MATLAB/Simulink code update
This commit is contained in:
parent
d2179071db
commit
d6b69acb17
28 changed files with 956 additions and 266 deletions
225
Matlab_scripts/MPCforSonja/MPCcasadi_v1_0.m
Normal file
225
Matlab_scripts/MPCforSonja/MPCcasadi_v1_0.m
Normal file
|
@ -0,0 +1,225 @@
|
|||
classdef MPCcasadi_v1_0 < matlab.System
|
||||
|
||||
% Public, tunable properties
|
||||
properties(Nontunable)
|
||||
TimeStep = 0; % Time step MPC
|
||||
N = 0; % Planning and control horizon N
|
||||
R = 1; % Weights for control cost R
|
||||
T = 1; % Weights for slack variable for output constraints T
|
||||
nState = 0; % Number of states X
|
||||
nOut = 0; % Number of outputs Y
|
||||
nIn = 0; % Number of controlled inputs U
|
||||
nDst = 0; % Number of disturbance inputs
|
||||
A = 0; % A
|
||||
Bd = 0; % Bd (disturbance)
|
||||
Bu = 0; % Bu (control)
|
||||
C = 0; % C
|
||||
D = 0; % D
|
||||
uMin = 0; % Lower control constraints uMin
|
||||
uMax = 0; % Upper control constraints uMax
|
||||
yMin = 0; % Lower output constraints yMin
|
||||
yMax = 0; % Upper output constraints yMax
|
||||
end
|
||||
|
||||
properties(DiscreteState)
|
||||
|
||||
end
|
||||
|
||||
% Pre-computed constants
|
||||
properties(Access = private)
|
||||
casadi_solver
|
||||
lbg
|
||||
ubg
|
||||
end
|
||||
|
||||
methods(Access = protected)
|
||||
function sts = getSampleTimeImpl(obj)
|
||||
sts = createSampleTime(obj, 'Type', 'Controllable', 'TickTime', obj.TimeStep); % Time step
|
||||
end
|
||||
|
||||
function num = getNumInputsImpl(~) % Number of inputs
|
||||
num = 4;
|
||||
end
|
||||
function num = getNumOutputsImpl(~) % Number of outputs
|
||||
num = 5;
|
||||
end
|
||||
function [dt1, dt2, dt3, dt4, dt5] = getOutputDataTypeImpl(~) % Output data type
|
||||
dt1 = 'double';
|
||||
dt2 = 'double';
|
||||
dt3 = 'double';
|
||||
dt4 = 'double';
|
||||
dt5 = 'double';
|
||||
end
|
||||
function dt1 = getInputDataTypeImpl(~) % Input data type
|
||||
dt1 = 'double';
|
||||
end
|
||||
function [sz1, sz2, sz3, sz4, sz5] = getOutputSizeImpl(obj) % OUtput dimensions
|
||||
sz1 = [1, obj.nIn]; % mv
|
||||
sz2 = [obj.N+1, obj.nState]; % xStar
|
||||
sz3 = [obj.N, obj.nOut]; % sStar
|
||||
sz4 = [obj.N, obj.nIn]; % uStar
|
||||
sz5 = [1, obj.nOut]; % yStarOut
|
||||
end
|
||||
function [sz1, sz2, sz3, sz4] = getInputSizeImpl(obj) % Input dimensions
|
||||
sz1 = [obj.nState, 1]; % xHat
|
||||
sz2 = [obj.N, obj.nDst]; % disturbances
|
||||
sz3 = [obj.N, 1]; % elec price
|
||||
sz4 = [1, 1]; % on
|
||||
end
|
||||
function cp1 = isInputComplexImpl(~) % Inputs are complex numbers?
|
||||
cp1 = false;
|
||||
end
|
||||
function [cp1, cp2, cp3, cp4, cp5] = isOutputComplexImpl(~) % Outputs are complex numbers?
|
||||
cp1 = false;
|
||||
cp2 = false;
|
||||
cp3 = false;
|
||||
cp4 = false;
|
||||
cp5 = false;
|
||||
end
|
||||
function fz1 = isInputFixedSizeImpl(~) % Input fixed size?
|
||||
fz1 = true;
|
||||
end
|
||||
function [fz1, fz2, fz3, fz4, fz5] = isOutputFixedSizeImpl(~) % Output fixed size?
|
||||
fz1 = true;
|
||||
fz2 = true;
|
||||
fz3 = true;
|
||||
fz4 = true;
|
||||
fz5 = true;
|
||||
end
|
||||
|
||||
function setupImpl(obj)
|
||||
% Perform one-time calculations, such as computing constants
|
||||
import casadi.*
|
||||
|
||||
%% Parameters
|
||||
nState = obj.nState;
|
||||
nIn = obj.nIn;
|
||||
nOut = obj.nOut;
|
||||
nDst = obj.nDst;
|
||||
N = obj.N;
|
||||
R = obj.R;
|
||||
T = obj.T;
|
||||
A = obj.A;
|
||||
Bd = obj.Bd;
|
||||
Bu = obj.Bu;
|
||||
C = obj.C;
|
||||
D = obj.D;
|
||||
|
||||
%% Prepare variables
|
||||
U = MX.sym('U', nIn, N);
|
||||
P = MX.sym('P', nState + N + nDst*N); % Initial values, costElec, disturbances
|
||||
X = MX.sym('X', nState, (N+1));
|
||||
S = MX.sym('S', nOut, N); % First state free
|
||||
|
||||
J = 0; % Objective function
|
||||
g = []; % constraints vector
|
||||
|
||||
%% P indices
|
||||
iX0 = [1:nState];
|
||||
iCoEl = [nState+1:nState+N];
|
||||
iDist = [nState+N+1:nState+N+nDst*N];
|
||||
|
||||
%% Disassemble P
|
||||
pX0 = P(iX0);
|
||||
pCoEl = P(iCoEl);
|
||||
pDist = reshape(P(iDist), [nDst N]); % Prone to shaping error
|
||||
|
||||
%% Define variables
|
||||
states = MX.sym('states', nState);
|
||||
controls = MX.sym('controls', nIn);
|
||||
disturbances = MX.sym('disturbances', nDst);
|
||||
|
||||
%% Dynamics
|
||||
f = Function('f',{P, states, controls, disturbances},{A*states + Bu*controls + Bd*disturbances});
|
||||
|
||||
%% Compile all constraints
|
||||
g = [g; X(:,1) - pX0];
|
||||
|
||||
for i = 1:N
|
||||
g = [g; C*X(:,i+1) - S(:,i)]; % State/output constraints, first state free
|
||||
g = [g; U(:,i)]; % Control constraints
|
||||
g = [g; X(:,i+1) - f(P, X(:,i), U(:,i), pDist(:,i))]; % System dynamics
|
||||
|
||||
% Cost function, first state given -> not punished
|
||||
J = J + R * U(:,i) * pCoEl(i) + S(:,i)'*T*S(:,i);
|
||||
end
|
||||
|
||||
%% Reshape variables
|
||||
OPT_variables = veccat(X, S, U);
|
||||
|
||||
%% Optimization
|
||||
nlp_mhe = struct('f', J, ...
|
||||
'x', OPT_variables, ...
|
||||
'g', g, ...
|
||||
'p', P);
|
||||
|
||||
opts = struct;
|
||||
opts.ipopt.print_level = 0; %5;
|
||||
solver = nlpsol('solver', 'ipopt', nlp_mhe, opts);
|
||||
|
||||
%% Pack opj
|
||||
obj.casadi_solver = solver;
|
||||
|
||||
end
|
||||
|
||||
function [mv, xStar, sStar, uStar, yStarOut] = stepImpl(obj, xHat, dist, cE, on)
|
||||
% Implement algorithm. Calculate y as a function of input u and
|
||||
% discrete states.
|
||||
if on > 0.5
|
||||
%% Parameters
|
||||
nState = obj.nState;
|
||||
N = obj.N;
|
||||
nOut = obj.nOut;
|
||||
nDst = obj.nDst;
|
||||
nIn = obj.nIn;
|
||||
yMin = obj.yMin;
|
||||
yMax = obj.yMax;
|
||||
uMin = obj.uMin;
|
||||
uMax = obj.uMax;
|
||||
C = obj.C;
|
||||
solver = obj.casadi_solver;
|
||||
Pdata = [xHat; cE; reshape(dist', [nDst*N, 1])]; % Prone to shaping error!!!
|
||||
|
||||
%% Constraints
|
||||
lbg = zeros(nState,1); % x0 constraints
|
||||
ubg = zeros(nState,1);
|
||||
|
||||
% Output, control and dynamics constraints
|
||||
for i = 1:N
|
||||
lbg = [lbg; yMin];
|
||||
lbg = [lbg; uMin];
|
||||
lbg = [lbg; zeros(nState,1)];
|
||||
|
||||
ubg = [ubg; yMax];
|
||||
ubg = [ubg; uMax];
|
||||
ubg = [ubg; zeros(nState,1)];
|
||||
end
|
||||
|
||||
%% Solver
|
||||
sol = solver('x0', 0, ... % x0 = x* from before, shift one time step, double last time step
|
||||
'lbg', lbg, ...
|
||||
'ubg', ubg, ...
|
||||
'p', Pdata);
|
||||
|
||||
%% Outputs
|
||||
xStar = reshape(full(sol.x(1 :nState*(N+1))), [nState, (N+1)])';
|
||||
sStar = reshape(full(sol.x(nState*(N+1)+1 :nState*(N+1)+nOut*N)), [nOut, N])';
|
||||
uStar = reshape(full(sol.x(nState*(N+1)+nOut*N+1:end)), [nIn, N])';
|
||||
|
||||
mv = full(sol.x(nState*(N+1)+nOut*N+1:nState*(N+1)+nOut*N+nIn))';
|
||||
yStarOut = C*xStar(2,:)'; % Second value is the target
|
||||
|
||||
else % Zero output if MPC is disabled
|
||||
mv = zeros(1, obj.nIn);
|
||||
xStar = zeros(obj.N+1, obj.nState);
|
||||
uStar = zeros(obj.N, obj.nIn);
|
||||
sStar = zeros(obj.N, obj.nOut);
|
||||
yStarOut = zeros(1, obj.nOut);
|
||||
end % \if on
|
||||
end % \stepImpl
|
||||
|
||||
function resetImpl(obj)
|
||||
% Initialize / reset discrete-state properties
|
||||
end
|
||||
end
|
||||
end
|
BIN
Matlab_scripts/MPCforSonja/MPCsimulink.slx
Normal file
BIN
Matlab_scripts/MPCforSonja/MPCsimulink.slx
Normal file
Binary file not shown.
30
Matlab_scripts/MPCforSonja/setupMPCcasadi_v1_0.m
Normal file
30
Matlab_scripts/MPCforSonja/setupMPCcasadi_v1_0.m
Normal file
|
@ -0,0 +1,30 @@
|
|||
|
||||
|
||||
%% Settings
|
||||
TimeStep = 900; % Step time
|
||||
nHor = 4*24; % Length of ontrol and planning horizon
|
||||
%tSmp = 0:TimeStep:nHor*TimeStep-1;
|
||||
|
||||
nStt = 1; % Number of states
|
||||
chY = 1; % Number of observed variables
|
||||
nDst = 1; % Number of disturbance variables
|
||||
nMV = 1; % Number of controlled variables
|
||||
|
||||
%% System matrices
|
||||
A = 1;
|
||||
B = [-1, 1]/(3000*4182/TimeStep);
|
||||
Bd = B(:, 1:nDst);
|
||||
Bu = B(:, nDst+1:end);
|
||||
C = 1;
|
||||
D = 0;
|
||||
|
||||
%% Constraints and normalization
|
||||
uMin = 0;
|
||||
uMax = 7500;
|
||||
yMin = 40;
|
||||
yMax = 50;
|
||||
|
||||
%% Weights
|
||||
R = 1/uMax/0.1;
|
||||
T = 1e5*eye(chY);
|
||||
|
86
Matlab_scripts/casadi_gp_mpc.m
Normal file
86
Matlab_scripts/casadi_gp_mpc.m
Normal file
|
@ -0,0 +1,86 @@
|
|||
clear all
|
||||
close all
|
||||
clc
|
||||
|
||||
%% Import CasADi
|
||||
addpath('/home/radu/Media/MATLAB/casadi-linux-matlabR2014b-v3.5.5')
|
||||
import casadi.*
|
||||
|
||||
load("gpr_model.mat")
|
||||
%% Initialize casadi callback
|
||||
cs_model = gpCallback('model');
|
||||
|
||||
T_set = 20;
|
||||
N_horizon = 5;
|
||||
n_states = 7;
|
||||
|
||||
|
||||
COP = 5; %cooling
|
||||
EER = 5; %heating
|
||||
Pel = 6300; % Electric Power Consumption of the HVAC
|
||||
|
||||
u_min = - COP * Pel;
|
||||
u_max = EER * Pel;
|
||||
|
||||
J = 0; % optimization objective
|
||||
g = []; % constraints vector
|
||||
|
||||
% Set up the symbolic variables
|
||||
U = MX.sym('U', N_horizon, 1);
|
||||
W = MX.sym('W', N_horizon, 2);
|
||||
x0 = MX.sym('x0', 1, n_states - 3);
|
||||
|
||||
% setup the first state
|
||||
wk = W(1, :);
|
||||
uk = U(1); % scaled input
|
||||
xk = [wk, Pel*uk, x0];
|
||||
yk = cs_model(xk);
|
||||
J = J + (yk - T_set).^2;
|
||||
|
||||
% Setup the rest of the states
|
||||
for idx = 2:N_horizon
|
||||
wk = W(idx, :);
|
||||
uk_1 = uk; uk = U(idx);
|
||||
xk = [wk, Pel*uk, Pel*uk_1, yk, xk(5:6)];
|
||||
yk = cs_model(xk);
|
||||
J = J + (yk - T_set).^2;
|
||||
end
|
||||
|
||||
p = [vec(W); vec(x0)];
|
||||
|
||||
nlp_prob = struct('f', J, 'x', vec(U), 'g', g, 'p', p);
|
||||
|
||||
opts = struct;
|
||||
%opts.ipopt.max_iter = 5000;
|
||||
opts.ipopt.max_cpu_time = 15*60;
|
||||
opts.ipopt.hessian_approximation = 'limited-memory';
|
||||
%opts.ipopt.print_level =1;%0,3
|
||||
opts.print_time = 0;
|
||||
opts.ipopt.acceptable_tol =1e-8;
|
||||
opts.ipopt.acceptable_obj_change_tol = 1e-6;
|
||||
|
||||
solver = nlpsol('solver', 'ipopt', nlp_prob,opts);
|
||||
|
||||
real_x0 = [0, 23, 23, 23];
|
||||
real_W = [[57.9261000000000;54.9020333333334;73.8607000000000;76.0425333333333;64.9819666666667], [22; 22; 22; 22; 22]];
|
||||
|
||||
real_p = vertcat(vec(DM(real_W)), vec(DM(real_x0)));
|
||||
|
||||
|
||||
res = solver('p', real_p, 'ubx', EER, 'lbx', -COP);
|
||||
%% Interpret the optimization result
|
||||
x = Pel * full(res.x);
|
||||
X = [real_W, x, [real_x0; zeros(N_horizon -1, size(real_x0, 2))]];
|
||||
|
||||
X(2:end, 4) = X(1:end-1, 3);
|
||||
|
||||
for idx=2:N_horizon
|
||||
X(idx, 5) = full(cs_model(X(idx - 1, :)));
|
||||
X(idx, 6:7) = X(idx - 1, 5:6);
|
||||
end
|
||||
T_horizon = cs_model(X');
|
||||
|
||||
|
||||
figure; hold on;
|
||||
plot(1:N_horizon, full(T_horizon));
|
||||
plot(1:N_horizon, T_set*ones(1, N_horizon));
|
39
Matlab_scripts/gpCallback.m
Normal file
39
Matlab_scripts/gpCallback.m
Normal file
|
@ -0,0 +1,39 @@
|
|||
classdef gpCallback < casadi.Callback
|
||||
properties
|
||||
model
|
||||
end
|
||||
methods
|
||||
function self = gpCallback(name)
|
||||
self@casadi.Callback();
|
||||
construct(self, name, struct('enable_fd', true));
|
||||
end
|
||||
|
||||
% Number of inputs and outputs
|
||||
function v=get_n_in(self)
|
||||
v=1;
|
||||
end
|
||||
function v=get_n_out(self)
|
||||
v=1;
|
||||
end
|
||||
% Function sparsity
|
||||
function v=get_sparsity_in(self, i)
|
||||
v=casadi.Sparsity.dense(7, 1);
|
||||
end
|
||||
|
||||
% Initialize the object
|
||||
function init(self)
|
||||
disp('initializing gpCallback')
|
||||
gpr = load('gpr_model.mat', 'model');
|
||||
self.model = gpr.model;
|
||||
end
|
||||
|
||||
% Evaluate numerically
|
||||
function arg = eval(self, arg)
|
||||
x = full(arg{1});
|
||||
% Transpose x since gp predictor takes row by row, and casadi gives
|
||||
% colum by column
|
||||
[mean, ~] = predict(self.model, x');
|
||||
arg = {mean};
|
||||
end
|
||||
end
|
||||
end
|
83
Matlab_scripts/gp_casadi_test.m
Normal file
83
Matlab_scripts/gp_casadi_test.m
Normal file
|
@ -0,0 +1,83 @@
|
|||
clear all
|
||||
close all
|
||||
clc
|
||||
%%%%%%%%%%%%
|
||||
addpath('/home/radu/Media/MATLAB/casadi-linux-matlabR2014b-v3.5.5')
|
||||
import casadi.*
|
||||
|
||||
%% Generate GP data
|
||||
size = 500; n_samples = 15;
|
||||
X = linspace(-2, 2, size);
|
||||
Y = 3 * X .^2;
|
||||
|
||||
% Add noise to the output
|
||||
mean = 0; std = 0.5;
|
||||
noise = mean + std.*randn(1, n_samples);
|
||||
|
||||
idx_samples = randperm(size, n_samples);
|
||||
|
||||
X_sampled = X(idx_samples);
|
||||
Y_sampled = Y(idx_samples);
|
||||
|
||||
Y_sampled = Y_sampled + noise;
|
||||
|
||||
figure; hold on;
|
||||
plot(X, Y);
|
||||
scatter(X_sampled, Y_sampled);
|
||||
|
||||
tbl_gpr_in = array2table([X_sampled', Y_sampled']);
|
||||
tbl_gpr_in.Properties.VariableNames = {'X', 'Y'};
|
||||
|
||||
tic;
|
||||
model = fitrgp(tbl_gpr_in, 'Y', 'KernelFunction', 'ardsquaredexponential', ...
|
||||
'FitMethod', 'sr', 'PredictMethod', 'fic', 'Standardize', 1);
|
||||
toc;
|
||||
|
||||
%% Predict stuff
|
||||
[yhat_test, sigma_test] = predict(model, X');
|
||||
std_test = sqrt(sigma_test);
|
||||
|
||||
% prepare it for the fill function
|
||||
x_ax = X';
|
||||
X_plot = [x_ax; flip(x_ax)];
|
||||
Y_plot = [yhat_test-1.96.*std_test; flip(yhat_test+1.96.*std_test)];
|
||||
|
||||
% plot a line + confidence bands
|
||||
figure(); hold on;
|
||||
title("GP performance on test data");
|
||||
plot(x_ax, Y, 'red', 'LineWidth', 1.2);
|
||||
plot(x_ax, yhat_test, 'blue', 'LineWidth', 1.2)
|
||||
fill(X_plot, Y_plot , 1,....
|
||||
'facecolor','blue', ...
|
||||
'edgecolor','none', ...
|
||||
'facealpha', 0.3);
|
||||
legend({'data','prediction_mean', '95% confidence'},'Location','Best');
|
||||
hold off
|
||||
|
||||
%% Save the model
|
||||
save('test_gpr_model.mat', 'model')
|
||||
|
||||
%% CasADi optimization problem
|
||||
cs_model = test_gpCallback('model');
|
||||
cs_x = MX.sym('x');
|
||||
cs_y = 2 * cs_model(cs_x) + 5;
|
||||
f = Function('f', {cs_x}, {cs_y});
|
||||
|
||||
|
||||
nlp_prob = struct('f', f(cs_x), 'x', cs_x);
|
||||
|
||||
|
||||
opts = struct;
|
||||
opts.ipopt.max_iter = 2000;
|
||||
opts.ipopt.hessian_approximation = 'limited-memory';
|
||||
%opts.ipopt.print_level =1;%0,3
|
||||
opts.print_time = 0;
|
||||
opts.ipopt.acceptable_tol =1e-8;
|
||||
opts.ipopt.acceptable_obj_change_tol = 1e-6;
|
||||
|
||||
solver = nlpsol('solver', 'ipopt', nlp_prob,opts);
|
||||
|
||||
res = solver('lbx', -2, 'ubx', 2);
|
||||
|
||||
res
|
||||
|
71
Matlab_scripts/gp_identification.m
Normal file
71
Matlab_scripts/gp_identification.m
Normal file
|
@ -0,0 +1,71 @@
|
|||
clear all
|
||||
close all
|
||||
clc
|
||||
%%%%%%%%%%%
|
||||
|
||||
load("gpr_carnot.mat");
|
||||
|
||||
%% Format the train/test data arrays
|
||||
tbl_gpr_train = array2table(gpr_train);
|
||||
tbl_gpr_train.Properties.VariableNames = cellstr(table_cols);
|
||||
tbl_gpr_train = removevars(tbl_gpr_train,{'u'});
|
||||
tbl_gpr_train_x = removevars(tbl_gpr_train, {'y'});
|
||||
|
||||
tbl_gpr_test = array2table(gpr_test);
|
||||
tbl_gpr_test.Properties.VariableNames = cellstr(table_cols);
|
||||
tbl_gpr_test = removevars(tbl_gpr_test,{'u'});
|
||||
tbl_gpr_test_x = removevars(tbl_gpr_test, {'y'});
|
||||
|
||||
|
||||
|
||||
%% Train the GP model
|
||||
OutputName = 'y';
|
||||
|
||||
tic;
|
||||
model = fitrgp(tbl_gpr_train, OutputName, 'KernelFunction', 'ardsquaredexponential', ...
|
||||
'FitMethod', 'sr', 'PredictMethod', 'fic', 'Standardize', 1);
|
||||
toc;
|
||||
%% Validate the model using training data
|
||||
[yhat_train, sigma_train] = predict(model, tbl_gpr_train_x);
|
||||
std_train = sqrt(sigma_train);
|
||||
|
||||
% prepare it for the fill function
|
||||
x_ax = (1:size(tbl_gpr_train, 1))';
|
||||
X_plot = [x_ax; flip(x_ax)];
|
||||
Y_plot = [yhat_train-1.96.*std_train; flip(yhat_train+1.96.*std_train)];
|
||||
|
||||
% plot a line + confidence bands
|
||||
figure(); hold on;
|
||||
title("GP performance on training data");
|
||||
plot(x_ax, tbl_gpr_train.y, 'red', 'LineWidth', 1.2);
|
||||
plot(x_ax, yhat_train, 'blue', 'LineWidth', 1.2)
|
||||
fill(X_plot, Y_plot , 1,....
|
||||
'facecolor','blue', ...
|
||||
'edgecolor','none', ...
|
||||
'facealpha', 0.3);
|
||||
legend({'data','prediction_mean', '95% confidence'},'Location','Best');
|
||||
hold off
|
||||
|
||||
%% Validate the model using test data
|
||||
[yhat_test, sigma_test] = predict(model, tbl_gpr_test_x);
|
||||
std_test = sqrt(sigma_test);
|
||||
|
||||
% prepare it for the fill function
|
||||
x_ax = (1:size(tbl_gpr_test, 1))';
|
||||
X_plot = [x_ax; flip(x_ax)];
|
||||
Y_plot = [yhat_test-1.96.*std_test; flip(yhat_test+1.96.*std_test)];
|
||||
|
||||
% plot a line + confidence bands
|
||||
figure(); hold on;
|
||||
title("GP performance on test data");
|
||||
plot(x_ax, tbl_gpr_test.y, 'red', 'LineWidth', 1.2);
|
||||
plot(x_ax, yhat_test, 'blue', 'LineWidth', 1.2)
|
||||
fill(X_plot, Y_plot , 1,....
|
||||
'facecolor','blue', ...
|
||||
'edgecolor','none', ...
|
||||
'facealpha', 0.3);
|
||||
legend({'data','prediction_mean', '95% confidence'},'Location','Best');
|
||||
hold off
|
||||
|
||||
%% Export the final GP model
|
||||
save('gpr_model.mat', 'model')
|
BIN
Matlab_scripts/gpr_carnot.mat
Normal file
BIN
Matlab_scripts/gpr_carnot.mat
Normal file
Binary file not shown.
BIN
Matlab_scripts/gpr_model.mat
Normal file
BIN
Matlab_scripts/gpr_model.mat
Normal file
Binary file not shown.
39
Matlab_scripts/test_gpCallback.m
Normal file
39
Matlab_scripts/test_gpCallback.m
Normal file
|
@ -0,0 +1,39 @@
|
|||
classdef test_gpCallback < casadi.Callback
|
||||
properties
|
||||
model
|
||||
end
|
||||
methods
|
||||
function self = test_gpCallback(name)
|
||||
self@casadi.Callback();
|
||||
construct(self, name, struct('enable_fd', true));
|
||||
end
|
||||
|
||||
% Number of inputs and outputs
|
||||
function v=get_n_in(self)
|
||||
v=1;
|
||||
end
|
||||
function v=get_n_out(self)
|
||||
v=1;
|
||||
end
|
||||
% Function sparsity
|
||||
function v=get_sparsity_in(self, i)
|
||||
v=casadi.Sparsity.dense(1, 1);
|
||||
end
|
||||
|
||||
% Initialize the object
|
||||
function init(self)
|
||||
disp('initializing gpCallback')
|
||||
gpr = load('test_gpr_model.mat', 'model');
|
||||
self.model = gpr.model;
|
||||
end
|
||||
|
||||
% Evaluate numerically
|
||||
function arg = eval(self, arg)
|
||||
x = full(arg{1});
|
||||
% Transpose x since gp predictor takes row inputs, and casadi gives
|
||||
% colum by column
|
||||
[mean, ~] = predict(self.model, x');
|
||||
arg = {mean};
|
||||
end
|
||||
end
|
||||
end
|
BIN
Matlab_scripts/test_gpr_model.mat
Normal file
BIN
Matlab_scripts/test_gpr_model.mat
Normal file
Binary file not shown.
BIN
Simulink/Exp_CARNOT.mat
Normal file
BIN
Simulink/Exp_CARNOT.mat
Normal file
Binary file not shown.
BIN
Simulink/Exp_datasets_simid.sid
Normal file
BIN
Simulink/Exp_datasets_simid.sid
Normal file
Binary file not shown.
242
Simulink/Images/Exp1_simulation (1).svg
Normal file
242
Simulink/Images/Exp1_simulation (1).svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 96 KiB |
|
@ -133,14 +133,17 @@ classdef gp_mpc_system < matlab.System & matlab.system.mixin.Propagates
|
|||
real_p = vertcat(vec(DM(w)), vec(DM([obj.u_lags obj.y_lags])));
|
||||
disp("Starting optimization")
|
||||
tic
|
||||
%res = obj.casadi_solver('p', real_p, 'ubx', obj.ubx, 'lbx', obj.lbx);
|
||||
res = obj.casadi_solver('p', real_p, 'ubx', obj.ubx, 'lbx', obj.lbx);
|
||||
t = toc;
|
||||
disp(t)
|
||||
u = obj.Pel * full(res.x(1));
|
||||
u = 15000 * (20 - x);
|
||||
|
||||
% Update the u lags
|
||||
obj.u_lags = [u, obj.u_lags(2:end-1)];
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
||||
function resetImpl(obj)
|
||||
|
|
|
@ -3,74 +3,58 @@ close all
|
|||
clc
|
||||
%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%% Load the experimental data
|
||||
exp_id = "Exp1";
|
||||
exp_path = strcat("../Data/Luca_experimental_data/", exp_id,".mat");
|
||||
wdb_path = strcat("../Data/Experimental_data_WDB/", exp_id, "_WDB.mat");
|
||||
|
||||
Exp_data = load(exp_path);
|
||||
load(wdb_path);
|
||||
|
||||
% Save the current WDB to the Simulink model import (since Carnot's input file is hardcoded)
|
||||
save('../Data/input_WDB.mat', 'Exp_WDB');
|
||||
|
||||
tin = Exp_WDB(:,1);
|
||||
|
||||
% The power trick: when the setpoint is larger than the actual temperature
|
||||
% the HVAC system is heating the room, otherwise it is cooling the room
|
||||
Setpoint = Exp_data.(exp_id).Setpoint.values;
|
||||
InsideTemp = mean([Exp_data.(exp_id).InsideTemp.values, Exp_data.(exp_id).LakeTemp.values], 2);
|
||||
OutsideTemp = Exp_data.(exp_id).OutsideTemp.values;
|
||||
|
||||
HVAC_COP = 3;
|
||||
Heating_coeff = sign(Setpoint - InsideTemp);
|
||||
Heating_coeff(Heating_coeff == -1) = -1 * HVAC_COP;
|
||||
|
||||
%% Set the run parameters
|
||||
|
||||
air_exchange_rate = tin;
|
||||
air_exchange_rate(:,2) = 1.0;
|
||||
|
||||
% Set the initial temperature to be the measured initial temperature
|
||||
t0 = Exp_data.(exp_id).InsideTemp.values(1);
|
||||
t0 = 23;
|
||||
|
||||
power = Exp_data.(exp_id).Power.values - 1.67 * 1000;
|
||||
runtime1 = 161400;
|
||||
runtime2 = 136200;
|
||||
runtime3 = 208200;
|
||||
runtime4 = 208200;
|
||||
runtime5 = 208200;
|
||||
runtime6 = 208200;
|
||||
runtime7 = 553800;
|
||||
|
||||
power = [tin Heating_coeff .* power];
|
||||
runtime = 24 * 3600;
|
||||
set_param('polydome', 'StopTime', int2str(runtime))
|
||||
Tsample = 900;
|
||||
steps = runtime/Tsample;
|
||||
tin = Tsample *(0:steps)';
|
||||
|
||||
prbs_sig = 2*prbs(8, steps+1)' - 1;
|
||||
COP = 5.0;
|
||||
Pel = 6300;
|
||||
|
||||
|
||||
% Turn down the air exchange rate when the HVAC is not running
|
||||
night_air_exchange_rate = 0.5;
|
||||
air_exchange_rate(abs(power(:, 2)) < 100, 2) = night_air_exchange_rate;
|
||||
power = [tin COP*Pel*prbs_sig(1:steps+1)];
|
||||
|
||||
%% Run the simulation
|
||||
% Note: The simlulink model loads the data separately, includes the
|
||||
% calculated solar position and radiations from pvlib
|
||||
load_system("polydome");
|
||||
set_param('polydome', 'StopTime', int2str(tin(end)));
|
||||
simout = sim("polydome");
|
||||
%% Simulate the model
|
||||
out = sim('polydome');
|
||||
|
||||
SimulatedTemp = simout.SimulatedTemp;
|
||||
%% Compare the simulation results with the measured values
|
||||
figure; hold on; grid minor;
|
||||
plot(tin, InsideTemp);
|
||||
plot(tin, OutsideTemp);
|
||||
plot(SimulatedTemp, 'LineWidth', 2);
|
||||
legend('InsideTemp', 'OutsideTemp', 'SimulatedTemp');
|
||||
%% For manual simulation running
|
||||
WeatherMeasurement = struct;
|
||||
WeatherMeasurement.data = squeeze(out.WeatherMeasurement.data)';
|
||||
WeatherMeasurement.time = out.WeatherMeasurement.time;
|
||||
|
||||
input = [power(:, 2:end) WeatherMeasurement.data];
|
||||
|
||||
x0=500;
|
||||
y0=300;
|
||||
width=1500;
|
||||
height=500;
|
||||
set(gcf,'position',[x0,y0,width,height]);
|
||||
title(exp_id);
|
||||
%title(sprintf('Night Air exchange rate %f', night_air_exchange_rate));
|
||||
Exp7_data = iddata(out.SimulatedTemp.data, input);
|
||||
|
||||
hold off;
|
||||
Exp7_table = array2table([input out.SimulatedTemp.data], 'VariableNames', {'Power', 'SolRad', 'OutsideTemp', 'SimulatedTemp'});
|
||||
|
||||
saveas(gcf, strcat(exp_id, '_simulation'), 'svg')
|
||||
writetable(Exp7_table, 'Exp7_table.csv')
|
||||
|
||||
%% Export simulated temperature to a .mat file for further use
|
||||
carnot_output_dir = strcat("../Data/CARNOT_output/",exp_id,"_carnot_temp.mat");
|
||||
save(carnot_output_dir, 'SimulatedTemp');
|
||||
%%
|
||||
save('Exp_CARNOT.mat', ...
|
||||
'Exp1_data', 'Exp1_table', ...
|
||||
'Exp2_data', 'Exp2_table', ...
|
||||
'Exp3_data', 'Exp3_table', ...
|
||||
'Exp4_data', 'Exp4_table', ...
|
||||
'Exp5_data', 'Exp5_table', ...
|
||||
'Exp6_data', 'Exp6_table', ...
|
||||
'Exp7_data', 'Exp7_table' ...
|
||||
)
|
||||
|
||||
data_train = merge(Exp1_data, Exp3_data, Exp5_data);
|
||||
data_test = merge(Exp2_data, Exp4_data, Exp6_data, Exp7_data);
|
||||
|
|
|
@ -1,177 +0,0 @@
|
|||
classdef casadi_block < matlab.System & matlab.system.mixin.Propagates
|
||||
% untitled Add summary here
|
||||
%
|
||||
% This template includes the minimum set of functions required
|
||||
% to define a System object with discrete state.
|
||||
|
||||
properties
|
||||
% Public, tunable properties.
|
||||
|
||||
end
|
||||
|
||||
properties (DiscreteState)
|
||||
end
|
||||
|
||||
properties (Access = private)
|
||||
% Pre-computed constants.
|
||||
casadi_solver
|
||||
x0
|
||||
lbx
|
||||
ubx
|
||||
lbg
|
||||
ubg
|
||||
end
|
||||
|
||||
methods (Access = protected)
|
||||
function num = getNumInputsImpl(~)
|
||||
num = 2;
|
||||
end
|
||||
function num = getNumOutputsImpl(~)
|
||||
num = 1;
|
||||
end
|
||||
function dt1 = getOutputDataTypeImpl(~)
|
||||
dt1 = 'double';
|
||||
end
|
||||
function dt1 = getInputDataTypeImpl(~)
|
||||
dt1 = 'double';
|
||||
end
|
||||
function sz1 = getOutputSizeImpl(~)
|
||||
sz1 = [1,1];
|
||||
end
|
||||
function sz1 = getInputSizeImpl(~)
|
||||
sz1 = [1,1];
|
||||
end
|
||||
function cp1 = isInputComplexImpl(~)
|
||||
cp1 = false;
|
||||
end
|
||||
function cp1 = isOutputComplexImpl(~)
|
||||
cp1 = false;
|
||||
end
|
||||
function fz1 = isInputFixedSizeImpl(~)
|
||||
fz1 = true;
|
||||
end
|
||||
function fz1 = isOutputFixedSizeImpl(~)
|
||||
fz1 = true;
|
||||
end
|
||||
function setupImpl(obj,~,~)
|
||||
% Implement tasks that need to be performed only once,
|
||||
% such as pre-computed constants.
|
||||
|
||||
import casadi.*
|
||||
|
||||
T = 10; % Time horizon
|
||||
N = 20; % number of control intervals
|
||||
|
||||
% Declare model variables
|
||||
x1 = SX.sym('x1');
|
||||
x2 = SX.sym('x2');
|
||||
x = [x1; x2];
|
||||
u = SX.sym('u');
|
||||
|
||||
% Model equations
|
||||
xdot = [(1-x2^2)*x1 - x2 + u; x1];
|
||||
|
||||
% Objective term
|
||||
L = x1^2 + x2^2 + u^2;
|
||||
|
||||
% Continuous time dynamics
|
||||
f = casadi.Function('f', {x, u}, {xdot, L});
|
||||
|
||||
% Formulate discrete time dynamics
|
||||
% Fixed step Runge-Kutta 4 integrator
|
||||
M = 4; % RK4 steps per interval
|
||||
DT = T/N/M;
|
||||
f = Function('f', {x, u}, {xdot, L});
|
||||
X0 = MX.sym('X0', 2);
|
||||
U = MX.sym('U');
|
||||
X = X0;
|
||||
Q = 0;
|
||||
for j=1:M
|
||||
[k1, k1_q] = f(X, U);
|
||||
[k2, k2_q] = f(X + DT/2 * k1, U);
|
||||
[k3, k3_q] = f(X + DT/2 * k2, U);
|
||||
[k4, k4_q] = f(X + DT * k3, U);
|
||||
X=X+DT/6*(k1 +2*k2 +2*k3 +k4);
|
||||
Q = Q + DT/6*(k1_q + 2*k2_q + 2*k3_q + k4_q);
|
||||
end
|
||||
F = Function('F', {X0, U}, {X, Q}, {'x0','p'}, {'xf', 'qf'});
|
||||
|
||||
% Start with an empty NLP
|
||||
w={};
|
||||
w0 = [];
|
||||
lbw = [];
|
||||
ubw = [];
|
||||
J = 0;
|
||||
g={};
|
||||
lbg = [];
|
||||
ubg = [];
|
||||
|
||||
% "Lift" initial conditions
|
||||
X0 = MX.sym('X0', 2);
|
||||
w = {w{:}, X0};
|
||||
lbw = [lbw; 0; 1];
|
||||
ubw = [ubw; 0; 1];
|
||||
w0 = [w0; 0; 1];
|
||||
|
||||
% Formulate the NLP
|
||||
Xk = X0;
|
||||
for k=0:N-1
|
||||
% New NLP variable for the control
|
||||
Uk = MX.sym(['U_' num2str(k)]);
|
||||
w = {w{:}, Uk};
|
||||
lbw = [lbw; -1];
|
||||
ubw = [ubw; 1];
|
||||
w0 = [w0; 0];
|
||||
|
||||
% Integrate till the end of the interval
|
||||
Fk = F('x0', Xk, 'p', Uk);
|
||||
Xk_end = Fk.xf;
|
||||
J=J+Fk.qf;
|
||||
|
||||
% New NLP variable for state at end of interval
|
||||
Xk = MX.sym(['X_' num2str(k+1)], 2);
|
||||
w = {w{:}, Xk};
|
||||
lbw = [lbw; -0.25; -inf];
|
||||
ubw = [ubw; inf; inf];
|
||||
w0 = [w0; 0; 0];
|
||||
|
||||
% Add equality constraint
|
||||
g = {g{:}, Xk_end-Xk};
|
||||
lbg = [lbg; 0; 0];
|
||||
ubg = [ubg; 0; 0];
|
||||
end
|
||||
|
||||
% Create an NLP solver
|
||||
prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));
|
||||
options = struct('ipopt',struct('print_level',0),'print_time',false);
|
||||
solver = nlpsol('solver', 'ipopt', prob, options);
|
||||
|
||||
obj.casadi_solver = solver;
|
||||
obj.x0 = w0;
|
||||
obj.lbx = lbw;
|
||||
obj.ubx = ubw;
|
||||
obj.lbg = lbg;
|
||||
obj.ubg = ubg;
|
||||
end
|
||||
|
||||
function u = stepImpl(obj,x,t)
|
||||
disp(t)
|
||||
tic
|
||||
w0 = obj.x0;
|
||||
lbw = obj.lbx;
|
||||
ubw = obj.ubx;
|
||||
solver = obj.casadi_solver;
|
||||
lbw(1:2) = x;
|
||||
ubw(1:2) = x;
|
||||
sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,...
|
||||
'lbg', obj.lbg, 'ubg', obj.ubg);
|
||||
|
||||
u = full(sol.x(3));
|
||||
toc
|
||||
end
|
||||
|
||||
function resetImpl(obj)
|
||||
% Initialize discrete-state properties.
|
||||
end
|
||||
end
|
||||
end
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
Simulink/polydome_python.slx
Normal file
BIN
Simulink/polydome_python.slx
Normal file
Binary file not shown.
|
@ -1,10 +0,0 @@
|
|||
clear all
|
||||
close all
|
||||
clc
|
||||
%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
%% Load the existing GP
|
||||
addpath("../../Gaussiandome/Identification/Computation results/")
|
||||
load("Identification_Validation.mat")
|
||||
load("Gaussian_Process_models.mat")
|
|
@ -29,17 +29,20 @@ classdef weather_predictor < matlab.System
|
|||
num = 2;
|
||||
end
|
||||
function num = getNumOutputsImpl(~)
|
||||
num = 1;
|
||||
num = 2;
|
||||
end
|
||||
function dt1 = getOutputDataTypeImpl(~)
|
||||
function [dt1, dt2] = getOutputDataTypeImpl(~)
|
||||
dt1 = 'double';
|
||||
dt2 = 'double';
|
||||
|
||||
end
|
||||
function [dt1, dt2] = getInputDataTypeImpl(~)
|
||||
dt1 = 'double';
|
||||
dt2 = 'double';
|
||||
end
|
||||
function sz1 = getOutputSizeImpl(obj)
|
||||
sz1 = [obj.N 2];
|
||||
function [sz1, sz2] = getOutputSizeImpl(obj)
|
||||
sz1 = [1 2];
|
||||
sz2 = [obj.N 2];
|
||||
end
|
||||
function sz1 = getInputSizeImpl(~)
|
||||
sz1 = 1;
|
||||
|
@ -47,14 +50,16 @@ classdef weather_predictor < matlab.System
|
|||
function cp1 = isInputComplexImpl(~)
|
||||
cp1 = false;
|
||||
end
|
||||
function cp1 = isOutputComplexImpl(~)
|
||||
function [cp1, cp2] = isOutputComplexImpl(~)
|
||||
cp1 = false;
|
||||
cp2 = false;
|
||||
end
|
||||
function fz1 = isInputFixedSizeImpl(~)
|
||||
fz1 = true;
|
||||
fz1 = true;
|
||||
end
|
||||
function fz1 = isOutputFixedSizeImpl(~)
|
||||
function [fz1, fz2] = isOutputFixedSizeImpl(~)
|
||||
fz1 = true;
|
||||
fz2 = true;
|
||||
end
|
||||
|
||||
|
||||
|
@ -63,13 +68,29 @@ classdef weather_predictor < matlab.System
|
|||
% Perform one-time calculations, such as computing constants
|
||||
end
|
||||
|
||||
function w = stepImpl(obj,wdb_mat,timestamp)
|
||||
function [w, w_hat] = stepImpl(obj,wdb_mat,timestamp)
|
||||
disp(timestamp)
|
||||
% Implement algorithm. Calculate y as a function of input u and
|
||||
% discrete states.
|
||||
curr_idx = find(wdb_mat(:, 1) == timestamp);
|
||||
N_idx = (1:obj.N) + curr_idx;
|
||||
w = [wdb_mat(N_idx, 18) + wdb_mat(N_idx, 19), wdb_mat(N_idx, 7)];
|
||||
|
||||
|
||||
forecast_start = timestamp + obj.TimeStep;
|
||||
forecast_end = timestamp + obj.N * obj.TimeStep;
|
||||
|
||||
xq = forecast_start:obj.TimeStep:forecast_end;
|
||||
|
||||
weather_start_idx = find(wdb_mat(:, 1) <= timestamp, 1);
|
||||
weather_end_idx = find(wdb_mat(:, 1) >= forecast_end, 1);
|
||||
weather_idx = weather_start_idx:weather_end_idx;
|
||||
|
||||
solar_direct = interp1(wdb_mat(weather_idx, 1), wdb_mat(weather_idx, 18), timestamp);
|
||||
solar_diffuse = interp1(wdb_mat(weather_idx, 1), wdb_mat(weather_idx, 19), timestamp);
|
||||
outside_temp = interp1(wdb_mat(weather_idx, 1), wdb_mat(weather_idx, 7), timestamp);
|
||||
w = [solar_direct + solar_diffuse, outside_temp];
|
||||
|
||||
solar_direct = interp1(wdb_mat(weather_idx, 1), wdb_mat(weather_idx, 18), xq)';
|
||||
solar_diffuse = interp1(wdb_mat(weather_idx, 1), wdb_mat(weather_idx, 19), xq)';
|
||||
outside_temp = interp1(wdb_mat(weather_idx, 1), wdb_mat(weather_idx, 7), xq)';
|
||||
|
||||
w_hat = [solar_direct + solar_diffuse, outside_temp];
|
||||
end
|
||||
|
||||
function resetImpl(obj)
|
||||
|
|
|
@ -1,8 +0,0 @@
|
|||
function w = weather_predictor2(wdb_mat,timestamp, N)
|
||||
%WEATHER_PREDICTOR2 Summary of this function goes here
|
||||
% Detailed explanation goes here
|
||||
curr_idx = find(wdb_mat(:, 1) == timestamp);
|
||||
N_idx = (1:N) + curr_idx;
|
||||
w = [wdb_mat(N_idx, 18) + wdb_mat(N_idx, 19), wdb_mat(N_idx, 7)];
|
||||
|
||||
end
|
42
carnot_vars_nomenclature
Normal file
42
carnot_vars_nomenclature
Normal file
|
@ -0,0 +1,42 @@
|
|||
Model Parameters
|
||||
================
|
||||
|
||||
Side Windows
|
||||
------------
|
||||
windows_size - [height width] of the large side-windows
|
||||
window_roof_size - [height width] of the roof windows (approximated as one large window as opposed to
|
||||
the four smaller windows in
|
||||
reality)
|
||||
surface_part - ???
|
||||
U - heat transfer coefficient [W/m2K] (of the window?)
|
||||
g - total solar energy transmittance
|
||||
v_g = 0.65 - transmittance in visible range of the sunlight
|
||||
|
||||
|
||||
Roof
|
||||
----
|
||||
wall_size - [length width] of the roof (considered flat)
|
||||
roof_position - position angles of the roof
|
||||
|
||||
|
||||
Roof structure
|
||||
~~~~~~~~~~~~~~
|
||||
The roof is supposed to be made of
|
||||
- 5cm wood
|
||||
- 10cm insulation
|
||||
- 5cm wood
|
||||
|
||||
Data from https://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_HeatTransfer_Data_Solids.html#Buildings.HeatTransfer.Data.Solids.Plywood
|
||||
|
||||
node_thickness
|
||||
node_conductivity
|
||||
node_capacity
|
||||
node_density
|
||||
|
||||
Floor
|
||||
-----
|
||||
ceiling_size
|
||||
layer_thickness
|
||||
layer_conductivity
|
||||
layer_capacity
|
||||
layer_density% Large side windows
|
|
@ -6,3 +6,23 @@ Info on windows (transmittance, U-factor, etc.)
|
|||
|
||||
Computing DNI/DHI from GHI and solar position:
|
||||
https://plantpredict.com/algorithm/irradiance-radiation/
|
||||
|
||||
|
||||
Gaussian Process Kernel Cookbook:
|
||||
https://www.cs.toronto.edu/~duvenaud/cookbook/
|
||||
|
||||
GPflow Manipulating Kernels:
|
||||
https://gpflow.readthedocs.io/en/develop/notebooks/advanced/kernels.html
|
||||
|
||||
Neural Network Gaussian Process:
|
||||
https://en.wikipedia.org/wiki/Neural_network_Gaussian_process
|
||||
|
||||
Sparse Gaussian Process Tutorial (github):
|
||||
http://krasserm.github.io/2018/03/19/gaussian-processes/
|
||||
http://krasserm.github.io/2020/12/12/gaussian-processes-sparse/
|
||||
|
||||
Sparse Gaussian Processes (youtube):
|
||||
https://www.youtube.com/watch?v=sQmsQq_Jfi8
|
||||
|
||||
Deep Gaussian Processes (youtube):
|
||||
https://www.youtube.com/watch?v=750fRY9-uq8
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue