Added MATLAB rewrite of the CARNOT optimisation function

This commit is contained in:
Radu C. Martin 2021-04-24 12:16:36 +02:00
parent adf4d0e02a
commit 7f9719cc64
15 changed files with 463 additions and 0 deletions

39
Simulink/gpCallback.m Normal file
View file

@ -0,0 +1,39 @@
classdef gpCallback < casadi.Callback
properties
model
end
methods
function self = gpCallback(name)
self@casadi.Callback();
construct(self, name, struct('enable_fd', true));
end
% Number of inputs and outputs
function v=get_n_in(self)
v=1;
end
function v=get_n_out(self)
v=1;
end
% Function sparsity
function v=get_sparsity_in(self, i)
v=casadi.Sparsity.dense(7, 1);
end
% Initialize the object
function init(self)
disp('initializing gpCallback')
gpr = load('gpr_model.mat', 'model');
self.model = gpr.model;
end
% Evaluate numerically
function arg = eval(self, arg)
x = full(arg{1});
% Transpose x since gp predictor takes row by row, and casadi gives
% colum by column
[mean, ~] = predict(self.model, x');
arg = {mean};
end
end
end

150
Simulink/gp_mpc_system.m Normal file
View file

@ -0,0 +1,150 @@
classdef gp_mpc_system < matlab.System & matlab.system.mixin.Propagates
% untitled Add summary here
%
% This template includes the minimum set of functions required
% to define a System object with discrete state.
properties
% Control horizon
N = 0;
% Time Step
TimeStep = 0;
% Max Electrical Power Consumption
Pel = 6300;
end
properties (DiscreteState)
end
properties (Access = private)
% Pre-computed constants.
casadi_solver
u_lags
y_lags
lbx
ubx
end
methods (Access = protected)
function num = getNumInputsImpl(~)
num = 2;
end
function num = getNumOutputsImpl(~)
num = 1;
end
function dt1 = getOutputDataTypeImpl(~)
dt1 = 'double';
end
function [dt1, dt2] = getInputDataTypeImpl(~)
dt1 = 'double';
dt2 = 'double';
end
function sz1 = getOutputSizeImpl(~)
sz1 = 1;
end
function sz1 = getInputSizeImpl(~)
sz1 = 1;
end
function cp1 = isInputComplexImpl(~)
cp1 = false;
end
function cp1 = isOutputComplexImpl(~)
cp1 = false;
end
function fz1 = isInputFixedSizeImpl(~)
fz1 = true;
end
function fz1 = isOutputFixedSizeImpl(~)
fz1 = true;
end
function setupImpl(obj,~,~)
% Implement tasks that need to be performed only once,
% such as pre-computed constants.
addpath('/home/radu/Media/MATLAB/casadi-linux-matlabR2014b-v3.5.5')
import casadi.*
% Initialize CasADi callback
cs_model = gpCallback('model');
% Set up problem variables
T_set = 20;
n_states = 7;
COP = 5; %cooling
EER = 5; %heating
obj.u_lags = [0];
obj.y_lags = [23 23 23];
% Formulate the optimization problem
J = 0; % optimization objective
g = []; % constraints vector
% Set up the symbolic variables
U = MX.sym('U', obj.N, 1);
W = MX.sym('W', obj.N, 2);
x0 = MX.sym('x0', 1, n_states - 3);
% setup the first state
wk = W(1, :);
uk = U(1); % scaled input
xk = [wk, obj.Pel*uk, x0];
yk = cs_model(xk);
J = J + (yk - T_set).^2;
% Setup the rest of the states
for idx = 2:obj.N
wk = W(idx, :);
uk_1 = uk; uk = U(idx);
xk = [wk, obj.Pel*uk, obj.Pel*uk_1, yk, xk(5:6)];
yk = cs_model(xk);
J = J + (yk - T_set).^2;
end
p = [vec(W); vec(x0)];
nlp_prob = struct('f', J, 'x', vec(U), 'g', g, 'p', p);
opts = struct;
%opts.ipopt.max_iter = 5000;
opts.ipopt.max_cpu_time = 15 * 60;
opts.ipopt.hessian_approximation = 'limited-memory';
%opts.ipopt.print_level =0;%0,3
opts.print_time = 0;
opts.ipopt.acceptable_tol =1e-8;
opts.ipopt.acceptable_obj_change_tol = 1e-6;
solver = nlpsol('solver', 'ipopt', nlp_prob,opts);
obj.casadi_solver = solver;
obj.lbx = -COP;
obj.ubx = EER;
end
function u = stepImpl(obj,x,w)
import casadi.*
%Update the y lags
obj.y_lags = [x, obj.y_lags(1:end-1)];
real_p = vertcat(vec(DM(w)), vec(DM([obj.u_lags obj.y_lags])));
disp("Starting optimization")
tic
%res = obj.casadi_solver('p', real_p, 'ubx', obj.ubx, 'lbx', obj.lbx);
t = toc;
disp(t)
u = obj.Pel * full(res.x(1));
% Update the u lags
obj.u_lags = [u, obj.u_lags(2:end-1)];
end
function resetImpl(obj)
% Initialize discrete-state properties.
end
end
end

BIN
Simulink/gpr_model.mat Normal file

Binary file not shown.

View file

@ -0,0 +1,177 @@
classdef casadi_block < matlab.System & matlab.system.mixin.Propagates
% untitled Add summary here
%
% This template includes the minimum set of functions required
% to define a System object with discrete state.
properties
% Public, tunable properties.
end
properties (DiscreteState)
end
properties (Access = private)
% Pre-computed constants.
casadi_solver
x0
lbx
ubx
lbg
ubg
end
methods (Access = protected)
function num = getNumInputsImpl(~)
num = 2;
end
function num = getNumOutputsImpl(~)
num = 1;
end
function dt1 = getOutputDataTypeImpl(~)
dt1 = 'double';
end
function dt1 = getInputDataTypeImpl(~)
dt1 = 'double';
end
function sz1 = getOutputSizeImpl(~)
sz1 = [1,1];
end
function sz1 = getInputSizeImpl(~)
sz1 = [1,1];
end
function cp1 = isInputComplexImpl(~)
cp1 = false;
end
function cp1 = isOutputComplexImpl(~)
cp1 = false;
end
function fz1 = isInputFixedSizeImpl(~)
fz1 = true;
end
function fz1 = isOutputFixedSizeImpl(~)
fz1 = true;
end
function setupImpl(obj,~,~)
% Implement tasks that need to be performed only once,
% such as pre-computed constants.
import casadi.*
T = 10; % Time horizon
N = 20; % number of control intervals
% Declare model variables
x1 = SX.sym('x1');
x2 = SX.sym('x2');
x = [x1; x2];
u = SX.sym('u');
% Model equations
xdot = [(1-x2^2)*x1 - x2 + u; x1];
% Objective term
L = x1^2 + x2^2 + u^2;
% Continuous time dynamics
f = casadi.Function('f', {x, u}, {xdot, L});
% Formulate discrete time dynamics
% Fixed step Runge-Kutta 4 integrator
M = 4; % RK4 steps per interval
DT = T/N/M;
f = Function('f', {x, u}, {xdot, L});
X0 = MX.sym('X0', 2);
U = MX.sym('U');
X = X0;
Q = 0;
for j=1:M
[k1, k1_q] = f(X, U);
[k2, k2_q] = f(X + DT/2 * k1, U);
[k3, k3_q] = f(X + DT/2 * k2, U);
[k4, k4_q] = f(X + DT * k3, U);
X=X+DT/6*(k1 +2*k2 +2*k3 +k4);
Q = Q + DT/6*(k1_q + 2*k2_q + 2*k3_q + k4_q);
end
F = Function('F', {X0, U}, {X, Q}, {'x0','p'}, {'xf', 'qf'});
% Start with an empty NLP
w={};
w0 = [];
lbw = [];
ubw = [];
J = 0;
g={};
lbg = [];
ubg = [];
% "Lift" initial conditions
X0 = MX.sym('X0', 2);
w = {w{:}, X0};
lbw = [lbw; 0; 1];
ubw = [ubw; 0; 1];
w0 = [w0; 0; 1];
% Formulate the NLP
Xk = X0;
for k=0:N-1
% New NLP variable for the control
Uk = MX.sym(['U_' num2str(k)]);
w = {w{:}, Uk};
lbw = [lbw; -1];
ubw = [ubw; 1];
w0 = [w0; 0];
% Integrate till the end of the interval
Fk = F('x0', Xk, 'p', Uk);
Xk_end = Fk.xf;
J=J+Fk.qf;
% New NLP variable for state at end of interval
Xk = MX.sym(['X_' num2str(k+1)], 2);
w = {w{:}, Xk};
lbw = [lbw; -0.25; -inf];
ubw = [ubw; inf; inf];
w0 = [w0; 0; 0];
% Add equality constraint
g = {g{:}, Xk_end-Xk};
lbg = [lbg; 0; 0];
ubg = [ubg; 0; 0];
end
% Create an NLP solver
prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));
options = struct('ipopt',struct('print_level',0),'print_time',false);
solver = nlpsol('solver', 'ipopt', prob, options);
obj.casadi_solver = solver;
obj.x0 = w0;
obj.lbx = lbw;
obj.ubx = ubw;
obj.lbg = lbg;
obj.ubg = ubg;
end
function u = stepImpl(obj,x,t)
disp(t)
tic
w0 = obj.x0;
lbw = obj.lbx;
ubw = obj.ubx;
solver = obj.casadi_solver;
lbw(1:2) = x;
ubw(1:2) = x;
sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,...
'lbg', obj.lbg, 'ubg', obj.ubg);
u = full(sol.x(3));
toc
end
function resetImpl(obj)
% Initialize discrete-state properties.
end
end
end

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
Simulink/polydome_mpc.slx Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
Simulink/test.mat Normal file

Binary file not shown.

View file

@ -0,0 +1,10 @@
clear all
close all
clc
%%%%%%%%%%%%%%%%
%% Load the existing GP
addpath("../../Gaussiandome/Identification/Computation results/")
load("Identification_Validation.mat")
load("Gaussian_Process_models.mat")

View file

@ -0,0 +1,79 @@
classdef weather_predictor < matlab.System
% untitled Add summary here
%
% This template includes the minimum set of functions required
% to define a System object with discrete state.
% Public, tunable properties
properties
end
% Public, tunable properties
properties(Nontunable)
TimeStep = 0;
N = 0;
end
properties(DiscreteState)
end
% Pre-computed constants
properties(Access = private)
end
methods(Access = protected)
function num = getNumInputsImpl(~)
num = 2;
end
function num = getNumOutputsImpl(~)
num = 1;
end
function dt1 = getOutputDataTypeImpl(~)
dt1 = 'double';
end
function [dt1, dt2] = getInputDataTypeImpl(~)
dt1 = 'double';
dt2 = 'double';
end
function sz1 = getOutputSizeImpl(obj)
sz1 = [obj.N 2];
end
function sz1 = getInputSizeImpl(~)
sz1 = 1;
end
function cp1 = isInputComplexImpl(~)
cp1 = false;
end
function cp1 = isOutputComplexImpl(~)
cp1 = false;
end
function fz1 = isInputFixedSizeImpl(~)
fz1 = true;
end
function fz1 = isOutputFixedSizeImpl(~)
fz1 = true;
end
function setupImpl(~, ~, ~)
disp('Hello World')
% Perform one-time calculations, such as computing constants
end
function w = stepImpl(obj,wdb_mat,timestamp)
disp(timestamp)
% Implement algorithm. Calculate y as a function of input u and
% discrete states.
curr_idx = find(wdb_mat(:, 1) == timestamp);
N_idx = (1:obj.N) + curr_idx;
w = [wdb_mat(N_idx, 18) + wdb_mat(N_idx, 19), wdb_mat(N_idx, 7)];
end
function resetImpl(obj)
% Initialize / reset discrete-state properties
end
end
end

View file

@ -0,0 +1,8 @@
function w = weather_predictor2(wdb_mat,timestamp, N)
%WEATHER_PREDICTOR2 Summary of this function goes here
% Detailed explanation goes here
curr_idx = find(wdb_mat(:, 1) == timestamp);
N_idx = (1:N) + curr_idx;
w = [wdb_mat(N_idx, 18) + wdb_mat(N_idx, 19), wdb_mat(N_idx, 7)];
end