Updated Notebook comments

This commit is contained in:
Radu C. Martin 2021-07-31 12:57:47 +02:00
parent 12c879f016
commit 633c4d12d3
5 changed files with 216 additions and 2413 deletions

View file

@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Bayesian Optimisation of starting Gaussian Process hyperparameters"
"# Sparse and Variational Gaussian Process Model Training and Performance Evaluation"
]
},
{
@ -78,9 +78,6 @@
"cell_type": "markdown",
"metadata": {
"id": "90fdac33-eed4-4ab4-b2b1-de0f1f27727b",
"jupyter": {
"source_hidden": true
},
"tags": []
},
"source": [
@ -199,7 +196,7 @@
"id": "0aba0df5-b0e3-4738-bb61-1dad869d1ea3"
},
"source": [
"## Load previously exported data"
"## Load previously exported CARNOT 'experimental' data"
]
},
{
@ -212,6 +209,13 @@
"dfs_test = []"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Separate into training and testing data sets:"
]
},
{
"cell_type": "code",
"execution_count": 13,
@ -235,6 +239,13 @@
" dfs_test.append(pd.read_csv(f\"../Data/Good_CARNOT/{exp}_table.csv\").rename(columns = {'Power': 'SimulatedHeat'}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Separate columns into exogenous inputs, controlled inputs and outputs:"
]
},
{
"cell_type": "code",
"execution_count": 15,
@ -248,6 +259,13 @@
"y_cols = ['SimulatedTemp']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Impose the autoregressive lags for each input group:"
]
},
{
"cell_type": "code",
"execution_count": 16,
@ -497,6 +515,13 @@
" return df_gpr"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Merge all the training dataframes:"
]
},
{
"cell_type": "code",
"execution_count": 25,
@ -647,15 +672,6 @@
"df_gpr_train.head()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"#df_gpr_train = df_gpr_train.sample(n = 500)"
]
},
{
"cell_type": "code",
"execution_count": 27,
@ -1245,6 +1261,13 @@
"y_lags = 5"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Iterate over all combination of lags and compute for each the RMSE, SMSE, LPD and MSLL errors:"
]
},
{
"cell_type": "code",
"execution_count": 54,
@ -1470,6 +1493,13 @@
"## Multistep prediction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Select the dataset which will be used for multistep prediction:"
]
},
{
"cell_type": "code",
"execution_count": 47,
@ -1481,6 +1511,13 @@
"df_output = dfs_gpr_test[test_dataset_idx][dict_cols['y'][1]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Select the starting index in the test dataset and the number of consecutive points to simulate:"
]
},
{
"cell_type": "code",
"execution_count": 48,