Added MATLAB rewrite of the CARNOT optimisation function
This commit is contained in:
parent
adf4d0e02a
commit
7f9719cc64
15 changed files with 463 additions and 0 deletions
39
Simulink/gpCallback.m
Normal file
39
Simulink/gpCallback.m
Normal file
|
@ -0,0 +1,39 @@
|
|||
classdef gpCallback < casadi.Callback
|
||||
properties
|
||||
model
|
||||
end
|
||||
methods
|
||||
function self = gpCallback(name)
|
||||
self@casadi.Callback();
|
||||
construct(self, name, struct('enable_fd', true));
|
||||
end
|
||||
|
||||
% Number of inputs and outputs
|
||||
function v=get_n_in(self)
|
||||
v=1;
|
||||
end
|
||||
function v=get_n_out(self)
|
||||
v=1;
|
||||
end
|
||||
% Function sparsity
|
||||
function v=get_sparsity_in(self, i)
|
||||
v=casadi.Sparsity.dense(7, 1);
|
||||
end
|
||||
|
||||
% Initialize the object
|
||||
function init(self)
|
||||
disp('initializing gpCallback')
|
||||
gpr = load('gpr_model.mat', 'model');
|
||||
self.model = gpr.model;
|
||||
end
|
||||
|
||||
% Evaluate numerically
|
||||
function arg = eval(self, arg)
|
||||
x = full(arg{1});
|
||||
% Transpose x since gp predictor takes row by row, and casadi gives
|
||||
% colum by column
|
||||
[mean, ~] = predict(self.model, x');
|
||||
arg = {mean};
|
||||
end
|
||||
end
|
||||
end
|
150
Simulink/gp_mpc_system.m
Normal file
150
Simulink/gp_mpc_system.m
Normal file
|
@ -0,0 +1,150 @@
|
|||
classdef gp_mpc_system < matlab.System & matlab.system.mixin.Propagates
|
||||
% untitled Add summary here
|
||||
%
|
||||
% This template includes the minimum set of functions required
|
||||
% to define a System object with discrete state.
|
||||
|
||||
properties
|
||||
% Control horizon
|
||||
N = 0;
|
||||
% Time Step
|
||||
TimeStep = 0;
|
||||
% Max Electrical Power Consumption
|
||||
Pel = 6300;
|
||||
|
||||
end
|
||||
|
||||
properties (DiscreteState)
|
||||
end
|
||||
|
||||
properties (Access = private)
|
||||
% Pre-computed constants.
|
||||
casadi_solver
|
||||
u_lags
|
||||
y_lags
|
||||
lbx
|
||||
ubx
|
||||
end
|
||||
|
||||
methods (Access = protected)
|
||||
function num = getNumInputsImpl(~)
|
||||
num = 2;
|
||||
end
|
||||
function num = getNumOutputsImpl(~)
|
||||
num = 1;
|
||||
end
|
||||
function dt1 = getOutputDataTypeImpl(~)
|
||||
dt1 = 'double';
|
||||
end
|
||||
function [dt1, dt2] = getInputDataTypeImpl(~)
|
||||
dt1 = 'double';
|
||||
dt2 = 'double';
|
||||
end
|
||||
function sz1 = getOutputSizeImpl(~)
|
||||
sz1 = 1;
|
||||
end
|
||||
function sz1 = getInputSizeImpl(~)
|
||||
sz1 = 1;
|
||||
end
|
||||
function cp1 = isInputComplexImpl(~)
|
||||
cp1 = false;
|
||||
end
|
||||
function cp1 = isOutputComplexImpl(~)
|
||||
cp1 = false;
|
||||
end
|
||||
function fz1 = isInputFixedSizeImpl(~)
|
||||
fz1 = true;
|
||||
end
|
||||
function fz1 = isOutputFixedSizeImpl(~)
|
||||
fz1 = true;
|
||||
end
|
||||
function setupImpl(obj,~,~)
|
||||
% Implement tasks that need to be performed only once,
|
||||
% such as pre-computed constants.
|
||||
addpath('/home/radu/Media/MATLAB/casadi-linux-matlabR2014b-v3.5.5')
|
||||
import casadi.*
|
||||
|
||||
% Initialize CasADi callback
|
||||
cs_model = gpCallback('model');
|
||||
|
||||
% Set up problem variables
|
||||
T_set = 20;
|
||||
n_states = 7;
|
||||
|
||||
COP = 5; %cooling
|
||||
EER = 5; %heating
|
||||
|
||||
|
||||
obj.u_lags = [0];
|
||||
obj.y_lags = [23 23 23];
|
||||
|
||||
% Formulate the optimization problem
|
||||
J = 0; % optimization objective
|
||||
g = []; % constraints vector
|
||||
|
||||
% Set up the symbolic variables
|
||||
U = MX.sym('U', obj.N, 1);
|
||||
W = MX.sym('W', obj.N, 2);
|
||||
x0 = MX.sym('x0', 1, n_states - 3);
|
||||
|
||||
% setup the first state
|
||||
wk = W(1, :);
|
||||
uk = U(1); % scaled input
|
||||
xk = [wk, obj.Pel*uk, x0];
|
||||
yk = cs_model(xk);
|
||||
J = J + (yk - T_set).^2;
|
||||
|
||||
% Setup the rest of the states
|
||||
for idx = 2:obj.N
|
||||
wk = W(idx, :);
|
||||
uk_1 = uk; uk = U(idx);
|
||||
xk = [wk, obj.Pel*uk, obj.Pel*uk_1, yk, xk(5:6)];
|
||||
yk = cs_model(xk);
|
||||
J = J + (yk - T_set).^2;
|
||||
end
|
||||
|
||||
p = [vec(W); vec(x0)];
|
||||
nlp_prob = struct('f', J, 'x', vec(U), 'g', g, 'p', p);
|
||||
|
||||
|
||||
opts = struct;
|
||||
%opts.ipopt.max_iter = 5000;
|
||||
opts.ipopt.max_cpu_time = 15 * 60;
|
||||
opts.ipopt.hessian_approximation = 'limited-memory';
|
||||
%opts.ipopt.print_level =0;%0,3
|
||||
opts.print_time = 0;
|
||||
opts.ipopt.acceptable_tol =1e-8;
|
||||
opts.ipopt.acceptable_obj_change_tol = 1e-6;
|
||||
|
||||
solver = nlpsol('solver', 'ipopt', nlp_prob,opts);
|
||||
|
||||
obj.casadi_solver = solver;
|
||||
obj.lbx = -COP;
|
||||
obj.ubx = EER;
|
||||
end
|
||||
|
||||
function u = stepImpl(obj,x,w)
|
||||
import casadi.*
|
||||
|
||||
%Update the y lags
|
||||
obj.y_lags = [x, obj.y_lags(1:end-1)];
|
||||
|
||||
|
||||
real_p = vertcat(vec(DM(w)), vec(DM([obj.u_lags obj.y_lags])));
|
||||
disp("Starting optimization")
|
||||
tic
|
||||
%res = obj.casadi_solver('p', real_p, 'ubx', obj.ubx, 'lbx', obj.lbx);
|
||||
t = toc;
|
||||
disp(t)
|
||||
u = obj.Pel * full(res.x(1));
|
||||
|
||||
% Update the u lags
|
||||
obj.u_lags = [u, obj.u_lags(2:end-1)];
|
||||
|
||||
end
|
||||
|
||||
function resetImpl(obj)
|
||||
% Initialize discrete-state properties.
|
||||
end
|
||||
end
|
||||
end
|
BIN
Simulink/gpr_model.mat
Normal file
BIN
Simulink/gpr_model.mat
Normal file
Binary file not shown.
177
Simulink/mpc_simulink/casadi_block.m
Normal file
177
Simulink/mpc_simulink/casadi_block.m
Normal file
|
@ -0,0 +1,177 @@
|
|||
classdef casadi_block < matlab.System & matlab.system.mixin.Propagates
|
||||
% untitled Add summary here
|
||||
%
|
||||
% This template includes the minimum set of functions required
|
||||
% to define a System object with discrete state.
|
||||
|
||||
properties
|
||||
% Public, tunable properties.
|
||||
|
||||
end
|
||||
|
||||
properties (DiscreteState)
|
||||
end
|
||||
|
||||
properties (Access = private)
|
||||
% Pre-computed constants.
|
||||
casadi_solver
|
||||
x0
|
||||
lbx
|
||||
ubx
|
||||
lbg
|
||||
ubg
|
||||
end
|
||||
|
||||
methods (Access = protected)
|
||||
function num = getNumInputsImpl(~)
|
||||
num = 2;
|
||||
end
|
||||
function num = getNumOutputsImpl(~)
|
||||
num = 1;
|
||||
end
|
||||
function dt1 = getOutputDataTypeImpl(~)
|
||||
dt1 = 'double';
|
||||
end
|
||||
function dt1 = getInputDataTypeImpl(~)
|
||||
dt1 = 'double';
|
||||
end
|
||||
function sz1 = getOutputSizeImpl(~)
|
||||
sz1 = [1,1];
|
||||
end
|
||||
function sz1 = getInputSizeImpl(~)
|
||||
sz1 = [1,1];
|
||||
end
|
||||
function cp1 = isInputComplexImpl(~)
|
||||
cp1 = false;
|
||||
end
|
||||
function cp1 = isOutputComplexImpl(~)
|
||||
cp1 = false;
|
||||
end
|
||||
function fz1 = isInputFixedSizeImpl(~)
|
||||
fz1 = true;
|
||||
end
|
||||
function fz1 = isOutputFixedSizeImpl(~)
|
||||
fz1 = true;
|
||||
end
|
||||
function setupImpl(obj,~,~)
|
||||
% Implement tasks that need to be performed only once,
|
||||
% such as pre-computed constants.
|
||||
|
||||
import casadi.*
|
||||
|
||||
T = 10; % Time horizon
|
||||
N = 20; % number of control intervals
|
||||
|
||||
% Declare model variables
|
||||
x1 = SX.sym('x1');
|
||||
x2 = SX.sym('x2');
|
||||
x = [x1; x2];
|
||||
u = SX.sym('u');
|
||||
|
||||
% Model equations
|
||||
xdot = [(1-x2^2)*x1 - x2 + u; x1];
|
||||
|
||||
% Objective term
|
||||
L = x1^2 + x2^2 + u^2;
|
||||
|
||||
% Continuous time dynamics
|
||||
f = casadi.Function('f', {x, u}, {xdot, L});
|
||||
|
||||
% Formulate discrete time dynamics
|
||||
% Fixed step Runge-Kutta 4 integrator
|
||||
M = 4; % RK4 steps per interval
|
||||
DT = T/N/M;
|
||||
f = Function('f', {x, u}, {xdot, L});
|
||||
X0 = MX.sym('X0', 2);
|
||||
U = MX.sym('U');
|
||||
X = X0;
|
||||
Q = 0;
|
||||
for j=1:M
|
||||
[k1, k1_q] = f(X, U);
|
||||
[k2, k2_q] = f(X + DT/2 * k1, U);
|
||||
[k3, k3_q] = f(X + DT/2 * k2, U);
|
||||
[k4, k4_q] = f(X + DT * k3, U);
|
||||
X=X+DT/6*(k1 +2*k2 +2*k3 +k4);
|
||||
Q = Q + DT/6*(k1_q + 2*k2_q + 2*k3_q + k4_q);
|
||||
end
|
||||
F = Function('F', {X0, U}, {X, Q}, {'x0','p'}, {'xf', 'qf'});
|
||||
|
||||
% Start with an empty NLP
|
||||
w={};
|
||||
w0 = [];
|
||||
lbw = [];
|
||||
ubw = [];
|
||||
J = 0;
|
||||
g={};
|
||||
lbg = [];
|
||||
ubg = [];
|
||||
|
||||
% "Lift" initial conditions
|
||||
X0 = MX.sym('X0', 2);
|
||||
w = {w{:}, X0};
|
||||
lbw = [lbw; 0; 1];
|
||||
ubw = [ubw; 0; 1];
|
||||
w0 = [w0; 0; 1];
|
||||
|
||||
% Formulate the NLP
|
||||
Xk = X0;
|
||||
for k=0:N-1
|
||||
% New NLP variable for the control
|
||||
Uk = MX.sym(['U_' num2str(k)]);
|
||||
w = {w{:}, Uk};
|
||||
lbw = [lbw; -1];
|
||||
ubw = [ubw; 1];
|
||||
w0 = [w0; 0];
|
||||
|
||||
% Integrate till the end of the interval
|
||||
Fk = F('x0', Xk, 'p', Uk);
|
||||
Xk_end = Fk.xf;
|
||||
J=J+Fk.qf;
|
||||
|
||||
% New NLP variable for state at end of interval
|
||||
Xk = MX.sym(['X_' num2str(k+1)], 2);
|
||||
w = {w{:}, Xk};
|
||||
lbw = [lbw; -0.25; -inf];
|
||||
ubw = [ubw; inf; inf];
|
||||
w0 = [w0; 0; 0];
|
||||
|
||||
% Add equality constraint
|
||||
g = {g{:}, Xk_end-Xk};
|
||||
lbg = [lbg; 0; 0];
|
||||
ubg = [ubg; 0; 0];
|
||||
end
|
||||
|
||||
% Create an NLP solver
|
||||
prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));
|
||||
options = struct('ipopt',struct('print_level',0),'print_time',false);
|
||||
solver = nlpsol('solver', 'ipopt', prob, options);
|
||||
|
||||
obj.casadi_solver = solver;
|
||||
obj.x0 = w0;
|
||||
obj.lbx = lbw;
|
||||
obj.ubx = ubw;
|
||||
obj.lbg = lbg;
|
||||
obj.ubg = ubg;
|
||||
end
|
||||
|
||||
function u = stepImpl(obj,x,t)
|
||||
disp(t)
|
||||
tic
|
||||
w0 = obj.x0;
|
||||
lbw = obj.lbx;
|
||||
ubw = obj.ubx;
|
||||
solver = obj.casadi_solver;
|
||||
lbw(1:2) = x;
|
||||
ubw(1:2) = x;
|
||||
sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,...
|
||||
'lbg', obj.lbg, 'ubg', obj.ubg);
|
||||
|
||||
u = full(sol.x(3));
|
||||
toc
|
||||
end
|
||||
|
||||
function resetImpl(obj)
|
||||
% Initialize discrete-state properties.
|
||||
end
|
||||
end
|
||||
end
|
BIN
Simulink/mpc_simulink/mpc_demo.slx
Normal file
BIN
Simulink/mpc_simulink/mpc_demo.slx
Normal file
Binary file not shown.
BIN
Simulink/mpc_simulink/mpc_demo.slx.r2014b
Normal file
BIN
Simulink/mpc_simulink/mpc_demo.slx.r2014b
Normal file
Binary file not shown.
BIN
Simulink/polydome.slx.autosave
Normal file
BIN
Simulink/polydome.slx.autosave
Normal file
Binary file not shown.
BIN
Simulink/polydome_fmu2cs_rtw/build_exception.mat
Normal file
BIN
Simulink/polydome_fmu2cs_rtw/build_exception.mat
Normal file
Binary file not shown.
BIN
Simulink/polydome_mpc.slx
Normal file
BIN
Simulink/polydome_mpc.slx
Normal file
Binary file not shown.
BIN
Simulink/polydome_mpc_fmu2cs_rtw/build_exception.mat
Normal file
BIN
Simulink/polydome_mpc_fmu2cs_rtw/build_exception.mat
Normal file
Binary file not shown.
BIN
Simulink/polydome_params.mat
Normal file
BIN
Simulink/polydome_params.mat
Normal file
Binary file not shown.
BIN
Simulink/test.mat
Normal file
BIN
Simulink/test.mat
Normal file
Binary file not shown.
10
Simulink/test_casadi_mpc.m
Normal file
10
Simulink/test_casadi_mpc.m
Normal file
|
@ -0,0 +1,10 @@
|
|||
clear all
|
||||
close all
|
||||
clc
|
||||
%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
%% Load the existing GP
|
||||
addpath("../../Gaussiandome/Identification/Computation results/")
|
||||
load("Identification_Validation.mat")
|
||||
load("Gaussian_Process_models.mat")
|
79
Simulink/weather_predictor.m
Normal file
79
Simulink/weather_predictor.m
Normal file
|
@ -0,0 +1,79 @@
|
|||
classdef weather_predictor < matlab.System
|
||||
% untitled Add summary here
|
||||
%
|
||||
% This template includes the minimum set of functions required
|
||||
% to define a System object with discrete state.
|
||||
|
||||
% Public, tunable properties
|
||||
properties
|
||||
|
||||
end
|
||||
|
||||
% Public, tunable properties
|
||||
properties(Nontunable)
|
||||
TimeStep = 0;
|
||||
N = 0;
|
||||
end
|
||||
|
||||
properties(DiscreteState)
|
||||
|
||||
end
|
||||
|
||||
% Pre-computed constants
|
||||
properties(Access = private)
|
||||
|
||||
end
|
||||
|
||||
methods(Access = protected)
|
||||
function num = getNumInputsImpl(~)
|
||||
num = 2;
|
||||
end
|
||||
function num = getNumOutputsImpl(~)
|
||||
num = 1;
|
||||
end
|
||||
function dt1 = getOutputDataTypeImpl(~)
|
||||
dt1 = 'double';
|
||||
end
|
||||
function [dt1, dt2] = getInputDataTypeImpl(~)
|
||||
dt1 = 'double';
|
||||
dt2 = 'double';
|
||||
end
|
||||
function sz1 = getOutputSizeImpl(obj)
|
||||
sz1 = [obj.N 2];
|
||||
end
|
||||
function sz1 = getInputSizeImpl(~)
|
||||
sz1 = 1;
|
||||
end
|
||||
function cp1 = isInputComplexImpl(~)
|
||||
cp1 = false;
|
||||
end
|
||||
function cp1 = isOutputComplexImpl(~)
|
||||
cp1 = false;
|
||||
end
|
||||
function fz1 = isInputFixedSizeImpl(~)
|
||||
fz1 = true;
|
||||
end
|
||||
function fz1 = isOutputFixedSizeImpl(~)
|
||||
fz1 = true;
|
||||
end
|
||||
|
||||
|
||||
function setupImpl(~, ~, ~)
|
||||
disp('Hello World')
|
||||
% Perform one-time calculations, such as computing constants
|
||||
end
|
||||
|
||||
function w = stepImpl(obj,wdb_mat,timestamp)
|
||||
disp(timestamp)
|
||||
% Implement algorithm. Calculate y as a function of input u and
|
||||
% discrete states.
|
||||
curr_idx = find(wdb_mat(:, 1) == timestamp);
|
||||
N_idx = (1:obj.N) + curr_idx;
|
||||
w = [wdb_mat(N_idx, 18) + wdb_mat(N_idx, 19), wdb_mat(N_idx, 7)];
|
||||
end
|
||||
|
||||
function resetImpl(obj)
|
||||
% Initialize / reset discrete-state properties
|
||||
end
|
||||
end
|
||||
end
|
8
Simulink/weather_predictor2.m
Normal file
8
Simulink/weather_predictor2.m
Normal file
|
@ -0,0 +1,8 @@
|
|||
function w = weather_predictor2(wdb_mat,timestamp, N)
|
||||
%WEATHER_PREDICTOR2 Summary of this function goes here
|
||||
% Detailed explanation goes here
|
||||
curr_idx = find(wdb_mat(:, 1) == timestamp);
|
||||
N_idx = (1:N) + curr_idx;
|
||||
w = [wdb_mat(N_idx, 18) + wdb_mat(N_idx, 19), wdb_mat(N_idx, 7)];
|
||||
|
||||
end
|
Loading…
Add table
Add a link
Reference in a new issue