WIP: Thesis update
This commit is contained in:
parent
3b4e35900f
commit
4bdc12f802
5 changed files with 83 additions and 58 deletions
|
@ -348,6 +348,8 @@ being cheaper from a computational perspective. In order to make a more informed
|
|||
choice for the best hyperparamerers, the performance of all three combinations
|
||||
has been analysed.
|
||||
|
||||
\clearpage
|
||||
|
||||
\begin{table}[ht]
|
||||
%\vspace{-8pt}
|
||||
\centering
|
||||
|
@ -384,25 +386,22 @@ therefore been chosen as the model for the full year simulations.
|
|||
|
||||
% TODO: [Hyperparameters] Validation of hyperparameters
|
||||
|
||||
The validation of model parameters has the dual purpose of
|
||||
The validation step has the purpose of testing the fiability of the trained
|
||||
models. If choosing a model according to loss function values on a new dataset
|
||||
is a way of minimizing the possibility of overfitting the model to the training
|
||||
data, validating the model by analyzing its multi-step prediction performance
|
||||
ensures the model was able to learn the correct dynamics and is useful in
|
||||
simulation scenarios.
|
||||
|
||||
The following subsections analyze the performance of the trained \arcshort{gp}
|
||||
and \acrshort{svgp} models over 20-step ahead predictions. For the \acrshort{gp}
|
||||
model the final choice of parameters is made according to the simulation
|
||||
performance. The simulation performance of the \acrshort{svgp} model is compared
|
||||
to that of the classical models while speculating on the possible reasons for
|
||||
the discrepancies.
|
||||
|
||||
\subsubsection{Conventional Gaussian Process}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\includegraphics[width = \textwidth]{Plots/GP_113_training_performance.pdf}
|
||||
\caption{}
|
||||
\label{fig:GP_train_validation}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\includegraphics[width = \textwidth]{Plots/GP_113_test_performance.pdf}
|
||||
\caption{}
|
||||
\label{fig:GP_test_validation}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
|
@ -412,23 +411,39 @@ The validation of model parameters has the dual purpose of
|
|||
\label{fig:GP_multistep_validation}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\includegraphics[width =
|
||||
\textwidth]{Plots/GP_213_-1pts_test_prediction_20_steps.pdf}
|
||||
\caption{}
|
||||
\label{fig:GP_213_multistep_validation}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\includegraphics[width =
|
||||
\textwidth]{Plots/GP_313_-1pts_test_prediction_20_steps.pdf}
|
||||
\caption{}
|
||||
\label{fig:GP_313_multistep_validation}
|
||||
\end{figure}
|
||||
|
||||
\clearpage
|
||||
|
||||
\subsubsection{Sparse and Variational Gaussian Process}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\includegraphics[width = \textwidth]{Plots/SVGP_123_training_performance.pdf}
|
||||
\caption{}
|
||||
\label{fig:SVGP_train_validation}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\includegraphics[width = \textwidth]{Plots/SVGP_123_test_performance.pdf}
|
||||
\caption{}
|
||||
\label{fig:SVGP_test_validation}
|
||||
\end{figure}
|
||||
%\begin{figure}[ht]
|
||||
% \centering
|
||||
% \includegraphics[width = \textwidth]{Plots/SVGP_123_training_performance.pdf}
|
||||
% \caption{}
|
||||
% \label{fig:SVGP_train_validation}
|
||||
%\end{figure}
|
||||
%
|
||||
%\begin{figure}[ht]
|
||||
% \centering
|
||||
% \includegraphics[width = \textwidth]{Plots/SVGP_123_test_performance.pdf}
|
||||
% \caption{}
|
||||
% \label{fig:SVGP_test_validation}
|
||||
%\end{figure}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue