pn49udhaKDaN5O+cqki0oaWaXDOXeq9oxomL8Jp13sfypumS0Iw+QN3oFKLuP4+3IKuE7+PIC0COJGVZOcTuWYTao0nTPx80YUMRyY8Fwdy+1w3pVmrt3nec1RGx0SrDXfVnYUtXjhyUVj5Bio1t1RBRZTPrJ8BwP2InKNGGJalAyol8qtisZtVtsw61uK22A3XZVQ1t1+dLQ1Znz9V8zgiFwXLctGer+JOa4eekKqV7ZxnImKqHTnNCsKub6Hru2rz1zbGpm0AADYdWXrHAMByclV/2wULPk/WvwBGsn8mfey4TJ9dJN2MJguo1cOYmVLcvNQl2ElRJ+B2JGt4dASRcN1pNKqazJ7bAbj/PtyCXvpOAMGS7HciK+Pza52Ww+l1Wc4qtkqzIMUTMHML9/yLRiNIDJXF96FSSn4hOG8uAMxpgwC0pO1ZcSB/wF1bILMnPFB5BNz87YpFQRZ5mjyeR++nsmGZPbugIdLwWF3USi4vpmH3XZOpq5O3qzRGjO1BS4dWKI2hUmkgXx50HNtAUWYwZ9qLUlIaRTZbRq0WwH54CtGO3CrCdqzohvWuHoduPRsAYM64K6qiAjOXQHSgivj25y28w6AQqAhSStlSsEOPAcCitVh2LZh56HHPbOqFzGFRbO12bRlZ87Tm5N4FmF2f2qeO3ODZr0MqWhK95AKCE1k57/Udv9bpdRnEYv4VSWXJ1GLn+zDvcNmMqeZ5s0BtmjMxzyWAGRevkdW8kOtvM7LQC857cnkxkjVOa0uAoldGR4cQChGYUwrTGG1kLzhWP7UtyX/7u7N7val15IBiJYJisea5IwdIx78WsPtVowZUs2AzkbZTKwFRorGS0Y7cKoLlRCNoW+7ZLdLbLxbH64MollNPNnr+ovs4kwwPUm16he0VqouLT5hkAfXe+70yqSfYgQcBdC5o0TGnvBXURSEYNiMutf0qdgKI7yBQETkrgWS0hMHz/7rj19JUXryX6eAr664UxLV24TQn5/uQwhmukdu7ZA+qeHxApNJbceDQd9yzg92LQnkA5eqAdzVlLi/CmJkKxsaWF6DolXA4hLExt9QiZXSxMIqxseUl/5sKmqKcBDOPKLWGyfuR285+K82odBJoBGzOI1M92XSozYic/H5WeHqlduRWC/USmBUX0afhMVcPNZiiSEXF8dBwt/l4TzTqTan+0OI/BaeeJoj54nNgB4Tq1lI1coCLMvuKYYceBeBBJGvjla7WTTmTx0X6FfYDQasrc5qBxzq3iSYLMK0E+GGFzYQ1SyJ6ty08MTSSMuuBuxBlaSX7CMxcArHBCmKx+UrEhJCmsu/kLe7Zsee/WpqBe+XIuRyR8zAF0G01QjZV7SjiY5YUt0KQNexeNIyfSzOCmwQaLv8eO6VsivYhhfZ+N857WeHKldqRWy3YBaKpPOBizxobIyVvhpUANZ6aSzXblOpfAmpPMkourxYrgE0wAACV4h1zsd8rO3rAK5N6gpkzCIfqGI65fCEmBIaLKbROOpfLaUdu4vwOAkIvDdaNVB7l6gAKh1ycrGsc6g2CqXwMlC58/tBU0ZtFgiM3Lqse6/TazB9xz47JXzRr9VyvKbPTRd39fE2z6FnkyO3+YO06pc5nW5FiadVpNQbIcVjem958rTQd/xRcaVfRC2Xm/G7aOdccR3uFK1dqR261UGZiBTvlzQntpGHJppaBRDq3y6W70WQeGSuOhnXII8O6h2XFXzq68AXYSIkVcbNPGpyzmQjSySIIcf9SRW1RGxdSaO2bT3pz/7bQFJ9Pwlkt9pVGHSwX77gZuI2zoDEVsNShFUo2HwPnIRiy4fZc6EjDG0XUzK+XXQAwbEcOCy+GKaF0YtG+eqqZl1p54leuHIexkmeRI8OYIytfU7vQ1+57GRqKIJkcAKtuFRvqiuzIPCTsyAshJ18icoXORaRcp2x2FKV0ahh1aqVmRVBhIvq0SKRGNU5dWZAdueJJGaVcelXfSOXR4CFMHw2+QAjLDcn0WWPB50dGBhEO1Z22C0GH5WLC0Q65v1pvR5G5C01QmRVHKlrC4NlvVT62V4jPJw7MHPDbFKB4tKeInOPI9VF/yH7GmXxtXFgx2VhrYCofR63u8pSklJHp9IsvANBUxf3IMy85jpzbUax4fADRaKQZ8XzsX9QN3rKow5iXEbk5qZWZ+3ofdM57adfBpjTWrJHjihZIJ28Tdkg1TC8jcul0bNaxUQmQwnWZtdS46ho5G+3IrRaKx8UNbMSbSIxhN54uuJie0iON3D5k2pgM2nVN5j4FNwuXYVZsSfEWktwqU+S8uzH0QiYfE99PfKvrx7JbM+SOPqx8bJaTtZgbr1I+tlfQZAEzxRiquz/ttylCtMJKLDkhXwqalDLjAVLhXLFw3tK7beF+nXTzaQCAqbzb16XKkqIrAEDTgx6cF9wRsvAi2kJptPmepu5WN3CumaViml7WyNmplbJM5PC3eh+0JS1SOHLtfS+UxmBm7am0olTE7P3CjiJ1juEVkUgIo6NDMGU0ENZez469LGWzo0h2MjmAgYGQrpHTrBDyh0T0adSbw9FUWaze5w96c8AumD66Bw0eWjbdlMp0RHY0uO/FxhFv2XD1wjsYz2xGS/sAp4Zx/FmuH8sRgtnzG+VjOym8keD3VlwM+/PJPPxdny0B6gdvRrYQ7T4iR8X5HyQVzhVLOdOcfG1YxJGTSspeXJdEZsriKbXGplORsWJoNNytJbejfnYExE0ojTWbVpcm1A28598BAIXygKcy+ZTGUCzWUKhI51RF2womFmqLlQEUCu2/F0qjYBnFjoIlGouzAkUqNYjBQbeauS+MOF9kRG76IU+PvSQV5rR6aCf6SwhxvZ4yCGhHbpXQyB0R0af0oCfHoyM1sXo/Fdw+TeygiLwsl25qSJFPlglYT5UFcByfTa9YeIdtr20K0fQBThrUqX/o+rGcdLu96hU9lxNY6Ads+03Vk5YumHr0m+A81L0jd5boG9kvv4O+xtrbjD6tG19wF9vBE8qV7tVgNmzRlbHFF1ToplNQb4QxXXQ3UsasOEZSIUQiHtT/0qgjnIGGwvKKEz8DAMdJ9Cq10ql9KsoSgryC+vXjPxFjWp2lMxqGC46CdLbNouFpfZzNrPPFzX6KnVI2YRbEd95+xNRdhdMgoB25VUJ28oSIPnm0YmaMidXMzLEDnhyvG9jJkwBEof1S0HFxYTez3q6KdYMT+Ykt0mKCXipV2fpjAsusONKJIjB+ievHciJyJxWuWANAVdTDpPvdkZO1pCznf10Zm8wC6L4vH33q34tx+iQy3dfk9zcjcsbCn7exYQMA2TerrPj310K2EBX3wU2nLLoPdWxxWa7fioMa3lyH0+koWH5UPlKoRCgzbprOjzfXBkeQo7pZbKgqUMdmvxZ/ZMSnk9RK5Y5CLSdsKVJP0yptREROnv/5A54ff1HKDKwwhkRiAEND7WW3UBrTqpWalQGbED3QbKfEbWhaXATNk1lPjtcNLCNWJpeLUtIN28T+AZjALseyAhDhsOyTFPwJbLFYRbEyKCbrHrTMcByVacWXxdwjbdViBh1D1pWZAVgEYJb4zXbbKH5gZATDMY8k71c77GEwK45IuI7h4YWvtXSNqMdhVhzIuVeT40j+bz1r0X0MGTV0ve+alYAx7s1vidJYU7xCJdLhMGVkzMv2AwDAGmeLDSoaVxekU1oan3WM5W2JYmqq1BTqURFRrjdreH1z5HLyt1o86vnxF6XMwPLDHS0YuBIxDRjakVsl2CtGdO3CaoaqoWtERIhlAtZQsgU7wrbcZzJyyhVC6dEKtkBIo8GFw7DM5JamhIw8D4KM/BJkZApft5P1TjFkiq1qIZj6ibt6qucKCpTKyXYAFgEcFcQePlNRK+q/U7riOf59J7WYLLIgM6tpdW6fa6Y4ineL1OoBAJXOlZlLuNKKxMbMxT2tKctMc/VZq7KBO6tsdY7jBU5ELiwzNVSoRVbEYjcrb5LHaF+1EgCm8vK6WGa92yLfD8s2fEmtNIwYzCn5Wy0HqH9u2ezYudU1cpoVgzkl0imMDQvLP6vG2ChSHthMcE8xW3qcbll8dRYAyOaXBa4Z8kJMs6xIG1pmcmukCqjUIrBmgp03ziaF7LFXDtDI2ChCRH0/q6knbpX1XN2lAQYFeuEbAARD6dFJ1RvtPt3Z6XVZXdk3ed+x9ogepkuc/8nkAAYjNXGNnfi1a6Y01TMXvw/O6rvmYlqZl9EWSqOo1zmmC6qdAuEZMvIkAF7WyInv0awvfe/uiLq4DrD66fIY7dfIAXYDbQCZe3u3hYv5muhn50dELgor30ClFgYqipqcq6DCwHLRjs4zu0Yu6AvXvRDcWbZGKXa6GF2/wZPj0a1nAgDM6SFPjtcNLBdDiDQwesrTl94xvl6s3gcgErEUmaOi4LudBucAwI64t/KtAnZMtK7wygEKrb0CNKXeYWcHHwTgXWTRLeIX/hVigx702GoDJ0VuW/e1k456az5A8torkbq1bMo3IUQ2nI8DJ3/ijh21UvO8WZtedDd7kmjmEkD2UfV2NOQkPRf3sKZsTlNwxZjhSwGIWjwvsI/Dcgrr1hsyCtYQjlwnNXJASwPtkz9XYAxHrR5CNlv2SexEvqdcHKgFpI9cow6UMzBnBjuOyNVqDeRy7kXX/UY7cqsENiNrStat9eR4dPtTxHEDnI7IrATGEkWE1j1n2X1FOmLcWSkLIuzAAwCWj2A5oh57g90Xjx18BACQXqLnk1JOfRuoC/WDdnpxv6dWIhYLTOsKlotjIFxD6vIPdT2G+K4TjtS3xi14s4/iEjiprkWXeo9aLaIrS0yOh4cHEQnXxb6HFPQnm0vhMCq1MHKlqKeplYB7dX8sN4Dh4UEMDHgjCDY4GEYqNag4ZU462KW1HYppSD2AvFwcUNGcHM2eil5FOVtxUletuFOv5zvVLAAONh3qyLl13ssKTq/UjtxqoFEDs2IIh+oYGffGkYvTLYgOVKXzE8CQtmxSS1N5YHD5m5thR2oqWfdt6xIm+5+1M2ECALZPYWNYF2D7ZSTLq5TE9c+EIesHVeIIc/R5aiWAwLSusPslEuPsrscw7MWZY79QaJlmIcT3tfSEUJxbcaDh0oQrtxcsFxdZGKOLTwQJIUgnZAaGeZt6Ow59FxnpUHknDmJHsNxx5Eyz6LnD4ZasPJvuTH3TcZJLcm6lqHeumUvOGt9Lmo5/Uo2QjArKJuoNguxMZ5+Jve9KVq7UjtxqoDIlVkSTBZCwRw2JCWlOlKoz3hyzE2rLp/u04qT9qChkdgkmWz3QZSJYTkTucLBTytgxO1XUo0gWIa7UQjo9tFLBjea2S2Aicgr68tFkQfS6PPC/iqzSLATnUqFxdOnpBk0Wnd+KK5y8pZmFEVpaBddZsCgcU2/Hwa87UX+vUyszeZcicqzoucNhGDGYpvp7Q6d1aU6NXEWWrUjRlK6pyVo9Ow3YB0fOSS+2UgCve378BSkzTOVj4LyzBRDn+1nBveS0I7caKDNRbJ7ydkXCmRRXAuj8lBlYLuE4Ncthp/3wvEtpPwpw2ikML60USpMVuX+wL2yZbA3xoQqigwoUydrEWXyoq1NbddK51q5RNqZfOAsaPuP0S+wB2xHMsAAV869A8uVBVGoR0A1bl9yPjtTcPbeO/QDMird1zadJuzWFwubZNrlHPZ+kz4vIZdUu4vkTkZvTv62hxuHo1ClNJAYwOBhu9rSr9Zh5kRUNuO12Eb7WyOWHYQva+E7ZbKoVdxGR06mVmv6mwmRqiws3pSWgqbxYYS2Znh63LcpmRxE5I5VHpRZBfiK49TRsJgJCGhgdWfrCPzoSRog0YE4PeGRZd7Cc7CEH7+y0Fx94/rCyMZ0eWme+UNmYfuGkGBd9XJwpTzsZBr1A5YTe6ZekcQVn8rV5+5L7UZoEs+LuZeIXDrd9zafDFffUWWszLbV63jg/Y2NRENIidvLoJ5WO70dEbp6sfE7NvVlE5Np3ngghoDQKsyQjcrzHVEQmUr2bjcl9rJGzew8GQRtALr4Dnaa+2jVywV647gXtyK0GShMiFWnY21xnIyXTsIoupKf0Sv5Qh6mV4oYRZIEQlothLFFEeGTpCVM4sRFjiSKY4n5pqmGWENdAZMyzYzoO+/GHlY3JrATSiQLIme9UNqZf0FQeU/kY6o99xT8j8ns7+u0uhv2bDkI7hZWM47SsW7fkfsbm01FvhF2QyJc0CmC5hOPAL2kLHVQuetSk5kTGvIpihcMhjI5GmxHPiVt6H7TWXBju1PlRQbNGTqbJHv1+94PVmpP8bpxS0UBbfra9Oj1M1K6zwpgzttfEYgOIxSJgeanE6UaKcafIxXegs8/EWcTQETlNX2M7LSPehshpqixWY/OHPD1uOxTN/ShWBtt35GQ0kx1+zE2zesKZ3I4/a+kdjSuawgIBhuUSSCcLwOg5nh3TPh/MPep6WbFcXLyPhDdCQ25iJPPgPITsg5/3zQZuPihTxXtMrRwRt78giLesWKrNuje6YcuSu9KNIqLhpmMtrpHLr8zTDaeIVHqXbplmF5GFXqE0KsQrADWLq4duBAChwJmreJ5aaRgxTE+XUa3LiPqJn3Y/2IxIZ6w3Qpia6twpNYwY2JSdjt/jSZPbAwBgBYqBgRCSSX8yZwwj1ozITe/2xYZZVFhX6abOIoZ25DT9DM8fgZlLwEh7Iw1sQ4ermMrH0JgOXr8yduAhAAAdbi/d1BiT0sRmcOtpHEduy6uX3nHLq5pS3wHGeT8bX+rZMe36GbZHnaKniuhRULAVUc2JrG82WLu/imo90vNnamy7EIB7kuwaAPkWyf/1S0fk6PpNANz9PpgVBx1dfqJtbNkmIvNld9JumZVALMoRi3mYNk5bJuZ1BZPaAyIqz3LeponaOAIuBSn7b/WwyHpcOIFTeeG8dx6RU+golE4AAMziOAwjBkKWFuZxC0pjMC3bkVOXodI1ZQZWNAA0G8K3C6VRrVqp6W/y7JgoNvdaVWqUo8FDyB59wtPjtgM7egAAQIfbE9JwesVkXTJIAcySkR960dI7rn12YGTklyKTlw7Q9h2eHdNR9Dw5oWZAzpvvYwXgtK6w/KuvZIcfnWVLt9Ar/kGMpx0592jt3bYmteSuxsaNAGS0qqJe6bhYiYgsjLXGsvvS9S22uACz4qBpH+T6Zd0VoEBAavp3AAAzJyb7foidAAArywWCXmrxJ28XY+VHZ43diS3KHIWqWCxmRcOXtEobEcGV578VAIXrsgmzyyilYcR0jZymv2ET4gJHjaSnx6VpsZppTgZP7MQ0xYSdLiOJbUPXiRu73Vg9iLCclGRfbgUvMtBscB5QOOfIWDEhdhL3Tu3RcVSmFV0aiydlM+T+7yEHiLpXwN90RDZj29LbZxrfdAaGBqruSt6vdqx9zuebXsZxoWtETRDLxV2ZODopnpvPX3ZfupaK17jVQNuKg457fD+msRZHTgFlIbPPiqPO+F7iiFg0ThMb6j0s7ORENI8V6ayx27clhkympCYVV74Plh/2RbHShtIYmCWPX1An/tU1ZSY/k86jlPOEcVYY2pFbBTDbaVmb9vS4dFwUyjIWkIaSLbCs+EvHh9vaf2zrxSCkAWYFVyCkE0l2w4V+aSqZni6j3ggv29xcNUZKnKumKiGYzG+V9DwLClQ2UvZzEcCZkPf4mRLZNzDICxp9z7GfwbTiGI0XEIks00fO7vdkxQFLvTqwExnctHnZfY1xsS/LJYC6+vsXyyU6Tg/rFUpjahciGyLCYRZFbaMfNXIAYJKniA28hyhjeRIAwCpiwbZTp9QwYqjVGpgpytfVeoj+NMT7YDMh/yNy07Icp3jSNzscyiaYlezKuVWa+hpAtCO3CjAz4sJgrF/v6XGNDbJ4PevpYdvClhynG7e1tX9k28swGi8F1vkpF8vIl4c6EG/Jo1QdQMHytiVFuzCZppJOeOsAjdJR6bCr+Z4LB29DqTqwchy5068E4K/SozMhT/XeN8px5Ore9SpcVWTukkqRy5//o6NR0RYllwDYQ8pNcc6bjcs7cvYE2szFgfxB5baYVtyXCJZlVVGpqaqVF78/1jjTGd9LnNRKYpcS9BAOk73fWHUbgM6dUic6aIvJzPRQTiIbcHfamFw1hhFDJttAvUGAao9NzlVQYWBWrKsFg3k9B1cY2pFbBbBpEYa28/69gm4+Qxw/gOmItvQ+PeUp7b1g7NzANENeCHZMFEi3G8FyasGOqp+kqIBNiBuH1w5QeN3TkU4UlTns7Ik7AKDn5tVBIXXFdRgI13xVPFXZYN2pFS0ET1l3RVDJtC32EwoRpG0RpuPfVWtHo7k4Q9ctf940J+YJYEq9Yh/LJfxzfBT/dln48lnje4XzHRXay6pZkoZQnGSNs+XYndfIAYCZk3WgPbV34ODcn5YOrVAaA+dANh8DquprVjuCc6DMYE4PdnWeURpDPl9FqbQyF+y0I7cKYLLx83J9fFRDt10AQGGamkKYFUdiqIyhLVe19wJCRF+8XALudaztHnb4EQDtOwxOLdj+B1yzqRfYYaF06nVqJU5/u9L6QSZFUzx/Hy5BkhTU/h34hH3ssaf8ec9jOYszQSjmX5HUOkr5diKkOcUCWaVjTXVFY/lzV/SeaghbDt+ozo5KDo0GwVQ+5p/jo3gx0qysRyIxgGg0onTc5YjHBzA0FAbLqMgqkVGw6mZEIiEMD3e2+Ow4yUXZ83TyVz1ZkysOoVZreJ6u2orznqw4UPP5/lWdBngdbCbcpSNnNwVfmemV2pFb6XAOlhMncdrj1MrhjecgEq4Hsq6MWQkRlUotn2ZjQ5N5mFbcScMIErZcfrsRLCcit/e3rtnUC5lDsj2E15GstU9VWj9oi6aslNRKQPSSM31OrRyNFxA5+409j+W04WDBXNBYCTArAZpqL62J2r+9uqXWiNzelmbCy0c5wuEQxuzI/MRt6uxgDyBbiKLBva9/ak7M1f52WcafyBEhBIahUC0SAMsNIZ2OdiymYTtctjw+co/3ZId9ffW7Rg6Q50vDZ52DsimilNnuUnid72eFpldqR26lU51pTnyGvL0okHC4OVHye0WnlXqlq95eTiSiwlwyrHvYQdvxabNGzo7IHXzENZt6gR0U6Ux+OEBKI3JyEaOdJsT9gvgd+Jdaado1Vwr6K9FUARkrBr7/qwos0ywEy8VhtNnmxXB+e4qzHtiDYFZCZGEMtRc5cqKDpePq7Nj3n44j5Ztcv+qInFn0XLjFRrUaYbdOqeP0lOVieblLcZC6TPG0UnLcIETkkk7qqW+UmYxSdveZOO9FR+Q0fUmFyYmPPycwTcoalHKAnJ8KE5LwnTpy9o09CApOc2CTWQAATbXZ4FyukNttGIIGm8iAkAZGE96ft07dVL33m5dTlzM21PNYQcFvpUeVDdZpsoB6I4zpk8GsFe13KrUwcqVo24rJdLjiziLBkRs6Pm+MlB2ZVxiNmPiFE+33vkZOOhv255tXE/X0s5ZLqBG2LJL1WPbQrcDI6GgUoRCBWRZN7VHNdWdAXtTqNh05/2rkHFVQaxhAwzc7AEjFSnHedit2AmhHTtOvlJm4gbWZ2qIaZ9IXpCiWvCh02tvLSOWRLw+hxNRLY/cKy0pBm9H29h8bFvuzGW/rGtqFZQlG4yWEfbhCOeldhSM9j2VPmtJt9K7qFxxHt+rDNaXeWc3VctjjmDOqlPw0rTh1aVL4ajno2BCYlVBfhjzzsFzQbP+8oamK+gWL0vHmZ+J3auUTH1MyrojI+RM5mheRK0/1NB5jxa6+l1CIYGwsClaRpRr1Lq+N5i+FHQXRuikQEbm8AjGZXimzlgWQXmrkVk5mTCvakVvplGynxZ8cZ2NYpmEFKYpVONZVb6+mQIh6aexeYbkhRAeqiI8Ybe0fSazDWKIAM+ffit9SMLsZOPH+RmbYrRlO9P49O6I657xVgWXBwBYI4Qe/5/3BC4dkfauaiJxdKxpUNdp+x6lLW7+hrf2NTdvFb688oNaQSrbjLAyaHlIv6sPLLbV63l7b4nEhSOKc60e/3/1gLZ52t86PCubVyJ3oQi2y0Wxj0kt00TBiTbET3mVrlMk7hR0FMY6fEbnh4UFEIqGmI1dRXLfaCRXWzG7pKvVVR+Q0/UzxqHBaRnrvudQNNFkShbv5A74cfyFq0weQLUS7qJETaYvs4INumNUTjuMz9uT2XmBcIibkAe2Ll7Fi4vuJtTcBVIl9XpiP/6bnsTJ5OXnc+PyexwoKRkqmI/72U94ffOYJOSFXFJFLiQmpn33xViyNenPytaG91jd2jzf130ddRnLbn8gZm7a7IOrDfauRA2Qqot3rrJf+eBlRw1yrh5DNln1MrYwhkymh0ZCZJce6WFySmRdC8r97p5TSKFjWdnC7TEXMPQYAYAUKQoR6ql8QQpBOR5uOnLXHN1vsZuBAdwsg0WgE8XhEqTBOkNCO3EonfwhmLg5jzJ+vmg6XwXJx8Jng1KBMHXkMnIc6Tjc1RkTBvnnSdMOsnhBR1wKw8er2XrDxlS01IMHDeT/pyz0/thOl2f/rnsdiOZnCGwlmCms32E4UO+59inFl77dFzZWqGrkN0nHwUbxlxVI61hKR29TWS+gGsXDjRoSUWQnQ4fbrXummrSiUB1GqqP3tmrk4IuFGxxL3Kkino079FWpd1nEBwBOfBSAW3AB/nFJAOE+NBsd0WTobU/d1PsjJ2wEA+XIU5XK9a6eUUgUKmtKpNIsGxsaiCPtRW9ACpS2O3PTv/DOkzMBK4wC6P9cMQ60wTpDQjtwKpzJzBFYpCkr9EVswRhuo1iOwJnqT41WJo4g43Fm6KR0T6T4s4090cylYTqaKrn9Jey/Y8MJgNzi3U19P+QPPj+1E5E5M9DxWNym8QcdJMc5575xmHrtJ2KAotZJe8lcAdGqlK+T2OQ6ysa5NsRPp8AmxIXXlAPUGEVkYHazm2+mgqs8NZiWQHh3oWOJeBZTGwAqj8lEPzZHNXwDwX12x2b9trdhQPNb5ICd+JsbI91aXNk94pRsqosaPFcd9rY+zMYw4TDuCO/OYf4aUTZgySjk62t1cVtRT6ho5TR/CjsuGxG00QXUD2/kxjymUcO4RNiEulu0Kg9jQdaL+LIgCIY4ARKzNwuTBaLAjcrk40skCsPZKz4/tROSmexTAqJaUKiwGBacHoQ/nDpsSN2JVqZWj512FEGno1Eo3sPY3UyvbXEU31q8BIJ0nhen4U/mYyMLYfFbbrzGk0qbq85zl4qDjSaVjtgulUbBie071khRl5Eg6P35F5BxlxepWsaHWRR3XtKiFZgXxuXTrQCmJ+NTlIllxzNf6OBtKoy0qpwf8M6TMwPIjPUUpVbeqCBLakVvhMFOkT9DxUV+OTw1xwwrSD4hNiYgaTXd2oaRbzhOvt/y/wM6lq754AY3IVSr1ZvrcgGLRgzagSZlCm+txcpJ7ZEU6cnRY3Db8SEdkObEaq+ozDbU2ftaoZfK3MHMJxAYriMXa+x3bDh/LJQBrrzJT7Fpgunl7269xbLHiSqODzIo790WvoTTWTK3sBekw2Q2wfY/IcakKzLtoGVMSUTy7B1y3TimlMRSLtaZQD++iTk423mYzg4GIyFEaA8vJ99NNtFMVZRMsn+rpM1ESMQ0o2pFb4ZhMXBjslU6vMTasA4CWImD/sSNqdP36jl43tO2FSEZLgZv0NeoNZOyasg5w2ikUfW72OYdMRm3UpVPS42KVuVchmPqJuzCVj3Xc5iLoGFsuAOBPOqItPtGJaMVyOE2oGz73SlppnPxJxwsZabm4ZuYSwJS6VC6nVk/WRLaD4Thyid6EQebZkvBVrj8zVe69vQOXi10VEQnzs0YOAFjkEmlXF2UP1Rkxhozq9VIjB6ApJlPowvGR9rOMfwIyrQgBFylSWp70z5AKA8vFevpMdERO07fYDhRd355qmGroxlOEHQFKR7QjanTrOZ29cPyZsi9esBy5aTaFBg91ocIp0ziOByftFQAyskm5X5GsyPpnYDRegNmjo5J9/BaRzrXCInIjT78OIdLwJ7XS7sGVVudEOr0uSyeUjamBbBXRmSM3MBDGSLwovo/jP1BmSqdtEIDmxNzMJYCMOqEHMxf3MYIVRb3OMV3o1UmQaq+40BnXDxznqdKemM6C2FGwxhmzxuzcFulU2hFP1o3qsfxcu2xMrhpKY6hUOPLlQaAy7Y8RnIuIXG6opwUDw4hhaqqEen3lLdhpR26F0230SRV0q0hHNGf8X12yYbk4IuE6hk99bmcvHBhsrt4HCHZEqAd2GsFyap32PaDcpl5gx8RKpipBi445/e3ie+7RUWGHRe3FSnPkQmvPQ9qnBQ2n5uqMDn+7S0Dt79rap2xMDUTPtA6bcAMtjnU3CoQLUc46v2Vj7UjbL7OjgywXBw5/s3c7GnUhcW8lfHd8Mnk19zCGCzE0FEY87n0KPACMjAwhHCYwp3oQbrGjYPXTADS/905xIri2mMzJW7sap1SJIJ+v+hblbMWpQcwluqs/VEHNAhpVmNlIj6mVMXAOTE2tvPRK7citcNiMrCnpYCVSJWNbnwRCGoFyfuxVYkIv6fi1NFlQrqjWK2zf/QA6dxgc9cE996g2qSfYoUcBAOmETw7QmkuVCMGwjDhH/EoRdRMjlYfpR42cFUdssIL4ZR9WNqbjOGR9VGVboXTauw2wa3cTQDWrxghrb1dNuAcHwxiOyejg5O2921E8gnx5EJVabxPSXnAiWIp+u+Y0h2HEfFHgBIBQSPY666n2SUbB8iMYHh7EwEB3IldNBU0pJpPtrt+sXw3jF6KZLhoH6j45QGXR7olN9xb5dSKmK7BOTjtyK5la0Zn4xFLtr0SqJByNYywhb4aNANRiySa1NJkHwp2nezqTvgpzwbjuYPvuBtB5BMuJyB16SLlNvcAOiBugnw6QCiEYW5gjvcIicgB8SzF2UvUSVNmYzm/6wNeVjakRMCsOI1Xu6DViESUOQFGbl5xw5CLhese925yFOxVpt4d+0EwN9jG1ElDXcL2XBtqqUFX7xKYqPUd8AMAsSD2C4uHOBpDiKM3G1/5nMTnnSy7ppKB6TpmhVImgUOztd+M4pSuwTk47ciuZCoOZS8BIFQCfVsyAlpthOeObDQ7VbE9KgiLlLg6UgtMUPHNc3DA6X/kW+7PJHhrDugA7KlLcfEutBJoRuXr3iw/OymoyOEI/qnCcH49x+iUqxEjlUawMonDit0rHXe00GkSIMHXYw5SmSmoXCY5+T/RuSxQ6jhzRlFyEhIJJ7MGvOe/LT7EToEWoqNDbb8k0i76nACpz5FixJ+fJScWtyOwn2ROubYpiscDv3nytOOdLPtWdkIwKysw5X3s513REbhkIIVcRQh4jhOwhhLxngeeHCCHfkM//mhCyTcVxNcsgfwA05e8KhDPpKwfA+Skz0cenSyeBJgvIFuKozahTMesVlhHOBh3urE6ADgsHw8wGaz0nkyljMFJDYsi/9FUnIlc40vUYdh0KXT+uyqzAIFIrE0Cth9qUTuFcXs/URmrtyC+bXnkOt59kC1EhwrTxtI5eR0dDaltbTPxCXPO7WAAwhivqRH1mHnXG8q9GrqXuDwAOf6Wn8YQoh7+RI8OIwTRb5ji17ibqvQqMDA6GMTw8CFaRyqi1DuddpihxYIXeGpOrxKn7y6dgp6B6Ttls+d3oiNxC9DyDI4SEAXwGwAsBnAPgDYSQuXKAfwxginN+GoB/AfCxXo+raQPHkesstUU1jkCIn/K1NsWTzebZXWA7gJkDj6q0qidYLgJCGhgd7WzyM5BYI2tA/E/haIXNDIAm8yDEP6VTpzXDye7V6lgujhBpYOSMFyq0LBjYizP85F3eHbQy5UpfPke91Yeav5WMI0yzsX3Jf0AoLOdKUVRq3dUqzaM00fUCAE0PqYsO1qZ9r38aG4uCkJbUygNf7Wk8xoIQkZtTI5e5v/0Xt/RhUJEmSmkMrLxWjt1hNod5h7BDiqX47SAD4nwBANMaFhu66Y3XKxXW8rvp/jNxhFtM7cgtxKUA9nDO93HOKwC+DuBlc/Z5GYAvyf/fAOC5xK/q2NVE6YS4gXUYqVENTcmGu/lDvtoBANw6ALOH9CyaEjcMtj84aVgsF8NYoojwyCmdvZBepETUQzXMionvJ6ygcW2XOJP7Pd07KsxKIJ0sIHTWX6gyKzAYqTzK1QHk7/+EdwfN7ZX1raodOSk/HiBBppWAUw+2oTPFZGPLKbNe3zO81PV5QzduV3he1JRMSHshHA5hdDTadORyXQj8lEQqfqNBkMn4L5Nvp1ZyLqeUR77V/ovLzfRHFdFFSqMwp2UdZqdOT1bUqrMClWP5H5GLREIYHR0Cy0uNhW564/VK2WypG+z+M0mlBhGJhHREbhE2Amit6jwity24D+e8BmAawLxqdULINYSQewgh90xOBiB60+/kD4kauTF/zaCpivKmqt1indyLaj3SdUNhY1hM+szjR1Wa1RNOlGLtczp74caXiRTCgEUimBUXAiGp032zwRGC2fvrrsdoCnOsVWVWYLCjG2y/Ion4NmhM3IWMFVMugkPpKADtyCmlnG1pwr2lo5fSdesAqP0+us1MMTZtxnQhhmpNTfq53QYhnfZvkk5pVKbKAah20Rvs4C4AMnW2wX13OCiNolyuo1CRzqmMbLUFE0Jh1VoY09NlNRG5jH2edZiKWBAL3axkIJEYQDQajN67lMbA8jIiN73bewPKDKxoOLZ0CyFkfvR2hRCo4hjO+U7O+cWc84vHx1deXYnX1GcOYyofA013ptSlGmO0hkJ5EKWJx321AwDYAZEqR4e7SzelY+In07xY+4/jMGx5TWcv3PBSUesUsAbnzur5hqt8s8FpzXBiousx3EgDDArO5+NhXdn0Q19FvRFWLoJDL3gdAHVKfhpIyX8p7LG+s4UMukGkYpq5BNDoXWBB9G6Lg452Pt2h60Q0UVXfNdOKYzTVQCTi39RLTMxHxYNO0/8A4PD/AoCTyeF3aqVhiO/GLMrYgNXBgvHxmwAAmYJwVHqNyBlGD8IrFSEGZxbXBCKt0kY4/iIihumHvTegbLY4cr1GTNUI4wQNFVeTowBak+A3yW0L7kNE4csIgODot69QspMnwHkI1PB3pZmOiloHdqJDOV4XYCeOAwDoSHcTBGqICz6bDs4aiFPzNzq3NHUZYsOi1imAETmaLADb3+SbDU5EbrrLOh3Ou2qG3C84n4+H5w47JoRnlKdWXvI2AAhcinFfY+1vChSMd/a52o4fsxJAqfdUrkJ5AOXqAOj6uYlCy0PXiJQyVddIlkuAGkklY3ULpVEw2+npRsBiRtSHM0uN89MrjoCLLTLSSZRxSkTkWH5MjqUgItdtxEc23GYF6nuUsxXDiDWvjdZe7w0oM5j5USSTAxga6i1KqR25xbkbwOmEkO2EkEEArwfw3Tn7fBfAH8r/vxrAzZxzLRHmMmxC5H/bzodfUCpXzCb8l7lnGXGRpWMDXb3e2CLS/cxccC60wmHorsUEDViNHOdcSJan8sDIdt/soEnh6Hf9PdsCCys2Iic+Hy/TEVlOONWGYud4MBlHKlrSqZUqmX4czIojHKpjZKTD9gPjwtFhVhzI7evZFEd0ZevZHb/WGJf3rlwCqPeuosusOKjhX+0vICezdtPqbpCy+mZBjOF3RM5RI6yfKTY0OnCkZN0+K4veb72+F0qjmJ4ud5eK27BrdWOBcuQojTk9UVHwYTG+bILlU0o+E51auQiy5u0dAH4C4BEA13POHyaEfIgQ8lK5238BoISQPQD+GsC8FgUa9dgnLF1r+GoHXSvSZFnWpz4kLTAZYTHWdFc4GN/yHAwNVAMVxeqpL14yLxTiKv5/NwCQz1dRqUV8d4DouFyJ7zbdjt2zoh05Y72oe/JyEcCZkLvQKJ6mgheZ7muO/QgsF0c6Wey8d1urRL4SR85uA7Kp49c2+66pqfEWjpzPGTI0BjbVw/W+IcoKWHm9M56fOOdL5BKxoZN+Z9IptaN5KiJyAJDJy+tipYPF64YQpWNTdd+jnK1QGmtmIBVPem+AVK1UcZ7Na1WxQlCSH8Y5/yHn/AzO+amc8+vktvdzzr8r/1/inL+Gc34a5/xSznnvV2fNsphTQjXJ2NB5SolKjE1bAQAsq0hOugdYTtQL0s2ndvV6suklvjVDXohysYh8eajndgrseDDEhey0h7TPDtDAhmdhOFbsOnWwePA2FCuDrjgdQWDssr8D4HVETk7Ih9ULHjt9A8tZ5WOvSmYe7LrNSyw2gPiQ7N927KaeTXEWADZ048hJJ8GKA5nuW5G02uJ/BCsKy6r20N5BzCtY7QwA/kfkHFn52llySwfJXnVxv2F1kWmjokYOgKOy2Jk4iPxcFbRBUAmlUVh5Ls6XasZ7A8om2MyQkvOsqXC6shICg1Poo1GOvYrSTW2ASuhWUbtl5vxfZbIng+lTntbdANGRZjPkAMCOiRqSriNyjvrgQ8ps6gV2MgtAfR1Ux5zxDhipQtcRObbndgBAukt11KATOf1lGI17u6DhRFY2dthmow3E4kwCsJ5QPvaqpJbrqVWEcKwTnSkQLkS90lwAWNd5Zoo9oTZzCeDQ9b3ZAlFT6vck3Yky9hiBNkMXIxIJIZXyV0zNVgBlVhflEjJ6x7hwAlVF5By5/pO3dPT6eoNgasr/JuutzDpfqjPeHrxWAOolmNMDSj4TSqOoVhuwrC5EfgKMduRWMGxGRp/Wr/PVDnrKUwCIfmd+w6w4RuJFRDY9v+sxnIicAkW1XmEHxYpft0p+9oq5ueduZTb1AjtyAEAAHLnxi0CT3Tvs7KRQu1ypETkAni9oMCshGqxf9vfKx3Z+0zM6WUQNHMyKd13P6HwfpRO9mZE/2FwA6CKlMR4fQGywIsboxams5FCphWGVor5P0mdFGXuAFcdAabTj1FnVRCIhjIwMdSliIaNgpXUYHAwjkeiudt7G/mxNKZ4C1ln7mql8DJw3lTiDgBPxzCWEY+UlZaGJyKZDimrkpFO6wgRPtCO3UmnUwKwYIuE6hg1/WzkMpmhTTKDTJpkq4bxZtxQd6XoYJw2rmlVnW5ewvaIxeTrRbUROplYefECZTb2QOSTbQwTAATJS+a4nO0403G+H1EWE4qmXjpzoLxjacqXysR2n9OiPlI+9WjFzCdBUd8ICNGmLMNV6M6KlDUI63Z0D5VwHSt23IgF7sBkZDEpErsd2GyYr+Z5WadOriAXLNpQ4pc5nW5LR33ZVHmWqH8vZja8DGJGzEo4gi2eUTdTqIWRnuKKInHbkNP1EZUrcSJMFkJD/tWmOOmIl658RNUum+/TmJDgpd2X/O2iwgyIlsvsUJvE6Uyqc+o3T509xr7BucCaT9c7TMDKWuGF0O5HtB2jK49TKnHviMTRZwHQhhtqRH7sy/mrD6d3W5XqZkSqqObdO3gVmCVXSwcHu7oM0WZROZQ+T2P1faEYGfY/I2RPzHiNyAarl6lXEQtV7cWrkSkIIpm3nX86L7H5tQflcgZYIbj4JNDxOSawwTOXlvVSRaiWAFadcqR25lUrZlE5LMFYemmICPjo/ZSZqFHqcDNJkHiwXR8M6osiw7mGmyFmnw91NMmhKppZk/U2PsWEnhSpWtxFGlRgp8T2j2Pn37AgsjHUmvd5POFGshjdRdrOHmqvlsPv9ZaaCcb3sd5q92zZ09Xo62lDjyB39jlgA6GFhiA5Xe488T9za0kDbb9XKFlVQADj0g67GMc1igCJyc/qDdVj2wJiaurR4fADRaASsIoV1ZG+4ZcmIBVm7ts5vZ7+VpuOfgp2K6hkl07kOqDjXnDTRFaZcqR25lUpZSrYOB2PlwYlilXxUR7Sd2x6jPTRVQIOHMH10jyLDusd2wOhod45YNJVGYqgcCCEaAGBZIBUtYSDiYwquhCYLojXDxMMdv9ZZfd96vmqzAkOzrsyD30G94mqDddtBZFYwfgf9jrOQ0aU6MF1jYCofQ73R4wKTtbdr9UwbIz3Yu1NZPNH8THyepNsppk5q5Z5/72qcIEXk5jlyuc5aRah8L5RGYdoROdmqYVkmhSgKK4zKMYLxuQKtETkf+hFXmLMAomvkFkc7ciuV8oRYiRwOhjoPTcpUmS6iG8ooHJbpWT2mVtqTvv2/VWFVT7BcFNGBKuIjXdZBjl0ga0CCceNguSHpaPs/oXYUPZ/4VcevZbk44kMVRM95m2qzAoORyiNfHkLp/n92/2D5/a725aNJ2RsrIG1F+h1nIWPd+q5eb2w5HZyHnLSqrmnY6fQ9ROQ2bu9d1IcXW1Ir/b3WxuMDGBoKNx257P3tv1hG3zkXUazgROTsGjnp+B/7/vIvqjbPCbWOXAysIJ2ednvaZR8UdhSoM0ZQiMUGEI9HYFryPVXajDKqoGw60XAVCyBjY3ZqpXbkNP1A/rBIRRoJRr8MOlwSN8P8Id9sqLB9yJWiPaeb2mmM5pE2C5ldhFkx4ZimL+lugA1XtwgL+I+zeh71V6AHaDpy5p47O36tU4u58XmqzQoMThTrsZ+4f7CpR3pSQVwOmhYpsF6Kt6xY6hXHSTA2bu5qCLpeOIC9fx+2wFX3mSl04yYF0UHeInbi7yIVIUQ4G1ZKbKh00Bts8l4AwEwxilqt4ft7sTGMGHK5Cip12QrhxE+Xf9H0IwAAzomy1ErbFjZli/S0Of+yDgAAWNFAJBLC8LC/LR3mQmmsGZGzPMxEKjOwouHY0CuRSAijo0O6Rk7TH/D8EbBcHEbaf6ETADBGakJMYMq/dMTMISnV32O6KR2VClOTHq5MLQKzZP3Hxqu7G2DLq5q1YAEgY0ddxi7225Smo3Ky83RgJ3oUDsbvzw3syDabcl/JrPjY12WDdXcicsbpzwQAmDoi1zv5A02nZUN3PUzt5t1C6bi3xUgzlwAd6V790li/Fg0eQrbH6CCzEogN1RGL9SZxrwJKo2AFqUTTbvofAOwTaZhBiS7aNPu3pcWG3KPLv0g6ezPFuHRK1aVWduwolIUoilkcD0RLh7kIR046/tO/8+7AZROsKKKUqqK/89JwVwDakVuhWOZRVOuR4FxoZQ1X5qh/fZrYEXFsmuot3ZRScRNj0/5fbJlUJsWGLh25mCEicj1KUavCcYC2vMpvU5oRuelIx691Mw0wKDifjwf9IdneuwC415aCPu194jg6Itc71r5mXcua7mQr7ZRMoXTcvaJurR7CdCEGanRf32O/h17Tbs1cAkY6GJEWSmNOpKPtqBEATIrsBFPK5AcptRIQ/eAAtFeLP3m7eE1+dNYYvdvShYKmbLTNSuOBmbO1QmkUzBLfOWYe8+7AZQazkFbS48+m11YVQUQ7cisUNmECAKiR8tkSAZUF1n7K3DMzBwAwxno77Y0NWwAA5oz/ioROKuJg95OMIEXkmJVAOlkANr3Cb1NAU6K+oeP6wWqpZ4GFfqBZV+a+88OyIqLiVluKxBoDg5GarpFTQW6/8zl23bttrbhvMSsO5LrP4nDagGw5p+sxZvXR6qIViQ2z4qDjPghGLAClUbDSms5fWDoOoNX5CYbT4XxH9dPEhnobjpQ8r1hZOLSq1EQpjSGTKaHRSSqujIqyfCown2krhhFrCkHlD3h34LIpPxN1UcpeW1UEEe3IrVCYKSaRdE3aZ0sEdM0YAIBN+Se+wqbFyiM1ept4jmy/HOFQPRACISoiPzRZQLYg0kv8pF5vIFuIivcz5P+E2l6JNzt1cnOPSIXFFR6RGxcpL17UV9qTCLeinISQZosUTW9M3A5mxTEcK2JgoMveba3Ok9V9FodTq7d5S9djOJLluTiQ70wNcbYtcdDxgCys0hjYdBfTv7qMwhdEDXNQInLOd0QuEht4G/OMsljsZiWRxquyRq7R4JguyvHqbaT1crEPy6ppfK0aSmMwp2VErHjMuwNXmKg3V+jc6tRKTd9gZkQ0wdjYXR8f1dhF7yzr3ynHZkRaC13fXQG+Ddn8KqSTRd+jWI16Q9SU9egw2ClymZMdFL27wNRUCZyHAhPJGtr4HCSjpY4jTo2Td2EqHwtELzw3oU/+QwDw5HfgSLcnO6jn6RDRTiEBVFfWTd5zJm/rWSkylRpEJFwXztPEr7sex6nl2tD9Nb/Zdy0BmPf3ZEtQoi121Kjj8kOpwshqW+U4wXA6HMefPEluaeONSaeU1U+dNUbvttjni0xFLBxe/kVc9nNlpcCcI61QGsXUNBeCP2UPW0iVGVguqvQ8046cpm9w+out767YXDV069kA/E1HtCNodPuFvQ2U2gojmfdd6XGaMTR4qPeInF3rdGC3CrO6JiMvroGJZJ31ThipzhU9s4/fKr6XoLwPlxg89x3S0XXfkXNqrsZHXTuGk2Kc91+Ntq8pTfbchJsQIr+PBHDih90NwnlTunx9d20QgNboYBw4/PWux2G5RIAcnyjqdY6ZYqf2SKEvfgFCIYLR0eC8HwBgxdH2X9SQUTB+9qwxerdFRgdtuf6JX7bxKu60dAjKOdIKpTFwDiH4U8l6c9B6GahZYDMDSiO/lEZhWVVUKp01jQ8y2pFbobCcCIPTdet8tkRAt4uUBz/TEVkujqGBKuLbX9DbQISApvJKFNV6gR0WE86e++LJCRfb629fPHb8JAD30uc6Jn1uV+l2mcMPAAjQ+3CLwcGuHN1ucFQQz3uta8dw2nD0kMqnAYCqaBXR43XJaThf6LL3aOlkMyI3nuzajlRqEAPhmjg3zLs6H6BRR71BkMnHApOKOMs57QKzdjrS6ShCIf8FvwDR6ywWi4BlOonYy+hidSsIafYY6xXns7VVQSdva+t1VmkIlUo9MOdIK7POl5pHGTNlBgAws2HlqZXAyuolpx25lQjnYDlxURpbGwxHLk43IzpQFRMyn5wfu56MjJ7R81hOGpZXF7UFYHvvdWzpBdsRNPf57MgdEmpYQUmtBNCVo8IyQo4/SO/DLbyqK2NWHMloCYPn/51rx6Ap6Tgc77wBvGY2poIaUWpnPTS6HMfao0QmnxDSPDe6SSsrHkE2HxNp4wFJm3Mms12mRbPpWmDei023IhZsJoLR0SjCYTXTYdsRs2XzMd1epouTPh6wzxVoeU9WAqh7pPhYNsE5kJnmih25ldcUXDtyK5HqDMxcAqPxAiJDwQjTk5CofTKtOFDzof9avSImF8kCoED9yEjlRf2GLJj2A7ZfOnI918jJiNyEh7nvC8AOPAgASPfYsF0lzmSyA7U6Zg3J167wiBy6c3S7gVkJcZ7G3Jvk0GQemXwc/PD1rh1jtcCsOOhw973bAMBIFXtbJMiIJvID4RqSyd6ky2myKCfaXfRMPPKjAPZdk5PZLhVnTbMYuMhRt7VPLFNWXIMlFbqLUhW0eHTpF1RlrZ6U9w/KOdKK855ySaDhft9QAECFycbzamsxbXXSlaRcqR25lUiFidSW4WBNJGmqIGoWZMjcU+RnoipKYkfkePGEkvG6gR0/Km3p7YJky+ybU/6liQIAO/wEgGBFsgw7hbbYfnqXkwaY8lcF1AtERC7hepTdi3YONFlArR7GTMbfBY1+p1oLYaYY67n1DR2u9tba4uh3HPXYXqXLjeFK5+q1Nge+1hJtCcbC6rzUyon7O3p9EGu55vUHa/OaxFhRqfM0MjKEcJiAlaU+QTW79AumHxd2yIbbQftcgdaG60lH8MZ1yqYrCyDNiNzK6SWnHbmVSMmUjaKDdaI6k+KKD46cvCioipLQZAGVWgT5CR8bnMtWDnS4twtrPDWM2GAFLOdvXzzG8giH6hiJB+e8pckCpgsxVCcfbvs1zs1nXRd9mvqMZh2TiwsanAvxDJcjnPb4zApG0+Z+JZOX5//mM3sahxopMCve/RrB1G+VXfMpHereqZx5xHECgxLFaiorSkfusU909Pq+iMiV2+tZq9opJYQgnY6CVaQjt1wqoqyhYwXRoimYETnb8U+howbyvVBmTraHWrETXSOn6Qdsp2XYoxB4m4j0lDhQOO79wQvHhSS2IiVBW7Lf3PegkvG6gc0MgpAGRkd7TG0bOUcKPfjbTiEzE0Y6WQQhwbksOa0Z9rSjPCZgVgIh0sDomS9yy6zAYKTywtHd/UX3DlKaULoIsxhOirHPv4N+x4lIb+it9Q3ddIaIkHasrCgpq8vCMDZu6z7Ns5ptqmcGZJI+NhYFIS2plax9ERehrqg2iqWCeTVyJ5cQGWnp7ebGezGMWLNGrrFMWv6UqE1nBdHzN4gRueHhQUQiIbC8VOLkHmSblM3mtURH5JYkODMmjToKR0U92EiwUrtoqiRWWPIHPD82t/YjY8XUReRSwklmBx9SMl43MCuKsUQR4bHTexto/VXNaKmPMCsmJl2h7hXmVGOfL+bj7QtgMCuOsUQRobPe4ZZZgcH+fDK/+6p7B8k9IRdhXE6tlCJzfrcV6Ws4bzbh3ripp6HsHqjdX5eqsp9d7yvvdMNGmLlEl9HBWuBq5MLhEEZHozLCAqB0cvkXFbLiT3kA5XLw1BUpjWJqqoR6IyI2HP3e4jtbzcbubjhyooF2WD5aZh42s0fYUTQAAOl0sD5XQAr+0ChMS14kCx40BS8zxxlW6dw6Cqc6IqcJNIXDokYuHayv1xipImPF0Zj2Ph1x+tge1BthGCk1P146IqWLJ/xrop2xoxRrn9vbQFtf15Re9xFmxZFOFIHENl/taMWOyLHJ9kVtRA+tPJBY65ZZgcHpQTg57doxagd+hmwh6n5q5eazAHQvAKEBUDzR7Pm3vjdHjm4UqWm9REiZFXcW3XqyZd04avUwcsXu0s+ZFUck3MDwcHDSdimNNiXyG23cF/ftBNDS0zEgTqmN0+usJKNGU0uoME+IaF25OgDLqiqPgok0zzYjPmWRlm4WxzE6OoRIJFjzNhtKY04dX7tKnD1RNh3n1g1HWztymkBTnj6KfHkINO1vzdNc6AjQ4CFMH3vC82Ozg48IG4Y76TOzOAYVny2b8i/q6aSbbXl1bwMlNwYjIpeTUZdeHVOFOBE5Z3V1eUQUIFhCQ27RTEd071oztfsGId3utiP3tL8H0EsESIP83pYa0fGehqLrRETOzCWAaueTLs7lokq6N8VKADDWCOeg23ODWQmkR3jPoisqobQl/W+5qBHgRLia6orBSgF0ap+KcgGtuEQJx8mfi33zwpFVHV2cJ7yyFFWxCMZKawPnHLciHDmZLTPdfs1415QZWCEtG8+rvb9026oiqGhHbgXiNFY2grWyTNNiNdKc8F6yn52cEDaMqCnUpWvFJMWc8c9Zduo/hk/reaygRORosgBs/wNf7WjFSIlaCpZr8wbLuYwsrg5Hzk5bczOKxcwpeSx3UytHT70AhDS0I9cLuQNNR67HybGxTog/MCsB5Pd2/HqrNIRqPQK68ZSe7ACaTkKnrUhszFwCxvhwz3aohNIoWLmDPrOWSAE0ZTpm0FIrbXvMyhaxoZZbfOcZ4Yi4FfExDBHxaSsVtyavoYXRwDnHrVAabV4brc5/jx1TYTDzwxgbU9fjz6YjR7sP0I7cCoSZMwAAOj7msyWzoePiBuDHD4hlxIRc1YVybOuTxbiWfxdeW1pbVV+8qXwM9bp/EcZMXjpyxkW+2TAXukb8htp2cm1hDkWiOkHHGLX7C7nn/LCcWABy+zMNh0MYSxQdYQpNF2QeAsslMDRQRTzeY++2Vol8q/N0fMeh3KJgocuxJQHkDy6z98K20MA5crHOznUpox9UdUVHxIKfJzbwJRzukkhntB1ZN1L3yuU68mWZSruURyftZDPhwH2mrVAaA5uR76dw2P0Dlk0wK+mKc6tTKzWBx2TiwmCsD5b8ubFB1EywrPf9ylhOFEDbkbReiWx9CUbjBV9X79W2U8iD8xCmzCVWMV2kVKqhUB4UUZcApR/Ftl6J+FCl/YgTu6dZu7gKoGdfBcDliJz8jRkui53Yx2BWfJaqnaYDjv/AuS71mkY4OjoEQhpiEcXsXB3YceTWb+zJDqAl2pNLAOb9nduSiwcvQ4bGwDIdLKrKRtCm7I8WtIic42yHLxYblup3VhX3OVY9Rb5WfY0cgKajvFQrBKkAKdogBOszbcUwYjCzRPikxTbEcXqlzMByMVc+Ex2R0wQeNi0cJbqht2Jz1dDNQl3Rj3REu4aHbj5bzYD0YhipvG/piOVCQdRBKko3c0Q9Dj2qZLxOsVfH0goU5pRyxjthJNv/nsuHb1P6vQSd+KX/F9GBqqsLGs6EfCTi2jFsnBTjwiHXj7UiyYvUShVOdzgcQjohW9Yc/07Hr3ck/zf07sg50R4rDhz+Wue2WPHATdIpjcKyqqjU2q3/lQ5H7QwAooVBkHCcp+rm5Xeui1p5xs+e9Vp1tsjzxRYHmVpK3VrM14LYZL0VSqOoVkXKMqoui7w1qkB1Giw36FpEbmqqhEbD+6CCG2hHbgXCpmX0af16ny2ZDd12AQCA5by/WJm5hOi5dvoz1AwYjohmyD45cuz4UQBQ2E5BinrsWULpy0XYSZkOHDQHKH0maAdCMOyJXwBQ970EnsSo6wsadrSPbnM/5dZpcO5FDchKpJFXmymQygvVytzjnb2wajUXANb0XmIwOhpFyK6fNH/d0Ws5F/efoE3Sm1GjzhZhGC7E2Fg0cOqKdq8zc2qJSJyDdErrIu1W9XdjRyudvmsTP19y/0otjFyuErgoZyuzUp2rM+4erCwcRTMbduUzoTSGRoMjm10ZUblg/RI1SnCiTwFz5EY2nYNwqO5LOqLd2yu85pnKxqQpOemre994ne1/yLFBBU5Ebr9PjtwxUXcSRAfI6EAIxhHVWSU1ckCL8+MSLBfHQLiG5GX/6NoxbJz3kvmd68daqZg5daqt4vtILC1csRBWi3qmgolgKESQtq8D5cn2X1iZcURXgjZJnxVl7AAzHwucUwo0e521lzIno2D5YcRiEcRivSubtuKI4+RFk29k7llyfzcaX6tmliNXc/n+VhaCeCzrzmfipEqvEOVK7citNGpFmLkE4kMVRBPBKq4m4bCMYsWd1AZPaNRFjUKyAAyo6+PjRCIqTNmY7cL2ihuDqgiWrT5oHjuiZLxOYQeEilgQHSAnIteGWh2bFpfUwEUWXcT9iJwQjyHjitKil4Am88JxOLDL9WOtVETzdjXX96aabocpUDN7nWwJVQ2WabIoJ9wdqFayhwLXDNxmloBLB7jRQFsVnYpYsKmyazVYAMBKsibf2r/wjvKeYqdgBtFBtnGijLmEUy/pGhWGYiWCYom7+/2skDo57citNCqsWaMQINEIG+fGXPbQ+almXent5azelyaUjtsO7JDsi6eopswYljeUrD+qlZlD0pELoAPkOCrF5Z1cZ9KW9HChwmeE8+NmjZx3ffmMVB6F8iBK5mOeHG+lwTmQsWKgY2rqGY3hSnfn1ombwaw4RuJFZSmAdLgD0SObg/8dWEcunZ4TkcudaOt1plkMXHTRhtLO+oO5VZdmLx6wsuxpt9h8xzog9rNsRy6YnyvQdH5MKylq2NykbDZrXF2qkQOwYpQrtSO30igzGX0K5kqDowpX9rCXXJk1e64phCbzyJeHUGIHlI7bDk6LiZSalbFEMobBSA3mtD998dhx4SSlA5haSZMFZAtR1Mzl0+2cSduYushv0KEpWStamnZlfDOn/re7GNRpcK5vjd0wXYii3giDbtyuZDw6NtilI3eT0lo9ADBotPPI84lbXJ2Q9sK8GrlHP9rW60RELljvxcbu3+ZQW3oe5FZ0MRIJYXR0CKwsBefqi1y/2K/En4JoTB5sR86u+0uhrQbyvSDnbIA76qjakdMEm7IpVrCHgxkRoKmiWNX0MorlUm8vw5707d+tdNx2cFL4xtT8hMnwWdLJ9udGwqbqiA1WEBsMnuy7kZKtGfb+ctl9nVqHrRe4bVZgMFJ5ZPIx1Pd2riy4LNWCpxE5+zh+qdH2O44wzaatSsajG09BsTKIQrnDGqbCEXneqFsAoBu2du5UFo87PRaDNklv1sjJc/3ETW29LtgRuTk1cpkF2la09HRzUymS0hjMkozILZaKOHmnsKOQlq8JpoMMNFVKmeVByU7ZdK7BOrVyebQjt9IonhAr2MPBmxADwpEzc/Gumqp2Tf4gmJWAoToilxIXAXbgXqXjtgPLRYXjM7JOzYDrf6+lHsV7WG5ITqKDF8myJ/fs8TuW3ZdZCfG9nPtWt80KDDRZAOchZO//V/WD5/cpj6wsBU0JxTs/+0P2M84q+gY1QlvG5i2zxm0bXlR+3tAN67q0Q1xTg+b8xOMDGBoKg1lJsaFwdPGdGyICU6pEUCjUAueU2tg1cpzLspIj356/U0s2kJv1fpRGm9HOxXrazYh2P6xgyNcE83MFWqKMthJnxXLvYGXW0nhevXM7MjKEcJjoiJwmoBQOCaeld8VlVzCGy2BWAnxmn2fHLE3uFc2mU2p/tLazzE62V1ugEmeSkr5UzYBb39BMe/UBZsWkGE3wTlxb0dOcWL6uk1lxpBMFYOPz3DYrMDhRrOPqfwfcvB8sp6YvWTvQ9WJhxM0G5yuWqtVcRd+wRcmQdP0GAOiqzQvLxZ3FNhUY69Z0ER3kzjU1aH3XhMpjDCwv0vpQX8LpPXErALia7qYC0eusgVxJOqdsgcW3ybsBAI1GCJmMe024KY2BTdm1ZIuI9RSPAQDM8hrEYhHE42rVM1VjGLFmbzzrCfcOVGGOUIwb34997mvVSk0gqc8cQbYQBU0HL7IBAHSEo1KLID/hnZiAIwyiSEnNxkiLRqomc7nwdwGYFRf1ZJtfoWbAkdNAO2h8rZqMFQdN5YGx4KUkOo7K9PICDk4Kb7jdJrv9j9O6wlL/nq2Hv4JqPeKZmim96E8BdN5bSwMh+W+nEa5XkylAN4gaI9NKAPXOskyYFYcxqq6Wh44nnXE7tWM0WQ1c3zVARo2KUiIfS3y+ez8PAK6mu6nAUVYsUbFhIbXI4z8GAGSLKTQa3DWndF693kJUpgAArLgmsJ9pK5TGYNqpldmH3TtQyWxJN3UxYqojcpogMjVxHJyHQI1gTkRoWkyGzeMnPTsmO3ZYHHuknUah7UPHxYWGzahRaOsEZvdqWvtcZWMaqYJvkQgnwrjxZb4cfykMO/LaRv0gU9hDq19wUk9diOYyj9VM6UXi/NOplV1g7WuK/YynlAxprBMTcvb/t3fecXJV5f9/35ktU3a23dn0BkgLKL1JQClSFBAx2FbARr4qIvjFSgAFjF3Rn+WrEVHQFUWKNKVICUVagNBCSALZ9LJzt02fnZn7++PcuTObnc1usrfMDef9euWVnTt3zjkzc+be85zneT5PPASpdeN+3VDex2A6iDo5ask4YDv59XGUIimhxcOo7bXljSuhqkG07LSxTzTqoJXCMGs1l8sUschMFwdy/SNP6hO1Uu0M3SuNZUyPj+EF1dJqzX6mlahqoELldIV9HeU0YslWIpEGGhrs2RQVYbgyR05Sg2g9/QCo0RZ3BzIKqipu8JrmnMy8pomLpVXCICXU2fuJ9uPOX4BNFc4G61Qm1aYkWjxEsbiTNZssQEuERUjinE843vdYqJOEwT6mt3IoQ28yWJMlFOwk2iJ+V3Z4c7VBkevilHHcGKinKZCRYie7wuCbaIkwPqVIa6s118TShqSWCEFi/OH4pujKrLmWjAMqijwnwjuV4x2Lh4lObrVsHFaiqgF60+rYJ2bFxmss0QrUcmilYcgV9xUHilUW6imxsatlpwx7jfVjCZBIDJHL78AQMURQtHjAMx45c71jp85BNoaWbLLVuN3ZmoO1jDTkdjNiPeLCZeVOpJVEpwkVJ63PuXplpsJjtNXSdhtnvc9Y9Dm/e2+HAEQ0kqSo+xjoc9ajpOu6qD0VSUGw9nLkQnPeR6B+aOw8nfgKRxUWawV19iGAPXllZqieg5+pqA8ZNgUeJONk04NoiRBt4TQ+nzU1TMu1zsIwMH4PgOkZNEIzrcBUuouHQFu2U2NROxxQ+tsFRB7XOErY5MWCV0vbl7dkBWatM9/h4kA1kRHDS6flZhmvsS9HDirCtAtVPmdjfFpvziMeuSDaoGGY7kgcZ6JkNbR40NZ5NkLh1MNIQ243o1TQOTp9ussjqY46fU8AYgPOJfXGBkW+oDrDmtpGJlNOLS/6HKRYKBg5ZdYXOAeIrX/T0nbHYmAgK2pP1agBpOx3qcgfHCPcTt/2VNkgfRsROeb71PkLtmxomAvyiHN5qOI3HYKM8yJGnqb/ecuFaRoa/ERKm2Ub7h7368wNAAsNOTO0MhGC7pvGP5ZEqIYNnyC9vZlKRf5RMAyO/GzzdbWI+R0V9zOOVHljhpeudI5dBlR5vhjCK4Orq5wlxmeneqaVRKNBEknIDvkhZ1Mt4GIBcn1og402G3IlhVPnI5CsRhpyuxml3RJ1ao0acrPfCQi5eaco5Tapex1hbcMNofKiz0EGYj0UdZ8tHjkA7a3nLW13LDQjj6BmQxJb9hD5g2N45AZWPVLTBqldKJOMGoQ2hCOa4gpTrJGzHw9qU0oYAnFnNzQ8z1A/MRs80kJNNwx94yzzUsiXQyunTLZsHO3tRmhlPAzac+N+XW0bcgHy+SKD6bGMGbHYjenvtDVvaaK0tQVQFNDiO9go1o2cZ31/wH6PXCxhpLlse7zqecWiQm9vpmbDVSsZVnuwWv6hFeT6AB1t0G/rZxKNBslmCySTzovVWY005HYztJL3aapzC5+doW32QShK0VHjR0uECTXmCMw53fK2zUVf0VohlR2hrVtl9G11XTzDI7fqWUvbHYverT2i/xo2gNTI2Iqe2rqXxLm1apDaiF0bGqZ0+8Gft7zt0VBLZTgGVjrW5+5BQQh7WFwqQo0Y19ihvvG9ILWuQnTFus2FujofLSFRn47c2KVIKBbIDvlJZAI1GzZnhv+N87er5WbWtMHh9/tobQ2g9e4oZM7wgmUm4fMptLTYs6lsGj0pw5CLVa9D2p8KUCzqNWvsVzIsXDRv033OqPMX61Nsz5EDdos8OWnI7U4U88TiQer8BSLttZkjVxcM0RrKiBtH0YGi5bpeFgYJdljefDSSFMnvQ/2Wtz0a2pvLAOsNH9Mjt8nBYu2Atk4smGs5JDHaZCzud6BWp/WKHIhaNkjtIjoOQ3dX0BIhWkMp6uZ+2vK2R8P0AK27zbE+dxfEtdbavBO1KSWusYxzs6xSPdPihWA0kjLm+Th28dMbarYYeIkReVxjEOvN1KxRWkJVA+OqD6b1F2hvD1iWzzlyHMZnWxKTGdwux1MXaTC1rgRayTDDv2BTfllOI1/wMRC317g1De3dIE9OGnK7E7letHiYaCSJ4qvdr9asV5Yb5w7rRMgnRGFYmxbXakQoPZKxKV68CtqapUbfVufICUMk1utsqIG29lUAoVpZo5gLuPSGUc8phQvXskFqF7Z55IzrGQ5ez9SmFH3JEPme/zrW5+6ClgihtlgrEhONZHaurp/2Elo8TGP9kOUFltXmofHnRG+4v5yrV6PelmGhcgDJxA7P1zT7CmhbhajfNvbi3O68NPOzzRjhvZnNw09IixxczajLVuufK1TOlyZTcdNysjF6S+kw0iM3Lmp3tS/ZebKasSNa2xPTzDfKjiM8ZaJkNbRE2NIE/ErUphT9qRD5+OgLfKvRtmw2+rZ2J6m5uZE6f8EMz3UKbZ3YqbQ6JMtK1EiSvmSQgjZ6EVQzL6fp7ad2qDYZXqy8tdceO9RZx6LUX9/A2+97nAjpXB3pXAPqJGsjH9Q2Zec2CTbcbs4bRbHW26K2B8Y/lrV/rfAM1uYifURo5epf7vD8WCxds97FEiNk5UdJexBGqX2GQjBYTyhURyxj1Okbig8/ISbyLEuhl7U6RyopffexRKS6IqgVGGs2sPczkR45SW1SMuQiWbdHskPKqnDb7O8sG7N1MVgyEHvXOpdPUyrdoDZbeyFVmvYSYUxxZ28oWs8AilKkLVy7GxDRJlGaoX919YR1KC+G2qdMcWpYNUPUyCvTtzxlXaPFonE9c9qQM0KME7Uf6lRLlMRuorP3sbRddcoMBtPBHdfjqiT+um3X/Oj0meMPIR54rWJBWptzaVhJBYCNd+zwfC+oKwpZ+Yp7Sbx6qoAT70UUXDf0CrYPRexZIsaRajXOrc05Uolp+CcjVFUEtYKsZv7G7Nw0MMVoYt6PoJGG3O5EZiuxeBi1ubZVeNRIWvxQjcKctpLaYKshV/KKad1LbWm/Glq8HkUp0trWZG3Dk08s5wc5SO+gj9ZQBr9NuQpWUDImtDEMOUUp0raf9aI6tY7alCJf8DP43A+tazSzyZW6fGqkVKRXFgXfGUyFUYuFttSZomRN73g9YUOD5bxoi1GnTh5/mOdQf/kzqVHjx1R5LEnkJ0dXah3K+xgczHnCIydy5Iz7yZb7yk8OleeE3R650li0lFEbVd9OE2DgdTGOGq/NV0kgUEcoVIeWNOoi2iHylo2hJe33Upo1Kt/uHjlFUdoVRXlQUZRVxv9Vq/kqinKfoij9iqLcM5H+JGOQWi8WPq21XRcj2pwV3ouk/aIahYFu+pL21fZSm41F34ZuW9qvhpYI0hZO41f3G/vknWHOR438RWfLKWjxgFh0Kc4XVh8vJc9rbGvvqOdo8bAwSPf7klPDqhnMGoTrXreu0YGVRn6rsyG30WgEGL+SnwRD8t/62m0A0WnCMBz/92GoZ9qQYqBO7iCeCYzTO1jxmdSot8VUeSwtzPPxkSfFtwLUvHexRDQaJJXKkxky1Cg3P1B+su9V4w/FEY9cNBpEGyitx7YL1U6tAyCW7sDvt08902pUNYiWENdI0pt3fPKukNPQMiXj1r65Vl/vp6WlUebIAd8EHtJ1fW/gIeNxNX4MnDfBviRjoCeE9ynaXps1XkqoLQWS2UYy296wva/+DcvRdZ9teYPRNrHrF4s5t9g0xVsmn2xtw+0HifxFhz1yWiJEe1MaQrVZ+xDKhoo2WDfqOb3JoDA6wtaro9Y6puLpoHVe1dybdxHPBJz3yB34IUAacjtFpeT/NGt/xyXDUIuHGEflanFuImRLZErUKGcwXq+cFg8RahwiGLRWdMVKVDVQVlbc3msE8NavgfLvwQseOQAt1S4ODC4vP7n1QQBS2QDpdN729yIUNEfx+BglLLTMJFvVM60mGg0aoZXAwPIdn7wrZGPmfLQ/9DUgPXLAB4Ebjb9vBM6udpKu6w8BVbZ6JFYSj20iX/CjqrW9AFFbxbTTNq+zvS9tvQgVsSvcVI2KkJRSIXYnMMPNZsy3tmFFKSuKOogZBhU91tF+d4aokY+4o/xB4QXwfrz9rmCGnlqYX6mt+Newtp1CPVzUrHP6d+BpEm+WPTaTqgbm7DLq5EkAogRBZuuY5+s69CZDqFHr74PD5dfHvqeICJnaXqAPy+Oqlve0WYQmxuJN5vm1TFkt0shVzvSUn+wRtdzKeWkO5MiN5vEx6rBp6Uk1/5lWoqpBYqVQ3IHRxb92mayGlmqlsdFPOGzvBsgOvx8PMVFDbrKu6yXf6hZg8kQaUxRlgaIoSxVFWdrT0zP2CyTD0LYJCXzVCA2qVdSosavZM2h7X7Ft/aJPm26m6vQ5AGiDzoVFmIZP82zL2zZFK8a5820FpmE6p9OxPncWdZLYIRzVW1mqV/g2LD0AEI2InXwrjR9NE5+l06GVTWoz9f689MjtDInustS+xQZUdFKFFyyxeszzB9MBsaE5fW9LxwGVhlx4XKkBsXgItaPV8nFYiaoG0LLTRj8hvgbADKerdaPDFLEYErmVFCuuyQmxsatlJhnn2p0jF6CvL0OhWGX9URSidFoyXPOfaSWqGihv2CVGz6ncZbIxYvEIqhq0XHV2e0YI43iUMQ05RVH+oyjKq1X+fbDyPF2s/Ca0+tN1fbGu64frun54R8fbLzxpopTC+9TJ7S6PZMdEJ4ti5VqfTfK1FWiGhLhdXsrwnONprB9yNK+s10aDwRSt6Hcu3ECLG+9n8vGO9bmzNO15Kg11+dG/58w2V6TyawV1mlg0WWn8aAmjLp/Dn6miKKilEikObmh4mp5n0RIhmgIZGhqsjU4YZjwNrhnzfDPEc8YcS8cBFfLr8TDEXhjHWMKok1osH4eVqGoQrX8HpTaMvLmYEapY66GVpfFpysHiQLEiXNQoeaTlRPiv/TlyIXQd+pNGP5XXE0MoROsr1HzeYSWqGkQbNDxldgjWGeUHnPhMysI43mZMQ07X9ZN1XT+wyr87ga2KokwFMP53QE9eMholwyg6dQe7azVA6QarDdgfjqgNiJpoqk2fiTLjbNuKIY+GE+UUtE32h70CDA0VynlQdaPnn7mNst8lolbaaB4nbaltSnleoPWoK/ApRWs9cqWcnIjzN1rzN53rd7xvT7LtP0a9TuuvS6FQPYH6ITG3Nj845vmmZ3C69Tm35YLIIei+aeyxJEJEOyxWF7aYMcPLdEPQy/Da1brRYRr+yruMIxVGasEIAS/sa5xrv0cOymGpw0ODxbi8UNKhElUN0DeoCC9jeuxQ551CLwqxk3ijI5/JeIvH1zoTDa28C7jA+PsC4M4JtieZAFq/+DqtVg2zGnX2XABiDoQjaomg0ecB9nQQmuKoIZdNJkhmG20zGEz1wTeft6X97entzRj91rgB1DyTaCQl8nSqkNuwhIQLwhy1gm+PU2hvslYox1yQtzu/cCyFGI8nlE8CpDeLMEKbfsfm97Ht0R2fqOvlXL2pdhhyhpEQD0Hv2NdILRGq+UW6qgZIJIZ2oMQpvEhaYW9CobqaFm6BCmM7XSUyqSjyGjX9AONc+3PkALSkYchpw724uu5MGQQrGeZlHBpdxXmXGBoAvYg2WOeYRy4ez5HL2R8dZicTNeR+ALxPUZRVwMnGYxRFOVxRlOtLJymK8jjwD+AkRVE2KIpy6gT7lVSh5O5Wp9Z2QWJ1j8OAspFlJ1oiiN9XoGWfU2zrIxoxBEIcCMPSNolQBts9cqufsaX97dF6EgC0e8AA2lFpBm3VY+Kct2mOHGD5hoa5IN/nJMvaHC9qySiNjx3KJwH0rK01/8y5ldmy4xOzsXJopQ0hjYFAHeHGrLjeG6qDo1EoKqL0TY0v0ocZpzsgVpxb80YpQGNjHeFwPbHeXJVnDS9YfhbgjCoigJYy5uK2h4c9n8rWk8nYr55pJWUvYxiGLNY5yAidh1i/QtQGsaLtKb2X0oayV5mQIafruqbr+km6ru9thGD2GseX6rr+uYrzjtN1vUPX9aCu6zN0Xb9/ogOXbIeuE4sHREHiybVtyDU2t9MUyIiFks3Gj5YI096URml719gn7yJqk7FbnE/Y1kcJbc0rok+7cuSMdmPrbUhiroK20V7D1EqiESO0sopanbZVRJXXvGfRRswNDYvQEiGCDTmCR37PsjbHi6neunHsUD6JwM6Qb9WcW2MoRcbfLHtybTKg1Eja2GTYwVhyg/Qlg6L0TY0bP2Zh5DE2YbRBn2cMDhEyN3q4qDbgp6mp3vJ8zmrjANCShnewd5n431j3lAqx1/ocqWSYcmve4t97ThOqs/26Yx45wPOCJxP1yElqhaGBckHi+ga3RzMmalPK2NEZsK+TQg4tHiLalASffVPd3L3P7niH1gq01UuNPu0KYTKUtHqztrS/PdpaUYfGC4ac2mSEVqY3jHhOGxDzq92meoVewHqPnGEYhFXL2hwvpfeib7rH8b69iha3p3YbgNqUGd/cGlyFlgiLDc02exaC0ebc2GPRXjHzaWvd+BkmJgNQrC58Eot5J5drrLw/rTfjyHsxFTTTQuCtVAS8lHtbCrn0yucKlXmiYShW83pOgGyMgVSAQsGZz0QacpLaIquJxGqPhHaZOQ92Gj85zZCEt9dLIhTuQhRTm8c+eYJoG14XfdpkMLRE/EK0YsCZPIjetYaH0QOerGgkSW8iSLF3ZO0cMxezydshGhPB9JoUrLm5u1mXT40I9db4gP0lUnYH8gUf/amQberA0dbC6EJDlWy8By0REhuafnuWN2p749ie57U3lUM8a3yRPkzABWB1V9XzvJTLNaLQ83aRP04JjEQiDdTV+cp1+nJGTlnvS2IcyVag9gVkKikb/k1mzqFlGIqVoh8nPHJGmKjHlSulIbe7kC0ZLd5YSKpNwvgpxUTbQjZma95GiWgkSVH3MbDRfmEEs7ZWxOKdMANfeA9hmDqQvwigbRK1mLyQW6ZGUhSKfgZWPzbiOTOcq632veF2ES15sfqXW9KeE5swo1HaWCiVQJDsmD5DXj060/rabQDqpCh9yWD1elyVxJ60XT1WnTZzbI/clkcqDLnaXqSPyJFb+8eq58Vi6Zr3LpYYISufGS7K4ZRRqiiKUafPEN4xioDTs0SMw6HC5FZSDhdtYpgiqBUY69jKfuzEfC8eV66UhtzuQjZGLB5GbbZngW81aiRthKlttK+T9BZHanuVvGPam2PXFZoopRA+tc2m2P7J83Yo6mE1Wm+Oen+ecGPtz9toaXFfxZDrTRqLtlnvdHRMtYQaSZIdqie19BcTb2woLq5nLnnkosaGmJUqnLszJQ+VOs16pUgAdeY+FHVfuR7XaGRiaHF7yiCUiE6bPLZHLrPR9CDW+iK97JEzlBUHR27EFIoK/f3OhCNawYgcudgTw3KbnZT8j0aDaKXQSt0YQ5/hkUuLsHGvfK5Q9jLGEs3WN56NEYuLdmVo5fiRhtzuQmqDMFpaLN4hsYloc0bsACa7betDT3Q7Y8gZeWWx9a/b2g+AFg8IAYhWm2oFzv6YEfbqzAJWG2xAjaRQlNqtIVfCFILZNlJyWYuHaawfIvTO/3F6WDVDSfE09uajE28s/qarBdbVNhFa7GR9SM+i62Xvkw212wCi00Vo2tjfR9b2eaNOUulPBXbsHSymzVIltb5ID4XqaWz0oyWNhXll7USjaLUQbqn9fL8Sqhqgvz9LvmCkCGy4CxJlBVonw0RVNUhs0IjU0I31WVKMJZaaZI7XK5heRnO+WCjyltPQMqXPxP65FgrVEwjUSUNOUiOk1ouCrG1jhJ7UCGpznv5UiHzfStv6SG5ZTXaoHtXmgsLRVkPSuMf+fBpzkaIebU8H0aPKQjQOoCWCRjFw66XCrcYszVAlf7D0vSjT3+f0sGqG0uJZ68tPuK3ilqfodbHAurrnUQCO/Q48TTZW9j5NnWlLF+pUURt1PBtMIiTXPrEmNRpC131mOGl1dLR4iDp/gebm2g63FgvzIL3pNnFAr4iOWCfEfmIe8S6WKI2zL2MYG30vwNZHAMgX6ujvzzhmlKpqsEI8zMjVy4qUEi0zmebmBurr7VXPtBpVDaIlIuJBYpV1DWdjaJmSl9IpQzsgQysltUGmbwOpbIN3LrStYur1bXrLtj60tUKUws6bOlS45/tt7Ub0UTLkZn7Qng78/rIQjQOY+SzN+zvS30SIRoTBHouP/I2Z34vfWzdkKzENOQvyKwdeuYmi7jONZ6dRj/kWMHZtLQkQX132yE2ZZEsXpdqosXgIcjveMNMSIdRW+zY0SwaAEPYZfdNCS4RQm/MoSu1vroo8LkOQgwphkDU3AHhGgbOEqRaZNOZjeiNsFTXc+tLN6LpzRmlVQ8Gov6ZlJ3tmzVaJqgbLRc77X7Wu4ayGlmrD51NobXXOYyo9cpKawKxjFfXGDrKqChGB2NY+2/owPxObw03VqSLMUYvbv/OqxcNCAGLSCbb1UfLI6Q4UOO8tGUDTT7O9r4miThK1gKp5BewWWPACpdIVVnixtE1Cptut0Mq2mTNQlKLMkRsPye6yIdfRZEsX0Uli91+LhyExeo3LXN5PIhOwLVcPKsVBwmU5+SpoibBtKp5Wo6pBtNyskU8MvAxALB4xzvNGCKApYjFkeIiHEjAoUh9K+WqO5shp6eHCmUWjzE+q2TOfaSXRaLC8yRV/w7qGjRy59vYAPp8zGyCqGpCqlZLaILZNxCmrHW0uj2R8RCeJcWq99tQdAtD6RNtqu70GVsusI/D7ClU9NVZjen5srBUYjSTJ5etIJuwXIDHfz5zzbe9rojTv837q/IWRQjBDGVel8msFtUMskKzw5mpx4dl0S83U7/fRGhpn7bK3O70r0BIhGuryNDXZU7ZkWBHi+OiGnKkeO3MfW8YhxlIh19/z3KjnxeIhc/On1lHVAFq8yneX7QFAS7UY53nDe2R+R/oB4oCeg8xWcSwzbdg59o8lyNBQkXi6QgFXF55crd87n2klqhogFjfej5U6B1kNLRl29DMRhrYMrZTUAFqf2OFRp0x2eSTjQ50+GyirMNqBNmAsBifbW1DYN+ss2pvSjoRhOaPCaYh6bNxkaz+6rqMlwrQ3pSBiT26NlSj7frlc/L2S+AojL+ftbci1H3IhYJFHriQU4aKX0wwxHvL2bq3tbPmXoTCatC2MsLm5wdhECcO2p0c9z/QM2uiRGxZa2V1dql+MJYzaYYOynw2I8LIqi9mCOBZLixBFr4VWar5DxQG9APm4OFbYa9g59o+looA2wFDSFD0Roive+EwrUdUg2oBfeBlTFq0TdN3Itw046qWUoZWSmkHrEzfQ6PQZLo9kfKiz9gUoqznZgGbsGKkz7KltZNL2TtQm+/PKivm8IwIQpqjHmmW29pNMDpHL13nHkxWZRrRU9LoCfdtT9CZlaGXd/gtoDYlacqxaPKG2TM9KxIqR7Rqi1mUYkqN7gCRA/A3b63UqikJ72Jhbm+8d9TxTlGOqfffBYd7B2IujnqclQkQ7vOHRVdUgvb2Z7etmA0K1UhuaRUODn3DYHo+r1Zg5cpXhogURYaLpBxrnOOeRg4ryDgMrKeUheqnIeiWqGmBoCBKZRlO4ZcLk46Dn0QbqHTVuS3O/WLQ/lcQupCG3m6ANCvl2dZpNsvQWE91T7JRpNoYjlgyr9ncca1sfAChK1QW+1Qxs20JR99nu+TE9cqtG3/m2As2IS3er6POuUM1gH1z1CPmCn/Ymb+/qTZSuXy4mkWnkVw8cy5x3r6Xrp7/a5bbKcvZ7WTW8nUZtShJLhCBhnyDTbkEhgRa33yNtlkVJra9+wlC67MmdErVtHOFwPQ11eTFH89VzvHVdbEZ4xduiqgHy+SKD6epGhaYfQDQa9IRwC0BTUz0NDX60gWGJaQBougi7dTJHDijL9W97FIChvI+BgaxnvJyVDNvMGOq3ptGSkueAz9HPRFUDFIs6AwP2iuLZiTTkdhNig4b3acrUMc6sDULqDBrrh2z1YmmJEM3BNA3TT7StjxJmyF3BvouBtn6V2ZedmB65dSts7afXqMfmGY8cEI0YpRkqi8uuF8Vd384eua6u5SxYGCdf9AMKa2NtLLh8kK4bn9+l9mLxMD6lSMtRl1s70J1AjRgeua2j50FJAHTHQr61RAiKo/zOkm+WNwCi9t1XFEUpXweokuNdLJDINDJUqPOMt2XYwrwKsZTqmfcCFbXOhoWLGl6wRJi6Oh+RiDNlIcoKmq3iQOy/APQmvVXSoZJh4cV5i+57WU202ac7HloJ3i4KLg253YG8uMGFG7M0hu1RDbMaxecr1yvL27AAKBbK4T6N9ivPmYsM42JkB9pqsShuD9td4NzIi9Ds7UfbIELWvGTImR659EbzmKbljOe88z6sZuHCJ0hlh4ddpXINLPzq7fDSFeVCuOOklDvpm+1eXT7zN73+766NwSuIa629ggFqJL3jqIf4W+WQXJsXgmpzbnRF09R6UxDJK4v0shKnYchtF2Op9TpXd80qRst90nqzqGrAMe+imSNnqGWWVB5Lddi8MkcqGWb4FywygLIaqWw9mazuuNgJ4GnlSmnI7Q5kNVEM3GNiC6aYgB3Gz1C/I+E+JUqhlbqhjGUH2lqRj2H3e2pr8QnpdSNc1y60biFt3e4hA8j8nvvKtXN6k2Jn9+1syK1bV72217pYK7y2CG7rgHW3jbs9Jzw8YxGNJElmG8kOjBLKJwGMMMJEiGibvcuJaHNuxxEc255BS4QJNuQIBu3N5YqqjaOLW218wDTyvGL8jBDk2PzIsOdjsbTnDI7RZOU1zdn30tYWQFFAyxg17VJiE1BLequkQyXmfIk3QdEi5fFsrOxRdzhHDqRHTuI2Oc1QzfPWRCx7sSxKlq0kqzm6GFSbUkKyv6fbtj7Mung273z7g9NpC6eJDdp7MdW6RV0ftxfsO4PalCJf8BNfXV7olIU57K1XWMvMmjWKOp+i88v7jyWf7ocn5sM9B0D/8jHb0xIh14qBlygXOHcmBMurDKYD5At+1Gn2Ks+q0QhaPFRFkMNg892OXfPVqTNH9w6u/ZsrC9KJMCK0cuX/G/a808aPFZTqt22P0+/F7/fR1hZAyxr6BXmjGHiqFfDOHKnEnC/JJqEIagVZzSw872xopWGUergEgTTkdgeympB/jthf98tKzNDK9GbrG8/0GOE+ziwGS14y7a1Xxzhz19H6hKGgtlh04RyNSceUvaU2om0TBrzXPHIAsdWPm8fKAgveKP1hB4sWzSMUGu7BDdQPccD0rXz5prM54sov8/SqWTC4HP51ACw5C3ID1RsrFmqiLl/p2qHFQ9DzlKtjqWVMo2XGHrb2o87Yh6FC3fB6XJUk1jhnyE3pGP36OPCKYyGeVlH2sBjGaV9ZjbNYVNA0r4ZWjlycu6EUqapBYhnj/lCqIZdSjee8MUcqMb2MyQil3MMJk40RM5Q9nRU7kR45SS2Q3iJuYC15t0eyU6jNWbEITq61vvHkWlGQ1TGPnJFXtmZ0OeqJosUbUJQirW02a7LPPLdsZNuINqAQCWRoqPOOJ8tU9NxWVqsrLeja9nu/K2OqBTo757J48SnMnt2MosDs2c1c/8cP8vIv7+GWL/+ZbYNNHPOdi7nw9/PFInfj3SLcctnlUNxuYyK13ogwcNkjZ3hYY/EwPPReacyNgmm0TLNXaEudLjwaoxpQxYTYAHBg3kQnt6MlRvEODg2UyyB4xNsyfGGOWQgcYCAtVP28ZnCUcuR0fXgunKalHTdKVTVQ/mxL48h0AN4Jv62krs5Ha2uAWMKIxNj+Gr4r5DQz/NTJ301LSyM+nyI9chKXSa5Fi4eItrk9kJ0j2pyjNxFEH7S+TtNQXzeD6SCqQ5Lw0Vaj3s62njHO3HW0RJC2cBp/+1zb+gBgyomOeOR6E43Ck6l4Z4FgKnoOlL1PWiJEayhF3f4XuTWsmqCzcy7d3QsoFr9Kd/cCOjvnopz9Buf+4DFW/PjHXPb+JfzxscPZ56tf5/pHjqRYKMDy78PtHbD2H+WG+pbXRI6c2uYHDMOhmIO3/uTqeGqSoVTZIz1t1hgnT4xSjdRRRUYo5VbavyBTo0EKRT8DqWrXriFzjG1t3ri2+f1iYa6l2sWBYgYGuoGyoe41g0NVAxQKOgPpsgGl6z5XinCrahCtb7ixE8tMobHRTyjkjdp82zPMOE1bUBQ8GzMFYZz8fnw+hfb2gPTISdwlP7Ce/lQItX2UkJMaRW3Vxc1w0yrL2+5d94roo9mZXRa1TSzsNc0+r6hW8jBOPsW2PgCoq3fGI5cICQXOgHdCEstemrKRK7wAKQh3uDWs2ibYQuSzGX7yvSN4cdHPOWD6Vi68/lyOvfqLvNg9DXJ98ORH4J650P8q6RV/JZ1rcN+QmyU2TEzDofsvoC11cUQ1SOKtcmjlVHtrmKpTpwOGh3SUMi9aIoTabH9kSjmnLAyFkf1piRBtTVnq6ryzxFLVAFpmivFIh1UiT85r3sUSZv22tGoeS+bC5HIFx72L1fL1tPQUVNU7tfm2R1WDpvImL1818YiFrGZuJLS3O//9SNVKiav09WwBQFXt9aBYTcnwjG3ZZnnb2sZ1og8HbuoA6mSxkxSL27e7ZpZTmP1h2/oo4UiOXMkwbTvC1n6sJDpFhH5Ufja14D3yBAddxTu/uZkl197OjZ//G29ta+fwKy7hyzd+kIF0CAZfh3+9E23FvYD7dfkefOvdAHz+hnOYc8nldD22L9x/BPz3AlvrRXqKZIXk/6RRBG8sotS+lghBYs2I54tFhd5ECDVq7zigso5WCFLrRjyvJUKord5aXqlqEC0/p3xgqxB00lzIW7IC09jOlDcYYsm2Yc85N5aRCppapt1z4aqVqGoALW44D9b8CR46YWLGXDaGlmymubmBhga/JWMcL6OVqvAK3rrSSKoS2ypEA9SOFpdHsnNEO4wbsw0/IK1XtOnUzbR99sGi37h9NwhhMCQhPN22PkqoTSnSuQZSKYukhatg5kHt8RHb+rCaln1Px6cUy95KXS9/L5JxoZy7hfN/dDsrfvJjPn/S0/zqwXez72VfpevJQ+h64jCOvOpiAC6/5XS6fvorV8bY1bWci66Kl0YsCpxfP5+up46G7pvg9smw6T5XxlZTxNegJcIoStH2MELTwxIPQXKkITeQDlDUfaiz9rN1HLCdR27r0yOe1+Jh1Entto/DSlQ1gJaqMIINA7WUB+U1j5z5HRX3MY9p2SnDnnNyLKlUnkyuIiR/oM5zn2kl0WgQbbBi47qYhTU37XqDWY1YosmVz2Rk8XhvIQ253YDSBFSneCu0S51m5DwMWB9aoPUbfXTYLAxiUDfzNFpDKbSEzYacg3XxALRN1ntLS5gexiln2NaH1fj2uxg1Us4LIrPNKF7t3d08V4jMou3CFL/+jsqz1/ySWWofn/zNJzj/tx9hc79YOMbiTSxYmKSra+xyBVazcOETpHLDyw6kcg0svP0jMHM+DA3Ao6fDw6ePrr75dmDro8TiYZG767d3OSEEOYritxd7ecTzpmfQyKWzk7LKYwi6/zTi+VgihDqp1fZxWMkIlcd8AsAMd/Oa96g03phyqHlMy+8x7DnnxrJdeQdEkXWvfaaVqGqQ2OB249ee37XGdF145OIBVz4T6ZGTuI42IPJ2otPs99RYiTpjLwBiA9aHI2pxsQiL2lzbyKTjeNSIjXllul42fBzAVGdc84ot7RcKRfpTAdFPo4duZuHJqE3Jco6cttQIEZUeuV3i2N9z+BXreeraP9EeTlLUh9+SUlk/Cxc+4fiwRi1wvikP256CEx+Bxg7Ych/cMQXeutHhEdYIsf86Flrs9/toDWXENXbTHSOeN3P1ptlvyJmhlYkw9C4bOZZ42LFNRKsYIfigi2gMLTcFv1+hpcVbOfimB1cve2i1osh7ddrrY47FCFMFXBFdsRJVDZLM1JEdqgiD7HsOXriM0Ys9jkIhBcUs2mCD9MjtAtKQ2w3QBsQPSfWYIRfd42AAW7xYpRBHdc9DxzjTIuobiDYly3V4LCaTGCCVbXDMYDA9cqtHhg1ZQX9/Fl33edIAEvmD4nvObVhCPBOQOXITxP+JQfpS1X87oxlVdjJagfOZaj9kN8LDJ8C7fgB7XyTy5Z7+FNx3BKS3ODpO18n1OpojaubuDr4+/IlioaKe45Qqr7SWlpZG/L6C8Mjl+0Y8ryVCnswpSySGyOVLC3OxGI8N7e1JUY7W1oCQlY+XDVCtXyhHOu+RM7yDhjiIrrtTBsFKTK90shVQAD8odbDiZ/Cf98JQYvyNZTXR1oDfJUMuSCaTtzWVxE6kIbcbEBsQFyonbmBW0jJjf+NmaIMhlwjRUJcnvOdplrc9GiLkLmRNTZXt6N20XvThmEfOKHzdPTKEyQq0HtG+F0MSoyXPazFP7+olgHPfy+7MaMbTaMftpFqBcwC/r8ibWw0VvOc+C903wylLIbwH9C6Ff86E13648zvSniXvaI6o2mRcY/Px4U+kNjgmugKgKArtTWnDeBwuqJUd8pPMNnrO2zIsXLQCrfAOTxocPp9CW1sAbc0L5jFttRDjaG93PkcOQEsKHYOBlCiN4LU5Uon5ng74Gxy0CN73OLz/VWicBD2PwT37QHycpaWyMQBi/e6I6pgedo8qV0pDzusUh9ASQer9eZra1LHPryEUv5/2prQhJ52zruEKAQqlebZ17Y6BucjIjdyhnSjammWiD8dy5ESYgRaLj3HmrqFt2gi4r0y4K6hNhlcgtZHerSKH0O3i1bsDixbNI9Qw/DoQasixaNE8x8dSrcD5pZceSt/QVA694iv8/amDxIlDvfDAYfCOL8M7rwV0eOmbcPfeMPiG4+N2A1F+w5kFULksynaGckUZBKcWgtHm3LAyJADkBsueQY/lP1XL4wKI9eU9a3CoaoDYmlfNx1oiREso43hZCPOzTbcb4/DmHKmkHLq6DxzwLeg4Blr2hbNWgXo0pDfDvQfAxn+N3VhWYyjvYzBedC1HDuwR3nMCach5nawIbYlGUig+732d0dKiONdrXaP5hKP5ZCWikaRYZBi7S1aivSmSiJ0yfNpbjLCaAXtkgLV1KwDnDFMrKX3Pet8rplCP9MhNnM7OuSy+4WxmR/tR0Jkd7WfxDWfT2TnXtfFUFji/7roTWbbsAg44aA8+9qtP8j9/+DDpkgrdS1+B5T+E9y+HtkMg8Sbcsz88fykUnSmB4hZaIkS0xaEyL83Z6mVR+legJcL4lKJjuVxqe2BkcXLtFc/WXRumxFmBpmU86ZGDkrJihVKkSwrD23s7zXzO7BLHx2IVpfkywotV3wynPAl7f0koWS75ALz8nR1HKWRj9CZDw9p1EvP78WienPdW/pLh5DRhtDi0I2o1pgKgESNtCVmNWNw5hccSalOSZLaRbN9ay9vWNqwy+nDmQlMXmipUOOP27I5p3UbBdg8aQGpTily+juSbD5dvyA59L7s7nZ1z6e75LkX9a3T3fNc1I240Zs9uYcmSj/LNbx7J4oeP5sjvfJ3lG0RtQQoJuHdfmHomHLkYfA3wxi/gH+1w31GwarG7g7eBTK5OhBF2tDrSX7S9YaTxBLDhdrREiPamFD6fM7lc6pSpI43KtV3lEE/PGXLGYnZ7j1ws7VnPkaoG0ZJl0RktEUZttjD6Z5w0NtbR1FRPzAjWMedI358dH4tV7ND4UXxwxC/hmL+A4odXr4ZH3w/5UdapWc3V3430yEncxTRavLmQNMMRrRQJyMZEuI/DRoJq5Htpa60PqTLr4jl1E+o43FYVzt6NInbei6GVJSGY2KrHyoZcm7cU3SS7Tn29n+9//3juu+/DbE1N4/Bvf4MbHj2ivOG8/Bp47mI4/VWI7AeFOPQ+C8/9D6z8jatjtxpz/s/c15H+1Ol7kco2lD2hJQZeNtRjnbvmR6dNGnl93PKQ4yGeVmEuZiveU0mUw2tGaQlVDaBlJpuPtUQIdar9qqbVxxI0hd3M0MrGHlfGYgXjMn726ITTXoCGNth8H9y7P6Q2jDwvG3M13FQachJ3yWwTRkuzN8N31IghJ20UH7WE1EZXQiiizYZk/5tLLW/bVCZtHSnAYAvT55fDXm1A01L4lCLNwawt7dtJabGo9fSZix519oFuDkniAqeeugcvvXQBx7x7Bp/9/Uf45PVfIp42DHo9C/fuDfntrkHPXwrb/uv4WO3CXHxNm+ZIf+qMWaLf7Q2orOZ4OL3a0YqWCA2PGMts9Gz+U2m8vcmyRH4i08jQUNFzRmkJVQ0S6/fDEb+DKaeg5WYRne3MpkO1sZSMSnMDZMYerozFCgKBOkKhurGNn7Z3wZmrofVgSK6Fu/eBrduFlOY0YmkR2eDGXGtvl6GVEjdJrRdGS6s3VdKiRs6DPrjGsjb1RDe9SWd3ZwHUZqPuzuYqO04TRIsHCDbkCLY7tJs49XRbPXLaYL2jYVBWYnrkBuvL6qjv/B+XRyVxg6lTm3jggflce+2x/O2xORy66Ce8sKaiDEx6/fAX6EPwn2PhqQusFXhyg0K+HA7lUL3OqGEwjtxgKoj7oIPh9NGOINmhelLZijqoxbQpgOI1L1YoVE9jox8t1WYeK78XbxmlJaJRQ1Z++qfhxPvRButdey/RaBCtuDfgJxYX+Zyt865xZSxWEY0Gx2f8NLbDac/Bnp+CQhoeOgFe/0n5+WwMLd0BuPO7aWjw09zcIFUrJe6gJ9bTmwwRbXfIU2MxamtR3Ay3WReOOLhpJfmC3/FwU7VV/JxKYZBWYtZqir7b8rar0hgo12yyAS0RFO/H12JL+3aiRoqAqFVoqqNOf5/Lo5K4hd/v44orjuHRRz9KOlfHMdf8L//vyc9Wz+33BaGuCdbcBHdMg21POj5ey0hvcLQIN2CGxVUr8yIMOeeMY1PsIR6GQikipoiWCBNqzBEIeOuerCiK4TWaZB4reRejUXvuA3ZTGTI3NFRgcDDnmoGtqgFi/XXwvsfRGk+gra0B/xSH7uc2oarB8Rs/vjo4+o/CO4oCL34NHp8vNrSymqno6ZahrapBGVr5tqDnKXh1kfi/Rhjs2SSMFo/t/pVQ28RuZmzzRsva1NYJo9DppGY12gogLtYWYxpyMz5kedujUZb6th7z/TTNsaV9O4lOEeExsXgYLREWtfD89qh7SrzDccfN4KWXLuCUU+ZwyW/240Ndf2TxQ0cy55LL8XX+iDmXXE7X4/uJWkvTzoCcBv+Z513vXOKt8kJ/StSRLtXJwlsUi4chPfyeoSXC5v3EkbFUqjxWpAYIFU/ra4k6gaoG0PJ7mo/LCpze9MhVCnKUPEeuGwodx6Dpc1GjkbFfVOPskvGz9wI49Wmoi8D62+Bf74KB5Wh9Oo2NCqGQc7/hSlQ1IA253Z6ep+ChE+HlK4RbuEaMudhWofaodjhfNNcKolERj6/FrMtn03qENJTaalmT40KdubfoP2698IWo1ZSEScda3vZoRCNChTOTsT7/sjcREu9nqvc8Wa37fQBFETvvQmDBe4ItEntQ1SB33fUhrrvuBO6+P8bnb5jP2lgbOgprY20suH4+Xd/4kKiz9J67ve2dS64th945VbutoyTfHobEW+bxTK6OVLYBdfocR8YBFXW0EiHY/Lh5XIuHUKNNo72spqnM4wLQEsLY8HKOHAjlzdIi3U2PXH9/lny+6GkBmUqE8bMLkU/qEXDWamjeD+JvQHojsd4M0XA/Suxp6wc6niGp4wwTrUGkITdOum5YwpyL/1fsrF58GV2/+P2O62I4hKaJnAB1UrvLI9k11KlG8m+/dZ+l1id2Q6MO77wFZp1EuHGUOkcTxPRg+Z0L1zFFPbZYWOPPwHw/czotb9tu/Pt9ifZw2vDIOZ+LKaltFEXh0ksPY9KkMDrDc0BTuQYW3nI6vHIFPHm+EAGYXuGd++/5UPCIAFDPi2iJMOHGLI2NzlyXysqKIegvh+OX1TP3rPo6e8Yi7i+xeBjWlWXktUQYdbLq2DisRFUDaH1l73As0Woc96bRYRrbmvuGXGksfX3CO+hVL2clIkduF71YgUnw/pchvBdgbFY3JcXGlgvI0MrdnK6u5Sy4umH4zuqP30HX1RdD3t1FnNZrGC0OqYZZjTpd/IhjA9a507VB0ZY6ZdIYZ1rMtDNsC0d0w2AoiXpo3a9Z3raWCNMeTkH7Oy1v23bCUdRIklg85ErheYk32Lq1uqd2XaxV/JHvgzumwIyPlL1z3X+GO6bDtiecG+iusu1+x69LDQ1+mgIZYokwbLjTPG4qRU517j5YDq0MgbbMPB6Lhxyrq2c123sltEwHigKtrd4sr1KZI1cLoZVQ9g561TiuRFWD9PVlKBSKu9aAr96MynF7U3SXvYs1gDTkxsHChU+QSg+fqKlcAwt/3QIPHAPx1S6NDLQBsePrVLK51UTniIW8leGIpSLW6myHiwkHW2wRCCnmcyIU0eEQvlJ/sVXWhjpkMnkRBhVJgeI91UqAaFOKWCJMbyIoQkQlku2YNat6uPuU1vjwA8+cD89+Gc5aW5E7d1zte+dS60QYocPzX21KCY9c33PigK6X1TMdrBHW1hZAUYqG2MmAeVxLhFE9LA7S25sxg420ZDPt7UH8fm8uFStl5d32yFUalbFY2rPhqpWsWTOArkN9/c+YM2cxXV3Ld76RPc4HX4MhVpQWj10gGg0yMJBlaMh7+a3e/HU6zLp1g9WPa22iuOF9h8PGexwelSA22ACAOmWqK/1PlLbZBwGYN2Ir0BIhFKVI214nWNbmeDEXGRaG3Q5s3UxR9zkqrQ2VHrlllrZr3lA97MlSI0nWxtoYKtR5+n1I7GPRonmEQiNDDnuTYW5/7kDwV3ju02vgdhX2uRSOv8sb3rlixhWPtLlZlhO50OT6y6GVk9t28Eprqavz0RrKGH2LPOJCUaE/FfDsIl1VA+TzRQbTRthoLIHaXMObCWPQ0OAnEmnYLkfOLY+c6HfDhgTpdN7zHrmuruX8/e8rALHcWbt2kAULHth5Y67jGDjpUbTMJNR9TxaPXaD0ffT2es8rJw25cTDazmpHRwhOWwpNe8KSM+Hlb4+QRLYVXUeLi13B1kmTxz6/BqkLBmkNparKSe8qWiJEayiDf/JRlrS3M6iRpAj7yScsa1PbYKhwOl0Xr0nc+GLb+ixtV9vab7TvXU9WNJJkzTZDLlkacpIqdHbOZfHiU5g9uxlFgdmzm/l//+9EDj50Oh/++QVc/tf3UPB3DH/RoyfDK4vg7A3beefOg5W/gYdPhVWL3XlDVXAjHKocvm7cLxKry+qKDnvC1OahcnHyYoG+ZBBd93l2kT4sXBThXYzWW1fj1Q1KeVyalqGx0e+aKmLJuF+5UuScez1HbuHCJ8jltotUS+VZuHDnN56K6tFo/T6iM90rkF7pMfUa0pAbB9V2VhVFfOG33T8E73tSFDp89RpYcgZkrReHqMrQAFoiRFs4jb/enYuTFUQjSXEjHuqfeGOFHLFS0qyDwiAlopGk8MhlNcva1FYtBZw3fNQWo17agLXhj70bhdqclw0gtSlFUfeZf0sk1ejsnEt39wKKxa/S3b2Aiy8+lCVLPsaFF76L7991Au//wUfREs3gqwgt73sGbm2Fd323wjv3F1h6EWx5AJ77n5ox5mLxMFGHPTZqJGvmxAEw+FbZI+fw4jiqNpZzopPrdgO5/goxGTDupdZtSrpBSVa+lJemuBTOX/psV67sG/bYq4waqTbK8R0xMJClWNRd/d1UlqrwGtKQGwfVdlZ/+9v3cfTR0/jIR+7m+j+tgqNugCP+D7Y+JEIt+5bZP7BsDC0eIupwyJ3VqE2GR84K4yenuZo0qzal6E+FyMctrIu39mWzbSdpCHcQCWSIxa294WjdrwDQ7mEDKFqRFyRz5CQ7Q2NjHYsXn8Lixafw6PI9OPzbX2PZWyqEttuNvu9geOsmOHsTNGxXp239bY6NdzRKYYRqW4Oj/UbblOF5yJv/47h6Zgl1ytTyWLY8bHrnvLpINxezhqEsauK5r849EUoCLm4rRYbD9TQ0+CsMOW8a+yVGi1SbPn3nS2+4nb9Y2bf0yO3GbL+zumDBQTzwwHxOPXUOF174AD/68XOw9+fh5MegmBMiKG/ZLKOa1YglwqgR7+0gVKJGDEMu0zPxxrIxI2nWPUMOoHfdKsva1LbGRNsRh3MV2g4xPIwWG3JrRQy9lz1ZlWNXm3ZRsUvytubCC9/FY499nCF/lHdf+xW6/tMBjR0Muy1vuBVubYd9vzL8xYMrYWjnd76txAwjnLG3o/2qU6YzkAoylDc+p20Pu7Z5p05Wy4bcmr+65hm0CnMxmxE597FEGPWwT7k4oomjqsGaUIpUFAVVDfDGG6XQSm8a+yVGywHu789yxx07t/5xW1G0sm/pkXubEQrV889/ns3HP74f3/jGY3zjG0vQ1aPg9BdEwdenL4DnLoJCbuzGdoVMTNTeaB6yp32HUJtETS5S6yfeWHqLUY/EHSOh5B3V1iy1rM1SjT211eGd0ZkfQo1YX05B27IF8LYna5hHbsoUF0ci8TJHHTWV558/jyOOnMEnf30ul970fobyCkT2qTgrD68sZNjtOtUNd8xwVQjF9D7NcFYxWZ0lStb0Jg0DKr3ZFfVMgOiklvL1ceAV05DzstgJgLbXT0mdnSOTq/e8wVHOkXNfKTIaDTI4KNaDXv9cq0Wq/fCHx7Hvvu2cc86dfOpT/2ZgYHybz7GYWDdFXVR7Lc2N0li8hDTkJkhDg5+//OUDfPGLB/OjHz3HggUPUKiPwokPwv5fhVW/gYfeCynrQu1M0hvFTmSLtz0C0ZacuAEmuyfeWHKtsTvrjpGgNouLtLbeQo9cvAGfUqS1LWJZm+Ni+tlEm6wvp6D1Fwk25Ag25C1t10kqDbm2/U53cSQSrzN5cpj//OdcLr30MH5x14GcfN2VbN2wCVoO3O7Myut8HeTjQghl2bcsVckdF7pe9j45WLsNyjVTTaVjPe1aPUc1GiSZbSQ75Ieh/nI9O48u0kVJheEFtN02fiaKqgYYHMyxdWvK9e+lsn+vem0r2T5S7etfP4qnnvoEV155NH/5y3Le9a4/8eij68ZspxY8cqFQPY2NfumRe7vi8yn86lcnceWVR3P99a/wkY/cTXYIOOTHMO8f0P8K3HcobF1ibcep9SKGvc3bX6PanCeRCZDtWTHhtrKxNSSzjahN7vwYVSOfQIvFxzhz/GiJIG3hND6ni2cHmuzxyMUDxqLLm0VmAVQjPaA5mKZed0jcSLLbUl/v57rrTuAvf3k/z73RwqFXX83TL+ahvhVCc6q8Ig/zbhMiKct/IO4vTolsAeT6yobctFnO9Uu5VpyWCJsGrAind/6aX1Z5DANDxOIh6vwFIhFn8watwu/30doaMGudgXeN0hKVsvJuG0+l/pua6h3P53SK+no/11wzjyef/ASNjXWccMIt/O//PkImM/rGbS3kyInQ16DMkXs7oygK11wzj+uuO4Hbb1/FBz5wO/F4DmbNh1OfhYY2ePgkeP1nlu2eprR1pHMNrl+cJora5gdA2zT2zs1YaOteAyDa7JIhFxVGT6zfOmUsLR4SwiBTnPf82FHgvDcRFIZcY8fYJ9coS1aI8K7BdIA5H4jQtegql0ck2R3o7JzLf//7CRpDEd5z7YUsfvwUEUZZjY33wFlroGlvIa71z1mw5SFnBpp40wytjE5ztoapOkUIv8TiYdN4FZEpzotymOFYxmehxcOokaxryohWIFQeM6ZnwvseuWDVv92g1L/b43CCo46ayosvnscXv3gw1133PIcd9mdefHFr1XM1LYPPp9DS4u7mbmnue40JGXKKorQrivKgoiirjP9HVONUFOVgRVGeUhTlNUVRXlYU5aMT6bPWufTSw7jxxtN59NH1nHzyLcK6b9lfGHPTz4IXL4OHT4aXvwM9T02oL22LUHlUozuvElRLlOKitU0bJv6ZbN4MgNrqYD2/CqLG7rQ2aN0FyQwbmvkhy9ocL2pTisF0kFzOus9TSxiGadu7LGvTSbq6lnPZTScajxTWxtpYcG1w5wuhSiRVOPjgSSxd+klOOGEW//PLI7jwH1dz45LDmHPJ5fg6f8ScSy6n68lDYM0f4Z4D4NSl8I7PQyEp7i3PfwV0m8PtE2tEvUxA7XD2/lOqFaclQpB4k0JRoS8ZRJ0cHeOVNoyllFMWL4+ptDHpVUpeibJHztsbxZWGqNvvpTSWt4MhBxAON/DrX5/Mffd9mP7+LEce2cWiRU+Tzw+/Pmlamvb2AD6fuxsgb1eP3DeBh3Rd3xt4yHi8PSngfF3XDwBOA36uKErrBPutac4//wBuv/2DvPRSD8cddzMbNsShvhmOuw32/gJsfRhevRoeOnFChoumifA9ddII+9lTqEZoqNZfEF7LiXwmvUastUs30/CsY2ioy6MlrLtQmzl/Iec9WKVcsN4e6xTyzPczw3nD1AoWLnyCVG546FQqW79LhVAlkmq0twe5995zuPzyo7j+nyE+8/uPsjbWhl7aOLh+vjDm8n1wWwvM+gS85x7wB+CNn8O/3gVpC1SAR2NgFZpLYYSlxbCWCEH8TfpL6pkz93N0HCPGYvwfdcGgtJL29pJHbvfJkSv/XSseOW8bxzvLqafuwSuvXMD8+ftwxRVPcNxxN7N6dZ/5fCzmvhANlGsOeo2JGnIfBG40/r4ROHv7E3RdX6nr+irj703ANsC7MVXj5Kyz3sH9989nw4YE8+bdzMqVvaKKeGgm5sdezMDKX+1yH1qvoX40ZbIFI3aPkqx+LB6GQhrW3DjGK0ZHGxQGnNrRbsnYdhZl5odRm5KW5pW5W05BGHKx7tcta7PsYTzXsjadxMpCqBLJaPj9PhYtOo6OjiBFffhOdSrXwMJbKkKtHz4e1t8BZ62F5rkw8BrcOQs2/duewW2+35T8dzqMMBSqp7F+SFxjN95fkavnbIgnlBfmZmhlIow62Z17j1Vs75Frb3d/gT0Raiu0MlAT43CD9vYgN998BjfffAYrVvRy0EE38tvfLqOrazl33/0mK1b0MmfOYlcjW6LRkDnvvcREDbnJuq5vNv7eAuzQolAU5UigAXhzlOcXKIqyVFGUpT09Nu4mOsR73jOTRx/9KKnUEPPm3Szigye9F5Q6QBH/1v4VXvwaFHdewU/rF/9Hp8+0cNTOE917HlAuQsrq38FzX4KhnRcM0eIipFGdsZdl49spIrOJluriWYGuu6bIBmWPnLbqGUva03Vd5MhFUhBssaRNpxmtEOpoxyWSiTDawmKd1gq+iuvMW3+Ae/aDU56CfS8RG4WPvh+e/QIULQ41H3jFuC45rw6sKApqk3GN7XnEvG9EpzlbBgEqxU7E9xCLh1Gj3r4OlLwSmpampaWRujpvSykM98i56wl75RVRE/Zvf1vhutHiFh/72H68+uqnmDdvBl/4wn84//x/k82K69PatYMsWPCAK59LV9dybr75dXp60sye/TtPfTdj/kIVRfmPoiivVvn3wcrzdF3XgVGzjRVFmQr8Gfi0rlcP4Nd1fbGu64frun54R8fu4bQ79NDJPP74xwkG63jve//Old9bxZwvfxVf5w+Zc8m36Hr9Qnj9JyKkML1lp9qODdQDoE5xVv7ZatSZ7wCMm6GvUXhqVv0G7j0ANv5rp9qKGbkK6l5HWj7OcaEoqBZK9mfivaSyDe6VUzAMyNia5y1pb3AwR6Ho93Qx8EWL5hFqGF4bMtSQY9GieS6NSLI7M9oGwYz2fvDXQ/tR5YNDfXBrC8yYL0rg+EOw+rdw71xI7dz9ZYfk464V4QZDhCkeNmvIgTuRKQ0NfiLBDLF4GF03oidqIERsIqhqkERiiM2bkzUR7jZRQqF6AgGhEOmmJ6yrazm//vWL5mM3jRa3mT49wn33fZi2tgDF4nCzIZXKO56m0NW1nAULHjBr/K1bF/fUdzOmIafr+sm6rh9Y5d+dwFbDQCsZatuqtaEoSjNwL7BQ1/WnrXwDXmDffdt54omPEw7X892fbx2e6/CTvena9jvQnhMS0jtR4NX0PrkQUmIlt96yDAWdhbecxpyLL6Pr0b3gfU9CfQSWfACe7ITM+Dy0WjwkapTNOdXmUY+O2mRI9hfGVwxzR2gb1pptuoFZ4HyrNR5yzSi22R72riHX2TmXxTeczezoAAo6s6MDLL7hbDo757o9NMluyKJF8wiFRkqV1/mLbNjqh95nYPoHhz/50HHQ/Xf44DpoPQjiK+GuOcI79/CpsGrxBEdVQIuHhtVTdBLTI8dQObSyw9oyKeMeS2QILREmnm4kX/B73vgpea1Wruxz3YNlBX/96+sMDQmPz6GH3uTa4nzhwifIZIZ7xt0wWmoFRVHo76+uEOl0msLChU+QSg2PivPSdzNRn/ldwAXG3xcAd25/gqIoDcAdwE26rt86wf48y8yZzfj9RjhlBamMwsKfDcEpT4M/DA+dACt+MXaJgry4kTUFsjQErZWHd5KuruUs+LYP3Qg1XRtrY8F3I3T94SF439Nw4Ldh/T/EjvKarh1/LsVCOQwx0OrUWxiBkOwPQ1abcFta9zIA93LkIuLGE+u3pj1t81ajXXcWgFbR2TmX7p5rKepfo7vnWmnESWyjs3MuixefwuzZzSgKzJ7dzKWXHkpPahKHXXEJj6/YAzbeCe1HgK/CiHjrerh7Hzj5Mdj/61DMCu/clgfguf+ZsDEXS4Rdqd0GoDalh+WlgXveFrW9ES0RKhuUHjd+Sp/jqlV9njdKS56WQkGsG9z0tMjc6pHUSpqC17+biRpyPwDepyjKKuBk4zGKohyuKMr1xjkfAY4HPqUoyjLj38ET7NeTbNyYqHp83YYUZGNw2nMw/QPwwqXw5MdhqPr5AGQ1V3dErWLhwidIZYdPw1SugYU/TcOD74Zp74fTXoCmveCpT8KSMyA5Sr25oX5Xw31KqJEUvYkgxXT1mik7g7ZahDS6FVoZaGol3Ji1rJyCtlaIprj9HUkkXqKzcy7d3QsoFr9Kd/cCrrvuRJ555jxaOqZw4vc+z28ePAa99wWob4L2o8svHOoVoZbTzhSGXiXdXbs8Hl0X0Q9u1G4DUFuKw5Qi6/wFmpvdKcIdnTqZWDxsGpZeF7IojT+dznv+vdSSp6VWjJZaolq0QShU53iagte/mwkZcrqua7qun6Tr+t5GCGavcXypruufM/7+i67r9bquH1zxb5kFY/cco+Y6qEl45BTo/iscdzsc9H3hhXrgKBhYUb2xbMxQM/Re8cJKRt0JibWKYq8PHgNv/RFOeAAO/TlsfVTkzq389chaSVnN+EzcNW7VphSFop+BTVU1fXYKbeNbRpsufc9tB4lQUYty/rS1rwDSkJNIJsrcuVGefe58Tjl1Ly760zlc+PtzyKYSItRye0XYh44T+ceV9Dwhohx2gUSmkaFCHeoUd8L6o5NVehMhikUFLR6iPey8emYJdbJqeOR2F0OuduT6J0oteVpqxWipJapFGyxefIrjES5e/268LUfkMUbLdcjXdbC6+CFYehE8dxHsf5kwXDI9cP8RsK5KRGpOEwpZkYnnYbnJjnY8fnjrAeQmzYcVP4N/HwytB8IHXoPou2Hpl+A/xw83dDM9NeGRM5Ue31o24bZ6+4y6eM1DE25rl5j+AUNYwCJDbv0qwPuhlRJJLdDaGuDuu8/hiiuO5g+PHsl7rv08G/vaxEZgx/HDVS1jlV4IBdBFlMPj50Iht33TO8QMI5y198TfxC6gztqXou6jPxVw/ZqvRiNo8d0vtBK8X0OuljwttWK01BrbRxu48Xl4/buRhpyDVJssCxceRTanc+TFx/Nw4gqRw/DwKdB2MJz+ArQcCE+cCy98dXiJgvRmkQ/WYrGstMNUM26DAYXD9tjAN28+hUMumMnjm88CxQ8PnwyvfReO/RscfSMMvA7/Pghe/a5YiCTXocXdk+ovoUbEokhb+/KE2zLr4rXVT7itXWLWuWXxFgvojYmd0NaQtz3JEkmt4PMpXHvtPG677Sxe3TSLw6/6Ck++MUd43BrbhodamuhAHdS3wvpb4c45MLhy3H2aRsuUKRa8g51HnTrVGEdY3Add3BiKdgTpT4XYOhARjz1u/NSSXP9EqTVPSy0YLZLqePm7kYacw2w/Wb773eN47rlPMm1aE6d8sZXfrP4dxJ6C+4+E3ACcvAT2vghW/HR4iYLkerET2epOOIlVVDNuf3/96Ty3+mfcfc2zJLMNHP/V4/jMzw4n1nIBvPUn+NcBQtHyA8thxofg5Svh/sMprr6JvmTQ9bxBtdkQCNm0EXqemlBbWjwoVDjbXaoVGIwa4i0WeeQG62gNpajzW9KcRCIxOOecfXj66U7CbZM54Xtf5HcPHSlyr/uWwuxPVnnFEJy9HiadAJnNQlBq5f+N3VE+I6T/AdWlGqbRaaLfkidMbXKviK9aeAGAVVuiKEqRttifXRuLFYRC9TQ2igu0141Sr3taJJLxIA25GmDPPVv5738/wemn78FF3x7kiw/8gaFMBh44RiiMHfErOOYvw0oUDA2sZyAVJKq6k+BtJVV3Qnx+zrjyFpY/cwrfPGsJf37iYPb92B784dkPU6yfBI+fI8IrD/s5HH8XpDbTv2YJRd0nhEEmaEBNhGi7EADQBhRhfE9gLGbYUMdxVg1vp1EjScs8clo8IBQ4fdYYhhKJpMyBB3bw3HPncdLJe/D5Gz7Mgt+fTTbfAGv/Uv0Ft3bAsTfDIT8TCiZLvwiPnA75HRhGyTVmvU43inADqFMnAaIAtxYPuRd6DqiFZwF4Y3MHraEM/k23uzYWK1AUxQyv9HqOHHjb0yKRjAdpyNUIzc2N/POfZ/ONbxzJ//1xM6f++vtoHAhLzoLlP4Q5n4BTnzFLFPS+/m8A1Ob8GC17m9Ce7+X7d9zJssVLOWD6Vj738yM4/rJ5vFpcABvvFrvIOQ32/kI52bwpBdsedW3MD7+6BwAX/PajzPnSV+i6/oFdbss05GaeY9XwdppoU4r+VIh8vjj2yWNgvp+QSx5GiWQ3p60twD33nMO3vnUUv3/4cE743hfZ1NdS/WQ9A3dMgQYV3v8yNE6CzffBnTOhb5TQ8MSa8rV2cptN72LHqB1NAKbIiKq6tzEU1UWR55Wbo2ITcSdqwdYqpZBKr3vkJJK3A9KQqyH8fh8/+MHx3HTT6Tz5tMaR3/oUy4sXwLJvwlPnQ2RvOG0pRN+N1it2TNXCM656nxzB5+OAz/yDJY9/hj9+/nZWbOrgkE/tyTdu/RjJ+gPg6U/D5vtMQQ41koJJ73VlqF1dy/nKDccbj4y6eN+pp+vXf9+l9rS4kf+hHjH2yTZRyj/p7dlBOYxxIgy5JEx6z4Tbkkgk1fH7fXzve8dxyy1n8tK66Rz+7a/zndtOZs4ll+Pr/BFzLrmcricPKb/gmQvgvxfAWW/C9DNFDcx/HwLLfzyy8cQaM9S6rc2dHKqSgbFeayUzVI864x2ujANADfcCsLGvVWxSFb2tyNvVtZyVK/sAOP3021wroC2RSMaHNORqkPPOO4AlSz5KMpnn6C8ewr3934Puv8B/3gOFFEw9tbwjGo676n1yEqXjcD71myd54+aVXHDcUn5024HM/ezx3L3xErruVTjrZ58C4LOLz6Xrtm2ujFHUxRueAJbKNbDwOy/DC5dBYedURk0Plt+9pDJThXPDxMsp9Jbez+xPTLgtiUSyY849d1+efrqTvK+Fq28/hbWxNvTSBtMfzqXruZPKJ/c/D/9ogYN/AkdeD4oPln0dHjx+eE3Tbf9FS4RErmudO0uIlpZG/L4CK7d0AO7l6gGokXJYZzSSBMW76Q6lAtrZrMjz3rgx4VoBbYlEMj6kIVejHH30NJ577pO84x2tnPmlen6y/Ab0/tfgviMgMMU05KLNOde8T66gKKhndHH9P6/l8e/cQCSY5ayvz+CC33yYnkGhGrZloJkFX1npys1nh3XxVvwMHjh69NqAVXBbWhvKNd9iq56ZcFtaIkR7UwomvXvCbUkkkrF55zs7DPGK4cJYqWw9C//y7u2EUIpw776Q2gRnvAHBGdDzOPxzhhDhAuhZYkQKuHddUhSF9qY0KzdHgbJSsBtED5pv/q1GUrDXZ1wby0SppQLaEolkfEhDroaZObOZxx//GPPn78PXFml86p+/I5NvhOcvIpY2diIPvxA6jnF5pC7Qsh/zvr2cF2/upzWUolAcPpVTGcWVm89o9Wl04BsPfIeEtgXuOwxWXy/EBXZAcShjeLDcVeF89k0haPCezjhz5izeZQN5aKjAYDrouodRInm7sXFj9bDodVpECKHs+SmgQqb91avggeNF3c7ZH4ehAXjgWHjpipqp16k2JXljs3Ef3LjItRSD0P7nEagXXjk1koU9zndlHFZQSwW0JRLJ+JCGXI0TDjfw97+fydVXv5ub/raZE396Fb959Ay+dtN7ATjuEym6fnunu4N0kfp51zOQrp7o7sbNZ9GieYQah+9oBhtyHLfvW/zoxjD7/+9F3Lb8LPRnLoQn5kO2d9S2BrZuFiqcLu58d3UtZ9E/TwYQIVlrB3c51Ka31yhu7vICUCJ5uzHaBlN7OI2uBERZF/UwaD20/GR2I9zaAu/4kqjd6auH1xYBObREyPUyL9FIkv6UkRfdNAhrbnJnIB3HEO0wUh0O+rinN1ZrqYC2RCIZH9KQ8wCKonDVVe/mH/84k6UvxPjSb480b2DrtVbXwghrhVq6+XR2zmXxH85i9qQkiqIzO9rH7z93K49d9VueuOrXtAd7mX/NYZz+q6tZtfS/8K93wdZHq7alrXsdcNfwWbjwCdJDw3M+djXURtsqDGs3i/dKJG9HqhVG9vkUtESI8xZ/mni6EfpehMRq2HPB8Bc/dCxs+Bec+SY0iFDGWDwsrkurFjv1FkZQeV10e3NI7RCqoOqsfVwdx0SptQLaEolkbKQh5yHmz9+XaDSEvn2ug0thhLWC8IIVhh0LNRZcu/l0ds6le+u3KRa/RnfPIjq/cjEAx+7bzfPf/QU/P+9O/rvMx4Hf+ApX/u04Uv86FV5aCMXhtZC0N5cCuBpaOZpXc+3aQTZt2jkVS23TWsD9RZdE8najWmHkP/3pNK655lhufmwvDrvm2yx7Kwp6Ht5aDLPOhbqKjbC1N8E9+0PLAUCF+uz621x6RwwrAt7elILEW+6Nxai35nW5fllAWyLxHtKQ8xhbtlRf1L+dY9iFF+xMZk9KCy/YpDSL/3Bm7dx83vFpmD8AwenU+YtcctoTvPGTHzH/iGV895bDOODyK7n7z3fAg/MgXlaG1NaKOk5uGj6jezV15sxZzPnn/4tly8anENrb/QpgLLokEomjbF8Y+bzzDuDKK4/hkUc+QjLfxlFX/y+/fvDd6NTDun9AcCpMPaPcQCEBPUvI5f0kMgGjvuWHXXs/0YjYSIoEMjTUFWDLg66Mo6trOU8/vQmAiy56yPPRMbKAtkTiLaQh5zFqKYywlhBesCuFF2zrlbV382lohg9tgIN+CMDUtjhd1lgH/QAACqFJREFUF93Mw5f/lqBvgLN++hnOWngQa258L7x1E+g62jaRP6dGdq5kgZUsWjSPUMNwRbhQQ46fdd7FF056kttvXc4hh9zESSfdwr33vkmxOLqAi7b2NUB65CSSWuL442fy0kvnc/LJc/jSH05l/v9dTH8yAMm1sOUBeMcXhp0/rF6ni5SuI+Vx7Fg8yg5Kcv0lpcdt21JSrl8ikTiKNOQ8hoxh9zgHfB0+tA3q2wA44YA3Wfb96/jRx+/h4df2YO5lF3HtN/7MnxZezCU3vBeAExdd6NrCoLNzLos/dyuzo30oiJy/xZ+7la+8/wl+cd7tbPjFlfzovMdY+fpGzjjjDubO/SO/+91LpFJDI9rSNm8ApCEnkdQa0WiIu+8+h5/85D3c9fR0Dv7ONTy9cgr4/LD6/2DqqRCcBWAWA1ebkvDcF10bs9pCeRwAjVMcH4OU65dIJG4jDTmPIWPYdwOCHXBuL+x7GQANdQW+dsYSVvzoh5xx8OtcdeupfOb7s+lLigXTht4WFlx4n3vG3Jn1dP/iexS7vk73L75H57Evms+1hjN87bS7eesHX6Xr608TDgzx+c8/yKxZi7nqqifMUOCuruV895aDAZ0Dv3GZ3LGWSGoMn0/hssuO4IknPo7S0MJx136JH//7VIpFvwhb1IXBYtYwjSSBwg5atJfoHHHPMzeGZp7t+BikXL9EInEbRR+jlpVbHH744frSpUvdHoZEYi+JtUJEoFhO3J/8havYZhQ3r2T27Ga6uxeMOO4I9x0FfS9AfSvkYqOepuvw+MACfvbvE7jr3g3U1/s5+uipPPvsZjKZ8qIvFKqTGxASSY3S35/hwgsf4NZbV3L60f3ceMHP6WgrQiHNbc++k/m/OJ9l3/sZB83R4OPuhH5f9Zlvce0fVUBndrSfRRfn6Lzqx46OYc6cxaxdO9Joc/VaLZFIdjsURXle1/XDqz0nPXISiZs0zYaPJmFWp3moZ7Cp6qmu7vKe9gx8fAjm98DHhiB6bNXTFAWOb13MPzsv4I07U1z42f15/PENw4w4kOFHEkkt09oa4JZbzuQ3vzmZh19UOfg7V7Nk+RxQ6ipCK1Nw+C9dGV9X13J+/Neo8UhhbayNBT+Y6rinX6Y6SCQSt5EeOYmkVuh/Ff59KHO+/DXWxtpGPF1zu7zZfrj3nZDZMPo5jVF8536DapcZRYFi8au2DU8ikUycZcu28dGP3s3q1X2cfcQKHnplNgOpIDPVPr7/Zee9YFBbnrCuruUsXPgE69YNMmtWM4sWzZORBhKJxFJ25JGrq3ZQIpG4QOuB8LEMi175NAt+GiaVKxfiDjXkam+Xt7EVzlkPfcvhgSOgUEXEJBtjltpX1TB9uyutSiRe4OCDJ/H88+dx2mm3cvuT5ePrtTYWfL8Iey133HCppdy0zs650nCTSCSuIUMrJZJaQvHR+b0bWfy527ZTiry9dhcLbXNFeOi7b6PaJWXRR/49soRBoFh7hqlEIqlKU1MDGzYkRhxPZXyuhEjLMjwSiUQikB45iaQG6Tyzjs5jv1c+0H6ke4MZL3POgTkFWHYVLL/WPFxSuVx4y+msi7UyK9rPok+9Rmfn190aqUQi2UlqyQu2aNG8YfXbQOamSSSStycyR04iqVVKSpFthwqxES+hF+HRM2Hzv6o/X98mSjBIJBJPUEt5aSBz0yQSyduHHeXISUNOIpHYx1Aa/n0wJFYOP640uCZbLpFIdp6uruVVvWCyjIhEIpHYiyw/IJFI3KE+CGe9wYhLjZ6verpEIqlNOjvnsnjxKcye3YyiCE+cNOIkEonEXWSOnEQisZ/2w6H32eGPJRKJp5AKjRKJRFJbSI+cRCKxn9OeEYItSp3432s5fxKJRCKRSCQ1hvTISSQSZ5DGm0QikUgkEollSI+cRCKRSCQSiUQikXgMachJJBKJRCKRSCQSiceQhpxEIpFIJBKJRCKReAxpyEkkEolEIpFIJBKJx5CGnEQikUgkEolEIpF4DGnISSQSiUQikUgkEonHkIacRCKRSCQSiUQikXgMachJJBKJRCKRSCQSiceQhpxEIpFIJBKJRCKReAxpyEkkEolEIpFIJBKJx5CGnEQikUgkEolEIpF4DEXXdbfHUBVFUXqAtW6Po8aJAjG3ByGR7ARyzkq8hpyzEq8h56zEa8g5u2Nm67reUe2JmjXkJGOjKMpSXdcPd3scEsl4kXNW4jXknJV4DTlnJV5DztldR4ZWSiQSiUQikUgkEonHkIacRCKRSCQSiUQikXgMach5m8VuD0Ai2UnknJV4DTlnJV5DzlmJ15BzdheROXISiUQikUgkEolE4jGkR04ikUgkEolEIpFIPIY05DyCoigBRVGeVRTlJUVRXlMU5Wrj+B6KojyjKMpqRVH+rihKg9tjlUhKKIriVxTlRUVR7jEey/kqqVkURelWFOUVRVGWKYqy1DjWrijKg4qirDL+b3N7nBJJCUVRWhVFuVVRlBWKoryuKMoxcs5KahVFUfY1rq+lf4OKolwq5+yuIw0575AFTtR1/SDgYOA0RVGOBn4IXKfr+juAPuCz7g1RIhnBJcDrFY/lfJXUOifoun5whRT2N4GHdF3fG3jIeCyR1Aq/AO7TdX0/4CDE9VbOWUlNouv6G8b19WDgMCAF3IGcs7uMNOQ8gi5IGA/rjX86cCJwq3H8RuBs50cnkYxEUZQZwAeA643HCnK+SrzHBxFzFeScldQQiqK0AMcDfwDQdT2n63o/cs5KvMFJwJu6rq9FztldRhpyHsIIU1sGbAMeBN4E+nVdzxunbACmuzQ8iWR7fg58HSgaj1XkfJXUNjrwgKIozyuKssA4NlnX9c3G31uAye4MTSIZwR5AD/BHI4T9ekVRwsg5K/EGHwNuNv6Wc3YXkYach9B1vWC4o2cARwL7uTsiiaQ6iqKcAWzTdf15t8cikewE83RdPxQ4HbhIUZTjK5/UhcyzlHqW1Ap1wKHA/+m6fgiQZLuQNDlnJbWIkR9/FvCP7Z+Tc3bnkIacBzFCJx4BjgFaFUWpM56aAWx0a1wSSQXHAmcpitIN/A0RUvkL5HyV1DC6rm80/t+GyNs4EtiqKMpUAOP/be6NUCIZxgZgg67rzxiPb0UYdnLOSmqd04EXdF3fajyWc3YXkYacR1AUpUNRlFbj7yDwPkRS8yPAfOO0C4A7XRmgRFKBruvf0nV9hq7rcxDhEw/rut6JnK+SGkVRlLCiKJHS38ApwKvAXYi5CnLOSmoIXde3AOsVRdnXOHQSsBw5ZyW1z8cph1WCnLO7jCwI7hEURXkXIgHUjzDAb9F1/RpFUfZEeDzagReBT+q6nnVvpBLJcBRFeS/wVV3Xz5DzVVKrGHPzDuNhHfBXXdcXKYqiArcAs4C1wEd0Xe91aZgSyTAURTkYISjVALwFfBpjjYCcs5IaxNgoWwfsqev6gHFMXmd3EWnISSQSiUQikUgkEonHkKGVEolEIpFIJBKJROIxpCEnkUgkEolEIpFIJB5DGnISiUQikUgkEolE4jGkISeRSCQSiUQikUgkHkMachKJRCKRSCQSiUTiMaQhJ5FIJBKJRCKRSCQeQxpyEolEIpFIJBKJROIxpCEnkUgkEolEIpFIJB7j/wML84UOWTLmQQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "\n", - "y_name = dict_cols['y'][1][0]\n", - "for idx in range(start_idx, start_idx + nb_predictions):\n", - " df_iter = df_input.iloc[idx:(idx + N_pred)].copy()\n", - " for idxx in range(N_pred - 1):\n", - " idx_old = df_iter.index[idxx]\n", - " idx_new = df_iter.index[idxx+1]\n", - " mean, var = m.predict_f(df_iter.loc[idx_old, :].to_numpy().reshape(1, -1))\n", - " df_iter.loc[idx_new, f'{y_name}_1'] = mean.numpy().flatten()\n", - " for lag in range(2, dict_cols['y'][0] + 1):\n", - " df_iter.loc[idx_new, f\"{y_name}_{lag}\"] = df_iter.loc[idx_old, f\"{y_name}_{lag-1}\"]\n", - " \n", - " mean_iter, var_iter = m.predict_f(df_iter.to_numpy())\n", - " plt.plot(df_iter.index, mean_iter.numpy(), '.-', label = 'predicted', color = 'orange')\n", - "plt.plot(df_output.iloc[start_idx:start_idx + nb_predictions + N_pred], 'o-', label = 'measured', color = 'darkblue')\n", - "plt.title(f\"Prediction over {N_pred} steps\")\n", - "plt.savefig(f\"prediction_{N_pred}_steps.png\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test CasADi problem" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import casadi as cs" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class GPR(cs.Callback):\n", - " def __init__(self, name, model, opts={}):\n", - " cs.Callback.__init__(self)\n", - "\n", - " self.model = model\n", - " self.n_in = model.data[0].shape[1]\n", - " # Create a variable to keep all the gradient callback references\n", - " self.refs = []\n", - "\n", - " self.construct(name, opts)\n", - " \n", - " # Number of inputs/outputs\n", - " def get_n_in(self): return 1\n", - " def get_n_out(self): return 1\n", - " \n", - "\n", - " # Sparsity of the input/output\n", - " def get_sparsity_in(self,i):\n", - " return cs.Sparsity.dense(1,self.n_in)\n", - " def get_sparsity_out(self,i):\n", - " return cs.Sparsity.dense(1,1)\n", - "\n", - "\n", - " def eval(self, arg):\n", - " inp = np.array(arg[0])\n", - " inp = tf.Variable(inp, dtype=tf.float64)\n", - " [mean, _] = self.model.predict_f(inp)\n", - " return [mean.numpy()]\n", - " \n", - " def has_reverse(self, nadj): return nadj==1\n", - " def get_reverse(self, nadj, name, inames, onames, opts):\n", - " grad_callback = GPR_grad(name, self.model)\n", - " self.refs.append(grad_callback)\n", - " \n", - " nominal_in = self.mx_in()\n", - " nominal_out = self.mx_out()\n", - " adj_seed = self.mx_out()\n", - " return cs.Function(name, nominal_in+nominal_out+adj_seed, grad_callback.call(nominal_in), inames, onames)\n", - " \n", - "class GPR_grad(cs.Callback):\n", - " def __init__(self, name, model, opts={}):\n", - " cs.Callback.__init__(self) \n", - " self.model = model\n", - " self.n_in = model.data[0].shape[1]\n", - "\n", - " self.construct(name, opts)\n", - "\n", - " \n", - " def get_n_in(self): return 1\n", - " def get_n_out(self): return 1\n", - " \n", - " def get_sparsity_in(self,i):\n", - " return cs.Sparsity.dense(1,self.n_in)\n", - " def get_sparsity_out(self,i):\n", - " return cs.Sparsity.dense(1,self.n_in)\n", - "\n", - "\n", - " def eval(self, arg):\n", - " inp = np.array(arg[0])\n", - " inp = tf.Variable(inp, dtype=tf.float64)\n", - " \n", - " with tf.GradientTape() as tape:\n", - " preds = self.model.predict_f(inp)\n", - "\n", - " grads = tape.gradient(preds, inp)\n", - " return [grads.numpy()]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "cs_model = GPR(\"gpr\", m)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "N_horizon = 5;\n", - "\n", - "T_set = 23;\n", - "T_set_sc = scaler.transform(np.array([0, 0, 0, T_set]).reshape(1, -1))[0, 3]\n", - "n_states = m.data[0].shape[1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "total_cols = 0\n", - "for lags, cols in dict_cols.values():\n", - " total_cols += lags*(len(cols)+1)\n", - "total_cols = total_cols -2\n", - "print(total_cols)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "W = cs.MX.sym(\"W\", N_horizon, 2)\n", - "U = cs.MX.sym(\"U\", N_horizon, 1)\n", - "x0 = cs.MX.sym(\"x0\", 1, n_states)\n", - "Xk = cs.MX.sym(\"Xk\", 0, n_states)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "yhats = cs.MX.sym(\"yhats\", 0, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "yhat = cs_model(x0)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "yhats = cs.vertcat(yhats, yhat)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### First step" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "xk = x0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### All the other steps" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for row_idx in range(N_horizon):\n", - " # w\n", - " base_idx = 0\n", - " nb_cols = len(dict_cols['w'][1])*(dict_cols['w'][0])\n", - " wk_1 = xk[base_idx:base_idx + nb_cols]\n", - " \n", - " wk = cs.MX.sym(\"wk\", 1, 0)\n", - " nb_lags = dict_cols['w'][0]\n", - "\n", - " for idx in range(W.shape[1]):\n", - " base_col = idx * (nb_lags - 1)\n", - " wk = cs.horzcat(wk, W[row_idx, idx], wk_1[base_col:base_col + nb_lags - 1])\n", - " \n", - " # u\n", - " base_idx += nb_cols\n", - " nb_cols = len(dict_cols['u'][1])*dict_cols['u'][0]\n", - " uk_1 = xk[base_idx:base_idx + nb_cols]\n", - "\n", - " \n", - " nb_lags = dict_cols['u'][0] - 1\n", - " uk = cs.horzcat(U[row_idx], uk_1[:nb_lags])\n", - " \n", - " # y\n", - " base_idx += nb_cols\n", - " nb_cols = len(dict_cols['y'][1])*dict_cols['y'][0]\n", - " yk_1 = xk[base_idx: base_idx + nb_cols]\n", - " \n", - " nb_lags = dict_cols['y'][0] - 1\n", - " yk = cs.horzcat(yhat, yk_1[:nb_lags])\n", - " \n", - " xk = cs.horzcat(wk, uk, yk)\n", - " Xk = cs.vertcat(Xk, xk)\n", - " yhat = cs_model(xk)\n", - " yhats = cs.vertcat(yhats, yhat)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Helper functions to easily reproduce everything:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ff = cs.Function('ff', [W, U, x0], [yhats])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Ff = cs.Function('Ff', [W, U, x0], [Xk])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Compute the objective function:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "y_diff = yhats - T_set_sc\n", - "J = cs.dot(y_diff, y_diff)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Compute the parameters vector:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "p = cs.vertcat(cs.vec(W), cs.vec(x0))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "prob = {\"x\": cs.vec(U), \"f\": J, \"p\": p}\n", - "options = {\"ipopt\": {\"hessian_approximation\": \"limited-memory\", \"max_cpu_time\": 500,\n", - " \"acceptable_tol\": 1e-8, \"acceptable_obj_change_tol\": 1e-6}}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "solver = cs.nlpsol(\"solver\",\"ipopt\",prob, options)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Check the functions on \"real\" values" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "real_W = np.random.rand(*W.shape)\n", - "real_U = np.random.rand(*U.shape).reshape(-1, 1)\n", - "real_x0 = np.random.rand(*x0.shape).reshape(1, -1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "yhats_ff = ff(real_W, real_U, real_x0)\n", - "np.array(yhats_ff)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Xk_Ff = Ff(real_W, real_U, real_x0)\n", - "pd.DataFrame(np.array(Xk_Ff), columns = df_input_train.columns)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "np_realxk = np.empty((N_horizon + 1, n_states))\n", - "np_realxk[0, :] = real_x0\n", - "np_realxk[1:, :2] = real_W\n", - "np_realxk[1:, 2] = real_U.ravel()\n", - "\n", - "for row_idx in range(N_horizon):\n", - " mean, _ = m.predict_f(np_realxk[row_idx, :].reshape(1, -1))\n", - " np_realxk[row_idx + 1, 3] = np_realxk[row_idx, 2]\n", - " np_realxk[row_idx + 1, 4] = mean\n", - " np_realxk[row_idx + 1, 5] = np_realxk[row_idx, 4]\n", - " np_realxk[row_idx + 1, 6] = np_realxk[row_idx, 5]\n", - "np_yhats, _ = m.predict_f(np_realxk)\n", - "np_yhats" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "yhats_ff - np_yhats" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "mean, _ = m.predict_f(np_realxk[2,:].reshape(1, -1))\n", - "mean" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Set up the problem and solve it" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "start_idx = 25\n", - "test_gpr = data_to_gpr(dfs_test_sc[0], dict_cols).drop(columns = u_cols + y_cols)\n", - "real_x0 = cs.DM(test_gpr.iloc[start_idx, :].to_numpy())\n", - "real_W0 = cs.DM(test_gpr.iloc[start_idx + 1: start_idx + N_horizon, :2].to_numpy())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "real_p = cs.vertcat(cs.vec(real_W0), cs.vec(real_x0))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "test_gpr.iloc[start_idx: start_idx + N_horizon + 1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true, - "tags": [] - }, - "outputs": [], - "source": [ - "res = solver(lbx = -1, ubx = 1, p = real_p, x0 = -1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "res['x']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Ff(real_W, np.ones((N_horizon, 1)), real_x0)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Ff(real_W, res['x'], real_x0)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "cs.norm_2(ff(real_W, np.ones((N_horizon, 1)), real_x0) - T_set_sc)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "cs.norm_2(ff(real_W, res['x'], real_x0) - T_set_sc)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "T_set" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Multiple shooting problem formulation" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "N_horizon = 15" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "X = cs.MX.sym(\"X\", N_horizon + 1, n_states)\n", - "lbd = cs.MX.sym(\"lambda\")\n", - "x0 = cs.MX.sym(\"x0\", 1, n_states)\n", - "W = cs.MX.sym(\"W\", N_horizon, 2)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "g = []\n", - "lbg = []\n", - "ubg = []\n", - "\n", - "lbx = -np.inf*np.ones(X.shape)\n", - "ubx = np.inf*np.ones(X.shape)\n", - "\n", - "T_set_sc = 2.5\n", - "##\n", - "# Set up the opjective function\n", - "##\n", - "\n", - "# stage cost\n", - "u_cost = cs.dot(X[:, 2], X[:, 2])\n", - "\n", - "# temperature constraint\n", - "y_cost = 0.01 * cs.dot(X[:, 4], X[:, 4])\n", - "\n", - "J = u_cost + y_cost" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Set up equality constraints for the first step\n", - "for idx in range(n_states):\n", - " g.append(X[0, idx] - x0[0, idx])\n", - " lbg.append(0)\n", - " ubg.append(0)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Set up equality constraints for the following steps\n", - "for idx in range(1, N_horizon + 1):\n", - " base_col = 0\n", - " # w\n", - " nb_cols = dict_cols['w'][0]\n", - " for w_idx in range(W.shape[1]):\n", - " w_base_col = w_idx * nb_cols\n", - " g.append(X[idx, base_col + w_base_col] - W[idx - 1, w_idx])\n", - " lbg.append(0)\n", - " ubg.append(0)\n", - " for w_lag_idx in range(1, nb_cols):\n", - " g.append(X[idx, base_col + w_base_col + w_lag_idx] - X[idx - 1, base_col + w_base_col + w_lag_idx - 1])\n", - " lbg.append(0)\n", - " ubg.append(0)\n", - " \n", - " base_col += nb_cols * W.shape[1]\n", - " # u\n", - " nb_cols = dict_cols['u'][0]\n", - "\n", - " lbx[idx, base_col] = -1 #lower bound on input\n", - " ubx[idx, base_col] = 1 #upper bound on input\n", - " for u_lag_idx in range(1, nb_cols):\n", - " g.append(X[idx, base_col + u_lag_idx] - X[idx - 1, base_col + u_lag_idx - 1])\n", - " lbg.append(0)\n", - " ubg.append(0)\n", - " \n", - " base_col += nb_cols\n", - " # y\n", - " nb_cols = dict_cols['y'][0]\n", - " g.append(X[idx, base_col] - cs_model(X[idx - 1, :]))\n", - " lbg.append(0)\n", - " ubg.append(0)\n", - " for y_lag_idx in range(1, nb_cols):\n", - " g.append(X[idx, base_col + y_lag_idx] - X[idx - 1, base_col + y_lag_idx - 1])\n", - " lbg.append(0)\n", - " ubg.append(0)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "p = cs.vertcat(cs.vec(W), cs.vec(x0))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "prob = {'f': J, 'x': cs.vec(X), 'g': cs.vertcat(*g), 'p': p}\n", - "options = {\"ipopt\": {\"hessian_approximation\": \"limited-memory\", \"max_iter\": 100,\n", - " #\"acceptable_tol\": 1e-6, \"tol\": 1e-6,\n", - " \"linear_solver\": \"ma97\",\n", - " #\"acceptable_obj_change_tol\": 1e-5, \n", - " #\"mu_strategy\": \"adaptive\",\n", - " }}\n", - "solver = cs.nlpsol(\"solver\",\"ipopt\",prob, options)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "real_x0 = np.random.rand(*x0.shape)\n", - "real_x0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "real_W = np.random.rand(*W.shape)\n", - "real_W" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "real_p = cs.vertcat(cs.vec(real_W), cs.vec(real_x0))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "res = solver(lbx = cs.vec(lbx), ubx = cs.vec(ubx), p = real_p, lbg = lbg, ubg = ubg)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "np_res = np.array(res['x'].reshape(X.shape))\n", - "pd.DataFrame(np_res, columns = df_input.columns)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "mean, var = m.predict_f(np_res)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "mean" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "name": "Untitled3.ipynb", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Notebooks/40_casadi_gaussiandome.ipynb b/Notebooks/40_casadi_gaussiandome.ipynb deleted file mode 100644 index b00b062..0000000 --- a/Notebooks/40_casadi_gaussiandome.ipynb +++ /dev/null @@ -1,1887 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "import pickle" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import gpflow\n", - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from gpflow.utilities import print_summary" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "import casadi" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load the existing GP model" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "ename": "FileNotFoundError", - "evalue": "[Errno 2] No such file or directory: 'gp_trainset.pkl'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf_sampled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"gp_trainset.pkl\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/usr/lib/python3.9/site-packages/pandas/io/pickle.py\u001b[0m in \u001b[0;36mread_pickle\u001b[0;34m(filepath_or_buffer, compression, storage_options)\u001b[0m\n\u001b[1;32m 183\u001b[0m \"\"\"\n\u001b[1;32m 184\u001b[0m \u001b[0mexcs_to_catch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mAttributeError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mModuleNotFoundError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m with get_handle(\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/pandas/io/common.py\u001b[0m in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 649\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 650\u001b[0m \u001b[0;31m# Binary mode\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 651\u001b[0;31m \u001b[0mhandle\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mioargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 652\u001b[0m \u001b[0mhandles\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 653\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'gp_trainset.pkl'" - ] - } - ], - "source": [ - "df_sampled = pd.read_pickle(\"gp_trainset.pkl\")" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "x_scaler = pickle.load(open('x_scaler.pkl', 'rb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "df_input = df_sampled.drop(columns = ['y'])\n", - "df_output = df_sampled['y']" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "np_input = df_input.to_numpy()\n", - "np_output = df_output.to_numpy().reshape(-1, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "np_input_sc = x_scaler.transform(np_input)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "n_states = np_input_sc.shape[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "╒═════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤════════════════╕\n", - "│ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │\n", - "╞═════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪════════════════╡\n", - "│ Sum.kernels[0].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.0 │\n", - "├─────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────┤\n", - "│ Sum.kernels[0].lengthscales │ Parameter │ Softplus │ │ True │ (7,) │ float64 │ [1., 1., 1.... │\n", - "├─────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────┤\n", - "│ Sum.kernels[1].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.0 │\n", - "╘═════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧════════════════╛\n" - ] - } - ], - "source": [ - "k = gpflow.kernels.SquaredExponential(lengthscales=([1] * np_input.shape[1])) + gpflow.kernels.Constant()\n", - "print_summary(k)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "╒════════════════════════════════════╤═══════════╤══════════════════╤═════════╤═════════════╤═════════╤═════════╤════════════════╕\n", - "│ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │\n", - "╞════════════════════════════════════╪═══════════╪══════════════════╪═════════╪═════════════╪═════════╪═════════╪════════════════╡\n", - "│ GPR.kernel.kernels[0].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.0 │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────┤\n", - "│ GPR.kernel.kernels[0].lengthscales │ Parameter │ Softplus │ │ True │ (7,) │ float64 │ [1., 1., 1.... │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────┤\n", - "│ GPR.kernel.kernels[1].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.0 │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────┤\n", - "│ GPR.likelihood.variance │ Parameter │ Softplus + Shift │ │ True │ () │ float64 │ 1.0 │\n", - "╘════════════════════════════════════╧═══════════╧══════════════════╧═════════╧═════════════╧═════════╧═════════╧════════════════╛\n" - ] - } - ], - "source": [ - "model = gpflow.models.GPR(\n", - " data = (np_input_sc, np_output), \n", - " kernel = k, \n", - " mean_function = None\n", - " )\n", - "print_summary(model)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "model_params_loaded = pickle.load(open(Path(Path.cwd(), 'gp_params.gpf'), 'rb'))" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "gpflow.utilities.multiple_assign(model, model_params_loaded)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "## Load the test experimental data" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "def load_autoregressive_df(exp_id, lu = 1, ly = 3):\n", - " \n", - " df_wdb = pd.read_pickle(f\"../Data/Experimental_python/Exp{exp_id}_WDB.pkl\")\n", - " \n", - " df_carnot = pd.read_pickle(f\"../Data/CARNOT_output/Exp{exp_id}_full.pkl\")\n", - " df_data = df_carnot.loc[:, ['Power', 'Heat', 'Setpoint', 'OutsideTemp', 'SupplyTemp', 'InsideTemp', 'SolRad']]\n", - " df_simulated = df_carnot.loc[:, 'SimulatedTemp']\n", - "\n", - " df = pd.concat([df_wdb, df_data.reset_index(), df_simulated.reset_index()], axis = 1)\n", - "\n", - " df = df.loc[:,~df.columns.duplicated()]\n", - " \n", - " # Select the potentially useful columns\n", - " #df = df.loc[:, ['timestamp', 'zenith', 'azimuth', 'dni', 'dhi', 'OutsideTemp', 'Power', 'InsideTemp', 'SolRad', 'Setpoint']]\n", - " df = df.loc[:, ['timestamp','SolRad', 'OutsideTemp', 'Heat', 'InsideTemp']]\n", - "\n", - " df.drop(columns = ['timestamp'], inplace = True)\n", - " df.loc[:, 'timestamp'] = df_data.index\n", - " df.set_index('timestamp', drop = True, inplace = True)\n", - " \n", - " # Select the input/output and drop the columns that doesn't make to be used\n", - " dyn_in = 'Heat'\n", - " dyn_out = 'InsideTemp' \n", - " df.rename(columns = {dyn_in: 'u', dyn_out: 'y'}, inplace = True)\n", - "\n", - " # Add the regressive inputs/outputs\n", - " for idx in range(1, lu + 1):\n", - " df[f\"u_{idx}\"] = df['u'].shift(idx)\n", - " \n", - " for idx in range(1, ly + 1):\n", - " df[f\"y_{idx}\"] = df['y'].shift(idx)\n", - " \n", - " # Since some lines now have holes, drop them\n", - " df.dropna(inplace = True)\n", - " \n", - " return df" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "test_day = 5 # can be either 3 or 5 since \n", - "df_test = load_autoregressive_df(test_day)\n", - "np_test_in = df_test.drop(columns = ['y']).to_numpy()\n", - "np_test_in_sc = x_scaler.transform(np_test_in)\n", - "np_test_out = df_test['y'].to_numpy().reshape(-1, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAE/CAYAAADc0KMkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADbWElEQVR4nOzdZ3hc53ng/f8zvTf0DpJgFUWq9y5XubfXsR3HTnMcx4mTeOMkTjbd2c0m693EduJ47TiOmxz32HKTJVmWREmUKLGIHSDR+2Awvc/zfjhnhgAJkmAFQNy/69KlmcE5g2cAYuac+9xFaa0RQgghhBBCCCGEEKuTZakXIIQQQgghhBBCCCGWjgSHhBBCCCGEEEIIIVYxCQ4JIYQQQgghhBBCrGISHBJCCCGEEEIIIYRYxSQ4JIQQQgghhBBCCLGKSXBICCGEEEIIIYQQYhWT4JAQQgghlh2l1LuUUj9Z6nVcTEqpf1dK/c157nu7UuqoUiqllHrjRV7amb7vnUqpw5fr+wkhhBBiaUhwSAghhFjllFL9SqmsGXiYUEp9Xinlu4Dn+wul1JcuZE1a6y9rrV9xIc9xhfkr4JNaa5/W+juX6psopbRSqqd6X2v9hNZ646X6fkIIIYRYHiQ4JIQQQgiA12mtfcB1wI3Any7VQpRStgvYVymlrsTjmy5g/1IvQgghhBBXpivx4EkIIYQQ50lrPQL8ENgKoJR6vVJqv1JqVin1M6XU5uq2Sqk/VEqNKKWSSqnDSqn7lVKvAj4KvN3MRNpjbhtUSn1OKTVm7vM3Simr+bX3KqWeUkr9H6XUDPAX5mNPzvletymlnlNKxc3/3zbnaz9TSn1MKfUUkAHWnvy6Flqr+fhNSqmnzdc3ppT6pFLKMWc/rZT6gFnSlVRK/bVSap25T0Ip9Z/V7ZVS9yilhpVSH1VKTZsZWe863c9aKfVapdRu83vvUEptO812feZr+p75M3Waz/2yOdvUsrWUUt3mut+jlBo01/Inc7a1mmvsM1/TLqVUh1Lq5+Yme8zv8/bqa5qz72bz5z1r/rt4/Zyv/btS6lNKqYfM531WKbXO/Joyf7+T5u9wr1Jq6+l+NkIIIYS4vCQ4JIQQQogapVQH8ADwolJqA/BV4HeBBuAHGAEKh1JqI/BB4EattR94JdCvtf4R8LfA18wSqO3mU38BKAE9wLXAK4Bfm/OtbwaOAY3Ax05aUwR4CPgnoA74OPCQUqpuzmbvBt4H+IGBk/ZfcK3ml8vA7wH1wK3A/cAHTvqxvAq4HrgF+AjwGeBdQAdGEO0dc7ZtNp+rDXgP8Bnz+8+jlLoO+DfgN8zX9K/AfymlnCdvq7VeBwxiZndprfMnb3MadwAbzdf0Z3MCe79vrvkBIAD8CpDRWt9lfn27+X2+dtKa7cD3gJ9g/J5+G/jySa/vHcBfAmGglxO/y1cAdwEbgBDwdiC6yNchhBBCiEtMgkNCCCGEAPiOUmoWeBJ4HCPA83bgIa31w1rrIvAPgBu4DSOo4gS2KKXsWut+rXXfQk+slGoCXg38rtY6rbWeBP4P8AtzNhvVWn9Ca13SWmdPeorXAEe11l80v/5V4BDwujnb/LvWer/59eJJ+592rVrrXVrrZ8z9+jGCNHeftP/faa0TWuv9wEvAT7TWx7TWcYwsq2tP2v6/a63zWuvHMYJa/98CP5ZfB/5Va/2s1rqstf4CkMcIQF0sf6m1zmqt9wB7gGqg7teAP9VaH9aGPVrrxQRqbgF8wP/UWhe01o8C32d+cOxbWuudWusS8GXgGvPxIkbgbhOgtNYHtdZjF/wKhRBCCHFRSHBICCGEEABv1FqHtNZdWusPmAGaVuZk4WitK8AQ0Ka17sXIKPoLYFIp9aBSqvU0z90F2IExsxxpFiMI0zhnm6EzrG3eOkwDGNk5Z93/TGtVSm1QSn1fKTWulEpgBMXqT3qKiTm3swvcn9u8O6a1Tp+0zoV+Ll3Ah6s/D/Nn0nGabc/X+JzbmTnr7AAWDOSdRSswZP47qDr597Dg9zQDSZ8EPgVMKKU+o5QKnMcahBBCCHEJSHBICCGEEKczihHEAIy+MRiBhREArfVXtNZ3mNto4O/MTfVJzzOEkRVTbwagQlrrgNb6qjnbnLzPaddh6qyuYxH7n2mt/4KRhbReax3A6JekzvRcZxFWSnlPWufoAtsNAR+b8/MIaa09ZlbUYqQBz5z7zeewxiFg3TlsXzUKdKj5Db9P/j2cltb6n7TW1wNXYZSX/cF5rEEIIYQQl4AEh4QQQghxOv8JvEYZjabtwIcxgjw7lFIblVL3mT1ychgZNGVzvwmguxpEMMuHfgL8b6VUQCllMZs6n1y+dTo/ADYopd6plLIppd4ObMEoaTqrs6zVDySAlFJqE/Cbi1zTmfyl2ZfpTuC1wNcX2Ob/Ae9XSt1sNmv2KqVeo5TyL/J77AZ+QSllV0rdALz1HNb3WeCvlVLrze+9bU7/pgkWaOhtehYjKPUR8/veg1Ha9+DZvqFS6kbztdrN58hx4ncghBBCiCUmwSEhhBBCLEhrfRj4ReATwDRGIOB1WusCRg+f/2k+Po5RIvZRc9dqMCSqlHrBvP1LgAM4AMSAbwAti1xHFCPI8mGMJsYfAV6rtZ5e5Es501r/G/BOIIkRsPnaQk9wDsYxXt8oRs+d92utD528kdb6eYy+Q580t+8F3nsO3+e/Y2T/xDAaQH/lHPb9OEbg7ycYgbHPYfSSAqP07gtmqdu8Xknm7/31GP2jpoF/Bn5pode3gADGzzeGUYoWxehhJYQQQohlQGl9xixsIYQQQgixCGYmzZe01u1LvBQhhBBCiHMimUNCCCGEEEIIIYQQq5gEh4QQQgghhBBCCCFWMSkrE0IIIYQQQgghhFjFJHNICCGEEEIIIYQQYhWT4JAQQgghhBBCCCHEKmZb6gUspL6+Xnd3dy/1MoQQQgghhBBCCCGuGLt27ZrWWjec/PiyDA51d3fz/PPPL/UyhBBCCCGEEEIIIa4YSqmBhR4/a1mZUqpDKfWYUuqgUmq/UupD5uN/rZTaq5TarZT6iVKq9TT7v0opdVgp1auU+qMLexlCCCGEEEIIIYQQ4mJaTM+hEvBhrfVm4Bbgt5RSW4C/11pv01pfA3wf+LOTd1RKWYFPAa8GtgDvMPcVQgghhBBCCCGEEMvAWYNDWusxrfUL5u0kcBBo01on5mzmBfQCu98E9Gqtj2mtC8CDwBsufNlCCCGEEEIIIYQQ4mI4p55DSqlu4FrgWfP+x4BfAuLAvQvs0gYMzbk/DNx8PgsVQgghhBBCCCGEEBffokfZK6V8wDeB361mDWmt/0Rr3QF8GfjgQrst8NhCGUYopd6nlHpeKfX81NTUYpclhBBCCCGEEEIIIS7AooJDSik7RmDoy1rrby2wyVeAtyzw+DDQMed+OzC60PfQWn9Ga32D1vqGhoZTpqoJIYQQQgghhBBCiEtgMdPKFPA54KDW+uNzHl8/Z7PXA4cW2P05YL1Sao1SygH8AvBfF7ZkIYQQQgghhBBCCHGxLKbn0O3Au4F9Sqnd5mMfBX5VKbURqAADwPsBzJH2n9VaP6C1LimlPgj8GLAC/6a13n+RX4MQQgghhBBCCCGEOE9nDQ5prZ9k4d5BPzjN9qPAA3Pu/+B02wohhBBCCCGEEEKIpbXohtRCCCGEEEIIIYQQ4sojwSEhhBCrWqWimUzmlnoZQgghhBBCLBkJDgkhhFjVcqUyQzOZpV6GEEIIIYQQS0aCQ0IIIVa14Zks08kCxXJlqZcihBBCCCHEkljMtDIhhBDiipTMFXnjPz9Fg8/JHevrsVvlmokQQgghhFh95ChYCCHEqnV4PEmmUGYoliFbLC31coQQQgghhFgSEhwSQgixavVNpQCoaBiZzaK1JlsoL/GqhBBCCCGEuLwkOCSEEGLV6p1M1W4fn8qQLpQ5NJ5Aa72EqxJCCCGEEOLykuCQEEKIVWtucGhwJk06V2QqmSct2UNCCCGEEGIVkYbUQgghVq1jU+na7b7JNL/yhefpCHvY0hrA55SPSCGEEEIIsTpI5pAQQohVKV8qMxzL1u4/dniS/aMJHjk0wXEzaCTlZUIIIYQQYjWQy6JCCCFWpcFohvKc4E8iZ0wrK5Y1Tx+L4nPZsFgU29tDS7RCIYQQQgghLg/JHBJCCLEqVSeVNfqdp3xtz3CcQqnCTCpPIle83EsTQgghhBDispLgkBBCiFWpzywd29oaPOVrLwzE+NsfHOSp3iijs9lTvi6EEEIIIcSVRIJDQgghVqWhmQwA7RE3DWb2UFvIRUvQRbZYZs9wnC8/O0DfZIp8SaaXCSGEEEKIK5cEh4QQQlxyvZNJ4tnlVZ41ncoD0Bhw0hZyA9DT6ONX71jDrWvrWFvvJVus8LPDUxTL0phaCCGEEEJcuSQ4JIQQ4pIqlSv0T6eZSOSWeinzTCWN4FB7yM3GJj8Am5sDvGprM79x91rec2s3AA8fmCBbkMwhIYQQQghx5ZLg0DKjtZbRyUKIK8r/+OEhfvPLL/Dc8SjlyvJ5f5tOFQDoCHv4g1du4IP3ruO2dXU0BVxYLYqeRi8tQRez2SIHRuNLvFohhBBCCCEuHQkOLTMTiRzj8eV1dV0IIc5XpaL51gvDFMuaRw5NkVwmk7+01rWysuagm3q/i3s2NhLyOrBbLbQG3YS9Tup9DuDEmHshhBBCCCGuRLalXoCYL5krUdGaFtxLvRQhhLhge0fixDJGQOj5/hnG4jlCHscSrwqS+RL5UgWnzYLfbXwUehxWgm47AOsafQCEzbVmChIcEkIIIYQQVy7JHFoGKhVNuaJJ5Ip8+dmBZdeXQwghztdP9o/XbidyJXYejy7hak6YNvsNBdx27Bbjo7Al6Cbidc7bLuw1gkNJyRwSQgghhBBXMAkOLbFiucJLo3GGZzJ8/sl+/n3HAN98YYTKMurLIYQQVVprJuLZRfcOeuzwJABr6r0APHFk+pKt7VxU+w0FXDZsVgUYgSC3wzpvO7/LyCqazSyPcjghhBBCCCEuBQkOLbFD4wkmEjlms0WOTCQBGIxmyJcqS7wyIYQ41Xg8x+7hOFGzX8+ZTCXzHBxL4rBa+P9uaAfgWDR9qZe4KNV+Q0G3HZtFnXY7j8MIDqXzkjkkhBBCCCGuXBIcWmJHxpN8d/cohycSDJgnTSOzWfIlGZsshFheMoUSO4/PkCuUOT6dPutkxePTxntaa8jFWjNzKF9cHoHvanAo5LGj1JmCQ0YmUaogmUNCCCGEEOLKJQ2pl1DfZIoPf30vAMlckcFYBjCutsfSBYqlCg77iQapQgixlEZiWf78e/tJ50v8zRu2sqHJX+vJs5CxeBYwmjq3hjwAyybwXe05FHKfuTm218wcyhWWR1BLCCGEEEKIS0Eyh5bQ735td+32nqE4iaxRtqCBPcNxDo4nOTKekP5DQoglV65o/vjb+5jNFCmWNT/aP0E8e+ZsmrG40Vy/we+k3m8EYYplfdaMo8thyuw5VOc7c3DI4zQyh7LF5RHUEkIIIYQQ4lKQ4NAS0VrXegwBzJ50kvXSSJyJRI5Uvlwrf6jutxgD0fSiG8YKIcTZPH5kkuf7Y/icNhTwxNEpxs3MoNMZmzW+3uR34XcZGZC5Ypnl8NY0ZWYONQVcZ9yuWla2lMGhSkXLRQIhhBBCCHFJSXBoiWQKZfKlCnarotHvPOXrn33yOH/wjb083ReldypFsVwhnimyayBG7iwnKflSmcGZDClpoCqEuEhGZ40soBu7w9zWU0+povn+3rEz72NmDnVE3LjtRpClUKpQrix9idZU0lhbS/BswSGzrGwJeyUNzmSYNNcrhBBCCCHEpSDBoSUykzZKGvwuO60hd+3xyEn9O766c5CZdIH+6TSHxhMksiVeGolTLJ/+ROXgaIJ9I3HimcKlWbwQYtVJ5IzsRo/DxroGo7n0RPLME8tGzcyh9ogHq0XhsFnQcNYA98mmFzEZ7WwyhVJt4thMKs+IubbmswSHqj2H8kuUOVSpaPaNzJ62hC+VLzE0k7nMqxJCCCGEEFcaCQ4tkZgZuPE6rGxu8dcev64zVLvttFlI5kv8+KVxjk2n+OrOQXonk6TyJY5PpxZ8Xq017/viLj7+kyMcmUjNe3w59PkQQqxMyZwRWLGoE9k2mcKZsxOrPYc6I0YAvJo9lC4sPtBSKFXonz6/MtlSuUI8WySeLbKrP1YLCA3PZms93pr8Zw4Ouc2yslxpaTKHPvvkMX77q7v54Uvj8x7PFEpMp/K8OBDj6ESyFvgSQgghhBDifEhwaIlEzcyhgNvObevqa4/fuCZCW8hNR9jN37xhKxYFD+0b48Gdw3xn9yj/44eHODCSYGgmWyuLSOSKDJhjpY9MpJhM5ilVNM/2R2sZRiOzWSYSUpYghDg/CTNzpTHgrI2lz+RPH+TJFcvMpAtYlaI5MD84dLag0lyfe/I4D+0do3AewZnpVJ6dx2d49OAE33pxhMPjSXonU7zn33ZSKFfwOKwE3Gce2uk1G1Kfa7bTxaC15gs7BgDYNRCr9R3KFcvs6o/x5NEpPv3zPnb0RRmOSfaQEEIIIYQ4fzLKfonEqsEhl42r24K1x3safHzj/beyfzSO12njlVc188OXxnns8CRgTDL7+E+P8LE3bWX/aILt7RYOTyRJmVf1nzg6VXuug6PG1eSQx8FILIvfbaM5eKKETQghFquaOVTnc9aaS+fPELCpBqODHjsuM/um2tw5fYag0lyzmQJ/96NDWBR84J6eWhbPYpQrmi8/O4BC8amf9VGuaGbSBVpDbmKZIt11Ht55UycO25mfszbKvlhGa41SatFruFAvDJzIdhqJZcmXKrgdVvqjaZ7oneI7L44ymTQCYFe3B+mq8+Kyn/n1xNJ5csUKLWY5c6WiqWiNzSrXioQQQgghVjM5GlwiM7XMIQedEQ8Nfic+p4219V48ThtKGSc3r9veWhu1fNf6Bl69tZlSRfOPPz2KBcULgzGeORbFalEci6bnlR4cHEswOpvlyHiSTz3Wy7FJo8xsMJrmwGj8vK7ECyFWp2rPoTqPoxakyZdOH+Tpm0oDEPE4sFmMgEo1cLHYEqjj08ZzVDQcO00pLRilZxMnTU57cOcgn3i0j396tLdWknZwLMHuoRgAv3bnWjY0+7Fazhzs8dRea+WyT1n7+q7h2u2R2SyZQol4psgbP/UUn/n5cSaTeSwKimXNwwcman3mSuUKyVxxwZ/z4EyGA2MJkrkiRyYS/PzoFLsGY1J2LIQQQgixyknm0BKpBoeCbhsWi+Jzv3Q9LwzGCLjtuOwW7FYrG5v9JLIlfuuedewamOWdN3VitSgOjCYYmMnw7zv6aQw4efC5Iep9Tv7XW7ZxZCIJgN2qiKYL7Bme5eEDk/z86DRuh5WXX9XMWDxHtlgmUyxzfWf4sl4JF0KsTNXMoaDHgdd55glexXKFZ49NA0aTfYeZleI+x8yhgeiJUqkjE0luXlsHGNkuljlBnd7JJCOxLHd7nThsxvf6wUvGJLXuOg/1PifPD8SYSuVr772dYQ8oXQtcnY5nTuZQRWusXJ73y0pF14L9Nqsib/ZeKlU0uWKFkMfO67e3sr7Rz3//7ks8dmiSX7ylk8aAiz3DsyRzJbTWtITcrG80gmBP903zoQd3866burBZFZl8mUpFkzWnZ54t60gIIYQQQly5JDh0mYzOZoh4nbWD7+oJSthjZAV11fuYThdw2Cw4bVa2tgWJeB2EPBU2NgfY3h4mVzICOr917zr+9Lv7edQsNQOjt8bvf303yVyJOq+DtQ1enuuPcXAsyY4+4yStfzrDobEk//F0Pw9c3QoYjWF9TvlnIIQ4s2rPobDHXusdlC8tXGpVKFUYjxsTxhoCzlogp1ZWtsieQ9XMIYBjc273TiUJuR00Blz0TaV4w6eeYlNzgK1tQVpCbtL5EjuPz6CAv3rDVsIeBx/86gsMRDOUtKbR78RihU1NgbMGx112C8rMzimUKtgvQvlVtlAmmsrTHvGceH1TKVpD7tpnxEQyRzxbxO+y0RH2cGAswUsj8VqJ3tVtQd52fQepfImeRh+9kykePTRJR8TLk0enyRYrXNXiZ3Q2R4PPSZ3Pyb/8rI/JZJ7PPNHHPZON/PClMSoa2kNubl1XJ8EhIYQQQohVTMrKLpOpZKF25R1OBIca/E7AaNTqc9pqV72rI+3tVgsbmnzMZguUKxW2twdpCbr58Ms3UL3g/fItTXRFPMxmjJO3rW1BbjWvsD/43FDt6v5ANM3/+tEhHto3zocefJHHD08xcxFGRAshrny1zCG3/USpVfHUUqtiucLrPvEk390zCkBz4MQ0MFetIfXiMof6o+k5t40sov0jcf7hx0c4bGZJPnZokmJZs28kzjPHomiteeTgBMWyZn2TD7TR422N2UQboLvOy1UtQerPMqkMQClVe71nasB9LsYTWY5MJmtlecVyhYFomon4iaEBx8yyvEa/k3WNxtoPTyRrQbImv4vplFFWdud6Y6jB7qE4v/mlXfyfnx7l04/38TsP7uarzw4yFMsQSxfY0RcFjIsCD+0zMqssypjeNjjnZy2EEEIIIVYfSRm5DL63Z5Sv7hzkD1+1sRYMqo6ybzTvO2wW2sKeWvnFXPU+Jy1BF2GPgzqfk61tQYqVCv/9tVs4Mp7krdd3oBQcGk8yncqztt7LdZ0hvrFrmNE5Jxu5UoWnjxknB6WK5ss7B7l7QwMdEY+UlgkhzqjacyjksZ8otSqdWmo1Hs9xbDqNUkbp1h09dbWvuc+z5xDA2GyWSkXzV98/wLPHZ3DbrdzQFeEZ8z0N4Ef7x9nWEeK7u43A1Lb2EK1hIwB01/oGfnbYaNi/tsF7Ts2tPXYb6XyZVL5IA85F77eQaCrPb3/lRa7tDLOpKUBr2M0ffXMfO/qm+bPXbqYt7MZmtdSCQI0BF9d2hPnenjGOT6fxmJmezUEXm5r91PmMjNTPP9XPi4MximWNy2bh+u4Izx6L8vDBCba2BYApShVNT6OP6VSefLHCH71qE/+5a4j9owleHJxlW0cYMPrdZYtlLOpEWR0YGWHVCxhCCCGEEOLKIsGhy+C3v/oiAF96ZpDt5sF3NDU/OATQFlp4kphSis0tJ8ofwl4HnREvFqW4oStCPFsgX6qwpSWA1aKYTudpCLj45du7+dgPDgHQHnYzHMtS0dAadBF02zk4nuTZ41FuWBOR0jIhxGmVyhUyhTJKgd9lm1dqVSzPL7WqBpHagm4+9qar6YyceF+rZeCcR+bQeCLHZDLHc/0zAOzoizKRyPF8f6y2zY6+KE8enebxI0YQ6LrOEO1hDy67dd5ktZ5G3zmVUHmcVkhBcpFBrTP5wo5+XhpNcGw6zcs2NxLy2Pnu7hFKFc3DBya5piNMS8jNsSmjAXdH2M22dmOi5XAsWyvR29Tsr00cu7otSFvIXZtsdv/mJt5/9zr+8/khvvjMAE8cnWbWvCBx36YGtreHqPM68Tis7OyfYf9ogpdGE7U1Hp1MMjabxW23cfPaCEopCqUKe4Zn2dwSkM8LIYQQQogrkFwCvIyOTqbIFY2TohnzQH0xZQ3AKZk93XUeQh4H06k8Sik2NPqJpvPMZgoEnHbsVgsv39LM229o5923dHHL2kht3+s6w9zWY5QhPNcfI1+8OKUSQogrU7WkzOOwYrVYjFKrahZQrrzwtk4rpUql1iMH5pSVLSLIMpspkMiWcNos2CyK2UyRb+warpWxTaXyfO7JY8xmi4TcdjojHpK5En/9/QOUKpp7NzawsTlQ+54bmvz4zdLd7WawZbGq4+wXm/F0OlprvvnCCGAEyH52ZJLHj0xSMl/Uo4cmOTCaIFcs18rK1tR72djsx6JgNJ5jJGYEgDY2+2rPa7Eo7tpQX7v/ss2NxNIFbuwOY1Hw/ECM3qk0XoeVa9vDNAVcFMsVplJ51tQbfY+OT6fJl8qkc0V+sn+cncdj9EfTtYDYcwMz7OidJrvIwJ4QQgghhFhZznr5TynVAfwH0AxUgM9orf9RKfX3wOuAAtAH/LLWenaB/fuBJFAGSlrrGy7a6leY0dksqXwJu9VCPFtEAWGv/byey2a1sKUlwIHROF11XsJeBy6HhWiqUGtyXedz8MqrmnHbbRyZTPKNXcZJyYYWH21B44Rg73CcRK5Ine/CSiWEEFeuWsDHbquNfnc7rKQLZdKF0rxSq+q2TpsFm1XNK0tyn0ND6mpJWYPfidWiGIhm+MKOAcDoyTaTLvCtF433tI3Nft57Wxf//bv7mU4V8LtsvPm6Nlrm9DuyWy3887uuZffQLK2nydI8Ha/TWHfqAoNDz/XHGJnNogAN/PzIdK1XHMBstsiOY1EaAk76zMyhnkYffpedazvD7BowsqSCbjsR7/z37Ndf08aDO4e4pjNEyONgTYOXfNHF1tYge0fiAPzG3etoCDrZ0hJgz9AsG5uDtIbcfPKxPvqjaXKFCn/xvf182/y5toXc3NAVZjad5z2f20mpotnWHuTeTU0X9HMQQgghhBDLz2Iyh0rAh7XWm4FbgN9SSm0BHga2aq23AUeAPz7Dc9yrtb5mNQaGiuUTpQxTqTzDMxlmMwW0Nq6su2znPx3GYbNwTWeYsNm8usHvYlNLgKagcULkd9lpC7uJZQvcsb4em0XhtlvZ1BTgZVua6Gn0UShX2NEbPdO3EUKsctVSMY/TilVVJ48tnE1TnWrmd9m5fV39vBKkas+hbKHC2VRLypoDLtbUGQ2Zp8wG+u+7ay02iyJtNoje2Ozn9vUN/OkDW3jdthY++urN+F322ntj1TWdYba0BfE5zy0o7zZf69yhAufjm7uGAXjg6ha8Tit9U2kePXSiBA7g688P0TuZMoJICjY0+gF4zdUttedp9DtxnlQWd8uaCP/jzVfz/jvX0RJy0RHx0NPk5723daOAN17Txrb2IB0hNx6HjZvX1NEYcNHT6MNuVUynCjw/MMNP9o8br9luZWQ2yzPHonzsB4dq2U0vDs1e0M9ACCGEEEIsT2fNHNJajwFj5u2kUuog0Ka1/smczZ4B3npplriyxbMnrgprDU/1RbnH7M/hc564Cn+pdNV5yRTKdEY8/M83X81MukBTwEnQbWdzi792EiKEEKdTDQ657dZTx9LnTy4rM7b1OW2nlMNW98mVzl6aNBg13peagk42NQf4mdlH6M6eeu7e0EDEY+fhA5PEs0Xu3dBAwGVnY4ufkJmN2RH2nNJ02m23EnTZcTnOraLaaz5P6gKDQ4fGjb4+13QE8btsPPjcUO0z4n13reUfHznKwbEk//snR9Aa6n0OAm7j9TxwdQt/89ABo29cyH3K8AKlFDd0hzk6maIleCIz6lVXN+N1WGkMuEjkioTMgFn192i3Wuhp9HNwLMG3XhgmXSjTVedha2uQh/aN8ZWdQxwcn9OPaCKF1rr2u61UjElxPY0+vNKLSAghhBBixTqnIzmlVDdwLfDsSV/6FeBrp9lNAz9RSmngX7XWnznXRa5k1SagVcemUtT7jINzv8uO7RIHh1x2K9vbQ1gsins2NfL0sShNZqlFu1laMZWUcfZCiFPF0gU8TiuJrBEUmXvyXw30JPPFefvM7U90smr/n9wi+pxNm1lC9V4Xv37nWoIuO60hFzarhaaAi8iGBhoCTuwWKy1mtuT6Rh+FUoV0vkRnneeU57RZLWxs9uM8x4zN02VJLaRS0QzOpOmu953ytfGEMT2y3ufkFVc18ezxGY5Pp+kIu+lp9POBe9bxB9/YWwvYNwVcOO1GEKg56GJbe4jdQ7O0hVwLTg2r9zlJ58sEXHN/TzYagy4mk3m2tQUXfO3b24McHEvwo/0TANzcHWFjs5+H9o1xYMwIDHVEPAzNZBicyZAvVWq/y3i2yEQiR65Y5rqu8Lzm5EIIIYQQYuVY9FGcUsoHfBP4Xa11Ys7jf4JRevbl0+x6u9b6OuDVGCVpd53m+d+nlHpeKfX81NTUol/AchfLzD9xemFglr5Jo5dEwGXDdhkOpKtXiN12K2G3vXYlujVknDxF04XT7iuEWL2OTafpnUjVsoHmBnyqAZOT+/Ak5mQOnaxaVjZ3ctjpRNNGcKgp4MBlt3LTmgg2i/F+6XfZCHudBFx28qVyrXzMZrVwVWuAaztPH6Twu869z9uJQNjZg0OpQomxeJ5KtXO2qVSu1ALxm1r8tIY8/MZda1nb4OUVVzUR8Tq4eU0dv/ey9bV9OiKeecGcP3jFRu7oqeeVW5sX/N4hj4MtrYFTMrY6Ix666zw0BxcegPDB+3rwu2yUzTVvbQtw/+bG2oWMazpC/MErNgAwHMuQL574/f3jI0f5xq5h0vkSx6dTZ/35CCGEEEKI5WlRmUNKKTtGYOjLWutvzXn8PcBrgfu11nqhfbXWo+b/J5VS3wZuAn6+wHafAT4DcMMNNyz4XCtRzAy8bG0NMDKb5Xg0zdeeN/pOdEZOvbJ9KbntVjointpJXWPAOW+NQghRtW84zjd2DXHPhgZGzUyWuZlD7tOWlRkBlGoQeq5qkGVucOF0plPG+1K1eXS9z0EFTaPPWQv8XN8VIVMozevdZrNauIBWbgvyLLIhtdaav/n+AYplzXVdIZyWEwuZThWoaOOiQGvIg91q4bZ1dbVMTq/Tit1i56Y1dXz6F6/nueMz3LgmPK/0+LquMO+5tZvW4Okbai8UFKvzOc84dKA97OH3X76Bv/7+AdrDHnoafXTVefmd+9fzyIFJfv2uNeRKZVx2C/FsibF4lqDHzqHxBF/Y0Y/G+N2+/ppWGv0uQh7Hab+XEEIIIYRYnhYzrUwBnwMOaq0/PufxVwF/CNyttc6cZl8vYDF7FXmBVwB/dVFWvkJUJ9GEvQ7u2dTAJx/tI54tUu9z8Jbr2i/rWiwWRZfZ2BWMEgQwygIqFV3LMBJCrD7limY6la8FKz7yzT0cHEsykcgT9hiBHu+8zKFqcGh+dmQ1c6i6z1zVsfb58uLLyqr9c+r9Lur9p2a+zJ2GdqksdpT90ckU//n8MBYFf/WGq+Zl/YzFjQBbyOPAaZaEtYU9TCbylLWubbuhyU88W+SejQ21/kBVboeVsM++YFbWhbqjp56/e8s23HYrrSEPSinesL2NzoiHUkXTGfHQ0+jnpZE4jx6aYCKR4xu7hqleyfnO7lF6Gnx4HTZuWhM5JXtJCCGEEEIsb4upabodeDdwn1Jqt/nfA8AnAT/wsPnYpwGUUq1KqR+Y+zYBTyql9gA7gYe01j+6+C9j+ZrNGle//S4bv3BDB01mts777lpLxLu0V1cbzODQbLZIsXL2K/lCiCtXvlRmOJahmgR6cCwJwKOHJtltTqiaW5JVKys7qUlzNXMovED2SK2sbBGZQ1Ezc6ia4biUao20z9Ir6WeHJwGo6BOT1aomzH5DEa+jlt1jtSg2twbonhO09zptXNMRAgX+BYJAPQ2+BbOyLlRryE1jwIXbaSVS64tnw261EHDZWNfgZ1Oz0UcplikRcNl5ypx0edf6BgA++9RxplP52mQzIYQQQgixcixmWtmTwEKXAH+wwGPVMrIHzNvHgO0XssCVrtpzKOCyE/I6+cNXbUJhNBpdqKHo5VTvN04AEtkipXLlnJu0CiGuDFprPvvEcSwKtrYFUSgU1LJC+qaMsfJB96kNqVOFk3sOGfcXKi2q7lM4S8+hQqlCPFtEKYgsgxKlaiAse5ag1uNHTvTLm4znWDunKfVY/ERwaG6pmNdpO2XKV8jjMLJvFvjovVQlW16njc3NfgaiaXzm67VYFFtaArgdViOQ1RwARviPp/t58LlBkrkSbSE377trDdOpPAfGEnztuSHu2dgojamFEEIIIVYYOXq7xKrTykJeoxRgU7OfBr+LXKlC4wIlEpeTx2HDbbdSquhTGmcLIVaP/miGjz98hM8/1U++VGEsnkVjNJX2z5l8Vec9kcVTDfRkCif1HDJHs4cWKCtbbEPqmPm+GXDZcdqXPmjtNXsOZQunzxzKl8rsGojV7lcnk518v967uEwop8162S8gNAZcbO8IzysxDnsdtclk929uIuyxky9VSOZKuO1W3nZDO+WK5hdv7sSi4Mne6UVNdRNCCCGEEMvLpW/WsMrF0saJUvWEoKvOy2g8Snedl+ACJ0+XW73PwVAsy2QiR3v48jbIFkIsD9V+ONF0gWgqz+isEchoCbrY3BLgv/aMAswrhXWfJjhU7Tm00PubqxYcOnN5VrXfUMBlm5dls1SqPYcyhdMHPV4YmCU3J7OomikERj+ncfNn2hxc+jK5MzlTQKq73suD77uF/ukMTpuFiNdBNJOnp9FH0OMg4nUwnSowNJOhMbC0Fz+EEEIIIcS5kcyhS6zac6g6EtjrtHFtR4juuuURiKk2pa6OWBZCrD5z//4PjiUYjhkzBhr8Tt5yfVvta745WUTVgMnJ2TTVnkPBBfriVANK+VLllFHvc1X7DQXcdmzLIDgU9hqvJZUvnXbdz/XPzLs/Hj/xMz0+naI/apTmrfQgfMBlx2W3UOdzogELiga/i03N/trnyXHztQohhBBCiJVDMocuseq0snrfiauoZxopfLk1+I21TJxUAiGEWD3mBocOj6dqTakb/E5uXlPHe2/r5uhkkq2twdp21UBPbk4WUL5UJl+qYFWq1rdmrrk9hypaY1mwnR1E08Z6gm77sph6VW2uncyVKJ9m3dX30Dqvg2i6wGTSuD+ZzPH9PWMMx4zsrI7I6cfQrwRelw2lFDPpPBUNbWF3Ldtobb2XQ+NJBqMLDjAVQgghhBDLmASHLrFq74xq5tByU28Gh8YTkjkkxGo1d7JW31QKh9lMuDXkxmW38o6bOjg2lcJhP5FsWg30zJ08Vs0acjus2BZoSOyyncgcKpU1p+uBX80cWij7aClUy+mSuRLlimahNkjV9/rOOg/RdKF2/+9+eIhvvjBS264ttLKDQwGXndvW1ZEvVbAohXNOGVpPo9GAuxoIE0IIIYQQK4eUlV1Cs5lCredQtSxhuamWAVSvcp+sUKpQKsuYeyGuZHMzh4ZmMgzMGJkfXRGjBKo15MbrtGOdk8WzUHAoYTaj9pjTrU5msZwIJmTPMBa+GqxaqKn1Ugi4jNeeLZZPu+6ZtBEM2tDkB05kjc4NDAGEvMvzQsG5sFkteJ023A7rvObVHea/l7GEBIeEEEIIIVYaCQ5dIr2TSX7va7splCvYrQq/c3mc5Jyswcxomk4WKJ4UBIqlCzzVN80zx6LkznAiJ4RY2eYGh0bjOQbMnjHV4JDfZac97J43nrw63n1uWVk1c8jrOH0j6WpQ6UyTv6qZQ/XLpATXYlG1Btsz5tpOVg0OXd0WAIyLA7lieV7PpIjXUcvKuhJV+ylNLfB5IoQQQgghljcpK7sESuUKv/4fuzg+bZxgeR22BUssloPqyddMusBUIk9r+ETJw1g8i8tmJVcsk8qXapOGhBBXlrnBoeptBXTVe2uPr23wzdvnbGVlp2O8jxRJnWHyV9TMHGoKLI/gEEDE42AmXWA6lWddo++Ur1eDQ5uajOBQPFuibzJFqaIJe+y8fnsbrSHXsmiwfam0m58f0VSeQqkyL5gohBBCCCGWNzlyuwRsVgv/8Lbttfuz2eKyGMe8kGrPoWS+xPFomrI5iefweJK3f+YZ3vXZZ/iz777EyKyUCQhxpdFaM5sp1AJC3jlBnbDHXptItpBacGhO5lB1jL33DMGhauAonTt9cGjazM5pXUb9eaqlwdHUqf3ZKhVNzCwj627wYrcaJWh7RuKAETS5Z2MDW1oDy/ZCwcXQHHRhUUZJXeYMwT8hhBBCCLH8XLlHqUvs+q4wH31gExYFt62rW7bBoXUNPuxWRf90moFoupbt9O87jpPMlahoGIplefLo1BKvVAhxsSWyJfYMx5lJF1DAjWsita91RDzYbad/33LXyspOjKVPmsEhj/PsQaVk/kzBISMA0+h3nXaby63O7BU0vUBZWbVRtdtuxeOw1jIyn+6bBoxyq54GHwHXlZ2sa7daaAq40MCOvigTcZmCKYQQQgixUlzZR6pL7IGrW6jzOmgOLp+r3yeLeB28dlsr335xhEcOTtIcdFEoVfjhS+MAbG8Psmc4zv6RBLliWUrLhLiCHByP0zuRQgN+l40/eWAza+q9tARcRnDoDFku3jmZQ9Xx7tWyMs+ZMofM95BqIOlkM+kCk8k8SkGDf/mUlYW9xlqmUqcGPKJpI5jldxm9lhr8TsbiOZ7qNYJD3XUe2iNuGoPL5/VcKm0hN2PxHNFUgUMTCep8jis6W0oIIYQQ4kohR2yXUGvQzdoG3xn7bywHv3LHGpSCnx2ZIpUr8cTRKWYzRVqCLt58bTsAhyaSJHJGqUD/dLpWWjGdzDGVkKvDQqw0k4kcv/aFXfz1QwcAY2x8R8TDyzY3cUN3BJ/LdsbgUPV9LVes1MpRq9PKfGfIHAp5jAycqQXKswC+9twg5Yrm6rYgAdfyaeQfqZWVnZo5VB1b73fZsFksNPqrvdyMn8fG5gBKKZy25f1ZcDFUJ5Y92TtNPFskfYbG40IIIYQQYvmQzKFLyGJRbGoOnPYK+XKxtt7L7evqeLI3yl987wD15gSz29bV0Rh0YlHQP51mV38Mt8NKuaJp8Dup8zkZjedI50vU+ZzzRhoLIZa3b70wTGpOaVfQbcduteBz2phM5ImcZeS6w2rBalGUK5p8ycgqnDWDQ2caQR/xnJiQeDKtNQ8+NwTAvRsbllU5bthc90zm1PfzasDI77JjtShaTsoWvao1cOkXuExc1xXm2y+O8OihSXonU1zTHiLoXj5BPiGEEEIIsTDJHLrE3A4rjYHl0zdjIS67lV+9cw1bWgLMpAscmUjhdVi5eW2E6zvDrG/0UdEwnshxYDTBF58Z4MBogv0jcf7qewc4NpWu9QgRQqwMP9o/Me9+0G0ENtY0eNnWEaSn6dSJXHMppWrlYymznGwycfYpYxEz+LxQY+edx2cYiGYIue1c1xnBbl0+waE6c93V7Ki55mYOAfzqHWu4ui0IwLoG71kDbVeSX7y5kz9/7RZ8ThuDMxn2jcaXeklCCCEuglyxzEgss9TLEEJcQpI5JLBaFJuaAnzwvh5+sn+CsMfObevqcdotRLwOblpTx+GJFH/5vQO1fXLFMj87MsXzAzGK5Qrd9V6sFoVFKYrlyrIPiAmxmo3Fs+wZmkUB2nysGsAIuOyLLufyOW0kcyUSuRJtwGTSKDFtC3lOu081c2h2gSDLjr4oADeuCdNZ50ap5RMcqmYOJRbIBI2aY+xDZoZMd72Xv3vr1fROpLBaFM5V1KtNKcXN6yJs3R/gmeMzPHc8xquuaqllgWUKJaKpQq38TAghxPKntebfnjxGyO3gnbd0LfVyhBCXiGQOCcBo/Bpw2filW7t483XteBxWmgJObFYLb7imFZfN+KdSncJzYDTBzuMzAOwZjjMwnWbfSJw9w7PsG4kzNptdstcihDizH+wbRwM3dIdrj2XPozeM3+wtVM0cmqhlDp0+OFwNQsUXCA4dnUwC0BXxnvE5lkJ13clcqTadrSpmBoeCc8rpPHYbPqcdr9NWe/9cLXwOG+sajcyzg2OJWvliuaI5MJagbypV61MFRsDt5J+pEEKI5eNHL43zv358hM88cYxCqbLUyxFCXCKr64hVnJbNamFDk594tkg8WyRXKtdOzm7ojvC5997AN99/K//2nhuIeB0kciVm0id6hvzHMwMMx7L87PAUg9EMhyeSpM8wqloIsXT6p9MArGvw8a6bO1EK3nBN6zk/j88so0rkimita5lDLcGzB4cW6sV2aNwIDm1p8eNxLK/E1mrmUDJXonRSIKOaOVQ3p3ysOeiiNewi6LavumldjQEX925sBIzf6cHROOl8iT1DMf7hx4d58ug06YLx+ZAtlNk3HCdVkM8LIYRYrr7w9AAAQ7EsyXyRUrlyzj1Vi+UKo7OnlqVVKlrOGYRYJpbX0bdYUo0BF06blfFElga/a14T0Qa/i+lkHrvVwlWtAZ44aoxovrotyLHpFIfGk/zpd14CwGZR/OGrNrKlNYD3DFOLhBBLo3pA57JbeNfNXdzYHWFbe+icn6f6953IlpjNFCmWNW67Ff8ZGhBXg0OJXIlyRdfKjfKlMgPTGZQymhovN9V1p8x1z1XNHGr0nwiKuexWNjUHVmVGjMtu5f7NjYTcdmazRQZnsmSKFT77xDGeOTbDwbEkv3RrFwGXnR29Uzw/GKOnwbusptMJIcRqMBBN0xH2nDJUJlc0Bk0ADEYzPHPMKPsuVzRHxpN4HFZmM0Vu76k/4wWQYrmC1mC3Kr7y7ACFkuadN3fOOz9IZIv0TSe5rjOyrMrJhViN5MxdzBP02OeVRlRFvA5GYhkK5Qo3dkdqwaGbusP84i2dPHZokv2jCTwOG4cnknzysT5u7I7MO1kSQiwPSbMMLOgyxtcPxTK47Oee3VJtwBzPFphMGiVlIY8d2xmmjM0tzypVKlgtxsHn8ek0Za1p9DsJe07f0HqpeBxWHFYLBfNqqdtsxh3PFhmKGWW0C5XCrdYpjkopru8K88ihSb67e4RNLYFaT6l4tsiuwRgA/+0be4llilzTEeaVJ015E0IIcen8/Mgku4fi/Ooda2rBGq01x6ZTDM9kuXltHS67la/uHJi33zd2DfPtF0e4piPE+kY/reGF37tHYlmOTCRQSvH8wAyffLQPj8PKrevq2NTsJ5UvUShVuP/jj3NtR4h/+cXr8TisFMoVnLbV06tPiOVEgkNiUeq8Dm7vaUAp2NDk5+MPHwFgS1uAjU0BOsIe/C47pXKFP/rWPg5PJHnk0CTXdC6/DAAhVrtqcKgl5MJlt9IccGE/j9Inn7MaHCrWSsqC7sUFh07OwDlslpS1htw4zyNQdakppQh57Ewm80TT+VrT/aFoulZi2+BffkGtpfSBe3vY0RflKfM/MD5LoukCO4/P8OjBSWIZI4ttV/8Mr7yqeSmXK4QQq0alovmtr7xIKl/i5Vua2NwSAODxw1P83n/upjHg4h/ffg2bWgL89OAkABub/ByeSPKd3aNUNLwwOMsjhyZ42w0dtSyjqpdGZvnQg7tJ5kr4nDZGzV6kmUKZ7+4eYaAjhALShTLJXIkdfVHGZ3O4HVZG41mu7wovmEWUzpekKkGIS0j+usSiKKVw2Iw36daQm3ff0kUyV6SnwU93vZfnjs9gLZRQKK5uC3B4Ikl/NL3EqxZCLKQ6castbEyMWtfow2Y5n+CQkWWYyBZrzajD3jP32JmbgZPIlWq9hY5OpADoCLtxLtMGzmGvwwgOpYxg0KOHJviVf3++9vXquHth2N4e5Lfv7+HjPzmC227lfXetpVCq8InHetnRF62dLAD0TqUolSurrj+TEEIshfFErnahaNfADJtbAhwYTfCBr7xAplAmliny9V3D/PLt3RydTGG3Kl61tYnDE8l5F3a+9cIIXXUegm47qXyJq9tDBFx2/s9Pj9I3ZZwHVDOLmwMuxhM5/vP5YT77xHHW1Hu5cU0EgFJF87mnjvODl8a4c309a+q92KwWCsUyDebFmKlknoOjcW4yM5qEEBefBIfEefngvevYeTxGg8+Jz2nj2s4Qx6bTKKiNKB6N5ahU9KotqxBiuaoeEFZHr59v+rbPaeyXyJdqmUORs5SEKaWIeB2MJ3JMJ/M0mwd9RyaMzKG19b5l23Og2nA6mjIOdHcPxQFw261c0xGs/TyFwWa1cPu6Ota+4zrCXjtuu5Uj5kS6gajRlLQz4mFwJkP/dIZcqYJPgkNCCHHJVQdTAOwdisMt8PmnjpMplGkLuRmZzfLd3SMEzPLxtfU+7uyp5x8f6QWMCz2liubFoVk+8UgvKLBbLfz6XWvY0Ojn8cNTKAX/+63bKZQrTKcKbGjy8aEHd9emlR6bTteGEwB8ZecgAD/cN879mxrZOxznmo4QD1zdQqZQ5o2feopcscz3f/sOWkJGKVs8UyBXLBPxOc8rA1oIMZ/8FYnz4nMZvYkCZn+ikMfBdZ1hru0Mc8f6egDGElnyMu5SiGWn2pA6cIHBjOq0skyhzKSZObSY7Jmw1/i+0XS+9thhMzi0pS1wQWu6lKolcdNm5lA1SPTOmzp5/93rJOtlAa0hN3abwmmzEk0XuKY9RKd5AWFzS4A/e+0WAIZimXOefCOEEOL8HJsTHKpmA+0aMHrBvf/utbSGXEynCvy/J44DcFVrgC2twVp/wms6QvzaHWtw2iw8NxDjuf4YO/qifO6Jfv7lZ8coVTTb24NEfA6agy62mkNqXm9ORq0OvalmHc9Vqmj+6Fv7+Len+vnXnx8jmsrz37+7j5HZLNF0odYcO1cs89Wdg+w8PsOeodlL9rMSYjWRzCFxXjwOKx1hN54F0jo3NPkBI/0zVyzXGrcKIZae1pqUOTL2goNDZllZJl9mUp99jH1VndcJJJk2U81zxTKD0QwWBZub/Re0pkupmjk0na4Gh4z/222KiuaMvZZWqwa/i56GMr1TKbrqvKyp9/L7L1vPd3aP8r671pIvVWj0O5lM5tkzNEuLNKUWQoiLbiZdwO+y1bJrjs8JDh2bTjMez3JsOo3NougIu/ngvT189Nsv1Y4XtneE8DhtbGzys8fM6HnPbd2sa/Dx4mAMp83Kl54d4Mne6Vrw5pa1dWxo8uOyW0nnS4S9Dq5uC3Lr2gh7huJ8fkc/AE0BJxVtnDfc3lPHjt4ouaJxcXn/aIKP//QI/7V7rLbeHX1R3nRdOx976CBffGYAr9PKu2/pYlt7CMcyLUsXYqWQvyBxXpRSrGnwLVgy5nfZiXgdFMuaoZnMEqxOCHE6mUKZigaHzYLrAqeBnMgcKjEeNwI9rYs4ua9m4EyZwaHeyRQaYxT8hQasLqXwSWVl1UbUa+q9bGr2S+bQaXTWebhlbR09jT6sFsXLr2rml2/vRqEIuG1sbQsC8Hx/jCmzPFEIIcTFkSuWeWFwhmNTqdpjc4NDyVyJ/9ozChilvts6wrz5unbu39QIgNNm4RazN9BfvP4q3nZDO/dsbKTR72RDs4/7tzTysi1NtUyiUkXT5Hdyy9o6mgMuIl4HHREPPqeNgNtOd52XG7pPDKxZU+/lD165kXs3NvCLN3fyxmtb2dTs5/Z1dQB87blhNLChyQfAvpE4qVyR7+811pzOl/nCjoF5JWpCiPMjmUPikuiu8zCTLnBkIsm2jtBSL0cIYar2G/I4rJxHD+p5/ObEkGyxXAuUnG6k7Vy14JAZZKn2G2o1p6ctV9V1z6SN8qdpc/1rG3y1/gfiVEqpedNlPA4rNquFCpqrWkNc3Rbk0UOTjMxmOTyeJOxxSKBNCCHOQ7FcwarUvIu3H/jyCzzXP8MfvWqT8f5rsdBnBorqfQ6mUwW+9IzR76en0YfXacVps/IHr9hIMl9iXYO31hT62s4w+WKF9pAbpRRXtQSZSOSIZQu86bo2trYH8TlsFCsV1tZ7F7yIvKklwFVtQTrCboZiWdY3+njjNW00+JyEPHb+6FWb2D+WIJrM8/SxKBUNd66v563XtfOhr+2mdzLFd3ePEMsUaQm6yJcqzKQL9E0kuWGNEVDKFEq4bFbpeyrEOZKjL3FJdNd7AWMCjRBi+aj2dXHbrVgvsPFz9YQ/UyjVsoCaA2cf5x6pZeAYAaUj1UllEQ+OZRwUCHuMdVenvUXNgFi9TCk7J0opehp8XNMRwmW3cqfZp+7hAxMcm0pTKEuvOiGEOJtKRTN40mTg3skksUyhdv/ZY1EePTRJMlfi3546ztN9MzzRO8XQTAYFvPKqZgBGzOmRW1oDtSEV65v9fOQVG3n5lia8zhMXbjoibiLm557FomgJudnSEmRdg4+uiIdSpYJFKer9Cx8PuOxWs3n1WrrqPNy3qQmHzUJHxM26Rh/1fhd+l52b19bxvrvW8pqrm/n1O9fSFnHT0+ClVNF88rE+AG7sjtBuXpzZPRynUtH0TqbY0RetXcARQize8j0KFyvaugYjODQwLWVlQiwniTmZQ9YLvKLmM4ND06kC+VIFl91CwH32QEk1OFSdWFLNHFpXv3Cp6nJRXXciW6RQqhDPFlEKIh4JDp2rpqCrFly8oTvCq7Y2U6po/uXxPrLF8hKvTgghlr9sscxgLEvOfM/c1T/DP/z4CKNxI9CjteZ//fgwAArom0rzkW/u5SPf2EdFG6XSv3LHGlpDJ3oF3jSn3MtqUWxs8dMccM+batoW9iyY5auUYmNzgOu6ItzQHcHjOHOByrtu7uKv3nAVPY1GuVhPo5+Ay47VoriuM0xnnZf33bWON13bhkXBlpYAt64zh97EjRLkm9dGuLHbKHk7MJpgIpHls08c4wtP9deOLbTWi/+hCrHKSXBIXBJr6403+pF4lnxJDvSFWC7mZg5d6Mh4v9lzaDZjPGfY48BuPftznhwcOjxuTiprXb6TyuBE5lAyV6pdkQy4bDiXcSncSvHfXr6BkNvOWDzHsUnJOBVCiDMplCq88VNP8bcPHaiVi3/sBwd55NAk335hBIAfvzTOroEYbruV33/5Btx2a+2iDhifX+1hN594x7Xc2BXmzvX19DTNHwrhd9nP6bPZalEE3fZ53+dM2zYH3LVjiZO/BhD22GkNu42G2A4b7797Lbf31NEZ8XD3hgau7QhxXZcR0No/GucXP7eTB58b4oneab67e5RUvsTe4XjteEMIcWbSc0hcEmvMzKGx2Ry5QmXeFQchxNKp9RxaxIHb2Zx88BfxOrAtopFRvc9INY9ni8QzBUZms1gtik3Nvgte06VUZ6bRp/IlJs3GyX7zKqe4MHU+J00BF7PZIpNJKQUQQogzOTye5KgZSN8zFOO2nnr2DMcBo2HzTDrPX3zvAACv397K9o4gn3znNdT7XPzdjw6xoy/K1W1BHFYLa+t9vP+edQBnzfa52HoafZzpI1QpxZaWYO1+W9jDnzywmXi2RL5Upjnoxm2u+bBZou62W8kWyzxzLMpPD0ywZzjGm69t4+r2MPFskYDLdsEXx4S4UklwSFwSa+t92CyK6VSe6VSOoGf5TiASYjWpBoe8FyHbxXtScKjOu7jMoQb/ieBQtd9Qk9+J37W8y7NC5vtYKldiMlHNHLLLCPuLIOi2U+93cHgCxuMysUwIIc5k/2i8dvtnR6awWiyUK0b51KHxJH/3o8OMJ3J0RDy8bEsjG5r8TCbzTCXy/Ooda7h/UxObm/0opQh7HWxrD9IfzeC+zJmw53NxpTngIppO4LRaCLhshNx2PA4rmYJRqfD7L9/APz5ylKFYlj/+1j6yxTJuu5WQx8Gx6TQ3dEVOOX4RQhjkL0NcEg6bhXUNXg5PpNgzFGdd44k01XypTLZQJjSnT8dUMk+9zyGRfCEusWpZ2cXIHHLYLDhsFgolo4Fw3SL/hhvnBYeqk8rcOO3Lu9LZabPidVhJF8r0m01Ag265AnkxWCyKdQ0+nuqN1npJCCGEWNi+kRPBob1DcfLFE438k7kSX39+CID337UWn9NGg99F2OugNeTGqhRWi6o1lQZo8Luo8zqXdd+/qojPyR099ZQqujbZckOTn91Ds/Q0+tjY7OP6rjCPH5mq9bD74UsTHJlIMRTL8IVfvkmCQ0KcxvI+Ehcr2qYWo0b5wFh83uOz6QIHRhNUzCscuWKZ3skU+ZJMqBHiUqtlDjkvztXBuaVlzYHFjXP3Om14HFaKZV3rN9QUcOK0Lf+PpLDZL6nXTOcPLqIBt1ic5qDRFHUiIcEhIYQ4k5fmBIcOjid4qm8aMHr0AFQ03NAVpjXkoqfRh9WicNqs1PuchL0Oru8K0xJ0zXvOlRAYqlJKYZ8z3fRlmxuxKsXbrmsn6Hbwntu6AOPYIuCycXw6zU8PTnJ4PMXuwdklWrUQy9/yPxIXK9ZVZgO73sk0JXM0cbZQ5q8fOsiLQ7O1UZsP7hzkWy8Mz7vqIYS4+DKFEjPm+HX/RbpqNjc41Bp2nWHL+ap9h6pXP5sCrhWRgVNtSn1syswckpLZi6bB/DcxM2cMsxBCiPnKlfkXVoplzehsDptF8YZr2mrbvXZbC41+V+3zdi6/y07wCpq0+Vv39vCZX7qe9U0+1jX6uHdjI3/xui38jzdt496NjfO27Z2SoQdCnI4Eh8Qls7XNaCA3OJMhbdYBf+uFYb6/d4wvPzvAYDTNTLrAXz90kK/vGmYgKm/WQlxK4/Ec4wljxG3gIgU15gWHgovLHIITpWUHxxMArKn3XpT1XGrVSWt95sFlve/KObheao0BI7hYnX4nhBDiVMemUuRKFcIeO++4sQOrReG2W3nZ5kbeuL0Vt93KTWsidNV7WdfoWxEXXi6UUormgIvWsBuf0yj3vm9TI7lSmV+8tZO7NzSwvtEYejEQzSzxaoVYvqTgUlwyW8yysuHZLIfHE9zQFeHJXiPtdXQ2x5O90/zowEStgd5Lowm2dYSXbL1CXOkGoxliaePEO3SRyqF8c0bQdoY9i96vMWAEh3JmxmB33coIDtWZwaGYGcBoCiw+W0qcWTVzaDZTpFzRMgVOCCEWsH/UuKjSGfHw7lu72d4Ros7rZCZToKfZz9fffyv902k6wm5cl7nB9FLqqvfOG4rR4HexvrHC2gYfH7gHfnpggqOTKQZnTg0OpfKlUyawCrEayV+BuGRCHgdNficTyTy9Eylagy6e65+pff2Jo1Hi2RNXiKsjOYUQF9/39ozw21/dXbsfvkiZQ9XyNJfNQvgcsmga/fODKu2RxWcdLaVqz6GqFgkOXTRzp9gVyxVS+YqMHBZCiJMcHDOCQ111XvwuOyGPg2i6gM2i8NittIbcRFN52s/hgs2V4OTgjtthZX2TMRBnTb2X9ojx85hI5CiVK7Vm1lprjownubo9OK+PkRCrkfwFiEtqe0cIgJ8enOCJ3mmmUwU8Dis2i2Jn/wyHzUlFAMen01QqmtHZDFrrJVqxEFemH+wbn3f/YvXKqWYOhb0O7JbFf6RUM4cAXHZLrZfPchc5KThUDWiICxfxOrAo4wrubKbA7sEYg5L+L4QQ81TLmrvrPDhsFtbWe+lp9LGtPYTFogi4bFzVFlxVWUNn0+B38sqrmgCYSOTJl8q1r/3TI0f5/I7jMhhHCCQ4JC6x33v5BmwWxaOHp2onp1taArzz5s7aZKJqKcFILMtUKs/RiVSt1EQIcXHsHpqdd/+ilZWZV+rCHgc26+IzPOZmDoU9Dpy2lXEQO7fHUGvQtequzF5KVouizvw8ePTgJH1TKXqnU0wljellU4ncvGxTIYRYjfrMgQgbmo0eOkGPg46Ip3bRx2a1LNiEejVTStEUcOFxWMkWy0wl8wAUShX+8ZGjfG/PGKMxuRghhJSViUtqU7OfN13XxtefH+aJo0a/oY3Nfn7hxg5uWROhbypN2GvnT7+zn7F4jr//0WFypTJXtQVxO06cLJbKFaKpPE3n0PBWCGGYTOYYi88fDx5wX9zMoYj3XINDJw5c63zntu9SetnmJl511SQdYQ+3rI3gcqyMoNZK0eBzMpXM89HvvIQCfu9lG3BaLTjtVg6MJQm6bVzTafSm01qTyJUIXqR/y0IIsdwVyxWGzJ45W5qDS7yalUUpRWfEw6HxJH2TKbrrfYzHc5itTzk4lmBDc2BpFynEEjtr5pBSqkMp9ZhS6qBSar9S6kPm43+vlDqklNqrlPq2Uip0mv1fpZQ6rJTqVUr90UVev1jmlFK848YO3nRtGy67BbtVcW1HiO56L26HjTvXN9AWcuO2W0nlS3zDnGbWO6fcDGAmXeDQRJJiWTKKhDhXLw7OAuCZE8i4WCfUbSF37f/nUlY2txyr3udcMXX+dT4nf/KaLdy1oQGb1SiRFRfP3H8XGvi/jxxh73CcLz89wJ999yVeHJwllS8BRvnZ4fEklYqUIQshVofhWJZSRRPx2E/pgSfOrtucjFodZz88eyJb6MiE9D4VYjGZQyXgw1rrF5RSfmCXUuph4GHgj7XWJaXU3wF/DPzh3B2VUlbgU8DLgWHgOaXUf2mtD1zUVyGWta46L6/d1sLbrmsnli3QWefF47CxrsFL31SaxoCLtQ3e2vQFgKePzXDLunrASPn8w2/upd7nZFtbSD4MhThHLw7GALhnYwMHRhO47FbcF6kXwdtv7MCqFK0hN5ZzCJTMzRxqXGHp706bhUyhjN9lWzFBrZWiaU4vqu46D/3RDJ978jjFcoVErsR3do9wx/p61jf5+eqzg+TKFTY2+yV7SAixKhwzgxpNARdOu3z+nKs1ZnDo2LRRmjcSy9a+Vg0YnclspoDHYcNhk5+9uDKdNTiktR4DxszbSaXUQaBNa/2TOZs9A7x1gd1vAnq11scAlFIPAm8AJDi0itT5nLSH3YzO5vA4bDSYPTs667w0BY2+Iz0NvnnBoX0jcfKlMk6ble/sHuGxw1M4rBZ++fZuCQ4JcY52DRjBoQ1Nft59SxfpfJlzSPI5I6fNyk1rIiSypXPaL+xxYLMoShVNW2Rl9e2xWS2EPHaubg/KuPWLzDJnMtmfvmYLf/ejQ/MmWe4ZjvPCYIx0ocTf/vAQfpeN129rkeCQEGJVOG4GNVpCrhXTq2856a4zjjeGZoyg0MjsieDQcCxLuaLP+Lk+EM3QHnbX+uMJcaU5p9MDpVQ3cC3w7Elf+hXghwvs0gYMzbk/bD4mVpm1DT7aw27sVoXPdeIg3mmz4rRZ2d5h1E13mieJRyeSRFMF4tkiX9jRD0ChXOHZY1GZZCbEOTo4ZpRpbmr20xXxYrMqrBdxPLjdasHtOLdok8WiqDMDxW2hlTUOPuS2c11XGI9D2vZdbM3mBQOrRYGCd9/ahdWisFkU15jTLx8+MMGjhyYBSOZK7OidXqrlCiHEZVVtRt0WcsvFifOwtsFo4j06m6VQqszLHBqdzc6bYnay//vwEX7hM8/QOynlZ+LKtegjW6WUD/gm8Lta68Scx/8Eo/TsywvttsBjC57ZK6XeB7wPoLOzc7HLEiuE3WphfZOfNfVebAuUYbzz5i5imSLrm3z8/tf2MBzL8uJgjES2OC+jaM9wnGyxLCdlQixStlAmlS9hsyi6Ih4iPgf+hO2iHlTareq80ttvXVfHIwcn2dq6sppqWiwKy4Ifb+JC/fqda5lM5NjSEmBtvZfOiJuPvnoTYY+DdKHE7qFZnuqNMpHI1/Z5tj/Gm6/vkLHNQogrXrWsrKfRv8QrWZnWmcGhsXiOXLE0L3MolikyHMsScNkIeRynfKZ8d88o2WKZnx+Z4ua1dZd13UJcLos6w1ZK2TECQ1/WWn9rzuPvAV4L3K8XTucYBjrm3G8HRhf6HlrrzwCfAbjhhhskNeQKtVBgCMBlt/K67a0MTGfY1OznpdEEDx+Y5KWROGA0KZ1K5jk0niRfrOCRyjIhFiWaNk6i/S4bEa9xsLOlJYi6mJlDNst5BZv+4a3befzIJPV+Sc8WBq/TxvvvXseBsSSNARduu5V4pkg6X6ajzlPrVbfP/GwA2DM0y+hstnZFWAghrlTVXjkbmuT97nxEvA5CHjuzmSKDM1mGzcwhp81CvlThyaNTtc+SkMeOy2YlWyzTGHDRb/7sj0rmkLiCLWZamQI+BxzUWn98zuOvwmhA/XqtdeY0uz8HrFdKrVFKOYBfAP7rwpctrkQ+h422sJs71zcA8J3dI/ROpajzOvjA3WtRQO9kinTh3HqbCLGaRVMFAPwuO16zpNN9kcev13udNPrPvTTMZrXgd9mlqbOYx2W3Uu9z4HMaGW4bmgPYrIpNzX5es62ltl3YY8duVfRHM+wdniWdl88GIcSVK5krMpXMY7Oo2tQtce6q2UMHRhOMxY3g0PVdYQD+5qGD/Lev7+En+yd4YWCWRw5N8siBCR4/PFkrfRmcyVCS6cniCrWYzKHbgXcD+5RSu83HPgr8E+AEHjavQD+jtX6/UqoV+KzW+gFzktkHgR8DVuDftNb7L/aLEFeGxoCThoCTD963jlypTO9kika/i7de30a+VGGtecV4z9As7eGV1cBWiKVSzRwKum0XbULZyc5lStnJ/C47DgkOiTl8Lhs9jSeuigfddm7ojuCyW3n7jR18+mfHKJQrbG4JkC9V2DUQ42eHpmiPeNjaGsRlt6K1vqjZcUIIsdSqzagb/U5pr3ABehp87BqIsbN/hmJZ43PauGVtHTv6olQ0TKcKfGXn4Lx92kLu2u3hWJZcqYJPjl3EFWgx08qeZOHeQT84zfajwANz7v/gdNsKMVe15MxutfDaba1UKhqX3Uo8W6Q56GJjs5++qfS8+mAhxJlNm5lDAbd9WTavXNfgk5GwYh6Pw3ZK6XC190NbyMMd6+t49NAU29qDXNsZ5je+uIvv7xvjrg0NZPNlLBZFo9/J+ibpySGEuHJUg0PNQRdO+dw8b+vNkrznjs8AUO9z8J5bu7BZFe0hN7OZIk/0TjMcMxpUHzvp3COVLzE2m2Vdg4/hWIZCWc+7oCHESiZhZ7EsNfgcHJ1MkcqXcNotdIQ9hM2zhfg5jswWYjWrlpWF3MuzUZcEhsS5+vPXbmF7xyjXd4a5eW0dt6+r46m+KP/8sz5+5/4e8qUKNuvyC4QKIcS5GIimaQu5axdPq5PKWkNuCQ5dgHVmIGdgxuiKUu9z4nfZefnmJkZiWUIeB1e1BnHYLBTLFd77+Z0kcsa5h8dhJVMos3swRixT4Pt7x7imPUhnxCPHM+KKIMEhsSy1hT34XHbS+RLNQRd2q2VOcKiwxKsTYuWIpoyyspDHvsQrEeLiaAl52NoWpN7nxG618L671nJoPEnvVIrfeXA3APdvauTmNTJNRgixMpXKFcbiOep8zlr5UjVzqDPikbLZC9Bz0vCCrjoPFosi5LGTypeIeByMJXKk0kU0cHtPPT98aRybRXF7Tx0PH5jkRwcmODqRYnAmw44GL7f31NMUdC/8DYVYQSTEKZYlq0UR8TroiHhqzWqDbuPkdiYtwSEhFitq/r3U+2QimLgyOGwW2kJu6sx/09d0hPmz123m1rV12M2MoePTaRYeoiqEEMvfb3/1RT74lRdIZIq1x/omq2PspYTpQsztH7Suwctbr28HoMHv4trOMF31Xm5eE+HmtXXc0B3hA/esw2WzcFVrgG3tIQAeOTjJoJl51DuV5ulj0cv+OoS4FCRzSKwYAbfxzzWTLy/xSoRYOabNzKGmgASHxJVjfaOfagutoMfO+kY/H7yvh0y+zK9/8Xlms0VKFV0LFgkhxEqRK5b5yYEJyhXNgbE4rWE3Wuta5tCmZumndiEsFsWH7l/PM8eivO/OtQtePFNK1XrdbW0L8sl3XkuxpHE7Twz2uGt9PRp44ug0P94/wR099dSfx+RWIZYTCQ6JFcNvjuGWccVCLF6151BLUA5YxJXj5Obqaxt8vDgYA3PYcCJbpFiq1DJPhRBipdg/mqBcMd7LqgGhiUSebLGMz2mjKSCf5xfqA/eu49rOEJUKBFxnLrtXSnF1W5BjU2luWhPh/XevJeiyc1tPPc8ej/LE0WmePhZlz9AsN6+rx+e0kS2USeaLuOxWXDYrNotCKaQcUCx7EhwSK0b1zTtdkOCQEItVzRxqkKtZ4grmslu5vivC8ekUbruFbLFCLFPA45TDHCHEyrJ3eLZ2eyhmTMnqm0oC0Bhw4rRbF9pNnAOH1YLdaqEh5KBxEZnVdT4nVqsFq9XCr925lhcHZ5lO5blvUyNf2DHAyGyWB58bwuuyc01HiP0jcRK5IpY5FzJ8Lhs3dEUu5csS4oLJUZNYMWplZQUpKxNiMbTWtR5dDf7lOa1MiIvFYbOwsTlAg9/F4EyGiUSetrBnqZclhBDn5MXB2drtIbOvzZ6hOGD0y5FJZRdOKcXW1iB+l21R2Tw2q6VWfuZxWAm5baxr9BPxOvjz123ht77yAg8fnKQ94mH/aJxPP36MtfVeru0M0x5yY7Mq/Hkb5Yo+JfNViOVEgkNixaiWlWUKZSoVPS8aL4Q4VSJbolTRuO1WPA55uxerQ4PfyeBMhslkbqmXIoQQ52zP0Gzt9mQyT6lU4cHnBgHY3BKQctmLJHieU1w9Dhs3zpmGedeGBt57Wzf/74njfOmZAdx2K4lcialknmePz9S2aw64uH9zE1aLZH6J5UvOFsSKEXCdyBwqVTQOCQ4JcUZT5smx32WTg0mxajSYV3cnEvklXokQQpybeLbIgJktBDCVzPO9vaMMzmSJeB28fEvjEq5OLMRlt/Lm69o5MpHi8SNTFMslrmoNcNf6Bo5OJhmL5zg4lmA8kSORLdYaXQuxHElwSKwYJzKHSpQrFUBOdoU4k+cHjCtWAbdN0pjFqtHgN4JDY/HsEq9ECCHOzdN90wC0h90Mx7JE0wU+/fgxAF6ztYWwR0rEl6OeRh+/dkc3w7EM8WyJ371/AxGvgweubgHgV7/wHJPJPOPxHI3SUFwsYxIcEiuGw2bBZbeQK1ZI5kq4pUxGiNMqlSu1RpYBlx2bBIfEKlHtCzF5lsyhSkUzFMvQVee9HMsSQoiz+tIzRvnYdZ1hMoUyM+kChyeSeBxW7lhfJ8GhZcputXB9d4Q/ec1mvA4b6UKJYrlCMl8EIOC2M5nMM5bIso3Q0i5WiDOQ1AuxolSzh+K54hKvRIjl7YneaR7cOQQYmRQyPlWsFvVm8/VYukAqX+K541GeORalUKrM2y6RKzI0k6FYriz0NEIIcVkNzWTY0TeNzaK4b1MD7WF37Ws3dkcIuO0SHFrGPA4bm5sDxDIFWkNubloT4drOMFtaArSHjN/l6Kz0whPLmwSHxIpS7TsUz0hwSIjT0Vrzx9/cSzRdYG29lzdf277USxLisqn2HIplCwzNpBmdzTGZyJHOl2rblCuaX/3C8/yfnx49JWgkhBBL4fNP9VPRcNu6ejrCXjojJ6YtXtsZorvOK8NYlrnmoIurWoOsa/BhsSiCbjuNARfd9UaG6uislDuL5U3qcsSKEjAzh2azEhwS4nTGEznGE3k8Dit/88atBN3nN5FDiJWo3uw5dHg8xbs/t5PpVAG33cpXfv1mwl7jqvtjhyfYNRADYCZdwOuUwyEhxNJ6sncKgLs31FPnc9SCQx6HlavbgrV+amL5UkrRMSeoV9UYMH5343HJHBLLm2QOiRUlYJ7kJiRzSIjT2jMUB4wGiWD06xJitahmDmWLZaZThdrtJ49O1bapllwCHJ9OXd4FCiHEAqrvV3VeJ00BF5tbAoBRUtYedmOTqaMrVpPfaEIdTReWeCVCnJlcKhMrit8sK5vJyJurEKfz4qCREdHT4CNXqhDySOaQWD2qDamrbu+p56neaXYPxymUKqTzJX52+ESgqHcyxV0bZDy0EGLplMoVYpkCCljX6MPtsPKaq1uIZ4v4nDYa/TLhaiVrMieUzUhwSCxzEoIWK0o1c2hWgkNCnNae4VkAWoIurukI0SAHlWIVcTustdttITevvqoZgMNjSdL5Et98YZhSRde2GYhmLvsahRBirplMAa3B67TRWWeUJVksirs3NBD22mvHv2JlajLLymYzRUoyBEEsYxIcEitKtedQPGs0Fs0VyxyZSHJkIkmuWEZrzdBMhlyxvJTLFGLJVCqal0YSAGxpCRDxymQTsXrduraOjjo3dqtieDbLvpE43909CsC6BqNB6FBMgkNCiKU1nTQuegbddtz2EwFuj8NKW9CNVRpRr2iNZubQbLYw7+KEEMuNBIfEilItK0vkjA/RgWia0dks47M5Do4lGIimOTiW4KWRuIwnFqtSfzRNKl8i6Lax1jz5FWK1+ds3beXWtRFetqWRazrCbGsPAvDjl8bYNxLHblW8fEsTABOJvFzJFUIsqelUHoCg24ZtTiAo7HGwpsG3VMsSF0nAZcNls5ArGuWDQixXEhwSK0o1rTaVKxNLFxidzRHxOAh7HcSzRfqm0jT6XaTzJfqn00u8WiEuv4NjSQDawx7JGhKr1jtv7uI371lH2OMg4LJxy9o6AL754ggA13WG2dpmBIwmEjkKEhwSQiyhE8Eh+7xx9RaLkqyhK4BSqpY9NCbj7MUyJsEhsaIEzMyh2WyRp3qn+NRjvfzhN/fyj48cwWWzsqN3mk/9rBeH1cJYPCdXg8WqUz3AjHgduGU8t1jFPHYbHWEPSinefUs3dV4HuaLxmXB9V5jrOkOA0SA0Uygt4UqFEKtdNFUtK5OLOleq6jj7IxOnTsjsnUzyxNEpeieTl3tZQswjZw5iRan2HCqUKjx5NMrzA8ZUpoPjSQ6NJxmOGdH4yUSOD97Xw0y6UIvUC7EaVNOVg247njl9C4RYbdrCburMyWXNQRcfe+NWPvqdl9Bac01HkAa/i0a/k8lknr7JNPU++awQQiyN6oWdkFcaT1+pms3zkWNTaXLFMi7zGC1TKPF0X9Q4x9HQ0+hfymWKVU6CQ2JFCbiNf7Lj8RzHzbKx37hrLV9+drAWGHLbrewZjvP9PWPU+ZwSHBKrSswckxr22LFZJTlUrF4tIfe8+1e3B/kfb9qKzWqhJejCbrXQGfEwmcyzdzjOTWsilCsai1LzyjqEEOJSmzKDQw1mQFtcedbUG30g94/GmUzk6Kwz7n/kG3v5/t4xAG7vqeOmtRGcNrm4J5aGnDmIFWVLS5CmgJOpVJ5UvsTmlgCv3dbKH71qEyGPnbdd386fv24LAI8dnmQmlSedN8oFCqVK7f97hmZrjwtxJYlligA0yvh6Ieap9zsJeRyUKprmoBE4qo6MHpzJEM8W2Ts8y8GxhJQkCyEuq2mzrKw5IMGhK9VbrmsHYGf/DPuG42QKJeLZIj/eP17bZv9IglxBPn/E0pHgkFhR3A4r//aeG6n3OVDAL9zQAcD2jhD/8cs38Uu3drOlJUB3nYdErsS+kQSjs1mSuSK7BmLkimVi6TwTiRwvDsakz4S44lTLyhr80rdAiLmcNivbO0K0h921/nXXd4UBeHEoxtGJFPFsielUnsPj0vdBCHH5TCeNzKG2sGeJVyIule56Lzd2hymWNU/2RXlpJM4Xn+mnWNZc3RbEbbcymy0yPJshkStyYDQu5ynispPgkFhxOuo8/M0bt/JPv3AtW1oDTKfyTKfy5IoVyhXNVCrPPRsaAXiyd5rR2SyHx5MkckVGZ7O1PkWVyokPYyGuFNWysqaA+yxbCrH6uOxWrmoN1kouX3N1CzaLYv9ogkcPTfDgzkHypQqTyZwclAshLptotazML5lDV7K3Xm9kD/1g3xjj8RwP7THKye7sqacjYgQGXxyIcWwqxWgsy3PHZ0jmiku2XrH6SHBIrDhWpXDZrXTXe0kXSlzVGuC6zjDpQoloOk9XxMP13SFsFsWLgzGi6Ty9kynKZc2BsTgf/s89/N7XdjM4k2ZSgkPiCjNjZg6FpamlEGcV8ji4eU0EreFfHj/Gjw9M8JFv7mU4lpWLB0KIy6JS0UTT1axfCQ5dyV69tYUtLQHi2SJ/8p2XODiexGG1cFVbgC0tRiPq7+4Z5a2ffpqP/eAQ/dE0h8eTVCr6rM9dLFc4MJpg30iclLTOEOdJgkNixXHaLLjsVpK5InarhXqfk6DHzta2AO1hN+safdze08AN3WEqGr71wih//l/7+W/f2MNjh6bIlSqkC2X+6qGDHBxLkC+Vl/olCXHRzJo9h+qlqaUQi/La7S21236XjdlMkX/+WR/90QzZQploKs+RiaT0qRNCXBLxbJFSReNxWPE5ZVbQlSzgtvPHD2yiI+wmmSthtSjeen077WE3t62rA+C5/hilsuZ4NM1ffu8Ae4dn2TUQ45m+KLni6c9ZoskcY7NZEpkih0YTiwooCXEyeQcSK47NamFLa4Cdx2fY1OyvTZVp8LtoMJvwhj12XruthWeOzfBk73Rt32+/OAIY4yTHEzmeODrNA1e34PTJVACx8uWKZTKFMlalaj1VhBBn9qqrWvjS04NEfA4+eG8Pv/WVFxiL59g/OovWoNFYUMTSBa7tDOOwyXU1IcSFKZYr2M3y1uoYe7/Lhs0i7y9Xui0tAf7w1ZsYnslydVuQYqVCS9A9b8KsRcGta+t4qi/KF3YM8MH77CgFrSFXbcrZXMlckbd8+mlGZnP4XTZ+/+UbiPgc+F12Il4HVpnAKRZJ3oHEihRw2bmhK0zTacbUK6W4e0Mj6xt9ALWD+YoGl93C++9eB8BLI3FmzFReIVa6ataQz2XDbpWApxCLEfY6+IvXb+FD96/HabNy3yajZ93O4zEiXgdaw2y2SL5UYXAmvcSrFUKsZMVyhef7Z3jy6DQD08b7yWg8B0DQbccmJ/FXvJDHQWvQxVVtAdwOK0oZn0PrG/213/91nWF+8+51tARdDMxk+INv7OVPv/MSe4ZnKZsZQeWKJlcskyuW+erOQUZmjX9HyVyJzz/Vz/GpFC8Oxpgw/30JsRgSHBIrVsjjqF11WUiD38lbrm+j3ufgwy/fwMYmo5b31rV1dNW58TisjMZzHBxPXK4lC3FJVQOdPqdNrhIJcQ7aQh5mMwVimQLXmRPMnuqN8nv/uZtf/vfn+J0HX2Tn8RnSeSlDFkKcv+GZDDuPz3BsKk3vVIpYusBjhyYBWN94IhteXLmsFsXWthBuh5VcqcyGRj92qwWHzcIms+/QnevrsVgU772tG7/LhttuJVes8PCBSQ6PJ3hpJM5TvdM8eyzKM33TfPHpAQB+574eWoIuBmcy/N2PD/PVnYMcmpASM7F4Uncgrlguu5Xb19WzvT2Mz2kj4LLxzRdGeN22Vlx2K5tb/OwamOWFgRiv29aKUvKBLFa2WbMZtZGaLv+ehVisiM9BwG1nY1OAZL7I5pYAB8cS9E6msFsVxbLmX3/eR2vQxfaO0FIvVwixAs1mCrz2E0+SLhhB5nfe1IlFKX56cAKAm9dElnJ54jJy2Cxc1xFGKeadf/ztm67mB/vGuLotyDWdIZqCLjY2+xmP5/ijb+3jZ4cnect17cxUh+1oSGSLDMWyBN12bl1XR9jj4K++f4AjEymOTKRo8Du5ui1EwG3DaZOscnFmEhwSV7TOiJcXBmNUKpqWoJs/eOVGssUy65v83LOhkV0Ds+wZilOqaOxWOZkWK1usWlbmtMnVRyHOgctu5cbuCEopgh47v/uyHnb1z9JZ52FDo59/e+o4P9o/zjdfHOGdt3Qt9XKFECvQU71R0oUyQbedeLbIg88NUudzMBzL4nVY2SaB51VloeO0ra1BZlIF6nwOPA4b3XVeppN5WoIuuus89EczvP9Lu8gu0Jj6no0NlCtwdUeQv3j9VQxE0/zbU/08cnCSl29pxGW3cX1XGI9DTv/F6UlZmbiiBdw2fE4rhUqFDc1+MoUSShl13fdvaQKgP5qmWK4s8UqFuHDVMfZ+t4yxF+Jczb16e21HmFvX1bG93Uj9f9lm4/MimspLer4Q4rw8cXQKgNdtb+UN21upaPjEo70AbGsPUe9zLOXyxDJgsSjqfA7awx7AKEHb0hqgNeTmHTd3ooBssYzXYeWu9fW8emszr97azFuua+OVVzWxqcXPNe0hNjX7ecWWZtpCbqLpAj/cN8G+4TjFknx+iTOT0KG4oimlWNvgo1jWNAWcDMcy+F127FYL6+qNbv/xbJFcsYJHPpPFCjdr9hySSWVCXJiw14HFYkwAzJcqVDAuICRzJUoVjUMy84QQ5+jpY1EA1tZ76Yi4mUkXeMKcqLu9PUhIDkQFsKklMK+nqt9lx++y0xR00R52E3YbWUVze0uWyhXShRJhjzGZbFNLgD1DMe7b1MAXnxnkW+a05hu7I9wo5YviDOQMQlzx6nzO2u2NzX6s5phQp91KyG1nNltkMpEj4pUPZbGy5IpleidTbG4JYFEwkTwx8UQIcf7sVgvtIQ/xXJE2v3FADpDMl2qTYoQQYrHGZrMMRDM4bRa2tvppCXl47+3d3LepkYFomtvW1eN1SD8YwWmH7QRcdpoCLopFTaFUIVM0qiEAimXN+gZfLWAUdNu5o6eBjU0BplJ5nu+fZTqVp3cyKcEhcUYSHBKrStA9PwDUFHAxmy0yMptlU0tgiVYlxPnJlyoMx7K4HVaK5Qp9kynAmNQnhLgw6xp9tdtaaxxWC4VShUSuiFtO4oQQ5+ChfWMAbGjy0x720hp2ky2WsFoU65v8NAacMhhFnNX6Bj+9kylsVmgP+/E4T3wW+V3zLwxaLIrGgJNfvm0N5fIxHj44WRt3L8TpSHBIrGotIReHJ5KMzmaXeilCnLODYwnK5QrHp9JYFGTMCSiNPgkOCXExKaUIe+1MJPJMJ/M0BVzzvq61lhM7IcSCMoUSDz43BMDmFj9+t3H6tabeR6kMY4ks9fK5LRYh6LFzfXd40dsrpVhT7601oR6LS3BInJkEh8Sq1mwe4I9KJF2sMEMzGd7xmWdw2i38zn3r+defHyOeNaaV1UvmkBAXXcTrMIJDqcK8x6dTeTL5Ep113iVamRBiOfv7Hx+mdzJFndfB3Rsa8Jon6narhS2tAdbUe3HZZUaQuDTqfU62d4T47p5RJpNyviPOTN6JxKrWHDSCQ+NxyRwSK0vvVAoN5IoV/tePDxPPFgl77NzYHeaqVimRFOJiq/MaQdfpZJ5MocSUeZAdTeWZShbOtKsQYpWKZ4t8YUc/SsHv3N9DZ533lBHmbodVMg/FJWOxKNY2GBcvoin5rBJndtbgkFKqQyn1mFLqoFJqv1LqQ+bjbzPvV5RSN5xh/36l1D6l1G6l1PMXc/FCXKhq5tB0+vRvlqVyhaxZriPEcjGVzM+7/4otTfz7L9/EB+/twWWXfihCXGx15pjpyVSORLZI/3SaXLHMF58eYCiWoVSuLPEKhRDLTe9kioqGroiHrjov9TL8RCyB6sXwWKYgn1XijBZTVlYCPqy1fkEp5Qd2KaUeBl4C3gz86yKe416t9fQFrFOIS6LaN2ImXaBS0adczQGjPjeWKbCtPXSZVyfE6U2njODQnT313Lepkeu6wliUQsO88aZCiIujOtFyKmn0HYqli3z68T6+9OwgQ7Es925qJOiWhGwhxAl9U8agiJagG4fNMm+CrhCXS/Oc851iWWOTa4jiNM4aHNJajwFj5u2kUuog0Ka1fhiQNEixolWDQ7F0gUK5gssy/92yUtEMxTIUShVK5Qq204yXFOJyq2YOtYXd3NAdIZ0vkSuVcVgtpx2DKoQ4f3VmcOj5/hj/vqOfN13bxtCMUZJ8eDxJKlck6Laf6SmEEKtMNTjU4HdyVWsQh00+n8XlF3Tbcdos5EsVYpkCbod7qZcklqlzeodSSnUD1wLPnsNuGviJUmqXUup95/L9hLjUqmmWs9kipYo+5et7R+J85Bt7eap3mnReSsvE8lFtihvy2JlM5ihVKlzfFeaWtXVSVibEJRAxew7tHYlT0fD4kSn2j8UBGE/kaieBQghR1TdpvC+sb/RJ8FgsGaVU7YK4TGgWZ7Lo4JBSygd8E/hdrXXiHL7H7Vrr64BXA7+llLrrNM//PqXU80qp56emps7h6YU4f2GPHbtVkSmU2T0ww0y6wGymwEQ8y9GJJP/40yMMx7L86KVxYhlp4iaWj6mE0Qx3Tb2XngYf13SG8bvsC5ZGCiEuXOSkXiHTqcK8iwbP98ekl4MQYp6+qTQAG5r9S7wSsdpVL4hLcEicyaKCQ0opO0Zg6Mta62+dyzfQWo+a/58Evg3cdJrtPqO1vkFrfUNDQ8O5fAshzptSigZz7Pd0usDe4Vn2DM9ycDzJQDTNjr4oAEOxLEfGT8RE0/nSkqxXiKops+dQc8BFV70Xn3MxLeSEEOer2pD6dA5PJBk3g7alcoVUviTBIiFWsWK5wtBMBgVsaPAt9XLEKtdiZg4NxyQ4JE5vMdPKFPA54KDW+uPn8uRKKa/ZxBqllBd4BUYjayGWjWqTtmiqQJ3XScjtQGv4yYFJ8qUTB/bPD8bIFcsUShUOjMXJFaXMTCydanCoJeRa4pUIsTqcnDlUdV1nCIBjU2mOT6UZmsmwoy/Ks8eichAuxCpRXGCy7UA0Q6miiXgdhGRKmVhi1cyhoVhmiVcilrPFXGq+HXg3sE8ptdt87KOAE/gE0AA8pJTarbV+pVKqFfis1voBoAn4ttm02gZ8RWv9o4v8GoS4IFe1BnlhcJb/+aNDNAdcTCTyFOZc7d3cEuDgWIL9IwlmUgXsNgvTqQLZQll6u4glkS+VSWRLWBTUeWXyiRCXQ92ck7uuiIexeI5CucKrtjbz4tAsfVMpZjIFylPavMigGY5l6Ih4ZIKgEFe42UyR6VSezS2B2mMvDsYAaA25pRG1WHLVnkOTiTxa6wWHShXLFXJF4/xGhpusTouZVvYkcLqjmm8vsP0o8IB5+xiw/UIWKMSl9gev2kh/NM0TR6cZMq/yBt122sNuNjcH2NYR5M++u58DYwkGZ9J8fdcwE4k8W5r9hOecLJTKFcbiWToi3qV6KWKViJrNqAMuuxxwCnGZBFx2rEpR1poNTT5es72FmVSBa9qD3NFTzxNHp/nui6Osb/Kxe2iWZK7Eu27pYFNLgHoZXy3EFatc0Xx/7yjNAScbm/xYLIpKRfP4EaOHamvIhVM+q8USazUzzccTObLFMm67Fa2p9aoslis8d3yGTKHMhiYfnXVyPrMaSZMKseoFXHZ++94e3nZ9O1obaZceh/GnUdGaWDpP2GMnliny+JEpvvnCCAD7RuN01Z+oIZ9JFxiakeCQuPSmzZKygNuOzSIHnEJcDhaLIuS1E00V6Ix4ef32Vvom09T5XHzovh529EZ59PAkjx6erO3z0N5x1tT7GIvnaA26qDspSFQoVbBb1YJXcIUQK8P3947yl987wG3r6rh9fQMBl50ne6f5wb4xAG7oCmOTLAyxxK5qDQLQH02TyZdI5Uocm0rT0+il3u/i6ESSp/qmKZc1XqeVzjrvaTOMxJVL3qmEAFwOK80BN2sbfLXAEEAyV6Il5OaejUaT9P94eqD2td2DcSoVXbv/4lCM6VReGpCKS24qaQSHgm4bNqt8aAtxuXSEPQBsaPbREnTjsFoIeexsag1y3ybjc6LB7+T9d63FomDn8RnSuRKZfIk9Q7NMxHO159Jas3d4lsGo9H8QYiU7NJ4EYP9ognimQKWi+cg39lLR8LptLdyyrn6JVygEtIfdBN120vkyh8dT7OibJlsos2ckzvBMmnf+v2f51GN9fPrnx/jGrmFK5Qp9U2kmE7mzP/kC5p4jiZVDMoeEwCgjm06m0GjKFU2hXEEBShm14m+5vp1vvzhKek6zwd7JFNliGa/TRu9kkt/44gt0Rjy84qpmbNKKSFxC1cyhoNuBTXqZCHHZ/O+3beOhfWNsag7gd9poCDjwOm04rBbedXMXt6ytZ2tbAI/DxotDszx7fIbv7B7lvk2NrKnzcHgiScTnwG61kC6USeZKxLNFfC7bKVlFQoiVYWjGCPDGs0V2DcQoljXjiRxBt523Xt+BzykHhWLpKaW4qjXAjr4on3j0KM8cn6HB7+SXb+vmueMzzGaL2K2KYlmzfzRBNF3ghYEZNrUEaAy4iGeK2KwK7yKm41Yqmn0jcba0BqR30Qojvy0hgM6Ih61tQZx2Cw1+J5ub/VzTGeamNXX4XXau7wzTFnLP26dvKsV4IsdUMs8//6wPgMGZDMWSZA6JS6uaORT22CXdV4jLaF2jn+3tIcIeOxaLYmtrEJfdisWiWFPvpafRi8dho1SucN+mRgAe2jfGh7++h395/BiFcpkZM7j7zV1D/PuOfqxK0TuZQmu5yirEcjY0kyFTKJ3y+Nzsv2ePz/CC2Yh6Q5OPsq4QcNkv2xqFOJPt7UZp2TPHZwDjePLvf3yYb5ktM95+QwdgnON87KEDfOSb+/jpgQlyxTIvjcZ5rn9mXgbsyQajaQqlCpPJHEOxDJm8THZeaSQ4JARGNL0x4OKajjDrm/w0BY3Uy+o0MrfDxv3mgf4dPXVYFAzPZumbTLFveJafm00HAWLZ4pK8BrF6jJspvvV+yTQQ4nLzOG34zJO9uX1EWsNurBbFdDpHulDmpjURXra5kW3tQRw2Cw8fnOCLTw8yMJMhWyjx8YeP8viRKT75WC/pfGleZqoQYvmZiOdILnCMN3c0+IHRBM8ciwJGGWpryE1ExtiLZeL6rnDttttu4fXbW9HAZDKPw2rhno2NdITdFMua7+0xemY90TvNT/aP87knj5PJlzg4niCVPzVImimUODKRYjqZ492f28mffPslplPnV5Imlo6UlQmxSL925xpcDgvXdYQZnc1xbDrNVDLPZCLPtDk9CmAqmaMz4lnClYor3Yg5Va9RgkNCXHYhlx2P49QyEbvVwvpGP6l8ia464zPgPbd143fa6Z1M8Uff2svPj0zx2qubefb4DHHzJPP5gRgP7RtjTYMXn9OH1prxeI6mgKs2RUYIsbS+9PQAn3vyGB9781aagicyyVP5ErFMEYuCijb6D1X/ttc1eOlp8EmGr1g2tnecCA7d3lPPO2/s5NhUipdGE9y0JoLXaeWmNRGGYiNUc1lfGonz1w8dZCqZ5+m+KB+8twe/y0Z3nRerRRHyGMHP//mDQ+wZnuUt17dzdDIFwM7+GOsa/Zf7ZYoLIJlDQixSY8DFrWvrcdqtbO8IAfC3PzjIPz56dN520TmBIiEuhZdG4oDRFFcIcXmtb/bXskpP1hR0sa7Rh81qwWa10Bp0k8oX2djs54719WiMdP5d/UbZyTXmZ8kjBycZjGYplStMJfMcmUhSkOEGQiwbX9k5yPFohp8emJz3eLXfUKPfyfpGH/lShX6zzGx7p0wpE8tLg99JmznS/tZ1daDg1+9ewztu6uCt17fRFfFy78bG2vY2i9GDaCqZx2ZRZItlPvlYL4PRDPtG4rwwEGMykWMkluWLzw6wZzjOpx/vq+2/e2h2wZLpVL5ErijZssuRvGMJsUguu5WIz4HLbuFdN3fS5HeSLpRxWC2897bu2kF+tR+MEJfCWDzLVKqA225lg1yNEWJZaw66KGvNTDrP3RuMaWY/2T/B02bZyfvvWkdbyM1stsie4RgvDMZ4+liU/miGskx6EWJZqFQ0x6aNTIjD40lyxTJjs1lS+VItOFTvd/Le27tq+9T7HHRJFrlYhv73267hd+7vYV2Dj2s6Q2xtDfGKLc0EPQ7q/A7uXN+A02Yh4LLxwNUttf1+/c613L6ujmyxzKcfP8bXnx9maCbLvpE4H3/4MNUY0OjsiVKy3okk2ZOCQFprDo0lGJyRSZ3LkZSVCXEOOsMeMoUyLUEXf//WbWSLFbxOG0G3nb4p48BhMin1teLSKJQq/OilccBIV3fZ5S1ciOXM67Rx85o6iuUKXqeVzoindkB8dVsQm01x85oI33pxhOf7Z9ncEuBDD+7GblXcv7lxUVNhhBCX1ngiR65oZPL1TaUZj+c4NpXCYlHsGZoFoMnv4vXb2vjnx44xMpulu86LT/5+xTJ0TWeIZK5Eo9+Jy26lu87LbMa46Oi0Gf998p3XMp0s4LQpvrd3lJDbzg3dYba2Bdg7HOfwRJLDE0l+vH+cP371Znb0GRc8quWV1f/3TqWJZ4q4bFbG4jncdgtjiRz/8XQ/r766ha46D04Z8bysyLuWEOcg7HUQ9hq3gx4HrmIFt8NKplCiwRxDPJWUsjJxaYzOZnna/ADuafRht0ofAyGWO5fdistuZXtHmN+8ey27BmZpD7u5ui1IyGPn5Vsa+daLIzxzPEo8a3x+FMuasdkc7WHJPBDicomlC0wkc2xs8tf6BGULZY5OJGvbjCdyfH7HcYZnsrz9xg6OmL1VmgIufC4b776li3969Ci3rI3gXqA3mRBLzWmzEPDYaDF7Z1ktiq1tQeZWf13fFeGZY9Nc3xnmL167hYDbjtNmoTHg5IP39bB3OM5stshTvdP89UMHACNbbltbkEcPT7GtPUTvZIp4tsiTvdO0BF0UyhUsSvF/f3qE3UNxSmXN1tYgHZJht6xIcEiI8xTxOjg0nqBQtlGqVFhTb0SNZjISHBKXRqFcoX86DcC6Rp9cbRFiBbFbLdy2rp62sIewx8F0Kk9H2MPmlgDXd4bYNTjLnuF4bftoWkqUhbhcJhM59o0af38t5sRagGPTKXaZo+mrvrBjAIAdfdFayUxXnQelFG+6tpX1TT4zA0O6d4jlRynFxiY/AXPqJnDK8aTXaaXR7yLic3Lf5ib2DM3SXe+lNeimUjEyX71OG5/3OfnZkUksSvHW69u5risMSnHfpgb+a88YO4/PMBDNMBDNsKNvmtt76tk9ZPydPX5kirff2CHBoWVGgkNCnKfmoAu7VZHIlWgPu5lJG0GhhIyyF5dI32SK41EjOLS+0YfLLgeeQqwkjQEXx6NpyhWNRUHI48Bhs/CHr97EQ3vHePTQJEPmNELpXyfE5RPLFHjs4CQRr5POsIeg285UMsePXxrnwFgCAJfNQq5klJeFPXZimRPHe931xgluvd+F05Ym7LHLlDKxbFUnjJ2O02YM37FbLYS9Dhr8Thr9xgTNDU1+nj0epZAp8KbrWvmV27tRShFN59nUHMB5qwUN3Laujp3HZ/jkY721531hcLZ2O10o88ihSe7a0CB/K8uIBIeEOE92q4XmoJvmoHE/4jXeaOMSHBKXwLdfHObD/7mHioaNTX5agm75MBVihXE7rDT6ncykC3RGvDjMzILuOi/3bmrkrdd38E+PHuXhAxMSHBLiMplI5PiNL+6iP5rBalFsaPaxpt7L33z/IN/dM4rVYnzW3rqujscOT+Fz2vjEO66jfzrN40enQGuubjMOBq0WxfpGmSQqVj67OWnP57SxvSNU+7xyO6xc2xmmVK4wmcwzHs/hc9qwWRQNfifxrItMocxv3LWWA6MJHj8yhd1qoSngpG/KuMD5um0tfG/vGI8fnqJY1jhscjy7XEhwSIiLpM5r9BxK5oqUK7p2MCHExfDEkWkqGm5eE+Hdt3QR9tjPvpMQYtnZ3BIAmBfcDZsXF0rlSq0UZVrKyoS4LL749EBt/Hy5ovn5kSluWVtXKyerTg58582dhD0OrukIUapUWNvgZXtHiJl0HvecARFNQdflfxFCXEIu+/yys2rZZcjjwKIglSuzpt6L1aLoqvNSKFdwO2z81r3r+MWbu3DZrZQqFf7q+wdo9Dt51dZmvrd3jLFEjkKpXAs8iaUnwSEhLpKIzzi4T+ZKFMsVrBbpByMunkSuBMA9GxrwuWz4XBIcEmIlWijjz261sKHJz7GpFHXmZ0ksLVmoQlwOo3GjlPOWNRGeOT7DE0ened22OMNmiSeAVSk2NvpZc6+Xvsk0IY8DrTXTqTwVreXkVqxKVotiY3Ng3mPVIQwAEa+T6VQBn9VGpljhTx7YjM1qwe+y4rZbyRbLTKfycky7jEhwSIiLpM57IjhUKlfALsEhcfGk8saJos9lvG17ZAqKEFeU1pCbRr+T0dkcIP3rhLhcqiWc929u4vBEkrF4jq/vGgHAblUUy5qmoBO/205Za+y2DOsbfbjtVuLZIvFs4ZTMCiEENAacZAr/f3v3HSfXfRb6//M950zvs71Kq14sS5Yt24kTJ3G60wMhIRAgFy4lPzrcG0huCHC59yZ0LgFCCBcCBAghvdqOk9hxiZssq3ettrfpfeaU3x9ndrSrYsuxpF3tPu/XSy/tzsw5c2a+0nzPPOf5Po/JTL7G+o4w07kq6XKdrT0RumN+zsyVGMtUWNsuSzGXCwkOCXGF+D3nouDZSkOi4OKKKjQzh3yGjq4p6YIixApk6BodUXeJ8ny2oCxTFuLqmg8OGbrijg3tfHX/JN84OAnAHRva6Yr4WdcRxGtoeHSNG3rdTk3gLgmdXxYqhFjMZ+hs7o6yqctBKUV72MfZVIlYwENfIsCZuRKj6fJSH6ZYQL5dCHEFzRelnspWnuORQjw/88EhpWBDR1iKUQuxQiWD81mobv26A+NZNxtVCHFVzAeHdg3E+Ynb1wDQsNw6Q+s7QrxpZw+buqL4DA2vodEZlZpCQjwf8+esAa/Olp4oSin64gGARcs3xdKT4JAQV9B8cOjYTHGJj0SsNMWaGxy6aSBOT3NCFUKsPMkFS5SLVZNsuUGpbi3xUQmxMlm2Q6ZcRwH9iQC7BhNs7Ym07t/aHWFNW4igV8fQ5WuTEFdKKzgkF9SXFfmUE+IKmi8kOpOrUmp+ma+bNpXmiX21YZEt15fs+MT1q1B164/EpEuZECva/BKVQs3kU48O84WnxylWpf6QEFdDqlTDdtx6fn6PjtfQeOuuPsCtN7StN0Z3zM8GaU8vxBXV0+zqN5+5J5YHqTkkxBXUGXFrRUwXaoyky1i228lCATf0xRhOlXAcuGVtcmkPVFxXaqZFw3LrjkjRSyFWtpBXx6tr1E2bP7vvOA7wpht76UsEl/rQhFhx5r+YxgIePM3MoB/a3cc3Dk4ykAjSHvHh0TXawr6lPEwhVpzeZubQXLEmtfWWEckcEuIKesXmTgAePZViIlumWDVJBr2EfAbPjOYoVk2KNVPqR4jnZb7eUMCjY2jysS3ESqaUIhFyMwSd5m1Pnc1g286lNxJCXBbTsqk2zi3TXBgcMppfTtvCPn779Vt5865eAnJBRoirYj5zKFWs05DvRcuGfMsQ4gp65dYuIn6Ds+kyqWKDp85m+NP7jvPwyTmy5Tq/9fkDfOPgFOXmiYmc7IvLUZwPDnl1JDYkxMqXCC7ufnRsusBcscZIqozjyLwhxA8qU24wki61fl8UHGpmDimlGEgE8eiaBIeEuEp6Ym7mULbSaAVsD0/kGEmVZJ5bQrKsTIgryGtovGJzB19+ZpL3f25/66rvd4/PEvEZFGomDx6f5ddetZFq3WKuWGNbb2xJj1ksf/PFqAMeHV26lAmx4iXPa419YrrAwYkcjgPJsJewT07fhPhBVOom6WIDutzfZ4tucOj8gGxbxEtfPSBFqIW4SgJenXjAQ7bS4Ohknh39cabzNaacGqbtsK5D6nwtBfnEE+IKe+ONvSjc5QAbOsK8dpt7BlJofsGfzFUZSZc5M1diMldtffG/mMlshVxFCpGudvlmMdqgV5c12UKsAucHh8YyFeYKNXKVBrOFKuA2OzhfsWZycqZwTY5RiOvNsakCb/rYQ9xzeKr1/2c+c+j8/3M+Q2djV+SCfQghrpyeuLu07NBEnr/+7kn+99ePkC7VGM2UZanZEpFLT0JcYXvWJvnvr9tMe8jH5u4ISik2dEZ4ZizL2XSZ0XSZJ4bTZEp1dg4kGMuU2dIdvWA/uUqDA+M5tnRHiAWkQ9VqVlxQc0hJ5pAQK978F1W/R6M3HuD0bIn//rkDxAIe/uxHduHTdY7PFFjfEaY75m8V0p3IVhhJlelPBKV4vRDn+fbRGXIVk4dPzlFpWHgNrRUc6opKwWkhrrX+eJAjkwWOTRf40r4JaqbNB794kF++ayNbu6N0Rv1LfYirjmQOCXGFxQIedvTF2NAZbn2Rf+32Lt7/ui3s6neXkP3Dw8N88qFhPvm904xnKjw9klnU4t6yHY5M5PEZeqsYsVi95v8NBL3yZU+I1WA+ODSYDLJ7MNG6PVdp8OTZNEenC0R8Hk7NFnn45Bz7RrMUKg3+7bERJnIV5ornWgOX66bUbxACWrWGRtMVSjU3I3emGRzqjsmXUCGutTft7AHgP58ao2ba+AyNmmnzL4+d5WyqRKlmLiogL64+CQ4JcYVpmqIvEaBQM8mU66SKNeaKNeqmTU+rbaMbCHpmLEeh0qBu2jwzmqXUXGLmZg1l+ctvn+DkbHHJXotYHuaXHkpwSIjVYUOnW2thS3eEn3/ZOn78tkHeuqsXgEdOpfinR4b5p0eHCXkN2kI+CtUGf/e90/zDI8P87QOnGW0WrjYtd27JlGV5shDDc2UAKg2LgxN5AKbz7jLN3mZxXCHEtfOGG3vpi/uZ78/zy3dtJBn0MpmrsnckyxPDaQ6O51oXOBzHYSpXWdT1OV9ttL4/iRdOgkNCXAUdET9KQX8iwG3r2tg1ECdXrXPbUPKCx37pmQmCXgO/R+fAeI6aabF/NMP/+vpRnjyb4RsHJrGkq9mqVag2SDWzAIJShFaIVeENO3r4u/fczBt29NKfCPLaG7p5884+NAX7RrN89/gsX3pmgl/+96f5mwdOMZWrcu/haQDGsxUOT+WZK9ZIl+rkKg2GU6XneEYhVr7RTLn18/7RLI7jnFtWJplDQlxzuqZ4162DALSFvGztDXPnpnYAHjudxtA0cpV66wLHbKHGvtEcJ2aKrYDRieniJS+k102bmWYAWFwe+aYhxFUQ9hncvq6tVQci4NXZszaJ39CI+g3yVZM33djD1w5M8p1js5yZK/ELL99AX9zPwfEcf3jP8da+UqU6NdMi6JX/riuJ4ziXVT/o5EyxlfYekswhIVYFpRSbuyOMZir4PXrrSurm7ghHJgvEgx4ifg+j6TKTBya599AU5oKLCE8NZ9jcHWH/aJazqQqv2dZFodog4l9cvy5fbaDggtuFWGkals1k9tyXxOMz7pLMct0i4jdoO69bmRDi2njTjT2kCjW29kbx6gYv39zBF/dN8O1jM3z72AxvvLGHWNCL44R45NQchqYxmasS9hmEfQYPn5xje0+UYs28oJNnqljj1GyR9rAPTRq6XBb5tinEVeI5r/3p/Mn3T754LQ+fnOOHdw8Q9hl86ZkJhlNl/vfXj/AX79zF/tEchyfzre2mclVqDRs5b1kZLNthPFNmIlvlxoHYRYN+5bqJ7YCuFOlinXTJXYYoX+CEWD18Hp1E0P0/3xn1YeiK//qSdfz7E6P8xIvW0BMLcGA8x4PHZ/n2sRkAtvdGOTSR56GTc7xxZw9/cf9JaqZNT8xPZ8zHDb2xRUHp0zPu1dZdC+oaCbGSjKXLtIV9zBZqWAtqb41nKnz2qTEAbhqM4zFkMYUQS6EnHuAVWzqxHVjTFuTmNQl2D55l70gWgG8enOJVW7sYTZf54BcOUm1YfPhN2wGHr+6f5PN7x3nHzf30JgJs7AxjLPj+9b3js+i6otywLggciYuTd0mIa+y/3DHELWsSONi8fkcPb9/dz//6+hH2jWb543uPtYoivnZbF/ccnmYqX6VYNUmEJDq0EuQqDU7MFFHK7UJ2fnCobtrsH8thWjZhr8F3js8w21xWJl3rhFg9Qj4Db/MktyPipyPipzPiJxn2kgx6qTQsbl6T4KbBOEGvziOnUvzMS4b443uPM56t8Mf3HqfWbNd9z+Fpdg7EmC3UWt1fynWTbLmBg0OpZhKSE2exAo2ky5TqJrMF9yJLV9THdN7NJphv9nDLYAJDl6wCIZaCz9DpTwQZTpfoiPjwe3R+983bmcxV+adHhnn4VIp7D08zW6hSrrvFqf/onmP8/pu3c8/BKQDuPTzNq7d1MVuosaMvRiLk5dFTc7z/8wfY2hPhRevaFwWHHMfBsp1FgSThkndEiGss4NWxbIeAx6A/EaBqWvz6qzeRCHo4OJHnW0fcK8Bv2dVHIuihYTmcnpOi1CtFulTDZ+gEPAapUv2C+09MF2iYNrrS+OP7jvEv3x/h6ebVk3hQgkNCrBZhn3HBRYFowIOhKeZKbsB4vtnBz7x0HZ/6L7eSCHl4921u/YbTs26dIU3Bkck8M/kaRybz5Ktu7YbvHJ3hd79yiOFUmamc1GQQK89MvsrpuRIT2SrHpgsArO8IM5AMUG3YjKTLBDw6W3ujGJp8JRJiqfQnA2ztiuL3uOUTBhJBfIbGj9wyAMDXD0zyxHCGkFdn10CcYs3kQ18+SKkZLMpVGhwazxPw6Jxq1iP69GMjOMCRqcIFdfdm8lVOzMh3q4uRT0IhrjG/RyfkMxhqD9Ed82NaDhGfwQdevxVP88rV1u4I7WFfq7vZkak8s4UajQXV+cX1aSxT4QtPj/HJ751mKldd1GK6UG1wYDzHvz7utqN+cjizaNuYBIeEWNV0TdEd89Md9XPL2iSbuyN4DEWmXKdYNfEbBm/Z2csd69sA6In5efPOPgD+7YlRAh6dp4YzHBzP8VffOclwqswXnx5nMldZypclxFXxm//5DB/60kFOzRR5ajgNQHfUzx/98I2tTNzdg3GSIR+61CMRYsn4DJ3exLmOgbGAB5+hEw96ePW2LhJBD91RP79010be/9rNdEf9lGpuYGh7bxSATz50mr9/6AwzxRrHpgp8+6h7sd1x4LEzqVaHM8dxGE6V3aWmtoNtO/L9agHJIRZiCWzpjhL2G+iaYn1HiNFMhc6on1971SY++dAZfvjmfkp1ky3dEQ5P5BlJldk3muGmwQTtYd9SH774AU3mKvy3/9zf6o6yvTfK7evaCDQLTZ+aLfIX959gMlflvsPTiwrMAsT8srRQiNVuXXsYpdyi1b3xAL3xANlynb0jGbZ0RUmGvfzY7YMkQl7uWN+O19D41pFp9o1meejkHK/Y3Mnp2SKHJ91MimfGcoxlKti2IwU7xYrhOA57z2ZxHPjc0+MkmxdX+hMBbuiL84G7t/DA8Tnu3NhOr3QqE2JZ0TTFzoEYjgNeQ+Pn71yP19BoWDZzxRq/dNcGPvzlQxi64mfvXMfHHzjFkckC3zw0haEr+uL+1hI0gEMTeb5/Ok1/IkCpZvK7XznEa7Z1sbM/TrZcZyRTZmt3hLaw77KaxaxkEhwSYgkszAAZbAvRlwjy9GiG3YMJPvXeDgrVBsmwl+29UT6/d5xUsY7P0Kks+KAT158v75toBYYAjk4VKNZMAl6dmmnx0W8cZbK5vOP8wBBANCAf2UKsdhcL4MSDXvasTRLw6Bi6Rm8swI/ftgYHd1nZu28d5BPfO83ffe8MnVE/B8Zy7r4U2A5859gMb9/dj1eCQ2KFmMpXKdbcmkJHJvN4mwWnB5NBAh6drqifn79zHelSnbh0/BBi2ZmvyTnUFuLodIE2w0euUmdrTwSfofG/37YDQ1ckgl7e/9rNjGYqfOhLh7jv8DRdzdp6tw0leexMmmNTBcI+g+FUiX9+9CxHJgtUGzZvuLGXqVwVv6FzYDyH19DZ1hMhEVq9F+JlWZkQy4CuKbZ2R6k0LEzLpm5Z9EQDbO6KAHB4Ms+J6QLFZq0IcX166MQcAHdubAfg2FSBiWwFy3Z48Pgsj55O49U1/scbtuL3aIR9BrsH463to34JDgkhLi7i97SKa67vDFNpWJTrJhs6w7xkYxsv29hBpWHxoS8e5DNPjgLw3hcPAfDoqRTWRQLSQlyPqg2LY83MuPkkgLpp0x3zs703hq4peuN+pgtVQj69lb0rhFh+2iM+/IZOqlijM+KnPxFke2+UtoiXzoif7pifvkSQofYwt6xJUDPdemK9MT/vuX0NfkNjNFPhc3vHqDVsHjmVAuDMXInvHJvh/3z9CPcdmaYt5MOra5xo1ixareSbhhDLRMhnsLU7wqHJHEGvQTRgsKk7ggJGMxX+59eO8Fuv28LW3thSH6r4AVi2w9OjWQDeuWeQR0+nGEmXGc2UsRybf3t8BIBXbO7gtqE2/vJduwG4/+h0q51nRLqVCSEuQ8TvYV17iFSpRjLkZU0yxE/dsYZk2MsXnx7H0BR71iZ56cZ2/uGRM+SrJpW6KV+SxXXHsh0qzTbVDcvm8ESeVLHG98+4NYZetqmDDR1h+uIB1rQFaYu4WUIbOyMYmtYqgCuEWJ4MXePmtQks28GrayilaI/4WZM0OTNXpCvqBnzHMhXu3tHNk2fdwtUffMNWwn6DPUNJvndijn/+/lk+/dhZFl4H+fNvnaBStzgyVeCRU3O8cksnO/tjZMuNVdslWoJDQiwj3fEAFdPCq+sopeiM+Pmt12/hs0+OcnK2xPGZwlIfovgBHZrIUayZdEV8DCQCbOgMc2SywHimgkfTWlcy3nhjL7lKHb9HI+QzWNsebO3Db8hJrBDi8gwkg/TEAyil6I77Gc2Uec/ta3jXngG8uoamKbLlOiGfQaFqki7XSUpNO3EdKVQbHJ7IUzdt9gwlmSvWSJdrtIV9HBp3l04OJoPcsaGd9rDP7Raqu/OoUop1HeGlPHwhxGXy6Brnx3GH2kMEPBpRv4FSipvXJuhPBPjN11gMtYdJBD0kQl7+z9t38G+Pj/DwyRT7mhdpt/dGOTSRp1K38OoaPkPj0ESeQxN53rarl1jQS1fNT3vYt+oumsiyMiGWmaH2MH0LKva/ZVcvL93YAcB0vioV9a9T3zsxC8DOgThzpTrbe9wMsIdOzvG1A5NUGzY7+mJ0Rn14dA1dV6RLdV65pZO+eICd/THppiKEuGyaplp1VnyGzubuCNlyvVWXqFQz6Yr5iTczElOl+lIerhDPi+M4HJsq4DjgAOPZCqdnixydLPDV/ROMZtwOfENtIcI+nXylgd0sbiuEuP7pmqIvEWwVkI76PaxtD7FzIE5PzE/VtOiJ+WkL+bh1bRu//+bt/PJdG/jRPQO85/Y1rf28dnsXf/uem/mvL3WXWd97eJpsqcGRyTz5VVjO4zkzh5RSA8A/Ad2ADXzCcZy/UEq9A/hdYCtwq+M4T15i+9cBfwHowCcdx/nIFTp2IVYFv0enI+JezZ0t1KibNh5dTm6uN4+fcdvSb+qK0Bf38449/Xxx3zjfa9YhMjTFe25fQ7lusWcoScO0OTiRoz8R4mPv3sVcsY62yjsoCCF+cO1hH/3JAGOZKlG/QdW06YkGaA/7GM1UyEhwSFxH8hWTbLnB/rEsXVE/uUqdP/jqEaYXNH0A2NobZUNnhJMzRTZ2hVddFoAQq4lH11iTDHJwIs+W7kir2LzXUFQaFq/e1o3tOGQrdTZ2hpnIVnjTzl4MTePNO/t45FSKQxN5Hjw5y0s2tFNrrL5GQJezrMwEfsNxnL1KqQjwlFLqPuAg8Hbgby+1oVJKB/4KeDUwBjyhlPqy4ziHX/ihC7E6+AydtrD74TbXDA6t4iL6162JrHsVsyPiozPiZ01biPe9fD1/9d1TWLbDT79kiL54gPaIl7DPAB/sGogT8Oq0hXxkyw3JHBJC/MCUUmzsjOA3dGYKNQaTQaIBY9H8IsT14uB4lj+97ziHJ/P4DI2Xb+5kulCjM+JjZsG/5d6Yn0TIy56h5BIerRDiWumOBbAdd0npvI2dEc6my8wUqigUA8kAf/rOnYynK3h0Dcu2SZVM3nRjD4cm8vzTo2f5l++f5Q/edgPvbgst4au59p4zOOQ4ziQw2fy5oJQ6AvQ5jnMf0ErluoRbgZOO45xuPvbfgbcAEhwS4jL5PRp71iTQFGTKDfLV+qotknY9myu6J6uxgIew38Cja9yxoZ3uaIBMuc5LN7aTKtXoiZ9bUhjxe1p/+wwdiQ0JIV4IpRSDbSEGF5zsJppXVuckc0hcJ0zL5mPfPcXhyTwANdPmnkNTAPzSXRupmRYf+cZRbluXJOST8qpCrCZeQ2Nt++KATnvER3vER7Zc59h0gZ54gLppM5Wr4fdo3LwmyVimjK4UuwZiHJ4oULds9o/mePetS/RClsjzWpuilFoL3AQ8dpmb9AGjC34fa952sX3/rFLqSaXUk7Ozs8/nsIRY0ZRSrOuM0B3z4wCnZ0tLfUjieWpYNplyA6WgPxFoLQvsjPoYbAty56YOqg2biN9D1H9hR7KAVyfkM54rGC+EEM/b/MWGdEkyh8T1YTRT5vHTaTQFv/maza3bB5NBdvbHuG2ojX9876389IuHpBuZEKIlHvRy69okYZ9BxG/g1RXr2kN4DY11HWFuXZfkV1+1iZ+6Yy0A6VV40eSyg0NKqTDwOeBXHcfJX+5mF7nNuchtOI7zCcdxbnEc55aOjo7LPSwhVo2BhJseeWauvMRHIp6v+ayhiM+gN3YuMygR9FKzLBqWTbFusqHz4p1T/B63mKwQQlxp8aAbkM6UVl/hTXF9+tQjw1iOwx0b2nnZpg5uXesuGXvrrl6KNZN0qYZHV2i6wicFqIUQC8xfaPXoGlt7orRH/K37fIZObzzQ+tzIlCU4dFFKKQ9uYOjTjuN8/nnsfwwYWPB7PzDxPLYXQjTNr509PVditlBd4qMRz8dss/5BNOAhEjiX4h4PetnUGSFdqrO+PdQqnHcxcvVTCHE1zC8ry1fN1m3lukndlM6YYvlpWDb/+dQ4AG/d1UfdtPmJFw/yu2/azu1DbQS8Ott6Y9QtG3+zM58QQlxMZ9R/QT3P3niAYLNwfa7cwLYvmteyYl1OtzIF/D1wxHGcP32e+38C2KiUGgLGgXcB737eRymEYE2bGxzKVxocHM+zZ8hwCxc3OY6zaNnR+b+LpTMfHIoHPBd0mhtIBt2gkdRFEEIsgUQzc6iwoGXvqZkilgM7+mJSCF8sK7OFGsWaSSzgYU1bkHy1QU8sSFvQpmpabO+IEQt48HniFCrmc+9QCCEWCPsMbh9qAyBXbWDaDt5VNA9eTjj9DuA9wF1KqX3NP3crpd6mlBoDXgR8TSl1D4BSqlcp9XUAx3FM4BeBe4AjwH84jnPoqrwSIVa4+eJqM/kqHl1jPOMuLyvWTA6MZdk/lmtFt2umxTOjWbnyu0y0gkNBD8ZFJphYwIO2iiYeIcTyMZ+xWKyaOI6DbTtkyg0ypTqnZguAWwA4X5VlZ2LpzXciSwQ9FKomN/bH2NgVptQwCft0on73QkvU76EvEXi2XQkhxEXNf+cqVE1Me3V9l7qcbmUPcfHaQQBfuMjjJ4C7F/z+deDrP+gBCiFc88vKjs8UAYepXJWeeID9o1l0pVE1Lc6mS/TFgxyfLjCVr7K2PYTXkM5mS22mFRzySoq7EGJZmV9WVqiZmLbDXLHGoYkcL17XxlimQnvYz1yxymi6ws7+2KL6DEJcazN5d1l9NOAh7NNJhrwopeiN+WkP+yRjWgjxgsUCHnSlKNctKnWLoHf1ZPfLtxQhrhNbe6IMtYdIl+r8768fpWHZHJ7IA4qw3yAZ8jI8V+KRU3OkinWCHoNCVVKql4P5zKH2kG+Jj0QIIRabX1ZWrJlYtsNHvnGUj37zGP/0/bNE/R4OTeQYy1RIBL0cnMhTqsm8IpbO/MWWsM9gTVuoFQza0h2lMyqBSyHEC6dpikTInRvnz+FXCwkOCXGd8Ogaf/yOG0mGvByezPPEcIZ6w2J4rsQf33uMJ4fTtIf9tIV8PHwyxWefGpXWxMvETLOAeGdUgkNCiOVlfllZueZ2TnzkVAqAz+0d5+GTKQxNYzpXo1y30JViKud+npVqJsNzpVYmhxBXQ7pUx3HOFYSd/6LWFvbSFj43p8rSbCHEldTWvKC7MDhUbVhLdTjXzOrJkRJiBVjTFuJHbunn4w+c5p5DU5yZK3Hv4WkAHj2d4s9+ZBdjmTJ/973TANy+vo0b++OSZr3EZvLuxCJXNYUQy43X0Ah6dcp1i0MTeWYLNTQFtgN/88BJJnJ9fOaJUdrDXv7XW3cwkavQEfXxzEgW03aI+j0XfLYVayaaYlWl4osrz7YdTs8W2d4bI9DsHjSfOdQR9kmxdCHEVdMe9nJsGqabF3jz1QajqTLb+2JLfGRXl2QOCXEd8egae9YkiAc8DKfK3Ht4Gp+hsaU7Qt20+dCXDvLn3zrRevypmSLFmslouoy1oBVj3bRbvy+8IieuPMdxmGxeae+WzCEhxDIUby4t+48nRgHYPZjgjvVtVBs2n2neNles86EvHaRQbXB4Io+habSHfeRrjQuaH5yYLjCWqVzbFyFWnJrpFkKvLLhaP5+pJhdbhBBXU3szM3H+Au9svka1sfKLU0twSIjriM/Q0HSNV27tat3283eu5/fffAMDySDpUp1Kw2q1uD89W+L4dJHDk3kmcxXqps3B8SwPnZxjuhmwOD1bav0srryRVIl0qQ5Ab1xOZoUQy898UepnxrIAbOuJ8rN3riPS7Px058YO1rWHmCnUeGI4Q6Vucmgyx6ceGWY2X6W4oA5RsWaSKdWZLdTk4oN4QaoNi3LNWlTnaj5zqEeCQ0KIq2h+2epsoYZl2fz5/cfZP55tdYZeqSTfV4jriN+js6UrQnp9jQePz7J7MM4rt3ailOLPf2QXx6byeHSNhu3wgS8cYDhVolhr0Bn2cXq2yFS+SqVuEfLqzBar9MT9TDWvwrWFpZPWlVY3bY5M5albNj5DIxaQznFCiOVnPjh0arYEQH8ygOXAB+/eylNnM/zILQM8eTbDR795lPuPzPDoqRRHp9w292fTJXavSZAMufsYSZU4NJFna2+Ect0i5JNTTfGD+fTjZzk4lmdtW5CBZsfW+eBQd0wycYUQV09b2J3T5oo1HjuT5ivPTPLAsVl+/PY1aJds5H79kxlbiOtMTzzAjf1x/vSdO4k3gw0Ny8Z2HHb0xwH3aptSMJIuY1oO2UoDv0ejWreIB7w4jkOmUidfNWlYborkVL5KfyK4VC/rumPZzgX1DuqmzdlUibXtITy6xlSuwnjWDb7FAx4JvgkhlqVE6Fzg2qtrDLWH6I760DX4id61OI7D7sE4sYCHkXQZcD/TspUGhybyTOWqJIJe5oo1/uL+E9xzaJp33tLPtu6YBIfED8SyHf7y/pPUTJtXbevkhv44tu2QKrrBod54YImPUAixkrUvCA79y/fPAvCi9W14Vvi5/Mp+dUKsUL3xAGYzqJNpLiWrNqxW3QfTduiNBbAd+OlPPcn7Pr2Xcs0iXzH5x0fO8AdfO8JMvsbjp1N8fu84Xk1jeK684lMlr5RK3eLxMynGM5VFyyZGUiVOzZY43Czq+uTZNB//7ikANnZF8Ogr90qDEOL61Rs7t0TnXbcOkAz62NQVwW/oVOoW6XKdct3izo3tAOia4n+8YRs9MT/lusWJ6QIHxnOMpis8dGIOgH2juVYhT3Drrx2dyvPAsRkOT+Su7QsU152zqRK15jnNqZkiDcsmW2lg2g4Bj07I51niIxRCrGTz3crKdYvHhzMAvGRD+1Ie0jUhl3OEuA6FfAaJoJfpfJX2iI8dfTGy5Tr7xrL4dB3TttnSE2E86xYErTQs/vCeY5yeK9Kw3GBGW9jLVK7K06NZAN6+u49C1SQWlBOuZ2PZDocnc1g2HJvKY9k2g20h8tUGI+kyPTE/+WqDzESdf350hNlinS3dEd5z+6B0VhFCLEu/8PL1eHTFroEEPkNrLTPe0hPliTNp4gEPG7siZMt1jk0XeM22bjZ3R9g1EGcyN8Wp2RK3rG3jmwenKNXd4sEnZgqMZyqsaw8TC3qYylWZzFZJhrzMFGpstOwVfwVW/OAOT+ZbP4+ky1QbFlM595wmFvBgyMUWIcRVNL+s7Jkx92JGe9jL5u7IUh7SNSHBISGuUwPJIMWayZbuCLqmaAv7uKEnRrluEQ8aTG7p5P4jM9zYF+PodIFj0259iC3dEY5OFdg/lmO2uXb/GwcnedWWTqYLVQkOPYdsuU6+2qA95MeyDU7OFPF5dE7MFJjJ16iaNgOJIMNzJZ4ezeI1ND5491Ysx8GjyRchIcTyEw96efW2bmoNm3LDJBZw54FYwMP23iixoIeg1+DWoSSJkJe2kA/HcdjaHeEbB6d48myGjZ0R/nOv29nMa2jUTZszcyXawl66Y37OzJVIBLxoSqGAYtVctJxNiIUOT5wLDo2mK2TLDQ6Ou1/SEiGPzKdCiKtqvlvZvJdsaEdTKz8oLcEhIa5TyZCXW9Ym8Xv01m1dC5YGvGVXH7bjsL03zheeHudTjw5z15ZO3vfy9bz7k4+1sooAGpbDVw5Mkgh7Wd8RlgyXZ2HZDhOZKpPZGjf0Ron4PewfzTJdqPE7XzqIrin+4K07uOfQFACv3tpFxO+hVDfR5H0VQixTPkOjXLdwHAj6zs0rPQtqu7SFfZyYKWLZDqlSjZsGEyjg6FSBD3/lEAB98QAv3dDOvz85ysHxHDcNxhlJlUkXG/zzo2exbIfbhtroTwQlOCQu6Viz4DnAaKbMqdkiJ2aKgGQOCSGuvr54gDs2tHFsqkB/IshdmzuJBlb+BXQJDglxnVJKLQoMnS/g1RlMhlAKfvjmfl62qYP2sBelFDf0Rtk7kgXgtqEkj51J88DxWX5odx/5SkNO2J/F0ak8v/fVw9RNmz1rE/zyXRtpD/v46DePYTtgWw4f/MIBTNtBU/DWXX00LBu/cemxEkKIpeYxFLlKnc6ID98lPq/8Hp32sI+xTJntvTH64gFed0M3e0cy+A2dl27q4E039nCkuSToieEMP/PSdZRqJr//1UPkq25L8kMTeXavibO+MwxAsWYS8uqoVXBVVlyek81AEECm3MDQNEo1d8liPOjBkIstQoirSNMUf/3um3l6NENbyEeqVKMzsvK7JEpwSIgVSilFNOChWDUpN0zaQ77WifcNvbFWcOgNO3rIVxocaS4129QVkeDQJVQbFr/zpUOtwt9PDGf4yDePsrM/zsnZIu1hH4PJIHtHMvgMjXftGaQj4iNVrnFDT2yJj14IIS6tPeQjMuihLfzsJ7/9iQAK96qqpin+v1dsoFQzCXrdU0rLdljbHmIgEWA0U+HjD5xiIlclXzW5sS/GcKpEqlTnzFyJrqiffKVBplxnz1AbYelsJnDn2tFMGU25S+jPpsp8/3SKL+4bB2BzV0QCiUKIq05vZihatoOhKaL+lZ85JAt2hVjBEkEPxZrJYDJIrtqgbtrMFqps74sCbl2I7piPW9YmAXjsTJqZZh0icaFvHJxkOOUWnf7rH9tNIujh0ESef318BAW87+Xr+dAbtvIn79jJv/7M7fzwzf1kynU2dUYWLfkTQojlJhb00hn1P+ey4njQy/a+WGuZbEfYS6Vhte4v1BoMJoP83MvWo2uK+4/OcGQyTzzo4Tdfu5ldA3EATk4XmchWqZk2SqlW0F2IkzNFbAc6o342d7kFYP/mgVOU6xZ71ia4c1PHEh+hEGI1MDQFDuQqDbpj/lVRHkKCQ0KsYG1hH7esTbChM4Lfo5OvNLhpMMEbdvTwrj0D/OpdG/EaOrcOJdAU7BvNkirUqC440RfnTGTdtsy3DiUZSAT5lVduat33c3euY8/aJIausakrgtfQ3OVkHo2+BTU7hBBiJQkvuJJabViYlkN3zM9tQ0l+5OZ+dE3x8k0d/NEP7SQR9LaCQ4cm88QCbqFrBdRNmXeEa35JWW/Mz61DCcC9cj+QCPCzL11HwCvLtIUQV59H14gHPSRCHnpXybm85O8KsYKFfAahZpr+1p4olmWTCHlxHIc33tiLrimCXo2hthBbe6Icmsjz9GiWW9e1PWs9o9UqVawDEG8WpLt5TYIP3r0V23F48fp2aqZFulSnLeTDa2jkqw02dUZWxZUGIcTqFPTqBLw6qVKNgEfnhr4oQa9BW9jHa2/o5p17BlvZSHXTZmOnmwlyYDzH3pEMX90/wXS+xsfefRPdsdVx8i2e3VzRzWCOBby8fkcvHWE/Eb+HZMhLsWZKDT8hxDWha4pdg4mlPoxrSoJDQqwSsQUV9pVSdES8nJwpsiaZoD3iY0dfjEMTeY5NF5gt1OhYBUXXnq90yT1hjQe9zBVr+A2d24aSrdoHhWqDjZ1hzsyV8OgauqboiMr7KIRYuZRS3DyYwMFNwZ//PDy/fpBp2RRqDTb3ROiO+pnKV/nwlw+17t83muXG/vg1PHKxXGXK7oWYaMAg6jdIhr1EfB50TWFaNgG5eCWEEFeFLCsTYpVqC7sdaaJBD15D444NbQAcnsgzlatQrptLfITLz1wzc0hX0B3zEQnozDUDRrlKg46Ij7XtIbb3xhhIBtk1EMejy8esEGJlM3QNj64tKhLsNdys1Gylju04ZCt1tnRF2NQV4Z17+lnbFmRTV7j1+PFMZSkOXSxDmXIDgLDfwO/Rifo91E2bhmWjlHuBRgghxJUnmUNCrFJhn0F7xEuouXb/9nVtRPwGqVKduWKdkXSZLd3RJT7K5SVdcoNDnVEfGzsj6JrCHs8xW6gS8Ops6HQ7qEjxaSGEgP5kkNlCjXS5zpq2UOuz8Yd293PzmiSJoJdPP3aWf39ilMlcBcdxpAuVaM21bUEvHl0jEfRwfLoICm7oiUrNISGEuEokOCTEKuX36GzvjbVOxBNBL9t6ojx2Js2p2SKdUR9rkiE5CVsg1Txh3dAZwWhmBG3qimDZDpu6IlKnSQghFtA1xQ39MYBFn4+xgBfbKQHQ2VzCPFes07AcvIYEh1a7THOu7Yq6wcRk2Mdayybq98iSdyGEuIpkvYMQq9jCJU+GrnHbOrel/d6RDADF2vW1tKxh2eSrjauyb8dxWiesnQvqCPk9OjcNJlqFv4UQQpzj9+gXBM5DPh2l3M/VtpD7eZoq1qhb0s5eLM7SBTfTeUNnhM6oXzLLhBDiKpLgkBCi5XXbezA0xZPDGaZzVbLNopDXi9l8jX0jGaqNK9cSuVBtYNkOpbpF3bLx6hphn+e5NxRCCHFRhq6RCHpJl+oEvO6p6GyxTsOU4JCAbMW9yNMZliwhIYS4liQ4JIRoGWoP8bJNHTjAl56ZaGXKLDe5SoNnRrOkS3Ucx2ndPp4tY1pwfLqA4zg4jsNYukz9vC8c5brJU2fTjGXKmM9ypdq2HQ6O5ZjNV0k3i1GH/UarLbMQQogfzJbuKLeuS3L3jh4AsuU6lcbibFXLdi62qVjBHMdpXZhKSnBICCGuKQkOCSFaAl6dt93Ui0dXPHIqxZlUicYyS/Mv1032j2UpVk2eHsmQa15hLNVMijWLjoiPuWKNkVSZyWyVQ5N5Do5nW6+jbtocGMtRqdscnSowmate8rny1QalusmZVIm5otuVLOIzMCQ4JIQQL4jX0Ah6DcJ+D20hL7YDI6ly6/5qw+Kpsxkq9SuXCSqWv1LdomE5eHQly7WFEOIak+CQEGKRTd1Rbh5MAHB0qkC59sJPzEdSJUpXqH7RiZkihtKIBjz4DJ1M8wrjSKrEPzx8hn2jWZJBHyfnihybLtAZ9pGvmpxtfukYSZepmTaxgIdk0MtopoxtO5iWvSgLCWA6XyXoNag2bM6m3eKpkYCBoUtwSAghrpSeeACAI1MFbNvN+jwxUyBVrDGVP9fifjZfJVe+OnXlxPIwn7Ec9kmWrhBCXGsSHBJCLNIW8jLUEQLg9GyJYs09Ea+ZFlO5CidnCoykSs+rWPVUrkb5Clz9LddNMsU6Po+G4zgEvToz+Rq27fDPj43w4Ik5PvKNI2TLdZIBLxG/gaFrxANexrNlKnWLiWwFn6HRsGw8ukbdtJkr1nh6JMuRyXxrmZlp2Xzn6Cxf3T9JwKNzeDIPQNTvwdDko1MIIa6UvmZwaDJXJVOuM5GtMleo0xMLMJap0LBsqg2Lw1N5TswWLrqPct3kzGzxWh62uArmL/iEJUtXCCGuOcnXFEIsEvF72NAMDp2ZK3FypohSbrp/1bTxaBqW43A2XeaWNcnnbHVfN23ytQaVugm8sPoBM/kaI+kyf3TPMcJ+g3ffOsiO/hjThSoPn5wD3JT0//vtk3z4Tdv4+++dYa5Y41fu2oTjwOnZIlO5Kh/5xlFqpsWrt3Xz9t19HJ7MY2iKct2kbjns6Isxmi7z8QdPkS036Iz4KFbcYFhUag4JIcQV1ZdwW5bnKw1OzhYpVU1qps3ZVIlY0MPRqTwN00ZXGoVKg3y1QbZUJxb0Egt43Eyj6SKZcp2BZBBDv3gAv9qwMG2HsCxXWnZs20HTFJlmZpjU9xNCiGtPZkchxCJeQ+OODe3oSjGWKWPoGkenCoS8RqvlMLht7p86m8ara6xpC9EVc0/uLduhbtqtoFGlYdGw7OeVaTSvZlqMpstUGja6BkcnC/zZt45TqJkUaiZ/ct9x3v/azWTKdc6mygQ8Orqm2DuS4QNfOMChCTfbJ1s+xIfesI3j00X+8tsnSDevTH5x3zghn85bdva1jjdVqnFsKs8Dx2bJNk9Sv/D0ODcNxgFIBL0/2BsrhBDiogYTQQAy5QblmoVpOfzmfz5DrWHzNz+2m1LVwnEgFvCQr8DRyTyZcoO1bUFiAQ9zxRrpUg2lFKW6RSxw8eBQtlwnV2mwuTt6LV+eeA6zhSonp4ts7Y22ilFL5pAQQlx7sjZCCHGBte1h+pMBbAfOpsp0hP0EvYtjyWGfQdBroJTi5GwR07KZzlV59NQcT42kWwWgv7h3nL+8/wRTFyn8nCrWLtktrFQzeepshslclXLNpFAx+bfHR8iUG9zYH+M127oAODCR5ztHZwB40bo2fv3Vm1DQCgyFfQZHpwr8594xHjg+w2imQn8iwC/ftQGA+w5PYzsOB8ay2I5DMuhlKl/lybOZ1rGcTZf57rFZAJJhCQ4JIcSVtKk7AsDes2kSQS+f+N5pSjU3y+eeQ9OEfAaHJ/P8wqefYjRTplq36Qz7mCm4c8jp2RIRvwdNKXLlS3fZzFdNqVm0zBSqDQ6M5bAcODldJNXsDBr1eyRzSAghrjEJDgkhLuD36NzQGwPctvANy+Zbh6f5xIOn+L/fPsFnnhwlV2ng0TX8Hp26aTOcKnF4Mk/Qa9AwHdLN7l7/9P1hDk8W+P6ZFPaCtsSmZXNoIsd4pnLB81cbFs+MZdGVIh7wEvQaVOpu5xpdU/zmqzfzsk0dABwaz/HEsBvIuXNTB3vWJnnvHWsBeOWWTn7vzdsBNwh0/xE3iPSrr9zEK7d20Rlxv1z8wqef4gNfPMgf3nOMhuUQD3h5/EwagJdvdp8n2+yK1haS4JAQQlxJtw+10RvzM1us83++cYQnz2bwNpeG3XN4iplClT+//zhjmQr/9vgIiZAXQ9ewbIfRTIWJXIX3f24/X9o3zmzhWYJDFbcDpWU7l3yMuLYqDQtNU25WWM3k+LRbUyoScC8+CSGEuHZkWZkQ4qJuHozztQOTfHX/BI+eSnFsenER0IdPzvHRt99IwKsTC3g4PVskEfTh0TXCPoORdJlY0MNws0vYTL5G3bLxa+7yrWLNxLQdzqRKdEb9BLw6pmWTLtU5myrh2BAMnPuIuv/oDLYDL16XJBHyEvIZeA2Ns2l3/+1hL5u6wswWarztpn7u3NhBMuRFKcWmrjDHp91Cpes7QmzqCqOU4lVbu/jXZjbS/GuqNiz2rElQqJkMJoO872UbOD1bYqT5PG3hF1Y3SQghxGKapnjb7j7+6juneKwZmP/lV27kC0+PcWq2xK9+Zh+Fqrs0+ZmxHJ948BTfP5PmV+7aiKYUn3tqnFOzJSZzVe7e0UOh2iDoXVyzxjRtHjoxx+auCDXTuiAbViyNXLnRCgTGAx5mC+6FJVnCLYQQ155kDgkhLurunT2saw8xV6xzbLpAe9jLT714Le97+Xp6Yn7OzJX4pX/fy6/8+9OcminSEwvi9+jkmhk2hZrF1/ZPtq7QTuer1MxzS8jmijW8uo6haZyZcwM3w6kyB8Zz2A6EfAaf2zvG733lEL/+H/v4/NNjALxmW3drH9t7ztWNeM22buqWTTRokK82aAv7UErhOA6vv6Gn9bjX39CDUoqaafHKLZ14DY1kyMuH3rCNqN/gqbMZPv7gaQB+9NZByg2T9792CwBKwWAicDXebiGEWNXefGMvAY978eAdN/fzsk0dvOPmAQAKVZOAR+fWtUkAvrJ/ktlCjQdPzHJkMsdDzYYE5brFeKbM3rMZHjuTYrZwbjnz558e58/vP8EXnxmn2rj4cuaFGpdY8vx8pIo1WcbWVDdtDk/kLrh9tlDjGwen+JsHTrk1C5vvuwSHhBDi2pPLJkKIi2oP+fjA3Vv49tFZxrMVfvqOIRLNJVU7+mL85n8+w3S+BtT45ENn+JVXbuQT3zvNvtEs6ztC/PEP7+SR5gk7wHS+Rs20ALezzMGxPNWGxbbeKFP5Gu2RKqOZMu1hH7WGzR987fCiuj8APTE/uwbipEs1dE2xsSvM06NZNAWv2tqJphRbu6PsPZuhbtoo5RaYvmkgTnvYh2Xb3Lmxg1yljq5paJriT9+xk7aQj7Df4L+/bgu/86WD2I5bv+i2tQkKdZOQX+fvfuIWhueK9DYLpwohhLhykmEfv3TXBrLlBm+40Q3o39AX41Pv3cNEturODabF48Pp1jaPD6dbWZ0hn06pZnFytsRNg0nqps2B8Ry7BzXiQS9PjbjzyenZEqWaSTLkxXEcRlJlBtuCi5Ywlesmx6cK7ByIv6ClTbOFGl5DIxb0/MD7WCkK1QZT+Spr20OtrK1suc5vfPYZJps1CeMBTytDLClLuIUQ4pqT4JAQ4qIMXSMW8PBDu/vxGouTDPsTQT72o7uZzFb4yDePcmy6wH/73DOUahYAp2ZLHJrMt07awc0cKtcsiLgnhH907zHGsxU+8vYdrGkLcXy62OpM8if3HePJsxkiPoP/euc6eqJ+ynWLte0hSnWTaMDDjr4YOPDFfRPcubEdv0enLewuN9vWG2XfaBYFbO2JMpIu85G334DfY+DgYOgauwcTFGsmz4xmCfvdj8Kd/XF+7VWbeOxMmp+9cx2lukVfPMBUrko84MWjK+meIoQQV4HPo7GtN9rqiulmoTp4dI0b+mKtx/33127Ga2h84sHTzBRqZMsNQj6d/3LHEH/57ZPsH8vxjpsH8BoaAY/BaLpMPOjl2JS7NHo8WyHXbHlfqJmcSZVoi/gWtbfPlRvMFuqU6xahF9D2Pl9p4PU8e5J+w7Lx6Ncukd+ynSta6Llu2tQte9H7dzGpkvt+5iuNVnDo20dnmMxViQc9ZMsNPv/0GEGPe18yJAE1IYS41mRZmRDikuJBL9WGddH72sM+dvTHecuuPgBKNYvNXRHeuqsXgG8enOLkbLH1+FLd4uR0gZlClfsOTzOedQtR/8PDw4S8Oo7tYNsO//jIMI+dSRPy6fzhD9/IKzZ3sqUnyu41CRJBDw3LZkt3FEPX2NEf52Pv2sUvvmIjdcumM+IH3LpAGzvD9MQD9MUDbO+JoWtusKtct9jaHcVraMQDHjy6RsOyKdVM6qbNyzd38v7XbSER9GLZDl1RPwOJILlKHQUYmnxsCiHElRbxGQQ8OjXTomHZ2I7Npq7IouXIqVKN7b1Rbhtq4/Z1ba3bX7+9hz3NJWeHJ/NM5as4jkPIqzNXrFGsNjjdnI/KdYuRZiOEdLFOoWpe0OFsplDFcmzylR98SZhlO5QbFoWKieNcvAC2adnsH8u2lmNfDQufu9qweHo008zivTLmCjVOLZjrL3UMM/kabUEf0/lzS/0OjLvLzF6zrZtb1yapNmzS5TrtYS8bOyNX7BiFEEJcHvmWI4S4pHjQS912TyIblk2mVCdVqpEq1VpBozfs6CEZ9NIR8fGBu7fyll19aAq+fzrF2VQZBXRE3CvBU4Uqh8bz7B87V3fg2HSBh0+lOD1b4qc/9SRfeHocgF9/1Wb6z1vCVWlYJEJeAl63LkXIp+Pz6tiOg6EpooFzVxoH20Js7YmilCIaMAh6dYpVk4BXJ9osdK1pisFkgNlmZ7Vi3Wy9roZl4/O4xbW7436MZhBJ1yVzSAghrjSlFIPJIIWqSbZSZ3NXlI6Ij6DXDRgVayYRv4ED2I7DbUNuMMjQFG+8sQefodEX91M3bf7rPz3J+z+3n7FMBY+ucf/RGfLN5UoAp6aLFKoNJnMV2kM+pvK11n0NyyZTbpAIeplZULPo+TozV+TfHx8hXzUXBbgWGs9UmMrVLhmEKtZMMiX32EzLxnyedZDy1QZHJvMA2LbD0akCc4Ualfri4JBtO4ymy4sCSVPZCsWayXOZLVZJFWs0LBvHcciVG5yZLS461mLV5F8eO8sDJ2bIlButek6HJ9xjW9ce4qdfMsSaZJBXbe3kw2/aRiwgmUNCCHGtybIyIcQlRfwGAY/BXLGGUrC+I0zQq2PaDkcn82hKEfIZ/M2P70ZTCn+zmOitQ0m+f9qtC7G2LUhHxMdsoUam1GBnv499o1kAdg3E2Tea5VOPDOMzNEzbYUdfjDfv7OXW5on/QpWGxYbOcOv3+aVvM/kam7oil0yVn//SsXcky03n1ZBoj/hIFtyr0abtsPdsBl1TZCsNtnVHUErhM3R29Mc4NJaXZWVCCHGVtEd8eGaL9MaDdMXcTNCh9hCHJ/PoSnFjf4LRTJnZfI3OqI+7d3SzviNMIuQlVazxrj2DfP3gFCPpEkemCvzaf+zjYz+6m0xpcfBltlhj/1iW/WM5Yn4PPYkAddPGa2iki3X+8v4TbO6O8prtXa1lX8+2HMu2HRxA11SrCcMnHjzNNw9N4/fovHh9W2t+nFdtWJxJlWgPe0mVagwkL6xnN5OvUq5bJEI+JnNVaqbFhmfJqEkVa4T9Bj6j2RW0YjKSrtCfDJIrN8iU6gQ9BsWaSXxBwedMuc7JmQJtYS9Br0GpZnJwIs9AMsDm7igjqTLJsPeCpWOmZZOtNABFsWpSqpscmyrgAKbtsKEzTKFm8u2j03zz4BSGprhpIM7hyTxBj97qgjrUHqI3HuBj794N0KorKIQQ4tqS4JAQ4pL8Hp3dg+7JeFfUv+jE0NAU+8dyaAq8hraoLfD7XraeXf1x6pbN9t4o3zsxxxNkmMhWKFZN90RfU/y312zm/Z93r+4CtIW8/N6bt7fqL1i2Q7ZSB8ftFOYz9EUntAAdYR+z+Tqd0WdvMd8W9tET89MWWbx90Gtw82ACrXkiur03ytMjWTqj/taXE4Co38POwdgFJ/hCCCGuDI+ucdNgotW1DKAz6qct7MN23PpDPbEA49kKa5IhfuSWAdpCPjLlOoNtIfoSAW5ZkwQFf/jNozw9muUr+yda2ateXaNu2UzmqpSqFn9y73GUgr941y5G0iXCPoPP7R3nqZEsz4zleNmmdg5P5EmGvJyZKzLUHr4giDNbqHJypkhb2Memrgij6TKVhsXRZo2j0XSFct0kEXKXKucqDZIhb6vwcsCjkyk3Lhp8mimcy8iZLdYoVU2G2sOLHuc4DjXTZjpX5eh0gU1dYYba3YsomXIdQ1OcmS2RLtVJBL3UTItMuUF/4tzznE2XqTZsCpUGAY/O8ekCAY/OVL5KTzzA8ekC650QYV940fGVahaZUoNk0MtUvsJcoU4y6EXXFCPpMrOFGnXL5nsnUoAbMBrLVIgFvIymymTL7vN1x/yU6yZ+j47WvHgjS7iFEOLak09eIcSz8hoa6zvCF1wxbAv72DOUZOdAnGrDPXkt103mijVqps3rd/Twtpv66Qj7Wd/M9jk5W+TjD57CdtwgTNhv8FMvXtva59t397cCQw3LJlWqsa49zC1DSW4damP3mvgFJ8+xoJf+ZGBRcOpSr2PnQLx1RXUhbcE+OyJ+buiNsbkrckGXmud6DiGEEC9MyGcs+kwGNyNnfm6I+t2A/obOMIammvWJHAaSAZIhHzXLIuwz+Mnm3PKtI9OtQM3OAbew9Ui6zOHJPKbt0LAczs5VmMxWOTpV4FCzDo5pO0xkq1TqFqdni4S8Ho7PFJhZUDOnYdkcnsxjaBpTzcyesUyFiUy5VeNoLOsGQcAtUH14Mo9p2WTKde45OMVvfPYZCtUGpfriJVzVhkW1YWFZDsWaSaHaoNEMLi10arbI90+nOJMq0RH2MZaptJZtZSsN2kLu8ji/ofF33zvNH997jHSx1lpCVqg2yJXrJENepgs1MuUG2XKdaMCD48Dp2SKGrpjMVS+onfSdo9P82mf28ZX9E0znau4Sb11DKUVbyOc2igj5WkvbAJ4ayRLyGaRLbp2ntW1B5prHM//aHEBiQ0IIce0950evUmpAKfUdpdQRpdQhpdSvNG9PKqXuU0qdaP6duMT2w0qpA0qpfUqpJ6/0CxBCLJ2wzyAe9NIb9zNXrFO3bHYPJhhoC1Jq1ipwcLix2WnmieEMDxyfJeDRee+Lh5jOV9nWE+XlmzrY1hPltdu73G0cN2NoR1+MwbYgYZ9BwKtfNLAT9hls6b68wpWXm6bemwi06hoJIYRYPpRSxINeNE3RGfUzk6/RGw/gM/RFFzHWd4TZ1hOlXLd45OQcQKtO0Ui6zCOnUq3H7hvNEA96aQv5eLq57BngqZEMIZ9BMuTDa2gkAl5OzBRbS8cypTqO42bZ2o7DaKpMw7Kpmg7FZvfO6XyNyVwV23azfwqVBoWqyVPDGT7z5CgnZoo8PZoht6AWD7hBmwNjOWqWxVzRfZ6AR2cyV2k9pmHZjGcrJJrH7tE1TMshXawxV6zxF/ef4KmRDN3RAA8cn+VrByZ5YjjD6dliqw7S2VSJ0XSF8WyFTKnBqZkilgXfPjqNX9eZzlVJBL3UGzb5qslIqkSu0qBUM/nK/kkc4IHjs+jNun/7x7Icmyq0AnrlutlaPgbw1Nk0juNwZq4EuN1PB5IBblqTQOF2P3McyRwSQoilcDmXwU3gNxzH2auUigBPKaXuA34KuN9xnI8opX4L+C3g/ZfYxyscx5m7IkcshFh2+hNBZgs1buiLEQt6QMFktsp8yObWoSTve/l6Pr93nGylzgffsJX+RADLcSjXLX791ZtaWTqO45Au1xlMBOmM+i/9pAucn+EjhBBi5WsP+xjLlOmNBwDwezQ8uka1YeE1NN56Ux+HJ/M4QGfEx46+eKsG3uPD6dZ+nhrJ4DgOk7kqk7kqCjd75emR7KLn8+ga+WqDVLFGZ9TPWLbSar0e8OiM5yr4DI2RVHnRdsOpIjOFKDP5KiGfwWimzCe+d5pmjInTsyVOTBc4NVukN+6nNx7k098/y5/ff5I37Ohhz9oqf3LfcX7tlRsZ6ggz1G4S9BqkizVsGzTlZlBN5ap0Rf2cmitxbKrA42fSHJ8q0P5mH3//8JnW8ZxNlanULWqmzdGpAr//1cN4DY0/f+cuTMvmj+49xrHpAj//MpvNXWE+88Qor97WybGpAoVqw+3cqWscahaUninUOD5d5P89fIbxbAVNwUfffiNbeqI8OZzBsh02d0WYyFWYztf4zrEZvnt8FoD+ZIB40IvP0FnbHuLETJGNnWH8HgkOCSHEtfacwSHHcSaByebPBaXUEaAPeAvw8ubDPgV8l0sHh4QQK1jIZ3DL2mSrHk/U72b6ZMt1dM0tVP36HT28dGM7Hl3DZ+ikSzU2dIbJVRpkSg2iAQ/FqknVsugIe1nbHlriVyWEEGI5i/oNNndFWhlDSimG2oJM5KqkS3Vu7IvxJ+/Yic/Q6Iz4UAp+7VUb+eAXD+I4sKkrzEyhxlyxzomZYiub6PZ1bewfyzKerbB3JMNIusx4psJPvmgtIa/BSKqMUopcyd3uu8dn+aHd/aRKNf7+oTP0NYNV82YLdU7Nlpgt1ugM+9xlYHMlfIbWCtB0RPw4jsN0rsZEtsqDJ9xrqkcm86RLdQpVk88/Pc5vvX4rZ1NlNndFGM1UCPsM8pUGv/Plg5yaLfH7b97OYFuQJ5rBr2ylwQe/eICGdW5J2Nl0mZMzRRwcHj6RwrQdzLq7JG4yV2ll+nzr8DRfeWailZ10+7oknRE/tuMwmaswtWCJ3UfvOUrdtAl4dCoNi4/ec5R40MvJGXd53e7BON05Pw8cn+XPvnUCgETQw66BeOvcoS8eoCPik9p+QgixRJ5XAQ2l1FrgJuAxoKsZOMJxnEmlVOclNnOAe5VSDvC3juN84gUcrxBimVp4MqeUYmt3hLlSjbDXg1KKkFcnV24Q9rmPc3DrBcWDXmYKaWzHoWqa7Blqu6C+kRBCCHE+Q9foSywuEN2bCNKbCFKsmRwcz9GfcGvSFWsmiYCHl23q4Ef3DPJvj4/wmm3dHJrI8Z1js/zGZ59p7eOlG9vRNcVDJ+f48JcPtW4fy5T5/bfcQL7a4NBEjn989CwPNDNgcpUGQa/OdL7GdN5tP98Z8TFTqDGaqTCdr/KBLxxgXXuYTV1uHb67tnTy3WOzTOaqZEp1EiF3TrRsh2PNOknDqRKZsluf59BEnoZpMZWrkis3ODFT4L7DMxyezDNXdJ/zi/sm+PCbtrW2B7dwdDzo4RdfsYE/+NoRRtPu0rRaw+bbx2Zaj3v0VIqHT7lBKV1TnGzWTQJ4fDjF627oBtxMpfk29F5Do27arcDQx3/8Zv7n1w5zcqbIXLFOwKNz+7okd23ppFS36Ir6eORUiqH2ED9353pM224VINc0hV+TwJAQQiyVy/4GppQKA58DftVxnPzzWMZxh+M4E83g0X1KqaOO4zx4kf3/LPCzAIODg5e7byHEMhULeokt6CwW9hmYtlvjwGy2Bg55dZRS9MUDnJ4t0Z8MSGBICCHECxb2GWzsDLN/LEfQa9CwbGIBD36Pzmu3d/HWXX14dEUi6CFdanB4Mkci6OXHbhtk10Cc3niA9rCP7x6foSviZ7ZQ4+BEnv/30Bl+7mXrmclXeeD4LB5doZTi0ESe88vavWhdG196ZoLhuRJHJgtUG24B62KzJt8NvTEmc1X2jWY5PJnnjg3tgFtkulR3axbZDmTK5wo1P3Qyxet3dOM48Nknx9jfLKA9kAgwna+xd8TtDDrfBTQe9JAtN/jZl65jR7P+33CqhK4pnjybIdfsUFZpWNx3ZBqAmwbitId9rd8B9o1mmcpXSRVrbOuJsre55O4tO3v57FNjALx1Vy/JkJcP3r2Vr+6fYFNXhJvXJPAZOqlSjb6Qh7ft6uc9t68F3HOBqkmr2LgQQoildVnfwpRSHtzA0Kcdx/l88+ZppVRPM2uoB5i52LaO40w0/55RSn0BuBW4IDjUzCj6BMAtt9zinH+/EOL65jXckz/HcchU6qxrD7dqBQ0kg8wV6he0CBZCCCF+UPGgF4+utdrBB7x6ay4KeHVylQbb+2Js7YkS9Bpoys18TZVq9CX8vHPPAD/9kiEATs4U+fX/2Mc9h6d4162DrZo5t69rQ9cU3z02i+1APOAh2+y6dfv6JF96ZoKTM0WqDat1XCNptybR1p4oZ+aK7BvN8qlHh3lqJMOP7hnkmQVFsefNL0F74Pgsb72pj8lchf3jObyGxu+/eTubuiL89XdP8q0jM/ztg6epmTadER+/88ZtTGQr3L6uDaUUXVEf0/kaZ+ZKfOaJUQDee8daPvnQGerNItXvunUQ23a478g0Eb9BZ8THqdkS7/v0UzQst37QsekCCnjx+jbOpstM56q8ZVcf4NaC+qkXD13wGroiAU7PFQk3v37UTNutUyiEEGJZuJxuZQr4e+CI4zh/uuCuLwM/2fz5J4EvXWTbULOINUqpEPAa4OALPWghxPUn6DWI+A1mizV6YgEGFwSC/B6dm9bEifrlJFEIIcSVoWuKNW1BUqUaKHeucbteKhzHwbTdAErdstE11bpgoYDuaICqea69/IbOMDevSdCwHL55aIrvNJdjvWJzJ6/c0tV63HvvWMvdO3p4665e1reHuWkwTt2yOd3szjWvI+Ij4jfY1hsFYDJX5b7D0/x//7qXL+4bB+CWNecaAb/xxl5CPp2Ts0WeHslw32E3q+cl69vZ3hvDo2u88cZewM3yAVjfGaYr6udF69tRSpGt1Fnb5tbz+8SDp5nKV+mLB3jNtm529LpZRTv6YmzribK9N8qvvWoTH37jdu7c2AHQqls0X5Po5162nkTIyy+8bD0fe/duQs3MX/u8lveW7WBoGp1RHwvvqps2MZn3hRBi2biczKE7gPcAB5RS+5q3fQD4CPAfSqmfBkaAdwAopXqBTzqOczfQBXyhOdkawL86jvPNK/oKhBDXBa+hsXswQaluEfDoaOfl30sBSiGEEFdad8xPwKsT8OiteaYz6mM6X8XQFD2xAGcXdBdrWDZ+j0572MepmeKifb15Zy9Pns3wH0+OuoGNgIebBuIopViTDFKomdy+ro27tnRRrJlEAh5+/LY1ra5na9uCDDefa2t3hEKtwcs3d+I1NCwLvn5wksfOpKk03O5nd+/o4cmzGQC2dEfw6Ip/f2KUTz50hnzVzU569bZzgan1HWFeu62Le5qBo4FEgGylQafhZk9pSnHTYJzHzqRbAZ4fv30NtuPwog1tpEt1/ssdQziOw2yxxs1r4sQCXqIBg88+NcbWngg/ftsaPv/0OLcNJXnpxg5SpRoBr07NdDOjClUT23GI+DwEvO77XalbtIe9+D06YZ/7WEPTMG27FVASQgix9C6nW9lDuBdRLuaVF3n8BHB38+fTwM4XcoBCiJVDKSU1hYQQQlwzHl2jPexbdNuGzjCFaoNYwA1gRPwGNdPCZ+iUaib9yQABr47fq9No1sirmzY7+2OLAjxvurEHo7ls7f+8fYebfYSiXDdpmDZRv8HNaxLsHoyzdyTLG3b08o2Dk5yeK7GhM0xb2EdvPEB/IkhbyMdNg3GGU2VqpkVPLEDdcoMqtYZNfzLAQDLAvYenW8vSNnSG2d7MPLIdh7lijXfuGeDx4TSZcoOh9hDJkIdC1aRuWewaSNCfCDCSLjORrdId9fPi9W1kynVesqGdl6xvJ+QzyFXqtId9ZMp1HMdBU/CxH72Jtub7+Juv2Qy4gbSAR6cn5mc4VcZ2bLb3xvAZOk+NuI0mKg0LpaAzGgFgMBni+EwB0zJZ3xGWjGEhhFhG5FuaEEIIIYRYNTy6xo398dbvnREfJ2eLKNXAb+h0RvyAm3lzYqaI4zj4DJ28afO7b9rOqdkiQ+1hOiI+cpU6tuMGZ9r8PlKlGo4DSrnLqS3H4WdeOsTZVIU9axN4dMXjw2n2rE3SEfI1l7pprSDUULu77Mutz2fzoTdsa9VKMnTFz750HZ96dJg7N3bw9t192A7UGialuklPzM90vsb/fMsNHJ0qsLU7Qn8iyDOjWXrifpIhL36Pxo/cPNAK9DiOgwP0xvycmSvh9+jYjsPm7gjPjGZJN7uoFarm+W8j5bpFT8xPLOilOlUgGfbSEfGhlGJTZ4RUqca6jhCxoKe5nA+6Yn7aI75WhpYQQojlQ4JDQgghhBBiVVkYmBhIBkmEvNRNm3jQi95c9tyXCNIW9lFr2IT9Bkcn86RKdW4dagPcbluguHUowdMjGaoNC0NTtIV9jKbL+DwatuMGiV6yoZ1Muc5Ng3Hu3NRBvtog5HdPw9vCPuYKtUVdu2qmTdTvIR7wUqqZKOUukXNs+MR7bmk9bq5YoyPiZTAZpCvqJ1dJEQu4df0y5QbtYR/rOkL0xgPu6zbcZd2O46CUolgz6Y66AZvTsyVyzbpEfo/OQCLI/vEcuzrCHBzPYdlO670BMG2bZMhL2GcQ9XsWNZroTwbpv0STCV1T6NKyXgghlh3pHSmEEEIIIVYtpRQRv4e2sG9R8APcIFIs6EHXFBu7Ijg4WLZbVblYM+lL+PF7dPriAWYKVXpiAda0BUmGvPgMHb+hoWsKy3awHYdEyEu52aY+1KzJkwh6KdVNijWzVcy52rBoD/tIhrxkKw2SIS9tYR/WgorODcvG59HY1hOjJx5A0xQDySD5aoO6ZRP2GeiaYkNnhKDXDURpmiLsN6iZbge3qmnTnwgQ8Oh4DA0b6I67mVPJsJcNHSHiQfe5izWT2WKVTLlOsWbiN3TCfvc5buiPkZDOY0IIcV2T4JAQQgghhBDPwWto9MWDFJrFoC3badUzao/4CPsN2iM+gl6DnQNxdE1h6BqDiSDpcg1DU/QngpTrJmGfgdHMFIoGDIbaQ8QCHuaKNYpVk7rltnmP+A3AIRH0EvEZBDw61YYbXCrWTPqbQaF5HREfulKUaxax4MUXCMQDHmqmTaFq0h31EfF7UErREfExkAi0loD5PTobutxaQZ0RH9WGxeauCG0hLwA7B+KtbKewz2hlDQkhhLg+ybIyIYQQQgghLkNPzM9ouuxmznj1VpOFoNdga3eUSPP3hUvEuuN+zqRKdEb9RP0Ghq5INgMsAD5DZ0OnG4TpjfuZylXp8fgJew0atk0s4CXYDL5s6AyzfyyL19CwbYf2yOJi2+6+wuwbzRALRC/6GhJBLyPpMppSrGm2tgdY2xZCu0R8Jx70cvOaBImQl964g2k7i16jEEKI658Eh4QQQgghhLgMIZ9Bd8xP3bQZTAYWZct0Rv0X3cZn6GzqihD2u9lCXRE/scDFl2DFg17iwQWBI02nN+Yn2KyRlAx5iQW9pEt1BpPB1nKxhbpjftaUw4R8F6/rkwh5uWNDO5btLKq95DUuHezRNUWiGdBSSuHRJUtICCFWGgkOCSGEEEIIcZm29lw8I+fZzBeEBljfGcb7PLJuhjrCrZ+VUmzriWI7zkUDQ63H9D77MXp0DWkWJoQQYiEJDgkhhBBCCHGNvNAW7tICXgghxNUgi4WFEEIIIYQQQgghVjEJDgkhhBBCCCGEEEKsYhIcEkIIIYQQQgghhFjFJDgkhBBCCCGEEEIIsYpJcEgIIYQQQgghhBBiFZPgkBBCCCGEEEIIIcQqJsEhIYQQQgghhBBCiFVMgkNCCCGEEEIIIYQQq5gEh4QQQgghhBBCCCFWMQkOCSGEEEIIIYQQQqxiynGcpT6GCyilZoGzl/nwdmDuKh6OeOFkjK4PMk7Ln4zR9UHG6fog47T8yRhdH2Sclj8Zo+uDjNPyt1LGaI3jOB3n37gsg0PPh1LqScdxblnq4xCXJmN0fZBxWv5kjK4PMk7XBxmn5U/G6Pog47T8yRhdH2Sclr+VPkayrEwIIYQQQgghhBBiFZPgkBBCCCGEEEIIIcQqthKCQ59Y6gMQz0nG6Pog47T8yRhdH2Scrg8yTsufjNH1QcZp+ZMxuj7IOC1/K3qMrvuaQ0IIIYQQQgghhBDiB7cSMoeEEEIIIYQQQgghxA/omgWHlFKvU0odU0qdVEr91nn3/VLzvkNKqT+8xPb/Uym1Xym1Tyl1r1Kqd8F9v93c7zGl1Gsvsf0vNh/jKKXaF9weU0p9RSn1TPP533ulXvP16FLjpJT6TPO936eUGlZK7bvE9kml1H1KqRPNvxPN29uUUt9RShWVUh97lucfUko91tz+M0opb/N2pZT6v83j2q+U2n2FX/p1Y7mOUfO+lzef/5BS6oEr+LKvO8tgnC71mfdjzf9D+5VSjyildl7Bl31dWcZjJPPSAldxnF6tlHpKKXWg+fddl9he5qXLsFzHqXmfzE0sizGSeekyLONxkrmp6SqO0a0Ltn9GKfW2S2wv89JlWK7j1Lxvec5LjuNc9T+ADpwC1gFe4BlgW/O+VwDfAnzN3zsvsY/ogp9/Gfh48+dtzf35gKHm8+gX2f4mYC0wDLQvuP0DwEebP3cAacB7Ld6X5fbn2cbpvMf9CfA7l9jHHwK/1fz5txa8tyHgJcDPAx97lmP4D+BdzZ8/DvxC8+e7gW8ACrgdeGyp3y8ZowvGKA4cBgabv1/0//Jq+LNMxulSn3kvBhLNn18v/5eW5RjJvHRtxukmoLf58w3A+CW2l3np+h6nODI3LZcxknnp+h4nmZuu/hgFAaP5cw8wM//7edvLvHR9j1OcZTovXavBeRFwz4Lffxv47QVv2que5/5+G/ib8/fV/P0e4EXPsu35H3S/Dfx18z/REHAS0JZ6YJbkH8OzjNOC2xQwCmy8xD6OAT3Nn3uAY+fd/1Nc4stSc99zC/6ztY4H+FvgRy/2PKvpzzIfo/cBf7DU79Fy+LPU43Te4xZ95p13X4JLnByu9D/LeYxkXrq247RgHymaF6rOu13mpet7nGRuWgZjdN5jZF66DsdJ5qZrPkZDwDTnBR1kXloR47Rs56Vrtaysr/nGzxtr3gawCXhpM+XqAaXUnkvtRCn1v5RSo8CPAb9zGfu+HB8DtgITwAHgVxzHsZ/H9ivJ5byXLwWmHcc5cYl9dDmOMwnQ/LvzeTx/G5B1HMe8yPO/0HFeKZbzGG0CEkqp7zbTlX/ieex3pVnqcbpcP417hWk1Ws5jJPPSOddqnH4IeNpxnNp5t8u8dHmW8zjJ3ORa6jG6XKt5XoLlPU4yN7mu6hgppW5TSh3CfY9/fsHn2jyZly7Pch6nZTsvGdfoedRFbnMWHEMCN/VtD/AfSql1TjOstmgDx/kg8EGl1G8Dvwh8+Dn2fTleC+wD7gLWA/cppb7nOE7+eexjpbic9/JHgX9bgud/oeO8UiznMTKAm4FXAgHgUaXU9x3HOX6VjmU5W+pxek5KqVfgnoS/ZKmOYYkt5zGSeemcqz5OSqntwEeB1zzP55d56ZzlPE4yN7mWeowuZ/vVPi/B8h4nmZtcV3WMHMd5DNiulNoKfEop9Q3HcaqX+fwyL52znMdp2c5L1ypzaAwYWPB7P27Uef6+zzuuxwEbaFdK/UOzSNPXL7K/f8WNeD/Xvi/Hexc8/0ngDLDleWy/kjzre6mUMoC3A59ZcNv54zStlOpp3je/BvNyzQHx5vOc//wvdJxXiuU+Rt90HKfkOM4c8CCw83nseyVZ6nF6VkqpG4FPAm9xHCd1pfZ7nVnOYyTz0jlXdZyUUv3AF4CfcBzn1EWeX+aly7Pcx0nmpqUfo2cl81LLch4nmZtc1+T8wXGcI0AJtz7UQjIvXZ7lPk7Lcl66VsGhJ4CNzYrdXuBdwJeb930RNwKNUmoTbsGoOcdx3us4zi7Hce5u3rdxwf7eDBxt/vxl4F1KKZ9SagjYCDz+PI5tBDdqh1KqC9gMnH7+L3FFeLZxAngVcNRxnLH5G84fp+bjf7L5808CX7rcJ29mi30H+OGLbP9l4CeU63YgN5/mt8os5zH6Eu4SUUMpFQRuA448r1e3cizpOD0bpdQg8HngPcvhCsUSWrZjhMxLC121cVJKxYGv4dYgePhiTy7z0mVbzuMkc5NrScfo2ci8tMiyHSdkbpp3NcdoaD6YoJRag/seDy98cpmXLttyHqflOy85164o1N3Acdyq4R9ccLsX+BfgILAXuOsS23+u+Zj9wFeAvgX3fbC532PA6y+x/S/jRulM3KjdJ5u39wL34q4XPAj8+LV6T5bjn0uNU/O+f8RdU/ls27cB9wMnmn8nF9w3jNvZoNgci4tVjF+HG9w7CXyWc13sFPBXzeM6ANyy1O+VjNHiMWre999wq+8fBH51qd+rVT5Ol/rM+ySQwU0N3wc8udTvlYyRzEtLMU7A/8C92rdvwZ8LOoZc6jMPmZeui3Fq3idz0/IYI5mXru9xkrnp6o/Re4BDzbHZC7z1EtvLvHQdj1PzvmU5L6nmwQkhhBBCCCGEEEKIVehaLSsTQgghhBBCCCGEEMuQBIeEEEIIIYQQQgghVjEJDgkhhBBCCCGEEEKsYhIcEkIIIYQQQgghhFjFJDgkhBBCCCGEEEIIsYpJcEgIIYQQQgghhBBiFZPgkBBCCCGEEEIIIcQqJsEhIYQQQgghhBBCiFXs/wcqY7Re/zIfeAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "## generate test points for prediction\n", - "xx = x_scaler.transform(np_test_in)\n", - "\n", - "## predict mean and variance of latent GP at test points\n", - "mean, var = model.predict_f(xx)\n", - "\n", - "## generate 10 samples from posterior\n", - "tf.random.set_seed(1) # for reproducibility\n", - "samples = model.predict_f_samples(xx, 10) # shape (10, 100, 1)\n", - "\n", - "## plot\n", - "plt.figure(figsize=(20, 5))\n", - "plt.title('Posterior sample functions')\n", - "plt.plot(df_test.index, mean, \"C0\", lw=2)\n", - "plt.fill_between(\n", - " df_test.index,\n", - " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", - " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", - " color=\"C0\",\n", - " alpha=0.2,\n", - ")\n", - "#plt.plot(df_test.index, samples[:, :, 0].numpy().T, \"C0\", linewidth=0.5)\n", - "#plt.plot(df_test.index, np_test_out[:, :], ':', color = 'darkorange', lw = 2)\n", - "#_ = plt.ylim(21, 23.5)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "# Package the resulting regression model in a CasADi callback\n", - "class GPR(casadi.Callback):\n", - " def __init__(self, name, opts={}):\n", - " casadi.Callback.__init__(self)\n", - " self.construct(name, opts)\n", - " \n", - " # Number of inputs and outputs\n", - " def get_n_in(self): return 1\n", - " def get_n_out(self): return 1\n", - "\n", - " def get_sparsity_in(self,i):\n", - " return casadi.Sparsity.dense(n_states,1)\n", - "\n", - " def eval(self, arg):\n", - " x_scaled = x_scaler.transform(np.array(arg[0]).reshape(1, -1))\n", - " [mean, _] = model.predict_y(x_scaled)\n", - " return [mean.numpy()]" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GPR:(i0[7])->(o0) CallbackInternal\n" - ] - } - ], - "source": [ - "# Instantiate the Callback (make sure to keep a reference to it!)\n", - "gpr = GPR('GPR', {\"enable_fd\":True})\n", - "print(gpr)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "## CasADi optimization problem" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "T_set = 20\n", - "N_horizon = 10" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test area" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [], - "source": [ - "X = casadi.MX.sym(\"X\", N_horizon, n_states)\n", - "W = casadi.MX.sym(\"W\", N_horizon, 2)\n", - "x0_lags = casadi.MX.sym(\"lags\", 1, n_states - 3)" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [], - "source": [ - "# Impose initial lags" - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "metadata": {}, - "outputs": [], - "source": [ - "g = casadi.vec(X[0,3:] - x0_lags)" - ] - }, - { - "cell_type": "code", - "execution_count": 129, - "metadata": {}, - "outputs": [], - "source": [ - "# Impose disturbances" - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [], - "source": [ - "g = casadi.vertcat(\n", - " g,\n", - " casadi.vec(X[:, :2] - W)\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 131, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(24, 1)" - ] - }, - "execution_count": 131, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "g.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 132, - "metadata": {}, - "outputs": [], - "source": [ - "# Calculate objective\n", - "J = 0\n", - "for idx in range(N_horizon):\n", - " J += casadi.norm_2(gpr(X[0,:]) - T_set)" - ] - }, - { - "cell_type": "code", - "execution_count": 133, - "metadata": {}, - "outputs": [], - "source": [ - "# Impose lags\n", - "for idx in range(1, N_horizon):\n", - " g = casadi.vertcat(\n", - " g,\n", - " X[idx, 3] - X[idx-1, 2],\n", - " X[idx, 4] - gpr(X[idx-1,:]),\n", - " X[idx, 5] - X[idx-1, 4],\n", - " X[idx, 6] - X[idx-1, 5]\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 134, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(60, 1)" - ] - }, - "execution_count": 134, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "g.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 135, - "metadata": {}, - "outputs": [], - "source": [ - "# Impose input inequality constraints" - ] - }, - { - "cell_type": "code", - "execution_count": 136, - "metadata": {}, - "outputs": [], - "source": [ - "g = casadi.vertcat(\n", - " g,\n", - " X[:, 2]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 137, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(70, 1)" - ] - }, - "execution_count": 137, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "g.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 138, - "metadata": {}, - "outputs": [], - "source": [ - "J = casadi.norm_2(gpr(X.reshape((N_horizon, -1)).T) - 25)" - ] - }, - { - "cell_type": "code", - "execution_count": 139, - "metadata": {}, - "outputs": [], - "source": [ - "# Define parameters\n", - "p = casadi.vertcat(\n", - " casadi.vec(W),\n", - " casadi.vec(x0_lags)\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 140, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(70, 1)" - ] - }, - "execution_count": 140, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "g.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 141, - "metadata": {}, - "outputs": [], - "source": [ - "prob = {\"x\": casadi.vec(X), \"f\": J, \"p\": p, \"g\": g}\n", - "options = {\"ipopt\": {\"hessian_approximation\": \"limited-memory\", \"max_iter\": 100, \n", - " \"acceptable_tol\": 1e-8, \"acceptable_obj_change_tol\": 1e-6}}" - ] - }, - { - "cell_type": "code", - "execution_count": 142, - "metadata": {}, - "outputs": [], - "source": [ - "solver = casadi.nlpsol(\"solver\",\"ipopt\",prob, options)" - ] - }, - { - "cell_type": "code", - "execution_count": 143, - "metadata": {}, - "outputs": [], - "source": [ - "real_W = casadi.DM(N_horizon, 2)\n", - "real_W[:, :] = 2 * np.ones((N_horizon, 2))" - ] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [], - "source": [ - "real_x0 = casadi.DM(1, 4)\n", - "real_x0[:] = [1, 2, 3, 4]" - ] - }, - { - "cell_type": "code", - "execution_count": 145, - "metadata": {}, - "outputs": [], - "source": [ - "real_p = casadi.vertcat(\n", - " casadi.vec(real_W),\n", - " casadi.vec(real_x0)\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 146, - "metadata": {}, - "outputs": [], - "source": [ - "Pel_max = 6300\n", - "COP_heat = 1\n", - "COP_cool = 3\n", - "u_min = - COP_cool * Pel_max\n", - "u_max = COP_heat * Pel_max" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": {}, - "outputs": [], - "source": [ - "real_lbg = [0] * (4 + 2 * N_horizon + 4 * (N_horizon - 1)) + [u_min] * (N_horizon)\n", - "real_ubg = [0] * (4 + 2 * N_horizon + 4 * (N_horizon - 1)) + [u_max] * (N_horizon)" - ] - }, - { - "cell_type": "code", - "execution_count": 148, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 150\n", - "Number of nonzeros in inequality constraint Jacobian.: 10\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 70\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 60\n", - "Total number of inequality constraints...............: 10\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 10\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 3.9449223e+01 1.25e+01 2.64e-06 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 3.3511925e+01 3.72e+00 1.33e+01 -1.9 1.29e+01 - 9.90e-01 1.00e+00h 1\n", - " 2 2.5550836e+01 1.57e+00 6.16e+00 -3.9 7.70e+00 - 9.90e-01 1.00e+00f 1\n", - " 3 2.1201222e+01 4.21e-01 9.27e-01 -2.0 4.10e+00 - 9.95e-01 1.00e+00f 1\n", - " 4 2.0447497e+01 2.04e-02 2.12e-02 -3.7 1.32e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 2.0438965e+01 4.40e-06 1.84e-03 -5.6 2.75e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 2.0438967e+01 5.11e-07 2.62e-03 -7.7 3.37e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 2.0438968e+01 6.53e-07 2.75e-03 -9.7 1.88e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 2.0438963e+01 3.90e-06 3.95e-03 -11.0 1.08e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 2.0438961e+01 5.29e-06 3.22e-03 -11.0 2.22e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.0438886e+01 3.04e-05 4.20e-03 -11.0 2.51e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 2.0438836e+01 9.78e-05 1.52e-03 -11.0 1.29e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 2.0438696e+01 1.58e-04 1.78e-03 -11.0 6.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 2.0438535e+01 1.60e-04 2.71e-03 -11.0 2.01e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 2.0437940e+01 1.57e-03 2.03e-03 -11.0 6.07e+00 - 1.00e+00 1.00e+00h 1\n", - " 15 2.0101748e+01 5.47e-01 1.42e-02 -11.0 1.89e+03 - 1.00e+00 1.00e+00f 1\n", - " 16 2.0225509e+01 8.02e-02 3.42e-03 -11.0 1.15e+03 - 1.00e+00 1.00e+00h 1\n", - " 17 1.9052743e+01 1.15e+00 4.36e-02 -9.0 4.15e+06 - 2.95e-03 1.68e-03f 1\n", - " 18 1.9031763e+01 1.16e+00 4.43e-02 -9.0 1.59e+07 - 1.57e-03 4.38e-06f 1\n", - " 19 1.9043861e+01 1.14e+00 4.39e-02 -8.8 2.48e+02 - 1.00e+00 9.85e-03h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.9043866e+01 1.14e+00 4.37e-02 -6.8 2.36e+03 - 1.00e+00 7.97e-06h 1\n", - " 21 2.0452454e+01 5.04e-02 5.05e-02 -4.8 1.61e+01 - 5.26e-01 1.00e+00h 1\n", - " 22 2.0451237e+01 5.01e-02 5.00e-02 -5.2 6.60e+00 - 1.00e+00 7.17e-03h 1\n", - " 23 2.0287931e+01 7.14e-04 3.33e-03 -5.2 5.33e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 2.0286733e+01 2.95e-04 2.01e-03 -7.3 1.86e+00 - 1.00e+00 1.00e+00h 1\n", - " 25 2.0285017e+01 1.15e-03 2.71e-03 -5.2 1.01e+01 - 4.53e-01 1.00e+00h 1\n", - " 26 2.0286965e+01 1.20e-06 2.97e-03 -5.4 6.28e+00 - 1.00e+00 1.00e+00H 1\n", - " 27 2.0285508e+01 1.01e-03 2.92e-03 -4.9 1.32e+01 - 4.31e-01 1.00e+00h 1\n", - " 28 2.0274275e+01 7.04e-03 2.70e-03 -5.2 6.66e+01 - 1.00e+00 7.69e-01h 1\n", - " 29 1.9690313e+01 3.37e-01 2.08e-02 -6.2 2.04e+03 - 8.98e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.0318305e+01 7.03e-03 1.52e-02 -6.1 5.81e+03 - 1.00e+00 1.00e+00H 1\n", - " 31 1.9205720e+01 2.71e+00 1.38e-01 -5.5 5.63e+03 - 1.00e+00 1.00e+00f 1\n", - " 32 1.8965587e+01 3.01e+00 2.09e-01 -5.5 3.85e+05 - 6.00e-02 3.88e-03f 1\n", - " 33 2.0007446e+01 3.52e-01 8.72e-02 -4.9 2.53e+03 - 1.38e-04 9.46e-01h 1\n", - " 34 2.0005216e+01 3.52e-01 8.73e-02 -5.7 1.38e+04 - 3.27e-01 6.33e-04h 1\n", - " 35 1.9839644e+01 3.61e-01 8.11e-02 -5.7 3.11e+04 - 7.04e-01 1.58e-02f 1\n", - " 36 1.9864314e+01 1.62e-01 3.76e-02 -5.7 2.40e+03 - 1.00e+00 1.00e+00h 1\n", - " 37 1.9612312e+01 2.34e-01 3.55e-02 -4.0 3.43e+05 - 5.91e-01 9.23e-03f 1\n", - " 38 1.9590066e+01 5.17e-01 3.90e-02 -2.7 6.88e+03 - 1.00e+00 1.72e-01f 1\n", - " 39 1.9546835e+01 4.65e-01 1.11e-01 -8.4 6.34e+03 - 8.51e-02 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.8280307e+01 2.18e+00 8.69e-02 -8.7 2.48e+04 - 2.06e-03 1.59e-01f 1\n", - " 41 1.8082053e+01 1.53e+00 1.51e-01 -1.4 8.12e+03 - 3.73e-01 5.90e-01F 1\n", - " 42 1.7931981e+01 2.09e+00 1.27e-01 -1.3 7.40e+03 - 5.71e-01 1.00e+00f 1\n", - " 43 1.9324711e+01 6.94e-01 1.81e-01 -1.0 2.91e+03 - 1.00e+00 6.90e-01h 1\n", - " 44 1.8679710e+01 2.27e+00 5.63e-02 -7.0 4.42e+03 - 5.07e-01 1.00e+00f 1\n", - " 45 1.9232277e+01 1.20e+00 7.07e-02 -7.4 3.47e+03 - 3.19e-01 1.00e+00h 1\n", - " 46 1.8612852e+01 3.80e+00 1.36e-01 -7.6 1.00e+04 - 6.55e-02 8.21e-01f 1\n", - " 47 1.9108327e+01 2.07e+00 1.62e-01 -1.7 1.67e+04 - 3.98e-01 5.85e-01H 1\n", - " 48 1.8380263e+01 2.73e+00 3.06e-01 -1.7 2.36e+04 - 4.98e-01 6.34e-01F 1\n", - " 49 1.9683542e+01 6.11e-01 4.46e-01 -1.7 6.70e+03 - 8.19e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.9018329e+01 6.53e-01 1.95e-01 -1.7 2.90e+03 - 1.00e+00 1.00e+00h 1\n", - " 51 1.7469656e+01 1.84e+00 1.16e-01 -1.8 1.60e+04 - 6.47e-02 6.45e-01f 1\n", - " 52 1.8482093e+01 2.90e+00 1.23e-01 -2.8 1.33e+04 - 2.29e-01 5.98e-01H 1\n", - " 53 1.7603679e+01 5.75e+00 2.29e-01 -2.0 8.75e+03 - 2.90e-01 9.70e-01f 1\n", - " 54 1.7585994e+01 1.72e+00 1.57e-01 -2.0 6.19e+03 - 5.76e-01 6.81e-01h 1\n", - " 55 1.7858398e+01 1.37e+00 1.03e-01 -2.0 6.67e+03 - 6.90e-02 3.97e-01h 1\n", - " 56 1.8787279e+01 5.29e-01 7.68e-02 -2.0 2.27e+03 - 1.42e-01 7.27e-01h 1\n", - " 57 2.0165113e+01 3.50e-01 1.35e-01 -2.5 4.78e+03 - 8.58e-01 1.00e+00h 1\n", - " 58 1.8138493e+01 2.72e+00 1.44e-01 -2.4 1.87e+04 - 2.45e-01 4.87e-01f 1\n", - " 59 1.7475863e+01 2.54e+00 2.43e-01 -2.4 2.31e+04 - 6.37e-01 2.28e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.7812201e+01 1.83e+00 5.38e-02 -2.4 1.47e+04 - 6.84e-01 3.50e-01h 1\n", - " 61 1.7715436e+01 1.15e+00 2.43e-02 -2.0 9.12e+03 - 3.37e-01 3.25e-01f 1\n", - " 62 1.8762738e+01 1.06e+00 2.15e-02 -2.3 1.75e+03 - 1.00e+00 1.00e+00h 1\n", - " 63 1.6718129e+01 2.24e+00 1.16e-01 -4.1 8.00e+03 - 3.55e-01 9.29e-01f 1\n", - " 64 1.6720305e+01 2.09e+00 9.80e-02 -1.9 8.78e+03 - 3.14e-01 6.25e-02h 5\n", - " 65 1.6721588e+01 2.05e+00 9.38e-02 -2.3 2.17e+04 - 4.44e-02 2.22e-02h 4\n", - " 66 1.6818979e+01 1.88e+00 7.00e-02 -2.3 1.78e+04 - 7.86e-02 7.86e-02s 19\n", - " 67 1.7735738e+01 1.35e+00 1.24e-01 -2.3 1.49e+04 - 2.78e-01 0.00e+00S 19\n", - " 68 1.7941257e+01 1.09e+00 1.19e-01 -2.3 2.18e+03 - 7.08e-01 1.95e-01h 1\n", - " 69 1.8053920e+01 1.01e+00 9.38e-02 -1.0 2.41e+04 - 3.84e-01 8.04e-02f 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.8020243e+01 9.45e-01 8.23e-02 -1.6 1.67e+04 - 6.33e-01 5.86e-02h 2\n", - " 71 1.7990070e+01 8.02e-01 5.45e-02 -1.6 4.67e+03 - 1.00e+00 1.73e-01h 2\n", - " 72 2.0935687e+01 1.97e-01 4.10e+00 -1.6 4.22e+00 - 1.00e+00 1.00e+00h 1\n", - " 73 2.0661433e+01 2.19e-03 5.07e-01 -1.6 5.24e-01 - 1.00e+00 1.00e+00h 1\n", - " 74 2.0660515e+01 1.52e-06 2.08e-03 -1.6 6.98e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 2.0660515e+01 5.74e-06 1.81e-03 -2.3 9.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 76 2.0660517e+01 4.03e-06 3.60e-03 -3.5 7.10e-03 - 1.00e+00 1.00e+00h 1\n", - " 77 2.0660508e+01 7.67e-06 3.65e-03 -3.5 3.08e-02 - 1.00e+00 1.00e+00h 1\n", - " 78 2.0660450e+01 2.75e-05 3.40e-03 -3.5 1.31e-01 - 1.00e+00 1.00e+00h 1\n", - " 79 2.0660503e+01 8.16e-06 1.70e-03 -3.5 5.61e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.0660511e+01 8.66e-06 1.97e-03 -5.2 2.96e-02 - 1.00e+00 1.00e+00h 1\n", - " 81 2.0660522e+01 1.57e-08 1.33e-04 -5.2 5.84e-02 - 1.00e+00 1.00e+00H 1\n", - " 82 2.0660492e+01 2.04e-05 1.45e-03 -11.0 6.37e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 2.0660520e+01 1.57e-08 6.42e-05 -9.2 5.61e-02 - 1.00e+00 1.00e+00H 1\n", - " 84 2.0660185e+01 3.55e-04 2.36e-03 -11.0 1.56e+00 - 1.00e+00 1.00e+00f 1\n", - " 85 2.0658603e+01 8.13e-04 8.12e-03 -11.0 3.39e+00 - 1.00e+00 1.00e+00h 1\n", - " 86 2.0657043e+01 3.57e-03 2.50e-03 -11.0 4.09e+00 - 1.00e+00 1.00e+00h 1\n", - " 87 2.0659602e+01 8.15e-04 2.44e-03 -11.0 2.39e+00 - 1.00e+00 1.00e+00h 1\n", - " 88 2.0661096e+01 4.14e-06 3.07e-03 -11.0 1.63e+01 - 1.00e+00 1.00e+00H 1\n", - " 89 2.0620802e+01 5.53e-02 3.42e-03 -11.0 4.33e+02 - 1.00e+00 5.37e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.0142987e+01 8.07e-01 2.32e-02 -11.0 1.40e+04 - 2.28e-02 2.55e-01f 1\n", - " 91 2.0130613e+01 7.91e-01 2.24e-02 -11.0 1.20e+04 - 3.59e-09 2.23e-02h 1\n", - " 92 2.0390038e+01 3.94e-01 1.90e-03 -11.0 2.52e+02 - 1.00e+00 5.00e-01h 2\n", - " 93 1.9729689e+01 2.63e+00 1.58e-01 -11.0 2.82e+04 - 5.08e-03 1.16e-01f 1\n", - " 94 1.9587992e+01 1.79e+00 8.44e-02 -11.0 2.08e+03 - 5.77e-10 3.06e-01h 1\n", - " 95 1.9832003e+01 4.27e-01 6.73e-02 -11.0 2.24e+03 - 7.10e-01 8.61e-01h 1\n", - " 96 1.9832003e+01 4.27e-01 6.73e-02 -11.0 1.97e+03 - 3.83e-09 3.83e-09s 2\n", - " 97 1.9832003e+01 4.27e-01 6.73e-02 -11.0 1.05e+03 - 1.38e-10 1.38e-10s 2\n", - " 98r 1.9832003e+01 4.27e-01 9.99e+02 -0.4 0.00e+00 - 0.00e+00 0.00e+00R 1\n", - " 99r 1.9998665e+01 3.43e-01 8.99e+02 -6.4 1.76e+02 - 9.90e-01 1.96e-03f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.0574084e+01 7.10e-02 5.51e-02 -11.0 9.13e+02 - 7.53e-02 1.00e+00H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.0574083887724495e+01 2.0574083887724495e+01\n", - "Dual infeasibility......: 5.5068470105394229e-02 5.5068470105394229e-02\n", - "Constraint violation....: 7.0957538043959545e-02 7.0957538043959545e-02\n", - "Complementarity.........: 9.2513374353537508e-05 9.2513374353537508e-05\n", - "Overall NLP error.......: 7.0957538043959545e-02 7.0957538043959545e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 153\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 153\n", - "Number of inequality constraint evaluations = 153\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 8.870\n", - "Total CPU secs in NLP function evaluations = 918.825\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 26.14 s (170.84ms) 20.41 s (133.39ms) 153\n", - " nlp_g | 23.14 s (151.26ms) 17.96 s (117.37ms) 153\n", - " nlp_grad | 9.73 s ( 9.73 s) 7.60 s ( 7.60 s) 1\n", - " nlp_grad_f | 514.07 s ( 5.04 s) 398.13 s ( 3.90 s) 102\n", - " nlp_jac_g | 451.34 s ( 4.38 s) 348.97 s ( 3.39 s) 103\n", - " total | 1.02ks ( 1.02ks) 793.27 s (793.27 s) 1\n" - ] - }, - { - "data": { - "text/plain": [ - "DM([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -5276.26, -10771, 4088.54, -4909.72, 5339.09, 6299.99, 6299.8, -14154.4, 4279.15, 599.066, 1, -5276.26, -10771, 4088.54, -4909.72, 5339.09, 6299.99, 6299.8, -14154.4, 4279.15, 2, 12.1019, 16.044, 18.912, 20.1879, 20.6361, 20.8219, 20.8302, 20.7725, 20.3594, 3, 2, 12.1019, 16.044, 18.912, 20.1879, 20.6361, 20.8219, 20.8302, 20.7725, 4, 3, 2, 12.1019, 16.044, 18.912, 20.1879, 20.6361, 20.8219, 20.8302])" - ] - }, - "execution_count": 148, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res = solver(p = real_p, lbg = real_lbg, ubg = real_ubg)\n", - "res['x']" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DM([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3.03502e+07, -2.52271e+07, 2.05064e+07, -4.67068e+07, 9.09586e+07, 3.50245e+07, -1.16515e+08, 1.398e+08, -8.8153e+07, 5.69382e+06, 1, 3.03502e+07, -2.52271e+07, 2.05064e+07, -4.67068e+07, 9.09586e+07, 3.50245e+07, -1.16515e+08, 1.398e+08, -8.8153e+07, 2, 16.4965, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 3, 2, 16.4965, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 4, 3, 2, 16.4965, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653])" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res['x']" - ] - }, - { - "cell_type": "code", - "execution_count": 149, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DM(\n", - "[[2, 2, -5276.26, 1, 2, 3, 4], \n", - " [2, 2, -10771, -5276.26, 12.1019, 2, 3], \n", - " [2, 2, 4088.54, -10771, 16.044, 12.1019, 2], \n", - " [2, 2, -4909.72, 4088.54, 18.912, 16.044, 12.1019], \n", - " [2, 2, 5339.09, -4909.72, 20.1879, 18.912, 16.044], \n", - " [2, 2, 6299.99, 5339.09, 20.6361, 20.1879, 18.912], \n", - " [2, 2, 6299.8, 6299.99, 20.8219, 20.6361, 20.1879], \n", - " [2, 2, -14154.4, 6299.8, 20.8302, 20.8219, 20.6361], \n", - " [2, 2, 4279.15, -14154.4, 20.7725, 20.8302, 20.8219], \n", - " [2, 2, 599.066, 4279.15, 20.3594, 20.7725, 20.8302]])" - ] - }, - "execution_count": 149, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res['x'].reshape((N_horizon, -1))" - ] - }, - { - "cell_type": "code", - "execution_count": 150, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DM([[12.1019, 16.041, 18.9237, 20.1169, 20.637, 20.8187, 20.8361, 20.7795, 20.3782, 20.2176]])" - ] - }, - "execution_count": 150, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gpr(res['x'].reshape((N_horizon, -1)).T)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DM([[16.4965, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653, 20.1653]])" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gpr(res['x'].reshape((N_horizon, -1)).T)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "# Solve the optimization problem for one time step on real data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def load_autoregressive_df(exp_id, lu = 1, ly = 3):\n", - " \n", - " df_wdb = pd.read_pickle(f\"../Data/Experimental_python/Exp{exp_id}_WDB.pkl\")\n", - " \n", - " df_carnot = pd.read_pickle(f\"../Data/CARNOT_output/Exp{exp_id}_full.pkl\")\n", - " df_data = df_carnot.loc[:, ['Power', 'Heat', 'Setpoint', 'OutsideTemp', 'SupplyTemp', 'InsideTemp', 'SolRad']]\n", - " df_simulated = df_carnot.loc[:, 'SimulatedTemp']\n", - "\n", - " df = pd.concat([df_wdb, df_data.reset_index(), df_simulated.reset_index()], axis = 1)\n", - "\n", - " df = df.loc[:,~df.columns.duplicated()]\n", - " \n", - " # Select the potentially useful columns\n", - " #df = df.loc[:, ['timestamp', 'zenith', 'azimuth', 'dni', 'dhi', 'OutsideTemp', 'Power', 'InsideTemp', 'SolRad', 'Setpoint']]\n", - " df = df.loc[:, ['timestamp','SolRad', 'OutsideTemp', 'Heat', 'InsideTemp']]\n", - "\n", - " df.drop(columns = ['timestamp'], inplace = True)\n", - " df.loc[:, 'timestamp'] = df_data.index\n", - " df.set_index('timestamp', drop = True, inplace = True)\n", - " \n", - " # Select the input/output and drop the columns that doesn't make to be used\n", - " dyn_in = 'Heat'\n", - " dyn_out = 'InsideTemp' \n", - " df.rename(columns = {dyn_in: 'u', dyn_out: 'y'}, inplace = True)\n", - "\n", - " # Add the regressive inputs/outputs\n", - " for idx in range(1, lu + 1):\n", - " df[f\"u_{idx}\"] = df['u'].shift(idx)\n", - " \n", - " for idx in range(1, ly + 1):\n", - " df[f\"y_{idx}\"] = df['y'].shift(idx)\n", - " \n", - " # Since some lines now have holes, drop them\n", - " df.dropna(inplace = True)\n", - " \n", - " return df" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SolRadOutsideTempuyu_1y_1y_2y_3
timestamp
2017-06-16 20:15:00+02:00104.55830023.0-12088.86206922.883333-12927.93103423.06666723.28333323.166667
2017-06-16 20:20:00+02:0099.69733323.0-20.30000022.666667-12088.86206922.88333323.06666723.283333
2017-06-16 20:25:00+02:0087.21680023.0-33.51724122.650000-20.30000022.66666722.88333323.066667
2017-06-16 20:30:00+02:0085.04940023.0-33.62069022.800000-33.51724122.65000022.66666722.883333
2017-06-16 20:35:00+02:0077.97190023.0-40.24137922.933333-33.62069022.80000022.65000022.666667
...........................
2017-06-19 05:35:00+02:006.04056718.0-2.89655222.300000-3.00000022.30000022.31666722.316667
2017-06-19 05:40:00+02:007.55646718.0-3.43333322.266667-2.89655222.30000022.30000022.316667
2017-06-19 05:45:00+02:009.63266718.0-5.44827622.116667-3.43333322.26666722.30000022.300000
2017-06-19 05:50:00+02:0011.94110018.0-3.24137922.233333-5.44827622.11666722.26666722.300000
2017-06-19 05:55:00+02:0014.20843318.0-4.23333322.150000-3.24137922.23333322.11666722.266667
\n", - "

693 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " SolRad OutsideTemp u y \\\n", - "timestamp \n", - "2017-06-16 20:15:00+02:00 104.558300 23.0 -12088.862069 22.883333 \n", - "2017-06-16 20:20:00+02:00 99.697333 23.0 -20.300000 22.666667 \n", - "2017-06-16 20:25:00+02:00 87.216800 23.0 -33.517241 22.650000 \n", - "2017-06-16 20:30:00+02:00 85.049400 23.0 -33.620690 22.800000 \n", - "2017-06-16 20:35:00+02:00 77.971900 23.0 -40.241379 22.933333 \n", - "... ... ... ... ... \n", - "2017-06-19 05:35:00+02:00 6.040567 18.0 -2.896552 22.300000 \n", - "2017-06-19 05:40:00+02:00 7.556467 18.0 -3.433333 22.266667 \n", - "2017-06-19 05:45:00+02:00 9.632667 18.0 -5.448276 22.116667 \n", - "2017-06-19 05:50:00+02:00 11.941100 18.0 -3.241379 22.233333 \n", - "2017-06-19 05:55:00+02:00 14.208433 18.0 -4.233333 22.150000 \n", - "\n", - " u_1 y_1 y_2 y_3 \n", - "timestamp \n", - "2017-06-16 20:15:00+02:00 -12927.931034 23.066667 23.283333 23.166667 \n", - "2017-06-16 20:20:00+02:00 -12088.862069 22.883333 23.066667 23.283333 \n", - "2017-06-16 20:25:00+02:00 -20.300000 22.666667 22.883333 23.066667 \n", - "2017-06-16 20:30:00+02:00 -33.517241 22.650000 22.666667 22.883333 \n", - "2017-06-16 20:35:00+02:00 -33.620690 22.800000 22.650000 22.666667 \n", - "... ... ... ... ... \n", - "2017-06-19 05:35:00+02:00 -3.000000 22.300000 22.316667 22.316667 \n", - "2017-06-19 05:40:00+02:00 -2.896552 22.300000 22.300000 22.316667 \n", - "2017-06-19 05:45:00+02:00 -3.433333 22.266667 22.300000 22.300000 \n", - "2017-06-19 05:50:00+02:00 -5.448276 22.116667 22.266667 22.300000 \n", - "2017-06-19 05:55:00+02:00 -3.241379 22.233333 22.116667 22.266667 \n", - "\n", - "[693 rows x 8 columns]" - ] - }, - "execution_count": 78, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lu, ly = 1, 3\n", - "test_day = 3\n", - "df_test = load_autoregressive_df(test_day, lu = lu, ly = ly)\n", - "df_test" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [], - "source": [ - "rand_idx = np.random.randint(0, len(df_test)- N_horizon)" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SolRadOutsideTempuyu_1y_1y_2y_3
timestamp
2017-06-17 18:10:00+02:00468.03353325.0-6.93103422.650000-3531.20000022.70000022.70000022.933333
2017-06-17 18:15:00+02:00453.41176725.0-17.79310322.966667-6.93103422.65000022.70000022.700000
2017-06-17 18:20:00+02:00440.06303325.0-10028.37931023.200000-17.79310322.96666722.65000022.700000
2017-06-17 18:25:00+02:00425.74736725.0-13186.60000023.200000-10028.37931023.20000022.96666722.650000
2017-06-17 18:30:00+02:00411.83833325.0-13120.86206923.033333-13186.60000023.20000023.20000022.966667
2017-06-17 18:35:00+02:00398.56076725.0-13122.31034522.866667-13120.86206923.03333323.20000023.200000
2017-06-17 18:40:00+02:00385.48340025.0-10483.70000022.733333-13122.31034522.86666723.03333323.200000
2017-06-17 18:45:00+02:00370.69443325.0-11.79310322.683333-10483.70000022.73333322.86666723.033333
2017-06-17 18:50:00+02:00357.20913325.0-18.31034522.850000-11.79310322.68333322.73333322.866667
2017-06-17 18:55:00+02:00173.84073325.0-22.44827623.000000-18.31034522.85000022.68333322.733333
\n", - "
" - ], - "text/plain": [ - " SolRad OutsideTemp u y \\\n", - "timestamp \n", - "2017-06-17 18:10:00+02:00 468.033533 25.0 -6.931034 22.650000 \n", - "2017-06-17 18:15:00+02:00 453.411767 25.0 -17.793103 22.966667 \n", - "2017-06-17 18:20:00+02:00 440.063033 25.0 -10028.379310 23.200000 \n", - "2017-06-17 18:25:00+02:00 425.747367 25.0 -13186.600000 23.200000 \n", - "2017-06-17 18:30:00+02:00 411.838333 25.0 -13120.862069 23.033333 \n", - "2017-06-17 18:35:00+02:00 398.560767 25.0 -13122.310345 22.866667 \n", - "2017-06-17 18:40:00+02:00 385.483400 25.0 -10483.700000 22.733333 \n", - "2017-06-17 18:45:00+02:00 370.694433 25.0 -11.793103 22.683333 \n", - "2017-06-17 18:50:00+02:00 357.209133 25.0 -18.310345 22.850000 \n", - "2017-06-17 18:55:00+02:00 173.840733 25.0 -22.448276 23.000000 \n", - "\n", - " u_1 y_1 y_2 y_3 \n", - "timestamp \n", - "2017-06-17 18:10:00+02:00 -3531.200000 22.700000 22.700000 22.933333 \n", - "2017-06-17 18:15:00+02:00 -6.931034 22.650000 22.700000 22.700000 \n", - "2017-06-17 18:20:00+02:00 -17.793103 22.966667 22.650000 22.700000 \n", - "2017-06-17 18:25:00+02:00 -10028.379310 23.200000 22.966667 22.650000 \n", - "2017-06-17 18:30:00+02:00 -13186.600000 23.200000 23.200000 22.966667 \n", - "2017-06-17 18:35:00+02:00 -13120.862069 23.033333 23.200000 23.200000 \n", - "2017-06-17 18:40:00+02:00 -13122.310345 22.866667 23.033333 23.200000 \n", - "2017-06-17 18:45:00+02:00 -10483.700000 22.733333 22.866667 23.033333 \n", - "2017-06-17 18:50:00+02:00 -11.793103 22.683333 22.733333 22.866667 \n", - "2017-06-17 18:55:00+02:00 -18.310345 22.850000 22.683333 22.733333 " - ] - }, - "execution_count": 151, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_slice = df_test.iloc[rand_idx:rand_idx + N_horizon, :]\n", - "df_slice" - ] - }, - { - "cell_type": "code", - "execution_count": 152, - "metadata": {}, - "outputs": [], - "source": [ - "real_W = df_slice[['SolRad', 'OutsideTemp']].to_numpy()\n", - "real_x0 = df_slice.iloc[0,4:].to_numpy()" - ] - }, - { - "cell_type": "code", - "execution_count": 153, - "metadata": {}, - "outputs": [], - "source": [ - "real_p = casadi.vertcat(\n", - " casadi.vec(real_W),\n", - " casadi.vec(real_x0)\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 154, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 150\n", - "Number of nonzeros in inequality constraint Jacobian.: 10\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 70\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 60\n", - "Total number of inequality constraints...............: 10\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 10\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 3.9449223e+01 3.53e+03 2.64e-06 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 3.3074260e+01 1.22e+01 3.53e+03 -1.9 3.53e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 2.1569451e+01 3.89e+00 1.04e+01 0.2 1.53e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.2216613e+01 1.07e+00 2.03e+00 -1.8 9.82e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 6.0768897e+00 2.46e-01 2.79e-01 -3.6 4.40e+00 - 1.00e+00 1.00e+00f 1\n", - " 5 5.4365914e+00 6.00e-03 1.57e-01 -5.5 9.64e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 5.4343018e+00 1.05e-06 7.05e-03 -7.4 7.98e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 5.4343047e+00 4.04e-07 1.35e-04 -9.4 1.19e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 5.4343048e+00 2.43e-07 2.99e-04 -11.0 1.51e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 5.4343030e+00 5.92e-07 4.18e-03 -11.0 5.49e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 5.4332567e+00 8.43e-04 1.69e-02 -11.0 2.28e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 5.4346201e+00 8.74e-07 5.02e-03 -11.0 2.48e+00 - 1.00e+00 1.00e+00H 1\n", - " 12 5.4274576e+00 2.72e-03 1.08e-02 -11.0 1.54e+01 - 1.00e+00 1.00e+00f 1\n", - " 13 5.4332922e+00 8.83e-04 2.52e-03 -11.0 5.14e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 5.3426257e+00 3.42e-02 1.47e-02 -11.0 2.93e+02 - 1.00e+00 1.00e+00f 1\n", - " 15 5.2809047e+00 7.25e-02 1.14e-02 -11.0 1.94e+02 - 1.00e+00 1.00e+00h 1\n", - " 16 5.2454961e+00 5.67e-01 2.83e-01 -11.0 2.55e+03 - 1.00e+00 5.00e-01f 2\n", - " 17 4.2900853e+00 8.09e-01 2.57e-01 -11.0 4.79e+03 - 1.00e+00 1.00e+00f 1\n", - " 18 3.9872017e+00 8.01e-01 4.15e-01 -9.0 2.46e+03 - 1.00e+00 7.25e-01h 1\n", - " 19 3.9828024e+00 7.97e-01 4.09e-01 -7.1 5.10e+03 - 1.00e+00 4.86e-03h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.9955347e+00 7.62e-01 3.91e-01 -11.0 1.40e+04 - 2.59e-05 3.92e-02h 4\n", - " 21 3.3230445e+00 1.62e+00 7.43e-01 -5.9 2.58e+04 - 1.00e+00 1.94e-01f 1\n", - " 22 3.3159554e+00 1.63e+00 7.40e-01 -4.0 3.81e+04 - 1.00e+00 1.16e-03h 1\n", - " 23 5.7610224e+00 6.56e-01 6.33e-01 -3.2 4.68e+03 - 1.00e+00 1.00e+00h 1\n", - " 24 4.8314850e+00 1.14e+00 4.89e-01 -2.8 1.39e+04 - 2.21e-02 1.89e-01f 1\n", - " 25 3.9298440e+00 4.53e-01 3.48e-01 -2.8 1.13e+04 - 4.04e-03 6.29e-01F 1\n", - " 26 3.8422684e+00 4.44e-01 3.34e-01 -2.4 2.98e+04 - 1.00e+00 2.03e-02h 1\n", - " 27 3.9181611e+00 4.44e-01 3.40e-01 -1.5 1.15e+04 - 8.34e-01 8.61e-02f 4\n", - " 28 3.9145141e+00 4.66e-01 4.14e-01 -1.6 2.37e+04 - 4.26e-01 3.76e-02f 3\n", - " 29 4.3665645e+00 5.75e-01 2.13e-01 -1.6 3.11e+03 - 7.82e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 4.1588261e+00 4.47e-01 2.07e-01 -1.6 2.24e+04 - 2.27e-01 8.93e-02f 2\n", - " 31 4.0448026e+00 4.88e-01 8.52e-02 -1.6 3.54e+03 - 1.00e+00 1.00e+00h 1\n", - " 32 4.3320693e+00 5.01e-01 3.13e-01 -1.6 3.09e+03 - 6.34e-01 7.31e-01h 1\n", - " 33 4.4114252e+00 5.90e-01 1.65e-01 -2.0 1.67e+03 - 2.89e-01 1.00e+00h 1\n", - " 34 4.2453997e+00 4.46e-01 5.76e-01 -2.4 1.03e+04 - 7.27e-01 6.28e-01h 1\n", - " 35 4.2395100e+00 4.34e-01 5.37e-01 -2.3 2.96e+04 - 4.78e-01 2.52e-02h 4\n", - " 36 4.1425759e+00 4.22e-01 3.66e-01 -2.3 3.87e+04 - 3.22e-01 1.71e-01f 1\n", - " 37 4.0746738e+00 5.26e-01 2.19e-01 -2.3 1.64e+04 - 1.00e+00 1.81e-01h 1\n", - " 38 4.6831446e+00 1.33e-02 9.95e-01 -2.3 1.14e+00 - 1.00e+00 1.00e+00h 1\n", - " 39 4.6652006e+00 4.38e-06 5.08e-03 -3.8 4.05e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 4.6651849e+00 7.40e-06 5.83e-03 -5.9 8.43e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 4.6652003e+00 2.78e-06 4.05e-03 -8.0 6.53e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 4.6652078e+00 1.86e-06 5.11e-03 -9.9 4.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 43 4.6652106e+00 4.89e-07 2.49e-03 -10.9 2.45e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 4.6652070e+00 1.06e-06 4.96e-03 -11.0 3.14e-03 - 1.00e+00 1.00e+00h 1\n", - " 45 4.6652107e+00 6.94e-07 3.39e-03 -11.0 1.12e-03 - 1.00e+00 1.00e+00h 1\n", - " 46 4.6652021e+00 5.56e-06 5.86e-03 -11.0 1.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 47 4.6651896e+00 5.80e-06 9.52e-03 -11.0 1.90e-02 - 1.00e+00 1.00e+00h 1\n", - " 48 4.6652034e+00 2.35e-06 2.98e-03 -11.0 1.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 49 4.6651482e+00 3.84e-05 7.09e-03 -11.0 9.42e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 4.6651476e+00 3.65e-05 6.57e-03 -11.0 1.46e-01 - 1.00e+00 1.00e+00h 1\n", - " 51 4.6650378e+00 4.94e-05 3.35e-03 -11.0 1.21e-01 - 1.00e+00 1.00e+00h 1\n", - " 52 4.6652080e+00 4.06e-08 2.12e-04 -11.0 1.11e-01 - 1.00e+00 1.00e+00H 1\n", - " 53 4.6651547e+00 1.97e-05 6.76e-03 -11.0 5.50e-02 - 1.00e+00 1.00e+00h 1\n", - " 54 4.6651784e+00 9.13e-06 4.15e-03 -11.0 6.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 55 4.6649440e+00 9.23e-05 6.02e-03 -9.0 4.45e-01 - 1.00e+00 5.73e-01h 1\n", - " 56 4.6649432e+00 9.22e-05 4.84e-03 -7.8 7.87e+00 - 1.00e+00 8.18e-05h 1\n", - " 57 4.6651975e+00 6.30e-06 4.13e-03 -8.7 1.35e-02 - 1.00e+00 1.00e+00h 1\n", - " 58 4.6651975e+00 1.19e-06 2.69e-03 -8.8 4.23e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 4.6651790e+00 1.48e-05 5.20e-03 -8.2 4.30e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 4.6651741e+00 1.16e-05 3.92e-03 -8.3 5.02e-02 - 5.68e-01 1.00e+00h 1\n", - " 61 4.6651894e+00 1.27e-05 5.60e-03 -8.2 6.33e-02 - 1.00e+00 1.00e+00h 1\n", - " 62 4.6645492e+00 1.34e-03 6.23e-03 -7.0 5.65e+00 - 3.71e-01 1.00e+00h 1\n", - " 63 4.3495224e+00 1.79e-01 1.39e-01 -7.7 2.10e+03 - 1.00e+00 4.15e-01f 1\n", - " 64 3.8812429e+00 6.92e-01 1.77e-01 -4.3 4.25e+03 - 4.16e-02 1.00e+00f 1\n", - " 65 3.8556488e+00 9.02e-01 5.64e-01 -3.7 4.62e+03 - 5.59e-01 1.00e+00f 1\n", - " 66 3.3532482e+00 1.10e+00 4.45e-01 -3.7 2.35e+05 - 2.08e-02 1.06e-02f 1\n", - " 67 4.1857330e+00 5.13e-01 2.71e-01 -3.3 1.25e+04 - 1.00e+00 5.45e-01h 1\n", - " 68 3.9064264e+00 7.77e-01 2.48e-01 -3.4 9.49e+03 - 5.24e-02 3.44e-01h 1\n", - " 69 4.5883140e+00 5.74e-01 2.74e-01 -3.4 3.49e+03 - 8.49e-01 9.57e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 4.2716175e+00 4.48e-01 1.56e-01 -3.4 7.97e+03 - 6.82e-03 1.99e-01h 1\n", - " 71 4.4376261e+00 8.41e-01 1.09e-01 -3.4 3.06e+03 - 7.11e-01 1.00e+00h 1\n", - " 72 4.2718628e+00 8.02e-01 1.24e-01 -3.4 3.96e+03 - 7.79e-01 2.74e-01h 1\n", - " 73 4.1692502e+00 8.15e-01 1.06e-01 -3.4 4.59e+03 - 8.05e-03 2.42e-01h 1\n", - " 74 4.1787226e+00 7.74e-01 1.32e-01 -3.4 6.16e+03 - 3.97e-01 5.92e-02h 1\n", - " 75 4.8354108e+00 5.18e-01 1.24e-01 -3.4 1.72e+03 - 1.00e+00 6.20e-01H 1\n", - " 76 4.6938939e+00 5.47e-01 1.66e-01 -3.4 1.90e+04 - 2.02e-01 4.54e-02h 2\n", - " 77 4.9988408e+00 4.89e-01 3.45e-01 -3.4 5.66e+03 - 2.14e-01 9.92e-01h 1\n", - " 78 4.8499839e+00 4.26e-01 3.75e-01 -3.4 1.14e+04 - 7.42e-04 6.53e-02f 1\n", - " 79 4.3375958e+00 6.40e-01 5.48e-02 -3.4 5.40e+03 - 1.00e+00 1.00e+00F 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 3.9034327e+00 5.38e-01 3.06e-01 -3.4 9.68e+03 - 3.65e-01 6.23e-01F 1\n", - " 81 5.5758732e+00 8.59e-01 5.26e-01 -3.2 2.16e+03 - 5.65e-01 1.00e+00h 1\n", - " 82 5.0529427e+00 5.22e-01 3.17e-01 -2.8 3.58e+03 - 1.00e+00 3.77e-01f 1\n", - " 83 4.9564772e+00 1.45e+00 8.63e-01 -2.8 9.04e+03 - 1.43e-01 5.36e-01f 1\n", - " 84 4.8642573e+00 1.29e+00 8.13e-01 -2.8 5.32e+03 - 7.63e-01 9.94e-02h 1\n", - " 85 4.4360592e+00 9.26e-01 6.08e-01 -2.8 7.53e+03 - 6.61e-02 9.55e-01f 1\n", - " 86 4.3526499e+00 8.61e-01 5.90e-01 -2.8 2.14e+03 - 8.04e-01 5.99e-02h 1\n", - " 87 4.6534935e+00 4.66e-01 1.12e-01 -2.8 3.74e+03 - 1.22e-02 6.65e-01H 1\n", - " 88 4.5693769e+00 4.42e-01 8.36e-02 -2.8 4.24e+03 - 8.34e-01 8.93e-02h 1\n", - " 89 3.8390277e+00 5.35e-01 4.87e-01 -2.8 1.30e+04 - 4.88e-02 1.03e-01f 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 3.6653054e+00 5.12e-01 2.34e-01 -2.5 2.66e+04 - 6.48e-01 7.35e-02f 1\n", - " 91 3.6674015e+00 5.23e-01 1.59e-01 -1.7 3.17e+04 - 5.25e-01 1.50e-02h 4\n", - " 92 3.5710253e+00 9.15e-01 4.40e-01 -1.2 5.11e+04 - 2.61e-01 7.14e-02f 2\n", - " 93 4.5652538e+00 7.65e-01 4.59e-01 -2.7 1.29e+04 - 1.87e-01 9.39e-01H 1\n", - " 94 4.2994338e+00 5.43e-01 2.13e-01 -1.9 6.20e+03 - 1.00e+00 4.26e-01F 1\n", - " 95 4.2721384e+00 6.11e-01 2.31e-01 -1.9 2.70e+04 - 1.33e-01 6.11e-02h 2\n", - " 96 4.5982599e+00 5.45e-01 3.94e-01 -1.9 4.18e+03 - 3.25e-01 1.00e+00H 1\n", - " 97 4.5955406e+00 6.97e-01 3.95e-01 -1.9 1.64e+04 - 2.74e-01 1.60e-02h 5\n", - " 98 4.4487534e+00 5.66e-01 3.66e-01 -1.9 9.27e+03 - 2.35e-01 4.40e-01f 1\n", - " 99 4.1725592e+00 8.99e-01 2.72e-01 -1.9 1.72e+05 - 4.06e-02 3.19e-02f 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 4.9563901e+00 3.62e-01 2.72e-01 -1.9 6.55e+03 - 2.14e-01 5.29e-01h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.9563901175171567e+00 4.9563901175171567e+00\n", - "Dual infeasibility......: 2.7174260006204348e-01 2.7174260006204348e-01\n", - "Constraint violation....: 3.6196146876667257e-01 3.6196146876667257e-01\n", - "Complementarity.........: 1.5305110259329480e-02 1.5305110259329480e-02\n", - "Overall NLP error.......: 3.6196146876667257e-01 3.6196146876667257e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 168\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 168\n", - "Number of inequality constraint evaluations = 168\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 9.102\n", - "Total CPU secs in NLP function evaluations = 940.749\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 29.13 s (173.38ms) 23.38 s (139.16ms) 168\n", - " nlp_g | 25.97 s (154.56ms) 20.73 s (123.42ms) 168\n", - " nlp_grad | 9.50 s ( 9.50 s) 7.37 s ( 7.37 s) 1\n", - " nlp_grad_f | 523.87 s ( 5.14 s) 419.30 s ( 4.11 s) 102\n", - " nlp_jac_g | 456.46 s ( 4.48 s) 365.04 s ( 3.58 s) 102\n", - " total | 1.05ks ( 1.05ks) 836.05 s (836.05 s) 1\n" - ] - }, - { - "data": { - "text/plain": [ - "DM([468.034, 453.412, 440.063, 425.747, 411.838, 398.561, 385.483, 370.694, 357.209, 173.841, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 2732.92, 6198.29, -3878.46, 1639.7, 6123.03, -16585.5, 217.313, -14943.5, 6266.88, 49.1826, -3531.2, 2732.92, 6198.29, -3878.46, 1639.7, 6123.03, -16585.5, 217.313, -14943.5, 6266.88, 22.7, 22.7127, 22.9458, 23.1872, 23.5197, 23.7701, 23.6996, 23.6523, 23.7526, 23.9052, 22.7, 22.7, 22.7127, 22.9458, 23.1872, 23.5197, 23.7701, 23.6996, 23.6523, 23.7526, 22.9333, 22.7, 22.7, 22.7127, 22.9458, 23.1872, 23.5197, 23.7701, 23.6996, 23.6523])" - ] - }, - "execution_count": 154, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res = solver(p = real_p, lbg = real_lbg, ubg = real_ubg)\n", - "res['x']" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'f': DM(4.40448),\n", - " 'g': DM([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.00470767, 0, 0, 0, -0.113089, 0, 0, 0, 0.0784758, 0, 0, 0, -0.260693, 0, 0, 0, 0.357126, 0, 0, 0, 0.669296, 0, 0, 0, 0.68248, 0, 0, 0, -0.247434, 0, 0, 0, 0.19414, 0, 0]),\n", - " 'lam_g': DM([0.00058908, 3.08326, -0.356412, -0.423444, 0.000371174, 0.000534039, -5.21535e-05, -0.000138734, 5.69737e-05, 5.3783e-05, 0.000187072, 0.000149544, 0.000114475, 3.09363e-06, 0.0420244, 0.0331837, 0.0236642, 0.0183999, 0.0143155, 0.0123639, 0.00744731, 0.00510669, 0.00291009, 0.000884082, 1.91038e-06, 2.43046, -0.265973, -0.332856, 4.74083e-05, 1.82938, -0.195364, -0.246757, 6.22741e-05, 1.35846, -0.15016, -0.180631, -2.68583e-05, 1.08861, -0.120118, -0.138914, -6.83068e-05, 0.917211, -0.0855439, -0.111596, -0.000115542, 0.624076, -0.0576698, -0.0785685, 5.21615e-05, 0.445059, -0.0326176, -0.0531857, 1.60475e-05, 0.237493, -0.0111887, -0.0298096, 6.34075e-06, 0.0680819, -0.000572791, -0.0094662]),\n", - " 'lam_p': DM([0.000371174, 0.000534039, -5.21535e-05, -0.000138734, 5.69737e-05, 5.3783e-05, 0.000187072, 0.000149544, 0.000114475, 3.09363e-06, 0.0420244, 0.0331837, 0.0236642, 0.0183999, 0.0143155, 0.0123639, 0.00744731, 0.00510669, 0.00291009, 0.000884082, 0.00058908, 3.08326, -0.356412, -0.423444]),\n", - " 'lam_x': DM([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),\n", - " 'x': DM([468.034, 453.412, 440.063, 425.747, 411.838, 398.561, 385.483, 370.694, 357.209, 173.841, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 8591.02, 61193.3, 50051, -8345.25, -162558, -4321.95, -72714.8, 5555.41, 14341.3, -3961.87, -3531.2, 8591.02, 61193.3, 50051, -8345.25, -162558, -4321.95, -72714.8, 5555.41, 14341.3, 22.7, 22.7182, 22.8375, 23.9545, 24.7475, 25.429, 24.0712, 24.7132, 23.4304, 23.7047, 22.7, 22.7, 22.7182, 22.8375, 23.9545, 24.7475, 25.429, 24.0712, 24.7132, 23.4304, 22.9333, 22.7, 22.7, 22.7182, 22.8375, 23.9545, 24.7475, 25.429, 24.0712, 24.7132])}" - ] - }, - "execution_count": 86, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res" - ] - }, - { - "cell_type": "code", - "execution_count": 155, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0123456
0468.03353325.02732.916493-3531.20000022.70000022.70000022.933333
1453.41176725.06198.2882672732.91649322.71265322.70000022.700000
2440.06303325.0-3878.4578346198.28826722.94579522.71265322.700000
3425.74736725.01639.701692-3878.45783423.18722822.94579522.712653
4411.83833325.06123.0329371639.70169223.51973423.18722822.945795
5398.56076725.0-16585.5077396123.03293723.77011923.51973423.187228
6385.48340025.0217.313208-16585.50773923.69957823.77011923.519734
7370.69443325.0-14943.460194217.31320823.65232823.69957823.770119
8357.20913325.06266.876146-14943.46019423.75261023.65232823.699578
9173.84073325.049.1826296266.87614623.90521423.75261023.652328
\n", - "
" - ], - "text/plain": [ - " 0 1 2 3 4 5 \\\n", - "0 468.033533 25.0 2732.916493 -3531.200000 22.700000 22.700000 \n", - "1 453.411767 25.0 6198.288267 2732.916493 22.712653 22.700000 \n", - "2 440.063033 25.0 -3878.457834 6198.288267 22.945795 22.712653 \n", - "3 425.747367 25.0 1639.701692 -3878.457834 23.187228 22.945795 \n", - "4 411.838333 25.0 6123.032937 1639.701692 23.519734 23.187228 \n", - "5 398.560767 25.0 -16585.507739 6123.032937 23.770119 23.519734 \n", - "6 385.483400 25.0 217.313208 -16585.507739 23.699578 23.770119 \n", - "7 370.694433 25.0 -14943.460194 217.313208 23.652328 23.699578 \n", - "8 357.209133 25.0 6266.876146 -14943.460194 23.752610 23.652328 \n", - "9 173.840733 25.0 49.182629 6266.876146 23.905214 23.752610 \n", - "\n", - " 6 \n", - "0 22.933333 \n", - "1 22.700000 \n", - "2 22.700000 \n", - "3 22.712653 \n", - "4 22.945795 \n", - "5 23.187228 \n", - "6 23.519734 \n", - "7 23.770119 \n", - "8 23.699578 \n", - "9 23.652328 " - ] - }, - "execution_count": 155, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_results = pd.DataFrame(np.array(res['x'].reshape((N_horizon, -1))))\n", - "df_results" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'np' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'x'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mN_horizon\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'np' is not defined" - ] - } - ], - "source": [ - "np.array(res['x'].reshape((N_horizon, -1)))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Notebooks/51_simulink_controller.ipynb b/Notebooks/51_simulink_controller.ipynb deleted file mode 100644 index c6e7714..0000000 --- a/Notebooks/51_simulink_controller.ipynb +++ /dev/null @@ -1,304 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "73e650e9-ebe9-4ea4-9eb6-8ea978cf25fa", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/home/radu/Projects/Master-Project/Simulink\n" - ] - } - ], - "source": [ - "cd ../Simulink" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "4fc6f955-8ece-4796-9479-275515ecfef3", - "metadata": {}, - "outputs": [], - "source": [ - "import matlab.engine" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "c13d599d-9b97-4178-876c-f40418cae602", - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "df5fd736-702f-420e-94e1-885e4c1d3f0c", - "metadata": {}, - "outputs": [], - "source": [ - "class SimulinkPlant:\n", - " def __init__(self,modelName = 'plant'):\n", - " \n", - " self.modelName = modelName #The name of the Simulink Model (To be placed in the same directory as the Python Code) \n", - " #Logging the variables\n", - " self.yHist = 0 \n", - " self.tHist = 0 \n", - " \n", - " def setControlAction(self,u):\n", - " #Helper Function to set value of control action\n", - " self.eng.set_param('{}/u'.format(self.modelName),'value',str(u),nargout=0)\n", - " \n", - " def getHistory(self):\n", - " #Helper Function to get Plant Output and Time History\n", - " return self.eng.eval('out.y'),self.eng.workspace['tout']\n", - " \n", - " def connectToMatlab(self):\n", - " \n", - " print(\"Starting matlab\")\n", - " self.eng = matlab.engine.start_matlab()\n", - " \n", - " print(\"Connected to Matlab\")\n", - " \n", - " #Load the model\n", - " self.eng.eval(\"model = '{}'\".format(self.modelName),nargout=0)\n", - " self.eng.eval(\"load_system(model)\",nargout=0)\n", - " \n", - " #Initialize Control Action to 0\n", - " self.setControlAction(0)\n", - " print(\"Initialized Model\")\n", - " \n", - " #Start Simulation and then Instantly pause\n", - " self.eng.set_param(self.modelName,'SimulationCommand','start','SimulationCommand','pause',nargout=0)\n", - " self.yHist,self.tHist = self.getHistory()\n", - " \n", - " def connectController(self,controller):\n", - " self.controller = controller\n", - " self.controller.initialize()\n", - " \n", - " def simulate(self):\n", - " # Control Loop\n", - " while(self.eng.get_param(self.modelName,'SimulationStatus') != ('stopped' or 'terminating')):\n", - " \n", - " #Generate the Control action based on the past outputs\n", - " u = self.controller.getControlEffort(self.yHist,self.tHist)\n", - " \n", - " #Set that Control Action\n", - " self.setControlAction(u)\n", - " \n", - " #Pause the Simulation for each timestep\n", - " self.eng.set_param(self.modelName,'SimulationCommand','continue','SimulationCommand','pause',nargout=0)\n", - " \n", - " self.yHist,self.tHist = self.getHistory()\n", - " \n", - " def disconnect(self):\n", - " self.eng.set_param(self.modelName,'SimulationCommand','stop',nargout=0)\n", - " self.eng.quit()" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "5822db6e-2a7a-41b9-b684-b05804c74406", - "metadata": {}, - "outputs": [], - "source": [ - "class PIController:\n", - " def __init__(self):\n", - " \n", - " #Maintain a History of Variables\n", - " self.yHist = []\n", - " self.tHist = []\n", - " self.uHist = []\n", - " self.eSum = 0\n", - " \n", - " def initialize(self):\n", - " \n", - " #Initialize the graph\n", - " self.fig, = plt.plot(self.tHist,self.yHist)\n", - " plt.xlim(0,10)\n", - " plt.ylim(0,20)\n", - " plt.ylabel(\"Plant Output\")\n", - " plt.xlabel(\"Time(s)\")\n", - " plt.title(\"Plant Response\")\n", - " \n", - " def updateGraph(self):\n", - " # Update the Graph\n", - " self.fig.set_xdata(self.tHist)\n", - " self.fig.set_ydata(self.yHist)\n", - " plt.pause(0.1)\n", - " plt.show()\n", - " \n", - " \n", - " \n", - " def getControlEffort(self,yHist,tHist):\n", - " \n", - " # Returns control action based on past outputs\n", - " \n", - " self.yHist = yHist\n", - " self.tHist = tHist\n", - " \n", - " self.updateGraph()\n", - " \n", - " \n", - " \n", - " if(type(self.yHist) == float):\n", - " y = self.yHist\n", - " else:\n", - " y = self.yHist[-1][0]\n", - " \n", - " # Set Point is 10\n", - " e = 10-y\n", - " \n", - " self.eSum += e\n", - " u = 1*e + 0.001*self.eSum\n", - " \n", - " print(y)\n", - " self.uHist.append(u)\n", - " return u" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "bac4afc7-4cfd-4d58-9563-d60a022c02a6", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Starting matlab\n", - "Connected to Matlab\n", - "Initialized Model\n" - ] - }, - { - "ename": "MatlabExecutionError", - "evalue": "\n File /opt/tmw/MATLAB-r2020b/toolbox/matlab/external/engines/engine_api/+matlab/+internal/+engine/getVariable.m, line 27, in getVariable\nUndefined variable 'tout'.\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mMatlabExecutionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mplant\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSimulinkPlant\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodelName\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"polydome_python\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m#Establishes a Connection\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mplant\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconnectToMatlab\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m#Instantiates the controller\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mconnectToMatlab\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[0;31m#Start Simulation and then Instantly pause\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meng\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_param\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodelName\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'SimulationCommand'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'start'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'SimulationCommand'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'pause'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnargout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 34\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0myHist\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtHist\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetHistory\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 35\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mconnectController\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mcontroller\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mgetHistory\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgetHistory\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;31m#Helper Function to get Plant Output and Time History\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meng\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'out.y'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meng\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mworkspace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'tout'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mconnectToMatlab\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/matlab/engine/matlabengine.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, attr)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__validate_identity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mattr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0m_method\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mMatlabFunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"matlab.internal.engine.getVariable\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 120\u001b[0;31m \u001b[0mfuture\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mattr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 121\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/matlab/engine/matlabengine.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mFutureResult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_stdout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_stderr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeval\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 70\u001b[0;31m return FutureResult(self._engine(), future, nargs, _stdout,\n\u001b[0m\u001b[1;32m 71\u001b[0m _stderr, feval=True).result()\n\u001b[1;32m 72\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/matlab/engine/futureresult.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpythonengine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetMessage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'TimeoutCannotBeNegative'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 67\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__future\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcancel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/matlab/engine/fevalfuture.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 80\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpythonengine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetMessage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'MatlabFunctionTimeout'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 82\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpythonengine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetFEvalResult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_future\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_nargout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_out\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_err\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 83\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_retrieved\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mMatlabExecutionError\u001b[0m: \n File /opt/tmw/MATLAB-r2020b/toolbox/matlab/external/engines/engine_api/+matlab/+internal/+engine/getVariable.m, line 27, in getVariable\nUndefined variable 'tout'.\n" - ] - } - ], - "source": [ - "plant = SimulinkPlant(modelName=\"polydome_python\")\n", - "#Establishes a Connection\n", - "plant.connectToMatlab()\n", - "\n", - "#Instantiates the controller\n", - "controller = PIController()\n", - "plant.connectController(controller)\n", - "\n", - "#Control Loop\n", - "plant.simulate()\n", - "\n", - "#Closes Connection to MATLAB\n", - "plant.disconnect()" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "478001a0-5e15-405e-9b91-1761ef137f4a", - "metadata": {}, - "outputs": [ - { - "ename": "MatlabExecutionError", - "evalue": "Attempt to execute SCRIPT ans as a function:\n/opt/tmw/MATLAB-r2020b/toolbox/matlab/lang/ans.m\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mMatlabExecutionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplant\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meng\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'ans'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/usr/lib/python3.9/site-packages/matlab/engine/matlabengine.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mFutureResult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_stdout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_stderr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeval\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 70\u001b[0;31m return FutureResult(self._engine(), future, nargs, _stdout,\n\u001b[0m\u001b[1;32m 71\u001b[0m _stderr, feval=True).result()\n\u001b[1;32m 72\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/matlab/engine/futureresult.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpythonengine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetMessage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'TimeoutCannotBeNegative'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 67\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__future\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcancel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python3.9/site-packages/matlab/engine/fevalfuture.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 80\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpythonengine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetMessage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'MatlabFunctionTimeout'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 82\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpythonengine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetFEvalResult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_future\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_nargout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_out\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_err\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 83\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_retrieved\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mMatlabExecutionError\u001b[0m: Attempt to execute SCRIPT ans as a function:\n/opt/tmw/MATLAB-r2020b/toolbox/matlab/lang/ans.m\n" - ] - } - ], - "source": [ - "plant.eng.eval('ans')" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "dfaa3294-60bf-4086-9ec4-e9794f8adf0d", - "metadata": {}, - "outputs": [], - "source": [ - "plant.eng.workspace['y'] = 14" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "d9f4ca79-f401-43ef-bdcb-deb8152aeaad", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "14" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plant.eng.workspace['y']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d6034609-2a8c-4b90-a8bd-8502f5cf6e76", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Notebooks/52_mpc_server.ipynb b/Notebooks/52_mpc_server.ipynb deleted file mode 100644 index 34a03b0..0000000 --- a/Notebooks/52_mpc_server.ipynb +++ /dev/null @@ -1,105 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "69938cfc-3188-4458-bdc1-87d87d9e9380", - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "import pickle" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "e2214d3e-f7cf-4e6d-840e-70f35f7ce311", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "0a0c4438-e0cc-44db-b04a-7f0f9c01f14a", - "metadata": {}, - "outputs": [], - "source": [ - "import gpflow\n", - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "77493d54-0a7c-474d-b20a-00b94755a984", - "metadata": {}, - "outputs": [], - "source": [ - "import casadi as cs" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "ff16257e-e721-4798-beb9-d7927cb658f8", - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "0688ff0a-d6e8-45a8-b03a-f8e875d987b2", - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m from ./../server_implementation/controllers import GP_MPCcontroller\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "source": [ - "from ./../server_implementation/controllers import GP_MPCcontroller" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e44ecaf3-b9ac-473c-a088-551648d69322", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Notebooks/Performance_test_exps.png b/Notebooks/Performance_test_exps.png deleted file mode 100644 index 3367f12b29d025d293056b258cfe619e453a3586..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 344342 zcmeFYbySo88$UcsL=--Xgi;0}ARvmMv_XuN?$Ak>NRJdmK9Vw0Iz~yy=rIr((mira zK$?*Q9QoW+KhJr7=RD89&tKo2!{G+D`+moDz2dswe0-s-fWd8gPe0%IBZ{ViwY~|+p@~tIE?WNlr2WK}2+gCR{EZ@4?Iy*fO5)~4; zd&9=f?TxF1u(0F*{RScDx7NZFBlN%>K{Ria3|&DWS_aY=87MiG1w;k{fuBFo@k(9C zdZu!@r=4vd)IRO+*|@?Lc9)!o3ooSf4-Nmhi>cOhONGZ$NbUYN&^*b#Z*M+G4zGB3 zctaI*R5Sk#yOYgDqw;}Uu)O@+C5QACWgL!E7q|Llbv1p$(kF2XD#Ia_w4yWm(#mIM zZ{=Xjz@7>i4e8agxaf#y|8orjNl9Inqxk!SLJ;Ws-^+VfC4$<8gpl)V7n=;3!W{bSD*k;P#8A3U-`E3zdB*J4Dz zV;X$B1FQurPYU4 z+9}tPL>5KRN#-mNz3UJsF?3V?+Y^RJ5m^zmZ$C?w!VnEQ$u-Omm01@#94R7s9ilFV zE*3$XXr-};qmM&H7Nh2xLeNP$thHx3b0Vhp5%m}rSEYqx=?D>70gg>ZbkbRIs`!?_ z_%(=`&h-A5S7!$$siX}-qLYduM2aFs@>w8gV<(6?m=`ROU56_Q8}0~OI`M$?0Pl#6 z5MgNdmb?b>H+1mK67f|#D@e~#*jTqII!Rot&nK&smoRoUdh=s^ z)tSz5fUe7tA`67WIpT4n7h588|JZ&oM^)s@2x7d*;%@wAfK3DuHMhnPA+p2@Ij!>Y zEfYseb(><0jx_D@dzi@{BcB+!D>r+^<9%8nxMstC$5_@%Kdj~Uvzck+u+zfuB)v)hKv(q(}hY zN(MJlXQ;2Mt&vl-bpI7NRAsW?=*SCPt8y5g9h4)m5(-ODhN@QdXWU1#8P}hhD<6J@ zO(KC7d}cVU zZ$2cr1GsOD8!y9Uj);My4Z&5=5EyiTAJCgcJXC_<=Gs3eKx+ zhjA~~KRui>Beq7>CY$9Sh_s*83Ok)W1uG2Y$IJE~DNjBd`WTNtNfcQ`B_D}AbB-fO zKzb_BNn^?qszZ(ZOPoTs74Wn;l$gI*_&ZTU9=1!68wIf2EG`7L&TWOb`OkyZ5m z1kIPsxuSd)i|{Bx?2Caj^f|sMd;d%1w#Tz$CgZ!>WIVB^+(@}0Sp)kqWBbimLi^ml zm0dkN9@Z?h5{#L|3D7^6bu2N}(Si6X4+Wt`xAIF60wsvpURF```pp$3FlRYN-O#@5 zjuT3P#y<AYVf(S1`6mg#z4ZX6*Z-)8(s@MrMg}p90Nk@2uAjB##{$@i- za6kUqfON#ZK4wyfI4_HObaHRu<;qc5heMaq+F_#gTU44pSfb6yCjlXrKzIyhfTioz z_av4eJQ@3^R=V1L+FpZ1z)|spjX4oB zT-4NT;rwt_JWj*;Ll^JcH0~~5vs|gW$Q+mSDr*;P<8F_ZmQ39Xn4=+hia+3Pnh(FZ z^CwZKo%Y@RPt~vGmI$gFwYy2Hwm>$rxQ0Ueji+R!@+?yvJ@jT6n#*^Zu7gXB7I5*@ z9Vo%Rvt-2ng9lCc4kaT4VzUP-LL^imqgh5yOVPXhZ2pP39vdZ*9;~P`sX$!YJiWFN z?z;7fZh1I9;OUPKUGK=3`V_XBpGS6#v+QnmZFWBpzXhiTfxMo-BL7V-T}F-1iLc%Z zeitX?68KeXFu`bXEg}S#u>lMGn*2>)SWLe2Ret*`93D0$aHv9-%n=P zemTY|-xoSAUFukSQaDGTC_zjqAKLe>dnXkJ=$;n7!$ydd*{0Su7IG1QIht;;LV7y5 zq|Jw1OAz*A^D@9jOWpl#F{P?cBH@tm$zUzb%iFiXXLb=2c?CXR(NO6@Sr|bb(qjVY z$>H)Ve~WG8KG7RmiWHe*q8*f;VR=w~|K$gD7(oM_bdvivt4+U$(1n?lu^8&-b1DA@OfA$}slP20v*$q=`MGlS>VP-ZF-U%W+ zIy2qVy8b9}3=+23aB5@k$g>i_?Kj9$rBWf>*l2eF(zA_D;=MY%W(O{W7r!-*X00sY zSk1I@VOVR)!LAF=>ZB?@Mb<- zix-|D#=m0i6Y2^O`#R@6sqf8P8zFM0vwlDjY{f7Cw4IRaXWd3e zp>s_dDu-_dbB|{dPEHYUVaBPZ`d`>V+CZ54NAAjzKPX&B|M}s8{ zy#Mk4aJ@_e(gOx)IIsRp|2hPtdwK*Du`*t8f9PC`nXxUA)*lk*@~gVP=c~DGa94PL zZ6Us#sNKbz?OZy&A*)dZfHx@G=0n$g;5+D3gb1$^G#0U6P=XXDX&vU@T8H!}(Em}+ z(0TLwcfWs4^Z#0*xHUd0335=E#8<~+?aPog`%Zs8A?0w_r0z{U!eglf$?0WtD-hk* zW#)s=RS`zI*>C=-jI^|U5V7jS%uq|YX|@6(|NHg->HO*bJU_7aP83AYv_VH(Tie)2 zKQQvXj7(|0>k|LPwi2X(7t77RWtZ`Y1R>Kejx`esK6pf8gov?^XW+F8j9q&eqfvuf z;r@)zW(iW#izO@QPa((RL2`2PP?Y3`(yxfntB?qfX%|JFgNlj&3Ox>1@B6*(%(;ha z{#V%XN)kaYmz^D!b#KOU4faWH7SBh^`U`A~5*B+tKfqh6OKm^*+i=Zbg?=7ZmsA@w z^~5et3WDfCWTG_y;ns;P0;(w!CHh8O#Hh)uBK@FgX@yV2JB)Nk(}0sb7~I$y zsjJB5@}5p=OV00C8z+aC`RShdnXU$ODAsL6Q*q@3tJ58gGu+vUIXiSYD_J(6*=)Zu z(YEcwrG_6tw1jZ;QF0Mw&^=QT)A zJ8aP@1p9l7En@xF3HI(-Q+u&B$Bly|$Gt(+c)(;g@^G{a(;<86!X9wE-LU$lh=3Mv zuDBR=MjBEFhfne8=Gm!6kzUCVX_c&Hk0vH96HVPPhSs*ez9!;Ww^*~?EGOuEEXN3mV zY*&ITcx!fN#T_<-i1#45C%{Ohdhaf-)J!=I)BA5xAb(H^7o;6b;ZF5XzuJYngcb@5 z`LO;+cxVrVBc~R1f^V1$6Zm=5?9{Za03ON;<@h4ryd4=fZy@Zy9geVQ4YI903)63U z+PrCxZE*j+U%-#qQe{(kWmuo=nePc9UpAf#x#3dPlVQP!r+kxodAcRj zv+o%QKx8YH1)Qu|M(~wMK76R#STa#%tpWqyzdz+%CQw?J?aoOq`LNb%Oz5j6SvD4ICP2;MO-IOhIY9+S#~wSk}A;tPiwxtMn3-{_CKY0&UlBf z^O9x|@fBNyS+lk_FCQFBIXe9DPU4VIX-@Hy<^u-@L=P zP?9vXkZ3LhHbO!X9#f9u-s$<9{s)c9!#c3)*PU1J4Qr*OI4TxLuBbJvS9WuO8#fw? zm;{aBce~wI3-fC>+JK-aLLST*%bspWb1%#u#Os^!fhBgn-~Jt%Ft?pf-deLW(!$v0 zr{#5af=f&r_3|_Pq24o-2z$hoQzKv0{N!HkgcU3B7mvwqG8Soa8wa3tkQUx)eGS6H zC9OEL2be~%g!+(uF=9e*TAnmlmdExbLZ|4)y|1#TAseWGg^04+SA+GF8(;gE_htQk z-ur}xegQy#HEq+^8n?np{H}Plqhhf)CI93AXHNQ&3rxx`0^T{mcz3CPY;VlmTwNr? zweK-$6X+zCZ=}8L;)9Mg?j-c|`z}8CojBF`(rS(PnyHqPN5r48dy&q*&q$v=J=!!E zg8t$>+vYr6)kl4ypqF|9Y>V}pJH5;=3*@S9+0Zd@ckg&f);yF0YU4e_E3-|*?*D7{ z_d@;Tm93XL87=cioSxv$OsU!3J~0WKNo~CaDfHLfHf_PYiulaCG6nNppqBRs3{0H} zPfYc5nB;5X1ABZ&C>C=wl)6c?kkL4omJ6wsO~~TIpz`aT7Ch$s)EI=^rUVTY?C6$Tj`?jE#L@ ze6<(>SfGLhH?s`V%{eYNfWK@wpUOjcVz}Bh%Tx|V%^P0`ryj5%Hwt|)rB%%-%NZIH z^5#*y52ul$lW!$2f?6*ACGQqJ4|JJ-mUaHpN^>6v49>Nhuw;sGLpar0tKoMvVJm_- z;{t1;v*uR;PX!QZs!Yy*RN)+V;=Z{4N{LI7;{dudKc4*ir;8I<@^hb& zwR+0kd>Afn+$c3KxDzA-)-us~^V~Kst>=1g*rsrqYyT=3JTyBfAI7owJW?9Unajfk z$PTGHf5k$1yzg#ez`$;A1|z3ikZ5yBQ~7Oh*PQR=ua6L`cM=l!zb-sNOscPm`Y(la z?R#f&@$HclYdk;GG6|1`qoB=mqEl}@&w&D&{*#}&%3f%kLR6It5Rl6@e-1roox4M4D3>y(A^XpA3a&KoZsHb8GfPxr@rjoKVuqZ zKd_2*5NcaBH;Eso^0W8it%Qq!1 z@guCbu9*EKtu;6bp-18r_a2dsU&JWb?7c2N!l;j` zOD>@;jovIBh~_PQl>%pgd0cApjZs~Qyj_&4mw=L=Da zc~$)~#%bz`&feX|UBmm+t{TXBb|U=5u@;+`6D?yz&FNcC2LOcWn^r0q96%n$4$c5y z?=%vH0$ktB4L z->=S(A8y3~A14eYHtY2J%lBX~1F{H_EwNl$} z&$a(v64!odeOjiw1I&N`nVfHayP%8&ln4eGD`6yGMpxg|UDrE>q)7%r#9Ubn&YT_#o%e*6n0C;|vXkPIuL|uAMhoo`uqisgN=)&O9z>Z4n_B=oU z7@U}|D-B3xO#M=N(T($jM%;<|*>V3_F`y~(VQ@e$JWVwBuScWN)%`L@%j}z8q5I>I z=yykN4p;KmS}5q_xJt}XW}%$^buxfTx1aqQa=0jtDkLdMj1h@%poha5rRw=P8vZ-6 zB;8dF*bdu;u6P*S6S-yzJ!r(0L$-h9}lgFT<#Z}}OZ7Ffj`Sn2}W_FV?E6KD?^zD01kl^ba)`)plimsFZV8n z&Itc_ck7SSvv@9K(Dalw!K9Se$(ehBjL>^fGAtqx0N=g=^S1KadGLl|z~!p>dAj-R>s zjMx0YnloUEu5)sZ;f{N8%fIHMg?SyLrFN9k-h8EjE(n+xl4QBxm@%NWX0|?vFXyE= z!9)~XrhOu1)(rcH0R6=ao^(c?0Llx70UaXB{7QIuc&f+Dd{zX^iD6uw2Y$$POW{~9 zlH!AQs+eW}){hE)n{n3CZb zMUFziY)M0b4J;y!Ct1?7lunxPf@JY@*gBxw;pW9aCRfYI4CChk%i$?R`t;#fbD>R)rrsQ-s>7kJit<9wVYGMEXd z7A&kVoBLMypB>@Wcx8znPj_X{v;m^4QI}ZZGIbl2mza-uK#0qilBZ=BD#mvx%IsX0 z-u>J^Qkb9q1yHhT{a)w?UAsVjc9r?z^kH0ft^n;M9^oURqq`4I)Vy8;x|y&fdsZ*} z{e*<<%*|UNfS2>ny&Wy3Wu5Mw7xj3N10=q13PPq9w~850d>pCDKCS-v4l@Y(`l3Yojc#QfoKS-@Ng2{PimA zj+^tS<0M*j^%NPs*?3L1=b1=K1I_aB*(mhVJh=@@JKYNT;>p5&r=8!lMcOi8H4Xt& zySY*`zqu3<5TVT84)=!?zONlnen@ehBb9jo>3X2fDxFOX?rP zyuu8mTEnk^*W!1DHBS3Bg)mcJ&6TtqB_0dfJ#6YLZce!nPG>W<99W96PZHHD&NK;p z0lSaVo>H*3t2dj?ct+K6J5EFaxO?*HuMSzeP2>TFR7((Vn!Q9qQ~@w_YHB9WIpAoD zMA)UM)5FT%YaM-R74ZW>5!n@{MT1zE-$&}hU9Ev1OT566V0H7zkL-TQ+U(dU|cII=7%s+`KLEUTmxVMVt+t0;Gx-o zXPT2Viu&V)s{q?Xzn~oWKMeG z{EW-au$%t+=BGP}zu$|u)fkpOn9c!;6971pZf|}($84V{yZwy;@n-fZ>G`Be)*c{8 zePZ`n$4w#-zHHR=oS|%Q|7EXvLryX@4j%ev&kt8{K=taZQGif@-A~|3+Zjw;TUd0! zidZ*Wl_BLN0~|hbt?al46bAdB8DYJqJE23D_xP4O-HRS>*LSRb?KlgL^1^nw5vfqa zPf&iJoklk%kG?h4?)L~EM@AX$s;H%UIeQ~%PuB#E-r)L0*S`6F-QhJqu}1n%=)2E$ z3y)r=meL%r1gy2_JylAM^+_`nIw=G*`Rtqt6-(IP!m60ARPL`@PF*XtQ^%2_Nv~3& z5qC)$MFA_>X0fzX#^K&4nn&zOkQizp< zOQ68sz`s^T&As!C-=t9|AKw3Iq^Rc;+(kb5`V<&LJF0p2faYh{ZK2xQ>Kw-F$&5)kREx&lZg#_Z!7ZH^xS|5V74sQ z{!+ITyd-^HjoDeV+c^O>r*I-AqZ%qbI|zfmbH3VsL6v7M8vH~ijg7aEi%-QAB#nVq zeI)<qZ!;%DzRQRwlbdftUAZeC&dsNCKC_kyGyV11MfAjDhX>P|?Af(f0D_rf108!!LHTv|TsnR+_E$6vM zA9wgK5+V1ycGMaRm$Nx;v)R*ULKqSl+4#wAa0cy~x7^8zVtR`Y4|BrXX-&8A#`>+7 z9VbuPD6V|S`crOa1#M-@QTQ5KyPnoO0940xd^TPde*B|(R2S4mo|N5zK zkD5Z29pTyBt5;^%lZ(_7c?Fzt%yxYSH-x{py=MM}Zs)3`k+|RP?Ibb5w0HewJ~HUG z=8f3;3sEyN4Mx!e=&oc&wn#@xL*!QqAb>;u1n|};w-fJtJLgR^FkY8o%+x2OsqhHl z-y615y&k2qck`LUuH6$dLb($LGK{yt?nzRMt)>L-2SKS6E!G%D0O%3?Lm)tXRo=5~aPZ(vHAY-T z>xh!@^R-!U#mlzW-pOjW9S;iF5%V>!S8ayLm%Z?BdriHwO0kP~q@5BSxxh~bm)4nB zRI`uI%!ORpV19D$NQ8c>Kmbe`M`DPDWp~KgyXI zZ^YgY++b?dzWbEL<7bGIM8o;uVWq-{FkJIpZ98&cxf}1drlRFRC2&h}iDJjGkTu8F zCf8lRHA1Jk8LvHF^ne8vsHXU*2H-Vdytk0!wpk`)>W^Bhq~!vi-sJtsTdkv(WCcpg zC1tqh>ysDn#BK)G=tUb5Oil69hM^oDs@|2jLQlEI@<$ngLWiHjhgGlhiQ#9fxN>>o z5*LmZ8!~g7g4&FVTF{lfG|K~yZMts=8ZX38W)F`Dd%I4fC#+(~FiKG1%HN~39E4+p ziu+NCI6+-$=breuf9>&6O(x=E=5BYx%IkSgE>up`70U^<+Sv@Wvkc(_P1M^s8rzZ5 zPUrAI+fTh2?i;-jReU~FjY&Y$?{e#x9@>Rkoi}h7eHXh?k&i#e$~KwFs;3n4FJ@AE z$|>6NfWyMiC_wiv{0#u=L|xB2l1n(a^26sHJogQSBiu)?q*WLy7xN?lpr&|nKPUCw4C7dgAbD{FY{-}@I0BpeFoR)@|~0=BN^?tDBTuA z7H$RQ2?zF#Xm(S&U3;qt_*`|()|Wz3rarEIl3ErV6e&`X8^|2wFHfi3=4X!1{n zfvhW^GcU_gBl*_u^zJ0n6+TSzgp!Gd|3eN^2>qM>KPq14)|k5@xookAV6fIzM%u#( zI}m#!Es^^I97D5wDEfAtiR>a8o?Us1&&fvuoNT+2t-=NNS@$u(5wkXn?1L+VZVTj< zo@C~<>^*3tTNTy2|C)Rfiln+yq>VF_%Dn@Ah#4X?EdhOmsX{ENI(~pAb)D}43Z8}g zPnEJI7(LP(0L%BiH5St5GNwj1Ch%zP)lJm+`#oq>P@}JrDo5kgZcvo!WjRIcXQ}}d za>J}QlF9yLT^e5Dcv!n|t^Gn5pCdDr8ZwWhA`c&yk_-kl6#OVqm$P;;`LONBFfi*? ze`$;X+vKmUqbj2a#9-iMp#7?69dS(@ZQ>A7Kg8l%BC-f+U-4mu2;E0dJ48HgXBqyy zQ9}|;Qq@@31?TRvScNz1`T~zC?_~HU#3f}uv~hn~t~QOo`ov=(W{F>5?z8S2-?if@ zQQ`Yyn-JuDthm+X}?hC_3S>1Nw#IW=|=X}a#d2LVIe527bL+_q#@@y zg1d>;QJ1Sae-mW!{(R=P#X!7UF~Xx6P6bQ1j`02h?^iy|M(oqTHWCTq#?H*7#;^ko z#51*wFGYhoUw&&n$OdK98q=;E_K&!(K}M9&ug^tocN#KHsa@~!^y|L)HZ1(q3+VE> z?Kyhd()&a=Vd>bs>c7ADLvTK^HhIaLq3*HA)*KlReYR+S9Q75@6aBB$zUa@!Tuch2 z3!}43Q2?4*S>WBH$@|wf>Q*oD0OxLUo`WJw`WFB67WIZIVE$UEr;cFZnVsK7Ckqwu z*mMpyd&;eF!dy$(E6P|R6S+!R&0M1{=VMq!(I8IdDE5l{aL!nNxpR^3n&HY|FvW6H zc*A(dt1A-A5sB;rLV^301{0!;Y*|n;Lfq#&Wt@o&1A8FJi#|6!byg4@daZ-T@85hN zBVhHx2~@OXAXXr%=`WyJa4fDN@FT7?Zs5?CE`}-eBsUl4fm3cI(X0in!P^yQF0cTH zUp0It+s{@cmn|-U<7X_=_VQdFPjSfbf@RpSL&ZPli{#7Y;$(Po?8^plo*!~**V#kb z;>W_3;k7_L*cs}9-seDd?8(3J&|nH1B72DP>ymh9h?;lR&WT2Ya(Kv9WVs9(p6RB} z_4wF%EkC=aPTe=pJ1;(6SP)k^bFFsk)yPM!GnGRpv`mkP%yz^yac8_K8AvslGzZM& zh*6{5kO?>x4Bb&JvyUJeLwa)2Nh*ng#$sPgDS?UHdu3mG7OXclG3k!V;VN90R5#{- zB*iMQ4JE72;I@04SZhh8sQK=4RHrb%K;`R0`SbIl!_8J7*T-vy_M_Ro>UFY?Z@usrE%wZDGp5G(gY$WaequJfetDb2%|FX2eKs?m6oNGHHY|>@{^+q&YmZIef#W*ep4 z;wza)>akoC*VyEMEHkA9Izka5lB|##;pX&D1U7JZ9QB~Eu+aWFuq=*Wl5~{7BK%F( z+kY_3c$KgLgi-74l!2{C8SJyV{lN7&h5_#zYhSHo*<$roU9d`BSJH(Peg;~AaOAE*Z01$ET0!eNhPgpo;GEdXlrA-0k7@=7##}gTcW`#z# zF0KX&k=rno#3rPUL1QF0ahV5x#HogbnbBdKSzFgs>EQI2QVMhX2(KzepyCK*;7t+q^j%v;Fm62T==ZE#jlIL; z_P+K@1=9WW414pal)B>`Kl^~8bJ(NZulF5FcSdQ0bIr!rL)nS#I&YaYIOY1yP&%$X zBLk<_g-PFlLB@J8CUP$8oVrgoa(s zyMHK6cZI`e$q1L0GQM0oYsfD}9ZyHja036D^o#^fMn3U~{TudpDSJE_W-^*NANQ(6 zy2t2<(jG5Rj2I3OqXTxYW}gKA({|IvEgDf&2EQG-D)MI8_vui95f9k?!Z0on^)`3y)zSy|za zjl`gk)8{U-4e>|!W;~^9&u151kJ;(4{RB|vXCh@a)}wU&5(?%ZUEMt2mkaG1D*Jgf zfdxwN@%FrXb&dXo-xuHcUAZ*A#HF=gh0?b3#czELh~cudJ+d5@6dr^0L&H7ptyRy? zw6h{)fjs(s)EopVUl2S+MidVrkRjhr?wY6ekE+y_kB+Ll*)g(xtjtE=+Lc83+vKN) z2?d!m_k2jJxZl!i^`ccI-^cm1J!hW-THiz4^$`-QpgfWis6JA(bUt3`6rgQ)1zt^k zcJ8iYk@lTjQK4rFzs_rRxRZ&PXkJ1O3v5Fqmdl3X>#zzwd!R~99H zIl?FMRd|~psHQ_eEz5sZYfYW**ohg;tu0NUd)Sv%;6auIWRGUK+Q3FgM@xO?oS2Zn zqhjWob0t};;r}GeI$AfS2Bw!j0~%>0mNxg%j886K&jwhfVkM-fg2uAa0AmCI_epE* zC~ao`&e1|>*wsZ^Ry}C(kw;Zhr3dYVS8jLID;*8bs$=Yp4)bi_+-I~##3}!DJz69_~H_nAlp5$$=P`8?|+6tda zx=){I9MwK_U(k3cV3eg1i7XoD1Z2>7@?TkMtasght~8trjCFEut@r)%SZ9Ebd|AQ$ zgLUzcD1AIdO58&x%w{z(L#R6o5q~ut^dTMul?!8OkET4hX9uxD7@{%_jx2PKgr*x~*&uAj4n!iTT zW*%jr);8-jV1#39S>r2!$}LCybzL>ZjY4AvHBYppK_1$@Sw)FTt7O$&?efUynNSec zmd41Gx_XKH=PTpcaRb9$k=Qpw@QVA_I%z+c3GGQDXqMquSTdKKTP-= zP!4FvUVreh7{^E9kkW8Hrj>o5G~w0-D}m~Y%3{BmRx_%Oi%d7~K3&i*Gs-I%vKHJU zUsA*$FCQNz6#g9g5MO!b8sRqYjCkt@$Ce#e@*pQBS0*-vnDrcrei&3(m0-?ItqIdX zi@7@K$#XH)=YYb-`FR_Q%0&DKTn*vF^scRRX0lMaK=-=?>)!rfJCA zF~V)_c1moFv#$yaFd=pRyk&?2p$O{|37+^7)cKdZY-?0?50Wqs4F{JTdIq|6i{z5Y z++IoSI20EckEmQM+}#S>&F-A5r;$Lu@m{8MyCJ-$`-ZEPErdri6`}DcG5nuC8}f$p znBb_PY<0Nj(oTo_tNohxgJ&GWN6zu}N6Hi0r$&iq%i7SWdIMHEXqD*p9b)^5`uu6j zc>k?ysN4PB859szO_ia_5>c(ObJsJHOnv*I`=IiNf3~dU_J}FYFLvW-les3{vnzvn zZD%SW`gJ3#la!*kRpSzl3+Ph&zHA*34`U>_1NL1@$AeOgkHTinUDWDTZu|{I!$0YX zdkvWkYkU`jE3F$GgK9ceZgX4xBDgklzN}}-&S>xA9|I%h{FxGm>#fEqfuoL>H5S7U zKWFB^3&!3=Cvwsi{3u6u!)MvtOkWY46E7CZwx~4tc+OKy60=F*$plJL zYau&jTFh-8onRc z3)bh(GozYIsxC6fl5kS?9d~V7bXw7N&Gjke@Vy3Vp?LbI{tzu!YksT}DZuXoOYx}c zu68^q?QO>DikoJN$nS8TU37OepcQ!5Zds73!;@K*2+mP5tp8+Q7W533-4*n~#gV+h z;QhVGs{)@y6n2i^v42%FV-iRkq;$(SAqan;o4ob@GtI(O7bW4-1v=($d00fdrKGaj z4V;4I9h}~53=|-}M%62Qnu;#=EhcGUQLq)sOze}udu#&1P91eLE|7B?+=-H(aeaK^ zVBF-v+T?=a=AHhXP}RFf^0HpK*_mUTrZ0yKDrkOEy}Pn@DIiK;I6fOO)MZRCk^;(EUNFuYUPwYZ`Tx_52=!*vYar2b=PIBbEt$44Oc*M&g zB^QyK94VP*{ewDEiE9iRo4yzZd+SR@Kh7JGFV`7TX>B-cdZ+I{c6$7s3^d;KhZ25V zM)R2B5pyPB;)n~5D3)>0sYu)_GcRukv_B|`H&A`t;gmxpywNm{(Wqrw(tWxrnyzIs zV$Xupee<)`QtLCc)F0n?A?j{Mg!`P`cj@yBGBc-#Hf&|FG@Fd}mX+BJ91n68_NK-cVh^yPPT_)0(X!3k;rW+8 z_*_kgskCW*LuK>U!ug}~rESHfUnV|A01`29!(8-tWb!!pMe0d5LKrRvL>be)1%bqb z|5$&o_w~eVbK5AfWv1R%7Li zlSsuBt*R*~4NYwJ0koM3$T7Q#Vv@FFXU*CLchysOF~pnN{W@O^FKZu6C%`0im6D(; zk?DAaFQF`Ib76Se@OGdWay9NHwNOG?Uw%V0bO&`FSMwhTBp-tzswNbE`O4#;!&cTD7`ihKX6l^r?c0x6K2CZG$a0{cs z6x68c7sVu%GqdS^ZN0mZp#4qAOUz#dWcoSKLwbxSvb)m&tUMy~Wa{VC^NEWBk9LlR zbS)Srj6m2JXNFw)hu_OV4ce3yW~mx-N38~fH`Bg%-)g7W=iZgL;BZ%XjbAHYOKpf# z&NDW$=*Nred|H|6KlmOH;fQ%l4^ZIX?cc`>0u?`rencGXxVmA*G~&f8N_-*l+$q-0S@sNBL< z__`C3;Kr~LVcdcJaN)w7ul&C$$!1iFh$ZoljbV-QbtWd5_rU^>#KuL4^54^`bCLf% z_*`06_hZVSP`vJbPLp#x!GleWU#GZdld2s<&&aQ5^nU3SK$Y6_Ss7Ou*=Ccpn1%EY z6HnHj16x@}O zGi$%+W$QfneT97clD0SZ_b+>~6v7lBFN^;&?k8F{Ba6LS!Rjn=pT}b!D!0O8b<%r} zj9pLSBRAMERo|RN`+Yo745k1|OHwx^)4Fu6>JfjNW!ZUyVCB7#`Jg^7TMLFldu@UCYF_6LP|dU%Zw4hD>=MyGG)>AxPwV|M1<;zVQ@yO^ z^Tc0rqoN>8d+Kmc4h;YP0XW%q*-g?LgeS-Czo?t;xOpIZcca!ZC9no;2*e*Lzo24z zb9+21q4<8kgQfTz2gN22w(bK*0YCgH^l>~9Gw}$+Ow!=b2#E>q%$E6YTdA5_71ZT; zZS!&uoR`x+0mWxMdeE>`U_#i+NVN!=>AJQR^rU$-IpXfhKGgt{W_jjBY2G*6eJCRF zrEOLB<20UBw;hSd&y)j5@Osp%!s|&)v*om%$eUztMZ<-JQQ7< zk-MrE$2~r0`xeUTjCM;)W&ckvx1QHbWz<}Vx}<+%(%rl#!I#qd{t?LH#($Wi)DR0D z>T-3%dvw@fiXSgjyG)mi(bolfLU=R#>kggRkBG8%cpZOf@y^vzrsB0dswIYEO~;gl zpdhpSi!DG&yGlWegGJ0I&X3thKL}HOezbAs{nLfod2#aP*DaKe+5-i{EZ?XGY-@{N z078`3utYZR#mD>18?}_>QEN{(UK4k(yoXepDZZO)qWe}Y{M6>ew`;QhR(qcIhiR}% zZpfM+2W^uPi}Y4ABO@C-PT-3SG&;o^k}EHl@%fF7XI)Aloe9o0Wa+c7MDyiyi4230 zOE(_uoh;)uvU}E$Xsi1%X%9Ja_7cyYLu4hNNaFTs)k=*YZXE*k{r^PVx5%Z8Jjd!M ztxbt4U*03*S1%OmhYm7rTykG}dXhnWk8%8-pNZ9R6%15|a66GV+;5#swd-p#d$evH zBX)=WZdKisxcs`O$>{S<|2jFBu9Vysce$zOh598wlKg=qq>}SAHnp3BBN9Y3hS%fd z1$#TPqlP;Wk5w<|xgN<#R?Qi;#6BcnCsiIjNzd42%5#_E&_RiskXm7(z%alQ$=IpS zyA>w0Hbd!V;nV8heDBAPj}T@a>a_i%fB53A(>_Zm(?D@d=9~F|*vAVnVCnT6&y4Pd z8DJM1iqyw`_2Y`aFP6n`Ts;{8ZOQ$Iw$FVRqN|6TawwvpG4PphPW1)mS;apF&{PAG zr47o8#4&!;Mky5byPDPkdFLvno7GdIA;;@HKQg!cF>Gr4q(vA=BC=~>K!9n-)$gmJ zU|=6A>e%oCa7433!SZ2n9CcD#o;x>RuLDO-pT*^;wVT?kVKTD-3Ts;2&(-AUqfZG; z=;VFJ>#$JiugK2b9`tXpM5g3Uq;8Vh0{djUSn@DZt1JkzZ}39>89k)y0$tg1)rPba za2`f-?87G;3#v<#SHJQ>-90@V*GmPaz;slQ{o$|z%r zVnMb(rSl_9?$?JkeZcJFKr`zuQ8*09DCD9%)`bs3!Xn=;$t5m za}4ui>lXVN?YPWj%_c=A?Q{1oU!noHQg`1Q$?y^19)dgxW{_tU=(kXddk79XlA7+st1&Po77}NzX)hQ#ga4Fvp z;fdL^zDI_=m?;o{S%^(c9>nee$N(j+Y`Lm9S^t-h5)LGp83raYB|g34?7*Mno-w#4 zH|6!6(yb#ylPWY(L0R<PwL7LBr=N_29P&~p)V)6*GuP_ z!*>^EUul`h>a8y^3@FdtH}Obxq%|@vw=o4_@%-g3CCayVC3f=bqk)5vDUnHmeGT5A zk}e4Ts|`av%`%{awI*WI%xi8lrgbtT>xkKyhv9qqh31(gss(`~=E)ku{nt_^D61=w zOT8i6E+W_13dC=w6VqnN+!FNPxSdmzOOeaFESFCqk-0mjp+fDJd*8Al_~M4U7S_sQ zzDaV@?`g|uJ=aI_*gZ8H3ebnY(ke8IRrptZ>ES4N;hOwQ%h{L2{s z0zf-*A~|kPVyEMk1(<;#ve){-XQi4Q}?T54XGt#pKF#RlmR?XdO{US+aJ!iv-LqMb1>DRWXQqmJl@j9 z`$vmohr4fRjh3d?XA@^^hiD)3bdcG~3j$fmk zgW1t?E}G7!&Gaj7LpKt_?dVDgAQ0idjs7g@+^pr3TRX-RZ5kO!`+xED9{yDS|Np-k zrKqeTlw^<0BO_EQGP36(WOEMX*p5|sNgDQcWY1$C4#z5lNRAQ5Ircm_*^cAzd-nOh zFTa1lcs!ra$K!s#-LJRXBXAc9?ocvofh&Ign13Aftx0U;70~mzDAMdnXcgJ~tU~L9 z#%#~ExfeXIshBYO3XB5=G=Xt_oV#PL+wFHP>}L45K)j;LBjaihw<-Kx29msb5r(0>07 zeFK|sbKDIa#xfE9oj#VOv(80( z>Zee|7Ff8tMoy!`bd-b198F#ryZA#^r4Oo6wHT25XR3vEmiGTaP7yKbg)6y&It`3d z!R$Tq=@DCRhpJp0gl!cg0bNANleS(zDF`F&0E*lYPKnlKjA^Mvlsx)R|7POj+N!C1 zW&|GQk=W*5G0H>k{u<}5mMpVwamhWpW^S$^c+SQCXtHa}1Ly|8VHNoOZ+_8&@?qIA zENct>UExb`Hs){T6gSMrR$z5C?#7Sku?vUa5YY>mddnQfo64dbtWA^i-Don-*5C$P zNw?@>%?K?)SW(OSw{EGi05&Z`DPGz`3~AjbqxMa+HPEXpueRJ{n-@P1sm-Mc9(W2> zvFT*Yo#5j>bMz!#h+z7kg@)h7zm*C~FfC859z5@~Plv6Lz2yl4HZI23RaJiVB$Wy`#z?xj(WKYiT73OTukoECI$CVrP%w7IbmyEr2j zD8^?h$CFz{iMzuSD|UdF3C_W!Fbee6_2sd5e9TnxPpup?yvU3w$8IXECf$O= zdhGoINUL>mgLh2BTQ?(2vm;3CH)ZZ7HR5_y1a_^-uZUEqqQ- zGa%&fmsF_LrSCE3Q5?ug4`f}r$NBfY^4_NX3L^EgbidD4Qr2+0NE`8&z_|Q>N7A<+ zcoY~ZQV^%;uG$bBTTwB)`Zf>}^+#V)b&N(Omhx>t3+Tk-N*yLt@v^a|Z(1Yg34+1S zgO8^zIvvDW@XgvZ>~G26J+5mWZao74QU=-fLBR;=2jATuw%tXX7oRJh`JJZo?j6#3 zRT&ug+j7*b231KNS#I<;;XgC2VMRp{aRcLx8g2lUW9QO(aeGXOHv46U^Lv^pzhdxz z!$?W~$?~FA@%KEmVKq>rX?`A{hf=AC`u666*K5J{vjzzrVLv9ZGFrcy=ZF>(P|zjz zyF}Cbmdet4@6z*c(Zo}Ne6VBi0fzecVn0eB$rL?z8hLn0KH%)Sh(}AQYJ(8Y`A9H< zhX3mS`bvkzgI&0&4%#1g+cPm2*l+BfT1gwHD$wQVzG#-^yaDl5;uf}u_O_t^5)*=P zx6;x5+V|?L|Ne^ZufJ)IeF7$qQK7ucoe~(p$Y7+y^%u|}FizW1>V{aIooM-kC=iRt94NFu3 zC1k2LrUfmdGcEPd3T23~{?K<2R^bhi9;0^tm@vki5Kx^aRG7?gSZL~N=!oRw@_ifNG z8Dg=lvz?#**O5MMw0TtoIS@bwQbafsb4v^CG-_D_3+-NbU_04|*CKSrm8vp2_U{1; z0@BHrv0R~Bb&OJ6f7|aM!gdjiNY`s#|4_}0*gd~G%G0+Sf?l;T{J_~S^Wa5* zYQx{g>C@TI__wR47ljeu?wY#9_tXOT{5UF`)cd9=>EfEEG>WK5x2l^~NlP)t=bTqb zSP?V7>q8gZI8i=(ZHg9b>e#e024E7Z6PA^b;NPdJXJRfn@6+$MnA;HJT3fSCSRo0wz8Y@?rkA?7t{! zDozUx6W>geR&7MWpLhzFF46Go{_h>RwY)5GT2OxGqe~2G=?QS_K43Z!*0{}m4#Y(^ zappnSFgrB7R*ZM$FG(I_kgk4qTz+Ne{z`DF&kcPu55;LfC}1_Ll7h76kG^rH;RAWx zxN3r&y=#>fGa?OGt!e$jle-Z<#$^UG1{$>Z^P$}r6d=2Iz-;2uBF`?28w(p6rDWg*z&_ z56q;KuoU1w!~!5< zzs;JR2UM5d2_j>Rz)iA)x9nKAg?$M-Bsd1rb_BBVm7(>L{9j{#x7PgqI4Y;%_|Sg% zAY7$pzjau+wlmOqN1ko8|9zb9e=A*fxQn6^Gi>F>Zm$HA18`+hE|v@tdHVgc6D;DK z7rISfU*?G0VytQj(udP)J&8TPG}%-#Q4*6@(`Ee$`L8;E{%*s{)KAj_z=z$7oC@u- z{{!9JtCZ^*rC-%`e$;?ek;NLCwB&dNOujfrTR&4e4f(8rs_B}d3o*!Y$tcuid?Hss zKZW7%zwlA;NWZAR@1U(Cpd&JFjegaDKnAN(8jdi~mehh+{0 z1X|vO7)|ZV}1r<9*4bG zR*clkkGid>6{OnO($<9cNPSh@)bb4=Gw1@bF+B+!V#8jXSVH!CeGthvw~xWkoT1t3 z9xeFN5EH|2a>TekT%^cO-+0S4!F_u1(0l3vtHqp=8Wd8i8lO-2?pqVSb=DUlenBH{ zAozz=2wOO?S9RGn-5Cb}EFZAZpY=q?7^-(1*ug?ky zp7_Sm>=!Q58cXaMnS?x5HtJ{pu+heZ9r~*PrdVHbcx#pE-xpRhcHQaVZqG^Qwb$9Q z%hpamTi#>2uQ{Cp2w2y(*QK({)s-0JKPDihc9~$K_{_vQ?5wtJw^b5ysnaV(%v2C~ zM&bVkhIzBL<$URa*EyB`5j*pH6)OP_I{E6c0t)A3Q)u zD7-2vpGU{rSKvGI0A91UC$5>K@i_K;$SogKJN=Xd{ohW-+tSls1~aV2n*ppU?8(S- z+P%HF%VQ9}-P+s-$$S*X-fJftlzlM} zKgyNo9{pT~Ol564;b^?$uJ#rlU)y#R&7(>kgwlP_E zJ1r9*WWGW170p!eDA49@1+h_z3p_I=_<0X^IRZi=gJ&u4EA8PA5TR1_CmYEuP&r!6 z?^>bXXaS6NqKjV0>3(=}Zq(-;@uZHIweH5YDOKLHc|Z+llihFt@!WLop76XQl~CUz zB;k&mcf{$SJ&7B)fW^DZ1Ijuy83e;(A+0BdVJpqUmEH-X16N_zMRx}n=S~c+Go)ZK z?&02Vg|vk~yT5T6BY|8-sm+xt%&;Cs&_kr)syqa zCi`forD8#qo+j?#0xO7C-N8kf7QYH;^{9%Rzkuk6Vs@Z7@%(AZ+Jcy6aci6K$TT{Q zR5>#8?CMd!CQlePmsbhrUqn#2#Va-qw=-a8hP-j&Js0}v#Tu27%}>9YrvLDkUX9J$ zYMyf(Y(Leg_Zh#Uaw0P`5*}Im;EwU#`!?g4D(2(J7!F~?Hp1aU`t7yigwsyzmd8M{ z8U|pWH?6@a_NcH}GC2XzMnMw`(x9Ked_Vn}#LVlkpeh>FUZZqgin>^v|pew7L z)yUx5ravlM>SfM$32d1SlmWE$nePoKo)QJEa$TNpTmXrwhA`eVR+Hjpm99z}`A09L4LvkUD?# z09>>vJQ>$J1e3)HNpmm1?u0kvX_1+lu?mZ)hp^OV#$1Q$IpnQ9;hKRsG*wJOdHT`* ztnTGf=HyDLaJ&9)4v9D$^u&XbN8{rH$X5c)2v2FX(3Eq%x%+lmTFms)L?u z`Y8qVSF7&{$2D{=vbXTE?avsf+%mTZg8pAy9?PcL~oIKc-C#oKfaTB zuo`u2Efe4rsVm|ZblRV@EO%LeKnpI%{z#}T`v!X|vTioo6fGOsmn0njdmQ&LuCo~&me^`Ss>sRhN{ z_5u=XMN$|ju!x$Oo?JP_GcZE&=9aQ+B6J~VU`Vtb!h!(*ha2zQ;Lfv}W-bQ1tuSWy z(}e?v{%IffJ40C9XpmKfj)`6~YdR}rT~r#G3vI1scDTB)QU__1igj)3*EIYibG+{)vB1tN(Rf zhpbhB?xw2Bb4Ng7ObUXU7wxgiUEC@#h#R(ZH$81_(&pUFWwW3Rhh%?`*K7gN>eGN5 z7WaO63>N1Mqm&nRo`si%Z5`FX8wLmVf3CDU&hBS|50+?U`CVsk0mdG-b5C@GvkRQ! zWi2?)fUL>PJ7GYuYGHw)&M~gCIT2XR2zg(u%+hs<@by#uws`NYlSIhj;g5Fr^ySxy zN$$^lxVW@DM=l};&ac*3W8Su48ZXPp@{!}uyUje#kgGelWs|8;=M1W10i*?l)ySrP zs*;3q!qXgYhGA(}&*FMKSys@bwO4}7xijSu?ivCIDk zo9|n{MmfDZl>O+$D9k2{7kVWX@iD)j4%#hLS^nz3mYuq$i_kk_HwIAl{-78qV7Qcb zl~HLcQ?LP-suKSSQlB=T8#W#P@8{hJf65roK?_gp_30EALVxvC znq89`BI@C~zE$dB<#v-Y{7ytpS`j_E`EKrZsP=g3NJ-WS3^VM|tT{JJW8L}rJOCbk zP&k^6#kuUSh&&^5-oWInHpXt4=2QqT38NEt8lHo{|HgbQpL=yxe;g_S!=61XTFbwL zrsBfOUvBP1rUni7%i)9jnd&#tuU$ivaqy%2`W!4^b2iawDjqcOOHk_m@w1E;?7>6m zH_y<7Z|XzeqE4MXi}o~%PtD6gmyPM!{+IYteTB=;zb0o9FXoQr?n0C2>l9qBZr(j3 zzvp1hj)1T{!52X5qVg*Mfv+}kf)Q$WdsYg$@OFoX^HQ5W2bmW{%V$RSklQW9s-o&r zKjrsDxoDs;HfBl27rd%e`NlS8RM8aT~+v#lJX`VJEp>nyB&n@6QQ`W?J0L#mLXfn^| zR^H~TnlbSms3n-w!2Qk6!x?=^5dCUnw8#?ehxJ{H&`oqZ{lwVXs-iQ?siX-CA5duulZ@(&IPsr0i_bq6`OJ1 zrs~?OHf21%<(Fpus0z?z%lzSw{4KP8Ag9`)bXJ#Mg5C4gGT~{4dZ?4L9S)#HH9QS8SEzl_ zMRmCEzDU;Z_?*=43^_>uJ#qS1+~WJ<9B8uX>pM3|3~gwo;igS9pQg)!T?T!}`xHlv z0lDd^wqYajlNqTNU_7g_I8>xkZPYh?kcc8L_8FoP!X@1uV$=pm`M3p<;)}I>spi%`@A$m@gheTI}?zA)v<^w}aKrLpI z{P}mKkMFZ+`G2(p5tR(c{gsyBdT>!3>k+rkH;qY}7X$zID00E@Vmq=1_xih#34`!C zDfe#2bnJ{6co$oV5dl14j^GBjFUy&k^;_HFUvjHUY5nfh$8k0u^fZQT*e7_Ulsehc zfHh#6Yt*Lymokx+-NkQ8D}9VmX0$ zjjzBCsup!%zR#A40$dlaOS}jvkq%5+cq^cs|&kLi1pvz<|ZT^7ONi4 z_$TL7Zv-3TZFoK&E0!7!mTYrD64BSAvX3gudR3$ur%mEa5B>bP|gm( zn_isB?&g?L_&dh`4e>9vqZiLn(0&fumbBkn-u5 z$qbNua$(?wx60T@3+@uK(s+`EpN2D^5yHk0jYwtI?2f|oZwBs*+K zVk^OoP1tVu-h)RLopWU}wf!$EOw)z<8<`!rCWK3h7oxU-xnb~aKr*};ep&|O+&cay zE_s#lJ;#qgaxP_Dz@)?!NEkp=He851?>0CEj4@IO_9C99#ZTAylyz=*kEgCs62u#> zN#(WKC}08m@X0HOAG(aa5o=*OWY7BG&q8s#*1U;K!`VK6wa#%1_MSc>QRW+l#iD+V zvh?SETL1N6O8ICZ+2kx5=w>FI7uuS&wNXXo|9WeWR3fW7`hYUq7P7mxq0X&V*LZW` zW}E@J#J{?{{xm&zG*G0(PkH56nC<9iQ?`nWCT;w-j8DeP57!bOzxR3$ukGrwIrC-w z49qPf-nW?RuQwIik3Z=mxo@(3MD-mCe9V;P06jdgT)y_g8#bVZs_{N|eTk`rh$_yn8Vgfy#=I z?rQGn3B&Xm-><<{xG^VN_$;yv4*CGd`+vrs{X-5K&p3jBllkiYaY@{Bv5VhYAKY34 z#`!bzp<{1Px`r&tzM*1l=AQ3K3vOi=Oe4$)C&nErA-B^Rp;AE~+%X>?{jxjE?Gh!9 z`q$+yFbKB+M!u#K?-H(0XJ=+S2b)1OegJX^C$F!EBIG?qO%?g{?)L0qnmgbp2F%`8 zl8OEU1b3Yss%E-kr3NoXTa;<$3~>=r&ZOX2D1`*~={s7m-UQ+h46Z+BP5<#RjuDht zf};fa0y5!+kGe-0N`PeQw^!}HT;F6k7OfjO$kyg{#a+;uY9=8;vid3_bBdO}u3;Pi z4fol+FXT+sg;#r7_U`Z4AV=F!VHV*TR9imy=xd>Uu4KPMJYPvhUop+j<~ZBaia@2F8R&bt5q6=Zi>Pp{ z)d*ke2cP1`EXhH?Wtlc)$W{w<*+N&aQiBZ3P@!V-ak4ZWxBEF!g#2i1d4vBar#ns@ zAQ2f*lvt61^9N)0#&=@QQjhahZhj2T)8#@LYBJ4PBJC%$m0r+IHR@?H^?#dHdzoeR z-vV8;j=a&iDZpn+b^@OMNK@8{A9b|Nwg3FMrp}D%>jstEH+WM^4ThAu*4GQ1M`4ML z`;4>;JwkQ9C|My>d8^S(+nn<=-gRdxkT2coZ=li}mG2r#&vWRrzbm%;EOXhi`ZSF$ zQ4IJy908H^`8GPkjA0l+EvFcZvnCwf_!t07;!A@LW8b=D>zmyp+fH)N2wwn-24wd8 z82{JMijcFzB{ap8%EC_oN?p!Bk5t?Dcznb_#!CZChV>?|r)6 zDd|BLb>WgwD6Lh%f2E{IwrkfFZArDIck-5&j@4?wqy4s49=ABzJm4YrAkQ@T0w!%5 zjsj-Vw#UrRwlx$(@ZJwKj9F+pdYb0C_hyDSiXuAzzk$jg>&M!*0;nJ-g#Mj;ym@D+Q+j+qu(qsnQkCJ!p8PJqsL#R3% zLa%EEl$o&xS*9C;C!%#wZuTzmDq4SR(hS#$pA~@~*Fq=Xb^L9ouY9YbaIUDqxtMo$ zDPE%t_3tTnz38SGqE)l9C)vrSTYruo1zCG^5gxpwe<@tSxGB9FC!V+)M57K2`D*Lb z+%h9RQlhAC9bFkZ*EQLy?El6^vs*c%HL8t>3u2t?!^ybSAp(PPs`79u;@E~|Z%}S%fEUGEm)=s%- zl!0EgikrGF5!^MZi1x}obo-^wZ|87jb+z#g3xJ*fw69vA+Z8hz2 z8Tt)Poyl0+ndg?~F3NdV`viEEv++G)_3-{ovvVG8JAGqMgTS%4_L~*sx{E7smDZ56 zqI9^YkzF0g!yeW&pp7k+TlLGUXMy9;Sx(sdl{OIJIP2ncrkYOR!yJ2hk*Mjz7aNygpox* zipji*#0xfn_Ruew9-WlfoBa1~_-5k_skN)T z>p07RA@h;aP|M61QOJK9*o;-;Yp)8HG7U!)kXy-8Mk}Y810*OKXgAVZO@I`+H9Sh- zq@n7bcSc^KB=((sSW^=l#(Po{ySOGWEH3|q(teysj=G<8!{5gE?k;S{{(Sm)Mg9?!{c9s9B)3V5O5zWKKLC!A({0X z{{KL9#9i1}DOwt5(xSd;mLSA?D08qP95L_a$3iQt5tO(`G2A&%CD}cBt>99?41$xz z&>OII2w?0T#>dhLvODp~`gjJb3fLK}0u7@2j)t%S;^jY^`FPlJUoE}?NS9ZNlYq3_ z#}ub}bW1;Z3h|X=PZ406u_TYW$vWJ-xd_uraX0l58lyp9i7MRyT(ps#DYx|g82jE@ zV%axS1&ScDGqu{H?k+vVUJ&|#ubJQu(!r-i@DufEdbKUnV+i{%YOS;9LLS>GHUabX zR6uh8+RMo=Tr7VY7>8q{YTHrqt_$%O5O{dQTk6(!?(e;o#+E+HO3UJ=@6#Y-mo96} zqs%{LG<@n7>Nhru*9-Dj$ zDiefxP+>~~o@1bjiCpRM&Fl;S{`++Q{!82KF!IFdBm4LEWyP3zyl!PFCf0T@PDWIX zN}^OXF8`VtvkS;7!n(HG)(NN@8be1M@ny~#uV)^BTmBl_EZ+yph(DJsWJa?}TVN#h z0LUhIQc@bT_+U_Rpn)2-Fo4Yvpw3*g<4VRfyE}iWE0c?Wc;%yytj3T23%ciE%W!w> z?bYa%^G-SmGe*4ywN`erT)nZOPR>yV{I$QTqrRD4eRL}MRyWC6iIjbyN`B`M6Q(qT57o~lKoQLkR&fQ`kR+6UQNcV|^ z+PqjV`WnMny&oSF5AB^Q{v$CoLnQ5IXNP#cNE_DIw4hrRVndjO+paIpm1_WbCtQlW z4$ibsP|EhW@7svnc)xR;Hn6jHTZ2>Z;{D5@XO83^*2+Ge zg({cqGk5&UgHafc-z+m?tLj&bnad_2vo=+usCtLeLA7Pd_ARs%MLKuk)RFA38`o52 zL`A0J&ack9zAn#5*y5ECbRd5 z-saymolntQzuJwS#QLlKZN8uiDck@!B2069%k8q+rZtqD5_W{Md?0ayit?L-7qH6kxLh(Ba<7=*4SHz+V!AUBKKgbIo)NmP zv1&!xnnI=NPvH@=xTAa^wNMeh9O7rxn9J2VH`A}7hj-LBF-hz`%+Gwm6!ApJ6LuD^ z{$$|SM%cw^{lPnIi8IZr_^^*c?&I)Z5{A$8Lts66X}X5qN}>QThIH{UuQYb6g3UgV z1<_vP?nIi7dej3f+5;s>=*R$xWA5nZdWCHV2c?cPP0wiB#`3N&Co_bn1@NU71P!L_ z6Z1^1&3*QmP=n`nk#e-zXu?#7l#qp~Pd($X@QvV`4u9wZH!YasC?j&f6h;YqiYpSi zu`Re6`q!Qn^Al%(U`rjyvr`>zd&#dQxgo-b8urk{EK6_sB zo50(D6*pP@(6paCm;z1iZCjr|r~01K6#~#T z)v{G;ptsdbT6m%SU#CHc3hWOdQj@Yy7(oOt(BHppv4i zaDfK1?8UInk>=f9$fgHPSU*X6Gypz`xbS}gPdDAkX6xf)y+B>OK%16lqNe@KQgray?%^*( zC9SYy)i@${#;R<8CZy8*so{?J9&`p>s%)Vicv!sFq8V<*!&B7s_T*R?A#wI`U!TNzW{!@SU~E@<#+gx%Ystx-OsxsMgFs@sB(kqP{86ukPfZf(vU{ zn%BdAddHpb!7>gj@mrn^7hO!Xsag;ore1#s)t|!>%7%6|WcTDENu}(29+#&VOtZ5- zVO!}{awCRvkq+#`Rou-$x(J!<`Ax!u&4b$_1oq6TQ?>w}hZPh4zzf9ZsUWbAW6-Jl z7DbCDTL9GvRbvAjk4xF(V?^%U%by!Aczvx}5k?SEC|O#+eMADwn@rE2dvvSE#R7$d z*OUI~Wn+iP(S<6C3>cSQ{4Iy7Yb7HYjx>c9AA~Bv1x!P5^2l}>yE2AJDJJuNnn`_c zwq~zPg3o8*Rj`H4yJDhm1#Rk{g`Ad_Uh1#-owvKfNx`=KT#%-waoHZ^UEk!6h<`|P zY4!^AVUin)lY9MOlF1`<{05^_cV>S|M!X%3dXz@df*33%D-l|}^RB;AZSxZ}(QwuD zf#rn7Di_rXB~6+PozMA{d@|HSHS($yK065~Z&q9n3)uTAK#g+=+f7Fwj(d6(i@3rc zIZ0GuV+pvu*a>yi$wLt%Wxr!pYn1Wp@tHjNI5Ve??HCDrR`g6Q42zZM#yEcR!M zWa6GzRu0_rHdR(wqJERljqtyP_GYn)dmh}wdBYoJFZmH*_10~kU&S3Yq0sh@a8uT{7f0#CD0KTWQSu&Qf zA7$7dn6o&+=HH+$;OyE&Q8!`O)GA($fRM9SiVAS7l15Nj$S`soQc>ggG zplkJcP_d5jH5N?YP}n!E2b96!3x7sZLK-n%qzj z{M>_=#lTw!ludE+b`s_kCIb0G({a+j^`C96s)p?!Kea#lqYCSeM)prUYw2Oix1A2o`}_Pts?;XkZW7 zwV9J)%N!{A<7kUNrknZ6t3bQCe&gIs_>BB}&ZIafnwUn*K0GKEHq#T9EEdfw*JQ}fz@AKl zZvHQiBraCO@#j&jJ;N|iPD5&yv-%k7Lj-Js3^Lj!@FCNUh8pOVTH9gdQX4+(7g%Ml zDiJp5|7)1Ql9NMv?G)KrVT?3_m&Ne6}G}yi)$e&#Q z`+njfdF|t^#O1NILrX1B5~}tj;N|RneIqj8IKoGrAW<|%0# z5gIN`&4+9v$@UT+O+Q7kU7D+A1Tx*~Y*(R#;Cz4g*Onk?EV zf@}gkU5h~eGJoni9nL7hz3Y*&@~xmYM|Sa_?=D($3fMiIGmNfEH#l_s#jPX4-i+HMpQm0o{876d)|lM`+O7bAJY@Se=RV?5C`C0IaT>U z;1Ta$*y7JeBntSsormKWuDzks`azBQf@%1?9$nJk-=A%qIms4V`jlL`he4@J3&(S0 zB2Gp<8+t^mjW$Weyhy7O5RecI4qFp&ZAH>d0gk4?@3@e`JJu`Sw@I?QcXWDoM;jbG z4Si%H2tPSl$30q9;mBtv(TcLJlwhBY+p3qv%38l^bAzLCtH?p(brjIaq#&*bZB z*p(~)xWn@$U0fAmL#K2|DDbXnG!hd*WbzHKr|k2B<@1I9ZSQ zBem0ypKIJKlr(=y9|X6X`>iwwCKwDvasuJjr$xSbhki`A%61xFyeBs6>^2(4o32|V z&@!a}+oXAk!NBkrXyP$x4|ceWYT3%UPLhc52U2O2$|dV;Lb#Qta{9c{VO|1#M5*zs zVxK`3QBLwq!@T1JBwrn;T*wV^Vhn)79(M^0e!8ZMkyboB1H4R2m*z9ZB=*W$?&l|m zpK1k7U2+Y7!tSqYLCQg<KK6bXznenv0>KzClxi7T}UG{}dO2?X&mZW;1); zJiNKjXAjSIlf;uOHru5sO?W|z{jsfb`<8(wch672RfE^WTen=%xUIBs`ImIT;=1)K z7+3f04MuCu4O?WsDBKk{cvPB^Zh2BnDs?ihtYd!|5>}|zaaSt$y)P}Y@+2h9P;=s; zlIjZ{AK_3NV0u61{>I7oPKU?4{D!woyp)-XfhIDap$i19KMsJ!ayP=i7^V_(8FXd+ z(~5(gLUYk{5ph6iFqnSHq>tUdcG_iAiFfR}b6Vl)r@t}DpN>H--e4v_o7C4ThzawA z`Oy>>v7scEP~5t~^rn~I(SfFSyFOeKVO;|lG=Tw4f+I9^6*y+V%^C7K&ezt;??fnV zChjghc!ixlD^Q{Z>y5KnHVp?mR0{V%*EWXE>AiH-E}3LOI0eP$!a&Kn-@!1i3dywR zF8VW_&Cg?tD$0r1{)W^YWiLKhY6^Z1B(JvIil3s3i#K#ClDY*83Il0@gDSk8(9MUT zdlo)TI3*nmqu-tPSJ_jRM3jK=#;%*9{K)y4H}k%`p!u764ZkKCe|c*K!hl%WO}=5W z=e>=wkE2{IA3WQ!>=qK=>6Sa_fkWy=T`)F4dQ5}rwOgs&-YjK5G4>=Ju3y?zSG>JR5Q5I%qeLx z`SREhMFGeV@D}9~=c~8-0MG#?l4^fW-Z)>Ew%E#S$q6~LZ9DU(j5?{kjO_dYlk!>h2=m&`0$Evny3%-KcBi%V+r8IJcks@x@XNxbY6J+y+f0NUm4_i50jhXV zx9-guB+~+UpGaFz0Y9U;q~`N)aPY&jn2KKq)_9q!;s>ennjU6b1k@6+)7oj~X< z3B400fQ=h<&rX0r3+kATdiQE2;FTiN^D!&ymWIff0U_4LM#Awb_UD>SmU!vM)|2ZuC}E(UjBSY(3aAqY;_rtPa z_a~zSB z*$D_=lPLPI8@p>t)q*#l#Xm0tMkXfe!?x`enI-i)qudqEj2ly2>_0`^aP|^L31SKW zcDA|o(B=gimnW0_F{u6Ip6aio1ODnsa^tvU`!k6N?glQvkSCaKz^^Gnc+*qcNrLKg z?dw+!kVNmMt0=8&D9a-*7<3D!J1DEYf2s%FUMnbcsT4oESK+70eaqK7{M^ZXpU(M> zSgY;_0Y)>w&>(lMf;SFgU795RYxgy*H4V*-V^(=yTf&-Mfa5QT2qDw2wg$) z;p_>{<^trQbo53er5}hpUqU(Wy64)3`-p@|KSV2e*}b1l|<8 zFj&H0M|RE6to=C9&;WS(N>iUEZHACs4v)-;Dhr>zQ+>XHVq1N|OdxZ8pa5Jr{)5PI zYr2315ohQ!X_>Q`TTpq5BY_T)vdy-a5Si>rz(fgxw0=>h9QUd_#GW+nUr7V8h zJ^dBI0lM~wO{Zrs7bIR6kfNC5FIVn2bcsy)E!wAw0MqbM*m+Pu08{Hc)kc3i?E|i~ z?Qn!%0IRT0On{hxL(!Wi5VLV48~Dw-fZMgE7j8Ua4Ug-DRo=fB!*?i&E5GlSZsC33 z78ov>I}8c!GE69H{W|ipgQR{)=>b4anVIBc7=QyZe|8PA1KhqQl% z`3k6vd1Std$Pb*xmYkSsUw;8Q;}VBk`2VZuBW&9@9_wjx=hDI2Z;R-+@u8UW*~O*p zQ%l`Rw+YayqEnYCWxf|LJZII&fPK9M)Ub zhHcR)TM3=}bllff$Qzb9L1?yqVnEd~4vT7*+WWv%k+fMPQR~k2vdp>#o_)XR2xk4d zGXQwmxCZ3S-L2V-FgJ5;t7INrlSq-dj-8>cJmz>req1AOF5QSdS@l~ls^rC*#Gda@ zE*Eg4p)S-7jTxbh*P6(CF1BCJJHOM@Hh(zylg;zi=koSHK&d5A^0x;Ii#`}VVT`$$ z73gQnwc*!^wMKU$Ugdh|R<30V!D#o+$=gZ0 zEGuw7`x%WY*ogLK*`C&#tB~DXd7J%e2bA6?6p|5cIzzR|(yx?2r6cvPtjrnKRpsq8 zDHUgA;s>>sX2>ov|F$-FTZ5Nq%5rcOj^O(8A(!=Z5{(MZR{$d)++x0Uuy@_wwLr~& zvLd^|wdrxYeG=2KZ-U$O_odFL(cIxCAXl0qg1F!>Tr8_sXt+GuCKSSHNAq=EhQ%U$bmrL=-6hiWHvS{0kYSSzn9x?_? zeybmMf1^#C3;XoT{_figHjAGuYCbL1?>#;@tRx=(!~k8E*fSb<8lo7!B`@Pf1$CIR z7L6V}3yJ{D>9qQ4F4!(ZX2i8-_QJEf;ZcfH8baRf!tD zhFXG2Hk(d0@RH$zgiHn9+ue}4PmhtWEdjqh)DfRK3>cS#t%GK!8^xgo)27ev#r~!F zxP!Eu7;CgR`6RdC8RK*+of}wEMF4vZggrurK6KqRTV|q0rYdqVzxwoWl4N^ec3}9p z8L(Nc+~B-H!*8%<-DVueB{M0BYH;jRoa!VX{eI;Oxlf&6tuUsJ+A>$1;M?EcM`u-_ zO+vhztU;tbNf;e;)wFz+vS)-deQCv(Jbs2>%gnj-0LCGKf1{li-Jj%gFWGV}8YVC| zgV;W$7@gqmmBzLi?khxh{TyJs*o3Zf>5$N|yROWchf;mP`ysi3X>4sHa^z`j7ojWs z_teg5^XG}W|Bt4(3Tv}_zJ>`>AQUUsV#QsGJESyS%3y?nAJPxYOuaf1BE2;NR|;noE@!6D9F^C=wWJ zB)aW({vM$2LHeAiKwcCKu%}_@*7f^4S5VtJkDXzueV*h2QyA zG-a&b#OzG<>O3N1hglY4r}TaIsa20T7nl~fiR_LAps`6r*93-qij4C&U7q9YWe!s% z9ndmB{f82^2$-6XISOl}<1qcfw_M>PZ{ekaCoo}q ziq=u|Z~OLi`_Y7CLLh4tUb;d7zUj=mneW@(@1yUJLG#cjpyl%Fr3gErvAaoc?a#_* z3*F>lMz5PCPTIxiL87}xdd#kicT2Wqr`sOX)&=W+;yQj;qfpp7T?yIFSFZ=!E|0pE z`HJ7qk_q)gJwq}K3?-pVI}7Q*NRHDfToVVMSE8F9TF@rE4MaN3Q+I5|XUGeJ&JIYMDV;tN_4_X? zB_NKP;#H7B`L<;A#~R^i#OrWuN;kAlr@1BvFE>oEz9wk>vEe5-jO)aF8&)}#C~LNckZLKs8UaeJq6F7qg#;-?pXiZh4H?P4$cDAfoz%hW!joDYZ~*ggI` z!69Wc=?@o*7O-n2oX~p^#IXCk%nU7p-V2iU=kVS{?8AXC_(%>2FK(q06+!`Hu5Bx= zE3@6cniGC&uAjTd9#K7xW>^tHr1dXcsAB>pd;xoCerF|K0kgrGZr6O>>pzE;Rp=26 z7MmIH+j4pv3sZhXWujk|qa(~Njbho`=Bf^p$QGFn`&YdZn=?Y{2C>w|oubmPC$$4q z7UJT&Sile*=37^{5mPsX9diAC(n-(QZ?ew5l-WuIThG(*oXx zfxHJ6Hl?JZspj{y=$LQ~)Q}4J)-i&b;JLL7ywdf+yV1oi(?DTD%oXdjN@Ne9{Jc8o zFDa%4g~ah;X&b>d-0+(GyYwK6;A*Zic5&B1|HRwZ`eb$rR{m9TPJHfUaO~VDq7H2V z?qm&87Ul1j``}hKq9echbO|9VXXoc=Fbm!10sGp4%>+-XjX2xgPH)08lb^@hL}=)g zkQf~=TSOPrpnr3}e(fcLe~6~*(C7ITp$C;K0#12)?uj*#@uhRnXWXqQUHijdK2ZXM zV27h0YNf;3r1uW4+23ipb!G$g;dHNK8nK=^`GZ9FRvypR$%%s5&y_XLlR`$3D4bg6 z;&DG_I76j5`9!q_PVL2-jbbhG7W|)PR_423CDp*#fKy<50`qmD@O>XWB+n%47x7Yj zwVDOXBYxX3QH-!`J-N(eB)mj?-jvCzS!S;h-@Q5I+e>=p8OE(VcY@)&m%-6Xk1hln>5NbfV9wi znlquD!%C7iY-4Yy=;W9V{wN`c`%jqRqM+`tT7g>&$wVGV?YUHCgx;Z?;3?bP2<(WEK_;yGDHPb^w{T zZW9gb`Kr+$_lY9vC1 zi!|Y+8B44g*gu?hJ5CZ0UFZsjy@Nm1t^#bJmFmFC$h2U4v#~k(VoY?We zBMcBU(_Lj?h@PfCt1YSM$M_L7f^%!didTt1aHW!oitTAJQ)VFFA;5N6CW*|jLw>1K z9%MQ*g*EB1NdLiIs5ZLobM+!s2sy;HGZ;xZuX5(jdfz?dJS|)c1WM;9l~pSRdOYL=@`_VSqi;bm4Ur-hUmpvMg@T`xBJ(%|f~LNxYVqZsfYVRlk;R z2Zfc(jaaVC<#23dpd`E(?8Mrl74^J7XC>;Rc`glD)XDHWm?`)?92@pUq{{4%<51P9 zf@p_(Qo?uWX5E-fu^$Ta;J(0n&9QvEsy4E!l?elD$N@U=L#j1De(7CkSY2FoT|3eV z-X!~)g2kMc#(!=w6A#R#BUljyH(kMxR&kJp$TR9BqvD89yHss5J)eGG@5hY5G~JJ2 zg^%T1$nF{rg3pW;j{lxw1;sqoq49oxfq%lTV8b@v%u?~}7oMraa||!eS)V_+;f6)u z4q_hP>xr6R`bwtkY3t9`_<|lcu$e1bk(Yuq`%tsg3UG3?QLuXahnlu5zL227^Uh>9 zxaPaBssb6#d#SIkLiliq6f6l75lp;Rk0+$?UKK!#rV`ur3C~J)uFv$zNqV9*oP^0D zU%B5^*vjt5wVq*37Fa+|%?nWua-&f#pny}|Tk~wnIi~AREw$X3^SMZH_}5lp!#hV? zTDuH3APP(dD)>6Ow*AYbElb|3ctzvw>(}nY8XG^<#VC&GVv{4;xi{7EH66DOQWqFs? z?4DPuuK9Ur{daOm%g?lPKLWXfDU^tI?V1Vm(&vbVUp0vJOtkZfDIr+X9lCa$LwZF# zHpTCla}|WijIX)}6-pEJi!5>Gx^e^T($8;71E)W+ant+9rU-1euSX#0 zfnetit=f+E_ay0jDDl^uX^Hvh2r;69NWtKl?4*wAa>M5VSa^u6GccZ2Y=iVJIj(lW z!=35za>$tRDB!K=BeqDWngsmPE{MZitlRXjFAm55Wvh`Jj_>mI-yq>qggOa}31B^0 zE|~vrax~X%jqJV;ds1C#vW-kc6M{(x(HGFyOnTq_VbWT)OsL&765Y^SfIAY;#$(Yw zbf0wu0^*SXvU9|f7e?IF3=SqIKG-25%uWMB7*nta)fJ3q(gwMRvT z(0EFMz*eZkn^akb7^l-KbBlw1 z$C??;G6rP66On|Yi_!v+%z?mVQT+L|;5oE6%KXZU{2|y-BS88gwUpz)H~IH(fuHdW zq73bh*@1Y*#Fd}>7KccKa~sx+sIv~==Dr1jVOC0A|@A zJ#5b;4oLNFngTq=yOH~|c2YhO>S0}i&H;zOqR<`TbiMy4IGzG0$A%meK z(>m46;RognE;<6r4kb*=G|as1Z^Czld-<(*!)F8{e6S04z0BJGXW^AED}FV6yV0Pg z(3yyB3)CYG`uUN~q9 zRr^tmiYp>e@t;ygE+-nrsalhzx@@AWFC_xf5aDc1Ww&Wn{FH+Ci1k$b^b)ea(#1+K zLp7o!QYmxnh|?7FN7I3XA4s$Tj6_y!#Jowp>%N!P9*OsKZdtE{8^v`&LvlTzN-JK> zJ^c@8tkR=$IM$a)5}>y$`fzz~ET(7}Dhd5ZZWs(^pO@n`;9_8(-MwG{Zo)Zq2 z%D#RFBD^WIn(qSmysTnw9F8S3V=Kr5JDD2Rx-?0=eSY3r`Ah#g6}bYgZen7F;EWbQorFo|n5xZEdU`mEvF z%RU;%IEs+Aw*0QRKoCN!p!7js!LC|z zacz_0l78G2QUzBVP2W5Y(XwLv;|VB(FqWPVeN|is*}_N=;qLp@SBbHk9J{jVAT=+- zdR}|VTEQKxXu3qd^T7)Lkn7Re4~$F^P!N~}g6$^;B^XA(ge1Q-X5vYF1~7NPTo`Wm z95mQpB2OfD=ycmqd;IKMsLh-QgdlxjfzqbB5c%8nL&u-<1T7X*40tZ;M=3it6i({a zzsNrDsDThr8$3l<<+y2>aq^3$7Y*dTJt|!hR!lCjg$$M!=7C8YH#P#mi~J}SwqoB` zT{Azzr&T#;q=fjYZS=5nUFHwDeLnNGK?>8qD58@Hl3%~E&KxrJAIS*8q^|@QLUY|6H#?rD zciL`ROixoK3?NgzLVI|VFH~c<-^B#iug)6->i)01jFN(_%lnr@;JAjiey|s6h4FJu zc;$8%(^y%J_xZ32^>s~>O7^|{SHHxNSdtJkt0w(kJ)p%>uo=+891z#ZVgL{Vfuu-e zQ{`|R*gkQft!eVA!CV*mnn9ql>oP6bE^==tqFOuyLxoB>xeHxeWFzhp)BD&Q2Lu&Dbf5)Z`o+m+ev8#`iGhSpldTw`Q zF$m|YQJfkBK>NxBg&b^Zr#8|riyYQ<8)We~+UY2@{K}(Eo`jXh!=dyTy*oe)h3Kmb zO$qC98zWN6sS)j>EQ|Kaq3&L6%7l-o2iTO7Cm*==t`scDt2ebpOkRx;!b@8}`5D7o zwc;R0;GO*QNTBCe1zKn_6{wBp*c+dx+z>ifc*`HqF5X0N*tYeU*M&fJX7wy5zLy;o zAEwavmza%w=hxhxu!)^X=%3?M`}Ji&B?O)w$6yl+XEI*{4R>-BO&-^}cH_SL>5bGL zE4%x$#U6km(BS>59FUdgHd0O)q8jQw@a<>su-9FQBvRBTm8gS8$pUJp!=gqeoWdI= zjcOQlRm*{`z>MRD#kiK$O3Lkj#p2Ud--d^39Y&QNh4f_Wc8*it&_m13n zzwxUUr|3&QTN-yl9hZ$2hA*rpDzWw_i8eM-U@^(5yef)M%)e3{>kKrT zZQx{G32mkRnz7HID&P9X!t>AcJo{_DcIj2Q(GGCKn%J0`H&VtuD@i4HdV0dw7QKK2 z<P??;(FmKr@q1LP zasuSg1ug&B6_t&!+7|yXkSiBW*LH~e<~{XcQpnW|Bc!C!_1uN*FL`9c|Eb2E>}vB<4=_$8*N2 z&LqQ_?%whl_vaI+N?emSj{UT!Kx(pf$vNA+c4_^pt6nrRDO+xm?1Wz+-opP_H2VL3 zg)qqbFGR!t24gLtl2_u1J~Mfr6op{H#s=PcvINJm^;e!IO`AO)Oq-9Z_uH zgMR}iiRU^y3>e)@rg2Ef*5>bVi4`_=`3izCIn%@d=v`Xs!-(@a{O!j6i1* zhCRzb!vZn1MXh3#w?tSJLG{&Uj`q#8FGgpWm(h z6*5@jatdeC%Psu%H-?UXL?Kp&<>LDDvoG;;tBA9|z*fHV`PAhA?@oDCVin(G!yCG4 z4OoozZLV7})6c!+e9#x&Yi4S4`AjSsRnM!G{5%|tFAmbAN2-5`8PGr$p)o%a!); z1MT0y4E#=oIO>PFu%Wc3IWj=Sq8`Qm``q^i_AeP+zFlbf;2)i1xJPHLG_B+{t+q~GW;k6^WS&nfxz{j5KMi_VBhF56L)OZZc@ zMH1r=Ej78RO~<8NxC(!vFtkSDX0(a!kFEvn{#fHxIoTkKZ?Bb3=;=L@6;fkgP?@kJ zumtN(s8F~wSTj(_<^+y~Y&^K=yQ|mmzzSLHpE$K;Z-BdPhm5NeO}O)K9SsSPVC&9j zRAQP&)58@_H&W~GJimSisd=!o3gD|e*wt=8CO)cd(CCc)VG+C0k~*KInDq!=i#zSEC}IoYmU^xbBc4-QBu|wc!)V zFoVSi zNA;WhEpbc3#>NfvYE`0y7>JV1V9LA-=zOZq<*M)XH^s##^r0)A|HN;U!ZF0N>s%)a zruUOuhzqyRLg-UwgKwQ}xUwyZN%?0YZpCHM(^K{P48^P|rS=GLIGNUez)pz#Kcq(*HvcGGaf5f;)r8PY+U*GE z2j2~~tSGvzLB3m2j+OqZ81vgm^2q%Dwvl(klyp`hMi5}e&pZ5ZUVz`H&@i(NkVm7y zt%Nvp6I|p50txUbuvwq?LUfy}7vgjxBFz}|Mx1g?Gkg9R)6<^}GYY~rS4Wknwhrj7 ziGi*HXGjzk39qplg>JuO@xQQF`t+t(U-Y9rPKYp4)apJ2#?eDw0?8}vHq(g!4`;x0 z{zGI-+{qlIu!r_*K8%Ox|7xQCtij|bXs`BP!=clm_V+Cf48s}I?!NfMN3EDSqOr7s z9kQTf8_8w|4vB&oD=rKYN~G&{eXb6Or%5=RZRt4im%nMj6F+Y_Y3zz`1j`Aw_#&4U z!=6hL!;WG=d*!- zTukv4Fdpg#ueUn#XD9dCV0teCJ6^`wCsJ+A1GkW0s$o;>j#dor%uhDj+2Dqw`Eyv# z>*brHzqS7FrA|dqR8VZdKfkUAsSbGb&2V4W1Iyxu{;lM)Hr5kz$OBgd-q1zpFYmF8 z9m=_a){@be3hEKTjziF99y5-`uyoDY%hD6-1^2&Z%>_K@ z&GPmV9CnS-xLr^5VUa1RH2=C>t*@_Z=&6!c=j;ZwI7+KNE=;RPUC~nPs$z1t&IN-j z`)-ye1^3`>qmby7PaZR1k-#q!MgiAoenoNo07irJLF&c<2x_8S;F0(5iiQ_Kr-F#4 z0$7LJUhS>*!vRb}{H%Ix#K;VMT#kWcu0XJO&rlTOfR0>=MZB_X_P9($KU(~awnM(y zo7(wD?BQLrt=IzNs=Po2UhmjBviH(o0@bzgzH}(kB8I3@#WTOdGm+Oo42bY8){u`X z6h8RZvwx8+uu3PL^I{&+YfE##uBx+|@Qs(p-h|*{j8nRemJW9~&F7K(C(n3`ykVb$&rdm{no<7H_3>6Fxj-EOV$nW0VXcr2MDPUO%0~Z8eb6 zx;JJ7_x^d`V93W<73G(6X5;gh`gz7<3e1CC^U6%XewURYbS=!*r!AIx*^1OIShpdE zNjY**Tap)+WB~e{e}fwFxGo`CkV=Zn)j6xi5rG9D^IuOg++9(RQxisY4C`x8wK`kHbvN0^G)H-;*#P)0Urb@e*GZ zZJtr`#irtKZVfuO-9I5Jxk8jhXIz{-@LmJw>I@oD>xdqF4CRc?A5tiT z(S&?XdQXBY?xa3Ezjg0^a1~TXpBD{-R$5tRD+N)&jA%<#JTpY9z6NY;jW-6r=SlX^ zPNw+gHs|r{cQSas=OOU}-?jJtg1m&=Hytk|PH1fehtCcePyKJL4a0d;>G9(c7@%@|3ygp?rJlV4xgHrQo z$&9k3D{b1 zPKciRG8SIPHBcmNIIs`dj7sN+_w!CWW`ih;4m5CkJ-ONZvn?bpkJGU7f5Zs8f?Q|acMIWxVb&(mc9|zQG%P>YCZfhZ{ z{SYbykY!{25q=_;A2X?H%SZ+S)W6{HyXzAVKkLH4fcxos`Q z=I^Go-UOc%ptQ|?%?+Is&oTEi7p@g&$YP7Lh-=K5+me=5y zHvecTMeHd4d>+0U?(TDl(Y}A|-sV4)DA+A(=Jpl9e3^jVy=jsLogZ>2%`ALcY^l`C zQO$EelkHL^WoEGWI)s0v_G?y$2JfHmB-2+yqu1yYpXR_(oFO@CGE3TZf-9fjS@2iv zlD+sy1$t6`PVxt1pUMj4HfB#G3RQ!~q(flJH8g#vp3fnS2P$2(7-y>l#Z#Gv-_yW* z-w-RoXSRO|8xLwch+zrRAe5-Oc}a)v-h{K8C8L02#dXdA^ErGC{&;stSEh_$xuQu~0#I_*!0|2|`OZ z&iyc={R-9cp;-KZO}-|*ePnl+#onhzFy7inH;seHIeO9T8u)S+HU0X7A9zrokOtZ9 zAEWlozau;7uuVDYm0Ygr8yuwpzIW{+cU#?JQ~5iMw0^}lPk*?t1e*D%{0oOun@>*T z=SN4l{~>-yE%hry_+|s^7papR|91{GzT-H6UvQ+4v7a|k!k#+M-J73ep{{Rkh?ZC& z(Sg+^g7lT2e5Mk#VX8QJ0yW<2y}|H0jQd>k;kh&8%j80bS4H~pUfN9K1z2uMLmtcTI_>G=Qsjx4bZIj?-5NT!9*_aSMPDkE5w;1>DV8k)>JGT;1LR2*IGA`% zs#Mb!9xKr>p+_(}35{N0e;{A&jN5y`s^{ysZ_Z=iC|vLPbmod^7w+AE@XUX|UoC1) zJh+MS8t~PmKQ}T`IJld`q2F1Vj_S>}49blEO@hSfX-T{1NRH@tzDR4@XU6N|;J#J8 z|MoE!_vdER+a-pg!`Q+760H&HK_;d@(To%{`Q5)pFsKV1 zqAU9p8(y8oPGoR}H90z8Rl<)i(BoZeB$!?H0cUFmC$kn&25VATXoSc98&N5Jh@^gE zMb@bv)3>_AgpXAg`ZKt=OggC$&<-pL*;sQfal-MG0_P>zbHK5G{I>DdJM5nCAGyhh z+Q`+VOurp63HF*YyQ06>E|YfdAT0QiFh@TLB`=GH_X?thJhX4jLT^8+>VH9pHY52o z=gjA%wW2cPhDm>?jbos(km&sDy!QWdw`*W?1P>grY%rGQ(p$&-ZbJaC1d1a%*dOj3 z|Fkhh>IAjjYxl)t^A@w&|7z7hv@uk|Av(EX^dXmnY0V-~u>nCKyB-mc$w7oh?X;jU zciV6nZ%?HvKBaJ9swEdjcH50dJs#Ri5T-LFYJWs#3t@+nP&p;wZMJ7a*Ql(u&9yA2ex0Li9g41t(x1^J4D@f7-yvM8#h3+ zNKD^KisA%EB}ZKF5*_AnB2n2Drox_O~# zl>i2FpF3F`oT;`V@t;33M=5&0Z8NWzD^pjcrc5JpnaIyhu8MVo&bBRll}A+?m+fL& zb-0Mst>2U9uNxG)<<5UVOGI*B0{}h)qdYWY1*-0wGCWQ6knxGhF9gjbb{G25oZS;* zKRS|`{6|wbT2zQsHQ?(UJ2%YlFTcG+&9_eLyn*K*|L7bS!Tu9^T9rIuIP>!O^ttnK zZO62wQVeQJp%H{7N`zG-NsWc&1s6q%RIiFdyA&Y9MYi+{DU7u{t^8W!{dgVYE%;2w zVKUbtjhRNM_-O<0UGjNmZEkQ$qYSxPHFs~Tr5Jn~^^|IS15OkZS)Nl=6R%l631&&F zIGXxGVY($g-D$^dW9=Al&c}HDhceCGcwD- z60A<`-pE7WWxR33PB8*wlx*IxZ6W%;OxbFQeSjd1S4 zsnzyd#A|njUBPfUQDR>fg*o@lPM{)u#O+>~PfN_LkBFb>OkVS{olB^H=|Y!^EM*`==-Vbw z;J;*fcMP|Q=;9)*H^mz4Q03SdB){u-yk~GWA0N|En1*7(#YI&`2N7Q^5&EucERn)i zSiwjD>ZHI=Y0h<`a&1RVr95pYkMsWNSqwmO85_j){=7WKUR^VSh{ph($$%T9R_Br^ z*;nmBu4?KE(_?M}jQ}MeoIks~Qx5_UZKm0xy1-z!#-BM!CLiQsoVMHuysbtw5Y{g6 z`to6tQj!?-uT^h*r0p}2&v+5b6K|#egl^)`T^+s#1~^TRbNC6*`-;B6yzhSoQtK|m z@dXqBnG}!?OsD;So9=g>!=!jQjt<|x0pulQl9($isvSrt_qf!@d}wf92l5L=RdXt> zrE~Nh#nCwRH76C~J2rZ6Mgyn3>hVI9RV4=K6#rJ1S(?`@{RmOD#>~doE_}~Q!RxuX zv}O}vr3P{J=QRgLyDCU_vv)%_)aTYo-YWO!3juZsnD<^ z)=s_*j`U#iz~4BuskbERD&N#}-hJ!Cr9+7~{|0vuOo_0%l#{}=w7u-DHb|t%OJF|i z9e?~K*fv{|MmhV%YvpeAE&6h|3yuE!K7Ck*D;vJ@rmkVz%1gzk121RzNMZOioTTe@ z=VC*BW&_O*eY@a5QIz!3rmSD1g?%};F%--6kQO8 z1mDySyFCj_w2+0Owk8%ocuknXxF`Nxl=3|DmK&wBPS{a-*(jM8lR?Y6rJlwq0jLCQ z-T;sbf_~zM_~d+gs@$y{TPpIY3YXZaST86-GNiA|hYvE$F3oZigfwLQWU}}WwL(Sg zsq7kvhS1P(b#i>bisNLc1YeNFcizna#m&53*1XjVGPwKdZeb*spVasPIAVO19v0F1_)&dm zcYL7qaxp6VNJID47gNf1dYfh|EcB2F%ctov7QCii^Z za9|J$i^92+bs71GDr0=TmddHx{lTLX+#^frS(V#&+VzOZwj|z&USlvCZ+o~-=?GYa zy8NkGM9Trr!r;curu}~3VbbI=OXRrsHyqqq$0g1ym#bEnBX3mFzrem2=o^g znfenc_cvcdVDgfiqgw2R@>FmmKG|5LY8oT&4c~MTGKQ1HN1{$I8kya-}=<(t_2`Qqn2#Amw{L4x~JP;PTEImW^cRM_9t$q|;GXFS;+PBGE0@d3 zGmBHiGsVv+Q*(cWBct^uR8X7m+eQzggv{Y;=k^8U4Li^3q&+FAEAfkI=MNz$gbNHf z^dj&#o?Ec1tm+`uQ`?qQ5{w3lQ9oxq?DN6vs7roliUg5~!Dvs0tA+T%+HWlU)*>a= zzu-2l z>2SlEf=8rXi3r9NY}2bZEG`SUN?N4JjS^~)!S`}V2Y8;L-((LO&pgiXjWmR?;D^3WwpYHq z>;4t$90#dil>Nq6WOJrmId%z7t`H@{j<&`5Fu7al1#0umeS6N=Kt-z0wDu~O;msjg zVAku=P}J1^A^sa&CV^2i-%6WP92@j^cr8EW9*Z3w$*(1rS+@zc`wDL57@(M2Fe#a= z?xUbS96zQ48sfvW+s;NAk+@r_{CyiJ5ZduhN)VM0zGze73i=WZ&O)Ahu9J9(rGozSwd9#Ga)A2+FGR}QD|KpupU~U8zooqG2lJWEEOedn|t`5 zubM<=Xl{`++(D?-V7jxmZp+ZH2w&*mHtl~X-B@|rWs{Nh?hcjKvkAD9OkhD>CnE0_ zjg;E`{whUneVC-0yOV?Mdr!{kMKgvvw^aXeROGxY!aAdV)m-NCXxBn1xN&_*v~8;k z4R>>pDkgiDFYN%sisFfqz>O~x-Zn<(Z?|q*_>4au-TGa@h&6+4enTJ=jYpY2 zb1Ob^0<+!RFM7x!;qV7)+%J${$btbxhHc{yiL4&Gy0wSyx!(_g0;K&Z@XTH=Lg+8e zx{9D8{K_=?R$w93p^Y8Z3B0$aSlwut^~wDPE4;LB-)Kx@>PyCdg!}L2n^!4^o+C}i zwXv_#TGz^Y%zXk zNMF4PiJv>^mJ3o`$4onTkRJc|=E06}9!xbkwgz#Qv!#Nv;YLk{Wx-FWO^V*G`9D!A zc=n{%pcBOzUcA8t^D(pi`tmhcG?YtEhUoLxfBVls3%eZ3WtW&CM-qj>KR^AjQ}Ho4KeLt(^}Xf-P1ix zgn$tGNqc*2#@G{e>?uY4=;2}f!nQ*!U5DnFV6QoC%h}PTASPVdoXMs0wT~-)NO}K> zrw#rmjX;KRq9hBnIwYscogDVO*krWp^Y^}^4eZjti+BrDEm{yeWNN`mMV<+R z_K!DZMtgTXXSsIx!GhBhcV+8y5U(_Br-XTD;~ifCrH=Vej{Kusd2uK-l_uC{SYHGn z-ycnBJ~un&nzRCzv)~+iB-r63En;eXc67m;d@y?lu&v03GbQ@ajxULd{4t4Ff0@Gg ztI=%Fu`1|_+n>Xn0}aEP@dJ)0muu~x=@QNeHA{W>1X}kIq$uRJa| zM56*aj`qoH11@@8@h5&_$b{;{GF|VI1F`gxIovP}kwc#{>kyKFaMTd#Gq+ByzHB%K zp)wV!A-!{bypa59>)8+giAM-6WD1^$^w|r>J%_N8UhDJPc=5!p-^v$>??E84)sF1r zI)DC2>XjeZeQJ4s&z6YWE2z{i^UpG6f2m=7>+2qI`bdmE^Mpi>DJZ7#{FYG7yUZjA zdNu=;SC}w1vsotmDznwJtP{Ah-<^MKj=DRDe+F13tN*Bs02PC@WYc86n z&V|Uj_5r2+i4H5FqzmmH@@IqhyK$wgbwa0gOHbDNd$d?C+@H&ug}hrq_Puw8Po`(~ z6)L>fvRzT>b%~Cqo*J}^J_aifo$KA9KN!zCZyr-8Y}4>RziodWD0?ARY%GEPoQBru_xE4^SZ`jNf*@I#W=H|^f|p$zcfYb4(1y*ra! zP4idoSkHN)YE?yt*`o@Df>C89S`v{g{`RT}P({6Xd|0IWqmK&TU%~gUiA#(SU1c|Z zc0kt@mp1<}DQI^duH-%b%wn?<)L#+Q^ziN%Ow6yl16wr%;kL)E&8qGiT(VZ8m19uK zKqR(hQv3S*KBn!nibL?r5eA%f(+0|EOS7r5S1)GzUTPQv; zkdI83fQ}babh;g=HmALvBnc}N-PV$TXkw(b6lwIhOaR-7BJopPDX=nKKbmBTwc1kS z!2FDz@uvpd+W<9=$D79)%*_ram3$;C@aF+0n4qqOX%_Zg;z%;JWRn`h_EG2FMPCj#CKtP)?36V z)*ZujRrB@Y?mVFaI+)}Ba-1e&4GWX+{BI8JH@n)e61^Y4z`<#*`p~i{XZQIIbrDO` z*`vmSv&_#Lu41p=7v3I`Zgt~iSil%MrP2Q>fCkT%59t*U_4aM`z zflo{9kkq#suAh};4%m|ghgbb0HS-{~CQc<-vTXh$M*d|kxn1@-OS2y_M(^a=_vh9y z$JpCvBUlLKeJL;6IKK2DZoJX;I7emeXDnS0(EB&(X+RmdhS7*u19lqfcx`cglT?VN zXlQ&zRbBh`{`-5^0ka@YkScQacq^hyPE6pUC(AM$==Yv?aajrKj|l<+<6;AF zV&g_!>$2sijH-qNhely+0I~VVxpe}(>vztw!N5HGnL13Lj!nGD&6H2>`!rYB!|$k7 zKs;7fgPv_U30z!O%h)IIqu%qA+GQ#5OF9kj%~<{$J^7E3jpl`OcvJt33@7Ndas{|9 zOMz2N9t2wG@Fo{e>1=V$bk0S`K?C8J=oO=6q`7HgF%KBDN-Uz#I-5Hb_6tmV`lPjSpQZ#8+^7?lFzAiqv2&o!7rsj)#EUiw zv|-xPXya$V0*JY>qCsm;+b2ipqD|jvZ}^;yY!2jB1LF&C4_6f)#7{lc@jUhm;+&zv zZ4UMvU0N(I&020lsd#ktP7-FO9oLWTDw#;ggb;b}4o91gQ=;bc+c%5?j_n3>Uxmzu zKW2X#)hj!&I`&`QkjmU@grl@t_m^0=EO}nZ;mUPwVNPr>y0a7PeCK)uVmD$V^wx}b&7z@L`>`d$JAS}#o2X1x>yHjf?IHR zNeJ$ZySrk2~k1Pl9tz z7~u8$C~UB~w z1E|*XTHM_=n^cq4*Otr!6to<=EUzmohg<=y-c$dvm_)+++`nB=;8i6~u?X*5^n1I5 zO<6cLmouu#u%WgEx;zmilyU|d>hE5RT;T|MYY+;NklM!i&_X5Q-nQeP{lSNhC z&DoTZmUV9|MGlOi01S^h4?0j)7Dwe0j1XE+8)HXAlSiO4w*=5)wGm+2Q*VpzOAJ$-b>bGbqqL9ct;2|~QVQ9lRgfX-qIHCN5+mq`#OQ=imrLD@e< z`9VY3-%I$S`q!-gi9YAM z9r0Q*dxWWppmxpuK!oF6*HfH=iKVD0cOvx%K`g<=`=oxM(ItW%2PX?kJ(gxRt=coK4%fUo%Q)&0F^)cf{>FN$op+plwwgU1$d{(3wB) z$o*+Zq1R2ANyH0D;U!b^0V|6F%IZ80E``RlL;UuPH84Y%rAl zT3?j=0$tel5PY;{(|E^?5W~L*0qZ0eQtD^@z}a(O!JAn4jy4L`_-`uYE~T=aC5x%2%~@JeW* zutU-46DUl&2e17x<6<(}#oi+|Z~7t<0%e!`X_C!qPIm+vh6`=t4Vvm_eMwOXq-pb% zOe{t6wQ&w5#4;c|w_gV|8Rf`|`07RWe$u4{_Lf%4Acce@Bcxc_f7>abg{gSeQt$hB!eX8WLjUD<*lqL*_cmSJ;gT>%=$D z_U_avDzd*oHt0({f8o__zWUSpAXbwRMG0{Ti{i$e|GX@M7leV5+JS;{efd-A@Vfb0 z@O=ME!w2j0^3~LmXF$mM3d}vZ z^n@4!0V5R6v6`HBI+=a!hR(744iB|XJCak&lZTvAzP?vCGO>fJAQW!G!B7!TgPNS%23qGBFTtlU+fKZ{ zz}Tyq13p;6*%!iYms2Zq0S$zJT#w%bmv;K^ucO1CTQ4zm$tL^J7heVQlr{u{V2&hB ze^f}&6|Mfr^+1n}S^FxX6W9W)3`#|kS5yZ3*q%JDEW}~ku>HX#c+$vpfNkq&Dfzvi zkS=)~{MjiNAdzpC0-K0opN34Q$CP<(k|}PZPHM*u%^wEei1{P!Hd1$&8tdJ=8;=wg z;7sIv5Xsom250?N|E>q|>Miq7HAtHsKjc|ywzZM+qkb^@Yr6ZD9`c$!{4Y+uG(~3j zfM&VJbsDJQY0waWm_U8CbW(?cU{N_X&#wBjsP0VSnpVOjd?>Mx>JccxfvC)25)%+l zX@^e||A`?lQxaN^cXr-+ekGjpNB#AhHUew|DIVPd5l*{YW|?|I}( zpa|iNn!L*0rdI??Z`HdStYmcOLc=X=BROhCqO*LZdC(R^t2Dl}R`f(Y>45oGP`5(h4Y5mAXZ%=k*XJeolkXR@3{hiTnZ2Ul`rdq4&57y& z<4wTqqtSU-FxYj)eGPYW3@nx&W@^~JrOgX$HZDz}?}tiB4~|3@%JO&<1ud!^^oiTp zr58_Q{E2MUzJ-3!1#xHA+YBl&q$4Q6#U--(23 zEdtTJu##Dt*W7R?eYbwK?!;g8)0JkKZ8Qx3x>=ceXO*w98<0DA#fas8`gGmqghqDn zcWvVS(9E#UlY>ryg7wpPSI>gXepTtSI30dj34w5i2;iPP!Kb5R{x0SBMu4mZp~H0M zzAy3was$XDO9iCTs~Sh%L@OM~`Y=AUWMZ#oV=~Op&avDtw12_h{oIhJ>29>Sw9iO~ z5iBk@AO};V8EwN;23z(mzbW*Kya9zs;Lob_(TrL(LjNiDyxoS4YABB{VFbil`UP2{ zIOL+BgYPgr-_^tpSXega?^b(INN-|&oM(@?>beNrbl-2^78&Z1k(j#rQ9fgSO#kzm zj!JRIY@N2}ev}yZA-;L5cYoLam;9N}t1y|v1)g9y@)-)D=d~BKGn28|b|)l6v`w&h zmm$FSC&aGT=4?96_in0-Dx8Q{vP-bY-!>a&<*hryf1iFyG>_CjZ#A)<6*!%C9~&%8 z`G#H}9JuUXfC9pp=W+;P%$Cl`({(cp)SZ-8=~+40gE)p>GpX`qYy-$d>O@Z3>7F@L zfUC&~425O-zp3G%uueZcnn4Mol%L28C^7ZBlpAhB3&u8A$F~fL7uUgcAk9wr5QBh2 zz99=ruKcy~tL6XC;jM1lx#kk$3%`@9f!m^4A~Q~KO)&Y9;l(-A&uG5QMF@P<-L_#7 z)hR3qR6vk*`BWm5+hz=V^T6^$J8zyG;S#D79v{832w!o24(B5xsztg{1;n5=a@-Uu zv!`uDbv-N_H9&9RxY!ZR$W=D4Mw9ft1ffbdGhOB3d<{sd`(>!=dzD%wr>&A6cQPlF z@zIMJI=BE21(_1fqgw3`?vOgspVxeinBw1zF!%s4{;eC6bjuf-=LFS+vv4CB@NdWI zW}W*mWpuL-EdAQuredYPK-}-=Gk~`7AcBo|4lG5kE9{=rI1#Ms+l<1MH#Dd%!~?#? z*QywV=ueQ|xsPE!TQRLCxxP--yLb@FLhr;qf9S#K3*0&H4c=0lJE4CgvQqg;FK`SU z%*q(G5Glv`%4&;Iy7kj3m*d{b!Zr=SIm8aZCFR2Kh=HCbdg2X}s&aMyikbAG+gVQ` zb#GmqoaZ@kVmHr+`}*zcE`qhD+gxvav9wnglC37>^Rcb&A35(xwx83{zLxl#y{#Zq zq-L!6nNQ*-cjuOb&S-^gxfG24hqitstVe<4q)^UvIT&RlB$ z(VZip66i?m{lF?1yY%ciuo0K*vwigNh|72O0~01Fmz_YJe} z-zK`0TTuh$#$9H8Gh+d@yR!W!-A2DkdAr47l2SG}hn^w1U%&Lg!Gw^_X%3 zyXmv($;5dm?u8)Q!fAj~g(fno7D}$#RU2Khw)Ap@N|~3^1L+@wd7ym=B26?9AH^);Rv_PVwo7a6C$_2-rB+^c%oAX8v@{ZfSg& zj829&&z7d6nH7w!PDM^2{I{U5X}7TGV8CZI5jFK1#!?2T`TM$Fg{b8Vh?ic)_& zG$Ja0UgOrfb&V{dA#|HVZ+#6k7;t#A8+YEwt&tVHdDS zJ7xm

QspaC6j1oa%91)gnI}$tW1irVTh8CuClRi1ZA<^5&u&zPj&Tn)d)I+k2Hb z-zlIBo|S1N>sQJCvQ1^{Hi$ zgsD~7RLMycM14N`ZH?$?_p4>e1GwI!)rBc-K7u3&$zkGe$awnuHwQZ{$HREqWTK_( zWv2TnN=PgjrDQfjTy9t8)5!^VmGy7d?qA`a9@$luNUvsa@~E!g$-VZ+l4VeD&reB~4ZL5yLz zUk+mzagbEe5F~1=g`2-)b3&;Wh%S8nqgE+fwwVPqavLwx^K`5%iM_P>i%hHd9Aayl zop1tdN5OUSS8_tsBan$7_flR|4gNZ)Oz10N$u18f_{eULV2j$Qr6TPPZgUrYsI_lh4@X5eCi zQfS3s*Ijj<)^*B(J3)dW5(8#gPeXzcle|^_^5_!npDz`y_%1cIT-|8Rq^3P&lU{)q zR{3+t7xmDQkPoPAjGQW}1AZ9%By3@0R8SUDl4-(BGi^CL3AJikcSoq5JxoAYlg07g zn(Xmek{seNtN!h7tBs@CMO(dQGRZ@Of3F+P z5v_+_9+05mO(d0R%S>A5EL55lAbfAuAsvvfPbGJmpLgWnr`rg=m9}RtzfQI^H&=le z(zDaP&D2f|j zSl}ZUA?Ti*n@0{4(uZ*L{|)*+SS>zBxplkK@SY?Fddm@sx9dxuH)7{@kA!3D+MvOz z<}B;t(H0G8{!$==_~~#KP?cV>@JFcsLV)%tA!d0YgE*lj`M6#`J5smIqh`l70=Cl4 zS{wh5qqL^LA31EL!cBB3p0GD%#nCxBU%m-v{)x9iUdEp?Req%}xpX-oZYpV;a*R5L zqmv!HXM_YX6sJHE&=WXo^*7yC05eSRoOJf;)MQrsG6onC3B^;MmkJ3bkvf)GENgBo zOnj15R{OwD+m+E4zqHf9USLk-!tEK}7oKLJWxK-3j|iT`Rn&Qd|6aA-wj0NKZ1wS;>s*>hn3cX;XrVuB8XaV0?*+~ zY&;t2stDlG0+QL*`36*#`;W;au1GIZ^$V{W=-8 z^Xd{Z1@O7?-i$5o@^YG*L9zMwd6x-vcmvKDjpE%K4WRLwDF<@Vsm^ppeMZsTBZa|L zF)>Od4+)!6CDe0J?c^qa z@5P~-a7g~WN5;#GYuW=+SANY*cb0XGIT?Vw_bLB343SpMV`n|okqo$yyj{Fb<%4q^ zM_(r{=I#~38!sc&X4dS|U7e!_C{aH?GokcRqBa!Wh^|`aW2?%W+H%(A%uRQ?tZ3PD z!SLMppR0g|`^08&sD4Dwa_dwAX=zW|Wa+oWks2ML+tis2BR*%jq-2uQ3Vn=kk4A9N zIMf6*?g0-+f+n#W66NmPOR|NdBQG=oBotOwY)*{iqdNF^4esbN!z&ePi$H!j=?CgK z&S|o|jv6Z^+IJk4nCdPtrSr2KVqZ%?e+4aPnm3Em;)UfAEIXx}F%3oD7)#=}qO^c@F??C9& zwr@a2u5ouU{Zcl8V!omS=nMN}6%g+a(u>`9OFL6SI2s~2guxS~df_h`=lux>U1is4 zt$TtZBpw_aIqzg|S48ial`g*o2F#?BjJmMj1@=cF`uBT&JYKWjL+<6ueoI}W!*z}T zA>YB{W(ed#3H@*tcV1oulflS!%1>t+D~^;`-q|WKW4B?JBzhfgx)URgr74L9X4`-K zauRXouQ&+|N3h^upUlBz$a|JDD&22>o1~M$;>oGkI$zqqocQVm-fx4gFiSsB<62RPjHj_i0dB1-4}V^orgIma-+OhAJ{63_moHKq)dKm-?C0iD|}Dr$7>mscD}Q zP53F{7!|q`c{WZ|QS5$zBJ)ViN2H*VoVyQnFrkp>C3N;LMx5(#3qs*l%h?ocP5n=5 zpZ+3B&y|&BM=^n;Gb&tx?C0eR+Hoyw^ettexk?Ck$rL>}xRvAE$+yswX5WNptejmp zm?g3EkNuwv0cI*9qTSO%e;aK=h=nN}6}nlU(Jh5!%lSr3uYr0@W) zrEYh{($D&gKNFDT;FDS86JR0|Uw&_rnQYr#>u05Tm`Wj5HlG<1cME`fzPsf1(Mb0v z>)j!v^*t2P6gahhS^0aht@nPT@W!&jR;sug7|!#aUY|Dpk&w9VeP^@hQugJ@&mAdc zjK2rbVZkBusxN3GJac7ttxI0?6hhL$h#? zjI&WpuM?Yw+QZ-o`y&}lZLN7)u@$XeqY{tJWa5z^xEjQhj|!j~XU-<$II9(J{Ms$3 z@muX+><@Aa@*v)4Vtkcw$NDt>n{}^y!p;|JNDulHAaFD5Yi-C8RG^M1e>hg^P2`H0M z2`os*_Z#}@kA-jP!p+6(zf6lJ)LSE?4ze7K9X@YNj10idP>LeN?k~{%k}uX=#r1KQ zwBGRHrKsBL^$T~aCo@XMjpYfwBI->(*T3?QA)<2&1=f`H?i z@Sl9!dY9-I7Gn$`$a$qWx2q51DqCM0*7hhQ?a>pe#FB5nFljYA!sB`wDO`McG6Nm` z7P{|V4Yr~kclP(kX##4$jZdPTuktg-fjoNtr;rf=Wyo?&AJ)`}xzmoa2l_>1> zN^btATo?l{jAtldSXYzpQ>NdIh`7UJmES5p&wSGrOp8sM5D)V)w7} z!jk$)k>2Mxp%A=wni&V1;|EA()L`e0Kxt%P7aw$Xg2Fwh)@1V)F8-L`VUt6JfONFP z3D+1ihh&{1Ju5Gndff{$ixA0hcH-Vg7CNk`FuV9+{*(y~+Q&w$_HX9Ex&Cmm;o5d> z8|SdAAs9<>iICA?zC59ST;iBk!yvKf1@pawDWX{u<87jx~x%&OBq)cLmgVL@-1)q6L&k2W;eiZ zP>XN+r7s9&x4i_%SA`wL+4VpahY&IOp}n>iZ>Le_62k-Fd&I9{T!BBUR7^!0%$))U z-Sx1iVSL0b*zFZ-1i`TnFii5}2Eg~LygalC(!; zaMzYeCF~0BezCT#;q432{o+`OaCo#s%?C%$Q0Ww(en~7APCaIWym+;;WQU zN2>|P(NHw%1z%hFf*8(~flt_wc%JirA-&Te`--%HK|-1#ga#}yU+ZUmQm3!=YATKL z+)2O}M7N9sv7i32{CH9^6~E=~5M`llbkqo}T$HW>mPzBXl-~+V7KX_6pvoB=w`hL~ zC(r55t#H6C3hO*9Fqw-O^<*AR2Kzaf0ZGu8O`!Dk%)G~_H%zAK^I(f%n@W~1rdnha zbnBAE&f4cNIAx}3ZoP2`{h3a6J>85|inN88SN1Lp7mO-)E{9wowD{$B;cI2 zGN4kipl#IdL_t$PvYWTkL|bywwMtaSwp8@voyvM9WlthMC+hPqx-htx%an(JP-!uJb>)+fTadz)d z9knW-w@#xBdYUoo4hd)iP4WOdTRh&PDia?=R7Min!!lLe@BD4_sLAK(P8Os^)#X|qqh6HyX1p3NR@cp@6z(Kt8`>0< zcC@uJ@x4Lx0XZaZ7e z?*h(SCW(?>FNy*!%B>C}F5)VoGU%uan&BF+QWjhZ^)-1$1nPJfJI;sr8n^Pi|KWGs z|IcV4Im#sp;zU&Yq0)8J8Cw}@QjAGM;leLg)xWME>w(ipHvqI~Aic?zfws-?MogDp zEthASUi|>qNQF$h4Vfxry=+9GPFh9;a$N@xu4bs?1EqMUzSVG*Oh7k5>{2>h2SYj& zkU;;Xgqe4?%p6F)b(bu#$&ktB1`jK+ANNRnTAgf`jE?WKmSK0zBi~EXEow}%)=f4< zsWxYf9z|*c5iP}qC%qyNl`_=Z97?r;Ns_+%sWcVk{Wek_Eq{-k!Oc>V@#WUKR3}5+ z3I1}UGl$MCj0RaX4Zw+ePXGF4y(2aj?t`Rlwf3y(m-i?9(SG%tUy!UtmirYdyx)C5 z!S<{4`(!#~k}JKY&AZtA3sJK}c_BO&4n4i0MB+!b>eUxMMjI{*Wb^I(hOb=BSXd1! z1#(=NI9xw1SeOSP`tg7L}|!ENhujwi~YG_=D={ zMf6wNsf_xRlA41`IToAaB#YZzdAv*@#poQpfJ}xAP08Ms6PL!ijqo*eMu%P;p^m%D z^?%wYjV~@6obP^X=GEQQTI6u^#Yc{bIR2xLYwh+NIra-79T%(;(e8v~!M!-vL((3a z2P~;{{pV!IWl>B{S=o@LGuFSXqf1B1mpjsSeFJ}k>%yS{Bncf1c;$K1iv5VhIj|GeI~{0^XzVvF#@srPb1 z9Jdq*81j~_R!WRJy7$mlN@HUHU01E|)( zWO$V)ytA3sl?<{mC5h=n()9&(Ilsx>LZs(0i4maEwa;lWN8rD<2z+Zya|Uh>Jjau- zl^dQF@JIm__IZ1R*frrW4b@zdv|<~ZfcqPRU1Czp!n*SQr`!h#kW7!gy^zjL$8Q;fGF19Jct)=JFS0*KSArc`l#88XlU2W3 zeH_QHyWbKac}1{&E5zLm2qRgZ4Xd9juwjqwI)QC1_Qrr9q<(I(EK<#y^!54NE*kd< zA>Ga`dH%u`3=XQr`~x^q5rh>d1m?4NRUH93z}-+0YWVVm~Z)du!0R2X4>XtS5vBzlhUn2D=| z$P3fPrv$ooOHu}8UcCA-p-NgCA_RDnT02fGxx?ANuwM0_o^ZLB_nNGVu>a{F60tx2 z?1wIq>$!3MJdRF5Z2q#-=NITT^^`EVd8EG=X$+LTKdBDcYP;eSCZ2=}d^W)O7S?K= z27v#n{%r2cq>KTbU2#^R2)@+ywppw6XMXh<%G9oIh=ZxdB+8@%o0*dw@gq5(8GDha zDJXGPwSWyRs$9s(7WI&Xs2s7zYQ(~qs9`+6&ze0CoWE4*cB4SJrljAnJflCM|6{vE zL!MvsV?}|9If;rOibM-iPecoSN*A1rQ}*^8Ph_EA zCuYrjZ-Ss%vwg}_c#VX47?cXc$;O!lvlZlR+<$_L?(;8xKaVCam~_&%Clmjz^;jfU zm*6*Og;Z7Z7d(YClPb(KUZRLD%t zjN9Y6#)(CKQAQ`KDk(WZgRvChun}e@WMtn=HVN^Mq5ji2)Jm{?z(|@UsRf64#T)6A znwmlvG6K>neI8U5G%sgDQ^uq3%aHJzJ_?^a#6i9jol5R^sq^rPOB||PmTvh3S(>_b zo*d{$aPr?rPj0ey41u;qu*wT#zY1i*@F>`sW?VX*Ku?^%ccwj{$W&lULF+NMD)Irh znUN}N(g9(NN`LE^SIU5sgR#F8&DvBX{+f^v1Xo=wkSeM2rvfBQM$fe}bA0l4^G+BT zw>MR>E40(KdEyWczp8>D(g*%;D<#qv({985gr8sibTk{Yr6N4Wqm;(2#zw1`n$YL0sQtAy zTl^8om|=SvHVI@jn&*%EQQOtuV$~-UQrBQai<4Er)I3A$7*RfXK$`bFZ^$wZ(=Cki z=#3k~L|GN6ML7bC0>OpOiNDHKxS9+8sNJgd)2W4XR$~5??7R9J!?Vec>&)$qymqg{ z=>A7~*GEkXd8Ra&>~hl;IOmD?>%m4mDzKm7kn1pKBnr`4{{#IbW%r}}*1iIYp!t9s zVXoiid+%~9GU&mp{l2H?V@vl5?%kZxnUnjC%!Ozbm3+@0Q}%G@gt9wo0=^Bo<>5l` zM4Nmh_lVlP57j=(#ZiZEjcztJEhHF|xv<0uZR?w@0If%Dg`zMQx~@)TNsyujGQ}%t z*KEO$_GTL#aOI*>9m=q&b|r2wQfBGwZ~gLCvBsM`S(&!fR_}N%54>Jt1Psq0@pJrSYrNTlnx81s3WexI5^c3oLh@{Kn+@lYfUe=AHdQh=SWq9GjQVsVa6*+QHSj}hQER@^7WNBq z(9T*SUqahVc>i)b0=EODtNMli3|>87OF$zX!1-{|083n#)s5>4BD16YxA^iwlXu}Z z?Ax9LCCrGCp@y$+`M_g?-!`@7f-ZADnWERJe?o#eht?C%2kFaM3k#-AgzDvuiIL|m zx3SHVVnOIZE9GRqDjekd*Jn*CDi;nZxB}x2#QgzD(0grba}dIi$B0}E0Nwx#!$Fth zx87%oZo>(m-^4VUug{86x=WL(sh9^xbgPO?RIEk_Z(49S{@+CPk|FpkXecNtQ6bfj z%Hf|NyjT0*A62qNFrfKmpqY?l6@`GvWHiePsMD6fx#(A`(> zJbrfCF+FcDHtzPTWzDbh|1Q=c6}vaqpX6(rF#guVK1+97*3x z?PyW(B+DLaG)oe2Y^!rhu9KtRtFuhVyE!{i*1Al+QOOs()z4P}(MFrb|%z7kScx)}+a7CFZ}XQa%#x_csl+ zA7E^E8?Nl)mwaJ8X0C2;0wmuO$(OfI93*0ge6|c`To-nN9KYxD8J0vqScmH!*8@z> zN-Oo5W6KxQMahvFY$GIj=n0^Qv5spM49}e~!9zBhtpAKRfD%CYXS!b# zAppNk<%@ZPc2EP1%t~m@9|8Y5YdXW)XFX-;t|ARR^yShSx3}yC8SfPMMvYMqBoxb- z{R-g=x=d=DZ0)v#m*?Mj4bKv=5Z4xsg^-tE4} zbznEJa`TmgkcxPasq|F`ii|Ad#M55>)Am)&Z^7`wfkN8cr_jA!2Ts@khJx=ZKO~p6 zcBy(fLX_beeSF#&-a17aF&^VV6Ikus6nW-!i_ydOJup0n0{O_QU6Bjjc0?1)Rspd* zS;k&u*IB_BnWQw35)SMbH(OT0&o*7txBkr3L-i3H+|N8EoiLsPFzx3`$5M-df-dW} zY<^&;N>8BZ*?Fgl>~T&TH*jPn8%^+%INYF(U}v!z)cI!T_WTUlFSKkGsGv%uAl_ey zV~LNTC&U*K$MSx6WNtRvmC|Q)zc8%ePY+{Ve;+~tyQMH%Zmx?@m0PWR%DxMIRjO(& z(n!oN265%wVS+bs9GL-)K9kiLU{eiItMcZYr|2SgJzST*y~C#q&Vt?oJqbitCa0!T zteqx=K?OK9F)Ld##Ut3$Be3!A*QzI=-_5a9X2xbEG{fLA~+MSz=bE2`*Qgv zO5r-=qXo>};;QGa#-M9s03C#=_6LygOB8f19A}M1eI^}7h=OqFy@RzLrP-%?KQEi;$HNID<-T`Z~#>}UuwLhXJ0G6hQyRzWfeS$nRYun=6-GK#e8jR&GX>Qe`* zA3moDcaSTafBXC9kV)7)@0Bu^ZOvrb2EO`m@HXCE-18ZV?FJ>9%oM#soAK*9Ro>`O zkql^-{97O0_u~N9t25qIhpAsWK|TDfE;RBlYoE6e>aYo1qb*l2C~Z4Vn04LXH+P>V zro#Bn9-;a-RZ!S5z)r#jw{c4WR9T+W_tYdbJEZ!2e^2C`0#9bXn`6c~fWAZR-?rKA zQ9%s)sMd@QR>Uh?axoMv+6m|Q{{l%+ync1ACoYwJ7T4nt-wx^_S&a%$j(aD?jwlu; zsR^{-DQi@{C#k8)reGJ>Bizh0dSGEJV3nfSDM-!{yg ztKdJHS3o2OD@+u}%9rEc7_>^T&VKb*MQMz!$dVgU@K9m`4g``=S$ak>gqTJ{RRviO zTMiX;nZ5>QrKC9RZZ8KZirKxY0e69S^l>lJksk`JG%<>_b-zceg=2bTrzcWs z%+r9Ft;nxD!83Or=Xnt^Qq9++KWT;+2Tad|3Ip6m$m{dz)W9n;Faf zeAf0zRjTeZR+HxH-NAlxELHvt1(wSOvYgh_0tm>&JFn$Y|e!R+8+cX zH$>O$4*c-nP{a?ExNw5a!zB0?1h|Zi*GKBZ08!BGxLXHEciIy~@LS*DaEv8S? z2N+LjOH#b^=Ig*dtvIX&fk38EDW)%4U+D&!D8hIJ+S1wb2`BH!^x(eJQ-0c(AIJ_w zq{;|M@j)$uScI((FiS@QDJWB*ch452a?C1BAPY$h4#P+aGCt^udDZ>i*Q@vfrbUC=K^FR66P#Bw@b54!#D59Bz;C*?@BLnNH&t#o-HYLRzvekNq7V3= zeAm49q8u(q4?5}s8HAk5`s7B@KP>t_=`GQ!I}9{zu03Z3Vw{@5WY`?X|45VU@fcA% z_?GoaL)PNxY1AA__Gnch&@r&lFa=p^$}p5GF(CeLb;*?_Vr49XO|36`nyn>mc0MF# z%nkpZ1r6cZXjDjM%Zj?{%XWHZbrTS5P}Q%|?>;$wh9Y(Ht+_@ASD4RE+o&&8>T6kC zxb-EiY3Tq6PC`K~-4L(-&1{Yf9rM%e?>Zy8uB)$*{8f|5u8KjJ$>1-vMZZt}Jz;tp zx|DCE}i{kGjFFY8{oKno1S8Vp5h=u7)!JF zBT3!aLXAK-d}r!z-g9^Ga4n*Qz~hgN11`bck&}e5A2VGdJ&a&J+t>&A|bi{y%5dFxuu~e~A^)d)T_M3a)SnVebqYKzp4?x6(0%av|bKNn-bW z;d^QcFe~K?kr5}s73xgWYb)Gh2y9vrVrR(?bbI{SG(Ps3v2`$>JJ?{JV^b$0xh5r$ zQ+=3QG@jQ_Q5$Me$3$01^8aMmVd_bMj}~P(gdrEOb$|*fgd7eo`3@;Bv7x>~u5zr0 zGR3oG((@S=&u)iM zF~0nJka-abhwp}HNHBsJN`gs%+=KWUPf;^vvh6&jKSbMuzSUrL~3 zfWKl^4_4z`ITec4F@=te1~%kNmI|RJ0s?662rU|5Fow=4sH>7`y(8~G0@&VtOvUix ziLct=hffeJWG+STnBm9)W23@$E9_x*&m6<~imi*L5DbP-y$34vdg7WK>5qcy{)H#L z?eYncpZ$pqn?7w@U48I#o&aGPc=D;eexbDET3Aq{%hx%Ff$CibgI99>`fJ$M*H#Ua zqa_;X%T1QooUA`Hz0|$18h#jIJ~zYmtMGpB4gxz}1RfoMM8*{Hx2e6h=y*)T9<*fZ zypu!5u_0zw5eHaWOd0gGs+y=fcPCgDKeZ-O6!XMqEgKTpe+P<$rhi0nJ!krK^_y3# zY~EV~!9o*;#~jZ3BYC+BT;=^BYENOP3+egg+RdXI$9@>h;-6uC@*P+ zTcn(Q2l`zyV4IL~<~3nC2s(Ft&?RQggU8IL&kf>sEOpHIMS*vzKj*>Xu$Y52Y)Yb} zef#V3(i?83i`bR(gF_DmPoqSwqM%xLxon@ z^uVM`xfVU?)CdwCu8tP2rG;3e4etH1D4lCZ#rCw6n9~MPIykg+3bEv9C?Q8F|GPHh z+sS7mHO8F*zugEEWho43y=8#fW|rcGH`Y$BA7MJUE0gq@!c`vI_rmRswYv2P<(@NP zDL$I)YvI!j3q%Dqz=!=#VMY9I<)yf5aM zD8+_NpDpr5IM+^==iPJq>}LjU(r$c5%3V^}9SB#}TI^dNXSj(Dc|8%V?7AvK1Nug# zzkC@{7>Hd#HVNyL&_&cTen&yAa=l$Vg}JQR|1X(2Cii{h>%sLDa8GH`Nc}0nx`N=d|DFvEPM%C=i~oJ)mz0y9j$@dFo1NY(jeU_ zNDU?3-4fE>-Q7rcBVE!+N=uA%cQ*nK&G&cjeSYVBH{1vWv!S-%& z=JSk2vTUDK(MpciUXpyTMLm3p`|K-A5m*rfA~&<9L4~`C&1yqKvNRUQxej$^*>k7> z9N22_KlZ`}Xp)F#q;?->M>slWBYZguzH=s;W2|_8$j1je5%X=aF&Kn0(I6%4NTvC6 zIqU;V^e7n>+Yivk!n7%yk8ddmG=i_N{k&~6U75r+<1OHc{!=bi>v_O)PGAf6B8Sq!9FSHyMcCzCJw!+7d}HQ&XVHhv zSm}pkymrz&er+0_@@ul6nySJj-Oi-*GY+X21H@(D%l^;pSEQG)OFnH6dwK9R`cQ{# zLYE+_)PC}&P`P=*V61dG2YLivz;5n#HhLOpo`eVXRA&X$Uo zQAO=CE8G|F_!|&!0zp}kXCF@(3mBB+B1g3|fA;;Gx8R(Ggjo@}<+q^nT0O^HM+Rz+ zP?{MBhiLbub5SKK7xxCYTr7MGbhj?9zyz0so#vbk=tr%iH2z>mUR2Kk@^p3GqLEUO z{lLI;qg4UPlt^aULp&O zjbXQY9lnE95qv>S30dWia|VQ)c^2sAsGe}}6xmIiEs8A#;2A5gOpQiibXge?@_F776jf7=`Hj%+#Qhd-Ofj1U;l^X z&Vwap3x6pL^9nnZwxb36^gvSg=phzahf3Mq{pDBMFq8s{(e2xnblLwy;nwWK|eg&r+H-B za)9OT!mLuRoPQQ{J!;_A9j~bJ;}fWZp3brqb35dQ3?k<}h~?eyqqQH4m!P-PCMy^t zqm5lvQIxhXMIQ5CpzZVigjCoyHTL5KlkP3Q{w}{Ri#H43HhMgfU*1GT@Wv8Ef>E?D zmAgs$s9ox)Lz)+(&B=oEC{!J%fg1JUa7Rb4P;@fI-U`&g zX8TLWLK4NYTXfaRz@dvO7Z{lyvP|D%r-N1KnYeql{Enlr_u=`}rQD`cLrvNstjAOi zqvo6)`uJl_<{wl}sBL#O`4UkCT0Bx(s8uq~K4+W(SYLO)X@MVomb6J9*ljA4XugjZ z=w=SVcw@x5O-7sa5{U2fr|=Gclpqms7D%v}a1>`(3XT0HvN+Fn^1gu0udmc|8}o^S zKz2;KA%98UXHW&tabq@hNdDhg0^GSdK!(6QAtNZC7kmJi9I*crYxr1VcbTDmVNKUR#x;3}2zjZ|vY@VB_A=5@gOCv_LZsNx2TKrm0l>QW$)%Rn-%hY)%wXdb*)c;sqR8Z9nPh-H}=Q- zQenXo1S8WG(2f?Op8`-BV2i3rq2Nu&7_%YC6dI*GW5G|5px2Mx4f6m*LzUIKKzoUJ zTOb0P!!6wV`ntZyk>_c&n`LUCL$M%2mFQw*dKKDu9eS69$Qz;`H7{_bvn7sp3JC_m zur-2ji!J)m+3TK&;t8=p)at z`TiFxS8+X;)=m$8E`z6nK|U}Qkp2y>R*2P!)n_iAl+n$N*<=)s#(_^qx}wLc?!7P3 z`}VoSppLxS$%T)(-#(nFZbkKdqEhReaErsCz_e^Ef;999`6!~KuwXrM%@BTv)5}OnFTbM-V>JLMq4I<0x07U-kJs1(6&MrtReWMSZ}3 z%jVoICb+yT8%HlSIky-~$9GRyV$>*FK7Zoa*Zo9!^ofz#EvsEL@!-fHf+FUTeD0be z4T#)vVP^N`C+*b%mV&ubEV=!K#IpKNCDdy@sOeEEULwaBux9`X?S-D;=j9GVw2X3s zTC2=TvGu+QwOGEvFwl$q_%D$si(qe@>VbFcntw=u0oy#Y)Z8ZNo+LNT)4|^H1_Dls zi;a+oj)g$!YB6rh?6L!Xp&&s{()aLpVQOl&hvikJnwE{L6zhu5Xf!DDp||JqIU)DHby?O$MP>N>f4o4cM6he- zG_)O!X@m&0w%-KpjVEzYJ)uhOar$?p*pLQL2NL1nCz?<2O+B<6NhD0;0^jClgjZw0 z75K?()rZ-}eSHaB7v(*V$SL9Y2~R{Or4*R>wuw{n^#lrgIQ>U1mZnq@C`hI6_#xNX zGBlQm`N?V{vYtO^juo*l`~bE}R+v1Q;I}#hK^aS4{FKSWJ+I;5a1>_^D6SFp{_yR^ zGYj(}1BTDN!+UaQbUwsK;O{wNMxB=-MmPkg*7u-p^WoQvaaTmQl+&MLqk+=fz4MK8 z|1ILLXTG8`WpGp&JGU1zm5f9p`&56|_SFH1Hg;O4rkN1228qN_YpIn{Z4Jnq*7$80 zsB=nQJHip9D}4cNU!TBS(o`;zIN~+z*dd^c6{t&?oq*3G{ADuTz=qtNK=H&Y^r`bl z9KSeH2+ROdlg``m1(-hwGs_$6K5kM=cPWHDZx`fQd$}&|jQ06}ugXBAP`rb!udrgk z>9wVYAbeoVhe-9m?VRv=9OB#L6eLWRKdh+{npQ&Ja}36Q21|i4L$RiPhC}VJ=B!Py*cZX*QE`W&qXGYvvLulGX2}+8@{F}ASq($YlcoOMWc99 z#a0D1F1iPvvD@gt^HKt*)7OY+ivwggLZicB;iVTr`b*0>?BuWbe%J7f?F)M}6mra8 z(ZiTk@JbuLzdSvS?Ww7HmpBqZ9TiVhxm^ycwE}WA^Ae2lnTcz0 z2(LOX9=hWcP5k%gx>&iTBP8%mC1T4@0X*md#jM=Z-r%XHcS7FTFM@L(_zaE zu4{sI$Y%ey#pl`;f>P!9P0BVO)xq6N2bFyM3`wXy88#$UE&D(e5vD>=wdVE1h7;kr z-(_#T)H3Nm0+i!=*ToP%Vh_=`+~?U{7YSO0J6avb#S=qXXV{#g?-|C_l-*TeZSOf_V)?d>3ik5I%Vh{M^Uz0qxIh@!7 zA(j7-mp*R>XEuN*lZU~}0?dzsaO;CbSq!9~C!9<#u>I$#7H{vb1;9 zrjcDmXjecgIm|A+VS}zO0)=&a@0t|Rs9AnbOX6jmL9+B!UymC~-}_vKagEc|Gg^!2 zdWd;3NZ^~ikV{xHRoS5dzL*@KEQX3eFJw!HDO~Xu4G4N8+1;Zz z7*=789hl))NLPt2kEHv2 z!1PMUh{tzxn0)Xt9(Y{}`g;NloZ;4+3i`Si0kDmde_9~|;>LiD#QDC}`cdx!I6aBYOcR5eZd+ox8LI*d@VctT1CZ_-E2==jb;>bCAagb%WF1N{|M1#CPV3 zDzjlbM}78%1~jpEXD45#K2>tIr0>3>hn@ueKcm%rQKe-}T~jjmlX*MAp#QV$Q z!Pg?`l>s^#@28P^2n{?(RirGz^Hskbu1wJ;l}lU(W+H^LgnI&|Tc9|tw^kBwJy(94 zhgEhQcsM>H5mZGa=W|gF7%T*!EBWmHyc<&4h%r^-x4CTRS+TUS>E^)pN0cBMGvQo> zb$Q-+<&2-jG|o0eK{|}6dt_$K@+ZUednACi>XEI+BetIDbf)@Tv=ckrJ)AhrSgh~8 zq%~`Rou~N*Yq*?eMHeK=)#uSo@a^n|)G~b1o|?7XdYUz!ybB`!TNYCtxpm`(sb;b; z#)T#?H?8)CN&3*EGnk!vx}>AG0q2_F)6BYuFF27TC0s^QBPNYxn-(;%R;g z3927ee>M<1c{x?CGeXA4&9AeB3OX-5e#vYkxM=kRU6bEy56hly{*0Hnt$dAp18USi z{_!{Tn?K>$>yus1pV;(CH^3Ym zT`PX*85};2^xwmWaIVV(b*}Dix9&N=Yi+&a=>AZIMGPIhY9b7YEmR1u9mY&K#o#pbc0H#rLZd!7cYKxP&8 zR9*)-O)4~h`WrOh!K?6qpNvcfK@_*|%nrkEpfXcLXp+V5ZpxsOv})2(=A^NeXLtTO z-TbU7=3={$6h-mGYU2md0Hb*H^F{Y1${Bd{)KNzEI(($<6nZ-~2ghJ$+n{)Gek%25 zHstEo$v;2Ig2Qhr*}3nobwVAi74&MQ1$#E7f$k~mb8*Doo z-nbB%!tIA*sW_heF zhOaAJ8{&nIJM6FBCJF1j6a_QKxw#2Kq2DhaeDu4I_S)+BDDS!t9}hOp*q+ZUE-lDA zt@k;E^DH%6s0dm99R1t9s{ta}5I|<%>E(XA{gC=OznLd33_ADCrjeQ8KovSIl&PDt zA8Tg7w!i#T+TM!;xgFzu+}^U8{$M`VLY$Y;xCv=IHIo}h?e5c$a;1|wjUo{wa09iQ znr2&1CqWJQr8f|v!e=Y>Z|GsXx;vyg6`syX9%5UcFofNorbLSrz8()7U5cH0uK76r zJ@IFG-WM`30K)BVa%VSYBN*RcdtK?3JZ<#z`6E?fATROY_)nd$pezrOY25*j(yN2E zE1KW1W1=U?qNo@+_9Y!W5*XY(vnjUs=2JDhN+Os#LTt<8ihag&U07qadOMT9SL^83 zh{$Us_0tn3Dax1J`TbI-9kf=4wuLv@rzDCfyv#u zu&lgULPeT;$rkgl?JS#@wrPG|i$}eA1n^WnJS%xK^W{{AVGr3~GZe~JNT#2r+3nTh z>l_@C6-65nez|Cfy^k2)VrIJlMpw|$KWhHxu8$U7Isawp*o zA5x)+lgWqSA(+INNU>Z|#jvfwucj873ES(a7=%M}-u+7XG)m_nR*IATgeIOHFNXBv zF2Wz~)p418^ZW42%I?XB{AVipc)l-}T>qSG2Tto1bepJy-yLVyUP0Z=( z%;GH~zE$_)O74oqj7@*FcW&iYGf{L!U=8KJ;*Yi)a%;4n@agrO%>rc3|B_?;u!0bz za$7dp&D3-OM`58NOZ>ayEP^B`=V!vR#(DxWxAN07-_ZQSgRtw~F9>PO{bI6BFI-ll ze9fKbv<%A;PFS#O+$^+3#PxVUy`jX265)JWs%X`}RqdUu=FP;6?x3FwHhp{)pt>UA zxJs0vw+lbirr8u+Zvu;M0XjJayeu9YoqgFWW+Y#9D|uOM+YoHMJue#+9O)FdtgcTRTo`~(t7pM zt!i-_B^dBr1?0!edOx6B;|amL_JFeX?^1vtn~Q`SSRdBx3%gnIVHO=Bg`Oc#c!rPd z>D&1)n-NzN0&j}sy!#uGbZ9S!K0FKjxRMHJcoq5=dkf-7LC514L$qCRgMdzCb2wXY z%n7zX_O0oj`B45>Tu9Rr(cH@yYV@m!ZV!q!Rc#F6@w~6f+?w4A`DaB0mFj zoJ5j7=2TlG4}^Ni?q(99*-~F#%DJF@GS*G{AkaA!N95Vl@~MWVBxN*0rnC-M6O{oU znFWRKz0DPyIXw-W9AZ`Z-odi@m-0Ze`c3+R)n`7?-D-MIs8+2%5xCqkBFn_01zS#z zc;B0RkaxKaq$>$u*z%s4p+F6liV&2Yp1UEGlxZwA{?x+QbK70FZSguKweM|DPS*Xx zNwO?Vg4N31asu$9P%Iy_-TV_z4I_VwKK8B@AOl_0F#=#<$*rof6o@gYe+L}s_H)&Z zpmZEAM-FMS2Dnv?n3Z3=eLq;a7&@ufbAJ*~4NUFW*2g^Z%p#m~aZh=UB=-naXha~< zVL8oE7U*b(qn>^l6LnbHo%(j#a0-IC-wyzFpFoqyeaK!EZk5`0*fxSUULdW?bRQ@6 zwdZpTB>okDJ+7K!dJtD`a1=dzU4?$@4kKnia-=w19w;k<`?_uo(CL1%i@h6$s6*n! zSeHe8N@*L&A`20bENNs-r#_KE;0Pq)vvBttPBI81NE|r1^61Zb10wfT9Za>_sDpC0PCj0XHbcw#8n=% zZgL6)bp-M%f|GLtnbDCG7th@C&z=Ylpn>jZCO>+!Lf^m5-^^8z9t56;649$(P)%11 zPFiihOVUQ}Bdswsk7g+`@DAYZilxfTV~WGkhth{4?`PpyO$KKkz7u%eK5s7Rr?dAd zCfLl<(QI3w+ZgsScgAPdqVo8$7HN5Lk1@(wl)+3(p3sLn(RMgfduGRb{}u800^)5d zEp&)%$yjm*CC9CwKhQ?v;EKdPe8{)1VyAKAq>J#Xmq!DH!Ef+38NL*+WXNDiDTvuk z$dI%q9#IzP@z%Cs37CH<`rhx^2NyU`AI4vI=WSi1QncQa+)Lg`+;;NIMX1@1XH4le z+^C#gjM?U~Q&yE7zR62yL%Lvtj1s9Wg=Q@DAuTwGlUSX|*C<-r{?qoccbUjXm}+(O zJhz`0n;z~@4>=a8L(fKcKG1gfWq91vwnP6?uRd&u`wv;2otr`hc%&~K;bXLx&4HHI ztw9kpwLXG~Y51zt#d^m<$52$wu0ncx%=YN~CP87P>Zv*+3$;Mz(g#FN5c3w;zy9vSZWvq+-c)+7# zshAI{Xy!pJ*K`zznf5C|bxRelny(mg*Dy~h1SkBmHcW_c`t5I-vKP#YJ-5(qjd?&vo^YC608=mf9;(5e58 z0}CU)1#U>nP+b}pzMNr=;5LFZ=35j?V&SGZ!q;u z*F;85q)lq0B)HJ#o8~rrbe1aYyj>i~)<+}Z!ZFhV$o7z7_-ywkm9JRjQk0dsP*BgY znKPz1@qH9k0F;yf=p)q|>8)O5IjQz9 zptH>TNr2y3v0Lx;ikB)~%@JOPj9@w!OW2%c#vEZ6?N*EcF+wMxZR~!F1LQ5OlKUsY z)G;PH6hTT>vVT-2*eqJuBmWjlBgfYDFIsg~(HBu>eMvH0NL(}3l7kT775dxb2j~8> zmVMy;pe1~3C@ANL?~!whyT3P1TUuvRiWxUTS~yx`w#^^Zo!qDo^KUk5S-Pv(T31jp z_^;7*I6!=kJ3zqOC8_-TtL~AP729aoyvy$V`naItD)dqKTsVDmGV^)z$YWpH)5q`V zBhMIP|2~EHO7-dLYa@^00KW5Knfq{ovp9H)N-K(QA~Zanw-{xuIa-$~db;Yn&+mE5 zMA78~6Kg>ki;Can*JV+>d~H$;lyaW5GdW_$8aASz`zTR9DTl$`U6%L_kffTri{_Gfu_V;Ca z?I3Zn4{>y=*4Xlla-X8=ARMclHy;f~#tCl@k`ovY_r)r=e_^sAjB3JE1K+`1bM0XQ zrQ5nWf4+zMQ#I~?129s4!JhC(Lg0SIRiBLu6+vemHG-?HpGwv8BFD(Ij*fKmsvObe zpL7MvRHO^kH%fsOBXzOyNo>mPLV;>ULx0g+?l1^Be;O=@29ff1F{#tZHgabEcCHbs zz|%GK?6L0EvvgG6!qp4K3)7Kz=~tB^8{T^K++%^h-3twgRX5=1+wfCU#Tu6ZBj)3G z(dOp|(guemUjSLph!Sh@_V0)D2KOJER(7PG-GD^#;L6XO#a_K1vu@%+9BCq4@%7#Z zfgBppT4Jo4stT5XC)5H9&?p$uQ&I0nIexXh24!M?uOcce0opP@JP)qqHV7NM=N=mX zalEJwjssF$rPFM>KPoh;*m20le<@KX2-LCC&wuBC+P!aTM^b&%WlorZF6L>Jychi* zft${-xZr2m+F@!uFa|!P z$?61e%!R%Vl-h%^2FK$ZX?{GEK>MME!8$81;rZm5r;3`Y<#XtPH|5zAb5_ua-G>A# zdF*CNNr0}@XfZC2(<4?eUD(<6_&8n)_Ol~yz`yV!pY%Jgx+02&3eOd=O6SZ) zFVE+7*eQ7EfWZ;G)~oM8FaY9f8mHrmvRxdot%*Q&u&1vwOwVzKXsZ_-hRT9bOtG%A zCy=@gn0QHC-UK$~8r8GXz$%mkmf7?!P$`%dW{gRL`Y}X71|AlpA4~?2VE!9q$QAf$ zVU*hsNQe4N+(mk>ZKGU;inIuMY6r^)@P^+dHY@fF8wc*+W3mMAEO0mZtfMa>!QD`y z##?0t(%uHj(yPGM5fE8>v0bC-)xTxTE`Vr61fGBA+}b2S|IwT5B@O1Leu3>?xY`Z zssfSqdp}%&fIznN?dWpE;_)X78rq^E*EzhLCyx(!*7VEXo?Im*KG79%Z>@-mjd{7x zg;Zs;gfS08LCc<9&ZrnJtiH)q=icSt483~l#0Rq#6yo+0p5Fwzmg~n>iQF9Um3HAm zg|4-dQe$#Y*j6eRe)1xm&yBP2WgQAYe7{SpddS_8q@x(g$Ht*O=HggMg*s@=jYtZp z&2{TDkUZG!c(gMKM<)2)8Z4HjJ8l5_$xBmjwS~SbSVw4;7I>xoCz*{TDTfPvTr=~k z;P(24{kC!ey+Lvdu)#XzE5ErA>j3%|8SWMoxdHpg)R*`*u|Oftgv@L$&h?6rY^T6s43MWdJGCVeI zrTWEmrD~jl36osl74~(*2uN-^wP}qs0@lx93Uh5Yc7{`BW_90KPnjnMvXUHqqA$|C z2O6zAJH$9yhOlQ(EiUA>I9OKLed4k!IubAI@pZlraBVv^2b)O|WUc`|H>d$o;#wC& zZf8+k`0LgO#eDabB15fzzB|3d#2QH1(tNf}o;T_1L$Y*V+fk6|(P=syy6`lOdQIcL zf6~LUlFCNq-k(@jzq`4G?wDMm!?3$cGLl+;3~kZvW56^Bui_OZ+zStZz1tuTV{%sg z?I0Kq--Jq6-9aqwSI}#KK~*pT>TzC>NDmLpD|JOdw%q@oNAYexMtAoo8AQ`c3Dvn` zzj?D@vi!0uhHN{X_m5?@8!v%SJAN0%hJE@KgmeX_AjjCaDAD7iu$i7{`+3Idl565v z{(8dDV)tr{*X69%GrX{0U;g&UQEuBszz>jQm#ISD#lH}QI_*QBdCxuPSL)l2KEsq~ zPr`w8Rxo~9QH|?TN|m~p@dmDb3A|jMTt3(EBP~F)>;GC8!rW+YTA;{`!-D1|gBvgK z>}&hlP`5q%O`r3+-KO988!Qa3o&K?)1Qka4a?OWdmMmX^LA%$#EtE%!WEGw8+&Zx( z%xnPXFY$kzKfu>)WsZCZi{NUlatQaPvo5)Ya^^{F=0WcdFRK7@`h;wcNh-l_oBB<# z+S@&XYg1OBNzC63NelKJzB5tz4wJBazgs30AECQ0r?+WmB)Be^&O#t0D&QN>SueC1 zZF=%eCe$$4(^4Xxo_2O*2Hw>Kc5+nuJe4%DU&sm~4$sXNY(YuUSxl8yyC=A-$Li9g z3xBZQ5f>5EztB82(Xv^v5t=s)oPhWRVvy9*QWB@K| z>gPh6x|E39Hy79e z$HzZ}FKo5b-?q=G0os0+VmZk$%f+JtNlB~eFslErH7=h1f)PH5GeO%z*XISHJY4#c zI(ifbj~Qgfrfjsm_sXqsj>FOtEouW(6a{tn%X@sE1cQeO5~OIkt(*TUL}vF~`rG!R z?0VIicHd~a$)g&6VodwnMk*ug-)$!?KZWm~@-{yJ1NjR+gm!W6dHq*h-y<~01AO^7 zguT;Q85pk7gAOmDN{8L7Mwk{D|AEqUm$ihAs=z1G==iXJ_rU95oXD>D2LjRQCqrNV zv=TB^a8)Qm#B6ufPf{1P;@Y?|5saE#I(iQzHvft2tKW28=t|mM*uX+h!+*WUKexB& zwoB5V)Gu3^c)MW!>>jiQpz0K1p{J!!ERKhirH+Kyw=cc})tegVb@HrYwXf2`Gms7} zQKAX_32`dvAna&yw{h9;w{3KP+le2MYyBd^LEfIYR0cE&8CjA>*#iw}=cyW`-1CJf zF+J(p&|lxq>;FH@7@_vr(vs(2Jvc|Ynth<{t`7E=28=WAt~+YH>k}_Bb&Ju|2J~dWiT+ER|*XN4udHb zh@zA=>{!z$G&%!oe8f!aJzMYIXCLX!$d|eC_dRV`#Pdfxzqu9Oe^DwH4etb2MZkyn!fa()-H4b+6MU~;bvIjWGmwqU z*YKk@t5v!%{x#G%wa^KRK9$}(M;vDxgu?0?>@_+Q6Qo0JQj(D5zfS_?RzV+|qIl_I z7p|~i4Md~*@1f}vjrWge+r4p_tLx$svc?!$`IbM@x%N|p`EH4_>9!jbS}A36eaU$- zam=cMy}l6uaIM>1g?P_GZ{r2zor{-l^1&Xm`=2Afiwwnwe*&|cf0gv_P%nPY7(Ea` zFXD(56s~Tw&tb79wVLU3y0CkX4Qsy=l!S zKehPneCTsu^ELz!4nCD>2=QdcMooy&b(@@U=wd>iq)&F*){{H3JGp0_1pn`vpF}M_ zqm^!~$zY+6V#2#fv1nDZC`#~;4<)FSW}Sy-)D7iY56I$KPl)Q;9Bt6r*W#=1c(rjI z&hCiu(pqY>Jk4xApe&%Qf;13wVvDh{CBu4^7Na=u1(Ve+??ieA@Dz?01yx~@z~){$ zP3dV$vO%m#Z7b7uRxFHrLuA@ zM$05)Q++sB`7|!z{FR}+>zy0V`xFyUhdC(>nOUTp`Zn;Lt&z`>#md!`w zn>*&UsY{om&&|?X^B%7jV7Q2$;}4YD5fM0E1?zDixXdXptu@!s;esun&9N(TOi<(J zOZ$~#AEL4A6nU1FX#=5aTg<)FdE@bcp+1eNb) zJpndj3hu$_XTPZB2a?Q|MjVj9z$f|ERgB;2A);ZvijMHEihmQ1yqGn5etR^|^E&{4 zkMw`fR}z#l97q?+VI&bX--YoUO`avF^Z)|dXmv`pC-jo3yTJ|5ltBHxvYzi7h5jj8 zC8{5roZrUDIZVu;uyTZs<>q`&x6^$?8+H>VF*j?YHQ*#iw zOOcFPWfB`ViIi#SRp2R;KdOY{lxy@fz@zJEI8yQ1*Wm7k&3pLUnf&|=le2jaACR~$ zeC4B1NMQBHFH(JsimETyr;#RGu#}~NufUpF1#u(y(V)h@HJ|X|;noLC2a>0nMT(+1 zRz8H6E|QzR^LgL2IRb>EaoyOp?O&$D03hSeQK@W|hDsus^PatIzLP%89n=W_50gTVIhzfh za1?X>{O~WNE^J4hiksPzI#aH>>m$PYJ!TRcCWW+)BUQd`l!a^*yfc{oDEC=I>AdcT+r9^`w9jeU-BPo4L&1L<^N z|8xI&G7m1q_1Q{1F$}Hqpgt#BxI6{)t}sHx?$2D3YTj`i5QY1qc?X^kQ$3gm&;328 zY0!Ub&o3cQs|(vngSb~^dp*qompq2ag8)q;HhH#1uQt!ZaI~L;HH<6ImDli|x`)iR z07&otIQqI==`4ocSLcvUJvX&t_3rW#D&~ zaOXcthT+mz;HAxB!7+O+dENmmT9FFu*eK1`x!zogp0u|M%#t(vgP?Tbled4{Uwjkz z7O^n$JGa*R7FwU6m>oNox>i&7}4iUBJWNlc3?>-p?i5S=07wDcvou5VX zC2q>Cd7k1VLV3w8j$vu;!}mFMXQbA8dc3Z4??N{2tZbKfNsj+|7F80H_z&i9b)OQY zC~=)NJo%z@-fu>Y!NWcW84Yt1IPRak+8l6vk&ze6w^Jo=GAm3A;_L?455diB`YBaM zYxj#AUDr5tn1|8KIskn&tajpVpOm>-=x<*>df$Db!H%BTRfR6EvznU zK~-v85S|->_s_+uYa(|h4VRURIRNCefWIJ6*2W(aj;Sg&9XzWoAV6rOM8$Y#6WWW1 zK+tq+m0zgORKfcBKzr_apsvVkDn7`mW#ET$H5@9%UVx{+H3n)jttj}Q1LL@4xw0f% zIw?=-)T4zM4?;pkoNf%fIU*C&M+_f2`Ltc(Oo*}FVW#!d8XA z`aTx>{jqs2RGNPk?u1)ndLi<>C#NMBI4vUY{nQYBoz|0s2f3S659sO&GqLT%p1iGi zh&z7$&(J59=^htQGmZp`C}EUfx8%IVSkCXA^rxssaJ~YSsKiBBV!AK{$@J=WPtZ_S=WWlLA{E=s#q;e%)7@FB<0qXr7K>`nRcZuJ+ z6J+D_*EV1j6$n=uf7o%WoEzvb-200LlOm^vsfYS_uCm^>DI9ShVG&=VkB(HT?KK*6 zcM-)OGCUMa}Xt;YIEDs5rV$P@sUwgm!HUG|`(CyLL)hOS(FjUjtFx%#}89`hi zHN~xrv{w^{amp;*FqaI}lw&4OM(V zw{T|}oe+d%v+^kg7FJ=WlD^+b{&*SHF?`5fPXF7-qy52qwmW;l$_Wx84?h24rvY5b zcz@?Vg+C`d@bnsgHs~sr_G`-Qmy5w~e?(3u~$om)^NDu>f z5`dX<#G7}%5!YdHz;zy_7XNYJ)v3?3@Y(LKrtc$LH~FHs(x2wA{o$NTQFj883IyN7 z!qKbs9e-pa{v*1ldo1K^dhSssUc-{)ZA$zhj*=9_>MvvO2zJiD<7A`Rb5ZWCqy>tR z*^^ZF1&1(wRWmmDH28V0Xi}F_A?IT=HC@5kg{(S2u-W0xYqXo8Ip4o}jfj_NVP!WS3lG-NPeDL4moj0)I52E z7_c*S<>*e7cUMGyWq${$7(y z8hk3C`Oj8)?xCbfc<$3+#+1~CfVWJRjd%V*$#lB9S2KQ?%p0cEGLd|T@M{U!8C9f} z!z#W`QM(Uvk%1(K@@4y4n|!;;XHFSnU>tn8{H~*dV=m06M-%D72pxAhEey|8X%4_uAd z;Q)$khmcR#?69QnmDPyZAMAU1vhy)vMt%*t^-S%=Gyhy0?jnKtN}8iCcg-KfOK)`s zUf^7}Rh)D1&HV^ef)oBr1PQSx#w!Y9twxY4nrn&2S>=z!ijhI-#aYog8dd33zIku| z7LQXrdd@r!<*<4xI0OOl_Z6(XXmwfcXNErC*2wp#SdjZ=f|Q3@Im&orvRXP3%&Iyc z!dihl1U{dWy~T$lBe`x?i%JzmJlU3vH`8QUcKsb8mp%TQ6`m(mOROT;)yP!6iAjRm zqk`X>F0!e@x>URK0}W#UW*%6r(rR5-2s4E~I1Ub_^__Lq)CbZiO;lzQS3aM7L1jF+ z-JitXX_X(J1!{9EGnfEEcs*}Ta^J;dMR=zsyfellf(x6cYNmSC7uoi&VL=gQnAo99 z+FyKe6ymw1Q;3iI;wh5*f{sR6WX4&uJ1@Ano?*tlR}C|E(^asG4)eKpJ;8ee1W31X2w;@Vcs zy)7U;w1qkS^qtfuWn{vfXWyo;mfEHUz@4Qby2y3M$07APylb11_B@*D`cNInnkcnU z3Nc;?!YM@#b?Xr!o^1mYko+fkkGw$3^PKnMyI$yy=b99rdOpkJ3V>h8d)YbPh;g^o z&F};&f~^NC;MVN;pQhe$v~pG(yIxM?HvYuq{LiiRO~yN{T~j-8KlAO*X1}5w)^p)s z=9ZUWLHT931T~NCYg*T9^MOaP$EhLL_kY98=jBx>G%&lG1}XKMiJCNfe(>KVmthKd>7VDXuNWYU`g?R#cgKg z?J(@#fK1o5yOF(9?6Z((1N@c?!!-M(B;c*2%F|i|uF&Zvod(WF!0h?E!0KIO%TTm7 z=*AS;=o+BHOrFyU&jaI(E-5wQZIxEvLjZTkxo)`IlhZ4uaQ>#l%OHQ%}azKzpEe=S40 zlE5Bbj{Dfu>9mh8onwD;UUYV&n#vc0{@g}K5CV72Ml_`Iea1=iCx#Tg7%VdmA5&n( z2oC!{kO)7tRr?~b-&geri(g72+RS*oa}{y(YFbD3(j}G6HBo_~Oag z{tc4$Zy0nH*fh!z4=@5~+~GBpKaPk6N$Jr-ZR#uW}F zhV&?;Tygv*dqDyb^;bHxm~4Rrp&wVS%*Oa_(CE!)v%KQpMG<(kgBD6ig_^8p)?`ST z;z!I@D_g!_57Yw;{~VJKNT&Z7BS#IZN29+h8FxHyS3-VC`@=A$<7q*_Ao?2c_grAT zwo;M!?t0~HHG5s00xYJ4WR<8ahFd~S6%Ar!r#CeKmcbz~wH9 zM=FU8FUn0puRu9104ugE)L8>f=$c=)x%fWCLJ3_@Ie5Ikq~v$Y_jbvDUYV+lS;^gs zIg64LfV1Rgwl)t9so1=%jCmtF|EUb#A9DZDKGOg`Fg}Gj#k0U=Q>w=vWP8sTlhpL< z5}iK(n)|$pMD=2hc8p0a@0lc=h_XT+E}K+J+@RjJoXpo5J>K&M6^TZ?8z?zF0NH4p z#S^D=mA3xm0`AlP;s#NxsN<)h|lBx^Nyy< zd#8MKzwC}bCqI_We5w=lFN4dqnM7$WZ$Js|&XxJls?4VeF)rA(c8G;q*tGI3wEfM^ zB zZkCYI_N&hzM!q0Zf-Ae)!{4jJtaxD5QWER`W9h3Onts2xw*gYp3P=hlC?FvcGGden zQc8D8ca0d`p&%&IFhaV!yQDid8tLvBgYVv-=ehrY{jk@$&wZ|QUFSL+ek$?$($Xxs z7R;;}4=f%(2i#a$>24nl{j%Ua7%2n3@-wt<_IhG6nr1f&(EnK?xK@7uTu^i%FUzE*6uK-N_6p)s0old z7|Ul;f?RExvC&0|n>h3j8*=4VzN^|cZ1@pN{B5DVPT=z{jUbfs%QbYMNSu%Lyq&`6 zwtmF0o$ZbAvj+0wwhI)XFs!Bz4@DHB-bG9dZ~QTB^b+qDBg3B}saM$MN$lFyR}|d{ zP(6FA0!Z6|3@l0*)iNmvK6!A5dY{*6>8qr4+r)jcMA=8tM$)31h6O_6m`2~Wl+-|Q z%9(W5FV3j#Ubk^5*oDtUv^&SmV2{zNPmygmJ$yW(WK9{lmA5pHY2EgIK;K4U)P5OW zQXAE@nkBuxLN?9l`@7Y?hYUd0+TGHNjc==M%gao zS_QiMB*Cr@wNiu~F&m^HxA7i#s55yQM=^yJuBb10gVsLK63BRZHmKp0w26OFN%`7U zm;zUP*gk!*7vGX^IOB>BXqT5gm`3BYP@8#V)XK5{6=o+}eEkN6kV}6aJ9Y@~Z}K(- zZNOMbP)YtvkE2L0F##8uEiynr?9N*haD*zg6zBA~Ot2L9!UeGT+Y8IHS-ahNr=cQA zR&N~HFPkoct|x<(-SzV1`hAXfTLu{MFoz|4&C*8?wt0O`wM{;bZ%#ON0&MP)c3-N%MDEA8HhXpRcE6 z0>0(dvbJ0TKb@`CFtKG8!GCd<)Qz8@ihWE2hBq-rTPqbkWToc3mbB0jjIUhEzS}6x zL&z?Sau+8BA2(hM3LH1#jCslP$i=NC^ys9848%q6RJ^xH9OgBK_Fr&B5Cm>VH_u`!g@e-(7mA7$7pwmm53Z$_mVT7hjnIb4ovg=CMz)U?doB98L1^5$+Rf7IcsM{v9#O?hVxjId>H$FXFNgXIkUCSXyUGi7PZp*0M#(WV^{V{j|}{mMe*W?zRB zcKiiJ*O*z1{7LA_K=z}0Q2wX=Q;H3f@fVcAA{CQ`zSO&Y*;KSs#<><)mU)5Mt1XY!Vx~^ga5!)|swnbDl>BeGeJ^kxE&4ZU zjDEJA?3Hjcp)n{4?Z2cCBZE`joS)_-5|kdmE#u|@UV0Z!aHg+5KsBl9V9`-7;sQfc zdPq|g&Sl=!uNc#k-JYt17UKRdO?+^xrmOe+8;M>kMTKm&y(}U-rdlhDF?-x7@$FBK zmaNoTsjQ#s9<+uIx<1@-dQYRAE^-n~$GaYa*tk$IRFaE$MnmxN*_7|dA_OeaPC(3z zIE{cG9bX~Z-ug2%pM6G63<;zejv7*{p@^iXA^_Hm*{`k%t^-U&x+W6F=7Ia za8+^yZE&xBZ~K;H~{gWCB8PQ2u=PB8nEv2fi@=Rcw~^&V}vvHs#m( z>60Yso?tf`Fh$#RnusU4)Xq_y*tx6srh1q0soOyi=$EnWI4Ceb?=}kNM|l6yvPlZJ>u4e%#gpt#L;_Lz$Ov#=ZTL;3M9Fv_=X?U% zfM;p?R>W&QVf)vEnubDVsYHt^GJ4>AFZPC`{C+foDI1|UMb@vT6nW>h zd~>C*Mg>j>9myRrJK`HiM0@7DRq@|)mj{?rYPuUFMkEj2e6u_6b)7n_U*_|im2<|V z5Tpsa5Dlevya*TT^nna=Gj!j|xR$|G?J8t$rr5#sez`R`Ob6DUV(8t=4ssq0{eXYIYNE;Qv0pvSDn9W&TP_*M`zvSB zj4!TzMfH(XY>@h61WT0DkF)V@7j zQz(%B{*+FUP)OT6u>La2Stn)Y(~ICdZqr=quJRB#e?39;!ckjTCD*n9@Zc$v_5|r> zBJn=wcvv_R(6~(~rRFH*#zNEi1=tY-T;p z1+RP7D30PYt&{O!o~u}I{en-+mehBJeeJXN{F{xq6&1H@$SbLm4*8dmL$^otKfRX*f&8e6EW|DLj()F*!}t8YGvFliX=_18W}yPsg#v%TVw6x@^o=q=*n4jS;5N6Wxl%?`owE zU19x`w{5p<|1PLDc!)zSzU& zdpxyB=^H>K3&~LRy%Fp8VQ31nr?{z7-l4dAzENDxk88^-%@uY7QM7@v|{d7H-MFbr+w+MR@~{+;#nf33{z%(TsL;vc$1W!!L6pSSf#NbDHQ0@m zBs$#kyv1W4)Qrkl3Td}ks4B=kbmQ4fKU=H4mh8|KVIALGBHcd%gK zlIS%_a*fUOBI@8@=1o|@76W-kUDQsgPTL&y4!O3e)| zO>%Z?TGsK8x;|jfGxPxgxe9ce_A$Zzw8U+fA|2H)^Pa0S%q-nzN1tKEKlU7NSCjlY z;h0~`cHRCOWipzy9_9+;p86KiQeSfg*{{D1HIZmTJh84b8h<5jv0-De6x32!#xhj_ zbbWKj7j{H+ZlG2ZVJ7&lm;#pQWw^mx9}sz(Egv7kp~CwX{5j> z#P@F-qN|!KdCcu|Bf{$8`vtNk?aG0sJnwxULmr|Y+$Ni@#yw0{Qyk?lKi#d^WLVu5 zgEmmC+t)Ws)p)Bb>20RU!t{0L3?Miq&9}73897FYPmxy|Mf|~k?U|Voxi=F2YMwu; zML>CCaAWC`fS7O02!{VEyMcODt)8r}L{I59sTO@f+g{3+8ibH9!IxCtUpHJeR+h}g zeWHH$#Yn-wc&}~wJ-e3Za4i*3fS|}g>Pkk96l1R=e>C3@HoXrPQAYNhn@hDLCgSN* zU{2BcO1@N}zZILwqb4nfvBglXuz17E^^+!(>_|B4e!X^G_TOmP)G+UX!$bj?15AfC zK=g6b;lCitm0WLzHDuYg5O@0+hY;x{^Y$}v_1@zukGgf94|d(jO@52x^YryhHbGuj zLMmKpZ$BXDC;whZ-5vWjfLPG~GOJXzGk2oHyLT7p`iGb) zD)tp)!|bleZU?^ba4dnFIqjn3q6Q(qLUiJ58yB_UohglYfbfUs@8fdLPSB@?92HO8 zP1o-o0C(`mdKaeOnp_3@MnHZTqi$)a#MFJ8>fSFyv4}mw0bc}l zzv+wZ=Ed|SUVuMN(-55_GE_46FnSuy7&ck?&{O97khk`ZEnoSMFmSPH&}1m4Eii&_ z%Xa3#@|_J+bKMf?+Z(DqnD2ZD9 z=2>y9M}c~;RQQzcf`wZ0mpWy9)0f6Tso8~pHU4?z?B=}W*!^g0S+@${p`;Ba!?;cd zeeJI@(H+210hgI#ZDSw;GJX%R;aW`l<=IaMv_o;c)7;IrAmEh^iNaWXwawyzIrwGp z_KsmwzA3fa;%8%Q19i`QjzmU;4vV~% z7JawH%IY6D53wq#lgK?f+5?K_lfEudne%?(=EU08XziFud3WK^v=3vo-nk$Y1{Vnq z5`Qkc)=L?U@=S=Y3p5EK=v|;!kiTzNoaU@t()@D zdmLEK)yhfR)3)__Y0&j!6qX*knb+q!Pr&zZ{>QS5NN#{_( zB_OiAM|0zeNtSoGrmI!5QOR;w4;pV0hSQ|*EGViKMmtl7GW=1#)L{LDA1LP;?)7qr zXw{+uy=vb{z{j5#C(z7kWnlE0hA{O~Civ6HzI&5E&$pisIO{pzr5J9Q{YS)it^*A}%GG6X7n7O#4C*~Z1VU+6XN+drdiE3KEUIN>{#U6Mv^xx^5 zoBXN6`^f-hgwFY7xshx|K6!I;!`1rU;?E&mY0I+q&u41}y774_Twb-L`5zi| z7&GXq0_-{`gbp8zZsis^9$jzv8$9O9cS9q_8f&GVOK3Y7v%$O4-@Z8T&2__ck@#o%uz0i;0El@7^Dr9~R1`DkEBsbZ}%zFXl$A zV-S`Zb!wWDZl&McJm4Z7Cn2y7iq4jiKAuwI?mR!|{Tj2Rk!sEgcXRyh ze$$tYZ?-trwcidDCb8kh>he+#B6i2!eYlWBx)c5)#1Sx1WIKrNN5lrvrYMpga7#D_2Vppy2U?oDSj37T4EfMId!o$Zg0{W5qF z*3=LRJ2U4zcY!M!VozCqI;$@Vf7Qz@q%a_2Prr;qnRgKEhp4KnyDA?@X>jWUS-z zNx;X-iTb8jmm62*vQ~ywXpcN~hN=&w;@Ytrne3H6Swc9gWI*D2?V&>SI}&Fs8S4|p z*W@EYiu?H$YI~LGn`_XMwEd(dGIb4)Z2*E3FQMlLr$i)Nh&g*kltVjE?dikRHUlI< zA}NhVfXTW`d;tp#w4=nHihrgAr12IgI&BposiOiK?)`xo#nn|^XjK1sTg zbJN{xnRi>;e_@%N%NVXN!fS=3_ejEyw~iE0u6)*nq0jBoK;#@YJ`? z7VJQcm0g`@v9Aj>lpaI)751_66&#wxQI++hhmg5frYl?caXH&%N_Q0-wVNk!RP@1K zauT4?Tftm*oBDkI>I<`R+fSv#=+)@bL(UJypzyk9_uBSLnnXa?88gh-q%eTRY9uM6 z8*O^o#e3yTU02-Pk#4_Cc~VRyHn% z+We451Ehr*uUx!$QeVm2RU@j_KQWpaLB-7QUnuWmyZW5)amQ3hC}=I(>C7a3X}=KDj{jS(F8iDq5##zI9u zHgbS|p)E}kJ!{PtOKjyPGbFOs0Gm5vPzDcaz%3F#H!4S2|CH`89LthVk>dh?JKszk z-1-Wcy>RX_txg0lYWpQ$SD3H(-1lnKO(SFKE%4m(?pyJh)Q~s2u40@vs6gD4KHXey1YM`u#N5o^0W7W%DPTFjSQD&tl^fNfg!;wx)rn zP)mZQpOqj*kFQ@q($4RNbr0;a2ON!2pVv#N`k@X!>u2;-Z>WrIT3ga7#J*kD&jb9^ z@)WD{Vivb77g`5xcqIgwRY8VfCN07c?Tc$`59?nbO8`ZTAL9gtc*x9t&qf588y7m~ zpjK<4`X))7grfz`V>Z3fvua)wQd|oa&5Tk1Ng`8*z-uo^DyR4{jNX9mW~vj3D*X86 zd4X@~0-GKy)f;m32Q&)IQ|Dt3?6qMbybbfKwY=ZBikY(J%hTotOT`0xgY_gmJa^SR zp48b;u?(AdcK>sNq_7WGw%LSKfZ`mh!y_^h?ZoD|fmo z=a0fJ&vBn2iK4koQqd!kRuPF@>~Zsa9wuhy-O*~RNyoiJDW0u}45^+y;JaA^VzptJ zYEct_qHf@mcJbGLHnD{8+I6MBiuo4-I924|U>|D&ju?9E7EJ0@6XeUFh8Ds$C_*?I zK_cCRr(xO1G>FslqUiEf%3r0nHXJ|mHy;FSUI!)^f;<><(=V1iOoj|R=A{^W;@eOz z8(DuL6g4GImMv>%{cJ~}ynN8I)SA&E@o4o*4uLH7`#=O3xR-4u^sj*!`m3!Z;uS10G9C`9;vrC;+fXvqJKUtQ((u}F>g^PbG*$M9U4 z)}a?AL>Dxya5U$K3g%VH zKsHV&)tS@i$5_9;Q|*h>z}i+x!r#u(k|sf8k3pHIJ$*xuKWU-!X;B`j$x(pU0+Bmd zP>^LARe<~e{*7bmqDEO8KTud8Ydf_TS;A=ZtDic!+tGN+V)Nuu{pUCB zhwk2#C)qu1FNfCR4zFl2$l6iv$_Iya-ShhD9t5#4qgL5JzIqQ-ROmY!|02zYKNS! zG!)1*!O{VnUEhmC^1A%G$^w@D_Fxc-g3oXQkDNd|Y94&NvP-maume%N^R;&vA@HEO zCrjiha&{iumGPQ!cUlK#a4DaApEvJ*O578T?s1Me5cs25cNH}vnL%(e=Vn*~Jok^< zw3GSGDNY_!wANysi?#TAnf1c{OP8zotQ5UVLo;RJraov?_zbgx(GNax2z32QsWJ() zojJriZ`R3ky#cuP(@576w(kFXL&dAmjXmZ>R*NE&{0l!VZYGI;9*fryS1Rf;fd5ZX z2I5CCwh10pm`^^EzGA$A$~RJ8T4l5`$<>8{OWf{3Jy-5%sw@?EUo8JE)W=^W|0+s&cFw#GMsT=e z4%C`YQ5cc`=`y&qdNtfM>wq515|I_&PY3t}SWpA+i2%fD zPlym8bxCgVU7>&U{%KQhqfVzA&?A@7Dr>E*=Ke>|4ARvo)%XZ0iPWB{Q0><<&M>-? zDgB^58RmY#y^UkeuVnhm%JsbZDjl|-n2@Udes~#;CsKKB*K=tvF{!UxBnn+3Yl|Vq z)X)!)wGEx>lWe8Jz@w>iQM$0-SounsxyMaqMvH&kr?B<356YoPe!Uc$;R%GA2^H%* z`3vK7Ch~l)j@YIjbO7Y!{#(KVvzk&Z7gTN_i%LNnf;de^BT^>>yH!3iMDe0FM=7uB zKREy%F9>X`x5f3w}_6w(wM=2Rsx-;$#TQH2rlVLAbB@0yXe&)nL$ZK9wuW4D9rv**QaM!7g zH|Z9XVavwM>=nTJjXp|T*_%wq>s8i{WnHeH1DV|sHDr=fO1c+#E#~j1CNFxFde88L zpFY8@VQD$4U!F|+W=d80`%rH*b6u4B4OvzwL9~5GVk}JJWwDdP?36WzqWk9xX=ZlIG~hrq}C|Im*2h==aJ)+^dqe{2DwW7yj&2hIa9C)D}R%uR+0Z3lN)jq#FI zVt#txEz%DJ_+f<9Ikq}5$TLpc1@czwu@D!Fh^px90VfXk+%UL0)RpLXNZR3SiKQ1GAPm(DTLyrVdc z3J`ag{sD8KT+^KaV<&cXQf;i3G6eUtEQx!eAz|4JQ2*hcM1>H35$Lt~Ug^$cLP#!( z!A!O2t%|7Pd!Xn!L3FNsq{6w9zliLsXC}+qMk=#5iMOv*J63CYk#_vxPmhYWF9pE# z=iEsWYV+@np&4Et$eAu-;B%4HZAD9-~QOd8PD z0T2QBaus{B`+R_VYRaZUeh4dzRV3e1q<+Rd5oPK9Gd6fcxTUnrr_pjh`@$8=Tb~q5 zSRWv{7LS=c3onCPRUX~`9<7I272#3yMV?<@^Yw-2pDCbx0amVZh8QyvT)6*LJ4W=M zsN!Vw;6HiN>*2N^8|3Oj zVE@o9;|^V}u1-F&a!&_$aLskU=E^gEVv56CN`D|_<^loz<(leACXRSt>U*|fA_C;wl4!-(|-=%&FKcy>K>Kzo| zZQJ+w`v{eIszXwTws&Lrw5iVKtd`CcS3J>?@tl(qIyovsvkefo?;16&ZZSZKyn735 z*=b-fAu$=}Sb74XsxyTq=dk)KA)wa6S1i~c2U^z+FbqH!qsf?V!9c%BH@m-w!G=Xf zn*XJ+Uuok&novvs%W6U$5cTgK=WMCvz{P*Ocb68+m3i}#w3BCc>~*#602%3Q~DOZk|(-tY6y#O?@_T|xKC zWO-K$u|A;b_ilR5V&&&<#0uVYYg)Jiy6u`&nQ1yL*eA*=$~c6YpM&naa9#BpxBf;!!|j9A00FHn{6%grI5=s?Zw&ynxk_I)Ih^f?J-lbh-O zkNoM0g|S9GfAZdxI>6H?-86G|dtAFy06G_S_nog`7aXJA@3-1oPMRx90C^b?_RWia zRITG)8+Z=S$jIzQy|PH%hlKEL)VZ_LdFi+6HtE7|te@I9-)w%K6V7@=fqDGNivh4;2oR)2>|1Ap+9j{V#{4gU2z)q{NuwK?JUSr4jGPmPp2+7Hcy|H)YWrQ zoz6%(Ij#N3uqPg8+Q1P&)Nbemj7$5y9@L?E5+=TY2X`6gMx0(p8JImZi#8i1T`xA- zTrfSP&At|6R9r2`zhoCQWlhH2h6s+jCs)Vjy$1blQi9CxiD6m;x{7(O1|(K?4vrN+ zIi@JaE~FNQ*VqH(f52i7{FPFbb|5|dcli$lp~ZY^we({(^k#=60MfE;sNQ}-W9EUBep4gz&ABA^i`pl9V};c5lLT0C+C#<5b4Jf$9M3= z&XGtA`xL2@J9c9)h+aAzX=&DYAgu$#D)<&_Y#F2|DOJ0zCTjU9<^0O5Fl%E#9z7$e zYLD{s@=wmFwYx^k7YNBPb=#&0XQvq-Fijq?5r(I3jcP-ehtv`Th;S_xN$vPUp`0Gt zP5J*ME?SJG7Ie^ZxS|q7WdD3GZjR5WlWaHX%YDPQw$cKg-VE38_O2xunzh-SpEuu( z%y&{U(M6`^ee2L&as)(w7h_CJ(+559%J5K^yes$6uocoUJ?oE3|S=}G?fSL$3}IE7}E0S94tvCM;M z8b7NAO7hsU;_640glKYg;0$ArBeqz)d#J{d1Sfu3+*Ixj5mBTQ{o2sE6OWI>fa6Xm z#P-cw`~WV(D9=SN>kErN1sM&ms|Ty@gXFu;t1PU(%_%%{CxQucS1K`Z zn&Lu2gYNl1oY?exMc|^Ax(3%Tq>2KhNpzg`mpkS16qsrVCM6>SpzrfJcF`{igxla& zf1S>dxEO;yH%Omjr`61b{T_bNL@6+f$oJyv>!7#F~U^6c&dq z9*I@)WozA)qfCEs){e??P0L-Zy~-Y5Hf}zPTE-(=Y1rcq`7%%dus?z za%dpgtB$aQ)5wAkbwB0j?X4z>3i67OcG$N+Y+z@%qufINsm&aBliWR8PtvNuN@>@f z_A#N0*GqVH%A&;Wm%KpwFbW2v%gzNgEcTRyQXXECVkP)FQ5BtLKQy6 zPieIf2IwLFi%nF+a;dbIC95+SDg--jnCKvMKeZ8rRT$ntfL+4lO!EcDBoz>BhSvz)6JHH zl+g}SNl#{GW}4K$+>HQ=uULn-H&p-KzFNHheUiBNwz(83zez6~*{;<~F3h$6!8DR8 zLpEe$c1!iy1u55Dv7P{>D0WNPr;QUec-*`#3h;OOY2JK{%r+K0kfBr?Gk|u7`9osMyw)!mYLd6^y8`#g7mWs}qJao(zLBt@LK}TzBlBj&gKz zsWSdxtEK5K$0$5)*lj=Rx)PwWRxA#pkA4jiVpQ@>h@hI9)?uKB z6|G!cX9Dwa8Tan*YQf(LH5bgn{xg|1y1*=J^i0x$bZM(V{K4d?>=b55GO35mX1Sta z_E~u$r-W{Ze$%xNIKaRaa^*fHFNiNm3qctd=}|#&M-QKrFLH4QlVC*g?lZ1my|w}y zTBUP$nQOsMBN1_j6k~_uKrBVvSx--dR($3iUS?JM^Q@De9jjs+PRVwM|Jb}13GvJP z{MKd-ArE9uacEHk+$lARVttZnuW(SW7rw?uKD*t9m$B-gCMWX zZq9#SsjiQA%QQQ({KVaGUubl6En0=@6{`a9U8u1AbdVWwl*7ek)0>TM=Y3ADSu|gw z&{O=LPNy1xuro---G!Wubaoj_qBb+TljSVZY6|fB7vsE@y!)y+g_6aD51BA`krICs z(0OhdyL#R#H$!>SCsjCJ+VjmmH#ioIN)t5`hAY05f3q;_GY44Nn7)m_?ev9MD7)%g zW<1oBD-p{?0z?b(;6Xf~{b(swwuuI~3E3mC=s484_w;SjlhH8!?n;ZmmSTJ-#eAgn zY5kY^w?^X5ij%0Cxyv=^5UTxX9Oz1kOye|Xe!r)yD{@(G*5%CCBC3^CRSr++gR&zR zZ`dV9;SAYLBY;?BP4U zM~clfBZBU?bRZhfHw7qG$2<8&@T0%WVb~liM1`a~r0FSL{xp6fM)fTqImHSO(rEkX zBgG0*n72Dyp!^=*zAWbJef}*YP+ZxUms0GE@VvyQ*4dyg8GzEZ!gKrb4!c783n!}} z}FMaFWvUv)PDM6AzQHX6$;vx=4Pd4 ze)eTxi*q=$+oFszr`5fAjZUv2VC047GLAhhc zErwh9lw0znv~=}LUDq|*ib3(^z}I~43aP+E3saZuGT%|WkdqpV_ast( zqWulK!yoM0`MY4~uGHy0;fwg&I`D)ZrwuQ_{@F98kS~RA1N04FjCyO{ z)~twKF=KDK{cTjsN^}&I6Na8{)F>IkbrPm>_WhNFSwnF-;z>>ajM|rpvVUlMWVYq- zte)zrLRu7QBO%`=d8cXt(M`}22AqFFgkw~qVbeIb*3GwB@xF5oqB8pMwM}^f(f78E zC88}tSp#d#)xX=ta0~SnP`96B(%MPF=74G74$q3Nzf;Qbqw#6ESIp9w*{8~0q_ZCv zN1J-mZ({X8Z|b}sFsN<-{Xgyf$i66wp;)5Wf`v8g|N3v`$IT{lk>UTb#C8iST?}!C zWh*LjeXFNjCoIAJnBe#V&S}w%Xr3NGHn#NQc*)LDd;FsZY$7T_=P8l$dSfSq%~poKfrC z^hN`8J(-yQbeW4+s`i*8D>|yBVtYQu-T(7%hF&-~Ft zPca>|;cJ01CV4T&9Q znRmIzPw8|J{-VoAshfmM&b&<-^!N=mW2HVZ2vB@{m~XpRU(vHCY(JE^+T?(Fx0#uF z{u@cDrx-Igd853B>0_XkAXH%lO;M!sC4r`E^(Ny5hD+ytS$%Foe(zZkfj8+Z0s2Z^ zBY%Cg&f4uZcGzVO`PCc~Lx7kWGg`@}TZ=MUcawSS3e3-deI_v^fW7swg42u?VyM85 zC(|YdG3KNeaw_>Pz~Bjw<-Grb!Xm;N{@gm1RN#ej`S>Jy*2*@|T~OXZ7T0xC!RC`4 z2(e(HgI`c&Y^2KeR;6fcjADl#X%$1TvnMo=Q}Eyp=kiqz2vp#P*Wo{#y)<%cHP5Fd?J90ZM??FY7EWy;(hrX_7e>fLEQAiUQYoMW=vQhjlmzWIZ}lyj)t0s@#2~?-L0}Bd4X8@ zT!A~z93n#kiCe9B@GvI=&tC8R8IS#)oqIX-g3`Pdx2>Kx!=<* zFwFy8%)S+FRdp8cq;3JEU&o3vcX=}=u@jx3NHCAR1g9Cbjbww^&Q9@)uB>73F{%2j4U>1<33ZW1=03;kn~m;RT7Js`{+5J13R;OJ#t zZDGXLVR@mOTbMrRYPk0-AdLiDrMdP}#Yh}-RFDy@G zV7>Q`cFeJ#`GtQhvzm3Z5NNoJe&HY5)zhcc6I`bkMYIlmeOQzsg^s9ogB=J^)rCg! zpzky0{(f$=QG__@s0yXZNs;Ov4IVJRCEWVMJ5inb_W}F7!l$oUBT+* zCnOFfCco#DL6de}()Pw`#DFEuZ!LfQPw&;NLC2ZIzV#bt(NC$X!S{#JbE=Ak}+E&MNlvg_$%K8Ib3SWwu2j&r z0s+V4^F@z;QG{ZYwZct->m6?(7G4%--S|YXMgtLdb|J|e=;?I)N24IUY>dx5yXpe{ z@@pk(Hi@rN@-Ap;We7|{4ZB*O4IY(dh+!ibkTUA3ZQCKyNZLU=M=+cgw9RR+DQR6M z0JHmZT;v0 zr?<$>qs8y#<={i591w5((qx7hyrL{R$b%Yx2pO0tRqbI7Kc(qh&5F!2nEvsY%Re+J z@p}_j?$$svpjAG~F21>9;<*H#D?U6szwYf*-7;DyHno?w^U1iXs2{?FFWI?wwN%D< zI`j(J;KPzZRw|sqyU^X_zenE-wbY0qed!erowxblJQE|NMHo1`DAdT)zDZ z3Wn<*%SgNrsLSXJB7nDWGL+Y~(VmHBykcCtQ6h1F265*M)+&m$-0czg*_Ji?sC>2B zU~ZJJWoZ%0K1H=nXB5ynU^?K^qGhxNLvl50Ya8(dXS@to`;0V}yncl=f+f3fbD{>q z$lGr*{4!=r<3y|od#uL}NsI}obXjc@s1wL$a$ zWbTK??W|AwZRkrS>Z}1$51>N(2eGL{t8jN=QcMpa%NMg$6tw1Q%Q>cHYZgNl!-CD@j83@)&zBb{!C*sgujg)T5((s<+g zB>}z=T?|EK7(C)__{WO|8Jwrh^I=)<25sJXKr~^)2FJ>o!=u=)$vj7!%kN`*^qCeZ zLZTR%;~rc6c3)&#x#XC2KTSFwD=|D)7d9&SkhRBh7XYP!8n-;(EM~uKq)*5rpvBtQ^ zJ?@zg8_VN27lMr0Wy_;8zB>Qh$<(195hbI?TeHBzG`+~#-4M2UCK*LB;GcmWFoBl zN9l8Bk+bzbzkZVn&?FvdJxwhuyhrn)nErVu$9|awq)JX5k#H#jl!lpU}^0df@F{Sk02N7RG=s%$x&@2X`+O)&xK&X^Qq$p z-NB5Yz{;02&Md;=D}(gck;$|=>y(1r%^InRm)!1q%vDe;6ALqBxBi#AN{k88!PHvCgyYAMK<%iI|b@=i+`+kJ)#OA*SrobCmbx~DIp9Gq{NBC%P_kv_@Q^tWz=`+P|T3FK0O z!wXjKn(ni~4%prk@6FTtT-q3lFDkJmd^;S6O7F_6-8yVM2`W4--j-jQJT{#Zn*9b~ zO{{*Cdr{-&;BSC;nRC#)C)CN@R)$ZXJmb8t#`uEoZc|!7GsUe=54)lY<0mjOTt<#u z+lO)=dl6-is|O{SzXA`xy>X_w3l?9}-hur{b(Ggi?+VcWvoreo^cUjy_$)#(4QSi# ztC+BU`V-Od0%Qr>>6iLahAKewDvXGid}7-5mW@$8Ox8?M4{fu(Pf@kC6mtqDc<^%9 z)S$NeY=~#+C)r~1FIQ**{hc?|Rz90Zh_7vS0~q|2`y%^YKVJUmV}fO}Yp{z;qUEd< zY(BTA=}7_^1ZC|k_c&m9&FR5IIB6^|EEw+}X_%bbMK zLOLSH`&aB<{48>3k+)Kq?5DmK!DghZsLCu_K2t+S!V*y3FVN<2?k`=C^PJK6P#5~s z$=TK*eK#P)=Fg*R5-wq2-b{j`=a2(nxhRAiG(cT!jRYn&!B?2gl~Xzt|7ZOvtV;8y zCfHi<5Vqu@=SeV<#C@-~zeJSSe|%jjb8#nhK}rQ%uAPPj6|{>RQrEcEaT4@Bd~E54 zyZ6=&ZglH8-dKn30%475?$W1H1J_SDq3_BA(huw7F`^q(rI=Kem-;2X$)#OMSHYO< zmni#={GsPHaV3|?S3}DcdN=clmce<#3ep@7)U9@WFS`IN3es&g)LQnqr1nb@LbkDy zK01Vpsoo}G7c5;ag`A3i22xOD!}p&Cj0E>T!!9X51ujBftiXjmH8Wk8J6$^lB#hM< zZ1m@Aq$6J>PTojcrx%oFtoTQ!#q65QQ?CxQ(3hk9swuUKtsbD3#fkNDSV=ohmcwUW z4nU+%LjsjK$XnCDt(#Z(81^j7Kun-LZzy~+KMP9q>a+?t(HHKFRRxS#7U()Iw%;U` z0EuYD*2hjW!Iy%87K@0i_CaWyX`V1zb2*O0!GS;7o^+>mmJ_jNfo znGvOWJlC?h73BAOtYPR`_+SdEVF^H!6rOXU8`XYY8?MVXzrHSaw#f$Unl(mw!8}V~ z&y0hdIcxGplPM8=*c2`$l%u|39Jqz!SgU*1E5F9ayXvxMWjjx2Uik~f zJ}6u_^nk191OJ0UX#524bG~in>)Jo+;?WWQWtHbY*m{qKc2RCg6z{NhhaNlA{{EB{ zF{VH_#oHEs-UU_n5Jq?NMhgyYQc({%hkrYrHEVmM}m}@?0_q+0G zFi+pEc%zf?dfLnTPE4L(q~9?=)J_WMa_)!a#C~JzoXT&nQ@loCNVEN5*z*SIq*uTw zxezfY+I|=q@iFB!KcuF|jvch=TioNcT-}iQ?Iih~L2q2e1}CKH$GVg`EBUZIJ5{&Q_@r-+59WA$-Ex}iigq^ zVbt?2<#VP`P&Wc3&wr#01s>nD^E!Vsfjt`9uH<+}ln96~tw==Ka~U6_fHm({PhS^v z+0@71d(`IXB!SR$yCf-e{+OsOKS-Rqde(LCMlIX3eK@P1sh5AIR_W>R7_y7|*r2Qjlr{Qu0Wo zEw_43c7$Y)!(MtB;bT^$wKMtu56x|538ryjg7KoTP~3MzP)dTntoS=rNLD?%$E$g%&;ta z;e1UlNJb7FR-?izH#Zd?QJy<|J(wy&rd$%*U*BLDv?ER30n5m4u)5_Y)EHOl7%-yi z8FvkHn-{$QjpEPS%(r+v*MtS--*IVr28b^vX}(NndTc{>h3uWzb%KoYKOE$tb!$>~ z43MhrFl?R+t(T$2iUMzT0$R!*s{mV3txTxsgq9fzX$kN??R&xfX%>$j!;}Xqm1Yqy ziygQI_M)qEW&e>}L4uz5$m4ws%?2oEg=OLMalIp{a22e{=^M$0 zlKq;OKWY0(UXaxc?5S!tn^R!qu(n+T1EJRhElEFFEqbaqco?Rys`A^nQl!=vZ<~Hq zgyee_&WOBJ+R*3f54%JuUC>2&5#o*n<9mTaZ_M{tEifEIAs|x3VYdQQO~tywN4)nF z#aX4NvetgY`)X=UIh{KQFzG%Dd=X+P07d`gee=slH6a)z`&m}(n*hJY4fTcmjVPYA zBYBSh2EWSM`>QB{1(2?0zevkhNI>={4#?Ni6i_les^F zV?1=BJ-p%m`~%lr`nHBX@$#Twjfkj>D6l+eri4sLF-V|Y>n&?juOafJR>U4>J_I9B z9v!w4vWa2NA%@c11>+A+g&XzBwsBBYLEcdN2+QXhGxEp&7LCfn&zQx?RXD4rTZ+lm zM1ty;*unUL>s9k{e9Lo% zfJX*>F0;=r&py1FQ7BX1r5rl_{kNR`H3pg`iWu(Cg|5_NkTsbz&zyuGNs4)Qd6qdu zMi!prbhxN0tsb*l%wf|lLdh1FMWP?UJhcsF&0?@FtO;Z@IzfzFKKmjaGesM^w2 z55jU2HJ2J_dg6zjes2nQjH;tY*U?UH6CK=iBd&1bvv+6Zh_{ zman>djZ8bs_%AV>G=1Ly@?vXFU(n<8o4;Je?+AFxx*Ijac$jKujhwl!rQs#84+w`ovJC z-RH{hcusej6G1Nw38&=^gXJ{{EPoV-fO{#46@rCL<@R*>#|l8fA4b#p;J$CbV+yd2 zT2Z}DO}e*RaARdpL=sXaEJq=xn0L8HG(Yjo;^i+lS51mkg$z=gH7M$7ePwRRZAsFa z{89$&8i$B^4bv!zdXZc0;PASxqnl6O{F(k&{)C?mR5Sjx#lZ;IH}Y zi16m?5MHq~_8I&jcKl~zW}IvAQI~L-lgBq;#Ke{_Oj7VZ(kR)GuZ#cu&JVz|b=bLh zbJCKyW^^^axA^O~n#wQ%njSeHWrIwSce_4RcA42qF9zMJQTK%*{N}@ug8Mz}%T5yL z6`GzdtDGdXJ%`+rKzX<41AT$qf*_~j@;(X(=N}-aAoe7v0@KWo;07kG76gClEaVz~ zQZB;p?%Dxss{I4>sVXD=zh2u%GmM-~8hr_kC0hu5YWxp7>sup z9Zg~5eCu|9nSHrn*QWXoc4}3fC4p>FPSCUnQx`eKKI$3w<&{9_dOp8 z5lNeeMC?SHc62}Dmp3q4qy_sAl4)k+9YsE*=I<7RvU5Y5RYpW13}vCYHW>;xgP_)$ zpFTpqFFDf7B30hM%1#6krs?TBr08G;($ioBeU6@OkP?$wB*IOGWQn-8lOk+&snwW@ zx!S3@SB)%HTKe9aOcwGN*&+aTHAq~xUv4Q3D)W8X#_|9p*~MFku39=Qnuw6=?6>ku zT)nHS9i*=Gq9Xh2&}Yij7hviB1s$bxe~S!P4OyP`rL2=P8l_#@vbApm-48)UC09gg zK;T7aV}cKD?yjW#Oe|W9Z2#&u**R<-=RLQwwR$U-klXK#OJL|gM{O~GEs?12_9KJi z4olZ-;h-@;sv$RL1-R(^hJ(%~8YQNK^ry%}OvA<&*2lk7e6X<$eH<9Fah@k#!1{;N zQ=(iZ>N#h$&fN9OE|Xl>Ym7tcvf9N%S6x=6*7OpO&s^! z?$bESrJd4-+9cZRQYP)RIc4eHU^yZo*_O^t^|gN1m>RJ5h|tzKKA)af^fd9yf%-vq zy~5Eb+2S3vE4^f2(HoQ09%xTjnQzav@s#i@`;)nu3>N0TqV|VJ6`^Y-wL>lYL-u?8 z^GjOpdxI;+b1I^ck;e_s;jrCndP~_Ph%&Ufs;AWE|l|8*iqMlacKRz ziwxzM`@KKitU)KAWoculrfQHzH6~P&c{!Dg!gfRJmfJ(546MRbbzCe9Yp)K6H<45R zFY2CaQy`H5*c*zN~R%ef6W|)+BK}6;?nGUKl|+x<<2MrHph)sES4-i z`Rjp%ec>Y~Hm?lHCLs(k0{yBML#xFIf7BvtB3#?RevLlxF3lLHw_6I<7D|7NJq{9` z5^^9}E#9WVd?-r<_u1_-X9N{ybU#L$ES<#v%@uFsbH!`0L#}hlv{SRdqhkT&$rpzy zt$TFi65%qA^6uRADig{)z%g-zJ z70M&e~nzK^@^B4}cCjX^`(j!@i^FtsGl=oxA46MOUo8@htrci1Bs##K=wHCi^n^ zd3o5f_(p8j;8!L|81p?)ZN*~3!A4QOH{;teK<7AFtIT4 z?JfFypgC@Y+4(5?$PbOXP6x&KLd|Gv@~Prcxs#eacLd8mTaG{FOf_n0ayHB->~Gi? z&zXR1 zI$I-X`Gel06(|m$@&4`-X{$ z%=SCJ2ekC%8!f$i2x@qawZ6zo^k0US&5~WwZC=5ZKZ$T{}Mex=AU$t8}u}bKaCvLc-aVJb3ylY`>97;EdKr zJzgxpND*n2_eRI9fyI*Q2dl=(Wy4Q!ghila>gAnfNZHaKwI2nO7-|Wyg{w-fw*w(A zy`peSl7e}T>D_WqU*B`atdtRfxv6yKK@YD0pDRI? za0YSc(zMWRnw~k7^U#<5N3qve0i8~JpC4H$1PQ1^7Eepl1CoUuzL+yxAbDNOF;29ILjNcs-FD6XJMb5E5INnN5aiuz2r$R7G`ak77qWnli!v+5$((=Nn-uDW~flG{3nmV>a*sGeo3 zQ%ONqKr`EuMoBl2ZS}j>KMtYu90D#ArCoW9n$N(Spm)X^h;(P(Q3}5`=e1Q@$BGKm zytF@E=(@_}0w|h*UnwmY1Uz_pEg7;b+|Y4$$sqk_+QvtR<<~2t3TvtuV+yFx z#Qpq}uMP|fBq$8HHCay6ZI+(?*Bh&L*p}hPo2b;Gblhs0-DC1wgfZ*~98A;+Z|2yS z zez{8RbC@BmP!D$SJ4eIrBapKp(bA@lAZ*BIIITS`Jx+c|RnM4qr^9bP*7ZxmfA0E0 z5@wYjUQZt-sW3|k`>vTHqkt^D66Ljf&K0>|eg$S1=IPlw-Sv;6`FQDI>gx>crFYn0 zuY(^x4k{NQ1fm&+6-aBP%BN66yz~ld;9w%7D3rbWA9zVuYbMYyKQjS&(G6ml$4Yxp zRH|1pxPncCGC1mAjX#`^_6p_At%b`Nf=CUW1RI<^S5PFZvy)0zY%_t^q?W*{mdVb zlZe)PlcX1}TKPBud`HITW!EE4>?4A>`}u3FM~0@aRkN9FKLj--&)K3|ROFT1xm#km zcw0>e`d**aXs(1EkwLg<|DoM}h*iN-qR@dWb#I0_XK;88v#uxpo6Y%nUEbT3;IY2r zT{Y)yN5aK2P__iGGRQl)5r;0PWBxYSx2l^Xy-z!p%9(mo1y_*4&A`|PDJ$h@D7qDA z%bD8goDlveV{54S4D!q2^F7~B(w#fd>e`c2gKWs(r(_|L zhhX7TKCyu1fHzB|g7UVvq*%5KkHNYIFIP9#(#^QORnl=K!}7t?YP>-(4@eaSY{TGi zXMi8#NP~`7&TZW_j3kT`e~eW?mKBf(0C}!r;D(N8{lA)AJPLLOW7xS@C^dtV9$sng zrpfTtnERSDcu%bNtNr2&PJ_}BC<+{kz0)9Yu8%$c_Ra(54Wbqx|5ySOjSn>A`?IF$=39_TmY@Cvs&kFtEuhfl1GMrOrY1)Tv%Lnnwb&7CvL0-WZavl09-aV zG5NGnF&ff)eWWjWV86?s{S0+}$K$^oZ>6DQ8iYLB^r@fO&JBvmeIjg<_`_%OQ9y^` zs6Y(x=QqSey}in$?z_&x6ZtWzb{B)k!Tnl#(4XdgfyM-fyx+(vMkI(?UU6+bs15J@ z>=-~TtvslQN$V#cJpOYYAUnb z_QCB&4L^aW+4YQ*f1Lhl>G#$rQo1|&qu1vG%baS-AttJWb(7>L3}-8WMSp(%a11Es zK#PR!e|s$5pW4T_!s`7fsH!Blhg4qD1PfN9^tDm+USO#jglf3&Kd1ScWdpCoLd&3x zgec-@RjC?=FF6u<#GTX@qv7(9t0p&^B0`L8~0H~&KA z<}JjS{m2)xZr}mqnQ%nQH=yb>q1dgJYu-;S^oHxEfVw*MD+ixRfRnc11nDnSLIk@Q zc91ChB^eySN&nI9!JQ}zc}8F z==~Gu(&NwPcwS^JkcRJx|sEsg77=HlMT=@6KuhAu_Ys#P zU_GuNXpz5r+Mqr{FbBtc*H`c4TzdtRqY*gx5-#H2Q42^bYwY5pOn@E%`JC$1+Tdqq zsUuXzW{7V4*itbI6HbVf@YIXIJ%3)YUqrhnPj)(>Z=bz3xVNVCHW0i+9`r}*I_0P# z%{p`CYgsGbE9)5I$QGX$gz6Xdx4pNp7|$hweCb_1-O@b=<4J`J-In z2-6!NXp<_Z>4@nWkTMg-&xdf4fYWLCWPra|VJJeZd8t zpNl13nC|kAl0=U+sfEpEn(DeTF9=3T##zGz3O^Re!7<#Ixc&)uLUkl&_B z_Qw@AB-)S4xB|K4dS^_vA}```%<>CfkGIIC2(qnFk6XvWJy6u}hOv|zC%Xm{XQ~gF z`Ci2FFfj;z(I&k9bejn%-uf(i9Z3MP@+CpaQwez4Bjly%RIt&FvjtiTg*D|E6nE2D zSBJ*1nP2|Z4*hHxR80C>m<8!&?o3i#?%6 z7Lf!>TWQFeRLJ~RrOsZ-AR(Ek(`QBe5Wqd1;~6zowTwRzpmr6d`i7XX}^{ zBy&N<^VW75o}a`Vmw88@VS9*stV5g`zu%)a_b~h?lm=wwn~9JU%zMJ*>p>48%);af z@*9jdyV{b-9R8V>d;Kemm1DSrB!fr}eVolgmU^@`ZyH1`^c9psRh2EWxvrpNqV1^Cu|IO}N;ALSQdNuwsvmM(xERcJAiG zGd&Pk=Xx6lif zSYgv45SOdR;WsY>bm~maA7S9aYWadQ-@oyiD}wEB3Pg%Y+szidz95eaSM=*P9kYb7 z$aUZO@oa~z^!CRFhULwDj0#5o%vNLkdF0~=9Uwn*UIca^>ii` z8*f`_>U3twSUBrDf{J*xA1&7v2H6)`CY($+nsgw*mfZwlkJL>&0uv**v=o{-{p{|Q zZ@kIR*B$jtgPu^c^!O&TZ#;#`JD<h849lKpA5rusnFTmPiEt+jj!i@3id%1c7vRyviKN=;E z;_+vL;_l47u&}yjr+?eH8!t)e z?sqXm?wUs#Q z>Q?SZF@U^7H{QD%h-Pva1qi2VzA;%Xc_5&-SQ99i4C1n)0ZaC(^FS)cS zP*VU5?L_jPOvC~?0`~f=_amib(m%#zMrhJ2 zP-+vHIj_`-J^5wNtcmYlj4#Xco)L@`#BFXvbMICQ$m z3?mDSV6cvR@puirU#;rLSO1!t=MVpeTeW=5&}-s^I385D2MY}}NvGE&Yv`iBW;^@u z@_N3}Z0fIQRBbt6dW`LTCAch_Pus1S<_&bA@+RbOT;1kZEM$OPMv=ax7wkY8@Tg;+ zFNvev)0ft|Agtb>yTJsh9z#ROO6(Sl*N0y5Zd-qC9(&Be4*Uk z^Ufwe7jT@HxGswvM2QmR`x-K6_i0`h&{e--o0!9DZ|NmJD!oJsbbh<>yX?C`FRx^@ zo#O^S5U&E%?|;Ja%8gUkB}_`#AM90|K>jFqqey&ACshX{hgWW|exJqoI$S_rm>Rv@ulP?Xo zv!iGG$rkNFfu*629_h>bFM+YU5EEC#F|We3%lDK|Q1cn&o)V+iP{QUKUvguKp8~7dr&0=|v^fdu>y=|0BCmOgaAdP7pL|K{lIs}Txw?7S zTI0=@4n+Q%6y-#KpOV2QUsqs^VKSo!At@uh-Z6U1*Hq^MDI{I!?tl8x=0bv^{`C4d zbZ0yG5~VCZ!@&+pA?VK_RW%5K0af*swmOe~S1KhlfON?=XDF}z<=lh}Mi3zf#AeZ_ zTiXYIR3EtBu1WRo@Jj!ZT&*N$WfNud;+Oi7oK@4N?!zSW=O>v{w^Y3o7&J@)G(Ag) zEL(NEQbALTQcwRbYt&!IIdn^Wc@9KHEIK#ppMenlxAK5yb?oxP`AUj7viXmuq?#lx zUqG-}RXqF32&mysBs~d5$@aF{5Inx;LYqKzsh80=nbPx%cucBz59@V**-F1l%6Ew+ zjZqv~t0u%frY|o4oL|`-t)kd3D^@ui@5Pb>hcl-dsM<(=kmh4*sQK0YD3M3(S-s)V zvsW9b;^gs$-cVUJU^2b<6GUFFSw!#H#F~%64fG-SHyyDPDWpWd!H1 zUrJnf@No7E4}KT^bNyWTZS#Xs-?al^k!U3`bs(tThG0aM`RPNpXv%k;@PJ%0aTkLn z;&y8#6Fo6IwP{8_+zicpvdxzW2s64&8rJvp-RZ9|sPd2RReF4BzVP zB1sPJAJu({tohy<4{qPYs!R~YEU?7BQIkd8uG~zBmd3NR3aDzzvHYj<|yI?{v&r(@n+`yTXKs9^UK>ACt!GhFCrC zyFv&3W-h^o%q6)2_XDQOZrC$`yKCHI!CsSX_)wh^VZC&#a!#WH!ksn3!~om9|5kD( z&*0mP%4X<7eQ1Kfd3QuuoUg6hGWr{^;c9D2em=E>FH;Y1S*(Pm4)Jr@D?8+3xRw5D3@+ z2Mdpj52+)Tem@yu=2IK@aSz|?2e5q7te~(GdUbR2#3EFDBWIFZGF1&odUzF~lFYv5 zMlho5h@z71bbT{X{Lb8fKQy+$ul$_am8nJDktel;f5T_$bj zoI-f(vhVp?q;8jr3lRxk{RTfGxBiaEkJZXaQmN^UpxguRqMS*`CS@94k^(qFKr$7J z_{jbMz|dyLry7`XIuh7U#M|ue!GqqnfL&e*$IIZxBf+C`3)VH_eD8P~aYllQ2IK=3 zE*~iUXtLU`8K0*MrrkUx=>hOkZcYb>fh8wVMN`QntY5RU$@s+Z7lA2P_sDhvaYbH1?@3qrFu?K zRo_Aw=u3ayxax__+2pOJA6~wist_*D4x<&1}+)Da;CXF@|Z@;?y8e}T6v@b zDMfc6^EQ3Q2a>RQsx)7#>Cv0+wm-GRUarMdE^AN$z#WsuDFN<>7rxKvZwPib?Puo@ zoga%EfL;!826GmD0<#0DgswTM@au-(num4Wl%8Z|hShV$yp#As)I+H6xGM^gHvglW z@6&tB;MMAI_`-(Q?u%m6rR2r6m!WPTW>P$mLYnHWMttXZ$ghFcFl6F%R%KD;P6kMP zo#;xIyogxrK)MLtwK>PZ2S-AeF1_XjY$4_uIYWTY1L8D736BkiM!Y1b%mHq;XOf351CAp z*M+RP%x|j*j}& zjdAz8TF=I%5BI+5&*Ux)5CA7@o8K?uvyqQ~10dLfLT%h}u!F@fdzH0kS{nvGwD-?H z<<3flP0cyoM2PgWBqw`|n7d?hjYNV>0SJMu*+kb9T-dR5Lzro>gSv+>=Pi$6@~WhQ zKb2QE1uMzEu3QhS?@AMnItI5b_w{ERdnF4jd}IG>Vfll8cl^YE&=a6vLvmDF^v#b= z)c4M-o0yanrpMnDpdjP57tcXSdN(Y{D;BK{W*xT+SA0mKDC^9g0Mg}LP4Nz=ZRAzq zYro=n-YGntd}~w}kTlH&q+IwE5Frb`cw+}U$#tI6NP2ND<2p?{Dr7Id?|s7M&O1Vu z8$DH=gdXU>nnw7nB7o2|=;IBgui(~Q>qUf~!fJ@#o`1;L?tk6#V0Im(0;0n-E}Fc4 zm;2K(^5TZ8qBCj<^6FX!v!P_hqmg+Ak@9=W521=8TPb3Xw{+Y48Iy*m)1Rcy!v?{Pjd( zA`3&J5a0%P^E{|CCv{8CV9BE#f*O5*fqtp?47cT1{#at^c3ZnGjVO!k_YF&f> zh7EiwAsGIF%zw7$dHIohB6QQ08=m59!tXEiWOlDNOH7nmP_#ZvGC z%H3zoaDIG#DHZ2a4QB`X>It{)`8~7L%Kg}~y^=P3Rt=eh`dsBN@CVrMHgh5pI~a0S z1-_ku8C_2-H$eJw!7D=Xf^;&UuwZk$QMnM8FX@K}oZ|6;v@4bca9r8&eNFxB{9^pT zA-u~ED%*XW<^v*%lJ@-|Cwbb>h0uP#{XnqhxyXjqlZ97inf1p}?yjr$VoTrKsg>*{ zKVLjDFt)R|LBuLRds!4n&P}=eB;afZ2}DLLKETs|I(K@U`y@+Z50tjt{)J0m;bO!+ zWjBu%0XBxH5Wt(Dp<2<+8MM`l-s(eCzI`V#fa$)l9%zRL*TAC4`&zOFY_zr{p*s^= zB|+c@+^`)JCFcx`@^nW%uCQBu*^PN2SONtK+Xe)Z?vEL zpB-NVK16FPBcTn~GW&wg>}Sw~l$w0{h0JH+H$hUI;z#zgx%%tI`)==eoE5!Z;D-@Y zE&+d4s=bW2B5G)f?ALPA*>w7w{#1_TnozlW?{UP`f1XO2gqW!`x_z zCuJ3Zwq7mW?7tVMpT4t2{nu$}YefHs02fBGH30k3|6`Rjb3Bg#<>Ol>inf(({lA<{ zAo(|n`S)aSU$={Q7caqh)}9tSyfv)N3^{8G`|e&=5n^j}6K-}Tic4YEb)k$0{wfAD zntm>8m?8k*zIyuoH%9a_|95FH z&2JoUvpXX|gtqc6f?~#oE%+;HbR^_3TKhQ_&`sc;RClrhNabmqN7pgKY8@E}D%+1F zWdo6AV_>j*cl#q@C8%I1nyGtv(g-k>_=QE5sc9>p5;q8c`(SoyG7r~nM&$U#88@gq zfnq7lVUSHUtTIt2uT6KUjnpx*3V(55W_sPpE6f{1J zTUP*4{}j12SUS~dJzc{Gppc;WQiHQ{uCCdS)5PKKR2e@CbS_6#BNCgeLFmqfHa_>^ z1+OM;jT#@TjM(#J(uO{}4Zp?-zeCw@069t5UiLVU0>3{vR-0Ex`4;hQrWP&t**s$Qu#i|5lQj z2j^}OPi8XV<_mxXY}_Qfpf_JHoz&Q zA=z_phP2@-P{=rE2Omi`hD~s(?{Vb?=e)&`PJRe|O5UI_crj{D*S)u*BT>Cj?=)_T>o^tIq z@WkJ)N{2oV?rtMzk+eQfWYB`3grQWG5wgtgN|XbE*p-I6fCk_$i*AQ_lQakbtiYyn zW}mPG|FH(pN(idwY(#7GDVmqQDJO%!;zq9kCs(Zx=48_s{qaVKd($RQOaAGIn>eyA zJsOvaSq-+h=6ne)OW+=^{pA*18mNm%D>}UjJmttF6NYB`O@>vj!eUS7G1HkQT6bJ;~EZiQNQY z<%D_S;gwy#gRr(1!AVY8(n;AE?U`upSck06QGu6TEJQdL@2&aDf?zD`Zdc^>(X1;` zdtJwlNthaE;qfzCn8))B*B|&q+pbdtE4z(1iY;=CWKtDKAp&5-R1I-jV`*O=f-VM0 zNxaDi`~HY$uRgH$D+a2ZOWRNgtPe#~INAr6YlKB>A5iw%`CV=>nMB~*ZhxZ>sqjy! zw1VD2NaEVbDKlW^EXWS0QJ8(2HifZ$?aD)OL{&izJ$XNlHhaS>b0A4L|kc*tX1%E|__Ci|Gp~rv|1C8Qxq?ID< zyF4-(7UiWd>%D+uqmJ5m($_~34sHb~czWLO*3?oRDv@>F0a%o&&-h)~(VM!7r^s0e*cNhj z1#opT4f*-d0_G9oTQ9{6U+C|Wd>Bf0y0Eu%3|Uy6SUi`_b~t|m8#X}}4s_4-;`ToE zt%);Tf*s{zPO5hf9Nx6W?xu9pMNNdZ`7JLT*u%uDKn*_4nw0t)@$wM-*ctsz(rs6E zB>@_wRWfC8H?SE#Vl6}d1RhF#KuYVsH?g$SMdEk|eG{MrHbX~T>IvA1ibLu;N&r*Y zXo~2jOTaO~VLGM;+&X|zjG_Sr3_=cV)}Ch*h*39qXZEcFtkBIXCXK&|H*Wz{ghN^m zJLj;d^u(2V+J*x_mB2AxX6-UqrY)vHk3mK;aH+%qi_pE(uDx^MNr}vcAK+a@;D?evs$2h(s8ClkSIGOP^> zKm??i3+-vr>Pfp%|B&0&wdUb3^^NAebFL+9Jq!&Tl7zoFI@{i^qFfHS-LBX2Rd{8I%$#FSELC|V*~FrGf(J@3f=PU*<>VlX0n#DUH%0447vP-2n{Oj;-a-H zma%SJjSjlXCWXc`}KazSdo7+3~K{elDF@ z%m{!#1fOmBX0fuLNrxjBT`iS!z4n}Y^pvHECO@pt#b`T#4`L6rU6q1{bHaH<@1PHJ zLjvGU*Wd?;8ObvI{J<^4^hSFb3!DXPlloT>R6gW!*+FQK;=_8np^N%**&a?J6c_M4 zr{5tpZv3*A>g+YD)Hrvd(Bj?CBOX5saaECY@i);Hj*Yb^h^%|Nf*Y46Wk+#@v>ys3 z#SbPXd{#*(;~yIw0-yS_OQZn7ri72#r3NT%cji{*4k)?enPDL1 z@D!jzEhVyc%!s(6G<1~b;M>%{1`D1sxxTFI=Iqtl4VqZ3DI{pn>kfa6BRRIa`R) zW@DMP+aPVAu;zKdPm6^=oWx-&-^^|$`fY26F4d`az$goCwoUKdt zOE)?3o2QJSJ$=&M?xYAN1&q|gb5S{-ZyV&JvmroD(%a`rkDoV=MoA?W1jb8y25d+sj}#@Bb*sCH}i4}1wiB|h*0tNGENFli|xQblSN zr+&Lj$2^&wfI9{8fyCv35H03=w^fi``AHQY#K@#WTerDGc@7K#aO;~^E$D2!!mQJ9 zkS_}VAX)qSs7@=ut^mxLFR1uUU|TEz8-3JP)%w&Lw^v#{;bZ~)juDcRuyW}8x+UNX znVe9t3NXdkyTO(o$KO_p1>7qztK>tkDK*$uV`8+aAeE2?MP!B|l0MD-WN&>%?H;Sb z#-0v906Ss;$-RMFUbNR&6&0-V$Lr{DHJ_!{HvqAR$O!rJ_z*`wbuc`tM`L!Dgt493*q=@_O-tm;YjF`{Y;EW*BJ?ISp6wQ!yb2*W_?EYF#$S- zu#%$T)?#9+43om6rX=n!RCOU1xSiK8SEwM~mm4bZ&&dixF>{QlGiNCErWPOz-Sh>w z|1fKF75Al_1d$Iqg*ACLVnfL^!nW8{gP{#M+OVTq?t6 z^UDp{dp_fN=Nq2FXsXb*$Fz-WZiy@Q2%)GGBcEdu$e})Ln2BSGzaXLgWVEshLKi*8!(&)eE;rm|cg{f__9zehq4 z9dlXd%F0S}U#`wonO;2wUt@B$C?7^~QV3g?{z-$=(8&8jnfS~a;2s~i0 zX8zv(#$!5x1pZy@FH2N$lkV=mS#LUN z3CcYUSw>EQ256mb2`hQhNMP(X<^p`7X`eVAKX6?CzCZwUNgo*3Y=t}g@F!u#xYg|> z8GL(A7a@D*zFL2NCbnAK?07KdMhL7|Z^$rvZ#E7&)SqsSAJkQ>SRQSL$iA)JA0ZE6 z_2fR=j;$Z+t>1ht_+-3 za~FSXNjybmc;_m*af=Q;WG@ zF^4JVM{LY)qfYMKUgLrM?ZkAGGAEnO_-mUymWhzT*&4t4=jIUjNlv|LqEnp?zQTod zxaY?1Q?K276UKu|yJeVCjz<@+IV{X4IQ*=r+q*UDxl*9iOREwq&~kRXK?R7dmGwHF z9W4+7aiQnhroe{J{C&ZysNXd(hVOn%wF9^k4=* z!s=36KYn@CAGQeMjW#4OS63$^bvPL~Or$)>lA9*{$KuFi1B@Hwq#h(w)*uDAFY%-3=p+2&f?4 zDbmu-kRsg;14y?tL)>rt&-u@~_qte1U@gxokRO}VWz{d zZQVQwx_ozDcX@Zwh7a=Ew>6IPY}qxWsdHU)pI&*(UG8g?r;kBgf!+8-$H3(uwg2YTdzoaFphnCesfLM?US z2V{nBgk=pIlqE(ja~Wmv9T#o){(CJKOJDl~;lPe=03n>`?duqZT~AL>K_EQI8>gEM z!8X{}*G7@R8jv{#BIcdXXRT!A_S_NI*H7!7dF<(eq%t;>_-%+BTF$0=?A;vAzaeec zAmC~pX>P55zLvvNY|Ff*6PXz2G!0G{=edgnyL>e=mYp*+vG)08HOS#sfdM#~4cA7^ z+dswOzNvTq%6}1|y3_=ne-uOHu=(T&m>)XCex339=~|2^UgqtdRdzg3Iy#OGL)g*#2m1S)rh`Uo?~Ju@$s5x( z0o5dKu+*;I0T4Ir2hXWNa7-9kN~?Q~gp zY~YQ#@6ue2EsyOK`y(aIhP%t-wMviuIWTe|9xMN#etoyivv8&B8ajUA=#APhal>}{ zm}0E?l2+ry?~&l=zYb;{h1_p~I+!6&h5Rs4^+3S+!yhSCIIYO+H66Bk0Y9RHyiQV= zKb8la6(i^JpcUaD+U+;^Y}#ZrM;-|=t+)G*YaQ5Js31Q8Y`T&5EQ=?M3QWdMBTb^A z2L)%#sV2K#H3s6Ksoe1NNb+t?@~C0h9}k#HI$H1FpL=#W4I4?yeI|=5tVbEsoH{T8 z+f5cfT)x|1c7nf0H|zfJaK}3YN6fWoLJ8B5@#lGu9FlYFTFV_FYA6^~XJ?ykU zlq4ng?R+_BhJ5p!K@~ZNS3ocJ+`P0t%Rf|kwl>rz9^wC6`t%zv&1Pxy{hN=2(_qjK ze(98llT`m{^<{kekC@q!VGaHLez}wQ!OJ(jSJQWAN~%(XQk!prLN)GDr|XtJ@b5OW z{{{Zhb70qDw8(!m&x|hN5jVE`H^UJ>8%O6PfaeSlKOIomTWTc+!JnayOfR1BGxzy` zq*5LwO>qy~XCYS?_s`<1Jp6c$MgX>k2r0AHsLRQKrlWoi$7{9`e};fmY1j9e z03kZ@3q1oy)PN3x7gw*{6i(IhOmck}{=@$M8>83IxYuuiFaNw3b`K_Snd5g8<}}&c zOd>+M_Fiza>x2LR<+ZkKhrX05Exuroga}Jk9DA=EurD?r^Aj0^dy30{GV~Y#MCkv` zl)nOLpwug~x)VdOK?d3JK6cuI$T!iqeRT_7vtZ)A1g^MzQ^pMjE{9?8{=4_|@5DSr zUdtrS`js`G6q1B%(hxz72X_Ny(rh&{{<&cMp(*zYSuN^p&QINlWXWiMW0fAd=rNCr zIBb)|lejdw0r-mg9AVht@_6Zbs?H%{UgXbDrpk*YUvs3DSDHOQl9*k>{9>BGra-_t zn=t^l1|U%V?=LDxHRb-LyKfHxj=dSazlps?Z1^ojTAz6TZiv3Tj=sRZ{$o4UD`dN$ zSUE};t7D$nuI1hPcFe#uhc}9#=ZNG#ofi=XI9WDPIq^Pt?d9NRjCNYk!Nbo8@JArc z(`2xD0^BncuZgajDdFE$>s}GBDFi%@^W{qT8i0pX4y{*~e!Ke19e^GZ+q>{@2cyIJ zGOq?Kn_2+)z^PmGpc)e1q;6iLIouMG>=!A7D9$lJppmBocv< z;d>wqYDbs6l)kyyl`8omu>IUKgXuh)fqcysFawMIAOm45wgpS%F$A|ZKhsf~bc%3VdLU7TI7;qWj z_s(5}iu4~C{kCN3I&cLSpf=+LE6G+FV9;MVH$T4=CW|jlf-iAN4?K?00x-*fWS4k9 z?0?{jM1iSN{qT$oTEDxK%w9lrgyU7#i!pXMVZw7#PKk za|{R<3M2)_2yc)#-`^hg4hk-Rj3j1RmFMyy1gvDtxd}(9od+C_-q>YrcRq42 zLnLoj@SlG{MLH=Uyj}sqvhD7y{MIONwJQ?2_`60IB1k{>81n!qT){%(qQW5f^=^4@ztK7GM;cMU`G7EKrE#|`I0Ak;uF(rz6bk}r6{vziH-MjZ zrF$;fINo1vX7&PtwZg0$s~M0iy~W12@6v$yDoNZ|Ab~?a>|{t3U+D`RxW2C&h=`~% zGvC)910Vko39jt=wK$*(=QV|aBpwLTnqtKMJWrxbeBH96LsQ-j=&<9TOtEm}5`wY{ z3k#j845p0(TX3&qfj|Thx|G9`_hKM;UYxp2@g(ro@sWb>sEb&`7_Cfv5n5o z&Su90?-9#u$cJpbXgOSwyg!k2KAU{K_C-J(f7QmLVjOlkZdzt>riYWpYxketdZ#|l#0T;P!ZNnVK0gO4|qG{P3wSmmo zk4If(`_av5p(J1oY)2=V_tZ#L8vv+F_%F8dE+C+Ys%yL5k8T-&*yn0uZKk>6N&NX7 ztIg>O*u3MIxfcT(qM3LU`vRe(0pB-zDIQ;N3{7l9I9`}$KT4|Zqy|YHgdUCFqq=1j zco52b{oBX|=ra@`d&<9u3<*!q&Q{v)cH8!BfUWH*&uqB?@$8imjuhv$v0g|{0!$?m zcmNW3|Mi1^WKOblgS)D4-wGdwUHR89;-v=s}~EbI|3{=hvKZ zmRQ6qs3UJsxC9?k|4aTro~Bb>?k_IQ*_L-NG`Lp!UAd$IzI{2Go6?*lGF1^1!pU1~0Wp8H)rw)>j zBGsu~OF#5uS-L&&M8*M~0ya%<+nQ;<2MxNde!|FE_&ZMkR#qIgB38u@z42p&Rxywf z2r_mAg8*SA`3PYV0uUc}b4KHIC(&{3M2xosI9*La;?HN0ed z==!d_YU!+O`Qq+EGT)<0x1_MFlO?SFx31;x{M$!a7yAn+Afeq3woZsndF#5{s`AzEyG8=ezK7xgw~2R%@oQh^yeF zG4Qr4{1Rp9-c~Z^e#Q?Kk{o zoc8=@T#W9DkYgNk3qNKje~9#u5opCe;pWzd4INc!P&y__vyI^ z8i>Q8SLVa+e8>r@QLX&X-0a3rRStTZ=991flwStXXYrDbABU2XMRk&w)ngDaian8C zwA5;@?T0Fa!gVQ6Dyavfaqe#KuTk$-r_MCC&qVRkySV5O6n=*p7ZM!%rpUqXUeVvL z96}^cw1(}entK%w79$sXH&`61-d;%GTm{||+RfG+zOkbKMkapWg~tDPge6+9fU(!x zZ5VlBP)DJiK0-T<%zl4C+v8pGP?6i9K|q}4C)C09$E;9zRTpNp3nd7?hw)1>_}a!y zYPrgrOCmb}t$g-u;_?`O@#OIWeVutty0_k3C(;6@Tsf^)F2ta+=;vaEgI*?^JU6Gk zQ!8uudl~hE(-OCB$Fdu_NsC^)RWrPRwfNjc;#yDHFj%Hn8AYrPb0BTwz&`v~;p)l8 zkT>hX2k5wyIObMz1F7KcwEoe$8oFtEXZI?>+$7m1t~LZz@j$Or0kyXSo^}M~dw~f% zJ|*#8JccJahb47tiz4EUBx@v&isE>N{*DdX-~>Sz?!mMt>ESZEe{eR#CG7HM%*kVd#APST7sai3;2NbkL%k>RjGTcX=tn+t#sOLR2sebvxNLMDI+7G zEVaX|CF=}6@*t;Ij+rKv&NSP7#@7y9VDHQjV^;l63~X3X7>$h)Gpfy< z)l%~*0wbo-CQI0BRb}N;!!*$K#MNs*k}GVw>aV4gSiLx5ikb~AEWeY^A60_qN}>*+ zee7n!Uw8m2I*=(JAh^7phFsi?@{Q%)_Nv3f&JMddv?Qac&hI#yFD@sC9omPOW zP$nArY`ZSvknTPxZ7B6LRjzKITt@YF0)ybbN8~-BO3J&`zx!@qbmSWPD=k5BwuoS+ z;zNWiqw2<(1Hgfgn6OGQv{R-gD|%F?+it5EaZkWujRXP%Be2CDK)gF&ONLW*vxl|5 z@%!}8qD&WY-E0rbrp<(V-cDpn+=@!pgLUsc+i{n%n@>e6eaCOTI7kJv2A34G$SjX8 zYxnC9s50)D?Jt{*yW6xgQ9xVgsCYwo$KiDjusOcM3S1}Oh=)iZWm2MedW&xp>t^!{ZG?^8Sw zbe|`y^u#O557gR%Ww!DJ)Lt$oD9+`ks*xy1I#K#n&RvTu(qkGb`hH|ri@MGFDl zOt$%T&bVHb1X3?E)IvbNwVq4S&AG9F;E~&8(rR!cNvdnaJYBoErypM14WA@LTAt<& zfD~szlLLNHhnJakYp?H*`;RwvhtNR=BCcFR)DkVB=XiFPPluW|6smIx3qS)y9PNWO z)-iUdkLdgRW@$WOfvfjnm!tacVNdPec%mEOz_%g`CGDF>^hy9T^U7(UOpK`oFXctr zUEh}{e(P2YI_&ia!rbsQJToPt#U^WXr8VOqPnIjN#IQSs(Jlq+8Lw z#alTaRUbrkS?%n}$fh$ad^u9F^^##v3^*CUPTUD6b}t#`K0^@`x$1>Z8!B`o`;l-nCSR-tf6^CB2Em5YLW^LfF zd8RIh(YctKkVd&*11R+0CqI}EKrK&59W^-i0YP8Db@R%c_!2K9-}DE79zb!?(bxVgQ(j7P8Pbp|_3PJm8$Y=srz4 zEf5H4Q|DN?2GYMPeaY1>efq&3{ISJdtzH9u&ACEZw3$j9fce|q>V7lM!JX*Ww zWBo~dJ?;AN=SZy~o7ZLGf^Z^d@=c=)AEE3_J^(y`23e~pVi2hFFJYw<>CN2L9Lc^s zl=4EHs(H{ZgcQdv;L)p6YPId9!zL>2twTcJtH!m0D%|fYkH(UTFaKQA)C&~kWvUV` z&xVq=o%#j_NnZV2&g+%98li1oC3EPhY;Y40o$)A!m3|cf=k^m zX}!^7${UFezD)O=aND@YuRW9oR)?R2YUCd!p)Txwn0>xL70|$sa~Fd59Cw+IJRg?j zi8gfhI4crtNXk%6j)6@_Jkmk26$01In0-3hX5qakd$FqNjA2`L|4Qf^4{CU-Xi%o3 zLP0_%kjbEqAWVhkPKQaltYE#;IXkoxBgaj zX_Db=ozA75D}Tc)9rbzOnCXY2=Yu`TCuB53{&Bs^@$!{!cJBv*6c6&)IP}U?+GQxD zsTKvqnH<~iJKaiTBq4~o6&m_r!RbaomktYm?!195o5ck|87LzFgcdwV z?cPD$gRCNix4b^4(k;fG;0NLcj@^hXSmVv(r*{?L?jGq?f>*x_hOc!inZ08&z~=E3 zqP{P&rB4;R+K)Oh0fsTI28e>cYFA|4ZJAinIoFSRUtSP}*KhHq8oSI)r3rUxV4{&Sa(+!pz2~@W7SAoaVRgEejY?`JmPS0T_;}CAAe#obEF^NhQtI6V_5scI z^A>)_!gC+RcZf``alEo!c@b|W*6IRDHb1QCwms#pr@^lW$YS?FIihY47A4=V??yag zj32bt&Juvf61WMJixt%eOe3U46nO0nGafl~Yx_4});~jQ#FfX6UHQ1qAXEYyq(d;> ze7a!=j>m<#SaIY?w3rb~%<#@>GRfJu_Tc0eJ|~D2%YbxZ{_{Dr2f=--0v8%_q*x~!H6Mm zvI%+;o9e%|H-)VyYtGYh54(}#!TfHL`R83~oG5L(_qmjw{3FAt&re=)5H@zy*gTB; zto7pYpIrW|wewQzp6lVVn*($wSj_M$WT&ZeRZ=V>c(B`M>_Rn=nu7#dv17xHBOjca z=;!Ox5{-|Aj%;!GRi~z>Sro{(Qmw-e(UP_F(4m zdkU2G--EzvmTr-sv%m!txHu%u9B9k^7V7FxWxkn!3DH{Aw|L^_h@$4)$E=Po$Moy1 zrDQqiV9r|yu_k)eNt85du?^^VSO**TKT4+K&KE9}o_lS*z8$w%`bQvh*@^$~MLQ(% zH1jz7s(Vz^z;>%8nC0nz=GY+-67EUb@unIRW~#MJwZs1c#i!9|aa>7?ipw-RF^xdt zI@!2`rw!|xwf?AV{%I{xygeEW}Iw7x%@I=4; z$WX$&l_+EA1+6cBSo}<}(REG;*9uq=z~7dNnp+sxnnDA`A9qPCCO4gs7u|OQzLLjh zo({qxrRW+!nyuBVm>!_g!(?D&U_xwn<(&fNE+0LUCUaLxqA1C}1d z@S{Uh$9s;nDn!&}mY?9#$#r7bG?{-v803=Qr=T6jttVbuB!OBxIj+x7i-aPWD%(le>Z3S%p}x zue~9U#Y)l_mj4Ey_>PM}UPmMFgj>RE8qdqt>B@<3!|ypI)p(d(B}PK6=j=i#pVXd8 zT1wdY*&}u-Olzuld>GG?!Ty_vQvNG#aIN#RBgY%(67rEedx6r2cDz|Cwbh@l5YoVz zcQ!iO$usI_Oayb%J$y*d*me7#PGH@iYoy)$@Mf#u7NR%)Wfs6=N+Mm6dk`1|Qj(L_ z#_>s=`S_z3>d|e>y7I^kg8pFr2bkmb&sgg_8A2Ic^cN_4Ta~D2!SvE&yaj?9*nWM;)6{?zYZ%&d40@eV?zGZdke~tK#<%Q1hK|2pnW~ z_xSgc+2bRF{|rf&eGI{jX2|Xk0?*{#Gj zujFurFA)RJOlmg>TzV?h+Bq-QUM(Zr#F7cc!-$z9KVOpV1o6Q3@@VIK5+e7%wL|gd zS!Y7vS&yoDnAi(ugGG5xMO?(OA#FK>XmmaXWlUxZdi6wg)8*?It?`i#aLCPbOl!yr0Cj02pNNS@usaFyVoB~|Q#pHu zi(LZoi^lSb&q?i7rF_Sk&70zhDLbfyQsU3iIMpl^{m>s*V!}qRVw`|L`R-_nBWhLU zZ!o|qkcA8j0axRltJuT{kn%$d9}0Np1XC&A9Q!g$>nfC=;m=8={W!~=E+{x*2G1lk z$YU0sUjMs}=>gTihD^^~`?vT4|{&cC%t-yV{DdtWipG50ZIz<%I)T21FzWvBO6BfqFk&s zXhUyCBw>xQZCq6S{6(ydm|G*H^Xd-cft78+g0xqt%@^6m$7uFc*F!H=DeFA6A7$yJ zkpn{rxg4n!GOEAs`Q?^MPU#H zHd5=33oKDsCuw(mA|Q{-A6r#7WiWk#KNDIv5(-vV+8|Q=;nKhPVG%XBT}m3`^MJ1i zmvS4hAr$FbDR|3Qo0n0cneCNK=ozDHc5R22)77YVWsQl$PNNE)OZ}|3WYiy9N z>ykoTl#j3nz@6Tx#p)@f^ghAP-d39ez_z4+=|x)RdSo`|!RuVvG76%XY^PY?N( zB^@A4&b*$dGYG{ica$ZRRkr#3W`xs03Y!jXkF`i=uTIYC)3HGTtS~H`XYF zKb{q=0NnJ5lt|szKGoOlw?K53n(40)%h$A`0_yl}rzbD_jL_^@oal@=sl2lNBx4UL(M0mXwuLxd;|+mBWsmPf zeWA#(T2b;51J72*_hlP%e#y4z`+ghie8wQi_q%}6JaS;jx#!6m_xrDgg?`3&WV zQ}r7P)E=Scyefh1XsW1PQLct~3=t_`jU>*ID9i}O4-JY=Y-k0a$yegLO-VIEkGAxs z<-RO+WcNa2;#wy-3mGAEwb_|_c?JIb4gRJfT7iXYJFE~~65wd1Y%^tvlV9|Jl7AZY zuaXbJ6ZfD>Bdfn$U*>mCg(i~IePren#v{OeL@(!KBlug&E|FmknO$L8@7{db*ywDsJnCAB+rF^BxRbqpQ*ZZk1GQSY zXw8SH=6=b+Y!R{@#a~n9bWE*@GS`DzjU(?IDp+Jqmmd-Rq7S1`N4ALGOzy4jH+e$p z_k7|pa13`c0}&PtK-A1knB!PyLw@A)_N`$RF#@hM=x^H#ZT)?eUhlZ0XiBEOIy<$n z7#L$7czip2?feGF6|?+HLPVNP2OZ1?VTlIL+gZL;DdX&GzK60G6fvP0DO{;-^`t6?a1~62`u(+ck0B?j=0s#0FvaRvygu|pR8kkb>Mk}~oUMxHEpy-=-lt~kxv?4zvrrvhgz z;9f!mnmh&`WSxWF?fDzg)Um;iR0DJRbNdOF&!c6bjRfWnw29fNfyBhy45`S z`}`Cm4B$oo=)|Ygo$DT#UWO51wY05|@Nea#6fB-_10L)Fx^4Siz9MtuOSNyM#$Hpg z{eXu_0v_fw^f)AmRAzxG#OpZ*PzyVbIzGn7Vi3S$pe2;KDI&;u^UfH#{vvAY>{CM$ zA6Z_tqCmv2cBADD`HTF-3D7z_QoFdAZNw>H;K_FE=xs)@c%<-~ntUl;ZAmRk5l$`z z{;ZZ^1#og(ezJP--qgn+(?y=FMIxn!Pvp6eho1#Oes&YOqBOEgyfw8@m%?@&8?)pc z>x-ukb6b`JA;lo+YghQnsjIN}ESoL-ZqLwb_ITd;*jnGm>-IYQs5H|Hm)0n8aE~lC zI+8=J`~j2@jbO>*l=zHQCiV<}JJ>^c#J4U z?4_K#+*~r5d9wT$4xLOn?Z|Mg^H#&oY&+bYCY7J2WK98wMoH%%lDW}N@~mCWT3MT& zCn#Q+pS&kFj~zZRh>cR5XE9;|X2?eb2)}l(vKXLs-iOARa2?PRYls&FijU%j2~C9P zg5io8Rir2y-$v;2Y7%n!$5rzpog0dS=+O?Ml(_$$MY1 zGxLFAqlOzevr-;d4>#UByoX0f#)frPh>22;EJ|NL!ki|B+#S0rh30Qjx{;3vP>w8( z5p6pyIH05uQUmLDHsKD`uE4~h9|cmrtu@hKltZAuEJ%7iOlowYX|u_+aTV^%57ov# zCt(rCo1?iMuoPcxg6TELrA(rTvT{5@ZZ}Q#o17i78J4o{9(v zcC=l!`+MD|&-Z4`dmxNMJ2-8w6(y){4Q_L1?8fS7)r>=LdAQxZkJK5}Pp#_-=2bDbf(Dx-c!OjofipZf z#CINLMS-jTkScuf9tpE}6Ao4jdxl%#8@GjYf|PIORV>b>^D&FT#b9;_jPS4uyS3=U zv9PFv*LNbq_hKs|M3CoJnsa&&F|8wyQBU()3wj(ZsuF5hCPJ&SKb0j?zS>H9GK7J* zjf3O1!_@EJ9rt0|5|@jaNhqYw=|?P>hL#G~9HsFMA#JSPjssyw`^Q>n{#R{^UIr}G zaJNv{G6(zKx2cXe6)8taw;y^mlZD9apy!%Eny=aTjB9aS02*lI^|#}8;~N6Jz{_Q^ zqH|<1%?wZ$XU(4oWH1?MQGs(eIhGJjQJa(?Nf6w1_~i*QNqEM-Q>k$;QFe0^n?u9F zj(C=9Z`@5Ah*uUkdlu!8IHqlQ1-P~;6cdzVCbeny{w?D>uoeSuO~^acUN4`In$wK5 z^V-brJR{LLU<)er!HDui8ug7web$uW;K0h|c<4bzCN|_vXNR(xRO*K~B}{H!J`5P_ zuLARNnQL7Et45OYZ8j6Nk6pN@JTYv~;-w%y&*7WZT|$KNIT^KoKpRW7h$(m|t(o69 z)rg2Y9#u=R2D(J>yvVHuRct7;OclF8ApCzu9veGEm zT+fA*i_1Y69o#)!@}+pI@4SM6eXUtfc@U9AG91X{&kGm`&PDWa-usdRP{r{W;Gtn` z@59oII~@$x&1p;qhbI|#{vZGm91nd<3093U84e!GEchP5VOH5SNSpFuUY~pLWQ9$x zJLeDWCT%M|Rm!gO(0AA>g7lr;wyhTd!EcXA z?7Ii3NhNz>ZtvkBkiG%FX{W90=woya8I(Dk&L5_qiAL0FmX(N{+Ydxoohh3Or&-Y4 znn{;(2?dTtTb{A1;evQ6M%)Qyw=)dJkWj1cIcV2H2Al~VKn%^t-6B4LNm1t%abvUQ z1I^8LhEmft+@C6BWWBI8Zq;9ge7gSdT{3l~z)p(HW+#XPw}r7rje%asPb};S0X3sb zQjw!Gvj#mRTjKpGsnHX!St;-7`3xw0i&chvxIDkrjbLs)%EJ9|Q8rwY>MegtbRv{s zvL;8s10m^C>P>`p`ugDd=|SrCbcHW%O8wx#DAT1CVwo!T<)LpU4R9dWjL(!{hyZC) zxuV0ZZhO8e_aQRnToeJ6>Q9uH5ays(RCqdwKID=MG=zRcN9sLD2Q0&%rDZo@Z;K?` zz6G*Cz{jHeD*G-9KPTL z?%T}k`jyES#KfFM+$oHI#9B0wC{dMrHN&aX5>S*s_msJ*S(~OBodPFh>1ThMtnb>` zN<5LRtTH>JP&K1~+rm%`%QqyD)l_%2hI5D8;7qmR049Gn+h8IU+ok=CCnf1demVC> z2r|d$nq(LbrWsgtb_>ZIVSZY{_PLVk$AV)V3(wcOBTdCM4{DgHJa8VfKvt-2a3zNh z`|A8MUBA~y9>TfcSH$wD;ZNcwL&a!>hJZ{)V^y(5W9bjcYwn*=trIHA7 z?Pf2q^i*ANKn%7;)vRKW`f1UO`^H)#$edpoLPK4Ra6r~;2tHoC@%c88iT4>hfEBh4 zNH|GT!EkORSS`6c!2%tEDx@)vnLw?$?UH8!9TU&~8k6|v%7y_mv2fZJToAYaerm!} z&6br^lo@=cu8S1JZt+!5xkR<-y_wWI5y)+%edR60W0~T2E*C8A%PXEU12IK3eu^2* zIB>HzVaE#t8ywjCA%yfM&A7Ik9ZRuFM!UGIu{4$08WB|M#)xt zHlWs?xNx34CEQEbSyp7rfL-Om^I2M)C>RgYsHIH`gp>83_|F-$1b$kmhrSJc%KStH z?GzQ#_^n22zBq?II|9?%_)%7sv%dKcgHZUl*QhXx=R!iGU5p{OozJ5KASvgm%&tt7 zsD$^Uw*mB;D2-~=|TIDQ1#bPaQmiaps5AqR}N5vKfF?;5#ALaTJ$J^`UObX0>m8Ir=l7AeKGW7cX z8p+q5UfMQKfHz-GSQ7AvXAHGO!M7e|X^D6fLVRvBZ^?ffx1xh8&WbbJugsXK15sQN zTfi0qhtntLhJQ+Vx-;tLeeM%06b8)qZI{!dgf*Yu{U+MavH}w0q4f)=` zJG^CUz7X^}3}lrkYq^;AIy8QGe>>*7_zHk}GjZ{qf*}FPbNW~K`0$^jvhqaM$$hDv zsg?2uVYXaiuG?!K13H?N3q7d1fhc2IG1#aBbW*T*&n!=Lx~%H+#2wa7TlAGGsU9rr9Wq|BvCb= z4Z(bAfmWTTqx>RSKK;w2Fu1fu4FfMLQ>E0TxNq%7ZqGFr%%KBevv?{aWR#~H9>7a0 z%S5tTN;JZ2z{b1R8%4l**J9-n5MpcD`eE`86$JktY#bsFSJB|Tp=&!U2ZPAkR(y$j zQ{7;dK+iB+nXfHpJUJn?M1bW+rI{I65y`7h|IMaUmBrpn1-36Y-wTc(@{`xvr+%p{ zprO;vB&YP-bzJ(O=rNqvtB}i}U4^3g;c@J)$i`DvCZX%%1qk%vJ9ZjUqY3SPujmw@ ziK0=?i6nR}9!JYPXm-x*%9Dp2eTOluHM&1+ZFlPo2&J`EKMH3TPmJpl%9uGbYbyg~ zgP}Z>7ughQKGXmy8iafT79w2a#N^4Al>$p|hOZmK0o1;fTg44*tV?+d7s*f>JODZd zD>gp7EMCn_4cwYI>Pe zQ{7_sDr`EHJCc%sS|oW0L~p7IGsxdz4B=;BGvFR;ndnm$5P#0~P;1Jt?~?p1Uvrxu zylAVZg8NtuzIw$#FAD&jE+e=F6>>e))Eb1{Jvt$%F)N%VS8o)jIXT zFXw~oCgXQ+>}CX0Y2yN9J`^dob_xz@yg-@jK0Ub1nvm9MR^7&-mV0vk+U{_Icz1gUR+3(lMYIwr4&;R3sl5ZjP>x%jsik>a>olD8 zYnTR>t94H{B+3d4>+UqO~+F|*auFu%2%bjuiky5=5Ne^iBjM! z!c6^~?HpC363ZQT8ADiE>*QW4Qp6c%S4?6L+u zHg_8)ffoBuAQ7@n3DCRNunQ9e>11K-c%OuU&bDae`ss+U5oQk}6Ms6{9pJtv zYfbbO>&Am(S2Rf8+M%=jxYE&-~p7sE~$-!I9++h=ch`nU59c*Mg9Ca)@3% zse&7hwQ}!xUPzMi;i1{wUF1EU{~?`ezy`>YOi!%Y*0OK90_d{P`fqCA=hd^e<0y~_ z+9TYc()VuFIMuz}>7o%|%_6pmo5p0n&NhUkX}4fnR}P@MUCq6~V5NQiP>Dr6T0ys+ ztJPp$oxEc6?NB^@nU;~%hDIS{$YZ*>-xIH_^<>fCREs~&s7s`PnLbr_=clul#Jne5 zV#zLqH%DM@T~m(1X`bMCAX8vdu6fDPb%mMsRxSrK3m6DIYMeHq)Qk%a^OXsXz>}!@ zZN6pU^UJba*BRZCBiIq@Q9~xKK1}b?sB~kuFp9g13I+i@W`kq8;I= z)nt@&sb((mL?c)tYOfM*uQYM26UQf>I8pO}_sz%jpU_~@B=oK1s0UBffb|)L;_)$J zIE@(VMx|k|{XInvb=%2`Xdv|w@U7cc!q=>L+~tg_*i*|coa~?=AV(OIa28A>Dm z_DaaFQ1nqXDKf}lL{3sXipsnW&em}zF+>FKTqQ09i+p{3xI1gojez=HGDghL0rn_@ zg#Ls$nADApqDnmPG*A)-DLWOwGFU#*c6>fej(y6u~(mf%bx3o702$vvT!3TOa$A~9t)FSd2 zF}hsPYhL|wi_f7ePYiW&}m`o%y`8be1RYnJvEwM510pTa+7rqoD7RtS?+S|+}P!}{TybPS3o1l>ZMa->F zGi9$dyANr{!gnVP!E$X)85iS&!zN$J&CrUoL&B?IA&w6yM$T-{hX&Tta`9IzT=9Tr z6Vte#$LfR5-4}^&G)3HRFC|QWYp0kbrng#lF0JWCTL(1`uw`@!1pE;3HY1%* z83fCZzF~EBvE~*WxE)wS#DGDyv`I<|rP`FZ$?Yl&(==)%--jAJKH+QUmGe@!gmPew zTSCNg3n@)k(u3I$O^O1Nyq=Kf_>Bd$w-IkkcM=8aCUsmvjz;)VW|O6^3e7;HW`drszCmm|I^E2IMXA+{~!qIjC;QtwT24hyGt{Nk7Z7+PvYe zlu6{)u%NE+o&9a${uO$VH!OM>r;V%1J~6Xyq4#qj^Pe~Y&waUore1Ha`!ioTI`>eo zV|p(IkY-)_jo2OMx2awGEXqwFkoQJ3bpGQBH)rY?cIV4$$;vNhpzo3L7>V`eg%W%~ z1TeWaaiMvySw`@sizkNF;_%OLC)($7JGGV%Rx+v9E;WP{wmBxm9%kI~?x?&$OmIoN zlnU*iUbs4>GiS7FFhyoa%G?Za8|XXA)5lqB0r}CG)|2fYOr+3HnliGOJM|EzB9bfb z(D*GZq;l153k&_l8D4xSd&rYnY9osx!YCw12IC3D0j>n$wsjoXobQem#%8gw)3YD5 zvQtS@J%sb$bsuDQ?g|3Q6sI9r6VIQgZA)57P?jVBqwD`$^E@lr?%EJFZSFdUMP+@^ z#>H(cp?S<#k8k?9zAw}}_4^{1Y`o0QcU5!zn{U&=t${l8O3TAg4-uRk``?P{n(02A z30zt!D#V=)oYf@8IP?|Fr6-f1m!!d-ppkynUq$s66qUM~LgB~p9?DXMc_Ki$p`LcA zOWLP3EdC=NS62SC#xkg;1`pi|QC?SxN7rhFzM*L61@sJ>Oq+X3W8nw(seyWkN2a_> zfKvlKn3vZQ+Q~Uyv(ViuUpMS$VU?Uzgo4#B{2k}TglD(hjE&!!@lbT)o~byaaGx`@ z+DakpB7llmXjm-k?~w2u^Ij$O`Iv-mC}*9sy*jp5hX;4dQ|js8K$6%@0$GN`6ylJ_ zwAM0x5@O3kkljw7TwFVTPnfF<=%yU7A-xbgNuI5_bEi6rh{G}oao?|+$*1&OL6MS0 z7^ZcB?DB`W6e9&R`8o;$Q-)7!HhwaJpri8TWiiI(@OP$CaSN40A$^(8vf69in5~E0 z_;l@Kx?O3_@K&nU?E>f;4cq~pi1P2!u)kY>k6vMD9QvyKdtxvVWDe*D5)uX*;?+kO zHdBX6!!MyNs%v=MLA$fd;;+f1CM^t{1uaciVhB zTK+`Do9|FkiV>r?sEUTvm6nqI76!lHH-`oty^njtX^(efrgS!!IFls6}LmVCHU&S~Twz23vP5seSmEhb&H``-jQ zSWcgSSfl4`x$TZFgEPPcbV6KFvm*=wKQ zI{r`|gB6S`+5;_+@PXPjzLPAW7)M;PG8FMnVl#-unhx=$M9L+Zn|ood)RhY= z4(TP#zCV2^x=m?c3!s|3_}^xNj2ln6J)oUY09 z7BjC;#u-z_=+8$=J&~=)u;@=aQ6mhC&YV}x=%J;QLI6tO0*GSJS1~K>(3{2P7O}^e zpD#KiGo5(D!1%>hFFCAavY_4xQ!1nwGwnp2g2*9;9(Fm(-#Nv{GyQL4u?S8j@7JT~ z`}gQpa2fdYq+gwC(uz?*A4~}g`?H?XsjNL*F8QK?lzjgL**6*Ux_nOJ+PGY6+ilgr z%xd|2zl+=M_ZFfFH^*wbwF2!{6#3BAl!EcyKg38duH2PxfcN4( zp%cZ=Y0nmI!R*LOCMr}iH4(MRSM+8c_?AB2ObeNk;t0$8WO1s?im()9c)f8rxXwz# zyL8*?q2XoPd0}hPUG~oo`~(_9JO`DC3ZYqvzw|jnL8LhIz5>Vu$GPFI1Ae67=#yYx z&-W9EDQNRPAF>PDeDp>sV_FuBuZNUXqBmH+UqXq5SBU+|A^V8Z&p;;iJ8 z)r*fk#@yfegTB!W{(KIU_E#c=F1NAYzoDu9ZlTtS1lPeBM1NY(QC?E7nxjX>PNaoA zLkK3zm}P$X7Mpn7AW)#*tt9CO=V*9;W;H`F*IIyn!CuJOQwTkXWBUf&A(1rJ>Pcjb z7p(zi)i5%e^nu&Ig;diw+^s`b8Ic3`~*-Itb2EYKDy;mH8iP|ywe7YOjteob_} zIY_F5fPRQRi)wIPNeXU|hT4GM(F9~r~Eh4 z6*0q;_P*ygsc^Mod4XJ*aw)jr^LndD0bBNt0i(HKQBkz?Q(~Xu$7ByQ{bRj8M4#7{ zzRDpwE8VrJC-w1&bmdtzz1hHz*`mAb1ca=>dhU*yvKSOj8;1j_z?Tf zu8*2fiSEB<0$*?6EpUqlUjYj^Fi+p2Nw57OySM)p*f?cvW2Pn%{G+$Puiy=ybnyeZ z{b`@`%&&i6%V+B?j=US2e>kTkUOl{T4fgn@X~ukQ1sEC1ReSlN&6mbuma%H?@BM!Z zS%%SV5*xb3=YAM$>U4+({21fJldmyrHgcV4!gj z?WYpuWw31|`h?aY9BK_rh5f$R$m?b^nlvEO!$Z{4D&-=qAu@W|UHGdA4Ar2#y6mCV zxuZOr`ovProl{9Hf?G3f9a*wFkwepoT*7ZY*>X~&NQo3~=d?~|nLTvx&EY`5gbbk= zzR=K+H2(#iD*amB4D5YsX+tudlRuBku63_>hab6UmJJO8H+QQdns{^0P0%aE;on&Ap?EqAg&AyzXZr0_PBpS*)@7c|9&c6Z=Xv z1OI|xb?9}x{erBA%0ih?=7~p#YYH9PP+8K5MyLCo&Y#}}Yv&(NsD3;XhzkBqac%Y1 zhX1L+%}@EHT_8+%*Faecckfy253%UBaZElL+}&sKzZyj-Me~3Q_cB1s;eiR--9!Kw zEyT}%zmu=?@$)8p*Z92lot_|#``FVOpLWad+qSO3F6vvn6Y6g88ime}(TifWYS<2W zu$!+WH7c2<++BlzRcfDMf-J?yL`1#}rIOqO#9w7x7f;Lkh(@XsMo2*Vwb7p!8%Nmm ztUdTa`MSx2kot&_a3V0hoKmf@In+Bi&+PdTQV4mB=F-fHr!N3RGbT6j@|=_F^W}^}N2m{?s-aotZ&Op@15zVr+kZkuH zYxd8+j*~)H&J9Q2lDN|R{vuu{&Y2NsKz{tA_MT(}hbQL{?j8F~&#Bkz*gImY(Sak! z6@IvRa65Yqac2vD0C2;1N&kJ+@ii?3Sp{ZMLCzKgSj42L5zF*gs90LU=fd(4U=(qh zX%6hT1Rs9_OF79?^e>aFon=?Y-mquqd&G{t)^_A;1EiN~cFT;&3fo0bqV7kbL)o8X z934<*WzBf=CD<%;SNwu&_vp5ar(?&Su2TppW{tg+rj~+Kga%z9138}+_EXL0ibls{rxAx~FU zM$u1XF6p(WaG;y6oiq7w+%$T*{JpMS=|@Q4p9Bz^RtKlAf?WkwIZN`XqDMRpSc?-3 zs5{G^KCiu_zh*oiGEI_PU%*<;C8|?x(`R)R z-%rRbjL|r&<%6`vsm59#FVG%op7*;oshCu7nbYW6ytlZ|d$Ba#U%N`WNq_XLkuUB+ zJ&1f%lvYe^@aP*9G(h=&YS)~zRM=&0$CR*#o<6xR+akDb*}R4H-{35tcGM>G`bLFI zU-YTTJ%j&Raa#L9-&;DulV`18Tcb4b&Wk15wnpC4d=G47DqHNF=K-|R_LCJ~^i77P zs27<}RI3+5OFx)D}?r`!fII6)pKg>r; z!_5}zy>(=g5_MY7_IH)6$3h29oGLWEoi(h>*ueTHXT~a`P)pSoM3hT{a`nMy)9}q) zONTadlAy>r8HLi_0`PYlA^3Ir;>x)S7-;uQh28>DU8JiV3-x2yTBFDP#G%$8UT=Z2 zt}4f>(QEz$9bmDn%Ul6MuqJL#MkN2@Q)e(z;%+3`MLiA13xX zuGuohEb!yQXW4%E;|SlyvKai^yn|eT_&&P$-QAx5#>pxYS?^Yst5(r&4FfR6kW%#PE2#fLPyokUawjxEJ) ziSi3&OVVjeA2R@{z|^JbZ#8N6QzwozGGs&w2HSgLp&xQ{0qIzY(bh)pq~YTuqm99s zXH}fXSgn?KM*ER|`6)}J8t3l`(-afXzePIs5xkdi5X$iE+EOnIkJKk&rib4MluLZ` z3eCM8I0+YFEeRw=*~lm}n;s#yR1~2ScCU)S>sY|JWU0bu39+dErHvP?F#^Vgd2z}u zry(k)<9SF?0_3S>--oY7n)?8eZl72HDS<_>tQ{_vdoNNVo9{X%r4{a#qo17$kn|S+ zRa}BR9lM%%{QWCSy>v3Pcw}KPo$Q=XNo?;`#5B_4$Y<{}my)Bi_J5fA&b9YIo2#J- ztM-P?a4doxTvP6ltx64hQ%MV+4;9|J8FV$VM6DhpTW*~ENL=VI60F2|!<^4hdkx^C zA)VZZAxp(dsg3t-WbUlAPr^@L%J60)5~0mLh{qMXH&-kcJgpGP&|!)LZ^98^IK(N;cjOmI@+TN|6q^t|Jzx;c5<~(-4 z`+l|Gs^G+A`Bh*x0-fA^TbBByoBqiN(a%r7K{%tgsN64 zyYaoA{fOOb64c07)0I}lR^!6gGE*poTBNpe2EW|iIb2t>_WNI!dg-P=j^#<_m5EwO zrh;nFU2Qy=#k-&4&PHs=apR|QY~hi*odVHOm83l~-!0Qr*8(COW&IM&Dp9X*`$nix z+oJOXRWzbioXyG{E05B8MlLz}veK1qi9S=}#NQ6}zFmEd=U^{ifC0EFFK&jhwhg>p zm$R@PFw%PaDznkv#r&9GdfmtkvaFM5=1PC+AmKpduA!6PUWl~dteOUJ9K!z?XsQe! zx~$1((d#u9P;JgOLCQ~6_Ibp#L6MF-hNI<0%|ZbyP;dBkqPV(RPaQO|C+4ukqvV=ZGw1Pv+#pG?WbUX48LL5cmquK_D~V(Q~88$3ekDTvN3tCE5ip7~1L9>|Du zf%!TBLBn4CX zdM41lUo%Bg&JH7Z9;6(8S}>J5z6Y;YOfyrVVz{O3Qcbs}Ho>dseWU>Xc=(^6bGlMQ zstJ>KK%_aVn^9Vncp!xo6%->v9X-SFnS6Zx8+);Ucw|`Uh)O)6Ta7h^!Pf#pC?{+F zEQ3*{jnXxL?Gv%E#V3^ePG`Jt3SP}MeKy!uG#2IE@q}k^m0o1c>iyPMr$jmaey{7; ze;QvEM>wPFrpEVLo1>GepCTgn({0mAV^)nNDdi|2E-9jp5D)_CHF6&i+d(HVzp3zxCsrCAxN{Nt*T7%7c4AUQTOSCvdTw%^tiQE+ z4nU)tPuH)9b>4)TC9U9Egc0Y)T(=Rfe}DwPQZ^PopPdQ#;mU()_yS~^AEd79%czn3 z2_Pe~XP(Noxrs+VeOS%%u=Fhs_;Vu{w*XX!bM_Gr5`Vw6e8R_!63oe{I^yqH)VwP*J{eN_}c7ch8R(yd30CTte7qVlo zFR>UzrRJCa`mgDnwG=^QB}!NAV$_BZm9(X@u(AtkF)vFEDpD{Jc;+V476IngH~%Kp z+@b2~T&J#xK$OHj)4%t}hBkX}*8*hVBIJq(B2I8g{iw`;R$WmxSp1A((SEw=g zU~S$l4R1dmAp#sCUrZ%Rt>lI#W&Q;y`LCMEA=HeEfL*AkuESU{so(VvWlwJp&(%}r zK)c4@{n*{=8xb^nC-AlVlPrbx$K>*!UHQFll4W&VVl zVF=Mk$0yAlhWI`fG$+5Qxkw#EL{3uTnK$N!lxzw@H(DGd`D573-dT|dYv_*_0S@5^ zwHmXsMT1xE+>`4?Pd zFIn`O)m<$Ky9$sEn}oF}r+8|pyZ6gnIw6BGC9=+WnDQHeD(y}lM}g4tbOyB06jXHl z7Q=@n?1C&--jVO|&$J-s_~MF72$+j18(2~y#o=fmBON1}i~L1(0VxXTv^@(PwhoUT z9BImhx` zh^N42^?5y-CnyV&zcC!4!%qpUTSto2n!$LeHt8jntdmV zKzzOFH`m(gGLpgz9(g*by))B%@Td0j<}h>U=F|6~o5FS%+XiGc;p^0Ux;lCo5ToqSgN@ba#Bo~d+L|{)mud-# zz*C9FK8@gwe|yLVLdpUVT)n7tdG03$x4=nrz&C_(t_Csw1bY`KK{_ZTTYF1Hi!ldS zz<&7x;|8lcUpatdipjPbAs~{XxL7Y~K-sF*5n4$<#TgH1@UCn?<;W1%*8y(Fn__P6 zV&(3zxR_TOuIif&CX|&Wg^D2!PG0y?&8cuLC6Dw9-zxJcdoW0XU~1=FatwfwuRi~O zt{C`6pqbx~w?A@v39?NJinM)5#L64ZOes-u{K(z@1RPFongQ8oAG_W6=$`>x@yL})voDJIl#y8Jl$8!MQhwX zQbi+hF!Jlm@6CCR${8H8*cJJR#P6P88fG;{#?#3lChvy5#rjXk!&r!ERz!=SjpZ{N zv9gxhqrRq!fDIhv_8Dt%#RcopnB*M&m=gsFs^Nl$4=qPF?%g7I>(AIdiSo#E<6pU_ z8h64|yGl*id(kW2e>U4~N$U;nJO>;w=i~Y$-(l3L?k$N&@wzQ1d0jr^$qzy|tV|Dg zE|`V^o?Zys%h;jkF&{YgY7Ke&L6ZSFi>^VE}K zASHgLaNL>EK+ddumFN|%WNNN%&R1KSI4_QA`S15QSZORV;Pqc`E3lKZ5x&D3nSi#v z9)MF|m0^45_|tr-Y)pTSW0XpV_h2;xZ{L_rmXW!UXbr<2m`CLrtHONtx^-VFu2r~p zKA8j5fU5tjT9VeQ@2~mX&hq&Ct}ZW0ZC?4#8aKiiv2KZJFRyH5uDDB&Npos!4<|(_ zlJVbDieABxkkC?}5PG=5{?GxS8diU`;(@tuGt80fcvISQrpaRQ+vx(BPzh(+z))%m z$0sX;G<<3#`}az3JL9!h0ak^mzwl9v9<6Gse(ZuY*L5@%DM5odPvyT$?5yDhyd)@? zr;@1{#(^t!qsenV_8>c@C(A-j44jb73YII*$=x#Jf~2PCt7lDAPZN40>#`oKE2}cL zW$l3k5Q+Jq^FMMlOMpfY>|@dIv^8?d1(Q}<_}#L&Ya76e{*0iZTfB^*C(6fdvLBen z_RC8oZC~yX)ApTRB4%HbjiY@v8NQsF*}ozLRhX&BOjikSOQqm6a6bjF zbFfg_){aqG(PfJ>v!w=-pdi`90~Cs!27Y?1;p?wriNtA$RBRBlu^Hi8l&9_-IW+Y~ zX%;j9)S^1YC*~lJ7NCQ!ETxo#D3sf92X-eLthVQ}z#uQ?u@Ywyh5^aCC)RlTLY}MA z{;nk&sU)Z%Qi=mnjFV~y>zrKj1^;A#L^s=gmODa%nm1IFAq)d^+i?9^^T*e4GfGN% z=`NracTYa+#F2Y(y?q(P5tN&+y)oF_0zR&NeD}=9s4k`Q)VKbzx;hY7r)TuPL#*cC z#S(n1Ci#D7-Rp~@!x*g?Dh9)V;Dse^58<{{9KzzLl`rplnZieJ8}pm_kawggY7H}L z*IIdqVC2@BoUF*-(ZS^tGu$WhltmrR0wBf+R&l5hnZT>XvJg|6CfYh9vWFR2?oRzY zXoj5dh_FBlzq}%r&V$yPL-}_3r-)qdoO$P0uR4X0Y}pr1evkTA{?PG>>oAHcbIG3~lzTHKQO?73p#GGMB{^J7>#*OGfc3@MEXf7PiTWm0 z`}W)v#ML`EG)ndaL}pRLMlsY=-20S(2@+sYhkY%!nZs@_7ygIu@o=&aLCwgs;rZOq z2GdQi&;qvr64bz#8vOl{)1#NAz&s-6C^3g8t~cu|E;?qJ8fhIwI-EDPB?r6?h4pF2 zy?Y-QC|#G1efJqF(djY?m^-f)8mJBDR|LKmOQD77bBwHMY>i53EjfPo=9*VYu0|s3 zrR7;ihu}AKjJSfiw@*kt$yk~$}nXjtz5ab*EKCXq$hqc2s zsOzjw%6IXiWP@4ySOoIePI*#Y?~4tTTn~+UCa~=-X8E29ZkIAt%j0b*^bg<$QsUiUM*93C|q~Xi{F(u6lkva zXX2TF%){YoXZ8h33F?p7H}zA}SA6#=w>VRxt&F^DtuWXJmTpvXV~oM!ytjDLaD_-Y zxDGH6z2}>aVeFYN8|YY*PN=(es_psy4I^*O(#ejdJ|%GXe$caCkj7J|i}Y||lY&>a zFxzirdwS<7G#E<)$8q0z*v(J4|J)!eO0NZKg!gm{=JinWuZ>YISpGu>>W_8aL`T3s zs^U2m8Iq(&EU9b*F+b~iX#b8vP{MI`i@E~|q!Un(nM1>1oKG$ke;5HUU8lPuy7IWC zubdHSKu~H5SOY83jXu|qlll6FXU}Y~DYAyFdZzJp-E~JzA zclReL1u|i5M14p8o!LR0>arD0Ro=O`yZG2Ro&y8THr0U6h3oq~1W)!%6EAgO0;k@r z5BO7ScC>+HQByji5J%Ozh=^9>!5%q;!@C9#;@LI;>8DkFJG#@owGH{?BGZ6m)9X{K zJ=d4vfBZ?h&DWU2QrhZS?1H9$)7kWzD!eSJ!O^A>7wtKh$&%qo{4SGp*#D+K9qa7j^6F_yx z^1YN7PVwl}XUA@$->!T*X$b?8i=((o{>fC7N^EUJcu^6}WT?!!BOBZkGy(0NcNcxRphsW&T*kGJf!s@EQNM{VH+q z-LUc*>B(Qx|LHme7PlwmucHibDSFUkL>TXY)e+dy%V3?&wXSPJQ1+{Vt-K}s@Vm!U zhzTw^2eoi*f3Bk@9IyU)su*mub06zI0h#Z^b3y8&kOKhNnRqE9k%Ifl=d*VwebyU0 zdyP>6)r`rF5c&Zl>~C)fY>5YBl!819-YJX`RrGdbGoU^rM@=7ncN>%+9v?|B;l^_) z&$GEGm0;{<`IiiKPWz$6 z<%kQ1UG(+ClZj{*XG&Q~P_s0mmB0ZYruF@TIAKBh42byFYb=dK!`xpuRF%=wwmcnD0P4@`q`nmV{<3u_jwO05j!z1j|M28crFcwWyc54 z#^bN##?q~&>g9m`YKPB!LUH2*+sO@(>G;Y0{;l|cABjkLkCGK9>&=S;x}on2PtoS= zBR~5{L8(wvt$d5yYJD`Kr;1d;v#qG!V~rs|r2Fs>C@}hsFZyN$Ex+i8!d0ahEdvZiqJk82m@FQ2*6 zV~WL?cblOr(}rgN3@)PL(Q(<|@{4AEK9~T_E+{ecX`oo|ynpIPhZAzw)D8WJLIfWr z4`v092wU9_Xet04rwYB$#dhdS40D;y6T!z)wo0Ca2o#o|c`U-XB8f`WVhlK5Ri$~> zWu_o1F1p%EFA4*J>xE!oKXc=Ic^5vTsDS*JT=G>KKUJu=RHhQUZ_e2hCr|XKYr3HV z!ky%2gnQ=qseYOyi*d%FCp-`2dMnGaxTS^(=7jc2<7ZB5L6O=kF zDz<^{nWr;&g3gS$)%y1EX~ozNrYciC0p!b?z(>iX&E*xYe2Yo}8rh=Ee^3IXsAC{G z10Q;ELDf?UO?r8kW`@Wy85yfbIx(2YuC&W}7 zjB9e8>3m0yov}VBbM?V{x;`6+`=Bpnk zC;rx|2-(l#Un+K?C~bWF(a5;A5qorHN1oTX8ejx5Fnii~4!CJg_{nnBBJ#zd7gklx zjnmz<&&gEH1Kvc-2K0nRTo(5iw{TlR$eD%S%I&Bh+Enncfsd^Q*k6##HHU;aDX{yp zzx>rNsYxelEiflU5LqzqnIqYxDf!6EujdzvZ+x;S9r4!Xl*^ESaIm4HJ>ZLskz#s$ zzFH;mI)7K{b8CDBE~oDraUY_(92vXKeRonv#Lc~3eyux%k5qpQhGqgu zI_WBg9za(v^|twnnX-7>26F5w5aQ@Fq{{>pvCJ&067*O6EwJn7K)m#s#}8|V*#(SV zH({}ruowGk!@Z1xM*s)ShAw&e8W-7AU#9abbTOZlC8kk?%hjW`KOTh?og*aa(8vJ@6?$@OVH+1 zGeOLZM*L><%v1|0st*xB3Pz9FGmb26nA%cARIE+I8I*^>EQ%pqEw7Q%`~Kk1Cud`p zOCdb+oulKjVbbypT=b|9(7_gd@MFB==I%BizyRs}M!^`%AO{W;=xb?nkhsZEg=}fn zuZ6{Z)yenY{{fLkwmueZ{)&}z-?x-8$#;qB)H4)exfofZ6;KzMz*kmMoz_BdMu#Z`C73i$C(KjvDl`Duf zuQ(O151!2iDg+wJNRjjaz)OV-tk!oQThw{?Xv|ZJ1bzGX8+I**5D}TLkIz%%KV-l z0YP0=n#G14X*Tp6c!);QUNzSmR>8=|UU~L`P_fX#6`Qw&igtdu?jN?zvoXm`^{Oo? z?=0_A&$j^ZkR)xPWhMW$t3#M}2*A6R;9)73i<55>zB>s3|A9(8unMGa;AQ$vQsGEG8H0_1dMHWoWL<5+fy*+7(nLAh| zwy_!LOpF1p|N7OZ9}rmybfYN-OQ4!5jU-G+=fk~Sf!4z#+Hl&UFGp9xpJo0Ko>?%(HFItwJoqYV6^ zL7Qf1X6*3z7dFs3x)4=5?8?+>=335AFK3E5<@1iW#d+{9YuO{RPBh?F;YqAgu+;9l z6Wx5v0Sr`8l&5Q>uu8?3Rr;=6{_`VWxh{?Lhme)3GeF}dj;qmbAyD$kM!~~jzGwol z^23mVp<%b4GpaJA6>5GEBiLr#w8M&h7crT<%Pfn#=KSm4(%<(-FUYCw0Ekfh^8Y^~ zR0n~!e+f+X3h`>6(OCbC!eKN3Od)8U zqoT`f;|NXceE}b(yUJAcU9Um`RwTX)%^DTv0M)<@GKGXK%T{JC^&1Z)00=}_a;$2m zU7_ku~ocEBwM!Lv!aAcIR0d+#4s zT$#m?^t2K#v!_5t=61oaqXF>?IL&uXQ~g>OLkaMK>*7Ggz!&4CRw26y@^iECyx1qM zJ@e|%ZCUWDYG=$@d)28HkhN4QbY;t*)A(u9QnMCRVMtNbG>H)T_l*G|Fx%++oxj3> zwMk6@UwA{e99%7BXpT_P0lHYx*sD$G-ZIMmD>B%G+YTk({s1JHC;S*)S&s!NnC71k z#{U|l)akBDZ}>VrNWSRza>m(jVb_5!&FiY+<>_lHcL6&!PIHR&G|4Ipbqo?80}tPB z?$$xKY^#z5orH*zb1a!4671a_l|hFh^hx@cGD%c=OEi&q)(HWOeR0`6l+L z1!>$381PL`+y#5$$ABNNB~QLZ_7x?PP7dc9W&+KhOqt~yw2{{+dq<2!4jednFfO^k zWs3j|dGKsv6^o2e{C#D{>^b$CSsMa=ITfxf#c+A<|I?DI9B^-Giv3R%(YLUjrvgIf zMVMzIAo{qZKKlOG(sy;%|8g2$d7q3D?%pNcgAsfvq^v9DN8Ulb)=SIwDj+xq(qy(( zr?+JX_(^M;%bF<_I&7?X3K16kkD-}?1oT=EW$JlWmk9mrSrU2vgx_f&;#wo%iEdW# zOG;G8%lsJ<0HKA1GCz7;vg8A3>JhQkdvQY9YGG5r$57ckT#%~gDnz_0!XN;ruHCyX zHhD$+8N=GtVfiA!{*DUu?dQ4>@ynrUkz86F@C7DIf!+PT8 zdF`CRoybOlfmQSei>uZ{&$j3T$AYNq{>I}m;Y)sGhWmE7rlTX(sh)aH4~v@A>j&R= zTvRBayZhp1QULy%AtoF;WPp_@b?3&=XHzfq zlBQeRQLf|3HvTHp<(E%YJLBSx@F2AvB1p1rXM1HAL(k{y6Dt~l-x||_`M2E_4_)$w zlL^;$Eh=c##AD$n*U>xoFKCrVOM>RzlUFva)8iz*q{WJnO))#cB&->We+&Rd| zG{9Au$+|LH4WmEKttoTIza!$ug_aaOh6nx2)zUgyMcDDZ>?H${$f3E(JD)17UGK z=8qz^abe5){6YpD!f9rkhU9|m52*=94%JJ zYK~29b}POeu!N`#y`x+eFV6Row0nR+=#Xd>?r_uD1Qjqd1@dNn12}(VrN;LtV!7(D zd#1Q+`&O%}7%mk)Jayf{=h~)-ZGL^|Rkg_j z+w6Ar3W_M<0U@fTwbJ5w9tHd8a_1s4d9ZRg%fpCzQq=B*{RDc$5rh02IJQIz6$-E|WI4@P z8T=L}c!jo#aa9!ocXhFT$tjTRs$iqN)A_Z=aEZ^N$X6&9d*1;VU`pwds128|pASRa zsTI+3XAJ-Z0Rz(Mx@(_GMC(};zV2YjM?Era>dD;&aFtBjXtz7JVrq*zq3RguV<^#m z%>h9J0pvkXb3|2QiKxB0BG&q{z*`{SSKs+DkMvt<0{9DzTB*K(Dem`!VUt@keD`%p zR46B|f~xL_GyudtaJX??wyjg)Bc(*?iCE=SEZRU?_>}5?jl(B_-*8Ke)MyL{B4mx7 zK=YwDD`DRcAkOQPvmk?&>udDnmhYQ3>lQb@jM*YeyQ4nPu$9Rxnf7@M6cQuV`^rvm zL!EFUe-dpWMPj+zLY=dOIe*c(#hMssvqq4kq!{JZS{foT(%&&PYlOxiBeMRECKp8) z^A=*VjM&mv8}Lto9byj@118

TK&3a`&~8ew&vv6daznlj)>*j$QAk6WIl*s8F+s z42pm5kVhI&@9S=dq78D#gFkfGMVopqH+UX?6U#n8uo&;N|G7rS1B3DUvq0U%{mD91AZ_EEZy5|`{$`|Dg=L~mktd|+Ms$HQ}N+iia|6s)T=iQs8gZM z!X6_GK|ryT>cq*aqS4Y<&Jsw8s$%M%f*8%%I}jQ|K!#nUH-DIm)lE`|cx+E{aGHANP-;7V?u9HuNtuRtRdwt}@GtC!^$gd4f73|qSDoW9vK z&|G8_b#B0Nv09ITmsi#|g^A5NK#00HB!UB%{i+g}tL39g=S2Z$6YX?1`v<%9Sib~j zQ5PpcA`*m+%)5)gB*qQ#q`2XkGj%qwYeb}X1t&t7h?u44(=7uP#>eh)OBCPV7=$x9x$rA0}|!J0NGWi zx`G!ZG-#!O%_D$+OM+V5mGeYr?txO)Ru`7;M8+J@CR|3m6xEt}Eg7rd*2Y~XC?;E2 z|Cc=nr`0<4VQ{lyEYN*pIdJ`7>hayudOT3REHvCqHSN98ilqXnHTa3<_9IUCZW6pG z8RmJA^G_CFK=y8nIvMj)z zidCRnZyStCj3k<}8km!;{v1>@yMXTgT5d%KtzP4APF5OVcz4m2c3$v4w=us+!ZR|5 z+f<{aDLw=4UvctD?$6t1mD&bS350%^jHUn*qa}(2RSuTCFNj=S8>=EnqG)(WCQ+d& zLnF3dz)n6j7#$CDe4|OnO#aEc^`2nH+#eRV@S>{U)|2j=0v_veMEZ6Q=Z4k`2J7$` zsP|mItn7-5%xjHrO~2Hp_wGOZ2qts6CvZ^es01?l17v~8=l>n(1p2bm^Y94qK+zve zBzwyX8D*erE?6IUm-TrEqnQ)x-Sk6509ceI8`;1b`GKmu zd`ZUjBz-A4KHry;1YyXX2=F^H?ILX3Ju!YH7{x#=uxLWn$9b2va4*IUq4atZRK-nq z%TRyg#YoGKPe5%mqQeDGYIy(N6J-HIf-N6i$9-xBLZd|%KOlbJq%+4vK@8Xhv6_Wp#=*Le~w#kscYxX7(t2_kzcap!f=R@DnmhHO2} ztjRl)DuRYp8#PT#I`TQ8>?vP9P-6lz5JmE{Z$0Mh_^fYsRBL}?6-lDAzn za7DvXKHiku=yE0~U9)7AvYXcu&FI8g%2smEPn!U*s&hUWRegDJ?QW3NGrB(ck1(@R z2llKOM-%^DwUSL|CjkW2kuvTa9p! zlS>uQm{%`g>sj0Rz}!=Zvz0ma+6@iTnf;ZZ<^vA-Yrql>fT#e)kN-s9svPo-vm#)@ zM9T7Hm$ax$rOMeI_mAP)+EZ!XuUvn=^P){y4t+4@`j<2a@jqPxvPO@4f+Mc)p{IX& zN5?RTDVeq@eGEco&D zy23Cfe&lWT=O9iE8C~jq^#VO34CVLfeHSh5KfVUkYV#B-^MC9*k3!&D;DCt23@F<% z@_XLrL~mNsPqeHuWybL`nDW-Sk&v?_(jL^#RyX)D!Rx6pgz3~+P z#C$)tmMPXSKvw4dN^2qHg(*@SV9wKP;y|(syoN=y^aH_eQrV;^bv|SQZUm@ja(uHQ zoAOu_>$1wx{(R{0L!({(XJ;gsShr1S{(B*}A;bsY0fXi?h9DGDnQ&B}KK(a_OyE&% z!WgX*d0!0WJH}|eB2tu^a57*7jf+b4Ea9vFk`l1vL_>D!Ge0diDut)`UOcyC{+*EG zCUEv`b;9{rkdVmOUfgDj@}nO+{#mK@8WE7YbePxf?@v3OM}=g%^A=S;DUl~y8c!di zV^X1%G%qzDMPYyUD5%w@96nX821v=b35V+XcPe=MItG>kEq&S1*j2yVHwmP>gpi8x zXU>w8>N57e{^kzi^r*691vYMtJ?*Q%euY>5$3|}{b|4Q}Z#O&lIyr#XP3}J)!|7G| z0sPB){)v#tBaK5?1!B^N>&bhF%7Fn=8eBjk&VOm}J}!${jmKc3P{RhV=GE4+G@n6M zA3=bdbno9(K2$a5TAUTfsU?|0AjxU>z1*9(Xp!tcZ zNDR=#*+6N}X*6&I@-d&tmB96(Li{g$;K@shwBUX~B%s`C707RvtDlv`UWc*{xEO1*TKhl)I2-680b+b9h)<;xpCK> zrQuF2xBILDWkp>YgXgfR=wX}`!qIxSY&RS0T8ms)zM?V$nr_3k>x&EDpYRBYOPwM~!AjR9urETJ8qh z3zodOra(iLjI`)hdsYKSlc##%ZwdefDLdiF-rnTQ)*S(1P4zM1fMsaL+zaG1bgQbQ zU1ZZeOc_vrt+$kMu5LjXDm)HGqVsN4v`FK`D!&q*80@2zI8sj@umzkS&b4SC?m;?zR zq`i90&Fi*i4Ma7>CRHR@P^1QiYJxjq`n`((c%LDVr2!G9P)L|d&Q6Xm;rMPPXj z*!Fej3<1PDoRMj0<$2nqr-^~yq7f?KjWF)G0;&1P;AZiQ4sOI9yKjRz;JP40O zjwhBZ+sf2F3erxAG~|Kb9Ks&ma_b0}?6-mAS-bSASJ$it#R}W5QG=|_I3O1>54`E8 zpEqv1j2#ofGMo;8=ub}Zf8uB|>xN$ZWw7wxaTewG60&|e$_k{&_-aDp&)?qV37@#QfrwXb&2YoJ#@X6JAIbxKg3~SukmY-y**(N{X>F9z!|_2+uV4@sB>DTIf~0#m6WIz<3w{} z1S^&@k-g3%4#%Z@=Rxlhx6=*iw(s15Z3An=pDRL#gIv$$ST7>7#PButZTR9&XC!(8aJSz>iS{iKr|4{XpQBnPW)Hgmu4BZ_f z-QCTI0!m9rNOy;Tgv8KY(%m2kN|$t(Fo1M7NIP`?&-eOYzx!VIS&OGUn03x4_IvNw zhM@H@0-LtGe4wb!K4C#BKGnr-m5xbdVZ2%Z@_~e9U|!_JZyw1B?A6;MxaTAH)qNev zA_nun;(`C|P5O=FQdjsO%4))?d==!h*?Kmx;~1;SOCOwl2b85;rr)ozeTW=)`0cG1 zlb5we1@kZI0eLY~kT$1TW~R&NpZHL3*8ZEjCMpzU{VcIIL|F7$=-`#PzgC`FtFWTZ zLB7)n4v6*>l6cLl8CtH5RE%zdw1v;rEG^9|A+HRmLG~$VEj<8_Q3c~Q;JBWIH987+ zZe7v|$rY3)D^ke?>+-~{5A`P~`%DbS-~!UgynIpy`8Y{1e`!(ZpYCGl%OD1)BD8Aq zy^z$UG>paz13~u?Jk)B7J;`6TN>~`WNsF6~R76pid*k&*A^(k5st{u^s~qWC2-$dL z@7A=4$&N|S6%V7QxxNEK<9KQxLtQq)S38tj;|yrQI}Tq zjUzNIOeo{4`}4H)$#+GlwbcV-$~-QMV8{f94Ff|^QHi!7`*IOxlE!z42HU(%?&o`E zqU&-KaDhhNd>SzeO+&P#`P-ax6)m#DUKpgdWeK~sCF{d{9|p>XK9CfwPldQQ!5OQu zA@zS|o+}3Dx#dpndCf7p-(ORNJgBRzJbOgXXX0weky?32y1b7a5A(Cd27JoJ+Sa8i zR<>fUr_rb6mM(ySAkIxx-8(x7%tZ{5cAm3@#y|Rze$Q4Epd8BfI8aeFkeR@zR_Hj( z(%n#9FZwRKaS(}`qR08+Kiu|z@}79ChwroS*uy_<(X*R&C8sZDSL8o<)j$!!E@o1L z#GIgJ;Vo1L30VdQnV{eplO^u2uoES9lKw*FAGxbK#NX5eO=Nt1xutfaf+PjWjViwt zc-huq8>osp3Fh;ON1poL>W{^8cC?*C8zQ6Fe!;@g!wNlx^Z8q|HOe&!y0yBELNC(K z8d*UlQ&%Y(8csd5!+J4MCH?;uN@Wm+RKE?b?13^PsJ;_rpZ9eP?-N`HpT!7 z&LRsroS8dt&X&Jh3qwxvR7?On581>aXn+^!3#J@C4It-ukc=}vTO3}(r~g*R4;!<< z!6Kr7*CITRihnRm#3F1=Kq;+yqKSBt%h`NWecMmIyv}xD%s*b5X!E@Nz!%`JKpsB~Aw1Dw4u$ z{&mRoSg%mIY*DRZ(zb<5c%BZdJzc4pn)cZOcHFQ37o2b?INSJ3CRX5>;Ar*V(A1K& zy8>mz$E8xRd>3y*i-;m}>?ChypdVm$N?c(?_S!~#mgmd?7KAKKePG=w=K|so>wUbL zyQvy~d?XEL7#?dq$#C=+Vg4)Hd+Tj8$i5Z98}MZ1Xt}Jm>xJcg0|Dc7M)&q)r_J?h z-oOKol~?>sZW5y5jQr|F4$3jZHj0eF;mVPHFq)Dc4XEQ(#iq6X$VtTLvScKRApc8# za&i@MHCwWMP_^tU66}%eI4Ano5=Ev{woRr~<@9Ow)>FNu-FMCBPzR^YNM_^~ylyc2 ze2R+4sXnVSU<$kNoU}@gIAp}g0Ol+mc1w+1H%EC-glz$L(s=+)0}Z5Xj3^zZDu?Jd z^L_r|N`n~)Uin(E)NW1YMFXlH552E(U=QY&>dZ!||9(2d7^zAiTfo8~$_jpQ`myhk zL@K?ge<}@l!7i9rrj_4FixQo_mSy4=TFJstkQ;FJq>saVU<>K-ux(IM%Ni;!6?6uQ z!mv*WyI<{k66rjO@_brBE1!(;!V6QphEIJf+4f}1G{`9yj8wYbwV_l~h3;u{vVp69 zahMQSCLCl=DOOrQMZmvJ2MOVjAL(ysZBsPwcJ?&LPQ86%s?El?wWWY<@W@k$Q}S4Z zG-HfKpB(P5%iAVY8U+M8dG35UHa12&C(O*mnDRBb5^pG-ryDT(F<-dMoo>yys%;J1 zY|Q(o6NMv?;{#}(+Ib+PaWdtP3AoEwgXvd@`OA@)gDut}r#|D9N54*!ZgLp{Vjh=f zWlA1v|KGZ+L*hBdEZj}&Co98KH>*J@Q0m~%tc8b}i#kUITbSt>E7?#TGeya9&v3OX z5ZO9lYL+CYp~nl;=Ob6+q$}%&MI_~Ss|bkI7@X4brlI+R^8(yuV3O$AGlz#kuiM4V zxfUBlR3t?}0PIq&=fzT_XUCDR?|BU}M(@VvlnalxVE&6rgxIj~02>$1zN8lbaW1U5 zv=DSpT1aNkGRckj0e&F{kV;Ip9hiGXagz->q3M7r4Eqg zG}XAtnv++dgG|e888+cI1t7YhTN5`V{Q>v-1QkK}U`r)Ef4;T=jO0@`QIt5{8VT20 znl$%b=_?7Q?}OOr8JM5@b9BZ|`wpmg5Y;)IDqDA0zJN2N;d8)=-_6yF)85I~_qmOJ z+zuVczaG4suNKMFRwDpoVlyBk{)oc=OhEm@H{6vb79C>biHdx-O%5-t>v?@IyuuOa zlE-ELB3bz%BrM92;e^MB`RWey_G_|dr1=peUp|Aq&Td~-M0$8vNuyln{5#_K8J2vM zdStC6Y&)QK1zb>v!Q;X2bl_3`6aUf!GaMK7NuRYiv(uLU6ABhi!C>sBQ^7mh^qi!z zZI=fhA;7bChJkI9*i?raSF{KT3{W9j4wC-)2X7!n&QR+E6j;G}EvJk9Bk$NwrSAT| zO`aE6Y&1C7iI&a9C<`*#9<9yemY$A%S#r1$GM@L|LZIcrH_cCPIO4;Ly2bk5dE6xF zrJlWs?b3FI8Ut@@*LBa;IEAM-M&W&&2p1n7qE6)}X%T*K(eE(AWYGj&$Xd62_hxU$LA4XyssevQKt`R-46t!^pJj~+?b_NjnyZrV`cjoFK=A(8Ll&7VFh8C&} zEG9ot^h$kmfPT^B{mxdtY|0SN)v2P?K*pCJy)$GX`xdDA>Sk-#;U|6nkDF!fn@X3L zB4-9>;wa}ZESL8@5$&gNj^}2~2=jS*%8OEPbzsmZIRZwdyiP0npx`KSMH14#qcn^W z0>X~d+N`v;vS7{vg!h1jhqFF>!68h6#(gtJqvj_P)70aV;A}6jfnG}f@kZMU+5M!^ zGx}#F7;n@6*{sdtICGe)|K5;H&UEvQF>=<4pLzK%cTg_`8P85#g%*b(_P3?-Eb{}D zC#VPr8n*iBFDd|Y?RWqxr%0v7zMJ{momMSlM)1 ze5y8qF6DNFF&nb=Q(+zqJWe*0&hX2s+&N94Owj?O>ha&VlAF_U{ zc&v0Ou1_#IJPDJmRJuAt{XdcqP72K_GvIuI=WMr4_&KD&W>sWI;EELNg$s|k34e{} zW7b*Mlcs+Dzgd1T<2jxIcFI7+Z)s}ZVZ8Mt?O3n+%cvP>k{_|~2b1Ln^OrMZ1Dqe9&j0qs|%pE^H;$SPoR zzx)NY`9|2CIQ8jLXUt+7nA&k=z<@>{MHWnJvs#WU>P0R_)t!gFE4*@#7z2+RkmVk`ut-wS4E0f zo81QnU{cE;X`gV?^Ncm82@x-`d($xk&0W-23hBfM&_GcN{Wjfig(@xLn2b3R0g? z^Ub`hE0-3z6(N>7^gU)o*j|eDOrKB6;YB?;&r>$Ddd~2C&1T&jzYIR+*@B@+doge~ z-%fbs-tizXwtK__IRetj?JdC2$EPlGU)AE(^hxS`d3iCNB>0^2tlhBHt@cdEcz4Lb z$tDnVyZLhif4ncN^Dr;`aVjKS=)n2v-Dw(dRrp`hs4Su};Lfi);NdeTwM;Uk_Sl9v zMgpMdvw7k+B1z_u^T8ZU`AZJsABm;}Kx4d_F44dOC@hd~ zsS5olCY1VsGz7?&Fx$cT{?Vz1H6+yNx!Z78#GPM;M|oyFiub#62#3){>hOdn(wz&h zMc&zFc__|3Ks~cnXBsI~al|sOwbidMU^Z$H;f^msao6WxefQZ?(?piPtd3f& zx@4)(^QsmDm1(O>oe8-WXE0R=F%|Pdrjdg=Ut3xIn&c5VA$6PGm_c-?EB{a0XR$!b z0(dg^{!QHA&skaKFb z?u?m9PybrZzv+^wIU(wd zWpHDtH1_1_XtcZ?U42Zf0)af9JffZ7mYTD8+vJ23lIn{#r=Fm_Fi84FKs_raXj>xp zbpIl1Km#i^+}k3v9&11M%Z$s6;Dxkh&9hMI7(P%8kn+gK^s4vLxK#)aS)_i}Sd**wum zU)=?Uh)`y=o;_J=L~ZAz2UJo|M7YfVA@hL_R(){dBtK0NI8F=X1EDnQ`0kd^!G z(o`Q#!z=H!XzqKHxM{JAk%fv=@oG0BCs9{xNmZ|hWtJ!Kcyx2tu>85r78&n7-gA|Y z!=CXo;}3h0^}w`8?Ac1pwR0^GL$^-A6LFTNih%)qYu}Gie-TFOU@YH^<=}sX!cbduOChZ*V55OnI-O+G{z>qRcl1w zsCxMzR3GrztK`&lZr&M#aC-JWTJSneT9k^e_2o>U5NwElc*9oN<@Vb23OpqVAOlkA#~gV_seVhzJEmUS{AS& zWi=y5t5>kN?ces7A2GBtH;0dM;H84zDfrZ2ie#_uC~|m_O`JmTpNv1G3o1{aYh-21 zzEq{%(#)$smvr&@UGmD;*J&S>uif91=N(ACVU=Xnw#j45B?69<ob-nG@$wpt&A(zoUV`piOQ_1C=d8tR?65P4;~L_zVSovY%;g_F z81V@{7FvG-LuDuH`xMJ2KI{pwW4`vL#iqWz><{Tif_Rf?nxdzzy_!Z;o7>v*=L;!k zY7wq>54Hq#v}tTQaq9c=&TsnnGnJy3Bpr{+;Ku{CbriEH->Hx`N7n~)8OZI- z+B>}4cD#++!DpnGUr&3oo+smX5v*|L3%@W5IOnXz|IK#HveC+T66=gfA4^EgTb$qto-yIc9Z&`o}zKipW5^Of&xl*3P zsn6e}F)OzfMma zx#<|+e)y)vIf0Rq)*KJ8UBOzbjH(&`7qv#*MWe2dr?z{*V#{5Wy1%X7Qf*?Hrd5JF@tl?&BEZa@?9VI)~O0eW+ z=vx!Ok8Vth*_-9g1N)g+(Kt)|oAYW9u$er5=)vY*dC&pDh!ASIvBTo+9vg{YrY7nO znMt19xQ=?>VTZ^O=~a$S7QBc@0&#bq>_j`K^UC|7$Js#CbW_%~iB9qe-lq^y2Pc=J z!i0ao^^6F5fFVNcJr`Er6lT=Lm*JrXu535;p73FDpEiK7QQqwEQP~{{Mzmo782%IS zl7Wx`Q!ykXIrc|Vr@0(;sOmmL0YA;K2eX8V8PTCxk47vB9Wh&#A=PF1yrBsAMU(w9 z`iK2LXxbQd1%n-GZ=Fr#CZwbs@mbuqq}oP%PNJ~QO0wMj4Uxqe^LwvJ7%(3c+h&dS z3KO(76;aU6$BSYaG%x|-i709plYqq!XaLPNIS=|P3Abiu`N4tcs1paEbWzv#tdIpQ zAhXWR9DoIJk6cEo<>NG+_C^K%MgHLZ!Q>dYa^=aj*<1n)!eR&>_4G%ISLwu5DC1T+ zW_yk8-_!Sdb?F&tui?vg#H#-xnrYh`#B5%-dy)(?(}VT6-GCOb!^(dMqux%8mKY|*$qRJXt z&<*mG1!;ksdo)VDPVfjZt!;Y9Ul-x@L$!Y1)H#2wamwS~9e+HU1#eMFd5rzCt;0mS z^%+_!g1RpS#a*7uE(9IT8z3w5bE*PNtJ2|^-V-5-noU9wZ0RWlU?>d>{vL4fG2FX! z+cStCT(;D`-4FkgMMVhTff<&R)TsWoV26LHC=Kd9sVoPY_cBN>X>-1QnA)|d4m1h@ zA8$Sjv*a5}Gz$8!yAjB;5SOYm=9>eJc8~;298Ueciu%r|s3Rp{?Z=8FNK2LKrj&xAb5#nXRhv{~ciRBkcZXLDDk z%Pt%H*es0c@ZEmb35!e4QrK_te14m9$(4yVu9zx}?=*LU;%B0`cLJ`*miA;T+@@6G z@(!#+q^C>=&b4^m8&hk^HMp_W_(0Q661Y7(s9o$a<5a<->#hd|l(#AW0}hocT5(Z# z=p{98lgyG9lUW39EtU6qraTno(CfgC1R0%jjv??_8?QLv^Q9D5%lMgbTpx)kD?3{% zK+)>XZCm(L8Tz{H-j}TV)v4cBIGABlGo-q*Ai-$Qt#gK>$L1TQ)F!j<8f|d1?Wc-g zS&g3bEcskos?vjIBlNSNGawNYgH`Z+@CDD1hhM5LP;yn3X!`gMTIw-EWeN`9Li6p z0SEAZ7LfnbAQ^bTaVWe#{(KueUoRkFs3!d{6 zTkX}lA2)$Ot93res$&XuY89fO0H9(DBuPS#LQ5J4K9*d)jEd$H#BFk#r;0Dq@uE{eAb{Kw6hFtognU1{vszi^X&Z&fLMf$w6{tNZbFO*cI_ zHs%U8lx_Ditwv;e+O=2MHRE;Gr;S3pXSM|@qCq>5CO@wPeW}+_5n1JsF7-QRbv!eCZqK$7upspX+0mRb^dJ8ii{Fr{c@kHP=X>#qek0BckZy()Ph9kAOfT>AH5k z${oA8IcZ#wsLSvY*g}AlO5V}v#3^lp?B$rlVD~Pepxrs0y)5avg;YG@fPlE(B4G7Y*??;@lj z_39ayJnn|(v=nd#(E?44mQ4vI)PPJe+KotQ3}QIE(~TkrWS(s&a+y*=aT>5Gxp+-_rZE@ggQm<=0$I5?3qTLV^( zL!DDfEG@u(TJ%3T{+99deBRpsWu3xRk68SK-_5m)L#a`%@8${K`u!yt{KSV=>hnMW zTJ?Heq8?NJbnO6cP;W+GgF)r~{I0@DPrXge-@kKv^|7|!>lOL)mylk-HAb3b081?P z@XJl@(SwJ@X5yK7AJ9(|qKaNUfdOu##_hGx`|3qy zyQ#)b`c-tYW3gtHHxThhVEnJPg83p=$!Nzp_E(K*#)0wkO(vIDSv8-WJm=qtR8MxP zS3@IV``FTRxh+V)c)o~W6E7pbB)6|{Dcv;PwP*9{g`m{a z_cqxQ?iQ(uNm&w3g<@M0JIu1hOx^E<^tdO&av^;AZb3`wjl%g1zqAg@BQb0!i-DSh z;y_^RVbR5rRKs184L?Y)cUJTWH}89nc7*E<7(dCB;^g(2D6BU`6WzOfD(F{XLC$Kz zvwfYp@cAXT;IH$B184N`?7jhu8lOK7?Wp%I+#d|j?LZ6oD)QDfzN`ii&J>|+nE{jRZ?K3JABZg2U=19UOkf2_6A&20dl9{YY|_h=af?q0b}!ZJe@78oa{~Cn=1~LK}&s*3dFR z4-13qsxeFv4@j0iYqR>4jgesq#)KNt-Njb5Rl zzOrWAx?i58Idb?BlCCcR+=tfa22bS%ogV#;uC2}I7M(+hX;$@OX8oukgg}SGU97Ya$^`iKguc})93VBzX3m`9& zq2r2-pyO_?UopAD4EDLTae2I3Ty3k_s_6#w0c7yB#y;tOb#z`#UxV|YHVaLcqB@fP zR`v`BFF7`8z{V#zjD18;t^3$Xa5B=``M-vFe_CaBbg7};NZV=9_bgb4$!|fL_U$~7 zOS8}Q8Z!C;lOhWn`*<3_9O~X%a&841*UXulK9&vU66FY{lVMJUA_c4NKhO+Z*JniS z`hi*dVFE-B0LsDgBUVswEGTXCJ3qZP(ixh~4`F4d_V0)0Y*onf)|tLP<%$u9aH zTbKx&NFU^4$1iy6NUp@eSU)~~T1uuq{uJ)mk@l@{-G*s%sVRgv0+MZ4(dqp+FExCf z_O)X+*pNZgUH_N>FZcTWtU@{ve|ZeE6t^N9r1j{ZApr)H%2>w${97q+Ivdbi(+6hw zwn5WFetzsx)`K`UivvtOlf(X1?TJL<1jghz||mIjwh8L(=alO;Hg0gOBs6xlb-_ z)yhJ?MPs;87m;GzO==LPve!{nLGkJ|g@*{fx~uJ;GqFE#iMO$XFz%flea3*COT;-U zh<>R@L+iUuupfW z26bi99kDVt`gUteyO_v0@fPqVap^SsxMK>5~aL=XwnZ`L|F=Srd z;3?B{Gh4@hPjhiC9rC@`mD^k8=F#h|RKOm`tnA>QhJ*|%2bHYoql@CS)w4{hnsLKe zlH>Ovm{X=jCVTS`?8KNE2XxxDLBGuH)HkyAF_7Wo_dVHHrM3G>VP}1w;}F62GR$KeaZtyp_w(w#ZV6PErk>-j@))9=4aooT} zfhGa`*hqkBLwYFZB8cwY1{6%bb2d|oC!^z3@i0|T?;*qJS7)_TFD;JlR56!YWj-A| z>@#m?+h?c)2MWj{dtpt7J&u{n$tJ|)g$#PD`9kpi>X;pu=)}Ab5LqpF+>Zyvukk-o zAJ)$VUK$T5a^|=1zBuUE5x3p!x|@*UQTWpI0}YhzIvkz0ES%wDK9836LET0K@PS7f zDmv~VIqIiCfaz%};9(WWA0000O668jTYKe_Ow`?z(Kp70b&)zyNFRm>!C?3+01VoS z!>%Y^Ge(=$5^_@%1B6>X!j)qFgG3=`RW`S85KUL4>-Di=)sH~#I}e8YGf4_k%K_IV z1(JJec^(9y5RAqV823*%tXl*b?Wb68vw&?Si zu1o>c1=uz-Z^S+TE)*LwN9vi3ko5W}OmtLaxqjGq9>+@-&80@+>R@lcPNnEh6*X*? z^0S0Mv!9(g-1{XspnSp-b;L`bzh3-Nt zrBoH-KG|fyy)Kub^?BTUt1JMEi`dC);u+bvGLvxiq9YHKPpL0wGj*@0s^NEYDidnI zZDep!`f}e-D%ztp5?}=UpNx@$xVerlH{KHPnemydeZF2Rirlr-`zFtThiUMh7ETEi zRi6^m#gxx=p&Bg0K2!{I4(s~H`Imyf9Rd+MzI-m(k<^aLFDcRZ8hpP#Rjc*eumT*5 z*86hieAk^U5a_2)Vk9TY*3)tRe>yJ~LnYJ>N!_ZWP zFra<{+VMp1yU;HFNYmV}!uf|xqu%@W-_4Qv93^qHFzOZ1&)LaJ((Z_^<0Yg0 z!d^<-wIa|pie$zHmip%Mg4?XXhs9c)oj|sns|KB}6^I~ae5}`Ljp5=0gjbeIlaYQ1 z+C@+ojJXoblph`WhKlItYK9&C1#?BUs}oAm7g`KPtjr%f5b_ zqpVf#E~~@%psx1v!>m>H3%BdmIX{V~z5pFjyu{P)A4kZRYDknyzMiZai=h1EAcUD2 z(p^7UUTm21U-}xuzcFs(gA~@r_~WnllM~2R!&gop}8dma-o% ze9>H7XDIx}-P6Eal8f(i_e-`?$Z^;o9NORBqx|h_eIH6-5Xx{z4(C2L_8^2qHDj{#Es!b2?(G7;QL zNj(E7<}LS+LB%Oy2qYKMo>($E--Utz7y+dw&-2OZ|MzTDm?WU!a?D$twV{0X$-qBD zJIn2^S}>B>fwEX!lNlJWKs_}ywDj5ydtg_5Lgnt7oFZfMv9;)Q%2v=alnWF{JrN<$ zq}=D{)IJh9)1#h$l_n2!XBI%ut1O-E`l%O9a$IwEPe1CK7u82gFFGE;*JcDhYR0|a9n3tfL+J6x*18n&UpEqDAHu8ctkpA! zgR8ykc7fWA<1z3n;fiaXGbln8dh03r>RX3Vse1z+vz7T#(Y+`4t;~R_q>w4ToyM`y!kGM3Z9&PQkpSpZnp*zc<1?b)u&={6(hEM zGn<$x2kRk*gx#?0tdJi3BJEs+w;cn3$A66*^Ha>8+)h5I3kL?92fHX{-yd5w zB%cVjw|R-mTA&)qIT!BpQx948C3jcsM1)dUL*c#G(M0x3?jWhA2uI6u^(Rg zPix&?c2bFORkD*P0C1TVOwBCEby2sIyeyaPf~pEv8UM@a zqI!00{ZKksO}us~fe-v`WQ$|la9HHVoLEBluJMN+jTA4+I$K)LEZ8c3(E^1`^UNnr zFJ>Dg+A8nm4wO^gvb;7*mW#0z22f!!CnEWd>|KuI1Vf2l_&imlJrbpaiu z&!X5%lt$J-%MQm|EJjeIK}rg zKg@7O`H;PG?*o{_|JP+FrB;7?qE@!kv%1h`P;>LO?UO%VoWiV|rSiS1t8^aPG<}Jp zI65w;0076~5XTuZ+If-E1L6`Ct zFxP_~#OAh*a{KDFqU*^Q8WAWmKoc`od^G*6XnUO=a+YlbWb4b*(R;h6DTY$LOM zvtca+`H8dM=v8@Frq*i6rYb)fUr)%NTM?r#G$)fkyBE+-Ao6Yp=XTW)#ohPpswIIn zoNz*hpR{Hb2@v}VI*7a9L!ZNEu@q&1oftE^JUa!;CCrF7B)wL`*xyWt5Ngr~II(pf zJA5p`F5|^KGN)S)4Lf=5!kGwzz}RF$lEgE>Odnep)705Aa4a+{eLHd7Ll4eEO`RNg z^U-=PnDYr#82CjT%!b0QOC&IMn$`k2;#MQoe%#8q94umKZr0gDU#@l{&r!#H7a(QR z9T9Kec8pfqqv?MVFvg&J^PVAp0F0i-LOEGC0s?)Oxj;QKybgT;WfT+PtCm;{n{sJ! z-#Ytp<}co66?dBQH`$Ox{lRhPo0KCej-F8heX214sRR5!=J>XX8Z@BKtv-OY6p1wQ z>vqb2g_NwW5(Up!7uUICqs*0*k$&aC7#)b05GT4oN(I<30L$Wk*L|Mbu+u&fya43z z*$xU(4ijIa_B+<6v)LFQ#nVu`ujd~bM8D0yq{ss*;ms)t2`Pbxl0=q)0Xjw8j`G z*FT5^M~S>0<}xnLU2+A~zwfE^5HmX+K^`uxO|nJ$ns>opEl~R0?tQRryiWwIp-QqY zm3mZ9;4_g&tca#3&WHX$EWg_pYp4-5w2~%MvF~FLZaRi!T%{PfGB_iJ@XB?u z?WY1(TJo7BeCkrDOG4z4FAZxv2^s^l)ug|oL8!3GEA;|Cfr_zAK)zY`7{jJ7c^60n zac2(`4I)$FUng2DO3J*_(8jRIjKB|FFr%CHz{Df|4$4+wK%y++0doN#!wX{BjiyXG zdx<3VLFap9>I-XV=efe`FPcFO{>C(S^UqKQPW_*>51SC`!;8t2*lSY~()=G@QZNUa zUHXt@`7u#)zV5D^oR3{c2HnzX{W57CJe~{F#r&>ftX`*=_H~oQaalygt(^1~0zb_7 zGR#oJ*-wOkK|R3NjDdhYiTkpaaX3T*+ERaeJaZc}DIKG~l;P_h(LR5DmC5T^Vcukh zJiVTOX&!sD2^js>Wmz`2F@rF!JWOv z24Ryq3&)GEba}jd2lr;#-;Qmqza8VN6BxdEE34WUdB6`g^p`)7AX8CQf8SRdP;V#h zCzD*=k7A>SwD_yg#PmT`?+F0^$1dlkVAyO#Yr80-1}`jXb<(%dR_@ioK8bVmtK*I`(^vX_)?E;i2?})EMfDW(I=(`?!S4D*8jbc9=uP`XZ+NWqi_e~? z>X);>{G;);gu}>X%@)M6SsG0br>MTNsV!fK<*zD}k4DYvE=`$fDQNB&7EWse`4sm5 z9&wEA%Kp|BE)@jkat?hC17>;9XZs;)eHq#Vat9oL1Et+K-LNDUrRhWBvNJQSps3UPe z(uw8cJNWc!Z4?FKQW3?B$%TneB-oMqjh+(atqQ)J)u(M{AvLJTtUOA%u(u}Hvxze$ z1>Iv`c4qgmDKfB$ocfS1Ewi^>{sVX*ia0Fn&Yky0ZJ!3wT-K&UOn>Ttd7a@Le5)Ou6gNaRsAh}@#7TmioZMaIpQ1a z1CcEGE$??@ZFBOnO8x@E=P`<)J$$su_`?E6#tdeG!}G%K10LI4W$OnsrL`z%j)0~Nykd<2!~=EtbcR>dWaTYl&WVM}zW-Tvjz?$`gQ(+8zb*U&zr zFZGd-xh*uvM`Mzk>ksbDCgCSV4@z5Y+>P?lQ7#9pcP2B0g@ zf?l69hj1I$*U;b)dvZOn>TCx85W6m(TLDh3fmVD)x8>AFkDw$;xgy0T2a2sc%s4u{4kv2GA<% zYy5c@Ky~I9B3VW5a*LQuE#V9*I9qq=w}Yg=!uXZwJNY4^=tREALRzFa)$iW%R+uCC zym3nxvn_Xa*$F|}j+W%~nYnkl$qOI_(KW27dEw1bF!Bd_Rv!n)M+=e>G>18o{vIj3t3h_*@4tk z3%9emqJ|7aNYV{oUFPz_-(nwpE@Fqhur?ePNx`;>2!Xu&jT25leevRK(6z1$Go?Tw zp@h{>>@&_Zz;6-e%P%ok8S7~&SP60Qv4R=>j4we1-D;L?W!2xCKjSLuW+VJg^E_%Q z_64V}KGqN^xy&v|CuXXXTkJBUDDW5kBIEV#ms@PwZ_dIBD#~ed>V$xl%?5Nd>c<2-pg>UUv(|qRqR5@V2kj z1r4^L86p;=gWcXiC*)Cq&_J?UA{R4<`GXU@Mn}mTUYz#2o(_n=lTjnJ=Oc8 zH6+DDvMk80iUXe{z>aTHGVutXf<$5~nfWW_kJP3@f#35}*48~>Cmu*6Y@CLrN`ikY zo1^CVe?OyO4L!AaRW{R{n6>{Wty|=uaM2_Ox`SgH+|wPGZhJ5~&Xa>(JX9MSSi1jv zlAvm9Pii1oozb~tH@<4lU(+d*k77hrQIqRpsrTi{{E@#6j%<)KGtbD)_~H}Xm`jc9 z?biFK@T}%z-G9-yb)gIV=`yF;cN;Q#3w_C#X==&*W&w3ul%1f@?Zk(!Jv>~mJok7Hg@6wRZqB>dXzY~OJ+ zCCoFm^(l!#Am5t=MzI!xUyv-Z;n?#=RJqwP8qB5N`9*QMWYAEk8RweE8~Ki7{Hjzg zJh0hv4=iXHc~qEImF=ecW!*`#VVy9-OJ9oiC9sL^f8k6tMMyJ1i&LHDat>+k1`L|k`8$lb4gsvX?S zCw$mu^HYSDjnMJ`UFgtIxv?)4DmXBnSG%kRmx7MuWvYu3m#^(b3xBeQ`%rT}x+m&%igx%!u zku!*WB-t_(hp(881h^`Zu*tWF@OKPNNu%%7Ju1`J)Vsbv=ZfDhzKh{D%o^jdFs{D$ zV{%XpNM%8(@WP>yt7=<^RFeEUEB|;3f#Q5g=cBK{K7N%n zIf6@nKM5^}ie+XqWhuxxG9cFVy7fc?K~!HUf_nb;9k~hyRle`;5)0tOI-Jh#ATZH~)>3zOlag_KNc>YW zgv=~RB$Z1DPeSw{toQpF5IXv)oO0q5yTPT~jR4!R}<&C`S4em4_nJijj&gx`{`i)$GDX=A- zlVje?>(`T8K_%YTtYU0<)LyvAO0$vM$VH2IZyhxfYfIO_QMux@s%>4rA!BSB(_Z4f zuRgfOS(*=lM5CkQnm$UG7roDxMpi(KWx~Q<)-gb2lph|tCd+Q4qm0J?pOXQ`?8OGM z==G44msLyNkOCt_=%qd2mo~635s9!z%c8_1AwgFG`{mPN`{XRSpY zJbikwLil~tamaiW1LfOA)EOg#=Dh~!BbcaY{hv&=4u4YJ*P~MTO;=Z4`-TdQY@p+Y z`oD!rq!9K=i4Y~}kYc9%CZL8HL-+4ggdIEZuUl~7-)KW%i5^z)1ayJ!{zOWR8Sfqm zepZU0U;xG(XZ2O6qduEK%8RJy>KoaGsPv=2Pgz7*C}wr}~p z?DU^k!Ax4&2xLZ)zU-@a&Qx>}IeZ8xk@Z%esiVqeFO>O*O1dQLk{(z7bK8ri@tDLp z3JatVxc>Gg@IrS9-tv_t|4}S__G>Yg${Wkr5ux&T`oPg77d`$aRF51Uxkp8c*(>zx zFDe7KaFR9+Q;4Z@?<8aXFpQZi%bT#tae+X%K(SPy^F^bp-IFZ!XFn}0o!?K=3gvSK z&A7%*d)<;p*DJ1bkKR;2Lm%eU@{JnlRy}9#N_2l&*loMTeXzO>6(w8Z6A(Bid$D;s zoP>zX`Q5Z2&!|ZGANE)*i3D@xpc+0Y@3M`t-%QT-9XpaKkwKJ@YFVbkm0g&N2HQ#< zBkRnC3nHjZmY_x5RJxUZr9ykYPzNwtgU(Lh9zsamXG8Eokm-VMvq~!)ihhSRCzkv= z)VtINk4fm{DXI5z`77X*ny3TBo1*@ERI6!z9c%7KLz2kaP+M=XwAO?4f_}`^> z{$|$s>83*za52EivUc!*N+$}M2qb0ke_Pz~{FCpQ>}0^>^j5p_qj13Z#P@MO29OCK zAJ5*;^v8GBMi35S;TJ7bO->6hB$fsp^{NTmyVyywyWjuH0NUmB*bP;PIFV--mdkbC z`MORnxe9PYpji05_lD+x1vrypq_Cn+%R&c99}BQTKIURMGEcv%Vlf3-lqj7I1ri6Y~_;k>R{@4IVPR@iRj0d>s;dgz-As{iG zZ9}4(!Sy|PDw}R}fw&764a1B=7-YQBe%z$K%z5;S({OHeVd}8qmTS0n1##^@RgS*!1qq)8_ReQD4ocG$-^B!js1xnR=Iisshyn@1+zi&u&(d7yJB+BJ^%zh3f2Y zHwcrYP{@WZ92rEhEd+h7OZ_&}&s=P{9L8z=o@13nDLZ5k=S=8>ld?g56NH+h;s#AU zHB={MD1xEn`vU!kX0z)8kEDd9ZpuU=95D-9Ex+r5Hh4f5pwGEk`0)R~HQD|+K$8w- z_z~{*;~Y{Sn#cHtD1t(IBxA@eHh7Qsm1`mZ0D|*kbWiS@SMYwjVvU(Z$JKqoQmCzc zE3ay`p7kA+z*!}`Yz^8ET}pgE{}s!YS{G;Q&33qc0b!jE9u=IuxX}cnSB5Z85k>Hu z*eziB#F8mJDsBuQCPZ6VauD*OGswGD+4pWfn!H(SVb|X#HW5v}42=2HjJCg#&(#1TH7gT$bxoo zF5z~K2w6W|-j76JitW{Ll93j!T9jq4A;x}c1`6BbIrxo(%9VcAspVH}n^mov$CVoM zB<2xdVe7dyPsvn~^F{yvQS}uJQHRgEyMS~fT>{b|-L-&#(%mX0-5}B|4bmV;H%Kbo z9ScY;-Hmj2bAO(D{^y>%-+eGqfF8nW296IKNqsA*<%c6whuxoIXtJ!9D7U2aMPBwGU?Gv zeh9Nb+}~^m1`B79Sl$(qy7boSR(qYznhCXE#9RTBWSYmp<)8xH`zc|*;@MMr~#DCl)-0tp@37A2=w6^Z(2Vy2%e<^O8fMVru zAG!HE=#b=y5mUzx&3AOeNZ6Hz^UkmH4pm1OBR1B9hLk=c5~>jel0K(R%<{g$4TjAj znnQ3@y@+aDQq+c753-ACjLFgBd9r=1Q|JVxghgy)%FZVRD^qV98ED<-MR&1*0QNUU zeMqh-*R4f6y#K2cY9BtZQ0;vBc6;u)2MZ~uh z!uR(5NY_Ipp1MA6ytUq)!lxblc_S0KPw%ZZ8q=ct?A$VNZ za}=2+wSf#BmzMTTnU!~yN`JC#jqO>9QApI1lM-qpDS_hgWPWA$qS4AAi0>|2)`o3t zi65Clpi)W;JYroRqD$t-_Yi1IuxFfH+pFluPX-o$X5A9&Tx8O#Ku8#Vxo{R`%B3mh!ZI)I->*J-VIsBH_ z4`m1(7EtbO=+$>ecBM?iJ?qUgay~UHk?#k+0{lW=Fp6e|iK`?*x3(#0I34rqncvK7 zH+m=*W~whkwb#hrkRs~Wl$hWW)VuIZ9AHUcJl;K{=r*C@6In!9bn#!PPs}$3U=`jN z#vgHL%A?!1tfGsqNx7^NWGIU53+uiErVZ|(1XD~iay$y=ILu8!#weB}#G28sQO#u+ zGlo{71aPPJ@oqFr=wV*=)|AKjrzQp)qF0vDNQh0=!3J-wznO# zn~K(AL93j2op_i&+*_uadngAi#1p4`R|F{3;mwT0Aa3QJt3c=+g{c5hg-P!Urbzi<~}}} z*MZ6TY6XQdkWCOGS~Iu;*(NU)SKc}-uNoF8tEp$gXD2Hk%cl&kJ59(T{=iF1INfhF37Cj;{F!M2wzOm<9%hC)0c5Noy)zUvPI$kj zkG2!5=~g03&sJkqnV1I_69-c&#Ofu$);L}*3E=unb_M-VF8n?m`67k#xkvI?638kT z;H?5X;A1u5Ap-_U3T|2#A|ZWz>>&j*i8L?2XTb0z3DJ6?;vZZc7sP+k&XB~uTvlWkjHjGbO;E!R}gd?za0(AEC3Gs-ExJ4yiOOVw4A zoWh`}C%^(64dDC?*#rU7RfVM`!5t*cN^vL$S<>59pUsUjpk*u$BvlMSQrbIcqZ|AW zsSvasA+p}7zbg^Tge%*4I-rk@Cmzqsgf`Ztp6+IU7fvvSV{-Od-EIFmd2YP0Sgqc2 zevSbuEyFOfHR26u^>?Ti3ZlNv9hOT%qRyY2{kNH`KPZb{mIxCV=L9Oi#dBSdU9DHs z0L*a^n&jOXLKJ9$ecRXb^cvVVz&39dgW51*ymPg0t11g4P_g+L%y-R9RPMJz-HL?e zaRR^}Zmp4pKaud*zC7nDN~H(eNlDuY*N-`jeYPbg%sBdg3&&)_r)MUR(ZJ^w{Nr;a z@GvT(aDi|?Nkk-MT2}_ybhOgk|BzSr1tR0V9-uVS`ep0&^(+!wnrZtas&lzq+j+EvjywHXn0a+#nPBtDgj2)~$3b zRx*(*0&K2IN{J6=Ni_hXWfb?dzi}rmj*bVxgCBM11aceQxzm5P-ykKXi6dS(Bc_t& zcS61bmR%u|M*XxI(nbEMRy2Yy&o-N5$2pD~(v9EK4;>=aR0t=kjmBfL3j^R!?~3o8 z0*NKY4s>~UbdX9TVfXXICCW+hd+yJ&A8cOQCXrl;ZZ-lO=5KYkLjWR|u=^Hk1c|0# z$D4MXHp!j~-n@w?rPDuDB)$qWRaPUDRP?nBGQ12dzF$$b4WKc`w8dX%`wc`8S zT=Si59Pg*V>zG4cUVKCeV5iU$jbRq)|8?)0StM&Xx_~cr!_YG5Exn{Ow1NgoPEGC* z`t6BwG-v%_Ddpl9I_~KR<@0*T4=<0uHh9YbP zs`7l1DTHLAO5@1(i=#)k^3VEmd88BhYhqN_1!)A&e7^r89RmTw7~qk9*r`ZDUWX4C zPM079gf66Zt_jz#R#CC7WBb!+tHhC=$WuutyLvR;40m#nYD&5*(;2fpzDNpl-0*(U zdGRuw$lLS_$_I(v8!@!2Y5*Msm~C%_*YKsv2&B9vQJvax*Trdio+*#o4N;vUaM$0^ z^c+fs*_eBk|HBeBl&(%W)=2AL5*vOe6C$-9Ari6viRM6vsUr`%m(Wyzl7+y&45l?sR-5pl0iWYR2&-@F7jTiYo*~w$uzcpM3qG z;3KGoIQN*th|ox7INtc{N-HI30+?NoELGhrTuC9pfdFe~`fc+-OoCpF-@5p9`FVfHARMs zDe1Y}?Cz5-Q+hvO*_65=b`t^SQNryfLcWzmCuo*Z;gfK@MAO^>KEo|)jbFx?0__3G1UI_kb*zXw083$hB0)~#r;tvS|kUx24t3tBF`#MGZ%g|@|1CMC! z*%yuhujq+~^A!+iXG#o}#za~q-ip%Zg4`SxJ31ss=FbR25aIXgHsQjhAWkwk*hOu- z*h37E%6OVQ2?Cgre`91$N$ZJUCKS8AcDfO4Cxqxp(zzy0S`(&NX7Mce)7f;M|2y;- z&qQ0q)DU@^e572f+GpI#;=IbG&ZIXi!b|_~=>$o#j!~iQH%N|@&@6l@L)29X@Qv2? z;$M(2{X=t6QPIv{y6pmXy7buHOp*pD_~x-&C^&+cb^TK~%IL z*XxF(O_^$&sWd<2`=!@~UJ8BU_QR|z;Z_&x*J7>f_!lyArsYC=s9pQHEr&~Tg*%&dXBOAtH6UUsv&wSx96_$JuKfA_@UeA2`6at|s3o1CF2a1p{t*+Y zO%4)$Hju;+Awg?H`|iO?J~S;E`YR3w(uxtF8EQZ8mAFz{Y=0PbKa743^m4dUy{ey# zjUMWOwpH+;5x#!OGB`fBMxnKkA_^93e0jg5X;I}?76cVLcMkJecx+b*;N6KL{sp5> zJ%(oLJLL+z5Zo6Q)LRSSd%7z%*dD(U66DUFtL>4ZN9qeRosj6$fxWW{iGI-(qOmS0 zE^(B%_Qe>a#)TB>mp;TY>%1vrmRujHw`{1}hjj5uB$`!ZF^JOw!YC?hn9i^vQdr$x z*DIU+Mc1+b>4GyL@YlcyKi3VHye8?(u~&9AeF_}{94x|Gnn39hyxCsl8EF*hIz$8k zE>y@+LIPbG9jAdr$`AFZPtVi@mn5R65YDXxsqtJA9w?16G|+@C?HmY zZFG4EF`}oo-aakPO|a#DQYaS*X2o`~+{wmpmg!a+HMwUb7ZLH|gG=(w-aSx%c3wNm zEtdl;eMtsSG;cuqc{~*3a4#NHlttGu$$5vk64%FXzks>MIdJrjU99 zIQOS_@md_sN73r06njSbGhJ^BTlQ~8-ePp-q=!VIVkg9J4MC}dXO!7{JtVFy+-1w& zewlDsI~j7E!cDQ_0v{ruK3L_bYVhc3^_sT2DNVZ{j@Li4xwYM6#P017d;hiZO?uqu z`Sg3mdyO=CMnkvN()kL7+Tn7$yY=eFt2a;fpbi?v+?9hUKl=@u^?>&wG76T-HCccq zQCD^Ef-WEQkdEJhjZGh;dO1=l$`>zTZud^^z7|`yA{#bV)1b(Nt^MLHp`^Zm#}u_d z_5g*&%&Sc0!sB-+nxSFHt~VoO))l(J`xJZ&1;-8hv-wV2?nt4I4E8gsf}5{(U71;g z_5PJ$g1l517U&nqkrjFkc5lZu5rM8C14#?^ga2^7kKT686F(=kKU{?z_>z;Q!ruxg zvz5uvmkDI+;SXZ+ZBJApC98Kq?6;ij_H9wIS3Zko9Yn5+>(JazHC)`Np;@B-#o9T! z;{vmn>Td0GBcYHUw%*(l+DbaMpnBe8{a8Clj4=0E96x?wXY<-V22v;N+t6{Yfo5zQ z*}W{4C7w3dPS?DGoRF9{@=zCvwquVJYOWO9FRC7?q`)ja|8u}BJiXsdz9H}j>GQNP zL}Rb1bTRA4&DlWx5H1Dtnq3Yz;(XO)wN-UVCsvuGBFbz3gTM6f(^HyZSZ^uox|Eg~ zM5nR|AsbLPCfw%Q`#i+>qGjE*QcDzWFQ4Z;hgnd!6Nh3SbpMfP27mQ^h}mdc6^1j$ zc%N&R^-vW>fBQbio16m6IDY0Ab$Yf7m#|5-92ewyCm0pIkx7S?3q~h6-nhrnAv_^B zn@3%6rIP;ejsECRHrWN@2=8J{F%2NnSwM}Bg;MFTBh`??0cXw|=puAvRA?Lzu?cu& zv{uO7qcm_SF^nIdUKjp;_Ap$f>g|)b_<4Xh!B;)9++4@wBQD~pYN3#KKZB6Ew*+?4{j2;1zUOtW&0UJ%hSW0ni@y&ri~w!;OI5jBX=H3 ze@`9hr?ACz8p)iJZaRiUxsTU8&UF;uc8tuf>D-H)X#D)!hCAEkZIpoN{>1}7qJF+l zSS+yp~pX$v(* z^ss1^;~O!DwC@F>6aJ%|l>&yYSq0$0||_;(0lAo}S{ z5B8zu^XZKNfwnk=?$o#VY(^14wkvIX%~?YvefV8mk}tALiqU8iLG^!Z^$>(lfdymf z?bBxyNa$li=86dRXy@=_6-2tj__waE2f}EL=Q_k}0MUa&s5sjm(kxW(SUs*9Tc^0f++Bmo8b$ zXP`H&*8-ET`SH>Pct_3Im2X-Ng1w>YSz_=nj+dLNYVKLdAI=?3y^>i`U^TRx4_1IVisN3ys2)T!un_o~c?#q#AV155sPEM4#Eh^thNw~u?9h7ICX z2PS1ywoxQ#-LS799*t033XcMV?XLE+Y@=$J&ueZ&W+%mat1?XV8JQAc8*(^a8W2C} zh8y2s+de&pz;vm{c|i6Kql&6CF518z5>XMRfkEK0O{E}*!M5g(zJt@l5VUqji0Opq zBv-unNgRA;GRJHE3QNP{v`+LW09B}pm zH4=O-2rhKpH_}*|;iB_f*9pI(1c~Hox z^Koety&S?Uee)~3Ov*HMOg1?Gy;H3JABGoV0=7ZJVT-R19?;DQ6P#p=EZOvd^YJ1y z+P0g;1fe8gRWPUNqWrk`7xfd_v~AO7QC73nqbI0iLPa8RNhLwDPtl??&9OIMYve0~ z%S`sS;*Z?^#Y4-aqjL39GCU>2F}92m1$>p2Mh1(5(NR1y+-@N~iipu9YiP{!X5^X` zxql*;fFmM0Z|i`M^Xr?vwS1F+?nvjgY!V z{j`U3isN?~>f(7cy?|iS&422>Qx?731mqEpX?#N9Os!u`s>SxZpLxcJv0ow@R!wI3 z$e8}#%FyOQcZ6-*UnJAhTy&>S@QQ&9K0PD^#@Za%zv$E#%=m@mim^gNn^`iFNw@!z zsWuA{aM|ExCE*2k;{D!kabhO@LeWVh7Ldo`+Cw!-U5p0IJsXrOL?96+fa zeY-`=-gC(rw#`V#auJt`TZnYATGaMD_gecyWrS&<6DLGSyrVDeA?`Xr*>$1`9| zQ_XdgSLD|uaV($5E9b_541;|_*AN}ByRbN$KJuiNJVc-Zmdl6`keBGqaL#W-JB;6l z2n%5}P2%Vpw=4bP7I|riE^-nQ^d`Bl1BVL^7W9?TzsP^4z)qg^$5f zkT0_-=1#|Sp^Jf(u`Y0r)9S>2MKD*eK>&xU80X8?<_cD{aNHQFB07h#O)vGq6<0~XB08UH6-;~fj zN%*^vQAOMJFn3s93ECz>wJ}pThpI2oELSkgi5Pe;zkM`8^Z&cgAzb+Ljf5!{$mn^=?`TgWScO#6KcP25#bc z%vA>q=mMnQ`2l+!uZmb2HZrfbG{aBPPk?Mk%OTTG#a>%@#^XV^lRSM3?U!3EQsrBb z;r84j8Js69s2OTj^WV`*kHKeB&qcq7$Cb{NhY7~2`x3@B)DCimnpdESw|TlXiqnDj z*Q<*u4(7)KX;eNpY3?)95`o)o7e6^^J_E%Ukv6hp=9|V)kg^Z#EAxK+L*?n=e~&&a zm~jJNS=@Fy6xqadej1~mY9bD}MP%kFZ#cOj^8)S#Nl<0mWwWMQJPH?BXY2KHwB0DRvJz&X5L36%mp_!@81C9k7ly(k_X;xz zpsnzfss=BFnq74X2JbC@1JKDMgMfFnHCa(ud05}a83(|(^;ZTIdxm4(pEXejM{fxd zx*x9k#j{PZ4`nsxM?*jNcR_5J3vc!WUo57joij2o^(Pj$;k;m$=(umK=u&57<;dZ@ zR7qNgr4fc0ggwNeOh{v@sh$^=5Fbs;weXJu{Pt|9(Yd)r0E;C9vkBbc1zKbZYG8f1 z<_A3^bodcTEn=+-fFEYV7yJJ`n#39l#}AmG)ghv1Qq%#XpBqLW)bn0SA=Z$ww-8ugqqQ3MyJr92S=v!rZ{9pg|};Q00?nq~B=(R+JV{Se|(OG|;5NDq~J`QN<1 z2%9rWrjR=G4meOsq&odnA`S>7g;OP{_A)5SbbFpv-a9$Da6}Rmzb9m!VGz4~@O>y< zdInoa+*zEq(M=%Qio1sTMe~g{_$#%S+ok+kX!GFl>@tE)x$tLyT_%mCG#9pk5fhx( zg_l`nhWrwiAH>q#Pz+hk-Y49ykLT@PPByBl_re(}{3R31f8N3aR@#a^MvtyDeSq2#;PqkRn$|Ppm;5muKLI-f{zAVjyv1 z6)>$&i^+tait>q7;wR90Z)*iBd^~rv{jnT$BpOOcslzVnLV*3vqe5lnMRsZ2Yx-t63le%S<~p6`}#<@0aqWUShuoLRGzZOM*?5o|(cak_VH1 zu^J!z!H2(L$R>ZcU<3=Ek+EJZ(LLXv^<8Q(3AeSR`02Enkj|sj1?L6{fE4_JI=sJp^wOj`H zaHQ7xzVNERwaD=5g=Yb@Ma*fdu7w>YBovzvS`Ybn`oHcIgpB)>H5Jl_ zA$+o$rj_I%&R3Z$vq-Lo!(p7H>P`q6l|9zP0eRbLL?NToDHqJb^t?+3-#pC)+^9`p zEbK*&2eL7Y*&4+hv40F2cNGc7lRv)Bo89Ygk3@~04T_bwcbO=$sZz$bCIR?k3yIJq zVCEWq>Y!pB-{!3P?0#C9PKjwrm`dLZ3E|H=K;?12yx`Df;)DuS5tc*j-wU(DE&u)-`(Yx` z#F|Y%+{Sr9>GVsUkeTylsA>Je@L_`>qHtz4DIzfWbrNf==k_HBXT3QsGpkQ#gXNpYz9?$ZEx< zANBxG2YID-N6mY+?hvkoc=);mdOPn5Gg+K(UvAgFF&tdJs6O3QpNf@VTV?hA#_#xW zPuO~ckI+nH2-OOu>hj-p9jYgVdoP;ac7^d(;&j3lLMt=Tw}EKQ?5SS^EHgJ*QY%c$Dvgh-`!lp$tgsz4aK=@hDl#)B%BDqvDF=C6sfI7#AuN;bdN4Av(> zUARHwrSCQ)Bq$|a;brjm_M|@pDFpt|&^B3iX6yD{eB4}i|D<@~av&?Q6uqdqiB^_8 ziLaF&JKlwM%9b$|UQPByL<+9~nK+y3)UbdWn4%7|{Ay66?Gc4jw~JQi>7Oazk-d>I zZ&cOWsQ(T%FA5A93VNtMHPhuS9>`DdKu9g23yGhX0f`!TTwcYj=Pb(ziaJofW*xK7 za={UOySQ~hj#cN41u1${$#9xdJ`(@O@Vh2e*z)YT@OvC{$D=ioM~O)Lf-=24X-|oe z)glpGiX^`L$YP7NR|Ao|?{EcDIUvFNbN|YQw0}(|wt_P1-4vhQRBJkzJp+)sdWI)M zuZG1e6z<4{-OM`7cY>6_&IznAc*=&O z&%=b=-s@uSyNLr=HV+bt$n#w$*%DDq0^xT@Rm+g*-~x2cm`Y&aWr+iNs7oar)A9Q}nk6fXqN`&Tc@os#1i|w{l`ctX z9+`;6&F-sI4tC&k#yxgnU$wId9gF6gOA^vWap^#>g;C0EOmp2~)b-dCo5x;?z%T29 zG@0~do&(tkz&_mc18Ou;S9hxSN|I@6&grCRbksx%kp~R9tg#V6R}r^VSds$3=fbK9)uhuyNYl2EAQJ6%!&Y zWW&N*$VaLfD;EBV(MdDD&Lq(HS(o#mq;5?MrO-I5(iG3)`@?-5=FZ8nKkEH+LrG9r zi#4}4uQ5|eQzil637w#f(t}-)mKWErc<(y$-b%R-Q;GR=LM55gL-obcu5;?tf7vZ^0i<;HQPf?_%E}}C0>bnG9L?XME&b=}l35jBkC^;Lx z)!j?^!RBmAhut7e&}BW8-?YS)p%M^2fpXJB3DRXWk_u3W;lZ^uIYy>x&UqP0ARhPO za`n|Kx5ZFKH)I0gB%k|Hm0@T3ynGFv%dSM-Vr<}4MiVue_U&4$2lClgVIC*1ks=Mm zjqEyT7{aGIl2$Xul+^g%ZXOjoS(%3vV#o^~-%MoK`tYEc+GDMm;vbvR5syEK?nV)i zx5S3mxtL(9Hek)GOb_Gb*-@t(_ZDd;ONR}7U9Ia=3KrN_T3`bHyo07&j+~61t(kU4 zV>Mh{iUY5f^P71NvN7@qZQ8@_h^=PmHJ(c~s%5Q@rTGG_ZvLdt9^69k?jv2GWE;HaH+@23VOo5=D#~ZhouNbnKKd1llb5cu= z_R#8-f^jji3!btta_5zg#VY6RzJs`2q)iEvu29Lmb2fc7Z89!f?NEwe zQo+k8BTMv6WL|-++<`)Ch^AaGbPGntkucc_osK;{HN~SagDj9{$>MdXBz=BSgbq;c zoVL{~Qok5Q-^EdLdOQ~V0!jW_HgCEB+5d2ogO7ePSK_CPKmDjTDUR0m zM%a!tNyZRO8VQ_}Y$RW^y23M`H1!bU;4u+vS9;dHtZ&kU6 zcfTApeug=8>sOXm$8GG@KVeRLFK~<=)_(iwc}cw5DDz_@e%Hb1Ij4h%ArdKLaL%`; zv>n+dt^6r<^`iezb#KHE5U7wdfdh&F{q8vPAP8;w+P8$JZKS9PpdBesLh}v`@PJQ>T_oWd5evp%CwB>dynd`>0qUh4~ycN(4!vv*DaDWn*yyB zeu|?7ydyM#5sHK8n}_I?uEU7-7r(uZMl0`6Mb>oZ>P@3?dy}^~Wf&U^lk%LgQt9q1 z?dtom;F~q*XqJa&iYI5`U&w#skq%XvnDZ()OM+z?6=i^=y9CYB1SrUm5dQ+pb znZNO7k$?)6UgzA7q}ujS{nd%kzma?M7x|E~Tb@mf>T);XBzF?nbr}ce{Ao z&bPsTLi9;UOsls^+=k)?#DAS--~0T9i@$rGrU8rXU1Dn5ZZVaQ;86sT#j@nj_Hoq2 z?wYasQAWJKoV}>tNXNsYcyh;I^ZjhGeqAQRR}aV%-vtLB-(oz(gj2&9Pf8lae(vPQ z3tvYysM_})Sx}+Gme}?0{KW{}D$_AWpO`&8DVM%?D8y)=$nyx=7bPNUKSOZ>omV~D z_I9C(PBxPaX0?koQwgT%yqcP{kSuXk!ZsZ%*}H9{Uu(gQaSEA}(lv8~U0Yec<^IXM z12<*(tpefsP7$KC;YJ|Eo&8y>TRsVTWLctLTn83wOZ`1Mbb8U$4Rcc)+x_()HA^ef z-MF;K$=0Vw)&nuoWFJ*B-5fK7IIv9d=Nx@hZ0#)zU1kPoP%)@!BE}!g9vsNGWd4E% zV|}nih<6hsu0?<9RTp-QVX&n}8_9Xzsd&8imV0gZgpGvIccm!XnE1 zOwASDI+Nq}Bg56kuR||z#iNjs0PlE^_E%n%h!#y4vpt<4r~`E+Ur`7Vi3bhBYhy}Q znF!T>^9efeltf=xG^Q7QwMv^{pfR3h?}FDQT~tBR8?8{69i(0Twj|lH>RSZ2x=J^M zKEy?iFvym^nIbLu=iax;S2aY)sD)Jl*rJEVNPW_yR2^x4*9r}Rr>!cCl((=I6J$RA z)~&2tkz_Etv6>SdPclVluUSYOE{rh>&Bj=7Pl(~tAcRQ_)<1_w5wmiq_HM1>CcYk4 zXy{}d=u{Z2B#4cN5BCg8Njt<4WgjhZa@{B4IauMMoU`^7Nvo2Xd-X35n{yIQGZ@PSt?slEHV>{1>KWJg)BZ;WL@a z$Lr&*r}W$eSym1|a?ol(U_F8nrls(wYNydcofbmS$s}bKdW1CHRl+Un>7vlezQfm? z!MpR*{@&wm4U3jH&0e0DwYt_>a@8AgC(C>`Pif>E%9>8(;f-viEYjz2p%9j|2h;I@ zC`V*{XTUSl@VKw9l&_XWP z2MfXD@k?zYpgl2_0I8S%_2KZ(yxse>nsB2t+kDRailp^2tV%SCn>X$UF-o;DEvo@) zv|#dY>rq*Af=4Qz?Asop{ShT#aiV_&C0@EPY;j(bLe|BldoQ;8Ut`A`&$=k_5q=abnlG8+|+$PyBvPA5JbsGtp!uCeH zP?{*`Y6g`R$yeVbY$OyPfl1toB}X1{VsyDeX^%FZxi5oggv8;VkK$!hvra}$=U+f> zPpI#})a$WzZn*q+7%wcj8@aMQE=PuXsMG0sU$-R`gt*;yZ>@ zu{$ONNEfb+6#y+&_##pf@2fgIqvubUUMCPb+=aRq0vpg@h0 zP%;8F6(QSEhK*{9?*vU|2DuX54tuwF`8ob=ZFT=MLg8EXPJDvUvn>Mo+k8SSjjXIp zKX56&f1fbJENUTDm)EEkc_y)AtjEnU)J^0NF83H`}=FmxhTH9tHIidM&d0P+Az`LBmz7i z?T~BG`f2O{41FTX-#&-r6T3R+ZJ$Wb{+n=hueXSza?B4tyxnu%&IudYw>{ZKrx0NW= zH1L~`UwSae2fHsGz`VHvz;>_Kz)hc2O2|eJg~EJ7$=_`b;}n#vb2XXoB4{dabbl4) za~8?9S{WpOpU!?RY@+3jo`O%`^)!`i2$j1{oTmSr%hemRdc|DnF!#B#@`KjBkMr7| z(#>yo#-2upa2!G@qrNkn%F}+I%DvCu?*;`R?bi&3rz3u1+e(cmXEqfx!`%TE4p+y0 zoGMkp?T%71n;OGuPnA7REx#@_@{F674NAM$HLxg0xDYWvDMXFI8GZ-keSGnaPvT-h zwol_7L`O`}E%O`Nj<6p!7N42<*OD(E!+pq$8ZAHk>q`0mdGIJL4uv_R6jGbPH{ZGV zlKwROR#e^sB%gl@CY>{s&NfzsDsnu2o=^!QrWR0}5+n;(T3+rT@lqSP@cc6V9Is6e z*eQE$;8JY=KE-lk-~_=G%Q%)=z&KYN{y~9wzB}WFS5yu~IVA9(HAxwW1}bapd)SNj zlj0Pl`T6wp*?gLcxK7ncin+7yMGQ!?+(x%;)~~>&Y8tshw1Q{IvUPTldKS=`Lwn`LTo<5hrqu9es8qm>mEl67Yvz6*b+2eJzk#`c8P6Ghm5)`leHa-V00~ zvi;CEypjY%pSg1v?v^FmUbNrOg^E18mDuz?`hBBxexd#8Tx?hQYKhsRdL=P_SpUiy zxrPs3MEj98v;IQ@5tYG;2&IJbrG<ur_-1l%0Z*ak)3^- zuFfNXCq1V9*(<09wv{WT-m_8G3~Y>CkAQaeN+ZJQHB#?`Wee3>;EOW+LT5hW$qq8= z?CRCcEj+EScc32Nk4ZlQVqS-7$$5>rnCw4^Zd;O=s-clbuc%U*Sr~P@E=hGpzsn$Q z73K4rVBN6OKQI)W>r;7bmgr=CGm>z4KI$b_*n`PW(daN8{A~b;l#D?Pp0 z1W1@COwfuIeBdr89#Xc>SCHFNS>iLL!b)m*F5A6UH#JY)r{3$LNEd=-XmNoX5U4&| zGfPM=5OTPim)IX&gqa|gl^@4~-rMlfWdT|^YK3;FhD-7PRnd~)b-6B$=*NydaFCsB zVIK%oCHsOLW&iv4LGlhw>2x72FViOTLLP_6E`{2S{A4;oSyK3j`2d%%LACNpd4(tP7giz73|Bzct%lQT}Y#c)Z`BxDr@S-Y(&AQZ)W`n`e0G-ysH9`~IAn z>zVm2O!unz$ zrqQyj+f^GcGTxN_^7U@b@%vYyqbP<1+pSbHC7~ykB6ScU0%{yk#BVR0q{n`gE{SQ= z%7sviuSaA+4b4oaV%7%nTAeTdyn9N$9Xdk96GPDJ+bG{QA4iB6lm|R3nSaY{FXK84 z;`Q^73(d3;PNT6A-1p^%e&HR9l1URfCY?;L3OAr9mx#u2ySmmm(y{t%L+o zKlp`(MVjgtoxY8NLFlw6=j3Z0F4w5%ukXY|&0JQnxHG*Bks_5)&#$?pWO)pV$5#Bv z5d|iLDk9Y)zUBVs-EvL;a??55yCAD^dzKuYuNm7Vsb-ohXsJ?!H3%5e7O<76rtFF` zyIUOb3aJeDx+64^cdAKR3~<>KX;@V|A@C=U$@UA;2v%HK&(1vI1HAf&fw36Girc&6 zv)`0$^}YqGzaG&f)>8anv)e=&i+dlQH&lOhUTb~on5jRAPLO;LC~OGyf$~6hE}dvi z_@c=A`JUyaQH{WpS>n_5`di^7w&`gpG@kE{>$&f_6OS3HOY_i-m6+msim6O?VPWfYO z={nGqTBp1TcOs!w^?Lm6W|V^`x%fHdr@r2qMZv2^8OHjaZ|Cr`X7I|=a}z)W+$llb zr8TV@a3g{D=xj!vnRLIZThY$}3D`msxOC(Ehq(x+J%)OcA9XS0A=exC^($%lBmvT} zkf2+eb0k-{bUGj>wi2NEWTW5(=Bd?U?ud%Xt}pKPZ(yxdqFT){yq?v3>!|5*F6zpd z?RTTn9)0b%Ckg6!T{u=Pcj6pxg*@A^!P8)|jHO#=qID&3_d$sV!mij>0f|EVJOU*e z>5vL`b(R;yuvqPK;+_nOeWFZVC0+3ODB#pddlj^>8og4d5e0VsxeBoH45y^9a;lcKj#`})?X?*3Ub=doupZc5Fu#I{=v1GLct&1~F zKk&h~^EJR2=b&zQjjxU6z#ZVteYlXP@Nb8mI?<_I`$`)^w~5oK@4YT?BUhV#ki*wn z;DEnai5vz$)=S>9GW_Rst@+`GNw$UzD3N-nAf8tiyvs__41<8!p8}Avm5Pm*2lw*4 z6VsX$j6}Z2His)RyUmb>`_Up5+;rwFY&(d1Z!`tT4mjW8et{UI+tkWbr zEu)!vg5JbBz zQo;rnOPAtT#VtJj+*2iw!Mx`2jSQD-qKxYeTSw$_U;nFIBv)JeSpexFgKI6q-12HC z6}bQzKBrTG&3a>=9i%Tru}V3dLx5lyb-@Ip@y%lv`b$@x-2yVPPQtE@N8JX%*(bYB zAkMYtYtcsHWABHR)vkNL6~9kI2S`v3pQF5+opwKwA?C&8lg{5ybV)`MJq5=kPo_6V z$bnWMC_eV|W=N#kW6lc{x{{N$9nHq|)MO}8`J{s(q_`CbT zw(^Gz)kgO0Q79lVZC5PLz8;T)UjedxKW*3>>HLdqydC#|V{=S>Z+518RM4GVwOlRLWL)7lNUnDakvsP#k|56c>#*eRbx8mo%5~;_`Cn!ylyYKj z3yfU!<|hZ%4i)<4{&Tn#CB384_Q>zGENpcxup$X!)y=~zVU<;o3t=E_yTtT1_YmSp z!u@WxCxbEDP7yNL6K{?+J-;=NF`nj&wJs-dzTWzA>^&Wq-;1qXpJXfEOy4JHyM{Kr zh#N_+PU5{hRp@&L6^I7yx5Ikv{OBuDdN%!scR)GlRFfEogEL&>MF4PB_ze=zQ`K=m zot`#Sv&hKgo33sYDHopoHZm`t89rNvc5{lQQEw2dSY~`G`w_j$2gWwI>Fjl@Z|5 zT#BHVn=PPXbBC?(?FNQ_ksR5&kZ2R#h{%m-!Zm312@!ZR&I>c_gN_sw;7syTq!WtVG+Qw@l zPpk}YOC0xR_}ti9UVFcJ7W?#k=g>Pf)8@8$Mck@*+4L#k<_TwLH)rsTHznpKJa;{U zzIju(`1X6-l05G`iW`DV`L6>Oy**jy{xEWD@wNMl0zQ-Rs%#9tqV zp!RR~rr=Y39T4EK%8q`{0ChSTKGALyHooyTkBfENAX!WYi{ZA`gb6CtngV6?k8Skd zWi*E(;oto$X5hR9d?h*##_Ytv^Z&lcYOLxUknd){Gz}=)%0qWTC5J z>3x=vnMf4CLPTp_NPaq~q8CcUj$D)8i<*|cSUk^>&rasO+x^ z+_$IpPcGS;PkVkzXJpB!TJzBg0&W$rYoCM<47~9`*}opWIK)ObUc#aYzkPg4ZAX~> z2Uok9;0@``m`=c4q6Z7p@8^&E;$DzDPQx&S3E+mqdp7HbB_)p@G-PmNTZ5S=!xz~z z*QW2~q5?<*x{F*zv6;Z-Du%^cwwKyi1Fk3Czua`POg9h9wQ#E1}WRNOUL?uj_AmwlZ{rvkh*KArjN0GEz}WwsJij#cxcIr&5qB`S6%;7zxh zJy3R$h*Zl7XCU>IorJ66)&+CHyU}*q6fi9ba4~jId+KbJVnuGwv;eRWDmA9m#nhAU zX78$grbiwsQg_^WdsKNs%A0<^!n#7m-K;c`F)K!Td0UlDD~*$+vN)?OXZD&25pjNl-c?_4b9d8iLyTPTr?G^stasLTslts{-1^Ly_RSOU z@l=5S-w8Fpj|qTbj(=fF9E~vsz)iVjFC+daX-7z12|-iM-5=ehYOAUBI2-~60R*qi zj%&k4B6X18brj?IVYZFUJJ$e~6qsW*4H8k?(N8dlxa&fGAqq@j4()0M~ z)!y-4;Ktd!^OQ{TLt`@yQMy0hk9NFzc5i|a!TrUNzF$p(1(#MsET*5Mp8Y;t8f9l^ zD8Ao=t~zql2)ZMr!fK~^PbnC*G93%85i-4_P0hGdKPN`zgr}iuy|_@cu7=-1i=(ekCx`jq$3im5WSDSwLKjA7F(gK7p4{!UB38* z+uYITjPTbPz3LKJ<73sjvWYUN+(q7i^pCv1a=_cvi=lq91lc7EeE56R6bHkCGbt+* zPX)>A4;{-ZyR49heQ__p7}$%@{i7Ew{j^o|K<86QgHo(ib6)++7K zBsSjNccbY*@@ipsl*c0q#Q{td&@SH|$`??EX%$)27lO1l$WcsZ={*Ucb`++yXaf=sK z?viNC8_{oE4>_d3vQs_?7T7e z%Ru9dDOgRd8yy3i$aAy?kmygesXYWE&^NR#T!g|(qffJ|`iaV^5fd+?(nmi2h@b05#<#BFDJlB<+xUHBg>wit$Fp{GF)paS}~3`LrC=&Ef|^m zW6bl7dVmSQ1#bXYEp7D+zf}uJlhUcArMQcJ?So?K+HG!*1k*~s{GVp{3c`MaLiNn?4m%o>|j2z&Ze;t1_#k&$ImHePj+9+joNAqCW*H_ilT9ZSJA3Q>T3 zY}E%T$DgU3!crca%0{dtADH2b$22$w_0F;8Li1=d8hpHmRw<{sk0p14^6rI1F8iz9 z9uJ3gL=WUuy7Gc_~4a%(g~e*C)qs3U{I)e5fjOvIX5#0T|j z&iuo~IM>Li4V-gAW;lw>_)((ViS*^nbB!KJbAfnbsW4K+YhF*e_cZ-~P1Xve(zkIo zsw&6tu4<^y*R}Qvn-6r?D-6ZrxXRLOK_JTOftA&Pm`|F5)nT~HW9*dmmJ-mN-9F*+|h~JF4PKp>TjC>4D=a>%vvX!vt5vK^_dC=W06I@{izhxS7uH z9JLH;Q1nG=-Belch{JYYQw&Hq2?sNNSQG17Ye#hDeD=sd! z9&zVYA@O5&oLGoE`gay0n3k_U?mQ$LbWQCWM1}ANAG-Uo*o?`b#MSlQ{ILdEw>I3TX1b`QVZJ-b1?k2Q%oM;VFAHOv%5IamxZd0qj@%Kr|9(@IGthCeXl= zp!oqp^5d5k0p^2_Ld)_=Pz^Q655=t<`6yi=Ds9wb!@pYhfDB_ru(WrCmOFG-^?YNqKd?Fpm!x122T}#I%&dUm>!l#rs%+V+b4#Bu4*o0PG zKrQ1|;V$1I&{Kg*aXt3?RnB+lf&mE7=nY$^h7#l7a8P&Cnr>3KhuYbg#s;1(B!69` z(vibYJ?*#n!0IfYdrl7O$`9)driT!o2oNi%PDGPz@K=G@{ZS4U{Lq>X?xaP{tzRxG zu0(WiIfTreBLkVI4VKZpqKki@^@N>2RWtQ=PIdVG0_;i?rL1a@q>sSNwd2;iW<`D- zVdsCCaaHls(3Te+C4U%Jm98~HT}S{C+>avYJ9P_;2_u9ER*#*RL?4w&z6FX`b6D8n zl=JSDimD6w|F#8hlosr7*m(CURinnsFmH^%I3V`qkUYj7dUq=BiT1EX_>2@n&}#A-g#irE~o zcFGgF+zm+l^@J3u7aJm_-chiKe$ZK;Fi5U#Jq-RhU72Gg#ksO2Uu**JyiN4b`9WSl z&KudFG%SWx5W&MHuuF!pP5fZ4G3X}MQTP79wSEl6$(!NrSSbPcadC}eph2MJ2pY?z9*{-17h3?nIBDCM9f_VE?qEiKPf~<8F7AoL(;tbs z$NP66SkqlK*yTAJNXUI3O$j4vy4s5`S_zOQjr`n>-11F=+5zoVcM1GKpV>C3a0@UW zLNY1(?|rik;^lx27iyVAvBk@fHaw?}h-Yi3X^(Rms7sNdBveq32Utwlo6vev`{%r- zkrW*UOkDnpJ>&7j)x8(LtaZ(gdzp{DQ3nv~%HmSP0&Tf%TQUJD+i|{fdTKkbwIFiG z{Ws;r>xn#3CjkrJdj-SiQf;43yFcSJuCsXi{YRbS7+FVpSP|*+IFK#o>n&?y z-AxLJKJqnP$UMCQ8Crjf`}>NxXi!7g@U-P_uW+3ZVy*H!t#mL;^^t>xj9$^hSvKi(~@I%A+6XD}Sl4#)9 z<7?#HrDm*Z{`(@^*7sp(

=~$hrH~GVQl2nlJnn@)#Q^#`lH5b}EG8uT(FWAn)Zb zg3sisciUou`z-4kcN;ukGBu%c$7mJZtyTI_XnDf0yWHhGktkJ5 z%{qh$U|b|>k9ILUU*On`HJr+=W{}9>A>kDlPj@`{DM|L=ArGSk!V70$zeH08Y8Y{YUh0P~U7 zwy_nwzy`exK)+U%>Rbs!$A}JJtsy7aU@izuA;gKF9By-Zp5FYN|C4rYqD0DMo&sxpcBxEoz}6|*$vc3twW zz1Ta>Scp;+4tKv-H2hucvU1ObxDZY>`5jo=6!(2}UKkCh-ygv1lM6?!~kiTwLj#{w2?n^l186mbd%a-eKztY zUlN;RvMETe!I76WD`yc2`)cRf_1-mqQN zBG;RZlKM(TJXK~gW$)(%VBfv#$D<^2kxT{Z*LnkPJQEh3Z&$I~c7P^(*OgJi@qL>8 ztMvRoem?%@2dapK2+S{Mp7o8TW@7Fq5k5(98x=&hU77d5951Uk>|03(@XPj)WIXX>RLXz2;wKs+|)Wk0)h0%~5_w zo(dy=St&=0H8@UNyZ5yhMr;RZnRX5kryMmjRrzg(9^1?T*CTbmtMzpM)>5+LqW&LC zwt%|*hK8fslNwjlar}P{2mo8y*9?6Cojucdd#H*cF+@g1&OaIh7DmUgEJuqN9EQ?V zqAfe(^@diP4Re(+QH_gZl>_#(}RdjXwkR-T&cPgM)(jslJkR`)yp zn1MVU?!4fs%XFrkH>#sd=bjK55c`aDVHckS&qT@AmX)bkW9HU$oIh%s&=UrzOGe~^ z!t9cmF%upnR)p)o0cCbtK}|e zvI8L|kR)dTa#Kahd|F`YxYms)%a{R(OddsTH2%&DZsP^1)2AQA6xlAH@&G=}C!S@m z2^OC}V_)GE*6Lmz`l+YK?LNFQNA8h z%LeB-QtJYI_i4EU-M3|>)-xAPN4O6;eS-(}z600iD=*ajfC+Qie-maY?C*<6@P%NY z!`PcSzw!}W-on^%D=5IUlF`H_YRUyF$URP=efzBgj3CGtiu!50561=PE_|a)$8^Ua|}x_1$Hqy z{{{9Sk(#a|N4(U;laXlYM_<70Y%hrVJ9gmJu<5~zxpZ`7 z0vcD#tR8P1-4q@dO0%uFUuUB==NfBoNkjtUmd{<}tbf*!e$gL6b}^jV7}5uIU3C~! zT`JlLwa#+&WRw`S)e1rG^Ly`4Zz_Ql;R)}>UXR6vHwHitg_ zaW>x(Ct$kbxLX&npGxaZY3;=fAFEXS0|c zPlWjOk~1Hu?~fwjls^ClnM^pXeP8Hb{uvG%D&ZQvz92p8uE(LYFyW@;iV^5km}g31 zIb)DczqVlps}-UuQe+PGmG9Nt*(Kojj@Da7z60DhM59Q|T6IkvL6-#ua_8#TiI+id zW3#}o#{e|i5axD8cAR3zF^{HD%E&z9c01)#L2`h_{Oy)4ivAgw&YwU5` zpYll_i=!};I3llwsOi#xNltpdu1b>|7`e6jbSniRFab)4!q%jzZmA&GJ5NIKTz;lc zP1bhIMeQ+Gp-c!C`?%OrTcDT?&5;29tfoBTo*_e3Dgf6zCA22T4G)}29?`i2YBSkI5K?Fi+%rdN<=dH6D-G|)XC76ElbXD z@FG>~eIpDO&HK%`@bXQ{D6#`&VqsNwyj%iE5H~VZNEwdC~hZ!HAWG+FVs+D>u@MGl> zdliYdZ++IarRnRu8@xlp`J#$Ul(Veuw3`L0k^H8VVWq1z081TaWrAqcu%qc|T=R@H zWMU`otW5lh#WM3U{iH_T+c@>h&J0TjNS%hfw~(EdP*(o0T$0;)q4?LI zK;Wa}--wp?z{HWEuQ9mqq30g{^#a51kQ>C{Zv^(I;P zhWYzvozOuNnBi8f%wM$RBA#O zluNSQQxB#r&g$*t397};i?*oToikC(ranu*9lZfoOW{8a)&*yx_W_pQx}(Revgp;s z+s<_Tum2P{CJmcGox$5rPt_=^F_0e96BCOeQ=HL3JlTvvV1JPr2(>Jya3CN2!j&(e zecuwx0JvC8u^A~V@)?Xc>&lhLms66Xiq+8qgPiknDhP_j%7#+d0L8L^%`)cG(}Nd}<;qgCK8f(LDT|LIlMDmYo+~On!)B2F zWVB`-p4Ub;cb}SW>Lx9r6Gl$1fFD?xRajo8Kf^ve!7(o@*6TH;Sn4AfKk|p^WD|gF z5SQC(AZ2pEu@%M83cJcMR4XuO`6e)~5F)tvX93hxyt=r!vGyb1j=QszmTp%ZSLA7s z0R+&wf!Ny!o@y`mYg;B>pXqODcJyS_Lii5A5=u&<@h)4Y^MmcTkiN^*vGV{ktmXn; zc6h0gxtODB&w#nR9@LVL1X<>uwU1Jxgw(CjI%5&P8w}Yzcn`_EL=jF8cvfX57ANhP zZs?3Ic?zZ{kt9YWCU2G7{z1m}h zrq%4-cL0;!S#^4nIBV#CIHAGIJ&hv7ROkluN{Lz(doENe4K%IVRMoGt!BpPV0NFiw zD*i?@V*sIN@|nChON*6j`9fpHRLthZvjc_y%TrRWxZcy zs9a3$Z#|(dUackgyA^k*K0PW3dCz{85h>oe9=5yT^x_(aoG`8h8H)85e{kIl{dfy~ zCb^ms%LD&yIMY`wk1d(1tzb4r5K7CReuJ;+BF(@cO(>Um&|oa+4F%W}+Q}zeBkWG% z{ddg?oUu7Ns>!?2QTI+9?IfiAX~N5i1h*rvoQiy&8F-p%NXk;i;JY0a&90r0X&5aD zq(%Eu7G-I$W%At*rjUSCimf4)`7sjmP)p@IZf?Si;CUrNt+`Fp zMb2vdJIr+9ed%eYZzrJ4plGpEmR00{%ySn0uK7}Dr6R6dbNA{}*SJWXo&eF8O-;l? zYAhConeq=K6zO}cRud^hRd{iel|jE|_FG(z=XbljdaqcI`0YX;0nPM~bM{tsu$B{k zmF-c_dPi5{%_o^Ba%cR1ihKxY>+dU{;}nZq{~=7x?-*_qg7@Kf?8FhhT|GR57COL$ zkyh_C$v+g!|M3$DcDqL-={k*zbW-fJ*+Z%Zw3{tw+o;zZW{}OS&x6t}tl-y48KWr# z2qTU-GK62g!*!dyTC^8&G+-ny*Vi`9dTk2~rUd^DrkHib!(GM0-=NbTk%%uc2VZyo zUh&gLKQ(N663rPp6xuc8CO&M&1v#3Uo2R1T+Wf9sILX!}(=UJf`dnpaOZ3`k@lw&> zrDyr+i;^?)k#i^N;(2!h?(egr&Vk?KzT}EN0EPce!+|0Be&%34CF2>CygS|HT^Xb< zKOa>1smw08$y4%P&c;WAaP$Y>gU;>QJMtIKy&5x=-3h1*^_3jp(Ua#Ad5!eoN=*Q| zIE|5#`L$FvQIuFuNwtrs;hFtI`Tb#`oyeuJ{XntCx==HffxqPfM?T=|`I~+lF%J3k zaZog#>P=z2Z2;eR?vgX!y!J0dZL`)}Fm@`e%7b1g)5Dz<(PF~Vl~nhGM~h2M%DjMs zj3$>p;61=4pBZqDQceQyBzYJ7@1vPGs4gYT@vkAbt0sIK$NTuk*%`ep0e2KLSn z%>HYI5xw7+nEMmd3-kd29+hknN)eBhv=NAta=mXQetyd!J-Kn@lCMNha2}8hJiv$kM;O=GT0qoYl3ufT7JN^t5sMyzxND>! z|6VjFoW!A(l&r(U2Hj8)F{E;P$&_JCDtCf847%62+mrJZ`V`a=csg z+<9O4-SODF&Q+&Ka!5OJai9gI9M7nW34X zq=Uq~Lb1@XDrD}}alIeAPRbwpM1|Fu_=`s_x&-op)eQUp)}9M`9VMss;x=aMe6}%w{VW zj7=&knd943_JhQ4EX%@^;DbjJ+cMJ5ghV|lH4;n`L%vPPfFwjG(0=O zKLxI$osVK2??5m#PzCse5cC-2>{ox7z2LO|{p`=|$oGW}JMU!aKdB2Mv9g+Sx)-n4 zQ1lmZ&Yh>fSNlU@4tvtyf~@33JO2jTjz>%`dy8O#=A2L7Z?CwEUYpsbdm^5CEh&X+ zaDP4ysx@tF_}{A7ty@)6;d=d&4@ri77r!z6{0h9pJF&x|w`<83+gcMTXnluVPvq&< zo6$DKo6$u+OgZ!3XUnpQ{rf8p_=J_%CoR#B>Kdx+z_?|^CA4IHRUg2fO-$_EJN$hT zO+dY9u`x1@c{L*3WYKzD3YX?i^?pZyw65omn*ESD5r;82LHPEvV1n2;A3PnDGL7dI zAUD-=l)pX)`4AGQP}YfN(@d94=!=?$9&S za~;f$*H{??rZ>sd%+aC~$j)Q!H9uJ>PAL{~{F%3b?o}J1wx~Z0)hRck=lnubuDA0R z@_EbhkJF&@rUx<_U#vhN0NY{mYp^$rR`d(vfZsUVq}dOi3$DI0_Hg}C(m~D3=NXYA zC*K9?`+S}IULM{1xzIp~dDNq?tC*vhdhO@1>ym;7`Co=<(M2SaK#CH3!!vOjusIIp ziu3TFb!a!Z%fI?wcvctX#@AoKTS`)S!m28$yeg(qIFLSn6IfQW)U3M_|9IZ)(QdP} zBJPMtpCcFM1lY*7cG)sI!EYy5Q<%Yr%0Qzcl>rpPE-D|;Yr$PaAbS)?Hkbw$tv!+W zB15o8KgLp1lCC#RGvhLKiW?c@)sTe~Lf-g+$l=008_pEGUORsKREKev^K{~k@ONBN z&f5F>?LwkMC|$*1eCg)H!HS>%{aw}gJ=ykz3 zTQ}13XD2v95)V|Sn}i5Et zSPU8?MNrc`d&Q0V5@n>E6ZR|pO@{?3q2(dTLfHsRVbN01Uu#K{Fe{GgQm7GIRiPsF*GRo?)n^TPzNcpI1d`G&1STl4>0L!C*V-b3$P?g{67y z)D_^N6E+vKxy(t(D6qb*9H8f4NBTm}J9OjyYwc<`;>3$SHX!&#tf+i*yjM~4kyyo~{z6l($`a;SO`lV(2mfc@E@;INoQ}IH z0b1V9UciMT)jXsAd5Q&kREN6$00-lVG6gs3p*!7;<-9eRv=hl-$ZaM>qjX&!Wp)TN z=kB=q)p5iu7*=<=7#&tzCF#$}ExyN|AKO~d9opWAbiyh*Y51ftGH3+NEZo-4i=3}J z6k(+i!gx-0dPL(-9_ROm4-5**(W$YzA~~IwT8Sl7_GWTSO7D;wH28V7LgKJ*4%+07 zt^lHXRrK@#C#g80xW#t#s#ppa{AI+uAPb80$qA?-wx(pth-L02D85}?3LEnFl9mKY z*&(0ELlM2zPyru`R&TfDh6^g(j{*sqzkmz4Z$Z)a4QyGUx>xG+D@TvUm14q%_-~G{ zD@q(w=K>sr90nQ$<>+inML805F!!F?N!rw>I)C^R9(e z*)<=F^CF54oSR4&Sr5Pfoc{Frwu8m} zO%vcZeGP=T+C7iXmm%w)7y*!u6RygIkx}6@+$i13s=xAq`D@NI0`XrbTjvIX+m9lP z4-BwQcYOmiLolm@=OAf>)7yfQ>U3wbVu zT8V)CV!7&8TKO79SVHrDf=&&3u4lHq9Npk)ACI)pyU#e6AD_sYj_JkH+2gzqmT{lx zVwDD?T==_lCu{_CgD z(A_x_-lAx;>7`&qA9DR)EPcc14JJnTZuS?X8OwC=;UF6}Eq`zjM_-ivY7ec|R~^ua#|!6uwZPs0O(`IgihK;#mz6MZR+v<-E)fdiz9f zaeRX*(sm(JTiqGynmx;b-ERC-boJF=*QTRyAJ-)X9+$WJYFZVU?V7il0Pus^Ivq%C zio14=aE%89ni0q3<36b`2(0Nqcq}5T%~TxlvvYkC@X3X_1#qRIPOEYbjZn`lMiM&* zb7|d9h`GHn#w)B30v~Exd6;{YU=p@tie7(u!kww0)aGMl5xi-*wANH!lf7Ywkr)QI zqZ51_8)$CVYjV$`K@yn0!q7-XM#USQU|Ho`?-Syst)LBwveE*IWT`^XF$28Kgf+6~tay#+||Y zg}K59+TtThS4@hX;}{bKtb>cIe$sfNv6`8(;s=oW6;|aUE&8y&5SovW)Ts$9_h?2GYqKUym`m8X(n2 zAQnu%e17{g1}JV^S=*R8&0nU6FAQ<_jMztc(UaEnYrggFJ^g=g7?}$Mb_HruMt9P< zKDGlrlE7lb!yS;WDL|rs7H#n-r#^Y-Hc@~O6>W1X6KstPgnV-5s4_tMm4iWGn8>-P z)~uWMW(qTE_vxS6T5JnL|8_bi|A6Gs?_bNn?N3%uPoA%yQ$N_Y_-}z0W&8-{ww)*t zT!_3|f2S~EwEfOai+f3Kas-p{hucf`+n?j1$#g)h&x_pfl|$~Sd>LOzkA#ITc2`=- z&-iS1Ta}y?fZz4veYtX!kr0|jKhshm2N$D__=2y9hAu+Qz;s1&_Vo@h2>8e~16 zH!u5ACUn(sz>RfyTOR!k(kaY#y`Cd@I?3N@RpEWdz+N3& z%d^mkcuMs>#v#KkB@oN(D#qK7B3zgs)cr=4$iO);qqpIG)L5Hrv|L=~*dQ?D=&QrQ z%Dq@RIovn~gJdXmD5-u2*Mw*(^Kh#zl+16GX^&P}z55kf8^_f#ky&zB3De`JK-Dk1d=EIHMe_|Aom0U@gZZ;Ah)-+gXW_N0GIPI#R zXN>;_IIQoYr1fB=0P$%O(TQSTvr9Nuzd3U{AKzp>;r8kIN4$3T_%y%#0G1m)=vsO0 zfm^lG#;MQ)5);58`=s(xz$REm{|LKy=pw1{B|(4DGI zC$);TJX3U>T^CC9!DPKZBNK4JjNZf|zID3+olVqwVtS~hwQB$O(lX(~apud!T_GMG z8W1~&fd3zhS3sNy0~7K3NG{(*vS2{c5F-Wq_(4AbKD%0UOewZOjh#4BCcsuNwxuw4!WGsuD({!TSJP1@=*vU(Mo>$#$(aeL0|Aiu&XjC#Z}4--1yHKl zk;{Henh-Lai!qIz`de#t@2ylY<{#?vkUWwe%Hzn5g9-JfBJp~wvO&iVKRjvv_8L1S zV<=W{AxBQSj>BppxPngML!?lck?wWn0$^R1drZg=JR!64-W8rNweZ3PrQ`3`Mc~iY z%<(HJhWTquFhn-$U~@}p>NcpLKm=K3Da#YyHV4}wPUXbHuGV7EvHmRu(_MQTW>+0} zpLoXvO{9bjezJn~1_7=EVUlrY(#%6u1K!5~jPk66e7x=f#D;1q=FE*@yeWTK!arWp ze@BI=9r`7&okqtAbxg~d31;MH%WthHHk>;3q}lQ@m88H+?NOZOStN ztKkuo8x>&=52Q!eUDa{^hgu-?sMuW40!W@WNaW6ZI>ZRKL z@g4f?8DB#0rJBN>d8jFQ7SrptaxYV)JgAXA<5q&4T1#wnkMo2@TJRt`bVq&96Lr|d ze(q2iJvQ9N8n`;Y?V%tKvTrYhcfqz$FKU_K<@5EZ}@>#GPk$>%v>N2FVK^Hc3pjM}J5c}$M@8agqlz~LG!GHp%HIftzqu_*p z}iovAdataJQG2QnP(uf`ZQ zNZr9~lz%(zoBc=RZlC`yK$QG0{p-`u#?^$Uzst?-s{t0P&sT}7B0hZ0uyZ&3yB2nT zM~3}yp{MC#i6tWN)Ozwd?OF=?m71KdT1|i&*^j7=$TlFj{vl z(R4+eJDPNEJRj)o{5vL+_e^4j#G8#$zhSKmN51N$vMvD1JAKql&G2Qz>P}xe>>@)k z1Ci!lhsZs~Y}9HTPI>cKAk9IBH9bHS&2!4(+WF;-&K zI}jbibU5^W?AK7q3P zGukitk@jeHX$zh9i+=QPB-hDZ#sD>4o_#d_jBP|<9ux4)@2pA(gDvQX;yfngmT@BX zt^-gixlWW%IlwXe-(l>)R!NcT3UXkf;)iWF8|E3BQ*iCS1Q2ZjYx_Wx75MJgiFuR>4nyi;1O*rNYJ<*!W*fLvz?KDnI{X(r zf&!8193Qa86bww6fb_))`Uy+kXmC!}1PD&iLsvUcQ4tt^)s5FZGNUw+93Hh=wF@jD zOAHAW3aMjONo5tMZirChUCY>v&~Z-ASwBMu#GrisUu+11(c6xWY6EHn7Yv$yzZF~Z z)fou^QxTKNY1$sL=8aeL1P4c&bP4#R)mfi0vcpO8P(Y3g_6k=S#s3|FQ1rBXuL&h4 z>UtMJ?l*Q+Hk>hvt@=?a)3q6HhSTnJA*SvUy=-LHo*>$o3hI&h<03$mrut8mrhsp^ za*5n=SjV@1^v0K=)qlU&T^u8<)HUr(eW5+s(Cg?Bqfr;*+b{~m8>d9K&49ZayY;rA zh7s(Yv?`3X4TDDzEcyH1B!Ckq0{uykcbb0!{_{jfUO(#I8u8#9d10dE@DWv#N%C$c zdVV^!Qt(1Xlg}*TVh3VOi8}K2GD*{rFHVye>QDwSDwbV7a58ecHeW_S1wJCp13LCY z-meRECU5}bXmp0`V(n6(+&yp=xp^*bwu?QH02{-j1Zp!X-6>1V_aXWYNHL#krrT=s zzLxAHPxTeJ+(|0XF_ZMlvkv_Bzyt{m1Xe)~=3m&_$9_IyiyspJ#(1t4R<)RmCKlW* zvoWhfnRqkp(G>EN`R@v9$KI5Db57(2W?Cjmn5joYjm*Y;1d#bjaY5P=QpkJ=GFSY_ zAwVt+!kpxl7(Mb~j0&h3a6SzJ<9Bjd7_!^izFz~~QkoDTT=X5X16_O2z!ehMkP_lR zdeyoQK$Ny!QOw7q+E~} z_U8=4)4=@AHUixsOn`r(~q?7sw#iKxPMtg(KG8&zLh(J)M1O}AvP z?|lrgzq}XJl%jmb^N~tKaY%p(4)(9&3FLXQZ}IL1+)e+bpiaD`bKdd%)dLr7qi=m$ zWg92e_ZYZU;z>lN#ey?81GGC#RF?q=XE=CZUb7|k?3LDn!5 zqp{G6K_v>7G(vIlmMmgcxN}v)OZRAo80Ulhw_A`H@jjX55x$#e`E-3fAy)nAe369*?`JMyGz0T1RRx*v?nSY};MWCUU!OQV zz#p_^Gz4|jJ{3Nj5QDe?LNJ)TVOvg ze|2)bWH2xjcGTn5iVfma_^Wy7j~Yj<1(N@&Q%-9a1V+y@3{BJ$6Qk&Y=c6EfokG@B z{*bP?$b>BOuXaptmgr2GkzakILDsp*z5)9gfhmj!@d8?I?o4KJm9cA6&2+gzNlxs~ zI;izTBhLs*Z#0Cqaz+zl{7$W|=iI-aN=M+GibzH8)x37_*>_(X;Tj{o^8^;{0`jbK zjf(a8E}P!)3nNh1I?AUC%pgX1&RF`G%iGKjQ`tn0@Ypl68q;*zJ|(n3dP9Pp`QkkQ z6;um2^DEZB7yy!i^VrucfU4)vhHP78%A_QbUSwv^Wq~`sO@P+JL{t4;U*^&Wx8-Eu z836Pi9b9YNwlYZMCz|-N^*aPb0IF3kad1UxX868Qe$l+Btb)t{KzkWce2*(DCfN6K zG1+yKkXp8^8uB6Lu1$4o1rge1do5%-Y|B3-CYb}q{4W9#h z51x@sjV|BKs|V7hJ$tTlfW2Gt1u3;Am6Li<&GP+=oJ(i;%uRZkx~}(H1aK>1(?#dx z4j+vhl(*&^rO`n$Z)ta$WBwUj`Tmn7KEs#ayZ(doo@%w|$L|1LJK!A%Wt1OVXV`y1 zfcO_Pa&%uU`iv~p`H^+Tu%D2oKcTV_Segh8f`b%0<4u1G`Ey*%K5fT2o%7j;Ipgs8 ztdDwJZ1}@6deM|IqJoS8U4`R};%9f!Rw7^Sxx0%({+g+*@w=s8iv);K?!JVjCf{+% z>^}nKV2jD%vAuLdb)OS@mKSrDg6G`al|u_%Fs7|7B`?>fshZ9X%%cqN*xR=(XM#eA z>)X^NP`vBHR!o6UQUVJbI_QAZhMr$Cqyx*$v+fHW9i*kKZP=v!w_Oki9@@CPz1Uzs zLjs^PIoncS%bqZ9Jv-bcm=SA4y>3YMn5*nP8vbh{Dgmr4Dw9yU!D9O7`jl;)s$_Dk zfroES8gWG^Xy~=EGYBr9=XvOauI-9De!+|bcCCQ&u~s8^`gF0YdEyJxbN+hQ({{@W zT03AhZU2qQ>#)yWP8gT}d*LvRO=fuhXX&pCf{J1m;dB;rbRrfKcjE(Dcmu~HnfZNG zzM_*OBi3S5$Au_l2vm7XObo4jru&GQ+WdMYwa~#Kf?>`z6_D5`&TQfjz5Mwf10Vbz z56N^|HiSW4H4DbU0&*tGW?y?RXPxpT)Y`}35&)8-`mw-ilRta7A`zsv@Du`D{BmFeuy*cL@t(|BA`JAwrh+wd0=m=8ON)GOoJXi8 zXb~cU_D{t4<6quv!6!*>0cSv$EgxA{rf|?ji!3u%v`N_Lc2l}dGd2oaKFwI^CweOy z_;7bgIc?#2S?kSC6SjfeM`2VtA(0Ck`)L`c-Aaw}czYMnO$+Kuy>sZj61k1)dhL&1 z$fF+ao1Xa_pV{u0a_*#B@QXF<0Mr7$R6;7(RWeYQ$rM(NOThN^eAg+UzDpv|Z2KLn zS_04Cbr|cjiw33-XomHAhZsv!3)DfsWKQOKuf{jCSoRQuqPMgMPgBR;3A+JrQtTPw zmG(;AioBi>d5V}IH$WMRByee-EXN(^#qshV@!G@BCY~ZGT<9-rSw0HOrZyncKn~+G zK3fY+Msl!ugmicgxW_&~f$p^aRtW67j$L%Ka!JE}UdRV7XY23g(hnGTsT$|Y^w>V? z^1TwJ&azm#K8ac(0`OfyU^Y2}wwfiEBUWU&5^BN#t&WJalY8blvB>Hm({DQGeW7O* zxHvdp?SSZHU>JYE3((ys!>jVpvFsB}MiElob2Z{c3{FW^b#_y^&Xw{M;}eNS7?xBW zGQDMR6t}ttZr2DNST=>lg*jrhu^osz)$oqpH9^! z@&yxIhY&#Rg)~)2pmNLi8FNu*zTX`RiYa|wB2eTVGc#9zymjIxV}T>;yP^Sl{w)7H8+)$t=JZ%JJ-|gU1wozzeaHLW>04mnhtk*SO)(Pav6_+D4pRZWeriu$ z30BXjveZRx-8~B1AY3w+68wZQnnbO-d>u}y6-jPk^c zfnVrK!JMLA?R~JSq?Zh8a*YY4sZHA`DG&WBcxQ=Sc_OvRR0I9Gpa~s=e$E#>I~NgrX8l zTZl3^7aSRr723fi>zb9p8n9e+iXO|t#wtjRhgUW>IV}Cn4?mIsQ3(T^h{aV{Q}n{N zUfL|2`hhqF7z;#9J<C@A-3D?EJK`(u7ERi+#=EF zz&t6`z_R>R3w1nLZwv*nV*k5Z1f`P6M;n0QQ2Z_&sc!Ih}9>$YrJ zHk8#!bXW|M`lylU$SN_^)};CSQLD~f03NpvGL<`%=1Uy@81{uvS)~ej<>mZNn2=G^ zsW?5rE}*MA|El7q2VDmG7})^0j381MhsM9a4vf02v9~hX$=-lnk-TKU3|H9OnBc`* zyuRd24hxBFf<@f~Vj>e~6RrK>E~rNJ(ZAu^1#x(F0PYPA$d}3< z28r8t+}+so#SL-xbAM+JMw~|cyu@7qml~C_luY`SJL^^aS7XD!hy{r8?z9WHM&YsS z#H#P)7aP)}c-0q+@Etpgo#UJ3IR!AOimxZB1_)=Aev= zFyqLt<1o*iH#&(|cOTsCYC>Oqt@6@sGAjU!cm~)n@b2SUJCQN|4~Cl6hZAI!4~nT0 zr6nTMmv$xfbE#t<1*jjs4$*~$|93GIXa<2GUOm0? z;@^_Jz-#l1;XEIp1_b-ZS#6ri{JppSYF-Gd6X4T|N4xg!^(;T#$xz;}|MZti$%sFg zuxC)y$N@G*#6_l)lms-_;}!kh`FtH|^$+~xH=-xKK$&oxDp+XE|Hw_Xr8Ih8L-;7h z0?+r^)dux>rkm4rd{+|Lyd|Fy5p9fAht2O#k5jd%lzK#1>!u)`mdAY780V^uHW3@S zx;?7pPLhfD+!X@_1rtpAM2}@@5%E})2ID{b@Jsv&Vbi3U)=x_Z@aJrK`L;UEa~^gY z-bZ^kZpu(*7I>Ax#7W^NOM$n}z#fx9xifd>l6)PTg>RED%sq zMITA#z)G*2hWHiGp(3G0rgG~~C(zp8FD)G8R17NIzPExy`jDJW1u2dmbi1rY?^(lr z1r&*tJ=y_5@UG{phmFj!z(^t7tuM@DsC!|mA9gchTeq;xBNUhH7i=LC0;!QjOVuZn z1hwTgfE67P*<9I}=K%lkNP{pRd`%s*L(C~m>;zh6j(&U`LKrA+UDX*uJ<+|wAd+h; z)K4da+)o(1mwDUSY_6|I%g1KIAvpXu5TfRkJeIvh*Fu($hJiF`9CT9WF8G<~*MbbW zOMbv%9MDx5S<_U7|DyDkrnBr72**gS^=M#p8O@OFSv=)7u7W~R%t(5suo_Y z@BO!JkMnq5Cz=%{QvP06VJq0cHk`9lM%WB2GIhc(X%iN7P!&w-N-fow_?U+xl^|U_ z&#O)WH6Z>LTyc{6q{L)*z|% zc$}9!jH2vf$8yN9pz~H=3UcmPKse-gwmChzrZjE+^B|Orr2K_R z8@xooP(arONUu`x;!6hHVJ2aD<9Wo=Y60dBMz~d0ztX3?8;s)Fasl{z)NLp)PCVZ~ z+x(%2Y&E7Un$%q&x1EXS-&Zb@=5l^?L0wXEGT$Vy_5x+>fV+GKumY6D4Q!7o>$Th| zE?gP$zmZVBBivBWiF8U=NZyG7K1t>G$LypPC)lFNmcAvje8w3yH z_~#bQvYf+AJFzm_PD=cz0UA}-n&HOJ9Z4IQ9PIs7O?dy8xajKwR}0QdlF{!T?N3|o zQ<|1bcR<0PNuFIklk*3L9zaYiFfe&pXvft0X1^#TXM%ezsURe1Ejd+RSrSEPJI1D> z$u43ehi3`+y5ow^PkT3j9NhvXs|D;@zd5JbhQmw8Eci%85if-<{g- zS=!WWz!5W2VUQ)s56HA7btc~DMB4fw_0HD4X!h(s(Ewt*Ct-_*UjSCxIfYJH%>l+; zye60z6Ib8*dP)Ax_;&Yd+~=w09?DP@syQKET&p3%|HgG+XeVR0-T0796+M<)>nX+K z_k2?9T&_DS2Wd)e<7$3U=L^$?ZNI;dvrI^?u`U%5C{h%{KyUs$qftmsb>=spS^J@< z+KBzDJ_QE0p=`hHSQU9O%W(+#=R#?t3aUTm0dziVuD#H6L%^INdSs(#LIAGEaMZ@9 z^HBjgi|pqZoK-inuummwoJ;9X+mdQIbxmExR!T)96=hjriD+-Lho8(LSgq?LJ3z?ONg zp$88`f~DdwABldry!i2Q9#jxB#P)ofelh<16lWoTE*c->W;}XI1;+ zVy2jBO(67b_}gI~c7OW{`gF8&|23rUarAuX>gv-;&>>BZNA9%PO0(ZN?WR_UW-X2* zMYYn4j_8qK-(Er`QMF`NxQD}IpxgU(R-@0*BxXWU+yX-7j}wc+xq8cpi_{< z?e-IiV5<9d$&<&)`=(O@;ll|s(p+KjaYCBoG>x6{C)>&F6)YN`DFHa(J*ra{{sXb! z=S{yxg+1^h966md=;G~aGy76)Um>dCg#-`-f8xi__IQoUkKSx;g*gRFRCB10fTq{Z z=C-Lj?&Pwp77M^G4o}2+)_pxv-B=sHP`PG5Kq^%$PfxJy{sqQsx#K45e0%D#qZuW% z*Gtnlh}n;Ex}THtQA!{>HZftpc0*vpVU>r`p4#jC z!fGv?B=6a>Ujv8xmhilszZQUzo5xZ_x_Oj*-1O+s{=;&0vjCD*D6sHM(CFTwM4GT$ zTRB9rD>`x9O9+gmYr_Hg%f|m9UR@>eAK$wHM_dkfg0Sd!Gm&oR^!f(2C3U-KUfa9)}$3KoVYB)#L)p3u?a-gsn_35g26aR$M@`}f9P z-UI`WAG&}Ab*1Gk;>-8RsC+Mf~!wtbo zc7mqXYf|40VKrEjptc|!KWch_a)zeg!mzL>VmtbN5^;VOF}88f_qWM$h_AlS3>(_Pw`21VJ%DdzjAJr zFUuJX%E5&JSW==|wNFSBqc+21OW=i@ZmExcj0nry>u~q5l2G?L&cN zi}nB6eWD96=tmIz3Q;p#j0z>7kt^|#Vu{EdLB$2;n~LfDlP1+{ZmRgkzq0*wm?VC>sjM>VUer~+ zbGLQGEiq}Q(^j3u#r{`OUe4~Y$+DH`d)~G1s&*K)nN}EX-`~>Ht~&l<&0DN2l@h#>wfNlxKI7G*L^P9$!DC%261vDu$lCfMle zg5F`ifGKZtgit2nr2qI=tA8l*^gYX4opx*RyvOMK7wccyW@Y|3E%W3q&uJ*9tY@-* zRbuuFsmP(2xey4qCVb=;c4<}@gx35jpt72ymu@FNq;E${;_f2!{G$1wE&vPvi)E+M z3x~vkgn)#vy}*IikC9&%=V0s~3|iTsM>lzavW)Yeq~xnFYDc4cG@(yC>H>YfUA^0F zy~Af_zH9dv^8dodw`E@c-4_XXTbKKxn+j%b!U)CgLr=AaL>;_#Mu$o;rm?_32*5ur zR|>z_<*@K@0now<$dFmkgK1ulW751Cx2vAw@zgw|bgNAWB6A}V1V+*IxlZ9i+u)c7 zP+*N9q0S835nuhk2Vh-wTE=gUfR4%C8wD8N%Qc{0MNiv=E08W{oLXm)Vk3{d+UHN1 z0jSptoN-_aFH{>+`V;jHWbjw@%6nUg$T|#|=Nr+a%|ZdDE`HIDS(J$ECCjQc#7$5` zQ7tURQ*{yR3(@>lt{4iZQOU**pOi?3XG7vw*Eo({J`mfi76J>Tq-<zfH;2edvD00uQvWPtg-3eaSaPtkDn_2<(!khrcXN)%BM<9NU+oLcf}n zMQnA^%$whz@6q3!^nhUU%C?bDSKHkAeL5%juDNQF&c^hkq~B>lMm7s<1w(u0eLQWL zDaUoF+ut7mod*u9x+TOTAl{~AJ`+e5$Qy>G#Q>IfXo{1%iQBN)guGRt%8(YP`ap7V zJP(Go^dd%=0!4VF0ytZx{mfTgO21Ss?zFOO#m0FD(M071&-K=F0{qCl!DC;DG!`WQ zI{$VYUt~xTN9DH%Mn`34{1v=l%|X40@1mT6dHe7&8WD(|6WdDDxSxD-y~+7-;;FedVp23G$Ooj|=ZYa!u0<$3-Qy3Nip@xMITw+e*$v$l5;!S5P& z)PSQCIzakd!2zrW>AAo4AVZDfL)Q^Sz^YVA@-3)M^Q?F6EjYrQkw=)QK5^TogI}{{ z6^jb2*6)`#VViz>JhlF8yq7Y9r>o+dozcFlj%lg}X#96AF0_ppCxJJ;H zx?gT8zT|L(+Kr^%CLM`vA1!x}=Za)`)YiK$XAu23t^H%4pV@`fb5k3vAk;*DBlR%0 zJlauq4kUa^K&=t3%4ZK>> zwblf{9=pNtEw4gxW#cgQ(na<^jMCug608FE0cw1?f?w=WB67ojWb+!AUy;F&xFeH^ z$RF0$+`hN+}rIr#bi&=XvRY-pE%Tmub zY!^N)SUCB;7*ZlBdWOlA+{WloRmj?>{BN*a<4B^JCn}DbaiS$w!37l2&@iHz&69(a zfJ&{2v?-9`4osZ)ET!(6$ zm-)Rtx&yp5v!}X9@V}|=cq}XnxRbTMZ`mq+lH+QV`C z6cM<#sA2l)(cgWi-}vG-R-_sCr`bcI9kSyNTmF;-1)J8z!arWOj}`-_SU7J=CGkEZ zqhygWMh3OLzfKZ@V?@C)q^X`eju(5;VX12L1wBbyn|FCiBFo+PILmQ&Pc@moZU>9O zDoNQt|6<+^%jtD67$ng}VklUba8wn}sQ#^?ICmBe8w-M4N=u(;4C zR{N_PiAG~4(o`@3h#hSoO^>>ngSe0%#ZMS8;2?fa=@2Fo8!A^<6ySCUkRF#`@3+7` z2Y-aJFZv!F-G^(FMowLhcjI0S=Jr(8|BlfdG!n7a0U)Y=7990z+!q&<(aqewPAhMT>#RO|BN_*_TZDI(4`q{Z>#s8@$e4j)#!#zax!8A$Et-U*-=NI23 zhCnWhNbZXNJF8j?IZR29v#twN{i0ewgNw-Ei0Q8*uQXnDZvV|75@Kr&j}}ofXY;ocxAL=U8wtZ?DT?IlbW8Mc!qcOg}1)E0SXEwTVOb@Hg3Nx zo|mAe^gW*H(WO?_>M&o>?{C3Lulf3RtF|&XG$Tud5;Xs@PY06#U&2ekX5wYPyV<7F z|0s!Rza|=@?~Z&bqx{rGc<-Cz`#dD`$hM6l0~_qhm-Dd0pIUtsdVXqh>-+xJ+w<$8 zyht$a8#fR>ccA=3cX7+V*EC)~_T2-lhWw>(-nBpVZw(E$1t1@6gF!Iq`u|zS&i$-L?3}?QkfsVV%6VnnV8f=MYoF*(X(8gfMf8`ZCaP733rgHJFlejM662_51fuBYMF0xM~iN zEDqvL@1^dYd7#*=4kj1j4pi>WkJtJ2ikI)G&NOWBp2*e#)o2Ji0%$j!0V%6)8+EEt zF*cVot#I^*-ybA4V{nFv8+1D>=l9+wMgEAAmB^%=c@XCWI8bICz*?=7XvR(`vZOSW zC*Ct$V1UDSKAe&I*!hggVNTsx4@_nRkN{ii=Y$*Mb~)M>lVeqpY^y6#rn zWaTYydh-9|bLuY0>d%JPovL-50of6r4ud6i1AQe9T0B&3(=08LJrBD+UEkOfOPj?z zJ!T69L`s%KC$508(KploPe_nl;BX7frYHSjg#h<&dA0qkM3&o0S#2SbbjJ&*DS)ptYd` zr#Zf2v|iJn2A{@YUaV9%<&RdKyhOIs!l1q^oZ4?~pT0=H3z?@Rq|qOpGtwDy62x-1 z7(D&)C6mZxN5bjZC3TbTaw8^68j$L?J%i4AkHQeM#XZa$>K_F#>Y;wdhyHY5FVEe^ z)ZxLiYXhvs=PLd0jrJ?0%C z^C+@3)0!lnfk>f9sg9U$Dl21%kxwM%VAC-&e`F{l`&hkD+clnQ)K0BXfkj)Jkbpoz zH<{8p@2JUJuV#zhv3j*d6F+ahO!Ma6H!o;vv&GRsugmYn!aan}i0JeQm!Hi?V`D(ZUy5)?Cb@n2a0o z)0t89o)IfA8so#-&4TM1$?fE3Gg}Dp91K~Iu_*#^ z{W7ZbP~^ySbWq7B0|#I0LUscGf{Xf$zDXUa6Re04X!emdS7eaM*Y3^2$Gt`Ak-}eP zm?#WV2>n^-A4H)NTCK5}lT#h3f8dlkh+~tv@*Dex3)>$y|HYZB7F*t zgr;Gd!OicshmVid0t_)jGXL)1?Tx(Z4c-@T9cFF|qQ`&!q3E~Yu~UoGFKfG-P*j6% z=5%q!^-49o&|sB<4HBnls@K5qV+POJOMYEidG*HxeDaT+d_n4it^aWjX$ITI;J$L9 z;F;9^T?)_JYB4etp+sMA^T^6|uiBT4{#+hpgR#igH$67e?~hDQx@Jt15>%P(EzzL_ z(~53uyW9ph%cMRZt9o1G5#gOxqM$bc!UxGJr;dvI9k-wW3)6G!+GEjXUodO;pq|Lk ziPj5>zYJ!V_lOq2LA|Ar5%R8JUMvCprek_#tg6%ZoDj{8uQsg9h1Brx4WwZCJ=ejz zlH(IC)Tm7)Byn*#UiI`Gcxim5RW+V?Y7oIn3KDrjYfMc?cj7Mlt9q9LPQO0W8b@3OWbXFlhc#$&VqTOc^(#XzyZ=!5u--^e)Mu5 zT-X}GmfXK?;Ao0YZ=NhP<{3d*3bgs}venQ(bFV*Mn4`c%QzetbV+#rU3k2BQ2$DR< zRP+>S3g4xL2}1qYQN(+;(l`fV6QA2^5L^z--^jN9aM~|OFrZh<9RBt3aUumvpJbd- zLXo--P;<(I5vWwQkd&S;dqHSE*UxB;(Zw5hg#E9N(~v<>R!Eg4E=rYE0w!n%BR}NJ z9|o7(C+|nKjpw#}13w?5Qqyp)%-b$|<4=%_EOX<@i(bRaVbf6sa=Zq(t}KkliZ=2q zNy4$}Ad+)a;y1U)#G-s1RAn=NruC%e+vLN74N3S{?Tcd<{)}fC>2o&3C0H zr{gyMS8@jaZJyoFm`m#6$iqQ`@7$E`{e^7Q1nJmK;jVA5UUS(|EDF6wjT&+5)**m@ z;n6Z`>oI|y{Y1W+-Z@#jS-yl1@1C6pNpDElB12szu*HewuFbAi%RnHfZz{9Kz7%e= z;XS(6%_25@JX^z;x-m= zoHO=VE*SBfL0`nQhwoV{aziGCPyi0pHJ|N$>m>Yh~yPg zCj3=GniK^&JL8cPQ@r!YRx+uI!Z&M+EV`zJ6HKC^V>usq9b`_LU1Hk$kxb>32^(mj zV(>r-=nYC`4SH?O#O+ilwxuzc%X;dE35>^>^h?in#lY3#jjh#MS5ofXMY>MYw;--c zQHZNGI@EN*z+;-_c4wViYwwc!aDo`Wqx!(+o<8eirF?DK^c9^?KjXeD23-(>aow}b z%KXDFyd14!oL8EM36T;?-K?-7^P?rywioVf94h+N*UfbR;8t;_0|b znju^}t5uC#r}j%>CQ%NlM5H;lQ!{1stAa8adhc)8Tal;UhF57PQHrkjjA?Z42MAxV zG;P#`^RhBsY#|n-KkXZExKqHBTAO8dPWzP2SL)m|46xKqOZ(-djN_#DHW_){3GCd8FKg zfFq!_JLU?NKXgH4V92>5-x*pgJKIEHh;;Hx z|EX5HFH8}wX~axa5*9T19^$rD2HhzgrK0~n5TWH)Tme}lNF+cJ?dewD*tpC>|*7#dmqYjHV0UKYCoCjKjiA{1nmL7xBJQKvE zLz%rHC@)nD!9|k41m|oRdUPjAzl$SFWuqcU-lP?Z4hZpjLpYC>1tPZoCL7b#HvAoO zLya;p7n~isb2c4VZ0QYZQxZK@L2p*gjcp;RwQ9n>`(cP0_K z_cc#p?Z|ZKTI~SlLarNsyzqKoSn;F$&A}uJ=&22wkINebi=tJ zA&Qhmn;)L+0$vTqllENg-Q8|7fAXj~9REp;1Y$il$;OUP+Mzh+3k^%A`LA3Ng)%IY zr4Ofl#~pFPbb{w1<;t{I_z^^TcE+sn$WdJS_ka@gO%$6jE!-fQf~~Y^+-zC+rL#wG z!E=LjycH-$D;&1x=onB3t5_^TksJ}cO8}06r|jos zAV|np5{X#+6!mH2#In7AfOoRFeGQ4@0CrH#6LS_O#r}iac~x z&LnQ)4`Wttzvg*RL0qeUzO9I7eRB@#Ki``Wkck(B$V-wC$g_!L;QnsD)f9N+}L%+9MFz92WYKW<$uuCIx?aZ}A zv}|a%ZEUR2p>B{-$FkzxN*e!k!PIUKtY*N#qtvrXAm+VdR|F_Nw- zwn(KAB!~q@z2)44UZxGHh~iqLhl_EceS2iISLU*cVzQNPy7%Wd$3aX#Pzg*GW=%4o zxFOK$`T*auJ%EkC zz;<$DDhjBt{8!0NdIS2WTk@FmAISo4!fz~h3QOMp;E&>x?(2bvge9Ysz_Bt}4A!9c zsKr0?PGh%K@GWaF!Nn%~(Hw;t60zHhpSEFOLM-47wB@lN>3>X~awz->o62djIS9z& zN)g4Z)BE|+Pv}>>lbd}JPeJvoW%in=uaZE3F49KyHs+|qXI#Yf4dEIEHZtCv)_$_$ z#+icK=%DgvYrqQ=gEnsIE}M!L6>%+ZyD{14RHR)J9mQc|vQ#Ls$34+Fu-erdo<9k= zs=m=5;5c3Xvsmg0n(0iZnXxcvA3&bJ$;?^q&mG62O~% z6gaE>+nVIKRgzXF_v{t3x~T6T%-T1OR~bhR_I&G}P)vTuUzUD&3{QS3tMEH> zDK|7dr`s$0a%$z4%g()bt%yk!yU5+ql@^#st2M3%go zcAB$!OeBD0zWfpr7rs1sHUkud;Xm2Mi;iI6h#0F64hz3XaFL-xvu>;CNKl$UNVZ_G zX{kSv)GAU>4g z`SSO@^cr+$3@8y#RW)8?0w%ccCoc65_Tt#gL0N=SF3lvP_`rc;`~V*%aK{SEby3b? zV8dPjzBOLTUbeX}4e`ZS~)$hM3EliGG4d#8(e<@y44cBVJb~$2? zE}uj)O%L5m2_4CG0RQk9I_CKV{#7W+!rP*bFux?}Kj{LpWQaN^}m_?h` z(wjtVEQC!GHkP;!>v?knUuB)@`spbM+bFqz09DeCtyY>_Er(jy_N+ zfV;ErpL*Hu{iVhT{x1~wjU4V2uGg51U3{EikKVeTjIj>IJUazb&P?)M5uz|cgLK5xw~yZ9-aL*LCf9($KiTF#}Ds>wjUk?4#X4nfsrbFk< zqVTZjjpb>zG5b*ur?>^pK+>}zY%Vj8WiYogCZkxV2!>2XFh6XEkW{Sa?}zsTWEs6a zidKFdw+x^@BFQ-*uVDqVx^aqGR4zbQ0%dhrSw%m*e$MJUF5=|hLdwpu@fi&KEyC^v zL)V8!7FG7>X>M@ua73^9;fRxnW~$nyV=naG1A-fmRIrBu+0jHN+O|GJ=yW+u$3{q%)z zZwH8W=vp@Zn%#sj-(kCmr_rKr1;vRVEAD~;()OqEnBP{V3>RVXuCLD2-7fw zYVpuHt|k(|NbK)_nZR6>-1fn>5IsCg8$U|IH6q?txtCA=0MbfV=lK5#kb=*0&nck({_ux8g#D_p1KnbfjGo&P| za~eF?;pg`LV($lM`y_%I<-ZZgsgOU)Phr$PtZIey=j`P@F-g|{G~qIC?dA*oS-^(8 z)VY+v6kfQ8Sv!Y%aNwM4PRPHpgLl`=T zzD_CUZs&4EREgUJcm}8{{S-5CQp^~@g-R0eu#}c_#Sb8atGZ$m2YWu!>5bmKMO`KV zy;&5p#7>~7zU7;9T@6ASd9e`}OK)`O7}2#NrXp$mlZB}#<_s(5j4;+rX%@s8jTLjU zz$k!KN5tw)7A@FW@RtF}jDFbibtSX%!&8^*h>m3JQ^=j0;c45-2gcdpq z)-6c|N4jSU)MrmJ5bRu7#kcWa7eMs2Sd0Qg79YAn^hUoqxHf#I#(Wj5RRYjqo>8=6 zqc!xVsgJCy)tDa*7c%yk1rC79RlsWo9EgdNvS~>>tJLNs?7DX+aP2`#UE8vPneRsz z!e;5aPj30d0pi8hS>CCL#EyXbimf7X3C~`S=9-XGBU8c}3A~AEK;Pc`nMfJ`&L79d zq%7XCqtK9N#H>5_s27(@1}WW-;f!9(e~w>!H8VK; zFmh2r%ib3cq6xbKjNt^0hq6dnlcG$Gz0m>c3PB7^OEF{A#`(Rk6{@3gWzbF)n>VD9 zY`!URfr<^?O1Yw<3L`Pv`+&`Ox5vloZfI06F~%LpACFk-tj z5gEFMM7#QlN$=x@X=6E_^RXJNwuqPZ00)0H!aIAd5_+fxRAYRsrOvTJ!+!}BNjW}e zYM=b$3FN#YZQ>603PpNw9N*Qg@7Tl@_Bl(PpE!uZ)j2~4O}DHF2iOs%6tPsb25coSyt*N}AZSwJmITx%9e1d{B98UndEW!)eF9DeZCckz zA@{uonZ06C25ID=|AvCvrrzIs;S{cY7(+4@{u8zl_J(MlO3u7W1rLPi+zMcSYwOcN zwiq`)A^~@f7Aucb{KN34LZY<%sgSAc=A?-ZJ%I7B<;CB>l|y;5 zn2Jr5*V&WLuhE%p*9x!yNvDAy_7Y{)3l|T}N9%0q(lqT(X7%7^L;n2UxX{z>6=~*g zmtQfFRl?0h=~7OI4J^@Tr#n{f-tmkuc|)RF51HglTnV7mgDJ*`vB9Dur7BZ96#YB2 zV05Q2jYIDRqT#`Zo#!MaEGy0*dT1=IUyyPmrH-9s*4=)V zqKMOCrzqj4vZS7#MPrUe0L+E8@a1h|5lE1>SN}+tq0PaG~ZHGay@X0Pph|O`COKv!U9OlX?9Heeb<9KSixXSr>tc+xW|6b<#A|J(v z6C`1I(G$rq(?UBlNA#+OgUTH_Y@Kk8Q6+f@*@1N!RNHL|pK{g)tri-q4(mfkz#s(_xC<7Ozsq3~=NQpOX(@1lARmwk3@CGm6!iau6C)CuKijUBeuW;vzwMnAO^-PXZBK(f-GxvXYZP zDDyX%K3cPZO7~av5AE)r*pUta#RFk{D4llLGtn*%GO>2yAX=r8*8sY7DN+%e9#IYo zcQiW9J$^f~i^9fmOvc3k;S7xSZWVfi6>tC793um&? z+jem-JTmP^5Qlv>FU-%rTp<VS(pYG zLD0WLmnNqh!Htm+jicv{v+HR%V$l}H6 z4kL)xnrV+h2JC?IjX+iGVkb!8qI$uMnU6LXMDA6{=z<~Q{3^R_Dsm;(ITj(dv%DxS z_W4T^GS*-)^(DUCMTte30m39&zOd!>fHMg^kUFlu$9CuqJJKC`H3Iy9i_Zs$%= zvC()sm7$AhoG@9jr?aVA26zvI8x7FjJ-CDM4;j0<_|_%;LEZqPhiM`9!fQx)25@Xx zK{4>y9|ytAUJ*xr58!G}0xeo<8BT`WZ{#pPiAaz!;)3niKC0%L^!>g;wkL_Zmq>1C z&kga07(2d2Z+?+4$F78Hy%e*ED1I;!=0FiA!Nq0rrA0&R3?$h26t5y-K)FB$&WbiH zrmmJDyF?{|XhCguNL4z714e566t{BI1@jUI25o9+7f&TDr6SCt503c)w29_uQa|i9 zF#jvC-0YB)4Rpdx{Ox&A5DHJ)o;T7%zZcgH2VsYa0#EPFrhi%6Cjk}zc6&(MMpI=b zlBo^lOh*P4`-uWD-<7P6pMrsRo!E7Vo2ZQw*EoouLqU|0slW7JL@XZlb4+ec!p^)P zhqZYO;wX@n={SN;#;+6l^{Q;6N#wo$I>XBm6kiChSsoNghl8-3Pkw*TepB241T}tJ_bJ_*~`{q({>^d`qO=lCp)&mNN8$HMuE+* z*8nm(8~~wIF{<{5t4(fO;^3bt3hch9B-c?MG<< zyKtpJ{OdI;sfu0qvFB;QNQb!gz(0qo0_V*ulmt=f>49usP_dmJf$k~@BO^ejkkyJ| zYts0TB}!h{yBqcVvE%9^ZogTi)>R8@_z99B)LeBAb|^5_|BnsOe zDtm+*(^`pq7NuDq-|@2xEI4ehM8I4&=kY=rHdfQ?rL0T}_UAaFb=>rbQ(ZC8?0`RJ z_=zY9eB31@n#67QQn{ujAIXgu76vlmW)eX$K-pF$Txsj6Zn<`?ZZQTv`qc&voY_5Z zwB6h7-?Yn1gbuc=S!t$6b7r<1G;{P-jqkDy2+LhaTWQJSk@sS`Eb@CFuzEYNh)eGu zH5!KV+P>5ei^P;Rf=&HN53TQfVQscXqVIDF>+o>ZBns!K9ph2E^rRQso} z(7vPC!#edhdngfAsRr1tDga$DGJSUC_cml&m{~NHE@;M?u4xvidiR)_ljRr2_`kk36{^a~+U3u=sC*^tgC94ZH>I_F!>;>AQZ#Fn?(%3}jy`Tf zKfNV+zTVk=*vPdfMrCRIXL9!1+dxh})I*B8c0GQZ_aditp^p@L@(~inh=2mLhpoWs z`?Itf?{v)Z|4xQ4AQNCRy_)Rlh{zcgE4V1Y2NF=$to8 zWoP_ls<0{fz3?LszLOWXBk8@fD7@*|C@3NBZrsvj)Rs$b+5Hr+L6vqFs?qIoEa;$A z88Z@1Np8b$@`=CWkPkLc_b23b75vu($+ePW&sdKT z5+eOZ0xcOkZlQn{SI>_o63HEpTzR1?uOXS*4)P45 z#8ze(+I|g~5XpNH%G@66IW3iO$Ji*FoS=v#fF!PDbZZy7&7jlb4H?Bnyf`~>Mtr9*X#=DxWeI*PRE5UE|DyH|M zr+it#`e`GAd2ri-(XqKwf z5BxMTXN0bPkTJdh&TY&LDIYd|*7p)*hP=&1*fH@e;aW=F(#1D{M60kMSj1V6aegqV zsH2BZ&Uj)`*w7st@srgZl3p?47yTOaCxf8vRMMk<3U$K>8bGk12T=N3_fZ1I>EA_T z2*C*PH6@`jR0IMBR>Z8@CriQ)JlZjMXOCI!;mO8Fqyp%o)FvuwqZBW$(5I{(g8O3=BDI`w|S$drLZA*&=zo)boJhH#lTselp7UbFJwpi(}-l`y&e z9=<@tnnye$Ctu=LszecVF46!9}F5t#f~ltJ%GNLELFI1zkyMV0o-b z!lxy+m%4g4)3C?TeuyNfL`U&faM#L&ac~C%`u27Tr*jmO(VwDJByr8}xPH6eQClA+ z{`IlD{V__9ehZnJk z8iST81Md9@a4v{8{K5!o;#!0IpJoVn3J2@&0c^Rr>IzDBo^0}3YPP*8;XXqLX6dpf zEq_6UBSxY7^~_$AU~$gAwQ*F0c!vdN`3rEAuu_@5-*$tq^sE1lX%o1)+|A?&Ej%hF zoAfwxw@{mPr9q_AA}Q#!%`4-4?&?_foXAkvnWrC!%c5|(!s%mPR5@--0xp7Aw_P1A zp>Qge?`{e?p+6aAm1GbZs%fN{s^&Md8B2Fy$%JP-wYuqfQh5Ioc+mQ!wXEd%c+M_& zFwPm-d>j$3XkRP^9vb*JkrMpcnTORiH2zZ6?m-5`T;&004kYnu$~v7WWq<0hn5!OO zS5K{PivHglgijtIbI3Jwtl4X*D9Y}x!YuH=N#CrMK9Dl-v` zNKJS862kG8HnMiNl@uC3Ufw82_TicUQ=fd?r!xu}7tup_bxWq11qY59CL^NMh*4Jn7jA)%$NbVTX?yd{DU@km*2vHXBMcZSdEV|TvqCW5c?a*t zh&m_tfbUkEFWMs`E2E+~qkPfzi?lefs21M0i`p$uQ}p+Ld&OuyZM7*oYSnL=KNKcn ziUq2-ien(gM^Rad2dFC|6f|;UU8Z53aDVa&boPQhem#KV40SUf;YSkhp;HOzSbQ95 zv-+HRAZr!qd-Aw45*hr$u!DSSabL8YP3u?RtKjq2_l&*J7B8^dRzkMfCN8FXxB zKPoA78xsD#Idf6K@0zIWTRT1Bwvi6Oy?q|7oLEw-26g6LtmO{L6K=$}m?hw!futk zC$rD8Rm$+;iV1m9a+|V6)gZ#~j+{$uq1E3RYd1#$36cyF>4<|OC3gF#N}DTglJBLx zhPDNZ#mQucWMQa@Q%O!1GZG%6JYk!zD7u@h04bV}z@1Ude3UCQO4p{W4crqI|SrWTQ%0FHS#8IKPU zd9>3(oL&=S?eDEL=HW(~AsAZm9X~Q?4!qy@cbPTjmV-ReC;A}VNj{7S&1Gkfo>ne# zW}nTY)7lBhJ;u?#6(LIsdCZ|4w9rC?M$Vx`fLad6x9`JH^w1|c_HPp0(lgVq_N66B z4d`vSxumU^`>6?Tbv@OIDXm=5YBxDR=P+@ChGo5`-EvT2^Mq@_f4{)}!`|rd8MpKg zcQ3OnFXJb@J-_7kgj3y-!#8o?P*(DYdv$|L-96k2-j!bqppPZHa46s5@Z7gv|HRHo z%{71XClQQYUH^qtRiz)N|-_C5J0#7QK5_F`9U7CJw4LAtUO zR#ntKOWT;Gi42RZ6!vnt#uD-9+)=G9dLX!x^%~)WmbgHoG5sLVV_LAb_T3t?rX{!^ zHyAX;t#K`ONpE4kGK0y11go2 zr%F#Z-ydymJ?6^dF;oPS8+2ApY%?`{_#60Ky_mzWuaUa5ZcA#1up}AV?E67C!ghn> zM7myyOVMP5zaQYFbodhrA$bwHXQHL{1&6+-7i9Lf4|E>#ecV@Bt={h539B^Rv=^yO zx@6-`NY^^=9i_}}1Y%L%vM=~pjH>{Dd=J0l0Qd){Khu15=+4adR-=bNV2bB*gNvwO z)5-7Tb?#fy-rK8|T{a1dBW4f9&>0WkCD7DZ#F#p_%2#`JwbYGhDm-5uv{e7wW%&*j zcr|_e8}fnl3HlOj1zN(L^77|N}ep7!TNe|hke8{b=BN0B_ zdv|>Mn_y@J%j5?Bia504>4h*`S8N5MDxbN{h;Ok%pqEkU=CO3_7!f{!M-*{Ie(X{o zmqd&pZbSL+HT#r7=w3p)GI2b$kwlCh2QnGgr;BoqnYlmm0lyQ6$uc)ekcNNm>@(r^ zhfo0_b`tiPA#hVf8rc)BGD$JFYa7u5xS@c|f&{>+L;lN7R!-IMN|-*)4;ZVj^(MF<$(g zT$kcHCrWE=G2I}Iji8BiY-V%W7-QU6xd;5yV({go38d1~$#H2eLFqCZO-D_q-vhUFdzojN#7U%|A2mFI4}Hk9ry#nv&kC-oxM=$7&>o>D^*^vMD~!0~8L?+nv6_CI@=?l zOd@MZwfmyWKf#$zgqa~cmYxY@1Dxw@$c3oR(k{Mq5m}_DJxCu=@P&((Izg1=!BUZ9 zQ(&%CPE9jRH-40rBD9(D^?TK9SEl{d#CTe0P8?|h+s`wf5%)1P>H1p%O+nj*%(Mk+4r`n}EbO#Sx=8euA zk9-%`JA5I)in^?KmA9!`>~mscckg{Rrz=s$z3R^J_}y=cEwh8Uya1{*y5b7Gw~X6M zW-WiDFRP3be!Kjkb=)i4%L%e+Y~FeIi%agsoWqTI!Yg~=;)lb>?3uecm}Z%#?v>%nA@=T_jPDxLk}%)ujA?1uBf6O z5>!=mx-uW7t*JCJIUw>ISTQZ~p_j{ui?YxR`rBn9rW@!*{+f?>2c0Iu2YgEg#yoAa zXZBa7wnQ(H77u|OM@NpwnxG2UzvO!Sk3zfzNwE0#V9yQH4ZfTcWZ5(Zeu^E60b_?( zeOZlfS*~zZXHTxN+>y_nu*1YGiwo_KBYdr9IgLc%PD%hzc5VroyjpmoPSjZ~HTOA6 zQa=a=PZRU1*J|Cog=*56$ki9%A&OkwMR>{kj>x>TNWuNv_|_{M-4`^}WecAzHYaqd zgKbO(mzQ!VdHGE!@eRr@Uk?&~>^nr>j8T}WvnW~g7Kc1WpUBFJ%Z?CGI0u;L3CU2f zo#Hr_ORfGo@bCOe6MIK$vK1RuV6`str~TCFAGZ925D*4^f;r!yPC_If->7_WMr5nT zsdJN384i+p(g5YM`FT%LLtF(D=K{`cYj#NTcs8Fkp(}5cm3c31dAb3@@XrY}i?Gj+>THG`D{&1sp@yFfz_%RkMpG2G?2RTKi7?ZdM- zwX;SICOY>Nj#;nNzkI6Hn`=A@uEx4G0~ONBtLz{H+Bdd=kQBlXQYKU#qACJ^T8eOt z=!T%?vH-k6t}$WKaT};{e-fel6CQ0*XF=P3O@=B5^3wBpDQ%wVHBjALmnBPa#qrb> z3agvfF<7)PVs+#CWt5j_xBG1_^j`aL%FexG>+MOd<&=~)NzdpT^MLV7c%@>H%Jdey9%4?>e1GA# zp~j>e@*~dI5El;QRM7<{adW-@iiMbD18a`O9UQv=>}{? zJjf`*)+iIB7z7f4c!X5a*c5<-k=LFn_c{UJXqTrNGVHY18{NR_2GiVZa7pF!YkA@s zus$2T|0E?wv*%c#>%~|)Rt`(~#c3QlhkG}tp+ClOMlgh%w)uH);aIL18ok^<0^R%b z=4W65b2^l~4jr!lj!LD^u~%@272}=?F8lqJbKfkSj(k7S4&#nZM7>(d=8~0q2e~RB}FR zr1LvYPqa3%3)1@m8s^29xq1;x z#X8;jg12FkcVY61efOc^lCE^mPomrJwi;0g!8Pn(hHa|WB!mi{HO7Q(Nxv5qu&yPu0|;ZbEgrn^$WLmuDk^5n-<4^0)jsSXG<^=R}%^xTHDu zE4cr({7O<14(Y59deCbJ>UUkz{6T?Af6$Qn(^<;AO$el4nSEx$b&O=`xp9}BZR<|Y z8vOg8fPT`2C=T5HY|h(e3jXkG*$-w(1x8NP9{v1QvDNh%p(r5PN8_ZIyi}3)R0Z-N^k+kOhZ&mg!c>}Jhqi-sT{Iq7H)W%WFVrG+K(J{D2$$+sDy=# zj+`6Z);2>ky|P0=TaCSS6Oc-i+;DC3qp6eZnj|PZbGdp{|GkSR{d+>q9UJxUt2s&j z?4>n5%e5bn>I^%hfl_=9H@(O;2|qJ=D)p8OHORzC16KMN1B!;6h+iV{ygsXuFpI>M zqDT0%e+f$#t4YoPqS^D}r3<%Ac0Q*P&!q1+sQg?zZni!xDe`zV*xTw|I?ekOqA(Rpy9? zVZ)A<R0?na%le zwbFuzp9m4U3y$7gh{qk4(@!u*z1oc>-azyDo*le8W)vhtLm_M z(%)_3^lC>Yp&s&`3~O+El+HwOrPF(#8D`zM&x=W(>$wXQ)tPJeDfG_g4vVfYOoo7?z{3&Oo*2U^)$ju@iLPftm)%kQ^y+4S zI3WuEo5{5pN|jThCP@5(TsCs@gGMRg-wXbkbs2`2F_blVSzWKoXhbiX$-_x)@E!^) zG1Om~3PuJ`U84G?tEKZqzb9YYBgKpvbR zS7Qp6`+8f#qczzfZA7rE2fmB=C#DrOS#FzQSRf8mCzq9&Wx^QVP-2mtfx;tS>%NAX zKO9M7QB&b?FYF-BtkDjt`C`t@c02NBcC*q}_xem6g>2I5^9QoA2!`xta0PCTkvd8? zmY>;h(cM+XPU&f`Prw}X8WbT?o(ghhG}Mq1;e&Rv?^iiRSs99TVpjXI9%<#Aj<8xy zxxSruN_6XFu@)Dv{WKh;i&J%HQ!gF;w9j0anPT%R5zJ}8=%@uqCe&jj63m6U@^q+J zB{h&?=vQ_nWEkq#q1v;r$@TrlBq2&ga+?TZ%!>jvd^yOO6a&evQ!vp~!ygx9)dEMH zdNtN6wq8k0sv(g@-}KMfy^mv5#ZHU8?%}$JW6{R3=-lcbpN^A+UlLwOaU)iT8Q^}DF+7w{(4fjz+iT|dr^+w7}S ze^`RxE+YR{`JoP;#{lI-tVzzUS;XgBpB~cAHIFc@v13a1b9m?+&B1R`(5dF0$l+wG zP4r2$zL|`cY3zhy#Z7O-O7)p{G1e8GGUX6GrerQ<3#BJDeVABNm|Fe04~}8XuEELs z7AgRVnuuRf_206Zd#Vh?cWFu#ZL0z27*D!0zM96O>@IZN!#=p~OjRr;EH*`Xsw(%@ z?RT*`T#QONk^G1@=Jct;L%bgSr8~)cItPbH7c#98J;TLyRsneTVZ(Y*S*e8DF~%f` z;nG13$%_j&bMy$OW|j|&N|6(hV~EV+5S+<2+V|Bfcm3_$4U+2|TdigF3I?CaW)>h&#Tiqo&kAUZKxVCY1@n z>VOx|j7#^OEX&@gTg9!jzG=B#P_AqI4`+Fq1LIf)qRI4yCjQSmte6~LN(@Q~j3)z? zCViq_?>A)nZ|l7EJXqq;^b0K>Ds=$<~-tEQdQITd3c$VKQ90lH@8c_NvOnTYo$FLQ#w>WOZrt z59dUtx7FrTz@2E8BNZ8ds0nj^yWnv4BPwP>wB}&7{*9P5H9}G~*p|IFN5B2oqDM-% zbC^R;#{PkCE-s=mAf}5-<*RQYOsYyGnb%_rVf~}rm=%tZrFoX~*>CrmMsg4QB8!x} zdJ*7y|CVcqe|tf8*>l>LZW*DXj9Gc{MDe12k)HVFr$B&n;qrfWmx6Vc%l>$xk$~db?4@gast~Z5IAN~#NGi$?d4h8 zu3riXG-Y1C3PTMtmQ2Kz0AbJ9vq<&SG%AxTg^8T4%N%)X&zx5;}Dar>ZhE`JUj79@Z#uQ$;NC zm~AU3jIg(OV3J(Lk*zxk$d~r5TpmBTrj~lOhq)70nY!@KrOIZZjP9!*0G=nNje- zrE*{hI_vrF>Iex3`JWD@X%bw|%H~Ombq4LwNw<;R#GNjcbdz_Ax_WSG_}%4qkV1nW z00OzKR2A@QwR)>b?1OjgUsP~Vw2s)Qn!!t?n?Nkz!-rNpCe zK1+fdI7bM_XPK4hQM&OSO`UBz!i{j3uVoKXm7TN9vetT}8n}v!Li(Re;urJ)T(Dkc1*3X(t^pJSaQ2DI-UlI{tm;+P!wTwxn$@9Q7*%f%0j^$h!iYF0=T zx4Z)klDSJCumLY$Z z54aJ0ak+4!vJ=?02al-{&DD~|&F$;U!>K&xn=UA&0KPD%}td!kxnslq1*aA4G0=Dd_AyX4{5Wo>t4mFQRO|jSpGZ$FZsUupe^kh z@8>(#XPH1?=73oc?1(m(g{#QHGO7X_0Eq`^jl@2(Y*Wq3g2B~NLmi3Dy{?pc z_o!))?GvCjQ>!!8kzFdUrz@&Kd6-czd(!>aaX_Y|kxP08hHXOTdhrN+bKiVjx{By{ zVfXnbx*?A!M}uyDi!+4#ors7WW1i-c*|ONib(&wt{?AdgYtG*HfQ+K#6*zH3?Mg9r zgmyP3_Pxfo#Q6K|ZZTVbX#J5jf$-?-8ES25d^ZBh7n3^-8$7;`z{$=$%(Hk@aa*jT zNJ!~o%Qg94Ux{#S&yFz*i~0`}4kcXUi(Rj_rWNb7qw|~dwEsrO>sPQSJ!M$i3~7O~ znXWp~=UkbJkS2z9$7pK)p__*=Yy@OJfY*U8+97Y7+7P+Pzj+_u3{SOByT(wFzFB$O1Fg2$8T(v1e}<|*R-J0A2EEV3=^h7FYUl@mPeV9a+Mb@P9qll`| z5Bk<57obk6Pa~rDhSeQD4sb$ec%RYQNbqKqS?1^2XEtthp0Q-SjP7jDVvTvQ1=_JD zUM~l6-^dR^$(TX05N=s7oh&Zt7(ppkkMvwE@f<}j>5RGRvImjsjua?M*%5+(k_?H*gH=u)j$DKSE>^{V{$)>e+~7x8Iu2xSmAcEnU7*m+p*zH9?+oT}|qwL}i0m5coJS zPTE?pdNayGd8}CLVVnpNW&tV$d}Oe*d&O-Q=qYh^m8ggsJ}xUt8( z>O3Q6z|&2Tq&xkybx`ogMNcqb72OuLwH=io;2^@7?DiP*`!JT-as!#9yhwdSkt9dPV-%Tksk@8{*f2k?a>{`@ZKqH+2 zD^~`?5or`(t~M*AC;}HjG{H>pg*;<8&kcGtQx7cPPR`^oAUINBFOq$R7pVoqp5mg? z%Hmw%)j{aDPB-@(l(Crs-#74zt{{< zTRyJU_?*oR9_!xVJ4N;Z`Wva@ui5ZUHgJ!PAP^%~4|>SsciqR|e!N%;&{TDN$n0u8 ziha2h#OAeAR-y)Nq^6VgbYLGBlbackCs_Z%2=VeCj@^$~M>TtZ9F*xqAeaSDR~+|n zD=pDPiK$CGW5yoW-)*pfLNN<>Fz1hqXV&5fxfUHD=(-5RKtikMU1q_svzk&22 zib|E}_K)(1;A+!$ybTUw_ZQbxb)(vdm@pN4a2OUdq!0orUB$KLrB9A+e8hs~@{)fF z$`EG@v!UEjHJfK_E$J3?7R-q|2Qf?b49aeMMCZvjVz!+0KU0$%*CwQZUv}_vGLIG0 zF8@hCwp|(|g2XX>dHv;PCd+IjI=5DNn$pIcssliX1D8W^OucOVX1A$R3>YvIWwSrq z9y{&~l9zr?i!WlWV#NSV?jk5`oshAM4C^>Mt&pxk)j>J^Qf9mR8uU>DB|lg;Tsq>U zWO*p0iGR+^u9!~$#hY62V=aGvUGD@Lxf{FCyyz7hL4*bqCu0hiA!WAeZbbB%>V9?W zBoPkEq3Ypw8@z?E|7LM#jmLNbd{g!3i@5abRIH#n0P!~C6~&KJ#DPcO4&B46O5DjH zO>Z}3iTKpO7z?~(5rER3*2`w5*4c5g1ql+kN4X{9de-_6b$^kgXXl{v4{e5S!MXWo z)QL=I9}>*Grrfb+dEc3oVRzbn`W{k3@T3A}=>7|xrYcMOt?HY+!L;pGhDj^Zh!%m`?OaX*!ZT0GVL-VO0c&RIw%OwsMuFZ>=aWBz6xoOgtRFE#%@Cmm;1s6NboGPqc_ ztT^Q>$WCE#*^ago>y8VZWRKw4Hwmu4(v^ZUjZ%TW0Vg`nlNU%p z)i{cZQwei+FY_#R?p~#r@G!@z@xH?E6n~YJM;+y0*+g;|HNxS*fNYoo4Alr8^Pd>W3^gvu>Pw zJxC3WfV_(xlK(Pvtf8Z06oyn|L%FR12U~7lC&)Akqr@2-zI5lk?pl6_=Yo~qa!7vH zaj^Bwz3%e+r)8vRJ$fH3ot7-g2}{`cM&G>qs2I*rbVub6S2k{0B=BRth%B}&E2qhV zS3t^FsvbfLngrK1{ypSGg28_i#(aiF5Uist9tW6uU`N!-X`eZJxSnt-P^I2Ek1UP+ zWTfH363$Pf_Db4OFTZKc2Qo(YT%a)D9(ZFpSm70*eUPLGc=96DJ*#Z4T?RF#qi{Fg?0887OQ4gSS}l%pVHlMYWxkaJ68?9mKD9V zcfe04AqWIzw3&C2?`z>0Lpg%_wxaJuAW&ooJ{Z5(S--BT6DQI2h$a?-fXXU*0+_Dm z=4)I1&7JL7mj~uj^XGId!kDpzoDKzNC250OM2w%td2Yh z`3c}I6{6rr4fK_3ZF_G6=Z}Vg^N_;Qw*rv<;z0LMRdz$qG?;JBKhj-3GOZ*T8b9jM zRQu^Gr><(P_01yBtL%r_J6zJqF_WfOCzev2>|c)?G1H^bAz8*il=&-qA~#*?X=Tj*f=~xXRThe^oIW>E<&!bM%{oz zJRh)gj#kiJRvER*lWL9NVqm^`n zDW$F>lCSLAuzR=jP)1+##JYXyN^&O(QRtN+@Yn4Z~^4b6oFvl=6%bs z^4pWHDF_}9`Cw}PhPMLPDPqg$J4tue)yyP$x~<6X4a=H!%HOxT04Mcd#eFjS-vFFh zSkyPy-4{#wA(DrtTa~BhqY=7tPmw8=uQ_`vC9n>>$#E0|!1u^mSd|R7NG996a@`F< zNQvze<2KTRlv2OhSKiLDaE!1PSM(5b_1|Z)Wy^xPoKZjY{T|+MS1lkkgD{3Q?aJ{W zz`M7(26=McJ`b~hW^1{Lzi04pIk)8SvD^aiC9-^r1y^m*Wcts}_Ubmd&+Tagq$yJ9 zDcah0fR|&_093skZ%b7U3U!8o7E_DSQvhq5u?qWLix~Zo)I7)FWnpN`em@m!+L~1) z8GjooH+(Q z!6UpHZ;8_X1;yZmq!sq6;6>8RgcPPRXxw}xs|j|)#@+ce^W7|^+*mA@744A*)C_t3 z-=pU%e@7ETsJGg+>UPDn`stP;xg(ZfrKM^BmMk%c`oG0nCdJKUa z@2wV|H~we+dGOzX>{5MI9~-=;_ca`G-GcY{U9<-k>xh-?ZQX2P9$}17*@nHT?Ri(b z&}H2PCbqgpIIqt{05@J-re2j+J+29;DI0+|?G1USjk~7vn`v97Nt1o|sZYrnnZ%fB zJ@Z43Fag+lsOV(TE3>- z6_zoljrSxs;Qb&SG)8x$iF;<^t0X~BB^kDel}x71L4YyL?3ulRp78hUthJ7cA@2UX zA$gt9(gfc-zcR1dQssjZxl7tP9_@J+^RAsDtU)4X?Dtf#*{@#|A8w18Ec>v>(ACJ| z@1Td4M4N{K4kn!uq{gOouBA(0 zu{&vGAK_R&jZlucS$OGvLA9u{sBkh>8MMi;D!9Oxe*q|dO2DI&Vj@k(X;~KLGs+r)=c?x)(3*;{xvygPiG#ZMuvV&`tHJoZye@P~qP$ou#n+K=l-(!R@Z(n}p&OsV_47 zAS|(juQ}U42{#Wb57NNjvtcn93}U0twrU>JTFK~GAe54I6mvob< zoW{E~r-yKLB3Ukdx0ws_Yx>_%(JB14#*sE-<0g>01JSyq;A?{)I#Ryc@YKZhW^*dB zyqcNr3o47qz29-#{aW>W!I@L!G}Zsi+z##aid}Ybg7_Jt!yQ^{kVCW#={FL4iCdbv zt#og6r;@eHpEx9N-F$f2xE_BTHbinrQFwZ1C1&RiG^3~06hM>9N@eAoEO zyFxV01e}3Py^nlTt53E5{?dm`;!X`ey0CS~%RO;|IM@}%-@J?b6SJSA#!tzp)>Gqc za*GwCpjl6(st-&UOP5ZDLG0`-s^fvw366V|eo)Jl1yW4Fv>O+gvqYs2&j*3l*@)M4 zf0V_syNv=dDP<8Dp(8$t|FIsRbcLsxD9jy)&QmjE7aw75)2EJVv`_y zV=FL1R((eYb!Cn>FI9=Ky@`v+WZ@^le6=aq=4ZqG5=;4pOFeXLMYu?#5jSP{46M%~ zX=1YVtP)((CH#+>0Ww`j&J45v_H&_#v0Yzfni}_6&j^IkZ7-55w1ye7K&248W(QN3 zR$bPrutjZ2i4H^MQvK#CJ@_Pp%_4HAxhzulb}))UoHiAOt#2C{cG7v|wL9%SdWr?o z;Hz_f=l?ojJ0D%#mi*n?*^Tl;b-8__P8v{O`|f+t>@_Lj$pDg#ZS-Q$M~vp6pZSR) zMBeA9lmfXD2#Di*sWj`RbZ|`C8cob6dQjQA>zJT{53(i?U_Y!&@ibk{8*qYit-95p zPR(LNgDA`-vL^H|C%f-kN-Bu*EeRkVdsQ9T~CDv4Cq*X;v)X)hZ$V9EVZl{ zAY?1Tj=B)la`wMxt>a48KNQaH&MkZ6wCDTK9eJZT0yPFx;BO~B8t4W z`yx^-X-?QM#^I~?2$gJ?#TI`+8nPA^#^qi|DAGQivQo8`sITq z-jW|gq;g`W%(k>T(57_Wx^%wMx;w^vbirJAgSBi)+zSd>ST8X>5BC~yEAjiT2~ok* zEF$}~lN@dg1Tj1K7fUg=tx>CNEsVb}T;R{q8gTOt&R8)b%%QN;$AL6O@_Z{m@`(!( z0;HA@=>Eb?C&EJ9fw>A;iml!E*yWCY2xOgpvadH$FA&`2Kt&o;9f9aoFyFDIL+AGr zM*$NKVy+_9b)u;WY314!GYf_RJKJ5wABHin7@|HcRx}i3tc;8b`ZZOVEI^_ zmUD1}xc9U0g+k4B$6<VY~id$h(P-A_}5_)Ga)^ch#BBwzW8t$R zztwCSN*!qLw-@P^568xZt_2BSS3^ptI#D`=)-kZ-jF&^+1hN6<+uw-fHF0EtTHWIjMQq2Kk42th|@|R5ZK&O~wK8u3i?%_PLT+(W?ss6?8?bWhg zN(FO=2AQHn7-!jhuvXf<)I=Iv&Q+EXh_N(+8Yi$6(>28a^#Q*vtgzFAc8rU<_hN%!^S1? zt}g4Ue~0;r&$2ngG+Y|LO&gMVo$KLw;3o8^0E84`wp-8~s9`Ge%KK=LF;q*!fRZL} zY1*%F+eMlka`@Bm-I23Cjrxc*t>GE-{*AyczCK2;r^i`9j02_22u zOj*?9>ja0cbkz*3sz)`vT`-yK`4hHZqYQ$ z%1jJr*?V5=Dpke~2gBveC8iwJ$G|)>PTd1N!+;XJ&5Q%cB)lAxgeZZLN19?&d)W@! zwArTnuIpK=R==T6B=&n|Hs|7i(u#~%CsM`Jd<(e9*&@fa2*OkpO6lQset|**YU;U$ z(bEu!IS?}_zNnpF@r=s6XJ3Fd>s}RsRh%oXiV9@gz7gwmQsR{P`F8 z^Owi}o^FNRz)k4;9rbz2EO)V)$AUzd(h+N;XUT)8|7!E~!?M`_Su)WHe>@)6+In60 zN`*Dm?I`f-n+A{Ewc5S>cCX8DQIWB@YTxS8!N`TtOI}2wHJ)Y7;rgcPb6L`>es!Nc3gg8K5 z3tW))40(81V?VJ0$p{U6a-q(@_#r_Kana$-`ST_m1pdV%4@ivCL9t$_OQ3ibeb)b) zH-*OIm@Dk#?L1~TB?=E(h?tj8-~8L^)*`KgY}jHg0}3RAs}X;rqzHPQcz|zjnlg0v zz~-jPTGTAhLC~p{eEv4H+C9|t9Yt16Qq9v84cqwGnytP{BQdGWR2|Ub;G)Ioj@4#5 zW9j`e@`TgZHr9?ZkZc2+#15}VF&%aDBz@($K3^(R80C7b|3fPpajx>S@YlKtc1nmi z9oO-;UVGPDt>gFwj-(r(Pf?UNwXhrM(CT*T8Q1_)!HXysqE{A(Amf+w*=y~6Cbl!F z*r%>p#^7M{!OdKGyakgbE_%P$c2#@?XeBTY;a&Iv z<2SCVZX+=PS(kfBAX{k`h(m`c+x0UDZya+_TL92wa z?8(NbM4XC^`zRs&e;dlQfwh|x7-W`bCSphWUz?QN)g+L(+U=(OrBBt{Hc~+Xv(TfE z^J50UEIG-MYEww#Kn^i~?!|u2ur8^;{HgNz=uhK^(*H&ZnJY0gKHgc8r0!gbAg+%A zH0wcvBHQG2=p2i!byA}q`9l3i9+5WplRw(7>5g3;jjijsHy{QUNb+1;%FXvDz_#J8 zq;3Ao&yMD1Rw={BRnaLJR06ZO^c`MmpQe}X0tz7=2m#Q9&TMjfX&|pDOQ|J=ovRFn zpUw&ZC(|>!Yfo-n@ke~cjohQx90#f^_`)7?hkfm3fQOiF`*V;Q_1KIJT_|k##Y-Q& z_!PBsi}NKHeW3(zP6QnDr>_3@SMluM6=i;$U!>t4dEVAF4-_nHrEw96;ooO()lN9T z4J6+XUT(;UNS%E@%Y39hmxoNycULyUKY>tTAa#BV%_gDZZXvRoM#|S(%5u*4H2ts> zuE|Ka0yo4nj9*;3uj~LO_`j|-sRRg#X(c2$<hd;xlb%bx5^fcN{{dboUrpAryY2PKe@Uw5I z4gd#3m--46*l8xRg*S4r@vD-J6!ePTUon1SS}ND29Q@!QpJo351W!+>8-U z>}-aoxoTWZy2ZJ}i=BE`{?^Z=E&5$vOXyb~dAh#=r>(1Pzl|uOx6I|lTbKt9IktP* z!%CZQ8+iRPH68?cs^kCA^VN|vx-(Y|l7xze&^X0@DD~-OKmq*iqKV%N`(dzfmwiR- zKIfe?`CBV;K0pFE;B8@O9bq;jHp#4%@890e*ltznBmu`5`PKM5B|v#mseli(QHl`W zKvmlp0EyrRB@jHfzOvANpX^fqn0gFJ5Y2x7o#)ZQ)8Ea`RG1i@kgeuX=SW>!Co==} zdUAcIea@#i5VpE~0Z33K2`DK|Pxu~KxCt>^Yx5=-rrZhNYJ$K?&#PH0WCV-=v@vwS zQ_{L5gwZ^O*V>;lh7~Sb$AS@1$B3lreATP<~?45x21nUXIN4Ew1WF}8^xfOZIY7I;9&*7 z$y5or_!6JNaZH9h3Ls9IvNP`(8aidn&T&$f)9wf;%93D|)Aqq!Z2>$1tQa7R6BsK5 zOFc-AEaZGgz*V6%XJ&BneW|G$K%_BM|LabSL4dpk1oE$ylyt!<0Ll z$pxyZ;FoQj$b#3J94NHG#14mt6e6zay++x|%+$|=ji@>}l%%+{B)T?lYo>ZVB>?+w zp(?Zo%@yXMs0M;@BSEOZ@b!bWT9a!8n0_l^GqLUlL4P)nK4upLxC;i4z~QBRJhoDI zHmaMyndQ-}c>PqY6=#+@5i#eJQ`e=>i@|}@CzEN4fy+8lVCDq9;nRP;Ax&uRSoiJ$ zYqhPafzwS3d$Yrh*6wqL7D|Zd-!O*m;i`!`|MQPO6IM#}V{suclX}XBMcftGr;E@M zb@N*{vqPl|{P7~i`EID4rx89Q#%RcnJi1&2`=%s|t{=gTl6L>ai_{*}e1A|x+L|*= zpSf9Za*D=$c;>w{I+xFw!Gk^jZ+gj$?s}q&nJq|gPODPoAUWV?@VSe+)a{w(VU4v6 z_~u*jSl2696=M9^ny+j!^6|p_VsuDxRGsIn9aPgsJDX1a<$-02Om-fmRJNuRIPATo zvu%!Aj0jMfY~Q<7j?Lbz#3D(x(kf|22VI;IK`9Eqos9<@X0+7B~s+nn9&9 z8vwam0tl%R%$n>>b3JDD9i6VjFaBq@9(u7a;QEW@&%yfvf$QFn&yS4F76>oe?(%{4 zci6(f@Q0eC&E7F8zErQ63t^#}qq0sqe`g>^j)|~zfp8KF9yR)}qt0ZFhLAdKMrl9Z z0ie;?+Nnq>PIC{L@P;{Z>1){4O;X1*L40z^3!qaGViDew6!W<@Yq=S;aC)y|gycf# z?dPxO`=$-}7xyk1o7+1_M&^Vk2-x(SJO)4 ze?axs`I3c!M(cTV-`5f6Z@}KX_wr%@%jCjQd4|0}vJsTaTTP_1Wjw2`%cc!z{G8%O z>Rf-T|ID$V016tr@`GHbr(8p`NM^`V@XlX>1}nq3rNim2c4#T7F?&2E9HZ!ZF_};2Sct3GoI+m4N_)=mu9Me;A|IQkj?i9#EJbOm=J0dD$ z(@AskP!F&78VJ2S0iK?c(ZbqJ5E35uNs*l3mXU(D?Sr5ifU=sR*D9BTBuAcEzP>x@ zi@VMx-B9^z^=uc8;X7_*Y7cI3TfECliA~TPq0BbNi!9Y*Gzj9?>tukD9cPDtdo-?C z_^`_SVSgA7ivKn?hLYJn`OBBmZxuwF`2U0AuF5@H6*S5DxD?Xfqi~^ztJ3~77N@}n zOToPti9VEBbq|GQ2#*i1-6%VkNG@eATi9FvDDumR^;hHKLXItL)*FYd#{KA!-11(1 zvxS;a(~^A??xT#3Zl#Vf8xAT1;9g05kRpT54JA#&69~21ej?r5=n=jB>PouD1JWuSWm3D5GcCu- z|Imf2AH?8m+;x`o6nPzZk#HE??y}0gZhE*M_y-0YV0$0$$+Ih#opm;+URtJRHHMby zP$>`ZP6hrZ7hqVqaAVx~v+FiyAwdQxC#X}Fwh@S)oiS1uR&kdvzRh`CFqF$rt3E?>v~fB$FA`-(AT)yS|;E<1woL;YC$`XC|wk!CV&*B zgkA&rcJN-G`^@{!e1Cs4-weZ$L(VySuf57|t-bbIT4w3s&=~0618PwH^37`%(vm)$s#88Zn#v8etug*U= z>%s>4z_M6Q-b>7!W#bzw)bTDGh-QV*LJYEA|oL?1628L(5Tky^#B!Nq+I1pID=bVo?f zWK^{ZrnHV8mOV?-zsBij8pTV8wD9F(^Z&tQBtDz&JfHkNG3iw71j<=|X2^xUP@xG$ zS7cCjck3qX2R!$#OrC)g1YI3=*D`V7xN-4#sUacuLjt7T*L-(JMxf>8VUJQra%qBJ zf(z_%vFPQiY$rkaL6$p7;e86X|2lZ=uu9j&#&x@aPZHw8%-vrioEZy5ZL}rNWM$k` zm%sBpNwG_od*rJSIHU$bF2`R-l;LeaR-Z@4Zbi-)g&^v^;B_BXl2qqc!-@CYmd;q4Om$*(*^pclV!h@vZP$CdIjiZx9GC4Q zm@(f-3zUXq!uxFJpCI@@lmBgvX4`;zT;#*IagTpdR}zdv%Se+*sa5G|JcB){N!AqE?6$w| z?-jamgp5!U&!?GaS`BoVRYI~pe?AlA>TtNNeP1fuo#=xW0(#^aT zGJ&@{mIc3Dp@>V@@x?x|x$wdOXl)8{uud4a8 zvuUEhM$wrj{gaC6DBma1w%=Ru)bJ~)eW_vpb_~w`x*+!)XZ`IdAJ7v;(M_ex zB$v>LPqj4osP@z3Zh~UWp%0Ou;?n2Ho^jflE6q1SrI_%ZI#37AE-E59sgQpIB zN-_J6_#h?VTi`!Yj&ml{D+lhRxye9xM4PVnNG+fLs5Z`2F_x`PDpS-`4-|}8+B!NV zS5LCfk{p?O{dR}tnyUN!F|#9K*7Nh0^q>TXcWl}>%d$oLB`;Hq7)#Y-F^?)gx0y1B?!UlIcf?yDr9PS==XKyzARVVG+Q}?8g-jfsxo14~~Q@E}1#(nE^frga<3+MYyTUyrVyeB=WiiR?e zHAdXwrnT#7w$JR>KjQA7ATDZC^dWOfgj~B$$k=MJ-hG3Q9>R7Sm>;6|>}!_ib(jc?)Y&O7 z9l7n)kO*ORYRKa6UyQn3s9tB8i`-f46|SK_5Szu̹{sAS;%D|-s~PDgDFxeGQe zbr@M~lR({!EzB7niEOLGJ8a*M!c6RGS)(I;mYlOcgW@6|bD}-m`>DaK#XTLBhe+7IRrt` z@52cYW}9G%J9od{wHEt2;|rax41&h6f41AQ2+@gNjU@AAB6ptO{5YR{K2}{c_ItVS zOa=K;)2g>3o5~nJ4DzvDl82rc2@m7ODvRb>?hLhK`fmH;8+CgRCN~^D$s}GEC(_-) za%aA23~WTc?2)prek(8oPQ`j16~Xdw!!xi{?oku@yhX8uR`V`5)id_k*#|bIM-PF< zE5BD|P6})_h0Jl>ZZMuPjoylkKb0ZAH|}Fg`X=oR)CkM1?;`1%~d!EDumro+yNLnz&fXw|8dA&7i;fnKq14LAo^z zbX+QbCr0D=mi6Azqox&Vj&I*svDqhMSydzkrynI%bp1ZEP0@IEO#8)NBs8UD%)Ppm zriaL@AiNqcZ_EN2`Hi|#;hvodAzB7Ja(pU>DcFLbp`?2t@XGO%5LCFtpAy2dyKH$&JCXQ^J2^I7}$b2>J;v@Cva;y4G}%r`nv^6O?Rh2 zV3gw}IJzW#=FDF!z?ysVJkx$*)U78-odrIgD9MZg$paIQE3PPrpNSm78joptp68DT zqW!m=pLkATsjJM)>1hZ8Om%Mwl(lBdo zY&Yv3+3GZ`?dndvyO#M{`S#*x%fxMX@K8gI_SD$W6e{_a`Pj!OpYzRAGPq(7Wt-Za zn(#V;J!DpgfVxfIlzj1Y)&7jR5JeF1*0^|mfUVmQv?_2NK_O5blP(su{?}JgYnuf| z9z-;(Z`(KORtQI8w|V5FPzYtS`oiaCq_<#q=q*g~yDS&_RSgiz!r(7N-Baj+$t4Pm z6z+~FUDyvnQ5GOEdcTCZS5!w>yRq8aEHzR{<|}0-8UKZQVk6VOkSza_OLHG}XQPQ9 zNN$|C2vtQ2$hB02xY)^?>Z@1_V8?S8S}_;KlJP4`zU}uqjeQ20^-N9`k)F{m^o0GR-yl{nE3qa1y zsefAM2An84T$b48j;R2}*I!yX2AlALa^A{jeXp;2Vx*nNYodF8pIo7+j;m523I!xi z#eYTc`#t8b6%B{0lJXzyDwJJ}w{AFyr|RYjk$xv|83x75sxyHd4c!`QVbSh}P6D-| zT*JoN7ej;s%P7@3ruLNDLpnpQ9i^Vh6(ceW9xa#vk%xl0~&><=pUIF62K+eG{dDRfhguQa|2>v8d0 zOJ_Irqc4)P(g(}lT@u1ITN(#fX>Ku3YHm)>ubD9>)`!UIeHbhGBiwe=`=j*ZoYnC? za!eX}87Cxvde%s!G*I6^?>WJN8HjF64g0O!#k8NT7&^?sSXEy3q5G;L<^^N#xZNZT zHd(zvCDJ=NsNRS|l4J0_u{{VA=DIBh8eR>8xEr0i>X<=#l!s13d3JxEF)O6v8$Cqa z?Gt^Zt+Q?VBJ+qu>OW#2ffWDWvQI6K!TBRwV|Vd~hfMe-?A#wP$B$2)mLsZkVHVDb z`*QJ(DZJZpfuI)_J~eAbd0|=owRG&F{-9U2*4@yggvxj9*N>E3yudI5*H@N&1-2ZQ4SMj9WBJ} zz(3=(I|;_QputGE);D+%N~R&K!QE*vc-SJZ<2)T?xkO}?KuYcw>(WB)!s2P3HPlKe zjF8dp;&TYHy})mzwtERVdO~s*k|$663Ik(0PVnh`7rD|0|*vEz2Mygpl)@T`b4qsCYIkC?{!i44E}?c z@X`T3Yt{uAboA6((^ibiR^sON$7!3%f@y0!HG4y);hvPi)Ij%;hO0jtAAvE7yowy& zsfTJ(npZ)`zAn{tEnz1W6xx5O5sgzwiV-c>`2#|(ic*rLLb2JjC>ab9GP;{n-G=s5 z#ynU2CUf6Fi>(A*TKq-Hlg@%UmbE7YBlKq+TF72Q?mi_(w|PQAWK>{6qOobu$qwVwq_ zvBa%kfv%WS!nXQDX>^OieS;U5yRwVKM;_dOff4`)f?o~Ni<&Fm=wRZ6a5LkNe#dm_SHSL@-N7xofN5`q3| zvLlGxa)5vQjILo?JPpZa|5rL#uhqGAE;hA2e@G+reJuXPu_@=kK>wVpu%p3WEJvGD zmxYGQ$8SLxB~SJJ6G4<^trYt2+WAidR_{adD|wc5gft(oA%=k=+&b7)-EwSWnse(VmZYJX%N?h@{ZlQWl}!RZ0e4Ttn$35;MXvU; zbHx!iJ*K$fUsifsNIPkpUHzRiY@mrAXAgW?opXzyoI1@lV6FM%Hs@9i*6c7mVdrjD zbDZb}O}@z1OwAu*aQA9#a=SU%wGgoc)RSHopQ6ujwK{^=UO1e9Q2FRp{$j55B4oNLy=l` z-{kHd9mpx@8@11={!$yrvtWG>2{=v_iNFGD)lJZ9ruLxM)c1V_$q= zJjp+N`U#n24YhgS4gR#yZVCBHV+Lz2=~A`rrt_g18Mq;~HH&o8Vxl$1ode?sBUQ)J zZL4x7(o?>0ABKtD>Q{?xwE&swAXO(gzt5yBOzvDsIJTXB@h((rofB|~90hpABD?sx zxIqP-i(Qws;t>3VFlXEfY}huZ+9qQN6fV;#?sIu0{CV#I=V^8F<9?NoDFRRuj3n+j zUjT_+jJOPe;X5H~9@Wu8h=IK*FmK`C>q3v&E!=PesjTLtGW zjs^=qS=kbF;Z6+j7sIuYW)onW(@xvk0f#4_LTbsZD{wyrgyb4Elv~(w7jm38DcgCKXX0o{187gr z8FwH4@jw-&^Id-s7-cX(DRihLtjI6P6jlN~0n8(YAKv5&QI_Y?A|m>6qLyZ7aGTm! z2yrJTV7k2oJJ*SAZGn;*txjXoV7{uDF4(3dL=TnG;#P8s*?r@d@}Oj9L+35S?Bawj zjlxeZkFd#1gjuL2_F3_ECF*oHpoRBAxbPU$^c@x32BfhgISiW}>`@>`yQmJym-Oji zTU9V*`UF(~W%+^pyiDwSI>O6&nj4ptQ#?&sm|6cHJL&CukGx8`^86z*8GbRni8~T(Qo1)1-E<=p|sDUbMLPXTocc3nrw z*b#l=xpYyVn4m=@7Aj-JNoKkW?@z%`=Ml!X=+*|%97bQx1M21!B{ma z0-UqFv2^!FZHzp&^#teEJFFTUj_(kifG=BcmUp1NL$S$yCS>H6?e;sL2A59=yrm{$ zB6edJzHB()aB!nC8f!-A-+k;#9vg5_j%-cR`XR)5-$)Yyz>DatiU@88mOQtyBY_NP zM-xjUTDvrV?7~m9pi9g&_nKTcV4PbO*rS|VXo#(~CQL`N09)0RChrr`+Gd)jelz(z znG@}gj|(7K?h(%i?n*|s*1?zc(IUhZeE<0M7N?6GacJH+WZNj(OcOC{^|!WZ*QsH(dW98P2p!{xHpBYVh}8KEI*sboI{ACN zGDmq*#slap&xy=oQZ3dVThqmbV3YF_b zhj<}_Z6#C3dF^hJ*j{ancN#OH0}6!U=%D$sn3l25+9p(rXx{T@KLaYrmEZHorVtHI zydj_~jQYDcPW9vbZZVeRRVh03sSQ@8soBXD#}8A1;e-pjbZJlrlgminP#S04ThZD3 zf*4&>M{)co?|tY!$NRUJl2}c{zbcPoeD4#&e&YJJGjLLKij}E16;&koQ1B^BV2ld; z5Rl}0sJ$VT3Oml#$WgqsZQFXDwa zV}Wfna!hl|)6-n1M=@dWC4DZ%eHN4bX{vR#_Bp%B#U-76OB(=6f-h2UDnrU9j^u{Y zv8O01RS0LY!`?TzlT-Y*c)bgXf~lM|B`aqalker^5Mszjkh?T01*@`qFPw|}9+4*J z2Z%U%>dn{1>o$(_5Uvu|4qJTYlv-QVH~O=-R2~=pX-HF(1_vN=2C_MJyCj6@1zGW8 zsB?;`9q0RVioN~%SbY$?)y3;3@~t%o$=xP?;l=Aadw%6~I(A6gub;DvkxMOB^(KDu zn2jGRrjC{lIRPU|gPw1FJi^e^oAyMyMH5JzZqWjgUu%J**oVo{4~y5iAs5^t!^3iv z=mGJ;3&OuS{=tjC%k}tep;1e;^sjhpVbh~B1d;NGrUa2Z47awcV*sB@x4d6MuMA9O z;v9lpVl*08>wf^VF||aG(&^v*IImk0{S9F1@X%7+=`w2bHnNQ0u3gK{R)GTCl@5S< zQ$F0eGF!niRli*tjGJ523Rr+lEH2@T8+u$*nyZw(@clNwG{L<-ueHVy z#_?KzlvYv%J%HW=5Fa_v>6J%^(ps-6u!OtAlXtd{Lh35kXglwZM4J2Zm|jQ*qe>PV z?ku5E(tQHkr7h#6QnnMNeW+?uzauMvXzqGAYqixS>cqVt4Y8pAJ4dXL$8la3)x^+6 zy_ne7vQc;1#3NxIc1iAMB|)>7RETqiju13|H0|N*tDqqrcVUd7!>pN8P6|N5C-FI# z<7>HbH#m*E?`?<y;+dwW%*Sn|#U63rEp2j!*uYMIzr)ZV5tq_hqewIv z74HZbwis*~N2t{8wq}b)W*4u(aH^AdyBu?R{!`1Q#(PU8F|&5l+=TI~2zD#9<2<~~ z{};-vvTyfd;C4^nU?^k}HNPWPlHgMxEo5{UF7Fgjl4i%GK3p?A@N(K7LVToVbK5t9 z)qH=0uEHcsT9komSl>lW5;q1YP%80_Mbk^Cd&o3|el5FbtPE^Xb>O29Z1V&L$sHG3 z!!c3^KXKxOwd#E&rZl`YPD93XvufV_yNRDLMjJ*dz(z&3UMSmjb+9DLFcaMKh_qIk zKiCN(-9rubDEM3&wp9&ZbCcwt`VkLakqCD$0j(^{+qqFY)o(~FxR;N`opW+vBw3KB z78l@ey3X9g19z{%W^atoHbBQ9uaaD^r%tnJgb0M#*o4&R=(ayB*)Jdqn+y?Z?bAkP zOAB*Pk!>L{zPMee%AS5B;1JyXj2Yjy_E^Y|jV))I^@lsPAQ1KwRVK5LPZEN3Ln9Y| zBZMJJsX$<8TVj!2Me7GA)KBHx%$7S9iqhI!pjkAATub}*TDp33qvT>EtFEg>v*hYcSeiQ4P9b+}q1x%fXZYcs1vK>{e_#@F3GHD)Pe5Z^-=MVE z$x^24j4BtGm3OywsTRW^r3S_^OU+plPuxai>rQC_*)X!zcA&PFBQ6x>cFHxsZ`3+x zm*S#s?zFFwMA0$}EAtO>i`Vy@s^uTH3Dvp@4@vH$5h&zM^WT`9h9fQ#ssftl*VWSB zNzS?tDTN3BiEx0w{+Afa@2anVzIB!PZ*=od+$HgU!v6NF%9zLR?Y5RDz2^su6-QY9 z-2GVnk#ug^IATBML%$#M@#Asq&uyAautfBB{9a+oxCd-G;!JN>u-dItawh&SL;N3c zAI0=fVqI3par344m>kp6PS2YR0}{AC+)mG+=YYZ3hK0FErYKfG0Z`=>Zp zTv|k{{vKZ8U_3ezOZras8|W;up6$yqDsd8QayXI2!6{=}64m*i4es`PAj;I+L4zsG zE{+Yq1S1H;mtFS?ON|_nr|zBQG-e{qLnTl?l*$jX$+G-?8{T+|kxH3GQu-tP9h7d02h`D;~b^L*kkrd{bSIwu3*g6Ce#v|pM19v*wbD!Clx0PO|>~#IT zigv^hs*{P{AUaXJE&w?~$p_#UVZOqc21tb6N(zG?9axKO{ZCXoCE|!K^K^=jSj}b= z*jPlY7sQT*%KKZB=9XH-TiPu5+>=rDj4JEjZI`;pq%H`PA-sDNQ{P{^=LKDBSrU z9M=G8m#U=;$$ksvDhp*3sKL9LV_`^=1VqS0?n>z(w(LX#R(m$9@jKOVJIkFuHQZq$ z?hHEWYqy3`4Xke4_`P}j_~t}xOUAXNMeW*EZC~(M)X%pG<11-owbAAHQo;+{n7U}? z(eJ0l|096|D~#df1G=B&64Z|;gEY1$nj*4&N_WV^U$ok8le^uk9MU}^v--Kg^o>rqbp)n zzx4C!cSbi5W^PTqz8jVJ=>F;jF9@StvlQ(+?`RoGM3Z-nitp)9KLDc6sSAF^`m>*&RY z|C=~goaavDU|X3W0JhG@eovL|D0|~Vxd;h(av{>WM zrll@TIi;f!-?9uRSY3Uob1QxwyOXo@Mtqk6LILtkOv1_xZWB+uAq7H@S{cv9Z*U4szF%)Q{ffrwHEo>qxnJ z*WEtXvA6O8Qpu^r?-gE-w&p8S9n{cQujr;o{t2*RznpAqVnin?-4yDHoRl;q(*&}J6md`?E&H26;eQ#ty@vFOp}QpE5=qeBkh#U9&ke7 ze&n-|c=CsJr`VhK&)nZ?vy7pzNUuT-tRm2aZVcXzFSqWe61lLKK!XHzg**4deIQwz~!gDqbsTOj4SdOaRHXap4h;Xd?sf3RxmN3G|FPG z|3eFJR#ST3y~&rVZd0#z+JTt@dMgE`}kat|ci^)RMKQf~EVX!{3YUa>uBz8v%h%!wKUzFF?37(x)^6X{D>> zX6o{@IKfVcG8i6;yyf5RJtA`dM_j?om>+(}fNb)qfF+vL0-vD*QPCAc73@`-t}tb-uA59=2%#lUL?cT7GZ0@xa+x$ zV6w-j=*_7FWH>ARLTqX6wid-Ex4Oh&&8%}qPJn1pA@{$+kA8yq$}I%xJTdlRCC1SO zeMBkOSgrRO9MqHw`xkz&ldm_4-0pL2+2ALAQ+CKdMd3Wpe+4Q1IF(0t1e7++J;!|R z_1OWne1g(S4t#CjcCEu*$WxMw+S|1d6g#ve=)wvDRqCSu+Bx!L-feN4`sPa2SgoJ0 zI3xz{^Hcj5VDdY<7NAVU9s8Cs7B6hM-V=OIojQjyOy#p6+uj`46}YZQDkZPu^Ib;H zi1-Y6nC0pzhi)6U!>_5Kky^;NxpxYDI;?2(i)@z#mw&ZO=z zM2K?L7%PO?s3q@iwq8V>a37@@Me=4WSpcs)>Gm5L+GW0%epfrl;=gPUVPeg_rS}%J z6JXFniU)^_9NQxRD@vaFiKpN)bISrUlFl+DhEg`bUKaF?*E7pEQusc}rGnAW%#C(m zCf0{C$@SItZG5Cj%e~2GIYgi>kLK2F->aIlmv1ly7VlM8)`yoLo#$nGdz$;JrcU|( z)V4gcyix+Ge``tEC-LKy@dCeLylE{pR5tO1-Kv*;bn-~by2Cpyg`i+3hQF~j{E%u{}kCX}L#kV;if=}SI52}&#B1Oi0SCa57(B=)B_xCYFc`gZw^22-AUQPhiPZ(M#4F1HdF>rW%B?9xcV2^1T# zNghxo`kwxhI`Z1Lu84@CN2_^-{Mg(E~-yX&CYF;mhWG&#}<#{&FUPr|M zhhL+KJ0^PW@}*0}`6Hzp7A5VcYmpgqt0^OurRdQ-emkG3_PO%P!a~Ka`<*MW?&0C6 zSTt!uWp8uBjbhK%`Yq|9s^!npMm7GY8dX5H5mO8o(fB2=XS5MpFny zfxr~n%?%XN8(Q2yY~eS5O2)EAL>cd2I3M8Z=-5y`of`R8J7Ii;7^tk|GJI!Yg@QPC z@Z>-lv$DrDjzI?)zz>}4`Hc$Nj?8%DcOaa&u`AZHk^*6x!sLQzE{433EQ^9^iBnxci`Z;s;P&cI--YsNJtHHmd8PN*&9rTvzHH-( zp_<}i-dM!;(GpiYTeHBKGiM;EmNY59G*{SV)0upF>V)(~5jPsj$Ti`dYGl$%*{=^- zi>(J^A*e6UGS+Lh?^Sv_6eb?1QnS_JYBO4Ozb0T4prOda+VK$dz|YT(0xf}pYy@tG z+s25G?Y9s5k8g}Oa_cry09B)nf|*ChDc^}`<>StSCyR=UVNlKPyz4|IepgQC^dygn z3JMb6TMR339#W#f%(D5CA=L6G$v2sq^r4}lWxMM`OJnS40p!*v-SiK~wzs#b@IJK& zm!T5YeoM5v1$x&@^UZaC0MZ%)Hb%mFb&;ZmmI0^wa?K-`m)-pd)Z#dW7LkcTq61<@ z(Cq%?a}{FM%JJjJAqkq?%7rtOS5jasbf>-@43w2^5M_GY+UK#;Z41URIEwMm0gM2m{>FZiY*F? z&o(RPDllSkt=(06^63x&p{`cD+iQ9}w5mP}EW!q zVW!j2VgOj4+Q5JN7MhwWmP{GPc!cy~VwXQ1_$OkjGbIw(STPEQ1T*PW-!KCbGQ6_; z>1zwWg)fZaCj*~{9hxB$TULMe7To)Gtctu#yl8KK7$Q7PBmFg7IJ2;D!P!~1Qv%y$7m_^YLx3u;@Ta15f6a}Lq#!jP>$Z{seZHIU%&2E&6*R>IXY(L zh$D9fx)vX@`|pDk;BHuYpdmdyJu8F(5AFMBJ{kQK_FkLqp8x`{Nc*e4{@l@sC%t|L zLvW_9)uG@Ywtz+6<>YAHy(>k*gTr9?C{+CCkG#%+tK+=Gme29BYj~b`uY&`){g0jq59oiZH*)^ zN!ceD(!^!G)a}vy^*8}lr|bosL^hq}jnu~Y3c2jzZzsN(!x?N?&Nk>bHo}=R-D_0l zi+WMt^bN-VI_H+FCAmZSO&2}Ay=@kT%L&O7seTIzD_Hh3GY6bTDtMQCMRs?0eF1e* zpQSR>ff@)12vC{LE~ID$+p+pk2&3+|PM|0l3S`Sn3l#eH?ORD8<#|A(K~}dfPbUEs zUA-?5lg|y$T>-tu0(dq?{p4*51So7o@$%lid#7P)Dx9H{5~0|sLX8Ie-){48wm+{0 zSbzeDE-@M7k2KoxGIbz~5)J70=G{96kLk`P`vmhxzG^Xm3ncT8r;Ce|2=s29r>6-N zeU_n{7E@B9j0hg}_=q^+e5u`Z>WJ8;LZPeY~3~O-jKyCRx3vnVkoCV-V&9o_?3hE1}i!$A}~txmkp zE+izB4_WKX`up%Uk$ zycd@^-iV$F{QW?z6Xz$I&En@%D@U$2c^18T+0~?WJ^1!jt;vXh@2f+K`G2`ScQ)Nx zQ97P#+9;-g7^wDAXS+WWFtuV&T{=j)T=T0^@zRhxxgsfIx znOr+a%avnZ4PmAbLiqrnHbrlk!V^lA&lW9ciA!Jjcq!7$n!~6tlN0LJq&j()L*fAJt4MxI!^A`T3~7D$o5^jZwf$x^#%E z#Gdnxoc^aM2DS#+d?zON?j1Vl>w28o@t%R9>?S9XMj?p|5tf;l`)uLw6yDXn@yxr% zp?Lv*a0C`4aF1deU%nJNsjM99X~+O7EHg7J_$&;^Ezte8SqhKJemL|`^tF29Udwu9 zFot{>!}Nt}<}t*)7-U9S+1hf2F))T!YTdK3(d!+47`xQ3kap^o_ZO<;E)3mN*Z+cM za<_$JA)QSw)Gzi6A1i6jM%i4#9BEeXxx+&*?!S1+C-@&;u(=d>W1QH7-^_DZhlf}^ zeXVVbga~Plzq+rNvnQlf94GD`YNit(@MF~puV#Q|i7o(lM3t3b> zqPY`v!2i|hQ-7A1Mgi0ZC$gBygW3vXpaVG5HO%eD@9q-YTnZU`V#uwgaGg(35>3?A zL=Q38Ts=$SzkjA0bwdfU=s|dNzT2R*rL<#eP>1B`%=$IM`QgqLaN_v}2K}(E!Iu>Z zZ&ChgKV)ws(j8zG900qiMmwWeOUfvO~RTZ#J614SEXnu_t%8Dvj+eXK-yAuCQ>_U7@4b6?AG&(5Tf9-y@S?Q;5 z88wCCuH>I5l6N=VpB1^X4yTP__-@mL)gD4!TXiu@uX^IxAFiO|niN2IsBrrN3et$W zTkoNH1O_qsj`jgLg@Aksn2bX@PjARk=ZoMHqY8Ye%h*A_Wju70YVmN|{Lb5FZEN7T zwutBviYG()5s-SII<(liD}5l8FW7C&a`a?>fYT1U+h?>63_7I$@Rw4K24PAV5h1Uc zswJUqa{-@A;75Um&+#-dHu^BJyEbav#Cyf+4iQw%BWyG01nHqe9D+5SoHPnkl<}PS z>(TY{10TqeZ=dP@oIQm322I5nN&bfpjFrSqwU`k%Mep1IMyPwh7iw7^$@MNptn#Fm z|BU>;6t?14@v+a$BEy?z0Ut#;9x}~BbrRBJtPc<6Fd6%F%QeaQw5>=!PfnB|Rgp!} z$K1OSK{i<*c&#O5Y%ZfDwL|j1*njInyc|K{Ov86j6>8ly2Ycm zb9baBZwIW2!>W$G_3v<43I6L@aZ~}=leLR-esZJYnCtQ88WutubR4}$B9S@&4DI|S zqO9brL!%+a+aApV2M%8uz+^f1a@RJR4G_x3<+Sw7&w@q~k1(v4VItfy)1{|i5Ytn0 zJ;5+47-VGzo45;_P?%i3$~oSEzYK^Ya&q`G3-gW7Y#?!6g&PvEHKcw=gVMq&6>r!2 z!KzpY0%_i*+ETGkZ-^Nh8zcx z_eA5u#Zw9{i6LU1EAA_&9U|s^6-2rZBd9!=x3y->w-R2>9|BTN2eh_Cu!6yR)wDVR zX-cx|d{hD0`aF)&y(|^lRdQ3nmUesME~G=pVfH2Qk2(<1)2pTHL8BFB=Y3}w*hC`; z2V^cuEyK{wO)Do9;DdFP-Ouf@-_!cay0+>2zPxyy1vp)O2*Eisd0uLEQ%<^;#T~W(6ip zB+k({wJ%@-%L#r)hCA1ZKih!fFxpofQj-^a8*g8dQjb-YniPU8zlhhutUf*Ve*9;? zA=kNg^+ekKYM0%Ho6;BA9g^q1duIE|iwvYeI=snt>P!aecx)?Q9?Ohqu`DPF%f!i* z!Vm;$aEkn48yW?hqHl)f{0}5~Zy$OJIm^Q7p%cM}^g18Fq#jmyJuVevXYri;DsQt| z_`p@V#%IN{V_Jl(p0E7Xcen~mggVVk^STa%L7iS00hI1-Q5uU@mo4{9I)GK6`Y(iW zuBdOH2-($gPtKs< zqcVQ$>pgKEDiM_C(N+$|u9hZ4iT4I@rq3Z_T~~=lu6~^o60$M(o2x~;El{r*yYDf; z9`vT(BUM__t}g^CV;s(JBmkU5d-~r7C*)FzVI@D?LrAvHOzX#q)9I`w{f===UMUM@ zv^M@6k)?yF9+#4+UwSktQV%j`fXYlh&VJYZ0*aNL48bsiA4AvvSQ?Io=w})e28+2u zv0nE^Ep;$wPk_>LDo76pG#5mO!)ZiuUwJZLGM#*RXsP}MC^;w3^NRJ>yWHiME>|24 z0j!IRWf{^3vU-5x(EeG`hA5)|`psS>?)9a&j-pTNnrIpxKN*hilE#7V(ghp&R7E{k zSZYigkJ?Afg{+|RFQQO}oZ85;53ELZ5rj)0sKPdKXa$^T*}-_x|AjFhCC0OMffngE zoEM(o#}ZH#x`$t6VMWfXXbs%qH^@KI%y;h6t$ewD_fK!8Y%`7$Bo3O^-_{@wnudmE z>!1rrEu8>qJ^*_E9|jIO@JMiAhzgoH_rB$GU8I{-%Y4n}GGk3SQ^A2dx>T#1f4!BA zxuHZbkt;t8`fW0>$-}n8qrEl<100vSUwTe$Jv0~YXz4JgHrkw!?D;ysKo4|>_Mp-fEzIo* zt}{XB6=?26GNWgMr58WVTg%?aDN4qu6$lChVZxSzO9kk{1mIpJ@+4k(#Wy&nOb@L+fJbR zmyrV(B(z@hL+Ki8MykGV4Snr28YHebNFTjP)3SN~3S*!CMD>?(j6oSybFgAcM@L9C zgSA>5-?LI)iwK4r5T-m^P@VQU_TX({?AC;KW#P6kke%Is@o1cb%YAEp3;amXhBNuF z&WP9UC7&>XrlViZW7bXL4|l>tUQ(Y?X2hX1A|D5Nsh!%~<1X*DsAm22a8%FPbr0{Y zwnd5@mCoT5Ne&K+Cg{zB#(VmebF*Fr_m5Si^XZ=p3ZAy^298t@^S_h@V$OBGsjnh8 zyCgjG*4OGy2hvpD2K)6qY=O?P=O@JdKuu8Yy0J+No8*CtZCi$JiNVp*dq_6&PsKZP zuWj59o;|_Y@~pN-Skn~#8$kejUJp1ahGQxI;ZHDS~+@uJoI9?OW(Q^Q;m)F$t{P|HQ{PP0YILna7 zxuhQz>PhbSSF%9|xz5yU^(dx4y((jC&w}h*+g1=#@A<} zUzKd3i__{GM$)vKcNlLoefz>iwL6?4bgOi2V6bH4NIupP{`#}+fKRFbkL!YSlW5+&o6H(H z>gNBU>MaAJYTK^i83vf4yQD)A3F(d@rAz4sfl;Ic=@=TMm6jMv6r=|vq)VhmkZx&^ zlJ0k3*Zn-t{e6G<%j|RS^N6+9ajY1h1LD+U9->?=T=X82x@nbz{5Guhb0}Am^?CT; zN0xl&Olj3iSmABw`_$j6OYT3D11^uu|6QIqtJ@&H1Iz}}ha{z!X#Ka9XC-YlADLZP z=||$DL%JU`al0#AR6Q6$SBm*8as3WSXXjIqvn9@-!C0V#-&aS!p4##VVx}n@atEF* zU9vn=JRW$8i&mQ90u11;W?s5ovOigt3%+P9-;LaTG3i13RXEuy>%(?+`N1e=mwu-V zGAY!P1so7gfOCcaS_L4H5c!4h|f`cG;`w?RMMP_f*Gz`&u29h4tkIi}*x|0*2y}p#B~!w;agP;UjMM)^+{cesskx1 z^SexIXS7h#U?zAdBuOEUo*iO(#f0{H0pT>ay1iX&!RETpCR4Y?i+dQv5dPe4eH$Apt4z(+^)-;XZ$zEj1$Ek05^n1Sl|1PI-% zjQN3vInz%zC>yUC7!;oo$)y>)7TwO*u53e7l*iM6pSR!2&TR3Z7gXTFxWIQUDN7s7 z#I`^`l}5xSXL70J26N+g3=buI8qUwy!Ro2kSPtxE7YV5@ts^-rmqc!{@gny=?RV2R ze>R@eMV+Dx4%g2L%3d-$xHjNK+yREWx+#b^b>%PjIt_kafk0H7?W5&l89Q%H&e_7_ zn%T_*`q@Im+#M)TVCxqH?{l4f#~eU#yX6A68z5o-g8y&A7U0u+kGJ?{_=81gRn2B; z35(P>cC+vl)t;-W<-|O(bTux4&rdx52*5NWAMiaQ2G5Z0d|}9%+cH&&vna|^7>m5~ zt@vPgh7YoCHI0v+VQ$FlP;#TC!@N^wa1uBE&h}dS3mF4MjY{Sw3niZVrcm{9>jhAS z+Yvh{>wF;x)>Sz9A8bj<2*$+7*RE~J*{N)(2uq(cg5b~}Akh19FQZxZriJz=spA!E z`Bh3T{7iVv%fF+SqVew*?Ru$>GKdP~@@=&%MKP0%Irl1MTBG{LLv&PxDvnAFXkE{Chb92>~ExC0;E^sbJX(L0k0Qq8ige+=lFnQWpJj`R zF^rtBe808Pj)3C|uP}^OZlfX??@Ilq97iveFF&~*L>d5Csbn;jN= z(nQcrYZq)s(5iO?kv2Zy=2^Rvo`vC|y{43NZ$x4&pKN-*+x(6)x9_bLdDI^kxYSjo%FJk@%`v4&IlywsMo8Jl_3z) zL^C#6HEpc zeA`?+6x22l#i>u$FDUD?gu4W5Bxdfv8VXF{FM-T3cF4yuH{Av4xj|&)Oz>ma2(7K7 zu@U2gNH2U04?1kT)j|?-Pam!t^KkCwLpcEk(gbp5*q6H+N&8~;{y<&}tZ!>-PCxi? zl3nbV@df5vZXv?{ln$eU{R9^(oDE@jxjbuqVd5&6p4+m=?Zb9T@hJvr8wGq>5C0nu zpj=>)nEJaLYN6RMcJbEN`}gMlc2?MI(+W_lio6<{Qc*=!j#$F?;7(slK)Xu$A&Kr< zY6TMJikYt^PzEp3=X~1TQ{2xY2c}t>)O(jxK%Gpc^#*W@VHM(ftev(Fq^#|H+n6BBTXKQ9GNwo-@au~I0%rcB> zX=YBG50n``KmN+^c#mr9o=bMc(k_vO@iUXRpE^SlUTP*Y&fs$a==f*h*;3t6TVOsZ zJgG5_etq0^sT`hEBjfdW4K;aY1 z)e9nTmHLA(LZ~-TG$CoE;&XVJf^E>ggK!E{Naup7G0B&NbxF+$W&(LAgM6If|CO6@ zB&9|n#h1=cCua+Uo>VDz8y9~1I^ms@pQy@3_FipPlJy-m6dgPmna6%yl_wjovv@dx zI?^DK_7G~tcnL{bwfXB_vEu5Oxneoq-ilmbes-P-U1W}b{n*Xx_gB6L ztOJEU>oyzP30vRSXFf_k@go_0lP=@#-dOwpr7Qed_1 zeJby{+@bAeYtt$Fec~-M5|B@G6Vw9IzeE)MO%OA?)vPV4WXXlYrpxMcNv--u90h$3 z=FRZNjzYhkGvT08<#HxtP*Asmq764Ow@sW?&aGFiXBB2{7wbB9eZzx?ViY+ceBQkc zhZ5NM-@>BTtOvIWMkc_{uvIX`BYQSci*bkAc7&Vsoz40?5_x2p$tleXV^>*2gV%71 zZbSq&!uC@PL|jX~k+A(W$WgF&fe2XSBBsGb0>%(8#SRnE*~Nm*v6mi#9I?*X38Yrl z{{dLKyV-y4m~zyTqJWzHoK~wb;+5_7*yLg&IpOnHC3qNZsHX$?^6Ssp!}0II(D6Q& z(zAV0W-H?}v+L7^zNkNSFfraM(HR*JkO#A*9GzyE8ZZb`Gi_%vd>Pw8V}-OoDBpK?(w zU_XBOIpCj9V4*X$7+I2p_JM_JR6}J|Vz2pa-+$bq+raYA@^@QJO|*V-bvNjxUpnP~ z<*55+r%&PJJxla*7;qe_$@h9K%%9!qV2Km8w;ivYfy5{6jyyopEX8peTxZ}ZqNVWs zU4egrCcCsEvvyKhyGhHhD@0c!P|I|lQ)7)d?|VDM*cD>ON?ajWPjJ!C-bYticN|ds zD3f)fb&0-}cqJD2+2RU);X}UDReaLMa4Z{haBS%M*J5(YnRzNn0VfQJrt};rftY4p z)hzC5^jc{D>iU=-IhD6ooy5w3S(Z`MIF}7u7d2FW_z`b3h2yvM5igXn$cSs30^O&5!PqhM<@ zPhpJti+?J&E_VRD-vdP~VS!ctUdrAnKM*kY3aNs^qf#8~;B;V$>0H|((=7>{UbhW(y&4TW3cnaXekoo$F)AO)4aYm-%mj_oY zuQ`9}uQgXx4+I6MvZCNqg4+gtjX!jjh{A-?%_u^I#S(#8I=@A@F3}(|Z7JV-W^_EZ z(3lDYCo~{yaaRgXH$#dhcLqoHuwWwqFu!3$^!E=WarDynC8W#rtt5U@xF5zJObg*^ zIx-uXOH>l(3?6}BHhW<%=@m{=ffpSDyy)-A`lb3m)ScV6=zQJ`|ZVsOrKBVNp#YQNCwhzszJr-dAg?Gc-|k=C7O{bl~t z$=K2136|WlnBag+$0(MT+RjFPMNeuJ9}Etq+pNrpxw)O)`;)+s)wM$rcK@*Qv0Z;| zn@?p5d5+BKG@SzeLrpAdu&Fq^IPMzqv>#bt433i9D?(=r6(f_7o!_oX1c{kO!4`Fa zjBhh?OSF4d1mBI~Y>F3Dya9YC8r#0|iTSI7XWS0xf6|ALF_`1cx%O3vfk8rvqc{lu zrx;QEW_%eJC-1^5NhE+W$)_2Zz}UQtQW)c^(}C?$)`E6C1In5z5YzUaU( zcldxFVro!PjGscap6yk2{i=k(ZC)xx<;N8b?4}K=WkNGw&7sg2tN%rcXAu!{KTOL$0 z4$2OXimQH2-rorxqHY(GIuQBA20T5 zfe}vS1e};z*2<)V)VD36AWgfRsWOJRQ4^qC{h}JvAA>t$km|n6@Y?1MvQ#<-2GnMX zDPZ2g*=x7=im7x@aK)qh%4r{a{@qLe5NuDnx!#{U4~99QPCoiNO9 z;B7JPbhJM2Y+5wF|)a@J$0r{=L@;K9+1?9)fLXPb*j zGiQ-4%>7`VKeGr~*DSwmEuMGQs=HP=o($hL@?c^$ZIEKOJnw9`c~;kgCvK{_!++nb zk6+<^%fDP(exOz98Jql6Jr?VXvz@1B70nhNgw<$0XVEacVlUO~U#(iMpmogB0+v7t z379yaSkbWv*2?=de3KpEFN!7IR&duPQ(yu!RI+!pA2-lGD0Xf^V&Q^uVAZ7wTCO0#6UMGi__oXUUgH(vl1|CI-vxTqsHaaIvA$3Q2M_RyWYtr%tIcnDQ9h3kZZItJuRs4s=qNg;|SkF zo>EidWUM3Jpd_(3hv!|LDrGjrcSTgi35$vw1sde7vHMuMZx|RcdP1RHOsUH_8`4$4 z;OGF+Jykc4HWf03qpy|?j-LP~O7j1hDB3Gn2pio3u(mc8(Z_M@5ZCwTlX1d}$5t`+ z0go@w^kh~KRWua+bXnsdGyi~@0(^~tMe%DtxrJLJ&8-u!X+uxv9?L|JVF;`kPFJyO+y?B&rT_=mn~PoDG)DGywb^+G|<78M;f!hu)e zp$J&=w;qfH)8k44MW?i<-?ie3$$Wk4-`{((ses2eM!mJO8`yHIWV5a=Bl#L#XYuW6ZaXW!<@2(NH0nE`Ed9g=-@jewfeXrGto;)FGpJ-z(F8@Dp$J5>~p?ZAt}*TfvKd^N`H z;{cXy@xWtU-a)2W=N1$vk>AbEMBh0(cT<%xNB*cN|HLQFpeay5F$$4_#Bc=tIuAsV zwO>%ocF2{TntZwBOzu^BFX<(CBGJ|6z zXA4RS@4JbGDBlXgFrPtIY%9053ZeW7BrY*aq_RSq8J$ZEeAUA$HdQqLVA$OECSZVW z9S<-8{Rgh>rp;d~mdn41_g8762a;D|WcNf#QmG#W2s2?01=VYsgXnSsXA=HI~-?S2?~!vRke3J2{tiR77<_(GWaC_p~Z5^tHRS$K#MBG0`Zk+|{U=Bt8V zWKQwXK`GCiN_{;i$i37rcdm_0kKuby!;{>J4dieX)-^R3_Xf-@&f|hMZS7^H2;AU~r1oLM20VQ$qok<#5CUBA*&G?s z9#x0U%`JSUlw93m2sr^&`6vD9k^D|sC2pU` zHIj97P>pr)y^fPS2y%ALqq;AUeZ6Gv-CjUg zA#PG&1uhVT(6bK3AY+aBD0903)HHKGhdhzf}XPf-96*IKtS*$Y9A9I_#IHc~y5-a{bjC-G~DJym?^1Je%r|t{YC}AE{q| zoP2Zp40vET5-uO~a{WO1I_{GzhHdV^>HKc!jfc5MpCBFLKIlO%hLG9>KiZ@>5DcRJ zk6id}shPwtPqR-Q2mI5p6jT9Z0sANhus1TgCyHWx&+k0U`r<2EnIq>{G0CNUDXCQN zi}HEKhSp{Sk16kdTguWb(ELy!_9pTO2Edq}?TtTnve_KlxZQ%`k~QB4U#1DRgUj22 zZ|LF=UARnW7@&akFkNhSEeIY@+w$Gk24^|&l67x}ROkY+w-=;!^%acy7~w5qw8F4P z1ZsZ~u&e473v^!Hn-W!Ipd^fk*Z3YlD15bjO#VFp@VUBpr%<<8C5XU6V@H8%@pvOd zW-h!FGeo|(A!&&yPbAqW8L-glb~^au_fInlqSkx}9>X^tBq?RSq_~%K2G+OOg((JKjTL?JBy`IZ|&<`XE|{e!EFcH32#)pCJOfM8!su@EXA zupWmBpOKE0V|m)28UCVXtRTv&^29y1+j)7Ib2Vve`LgY{sbhG)8pw5)cc}^>87&YR z91;4Agns6T3qNSr}odq`;Q)=FivUA?<87qC$@Gi8UEo^a;U|0#KA|b z>TM7o6wRd5KBmlJ&lF24nR6Ycyi*L68M6l5%e&p_3QMnUA1n-r{bo4;yOHJMd zeg3@-H7al(t9@wi_p{f14{10{a$Xs5yJ1|jeDCPRvu*(-)}+J_Ykp-|ZTylop|yJS zB|eh3YE>3+7M@hq^fBJ!vB!0;RPZ7|c1rw9!O+^j3jAxxulmYw&(g!> zn_6?fO%m;=d2xLUcHkzONID^{G<(~nND5kvC?00)oyQTQ3&aGc4V3sav7rpZy0~Bm zYM&K=h-9UfEcr!YN6ICjB|M!j5lear!^{EhY3$-(u!KAD-ZnbGo#@RNF$+D5Mc6L8 zS6~-|;LNKXQog3yI$G526y?YXAaxZr&r$@cPtW(n)Wn%g50kMJKIvw(E%kp(P|W{5 zF~#iW`bSbJ1OEJ!yuAF@TZ8q`vm^D~|Ig)d(D9^nRUj`pSo2 zg`@nd)i=Vvbyy1IPQUG(af&=afwU=alp&j3A(ge7s`msmCuB2*Sck zM5Et7>S4LdlGzgN)Uh0Hi738Vo{}A+#+|`&dUI?)vc3j?j;j?wjOT zC;L%{OyZ8I$4BJ+T-B}vFG1~xCucT`!&GW=qT=_kRF zear5}aPQun6+mnb23+bNRUeR{0L_%PyTKtT>WHqRy6LxhHq9N*wqp?glN>YBe2MTFmNA2(M?|JRcvWXY1%ne#> zXnpo^gqIzg0bs~~7*Z9wHH<6aNi3#y&+8cqf|PAZ_(%Wt;9>QG} z=utIR$R}1?b#StcXs!`<)KhEGnGD~bX=kdbn%u&i_uu-x99(;EY-JeSg?N6qL$X?* zPwCh3~9|gph{>4fL00S04JTG`0X!6;Le|K^f#{pTExb&#j8ad#g$0^O$)vw3CDU z=j$`ASJ8w3UK_QC#En7%U)FGs9no#rzwRhRXNyK7{Dbx`s z^0Bb$F5(S^&|zy;&RLfroF!55XYG&RVLK7)?=lKz>>l+>){M6uSRX|C;i3Wj$Ctr4 z9J9h;t$aceng7Jie9OH;c-Xa?oCPJz5fx5qib}1-3}rmQ^=uj$r0U4u+^`-1#(LpT zv7!G<0Sdg`EY;c2Q@`mfD+}TTp=1R)ACocYv@|j?%B)nr6PG7lVP4M96i|hYziS)l zRCY6VmpCf=MZn;zNgyg#@S?>o$5^M_DRT_G8$b*q?KBYQ=Y^YD_$gY2W4xp`#*Nxj zZGt}k6{b7)xIayD@ilQK{lWom7S0d6=K5i3S8EBcU-Anduhvc@**-pbWPI7nI@*^^ z8B)L$c1(@R>9IT!or_zlQcByrxFWQ5BNHi1>f9^MuD44v#YL}8RpB*(t+q9>JTcaE z8~D1$6*rD%`Hns`DY$zd6yd6L3>{!VQdx4xM7$MUw(OUKI{?bI6-Vs`m-$Ch$dj_; z{M#KAM%QOCuG?{8&-hbJH5d)JFzBi)N}(c>&X2hLF+UyiyqcY_sIyQ0Tvh$eEjyZZ z4`qpF{dhW2TP0pS?U5tUljaNSm41ecj)IuBHJ*6GOI#Cn&YXuZ{*V3>FIz!P3e`#pXxn0w@;jUfJpV^}v@uX?HEc<>LGK#Fdh zXcTF+Px8gcR{YWJ_LSG-7*f{Lh~y7*qoMR{{pJX$Q=JwEk)m(=iWk{!C}-)T*zZ5Z zeJLpR7e0VoulGn1DGcH#-fSmC^gIq#^xrksqXVJpep@UIv9K21y6O(bX&|-FOk$U+ zDjXf$yN=g`$QS@ftQ!H)48Sw$Dd~8;xs0JapO}AK@NJI@G!xGgMfgVGb~G~Q97Eu^ zve1`X#k)V1KUAD82e-u&5I*jHium(4L5(Fk`?Fb;1aIY4h3LFbcC)hh{q+UV>4!HZ z{G9+nZAi-{9%^?p7Toj2U%T^TI&=TQ6Vk%?&z~Q37b}vwJHY*6A^M;Aei|n?89S00 zcdED%sv~iQ5_K297?L~;WqXXjOiNdtydlx{M?dPkP1WPiy48YdfGYMVBbbOJ2CFz^va@scrw zeMhE&!|Yq%P#)W*>=19heIb-2eyVRIGz{1zEG2c+DrC3KuS=+h3N?dx=_Z4^OdO!X z_P}v%{_k;>j_F%#;0Khf(TE%QLf}pJd@^j6e+-wn!z#P3O!vO-x2eS*sir(0v?{^t z?0ie_+AA{|>{Qe&A1CG#9K7_>j}?Us%76TFR+S- zb~%zxi1*t1k##;}5Mcg_euSO!id~#VH(EU5x!*1NB*WG`mZLgbGV}JvT@p34Qd)x7 zaDhPimIN~c<*xpJN@A^J;VhD3O5^BbVVV9^3>ibs(}B8Y1M5?1eUf#ZoS%RH2sln- zF`r9nz?F-W6$dne5AFfkv}7;;;Q|)=#9@AG-7aZKe>?G-jSf4g?+!VZ>OFY>t7n*G^IKXHZy3O^E` z#L+CQ93|^u9aQjGiJG{XRj7NKgF_DtD1;U}ULe$txAudR1|&SNp8yDTo?XAVWuc#g z&m-bzOv}^4#V^CWLaLRR$QZ;9%nm#|62Vg=uH+1w>Q@)jBLGui^qKb#ELoNuup)XV z3uLgOf8{{}Z=+Ad^0n?w`=1iL>1WH2B~|eg=B#^|6H$Iu`g39&0?HU|vs#=!Z$fdZ zFiTkl((;b43bNuRY92ehvTKlNVS`=2C7r=milR?ZvynvI02QD|LmKkmYNl<3t z+h(sjjg?~I{7G1X-EWFKPNUtTOXmQKW54+_34bE!@p+@et`p4LVpRlQ1dL-zp^EL0 z!m7``sM+4MSOQJ`nXzDf%x2%qmmu+5jU?ul{_$r9byEeXPb8C#hUyGaXlqxgHUV7X zaj*5&xqpIUYikn(RF&UE0pd@3mhWdE`T%D8{XeBOr5=N;3U?)F$!k^ZV>mTRj3J(}O^#k)eNcPcXYT{cUwL&cW}~Q<^ZS%{CoSw#^tRtH^9$M4@n~^W&O@?& zdP{%os9CV{bGW}UKZ2fUB;M)oFbSkh#>d#w>D$xe?;HGO<}SW|+w$Jj`~{MZKs? z$Mh~z^si>Qj})p4AJfRJG5WyTffYXX2CnVt-H3yD=;ipaaq4w~yFHv93tdno7dTK| zTe(Vm<@Agxk|f~w>xWi>L_6#n78Z!*F}LpQ*7Lk54U-i zw&McTXjp$;Z8z<$H9`EYqr(f{xHfoM?pIQZ{xtazm3*7c4tre;r4aU4IP`$i&(bP* zKB|ydrzxtuiL+xV{)i^rWN~b@yL_hyn+l(G^hfj%mD6E>;ZVhBu>=DHk?f0^HlxaO zGM9!O*}Gd{Y~K4n7hO4}cm~6mgA1on`jS5PP8r>4EGrftZvpW+aOUMKm!2+iEwb>; z;h0!1cf5_!|40*6NUviHLm<#J6I{4d>>Ri{{u=9{TI)kieOl-?h~&di#SEN;>sV4^ zok$n7&3x6jVI|aeX-;*Zusfno{Bdu%vap%ABPp@ zp?ApMckHCGR1Gt$>cBFLz!1uOhU4M=1a3n%mQaW)O_tpXV!~41$l#OL0v$%5-c68Q zJi{3&{4~F#eUe}hIZWDNb6wV37fisJsip6i61R>_gX>l+0`1pJ=I$zhA0GS_S+L*w(iX`hqCRMwiQUFz{YBdfREM7f9}`(}%xXrY;Aq6zZJI^S=`T`)<&p4lW!r_rGaJhO~TX5tYBybCBWPVK%^b+EFO z6C+wcUw%JSKrof1(PnO!THOAl@%^7$o`PANj)P(UdPg^dRq{TBJA~%<#<3heNY(SJ zE&0ym*|Nt^CPQQzxv^ft#D**JWG<~Y!|k?M)p+UZ4+QOwsfS11^?uX|VM2si{?NYv{D_U=|Gaq3)@te-4QGU5_yPwq7tE2>@;`tdL zR6H0sD4y%DT&0@d^tO;oH$QY1rzZ*P7=3f!bMsFRZ>RuDRFRkYWOKKO@St7j2PjM z-Df?_e!D>onDPpx(T9EGng=uT3Pv0j{W|?H>KKoWH}3*Aol0QcX`G36thR^mw4G?P zE^zBKpCHqC=fBVQT~D+HQq1Ny&bQ@Z%dZmtr{WGjb>Pj*)X6I5b+d?mBAos#lHhRS zW7Dx{(Ac4Z8X8-)?r~@A9I%MzHb)95f&xq>g$@ z4V*7>^X*cS3U(AQvFrL1^W@8La(6}gV4rhhKqCJ4_4azF#jyCvKuo=+dSNb>cjHwy zgxE5#O?RG*L9d9VgMqD|9~irOWF6U7r}6pGqug^g2f2%jY%5@gK4AkRW@*bKZoHZ< z`IZ;~>HU(-%OIB-NE4KL&GVx~QzYFrmg&W;!^Lv!!5N8b`xCi0zV-7Y>pNwvtu6g^ z4OQ*S$TYTR*vSCKnEDT2|J((NUV!UJGhMmdgtRjKxg1h^=-|$gG8(rVv149YEJx5g zv?$S^u^S+gL5S#(3F6ebj6AJeWclL$hgvJb*zJ+q?XJUBkv<_v6)pvRKoRo?2LUq< ze!5$$hxVb~nSJg6mtq%}ZuN%{0fOw^hy>UJuIh&Eeeu8L%;#r-RxJBpeWYy)X55?r z6s--1vwj71^D_WQoneI-O`O&{=HUaT#l&KW6Ow98 z_vuCdWX?qObb$1mv7F7Fm;D1loa9d)e9g#<4WU#Rd1}80h}AomZ?B61-5FVj&AhDc zt7`r!SiO=>(W{_(;HV?So zX_I&73ANH{x;IH30DW@13aItsmXA1j+mCA$Hui9z{Cs}Ebz~81((Ox}dOMjuL!GM; zu`NC#2+U8=JhRwOeju0-74mi7$*Mj7up9&u8T9R_gt6K=EbA>lRQN>L3*M!QckdNx zA7{+3x1o_E<_QRHD*H(ef;a!lz9=6eTH+Ch%uGiCh&$~h0AqUro) zlJRH%o~}z8nE}xoK>fOtI%q%i(fY>-)Tav6M+lrc2VR8zyGy_T_$xbWB+x6mwL3xR zw1LMq0?g+2mW{Bc{-v3|1h({p?8k(wCk=$do*WPMFA->_ZPtBrTZbh)$@Ql?letZC ztR04!p@U;d@B_4LkCW9u`&^Y94Q|lqwm_jlb=|2Qv`XGzqs9iJZba%HZcXrQ3e987 zoQ!fC2c5A!vj}Wx93({*3q%Ng0`}36a+vcDUuERM;O6T3k~SltO*M>^qvQBKNE>NwN{A;i@6>aHM10(gFFH zFra?j;$}fjb$y>vNj0-M>rjgKR$;FqzQlYypwXx1^>cpUJb>&FQfiu7rv%Ka7&u z+YA%5h7~OFb1>lfC(k_`@E}v@y`CR|1LL7Z?F_qY%2@-=)_*lYaHm4i0iiNN#1sw! zP_h-(!t!&$yTETf-%CBc_fzrI4(*;Ny7{4BRi0GI1t_@*?{k3`fjtbk2QDBh$2i_J z{UCkyMsxK>hIV$)En`(8$)?;E);`?F?Y zRJ8(bv!}kT{VLr~_9;iXm;!U~&D}w!w`|1hUK7ENx8d~J_!lj`_dQ-wAc0HYjmF^L z=Z>%HydN1ED2HSvM8>V7sPcowr% z6%#ZJBffE9ULqaLwcq+0?`*)t;6MJs5DVm`l1O{p`ruJHkwNZ&2ox>a-ku$*sv

    `1G6pcOn`hm}_WG7v~jZ1L&nx3F&X4GWIroh+S{XV(FtE6!-Z%xJtsVX&& zrp2t!oRgc(`+#+Zq4v>P)3VC%e1M@Qq~9;dju1b5_v^%WWCG9*Z}%mxrO3$STP>=` zFfW`4xB46@f{+!ayR9YinQMzWp)9X~O)0kDlk_JvxE6mhdqbvh+q3&d&}F3r;5j)# z8II`X!mlrRLFGPL!2?0RzIm3E#s6_pGFQ6(U(tU-rwYWnxYUM-q1190Pr%^`_+zXik~XVyG|{n zs$J&qq3i2rW**Yb1-$p4H~C34$s84t7ziv@Y4tAOudlnRkJyqF(0-T}NH@!`dX&As zhD=au!9j2j({aAFTm$*SW{9~%Sg6<*zz@KJ#D2&l6GewxxU3) zLkp)hOu@SH5K^2c*+0tjz)b^sVR{Ah$~UeP81aVnh%v{Eg|jU22GVQf$1( zaYjrS8!)a-D}5-LPKh96sO~rI=xK1N!6QdmK=|}$a6L2FT~uQo)tIAH=F&WPLrv3X^I)3I+_=S?VYuD(r6xj3;|2-OT zIVjrT%jv~#9dVW~5h@-(n~Wh%zU`Hp@^7HoetYUIMc}AWku!2ZD+gGwl4*U+Im$O5 zNN^G>#Elbiv}DVH${=35&we0dV4@pPzN9jZaVVAdE)1k6QODnH8=s@=uFbDLTk~w zjpMQe#GJhe-9N5yWeHy|O^Itvq)P|wx;Jw~XpkoGvp=1AoxQ4tqy~R|HF0adf;6m+ z)19hzWUk*kK8n*Mlr#$n+6iF5h;~x4GSm_OLo1Z*jCWtjBqhLzSNz0sz`N2Ve?6J* zXxCe%T-$4I(NJzpcYW3zppeL`9mPV!;mLEas&l1UFNobPK4g9sxFxP^XbaPxxOHBL zk+lpB4WYggWlBk9b$T$=_@wq#Ac(m%yUJU3hGi zK>L`#w*b?r1O*VXCdmJEU(ce_#^L1s)ZyEGqcmE3 zO*MqrkC+OT+1HLXA6UZojJIs<*K5@J)3UFARXN&y@|xIs$7QfIO_SRpHUDd9AHY9@cYH zw%5tIa;G5h+xjTsYcqGmTcvk3{#{i!kJGJR90kivswI2DH=c#-p4>W9X{y~tLVO31 z#FUvl5Xxy-#x!LS4zg?CBBAFld+NT)r5Ujg-&aStf3RUtXj)p>U>s-I_F|F^845={ z>FvhqKT*{wxRS2LnhH0cCM(QS*&|Lw*2p`4*Ea*fRDyU3J2V7KwhlHMcUT>79gOZh}D z>TPnmVS2nd_^`mQ!rm>zTg8TZ8oF<0d(q`d>kfN;8Hk@Iw5_Ptym3;q{GtZWVmvAPlL$@y7B>y^aQVrrQU2= zi_ug984xGGqIw#!Dwu@=WAyID+QuwxK7Ams<`wl8@_N|eb&g~Fj_EKfhsXZ=_&`AJ z@-Ol^QM6?^CV6a6a&kIBC@&;m(*Xc(UWWoD$3wvVZ3C3uOKVnn z=bhHN$0q(;jMlD}&aT(IpAKXw*eeP$CR$SCS`+FTcMtu}dD0vhjx~Uz>v{+Jh$5(Y zF4^D?*=itlln_T{j%d{g)a-Mrq}47gO|qznloMT%jvwu!9=zJAac`mOe#05P_Mj&E z{xvX^vs}li>oSOWAU|O^3=&Y$M@vaeZYo?WPO|&|Jr>Dfy=EO5}J!HmQk^M zOJx{4tIKK5h8erJa65R{I|!%78_s+@XD@!f<_b5!q2?GBfL4bpd;s}%exw2+_byvZ zc7qG_YA@x)mF8EPE!FcSP;}mFdrd;9E&>b|!{GM80NZog;2Gu|acb4IAmgLC*49{$}#4!@DB=nOGD9!XC(w9OKL z2rs?yIi$R5W&NWJbEd-pv?!Tgz=F}nezm=B`^c6w6TTIBHzNEkDY;@~%Io_9uYj=t z4e7LTu((F>H=6dE{6Ea{gfuea3+sV9p8}oic-MvSiUaB^DY_fD*69RMDuBxh^;@0ZTHi;#{-YL%H1um z=*sH5izYbP7;hG{39$zyc_c=|K*`27pKf%Xt;?QVw4dmI%F2N3$vT+##a`*BU3HrQ zBLZ(2kl&Quu< zK&u{s;`_PIDhz<$_2;vc|Hsr>htvK4|Nk7_-5q1PJC8QabPf~K9aBd)GbW~+;b6L( zO&&AdY+~Xt&G37@Ki_|Tf4W?kb6sBN^^E)De!tzXP8GcUuZ89E@EnbN;sGyKe3ESk zhPAD2PoT6tkxkJzlMjS^IBW|TDU9RLX+hNAf;yJ#)qNWMMdXAp)1Cu~XAmfJu5VcDJyKcM^A+yW1nnzrD0%m6DX!}zMLZ}B^ zOk%;qPPR^zq|H?HFM>=N(SDFF1X0hOs#flP<83?tls^>!a85TnbeyJXQ>+UTs&4o{ zQS>vOyTayQ75Le%>v@9a9GtOvhRM5iL6fm#^94Xr?VyO2wLFhj44r44* z$BmqG-&MrZ3m%uJ$h+>q%APa8M){iJjOb=F302|pudhGeh#soi zcxEcARTkqsI{uj~W@~AfG1TK4t3mO{gcH$B#wk#hHVe1gngK_KOAaO&q{RUum?^t0 zmbgs3tS4nxAH?5AI2jz3khgp_d1ashgIh?m-*130`XO|c$E-JSw zhdr~3m4BY|qy10+#oU>@)(Oz7tNe=DEE-w^UWz-nykJ8b|eGEhH;-hc4YKVzDQ%=QiL70ehld^O`T z)=TDUI4IOY`8d+Fjw{%WAUezU9BuNbOQj$~_p!e7$!H91_OnZI^6vCrr-UDFdby(u zElT&wEPjzk)$>I7mPQq1n%)c&?4#CGLd+#l9Dng5OXPa1w6c|Fx;W4w_pMZB#*Kh2 z2$E5hJ+e_Txs`LP3Xxa3$$yk4a4j|iV&Z)=OI-0AoPRq&LM_SF9!I}eq_e+ejRS>M z@()0EaF|?N2=79TX~1)IMv1jDj}1-J#yjwYW@M)?q04+ALu9~^53lgDa;=2=nJiQN zFI)qTE8L4N7fLNx5(fppor( zw7$68Bc~tM5MJv?Y9eEtJZD{*aIHA`FhmhZyd`q;PKV}4e<-(v{nP8h5i{ovy!F)Y zCjg1FBNbVq0mPI>Scg%Z2|gKr=hw4I7fB^k*h6+`?dgjrhZ5^N-c#OZj)}1O^~J0` zUC+kIw$1sjHk2FrJ(r}ex3!9`sA11vAz1Jh_wYj(KdOb!#9sS~odg2qH^sj52OHH! z3^=NtX^|q=p^Vm#Tbh^CNBAS2=8~w6FbBv(TzIbgKQ@o#SmqFt;#PwW@|f)EE#D9r zWWEkmYp{Bc)oU)0`P<_JoCl zc{4k(*1L+10`mTA=(OQ51NNn3X-z5R2$x$|9M55mocteAF}$&~Ma?OQlr;DC&M)Nb zX$cPlA&Zxp_&3q*Pi-VW>%25Y$z@Us3mgoKIzJ^iq!`e>h7Eh8%1*vBLuKMamcW_h zP3hkOf}|phe5%maP3m4<)gldWa>ew@f@=# zG6o27p$`&8w1hNjpP`jROSwT|3q% zE%?;6Dq{BJgEcce0Ywja>`0yR&K1G3!L4(pJ?F7 zvhRl2H^bO?ADRf8CXs}vbsLEqY-O-%E=<0aPJ6qSC^8Yqx8x(TD?zUDTW6GK-ei<9 zn$YVz%a8y6!?|AvBv7Z{Hj5H91XY(JCHbEsm4ve5vxtWYwd3pjaNTQ3p5wWS5wJ(x4)S5HD246F^TP6x(v{THiYDB&)>K!(IF$& z5T;s5;6DqtWX=<7)97gGXg)CUOn@@`BQSR%cYAA@Ek_C7xlV09kzhhImF6?eb1`xI z0==0xB*cPp6{81(k-}ezK@2zAa-X^nj17Kx8n1j;SkBodu3n2wKM1UH)3eJs{cK+( zBX+ZeWrrP@dAH_rd*f6PopfJ5R4un+fdBzTmC@rjP>(V7Y>_`?#ec2(NBp!29syI< zROQMR*<9y~Jew)+iyI${LS7;2(W}LVV^E!4iEk)DP|z=U+$V?S;`g zjo$+?MnQ)m?D>$CR0cb52(k?2RY$)VRw)+KIKelCS*D2zvFosD*Ei(Zq-!xJjy6cFygqnTz;Di$oVyB}RzEOx+xzpzR2?WC>&Eh+7MFG0@N4H++0 zU_1AM_=}*88R7IHn<}Yz(^eD_pQPip)%|c&>fyB-g{CHXz&oz3`cDu|+(%TZJG1_H zw=UZ;3Kj113K$;yV@5?LnX8%n!ry>fya|A`Ge=Qjz4<9?WgPkG`95-A!a1CElvLY@ z(+={m%d*x^{my~tyRq^jpVj;Dpd5D;^d=>a$-L6|Pgv=W`>&iA4MPz>>hWHd(x2Bhp#e8>D<@=_MSKdw@Ga;%KfOqo!*^69Whsf9`zfGeTONLjNdEvhf0A@c%&J3Inixr~^!>P^-Z7 z(1|I!|I~^{n*# z^+!%}N-hO}B7L%VrMK`PpFmNDK*^AT+Uih2Y=S3|qDWHiIkCgvnq1e9V0PM4@9AM9 zu5@)hvw#kZ2PY7n6)smlgWiK5NEkSnfWp1a)Vr~{Y3FH;+X1?r}EsU)(;a0m))KHe!eAO>b zu5?n!@XH8+u#YbVDcEYAb4Y$`1*P+j!Z+&U5+Ioht+h3 z47b?IL1V5oKIi+#oQk;e01}CbUsC%7y-FDTBq?*jw%?)3%Nn45q0C6;pPriI=7coU zH>#ZS-xNqD3tH|)Z#^$VHDtDA>fK-`G=vU5VN%f@KOQYG({bx7)*?$1NKW$tAA^eq zpVq^?|8zLs{^&f*r_}>XglN^~>65_uH05;J6A0Q05$$FHZM3gL7h|SX6@b0oopA8- z?^oY2Fv#axXOdbDCzJmyQ3WvjpmiXKTPrQ2`O9=X#^wus9G z)H0aeQF5b|*>1$d2^L0-PoJ)8rA*IjEFWP*uzz8-^i>rBOjupkeZ7y=NdVkp;ho#+ zh3`NPl9?2B)5E%)cLl=ApTnA6^R0lR<2Ou024^XTom1-0=o9z1E%?)A>=IuIY^J?8 zL+Deoe|tb4lsr6urICz~#?WZ~>(jj0KUsPuFD29k*+5B#a`s<=*8UK0cXXc<$t_-s z#0B)e?XJRjRo|=7jLjWb$Ce^iahNiVlr0)BvQ4>agAY!)Z$%pEfS6jPag@C@3K4plIjIBBJrBlGS9gca7hp)R#P{`^4t z)I8I7ohE`I?|;6nG>4CLs2|$1K&~B*pA)p=e&pj`g;?Zlu=w&>2& zDh%(@)b^8c2{P1@S0O6bZkt8vq8}rL|15|so-y>^_l;H11dV?6Pg*#vB%4fc+BpG= z<5<7)lCN}Mz^aDl;|iqHIi`Q5%kzaS^j%j>QF{TpipxE1%F3ey2%?gl$+%(7&V|ij zPAHELHl1Y_>rNTS*lnBXcIrB#YwkXhq_pB)MCvV$GoFrTtlvyXRM(A)awn8mqIb~} z&)b1rFmpB8;53Q@TPx?O4hvujN1LL!9r-VoW40E2a$_+;GQthPo`~xneDO1)nR#Xc z)5bi2osws`PCg+E@-aiL6NAx0BRNp*zJ+~oI@j!7I~%QNaLiFpS1Bckug8uQ>*3F3 z$gNm&j5M-o_TyW+&HN&2OBi*Mk?rRDO=8vqBm%7<28-$k#rj_I&gj1(?`BBjCW?ydzZf-I?>`&C%{2JL;z zD94^8ceHr2EP3&C4tSk&ZtytU1A-h^aA{CvLs+E9fK{1INK@T`xL#*17h8iZD|;Lu z^X4RxfBC{R-YhbGWV%t>v1FU>(A7%qw4>Pt0%__#Y!PDv-Ycm;L=tPI=2S2W4SaN}*Jz{SIhhD^ z&K9>|JPUb+pr~gg&tc@eb^kZ1-}wwLua!5$13=0rAJ~4e(mUr*`-Yrfd>^W!IIQ95 ziJ7L4|KV@yMYbb_&1=?497m6=q65)>gSYVuK=ih?P7uXrCiuP{h61Sg;}yJo@%s+$2*}G<_FgvR$Hd8)2Hws`q~2!u|S%AH*5q`$FN;{INju@KNkqSF9++ z=(W-Yq3zv^PYs2McB__UFI0@u6rj_yU|Q>yTHGd3AxnTp|8tiWzbyUmX__D<3R>`>-Q3)tReLWHImOLj^jy*FgvMs_>1Vc zz%<@!jO}dY7sT1DE1&>#MPM`qaEecc(iDPmcN!geP^`nEjjfPkVKkU7J%o)e1{>)@A#lj`F!f(K{t`X0BkyG-f<{ zLjG#*xL!%$6C1t&PIN(W>@wc-e_Awr-^DY=T+@0oR3CQ5+}&)Af8RCNS3i11giUy{ zs~F@yH)im4$K&EW8-Q->*${d&qgI*w)Q0qg#%XcnqJWkdg}^^KAlNE~^(bwacSP@s zh11VVTyOqd`lTGLd@Uo>++)|+%h|i9inQ+4Y@#{hskZ1NZfefXJ(9T4yQ zN>_^d#3Qn;#9!erJtfW=EIJH&(Nz%Pl~a z3dswwLHV*q9I2pt!lU8PSk#dHUrJ{;8qqUzEoJKDKXm5+sRX>5p~^;K%yGF=F0+bTD`K9~Lz+ky(-*BHol-Aa**N!g0K zsbuynBU$=tEqwpb9Del16QN)MTe3|nJdDJzMA)k;t zUGifw$bH{vV<1!Azw~J0&?bpG<(_c()g}rk*l~lvQg%6kb?+3~>PF2u_vE(Uv2<|{ z7dw@L`96k@B_nDkxPEQ*pH77zVMa6v^22}>EkjKFcYhj0#~NT+5yTqsi~Me3Q`ETe ztwS9#HmlW_t+#ywH7w31w`Q8a_EIK9FHHc_u&=7sn7@wvy*rSPYI17J`u2v#ITWTD z{T=QWD2$&)rlB^6`I`muu->mzaks?GdV+W0GV=;;bgHuu*+9W7WX66DBAdANbp{k`PbDnI~l;UQGix)Lpaei?)@&iicQ^d2L}N zSt#i5d0`;(T- zO?S|!w_p~CmI1<_;=+_t(0M4(?Q=0wyqe0IqS`5F$?_wz#QggJ824r}+7Ms!mPQhdXnn0DAn zKh>(6@#8F_v#ZePDSZV?D|v5yG?#KR6H5au`OqgBlcuJL=7IVR8J#+N|mKL-7CGw~{E0=B90@A|A~ zeu?}Y>NeRw9gw_ec|yD==|y0j#D`uuZ3&y9z^A+HQPA66-`9JKB)E3TwVzKRm4HZ; zFnxzMT6eGVtlXKHqJGk5O4*`Bm^6IkZ}7KD`KX{JvgrGXCh1fhfm-NA04kC#rtgc* z2m9S8Owx+~iX=chdyd)*Y-LVK1mq`+{gK#0+shl=ui;2< zCZN}yWKC+8MEyJAT@A`K_9na*O-wwUJFHSyvj!%(R7q4M6SXp<;a_w5$qPlvr*cck z^92g?_00ps-D#$wYZtt(0s#s_KoV{ zII~Jao}JCpqUnqP2bYYAB zga02s(&i~WD39Vj)qvrLHdSgxn1`ZAKmlj8^vp6z7RyD?sc>eHl1K2}i0wIi(|rUe zEhkk%tbsvQx_djk&rkGtLcX0V#3*TiGYQCGnZLR$c|J!VBd?&kS^0Olzn+nI0#m{Z zlrTcfJ$M++C+TAg>&H3G!5Mi}s9;h~bOT3H;uoEc?5?(5&Tu zO`;!+;>htue2>jW3v4=7y_CZUiJk8E#Q=pOHT!L7IzU$a(tuPnYuSj!w*dQC9*{=Q zb1m>CkRlYRx5P5=HW1i*dM%64$G2UB{Rt+KcAV(ch2J zZ8-O7K6doUZDMBf5a$BO_MN<)!b+S2*WAV8kG{BJ=PQg+1A18u!|rQ2V?2Z5-v;)) zQ3rip==60XfGBCKUbebq%cNC{JnxIoahGJod2@7^;r zf`|!u<)K}?{5LrG3s5l|OV(pt;v&poy%$3rH7vgFsRP=DZ0Gd4a>q4-0HMNGky4ZS)xc7yb=Pg(L{)>fq5vsE^y5Snnv2(f>1#^d)Cla@{+;r%?c&JL@M`i$O6rPto-(h5C!C9NRFLUfoMNK5P#s5h zGTKIT`C|fHK6-P`JmxZer5q_f5kwtnvy8OZslQV16EFwb*8853K^it8lsC@sIr=eM|9?m)`4&0U#3ESlj{tyW ztdQGUE$J_yDaId&2tQ8C1040@7>>VLg&25KuB=;Rv7pz;nmJuiLuI1H75b~T04O7Qv z(x0N?OVKwad+-@BsARA*Ab;fUkc1EkFn@XrIssZ{6S?Y`xO883a)C1*+LIT@{bsjx zWr!*}0NmP<7<>D4Y^ab3_3CJCa%JpF=`8V3H6|vdN!e{ zWCNrmheA}82PeaMqDHs1nlm6TdS1UI&X!k+T0&W*<6I1ggCJrB{fZcl?VyE>KriOH5d!3 zP{TLsu^Lbwg&URRyC={H#$nm;=Xu=+mI@fbjAKV+0*68k4mWFQNsO4t|j7|3Ym6ah?3PLI_ewowjX zRjZ%2RDShSgP>X_2^E=STzWTK?X;p%|2@@W5!<2wvKMn}RISup%n?HXEX!@0Yb@Cl zJT2`8*Sp{6{h9Hcp@YrDO9_twO@T&s^+xvh5(J9I$WD4r!;x}qgR$n^7buO+hLh^I zbg$n24BmR)PBi*A8dhq||8tiY=yZ5>Klug-MZ`6L2Hg0@N_M_Mr^o!Ax`8%1J6^Td zpI1FDB;EJgslhxfWhy8t6er5@PIw1@ZKPG^eS$N8{VYsbu0(^i?R}O=RWKtQtYs4W z(FX=tOWRsOge*U)Ut2Zdd(T$63S?7!CWI`&E-c2lqCFM5CO@%#E+-=-u;n28@&NLn z5$+0Zu%HdB#oH*_E&1#54cPZ{OpCjWzl^n2zqJ&69;BUVt>W)<)}IjXDE0=q_B`1H zhzwKv-@$f2yz#)_5Oeqw@S9A%ZyAzQYIDs;iZl6ACCvOm)Q}4H_$!bgeQ$|Oe6uY= z?dIVFNA9j^rii5@qT08jYVnQdxYu*WMG?R)DEOb;u>Iy#R%;+5fEHBb0(od#Ds9lo z2}O2^v+VBL2&+uW(b7ZSZ|2$i2KAFH3c;!uN1+~?FB2H?PH1lc_Jr>3pRXD(eLN@y z(3iI8@ui`%mJcWWBBbj;p~cJE2SUrvi!l(?Fr&13Vk}J+1R|0?VN;_2`L)9|r8>i} zGA51ifJ@#HN5^=@>kt9el6&|!ZwA;;-{<{b8H;~{@CB2;MU84*)QVLl8 zx#`Y~q%4d&N{0}r_Dj0Mi!iI+yk!CvWlmA7`M=3NtTs(72`kv$ge3SdHgPFFO;0TB z#HZ7t6ve~CM_!B($q~}vQP@I>l<*6q4r_aDat+y{`?ml9>%;azO zeES)>wi+;{%ufrCSst|cc`k;i-ujPBK=8kDqar9F6s*U-j^xvEjP`-72>YHI>84yl zt794ox`3@$&m|@MGR~)6FF99D7Hn#l=F@7DNl2p?lV}~6ASUv7hkbjzP`~B;y>EGe zrE?X&S!KXVuUf{ZS%w;|jVFZys)D>Ubr+M_J<@o)@~1hs;Na)oeR8e>0}!D&=zp)_rE

    t0E`w_~JAz^8wWchHl&f#vq5y75Eu#J>+6bDn$X+A1|d3FXP@X72xSC^mnR*Ffwb z%AFwmkoBXDCDSPQe*4^NmHZB8+DlJiuSA6BAo0eP`VS?}4(GGckm+-PQp_fAOkv=0 zv*vvM%hTUsbv?~)bjRbh22T598=RD1UuLo8m2SCNh94$82KjT~3`vVJDV~9!n4E_G z==XY{0#-3p_3|dh&DpZ~fG7HE!0R_bi@0TTVAl?|^hs`?+w~V+f<>rNZwYi)I#8|Q&VYMcR7WXsA z!aVRpU^fOn_;XhRfzwQ#O<(5ueb|fVc=Gr( znAIDeS`ZR?(3|p#W`xQDnTReLYhs^fdn47;wd&b<271kBiNh4Z?AQQMwf^UOaS@_j zD!39+X8rqO{^VmT6Ad|w7J9QURUL|V;*gAJ*fiHWR1Or17q%6Vs|x^I#IYDp!l6xP zUI5hBc0znRDM^m&WCf(C$u#3~q@0U0Z8;2bt0w=UI9i+QSIVjgB1-@>V{6m{DJ2iS zYNt))dTL==#kD7LtCJc9L znxZ|wNHJ}Jg6)bRBx3zzQO+{H%G)k`lK>JFZ$e5c@cV^~W5KezeN{Kw?r#iUO6GU~ z@y{WSDe64ja#Gu%*kQ%1iDw|Yn3F*sR~fBYM(2ov0ZU=#CkqG~cgfBry0En@S)@xv zLp^IGM*I7_{lj1bfGnuummScNeJN_-DnhR0_m6xYKa}^Ua{&L*fFQs66^UHP3CC|%s+@jFpQ6DtCKX-*5bWq%*Xpp4X6 z!h#Xe0JrQB_5r50vjmT|ZcMy+O3LQs!kO5v-`8FfhSaP|UJsS?Kq7+x*B=Wf0H$#K zv}^~F)ZO)q4NTH~D-WwWnO9Xs6||p1zjOovw7IoF96($JCdpxF&3vc_9)%$rH1H3m zGKGtt2u{e{xlra-wantzJb;L_BX172#qnnC%GV85tei#%k;r*(N`H7C_P$T!6}`Jj zTyij}gJvG)?u zhUMXc*hqHET9wEs;b@J2bHa~^S(^A2R!|S%`!YvcU1wx>$w#I7&YxTZz1zAd++-TC z;4nEw2VMD81lGhBw17a&zMuWo7?;6>_-R&OCncy~?S~TFtgo0f?(LUQjdmJ1q1A4* zE;UQiIiRbY{qIs16|FclUE9X5C|)oSa_A%04nP5ce^smNKQBmfB6DdS5~*H&4=wQ3 z6!w$^;7$NmCG;o4%P6P*cazt~rlRs8Oo_M#qAMqKBGT0P`Kme*=!R5A^H~C-9QG00YE-*b{gLOPes!=fqNk zEEoWRu-)QQflK1I5I9XFjFUod8ijXKWOAf?h(HAC3e0|ZlHzY6V_e&FyD`~rvWH}ic9L@ICbbkLFL8A^1!@+ z-^NrUg7a`BpC^GLmTZTOiuzRz#Ph+$B4I%QhNWJWcu1&56me{KHa{;nr0@3eW;YSh zg27_WpW3z!I1|K*6nalHjpzqFIs2k~@h#IYoKyXV6vP9!-L;VW$rJ>F)Ne>tDJ68e!g$z?v^2bCGT+<1Mmj!JX@yE*12Kd#_zA0WvY| zs~l>4+R)2|l`VzP|XEP#y=A=vs zi&x68X{`BWvCQT=IKE)d~8)z3#9=8_yQ_0}JK?7xzq zuW#(8fm?^F2S;5t^r7z}J+?J;>kND@EJ*o*w0~SQxtNQ~qVmSihQ5e(>d1mQRMj}) zs~Mrr%hyqlT&0_vkM!tvqTzL%m*I*eEjBls! z)zO+Qlc*E48?Sxp@&@b|7LPZgnD4+eeJ7oAC$S8p*#E7FNhnE;fk5L4g{>K-tr>;w z=0aBeo1}Sx(S@Vu{NGKFIZ2H`A~?4pUSJ@}6B1pQ6^IsXM@hqjZ|J-iCuwdS>jI9`>YAN0@WBVLPz%@pRt4YVx z7m#(=&{n54aZ^yX$w28QXol8&-7CQho1=uE9(y6G;{dljMy#i$TT0m;)Gx%L`BSUI zplQRzuCiRnA2oA=KvD~8I{M(gxPLpIQm=~b)0*=}2^hRMmdH81xt;b+agZETvEiA! z{49}H4mx;_`^`Ha!qV>&cEzxzSucJu2#1cf2W5_=Rp#Xe1~Er43k&7+T8xuy`o6Bz z7*TJiMG(Yr9h*Y>hH8}yb zouEN)%b^s_u%P%6Drj4PD2laW-}B{IJm`ctgpZ=aaN3g_J4mJt6CS!)HMkn!=`vHJ zYMD!xTY2S#Lc zYlDy`qCEOt&hNYNK*YRZ6EaZXMIcoKU|FLvebAVd<4B;0SM21-0iw`)!BMiKBezUF zp2g>&@eanhzZh=FXM~_caPat7Zni2d#afCoH& zEbXh{6Xs)aTS5}YXzj8ln|r7kFUQ?rpM+l;98*>r0KywxzO1I z`a!;+*Jpg~1LK4QNa?Rq34L2Z7Ke zdK~N`a!clh6*Euc zCQu$Y4P0S6o1QQR0yV@+n8j8J*7nQ_I4YZ^(Kg&DiAT?Yz6N91zI?YTi z-=vW{D@#!|r!)_$7SQ(ZC!_?XF>R0p!l&O1t1^_=X6f~o%ATS%;6jW^w@^S`=!7Ms)L-rh5TearxhCuOp&UwzkO9J~#jyx_2JJ`M7_x{<-4rp91&I zPRXNDY0rps|J-c0I83_*&+GRG@Ch}GJdzI;%f;hRv$$#IP10hRy+o0wXO0rVxhKS# zm(wd{i|z4|Nu%#XC%F9@9|V0n@GI|HfnXQ6^XO#^?&uN{XbfbGy7d;c`6elZuAj=0 z=g@DA)f;4dqALv2qKSbK5tArf9Vlm zUmbL@qJbYfszB4*r_W`(!agAr<*UBu@Q>q8tzIu2wB`a*--+>jd85amr` zW1?lK=pT+o{~MNotQM<#T&EFa`jO&VYHm$gx#n7=^NfVU^f7n)Q^()f@nJj8vt#BH zLnNJ-5fda)ZwpWdy|(KDvr3#5n17Bpc^Vh)DRa|0@-5a-<^@I)7oEUh4NOVj#Yl>% zzqB&dmmmED&L-m5HkwfdAsSEjzlx66s2kb6_%drB+1n+csB_0nO(}PmST4b}C=<_! zqYX(mpzzGz5NtZJZp0!uLdltQM-tWYM%qd}5&1s*A!~Itxn#Gg)Si4W@3DjAjUFw) z7Yne)pn-$n^!Yf$bNkC{OkxoL<{TG#+h;fsOHs==zhN%pBHkvM6nxDQulT=L(V#GR85iT$h+=p>bmMzVl{O zs-ouDmijHhEao!eES8t^qZg?;me~aQkl_EhoqH-X2Wafj_x_y18V&jCN&Qg=Zq?e~ z%kySDc+6rSxesT$ktUVI#{d@6t~T(Idg4Q?@4 zbX?`x8^s34)0@e=%{zjkmH~3Y4+Gh!l?{rFikHF0JO<6Dn>L&BVe}OO>m%dP%uU+Z zzq$ByK4J04cU)l$-hpCSJ-Kr63Upkumkj?Ht_(DCByjBn$$&#CEA?!RqnAMiMv8`@ zO@s#^yoFW{s&FO?OME^GUig-0|C>UI(_6-hU!-iO>6|Kk&yi<8r(~eTG@k6uA*yUN z5%<}K4EACj$ro101I^;(B5>a#7d%3P$z4ilEK*|~Z~i6QXy26_q9UL3L6kd&{xMzs zdRnnHupuM|j1dUV?~+D2Isn~W?n{4Y4>{(x2dYq8gDyUk5&ETdkMp1}5s2R7eZ^YU z7rzwiye>4tAw?y?O;e}mAFExq)G0;6$iil^Gl&o$0fAw(}9rps%K!IF&#@H+N)SBAb z$!B^#(}OCsRz1SH;<9!JS*p^eroQ%cd2f6>r@d}ZPk?$UUbGHqK8hH;V?`kRZ_ri} z^l<^8kK3$?+%QT{e1K3OK?F9IViZzG(lMVgJ1(S!r# zN!du?(}XRLJqD_=h(B5UZc|V^p!=FWi%bs#q(#EY=|e&|l5}^ZRIPoKOBH=XlKT{ps!gjKWo4AHgI>}v<{m;& zC_+ayv{N3<>V_v{ zV9`QEo`PR-8~|J9Is8jVSX}||sGSEMAz{{%;&^;{*O7qZ5yZCmLw4dd(6z17FOuMn zotAqznyyPCtw_L(`ItbYfHgOG^@Q~%H{&ns#9xz4`+e}zapT=82+uBwc9J3y+>X&7 zW$-4wt(Q9Bz?*qJ*>kE{5%+z@C&0Omsb=?M=A<&63ZmCYa%4@jMwmJ%7K`GI z3E$H<5bTmVfnGD6prmc1(f{3s#=ub>>m|7#1Zo)GtLx>{a&#oplWyt4iC$BrKf z5wkW-G)PyRuYDjDfk5i*8E8GITK@ee$@;JU$y!(E){9GWXJMp@Z?OJ#J07*8unlh| zkEr|@Hz^7QBp-o|)FIJz=wI{*_29D3HB=W|#kd^G(`2r>UEh11gSmiTYy}@JG_j~> z&l>SpZnQcRSaOd#B*zxwHS=2Ve5fDzLT$MU7v=DSK@V+R*gSjbeQUmwB5P-11xJH8 zUz~6O<`YHIz5kwXKa2KW@1rAAnc%YK*#mjva$n?}J?~$a{m#(LFYFLWY+f^wA5T+} zM>3NPRvhKzd2iPYca_ZEhHZRb6Xea=MI02il7Na@4ee&<__gSOQ-A)qh?ZLGDrrr)dlLO$ep4H z!UC0L0BA1I8CUa8H2y30wt(Jo6o$`#&dm#4mJ_GR-Rbr=l4OZ`XtP;Y)AE8<9l=v1 zV`WiPHY@FO`TOJ0R&&*NDTdZv;kn}8BKKuMRQr&@kPB|)1Ol~DVAqbrW?Du4Oj4Xj zuN6h0Q-<|PX$AIl&NHNAX1Ps5q3);$IRJn$YzgAEYJ zL?#c7$cD?(v;Wj74C!SOYi5edxnTh~XA_%$2&I2CpZH$9yGWUjJbjrK7WF~gq}!gw z8EqfRlY^#Vvel8`nSyM!mc-n5$6KZ*{L-Le@>zotD2W1pmK>(-yJfK&oOB^1x{csFz*~BLY1Xuv z>AjUWQ+#iWZ|A}>iGhdMwB;qQbf#|woY|tUOwl@`J!xwE2&+m%wMUlVv;yP zBj+@v(j#|6b-ry%3&W>3vz2dHT%??SAMiw`Y_|W}FB}|Y3d&)wOb`0=aSjYhTM|q3 z#vGi4UUSM*OoJ_S`H?*j-KaStn2*5N2yc{9Ks5vbat8mfD!Y*ydrpQ|b%s~R)8=cv z@tIfbSqBrctmU{=4O=UMSq-AC%=OfMeXsB0RvVfjSYR z!n59fFm+l=iot&Yon79dsC_L^3qAG(=~KA+JMUR`ES07b@$*xS5R_*HWwF zG|P^PqqM8Dd6P2!oM9hSArRz+M*~+dGncaqg_d2td%B?oqcd-aq`PsMzOLz`-hE*H zUgwb#qh2-1AF6MJ`S^bBmdV_G5}4BKwBoMy;zUi7G4FNbUe)qGc>9x07K-BAm6x+g zoz7Kdy*{T(!F8zzvVD(C?jT4!&Q}cUxXn`O)y3_dd3uGRxkZOIgw))E4l3y2*MP}$ z?WU}^a3zhk1rSr^Z%P#>PPga!7AiZ`U#tBOPf%;x6K$=VnD5=w$E2w;nS=dY@QGOz z-147Tk8$GGhfEVed+T}{?~M!1MdYk#w+S3{p>+vo63r>sE*z7kau&Qr8CzAg8~$nu zwETAcDci*faQ;Ui1lCNiHPBhg8!qbS0241W1tgz{ra7>5(6)_+_+luJ-xF8bxSV;#`JBW)RM^j{+!=)YdH$?ZHWeWvCJ z)9RlG?M3u8K8DVF_piLk9m1M;hm<|UfZi1*vFsAbq7&Cn?B)`06&}+#;=cdK(pLx4 z{r~^IkE6R|Oivpd+q8oj7Gk=Yi4DVaAKgqhM@~$4=a@da9WgQ8b#Q*?^S$>U{~zad zp7D4-;!+!T05-GmGYX83s0CD7&Z?aua)1B6q>y!Vd?%RP63Z&GUpsr#()DXY#f3A; zr^fDHg6_)6I@LD64L2v7*}^FF9jMsC#r|&(h=^{*)`A9BX7__lPI5jZ&jTSFGWE^= zr?V{<;8d;TwviO^3^^9UM)sT};rJ)&glUz_nfJ27liSfu;JZl2RDZ2(Tn`KJI8}C<~2CTK)4g5eQdL+iev{2p)Q2>h7U2Wl{M``XD-2$*)5jr z9wT2<-QlM7+eXTVL7ZNgRo&~66_Vfna6v*^d{bW4;g+TR)jQmSZlSLuA_1|p%we8C z|AUSHLn0&bKDK??jxnazRF-$cjhAZc93K`XsHT2h@FRyoa+ID19TriFn`6Hj+V^hz zpRJ#JO<|tYbNcv&7gzPQqOo^uA}0Lyv~QvHG%UkUq*bU&wwON|bkH_Hh^^?oN7BH} zexgDhneJ(a>E39BXq`^Uq;aJH?f7ZFk{u8m#3_q*K0v#Ux(G)=861bqwrILckF0YW z2%hD`Nyn=JOT3Yj;ey^`Llpq{$W0EzdFN0922_RJn_UC4IAG?-N7A%x`@K$Rz9a!&~DwAPGUb@eAg60!tkV8$Sg5W2QP>OAr?%>d%Rv;-ke# zMzHx`oH@~6YqNjre?HSr_o5@N5j=cd0?c1nt${*1W+mN0Tyy$4tPPvAY2ApLzqX|#s$=6& z&aMX~CGm{ld-@fQPe3G#rQ}GqUZl%EwS;NTZaKXOyO73hHQP71O#kVw0NhGrv`lrq zsF;%0%&K@9yrHFC#C=@kzgmT0D8^t`OSa+e{8&L)gC7TQKu5z?1vq@AKyw7yJq zuUanskgvuCa)x#wT6X4a!YKL@QsSJ{WtI9!Dv4WNyv{Mn%tWbHGY7Szl9TUky?Xhv zh;Hzzi94kR)9Q|75T4xRkQMqNRlMi`ow|NV3UmJ>^EgYscH-}-t)8?_xVh zl;Z18D|F>{6?aThrjppHWOY{?)u zHe+X25m*m%L5a8*x-LBzg*^_)#gA9i3uHsd_h%odr@Uov26RaW-IHWPN#5`cmwO+ZKKM$ z&dt4L3%VuYnDdzC`Dcfh+Xc;L^m|yv&uz&#a!3k(A!Z7#Ep{;1RLyOP_EC{0c!_`{HICTZu}14y|YN+}(7q0^Sf8 z=Q1J5@|WF&<3At24{|a4MwL2qFc%UGGDi*!>TKS^odNn!9z7k@HI z@@VSPg0bA`ok;k)6C~vR!$iAvDmGpakG=iJj&fWF^`(y;Op}L_MD$rriwz?uW5%S_ zF)rbrrG`V%p6fj#mfMEa$1s4 zkyJ^~%t>nAkjm(oW+;)e3ztE2bx0!%e6?k#s}(o+WJR)XXkOQ~6@H}@b4Hc<1esqQ z2Ta;VrqqUcMcLrP19(?yG)2gtxn_d?ZKIt(Sp!WiybEpmYmANm-NyaDb~;s~S|;mz zCUxe%m!^RB%iJkm4lhh|(&EG8Y&zR5x0u8lY$9JEGtWF^*t$n=Q4`OIrac_B#gO)6 z-os+2?C5k?I=vVBr*g^wAbg~2M**u#XYas`cEYX|GFzZX2lySSVX2g9i=9s(mapi3 zqL;`;`U&}0)_P*&Q=(p@{W*pC9mEIYsaas$`V^{|bnh>1RbvUDgV5DuXNaR2PcAN6 zjoDbMsy@H%{k(Yjt%qo1<{SgO{)f#^piCTgK_7&>gyE$8dl;9VtdL11c+v=$!4dVH z&+ZnrpXr*yuGxg@I4UNNcO-795ycp)=A(-x%*Exw4To{H_LEZkG6pzEP> z{2LAuG}3@$4eVDFv<&s7&Sz%UQnc*eJru#Ilr^=l{-$1?Ng!=pr;AI3mVc^DyN_LY zA&dhVH^%?;SFY~xy+HPt4b^pbVc{-jv7TWX>OblXgZ^VTggiQjl zZP3@({ibhkRsMalN!Y91tRb=e&|CDa2Uz>#7BM6yS$HiwT`FpK?@;hQZs^jSceC~87wXW#&0b*!?QwV+k}+$$*g>$Q6}FZakhA^R z>rid4cI9Z3U)qfp@qqlsu+*ULtOGsB1k*AOJ@n=0z8uDQiG}^XCA>x=x7y0t}%FBG2h6$Haei1@A`rk{i zm(D<9HC^MTsM>T2shX%lAVeG*8^ zrFKJEAL*1)`hoMN;*;U(O-&+N1q?Px90@!EqM+I8J=ytcht^U_M)(^O(N7HdEF)t& zU%FxuWjo3Lt~U0HRlvZTVC)~Sv4`Hg_w5{A)_?Z$IfL`{FAEzdO6O`E5BHXdh^4jx zA<}vm+H#q6(yv&xZFf@$%U*m)zdQ622PSlbLqF^@dR)>fi8Qobj=y^{2wwQ5partU zS~U#N%=(i~3znO2#k|~JZsBY=c+>a7Ek2mB)L85!ZZ@}SIs-bi*x*a9$j(9SRE_hC zC&Y>W-x)Nz7+SN~VO#c@mi&cqDC?tsJcQvv0{v3*z4C$yHWbIB=YESK{>JN>CRPTsNd zciMUkvA<``Wb2@VtTQ=c0%Fc==+V3-J_Yh$$i|20zp|aH?17VhnSt;`(v)x>`1kv( zA0^-9OQveoM85w?hfEMc6nJ5o2(J}(U+6v?iey5S zo;Ck;6nNC(PR{tSrGHkAuz~$VGS|kulx4%y)gXIBT7UB1YL2dD8GlEWfY|f23n_^$ z`IG;(4H2?{r2{3?P`d2MVMzD9=kBeS6L!Z$i4$w zS~ZlGb<7*2d`uHZPtT52B@WXEAMotHkHFu@+K`8>WysZx4QOxazU>4oF)w$9T;7eV z?t)^KJY`_B1N8J5;ikNHp|3|jryP35J^nS?c#BFshANZ%{g&<^n4MakJ@z=&kz=zp zlBDHma+>$&+q99e+V(aTcanfFT`V$LO6K&FyIk$Z-BH4X4DP!soiXJyNZ82-*W_HS335~z#r7+q7g!gtAvbk20t z*b736kf58X--3>W4ZHKB-#fnTtEr^U4NCR^%~^wn->Tt4oq5vXiM^&AB2&JUOt1>m zAVF^~B`(TlmPXCq;4+a2LI{!yzS7lhya`vYVbPN83*S?faQTymp9q6I7nu#pXx@H% ziPhPnq54P=-;K1Eg29h6Eb^07W8%ZbhK}bsQ`X46I0_G#OEd`HX1u2WU`4K;D;Mcs zF83E>CIo)D?h6jTEV_MILR5A8_efTfe2}%epaNkzMFX{DcBfqx=S*XNk4WB47`&(d z%0}_M&Bn8EwWqxddU-!8;S*g`o1Ml>c<6{lSvL0l{Ey#{30;Ymt>7%jPkfWGV=tc} zwoYpwnkA`s;|G7U!VygfupU*XYV7^ea6RH;$~)`6CA_?^0aZ_ssNkB@Qq)s(B-gin z@>lwhD5GZY4joSe6d4&vyz{Y?hsq4^$;ZSYD(|YX+z4IYUK7CA#2Rz%qUFrqa$~0i~`|G>#>#A zXi&93@KGXSTW@-z%ED}AHa+?MC!o1mb4{GF1p2ap{#mx?1~=^HCe9Qfh6oL3bhi95 zxL>8zZfdy4Il_2AerE7_dR4tMu)1SshvjoAMkslc{-w#NonhsIt6cdGlx#(kQo@z% z22yha!|O442OD1f#0n7*OgG5*@a8o3RwZaQua%5QWL*;y4`DSdyb8O4@<|s6B^pIG=HD& z$f5Pi#IJ$19!sIoS(YW9_kB{8TzPL}J%$ILD`Z^Kfs?;tTJS;Dmq@wgu5UGZm)K-{ z;DlEkFLLniZg2TDccF0hwxa>M!1ymb+>wi;NV(32Q1_zL18uZr#Ke8-Y$4#qtmRAG zkCYj;j~+Sd^7dXY6FzpFQaT7@!s@O@8{IG95h&>M&Qc()kB70HR{-)}4bl*+%5Hi?*@yj=94J z?006Ff_#L1?fQ!?Djk#07PKNtaCBw%pWLw%(RzTW8QMeiP>{y^6d@2m!trv|(5_MH zymg>HN=M#PO-A>~3{UpciPGR{ai6AQY_#N<1fvSxI-UK1&d~UsVvo}{TTp+!v0vfG zgWcxlW$lafA*9kHE=ikme3%Aa^TRpSxx{mEPRY9^)S1Bgc>vKrq|6)yZ8gh$Rlrc<3$ero}jdjt8#dW0aa$;@zK!* zjt)*-|GZBP}P#q+_cPeCL< zOGh0zng|i>=It}0bQ2lufdnJqg*PgRo-2!C{yiMyK^(IF7b}U{#Pv9}-Tnc8&vopV z?oP(m=2l=O9i)GzW~*_|HS!c?cY;IV1us}7cRqY8)kQ>sK6*gtNpr@en$Wd#>jgNzS6ul;?WgVl|`!6R3?mzySCjc`)dAI8II(*kMF64SIYQ>)P8oocAuMjiDzV4TR;gY&D;!)fcDC`Ez| z%G};8)VGFS#b2u5U(VH*eAmREV&?=4=Ew~rqT_|jaaUBAlVSL$d+zyZnjrnrx7vs6r3rco$p`*1mjBZxJ{-d-!R3W5MG*t@U4g;YzG7o z@pvCoe5;&Va{CRuZV@G1LtFR>G%L&JvLlMbgJX-+A4>ek2HIZ5N;~|C!!J(n3^maV zX9fS`NQiOqsDCnW38l_zC4L#lREK#`UvyC={!X=V9ctFVh(2fe%R;e zl1>e^x1CQuX&jGTPLc!JDoQ3{q)Ec)IHU;9iz7_89?hpy2XVp9G=aMN{f|O(f{EAP z>e-$;FWLCrx`|?Yt}tXom}{w(M}0 zC~TM#D~xCvdae3`@n%cE@b4X3Fi{rnzN-vC>_7vnOWy61TAv7;ThWWdb?=<5H`T&^%p4U%sP zuGLgf?M#Wrv4ZmGae;iC5g$<-*f-y8hb;5wQgyoR6lhoGpVB%-)C{>r7|@~9!M6`| zU)eZ>>m*afk4inC!|PY=FHn@9x}MP-dqNP-lXTb9=_=W4dLwew*%$^7FIKx_La6C@ zZDlgYsTvzZ@U1j~N8QfG144iy?7L<&dXdi(nJGzH{|dYBUE16dQU*M}XZ4SY-)rp0 z>GBeva^5*VwdTB>*(e(fGhY@V2*M#00^0*=rdvP>d!WxJNoJ}agf^^BzDUhUk2YB@ zu{0trF`m{GMmX_P&C2Kh^l2Yt<}i~IkIE#vJin6XXt54xkP%yrC|*d>)4}YIIo)|7 zZJ&1vF&?pF_*%mK<<>xDXt?9>8TfNZ@uM%I>oygKui|Z7^2CljlwV2T9JGmiyJqq` zU=L)4Y~CA43|#%1{oIIyOw)^HB1bbIu*E@XjnoWMtePn-DMOj&D@wQrKyBdbRa3-6 zn>=PlaDU%%7~%Ovz;g%H#x5If(0I<$RJ|tvxsGj?%tG!Gp>NfL5J${MW z6mwM2p?NleBXKIXePDRC5|Q+HzGFbE;N!2}#BT(|X3G4U-d$(PJ$?EQQ1ddPKl!Df zm}nkDXIK#-ro6C&&i7OJG~{}f6&K4wZ-m6C&0TUDJ|%9q0)i`zwJ5y5oO)<0->0sfgwoo9OE07Qz%vl{5yw@#=LBk zcIOv%l*EO8oH6A|h()S3fbSc3ntv)4F))(8d!?@6CY-HRFTZ<>0c= zNrNVpPhKbo47lUJreM=T^22*ti>IsgtGM*43td#)RcHN2zdKjT{8+t13T5baAHimh znkQSVsXeweqxW5nXufvI{L!QMd-e*yhdw1@@2r@0(#Z>^1yrgC^A0g_>qVx;8Zz$; z=KHRwyHmj(lJah1C(e^G!%U#k!8o;VLCdaFgkqfJ+%f9~Z(o5Yy~7sJ<$5{e?8-WE zam3FDy`9D&3NKQdv5{%iTcEPbEh3`OFNdG`POvXXGLc{>B}a_aowa*(^b89pF5M+v zpgUxd8k4eiwbDz$JP@n@ifJxN;Qk-o(%cnYtCRyx{oM(T`>Z4llBt6PsH_mq!Z~sp zpESqDjo~PHc0E_|JxTgFN*j>w0D+MWps_oUK;zL99rotT`+24DJ3f*8g5HdG2{fs; zZ+QvcRno8zg7vN?VP-4w8QWlSIC+(QMj$RG?B1`l4M%MJO^Au`ud@sqplH@WG9i}L z3B&7-sR5j=3vNOgTaE4$W%M}O?uo}x?2mhUYqm3%g=n`5doFu%W^CjAdtT$q*x-LN zAvk=*JmD`_$NIZ&SH_fJ^Ad`Ur|!(8C@XT)aU~Zb?npBT?!ZV(6%F5|0Rzphp8cW| zY0a1V6QC{0LO4+SFD6U+yI)0h3T52y&O`)O`Hj3=YF#o$sWB-sVZ(er@olkFXks+g zb&@DwmrX85g6$_fA6g4gC&(%|72JpuYf7Sg3A05_l6)GVFn&Gj8lbdCe7HU_*~JP2DDV~TJf#)!!%B|q|FuwvT+lb z%JhP%?}5N)hg>k(6Hmx?@k{V3I}2tQESx78L+>BR7UyG7aA2vji=f9-LdsI5OhOI( zAk8o){F0HST^S*~oF;FB<^`=RYKHDp{1HN@{xq*2z{@NjvReVPvPrP?=FYay<6#QEL&B4CsWbUtypebt|EgUns3Bk8aD}f*qZUzcxRQ0cve+^LBpT z#m73xH(yHj5x)*8OL<=Q(k@Ryh286K`6e! zS(xvXaDOrjPI}tA9?H5i^XV74y*o%P&aXYt0XmOY6eJc$equW#UnmAjA^+y9j(y(~ zA%>{@cp-o}NY8oTr1v4@thw2_pqfxu7ON*T*^K$C?7Sa(j067xhQNf@3k7TX&&sIN9mBk1YO)Hd+r>JfmB>%TqWmL!b!EX}f{9zsiCjDk5o|SrYI!ed6YcKOarNV~-V4kle=bliLY(^*vQU$+a&i3u*1eD2TNwF~Q z9fh$=_m!3KI9j;ps;?1WiI2PIL+vkqIy>hC|h=R@WMXnnyTiEe!JID{& z1DiM{`V8VPDK4Q#Fz;cTf>!Qy?Vk?wRlBl!K20j?m@u;^-j*p?z*Q)r5RJWnC(#+S z9@|7NNnqnPHUx^2!fV4BzEU{65msI~ohdHkgpNv%Dc`){2pA9XjeP8TM-0I9&qjW2 z-&b;(?le)seg6E!2yYqIlQ(zg_HiDNK1u%l3It4;wUrZ)-9~#pz7@EZ&}zTSv$&DB z1_2R&eLjEZ_PAq&V@X8P2cv)L_t|!6RJZ`+w^k;>NS@xb#iU%8X$oTz4&%s?$nR}R zb_H_T9MP}*4W9&s(dr9Aj_&g6jjAHlT5CHpuA0Xw2fF}#bA{K9&)k2CR+kV*r;*^! zOcQ&&CZtq+q}bgc(W;74z%mRWHcOSd;8nvnZM^~j6CGZ;i$?1kk8-znbNPW}zLiH0 z#2-j@nwm7~a$mN;efOqL&Y1K`qT(vUNmRx*C5RxJi)6PQKH9vk>3YH?&OnsIvRTpB+)+hfUHIj$5qOU0rh9sfE?G zxMR6Q1qyf646NtK|7J?Yo13y~u4}qZ^r+s%Kb`U~uUxX!LpgbxYiJHnok)^`H%9&! zaL$maW0^7#e3VNlgkxWt(oG4!gpG)-8@jk%|DaPWdf3DHS>$5mA@2HN$eE)XjTaj$ z-b;Il+AX2$sZd-S))fcF8coRsDB2|URNUVUy&y#QY=G|TbCP7P^^V;t7KUE#x z&M3pozqrguS7wN+s#SQ)$&hRW^WvGJTl925^T#y{TOlq#O!F&FN;$=s5x5PHdQMEsGP623+5SraKQ~-a&#y2zp&DM~WeU{*Z{-UvJ zN%cnYCU?6I=CXHzKL+u@msJQtaOM2MQ%w#`D}#^m45Rb8E3i;y820SOr14PK0+2vS z`R?2>b%J!kP8o4mRcHS76m3WR1ksgYV}c}BSC|QwtOH^(!mUcU9|VjL?8aFgSL^*9 zI5{zaho}#?lGk3l1n!waG~IfM6or-Mg(R%qIT{2!2fc;V6Lq^oG3?sp-L$Mh1GtdI z`#61rQ{P(;ul&<`|Iz;U#6)H9B#%O3@e{a<(S#vF#svy>(BmGk$ICD?S_|woK)7cZ zwDdK$l0L;d;C;-cTfO$(uJhc*Ca-45d%V1mtG`c$dl;6EKJ@KmH;sBWWe8`OSS5({ zp-lL^+7tcEXR+YTTYq&n!%KG^Ft_3k4H)4XNrqa=f)Y|a4$lae-xJE|3BnJNEz^u} z9;{j_#S6*nFOv*Vsn#Q1iOZ%TL9x$zM)MO<%XB1F*m!eMTeuXp#! z_P>3|977<_BJ|SDyOM00n4mXHq6*B(N(m|TMmfFwZU*vFC zZB<}r6HEXQ{HDK5se_b&m}RQ8b_r3o=-`8+oWSJJI`` z_pkS|MRLiMB1Y<;A=z)UnvN7i3a?1qwu(cZNk~L)8tVpkJY3Nymnw}G|xE?Fp9q#~q1+mAK>8xOCXPlTz_+^92E*nUP>D+BteOz${1cvBx;pQ^~l z;B9uYK`f@czYAYVhi5+Nm)+8H7W{p8P~qFHBJINOB#ER;jMfdffjTQ4UsuJl%s%WW zjf(`l8dK3S?Rw^NnjYJ9IV(CQw1G?1_~5$ZdWs)NQMV3L{X=6ChX0q~0|9Y@A*few z83$c2e!Q>%77lXKs%^gZy*N7>E`VHe{rS!X+bBv!e?mpJB-w-ZbGo^w`X_1WHA?R3 zJQ1wXI)FxfPV;XKFyp~dm==V9zZWcq)OSYIpgZN28|8~v~=d2M?{;Fu(UdDc#P7(4P_;ElPbJ$;xWiPd&HIUDH?wS{6{rRCdC zBs-!qb_463_0@wO=P-=i?NomW*tFSclW5hbU_8-(^8rq1a-e;%4UWqL*6C;ipru;s zA>z^Gy&3bgzY`_Sdz+yy@lImp;3EHmcRWEVgv>1&2q95+LV&}iDegXV!9cKc@0Rh0 zt);HCyiE&MVncSeAO>PVVFBuR#IO$D^#)lzHw-BP*JG|y^exH$M<-;H2j~<`Tl$_=f7R zJeic1gg$b|+!&!}OZ++6ReWU-o*emrk=IlB)z{#as(Ff0qmMN+Rfr^>?eu-!S^7vr zhoI9n&eviB>B!!=rTDKkK{7mJhF18LaG#h-^hUy3M9og>@>nb!wYU-$kTlqo|9fAK zP#e&j<0abnOpEQ&>dWkB<-^O#)Oh&@DddH3C5PtA3>>vmyjwxJjeaMH(l{XBA%%Om ziiP=W{(v)Ulzx^_!VQSe{dk29dxD3H;wg~O(ln>++LcC}b-0a4KkeJ2aQ!W%(vGXR zm(?w|JrBusQ8G!-$HfxHn{DG)A&AD%x(5Mtx+FVA?J23car71VHf${LL>sw(a5+QI|2Uwb@e2W7mauH2;Gp{MQsx{;a@GW9QW zO`PNakW$66$&{^2m)df-))x`!DfeniDOlrT&z+i-D_Ai%dU!2CaRGG+rC%y}1t$2t zF;0zlF>>fJ_%}#P1zm9vIF6~H%3p|nr-_;z-P?MM zAmMj)J8~IAu4Nr30_^^Shn;_eJv$CKtsD78ghMTa#x+X!dy!IiSTLbm%fW6;rjNZ+hE_%fJ1VaN}C00!oC zef-b#%Ahk~669#0$`s-YErs%@VtVox#%3I#(sxXmHn>;!${=w2en8_?vqIv9Q`nZ1 zna=%;UshgG5M5-nUU1AX?GHM6<78go@z*X>yD`LsSvkp+hx&&mf=$tJI-Hh+1(}sf zJnPOqvZJlv*|)|^9!LSf$}xij)mhVr;3r`alSM6WHAawCU=iM9yIWfCx>-9RBl7M* zjvsKhISS@j*<>rozs_>S2t1ZRy@7u>`vLBF`G?i3q`T~ahetoK{=1W%QaL`E$Z||mp&oC#vW?tP# zwQ7Ro6T3gW1(Q=A3|ucK104^ps{zw)*T|!>mX#(!r^mJ%Eg4rbD&2hdI4%GnrbYz( zIX@)gCwPmw@MM)prsZleJ4YY%K~`=$ZbPzvZ-id$Et^Q=*@?-jULT1fWUL7c97Cq%i#pX3hPqUpJ(1i3J-(5~ILz%> zA!R<_Jt2D&H1Ad2AlpM%QeOPgp1tpHOJ>Wvv-*#EK01&(PsNa>_J*6OT-NLMq)gz& zaqY`|oNc!>2$Sg9n?Ma*bcWE|pC3zE>RVOL5o=NZ1xYsGe3g6B6i@cXy`1K4_rv`= zaXM2ca#>A;yX&ptwcITt$MvYQaY_|YPYx}Hy0jLc(bCYL&`aW0IZ8MhH;)8_Tk&^N zZ|{d`Ji-^$gqmk<1ag#cUtHA0Du51djnLiMRQDYg2DJRh?(A~RWM051^g+r_iXz?H z5Pg~K9miGcVMha@^I#7b)!BN!##k;V|4wL98_jQ8&L&A1!GI@5W45R;rNB$h5d|9Q z3Yg=w_;F!TAb^;oITClS>E2P=UZg5%m`#B6~80TskzErmN>ixJut%-3fVsHOFdAR;zM^>nE zvzysbsr`O_Yj1W-*`Kn&hR^z?E%t+&6A$BChM4HcS^U64UERs%2|{I#KagfKAszv@ z3QLrVwlB4`#F-HQnWfL_jjtVkD=R{VC5$Cy+_4$9E2QCZth8K>c6)EKox3#NxzxdV zp8;;klEpLk_Obr+p3jX^#%?^eXR9v83LOkJW$#w0*ZWqMws!THoo^bGx@=`fH2-T= zvBmzvjR=Mxj6sV}{-9s9Vl(^yGsB7 zPlQW|pUSPDQ#rehZ%xkxyHPWwZGaB&AxM6y{0#f!vqu}rqk9@^&!VNS!Q1yfWmx7< zo@Bk0x{Zo>b~(QxXd6i)E?~O{8(&5_)yrc=^7aiw#^%V9J*0&NWbV+#Va(u>qcO-< zgKyBV2q1`dC~bT65Jo|Oegy=SrOYyLsvaozE*3y}AsL}uhR6ElwkF;0)jJt0oQQ*I zITnyrOQxrdp=|r27bTogoL8GTSnyE%EIMP`;7?>ieV)uwq{ej|?n(>j8Uxqcimuzk!#;h+0`N;zC+hPfmWLko4FJAa1>crw(t*xZG^G$pVX8uZ>;e09}N%8zCNlEeamJqt-XjndJyIuoXYp#+o_?v8i~kX zBa}ej_kMb>N`1qI?Rhfw#Y`6NsuU~<53r%F;es+7Iftv)vDFv`WHi z-a+%QIjzUMxa()LV>Sg)D(70|Z@Mes8GHoMDU`Ff{_L+i%i7#NrjQs~)4W(8tWm)P zetjv2$WFe;Qf2un^bYia)v9Zaq?K0^rio9iJMA!J1@h2&Wq0Ot^4e|71o9zzs`IaMCy^T_V5` z%qr=O^LE7mf`b*Hc`eA*oo}|jAr&Fjfv$gHrA(UWgk7EeZfhdl)1TI+Gs1Sj4%4Fs1+>I%6V(& zpw?lfc^S1XMA|L|`J%~s0a5MIT5bX#(4nfr*#mDXeUWVTBw_DDE_0L>4xFET6*=JLP3U#zv*?dtl0jAkYpaI!a#xk3`I#INE* z2zZq;sO3PCOKrUR9mdO{=$+_nl`+9Znt@B-^qgl;B9%0Mezpq3W5!<5y7SXN>Y`A4 zneNw=@Q>8gBK4eYKj)2NxFdtp1bv{$LK?0LE|O(?(=ZvTkeyKqX&|QI%n~A)V6}dYRjwDLtn|Vr`EdmZuLP} zFsgtx!)0%`-|-dwkEO5C80=MO@#lFD5v1#W2dbazX5q`+E%NB^eM4_|#p@w$5I+&; zF_U(b{<@a?DErZT#MB4Wxy{5_I~5Z{2X@#C8qa!?q}n_mFH|p|NFc6PyN`VBSG>x% zexI;mJva=LWW7AQ?r)oxr8}`n@0M7l6oi0G>&}gj>BW2^zaXf0h!gYHb8m!W{Sl9D zOaYh#J848c8cK^tv8&~_f;#I}QAnyNDOTtZPF%cn^=!NqQIPy)>-7Za ztmKpHtBvavRV3@3qGW^zcl*ozxb>VLe-YXt>4+PG)5H1fHruoJti5@U34lr=kE&!t zg#NLK!Rr>?`3pc^_cmxEw!P0g2W+JksM=GK9j|y&YzoEE7hmNx(n z(vv!VNrBis(y1G_<-$9R#_zxui;A>nZaJ5(j_Hq~qdCya_c~m+n~{`H38HE7x|i^+ zibFggsJ}_p$3fcJiDzB}nbpD3`|0Ru-*2}MR*jhKqoigKtd6IM!$b!sO3Rd9KYXq* z*A2q|`P)WZ5W3E`B{_S5kRI=?av+`QB|y*0j2;nsl1B%Z1+uJ*{k?RY?wn2M{@=54 z#qn5hVB6SX38}MOn)m?M)6&9@YY7NC3a%kZkQ;CFbl z^EV`pGT9 z+coz6jbbv+OGB?a@{Ic1nj*eS4-88ln!FNMAZ)z-uEGpQTnUqE>w!J6WHp0PV=gxK zS-`X@cXotAFPJX{C}K*Of^_WN7Lq+XD#7rlb*V3QP8zn$3%5GFC;5w z_urP#yMwg2L458_c}hy)>mNcNY=?TO;5=5#o1G87rkGzSSw6i`V8BANs(Q@UHr^>( z^1=l6Zp22Xe|_$nX)}5~j|UQ^f{WGKkavshzMi$*uJ1fm*Qc(P{p3H@xL~~#SPoa! zQhU4<+vDGp35%1Zgpckrv!y>{7NzxCSv)-(+c+3Nf`Bw@at>|ZwAk*%&vk<2f0$YN z=l#v7pXtpIe^!5_b5)7Pm_Z{(#bjn5rX8uYqx@QvrT>UEw?A~p zly%{GSzBLqlIP|1*Jr%4k=) z`9<=->Ddqe!0@O<;V%4@+2_?`oJ&6TG+WB1h=2lu^#cS*X@4O7GfG zu*j_E5>E~_tO754=0JD&OZ3^Y2S`BHL|D`r9V@rXnLCEgBEe>s+wRRTqYL zF*d2|JuzeM1wWEPm3Q!9FhE$@Tj)62vQnDPTfm7D9!t%DW-!=)P{dUnYg>W>GPxY_ zhNp+`SGG4vyuaKy&V4|G>2Jax0YEX?q^pjTo%7%ev+v}?=L}N$<%xDCiLTEf z+Mn7h2~T}W-fm|-FRh&?tW6?17*YG^hh9`vWK;A(wndci=Vlg?Bt(!>UjonU>&1Mx zf}`cHqY;nGjA-VPKNgu|fKwE)oZL*7HUGHJ*M4UMU_F00Y6u8uYx(tK9E!2Lgt%k7 zlXBH17Nhgisw^hwN0IVB+ZcW~NQAt0P!(lT`ndM^QI}$>qzuJ_Cy(-%>+WfEDu8a_ z*mUbyi+T>U-n%JCAAKVxy;UZBF*`{2sI!Y%SlFh=}sOv-!0B8xgT|q;%`P>FTGA z;&|2cQA ziq?nsrEpGKVIO6E!p_?ER3#*P-_Z5M*>S>JRwRKhV?u(VIoXiK;PMsKT>sq6YxGNU zr7I%DoBV-jtg`XLYN9tP(%2@D~W_H8FMWC;5+( zKKPlWU@YiXS|yTv_(&TP3NyI!+qOrjbl?JWa{Qw%{CUSvVl|f=rdx@(a(fF=&2$XK zqRnz@9e2r{XiEIQk4L0Nb!o;q=>(JhJ@}CA@v=+xESXli!uH=97#bF`QvJ9#Si-Tm z5|Qy+_rn_a)aJm#DU_JtV{jR^74k&>dKTrwtz5_U4{FNv8)2iUE&ztPK%~2>+f+v`*&tfoI#%$}c21AnTHxA!Scd zjTMwI z$ApLRz({BW`UKyP1D=pEMrFeWOaVrustcH`I}2xIK+{^5&yIkYZDx>Ax*iJ$J@7m& zuHP_Abo@V>&N3jX2HM(Z28QmE?(P&Mhc1;)N$HYqfgvQ71}R}EL69!#Qjib^q#H>= zLQ?vk_kQ>L!G9R$?6ddUYdt%O1{+y$K>N0DjP!ST=G5I5U_i57nzmFsC7Ye2$((e2Aw4`?E9)8HL} zaHWW?#L6fCh8#T5ez*L7>KFFg^yo0TISYl}HW_cL%L?9@HpzGUy*Y}PH;Mmo zS<~3EsIPcCUDyor!2^a2*-4TLZ`uFpQ258DsmCoN;Fry~;%Yue#+ED0=P^Kc2nlhU zgK6VNwnh7Duzz7{>fME#Pq1@A%hbw zL{z%J;M?!yF4l8AihYKJf(-?2rGo?9JBQ-fB+*5kwa}dZRg6EjCZ=x)<%u ztI(exHxiQ-wchK#LiZqkdXp%kI2MLR?8a2Yx4fKYGc8Dy90~^U@+SPzeu8>t=VlWk zrX;5O%1}S_j+HFr@vdDZb6RtHbT;u8Ag&KNpjM-OJ@W`i$GA8Q7!9m^`fK|l_Rpvs zLSkvPcx9cHiTBTXPbDHz4n@V~_QTwfB1O${mtsP*Td|HDrGU;WehYC@6aolv;hN=X z=McTiS`K_P!sT<{sdL$QnNM3po}FfQ&Q;*24KBEl$vX$e8_@yhfS@V)Z561J4{aw* zgiOpLE${T!{uwEhXppID$z=Q(8GRI3{sV881%C($T_C_n+rK%%WdFsD)S{TTjoepZ zh+b(mFyU9f_?o^2aeKk8EFF4x?d=XXI+{S;k@lf7|8r`zP zIrNl+6`jC&yJD16^RfE8dUXdm3U)mzHKRm}$Zu#AQ>l4e@0sKhl|J0%RK3$|l{FL* ztYojjRKz;Ec1ou^T+rHViMd7s)FkWPu`-q}Ioz$n)^>o$G3hrI>0W8+UV0%R9W>v} zdSsByTps`*#z5Q-v<`)cSLB!v`R)e*5Yov6S*FBs4EcKG>ulv=^mw-9quMWf%)s{0 z3xYMxvX>>N+0uJ>ZwboDQN6a>S0T}?cJes8g_(L@k8&iO_HMw^Ks3tzjYX)J*B`;Foa?ijOq%p$A6gp__N#;Qq{_<6k$mD z=9wwkx$>oQ;>rB|7_;nbC282#e9TY_Z5c12nb|mWyfeq`qdA%{BII?RhfJGw`r0iv z4#96%3uRK~jSZsFn(U=QSz93iNB6PC+ZaQVz9cNcCVotEbrrrlDu?2c^%&?w+UI52 zL}S5!5qEE-u+WIH=oh=S)^p8HFTiXx}hftjux-uiraD0V>J+`<>OI^}jV}Kz{3u zW*}FAW20rKVlL=aX?kr;j3?u>7si=XDYwJ^I%a%2#x z?n|Pu?D|k06Wo3W=#?Q3m#;i7s0|V#;|~R2%jcA@a;Ip&aQq^ERo(tC>u28V&`jk4>6Be1}G`kJ(MXW-bj79A~m`d-8u;z$A^ zJVOpPNCD3f=_~j11n~YE#Kr3ShMn_8Utn7UeR1Dt;IFrzj13kgWcsXs`q9hPgwW(0 z5FEl*g)O}=<-TVe>0t3s#2T-0$^iWv=?4%Jpy2jqRt@CzEqzWkG{pQqcZ^$gKXIBb4WMEBw_c6>WkA zW)reCo}+o-BO2m%t@l^I0bKx+wnt{B89aDJ+(a}{Q)NQ~SyEL>0{&ql+Dp>AKZJK% z4`2nr(}E1cgvn5WHs&r?TCw;ljwE1m63WfNr6YDM+U&G#Wp3AN{Wj@Wx}1HQWL5CC zOTeG8@xf|8&w-jYf=}-G3{2|%RH8SLWtaIEAyXe7j)pf(D>RRr{g-l9zu9L!RYplk zP>iMiLBdqwbVZ;k28@#FK@Rwj2%4Wxdx;l|>|gRUB8#N(>h;&g+(jqROh@SEE)E1L zzq7Bu2>SV;Lch>_9o5r3|5&YUw?f=zI>!nrjVF`wEK^MoDqk110ih#C@Yg=LiV;K| ziX@+(Cbld5QYVK4I{Vkc}&Kx}IHUK7hufISg{)>3JQs{rd+^{~7C}54+m@)II zAalzdEs1m^%TKf7pQu~s^?966yu>8R+jYNKZeBe1DDt8$mbJN>ttVTMhoK0xkuh31iU@!(Y4uAeLvA!mB)FM%ELeJ-j9(h#gyP^DKyx*4i6Em;^AFd}I z>%CwDV_zjd=gHaMcb;W@2`jxaW03~Cf;h+^XmANhL#0!^@QV=ttzqHRf;ruQd`B;m z{HNQVHls7X%im{Xv*n>2X_Nga()rm)b!y7<-E(Kc5E=70jZVx-tm;JFjb{qRvCy{A zrPutiH*dd>K5wS^XkPR|N-@q|S6?h;80 z1B6!Gw<#CxUpixN=`TYe4s7dioLwmW*8`Vb^F^>L+%41)?I-7rU5C)=^V1NiU}P(i z3))|4T~}6o4+w2+5%KHPi(W9AHdLahcwklQsU=6vW2T3n%D(f~YL_^f^HH}8H~K); zxWLwv4<%^qb|>kL@$ANIeECYBn+(+ldRH;emqvb+?OE3}j&DKKq0H4@bB5tk@?&7* z{R9owyZ`D_H?4ArRBcxm?+MDsQ!qem5sJD}`0X`US)766Cp#Rvkw%^-y_T1h~55ySIux|9B5nk-$Y zVGuLo2MnyuxDUB!Z)p)YU~=KBYY;j{iaJi_AQS%LZD7L{F)(f#9QX#8m{Nq%M(?rL z$!Bln;16Vtw!^`|JkE|I=xYikA=73-oA=uZ}9c8qtB$CT+<_1y^jD2Ug|2s5;E z;`V2CIn~WfS&NS@OJ2~e&y74sKu!JS&{Z%dPjGec z=%2*Wg$cd)5l=ky`k->k+LX}ud`3wqy--QMlB8R7_2>gWFxdUq?{mnd<;!UY)pM#{ zZ?@OD``HW1Iv4ItRQgZmN4lD#q=17{mI5d)3)Ej4Pj<4q)ft{EG$aT!Ng6 zv>ereUkyax;dePlzb2#KrhSKhD7H7<)>fRgnoVLBLo8L+S@5&uPd-B>6Jar05OYK+ zbmLp|n(_Q*F4-ff8U@dAF1GW}AitNZ%iZ%3s`X2R;aRvJ!+P_S$K|Ruq+fwgLcf>E z{!n-E)kS303FDsB4A)3H?*agTn^3C`b$_T+Xvr?ZPch8S35N-!|(D zCVbWUw<$;{UEn=oX?wlvpc2FJx_VoD8D`E64dRFSq|b=7Ko|BQ&nAyCs@!0WHTb)- zb`=L`d4*B+ox3GZ=nv}t5KH6i_T8FL3D}+|*eUNhJd^uvDnh9zwsIgD=K`JU5@?GY zW(76rOof$m>AkM77!#Ingz(@n7H-WNK@~faruU(ueu4JaPOf64orj{-6LWJF{0&Q^ z2|^t^6InQp?ttWKUB*iDe4xxM$0b$TwoCUrRg(WsrJu0(8nQEO-jMYJAo{0&)U-qu zn>l0X0O4B8FEuwVfFQYqtOV=CO{_yismv)WE$GkAe)f?SRxVT3!km`GdXe!Tejo?~u+!Da&?itzGv5k>) zIcaB{sY8A5PePE7r0^=~>7_f5kDWR=J~-}YUG*5ZX0y6%qN=eADhsO##+`a)vrE>| zPtRi2%^#F#uevm~nE6S1;WfTTqZv`C!v|liE%&EwV5%nVC--X#T5v!@cg^q~jXRAW z_y!(u|AL09zNrBtVS1~p2eN%`GCOTE|ka3j_G_pYgamF z&&zXvT3_6MHQ4+9mX_JpPCZ1ClwjDDl|Y6{BSXX*Jv)TI{_nu*l{*Fw8$C-WWwTQBMV8&_A=h_+^a4!-TCPEHzq+^x}m*}UU z-P%~Dd@3%H_DG)4F(O&z6@z0E)O0zKu9C_S9&8+Xj}IW4$~ruTtJmoPRWM?Hv(WRk zwzB3iseaJW#by9#wvoWwp=6|)n@KT{4BlTSfDbwfRCkTjxsK0d4ABHbg}1-jyPZz1 zsl0*31nYtzE2Lx6jQ?R>zPDC$^b}JyU+%h;VqQjAyRN;$pQo!`#VmA2ILBWs9D-Nov zl%$8mRQ8#_F1E=8706Lzz@(wUc3>pWSE-be@VW_N0A8;~EQo~-Z)doUfH~0wE#&+Z{c}0=0W~%^iyNs;Yu1)yD@?mOIi5v_G^9Y|L|Ow zh>J>le04!q^2b~`SV2F=#GNzUps)57&rhDEd3Et=t`N@2D-ELiA>hde`!GPTPRMpSjc*G!6tTvYoxX|jd4^=B8shM20Fe;oHY(rmRM$k$JD zgoB~#dKm#Haki%&U)PPUhtxPo=khIZ0hBRB=E2j~rI3O)FDls@_%A|j&v*FwkopW^ z^y%HYu?JaZR4uq!c1SMInNI?D(Hv6DlthyV;&Y@S64PfDWxRR+8K!y(HC$yl#d?%|*1Y-Esz-7dP~XhGHC5yU?uY@~~A_In{68-qzvnGi(R z0b#(35x(mnWU7_BMuVa}`gNL;PPc)GiA^Ik=;K|K0}U7(g9b^%8bM1!*$kSb94+Nh)b}nZlARy6PNKa(0hK`y+>wW z?)N#)Q1QKzKJ-%WQw2^k>C`Z)#L@es`el;Uj zQ2>eQJF8hT@9dtjNrM3=s~CuFfqyB-W!wvhOe;OgGwM-p(u<^>RX+hk-^Rf<43S{t z&X;WQGcY42-2<%Yg@`sV0F|cuco6upbaS_YU;}by!1K{V$&3fA818|rjmKXq zsPV{R*2{YiFn@yaqu~g}>yGD-;4elJ+Q`Q=Q-$@d^J8n*zWYN32<#cmjY;|jyFJKL z3rrv^dI3Ux5Mt-bs@m(TDMw&gQ+K~^s}!;j=a9_>b3#=CXMKM26Vxtw-B%IAEO$r_a;36XBSD- zfB7=Wwev&!1Rk=adReE0x=jH>w_b2C^^E#EToH$=6uNL`#>XqfpC%W|CMVyQ3>xpi zH0qZwJsPR+S;=i>G?yGP4U4f5e06k=RD2EFn{Skw%Wo+1qmF;SJL(^9dcP@+xlwG* z=dtUA+-RJOc}pe^Ew09|zR)#T1g|Dg$)zqobB2kgQ_xl$P*{&Q38A4<|BGvWzO~sV zdq?Mjwn!~GBT?fGL&_*%ePVfU@7~gkm2kcT|Lx_lcoGeAGC7kZ;dR6?V0p07rgft3;CvAQL1)vh;@r&po_5mJ z!P7=n2vF)a2$;j|3V!3$8sSULg6cz_*W@ROtrESugEe5l7j6FqPx#^##Bne*0{s_y z9$FMP@{MZgPV*X(ZnOor9iCK;rjx!o7JRwf{{*Z?ia1*PM6Lo)Z~Wnti04psWu$&7 z*(2GSpF`lVCGM#1&DA|6FKqU$(&?2!*($*RXL+Csll(kVGknz~4>5Fj_aWe{u>04W z_h!{ga<9L;j%45`cs2&Nn1~zIYNcjJB{SbPG`ukfcb`S%%)v>q#k4O%ux)op)9xk& zDC4Ru%rT9KQeQSQv0>_i zMn&FiX^@<7H9553&NW+`=zS=$#LitH8+3Z)1;Sz$!w6Mf)J#RirCrG|9J;Cy^3c+K z<3Z@?n_D}wvsVK`KU;5prvADrAo7*f)0xEpP)#q_GUVQ1AWPk_RcuL=MG0gEJLg<_ zQ`)ttRY{6x?=gH0+(~`M#_4w_iHe3gOQbsg+p@fd@?g^fBGW+HX z99F4cHiSDoMk<9QB|k68t+X=$+N<>vi}o^iwI*5-Q6Ejie?^q62QYHWgveh#i|@K6 zK)s+JGf&jfo&GWx=%(fko&7IEe!T@6x5-iWI|-j*G5+oAxq?%lrx_%j!t3p2z`cx( zbeibrko?oO#B0Ik9r>M*kM;&*8&t60!bm?8ix@|Psuld|U?yyQnIdWf(cOhAWp3p1 zYUeR0vNJ?YC5SJ|>s%;$)tTLhroD=gIXj-efAm!p@ahTHLFOGQGppiWi8&lCC!1Be z47xzaoFZH%-iglCxvB3soxrZ^VxOoz*?}>zFrw{yE-t;e|ELNBU=1q3r%kI-X73+0 z3OEC;)#>maK30z%beGa9(fClc`VgrPmoP4*-37!V7XC%zDdd2P6+MC?^JR*XV^MW^ zX=}mNRfvTDpeg_?OBM9=F27)s>!S2sm7yt(p?`PnEjqirPVdABp61fWH>PC0KLIjhbd4_4M87b|aH={vW&gAXQ+)ktZaAJ94%K`L7PM1=r|MXgp$nxw_#(*S!f&gyg6;%n!dd!;J>7Sz1*0%LzqKIzY8*mCelp_?i4Mo)nLk(lA)&2^r+~GfsKZvC-YcQzeLp3_8Um4_19P9 z#aDMaEMBX70Ok5{O*G&NikiPD*Ijr67H!1N-JRUMXy)DSpEWUSbY6+ZEQsTxzqm^; zaVg?CI+&nyw`g9|R@{14UQ*1N>Fh$D1YMX7+xlt$i|*;>8o3Y7GY*xX=$ zWIrA%B3~+%<#6)}(>3b#UDI~`np*h+uG8~X3XmFx6&}4G7MnO5ifKMgqx1aZ-UD0i z`=G<|(J9@DHBc~F{OQrQ(!N-Kg}ug!Y;aTTLA>ISJU<_4697K^L|YJF!Vf;IayE~1 z4?PP>*?GDBID44jG>nhV9JK*)`}$nrJFjaLJL;2IAyIT`Gt|Mx0%IkGQ*qq2RM!@YEUDl)8w1EMs$-s=_ z0($Bpdox14%Zzt^)+ijTClF7g;8a`graSq7=_55tsD++K=-^YDv`;zK2XIuuarL zfn;?CBP_l}--$HK zWS{EiQW4893t~-vD$r(Q!mBGho{RjKM%OENsR|B)se%*LH9x-K5ez5`Q*mMfN7P|- zel+;T7sKQ0!3OR<@gg-o7j%*bXehSAdN;AmYB{lBetG~6Fzl42fgjFLYdd6F4C{mr z$&{_e_j-B5X|yl77e0OJI16IaGy){Kk4sIrLx#cy7_U--T!UZZ=8*5fcBl_8KEz-) z9>X@VqHS!5IC&a-0`LC&4^?tixx8Cq*n-HAFQ_LyduoB>XyhTGy4rF%Up2NrczLnj zyR7Qrh^ho?W(cht=bjqwJVkGX3i-)^l`u4Fiq72{Y;Qeykbx*MK3WPfu)v@EZH^4o zQO80%5CYfaj^heB*Gu=d<`-Z4=YY zKZ~!&>`=0(gn{kH`i2f61dm>l^a=V|Tnb3vPj*`|E=MsNuhKbja$N+u;%a`-_dZBhU5efCd2TnkNTcJ;ZT;0d#$u_GszB zgD@66(N=Nae=31$PU){=*rdy|r>Y{B%@e_dy8RPuX%EnKwB)oQn1>lUi) z_pq3w*8b(exp24lIr>o;$j+U*Mg4N>#VrUO=%_sMHtM=-`S%m%U;L#+bf<2V^_L#S z4M!sBj5C=y_{$#N@nJ1hTH=PldhfE1WxUlNiEYD5-bDR0C-K zlQPQPv6_ADt(l$QSG1hkO8=i6Y(WOuB`&Y`$|Y2PQ}F}GBwnrhEsC4LbaHCGpVUL< z?1oRp)t3X?VZQoMGmFx$m)OKo3otE2%z%HAz@uvSz81@dCz)lN$%e1;BO@aSK&ar$ zyXy@>)0_}N4*7CdN7Y$n%fa49p@i)`;xJ_m&}hHAwS9=zAI9osAPn`U8(Dn{y0!kk@c37Sj??R&!K!Y{f#WuQ zPkGna{$ppaOqI}<9QBZW%N?3`k92q_M6*}OQ)=3BsHp`#IzXeadLAK@Z`nZwIcgI< z1C)wn@E&D5Pl*nU4w*@nKbqjUPHTXHTg25E*7|%AvnNCfV+RFRelI*YN767L*j#qJ zH3kn#?#}|T$0WB(@&<*{w8GkXj3SQm_05V+-;tz5p{B>NqqI<4cs4j1 z63;t*e}D1F>aNti|A@w-ihtL6g!TM;=fh(WQ?iPOV;2AaZ?xRT9SAFDMc% zw+2_R(r1s<(Y@&$#b`R|&|dLn*_~&N!ujS7%48IU2=);))70&`_+1pTHDZRlW`cKJ z-0#vMRR_Wo)}ZbympM})DXARyKpr6d^1GCxfnJsiQ3I2#k3%Bm{&LGr|B^L{0=9fg4`XX?z20?Vyj>uVc3@sh=LMWiv5`_gSp zjCJ;g2iciMNbOZ#rwol?^-&zCU-%WbGOzgUTyC(KL5gNDQI_(b1vkwC+7{>=yttby zMkHdvX-Xg@$ur*a)jJjsVxVz9+*^~wly^POq7`dbH~p`PM-;YBvsnwNfa%x!@u!&! z7h=N)5l>xsyTXKU>F!~Iqr7a%QQD4__&V_YR5J?NRtMwdiZV0Jc7p&i6te^;+cP@U z^it%D2LNum_nbuVGp0;ftpvBD8gcwg)V@SUcO#u(LF~2X^4@g7P^EifX{Lo^iOVCY z8k=C-8&bvSCOziyezPer?{RBl=gjoJ;;Bd;q+(zI98}=V!&?QFk?iQs6jkT0EWe*A ze8<@(ibZ{JG(5!Nlr8HK=GeG-{zIMQrY-P{uv+%V_d=X1h6Um|zp4uXk3d&q0*REmt$#w8-tVajY?O|qg@3mE-9aHpo8eFbm2?11Pt(~b z^H;TvR~>e##;^Vadz3RYi4og=UmEHHn%i>RX!#z8_4n;CSROPeGUJ#qIh-p-A6_6H z*FSmwdTu;g7+j}?bu-i=yoZHwBWzPd!V7$43ffYzTMAx-;LeYU)L6aacTY2;o9%{Q zD*{%V*=2Fo+bsX@{ca$AebmA!pb&{r~)J#V8rD2M28`9od}qh zKo~K9JaejzGHhiTLh=AtdQY}z^5ZE1IlpGqYy0~o?Z=u=-uw$2fs^!o*(vz0h!h7% z#VMJgIJ@Pb+FC_d`Far4fV_y<--f^RWmf3!em!S9uXJ2_Q8J7ssdCB!P6d6DeZ@A# z#wAC+j2$a`3~He?!11KO1D#xe)%(EbE=@6D)VFjF*nZUmy3fNy*LE_;Wq}^ZB_X= zi6^S}AUl3xt89b(Y(byrQNI{>6Q~c54*qZYfr5*i*APeLu#_lheO6TdHZ>-B!C}+4dicNgR%O-Jnfh_R~Sg#6GXI6 zDtXFF>|o<$A#ia_g=hvhMCx5d-7ZKV#dgAAEzp zR+1sXrzy>*k)9*_=y0FdsW4L{R1~yn_@QVil8H^3YdbpARkUBy{;h*Ic&;*@~1@;w=Xuems-uyMVA>|i-5aol)Sk7#B&kegP` zUzT881o(3<dZLx=SL;CeO*PX%~|4 z+mfKkA%HSc*@Oo6Flj-9?M~7I4w>ahHm z4p(ns0KDOk5BbZjP)gHQ@#N$>*-8Yp&#*MI;R`v+kCD|1R@AdxHh*`ZD0Q*kabx*r z-My2{sN*4FE~u8l{KgLosEkZi937R)#$R$g48FFxyUz=Kam~K-@;+4bJ=FBg+b3MZ z7O`nbhSTxrRFr?3r^QKsUu5;!1ne5!3Bi6@tK$$@WraQm{bTd%g^oe2;C3(4(h|*}| zULq(gc;df6cH=-bx0;Ew3$xJ;M5tnH_mPEPketSEZKNV>XYkyMfz(Mb4L^|CKBwEq(6R`3~v>RBYLAFa@X4b{=B z^UIy5+Bb(Ig`rd6GfSM6=jZKk0)0Ib5V#v^Z*Sb$h_(pg$={oY`dY2h(J}n(sByKR z;Iye+Sq`^;*OzwIhK70*P~ipSczXX80?)#~O8{#Ln1#L4F1AP+5X1wU4f~lQU3euF zMPjJk1a8DaUeco~*tY7RUiUzw%q|%jcswFv3g_4Taz(EMru@hJuEujjfoiR#p}ow% zzT0lLl(eSglLnqa%C*e%M|>vln6fWiM+V1i3w12^&#CAfC8+>y zdBv3oW*P*6CUu&?edq{+2l!w_qF@9pG`r6~Aj{OaqID!^KoUs07)*<}R$p-6{sqUs zBauCFbUzQy7lx7a*-K-L>*~!^7?+)CT7i*Hp76WiANZs?@U#|pF|ciWOlvQfeok@O zEJxM+tH)V0h#h>=Ccd1ob{s@nVlR)6(hfEmF=b#iHx2v{=r?2u7N~J~LC?8yM%;Dr z=<(3jl6a|wHnSV3leemUOepNWbMn#Q`|8MmiOlYBls%LlzuElco>Q13IQl2D;Fik1 z`BzIhQD2?Vv8(EBloo=nc8q}WPQCmWV~LM6{TnQH_IPrAEL`}bUC0L>+%|8M40EVJ zT#lED<|yDJJKx7+n19$o&|sOesi{DDdP}O#x$#Qz$~d02L;%3YX0b&aw48Hluz6?) z7<7I{5R`pfadnRwHbQd`#o8F**Ut3DME#n3`IV{Gb?MxEdwS2zZR&!T?_lwe>qKed z{EO)gTD11tr}fNxWcCK&7}EYcoEC^DXKt39@D+xz2m=RA|4}r(SEYXIi~9q>q^kD| z4|Eyi9qDRL+2>@8k~4N|gO_p)|85Ry?6Up<#qCO-!mhFis$Kk!p7#aAzP27zi?DJVx-W-l$WCCC{t<@goPG%&rGBk38WnK!6 z_93f7$a5Y!9EeBrWFpxb2nG9$tc2f^@IgEma>JD*{Y|1x;Kym;D@i#19aG7}Uzlxv za8JVrH7njxw45b%tkcG|EF@+lH9^lfl%HNVw%Bn3hTXJK%^- zu=z|((})2RTfsZT++vW=q6q>p_R-(RNo%bAey-q%dG;&W!{j?o#x%7M4}1CwqFn zOT@n|9xmEQ*KNk^maCANw|~*0CPSmouGUnVI^EJ1IggzUuEdz+gS|K{i@~B`|qezN{x|as-b*C4K6YO*cxQ&e8EhvN0@}H zo3dBp1d-YHf|-`7Ja}^0F>$Hsk1fanI+7gCm>}Y*Oh#@s`tmV{V@9v7fKGa*fwl2R z?d;!%hwtC8Gx7EW4Lq6gefOFykh+zR+$UL7fjpc$6`!Z$oRR^DYlzVRx^ye*@wW_w z(Xg%9t;*=b0M6>MAZ4w5Sj?r=xpA{Zr~6xwxGX#=SbOqD%BBlAu`KoST(Tg>usfc1b)&=D!Tdpi1g3z+t`OVBRZ@ zbB-WjXA)gRv~{~y*Fb?ki*2xEl^#`@#;(!4&BN%~HIriO8_PS!3mu#0<^QAxwVQe{ zD@<&>m6G7FKdus|e_1@*r)+j_hnL=1Tv#{V(D~UHA3%EgTt3xLu%@(M>HV(&EUHmh z8*SN(>el$T6LIqM8PI!C8gSBxW9A+*8qt=dbk|VH+uz9;^lnR3j1j>aSyRB9GnNoK z>t13o=t&s$y~C9$3rb9ls%JXt7k##da8#-+yl_n?GLd`1=!allnq(0_WHc{yQ=RqI zdzLl$cWXrJZwJFC69ZJ!BfPD52#T{Gn1~f68NkZwYpF(o8z`-?Mnw}WCv(OGP4+VW zxRLTm)Wak@@Y~Nvq;Dr$$$-%VQt;@^_f__&9^(P&mSha!*d5=orvxnDs-x103p{(! z7W^4}wFEVJunS*Ig9EBv#^-8v@mSC>`3>6$i7U1na7}|q{~p!I)4Z0&koVwT@NJUt zmEy>+tzFG2mJh!%lh4~)gcJ^wo_E{q2Eve-+(v~?r(59%Hf3FW7f-UT)USjd72keH zLK|Wpzlbg!1b`e5NA`+uf_NfFYaCDhOYZnFU$YR)s4Hm^O}zMgAg1I)NbJ^fUqkTZ z-n4SmkGah+$VJW@ParhZiY5gf=+s(&Yps(oIZNv2_y7wagj5Fk1dyqGlIo1Vs?MCu$wQzM`s>MGbR=&3JB|KYlGblV z@Rn-fJCP)3@_<|4aqFLdb8*@pqoqI2$)t5tW*KY#;>PhP9PlaJ@x?@zLY&mnnam(n z8Xu{R^ZCJ7SLO3IEvBjfULR@XxofTI2r=S0MaIjaIX}FMO9T^=J6=}FuN#G|W$znW9jNwMMc8kC0%ubGMYkWjU*6@MLlWLkUA1f(IM}ai|3pR0lVLU|Nk5?Vh{+X% zQw!mNwz7ZfiP_G=z^hE%YM6&GLY#QQ6ga{-4(8gz0lHgOf*FgbfflF)c8@*K5)G@^ zq4BNM!hOXW{;NX8?y9gzB|YgIE*x!z(Ul3?3`;ndOjC&QZ7I$cVLclJ` z5U%<_r{W0YFe+pci!?+QPBtHZkR{xm!`a1VV;Z%nL7`_xr*uOlKWJ>wXv!vZ%O2er zubO_+?+{-9^ZNJE@h+7m6cDvIU+qzMSGx0j^yG#^6MR^5$iUswrPHJ!qey=tkJ)Gj z0A^%Y{OG|w?h8RK5bgmoP=k`a6bON!$DQQ(QwfomA&;QKOS<9NBvB)KoE1qE@vqYs zx^C*b-NisZ-t0$O3R-%Y&leab@V4nggfL#=;jZ5;vD%D!p$P_ZU=pg?Cuzu;IvTReX^3mF;9zsLFS z)Aj_%+oxQ*!)Ut0F`s9_m=F|&v!)BIHphq1^dykSSORPGTy{z6Cs>GJz)WH*BOlgS zJx95u24&-`oW@KSFV?+KWYFU%_u3$|{Fm1CRsK7;_H|Zw<5jL(jX*Qeata;_>WN?x zcBBOPf_&c+CO6X20vo7{h5sENX(KVuKr;({%`$ZQ)DMv49nz(owY;Iu3)}t;GxsiR zu)Q0SxX7#gAzs?lqs)Lw!gcm42sc{ORMCz3SE|8u;0>vJ^5am;jaS9dg^F*_q93t? z#tYEM$V=#`*{VTL=!o+d(F{d}uW1L6^s(g%^zzTge*M{v(Tj!8DXgcclQ9y(QuM<~ zj4uC@^^SseWtz<%J`d`!MQZd%NA+Vn8YS4o^K!F%;zmA=Z)J;b`Cf@Epys_ScK?np zvFfyw0jN%gc4mNX#@+Zpjk+$C==zENtLy9gFK67e!5f#SviT;)XYc*coBs~0M_Xt0 zfhJ)QHzFNO#0EqfKrES-LngikBEo#|Em|vzs`qG;<)vgf*N@q zSgGo!Sq|HJJkoy-$J9#5_YmO{e2JjG?^V?YB#lnKdB7T}&bnB<31nw4=JTfQKNk4- z{u{SQ)w-hc7M9PA#cbr+)!j|?C{4O@y6 zF11Fe+%VTvIVarTFCW%?P#3o(Q2>cm(=FFWbnBf~w*JHKRq zDlD1-KQB)?{<_bO_5Th>^1BS+YQM2{T|f{`s4Z#8aAZ<;%okE86%!A@xa-;&gm3A7 z=OjNp`*`Ddkv)zplb@ZN{y2BYH~8`u?&t5gxyTHDT!M$MSvcL`QOw0p0OEYX+p$LP z#iG#LXCH$Ct!Ne@;P;jc<1+uhw6z@&inCUwI~;l`%T=nx55n$S-5HDclp0Ih+k+#- zKFHv)Rdmoq^%P}d*v(I}zmTsNn`s?1-z$paVA2nOyIf%+#lUF^JSKt;B7>-z2N}O2 z1$~Q#z8zgbR?hbJna6ua@wU#1aU7Fd@CWowpJ!tF^m0=!Mnq;5HbjTp9z-SjvyVZO z4ByB&w=R~qPD#I>R7y29cm5}xZwXtwO*%)@Gx; zKl7LQfA>8bHoscxDH}w(O!6~p>n=A>p61_P>Ri^9n9!r&tXwS!Ixi|#2bXzD1d$}1o{IO7^rM{L+_yF;4jj5ZtC7`|B>AjbF&0(FpXlkD0!!AUX6d zi=W&Jz}b}yTctimj1iD3F~_kAuP_$wFFDK+b@o%!gG)NCduMcm$b%=_GnB6ITPen{h)T|`5_pejGoWkC5oOIgPG*A z{wB?Z(nLI29rdwdGEhXiG=S0~EA){eo|LwR}d?73?!V|No3=wG_n6rL&8o zM}R!$fuQF~N#Bi)L3(wenbG*ZqcVK)`dF#;_hkh>9Ta$dP-XN>DByi$6TfM^PIi>% zZnp7`Eceeb7p`|bCtuCL&Ld?=m52YweUw@!S0C z9|ml{QC>M8cWC3TKVl zQl40CUwOs7^}_a%hAwtq?H6jzJ&g%76WTyp5r5*G9!M3oGTJ!oCaadQU|CCDMsSGY zz4wf0QGHfbc-E3A9|1SA|MrLqtj&&JE^R;N`~=L<)?Ar`=C1vP5J_kfNwLjn60<>s z%nM3NmY4vS9U+1c@~`atC~~G5_N~xP00a0#BZe8oLp>s7);y>8k@Z7gs5AU;Pqpz5 zt%4tFmk@n0obiKIEDP4Fb|4AyNmWL{dsXMM63h?#B4N?|aAp z!@c8vxgXv!&R`#4@3q&OYp%KGn(JB5Y^G0ldFKUiRzQm+=n_31LcX;);se&Yj?_T0 zBOI>K>T^z|Eo&xM+{!(j-Ck}s%=8XF?V~R}xAGC@Sqm5$1m8xcSJd?~-^MnTAD?^8 zkS7^j&E?E{?F?S|66YnEtRPLZT5I>&u`Ab_4cD5O-VmkUkk3|EeWrIp=H82%RnKfa z{^pAipY@A$_-Y5Wc~}aV-X_oT1j{MUvOtsJU|!tkJk1y1Md=75+4%k>B@Fb(nz^UJ z1GeSBN}1eGHJ&8Yb?meOEbrh5;`YS0t5ac36}gn7`(awugTZ&u9w+ffHG)Sugl-Q! zZWK;ety>ZVy@JOp2N|0?ye%#o%dC~TKGgADb>~!<57iLGe$+iu%UL&OvRL&hFn{)^ z+I54}uVC~h7MyH#e1Y89x@W=Yz_4^2oHTJ1Y{J+;8^7rjtwt2eQ)y^!%$b3JRgrKw zZ3zdj#8QWeJQ|K;;m6UZSmz^l#e_ z3<21aamBJ*s4yEPrOU>c5*{!w8k)E;t_?4y?|@&FSNLnJzUFf9JPv7kWGb9KF~e9a zfYqIChGqG?(0j7=^t;SY=XxV0i!Czv5wettHlIlZ(a2d|S)AH*>?5nt@^RH%?t&7! z4(87Q!@4!X-*MTQ2|OFX(2t8^WrnOOslk!marMQf`UiU(8asDz?VO8sErqvVgOL?O zHWK+En7I*^ZrE=lTN%EqNdfKzxtO738+J7@ILPP<+m^-hFV;coHoZQF>Dm{FmJP02 zY!RHveYd4q<;Bj4fC3F?|5@ignEh}PrlKFV-heE@w_^`teOa@gM5^~{hz9Sd#v9WK zk;{9^P{O~ieGXnV5}Efu)-a9%SH5q1uChBtWM&%LOys?ac=Lwc>9ne9+Y2ii&Txb- zFY+8{OdW%KmP;oIOrbo=oA!&}f-r*67!)Scy--@9_`K~EWM_8m`4iRBdZuTCF3?yL zrQWoSJWzuua&Q+${XkB(IVORQvyrF|32>6fhwkL!()5Xk$K1S`DLvRyJ>pr}80pkTyh^BEV#o1T|3C9Oz>&=D0Ujjp0!k7x&>p zy77m9J;9gn((go@`*d_2(3OgtbWA7ozC1S;Gw&qR?3IumuZB@|Ei=A7KTo=O5*Ny@ z#?vu8NBnZ{_+%CNDCJ~0=TxcfBgz$Vc*f4@ZR$1PuZlxm&HdP3r17Bs>ii^$&82}_Pe9z=@H>cYS*2U%XS#ep6 z;x0xqgRBX?wdbzOezxoyns(=)*Hje&u6nckJ(xE3d5WJ(g5>V0wtcaS%`*#D^dw=S zCJsfJ*U`_JE?d?i=ljdL{QM$_rsY)w)(_}cB+9uGo**@Qdi$3zKc<1C6Mtlm@ zt*4eddv5z0g5*z>C;QqO-9E;O`aUswcc!RL;x!I(Go@HG6B2rMQulv6dD->+S&iG9 z1X2DtKSsw;otaK5KnL2g&>)3EpZ%gwcq6A}wC~O&#B(wJHLYhsW}q-Q7ZX5*R%$(+ zXdFSwK3*(90j0Yrz0;^NVXngeb>DY%_EgF%oh2&Z-^Omcv8jqY-NFL?bdD2r(OEmF&_~6S#qvM8IZiAZ^pkBIsU=yg!C?~+ zfZ1jp$hE!)v)n^Gv@4q>SW1(o8cvx^0%rz9Hoz3l=7Uhw{Qgf>6w#Qu8x}h7PQhWYQ&^+I3H!yuhUs8+EHVaK~IpJl?b9}zpxkW~7c z$}3yvJ<^jmdaXXGD%aaUX}P##9=eR`DQyPR5|Nd{9&G0+`Fb1umBOAwPQdFY_MrQ~ z3xa9o?=c2ieU|`WqICj0n>aKuFbhv^kuAuoL7f=-dfsSpnTuQ{)WMTuh=`xv5W**U z3H8YXiM@$BS5i#AzuCb);_F;eYV-{K9{ILbxlw9}6vmXj-0dn+2XbXqXWS3U*UT&| zJbWW{-F07lN*Dc{;vM&6L5maIV7C46f&Bn72Q~CqH91ZZ*)b|VW7y0!Ad`ft=pJBF z&)c3Jt$;>CXTK_LU=4uzf=(`Q!n(62B=Zt&Jjo;+u~exbl~3n#@@BJ^N@5pnc`RmV z&V%7>?~XgP2ft5)3ngOHj}-GXO+5pua-22_CSIR-YOFy`pmB6rP7~-w-2fwB03cPK zmG3}b!868IDI4;R+3E&fk_M)4*`<>%+iu6h)lU5Fp39(fkU+hH-BXVlPq#W%r3Fna zqb#Q$o3~TJqG~X=U8H(C7E$lA)@k5kTi5`PrNG@*C3uY8#&qBHg)zrx@HFQ;BPO>; zHHeibdddK8=`&n={McLg)h5JW$>@Xh~d&HOBfaY;|nlMbS7uE3z@FazF zW@Ydncho9t+fdq3VcbQ^S=5&AtVSO)D8DhW_ns0TbWi>@9>}kb2CkC^I$)1tCmKEg z7B2O&#KOHNAu7&j1qjHOr{{MtSy>_{9}h_bj!P$}JKbMuG?TV0{T?p{O^O-lh^Fcn zKXe(0Yw+_)BTy9q5nh2hVRQ%7zHTKcZ9K(gdkZ%sKDfLnD!4v53LXQ0&qO~(X`t=6 zC$@a{j?y=u-2aFtZ6PFi^9A?4VtT@vu6PlGf!I#9bexkzkl?=^9fViA;9cc%G0sB7 zCyQtBBp6p=U*IJANp10|pz$P&(Y8#8U%GC;NigH?M(M_L3(6unvy}@pL(Q_k?wvqB zAFZ>`-#y?LY2@$DD-4j|M$f_2yk|jQ*V`=gI{e0s_)!jZ9r1BWc;xQAndF-pCd$7? z2s_r*rZ7`lg%z44w)5d|*!I%JaiUeq-g~Fjms95-4WLGel1a9%YLPD#aAq%|Ga#LbAH$@ZK=-r`Xe6bCy#KYYIzY3iK5R?t)4&0I-&%o)#9pa#3(0 z1C-mNU9wq58MM)Oek+Un5tK8dZB-9hvzytOS$suF-M{lJ7U$NhLq-)2j9nXW6L-wu zCKlxh2reyAnvTI@#V*`GnQsqJUU+0@+D``lA2k0c-f$2-3{5F>HpP|1p+VvaNC7)- zAP=Cr)1#vsY?@_ad$$-!zV7L!ronXtjgcMb8rl{i+>*tVc%OqlIWlM(EcazRpmY=! zN_7F09<1}1$#Rf>)mSBB0KrR7CnqA}TnwDfo5;OGbU`shiWdj{BtT z8gvitD|q0HDH1up`0;t*ohg>rjtsaZNoid|7V7+cxr{}T8rgaDjTqt+j3yHG?{hhtWFxT~S)VjU2npLgIh>1dY_vZ*A?}9P`U@2L&s^G!yn*Js zztnv8Bs}^hW_45ED24)&1gWD(advaStrK?(vU?kAFI7F$yE(J+FWIa7zqpf^(LxvR zRafJ<4O6_A%kJ(}L{s@7aOdgAxZa=ZYDq#or#n{U9LpZ!lzq&n%vVM-8ZPGlX;^R{ zCr!n=mq$8$yh6OV0~cu=$|$4WdA%_hF{EK+!gs#cNkt2XA^53#4f3U=L6GWp?mSaD ztyuTA8tG>qH5V1O7W(|!&kmtwv5~N{5cXyPI@&q2%x9CpTlg{ zg?O@jm-fs$soP$ah=u~MiB+XQcFEH>=ifC>*#TL(ii}3mdo#uPJYA%43Vx!gR=mOH z0hHz&Gi|OD6Dhe6?fAHC)QH4xP7@U{s_%fcll8Sd|EDrf7P{bEi1$boCp*vXGaNe5 zLq`r9A%3h7zvg!3Nkmt*SlH@&QQ4%$XrfzaMweEQ%?i;R%VLo#c3q`sX>`9W(UOKf zx}O~X23dIA4KyNQqH;!pLMT=Q2=meVx-nU52l6l(F#g~HtUC@_fv)k_Prj5hfbHrP z4CsA|9c>B(H+*|>lGVXl_Yz^F+r7aGf{0?(Rpqe*r_9lTGNv7aB4eEX@ZJT*)AvCE zPj{6a)^9mkdWm(uKk5!oCT!3LiVbq7j49-^axB3(+-dt6GPI&WM%SsLK~0GW5i-#? z<8zGg$+s%Z;C)6Y<8E4wnDnpsvSeSdzi^sZ;`;0Bce zHf=AMnE7YmG9k$0u-QaOzgN-Qsb|%dJGcGgY3NNI_@UG>2eU#Co~-grx1dJY0pmH{ zyC5<&#Df6m(_VF}9KK3qs`#amj$gllVanA6o`c)-tN)zCGgT2^xrgqXV3EIi-3_L9 zdB99><$L4fMbkq?rVowweg^>-=$2msrA(<90NBJLQODP}aRn)Ga(lHr2!QPniW|qW z7 zikY*D+Isc~T!o2`$06Qtpx=^7LL6FZU*x^byp0c`9Zupja z;PYp^zcjXizS9hfLQ}$#ODW^}W^x0)7uPvwr~`TEU}9uN6-olzi|6*e!9t_rf!WA| zyNrQ8%2XNQ{k8rGj!^NV`=@ukfUdm^6kstDCxHLW z)kVm#F(oUvb5fC`g8|SHtFgrGLh&DQtemeUDA3W@Ts|r@4ForW#O*@**OJ2OFCR>_ z?{@HfOyAGfqbtP|cay=zdH*_gxblN%_Y*FP30>aS6Zey^^#X|f9C`p)*-h?9c3Ni& z>wJ3zF5=5!I5!jOdH7VEoh{p>8~sPdHEZm|iqNhai+XScW5v%8Gx(uk;-T_YOLmob z_8tH{E#sbgzA!j78Y1UBgW;8t6FI8thVxdgC6y%HYd9fUUO9v|9r@jGRQUBfYMf(t z{#q*xFl~>6(@Wtx?FkH`jtktX_V3srFeSq>8U0xZPJ-n@;k2KvV{&KukF9t*GYJ3y zH%N&28rsUyc&ImsJTgRp8{$B<9x$ZQf<^~0soMXnZl1KFGL0EZr|@W5e|&r0e`2bX zO)RzHBWnKB0Q_2yb3I<}IpzD?i-FCT}+>&!W6;P~-9%GL*)y~b?i_dlv zHmqK@Ob25ue} z2=}cB@A5SH+v$QKzUO2wa!5KPeYz(`sTTJ|??Oi0?>%{bRR0iB>Fe;Z-@->tS<4LJ z%c2yN9(^i6fUxel4UB@=*eJBK3Tn&9Ji1p=?-sp;hQ@_LYT{DGcS1-APaiR%7-FP~ z;rEK64)GLcF-j;xwwp9nB0Gy$N$c|i-vnsQ%<^;ss~yBo9)#H7TK;y7q<`rkL-pO4 zjlqJtNy=(km;i$+hP!zBn=ZdTRrElLB z;WI@CK97A3JNA3>CI6Phxr(z%hYLDz{rNWniVsb8r}UjExyg3;ZCRVI$t4Qm)Kx*3 zGP|`a`rcVk1ls6)77gZ?zC4}NH;bA{+BK8RNo5!ndiT1S2^TDE_cr@@c|piAl#zA3 z>y0Z=`0Yw^IRTi9Gho#wrs)i1B}gDIhDY1J%NJW>iNao(#b@5mGn&5|vgh>&! z_8f4Hl}pi(j{%Rq4SdL4;}*5T1j!|rPv|?t`E3H_v{{SCESm5TRs3}YBIVL(VFvkep3#L}!M-)AIG7qI+zTuDyhhLM>Fv!`OlVa5D|iW30xIvN015+;-H%^= z{@{?V@k8b(UI{%%ZWWHq$%-;G6{l*FBTD$-vQkXS8}T2m@Pz#~hWoow&pADG<``Py zG~`s!oL;R4alTrc8LXm$Qp3YTk*?J&%PvItM7ZFlu9LaLNm>e=^)@Z@?`CIkNYdHR zus^Dh05m*g?FKhH6J+=vQD;@la5bX3D!2VCi;hd*t?&S@AhB9xVTuG|o8?F8{R#5Yg@t%IMy_B=#S^0ky!t z>Sr(@liW?k0B)HoG^4j*$Yy7HzkIP30~nbqRsaWTT(>xr7ci{>7}50`V4gHWLq}Vk z`8tAW=~mTh7njZZQ#_0GrlrAO;%NN)A(9QQ9HJs0R?`fm1e-XfPU*Q5AOMFzb%B=! zyj3$~vp(MeJnZcjK?oKnFAfRp5xchmxqKXYTH35x|*PBzrJh&4^Oa>C0zpc}-Av^td8*;&@T zZD7dg$+)QXwn)u0iUTX^Rl z2X~2gslPZPqYwb9Ve^pBw1t9KrtMcpF84fjc4TkG8~eI3fy|_bm}4wyD)^RGkdQ9O zDwxGOt3P~rY%rOj>(%H>sy0zhTiv_fU)@%_CPeruK@~$?m9=pNn<%7OWuGC0S~Ai{}T)MPXmK& z-BItpXQLPCDJW;gSR8?tPu>T`EDueMs)hMKe$TBGV##=NzR=xP*+Lb^6mqq_c=bUMbU!7%f->%)pGd$A6&kZ+YnmUt zWRN~5WN~3eSebeLZ*0Rgfl!}>?)v0>2NTH1Nx<@}5V9h!Hr-Zj$|{LXHqX~%#|%pH zcEbk7Nv5A$&UhklSp8BbpKO%dvJZmEb$^Sw7bWRt|7)ALQm)DB*>uxC#I?xBcI$*n zhr&xLzO=T7*H-OREx6vAzsHb7Ow+DFEOOW9*r6{!tH@rv1{qfryk30gT}Wyah{WlA z_fOFj3~8VyzSW=a5O$(%TCz6CoQy7m2lRx)Z9+f%@H~-7?oLxckB=q-#$$DaDx2|X zWla7`g8*u{i<4)QBc`o+KAZ0lY5nsWc}b~zR3Mn`0ZzLf{^1e9v-t9c!UgzJ{Us&jTNNcZ9J6m1!4uRWKC2_8^JyMPa0eO{g6BDJH)gp2>z zVAz!6B@cjeN3HX=3E_Mb{^8WQVeKh5R#7M>UABA9po>sLPU(h4iWD1R>gBm8FWJJn z5{v9E10QtXpc$@eWR`@UN>LE$^{}7PdH$5m$@RIA$ouzpf8{oan^Hp?4PSIt&8!xC zSnAr1@}AWWW~RHaqra#-sRm%LPr6V>u{OM4?`HR=Myk=_Y05d%d*%C&D1Xo1-|l&L zFaZHH&o1s&u>H|6L5W-uZBO-ja!wE8Z z_d056HghM%|C*29*HM3-80+w-1d8?QF|naR10~$RbrIYrdJE>SX7`&c>KU>BRuYQ- z+a|w3v~=KU*Z89cTJ1fB*WmTu)=6W8CD+1g?gmtBggA}FW!&ZXr(P|rj%{dH6@%uP zoX2aUd?{((L>QT40s}M{egxtz&uzA7yB4PM9&X9mA^a;U`v0g00XZ(nVDzgPN1^h1 zZa@|*^4Ysfttz{+da3i$7CIFw%{wE1`^3ikmokCB=9p@zD)IrcU0p-^0)4yf?YotI zJIT_VDUnfsN1dQP?%&zPQOJSv=K3WK1fZZs-XE-7j6kmqqG&Ip+@kJK3|ZoNgcZ=^ zT3VU=&!cM7=()dbJyiyGB^Hor3$iY?`U!b$W-Md#%V0PD$S<#=`ztaHt-tyX%~Lf7 z0FiX4Iq5&5`EiAqxN0uSt+dR$)b-c;>FQ1Tf`8N@8a_f{i1H=;r|KofA+zLKWit#&2{*MH}FZv*@ z+CPKsPoZ34nwWnIm7oqq6BPc(y#f2A<6rgL_;l+(8WhfVJBKSO)`J7V&k{KQVoQ`| zR#}1A?2?~I>`0DfR!Ko3_VdDovFqP9{eB%gI#?_Hk!HZWZ2H2KYYl62vG%7#oC^A` zB0vo>!C&HLxhsLZ`FF1W{jj4RSPdvrh3gWn_!&(87Wy3~LD+;4hdQ`e$VP zQb8#4ir${fgB797myqnzcVPqsneQCmo%>ybzdzwOu5QEa#IUA?5duWO$$^5FlEN*L zF)EhX@r4B`+N=Th$?x0Z-TwmVK@t3gY|D!Lv@73GG*#{`wU8*?n08COp^l7Py!<_4W0MUpqTaGDlGdVl;yi(3>FA1BKuC2&H%w|${ zqIs~;fh2EGS}27gPE;QgfsJ+H&&aKS&^&|qjO z5Nur%1&@|e|6kPH@#y<|cntvM0E_w*K8Hh&4VL}4sJ~?sK(%d%{~3*cgyN`n1vdCk z0Ylk-ag>rO_%f5a-#{=b9BjjDh@nstT?x{kX|aW@2#(m#d{akrvCh{>rQCkDPy3;Q zsva~X#q#I0&O#?}Nw>hXfmKI!eX~aL3dba44>m7dTqQ`yHmV=&agw^{&&)#g2}!HH z52=aCb!A9jK0YUl{%6eb?Q}-O*1Q<< zA|ZCI>sm=BEz21OV6s($-c|d}yL0~sdY2}^1njy3McH~6j=2{Ej(E8DZZtEe1SP)6 z>zCc9F_ieebtwXq=32vU6|l)U#Rn%V$D=yhE+VeA2E8F6KnC#oLhvCD4k^jRF3BV| zt;Gf;F^g}mq^d)H$f}8PBj<6gu~A2_c{TVkcilG+n{Bi#r{`YX(A>t>anO7qh#%nt zNP;dsqi!_Vn()j$0U$6qZ+}aIAMi@atnbGYUqoN(;i{E{x|hwyW$t-!IlKuBl7Tgq z`IxvP<D+owjOtGy_$6{y19R5BX;BmN2#&SkY`V$`ewyx<#j~l%xcpuj3yj_cc>GbdA*20S< zPyyjFza}NeEV+Nd;sGnPI)W}N02>GnTzBb5k!k%-JO#UDs?Na38-)|(&gT`&iMgZ* zgu1z}bVkNSo)fWCEBNBW2w)Obn%Dqux*ikp(iYIEtUw7hlyOvA4kE}PHtq&fI)vc% zqV%s~dJQolz^uj2T$MWtEiyJ;Fyh@q6|P5EfZmW67m^<-0t6GzAivK)pyJdU3YogJ z078ixG<|2M=)mtr_dPi9vl9SGR^&H~76BW%!RDQ%qk36p#3o>lwnRB)kI8Em)jPF` z4Ut5jSbTV`LzHn|Yh4WUmjH@MbkVxjfKX@8)y_zpb%84|+f1(vr0P0?E$i;q8nB(e zEG`6vtwkLX0@|uvGOM%ON1HDRUXKcr#6XD0#e={#_d9Wp931wVqo4 z-H5Bcd-dC|%Q2aG?HMWNKLO11BZFx8)zNMet%>$6YGfD0^U=v`#Rf`&p_!B+~lAV}U0I5zDj z*s%YkMce)QrB)caV3I+;(fw6`S9&mHuqQgUlX!_2@Kb1{?y3f)lO@lHK)5q$2#(_} z4j|2mOw3D6gri3`W*h@5=q>$im-7P1V00K15}X?Q20{aTTyi14#9A@~;%x$z+C!eg z#WYmt#dsEfo3x4tEXW^N;ip`{)j0VmH&wy)pR+5tMQkt~9`P?v>6d+nlU?c8zdK6= zy&AZG-LQY%{Qov3UM-ydV~%xH1HFp>aZ>q@+oFG04|VC;pA7PA007phS&FTd4aU`X zdhRxD^8bN#z)@55$O&#Z-McbOs)||) JHFDPB{|ocfCq4iG diff --git a/Notebooks/Trieste_GP_opt.ipynb b/Notebooks/Trieste_GP_opt.ipynb deleted file mode 100644 index 8b7be88..0000000 --- a/Notebooks/Trieste_GP_opt.ipynb +++ /dev/null @@ -1,236 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "25d01f84-863b-4238-964b-e24425bb8107", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "242c5eb2-2531-481d-8c21-0b0178ac2db5", - "metadata": {}, - "outputs": [], - "source": [ - "np.random.seed(1793)\n", - "tf.random.set_seed(1793)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "49fa101c-15a9-47be-b254-6cbde6dd04e9", - "metadata": {}, - "outputs": [], - "source": [ - "import trieste\n", - "from trieste.utils.objectives import branin\n", - "\n", - "search_space = trieste.space.Box([0, 0], [1, 1])" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "050686af-8c93-4996-b852-c925d7cc7e98", - "metadata": {}, - "outputs": [], - "source": [ - "def new_branin(data):\n", - " print(data.shape)\n", - " return branin(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "cd44cddb-5090-4e4f-b651-f7d57f145b70", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(5, 2)\n" - ] - } - ], - "source": [ - "from trieste.acquisition.rule import OBJECTIVE\n", - "\n", - "observer = trieste.utils.objectives.mk_observer(new_branin, OBJECTIVE)\n", - "\n", - "num_initial_points = 5\n", - "initial_query_points = search_space.sample(num_initial_points)\n", - "initial_data = observer(initial_query_points)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "696dfd67-0e37-42f0-af5b-64937bffc2aa", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Building a model\n" - ] - } - ], - "source": [ - "import gpflow\n", - "\n", - "def build_model(data):\n", - " print(\"Building a model\")\n", - " variance = tf.math.reduce_variance(data.observations)\n", - " kernel = gpflow.kernels.Matern52(variance=variance, lengthscales=[0.2, 0.2])\n", - " gpr = gpflow.models.GPR(data.astuple(), kernel, noise_variance=1e-5)\n", - " gpflow.set_trainable(gpr.likelihood, False)\n", - "\n", - " return {OBJECTIVE: {\n", - " \"model\": gpr,\n", - " \"optimizer\": gpflow.optimizers.Scipy(),\n", - " \"optimizer_args\": {\n", - " \"minimize_args\": {\"options\": dict(maxiter=100)},\n", - " },\n", - " }}\n", - "\n", - "model = build_model(initial_data[OBJECTIVE])" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "5fa0dabe-9930-45bc-86cf-843e1dbe10a1", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "(1, 2)\n", - "Optimization completed without errors\n" - ] - } - ], - "source": [ - "bo = trieste.bayesian_optimizer.BayesianOptimizer(observer, search_space)\n", - "\n", - "result = bo.optimize(25, initial_data, model)\n", - "dataset = result.try_get_final_datasets()[OBJECTIVE]" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "7d1bcebb-8ac5-4b60-9589-922c2a5d5429", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "query point: [0.54162649 0.14935401]\n", - "observation: [0.40162417]\n" - ] - } - ], - "source": [ - "query_points = dataset.query_points.numpy()\n", - "observations = dataset.observations.numpy()\n", - "\n", - "arg_min_idx = tf.squeeze(tf.argmin(observations, axis=0))\n", - "\n", - "print(f\"query point: {query_points[arg_min_idx, :]}\")\n", - "print(f\"observation: {observations[arg_min_idx, :]}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "297fc50a-f755-40f1-8c9f-aaed111951cf", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "initial_data[OBJECTIVE].observations" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "624720e0-5600-4a74-a2ce-6d09e248c069", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Notebooks/prediction_20_steps.png b/Notebooks/prediction_20_steps.png deleted file mode 100644 index 16a5a8458ea62ba7a8dbd6cd8a0a1bf05ca47bfc..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 71409 zcmeFZXH-*P@HTo9dhfl1ROukS3IZz96%eFFK#<-$q4%OlucC-b2Px7Lx)O?tK#&%? zNC~||ZqVQVec$`(e!Cy;x@!e;681S~_Uzd+&pb1S1Oq*7GGb<8007AD>S!7P0InPW zfNBZxvES$-#tX4;@;-OWe2m>4eEe;_?12ZiJ{~UaJ}ypnoPPFR-cIgrQliqL62hF% ze0)5-6~x3`|JMLfcP~e=sh<=j*ozQ(=$Ly0013_Y4+zLBU<5z_a92~^B%olk&_Cyf zsqfMJwDQ=P=k57lteGzeU#8=NiEz0S3N$TiC1U&fkv8Ec4a0UU;@wbHm)b6wq_4u% zQ}M!FTe8=SD(*$&-Dl+ z!0ME^|MSvRr6E!PA~^~F=M`_o6%qA+eC&+FCI6qlVF#VDQ_KCYv4oMogLP2I$?-!0d7v)C-_P~UBUmNvPLs~^e01UYAd1ok64lIs{o zf2{>3*J(3C_#m66$#oB&6s&0^*SWVa$p5v|By}*s^#SfELIiOSCqM{F0t)dsB2TUZ z&A)k!FaCA&ybuHsfGqKCaQ9BHWFRgL3R*Zjp+GnVCkaXqnBTkU@YjZ0qy8B)AyJk+ z8~%rAWe01+wXunYkkZ>}J7~<0Smv zuN;#l*P*5Q` zpIkTaFu53#TzAS|Gx+vI8nPLGcI?!TOh23MNv_Lo+*B;F3;lR@X?J+S&jdM^=r0

    W|E`#%qN)27n`Qi`v#6GeBXUb;yROzXzz`qAdH7 zH1q+i;XRCsl|{$e503`u02Kg5_UCiE{+42Cy>{wHh{_;i(nnZFiiBT9kjOg|{IC0u zNA_jewW^0z1^e@h6usI%qkL999P^P%%&d13-@2 z2dW?5RwspHz$Xe%C%XKBcE5;yP0$4+JPgPORpNN0*qc+}oX`Nx=2@9d!q0t*AYueN zqkt8KO$zf;o_SjbDf|vlRC*Nr9ZV6(0!;!H5TGmpeGRGL6=%TRdFuEM;De~&c1W(m z*`WbA9;O{$0-Xbl7T@bJ79bbAbVCVILWm0;R0^c@Rz{f$9(pt{f)E0bRZXKRN5TLa zzEniIHpJ51V>LfG{$7iKbIWM7>v*JslVSW^uFdhJTj* zxCr7*2rBtj$3p_D4iq;DS2&wb_=9HZ;HO3SHX=~iqbX8eM7^82&HR)LXa{?^jU7XZ zLUT%~$TV;6dm`%jL=Xx9$}}C^e;X3oTVF|&WuJm`BK}q!1kB^^5ciuIU0ylpe8&Oi zz^L*p`%4ph8%qjvt-Y67buc^g2@R|e!ibNe2R4k5D8LUm`DkyR_I}t2FmCWGjHJEq zU`!y6E2u{Hu`+#@q~LjG;%?}lKvfWG9%!$#Z>D+H89NW&5rAfYgxvy^5+t&)ruH7Y zh7o^VJi&ikJ;2J|d;Z)DYChLW9pwJ<3o&3aJIE|6GnV0Y(rqOxk3BZoO93>aNesq*diH$SjR0DQcl%iQo6NsPK24Bcz?B%$W(40pAOZZ zXZL4{32N)@i%+e38ikUU$2y=wGCY_ZU-{QYJ(R@x~%CFSG2Q zkf8*iz6}?mGNR(E>HrIaxM<_*)WjgwmjnesEmO|}h|3P*yq|){gnp4Vza^Pz3PyhD z#Z~La9GZ`64AxhsHJ{7<+&{PjRABA@QPzM)I$r_Kye zsZ%2*;F5Ctl+_X^f^ZfI%|+i*DjnG;LDX9Tg3C%^6iJe@*8k1m&f>&?6PkYHSniEJ z#$Z8+Fb+ya$2|^alT0SrZ-rx?D9Hhfqt#TY?vI!17c~r5B)93MX40K64twZa?)em8lc}W86^k$@5Qv);)~V zxK2NV*q4{2f5JqZFFbXkCMr0K*UH8A7~_BtRw%i7UIX=yY}|CM8i11#;$MNmfS`=f zLg!7iorBXb8Yp<(-$o42%(5psL|zd~=JOCtEgtDl2ew~BD$jbjLslU5^`SbYI-D_> z1?vCai{WqVQHYlOe?U%HEl|{m`{8%sT#o1Qs&}Z-MmsJJ*u`eF?MRN0LK5Vtms@_FTx- zn?B`(Ae*C{7DIi2W#`Y5ym#jLvhIF@ntv~el_maavAS*hhX~>^l@F_Ca5~(R+SYtx z4G2kLAj;DD};#Z0c1X1 zbXvJu#6JhxojX;{vKnXWD@jBUtsZ^E)I$I3toSP^Zt6-G8!%#%T-eQ+1Pb7RKDY44 ze)zt(aUZ0#4GH<5=}_V>2%41Elhz7X^fLxiK&^pz@X1T8bCc*-0i*N~_0@Pg?ET1n zkO@fFrf84$e+0u~TvHvC86P(O8Uw0@jawX#uP|2gQQUv=&tIh$mr&FF@8SQiK;+2P zA{eMz`N`Fde`2&o{s(N**-S$z^R4BeUvAFF42!YCQ!B2xey9H%bw>T43+MC;IrVe7 z)S*5dI9SGFby3j>k=ezSjd3XgCKU*f{v@B(rngL)mFrAid(kr`2fbFHiRj6}tG z5~U+_z`++{O&+qJ%-`kPTxR50)oif$jb3BDBHGC}1wX=x?}e^i5}WNNm%QPQx5u&n z3rC_kr2oJVvq5Q>iedXZf&u+;b5WX=iLblPl4oCj1zGxzmx1ussnf#QTNd!(OVd%Q z(VT?btY-8($Z$c=H{@_Iv%L*^GBP!pGmGxu1fwTS$|Eqdgvl8E`IeOr0avQ-eIH*a zZD0D~SzqiS>imWPV8;hE-3+6&XeyxbfGh8u_@Po&L8%z(mZc{*ys(=^SC#nUKoDMt zezd4XlJQjN0j1k*UZHC}F7O(s;i!g6R%$VEoL-Uayhg()N9BVVIx#)XcALrfJ%pgy zRaG_zUMQTJb}Eae3&=OBI$ekUYT-<Ic~?R1lcO%{QpixeX2-womhaXt1k;bfzrdjomX+Qp>pc48i-u6~x0gIjqdz>leO_$y+$>R5n;#7kEbHd#s&UaASjyQ2O zeeN97(MgzHWyaC+9mFW>W0M)6L{jdoP1FAMQPZ`^XX(LL_$^1Ir&7<@=gDVIN_X<; zSN^C8c6po238&>$1A4X|q0nWU1)s2Vqw{OH};Qgm6GUB)hbQNy$z|PimaU??Z zNHm!*sbx!BzqeuTa*CH?QW7sd#Hbp4Bxw4?SMcT6+^??@rCTEE1uipJqNoLZaKGrO zl+KH#-K~0_vAT`!$=nZyIP53lJ8#A!X4r&M7&CK45 z5)E#`QnrJ699Wp3!Nl5CmEo=`d;X&E_vZ1IF?a0Zu%6HxNP#@hhhQm6cO6{b%8DuL zg_K>$Uy4JsKeO?w7ySHBFHh>1c+dk)&sCr}X9BVK&jlV5)NS2@^=WtRD{FFBzNri7 z*KAaQUW{P6JUB>Lvsz5EegWUkXN;pc^@y>i|ZMxSUgdxC=ZRU+h;b}@VeAI2sCAkG&^Fw;M!4EF`Yr4@Bx1Kk8xWT z{ll~;o^B;MT!sCbj!J+WGpxB;oKvG3mkJYDfOM4yS2rlgBR$yu*3uv(K%{EJJYI_b~JOj8xi3w=nulthiKqgYu{|1T^0o?`P8RR^3B* z5(gl9$ya+X7e^bcchb}c00G_BIBVhDIdXp*27QdmL8GTcln5V{i7zxOqd#`%mbeM+ z@c#=SZ6^CaOx*U^S-)wo&91;B)~jPz*Qo(D^nN8lsKTF%Vr&c{WXi%*IRBYFGBlP_8fUokKQddtzt%ltZi&L6^y_2Q=-EvsSa69`C2)mIO7BV zBb|P|4xl}mKUCYLRPmpcsxy$9Oks&@W42<+>{f#%fva{&-oW~pBh4N$o=0$~f?D=x zMV_bv$xm?GWeAi!AKgTf)jY%ywfHvHHJ@T89#w{U|Kbq43g*A@=xg!#Hm+wRCw=U{ zh-a3VKmf(eMr+BZVfIt97nH3-Z;j0R5GM2v)qH>I1znSK>Sa!y>_gh$xo&N1+qliujc0?!!M`o14c>QyV#D~ zDXdSr>5!kC7?VNyGGvhRBL+J}mUpYd@NX$qa6dDGGfIP4+Ohh3nVB(?!$T9-lbUB6 zzY|6raIz%T?2h#qvEbTmUJ?!#qOa1gAL8b;inYiAa#O;Nu*sM@v)V0xBD>t%u6EZj z%#O=16m)X=C|SRJCsF^BDy%se=ju>oaxoMWc+1Rzt;t1wGP2*LG=!%9gWbG8dmUch znCW`J$t1jaYG_cy3Px!R-GR0d$5XiA@LbW7V}`%7KiGV-Jkk6HOdp#i}*mv_Y1U_QvELns{mk(+gAmT?J_7j1L8G_C&nN-yIAOWhtd1f&Ds~Z#lut5!}#H zR&30YIiJfhUN%NC(I~l=K1#DYdx3^5M}`wC2uI2VBEyGgTx;_2@!Os`GRrtSe4{!T zN@Y{5bDb8E^FZ|=zwmozHjXvw!qw!0*mf#z0^*zsxRzl!wTn#Z+II?i4es>nB=tT<5Qjp!JxJQ%Op~_?4G0;&V#Loy|w_5EaS1wkO^@_Ebj26D~e| zqvCH|v#7;8KfUW_i-)YAs7Dx^O=@f+>u4;Rt>P}v%Wcg`v1rg`Hi!)i3)c0L)jbXr zzWgYRJ)o8MG=_ty_!a*d9xh5)PhW8h2s=+J?r}n^5RwKK zn|F=9lU^l7JS{c;7|82E3m@|;dpJsg$4aYy((5m`^MEfL|L&1f5@wE!|F)5{1D@Fr zLnXfO`fVCivuhjPJNYsH9_i=ErmZY1Zjvn9wrM?FEFjDrC6Z*0{Ev&VVFy<$lQph~ zo@9u1(1!;P-{0+boQc}N9Fd^hi-B0`&gj=uOssL?>xffJei%!T3SN;+my{8TGIU$; zHl^z>8@b6t#W815vlmN&vbQkBq0AnA=paU6p>WnSbqYvJLK0tbA@}x6Ri4>|rj*zi ztcunyrz3Fo-O(h}&sRpr=I^WsY6|=lNA7cO0D#2^%jLuYr&ze`0^7B_n7!!+PxZG> zIkC{S5nr_sz#4^FLRb5-acAM!!*~AbjCY^qf=_A-7!TXZ3DrNvh`0$Kv=y_S2JT~& z6Ijx3?g8m-70sTlWsitg+xI1^>&@`T*f@fI8?cLoEcnx3ocE{n%xcjo**}a8IKpsw zMiJuuTOxijSs2yHl(C0d+QJm(puFX(ORDxV4HlKwv9K23{(+d3^o*HY|K@yRPg{s` zjfIIHMl9LL(!s+;g#kF5!v?vmWo`X}wyHSE*rKU(-{XE}gE_Xop6!$=qOl`K+v84# zYKhB|3nql04|3d8HJM-a^k&QD(VLSc)i7!-ikZ~%dY@WR-TJdi;IdqJdGs~(egolc z^(WU+Fh1iYo9U%;Q|OsA>o?T|owpGYI&7+8m~79!&uL(HXJ81!;yf(6k&|i{g?2=< z)veJ3YY~pR$yR&j;(j7Tti5|>h6J6>#P1V7hqvu`UkyN{Jk!qfKONT@u|NljN|@8d zzU^9nz-Wrs1b!^0CI3?VHN|yHMZ&PVZT|AUrS~vTK)=+);&ba@2|d+N($Uaut@i!G z$=7C;wiz-J6?1hASRkGf7ZI#`2M{JEO~qv+QU^*%ud5)7H=Yip79!7H+&J2R)WQwi zHMuaBL~^WTaDEuXQNgmA%KCz_KseQzE5~e8H|9m4q@Tks!g_lkqxga@ zD<012oDzPHjGidvtbH)?)M_Ow0`M47Q z(0Y7EDmG<{FwZp)Gx|twH=Q<5_xnMfj4;{3*?5jIqt|VFe}e_Ar&I|Q#;xN#RfZpH zf!^O$Wx<^@z!g2Yoo;yR1H;PbYr2lK#)XG_<#Yx|npae(-kfCOw_J0H-mM; z)}uuG?C8*;=#+pilFleyzSwE^aH%HOHbxvAsdCG_ENGGOtjWg=cDzj*dl0FUy0$tc z`G2;`Mj}7KA;;(v{HSx62;j8nJL2+_C)UsYsc)Q@ECY7g(xG(oT692Zm){Ccy8)eK zQIp2647umwIjq((-#@Yu`aW}XJ2cr!pfFvPrULYiRKKvEuGs0-ivHGOASPt;$-vIf z@-Q~c721DE>}v5t%lUTmVkF6<(KfL)B3j~GuPO{n=nb?IEnfL@YF)8t2K=|9*Ui4v zsXXI9-;`{iT+$o9!qJ=foZn9nOi<9(FI0<@N1GquGnB zxj1Hz*F$9tn_t7vTx`@rMgKGt(A?Lsx4bbqgtV-<f1~;ST9C6s8d;oU432o1#kUufn)BGxv+bVMDnKkG zACb*`4fE(JW4ud$Zi+IPM@yS9ef#4m%l|#5L`8qqp>%6bIl)o&oH=ACsu|T-ql`nLv=fJ2NEtDC>NO)d z>Qf(MxpmV)h0OPqudjKA-;PHibSEqJ@F)!K%!v}UJYngB>%0LSHs=lkNa3$flQx3`($=C>_SnylAW;2zq1=fdF#O#ki3Jds zqxHcREzyh_7Xx1AuV9k+!3j?Xs@5R;!KzT5WsL3EyU`^!^ojh4@^MALiEV^?*nU~d zYF;)^{)11qvNF1C9U}K-J#i4-sVtL_{R(~U8+(}Az!0}<&q*4)s zcQQM@@U~P&=s~k*B%z?9-)8SB874w!*}68cCmc73=in{b00;iO8ZF{q+<_!aT9Wok6nB-PbeoD`8!gJ?PRJC-c^x5{W2eFxIw%8yHJLMR#*}1WsVcZW4vv*gMi~7=~i^oowOk_kcV;Jn~t_ z2yc$bxXqKZS>#!aDFpLf0Grvu!kMwbTAQ1IN&vfgG+~Bvgflxzs5uPDv+UBTH5KB@ z5ItxFRqx{8us(n4y{T#vYcGNQ-9O=frButpH9+Z|Nm7V!8C`zfydN+AQjdTRKrx+$ zdp>hF;G)v>H`#+z=!5veCTFr#a02?4wh~wn-_4r0!v*_NEk?7uyCd2!=DrQo`ko^~ zF>}bHhBagW)SE%irS)#F?ti{G%3?7wM1S9R@ zzKm_*f7fOVjzHJoB@*OM#}*T|Z@xZ~k|n=F<|9Mwt{r)MV4JXF0Ggn7X<|R(Yg|Yg zWV+c}$shbA;qWSZ+my+C&;pZ-;mYorFt)PeQsTlj`uKvb- z7=Prpj#j};I=oIPfEoHE%YLg)xB`q~25MYpyXq^g&9m(1edn;{hEWOXS+9#pxc(^K zku{FeX%Boq9OvhQ&68n#icY~s`jjp7 ziD)d1WL64`6teR&Mmg8``D5x*PO{vn=b_Uq7S-arM{Cls3K>`C?bAT6>ztTVt4wO?FHyTs19w6LRv{GW@;EK0jacbo8~406 zC)cbyuGdfZRf=Hy0v<>AWc55WymfEwWN^Y=9r5KS`qmq)$4^D$d-FUsr#!t;zka$A z7o};;PH$HadrY9Gyyq%i8PD?#0AM>90LzwhFVE~>eV#rUgECw-?Yjv|Jh=J<-uoth zb@Q-z+if@ee7c8`F$aT83HgX9X=Za(2^a1SyGtA?nX#i69n zC*ReDW7>jJBlZLK8@?-T-cAP@P{}<{0RT(Csi4j2=FDC)ZVxPn&(4Zp`+DX0(0Q7a z5i&|pO9sCwj1U@?O}96n#+DYoVJi%#m4v2_5gA|vnEjk}XTKc03PPEy0!5u{IqekK zY#aW9gQt1@O~5e0Xz%UnQj=qy=$P(hT&vxJik(Y~3DlVTC6~&{AC}scAHh3Ss@WnM z{_W?^E}x}KT9@`T1El0kbT23F-eJuy4S1e#Z?n>rlTA#0)Hs2d%FcP8@lGcyE47zw z;MM*h%-~(YS}UUsK@P$4=odBZxCgqgcKE}+ltn);J3p0-Vq{JnISH10)P=Q+&lZMF z1G_8$kX`6ah>f9)U32>3q!yx|2QaCkyr-vpiRJ^GpG@WS)pRR#XMT8^_8%11lN&Ar z0M|Vbfd(bEDv(9s56DGH_z^>d@lh#2wd-ueb)kP$Baww49RI>BaZv*GE*tFMsofMD z`V|M>nvFvdMvKJ&YELPf7suo<5AR$oA6M+IBK){=b9`~?S^uyP{Fg)jws_~mCf0h8 zak4VY-1+IyA^=S{{6lb9v`hRYoMw(eCuE{`mQu^P|EZGjGp4|$IrmPw?(~c|)&d3H0)O zK1M8T_l{Y|<4$+er@2FUEz52-rA5UF!62YioEUijh(-L~Jxg(lQ&~{ zx>+#5wfQ#3OO5wIhY@|M;m7JYF`k!l@>~%RCL8ldWbk0%0u1i~I$g0v_T;)W@qVk< ze&-B;6EJW4w?5|=u@KKGcc3wKb=X@2B~c|&S}T{#UosT~wlTrd6EG0Rd0)QgRF)Dx zx9`kZ8PR6TI;`%JM6CN`WdUgwtIQc}+w($3aCN4ctYtUwhS!1MlC~ad&oP7<7XB1> z^5T^I;=8@S42JP;^HYJh5&NoCI>|AY%_T-Ggk|t9(<%_O6A@IqRCrl%FM?`tlyPy8=#O>A zYZTW!i!Il|2ULUVhVr1J=!H^Ut%>^;1rJgM*G}9oQ_8p+Xf#!}o$&{HHSrGd^Hr1H za|mou;+^IZ8b;qK-q$4LjDY0Ym`~_qTN%dcE60Qpt@m8d39tpWhnVnAd-Domgo6HM zaNi;ib*INBK5C5t1Pi1~x1_N2Wbjxm25E;8Uu;^cVc1e#&xEZG7%J+vRJA=;#{3tz z^NZt>uGI91o3UcT&RPphLe40{X6CW%O+m}u*#dL54&iYAv&5eB)Wv$o5PHSq@|_;o z8MD>#!MVki0%5x?vy#Zo<>-Y5+b1N8-{-MBCSNqK5W}TB^lHDVwn6&S_uT2gU$6My zWD;Sbxa0lg*3k5rP@?W}u*Cy$Q|meud*(ehj&tNzz>kd1$Z0plNX$tZ!gJcyz5jHr zCa>V0C6f4Q{0ikMZN)@!FWfHMu}P&!x{_3m1%D zIX8lO-ivwy>H!o)Smu=$8`5PvDZk7T)q+qTia|fhLH?I?I~&=c1mBkGlN!0>vZWSZ z{sD%oML)~SitvFixueAr$xZ7C01&Fs^0m}r^CS>IfBqcw7g)@nHzRlVb-!^@vDL1< zhzgjHYFhdhK&pz#7hCLGYi#O(!1D(INPM}Z4p}D7umPpEeULY!l-#0zkd%?eO6P`> z9f@SfY_3$(^W4Y_i%!)xTuOdWd3)n2CP{^&pssOCBaK6hGq+$K&26AxIkpx~+C1Y$ zxK@n0q)v2NTXxI@!u5RO&twkaCzqTU<)azk4L%b+`{q~538E>hJ}*S zn~?1jBz651r(tW@?+k4@cv)jJ2)LcJVY=)cNArd{trA%PXr1@?TUoUT$i1-37(*2B z)H0~}^ig~WHPr}@%pF6C z`s`fw)?RR0*x&$?8x9wF2)f-7|10ol(8MhP+K(r@Y1S#|kTp89X19eH-2R+{1j0e3 zA1@2vYPx1L++W}SH4pu}A-O-kh=&y90A-Byx1A~JaWY|&_k{5wq;KBTD@ziw zYBK)SjNOX&&u~U4;m%1oPE05gwtKT>Gc9&!w)jw=Zys zLk&R--lFCv4TOBvK=RQWm{WvicfGhR7He*M5v_dO$Y`5}aG)wJ#X`ttkD zL5?!X^46 z2GscyCV9VF4jOkvv6KhvAe#<9Qq^$_I(n(`^{WB#d&0D+qg0P^ahff!{ggD+-dZTj zdQL(<##XWDQ`p4EUpFa08tb{!GBB>45$0~0URJXAO(8@9zcv*!45$43-L#TBT%|@xS6=a7*yvF9pwnVf4DJ{9&^bZZtH!?dP+TOY8dc5j}BamZ66T zkITcF9&<yJ@O@mGOzbP^MY^%PxclR>2)hm3J{DxVRvZU=e*&}vb>q6|eT&kVpC)a8M}i#_5fbU!)g%)lQZHA5+~gwdu<{ zmxEo?R&-+r!8(<@qR%L%T09xgk4NdGz*V+<^ebzsK|oF5tbVP8VuH2Xx#UFJx|Dyw zZj_qy>1Dn-sDpa4+{8m~fmQ>_!yQ+lSnUNL=+MrKz+869y)^TpbyTNhNUUV70 zl{<<8cA{zS1ls}G7nr(@?Emt zv4^7*mxo6~>L{tNRHvLEAHR!#8+c^3Y>V=qI@)6BsT`sc|2U36qU>)!u;j@;Fj6Q| zW4u6^UbN;ts}U_=yE1q~OM8hjbKDEkqb-HVEBMqV;vp?1_X=*93y#%#!Zgh=*xF$B zZ3u`_zKQmhHpMoDl+61D)UU^ zJ}Sa;qqJXNpC!9~eXUh{Yp9p>nsa}vTw}J&5wLzUJhtIcG2H!XH_5v%Wo-^fR`%?w zE0}nFXu~=g^P<rdK&)ZE2+%{NoBUX;dtId0bfR=ET(S$y>%AsY4?T}q^o8gtD)N*^`97&q@dTcvF%Xg@*(+}?2tA`N<;er9bdNsKc zeraH+d<3>^Hy_JI@$hs+oKgkwdYqBF7zW=~aX2i8ZtrX0l+%|+prc2NxL3e3&KdhxAEsS&MrgjQ+^eO`WJ$fK zM4%MjmRV}VQ%j40Mrgj>nJV6I=6*_)A#VRJ#)66UNAInL zKN`+)(Ip>n@V$Ad5FJ9y{h|!fCzmFRm%2xk##7wagQ%DgqVwQ> z$)o2stx7_&y2?Kx>8?ga03gjwigj-u?51Iypr?d{>l`2u$XYhpwJO`LBE}mYhDmQlIyprw$H^5;uD7N=5QXNj0>d*+C_QEHN{O#{cF; zy9gi<#UssnvN|+>OkhGU$?@EJ@m$b<6DjyW9@`8>-*ZjMonh-w^};h=i2R*CF{=o= zo4;Uw^7@>n2K|G+#q+T9n*OZ&+g)q(S5F+r-aY8KPQjmuF(OwOgYE`epYZS2`rzqon!W-roG+@bXPl238k(UWYQ$sICVTE^lV8n$!zYr zIRPYIGq1`0*mljLQYnP4{Fz`dQv%TX`yz%X-E5-FMj)=PR&}(lbQs zAD37COr1@=E49qTYMD2(9{Tdo#?evupul+@Z0`{rL)SnGExx=|>&_AL?iQ8_5nJ-^ zc>0R}Z=wOMRwr|Uf5?^v(pM-t?9vtpS;OqhXpca^L8*)Aa9}CZef0z%`C?u94L_|X zgHfcZa+=kA8HOJ-s#CY*?b*6nJvBM@P@LW1>+FQ`wtU3?!^fkLUElnboFgH%;?jyE zcdCis!5ZDy)hNfgGoH2Mlo0Ur{O)C^j9%!(Sv~+vUKNY|Pl1Z0y|Rr(x9E}V;@Fiw zn2-IuF_EhmJn-2a{7svQH5D6LkI{NJH=F|+9Q5e@E>I^!_30R5EfnE>rulX|ABuMc zN4Ro1$JLfMCHp8AQMLLrZ>W_@i=geWDNtul!p&wAt(qKAE4s}1IHF)#nW{i)8ik4sp@+> zgMlG50~Ni|S_g$j)OaV=nae1s)6QiMw*N_xBdN}D4n}kJkC?sM%eCjiv~#C#>)8q} zP4B(qw>ekrOnRmn)_LeQ_@SN@d_g`&AXZFuUo1JbpDIB-zF>6A{JA8J+D|>aZ^DKk zz;>|mVOv|mn%O-$YTijHxq?bs9wO_X6q{d~aotM{7Rq!0+mN370dLi5r` z^9?B$w2k0C7OQ%Be!`dYSl|)9P2R0%d2Kb%jVbS+uemSM(}5(|ysHD(e(__07vtZx z^I6FoHmz9?tbASPi%n%$a7(|#K1BF!=s7kv3umba^dgxAfs%nDY|eTM{wzp4=Og_u znYAI6s`D+R^iATmR=+zgw%v|*_s6^`O5mn;lWn5nQ&{WeK}T)eTkuTL4+uUW-@Cu~wbBsKXN zudqEA0R5_6t8z0YbJFSnIC8}ViL>81@0=5^^XhBh#^n_XqRPtxAlp7(3rg(Bw~gb+ z-BdUq^H(@FV#7U=DjMto9zat~yuPdZY>BWzg|@i-umkohLN!vJ_}uG=rf!hMPBZn2 zh@Q>EUdK_=WPPkM?vHfzi|8!D_dZ8Ag!k3H86HMc4$DNHC8*F9J*Lc{*UI3-FHM>2 zB?IEg@UYmx&7|RGuBpo@#FpuF;J1r z%7e!+2W6A!LF^+W(3jW30$qgxeZ;X3?A460qp0eDOptxc z`A2<%$=24l*r^RI6ALNBCX7lKN0u}9TQcY(X=Ga^S6@mqkA%kvw7yKS<58AN1Waz8 zMX6f)gv;h$nn{ZgN!VsHoOuijNN5Wf_PIvzFsJCym_7t2ejs?lHZS$Fl=fSQ9(98H z4Qd>0cQh{fbp*rhTl%&yxMO?#sJd~Xv_J_rb9I_0|7edd}G zK}YU*;4kL`R}$b);@O`4zPrH8H+;i6Bdqa(clK9}v^TbQ;A3}o44snSZCnb%=_)ErE}ZubrjPII=G}klQQ*e} zbx<_t<{ZqBQb{@pAyyY6IXX1>KvrVlSH7fe>e=GLDac=W5B2{1z`S7t2KtgcCd1@Q zGGOugef@Dez3V&n7v+Kj214VJg=%XYcmSbPl1~t&hQ{{EyTf|jHU_^lf?K?> z#_tgOAQB4}BQ&s&dE!Ft*(1O3zqWr+WB7Jx2Hp zb3GRK8x0_fet|pK70~|k50!4-U6*f9`7=3HdG4qrm%(;@gu#+0~-0s{sS7%3jqL{CS6iBE!?~k z2Tp$P|Mb_@-WSySM;ke!gVfx;Gl5SENK<*VvCAYfNOS)T8+(W8VO_yTO z`rd%DeB8z>JWYutGvP!N=WkQGyh8tYN3fbIpT%b{k)>ZbAu9ra+VWs^$~u3msC&+d z8R?tyCy|8D4?-uR3U_N+CFS_|mJ^fnyP?Wl^v2a>pKoBxKA}7wJ5+)@ERG@S9$GsG(I&I2YBJ#USA219=s zbyjNRyg@0E_vbX^O3KBHtNpdSZ!5j2HG{1(eAYM5yN{on$K_;s?muLGK~}SQK0fDM zw)#|Q=bGe9eOy&{5W#il{VN;Uj+>v7X_pS#Wh?CVZMR`~D}QXl13U_Nr;)K8l|8#+ zI%1v9YfmLlXXtaDE&NV1N%F$M`QA!f(5oB~ZAZfFSi}QsI|!kEA6&pxYapyO_)wiQ z|AE}nSuC$&((iF8Ab`gszW+mY%4dO(F89Q03O%ow>KF%K?e`AP_5Vnpe4CRP^tjYW z;HSYyQs7n^B7CM)m^1mHU@dwdmyhq>Gik678J}LznKz#%WoYW`qOL_-f1^YrSvjJv zyyr;`jB-S1Csr!r=i_I&x2;*ISNm6lNcHbikRuXp7Lf_iH-FeYP5QSTRy8Cuy1vhLc_WsCvLfd74ydh^2ozEJA*=R$2Y+=@?zj{*Ro zL!d3s=7QcGVmKwlZMrKS)kE+4QmsROP;v0A9nCU=O|FG?^^E8Vs93LiVF08#eaNB0 zWdCw`0Ren|+(VX13w+Jif5-;cng$!I_3%f@WK$8mrBN8A%`0O(KYt6mREm$P*Hhgn z6^EY~zb+&B7FvM2oO%zZIgC;cxs$kh&ej<1M~d3{M3l?ZuSFtoG&PY_%D4z_{Z$}!t{MR9z&|` zF|k8?)G1ORX*~LpK8jvTF4^S{w+iRib2d2z!k>kh8yA)Mc<9XNjR#C{57uAHPh#WT z`wU{L8~^6#U=(sFG}*6Pr9e{`k=K5gw06t785vvfVtf>bGX|tw3>FGCN>d=ITXVxc zA`s_%{P}#FQ{xX&9R>u5lHioLcgU|F5=rnrkC~-)Zhy-mnH&A0*XC2~K_7>;kLvIU zN^V!Nn44$SPM%%*2a5oaG+1C#NP1Y$wCbL%wE4^8W9{l=S@K=ZKV-29x4V5Q$T@SG zz62FLQi4>B#abG&$3 zVD!dd>^*qgDgMJ}htm-V7Y8}F8Ww{P!s?j6m9H>#Bb|@$nV3oc(gmTjnMddg=-+D8 zHx^|Xrj=C^u$ueFcld+SBcWTzoJX@9Pj!@ED4qxa*?6hGH3zfMhm3n2&9AIA%}`D> zL0_c)12FYTlWY6Q3AY0Y%LZU8#!q`gbR<6G7K!3#v%Q+1rS1O_HH@x?z;0K+f9 zZ=9OydZ<0w)TLf(Q%2ffMY>+T#%3_;rrW!2rhq^aAWcxBLn*C)D8Jtfp2CN z0{#Bf<1D0{H)}UG`vOT$cRwFl-2|1!Tq6vPkMn{p#PE*>Y{Id==SRe0(C@A*GJ&p%TV! z-To%$tFYZw+hp2|F7YuOqSwqQU|;?eOfHmwAr~NjjU@RA2#!64n1X%nQOF15O67 zQzR3_@d&*x!Lrh?YAMBVRy#@SgtR*3ht|k__7yz8_^AA7*RJ)OmAd2x0{_m7`r!NC zz{09m$Z%Eb?!o@umyYeS<_cA)b|*d`AFU`6-G1Zt#CPz6=7pPLA)&-fzvXgk24<`G zb)>of;&hi{CV&fz=!)kONIAUXj`u;JnKS|dBtG2nZFDZY5h^^rXCs0ju9ER%%_Qz| zEc8NbIp)oYJKg#C8zYV#UILDq^blxNa`3;CgavH~ITGVe`Q5z@4i^OkUB|>tbz3j- zdYGJ}P2eTP`xrXcW|Av~F&G=GwfR<%$~ENr82f7fnVsKkQVVxQVU5!tzPskPRmNSa zj3!;*gtm2;zegxCF+IE+9covDx17cTK~HnXfxcI=^O?+9fV5k11#BvVnDZBDK^OID zI*Ixp6k$E0dT^CiCN_cv@uylK9HS&gZ@r;>>Z~qGg!)L>ly~g>lyjxNG+b58QUG6o zi6@||fzZ6mNjE(LdUECg0Oa{Xy}fz|yN^I458c0=nK6K)ut&n&!Hn-u#_*-?-)=^@ zes{AmSak%$<$nNhbQVYU9qq{4$vb{{(D)eRq}%`(fsjz!Haz5U1@v4;#W@?;4kkg` z>u6cy-8`-O!nO>OW{fq{GATX#2={Z=eZAl1#?Kv!7*wP-_Sd?z` zicFNH_5Ozn=Xd4$N&{i5XKY5nGUCLRsqkq! zdU6OGe-Sx6eQutBI8mR{6mpTKg}WiHE2nwfMZB#`4A`0#0LJ;%xY5MUia1eLn%bQ}{x1d5CGq`fBo>&Yxmi`rI{uAK12b{c$sImF7 znEhl2PZJr8xT&aKToaJaMSPMzSoUOOXfiw;E+CPX)R^+O$sg@fl_wFZV_)WM!+hEF z%)8q?4A9YlcaRv{nl|LXo;`#=Krge&S_0U+rtaiL)ingmXHjb(=2(1bY>Y5r77koE zeU!s5G0TVMAI2SPb@QH^So0c+e43wNSHg1k<1!6-RdAVQFJ5a=P#(BGel(wLYC8nX zmp}M~EiVsR$|!5`{!E!Ut~EvV;o3L|uCf(d(Ns)F&*vtSTxo1<@J0^(OvUakA-f}? zLkj+C)O9?1)~F9N<(EqOcK)nma6JV4ELYuqTv&RX-sO5ME9;RS*)iwj;Ec>bV$i=W zAk+0422{8N5@N(m#y1&(>r8gFCMful*XNd|IwP87T!&fhT6i$k&*Q3^l_>qw)K>% zy_a)HYBn(MsLKV_lX&}IhvT866%scae3D-{71ATu3JLf10wIW#CsseUIo$xCLgH9x zNGcQ6$4F8oBv%4MVW6o*GD0*}g9ON@fFA>EY|zyppdR&~SXjjIIOU!n*el{i@cCT2 zX$5d0+nq9P*-bGl7j;+V2epbITLtMgH3#|tExuuyi>HdM}17hAcsSUS)DVo-3_k|&Z6r^A$b*&#D&&qzP4;wUW1GRDQ z18A%sn8~+8l_eq{quuM=JQX%53T){3Lollr5Jm$I7cow)gV8ohm zm?rmDL=neA+Q;aw-{e=HzG|(>&gIAq;CV==&lgP$7liCWz13@MdTNBeSF@#>@7)bv znu4ofh1L;>#SFHndO6w*`knUoS`yJd)SRI|DJUoZ8AS%59Cu#vf*bT|8EG#Uq6}8< zy?AGK&zI3jx)|4T8S>oo&*2%jOyOJA zg`GJb0(#XSrY>Vwyn2f)Vy~)=IPqk}xqsRZyB-Nk`ol+XE?{0Y%)g?!P;!ztgy+RTf+hTDBptT-d$o7MFT zFsmMa{*cvmOHK;kZXQi&_43fSVWYG-5r({q>%93VtO4IF_Le4>1;^fr6FSX!W)9qe zP9M%+cdrfu(FAEz+q$o39MWR)i&m;>*Yt!>EknncI7QIK%qJPXr9=wUAQg0Z41l@# ziuAT?G>%PbiNqzOnItzm*y9G(Q#82(d4)*te;DuJ zwSn!x(aCOKiZO9yTIuvynnF)RLqf@{n_akjOZBhO_r@v6vts96(^ef_nn7=!@P$5! zsK{s#b1d7E?X~3MUvr5LwC-IR?;NhUi-h{%^fgt*H&=x; z00KvOmyiBE4%RHp`;mj)kNR4r!>X6{<4{Rd7?VbVXf9VmIkU#rasw}g?(=gz72=rA@&vs69UtQ z0-0OwJ9rjZQEsiT7M*E|R1EUb)TxfvC_}^@!3n8F`?f^J32nIiJq=e;(g6{s9*^zqyGI3rjBLt3R)- z`FX&?VO6~netdiKCUJg%_h_*R_qr`u2*1C73mqq+OV@SMwTP8=`$Bz#S#$?BsspX1 zu#5)@6Di>o>_zV8Z76{`0{8Z5ml^(=sGr{^U!O6%Hia-TzWLG6vr8;ib1r82$!8rH z2_(n9FW0Al8gCf2A%^ur7ixCPd*Fo_@(I zGqKGv?(X({3-lLal4>B>I$EEbk8!`BiERYlN^WMkGF zYjN_*%kHxBmuo2(r5{fsdBgPM*DSio3oQNpG(W*YL?)i;Cd@9O5HH}mv!9t^POC37 zzCAX9G2$2Cm;Pr8GXP`XLn~GqP0xlIauq*;NYeUk$>iy=Ljjp_7Kwnor1NG_e-`p& zx!9~RE}9Gs^Q~JtPTi8-?P76`?FIC8Ot?qM4d$(>B+}Zo#r{Bo0i`-7!U}2b!aofc7bz=k|LBAPFkFkIr0}GG<8}d$de#KGw_ISUw z7^&~9?;oX(toe;>73{77r2n#Fg8_c2u_(ddj!Zo|_-Q(Y4@NR!yKff%7SGN%8f9hXI_|p3g^no~29_o~X zSKgO7w(1IwmnSG~rtnsGN^+dJy|y}w=B4q>S%q&ix$r71jY#=3(~K5k*k(MsVb<2r z{jHGbN!xPVr6qA?QjAn)=7427D(}-d5;#^>^7ER9^s;|tq9$6mS!%OIb(s-Ye`?`{ zne+A4o&C=oehOo+J@aD@{b9*$wd?aaho1=tTAREOve8ti#nNtesKn+*POceUIi?8g zgt&#`CE!{DSmyp*5I@{TA7~ung1Uc!tJaAJv|$NqKeTq}MGl1{3&*ajE^t1@<)0F0 z;)b_x{Ve%x2WKHT?g|~r(j-o4_hN{6SSDTJt!Td;IA8BTf57CQ!)h_tu@rZify&m> zW|`9xJuk5Ua6N_HyX$g`PlEUbF2)4JG6|;!o_C($MN`YM<_20DlaGFa6F|iS#}A7{ z8t|Gz0_Cxt0!l4lf9;Kd)K3huRKyx)$Mo5aDe7Kh0)fO6Ag~b?C-}f10j3g08>^)5 zP#y@72yLWUeYHbKXcE@JGe3b`jQbL>c2%c5=<05giHUg}!&MAjcFWDXlFx5HfY+PJ zf)}Ne5eO<&NmPWeLGe*;I0IO4Ab{^IsIqM%cyXo(O?N8X&$#Vccd|wn@N2naPh}T;rK>aUm1AN2yQk8&6gQE zS_Bi|vfn%(kYT~}>T^OKl$~1bt;~xtrSj9y9+`)00>_nM?M!&37J`7G4fgE=rg%MW zmjeq#W(Jq*u6coOeik5*$Kn%3kP+ULl$*6Sk)J303XUcqzU^Hwe*McdXog~-U*z?c-7>4NfD2AYXHKSS6>Jl$0l|k$QQFAW|SyxH`96aG=J# zzp6?5_&v6}>O(l>#T;EX26zEjY~YA0?H1}o9y7QrNMtC*P zz`%eXs_|k@6p*!fA1Vthzid#-ZF*|jve%#f^Y6MGE^mo+HyF%n@%4h*Fc|77Ud`y& z51DJH%_BPos-boyh)}7laW@KssjWrUY~cIU2vE22C@pf6+x($@i6LUiJCnbyXpfnf zEu`U;fv~0DsNpik#{EBKK^HndVTS6TG#%CvEE@+i@F$D}dkouu$<}B95{Z)5n$(Z% zFn=Z~{j_&WveYpS3O)!h3mXyZD*S_rWtc)%Nhk`)0VPo@HgV%;FG(kml5mwjt^UKTIPjMK}JF1V~ir+99B>v5MBZ*?b`^ceH zw=9JgCrmgdB+1}mI_B5|p^t?}v&FXmcF+IQp*kM(>bJ+Z%Z-9>)m+-FPHzScCr;fPUPk zD^_^auZ~dBdh-f4LUj^^SIgt;vw*CjZ7e%kFs@0dcg*0lYv*e1FCt{1K?knhO2lq` z6`Z?iMo(Li_~E`qW0O)RxD?JBM*L$m@L(-0IFidxg<9wX1*L6C-Jog4t7k{ts5R(p zwvON`W|uuWmh=yS(g*fRTeTT|yRCB%np*xq8{}%!g-o5vvTL5w;+YAxI^dOMZf@*_ zwuEI5NaKYsO&mKyVqSRJPEwE+d7Wpg< zZIXxUHJ|5JRp@7@)UZ7nWFcm5gm{8!RVxSQ%Pvod7v&8tEf$V$ z@V??BAd8rP%d&fD^>#kGIexjMqD38Mx6VwVgJ*9ESlKq0Y$HWo1SAvPjX%ym6+O{l zBJ)^(mcN%!0HwTOHOMg-Q@tWgoF9Pq`A(hQ<`WTHKNvjI2tIM0Zx`>Wk4gs_KhvfV z3wcz1{Oh%_{VBENNYa4vg=P28W*c1@%>=jzkGVg;GFZ6)F7b+}Bnv|4a;_|r)W|q) z=e;uzzJi%7zR0X{oGfVa+ElxRus&iI^pWd8-VgYdK%{xH8GA(QkN&*YD!D9Thqrw6T7X zO1FCFRW^9@)%AD(pJ_B$!0@%<`GuYvy1e4mx<$B)A!1xM}10hvj# zgD#epT3tvIt= z{t~c_$8x00358~xnT761a@ar@!SHACT|E4GHN9eFOvKm&(fj&mtcl3yg(fStG3g8y z)ZsT4G$$)(OJ)F3o>yD{zPCbElCY4 zt4Q)>l~`SpSev_1*}18~1T!1UCzN#u@~MeTSEE-Em$dICe4EXH-nvFS!yK!VR^{4v zz7!{_XgHhTCnom$2z_WS9L)7l5y6BcN3E;vcr$_*UH?|%WY+Cs&fJY- z>8xu`%UN;B6a)ox{uNA;zq7gB_!A1x80z9dX}Lu~ar3}B9NelNl1X0bjQ6J;y+@h3 zvVbPxtewlUr9Tsh(XcYwWl9WN<&OUx&CCjF#pzNbc=rxcpCLo{qkMb%FUuJ|qDg63 zI3TIvKVeZ=7=f4|YGpv(1{q;2I_Yb?v;ck>5-~4@b^f2WyGLvVYrsiV?Mo=vLt+1l zJCyzdAVgyBj6V&c2x--~8m{%186pqnf^OM22Fu>Y|-6U z8JKsW`5vvu$f%i#S-!g0*s9~;UHs$ui3g(f55j1lhd+GhZa10BOni5--)zF(g6XO` z*X5e43dw$$(N%~38ehCXLY!Doh#u5_{>Zh20|tn2$t6`(#zcpMjzn8v9>x3WVJw=5 z5gyT(17J)K(F`Z?H;GdfeZpA=cIcP)z-9`O{(D+wc^PYQ0^7v8tOL-J3Uu`cVNgdF ziiEO+#T90*sUnFl=*lwDMId=KK}7CTE1%6Ke&Bws9qdCF!Cb6E$lsF=U+GnyRVJaf z+Lr8}@0g0aZ0o-jz=+bov!O&Z#9d72%o&;;@;dxeM{L8Iyk{zFm8SJ{<)%Vq=+rC# zJFqmC{DE@P#3hXdR;As=W?>siFp;~_Dp3=>`K+Aic)#5x%Q!DvTrxm;W@EfzcAbiz zJCmqFF=EL3!FOg3!0AMLbe(15UG>gIq(NrR3J%I9%s!+AEzy-&AjMo4k2H=A>s7i0^>q~3{^8h3yqHjhf9+L9Q=50&)b#YLKiCS2!QAB)kWj8LoCMIT)wmSVl zRVIs(ZA+yxZhu>wdoeXB*Z5j;Jmbe-AMb#F?zyyp~@f=-kiXQsc?OC)w*{C=?h z{E+H6rotK`6RT~L3h||g`S#PVB!o4a{xJqz;a0Bv5 z|J`0)WXxbLapnGv$*jFTxPFs&?b(9f|AeHXOfa4ubeiB~OH#!6@xRBGKW08^*aGJ4 zMXGH&^H^vQxx|Ppk{A|bl82P$cZpKN->Qv_kXFt%Kl-B2j+l8?iHvHT;FSPG^~I6o z7tWVTI2|MKG*}C()R6SDaAC|fyGX-LnTAtKc;4_In1{DXb%Z3?SH5qTOF$+NBkdTO z{$3bn`@q*|^cu_A?p6@mhvrLxAa%X}v_LCsOO#-mO?36?&&V4l?4Ulf4EK%f4opMOxkvA}`@(H7k|`Q2fSW1=<& z5*s*%Uf-Cmdw(yDxix?idT6@;h)ViwiGP}a$KP;)XSf${tV^nPp62GMnp<;`KVfxe z8c_bS%o{)Q342)3E`k5Z(OiG_>pT(}U5C2k^T9T9Bu zfAEGT<;@UHSMt>~>bs~zh>?MqeH|+~1bjx=fbvMMnEq?k9?-h)brjnRX{>J8u?LV0 zRyCN=v-{S`vaWdfwDD=zp&>>fsS!!iOUVLs+giK0lIFobR8AF~;gl>-Z>G2%GjD;U zncK2S?{jH-lqN7`A$hy8jfom&;iAA#R*-^VVt_jCk>_;g0l?5VX&^+1+~YX}?+P~> ze}=9Oud1c3`*a=8*oeGtLk$whLUjhxuOxazTaXR4VpT63yziBEXi!qT+6GG+PwoQ-BFa%$XI%j(G+& zvNanlJSgst);jy4(z{=!*5Rxd1=v^(PIJ5uvehuC6bO>;=2gY}aj%GwnI1tyvB(f9 z7~7&D;vA(~6iH>A#7D#5nw$`QZp9VS?NYjnS8SfCo%Li@X}`up4Q+sC+_Q0O&dX|0 zV`S<)Gi*sj^K^C1NNm?+4D9E8hd>y0c<>yCr8*fOa+cl`pEJ^H%;68(}%_`u- zPyl<3he3nqTa?f#OX}NWZ#F%4CXLj|_A#%2B=xUbx$7!@^bnYrxJRIl5$4qI^942P zENx*NpjRc6ExGvPHwtBpJPoihqjwz~L_Zb4In4=e(}PZbk-?-IG9)*z7wFLcGhDsa ztyvbhw&nYX1V7W!BYi+Rn67Tf!rHI?o`Sf^_V0lWHccq6GOFL-4>g|ur0l-Rx_Siy zl66wqS*olu6H6FOZil@LyNd>!1yADmj`7mI0W?R;qre9E0v?p*@B3-O@mXv|WJkeO z<-NNND4HR#C$=j_hP;~)-}Mo$g?o*bhv%6tiGpHpN~OkO+?8*IH9Q^dTA)_Q&=*H1 zMJl(q5(}6*i9X;1P>~qhnY{XJB93d+hDt{i>0BIQ1r~Qp?n4TaDf`{9{H`tgHwWX<45f$ z#8=;K>x39QgYEtnP#IVYGjPumqv`N@Ai9d)BeaaCHI`~Acn4eJ=Vq@`o8m0RiSsDk1>fiK=$o)gea5>^#Pm=N}EHowU<0nWP0qIsd#_MLdPNIBpTYgl zKlgVC63*T$$!070XKM3WF7<2uu9dt~GHw+hj{dYA=58~HBgcoAJ2MS~9&`uU`J?{H zDsOSVY-ANHz4@<0qeOaQx2xCJPB{VyiA{LV=H-CrUJu|Hy+7y{@%CsuYKytPT>n|t zhMD_2!1{B2_|FRaD1M4Nub%m#<8(}%>ggN%gXVR}fwD7vMlYi3+?;TUm)i}K$53P__!ur@v4MC3K-_wL>L1d|RjT%%_*b@lpPKdW{EV}# zdWuroDT{H$rRsL|U)eeMesNb&XLXuBpqRdK;$RSjZ_fU-5`@np`^BRwRA}_QZfCm@ z!*zD)HplVnC*^?~qJ2I~5;X4kH5gPX$WV{Qi0CA!x3NkB{{2zFOV)iT#!fgTp;jGh zJ=e2e1OK&a;g)6L)E_}Y`E8Zdt+qy4_;kAf6Wx{Qs3}otdM?&+^svlCo>x z13n#hVR$YLZA5EFKAyR^MwZa@Dqw?{Ihw0nFr>-_ITZaf(SAYDlS=UH7#MUWU7Myr z0u>W}(5mLqsWKK5O7Uw-nN+BX>Jh*2lz<36Y1h zg5lTy%{8*w8Rh+h@U#}4i85tB%?3cVXVg-R_K5#672Nnfkp@1oT<+Au5Yb32G~!@v zoeq`wYKYr}Po5QBInf!+v~NF*8=n-S4sdeS3K%gotrN4hFM&l;DoW5;XdVm;0*LN2 z?!VxC1w(vvFW;IA0?AT5E7|e+3fU*OdpGtgOV2l5|I0*?j%#AZ`qWro(GcCfEj$H- zH|;xn<4HHRTIt~2N&@2a0bP7Wg(E>bKQDP}sM`w_pwYl<;Hp5v8@oScMYSI#Shogz zjK5$af5Lfw{@V(GMNP(O=V{-BLfiod!T%g6dt|0p9CCN3@g9x9i52;%03M^K!*U1g zKa)#?8YsI8-YLlhw>G=(PiVLlMJRujNXs$3Yr=2(`ZW}_$N0gn-6$w!9pH>S zG!Z)osox%3o_g(Ik1AhD{;3A<@vkPvgLm+THZGFp=5vn6cqifx?;m|XBOWe?jscKKsY8zrbVrh1|el<{FHaoDY-3sAUS6Xe*x_jBprA9 z0ara3YK)>MC$9DYjz#uiX4b7$$3}Fvilm=G|JEw3d`@J|eTLq<_3xF`A@K*$asAh} z-8vSDid&Mk?PV^WFT^hJprwz?o5LaMS@3tFiSl-}ho6wn>#i0*`cXVX21(K|fsVEI zMjildL!YtS=A-}b<+n^9vt9LxC-0us(1#07*%H*-y{^kqGzbB01J;{Qd%k=524meM z#HpBIz-3S@>4qE09J?U_|KgOM*`PQ^!vfYJ0|MxgXwxDDu|;OB86Eo-`gGTLHqrtC#|mx_d&^ ztIe6kK%Ib{b9QF@5-a?$O?Zx?*BsypW(5~&Je$>&HMD7UM>4>|GDL>7Iq~eA zNhoa5&69B{T(*BY9Ez-7#)zp?%tJcsR~~lo(4~avA!6GXXF$xuhMUJ_a-CKh5sOcn z4;(D&tQBmR(&Ca4NM=lWlv+Unp}YPaV?MP%bWB)PK43v$iv|zX zYWIaSOwI4LW6b*H?h5_lm}4iE40s9L`QJKy;nnh2+6VwO`0-Z@L;7jrKp24VwvXAV zA_`7plg3%WTW_3q>d|Axp9MFy1at)Z8D~G)e@(|!9q}%fZ!dFD4XSP=d0GSorm421 z9bZo%>C&6)_yQtlB-OQDZ}gYFS;?B3&XJzDZitgKV_eDc_I172myn4dR$GLUvI}Fh2w+UfwL=SD1ck3tRM~0dNaog=yuRl z!&4jvb9;5VLhjnVGg|D6O>RCCQc#2GT*t%#h>Hf5**v?vaAjfFoAAr!9M`rFSo1%F z+`*HW$RuewCcZvC#F>r? znk?#3og*vUi6GIgt-8z*+>4)dCi$sUGMKbw+0dp)Clqw+_D*SjfsWA&k@)xQM5jv0 zff<6x;l@}EZ`pu_A9Hl`eNQmT%#VqUDk-|@HUzB5&duMHiJw6g<6Y-|Y%nAcs;&Fm9oz=lTzJ z^hu6Z#r8Pe;&ig=mf@1goeohON2guF|-*S)GG(+)aXz3p_~GZE;=B_ys=7^y`($Jb@7m~wN{p7nyb1e{GR;`<+P2xV zMM+_LD`7^Z(A^Kdp%K@MHJpfPfUS!Wf0)MT7jdI&RCLR(p*AZbe=`7_jsk*#!|Y}c zO4kfMTCPR~TxJ*9)lZxFi&;d0JY-L^Z2jK@80LdPe*dl0oF1v!u4m7D?%qiaH)0rP z%43*i3=vCuAm(@N^3rL-OiFTCT-&L5f~B4s-!4az^vH1!kP(OP-+@MmWJQQ^gF&wagpw3^S`g=j$cv zY7Td8?Qs$@aWYwag{-lJGXF`^kwN(=TdcwpMV&!OnUt53vpkm;Te|QR0YYUzg!B$2 zp)wgu#EceK!MC3EDPoxUa6y}E&NcJ}7oVpEri~138l!2KBF_5;2hnq7VP$2hI_pVT zqv;pP#3x4R^E%nUhyj|{-O1j59Rri9?bwhAosc! z4;BgP6RZeNqAMO6HF3#0mbMXhDd`H)2Sge1p(y#11Z|Q^Dg2)R2hAS0u{5>CJ<+fD zWQGO_ROyjRpUispE0)lvD)H5ah~Na8#GBjunHf{c>U1cyfc}852lXjG za3FC_)m`m_I0~-d&UT6a;5renJ7oU(V;kKzm+7U9M-kmN49Y~Zi3*0~>fNFaOHicK}`>4ccgAz(Uzw<1>_->Mz5$uqwbnqPuF8*J$KYLgL3<3rbyt z`$AePr(n7$lr&MU9xp6&PINdAeCjse|2tE#(S{MaiaTD3K-m#$|Hd%4jpzGX;XnP} zEWX@8DXvi{b&N&Eypjq>W9dDHBXQokhnUiZVZ#~zZ>$lIV8C>B(>f0Q+Q?(57}*I- z<4^fP#1J1y*F%@ukMoQChzN-B05ZRldZstL`N5GWab*<)d_|jm^lBiKXx5N41k9@) zBW*uNV&m5`b01lUY=q;u{%PE(e)zy>lgKK$tIL8QCDq#k~k+Ol7p?<)NFDh znV_})w@k08jLIVEsjVjnQ4r!c>|~dFIJT{WfK4{WE`d5}$ROn%=TFCb%9Sd1&Xy7B zod*w;-)-hcn||xCnp>Cg=|)z@R=Zph{M?tvCki1Yyt%_ozV?qJm}DEsUk65}bkASj za?^@4$T??Pp40gr?YSaZXHJ&<1etEn`c#L8RK)2ZU8U83*8yhWz70Jwd1VD?{~-v6 zzmL&yaGNx5dpaPQ4n_n4S1hKvREXVtwis>#Gd|5+Z{D7Z+|%w4=||{TbK`aoVSi)f zivfWcG@}_j1Vi;9TORw`Gn0zwj-DA?$8So^y)bmY5XEROe@SqJXF&l~ILPY8z}L{m zNs6@PR#gHS1{c{Qc13Gd16#r9C!|1g9b9wnoJF@^cV;fEIZ6) zF{Ke8MOF_i8($hmCX`t0Fo{F0-%UU8o&AL~OEc80KJrlSYl72#T7Sl@K}0hh*8OvZ zA&t$&7#<{i#dYxD$Z-yq-$q|mOLz8f!F?z_uU|V4QEnMc?M0sL_7X5jQ*g|!z1n5poy8czCD^!RuBtSEWm+V>w@INDF#8D$ z>q>+YUROtFj7K`jRF+N(uudb@Mf(E!H^T_M-)R9Tu?QpG#rRM&O`bfPkTXmlu%LC44Du@zNPOpYGbm*kv zWYT;A1R)cZ0;(c>fbFPyr)L)M4u4-*t-ctZhN1l^*}PoeWy-QB!iksN*U6d%iRwAO zs&e&HM}k|!^?bNYQkT!Qf59tusF#@;-IkTLrH~B9Q8sCjZxw-9+=8~4<8-^@kOQAU zBI(p@)gW+C8A&Cd2`TvbI~oD;Rij2^4H(}0t#9HLksNjtZqewK5t;uCgE0r65t23d z4`Il>J&BCmHkF?RxSt& zmj~EZcI#~c)@sXSaH!NOAM%KMidEMUfzJ*jS2i#P!&?FY!iQx~`p~zahMLeAbRb=3 zJ8URE-0Ns&Jin=6jv*v2YBKIQ9py$nC`f5TLgJed(9 zw05KV^Zm%)!03AU&g0EXH^4=z|C5}&lp7n&3JAC4yl;AV`xD4PX-YSY%t^pk>` z79v}!ifF?fnN8!X^L=u881iI!f5;hvjJR+uV1vTWHDlgG?}s#qN4E-0uP{d`EPm+2 z`BnhS!an2blzhE{t2~6#cP6oB2lJ$cA^|Jf><*>O`Tb5^FZKrb1AIIH{qb%0TJyDh znK6MjHJW4^5}`}X7%l9B&Xb}6VyBKV9p$*0wdqP8fd8Mws^VuzQSM0Pc#)rrNw(=E zjX_f(gBcuJ9J`f+Jw^$vxpEAD(8=2JzPl#?p2ulwKz_xJTt6Rn>6HYODcXc5s_uEG-g}%9)k{&{vXL6+!AQOhiuGCRU(X?HD$;z72p3LOR|O>Jn!V^3 z%iOH!N}x-)7avGV2FfbJ#r>?XczTq3?PP6E;%lN+8AR?1zQ0L~C~tKsRYJNv)EIfj zuQ@xYf!<1DOy4|ihUvnVWL|Rutm!`Jk62GDQKfLbWQXrN*-pJ(jT7)vlM&YkY|bXP zK|ip->A1~(f_xF%GcQF@8ZTEM(Sy>5zl|$r;@iom(t)MZ({`OTGsmCiUY*h2hc#!t zb9knPr=YF9B|kMLyx0tFsXloUxn?6Hjg!r$^3(r|_f~ph)^VtT-22jRvlR1=tNlMX zzBB{DI?SxB&~5Y);s7S{L zNMfAnY#nnN2@f5kY?|mI^c#q}&%V7#w}UCi zqUNovp77h9u->8rKb|EILV_Y+k;$`8?%A|QP@B`FSRZ_*jd+90f&gDbuIwB(7*%8S zI=NX38Njd-;euXUDh7^b7v!fg(F<^{@Jf*`IcaJKg><0>nCHLI<>d+Llo7~O5=3aq z<3T68F~&iqccU>Wasohf334e z_d1qxAsr8W11uav}FG6T=4?#ku>fV{Mc3%vyEWz`4KS zYZirSZ!9+jn0)~e{H}~KD-IxS1O;W^IzqpC2FsLp%xQMqLfb=ERn@$tZhbl({|QuEgxd*q-5+w#HU zxjk9Q#fAYN@lm_HfHHmy&)IM_wg(Q}#+836XmTmF{snjUw!H$eGD1%|>%rqiWJkhQ z!OSYbdCpBMnlwj^Zb#GS!4Mb zqOX_d1HDd!WVXRk`uQ(7CtjVVEWEqc`_K{{%38-(MmFhB(twk$QM&$NF}Hkq@>bWQ zd_{RDPM~d14LqgNTsy07dAejo&)5$E{fm3TwR;G?YB|qoG{+pk@=f6r#Q7$XBaQAb z6$z()T2J|>*Ub}QNJ{>po-UlXA(VOaIz?^bv5d1{nhXo*til&;qRe);H_G2rDwwK_Wu_l?QPoZ7%A8WYqpD zN3!&gKmGF!-rsrOEg?sy=Rl`@nn2rmmWCCLf-SQm(hCeIv<~RV^|_qn{9caMxRgNs zRQC(gvQ= z*fx4!*<-oH_F$Vf)a1uG=w)FTkdR~B%J)NNy4?jwAg=5yVdCsDbn^hRZw>a0uqhQg zL*raaxebZ6*5Ce2ogY9vcI;m7G{f7G`maVKn|_ovz3PW@;8I3Cer$9%-EAX{9ORY* zmUo1+?vhAMVbGs0Ee6+7oVRVjGjma{!4tI~{~3Ab*=Zh&Z@p(Ye>HMJSa7r|8wH?w z&((9@dtie!Jf-1a^YEnt+2Vdy(w^AztKWw@EC*fUT%}?@Q0n|S!+-z*v&T_8WRKZU zpo&Ocb)?)?;|Kw=4W2wlv81L4tx{qOu-&{C2-rTHoM7nk$y!x$Ycx(;Ck*hkpsY*l$ucpJ- zk7Dh2V(EW%%Ip9xw{9MH#Ek4@w>)JML3lcD^K%HBMt znkI28&tEC^5+)7#z_4z=$4TN683zfk#lc!cpekbBPU!w|R7%+PuWOBWJ5b*cS4B%0o1!HLs)Usa2RXXW;a(iEkV@eEmv4`iBJA-?urqx%bpTJTbnQ&eA*Ip7HTb zqO6(Uw$l3n9*E4VEGpO{m>NhIPssyh)Mjm(M^x_wML5Ihzp87?^N3vZg5cU!iQ!HLLWgU3Y(f zR05L_ztek95$T^Fzyz8u%hh-%#L+nw*;PLw$Kc@Zl0kD07?}nO6SF#5oG#(IRC?}E zd8Nf$mmx)$;^P)-Y#dkOQuF44yZ!(oD_CT?W0nXAo#WPuou7-zYWXLetFQmI9e?Xw zxSWx3h4~RIg>4|Y_7UPo9I@&6?s?erqkOeAw!;aqBT45DrYgnS_Js{s!!Mh=FnTSp z=0l#ii3D78gNHVFir>5$sutNQ1fXH8F6bOd5qD2%a1=!nT^Bi7+69o}@qcc8Pc&2n zX+Uix)ZV&M`Bawt^~USGR>4O^PT~S+5*o%^s~*l_MHf$QVmeHxW-9IZfJ=RP7zTNG z09m0`jArUrZbJ?>NE6cGxqlqC%D`NeER+lrd~zp% zSiI|pkXr_5S9~47C^uW{7xSlC!6Kr6jp>^uhuGrbC3=bDoIlZU798S}=0cK2OHvmpZXDf8(Jg=BPsC=fADOk4F)OJNk~pTW z9c^z|`Cn{(V_e<;|M$r@mX^KD)3UW}E}iTxd)c-Ymff<=W!r7pwY2Ng_xHbf-8+wS z>%7ieFFY|^Vl}5%m6`nheTEDwC10T&_K@GY7gLQOSS;>x>l>IM|6KsP(bumfhqbLV z0H@oQX~XA_sQ4pucNkw+-el2htKYzHjknD!!sT-|m4b z0J}7gBZQ}`qKlZuuii*ziG~`9bW$-`gX^ z>;cn`0Tpf)Kq%6RB@`7s+|V%6mS9geZ9}kVd<+~jTL!n_js*Rhb--ZF07#QdA%HEmZkCH*-*awzB(16oevG0+!Nog zJ=zbL*z6oN3)sokulMl+;wU3AT+6544eG=!qdc|tMki;b*$he_oJf;5b}%ta^1s(1 z^u_gT_j+jsQO}CF4*j;%F#IGL_v_Bw#7g*`r))B;TYP|-1u>k?-K^ZTr>vX())71; zKq`=ecmC-K5C-j4dgIxxL2aQ9E-^&a68Q5%H@hwfEkf6L2^k`7NkwM)w*TNLrG=H0 zKxq4%>KDt!U(%Kk0m3H|VqDYC|)f0ucVUSvQo9g>S%; z#L!-qYF5P(&F()Fv(mfiOse9LFmJGZ5lDoDADNtlkOUw;UR{Q^e%z3aBtz5Gzd4j&dMe#8z0J&fzd_Dyg{?1z)eR^6>&~HQg|8qLPsLTW( z=+Zu4Bmexl%{;vDr?Y8B^S-vS_A3gYCg=;;lyLyenq1u!mm-Kxu}+Fh^2!}X3dErN z^>ZE5u?z6D+3PF-jyo$jw*7Qac=NjDk+{Z9+l2E@fPLM~grVxp{xAC?ug|bvl7=Uz zb0Xu!{e{mXL#@r11YUBJhB)?Aw8U@9w`j1(izaSqSZxmHNA5#QjxT?z25@QJTm4OF zLUz{w9Zez~b6ZXQ4!D3s2KqL27))?g|Kt29q`6AJ$>}O9twg||Jhi!Q(b;I92*?Ou z#w8+Q?;UwF;R9mXOYIBAZ8(ll{DD;ND#|G(xKJhIRekk1VX1?a6Es zty*pUXh8tmwF?@@Om;uTH{XNKqI+cje0=mlXJo;pH2CdLf}4!nb329!Ajj+fW>_B zlJkz%>H8(sQA$p*=Q|sKOt{YAa%?nhEXI{GYsPBAwi(N-%W4UwH zQl}?;*+I>RPmXm3b#@^CYJ<(o?K}2fnbtV$&svKLZiz&lp4?0ycEosOsc-@LVrHNY z`doo7PfWMx)~rJ+QLBxjUje1tmRjOm;+=U<7@}WT!*t)DQH2J8{`WL+xdFlFf`V-< zu$g8Ac0cXQ2U%G1dV2$0pEb5ZnlRV@8allK)D9<71)|c>LX?|FEmTj?(WX1yeKi#_ zN)Ud1z$&KyD_E#AYks7G_3U{o2)`2*{pm6)o6M3#F?>|rt-8KujKO4VHn8tcx9J0C zPwB~{P?V~}&YsvsaTggVxujX@Qu)ig%V`LWYffaNrfVMNUtHxgMI&3ujBMA`k&;Rx zxGhDVaJGanG@dv)v^xP!R-m?sfXX%_1a((ULWx-RXDkrh^^MM)y5HxLQSjyMOvaM*{%KxkCb~7xEMe z^D|6<&I#7kJ|T|VO$->MKo2^A(4gP5+uFuXQD%!>t>wFYDLoWXg|;4T z+uQ+zJ)9hzqLXg-uUJwX7m93#`H;QQ>d%XS=w74aZEqk|k92&PhS+};06_(e7+@Sp zHlZ~ZV#0$|H;H|mlBwO=8gDYXx(yjuV-{)j_-;x1yi zIJ@@SAbYHB76b3xYF0OC>JO$~5{=#F#JB0)QF~$OM;cRxD#T#RIpo93BCM7_U+$X$ zjrAeSXpX3;8^gwrLvbnO0{@ARAUb_=W!l!g;63&Jq0fx%`=g%KA53u^{nzrIH!WQu z)r4F(^tUt6Ac|oXHK{1y^;qdoN*8G$@@Bx9x^m~~WSIg#L>SZM#FT0YUPmIL={VWwEMWu`NCM`~lhu}jq8 zzJW*H-`aVm@|~3UWmY2qO)-&!K);K9^t!4;?_m38yO3Rh58O)6|BEyaFypg>xZ!-} zonEkq^*=~86A6=D9?G_8dq=kvq7`h-K`sBWHTP!u2SLlOUD2(lOvgrCd1X2@TM{}~ zN}kK4*hj-7dkx_(6h0~v=8O(XukBpW1wc9=aK2SM&V!jT0iXXVa$|`j+8LSF#s)#+YF2w5$`#F%Zbw14yo9 zRmf47;bXc3=t`OGQr44V#&$<-ETU%hm>4trUpI!EmK8S=Xw*$UVnu_Kj9AGx z+OZtJ=ClJMqd#pXkpPB=@0)^^dr(>&guwe(nLicOgH(%WkrKkOG>tZ}km({t5JWD5{3c4|T zXp}{MoTHqTcR__bmCHN07?au%6ZVI*Z~a$qGVB+K{BRA#iM&nQ#e#SsXx3xQkmvjb zp6uCKuz-Q%2mm;`N>l@;vw{$0%OmZV%eJ+*sYh8fT5xymj@ZT5ymF-Hn=0b{W9*Qj zZM?uh#^au1RP@`AHwius1QT8>zbmP~`I|bf%Qr?Rs;CLf_>iQ`x7#m#rL!)c4J3#v zv&HUMv`tVifrXk*mSOF>4x*{2saxKn+Z7jw0j!NEoZq_!m5xc08w+Cjj}elTT_fD+ ztqQ0LR_7B$*c9UNlLGu_YoUlcKoTe$kOcawaN}f1#;8Ui@W0^LY19J$9?e5ZLsQq; z#FLZ_k0|@+`w!ExV^&gqc|`Ff8UoNb#RhL5PFBKPtg_ zZLu$-B|bh(t3reJe%5kWvrviyH*t|rhrxjI0yioO)!32kfyGXw=?4O%O};N66WdQz zTsWdmTQwWo=wn;Uftdlce8!s%iG+}0%7|lx2wj-3M?9F+i^SajgZ{&%z!|g{UUS<( zqf1e0^{FZ9T4FBklT-}h7wSr_dus*Bzu}9#Sp7F>X8?TBr4z5%5t5T~<98H!tI#jM z7Wm~Y@c8~_ImbRz_I}GX>dt7!x+ZI4c|K%PA zQRyI%$_x*~?Q7PsJaEti(5try)lxtYamoAczY3e_cCWue0k%T2?As#`bi}k^D`TH6BKTnx{iVOxf26m{t>##Cn(QvVRrSH^lm~ z;)lP=N|(_2?#%li`=A+987In--NU#4*Z>TUL4Q2pbfeWcE!)JSiIXJd;Zs&=825Ta z-T%|6f`d@d!KPn$hh2XK7y;=UN+Ab7D%xltE$_@M9cnu98cT`D&M54@?vW%L;5;j6 zDCPpRFt!B5As3rW>Ij1-m#<_J+Z=#TpJGRR?2hCn>hefo{ZM99R72yc_xh1!~|KY(FZr)+L zxe7=vaexn!N=Q07PfdgATOM02b)j3+le@I-!q#@0uB1gD`-3VaXp)H}nDB$Ec8-6V z)!U4=9;Yh-@jbx3HOztd6gD{Cw?=p&lChM|Z@~1xDhr&A{$c?gddy=8tX*q&kQe=k zKUuQG;FYj3B*|!OGWi%`yCOk7^I~0|2`+zZ^IM&Ey6ZPSi5fGAW%vY!Z@}w_sPgC@ttvS2rv(5DxZlq?UI~0Mvbwsg_$xP1hLn1AFrHk4tYo4umRKOlCP}P zW0S)h9E5*Ix6PT>2aTz*!nxQ!5~0Vwo4}a}YOQ2~0f8@=LCiGn6vI-rR<5i%G`vYM z%yqn372&!*AT>2eD&5rO1Z>O>)|()_$VcWe(O&q&aPz^*B&GCn2$YKMcGf2I0l^G* z5W?F9L#mu96vn^_HPPq92?xp=n^SplXQM4J`6td1v%N9q`m^EcKra{l?yrj`9k1c? zEI4mutA=cHbnF{C9Oyg53_fWik2P>H@v`PSLo8XfWI!oGS3n5f`jz zL#Msb@{jz#yXQe$p3DBkU}$L#2^f>=9`2e{eu=LtrA8!Z3W5*BZ;bb9jgP=Ydddj;5dNL9fF5dQD99)Hohx{CHkI}nZe)rw!}08aw06t>>1X1%lO z(XVTFTP5>E!|&#yhgIdI4ScKq1lyM6%xby zSi+Qe_ut}vKj!$MrN@WuNUiYG1xUnAIMV6}^|ZH_wI@v_c{`v@OY`eh32_x=r7@T> zp{($&0Lcf~6NZHPV5rl4AYfVBW>kQQYC(v+kE9ia_5|g7_W{a%(?debyw$J?V_~K& z*`;IWk4FkO4u&{^EFktlKzjCC?`md-h_w*6n6hEe#8~`gWU#(12Iw!M57Py#!59pg zpcEN@FPAmsLl9By-zV5kk6P{ZpI}keOTj$W;N?{@MC-PTMQB5-#{MZMpVrK?cNjg4 z5q!jF7YqoqsmYZyxE#pNa|1P`Oq(IHBq2!<*?++rZ8l$MtQRA;p?&s)_um@**#A=> zYD&}Gi_G?9WVDHLY2I*gWn;xW1A!FqN3v%~wV_W6-P;Wh+AH5axi6D-K!6_F6RhfB zF{X2x7ItL;xdZ^nBPUJN$&$s^8bD=^$tLDy9P2?Fqt}MIx0|!bTQKIeq?|qLSn99G z*GNte9@XyG^0t^@8;a4AJ)|T#?zH`$I}BCx!bW<`B3l^gpt7Gju4>69oh9}ePVMEj zxJeAfof5=`eA1I=oxyL=D>-_%y7NAP<$>mKt8?6J(awE^t@ zt6rY2J)1=Y5?KIx)B^y3()0GO_P~|rvL=ykl@S0H(8hQ_kv|RzkMjT%^YDF z9HYiEi)tW3mOw-;(hi_4A0QdHph_Ik3IFW&Ci1v3o8QI(3k~#lKR4tdA@FPHb)0^cza%-hge3l~>7M|nG9V3dz7%%%B-PuhxjVbK5f~#L zYrw9|Y2|Oo$Zlm5o#80LzWR7$QHuYcneC7mt>f3k9tx}j%M#K^1&dQ*K+Y$e3O|xE z`RKd41ro_+NxP~&8wQKVxCBLB4B95pZ+)C9^!Gf^{+&|DbY6ZVd!Pf4@YfO3@D0(? ztk3}+uVi9b6R{VD;)}zwvsUxSj110Z{zRVR1d%zceSkD`qtrg36NVC#lJs#@YUNrs zRcAl#p_lMkKiU)ID>-3v-D`S@x_HtY4$mNJ9?02+|Qg8c8!_XR5O`LUv>>msj4k0 zfxI+TfEEIjE=Bnu1PZA!$=i{3W!3>A4evUFsew?PO(SRVBZAFJxso-TnR z-s)AOP)sRu2=s*~@;;9vk5T3(l(HWbI(w3sABX?9XM2Tv3#3~)earLakA)T-ko=<4 zKpN;r4n|I^CnKj_UFRlWFx75H=fwn4W*QSJHbMs%OFK8I?a@+o13UiK^cx}73O|2XSW@*@b#~Xae zOxb_~#qGBDDGI{J_+QnIVJi?ciAQ7Ap{g*$L;@@$?y#}^;>$UH9L zJk@_CdbC62L(w|#s^V{Yv+gPuE!q%3p!lshJzeBq2rCcgbeVde9?B2ldARVZLbwaBvp;J9gha~R&;!GfIbymM4I z;}yv=-rp0i{F2Gwc5_~)=1)mY9i5xrbCEgL1O4`DJs28wZmp_Q;SvZe*ePp&zG{vI z(vHzDSdzlpQU>|?Q7RAW2kB`{Kj6Se=Pq#mDfndiEO~2$=Bg?~NXnC@P`iE(^xdKr zB2egJQ7I5>|GsZ72{_atv(MD*%ciF>oE%+cmRogDr?(Knar-s65Ty8O-! z6+`PgWAD1UDwuw^5?+6webrdF{EYlim=aRL4UQUJ!LgXg(C3l$^lCv-ey?EIVaO|% z2j2goB!B?@2$uKBm{kF&qj_y0C!#(=XxSF^$_*HEg9{l8V&$$uiu9VlA8Iyn zkeW(mzPVfY>W7bUb-y2{l)+cgn)jkuyY6#vLcUxHZ~N8z7xowVYiJVRniAJ|tEiGCa#s9_nf%vgPnrlJHs)?Dug$e=2%$D* z#o6N0q6B6T5`H0#*$%MEVbiL5f5Q#x*I@`{tyPriTd_7)Z^CQpWEovKC;4kL!)HD8y~%73cz z=PoG-EU7X!l~>k}l+!=<%;@@iXR)YUWdcZiUDFa$K!blL-l~E5!g5_c|G9-e!bn#z zK7($Gp_41|$LjRdmKeSIXQ)@X{NIa_c_v%$zqq9&-_i&bF;nEzF!oE}ZjtvJ$(ek} z2O^PqxhYu;!+IUk+kn`i#aK=fb^fE>RmC3o^Gq$*SjtxH>*BodH^f#6x!CsC)>c3O z?v!(looR^_a(Vj4@D;^xxAy~WZgX2x*3)S&CxshNA2|NP%R`gIiz~tb>zbHSVfpK$ z=|K`Nox*OSLkc2j)7s`-Ajf$zo?JO=iARUh-;vxwrdEwAJRgIJzo3!d z;eiIE&eT*o1PayFqo`i+8^O@*+N~M_fi6FRg2hG(k$zS;BK=%34u-5!MEHugwGb#I zJn!$DI3=>GLefihn4e$rfM^B&i#D*$?Yp+KIPUQ|wLy~mD23@kai*5ZD(}@xXf)q4 zod0lEu=gsG*Mi0|AqM9Jrf;2ufYDJRa8*qf^z2F^xBk&>@$|b;3zJ$@KJZO&NcCv(7B-nB|)s{lyHg<&kme& z1!gZL@>=5+UOq1mSes#WLKX{I^kZB}WT2OKDmK=8uk~vEMjtjdTUfTmHhz|<=d%nn-C7>+z ze4Dx((27c=fh{S#2X#xr*fG17y-%B3|<{IHNXWEHTU2J3sAKJ<_T=qSlK-I69lb;C)^v6A6jRc4}09PQVG`T1$lA*|i zoLs3Hz!F_xme{x`GhVIGU`i3s`&~6T9y%<_y-26>Xt;LF0S;PdDZ($AZ~Q>0&g3lM z*|yhw8z3~4n7a#Sj5gjl9XJf*p!C~m-=w%6jc_Q=Hlb6c^-B~_iiF5#do?AAX$(mQ zi?%4)Um->wubvC0@Y3>;7%ZtEd}0ghJUE*Oz#m*|7Yd}UispFY>zU+rh00yu+Cm`f zHK`*2_VmG_qDQXo!E)d_<&LKoMh?a{sSU?xr7h(7?*M;Npun{le_Pmw@mG+(*vJ*+ zy>2$D(`FyqdX*3%Bcax60siGHJq98HIDV?l*w%XhSlx&b@6B5xg1Fw1jE^?`ycNK@ zIze-y%pFOht?GVSes%PmayH7Qd0H(nD+ob&xS3pf7CFUWO#U|*#%axz&xam66r3W0 z>`VzVqg%jEAAoTo#GInr=6*T5`mp|q4_7Fc&jqV!bRQct{9*9iF#ol~T+*<-uY%>h zNXta1W?vzZBox6I*eG015?`&SpK0Kk{5x)s2^y`rW63!Nvl<0$-rKI7ZS|DlELs&v zh+m5q`UyY#98_jz;H80&kzY#@+udnF*lO@{l%H{Bjn|l5O~K>L5R}tXYa02sj_Q@f zR3XP-tU?LouEKwT1DF4-AdA(!OMI$mzowzhD zSAPoR;2(pE;n{_DFwuTl4JP{Mnk)ybt&6*hugvxw(a7JIBTq_0Jv%sV8%kl~Z=j!z z83bF(`~l?bfFq%MtIFwts^5?djh(l%03xo!c!^qS*D%aCs{m1CN6i23A1Vf#nq~}^ zyr6?dE7#Z}M)s^A5)6>e@i*ud4M~dj>b%u?I#yajj`op>%S-^=2OJpfE;69G{EkYCeVC|Jy z@9Nw1PhQZ5frHJvpRGreP`DQuJExOei&WKIP15E5oQ7F*n;o&yV}`5i$0PWg*{%)M z^oSXl7g*BHye1C7{`~o{`TRQvGV*rF0*49xTiu`_pcXq$~ByoYXXTr2G0ZCP&7w{mJXaL!zR z2-C?N0h^G_8P4q#W5rX6&t|gwdn4F%q92+h^PKVBNM&C|C!TFlaKVC2Jc!VuwGQvoQMSIorlj;^AOh2!78-sS*|K`UhO@)45=5>CN#KzcW9 z`RzW9ud5^4DtQZToRcx`C;hP~%3~Uv#{x8}?e%epgBQ~Z2X^g9clZt0)5-=%1H80N zHp}T$M9AoI4)L|`bRp4}|}z^zH=+qTV(${$T%Cc_q6lbq2As+oMsstno7`zRYBK#SUV1!<$t)dL+VODL9na# zjyChQx%+l*13VkIM!ha%GA%WSpG-fd0;>1fP5imaMxrP;#NKORvnz4qJd~N$mw}9A z`vc)Bxmt&C0dDV&N6dZ28z8uNax_pcFSpq}K+pT3S zYg90r5Ca7)A|7Sskf|A1PE;Mw#$szFfZpOoJetP^Fk7+8!pNv>TFNRWK%A#{YA!n2kp3=(@IZ; zhI)5=N&T^pu3?ovH?o26`a@`-Ezt|Nb=aG@)kn#?i2Zh^FxG**NN*x@3420R*jVPizaw{-{ zErN#_oi-zY@=I^_bN;+6zR&T z61KZqo!a9oi9y5oVY?-SIkPRe;3zG_cxg~7nFnzyw$nMTns0m+clp(2POG+9rJbPbx9N6@ZqV8L>x$!gpoD}E@CaZBH zymPlmVf2^6F%=FcU$qNrNMEJ3Z8`4D-hul0P#%PK034?m)1!pv86?DB3;CLcF~YJ7T9xp33N~9Wb%K1c-Kqv zE5-}zEmE)W2wj1?5_4YsP&k6eoC9I4)crKU08)bCd}R_yS>mCchfdKt)|eXTb)&xd zF0)(EslL^p*;VII~t`k(ZYKyp@@$8ot$=wfc5@37ujR zdAW-IH4C+i*W$04%sKLG-PF`+L>?}(B(Dh!K5NS~hw6cWF%T}^$~~96U~p~q(T9lr zTgszgu#F#R(87_eCD&ndXHmUc($wkun&LP6d z64S8(1n!y=gWT6( z2{Efaz49X*4V2Up(EbnIFb9Hv6G5xDHCBY55;Td!D$D-7t~gQs;%Y34?R=)d0_~;R z5X%c7s+4U;$#opdxJFHGV4sf`%{Ks{HQ$k18GxneOW@*Bu0z*0vuaUM9B(?nH|WT$ z@RMyVz@+^Xja}As5ZUl8aTko_HaB=jXf~Ep<%TMmkvy@MHZ$$SfWCX%@f*1Wtf;#_ zX3*`?KMgem;Iler5R@pUl!KgNQPic$VTfieZ$|UE3aH}4PVxK@<{_!s=-q&0!spWl z`fR~eMXH?3bk6uG4lqx<*+ZlB?B--Osnn6T6~g2e!AsgN2fc7050r5{Z>OY=PTl4} z@>JI>Ve&^T*0azM_;rBX@kBgJNKxY}F*j_+)Sgng&Dt*qiw{GAm_gXOcl^sqr}BB!dlDk71m=yu z6>|=(rHcGh@Om5P8yD6QD`JIXJ*y2UtO6=jZ_5RzUD`i(%`d~>ip|xLq83^>j`PpF z<<|({Z{2r8OzYJJ$uk0aJwdyl{e-1#Om!LFeIVmK9b}znYMLP}wuf^c=g&Z$`&IMvTOieHnfbLnb>e~R7xsj^ENx1*I{$L4 zIY@x*6vR_A()UD-?*9Uo1f8jNb)s|+%%2s~k0OH>e*Rk0V?f>`__s?nQLza^=vLAO zdL+Xb8J(;th~K%>LcCULi)_2v4Z9jYc&ZI}ZtOpC(*%k$dk#7S*Ep9gg2RjU`CDuJ zTNWa8>CtI)I;nfv`JplXi`$9_P!j~U`A>zW61A>h0xfoJ0somhY3B9n+4PhitkF4A z0eM?`1n?(BrZ9z;mB9oh%9Oi2<*$pkdoB|2()Kr#zI@wX`c)%pBc;o9aFB$beKDSW zuj~457B%fWB5sEBvpyNf?FKF4l`uULLq`m{6^X})s(@NHpLJOQ>fN{m6#8Li5&fv* z?XdxK&%5N?|?Nmn>R|;c{(VruNfyHlaw~goE4lKG$fqYzsq^f8 z(q%&IE&oQ|zOtyb>ZzAM%HGf>_2Q>}Y_n#guO?{K^6ET8=v{K>8Q! zv8|=6MQ2*s_ezGLbLt@fUw)*wopo7N$A|gb^6HE!?+d-8*FqON*my6f5uq^}O9pg8 znf?&yqk!UY+J!=Kpru6yE&+vfy))AilG#X&OrMHB@?n5`IXe^_m_$S+X%M z33P+}jSU7g_pf-4S574f5|PiOiVIQE)62x_+w?L^Uoj|n6|NX?%=o;{Q6Ae$`yq2< zSqz1~R$<{QsWHdrKQti=? zI>TXLS8tjx@pwr2-wp-iPW*nNYaj&TSJlU~AY9GBdrODD)3e;r*`!_E2pO-a5`r)- zK9yJMP2EY~KFwe6Y2?;e>o9~j6l^Rq5Rya_S>B|1^AheNna~~}(f|@4>YfskeIQAqk zRqI`DacJdHE#_I^1P{*W*KHoDWo>t=dFugyrLqC?v`O!f#ZYow@1R>B0ZOF#w$nST zt8~m7_P7P(kkcwd8%Yeu@r}(o_IVt^W8>KmgSKqBJc3WwTqflyA$IHM0keM+6PCZA zZZ>iy7C$ViBI1<3KXNivRMyL2F($_o$pcRuI(W(tNL2dLRU1|l=PAQztDfGl%hlRS zIw>|`sN7KCk5PP9Z|gYm4*K_*ov?{AFfeui1OH3;rUuiWu&YVg6#V(8`E!mUxo_kb zhlTH1rJ5psalAbDofzqw79jK(!7!^(6nzJUUcX>=6MiGFKyYk*6oeJkrbg_2zmg3c z6ZCFjs4QBQrDEDnSL9<8WjZVrYD2s)3K>7D4?%jz~Io$496e_leX|>!rmI^BN}ir?a+; z_@pBt8@(N0%gD`1`E(dU7AmO0pp*_YTAd8;dw^ctLESjhsQU4~DS-!g$98g~r~AQ) z)v9t19}LbDwN!2be^5OWLzdtYu>bkQ{P3a2m5TwiUip1Wmaz!jBmd>D8v?WNb7Gd(=UemeLv-7^HGF8Wy!ubsinftDAH@*d17^l$dK}^o@`IB|=C}C^ zr~Y8(!@NxVCjC3a#h$_%XsyocySp?O@Z7Aa41xkPn02rA2&%#^TnR zNrSCv%Fyz#+t_lJR!$=R;^jE(?NKXd$sk6Kxg!B>7{N{3?VF~)B~_>iS3?EfA|Op`co z+YbN%u0JeLQN$G^t(B}%(yr8cW`qS4#%X@-GtgdiT9EMH0H(?>tpM{l&z4@^Dmc93z;~p@W(7TLb0TB_nePlOOk2(CjF2kwny-f zh+(_Uwfdg>d2ilGkD}+_xdA$eU_3~fF@5s~a44m$8($deu7JnwtKaSpp z@4&PE`Za3A;F~-V#Uj%eU9u<^Ci>P|5zTLVz=M)4`&S+_!zH9+#w0u;SR8V?$53ig z?=j|@@i8V~$N+Fu60K(7xYk!|tbP|6rKdJVQzn>8XrW!#HDaCNM=Nl)QxZ&fs;j8N z+J6@TfrXE2>Ktma>9aX>H@Lre;uP0$E2GP{~`Gi*_vYaYve98NdhkY=P6l2eQD;Q?gRx(dwZ@QC^L@#CGwbWi9DvqJvm6k z)~3;edUtjvZET=vJWujqK=XP=IJkw3p{b)mM12yM&BD*KcKDRmty!g30u*nAymW|@ za^g@I1k(l0o>V3jz8t%CPd@K$a{2A*}yO zH5lTrm)Z)R#kItfqj5MCV}^>ItJ{U z5e%YJLgI*@_p5J`1aZM`BEI(UC$H+`z7a6f!K_? z-gb(6&P3mKOG&;0hwFcMq+gAvE2xe#)OU0kwsaVD%ufdEQJKz~PPnIIU-J3nSB5tt z{|grFVoutr=+f>niuP;_#f(TJ&XJ30qMA11%Ry!nj%ZBYc!R(94LmU+mv2#gt5x zRCzWU@gd6q5g2bF3~fK--xzYwlyUk31pY37hnhc4-*d>iQkn4fp^YZcOqz+Sz~#0y z3ll@8FY>V9jx@wkxw$s&%B=&3)&6&Cm&iYdP)wv*UCRucETx`5TBm zN%Nl56^$VU5o~f*rqo*wPxp7zLPrNt~% z>|cd8_S9yslNmh1ck^XDR8;G-Wpbv2Mz-!ecpJ-fWOf2LFd};x$*z`WVfvs}EpMRV zWcRReTwjd@X22kc_xr;%AT|?|R8FwL7lKBY`c~m&75Lsu40JK6S zFnFQ$#1aN3)t)|~)LWeQ+*tE--ZT)$o=W2-DHlq+9f|ygWjIlKQBtmIwsP9m^=JR+ z_@Ablgzj#`r%a=p7{##G$!@|+F>JB>m66lEVN_ubUKP(7 zfS*%3(k}aLPM@G_LdB#YC)ntqP$kNJ2)(heDH(R?>$v{utI!t0OddLxs=McAQ@YUXnH+s)y2&qd&u_G2@yZI!60Rz zv;@ChvOy#tnlQNYhBFCoxX+~CmCo#$rp!ym^)lc_*!R1ow;ATz9sH>@7ou}B;?WJX zs%id9XHaqY9wgFF5dg*Bzj?S+lq_y<;Z*&4-H~o+%ex@BZ&%x_`)Ls}Y4xp9J(6ae zIjEgZ8COIRmVzgL@x-%=a!U2z7={#+ ziq5}dtb1do-7s6+Utu(if1NScM_b>qr25PBBcy1guHYqzWaZM;z+yQ57b2&x*nbh~ zw8+%#%c}#+7bW@DpO1qa1$Fb00kk(XJ}i(b|M;?KOaRTdM~Q(?p2icu95R4xA(1s2 zvyZlO(vGaL!jkd$01CYr7XC)|ytO!F&G78Ocx#>sA)!~cu+Fe>^KTb}!`KN8#_qI` zeEA{`c`~r+44K?lxMuGtCWQPE-p!iAqBj21n_S^6$c&WAm=?OjPCgUnV+suHDw-~Q z%!1d9ZH{Fseh+NSsNpT6{gro7I(qkFxGzTOuCEFVD8m9GEOdHvx%`K~?$lurfEnoi zZmwDN&{4}17-;Q?36zPzl+26}=q9Qrei14ha12o*O;`t@Kva4>veUIYd*8mhr<+`z^%e#i)qC97q@C&5Fz`Kajsw?#j(=8p5?4R$$X$7Njo zR(ez+S_8jk(@`}H)PX|h#$nK%9lA=NjM;Ns*NNEK+e`+nLK>e)P>7W=uOM5uX#_y! zlT*t1o7B0DCq4YcuWnwv?8CYJt`@_g?;ojg{ze1?;lJ~HJW0z|e(*zU;-I9}`Gn~| zS_T&5Y<6V2yxHu+sXrm%vQBOyq4$Ix9Opi&AdQqo<6bb}xrLnGY{^KN{e|NFk@T-W(_ zzRm2(z4pHEd#zur`)*eeZ;5Pa$A_3V=A9f*=Nj)|$^MuH$p?;qipRnG2i$J(uWlxs zr%xART|p>EbUfzz>)gA1lu2;Wu*KDi+KBG2FpyQx7{y-MY8^&c)(wFR$V--E`8f9KemjMP6EJ>;LIxOiZy#wkE*}(5M)=Ok)U-c$~I3(Vp_c zl74)|9QRg5eh7AmevGi!$?fKSoA;zW=D&S%IeN-l79GFjc6qw`Js!fgUTo!jtYz#G5G`jZ_B$BerhRI&%GT48!VNAr3D0RPw~I}6Twiy+OX^$+ zW5DFvz>*F8;qjR|@%&Zu40i>jyah#97_oq4u0KxYW>p!>EPbDBC+%9@GKdFm%QA_1 zjWQ0H2~|<3)v#NDTm-!<-D`hhqoTU?fsGiDCd9uWY;a^9K>hZ^O)Gz_;2&3NHOS2f z1HK+eeI3T$Nco}p25$-HbX;H_?D8tN3N*8c{b}h)J3u;bMMN;2ooOc!$`iTA0d5`-K6*}Xhh%RJCVx1>BuAy#`y6WB)5PD;K@^= z7krm(Gz_v3u&8`f#^n>oUrvNv6VRqPSkqi>l&dM|T{kPeSymxSvk=g26S76$i4`t* zmUKthvi}c(r%0wl1ow(Dz2ktSx^1DA0+RKX&`0fF_z(8)H4S4USMOoMj1OI27yB`7M&Xuv* zKifo-tOq|-(`A2a!%cav5rki)-Js631?qP~MOT60c8I1K?p-KqMOw1~4(1&dsg%3? zdVii8nUDc%ZHn|Co9Ah0BrGQ0t`8IzHbXQ=;yCsO$i!CMM-+0E-!0)rd7g^o+P2#W z^)Ru?B{N!R1_gZxxVg&6E*};qHFq^iTu0&}R_4_5f*_*(>&-XDeT(8}@%LOg4~Zf7 zbIRA-gz8kc@w2gU-WZy#`w^05+~RmocP?dd!Topo`A#yABtrnwqSKZ^n{+Rl64&o) z<8+E3Ot$L~GLQk6@WCQ6mR_&a3FI{{6X$$Fm~;BIwLneX8+!K5iRcr~L9%JJ0Tj-{ z21UhQ#(%iKOeDqXW8FOO$W-Ue5hFj>S87=wQy8UxuyHd(HR=1q0Gz`pKr7{ z2-qe3yQpb$A8T%U`M_(CZxUIJqo!R7sViS_`R?S+m8<_+Aq@D;5@dR%0@mj`T)7H} zM44>opC%D4bE^R&B&t6KOnFBqYDjvL(<5SI@8dxShlYZseexN3{ZCRpOwhC>HPzzh zU=aMXb3-_U1vm_%fX8;WjNj76cXdtfADMy_V8*!KommB9}m`tPBDwh~T@c7E-=T@jhR3U= z3CYn>k3p!3UNUW_l0InBP?9hG;DqB6$N45e4$3uZ={cxK?%TPlqI9>{xc}KPL&n~Y z93C~CcBw=TjOMRlO4K4x;Js(~4nL;uh)W^5kHg61Ic%bYVc(!=f$MDU6lEs67xM~R z-C`U3KOT93esA3hyn-?T#;*?ewB8C=zC1Sm#IW4>#f&iON8*%OWzO@(`u^c5D^(^F zi@5XOn=)hIK8x1X^Ys?ROId8B(_SLQSAJ-8YJj{Q6zf{-yQ=1v)ETAx(}For7ElB$ z@`;_RMwAqq=869`>VX!Su(uIhQjoFw|6so}W6(=vMev`JLEBfO^)_TGZZ6_SS}_g{ z?jQX>5gv}xH!7b!(bZ3P?J;7d9$yRSpokPnYP#GvSHcPgbP*A(nJ%+!}A)i1dbhITt31H=6O;WpQN z*wm}X2M`OI#x1ME{Dztz98+=I(?7R6E}ua-dW+I}N+E1K*@MZi6axG4!AkIMlT+%# zjw0s#&iYor7lW3Q@kE@pzmNFntQ)74-=@_i`g*u{x1H8uE+1E(V# zA#30en%=TP4NK}t7`^)4*gR60X8zE!)d8Q2A$YdET;qFH+S%}|#Qy4&xNjUHR(;>( zhC-U(&%J)g*-bV&zqAk#n-+dxE+P-3;}TK1`dDGB1d&mTIJdn4_YH<#$QCQh3yAK+ zWabE7P9fBY90>7*&2FS?puqv>X1Ra)>OnHwfkxd-_D2$_0K9eo>FBQ&+vIx0!ah@f z)>JeFN;#%1W_Ez$H!SpTwTh;RKAn*Exou-1{F%EVe#h#X?-~NYR5L-rgduO%c0^d# z)g;!ng9^pK>}8YXzJ9lqsXx!{9Qw z6sp9BEf&CGuf!k+1MjsyX@F1e@>Ndsid8)!Jy;V zJrYQ#OWpPkxhB&U%96cI2&U@-Ofiyq?-|ecO(#>x?EC?%TmJNXJSh9q?`%bwu z@*k(i@7~YJZ(E9qigvGbNJw_E-h93nA84cDOAa6;cVG@i2oTGS=k$mlKcz!DQ8MLV zTiG~wON!1_i3G*E3*z2mW@FL)W}IW9AA@`F_{n^or{~8B_N& zpL#B`6$=3M+8C09MklgbEqcgd6V9{Wdv;jTTPwfJmftS#LB@R4HB1_&?V z$#uQcBVCBr{Ua!PK9_Hqzn<1*U85F!o;Eu79rG+XU6(UU&w@&P-AG8NdT3+`yC+%D zMz{1SefEKXDKfGEw?Xh3#rS1Mmpxw(U;Lr`ivmo;P@FHgA0Z*ghJmr^86khYs*vf~ z?FcB*PR9!6G~TD6@FQ=zJhDg~{ZQ&#c_i7$$eApsq?j~Eo2c_K!Q}3i@-It2Qr2tAQlH&?9mI!!2q&@sy4R$g_CQXv@ zqfg7A+=owF@BmQUbIT0vmg;ZCp=O_-p<24UvwTmB_)~qdAh@uU*e6{Jw*QXpMaO?l zcqqF0;Gedvm+;D4tSjY(*dAE3mTEjG``{)4eIJ=Ph0x;R!r!gwm)^*=zRQJPCo9yM4K5g+OZ4ZemRsuI+dj0oOJ1*VQ-}_&< zbxUv8{2Gj|*6feES9K3LYz)=hb&c*9d-A}u!7do~?MqWsE(5wGn{Disf}{nk08VH{Z493IlYi4iQj(`i?fun? z>UW>Y5PQJ;>gJwD8sglXJ~;`W&af2oxnB!4yi|+AW=sWlP@<;GE_4@>d4KN)hd&nQ zYD=#2CvJ;d--H5gdFX4GppWdJgamk^!nOf} z7}TUOaMGXQ^+gi*_l8lgKofnHkaK12z=MFXUc2IIS6SN^_)Nx!ObKu4&Vw}Lu512& z%|G}rHI$b$_k1C<=VKaft|kP`cC}_{Kt)3eC(B39xb&^_{N>_e= ziHINpAS5)%cDGr_^=oVts*Y?*M=P`d$G70RVb8@!V8ldF`B@u+(I9Lxy||` zv`N`7_1o?=sVjwd>$u?#;oR%NRdZ>C1QaJ4ps6n453&DC;N?)}&Na1h6+HW(dI z;*X?S;HcK~y-fiJ7w4?M#p;t{T&vbLt<$mVGrTMPwxu3?**h<-G{gyPF(SLaEdqwM zpu+=zKm%&A1Ik$h;CpvP?8lE5tW>d&1+v$_+T4x)SYOLElm#f7zv%BSztm8MqeN}@ zyHj2~d)c%&kee2>P_PQsY*bvHGp`iK=jTK8=sd8Nu*6nmC0)g84o#fYN71Nb6YJxr zT@yMCy+KU=t+%{n4TH`2=lh!K;v}yq?AsE^ydWa}r*#ofPzH72<$Bt8rrAw`bB=oI z+^A}2mVOd-uFxKuvucq{ohI>m4yMT!>7kyG#0i^UwEV?JsQy}zGGcAJBW%m~CjR>Y z*~_i&hbmYkx4tv=Hg@*E-XgupHX%EMz-v@$%kOU;Q-aB;!8vnT;N0Z(^q{Mh6SfEt zV&P1#g1U7ABT_{rH^JX})+y#&_C4tPWPQHfT1f${?-+S)gl8TAilc{)z@0+rMOmhX z!UZ-3u)3h3#mB?S8^O;t&053l*%4e4W}|raXKm+2G{%_g7RWU-EoYSYaJ3L*lzzbN z>x@A&BU4_kBD1JQ>R)gjNh} zz?>}c*HdsN>@@4m<^DXTbjuB#TFc5e{V5FOp4yYk9@}#0 zuN}zPI9Q0Ny=UEm5R-Vs(VAMqxK0Kzz}KWuGonTOfThu~bwHN|(RW*lum`>7>$xQQ zX`h5^9c@nj;_z?cvlz0JDa*rcDn|y(b@lTv>^$My2_3N$ce~lwKt`u=1y^Fbtr0R(QpfG30y?GC3~>ais-qb0Zy?qpbTgn7_U&*0 zl5g>StRF=k9~C|5$B8yHYVo=_J?1v3Tuk@9|En?jtuEZ_{HT2RMlwFR&rlilvDDZ1 z*3jXw>O`aNG(l7JC_+zNKJNZyvfIYQu&W!-WB0j}=NgT%+l@ODx2LHDlDFH~lk8;N zPfUCk$imQLO;YskbH2=@-3N}XeRHT8UV1%06j=vQ;)10Mzc~B~E!iF8{WKWpA{*}Kd|jz$-uoGqMi6i?yPO&1 zn~%gj#xuy4o6VXzuNs7>BgdeLECZozcBUt0PVaRh^u;Z-ni9# z67r+P$4R|cyq{NX=`j5`gOP8$Q`vO53ZA^+M)B_~ez%zu`a*5x`wn>Ct3O*9Hoo&) z<)nkw{t}m1!h=HUTv~f^Qd~OHMeT}k!~c%Qr6~GC6M*Y;huu6NLmE<-3?}Y&1Ncsd zMUW_5Pg^E}WYe3JVoCkrbN8`7{OqIArb|C`xC5g31{VtuE_bE?t65dDe93~J3M{N_ z1<$~(%36^z=L`?&Ixu5_ju&+1EjkYb{D96q;4Uqc`w2MEaB$1m$)D&3{w@cq5%f&- zxMpq;I3uBrck#JznSj5lO*c8X4)N1~$p1%{!XMv6X95=zaT1Tu0AMl2wU{c?CVcp= ze3kfp`@xZ4XDT(s zEJ|PAZj7x+u&@gat_-py%065n0nE~gi?ZQc+{w``poX;NA9Z!s@P1g2|Jka!gC(}a z^7l9>eYzLq)n2Q;z7&NdinOQ`UA((fLtTz|EcECJ;xjX0+8&n!N*mOlc^pH*yeG^L zCwX7SFMe#fGlXp#OkBv(Ejs2LW_XlL_3-_ch3*HNXB3P2{jkRdL;(-vC2(GHCkw-&6r^)tS z_2BQ{on;!a7lKQ$Z2&RgMC5aN zSHjh;W=c~SA3y{#OeM?xosiND3!(}J;f`mdQF|kZw=0CHiUN*y_N?Ga>-SD)!pc7K zFyE6vjqgTcCI8efE1glurOvUEHY97Rlp-8p3O((@osvYHR#qh9<>25vc8yTBnz^#7 zVz4ldV14P_FLtreCsNcrq&U#Z=I>1U^LolQJV#Mi`MwA8S_FBq0=4#E-n5A|dB@vP zynD*)?w)t*ouHm9eUPJ{Qo$DL%o=zQnKioX=+qY($@N(4(O?3-rcja!{IE$}xPloQ zps2;FX}&?&rh8QIR!<3 zO(eL+-lpw&D9UBf!uy0K6h~B9f$+Nzd-8Pu_9KnGv?a~fgk~C5bLMC5zjr+h@WQs% zet%K>9JI>fHN9~@o@S#V8;~3nKp+AXDnfI)Q9-!C&J|%KwDanozO@5b2r#vSGI__? zMoQ!zHi$hBBtxQ5Dv%D_Z#hpaJ~U_Oqd(WTVy`1^i|5ZjYyPmDdAr4^0y^=zwiNvw z^1n=(r_K&m+264*R^7rky>x7=bcYoSBTVn|r#-$uhb*i+&Ex}@BP6f>>1b7KTcWyA zteJ9imc1W-X8n~DSf)H@`mAWzwjjGx;E>%%?QKCp>B@&DUtL!68!N2s4N z%B^6)nj&;xI4R|ajt92RCw^1QzHf)Z`t7gDZF`3z$5IpoV+ltsZ@~C32rk%*@*EXK zra>Tc0M`Ed{O)8#htjvFyc@fffJFo0=85j-4-ny*fXClS&m@?Hk7=X_X>LR)H|u7{ zTI~UK@5S%2`SnZE72m!5wOZ4V8To~V7J4I?%mBLckh-kdK-zfDO5P25EcMuX6m+9i zo>eeURXyH#y&O#*q);~pK~JNQ$?uxn*wn+~L=QbloYP!>(-j!`KBS>B=%fsD3s+vQ z*V(^-A#qP|W9#bD`u5IK=u`T>@OD_1{FDk3b!Gr{Fis(nzM#T884qRgLWI(nYj`RY zN8e4d$lvJE-umUP8Y56tgkFj`9lZD8Sc;N+yfg<(v>Y||wUoiY4lUn=>;ze0T2aS5TMO@LXRXn6Npj zmD69MxNb8IgI(D}R>cHU<@IBk`%8c7WQlq+0`g^q#Rtqib`8vv-qZ0-^g z+eRqsG{uyZXA6q1bD+L(rwj=wr(M=UB{;v83`zPW43!Ac<9%j94cQoQS4IrRUU5iL z%00Llv%lWm<4jP7Zylv~3nRKjGO;RWEQWsoH=G(^B5FNH^XpRhIOZ zWiID)>|;%Cs<@1X>V7|d-iuW>*r73e$*y&1E?V3GI7 z-l7jxMtM+6hvNpx)wRL}8Mc%ghV6E0)aBih9Z6H+50k%wq=cVkv{773C&tW(L>**V z7LpR^!_QNDd(c$u`!4%WEZ#_kGhf#=su^anFgTRPWHTRG{r$a2is$iUy3t`pjoct1 zQa=&}J3tx`iu%(JtWfC?O^e{_=r>K!E%)CWy;D6piR#`%oVjw`Yv$r{!`C#Eurx$D zJ@Z#h^KdmH!FtRhRZIw4wNHte<_Hf22?r%~H943z%x0iQihDcmo0(4Sl&uk0Wx9X=Xfw@A+8X`idrngUi+; zsLOxWi4GUZqZS_3E)xk93Q`Az50&xG1a=vG(i>nbuDNB-%*ov1WMCOUf`!k<~4d0(UZJHvEVsE+OdX)ju||w|75%>MJ=4IA2F6sjp=c{obre-qNy$ z^=t?y5!~Lt_h8g-1)i&$FpI;4n~eAC-uuC63FTDuBWW;84*rMW-9+)l`0hYl|q9#<}%%w=RrEH+6 zD2T5(Lriz2k2n!TnMNVktdnCnMT$dCUdD+YnBfC=BQhVCG|I|XQqG+705auYcp`+t zir^NGrgQM`-;CA8XKw5wgx^R8PUCy1Q`5gv1{^7e+KoLZ#7zSY;_gblzQP_jMTQ8=FsxDMPj&@57Wi&>3#1VF{ts#TtSD z5qqdsngOG1Z0q-Zr)cUjuBpONoa8o`j7heixC$1RaZ{0MGAMu_uTjQ4y50Y4*=a=q z7nEP#dyqj1@FQ%doH^f;tz=|SIn`ussc4>G2(E3Yh(F@Qp<>PVd_UEZjZLAazvbia z1Io_{((Rq%ogMa_A3r)s$aLc3FLW-v5!iJv?|QEKM@ zh9su~0*rs=XUhR~^+OMY@3hzC>_MH?kVVWznM^bayq_Lj2!QD@L*Xda20fok-OyJ? zP^V@o);hSQ*H*TxVo9{`;*m2-%6wdNz8+L!^`~Q=_*u)XxeI}9gGM+yRq9YJzi8E8 zrQeU`7RU$spmjeaSIFaSEK> z)Ijad?C8bvQ9T>FLGrgdL$$6~>nF!=@ZKxq3)|AT9PX1N4hvS^ z4&Sf(np8rlr$;ltH-1tl529{L{a2ha$B$ZyTCX;YDd+vKS2d@-cW~0Yx0^_;PXUKx zYniD%lu9O!(KX$3p{moI>7MLmt;}&y!&b%!$S_cSWEP~3-g{b8dDy1m%o9o_;HMil z%lx@(@)@M?Ip>Dw+~C&w#*_ss=ZAZETKs4I z?w5u1^vpFLfZ*Gb zf9fck*3e|W2!vwmkJGM?LBh8ZN*J`pz?@hs4PM={Oc)#2WOwl6zIsn-ZXAG%k<_gd zUhkygPRcWXNB|w2O8w>DScZRg*~+8SReCk!RetYrFcnDfwGK5Neq-HRmClT^$eam% zseXlfz95T!-+>I71BAI?8KR_0b`NbaT-`ACg~MaVZQZ7?u|WV;)eQ|8cc-MUHb1f! zMF?8O2k|jDXv5c=mfk&Vd;6g&L^C`pKU6eV4BxJ~6@G1CG#Nj)lQbJ(dJ2&^U;B1i zgn2|$#VbwDHg|43K9q|4iI~BwV;0<)p4U7;F%CL=^~D!k$^9p&p&F!lrr$^>Pnero zvhNH$H+mpwU0Jb6!kO$ue(|RSi&@nj1SeI8F*<}cO~z|gVoApgh5D4QnyPkcEXhu1 z>R!hBsRktI_T69_SI2^bASYKfy$_8Q-!AgNTur73PZ$Ce=#D4;{y1$}&QZsS=d$1k z@<>l7aNKF2T%2*IRui4KAFq|XMRyHD2m8ZDazKQk;b!j zCoo1fu|+}&2|uKIsvZ-AH??>0!N43mPSTCTZTlIzdht54!a5t376(`~K~E=Q*zOr9S!aXFG=GS&=ee^OVrJWg zMqj-5z95`>^RFd^n-2m^Ivq|An2zR4dx%jgyslZf71%jEhSA16(hSP{*x?W?M+-D?|j-UGYiBFpc&72sxKC$X1)_vD`Teg8D zkL;BjeS-N#Q68-<`PFy{>lZ&;`-CAYs!CY6?GYo z$N5n;I{-Z+?tTzz-xOKZXgdEc3A*Gl2<}P9pT@xpduGqc`=aEvZr1qvpOZ{b=96e& z?3*Qg$7^0Q8De@orobn+>>U1hv#6Q>azk<`nwnYSaPZz~pM5{-V8FhEIqVVwN^L$z z@1JQhLSpwz)H^jnx6eG5Y&c%vZZ#9$#vhF0QW`;^1NfL1JoJ+Z&;C~6F28uYRY(im zzN0%yn}x~-#gTIfQO}rZXA$5b zANsjrQ#DzW_jwS2#5AtDxLp1E^z*6Nz}WP3xc5#2Rn@c;*Y%~PU~Ju%@a1K~;{UT0 zeI&;%Gf7D2AnCAa3`xQDSfxOhz#(F$dUkPP{-b*S6)&wgl2Rb;BFS|%<9u()bJT}V zig=S89iAi9`_RDYPI9{8qyO0T<=e~I$gm)p7t^mj4*IN%9lnI;|Ma3_ycmbE3fwK7 zfZmR%-)a&8SL^5-v)Ba=@($<+0*d9X{Hn>3`JiQp3N-=v@!-itxyqN124WZLRIDra zek5z3u)q+U%v1%Wq)4rKp???yxeSP{0kDKsw-v}VT|WL2SfMZ*-5%AB9dP0YmGGQg zGEVX7tqe?~;eY@5spD%z$9?(A4&nWCO1BZT%*K~>Z`0`rToA-SItz+|xi@0Z_QHhe zo2pfyj?Yx%+Pa?UL1$;iujSjjh4%DOxD2OwvvZoiv@t%UUQ1f+B!jF~CVTWLdrY_h zmo$F7F@$Fv3+n`uRkVALvti()lp5&DvMFt3$`mc62eXE@cK~5Q$+sJ2;p}(b7ej$O zY8my(MJ74TI_<|#b4bfq&D=+Wnefg_UZ3a`2>JVQX80cC`(Q5E(6inm=s|f5Qjvip zlkqJznOoES$r3eC>q-jRN_;3G)hbtDW=9Ec3d&;NAXm^W@@s&h>;PLWqCw)aHz9kQ zW!mWCmPv=d-%jR#*3HgKcXj}~wbbm(r=>|6ubsrZ_CYD$(j|Ox|C3cn)##S5l@o0@ zztK`(ECQ*Fe{do{i+E-&S^1|OiRvX_4vDe#?(v$%K~Hb9sw5XY1~;);GkP$Eyr-fy zDa2Bm^Ju633T&VU;}b%rcYBsBF|NM1*ExBK9)d$bOlI@q>F0PrD-ExHk7zi#;HxtO zDE!se%ZhY{BeSYO{uDN~T~U}y0EFABdaZ;O{DC^|E>-y45zl_(AbL_`*)5BG5%h3! zgX3wtn_j*<2!hXDu7vIG_h>WU-kYCx#>7|``O>-1o(WTMpOXRTl~nBsuP;cjw?)ED zu!hMMhMe}?As>WC)3IemX^@ntCuO*AL|z=4wng?hf|K7~gt|mz=GEq_&sS!sWgO|( zt}tIt&vrSlu~zr^q(2V_`-@Jw9-4FNde6l#cirmG*ZtAw8lKMFZ9SL~gf2>OFRwuUr~hn-*G7>&!yt9Lcd z`D1m|TW)gSP0AOoo~RH~`4D{YY#wCfGH%5r8;lbLpMVGx?4%FdP3rYpb$6kz1?Z2} zv)n@Hvixv&F5yJvsb=W1=)53kt&xQkjm13w0ihKplzEYMWgv7E-#i4;=~0xtio!hu z7H*qLlaD@DB@V1M+g7DVza56M-tN`N4dkAPpS;Na`!`~%Vh7HT^Z#~0<^>RNBTMQg zg|TEUp}Qo=dy!f7qV0{z9Fe6;FWxKI+IqJ?NN#@u2eESkhyAWH$GPmQagCbf^ExA! zwre7xU{6&LAJg(ycJ$&L(6Z!rJ{%n%>9HObHad{+z1WXgn{UP(#}eD@!wwfS1wbg~Xwsprt~rwIuKvC_DI0aX|sp&l{+h{J%_ zlu($IpE&aq{n|qhENBL475wX^$K}>l06iQ?fCsQW$s4^U_gGRw7mOj#Ft^BG*1tN7 z97g`*c2XxlM`HUc0F}?-DgonU9$@8g0%RUP<)D+9-MXhY#Hh+Y?yzldE$Y;Do3t zhzZXKH~~(xv)JABMJsDTy!>#aRXI1BK*dfMmUe{Cw;?C>#n@Frwa`puuMm_RGe4ne zZ?Ko#0Eb4?Pdz+f88zUKJ6LgsfplDBE7>ftZP@!pjjdA2+jQuG%K7lu7n42_!+#F{ zesE9o9(}@jms6>Osc=Bp#C7AM@iphkbi^?YNnlZg7cjN;5p)r*(!dk+H~SJF5no4QD*LMe`xK1LsN z{TYGL?ExU}rFu`sbza-3IAa zOLDYBBO_E)9&A4VsA)HaG2umF$yUoZ3@ig`Si84mNwo4Y#8u|y!jrWXUV|n*$I#+q zO4Ob^EDVD;?j>S>Byu|YVTyLV0d}u#`PAgq&HVq9?=YAz=?Kvk1BWQz5_KmUbi}r2 zzUU;CnLEg~i?Y?lMe=%eMgJ#y|+wBHz!{W=mjh2_4M9JY&5NY4HZfXIq`np>s^?B@%?uC-8?`yX-CAb@#}1r$@JHnL@i0>7&x{ z_8o=P5l_w2BOm)v(Jet(b1bq!<%otcMOMjTw~wUi%7#M4X1NT?RONriPE_H=hb;CS zaLmdWcHe$w@Biw>`+*X)N;KCmwy6nir z35%mAvN>D*F_q}P$H`@qS|*KDj7clIj}FO4rbt2Pj(yQfib%QJ9+w{IKfJH{oL>7% zs64UacSJ3ctQbWr@tNzak~Vx-y66JemaMxEQOx#+_MOLv$iCfMl+0h>e2J&ToOWQJ zHpA6Wb4C)-4!_ld@o7p((V zN^G-$ri2@nM*-zRfoF0Y?1yDO4Sd%mC(H3Da#MqP#K8+kvBBVDQBIdn!;j?jN}Gv~ zl?HsDPr`0ERkNZOTQE%$Ky0OLrp}+xriRwz5{s!G5M3quy!;%oyo|CohAE$sP7Qm9 zsV8z#H|ahhxWsA@D_-FYn9T_YquBrUV6_o@6Qh8bDGCT9#&MGnSmL)qW)@7<+EpJt zSDOFo7vh|!Bhi`SA~fzCqLFX$OSs;o^Z3JPd)4A%s7+jaLlP6-X}gG2a2P`^mL#mK zWNl@mcp?1^wQYe!xqM#U-A|9YL-xp>Y8NXY#vOof!tYk8+H~x1fJBd6BVoPKMv5t3 zAgWIM9(4JeK-o!&51ouT5wVe(X4>}U2#x@Y@?sOW5Z^R8H59BWgAET_t_t6 zH$5VXqUb{@HsMe2Pwu>kw8dh$V2YoHrX33vV^WY6(u-~Lzs1AA{VRG09PIL>pG)p8 zI#MR|3Zqe+CmoDh47lISNq5&Nkrw@{x;z#IPzh%AU*~|;BB+1>(rJdkvE8L7GwkQW z(iEPXdkENPRk+>;y!@+zTaV={6+36Q)0~gnIExHosGTj)y^P%L>Woqh%3hSJ9?rP?|(=#riu~ zwjiLdm@u~eiAbQV#n@?H4(Gv{S`FzOtF8f8}+J&vnj-9_L{?r{OKHxe)W!w|Nc#O2V2YA{rH_0mkiGARm*_dOd9J zv#)KjuvA1B{ICs!X4`}_;%xfSh;Epph8hJ4Ggk~Q=X*spnK z%#6J)ZOia=`8Jl#Sij@8SmRAY7_j#VACbosw@{|wXZ@FFg&y-E`3`$+7mMdV33eGV z7yMtHj1WD>0o1F}J~CdM4&7uZ<~gV`Hu{V+AW2)ZkAm)O+%|quxN4F3o+nONrRJO3 zqb;kWlHfALE%0u5CW&|0fSA&Wemh%>^vPaR_Rn2=?U) zxhnoo!+5K3-+oKHYttKC?e}BY2GV|un$)@H8osuv*O+W&lW@X})crU-$?wVgb*vhV zH}Nv0#c101B;<7VB(}p?%NOYIKZ#oV8wH3n7G5L$D}V(@)JI-`s1K9~!A`bdts=1v z*&0u{DQxV~NfxSLqp`Q77wx~_xBLv?yK!(M=*BM2> zdcGkYj>}k&MJsY|x49@Ij8f1THjBBnyBQ*bP^(GWq#c9hOW{zQG=oa6T(f6;9bQZL zmGgp_Iy!5{y~VsmqYn7?86R=uIYOd*YgopMlDBp8%EIrS(~2iJe)XW#)rOuK%ddle zif1-U8=V7gM8QLQZAD);L{8Ma^lkDd@3gmbehYX`0y+Y9eAXYze3*=A>yIF1_7;#O z0pazqJrs>8WSkF$8$?#BOu!2dP;vgfu#U?o{&?40zqzQons32H9B z;|$}<#M5vjVPjnn)j42Am#_wWT$PK>=T@5W)31&FFS!@~?FzuMd0nV;+3?0?#*5S5 zQ(V?&(HgKJ#tViAldH+asyBScn`*=cZY-Zuo~v77DaMWXwt_kH(TrDYKhNhl2ltj! z(d+eh{t0I@q-%Xv=}%x7D_HCmtwU=ZL;+%SMz?!-Cd2>I^`c&<*mtY?Tjl-Pn#Vop z;u5OwRLY10y9`;DkVF{{TX1~rc5~JNfVyPG9k8&F*B+xuReX%c+<&7M4%MxG{tJY) z7OEHDEUeQCo)*1oQsn>BQFg~G6N|!+etc&bv4`{$NGjvjZ`PQ-pLU4RdVOSifxbwQ z4h%D%gX6j~gl9_nbK{?})cQH%ZhLPbY}S(acC0ZmKbQNG;f|n(NaB6t7B zHLeNv_>(vuH$S~xg?AJ-&4xtzV+32@6Qgs>JfcQ?rF7Lu-8^l(w2Grn;s+K}{rv!I zzbpGR5A++Kt+5M}xi;+u!KN!JuSm^xtvhsmgbl$y{C2MR)ZaH3^0fhj=LH6 zO+{^Q!+`Mlb?q12Lyq4*HS-@;Rt;rTK|rRMS?jHp)nnti&gekRpAZ$hOybQdk2Sc_ znNab%6*@2m)$8oJf^G?e>|8x=Qt{U)9OAPM$Tek*((<;N;prN^=L3?cNl|)HU+xZi zRr>~g%mU#6mPG2wTlbS5Ai(P(91~6=mlg(|Zgkd{<``qlxy$AGSk8PxhqvRVdtmR^3f z*`8jX(I>~N_L&$f=B|<6-E2ekj6p;8*v_7DZ*mB$H=tI{TxS?N2sXrbf1Ss2CGa*ZD0Q{2U*FQ#At-jF=GzitDpo(kEfEQ*OATQ4gZk{c$&esL?0^hW>Q1&p zM2?U}>{$?F$jEzapkQXAANF0CXPEp%GV9Wn9eeZS?NqzKt8ARViZ$sZa-B*bSZqd@ ziMb@bA<4!|1Y@$BTv#&HW(aMn)4~1=rl^gvt-Xh$Pgpm-@9@-Y-I0{^5Y1Qb{$~|x z|6)r4o2BECJXe+2H2`q^wxO4&XSDJD{?xl`ET1ub{8b$bL;!MBsk59v?!RPe|CFlS z2d7$rs1-EWG3MAJhMt|-OfwtXC@97g1XvndOFlqX3}5cO45^w^v%~K9hVKqwxk%6z$lWu7bM@L)h@8%sL!PtDev3kq=+!;@XA9v?QUOk4uXru@q z>>LHwr;6n{g){#{hzcjUm{T0c-86nVE=*xFvoCY`yN8Drdfo3S!E;x@$mi5sW%v3R z?|C?E#vO8D0Q;O3+WKh+5|@dWb^xYAPE68x-`_ZdUo|mSO-1UqCPx-+8D(Wrh#s9u z;Q63xnu$K2m)yqlCoM0k0bjF-Pf{F+*HHGPN7agAhU4Iat+znSUJ z+1a=JPg^EDPUlsMO`o^En5!lA_c?Yz{lT+oBnYR&fBYa>@{KzLV~0)Q1F@7UPirPs zhUjC=dz{~Wbs93|PlM8I_V5i(=0#?~1DVE!iCHzpwQh*-^z>t_iCfIA5jV;>EFlq* ztR{amuO|AV`|D3{>e-7K>@`bud9c_m&nek-ryO_J7Tm*%Hz<+;Gl`I`JuZH zend1Sl?N@A5A6p`ro2e$!d=uKQ6Uunss?Qa(O~J~DoL=0C*2NaI@u9G<-MvGA3ffR zkjyHysxS>9kyG0Gcd9XZe0IFN&>Q30OoK?a=J}&qZ~LD`i2}{oX)bVwb`?MZPiSRt zrYCtZo$(5*W3vh}cC{x#=en3vynZ|YD>B3-_Z%aaTx1sQNq)_1=p_N2osOS^&eHjL z_DP~ z@k2H!u&}Gm^>GZC%)2dzcaw>bJyt-`6>M3eBZZjK@cC=_96d zZ}<5~PKH*$iz^E0tH1eFpy25-Xi@m!p42uFOd>#2H5IbsvnpDk<0xiQ^M>v!ePb{6 zPKRs&E{G+d6Oj{?8z&ZfOkW*t2LeW!EyO%cvvzv;IY7!>@@udZzx}t|(KQl}IarkO zMy<;90J`G919w;vM0LeMNSN?Y-xQl-PVBBouQvkO_EujhzMf^{{grcl@DOY}Of}SC z_TZ8FOzgI?597C=v_n@>JJ|=-B8QpSzMcl&lY$-?Z;^#Ydnu&v8w!W3BX!gMw5h#{ zBFT{LZP}~F$Skl!1qcMG+?LA|Uw&Vs({OH;=HrC>^J?qk>3C@of^Qk7F@@ZMLkNCi z1Dz3{84LjYZ2Q4yg8hNyD{TsG&u@QlOy+L+T$vY4A{Tnon*Zh!9FqtRU`Zw8d?LmH zf_=m;cOw;dN8x^f?-t~KiVB6BPrYh}PYY}t8t`CKGVF6@T>qxrTQACJ53z_kUFMxb z`CZHe^zb$@@-~!{ft7|h=oQ#q3{#tA9nB>xWwWw}FU*JWw#E6muv|Ad;lx%i*Lj$? zxG;P$#P|bP#U99;tz*WANpm+op6Sd;k^#H9<|*0Wlgj8Ifd}C1PRKT*mlnI}OTn%8 z6@-oR-QYna2e#`_BQD-42iIAAY}Wie0_gJxGl=ER>Z2Zys$j7c=z%mry$^Ts-Z4J| z6GDG&_;gt?1${hci$WtP0{O~m?U>MCP;|_$n<12LXz+eP^{3yuT$9$CuYI`_!h|P! z+FrDP`sjN)=IW0ni75;y2Jm^#7V=BQ@c z29soiMBAq<_NYw;+*~4T(as;>Fg|{8hP8{9V`})9$9gR#6l#h;`ZPFWyJcpg`3<_; z+J&sQI=rZ+Nf_Um`rxhg!|Ein)=Mflo)lD;oQ~u$v^AXAq0Typ7A~(CJ616cx0EB1 z#BTwWruXuzRem;qKdkiWhh}6XsK{)d|NBE=qGQsNOa)p_eu0LImkvQBH~tn;g8%tL z%Aoeru<4wPV$P9TL#)Wp8FXfpiu3+#B3s=Ab_c)6yqWsp?r7-BN&YQXKm(8Y;Y)Jt zrt?3vr|a68a=AJ*?+ht+lR#AQfcwh8sm4ye;-%ub1at6aE(nZrfnH@2xd-%zuUxK| z9JwxfXIg4gF6*uXX@S9Us6pu+Q41n8u~tKmf#c`%t#Y;W_*ynR=#A`QXq1Ag#Dyox zQP+qzeBFpd4lmaN%vyru=Y3cn4Mf7XjGRW%r*UO3H)K&Aw^5EKh*QOj-#v`7s8m`f z{m&&b>Hc_*@w2mLf2InzspQgI!Erhw2-bUYN)J0ONtff4QqCJ-E(U}?^>}nXWqvPL z9qprgmCmM3k3J@VKbB`C!1g1Nia9vm>&Zj#(*3}}o!B^P0KmfEQkvRQynTDe&bCHKRgZS9FjR)-nUJFPl_B%TH>c)0|y!S0lK?Ao>`VaYlW1nz=; zuHbod!~81i$xL`N;2-A3`(-6dV)V*B3Z$w2!@}!tF|aYy$dc%RfVMtK@Ciswsgneo zf@gFDh6FY;puJ`Mj3jsiJm7sBJaLUwF62v)Z6-v`1N{_O^DTfM7TO{*s~2|=jvhWH zN{G*EgrXZFcm9IkuuXmg?^^1g5&@hb!3rQk&Lx?T7AOIRSLDkwKv;nP>~HYjy~|>^ z{xdMv0-?iZ!bUUP1ds{5=3jB}Q=T{3KF4qXYS<1{UKfS{Po7UQg&GwB_~8PPSxe*!)HknEtHFw2ymxl&gGdk~ zSdkEg7x?Rjm5>kS!@GF7E31GV)^m*}O4$ysTzh=vG8i+kdt34`N| zI|2k+@)+uw<7a*128QA*;HdlUtN+WJ*K^xTIjmRUFlKQ0TfeB6GAx9kOM6^a{|GsG;r_ZB#tbkoSe zsVz|C>1<%Mhl!-hRY<*>+_k8r3FzA8ERGypO#;{Uu@$H_lr!AnuUo@Za%Pg%B8^je z4AH=;V~4#jO&GErfZWcgR^X6l(BJihji2YAbKsQsz{yhm zA6GweG?+8QEY9b>=&09QXhL