MATLAB/Simulink code update

This commit is contained in:
Radu C. Martin 2021-06-02 10:43:38 +02:00
parent d2179071db
commit d6b69acb17
28 changed files with 956 additions and 266 deletions

View file

@ -0,0 +1,225 @@
classdef MPCcasadi_v1_0 < matlab.System
% Public, tunable properties
properties(Nontunable)
TimeStep = 0; % Time step MPC
N = 0; % Planning and control horizon N
R = 1; % Weights for control cost R
T = 1; % Weights for slack variable for output constraints T
nState = 0; % Number of states X
nOut = 0; % Number of outputs Y
nIn = 0; % Number of controlled inputs U
nDst = 0; % Number of disturbance inputs
A = 0; % A
Bd = 0; % Bd (disturbance)
Bu = 0; % Bu (control)
C = 0; % C
D = 0; % D
uMin = 0; % Lower control constraints uMin
uMax = 0; % Upper control constraints uMax
yMin = 0; % Lower output constraints yMin
yMax = 0; % Upper output constraints yMax
end
properties(DiscreteState)
end
% Pre-computed constants
properties(Access = private)
casadi_solver
lbg
ubg
end
methods(Access = protected)
function sts = getSampleTimeImpl(obj)
sts = createSampleTime(obj, 'Type', 'Controllable', 'TickTime', obj.TimeStep); % Time step
end
function num = getNumInputsImpl(~) % Number of inputs
num = 4;
end
function num = getNumOutputsImpl(~) % Number of outputs
num = 5;
end
function [dt1, dt2, dt3, dt4, dt5] = getOutputDataTypeImpl(~) % Output data type
dt1 = 'double';
dt2 = 'double';
dt3 = 'double';
dt4 = 'double';
dt5 = 'double';
end
function dt1 = getInputDataTypeImpl(~) % Input data type
dt1 = 'double';
end
function [sz1, sz2, sz3, sz4, sz5] = getOutputSizeImpl(obj) % OUtput dimensions
sz1 = [1, obj.nIn]; % mv
sz2 = [obj.N+1, obj.nState]; % xStar
sz3 = [obj.N, obj.nOut]; % sStar
sz4 = [obj.N, obj.nIn]; % uStar
sz5 = [1, obj.nOut]; % yStarOut
end
function [sz1, sz2, sz3, sz4] = getInputSizeImpl(obj) % Input dimensions
sz1 = [obj.nState, 1]; % xHat
sz2 = [obj.N, obj.nDst]; % disturbances
sz3 = [obj.N, 1]; % elec price
sz4 = [1, 1]; % on
end
function cp1 = isInputComplexImpl(~) % Inputs are complex numbers?
cp1 = false;
end
function [cp1, cp2, cp3, cp4, cp5] = isOutputComplexImpl(~) % Outputs are complex numbers?
cp1 = false;
cp2 = false;
cp3 = false;
cp4 = false;
cp5 = false;
end
function fz1 = isInputFixedSizeImpl(~) % Input fixed size?
fz1 = true;
end
function [fz1, fz2, fz3, fz4, fz5] = isOutputFixedSizeImpl(~) % Output fixed size?
fz1 = true;
fz2 = true;
fz3 = true;
fz4 = true;
fz5 = true;
end
function setupImpl(obj)
% Perform one-time calculations, such as computing constants
import casadi.*
%% Parameters
nState = obj.nState;
nIn = obj.nIn;
nOut = obj.nOut;
nDst = obj.nDst;
N = obj.N;
R = obj.R;
T = obj.T;
A = obj.A;
Bd = obj.Bd;
Bu = obj.Bu;
C = obj.C;
D = obj.D;
%% Prepare variables
U = MX.sym('U', nIn, N);
P = MX.sym('P', nState + N + nDst*N); % Initial values, costElec, disturbances
X = MX.sym('X', nState, (N+1));
S = MX.sym('S', nOut, N); % First state free
J = 0; % Objective function
g = []; % constraints vector
%% P indices
iX0 = [1:nState];
iCoEl = [nState+1:nState+N];
iDist = [nState+N+1:nState+N+nDst*N];
%% Disassemble P
pX0 = P(iX0);
pCoEl = P(iCoEl);
pDist = reshape(P(iDist), [nDst N]); % Prone to shaping error
%% Define variables
states = MX.sym('states', nState);
controls = MX.sym('controls', nIn);
disturbances = MX.sym('disturbances', nDst);
%% Dynamics
f = Function('f',{P, states, controls, disturbances},{A*states + Bu*controls + Bd*disturbances});
%% Compile all constraints
g = [g; X(:,1) - pX0];
for i = 1:N
g = [g; C*X(:,i+1) - S(:,i)]; % State/output constraints, first state free
g = [g; U(:,i)]; % Control constraints
g = [g; X(:,i+1) - f(P, X(:,i), U(:,i), pDist(:,i))]; % System dynamics
% Cost function, first state given -> not punished
J = J + R * U(:,i) * pCoEl(i) + S(:,i)'*T*S(:,i);
end
%% Reshape variables
OPT_variables = veccat(X, S, U);
%% Optimization
nlp_mhe = struct('f', J, ...
'x', OPT_variables, ...
'g', g, ...
'p', P);
opts = struct;
opts.ipopt.print_level = 0; %5;
solver = nlpsol('solver', 'ipopt', nlp_mhe, opts);
%% Pack opj
obj.casadi_solver = solver;
end
function [mv, xStar, sStar, uStar, yStarOut] = stepImpl(obj, xHat, dist, cE, on)
% Implement algorithm. Calculate y as a function of input u and
% discrete states.
if on > 0.5
%% Parameters
nState = obj.nState;
N = obj.N;
nOut = obj.nOut;
nDst = obj.nDst;
nIn = obj.nIn;
yMin = obj.yMin;
yMax = obj.yMax;
uMin = obj.uMin;
uMax = obj.uMax;
C = obj.C;
solver = obj.casadi_solver;
Pdata = [xHat; cE; reshape(dist', [nDst*N, 1])]; % Prone to shaping error!!!
%% Constraints
lbg = zeros(nState,1); % x0 constraints
ubg = zeros(nState,1);
% Output, control and dynamics constraints
for i = 1:N
lbg = [lbg; yMin];
lbg = [lbg; uMin];
lbg = [lbg; zeros(nState,1)];
ubg = [ubg; yMax];
ubg = [ubg; uMax];
ubg = [ubg; zeros(nState,1)];
end
%% Solver
sol = solver('x0', 0, ... % x0 = x* from before, shift one time step, double last time step
'lbg', lbg, ...
'ubg', ubg, ...
'p', Pdata);
%% Outputs
xStar = reshape(full(sol.x(1 :nState*(N+1))), [nState, (N+1)])';
sStar = reshape(full(sol.x(nState*(N+1)+1 :nState*(N+1)+nOut*N)), [nOut, N])';
uStar = reshape(full(sol.x(nState*(N+1)+nOut*N+1:end)), [nIn, N])';
mv = full(sol.x(nState*(N+1)+nOut*N+1:nState*(N+1)+nOut*N+nIn))';
yStarOut = C*xStar(2,:)'; % Second value is the target
else % Zero output if MPC is disabled
mv = zeros(1, obj.nIn);
xStar = zeros(obj.N+1, obj.nState);
uStar = zeros(obj.N, obj.nIn);
sStar = zeros(obj.N, obj.nOut);
yStarOut = zeros(1, obj.nOut);
end % \if on
end % \stepImpl
function resetImpl(obj)
% Initialize / reset discrete-state properties
end
end
end

Binary file not shown.

View file

@ -0,0 +1,30 @@
%% Settings
TimeStep = 900; % Step time
nHor = 4*24; % Length of ontrol and planning horizon
%tSmp = 0:TimeStep:nHor*TimeStep-1;
nStt = 1; % Number of states
chY = 1; % Number of observed variables
nDst = 1; % Number of disturbance variables
nMV = 1; % Number of controlled variables
%% System matrices
A = 1;
B = [-1, 1]/(3000*4182/TimeStep);
Bd = B(:, 1:nDst);
Bu = B(:, nDst+1:end);
C = 1;
D = 0;
%% Constraints and normalization
uMin = 0;
uMax = 7500;
yMin = 40;
yMax = 50;
%% Weights
R = 1/uMax/0.1;
T = 1e5*eye(chY);