153 lines
4.3 KiB
Matlab
153 lines
4.3 KiB
Matlab
classdef gp_mpc_system < matlab.System & matlab.system.mixin.Propagates
|
|
% untitled Add summary here
|
|
%
|
|
% This template includes the minimum set of functions required
|
|
% to define a System object with discrete state.
|
|
|
|
properties
|
|
% Control horizon
|
|
N = 0;
|
|
% Time Step
|
|
TimeStep = 0;
|
|
% Max Electrical Power Consumption
|
|
Pel = 6300;
|
|
|
|
end
|
|
|
|
properties (DiscreteState)
|
|
end
|
|
|
|
properties (Access = private)
|
|
% Pre-computed constants.
|
|
casadi_solver
|
|
u_lags
|
|
y_lags
|
|
lbx
|
|
ubx
|
|
end
|
|
|
|
methods (Access = protected)
|
|
function num = getNumInputsImpl(~)
|
|
num = 2;
|
|
end
|
|
function num = getNumOutputsImpl(~)
|
|
num = 1;
|
|
end
|
|
function dt1 = getOutputDataTypeImpl(~)
|
|
dt1 = 'double';
|
|
end
|
|
function [dt1, dt2] = getInputDataTypeImpl(~)
|
|
dt1 = 'double';
|
|
dt2 = 'double';
|
|
end
|
|
function sz1 = getOutputSizeImpl(~)
|
|
sz1 = 1;
|
|
end
|
|
function sz1 = getInputSizeImpl(~)
|
|
sz1 = 1;
|
|
end
|
|
function cp1 = isInputComplexImpl(~)
|
|
cp1 = false;
|
|
end
|
|
function cp1 = isOutputComplexImpl(~)
|
|
cp1 = false;
|
|
end
|
|
function fz1 = isInputFixedSizeImpl(~)
|
|
fz1 = true;
|
|
end
|
|
function fz1 = isOutputFixedSizeImpl(~)
|
|
fz1 = true;
|
|
end
|
|
function setupImpl(obj,~,~)
|
|
% Implement tasks that need to be performed only once,
|
|
% such as pre-computed constants.
|
|
addpath('/home/radu/Media/MATLAB/casadi-linux-matlabR2014b-v3.5.5')
|
|
import casadi.*
|
|
|
|
% Initialize CasADi callback
|
|
cs_model = gpCallback('model');
|
|
|
|
% Set up problem variables
|
|
T_set = 20;
|
|
n_states = 7;
|
|
|
|
COP = 5; %cooling
|
|
EER = 5; %heating
|
|
|
|
|
|
obj.u_lags = [0];
|
|
obj.y_lags = [23 23 23];
|
|
|
|
% Formulate the optimization problem
|
|
J = 0; % optimization objective
|
|
g = []; % constraints vector
|
|
|
|
% Set up the symbolic variables
|
|
U = MX.sym('U', obj.N, 1);
|
|
W = MX.sym('W', obj.N, 2);
|
|
x0 = MX.sym('x0', 1, n_states - 3);
|
|
|
|
% setup the first state
|
|
wk = W(1, :);
|
|
uk = U(1); % scaled input
|
|
xk = [wk, obj.Pel*uk, x0];
|
|
yk = cs_model(xk);
|
|
J = J + (yk - T_set).^2;
|
|
|
|
% Setup the rest of the states
|
|
for idx = 2:obj.N
|
|
wk = W(idx, :);
|
|
uk_1 = uk; uk = U(idx);
|
|
xk = [wk, obj.Pel*uk, obj.Pel*uk_1, yk, xk(5:6)];
|
|
yk = cs_model(xk);
|
|
J = J + (yk - T_set).^2;
|
|
end
|
|
|
|
p = [vec(W); vec(x0)];
|
|
nlp_prob = struct('f', J, 'x', vec(U), 'g', g, 'p', p);
|
|
|
|
|
|
opts = struct;
|
|
%opts.ipopt.max_iter = 5000;
|
|
opts.ipopt.max_cpu_time = 15 * 60;
|
|
opts.ipopt.hessian_approximation = 'limited-memory';
|
|
%opts.ipopt.print_level =0;%0,3
|
|
opts.print_time = 0;
|
|
opts.ipopt.acceptable_tol =1e-8;
|
|
opts.ipopt.acceptable_obj_change_tol = 1e-6;
|
|
|
|
solver = nlpsol('solver', 'ipopt', nlp_prob,opts);
|
|
|
|
obj.casadi_solver = solver;
|
|
obj.lbx = -COP;
|
|
obj.ubx = EER;
|
|
end
|
|
|
|
function u = stepImpl(obj,x,w)
|
|
import casadi.*
|
|
|
|
%Update the y lags
|
|
obj.y_lags = [x, obj.y_lags(1:end-1)];
|
|
|
|
|
|
real_p = vertcat(vec(DM(w)), vec(DM([obj.u_lags obj.y_lags])));
|
|
disp("Starting optimization")
|
|
tic
|
|
res = obj.casadi_solver('p', real_p, 'ubx', obj.ubx, 'lbx', obj.lbx);
|
|
t = toc;
|
|
disp(t)
|
|
u = obj.Pel * full(res.x(1));
|
|
u = 15000 * (20 - x);
|
|
|
|
% Update the u lags
|
|
obj.u_lags = [u, obj.u_lags(2:end-1)];
|
|
|
|
|
|
|
|
end
|
|
|
|
function resetImpl(obj)
|
|
% Initialize discrete-state properties.
|
|
end
|
|
end
|
|
end
|